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Introduction

This course treats two essential subjects, among many others, in applied mathematics: nu-
merical analysis and optimization. Before even presenting these two disciplines, let us imme-
diately say that through their teaching the objective of this course is to introduce the reader
to the world of mathematical modelling and numerical simulation which have gained
considerable importance in these last decades in all areas of science and industrial applica-
tions (or engineering science). Mathematical modelling is the art (or the science, depending
on the point of view) of representing (or transforming) a physical reality into abstract models
which are accessible to analysis and to calculation. Numerical simulation is, of course, the
process which allows us to calculate the solutions of these models on a computer, and thus
to simulate physical reality.

But, first of all, what is applied mathematics? To say that it is mathematics turned
towards applications would be a tautology and a false characterization. In effect, throughout
time, mathematicians have been inspired by the practical problems that they have tried
to solve, however, the emergence of applied mathematics as an independent discipline is
relatively recent. In fact, everything changed with the appearance of the first computers
shortly after the Second World War. More than for any other discipline the computer has
been a revolution for mathematics: in effect it has opened up a new field, that of modelling
and simulation. The computer has made mathematics an experimental science (we make
‘numerical experiments’ as others make physical experiments), and the design, as well as the
analysis of methods of calculation on a computer, has become a new branch of mathematics:
this is numerical simulation. This progress also made it possible for mathematics to attack
much more complex and concrete problems, resulting from immediate industrial or scientific
motivations, to which we can bring both qualitative and quantitative responses: this is
mathematical modelling.

We can thus characterize applied mathematics as the mathematics of modelling and
numerical simulation. From this point of view, applied mathematics lies at the intersection of
many scientific disciplines: mathematics, computing, physical sciences, chemistry, mechanics,
biology, economics, and engineering sciences (under this last term we usually group the
different fields of industrial applications such as aeronautics, power generation, finance, etc.).
The American mathematician Joseph Keller said as a joke that ‘pure mathematics is a
branch of applied mathematics’. He wanted to highlight the multidisciplinary character of
applied mathematics (but it is not excluded that he also wanted to pay back some ‘pure’
mathematicians who affect to despise applied mathematics).

Paraphrasing the title of a famous film, my colleague Pierre-Louis Lions claims that
applied mathematics is characterized by three things: Sex, Lies, and Videotapes. Videocas-
settes are of course the symbols of digital simulation (and of the films that they produce), lies

xiii
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correspond to models (not always faithful to reality), and the sex is obviously mathematical
analysis (inextinguishable engine of human passions and source of much pleasure).

After this (long) detour we can now return to the title of this course. Numerical analysis
is thus the discipline which conceives and analyses the methods or algorithms of numerical
calculation. In addition optimization is the theory of methods which allow us to improve
the operation, output, or the response of a system by maximizing or minimizing associated
functions. It is thus an essential tool for modelling.

The objectives of this course are to familiarize the reader with the principal models
(which are often partial differential equations), their methods of numerical solution and
their optimization. Of course, the ambition of this course is to give a foundation which
will allow future engineers either in a design department or in research and development
to create new models and new numerical algorithms for more complicated problems
not discussed here. However, even those not destined for such a career are interested in
understanding the fundamentals of numerical simulation. Indeed, many industrial or political
decisions will be taken from now on having faith in calculations or numerical simulations.
It is thus essential that the decision-makers are capable of judging the quality and of the
reliability of the calculations which are presented to them. This course will allow them
to understand the first criteria which guarantee the validity and the relevance of numerical
simulations.

The plan of this course is the following. After a first chapter of introduction to the prin-
cipal ‘classical’ models and to their numerical solution, Chapter 2 is dedicated to the study
of the numerical method of finite differences. These first two chapters allow us to go very
quickly to some essential numerical questions which motivate the theoretical developments
that follow. Chapters 3, 4, and 5 are dedicated to the theoretical solution by the variational
approach of stationary (independent of time) models. They also give the foundation of a
very important numerical method, called the finite element method, which is presented
in detail in Chapter 6. The finite element method is the basis of many pieces of industrial
or academic software. Chapters 7 and 8 discuss the solution of nonstationary problems
(or of evolution in time), from both the theoretical and numerical points of view. If the
first eight chapters are dedicated to numerical analysis, the last three treat optimization.
Chapter 9 presents a series of concrete examples of optimization problems and gives a theory
of existence of solutions to these problems. Chapter 10 derives the (necessary or sufficient)
conditions for optimality of the solutions. These conditions are important as much from the
theoretical as the numerical point of view. They allow us to characterize the optima, and
they are the foundation of the numerical algorithms that we describe. Finally, chapter 11
is an introduction to operational research. After having studied linear programming, we
give an outline of combinatorial optimization methods (that is to say optimization in dis-
crete variables) which are essential for the optimal planning of resources and tasks in all large
companies. Each chapter starts with an introduction which gives the plan and the principal
ideas.

The length of this course should not worry the reader: the course contains numerous
supplementary developments which allow the curious reader ‘to go a little further’ and to
make the link with other works or other disciplines. It is, therefore, more a work of reference
than the exact transcription of a lecture course.

To finish this introduction we give some practical information. As far as possible, this
course is intended to be ‘self-contained’ to avoid frequent references to other works. This
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is particularly sensible for many results from analysis which here are only useful, but not
essential, technical tools. Statement without proof would amount to using them as ‘black
boxes’ which gives them the flavour of an artificial ‘recipe’. As far as possible, we have
therefore included their proof, but more as information and to ‘demystify’ than for the
theoretical interest of the mathematical arguments. In order to distinguish them we use, for all
these difficult passages or those of complementary interest, smaller characters like these. The reader
should therefore consider these passages in small characters as ‘outside of the programme’.
The statements of results or of definitions are in italic characters like these. The exercises
are in sans serif characters like these. The end of a proof is indicated by the character �, while
the end of a remark or of an example is indicated by the character •. An index is available
at the end of the work.

The answers to exercises will be published in French. Most of the computer programs
which implement the numerical methods studied, and which have allowed us to produce the
figures in this work, are available on the website
http://www.cmap.polytechnique.fr/˜allaire/course X annee2.html
where the reader can download them freely. The finite difference schemes, as well as the finite
element method in one dimension, have been programmed in the language Scilab developed
by INRIA and ENPC, available free on the website
http://www.scilab.org
while the results of the finite element method in two dimensions have been obtained with the
help of the program FreeFem++ developed by F. Hecht and O. Pironneau and also available
free on the website
http://www.freefem.org
In addition, most of the two-dimensional figures and all of the three-dimensional figures have
been drawn with the help of graphical program xd3d developed by François Jouve at the
École Polytechnique and also available free on the website
http://www.cmap.polytechnique.fr/˜jouve/xd3d
Let us indicate another web address for the curious reader who wants to know more about
the history of mathematics or the life of some mathematicians cited in this course
http://www-history.mcs.st-and.ac.uk/history
The reader who would like to keep up to date with the progress and advances of applied
mathematics would benefit to consult the site of the Société de Mathématiques Appliquées
et Industrielles
http://smai.emath.fr
or that of its American colleague, the Society for Industrial and Applied Mathematics
http://www.siam.org

The level of this course is introductory and it does not need any other prerequisites
other than the level of knowledge gained in the first few years of university. We recognize
that it is difficult to show much originality in this subject which is already classical in
the literature. In particular, our course owes much to its predecessors and particularly
to the course by B. Larrouturou, P.-L. Lions, and P.-A. Raviart from which it sometimes
borrows heavily. The author thanks all those who have reread parts of the manuscript,
particularly Frédéric Bonnans, Bruno Després and Bertrand Maury. A special mention is
due to Stéphane Gaubert, who has co-written chapter 11, and also to Olivier Pantz, who has
reread the entire manuscript with great care and who has checked the exercises and written

http://www.cmap.polytechnique.fr/%CB%9Callaire/course_X_annee2.html
http://www.scilab.org
http://www.freefem.org
http://www.cmap.polytechnique.fr/%CB%9Cjouve/xd3d
http://www-history.mcs.st-and.ac.uk/history
http://smai.emath.fr
http://www.siam.org
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the corrections. The author thanks in advance all those who will point out the inevitable
errors or imperfections of this edition, for example, by email to the address
gregoire.allaire@polytechnique.fr

G. Allaire
Paris, July 7, 2005



1 Introduction to
mathematical modelling
and numerical simulation

1.1 General introduction

This chapter is an introduction to two distinct, but closely linked, aspects of applied
mathematics: mathematical modelling and numerical simulation. A mathem-
atical model is a representation or an abstract interpretation of physical reality that is
amenable to analysis and calculation. Numerical simulation allows us to calculate the
solutions of these models on a computer, and therefore to simulate physical reality. In
this book, the models we shall study will be partial differential equations (or PDEs),
that is, differential equations in several variables (time and space, for example).

For the moment we shall put aside a third fundamental aspect of applied mathem-
atics, that is, the mathematical analysis of models to which we shall return in a little
more depth in later chapters. We need, in some way, to both motivate and justify this
necessary intrusion of mathematical analysis. We shall see that the numerical calcula-
tion of the solutions of these physical models sometimes has some unpleasant surprises
which can only be explained by a sound understanding of their mathematical prop-
erties. Once again we recall the fundamental multidisciplinary character of applied
mathematics, and therefore of numerical simulation, which combines mathematics,
computer science, and engineering.

Although most of the problems and applications which motivate applied mathem-
atics are fundamentally nonlinear (see, for example, [12], [27]), we confine ourselves

1



2 MODELLING AND SIMULATION

in this work to linear problems for simplicity. Likewise, we only consider deterministic
problems, that is, with no random or stochastic components. Finally, in order for this
chapter to be introductory and easily accessible, we shall often be a little imprecise
in our mathematical arguments. The more rigorous reader can be reassured that we
shall return to the concepts introduced in this way more carefully in the following
chapter.

The plan of this chapter is the following. Section 1.2 is devoted to an elementary
example of modelling which leads to the heat flow equation. Section 1.3 is a quick
review of the principal PDEs that we meet in the usual models in mechanics, physics,
or engineering sciences. Section 1.4 is an informal introduction to numerical analysis
and the finite difference method. Finally, in the Section 1.5 we give the definition
of a well-posed problem as well as a (brief) classification of PDEs.

1.2 An example of modelling

Modelling represents a considerable part of the work of an applied mathematician
and requires a thorough knowledge, not only of applied mathematics, but also of the
scientific discipline to which it is applied. In fact, in many cases the mathematical
model may not yet be established, or we must select the pertinent one from among
several possibilities, or we must simplify known models which are too complex. How-
ever, in an introductory presentation of the discipline it is not possible to do justice
to this step of the modelling process: we must begin by learning the basic properties
of applied mathematics! This is why we limit ourselves to describing the derivation
of a well-known classical physical model, and we refer the reader who wishes to know
more to more specialised works.

The model which we shall describe is known as the heat flow equation, or the
diffusion equation.

Let us consider a domain Ω in N space dimensions (denoted by RN , with in general
N = 1, 2, or 3) which we assume is occupied by a homogeneous, isotropic material
which conducts heat. We denote the space variable by x, that is a point of Ω, and the
time variable by t. The heat sources in Ω (possibly nonuniform in time and space) are
represented by a given function f(x, t), while the temperature is an unknown function
θ(x, t). The quantity of the heat is proportional to the temperature θ and is therefore
cθ where c is a physical constant (which depends on the material) called the specific
heat. To calculate the temperature θ, we write down the law of conservation of
energy or of heat. In an elementary volume V contained in Ω, the variation in time
of the amount of heat is the balance of that produced by the sources and that which
leaves or returns through the element boundaries. In other words,

d

dt

(∫
V

cθ dx

)
=
∫
V

f dx−
∫
∂V

q · nds, (1.1)

where ∂V is the boundary of V (with surface element ds), n is the outward unit
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normal from V , and q is the heat flux vector. If we apply Gauss’s theorem we obtain

∫
∂V

q · nds =
∫
V

divq dx.

Gathering together the different terms in (1.1) and using the fact that the elementary
volume V is independent of time, we deduce the energy conservation equation

c
∂θ

∂t
+ divq = f (1.2)

which holds at every point x ∈ Ω and for all time t. We recall that the divergence
operator is defined by

divq =
N∑
i=1

∂qi
∂xi

with q = (q1, . . . , qN )T .

We must now link the heat flow to the temperature, by what is called a constitutive
law. In this case, we use Fourier’s law which says that the heat flux is proportional
to the temperature gradient

q = −k∇θT (1.3)

where k is a positive constant (which depends on the material) called the thermal
conductivity. Remember that the gradient operator is defined by

∇θ =
(
∂θ

∂x1
, . . . ,

∂θ

∂xN

)T
.

By combining the conservation law (1.2) and the constitutive law (1.3), we obtain an
equation for the temperature θ

c
∂θ

∂t
− k∆θ = f,

where ∆ = div∇ is the Laplacian operator given by

∆θ =
N∑
i=1

∂2θ

∂x2
i

.

This equation is valid in the entire domain Ω and we must add another relation, called
a boundary condition, which describes what happens at the boundary ∂Ω of the
domain, and another relation which describes the initial state of the temperature.
By convention, we choose the instant t = 0 to be the initial time, and we impose an
initial condition

θ(t = 0, x) = θ0(x), (1.4)

where θ0 is the function giving the initial distribution of the temperature in the domain
Ω. The type of boundary condition depends on the physical context. If the domain is
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n

�

∂�

Figure 1.1. Unit normal vector oriented to the exterior.

surrounded by a region of constant temperature, then, by rescaling the temperature,
the temperature satisfies the Dirichlet boundary condition

θ(t, x) = 0 for all x ∈ ∂Ω and t > 0. (1.5)

If the domain is assumed to be adiabatic or thermally isolated from the exterior, then
the heat flux across the boundary is zero and the temperature satisfies the Neumann
boundary condition

∂θ

∂n
(t, x) ≡ n(x) · ∇θ(t, x) = 0 for all x ∈ ∂Ω and t > 0, (1.6)

where n is the unit outward normal to Ω (see Figure 1.1). An intermediate situation
can happen: the heat flux across the boundary is proportional to the jump in tem-
perature from the exterior to the interior, and the temperature satisfies the Fourier
(or Robin) boundary condition

∂θ

∂n
(t, x) + αθ(t, x) = 0 for all x ∈ ∂Ω, and t > 0 (1.7)

where α is a positive constant. As we must choose a boundary condition (as one
of the steps in the modelling), we shall take the Dirichlet boundary condition (1.5).
Finally, gathering together the equation, the initial value, and the boundary condition
satisfied by the temperature, we obtain the heat equation

⎧⎪⎪⎨
⎪⎪⎩

c
∂θ

∂t
− k∆θ = f for (x, t) ∈ Ω× R+

∗

θ(t, x) = 0 for (x, t) ∈ ∂Ω× R+
∗

θ(t = 0, x) = θ0(x) for x ∈ Ω

(1.8)

Problem (1.8) therefore comprises a PDE equipped with boundary conditions and
an initial value. Because of the boundary conditions, we say that (1.8) is a bound-
ary value problem, but we also say that it is a Cauchy problem because of the
initial value.
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Remark 1.2.1 In this model of heat propagation we must make the physical units
precise: the temperature θ is expressed in degrees Kelvin (K), the specific heat c
in Joules per kilogram per degree Kelvin (J/(kg × K)), the thermal conductivity
(per unit of mass) k in Joules metre squared per kilogramme per degree Kelvin per
second (Jm2/(kg ×K × s)). From a mathematical point of view, we shall frequently
neglect these units, and also assume that the constants c and k are equal to 1 (this is
equivalent to making the physical quantities nondimensional). •

Remark 1.2.2 We have mentioned three types of boundary condition, Dirichlet,
Neumann, and Fourier (but there are others) which hold on the entire boundary ∂Ω.
Of course, we can easily imagine situations where the boundary conditions are mixed:
Dirichlet on ∂ΩD, Neumann on ∂ΩN, and Fourier on ∂ΩF, with ∂ΩD, ∂ΩN, ∂ΩF being
a partition of the boundary ∂Ω. •

Remark 1.2.3 The heat flow equation (1.8) is linear in the sense that its solution
θ depends linearly on the data (f, θ0). In physics, this property is often described
in terms of a superposition principle: a linear combination of data (f, θ0) leads to a
solution θ which is the same linear combination of solutions corresponding to each
term of the decomposition of data. From a physical point of view, linearity is only
one hypothesis among many. Indeed, for problems with a strong variation in temper-
ature, Fourier’s law is false, and it should be corrected by assuming that the thermal
conductivity k depends on the temperature θ and its gradient ∇θ (which makes the
problem nonlinear). Even worse, for very rapid phenomena (explosions, for example)
it is necessary to abandon the assumption of the proportionality of the heat flux q to
the temperature gradient ∇θ. Indeed, this hypothesis (which initially appears ‘natu-
ral’) leads to the following paradox: the heat propagates with infinite velocity in the
domain Ω. We shall see later (see Remark 1.2.9) how to reach this paradox. Let us
remember for the moment that modelling is making hypotheses and describing their
domain of validity. •

Remark 1.2.4 Problem (1.8) is not just a model of heat propagation. In fact it
has a universal character, and we find it in many unrelated phenomena (we simply
change the names of the variables). For example, (1.8) is also known as the diffusion
equation, and models the diffusion or migration of a density or concentration across
the domain Ω (imagine a pollutant diffusing in the atmosphere, or a chemical species
migrating in a substrate). In this case, θ is the concentration or the density in
question, q is the mass flux, k is the diffusivity, and c is the volume density of the
species. Likewise, the conservation law (1.2) is a mass balance, while the constitutive
law (1.3) is called Fick’s law. •

Remark 1.2.5 Problem (1.8) also occurs in finance where it is called the Black–
Scholes model. A variant of (1.8) allows us to find the value of an option to buy (or
call option) a stock, which is initially worth x, for price k at some time in the future T .
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This value is the solution u of⎧⎨
⎩

∂u

∂t
− ru + 1/2rx

∂u

∂x
+ 1/2σ2x2 ∂

2u

∂x2 = 0 for (x, t) ∈ R× (0, T )

u(t = T, x) = max(x− k, 0) for x ∈ R

(1.9)

More precisely, u(0, x) is the value at time t = 0 of the call option with exercise price
k at the exercise time T > 0, and with value x at t = 0. The volatility is denoted by
σ and the interest rate by r. We remark that (1.9) is a final value and not an initial
value problem, but that the sign of the second space derivative is opposite to that in
(1.8). Consequently, after reversing the time, (1.9) is a parabolic equation. •

Numerous variants of the heat equation (1.8) exist, some of which we shall now
explore. Up until now we have assumed that heat propagates in a fixed medium, or
at least a still medium. Let us now assume that it propagates in a moving medium,
for example, a fluid moving with velocity V (x, t) (a vector valued function in RN ).
Then, we must now change the constitutive law since the heat flux is the sum of a
diffusive flux (as before) and a convective flux (proportional to the velocity V ), and
proceeding similarly to the arguments above leads us to the convection–diffusion
problem ⎧⎪⎪⎨

⎪⎪⎩
c
∂θ

∂t
+ cV · ∇θ − k∆θ = f in Ω× R+

∗

θ = 0 on ∂Ω× R+
∗

θ(t = 0, x) = θ0(x) in Ω

(1.10)

The difference between (1.8) and (1.10) is the appearance of a convection term. We
measure the balance between this new convection term and the diffusion term by a
dimensionless number called the Péclet number, defined by

Pe =
cV L

k
, (1.11)

where L is a characteristic length of the problem (for example, the diameter of the
domain Ω). If the Péclet number is very small then the diffusive effects dominate
the convective effects, and model (1.8) is sufficient to describe the phenomenon.
If the Péclet number is neither small nor large (we say that it is the order of unity),
then model (1.10) is more realistic than (1.8). On the other hand, if the Péclet number
is very large, we can simplify (1.10) by removing the diffusion term. We then obtain
the equation known as the advection equation⎧⎪⎪⎨

⎪⎪⎩
c
∂θ

∂t
+ cV · ∇θ = f in Ω× R+

∗

θ(t, x) = 0 for (x, t) ∈ ∂Ω× R+
∗ if V (x) · n(x) < 0

θ(t = 0, x) = θ0(x) in Ω

(1.12)

We note the difference in the boundary condition of (1.12) with respect to that of
(1.10): we no longer impose that the temperature θ is zero everywhere on the bound-
ary ∂Ω but only on those parts of the boundary where the velocity V is re-entrant.
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We have therefore described three models of heat propagation by convection and
diffusion, (1.8), (1.10), (1.12), which have different regimes of validity depending on
different values of the Péclet number. Of course, the analytical or numerical solution
of these three problems is very different. This is reflected in the current state of
mathematical modelling: there are several competing models and we must choose the
‘best’.

In order to understand better the fundamental differences which exist between
these models, we temporarily restrict ourselves to the case where Ω = R the whole real
line (which rids us of the question of the boundary conditions), where the source term
f is zero, and where the velocity V is constant. We can then explicitly calculate
solutions of these models. For example, (1.10) becomes⎧⎨

⎩
∂θ

∂t
+ V

∂θ

∂x
− ν

∂2θ

∂x2 = 0 for (x, t) ∈ R× R+
∗

θ(t = 0, x) = θ0(x) for x ∈ R

(1.13)

with ν = k/c, which has solution

θ(t, x) =
1√

4πνt

∫ +∞

−∞
θ0(y) exp

(
− (x− V t− y)2

4νt

)
dy. (1.14)

A solution of (1.8) is easily obtained by setting V = 0 in the expression (1.14).

Exercise 1.2.1 We assume that the initial condition θ0 is continuous and uniformly
bounded in R. Verify that (1.14) is a solution of (1.13).

With the same simplifying hypotheses, the advection equation becomes⎧⎨
⎩

∂θ

∂t
+ V

∂θ

∂x
= 0 for (x, t) ∈ R× R+

∗

θ(t = 0, x) = θ0(x) for x ∈ R

(1.15)

We verify that
θ(t, x) = θ0(x− V t) (1.16)

is a solution of the equation (1.15).

Exercise 1.2.2 We assume that the initial data θ0 is differentiable and uniformly
bounded over R. Verify that (1.16) is a solution of (1.15). Show that (1.16) is the
limit of (1.14) as the parameter ν tends to zero.

Remark 1.2.6 If we solve the heat flow equation (1.8) on a bounded interval (and
not in the whole space), we can also calculate an explicit solution by using Fourier
analysis (see [4], [38]). This solution would be a little less ‘explicit’ than (1.14)
as it is defined as the sum of an infinite series. We remark that it was precisely
to solve the heat flow equation that Fourier invented the analysis which takes his
name. •
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Remark 1.2.7 The role of time is fundamentally different in equations (1.8) and
(1.12). Indeed, assuming that the source term is zero, f = 0, if we change the sign of
time t and that of the velocity, the advection equation (1.12) is unchanged (when we
change the time we change the current). Conversely, a change in the sign of time in
the heat flow equation (1.8) cannot be compensated by any variation in the sign of
the data. This is obvious in the explicit form of the solution: (1.16) is invariant by
changing the sign of t and V , whereas (1.14) (with V = 0) decreases in time, indicating
the ‘arrow’ of time. We say that the advection equation is reversible in time, while
the heat flow equation is irreversible in time. This mathematical observation is
confirmed by physical intuition: some phenomena are reversible in time, others are
not (like the diffusion of a drop of milk in a cup of tea). •

Remark 1.2.8 Another fundamental difference between equations (1.8) and (1.12)
lies with the property of invariance with respect to change of scale. Let us
assume that the source term is zero, f = 0. It is easy to see that if θ(x, t) is a solution
of the heat flow equation (1.8), then, for all λ > 0, θ(x/λ, t/λ2) is also a solution of
the same equation (for a different initial value). Likewise, assuming that the velocity
V is constant, if θ(x, t) is a solution of the advection equation (1.12), then θ(x/λ, t/λ)
is also a solution. We see that the scaling of time is not the same in both cases. We
also remark that, in both cases, the equations are invariant under translation in space
and in time. •

Remark 1.2.9 A surprising property (from the physical point of view) of the heat
flow equation (1.8) is that the solution in (x, t) depends on all the initial values in R

(see formula (1.14)). In particular, in the case of (1.13), if the initial data is positive
with compact support, then for all time t > 0 (no matter how small) the solution
is strictly positive over all R: in other words, the heat propagates ‘instantaneously’
to infinity. We say that the heat propagates with an infinite velocity (which
is clearly a limitation of the model). On the other hand, in the advection equation
(1.15) the initial data is convected with velocity V (see formula (1.16)): therefore
there is a finite velocity of propagation. •

Remark 1.2.10 Thanks to the explicit formulas (1.14) and (1.16), we easily verify
that the solutions of the convection–diffusion equation (1.13) and of the advection
equation (1.15) satisfy the property

min
x∈R

θ0(x) ≤ θ(x, t) ≤ max
x∈R

θ0(x) for all (x, t) ∈ R× R+,

which is called the maximum principle. This property (which is equally important
from the point of view of both mathematics and physics) extends to more general
forms of the convection–diffusion equation (1.10) and of the advection equation (1.12).
We shall study it more carefully later. •
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1.3 Some classical models

In this section we shall quickly describe some classical models. Our goal is to present
the principal classes of PDEs which we shall study later, and to show that these
equations play a very important role in diverse scientific areas. From now on, we
shall nondimensionalize all the variables, which will allow us to set the constants in
the models equal to 1.

1.3.1 The heat flow equation

As we have seen, the heat flow equation appears as a model in many problems in
science and engineering. It is written⎧⎪⎪⎨

⎪⎪⎩
∂u

∂t
−∆u = f in Ω× R+

∗

u = 0 on ∂Ω× R+
∗

u(t = 0) = u0 in Ω.

(1.17)

This equation is first order in time and second order in space (the order is that of
the highest partial derivatives). We shall say that this equation is parabolic (see
Section 1.5.2). We have already seen some properties of this equation: irreversibility
in time, propagation with infinite velocity, and the maximum principle.

Exercise 1.3.1 We shall find a property of exponential decrease in time (see formula
(1.14)) of the solution of the heat flow equation (1.17) in a bounded domain. In one space
dimension, we set Ω = (0, 1) and we assume that f = 0. Let u(t, x) be a regular solution
of (1.17). Multiplying the equation by u and integrating with respect to x, establish the
equality

1
2
d

dt

(∫ 1

0
u2(t, x) dx

)
= −

∫ 1

0

∣∣∣∣∂u∂x (t, x)
∣∣∣∣
2

dx.

Show that every continuously differentiable function v(x) on [0, 1], such that v(0) = 0,
satisfies the Poincaré inequality

∫ 1

0
v2(x) dx ≤

∫ 1

0

∣∣∣∣dvdx (x)
∣∣∣∣
2

dx.

From this, deduce the exponential decrease in time of
∫ 1

0 u2(t, x) dx.

1.3.2 The wave equation

The wave equation models propagation of waves or vibration. For example, in two
space dimensions it is a model to study the vibration of a stretched elastic membrane
(like the skin of a drum). In one space dimension, it is also called the vibrating cord
equation. At rest, the membrane occupies a plane domain Ω. Under the action of
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x

u(x)

f(x)

Ω

Figure 1.2. Displacement of an elastic cord.

a force normal to the plane with intensity f , it deforms and its normal displacement
is denoted by u (see Figure 1.2). We assume that it is fixed at the boundary, which
gives a Dirichlet boundary condition. The wave equation with solution u is given by

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂2u

∂t2
−∆u = f in Ω× R+

∗

u = 0 on ∂Ω× R+
∗

u(t = 0) = u0 in Ω
∂u

∂t
(t = 0) = u1 in Ω

(1.18)

We note that this equation is second order in time and that we therefore need two
initial conditions for u. We say that this equation is hyperbolic (see Section 1.5.2).

Exercise 1.3.2 We work in N = 1 space dimensions. We assume that the initial data
u0 and u1 are regular functions, and that f = 0 with Ω = R. We note that U1 is a
primitive of u1. Verify that

u(t, x) =
1
2

(u0(x + t) + u0(x− t)) +
1
2

(U1(x + t)− U1(x− t)) , (1.19)

is the unique solution of (1.18) in the class of regular functions.

The wave equation shares, with the advection equation (1.12), the important
property of propagation with finite velocity. Indeed, exercise 1.3.3 shows that
the solution at a point (x, t) does not depend on all the initial data but only on the
values in a restricted interval called the domain of dependence (or light cone; see
Figure 1.3). We recall that this property is not shared by the heat flow equation since
it is clear, from formula (1.14), that the solution in (x, t) depends on all the values of
the initial data.

Another property of the wave equation is its invariance under the change of direc-
tion of time. If we change t to −t, the form of the equation does not change. We can
therefore ‘integrate’ the wave equation in the positive or negative time directions in
the same way. We say that the wave equation is reversible in time.
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Exercise 1.3.3 Verify that the solution (1.19) at the point (x, t) only depends on the
values of the initial data u0 and u1 in the segment [x− t, x+ t]. Verify also that u(−t, x)
is a solution of (1.18) in Ω× R−∗ if we change the sign of the initial velocity u1(x).

t

xx–t x+t

(x,t)

Figure 1.3. Domain or cone of dependence of the wave equation.

Exercise 1.3.4 We propose showing a principle of conservation of energy for the wave
equation (1.18) without using the explicit formula (1.19). In one space dimension, we set
Ω = (0, 1) and we assume f = 0. Let u(t, x) be a regular solution of (1.18). Multiplying
the equation by ∂u/∂t and integrating with respect to x, establish the energy equality

d

dt

(∫ 1

0

∣∣∣∣∂u∂t (t, x)
∣∣∣∣
2

dx +
∫ 1

0

∣∣∣∣∂u∂x (t, x)
∣∣∣∣
2

dx

)
= 0.

Compare this with what happens for the heat equation.

1.3.3 The Laplacian

For certain choices of source term f , the solution of the heat flow equation (1.17)
reaches a steady (or stationary) state, that is, u(t, x) tends to a limit u∞(x) as time
t tends to infinity. Often, it is interesting to calculate this steady state directly. In
this case, for a source term f(x) which is independent of time, we solve an equation
which is second order in space

{
−∆u = f in Ω
u = 0 on ∂Ω, (1.20)

which we call the Laplacian or Laplace’s equation. We say that this equation is elliptic
(see Section 1.5.2). We remark that the Laplacian is also the stationary version of
the wave equation (1.19). The Laplacian also occurs in numerous fields of science
and engineering. For example, (1.20) models the vertical displacement of an elastic
membrane subjected to a normal force f and fixed around its boundary.
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1.3.4 Schrödinger’s equation

Schrödinger’s equation describes the evolution of the wave function u of a particle
subject to a potential V . Recall that u(t, x) is a function of R+ × RN with values in
C and that the square of its modulus |u|2 is interpreted as the probability that the
particle is found at the point (t, x). The potential V (x) is a real-valued function. The
wave function is a solution of⎧⎨

⎩ i
∂u

∂t
+ ∆u− V u = 0 in RN × R+

∗

u(t = 0) = u0 in RN
(1.21)

There are no boundary conditions in (1.21) since the equation holds over the whole of
space (which has no boundary). Nevertheless, we shall see that a ‘reasonable’ choice
of function space in which to look for the solution implies de facto a condition of
decay to infinity of u which can be interpreted as a boundary condition at infinity.

Exercise 1.3.5 We propose to show principles of energy conservation for Schrödinger’s
equation (1.21). Let u(t, x) be a regular solution of (1.21) in one space dimension which
decreases to zero (as does ∂u/∂x) as |x| → +∞. Show that for every differentiable
function v(t) we have

R
(
∂v

∂t
v

)
=

1
2
∂|v|2
∂t

,

where R denotes the real part and v the complex conjugate of v. Multiplying the equation
by u and integrating with respect to x, establish the energy equality∫

R

|u(t, x)|2 dx =
∫

R

|u0(x)|2 dx.

Multiplying the equation by ∂u/∂t, show that

∫
R

(∣∣∣∣∂u∂x (t, x)
∣∣∣∣
2

+ V (x) |u(t, x)|2
)
dx =

∫
R

(∣∣∣∣∂u0

∂x
(x)

∣∣∣∣
2

+ V (x) |u0(x)|2
)
dx.

1.3.5 The Lamé system

The Lamé system is a particular case of the linearized stationary elasticity equations
which model deformations of a solid under the assumption of small deformations and
of small displacements (see Section 5.3.1 for further details on the modelling). To
obtain the Lamé system, we assume that the solid is homogeneous and isotropic and
that it is fixed at the boundary. The principal difference from the preceding models
is that here we have a system of equations, that is, several coupled equations. The
solid at rest occupies the domain Ω of the space RN . Under the action of a force f
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it deforms, and each point x moves to x + u(x). The force f(x) is a vector-valued
function of Ω in RN , as is the displacement u(x). This is a solution of{

−µ∆u− (µ + λ)∇(divu) = f in Ω
u = 0 on ∂Ω (1.22)

where λ and µ are two constants, the Lamé constants, which are characteristics of the
homogeneous, isotropic material which comprises the solid. For mechanical reasons
these constants satisfy µ > 0 and 2µ + Nλ > 0. The Dirichlet boundary condition
for u reflects the fact that the solid is assumed fixed and immovable at its boundary.
∂Ω.

The system (1.22) has been written in vector notation. If we denote by fi and
ui, for 1 ≤ i ≤ N , the components of f and u in the canonical basis of RN , (1.22) is
equivalent to ⎧⎨

⎩ −µ∆ui − (µ + λ)
∂(divu)
∂xi

= fi in Ω

ui = 0 on ∂Ω

for 1 ≤ i ≤ N . We remark that, if (µ+λ) �= 0, then the equations for each component
ui are coupled by the divergence term. Obviously, in N = 1 dimension, the Lamé
system has only one equation and reduces to the Laplacian.

1.3.6 The Stokes system

The Stokes system models the flow of a viscous incompressible fluid with small vel-
ocity. We assume that the fluid occupies a domain Ω and that it adheres to the
boundary, that is, its velocity is zero at the boundary (which leads to a Dirichlet
boundary condition). Under the action of a force f(x) (a function of Ω in RN ), the
velocity u(x) (a vector) and the pressure p(x) (a scalar) are solutions of⎧⎨

⎩
∇p− µ∆u = f in Ω
divu = 0 in Ω
u = 0 on ∂Ω

(1.23)

where µ > 0 is the fluid viscosity. We note that there are a further N equations
∇p−µ∆u = f (corresponding to the conservation of momentum), and one other
equation divu = 0 called the incompressibility condition (which corresponds to
conservation of mass). If the space dimension is N = 1, the Stokes system is
uninteresting as we easily see that the velocity is zero and the pressure is a primitive
of the force. On the other hand, in dimensions N ≥ 2, the Stokes system makes
good sense: in particular, there exist nontrivial incompressible velocity fields (take,
for example, a curl).

1.3.7 The plate equations

We consider small elastic deformations of a thin plane plate (which is negligible in
its other dimensions). If we denote by Ω the average surface of the plate, and f(x)
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(a function of Ω in R) the resultant normal of the forces, then the normal component
of the displacement u(x) (a scalar) is the solution of the thin plate equation

⎧⎪⎨
⎪⎩

∆ (∆u) = f in Ω
u = 0 on ∂Ω
∂u

∂n
= 0 on ∂Ω

(1.24)

where we denote by ∂u
∂n = ∇u · n with n the outward unit normal vector to ∂Ω.

We remark that this is a partial differential equation which is fourth order in space
(also called the bi-Laplacian). This is why it is necessary to have two boundary
conditions. These boundary conditions represent the clamping of the plate (there is
neither displacement nor rotation of the edge of the plate).

We remark that it is possible to justify the plate equation (1.24) asymptotically
from the Lamé system (1.22) by letting the thickness of the plate to tend to zero.
This is an example of mathematical modelling.

1.4 Numerical calculation by finite differences

1.4.1 Principles of the method

Apart from some very particular cases, it is impossible to calculate explicitly the solu-
tions of the different models presented above. It is therefore necessary to have recourse
to numerical calculation on a computer to estimate these solutions both qualitatively
and quantitatively. The principle of all methods for the numerical solution of PDEs
is to obtain discrete numerical values (that is, a finite number) which ‘approximate’
(in a suitable sense, to be made precise) the exact solution. In this process we must
be aware of two fundamental points: first, we do not calculate exact solutions but
approximate ones; second, we discretize the problem by representing functions by a
finite number of values, that is, we move from the ‘continuous’ to the ‘discrete’.

There are numerous methods for the numerical approximation of PDEs. We
present one of the oldest and simplest, called the finite difference method (later we
shall see another method, called the finite element method). For simplicity, we limit
ourselves to one space dimension (see Section 2.2.6 for higher dimensions). For the
moment, we shall only consider the practical principles of this method, that is, the
construction of what we call the numerical schemes. We reserve the theoretical
justification of these schemes for Chapter 2, that is, the study of their convergence
(in what way the approximate discrete solutions are close to the exact continuous
solutions).

To discretise the spatio-temporal continuum, we introduce a space step ∆x > 0
and a time step ∆t > 0 which will be the smallest scales represented by the numerical
method. We define a mesh or discrete coordinates in space and time (see Figure 1.4)

(tn, xj) = (n∆t, j∆x) for n ≥ 0, j ∈ Z.



NUMERICAL CALCULATION BY FINITE DIFFERENCES 15

x

t

(tn, xj)

j∆x

n∆t

Figure 1.4. Finite difference mesh.

We denote by unj the value of the discrete solution at (tn, xj), and u(t, x) the
(unknown) exact solution. The principle of the finite difference method is to replace
the derivatives by finite differences by using Taylor series in which we neglect the
remainders. For example, we approximate the second space derivative (the Laplacian
in one dimension) by

−∂
2u

∂x2 (tn, xj) ≈
−unj−1 + 2unj − unj+1

(∆x)2 (1.25)

where we recall the Taylor formula

−u(t, x−∆x) + 2u(t, x)− u(t, x + ∆x) = −(∆x)2 ∂
2u

∂x2 (t, x)

− (∆x)4

12
∂4u

∂x4 (t, x) +O
(

(∆x)6
) (1.26)

If ∆x is ‘small’, formula (1.25) is a ‘good’ approximation (it is natural, but not
unique). The formula (1.25) is called centred since it is symmetric in j.

To discretize the convection–diffusion equation

∂u

∂t
+ V

∂u

∂x
− ν

∂2u

∂x2 = 0 (1.27)

we must also discretize the convection term. A centred formula gives

V
∂u

∂x
(tn, xj) ≈ V

unj+1 − unj−1

2∆x

It only remains to do the same thing for the time derivative. Again we have a choice
between finite difference schemes: centred or one sided. Let us look at three ‘natural’
formulas.
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1. As a first choice, the centred finite difference

∂u

∂t
(tn, xj) ≈

un+1
j − un−1

j

2∆t

leads to a scheme which is completely symmetric with respect to n and j (called
the centred scheme or Richardson’s scheme)

un+1
j − un−1

j

2∆t
+ V

unj+1 − unj−1

2∆x
+ ν

−unj−1 + 2unj − unj+1

(∆x)2 = 0. (1.28)

Even though it is ‘natural’ this scheme cannot calculate approximate
solutions of the convection–diffusion equation (1.27) (see the numerical exam-
ple of Figure 1.5)! We shall justify the inability of this scheme to approximate
the exact solution in Lemma 2.2.23. For the moment, we shall simply say that
the difficulty comes from the centred character of the finite difference which
approximates the time derivative.

2. A second choice is the one-sided upwind scheme (we go back in time) which
gives the backward Euler scheme

∂u

∂t
(tn, xj) ≈

unj − un−1
j

∆t

which leads to

unj − un−1
j

∆t
+ V

unj+1 − unj−1

2∆x
+ ν

−unj−1 + 2unj − unj+1

(∆x)2 = 0. (1.29)

3. The third choice is the opposite of the preceding: the downwind one-sided finite
difference (we go forward in time; we also talk of the forward Euler scheme)

∂u

∂t
(tn, xj) ≈

un+1
j − unj

∆t

which leads to

un+1
j − unj

∆t
+ V

unj+1 − unj−1

2∆x
+ ν

−unj−1 + 2unj − unj+1

(∆x)2 = 0. (1.30)

The principal difference between these last two schemes is that (1.29) is called
implicit since we must solve a system of linear equations to calculate the values
(unj )j∈Z as functions of the preceding values (un−1

j )j∈Z, while (1.30) is called explicit
since it immediately gives the values (un+1

j )j∈Z as a function of (unj )j∈Z. The shift
of 1 in the index n between the schemes (1.29) and (1.30) is only evident when we
rewrite (1.30) in the form

unj − un−1
j

∆t
+ V

un−1
j+1 − un−1

j−1

2∆x
+ ν

−un−1
j−1 + 2un−1

j − un−1
j+1

(∆x)2 = 0.



NUMERICAL CALCULATION BY FINITE DIFFERENCES 17

In the three schemes which we have defined, there must be initial data to start the
iterations in n: the initial values (u0

j )j∈Z are defined by, for example, u0
j = u0(j∆x)

where u0 is the initial data of the convection–diffusion equation (1.27). We remark
that the ‘bad’ centred scheme (1.28) has an additional difficulty in starting: for n = 1
we also have to know the values (u1

j )j∈Z which, therefore, must be calculated in
another way (for example, by applying one of the two other schemes).

1.4.2 Numerical results for the heat flow equation

–10 –8 –6 –4 –2 0 2 4 6 8 10

–2

–1

0

1

2

HEAT EQUATION, CENTERED SCHEME,
CFL=0.1, 25 TIME STEPS

.

exact solution
centered scheme

Figure 1.5. Unstable centred scheme with ν∆t = 0.1(∆x)2.

We start by making some simple numerical tests in the case where V = 0 and
ν = 1, that is, we solve the heat flow equation numerically. As initial condition,
we choose the function

u0(x) = max(1− x2, 0).

To be able to compare the numerical solutions with the exact (1.14), we want to work
on the infinite domain Ω = R, that is, calculate, for each n ≥ 0, an infinite number
of values (unj )j∈Z, but the computer will not allow this as the memory is finite! To
a first approximation, we therefore replace R by the ‘large’ domain Ω = (−10,+10)
equipped with Dirichlet boundary conditions. The validity of this approximation is
confirmed by the numerical calculations below. We fix the space step at ∆x = 0.05:
there are therefore 401 values (unj )−200≤j≤+200 to calculate. We should remember
that the values unj calculated by the computer are subject to rounding errors and are
therefore not the exact values of the difference scheme: nevertheless, in the calcula-
tions presented here, these rounding errors are completely negligible and are in no way
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responsible for the phenomena which we shall observe. On all the figures we show
the exact solution, calculated by the explicit formula (1.14), and the approximate
numerical solution under consideration.

Let us first look at the outcome of the centred scheme (1.28): since as we have
said, this scheme is not able to calculate approximate solutions of the heat flow
equation. Whatever the choice of the time step ∆t, this scheme is unstable, that is
the numerical solution oscillates unboundedly if we decrease the step sizes ∆x and
∆t. This highly characteristic phenomenon (which appears rapidly) is illustrated
by Figure 1.5. We emphasize that whatever the choice of steps ∆t and ∆x, we
see these oscillations (which are nonphysical). We say that the scheme is uncondi-
tionally unstable. A rigorous justification will be given in the following chapter (see
lemma 2.2.23).

–10 –8 –6 –4 –2 0 2 4 6 8 10
–0.1

0.1

0.3

0.5

0.7

0.9

1.1

HEAT EQUATION, IMPLICIT SCHEME, CFL=2., 200 
TIME STEPS

exact solution

implicit scheme

Figure 1.6. Implicit scheme with ν∆t = 2(∆x)2.

Contrary to the preceding scheme, the implicit scheme (1.29) calculates ‘good’
approximate solutions of the heat flow equation whatever the time step ∆t (see
Figure 1.6). In particular, we never see numerical oscillation for any choice of steps
∆t and ∆x. We say that the implicit scheme is unconditionally stable.

Let us now consider the explicit scheme (1.30): numerical experiments show that
we obtain numerical oscillations depending on the time step ∆t (see Figure 1.7). The
stability limit is easy to find experimentally: if the choice of steps ∆t and ∆x satisfy
the condition

2ν∆t ≤ (∆x)2 (1.31)

the scheme is stable, while if (1.31) is not satisfied, then the scheme is unstable. We
say that the explicit scheme is conditionally stable. The stability condition (1.31)



NUMERICAL CALCULATION BY FINITE DIFFERENCES 19

is one of the simplest but most profound observations in numerical analysis.
It was discovered in 1928 (before the appearance of the first computers!) by Courant,
Friedrichs, and Lewy. It takes the name CFL condition or the Courant,
Friedrichs, Lewy condition.

–10 –8 –6 –4 –2 0 2 4 6 8 10
–0.1

0.1

0.3

0.5

0.7

0.9

1.1

HEAT EQUATION, EXPLICIT SCHEME, CFL = 0.4, 
 500 TIME STEPS

exact solution
explicit scheme
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0.8
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1.6

HEAT EQUATION, EXPLICIT SCHEME, CFL = 0.51, 
 180 TIME STEPS

.

exact solution
explicit scheme

Figure 1.7. Explicit scheme with ν∆t = 0.4(∆x)2 (top) and ν∆t = 0.51(∆x)2

(bottom).

We shall briefly justify this stability condition (a more through analysis will be
carried out in the next chapter). Rewriting the explicit scheme in the form

un+1
j =

ν∆t

(∆x)2u
n
j−1 +

(
1− 2

ν∆t

(∆x)2

)
unj +

ν∆t

(∆x)2u
n
j+1. (1.32)
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If the CFL condition is satisfied, then (1.32) shows that un+1
j is a convex combination

of the values at the preceding time unj−1, u
n
j , u

n
j+1 (all of the coefficients on the right-

hand side of (1.32) are positive and their sum is 1). In particular, if the initial data
u0 is bounded by two constants m and M such that

m ≤ u0
j ≤M for all j ∈ Z,

then a recurrence easily shows that the same inequalities remain true for all time

m ≤ unj ≤M for all j ∈ Z and for all n ≥ 0. (1.33)

Property (1.33) prevents the scheme from oscillating unboundedly: it is therefore
stable subject to the CFL condition. Property (1.33) is called a discrete maximum
principle: it is the discrete equivalent of the continuous maximum principle for
exact solutions which we have seen in remark 1.2.10.

Suppose, on the other hand, the CFL condition is not satisfied, that is,

2ν∆t > (∆x)2,

then, for certain initial data the scheme is unstable (it may be stable for certain
‘exceptional’ initial data: for example, if u0 ≡ 0!). Let us take the initial data
defined by

u0
j = (−1)j

which is uniformly bounded. A simple calculation shows that

unj = (−1)j
(

1− 4
ν∆t

(∆x)2

)n

which tends, in modulus, to infinity as n tends to infinity since 1−4ν∆t/(∆x)2 < −1.
The explicit scheme is therefore unstable if the CFL condition is not satisfied.

Exercise 1.4.1 The aim of this exercise is to show that the implicit scheme (1.29),
with V = 0, also satisfies the discrete maximum principle. We impose Dirichlet boundary
conditions, that is, formula (1.29) is valid for 1 ≤ j ≤ J and we fix un0 = unJ+1 = 0 for
all n ∈ N. Take two constants m ≤ 0 ≤ M such that m ≤ u0

j ≤ M for 1 ≤ j ≤ J .
Verify that we can uniquely calculate the un+1

j as a function of unj . Show that for all time
n ≥ 0 we again have the inequalities m ≤ unj ≤M for 1 ≤ j ≤ J (without any condition
on ∆t and ∆x).

If we have illuminated the question of the stability of the explicit scheme a little, we
have not said anything about its convergence, that is, its capacity to approximate the
exact solution. We shall answer this question rigorously in the following chapter. We
remark that stability is a necessary condition for convergence, but it is not sufficient.
We shall be content for the moment with experimentally verifying the convergence
of the scheme, that is, when the space and time steps become smaller and smaller,
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Figure 1.8. Explicit scheme with ν∆t = 0.4(∆x)2 for various values of ∆x.

the corresponding numerical solutions converge and their limit is the exact solution
(we can check this as the exact solution is available). In Figure 1.8 we numerically
verify that if we reduce the space step ∆x (which has values 0.5, 0.1, and 0.05)
and the time step ∆t by keeping the ratio ν∆t/(∆x)2 (the CFL number) constant,
then the numerical solution becomes closer and closer to the exact solution. (The
comparison is carried out at the same final time t = 1, therefore the number of time
steps grows as the time step ∆t decreases.) This process of ‘numerical verification
of convergence’ is very simple and we should never hesitate to use it if nothing
better is available (that is, if the theoretical convergence analysis is impossible or too
difficult).

1.4.3 Numerical results for the advection equation

We shall carry out a second series of numerical experiments on the convection–
diffusion equation (1.27) with a nonzero velocity V = 1. We take the same data
as before and we choose the explicit scheme with ν∆t = 0.4(∆x)2. We look at the
influence of the diffusion constant ν (or the inverse of the Péclet number) on the
stability of the scheme. Figure 1.9 shows that the scheme is stable when ν = 1,
unstable for ν = 0.01, and that for the intermediate value ν = 0.1, the scheme
seems stable but the approximate solution is slightly different from the exact solution.
Clearly, the smaller the inverse of the Péclet number ν is, the more the convective
term dominates the diffusive term. Consequently, the CFL condition (1.31), obtained
when the velocity V is zero, is less and less valid as ν decreases.



22 MODELLING AND SIMULATION

–10 –8 –6 –4 –2 0 2 4 6 8 10
–0.1

0.1

0.3

0.5

0.7

0.9

1.1

CONVECTION-DIFFUSION EQUATION, 1/PECLET = 1, 
FINAL TIME = 3

exact solution

explicit scheme

–10 –8 –6 –4 –2 0 2 4 6 8 10

–0.1

0.1

0.3

0.5

0.7

0.9

1.1

CONVECTION-DIFFUSION EQUATION, 1/PECLET = 0.1, 
FINAL TIME = 3 

.

exact solution

explicit scheme

–10 –8 –6 –4 –2 0 2 4 6 8 10
–0.1

0.1

0.3

0.5

0.7

0.9

1.1

CONVECTION-DIFFUSION EQUATION, 1/PECLET = 0.01,  
FINAL TIME = 3

.

exact solution

explicit scheme

Figure 1.9. Explicit scheme for the convection–diffusion equation with ν∆t= 0.4(∆x)2

and V = 1. At the top, ν = 1, in the middle ν = 0.1, and at the bottom ν = 0.01.
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To understand this phenomenon, we examine the advection equation which
is obtained in the limit ν = 0. We remark first that the CFL condition (1.31) is
automatically satisfied when ν = 0 (whatever ∆t and ∆x), which seems to contradict
the experimental result at the bottom of Figure 1.9.
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Figure 1.10. Explicit centred scheme for the advection equation with ∆t = 0.9∆x,
V = 1, ν = 0.

For the advection equation (that is, (1.27) with ν = 0), the explicit scheme (1.30)
may be rewritten

un+1
j =

V ∆t

2∆x
unj−1 + unj −

V ∆t

2∆x
unj+1. (1.34)

This scheme leads to the oscillations in Figure 1.10 under the same experimental
conditions as the bottom of Figure 1.9. We see that un+1

j is never (no matter what
∆t) a convex combination of unj−1, unj , and unj+1. Therefore, there cannot be a discrete
maximum principle for this scheme, which is an additional indication of its instability
(a rigorous proof will be given in lemma 2.3.1). This instability occurs because, in
the explicit scheme (1.34), we have chosen to use a centred approximation to the
convective term. We can, however, make this term one-sided as we have done for the
time derivative. Two choices are possible: weighting to the right or left. The sign
of the velocity V is crucial: here we assume that V > 0 (a symmetric argument is
possible if V < 0). For V > 0, the weighting to the right is called downwinding: we
obtain

V
∂u

∂x
(tn, xj) ≈ V

unj+1 − unj
∆x

we try to find ‘information’ by following the current. This leads to a ‘disastrous’
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downwind scheme
un+1
j − unj

∆t
+ V

unj+1 − unj
∆x

= 0 (1.35)

which is as unstable as the centred scheme. On the other hand, the upwinding
(which is to the left if V > 0), looks for ‘information’ by going against the current

V
∂u

∂x
(tn, xj) ≈ V

unj − unj−1

∆x

leading to an explicit upwind scheme

un+1
j − unj

∆t
+ V

unj − unj−1

∆x
= 0 (1.36)

which gives the results of Figure 1.11. We verify easily that the scheme (1.36) is stable
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Figure 1.11. Explicit upwind scheme for the advection equation with ∆t = 0.9
∆x, V = 1.

under a new CFL condition (different from the preceding CFL condition (1.31))

|V |∆t ≤ ∆x. (1.37)

Indeed, we can rewrite (1.36) in the form

un+1
j =

V ∆t

∆x
unj−1 +

(
1− V ∆t

∆x

)
unj ,
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which shows that, if condition (1.37) is satisfied, un+1
j is a convex combination of unj−1

and unj . Consequently, the one-sided upwind scheme (1.36) satisfies a discrete maxi-
mum principle, which implies conditional stability. The idea of upwinded methods
is another major idea in numerical analysis. It is particularly important in all
fluid mechanics problems where it was first discovered, but it appears in many other
models.

The conclusion of this study on the advection equation is that for the convection–
diffusion model with a small diffusion constant ν, we must upwind the convective
term and obey the CFL condition (1.37) rather than (1.31). With this price we can
improve the results of Figure 1.9.

Exercise 1.4.2 Show that if (1.37) is not satisfied, the upwind scheme (1.36) for the
advection equation is unstable for the initial data u0

j = (−1)j .

Exercise 1.4.3 Write an explicit scheme centred in space for the wave equation (1.18)
in one space dimension and without source term. Specify how to start the iterations in
time. Verify the existence of a discrete cone of dependence analogous to the continuous
one shown in figure 1.3. Deduce that, if this scheme converges, the time and space steps
must satisfy the (CFL-like) condition ∆t ≤ ∆x.

The conclusions of this section are numerous and will feed the reflections of the
subsequent chapter. First of all, all ‘reasonable’ numerical schemes do not work, far
from it. We meet stability problems (without even considering convergence) which
require us to analyse these schemes: this is the raison d’être of numerical analy-
sis which reconciles practical objectives and theoretical studies. Finally, the ‘good’
numerical schemes must have a certain number of properties (for example, the dis-
crete maximum principle, or upwinding) which are the expression (at the discrete
level) of the physical properties or the mathematics of the PDE. We cannot there-
fore skimp on a good understanding of the physical modelling and of the
mathematical properties of the models if we want to have good numerical
simulations.

1.5 Remarks on mathematical models

We finish this chapter with a number of definitions which allow the reader to
understand the terms in classical works on numerical analysis.

1.5.1 The idea of a well-posed problem

Definition 1.5.1 We use the term boundary value problem to refer to a PDE
equipped with boundary conditions on the entire boundary of the domain in which it
is posed.
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For example, the Laplacian (1.20) is a boundary value problem. Conversely, the
ordinary differential equation{

dy

dt
= f(t, y) for 0 < t < T

y(t = 0) = y0

(1.38)

is not a boundary value problem as it is posed on an interval (0, T ), with 0 < T ≤ +∞,
it only has ‘boundary’ conditions at t = 0 (and not at t = T ).

Definition 1.5.2 We say Cauchy problem to mean a PDE where, for at least one
variable (usually time t), the ‘boundary’ conditions are initial conditions (that is, only
hold at the boundary t = 0, and not at t = T ).

For example, the ordinary differential equation (1.38) is a Cauchy problem, but the
Laplacian (1.20) is not (no matter which component of the space variable x we make
to play the role of time).

Numerous models are, at the same time, boundary value problems and Cauchy
problems. Thus, the heat flow equation (1.8) is a Cauchy problem with respect to
the time variable t and a boundary value problem with respect to the space variable
x. All the models we shall study in this course belong to one of these two categories
of problem.

The fact that a mathematical model is a Cauchy problem or a boundary value
problem does not automatically imply that it is a ‘good’ model. The expression
good model is not used here in the sense of the physical relevance of the model
and of its results, but in the sense of its mathematical coherence. As we shall see,
this mathematical coherence is a necessary condition before we can consider numerical
simulations and physical interpretations. The mathematician Jacques Hadamard gave
a definition of what is a ‘good’ model, while speaking about well-posed problems
(an ill-posed problem is the opposite of a well-posed problem). We denote by f the
data (the right-hand side, the initial conditions, the domain, etc.), u the solution
sought, and A ‘the operator’ which acts on u. We are using abstract notation, A
denotes simultaneously the PDE and the type of initial or boundary conditions. The
problem is therefore to find u, the solution of

A(u) = f. (1.39)

Definition 1.5.3 We say that problem (1.39) is well-posed if for all data f it has
a unique solution u, and if this solution u depends continuously on the data f .

Let us examine Hadamard’s definition in detail: it contains, in fact, three
conditions for the problem to be well-posed. First, a solution must at least exist:
this is the least we can ask of a model supposed to represent reality! Second, the
solution must be unique: this is more delicate since, while it is clear that, if we want
to predict tomorrow’s weather, it is better to have ‘sun’ or ‘rain’ (with an exclusive
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‘or’) but not both with equal chance, there are other problems which ‘reasonably’
have several or an infinity of solutions. For example, problems involving finding the
best route often have several solutions: to travel from the South to the North Pole
then any meridian will do, likewise, to travel by plane from Paris to New York, your
travel agency sometimes makes you go via Brussels or London, rather than directly,
because it can be more economic. Hadamard excludes this type of problem from his
definition since the multiplicity of solutions means that the model is indeterminate:
to make the final choice between all of those that are best, we use another crite-
rion (which has been ‘forgotten’ until now), for example, the most practical or most
comfortable journey. This is a situation of current interest in applied mathematics:
when a model has many solutions, we must add a selection criterion to obtain the
‘good’ solution (see, for a typical example, problems in gas dynamics [23]). Third,
and this is the least obvious condition a priori, the solution must depend continu-
ously on the data. At first sight, this seems a mathematical fantasy, but it is crucial
from the perspective of numerical approximation. Indeed, numerically calculating
an approximate solution of (1.39) amounts to perturbing the data (when continuous
becomes discrete) and solving (1.39) for the perturbed data. If small perturbations
of the data lead to large perturbations of the solution, there is no chance that the
numerical approximation will be close to reality (or at least to the exact solution).
Consequently, this continuous dependence of the solution on the data is an absolutely
necessary condition for accurate numerical simulations. We note that this condition
is also very important from the physical point of view since measuring apparatus will
not give us absolute precision: if we are unable to distinguish between two close sets
of data which can lead to very different phenomena, the model represented by (1.39)
has no predictive value, and therefore is of almost no practical interest.

We finish by acknowledging that, at this level of generality, the definition (1.5.3) is
a little fuzzy, and that to give it a precise mathematical sense we should say in which
function spaces we put the data or look for the solution, and which norms or topologies
we use for the continuity. It is not uncommon that changing the space (which can
appear anodyne) implies very different properties of existence or uniqueness!

Exercise 1.5.1 The point of this exercise is to show that the Cauchy problem for the
Laplacian is ill-posed. Take a two-dimensional domain Ω = (0, 1)× (0, 2π). We consider
the following Cauchy problem in x and boundary value problem in y

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−∂

2u

∂x2 −
∂2u

∂y2 = 0 in Ω

u(x, 0) = u(x, 2π) = 0 for 0 < x < 1

u(0, y) = 0,
∂u

∂x
(0, y) = −e−

√
n sin(ny) for 0 < y < 2π

Verify that u(x, y) = (e−
√
n/n) sin(ny)sh(nx) is a solution. Show that the initial con-

dition and all its derivatives at x = 0 converge uniformly to 0, while, for all x > 0, the
solution u(x, y) and all its derivatives are unbounded as n tends to infinity.
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1.5.2 Classification of PDEs
Definition 1.5.4 The order of a partial differential equation is the order of the highest
derivative in the equation.

For example, the Laplacian (1.20) is a second order equation, while the plate equation
(1.24) is a fourth order equation. We often distinguish between the order with respect to the
time variable t and with respect to the space variable x. Therefore, we say that heat flow
equation (1.8) is first order in time and second order in space; likewise, the wave equation
(1.18) is second order in space-time.

In order to understand the vocabulary often used with PDEs, that is, elliptic,
parabolic, or hyperbolic, we shall briefly classify linear, second order PDEs acting on
real functions of two real variables u(x, y) (we shall not carry out a systematic classification
for all PDEs). Such an equation is written

a
∂2u

∂x2 + b
∂2u

∂x∂y
+ c

∂2u

∂y2 + d
∂u

∂x
+ e

∂u

∂y
+ fu = g. (1.40)

For simplicity we assume that the coefficients a, b, c, d, e, f are constant.

Definition 1.5.5 We say that the equation (1.40) is elliptic if b2 − 4ac < 0, parabolic if
b2 − 4ac = 0, and hyperbolic if b2 − 4ac > 0.

The origin of this vocabulary is in the classification of conic sections, from which
Definition 1.5.5 is copied. Indeed, it is well-known that the second degree equation

ax2 + bxy + cy2 + dx+ ey + f = 0

defines a plane curve which is (except in some degenerate cases) an ellipse if b2 − 4ac < 0, a
parabola if b2 − 4ac = 0, and a hyperbola if b2 − 4ac > 0.

If we apply Definition 1.5.5 to the various second order models we have stated in this
chapter (replacing the variables (x, y) by the variables (t, x) in one space dimension), we con-
clude that the heat flow equation is parabolic (as is the convection–diffusion equation),
that the Laplacian is elliptic, and that the wave equation is hyperbolic. A suitable
generalisation of this definition allows us to check that the advection equation is hyper-
bolic, and that the Stokes, elasticity, and plate equations are elliptic. In general, stationary
problems (independent of time) are modelled by elliptic PDEs, while evolution problems are
modelled by parabolic or hyperbolic PDEs.

We shall see later that boundary value problems are well posed for elliptic PDEs, while
problems which are Cauchy in time and boundary value problems in space are well-posed
for parabolic or hyperbolic PDEs. There are therefore important differences in behaviour
between these two types of equation.

Remark 1.5.6 The elliptic, hyperbolic or parabolic character of the equations (1.40) is not
modified by a change of variable. Let (x, y) → (X,Y ) be such a change of variable which is
nonsingular, that is, its Jacobian J = XxYy−XyYx is not zero (denoting by Zz the derivative
of Z with respect to z). A simple but tedious calculation shows that (1.40) becomes

A
∂2u

∂X2 +B
∂2u

∂X∂Y
+ C

∂2u

∂Y 2 +D
∂u

∂X
+ E

∂u

∂Y
+ Fu = G,
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with A = aX2
x + bXxXy + cX2

y , B = 2aXxYx + b(XxYy + XyYx) + 2cXyYy, C = aY 2
x +

bYxYy + cY 2
y , and we verify that B2 − 4AC = J2(b2 − 4ac). In particular, a suitable change

of variables allows us to simplify the PDE (1.40) and return it to its ‘canonical’ form. Thus,
any elliptic equation can be reduced to the Laplacian ∂2

∂X2 + ∂2

∂Y 2 , any parabolic equation

to the heat flow equation ∂
∂X

− ∂2

∂Y 2 , and any hyperbolic equation to the wave equation
∂2

∂X2 − ∂2

∂Y 2 . •

Remark 1.5.7 It is well-known that the general conic equation has a number of degenerate
cases when it no longer describes a cone but a set of lines. The same situation can hold with
the PDE (1.40). For example, the equation ∂2u

∂x2 = 1 with a = 1 and b = c = d = e = f = 0
is not parabolic in two dimensions (even though b2 − 4ac = 0) but elliptic in one dimension
(the variable y plays no role here). It is therefore necessary to be careful before deciding on
the type of these ‘degenerate’ equations. •
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2 Finite difference
method

2.1 Introduction

In this chapter we analyse numerical schemes of finite differences. We define the
stability and consistency of a scheme and show that, for linear, constant coeffi-
cient, partial differential equations, stability plus consistency of a scheme implies its
convergence.

The plan of the chapter is the following. Section 2.2 treats the case of the heat
equation introduced in Chapter 1. Section 2.3 generalizes the preceding results to the
case of the wave equation or the advection equation. One of the aims of this chapter
is the construction and analysis of finite differences schemes for much more general
models. The reader should not be afraid of extending the concepts presented here to
his preferred model and to construct original numerical schemes.

We finish this introduction by saying that the finite difference method is one of the
oldest methods of numerical approximation which is still used in applications, such
as wave propagation (seismic or electromagnetic) or compressible fluid mechanics.
For other applications, such as solid mechanics or incompressible fluids, we often
prefer the finite element method. Nevertheless, many concepts in finite differences
are found in other numerical methods. Thus, the numerical schemes of Chapter 8 will
combine finite elements for the space discretization and finite differences for the time
discretization. The generality and simplicity of the finite difference method motivates
our detailed study at the beginning of this work.

31
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2.2 Finite differences for the heat equation

2.2.1 Various examples of schemes

We restrict ourselves to one space dimension and we refer to Section 2.2.6 for the case
of several space dimensions. We consider the heat equation in the bounded domain
(0, 1) ⎧⎨

⎩
∂u

∂t
− ν

∂2u

∂x2 = 0 for (x, t) ∈ (0, 1)× R+
∗

u(0, x) = u0(x) for x ∈ (0, 1).
(2.1)

To discretize the domain (0, 1)×R+, we introduce a space step ∆x = 1/(N + 1) > 0
(with N a positive integer) and a time step ∆t > 0, and we define the nodes of a
regular mesh

(tn, xj) = (n∆t, j∆x) for n ≥ 0, j ∈ {0, 1, . . . , N + 1}.

We denote by unj the value of a discrete approximate solution at the point (tn, xj),
and u(t, x) the exact solution of (2.1). The initial data is discretized by

u0
j = u0(xj) for j ∈ {0, 1, . . . , N + 1}.

The boundary conditions of (2.1) can be of several types, but their choice is not
involved in the definition of the schemes. Here, we use Dirichlet boundary conditions

u(t, 0) = u(t, 1) = 0 for all t ∈ R+
∗

which imply
un0 = unN+1 = 0 for all n > 0.

Consequently, at each time step we have to calculate the values (unj )1≤j≤N which
form a vector of RN . We now give several possible schemes for the heat equation
(2.1). All of them are defined by N equations (at each point xj , 1 ≤ j ≤ N) which
allow us to calculate the N values unj . In Chapter 1 we have already talked of the
explicit scheme

un+1
j − unj

∆t
+ ν

−unj−1 + 2unj − unj+1

(∆x)2 = 0 (2.2)

for n ≥ 0 and j ∈ {1, . . . , N}, and also of the implicit scheme

un+1
j − unj

∆t
+ ν

−un+1
j−1 + 2un+1

j − un+1
j+1

(∆x)2 = 0. (2.3)

It is easy to verify that the implicit scheme (2.3) is well defined, that is, we can
calculate the values un+1

j as a function of the unj : in effect, we must invert the square
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tridiagonal matrix of dimension N

⎛
⎜⎜⎜⎜⎜⎝

1 + 2c −c 0
−c 1 + 2c −c

. . . . . . . . .
−c 1 + 2c −c

0 −c 1 + 2c

⎞
⎟⎟⎟⎟⎟⎠ with c =

ν∆t

(∆x)2 , (2.4)

which is easily verified to be positive definite, therefore invertible. By making a convex
combination of (2.2) and (2.3), for 0 ≤ θ ≤ 1, we obtain the θ-scheme

un+1
j − unj

∆t
+ θν

−un+1
j−1 + 2un+1

j − un+1
j+1

(∆x)2 + (1− θ)ν
−unj−1 + 2unj − unj+1

(∆x)2 = 0. (2.5)

We recover the explicit scheme (2.2) if θ = 0, and the implicit scheme (2.3) if θ = 1.
The θ-scheme (2.5) is implicit when θ �= 0. For the value θ = 1/2, we obtain the
Crank–Nicolson scheme. Another implicit scheme, called the six point scheme, is
given by

un+1
j+1 − unj+1

12∆t
+

5(un+1
j − unj )

6∆t
+
un+1
j−1 − unj−1

12∆t

+ν
−un+1

j−1 + 2un+1
j − un+1

j+1

2(∆x)2 + ν
−unj−1 + 2unj − unj+1

2(∆x)2 = 0.

(2.6)

Exercise 2.2.1 Show that the scheme (2.6) is nothing more than the θ-scheme with
θ = 1/2− (∆x)2/12ν∆t.

All the schemes above are called two level since they only involve two time indices.
We can construct multilevel schemes: the most popular have three levels. In addition
to the (unstable) Richardson scheme seen in Chapter 1, we cite the DuFort–Frankel
scheme

un+1
j − un−1

j

2∆t
+ ν

−unj−1 + un+1
j + un−1

j − unj+1

(∆x)2 = 0, (2.7)

the Gear scheme

3un+1
j − 4unj + un−1

j

2∆t
+ ν

−un+1
j−1 + 2un+1

j − un+1
j+1

(∆x)2 = 0. (2.8)

We have too many schemes! And the list above is not exhaustive! One of the aims
of numerical analysis is to compare and to choose the best schemes following criteria
of accuracy, cost, or robustness.
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Remark 2.2.1 If there is a right-hand side f(t, x) in the heat equation (2.1), then the
schemes are modified by replacing zero in the right-hand side by a consistent approxi-
mation of f(t, x) at the point (tn, xj). For example, if we choose the approximation
f(tn, xj), the explicit scheme (2.2) becomes

un+1
j − unj

∆t
+ ν

−unj−1 + 2unj − unj+1

(∆x)2 = f(tn, xj).

•

Remark 2.2.2 The schemes above are written compactly, that is, they involve a
finite number of values unj . The set of the couples (n′, j′) which appear in the discrete
equation at the point (n, j) is called the stencil of the scheme. In general, the larger
the stencil, the more costly and difficult it is to program the scheme (partly because
of the ‘boundary effects’, that is, the case where some of the couples (n′, j′) leave the
domain of calculation). •

Remark 2.2.3 We can replace the Dirichlet boundary conditions in (2.1) by Neu-
mann boundary conditions, or by periodic (or other) boundary conditions. We start
by describing two different ways of discretizing Neumann conditions

∂u

∂x
(t, 0) = 0 and

∂u

∂x
(t, 1) = 0.

First, we can write

un1 − un0
∆x

= 0 and
unN+1 − unN

∆x
= 0

which allow us to eliminate the values un0 and unN+1 and only to calculate the N values
(unj )1≤j≤N . This discretization of the Neumann condition is only first order. If the
scheme is second order, this causes a loss of accuracy close to the boundary. This is
why we propose another discretization (of second order)

un1 − un−1

2∆x
= 0 and

unN+2 − unN
2∆x

= 0

which is more accurate, but needs us to add 2 ‘fictitious points’ x−1 and xN+2. We
eliminate the values un−1 and unN+2, corresponding to these fictitious points, and there
now remains N + 2 values to calculate, that is, (unj )0≤j≤N+1.

On the other hand, periodic boundary conditions are written

u(t, x + 1) = u(t, x) for all x ∈ [0, 1], t ≥ 0.

These are discretized by the equations un0 = unN+1 for all n ≥ 0, and more generally
unj = unN+1+j . •
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2.2.2 Consistency and accuracy

Of course, the formulas of the schemes above are not chosen by accident: they follow
from an approximation of the equation by Taylor expansion as we have explained in
Chapter 1. To formalize this approximation of the partial differential equation by
finite differences, we introduce the ideas of consistency and of accuracy. Although
for the moment we only consider the heat equation (2.1), we shall give a definition of
the consistency which is valid for every partial differential equation which we write
F (u) = 0. We remark that F (u) is notation for a function of u and its partial
derivatives at every point (t, x). Generally a finite difference scheme is defined, for all
possible indices n, j, by the formula

F∆t,∆x

(
{un+m
j+k }m−≤m≤m+, k−≤k≤k+

)
= 0 (2.9)

where the integers m−,m+, k−, k+ define the width of the stencil of the scheme (see
remark 2.2.2).

Definition 2.2.4 The finite difference scheme (2.9) is called consistent with the par-
tial differential equation F (u) = 0, if, for every sufficiently regular solution u(t, x) of
this equation, the truncation error of the scheme, defined by

F∆t,∆x
(
{u(t + m∆t, x + k∆x)}m−≤m≤m+, k−≤k≤k+

)
, (2.10)

tends to zero, uniformly with respect to (t, x), as ∆t and ∆x tend to zero independ-
ently.

Further, we say that the scheme has accuracy of order p in space and order q in
time if the truncation error (2.10) tends to zero as O

(
(∆x)p + (∆t)q

)
when ∆t and

∆x tend to zero.

Remark 2.2.5 We must take care with the formula (2.9) since there is a small
ambiguity in the definition of the scheme. Indeed, we can always multiply any for-
mula by a sufficiently high power of ∆t and ∆x so that the truncation error tends to
zero. This will make any scheme consistent! To avoid this problem, we always assume
that the formula F∆t,∆x({un+m

j+k }) = 0 has been written so that, for a regular function
u(t, x) which is not a solution of the equation F (u) = 0, the limit of the truncation
error is not zero. •

Concretely we calculate the truncation error of a scheme by replacing un+m
j+k in formula

(2.9) by u(t+m∆t, x+k∆x). As an application of the definition 2.2.4, we shall show
the following lemma.

Lemma 2.2.6 The explicit scheme (2.2) is consistent, accurate with order 1 in time
and 2 in space. Further, if we choose to keep the ratio ν∆t/(∆x)2 = 1/6 constant,
then this scheme is accurate with order 2 in time and 4 in space.
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Remark 2.2.7 In the second phrase of the statement of lemma 2.2.6 we slightly
modified the definition of the consistency by specifying the ratio of ∆t and ∆x as
they tend to zero. This allows us to take advantage of potential cancellation between
terms in the truncation error. In practice, we see such improvements in the accuracy
if we adopt a good relationship between the terms ∆t and ∆x. •

Proof. Let v(t, x) be a function of class C6. By Taylor expansion around the point
(t, x), we calculate the truncation error of the scheme (2.2)

v(t + ∆t, x)− v(t, x)
∆t

+ ν
−v(t, x−∆x) + 2v(t, x)− v(t, x + ∆x)

(∆x)2

=
(
vt − νvxx

)
+

∆t

2
vtt −

ν(∆x)2

12
vxxxx +O

(
(∆t)2 + (∆x)4

)
,

where vt, vx denote the partial derivatives of v. If v is a solution of the heat equation
(2.1), we thus easily obtain the consistency as well as accuracy of order 1 in time and
2 in space. If further we assume that ν∆t/(∆x)2 = 1/6, then the terms in ∆t and
(∆x)2 cancel since vtt = νvtxx = ν2vxxxx. �

Scheme Truncation error Stability

Explicit (2.2) O
(

∆t + (∆x)2
)

Stable in L2 and L∞ for
CFL condition 2ν∆t ≤ (∆x)2

Implicit (2.3) O
(

∆t + (∆x)2
)

Stable in L2 and L∞

Crank–Nicolson (2.5) O
(

(∆t)2 + (∆x)2
)

Stable in L2

(with θ = 1/2)
θ-scheme (2.5) O

(
∆t + (∆x)2

)
Stable in L2 for CFL

(with θ �= 1/2) condition 2(1− 2θ)ν∆t ≤ (∆x)2

Six point scheme (2.6) O
(

(∆t)2 + (∆x)4
)

Stable in L2

DuFort–Frankel (2.7) O
(

(∆t/∆x)2 + (∆x)2
)

Stable in L2 for CFL
condition ∆t/(∆x)2 bounded

Gear (2.8) O
(

(∆t)2 + (∆x)2
)

Stable in L2

Table 2.1. Truncation errors and stability of various schemes for the heat equation

Exercise 2.2.2 For each of the schemes of Section 2.2.1, verify that the truncation
error is of the type stated in Table 2.1. (We remark that all these schemes are consistent
except for DuFort–Frankel.)
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2.2.3 Stability and Fourier analysis

In Chapter 1 we introduced the stability of finite differences schemes without giving
a precise definition. We have explained that, numerically, instability is shown by
unbounded oscillations of the numerical solution. It is therefore time to give a math-
ematical definition of stability. For this we need to define a norm for the numerical
solution un = (unj )1≤j≤N . We take the classical norms on RN which we scale by the
space step ∆x:

‖un‖p =

⎛
⎝ N∑
j=1

∆x|unj |p
⎞
⎠

1/p

for 1 ≤ p ≤ +∞, (2.11)

where the limiting case p = +∞ should be understood in the sense ‖un‖∞ =
max1≤j≤N |unj |. We remark that the norm defined therefore depends on ∆x through
the weighting but also on the integer N since ∆x = 1/(N + 1). Thanks to the
weighting by ∆x, the norm ‖un‖p is identical to the norm Lp(0, 1) for piecewise con-
stant functions over the subintervals [xj , xj+1[ of [0, 1]. Often, we shall call this the
‘Lp norm’. In practice, we most often use the norms corresponding to the values
p = 2,+∞.

Definition 2.2.8 A finite difference scheme is called stable for the norm ‖ ‖, defined
by (2.11), if there exists a constant K > 0 independent of ∆t and ∆x (as these values
tend to zero) such that

‖un‖ ≤ K‖u0‖ for all n ≥ 0, (2.12)

for arbitrary initial data u0.
If (2.12) only hold for steps ∆t and ∆x defined by certain inequalities, we say that

the scheme is conditionally stable.

Remark 2.2.9 Since all norms are equivalent in RN , the hasty reader might believe
that stability with respect to one norm implies stability with respect to all norms.
Unfortunately, this is not true and there exist schemes which are stable with respect to
one norm but not with respect to another (see later the example of the Lax–Wendroff
scheme in exercises 2.3.2 and 2.3.3). In effect, the crucial point in the definition
2.2.8 is that the bound is uniform with respect to ∆x while the norms (2.11) depend
on ∆x. •

Definition 2.2.10 A finite difference scheme is called linear if its formula
F∆t,∆x({un+m

j+k }) = 0 is linear with respect to its arguments un+m
j+k .

The stability of a two level linear scheme is very easy to interpret. Indeed, by
linearity every two level linear scheme can be written in the condensed form

un+1 = Aun, (2.13)
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where A is a linear operator (a matrix, called the iteration matrix) from RN into RN .
For example, for the explicit scheme (2.2) the matrix A becomes⎛

⎜⎜⎜⎜⎜⎝

1− 2c c 0
c 1− 2c c

. . . . . . . . .
c 1− 2c c

0 c 1− 2c

⎞
⎟⎟⎟⎟⎟⎠ with c =

ν∆t

(∆x)2 , (2.14)

while for the implicit scheme (2.3) the matrix A is the inverse of the matrix (2.4).
With the help of this iteration matrix, we have un = Anu0 (take care, the notation
An denotes the nth power of A), and consequently the stability of the scheme is
equivalent to

‖Anu0‖ ≤ K‖u0‖ ∀n ≥ 0, ∀u0 ∈ RN .

Introducing the subordinate matrix norm (see definition 13.1.1)

‖M‖ = sup
u∈RN ,u �=0

‖Mu‖
‖u‖ ,

the stability of the scheme is equivalent to

‖An‖ ≤ K ∀n ≥ 0, (2.15)

which is the same as saying the sequence of the powers of A is bounded.

Stability in the L∞ norm

The stability in the L∞ norm is closely linked with the discrete maximum principle
which we have seen in Chapter 1. Let us recall the definition of this principle.

Definition 2.2.11 A finite difference scheme satisfies the discrete maximum
principle if for all n ≥ 0 and all 1 ≤ j ≤ N we have

min
(

0, min
0≤j≤N+1

u0
j

)
≤ unj ≤ max

(
0, max

0≤j≤N+1
u0
j

)

for arbitrary initial data u0.

Remark 2.2.12 In definition 2.2.11 the inequalities take account not only of the
minimum and maximum of u0 but also of zero which is the value imposed on the
boundary by the Dirichlet boundary conditions. This is necessary if the initial data
u0 does not satisfy the Dirichlet boundary conditions (which is not required), and
superfluous in the complementary case. •

As we have seen in Chapter 1 (see (1.33) and exercise 1.4.1), the discrete maximum
principle allows us to prove the following lemma.
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Lemma 2.2.13 The explicit scheme (2.2) is stable in the L∞ norm if and only if
the CFL condition 2ν∆t ≤ (∆x)2 is satisfied. The implicit scheme (2.3) is stable in
the L∞ norm no matter what the time step ∆t and space step ∆x (we say that it is
unconditionally stable).

Exercise 2.2.3 Show that the Crank–Nicolson scheme (2.5) (with θ = 1/2) is stable in
the L∞ norm if ν∆t ≤ (∆x)2, and that the DuFort–Frankel scheme (2.7) is stable in the
L∞ norm if 2ν∆t ≤ (∆x)2.

Stability in the L2 norm

Many schemes do not satisfy the discrete maximum principle but are nevertheless
‘good’ schemes. For this, we must verify the stability in a norm other than the L∞

norm. The L2 norm lends itself very well to the study of stability thanks to the very
powerful tool of Fourier analysis which we now present. To do this, we assume from
now on that the boundary conditions for the heat equation are periodic boundary
conditions, which are written u(t, x+ 1) = u(t, x) for all x ∈ [0, 1] and all t ≥ 0. For
numerical schemes, these lead to the equations un0 = unN+1 for all n ≥ 0, and more
generally unj = unN+1+j . We therefore have to calculate N + 1 values unj .

With each vector un = (unj )0≤j≤N we associate a function un(x), piecewise con-
stant, periodic with period 1, defined on [0, 1] by

un(x) = unj if xj−1/2 < x < xj+1/2

with xj+1/2 = (j + 1/2)∆x for 0 ≤ j ≤ N , x−1/2 = 0, and xN+1+1/2 = 1. The
function un(x) belongs to L2(0, 1). Now, from Fourier analysis, every function of
L2(0, 1) can be decomposed into a Fourier sum (see [4], [35], [38]). More precisely we
have

un(x) =
∑
k∈Z

ûn(k) exp(2iπkx), (2.16)

with ûn(k) =
∫ 1

0 un(x) exp(−2iπkx) dx and the Plancherel formula

∫ 1

0
|un(x)|2 dx =

∑
k∈Z

|ûn(k)|2. (2.17)

We remark that even if un is a real function, the coefficients ûn(k) of the Fourier series
are complex. An important property for the Fourier transform of periodic functions is
the following: if we denote by vn(x) = un(x+ ∆x), then v̂n(k) = ûn(k) exp(2iπk∆x).

Let us now explain the method using the example of the explicit scheme (2.2).
Under our notation, we can rewrite this scheme, for 0 ≤ x ≤ 1,

un+1(x)− un(x)
∆t

+ ν
−un(x−∆x) + 2un(x)− un(x + ∆x)

(∆x)2 = 0.
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By application of the Fourier transform, this becomes

ûn+1(k) =
(

1− ν∆t

(∆x)2 (− exp(−2iπk∆x) + 2− exp(2iπk∆x))
)
ûn(k).

In other words,

ûn+1(k) = A(k)ûn(k) = A(k)n+1û0(k) with A(k) = 1− 4ν∆t

(∆x)2 (sin(πk∆x))2.

For k ∈ Z, the Fourier coefficient ûn(k) is bounded as n tends to infinity if and only
if the amplification factor satisfies |A(k)| ≤ 1, that is,

2ν∆t(sin(πk∆x))2 ≤ (∆x)2. (2.18)

If the CFL condition (1.31), that is, 2ν∆t ≤ (∆x)2, is satisfied, then inequality (2.18)
is true for every Fourier mode k ∈ Z, and by the Plancherel formula we deduce

‖un‖2
2 =

∫ 1

0
|un(x)|2dx =

∑
k∈Z

|ûn(k)|2 ≤
∑
k∈Z

|û0(k)|2 =
∫ 1

0
|u0(x)|2dx = ‖u0‖2

2,

which is nothing other than the L2 stability of the explicit scheme. If the CFL
condition is not satisfied, the scheme is unstable. In effect, it is enough to choose ∆x
(possibly sufficiently small) and k0 (sufficiently large) and initial data with only one
nonzero Fourier component û0(k0) �= 0 with πk0∆x ≈ π/2 (modulo π) in such a way
that |A(k0)| > 1. We have therefore proved the following lemma.

Lemma 2.2.14 The explicit scheme (2.2) is stable in the L2 norm if and only if the
CFL condition 2ν∆t ≤ (∆x)2 is satisfied.

In the same way we shall prove the stability of the implicit scheme.

Lemma 2.2.15 The implicit scheme (2.3) is stable in the L2 norm.

Remark 2.2.16 For explicit (2.2) and implicit (2.3) schemes the L2 stability con-
dition is the same as that of the L∞ stability. This is not always the case for other
schemes. •

Proof. Similar reasoning to that used for the explicit scheme leads, for 0 ≤ x ≤ 1, to

un+1(x)− un(x)
∆t

+ ν
−un+1(x−∆x) + 2un+1(x)− un+1(x + ∆x)

(∆x)2 = 0,

and by application of the Fourier transform

ûn+1(k)
(

1 +
ν∆t

(∆x)2 (− exp(−2iπk∆x) + 2− exp(2iπk∆x))
)

= ûn(k).
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In other words,

ûn+1(k) = A(k)ûn(k) = A(k)n+1û0(k) with A(k) =
(

1 +
4ν∆t

(∆x)2 (sin(πk∆x))2
)−1

.

As |A(k)| ≤ 1 for all Fourier modes k, the Plancherel formula gives us the L2 stability
of the scheme. �

Remark 2.2.17 The Fourier analysis relies on the choice of periodic boundary con-
ditions. We can also carry it out if the partial differential equation holds over all
R instead of [0, 1] (we have then to deal with a Fourier integral instead of a Fourier
series). Nevertheless, it is not very realistic to talk about a numerical scheme over
all R since this implies an infinite number of values unj at each time step n when a
computer can only treat a finite number of values.

The L2 stability can also be proved in the case of Dirichlet boundary condi-
tions. We must then adapt the ideas of Fourier analysis. For example, what replaces
the Fourier transform in this case is the decomposition over a basis of eigenvectors
of the iteration matrix (2.13) which allows us to move from the vector un to the
vector un+1. •

Remark 2.2.18 (Essential from a practical point of view) Let us give a ‘recipe’
for Fourier analysis to prove the L2 stability of a scheme. We put Fourier modes into
the scheme

unj = A(k)n exp(2iπkxj) with xj = j∆x,

and we deduce the value of the amplification factor A(k). Recall that, for the moment,
we restrict ourselves to the scalar case, that is, A(k) is a complex number in C. The
inequality

|A(k)| ≤ 1 for all modes k ∈ Z (2.19)

is called the Von Neumann stability condition. If the Von Neumann stability
condition is satisfied (with possibly restrictions on ∆t and ∆x), then the scheme is
stable for the L2 norm, if not it is unstable.

In general, a stable (and consistent) scheme is convergent (see Section 2.2.4). In
practice, an unstable scheme is totally ‘useless’. In effect, even if we start from initial
data specially designed so that none of the unstable Fourier modes are excited, the
inevitable rounding errors will create nonzero components (although very small) of
the solution in the unstable modes. The exponential increase of the unstable modes
implies that after only a few time steps these ‘small’ modes become ‘enormous’ and
completely pollute the rest of the numerical solution. •

Exercise 2.2.4 Show that the θ-scheme (2.5) is unconditionally stable in the L2 norm if
1/2 ≤ θ ≤ 1, and stable under the CFL condition 2(1− 2θ)ν∆t ≤ (∆x)2 if 0 ≤ θ < 1/2.

Exercise 2.2.5 Show that the 6-point scheme (2.6) is unconditionally stable in the L2

norm.
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Remark 2.2.19 Some authors use another definition of the stability, which is less restrictive
than definition 2.2.8 but more complex. In this definition the scheme is called stable for the
norm ‖ ‖ if for all time T > 0 there exists a constant K(T ) > 0 independent of ∆t and ∆x
such that

‖un‖ ≤ K(T )‖u0‖ for all 0 ≤ n ≤ T/∆t,

whatever the initial data u0. This new definition allows the solution to grow with time as is
the case, for example, for the solution of the equation

∂u

∂t
− ν

∂2u

∂x2 = cu for (t, x) ∈ R
+ × R,

which, by changing the unknown v(t, x) = e−ctu(t, x), reduces to the heat equation (then
the solution u grows exponentially in time). With such a definition of the stability, the Von
Neumann stability condition becomes the inequality

|A(k)| ≤ 1 + C∆t for all modes k ∈ Z.

For simplicity, we shall take the definition 2.2.8 of the stability. •

2.2.4 Convergence of the schemes

We now have all the tools to prove convergence of the finite differences schemes. The
principal result of this section is the Lax theorem which shows that, for a linear
scheme, consistency and stability implies convergence. The importance of this
result far exceeds the finite difference method. For every numerical method (finite
differences, finite elements, etc.) convergence is shown by combining two arguments:
stability and consistency (their precise definitions change from one method to the
other). From a practical point of view, the Lax theorem is very reassuring: if we
use a consistent scheme (we can construct this generally) and we do not observe
numerical oscillations (that is, it is stable), then the numerical solution is close to the
exact solution (the scheme converges).

Theorem 2.2.20 (Lax) Let u(t, x) be the sufficiently regular solution of the heat
equation (2.1) (with the appropriate boundary conditions). Let unj be the discrete
numerical solution obtained by a finite difference scheme with the initial data u0

j =
u0(xj). We assume that the scheme is linear, two level, consistent, and stable for a
norm ‖ ‖. Then the scheme is convergent in the sense where

∀T > 0, lim
∆t,∆x→0

(
sup
tn≤T

‖en‖
)

= 0, (2.20)

with en is the ‘error’ vector defined by its components enj = unj − u(tn, xj).
Further, if the scheme has accuracy of order p in space and order q in time, then

for all time T > 0 there exists a constant CT > 0 such that

sup
tn≤T

‖en‖ ≤ CT

(
(∆x)p + (∆t)q

)
. (2.21)
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Remark 2.2.21 We have not proved the existence and uniqueness of the solution
of the heat equation (2.1) (with Dirichlet or periodic boundary conditions). For the
moment, we therefore make the hypothesis of the existence and uniqueness of such a
solution (as well as its regularity), but we see in Chapter 8 that this result is generally
true. •

Proof. For simplicity, we assume that the boundary conditions are Dirichlet. The
same proof is also true for periodic boundary conditions or for Neumann boundary
conditions (assuming they are discretized with the same order of accuracy as the
scheme). A two level linear scheme can be written in the condensed form (2.13),
that is,

un+1 = Aun,

where A is the iteration matrix (square of size N). Let u be the solution (assumed
sufficiently regular) of the heat equation (2.1). We denote by ũn = (ũnj )1≤j≤N with
ũnj = u(tn, xj). As the scheme is consistent, there exists a vector εn such that

ũn+1 = Aũn + ∆tεn with lim
∆t,∆x→0

‖εn‖ = 0, (2.22)

and the convergence of εn is uniform for all time 0 ≤ tn ≤ T . If the scheme is accurate
with order p in space and order q in time, then ‖εn‖ ≤ C((∆x)p+ (∆t)q). By setting
enj = unj − u(tn, xj) we obtain by subtraction of (2.22) from (2.13)

en+1 = Aen −∆tεn

from which, by induction

en = Ane0 −∆t

n∑
k=1

An−kεk−1. (2.23)

Now, the stability of the scheme means that ‖un‖ = ‖Anu0‖ ≤ K‖u0‖ for all initial
data, that is, ‖An‖ ≤ K where the constant K does not depend on n. On the other
hand, e0 = 0, therefore (2.23) gives

‖en‖ ≤ ∆t

n∑
k=1

‖An−k‖‖εk−1‖ ≤ ∆tnKC
(

(∆x)p + (∆t)q
)
,

which gives the inequality (2.21) with the constant CT = TKC. The proof of (2.20)
is similar. �

Remark 2.2.22 The Lax theorem 2.2.20 is in fact valid for all linear partial differ-
ential equations. It has a converse in the sense that if a two level linear consistent
scheme is convergent then it must be stable. We remark that the rate of convergence
in (2.21) is exactly the accuracy of the scheme. Finally, it is good to note that the
estimate (2.21) is only valid on a bounded time interval [0, T ] but it is independent
of the number of points of discretization N . •
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2.2.5 Multilevel schemes

Up until now we have mainly analysed two level schemes, that is, the schemes which re-
late the values of un+1 only to those of un. We can easily envisage multilevel schemes,
and in particular we have already introduced some three level schemes where un+1

depends on un and un−1 (like the Richardson, DuFort–Frankel, or Gear schemes). We
shall now study how the previous results generalize to multilevel schemes (we limit
ourselves for sake of clarity to three level schemes).

The definition 2.2.8 of the stability of a scheme is independent of its number of
levels. However, the interpretation of the stability in terms of the iteration matrix
is a little more complicated for a three level linear scheme. Indeed, un+1 depends
linearly on un and un−1, therefore, we cannot write the relation (2.13). But, if we set

Un =
(

un

un−1

)
, (2.24)

then there exist two matrices of order N , A1, and A2, such that

Un+1 = AUn =
(

A1 A2
I 0

)
Un, (2.25)

where the iteration matrix A is therefore of size 2N . As before, Un = AnU1 and the
stability is equivalent to

‖An‖ = sup
U1∈R2N ,U1 �=0

‖AnU1‖
‖U1‖ ≤ K ∀n ≥ 1.

In the same way Fourier analysis extends to three level schemes thanks to vector
notation (2.24). As an example, we prove a result presented in Chapter 1.

Lemma 2.2.23 The centred scheme (1.28) is unstable in the L2 norm.

Proof. With the usual notation the scheme (1.28) is written, for x ∈ [0, 1],

un+1(x)− un−1(x)
2∆t

+ ν
−un(x−∆x) + 2un(x)− un(x + ∆x)

(∆x)2 = 0,

and by application of the Fourier transform

ûn+1(k) +
8ν∆t

(∆x)2 (sin(πk∆x))2ûn(k)− ûn−1(k) = 0.

In other words,

Ûn+1(k) =
(

ûn+1(k)
ûn(k)

)
=
( − 8ν∆t

(∆x)2 (sin(πk∆x))2 1
1 0

)
Ûn(k) = A(k)Ûn(k),



FINITE DIFFERENCES FOR THE HEAT EQUATION 45

and Ûn+1(k) = A(k)nÛ1(k). Here, A(k) is a matrix of order 2 which for two level
schemes was a scalar. For k ∈ Z, the vector Ûn(k), and therefore the Fourier coeffi-
cient ûn(k), is bounded as n tends to infinity if and only if the amplification matrix
satisfies

‖A(k)n‖2 = sup
U∈R2,U �=0

‖A(k)nU‖2

‖U‖2
≤ K ∀n ≥ 1, (2.26)

where ‖U‖2 is the Euclidean norm in R2. Consequently, if the inequality (2.26) is
true for arbitrary Fourier modes k ∈ Z, by the Plancherel formula we deduce

‖un‖2
2 =

∑
k∈Z

|ûn(k)|2 ≤ K
∑
k∈Z

(
|û0(k)|2 + |û1(k)|2

)
= ‖u0‖2

2 + ‖u1‖2
2,

that is, the L2 stability of the scheme. Conversely, if there exists k0 such that ‖A(k0)n‖
is not bounded as n tends to infinity, then by a suitable choice of the initial data with
a single mode û0(k0) (like û1(k0)), we obtain the L2 instability of the scheme.

As the amplification matrix A(k) is real symmetric, we have the property
‖A(k)‖2 = ρ(A(k)) and ‖A(k)n‖2 = ‖A(k)‖n2 , where ρ(M) denotes the spectral radius
of the matrix M (see lemma 13.1.6). Therefore, the inequality (2.26) is satisfied if
and only if ρ(A(k)) ≤ 1. The eigenvalues of A(k) are the roots of the second degree
polynomial

λ2 +
8ν∆t

(∆x)2 (sin(πk∆x))2λ− 1 = 0

which always has real distinct roots with product −1. Consequently, one of the roots
is (strictly) greater than 1 in modulus, and thus ρ(A(k)) > 1. Therefore, the centred
scheme is unconditionally unstable in the L2 norm. �

Remark 2.2.24 The Fourier analysis which we have used in the proof of lemma
2.2.23 is a little more complicated in the case of multilevel schemes than in two
level schemes (see remark 2.2.18). When we put Fourier modes into the scheme,
we obtain (

un+1
j

unj

)
= A(k)n

(
u1
j

u0
j

)
exp(2iπkxj)

where A(k) is from now on an amplification matrix (and no longer a scalar factor).
We write: Von Neumann stability condition to mean the condition

ρ(A(k)) ≤ 1 for all modes k ∈ Z, (2.27)

where ρ(A(k)) is the spectral radius of the matrix A(k). Since for an arbitrary matrix
B we have

‖B‖ ≥ ρ(B) and ‖Bn‖ ≥ ρ(B)n,

it is clear that the Von Neumann stability condition is a necessary condition for L2

stability of the scheme (therefore of its convergence). If the matrix A(k) is normal,
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it satisfies ‖A(k)‖2 = ρ(A(k)) and ‖A(k)n‖2 = ‖A(k)‖n2 (see lemma 13.1.6), therefore
the Von Neumann condition (2.27) is necessary and sufficient (we had the ‘luck’ in the
proof of lemma 2.2.23 to be in this favourable case). However, if A(k) is not normal,
then in general, the Von Neumann stability condition is not sufficient and we must
make a more delicate analysis of A(k) (and in particular of its diagonalization). •

Remark 2.2.25 The Lax theorem 2.2.20 generalizes without difficulty to multilevel
schemes if we choose the L2 norm. The method of proof is unchanged: it uses Fourier
analysis and vector notation (2.24). •

Remark 2.2.26 Everything which we have said about the stability and the conver-
gence of multilevel schemes generalizes immediately to schemes for systems of equa-
tions. In this case, we must also write a vectorial version of the recurrence relation
(2.25) and of the amplification matrix (instead of a scalar factor). •

Exercise 2.2.6 Show that the Gear scheme (2.8) is unconditionally stable and therefore
convergent in the L2 norm.

Exercise 2.2.7 Show that the DuFort–Frankel scheme (2.7) is stable in the L2 norm
and therefore convergent, if the ratio ∆t/(∆x)2 remains bounded as we let ∆t and ∆x
tend to 0.

2.2.6 The multidimensional case

The finite difference method extends without difficulty to problems in several space
dimensions. Let us consider, for example, the heat equation in two space dimensions
(the case of there or more space dimensions is not more complicated, at least in
theory) in the rectangular domain Ω = (0, 1) × (0, L) with the Dirichlet boundary
conditions ⎧⎪⎪⎨

⎪⎪⎩
∂u

∂t
− ν

∂2u

∂x2 − ν
∂2u

∂y2 = 0 for (x, y, t) ∈ Ω× R+
∗

u(t = 0, x, y) = u0(x, y) for (x, y) ∈ Ω
u(t, x, y) = 0 for t ∈ R+

∗ , (x, y) ∈ ∂Ω.

(2.28)

To discretize the domain Ω, we introduce two space steps ∆x = 1/(Nx + 1) > 0 and
∆y = L/(Ny + 1) > 0 (with Nx and Ny being two positive integers). With the time
step ∆t > 0, we define the nodes of a regular mesh (see Figure 2.1)

(tn, xj , yk) = (n∆t, j∆x, k∆y) for n ≥ 0, 0 ≤ j ≤ Nx + 1, 0 ≤ k ≤ Ny + 1.

We denote by unj,k the value of an approximate discrete solution at the point
(tn, xj , yk), and u(t, x, y) the exact solution of (2.28).

The Dirichlet boundary conditions are expressed, for n > 0, as

un0,k = unNx+1,k = 0, ∀ k, and unj,0 = unj,Ny+1 = 0, ∀ j.
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j∆x
x

y

(xj, yk)k∆y

Figure 2.1. Rectangular finite difference mesh.

The initial data is discretized by

u0
j,k = u0(xj , yk) ∀ j, k.

The generalization to the two-dimensional case of the explicit scheme is obvious

un+1
j,k − unj,k

∆t
+ ν

−unj−1,k + 2unj,k − unj+1,k

(∆x)2 + ν
−unj,k−1 + 2unj,k − unj,k+1

(∆y)2 = 0 (2.29)

for n ≥ 0, j ∈ {1, . . . , Nx} and k ∈ {1, . . . , Ny}. The only notable difference with the
one-dimensional case is the extra severity of the CFL condition.

Exercise 2.2.8 Show that the explicit scheme (2.29) is stable in the L∞ norm (and
that it satisfies the maximum principle) under the CFL condition

ν∆t

(∆x)2 +
ν∆t

(∆y)2 ≤
1
2
.

We illustrate the explicit scheme (2.29) (to which we add a convection term)
by Figure 2.2 which represents convection–diffusion of a ‘hump’ (the coefficient of
diffusion is 0.01 and the velocity (1., 0.)).

Likewise, we have the implicit scheme

un+1
j,k − unj,k

∆t
+ν

−un+1
j−1,k + 2un+1

j,k − un+1
j+1,k

(∆x)2 +ν
−un+1

j,k−1 + 2un+1
j,k − un+1

j,k+1

(∆y)2 = 0. (2.30)

We remark that the implicit scheme needs, to calculate un+1 as a function of un,
the solution of a linear system significantly more complicated than that in one space
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Figure 2.2. Explicit scheme for the convection–diffusion equation in two dimensions:
initial data (top) and solution (bottom).
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dimension (the situation will be even worse in three dimensions). Recall that in
one dimension, it is sufficient to invert a tridiagonal matrix. We shall see that in
two dimensions the matrix has a less simple structure. The discrete unknown unj,k is
indexed by two integers j and k, but in practice we use only one index to store un

in the form of a vector in the computer. A (simple and efficient) way of putting the
unknowns unj,k into a single vector is to write

un = (un1,1, . . . , u
n
1,Ny

, un2,1, . . . , u
n
2,Ny

, . . . , unNx,1, . . . , u
n
Nx,Ny

).

Note that we have arranged the unknowns ‘column by column’, but we could equally
well have done it ‘row by row’ by using the j index first instead of the k index (Nx
is the number of columns and Ny the number of rows). With this convention, the
implicit scheme (2.30) requires the inversion of the matrix, which is ‘block’ symmetric
tridiagonal,

M =

⎛
⎜⎜⎜⎜⎜⎝

D1 E1 0
E1 D2 E2

. . . . . . . . .
ENx−2 DNx−1 ENx−1

0 ENx−1 DNx

⎞
⎟⎟⎟⎟⎟⎠

where the diagonal blocks Dj are square matrices of dimension Ny

Dj =

⎛
⎜⎜⎜⎜⎜⎝

1 + 2(cy + cx) −cy 0
−cy 1 + 2(cy + cx) −cy

. . . . . . . . .
−cy 1 + 2(cy + cx) −cy

0 −cy 1 + 2(cy + cx)

⎞
⎟⎟⎟⎟⎟⎠

with cx = ν∆t/(∆x)2 and cy = ν∆t/(∆y)2, and the extra-diagonal blocks Ej = (Ej)∗

are square matrices of dimension Ny

Ej =

⎛
⎜⎜⎜⎜⎜⎝

−cx 0 0
0 −cx 0

. . . . . . . . .
0 −cx 0

0 0 −cx

⎞
⎟⎟⎟⎟⎟⎠ .

In summary, the matrix M is symmetric and pentadiagonal. However, the five diag-
onals are not contiguous, this implies a considerable extra cost to solve a linear system
associated with M (see the appendix on numerical linear algebra and particularly the
remarks 13.1.21 and 13.1.41). The situation will be even worse in three dimensions.
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Exercise 2.2.9 Show that the Peaceman–Rachford scheme

u
n+1/2
j,k − unj,k

∆t
+ ν

−un+1/2
j−1,k + 2un+1/2

j,k − u
n+1/2
j+1,k

2(∆x)2 + ν
−unj,k−1 + 2unj,k − unj,k+1

2(∆y)2 = 0

un+1
j,k − u

n+1/2
j,k

∆t
+ ν

−un+1/2
j−1,k + 2un+1/2

j,k − u
n+1/2
j+1,k

2(∆x)2 + ν
−un+1

j,k−1 + 2un+1
j,k − un+1

j,k+1

2(∆y)2 = 0.

has accuracy of order 2 in space and time and is unconditionally stable in the L2 norm
(for periodic boundary conditions in each direction).

Because of the heightened cost of calculation, we often replace the implicit
scheme by a generalization to several space dimensions of the one-dimensional scheme,
obtained by a technique called alternating directions, also called operator splitting,
or splitting. The idea is, instead of solving the two-dimensional equation (2.28), we
solve alternatively the two one-dimensional equations

∂u

∂t
− 2ν

∂2u

∂x2 = 0 and
∂u

∂t
− 2ν

∂2u

∂y2 = 0

whose average again gives (2.28). For example, by using a Crank–Nicolson scheme
in each direction for a half time step ∆t/2, we obtain an alternating direction
scheme

u
n+1/2
j,k − unj,k

∆t
+ ν

−un+1/2
j−1,k + 2un+1/2

j,k − u
n+1/2
j+1,k

2(∆x)2 + ν
−unj−1,k + 2unj,k − unj+1,k

2(∆x)2 = 0

un+1
j,k − u

n+1/2
j,k

∆t
+ ν

−un+1
j,k−1 + 2un+1

j,k − un+1
j,k+1

2(∆y)2 + ν
−un+1/2

j,k−1 + 2un+1/2
j,k − u

n+1/2
j,k+1

2(∆y)2 = 0

(2.31)
The advantage of this type of scheme is that it is enough, at each half time step, to
invert a ‘one-dimensional’ tridiagonal matrix (therefore an inexpensive calculation).
In three dimensions, it is enough to take three one-third time steps and the properties
of the scheme are unchanged. This scheme is not only stable but also consistent with
the two-dimensional equation (2.28).

Exercise 2.2.10 Show that the alternating direction scheme (2.31) has accuracy of
order 2 in space and time and is unconditionally stable in the L2 norm (for periodic
boundary conditions in each direction).

Let us conclude this section with some practical considerations for the finite dif-
ference method. Its principal advantage is its simplicity as well as its computational
implementation. However, it has a certain number of defects which, for many com-
plex problems, leads us to prefer other methods such as the finite element method (see
Chapters 6 and 8). One of the principal limitations of the method is that it only works
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Figure 2.3. Refinement of a finite difference mesh: the encircled zone is that where
we want more accuracy.

for regular, or rectangular, meshes. It is not always easy to discretize an arbitrary
space domain by rectangular meshes! Additionally, it is not possible to locally refine
the mesh to have better accuracy at a particular point of the domain. It is possible
to vary the space step in each direction but this variation is uniform in perpendicular
directions (∆x and ∆y can change along the x and y axes, respectively, but this vari-
ation is uniform in orthogonal directions; see Figure 2.3). Such a refinement of a finite
difference mesh therefore has effects far outside the zone of interest. Moreover, the
theory and practice of the finite differences become much more complicated when the
coefficients in the partial differential equations are variables and when the problems
are nonlinear.

2.3 Other models

2.3.1 Advection equation

We consider the advection equation in one space dimension in the bounded domain
(0, 1) with a constant velocity V > 0 and with the periodic boundary conditions

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂u

∂t
+ V

∂u

∂x
= 0 for (x, t) ∈ (0, 1)× R+

∗

u(t, x + 1) = u(t, x) for (x, t) ∈ (0, 1)× R+
∗

u(0, x) = u0(x) for x ∈ (0, 1).

(2.32)

We always discretize space with a step ∆x = 1/(N + 1) > 0 (N a positive integer)
and the time with ∆t > 0, and we denote by (tn, xj) = (n∆t, j∆x) for n ≥ 0, j ∈
{0, 1, . . . , N+1}, unj the value of an approximate discrete solution at the point (tn, xj),
and u(t, x) the exact solution of (2.32). The periodic boundary conditions lead to
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equations un0 = unN+1 for all n ≥ 0, and more generally unj = unN+1+j . Consequently,
the discrete unknown at each time step is a vector un = (unj )0≤j≤N ∈ RN+1. We
give some possible schemes for the advection equation (2.32). In Chapter 1 we have
already noted the bad numerical behaviour of the explicit centred scheme

un+1
j − unj

∆t
+ V

unj+1 − unj−1

2∆x
= 0 (2.33)

for n ≥ 0 and j ∈ {0, . . . , N}. The unstable character of this scheme is confirmed by
the following lemma.

Lemma 2.3.1 The explicit centred scheme (2.33) is consistent with the advection
equation (2.32), accurate with order 1 in time and 2 in space, but unconditionally
unstable in the L2 norm.

Proof. With the help of a Taylor expansion around the point (tn, xj), we easily see
that the scheme is consistent, accurate with order 1 in time and 2 in space. By Fourier
analysis, we study the L2 stability. With the notation of Section 2.2.3, the Fourier
components ûn(k) of un satisfy

ûn+1(k) =
(

1− i
V ∆t

∆x
sin(2πk∆x)

)
ûn(k) = A(k)ûn(k).

We see that the amplification factor is always greater than 1,

|A(k)|2 = 1 +
(
V ∆t

∆x
sin(2πk∆x)

)2

≥ 1,

with strict inequality when 2k∆x is not an integer. Therefore the scheme is
unstable. �

We can write an implicit version of the preceding scheme which is stable: it is the
implicit centred scheme

un+1
j − unj

∆t
+ V

un+1
j+1 − un+1

j−1

2∆x
= 0. (2.34)

Exercise 2.3.1 Show that the implicit centred scheme (2.34) is consistent with the
advection equation (2.32), accurate with order 1 in time and 2 in space, unconditionally
stable in the L2 norm, and therefore convergent.

If we absolutely must stay centred and explicit, the Lax–Friedrichs scheme

2un+1
j − unj+1 − unj−1

2∆t
+ V

unj+1 − unj−1

2∆x
= 0 (2.35)

is a scheme which is simple, robust but not very accurate.
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Lemma 2.3.2 The Lax–Friedrichs scheme (2.35) is stable in the L2 norm under the
CFL condition

|V |∆t ≤ ∆x.

If the ratio ∆t/∆x is held constant as ∆t and ∆x tend to zero, it is consistent with the
advection equation (2.32) and accurate with order 1 in space and time. Consequently,
it is conditionally convergent.

Proof. By Fourier analysis we have

ûn+1(k) =
(

cos(2πk∆x)− i
V ∆t

∆x
sin(2πk∆x)

)
ûn(k) = A(k)ûn(k).

The modulus of the amplification factor is given by

|A(k)|2 = cos2(2πk∆x) +
(
V ∆t

∆x

)2

sin2(2πk∆x).

We see, therefore, that |A(k)| ≤ 1 for all k if the condition |V |∆t ≤ ∆x is satisfied,
while if not there exist unstable modes k such that |A(k)| > 1. The scheme is therefore
conditionally stable. To study the consistency, we make a Taylor expansion around
(tn, xj) for the solution u:

2u(tn+1, xj)− u(tn, xj+1)− u(tn, xj−1)
2∆t

+ V
u(tn, xj+1)− u(tn, xj−1)

2∆x
=

(ut + V ux) (tn, xj)−
(∆x)2

2∆t

(
1− (V ∆t)2

(∆x)2

)
uxx(tn, xj)+O

(
(∆x)2 +

(∆x)4

∆t

)
. (2.36)

Since the truncation error contains a term in O
(

(∆x)2/∆t
)

, the scheme is not con-

sistent if ∆t tends to zero more quickly than (∆x)2. Conversely, it is consistent and
is accurate with order 1 if the ratio ∆t/∆x is constant. To obtain the convergence
we recall the proof of the Lax Theorem 2.2.20. The error en is always bounded by
the truncation error, and therefore

‖en‖ ≤ ∆tnKC

(
(∆x)2

∆t
+ ∆t

)
.

If we keep the ratio ∆x/∆t fixed, the error is therefore bounded by a constant times
∆t which tends to zero, from which we have the convergence. �

Remark 2.3.3 The Lax–Friedrichs scheme is not (in the strict sense of the definition
2.2.4) consistent. Nevertheless, it is conditionally consistent and convergent. We
must, however, pay attention to the fact that if we take a much smaller time step ∆t
than is permitted by the CFL stability condition, the convergence will be very slow.
In practice, the Lax–Friedrichs scheme is not recommended. •
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An explicit centred scheme which is more accurate is Lax–Wendroff scheme

un+1
j − unj

∆t
+ V

unj+1 − unj−1

2∆x
−
(
V 2∆t

2

)
unj−1 − 2unj + unj+1

(∆x)2 = 0. (2.37)

The derivation is not immediate, we present it in detail. We start by writing an
expansion of order 2 in time of the exact solution

u(tn+1, xj) = u(tn, xj) + (∆t)ut(tn, xj) +
(∆t)2

2
utt(tn, xj) +O

(
(∆t)3

)
.

By using the advection equation we replace the time derivatives by space derivatives

u(tn+1, xj) = u(tn, xj)− (V ∆t)ux(tn, xj) +
(V ∆t)2

2
uxx(tn, xj) +O

(
(∆t)3

)
.

Finally, we replace the space derivatives by a centred formula of order 2

u(tn+1, xj) = u(tn, xj)− V ∆t
u(tn, xj+1)− u(tn, xj−1)

2∆x

+
(V ∆t)2

2
u(tn, xj+1)− 2u(tn, xj) + u(tn, xj−1)

(∆x)2 +O
(

(∆t)3 + ∆t(∆x)2
)
.

We recover the Lax–Wendroff scheme by neglecting the third order terms and
replacing u(tn, xj) by unj . We remark that, compared to the previous schemes, we have
‘simultaneously’ discretized the space and time derivatives of the advection equation.
By design, the Lax–Wendroff scheme is accurate with order 2 in time and in space.
We can show that it does not satisfy the discrete maximum principle (see exercise
2.3.3). Conversely, it is stable in the L2 norm and therefore convergent under the
CFL condition |V |∆t ≤ ∆x.

Exercise 2.3.2 Show that the Lax–Wendroff scheme is stable and convergent in the L2

norm if |V |∆t ≤ ∆x.

Exercise 2.3.3 Show that the Lax–Friedrichs scheme satisfies the discrete maximum
principle if the CFL condition |V |∆t ≤ ∆x is satisfied, while the Lax–Wendroff scheme
does not satisfy it except if V ∆t/∆x is −1, 0, or 1.

Exercise 2.3.4 Show that the Lax–Wendroff scheme (2.37) is the only scheme which
is accurate with order 2 in space and time of the type

un+1
j = αunj−1 + βunj + γunj+1,

where α, β, γ depend only on V ∆t/∆x.
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As we have already seen in Chapter 1, a fundamental idea to obtain ‘good’ schemes
for the advection equation (2.32) is upwinding. We give the general form of the
upwinded scheme

un+1
j − unj

∆t
+ V

unj − unj−1

∆x
= 0 if V > 0

un+1
j − unj

∆t
+ V

unj+1 − unj
∆x

= 0 if V < 0.

(2.38)

We have already seen in Chapter 1 that the upwinded scheme is stable in the L∞

norm if the CFL condition, |V |∆t ≤ ∆x, is satisfied. As it is consistent and accurate
with order 1 in space and time, it converges in the L∞ norm from the Lax theorem.
The same result is true in the L2 norm with the same CFL condition.

Exercise 2.3.5 Show that the explicit upwinded scheme (2.38) is consistent with the
advection equation (2.32), accurate with order 1 in space and time, stable and convergent
in the L2 norm if the CFL condition |V |∆t ≤ ∆x is satisfied.

Remark 2.3.4 For nonlinear problems (where the velocity V itself depends on the
unknown u), and particularly for fluid flow models, the upwinded scheme is clearly
superior to the others. It is the source of many generalizations, much more complex
than the original (see [23]). In particular, even though the original scheme is only of
order 1, it has variants of order 2. •

Scheme Stability Truncation error

Explicit centred (2.33) Unstable O
(

∆t + (∆x)2
)

Implicit centred (2.34) L2 stable O
(

∆t + (∆x)2
)

Lax–Friedrichs (2.35) L2 and L∞ stable for the O
(

∆t + (∆x)2/∆t
)

CFL condition |V |∆t ≤ ∆x

Lax–Wendroff (2.37) L2 stable for the O
(

(∆t)2 + (∆x)2
)

CFL condition |V |∆t ≤ ∆x

Upwinded (2.38) L2 and L∞ stable for the O
(

∆t + ∆x
)

CFL condition |V |∆t ≤ ∆x

Table 2.2. Summary of properties of various schemes for the advection equation

To compare these various schemes (see Table 2.2) from a practical viewpoint, a
pertinent (though formal) concept is that of the equivalent equation.

Definition 2.3.5 We call the equivalent equation of a scheme the equation ob-
tained by adding the principal part (that is, the term with dominant order) of the
truncation error to the model studied.
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Figure 2.4. Influence of the CFL condition on the numerical diffusion of the Lax–
Friedrichs scheme (top) and of the upwinded scheme (bottom).
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All of the schemes which we have seen are consistent. However, if we add the
principal part of the truncation error of a scheme to the equation, then this scheme
is not only consistent with this new ‘equivalent’ equation, but is also strictly more
accurate for this equivalent equation. In other words, the scheme is ‘more consistent’
with the equivalent equation than with the original equation. Let us take the example
of the Lax–Friedrichs scheme (2.35) for the advection equation: from (2.36), the
principal part of its truncation error is − (∆x)2

2∆t

(
1− (V∆t)2

(∆x)2

)
uxx. Consequently, the

equivalent equation of the Lax–Friedrichs scheme is

∂u

∂t
+ V

∂u

∂x
− ν

∂2u

∂x2 = 0 with ν =
(∆x)2

2∆t

(
1− (V ∆t)2

(∆x)2

)
. (2.39)

This equivalent equation will give us invaluable information on numerical behaviour of
the scheme. Indeed, the Lax–Friedrichs scheme is a good approximation (of order 2)
of the convection–diffusion equation (2.39) where the coefficient of diffusion ν is small
(even zero if the CFL condition is exactly satisfied, that is, ∆x = |V |∆t). We remark
that if the time step is taken to be very small, the coefficient of diffusion ν may be very
large and the scheme is bad as it is too weighted to the diffusion (see Figure 2.4). The
coefficient of diffusion ν of the equivalent equation is called numerical diffusion. If
it is large, we say that the scheme is diffusive (or dissipative). The typical behaviour
of a diffusive scheme is its tendency to artificially spread out the initial data in the
course of time. The schemes which are too diffusive are therefore ‘bad’ schemes.

Exercise 2.3.6 Show that the equivalent equation of the upwinded scheme (2.38) is

∂u

∂t
+ V

∂u

∂x
− |V |

2
(∆x− |V |∆t)

∂2u

∂x2 = 0.

The upwinded scheme is also diffusive (except if the CFL condition is exactly
satisfied, that is, ∆x = |V |∆t). In any case, the diffusion coefficient of the equivalent
equation does not tend to infinity as the time step tends to zero (for ∆x fixed), which
is a clear improvement with respect to the Lax–Friedrichs scheme (see Figure 2.4).
This numerical diffusion effect is illustrated by the Figure 2.4 where we solve the
advection equation on an interval of length 1 with periodic boundary conditions,
sinusoidal initial data, space step ∆x = 0.01, velocity V = 1 and final time T = 5.
We compare two values of the time step ∆t = 0.9∆x and ∆t = 0.45∆x.

Exercise 2.3.7 Show that the equivalent equation of the Lax–Wendroff scheme
(2.37) is

∂u

∂t
+ V

∂u

∂x
+
V (∆x)2

6

(
1− (V ∆t)2

(∆x)2

)
∂3u

∂x3 = 0.

As the Lax–Wendroff scheme is accurate with order 2, the equivalent equation does
not contain a diffusion term but a third order term, called dispersive. Let us remark
that the coefficient of this dispersive term is of much smaller order than the coefficient
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of diffusion of the equivalent equations for the diffusive schemes. This is why this
dispersive effect can only, in general, be seen on a nondiffusive scheme. The typical
behaviour of a dispersive scheme is that it produces oscillations when the solution is
discontinuous (see Figure 2.5). In effect, the dispersive term modifies the velocity of
propagation of the plane waves or Fourier modes of the solution (particularly of these
modes with high frequency), whereas a diffusive term only attenuates its amplitude
(see Exercise 2.3.8).
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Figure 2.5. Comparison of the Lax–Friedrichs, Lax–Wendroff, and upwinded schemes
for sinusoidal initial data (top) and square wave (bottom).

To illustrate this, we show calculations made on an interval of length 1 with
periodic boundary conditions, space step ∆x = 0.01, time step ∆t = 0.9∗∆x, velocity
V = 1 and final time T = 5. Two types of initial conditions are tested: first a very
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regular initial condition, a sine wave, then a discontinuous initial condition, a square
wave (see Figure 2.5). The schemes accurate with order 1 are clearly diffusive: they
destroy the solution. The Lax–Wendroff scheme which is accurate with order 2 is
very good for a regular solution but oscillates for the square wave since it is disper-
sive. The concept of the equivalent equation allows us to understand these numerical
phenomena.

Exercise 2.3.8 Take the equation⎧⎨
⎩

∂u

∂t
+ V

∂u

∂x
− ν

∂2u

∂x2 − µ
∂3u

∂x3 = 0 for (x, t) ∈ R× R+
∗

u(t = 0, x) = sin(ωx + φ) for x ∈ R,

with V, ν, µ, ω, φ ∈ R. Show that its solution is

u(t, x) = exp(−νω2t) sin
(
ω(x− (V + µω2)t) + φ

)
(we shall assume uniqueness). Deduce that the diffusion attenuates the amplitude of the
solution, while the dispersion modifies the velocity of propagation.

Exercise 2.3.9 Define the ‘leapfrog’ scheme

un+1
j − un−1

j

2∆t
+ V

unj+1 − unj−1

2∆x
= 0.

Study the consistency and the truncation error of this scheme. Show by Fourier analysis
that it is stable under the condition CFL |V |∆t ≤M∆x with M < 1.

Exercise 2.3.10 Define the Crank–Nicolson scheme

un+1
j − unj

∆t
+ V

un+1
j+1 − un+1

j−1

4∆x
+ V

unj+1 − unj−1

4∆x
= 0.

Study the consistency and the truncation error of this scheme. Show by Fourier analysis
that it is unconditionally stable.

2.3.2 Wave equation

We consider the wave equation in the bounded domain (0, 1) with periodic boundary
conditions ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂2u

∂t2
− ∂2u

∂x2 = 0 for (x, t) ∈ (0, 1)× R+
∗

u(t, x + 1) = u(t, x) for (x, t) ∈ (0, 1)× R+
∗

u(t = 0, x) = u0(x) for x ∈ (0, 1)

∂u

∂t
(t = 0, x) = u1(x) for x ∈ (0, 1).

(2.40)
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With the same notation as above, the discrete unknown at each time step is a vector
un = (unj )0≤j≤N ∈ RN+1. The periodic boundary conditions lead to equations un0 =
unN+1 for all n ≥ 0, and more generally unj = unN+1+j . As the boundary conditions
do not fix the value of u at the end of the interval (0, 1) (think of the interpretation
in terms of a vibrating cord), the solution u cannot remain bounded in time, which
complicates the study of the stability of the numerical schemes. For example, if u0 ≡ 0
and u1 ≡ C in (0, 1), the solution of (2.40) is u(t, x) = Ct. To eliminate this effect,
we make the hypothesis that the initial velocity is on average zero

∫ 1

0
u1(x) dx = 0. (2.41)

For the wave equation (2.40) the usual scheme is the θ-centred scheme: for n ≥ 1
and j ∈ {0, . . . , N},

un+1
j − 2unj + un−1

j

(∆t)2 + θ
−un+1

j−1 + 2un+1
j − un+1

j+1

(∆x)2

+(1− 2θ)
−unj−1 + 2unj − unj+1

(∆x)2 + θ
−un−1

j−1 + 2un−1
j − un−1

j+1

(∆x)2 = 0

(2.42)

with 0 ≤ θ ≤ 1/2. When θ = 0 we obtain an explicit scheme, while the scheme is
implicit if θ �= 0. The initial conditions are taken into account by

u0
j = u0(xj) and

u1
j − u0

j

∆t
=
∫ xj+1/2

xj−1/2

u1(x) dx,

which guarantees that the discrete initial velocity also satisfies the condition (2.41).
As each of the centred finite differences which approximate the second derivatives
in (2.42) is of order 2, the θ-centred scheme (2.42) has accuracy of order 2 in space
and time. We remark that this scheme is invariant if we change the sense of time
(which is compatible with the reversibility property in time of the wave equation, see
in Section 1.3.2).

Lemma 2.3.6 If 1/4 ≤ θ ≤ 1/2, the θ-centred scheme (2.42) is unconditionally
stable in the L2 norm. If 0 ≤ θ < 1/4, it is stable under the CFL condition

∆t

∆x
<

√
M

1− 4θ
, with 0 < M < 1,

and unstable if ∆t/∆x > 1/
√

1− 4θ.

Proof. As before, we use Fourier analysis to obtain

ûn+1(k)− 2ûn(k) + ûn−1(k) + α(k)
(
θûn+1(k) + (1− 2θ)ûn(k) + θûn−1(k)

)
= 0,
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with

α(k) = 4
(

∆t

∆x

)2

sin2(πk∆x).

This is a three level scheme which we rewrite as

Ûn+1(k) =
(

ûn+1(k)
ûn(k)

)
=
(

(2− (1− 2θ)α(k))/1 + θα(k) −1
1 0

)
Ûn(k)

= A(k)Ûn(k),

and Ûn+1(k) = A(k)nÛ1(k). The eigenvalues (λ1, λ2) of the matrix A(k) are the
roots of the second degree polynomial

λ2 − 2− (1− 2θ)α(k)
1 + θα(k)

λ + 1 = 0.

The discriminant of this equation is

∆ = −α(k)(4− (1− 4θ)α(k))
(1 + θα(k))2 .

The study of the stability of the scheme is very delicate as A(k) is not a normal matrix
and ‖A(k)n‖2 �= ρ(A(k))n, where ρ(A(k)) = max(|λ1|, |λ2|) is the spectral radius
of A(k). We therefore restrict ourselves to verifying the necessary Von Neumann
stability condition, ρ(A(k)) ≤ 1 (see remark 2.2.24), and we refer to exercise 2.3.11
for a sufficient condition. If ∆t/∆x > 1/

√
1− 4θ, a judicious choice of k (such that

sin2(πk∆x) ≈ 1) leads to ∆ > 0, and in this case the two roots λ1 and λ2 are
real, with product equal to 1. One of the two must be strictly greater than 1 in
modulus, ρ(A(k)) > 1, and the scheme is therefore unstable. If ∆t/∆x < 1/

√
1− 4θ

or θ ≥ 1
4 , then ∆ ≤ 0 for all k, and the two roots are complex conjugate with modulus

equal to 1. Consequently, ρ(A(k)) = 1 and the Von Neumann stability condition is
satisfied. �

Exercise 2.3.11 Finish the proof of Lemma 2.3.6 by calculating A(k)n, and show the
stability of the scheme under the CFL condition, thanks to (2.41).

Exercise 2.3.12 We consider the limiting case of the Lemma 2.3.6, that is, ∆t/∆x =
1/
√

1− 4θ with 0 ≤ θ < 1/4. Show that the θ-centred scheme (2.42) is unstable in
this case by verifying that unj = (−1)n+j(2n − 1) is a solution (note that this is ‘weak’
instability since the increase of un is linear and nonexponential).

We illustrate these schemes in Figure 2.6 on which we show the results obtained
with the explicit centred scheme and the θ-implicit scheme (for θ = 0.25). The
calculations are made on an interval of length 1 with periodic boundary conditions,
space step ∆x = 0.01, time step ∆t = 0.9 ∗ ∆x, and final time T = 5. The initial
condition u0 is a sine wave, while u1 is zero.
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Figure 2.6. Schemes for the wave equation.

We have seen in exercise 1.3.4 that the wave equation (2.40) satisfies a conservation
of energy property, that is, for all t > 0,

E(t) = E(0) with E(t) =
∫ 1

0

∣∣∣∣∂u∂t (t, x)
∣∣∣∣
2

dx +
∫ 1

0

∣∣∣∣∂u∂x (t, x)
∣∣∣∣
2

dx.

It is often desirable that a numerical scheme satisfies (exactly or approximately) a
discrete version of this conservation of energy. For the θ-scheme we introduce the
discrete energy

En+1 =
N∑
j=0

(
un+1
j − unj

∆t

)2

+ a∆x(un+1, un) + θa∆x(un+1 − un, un+1 − un)

with

a∆x(u, v) =
N∑
j=0

(
uj+1 − uj

∆x

)(
vj+1 − vj

∆x

)
.

Clearly, En+1 is an approximation, to O(∆x+ ∆t), of the exact energy E(tn+1). We
leave it the reader to prove the property of the conservation of discrete energy.

Exercise 2.3.13 Show that the θ-centred scheme (2.42) conserves the discrete energy,
that is, En = E1 for all n ≥ 0.
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Another way to define the schemes for the wave equation is to start by rewrit-
ing (2.40) as a system of first order equations. Introducing v = ∂u/∂t and w = ∂u/∂x,
(2.40) is equivalent to⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t

(
v
w

)
=
(

0 1
1 0

)
∂

∂x

(
v
w

)
for (x, t) ∈ (0, 1)× R+

∗

v(t, x + 1) = v(t, x), w(t, x + 1) = w(t, x) for (x, t) ∈ (0, 1)× R+
∗

w(t = 0, x) =
∂u0

∂x
(x) for x ∈ (0, 1)

v(t = 0, x) = u1(x) for x ∈ (0, 1).

(2.43)

We can give a physical or mechanical interpretation of these new variables. If u
models a displacement (of the vibrating cord, for example), then v is a velocity and
w is a deformation. The system of two equations (2.43) occurs as a generalization of
the advection equation. We can therefore define a Lax–Friedrichs-type scheme

1
2∆t

(
2vn+1
j − vnj+1 − vnj−1

2wn+1
j − wnj+1 − wnj−1

)
− 1

2∆x

(
0 1
1 0

)(
vnj+1 − vnj−1
wnj+1 − wnj−1

)
= 0, (2.44)

or one of Lax–Wendroff type

1
∆t

(
vn+1
j − vnj

wn+1
j − wnj

)
− 1

2∆x

(
0 1
1 0

)(
vnj+1 − vnj−1
wnj+1 − wnj−1

)
(2.45)

+
∆t

2(∆x)2

(
0 1
1 0

)2 ( −vnj−1 + 2vnj − vnj+1
−wnj−1 + 2wnj − wnj+1

)
= 0.

Exercise 2.3.14 Show that the Lax–Friedrichs scheme (2.44) is stable in the L2 norm
under the CFL condition ∆t ≤ ∆x, and that it is accurate with order 1 in space and time
if the ratio ∆t/∆x is held constant as ∆t and ∆x tend to zero.

Exercise 2.3.15 Show that the Lax–Wendroff scheme (2.45) is stable in the L2 norm
under the CFL condition ∆t ≤ ∆x, and that it is accurate with order 2 in space and time.

As for the advection equation, a fundamental idea to obtain ‘good’ schemes is
upwinding. However, here we have a system of two equations and it is not clear
which is the velocity, which is what allows us to upwind. In fact, it is sufficient to
diagonalize the matrix

J =
(

0 1
1 0

)
to obtain two decoupled advection equations which are upwinded in different ways
from each other. It is therefore the eigenvalues of the matrix J (1 and −1, in fact)
which play the role of the velocity, and we upwind component by component in the
decomposition in a basis of eigenvectors of this matrix. This type of scheme is used
for hyperbolic systems and, in particular, for gas dynamics (see [23] to which we refer
for more detail).
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3 Variational formulation of
elliptic problems

3.1 Generalities

3.1.1 Introduction

In this chapter we are interested in the mathematical analysis of elliptic partial
differential equations (PDEs) (see definition 1.5.5). In general, these elliptic equa-
tions correspond to stationary physical models, that is, models which are independent
of time. We shall see that boundary value problems are well-posed for these elliptic
PDEs, that is, they have a solution which is unique and depends continuously on the
data. The approach that we shall follow is called the variational approach. First
we should say that the interest of this approach goes far beyond the framework of
elliptic PDEs and even the framework of the ‘pure’ mathematical analysis to which
we restrict ourselves. Indeed, we shall return to this variational approach for prob-
lems of evolution in time (parabolic or hyperbolic PDEs), and it will be crucial for
understanding the finite element method that we develop in Chapter 6. Additionally,
this approach has a very natural physical or mechanical interpretation. The reader
should make the effort to study this variational approach carefully!

In this chapter and the following, the prototype example of elliptic PDEs will be
the Laplacian for which we shall study the following boundary value problem{

−∆u = f in Ω
u = 0 on ∂Ω (3.1)

where we impose Dirichlet boundary conditions (we refer to Section 1.3.3 for a pre-
sentation of this model). In (3.1), Ω is an open set of the space RN , ∂Ω is its

65
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boundary, f is a right-hand side data for the problem, and u is the unknown. Of
course, in Chapter 5 we shall give many other examples of elliptic PDEs which can
be studied, thanks to the variational approach.

The plan of this chapter is the following. In Section 3.2 we recall some integration
by parts formulas, called Green’s formulas, then we define the variational for-
mulation. Section 3.3 is dedicated to Lax–Milgram theorem which will be the
essential tool allowing us to show existence and uniqueness of the solutions of the vari-
ational formulation. We shall see that, to apply this theorem, it is inescapable that
we must give up the space C1(Ω) of continuously differentiable functions and use its
‘generalization’, the Sobolev space H1(Ω).

We conclude this introduction by mentioning other methods to solve PDEs which
are less powerful or more complicated than the variational approach (we refer the
curious, and courageous, reader to the encyclopaedia [14]).

3.1.2 Classical formulation

The ‘classical’ formulation of (3.1), which might appear ‘natural’ at first sight, is to
assume sufficient regularity for the solution u so that equations (3.1) have a meaning
at every point of Ω or of ∂Ω. First we recall some notation related to spaces of regular
functions.

Definition 3.1.1 Let Ω be an open set of RN , and Ω its closure. We denote by C(Ω)
(respectively, C(Ω)) the space of continuous function in Ω (respectively, in Ω). Let
k ≥ 0 be an integer. We denote by Ck(Ω) (respectively, Ck(Ω)) the space of functions
k times continuously differentiable in Ω (respectively, in Ω).

A classical solution (we also say strong solution) of (3.1) is a solution u ∈
C2(Ω)∩C(Ω), which implies that the right-hand side f must be in C(Ω). This classical
formulation, unfortunately, has a number of problems! Without going into detail, we
note that, under the single hypothesis f ∈ C(Ω), there is not in general a solution of
class C2 for (3.1) if the dimension of the space is greater than two (N ≥ 2). In fact,
a solution does exist, as we shall see later, but it is not of class C2 (it is a little less
regular except if the data f is more regular than C(Ω)). The case of a space with
dimension one (N = 1) is particular as it is easy to find classical solutions (see exercise
3.1.1), but we shall, nevertheless, see that, even in this successful case, the classical
formulation is inconvenient.

In what follows, to study (3.1), we shall replace its classical formulation by a
so-called variational formulation, which is much more advantageous.
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3.1.3 The case of a space of one dimension

In one space dimension (N = 1), if Ω = (0, 1), the boundary value problem (3.1)
becomes ⎧⎨

⎩ −d
2u

dx2 = f for 0 < x < 1

u(0) = u(1) = 0.
(3.2)

This problem is so simple it has an explicit solution!

Exercise 3.1.1 If f is a continuous function in [0, 1], show that (3.2) has a unique
solution in C2([0, 1]) given by the formula

u(x) = x

∫ 1

0
f(s)(1− s)ds−

∫ x

0
f(s)(x− s)ds for x ∈ [0, 1]. (3.3)

For the remainder of this section we shall forget the explicit formula (3.3) which does
not have any equivalent for more complicated problems.

In one space dimension, ‘partial differential equation’ loses its meaning as, since
we only have one variable, we can more simply say ‘ordinary differential equation’.
However, equation (3.2) is not a ‘normal’ ordinary differential equation in the sense
that the solution must satisfy conditions ‘at both ends’ rather than an initial condition
at one end of the interval [0, 1]. This is exactly the difference between a boundary
value problem (with conditions ‘at both ends’) and a Cauchy problem (with an initial
condition ‘at one end’).

It is, however, interesting to see that, even in one dimension, the classical methods
of ordinary differential equations are not useful to study (3.2) (and are completely
useless in higher dimensions). For a parameter m ∈ R, we consider the Cauchy
problem for the Laplacian with initial data at 0⎧⎪⎨

⎪⎩
−d

2u

dx2 = f for 0 < x < 1

u(0) = 0,
du

dx
(0) = m.

(3.4)

Obviously there is a unique solution of (3.4): it is enough to integrate this linear
equation (or more generally to use the Cauchy–Lipschitz existence theorem). It is
not at all clear, on the other hand, that the solution of (3.4) coincides with that of
(3.2) (if it exists). We ask the question if there exists a parameter m such that the
solution of (3.4) also satisfies u(1) = 0 and therefore is a solution of (3.2). This is the
principle of the shooting method which allows us to solve, both theoretically and
numerically, the boundary value problem (3.2). Iteratively, we predict a value of m
(shooting from the point 0), we integrate the Cauchy problem (3.4) (we calculate the
trajectory of the shot), then depending on the result u(1) we correct the value of m.
In practice, this is not a very effective method which has the major problem that it
cannot be generalized to higher dimensions.

The conclusion is that we need methods specific to boundary value problems which
have nothing to do with those related to Cauchy problems.
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3.2 Variational approach

The principle of the variational approach for the solution of PDEs is to replace the
equation by an equivalent so-called variational formulation obtained by integrating
the equation multiplied by an arbitrary function, called a test function. As we need
to carry out integration by parts when establishing the variational formulation, we
start by giving some essential results on this subject.

3.2.1 Green’s formulas

In this section Ω is an open set of the space RN (which may be bounded or un-
bounded), whose boundary is denoted by ∂Ω. We also assume that Ω is a regular
open set of class C1. The precise definition of a regular open set is given below in
definition 3.2.5, but it is not necessary to understand this absolutely to follow the rest
of this course. It is enough to know that an open regular set is roughly speaking an
open set whose boundary is a regular hypersurface (a manifold of dimension N − 1),
and this open set is locally situated on one side of its boundary. We then define
the outward normal at the boundary ∂Ω as being the unit vector n = (ni)1≤i≤N
normal at every point to the tangent plane of Ω and pointing to the exterior of Ω
(see Figure 1.1). In Ω ⊂ RN we denote by dx the volume measure, or Lebesgue
measure of dimension N . On ∂Ω, we denote by ds the surface measure, or Lebesgue
measure of dimension N−1 on the manifold ∂Ω. The principal result of this section is
the following theorem (see [4], [38]).

Theorem 3.2.1 (Green’s formula) Let Ω be a regular open set of class C1. Let w
be a C1(Ω) function with bounded support in the closure Ω. Then w satisfies Green’s
formula ∫

Ω

∂w

∂xi
(x) dx =

∫
∂Ω

w(x)ni(x) ds, (3.5)

where ni is the ith component of the unit outward normal to Ω.

Remark 3.2.2 To say that a regular function w has bounded support in the closed
set Ω is the same as saying that it is zero at infinity if the closed set is unbounded.
We also say that the function w has compact support in Ω (take care: this does not
imply that w is zero on the boundary ∂Ω). In particular, the hypothesis of theorem
3.2.1 in connection with the bounded support of the function w in Ω is pointless if the
open set Ω is bounded. If Ω is unbounded, this hypothesis ensures that the integrals
in (3.5) are finite •

Theorem 3.2.1 has many corollaries which are all immediate consequences of
Green’s formula (3.5). The reader who wants to save his memory need only remember
Green’s formula (3.5)!
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Figure 3.1. Definition of the regularity of an open set.

Corollary 3.2.3 (Integration by parts formula) Let Ω be a regular open set of
class C1. Let u and v be two C1(Ω) functions with bounded support in the closed set
Ω. Then they satisfy the integration by parts formula

∫
Ω
u(x)

∂v

∂xi
(x) dx = −

∫
Ω
v(x)

∂u

∂xi
(x) dx +

∫
∂Ω

u(x)v(x)ni(x) ds. (3.6)

Proof. It is enough to take w = uv in theorem 3.2.1. �

Corollary 3.2.4 Let Ω be a regular open set of class C1. Let u be a function of C2(Ω)
and v a function of C1(Ω), both with bounded support in the closed set Ω. Then they
satisfy the integration by parts formula

∫
Ω

∆u(x)v(x) dx = −
∫

Ω
∇u(x) · ∇v(x) dx +

∫
∂Ω

∂u

∂n
(x)v(x) ds, (3.7)

where ∇u =
(
∂u
∂xi

)
1≤i≤N

is the gradient vector of u, and ∂u
∂n = ∇u · n.

Proof. We apply corollary 3.2.3 to v and ∂u
∂xi

and we sum in i. �

Definition 3.2.5 We say that an open set Ω of RN is regular of class Ck (for an
integer k ≥ 1) if there exist a finite number of open sets (ωi)0≤i≤I such that

ω0 ⊂ Ω, Ω ⊂ ∪Ii=0ωi, ∂Ω ⊂ ∪Ii=1ωi,

and that, for every i ∈ {1, . . . , I} (see Figure 3.1), there exists a bijective mapping φi
of class Ck, from ωi into the set

Q =
{
y = (y′, yN ) ∈ RN−1 × R, |y′| < 1, |yN | < 1

}
,
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whose inverse is also of class Ck, and such that

φi(ωi ∩ Ω) = Q ∩
{
y = (y′, yN ) ∈ RN−1 × R, yN > 0

}
= Q+,

φi(ωi ∩ ∂Ω) = Q ∩
{
y = (y′, yN ) ∈ RN−1 × R, yN = 0

}
.

Ω Ω

Figure 3.2. Two examples of a nonregular open set: open set with a crack on the left,
open set with a cusp on the right.

Remark 3.2.6 Even though Figure 3.1 represents a bounded regular open set, the
definition 3.2.5 also applies to unbounded open sets. Definition 3.2.5 does not only
exclude open sets whose boundary is not a regular surface, but it also excludes open
sets which do not lie locally on one side of their boundary. Figure 3.2 contains two
typical examples of a nonregular open set which give an irremovable singularity, a
crack, and a cusp. These examples are not ‘mathematical inventions’: the cracked
set is used to study crack problems in structural mechanics. We can, nevertheless,
generalize the class of regular open set a little to open sets which are ‘piecewise
regular’, provided that the pieces of the boundary are ‘joined’ by angles different
from either 0 (a cusp) or from 2π (a crack). All of these details are largely outside the
scope of this course, and we refer the reader to remark 4.3.7 for another explanation
of regularity problems. •

Exercise 3.2.1 From Green’s formula (3.5) deduce the Stokes formula∫
Ω

divσ(x)φ(x) dx = −
∫

Ω
σ(x) · ∇φ(x) dx +

∫
∂Ω

σ(x) · n(x)φ(x) ds,

where φ is a scalar function of C1(Ω) and σ a vector valued function of C1(Ω), with
bounded supports in the closed set Ω.

Exercise 3.2.2 In N = 3 dimensions we define the curl of a function of Ω in R3,
φ = (φ1, φ2, φ3), as the function of Ω in R3 defined by

∇×φ =
(
∂φ3

∂x2
− ∂φ2

∂x3
,
∂φ1

∂x3
− ∂φ3

∂x1
,
∂φ2

∂x1
− ∂φ1

∂x2

)
.

For φ and ψ, vector valued functions of C1(Ω), with bounded supports in the closed set
Ω, deduce Green’s formula (3.5)∫

Ω
∇×φ · ψ dx−

∫
Ω
φ · ∇×ψ dx = −

∫
∂Ω

(φ× n) · ψ ds.



VARIATIONAL APPROACH 71

3.2.2 Variational formulation

To simplify the presentation, we assume that the open set Ω is bounded and regular,
and that the right-hand side f of (3.1) is continuous on Ω. The principal result of
this section is the following proposition.

Proposition 3.2.7 Let u be a function of C2(Ω). Let X be the space defined by

X =
{
φ ∈ C1(Ω) such that φ = 0 on ∂Ω

}
.

Then u is a solution of the boundary value problem (3.1) if and only if u belongs to
X and satisfies the equation∫

Ω
∇u(x) · ∇v(x) dx =

∫
Ω
f(x)v(x) dx for every v ∈ X. (3.8)

Equation (3.8) is called the variational formulation of the boundary value
problem (3.1).

Remark 3.2.8 An immediate consequence of the variational formulation (3.8) is
that it is meaningful if the solution u is only a function of C1(Ω), as opposed to
the ‘classical’ formulation (3.1) which requires u to belong to C2(Ω). We therefore
already suspect that it is easier to solve (3.8) than (3.1) since it is less demanding on
the regularity of the solution.

In the variational formulation (3.8), the function v is called the test function.
The variational formulation is also sometimes called the weak form of the bound-
ary value problem (3.1). In mechanics, the variational formulation is known as the
‘principle of virtual work’. In physics, we also talk of the balance equation or the
reciprocity formula.

When we take v = u in (3.8), we obtain what is called an energy equality,
which in general expresses the equality between the stored energy in the domain Ω
(the left-hand term of (3.8)) and a potential energy associated with f (the right-hand
term of (3.8)). •

Proof. If u is a solution of the boundary value problem (3.1), we multiply the
equation by v ∈ X and we use the integration by parts formula of corollary 3.2.4.∫

Ω
∆u(x)v(x) dx = −

∫
Ω
∇u(x) · ∇v(x) dx +

∫
∂Ω

∂u

∂n
(x)v(x) ds,

where v = 0 on ∂Ω since v ∈ X, therefore∫
Ω
f(x)v(x) dx =

∫
Ω
∇u(x) · ∇v(x) dx,

which is nothing other than the formula (3.8). Conversely, if u ∈ X satisfies (3.8), by
using the integration by parts formula ‘in reverse’ we obtain∫

Ω

(
∆u(x) + f(x)

)
v(x) dx = 0 for every v ∈ X.



72 VARIATIONAL FORMULATION

As (∆u + f) is a continuous function, thanks to lemma 3.2.9 we conclude that
−∆u(x) = f(x) for all x ∈ Ω. In addition, since u ∈ X, we recover the
boundary condition u = 0 on ∂Ω, that is, u is a solution of the boundary value
problem (3.1). �

Lemma 3.2.9 Let Ω be an open set of RN . Let g(x) be a continuous function in Ω.
If for every function φ of C∞(Ω) with compact support in Ω, we have∫

Ω
g(x)φ(x) dx = 0,

then the function g is zero in Ω.

Proof. Assume that there exists a point x0 ∈ Ω such that g(x0) �= 0. Without loss
of generality, we can assume that g(x0) > 0 (otherwise we take −g). By continuity,
there exists a small open neighbourhood ω ⊂ Ω of x0 such that g(x) > 0 for all x ∈ ω.
Let φ be a nonzero positive test function with support in ω. We have∫

Ω
g(x)φ(x) dx =

∫
ω

g(x)φ(x) dx = 0,

which contradicts the hypothesis on g. Therefore g(x) = 0 for all x ∈ Ω. �

Remark 3.2.10 We can rewrite the variational formulation (3.8) in compact nota-
tion: find u ∈ X such that

a(u, v) = L(v) for every v ∈ X,

with
a(u, v) =

∫
Ω
∇u(x) · ∇v(x) dx

and
L(v) =

∫
Ω
f(x)v(x) dx,

where a(·, ·) is a bilinear form on X and L(·) is a linear form on X. It is in this
abstract form that we solve (with some hypotheses) the variational formulation in the
next section. •

The principle idea of the variational approach is to show the existence and
uniqueness of the solution of the variational formulation (3.8), which implies the same
result for the equation (3.1) because of proposition 3.2.7. Indeed, we shall see that
there is a theory, both simple and powerful, for analysing variational formulations.
Nonetheless, this theory only works if the space in which we look for the solution
and in which we take the test functions (in the preceding notation, the space X) is a
Hilbert space, which is not the case for X = {v ∈ C1(Ω), v = 0 on ∂Ω} equipped with
the ‘natural’ scalar product for this problem. The main difficulty in the application
of the variational approach will therefore be that we must use a space other than X,
that is the Sobolev space H1

0 (Ω) which is indeed a Hilbert space (see Chapter 4).



LAX–MILGRAM THEORY 73

Exercise 3.2.3 In a bounded open set Ω we consider the Laplacian with Neumann
boundary condition { −∆u = f in Ω

∂u

∂n
= 0 on ∂Ω.

(3.9)

Let u be a function of C2(Ω). Show that u is a solution of the boundary value
problem (3.9) if and only if u satisfies the equation∫

Ω
∇u(x) · ∇v(x) dx =

∫
Ω
f(x)v(x) dx for every v ∈ C1(Ω). (3.10)

Deduce from this that a necessary condition for the existence of a solution in C2(Ω) of
(3.9) is that

∫
Ω f(x)dx = 0.

Exercise 3.2.4 In a bounded open set Ω we consider the plate equation⎧⎪⎨
⎪⎩

∆ (∆u) = f in Ω
u = 0 on ∂Ω
∂u

∂n
= 0 on ∂Ω

(3.11)

We denote by X the space of functions v of C2(Ω) such that v and ∂v
∂n are zero on ∂Ω.

Let u be a function of C4(Ω). Show that u is a solution of the boundary value problem
(3.11) if and only if u belongs to X and satisfies the equation∫

Ω
∆u(x)∆v(x) dx =

∫
Ω
f(x)v(x) dx for every v ∈ X. (3.12)

3.3 Lax–Milgram theory

3.3.1 Abstract framework

We describe an abstract theory to obtain the existence and the uniqueness of the
solution of a variational formulation in a Hilbert space. We denote by V a real
Hilbert space with scalar product 〈, 〉 and norm ‖ ‖. Following remark 3.2.10 we
consider a variational formulation of the type:

find u ∈ V such that a(u, v) = L(v) for every v ∈ V. (3.13)

The hypotheses on a and L are

(1) L(·) is a continuous linear form on V , that is, v → L(v) is linear from V into R

and there exists C > 0 such that

|L(v)| ≤ C‖v‖ for all v ∈ V ;

(2) a(·, ·) is a bilinear form on V , that is, w → a(w, v) is a linear form from V into
R for all v ∈ V ; and v → a(w, v) is a linear form from V into R for all w ∈ V ;
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(3) a(·, ·) is continuous, that is, there exists M > 0 such that

|a(w, v)| ≤M‖w‖ ‖v‖ for all w, v ∈ V ; (3.14)

(4) a(·, ·) is coercive (or elliptic), that is, there exists ν > 0 such that

a(v, v) ≥ ν‖v‖2 for all v ∈ V. (3.15)

As we shall see in this section, all the hypotheses above are necessary to solve (3.13).
In particular, the coercivity of a(·, ·) is essential.

Theorem 3.3.1 (Lax–Milgram) Let V be a real Hilbert space, L(·) a continuous
linear form on V , a(·, ·) a continuous coercive bilinear form on V . Then the vari-
ational formulation (3.13) has a unique solution. Further, this solution depends con-
tinuously on the linear form L.

Proof. For all w ∈ V , the mapping v → a(w, v) is a continuous linear form on V :
consequently, the Riesz representation theorem 12.1.18 implies that there exists an
element of V , denoted A(w), such that

a(w, v) = 〈A(w), v〉 for all v ∈ V.

Moreover, the bilinearity of a(w, v) obviously implies the linearity of the mapping
w → A(w). Further, by taking v = A(w), the continuity (3.14) of a(w, v) shows that

‖A(w)‖2 = a(w,A(w)) ≤M‖w‖‖A(w)‖,

that is, ‖A(w)‖ ≤M‖w‖ and therefore w → A(w) is continuous. Another application
of the Riesz representation theorem 12.1.18 implies that there exists an element of V ,
denoted f , such that ‖f‖V = ‖L‖V ′ and

L(v) = 〈f, v〉 for all v ∈ V.

Finally, the variational problem (3.13) is equivalent to:

find u ∈ V such that A(u) = f. (3.16)

To prove the theorem we must therefore show that the operator A is bijective from
V to V (which implies the existence and the uniqueness of u) and that its inverse is
continuous (which proves the continuous dependence of u with respect to L).

The coercivity (3.15) of a(w, v) shows that

ν‖w‖2 ≤ a(w,w) = 〈A(w), w〉 ≤ ‖A(w)‖‖w‖,

which gives
ν‖w‖ ≤ ‖A(w)‖ for all w ∈ V, (3.17)
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that is, A is injective. To show that A is surjective, that is, Im(A) = V (which is not
obvious if V is infinite dimensional), it is enough to show that Im(A) is closed in V
and that Im(A)⊥ = {0}. Indeed, in this case we see that V = {0}⊥ = ( Im(A)⊥)⊥ =
Im(A) = Im(A), which proves that A is surjective. Let A(wn) be a sequence in
Im(A) which converges to b in V . By virtue of (3.17) we have

ν‖wn − wp‖ ≤ ‖A(wn)−A(wp)‖

which tends to zero as n and p tend to infinity. Therefore wn is a Cauchy sequence
in the Hilbert space V , that is, it converges to a limit w ∈ V . Then, by continuity
of A we deduce that A(wn) converges to A(w) = b, that is, b ∈ Im(A) and Im(A) is
therefore closed. On the other hand, let v ∈ Im(A)⊥; the coercivity (3.15) of a(w, v)
implies that

ν‖v‖2 ≤ a(v, v) = 〈A(v), v〉 = 0,

that is, v = 0 and Im(A)⊥ = {0}, which proves that A is bijective. Let A−1 be its
inverse: the inequality (3.17) with w = A−1(v) proves A−1 is continuous, therefore
the solution u depends continuously on f . �

Remark 3.3.2 If the Hilbert space V is finite dimensional (which is however never
the case for the applications we shall see), the proof of the Lax–Milgram theorem 3.3.1
simplifies considerably. Indeed, in finite dimensions all linear mappings are continuous
and the injectivity (3.17) of A is equivalent to its invertibility. We see, in this case,
(as in the general case) that the coercivity hypothesis on the bilinear form a(w, v) is
indispensable since it is this that gives the injectivity of A. Finally we remark that,
if V = RN , a variational formulation is only the statement, 〈Au, v〉 = 〈f, v〉 for all
v ∈ RN , of a simple linear system Au = f . •

Remark 3.3.3 Another proof (a little less technical but which disguises some of the
essential arguments) of the Lax–Milgram theorem 3.3.1 is the following. We begin as
before until we reach the formulation (3.16) of the problem. To show the existence
and uniqueness of the solution u of (3.16), we introduce an affine mapping T from V
into V , defined by

T (w) = w − µ
(
A(w)− f

)
with µ =

ν

M2 ,

which we shall show is a strict contraction, which proves the existence and the unique-
ness of u ∈ V such that T (u) = u (from which we have the result). Indeed, we have

‖T (v)− T (w)‖2 = ‖v − w − µA(v − w)‖2

= ‖v − w‖2 − 2µ〈A(v − w), v − w〉+ µ2‖A(v − w)‖2

= ‖v − w‖2 − 2µa(v − w, v − w) + µ2‖A(v − w)‖2

≤ (1− 2µν + µ2M2)‖v − w‖2

≤ (1− ν2/M2)‖v − w‖2.

•
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A variational formulation often has a physical interpretation, in particular if the
bilinear form is symmetric. Indeed in this case, the solution of the variational for-
mulation (3.13) attains the minimum of an energy (very natural in physics or
mechanics).

Proposition 3.3.4 We take the hypotheses of the Lax–Milgram theorem 3.3.1. We
further assume that the bilinear form is symmetric a(w, v) = a(v, w) for all v, w ∈ V .
Let J(v) be the energy defined for v ∈ V be

J(v) =
1
2
a(v, v)− L(v). (3.18)

Let u ∈ V be the unique solution of the variational formulation (3.13). Then u is also
the unique point of the minimum of energy, that is,

J(u) = min
v∈V

J(v).

Conversely, if u ∈ V is a point giving an energy minimum J(v), then u is the unique
solution of the variational formulation (3.13).

Proof. If u is the solution of the variational formulation (3.13), we can write (thanks
to the symmetry of a)

J(u + v) = J(u) +
1
2
a(v, v) + a(u, v)− L(v) = J(u) +

1
2
a(v, v) ≥ J(u).

As u + v is arbitrary in V , u minimizes the energy J in V . Conversely, let u ∈ V be
such that

J(u) = min
v∈V

J(v).

For v ∈ V we define a function j(t) = J(u+ tv) from R into R (it is just a polynomial
of second degree in t). Since t = 0 is a minimum of j, we deduce that j′(0) = 0 which,
by a simple calculation, is exactly the variational formulation (3.13). �

Remark 3.3.5 We see later in Chapter 9 that, when the bilinear form a is symmetric,
there is an argument other than the Lax–Milgram 3.3.1 theorem to prove the existence
and the uniqueness of a solution of (3.13). Indeed, we shall demonstrate directly
the existence of a unique minimum of the energy J(v). By virtue of proposition
3.3.4, this shows the existence and the uniqueness of the solution of the variational
formulation. •

3.3.2 Application to the Laplacian

We now try to apply the Lax–Milgram theorem 3.3.1 to the variational formulation
(3.8) of the Laplacian with Dirichlet boundary conditions. This is written in the form
(3.13) with

a(u, v) =
∫

Ω
∇u(x) · ∇v(x) dx
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and
L(v) =

∫
Ω
f(x)v(x) dx,

where clearly a(·, ·) is a bilinear form, and L(·) a linear form. The space V (called
before as X) is

V =
{
v ∈ C1(Ω), v = 0 on ∂Ω

}
. (3.19)

As a scalar product on V we shall choose

〈w, v〉 =
∫

Ω
∇w(x) · ∇v(x) dx, (3.20)

which has for associated norm

‖v‖ =
(∫

Ω
|∇v(x)|2dx

)1/2

.

We verify easily that (3.20) defines a scalar product on V : the only point which slows
us is the property ‖v‖ = 0 ⇒ v = 0. Indeed, from the equality∫

Ω
|∇v(x)|2dx = 0

we deduce that v is a constant on Ω, and as v = 0 on ∂Ω we have v = 0. The
motivation of the choice of (3.20) as scalar product is above all the fact that the
bilinear form a(·, ·) is automatically coercive for (3.20). In addition, we can easily
check that a is continuous. To show that L is continuous, we must rely on the Poincaré
inequality of lemma 3.3.6: we then have∣∣∣∣

∫
Ω
f(x)v(x) dx

∣∣∣∣ ≤
(∫

Ω
|f(x)|2dx

)1/2 (∫
Ω
|v(x)|2dx

)1/2

≤ C‖v‖,

where C is a constant which depends on f but not on v. Therefore, L is continuous
over V . All the of the hypotheses of the Lax–Milgram theorem 3.3.1 seem satisfied,
however, we have missed one which prevents its application: the space V is not a
Hilbert space since it is not complete for the norm induced by (3.20)! This obstruction
does not come so much from the choice of the scalar product as the C1 regularity
requirement on functions of the space V . An immediate way, which can be clarified,
to solve the difficulty is to replace V by V , its closure for the scalar product (3.20).
Obviously, we have only moved the problem: what is the space V ? The answer will
be given in Chapter 4: V is the Sobolev space H1

0 (Ω) whose elements are no longer
regular functions but only measurable. Another difficulty will be to see in what
sense proposition 3.2.7 (which expresses the equivalence between the boundary value
problem (3.1) and its variational formulation (3.8)) remains true when we replace the
space V by V .

We hope that we have therefore convinced the reader of the natural and in-
escapable character of Sobolev spaces in the solution of variational formu-
lations of elliptic PDEs. We finish this chapter with a technical lemma, called the
Poincaré inequality, which we used above.
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Lemma 3.3.6 Let Ω be an open set of RN bounded in at least one space direction.
There exists a constant C > 0 such that, for every function v ∈ C1(Ω) which is zero
on the boundary ∂Ω, ∫

Ω
|v(x)|2dx ≤ C

∫
Ω
|∇v(x)|2dx.

Proof. The hypothesis on the bounded character of Ω says (after a possible rotation)
that for all x ∈ Ω the first component of x1 is bounded, −∞ < a ≤ x1 ≤ b < +∞.
Let v be a function of C1(Ω) which is zero on ∂Ω. We can extend it continuously by
zero outside of Ω (v is then a continuous function which is piecewise of class C1 in
RN ) and write, for x ∈ Ω,

v(x) =
∫ x1

a

∂v

∂x1
(t, x2, . . . , xN ) dt,

from which we deduce by the Cauchy–Schwarz inequality

|v(x)|2 ≤ (x1 − a)
∫ x1

a

∣∣∣∣ ∂v∂x1
(t, x2, . . . , xN )

∣∣∣∣
2

dt ≤ (b− a)
∫ b

a

∣∣∣∣ ∂v∂x1
(t, x2, . . . , xN )

∣∣∣∣
2

dt.

Integrating over Ω we obtain∫
Ω
|v(x)|2dx ≤ (b− a)

∫
Ω

∫ b

a

∣∣∣∣ ∂v∂x1
(t, x2, . . . , xN )

∣∣∣∣
2

dt dx,

and permuting the two integrations with respect to t and x, we conclude∫
Ω
|v(x)|2dx ≤ (b− a)2

∫
Ω

∣∣∣∣ ∂v∂x1
(x)

∣∣∣∣
2

dx ≤ (b− a)2
∫

Ω
|∇v(x)|2dx.

�

Exercise 3.3.1 The aim of this exercise is to show that the space V , defined by (3.19)
and equipped with the scalar product (3.20), is not complete. Let Ω be the open unit
ball in RN . If N = 1, we define

un(x) =

⎧⎨
⎩
−x− 1 if − 1 < x < −n−1,
(n/2)x2 − 1 + 1/(2n) if − n−1 ≤ x ≤ n−1,
x− 1 if n−1 < x < 1.

If N = 2, for 0 < α < 1/2, we define

un(x) = | log(|x|2/2 + n−1)|α − | log(1/2 + n−1)|α.
If N ≥ 3, for 0 < β < (N − 2)/2, we define

un(x) =
1

(|x|2 + n−1)β/2
− 1

(1 + n−1)β/2
.

Show that the sequence un is Cauchy in V but it does not converge in V as n tends to
infinity.



4 Sobolev spaces

4.1 Introduction and warning

In this chapter we define Sobolev spaces which are the ‘natural’ spaces of
functions in which to solve variational formulations of partial differential
equations. Physically, Sobolev spaces can be interpreted as spaces of functions
with finite energy. This chapter is the most ‘technical’ of this book and relies in
part on a course of ‘pure’ mathematics. Nevertheless, it is necessary to understand
the results below well to follow the rest of the course, including its more numerical
aspects. In general, it is not necessary to know the proofs of these results (expect for
the most simple and most useful). However, for the convenience of the reader and to
avoid frequent references to other works, we have included most of these proofs. The
interested, or curious, reader will find the key ideas and arguments which will allow
the understanding of the structure and interest of Sobolev spaces. Let us empha-
size again that it is the spirit of these results more than the details of the
proofs which is important here.

The plan of this chapter is the following. As Sobolev spaces are constructed
starting from the idea of a measurable function and from L2, the space of square
integrable functions, Section 4.2 gives several results on this subject. There we also
introduce the idea of weak differentiation. Section 4.3 contains all the definitions
and the results that we need to know about Sobolev spaces for the remainder of the
course. Section 4.4 gives some complementary results for the curious reader. Finally,
Section 4.5 allows the reader who knows the theory of distributions (which is not
necessary here), to make a link between Sobolev spaces and spaces of distributions. At
the end of the chapter Table 4.1 summarizes all the results that are necessary
for what follows.

79
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4.2 Square integrable functions and
weak differentiation

4.2.1 Some results from integration

All the results of this section are detailed in [4], [35]. Let Ω be an open set of RN

equipped with the Lebesgue measure. We define by L2(Ω) the space of measurable
functions which are square integrable in Ω. Under the scalar product

〈f, g〉 =
∫

Ω
f(x)g(x) dx,

L2(Ω) is a Hilbert space (see theorem 3.3.2 of [4]). We denote the corresponding
norm by

‖f‖L2(Ω) =
(∫

Ω
|f(x)|2dx

)1/2

.

Recall that measurable functions in Ω are defined almost everywhere in Ω: if we
change the values of a measurable function f on a subset of Ω of measure zero, we do
not change the measurable function f . In other words, two measurable functions f
and g are called equal if f(x) = g(x) almost everywhere in Ω, i.e., if there exists E ⊂ Ω
such that the Lebesgue measure of E is zero and f(x) = g(x) for all x ∈ (Ω \ E).

We denote by C∞c (Ω) (or D(Ω)) the space of functions of class C∞ with compact
support in Ω. We remark that the space C∞c (Ω) is not reduced to only the zero
function (this is not obvious!, see [4], [38]). Let us note also that the functions of
C∞c (Ω) are zero, as are all their derivatives, on the boundary of Ω. We recall the
following density result (see theorem 3.4.3 of [4])

Theorem 4.2.1 The space C∞c (Ω) is dense in L2(Ω), that is, for all f ∈ L2(Ω) there
exists a sequence fn ∈ C∞c (Ω) such that

lim
n→+∞

‖f − fn‖L2(Ω) = 0.

The following property generalizes lemma 3.2.9.

Corollary 4.2.2 Let us take f ∈ L2(Ω). If for every function φ ∈ C∞c (Ω), we have∫
Ω
f(x)φ(x) dx = 0,

then f(x) = 0 almost everywhere in Ω.

Proof. Let fn ∈ C∞c (Ω) be the sequence of regular functions which converge to f in
L2(Ω) thanks to theorem 4.2.1. We have

0 = lim
n→+∞

∫
Ω
f(x)fn(x) dx =

∫
Ω
|f(x)|2dx,

from which we deduce that f(x) = 0 almost everywhere in Ω. �
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More generally, we can define the spaces Lp(Ω) with 1 ≤ p ≤ +∞. For 1 ≤ p < +∞,
Lp(Ω) is the space of measurable functions whose pth powers are integrable over Ω. Equipped
with the norm

‖f‖Lp(Ω) =

(∫
Ω

|f(x)|pdx
)1/p

, (4.1)

Lp(Ω) is a Banach space, that is, a complete normed vector space. For p = +∞, L∞(Ω)
is the space of measurable functions f which are essentially bounded over Ω, that is, there
exists a constant C > 0 such that |f(x)| ≤ C almost everywhere in Ω. Equipped with the
norm

‖f‖L∞(Ω) = inf
{
C ∈ R

+ such that |f(x)| ≤ C a.e. in Ω
}
, (4.2)

L∞(Ω) is a Banach space. Recall that, if Ω is a bounded open set, then Lp(Ω) ⊂ Lq(Ω) for
1 ≤ q ≤ p ≤ +∞.

4.2.2 Weak differentiation

We first define the concept of the weak derivative in L2(Ω). This idea generalizes the
usual differentiation (sometimes called, by contrast, strong differentiation) and is a
particular case of differentiation in the sense of distributions (see Section 4.5 for a
brief summary).

Definition 4.2.3 Let v be a function of L2(Ω). We say that v is differentiable in
the weak sense in L2(Ω) if there exist functions wi ∈ L2(Ω), for i ∈ {1, . . . , N}, such
that, for every function φ ∈ C∞c (Ω), we have

∫
Ω
v(x)

∂φ

∂xi
(x) dx = −

∫
Ω
wi(x)φ(x) dx.

Each wi is called the ith weak partial derivative of v and is written from now on
as ∂v

∂xi
.

Definition 4.2.3 is well defined: in particular, the notation wi = ∂v
∂xi

is unequivocal
since, from corollary 4.2.2, the functions wi are unique (if they exist). Of course, if
v is differentiable in the usual sense and its partial derivatives belong to L2(Ω), then
the usual and the weak derivatives of v coincide. Now we give a simple and practical
criterion to determine if a function is differentiable in the weak sense.

Lemma 4.2.4 Let v be a function of L2(Ω). If there exists a constant C > 0 such
that, for every function φ ∈ C∞c (Ω) and for all indices i ∈ {1, . . . , N}, we have

∣∣∣∣
∫

Ω
v(x)

∂φ

∂xi
(x) dx

∣∣∣∣ ≤ C‖φ‖L2(Ω), (4.3)

then v is differentiable in the weak sense.
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Proof. Let L be the linear form defined by

L(φ) =
∫

Ω
v(x)

∂φ

∂xi
(x) dx.

A priori L(φ) is only defined for φ ∈ C∞c (Ω), but thanks to the inequality (4.3), we
can extend L by continuity to all functions of L2(Ω) since C∞c (Ω) is dense in L2(Ω)
from theorem 4.2.1. In fact, the inequality (4.3) proves that the linear form L is
continuous over L2(Ω). From the Riesz representation theorem 12.1.18, there exists
a function (−wi) ∈ L2(Ω) such that

L(φ) = −
∫

Ω
wi(x)φ(x) dx,

which proves that v is differentiable in the weak sense in L2(Ω). �

Exercise 4.2.1 Let us take Ω = (0, 1). Show that the function xα is differentiable in
the weak sense in L2(Ω) if and only if α > 1/2.

Exercise 4.2.2 Let Ω be an open bounded set. Show that a continuous function over
Ω, which is piecewise C1, is differentiable in the weak sense in L2(Ω).

Exercise 4.2.3 Let Ω be an open bounded set. Show that a piecewise C1 function
which is not continuous is not differentiable in the weak sense in L2(Ω).

We recover a well-known result for the usual derivative.

Proposition 4.2.5 Let v be a function of L2(Ω) which is differentiable in the weak
sense and such that all its weak partial derivatives ∂v

∂xi
, for 1 ≤ i ≤ N , are zero.

Then, for every connected component Ω, there exists a constant C such that v(x) = C
almost everywhere in this connected component.

Proof. For all ψ ∈ C∞c (Ω), we have∫
Ω
v(x)

∂ψ

∂xi
(x) dx = 0. (4.4)

Let Q =] − �,+�[N be an open cube contained in Ω (with � > 0), and let θ(t) ∈
C∞c (−�,+�) be such that ∫ +�

−�
θ(t) dt = 1.

For every function φ ∈ C∞c (Q) we define

ψ(x′, xi) =
∫ xi

−�

(
θ(t)

∫ +�

−�
φ(x′, s) ds− φ(x′, t)

)
dt,
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with the notation x = (x′, xi) for x′ ∈ RN−1 and xi ∈ R. We easily verify that ψ also
belongs to C∞c (Q) and that

∂ψ

∂xi
(x′, xi) = θ(xi)

∫ +�

−�
φ(x′, s) ds− φ(x′, xi).

With such a function ψ the equation (4.4) becomes∫
Q

v(x)φ(x) dx =
∫
Q

v(x)θ(xi)

(∫ +�

−�
φ(x′, s) ds

)
dx′ dxi

=
∫
Q

φ(x′, s)

(∫ +�

−�
v(x′, xi)θ(xi) dxi

)
dx′ ds

thanks to the Fubini theorem. As φ is arbitrary, by application of corollary 4.2.2 we
deduce

v(x) =
∫ +�

−�
v(x′, s)θ(s) ds,

that is, v does not depend on xi in Q. By repeating this argument for all components
xi, we find that v(x) is constant in Q. Since any pair of points in the same connected
component of Ω can be linked by a chain of such cubes (of variable size) we can
conclude that v(x) is constant in every connected component of Ω. �

We can easily generalize the definition of the weak derivative to differential oper-
ators which only involve some (but not all) combinations of partial derivatives. This
is the case, for example, for the divergence of a vector valued function which we shall
use later.

Definition 4.2.6 Let σ be a function from Ω into RN with all components belonging
to L2(Ω) (we say σ ∈ L2(Ω)N ). We say that σ has divergence in the weak sense in
L2(Ω) if there exists a function w ∈ L2(Ω) such that, for every function φ ∈ C∞c (Ω),
we have ∫

Ω
σ(x) · ∇φ(x) dx = −

∫
Ω
w(x)φ(x) dx.

The function w is called the weak divergence of σ and from now on will be denoted
as divσ.

The justification of definition 4.2.6 is that, if σ is a regular function, then a simple
integration by parts (see corollary 3.2.3) shows that we have w = divσ. An easy
generalization of this criterion of weak differentiation in lemma 4.2.4 is given by the
following result (whose proof we leave to the reader as an exercise).

Lemma 4.2.7 Let σ be a function of L2(Ω)N . If there exists a constant C > 0 such
that, for every function φ ∈ C∞c (Ω), we have∣∣∣∣

∫
Ω
σ(x) · ∇φ(x) dx

∣∣∣∣ ≤ C‖φ‖L2(Ω),

then σ has a divergence in the weak sense.
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Exercise 4.2.4 Let Ω be an open bounded set composed of two open sets Ω1 and Ω2
separated by a surface Γ = ∂Ω1 ∩ ∂Ω2. Show that a vector function of class C1 over
each part Ω1 and Ω2 has a weak divergence in L2(Ω) if and only if its normal component
is continuous across the surface Γ.

Remark 4.2.8 The idea of weak differentiation and all the results of this subsection extend
to spaces Lp(Ω) for 1 ≤ p ≤ +∞. Since for p �= 2, the space Lp(Ω) is not a Hilbert space,
the criterion of weak differentiation (4.3) must be replaced by∣∣∣∣

∫
Ω

v(x)
∂φ

∂xi
(x) dx

∣∣∣∣ ≤ C‖φ‖Lp′ (Ω) with
1
p
+

1
p′ = 1 and 1 < p ≤ +∞,

and the Riesz representation theorem 12.1.18 is replaced by using the dual Lp(Ω) of Lp′
(Ω)

(see [6]). •

4.3 Definition and principal properties

4.3.1 The space H1(Ω)

Definition 4.3.1 Let Ω be an open set of RN . The Sobolev space H1(Ω) is
defined by

H1(Ω) =
{
v ∈ L2(Ω) such that ∀ i ∈ {1, . . . , N} ∂v

∂xi
∈ L2(Ω)

}
, (4.5)

where ∂v
∂xi

is the weak partial derivative of v in the sense of definition 4.2.3.

In physics and mechanics the Sobolev space is often called the energy space
in the sense that it is composed of functions with finite energy (that is, the norm
‖u‖H1(Ω) is finite). Functions of finite energy can possibly be ‘singular’ which has a
possible physical sense (a concentration or a localized explosion). We shall look with
interest at the explicit examples of exercise 4.3.2 and of lemma 5.2.33.

Proposition 4.3.2 Equipped with the scalar product

〈u, v〉 =
∫

Ω

(
u(x)v(x) +∇u(x) · ∇v(x)

)
dx (4.6)

and with the norm

‖u‖H1(Ω) =
(∫

Ω

(
|u(x)|2 + |∇u(x)|2

)
dx

)1/2

the Sobolev space H1(Ω) is a Hilbert space.
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Proof. It is obvious that (4.6) is a scalar product in H1(Ω). It, therefore, remains
to show that H1(Ω) is complete for the associated norm. Let (un)n≥1 be a Cauchy
sequence in H1(Ω). By definition of the norm H1(Ω), (un)n≥1 as well as (∂un∂xi )n≥1

for i ∈ {1, . . . , N} are Cauchy sequences in L2(Ω). As L2(Ω) is complete, there exist
limits u and wi such that un converges to u and ∂un

∂xi
converges to wi in L2(Ω). Now,

by definition of the weak derivative of un, for every function φ ∈ C∞c (Ω), we have∫
Ω
un(x)

∂φ

∂xi
(x) dx = −

∫
Ω

∂un
∂xi

(x)φ(x) dx. (4.7)

Passing to the limit n→ +∞ in (4.7), we obtain∫
Ω
u(x)

∂φ

∂xi
(x) dx = −

∫
Ω
wi(x)φ(x) dx,

which proves that u is differentiable in the weak sense and that wi is the ith weak
partial derivative of u, ∂u∂xi . Therefore, u belongs to H1(Ω) and (un)n≥1 converges to
u in H1(Ω). �

Exercise 4.3.1 Show that piecewise C1, continuous functions, with bounded support
in Ω, belong to H1(Ω).

In N ≥ 2 dimensions, the functions of H1(Ω) are in general neither continuous
nor bounded, as the following counterexample shows.

Exercise 4.3.2 Let B be the open unit ball of RN . If N = 2, show that the function
u(x) = | log(|x|/2)|α belongs to H1(B) for 0 < α < 1/2, but is not bounded in the
neighbourhood of the origin. If N ≥ 3, show that the function u(x) = |x|−β belongs to
H1(B) for 0 < β < (N − 2)/2, but is not bounded in the neighbourhood of the origin.

The space of dimension N = 1 is an ‘exception’ to the noncontinuity of functions
of H1(Ω) as we show in the following lemma where, without loss of generality, we
take Ω = (0, 1).

Lemma 4.3.3 For every function v ∈ H1(0, 1) and for all x, y ∈ [0, 1], we have

v(y) = v(x) +
∫ y

x

v′(s) ds. (4.8)

More generally, for all x ∈ [0, 1], the mapping v → v(x), defined from H1(0, 1) into R,
is a continuous linear form over H1(0, 1). In particular, every function v ∈ H1(0, 1)
is continuous over [0, 1].

Proof. Let us take v ∈ H1(0, 1). We define a function w(x) over [0, 1] by

w(x) =
∫ x

0
v′(s) ds.
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This definition has a sense as, by the Cauchy–Schwarz inequality,

∣∣∣∣
∫ x

0
v′(s) ds

∣∣∣∣ ≤ √x
√∫ x

0
|v′(s)|2ds ≤

√∫ 1

0
|v′(s)|2ds < +∞.

In fact, the same argument shows that the function w is continuous over [0, 1]

|w(x)− w(y)| =
∣∣∣∣
∫ x

y

v′(s) ds
∣∣∣∣ ≤√

|x− y|
√∫ x

y

|v′(s)|2ds ≤
√
|x− y|

√∫ 1

0
|v′(s)|2ds.

We show that w is differentiable in the weak sense and that w′ = v′. Let φ ∈ C∞c (0, 1).
Denoting by T the triangle T = {(x, s) ∈ R2, 0 ≤ s ≤ x ≤ 1}, we have∫ 1

0
w(x)φ′(x) dx =

∫ 1

0

(∫ x

0
v′(s) ds

)
φ′(x) dx =

∫
T

v′(s)φ′(x) ds dx.

By application of the Fubini theorem, we have∫
T

v′(s)φ′(x) ds dx =
∫ 1

0

(∫ 1

s

φ′(x) dx
)
v′(s) ds = −

∫ 1

0
φ(s)v′(s) ds,

and by Cauchy–Schwarz we deduce∣∣∣∣
∫ 1

0
w(x)φ′(x) dx

∣∣∣∣ ≤ ‖v′‖L2(0,1)‖φ‖L2(0,1).

Therefore, w is differentiable in the weak sense and by the definition of w′ we have

−
∫ 1

0
w′(x)φ(x) dx =

∫ 1

0
w(x)φ′(x) dx = −

∫ 1

0
φ(s)v′(s) ds,

for all φ ∈ C∞c (0, 1), which implies that w′ = v′. Lemma 4.2.5 tells us that w − v
is equal to a constant almost everywhere in (0, 1), which establishes (4.8). Starting
from (4.8) and by using Cauchy–Schwarz we obtain

|v(x)| ≤ |v(y)|+
√
|y − x|

√∫ y

x

|v′(s)|2ds ≤ |v(y)|+

√∫ 1

0
|v′(s)|2ds,

and integrating with respect to y

|v(x)| ≤
∫ 1

0
|v(y)| dy +

√∫ 1

0
|v′(s)|2ds

≤

√∫ 1

0
|v(y)|2dy +

√∫ 1

0
|v′(s)|2ds ≤

√
2‖v‖H1(0,1),

which proves that v → v(x) is a continuous linear form over H1(0, 1). �
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Remark 4.3.4 The assertion that every function of H1(0, 1) is continuous may seem, at
first glance, contradictory to the fact that the functions of H1(0, 1), are all measurable
functions, only defined almost everywhere (in other words, we can change some point values
of v without changing the function in H1(0, 1) and not destroying the continuity of v). To
solve this apparent paradox, we must recall that a function of H1(0, 1) is in fact a class of
functions since we identify two functions that are equal almost everywhere. Under these
conditions, the result of lemma 4.3.3 must be understood in the sense that there exists a
representative of the class of functions v ∈ H1(0, 1) which is continuous. •

It is very important in practice to know if regular functions are dense in the
Sobolev space H1(Ω). This partly justifies the idea of a Sobolev space which occurs
very simply as the set of regular functions completed by the limits of sequences of
regular functions in the energy norm ‖u‖H1(Ω). This allows us to prove several prop-
erties easily by establishing them first for regular functions then by using a ‘density’
argument (see, for example, the proofs of theorems 4.3.13 and 4.3.15).

Theorem 4.3.5 (density) If Ω is a regular open bounded set of class C1, or if Ω =
RN+ , or even if Ω = RN , then C∞c (Ω) is dense in H1(Ω).

The proof of theorem 4.3.5 is found in Section 4.4. We recall that the notation RN+
denotes the half-space {x ∈ RN such that xN > 0}.

Remark 4.3.6 The space C∞c (Ω) which is dense in H1(Ω) is composed of regular
functions of class C∞ with bounded (or compact) support in the closed set Ω. In
particular, if Ω is bounded, all the functions of C∞(Ω) necessarily have bounded
support, and therefore C∞c (Ω) = C∞(Ω). We point out that functions of C∞c (Ω) are
not necessarily zero on the boundary of the open set Ω, which is what differentiates
this space from C∞c (Ω) (see remark 3.2.2). Conversely, if Ω is not bounded, the
C∞c (Ω) functions are zero ‘at infinity’. •

Remark 4.3.7 The concept of regularity of an open set has been introduced in def-
inition 3.2.5. It is not necessary to know the precise details of this definition of the
regularity of an open set. It is sufficient to know roughly speaking that we need the
boundary of the open set to be a regular surface and that we exclude certain ‘patholo-
gies’ (see remark 3.2.6). When we state a result under a regularity hypothesis on the
open set, this regularity is always necessary (the result fails for certain nonregular
open sets, see the counterexample of exercise 4.3.3). Nevertheless, the regularity
hypothesis in definition 3.2.5 can often be weakened: the membership of a class of
functions C1 can be replaced by the membership of the class of Lipschitz functions
(see [14]). Although these details are largely beyond the scope of this course, we make
this remark so that the careful reader does not object when we use such results (where
the regularity hypothesis is necessary) in the case of open sets ‘with corners’ which
appear naturally in all numerical calculations (see the different grids which illustrate
this course). •
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4.3.2 The space H1
0 (Ω)

Let us now define another Sobolev space which is a subspace of H1(Ω) and which will
be very useful for problems with Dirichlet boundary conditions.

Definition 4.3.8 Let C∞c (Ω) be the space of functions of class C∞ with compact
support in Ω. The Sobolev space H1

0 (Ω) is defined as the closure of C∞c (Ω) in H1(Ω).

We shall see a little later (see corollary 4.3.16) that H1
0 (Ω) is in fact the subspace

of H1(Ω) composed of functions which are zero on the boundary ∂Ω since
this is the case for functions of C∞c (Ω). In general, H1

0 (Ω) is strictly smaller than
H1(Ω) since C∞c (Ω) is a strict subspace of C∞c (Ω) (see theorem 4.3.5 and remark
4.3.6). An important exception is the case where Ω = RN : in effect, in this case
Ω = RN = Ω and theorem 4.3.5 shows that C∞c (RN ) is dense in H1(RN ), therefore we
have H1

0 (RN ) = H1(RN ). This exception is easily understood as the whole space RN

does not have a boundary.

Proposition 4.3.9 Equipped with the scalar product (4.6) of H1(Ω), the Sobolev
space H1

0 (Ω) is a Hilbert space.

Proof. By definition H1
0 (Ω) is a closed subspace of H1(Ω) (which is a Hilbert space),

therefore it is also a Hilbert space. �

An essential result for the applications of the next chapter is the following
inequality.

Proposition 4.3.10 (Poincaré inequality) Let Ω be an open set of RN which is
bounded in at least one space direction. There exists a constant C > 0 such that, for
every function v ∈ H1

0 (Ω),∫
Ω
|v(x)|2dx ≤ C

∫
Ω
|∇v(x)|2dx. (4.9)

Proof. For functions v ∈ C∞c (Ω) we have already proved the Poincaré inequality
(4.9) in lemma 3.3.6. By a density argument the result remains true for every function
v ∈ H1

0 (Ω). In effect, as C∞c (Ω) is dense in H1
0 (Ω) (by definition 4.3.8), there exists

a sequence vn ∈ C∞c (Ω) such that

lim
n→+∞

‖v − vn‖2
H1(Ω) = lim

n→+∞

∫
Ω

(
|v − vn|2 + |∇(v − vn)|2

)
dx = 0.

In particular, we deduce that

lim
n→+∞

∫
Ω
|vn|2 dx =

∫
Ω
|v|2 dx and lim

n→+∞

∫
Ω
|∇vn|2 dx =

∫
Ω
|∇v|2 dx.
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By applying the lemma 3.3.6, we have∫
Ω
|vn(x)|2dx ≤ C

∫
Ω
|∇vn(x)|2dx. (4.10)

We then pass to the limit n→ +∞ in each of the two terms of the inequality (4.10)
to obtain the result. This type of ‘density’ argument will be used frequently from
now on. �

Remark 4.3.11 The Poincaré inequality (4.9) is not true for functions of H1(Ω). In
effect, the constant (nonzero) functions make the term on the right of (4.9) zero but
not the term on the left. The essential hypothesis in the Poincaré inequality is that
the functions of H1

0 (Ω) are zero on the boundary ∂Ω of the open set Ω (see remark
4.3.18 for some variants of this hypothesis). •

An important corollary of the Poincaré inequality is the following result which
gives a simpler equivalent norm in H1

0 (Ω).

Corollary 4.3.12 Let Ω be an open set of RN bounded in at least one space direction.
Then the seminorm

|v|H1
0 (Ω) =

(∫
Ω
|∇v(x)|2dx

)1/2

is a norm over H1
0 (Ω) which is equivalent to the usual norm induced by that of H1(Ω).

Proof. Take v ∈ H1
0 (Ω).The first inequality

|v|H1
0 (Ω) ≤ ‖v‖H1(Ω) =

(∫
Ω

(
|v|2 + |∇v|2

)
dx

)1/2

is obvious. On the other hand, the Poincaré inequality of lemma 3.3.6 leads to

‖v‖2
H1(Ω) ≤ (C + 1)

∫
Ω
|∇v|2 dx = (C + 1)|v|2H1

0 (Ω),

which proves that |v|H1
0 (Ω) is a norm equivalent to ‖v‖H1(Ω). �

4.3.3 Traces and Green’s formulas

We have seen that, in N ≥ 2 dimensions, the functions of H1(Ω) are usually not
continuous (see the counterexample of exercise 4.3.2). Therefore, as for every mea-
surable function, we cannot speak of the pointwise value of a function v ∈ H1(Ω) but
only ‘almost everywhere’ in Ω. In particular, it is not obvious if we can define the
‘boundary value’, or ‘trace’ of v on the boundary ∂Ω since ∂Ω is a set of measure
zero. Very fortunately for boundary value problems which we study, it is possible to
define the trace v|∂Ω of a function of H1(Ω). This essential result, called the trace
theorem, is the following.
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Theorem 4.3.13 (trace) Let Ω be an open bounded regular set of class C1, or
Ω = RN+ . We define the trace mapping γ0

H1(Ω) ∩ C(Ω) → L2(∂Ω) ∩ C(∂Ω)
v → γ0(v) = v|∂Ω .

(4.11)

This mapping γ0 is extended by continuity to a continuous linear mapping of H1(Ω)
into L2(∂Ω), again called γ0. In particular, there exists a constant C > 0 such that,
for every function v ∈ H1(Ω), we have

‖v‖L2(∂Ω) ≤ C‖v‖H1(Ω). (4.12)

Remark 4.3.14 Thanks to the trace theorem (4.3.13), we can talk of the value of a
function of H1(Ω) on the boundary ∂Ω. This result is remarkable as it is not true for
a function of L2(Ω) (see in particular exercise 4.3.4). •

Proof. Let us prove the result for the half-space Ω = RN+ = {x ∈ RN , xN > 0}. Let
v ∈ C∞c (RN+ ). With the notation x = (x′, xN ), we have

|v(x′, 0)|2 = −2
∫ +∞

0
v(x′, xN )

∂v

∂xN
(x′, xN ) dxN ,

and, by using the inequality 2ab ≤ a2 + b2,

|v(x′, 0)|2 ≤
∫ +∞

0

(
|v(x′, xN )|2 +

∣∣∣∣ ∂v∂xN
(x′, xN )

∣∣∣∣
2
)
dxN .

By integration in x′, we deduce∫
RN−1

|v(x′, 0)|2 dx′ ≤
∫

RN
+

(
|v(x)|2 +

∣∣∣∣ ∂v∂xN
(x)

∣∣∣∣
2
)
dx,

that is, ‖v‖L2(∂RN
+ ) ≤ ‖v‖H1(RN

+ ). By the density of C∞c (RN+ ) in H1(RN+ ), we therefore
obtain the result.

For an open bounded regular set of class C1, we use an argument involving local
coordinates on the boundary which allows us to reduce it to the case of Ω = RN+ . We
do not detail this argument (which is too technical) which is the same as that used
in the proof of proposition 4.4.2. �

The trace theorem 4.3.13 allows us to generalize, to functions of H1(Ω), the Green’s
formula which has been established for functions of class C1 in corollary 3.2.3.

Theorem 4.3.15 (Green’s formula) Let Ω be an open bounded regular set of
class C1. If u and v are functions of H1(Ω), they satisfy∫

Ω
u(x)

∂v

∂xi
(x) dx = −

∫
Ω
v(x)

∂u

∂xi
(x) dx +

∫
∂Ω

u(x)v(x)ni(x) ds, (4.13)

where n = (ni)1≤i≤N is the outward unit normal to ∂Ω.



DEFINITION AND PRINCIPAL PROPERTIES 91

Proof. Recall that the formula (4.13) has been established for functions of class C1

in the corollary 3.2.3. We again use a density argument. By the density of C∞c (Ω)
in H1(Ω) (see theorem 4.3.5), there exist sequences (un)n≥1 and (vn)n≥1 in C∞c (Ω)
which converge in H1(Ω) to u and v, respectively. From Corollary 3.2.3 we have

∫
Ω
un

∂vn
∂xi

dx = −
∫

Ω
vn
∂un
∂xi

dx +
∫
∂Ω

unvnni ds. (4.14)

We can pass to the limit n → +∞ in the first two terms of (4.14) as un and ∂un
∂xi

(respectively, vn and ∂vn
∂xi

) converge to u and ∂u
∂xi

(respectively, v and ∂v
∂xi

) in L2(Ω).
To pass to the limit in the last integral of (4.14), we use the continuity of the trace
mapping γ0, that is, the inequality (4.12), which allows us to check that γ0(un)
(respectively, γ0(vn)) converges to γ0(u) (respectively, γ0(v)) in L2(∂Ω). We therefore
obtain the formula (4.13) for functions u and v of H1(Ω). �

As a consequence of the trace theorem 4.3.13 we obtain a very simple characteri-
zation of the space H1

0 (Ω).

Corollary 4.3.16 Let Ω be an open bounded regular set of class C1. The space H1
0 (Ω)

coincides with the subspace of H1(Ω) composed of functions which are zero on the
boundary ∂Ω.

Proof. As every function of H1
0 (Ω) is the limit of a sequence of functions belonging

to C∞c (Ω) which have zero trace, the continuity of the trace mapping γ0 implies that
the trace of the limit is also zero. We deduce that H1

0 (Ω) is contained in the subspace
of H1(Ω) of functions which are zero on the boundary ∂Ω. The reciprocal is more
technical and follows from a double procedure of local coordinates (see the proof
of proposition 4.4.2) then of regularization and translation (similar to the proof of
theorem 4.4.1). We refer to [6], [34] for more details. �

Remark 4.3.17 Corollary 4.3.16 confirms that the kernel of the trace mapping γ0 is
exactly H1

0 (Ω). A natural, but delicate, question is to characterize the image of γ0.
We shall be content with saying that this image Im(γ0) is not equal to L2(∂Ω), but a
strict subspace, which is dense in L2(∂Ω), composed of ‘more regular’ functions, and
denoted H1/2(∂Ω). For more details, we refer to [28]. •

Thanks to corollary 4.3.16 we can give another proof of proposition 4.3.10 using
the Poincaré inequality. This new proof is no longer ‘constructive’ but is based on
an argument by contradiction which has the merit that it can be generalized very
easily. In effect, there exist numerous variants of the Poincaré inequality, adapted to
different models of partial differential equations. In view of the importance of this
inequality for what follows, we shall give a proof which is easily adaptable to all the
cases that occur.
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Another proof of proposition 4.3.10. We proceed by contradiction. If there does
not exist a C > 0 such that, for every function v ∈ H1

0 (Ω),∫
Ω
|v(x)|2dx ≤ C

∫
Ω
|∇v(x)|2dx,

this means that there exists a sequence vn ∈ H1
0 (Ω) such that

1 =
∫

Ω
|vn(x)|2dx > n

∫
Ω
|∇vn(x)|2dx. (4.15)

In particular, (4.15) implies that the sequence vn is bounded in H1
0 (Ω). By an appli-

cation of the Rellich theorem 4.3.21, there exists a subsequence vn′ which converges
in L2(Ω). Further, (4.15) shows that the sequence ∇vn′ converges to zero in L2(Ω)
(component by component). Consequently, vn′ is a Cauchy sequence in H1

0 (Ω), which
is a Hilbert space, therefore, it converges in H1

0 (Ω) to a limit v. As we have∫
Ω
|∇v(x)|2dx = lim

n→+∞

∫
Ω
|∇vn(x)|2dx ≤ lim

n→+∞
1
n

= 0,

we deduce, from lemma 4.2.5, that v is a constant in each connected component of
Ω. But as v is zero on the boundary ∂Ω (from corollary 4.3.16), v is identically zero
in all Ω. In addition, ∫

Ω
|v(x)|2dx = lim

n→+∞

∫
Ω
|vn(x)|2dx = 1,

which is a contradiction with the fact that v = 0. �

Remark 4.3.18 The proof by contradiction of proposition 4.3.10 easily generalizes.
We take, for example, the case of an open, bounded connected set Ω, which is regu-
lar of class C1, and whose boundary ∂Ω decomposes into two disjoint regular parts
∂ΩN and ∂ΩD whose surface measures are nonzero (see Figure 4.1). We define a
space V by

V = {v ∈ H1(Ω) such that v = 0 on ∂ΩD}.
By application of the trace theorem 4.3.13, it is easy to see that V is a closed subspace
of H1(Ω), and therefore is a Hilbert space for the scalar product of H1(Ω). As for
H1

0 (Ω), the argument by contradiction allows us to prove the existence of a constant
C > 0 such that every function v ∈ V satisfies the Poincaré inequality (4.9). •

By application of Green’s formula of theorem 4.3.15, we can construct a family
of examples of functions belonging to H1(Ω). This family of examples will be very
useful to us in what follows to construct finite dimensional subspaces of H1(Ω).

Lemma 4.3.19 Let Ω be an open bounded regular set of class C1. Let (ωi)1≤i≤I be
a regular partition of Ω, that is, each ωi is a regular open set of class C1, ωi ∩ ωj = ∅
if i �= j, and Ω = ∪Ii=1ωi. Let v be a function whose restriction to each ωi, vi = v|ωi ,
belongs to H1(ωi). If v is continuous over Ω, then v belongs to H1(Ω).
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∂�D

∂�N

�

Figure 4.1. Partition in two disjoint parts of the boundary of an open set.

Proof. Let us calculate the weak derivative of v: for φ ∈ C∞c (Ω), by application of
Green’s formula in each ωi we have

∫
Ω
v(x)

∂φ

∂xj
(x) dx =

I∑
i=1

∫
ωi

vi(x)
∂φ

∂xj
(x) dx

= −
I∑
i=1

∫
ωi

∂vi
∂xj

(x)φ(x) dx +
I∑
i=1

∫
∂ωi

vi(x)φ(x)nij(x) ds

= −
I∑
i=1

∫
ωi

∂vi
∂xj

(x)φ(x) dx,

since the integrals on the boundary cancel. In effect, on the part Γ = ∂ωi ∩ ∂ωk of
the boundary shared by the two open sets ωi and ωk, we have nij(x) = −nkj (x) and
therefore, by continuity of v and φ,

∫
Γ
vi(x)φ(x)nij(x) ds +

∫
Γ
vk(x)φ(x)nkj (x) ds = 0.

We deduce therefore that v is differentiable in the weak sense and that

∂v

∂xj

∣∣∣∣
ωi

=
∂vi
∂xj

.

In particular, this implies that v belongs to H1(Ω). �

Remark 4.3.20 It is not necessarily easy to decompose a regular open set Ω into a partition
of regular open sets (ωi)1≤i≤I. Fortunately, lemma 4.3.19 remains true if the open sets ωi
are only ‘piecewise’ regular . We shall sometimes use this very convenient generalization of
lemma 4.3.19. •
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Figure 4.2. Example of a nonregular open set.

Exercise 4.3.3 The aim of this exercise is to show that the trace theorem 4.3.13 is not
true if the open set Ω is not regular. Take the open set Ω ⊂ R2 defined by 0 < x < 1
and 0 < y < xr with r > 2 (see Figure 4.2). Take the function v(x) = xα. Show
that v ∈ H1(Ω) if and only if 2α + r > 1, while v ∈ L2(∂Ω) if and only if 2α > −1.
(We can also show with this same example that the density theorem 4.3.5 and prolongation
proposition 4.4.2 are not true for such an open set.) Conclude the result.

Exercise 4.3.4 The aim of this exercise is to show that we cannot have the idea of
trace for functions of L2(Ω), that is, there does not exist a constant C > 0 such that,
for every function v ∈ L2(Ω), we have

‖ v|∂Ω ‖L2(∂Ω) ≤ C‖v‖L2(Ω).

For simplicity, we choose as the set Ω the unit ball. Construct a sequence of regular
functions in Ω equal to 1 on ∂Ω and whose norm in L2(Ω) tends to zero. Conclude the
result.

4.3.4 A compactness result

We devote this section to the study of a compactness property known as the Rellich
theorem which will play an essential role in the spectral theory of boundary value
problems (see Chapter 7), which we shall use to solve problems that evolve in time.
Let us recall first of all that, in an infinite dimensional Hilbert space, it is not true
that, from every bounded sequence, we can extract a convergent subsequence (for
what happens in infinite dimensions, see exercise 4.3.5).

Theorem 4.3.21 (Rellich) If Ω is an open bounded regular set of class C1, then for
every bounded sequence of H1(Ω) we can extract a convergent subsequence in L2(Ω)
(we say that the canonical injection of H1(Ω) into L2(Ω) is compact).

Theorem 4.3.21 can be false if the open set Ω is not bounded. For example, if
Ω = RN , the canonical injection of H1(RN ) in L2(RN ) is not compact. To convince
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ourselves, it is sufficient to consider the sequence un(x) = u(x + ne) where e is a
nonzero vector and u a function of H1(RN ) (we translate u in the direction e). It is
clear that no subsequence of un converges in L2(RN ).

Remark 4.3.22 If we replace H1(Ω) by H1
0 (Ω), then not only does Rellich’s Theo-

rem 4.3.21 remain true, but further it is not necessary to assume that the open set Ω
is regular. •

The proof of theorem 4.3.21 is long and delicate (it calls on the Fourier transform,
and Ascoli’s compactness theorem; see, for example, [6], [34]). We shall be content
with giving a simpler proof in N = 1 dimension.

Proof. We take a space of N = 1 dimension and, without loss of generality, we
assume that Ω = (0, 1). Let (un)n≥1 be a bounded sequence of H1(0, 1), that is, there
exists K > 0 such that

‖un‖H1(0,1) ≤ K ∀n ≥ 1.

From lemma 4.3.3, for all x, y ∈ [0, 1] we have

|un(x)| ≤ CK and |un(x)− un(y)| ≤ CK
√
|x− y|. (4.16)

(We have applied the Cauchy–Schwarz inequality to (4.8).) Take a (countable)
sequence (xp)p≥1 of points of [0, 1] which is dense in this interval (for example, the
points of Q ∩ [0, 1]). For fixed p, the sequence un(xp) is bounded in R because of
the first inequality of (4.16). We can therefore extract a subsequence which con-
verges in R. We first apply this procedure to the sequence un(x1) and we obtain a
subsequence un1(x1) which converges in R. Then we extract from this subsequence,
indexed by n1, a new subsequence, indexed by n2, such that un2(x2) converges in R

(but, of course, we have also un2(x1) which converges). By successively extracting a
subsequence from the preceding, by recurrence, we construct a subsequence, indexed
by np, such that unp(xp) converges, as does unp(xk) for 1 ≤ k ≤ p. Obviously, the
subsequences unp are increasingly ‘thin’ as p becomes large. To avoid the problem
that nothing remains ‘in the limit’, we use an argument of extraction of a diagonal
sequence. In other words, we extract a last subsequence (called diagonal) from this
set of subsequences, where we choose the first element of the first subsequence un1 ,
then the second element of the second un2 , and so on till the pth element of the pth
unp . The sequence we obtain is denoted by um and we see that, for all p ≥ 1, the
sequence um(xp) converges in R.

Now let x ∈ [0, 1] and ε > 0 (a small parameter). As the sequence (xp)p≥1 is dense
in [0, 1], there exists a point xp such that |x − xp| ≤ ε. In addition, since um(xp)
converges in R as m tends to infinity, there exists m0 such that, for all m,m′ ≥ m0,
we have |um(xp)− um′(xp)| ≤ ε. Consequently, we obtain

|um(x)− um′(x)| ≤ |um(xp)− um(x)|+ |um(xp)− um′(xp)|+ |um′(xp)− um′(x)|

≤ ε + 2CK
√
ε
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which proves that the sequence um(x) is Cauchy in R, and therefore converges for
all x ∈ [0, 1]. By application of the Lebesgue dominated convergence theorem, we
conclude that the sequence um converges in L2(0, 1). �

Exercise 4.3.5 Take Ω = (0, 1) and un(x) = sin(2πnx). Show that the sequence un is
uniformly bounded in L2(Ω), but that there does not exist any convergent subsequence.
For this show, thanks to integration by parts, that, for every function φ ∈ C∞c (Ω), we
have

lim
n→+∞

∫ 1

0
un(x)φ(x) dx = 0,

and we deduce a contradiction if a subsequence of un converges in L2(Ω). Generalize
this counterexample to H1(Ω) by considering a primitive of un.

4.3.5 The spaces Hm(Ω)

We can easily generalize the definition 4.3.1 of the Sobolev space H1(Ω) to functions
which are m ≥ 0 times differentiable in the weak sense. We start by giving a useful
convention. Let α = (α1, . . . , αN ) be a multi-index, that is, a vector of N compo-
nents which are non-negative integers αi ≥ 0. We denote by |α| =

∑N
i=1 αi and, for

a function v,

∂αv(x) =
∂|α|v

∂xα1
1 · · · ∂xαN

N

(x).

From the definition 4.2.3 of the first weak derivative, we define by recurrence over
m the weak derivative of order m: we say that a function v ∈ L2(Ω) is m times
differentiable in the weak sense if all of its weak partial derivatives of order m − 1
are weakly differentiable in the sense of the definition 4.2.3. We remark that, in
the definition of a mixed derivative, the order of differentiation is not important,
because of the Schwarz theorem ∂2v

∂xi∂xj
= ∂2v

∂xj∂xi
, which justifies the notation ∂αv

where the order of differentiation is not given.

Definition 4.3.23 For an integer m ≥ 0, the Sobolev space Hm(Ω) is defined by

Hm(Ω) =
{
v ∈ L2(Ω) such that, ∀α with |α| ≤ m, ∂αv ∈ L2(Ω)

}
, (4.17)

where the partial derivative ∂αv is taken in the weak sense.

We leave the reader the task of verifying this easy result.

Proposition 4.3.24 Equipped with the scalar product

〈u, v〉 =
∫

Ω

∑
|α|≤m

∂αu(x)∂αv(x) dx (4.18)

and with the norm ‖u‖Hm(Ω) =
√
〈u, u〉, the Sobolev space Hm(Ω) is a Hilbert space.
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The functions of Hm(Ω) are not always continuous or regular (this depends on m
and on the dimension N), but if m is sufficiently large then every function of Hm(Ω)
is continuous. Let us recall that from lemma 4.3.3, in dimension N = 1, the functions
of H1(Ω) are continuous. We have the following result which generalizes lemma 4.3.3
to higher dimensions (see lemma 4.4.9 for the simpler proof of a similar result).

Theorem 4.3.25 If Ω is an open bounded regular set of class C1, and if m > N/2,
then Hm(Ω) is a subspace of the set C(Ω) of continuous functions over Ω.

Remark 4.3.26 By repeated application of the Theorem 4.3.25 to a function and to
its derivatives, we can improve this conclusion. If there exists an integer k ≥ 0 such
that m −N/2 > k, then Hm(Ω) is a subspace of the set Ck(Ω) of functions k times
differentiable over Ω. •

The ‘moral’ of theorem 4.3.25 is that the larger that m becomes, the more the
functions of Hm(Ω) are regular, that is differentiable in the usual sense (it is enough
to successively apply theorem 4.3.25 to a function v ∈ Hm(Ω) and to its derivatives
∂αv ∈ Hm−|α|(Ω)).

As is the case for H1(Ω), the regular functions are dense in Hm(Ω) (if at least the
open set Ω is regular; see definition 3.2.5). The proof of the density theorem 4.3.5
generalizes very easily to Hm(Ω). We do not repeat it and we only state the following
density result.

Theorem 4.3.27 If Ω is an open bounded regular set of class Cm, or if Ω = RN+ ,
then C∞c (Ω) is dense in Hm(Ω).

We can also obtain some trace results and Green’s formulas of higher order for
the space Hm(Ω). For simplicity, we content ourselves with treating the case m = 2
(which is the only one we use in what follows).

Theorem 4.3.28 Let Ω be an open bounded regular set of class C1. We define the
trace mapping γ1

H2(Ω) ∩ C1(Ω) → L2(∂Ω) ∩ C(∂Ω)

v → γ1(v) =
∂v

∂n

∣∣∣∣
∂Ω

,
(4.19)

with ∂v
∂n = ∇u · n. This mapping γ1 is extended by continuity to a continuous linear

mapping of H2(Ω) into L2(∂Ω). In particular, there exists a constant C > 0 such
that, for every function v ∈ H2(Ω), we have

∥∥∥∥ ∂v∂n
∥∥∥∥
L2(∂Ω)

≤ C‖v‖H2(Ω). (4.20)
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Proof. The existence of the trace mapping γ1 (and its properties) is a simple conse-
quence of the preceding trace theorem 4.3.13 for the functions of H1(Ω). In effect, if
v ∈ H2(Ω), then ∇v ∈ H1(Ω)N and we can therefore define the trace of ∇v on ∂Ω as
a function of L2(∂Ω)N . As the normal is a continuous function bounded over ∂Ω, we
deduce that ∂v∂n ∈ L2(∂Ω). �

Remark 4.3.29 If Ω is an open bounded regular set of class C2, we can improve the above
trace theorem 4.3.13. We redefine the trace mapping γ0

H2(Ω) ∩ C(Ω) → H1(∂Ω) ∩ C(∂Ω)
v → γ0(v) = v|∂Ω ,

(4.21)

which is prolonged by continuity to a continuous linear mapping of H2(Ω) into H1(∂Ω). In
other words, the trace γ0(v) has tangential derivatives. If Ω = RN

+ , this result is easy enough
to conceive and to prove. In the general case, it is necessary to know how to define a Sobolev
space on a variety (here ∂Ω) which is beyond the scope of this course. Nevertheless, this is
not without interest since it allows us to study models of partial differential equations which
‘live’ at the same time in a domain and on its boundary (for example, models of volume and
surface diffusion, or even a model of elasticity in volume coupled with a shell model on the
surface). •

The trace theorem 4.3.28 allows us to generalize to H2(Ω) a Green’s formula
established for functions of class C2 in the corollary 3.2.4.

Theorem 4.3.30 Let Ω be an open bounded regular set of class C2. If u ∈ H2(Ω)
and v ∈ H1(Ω), we have∫

Ω
∆u(x)v(x) dx = −

∫
Ω
∇u(x) · ∇v(x) dx +

∫
∂Ω

∂u

∂n
(x)v(x) ds. (4.22)

Proof. As (4.22) is true for functions of class C2 and the regular functions are
dense in H2(Ω) and H1(Ω), we use a density argument. We refer to the proof of
theorem 4.3.15 for more details. The only new argument here is that we must use the
continuity of the trace mapping γ1, that is, the inequality (4.20). �

4.4 Some useful extra results

This section can be omitted in the first reading.

4.4.1 Proof of the density theorem 4.3.5

We start with the case Ω = RN which is the most simple.

Theorem 4.4.1 The space C∞
c (RN) of functions of class C∞ with compact support in RN

is dense in H1(RN).
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Figure 4.3. Regularization functions ρn (left), and truncation functions ζn (right).

Proof. The proof is made by regularization and truncation. Take ρ ∈ C∞
c (B) (with B

the unit ball) such that ρ ≥ 0 and
∫
B
ρ(x) dx = 1. We define a ‘regularizing’ sequence

ρn(x) = nNρ(nx) whose support is contained in the ball of radius 1/n (see Figure 4.3). We
regularize, by convolution, a function v ∈ H1(RN) by defining

vn(x) = v � ρn(x) =
∫

RN

ρn(x− y)v(y) dy,

which is of class C∞ and such that ∇vn = (∇v) � ρn. We easily verify that vn (respectively
∇vn) converges to v (respectively ∇v) in L2(RN): it is obvious when v (respectively ∇v)
is continuous, and from the density of regular functions in L2(RN) (see theorem 4.2.1) the
result extends to every function of L2(RN). It only remains to truncate the sequence vn in
order to give it compact support. Let ζ ∈ C∞

c (RN) such that 0 ≤ ζ ≤ 1 and ζ(x) = 1 if
|x| ≤ 1, ζ(x) = 0 if |x| ≥ 2. We set ζn(x) = ζ

(
x
n

)
(see Figure 4.3) and we truncate vn by

defining ṽn(x) = vn(x)ζn(x). We also easily verify that ṽn (respectively ∇ṽn) converges to
v (respectively ∇v) in L2(RN). �

The density theorem 4.3.5 for a regular open set or for the half-space is an immediate
consequence of the following result combined with the density theorem 4.4.1 in the whole
space RN .

Proposition 4.4.2 If Ω is an open bounded regular set of class C1, or if Ω = RN
+ , then there

exists a prolongation operator P of H1(Ω) in H1(RN) which is a continuous linear mapping
such that, for all v ∈ H1(Ω),

(1) Pv|Ω = v,

(2) ‖Pv‖L2(RN ) ≤ C‖v‖L2(Ω),

(3) ‖Pv‖H1(RN ) ≤ C‖v‖H1(Ω),

where the constant C > 0 depends only on Ω.

Proof. First, we prove the result for Ω = RN
+ . We denote x = (x′, xN) with x′ =

(x1, . . . , xN−1). Take v ∈ H1(RN
+ ). We define

Pv(x) =

{
v(x′, xN) if xN > 0
v(x′,−xN) if xN < 0.
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We verify then that, for 1 ≤ i ≤ N − 1,

∂Pv

∂xi
(x) =

⎧⎪⎨
⎪⎩

∂v

∂xi
(x′, xN) if xN > 0

∂v

∂xi
(x′,−xN) if xN < 0,

and that

∂Pv

∂xN
(x) =

⎧⎪⎨
⎪⎩

∂v

∂xN
(x′, xN) if xN > 0

− ∂v

∂xN
(x′,−xN) if xN < 0.

These equations are obvious if v is a regular function, but need justification when v is only
weakly differentiable. Here, we shall not detail the (easy) arguments which justify these
equations (in particular we must use the symmetry under reflection of Pv ; see [34] for the
details). We therefore deduce the desired properties for the prolongation operator P with
the constant C =

√
2 (in the case Ω = RN

+ ).
If Ω is an open bounded regular set of class C1, we use a ‘local coordinate’ argument to

return to the case Ω = RN
+ . By using the notation of the definition 3.2.5 of a regular open

set, there exists a finite covering of Ω by open sets (ωi)0≤i≤I. We then introduce a ‘partition
of unity’ associated with this covering, that is, functions (θi)0≤i≤I of C∞

c (RN) such that

θi ∈ C∞
c (ωi), 0 ≤ θi(x) ≤ 1,

I∑
i=0

θi(x) = 1 in Ω.

(The existence of such a partition of unity is classical: see Theorem 3.2.9 in [4].) We shall
define Pv in the form

Pv =
I∑

i=0

Pi(θiv),

where each operator Pi is defined locally in ωi. As θ0v has compact support in Ω, we define
P0(θ0v) as the extension of θ0v by zero outside of Ω. For every i ∈ {1, . . . , I}, denoting
by φi the mapping which transforms ωi into a reference domain Q (see definition 3.2.5 and
Figure 4.4), we set

wi = (θiv) ◦ (φ−1
i

∣∣
Q+) withQ+ = Q ∩ R

N
+ .

This function wi belongs to H1(Q+) and is zero in a neighbourhood of ∂Q+ ∩ RN
+ . If we

extend by 0 in RN
+ \ Q+, we obtain a function w̃i ∈ H1(RN

+ ). We can then extend w̃i by
reflection to obtain a function Pw̃i ∈ H1(RN) (we use the prolongation operator P that we
have just constructed for RN

+ ). We return to ωi and we set

Pi(θiv) = (Pw̃i) ◦ φi.

By the C1 regularity of φi and of its inverse, we obtain the desired properties for Pi and
therefore P . �

Remark 4.4.3 The ‘local coordinate’ argument used above is very classical and is used in
many proofs. As it is technical, we sometimes use it without giving more details. •
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Figure 4.4. Local coordinates of a regular open set.

4.4.2 The space H(div)
We introduce another space, intermediate between L2(Ω) and H1(Ω), for vector valued
functions. This space is very useful in certain applications (see, for example, remark 5.2.15).

Definition 4.4.4 The space H(div) is defined by

H(div) =
{
σ ∈ L2(Ω)N such that divσ ∈ L2(Ω)

}
, (4.23)

where divσ is the weak divergence of σ in the sense of the definition 4.2.6.

We easily verify that it is a Hilbert space (the proof is left to the reader as an exercise).

Proposition 4.4.5 Equipped with the scalar product

〈σ, τ〉 =
∫

Ω

(σ(x) · τ(x) + divσ(x)divτ(x)) dx (4.24)

and with the norm ‖σ‖H(div) =
√

〈σ, σ〉, the space H(div) is a Hilbert space.

As for the Sobolev spaces, we can prove a density result for regular functions (we omit
the proof which is similar to that of theorem 4.3.5).

Theorem 4.4.6 If Ω is an open bounded regular set of class C1, or if Ω = RN
+ , then C∞

c (Ω)N

is dense in H(div).

One of the interests in the space H(div) is that it allows us to prove a trace theorem and
a Green’s formula with even less regularity than in the Sobolev space H1(Ω). In effect, if σ
belongs to H(div), we only ‘control’ a single combination of its partial derivatives (and not
all as in H1(Ω)), but we can nevertheless give a meaning to the normal trace σ · n on ∂Ω.

We start by recalling that γ0 denotes the trace mapping of H1(Ω) into L2(∂Ω) (see the
trace theorem 4.3.13) and that Im(γ0) = H1/2(∂Ω) which is a dense subspace in L2(∂Ω)
(see remark 4.3.17). We can equip H1/2(∂Ω) with the following norm

‖v‖H1/2(∂Ω) = inf
{
‖φ‖H1(Ω) such that γ0(φ) = v

}
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which makes it a Banach space (and even a Hilbert space). We then define H−1/2(∂Ω) as
the dual of H1/2(∂Ω).

Theorem 4.4.7 (divergence formula) Let Ω be an open bounded regular set of class C1.
We define the ‘normal trace’ mapping γn

H(div) ∩ C(Ω) → H−1/2(∂Ω) ∩ C(∂Ω)
σ = (σi)1≤i≤N → γn(σ) = (σ · n)|∂Ω

where n = (ni)1≤i≤N is the outward unit normal to ∂Ω. This mapping γn is extended
by continuity to a continuous linear mapping from H(div) into H−1/2(∂Ω). Further, if
σ ∈ H(div) and φ ∈ H1(Ω), we have∫

Ω

divσφ dx+
∫

Ω

σ · ∇φdx = 〈σ · n, γ0(φ)〉H−1/2,H1/2(∂Ω). (4.25)

Proof. If Ω is a regular open set of class C1, exercise 3.2.1 gives the following integration
by parts formula, called the divergence formula,∫

Ω

divσφ dx+
∫

Ω

σ · ∇φdx =
∫
∂Ω

σ · nφds, (4.26)

for regular functions σ and φ. We remark happily that the ‘unpleasant’ term on the right in
(4.25) is none other than the usual ‘pleasant’ boundary integral in (4.26). We can see easily
that the two terms on the left of (4.26) have a meaning for φ ∈ H1(Ω) and σ ∈ H(div).
Then, by the density of regular functions in H1(Ω) and H(div), the terms on the left of
(4.26) are extended by continuity and the term on the right appears as a continuous linear
form over the image of the trace mapping Im(γ0), denoted H1/2(∂Ω). Such a linear form is
written exactly as in the formula (4.25) and the normal trace γn(σ) is therefore well-defined
as an element of H−1/2(∂Ω). �

We can, of course, also define the equivalent of H1
0 (Ω) for the space H(div). We define

the subspace H0(div) of H(div) as the closure of C∞
c (Ω) in H(div). This is again a Hilbert

space which is interpreted (if the open set is regular) as the subspace of functions of H(div)
whose normal trace is zero.

4.4.3 The spaces Wm,p(Ω)
More generally, we can define spaces Wm,p(Ω) for an integer m ≥ 0 and for a real 1 ≤ p ≤
+∞. These spaces are constructed on the Banach space Lp(Ω) (see (4.1) and (4.2)). As
we have said in remark 4.2.8, the idea of the weak derivative extends to Lp(Ω). We can
therefore give the following definition.

Definition 4.4.8 For every integer m ≥ 0, the Sobolev space Wm,p(Ω) is defined by

Wm,p(Ω) = {v ∈ Lp(Ω) such that, ∀α with |α| ≤ m, ∂αv ∈ Lp(Ω)} , (4.27)

where the partial derivative ∂αv is taken in the weak sense.
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Equipped with the norm

‖u‖Wm,p(Ω) =

⎛
⎝ ∑

|α|≤m

‖∂αu‖p
⎞
⎠

1/p

we verify that Wm,p(Ω) is a Banach space. These spaces are particularly important for
nonlinear problems (that we do not consider here, see, for example, [18] [27]), but also for
linear problems because of the celebrated Sobolev inequalities. We state them without
proof. If Ω is a regular open set, or if Ω = RN or Ω = RN

+ , then⎧⎨
⎩

if p < N W 1,p(Ω) ⊂ Lq(Ω) ∀ q ∈ [1, p∗] with 1/p∗ = 1/p− 1/N
if p = N W 1,p(Ω) ⊂ Lq(Ω) ∀ q ∈ [1,+∞[
if p > N W 1,p(Ω) ⊂ C(Ω),

(4.28)

with continuous injection, that is, W 1,p(Ω) ⊂ E which means that there exists a constant C
such that, for all u ∈W 1,p(Ω),

‖u‖E ≤ C‖u‖W1,p(Ω).

The particular case p = 1 and m = N is remarkable as we can very simply prove a
Sobolev type inequality.

Lemma 4.4.9 The space WN,1(RN) is injected continuously into the space of continuously
bounded functions over RN , denoted Cb(RN), and for all u ∈WN,1(RN) we have

‖u‖L∞(RN ) ≤ ‖u‖WN,1(RN ). (4.29)

Proof. Let u ∈ C∞
c (RN). For x = (x1, . . . , xN), we have

u(x) =
∫ x1

−∞
· · ·

∫ xN

−∞

∂Nu

∂x1 · · · ∂xN
(y) dy1 · · · dyN ,

from which we deduce

‖u‖L∞(RN ) ≤ ‖ ∂Nu

∂x1 · · · ∂xN
‖L1(RN ) ≤ ‖u‖WN,1(RN ).

Now C∞
c (RN) is dense in WN,1(RN) (this is proved like the density theorem 4.4.1 for

H1(RN)). Therefore, by density we obtain the inequality (4.29) for all u ∈ WN,1(RN). In
addition, the closure of C∞

c (RN) for the norm of L∞(RN) is exactly Cb(RN) (in fact, these
two spaces have the same norm). Therefore, (4.29) implies that the functions of WN,1(RN)
are continuous and bounded. �

4.4.4 Duality
Recall that the dual V ′ of a Hilbert space V is the set of continuous linear forms over V .
By application of the Riesz representation theorem 12.1.18, the dual of L2(Ω) is identical
to L2(Ω) itself. We can also define the dual of a Sobolev space. In fact, the dual of H1

0 (Ω)
plays a particular role in what follows.
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Definition 4.4.10 The dual of the Sobolev space H1
0 (Ω) is called H−1(Ω). We denote by

〈L, φ〉H−1,H1
0(Ω) = L(φ) the duality pairing between H1

0 (Ω) and its dual for all continuous
linear forms L ∈ H−1(Ω) and every function φ ∈ H1

0 (Ω).

We can characterize this dual H−1(Ω). We have the following result (see [6]).

Proposition 4.4.11 The space H−1(Ω) is characterized by

H−1(Ω) =

{
f = v0 +

N∑
i=1

∂vi
∂xi

with v0, v1, . . . , vN ∈ L2(Ω)

}
.

In other words, every continuous linear form over H1
0 (Ω), denoted by L ∈ H−1(Ω), is written

for all φ ∈ H1
0 (Ω)

L(φ) =
∫

Ω

(
v0φ−

N∑
i=1

vi
∂φ

∂xi

)
dx

with v0, v1, . . . , vN ∈ L2(Ω).

Thanks to the space H−1(Ω) we can define a new idea of differentiation for the functions
of L2(Ω) (more weak than the weak derivative of the definition 4.2.3). Faced with this
influx of notions of differentiation, we reassure the uneasy reader by saying that they are all
versions of differentiation in the sense of distributions (it is precisely one of the purposes of
the theory of distributions to unify these various types of differentiation).

Lemma 4.4.12 Take v ∈ L2(Ω). For 1 ≤ i ≤ N , we can define a continuous linear form
∂v
∂xi

in H−1(Ω) by the formula

〈
∂v

∂xi
, φ
〉
H−1,H1

0(Ω)
= −

∫
Ω

v
∂φ

∂xi
dx ∀φ ∈ H1

0 (Ω), (4.30)

which satisfies ∥∥∥ ∂v
∂xi

∥∥∥
H−1(Ω)

≤ ‖v‖L2(Ω) .

If v ∈ H1(Ω), then the continuous linear form ∂v
∂xi

coincides with the weak derivative in
L2(Ω) of v.

Proof. We verify easily that the right-hand side of (4.30) is a continuous linear form over
H1

0 (Ω). Consequently, there exists an element Li ∈ H−1(Ω) such that

Li(φ) = −
∫

Ω

v
∂φ

∂xi
dx.

We also verify easily that the mapping v → Li is continuous and linear from L2(Ω) into
H−1(Ω), and that it prolongs the usual differentiation of the regular functions v (or the weak
differentiation for v ∈ H1(Ω)). Consequently, we can extend, by continuity, differentiation
to every function of L2(Ω) and denote Li = ∂v

∂xi
. �
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Remark 4.4.13 Thanks to the Riesz representation theorem we know that we can identify
the dual of a Hilbert space with itself. However, in practice we never identify H−1(Ω) and
H1

0 (Ω). In effect, we have defined H1
0 (Ω) as a strict (but dense) subspace of L2(Ω). Now we

have already decided to identify L2(Ω) (equipped with the usual scalar product) and its dual
(it is only a convention but it is universal), therefore we cannot further identify H−1(Ω) and
H1

0 (Ω) (with another scalar product). The correct (and usual) situation is therefore

H1
0 (Ω) ⊂ L2(Ω) ≡

(
L2(Ω)

)′
⊂ H−1(Ω),

where the inclusions are strict. •

4.5 Link with distributions
All of the ideas introduced in this chapter have a link with the theory of distributions (see [4],
[38]). Strictly speaking, we do not need the theory of distributions to define Sobolev spaces
and solve boundary value problems (historically, distributions, as a mathematical theory,
appeared after Sobolev spaces and the variational approach for solving partial differential
equations). However, the theory of distributions is a unifying framework for all these spaces,
and those readers who understand this theory will not fail to ask what are the links between
this theory and the one we have described. As for the readers unfamiliar with this theory,
they can legitimately wonder about the ideas at the base of the theory of distributions. It is
to satisfy this double curiosity that we have written this section which is a (very) brief and
sketchy summary of the theory of distributions.

Let Ω be an open set of RN . We denote by C∞
c (Ω) (or D(Ω)) the space of functions of

class C∞ with compact support in Ω. We equip C∞
c (Ω) with a ‘pseudo-topology’, that is,

we define a notion of convergence in C∞
c (Ω). We say that a sequence (φn)n≥1 of C∞

c (Ω)
converges to φ ∈ C∞

c (Ω) if

(1) the support of φn remains in a compact set K of Ω,

(2) for all multi-indices α, ∂αφn converges uniformly in K to ∂αφ.

The space of distributions D′(Ω) is the ‘dual’ of D(Ω), that is, the space of ‘continuous’
linear forms over D(Ω). The quotation marks are used as there is not a norm defined over
D(Ω), but simply a notion of convergence. Nevertheless, we can precisely define D′(Ω) whose
elements are called distributions.

Definition 4.5.1 A distribution T ∈ D′(Ω) is a linear form over D(Ω) which satisfies

lim
n→+∞

T (φn) = T (φ)

for every sequence (φn)n≥1 of C∞
c (Ω) which converges to φ ∈ C∞

c (Ω) in the sense defined
above.

We denote by 〈T, φ〉 = T (φ) the duality pairing between a distribution T ∈ D′(Ω) and a
function φ ∈ D(Ω): this duality pairing ‘generalizes’ the usual integral

∫
Ω
Tφ dx. In effect,

we verify that if f is a function (which is locally integrable in Ω), then we can define a
distribution Tf by

〈Tf , φ〉 =
∫

Ω

fφ dx.
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Consequently, we identify the function and the associated distribution Tf ≡ f .
We can also give D′(Ω) an idea of convergence: we say that a sequence Tn ∈ D′(Ω)

converges in the sense of distributions to T ∈ D′(Ω) if, for all φ ∈ D(Ω),

lim
n→+∞

〈Tn, φ〉 = 〈T, φ〉.

This convergence in the sense of distributions is an extremely weak (or not very demanding)
convergence as it corresponds to an integral, or ‘average’ convergence.

Let us now define differentiation in the sense of distributions: if T ∈ D′(Ω), we
define ∂T

∂xi
∈ D′(Ω) by 〈

∂T

∂xi
, φ
〉
= −

〈
T,

∂φ

∂xi

〉
∀φ ∈ D(Ω).

We verify that, effectively, the derivative ∂T/∂xi is a distribution, that is, distributions
are infinitely differentiable! This is one of the most important properties of distributions.
We verify also that if f is a function which is differentiable in the classical sense, then its
derivative in the sense of distributions coincides with its usual derivative.

Of course, we recognize in weak differentiation in the sense of definition 4.2.3 a particular
case of differentiation in the sense of distributions. Further, all the spaces Lp(Ω) or the
Sobolev spaces Hm(Ω) are subspaces of the space of distributions D′(Ω). In particular, we
verify that convergence in these spaces implies convergence in the sense of distributions (but
the converse is false). Finally, the equations in the variational formulations (which we have
interpreted as equations almost everywhere) again imply, more simply and more generally,
equations in the sense of distributions.
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Lemma 4.2.4 u ∈ L2(Ω) is differentiable in the weak sense if, ∀ i,
(weak differentiation)

∣∣∣∣
∫

Ω
u
∂φ

∂xi
dx

∣∣∣∣ ≤ C‖φ‖L2(Ω) ∀φ ∈ C∞c (Ω)

Proposition 4.3.2 H1(Ω) is a Hilbert space for the scalar

product 〈u, v〉 =
∫

Ω
(∇u · ∇v + uv) dx

Theorem 4.3.5 C∞c (Ω) is dense in H1(Ω)
(density theorem)

Proposition 4.3.10 ∀u ∈ H1
0 (Ω) (Ω bounded)

(Poincaré inequality) ‖u‖L2(Ω) ≤ C‖∇u‖L2(Ω)

Theorem 4.3.13 u→ u|∂Ω is a continuous mapping
(trace theorem) of H1(Ω) into L2(∂Ω)

Theorem 4.3.15 ∀u, v ∈ H1(Ω)

(Green’s formula)
∫

Ω
u
∂v

∂xi
dx = −

∫
Ω
v
∂u

∂xi
dx +

∫
∂Ω

uv ni ds

Corollary 4.3.16 H1
0 (Ω) is the subspace of functions of H1(Ω)

(characterization of H1
0 (Ω)) which are zero on ∂Ω

Theorem 4.3.21 The injection of H1(Ω) in L2(Ω) is compact
(Rellich theorem) (Ω bounded and regular)

Theorem 4.3.30 ∀u ∈ H2(Ω), v ∈ H1(Ω)

(Green’s formula)
∫

Ω
v∆u dx = −

∫
Ω
∇u · ∇v dx +

∫
∂Ω

∂u

∂n
v ds

Table 4.1. Principal results on Sobolev spaces which must be known
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5 Mathematical study of
elliptic problems

5.1 Introduction

In this chapter we shall finish the mathematical analysis of elliptic partial differential
equations (PDEs) which was started in chapter 3. To show that boundary value
problems are well-posed for these elliptic PDEs, that is, they have a solution, which is
unique, and depends continuously on the data, we follow the variational approach
presented in Chapter 3 and we use the Sobolev spaces introduced in Chapter 4.

The plan of this chapter is the following. In Section 5.2 we explain in detail
the functioning of the variational approach for the Laplacian with various types of
boundary condition. We show existence and uniqueness results for the solu-
tions. We also show that these solutions minimize an energy and satisfy a number
of qualitative properties which are very natural and important from the point of
view of applications (maximum principle, regularity). Section 5.3 follows the same
programme but for other, more complicated, models like that of linear elasticity or
of the Stokes equations. If the existence and uniqueness theory is very simple as
in the preceding case, it is not the same for all of the qualitative properties

5.2 Study of the Laplacian

5.2.1 Dirichlet boundary conditions

We consider the following boundary value problem

{
−∆u = f in Ω
u = 0 on ∂Ω (5.1)

109
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where Ω is an open bounded set of the space RN , and f is the right-hand side of the
equation which belongs to the space L2(Ω). The variational approach to study (5.1)
is composed of three stages which we detail.

Stage 1: Establishment of a variational formulation

In the first stage we must propose a variational formulation of the boundary value
problem (5.1), that is, we must find a bilinear form a(·, ·), a linear form L(·), and a
Hilbert space V such that (5.1) is equivalent to:

Find u ∈ V such that a(u, v) = L(v) for all v ∈ V. (5.2)

The aim of this first stage is only to find the variational formulation (5.2); we shall
verify the precise equivalence with (5.1) later in the course of the third stage.

To find the variational formulation we multiply equation (5.1) by a regular test
function v and we integrate by parts. This calculation is mainly formal in the sense
that we assume the existence and regularity of the solution u so that all the calcu-
lations carried out are allowable. With the help of Green’s formula (4.22) (see also
(3.7)) we find

∫
Ω
fv dx = −

∫
Ω

∆uv dx =
∫

Ω
∇u · ∇v dx−

∫
∂Ω

∂u

∂n
v ds. (5.3)

As u must satisfy a Dirichlet boundary condition, u = 0 on ∂Ω, we choose a Hilbert
space V such that every function v ∈ V also satisfies v = 0 on ∂Ω. In this case, the
equation (5.3) becomes

∫
Ω
∇u(x) · ∇v(x) dx =

∫
Ω
f(x)v(x) dx. (5.4)

In order that the term on the left of (5.4) has a meaning it is sufficient that ∇u and
∇v belong to L2(Ω) (component by component), and in order that the term on the
right of (5.4) also has a meaning it is sufficient that v belongs to L2(Ω) (we have
assumed that f ∈ L2(Ω)). Consequently, a reasonable choice for the Hilbert space is
V = H1

0 (Ω), the subspace of H1(Ω) whose elements are zero on the boundary ∂Ω.
To conclude, the proposed variational formulation for (5.1) is:

find u ∈ H1
0 (Ω) such that

∫
Ω
∇u · ∇v dx =

∫
Ω
fv dx ∀ v ∈ H1

0 (Ω). (5.5)

Obviously, we have made some choices to arrive at (5.5); other choices would have
led us to other possible variational formulations. The justification of (5.5) is there-
fore carried out a posteriori. The next stage consists of verifying that (5.5) has a
unique solution, then the third stage that the solution of (5.5) is also a solution of
the boundary value problem (5.1) (in a sense to be made precise).
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Stage 2: Solution of the variational formulation

In this second stage we verify that the variational formulation (5.5) has a unique
solution. For this we use the Lax–Milgram theorem 3.3.1 whose hypotheses we check
with the notation

a(u, v) =
∫

Ω
∇u(x) · ∇v(x) dx and L(v) =

∫
Ω
f(x)v(x) dx.

We easily see by using the Cauchy–Schwarz inequality that a is a continuous bilinear
form over H1

0 (Ω) and that L is a continuous linear form over H1
0 (Ω). Further, from

the Poincaré inequality (see corollary 4.3.12; we here use the bounded character of
the open set Ω), the bilinear form a is coercive, that is, there exists ν > 0 such that

a(v, v) =
∫

Ω
|∇v(x)|2dx ≥ ν‖v‖2

H1
0 (Ω) ∀ v ∈ H1

0 (Ω).

As H1
0 (Ω) is a Hilbert space (see proposition 4.3.9), all the hypotheses of the Lax–

Milgram theorem 3.3.1 are satisfied and we can therefore conclude that there exists
a unique solution u ∈ H1

0 (Ω) of the variational formulation (5.5).

Remark 5.2.1 We see later in Chapter 9 that, in the present case, since the bilinear
form a is symmetric, there exists an argument other than the Lax–Milgram theorem
to reach the conclusion. In effect, the solution of the variational formulation is, in
this case, the unique minimum of the energy defined by

J(v) =
1
2
a(v, v)− L(v) ∀ v ∈ H1

0 (Ω)

(see proposition 5.2.7). Consequently, if we prove that J has a unique minimum, we
have therefore obtained the solution of the variational formulation. •

Stage 3: Equivalence with the equation

The third stage (the last and most delicate) consists of verifying that if we solve the
variational formulation (5.5) we have solved the boundary value problem (5.1), and
making precise in what sense the solution of (5.5) is also a solution of (5.1). In other
words, it is a question of interpreting the variational formulation and of returning
to the equation. For this we use the same integrations by parts which led to the
variational formulation, but in the opposite sense, and justify them carefully.

This justification is very easy if we assume that the solution u of the variational
formulation (5.5) is regular (more precisely if u ∈ H2(Ω)) and that the open set Ω
is also regular, which we do initially. In effect, it is enough to use Green’s formula
(4.22) which yields, for v ∈ H1

0 (Ω),∫
Ω
∇u · ∇v dx = −

∫
Ω
v∆u dx

as v = 0 on the boundary ∂Ω. We then deduce∫
Ω

(∆u + f) v dx = 0 ∀ v ∈ C∞c (Ω),
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which implies, from corollary 4.2.2, that −∆u = f in L2(Ω), and we have the equation

−∆u = f almost everywhere in Ω. (5.6)

Further, if Ω is a regular open bounded set of class C1, then the trace theorem 4.3.13
(or more precisely its corollary 4.3.16) confirms that every function of H1

0 (Ω) has a
trace on ∂Ω which is zero in L2(Ω). We deduce, in particular, that

u = 0 almost everywhere on ∂Ω. (5.7)

We have therefore recovered the equation and the boundary conditions of (5.1).
If we no longer assume that the solution u of (5.5) and the open set Ω are regular,

we must work harder (we can no longer use Green’s formula (4.22) which needs
u ∈ H2(Ω)). We denote σ = ∇u which is a vector valued function in L2(Ω)N . By the
Cauchy–Schwarz inequality, we deduce from the variational formulation (5.5) that,
for all v ∈ H1

0 (Ω), ∣∣∣∣
∫

Ω
σ · ∇v dx

∣∣∣∣ =
∣∣∣∣
∫

Ω
fv dx

∣∣∣∣ ≤ C‖v‖L2(Ω). (5.8)

Since C∞c (Ω) ⊂ H1
0 (Ω), (5.8) is none other than the criterion for existence of a weak

divergence of σ in L2(Ω) (see definition 4.2.6 and lemma 4.2.7) which satisfies, for all
v ∈ C∞c (Ω), ∫

Ω
σ · ∇v dx = −

∫
Ω

divσv dx.

We therefore deduce that∫
Ω

(divσ + f) v dx = 0 ∀ v ∈ C∞c (Ω),

which implies, from corollary 4.2.2, that −divσ = f in L2(Ω). Consequently, divσ =
∆u belongs to L2(Ω) (recall that div∇ = ∆), and we recover the equation (5.6). We
recover the boundary conditions (5.7) as before if the open set Ω is regular of class
C1. If Ω is not regular, then we cannot use the trace theorem 4.3.13 to obtain (5.7).
Nevertheless, the simple fact of belonging to H1

0 (Ω) is a generalization of the Dirichlet
boundary condition for a nonregular open set, and we continue to write formally that
u = 0 on ∂Ω.

To conclude we have proved the following result.

Theorem 5.2.2 Let Ω be an open bounded set of RN . Take f ∈ L2(Ω). There exists
a unique solution u ∈ H1

0 (Ω) of the variational formulation (5.5). Further, u satisfies

−∆u = f almost everywhere in Ω and u ∈ H1
0 (Ω). (5.9)

If we assume further that Ω is regular of class C1, then u is a solution of the boundary
value problem (5.1) in the sense that

−∆u = f almost everywhere in Ω, u = 0 almost everywhere on ∂Ω.
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We call the solution u ∈ H1
0 (Ω) of the variational formulation (5.5) the variational

solution of the boundary value problem (5.1). By a convenient abuse of language, we
shall say that the unique solution u ∈ H1

0 (Ω) of the variational formulation
(5.5) is the unique solution of the boundary value problem (5.1). This use
is justified by theorem 5.2.2.

The variational solution of (5.1) only satisfies the equation and the boundary
conditions a priori in a ‘weak’ sense, that is, almost everywhere (or even worse for
the boundary condition if the open set is not regular). We then talk of a weak
solution as opposed to the strong solutions that we could have hoped to obtain in
the classical formulation of (5.1) (see section 3.1.2). Likewise, we sometimes call the
variational formulation the weak formulation of the equation.

Remark 5.2.3 In fact, the weak solution may be a strong solution if the right-hand
side f is more regular. In other words, the equation and the boundary conditions
of (5.1) may be satisfied in a classical sense, that is, for all x ∈ Ω, and all x ∈
∂Ω, respectively. This is what we call a regularity result for the solution (see later
corollary 5.2.27). •

Remark 5.2.4 We must understand the exact meaning of the expression ∆u in equa-
tion (5.9) of theorem 5.2.2. For an arbitrary function v of H1

0 (Ω) we have not given
(even a weak) meaning to its Laplacian ∆v. Conversely, for the solution u ∈ H1

0 (Ω)
of the variational formulation (5.5), we have shown that ∆u belongs to L2(Ω). •

For the boundary value problem (5.1) to be well-posed (in the sense of Hadamard;
see definition 1.5.3), we must, in addition to existence and uniqueness of the solution,
show that the solution depends continuously on the data. This is an immediate
consequence of the Lax–Milgram theorem 3.3.1 but we shall present a new statement
and a new proof.

Proposition 5.2.5 Let Ω be an open bounded set of RN , and let f ∈ L2(Ω). The
mapping which takes f ∈ L2(Ω) to the unique solution u ∈ H1

0 (Ω) of the variational
formulation of (5.1) is linear and continuous from L2(Ω) into H1(Ω). In particular,
there exists a constant C > 0 such that, for all f ∈ L2(Ω), we have

‖u‖H1(Ω) ≤ C‖f‖L2(Ω). (5.10)

Remark 5.2.6 The inequality (5.10) is what we call an energy estimate. It guar-
antees that the energy of the solution is controlled by that of the data. Energy
estimates are very natural from a physical viewpoint and very useful from a mathe-
matical viewpoint. •

Proof. The linearity of f → u is obvious. To obtain the continuity we take v = u in
the variational formulation (5.5)∫

Ω
|∇u|2dx =

∫
Ω
fu dx.
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We obtain an upper bound on the term on the right with the help of the Cauchy–
Schwarz inequality, and a lower bound on that on the left by the coercivity of the
bilinear form

ν‖u‖2
H1(Ω) ≤ ‖f‖L2(Ω)‖u‖L2(Ω) ≤ ‖f‖L2(Ω)‖u‖H1(Ω),

from which we deduce the result. �

We have already said that the variational formulation often has a physical inter-
pretation (this is, for example, the principle of virtual work in mechanics). In fact, the
solution of the variational formulation (5.5) attains the minimum of an energy (very
natural in physics or mechanics). The following result is an immediate application of
proposition 3.3.4.

Proposition 5.2.7 Let J(v) be the energy defined for v ∈ H1
0 (Ω) by

J(v) =
1
2

∫
Ω
|∇v|2dx−

∫
Ω
fv dx. (5.11)

Let u ∈ H1
0 (Ω) be the unique solution of the variational formulation (5.5). Then u is

also the unique minimum of the energy, that is,

J(u) = min
v∈H1

0 (Ω)
J(v).

Conversely, if u ∈ H1
0 (Ω) is a minimum of the energy J(v), then u is the unique

solution of the variational formulation (5.5).

Remark 5.2.8 Proposition 5.2.7 relies crucially on the fact that the bilinear form
of the variational formulation is symmetric. If this is not the case, the solution of
the variational formulation does not minimize the energy (see the counterexample of
exercise 5.2.3).

Often the physical origin of Laplacian is in fact the search for minima of the energy
J(v). It is remarkable that this minimization problem needs the solution u to have
less regularity than the partial differential equation (only one derivative allows us
to define J(u) while we need two for ∆u). This observation confirms the ‘natural’
character of the variational formulation to analyse a PDE. •

Exercise 5.2.1 With the help of the variational approach show the existence and unique-
ness of the solution of {

−∆u + u = f in Ω
u = 0 on ∂Ω (5.12)

where Ω is an arbitrary open set of the space RN , and f ∈ L2(Ω). Show in particular that
the addition of a term of order zero to the Laplacian allows us to ignore the hypothesis
that Ω is bounded.
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Exercise 5.2.2 Let Ω be an open bounded set of RN . With the help of the variational
approach show the existence and uniqueness of the solution of the following convection–
diffusion problem {

V · ∇u−∆u = f in Ω
u = 0 on ∂Ω (5.13)

where f ∈ L2(Ω) and V is a regular vector valued function such that divV = 0 in Ω.

Exercise 5.2.3 We take the notation and hypotheses of exercise 5.2.2. Show that every
v ∈ H1

0 (Ω) satisfies ∫
Ω
vV · ∇v dx = 0.

Show that the solution of the variational formulation of the convection–diffusion problem
does not minimize the energy

J(v) =
1
2

∫
Ω

(
|∇v|2 + vV · ∇v

)
dx−

∫
Ω
fv dx,

in H1
0 (Ω) .

The ‘uniqueness’ part of theorem 5.2.2 is useful to show some symmetry properties
as the following exercise indicates.

Exercise 5.2.4 We consider again the boundary value problem (5.1). We assume that
the open set Ω is symmetric with respect to the hyperplane xN = 0; likewise for the
data f (that is, f(x′, xN ) = f(x′,−xN )). Show that the solution of (5.1) has the
same symmetry. Show that (5.1) is equivalent to a boundary value problem posed over
Ω+ = Ω ∩ {xN > 0} with a Neumann boundary condition on Ω ∩ {xN = 0}.

Remark 5.2.9 Until now we have assumed that the right-hand side f of (5.1) belongs
to L2(Ω), but many of the results remain true if we only assume that f ∈ H−1(Ω)
(a less regular space of ‘functions’). The two first stages remain identical if we replace
the usual integral

∫
Ω fv dx by the duality pairing 〈f, v〉H−1,H1

0 (Ω) (in particular, L(v) is
still a continuous linear form over H1

0 (Ω)). In the third stage, the equation −∆u = f
no longer holds in the sense of the equality between the elements of H−1(Ω) (nor
almost everywhere in Ω).

This mathematical refinement can correspond to a pertinent physical model. Take
as an example the case of a right-hand side concentrated on a hypersurface rather than
distributed over all of Ω. Let Γ be a regular hypersurface (a manifold of dimension
N−1) included in Ω. To model a concentrated source term over Γ, we take f̃ ∈ L2(Γ)
and we define f ∈ H−1(Ω) by

〈f, v〉H−1,H1
0 (Ω) =

∫
Γ
f̃v ds,

which is a continuous linear form over H1
0 (Ω) thanks to the trace theorem 4.3.13. •
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Remark 5.2.10 In (5.1) we have considered ‘homogeneous’, that is, zero, Dirichlet
boundary conditions but we can also treat the case of nonhomogeneous boundary
conditions. Consider the boundary value problem{

−∆u = f in Ω
u = u0 on ∂Ω, (5.14)

where u0 is the trace over ∂Ω of a function of H1(Ω), (again denoted by u0). To
analyse (5.14) we set u = u0 + ũ, and we look for the solution of{

−∆ũ = f̃ = f + ∆u0 in Ω
ũ = 0 on ∂Ω.

(5.15)

Following remark 5.2.9 we can solve (5.15) by the variational approach as f̃ belongs
to H−1(Ω). In effect,

〈f̃ , v〉H−1,H1
0 (Ω) =

∫
Ω
fv dx−

∫
Ω
∇u0 · ∇v dx

is a continuous linear form over H1
0 (Ω). •

5.2.2 Neumann boundary conditions

We consider the following boundary value problem{
−∆u + u = f in Ω
∂u
∂n = g on ∂Ω

(5.16)

where Ω is an open set (not necessarily bounded) of the space RN , f ∈ L2(Ω) and
g ∈ L2(∂Ω). The equation (5.16) is a variant of the Laplacian where we have added
a term of order zero to avoid (in the first instance) a difficulty that we will deal with
later in theorem 5.2.18. The variational approach to studying (5.16) is appreciably
different from that presented in the preceding section in the treatment of the boundary
conditions. This is why we again detail the three stages of the approach.

Stage 1: Establishment of a variational formulation

To find the variational formulation we multiply equation (5.16) by a regular test
function v and we integrate by parts assuming that the solution u is sufficiently
regular so that all the calculations are valid. Green’s formula (4.22) (see also (3.7))
gives∫

Ω
f(x)v(x) dx =

∫
Ω

(−∆u(x) + u(x)) v(x) dx

=
∫

Ω
(∇u(x) · ∇v(x) + u(x)v(x)) dx−

∫
∂Ω

∂u

∂n
(x)v(x) ds

=
∫

Ω
(∇u(x) · ∇v(x) + u(x)v(x)) dx−

∫
∂Ω

g(x)v(x) ds.

(5.17)
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We have used the Neumann boundary conditions in (5.17) and it is not necessary
to include this in the choice of Hilbert space V . For the first term and the two last
terms of (5.17) to have a meaning it is sufficient to take V = H1(Ω) (we use the trace
theorem 4.3.13 to justify the boundary integral).

In conclusion, the variational formulation proposed for (5.16) is: find u ∈ H1(Ω)
such that ∫

Ω
(∇u · ∇v + uv) dx =

∫
∂Ω

gv ds +
∫

Ω
fv dx ∀ v ∈ H1(Ω). (5.18)

The following stages justify the choice of (5.18).

Remark 5.2.11 The principal difference between the variational formulation (5.18)
for Neumann boundary conditions and (5.5) for Dirichlet boundary conditions is that
the Dirichlet condition is included in the choice of the space while the Neumann
condition appears in the linear form but not in the space. The Dirichlet condition is
called essential (or explicit) since it is forced by the space, while the Neumann
condition is called natural (or implicit) since it comes from the integration by parts
which leads to the variational formulation. •

Stage 2: Solution of the variational formulation

In this second stage we verify that the variational formulation (5.18) has a unique
solution. For this we use the Lax–Milgram theorem 3.3.1 whose hypotheses we verify
with the notation

a(u, v) =
∫

Ω
(∇u · ∇v + uv) dx and L(v) =

∫
∂Ω

gv ds +
∫

Ω
fv dx.

By using the Cauchy–Schwarz inequality and with the help of the trace theorem
4.3.13, we clearly see that a is a continuous bilinear form over H1(Ω) and that L is
a continuous linear form over H1(Ω). In addition, the bilinear form a is obviously
coercive (this is why we have added a term of order zero to the Laplacian) since

a(v, v) = ‖v‖2
H1(Ω) ∀ v ∈ H1(Ω).

As H1(Ω) is a Hilbert space (see proposition 4.3.2), all the hypotheses of the Lax–
Milgram theorem 3.3.1 are satisfied and we can therefore conclude that there exists
a unique solution u ∈ H1(Ω) of the variational formulation (5.18).

Remark 5.2.12 To analyse the boundary value problem (5.16) in the case where
g = 0, we might be tempted to include the Neumann boundary condition in the
Hilbert space V . It is not possible to choose V = {v ∈ H1(Ω), ∂v∂n = 0 on ∂Ω}
since, for a function v ∈ H1(Ω), ∂v∂n does not have a meaning over ∂Ω. In effect, ∇v is
only a function of L2(Ω) (component by component) and we know there is no idea of a
trace ∂Ω for the functions of L2(Ω). We could choose V = {v ∈ H2(Ω), ∂v∂n = 0 on ∂Ω}
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which is a closed subspace of H2(Ω) from the trace theorem 4.3.28. But with this
last choice a new difficulty emerges: the bilinear form a is not coercive over V and
we cannot apply the Lax–Milgram theorem. There is therefore no way of taking into
account the Neumann boundary conditions in the choice of the Hilbert space. •

Stage 3: Equivalence with the equation.

We now interpret the variational formulation (5.18) to verify that we have solved
the boundary value problem (5.16), in a sense to be made precise. We shall assume
that the data are regular (see remark 5.2.15 if this is not the case). More precisely
we shall assume that we are in the position to apply the following regularity lemma
(see Section 5.2.4 for similar results).

Lemma 5.2.13 Let Ω be an open set regular of class C1 of RN . Take f ∈ L2(Ω)
and let g be the trace over ∂Ω of a function of H1(Ω). Then the solution u of the
variational formulation (5.18) belongs to H2(Ω).

Thanks to lemma 5.2.13 we can use the Green’s formula of theorem 4.3.30∫
Ω

∆u(x)v(x) dx = −
∫

Ω
∇u(x) · ∇v(x) dx +

∫
∂Ω

∂u

∂n
(x)v(x) ds. (5.19)

which is valid for u ∈ H2(Ω) and v ∈ H1(Ω). Recall that the boundary integral in
(5.19) has a meaning because of the trace theorem 4.3.28 which confirms that for
u ∈ H2(Ω) the normal derivative ∂u∂n has a meaning in L2(∂Ω). We deduce then from
(5.18) and (5.19) that, for all v ∈ H1(Ω),∫

Ω
(∆u− u + f)v dx =

∫
∂Ω

(
g − ∂u

∂n

)
v ds. (5.20)

If we take v ∈ C∞c (Ω) ⊂ H1(Ω) in (5.20), the boundary term disappears and we
deduce, from corollary 4.2.2, that ∆u−u+f = 0 in L2(Ω), therefore almost everywhere
in Ω. Consequently, the left-hand side of (5.20) is zero, therefore∫

∂Ω

(
g − ∂u

∂n

)
v ds = 0 ∀ v ∈ H1(Ω).

Now the image of H1(Ω) by the trace mapping is dense in L2(∂Ω) (see remark 4.3.17),
which implies that g− ∂u

∂n = 0 in L2(∂Ω), and therefore almost everywhere on ∂Ω. In
conclusion, we have proved the following result.

Theorem 5.2.14 Let Ω be an open set regular of class C1 of RN . Take f ∈ L2(Ω)
and let g be the trace over ∂Ω of a function of H1(Ω). There exists a unique solution
u ∈ H1(Ω) of the variational formulation (5.18). Further, u belongs to H2(Ω) and is
the solution of (5.16) in the sense of

−∆u + u = f almost everywhere in Ω,
∂u

∂n
= g almost everywhere over ∂Ω.
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Exercise 5.2.5 Show that the unique solution u ∈ H1(Ω) of the variational formulation
(5.18) satisfies the following energy estimate

‖u‖H1(Ω) ≤ C
(
‖f‖L2(Ω) + ‖g‖L2(∂Ω)

)
,

where C > 0 is a constant which does not depend on u, f and g.

As in the preceding section, in practice (and when the context does not lead to
confusion) we say that the unique solution u ∈ H1(Ω) of the variational formulation
(5.18) is the unique weak solution of the boundary value problem (5.16).

Remark 5.2.15 (delicate) When the open set Ω is not regular and g is only a function of
L2(∂Ω), we have also proved the existence of a unique solution u ∈ H1(Ω) of the variational
formulation (5.18). To show that this solution satisfies the equation −∆u + u = f almost
everywhere in Ω, we must use an argument which is a little more complicated. Denoting by
σ = ∇u ∈ L2(Ω)N , we deduce from (5.18) that, for all v ∈ C∞

c (Ω),∣∣∣∣
∫

Ω

σ · ∇v dx
∣∣∣∣ ≤

∣∣∣∣
∫

Ω

uv dx

∣∣∣∣+
∣∣∣∣
∫

Ω

fv dx

∣∣∣∣ ≤ C‖v‖L2(Ω)

which is none other than the criterion for the existence of a weak divergence of σ in L2(Ω)
(see definition 4.2.6 and the lemma 4.2.7). We therefore have divσ ∈ L2(Ω) and∫

Ω

(divσ − u+ f) v dx = 0 ∀ v ∈ C∞
c (Ω),

which implies, from corollary 4.2.2, that −divσ = −∆u = f − u in L2(Ω).
We can also recover the Neumann boundary conditions, in a very weak sense, if the open

set (but not g) is regular. To do this we use the space H(div) introduced in section 4.4.2 and
defined by H(div) =

{
σ ∈ L2(Ω)N such that divσ ∈ L2(Ω)

}
. Theorem 4.4.7 confirms that,

if Ω is an open set regular of class C1, we have the following integration by parts formula∫
Ω

divσv dx+
∫

Ω

σ · ∇v dx = 〈σ · n, v〉H−1/2,H1/2(∂Ω), (5.21)

for v ∈ H1(Ω) and σ ∈ H(div). The term on the right of (5.21) denotes the duality pairing
between H1/2(∂Ω) and its dual, denoted H−1/2(∂Ω). If σ and v are regular functions, the
‘bad’ term is only the usual boundary integral

∫
∂Ω
vσ · nds. If not, formula (5.21) gives a

meaning to σ · n over ∂Ω (as an element of the dual H−1/2(∂Ω)) for σ ∈ H(div).
If we apply this result to the solution of (5.18) (with σ = ∇u), we deduce that the

Neumann boundary condition is satisfied as an equation between elements of the dual
H−1/2(∂Ω) (as g ∈ L2(∂Ω) ⊂ H−1/2(∂Ω)). This argument is reasonably complicated, and
in practice we shall be content with saying that the variational formulation contains a gen-
eralization of the Neumann boundary conditions, and in practice we shall continue to write
formally that ∂u

∂n
= g on ∂Ω. •

As in the preceding subsection, we can show that the solution of (5.16) minimizes
an energy. We remark that, if g = 0, then the energy (5.22) is the same as that of
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(5.11), defined for the Laplacian with Dirichlet boundary conditions. Nevertheless,
their minima are in general not the same as we minimize over two different spaces,
that is, H1

0 (Ω) and H1(Ω). The following proposition is an immediate application of
proposition 3.3.4.

Proposition 5.2.16 Let J(v) be the energy defined for v ∈ H1(Ω) by

J(v) =
1
2

∫
Ω

(
|∇v|2 + |v|2

)
dx−

∫
Ω
fv dx−

∫
∂Ω

gv ds. (5.22)

Let u ∈ H1(Ω) be the unique solution of the variational formulation (5.18). Then u
is also the unique minimum of the energy, that is,

J(u) = min
v∈H1(Ω)

J(v).

Conversely, if u ∈ H1(Ω) is a minimum of the energy J(v), then u is the unique
solution of the variational formulation (5.18).

Exercise 5.2.6 We assume that Ω is a regular open bounded set of class C1. With the
help of the variational approach, show the existence and uniqueness of the solution of the
Laplacian with a Fourier boundary condition{

−∆u = f in Ω
∂u
∂n + u = g on ∂Ω

(5.23)

where f ∈ L2(Ω) and g is the trace over ∂Ω of a function of H1(Ω). We shall show the
following inequality (which generalizes the Poincaré inequality)

‖v‖L2(Ω) ≤ C
(
‖v‖L2(∂Ω) + ‖∇v‖L2(Ω)

)
∀ v ∈ H1(Ω).

Exercise 5.2.7 We assume that Ω is an open bounded connected set. With the help
of the variational approach show the existence and uniqueness of the solution of the
Laplacian with mixed boundary conditions⎧⎨

⎩
−∆u = f in Ω
∂u
∂n = 0 on ∂ΩN
u = 0 on ∂ΩD

(5.24)

where f ∈ L2(Ω), and (∂ΩN , ∂ΩD) is a partition of ∂Ω such that the surface measures
of ∂ΩN and ∂ΩD are nonzero (see Figure 4.1). (Use remark 4.3.18.)

We return now to a true Laplacian operator (without the addition of a term of
order zero as in (5.16)) and we consider the boundary value problem{

−∆u = f in Ω
∂u
∂n = g on ∂Ω

(5.25)
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where Ω is an open bounded connected set of the space RN , f ∈ L2(Ω) and
g ∈ L2(∂Ω). The new difficulty in (5.25) with respect to (5.16) is that there only
exists a solution if the data f and g satisfy a compatibility condition. In effect, it
is easy to see that if there exists a solution u ∈ H2(Ω), then integrating the equation
over Ω (or using Green’s formula (4.22)) we must have∫

Ω
f(x) dx +

∫
∂Ω

g(x) ds = 0. (5.26)

We remark also that if u is a solution then u + C, with C ∈ R, is also a solution. In
fact, (5.26) is a necessary and sufficient condition for the existence of a solution in
H1(Ω), unique up to the addition of an arbitrary constant. We remark that, if the
open set Ω is not connected, then we must write (5.26) for each connected component
of Ω and the uniqueness of the solution holds up to the addition of an arbitrary
constant in each connected component (with these modifications all the results which
follow remain valid).

Remark 5.2.17 Physically, the compatibility condition (5.26) is interpreted as an
equilibrium condition: f corresponds to a volume source and g a flux entering
at the boundary. So that there exists a stationary or equilibrium state (that is, a
solution of (5.25)), these two terms must balance exactly. Likewise, the uniqueness
‘up to a constant’ corresponds to the absence of a reference scale on which to measure
the values of u (like for temperature, for example). •

Theorem 5.2.18 Let Ω be a regular open bounded connected set of class C1 of RN .
Take f ∈ L2(Ω) and g ∈ L2(∂Ω) which satisfy the compatibility condition (5.26).
There exists a weak solution u ∈ H1(Ω) of (5.25), unique up to an additive constant.

Proof. To find the variational formulation we proceed as for equation (5.16). A
similar calculation leads to∫

Ω
∇u · ∇v dx =

∫
∂Ω

gv ds +
∫

Ω
fv dx

for every regular test function v. To give a meaning to all the terms of this equation,
we could choose H1(Ω) as the Hilbert space V , but we could not show the coercivity
of the bilinear form. This difficulty is intimately linked with the fact that, if u is a
solution, then u+C is also a solution. To avoid this disadvantage, we work only with
functions of average zero. In other words, we set

V =
{
v ∈ H1(Ω),

∫
Ω
v(x) dx = 0

}

and the variational formulation of (5.25) is:

find u ∈ V such that
∫

Ω
∇u · ∇v dx =

∫
∂Ω

gv ds +
∫

Ω
fv dx ∀ v ∈ V. (5.27)
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We can equally choose the quotient space V = H1(Ω)/R (the elements of H1(Ω)/R
are the classes of functions of H1(Ω) equal up to a constant).

To be able to apply the Lax–Milgram theorem to the variational formulation
(5.27), the only delicate hypothesis to verify is the coercivity of the bilinear form.
This is obtained thanks to a generalization of the Poincaré inequality, known as the
Poincaré–Wirtinger inequality: if Ω is bounded and connected, there exists a constant
C > 0 such that, for all v ∈ H1(Ω),

‖v −m(v)‖L2(Ω) ≤ C‖∇v‖L2(Ω) with m(v) =

∫
Ω v dx∫
Ω dx

. (5.28)

The inequality (5.28) is proved by contradiction like the second proof of proposition
4.3.10 (we leave this as an exercise to the reader). As m(v) = 0 for all v ∈ V , (5.28)
implies that ‖∇v‖L2(Ω) is a norm in V , equivalent to the usual norm ‖v‖H1(Ω), and
therefore that the bilinear form is coercive over V .

Finally, to show that the unique solution of (5.27) is a solution of the boundary
value problem (5.25), we proceed as we did in the proof of theorem 5.2.14. We thus
obtain for all v ∈ V ,

∫
Ω

(∆u + f)v dx =
∫
∂Ω

(
g − ∂u

∂n

)
v ds. (5.29)

However, for w ∈ H1(Ω), the function v = w−m(w) belongs to V . By choosing such
a function in (5.29), and rearranging the terms and using the compatibility condition
(5.26) as well as the equation

∫
Ω ∆u dx =

∫
∂Ω

∂u
∂n ds, we deduce from (5.29)

∫
Ω

(∆u + f)w dx =
∫
∂Ω

(
g − ∂u

∂n

)
w ds ∀w ∈ H1(Ω).

We can therefore conclude as usual that u satisfies the boundary value
problem (5.25). �

Exercise 5.2.8 Show the Poincaré–Wirtinger inequality (5.28).

Exercise 5.2.9 We assume that Ω is a regular open bounded connected set. Take
f ∈ L2(Ω). We consider the following variational formulation: find u ∈ H1(Ω) such that

∫
Ω
∇u · ∇v dx +

(∫
Ω
u dx

)(∫
Ω
v dx

)
=
∫

Ω
fv dx ∀ v ∈ H1(Ω).

Show the existence and uniqueness of the solution of this variational formulation. Which
boundary value problem have we solved? In particular, if we assume that

∫
Ω f dx = 0,

which problem already studied have we recovered?
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5.2.3 Variable coefficients

In the two preceding sections we have considered boundary value problems for the
Laplacian operator. We can easily generalize the results obtained to more general
operators, so-called second order elliptic with variable coefficients. This type of
problem arises from the modelling of heterogeneous media. If we return to the ex-
ample of the conduction of heat (detailed in Chapter 1), in a heterogeneous medium
the conductivity k(x) is a function which varies across the domain. In this case,
we consider the boundary value problem{

−div(k∇u) = f in Ω
u = 0 on ∂Ω (5.30)

where Ω is an open bounded set of the space RN , and f ∈ L2(Ω). Of course, if
k(x) ≡ 1, we recover the Laplacian. It is easy to generalize theorem 5.2.2.

Proposition 5.2.19 Let Ω be an open bounded set of RN . Let f ∈ L2(Ω). We
assume that the coefficient k(x) is a measurable function and that there exist two
strictly positive constants 0 < k− ≤ k+ such that

0 < k− ≤ k(x) ≤ k+ almost everywhere x ∈ Ω. (5.31)

Then, there exists a unique (weak) solution u ∈ H1
0 (Ω) of (5.30).

Proof. To find the variational formulation we multiply the equation (5.39) by a test
function v and we integrate by parts using Green’s formula of exercise 3.2.1∫

Ω
divσ(x)v(x) dx = −

∫
Ω
σ(x) · ∇v(x) dx +

∫
∂Ω

σ(x) · n(x) v(x) ds,

with σ = k∇u. To take account of the Dirichlet boundary conditions we choose
H1

0 (Ω) as the Hilbert space, and we find the variational formulation of (5.30):

find u ∈ H1
0 (Ω) such that

∫
Ω
k∇u · ∇v dx =

∫
Ω
fv dx ∀ v ∈ H1

0 (Ω). (5.32)

Thanks to hypothesis (5.31) we know that the bilinear form of (5.32) is continuous∣∣∣∣
∫

Ω
k∇u · ∇v dx

∣∣∣∣ ≤ k+‖∇u‖L2(Ω)‖∇v‖L2(Ω),

and that it is coercive∫
Ω
k∇u · ∇u dx ≥ k−

∫
Ω
|∇u|2dx ≥ ν‖u‖H1

0 (Ω),

with ν > 0 thanks to the Poincaré inequality. We can therefore apply the Lax–
Milgram theorem, which proves the existence and uniqueness of the solution of the
variational formulation (5.32). To show that this variational solution is also a solution
of the boundary value problem (5.30), we proceed as in the proof of theorem 5.2.2. �



124 ELLIPTIC PROBLEMS

Remark 5.2.20 It is very important to write the equation (5.30) in divergence form:
we could a priori also write it

−div(k∇u) = −k∆u−∇k · ∇u,

but this last form only has a meaning if the coefficient k is differentiable. Conversely,
the equation (5.30) has a meaning even if k is discontinuous. •

In fact, when the equation (5.30) is in divergence form, its interpretation ‘in the
weak sense’ contains more information than its classical statement. More precisely, the
idea of weak divergence implicitly contains what we call the transmission boundary
conditions between two subdomains occupied by two materials of different conduc-
tivity. We consider an example where (Ω1,Ω2) is a partition of Ω over which k(x) is
piecewise constant

k(x) = ki > 0 for x ∈ Ωi, i = 1, 2. (5.33)

We denote by Γ = ∂Ω1 ∩ ∂Ω2 the interface (assumed regular and included in Ω)
between Ω1 and Ω2 (see Figure 5.1), and ui = u|Ωi

the restriction of the solution
u to Ωi.

Ω1

Ω2

Γ

Figure 5.1. Interface between two subdomains and transmission condition.

Lemma 5.2.21 Under the hypothesis (5.33) the problem (5.30) is equivalent to

⎧⎪⎪⎨
⎪⎪⎩
−ki∆ui = f in Ωi, i = 1, 2,
u1 = 0 on ∂Ω,
u1 = u2 on Γ,
k1∇u1 · n = k2∇u2 · n on Γ.

(5.34)

The two last lines of (5.34) are called transmission boundary conditions on the
interface Γ.

Proof. If u ∈ H1
0 (Ω) is a solution of (5.30), by application of the trace theorem

4.3.13, we must have u1 = u2 on Γ. If we set σ = k∇u and σi = σ|Ωi
= ki∇ui its

restriction to Ωi, we know that σ, as well as its divergence, belong to L2(Ω). Then,
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from theorem 4.4.7, the normal component σ · n has a meaning on Γ and we must
have σ1 · n = σ2 · n on Γ.

Conversely, we construct a variational formulation of (5.34) to show that it has a
unique solution which coincides with the solution u of (5.30). We look for ui ∈ H1(Ωi)
and we multiply each equation in Ωi by the same test function v ∈ H1

0 (Ω). By
integrating by parts and summing we obtain∫

Ω1

∇u1 ·∇v dx+
∫

Ω2

∇u2 ·∇v dx+
∫

Γ

(
k1
∂u1

∂n1
+ k2

∂u2

∂n2

)
v ds =

∫
Ω1

fv dx+
∫

Ω2

fv dx.

(5.35)
Since n1 = −n2 the integral on the interface Γ disappears because of the transmission
boundary conditions. On the other hand, if u is defined as u1 in Ω1 and u2 in Ω2,
the transmission condition u1 = u2 on Γ implies that u ∈ H1(Ω) from lemma 4.3.19.
Consequently, (5.35) is nothing other than the variational formulation (5.32). �

Exercise 5.2.10 Let Ω be an open bounded set and K a compact connected set of
RN included in Ω (we assume that Ω \ K is regular). Take f ∈ L2(Ω). We consider
a conduction problem in Ω where K is a perfect conductor, that is, the unknown u
(the temperature or the electrical potential, for example) is constant in K (this constant
is also unknown). We assume that there is no source term in K. This problem is
modelled by ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−∆u = f in Ω \K
u = C on ∂K∫
∂K

∂u

∂n
ds = 0 on ∂K

u = 0 on ∂Ω,

where C is an unknown constant to be determined. Find a variational formulation of this
boundary value problem and show the existence and uniqueness of a solution (u,C).

We can again generalize the above to more general operators with tensorial coefficients
A(x) = (aij(x))1≤i,j≤N . We assume that the matrix A is uniformly positive definite over Ω
(or coercive, or elliptic), that is, there exists a constant α > 0 such that, almost everywhere
in Ω,

A(x)ξ · ξ =
N∑

i,j=1

aij(x)ξiξj ≥ α|ξ|2 for all ξ ∈ R
N , (5.36)

and that it is uniformly bounded, that is, there exists a constant β > 0 such that, almost
everywhere in Ω,

|A(x)ξ| ≤ β|ξ| for all ξ ∈ R
N . (5.37)

We then define the operator

−div(A∇·) = −
N∑

i,j=1

∂

∂xi

(
aij(x)

∂

∂xj
·
)
, (5.38)
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and we consider the boundary value problem{
−div(A∇u) = f in Ω,
u = 0 on ∂Ω. (5.39)

Several physical motivations lead to models of the type of (5.39). In the example of heat
conduction, an anisotropic medium (where the conductivity is not the same in all directions)
is characterized by a symmetric conductivity matrix A(x) (not proportional to the identity).
The case of matrices A(x) which are nonsymmetric corresponds, for example, to taking
account of a convection effect. In effect, if we decompose A = As + Aa into its symmetric
part As = (A + At)/2 and its antisymmetric part Aa = (A − At)/2, a simple calculation
shows that

−div(A∇u) = −div(As∇u) + V · ∇u with Vj(x) =
N∑
i=1

1
2
∂(aji − aij)

∂xi
(x),

where V is interpreted as a convection velocity.

Exercise 5.2.11 Show under the hypotheses (5.36) and (5.37) that (5.39) has a unique (weak)
solution u ∈ H1

0 (Ω) if f ∈ L2(Ω).

We can replace the Dirichlet boundary condition in (5.39) by a Neumann boundary
condition which, for the operator (5.38), is written

∂u

∂nA
=
(
A(x)∇u

)
· n =

N∑
i,j=1

aij(x)
∂u

∂xj
ni = 0 on ∂Ω,

where ∂u
∂nA

is the so-called conormal derivative of u associated with the operator (5.38). This
Neumann condition is very natural from the point of view of physics since, if we introduce
the flux σ = A∇u, it implies that the normal component of the flux is zero on the boundary
σ · n = 0 over ∂Ω.

Exercise 5.2.12 For f ∈ L2(Ω), g ∈ L2(∂Ω), show the existence and uniqueness of the
solution of {

−div(A∇u) + u = f in Ω,
∂u

∂nA
= g on ∂Ω.

5.2.4 Qualitative properties

In this section we study some qualitative properties of solutions of the Laplacian with
Dirichlet boundary conditions. In all this section, Ω is an open bounded set of RN

and f ∈ L2(Ω). Theorem 5.2.2 gives a unique solution u ∈ H1
0 (Ω) of{

−∆u = f in Ω
u = 0 on ∂Ω. (5.40)
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Maximum principle

We start by recovering this property discovered in Chapter 1 (thanks to some ex-
plicit formulas in N = 1 dimension; see remark 1.2.10) and exploited numerically in
Chapter 2.

Theorem 5.2.22 (maximum principle) If f ≥ 0 almost everywhere in Ω, then
u ≥ 0 almost everywhere in Ω.

Remark 5.2.23 The maximum principle does nothing but express a property which
is perfectly natural from the point of view of physics: for example, in the context
of the stationary heat flow equation, if we have a heat source (f ≥ 0), the interior
temperature is always greater than the boundary temperature (u ≥ 0). The maxi-
mum principle remains true if we replace the Laplacian by the more general operator
(5.38) with variable coefficients in L∞(Ω) or even if we consider the problem (5.16)
with Neumann boundary conditions. The validity of the maximum principle is funda-
mentally linked to the ‘scalar’ character of the equation (that is, the unknown u has
values in R). This maximum principle will generally fail if the unknown u is vector
valued (for example, for the elasticity system (5.56)). •

Proof. We use the variational formulation (5.5) of (5.40) with v = u− = min(u, 0)
which belongs to H1

0 (Ω) from lemma 5.2.24 (since u = u+ + u−). We have∫
Ω
fu− dx =

∫
Ω
∇u · ∇u− dx =

∫
Ω

1u<0∇u · ∇u dx =
∫

Ω
|∇u−|2dx ≥ 0. (5.41)

But u− ≤ 0 and f ≥ 0 almost everywhere in Ω. Consequently, all the terms of (5.41)
are zero, and as u− ∈ H1

0 (Ω) we deduce that u− = 0, that is, u ≥ 0 almost everywhere
in Ω. �

Lemma 5.2.24 If v ∈ H1
0 (Ω), then v+ = max(v, 0) belongs to H1

0 (Ω) and

∇v+ = 1v>0∇v almost everywhere in Ω,

where 1v>0(x) is the function which equals 1 where v(x) > 0 and 0 elsewhere.

Remark 5.2.25 The proof of lemma 5.2.24 is long and technical (it can be omitted
in the first reading). We explain, nevertheless, why this proof is not simple, and
in particular why we cannot use lemma 4.3.19 which says that a function defined
‘piecewise’, which belongs to H1 in each subdomain and is continuous in the interfaces
between the subdomains, does actually belong to H1 in the whole domain. In effect,
we would apply lemma 4.3.19 to v on the subdomain v > 0 and to 0 on the subdomain
v < 0, and we should be done. The problem is that, in general, the boundary of these
two subdomains (defined by v = 0) is not regular (in the sense of definition 3.2.5)
even if v is a regular function. •
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Proof. We show first that, if v ∈ H1
0 (Ω) and if G(t) is a function from R into R, of class

C1 such that G(0) = 0 and G′(t) is bounded over R, then G(v) ∈ H1
0 (Ω) and ∇(G(v)) =

G′(v)∇v. By definition of H1
0 (Ω), there exists a sequence of functions vn ∈ C∞

c (Ω) which
converges to v in the norm of H1(Ω) (in particular, for a subsequence, vn and ∇vn converge
almost everywhere in Ω to v and ∇v respectively ; see corollary 3.3.3 of [4]). We have

|G(vn)−G(v)| ≤
(
sup
t∈R

|G′(t)|
)
|vn − v| , (5.42)

therefore G(vn) converge to G(v) in L2(Ω). On the other hand, for 1 ≤ i ≤ N ,

∣∣∣∣∂G(vn)∂xi
−G′(v)

∂v

∂xi

∣∣∣∣ ≤ ∣∣G′(vn)−G′(v)
∣∣ ∣∣∣ ∂v
∂xi

∣∣∣+(
sup
t∈R

|G′(t)|
)∣∣∣∂vn

∂xi
− ∂v

∂xi

∣∣∣ . (5.43)

As |G′(vn)−G′(v)|
∣∣ ∂v
∂xi

∣∣ converges almost everywhere to 0 (for a subsequence) and is
bounded above by 2 (sup |G′(t)|)

∣∣ ∂v
∂xi

∣∣ which belongs to L2(Ω), by application of the Lebesgue
dominated convergence theorem (see [4], [35], [38]) this sequence of functions converges to 0
in L2(Ω). The last term in (5.43) also converges to 0 in L2(Ω), therefore G(vn) is a Cauchy
sequence in H1

0 (Ω) which is a Hilbert space: it converges to a limit w ∈ H1
0 (Ω). By identi-

fication of the limits, we find that w = G(v) in L2(Ω) and that ∂w
∂xi

= G′(v) ∂v
∂xi

in L2(Ω),
from which we have the result.

We shall now approximate the function t → max(t, 0) by a sequence of functions Gn(t)
of the type above to show that v+ belongs to H1

0 (Ω). Let G(t) be a function of C1(R) such
that

G(t) = 0 if t ≤ 1
2
, 0 ≤ G′(t) ≤ 1 if

1
2
≤ t ≤ 1, G′(t) = 1 if 1 ≤ t.

We define Gn(t) = G(nt)/n for n ≥ 1, and we know by the arguments above that Gn(v) ∈
H1

0 (Ω) and
∂Gn(v)
∂xi

= G′
n(v) ∂v

∂xi
. On the other hand, we are satisfied that

|Gn(v)− v+| ≤ sup
t∈R

|Gn(t)− t+| ≤ 1
n
,

therefore Gn(v) converges to v+ in L2(Ω). We have also, for all 1 ≤ i ≤ N ,

∣∣∣∣∂Gn(v)
∂xi

− 1v>0
∂v

∂xi

∣∣∣∣ = |G′
n(v)− 1v>0|

∣∣∣ ∂v
∂xi

∣∣∣ ≤ 10<v<1/n

∣∣∣ ∂v
∂xi

∣∣∣ ,
and as 10<v<1/n converges to 0 almost everywhere, the Lebesgue dominated convergence
theorem proves that ∂Gn(v)

∂xi
converges to 1v>0

∂v
∂xi

in L2(Ω). We then deduce, as before, that
Gn(v) converges to v+ in H1

0 (Ω) and that ∇v+ = 1v>0∇v. �

Exercise 5.2.13 Show that the (nonlinear) mapping v → v+ is continuous from L2(Ω)
into itself, and also from H1(Ω) into itself (use the fact that ∇u = 0 almost everywhere
on the set u−1(0)).
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Regularity

We now show that the solution of an elliptic boundary value problem is more regular
than proved if the data is more regular than necessary.

Theorem 5.2.26 (regularity) Take an integer m ≥ 0. Let Ω be an open bounded
set of RN of class Cm+2. Let f ∈ Hm(Ω). Then, the unique solution u ∈ H1

0 (Ω) of
(5.40) belongs to Hm+2(Ω). Further, the mapping f → u is linear and continuous
from Hm(Ω) into Hm+2(Ω), that is, there exists a constant C > 0 such that

‖u‖Hm+2(Ω) ≤ C‖f‖Hm(Ω).

By immediate application of the regularity theorem 5.2.26 and of the theorem
4.3.25 (on the continuity of functions of Hm(Ω)), we obtain as a corollary the result
stated before in remark 5.2.3, that the weak solutions of elliptic PDEs are in fact
strong (or classical) solutions if the data is regular.

Corollary 5.2.27 If Ω is an open bounded set of RN of class Cm+2, if f ∈ Hm(Ω),
and if m > N/2, then the variational solution u ∈ H1

0 (Ω) of (5.40) is a strong solution
since it belongs to C2(Ω).

In particular, if Ω is an open bounded set of RN of class C∞, and if f ∈ C∞(Ω),
then the solution u ∈ H1

0 (Ω) of (5.40) is also in C∞(Ω).

Remark 5.2.28 It is important to understand the effect of these regularity results.
Assuming that ∆u, which is a particular combination of some second derivatives of
u, belongs to a certain function space, we deduce that all the second derivatives of u
belong to this same space! Of course, all these regularity results are obvious in N = 1
dimensions since the Laplacian coincides with the second derivative and therefore the
equation directly gives the regularity of this second derivative. •

Remark 5.2.29 The regularity theorem 5.2.26 and its corollary 5.2.27 remain valid
for Neumann boundary conditions. It generalizes also to the case of elliptic operators
with variable coefficients (as in Section 5.2.3). In this last case, we must add to the
usual hypothesis of coercivity of the coefficients, the hypothesis that the coefficients
are of class Cm+1 in Ω (when Ω is bounded regular of class Cm+2 and that f ∈ Hm(Ω)).

•

We shall not prove the regularity theorem 5.2.26 in all its generality but only in a
particular case which is more simple (we shall explain in remark 5.2.32 how to pass from the
particular case to the general case). We take Ω = RN , and for f ∈ L2(RN) we consider the
problem

−∆u+ u = f in R
N . (5.44)

There are no explicit boundary conditions in (5.44) as there is no boundary. Nevertheless,
the behaviour at infinity of the solution is a kind of boundary condition. By taking f in
L2(RN) we have chosen an implicit boundary condition which is to look for u in H1(RN),
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that is, in a certain sense, u(x) ‘tends to zero’ at infinity so that the integral
∫

RN |u|2dx
converges. A variational formulation of (5.44) is: find u ∈ H1(RN) such that∫

RN

(∇u · ∇v + uv) dx =
∫

RN

fv dx ∀ v ∈ H1(RN). (5.45)

A direct application of the Lax–Milgram theorem 3.3.1 proves that there exists a unique
solution u ∈ H1(RN) of (5.45). Finally, by identical reasoning to that already done in this
chapter, show that this solution of the variational formulation is also a solution of the PDE
(5.44). We can now state the regularity result.

Proposition 5.2.30 If f ∈ L2(RN), then the solution u ∈ H1(RN) of (5.44) belongs to
H2(RN). Likewise, if f ∈ Hm(RN) (with m ≥ 0), then u belongs to Hm+2(RN).

Proof. The essential ingredient of the proof is the ‘method of translation’. For h ∈ RN ,
h �= 0, we define a difference quotient

Dhv(x) =
v(x+ h)− v(x)

|h|

which belongs to H1(RN) if v ∈ H1(RN). We easily see that ∇(Dhv) = Dh(∇v) and that,
for v, φ ∈ L2(RN), we have a ‘discrete integration by parts formula’∫

RN

(Dhv)φdx =
∫

RN

v(D−hφ) dx.

Other properties of the quotient Dhv are given in lemma 5.2.31. In the variational formula-
tion (5.45) we take v = D−h(Dhu), and applying the rules above we obtain,∫

RN

(
|∇(Dhu)|2 + |Dhu|2

)
dx =

∫
RN

fD−h(Dhu) dx.

We deduce the upper bound

‖Dhu‖2
H1(RN ) ≤ ‖f‖L2(RN )‖D−h(Dhu)‖L2(RN ).

Now, by application of (5.48), we have also

‖D−h(Dhu)‖L2(RN ) ≤ ‖∇(Dhu)‖L2(RN ) ≤ ‖Dhu‖H1(RN ).

Therefore, we have ‖Dhu‖H1(RN ) ≤ ‖f‖L2(RN ), and in particular, for 1 ≤ i ≤ N ,∥∥∥Dh
∂u

∂xi

∥∥∥
L2(RN )

≤ ‖f‖L2(RN ),

which implies, from lemma 5.2.31 below, that ∂u
∂xi

belongs to H1(RN), that is, u ∈ H2(RN).
Suppose now that f ∈ H1(RN). We show that ∂u

∂xi
is the unique solution in H1(RN) of

−∆ui + ui =
∂f

∂xi
in R

N . (5.46)
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If this is true, by application of the preceding part of the proof, we deduce that ∂u
∂xi

belongs
to H2(RN), that is, u ∈ H3(RN) as seen. We write the variational formulation (5.45) with
the test function ∂φ

∂xi
for φ ∈ C∞

c (RN)∫
RN

(
∇u · ∇ ∂φ

∂xi
+ u

∂φ

∂xi

)
dx =

∫
RN

f
∂φ

∂xi
dx.

As u ∈ H2(RN) and f ∈ H1(RN), we can integrate by parts to obtain∫
RN

(
∇ ∂u

∂xi
· ∇φ+ ∂u

∂xi
φ
)
dx =

∫
RN

∂f

∂xi
φdx (5.47)

which, by density, remains true for all φ ∈ H1(RN). We establish that (5.47) is the variational
formulation of (5.46). Consequently, ∂u

∂xi
= ui is the unique solution in H1(RN) of (5.46).

The case f ∈ Hm(RN) ⇒ u ∈ Hm+2(RN) is proved by induction on m as we have done
for m = 1. �

Lemma 5.2.31 For v ∈ L2(RN), h ∈ RN , h �= 0, we define a difference quotient

Dhv(x) =
v(x+ h)− v(x)

|h| ∈ L2(RN).

If v ∈ H1(RN), we have the estimate

‖Dhv‖L2(RN ) ≤ ‖∇v‖L2(RN ). (5.48)

Conversely, let v ∈ L2(RN): if there exists a constant C, such that, for all h �= 0, we have

‖Dhv‖L2(RN ) ≤ C, (5.49)

then v ∈ H1(RN) and ‖e · ∇v‖L2(RN ) ≤ C for every unit vector e ∈ RN .

Proof. We prove (5.48) first of all. For v ∈ C∞
c (RN), we write

Dhv(x) =
∫ 1

0

h

|h| · ∇v(x+ th) dt,

which is bounded above by

|Dhv(x)|2 ≤
∫ 1

0

|∇v(x+ th)|2 dt.

Integrating in x it becomes

‖Dhv‖2
L2(RN ) ≤

∫ 1

0

∫
RN

|∇v(x+ th)|2 dx dt ≤
∫ 1

0

‖∇v‖2
L2(RN )dt = ‖∇v‖2

L2(RN ).

By density, the estimate (5.48) is true for every function of H1(RN).
Now let v ∈ L2(RN) which satisfies the estimate (5.49). We deduce that, for all φ ∈

C∞
c (RN), ∣∣∣∣

∫
RN

Dhvφ dx

∣∣∣∣ ≤ C‖φ‖L2(RN ).
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Now, by discrete integration by parts, we have∫
RN

(Dhv)φdx =
∫

RN

v(D−hφ) dx,

and, since φ is regular, if we set h = te with e ∈ RN , e �= 0, we have

lim
t→0

D−hφ(x) = −e · ∇φ(x).

Consequently, we deduce that, for 1 ≤ i ≤ N and all φ ∈ C∞
c (RN), we have

∣∣∣∣
∫

RN

v
∂φ

∂xi
dx

∣∣∣∣ ≤ C‖φ‖L2(RN ),

which is nothing other than the definition of v belonging to H1(RN) (see definition 4.3.1).
�

Remark 5.2.32 (delicate) Let us now explain how we pass from the case treated in propo-
sition 5.2.30 (with Ω = RN) to the general case of theorem 5.2.26. We use an argument of
local coordinates and a partition of unity as in the proof of proposition 4.4.2. Following the
notation of definition 3.2.5 of a regular open set (see also Figure 4.4), there exists a finite
covering of Ω by open sets (ωi)0≤i≤I and a partition of unity (θi)0≤i≤I such that

θi ∈ C∞
c (ωi), 0 ≤ θi(x) ≤ 1,

I∑
i=0

θi(x) = 1 in Ω.

The open set ω0 is in the interior of Ω (in fact ω0 ⊂ Ω) while the other open sets ωi, for
i ≥ 1, cover the boundary ∂Ω. Let u ∈ H1

0 (Ω) be the unique solution of (5.40). To show
the regularity of u =

∑I

i=0 θiu, we shall show the regularity of each of the terms θiu. For
the term θ0u we talk of the interior regularity of u. It is immediate that θ0u is the unique
solution in H1(RN) of

−∆(θ0u) + θ0u = f0 in R
N ,

with f0 = θ0(f − u) − 2∇θ0 · ∇u − u∆θ0 which belongs to L2(RN). By application of
proposition 5.2.30 we deduce therefore that θ0u ∈ H2(RN). This allows us to improve
the regularity of f0, and by successive application of proposition 5.2.30 we conclude that
f ∈ Hm(Ω) implies that θ0u ∈ Hm+2(Ω). To show the regularity of the other terms θiu
for i ≥ 1, we must initially ‘rectify’ the boundary to reduce it to the case Ω = RN

+ . We
must therefore show a result of the same type as proposition 5.2.30 but for Ω = RN

+ . This
is a little more delicate because when rectifying the boundary by local coordinates we have
to change the coefficients of the elliptic operator (the Laplacian becomes an operator with
variable coefficients as in Section 5.2.3): we refer to [6] for the details. To summarize, it is
enough that we have the regularity in all the space and in a half-space to prove the regularity
in a regular open bounded set. •
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Figure 5.2. Angular sector Ω with angle Θ (smaller or larger than π).

Example of singularity

Let us now see an example of singular solutions, that is, solutions which are nonreg-
ular. We consider a problem posed in an open nonregular set for which the regularity
theorem 5.2.26 and its corollary 5.2.27 are false. In particular, even if weak solutions
exist (that is, belonging to the Sobolev space H1(Ω)) they are not strong solutions
(that is, twice differentiable) for this problem. We work in N = 2 space dimensions,
and we consider an angular sector Ω defined in radial coordinates by (see Figure 5.2)

Ω = {(r, θ) such that 0 ≤ r < R and 0 < θ < Θ}

with 0 < R < +∞ and 0 < Θ ≤ 2π (recall that x1 = r cos θ and x2 = r sin θ).
We denote by Γ0 the part of the boundary of Ω where r = R, Γ1 where θ = 0,
and Γ2 where θ = Θ. This open set Ω has three ‘corners’, but only the origin (the
corner between the boundaries Γ1 and Γ2) can cause problems for the regularity in
the examples below. Physically, the case of an angle Θ < π is representative of a tip
effect, while the case Θ > π corresponds to a notch (or a fissure if Θ = 2π).

For an integer k ≥ 1, we study the following two boundary value problems⎧⎨
⎩
−∆u = 0 in Ω
u = cos

(
kπθ
Θ

)
on Γ0

∂u
∂n = 0 on Γ1 ∪ Γ2

(5.50)

and ⎧⎨
⎩
−∆u = 0 in Ω
u = sin

(
kπθ
Θ

)
on Γ0

u = 0 on Γ1 ∪ Γ2

(5.51)

We could study the regularity of the solutions of (5.50) and (5.51) in terms of whether
or not they belong to the Sobolev spaces Hm(Ω), but, for simplicity and to keep an
obvious physical meaning in our results, we shall simply be interested in the behaviour
of the gradient ∇u in a neighbourhood of the origin. From the viewpoint of physics
or mechanics, this gradient corresponds to a heat flux, an electric field, or a stress
field: it is important to know if this quantity is continuously bounded or not at the
origin.
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Lemma 5.2.33 There exists a unique weak solution of (5.50) in H1(Ω), given by the
formula

u(r, θ) =
( r
R

)kπ/Θ
cos

(
kπθ

Θ

)
. (5.52)

Likewise, there exists a unique weak solution of (5.51) in H1(Ω), given by the formula

u(r, θ) =
( r
R

)kπ/Θ
sin

(
kπθ

Θ

)
. (5.53)

In the two cases, if k = 1 and π < Θ, then the gradient ∇u is not bounded at the
origin, while if k ≥ 2 or π ≥ Θ, then the gradient ∇u is continuous at the origin.

Remark 5.2.34 When we impose more general Dirichlet data in problems (5.50)
and (5.51), we can decompose them into a Fourier series in θ on Γ0 and apply lemma
5.2.33 to each term of the series (nevertheless, this Dirichlet data on Γ0 must be
compatible with the boundary conditions on Γ1 and Γ2). We deduce that, if Θ ≤ π,
then the solutions of (5.50) and (5.51) are always regular no matter what the Dirichlet
data on Γ0. Conversely, if Θ > π, the solutions of (5.50) and (5.51) may be singular.

Physically, we interpret this regularity result by saying that a notch (Θ > π)
causes a singularity, as opposed to a point (Θ ≤ π). In this case, it is sometimes
necessary to re-examine the modelling since a heat flux, electric field, or a stress field
which is infinite at the origin does not have a physical sense. Two approximations in
the model may be at the origin of this nonphysical singularity: on the one hand, an
angle is never ‘perfect’ but often a little ‘rounded’, on the other hand, when∇u is very
large, we leave the domain of validity of the linear equations that we are studying
(typically, a constitutive law such as Fourier’s law (1.3) becomes nonlinear as the
thermal conductivity is itself a function of ∇u). In any event, a regularity result gives
important results on the limits of application of the model.

In the case where Θ = 2π, the open set Ω is a cracked domain and lemma 5.2.33
has a very important mechanical interpretation if problems (5.50) and (5.51) model
the antiplane shearing of a cylinder with base Ω (see exercise 5.3.7). In this case, the
coefficient of the term of order k = 1 in the Fourier series (which leads to the singular
behaviour at the origin) is called the stress intensity factor which is often used in
models of crack propagation or rupture (see, for example, [26]). •

Remark 5.2.35 The singular solutions given by lemma 5.2.33 are not only theo-
retical counterexamples: they can be shown numerically (see Figure 6.18). We also
add that these singular solutions are a source of difficulty for numerical methods (see
remark 6.3.15) which confirms the interest in their study. •

Remark 5.2.36 We can also consider the case of Dirichlet boundary conditions on
Γ1 and Neumann on Γ2 (in this case, we must take u = sin(kπθ2Θ ) on Γ0). The only
difference relates to the case kπ = Θ for which the gradient ∇u is bounded but not
continuous at the origin. In particular, we find that for k = 1 and π = Θ, although
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there is no corner, the solution is singular. This is due to the change of boundary
conditions on a regular part of the boundary. •

Proof. We limit ourselves to treating the problem (5.50) with Neumann boundary
conditions in the corner (the other problem (5.51) is treated exactly in the same way).
We start by ‘lifting’ the nonhomogeneous boundary conditions by defining a function
u0 ∈ H1(Ω) whose trace on the boundary coincides with these boundary conditions.
We can easily check that

u0(r, θ) =
r2

R2 cos
(
kπθ

Θ

)

is satisfactory, that is, u = u0 + v where v is the solution of a homogeneous problem

⎧⎨
⎩
−∆v = ∆u0 in Ω
v = 0 on Γ0
∂v
∂n = 0 on Γ1 ∪ Γ2.

(5.54)

We remark that this lifting is possible since the data on Γ0 is compatible with the
boundary conditions on Γ1 and Γ2, that is, in this case its derivative in θ (that is, its
normal derivative) is zero for θ = 0 or Θ. As ∆u0 belongs to L2(Ω), there exists a
unique solution of (5.54) in H1(Ω), and consequently (5.50) also has a unique solution
in H1(Ω). We verify that (5.52) is precisely this unique solution. Recall that

∆φ(r, θ) =
∂2φ

∂r2 +
1
r

∂φ

∂r
+

1
r2

∂2φ

∂θ2 .

A simple calculation shows that

(
∂2

∂r2 +
1
r

∂

∂r

)( r
R

)kπ/Θ
=
(
kπ

Θ

)2 1
r2

( r
R

)kπ/Θ
,

therefore (5.52) is also a solution of (5.50). We also see easily that (5.52) belongs to
H1(Ω). Finally, the formula for the gradient in radial coordinates in the basis (er, eθ)

∇φ(r, θ) =
∂φ

∂r
er +

1
r

∂φ

∂θ
eθ

gives us

∇u =
( r
R

)(kπ/Θ)−1 kπ

Θ

(
cos

(
kπθ

Θ

)
er − sin

(
kπθ

Θ

)
eθ

)

which, clearly, is not bounded at the origin if 0 < kπ < Θ and is continuous at the
origin if kπ > Θ. The limiting case kπ = Θ also corresponds to a continuous gradient
since in fact u = x1! �
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5.3 Solution of other models

5.3.1 System of linearized elasticity

We apply the variational approach to the solution of the system of linearized elasticity
equations. We start by describing the mechanical model which we have seen in a
particular case in Chapter 1. These equations model the deformations of a solid under
the hypothesis of small deformations and small displacements (this hypothesis allows
us to obtain linear equations; from which we have the name linear elasticity, see for
example, [36]). We consider the stationary elasticity equations, that is, independent
of time. Let Ω be an open bounded set of RN . Let a force f(x) be a function from
Ω into RN . The unknown u (the displacement) is also a function from Ω into RN .
The mechanical modelling uses the deformation tensor, denoted by e(u), which is a
function with values in the set of symmetric matrices

e(u) =
1
2

(
∇u + (∇u)t

)
=

1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
1≤i, j≤N

,

as well as the stress tensor σ (another function with values in the set of symmetric
matrices) which is related to e(u) by Hooke’s law

σ = 2µe(u) + λ tr(e(u)) I,

where λ and µ are the Lamé coefficients of the homogeneous isotropic material which
occupies Ω. For thermodynamic reasons the Lamé coefficients satisfy

µ > 0 and 2µ + Nλ > 0.

We add, to this constitutive law, the balance of forces in the solid

−divσ = f in Ω

where, by definition, the divergence of σ is the vector of components

divσ =

⎛
⎝ N∑
j=1

∂σij
∂xj

⎞
⎠

1≤i≤N

.

Using the fact that tr(e(u)) = divu, we deduce the equations for 1 ≤ i ≤ N

−
N∑
j=1

∂

∂xj

(
µ

(
∂ui
∂xj

+
∂uj
∂xi

)
+ λ(divu)δij

)
= fi in Ω (5.55)

with fi and ui, for 1 ≤ i ≤ N , the components of f and u in the canonical basis of RN .
By adding a Dirichlet boundary condition, and by using vector notation, the boundary
value problem is {

−div (2µe(u) + λ tr(e(u)) I) = f in Ω
u = 0 on ∂Ω. (5.56)
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We can state and prove a first existence and uniqueness result for the system of linear
elasticity.

Theorem 5.3.1 Let Ω be an open bounded set of RN . Let f ∈ L2(Ω)N . There exists
a unique (weak) solution u ∈ H1

0 (Ω)N of (5.56).

Proof. To find the variational formulation we multiply each equation (5.55) by a
test function vi (which is zero on the boundary ∂Ω to take account of the Dirichlet
boundary conditions) and we integrate by parts to obtain

∫
Ω
µ

N∑
j=1

(
∂ui
∂xj

+
∂uj
∂xi

)
∂vi
∂xj

dx +
∫

Ω
λdivu

∂vi
∂xi

dx =
∫

Ω
fivi dx.

We sum these equations, for i going from 1 to N , in order to obtain the divergence
of the function v = (v1, . . . , vN ) and to simplify the first integral as

N∑
i,j=1

(
∂ui
∂xj

+
∂uj
∂xi

)
∂vi
∂xj

=
1
2

N∑
i,j=1

(
∂ui
∂xj

+
∂uj
∂xi

)(
∂vi
∂xj

+
∂vj
∂xi

)
= 2e(u) · e(v).

Choosing H1
0 (Ω)N as the Hilbert space, we obtain the variational formulation: find

u ∈ H1
0 (Ω)N such that∫
Ω

2µe(u) · e(v) dx +
∫

Ω
λ divu divv dx =

∫
Ω
f · v dx ∀ v ∈ H1

0 (Ω)N . (5.57)

We easily see that each term of (5.57) has a meaning.
To be able to apply the Lax–Milgram theorem 3.3.1 to the variational formulation

(5.57), the only delicate hypothesis to verify is the coercivity of the bilinear form. We
proceed in three stages. First, we show that∫

Ω
2µ|e(v)|2dx +

∫
Ω
λ|divv|2dx ≥ ν

∫
Ω
|e(v)|2dx,

with ν = min(2µ, (2µ + Nλ)) > 0. For this, we use an algebraic inequality: if we
denote by A · B =

∑N
i,j=1 aijbij the usual scalar product of symmetric matrices, we

can decompose every real symmetric matrix A in the form

A = Ad + Ah with Ad = A− 1
N

trA I and Ah =
1
N

trA I,

in such a way that Ad ·Ah = 0 and |A|2 = |Ad|2 + |Ah|2. We then have

2µ|A|2 + λ( trA)2 = 2µ|Ad|2 + (2µ + Nλ)|Ah|2 ≥ ν|A|2

with ν = min(2µ, (2µ + Nλ)), which gives the result for A = e(u). The fact that
we assume ν > 0 is not a problem: the mechanical and thermodynamical arguments
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which lead to the inequalities µ > 0 and (2µ+Nλ) > 0 are exactly the same. Second,
we use Korn’s inequality (or a simple case of this inequality, see lemma 5.3.2) which
gives a constant C > 0 such that∫

Ω
|e(v)|2dx ≥ C

∫
Ω
|∇v|2dx

for all v ∈ H1
0 (Ω)N . Third, we use the Poincaré inequality (component by component,

see proposition 4.3.10) which gives a constant C > 0 such that, for all v ∈ H1
0 (Ω)N ,∫

Ω
|v|2dx ≤ C

∫
Ω
|∇v|2dx.

In summary, these three inequalities lead to the coercivity∫
Ω

2µ|e(v)|2dx +
∫

Ω
λ|divv|2dx ≥ C‖v‖2

H1(Ω).

The Lax–Milgram theorem 3.3.1 therefore gives the existence and uniqueness of the
solution of the variational formulation (5.57). Finally, to show that the unique solution
of (5.57) is also a solution of the boundary value problem (5.56), we proceed as in the
proof of the theorem 5.2.2 for the Laplacian. �

Lemma 5.3.2 Let Ω be an open set of RN . For every function v ∈ H1
0 (Ω)N , we have

‖∇v‖L2(Ω) ≤
√

2‖e(v)‖L2(Ω). (5.58)

Proof. Take v ∈ C∞c (Ω)N . By integration by parts we obtain

2
∫

Ω
|e(v)|2dx =

∫
Ω
|∇v|2dx +

∫
Ω
∇v · (∇v)tdx =

∫
Ω
|∇v|2dx +

∫
Ω
|divv|2dx.

By density of C∞c (Ω) in H1
0 (Ω), we deduce (5.58). �

Exercise 5.3.1 Show that the mapping of L2(Ω)N into H1
0 (Ω)N , which maps each f

into a u, the unique weak solution of (5.56), is linear and continuous.

The analysis of the boundary value problem (5.56) with Dirichlet boundary con-
ditions on all the boundary ∂Ω is a little misleading in its simplicity. In effect, to
introduce other boundary conditions (for example, Neumann) on part of the bound-
ary, the proof of the coercivity of the variational formulation becomes much more
difficult since we must replace the elementary inequality of lemma 5.3.2 by its gener-
alization, which is more technical, called Korn’s inequality (see lemma 5.3.3 below).
Recall that we cannot, in general, be content with a Dirichlet condition on the whole
of the boundary ∂Ω since it means that the solid is fixed and immobile on its bound-
ary. In practice, all the boundary is not fixed and often a part of the boundary is free
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to move, or surface forces are applied to another part. These two cases are modelled
by Neumann boundary conditions which are written here

σn = g on ∂Ω, (5.59)

where g is a vector valued function. The Neumann condition (5.59) is interpreted by
saying that g is a force applied on the boundary. If g = 0, we say that no force is
applied and the boundary can move without restriction: we say that the boundary is
free.

We shall now consider the elasticity system with mixed boundary conditions (a
mixture of Dirichlet and of Neumann), that is,⎧⎨

⎩
−div (2µe(u) + λ tr(e(u)) I) = f in Ω
u = 0 on ∂ΩD
σn = g on ∂ΩN ,

(5.60)

where (∂ΩN , ∂ΩD) is a partition of ∂Ω such that the surface measures of ∂ΩN and
∂ΩD are nonzero (see Figure 4.1). The analysis of this new boundary value problem
is more complicated than in the case of Dirichlet boundary condition: we must use
Korn’s inequality below.

Lemma 5.3.3 (Korn’s inequality) Let Ω be a regular open bounded set of class C1

of RN . There exists a constant C > 0 such that, for every function v ∈ H1(Ω)N ,
we have

‖v‖H1(Ω) ≤ C
(
‖v‖2

L2(Ω) + ‖e(v)‖2
L2(Ω)

)1/2
. (5.61)

The inequality (5.61) is not banal: in effect, its left-hand side contains all the
partial derivatives of v and its right-hand side involves only certain linear combinations
of partial derivatives. As the inverse of (5.61) is obvious, we deduce that the two
sides of (5.61) are equivalent norms. The proof of the lemma 5.3.3 is complicated and
is outside the scope of this course (see, for example, [15]). We remark that we have
proved Korn’s inequality (5.61) when v belongs to H1

0 (Ω)N . In effect, in this case a
combination of lemma 5.3.2 and of the Poincaré inequality (for an open bounded set)
gives the inequality (5.61).

The mechanical interpretation of Korn’s inequality is the following. The elastic
energy, proportional to the norm of the deformation tensor e(u) in L2(Ω), controls
the norm of the displacement u in H1(Ω)N , with the addition of the norm of u in
L2(Ω). As we shall see in exercise 5.3.2, this last addition is to take account of the
rigid body motion, that is, the displacement u which is nonzero but with elastic
energy zero.

Exercise 5.3.2 Let Ω be an open connected set of RN . Let the set R be the ‘rigid
motions’ of Ω defined by

R =
{
v(x) = b + Mx with b ∈ RN ,M = −M t an antisymmetric matrix

}
. (5.62)

Show that v ∈ H1(Ω)N satisfies e(v) = 0 in Ω if and only if v ∈ R.
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We can now state a second existence and uniqueness result for the system of linear
elasticity with mixed boundary conditions.

Theorem 5.3.4 Let Ω be a regular open bounded connected set of class C1 of RN .
Let f ∈ L2(Ω)N and g ∈ L2(∂ΩN )N . We define the space

V =
{
v ∈ H1(Ω)N such that v = 0 on ∂ΩD

}
. (5.63)

There exists a unique (weak) solution u ∈ V of (5.60) which depends linearly and
continuously on the data f and g.

Proof. The variational formulation of (5.60) is obtained as in the proof of the theorem
5.3.1. The space V , defined by (5.63), contains the Dirichlet boundary condition on
∂ΩD and is a Hilbert space as a closed subspace of H1(Ω)N (by application of the
trace theorem 4.3.13). We then obtain the variational formulation: find u ∈ V such
that∫

Ω
2µe(u) · e(v) dx +

∫
Ω
λ divu divv dx =

∫
Ω
f · v dx +

∫
∂ΩN

g · v ds ∀ v ∈ V. (5.64)

To be able to apply the Lax–Milgram theorem 3.3.1 to the variational formulation
(5.64), the only delicate hypothesis to be verified is once again the coercivity of the
bilinear form. In other words, we must show that there exists a constant C > 0 such
that, for every function v ∈ V , we have

‖v‖H1(Ω) ≤ C‖e(v)‖L2(Ω). (5.65)

First, we note that ‖e(v)‖L2(Ω) is a norm over V . The only point to be verified which
should delay us is that ‖e(v)‖L2(Ω) = 0 implies that v = 0. Suppose therefore that
‖e(v)‖L2(Ω) = 0: then exercise 5.3.2 shows that v is a rigid displacement, that is,
v(x) = b + Mx with M = −M t. We easily check that, if M �= 0, then the points x,
solutions of b+Mx = 0, form a line in R3 and a point in R2. Now v(x) = 0 on ∂ΩD,
which has nonzero surface measure, therefore M = 0 and b = 0. Let us now show
(5.65) by contradiction (see remark 4.3.18). If (5.65) is false, there exists a sequence
vn ∈ V such that

‖vn‖H1(Ω) = 1 > n‖e(vn)‖L2(Ω).

In particular, the sequence e(vn) tends to 0 in L2(Ω)N
2
. On the other hand, as vn

is bounded in H1(Ω)N , by application of the Rellich theorem 4.3.21, there exists a
subsequence vn′ which converges in L2(Ω)N . Korn’s inequality in lemma 5.3.3 implies
that

‖vn′ − vp′‖2
H1(Ω) ≤ C‖vn′ − vp′‖2

L2(Ω) + ‖e(vn′)− e(vp′)‖2
L2(Ω),

from which we deduce that the sequence vn′ is Cauchy in H1(Ω)N , and therefore
converges to a limit v∞ which satisfies ‖e(v∞)‖L2(Ω) = 0. As this is a norm we
deduce that the limit is zero, v∞ = 0, which is a contradiction with the fact that
‖vn′‖H1(Ω) = 1.
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The interpretation of the variational formulation (5.64) to recover the equation
(5.60) is similar to that we have made in the proof of the theorem 5.2.14 on the
Laplacian with Neumann boundary conditions. Finally, the mapping (f, g) → u is
linear. To show that it is continuous from L2(Ω)N ×L2(∂Ω)N into H1(Ω)N , we take
v = u in the variational formulation (5.64). By using the coercivity of the bilinear
form and by bounding the linear form above, we obtain the energy estimate

C‖u‖2
H1(Ω) ≤ ‖f‖L2(Ω)‖u‖L2(Ω) + ‖g‖L2(∂ΩN )‖u‖L2(∂Ω). (5.66)

Thanks to the Poincaré inequality and to the trace theorem, we can bound the term
on the right of (5.66) above by C

(
‖f‖L2(Ω) + ‖g‖L2(∂ΩN )

)
‖u‖H1(Ω), which proves the

continuity. �

Remark 5.3.5 For the elasticity system with Dirichlet (or Neumann) boundary con-
ditions, we have the same regularity results as with the Laplacian (see theorem 5.2.26).
Conversely, as opposed to the Laplacian, there is no maximum principle for the elas-
ticity system (as for most systems of several equations). We give a numerical coun-
terexample in Figure 5.3: in the absence of forces, f = 0, the boundary conditions
are Neumann on the top and bottom faces of the domain, and Dirichlet with u = 0
on the right and u = e1 on the left. This amounts to stretching the domain therefore
leading to a vertical displacement which changes sign. •

Figure 5.3. Numerical counterexample for the maximum principle in elasticity. On
the left, the domain is at rest, and on the right, the domain deforms where the arrows
represent the displacement (its vertical component changes sign).

We have already said that the variational formulation is nothing other than the
principle of virtual work in mechanics. Following this analogy, the space V is the
space of kinematically admissible displacements v, and the space of symmetric
tensors σ ∈ L2(Ω)N

2
, such that −divσ = f in Ω and σn = g on ∂ΩN is that of tensors

of statically admissible stress tensors. As for the Laplacian, the solution of the
variational formulation (5.64) attains the minimum of a mechanical energy defined
for v ∈ V by

J(v) =
1
2

∫
Ω

(
2µ|e(v)|2 + λ|divv|2

)
dx−

∫
Ω
f · v dx−

∫
∂ΩN

g · v ds. (5.67)

In mechanical terms, J(v) is the sum of the energy of deformation

1
2

∫
Ω

(
2µ|e(v)|2 + λ|divv|2

)
dx
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and of the potential energy of exterior forces (or work of exterior forces up to
a given sign)

−
∫

Ω
f · v dx−

∫
∂ΩN

g · v ds.

Exercise 5.3.3 Show that u ∈ V is the unique solution of the variational formulation
(5.64), if and only if u attains the minimum over V of the energy J(v) defined by (5.67).
(Hint: as a starting point we can take proposition 3.3.4).

Exercise 5.3.4 Let Ω be an open bounded connected set of RN . We consider the
elasticity system with the Neumann condition (5.59) over all the boundary ∂Ω. Show
that the equilibrium condition∫

Ω
f · (Mx + b) dx +

∫
∂Ω

g · (Mx + b) ds = 0 ∀b ∈ RN , ∀M = −M t ∈ RN×N

is a necessary and sufficient condition for existence and uniqueness of a solution inH1(Ω)N

(the uniqueness being obtained up to the addition of a given ‘rigid body motion’, see
(5.62)).

Remark 5.3.6 When the Lamé coefficients are constant and the boundary condi-
tions are Dirichlet and homogeneous, the elasticity equations may be rearranged to
give the Lamé system (presented in Chapter 1){

−µ∆u− (µ + λ)∇(divu) = f in Ω
u = 0 on ∂Ω. (5.68)

The advantage of (5.68) with respect to (5.56) is that the tensor e(u) has disappeared
and that we can therefore do without Korn’s inequality. We should, however, draw
attention to the fact that (5.68) is no longer equivalent to (5.56) if the Lamé coefficients
depend on x or if we have Neumann conditions on a part of the boundary. From a
mechanical point of view, the only correct model in this case is (5.56). •

Exercise 5.3.5 We assume that Ω is an open bounded set of RN and that f ∈ L2(Ω)N .
Show the existence and uniqueness of the solution of (5.68) in H1

0 (Ω)N without using
Korn’s inequality. Verify that we can weaken the hypotheses of positivity on the Lamé
coefficients by assuming only that µ > 0 and 2µ + λ > 0.

Exercise 5.3.6 Verify the equivalence of (5.68) and (5.56) if λ and µ are constants.
Show that (5.68) and (5.56) are no longer equivalent if λ and µ are (regular) functions,
even if we replace the vector equation (5.68) by

−div(µ∇u)−∇((µ + λ)divu) = f in Ω.
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In a very particular case, called the problem of antiplane shearing, the system
of linear elasticity simplifies considerably as it reduces to the solution of a boundary
value problem for the Laplacian. This example therefore allows us to make a direct
link between the elasticity equations and the Laplacian, which explains why the results
for the two models are very similar overall. This particular case of antiplane shearing
is studied in the following exercise.

Exercise 5.3.7 The aim of this exercice is to find a particular solution of the system of
linear elasticity in the case of an antiplane shearing force. We consider a homogeneous
cylindrical domain Ω of length L > 0 and with section ω, where ω is a connected regular
open bounded set of RN−1 (the Lamé coefficients λ and µ are constants). In other words,
Ω = ω × (0, L), and for x ∈ Ω, we denote x = (x′, xN ) with 0 < xN < L and x′ ∈ ω.
We consider the following boundary value problem⎧⎪⎪⎨

⎪⎪⎩
−div (2µe(u) + λ tr(e(u)) I) = 0 in Ω
σn = g on ∂ω × (0, L)
u′ = 0 on ω × {0, L}
(σn) · n = 0 on ω × {0, L}

(5.69)

where we have used the notation, for a vector v = (v1, . . . , vN ), v = (v′, vN ) with
v′ ∈ RN−1 and vN ∈ R. We assume that the surface force g is of the ‘antiplane shearing’
type , that is g′ = (g1, . . . , gN−1) = 0 and gN only depends on x′.

Show that the unique solution of (5.69) is given by u = (0, . . . , 0, uN ) where uN (x′)
is the solution of the following Laplacian{

−∆′uN = 0 in ω
µ∂uN∂n = gN on ∂ω

where ∆′ is the Laplacian in the variable x′ ∈ RN−1.

Exercise 5.3.8 Generalize exercise 5.3.7 to the case of a lateral boundary condition of
the type

u′ = 0 and (σn) · eN = gN on ∂ω × (0, L).

Exercise 5.3.9 With the help of the variational approach show the existence and unique-
ness of the solution of the plate equation⎧⎪⎨

⎪⎩
∆ (∆u) = f in Ω
u = 0 on ∂Ω
∂u

∂n
= 0 on ∂Ω

(5.70)

where f ∈ L2(Ω). Hint: we notice that, if u ∈ H2
0 (Ω), then ∂u

∂xi
∈ H1

0 (Ω) and

∫
Ω
|∆u|2dx =

N∑
i,j=1

∫
Ω

∣∣∣∣ ∂2u

∂xi∂xj

∣∣∣∣
2

dx.
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We admit the following regularity result: if w ∈ L2(Ω) and f ∈ L2(Ω) satisfy for all
v ∈ C∞c (Ω)

−
∫

Ω
w∆v dx =

∫
Ω
fv dx,

then (θw) ∈ H2(Ω) whatever the function θ ∈ C∞c (Ω).

5.3.2 Stokes equations

We apply the variational approach to the solution of the system of Stokes equations.
Let Ω be a connected open bounded set of RN . Let a force f(x), be a function from Ω
into RN . There are two unknowns: the velocity u which is a vector function, and the
pressure p which is a scalar function. In vector notation, the boundary value problem
considered is ⎧⎨

⎩
∇p− µ∆u = f in Ω
divu = 0 in Ω
u = 0 on ∂Ω

(5.71)

where µ > 0 is the viscosity of the fluid. The second equation of (5.71) is the in-
compressibility constraint for the fluid, while the first is the balance of forces. The
Dirichlet boundary conditions model the adherence of the fluid to the walls.

Remark 5.3.7 The Stokes problem (5.71) is a simplified model of the flow of a
viscous incompressible fluid (in a stationary regime). In effect, the ‘real’ equations
for the movement of such a fluid are the stationary Navier–Stokes equations (see, for
example, [39]) ⎧⎨

⎩
(u · ∇)u +∇p− µ∆u = f in Ω
divu = 0 in Ω
u = 0 on ∂Ω.

(5.72)

When the velocity of the fluid u is small, the nonlinear term (u ·∇)u, being quadratic
in u, becomes negligible. We then obtain the Stokes equations. We must therefore be
aware that the domain of validity of this model is limited by this hypothesis of small
velocity. •

Theorem 5.3.8 Let Ω be a regular open bounded connected set of class C1 of
RN . Take f ∈ L2(Ω)N . There exists a unique (weak) solution u ∈ H1

0 (Ω)N and
p ∈ L2(Ω)/R of (5.71) (the pressure is unique up to an additive constant in Ω).

Proof. To find the variational formulation we multiply each equation of the system
(5.71) by a test function vi (which is zero on the boundary ∂Ω to take account of the
Dirichlet boundary conditions), we integrate by parts and we sum for i going from 1
to N (to obtain the divergence of the function v = (v1, . . . , vN ))∫

Ω
µ∇u · ∇v dx−

∫
Ω
p divv dx =

∫
Ω
f · v dx,



SOLUTION OF OTHER MODELS 145

with the notation∇u·∇v =
∑N
i=1∇ui ·∇vi. Taking into account the incompressibility

condition divu = 0, we choose as the Hilbert space the following subspace of H1
0 (Ω)N

V =
{
v ∈ H1

0 (Ω)N such that divv = 0 a.e. in Ω
}
, (5.73)

which is a Hilbert space as a closed subspace of H1
0 (Ω)N . We then find the variational

formulation:

find u ∈ V such that
∫

Ω
µ∇u · ∇v dx =

∫
Ω
f · v dx ∀ v ∈ V, (5.74)

in which the pressure has disappeared! We see easily that each term of (5.74) has a
meaning.

The application of the Lax–Milgram theorem to the variational formulation (5.74)
poses no problem. In particular, the coercivity of the bilinear form is obvious in
H1

0 (Ω)N (thanks to the Poincaré inequality) therefore in V which is a subspace of
H1

0 (Ω)N .
The most delicate point here is to show that the unique solution of (5.74) is a

solution of the boundary value problem (5.71). Let us explain the difficulty while
assuming temporarily that u is regular, that is belongs to H2(Ω)N . By integration
by parts, (5.74) implies that∫

Ω
(µ∆u + f) · v dx = 0 ∀ v ∈ V,

but we cannot deduce that (µ∆u + f) = 0 since the orthogonal complement of V in
L2(Ω)N is not empty! In effect, we see easily that if φ is a regular function, then, for
all v ∈ V , we have ∫

Ω
∇φ · v dx = −

∫
Ω
φdivv dx = 0,

that is the orthogonal complement of V contains at least all the gradients. In fact
de Rham’s theorem 5.3.9 tells us that the orthogonal complement of V coincides
exactly with the space of gradients.

Thanks to de Rham’s theorem 5.3.9 we can finish as follows. We set

L(v) =
∫

Ω
µ∇u · ∇v dx−

∫
Ω
f · v dx,

which is a continuous linear form over H1
0 (Ω)N and zero over V . Consequently, there

exists p ∈ L2(Ω), unique up to a given constant, such that

L(v) =
∫

Ω
pdivv dx ∀ v ∈ H1

0 (Ω)N .

If we set σ = µ∇u− p I which belongs to L2(Ω)N
2
, we therefore have∣∣∣∣

∫
Ω
σ · ∇v dx

∣∣∣∣ =
∣∣∣∣
∫

Ω
f · v dx

∣∣∣∣ ≤ C‖v‖L2(Ω),
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which proves that σ has a weak divergence in L2(Ω)N , and we have −divσ = f .
Consequently, we deduce that

∇p− µ∆u = f almost everywhere in Ω. (5.75)

On the other hand, as u ∈ V , divu is zero in L2(Ω), this implies

divu = 0 almost everywhere in Ω.

Likewise, the boundary conditions are interpreted by the trace theorem and we obtain
u = 0 almost everywhere on ∂Ω. �

We now state the very profound and difficult result which allows us to recover the
pressure from the variational formulation (5.74) of the Stokes system where it has
disappeared! Its proof is far beyond the framework of this course (note in passing
that it is not easy to find in the literature an ‘elementary’ and self-contained proof;
see nevertheless [21]).

Theorem 5.3.9 (Rham) Let Ω be a regular open bounded connected set of class C1

of RN . Let L be a continuous linear form over H1
0 (Ω)N . Then L is zero on V if and

only if there exists a function p ∈ L2(Ω) such that

L(v) =
∫

Ω
pdivv dx ∀ v ∈ H1

0 (Ω)N . (5.76)

Further p is unique up to a given additive constant.

Remark 5.3.10 For Stokes as for the Laplacian or for elasticity we can also define
Neumann boundary conditions which are written

µ
∂u

∂n
− pn = g on ∂Ω, (5.77)

where g is a (vector valued) function of L2(∂Ω)N . As for elasticity, the Neumann
condition (5.77) is interpreted by saying that g is a force applied on the boundary. •

Remark 5.3.11 For the Stokes system (5.71) we have the same regularity results as
for the Laplacian or the system of linear elasticity (see theorem 5.2.26). Conversely,
the Stokes equations being a system of several equations, there is no maximum prin-
ciple (this is the same situation as for the elasticity system). Physically, because of
the incompressibility condition of the fluid we understand this very well. In effect,
if we study a Stokes flow in a duct with a pronounced narrowing, as the flux is con-
stant across a section, the velocity of the fluid is necessarily higher in the narrow part
than at the entrance or exit (which violates the maximum principle in the absence of
exterior forces). •
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As for the elasticity system there exists a principle of minimization of the energy
(called viscous dissipation) for the Stokes equations.

Exercise 5.3.10 Let V be the space velocity field with zero divergence defined by (5.73).
Let J(v) be the energy defined for v ∈ V by

J(v) =
1
2

∫
Ω
µ|∇v|2dx−

∫
Ω
f · v dx. (5.78)

Let u ∈ V be the unique solution of the variational formulation (5.74). Show that u is also
the unique point of minimum of the energy, that is, J(u) = minv∈V J(v). Conversely,
show that, if u ∈ V is a minimum point of the energy J(v), then u is the unique solution
of the variational formulation (5.74).

In the following exercise we shall see that in certain very particular cases the
Stokes equations reduce to the Laplacian.

Exercise 5.3.11 The aim of this exercise is to find a particular solution of the Stokes
equations in a rectangular channel with uniform section, called the Poiseuille profile. Take
Ω = ω× (0, L) where L > 0 is the length of the channel and ω its section, a regular open
bounded connected set of RN−1. For x ∈ Ω, we denote x = (x′, xN ) with 0 < xN < L
and x′ ∈ ω. We consider the following boundary value problem⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∇p− µ∆u = 0 in Ω
divu = 0 in Ω
u = 0 on ∂ω × (0, L)

pn− µ
∂u

∂n
= p0n on ω × {0}

pn− µ
∂u

∂n
= pLn on ω × {L}

(5.79)

where p0 and pL are two constant pressures. Show that the unique solution of (5.79)
is p(x) = p0 + xN

L (pL − p0), and u = (0, . . . , 0, uN ) where uN is the solution of the
following Laplacian {

−µ∆′uN = −(pL − p0)/L in ω
uN = 0 on ∂ω

where ∆′ is the Laplacian in the variable x′ ∈ RN−1.

Exercise 5.3.12 Generalize exercise 5.3.11 to the case of Navier–Stokes
equations (5.72).
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6 Finite element method

6.1 Variational approximation

6.1.1 Introduction

In this chapter, we present the method of finite elements which is the numerical
method of choice for the calculation of solutions of elliptic boundary value problems,
but is also used for parabolic or hyperbolic problems as we shall see. The principle of
this method comes directly from the variational approach that we have studied in
detail in the preceding chapters.

The idea at the base of the finite element method is to replace the Hilbert space
V on which we pose the variational formulation by a subspace Vh of finite dimension.
The ‘approximate’ problem posed over Vh reduces to the simple solution of a linear
system, whose matrix is called the stiffness matrix. In addition, we can choose the
construction of Vh in such a way that the subspace Vh is a good approximation of V
and that the solution uh in Vh of the variational formulation is ‘close’ to the exact
solution u in V .

Historically, the first premises of the finite element method have been proposed by
the mathematician Richard Courant (without using this name) in the 1940s, but it
was mechanical engineers who have developed, popularized, and proved the efficiency
of this method in the 1950s and 1960s (as well as giving it its actual name). After these
first practical successes, mathematicians have then considerably developed the theo-
retical foundations of the method and proposed significant improvements. This is in
any case a good example of interdisciplinary cooperation where the joint efforts of en-
gineers and applied mathematicians have made immense progress in numerical simu-
lation (not neglecting the even more spectacular advances in the power of computers).

The plan of this chapter is the following. In the rest of this section we detail
the process of internal variational approximation. Section 6.2 presents finite
elements in one space dimension where, without betraying the general ideas valid in
higher dimensions, the technical aspects are much simpler. We discuss some practical
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aspects (assembly of the stiffness matrix, quadrature formulas, etc.) as much as the
theoretical (convergence of the method, interpolation and error estimation). Section
6.3 is dedicated to finite elements in higher dimensions (N ≥ 2). We introduce the
concepts of the mesh (triangular or quadrilateral) and of degrees of freedom which
will allow us to construct several families of finite element methods. We then look at
the practical and theoretical aspects already discussed in N = 1 dimension.

Let us finish this introduction by saying that as well as the finite difference and
finite element methods, which are the only ones discussed in this course, there exist
other numerical methods for the solution of partial differential equations like the
finite volume method, the boundary element method, the spectral method, the Fourier
method, etc. (see the encyclopaedias [10], [14]). For more details on the finite element
method we refer to [5], [9], [17], [21], [32], [34] (see also [33], [13], [29] for practical
aspects of computer programming).

6.1.2 General internal approximation

We again consider the general framework of the variational formalism introduced in
Chapter 3. Given a Hilbert space V , a continuous and coercive bilinear form a(u, v),
and a continuous linear form L(v), we consider the variational formulation:

find u ∈ V such that a(u, v) = L(v) ∀ v ∈ V, (6.1)

which we know has a unique solution by the Lax–Milgram theorem 3.3.1. The
internal approximation of (6.1) consists of replacing the Hilbert space V by a
finite dimensional subspace Vh, that is to look for the solution of:

find uh ∈ Vh such that a(uh, vh) = L(vh) ∀ vh ∈ Vh. (6.2)

The solution of the internal approximation (6.2) is easy as we show in the following
lemma.

Lemma 6.1.1 Let V be a real Hilbert space, and Vh a finite dimensional subspace.
Let a(u, v) be a continuous and coercive bilinear form over V , and L(v) a continuous
linear form over V . Then the internal approximation (6.2) has a unique solution.
In addition, this solution can be obtained by solving a linear system with a positive
definite matrix (and symmetric if a(u, v) is symmetric).

Proof. The existence and uniqueness of uh ∈ Vh, the solution of (6.2), follows from
the Lax–Milgram theorem 3.3.1 applied to Vh. To put the problem in a simpler form,
we introduce a basis (φj)1≤j≤Nh

of Vh. If uh =
∑Nh

j=1 ujφj , we set Uh = (u1, . . . , uNh
)

the vector in RNh of coordinates of uh. Problem (6.2) is equivalent to:

find Uh ∈ RNh such that a

⎛
⎝Nh∑
j=1

ujφj , φi

⎞
⎠ = L(φi) ∀ 1 ≤ i ≤ Nh,
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which can be written in the form of a linear system

KhUh = bh, (6.3)

with, for 1 ≤ i, j ≤ Nh,

(Kh)ij = a(φj , φi), (bh)i = L(φi).

The coercivity of the bilinear form a(u, v) implies the positive definite character of
the matrix Kh, and therefore its invertibility. In effect, for every vector Uh ∈ RNh ,
we have

KhUh · Uh ≥ ν

∥∥∥∥∥∥
Nh∑
j=1

ujφj

∥∥∥∥∥∥
2

≥ C|Uh|2 with C > 0,

since all norms are equivalent in finite dimensions (| · | denotes the Euclidean norm in
RNh). Likewise, the symmetry of a(u, v) implies that of Kh. In engineering applica-
tions the matrix Kh is called the stiffness matrix. �

We shall now compare the error caused by replacing the space V by its subspace
Vh. More precisely, we shall bound the difference ‖u− uh‖ where u is the solution in
V of (6.1) and uh that in Vh of (6.2). Let us first make some notation precise: we
denote by ν > 0 the coercivity constant and M > 0 the continuity constant of the
bilinear form a(u, v) which satisfy

a(u, u) ≥ ν‖u‖2 ∀u ∈ V,
|a(u, v)| ≤M‖u‖ ‖v‖ ∀u, v ∈ V.

The following lemma, due to Jean Céa, shows that the distance between the exact
solution u and the approximate solution uh is bounded uniformly with respect to
the subspace Vh by the distance between u and Vh.

Lemma 6.1.2 (Céa) We use the hypotheses of lemma 6.1.1. Let u be the solution
of (6.1) and uh that of (6.2). We have

‖u− uh‖ ≤
M

ν
inf
vh∈Vh

‖u− vh‖. (6.4)

Proof. Because Vh ⊂ V , we deduce, by subtraction of the variational formulations
(6.1) and (6.2), that

a(u− uh, wh) = 0 ∀wh ∈ Vh.

By choosing wh = uh − vh we obtain

ν‖u− uh‖2 ≤ a(u− uh, u− uh) = a(u− uh, u− vh) ≤M‖u− uh‖‖u− vh‖,

from which we deduce (6.4). �
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Exercise 6.1.1 In the framework of Céa’s lemma 6.1.2, prove that, if the bilinear form
a(u, v) is symmetric, then we improve (6.4) to

‖u− uh‖ ≤
√
M

ν
inf
vh∈Vh

‖u− vh‖.

Hint: use the fact that the solution uh of (6.2) also attains the minimum of an energy.

Finally, to prove the convergence of this variational approximation, we give a last
general lemma. Recall that in the notation Vh the parameter h > 0 does not have a
practical meaning. Nevertheless, we shall assume that it is in the limit h → 0 that
the internal approximation (6.2) ‘converges’ to the variational formulation (6.1).

Lemma 6.1.3 We use the hypotheses of lemma 6.1.1. We assume that there exists
a subspace V ⊂ V which is dense in V and a mapping rh from V into Vh (called an
interpolation operator) such that

lim
h→0

‖v − rh(v)‖ = 0 ∀ v ∈ V. (6.5)

Then the method of internal variational approximation converges, that is,

lim
h→0

‖u− uh‖ = 0. (6.6)

Proof. Take ε > 0. By density of V, there exists v ∈ V such that ‖u − v‖ ≤ ε. In
addition, there exists an h0 > 0 (depending on ε) such that, for this element v ∈ V,
we have

‖v − rh(v)‖ ≤ ε ∀h ≤ h0.

From lemma 6.1.2, we have

‖u− uh‖ ≤ C‖u− rh(v)‖ ≤ C (‖u− v‖+ ‖v − rh(v)‖) ≤ 2Cε,

from which we deduce the result. �

The strategy indicated by lemmas 6.1.1, 6.1.2, and 6.1.3 above is now clear. To
obtain a numerical approximation of the exact solution of the variational
problem (6.1), we must introduce a finite dimensional space Vh then solve a
simple linear system associated with the internal variational approximation
(6.2). Nevertheless, the choice of Vh is not obvious. It must satisfy two criteria:

1. We must construct an interpolation operator rh from V into Vh satisfying (6.5)
(where typically V is a space of regular functions).

2. The solution of the linear system KhUh = bh must be economical (in practice
these linear systems are very large).

The finite element method consists precisely of providing such ‘good’ spaces as Vh.
Before entering into the details, we shall say something about the Galerkin method
which appears in this framework.
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6.1.3 Galerkin method

The Galerkin method has been a precursor of the finite element method. Even though
it does not have any numerical interest in general, it is very useful from a theoret-
ical point of view (notably for the study of nonlinear problems). It appears in the
framework of the internal variational approximation described above.

We assume that the Hilbert space V is separable and infinite dimensional, which
implies, by proposition 12.1.15, that there exists a Hilbertian basis (ei)i≥1 of V . We
then choose V as the subspace generated by this Hilbertian basis (generated by a
finite linear combination) which is dense in V . By setting h = 1/n, we define Vh as
the finite dimensional subspace generated by (e1, . . . , en). Finally, the interpolation
operator rh is simply the orthogonal projection over Vh (which is here defined in all
of V and not only in V).

All the hypotheses of lemmas 6.1.1, 6.1.2, and 6.1.3 are therefore satisfied and we
deduce that the approximate solution uh converges to the exact solution u. Recall
that uh is calculated by solving the linear system KhUh = bh where Uh is the vector
in Rn of coordinates of uh in the basis (e1, . . . , en).

Despite its usefulness in the theoretical framework developed above, the Galerkin
method is not helpful from a numerical point of view. In effect, the matrix Kh that
we obtain is generally ‘full’, that is, all the coefficients are nonzero in general, and
‘ill-conditioned’, that is, the numerical solution of the linear system will be unstable
and so very sensitive to rounding errors on the computer. From this point of view,
the finite element method is much more powerful and far preferable to the Galerkin
method.

6.1.4 Finite element method (general principles)

The principle of the finite element method is to construct internal approximation
spaces Vh from the usual functional spaces H1(Ω), H1

0 (Ω), H2(Ω), . . . , whose defini-
tion is based on the geometrical concept of a mesh of the domain Ω. A mesh is a
tessellation of the space by very simple elementary volumes: triangles, tetrahedra,
parallelopipeds (see, for example, Figure 6.7). We shall later give a precise definition
of a mesh in the framework of the finite element method.

In this context the parameter h of Vh corresponds to the maximum size of the
mesh or the cells which comprise the mesh. Typically a basis of Vh will be composed
of functions whose support is localized in one or few elements. This will have two
important consequences: on the one hand, in the limit h → 0, the space Vh will be
more and more ‘large’ and will approach little by little the entire space V , and on
the other hand, the stiffness matrix Kh of the linear system (6.3) will be sparse,
that is, most of its coefficients will be zero (which will limit the cost of the numerical
solution).

The finite element method is one of the most effective and most popular methods of
numerically solving boundary value problems. It is the basis of innumerable industrial
software packages.
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6.2 Finite elements in N = 1 dimension

To simplify the exposition, we start by presenting the finite element method in one
space dimension. Without loss of generality we choose the domain Ω =]0, 1[. In one
dimension a mesh is simply composed of a collection of points (xj)0≤j≤n+1 (as for the
finite difference method, see Chapter 1) such that

x0 = 0 < x1 < · · · < xn < xn+1 = 1.

The mesh will be called uniform if the points xj are equidistant, that is,

xj = jh with h =
1

n + 1
, 0 ≤ j ≤ n + 1.

The points xj are also called the vertices or nodes of the mesh. For simplicity we
consider, for the moment, the following model problem{

−u′′ = f in ]0, 1[
u(0) = u(1) = 0, (6.7)

which we know has a unique solution in H1
0 (Ω) if f ∈ L2(Ω) (see Chapter 5). In all

that follows, we denote by Pk the set of polynomials, with real coefficients, of one real
variable with degree less than or equal to k.

6.2.1 P1 finite elements

The P1 finite element method uses the discrete space of globally continuous functions
which are affine on each element

Vh =
{
v ∈ C([0, 1]) such that v

∣∣
[xj ,xj+1] ∈ P1 for all 0 ≤ j ≤ n

}
, (6.8)

and on its subspace

V0h = {v ∈ Vh such that v(0) = v(1) = 0} . (6.9)

The P1 finite element method is then simply the method of internal variational
approximation of Section 6.1.2 applied to the spaces Vh or V0h defined by (6.8) or (6.9).

We can represent the functions of Vh or V0h, which are piecewise affine, with the
help of very simple basis functions. We introduce the ‘hat function’ φ defined by

φ(x) =
{

1− |x| if |x| ≤ 1,
0 if |x| > 1.

If the mesh is uniform, for 0 ≤ j ≤ n+1 we define the basis functions (see Figure 6.1)

φj(x) = φ

(
x− xj
h

)
. (6.10)
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x0 = 0 xn+1 = 1x1 x2 xj

fj

xn

vh

Figure 6.1. Mesh of Ω =]0, 1[ and P1 finite element basis functions.

Lemma 6.2.1 The space Vh, defined by (6.8), is a subspace of H1(0, 1) of dimension
n + 2, and every function vh ∈ Vh is defined uniquely by its values at the vertices
(xj)0≤j≤n+1

vh(x) =
n+1∑
j=0

vh(xj)φj(x) ∀x ∈ [0, 1].

Likewise, V0h, defined by (6.9), is a subspace of H1
0 (0, 1) of dimension n, and every

function vh ∈ V0h is defined uniquely by its values at the vertices (xj)1≤j≤n

vh(x) =
n∑
j=1

vh(xj)φj(x) ∀x ∈ [0, 1].

Proof. Let us recall that by virtue of lemma 4.3.19, the continuous functions which
are piecewise of class C1 belong to H1(Ω). Therefore, Vh and V0h are subspaces of
H1(0, 1). The rest of the proof is immediate by remarking that φj(xi) = δij , where
δij is the Kronecker delta which is 1 if i = j and 0 otherwise (see Figure 6.1). �

Remark 6.2.2 The basis (φj), defined by (6.10), allows us to characterize a function
of Vh by its values at the nodes of the mesh. In this case we talk of Lagrange finite
elements. We see later in Section 6.2.5 that we can introduce other spaces Vh for
which a function will be characterized, not only by its values, but also by the values
of its derivative. We talk then of Hermite finite elements. Here, as the functions
are locally P1, we say that the space Vh, defined by (6.8), is the space of Lagrange
finite elements of order 1.

This example of P1 finite elements again makes it possible to understand the
interest in the variational formulation. In effect, the functions of Vh are not twice
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differentiable on the segment [0, 1] and this is not enough to solve, even approximately,
the equation (6.7) (in fact, the second derivative of a function of Vh is a sum of Dirac
masses at the nodes of the mesh!). On the contrary, it is perfectly legitimate to
use functions of Vh in the variational formulation (6.2) which only requires a single
derivative. •

Let us now describe the practical solution of the Dirichlet problem (6.7) by the
P1 finite element method. The variational formulation (6.2) of the internal approxi-
mation here becomes:

find uh ∈ V0h such that
∫ 1

0
u′h(x)v′h(x) dx =

∫ 1

0
f(x)vh(x) dx ∀ vh ∈ V0h. (6.11)

We decompose uh in the basis of (φj)1≤j≤n and we take vh = φi which gives

n∑
j=1

uh(xj)
∫ 1

0
φ′j(x)φ′i(x) dx =

∫ 1

0
f(x)φi(x) dx.

By denoting Uh = (uh(xj))1≤j≤n, bh =
(∫ 1

0 f(x)φi(x) dx
)

1≤i≤n
, and by introducing

the stiffness matrix

Kh =
(∫ 1

0
φ′j(x)φ′i(x) dx

)
1≤i,j≤n

,

the variational formulation in V0h reduces to solving in Rn the linear system

KhUh = bh.

As the basis functions φj have a ‘small’ support, the intersection of supports of φj
and φi is often empty and most of the coefficients of Kh are zero. A simple calculation
shows that ∫ 1

0
φ′j(x)φ′i(x) dx =

⎧⎪⎪⎨
⎪⎪⎩
−h−1 if j = i− 1
2h−1 if j = i
−h−1 if j = i + 1
0 otherwise

and the matrix Kh is tridiagonal

Kh = h−1

⎛
⎜⎜⎜⎜⎜⎝

2 −1 0
−1 2 −1

. . . . . . . . .
−1 2 −1

0 −1 2

⎞
⎟⎟⎟⎟⎟⎠ . (6.12)

To obtain the right-hand side bh we must calculate the integrals

(bh)i =
∫ xi+1

xi−1

f(x)φi(x) dx if 1 ≤ i ≤ n.
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The exact evaluation of the right-hand side bh can be difficult or impossible if the
function f is complicated. In practice, we use quadrature formulas (or numerical
integration formulas) which give an approximation of the integrals bh. For example,
we can use the ‘midpoint’ formula

1
xi+1 − xi

∫ xi+1

xi

ψ(x) dx ≈ ψ

(
xi+1 + xi

2

)
,

or the ‘trapezium’ formula

1
xi+1 − xi

∫ xi+1

xi

ψ(x) dx ≈ 1
2

(ψ(xi+1) + ψ(xi)) ,

or even

1
xi+1 − xi

∫ xi+1

xi

ψ(x) dx ≈
(

1
6
ψ(xi+1) +

1
6
ψ(xi) +

2
3
ψ

(
xi+1 + xi

2

))
.

The first two formulas are exact for the affine functions ψ, and the third is exact for
second degree polynomials (which give an exact calculation of bh if f ∈ Vh). If the
function ψ is arbitrary but regular, then these formulas are simply approximations
with a remainder of the order of O(h2), of O(h2), and of O(h3) respectively.

The solution of the linear system KhUh = bh is the most costly part of the method
in terms of the calculation time. This is why we present in an appendix in Section 13.1
some powerful methods for the solution. Recall that the matrix Kh is necessarily
invertible by application of lemma 6.1.1.

Remark 6.2.3 The stiffness matrix Kh is very similar to matrices already met in
the study of finite difference methods. In fact, hKh is the limit of the matrix
(2.14) (multiplied by 1/c) of the implicit scheme for the solution of the heat equa-
tion when the time step tends to infinity. We see in exercise 6.2.3 that this is not
a coincidence. •

Neumann problem The implementation of the P1 finite element method for the
following Neumann problem is very similar{

−u′′ + au = f in ]0, 1[
u′(0) = α, u′(1) = β.

(6.13)

Recall that (6.13) has a unique solution in H1(Ω) if f ∈ L2(Ω), α, β ∈ R, and
a ∈ L∞(Ω) such that a(x) ≥ a0 > 0 a.e. in Ω (see Chapter 5). The variational
formulation (6.2) of the internal approximation here becomes: find uh ∈ Vh such that

∫ 1

0
(u′h(x)v′h(x) + a(x)uh(x)vh(x)) dx =

∫ 1

0
f(x)vh(x) dx− αvh(0) + βvh(1),
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for all vh ∈ Vh. By decomposing uh in the basis of (φj)0≤j≤n+1, the variational
formulation in Vh reduces to solving in Rn+2 the linear system

KhUh = bh,

with Uh = (uh(xj))0≤j≤n+1, and a new stiffness matrix

Kh =
(∫ 1

0

(
φ′j(x)φ′i(x) + a(x)φj(x)φi(x)

)
dx

)
0≤i,j≤n+1

,

and
(bh)i =

∫ 1
0 f(x)φi(x) dx if 1 ≤ i ≤ n,

(bh)0 =
∫ 1

0 f(x)φ0(x) dx− α,

(bh)n+1 =
∫ 1

0 f(x)φn+1(x) dx + β.

When a(x) is not a constant function, it is also necessary in practice to use quadrature
formulae to evaluate the coefficients of the matrixKh (as we have done in the preceding
example for the right-hand side bh).

Exercise 6.2.1 Apply the P1 finite element method to the problem{
−u′′ = f in ]0, 1[
u(0) = α, u(1) = β,

Verify that the nonhomogeneous Dirichlet boundary conditions appear in the right-hand
side of the linear system which results from this.

Exercise 6.2.2 We take again the Neumann problem (6.13) assuming that the function
a(x) = 0 in Ω. Show that the matrix of the linear system of the P1 finite element method
is singular. Show that we can, nevertheless, solve the linear system if the data satisfy the
compatibility condition ∫ 1

0
f(x) dx = α− β.

Compare this result with theorem 5.2.18.

Exercise 6.2.3 Apply the finite difference method (see Chapter 2) to the Dirichlet prob-
lem (6.7). Verify that with a second order centred scheme, we obtain a linear system to
solve with the same matrix Kh (up to a multiplicative coefficient) but with a different
right-hand side bh. Repeat the question for the Neumann problem (6.13).

Exercise 6.2.4 We consider (n+ 2) (aligned) point masses situated at the points xj =
j/(n + 1) for 0 ≤ j ≤ n + 1 and linked by springs of the same stiffness k > 0. To each
point mass, we apply a longitudinal force fj . In the hypothesis of small (longitudinal)
displacements, write the total energy of the system that we must minimize (we shall
discuss the case of free or fixed extremities). Interpret the search for the position of
equilibrium of the system in terms of finite elements.
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6.2.2 Convergence and error estimation

To prove the convergence of the P1 finite element method in one space dimension we
follow the steps outlined in Section 6.1.2. We first of all define an interpolation
operator rh (as in lemma 6.1.3).

Definition 6.2.4 The P1 interpolation operator is the linear mapping rh from
H1(0, 1) into Vh defined, for all v ∈ H1(0, 1), by

(rhv)(x) =
n+1∑
j=0

v(xj)φj(x).

This definition has a meaning since, by virtue of lemma 4.3.3, the functions of
H1(0, 1) are continuous and their point values are therefore well defined. The inter-
polant rhv of a function v is simply the function which is piecewise affine and coincides
with v on the vertices of the mesh xj (see Figure 6.2). Let us remark that in one
space dimension the interpolant is defined for every function of H1(0, 1), and not only
for regular functions of H1(0, 1) (which will be the case in higher dimensions).

v

rhv

x2x0 = 0 xn+1 = 1

Figure 6.2. P1 interpolation of a function of H1(0, 1).

The convergence of the P1 finite element method relies on the following lemma.

Lemma 6.2.5 (interpolation) Let rh be the P1 interpolation operator. For every
v ∈ H1(0, 1), it satisfies

lim
h→0

‖v − rhv‖H1(0,1) = 0.

Moreover, if v ∈ H2(0, 1), then there exists a constant C independent of h such that

‖v − rhv‖H1(0,1) ≤ Ch‖v′′‖L2(0,1).

We temporarily delay the proof of this lemma to immediately state the principal
result of this section which establishes the convergence of the finite element method
P1 for the Dirichlet problem.
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Theorem 6.2.6 Let u ∈ H1
0 (0, 1) and uh ∈ V0h be the solutions of (6.7) and (6.11),

respectively. Then, the finite element method P1 converges, that is,

lim
h→0

‖u− uh‖H1(0,1) = 0. (6.14)

Moreover, if u ∈ H2(0, 1) (which is true if f ∈ L2(0, 1)), then there exists a constant
C independent of h such that

‖u− uh‖H1(0,1) ≤ Ch‖u′′‖L2(0,1) = Ch‖f‖L2(0,1). (6.15)

Remark 6.2.7 The first conclusion (6.14) of theorem 6.2.6 is also true if the right-
hand side f belongs only to H−1(0, 1). The estimate (6.15) indicates the rate of
convergence of the P1 finite element method. As this upper bound is proportional to
h, we say that the P1 finite element method converges linearly.

Let us remark that the convergence theorem 6.2.6 is valid when the stiffness matrix
Kh and the right-hand side bh are evaluated exactly. However, the P1 finite element
method also converges when we use adequate quadrature formulas to calculate Kh
and bh (see [34]). •

Remark 6.2.8 We prove theorem 6.2.6 in the case of a uniform mesh, that is, with
points xj equidistant in the segment [0, 1] (in other words, xj+1−xj = h). The result
can, nevertheless, be generalized to nonuniform but regular meshes (in the sense of
definition 6.3.11), and in this case, h is the maximum distance between two points:
h = max0≤j≤n(xj+1 − xj). •

Remark 6.2.9 We can make an analogy between the convergence of a finite element
method and the convergence of a finite difference method. Recall that, from the Lax
theorem 2.2.20, the convergence of a finite difference scheme follows from its stability
and its consistency. Let us indicate what the (formal) equivalents of these ingredients
are in the context of finite elements. The role of consistency for finite elements is
played by the interpolation property of lemma 6.2.5, while the role of the stability
is taken by the coercivity property of the bilinear form which assures the (stable)
solution of every internal approximation. •

Proof. Lemma 6.2.5 allows us to apply the convergence result of lemma 6.1.3
which immediately implies (6.14). To obtain (6.15), we bound the estimate of Céa’s
lemma 6.1.2

‖u− uh‖H1(0,1) ≤ C inf
vh∈Vh

‖u− vh‖H1(0,1) ≤ C‖u− rhu‖H1(0,1),

and the proof is finished thanks to lemma 6.2.5. �

We now give the proof of lemma 6.2.5 in the form of two other technical lemmas.
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Lemma 6.2.10 There exists a constant C independent of h such that, for all v ∈
H2(0, 1),

‖v − rhv‖L2(0,1) ≤ Ch2‖v′′‖L2(0,1), (6.16)

and
‖v′ − (rhv)′‖L2(0,1) ≤ Ch‖v′′‖L2(0,1). (6.17)

Proof. Take v ∈ C∞([0, 1]). By definition, the interpolant rhv is an affine function
and, for all x ∈]xj , xj+1[, we have

v(x)− rhv(x) = v(x)−
(
v(xj) +

v(xj+1)− v(xj)
xj+1 − xj

(x− xj)
)

=
∫ x

xj

v′(t) dt− x− xj
xj+1 − xj

∫ xj+1

xj

v′(t) dt

= (x− xj)v′(xj + θx)− (x− xj)v′(xj + θj)

= (x− xj)
∫ xj+θx

xj+θj
v′′(t) dt,

(6.18)

by application of the finite growth formula with 0 ≤ θx ≤ x− xj and 0 ≤ θj ≤ h. We
deduce by using the Cauchy–Schwarz inequality

|v(x)− rhv(x)|2 ≤ h2

(∫ xj+1

xj

|v′′(t)| dt
)2

≤ h3
∫ xj+1

xj

|v′′(t)|2dt. (6.19)

Integrating (6.19) with respect to x over the interval [xj , xj+1], we obtain∫ xj+1

xj

|v(x)− rhv(x)|2 dx ≤ h4
∫ xj+1

xj

|v′′(t)|2dt,

which, by summation in j, gives exactly (6.16). By density, this result is also true for
all v ∈ H2(0, 1). The proof of (6.17) is similar: for v ∈ C∞([0, 1]) and x ∈]xj , xj+1[
we write

v′(x)− (rhv)′(x) = v′(x)− v(xj+1)− v(xj)
h

=
1
h

∫ xj+1

xj

(
v′(x)− v′(t)

)
dt

=
1
h

∫ xj+1

xj

∫ x

t

v′′(y) dy dt.

Squaring this inequality, applying Cauchy–Schwarz twice, and summing in j we obtain
(6.17), which is also valid for all v ∈ H2(0, 1) by density. �

Lemma 6.2.11 There exists a constant C independent of h such that, for all v ∈
H1(0, 1),

‖rhv‖H1(0,1) ≤ C‖v‖H1(0,1), (6.20)
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and
‖v − rhv‖L2(0,1) ≤ Ch‖v′‖L2(0,1). (6.21)

Moreover, for all v ∈ H1(0, 1), we have

lim
h→0

‖v′ − (rhv)′‖L2(0,1) = 0. (6.22)

Proof. The proofs of (6.20) and (6.21) are in the same spirit as those of the preceding
lemma. Take v ∈ H1(0, 1). First of all we have,

‖rhv‖L2(0,1) ≤ max
x∈[0,1]

|rhv(x)| ≤ max
x∈[0,1]

|v(x)| ≤ C‖v‖H1(0,1),

by virtue of lemma 4.3.3. On the other hand, since rhv is affine, and thanks to the
property (4.8) of lemma 4.3.3 which confirms that v is the primitive of v′, we have∫ xj+1

xj

|(rhv)′(x)|2 dx =
(v(xj+1)− v(xj))2

h

=
1
h

(∫ xj+1

xj

v′(x) dx

)2

≤
∫ xj+1

xj

|v′(x)|2 dx,

by Cauchy–Schwarz, this, by summation in j, leads to (6.20). To obtain (6.21) we
take the second equation of (6.18) from which we deduce

|v(x)− rhv(x)| ≤ 2
∫ xj+1

xj

|v′(t)| dt.

By squaring, using Cauchy–Schwarz, integrating with respect to x, then summing
over j, we obtain (6.21).

Let us move on to the proof of (6.22). Take ε > 0. As C∞([0, 1]) is dense in
H1(0, 1), for all v ∈ H1(0, 1) there exists φ ∈ C∞([0, 1]) such that

‖v′ − φ′‖L2(0,1) ≤ ε.

Now rh is a linear mapping which satisfies (6.20), therefore we deduce

‖(rhv)′ − (rhφ)′‖L2(0,1) ≤ C‖v′ − φ′‖L2(0,1) ≤ Cε.

The choice of φ and of ε being fixed, we deduce from (6.17) applied to φ that, for h
sufficiently small,

‖φ′ − (rhφ)′‖L2(0,1) ≤ ε.

Consequently, summing these last three inequalities we obtain

‖v′ − (rhv)′‖L2(0,1) ≤ ‖v′ − φ′‖L2 + ‖φ′ − (rhφ)′‖L2 + ‖(rhv)′ − (rhφ)′‖L2 ≤ Cε,

which implies (6.22). �

Exercise 6.2.5 Prove the equivalent of the convergence theorem 6.2.6 for the Neumann
problem (6.13).
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6.2.3 P2 finite elements

The P2 finite element method uses the discrete space

Vh =
{
v ∈ C([0, 1]) such that v

∣∣
[xj ,xj+1] ∈ P2 for all 0 ≤ j ≤ n

}
, (6.23)

and its subspace

V0h = {v ∈ Vh such that v(0) = v(1) = 0} . (6.24)

The P2 finite element method is the method of internal variational approximation of
Section 6.1.2 applied to these spaces Vh or V0h. These are composed of continuous,
piecewise quadratic functions that we can represent with the help of very simple basis
functions.

Cj+1/2

Cj

0

1

xj–1 xj+1xj–1/2 xj+1/2xj

Figure 6.3. Basis functions for P2 finite elements.

Let us introduce first of all the midpoints of the segments [xj , xj+1] defined by
xj+1/2 = xj + h/2 for 0 ≤ j ≤ n. We also define two ‘reference’ functions

φ(x) =

⎧⎨
⎩

(1 + x)(1 + 2x) if − 1 ≤ x ≤ 0,
(1− x)(1− 2x) if 0 ≤ x ≤ 1,
0 if |x| > 1,

and

ψ(x) =
{

1− 4x2 if |x| ≤ 1/2,
0 if |x| > 1/2.

If the mesh is uniform, for 0 ≤ j ≤ n+1 we define the basis functions (see Figure 6.3)

ψj(x) =φ

(
x−xj
h

)
, 0 ≤ j ≤ n+1, and ψj+1/2(x)=ψ

(
x− xj+1/2

h

)
, 0 ≤ j ≤ n.

Lemma 6.2.12 The space Vh, defined by (6.23), is a subspace of H1(0, 1) of dimen-
sion 2n+3, and every function vh ∈ Vh is defined uniquely by its values at the vertices
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(xj)0≤j≤n+1 and at the midpoints (xj+1/2)0≤j≤n

vh(x) =
n+1∑
j=0

vh(xj)ψj(x) +
n∑
j=0

vh(xj+1/2)ψj+1/2(x) ∀x ∈ [0, 1].

Likewise, V0h, defined by (6.24), is a subspace of H1
0 (0, 1) of dimension 2n + 1, and

every function vh ∈ V0h is defined uniquely by its values at the vertices (xj)1≤j≤n and
at the midpoints (xj+1/2)0≤j≤n

vh(x) =
n∑
j=1

vh(xj)φj(x) +
n∑
j=0

vh(xj+1/2)ψj+1/2(x) ∀x ∈ [0, 1].

Remark 6.2.13 Here again, Vh is a space of Lagrange finite elements (cf. remark
6.2.2). As the functions are locally P2, we say that the space Vh, defined by (6.23), is
the space of the Lagrange finite elements of order 2. •

Proof. By application of lemma 4.3.19 Vh and V0h are subspaces of H1(0, 1). Their
dimension and the proposed bases are easily found by remarking that ψj(xi) = δij ,
ψj+1/2(xi+1/2) = δij , ψj(xi+1/2) = 0, ψj+1/2(xi) = 0 (see Figure 6.3). �

Let us now describe the practical solution of the Dirichlet problem (6.7) by the
P2 finite element method. The variational formulation (6.2) of the internal approxi-
mation reduces to solving in R2n+1 the linear system

KhUh = bh. (6.25)

To make this linear system explicit, it is convenient to change the indices denoting
from now on the points (x1/2, x1, x3/2, x2, . . . , xn+1/2) in the form (xk/2)1≤k≤2n+1,
and the basis (ψ1/2, ψ1, ψ3/2, ψ2, . . . , ψn+1/2) of V0h in the form (ψk/2)1≤k≤2n+1. In
this basis, Uh ∈ R2n+1 is the vector of the coordinates of the approximate solution
uh which satisfies

uh(x) =
2n+1∑
k=1

(Uh)k/2ψk/2(x) with (Uh)k/2 = uh(xk/2), (6.26)

and we have

Kh =
(∫ 1

0
ψ′k/2(x)ψ′l/2(x) dx

)
1≤k,l≤2n+1

, bh =
(∫ 1

0
f(x)ψk/2(x) dx

)
1≤k≤2n+1

.

The basis functions ψk/2 have a ‘small’ support, and most of the coefficients of Kh
are therefore zero. A simple calculation shows that the stiffness matrix Kh is here
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pentadiagonal

Kh = h−1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

16/3 −8/3 0
−8/3 14/3 −8/3 1/3 0

0 −8/3 16/3 −8/3 0
1/3 −8/3 14/3 −8/3 1/3

. . . . . . . . . . . . . . .
0 −8/3 16/3 −8/3 0

0 1/3 −8/3 14/3 −8/3
0 −8/3 16/3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Let us remark that this matrix is more ‘full’ than that obtained by the P1 finite element
method, and therefore that the solution of the linear system will be more costly in
calculation time. To evaluate the right-hand side bh we use the same quadrature
formulas (or numerical integration formulas) presented in the P1 method.

Theorem 6.2.14 Let u ∈ H1
0 (0, 1) and uh ∈ V0h be the solutions of (6.7) and (6.25)–

(6.26), respectively. Then, the P2 finite element method converges, that is,

lim
h→0

‖u− uh‖H1(0,1) = 0.

Moreover, if u ∈ H3(0, 1) (which is true if f ∈ H1(0, 1)), then there exists a constant
C independent of h such that

‖u− uh‖H1(0,1) ≤ Ch2‖u′′′‖L2(0,1).

Exercise 6.2.6 Generalizing the preceding arguments, prove theorem 6.2.14.

Theorem 6.2.14 shows the principal advantage of P2 finite elements: if the solution
is regular, then the convergence of the method is quadratic (the rate of convergence
is proportional to h2) while the convergence for P1 finite elements is only linear (pro-
portional to h). Of course, this advantage has a price: there are twice as many
unknowns (exactly 2n + 1 instead of n for P1 finite elements) therefore the matrix
is twice as large, also the matrix has five nonzero diagonals instead of three in the
P1 case. Let us remark that if the solution is not regular (u ∈ H3(0, 1)) there is no
theoretical (or practical) advantage in the use of P2 finite elements rather than P1.

6.2.4 Qualitative properties

We know that the solution of a Dirichlet problem satisfies the maximum principle (see
theorem 5.2.22). It is important to know if this property is conserved by the internal
variational approximation.

Proposition 6.2.15 (discrete maximum principle) We assume that f≥0 almost
everywhere in ]0, 1[. Then, the solution uh of the variational approximation (6.11) by
the P1 finite element method satisfies uh ≥ 0 in [0, 1].
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Proof. Let uh be the solution of (6.11). From lemma 6.2.1, we have

uh(x) =
n∑
j=1

uh(xj)φj(x),

where the functions φj are the basis functions of the P1 finite elements in V0h and
Uh = (uh(xj))1≤j≤n is the solution of the linear system

KhUh = bh. (6.27)

The functions φj are the ‘hat’ functions (see Figure 6.1) which are non negative: it
is sufficient therefore to show that all the components of the vector Uh = (U jh)1≤j≤n
are non negative to prove that the function uh is non negative on [0, 1]. Recall that,
setting U0

h = Un+1
h = 0, the linear system (6.27) is equivalent to

−U j−1
h + 2U jh − U j+1

h = hbjh for all 1 ≤ j ≤ n. (6.28)

Let U j0h = minj U
j
h be the smallest component of Uh: if there are several small

components, we choose the one with the smallest index j0. If j0 = 0, then U jh ≥ U0
h = 0

for all j, which is the result sought. If j0 ≥ 1, then U j0h < U0
h = 0, and as Un+1

h = 0
we deduce that j0 ≤ n. Since bjh =

∫ 1
0 fψj dx ≥ 0 by the hypothesis on f , we can

deduce the relation (6.28) for j0(
U j0h − U j0−1

h

)
+
(
U j0h − U j0+1

h

)
≥ 0,

which is a contradiction with the (strict) minimal character of U j0h . Consequently,
the P1 finite element method satisfies the discrete maximum principle. �

We have proved in the preceding sections the theoretical convergence results. We
can verify the predicted rates of convergence numerically by solving the
Dirichlet problem (6.7) by the finite element with meshes of distinct size. Let us
consider the following example{

− ((1 + x)u′)′ + (1 + cos(πx))u = f for 0 < x < 1
u(0) = u(1) = 0

(6.29)

with f(x) = −π cos(πx) + sin(πx)(1 + cos(πx) + π2(1 + x)), whose exact solution is
u(x) = sin(πx). The ideal would be to calculate the exact error ‖u− uh‖H1(0,1), but
this needs us to make a precise calculation of the integrals, which is not easy if the
solution u is complicated. In practice (and this is what we do here) we are happy
to calculate the error projected into Vh, that is, we calculate ‖rh(u− uh)‖H1(0,1) (we
also say that we use the discrete norm in Vh). The interest of this approach is that
we can exactly calculate the integrals since rh(u− uh) = rhu− uh ∈ Vh (this reduces
to not taking account of the interpolation errors between H1(0, 1) and Vh). We draw
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this discrete error ‖rh(u − uh)‖H1(0,1) as a function of the mesh size h. When the
solution is regular, theorem 6.2.6 predicts linear convergence (in h) of the error in the
P1 finite element method, while theorem 6.2.14 predicts quadratic convergence (in h2)
of the error in the P2 finite element method. In the case of example (6.29) we draw
this error for different values of h in Figure 6.4 (in logarithmic scale). The crosses
and the circles correspond to the results of the calculation, the lines are the lines of
reference corresponding to the functions h2 and h3, respectively. Let us remark that
the use of a logarithmic scale allows us to visualize the rates of convergence as the
slope of the logarithm of the error as a function of the logarithm of h. We observe
therefore a phenomenon of superconvergence, that is, the finite elements converge
more rapidly than was proved by the theory: the error is h2 for the P1 method and
h3 for the P2. This gain is due to the uniformity of the mesh and to the choice of the
discrete norm in Vh.
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Figure 6.4. Case of a regular solution: example (6.29). Discrete H1 norm of the error
as a function of the size h of the mesh (the crosses correspond to P1 finite elements,
the circles to P2 finite elements, the lines are the graphs of h→ h2 and h→ h3).

If the solution is not regular, we always have convergence but with a weaker rate
than is predicted in the regular case by the theorems 6.2.6 and 6.2.14. To obtain a
nonregular solution, we take a right-hand side in H−1(0, 1) which does no belong to
L2(0, 1). In one space dimension we can therefore take a Dirac mass. Let us consider
therefore the example{

−u′′ = 6x− 2 + δ1/2 for 0 < x < 1
u(0) = u(1) = 0 (6.30)
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with δ1/2 s the Dirac mass at the point x = 1/2, whose exact solution is u(x) =
1/2− |x− 1/2|+ x2(1− x).

We draw the error ‖rh(u − uh)‖H1(0,1) as a function of h in Figure 6.5 (in loga-
rithmic scale). The crosses and the circles correspond to the results of the calculation
(P1 or P2 respectively), the lines are of the lines of reference corresponding to the
functions

√
h and h respectively. We see that the P1 and P2 finite elements converge

at the same rate proportional to
√
h, which is less than the rate of h (or even h2)

predicted in the regular case. In particular, there is no interest in using P2 finite
elements, rather than P1, in such a case.
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Figure 6.5. Case of a nonregular solution: example (6.30). Discrete H1 norm of the
error as a function of the mesh size h (the crosses correspond to P1 finite elements,
the circles to P2 finite elements, the lines are the graphs of h→

√
h and h→ h).

To calculate the error in Figures 6.4 and 6.5 we have used an exact solution. How-
ever, if this is not known, we can replace it by the approximate solution obtained
with the finest mesh (assumed to be the most ‘converged’). This numerical con-
vergence procedure can also be implemented for those methods for which we do not
have a convergence theorem. This is often the only ‘heuristic’ way to verify if an
algorithm converges and at what rate with respect to the refinement of the mesh.

6.2.5 Hermite finite elements

After having defined P1 and P2 finite elements, the reader can easily imagine how to
generalize and define Pk finite elements with k ∈ N∗. These finite elements, called
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Lagrange, use basis functions which are only continuous but not continuously dif-
ferentiable. However, it is clear that the polynomials in P3 can be connected in a
continuously differentiable way. In this case the values of the derivatives will also
be used to characterize the functions (see remark 6.2.2). We therefore introduce the
method of P3 Hermite finite elements which are defined on the discrete space

Vh =
{
v ∈ C1([0, 1]) such that v

∣∣
[xj ,xj+1] ∈ P3 for all 0 ≤ j ≤ n

}
. (6.31)

We must pay attention to the fact that in the definition (6.31) of Vh we ask for the
functions to belong to C1([0, 1]), and not only to C([0, 1]). This is the difference
between Hermite and Lagrange finite elements respectively.

0

1

Cj

fj

xj–1 xj+1xj

Figure 6.6. The basis functions of P3 Hermite finite elements.

We can represent the functions of Vh with the help of very simple basis functions.
We define two ‘reference’ functions

φ(x) =

⎧⎨
⎩

(1 + x)2(1− 2x) if − 1 ≤ x ≤ 0,
(1− x)2(1 + 2x) if 0 ≤ x ≤ 1,
0 if |x| > 1,

and

ψ(x) =

⎧⎨
⎩

x(1 + x)2 if − 1 ≤ x ≤ 0,
x(1− x)2 if 0 ≤ x ≤ 1,
0 if |x| > 1.

If the mesh is uniform, for 0 ≤ j ≤ n+1 we define the basis functions (see Figure 6.6)

φj(x) = φ

(
x− xj
h

)
for 0 ≤ j ≤ n + 1, ψj(x) = ψ

(
x− xj
h

)
for 0 ≤ j ≤ n + 1.

Lemma 6.2.16 The space Vh, defined by (6.31), is a subspace of H1(0, 1) of dimen-
sion 2(n + 2). Every function vh of Vh is defined uniquely by its values and those
of its derivative at the vertices (xj)0≤j≤n+1, and we have for all x ∈ [0, 1]

vh(x) =
n+1∑
j=0

vh(xj)φj(x) +
n+1∑
j=0

(vh)′(xj)ψj(x). (6.32)
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Proof. The functions of Vh being of class C1, it is a subspace of H1(0, 1). We verify
easily that the (φj , ψj) form a basis of Vh by remarking that φj(xi) = δij , ψj(xi) = 0,
φ′j(xi) = 0, ψ′j(xi) = δij (see Figure 6.6). �

We can use the space Vh (or at least its subspace of functions which are zero at
0 and 1) to solve the Dirichlet problem (6.7), but this is not the most current use of
Vh. In practice we use Vh to solve the plate equation (see (5.70) and Chapter 1),
or beams in N = 1 dimension,{

u′′′′ = f in ]0, 1[
u(0) = u(1) = u′(0) = u′(1) = 0, (6.33)

which has a unique solution u ∈ H2
0 (0, 1) if f ∈ L2(0, 1). In effect, Vh is not only

a subspace of H1(0, 1), but is also a subspace of H2(0, 1) (this is not the case for
Lagrange finite elements). To solve (6.33) we shall need the subspace

V0h = {v ∈ Vh such that v(0) = v(1) = v′(0) = v′(1) = 0} . (6.34)

Lemma 6.2.17 The space Vh, and its subspace V0h defined by (6.34), are subspaces
of H2(0, 1), and of H2

0 (0, 1) respectively, of dimensions 2(n+ 2), and 2n respectively.
Every function vh of V0h is defined uniquely by its values and those of its derivative
at the vertices (xj)1≤j≤n, and we have for all x ∈ [0, 1]

vh(x) =
n∑
j=1

vh(xj)φj(x) +
n∑
j=1

(vh)′(xj)ψj(x).

Proof. Take vh ∈ Vh: it is of class C1 over [0, 1] and piecewise C2. Therefore, its
derivative v′h, being continuous and piecewise C1, belongs to H1(0, 1) (by virtue of
lemma 4.3.19). Consequently, vh is an element of H2(0, 1). The rest of the lemma is
similar to lemma 6.2.16 �

Let us now describe briefly the practical solution of the plate equation (6.33) by
the P3 Hermite finite element method. The variational formulation of the internal
approximation is

find uh ∈ V0h such that
∫ 1

0
u′′h(x)v′′h(x) dx =

∫ 1

0
f(x)vh(x) dx ∀ vh ∈ V0h. (6.35)

We decompose uh in the basis of (φj , ψj)1≤j≤n and we denote by Uh= (uh(xj),
u′h(xj))1≤j≤n the vector of its coordinates in this basis. The variational formulation
(6.35) reduces to solving in R2n a linear system

KhUh = bh.

Exercise 6.2.7 Explicitly calculate the stiffness matrix Kh for (6.35).
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6.3 Finite elements in N ≥ 2 dimensions

We now place ourselves in N ≥ 2 space dimensions (in practice N = 2, 3). To
simplify the exposition, certain results will only be proved in N = 2 dimensions, but
they extend to N = 3 dimensions (with the cost, sometimes, of important technical
and practical complications).

We consider the model Dirichlet problem{
−∆u = f in Ω
u = 0 on ∂Ω, (6.36)

which we know has a unique solution in H1
0 (Ω), if f ∈ L2(Ω) (see Chapter 5).

In all that follows we shall assume that the domain Ω is a polyhedral (polygonal if
N = 2), that is, Ω is a finite union of polyhedra of RN . Let us recall that a polyhedron
is a finite intersection of half-spaces of RN and that the parts of its boundary which
belong to a single hyperplane are called its faces. The reason for this hypothesis is
that it is only possible to mesh exactly such open sets. We shall describe later what
happens for general domains bounded by ‘curves’ (see remark 6.3.18).

6.3.1 Triangular finite elements

We start with the definition of a mesh of the domain Ω by triangles in N = 2
dimensions and by tetrahedra in N = 3 dimensions. We group the triangles and the
tetrahedra in the more general family of N -simplices. We call the N -simplex K of
RN the convex envelope of (N + 1) points (aj)1≤j≤N+1 of RN , called the vertices of
K. Of course, a 2-simplex is simply a triangle and a 3-simplex a tetrahedron (see
Figure 6.9). We say that the N -simplex K is nondegenerate if the points (aj)1≤j≤N+1
do not belong to the same hyperplane of RN (the triangle or the tetrahedron is not
‘flat’). If we denote by (ai,j)1≤i≤N the coordinates of the vector aj , the nondegeneracy
condition on K is that the matrix

A =

⎛
⎜⎜⎜⎜⎜⎝

a1,1 a1,2 . . . a1,N+1
a2,1 a2,2 . . . a2,N+1
...

...
...

aN,1 aN,2 . . . aN,N+1
1 1 . . . 1

⎞
⎟⎟⎟⎟⎟⎠ (6.37)

is invertible (which we shall always assume in what follows). An N -simplex has as
many faces as vertices, which are themselves (N − 1)-simplices.

Definition 6.3.1 Let Ω be an open connected polyhedron of RN . A triangular mesh
or a triangulation of Ω is a set Th of (nondegenerate) N -simplices (Ki)1≤i≤n which
satisfies

1. Ki ⊂ Ω and Ω = ∪ni=1Ki.
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Figure 6.7. Example of triangular mesh in N = 2 dimensions.

2. The intersection Ki ∩ Kj of two distinct N -simplices is an m-simplex, with
0 ≤ m ≤ N − 1, whose vertices are also vertices of Ki and Kj. (In N = 2
dimensions, the intersection of two triangles is either empty, or reduced to a
common vertex, or an entire common edge; in N = 3 dimensions, the inter-
section of two tetrahedra is empty, or a common vertex, or an entire common
edge, or an entire common face.)

The vertices or nodes of the mesh Th are the vertices of these N -simplices Ki which
compose it. By convention, the parameter h denotes the maximum diameter of the
N -simplices Ki.

It is clear that definition 6.3.1 can only be applied to a polyhedral open set and
not to an arbitrary open set. Definition 6.3.1 contains a certain number of restrictions
on the mesh: in this case, we often talk of a conforming mesh. An example of a
conforming mesh is given in Figure 6.7, while Figure 6.8 gives some of the situations
forbidden by definition 6.3.1.

Ki

Kj

Ki

Kj

Figure 6.8. Examples of forbidden situations for a triangular mesh.
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Remark 6.3.2 We shall not say anything about the algorithms for constructing a
triangular mesh. We shall be content with saying that, if it is relatively easy to mesh
plane domains (there are many free pieces of software which allow us to do this), it
is complicated to mesh three-dimensional domains. We refer the interested reader to
the work [20] for this subject. •

Exercise 6.3.1 Let Th be a mesh of Ω for Ω a simply connected open polygonal set of
R2. We denote by nt the number of triangles of Th, nc the number of faces or sides
of the triangles (a common side of two triangles is only counted once), ns the number of
vertices of the mesh, and n0s the number of interior vertices of the mesh (which are not
on ∂Ω). Prove the Euler relations, nt + ns = nc + 1 and 3nt + ns = 2nc + n0s.

In an N -simplex K it is easy to use barycentric coordinates instead of the usual
Cartesian coordinates. Recall that, if K is a nondegenerate N -simplex with vertices
(aj)1≤j≤N+1, the barycentric coordinates (λj)1≤j≤N+1 of x ∈ RN are defined by

N+1∑
j=1

λj = 1,
N+1∑
j=1

ai,jλj = xi, for 1 ≤ i ≤ N, (6.38)

which have a unique solution because the matrix A, defined by (6.37), is invertible.
Let us remark that λj are affine functions of x. We then verify that

K =
{
x ∈ RN such that λj(x) ≥ 0 for 1 ≤ j ≤ N + 1

}
,

and that the (N + 1) faces of K are the intersections of K and the hyperplanes
λj(x) = 0, 1 ≤ j ≤ N + 1. We can then define a set of points of K which will play a
particular role in what follows: for every integer k ≥ 1 we call the lattice of order
k the set

∑
k

=
{
x ∈ K such that λj(x) ∈

{
0,

1
k
, . . . ,

k − 1
k

, 1
}

for 1 ≤ j ≤ N

}
. (6.39)

For k = 1
∑

1 is the set of vertices of K, and for k = 2
∑

2 is the set of the vertices
and the midpoints of the edges linking two nodes (see Figure 6.9). In the general
case, Σk is a finite set of points (σj)1≤j≤nk .

We now define the set Pk of polynomials with real coefficients from RN into R of
degree less than or equal to k, that is, all p ∈ Pk are written in the form

p(x) =
∑

i1, ... ,iN≥0
i1+ ··· +iN≤k

αi1, ... ,iNx
i1
1 · · ·xiNN with x = (x1, · · · , xN ).

The interest in the idea of a lattice Σk of an N -simplex K is that it allows us to
characterize all the polynomials of Pk (we say that Σk is unisolvant for Pk).
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�1 �2 �3

Figure 6.9. Lattice of order 1, 2, and 3 for a triangle (top) and a tetrahedron (bottom).
The circles represent the points of the lattice.

Lemma 6.3.3 Let K be an N -simplex. For an integer k ≥ 1, let Σk be the lattice
of order k, defined by (6.39), whose points are denoted (σj)1≤j≤nk . Then, every
polynomial of Pk is uniquely determined by its values at the points (σj)1≤j≤nk . In
other words, there exists a basis (ψj)1≤j≤nk of Pk such that

ψj(σi) = δij 1 ≤ i, j ≤ nk.

Proof. The cardinality of Σk and the dimension of Pk coincide

card(Σk) = dim(Pk) =
(N + k)!
N ! k!

(the proof is left as an exercise, at least for k = 1, 2). Since the mapping which takes
every polynomial of Pk into its values on the lattice Σk is linear, it is sufficient to show
that it is injective to show that it is bijective. Take therefore a polynomial p ∈ Pk
which is zero on Σk. We show, by induction on the dimension N , that p is identically
zero on RN . For N = 1, it is clear that a polynomial of degree k which is zero at
(k + 1) distinct points is zero. Let us assume the result is true to order N − 1. As
x depends linearly on the barycentric coordinates (λj(x))1≤j≤N+1, we can define a
polynomial q(λ) = p(x) of degree greater than k in the variable λ ∈ RN+1. If we fix a
coordinate λj in the set {0, 1/k, . . . , (k − 1)/k, 1} and we set λ = (λ′, λj), we obtain
a polynomial qj(λ′) = q(λ) which depends on N − 1 independent variables (because
we have the relation

∑N+1
j=1 λj = 1) and which is zero on the section of the lattice Σk

corresponding to the fixed value of λj . As this section is also the lattice of order k of a
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(N−1)-simplex in the fixed hyperplane λj , we can apply the induction hypothesis and
deduce that qj = 0. In other words, the factor λj(λj−1/k) · · · (λj− (k−1)/k)(λj−1)
divides q, which is a contradiction with the fact that the degree of q(λ) is less than
or equal to k, except if q = 0, which is the result sought. �

Lemma 6.3.4 Let K and K ′ be two N -simplices having a common face Γ = ∂K ∩
∂K ′. Take an integer k ≥ 1. Then, their lattices of order k, Σk, and Σ′k coincide
on this face Γ. Moreover, given pK and pK′ two polynomials of Pk, the function v
defined by

v(x) =
{

pK(x) if x ∈ K
pK′(x) if x ∈ K ′

is continuous on K ∪K ′, if and only if pK and pK′ have values which coincide at the
points of the lattice on the common face Γ.

Proof. It is clear that the restriction to a face of K of its lattice of order Σk is
also a lattice of order k in the hyperplane containing this face, which only depends
on the vertices of this face. Consequently, the lattices Σk and Σ′k coincide on their
common face Γ. If the polynomials pK and pK′ coincide at the points of Σk ∩Γ, then
by application of lemma 6.3.3 they are equal on Γ, which proves the continuity of v.

�

In practice, we mostly use the polynomials of degree 1 or 2. In this case we have
the following characterizations of P1 and P2 in an N -simplex K.

Exercise 6.3.2 Let K be an N -simplex with vertices (aj)1≤j≤N+1. Show that every
polynomial p ∈ P1 is in the form

p(x) =
N+1∑
j=1

p(aj)λj(x),

where the (λj(x))1≤j≤N+1 are the barycentric coordinates of x ∈ RN .

Exercise 6.3.3 Let K be an N -simplex with vertices (aj)1≤j≤N+1. We define the
midpoints (ajj′)1≤j<j′≤N+1 of the edges of K by their barycentric coordinates

λj(ajj′) = λj′(ajj′) =
1
2
, λl(ajj′) = 0 for l �= j, j′.

Verify that Σ2 is precisely composed of the vertices and of the midpoints of the edges
and that every polynomial p ∈ P2 is in the form

p(x) =
N+1∑
j=1

p(aj)λj(x) (2λj(x)− 1) +
∑

1≤j<j′≤N+1

4p(ajj′)λj(x)λj′(x),

where the (λj(x))1≤j≤N+1 are the barycentric coordinates of x ∈ RN .
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We now have all the tools to define the Pk finite element method.

Definition 6.3.5 Given a mesh Th of an open connected polyhedral set Ω, the Pk
finite element method, or Lagrange triangular finite elements of order k, asso-
ciated with this mesh, is defined by the discrete space

Vh =
{
v ∈ C(Ω) such that v |Ki

∈ Pk for all Ki ∈ Th
}
. (6.40)

We call the nodes of the degrees of freedom the set of points (âi)1≤i≤ndl of the
lattice of order k of each of the N -simplices Ki ∈ Th. We only count once the points
which coincide and ndl is the number of degrees of freedom of the Pk finite element
method. We call the degrees of freedom of a function v ∈ Vh the set of the values
of v at these vertices (âi)1≤i≤ndl . We also define the subspace V0h by

V0h = {v ∈ Vh such that v = 0 on ∂Ω} . (6.41)

When k = 1 the vertices of these degrees of freedom coincide with the vertices of
the mesh. When k = 2 these vertices are composed on the one hand of the vertices
of the mesh and on the other hand of the midpoints of the edges linking two vertices.

Remark 6.3.6 The name ‘Lagrange finite elements’ corresponds to the finite elem-
ents whose degrees of freedom are point values of the functions of the space Vh. We
can define other types of finite elements, for example, Hermite finite elements (see
Section 6.2.5) for which the degrees of freedom are the point values of the function
and of its derivatives. •

Proposition 6.3.7 The space Vh, defined by (6.40), is a subspace of H1(Ω) whose
dimension is finite, equal to the number of degrees of freedom. Moreover, there exists
a basis of Vh (φi)1≤i≤ndl defined by

φi(âj) = δij 1 ≤ i, j ≤ ndl,

such that

v(x) =
ndl∑
i=1

v(âi)φi(x).

Proof. The elements of Vh, being regular over each mesh Ki and continuous over
Ω, belong to H1(Ω) (see lemma 4.3.19). Thanks to lemma 6.3.4 the elements of Vh
are exactly obtained by assembling on each Ki ∈ Th the polynomials of Pk which
coincide with the degrees of freedom of the faces (which proves in passing that Vh is
not reduced to the constant functions). Finally, by assembling the bases (ψj)1≤j≤nk of
Pk on each mesh Ki (provided by lemma 6.3.3) we obtain the stated basis (φi)1≤i≤ndl
of Vh. �

Remark 6.3.8 We obtain a similar result for the subspace V0h, defined by (6.41),
which is a subspace of H1

0 (Ω) of finite dimension equal to the number of interior
degrees of freedom (we do not count the vertices on the boundary ∂Ω). •
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Exercise 6.3.4 Let Th be a mesh of Ω for Ω, a simply connected polygonal open set
of R2. We denote by nt the number of triangles of Th, nc the number of faces or sides
of the triangles (a side common to two triangles is only counted once), ns the number of
vertices of the mesh, and n0s the number of interior vertices of the mesh. Show that the
dimensions of the spaces Vh and V0h are

dimVh =
k(k − 1)

2
nt + kns − k + 1, dimV0h =

k(k + 1)
2

nt − kns + k + 1.

Let us now describe the practical solution of the Dirichlet problem (6.36) by
the Pk finite element method. The variational formulation (6.2) of the internal
approximation becomes:

find uh ∈ V0h such that
∫

Ω
∇uh · ∇vh dx =

∫
Ω
fvh dx ∀ vh ∈ V0h. (6.42)

We decompose uh in the basis of (φj)1≤j≤ndl and we take vh = φi which gives

ndl∑
j=1

uh(âj)
∫

Ω
∇φj · ∇φi dx =

∫
Ω
fφi dx.

By denoting Uh = (uh(âj))1≤j≤ndl , bh =
(∫

Ω fφi dx
)

1≤i≤ndl , and by introducing the
stiffness matrix

Kh =
(∫

Ω
∇φj · ∇φi dx

)
1≤i,j≤ndl

,

the variational formulation in V0h reduces to solving in Rndl the linear system

KhUh = bh.

As the basis functions φj have a ‘small’ support around the node âi (see Figure 6.10),
the intersection of the supports of φj and φi is often empty and most of the coefficients
of Kh are zero. We say that the matrix Kh is sparse.

To calculate the coefficients of Kh, we can use the following exact integration
formula. We denote by (λi(x))1≤i≤N+1 the barycentric coordinates of the point under
consideration x of an N -simplex K. For every α1, . . . , αN+1 ∈ N, we have∫

K

λ1(x)α1 · · ·λN+1(x)αN+1 dx = Volume(K)
α1! · · ·αN+1!N !

(α1 + · · · + αN+1 + N)!
. (6.43)

To calculate the right-hand side bh (and possibly the matrix Kh), we use the quadra-
ture formulas (or numerical integration formulas) which give an approximation of
the integrals on each N -simplex Ki ∈ Th. For example, if K is an N -simplex with
vertices (ai)1≤i≤N+1, the following formulas generalize the ‘midpoint’ and the ‘trapez-
ium’ formulas in one dimension:∫

K

ψ(x) dx ≈ Volume(K)ψ(a0), (6.44)
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Figure 6.10. P1 basis in N = 2 dimensions.

with a0 = (N + 1)−1 ∑N+1
i=1 ai, the barycentre of K, and

∫
K

ψ(x) dx ≈ Volume(K)
N + 1

N+1∑
i=1

ψ(ai). (6.45)

As was shown in exercises 6.3.6 and 6.3.8, these formulas are exact for affine functions
and are therefore approximations of order 2 in h for regular functions.

The construction of the matrix Kh is called matrix assembly. The computer
implementation of this stage of the calculation can be very complicated, but its cost
in terms of time of calculation is low. This is not the case for the solution of the
linear system KhUh = bh which is the most costly stage of the method in calcula-
tion time (and in memory storage). In particular, the three-dimensional calculations
are currently very expensive when we use fine meshes. Exercise 6.3.11 allows us to
calculate this. Happily, the stiffness matrix Kh is sparse (that is, most of its elem-
ents are zero), which allows us to minimize the calculations (for more details see the
solution algorithms for linear systems in the Section 13.1 of the appendix). Recall
that the matrix Kh is necessarily invertible by application of lemma 6.1.1 and that it
is symmetric.

Exercise 6.3.5 Prove the formula (6.43) in N = 2 dimensions.

Exercise 6.3.6 Show that the formulas (6.44) and (6.45) are exact for ψ ∈ P1.

Exercise 6.3.7 Let K be a triangle of R2 with vertices (ai)1≤i≤3 and with barycentre
a0. Let (aij)1≤i<j≤3 be the midpoints of the segments with ends ai, aj . Show that the
quadrature formula ∫

K

ψ(x) dx ≈ Area(K)
3

∑
1≤i<j≤3

ψ(aij)
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is exact for ψ ∈ P2, while the formula

∫
K

ψ(x) dx ≈ Area(K)
60

⎛
⎝3

3∑
i=1

ψ(ai) + 8
∑

1≤i<j≤3

ψ(aij) + 27ψ(a0)

⎞
⎠

is exact for ψ ∈ P3.

Exercise 6.3.8 Let (bi)1≤i≤I be the points of an N -simplex K and (ωi)1≤i≤I be real
weights. Take a quadrature formula

∫
K

ψ(x) dx ≈ Volume(K)
I∑
i=1

ωiψ(bi)

which is exact for ψ ∈ Pk. Show that, for a regular function ψ, we have

1
Volume(K)

∫
K

ψ(x) dx =
I∑
i=1

ωiψ(bi) +O(hk+1),

where h is the diameter of K.

1 5 2

8 6
9

4 7 3

Figure 6.11. Example of mesh and of classification of the vertices.

Exercise 6.3.9 We consider the square Ω =]−1,+1[2 meshed as in Figure 6.11. Calcu-
late the stiffness matrix Kh of P1 finite elements applied to the Laplacian with Neumann
boundary conditions (use the symmetries of the mesh).

Exercise 6.3.10 Apply the P1 finite element method to the Dirichlet problem (6.36) in
the square Ω =]0, 1[2 with the uniform triangular mesh of Figure 6.12. Show that the
stiffness matrix Kh is the same matrix than that we would obtain by application of the
finite difference method (up to a multiplicative factor h2), but that the right-hand side
bh is different.

Exercise 6.3.11 We reuse the notation of exercise 6.3.10. We denote by n the number
of points of the mesh on a side of the square (assumed to be the same for each side).
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Figure 6.12. Uniform triangular mesh of a square.

We number the vertices of the mesh (or the degrees of freedom) ‘line by line’. Show that
the P1 finite element stiffness matrix Kh has size of the order of n2 and bandwidth of the
order of 2n (for large n).

Show that the same method and the same type of mesh for the cube Ω =]0, 1[3 leads
to a matrix whose size is of the order of n3 and bandwidth of the order of 2n2 (where n
is the number of vertices along an edge of the cube Ω).

Remark 6.3.9 As we show in the example of exercise 6.3.10, the way of numbering
the vertices of these degrees of freedom (or equivalently the basis functions) has an
influence on the sparse structure of the matrix Kh, that is, on the position of its
nonzero elements. As explained in Section 13.1 (see, for example, lemma 13.1.4),
this sparse structure of the matrix has a large influence on the performance of the
solution of the linear system KhUh = bh. For example, if we solve this linear system
by a ‘Gaussian elimination’ method, it is advantageous to choose a numbering which
groups the nonzero elements close to the diagonal. •

Remark 6.3.10 To simplify the analysis (and also the implementation) we can use
an affine transformation to reduce every N -simplex K of the mesh Th to a ‘reference’
N -simplex K0. By this simple change of variable, all the calculations are reduced to
calculations on K0. In practice, we often choose

K0 =

{
x ∈ RN such that

N∑
i=1

xi ≤ 1, xi ≥ 0 for 1 ≤ i ≤ N

}
, (6.46)

and we see easily that every N -simplex K is the image, by an affine transformation,
of K0. In effect, the barycentric coordinates, defined by (6.38) are the same for K and
K0 and, by denoting λ = (λj)1≤j≤N+1, x̃ = (x, 1) the point under consideration in K,
x̃0 = (x0, 1) this point in K0, we have Aλ = x̃, and A0λ = x̃0, where the matrices A
and A0 are defined by (6.37) and invertible. We therefore deduce that x̃ = AA−1

0 x̃0,
that is, there exists a matrix B, invertible of order N , and a vector b ∈ RN such that
x = Bx0 + b. •

The following exercise shows that the P1 finite element method satisfies the max-
imum principle.
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Figure 6.13. Triangular mesh finer than that of figure 6.7.

Exercise 6.3.12 We say that a real square matrix B = (bij)1≤i,j≤n is an M-matrix if,
for all i,

bii > 0,
n∑
k=1

bik > 0, bij ≤ 0 ∀ j �= i.

Show that every M-matrix is invertible and that all the coefficients of its inverse are
positive or zero.

Exercise 6.3.13 We work in N = 2 dimensions. Let uh be the approximate solution
of the Dirichlet problem (6.36) obtained by the P1 finite element method. We assume
that all the angles of the triangles Ki ∈ Th are less than or equal to π/2. Show that
uh(x) ≥ 0 in Ω if f(x) ≥ 0 in Ω. Hint: we shall show that, for all ε > 0, Kh + ε I is an
M-matrix, where Kh is the stiffness matrix.

There is obviously no difficulty to extend the Pk finite element method to problems
other than (6.36).

Exercise 6.3.14 Apply the Pk finite element method to the elasticity system (5.56).
Show in particular that the stiffness matrix Kh is in this case of order Nndl where N is
the space dimensions and ndl is the number of vertex degrees of freedom.

Exercise 6.3.15 Make explicit the stiffness matrix Kh obtained by application of the
Pk finite element method to the Neumann problem

{ −∆u + au = f in Ω
∂u

∂n
= g on ∂Ω,

(6.47)

with f ∈ L2(Ω), g ∈ L2(∂Ω), and a ∈ L∞(Ω) such that a(x) ≥ a0 > 0 a.e. in Ω.
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Figure 6.14. Source term f in the equation (6.36).

Exercise 6.3.16 Show that the stiffness matrix Kh obtained by application of the Pk
finite element method to the convection–diffusion problem of exercise 5.2.2 is invertible
but not symmetric.

Exercise 6.3.17 We propose to solve numerically the plate equation (5.70) by a
(Hermite) finite element method in N = 2 dimensions. For a triangular mesh Th we
introduce the discrete space

Vh =
{
v ∈ C1(Ω) such that v |Ki

∈ P5 for all Ki ∈ Th
}
.

Show that every polynomial p ∈ P5 is characterized uniquely on a triangle K by the
following 21 real values

p(aj), ∇p(aj), ∇∇p(aj),
∂p(bj)
∂n

j = 1, 2, 3, (6.48)

where (a1, a2, a3) are the vertices of K, (b1, b2, b3) the middle of the sides of K, and
∂p(bj)/∂n denotes the derivative which is normal to the side of bj . Show that Vh is a
subspace of H2(Ω) whose elements v are uniquely characterized by the values (6.48) for
each vertex and edge midpoint of the mesh. Deduce from this a finite element method
(the Argyris method) to solve (5.70).

We finish this section by illustrating it with a numerical result obtained by the
P1 finite element method applied to the Dirichlet problem (6.36). The right-hand
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Figure 6.15. Approximate solution uh of the diffusion equation (6.36) for the coarse
mesh of figure 6.7 (top) and for the fine mesh of figure 6.13 (bottom).
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Figure 6.16. Approximate solution uh of the convection–diffusion equation (5.13).

side is given by Figure 6.14. We can interpret this problem as the modelling of
the diffusion in the atmosphere of a pollutant emitted by a localized source. The
domain of calculation represents a region around the source (the vertical direction is
‘averaged’ and absent from the calculation) and we assume that the concentration is
zero on the boundary. We have used the ‘coarse’ mesh of Figure 6.7, and the ‘fine’
mesh of Figure 6.13. The corresponding results are shown in Figure 6.15. We remark
that the maximum value of the numerical solution uh is higher for the fine mesh than
for the coarse mesh (the scales are not the same). This is a manifestation of the fact
that the step h of the coarse mesh is not small enough for the approximate solution
uh to have converged to the exact solution. If we add, as well as the diffusion, a
convection effect (modelling a constant wind in the horizontal direction, see (5.13)),
we can see the plume effect produced on the concentration in Figure 6.16 (obtained
with the fine mesh). The maximal value of the solution is smaller in the presence of a
convection term, this correspond to the physical intuition that the wind ‘dilutes’ the
higher concentrations of pollutant.

6.3.2 Convergence and error estimation

We prove the convergence of Pk finite element methods for the Dirichlet problem
(6.36). We emphasize that this is only for a model problem, and that these methods
converge for other problems, such as Neumann (6.47) problems. We shall need some
geometric hypotheses on the quality of the mesh. For every N -simplex K we introduce
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two geometric parameters: the diameter diam(K) and the diameter of the largest
ball contained in K ρ(K) (see Figure 6.17),

diam(K) = max
x,y∈K

‖x− y‖, ρ(K) = max
Br⊂K

(2r).

Of course, we always have diam(K)/ρ(K) > 1. This ratio is larger when K is ‘flat-
tened’: it is a measure of the degeneracy of K. In practice, as in theory, we must
avoid the use of N -simplices K which are too flat.

diam(K )

r(K )

Figure 6.17. diam(K) and ρ(K) for a triangle K.

Definition 6.3.11 Let (Th)h>0 be a sequence of meshes of Ω. We say that it is a
sequence of regular meshes if

1. the sequence h = maxKi∈Th diam(Ki) tends to 0,

2. there exists a constant C such that, for all h > 0 and all K ∈ Th,

diam(K)
ρ(K)

≤ C. (6.49)

Remark 6.3.12 In N = 2 dimensions the condition (6.49) is equivalent to the fol-
lowing condition on the angles of the triangle K: there exists a minimum angle θ0 > 0
which is a lower bound (uniformly in h) for all the angles of every K ∈ Th. We empha-
size the fact that condition (6.49) is as important in practice as for the convergence
analysis which follows. •

We can now state the principal result of this section which states the convergence
of the Pk finite element method and which gives an estimate of the rate of convergence
if the solution is regular.

Theorem 6.3.13 Let (Th)h>0 be a sequence of regular meshes of Ω. Let u ∈ H1
0 (Ω) be

the solution of the Dirichlet problem (6.36), and uh ∈ V0h, its internal approximation
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(6.42) by the Pk finite element method. Then the Pk finite element method converges,
that is,

lim
h→0

‖u− uh‖H1(Ω) = 0. (6.50)

Moreover, if u ∈ Hk+1(Ω) and if k + 1 > N/2, then we have the error estimate

‖u− uh‖H1(Ω) ≤ Chk‖u‖Hk+1(Ω), (6.51)

where C is a constant independent of h and of u.

Remark 6.3.14 Theorem 6.3.13 in fact applies to all Lagrange finite element
methods (for example, the rectangular finite elements of Section 6.3.3). In effect,
the only argument used is the construction of an interpolation operator based on the
characterization of the functions of Vh by their values at the vertices of the degrees
of freedom, which is always possible for Lagrange finite elements (see remark 6.3.6).
Let us remark that, for the physically pertinent cases N = 2 or N = 3, the condition
k + 1 > N/2 is always satisfied as k ≥ 1. •

Remark 6.3.15 The error estimate (6.51) of theorem 6.3.13 is only true if the exact
solution u is regular, which is not always the case. If u is not regular, we find
in practice that the convergence is slower (see Figure 6.5 in one space dimension).
On the other hand, the convergence (6.50), which is in the ‘energy’ space, does not
imply the point convergence of uh or of its derivatives. Figure 6.18 illustrates this
fact for the Dirichlet problem (6.36) with f ≡ 1 and a ‘reentrant corner’ where the
solution is singular (see lemma 5.2.33). Numerically, the modulus of the gradient
of uh increases to infinity in the corner as h tends to zero (the maximum of |∇uh|
becomes 0.92 for the mesh on the left with 1187 vertices, 1.18 for the mesh in the
middle with 4606 vertices, and 1.50 for that on the right with 18 572 vertices) •
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Figure 6.18. Modulus of the gradient of uh for three meshes (increasingly fine from
left to right).

The proof of theorem 6.3.13 rests on the following definition of an interpolation
operator rh and on the interpolation result of proposition 6.3.16. Let us recall that



FINITE ELEMENTS IN N ≥ 2 DIMENSIONS 187

we have denoted by (âi)1≤i≤ndl the family of the vertices of the degrees of freedom
and (φi)1≤i≤ndl the basis of V0h of the Pk finite element method (see proposition
6.3.7). For every continuous function v, we define its interpolant

rhv(x) =
ndl∑
i=1

v(âi)φi(x). (6.52)

The principal difference with the study made in N = 1 dimension is that as the
functions of H1(Ω) are not continuous when N ≥ 2, the interpolation operator rh is
not defined on H1(Ω) (the point values of a function of H1(Ω) do not a priori have
a meaning). Nevertheless, and this is the reason for the hypothesis k + 1 > N/2,
rh is well defined on Hk+1(Ω) because the functions of Hk+1(Ω) are continuous
(Hk+1(Ω) ⊂ C(Ω) from theorem 4.3.25).

Proposition 6.3.16 Let (Th)h>0 be a sequence of regular meshes of Ω. We assume
that k + 1 > N/2. Then, for all v ∈ Hk+1(Ω) the interpolant rhv is well defined, and
there exists a constant C, independent of h and of v, such that

‖v − rhv‖H1(Ω) ≤ Chk‖v‖Hk+1(Ω). (6.53)

Assuming, for the moment, proposition 6.3.16, we can conclude as for the conver-
gence of the Pk finite element method.

Proof of theorem 6.3.13. We apply the abstract framework of section 6.1.2. To
show (6.50) we use lemma 6.1.3 with V = C∞c (Ω) which is dense in H1

0 (Ω). As
C∞c (Ω) ⊂ Hk+1(Ω), the estimate (6.53) of proposition 6.3.16 allows us to verify the
hypothesis (6.5) of lemma 6.1.3 (for regular functions we do not need the condition
k + 1 > N/2 in the Proposition 6.3.16).

To obtain the error estimate (6.51) we use Céa’s lemma 6.1.2 which told us that

‖u− uh‖H1(Ω) ≤ C inf
vh∈V0h

‖u− vh‖H1(Ω) ≤ C‖u− rhu‖H1(Ω),

if rhu belongs to H1(Ω). By application of proposition 6.3.16 to u we obtain
(6.51). �

Remark 6.3.17 The theorem 6.3.13 is valid when uh is the exact solution of the internal
approximation (6.42) in V0h. This means exactly calculating all the integrals occurring in the
matrix Kh and the right-hand side bh. In practice, we do not evaluate them exactly because
we use numerical integration. Nevertheless, if we use ‘reasonable’ quadrature formulas, the
Pk finite element method converges (see [34]). In particular, if the quadrature formula used
to calculate the integrals on an N -simplex K is exact for polynomials of P2k−2, then the error
estimate (6.51) is always valid (where uh is the discrete solution calculated with numerical
integration). For example, for P1 finite elements we can use the quadrature formulas (6.44)
or (6.45) without loss of accuracy or rate of convergence. •
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ΩhΩ

Figure 6.19. Approximation by a polyhedral domain Ωh of a regular open set Ω.

Remark 6.3.18 Let us indicate briefly what happens when the domain Ω is not polyhedral
(but sufficiently regular). We start by approximating Ω by a polyhedral domain Ωh which
we mesh by Th (see Figure 6.19). We can choose Ωh and its mesh (with h the maximum
diameter of the elements) in such a way that there exists a constant C (which only depends
on the curvature of Ω) satisfying

dist(∂Ω, ∂Ωh) ≤ Ch2.

We call uh the solution of the variational approximation in the space Vh associated with
the mesh Th and the Pk finite element. In general, even if we choose Ωh ⊂ Ω, Vh is not a
subspace of the Sobolev space V in which we look for the exact solution u (for example, if the
boundary conditions are Neumann), which seriously complicates the analysis. Nevertheless,
in N = 2 dimensions we can show (see [34]) that, for P1 finite elements, if u ∈ H2(Ω), then
we always have

‖u− uh‖H1(Ωh) ≤ Ch‖u‖H2(Ω), (6.54)

while, for P2 finite elements, if u ∈ Hk+1(Ω), then we only have

‖u− uh‖H1(Ωh) ≤ Ch3/2‖u‖Hk+1(Ω). (6.55)

Consequently, this method is satisfactory for P1 finite elements, since the convergence (6.54)
is of the same order as (6.51), but disappointing and nonoptimal for Pk finite elements
with k ≥ 2. We can fix this situation by introducing ‘isoparametric finite elements’: they
work by meshing the part of Ω near to the boundary by ‘curves’ obtained by deformation
of standard N -simplices (this deformation is a generalization of the affine transformation
introduced in remark 6.3.10). For example, in N = 2 dimensions we often use a polynomial
transformation of degree 2 which deforms a reference triangle into a ‘triangle’ whose sides
are arcs of a parabola. This allows a better approximation of the boundary ∂Ω by ∂Ωh. We
can then prove an optimal error estimate of the same order as (6.51) (see [9], [34]). •

We pass now to the proof of proposition 6.3.16 which can be omitted in first reading. It
works by the construction of a local interpolation operator in each element of the mesh. Let
K be an N -simplex of lattice of order k, Σk. We define the interpolation operator rK, for
every continuous function v on K,

rKv = p ∈ Pk such that p(x) = v(x) ∀x ∈ Σk. (6.56)
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Form lemma 6.3.3 we know that every polynomial of Pk is uniquely determined by its values
at the points of Σk: consequently, (6.56) defines rK as a (linear) mapping.

Lemma 6.3.19 (Bramble–Hilbert) We assume that k + 1 > N/2. The interpolation
operator rK is linear and continuous from Hk+1(K) into Hk+1(K), and there exists a con-
stant C(K) such that, for all v ∈ Hk+1(K) we have

‖v − rKv‖Hk+1(K) ≤ C(K)|v|Hk+1(K), (6.57)

where |v|Hk+1(K) is the semi-norm defined by

|v|2Hk+1(K) =
∑

|α|=k+1

∫
K

|∂αv|2dx = ‖v‖2
Hk+1(K) − ‖v‖2

Hk(K).

Proof. For k + 1 > N/2 theorem 4.3.25 means that Hk+1(K) ⊂ C(K), therefore the point
values of the functions ofHk+1(K) are well defined as continuous linear forms. Consequently,
rKv is a polynomial whose coefficients depend linearly and continuously on v ∈ Hk+1(K),
in any space Hm(K) with m ∈ N. We deduce that rK is linear and continuous in Hk+1(K).
Let us now prove the inequality

‖v‖Hk+1(K) ≤ C(K)
(
|v|Hk+1(K) + ‖rKv‖Hk+1(K)

)
, (6.58)

proceeding by contradiction (as we have already done for other inequalities ; see, for example,
the proof (4.15) of the Poincaré inequality). There therefore exists a sequence vn ∈ Hk+1(K)
such that

1 = ‖vn‖Hk+1(K) > n
(
|vn|Hk+1(K) + ‖rKvn‖Hk+1(K)

)
. (6.59)

The left-hand term of (6.59) implies that the sequence vn is bounded in Hk+1(K). By
application of Rellich’s theorem 4.3.21, there exists a subsequence vn′ which converges in
Hk(K). The right-hand term of (6.59) implies that the sequence of derivatives ∂αvn′ , for
every multi-index |α| = k + 1, converges to zero in L2(K). Consequently, vn′ converges in
Hk+1(K) to a limit v which satisfies (by passing to the limit in (6.59))

|v|Hk+1(K) = 0, ‖rKv‖Hk+1(K) = 0. (6.60)

The first equation of (6.60) shows that v ∈ Pk because K is connected (by repeated applica-
tion of proposition 4.2.5). By the definition (6.56) of rK we have rKv = v for v ∈ Pk. The
second equation of (6.60) shows therefore that rKv = v = 0, which is a contradiction with
the limit of the left-hand term of (6.59). To obtain (6.57) we apply (6.58) to (v − rKv) by
remarking that rK(v−rKv) = 0 and that |v−rKv|Hk+1(K) = |v|Hk+1(K) since the derivatives
of order k + 1 of a polynomial of Pk are zero. �

The disadvantage of the Bramble–Hilbert lemma 6.3.19 is that the constant in the
inequality (6.57) depends on K in a nonexplicit way. We make this dependence precise
in the following lemma.

Lemma 6.3.20 We assume that k+1 > N/2 and that diam(K) ≤ 1. There exists a constant
C independent of K such that, for all v ∈ Hk+1(K) we have

‖v − rKv‖H1(K) ≤ C
(diam(K))k+1

ρ(K)
|v|Hk+1(K). (6.61)
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Proof. We use remark 6.3.10 which confirms that every N -simplex K is the image by an
affine transformation of the reference N -simplex K0, defined by (6.46). In other words, there
exists an invertible matrix B and a vector b (depending on K) such that, for all x ∈ K, there
exists x0 ∈ K0 satisfying

x = Bx0 + b. (6.62)

To obtain (6.61), we start from the inequality (6.57) established on K0 and we apply the
change of variable (6.62). This allows us to find the dependence with respect to K of the
constant in this inequality. We shall not give the details of this calculation but simply
indicate the principal stages (the reader can consult [34]). The Jacobian of the change of
variable being det(B), and the derivatives in K being obtained from the derivatives in K0

by composition with B−1, there exists a constant C, independent of K, such that, for every
regular function v(x) with v0(x0) = v(Bx0 + b), we have

|v0|Hl(K0) ≤ C‖B‖l | det(B)|−1/2 |v|Hl(K)

|v|Hl(K) ≤ C‖B−1‖l | det(B)|1/2 |v0|Hl(K0).

We therefore deduce from (6.57)

|v − rKv|H1(K) ≤ C‖B‖k+1‖B−1‖|v|Hk+1(K)

‖v − rKv‖L2(K) ≤ C‖B‖k+1|v|Hk+1(K).

In addition, we easily verify that

‖B‖ ≤ diam(K)
ρ(K0)

, ‖B−1‖ ≤ diam(K0)
ρ(K)

.

Combining these results we obtain (6.61). �

Proof of proposition 6.3.16. By construction, if v ∈ Hk+1(Ω), its interpolant rhv
restricted to the N -simplex K is simply rKv. Consequently,

‖v − rhv‖2
H1(Ω) =

∑
Ki∈Th

‖v − rKiv‖2
H1(Ki).

We apply the upper bound (6.61) to each element Ki (with the same constant C for all),
and as the mesh is regular the inequality (6.49) allows us to uniformly bound the ratio
diam(Ki)/ρ(Ki). We deduce

‖v − rhv‖2
H1(Ω) ≤ Ch2k

∑
Ki∈Th

|v|2Hk+1(Ki)
≤ Ch2k‖v‖2

Hk+1(Ω)

which is the desired result. �

Exercise 6.3.18 Show that for a sequence of regular meshes, and for P1 finite elements,
the interpolation operator rh satisfies in N = 2 or 3 dimensions

‖v − rhv‖L2(Ω) ≤ Ch2‖v‖H2(Ω).
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6.3.3 Rectangular finite elements

If the domain Ω is rectangular (that is, Ω is a polyhedral open set whose faces are
perpendicular to the axes), we can mesh by rectangles (see Figure 6.20) and use an
adapted finite element method. We shall define the Lagrange finite elements (that is,
whose degrees of freedom are point values of functions), called Qk finite elements. Let
us start by defining an N -rectangle K of RN as the (nondegenerate) block

∏N
i=1[li, Li]

with −∞ < li < Li < +∞. We denote by (aj)1≤j≤2N the vertices of K.

Figure 6.20. Example of a rectangular mesh in N = 2 dimensions.

Definition 6.3.21 Let Ω be a polyhedral connected open set of RN . A rectangular
mesh of Ω is a set Th of (nondegenerate) N -rectangles (Ki)1≤i≤n which satisfies

1. Ki ⊂ Ω and Ω = ∪ni=1Ki,

2. the intersection Ki ∩ Kj of two distinct N -rectangles is an m-rectangle, with
0 ≤ m ≤ N − 1, whose vertices are also vertices of Ki and Kj. (In N = 2
dimensions, the intersection of two rectangles is either empty, or a common
vertex, or an entire common face.)

The vertices or nodes of the mesh Th are the vertices of the N -rectangles Ki. By
convention, the parameter h denotes the maximum diameter of the N -rectangles Ki.

We define the set Qk of polynomials with real coefficients from RN into R of degree
less than or equal to k with respect to each variable, that is, for all p ∈ Qk written
in the form

p(x) =
∑

0≤i1≤k, ... ,0≤iN≤k
αi1, ... ,iNx

i1
1 · · ·xiNN withx = (x1, . . . , xN ).

Let us remark that the total degree of p can be greater than k, which differentiates
the space Qk from Pk.
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�1 �2 �3

Figure 6.21. Lattice of order 1, 2, and 3 for a rectangle (the circles represent the
points of the lattice).

For every integer k ≥ 1 we define the lattice of order k of the N -rectangle K as
the set

Σk =
{
x ∈ K such that

xj − lj
Lj − lj

∈
{

0,
1
k
, . . . ,

k − 1
k

, 1
}

for 1 ≤ j ≤ N

}
. (6.63)

For k = 1 this is the set of the vertices of K, and for k = 2 and N = 2 of the
vertices, of the midpoints of the edges linking two vertices, and of the barycentre (see
Figure 6.21).

The lattice Σk of an N -rectangle K is unisolvant for Qk, that is, we can charac-
terize all the polynomials of Qk.

Lemma 6.3.22 Let K be an N -rectangle. Take an integer k ≥ 1. Then, every
polynomial of Qk is uniquely determined by its values at the points of the lattice of
order k, Σk, defined by (6.63).

Proof. We verify that the cardinality of Σk and the dimension of Qk coincide

card(Σk) = dim(Qk) = (k + 1)N .

Since the mapping which, for every polynomial of Qk, gives its values on the lattice
Σk is linear, it is sufficient to show a basis of Qk whose elements are 1 at a point of
the lattice and 0 elsewhere to prove the result. Let xµ be a point of Σk defined by

xµj − lj

Lj − lj
=

µj
k

with 0 ≤ µj ≤ k, ∀ j ∈ {1, . . . , N}.

We define the polynomial p ∈ Qk by

p(x) =
N∏
j=1

⎛
⎜⎝ k∏

i=0
i�=µj

k(xj − lj)− i(Lj − lj)
(µj − i)(Lj − lj)

⎞
⎟⎠ with x = (x1, . . . , xN ).
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We verify easily that p(xµ) = 1 while p is zero on all the other points of Σk, which is
the desired result. �

As in the triangular case we have the following continuity condition across a face
(we leave the proof, similar to that of lemma 6.3.4, to the reader).

Lemma 6.3.23 Let K and K ′ be two N -rectangles having a common face Γ = ∂K ∩
∂K ′. Let k ≥ 1 be an integer. Then, their lattice of order k Σk and Σ′k coincide on
this face Γ. Moreover, given pK and pK′ , two polynomials of Qk, the function v is
defined by

v(x) =
{

pK(x) if x ∈ K
pK′(x) if x ∈ K ′

is continuous on K ∪K ′, if and only if pK and pK′ have values which coincide at the
points of the lattice on the common face Γ.

In practice, we mostly use the spaces Q1 and Q2. Figure 6.22 shows a function
of Q1 in N = 2 dimensions (we can verify that the functions of Q1 are not piecewise
affine like those of P1).

Figure 6.22. Function of Q1 in N = 2 dimensions.

Exercise 6.3.19 Let K = [0, 1]2 be the unit cube in N = 2 dimensions with vertices
a1 = (0, 0), a2 = (1, 0), a3 = (1, 1), a4 = (0, 1). We define x3 = 1 − x1, x4 = 1 − x2,
and i as the value of i modulo 4. Verify that the basis functions of Q1 are

pi(x) = xi+2xi+3 for 1 ≤ i ≤ 4,

and that those of Q2 are

Pi(x) = xi+2(2xi+2 − 1)xi+3(2xi+3 − 1) for 1 ≤ i ≤ 4
Pi(x) = −4xi+2(xi+2 − 1)xi+3(2xi+3 − 1) for 5 ≤ i ≤ 8
P9(x) = 16x1x2x3x4.
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Remark 6.3.24 In practice, we sometimes replace the Q2 finite element by another
finite element which is more simple, and just as effective, denoted by Q∗2. In N = 2
dimensions, the Q∗2 finite element is defined by the 8 basis functions (pi)1≤i≤8 of
exercise 6.3.19 (we have removed the last, p9). We verify that the degrees of freedom
of Q∗2 are the vertices and the middle of the edges of the rectangle (but not its
barycentre). In N = 3 dimensions, the Q∗2 finite element is defined by its degrees of
freedom which are the 8 vertices and the 12 middles of the edges of the cube (there
are no degrees of freedom in the interior). •

Definition 6.3.25 Given a rectangular mesh Th of an open set Ω, the Qk finite
element method is defined by the discrete space

Vh =
{
v ∈ C(Ω) such that v |Ki ∈ Qk for all Ki ∈ Th

}
. (6.64)

The nodes of these degrees of freedom are the set of the points (âi)1≤i≤ndl of the
lattice of order k of each of the N -rectangles Ki ∈ Th.

As in the triangular case, definition 6.3.25 has a meaning, thanks to the following
proposition (whose proof we shall leave to the reader as an exercise).

Proposition 6.3.26 The space Vh, defined by (6.64), is a subspace of H1(Ω) whose
dimension is the number of degrees of freedom ndl. Moreover, there exists a basis of
Vh (φi)1≤i≤ndl defined by

φi(âj) = δij 1 ≤ i, j ≤ ndl,

such that

v(x) =
ndl∑
i=1

v(âi)φi(x).

As the Qk finite elements are Lagrange finite elements, we can prove the same
convergence results as for the method of Pk finite elements. We shall allow the reader
to verify that the proof of theorem 6.3.13 applies ‘mutatis mutandis’ to the following
theorem (the definition 6.3.11 of regular meshes is easily extended to rectangular
meshes).

Theorem 6.3.27 Let (Th)h>0 be a sequence of regular rectangular meshes of Ω. Let
u ∈ H1

0 (Ω) be the exact solution of the Dirichlet problem (6.36), and uh ∈ V0h, the
approximate solution by the Qk finite element method. Then the finite element method
Qk converges, that is,

lim
h→0

‖u− uh‖H1(Ω) = 0.

Moreover, if u ∈ Hk+1(Ω) and if k + 1 > N/2, then we have the error estimate

‖u− uh‖H1(Ω) ≤ Chk‖u‖Hk+1(Ω),

where C is a constant independent of h and of u.
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Remark 6.3.28 We can generalize the concept of a rectangular mesh and of Qk finite
elements a little by using the concept of affine transformation. We say N -parallelotope to
mean the image by an affine mapping F of the unit cube [0, 1]N (a 2-parallelotope is a
parallelogram). We verify that an N -parallelotope with 2N faces, parallel in pairs, and that
its lattice is the image of the lattice of the unit cube. We can then mesh a domain Ω by
N -parallelotopes and define a finite element method based on the image F (Qk), in each
N -parallelotope, of the space Qk for the unit cube (in general F (Qk) �= Qk). We can also
use more complicated (nonaffine) transformations: this is the isoparametric finite element
method (see the remark 6.3.18 on this subject). For example, in N = 2 dimensions, the
use of transformations Q1 allows us to mesh a domain with arbitrary quadrilaterals (with
nonparallel faces). For more details, we refer to [34]. •

Remark 6.3.29 We can also mesh a part of Ω by N -simplices, and another by N -rectangles
and construct a finite element method which is a mixture of the two types Pk and Qk. For
more details, we again refer to [34]. •

Remark 6.3.30 We can define finite elements intermediate between Pk and Qk in N = 3
dimensions, called ‘prismatic finite elements of order k’. Assume that Ω = ω×]0, L[ with ω
an open set of R2. We mesh ω by triangles Ti, and ]0, L[ by segments [zj, zj+1]. We then
define the prisms of R3 as the product Ti × [zj, zj+1], with which we mesh Ω. We then
construct basis functions intermediate between those of Pk and Qk on these prisms. For
more details, we refer to [34]. •

6.3.4 Finite elements for the Stokes problem

The generalization of the finite element method to systems of partial differential equa-
tions (like the system of linear elasticity) does not pose particular problems. This is
not the case for the system of Stokes equations (5.71) because of the incompressibility
condition on the fluid (or zero divergence condition on the velocity). The consider-
able practical importance of numerical simulations in incompressible fluid mechanics
justifies the fact that we shall briefly discuss this particular case (and also allows us to
show that numerical analysis is not always the long tranquil river we might imagine
from reading this text).

Recall that, in a connected bounded domain Ω ⊂ RN , in the presence of exterior
forces f(x), and for boundary conditions which describe the adherence of the fluid to
the boundary, the Stokes equations are written⎧⎨

⎩
∇p− µ∆u = f in Ω
divu = 0 in Ω
u = 0 on ∂Ω

(6.65)

where µ > 0 is the viscosity of the fluid. In the Section 5.3.2 we have proposed as a
variational formulation of (6.65)

Find u ∈ V such that
∫

Ω
µ∇u · ∇v dx =

∫
Ω
f · v dx ∀ v ∈ V, (6.66)
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where V is the Hilbert space defined by

V =
{
v ∈ H1

0 (Ω)N such that divv = 0 a.e. in Ω
}
. (6.67)

As V contains the incompressibility constraint divv = 0, it is very difficult in practice
to construct internal variational approximations of (6.66) as we have justified here.
More precisely, the difficulty is to define simply (explicitly) a subspace Vh of V of
finite dimension whose elements are written using the basis functions of Pk or Qk
finite elements. For example, if Th = (Ki)1≤i≤n is a triangular mesh of the open
connected polyhedral set Ω, we can define

Vh =
{
v ∈ C(Ω)N such that divv = 0 in Ω, v |Ki

∈ PNk for all Ki ∈ Th
}
,

but it is not clear that Vh is not ‘too small’ and how we can characterize its elements
in terms of degrees of freedom. In particular, the condition divv = 0 in the definition
of Vh mixes all the components of v, which makes it very difficult and complicated to
characterize an explicit basis of Vh. We therefore do not use the variational formula-
tion (6.67) to define a finite element method.

In practice, we introduce another variational formulation of the Stokes equations
which consists of not forcing the incompressibility in the definition of the space and
keeping the pressure as an unknown in the variational formulation. By multiplying
the first equation of (6.65) by a test function v ∈ H1

0 (Ω)N and the second equation
by another test function q ∈ L2(Ω), we obtain after integration by parts: find (u, p) ∈
H1

0 (Ω)N × L2(Ω)/R such that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫
Ω
µ∇u · ∇v dx−

∫
Ω
pdivv dx =

∫
Ω
f · v dx

∫
Ω
qdivu dx = 0,

(6.68)

for all (v, q) ∈ H1
0 (Ω)N × L2(Ω)/R. A supplementary interest in (6.68) is that the

pressure is not eliminated as in (6.66). It will therefore be possible to calculate this
(physically important) variable with (6.68). We leave the following result to the reader
to verify as an exercise.

Lemma 6.3.31 Take (u, p) ∈ H1
0 (Ω)N × L2(Ω)/R. The couple (u, p) is the solution

of (6.68) if and only if it is the solution (weak, in the sense of theorem 5.3.8) of the
Stokes equations (6.65).

It is then easy to construct an internal variational approximation of (6.68). We
introduce the discrete spaces{

V0h =
{
v ∈ C(Ω)N such that v |Ki ∈ PNk for all Ki ∈ Th and v = 0 on ∂Ω

}
,

Qh =
{
q ∈ C(Ω)/R such that q |Ki ∈ Pk′ for all Ki ∈ Th

}
,
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so that V0h×Qh is a subspace of H1
0 (Ω)N×L2(Ω)/R of finite dimension. The internal

variational approximation of (6.68) is simply

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫
Ω
µ∇uh · ∇vh dx−

∫
Ω
phdivvh dx =

∫
Ω
f · vh dx

∫
Ω
qhdivuh dx = 0,

(6.69)

for all (vh, qh) ∈ V0h×Qh. Let us explain how to solve (6.69) in practice. Denoting by
nV the dimension of V0h and nQ that of Qh, we introduce the basis (φj)1≤j≤nV of V0h
and the basis (ψj)1≤j≤nQ of Qh constructed with the finite element basis functions
(see Proposition 6.3.7). We decompose uh and ph in these bases

uh(x) =
nV∑
j=1

uh(âj)φj(x), ph(x) =
nQ∑
j=1

uh(â′j)ψj(x),

Denoting by Uh = (uh(âj))1≤j≤nV and Ph =
(
ph(â′j)

)
1≤j≤nQ

, we obtain the following
linear system (

Ah B∗h
Bh 0

)(
Uh
Ph

)
=
(

bh
0

)
, (6.70)

where B∗h is the adjoint (or transposed) matrix of Bh, bh =
(∫

Ω f · φi dx
)

1≤i≤nV , and

Ah =
(
µ

∫
Ω
∇φi · ∇φj dx

)
1≤i,j≤nV

, Bh =
(
−
∫

Ω
ψidivφj dx

)
1≤i≤nQ, 1≤j≤nV

.

Things become complicated when we need to know if we can always solve the linear
system (6.70) uniquely. Let us remark that the matrix Ah is symmetric positive
definite of order nV , that the matrix Bh is rectangular of size nQ × nV , and that, if
the global matrix of (6.70) is symmetric of order nV + nQ, it is not positive definite.
Nevertheless, we have the following result.

Lemma 6.3.32 The linear system (6.70) always has a solution (Uh, Ph) in RnV ×
RnQ . The vector Uh is unique, while Ph is unique up to the addition of an element of
KerB∗h.

Proof. Since ( KerBh)⊥ = ImB∗h, it is easy to see that (6.70) is equivalent to

find Uh ∈ KerBh such that AhUh ·Wh = bh ·Wh for all Wh ∈ KerBh.

It is then sufficient to apply the Lax–Milgram theorem 3.3.1 to obtain the existence
and uniqueness of Uh in KerBh. Consequently, (6.70) has at least a solution (Uh, Ph)
in RnV × RnQ . As Uh must belong to KerBh, it is unique in RnV . In addition, we
easily verify that Ph is unique up to the addition of an element of KerB∗h. �
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The complication is that the kernel KerB∗h is never reduced to the zero vector and
it can sometimes be very ‘large’. Everything depends on the choice of the orders k
and k′ of the finite elements for the velocity and for the pressure.

Lemma 6.3.33 The kernel KerB∗h contains at least the vector 1I of RnQ all of whose
components are equal to 1. In other words, the discrete pressure ph is at best defined
up to a constant.

Proof. Take rh ∈ Qh and wh ∈ V0h. By definition

Wh ·B∗hRh = BhWh ·Rh =
∫

Ω
rhdivwh dx.

Now rh = 1 always belongs to Qh, and since∫
Ω

divwh dx =
∫
∂Ω

wh · nds = 0

for all wh ∈ V0h, we deduce that Rh = 1I = (1, . . . , 1) belongs to KerB∗h. �

0 –1 +1 0

+1

–1

0+1–1

–1 +1 0

–10+1

0

Figure 6.23. Unstable mode of the pressure on a uniform triangular mesh (P1 finite
elements for the velocity and the pressure).

Lemma 6.3.34 When k = 2 and k′ = 1 (P2 finite elements for the velocity and P1
for the pressure), the kernel KerB∗h has dimension one, generated by the vector 1I (in
other words, the discrete pressure ph is unique up to a constant).

When k = k′ = 1 (P1 finite elements for the velocity and the pressure), the kernel
KerB∗h is in general of dimension strictly larger than one (in other words, the discrete
pressure ph is not unique, even up to a constant).

Proof. Take rh ∈ Qh and wh ∈ V0h. By definition

Wh ·B∗hRh = BhWh ·Rh =
∫

Ω
rhdivwh dx = −

∫
Ω
∇rh · wh dx.

When k = 2 and k′ = 1, the gradient ∇rh is constant in each element Ki, therefore,∫
Ω
∇rh · wh dx =

n∑
i=1

∇rh(Ki) ·
∫
Ki

wh dx.
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Now the quadrature formula of exercise 6.3.7 tells us that, for wh ∈ P2,∫
K

wh dx =
|K|

N(N + 1)/2

∑
j

wh(aij)

where the (aij) are the N(N + 1)/2 midpoints of the edges linking the vertices ai
and aj of K. Rearranging the sum over these midpoints (which are common to two
elements), we obtain∫

Ω
∇rh · wh dx =

∑
aij

wh(aij) ·
( |Ki|
N(N + 1)/2

∇rh(Ki) +
|Kj |

N(N + 1)/2
∇rh(Kj)

)
.

Taking wh which is 1 at the midpoint aij and 0 elsewhere, we deduce that
Wh ·B∗hRh= 0 implies that

|Ki|∇rh(Ki) + |Kj |∇rh(Kj) = 0. (6.71)

The function rh therefore has a gradient with constant direction but whose orientation
changes sense from one element to the other. Since rh belongs to P1 and is continuous
over Ω, its tangential gradient is continuous at the interface between two elements.
Consequently, it is zero, and the only possibility in (6.71) is that the gradient of rh is
zero everywhere, that is, rh is a constant function. In conclusion, we have shown that
Wh · B∗hRh = 0 for all Wh implies that Rh is proportional to 1I, which is the result
sought.

Let us give a counterexample in two space dimensions when k = k′ = 1. We take
again the uniform triangular mesh of the square Ω =]0, 1[2 (see Figure 6.12). We
define the function p0 ∈ Qh, with k′ = 1, by its values −1, 0,+1 at the three vertices
of each triangle Ki (see Figure 6.23). By definition, we have

BhWh ·Rh =
∫

Ω
rhdivwh dx.

But as wh is piecewise affine on each element Ki, its divergence is constant in each
Ki and we have ∫

Ω
rhdivwh dx =

n∑
i=1

divwh(Ki)
∫
Ki

rh dx

which is zero for rh = p0 because
∫
Ki

p0 dx = |Ki|
3 (0 + 1 − 1) = 0. Consequently, p0

generates a new vector of KerB∗h, as well as 1I. �

In practice, if the dimension of KerB∗h is strictly larger than one, the cor-
responding finite element method is unusable. In effect, if dim( KerB∗h) > 1,
the numerical calculation of the solutions of the linear system (6.70) lead to numerical
oscillations of the pressure: the algorithm cannot choose between several discrete pres-
sures Ph whose difference belongs to KerB∗h. We say that the method is unstable.
We remark precisely that the element p0 in the proof of lemma 6.3.34 is interpreted
as an oscillation of the pressure on the scale of the mesh. If dim(KerB∗h) = 1, we
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easily eliminate the indeterminacy of the discrete pressure Ph by imposing a value
at a node, or by specifying its average on the domain Ω. In each case, there is no
indeterminacy of the velocity Uh which is defined uniquely. For more details on finite
element methods in fluid mechanics, we refer to [32].

We have not discussed, for the moment, the practical solution of the linear system
(6.70). For this we use Uzawa’s algorithm, from the theory of the optimization, which
we shall see in Chapter 10. It is a very beautiful example of the interaction between
numerical analysis and optimization. Let us briefly explain the principal idea (to
which we return in detail in Chapter 10). We know that the Stokes equations are
equivalent to a problem of minimization of an energy (see exercise 5.3.10). We see
that, in the same way, the solution of the linear system (6.70) is equivalent to the
following minimization

J(Uh) = min
Vh∈KerBh

J(Vh) with J(Vh) =
1
2
AhVh · Vh − bh · Vh.

Uzawa’s algorithm allows us to solve exactly this minimization problem with
constraints.

Due to the cost of calculation, we very rarely use the P2 finite element method
for the velocity and P1 for the pressure. We prefer another method, called P1/bubble
for the velocity and P1 for the pressure. This is a P1 finite element method for the velo-
city and the pressure in which we enrich the space V0h of the velocities by adding to
its basis, for each element and for each component in RN , a bubble function defined
as the product λ1(x) · · ·λN+1(x), where the λj(x) are the barycentric coordinates of
x in the element Ki. As this bubble function is zero on the boundary of Ki and
positive in the interior, we associate it with a degree of freedom at the barycentre of
the element. This method is stable as the following exercise shows.

Exercise 6.3.20 Show that for the finite element method which is P1/bubble for the
velocity and P1 for the pressure we have dim(KerB∗h) = 1.

The pressure instabilities are not restricted to finite element methods. There
are also finite difference methods which have the same kind of disadvantage, as the
following exercise shows.

Exercise 6.3.21 We consider the Stokes equations (6.65) in N = 1 dimension (this
model has no interest since its explicit solution is u = 0 and p is a primitive of f , but
it allows us to understand the discretization problems). For Ω = (0, 1), we consider the
mesh of points xj = jh with h = 1/(n + 1) and 0 ≤ j ≤ n + 1. We define the centred
finite difference method (of order 2) as the following⎧⎨

⎩
µ
−uj+1+2uj−uj−1

h2 + pj+1−pj−1
2h = f(xj) for 1 ≤ j ≤ n

uj+1−uj−1
2h = 0 for 1 ≤ j ≤ n

u0 = un+1 = 0.
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Show that this system of algebraic equations is ill-posed, and in particular that the pressure
(pj) is defined up to the addition of a constant or of a multiple of a pressure defined by
the components (1, 0, 1, 0, . . . , 1, 0).

Remark 6.3.35 The idea of the variational formulation (6.68) extends without prob-
lem to the Laplacian or to any elliptic operator. To solve{

−div (A∇u) = f in Ω
u = 0 on ∂Ω,

by setting σ = A∇u, we introduce the variational formulation⎧⎪⎪⎨
⎪⎪⎩
−
∫

Ω
divσv dx =

∫
Ω
fv dx∫

Ω
A−1σ · τ dx +

∫
Ω
udivτ dx = 0,

for all (v, τ) ∈ L2(Ω)×H(div). The finite element method which follows is different
from those that have been described in this chapter. It is called the mixed finite
element method. •

6.3.5 Visualization of the numerical results

In this section we quickly say several words on the visualization of the results
obtained by the finite element method. The figures below have been drawn with
the help of the (free) graphical software xd3d.
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Figure 6.24. Isovalues in a cross section of a three-dimensional diffusion problem.
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The visualization of the results for a scalar problem (where the unknown has
values in R) is simple enough. In N = 2 dimensions we can draw the isovalues and/or
shade the intensity, as we can see in Figures 6.15 and 6.16. We must, nevertheless,
pay attention to the scales of values as Figure 6.15 proves where the two drawings
(corresponding to the same problem on two distinct meshes) are apparently compar-
able but the scales of reference are very different. In N = 3 dimensions, we draw the
isosurfaces (surfaces where the unknown is constant) or use cross sections.

x y
z

x y
z

x y
z

Figure 6.25. Isosurfaces for a three-dimensional diffusion (values decreasing from left
to right).

As an example, we consider a diffusion problem in a concentration space (a pol-
lutant, for example) emitted by a source localized on the ground (the base of the
cube). We solve, by the Q1 finite element method, the Dirichlet problem (6.36) with
a zero right-hand side and Dirichlet boundary conditions everywhere except in the
base of the cube. At the centre of the base we impose the ‘nonhomogeneuous’ Dirich-
let boundary condition u = 1, and on the rest of the base a Neumann boundary
condition. Figure 6.24 represents the values of u in a cross section, and Figure 6.25
those of the isosurfaces of u.

The visualization of the results for a vectorial problem (where the unknown has
values in RN ) is different. Let us take, for example, the case of the elasticity system
(see Section 5.3.1). We can draw the arrows representing the vector calculated, but
this type of image is difficult to read and to interpret. It is better to draw the ‘deform-
ation’ of the domain by using the physical interpretation of the solution (in N = two
or three dimensions). Recall that the unknown vector u(x) is the displacement of the
point x under the action of the exerted forces: consequently, the corresponding point
in the deformed domain is x + u(x). We illustrate these two ways to represent the
results on the example of a beam fixed at its left vertical boundary (Dirichlet boundary
conditions) and free on the other boundaries (Neumann boundary conditions) subject
to its own weight (the force f is a constant vertical vector); see Figure 6.26. The
advantage of drawing the deformed configuration is that we can superimpose the
drawing of another scalar such as the norm of the tensor of the constraints.
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Figure 6.26. From left to right, displacement, deformed configuration, and norm of
the stress tensor (the higher values are darker) in a fixed beam subject to its own
weight.
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7 Eigenvalue problems

7.1 Motivation and examples

7.1.1 Introduction

This chapter is dedicated to the spectral theory of partial differential equations, that
is, to the study of eigenvalues and eigenfunctions of these equations. The motivation
of this study is twofold. On the one hand, this will allow us to study particular
solutions, which are oscillations in time (or vibrations), of the evolution problems
associated with these equations. On the other hand, we shall deduce a general method
for solving these evolution problems which we shall implement in Chapter 8.

Let us first give an example of an eigenvalue problem for the Laplacian with
Dirichlet boundary conditions. If Ω is a bounded open set of RN we look for couples
(λ, u) ∈ R×H1

0 (Ω), with u �= 0, which are solutions of

{
−∆u = λu in Ω
u = 0 on ∂Ω. (7.1)

The real number λ is called the eigenvalue, and the function u(x) the eigenmode or
eigenfunction. The set of eigenvalues is called the spectrum of (7.1). We can make
the analogy between (7.1) and the simpler problem of determining the eigenvalues
and eigenvectors of a matrix A of order n,

Au = λu with (λ, u) ∈ R× Rn, (7.2)

confirming that the operator −∆ is an infinite dimensional ‘generalization’ of a finite
dimensional matrix A. The solution of (7.1) will be useful when solving evolu-
tion problems, either parabolic or hyperbolic, associated with the Laplacian, that
is, the heat flow equation (7.5) or the wave equation (7.7). Nevertheless, the solu-
tions of (7.1) also have a clear physical interpretation, for example, as eigenmodes of
vibration.

The plan of this chapter is the following. After having motivated the eigenvalue
problem (7.1) more thoroughly, we shall develop in Section 7.2 an abstract spectral
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theory in Hilbert spaces. The aim of this section is to generalize to infinite dimensions
the well-known result in finite dimensions which says that every real symmetric matrix
is diagonalizable in an orthonormal basis. This section relies in part on a course in
‘pure’ mathematics, and we insist on the fact that it is the spirit of the results rather
than the detail of the proofs that is important here. We apply this spectral theory to
elliptic PDEs in Section 7.3. In particular, we show that the spectral problem (7.1)
has a countably infinite number of solutions. Finally, Section 7.4 is dedicated
to questions of numerical approximation of the eigenvalues and eigenfunctions of
a PDE. In particular, we introduce the notion of the mass matrixM which supple-
ments that of the stiffness matrix K, and we show that the approximate eigenvalues
of (7.1) are calculated as the eigenvalues of the system Ku = λMu, which confirms
the analogy between (7.1) and its discrete version (7.2).

7.1.2 Solution of nonstationary problems

Before launching into the abstract developments of the next section, let us show how
the solution of an eigenvalue problem allows us also to solve an evolution problem.
For this, we shall make an analogy with the solution of differential systems in finite
dimensions. In what follows A denotes a real symmetric positive definite matrix of
order n. We denote by λk its eigenvalues and rk its eigenvectors, 1 ≤ k ≤ n, such
that Ark = λkrk.

We start with a first order differential system⎧⎨
⎩

∂u

∂t
+ Au = 0 for t ≥ 0

u(t = 0) = u0,

(7.3)

where u(t) is a function of class C1 from R+ into Rn, and u0 ∈ Rn. It is well
known that (7.3) has a unique solution obtained by diagonalizing the matrix A. More
precisely, the initial data decomposes in the form u0 =

∑n
k=1 u

0
krk, which gives

u(t) =
n∑
k=1

u0
ke
−λktrk.

A second example is the second order differential system⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂2u

∂t2
+ Au = 0 for t ≥ 0

u(t = 0) = u0,

∂u

∂t
(t = 0) = u1,

(7.4)

where u(t) is a function of class C2 from R+ into Rn, and u0, u1 ∈ RN . By decom-
posing the initial data in the form u0 =

∑n
k=1 u

0
krk and u1 =

∑n
k=1 u

1
krk, (7.4) has a
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unique solution

u(t) =
n∑
k=1

(
u0
k cos

(√
λkt

)
+

u1
k√
λk

sin
(√

λkt
))

rk.

It is clear from these two examples that knowing the spectrum of the matrix A allows
us to solve the evolution problems (7.3) and (7.4). These examples are representative
of the path that we shall follow in the remainder of this chapter. We shall replace the
matrix A by the operator −∆, the space Rn by the Hilbert space L2(Ω), and we shall
‘diagonalize’ the Laplacian to solve the heat flow equation or the wave equation.

In order to be convinced that (7.1) is the ‘good’ formulation of the eigenvalue
problem for the Laplacian, we can use an argument of ‘separation of variables’ in the
heat flow equation or the wave equation which we describe formally. In the absence of
a source term, and by ‘forgetting’ (temporarily) the initial condition and the boundary
conditions, we look for a solution u of these equations which is written in the form

u(x, t) = φ(t)u(x),

that is, we separate the time and space variables. If u is the solution of the heat flow
equation

∂u
∂t
−∆u = 0, (7.5)

we find (at least formally) that

φ′(t)
φ(t)

=
∆u(x)
u(x)

= −λ

where λ ∈ R is a constant independent of t and of x. We deduce that φ(t) = e−λt

and that u must be the solution of the eigenvalue problem

−∆u = λu (7.6)

with suitable boundary conditions.
Likewise, if u is the solution of the wave equation

∂2u
∂t2

−∆u = 0, (7.7)

we find that
φ′′(t)
φ(t)

=
∆u(x)
u(x)

= −λ

where λ ∈ R is a constant. This time we deduce that, if λ > 0 (which will indeed
be the case), then φ(t) = a cos(

√
λt) + b sin(

√
λt) and u must again be a solution of

(7.6). Let us remark that, if the behaviour in space of the solution u is the same for
the heat flow equation and for the wave equation, it is not the same for its behaviour
in time: it oscillates in time for the waves and decreases exponentially in time (as
λ > 0) for the heat.
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Remark 7.1.1 We shall see that the wave equation has solutions which oscillate
periodically in time of the type

u(x, t) = e−iωtu(x),

where ω =
√
λ is the frequency of the oscillations and u(x) is their amplitude. This is

a general characteristic of linear hyperbolic PDEs. These oscillating solutions have an
obvious physical meaning which is independent of the general solution of a hyperbolic
evolution equation. They typically model vibrations (for example, elastic) or waves
(for example, electromagnetic), and they occur generally in the absence of a source
term and after a time which allows us to ‘forget’ the initial condition. •

Exercise 7.1.1 Take Ω = RN . Show that u(x) = exp(ik · x) is a solution of (7.6) if
|k|2 = λ. Such a solution is called a plane wave.

Let us take another example, that is, the Schrödinger equation from quantum
mechanics (see Chapter 1).

Exercise 7.1.2 Let V (x) be a regular potential. Show that, if u(x, t) = e−iωtu(x) is a
solution of

i
∂u
∂t

+ ∆u− V u = 0 in RN × R+
∗ , (7.8)

then u(x) is a solution of
−∆u + V u = ωu in RN . (7.9)

We recover the same type of spectral problem as (7.6), with the addition of a
zero order term. For the Schrödinger equation the eigenvalue ω is interpreted as an
energy. The smallest possible value of this energy corresponds to the energy of the
fundamental state of the system described by (7.8). The other, larger, values give
the energies of the excited states. Under ‘reasonable’ conditions on the potential V ,
these energy levels are discrete and countably infinite (which is consistent with the
physical idea of quanta).

Exercise 7.1.3 Take V (x) = Ax · x with A a real symmetric positive definite matrix.
Show that u(x) = exp(−A1/2x · x/2) is a solution of (7.9) if ω = tr(A1/2). Such a
solution is called a fundamental state.

7.2 Spectral theory

In this section we introduce an abstract spectral theory in Hilbert spaces (see for
example, [25]). The ultimate aim of the developments which follow is to generalize to
infinite dimensions the well-known result in finite dimensions which says that every
real symmetric matrix is diagonalizable in an orthonormal basis. In first reading we
can assume all the results of this section.
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7.2.1 Generalities

In all that follows V denotes a real Hilbert space equipped with a scalar product
〈x, y〉.

Definition 7.2.1 Let A be a continuous linear mapping from V into V . An
eigenvalue of A is a real number λ ∈ R such that there exists a nonzero element
x ∈ V which satisfies Ax = λx. Such a vector x is called the eigenvector associated
with the eigenvalue λ.

Theorem 7.2.2 Let A be a continuous linear mapping from V into V . There exists
a unique continuous linear mapping A∗ from V into V , called the adjoint, such that

〈Ax, y〉 = 〈x,A∗y〉 ∀x, y ∈ V.

Proof. For y ∈ V fixed, let L ∈ V ′ be the continuous linear form defined by
L(x) = 〈Ax, y〉. By application of the Riesz theorem 12.1.18, there exists a unique
z ∈ V such that L(x) = 〈z, x〉. We then define the mapping A∗ from V into V
which, to each y associates the corresponding z. We easily verify that A∗ is linear
and continuous, and we have L(x) = 〈Ax, y〉 = 〈x,A∗y〉. �

Definition 7.2.3 Let A be a continuous linear mapping from V into V . We say that
A is self-adjoint if it coincides with its adjoint, that is A∗ = A.

Definition 7.2.4 Let A be a continuous linear mapping from V into V . We say that
A is positive definite if 〈Ax, x〉 > 0 for every nonzero x ∈ V .

We know that in finite dimensions all self-adjoint linear mappings are diagonal-
izable in an orthonormal basis. We shall see that in infinite dimensions this result
generalizes to continuous self-adjoint linear mappings which are in addition com-
pact. Let us now introduce the ideas which allow us to define the compactness of a
continuous linear mapping.

Definition 7.2.5 A subset K ⊂ V is called compact if, for every sequence (un)n≥1
of elements of K, we can extract a subsequence un′ which converges in K.

A subset K ⊂ V is called relatively compact if, for every sequence (un)n≥1 of
elements of K, we can extract a subsequence un′ which converges in V .

It is well known that, if V is finite dimensional, then the compact subsets of V are
the closed bounded sets. Unfortunately, this result is no longer true in infinite dimen-
sions. In effect, a compact subset is always closed and bounded but the reciprocal is
not true as the following lemma shows.

Lemma 7.2.6 In an infinite dimensional Hilbert space V , the closed unit ball is never
compact.
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Proof. As the space is infinite dimensional, we can construct, by the Gram–Schmidt
procedure, an infinite orthonormal sequence (en)n≥1. This sequence belongs to the
closed unit ball. In addition, for n �= p we have

‖en − ep‖2 = ‖en‖2 + ‖ep‖2 − 2〈en, ep〉 = 2,

which proves that no subsequence of en is a Cauchy sequence. �

Definition 7.2.7 Let V and W be two Hilbert spaces and A a continuous linear
mapping from V into W . We say that A is compact if the image under A of the unit
ball of V is relatively compact in W .

Equivalently, a continuous linear mapping A is compact if, for every bounded
sequence xn of V , we can extract a subsequence such that Axn′ converges in W . If
W or V is finite dimensional, then every continuous linear mapping is compact. This
is no longer true if W and V are infinite dimensional, as the following exercise shows.

Exercise 7.2.1 Show that the identity mapping I in an infinite dimensional Hilbert
space V is never compact (use lemma 7.2.6).

Exercise 7.2.2 Let �2 be the Hilbert space of real sequences x = (xi)i≥1 such that∑
i≥1 |xi|2 < +∞, equipped with the scalar product 〈x, y〉 =

∑
i≥1 xiyi. Let (ai)i≥1 be

a bounded sequence of real numbers, |ai| ≤ C < +∞ for all i ≥ 1. We define the linear
mapping A by Ax = (aixi)i≥1. Verify that A is continuous. Show that A is compact if
and only if limi→+∞ ai = 0.

Exercise 7.2.3 Let U , V , and W be three infinite dimensional Hilbert spaces, A a
continuous linear mapping from V into W , and B a continuous linear mapping from U
into V . Show that the mapping AB is compact if A or B is compact. Deduce that a
continuous compact linear mapping is never invertible with continuous inverse in infinite
dimensions.

7.2.2 Spectral decomposition of a compact operator

The principal result of this section is the following.

Theorem 7.2.8 Let V be a real infinite dimensional Hilbert space and A a continuous
linear mapping which is positive definite, self-adjoint, and compact from V into V .
Then the eigenvalues of A form a sequence (λk)k≥1 of strictly positive real numbers
which tend to 0, and there exists a Hilbertian basis (uk)k≥1 of V formed of eigenvectors
of A, with

Auk = λkuk for k ≥ 1.
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Remark 7.2.9 As a consequence of theorem 7.2.8, and with the same notation, we
obtain the spectral decomposition of every element v ∈ V

v =
+∞∑
k=1

〈v, uk〉uk with ‖v‖2 =
+∞∑
k=1

|〈v, uk〉|2.

•

Exercise 7.2.4 We reuse the notation and the hypotheses of theorem 7.2.8. Show that,
for v ∈ V , the equation Au = v has a unique solution u ∈ V if and only if v satisfies

+∞∑
k=1

|〈v, uk〉|2
λ2
k

< +∞.

When the linear mapping A is not compact theorem 7.2.8 is false as the following
exercise shows.

Exercise 7.2.5 Take V = L2(0, 1) and A the linear mapping from V into V defined
by (Af)(x) = (x2 + 1) f(x). Verify that A is continuous, positive definite, self-adjoint
but not compact. Show that A does not have eigenvalues. Check also that (A − λ I) is
invertible with continuous inverse if and only if λ /∈ [1, 2].

To prove theorem 7.2.8 we need two preliminary lemmas.

Lemma 7.2.10 Let V be a real Hilbert space (not containing only the zero vector) and A a
continuous self-adjoint compact linear mapping from V into V . We define

m = inf
u∈V \{0}

〈Au, u〉
〈u, u〉 and M = sup

u∈V \{0}

〈Au, u〉
〈u, u〉 .

Then, ‖A‖ = max(|m|, |M |), and either m or M is an eigenvalue of A.

Proof. We easily see that |〈Au, u〉| ≤ ‖A‖‖u‖2, therefore max(|m|, |M |) ≤ ‖A‖. On the
other hand, as A is self-adjoint, we obtain for all u, v ∈ V

4〈Au, v〉 = 〈A(u+ v), (u+ v)〉 − 〈A(u− v), (u− v)〉
≤M‖u+ v‖2 −m‖u− v‖2

≤ max(|m|, |M |)
(
‖u+ v‖2 + ‖u− v‖2

)
≤ 2max(|m|, |M |)

(
‖u‖2 + ‖v‖2

)
.

Now, ‖A‖ = sup‖u‖=‖v‖=1〈Au, v〉 since ‖Au‖ = sup‖v‖=1〈Au, v〉. We therefore deduce that
‖A‖ ≤ max(|m|, |M |), from where we have the equality between these two terms.

In addition, asm ≤M , one of the following two cases holds: ‖A‖ =M ≥ 0, or ‖A‖ = −m
with m ≤ 0. Let us consider the case ‖A‖ =M ≥ 0 (the other case ‖A‖ = −m is completely
symmetric on replacing A by −A). Let (un)n≥1 be a sequence of unit vectors of V such that

lim
n→+∞

〈Aun, un〉 =M and ‖un‖ = 1.
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Since A is compact, there exists a subsequence such that Aun′ converges in V to a limit v.
On the other hand, we have

〈Aun, un〉 ≤ ‖Aun‖ ≤ ‖A‖ =M,

from which we deduce that limn→+∞ ‖Aun‖ =M , that is, ‖v‖ =M . Finally, since

‖Aun −Mun‖2 = ‖Aun‖2 +M2 − 2M〈Aun, un〉,

we obtain limn→+∞ ‖Aun − Mun‖ = 0. For the subsequence n′, this implies that un′

converges to v/M (at least, if M �= 0 ; the case M = 0 is trivial since it implies that A = 0).
By continuity of A, we therefore deduce that Aun′ also converges to Av/M (in addition to
v). The uniqueness of the limit shows that Av/M = v, that is, v is an eigenvector (nonzero
as ‖v‖ =M �= 0) associated with the eigenvalue M . �

Lemma 7.2.11 Let V be a Hilbert space and A a continuous compact linear mapping from
V into V . For every real number δ > 0, there only exists a finite number of eigenvalues
outside of the interval ] − δ,+δ[, and the subspace of eigenvectors associated with each of
these eigenvalues is finite dimensional.

Proof. Let us show that we cannot have an infinite number of linearly independent elements
of V which are eigenvectors of A for the eigenvalues λ such that |λ| ≥ δ > 0. We proceed by
contradiction. Assume therefore that there exists an infinite sequence (uk)k≥1 of elements
of V , which are linearly independent, and a sequence of eigenvalues (λk)k≥1 such that

Auk = λkuk and |λk| ≥ δ for all k ≥ 1.

We denote by Ek the vector subspace generated by the family (u1, u2, . . . , uk). As Ek−1 is
strictly included in Ek, there exists a unit vector vk ∈ Ek which is orthogonal to Ek−1. As
|λk| ≥ δ, the sequence vk/λk is bounded in V , and, since A is compact, we can extract a
subsequence such that Avk′/λk′ converges in V . However, for j < k we can write

Avk
λk

− Avj
λj

= vk + (A− λk I)
vk
λk

− Avj
λj

. (7.10)

Now, we easily verify that AEk ⊂ Ek and that (A− λk I)Ek ⊂ Ek−1, therefore the two last
terms on the right of (7.10) belong to Ek−1. As vk is orthogonal to Ek−1, we deduce from
(7.10) ∥∥∥∥Avkλk

− Avj
λj

∥∥∥∥ ≥ ‖vk‖ = 1,

which is a contradiction with the convergence of the subsequence Avk′/λk′ . �

Proof of theorem 7.2.8. Lemma 7.2.10 shows that the set of the eigenvalues of A is not
empty, while lemma 7.2.11 shows that this set is either finite, or countably infinite with 0
as the only accumulation point. In addition, as A is positive definite, all the eigenvalues are
strictly positive. Let us denote by (λk) the eigenvalues of A and Vk = Ker(A − λk I) the
associated eigensubspace (lemma 7.2.11 also tells us that each Vk is finite dimensional). We
remark that the eigensubspaces Vk are pairwise orthogonal: indeed, if vk ∈ Vk and vj ∈ Vj
with k �= j, then, as A is self-adjoint, we have

〈Avk, vj〉 = λk〈vk, vj〉 = 〈vk, Avj〉 = λj〈vk, vj〉,
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from which we deduce that 〈vk, vj〉 = 0 since λk �= λj. Let W be the adherence in V of the
union of the Vk

W =

{
u ∈ V, ∃K ≥ 1 such that u =

K∑
i=1

uk, uk ∈ Vk

}
.

We easily construct a Hilbertian basis of W by a union of the orthonormal bases of each
Vk (each is finite dimensional and they are mutually orthogonal). Let us show that W = V
(which will also prove that the sequence (λk) is infinite since V is infinite dimensional). We
introduce the orthogonal complement of W defined by

W⊥ = {u ∈ V such that 〈u, v〉 = 0 ∀ v ∈W} .

AsW is stable under A (AW ⊂W ), we see thatW⊥ is also stable under A because 〈Au, v〉 =
〈u,Av〉 = 0 if u ∈W⊥ and v ∈W . We can therefore define the restriction of A toW⊥ which
is also a continuous self-adjoint compact linear mapping. By application of lemma 7.2.10, if
W⊥ �= {0}, this restriction also has an eigenvalue and an eigenvector u ∈W⊥ which are also
an eigenvalue and eigenvector of A. This is a contradiction with the fact that, by definition,
W already contains all the eigenvectors of A and that W ∩W⊥ = {0}. Consequently, we
must have W⊥ = {0}, and since W is closed we deduce that W = {0}⊥ = V . �

Remark 7.2.12 The proof of theorem 7.2.8 is still valid if A is not positive definite with the
following restrictions: the eigenvalues are not necessarily positive, the nonzero eigenvalues
can be of finite number, and KerA (the eigensubspace associated with the zero eigenvalue)
can be infinite dimensional. •

7.3 Eigenvalues of an elliptic problem

7.3.1 Variational problem

We return to the variational framework introduced in Chapter 3. The interest of this
general framework is that it will be applied to many different models. In a Hilbert
space V we consider a bilinear form a(·, ·), which is symmetric, continuous and
coercive, that is, a(w, v) = a(v, w), and there exists M > 0 and ν > 0 such that

|a(w, v)| ≤M‖w‖V ‖v‖V for all w, v ∈ V

and
a(v, v) ≥ ν‖v‖2

V for all v ∈ V.

To be able to apply the results of the preceding section, we introduce a new ingredient,
that is, another Hilbert space H. We make the following fundamental hypothesis{

V ⊂ H with compact injection
V is dense in H.

(7.11)

By ‘compact injection’ we mean that the inclusion operator I, which for each v ∈ V
gives Iv = v ∈ H is continuous and compact (see definition 7.2.7). In other words,
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the hypothesis (7.11) implies that from every bounded sequence of V we can extract
a convergent subsequence in H. The spaces H and V do not have the same scalar
product, and we denote them by 〈·, ·〉H and 〈·, ·〉V to avoid confusion.

We consider the following variational eigenvalue problem (or spectral problem):
find λ ∈ R and u ∈ V \ {0} such that

a(u, v) = λ〈u, v〉H ∀ v ∈ V. (7.12)

We will say that λ is an eigenvalue of the variational problem (7.12) (or of the bilinear
form a) and that u is the associated eigenvector.

Remark 7.3.1 Under hypothesis (7.11) the spaces H and V can never have the same
scalar product. Otherwise they would be equal since V is dense in H. But this is
impossible because then the injection from V into H will be the identity which is not
compact (see exercise 7.2.1). •

Let us immediately give a typical concrete example of such a situation. For an
open bounded set Ω, we set V = H1

0 (Ω), H = L2(Ω), and the symmetric bilinear
form is defined by

a(u, v) =
∫

Ω
∇u · ∇v dx.

As C∞c (Ω) is dense both in H1
0 (Ω) and L2(Ω), and thanks to the Rellich theorem

4.3.21, the hypothesis (7.11) is satisfied, and we have seen in Chapter 5 that this
bilinear form a is continuous and coercive over V . By a simple integration by parts,
we easily see that (7.12) is equivalent to{

−∆u = λu in Ω
u = 0 on ∂Ω,

that is, λ and u are an eigenvalue and an eigenfunction of the Laplacian.
The solutions of (7.12) are given by the following result.

Theorem 7.3.2 Let V and H be two real infinite dimensional Hilbert spaces. We
assume that V ⊂ H with compact injection and that V is dense in H. Let a(·, ·)
be a symmetric bilinear form which is continuous and coercive over V . Then the
eigenvalues of (7.12) form an increasing sequence (λk)k≥1 of real positive numbers
which tend to infinity, and there exists a Hilbertian basis of H (uk)k≥1 of associated
eigenvectors, that is,

uk ∈ V and a(uk, v) = λk〈uk, v〉H ∀ v ∈ V.

Further, (uk/
√
λk)k≥1 is a Hilbertian basis of V for the scalar product a (·, ·).

Proof. For f ∈ H, we solve the variational problem

find u ∈ V such that a(u, v) = 〈f, v〉H for every function v ∈ V. (7.13)
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It is easy to verify the hypotheses of the Lax–Milgram theorem 3.3.1 for (7.13) which
therefore has a unique solution u ∈ V . We define a linear mapping A from H into V
which for each f gives the solution u = Af . In other words, the linear mapping A is
defined by

Af ∈ V such that a(Af, v) = 〈f, v〉H for all v ∈ V. (7.14)

By taking v = Af in (7.14), we obtain

ν‖Af‖2
V ≤ a(Af,Af) = 〈f,Af〉H ≤ ‖f‖H‖Af‖H ≤ C‖f‖H‖Af‖V

because the injection operator I from V into H is continuous. Consequently, the
linear mapping A is continuous from H into V . We now define a linear mapping
A = IA from H into H, which is continuous. As I is compact, the product A is also
compact (see exercise 7.2.3). To show that A is self-adjoint, we take v = Ag in (7.14)
and we obtain, for all f, g ∈ H,

〈f,Ag〉H = 〈f,Ag〉H = a(Af,Ag) = a(Ag,Af) = 〈g,Af〉H = 〈g,Af〉H ,

because of the symmetry of a, which proves that A is self-adjoint positive definite in
H. We can therefore apply theorem 7.2.8 to the operator A which satisfies all the
hypotheses. There exists a decreasing sequence (µk)k≥1 of real positive numbers which
tend to 0, and there exists a Hilbertian basis (uk)k≥1 of H composed of eigenvectors
of A, with

Auk = µkuk for k ≥ 1.

Let us remark that, by this equality, the eigenvectors uk belong not only to H but
also to V . Let us now return to the eigenvalue problem (7.12) which can be written

a(u, v) = λ〈u, v〉H = λa(Au, v) ∀ v ∈ V,

because of the definition (7.14), that is, a(u− λAu, v) = 0, therefore,

u = λAu = λAu.

Consequently, the eigenvalues (λk)k≥1 of the variational problem (7.12) are exactly
the inverses of the eigenvalues (µk)k≥1 of A, and their eigenvectors are the same.
We set

λk =
1
µk

and vk =
uk√
λk

.

By construction, the eigenvectors uk form a Hilbertian basis of H. We verify that

a(vk, vj) =
a(uk, uj)√

λkλj
= λk

〈uk, uj〉H√
λkλj

= δkj ,

and as the orthogonal complement of (vk)k≥1 in V is contained in the orthogonal
complement of (uk)k≥1 in H (which is reduced to the zero vector), we deduce that
the (vk)k≥1 form a Hilbertian basis of V for the scalar product a(u, v). �



216 EIGENVALUE PROBLEMS

Remark 7.3.3 We insist on the fact that the operator A, defined by (7.14), is the
solution operator of the variational formulation, that is, it is to some extent the
inverse of the bilinear form a. It is for this reason that the eigenvalues λk of the
variational formulation are the inverses of the eigenvalues µk of A. For example, in
finite dimensions the bilinear form is written a(u, v) = Ku · v and we have A = K−1.
Likewise, for the Laplacian we have A = (−∆)−1 (only the inverse of the Laplacian
is compact, not the Laplacian itself ; see exercise 7.2.3). In fact, it is the increase in
regularity of the solution of the Laplacian with respect to the right-hand side which
is the source of the compactness of the operator (−∆)−1. •

Exercise 7.3.1 Prove a variant of theorem 7.3.2 where we replace the coercivity hypoth-
esis on the bilinear form a(·, ·) by the weaker hypothesis that there exists two positive
constants η > 0 and ν > 0 such that

a(v, v) + η‖v‖2
H ≥ ν‖v‖2

V for all v ∈ V.

(In this case, the eigenvalues (λk)k≥1 are not strictly positive, but only satisfy λk+η > 0.)

In passing, we give a very useful characterization of the eigenvalues of the vari-
ational problem (7.12), called the minimax principle or the Courant–Fisher
condition. For this we introduce the Rayleigh quotient defined, for each function
v ∈ V \ {0}, by

R(v) =
a(v, v)
‖v‖2

H

.

Proposition 7.3.4 (Courant–Fisher) Let V and H be two real infinite dimen-
sional Hilbert spaces. We assume that V ⊂ H with compact injection and that V is
dense in H. Let a(·, ·) be a bilinear form which is symmetric continuous and coercive
over V . For k ≥ 0 we denote by Ek the set of the vector subspaces of dimension k of
V . We denote by (λk)k≥1 the increasing sequence of eigenvalues of the variational
problem (7.12). Then, for all k ≥ 1, the kth eigenvalue is given by

λk = min
W∈Ek

(
max

v∈W\{0}
R(v)

)
= max
W∈Ek−1

(
min

v∈W⊥\{0}
R(v)

)
. (7.15)

In particular, the first eigenvalue satisfies

λ1 = min
v∈V \{0}

R(v), (7.16)

and every minimum in (7.16) is an eigenvector associated with λ1.

Proof. Let (uk)k≥1 be the Hilbertian basis of H formed by the eigenvectors of
(7.12). From theorem 7.2.8, (uk/

√
λk)k≥1 is a Hilbertian basis of V . We can therefore
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characterize the spaces H and V by their spectral decomposition (see remark 7.2.9)

H =

{
v =

+∞∑
k=1

αkuk, ‖v‖2
H =

+∞∑
k=1

α2
k < +∞

}
,

V =

{
v =

+∞∑
k=1

αkuk, ‖v‖2
V =

+∞∑
k=1

λkα
2
k < +∞

}
.

We remark in passing that, as the eigenvalues λk are bounded below by λ1 > 0, this
characterization shows that V is a subspace of H. We can then rewrite the Rayleigh
quotient

R(v) =
∑+∞
k=1 λkα

2
k∑+∞

k=1 α
2
k

,

which immediately proves the result for the first eigenvalue. We introduce the
subspace Wk ∈ Ek generated by (u1, u2, . . . , uk). We have

R(v) =

∑k
j=1 λjα

2
j∑k

j=1 α
2
j

∀ v ∈Wk and R(v) =

∑+∞
j=k λjα

2
j∑+∞

j=k α
2
j

∀ v ∈W⊥
k−1,

from which we deduce

λk = max
v∈Wk\{0}

R(v) = min
v∈W⊥

k−1\{0}
R(v).

Let W be an arbitrary subspace in Ek. As W has dimension k and Wk−1 has dimension
k − 1, the intersection W ∩W⊥

k−1 is not reduced to {0}. Consequently,

max
v∈W\{0}

R(v) ≥ max
v∈W∩W⊥

k−1\{0}
R(v) ≥ min

v∈W∩W⊥
k−1\{0}

R(v) ≥ min
v∈W⊥

k−1\{0}
R(v) = λk,

which proves the first equality in (7.15). Likewise, if W is a subspace of Ek−1, then
W⊥ ∩Wk is not reduced to {0}, and

min
v∈W⊥\{0}

R(v) ≤ min
v∈W⊥∩Wk\{0}

R(v) ≤ max
v∈W⊥∩Wk\{0}

R(v) ≤ max
v∈Wk\{0}

R(v) = λk,

which proves the second equality in (7.15). Let u now be a minimum in (7.16). For
v ∈ V , we introduce the function f(t) = R(u + tv) of a real variable t ∈ R which has
a minimum at t = 0. Consequently, its derivative is zero at t = 0. By taking account
of the fact that f(0) = λ1, a simple calculation shows that

f ′(0) = 2
a(u, v)− λ1〈u, v〉H

‖u‖2
H

.

Since v is arbitrary in V , the condition f ′(0) = 0 is none other that the variational
formulation (7.12), that is, u is an eigenvector associated with the eigenvalue λ1. �
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7.3.2 Eigenvalues of the Laplacian

We can immediately apply theorem 7.2.8 to the variational formulation of the Lapla-
cian with Dirichlet boundary conditions, which gives us the following result.

Theorem 7.3.5 Let Ω be a regular open bounded set, of class C1, of RN . There exists
an increasing sequence (λk)k≥1 of real positive numbers which tend to infinity, and
there exists a Hilbertian basis of L2(Ω) (uk)k≥1, such that each uk belongs to H1

0 (Ω)
and satisfies {

−∆uk = λkuk a.e. in Ω
uk = 0 a.e. on ∂Ω. (7.17)

Proof. For the Laplacian with Dirichlet boundary conditions, we choose V = H1
0 (Ω),

H = L2(Ω), and the symmetric bilinear form is defined by

a(u, v) =
∫

Ω
∇u · ∇v dx,

and the scalar product over L2(Ω) is

〈u, v〉H =
∫

Ω
uv dx.

We easily verify the hypotheses of theorem 7.2.8. Thanks to the Rellich theorem
4.3.21, V is compactly included in H. As C∞c (Ω) is dense both in H and in V , V is
dense in H. Finally, we have seen in Chapter 5 that the bilinear form a is continuous
and coercive over V . Consequently, there exists an increasing sequence (λk)k≥1 of
real positive numbers which tend to infinity, and there exists a Hilbertian basis of
L2(Ω) (uk)k≥1, such that uk ∈ H1

0 (Ω) and∫
Ω
∇uk · ∇v dx = λk

∫
Ω
ukv dx ∀ v ∈ H1

0 (Ω).

By a simple integration by parts (of the same type that we used in the proof of theorem
5.2.2) we obtain (7.17). Let us remark that we only use the regularity of Ω to be able
to apply the trace theorem 4.3.13 and to give a meaning ‘almost everywhere’ to the
Dirichlet boundary condition. �

Remark 7.3.6 The hypothesis that the open set Ω is bounded is absolutely funda-
mental in theorem 7.3.5. If it is not satisfied, the Rellich theorem 4.3.21 (about the
compact injection of H1(Ω) into L2(Ω)) is in general false, and we can show that
theorem 7.3.5 no longer holds. In fact, it may be that there exists an (uncountably)
infinite number of ‘generalized’ eigenvalues in the sense that the eigenfunctions do
not belong to L2(Ω). In the light of exercise 7.1.1 the reader can consider the case of
the Laplacian in Ω = RN . •
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Exercise 7.3.2 In N = 1 dimension, we consider Ω =]0, 1[. Explicitly calculate all the
eigenvalues and eigenfunctions of the Laplacian with Dirichlet boundary conditions (7.17).
With the help of the spectral decomposition of this problem (see remark 7.2.9), show that
the series

+∞∑
k=1

ak sin(kπx)

converges in L2(0, 1) if and only if
∑+∞
k=1 a

2
k < +∞, and in H1(0, 1) if and only if∑+∞

k=1 k
2a2
k < +∞.

Exercise 7.3.3 We consider a parallelepiped Ω =]0, L1[×]0, L2[× · · ·×]0, LN [, where
(Li > 0)1≤i≤N are positive constants. Explicitly calculate all the eigenvalues and the
eigenfunctions of the Laplacian with Dirichlet boundary conditions (7.17).

Theorem 7.3.5 easily generalizes to the case of other boundary conditions. We
leave the reader the task of proving the following corollary.

Corollary 7.3.7 Let Ω be a regular open bounded set of RN whose boundary ∂Ω
decomposes into two disjoint regular parts ∂ΩN and ∂ΩD (see Figure 4.1). There
exists an increasing sequence (λk)k≥1 of real positive or zero numbers which tend to
infinity, and there exists a Hilbertian basis of L2(Ω) (uk)k≥1, such that each uk belongs
to H1(Ω) and satisfies ⎧⎪⎨

⎪⎩
−∆uk = λkuk in Ω
uk = 0 on ∂ΩD
∂uk
∂n

= 0 on ∂ΩN .

Remark 7.3.8 In the case of a purely Neumann boundary condition, that is, ∂ΩD =
∅, the bilinear form is no longer coercive over H1(Ω). To prove corollary 7.3.7 we must
then use exercise 7.3.1. •

Exercise 7.3.4 We consider again an open parallelepiped Ω as in exercise 7.3.3.
Explicitly calculate all the eigenvalues and eigenfunctions of the Laplacian with Neumann
boundary conditions on the entire boundary ∂Ω.

The characterization of the eigenvalues by the Courant–Fisher principle is often
very useful, as the following exercise shows.

Exercise 7.3.5 Use again the notation and hypotheses of theorem 7.3.5. Show that the
best (that is, the smallest) constant C in the Poincaré inequality (see proposition 4.3.10)
is exactly the first eigenvalue λ1 of (7.17).

We can also show that the eigenfunctions of the Laplacian, with Dirichlet or
Neumann boundary conditions, are regular.
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Proposition 7.3.9 Let Ω be a regular open bounded set of class C∞. Then the
eigenfunctions which are solutions of (7.17) belong to C∞(Ω).

Proof. Let uk be the kth eigenfunction in H1
0 (Ω) from (7.17). We can think of uk

being a solution of the following boundary value problem{
−∆uk = fk in Ω
uk = 0 on ∂Ω,

with fk = λkuk. As fk belongs to H1(Ω), by application of the regularity theorem
5.2.26 we deduce that the solution uk belongs to H3(Ω). But in fact the right-hand
side fk is more regular which allows us again to increase the regularity of uk. By
an easy recurrence we thus show that uk belongs to Hm(Ω) for every m ≥ 1. From
theorem 4.3.25 on the continuity of Hm(Ω) functions (see also remark 4.3.26), we
deduce that uk therefore belongs to C∞(Ω). �

We now prove a very important qualitative result with regard to the first
eigenvalue.

Theorem 7.3.10 (Krein–Rutman) We again take the notation and the hypoth-
eses of theorem 7.3.5. We assume that the open set Ω is connected. Then the first
eigenvalue λ1 is simple (that is, the corresponding eigensubspace has dimension 1)
and the first eigenvector can be chosen positive almost everywhere in Ω.

Remark 7.3.11 The Krein–Rutman theorem 7.3.10 is specific to the case of ‘scalar’
equations (that is, the unknown u has values in R). This result is in general false
if the unknown u is vector valued (see later the example of the elasticity system).
The reason for this difference between the scalar and vector case is that this theo-
rem relies on the maximum principle (see theorem 5.2.22) which is only valid in the
scalar case. •

Proof. Let u ∈ H1
0 (Ω) be a nonzero eigenvector associated with the first eigenvalue

λ1. From lemma 5.2.24 we know that u+ = max(u, 0) belongs to H1
0 (Ω) and ∇u+ =

1u>0∇u (likewise for u− = min(u, 0)). Consequently, the function |u| = u+ − u−

belongs to H1
0 (Ω) and we have ∇|u| = sign(u)∇u. Due to the Courant–Fisher propo-

sition 7.3.4 we have

λ1 = min
v∈H1

0 (Ω)\{0}

{
R(v) ≡

∫
Ω |∇v|2dx∫

Ω v2dx

}
,

and every minimum point is an eigenvector. Now λ1 = R(u) = R(|u|), therefore |u|
is also an eigenvector associated with λ1. As u+ and u− are linear combinations of u
and |u|, they are eigenfunctions associated with λ1.

In fact, we can show that u is not annihilated in Ω thanks to the ‘strong’ maximum
principle which says that, if w ∈ C2(Ω) satisfies

−∆w ≥ 0 in Ω and w = 0 on ∂Ω,
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then either w ≡ 0 in Ω, or w > 0 in Ω. We apply this result to u+ and u− (which are
regular because of proposition 7.3.9) which cannot both be nonzero, therefore one of
the two is zero. Let us now suppose that the eigensubspace associated with λ1 has
dimension strictly greater than 1. We can then find two orthogonal eigenfunctions u1
and u2, that is, ∫

Ω
u1u2 dx = 0,

which is impossible since they have constant sign, and are nonzero. �

Exercise 7.3.6 Let Ω be a regular connected open bounded set. Show that the first
eigenvalue of the Laplacian in Ω with Neumann boundary condition is zero and that it is
simple.

Remark 7.3.12 The results of this section generalize without difficulty to general
second order elliptic operators, that is, to the following eigenvalue problem{

−div(A∇u) = λu in Ω
u = 0 on ∂Ω

where A(x) is a symmetric coercive matrix (see Section 5.2.3). •

7.3.3 Other models

The extension of the results of the preceding section to elliptic partial differential
equations which are more complicated than the Laplacian does not pose any new
conceptual problems. We briefly describe this generalization for two significant ex-
amples: the linearized elasticity system and the Stokes equations.

The equations (5.56) of linear elasticity describe the stationary regime of the
following dynamic equations (very similar to the wave equation)⎧⎨

⎩ ρ
∂2u

∂t2
− div (2µe(u) + λ tr(e(u)) I) = f in Ω× R+

∗
u = 0 on ∂Ω× R+

∗ ,
(7.18)

where ρ > 0 is the volume density of the material and e(u) =
(
∇u + (∇u)t

)
/2. We

recall that the Lamé coefficients of the material satisfy µ > 0 and 2µ + Nλ > 0. In
the absence of exterior forces f (and not taking account of possible initial conditions)
we can also look for solutions of (7.18) oscillating in time like those we have described
for the wave equation in Section 7.1.2. This leads to looking for the solutions (�, u)
of the following eigenvalue problem{

−div (2µe(u) + λ tr(e(u)) I) = �u in Ω
u = 0 on ∂Ω, (7.19)

where � = ω2 is the square of the frequency of vibration (we have changed the notation
of the eigenvalue to avoid confusion with the Lamé coefficient λ). In mechanics, the
eigenfunction u is also called the eigenmode of vibration.



222 EIGENVALUE PROBLEMS

Following the method applied above to the Laplacian we can prove the following
result (we leave the details to the reader as an exercise).

Proposition 7.3.13 Let Ω be a regular open bounded set of class C1 of RN . There
exists an increasing sequence (�k)k≥1 of real positive numbers which tend to infinity,
and there exists a Hilbertian basis of L2(Ω)N (uk)k≥1, such that each uk belongs to
H1

0 (Ω)N and satisfies{
−div (2µe(uk) + λ tr(e(uk)) I) = �kuk a.e. in Ω
uk = 0 a.e. on ∂Ω.

x y

z

x y

z

x y

z

x y

z

First mode, eigenvalue =  102.543435 Second mode, eigenvalue =  102.543435

Third mode, eigenvalue =  1885.27754 Fourth mode, eigenvalue =  2961.26331

Figure 7.1. The four first eigenmodes of a ‘tower’ in elasticity.

The regularity result on the eigenfunctions uk of proposition 7.3.9 also extends
easily to the case of elasticity and to the problem (7.19). Conversely, theorem 7.3.10
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on the simplicity of the first eigenvalue and the positivity of the first eigenfunction
is in general false (as is the maximum principle). For example, we calculate by Q1
finite elements the four first eigenmodes of a ‘tower’ where the base is fixed (Dirichlet
boundary conditions) and the other boundaries are free (Neumann boundary con-
dition). The two first modes correspond to the same eigenvalue (they are indepen-
dent but symmetric by rotation through 90◦ around the z-axis) (see Figure 7.1 and
Table 7.1). The first eigenvalue is therefore ‘double’.

Eigenmode 1 2 3 4
Eigenvalue 102.54 102.54 1885.2 2961.2

Table 7.1. Eigenvalues corresponding to the eigenmodes of Figure 7.1

We now consider the Stokes equations (5.71) which are a stationary version of
a parabolic evolution problem (see later (8.2)). To solve this evolution problem it
will be interesting to use the eigenvalues and eigenfunctions (λ, u, p) of the following
problem ⎧⎨

⎩
∇p− µ∆u = λu in Ω
divu = 0 in Ω
u = 0 on ∂Ω,

(7.20)

where µ > 0 is the viscosity, u the velocity, and p the pressure of the fluid. By following
the method applied above to the Laplacian, the reader can solve the following exercise.

Exercise 7.3.7 Let Ω be a regular connected open bounded set of class C1 of RN . Show
that there exists an increasing sequence (λk)k≥1 of real positive numbers which tend to
infinity, and a Hilbertian basis (uk)k≥1 of the subspace of L2(Ω)N of the functions with
zero divergence, such that each uk belongs to H1

0 (Ω)N , and there exists a family of
pressures pk ∈ L2(Ω) which satisfy⎧⎨

⎩
∇pk − µ∆uk = λkuk a.e. in Ω
divuk = 0 a.e. in Ω
uk = 0 a.e. on ∂Ω.

The regularity result on the eigenfunctions of proposition 7.3.9 also extends easily
to the case of the Stokes equations (7.20). Conversely, theorem 7.3.10 on the simplicity
of the first eigenvalue and the positivity of the first eigenfunction is in general false
(as is the maximum principle).

Exercise 7.3.8 We consider the eigenvalue problem for the Schrödinger equation with
a quadratic potential a(x) = Ax · x where A is a symmetric positive definite matrix (a
model of the harmonic oscillator)

−∆u + au = λu in RN . (7.21)
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We define the spaces H = L2(RN ) and

V =
{
v ∈ H1(RN ) such that |x|v(x) ∈ L2(RN )

}
.

Show that V is a Hilbert space for the scalar product

〈u, v〉V =
∫

RN

∇u(x) · ∇v(x) dx +
∫

RN

|x|2u(x)v(x) dx,

and that the injection from V into H is compact. Deduce that there exists an increas-
ing sequence (λk)k≥1 of real positive numbers which tend to infinity and a Hilbertian
basis of L2(RN ) (uk)k≥1 which are the eigenvalues and the eigenfunctions of (7.21).
Explicitly calculate its eigenvalues and eigenfunctions (we shall look for uk in the form
pk(x) exp(−Ax · x/2) where pk is a polynomial of degree k − 1). Interpret the results
physically.

Exercise 7.3.9 Let Ω be a regular open bounded set of RN . We consider the vibration
problem for the plate equation with clamping boundary condition{

∆ (∆u) = λu in Ω
∂u

∂n
= u = 0 on ∂Ω.

Show that there exists an increasing sequence (λk)k≥1 of positive eigenvalues which tend
to infinity and a Hilbertian basis in L2(Ω) of eigenfunctions (uk)k≥1 which belong to
H2

0 (Ω).

7.4 Numerical methods

7.4.1 Discretization by finite elements

We shall consider an internal approximation of the variational formulation introduced
in Section 7.3.1. Given a subspace Vh of the finite dimensional Hilbert space V , we
look for the solution (λh, uh) ∈ R× Vh of

a(uh, vh) = λh〈uh, vh〉H ∀ vh ∈ Vh. (7.22)

Typically, Vh is a finite element space like those introduced in definitions 6.3.5 and
6.3.25, and H is the space L2(Ω). The solution of the internal approximation (7.22)
is easy as the following lemma shows.

Lemma 7.4.1 We take the hypotheses of theorem 7.3.2. Then the eigenvalues of
(7.22) form a finite increasing sequence

0 < λ1 ≤ · · · ≤ λndl with ndl = dimVh,

and there exists a basis of Vh, which is orthonormal in H, (uk,h)1≤k≤ndl of associated
eigenvectors, that is,

uk,h ∈ Vh, and a(uk,h, vh) = λk〈uk,h, vh〉H ∀ vh ∈ Vh.
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Proof. This can be considered as an obvious variant of theorem 7.3.2 (up to the
difference that in finite dimensions there exist a finite number of eigenvalues). Never-
theless, we give a different proof, which is purely algebraic, which corresponds more
closely to the steps followed in practice. Let (φi)1≤i≤ndl be a basis of Vh (for example,
the finite element basis functions, see proposition 6.3.7). We look for uh a solution of
(7.22) in the form

uh(x) =
ndl∑
i=1

Uhi φi(x).

Introducing the mass matrixMh defined by

(Mh)ij = 〈φi, φj〉H 1 ≤ i, j ≤ ndl,

and the stiffness matrix Kh defined by

(Kh)ij = a(φi, φj) 1 ≤ i, j ≤ ndl,

the problem (7.22) is equivalent to finding (λh, Uh) ∈ R× Rndl the solution of

KhUh = λhMhUh. (7.23)

The names ‘mass and stiffness matrices’ come from applications in solid mechanics.
Let us remark that, in the case where Vh is a finite element space, the stiffness matrix
Kh is exactly the same matrix that we met in chapter 6 in the application of the
finite element method to elliptic problems. We verify immediately that the matrices
Mh and Kh are symmetric and positive definite. The system (7.23) is a ‘generalised’
matrix eigenvalue problem. The simultaneous reduction theorem (see, for example,
[24]) confirms that there exists an invertible matrix Ph such that

Mh = PhP
∗
h , and Kh = Ph diag(λk)P ∗h .

Consequently, the solutions of (7.23) are the eigenvalues (λk) and the eigenvectors
(Uk,h)1≤k≤ndl which are the column vectors of (P ∗h )−1. These column vectors, there-
fore, form a basis, which is orthogonal for Kh and orthonormal for Mh (we shall
briefly indicate in remark 7.4.3 how to calculate this basis). Finally, the vectors Uk,h
are simply the vectors of the coordinates in the basis (φi)1≤i≤ndl of the functions uk,h
which form an orthonormal basis of Vh for the scalar product of H. �

Remark 7.4.2 In lemma 7.4.1 we have used the hypotheses of theorem 7.3.2: in
particular, the bilinear form a(u, v) is assumed symmetric. We see the importance
of this hypothesis in the proof. In effect, if it is not symmetric, we would not know if
the system (7.23) is diagonalizable, that is, if there exist solutions of the eigenvalue
problem (7.22). •

The application of lemma 7.4.1 to the variational approximation by finite elements
of the Dirichlet problem (7.17) is straightforward. We take V = H1

0 (Ω), H = L2(Ω),
and the discrete space V0h of definition 6.3.5 (recall that V0h contains the Dirichlet
boundary conditions).
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Exercise 7.4.1 We consider the eigenvalue problem in N = 1 dimension{
−u′′k = λkuk for 0 < x < 1
uk(0) = uk(1) = 0 .

We propose to calculate the mass matrix for the P1 finite element method. Using the
notation of Section 6.2. Show that the mass matrix Mh is given by

Mh = h

⎛
⎜⎜⎜⎜⎜⎝

2/3 1/6 0
1/6 2/3 1/6

. . .
. . .

. . .
1/6 2/3 1/6

0 1/6 2/3

⎞
⎟⎟⎟⎟⎟⎠ ,

and that its eigenvalues are

λk(Mh) =
h

3
(2 + cos(kπh)) for 1 ≤ k ≤ n.

Show that, if we use the quadrature formula (6.45), then we find thatMh = h I. In this
last case, calculate the eigenvalues of the discrete spectral problem.

Remark 7.4.3 To calculate the eigenvalues and eigenvectors of the spectral matrix
problem (7.23) we must, in general, start by calculating the Cholesky factorization of
the mass matrix Mh = LhL∗h, to reduce it to the classical case

K̃hŨh = λhŨh with K̃h = L−1
h Kh(L∗h)−1 and Ũh = L∗hUh,

for which we have algorithms to calculate the eigenvalues and eigenvectors. We refer
to Section 13.2 for more details about these algorithms: let us only say that this is
the most expensive step in calculation time.

We can avoid the construction of the matrix K̃h and make the Cholesky factoriza-
tion of Mh less expensive if we use a quadrature formula to evaluate the coefficients
of the matrix Mh which makes it diagonal. This numerical integration procedure is
called mass lumping, or condensation, and is frequently used. For example, if we
use the quadrature formula (6.45) (which only uses the values of a function at the
nodes to calculate an integral), we easily see that the mass matrix Mh obtained is
diagonal (see exercise 7.4.1). •

We see in the following section that only the first discrete eigenvalues λk,h
(the smallest) are correct approximations to the exact eigenvalues λk (likewise for the
eigenvectors). We must therefore pay attention to the fact that the last eigenvalues
(the largest) of the discrete problem (7.23) do not have any physical significance! Con-
sequently, if we are interested in the thousandth eigenvalue of the Dirichlet problem
(7.17), we must use a sufficiently fine mesh of the domain Ω so that the dimension of
the finite element space Vh is much greater than a thousand.
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We illustrate this section by the calculation of the six first eigenmodes of vibration
of a drum (modelled as a circular membrane fixed at its boundary). We therefore solve
the Dirichlet problem (7.17) in a disc of radius 1. We use a P1 finite element method.
The results are presented in Figure 7.2 and Table 7.2. We remark that the first
eigenvalue is simple while the second and the third are ‘doubles’.

Eigenmode 1 2 3 4 5 6
Eigenvalue 5.78 14.69 14.69 26.42 26.42 30.53

Table 7.2. Eigenvalues corresponding to the eigenmodes of Figure 7.2.

7.4.2 Convergence and error estimates

In this section, we restrict ourselves to stating a convergence result for the Pk tri-
angular finite element method for the calculation of eigenvalues and eigenvectors of
the Dirichlet problem (7.17). It is clear that this result generalizes easily to other
problems and to other types of finite elements.

Theorem 7.4.4 Let (Th)h>0 be a sequence of regular triangular meshes of Ω. Let V0h
be the subspace of H1

0 (Ω), defined by the Pk finite element method, with dimension ndl.
Let (λi, ui) ∈ R×H1

0 (Ω), for i ≥ 1, be the eigenvalues and eigenvectors (orthonormal
in L2(Ω)) of the Dirichlet problem (6.36), arranged in increasing order

0 < λ1 ≤ λ2 ≤ · · · ≤ λi ≤ λi+1 · · ·

Let
0 < λ1,h ≤ λ2,h ≤ · · · ≤ λndl,h,

be the eigenvalues of the variational approximation (7.22) in V0h. For every fixed
i ≥ 1, we have

lim
h→0

|λi − λi,h| = 0. (7.24)

There exists a family of eigenvectors (ui,h)1≤i≤ndl of (7.22) in V0h such that, if λi is
a simple eigenvalue, we have

lim
h→0

‖ui − ui,h‖H1(Ω) = 0. (7.25)

Further, if the subspace generated by (u1, . . . , ui) is included in Hk+1(Ω) and if k+1 >
N/2, then we have the error estimate

|λi − λi,h| ≤ Cih
2k, (7.26)

where Ci does not depend on h, and if λi is a simple eigenvalue, we have

‖ui − ui,h‖H1(Ω) ≤ Cih
k. (7.27)



228 EIGENVALUE PROBLEMS

Figure 7.2. The six first eigenmodes of a drum.
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Remark 7.4.5 The constant Ci in (7.26) or (7.27) tends to +∞ as i→ +∞, which
means that there is no guarantee that the larger discrete eigenvalues (for example,
λndl,h) approximate the exact eigenvalues λi.

The order of convergence of the eigenvalues is twice that of the convergence of
the eigenvectors. This is a general phenomenon in the approximation of self-adjoint
spectral operators which we shall see again in the numerical algorithms of Section 13.2
(see proposition 13.2.1).

The convergence of the eigenvectors can only be obtained if the corresponding
eigenvalue is simple. In effect, if the eigenvalue λi is multiple, the sequence of approxi-
mate eigenvectors ui,h cannot converge and have several accumulation points which
are different linear combinations of the eigenvectors of the eigensubspace associated
with λi. •
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8 Evolution problems

8.1 Motivation and examples

8.1.1 Introduction

This chapter is dedicated to the mathematical and numerical analysis of problems
of evolution in time (in the preceding chapters we have studied stationary problems
without a time variable). More precisely we shall analyse two different types of partial
differential equations: parabolic, and hyperbolic. The typical example of a parabolic
equation is the heat flow equation which we will study in detail (but our analysis
extends to more complicated models like the time-dependent Stokes equations). The
prototype of a hyperbolic equation is the wave equation on which we shall concen-
trate (but once more our analysis extends to more complicated models like the elas-
todynamic equations or the electromagnetic equations). More generally, the approach
developed here extends to many other evolution problems, not necessarily parabolic
or hyperbolic, like, for example, the Schrödinger equation in quantum mechanics.

The plan of this chapter is the following. The remainder of this section is dedicated
to some questions linked to modelling. In Sections 8.2 and 8.3 we prove the existence
and uniqueness of the solution of the heat flow equation or of the wave equation by
again using the concept of variational formulation. As we have seen in Section 7.1.2,
we use the Hilbertian bases of eigenfunctions constructed in Chapter 7. We shall
also use the idea of energy estimates which express a physical balance of energy
and partly justifies the spaces used by the theory. In Sections 8.4 and 8.5 we shall
study some qualitative properties of the solutions. Let us point out immediately
that, while the existence and uniqueness results are very similar for the heat flow
equation and the wave equation, their qualitative properties are, conversely,
very different. We also see that, while some of these qualitative properties agree
with physical intuition (like the maximum principle for heat flow, and conservation
of energy for the waves), others are more surprising, and for this reason particularly
interesting (like the ‘infinite’ speed of propagation of heat, and the reversibility in
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time of the waves). All these results will be proved for an equation posed in a bounded
domain. Nevertheless, we shall say a few words about the situation when the equation
is posed in the whole space RN ; in this case, we can obtain an explicit formula for
the solution by using a Green’s function.

Sections 8.6 and 8.7 are dedicated to the numerical solution of the heat flow and
wave equations. We have already explored the finite difference method for these prob-
lems (see Chapters 1 and 2). We shall concentrate on the use of the finite element
method in this context. More precisely, as is mostly done, we use finite elements for
the spatial discretization, but finite differences for the temporal discretization.

8.1.2 Modelling and examples of parabolic equations

Let us quickly present the principal parabolic problems that we shall study in this
chapter, by saying some words about their physical or mechanical origin. The
archetype of these models is the heat flow equation whose physical origin has
already been discussed in Chapter 1. Let Ω be an open bounded set of RN with
boundary ∂Ω. For Dirichlet boundary conditions this model is written⎧⎪⎪⎨

⎪⎪⎩
∂u

∂t
−∆u = f in Ω× R+

∗
u = 0 on ∂Ω× R+

∗
u(x, 0) = u0(x) for x ∈ Ω.

(8.1)

The boundary value problem (8.1) models the evolution of the temperature u(x, t)
in a thermally conducting body occupying the domain Ω. The distribution of the
initial temperature, at t = 0, is given by the function u0. On the boundary ∂Ω of the
body, the temperature is maintained at a constant value, and used as the reference
value (this is the homogeneous Dirichlet condition u(x, t) = 0 on ∂Ω×R+). The heat
sources are modelled by the given function f = f(x, t). Let us note that the variables
x ∈ Ω and t ∈ R+ play very different roles in (8.1) since it is a partial differential
equation of first order in t and second order in x (the Laplacian only acts on the
spatial variable).

Let us mention that there exist other physical origins of system (8.1). For example,
(8.1) also models the diffusion of a concentration u in the domain Ω, or the evolution
of the pressure field u of a fluid flowing in a porous medium (Darcy flow), or even
Brownian motion in the domain Ω.

We can, of course, associate others boundary conditions with the heat flow equa-
tion (for example, a homogeneous Neumann condition if the wall of the body Ω is
adiabatic).

A first obvious generalization of the heat flow equation is obtained when we replace
the Laplacian by a more general second order elliptic operator (see Section 5.2.3).
This generalization is met, for example, if we study the propagation of heat in a
nonhomogeneous material or in the presence of a convective effect. A second (less
obvious) generalization concerns the system of time-dependent Stokes equations that
we have quickly stated in the preceding chapter. Denoting by u the velocity and p
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the pressure of a viscous fluid subject to the force f , this system is written⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂u

∂t
+∇p− µ∆u = f in Ω× R+

∗
divu = 0 in Ω× R+

∗
u = 0 on ∂Ω× R+

∗
u(x, t = 0) = u0(x) in Ω

(8.2)

where µ > 0 is the viscosity of the fluid. Let us recall that the homogeneous
Dirichlet boundary condition models the adherence of the fluid to the boundary of
Ω (see Chapter 1), and that the Stokes system is only valid for slow velocities (see
remark 5.3.7). Most of the results that we see in this chapter generalize to such models.

8.1.3 Modelling and examples of hyperbolic equations

Let us quickly present the two principal hyperbolic models that we shall study in this
chapter. The first model is the wave equation whose physical origin has already
been discussed in Chapter 1. Let Ω be an open bounded set of RN with boundary
∂Ω. For Dirichlet boundary conditions this model is written⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂2u

∂t2
−∆u = f in Ω× R+

∗
u = 0 on ∂Ω× R+

∗
u(t = 0) = u0(x) in Ω
∂u

∂t
(t = 0) = u1(x) in Ω.

(8.3)

The boundary value problem (8.3) models, for example, the propagation in time of
the vertical displacement of an elastic membrane, or the amplitude of an electric field
with constant direction. The unknown u(t, x) is a scalar function here.

The second model is the elastodynamic model which is the time dependent
version of the linearized elasticity equations (see Chapters 1 and 5). By applying the
fundamental principle of dynamics, the acceleration being the second time derivative
of the displacement, we obtain an evolution problem which is second order in time
(8.3). Nevertheless, an important difference from (8.3) is that the unknown u(t, x) is
from now on a vector valued function in RN . More precisely, if we denote by f(t, x)
the (vector) resultant of the exterior forces, the displacement u(t, x) is the solution of⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ρ
∂2u

∂t2
− div (2µe(u) + λ tr(e(u)) I) = f in Ω× R+

∗
u = 0 on ∂Ω× R+

∗
u(t = 0) = u0(x) in Ω
∂u

∂t
(t = 0) = u1(x) in Ω,

(8.4)

where u0 is the initial displacement, u1 the initial velocity, and e(u) = (∇u+(∇u)t)/2
the deformation tensor. Assuming that the material which occupies Ω is homogeneous
and isotropic, its density is constant ρ > 0, as are its Lamé coefficients which satisfy
µ > 0 and 2µ + Nλ > 0.
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Remark 8.1.1 We can add a term which is first order in time to the equations (8.3)
and (8.4), which gives

∂2u

∂t2
+ η

∂u

∂t
−∆u = f in Ω× R+

∗ .

When the coefficient η is positive, this first order term corresponds to a braking force
proportional to the velocity. We also say that it is a damping term. We then talk of
the damped wave equation. •

Remark 8.1.2 There are other physical models which lead to hyperbolic partial
differential equations. However, every hyperbolic model is not necessarily a second
order evolution problem. This is notably the case for the linearized Euler equations in
acoustics, or Maxwell’s equations in electromagnetism, which are systems of hyper-
bolic equations which are only first order in time. The ideas contained in this chapter
extend to these problems, but the different order in time changes the presentation.

•

8.2 Existence and uniqueness in the parabolic case

We shall follow a path similar in spirit to that which guided us in Chapter 5 to establish
the existence and uniqueness of the solution of an elliptic problem. This path breaks
into three steps: first, to establish a variational formulation (Section 8.2.1), second,
to prove the existence and uniqueness of the solution of this variational formulation
by using a Hilbertian basis of eigenfunctions (Section 8.2.2), third, to show that this
solution satisfies the boundary value problem studied (Section 8.2.3).

8.2.1 Variational formulation

The idea is to write a variational formulation which resembles a first order ordinary
differential equation, similar to (7.3). For this we multiply the heat flow equation
(8.1) by a test function v(x) which does not depend on time t. Because of the boundary
condition we shall demand that v is zero on the boundary of the open set Ω, which
will allow us to carry out a simple integration by parts (without boundary term). For
the moment, this calculation is formal. We therefore obtain∫

Ω

∂u

∂t
(x, t)v(x) dx +

∫
Ω
∇u(x, t) · ∇v(x) dx =

∫
Ω
f(x, t)v(x) dx. (8.5)

Since neither Ω nor v(x) vary with time t, we can rewrite this equation in the form

d

dt

∫
Ω
u(x, t)v(x) dx +

∫
Ω
∇u(x, t) · ∇v(x) dx =

∫
Ω
f(x, t)v(x) dx.
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Exploiting the fact that the variables x and t play very different roles, we separate
these variables by considering from now on the solution u(t, x) as a function of time
t with values in a space of functions defined over Ω (likewise for f(t, x)). More
precisely, if we are given a final time T > 0 (possibly equal to +∞), it is considered
that u is defined by

u : ]0, T [ → H1
0 (Ω)

t → u(t),

and we continue to use the notation u(x, t) for the value u(t) (x). The choice of the
space H1

0 (Ω) is obviously dictated by the nature of the problem and can vary from
one model to another. Generally it is the space which is suitable for the variational
formulation of the associated stationary problem. Likewise, the source term f is from
now on considered as a function of t with values in L2(Ω).

We then introduce the scalar product of L2(Ω) and the bilinear form a(w, v)
defined by

〈w, v〉L2(Ω) =
∫

Ω
w(x)v(x) dx and a(w, v) =

∫
Ω
∇w(x) · ∇v(x) dx.

By choosing the test function in the space H1
0 (Ω), we can then put (8.5) into the form

of an ordinary differential equation in t. We thus obtain the following variational
formulation: find u(t), a function of ]0, T [, with values in H1

0 (Ω) such that

⎧⎨
⎩

d

dt
〈u(t), v〉L2(Ω) + a (u(t), v) = 〈f(t), v〉L2(Ω) ∀ v ∈ H1

0 (Ω), 0 < t < T,

u(t = 0) = u0.

(8.6)

There are several points to be made clear in the variational formulation (8.6) in order
to give it a precise mathematical meaning: what is the regularity in time of f and u,
and what meaning do we give to the derivative in time? In particular, it is absolutely
necessary that u(t) is continuous at t = 0 to give a correct meaning to the initial
data u0.

For this we need to introduce a family of functional spaces of functions of t with
values in the spaces of functions of x.

Definition 8.2.1 Let X be a Hilbert space, or more generally, a Banach space defined
over Ω (typically, X = L2(Ω), H1

0 (Ω), or C(Ω)). Take a final time 0 < T ≤ +∞.
For an integer k ≥ 0, we denote by Ck([0, T ];X) the space of functions k times
continuously differentiable in [0, T ] belonging to X. If we denote the norm in X by
‖v‖X , it is classical (see [28]) that Ck([0, T ];X) is a Banach space for the norm

‖v‖Ck([0,T ];X) =
k∑
m=0

(
sup

0≤t≤T

∥∥∥∥dmvdtm
(t)

∥∥∥∥
X

)
.
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We denote by L2(]0, T [;X) the space of functions of ]0, T [ in X such that the function
t→ ‖v(t)‖X is measurable and square integrable, that is, to say that

‖v‖L2(]0,T [;X) =

√∫ T

0
‖v(t)‖2

Xdt < +∞.

Equipped with this norm L2(]0, T [;X) is also a Banach space. Further, if X is a
Hilbert space, then L2(]0, T [;X) is a Hilbert space for the scalar product

〈u, v〉L2(]0,T [;X) =
∫ T

0
〈u(t), v(t)〉Xdt.

Remark 8.2.2 If X is the space L2(Ω), then L2(]0, T [;L2(Ω)) identifies with the
space L2(]0, T [×Ω) since, by the Fubini theorem, we have

‖v‖2
L2(]0,T [;L2(Ω)) =

∫ T

0

(∫
Ω
|v(t)|2(x) dx

)
dt =

∫ T

0

∫
Ω
|v(x, t)|2dx dt = ‖v‖2

L2(]0,T [×Ω).

For 1 ≤ p < +∞, we can generalize definition 8.2.1 by introducing the Banach
space Lp(]0, T [;X) of functions of ]0, T [ in X such that the function t → ‖v(t)‖X is
measurable and has integrable pth power. •

In what follows, we shall take the source term f in the space L2(]0, T [;L2(Ω)),
and we shall look for the solution u in the energy space L2(]0, T [;H1

0 (Ω)) ∩
C([0, T ];L2(Ω)). This choice may appear arbitrary, but it will be justified, not
only by the proof of the existence of a solution for the variational formulation (8.6),
but also by its link with the energy estimates (see exercise 8.2.1). Let us note
already that, as the functions of this space are continuous in time with values in
L2(Ω), the initial condition has a meaning.

Finally, the time derivative in the variational formulation (8.6) must be taken in a
weak sense since a priori the function t → 〈u(t), v〉L2(Ω) does not belong to L2(0, T )
(see lemma 4.4.12 for a precise definition of this idea of derivative). Very fortunately
if there exists a solution of (8.6), then the equality in (8.6) tells us that this time
derivative is all the more classical since it belongs to L2(]0, T [).

8.2.2 A general result

To prove the existence and uniqueness of the solution of the variational formulation
(8.6), we return to the general framework introduced in Section 7.3. We shall therefore
be able to ‘diagonalize’ the Laplacian operator and to reduce the problem to the
solution of a family of simple first order ordinary differential equations. We therefore
introduce two Hilbert spaces V and H such that V ⊂ H with dense and compact
injection (see (7.11) and the explanation which follows). Typically we will have V =
H1

0 (Ω) and H = L2(Ω).
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Theorem 8.2.3 Let V and H be two Hilbert spaces such that V ⊂ H with compact
injection and V is dense in H. Let a(u, v) be a symmetric bilinear form which is
continuous and coercive in V . Take a final time T > 0, initial data u0 ∈ H, and a
source term f ∈ L2(]0, T [;H). Then the problem⎧⎪⎨

⎪⎩
d

dt
〈u(t), v〉H + a (u(t), v) = 〈f(t), v〉H ∀ v ∈ V, 0 < t < T,

u(t = 0) = u0,

(8.7)

(where the equation of (8.7) holds in the weak sense in ]0, T [) has a unique solution
u ∈ L2(]0, T [;V ) ∩ C([0, T ];H). Further, there exists a constant C > 0 (which only
depends on Ω) such that

‖u‖L2(]0,T [;V ) + ‖u‖C([0,T ];H) ≤ C
(
‖u0‖H + ‖f‖L2(]0,T [;H)

)
. (8.8)

Remark 8.2.4 The energy estimate (8.8) proves that the solution of (8.7) depends
continuously on the data, and therefore the parabolic problem (8.7) is well-posed in
the sense of Hadamard. •

Remark 8.2.5 In theorem 8.2.3 we can weaken the coercivity hypothesis on the
symmetric bilinear form a(u, v) (as we have already proposed in exercise 7.3.1). We
obtain the same conclusions by assuming only that there exist two positive constants
ν > 0 and η > 0 such that

a(v, v) + η‖v‖2
H ≥ ν‖v‖2

V for all v ∈ V.

In effect, if we make a change of the unknown function u(t) = eηtw(t), we see that
(8.7) is equivalent to

⎧⎨
⎩

d

dt
〈w(t), v〉H + a (w(t), v) + η〈w(t), v〉H = 〈f(t), v〉H ∀ v ∈ V, 0 < t < T,

w(t = 0) = u0,

where the bilinear form a(w, v)+η〈w, v〉H is coercive over V . This weaker hypothesis
is useful, for example, in the solution of exercise 8.2.4. •

Proof. The proof is divided into two steps. In the first step, by assuming the
existence of a solution u, we obtain an explicit formula for u in the form of a series
obtained by spectral decomposition of the spaces H and V . In particular, this formula
proves the uniqueness of the solution. In the second step, we prove that this series
converges in the spaces L2(]0, T [;V ) and C([0, T ];H), and that the sum is a solution
of (8.7).
Step 1. Let us assume that u ∈ L2(]0, T [;V ) ∩ C([0, T ];H) is a solution of (8.7).
The hypotheses allow us to apply theorem 7.3.2 to the solution of the problem to
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the eigenvalues associated with the symmetric bilinear form a(u, v). Consequently,
there exists a Hilbertian basis (uk)k≥1 of H composed of eigenvectors of (7.12)

uk ∈ V and a(uk, v) = λk〈uk, v〉H ∀ v ∈ V.

We define

αk(t) = 〈u(t), uk〉H , α0
k = 〈u0, uk〉H , βk(t) = 〈f(t), uk〉H .

Since u ∈ L2(]0, T [;V ) ∩ C([0, T ];H) and f ∈ L2(]0, T [;H), we deduce that αk(t) ∈
C([0, T ]) and βk(t) ∈ L2(]0, T [). As (uk)k≥1 is a Hilbertian basis of H, we have

u(t) =
+∞∑
k=1

αk(t)uk,

and choosing v = uk in (8.7) we obtain

⎧⎨
⎩

dαk
dt

+ λkαk = βk in ]0, T [

αk(t = 0) = α0
k.

(8.9)

We immediately verify that the unique solution of (8.9) is

αk(t) = α0
ke
−λkt +

∫ t

0
βk(s)e−λk(t−s)ds for t > 0,

which gives an explicit formula for the solution u (which is therefore unique).
Step 2. We shall prove that the series

+∞∑
j=1

(
α0
je
−λjt +

∫ t

0
βj(s)e−λj(t−s)ds

)
uj (8.10)

converges in L2(]0, T [;V ) ∩ C([0, T ];H) and that its sum, denoted u(t) is a solution
of (8.7). Let us consider the partial sum of order k of this series

wk(t) =
k∑
j=1

(
α0
je
−λjt +

∫ t

0
βj(s)e−λj(t−s)ds

)
uj . (8.11)

Clearly wk belongs to C([0, T ];H) since each αj(t) is continuous. Let us show that
the sequence wk is Cauchy in C([0, T ];H). For l > k, by using the orthonormality of
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the eigenfunctions uj , we have

‖wl(t)− wk(t)‖H ≤

∥∥∥∥∥∥
l∑

j=k+1

α0
je
−λjtuj

∥∥∥∥∥∥
H

+

∥∥∥∥∥∥
l∑

j=k+1

∫ t

0
βj(s)e−λj(t−s)ds uj

∥∥∥∥∥∥
H

≤

⎛
⎝ l∑
j=k+1

|α0
j |2e−2λjt

⎞
⎠

1/2

+

⎛
⎝ l∑
j=k+1

(∫ t

0
βj(s)e−λj(t−s)ds

)2
⎞
⎠

1/2

≤

⎛
⎝ l∑
j=k+1

|α0
j |2

⎞
⎠

1/2

+

⎛
⎝ l∑
j=k+1

1
2λj

∫ T

0
|βj(s)|2ds

⎞
⎠

1/2

≤

⎛
⎝ l∑
j=k+1

|α0
j |2

⎞
⎠

1/2

+
1√
2λ1

⎛
⎝ l∑
j=k+1

∫ T

0
|βj(s)|2ds

⎞
⎠

1/2

,

since the sequence of the eigenvalues (λj) is increasing and strictly positive. As u0 ∈ H
and f ∈ L2(]0, T [;H) we have

‖u0‖2
H =

+∞∑
j=1

|α0
j |2 < +∞, ‖f‖2

L2(]0,T [;H) =
+∞∑
j=1

∫ T

0
|βj(s)|2ds < +∞,

which implies that the sequence wk(t) is Cauchy in H. More precisely, we deduce
that the sequence wk satisfies

lim
k,l→+∞

(
sup

0≤t≤T
‖wl − wk‖H

)
= 0,

that is to say that it is Cauchy in C([0, T ];H).
Let us show that the sequence wk is also Cauchy in L2(]0, T [;V ). We equip V

with the scalar product a(u, v) (equivalent to the usual scalar product because of the
coercivity of a). For l > k we have

‖wl(t)− wk(t)‖2
V = a(wl(t)− wk(t), wl(t)− wk(t)) =

l∑
j=k+1

λj |αj(t)|2

≤ 2
l∑

j=k+1

λj |α0
j |2e−2λjt + 2

l∑
j=k+1

λj

(∫ t

0
βj(s)e−λj(t−s)ds

)2

.

Now, by application of the Cauchy–Schwarz inequality we have(∫ t

0
βj(s)e−λj(t−s)ds

)2

≤
(∫ t

0
|βj(s)|2e−λj(t−s)ds

)(∫ t

0
e−λj(t−s)ds

)

≤ 1
λj

(∫ t

0
|βj(s)|2e−λj(t−s)ds

)
.
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Additionally, by the Fubini theorem

∫ T

0

(∫ t

0
|βj(s)|2e−λj(t−s)ds

)
dt =

∫ T

0
|βj(s)|2

(∫ T

s

e−λj(t−s)dt

)
ds

≤ 1
λj

∫ T

0
|βj(s)|2ds.

Consequently, we deduce that

∫ T

0
‖wl(t)− wk(t)‖2

V dt ≤
l∑

j=k+1

|α0
j |2 +

l∑
j=k+1

2
λj

∫ T

0
|βj(s)|2ds,

which implies that the sequence wk satisfies

lim
k,l→+∞

∫ T

0
‖wl(t)− wk(t)‖2

V dt = 0,

that is to say it is Cauchy in L2(]0, T [;V ).
As the two spaces C([0, T ];H) and L2(]0, T [;V ) are complete, the Cauchy sequence

wk converges and we can define its limit u

lim
k→+∞

wk = u in C([0, T ];H) ∩ L2(]0, T [;V ).

In particular, as wk(0) converges to u0 in H, we deduce the desired initial condition,
u(0) = u0 (which is an equality between functions of H). On the other hand, it is
clear that u(t), as the sum of the series (8.10) satisfies the variational formulation
(8.7) for every test function v = uk. Since (uk/

√
λk) is a Hilbertian basis of V , u(t)

therefore satisfies the variational formulation (8.7) for all v ∈ V , that is to say that
u(t) is the solution of (8.7).

To obtain the energy estimate (8.8), it is enough to remark that we have proved
the bounds

‖wl(t)− wk(t)‖H ≤ ‖u0‖H +
1√
2λ1

‖f‖L2(]0,T [;H)

and ∫ T

0
‖wl(t)− wk(t)‖2

V dt ≤ ‖u0‖2
H +

2
λ1
‖f‖2

L2(]0,T [;H).

By taking k = 0 and making l tend to infinity, we immediately obtain the desired
estimate. �

Remark 8.2.6 (delicate) For the reader enthused by mathematical rigour, we return to
the meaning of the time derivative in the variational formulation (8.7). In light of the spaces
in which we look for the solution u(t), the function t→ 〈u(t), v〉H is not differentiable in the
classical sense: it only belongs to L2(0, T ) and to C[0, T ]. We can, nevertheless, define its
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derivative in the weak sense of lemma 4.4.12 (or in the sense of distributions). More precisely,
d
dt
〈u(t), v〉H is defined as an element of H−1(0, T ) (that is, to say a continuous linear form

over H1
0 (0, T )) by the formula

〈
d

dt
〈u(t), v〉H, φ(t)

〉
H−1,H1

0(0,T)
= −

∫ T

0

〈u(t), v〉H
dφ

dt
(t) dt ∀φ ∈ H1

0 (0, T ).

Consequently, to say that the equation (8.7) holds in the weak sense in ]0, T [ is equivalent
to saying that

−
∫ T

0

〈u(t), v〉H
dφ

dt
(t) dt+

∫ T

0

a(u(t), v)φ(t) dt =
∫ T

0

〈f(t), v〉Hφ(t) dt

for all v ∈ V and all φ ∈ C∞
c (]0, T [) since C∞

c (]0, T [) is dense in H1
0 (0, T ). To conclude, let

us reassure the reader: if u is a solution of (8.7), then, by (8.7), the derivative d
dt
〈u(t), v〉H

belongs to L2(0, T ) and we can therefore say that (8.7) holds almost everywhere in ]0, T [. •

8.2.3 Applications

We now apply the abstract result of theorem 8.2.3 to the heat flow equation, and we
prove that this variational approach allows us to solve the original partial differential
equation.

Theorem 8.2.7 Let Ω be a regular open bounded set of RN . Take a final time T > 0,
initial data u0 ∈ L2(Ω), and a source term f ∈ L2(]0, T [;L2(Ω)). Then the heat flow
equation ⎧⎪⎨

⎪⎩
∂u

∂t
−∆u = f a.e. in Ω×]0, T [

u = 0 a.e. on ∂Ω×]0, T [
u(x, 0) = u0(x) a.e. in Ω.

(8.12)

has a unique solution u ∈ L2(]0, T [;H1
0 (Ω))∩C([0, T ];L2(Ω)). Further, there exists a

constant C > 0 (which only depends on Ω) such that, for all t ∈ [0, T ],

∫
Ω
u(x, t)2dx +

∫ t

0

∫
Ω
|∇u(x, s)|2dxds ≤ C

(∫
Ω
u0(x)2dx +

∫ t

0

∫
Ω
f(x, s)2dxds

)
.

(8.13)

Proof. We apply theorem 8.2.3 to the variational formulation (8.6) of the heat
flow equation (8.12): its hypotheses are easily verified with H = L2(Ω) and V =
H1

0 (Ω) (in particular, as Ω is bounded the Rellich theorem 4.3.21 confirms that the
injection from H into V is compact). It remains to show that the unique solution
u ∈ L2(]0, T [;H1

0 (Ω))∩C([0, T ];L2(Ω)) of this variational formulation is also a solution
of (8.12). First, the Dirichlet boundary condition is recovered by application of the
trace theorem 4.3.13 to u(t) ∈ H1

0 (Ω) for almost all t ∈]0, T [, and the initial condition
is justified by the continuity of u(t) at t = 0 (as a function with values in L2(Ω)).
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If the solution u is sufficiently regular (for example, if ∂u
∂t and ∆u belong to

L2(]0, T [×Ω), which is true from proposition 8.4.6), by integration by parts, the vari-
ational formulation (8.6) is equivalent to

∫
Ω

(
∂u

∂t
−∆u− f

)
v dx = 0, (8.14)

for every function v(x) ∈ H1
0 (Ω) and almost all time t ∈]0, T [. Consequently, we

deduce from (8.14) that

∂u

∂t
−∆u− f = 0 a.e. in ]0, T [×Ω.

If the solution u is not more regular than u ∈ L2(]0, T [;H1
0 (Ω)) ∩ C([0, T ];L2(Ω)), we still

obtain this equality but the justification is slightly more delicate. In accordance with re-
mark 8.2.6 the precise meaning of (8.6) is

−
∫ T

0

∫
Ω

uv
dφ

dt
dx dt+

∫ T

0

∫
Ω

∇u · ∇vφ dx dt =
∫ T

0

∫
Ω

fvφ dx dt (8.15)

for every function v(x) ∈ C1
c (Ω) and φ(t) ∈ C1

c (]0, T [). A classical result from analysis
tells us that the set of linear combinations of products of such functions v(x)φ(t) is dense in
C1
c (]0, T [×Ω). Denote by σ = (u,−∇u) the vector valued function in RN+1 whose divergence

in ‘space-time’ is ∂u
∂t

−∆u. The identity (8.15) tells us that this divergence has a weak mean-
ing (see definition 4.2.6) and is equal to the function f which belongs to L2(]0, T [;L2(Ω)),
from where we have the equality almost everywhere in ]0, T [×Ω. We must, however, note
well that we have shown that the difference ∂u

∂t
−∆u belongs to L2(]0, T [;L2(Ω)), but not

each term individually. �

Remark 8.2.8 The energy estimate (8.13) shows that the norm of the solution
in the energy space is controlled by the norm of the data. It should be noted that
this norm does not always correspond to the ‘true’ physical energy (in the case of
heat flow the thermal energy is proportional to

∫
Ω u(t, x) dx). The inequality (8.13)

has been obtained as a consequence of (8.8), which hides its origin and its physical
interpretation. The following exercises allow us to obtain equation (8.13) directly
starting from the heat flow equation (8.12) by using an energy equality which
does nothing but express a physical balance. In particular, these estimates or energy
equalities justify the choice of the space L2(]0, T [;H1

0 (Ω))∩C([0, T ];L2(Ω)) in which
to look for the solutions since this is precisely the energy space, that is, to say the
space of minimum regularity in which the energy equalities have a meaning. •

Exercise 8.2.1 We assume that the hypotheses of theorem 8.2.7 are verified.

1. By assuming that the solution u of (8.12) is regular enough in ]0, T [×Ω, show that,
for all t ∈ [0, T ], we have the following energy equality
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1
2

∫
Ω
u(x, t)2dx +

∫ t

0

∫
Ω
|∇u(x, s)|2dx ds

=
1
2

∫
Ω
u0(x)2dx +

∫ t

0

∫
Ω
f(x, s)u(x, s) dx ds. (8.16)

2. Prove the following property, called ‘Gronwall’s lemma’: if z is a continuous function
of [0, T ] in R+ such that

z(t) ≤ a + b

∫ t

0
z(s) ds ∀ t ∈ [0, T ],

where a, b are two nonnegative constants, then

z(t) ≤ aebt ∀ t ∈ [0, T ].

3. By applying Gronwall’s lemma with z(t) = 1
2

∫
Ω u(x, t)2dx, deduce from (8.16)

that, for all t ∈ [0, T ],

1
2

∫
Ω
u(x, t)2dx +

∫ t

0

∫
Ω
|∇u(x, s)|2dx ds

≤ et

2

(∫
Ω
u0(x)2dx +

∫ T

0

∫
Ω
f(x, s)2dx ds

)
. (8.17)

Exercise 8.2.2 In the light of (8.13), where the constant C is independent of T , we
see that the term et is certainly not optimal in the bound (8.17). This estimate can be
improved by reasoning in the following way, with a variant of Gronwall’s lemma.

1. Let a ∈ R+ and g ∈ L2(]0, T [) be such that g ≥ 0. Show that, if z(t) is continuous
from[0, T ] into R+ and satisfies

z(t) ≤ a + 2
∫ t

0
g(s)

√
z(s)ds ∀ t ∈ [0, T ],

then z(t) ≤
(√

a +
∫ t

0
g(s)ds

)2

∀ t ∈ [0, T ].

2. Deduce from (8.16) that, for all t ∈ [0, T ],∫
Ω
u(x, t)2dx + 2

∫ t

0

∫
Ω
|∇u(x, s)|2dx ds

≤
((∫

Ω
u0(x)2dx

)1/2

+
∫ t

0
ds

(∫
Ω
f(x, s)2dx

)1/2
)2

. (8.18)
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The energy equality (8.16) is not the only one possible for the heat flow equation
as the following exercise shows.

Exercise 8.2.3 We assume that the hypotheses of theorem 8.2.7 are verified, that u0 ∈
H1

0 (Ω), and that the solution u of (8.12) is sufficiently regular in ]0, T [×Ω. Show that,
for all t ∈ [0, T ], we have the following energy equality

1
2

∫
Ω
|∇u(x, t)|2dx +

∫ t

0

∫
Ω

∣∣∣∣∂u∂t (x, s)
∣∣∣∣
2

dxds

=
1
2

∫
Ω
|∇u0(x)|2dx +

∫ t

0

∫
Ω
f(x, s)

∂u

∂t
(x, s) dx ds. (8.19)

Of course, the existence theorem 8.2.7 generalizes easily to the case of other bound-
ary conditions or of a general elliptic operator as the following exercises show.

Exercise 8.2.4 Let Ω be a regular open bounded set of RN . Take a final time T > 0,
initial data u0 ∈ L2(Ω), and a source term f ∈ L2(]0, T [;L2(Ω)). With the help of
remark 8.2.5 show that the heat flow equation with Neumann boundary condition⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∂u

∂t
−∆u = f in Ω×]0, T [

∂u

∂n
= 0 on ∂Ω×]0, T [

u(x, 0) = u0(x) in Ω

(8.20)

has a unique solution u ∈ L2(]0, T [;H1(Ω)) ∩ C([0, T ];L2(Ω)).

Exercise 8.2.5 Let Ω be a regular open bounded set of RN . Let A(x) be a function of
Ω in the set of the real symmetric matrices such that there exist two constants β ≥ α > 0
satisfying

β|ξ|2 ≥ A(x)ξ · ξ ≥ α|ξ|2 ∀ ξ ∈ RN , a.e. x ∈ Ω.

Take a final time T > 0, initial data u0 ∈ L2(Ω), and a source term f ∈ L2(]0, T [;L2(Ω)).
Show that the boundary value problem⎧⎪⎨

⎪⎩
∂u

∂t
− div (A(x)∇u) = f in Ω×]0, T [

u = 0 on ∂Ω×]0, T [
u(x, 0) = u0(x) in Ω,

has a unique solution u ∈ L2(]0, T [;H1(Ω)) ∩ C([0, T ];L2(Ω)).

We can extend theorem 8.2.7 to the time-dependent Stokes equations.
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Theorem 8.2.9 Let Ω be a regular open bounded connected set of RN . Take a final
time T > 0, initial data u0 ∈ L2(Ω)N such that divu0 = 0 in Ω, and a source term
f ∈ L2(]0, T [;L2(Ω))N . Then the time-dependent Stokes equations⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∂u

∂t
+∇p− µ∆u = f in Ω×]0, T [

divu = 0 in Ω×]0, T [
u = 0 on ∂Ω×]0, T [
u(x, t = 0) = u0(x) in Ω

(8.21)

have a unique solution u ∈ L2(]0, T [;H1
0 (Ω))N ∩ C([0, T ];L2(Ω))N .

Proof. To obtain a variational formulation of (8.21) we combine the arguments of
Section 8.2.1 and of the proof of theorem 5.3.8. We introduce the Hilbert spaces

V =
{
v ∈ H1

0 (Ω)
N such that divv = 0 a.e. in Ω

}
,

and
H =

{
v ∈ L2(Ω)N such that divv = 0 a.e. in Ω

}
,

where H is a closed subspace of H(div) that we can also define as the adherence of V in
L2(Ω)N (see Section 4.4.2). We obtain the following variational formulation⎧⎨

⎩
d

dt

∫
Ω

u(t) · v dx+ µ

∫
Ω

∇u(t) · ∇v dx =
∫

Ω

f(t) · v dx ∀ v ∈ V, 0 < t < T,

u(t = 0) = u0,

(8.22)

where the equation in (8.22) holds in the weak sense in ]0, T [. We apply theorem 8.2.3 to this
variational formulation (8.22) (its hypotheses are easily verified) and we obtain the existence
and uniqueness of its solution u ∈ L2(]0, T [;H1

0 (Ω))N ∩ C([0, T ];L2(Ω))N .
All the difficulty lies in the proof that this solution of (8.22) is also a solution of (8.21).

The Dirichlet boundary condition is recovered by application of the trace theorem 4.3.13 to
u(t) ∈ H1

0 (Ω)N for almost all t ∈]0, T [, and the initial condition is justified by the continuity
of u(t) at t = 0 since u0 ∈ H.

To recover the equation, we proceed as in the proof of theorem 8.2.7. If the solution u is
sufficiently regular, we obtain ∫

Ω

(
∂u

∂t
− µ∆u− f

)
· v dx = 0 (8.23)

for almost all t ∈]0, T [, and arbitrary v(x) ∈ C1
c (Ω)N such that divv = 0 in Ω. As for the

stationary Stokes problem (see Section 5.3.2), we must deduce from (8.23) the existence of a
function p(t, x) such that the equation (8.21) holds. We must then use Rham’s theorem 5.3.9
(or at least one of its variants) which confirms that ‘the orthogonal complement to the vectors
with zero divergence is the set of the gradients’. This analytical point is quite delicate (even
more so if the solution u is not regular) and we shall simply admit the existence of such a
pressure p without even making clear to which space it belongs. �

Remark 8.2.10 Let us briefly mention that there exist other approaches than that
used here (and that we can describe as a spectral approach) to obtain the existence
and uniqueness of solutions of evolution problems. There exists a purely variational
theory (see [28]) as well as a semigroup theory (see [6]). These theories are a little
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more complicated, but more powerful since in particular they allow us to ignore the
hypotheses on the bounded character of the open set and on the symmetry of the
bilinear form of the variational formulation. •

8.3 Existence and uniqueness in the hyperbolic case

As in the previous section we follow the same path in three steps. First (Section 8.3.1),
we establish a variational formulation, second (Section 8.3.2), we prove the existence
and uniqueness of the solution of this variational formulation by using a Hilbertian
basis of eigenfunctions, third (Section 8.2.3), we show that this variational solution
satisfies the boundary value problem.

8.3.1 Variational formulation

The idea is to write a variational formulation which resembles a second order
ordinary differential equation, similar to (7.4). We therefore multiply the wave
equation (8.3) by a test function v(x) which does not depend on time t. Because
of the boundary condition we demand that this v is zero on the boundary of the open
set Ω. A formal calculation leads to

d2

dt2

∫
Ω
u(x, t)v(x) dx +

∫
Ω
∇u(x, t) · ∇v(x) dx =

∫
Ω
f(x, t)v(x) dx. (8.24)

It is clear that the ‘natural’ space for the test function v is H1
0 (Ω). We then introduce

the scalar product of L2(Ω) and the bilinear form a(w, v) defined by

〈w, v〉L2(Ω) =
∫

Ω
w(x)v(x) dx and a(w, v) =

∫
Ω
∇w(x) · ∇v(x) dx.

Take a final time T > 0 (possibly equal to +∞), and a source term f ∈
L2(]0, T [;L2(Ω)). We are also given initial conditions u0 ∈ H1

0 (Ω) and u1 ∈ L2(Ω).
The variational formulation deduced from (8.24) is therefore: find a solution u in
C([0, T ];H1

0 (Ω)) ∩ C1([0, T ];L2(Ω)) such that⎧⎪⎨
⎪⎩

d2

dt2
〈u(t), v〉L2(Ω) + a (u(t), v) = 〈f(t), v〉L2(Ω) ∀ v ∈ H1

0 (Ω), 0 < t < T,

u(t = 0) = u0,
du

dt
(t = 0) = u1.

(8.25)

The initial data have a meaning in (8.25) thanks to the choice of the energy space
C([0, T ];H1

0 (Ω)) ∩ C1([0, T ];L2(Ω)) for the solution u. We shall justify this choice a
little more by establishing its links with the energy equalities.

Finally, the time derivative in the variational formulation (8.25) must be taken in
the weak sense since a priori the function t→ 〈u(t), v〉L2(Ω) is only once differentiable
in time since it belongs to C1(0, T ) (see lemma 4.4.12 and remark 8.2.6 for more
detail).
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8.3.2 A general result

To prove the existence and uniqueness of the solution of the variational formulation
8.25), we return again to the general framework of Section 7.3 to ‘diagonalize’ the
Laplacian operator and we are reduced to the solution of a family of simple second
order ordinary differential equations. Let V and H be two Hilbert spaces such that
V ⊂ H with dense and compact injection (typically V = H1

0 (Ω) and H = L2(Ω)).

Theorem 8.3.1 Let V and H two Hilbert spaces such that V ⊂ H with compact
injection and V is dense in H. Let a(u, v) be a symmetric bilinear form which is
continuous and coercive in V . Take a final time T > 0, initial data (u0, u1) ∈ V ×H,
and a source term f ∈ L2(]0, T [;H). Then the problem

⎧⎪⎨
⎪⎩

d2

dt2
〈u(t), v〉H + a (u(t), v) = 〈f(t), v〉H ∀ v ∈ V, 0 < t < T,

u(t = 0) = u0,
du

dt
(t = 0) = u1,

(8.26)

(where the equation of (8.26) holds in the weak sense in ]0, T [) has a unique solution
u ∈ C([0, T ];V ) ∩ C1([0, T ];H). Further, there exists a constant C > 0 (which only
depends on Ω and on T ) such that

‖u‖C([0,T ];V ) + ‖u‖C1([0,T ];H) ≤ C
(
‖u0‖V + ‖u1‖H + ‖f‖L2(]0,T [;H)

)
. (8.27)

Remark 8.3.2 The energy estimate (8.27) proves that the solution of (8.26)
depends continuously on the data, and therefore that the hyperbolic problem (8.26)
is well-posed in the sense of Hadamard. Proposition 8.3.5 will give an important
physical interpretation of a particular case of this energy estimate. •

Remark 8.3.3 As in the parabolic case (see remark 8.2.5), we can weaken the
hypothesis of theorem 8.3.1 on the coercivity of the symmetric bilinear form a(u, v).
We obtain the same conclusions by assuming only that there exist two positive
constants ν > 0 and η > 0 such that

a(v, v) + η‖v‖2
H ≥ ν‖v‖2

V for all v ∈ V.

The change of unknown u(t) = e
√
ηtw(t) transforms the equation of (8.26) into

d2

dt2
〈w(t), v〉H + 2

√
η
d

dt
〈w(t), v〉H + a (w(t), v) + η〈w(t), v〉H = 〈f(t), v〉H , (8.28)

where the bilinear form a(w, v) + η〈w, v〉H is coercive over V . The equation (8.28)
is a damped wave equation (see remark 8.1.1). It is then sufficient to generalize
theorem 8.3.1 to such equations (which is easy even though we do not do it here). •
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Proof. The proof is very similar to that of theorem 8.2.3, so we do not include as much
detail. In the first step, we show that every solution u is a series of eigenfunctions. In
the second step, we prove the convergence of this series in the spaces C([0, T ];V ) and
C1([0, T ];H).
Step 1. Let us assume that u ∈ C([0, T ];V ) ∩ C1([0, T ];H) is a solution of (8.26).
We introduce the Hilbertian basis (uk)k≥1 of H composed of the eigenfunctions of
the variational formulation (7.12) which satisfy

uk ∈ V and a(uk, v) = λk〈uk, v〉H ∀ v ∈ V.

We write u(t) =
+∞∑
k=1

αk(t)uk with αk(t) = 〈u(t), uk〉H . By choosing v = uk in (8.26),

and denoting by βk(t) = 〈f(t), uk〉H , α0
k = 〈u0, uk〉H , and α1

k = 〈u1, uk〉H , we obtain⎧⎪⎨
⎪⎩

d2αk
dt2

+ λkαk = βk in ]0, T [

αk(t = 0) = α0
k,

dαk
dt

(t = 0) = α1
k.

(8.29)

(Note the possible confusion in the notation: the initial data u1 has nothing to do
with the eigenfunction uk for k = 1.) Setting ωk =

√
λk, the unique solution of

(8.29) is

αk(t) = α0
k cos(ωkt) +

α1
k

ωk
sin(ωkt) +

1
ωk

∫ t

0
βk(s) sin(ωk(t− s))ds, (8.30)

which gives an explicit formula for the solution u (which is therefore unique).
Step 2. To prove that the series

+∞∑
j=1

(
α0
j cos(ωjt) +

α1
j

ωj
sin(ωjt) +

1
ωj

∫ t

0
βj(s) sin(ωj(t− s))ds

)
uj (8.31)

converges in C([0, T ];V ) ∩ C1([0, T ];H), we shall show that the sequence wk =∑k
j=1 αj(t)uj of the partial sums of this series is Cauchy. In V we consider the scalar

product a(u, v) for which the family (uj) is orthogonal. By the orthogonality of (uj)
in H and in V (see theorem 7.3.2), we obtain, for l > k, and for all time t,

a
(
wl − wk, wl − wk

)
+
∥∥∥∥ ddt (wl − wk

)∥∥∥∥
2

H

=
l∑

j=k+1

(
λj |αj(t)|2 +

∣∣∣∣dαjdt (t)
∣∣∣∣
2
)
.

Now, multiplying (8.29) by dαk/dt and integrating in time, we obtain

∣∣∣∣dαjdt (t)
∣∣∣∣
2

+ λj |αj(t)|2 =
∣∣α1
j

∣∣2 + λj
∣∣α0
j

∣∣2 + 2
∫ t

0
βj(s)

dαj
dt

(s)ds.
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From formula (8.30) we infer that∣∣∣∣dαjdt (t)
∣∣∣∣ ≤ ωj

∣∣α0
j

∣∣ +
∣∣α1
j

∣∣ +
∫ t

0
|βj(s)|ds.

Combining these two results we deduce
∣∣∣∣dαjdt (t)

∣∣∣∣
2

+ λj |αj(t)|2 ≤ 2
∣∣α1
j

∣∣2 + 2λj
∣∣α0
j

∣∣2 + 2t
∫ t

0
|βj(s)|2ds. (8.32)

As u0 ∈ V , u1 ∈ H and f ∈ L2(]0, T [;H), we have

‖u0‖2
V = a(u0, u0) =

+∞∑
j=1

λj |α0
j |2 < +∞, ‖u1‖2

H =
+∞∑
j=1

|α1
j |2 < +∞,

‖f‖2
L2(]0,T [;H) =

+∞∑
j=1

∫ T

0
|βj(s)|2ds < +∞,

which implies that the series, whose general term is the right-hand side of (8.32), is
convergent, that is, to say that the sequence wk satisfies

lim
k,l→+∞

max
0≤t≤T

(
‖wl(t)− wk(t)‖2

V +
∥∥∥∥ ddt (wl(t)− wk(t))

∥∥∥∥
2

H

)
= 0,

in other words, it is Cauchy in C1([0, T ];H) and in C([0, T ];V ). Since these spaces
are complete, the Cauchy sequence wk converges and we can define its limit u. In
particular, as (wk(0), dw

k

dt (0)) converges to (u0, u1) in V ×H, we obtain the desired
initial conditions. On the other hand, it is clear that u(t), as the sum of the series
(8.31) satisfies the variational formulation (8.26) for each test function v = uk. As
(uk/

√
λk) is a Hilbertian basis of V , u(t) therefore satisfies the variational formulation

(8.26) for all v ∈ V , that is, to say that u(t) is the solution we seek of (8.26).
Additionally, we have in fact shown that

a(wl − wk, wl − wk) +
∥∥∥∥ ddt (wl − wk)

∥∥∥∥
2

H

≤ C
(
‖u0‖2

V + ‖u1‖2
H + T‖f‖2

L2(]0,T [;H)

)
,

and the energy estimate (8.27) is then easily obtained by taking k = 0 and letting l
tend to infinity. �

8.3.3 Applications

We now apply the abstract result of theorem 8.3.1 to the wave equation, and we
prove that this variational approach allows us to solve the original partial differential
equation.
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Theorem 8.3.4 Let Ω be a regular open bounded set of RN , and take a final time
T > 0. We consider initial data (u0, u1) ∈ H1

0 (Ω) × L2(Ω) and a source term f ∈
L2(]0, T [;L2(Ω)). Then the wave equation⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂2u

∂t2
−∆u = f a.e. in Ω×]0, T [

u = 0 a.e. on ∂Ω×]0, T [
u(x, 0) = u0(x) a.e. in Ω
∂u

∂t
(x, 0) = u1(x) a.e. in Ω.

(8.33)

has a unique solution u ∈ C([0, T ];H1
0 (Ω)) ∩ C1([0, T ];L2(Ω)). Further, there exists

a constant C > 0 (which only depends on Ω and on T ) such that, for all t ∈ [0, T ],∫
Ω

(∣∣∣∣∂u∂t (x, t)
∣∣∣∣
2

+ |∇u(x, t)|2
)
dx

≤ C

(∫
Ω

(
|u1(x)|2 + |∇u0(x)|2

)
dx +

∫ t

0

∫
Ω
|f(x, s)|2 dx ds

)
. (8.34)

Proof. We apply theorem 8.3.1 to the variational formulation (8.25) of the wave
equation obtained in Section 8.3.1 (its hypotheses are easily verified with H = L2(Ω)
and V = H1

0 (Ω)). It remains to show that the unique solution u ∈ C([0, T ];H1
0 (Ω))∩

C1([0, T ];L2(Ω)) of this variational formulation is also a solution of (8.33). First
of all, the Dirichlet boundary conditions are recovered by application of the trace
theorem 4.3.13 to u(t) ∈ H1

0 (Ω) for all t ∈ [0, T ], and the initial condition is justified
by the continuity of u(t) at t = 0 as a function with values in H1

0 (Ω) and of du/dt(t)
at t = 0 as a function with values in L2(Ω).

If the solution u is sufficiently regular, by integration by parts the variational
formulation (8.25) is equivalent to∫

Ω

(
∂2u

∂t2
−∆u− f

)
v dx = 0,

for all v(x) ∈ C1
c (Ω) and almost all t ∈]0, T [. We therefore deduce the equation

in (8.33). If the solution u is not more regular than is given by theorem 8.3.1,
we still obtain the equation ‘almost everywhere’, by taking the arguments of the
proof of theorem 8.2.7 (which we do not detail). We denote by σ = (∂u∂t ,−∇u) the
function with vector values in RN+1, and we can show that it has a weak diver-
gence in ‘space-time’ which is exactly ∂2u

∂t2 −∆u which therefore belongs to L2(]0, T [;
L2(Ω)). �

In the absence of forces, f = 0, we can improve the energy estimate (8.34) and
obtain a property of conservation of total energy which is very important from
the point of view of applications. The total energy is here the sum of two terms:
on the one hand the kinetic energy |∂u∂t |2 and on the other hand the mechanical
energy |∇u|2.
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Proposition 8.3.5 We use the hypotheses of theorem 8.3.4 with f = 0. The solution
of the wave equation (8.33) satisfies, for all t ∈ [0, T ], the conservation of energy
equation

∫
Ω

(∣∣∣∣∂u∂t (x, t)
∣∣∣∣
2

+ |∇u(x, t)|2
)
dx =

∫
Ω

(
|u1(x)|2 + |∇u0(x)|2

)
dx. (8.35)

Proof. By taking the proof of theorem 8.3.1 with f = 0, that is to say βk = 0, we
deduce directly from (8.29) that the energy of the harmonic oscillator is conserved,
that is to say that

∣∣∣∣dαjdt (t)
∣∣∣∣
2

+ λj |αj(t)|2 =
∣∣α1
j

∣∣2 + λj
∣∣α0
j

∣∣2 ,
which gives the equality (rather than the inequality)

a(wl − wk, wl − wk) +
∥∥∥∥ ddt (wl − wk)

∥∥∥∥
2

H

=
l∑

j=k+1

∣∣α1
j

∣∣2 + λj
∣∣α0
j

∣∣2 ,
and (8.35) is obtained by taking k = 0 and letting l tend to infinity. If the solution u
is regular, we can prove (8.35) more directly by multiplying the wave equation (8.33)
by ∂u

∂t and integrating by parts (see exercise 8.3.1). �

We now return to the energy estimate (8.34) in the general case f �= 0. The
following exercise shows how (8.34) can be obtained directly starting from (8.33)
with the help of a similar argument to that of proposition 8.3.5 which establishes an
energy equality which does nothing but express a physical balance. In particular,
these estimates or energy equalities justify the choice of the space C([0, T ];H1

0 (Ω))N ∩
C1([0, T ];L2(Ω))N where we look for the solutions since this is precisely the energy
space that is to say the space of minimum regularity in which the energy equalities
have a meaning.

Exercise 8.3.1 We assume that the hypotheses of theorem 8.3.4 are verified.

1. By assuming that the solution u of (8.33) is regular enough in ]0, T [×Ω, show that,
for all t ∈ [0, T ], we have the following energy equality

∫
Ω

∣∣∣∣∂u∂t (x, t)
∣∣∣∣
2

dx +
∫

Ω
|∇u(x, t)|2 dx

=
∫

Ω
u1(x)2dx +

∫
Ω
|∇u0(x)|2 dx + 2

∫ t

0

∫
Ω
f(x, s)

∂u

∂t
(x, s) dx ds.
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2. Deduce that there exists a constant C(T ) (independent of the data other than T )
such that∫

Ω

∣∣∣∣∂u∂t (x, t)
∣∣∣∣
2

dx +
∫

Ω
|∇u(x, t)|2 dx

≤ C(T )
(∫

Ω
u1(x)2 dx +

∫
Ω
|∇u0(x)|2 dx +

∫ t

0

∫
Ω
f(x, s)2dx ds

)
.

3. Show that there exists a constant C (independent of all data including T ) such that

∫
Ω

∣∣∣∣∂u∂t (x, t)
∣∣∣∣
2

dx +
∫

Ω
|∇u(x, t)|2 dx

≤ C

⎛
⎝∫

Ω
u1(x)2dx +

∫
Ω
|∇u0(x)|2 dx +

(∫ t

0

(∫
Ω
f(x, s)2dx

)1/2

ds

)2
⎞
⎠ .

Other conserved quantities exist as is shown in the following exercise.

Exercise 8.3.2 We assume that the hypotheses of theorem 8.3.4 are verified, that the
source term is zero, f = 0, and that the solution u of (8.33) is regular in [0, T ]×Ω. Show
that, for every integer m ≥ 1, we have

d

dt

∫
Ω

(∣∣∣∣∂mu∂tm

∣∣∣∣
2

+
∣∣∣∣∇∂m−1u

∂tm−1

∣∣∣∣
2
)
dx = 0.

Of course, existence theorem 8.3.4 generalizes easily to the case of other bound-
ary conditions (for example, Neumann), or to the case of operators other than the
Laplacian like

∂2u

∂t2
− div (A(x)∇u) = f.

The following is an exercise to generalize this result to the elastodynamic equations.

Exercise 8.3.3 Let Ω be a regular open bounded connected set of RN . Take the initial
data (u0, u1) ∈ H1

0 (Ω)N × L2(Ω)N , and a source term f ∈ L2(]0, T [;L2(Ω))N . Show
that there exists a unique solution u ∈ C([0, T ];H1

0 (Ω))N ∩ C1([0, T ];L2(Ω))N of

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ρ
∂2u

∂t2
− div (2µe(u) + λ tr(e(u)) I) = f in Ω×]0, T [,

u = 0 on ∂Ω×]0, T [,
u(t = 0) = u0(x) in Ω,
∂u

∂t
(t = 0) = u1(x) in Ω.

(8.36)

(As usual, the Lamé coefficients satisfy µ > 0 and 2µ + Nλ > 0.)
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By assuming that the solution u is sufficiently regular, show that, for all t ∈ [0, T ], we
have the following energy equality

ρ

2

∫
Ω

∣∣∣∣∂u∂t
∣∣∣∣
2

dx + µ

∫
Ω
|e(u)|2 dx +

λ

2

∫
Ω

(divu)2 dx

=
ρ

2

∫
Ω
|u1|2 dx + µ

∫
Ω
|e(u0)|2 dx +

λ

2

∫
Ω

(divu0)2 dx +
∫ t

0

∫
Ω
f · ∂u

∂t
dx ds.

Deduce an energy estimate.

Remark 8.3.6 As for parabolic problems, the ‘spectral’ approach used here to obtain
the existence and uniqueness of hyperbolic partial differential equations is not the only
one possible. Let us cite the purely variational theory of [28] and also the semigroup
theory (see [6]). These theories are a little more complicated, but more powerful since
in particular we do not need the hypotheses on the bounded character of the open set
Ω and on the symmetry of the bilinear form a(u, v) of the variational formulation. •

8.4 Qualitative properties in the parabolic case

We now examine the principal qualitative properties of the solution of the heat flow
equation, notably the properties of regularity, asymptotic behaviour for large values
of t, and the maximum principle.

8.4.1 Asymptotic behaviour

We study the behaviour of the solution of the heat flow equation for large time, that
is to say when t tends to +∞. We shall verify that, agreeing with physical intuition,
if the right-hand side f(x) is independent of time t, then the solution of the heat flow
equation tends asymptotically to the (stationary) solution of the Laplacian. We start
by examining the case of the homogeneous heat flow equation.

Proposition 8.4.1 Let Ω be a regular open bounded set of RN . Take u0 ∈ L2(Ω)
and u the solution of the problem⎧⎪⎪⎨

⎪⎪⎩
∂u

∂t
−∆u = 0 in ]0,+∞[×Ω

u(x, t) = 0 on ]0,+∞[×∂Ω
u(x, 0) = u0(x) in Ω.

(8.37)

Then, u(t) converges to zero in L2(Ω) as t tends to +∞

lim
t→+∞

‖u(t)‖L2(Ω) = 0. (8.38)
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Proof. We return to the proof of theorem 8.2.3 in the case f = 0, that is to say
βk = 0. We easily see that the partial sum satisfies

‖wl(t)− wk(t)‖2
H =

l∑
j=k+1

|α0
j |2e−2λjt,

with H = L2(Ω), which leads, by taking k = 0 and l = +∞, and by bounding, to

‖u(t)‖2
H ≤ ‖u0‖2

He
−2λ1t

which tends to zero as t tends to infinity as λ1 > 0. �

The case of a nonzero right-hand side, independent of time, is a simple exercise
that we leave to the reader.

Exercise 8.4.1 We use the hypotheses of proposition 8.4.1. Let f(x) ∈ L2(Ω) and
u(t, x) the solution of ⎧⎪⎨

⎪⎩
∂u

∂t
−∆u = f in ]0,+∞[×Ω

u(x, t) = 0 on ]0,+∞[×∂Ω
u(x, 0) = u0(x) in Ω.

Let v(x) ∈ H1
0 (Ω) be the solution of{

−∆v = f in Ω
v = 0 on ∂Ω.

Show that limt→+∞ ‖u(x, t)− v(x)‖L2(Ω) = 0.

We can in fact specify the conclusion of proposition 8.4.1 as the following exercise
shows whose interpretation is the following

u(t, x) ≈
(∫

Ω
u0u1 dx

)
e−λ1tu1(x) as t→ +∞,

where u1(x) is the first (normalized) eigenfunction of the Laplacian 7.17. Asymptot-
ically, all the solutions of the homogeneous heat flow equation decrease exponentially
in time with the same spatial profile which is given by u1 (no matter what the initial
data).

Exercise 8.4.2 We use the hypotheses of proposition 8.4.1. Show that there exists a
positive constant C such that

‖u(t)− α0
1e
−λ1tu1‖L2(Ω) ≤ C e−λ2t ∀ t > 1, with α0

1 =
∫

Ω
u0u1 dx, (8.39)

where λk denotes the kth eigenvalue of the Laplacian with Dirichlet boundary condition.
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8.4.2 The maximum principle

For the heat flow equation, the maximum principle takes a form close to that we have
stated in theorem 5.2.22 for the Laplacian.

Proposition 8.4.2 Let Ω be a regular open bounded set of RN , and take a final
time T > 0. Take u0 ∈ L2(Ω), f ∈ L2(]0, T [;L2(Ω)), and u ∈ C([0, T ];L2(Ω)) ∩
L2(]0, T [;H1

0 (Ω)) the unique solution of (8.12). If f ≥ 0 almost everywhere in
]0, T [×Ω and u0 ≥ 0 almost everywhere in Ω, then u ≥ 0 almost everywhere in
]0, T [×Ω.

Proof. Take u− = min(u, 0) which belongs to L2(]0, T [;H1
0 (Ω)) from lemma 5.2.24

and which satisfies, for 0 < t < T ,∫
Ω
∇u(t) · ∇u−(t)dx =

∫
Ω
|∇u−(t)|2 dx. (8.40)

An argument similar to that which allowed us to prove (8.40) shows that, if ∂u∂t ∈
L2(]0, T [;L2(Ω)), then∫

Ω

∂u

∂t
(t)u−(t)dx =

1
2
d

dt

(∫
Ω
|u−(t)|2 dx

)
. (8.41)

We admit that the identity (8.41) remains true even if ∂u
∂t does not belong to

L2(]0, T [;L2(Ω)). Consequently, by taking v = u− in the variational formulation
(8.6) of the heat flow equation we obtain

1
2
d

dt

(∫
Ω
|u−|2 dx

)
+
∫

Ω
|∇u−|2 dx =

∫
Ω
fu− dx,

which gives by integration in time

1
2

∫
Ω
|u−(t)|2 dx +

∫ t

0

∫
Ω
|∇u−|2 dx ds =

∫ t

0

∫
Ω
fu− dx ds +

1
2

∫
Ω
|u−(0)|2 dx.

As u−(0) = (u0)− = 0 we deduce

1
2

∫
Ω
|u−(t)|2 dx +

∫ t

0

∫
Ω
|∇u−|2 dx ds ≤ 0,

that is to say that u− = 0 almost everywhere in ]0, T [×Ω. �

As in the elliptic case, the maximum principle given by proposition 8.4.2 con-
forms to physical intuition. In the framework of the model of heat flow described in
Chapter 1, if the initial temperature u0(x) is at every point larger than the value 0
at which we maintain the temperature on the boundary ∂Ω and if the source term is
positive (corresponding to a heating effect), then it is clear that the temperature is
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positive at every point and at every instant. We have only checked that the math-
ematical model reproduces this intuitive property.

It is good to realize that these results can also be stated in several equivalent
forms. We can, for example, compare two solutions of (8.12): if u0 ≤ ũ0 in Ω and
f ≤ f̃ in ]0, T [×Ω, and if u and ũ denote the solutions of (8.12) corresponding to the
data (u0, f) and (ũ0, f̃) respectively, then we have u ≤ ũ in ]0, T [×Ω.

The two following exercises illustrate some interesting applications of the max-
imum principle.

Exercise 8.4.3 Let Ω be a regular open bounded set of RN . We denote by u1 the first
eigenfunction of the Laplacian in Ω with Dirichlet conditions, and by λ1 the associated
eigenvalue. We recall that we can choose u1 > 0 in Ω (see the Krein–Rutman theorem
7.3.10) and we also have ∂u1/∂n > 0 on ∂Ω. Take f = 0, u0 ∈ L2(Ω) and u the unique
solution (assumed regular) of (8.12).

Take ε > 0. Show that the we can find a positive constant K such that

−Ku1(x) ≤ u(x, ε) ≤ Ku1(x) ∀x ∈ Ω, (8.42)

and deduce that there exists a positive constant C such that

max
x∈Ω

|u(x, t)| ≤ Ce−λ1t ∀ t > ε. (8.43)

Exercise 8.4.4 Let Ω be a regular open bounded set of RN . Take u0 ∈ L∞(Ω),
f ∈ L∞(R+ × Ω), and u ∈ C([0, T ];L2(Ω)) ∩ L2(]0, T [;H1

0 (Ω)) the unique solution of
(8.12). Show that

‖u‖L∞(R+×Ω) ≤ ‖u0‖L∞(Ω) +
D2

2N
‖f‖L∞(R+×Ω), (8.44)

where D = supx,y∈Ω |x − y| is the diameter of Ω. First consider the easy case where
f ≡ 0, then, in the general case, use the function ψ ∈ H1

0 (Ω) such that −∆ψ = 1 in Ω.

8.4.3 Propagation at infinite velocity

We have already mentioned in remark 1.2.9 this surprising property of the heat flow
equation: the heat propagates at infinite velocity! This result follows from a strong
maximum principle that we now state without proof. We verify it more easily when
the domain Ω is the entire space RN (see Section 8.4.5).

Proposition 8.4.3 Let Ω be a regular open bounded set of class C2 of RN . Take a
final time T > 0. With u0 ∈ L2(Ω) and u the unique solution in C([0, T ];L2(Ω)) ∩
L2(]0, T [;H1

0 (Ω)) of the problem⎧⎪⎨
⎪⎩

∂u

∂t
−∆u = 0 in ]0, T [×Ω

u(x, t) = 0 on ]0, T [×∂Ω
u(x, 0) = u0(x) in Ω.
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We further assume that u0(x) ≥ 0 almost everywhere in Ω and that u0 is not identi-
cally zero. Then, for all time ε > 0, we have

u(x, ε) > 0 ∀x ∈ Ω. (8.45)

Inequality (8.45) is strict which is remarkable (we already had a weaker inequality
from the maximum principle of proposition 8.4.2). In effect, if u0 has compact support
in Ω and if we look at a point x ∈ Ω outside of the support of u0, we find that
u(x, ε) > 0 although initially u0(x) = 0. In other words, in the framework of the
modelling of the temperature evolution, even if the point x is initially cold (u0(x) = 0)
and very far from the initial hot part (the support of u0), it becomes immediately
hot as for all time t = ε (even very small) we have u(x, ε) > 0. Therefore the
heat propagates at infinite velocity since its effect is immediate even at a great
distance! This is clearly a fault of the mathematical model as we know that nothing
can propagate more quickly than the velocity of light (in fact it is the Fourier law (1.3)
which is wrong). This is a model, qualitatively and quantitatively correct in many
regards, as we have shown in several preceding results, which conforms to physical
intuition, but this is only an idealized model of reality.

Remark 8.4.4 The same property of ‘propagation at infinite velocity’ can also be
observed for the Stokes equations (8.2). In this framework, we are perhaps less sur-
prised by this paradox if we realize that the incompressibility hypothesis of a fluid
implies that the velocity of sound is infinite. In other words, by using the approxi-
mation of incompressibility, we implicitly introduced in the model of the possibility
of propagation of the information at infinite velocity. •

8.4.4 Regularity and regularizing effect

In the elliptic case we have seen that the regularity of the solution is directly linked
to that of the data. In the parabolic case, the situation is different since, if the source
term is zero (f = 0), there exists a regularizing effect on the initial condition:
surprisingly, even if the initial data u0 is not very regular, the solution immediately
becomes very regular.

Proposition 8.4.5 Let Ω be a regular open bounded set of class C∞ of RN , and take
a final time T > 0. Take u0 ∈ L2(Ω), and u the unique solution in C([0, T ];L2(Ω))∩
L2(]0, T [;H1

0 (Ω)) of

⎧⎪⎨
⎪⎩

∂u

∂t
−∆u = 0 in ]0, T [×Ω

u(x, t) = 0 on ]0, T [×∂Ω
u(x, 0) = u0(x) in Ω.

(8.46)

Then, for all ε > 0, u is of class C∞ in x and t in Ω× [ε, T ].

Outline of proof. Rather than a rigorous (and quite technical, see exercise 8.4.5)
proof we propose a formal calculation which shows the essential idea behind this
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regularity result (the proof is easier in the case Ω = RN , see exercise 8.4.9). For k ≥ 1
we denote by v = ∂ku

∂tk
and we (formally) differentiate the heat flow equation (8.46) k

times with respect to time to obtain⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂v

∂t
−∆v = 0 in ]0, T [×Ω

v(x, t) = 0 on ]0, T [×∂Ω

v(x, 0) =
∂ku

∂tk
(0, x) in Ω,

(8.47)

which is again a heat flow equation. If ∂
ku
∂tk

(0, x) belongs to L2(Ω), we apply the
existence and uniqueness theorem 8.2.7 to (8.47) which tells us that v belongs to
L2(]0, T [;H1

0 (Ω)) ∩C([0, T ];L2(Ω)). In particular, u is regular in time. On the other
hand, by equality, v = (∆)ku belongs to the same space. By elliptic regularity (see
theorem 5.2.26) we deduce that u is regular in space. The more delicate point in order
to be able to give a meaning to this formal reasoning is that the initial data of (8.47)
is not very regular. It is for this reason that the regularity of u is only valid for the
time t > ε > 0. �

In the presence of source terms, the same reasoning as that of the proof of
proposition 8.4.5 allows us to recover a more classical regularity result which is not
unconnected to the energy equality (8.19) (in effect, the space to which u will belong
is that which gives a meaning to (8.19)).

Proposition 8.4.6 Let Ω be a regular open bounded set of RN , and take a final time
T > 0. For a source term f ∈ L2(]0, T [;L2(Ω)) and regular initial data u0 ∈ H1

0 (Ω),
we consider the unique solution u ∈ L2(]0, T [;H1

0 (Ω)) ∩ C([0, T ];L2(Ω)) of the heat
flow equation (8.12). Then, this solution is more regular in the sense that ∂u∂t ∈
L2(]0, T [;L2(Ω)) and u ∈ L2(]0, T [;H2(Ω)) ∩ C([0, T ];H1

0 (Ω)).

Remark 8.4.7 We can of course ‘increase’ regularity and find that the solution u of the
heat flow equation (8.12) is as regular as we want, provided that the data u0 and f are also
regular (see [6]). However, if we want the solution u to be regular from the initial instant, the
data u0 and f must satisfy compatibility conditions. Thus, in proposition 8.4.6 it is necessary
that the initial condition u0 satisfies the Dirichlet boundary condition (which has not been
necessary for the existence of a solution in theorem 8.2.7). The other compatibility conditions
are obtained by remarking that the successive derivatives of u with respect to time t are also
solutions of the heat flow equation with Dirichlet boundary conditions. For example, the
initial condition for the first derivative is ∂u

∂t
(0) = f(0) + ∆u0. So that ∂u

∂t
is regular, this

initial data must therefore satisfy the Dirichlet boundary condition f(0) + ∆u0 = 0 on ∂Ω,
which is a compatibility condition between u0 and f . •

Exercise 8.4.5 (difficult) Prove proposition 8.4.5 rigorously. For this we shall introduce, for
every integer m ≥ 0, the space

W 2m(Ω) = {v ∈ H2m(Ω), v = ∆v = · · ·∆m−1v = 0 on ∂Ω}, (8.48)

which we equip with the norm ‖v‖2
W2m(Ω) =

∫
Ω
|(∆)mv|2 dx. Show it is equivalent to the norm

of H2m(Ω). Revisit the proof of theorem 8.2.3 by showing that the sequence (wk) of the partial
sums is Cauchy in C�([ε, T ],W 2m(Ω)).



QUALITATIVE PROPERTIES IN THE PARABOLIC CASE 259

8.4.5 Heat equation in the entire space
To finish this section, we briefly indicate how to solve the heat flow equation posed in the
whole space RN . Let us recall that the spectral approach followed in this chapter is limited to
the case of open bounded sets (this limitation is in fact artificial and absolutely unnecessary
to establish the existence and uniqueness of the solution of a parabolic equation). Let us con-
sider the homogeneous heat flow equation in the entire space RN , equipped with initial data{

∂u

∂t
−∆u = 0 in ]0,+∞[×RN

u(x, 0) = u0(x) in RN .
(8.49)

The following classical result shows that the solution of the problem (8.49) is given explicitly
as the convolution of the initial data u0 with a Gaussian whose standard deviation grows
like

√
t.

Theorem 8.4.8 We assume that u0 ∈ L2(RN). Then problem (8.49) has a unique solution
u ∈ C(R+, L2(RN)) ∩ C1(R+

∗ , L
2(RN)), given by

u(x, t) =
1

(4πt)N/2

∫
RN

u0(y)e−|x−y|2/4tdy. (8.50)

Proof. For t ≥ 0, we introduce the Fourier transform of u(t) (see [4]), that is to say of the
function x �→ u(x, t), defined by

û(k, t) =
1

(2π)N/2

∫
RN

u(x, t)eik·xdx,

for k ∈ RN . If u ∈ C(R+, L2(RN)) ∩ C1(R+
∗ ;L2(RN)) satisfies (8.49), we can apply the

Fourier transform to the two equations (8.49) to obtain⎧⎪⎨
⎪⎩

û ∈ C(R+, L2(RN)) ∩ C1(R+
∗ , L

2(RN)) ,
∂û

∂t
+ |k|2û = 0 for k ∈ R

N , t > 0 ,

û(k, 0) = û0(k) for k ∈ RN ,

(8.51)

where û0(k) = (1/(2π)N/2)
∫

RN u0(x)eik·xdx is the Fourier transform of u0. The system
(8.51) is easily solved since we have a differential equation for each value of k. We obtain

û(k, t) = û0(k)e−|k|2t for (k, t) ∈ R
N × R

+,

and it is easy to deduce (8.50) by inverse Fourier transform (since this transformation changes
a convolution product to a simple product). �

Remark 8.4.9 The use of the Fourier transform allows us to ‘diagonalize’ the heat flow
equation (8.49) and to reduce the problem to the solution of a simple ordinary differential
equation (8.51). This method is therefore very similar, in spirit, to the spectral approach
used before and which also relies on a diagonalization argument. In others terms, |k|2 and
eik·x are interpreted as eigenvalues and eigenfunctions of the Laplacian in RN . Let us remark
that the larger the Fourier mode |k|, the faster is the exponential decrease in time of û(k, t):
this more rapid damping for small wavelengths (k large) is linked to the regularizing effect
of the heat equation see exercise 8.4.9 below). •
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Remark 8.4.10 The result (8.50) can be interpreted in terms of a Green’s function. By set-
ting G(x, t)= (1/(2πt)N/2)e−|x|2/4t, we write (8.50) in the form u(t)=G(t)∗u0, that is to say

u(x, t) =
∫

RN

G(x− y, t)u0(y) dy.

The Green’s function is the elementary solution of the heat flow equation in RN ×R+
∗ . This

means that the we can verify that{
∂G

∂t
−∆G = 0 in ]0,+∞[×RN

G(x, 0) = δ0(x) in RN .

in the sense of distributions, where δ0 is the Dirac mass at the origin. This point of view
can also be developed in a bounded domain and leads to a method of solution for parabolic
equations different from the ‘spectral’ approach followed here. •

The following exercise allows us to solve the nonhomogeneous heat flow equation.

Exercise 8.4.6 For u0 ∈ L2(RN) and t > 0, we denote by S(t)u0 the function given by the
right-hand side of (8.50). Verify that S(t) is a continuous linear operator from L2(RN) into
L2(RN). By setting S(0) = I (the identity of L2(RN)), verify that (S(t))t≥0 is a semigroup of
operators which depend continuously on t, that is to say that they satisfy S(t+ t′) = S(t)S(t′)
for t, t′ ≥ 0. Let f ∈ C1(R+;L2(RN)). Show that the problem{

∂u

∂t
−∆u = f in ]0,+∞[×RN

u(x, 0) = u0(x) in RN .

has a unique solution u ∈ C(R+;L2(RN)) ∩ C1(R+
∗ ;L2(RN)), given by

u(t) = S(t)u0 +
∫ t

0

S(t− s)f(s) ds,

that is to say

u(x, t) =
∫

RN

u0(y)e−|x−y|2/4t dy

(2πt)N/2 +
∫ t

0

∫
RN

f(y, s)e−|x−y|2/4(t−s) dy ds

(2π(t− s))N/2 .

The explicit formula (8.50) allows us to recover easily, for problem (8.49) posed in the
whole space, the qualitative properties studied before. This is the object of the following
exercises where we shall denote by u the solution (8.50) of the problem (8.49), with the
initial data u0 ∈ L2(RN).

Exercise 8.4.7 (energy equality) Show that, for all T > 0,

1
2

∫
RN

u(x, T )2 dx+
∫ T

0

∫
RN

|∇u(x, t)|2 dx dt = 1
2

∫
RN

u0(x)2 dx.
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Exercise 8.4.8 (maximum principle) Show that, if u0∈L∞(RN), then u(t)∈L∞(RN) and

‖u(t)‖L∞(RN ) ≤ ‖u0‖L∞(RN ) ∀ t > 0.

Show that, if u0 ≥ 0 almost everywhere in RN , then u ≥ 0 in RN × R+.

Exercise 8.4.9 (regularizing effect) Show that u ∈ C∞(RN × R+
∗ ).

Exercise 8.4.10 (asymptotic behaviour) Show that

lim
|x|→+∞

u(x, t) = 0 ∀ t > 0 and lim
t→+∞

u(x, t) = 0 ∀x ∈ R
N .

Exercise 8.4.11 (infinite speed of propagation) Show that, if u0 ≥ 0 and u0 �≡ 0, then
u(x, t) > 0 in RN × R+

∗ .

8.5 Qualitative properties in the hyperbolic case

8.5.1 Reversibility in time

We now examine the principal qualitative properties of the solution of the wave equa-
tion, which are very different from those of the solution of the heat flow equation.
The most striking property, already stated in Chapter 1, is the reversibility in time
of this equation.

Proposition 8.5.1 Let Ω be a regular open bounded set of RN , and take a final time
T > 0. Take (v0, v1) ∈ H1

0 (Ω) × L2(Ω), and a source term f ∈ L2(]0, T [;L2(Ω)).
Then the retrograde wave equation (integrating backwards in time starting from T )⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂2v

∂t2
−∆v = f a.e. in Ω×]0, T [

v = 0 a.e. on ∂Ω×]0, T [
v(x, T ) = v0(x) a.e. in Ω
∂v

∂t
(x, T ) = v1(x) a.e. in Ω

(8.52)

has a unique solution v ∈ C([0, T ];H1
0 (Ω)) ∩ C1([0, T ];L2(Ω)). Further, if u(t, x) is

the solution of the wave equation (8.3) and if v0(x) = u(x, T ) in H1
0 (Ω) and v1(x) =

∂u
∂t (x, T ) in L2(Ω), then we have v(t, x) = u(t, x).

Proof. We make the change of unknown w(x, t) = v(x, T − t) and (8.52) becomes a
‘progressive’ wave equation with initial data at t = 0 like the ‘usual’ equation (8.3)
(as the time derivative is second order, there is no change in sign in the equation
after this change of unknown). Applying theorem 8.3.4 (8.52) therefore has a unique
solution. If v0(x) = u(x, T ) and v1(x) = ∂u

∂t (x, T ), the solution u(t, x) of (8.3) is also
a solution of (8.52). By uniqueness we deduce v(t, x) = u(t, x). �

The reversibility in time of the wave equation has numerous consequences. The
most important is that there is no regularizing effect for the wave equation as
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opposed to the case of the heat equation. Indeed, if this was the case, changing the
sense of time like in proposition 8.5.1, we would obtain a contradictory ‘deregulariz-
ing’ effect (the solution will be less regular than that at the final time T , which is
not possible since the regularizing effect must also apply). Consequently, there is
neither gain nor loss of regularity for the solution of the wave equation with
respect to the initial data. We can at most affirm that, as in the elliptic case, the
regularity of the solution of the wave equation is directly linked to that of the data.

Proposition 8.5.2 Let Ω be a regular open bounded set of RN . Take a final time T > 0,
initial data u0 ∈ H1

0 (Ω) ∩ H2(Ω) and u1 ∈ H1
0 (Ω), a source term f ∈ L2(]0, T [;L2(Ω)),

and u ∈ C([0, T ];H1
0 (Ω))∩C1([0, T ];L2(Ω)) the unique solution of the wave equation (8.33).

Then, u belongs to C([0, T ];H1
0 (Ω) ∩H2(Ω)) ∩ C1([0, T ];H1

0 (Ω)) ∩ C2([0, T ];L2(Ω)).

We will assume proposition 8.5.2 which is similar to proposition 8.4.6 that we have
proved earlier. We can of course ‘increase’ regularity starting from this result and find that
the solution u of the wave equation (8.33) is as regular as we want, provided that the data
u0, u1 and f also are (with possible compatibility conditions on the data, see remark 8.4.7).

8.5.2 Asymptotic behaviour and equipartition of energy

There is no maximum principle for the wave equation. In the absence of a source
term (f = 0), even if the initial velocity is zero (u1 = 0) and if the initial data is
positive (u0 ≥ 0), the solution u can change sign in the course of time. This absence
of maximum principle agrees with physical intuition. Let us imagine a cord or an
elastic membrane: if we initially deform it in a position above its plane of rest, it will
vibrate going alternately above and below this plane (in other words u changes sign).
Mathematically, this counterexample can be written simply in the following form. Let
w(x) be the first eigenfunction of the Laplacian in a connected bounded domain Ω
with Dirichlet boundary condition. From theorem 7.3.10, we can normalize w so that
w(x) ≥ 0 in Ω. Denoting by λ = ω2 the first eigenvalue associated with w, it is easy
to verify that u(t, x) = cos(ωt)w(x) changes sign in the course of time while being
the unique solution in C([0, T ];H1

0 (Ω))∩C1([0, T ];L2(Ω)) of the wave equation (8.33)
without source term and with the initial data

u(x, 0) = w(x),
∂u

∂t
(x, 0) = 0 in Ω.

There is therefore no asymptotic behaviour in large time for the wave equa-
tion in a bounded domain. In other words, even if the source term f does not depend
on time, the solution u does not converge to a stationary limit as the time t tends
to infinity. In particular, if f = 0, the influence of the initial conditions is the same
at all time since the energy is conserved and does not decrease (see exercise 8.3.1).
The same counterexample u(t, x) = cos(ωt)w(x) allows us to see that there is no
stationary limit of the oscillations which continue without damping.

This is obviously not the case for the damped wave equation (8.53) as the following
exercise shows.



QUALITATIVE PROPERTIES IN THE HYPERBOLIC CASE 263

Exercise 8.5.1 Let η > 0. We consider the damped wave equation⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂2u

∂t2
+ η

∂u

∂t
−∆u = f in Ω× R+

∗
u = 0 on ∂Ω× R+

∗
u(x, 0) = u0(x) in Ω
∂u

∂t
(x, 0) = u1(x) in Ω.

(8.53)

We assume that u is a sufficiently regular solution of (8.53) and that f is zero after a
finite time. Show, with the help of Gronwall’s lemma (see exercise 8.3.1), that u and ∂u

∂t
decrease exponentially to zero as time t tends to infinity.

Proposition 8.3.5 has established a property of conservation of total energy in the
absence of a source term. A more precise result, called equipartition of energy,
confirms that the total energy divides equally into kinetic energy and mechanical
energy, asymptotically for large time.

Exercise 8.5.2 Let u(t, x) be the solution, assumed to be sufficiently regular, of the
wave equation (8.33). In the absence of a source term, show that

lim
t→+∞

1
t

∫ t

0

∫
Ω

∣∣∣∣∂u∂t
∣∣∣∣
2

dx = lim
t→+∞

1
t

∫ t

0

∫
Ω
|∇u|2 dx =

1
2
E0,

with E0 the initial energy.

E0 =
∫

Ω
|u1(x)|2 dx +

∫
Ω
|∇u0(x)|2 dx.

For this we shall multiply the equation (8.33) by u and integrate by parts.

8.5.3 Finite velocity of propagation

One last important property of the wave equation is propagation at finite velocity.
We have already seen in Chapter 1 (in N = 1 dimension and in the entire space
Ω = R) that there exists a light cone (or domain of dependence) which con-
tains all the information on the solution of the wave equation (see Figure 1.3).
More precisely, the solution u in (t, x) only depends on the values of the ini-
tial data u0 and u1 on the segment [x − t, x + t]. We deduce that if the ini-
tial data have compact support K = [kinf , ksup] ⊂ R, then the solution at time
t has compact support in [kinf − t, ksup + t]. In physical terms this says that the
initial perturbations propagate at finite velocity bounded by 1. This situation is
again very different from what happens for the heat flow equation (compare with
proposition 8.4.3). The following exercise allows us to generalize this discussion to
N =2, 3 dimensions.

Exercise 8.5.3 We consider the wave equation in the entire space RN⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂2u

∂t2
−∆u = 0 in RN × R∗+

u(x, 0) = u0(x) in x ∈ RN

∂u

∂t
(x, 0) = u1(x) in x ∈ RN ,

(8.54)
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with initial data (u0, u1) which is regular with compact support. Show that the solution
u(t, x) can be put in the form

u(x, t) = (Mu1)(x, t) +
(
∂(Mu0)

∂t

)
(x, t),

where M is an averaging operator defined by

if N = 1, (Mv)(x, t) =
1
2

∫ +t

−t
v(x− ξ)dξ,

if N = 2, (Mv)(x, t) =
1

2π

∫
|ξ|<t

v(x− ξ)√
t2 − |ξ|2

dξ,

if N = 3, (Mv)(x, t) =
1

4πt

∫
|ξ|=t

v(x− ξ)ds(ξ),

where ds(ξ) is the surface measure of the sphere. Deduce that the solution u in (t, x)
depends only on the values of the initial data u0 and u1 on the ball |x| ≤ t. (To know
how to find the expressions above for the operator M , we refer to Chapter VII of [38].)

Exercise 8.5.4 We consider the wave equation (8.54) in a domain Ω ⊂ RN with
Dirichlet or Neumann (homogeneous), boundary conditions and initial data (u0, u1) which
is regular with compact support in Ω. Verify that there exists a time T > 0 such that on
the interval [0, T ] the solution is again given by the formulas of exercise 8.5.3.

The following exercise displays the essential difference between N = 2 and 3 space
dimensions.

Exercise 8.5.5 (musical application) Assuming that sound propagates according to
the wave equation, show that it is not possible to listen to (audible) music in a world with
N = 2 space dimensions, but that this is (very happily) possible in N = 3 dimensions.

8.6 Numerical methods in the parabolic case

In this section, we show how the finite element method (presented in Chapter 6)
adapts to the numerical solution of the heat flow equation: we use finite elements for
the spatial discretization, and finite differences for the temporal discretization.

8.6.1 Semidiscretization in space

We discretize the variational formulation (8.6) of the heat equation (8.1) in space
only. For this, as in the case of elliptic problems, we construct an internal variational
approximation by introducing a subspace V0h of H1

0 (Ω), of finite dimension. Typically,
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V0h will be a subspace of Pk or Qk finite elements) on a triangular (or rectangular)
mesh as made precise in the definitions 6.3.5 and 6.3.25.

The semidiscretization of (8.6) is therefore the following variational approximation:
find uh(t) a function of ]0, T [ with values in V0h such that⎧⎨

⎩
d

dt
〈uh(t), vh〉L2(Ω) + a (uh(t), vh) = 〈f(t), vh〉L2(Ω) ∀ vh ∈ V0h, 0 < t < T,

uh(t = 0) = u0,h

(8.55)

where u0,h ∈ V0h is an approximation of the initial data u0. This method of approxi-
mation is also known as the ‘method of lines’.

We can adapt the abstract framework of theorem 8.2.3 to show that (8.55) has a
unique solution, but it is much more simple to verify that (8.55) is in fact a system
of ordinary differential equations with constant coefficients from where we can
easily calculate a unique solution. Practically, to solve (8.55) we introduce a basis
(φi)1≤i≤ndl of V0h (typically, a finite element basis), and we look for uh(t) in the form

uh(t) =
ndl∑
i=1

Uhi (t)φi, (8.56)

with Uh = (Uhi )1≤i≤ndl the vector of the coordinates of uh. It is important to note that
in (8.56) the basis functions φi do not depend on time and that only the coordinates
Uhi (t) are functions of time t. Likewise, we set

u0,h =
ndl∑
i=1

U0,h
i φi,

and (8.55) becomes, for all 1 ≤ i ≤ ndl,⎧⎪⎨
⎪⎩
ndl∑
j=1

〈φj , φi〉L2(Ω)
dUhi (t)
dt

+
ndl∑
j=1

a(φj , φi)Uhi (t) = 〈f(t), φi〉L2(Ω)

Uhi (t = 0) = U0,h
i

Introducing (as in the proof of lemma 7.4.1) the mass matrixMh defined by

(Mh)ij = 〈φi, φj〉L2(Ω) 1 ≤ i, j ≤ ndl,

and the stiffness matrix Kh defined by

(Kh)ij = a(φi, φj) 1 ≤ i, j ≤ ndl,

the variational approximation (8.55) is equivalent to the linear system of ordinary
differential equations with constant coefficients⎧⎨

⎩Mh
dUh

dt
(t) +KhUh(t) = bh(t), 0 < t < T,

Uh(t = 0) = U0,h
(8.57)
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with bhi (t) = 〈f(t), φi〉L2(Ω). The existence and the uniqueness, as well as an explicit
formula, of the solution of (8.57) is obtained classically by simple simultaneous diag-
onalization of Mh and Kh (see Section 7.4.1 on this subject). As it is difficult and
costly to diagonalize (8.57), in practice we solve (8.57) numerically by discretization
and time stepping. There exist numerous classical methods for numerical calculation
of the solutions of ordinary differential equations. We see some of these in the follow-
ing section. Before that, we state a convergence result of the ‘semidiscrete’ solutions
of (8.55) to the exact solution of (8.6).

Proposition 8.6.1 Let (Th)h>0 be a sequence of regular triangular meshes of Ω. Let V0h be
the subspace of H1

0 (Ω), defined by the Pk finite element method, of dimension ndl. Take f(t) ∈
L2(]0, T [;L2(Ω)), u0 ∈ H1

0 (Ω), and u ∈ L2(]0, T [;H1
0 (Ω)) ∩ C([0, T ];L2(Ω)), the unique

solution of the heat flow equation (8.12). Let uh be the unique solution of the variational
approximation (8.55) in V0h. If limh→0 ‖u0,h − u0‖L2(Ω) = 0, then we have

lim
h→0

‖u− uh‖L2(]0,T [;H1
0(Ω)) = lim

h→0
‖u− uh‖C([0,T ];L2(Ω)) = 0.

The proof of proposition 8.6.1 is similar to that of the preceding results on variational
approximation. It can be found in the work [34]. We can also obtain error estimates and
explicit rates of convergence, but this would involve too much.

8.6.2 Total discretization in space-time

After having discretized the heat flow equation in space by a finite element method,
we finish the discretization of the problem by using finite differences in time.
Concretely, we use finite differences schemes to solve the system of ordinary differential
equations (8.57) resulting from the semidiscretization in space. We shall therefore
revisit many schemes already studied in Chapter 2 as well as the notions such as
stability or the order of precision. To simplify the notation, we rewrite the system
(8.57) without mentioning the dependence on the parameter h of the spatial mesh⎧⎨

⎩M
dU

dt
(t) +KU(t) = b(t)

U(t = 0) = U0
(8.58)

To simplify the analysis we shall assume that b(t) is continuous on [0, T ]. We break
the time interval [0, T ] into n0 intervals or timesteps ∆t = T/n0 and we set

tn = n∆t 0 ≤ n ≤ n0.

We denote by Un the approximation of U(tn) calculated by a scheme. To calculate
the approximate solutions of (8.58) numerically, the simplest and most frequently
used scheme is the θ-scheme (see (2.5))

MUn+1 − Un

∆t
+K

(
θUn+1 + (1− θ)Un

)
= θb(tn+1) + (1− θ)b(tn). (8.59)
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When θ = 0, we call (8.59) an explicit scheme, and when θ = 1, an implicit
scheme, and for θ = 1/2, the Crank–Nicolson scheme. We can rewrite (8.59) in
the form

(M+ θ∆tK)Un+1 = (M− (1− θ)∆tK)Un + ∆t(θb(tn+1) + (1− θ)b(tn)). (8.60)

Let us remark that in general the matrix M is not diagonal, and therefore, even for
the explicit scheme, it is necessary to solve a linear system to calculate Un+1 as a
function of Un, and of the right-hand side b (except if we use a numerical integration
formula which makes M diagonal, see remark 7.4.3). Obviously, we can construct
many schemes inspired from those in Chapter 2. Let us cite an example of a scheme
with three time levels, the Gear scheme,

M3Un+1 − 4Un + Un−1

2∆t
+KUn+1 = b(tn+1). (8.61)

These schemes are, of course, consistent (see definition 2.2.4) and we can easily analyse
their precision (with respect to the time variable).

Exercise 8.6.1 Show that the Crank–Nicolson scheme and the Gear scheme are second
order (in time), while the θ-scheme for θ �= 1/2 is first order.

Remark 8.6.2 It is possible to construct a finite element method in space and in
time, but this is not of interest except in the case where the domain Ω(t) varies as a
function of time. •

We now give a definition of the stability of these schemes which is a variant of
definition 2.2.8.

Definition 8.6.3 A finite difference scheme for (8.58) is called stable if

MUn · Un ≤ C for all 0 ≤ n ≤ n0 = T/∆t,

where the constant C > 0 is independent of ∆t and of the dimension of the system ndl
(therefore of the mesh size h), but can depend on the initial data U0, on the right-hand
side b, and on T .

Remark 8.6.4 The choice of the norm
√
MU · U in definition 8.6.3 is explained by

the fact that MU · U =
∫

Ω |u|2dx with u ∈ V0h, a function of the coordinates U in
the chosen basis of V0h (M is positive definite). Let us recall that, in definition 2.2.8
of stability in the sense of the finite differences, we weighted the Euclidean norm of
U by ∆x to recover the link with the norm of u in L2(Ω). •

Lemma 8.6.5 If 1/2 ≤ θ ≤ 1, the θ-scheme (8.59) is unconditionally stable, while,
if 0 ≤ θ < 1/2, it is stable under the CFL condition

max
i

λi∆t ≤ 2
1− 2θ

, (8.62)

where the λi are the eigenvalues of KU = λMU (see (7.23)).
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Remark 8.6.6 We do not immediately recognize in (8.62) the usual CFL (Courant–
Friedrichs–Lewy) condition ∆t ≤ Ch2 for the heat equation (see Section 2.2.3). In
fact, we can show that, if the mesh Th is uniformly regular in the sense where every
element contains a ball of radius Ch (with C > 0 independent of the element), then
we effectively have maxi λi = O(h−2). We suggest that the reader verifies this fact
in N = 1 dimension as exercise 8.6.4 below. In practice we do not use the θ-scheme
for θ < 1/2 since the stability condition (8.62) is much too severe: it needs the use of
very small timesteps which makes the calculation much too costly. •

Proof. We rewrite the scheme (8.60) in the orthonormal basis for M and orthogonal
for K (see the proof of lemma 7.4.1)

( I + θ∆tdiag(λi))Ũn+1 = ( I− (1− θ)∆tdiag(λi))Ũn + ∆tb̃n, (8.63)

with M = PP ∗, K = P diag(λi)P ∗, Ũn = P ∗Un, and b̃n = P−1(θb(tn+1) + (1 −
θ)b(tn)). We deduce from (8.63) that the components Ũni of Ũn satisfy the following
equation:

Ũni = (ρi)
n
Ũ0
i +

∆t

1 + θ∆tλi

n∑
k=1

(ρi)k−1b̃n−ki . (8.64)

with

ρi =
1− (1− θ)∆tλi

1 + θ∆tλi
.

In this basis the stability condition is ‖Un‖M = ‖Ũn‖ ≤ C. Consequently, a necessary
and sufficient condition for stability is |ρi| ≤ 1 for all i, which is none other than the
condition (8.62) if 0 ≤ θ < 1/2, and which is always satisfied if θ ≥ 1/2. �

Remark 8.6.7 It is clear in the estimate (8.64) that the larger the value of θ, the
smaller the coefficient in front of the term b̃n−ki . In fact, this property corresponds
to an exponential damping by the scheme of the contributions from the source term.
Consequently, even if for every value 1/2 < θ ≤ 1 the θ-scheme is stable, its maximum
stability is attained for θ = 1 (the numerical errors decay). This is why the implicit
scheme is more robust and often used for ‘stiff’ problems even though it is less precise
than the Crank–Nicolson scheme. •

Remark 8.6.8 The system of ordinary differential equations (8.58) is called ‘stiff’
since its solutions involve terms of the type exp(−λit), which evolve on very different
time scales (let us recall that mini λi = O(1) and maxi λi = O(h−2)). There exist
other numerical integration methods for ordinary differential equations which are more
powerful and more complicated than the θ-scheme. We cite the Runge–Kutta methods
(see, for example, the Chapter XX of [14]). Nevertheless, there is a compromise to
be struck between the use of a numerical integration method in time which is robust,
but expensive, and the (very important) size of the systems to be solved (let us recall
that the size is proportional to the number of elements). •
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We can use the variational character of the discretization by finite elements which
has led to (8.58) to show the unconditional stability of the θ-scheme in another way.

Exercise 8.6.2 We consider the θ-scheme (8.59) with 1/2 ≤ θ ≤ 1. We denote by
‖U‖M =

√
MU · U . Prove the following discrete equivalent of the energy inequality

(8.17)

‖Un0‖2
M + ∆t

n0∑
n=0

KÛn · Ûn ≤ C

(
‖U0‖2

M +
∫ T

0
‖f(t)‖2

L2(Ω)dt +O(1)

)
.

For this, we will take the scalar product of (8.59) with Ûn = θUn+1 + (1− θ)Un.

Exercise 8.6.3 Show that the Gear scheme (8.61) is unconditionally stable.

Exercise 8.6.4 We solve the heat flow equation (8.12) in N = 1 dimension by P1 finite
elements and the explicit scheme in time. We use a quadrature formula which makes the
matrixM diagonal (see remark 7.4.3 and exercise 7.4.1). We recall that the matrix K is
given by (6.12) and that we have calculated its eigenvalues in exercise 13.1.3. Show that
in this case the CFL condition (8.62) is of the type ∆t ≤ Ch2.

Finally, we can state a convergence result for this method of discretization that we will
not prove (the proof of proposition 8.6.9 is in the spirit of the preceding proofs). For more
details, as well as error estimates and explicit rates of convergence, we refer to [34].

Proposition 8.6.9 Let u be the ‘sufficiently regular’ solution of the heat equation (8.12).
Let (Th)h>0 be a sequence of regular triangular meshes of Ω. Let V0h be the subspace of
H1

0 (Ω), defined by the Pk finite element method. Let (∆t) be a sequence of timesteps which
tends to zero. Let unh ∈ V0h be the function whose coordinates Un in the finite element basis
of V0h are calculated by the θ-scheme. If limh→0 u

0
h = u0 in L2(Ω), and if h and ∆t tend to

0, respecting the stability condition (8.62), then we have

lim
h→0,∆t→0

max
0≤n≤n0

‖u(tn)− unh‖L2(Ω) = 0.

To finish we illustrate this by taking the example of Section 6.3 on the diffusion in
the atmosphere of a pollutant emitted by a localized source (see the mesh in Figure 6.7
and the right-hand side f in Figure 6.14). The initial data u0 is taken zero in the
domain. Figure 8.1 presents the results at 4 different times. As the source term is
independent of time, the solution converges towards a stationary regime as the time
tends to infinity.

8.7 Numerical methods in the hyperbolic case

The numerical methods to solve the wave equation are very similar (in principle, but
not always in practice) to those that we have seen for the heat equation.
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Figure 8.1. Concentration at time t = 1, 2, 3, 5.

8.7.1 Semidiscretization in space

We discretize in space only the variational formulation (8.25) of the wave equation
(8.3). For this, we construct an internal variational approximation by introducing a
subspace V0h of H1

0 (Ω), of finite dimension (typically, a finite element subspace). The
semidiscretization of (8.25) is therefore the following variational approximation: find
uh(t) a function of ]0, T [ with values in V0h such that

⎧⎪⎪⎨
⎪⎪⎩

d2

dt2
〈uh(t), vh〉L2(Ω)+a (uh(t), vh) =〈f(t), vh〉L2(Ω) ∀ vh ∈ V0h, 0<t<T,

uh(t = 0) = u0,h,
∂uh
∂t

(t = 0) = u1,h

(8.65)

where u0,h ∈ V0h and u1,h ∈ V0h are approximations of the initial data u0 and u1.
To show that (8.65) has a unique solution and the practical way to calculate it,

we introduce a basis (φi)1≤i≤ndl of V0h (which does not depend on time), and we look
for uh(t) in the form

uh(t) =
ndl∑
i=1

Uhi (t)φi,

with Uh = (Uhi )1≤i≤ndl the vector of the coordinates of uh. By setting

u0,h =
ndl∑
i=1

U0,h
i φi, u1,h =

ndl∑
i=1

U1,h
i φi, bhi (t) = 〈f(t), φi〉L2(Ω), 1 ≤ i ≤ ndl,
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the variational approximation (8.65) is equivalent to the linear system of second order
ordinary differential equations with constant coefficients⎧⎪⎪⎨

⎪⎪⎩
Mh

d2Uh

dt2
(t) +KhUh(t) = bh(t), 0 < t < T,

Uh(t = 0) = U0,h,
dUh

dt
(t = 0) = U1,h,

(8.66)

where we again find the mass matrixMh and stiffness matrix Kh as for the heat
flow equation

(Mh)ij = 〈φi, φj〉L2(Ω), (Kh)ij = a(φi, φj) 1 ≤ i, j ≤ ndl.

The existence and uniqueness, as well as an explicit formula, of the solution of (8.66)
is easily obtained by simple simultaneous diagonalization of the matrices Mh and
Kh. As it is difficult and costly to diagonalize (8.66), in practice we solve (8.66)
numerically by discretization and time stepping.

Exercise 8.7.1 Write the linear system of ordinary differential equations obtained by
semidiscretization of the damped wave equation (8.53).

8.7.2 Total discretization in space-time

We use a method of finite differences in time to solve the system of ordinary
differential equations (8.66). To simplify the notation, we rewrite the system (8.66)
without mentioning the spatial dependence on h⎧⎪⎪⎨

⎪⎪⎩
Md2U

dt2
(t) +KU(t) = b(t)

U(t = 0) = U0,
dU

dt
(t = 0) = U1,

(8.67)

where we assume that b(t) is continuous on [0, T ]. We break the time interval [0, T ]
into n0 timesteps ∆t = T/n0, we set tn = n∆t 0 ≤ n ≤ n0, and we denote by Un

the approximation of U(tn) calculated by a scheme. For 0 ≤ θ ≤ 1/2 we propose the
θ-scheme

MUn+1 − 2Un + Un−1

(∆t)2 +K
(
θUn+1 + (1− 2θ)Un + θUn−1)

= θb(tn+1) + (1− 2θ)b(tn) + θb(tn−1). (8.68)

When θ = 0, we call (8.68) an explicit scheme (it is only truly explicit if the mass
matrix M is diagonal). To start the scheme we must know U0 and U1, which we
obtain, thanks to the initial conditions

U0 = U0 and
U1 − U0

∆t
= U1.
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A more frequently used scheme, as it is more general, is the Newmark scheme.
To solve the ‘damped’ system

Md2U

dt2
(t) + C dU

dt
(t) +KU(t) = b(t)

we approximate U(t), dU/dt(t), d2U/dt2(t) by three sequences Un, U̇n, Ün

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

MÜn+1 + CU̇n+1 +KUn+1 = b(tn+1)

U̇n+1 = U̇n + ∆t(δÜn+1 + (1− δ)Ün)

Un+1 = Un + ∆tU̇n +
(∆t)2

2

(
2θÜn+1 + (1− 2θ)Ün

) (8.69)

with 0 ≤ δ ≤ 1 and 0 ≤ θ ≤ 1/2. When the damping matrix is zero (C = 0), we can
eliminate the sequences U̇n and Ün, and (8.69) is equivalent to

MUn+1 − 2Un + Un−1

(∆t)2 +K
(
θUn+1 +

(
1
2

+ δ − 2θ
)
Un +

(
1
2
− δ + θ

)
Un−1

)

= θb(tn+1) +
(

1
2

+ δ − 2θ
)
b(tn) +

(
1
2
− δ + θ

)
b(tn−1). (8.70)

Let us remark that for δ = 1/2 the Newmark scheme becomes the θ-scheme. In
practice, the larger of δ, the more dissipative and robust the scheme (the numerical
errors decay more quickly), even if it is less accurate.

Exercise 8.7.2 Show that the Newmark scheme is first order (in time) for δ �= 1/2,
second order for δ = 1/2 and θ �= 1/12, and fourth order if δ = 1/2 and θ = 1/12 (we
limit ourselves to the equation without damping).

We study the stability of these schemes in the sense of definition 8.6.3. To avoid
difficult calculation, we shall be content with studying the Von Neumann necessary
stability condition (see remark 2.2.24). The following result is in the same spirit as
lemma 2.3.6.

Lemma 8.7.1 We consider the Newmark scheme (8.70). If δ < 1/2, it is always
unstable. Let us assume from now on that δ ≥ 1/2. The Von Neumann necessary
stability condition is always satisfied if δ ≤ 2θ ≤ 1, while, if 0 ≤ 2θ < δ it is only
satisfied under the CFL condition

max
i

λi (∆t)2 <
2

δ − 2θ
, (8.71)

where the λi are the eigenvalues of KU = λMU (see (7.23)).
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Remark 8.7.2 We do not recognize the usual CFL (Courant–Friedrichs–Lewy) con-
dition immediately in (8.71) for the wave equation (see lemma 2.3.6). In fact, we
can show that, if the mesh Th is uniformly regular in the sense where every element
contains a ball of radius Ch (with C > 0 independent of the element), then we have
effectively maxi λi = O(h−2). The reader has checked this fact in N = 1 dimension in
exercise 8.6.4. Conversely to the parabolic case, the CFL condition (8.71) is not too
severe since we can take the timesteps ∆t of the order of the space step h. However,
since we must invert a linear system (to be able to calculate Un+1 as a function of
Un, Un−1, and of the right-hand side), there is no additional cost in using the New-
mark scheme for values of δ and θ such that it is unconditionally stable. The only
interesting case for a stable scheme under the CFL condition is the case where it is
explicit, that is to say that there is no linear system to solve at each timestep. In
effect, an explicit scheme needs very few operations per timestep and therefore leads
to less costly calculations. The only possibility for the Newmark scheme (8.70) to be
explicit is that θ = 0 and that the mass matrix M is diagonal thanks to a numerical
integration formula (see remark 7.4.3). This explicit scheme is often used in practice
with δ = 1/2. •

Proof. It is very similar to that of lemma 8.6.5 but with the technical complications
which recall lemma 2.3.6. We decompose Un and the right-hand side of (8.70) in the
basis orthonormal for M and orthogonal for K. Consequently, (8.70) is equivalent,
component by component, to

Un+1
i − 2Uni + Un−1

i

(∆t)2 + λi

(
θUn+1
i +

(
1
2

+ δ − 2θ
)
Uni +

(
1
2
− δ + θ

)
Un−1
i

)
= bni ,

(8.72)
with the obvious notation (the λi are the eigenvalues of the matrix system KVi =
λiMVi). As the scheme (8.72) is three level (see Section 2.2.5), we introduce an
iteration matrix Ai such that(

Un+1
i

Uni

)
= Ai

(
Uni
Un−1
i

)
+

(∆t)2

1 + θλi(∆t)2

(
bni
0

)
with Ai =

(
a11 a12
1 0

)
,

a11 =
2− λi(∆t)2((1/2) + δ − 2θ)

1 + θλi(∆t)2 , a12 = −1 + λi(∆t)2((1/2)− δ + θ)
1 + θλi(∆t)2 .

We deduce that

(
Un+1
i

Uni

)
= Ani

(
U1
i

U0
i

)
U0
i +

(∆t)2

1 + θλi(∆t)2

n−1∑
p=0

Api

(
bn−pi

0

)
. (8.73)

The Von Neumann necessary stability condition is thus ρ(Ai) ≤ 1. We therefore
calculate the eigenvalues of Ai which are the roots of the following polynomial in µ

µ2 − a11µ− a12 = 0



274 EVOLUTION PROBLEMS

whose discriminant is

∆ =
−4λi(∆t)2 + λ2

i (∆t)4
(
((1/2) + δ)2 − 4θ

)
(1 + θλi(∆t)2)2 .

We verify easily that the roots of this polynomial have modulus less than or equal to
1 if and only if we are in one of the two following cases: either ∆ ≤ 0 and a12 ≥ −1,
or ∆ > 0 and 1− a12 ≥ |a11|. A tedious but simple calculation leads to the condition
(8.71) (see if necessary the theorem 6, section 3, chapter XX in [14]). �

Exercise 8.7.3 We consider the limit case of lemma 8.7.1, that is to say δ = 1/2
and λi (∆t)2 = 4/(1− 4θ). Show that the Newmark scheme is unstable in this case by
showing that

Ai =
(
−2 −1
1 0

)
, and Ani = (−1)n

(
n + 1 n
−n 1− n

)
.

remark that this is a ‘weak’ instability since the growth of Ani is linear and not exponential.

Remark 8.7.3 In the absence of a source term the solutions of the system of ordinary
differential equations (8.67) are oscillating functions of the type cos(ωit), with ω2

i = λi.
As the numerical integration schemes of (8.67) have the tendency to damp these
oscillations a little (we say that they are diffusive or dissipative; see the discussion
after definition 2.3.5), we can prefer another method of solution of (8.67) based on
a decomposition of the solution into the eigenvectors Vi of the matrix system KVi =
λiMVi. We look for the solution U(t) of (8.67) in the form

U(t) =
∑
i∈I

xi(t)Vi,

where I is a collection of indices of eigenmodes chosen to represent the solution cor-
rectly, and xi(t) is the solution of a scalar ordinary differential equation

d2xi
dt2

(t) + λixi(t) = bi(t)

that we can integrate easily, quickly, and precisely by the numerical method of choice.
This method, called superposition of modes, is often used in vibration mechanics.
It has the advantage of being not very dissipative, that is to say the oscillations are
damped very little. Of course, the quality of the results depends in a large part on
the choice of the modes in the decomposition, a choice often motivated by physical
considerations. •

Finally, we can state a convergence result for this method of discretization that we shall
not prove (the proof of proposition 8.7.4 is in the spirit of the preceding proofs). For more
detail, as well as error estimates and explicit rates of convergence, we refer to [34].
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Proposition 8.7.4 Let u be the ‘sufficiently regular’ solution of the wave equation (8.33).
Let (Th)h>0 be a sequence of regular triangular meshes of Ω. Let V0h be the subspace of
H1

0 (Ω), defined by the Pk finite element method. Let (∆t) be a sequence of timesteps which
tend to zero. Let unh ∈ V0h be the function whose coordinates Un in the finite element basis
of V0h are calculated by the Newmark scheme. If limh→0 u

0
h = u0 in L2(Ω), limh→0 u

1
h = u1

in L2(Ω), and if h and ∆t tend to 0 respecting the stability condition (8.71), then we have

lim
h→0,∆t→0

max
0≤n≤n0

‖u(tn)− unh‖L2(Ω) = 0.

To finish, we illustrate this by simulating the propagation of a spherical wave in
a square cavity with a reflecting boundary. We therefore solve the wave equation in
Ω =]0, 1[2 with a Neumann boundary condition, a zero initial velocity and an initial
displacement with compact support and spherical symmetry centred on the point
(0.3, 0.4). In Figure 8.2 we trace the modulus of the deformation ∇u at the initial
instant and at five later instants (this type of image, called a Schlieren diagram,
represents what we would see in a real experiment).
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Figure 8.2. Modulus at time t = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5 of |∇u|.



9 Introduction to
optimization

9.1 Motivation and examples

9.1.1 Introduction

Optimization is a very old subject which has shown a resurgence since the appearance
of computers and whose methods are applied in numerous domains: economics, man-
agement, planning, logistics, robotics, optimal design, engineering, signal process-
ing, etc. Optimization is also a vast subject which touches on calculus of variations,
operations research (optimization of management or decision processes), and optimal
control. We will only mention these subjects since we would need complete notes for
each of them if we want to treat them thoroughly.

In a certain way, optimization can be seen as a discipline independent of the numer-
ical analysis of partial differential equations that we have studied in the preceding
chapters. However, the interactions between these two disciplines are numerous and
fertile and it is much more natural to deal with them in the same course. Indeed, after
the modelling step from a physical phenomenon or an industrial system (possibly
with the help of partial differential equations), and after the numerical simula-
tion step, the work of the applied mathematician (who may be an engineer or re-
searcher) is not finished: it is often necessary to change the system to improve
certain aspects of it. This third step is that of optimization, that is to say that of
the minimization (or the maximization) of a function which depends on the solution of
the model.

In what follows we shall therefore mix examples of optimization problems where
the models have a very different nature. In the simplest case, the model will be a simple
algebraic equation and it will be a question of optimizing a function defined on a finite
dimensional space (say Rn). Typically, this is the most frequent situation in operations
research. A second category of problems corresponds to the case where the function

277
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to optimize depends on the solution of an ordinary differential equation (in other
words, this function is defined on an infinite dimensional space, say C[0, T ]). We
then talk of optimal command, and the applications are numerous in robotics. The
third and last category corresponds to the optimization of functions of the solution
of a partial differential equation. This then involves the theory of optimal control of
distributed systems which has numerous applications, for example, in optimal design
or for the stabilization of mechanical structures. The next section displays several typ-
ical examples of these optimization problems. Let us remark that these categories are
not hermetically sealed since after spatial and/or temporal discretization an ordinary
or partial differential equation leads to a system of algebraic equations.

We can also separate optimization into two large branches of very different
methods depending on whether the variables are continuous or discrete. Typically,
if we minimize a function f(x) with x ∈ Rn, we have continuous optimization,
while if x ∈ Zn we have combinatorial optimization or discrete optimization. In
spite of appearances, continuous optimization is often ‘easier’ than discrete optimiza-
tion since we can use the idea of a derivative which is very useful from the theoretical
as well as algorithmic point of view. Combinatorial optimization is natural and essen-
tial in many problems in operations research. This is a domain where, beside rigorous
theoretical results, there are numerous ‘heuristic’ methods essential to obtaining good
algorithmic performance.

To finish this brief introduction we describe the plan of the remainder. This chapter
will principally consider the question of existence and uniqueness in continuous opti-
mization, whether it is in finite or infinite dimensions. In particular, we see the crucial
role of the convexity in obtaining existence results in infinite dimensions. Chapter
10 will develop the optimality conditions and the numerical algorithms which fol-
low. Chapter 11 comprises an introduction to the methods of operations research,
including linear programming and combinatorial methods. For more detail on opti-
mization we refer the reader to the works [3], [8], [11], [30], [16], [19], [31].

9.1.2 Examples

We shall review several typical optimization problems, of unequal practical or theoret-
ical importance, but which allow us to explore the different ‘branches’ of optimization.

Let us start with several examples in operations research, that is to say in
optimization of the management or allocation of resources.

Example 9.1.1 (transport problem) This is an example of linear programming.
The aim is to optimize the delivery of goods (a classical problem in logistics). We
have M warehouses, indexed by 1 ≤ i ≤M , each one with a stock level si. We must
deliver to N customers, indexed by 1 ≤ j ≤ N , who have each ordered a quantity
rj . The unit cost of transport between warehouse i and customer j is given by cij .
The decision variables are the quantities vij of goods leaving the warehouse i to the
customer j. We want to minimize the cost of transport while satisfying the orders of
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the customers (we assume that
∑M
i=1 si ≥

∑N
j=1 rj). In other words, we want to solve

inf
(vij)

⎛
⎝ M∑
i=1

N∑
j=1

cijvij

⎞
⎠

under the constraints of stock limits and customer satisfaction

vij ≥ 0,
N∑
j=1

vij ≤ si,

M∑
i=1

vij = rj for 1 ≤ i ≤M, 1 ≤ j ≤ N.

This problem is a particular case of a transport problem. •

Example 9.1.2 (assignment problem) This is an example of combinatorial op-
timization or optimization in integer variables. Imagine yourself to be the head of
a marriage agency. Take N women, indexed by 1 ≤ i ≤ N , and N men, indexed
by 1 ≤ j ≤ N . If the woman i and the man j are suitable to be married their
suitability variable aij is 1; if not it is 0. Let us remain classical: only heterosexual
marriages are allowed and polygamy is not admitted. (We shall see in Section 11.3.7
that this hypothesis of monogamy is not necessary!) The aim is to maximize the
number of marriages between these N women and N men. In other words, we look
for a permutation σ in the set of permutations SN of {1, . . . , N} which realizes the
maximum of

max
σ∈SN

N∑
i=1

aiσ(i).

A variant consists of assigning values of aij between 0 and 1. This type of problem
is called an assignment problem (it occurs in more serious industrial contexts such
as the assignment of crews and aeroplanes in an airline company). Although it is
not necessarily the best way to pose the problem, we can write it in a form close
to example 9.1.1. The decision variables are denoted as vij which are 1 if there is a
marriage between the woman i and the man j and 0 otherwise. We want to maximize

sup
(vij)

⎛
⎝ N∑
i=1

N∑
j=1

aijvij

⎞
⎠

under the constraints

vij = 0 or 1,
N∑
j=1

vij ≤ 1,
M∑
i=1

vij ≤ 1 for 1 ≤ i, j ≤ N.

We might believe that the assignment problem is simple since as there are a finite
number of possibilities it is ‘sufficient’ to enumerate them to find the optimum. This
is of course a delusion, since the characteristic of combinatorial problems is their



280 INTRODUCTION TO OPTIMIZATION

very large number of possible combinations, which in practice prevents an exhaustive
enumeration. Nevertheless, for this problem there exist efficient solution techniques,
see Section 11.3.7). •

Example 9.1.3 (knapsack problem) A classical problem is the knapsack prob-
lem. Take n objects with respective weight p1, . . . , pn ∈ R, and respective utility
u1, . . . , un ∈ R, and P ∈ R a maximal weight that we want to carry. We set xi = 1 if
we put the ith object in the knapsack, and xi = 0 otherwise. We want to maximize
the utility of the knapsack under the weight constraint:

max
x ∈ {0, 1}n∑

1≤i≤n
xipi ≤ P

∑
1≤i≤n

xiui.

Again the difficulty for this is that the optimization variables xi are discrete (see
exercise 11.4.5 for a solution method). •

Figure 9.1. Route for a travelling salesman in example 9.1.4.

Example 9.1.4 (travelling salesman problem) A celebrated example in com-
binatorial optimization is the problem of the travelling salesman. A salesman must
visit n towns successively and return to his point of departure in a minimum time.
We denote by tij the time to travel between the town i and the town j (possibly
different from tji). We then draw the oriented graph of the n towns linked by arcs
weighted by the (tij) (see Figure 9.1). We must then find a cycle in this graph which
passes once and once only through all the towns. It is possible to cast this problem as
a linear programming problem in integer variables (see Section 11.6.1 for a solution
to the method). •

Example 9.1.5 (path of minimum cost) Take an oriented graph G = (N ,A),
where N is the set of nodes and A ⊂ N × N is a set of arcs linking these nodes.
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We associate with each arc (k,m) ∈ A a cost w(k,m). We fix a node as the origin i
and a node as the destination j. The problem of the minimum cost path consists of
finding a path of the graph going from i to j in an arbitrary number of steps which has
total minimum cost. In other words, we look for a sequence of nodes i = �0, . . . , �T = j
such that (�r, �r+1) ∈ A for all r = 0, 1, . . . , T − 1 and w(�0, �1) + · · ·+w(�T−1, �T ) is
minimal.

When the nodes are towns, so that A is the set of direct routes from one town
to the other, and w(k,m) is the distance between the towns k and m, we recover
the classical problem of the shortest path. In spite of its combinatorial aspect, this
problem is easy to solve even when it is large. •

Here is a very simple algebraic example which comes, for example, from the finite
element discretization of the Stokes equations (see Section 6.3.4).

Example 9.1.6 (quadratic optimization with linear constraints) Let A be a
square matrix of order n, which is symmetric and positive definite. Let B be a rect-
angular matrix of size m× n. Let b be a vector of Rn. We want to solve the problem

inf
x∈KerB

{
J(x) =

1
2
Ax · x− b · x

}
.

The constraint of belonging to KerB makes this minimization nonobvious (see
Section 10.2.2 for its solution). •

Another simple algebraic example is that of the Rayleigh quotient which allows
us to calculate the eigenvalues and eigenvectors of a symmetric matrix.

Example 9.1.7 (first eigenvalue) Let A be a square matrix of order n, which is
symmetric. We want to characterize and calculate the solutions of

inf
x∈Rn,‖x‖=1

Ax · x,

where ‖x‖ is the Euclidean norm of x. We see that they are the eigenvectors of A
associated with its smallest eigenvalue (cf. Section 10.2.2). •

Let us consider a classical example in economics.

Example 9.1.8 (household consumption) We consider a household which con-
sumes n types of goods whose prices form a vector p ∈ Rn+. The available income is
a real number b > 0, and the choices for consumption are assumed to be modelled
by a utility function u(x) from Rn+ into R (increasing and concave), which measures
the benefit that the household gains from the consumption of the quantity x of n
goods. The consumption of the household will be the vector x∗ which will realize the
maximum of

max
x∈Rn

+,x·p≤b
u(x),



282 INTRODUCTION TO OPTIMIZATION

that is to say which maximizes the utility under a maximal budget constraint (see
Section 10.3.2 for the solution). •

Let us pass to an example of optimization of a system modelled by an ordinary
differential equation, that is to say to a problem of optimal command.

Example 9.1.9 (optimal command) We consider a linear differential system with
quadratic criterion. The aim is to guide a robot (or a spacecraft, a vehicle, etc.) so
that it follows a predefined trajectory ‘as closely as possible’. The state of the robot
at the moment t is represented by a function y(t) with values in RN (typically, the
position and the velocity). We act on the robot through a command v(t) with values
in RM (typically, the engine power, the direction of the wheels, etc.). In the presence
of forces f(t) ∈ RN the laws of mechanics lead to a system of ordinary differential
equations (assumed linear for simplicity)

⎧⎨
⎩

dy

dt
= Ay + Bv + f for 0 ≤ t ≤ T

y(0) = y0

(9.1)

where y0 ∈ RN is the initial state of the system, A and B are two constant matrices
of respective dimensions N ×N and N ×M . We denote by z(t) a ‘target’ trajectory
and zT a final ‘target’ position. To approximate these targets as well as possible and
to minimize the cost of the control, we introduce three symmetric positive matrices
R,Q,D where only R is further assumed to be positive definite. We then define a
quadratic criterion

J(v) =
∫ T

0
Rv(t) ·v(t)dt+

∫ T

0
Q(y−z)(t) · (y−z)(t)dt+D (y(T )− zT ) · (y(T )− zT ) .

Let us remark that the function y(t) depends on the variable v through (9.1). As the
admissible commands are possibly limited (the power of a motor is often bounded . . .),
we introduce a convex closed nonempty set K of RM which represents the set of
admissible commands. The problem is therefore to solve

inf
v(t)∈K, 0≤t≤T

J(v).

It will be necessary, of course, to specify in which function spaces we minimize J(v)
and we define the solution y of (9.1) (see Section 10.4.2 for the solution). •

Example 9.1.10 (minimization of a mechanical energy) We want to minimize
the mechanical energy of a membrane or the electrostatic energy of a conductor. We
refer to Chapters 1 and 5 for more detail on the modelling and the mathematical
notation. Let Ω be an open bounded set of RN and take f ∈ L2(Ω). From proposition
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5.2.7, to solve the Dirichlet problem for the Laplacian, we must minimize the energy
J(v) defined for v ∈ H1

0 (Ω) by

J(v) =
1
2

∫
Ω
|∇v|2dx−

∫
Ω
fv dx.

In other words, we want to solve

inf
v∈H1

0 (Ω)
J(v).

We can pose the same problem for more complicated equations than the Laplacian
such as the Stokes equations. According to exercise 5.3.10, the solution of the Stokes
equations is equivalent to the minimization

inf
v∈H1

0 (Ω)Nsuch that divv=0

{
J(v) =

µ

2

∫
Ω
|∇v|2dx−

∫
Ω
f · v dx

}
.

We remark that there is an ‘incompressibility’ constraint in this minimization, and
that the pressure is absent from the energy. We see that these two facts are closely
linked. •

Let us now give an example from the calculus of variations. Historically, this is
one of the oldest problems in optimization, solved by Zénodore around two centuries
before our era and whose complete proof is due to Weierstrass towards the end of the
nineteenth century.

Example 9.1.11 (the Didon problem) Virgil recounts in the Aeneid that when
the queen Didon founded the city of Carthage, all the land that was allocated was
‘as much land as could be enclosed by the skin of an ox’. She then cut this skin
into fine strips and encircled the future city situated beside the sea. The question was
therefore to find the greatest area possible bounded by a line (the shore) with given
fixed boundary length. The answer is of course a half disc (see exercise 10.2.10). In
slightly simplified mathematical terms, the problem is to find the plane curve of fixed
length l ≥ 0 which encloses, with the segment linking its two ends, the maximum
area. In other words, we solve

sup
∫ ξ

0
y(x) dx,

with the constraints

ξ ≥ 0, y(0) = 0,
∫ ξ

0

√
1 + y′(x)2dx = l,

where ξ is the end of the segment and y(x) the position of the curve above the point
x of the segment. •



284 INTRODUCTION TO OPTIMIZATION

Let us now come to the optimization of a distributed system, that is to say one
modelled by a partial differential equation.

Example 9.1.12 (control of a membrane) We consider an elastic membrane,
fixed at its boundary, and deformed under the action of a force f . As we have
seen in Section 1.3.3, this problem is modelled by{

−∆u = f + v in Ω
u = 0 on ∂Ω,

where u is the vertical displacement of the membrane and v is a control force available
to us. This control is typically a piezoelectric actuator which acts on a part ω of the
domain Ω with a limited intensity. We therefore define the set of admissible controls

K = {v(x) such that vmin(x) ≤ v(x) ≤ vmax(x) in ω and v = 0 in Ω \ ω} ,

where vmin and vmax are two given functions. We look for the control which gives
the displacement u as close as possible to a desired displacement u0, and which has a
moderate cost. We therefore define a criterion

J(v) =
1
2

∫
Ω

(
|u− u0|2 + c|v|2

)
dx,

with c > 0. The control problem is written

inf
v∈K

J(v).

We must still, of course, specify the choice of function spaces for v and the other data
of this problem (see Section 10.4.3 for the solution). •

9.1.3 Definitions and notation

Optimization has a particular vocabulary: let us introduce some classical notation
and definitions. We consider principally some minimization problems (knowing that
it is enough to change the sign to obtain a maximization problem).

First of all, the space in which the problem lies, denoted as V , is assumed to
be a normed vector space, that is to say equipped with a norm denoted by ‖v‖. In
Section 9.1.4 V will be the space RN , while in the following section V will be a real
Hilbert space (we could equally well consider the more general case of a Banach space,
that is to say a complete normed vector space). We also have a subset K ⊂ V where
we will look for the solution: we say that K is the set of admissible elements of
the problem, or that K defines the constraints imposed on the problem. Finally,
the criterion, or the cost function, or the objective function, to be minimized,
denoted by J , is a function defined over K with values in R. The problem studied
will therefore be denoted as

inf
v∈K⊂V

J(v). (9.2)
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When we use the notation inf for a minimization problem, this indicates that we do
not know a priori, if the minimum value is attained, that is to say if there exists
v ∈ K such that

J(v) = inf
v∈K⊂V

J(v).

If we want to indicate that the minimum value is attained, we prefer the notation

min
v∈K⊂V

J(v),

but this is not a universal convention (though extremely widespread). For the maxi-
mization problems, the notation sup and max replace inf and min, respectively. Let
us specify some basic definitions.

Definition 9.1.1 We say that u is a local minimum (or minimum point) of J over
K if and only if

u ∈ K and ∃δ > 0, ∀v ∈ K, ‖v − u‖ < δ =⇒ J(v) ≥ J(u).

We say that u is a global minimum (or minimum point) of J over K if and only if

u ∈ K and J(v) ≥ J(u) ∀v ∈ K.

Definition 9.1.2 We say infimum of J over K (or, more usually, minimum value),
and which we denote by (9.2), to mean the upper bound in R of the constants which
bound J below on K. If J is not bounded below K, then the infimum is −∞. If K is
empty, by convention, the infimum is +∞.

A minimizing sequence of J in K is a sequence (un)n∈N such that

un ∈ K ∀n and lim
n→+∞

J(un) = inf
v∈K

J(v).

By the very definition of the infimum of J over K there always exist minimizing
sequences.

9.1.4 Optimization in finite dimensions

Let us interest ourselves now in the question of the existence of minima for
optimization problems posed in finite dimensions. We shall assume in this section
(without loss of generality) that V = RN provided with the usual scalar product
u · v =

∑N
i=1 uivi and with the Euclidean norm ‖u‖ =

√
u · u.

A general result guaranteeing the existence of a minimum is the following.

Theorem 9.1.3 (existence of a minimum in finite dimensions) Let K be a
closed nonempty set of RN , and J a continuous function over K with values in R

satisfying the property, called ‘infinite at infinity’,

∀(un)n≥0 a sequence in K, lim
n→+∞

‖un‖ = +∞ =⇒ lim
n→+∞

J(un) = +∞. (9.3)



286 INTRODUCTION TO OPTIMIZATION

Then there exists at least one minimum point of J over K. Further, from every min-
imizing sequence of J over K we can extract a subsequence converging to a minimum
point over K.

Proof. Let (un) be a minimizing sequence of J over K. Condition (9.3) implies that
un is bounded since J(un) is a sequence of bounded reals. Therefore, there exists a
subsequence (unk) which converges to a point u of RN . But u ∈ K since K is closed,
and J(unk) converges to J(u) by continuity, from which J(u) = infv∈K J(v) according
to definition 9.1.2. �

Remark 9.1.4 Let us note that property (9.3), which assures that every minimiz-
ing sequence of J over K is bounded, is automatically satisfied if K is bounded.
When the set K is not bounded, this condition means that, in K, J is infinite at
infinity. •

Exercise 9.1.1 Show by example that the fact that K is closed or that J is continuous
is in general necessary for the existence of a minimum. Give an example of a continuous
function which is bounded below from R into R and which does not have a minimum
over R.

Exercise 9.1.2 Show that we can replace the property ‘infinite at infinity’ (9.3) by the
weaker condition

inf
v∈K

J(v) < lim
R→+∞

(
inf
‖v‖≥R

J(v)
)
.

Exercise 9.1.3 Show that we can replace the continuity of J by the lower semi-
continuity of J defined by

∀(un)n≥0 a sequence in K, lim
n→+∞

un = u =⇒ lim inf
n→+∞

J(un) ≥ J(u).

Exercise 9.1.4 Show that there exists a minimum for examples 9.1.1, 9.1.6, and 9.1.7.

Exercise 9.1.5 Let a and b be two real numbers with 0 < a < b, and for n ∈ N∗, let
Pn be the set of polynomials P of degree less than or equal to n such that P (0) = 1.
For P ∈ Pn, we denote ‖P‖ = maxx∈[a,b] |P (x)|.

1. Show that the problem
inf
P∈Pn

‖P‖ (9.4)

has a solution.

2. We recall that the Chebyshev polynomials Tn(X) are defined by the relations

T0(X) = 1, T1(X) = X, Tn+1(X) = 2XTn(X)− Tn−1(X) .

Show that the degree of Tn is equal to n and that for all θ ∈ R, Tn(cos θ) =
cos(nθ). Deduce the existence of n+1 real numbers ξn0 = 1>ξn1 >ξn2 > · · · >ξnn =
−1 such that Tn(ξnk ) = (−1)k for 0 ≤ k ≤ n and that max−1≤x≤1 |Tn(x)| = 1.
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3. Show that the unique solution of (9.4) is the polynomial

P (X) =
1

Tn ((b + a)/(b− a))
Tn

(
(b + a)/2−X

(b− a)/2

)
.

9.2 Existence of a minimum in infinite dimensions

9.2.1 Examples of nonexistence

This section is dedicated to two examples showing that the existence of a minimum
in infinite dimensions is not absolutely guaranteed by conditions like those used
in the statement of theorem 9.1.3. This difficulty is closely linked to the fact that in
infinite dimensions the closed bounded sets are not compact!

Example 9.2.1 Take the Hilbert space (of infinite dimensions) of square summable
sequences in R

�2(R) =

{
x = (xi)i≥1 such that

+∞∑
i=1

x2
i < +∞

}
,

equipped with the scalar product 〈x, y〉 =
∑+∞
i=1 xiyi. We consider the function J

defined over �2(R) by

J(x) =
(
‖x‖2 − 1

)2
+

+∞∑
i=1

x2
i

i
.

Taking K = �2(R), we consider the problem

inf
x∈�2(R)

J(x), (9.5)

for which we shall show that there does not exist a minimum point. We verify first
of all that (

inf
x∈�2(R)

J(x)
)

= 0.

Let us introduce the sequence xn in �2(R) defined by xni = δin for all i ≥ 1. We verify
easily that

J(xn) =
1
n
→ 0 when n→ +∞.

As J is positive, we deduce that xn is a minimizing sequence and that the minimum
value is zero. However, it is evident that there does not exist any x ∈ �2(R) such that
J(x) = 0. Consequently, there does not exist a minimum point for (9.5). We see in
this example that the minimizing sequence xn is not compact in �2(R) (although it is
bounded). •
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Here now is a model example which is not without similarity to the energy mini-
mization problems that we have met in the solution of partial differential equations
(see, for example, proposition 5.2.7). In spite of its simplified character, this example
is very representative of realistic and practical problems in minimization of phase
change energy in material science.

Example 9.2.2 We consider the Sobolev space V = H1(0, 1) equipped with the norm

‖v‖ =
(∫ 1

0

(
v′(x)2 + v(x)2

)
dx
)1/2

(which is an infinite dimensional Hilbert space, see
Chapter 4). We set K = V and, for 1 ≥ h > 0, we consider

Jh(v) =
∫ 1

0

(
(|v′(x)| − h)2 + v(x)2

)
dx.

The mapping J is continuous over V , and the condition (9.3) is satisfied as

Jh(v) = ‖v‖2 − 2h
∫ 1

0
|v′(x)|dx + h2 ≥ ‖v‖2 − 1

2

∫ 1

0
v′(x)2dx− h2 ≥ ‖v‖2

2
− h2 .

Let us show that
inf
v∈V

Jh(v) = 0, (9.6)

which will imply that there does not exist a minimum of Jh over V : in effect, if (9.6)
holds and if u was a minimum of Jh over V , we should have Jh(u) = 0, from which
u ≡ 0 and |u′| ≡ h > 0 (almost everywhere) over (0, 1), which is impossible.

0 1k/n

h/n

Figure 9.2. Minimizing sequence un for example 9.2.2.

To obtain (9.6), we construct a minimizing sequence (un) defined for n ≥ 1 by

un(x) =

⎧⎪⎨
⎪⎩

h(x− k

n
) if

k

n
≤ x ≤ 2k + 1

2n
,

h(
k + 1
n

− x) if
2k + 1

2n
≤ x ≤ k + 1

n
,

for 0 ≤ k ≤ n− 1,

as Figure 9.2 shows. We easily see that un ∈ V and the derivative (un)′(x) only takes
two values: +h and −h. Consequently, Jh(un) =

∫ 1
0 un(x)2dx = h2/4n, which proves

(9.6), that is to say that Jh does not have a minimum point over V . And yet, if h = 0,
it is clear that J0 has a unique minimum point v ≡ 0! •
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Exercise 9.2.1 Modify the preceding construction to show that there are no more min-
ima of J over C1[0, 1].

In the light of these counterexamples, let us examine the difficulty which occurs
in infinite dimensions and under what hypotheses we can hope to obtain an existence
result for a minimization problem posed in an infinite dimensional Hilbert space.

Let V be a vector space with norm ‖v‖. Let J be a function defined on subset K
of V with values in R, satisfying the condition (9.3) (infinite at infinity). Then, every
minimizing sequence (un) of the problem

inf
v∈K

J(v) (9.7)

is bounded. In finite dimensions (if V = RN ), we finish easily as in Section 9.1.4 by
using the compactness of closed bounded sets (and assuming that K is closed and
that J is continuous or lower semicontinuous). Unfortunately, such a result is false
in infinite dimensions, as we have just noted. Generally we can finish if the triplet
(V,K, J) satisfies the following condition: for every sequence (un)n≥1 in K such that
supn∈N ‖un‖ < +∞ we have

lim
n→+∞

J(un) = � < +∞ =⇒ ∃u ∈ K such that J(u) ≤ � . (9.8)

Thus, under conditions (9.3) and (9.8), problem (9.7) has a solution.
Unfortunately, condition (9.8) is not useful since it is not verifiable in general! We

can however verify it for a particular class of problems, which are very important in
theory and in practice: convex minimization problems. As we see in Section 9.2.3,
if V is a Hilbert space, K a convex closed set of V , and J a continuous convex
function over K, then (9.8) holds and problem (9.7) has a solution. The motivations
to introduce these conditions are, on the one hand, that the convexity hypotheses are
often natural in many applications, and on the other hand, that it is a rare class of
problems for which the theory is sufficiently general and complete. But this does
not mean that these conditions are the only ones which ensure the existence of a
minimum! Nevertheless, outside of the convex framework developed in the following
sections, difficulties of the type that we have met in the preceding counterexamples
can occur.

9.2.2 Convex analysis

In everything that follows, we shall assume that V is a Hilbert space equipped with
a scalar product 〈u, v〉 and with associated norm ‖v‖. Let us recall that a set K is
convex if it contains all the segments linking any two of its points (see definition
12.1.9). Let us give some properties of convex functions.

Definition 9.2.1 We say that a function J defined over a nonempty convex set K ∈
V with values in R is convex over K if and only if

J(θu + (1− θ)v) ≤ θJ(u) + (1− θ)J(v) ∀u, v ∈ K, ∀ θ ∈ [0, 1] . (9.9)
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Further, J is called strictly convex if the inequality (9.9) is strict when u �= v and
θ ∈]0, 1[.

Remark 9.2.2 If J is a mapping defined over K with values in R, we call the epi-
graph of J the set Epi(J) = {(λ, v) ∈ R ×K, λ ≥ J(v)}. Then J is convex if and
only if Epi(J) is a convex set of R× V . •

Exercise 9.2.2 Let J1 and J2 be two convex functions over V, λ > 0, and ϕ a convex
increasing function on an interval of R containing the set J1(V ). Show that J1 + J2,
max(J1, J2), λJ1, and ϕ ◦ J1 are convex.

Exercise 9.2.3 Let (Li)i∈I be a family (possibly infinite) of affine functions over V .
Show that supi∈I Li is convex on V . Conversely, let J be a continuous convex function
on V . Show that J is equal to supLi≤J Li where the functions Li are affine.

For convex functions there is no difference between local and global minima as the
following elementary result shows.

Proposition 9.2.3 If J is a convex function on a convex set K, every local minimum
point of J over K is a global minimum and the set of minimum points is a convex set
(possibly empty).

If further J is strictly convex, then there exists at most one minimum point.

Proof. Let u be a local minimum of J over K. From definition 9.1.1, we can write

∃ δ > 0, ∀w ∈ K, ‖w − u‖ < δ =⇒ J(w) ≥ J(u) . (9.10)

Take v ∈ K. For θ ∈]0, 1[ sufficiently small, wθ = θv + (1− θ)u satisfies ‖wθ − u‖ < δ
and wθ ∈ K as K is convex. Therefore, J(wθ) ≥ J(u) according to (9.10), and the
convexity of J implies that J(u) ≤ J(wθ) ≤ θJ(v) + (1 − θ)J(u), which shows that
J(u) ≤ J(v), that is to say that u is a global minimum over K.

On the other hand, if u1 and u2 are two minima and if θ ∈ [0, 1], then w =
θu1 + (1− θ)u2 is a minimum as w ∈ K and

inf
v∈K

J(v) ≤ J(w) ≤ θJ(u1) + (1− θ)J(u2) = inf
v∈K

J(v).

The same argument with θ ∈]0, 1[ shows that, if J is strictly convex, then necessarily
u1 = u2. �

In what follows we shall use the idea of ‘strong convexity’ which is more restrict-
ive than strict convexity.

Definition 9.2.4 We say that a function J defined over a convex set K is strongly
convex if and only if there exists α > 0 such that

J

(
u + v

2

)
≤ J(u) + J(v)

2
− α

8
‖u− v‖2 . (9.11)

We say also in this case that J is α-convex.
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In definition 9.2.4, the strong convexity of J is only tested for convex combinations
of weight θ = 1/2. This is not a restriction for continuous functions as the following
exercise shows.

Exercise 9.2.4 If J is continuous and α-convex, show that, for all θ ∈ [0, 1],

J(θu + (1− θ)v) ≤ θJ(u) + (1− θ)J(v)− αθ(1− θ)
2

‖u− v‖2. (9.12)

Exercise 9.2.5 Let A be a symmetric matrix of order N and take b ∈ RN . For x ∈ RN ,
we set J(x) = 1

2Ax·x−b·x. Show that J is convex if and only if A is positive semidefinite,
and that J is strictly convex if and only if A is positive definite. In this last case, show
that J is also strongly convex and find the best constant α.

Exercise 9.2.6 Let Ω be an open set of RN and H1(Ω) the associated Sobolev space
(see definition 4.3.1). Take the function J defined over Ω by

J(v) =
1
2

∫
Ω

(
|∇v(x)|2 + v(x)2) dx− ∫

Ω
f(x)v(x) dx,

with f ∈ L2(Ω). Show that J is strongly convex over H1(Ω).

The following result will be essential to obtain an existence result for a minimum
in infinite dimensions. In particular, it allows us to conclude that a function J which
is strongly convex and continuous over a convex closed nonempty set K is ‘infinite at
infinity’ in K, that is to say satisfies the property (9.3).

Proposition 9.2.5 If J is convex and continuous over a convex closed nonempty set
K, then there exists a linear continuous form L ∈ V ′ and a constant δ ∈ R such that

J(v) ≥ L(v) + δ ∀ v ∈ K. (9.13)

If further J is strongly convex over K, then there exist two constants γ > 0 and δ ∈ R

such that
J(v) ≥ γ‖v‖2 − δ ∀ v ∈ K. (9.14)

Proof. Let us prove (9.13) first of all. If J is convex and continuous (or simply lower
semicontinuous) over a convex closed nonempty set K, then its epigraph Epi(J)
(defined in remark 9.2.2) is a convex closed nonempty set. Take v0 ∈ K and λ0 <
J(v0). As (λ0, v0) /∈ Epi(J), we deduce from theorem 12.1.19, of the separation of a
point and of a convex set, the existence of α, β ∈ R and of a continuous linear form
L ∈ V ′ such that

βλ + L(v) > α > βλ0 + L(v0) ∀ (λ, v) ∈ Epi(J) . (9.15)

As, for v fixed, we can take λ arbitrarily large in the left-hand side of (9.15), it is clear
that β ≥ 0; further, as we can take v = v0 in the left-hand side of (9.15), β cannot be
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zero. We therefore have β > 0 and we deduce from (9.15) that J(v) + L(v)/β > α/β
for all v ∈ K, which proves (9.13).

Let us now prove (9.14). Again take v0 ∈ K fixed. For every v ∈ K, (9.11) and
(9.13) imply that

J(v)
2

+
J(v0)

2
≥ J

(
v + v0

2

)
+
α

8
‖v − v0‖2 ≥ L(v) + L(v0)

2
+
α

8
‖v − v0‖2 + δ.

We deduce
J(v) ≥ α

4
‖v‖2 − α

2
〈v, v0〉+ L(v) + C1,

with C1 = (α/4)‖v0‖2 + L(v0) − J(v0) + 2δ. From the Cauchy–Schwarz inequality
applied to 〈v, v0〉 and the continuity of L, that is, |L(v)| ≤ ‖L‖V ′‖v‖ (see definition
12.1.17), we have

J(v) ≥ α

4
‖v‖2 −

(
‖L‖V ′ +

α‖v0‖
2

)
‖v‖+ C1 ≥

α

8
‖v‖2 − C,

for C ∈ R well chosen. �

Let us finish this section with an agreeable property of convex functions: ‘proper’
convex functions (that is to say which do not take the value +∞) are continuous.

Exercise 9.2.7 Take v0 ∈ V and let J be a convex function bounded above over an
open ball of centre v0. Show that J is bounded below and continuous over this ball.

9.2.3 Existence results

We can now state a first existence result for the minimum in the particular case where
J is strongly convex (α-convex).

Theorem 9.2.6 (existence of a minimum, strongly convex case) Let K be a
convex closed nonempty set of a Hilbert V and J an α-convex continuous function
over K. Then, there exists a unique minimum u of J over K and we have

‖v − u‖2 ≤ 4
α

[J(v)− J(u)] ∀ v ∈ K. (9.16)

In particular, every minimizing sequence of J over the set K converges to u.

Proof. Let (un) be a minimizing sequence of J over K. From (9.14), J is bounded
below over K and, for n,m ∈ N the property (9.11) of strong convexity implies that

α

8
‖un − um‖2 + J

(
un + um

2

)
− inf
v∈K

J(v)

≤ 1
2

(
J(un)− inf

v∈K
J(v)

)
+

1
2

(
J(um)− inf

v∈K
J(v)

)
,
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which shows that the sequence (un) is Cauchy, and therefore converges to a limit u,
which is necessarily a minimum of J over K as J is continuous and K closed. The
uniqueness of the minimum point has been shown in proposition 9.2.3. Finally, if
v ∈ K, (u + v)/2 ∈ K since K is convex, from which, thanks to (9.11),

α

8
‖u− v‖2 ≤ J(u)

2
+
J(v)

2
− J

(
u + v

2

)
≤ J(v)− J(u)

2
,

since J
(
u + v

2

)
≥ J(u). �

Exercise 9.2.8 Show that theorem 9.2.6 applies to example 9.1.10 (use the Poincaré
inequality in H1

0 (Ω)).

Exercise 9.2.9 Generalize exercise 9.2.8 to the different models met in Chapter 5:
Laplacian with Neumann boundary conditions (see proposition 5.2.16), elasticity (see
exercise 5.3.3), Stokes (see exercise 5.3.10).

It is possible to generalize theorem 9.2.6 to the case of functions J which are only
convex (and not strongly convex). However, while much of the proof of theorem 9.2.6
is elementary, much of the following theorem is delicate. It relies in particular on the
idea of weak convergence that we can consider as ‘supplementary’ in the framework
of this course.

Theorem 9.2.7 (existence of a minimum, convex case) Let K be a convex
closed nonempty set of a Hilbert space V , and J a continuous convex function over
K, which is ‘infinite at infinity’ in K, that is to say which satisfies condition (9.3),
that is,

∀(un)n≥0 a sequence in K, lim
n→+∞

‖un‖ = +∞ =⇒ lim
n→+∞

J(un) = +∞.

Then there exists a minimum of J over K.

Remark 9.2.8 Theorem 9.2.7 gives the existence of a minimum like the preceding
theorem 9.2.6, but says nothing about the uniqueness or the error estimate (9.16). We
remark in passing that (9.16) will be very useful for the study of numerical minimiza-
tion algorithms since it gives an estimate of the rate of convergence of a minimizing
sequence (un) to the minimum point u. •

Remark 9.2.9 The theorem 9.2.7 remains true if we simply assume that V is a
reflexive Banach space (that is, that the dual of V ′ is V ). •

We indicate briefly how we can prove theorem 9.2.7 in the case of a separable Hilbert
space (that is to say which has a countable Hilbertian basis, see proposition 12.1.15). We
define the idea of weak convergence in V .
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Definition 9.2.10 We say that a sequence (un) of V converges weakly to u ∈ V if

∀ v ∈ V, lim
n→+∞

〈un, v〉 = 〈u, v〉.

Let (ei)i≥1 be a Hilbertian basis of V . If we denote by uni = 〈un, ei〉 the components
in this basis of a sequence un, which is uniformly bounded in V , it is easy to verify that
the definition 9.2.10 of the weak convergence is equivalent to convergence of all the
sequences of components (uni )n≥1 for i ≥ 1.

As its name indicates, weak convergence is a ‘weaker’ idea than the usual convergence in
V , as limn→+∞ ‖un − u‖ = 0 implies that un converges weakly to u. Conversely, in infinite
dimensions there exist sequences which converge weakly but not in the usual sense (which
we sometimes call ‘strong convergence’ in contrast). For example, the sequence un = en

converges weakly to zero, but not strongly since it has constant norm equal to 1. The interest
in weak convergence comes from the following result.

Lemma 9.2.11 From every sequence un bounded in V we can extract a subsequence which
converges weakly.

Proof. As the sequence un is bounded, each sequence of a component uni is bounded in
R. For each i, there therefore exists a subsequence, denoted uni

i , which converges to a limit
ui. By a process of diagonal extraction of sequences we then obtain a common subsequence
n′ such that, for all i, un

′
i converges to ui. This proves that un

′
converges weakly to u (we

verify that u ∈ V ). �

If we say ‘closed half-space’ of V to mean every set of the form {v ∈ V, L(v) ≤ α}, where
L is a continuous linear form not identically zero over V and α ∈ R, we can conveniently
characterize closed convex sets.

Lemma 9.2.12 A closed convex set K of V is the intersection of the closed half-spaces
which contain K.

Proof. It is clear that K is included in the intersection of the closed half-spaces which
contain it. Conversely, assume that there exists a point u0 of this intersection which does
not belong to K. We can then apply the theorem 12.1.19 of separation of a point and of a
convex set and therefore construct a closed half-space which contains K but not u0. This is
a contradiction with the definition of u0, therefore u0 ∈ K. �

Lemma 9.2.13 Let K be a convex closed nonempty set of V . Then K is closed for weak
convergence.

Further, if J is convex and lower semicontinuous over K (see exercise 9.1.3 for this
idea), then J is also lower semicontinuous over K for weak convergence.

Proof. By definition, if un converges weakly to u, then L(un) converges to L(u). Conse-
quently, a closed half-space of V is closed for weak convergence. Lemma 9.2.12 allows us to
reach the same conclusion for K.

From the hypotheses on J , the set Epi(J) (defined in remark 9.2.2) is a convex closed set
of R×V , therefore it is also closed for weak convergence. We then easily deduce the following
result: if the sequence (vn) tends weakly to v in K, then lim infn→+∞ J(vn) ≥ J(v). �
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We now have all the ingredients to finish.
Proof of theorem 9.2.7. From (9.3), every minimizing sequence (un) is bounded. We
then deduce from lemma 9.2.11 that there exists a subsequence (un

′
) converging weakly to

a limit u ∈ V . But, according to lemma 9.2.13, u ∈ K and

J(u) ≤ lim inf
k

J(unk ) = inf
v∈K

J(v).

The point u is therefore a minimum of u over K. �
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10 Optimality conditions and
algorithms

10.1 Generalities

10.1.1 Introduction

In Chapter 9 we were interested in questions of existence of a minimum in optimiza-
tion problems. In this chapter, we shall obtain necessary and sometimes sufficient
conditions for minimality. The objective is in a certain way much more practical,
since these optimality conditions will be more often used to try to calculate a min-
imum (sometimes even without having shown its existence!). The general idea of
optimality conditions is the same as writing that the derivative must be zero, when
we calculate the extremum of a function over R.

These conditions will therefore be expressed with the help of the first derivative
(conditions of order 1) or second derivative (conditions of order 2). Above all we will
obtain necessary conditions for optimality, but the use of the second derivative or the
introduction of convexity hypotheses will also allow us to obtain sufficient conditions,
and to distinguish between minima and maxima.

These optimality conditions generalize the following elementary remark: if x0 is a
local minimum point of J on the interval [a, b] ⊂ R (J being a differentiable function
on [a, b]), then we have

J ′(x0) ≥ 0 if x0 = a, J ′(x0) = 0 if x0 ∈]a, b[, J ′(x0) ≤ 0 if x0 = b.

Even if it is well known to the reader, let us recall the proof of this remark: if x0 ∈
[a, b[, we can choose x = x0 + h with a small positive h > 0, and write J(x) ≥ J(x0),
from which J(x0) + hJ ′(x0) + o(h) > J(x0), which gives J ′(x0) ≥ 0 dividing by h
and letting h tend to 0. Likewise we obtain J ′(x0) ≤ 0 if x0 ∈]a, b] by considering
x = x0 − h. Let us also remark (this is the second order condition) that if x0 ∈]a, b[

297
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and if J ′ is differentiable at x0, we then have J ′′(x0) ≥ 0 (in effect, we have J(x0) +
(h2/2)J ′′(x0) + o(h2) ≥ J(x0) for h small enough).

The strategy to obtain and to prove the minimality conditions is therefore clear:
we take account of constraints (x ∈ [a, b] in the example above) to test the minimality
of x0 in particular directions which respect the constraints (x0 + h with h > 0 if
x0 ∈ [a, b[, x0 − h with h > 0 if x0 ∈]a, b]): we shall talk of admissible directions.
We then use the definition of the derivative (and the second order Taylor formulas)
to conclude. This is exactly what we shall do in what follows!

The plan of this chapter is the following. The remainder of this section is dedicated
to making some notation precise and to recalling the elementary ideas of differentiabil-
ity. Section 10.2 gives the form of the necessary optimality conditions in two essential
cases: when the set of constraints is convex we obtain a Euler inequality; when it
involves equality or inequality constraints, we obtain an equation using Lagrange
multipliers. Section 10.3 is dedicated to the Kuhn–Tucker theorem which says
that, under certain convexity hypotheses, the necessary conditions for optimality are
also sufficient. We also give a brief outline of the theory of duality. Section 10.4
explores three applications of optimization to systems modelled by ordinary or partial
differential equations. Finally, Section 10.5 treats numerical optimization algo-
rithms. We principally study the gradient algorithms which are the most important
in practice.

10.1.2 Differentiability

From now on (and we shall not systematically point this out any more), we assume
that V is a real Hilbert space, and that J is a continuous function with values in R.
The scalar product in V is always denoted 〈u, v〉 and the associated norm ‖u‖.

Let us start by introducing the idea of a first derivative of J since we shall need this
to write optimality conditions. When there are several variables (that is to say if the
space V is not R), the ‘good’ theoretical idea of differentiability, called differentiability
in the sense of Fréchet, is given by the following definition.

Definition 10.1.1 We say that the function J , defined on a neighbourhood of u∈V
with values in R, is differentiable in the sense of Fréchet at u if there exists a contin-
uous linear form on V , L ∈ V ′, such that

J(u + w) = J(u) + L(w) + o(w), with lim
w→0

|o(w)|
‖w‖ = 0. (10.1)

We call L the derivative (or the differential, or the gradient) of J at u and we denote
L = J ′(u).

Remark 10.1.2 Definition 10.1.1 is in fact valid if V is only a Banach space (we do
not use the scalar product in (10.1)). However, if V is a Hilbert space, we can specify
the relation (10.1) by identifying V and its dual V ′ thanks to the Riesz representation
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theorem 12.1.18. In effect, there exists a unique p ∈ V such that 〈p, w〉 = L(w),
therefore (10.1) becomes

J(u + w) = J(u) + 〈p, w〉+ o(w), with lim
w→0

|o(w)|
‖w‖ = 0. (10.2)

We also sometimes write p = J ′(u), which can lead to confusion. Formula (10.2) is
often more ‘natural’ than (10.1), notably if V = Rn or V = L2(Ω). Conversely, there
may by a slightly more delicate interpretation for more ‘complicated’ Hilbert spaces
such as V = H1(Ω) (see exercise 10.1.5). •

In most applications, it is often sufficient to determine the continuous linear form
L = J ′(u) ∈ V ′ as we do not need the explicit expression of p = J ′(u) ∈ V when V ′

is identified with V . In practice, it is easier to find the explicit expression for L than
that for p, as the following exercises show.

Exercise 10.1.1 Show that (10.1) implies the continuity of J at u. Show also that, if
L1, L2 satisfies {

J(u + w) ≥ J(u) + L1(w) + o(w),
J(u + w) ≤ J(u) + L2(w) + o(w), (10.3)

then J is differentiable and L1 = L2 = J ′(u).

Exercise 10.1.2 (essential!) Let a be a continuous symmetric bilinear form over V ×
V . Let L be a continuous linear form over V . We set J(u) = 1

2a(u, u) − L(u). Show
that J is differentiable over V and that 〈J ′(u), w〉 = a(u,w)− L(w) for all u,w ∈ V .

Exercise 10.1.3 Let A be an N ×N symmetric matrix and b ∈ RN . For x ∈ RN , we
set J(x) = 1

2Ax · x− b · x. Show that J is differentiable and that J ′(x) = Ax− b for all
x ∈ RN .

Exercise 10.1.4 We return to exercise 10.1.2 with V = L2(Ω) (Ω being an open set of
RN ), a(u, v) =

∫
Ω uv dx, and L(u) =

∫
Ω fu dx with f ∈ L2(Ω). By identifying V and

V ′, show that J ′(u) = u− f .

Exercise 10.1.5 We return to exercise 10.1.2 with V = H1
0 (Ω) (Ω being an open set

of RN ) that we equip with the scalar product

〈u, v〉 =
∫

Ω
(∇u · ∇v + uv) dx.

We set a(u, v) =
∫

Ω∇u · ∇v dx, and L(u) =
∫

Ω fu dx with f ∈ L2(Ω). Show (at least
formally) that J ′(u) = −∆u− f in V ′ = H−1(Ω). Show that, if we identify V and V ′,
then J ′(u) = u0 where u0 is the unique solution in H1

0 (Ω) of{
−∆u0 + u0 = −∆u− f in Ω
u0 = 0 on ∂Ω
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Exercise 10.1.6 Let Ω be a bounded open set of RN (we can restrict ourselves to the
case where N = 1 with Ω =]0, 1[). Let L = L(p, t, x) be a continuous function over
RN × R × Ω, differentiable with respect to p and t on this set, with partial derivatives
∂L
∂p and ∂L

∂t which are Lipschitzian over this set. We set V = H1
0 (Ω) and J(v) =∫

Ω
L(∇v(x), v(x), x)dx.

1. Show that J is differentiable over H1
0 (Ω) and that

〈J ′(u), w〉 =
∫

Ω

(
∂L

∂p
(∇u(x), u(x), x) · ∇w(x) +

∂L

∂t
(∇u(x), u(x), x)w(x)

)
dx.

2. If N = 1 and Ω =]0, 1[, show that, if u ∈ H1
0 (0, 1) satisfies J ′(u) = 0, then u

satisfies
d

dx

(
∂L

∂p

(
u′(x), u(x), x

))
− ∂L

∂t

(
u′(x), u(x), x

)
= 0, (10.4)

almost everywhere in the interval ]0, 1[.

3. If L does not depend on x (that is, L = L(p, t)) and if u ∈ C2(]0, 1[) is a solution
of the differential equation (10.4), show that the quantity

L
(
u′(x), u(x)

)
− u′(x)

∂L

∂p

(
u′(x), u(x)

)
is constant on the interval [0, 1].

Remark 10.1.3 There exist other ideas of differentiability, weaker than in the sense
of Fréchet. For example, we often meet the following definition. We say that the
function J , defined on a neighbourhood of u ∈ V with values in R, is differentiable in
the sense of Gâteaux at u if there exists L ∈ V ′ such that

∀w ∈ V, lim
δ↘0+

J(u + δw)− J(u)
δ

= L(w). (10.5)

The interest in this idea is that the verification of (10.5) is easier than that of (10.1).
However, if a function is differentiable in the sense of Fréchet then it is also in the
sense of Gâteaux, the converse is false, even in finite dimensions, as the following
example shows in R2

J(x, y) =
x6

(y − x2)2 + x8 for (x, y) �= (0, 0), J(0, 0) = 0.

We shall, in what follows, say that a function is differentiable when it is in the sense
of Fréchet, unless we explicitly mention otherwise. •

Let us now examine the basic properties of convex differentiable functions.
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Proposition 10.1.4 Let J be a differentiable mapping from V into R. The following
assertions are equivalent

J is convex over V, (10.6)

J(v) ≥ J(u) + 〈J ′(u), v − u〉 ∀u, v ∈ V, (10.7)

〈J ′(u)− J ′(v), u− v〉 ≥ 0 ∀u, v ∈ V. (10.8)

Proposition 10.1.5 Let J be a differentiable mapping from V into R and α > 0.
The assertions following are equivalent

J is α-convex over V, (10.9)

J(v) ≥ J(u) + 〈J ′(u), v − u〉+
α

2
‖v − u‖2 ∀u, v ∈ V, (10.10)

〈J ′(u)− J ′(v), u− v〉 ≥ α‖u− v‖2 ∀u, v ∈ V. (10.11)

Remark 10.1.6 Conditions (10.10) and (10.7) have a simple geometrical interpret-
ation. They signify that the convex function J(v) is always above its tangent plane at
u (considered as an affine function of v). Conditions (10.11) and (10.8) are coercivity
hypotheses. In particular, if J(u) = 1

2a(u, u) − L(u) with a a symmetric continuous
bilinear form over V and L a continuous linear form over V , then exercise 10.1.2 shows
that (10.11) is exactly the definition of the coercivity of a. •

Proof. It is enough to prove proposition 10.1.5 by observing that the case α = 0
gives proposition 10.1.4. Let us show that (10.9) implies (10.10). As J is α-convex,
we easily see (by recurrence) that, for all k ≥ 1,

J

((
1− 1

2k

)
u +

1
2k
v

)
≤
(

1− 1
2k

)
J(u) +

1
2k
J(v)− α

2k+1

(
1− 1

2k

)
‖u− v‖2,

from which

2k
[
J

(
u +

1
2k

(v − u)
)
− J(u)

]
≤ J(v)− J(u)− α

2

(
1− 1

2k

)
‖u− v‖2.

By letting k tend to +∞, we find (10.10). To obtain (10.11) it is enough to add
(10.10) to itself swapping u and v.

Let us show that (10.11) implies (10.9). For u, v ∈ V and t ∈ R, we set ϕ(t) =
J(u + t(v − u)). Then ϕ is differentiable and therefore continuous on R, and ϕ′(t) =
〈J ′(u + t(v − u)), v − u〉, so that, from (10.11)

ϕ′(t)− ϕ′(s) ≥ α(t− s)‖v − u‖2 if t ≥ s. (10.12)

Take θ ∈]0, 1[. By integrating the inequality (10.12) from t = θ to t = 1 and from
s = 0 to s = θ, we obtain

θϕ(1) + (1− θ)ϕ(0)− ϕ(θ) ≥ αθ(1− θ)
2

‖v − u‖2,

that is to say (10.9). �
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Exercise 10.1.7 Show that a function J which is differentiable over V is strictly convex
if and only if

J(v) > J(u) + 〈J ′(u), v − u〉 ∀u, v ∈ V with u �= v,

or
〈J ′(u)− J ′(v), u− v〉 > 0 ∀u, v ∈ V with u �= v.

Let us finish this section by defining the second derivative of J . Let us remark
first of all that it is very easy to generalize the definition 10.1.1 of differentiability to
the case of a function f defined over V with values in another Hilbert space W (and
not only in R). We shall say that f is differentiable (in the sense of Fréchet) at u if
there exists a continuous linear mapping L from V into W such that

f(u + w) = f(u) + L(w) + o(w), with lim
w→0

‖o(w)‖
‖w‖ = 0. (10.13)

We call L = f ′(u) the differential of f at u. Definition (10.13) is useful to define the
derivative of f(u) = J ′(u) which is a mapping from V into its dual V ′.

Definition 10.1.7 Let J be a function from V into R. We say that J is twice
differentiable at u ∈ V if J is differentiable in a neighbourhood of u and if its derivative
J ′(u) is differentiable at u. We denote by J ′′(u) the second derivative of J at u which
satisfies

J ′(u + w) = J ′(u) + J ′′(u)w + o(w) with lim
w→0

‖o(w)‖
‖w‖ = 0.

Defined like this the second derivative is difficult to evaluate in practice as J ′′(u)w
is an element of V ′. Happily, by making it act on v ∈ V we obtain a continuous bilinear
form over V × V which we shall denote J ′′(u)(w, v) instead of (J ′′(u)w) v. We leave
the reader the task of proving the following elementary result.

Lemma 10.1.8 If J is a twice differentiable function from V into R, it satisfies

J(u+w) = J(u)+J ′(u)w+
1
2
J ′′(u)(w,w)+o(‖w‖2), with lim

w→0

o(‖w‖2)
‖w‖2 = 0, (10.14)

where J ′′(u) is identified with a continuous bilinear form over V × V .

In practice this is the J ′′(u)(w,w) that we calculate.

Exercise 10.1.8 Let a be a continuous symmetric bilinear form over V × V . Let L be
a continuous linear form over V . We set J(u) = 1

2a(u, u)− L(u). Show that J is twice
differentiable over V and that J ′′(u)(v, w) = a(v, w) for all u, v, w ∈ V . Apply this result
to the examples of exercises 10.1.3, 10.1.4, and 10.1.5.
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When J is twice differentiable we recover the usual convexity condition: if the
second derivative is positive, then the function is convex.

Exercise 10.1.9 Show that if J is twice differentiable over V the conditions of prop-
ositions 10.1.4 and 10.1.5 are respectively equivalent to

J ′′(u)(w,w) ≥ 0 and J ′′(u)(w,w) ≥ α‖w‖2 ∀u,w ∈ V. (10.15)

10.2 Optimality conditions

10.2.1 Euler inequalities and convex constraints

We start by formulating the minimality conditions when the set of constraints K is
convex, where things are more simple (we always assume that K is closed, nonempty,
and that J is continuous over an open set containing K). The essential idea of the
result which follows is that, for all v ∈ K, we can test the optimality of u in the
‘admissible direction’ (v − u) as u + h(v − u) ∈ K if h ∈ [0, 1].

Theorem 10.2.1 (Euler inequality, convex case) Let u ∈ K with K convex.
We assume that J is differentiable at u. If u is a local minimum point of J over
K, then

〈J ′(u), v − u〉 ≥ 0 ∀ v ∈ K. (10.16)

If u ∈ K satisfies (10.16) and if J is convex, then u is a global minimum of J
over K.

Remark 10.2.2 We call (10.16) a ‘Euler inequality’. This is a necessary condition
for optimality which becomes necessary and sufficient if J is convex. We must
also remark that, in two important cases, (10.16) reduces simply to the Euler
equation J ′(u) = 0. Initially, if K = V , v − u produces the whole of V when v
produces the whole of V , and therefore (10.16) implies J ′(u) = 0. On the other hand,
if u is in the interior of K, the same conclusion holds. •

Proof. For v ∈ K and h ∈]0, 1], u + h(v − u) ∈ K, and therefore

J(u + h(v − u))− J(u)
h

≥ 0. (10.17)

We deduce (10.16) letting h tend to 0. The second assertion of the theorem follows
immediately from (10.7). �

Exercise 10.2.1 Let K be a convex closed nonempty set of V . For x ∈ V , we look for
the projection xK ∈ K of x over K (see theorem 12.1.10)

‖x− xK‖ = min
y∈K

‖x− y‖.

Show that the necessary and sufficient condition (10.16) reduces exactly to (12.1).
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Exercise 10.2.2 Let A be a real matrix of order p × n and b ∈ Rp. We consider the
‘least-squares’ problem

inf
x∈Rn

‖Ax− b‖2.

Show that this problem always has a solution and write the corresponding Euler equation.

Exercise 10.2.3 We return to example 9.1.6

inf
x∈KerB

{
J(x) =

1
2
Ax · x− b · x

}

with A a square symmetric matrix of order n, and B of size m× n (m ≤ n). Show that
there exists a unique solution if A is positive definite. Show that every minimum point
x ∈ Rn satisfies

Ax− b = B∗p with p ∈ Rm.

Exercise 10.2.4 We return to example 9.1.10. Show that the Euler equation satisfied
by the minimum point u ∈ H1

0 (Ω) of

inf
v∈H1

0 (Ω)

{
J(v) =

1
2

∫
Ω
|∇v|2dx−

∫
Ω
fv dx

}

is precisely the variational formulation∫
Ω
∇u · ∇v dx =

∫
Ω
fv dx ∀ v ∈ H1

0 (Ω).

(We therefore recover a result of proposition 5.2.7.)

Exercise 10.2.5 Let K be a convex closed nonempty set of V , let a be a symmetric
continuous bilinear coercive form over V , and let L be a continuous linear form over V .
Show that J(v) = 1

2a(v, v) − L(v) has a unique minimum point in K, denoted as u.
Show that u is also the unique solution of the problem (called a variational inequality)

u ∈ K and a(u, v − u) ≥ L(v − u) ∀ v ∈ K.

Exercise 10.2.6 Let J1 and J2 be two continuous convex functions over a nonempty
closed convex set K ⊂ V . We assume that J1 is only differentiable. Show that u ∈ K is
a minimum of J1 + J2 if and only if

〈J ′1(u), v − u〉+ J2(v)− J2(u) ≥ 0 ∀ v ∈ K.

The following remarks, which are simple applications of theorem 10.2.1, will give
us the intuition for the idea of a ‘Lagrange multiplier’ which will be developed in the
following section.



OPTIMALITY CONDITIONS 305

Remark 10.2.3 Let us examine the particular case where K is a closed affine sub-
space of V . We therefore assume that K = u0 + P, where u0 ∈ V and where P is a
closed vector subspace of V . Then, when v describes K, v−u is an arbitrary element
of P so that (10.16) is equivalent to

〈J ′(u), w〉 = 0 ∀w ∈ P,

that is to say J ′(u) ∈ P⊥. In particular, if P is a finite intersection of hyperplanes,
that is to say if

P = {v ∈ V, 〈ai, v〉 = 0 for 1 ≤ i ≤M},

where a1, . . . , am are given in V , then (the reader will verify that) P⊥ is the vec-
tor space generated by the family (ai)1≤i≤M . The optimality condition is therefore
written in the form:

u ∈ K and ∃λ1, . . . , λM ∈ R, J ′(u) +
M∑
i=1

λiai = 0, (10.18)

and the real numbers λi are called Lagrange multipliers. We see in theorem 10.2.8
their more general and fundamental role. •

Remark 10.2.4 Let us now suppose that K is a closed convex cone, which means
that K is a convex closed set such that λv ∈ K for all v ∈ K and all λ ≥ 0. By taking
v = 0 then v = 2u in (10.16), we obtain

〈J ′(u), u〉 = 0. (10.19)

Consequently, (10.16) implies that

〈J ′(u), w〉 ≥ 0 ∀w ∈ K. (10.20)

In fact, (10.16) is equivalent to (10.19) and (10.20). In the case where

K = {v ∈ V, 〈ai, v〉 ≤ 0 for 1 ≤ i ≤M},

where a1, . . . , aM are given in V , the Farkas lemma 10.2.17 (see below) shows that

u ∈ K and ∃λ1, . . . , λM ≥ 0, J ′(u) +
M∑
i=1

λiai = 0, (10.21)

and the equality (10.19) shows that λi = 0 if 〈ai, u〉 < 0. The nonnegative real
numbers λi are again called Lagrange multipliers. We see in theorem 10.2.15 their
more general and fundamental role. •

Let us finish this section by giving a second order optimality condition.
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Proposition 10.2.5 We assume that K = V and that J is twice differentiable at u.
If u is a local minimum point of J , then

J ′(u) = 0 and J ′′(u)(w,w) ≥ 0 ∀w ∈ V. (10.22)

Conversely, if, for all v in a neighbourhood of u,

J ′(u) = 0 and J ′′(v)(w,w) ≥ 0 ∀w ∈ V, (10.23)

then u is a local minimum of J .

Proof. If u is a local minimum point, we already know that J ′(u) = 0 and formula
(10.14) gives us (10.22). Conversely, if u satisfies (10.23), we write a second order
Taylor expansion (in the neighbourhood of zero) with exact remainder for the function
φ(t) = J(u+ tw) with t ∈ R and we deduce easily that u is a local minimum of J (see
definition 9.1.1). �

10.2.2 Lagrange multipliers

We shall now try to write the minimality conditions when the set K is not convex.
More precisely, we shall study sets K defined by equality constraints or inequality
constraints (or both at the same time). We start with a general remark about
admissible directions.

Definition 10.2.6 At every point v ∈ K, the set

K(v) =
{
w ∈ V, ∃ (vn) ∈ KN, ∃ (εn) ∈ (R∗+)N,
limn→+∞ vn = v, limn→+∞ εn = 0, limn→+∞ (vn − v)/εn = w

}

is called the cone of admissible directions at the point v.

In more visual terms, we can also say that K(v) is the set of all the vectors which
are tangents at v with a curve contained in K and passing through v (if K is a regular
variety, K(v) is simply the tangent space to K at v). In other words, K(v) is the set
of all the possible directions of variations starting from v which remain infinitesimally
in K.

By setting wn = (vn − v)/εn, we can also say equivalently that w ∈ K(v) if and
only if there exists a sequence wn in V and a sequence εn in R such that

lim
n→+∞

wn = w, lim
n→+∞

εn = 0, and v + εnwn ∈ K ∀n.

It is easy to verify that the set K(v) (which could well be reduced to {0}!) is a cone:
λw ∈ K(v) for all w ∈ K(v) and all λ ≥ 0.

Exercise 10.2.7 Show that K(v) is a closed cone and that K(v) = V if v is interior
to K. Give an example where K(v) is reduced to {0}.
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The interest in the cone of admissible directions lies in the following result, which
gives a necessary optimality condition. The proof, which is very simple, is left to
the reader.

Proposition 10.2.7 (Euler inequality, general case) Let u be a local minimum
of J over K. If J is differentiable at u, we have

〈J ′(u), w〉 ≥ 0 ∀w ∈ K(u).

We shall now make precise the necessary condition of proposition 10.2.7 in the
case where K is given by equality or inequality constraints. The results that we
will obtain generalize those of remarks 10.2.3 and 10.2.4.

Equality constraints

In this first case we assume that K is given by

K = {v ∈ V, F (v) = 0} , (10.24)

where F (v) = (F1(v), . . . , FM (v)) is a mapping from V into RM , with M ≥ 1. The
necessary optimality condition then takes the following form.

Theorem 10.2.8 Take u ∈ K where K is given by (10.24). We assume that J is
differentiable at u ∈ K and that the functions Fi(1 ≤ i ≤M) are continuously differ-
entiable in a neighbourhood of u. We further assume that the vectors

(
F ′i (u)

)
1≤i≤M

are linearly independent. Then, if u is a local minimum of J over K, there exist
λ1, . . . , λM ∈ R, called Lagrange multipliers, such that

J ′(u) +
M∑
i=1

λiF
′
i (u) = 0. (10.25)

Proof. As the vectors
(
F ′i (u)

)
1≤i≤M are linearly independent, the implicit function

theorem allows us to show that

K(u) = {w ∈ V, 〈F ′i (u), w〉 = 0 for i = 1, . . . ,M} , (10.26)

or equivalently

K(u) =
M⋂
i=1

[F ′i (u)]⊥ . (10.27)

We shall not detail the proof of (10.26) which is a classical result of differential calculus
(in fact, K(u) is the tangent space to the variety K at the point u). As K(u)
is a vector space, we can successively take w and −w in proposition 10.2.7, which
leads to

〈J ′(u), w〉 = 0 ∀w ∈
M⋂
i=1

[F ′i (u)]⊥ ,
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that is to say that J ′(u) is generated by
(
F ′i (u)

)
1≤i≤M (let us note that the Lagrange

multipliers are defined uniquely). Another proof (which is more geometrical) is pro-
posed in the proof of proposition 10.2.11. �

Remark 10.2.9 When the vectors
(
F ′i (u)

)
1≤i≤M are linearly independent, we say

that we are in a regular case. In the opposite case, we talk of a nonregular case
and the conclusion of theorem 10.2.8 is false as the following example shows.

Let us take V = R, M = 1, F (v) = v2, J(v) = v, from which K = {0},
u = 0, F ′(u) = 0: we therefore have a nonregular case. As J ′(u) = 1, (10.25) does
not hold. •

To fully understand the range of theorem 10.2.8, we apply it to example 9.1.6

min
x∈KerB

{
J(x) =

1
2
Ax · x− b · x

}
,

where A is symmetric positive definite of order n, and B of size m × n with m ≤ n.
We denote by (bi)1≤i≤m the m rows of B. In this problem there are therefore m
constraints bi ·x = 0. If the range of B is m, the (bi) are independent and we can apply
the conclusion (10.25) (if not, the constraints are either redundant, or contradictory).
There therefore exists a Lagrange multiplier p ∈ Rm such that a minimum point x
satisfies

Ax− b =
m∑
i=1

pibi = B∗p.

If A is invertible and if B has range m, we deduce the value of x: we have x =
A−1(b + B∗p), and as Bx = 0 we obtain

p = −
(
BA−1B∗

)−1
BA−1b and x = A−1

(
I−B∗

(
BA−1B∗

)−1
BA−1

)
b.

In particular, we have thus proved that the Lagrange multiplier p is unique if B has
range m. If this is not the case, we know that there exists a solution of BA−1B∗p =
−BA−1b, p, which is only unique up to the addition of a vector in the kernel of B∗.
We therefore recover the result of exercise 10.2.3.

Exercise 10.2.8 Generalize the results above for this variant of example 9.1.6

min
Bx=c

{
J(x) =

1
2
Ax · x− b · x

}
,

where c ∈ Rm is a given vector.

Exercise 10.2.9 Apply theorem 10.2.8 to example 9.1.7 and deduce that the mini-
mum points of J over the unit sphere are eigenvectors of A associated with the smallest
eigenvalue.
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Exercise 10.2.10 By using the preceding results and those of exercise 10.1.6, show that
the solution of Didon’s problem (example 9.1.11) is necessarily an arc of a circle.

Exercise 10.2.11 We study the first eigenvalue of the Laplacian in a bounded domain
Ω (see Section 7.3). For this we introduce the minimization problem over K = {v ∈
H1

0 (Ω),
∫

Ω v2dx = 1}

min
v∈K

{
J(v) =

∫
Ω
|∇v|2dx

}
.

Show that this problem has a minimum (we shall show that K is compact for the min-
imizing sequences with the help of Rellich’s theorem 4.3.21). Write the Euler equation
for this problem and deduce that the value of the minimum is the first eigenvalue and
that the minimum points are the associated eigenvectors.

Exercise 10.2.12 Let A be an n × n symmetric positive definite matrix and b ∈ Rn

nonzero.

1. Show that the problems

sup
Ax·x≤1

b · x and sup
Ax·x=1

b · x

are equivalents and that they have a solution. Use the theorem 10.2.8 to calculate
this solution and show that it is unique.

2. We introduce a partial order in the set of symmetric positive definite matrices of
order n by saying that A ≥ B if and only if Ax ·x ≥ Bx ·x for all x ∈ Rn. Deduce
from the question above that, if A ≥ B, then B−1 ≥ A−1.

Exercise 10.2.13 In the kinetic theory of gas, the molecules of gas are represented at
every point of the space by a distribution function f(v) depending on the microscopic
velocity v ∈ RN . The macroscopic quantities, like the density of the gas ρ, its velocity u,
and its temperature T , are recovered thanks to the moments of the function f(v)

ρ =
∫

RN

f(v) dv, ρu =
∫

RN

v f(v) dv,
1
2
ρu2 +

N

2
ρT =

1
2

∫
RN

|v|2f(v) dv . (10.28)

Boltzmann introduced the kinetic entropy H(f) defined by

H(f) =
∫

RN

f(v) log
(
f(v)

)
dv .

Show that H is strictly convex over the space of measurable functions f(v) > 0 such that
H(f) < +∞. We minimize H over this space under the moment constraints moment
(10.28), and we will find that there exists a unique minimum point M(v). Show that this
minimum point is a Maxwellian defined by

M(v) =
ρ

(2πT )N/2
exp

(
−|v − u|2

2T

)
.
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Remark 10.2.10 It is useful to introduce the function L defined over V × RM by

L(v, µ) = J(v) +
M∑
i=1

µiFi(v) = J(v) + µ · F (v)

that we call the Lagrangian of the minimization problem of J over K. If u ∈ K is
a local minimum of J over K, theorem 10.2.8 then tells us that, in the regular case,
there exists a λ ∈ RM such that

∂L
∂v

(u, λ) = 0,
∂L
∂µ

(u, λ) = 0,

since ∂L
∂µ (u, λ) = F (u) = 0 if u ∈ K and ∂L

∂v (u, λ) = J ′(u) + λF ′(u) = 0 from (10.25).
We can therefore write the constraint and the optimality condition as the annihilation
of the gradient (the stationarity) of the Lagrangian. •

We now give a necessary second order optimality condition.

Proposition 10.2.11 We take the hypotheses of theorem 10.2.8 and we assume that
the functions J and F1, . . . , FM are twice continuously differentiable and that the vec-
tors

(
F ′i (u)

)
1≤i≤M are linearly independent. Let λ ∈ RM be the Lagrange multiplier

defined by theorem 10.2.8. Then every local minimum u of J over K satisfies(
J ′′(u) +

M∑
i=1

λiF
′′
i (u)

)
(w,w) ≥ 0 ∀w ∈ K(u) =

M⋂
i=1

[F ′i (u)]⊥ . (10.29)

Proof. Let us suppose that there exists an admissible function of class C2, that is
to say a function t → u(t) of [0, 1] in V such that u(0) = u and F (u(t)) = 0 for
all t ∈ [0, 1]. By definition, the derivative u′(0) belongs to the cone of admissible
directions K(u). We set

j(t) = J
(
u(t)

)
and fi(t) = Fi

(
u(t)

)
for 1 ≤ i ≤M.

By differentiating we obtain

j′(t) = 〈J ′
(
u(t)

)
, u′(t)〉 and f ′i(t) = 〈F ′i

(
u(t)

)
, u′(t)〉 for 1 ≤ i ≤M,

and

j′′(t) = J ′′
(
u(t)

)(
u′(t), u′(t)

)
+ 〈J ′

(
u(t)

)
, u′′(t)〉

f ′′i (t) = F ′′i
(
u(t)

)(
u′(t), u′(t)

)
+ 〈F ′i

(
u(t)

)
, u′′(t)〉 for 1 ≤ i ≤M.

As fi(t) = 0 for all t and since 0 is a minimum of j(t), we deduce j′(0) = 0, j′′(0) ≥ 0,
and f ′i(0) = f ′′i (0) = 0. The conditions f ′i(0) = 0 tell us that u′(0) is orthogonal to
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the subspace generated by
(
F ′i (u)

)
1≤i≤M (which is equal to K(u) when this family

is linearly independent), while j′(0) = 0 means that J ′(u) is orthogonal to u′(0). If
u′(0) describes all of K(u) when we vary the admissible functions, we deduce that
J ′(u) and the F ′i (u) belongs to the same subspace (the orthogonal space of K(u)).
We therefore recover the first order condition: there exists λ ∈ RM such that

J ′(u) +
M∑
i=1

λiF
′
i (u) = 0. (10.30)

Conditions f ′′i (0) = 0 imply that

0 =
M∑
i=1

λi

(
F ′′i (u)

(
u′(0), u′(0)

)
+ 〈F ′i (u), u′′(0)〉

)
,

while j′′(0) ≥ 0 gives

J ′′(u)
(
u′(0), u′(0)

)
+ 〈J ′(u), u′′(0)〉 ≥ 0.

Thanks to (10.30) we can eliminate the first derivatives and u′′(0) to obtain (by
summing the two last equations)(

M∑
i=1

λiF
′′
i (u) + J ′′(u)

)(
u′(0), u′(0)

)
≥ 0,

which is none other than (10.29) when u′(0) generates K(u).
The existence of such admissible functions u(t) and the fact that the set of

u′(0) describes the entire cone of admissible directions K(u) is a consequence of the
implicit function theorem that we can apply thanks to the hypothesis that the family(
F ′i (u)

)
1≤i≤M is linearly independent (we leave the technical details to the courageous

reader see Chapter 9 in [19]). �

Exercise 10.2.14 Calculate the second order necessary optimality condition for the
examples 9.1.6 and 9.1.7.

Inequality constraints

In this second case we assume that K is given by

K = {v ∈ V, Fi(v) ≤ 0 for 1 ≤ i ≤M} , (10.31)

where F1, . . . , FM are always functions from V into R. When we want to determine
the cone of admissible directions K(v), the situation is a little more complicated than
before as all the constraints in (10.31) do not play the same role depending on the
point v where we calculate K(v). In effect, if Fi(v) < 0, it is clear that, for ε sufficiently
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small, we will also have Fi(v + εw) ≤ 0 (we say that the constraint i is inactive at v).
If Fi(v) = 0 for certain indices i, it is not clear that we can find a vector w ∈ V such
that, for ε > 0 sufficiently small, (v+εw) satisfies all the constraints in (10.31). It will
therefore be necessary to impose supplementary conditions on the constraints, called
constraint qualifications. Roughly speaking, these conditions will guarantee that
we can make ‘variations’ around a point v in order to test its optimality. There exist
different types of constraint qualification (more or less sophisticated and general).
We shall give a definition whose principle is to look at the linearized problem if it is
possible to make variations respecting the linearized constraints. These ‘calculus of
variations’ considerations motivate the following definitions.

Definition 10.2.12 Take u ∈ K. The set I(u) = {i ∈ {1, . . . ,M}, Fi(u) = 0} is
called the set of active constraints at u.

Definition 10.2.13 We say that the constraints (10.31) are qualified at u ∈ K if
and only if there exists a direction w ∈ V such that we have for all i ∈ I(u)

either 〈F ′i (u), w〉 < 0,

or 〈F ′i (u), w〉 = 0, and Fi is affine.
(10.32)

Remark 10.2.14 The direction w is in some way a ‘re-entrant direction’ since we
deduce from (10.32) that u + εw ∈ K for all ε ≥ 0 sufficiently small. Of course, if all
the functions Fi are affine, we can take w = 0 and the constraints are automatically
qualified. The reasoning for distinguishing the affine constraints in Definition 10.2.13
is justified not only because those are qualified under less strict conditions, but above
all because of the importance of affine constraints in applications (as we see in the
examples of Chapter 9). •

We can then state the necessary optimality conditions over the set (10.31).

Theorem 10.2.15 We assume that K is given by (10.31), that the functions J and
F1, . . . , FM are differentiable at u and that the constraints are qualified at u. Then,
if u is a local minimum of J over K, there exist λ1, . . . , λM ≥ 0, called Lagrange
multipliers, such that

J ′(u) +
M∑
i=1

λiF
′
i (u) = 0, λi ≥ 0, λi = 0 if Fi(u) < 0 ∀ i ∈ {1, . . . ,M}. (10.33)

Remark 10.2.16 We can rewrite the condition (10.33) in the following form

J ′(u) +
M∑
i=1

λiF
′
i (u) = 0, λ ≥ 0, λ · F (u) = 0,

where λ ≥ 0 means that each of the components of the vector λ = (λ1, ..., λM ) is
positive, since, for every index i ∈ {1, . . . ,M}, we have either Fi(u) = 0, or λi = 0.
The fact that λ · F (u) = 0 is called the condition of complementary variations. •
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Proof. Let us consider first of all the set

K̃(u) = {w ∈ V, 〈F ′i (u), w〉 ≤ 0 ∀ i ∈ I(u)} . (10.34)

(We can show that K̃(u) is none other than the cone K(u) of admissible directions).
Let w be an admissible direction satisfying (10.32), w ∈ K̃(u), and take a real number
δ > 0. We shall show that u + ε(w + δw) ∈ K for every real number ε > 0 which is
small enough. We must examine three important cases.

1. If i /∈ I(u), we have Fi(u) < 0 and Fi(u + ε(w + δw)) < 0 by continuity if ε is
small enough.

2. If i ∈ I(u) and 〈F ′i (u), w〉 < 0, then

Fi(u + ε(w + δw)) = Fi(u) + ε〈F ′i (u), w + δw〉+ o(ε)

≤ εδ〈F ′i (u), w〉+ o(ε), (10.35)

from which we have Fi(u + ε(w + δw)) < 0 for ε > 0 small enough.

3. Finally, if i ∈ I(u) and 〈F ′i (u), w〉 = 0, then Fi is affine and

Fi(u + ε(w + δw)) = Fi(u) + ε〈F ′i (u), w + δw〉 = ε〈F ′i (u), w〉 ≤ 0. (10.36)

Finally, if u is a local minimum of J over K, we deduce from above that

〈J ′(u), w + δw〉 ≥ 0 ∀w ∈ K̃(u), ∀ δ ∈ R∗+.

This implies that 〈J ′(u), w〉 ≥ 0 ∀w ∈ K̃(u) and we finish the proof thanks to the
Farkas lemma 10.2.17 below. �

Lemma 10.2.17 (Farkas) Let a1, . . . , aM be fixed elements of V . We consider the
sets

K =
{
v ∈ V, 〈ai, v〉 ≤ 0 for 1 ≤ i ≤M

}
,

and

K̂ =
{
v ∈ V, ∃λ1, . . . , λM ≥ 0, v = −

M∑
i=1

λiai

}
.

Then for every p ∈ V , we have the implication

〈p, w〉 ≥ 0 ∀w ∈ K =⇒ p ∈ K̂.

(The reciprocal being obvious, it is in fact an equivalence.)
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Proof. Let us start by showing that K̂ is closed. Since this property is obvious when
M = 1, we proceed by recurrence and assume that it is true when the number of
vectors ai is less than M .

Let us suppose first that the vectors (ai)1≤i≤M are linearly independent. Let

(vn) =
(
−∑M

i=1 λ
n
i ai

)
be a sequence of elements of K̂ (therefore with λni ≥ 0 ∀ i∀n),

convergent towards a limit v ∈ V . Then it is clear that each sequence (λni ) converges
in R+ to a limit λi ≥ 0 (for 1 ≤ i ≤ M) since the vectors (ai)1≤i≤M form a basis
of the space that they generate. We therefore have v = −∑M

i=1 λiai ∈ K̂, which
is therefore closed.

If the vectors (ai)1≤i≤M are linearly dependent, there exists a relation of the form∑M
i=1 µiai = 0, and we can assume that at least one of the coefficients µi is strictly

positive. Then let v = −∑M
i=1 λiai be an element of K̂. For all t ≤ 0, we can also

write v = −∑M
i=1 (λi + tµi)ai, and we can choose t ≤ 0 so that

λi + tµi ≥ 0 ∀ i ∈ {1, . . . ,M} and ∃ i0 ∈ {1, . . . ,M}, λi0 + tµi0 = 0.

This reasoning shows that

K̂ =
M⋃
i0=1

{
v ∈ V, ∃λ1, . . . , λM ≥ 0, v = −

∑
i �=i0

λiai

}
. (10.37)

By our recurrence hypothesis, each of the sets appearing in the right-hand side of
(10.37) is closed, and it is therefore the same for K̂.

Let us now reason by contradiction: let us assume that 〈p, w〉 ≥ 0 ∀w ∈ K and
that p /∈ K̂. We can then use theorem 12.1.19 of the separation of a point and a
convex set to separate p and K̂ which is closed and, obviously, convex and nonempty.
Therefore there exist w �= 0 in V and α ∈ R such that

〈p, w〉 < α < 〈w, v〉 ∀ v ∈ K̂. (10.38)

But then, we must have α < 0 since 0 ∈ K̂; on the other hand, for all i ∈ {1, . . . ,M} we
can choose, in (10.38), v = −λai with λ arbitrarily large, which shows that 〈w, ai〉 ≤ 0.
We therefore obtain that w ∈ K and that 〈p, w〉 < α < 0, which is impossible. �

Exercise 10.2.15 Let A be a symmetric positive definite matrix of order n, and B a
matrix of size m×n with m ≤ n and of range m. We consider the minimization problem

min
x∈Rn, Bx≤c

{
J(x) =

1
2
Ax · x− b · x

}
,

Apply theorem 10.2.15 to obtain the existence of a Lagrange multiplier p ∈ Rm such that
a minimum point x satisfies

Ax− b + B∗p = 0, p ≥ 0, p · (Bx− c) = 0.
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Exercise 10.2.16 Let f ∈ L2(Ω) be a function defined over a bounded open set Ω.
For ε > 0 we consider the following regularization problem

min
u∈H1

0 (Ω), ‖u−f‖L2(Ω)≤ε

∫
Ω
|∇u|2dx.

Show that this problem has a unique solution uε. Show that, whether uε = f , or uε = 0,
or there exists λ > 0 such that uε is the solution of{

−∆uε + λ(uε − f) = 0 in Ω,
uε = 0 on ∂Ω.

Equality and inequality constraints

We can of course mix the two types of constraints. We therefore assume that K is
given by

K = {v ∈ V, G(v) = 0, F (v) ≤ 0} , (10.39)

where G(v) = (G1(v), . . . , GN (v)) and F (v) = (F1(v), . . . , FM (v)) are two
mappings from V into RN and RM . In this new context, we must give an
adequate definition of the qualification of constraints. We always denote by
I(u) = {i ∈ {1, . . . ,M}, Fi(u) = 0} the set of active inequality constraints at u ∈ K.

Definition 10.2.18 We say that the constraints (10.39) are qualified at u ∈ K
if and only if the vectors

(
G′i(u)

)
1≤i≤N are linearly independent and there exists a

direction w ∈ ⋂N
i=1

[
G′i(u)

]⊥ such that we have for all i ∈ I(u)

〈F ′i (u), w〉 < 0 . (10.40)

We can then state the necessary optimality conditions over the set (10.39).

Theorem 10.2.19 Take u ∈ K where K is given by (10.39). We assume that J
and F are differentiable at u, that G is differentiable in a neighbourhood of u, and
that the constraints are qualified at u (in the sense of definition 10.2.18). Then, if
u is a local minimum of J over K, there exist Lagrange multipliers µ1, . . . , µN , and
λ1, . . . , λM ≥ 0, such that

J ′(u) +
N∑
i=1

µiG
′
i(u) +

M∑
i=1

λiF
′
i (u) = 0, λ ≥ 0, F (u) ≤ 0, λ · F (u) = 0. (10.41)

The proof of theorem 10.2.19 is a simple adaptation of that of theorems 10.2.8
and 10.2.15, which we leave to the reader as an exercise.
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Other forms of qualification conditions

Qualification conditions are sufficient conditions which are ‘geometrical’: they allow
us to make internal variations in the set K starting from a point u ∈ K. The qualifi-
cation condition of definition 10.2.13 is general enough (though far from being neces-
sary), but sometimes difficult to verify in applications. This is why the remarks which
follow give simpler (therefore easier to verify in practice) but less general qualification
conditions (that is, less often satisfied).

Remark 10.2.20 In the case of inequality constraints, we can take as a starting point
the regular case (introduced in remark 10.2.9 for the equality constraints) in order
to give a very simple condition which implies the qualification condition of definition
10.2.13. In effect, for u ∈ K the inactive constraints do not ‘play’ and only the active
constraints i ∈ I(u) are taken into account which are just the equality constraints at
this point! We can then easily check the following condition (which says that u is a
regular point for the equality constraints Fi(u) = 0 for i ∈ I(u))

(F ′i (u))i∈I(u) is a linearly independent family, (10.42)

which implies (10.32), that is to say that the constraints are qualified. In effect,
it is enough to take w =

∑
i∈I(u) αiF

′
i (u) such that 〈F ′j(u), w〉 = −1 for all

j ∈ I(u) (the existence of coefficients αi follows from the invertibility of the ma-
trix (〈F ′i (u), F ′j(u)〉)ij . It is clear however that (10.32) does not imply (10.42). •

Remark 10.2.21 In the case of combined equality and inequality constraints, we
can also start from the regular case to give a simpler condition which implies the
qualification condition of definition 10.2.18. This ‘strong’ (that is to say less often
satisfied) qualification condition is(

G′i(u)
)

1≤i≤N

⋃
(F ′i (u))i∈I(u) is a linearly independent family. (10.43)

We can easily check that (10.43) implies (10.40), that is to say the constraints are
qualified. •

Remark 10.2.22 Returning to the case of inequality constraints, which we assume
to be convex, another possible qualification condition is the following. We assume
that there exists v ∈ V such that we have, for all i ∈ {1, . . . ,M},

the functions Fi are convex and,

either Fi(v) < 0,
or Fi(v) = 0 and Fi is affine.

(10.44)

The hypothesis (10.44) implies that the constraints are qualified on u ∈ K in the sense
of definition 10.2.13. In effect, if i ∈ I(u) and if Fi(v) < 0, then, from the condition
of convexity (10.7)

〈F ′i (u), v − u〉 = Fi(u) + 〈F ′i (u), v − u〉 ≤ Fi(v) < 0.
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On the other hand, if i ∈ I(u) and if Fi(v) = 0, then Fi is affine and

〈F ′i (u), v − u〉 = Fi(v)− Fi(u) = 0,

and definition 10.2.13 of qualification of constraints is satisfied with w = v − u. The
advantage of hypothesis (10.44) is that we neither need to know the minimum point
u nor calculate the derivatives of the functions F1, . . . , FM . •

10.3 Saddle point, Kuhn–Tucker theorem, duality

We have seen in remark 10.2.10 how it is possible to interpret the couple (u, λ) (min-
imum point, Lagrange multiplier) as a stationary point of the Lagrangian L. We
shall, in this section, make precise the nature of this stationary point as a saddle
point and show how this formulation allows us to characterize a minimum (we shall
see that, under certain hypotheses, the necessary conditions of stationarity of the
Lagrangian are also sufficient). We shall briefly explore the duality theory which
follows from this.

In addition to the theoretical interest of this characterization, its practical interest
from the point of view of numerical algorithms will be illustrated in Section 10.5. Let
us finally point out that the concept of saddle point plays a fundamental role in game
theory.

10.3.1 Saddle point

Abstractly, V and Q are two real Hilbert spaces, a Lagrangian L is a mapping of V ×Q
(or of a part U × P of V ×Q) into R. In the framework of theorem 10.2.8 (equality
constraints), we had U = K, P = Q = RM and L(v, q) = J(v)+q ·F (v). The situation
is a little different in the framework of theorem 10.2.15 (inequality constraints), where
we had U = K, Q = RM , P = (R+)M and again L(v, q) = J(v) + q · F (v).

Let us now give the definition of a saddle point.

Definition 10.3.1 We say that (u, p) ∈ U × P is a saddle point of L over U × P if

∀ q ∈ P L(u, q) ≤ L(u, p) ≤ L(v, p) ∀ v ∈ U. (10.45)

The following result shows the link between this notion of saddle point and the min-
imization problems with equality constraints (10.24) or inequality constraints (10.31)
studied in the preceding section. For simplicity, we shall again use inequality between
vectors, sometimes writing q ≥ 0 instead of q ∈ (R+)M .

Proposition 10.3.2 We assume that the functions J, F1, . . . , FM are continuous over
V , and that the set K is defined by (10.24) or (10.31). We denote by P = RM in
the case of equality constraints (10.24) and P = (R+)M in the case of inequality
constraints (10.31). Let U be an open set of V containing K. For (v, q) ∈ U ×P , we
set L(v, q) = J(v) + q · F (v).
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Let (u, p) be a saddle point of L over U × P . Then u ∈ K and u is a global
minimum of J over K. Further, if J and F1, . . . , FM are differentiable at u, we have

J ′(u) +
M∑
i=1

piF
′
i (u) = 0. (10.46)

Proof. Let us write the saddle point condition

∀ q ∈ P J(u) + q · F (u) ≤ J(u) + p · F (u) ≤ J(v) + p · F (v) ∀ v ∈ U. (10.47)

Let us examine first the case of equality constraints. Since P = RM , the
first inequality in (10.47) shows that F (u) = 0, that is, u ∈ K. Then
J(u) ≤ J(v) + p · F (v) ∀ v ∈ U , which shows (by taking v ∈ K) that u is a global
minimum of J over K.

In the case of inequality constraints, we have P = (R+)M and the first inequality
of (10.47) shows now that F (u) ≤ 0 and that p · F (u) = 0. This proves again that
u ∈ K, and allows us to deduce easily from the second inequality that u is a global
minimum of J over K.

Finally, if J and F1, . . . , FM are differentiable at u, the second inequality of
(10.47) shows that u is a minimum point without constraint of J + p · F in the
open set U , which implies that the derivative is zero at u, J ′(u) + p · F ′(u) = 0
(cf. remark 10.2.2). �

10.3.2 The Kuhn–Tucker theorem

We return to the minimization problem under inequality constraints for which the set
K is given by (10.31), that is to say

K = {v ∈ V, Fi(v) ≤ 0 for 1 ≤ i ≤ m} . (10.48)

Theorem 10.2.15 has given a necessary condition for optimality. In this section we
shall see that this condition is also sufficient if the constraints and the cost function
are convex. In effect, proposition 10.3.2 says that, if (u, p) is a saddle point of the
Lagrangian, then u realizes the minimum of J over K. For a convex minimization
problem with convex inequality constraints, we shall establish a reciprocal of this
result, that is to say that, if u realizes the minimum of J over K, then there exists
p ∈ (R+)M such that (u, p) is a saddle point of the Lagrangian. We assume from now
on that J, F1, . . . , FM are convex and continuous over V .

Remark 10.3.3 As J, F1, . . . , FM are convex and continuous, K is convex and closed
and the existence of a global minimum of J over K is assured by theorem 9.2.7
when K is nonempty and that the condition (9.3) (we say ‘infinite at infinity’) is
satisfied. •

The Kuhn–Tucker theorem (also sometimes called the theorem of Karush, Kuhn,
and Tucker) confirms that, in the convex case, the necessary optimality condition of
theorem 10.2.15 is in fact a necessary and sufficient condition.
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Theorem 10.3.4 (Kuhn–Tucker) We assume that the functions J , F1, . . . , FM are
convex, continuous over V and differentiable over the set K (10.48). We introduce
the associated Lagrangian L

L(v, q) = J(v) + q · F (v) ∀ (v, q) ∈ V × (R+)M .

Let u ∈ K be a point of K where the constraints are qualified in the sense of definition
10.2.13. Then u is a global minimum of J over K if and only if there exists p ∈ (R+)M

such that (u, p) is a saddle point of the Lagrangian L over V ×(R+)M or, equivalently,
such that

F (u) ≤ 0, p ≥ 0, p · F (u) = 0, J ′(u) +
M∑
i=1

piF
′
i (u) = 0. (10.49)

Proof. If u is a minimum of J over K, we can apply theorem 10.2.15, which exactly
gives the optimality condition (10.49), from which we easily deduce that (u, p) is a
saddle point of L over V × (R+)M (by using the fact that J(v) + p · F (v) is convex).
Conversely, if (u, p) is a saddle point, we have already shown in proposition 10.3.2
that u is a global minimum of J over K. �

Remark 10.3.5 The Kuhn–Tucker theorem 10.3.4 is only applied to inequality con-
straints, and not to equality constraints, in general. However, it is good to remark
that affine equality constraints Av = b can be written in the form of inequality
constraints (affine therefore convex) Av − b ≤ 0 and b − Av ≤ 0. This allows us
to apply the Kuhn–Tucker theorem 10.3.4 to the minimization problem with affine
equality constraints. •

The following exercise allows us to interpret the Lagrange multipliers pi as the
sensitivity of the minimal value of J to variations of the constraints Fi: in economics,
these coefficients measure prices or marginal costs, in mechanics forces corresponding
to kinematic constraints, etc.

Exercise 10.3.1 We consider the perturbed optimization problem

inf
Fi(v)≤ui, 1≤i≤m

J(v), (10.50)

with u1, . . . , um ∈ R. We use the hypotheses of the Kuhn–Tucker theorem 10.3.4. We
denote by m∗(u) the minimal value of the perturbed problem (10.50).

1. Show that if p is the Lagrange multiplier for the nonperturbed problem (that is to
say (10.50) with u = 0), then

m∗(u) ≥ m∗(0)− pu. (10.51)

2. Deduce from (10.51) that if u �→ m∗(u) is differentiable, then

pi = −∂m
∗

∂ui
(0).

Interpret this result (cf. example 9.1.8 in economics).
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10.3.3 Duality
Let us give a brief outline of the duality theory for the optimization problems. We shall
apply it to the convex minimization problem with the inequality constraints in the preceding
subsection. We have associated with this minimization problem a problem of finding a saddle
point (u, p) for the Lagrangian L(v, q) = J(v) + q · F (v). But we shall see that, to the
existence of a saddle point (u, p) of the Lagrangian, we can inversely associate not one but
two optimization problems (more precisely, a minimization problem and a maximization
problem), which will be called duals of one another. We will then explain using two simple
examples how the introduction of the dual problem can be useful for the solution of the
original problem, called the primal problem (as opposed to the dual).

Let us return for the moment to the general framework of definition 10.3.1.

Definition 10.3.6 Let V and Q be two real Hilbert spaces, and L a Lagrangian defined over
a subset U ×P of V ×Q. We assume that there exists a saddle point (u, p) of L over U ×P

∀ q ∈ P L(u, q) ≤ L(u, p) ≤ L(v, p) ∀ v ∈ U. (10.52)

For v ∈ U and q ∈ P , let us set

J (v) = sup
q∈P

L(v, q) G(q) = inf
v∈U

L(v, q). (10.53)

We call the primal problem the minimization problem

inf
v∈U

J (v), (10.54)

and the dual problem the maximization problem

sup
q∈P

G(q). (10.55)

Remark 10.3.7 Of course, without supplementary hypotheses, it can happen that
J (v) = +∞ for certain values of v or that G(q) = −∞ for certain values of q. But the
assumed existence of the saddle point (u, p) in definition 10.3.6 assures us that the domains
of J and G (that is, the sets {v ∈ U, J (v) < +∞} and {q ∈ P, G(q) > −∞} over which these
functions are well defined) are not empty, since (10.52) shows that J (u) = G(p) = L(u, p).
The primal and dual problems therefore have a meaning. The following result shows that
these two problems are closely linked to the saddle point (u, p). •

Theorem 10.3.8 (duality) The couple (u, p) is a saddle point of L over U × P if and
only if

J (u) = min
v∈U

J (v) = max
q∈P

G(q) = G(p). (10.56)

Remark 10.3.9 By the definition (10.53) of J and G, (10.56) is equivalent to

J (u) = min
v∈U

(
sup
q∈P

L(v, q)
)
= max

q∈P

(
inf
v∈U

L(v, q)
)
= G(p). (10.57)

If the sup and the inf are attained in (10.57) (that is to say that we can write max and min,
respectively), we then see that (10.57) gives the possibility of changing the order of the min
and of the max applied to the Lagrangian L. This fact (which is false if L does not have a
saddle point) explains the name minimax which is often given to a saddle point. •
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Proof. Let (u, p) be a saddle point of L over U × P . Let us denote by L∗ = L(u, p). For
v ∈ U , it is clear from (10.53) that J (v) ≥ L(v, p), from which J (v) ≥ L∗ from (10.52).
As J (u) = L∗, this shows that J (u) = infv∈U J (v) = L∗. We show in the same way that
G(p) = supq∈P G(q) = L∗.

Conversely, let us assume that (10.56) holds and set L∗ = J (u). Definition (10.53) of J
shows that

L(u, q) ≤ J (u) = L∗ ∀ q ∈ P. (10.58)

Likewise, we also have:
L(v, p) ≥ G(p) = L∗ ∀ v ∈ U, (10.59)

and we deduce easily from (10.58) to (10.59) that L(u, p) = L∗, which shows that (u, p) is a
saddle point. �

Remark 10.3.10 Likewise if the Lagrangian L does not have a saddle point over U × P ,
we still have the following elementary inequality, called weak duality

inf
v∈U

(
sup
q∈P

L(v, q)
)

≥ sup
q∈P

(
inf
v∈U

L(v, q)
)
. (10.60)

In effect, for all v ∈ U and q ∈ P , L(v, q) ≥ infv′∈U L(v′, q), therefore supq∈P L(v, q) ≥
supq∈P infv′∈U L(v′, q), and since this is true for all v ∈ V , infv∈V supq∈P L(v, q) ≥
supq∈P infv′∈U L(v′, q), which gives (10.60). The (positive) difference between the two mem-
bers of the inequality (10.60) is called the duality gap. •

Exercise 10.3.2 Give an example of a Lagrangian for which the inequality (10.60) is strict
with its two members finite.

Exercise 10.3.3 Let U (respectively P ) be a convex compact nonempty subset of V (respect-
ively Q). We assume that the Lagrangian is such that v → L(v, q) is convex over U for all
q ∈ P , and q → L(v, q) is concave over P for all v ∈ U . Show then the existence of a saddle
point of L over U × P .

Application

We apply this duality result to the preceding problem of convex minimization with convex
inequality constraints.

inf
v∈V, F(v)≤0

J(v) (10.61)

with J and F = (F1, . . . , FM) convex over V . We introduce the Lagrangian

L(v, q) = J(v) + q · F (v) ∀ (v, q) ∈ V × (R+)M .

In this framework, we easily see that, for all v ∈ V ,

J (v) = sup
q∈(R+)M

L(v, q) =
{
J(v) if F (v) ≤ 0

+∞ otherwise,
(10.62)

which shows that the primal problem infv∈V J (v) is exactly the original problem (10.61)! On
the other hand, the function G(q) of the dual problem is well defined by (10.53), as (10.53)
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is here a convex minimization problem. Further, G(q) is a concave function since it is the
infimum of affine functions (see exercise 9.2.3). Consequently, the dual problem

sup
q∈(R+)M

G(q),

is a simpler concave maximization problem than the primal problem (10.61) since the
constraints are linear! This characteristic is notably exploited in some numerical algorithms
(cf. Uzawa’s algorithm). A simple combination of the Kuhn–Tucker 10.3.4 and duality 10.3.8
theorems gives us the following result.

Corollary 10.3.11 We assume that the functions J, F1, . . . , FM are convex and differen-
tiable over V . Take u ∈ V such that F (u) ≤ 0 and the constraints are qualified at u in
the sense of definition 10.2.13. Then, if u is a global minimum of J over V , there exists
p ∈ (R+)M such that

1. p is a global maximum of G over (R+)M ,

2. (u, p) is a saddle point of the Lagrangian L over V × (R+)M ,

3. (u, p) ∈ V × (R+)M satisfies the necessary and sufficient optimality condition

F (u) ≤ 0, p ≥ 0, p · F (u) = 0, J ′(u) + p · F ′(u) = 0. (10.63)

The most current application of corollary 10.3.11 is the following. Let us suppose that
the dual problem of maximization is easier to solve than the primal problem (this is the
case in general since its constraints are more simple). Then to calculate the solution u of
the primal problem we proceed in two steps. First, we calculate the solution p of the dual
problem. Second, we say that (u, p) is a saddle point of the Lagrangian, that is to say that
we calculate u, the solution of the minimization problem without constraint

min
v∈V

L(v, p).

Let us make precise that with the hypotheses made there is no a priori uniqueness of the
solutions for all these problems. Let us also make precise that to obtain the existence of the
minimum u in corollary 10.3.11 it is enough to add a hypothesis of strong convexity or of
infinite behaviour at infinity on J .

Remark 10.3.12 To illustrate corollary 10.3.11 and the interest in duality, we consider a
quadratic minimization problem in RN with affine inequality constraints

min
v∈RN , F(v)=Bv−c≤0

{
J(v) =

1
2
Av · v − b · v

}
, (10.64)

where A is an N ×N symmetric positive definite matrix, b ∈ RN , B an M ×N matrix, and
c ∈ RM . The Lagrangian is given by

L(v, q) = 1
2
Av · v − b · v + q · (Bv − c) ∀ (v, q) ∈ R

N × (R+)M . (10.65)

We have already carried out, in (10.62), the calculation of J , and said that the primal
problem is exactly (10.64). Let us now examine the dual problem. For q ∈ (R+)M , the
problem

min
v∈RN

L(v, q)
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has a unique solution since v → L(v, q) is a strongly convex function. This solution satisfies
∂L
∂v
(v, q) = Av − b+B∗q = 0, let v = A−1(b−B∗q). We therefore obtain

G(q) = L
(
A−1(b−B∗q), q

)
,

and the dual problem is finally written

sup
q≥0

(
−1
2
q ·BA−1B∗q + (BA−1b− c) · q − 1

2
A−1b · b

)
. (10.66)

Admittedly, the functional to be maximized in (10.66) does not have a particularly sympa-
thetic allure. It is again a problem with quadratic functional and affine constraints. However,
corollary 10.3.11 assures us that it has a solution. We can see besides that this solution is
not inevitably unique (except if the matrix B has rangeM since the matrix BA−1B∗ is then
positive definite). But the important advantage of the dual problem (10.66) comes from the
fact that the constraints (q ≥ 0) are expressed in a particularly simple form, simpler than for
the primal problem; and we see in Section 10.5.3 that this advantage can be used to develop
a computational algorithm for the solution of the primal problem. •

Let us finish with an entertaining exercise which shows the relation between saddle point
or minimax problems and game theory.

Exercise 10.3.4 Take a rectangular matrix

A =

⎛
⎜⎜⎜⎝

1 0 4 2 3 5
−3 2 −1 2 −5 2
−4 2 −2 0 −1 2
−2 4 −1 6 −2 2
−1 2 −6 3 −1 1

⎞
⎟⎟⎟⎠ .

We assume that one of the two players chooses a line i, the other a column j, without one knowing
the choice of the other. When their choices are revealed, the gain (or the loss, depending on
the sign) of the first player is determined by the coefficient aij of the matrix A (the other player
receiving or paying −aij). Show that the optimal strategy to minimize the risk leads to a minimax
problem that we shall solve. Is the game fair for this matrix A?

10.4 Applications
In this section we shall study some applications of the results of the preceding sections.
Let us point out that another application, linear programming, will be treated in the next
chapter because of its importance in operations research.

10.4.1 Dual or complementary energy
In Chapter 5 we have seen that the solution of the following boundary value problem{

−∆u = f in Ω
u = 0 on ∂Ω, (10.67)
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where Ω is a bounded open set of RN and f ∈ L2(Ω), is equivalent to the minimization of
an energy

min
v∈H1

0(Ω)

{
J(v) =

1
2

∫
Ω

|∇v|2dx−
∫

Ω

fv dx

}
(10.68)

(see proposition 5.2.7). We have seen in exercise 9.2.8 that (10.68) has a unique minimum
and, in exercise 10.2.4, that its Euler equation is the variational formulation of (10.67).
The physical significance of the energy (10.68) is obvious. For example, if (10.67) models
the deformation of an elastic membrane (u is the normal displacement under the action of
forces f), the solution is the displacement which minimizes the sum of the elastic energy
of deformation and of the potential energy of the exterior forces. We propose to show that
the duality theory allows us to associate with (10.67) a second minimization principle
bringing into play an energy, called a complementary (or dual) energy in mechanics, whose
physical significance is just as important as that of (10.68).

We shall introduce a Lagrangian associated with the primal energy (10.68) although this
one does not have constraints. To do this we introduce an intermediate variable e ∈ L2(Ω)N

and a constraint e = ∇v. Then (10.68) is equivalent to

min
v∈H1

0
(Ω), e∈L2(Ω)N

e=∇v

{
J̃(v, e) =

1
2

∫
Ω

|e|2dx−
∫

Ω

fv dx

}
.

We introduce an intermediate Lagrangian for this problem

M(e, v, τ) = J̃(v, e) +
∫

Ω

τ · (∇v − e) dx,

with a Lagrange multiplier τ ∈ L2(Ω)N . We now eliminate e to obtain the Lagrangian sought

L(v, τ) = min
e∈L2(Ω)N

M(e, v, τ).

As e → M(e, v, τ) is strongly convex, there exists a unique minimum point, and an easy
calculation shows that

L(v, τ) = −1
2

∫
Ω

|τ |2dx−
∫

Ω

fv dx+
∫

Ω

τ · ∇v dx. (10.69)

We easily see that the primal problem associated with the Lagrangian (10.69) is (10.68)(
max

τ∈L2(Ω)N
L(v, τ)

)
= J(v),

and that the dual problem is

(
min

v∈H1
0(Ω)

L(v, τ)
)
= G(τ) =

⎧⎨
⎩ −1

2

∫
Ω

|τ |2dx if − divτ = f in Ω

−∞ otherwise.
(10.70)

We can now state the principal result.
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Theorem 10.4.1 There exists a unique saddle point (u, σ) of the Lagrangian L(v, τ) over
H1

0 (Ω)× L2(Ω)N

L(u, σ) = max
τ∈L2(Ω)N

min
v∈H1

0(Ω)
L(v, τ) = min

v∈H1
0(Ω)

max
τ∈L2(Ω)N

L(v, τ).

In other words, u is the unique minimum point of J(v) in H1
0 (Ω), σ is the unique maximum

point of G(τ) in L2(Ω)N ,

J(u) = min
v∈H1

0(Ω)
J(v) = max

τ∈L2(Ω)N
G(τ) = G(σ),

and they are linked by the relation σ = ∇u.

Remark 10.4.2 The dual problem (10.70) has a clear physical interpretation. As
maxG(τ) = −min(−G(τ)), it minimizes the (complementary) energy of mechanical con-
straints 1

2

∫
Ω
|τ |2dx in the set of statically admissible stress fields, that is to say satisfying

the equilibrium of forces −divτ = f in Ω. In this dual formulation, the displacement v
appears as the Lagrange multiplier of the equilibrium constraint −divτ = f . Another con-
sequence of theorem 10.4.1 is that we always have G(τ) ≤ J(v) which allows us to obtain
bounds over the primal or dual energies. Let us remark that we also have

J(u) = G(σ) =
1
2

∫
Ω

fu dx

which is none other than half of the work of the exterior forces. •

Proof. The proof could be an immediate consequence of corollary 10.3.11 (by remarking
that an affine equality constraint is written as two opposed affine inequalities) if this theorem
was not restricted (here) to a finite number of constraints. Now, in the dual problem (10.70)
there are an infinite number of constraints since the constraint −divτ = f holds for almost
all points x ∈ Ω. Nevertheless, the result is true and it is easy to see why. In effect, by
construction we have

G(τ) ≤ L(v, τ) ≤ J(v),

and we know that the primal and dual problems have a unique minimum point u and σ,
respectively. Now, as u is a solution of (10.67), a simple integration by parts shows that

J(u) =
1
2

∫
Ω

|∇u|2dx−
∫

Ω

fu dx = −1
2

∫
Ω

|∇u|2dx = −1
2

∫
Ω

fu dx.

If we define σ = ∇u, we deduce from (10.67) that −divσ = f , and we therefore obtain

G(τ) ≤ J(u) = G(σ),

that is to say that σ is the maximum point of G, therefore (u, σ) is the saddle point of
L(v, τ). �
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10.4.2 Optimal command
Here we solve example 9.1.9 of a problem of optimal command called the linear-quadratic
system. We consider the linear differential system whose unknown (the state of the system)
y(t) has values in RN {

dy

dt
= Ay +Bv + f for 0 ≤ t ≤ T

y(0) = y0

(10.71)

where y0 ∈ RN is the initial state of the system, f(t) ∈ RN is a source term, v(t) ∈ RM is
the command that allows us to act over the system, and A and B are two constant matrices
of dimensions N ×N and N ×M , respectively.

We want to choose the command v to minimize a quadratic criterion

J(v) =
1
2

∫ T

0

Rv(t) · v(t)dt+ 1
2

∫ T

0

Q(y− z)(t) · (y− z)(t)dt+
1
2
D (y(T )− zT ) · (y(T )− zT ) ,

where z(t) is a ‘target’ trajectory, zT is a final ‘target’ position, and R,Q,D three symmetric
positive matrices one of which namely R is assumed positive definite. Let us remark that
the function y(t) depends on the variable v through (10.71).

To be able to apply the preceding optimization results, we choose to look for v in
the Hilbert space L2(]0, T [;RM) of functions of ]0, T [ in RM which are square integrable.
(The ‘more natural’ space of continuous functions is unfortunately not a Hilbert space.) To
take account of possible constraints on the command, we introduce a convex closed nonempty
set K of RM which represents the set of admissible commands. The minimization problem
is therefore

inf
v(t)∈L2(]0,T [;K)

J(v). (10.72)

Let us start by verifying that the system (10.71) is well-posed.

Lemma 10.4.3 We assume that f(t) ∈ L2(]0, T [;RN) and v(t) ∈ L2(]0, T [;K). Then
(10.71) has a unique solution y(t) ∈ H1(]0, T [;RN) which is, moreover, continuous over
[0, T ].

Proof. This existence and uniqueness result is well known if f and v are continuous. It is
no more difficult in the framework of L2. We use the explicit representation formula of the
solution

y(t) = exp(tA)y0 +
∫ t

0

exp
(
(t− s)A

)
(Bv + f)(s) ds

which allows us to verify the existence and uniqueness of y in H1(]0, T [;RN). Lemma 4.3.3
tells us finally that y is continuous over [0, T ]. �

We can then show the existence and uniqueness of the optimal command.

Proposition 10.4.4 There exists a unique u ∈ L2(]0, T [;K) which minimizes (10.72). This
optimal command u is characterized by∫ T

0

Q(yu − z) · (yv − yu)dt+
∫ T

0

Ru · (v − u)dt

+D(yu(T )− zT ) · (yv(T )− yu(T )) ≥ 0 ,
(10.73)
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for all v ∈ L2(]0, T [;K), where yv denotes the solution of (10.71) associated with the com-
mand v.

Proof. We start by remarking that v → y is an affine function. In effect, by the linearity
of (10.71) we have yv = ỹv + ŷ, where ỹv is a solution of{

dỹv
dt

= Aỹv +Bv for 0 ≤ t ≤ T

ỹv(0) = 0
(10.74)

and ŷ is a solution of {
dŷ

dt
= Aŷ + f for 0 ≤ t ≤ T

ŷ(0) = y0

It is clear that ŷ does not depend on v and v → ỹv is continuous and linear from L2(]0, T [;K)
into H1(]0, T [;RN). Consequently, v → J(v) is a positive quadratic function of v (more
precisely, the sum of a quadratic form and an affine function), therefore J is convex, and
also strongly convex since the matrix R is positive definite. As L2(]0, T [;K) is a convex
closed nonempty set, theorem 9.2.6 allows us to conclude the existence and uniqueness of
the minimum point u of (10.72). On the other hand, the necessary and sufficient optimality
condition of theorem 10.2.1 is 〈J ′(u), v − u〉 ≥ 0. To calculate the gradient, the surest and
simplest method is to calculate

lim
ε→0

J(u+ εw)− J(u)
ε

= 〈J ′(u), w〉.

As J(v) is quadratic the calculation is very simple since yu+εw = yu+ εỹw. We easily obtain
(10.73) by remarking that yu − yv = ỹu − ỹv. �

Remark 10.4.5 By making explicit the optimality condition of (10.72) we have in fact
calculated the gradient J ′(w) for all w ∈ L2]0, T [ (and not only for the minimum u), which
is useful for numerical methods for minimization (see section 10.5). We have obtained∫ T

0

J ′(w)v dt =
∫ T

0

Rw · v dt+
∫ T

0

Q(yw − z) · ỹvdt+D(yw(T )− zT ) · ỹv(T ), (10.75)

where v is an arbitrary function of L2]0, T [. •

The necessary and sufficient optimality condition (10.73) is in fact not exploitable! In
effect, to test the optimality of u it is necessary for each test function v to calculate the
corresponding state yv. Another way to see this difficulty is the impossibility of obtaining
an explicit expression for J ′(u) starting from (10.75). To circumvent this difficulty we have
recourse to the idea of an adjoint state which is one of the most profound ideas in the
theory of optimal control. Let us show how to proceed using the example studied in this
subsection (we shall give the general idea in remark 10.4.8 below). For the problem (10.72)
we defined the adjoint state p as the unique solution of{

dp

dt
= −A∗p−Q(y − z) for 0 ≤ t ≤ T

p(T ) = D(y(T )− zT )
(10.76)
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where y is the solution of (10.71) for the command u. The name adjoint state comes from
the fact that it is the adjoint matrix A∗ which appears in (10.76). The interest in the adjoint
state is that it allows us to obtain an explicit expression for J ′(u).

Theorem 10.4.6 The derivative of J at u is given by

J ′(u) = B∗p+Ru. (10.77)

In particular, the necessary and sufficient optimality condition of the problem (10.72) is∫ T

0

(B∗p+Ru) · (v − u) dt ≥ 0 ∀ v ∈ L2(]0, T [;K). (10.78)

Remark 10.4.7 Formula (10.77) generalizes for all w ∈ L2]0, T [ in J ′(w) = B∗p+Rw, even
if it means calculating p by (10.76) by using the state y corresponding to the command w.
Theorem 10.4.6 gives an explicit expression for the gradient at the cost of the supplementary
solution of the adjoint system (10.76). This is a fundamental difference with the formula
(10.75) which, for each test function v, needs the solution of the system (10.71) with the
command v. •

Proof. Let p be the solution of (10.76) and ỹv that of (10.74). The idea is to multiply
(10.76) by ỹv and (10.74) by p, to integrate by parts and to compare the results. More
precisely, we calculate the following quantity in two different ways. First, by integrating and
by taking account of the initial conditions ỹv(0) = 0 and p(T ) = D(y(T )− zT ), we have∫ T

0

(
dp

dt
· ỹv + p · dỹv

dt

)
dt = D(y(T )− zT ) · ỹv(T ). (10.79)

On the other hand, by using the equations we obtain∫ T

0

(
dp

dt
· ỹv + p · dỹv

dt

)
dt = −

∫ T

0

Q(y − z) · ỹv dt+
∫ T

0

Bv · p dt. (10.80)

We deduce, from the equality between (10.79) and (10.80), a simplification of the expression
(10.75) of the derivative∫ T

0

J ′(u)v dt =
∫ T

0

Ru · vdt+
∫ T

0

Bv · pdt,

which gives the results (10.77) and (10.78). �

Remark 10.4.8 How can we guess the problem (10.76) which defines the adjoint state in
order to simplify the expression of J ′(v)? Once again, the main idea is the introduction of a
Lagrangian associated with the minimization problem (10.72). We consider the equation of
state (10.71) as a constraint between two independent variables v and y and we define the
Lagrangian as the sum of J(v) and of the equation of state multiplied by p, that is to say

L(v, y, p) =
∫ T

0

Rv(t) · v(t)dt+
∫ T

0

Q(y − z)(t) · (y − z)(t)dt

+D (y(T )− zT ) · (y(T )− zT ) +
∫ T

0

p ·
(
−dy
dt

+Ay +Bv + f
)
dt

−p(0) · (y(0)− y0) ,
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where p is the Lagrange multiplier for the constraint (10.71) between v and y. Formally, the
optimality conditions of (10.72) are obtained by saying that the Lagrangian is stationary,
that is to say that

∂L
∂v

=
∂L
∂y

=
∂L
∂p

= 0.

The first derivative gives the optimality condition (10.77), the second gives the equation
satisfied by the adjoint state p, and the third the equation satisfied by the state y. Let us
insist on the fact that this calculation is purely formal, but that in general it gives the ‘good’
equation of the adjoint state. •

Starting from theorem 10.4.6 we can obtain some qualitative properties of the solution
y and of the optimal command u (see exercise 10.4.1), and construct a numerical method
to minimize (10.72) by a gradient type algorithm. In the absence of constraints on the
command, that is to say if K = RM , we can even go further in the analysis and find
a ‘law of command’ which gives the adjoint state p (and therefore the optimal command
u = −R−1B∗p because of (10.78)).

Proposition 10.4.9 We assume that K = RM , f = 0, z = 0, and zT = 0. We choose the
optimal command u = −R−1B∗P . Let P (t) be the matrix valued (of order N) function of
[0, T ] which is the unique solution of

{
dP

dt
= −A∗P − PA+ PBR−1B∗P −Q for 0 ≤ t ≤ T

P (T ) = D
(10.81)

Then P (t) is symmetric positive for all t ∈ [0, T ] and we have p(t) = P (t)y(t).

Proof. For all t ∈ [0, T ], the mapping which, for y0 ∈ RN , gives (y, p)(t) is clearly linear.
It is injective from exercise 10.4.1. Consequently, as y0 varies the relation between y(t) and
p(t) is linear, and there exists a matrix P (t) of order N such that p(t) = P (t)y(t). By
differentiating this expression and by using the equations (10.71) and (10.76), we obtain

dP

dt
y = −A∗Py − PAy + PBR−1B∗Py −Qy

for all y(t) (which is arbitrary since y0 is). We deduce the equation in (10.81). We obtain
the final condition P (T ) = D since p(T ) = Dy(T ) and y(T ) is arbitrary in RN . We have the
uniqueness of the solution of (10.81). �

Exercise 10.4.1 We assume that K = RM , f = 0, z = 0, and zT = 0. Show that, for all
t ∈ [0, T ], the optimal solution satisfies

p(t) · y(t) = Dy(T ) · y(T ) +
∫ T

t

Qy(s) · y(s) ds+
∫ T

t

R−1B∗p(s) ·B∗p(s) ds .

Deduce that if there exists t0 ∈ [0, T ] such that y(t0) = 0, then y(t) = p(t) = 0 for all t ∈ [0, T ].
Interpret this result.
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Exercise 10.4.2 Obtain the equivalent of proposition 10.4.4 and of theorem 10.4.6 for the
parabolic system ⎧⎪⎨

⎪⎩
∂y

∂t
−∆y = v + f in ]0, T [×Ω

y = 0 on ]0, T [×∂Ω
y(0) = y0 in Ω

where y0 ∈ L2(Ω), f ∈ L2(]0, T [×Ω), v ∈ L2(]0, T [×Ω) is the command, and we minimize

inf
v∈L2(]0,T [×Ω)

J(v) =
∫ T

0

∫
Ω

v2dt dx+
∫ T

0

∫
Ω

|y − z|2dt dx+
∫

Ω

|y(T )− zT |2dx,

where z ∈ L2(]0, T [×Ω) and zT ∈ L2(Ω).

Exercise 10.4.3 Generalize the preceding exercise to the wave equation.

10.4.3 Optimization of distributed systems
We solve here an example 9.1.12 of the control of an elastic membrane deformed by
an exterior force f and which has a fixed shape. The behaviour of the membrane is
modelled by {

−∆u = f + v in Ω
u = 0 on ∂Ω, (10.82)

where u is the vertical displacement of the membrane and v is a control force which will be
the optimization variable. We are given an open set ω ⊂ Ω over which the control acts and
two limiting functions vmin ≤ vmax in L2(ω). In all that follows we assume that the functions
of L2(ω) are extended by zero in Ω \ ω. We then define the set of admissible controls

K =
{
v ∈ L2(ω) such that vmin(x) ≤ v(x) ≤ vmax(x) in ω and v = 0 in Ω \ ω

}
. (10.83)

If f ∈ L2(Ω), theorem 5.2.2 tells us that there exists a unique solution u ∈ H1
0 (Ω). We want

to control the membrane so that it adopts a displacement u0 ∈ L2(Ω). We define a cost
function

J(v) =
1
2

∫
Ω

(
|u− u0|2 + c|v|2

)
dx, (10.84)

where u is the solution of (10.82) (and therefore depends on v) and c > 0. The optimization
problem is written

inf
v∈K

J(v) . (10.85)

Proposition 10.4.10 There exists a unique optimal control v ∈ K for the problem (10.85).

Proof. We remark that the function v → u is affine from L2(Ω) into H1
0 (Ω). Consequently,

J(v) is a positive quadratic function of v, therefore it is convex. It is likewise strongly
convex since J(v) ≥ c‖v‖2

L2(Ω). On the other hand, K is a convex closed nonempty set of
L2(Ω). Consequently, theorem 9.2.6 allows us to conclude the existence and uniqueness of
the minimum point of (10.85). �
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To obtain a necessary optimality condition which is exploitable, we introduce, as in
Section 10.4.2, an adjoint state p defined as the unique solution in H1

0 (Ω) of{
−∆p = u− u0 in Ω
p = 0 on ∂Ω. (10.86)

Proposition 10.4.11 The cost function J(v) is differentiable over K and we have

J ′(v) = p+ cv ,

where p (which depends on v) is given by (10.86). Consequently, the necessary and sufficient
optimality condition for the optimal control v is

−∆u = f + v in Ω , u ∈ H1
0 (Ω), (10.87)

−∆p = u− u0 in Ω , p ∈ H1
0 (Ω), (10.88)

v = 1IωP[vmin(x),vmax(x)]

(
−p
c

)
, (10.89)

where 1Iω is the characteristic function of ω (that is to say which is 1 in ω and 0 in Ω \ ω)
and P[vmin(x),vmax(x)] is the orthogonal projection operator over the segment [vmin(x), vmax(x)]
defined by P[vmin(x),vmax(x)]w = min

(
vmax(x),max

(
vmin(x), w(x)

))
.

Proof. As in proposition 10.4.4, the simplest and surest method to calculate the gradient is

lim
ε→0

J(v + εw)− J(v)
ε

=
∫

Ω

J ′(v)w dx .

As J(v) is quadratic the calculation is very simple and we obtain∫
Ω

J ′(v)w dx =
∫

Ω

((u− u0)ũw + cvw) dx,

where ũw is given by {
−∆ũw = w in Ω
ũw = 0 on ∂Ω. (10.90)

To simplify the expression of the gradient we use the adjoint state: we multiply (10.90) by
p and (10.86) by ũw and we integrate by parts∫

Ω

∇p · ∇ũw dx =
∫

Ω

(u− u0)ũw dx∫
Ω

∇ũw · ∇p dx =
∫

Ω

wpdx

By comparison of these two equalities we deduce that∫
Ω

J ′(v)w dx =
∫

Ω

(p+ cv)w dx,

from which we obtain the expression for the gradient. The necessary and sufficient optimality
condition given by theorem 10.2.1 is∫

Ω

(p+ cv) (w − v) dx ≥ 0 ∀w ∈ K. (10.91)
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By taking w equal to v everywhere except over a small ball in ω, then letting the radius of
this ball tend to zero, we can ‘localize’ (10.91) at (almost) every point x of ω(

p(x) + cv(x)
) (
w(x)− v(x)

)
≥ 0 ∀w(x) ∈ [vmin(x), vmax(x)].

This last condition is only the definition of v(x) as the orthogonal projection of −p(x)/c on
the segment [vmin(x), vmax(x)] (see theorem 12.1.10). Finally, we obtain (10.89) by remarking
that the support of the functions of K is restricted to ω. �

Remark 10.4.12 As in remark 10.4.8 we explain how to find the form of (10.86) which
defines the adjoint state. We introduce the Lagrangian associated with the minimization
problem (10.85) under the constraint that the equation of state (10.82) (which links the two
independent variables v and u) satisfies

L(v, u, p) = 1
2

∫
Ω

(
|u− u0|2 + c|v|2

)
dx+

∫
Ω

p(∆u+ f + v) dx,

where p is the Lagrange multiplier for the constraint (10.82) between v and u. Formally,
the optimality conditions are obtained by saying that the Lagrangian is stationary, that is
to say that

∂L
∂v

=
∂L
∂u

=
∂L
∂p

= 0.

The first derivative gives the optimality condition (10.89), the second gives the equation
satisfied by the adjoint state p, and the third the equation satisfied by the state u. •

10.5 Numerical algorithms

10.5.1 Introduction

The object of this section is to present and analyse some algorithms which allow us to
calculate, or more exactly to approximate the solution of the optimization problems
studied above. All the algorithms studied here are used effectively in practice to solve
concrete optimization problems by computer.

These algorithms are also all of an iterative nature: starting from a given initial
u0, each method constructs a sequence (un)n∈N which we shall show converges, under
certain hypotheses, to the solution u of the optimization problem considered. After
having shown the convergence of these algorithms (that is to say, the convergence
of the sequence (un) to u whatever the choice of the initial data u0), we shall also say
a word about their rate of convergence.

In all of this section we assume that the objective function J to be minimized
is α-convex and differentiable. This hypothesis of α-convexity is rather strong, but
we see later that it is crucial for the proofs of convergence of the algorithms. The
application of the algorithms presented here to the minimization of convex functions
which are not strongly convex can present some small difficulties, without mention-
ing the great difficulties which appear when we want to approximate the minimum
of a nonconvex function! Typically, these algorithms cannot converge and oscillate
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between several minimum points, or worse they converge to a local minimum, very
far from a global minimum (in the nonconvex case, cf. proposition 9.2.3).

Remark 10.5.1 We limit ourselves to deterministic algorithms and we say nothing of
stochastic algorithms (simulated annealing, genetic algorithms, etc.). Besides the fact
that their analysis calls on probability theory (which we do not discuss in this course),
their use is very different. To put it simply, let us say that deterministic algorithms
are the most efficient for the minimization of convex functions, while stochastic algo-
rithms allow us to approximate global (not only local) minima of nonconvex functions
(for a higher cost, however, in practice). •

10.5.2 Gradient algorithms (case without constraints)

Let us start by studying the practical solution of optimization problems in the absence
of constraints. Let J be a function which is α-convex and differentiable defined over
the real Hilbert space V , we consider the problem without constraint

inf
v∈V

J(v). (10.92)

From theorem 9.2.6 there exists a unique solution u, characterized by remark 10.2.2
by the Euler equation

J ′(u) = 0.

Gradient algorithm with optimal step

The gradient algorithm consists of ‘moving’ from an iterate un by following the line
of greatest slope associated with the cost function J(v). The direction of descent
corresponding to this line of greatest slope from un is given by the gradient J ′(un).
In effect, if we look for un+1 in the form

un+1 = un − µnwn , (10.93)

with µn > 0 small and wn a unit vector in V , it is with the choice of direction
wn = J ′(un)/‖J ′(un)‖ that we can hope to find the smallest value of J(un+1) (in the
absence of other information such as higher derivatives or previous iterates).

This simple remark leads us, among the methods (10.93) which are called ‘methods
of descent’, to the gradient algorithm with optimal step, in which we solve a
succession of minimization problems with one real variable (even if V is not finite
dimensional). Starting from an arbitrary u0 in V , we construct the sequence (un)
defined by

un+1 = un − µn J ′(un), (10.94)

where µn ∈ R is chosen at each step such that

J(un+1) = inf
µ∈R

J
(
un − µJ ′(un)

)
. (10.95)

This algorithm converges as the following result shows.
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Theorem 10.5.2 We assume that J is α-convex and differentiable and that J ′ is
Lipschitzian over all bounded sets of V , that is to say that

∀M > 0, ∃CM > 0, ‖v‖+ ‖w‖ ≤M ⇒ ‖J ′(v)− J ′(w)‖ ≤ CM‖v − w‖ . (10.96)

Then the gradient algorithm with optimal step converges: for any u0, the sequence
(un) defined by (10.94) and (10.95) converges to the solution u of (10.92).

Proof. The function f(µ) = J
(
un − µJ ′(un)

)
is strongly convex and differentiable

over R (if J ′(un) �= 0; otherwise, we have already converged, un = u!). The minimiza-
tion problem (10.95) therefore has a unique solution, characterized by the condition
f ′(µ) = 0, which is also written

〈J ′(un+1), J ′(un)〉 = 0. (10.97)

This shows that two consecutive ‘directions of descent’ are orthogonal.
Since (10.97) implies that 〈J ′(un+1), un+1 − un〉 = 0, we deduce from the

α-convexity of J that

J(un)− J(un+1) ≥ α

2
‖un − un+1‖2. (10.98)

Since the sequence J(un) is decreasing and bounded below (by J(u)), it converges
and the inequality (10.98) shows that un+1 − un tends to 0. On the other hand,
the α-convexity of J and the fact that the sequence J(un) is bounded show that the
sequence (un) is bounded: there exists a constant M such that

‖un‖ ≤M .

Writing (10.96) for v = un and w = un+1 and using (10.97), we easily see that
‖J ′(un)‖ ≤ CM‖un+1− un‖, which shows that J ′(un) tends to 0. The α-convexity of
J then gives

α‖un − u‖2 ≤ 〈J ′(un)− J ′(u), un − u〉 = 〈J ′(un), un − u〉 ≤ ‖J ′(un)‖ ‖un − u‖,

which implies α‖un − u‖ ≤ ‖J ′(un)‖, from which we deduce the convergence of the
algorithm. �

Remark 10.5.3 It is useful to note the practical interest of the last inequality of this
proof: besides the proof of convergence, it gives is an easily calculable upper bound
on the error un − u. •
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Gradient algorithm with fixed step

The gradient algorithm with fixed step consists simply of the construction of a
sequence un defined by

un+1 = un − µJ ′(un), (10.99)

where µ is a fixed positive parameter. This method is therefore simpler than the
gradient algorithm with optimal step, since at each step we save the cost of calculating
the solution of (10.95). The following result shows under what hypotheses we can
choose the parameter µ to ensure the convergence.

Theorem 10.5.4 We assume that J is α-convex and differentiable and that J ′ is
Lipschitzian over V , that is to say that there exists a constant C > 0 such that

‖J ′(v)− J ′(w)‖ ≤ C‖v − w‖ ∀ v, w ∈ V. (10.100)

Then, if 0 < µ < 2α/C2, the gradient algorithm with fixed step converges: for any
u0, the sequence (un) defined by (10.95) converges to the solution u of (10.92).

Proof. Let us set vn = un−u. As J ′(u) = 0, we have vn+1 = vn−µ
(
J ′(un)−J ′(u)

)
,

from which it becomes

‖vn+1‖2 = ‖vn‖2 − 2µ〈J ′(un)− J ′(u), un − u〉+ µ2
∥∥J ′(un)− J ′(u)

∥∥2

≤
(
1− 2αµ + C2µ2) ‖vn‖2,

(10.101)

from (10.100) and the α-convexity. If 0 < µ < 2α/C2, it is easy to see that 1− 2αµ+
C2µ2 ∈]0, 1[, and the convergence is deduced from (10.101). �

Remark 10.5.5 A simple adaptation of the preceding proof, left to the reader as an
exercise, allows us to show convergence by replacing (10.100) by the weaker hypothesis
(10.96). We must also note that, for the gradient algorithm with fixed step, compared
to the gradient algorithm with optimal step, the sequence J(un) is not necessarily
monotone. •

Remark 10.5.6 Numerous other descent algorithms of the type (10.93) exist that
we have not described here. In particular, in this class of algorithms, we meet the
conjugate gradient method in which the direction of descent wn depends not only
on the gradient J ′(un) but also on the directions of descent used in the preceding
iterations. We present this method in Section 13.1.5, for the particular case of a
quadratic functional of the type 1

2Ax · x− b · x. •

Remark 10.5.7 How do we choose between the two gradient algorithms we have just
seen, and more generally between the different methods of numerical minimization
which exist? A first criterion is the cost of each iteration. For example, as we have
said, each iteration of the gradient algorithm with fixed step is less expensive than
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an iteration of gradient algorithm with optimal step. Obviously, if we start from the
same iterate un, an iteration of the gradient algorithm with optimal step decreases
the cost function more than an iteration of the gradient algorithm with fixed step.
We arrive therefore at the second criterion, often more important, which is that of the
rate of convergence of the algorithm, which fixes the number of iterations necessary
to make the error ‖un − u‖ less than a tolerance ε fixed a priori.

For example, the inequality (10.101) shows that the convergence of the gradient
algorithm with fixed step is at least geometrical, since

‖un − u‖ ≤ γn‖u0 − u‖ with γ =
√

1− 2αµ + µ2C2.

This remark leads, subject to a more careful analysis, to preferring the parameter µ
to be the median value α/C2 in the interval

]
0, 2α/C2

[
, which minimizes γ. In fact,

we can show that the convergence of the two algorithms studied above is effectively
geometrical in certain particular cases (which means that the quantity ‖un − u‖1/n

has a finite limit, strictly between 0 and 1, when n tends to +∞). •

Exercise 10.5.1 For V = R2 and J(x, y) = ax2 + by2 with a, b > 0, show that the
gradient algorithm with optimal step converges in one iteration if a = b or if x0y0 = 0,
and that the convergence is geometrical in the other cases. Study also the convergence
of the gradient algorithm with fixed step: for which values of the parameter µ do we have
convergence, for what value is it the most rapid?

10.5.3 Gradient algorithms (case with constraints)

We now study the solution of optimization problems with constraints

inf
v∈K

J(v), (10.102)

where J is a function which is α-convex and differentiable defined over K, a convex
closed nonempty subset of the real Hilbert space V . Theorem 9.2.6 ensures the
existence and uniqueness of the solution u of (10.102), characterized from theorem
10.2.1 by the condition

〈J ′(u), v − u〉 ≥ 0 ∀ v ∈ K. (10.103)

According to the algorithms studied below, we will sometimes need to state supple-
mentary hypotheses over the set K.

Gradient algorithm with fixed step and projection

The gradient algorithm with fixed step adapts to problem (10.102) with constraints
starting from the following remark. For all real µ > 0, (10.103) is written

〈u−
(
u− µJ ′(u)

)
, v − u〉 ≥ 0 ∀ v ∈ K. (10.104)
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Let us denote by PK the projection operator over the convex set K, defined in
theorem 12.1.10 (see remark 12.1.11). Then, from this theorem, (10.104) is none other
than the characterization of u as the orthogonal projection of u− µJ ′(u) over K. In
other words,

u = PK
(
u− µJ ′(u)

)
∀µ > 0. (10.105)

It is easy to see that (10.105) is in fact equivalent to (10.103), and therefore charac-
terizes the solution u of (10.102). The gradient algorithm with fixed step and
projection algorithm (or more simply projected gradient) is then defined by the
iteration

un+1 = PK
(
un − µJ ′(un)

)
, (10.106)

where µ is a fixed positive parameter.

Theorem 10.5.8 We assume that J is α-convex, differentiable and that J ′ is Lips-
chitzian over V (of constant C, see (10.100)). Then, if 0 < µ < 2α/C2, the gradient
algorithm with fixed step and projection converges: for any u0 ∈ K, the sequence (un)
defined by (10.106) converges to the solution u of (10.102).

Proof. The proof reuses that of theorem 10.5.4 by observing that the proof of (10.101)
shows more generally that the mapping v �→ v − µJ ′(v) is strictly contracting when
0 < µ < 2α/C2, that is to say that

∃ γ ∈]0, 1[,
∥∥(v − µJ ′(v)

)
−
(
w − µJ ′(w)

)∥∥ ≤ γ‖v − w‖.

Since the projection PK is weakly contracting from (12.2), the mapping v �→ PK
(
v−

µJ ′(v)
)

is strictly contracting, which proves the convergence of the sequence (un)
defined by (10.106) to the solution u of (10.102). �

Exercise 10.5.2 Take V = RN and K = {x ∈ RN such that
∑N
i=1 xi = 1}. Make

explicit the orthogonal projection operator PK and interpret formula (10.106) in this case
in terms of Lagrange multipliers.

Uzawa’s Algorithm

The preceding result shows that the gradient algorithm with fixed step and projection
is applicable to a large class of convex optimization problems with constraints. But
this conclusion is largely deluding from the practical point of view, since the projection
operator PK is not explicitly known in general: the projection of an element v ∈ V
over an arbitrary convex closed set of V may be very difficult to determine!

An important exception concerns, in finite dimensions (for V = RM ), the subsets
K of the form

K =
M∏
i=1

[ai, bi] (10.107)
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(with possibly ai = −∞ or bi = +∞ for certain indices i). In effect, it is then easy
to see that, if x = (x1, x2, . . . , xM ) ∈ RM , y = PK(x) has components

yi = min (max (ai, xi), bi) for 1 ≤ i ≤M, (10.108)

in other words, it is enough just to ‘truncate’ the components of x. This simple
property, together with the remarks about the duality stated in section 10.3, will
lead us to a new algorithm. In effect, even if the primal problem involves a set K
of admissible solutions over which the projection PK cannot be explicitly given, the
dual problem will frequently be posed over a set of the form (10.107), typically over
(R+)M . In this case, the dual problem may be solved by the gradient method with
fixed step and projection, and the solution of the primal problem can then be obtained
by solving a minimization problem without constraint. These remarks are the basis
of Uzawa’s algorithm, which is in fact a method of looking for a saddle point.

Let us consider the convex minimization problem

inf
F (v)≤0

J(v), (10.109)

where J is a convex functional defined over V and F a convex function of V over RM .
Under the hypotheses of the Kuhn–Tucker theorem 10.3.4, the solution of (10.109)
reduces to finding a saddle point (u, p) of the Lagrangian

L(v, q) = J(v) + q · F (v), (10.110)

over V × (R+)M . Starting from the definition 10.3.1 of the saddle point

∀ q ∈ (R+)M L(u, q) ≤ L(u, p) ≤ L(v, p) ∀ v ∈ V, (10.111)

we deduce that (p− q) · F (u) ≥ 0 for all q ∈ (R+)M , from which we take, for all real
µ > 0,

(p− q) ·
(
p−

(
p + µF (u)

))
≤ 0 ∀ q ∈ (R+)M ,

which, from (12.1), shows that

p = PRM
+

(p + µF (u)) ∀µ > 0, (10.112)

PRM
+

denotes the projection of RM over (R+)M .
In view of this property and of the second inequality in (10.111), we can introduce

Uzawa’s algorithm: starting from an arbitrary element p0 ∈ (R+)M , we construct
the sequences (un) and (pn) determined by the iterations

L(un, pn) = inf
v∈V

L(v, pn),

pn+1 = PRM
+

(pn + µF (un)),
(10.113)

µ being a fixed positive parameter.
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Theorem 10.5.9 We assume that J is α-convex and differentiable, that F is convex
and Lipschitzian from V into RM , that is to say that there exists a constant C such
that

‖F (v)− F (w)‖ ≤ C‖v − w‖ ∀ v, w ∈ V, (10.114)

and that there exists a saddle point (u, p) of the Lagrangian (10.110) over V ×(R+)M .
Then, if 0 < µ < 2α/C2, Uzawa’s algorithm converges: for any initial element p0,
the sequence (un) defined by (10.113) converges to the solution u of problem (10.109).

Proof. Let us recall first that the existence of a solution u of (10.109) follows from
that of the saddle point (u, p) (see proposition 10.3.2), then that its uniqueness is a
consequence of the α-convexity of J . Likewise, pn being fixed, the minimization prob-
lem in (10.113) has a unique solution un. From exercise 10.2.6, the Euler inequalities
satisfied by u and un are written

〈J ′(u), v − u〉+ p ·
(
F (v)− F (u)

)
≥ 0 ∀ v ∈ V, (10.115)

〈J ′(un), v − un〉+ pn ·
(
F (v)− F (un)

)
≥ 0 ∀ v ∈ V. (10.116)

Taking successively v = un in (10.115) and v = u in (10.116) and adding, we obtain

〈J ′(u)− J ′(un), un − u〉+ (p− pn) ·
(
F (un)− F (u)

)
≥ 0,

from which by using the α-convexity of J and by setting rn = pn − p

rn ·
(
F (un)− F (u)

)
≤ −α‖un − u‖2. (10.117)

On the other hand, the projection PRM
+

being weakly contracting from (12.2), by
subtracting (10.112) from (10.113) we obtain

‖rn+1‖ ≤ ‖rn + µ(F (un)− F (u))‖,

or
‖rn+1‖2 ≤ ‖rn‖2 + 2µrn ·

(
F (un)− F (u)

)
+ µ2‖F (un)− F (u)‖2.

Using (10.114) and (10.117), this becomes

‖rn+1‖2 ≤ ‖rn‖2 +
(
C2µ2 − 2µα

)
‖un − u‖2.

If 0 < µ < 2α/C2, we can find β > 0 such that C2µ2 − 2µα < −β, from which

β‖un − u‖2 ≤ ‖rn‖2 − ‖rn+1‖2. (10.118)

This shows that the sequence ‖rn‖2 is decreasing: the right-hand side of (10.118)
therefore tends to 0, which implies that un tends to u. �

Thus, Uzawa’s algorithm allows us to approximate the solution of (10.109) by re-
placing this problem with constraints by a sequence of minimization problems without
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constraints (10.113). At each iteration, the calculation of pn is elementary, since we
have simply

pn+1
i = max (pni + µFi(un), 0) for 1 ≤ i ≤M,

from (10.108). We must also note that theorem 10.5.9 says nothing about the con-
vergence of the sequence (pn). In fact, this convergence is not ensured under the
hypotheses of the theorem, which also does not ensure the uniqueness of the element
p ∈ (R+)M such that (u, p) is a saddle point (see remark 10.3.12 and exercise 10.5.3).

We have to make the link between Uzawa’s algorithm and duality theory, as we
have already stated. Let us recall first that the dual problem of (10.109) is written

sup
q≥0

G(q), (10.119)

where, by definition
G(q) = inf

v∈V
L(v, q), (10.120)

and that the Lagrange multiplier p is a solution of the dual problem (10.119). In
fact, under quite general hypotheses, we can show that G is differentiable and that
the gradient G′(q) is precisely equal to F (uq), where uq is the unique solution of the
minimization problem (10.120). In effect, formally we have

G(q) = J(uq) + q · F (uq),

and differentiating with respect to q

G′(q) = F (uq) + (J ′(uq) + q · F ′(uq))u′q = F (uq),

because of the optimality condition for uq. We then see that Uzawa’s algorithm
is none other than the gradient algorithm with fixed step and projection
applied to the dual problem since the second equation of (10.113) can be written
pn+1 = PRM

+

(
pn + µG′(pn)

)
(the change of sign with respect to (10.106) comes from

the fact that the dual problem (10.119) is a problem of maximization and not of
minimization). The reader will verify this assertion very easily in the particular case
studied in the following exercise.

Exercise 10.5.3 Apply Uzawa’s algorithm to the problem of remark 10.3.12 (quadratic
functional and affine constraints in finite dimensions). If the matrix B has rangeM , which
assures the uniqueness of p from remark 10.3.12, show that the sequence pn converges
to p.

Penalization of constraints

We conclude this subsection by briefly describing another way to approximate a
minimization problem with constraints by a sequence of minimization problems



NUMERICAL ALGORITHMS 341

without constraints; this is the procedure of penalization of constraints. We avoid
talking here of a ‘method’ or an ‘algorithm’ since penalization of the constraints is
not, properly speaking, a method. The solution of the problems without constraints
that we shall construct must be done with the help of the algorithms of Section 10.5.2.
This solution can raise some difficulties, since the ‘penalized’ problem (10.122) is often
‘ill conditioned’ (see Section 13.1.2).

For simplicity we shall take the case where V = RN , and we again consider the
convex minimization problem

inf
F (v)≤0

J(v), (10.121)

where J is a continuous convex function from RN into R and F a continuous convex
function from RN into RM .

For ε > 0, we then introduce the problem without constraints

inf
v∈RN

(
J(v) +

1
ε

M∑
i=1

[max (Fi(v), 0)]2
)
, (10.122)

where the constraints Fi(v) ≤ 0 are ‘penalized’. We can then state the following
result, which shows that, for ε small, the problem (10.122) ‘approximates well’ the
problem (10.121).

Proposition 10.5.10 We assume that J is continuous, strictly convex, and is infin-
ite at infinity, that the functions Fi are convex and continuous for 1 ≤ i ≤ M , and
that the set

K =
{
v ∈ RN , Fi(v) ≤ 0 ∀ i ∈ {1, . . . ,M}

}
is nonempty. Denoting by u the unique solution of (10.121) and, for ε > 0, uε the
unique solution of (10.122), we then have

lim
ε→0

uε = u.

Proof. As the set K is convex and closed, the existence and uniqueness of u follows
from theorem 9.1.3 and from the strict convexity of J . Further, the function G(v) =∑M
i=1 [max (Fi(v), 0)]2 is continuous and convex since the function from R into R

which to each x associates max (x, 0)2 is convex and increasing. We deduce that
the functional Jε(v) = J(v) + ε−1G(v) is strictly convex, continuous, and is infinite
at infinity since G(v) ≥ 0, which implies the existence and uniqueness of uε. As
G(u) = 0, we can write

Jε(uε) = J(uε) +
G(uε)
ε

≤ Jε(u) = J(u). (10.123)

This shows that
J(uε) ≤ Jε(uε) ≤ J(u), (10.124)
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and therefore that uε is bounded from the ‘infinite at infinity’ condition. We can
therefore extract from the family (uε) a sequence (uεk) which converges to a limit u∗
when εk tends to 0. We then have 0 ≤ G(uεk) ≤ εk(J(u) − J(uεk)) from (10.123).
Passing to the limit, we obtain G(u∗) = 0, which shows that u∗ ∈ K. As (10.124)
implies that J(u∗) ≤ J(u), we then have u∗ = u, which concludes the proof, all the
extracted sequences (uεk) converge to the same limit u. �

Exercise 10.5.4 In addition to the hypotheses of proposition 10.5.10, we assume that
the functions J and F1, . . . , FM are continuously differentiable. We denote by I(u) the
set of active constraints at u, and we assume that the constraints are qualified at u in the
sense of definition 10.2.13. Finally, we assume that the vectors

(
F ′i (u)

)
i∈I(u) are linearly

independent, which ensures the uniqueness of the Lagrange multipliers λ1, . . . , λM such
that J ′(u) +

∑M
i=1 λiF

′
i (u) = 0, with λi = 0 if i /∈ I(u). Show then that, for each index

i ∈ {1, . . . ,M}
lim
ε→0

[
2
ε

max (Fi(uε), 0)
]

= λi.

Remark 10.5.11 We see in Section 11.2.3 another method of penalization by the
introduction of ‘barrier’ functions. •

10.5.4 Newton’s method

We work in finite dimensions V = RN . We shall explain the principle of Newton’s
method to find the zeroes or roots of a function F of class C2 from RN into RN . Let
u be a simple zero of F that is to say that

F (u) = 0 and F ′(u) an invertible matrix.

A Taylor formula in the neighbourhood of v gives us

F (u) = F (v) + F ′(v)(u− v) +O
(
‖u− v‖2) ,

that is to say
u = v − (F ′(v))−1

F (v) +O
(
‖v − u‖2) .

Newton’s method consists of iteratively solving this equation neglecting the remainder.
For an initial choice u0 ∈ RN , we calculate

un+1 = un − (F ′(un))−1
F (un) for n ≥ 0. (10.125)

Let us recall that we do not calculate the inverse of the matrix F ′(un) in (10.125) but
that we solve a linear system by one of the methods described in Section 13.1. From
the point of view of optimization, Newton’s method is interpreted in the following
way. Let J be a function of class C3 from RN into R, and let u be a local minimum
of J . If we set F = J ′, we can apply the preceding method to solve the necessary
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optimality condition J ′(u) = 0. However, we can also see Newton’s method as a
minimization method. Because of the Taylor expansion

J(w) = J(v) + J ′(v) · (w − v) +
1
2
J ′′(v)(w − v) · (w − v) +O

(
‖w − v‖3) , (10.126)

we can approximate J(w) in the neighbourhood of v by a quadratic function. New-
ton’s method consists then of minimizing this approximation and iterating. The
minimum of the quadratic part of the right-hand side of (10.126) is given by
w = v − (J ′′(v))−1

J ′(v) if the matrix J ′′(v) is positive definite. We then recover
the iterative formula (10.125).

The principal advantage of Newton’s method is its convergence which is more
rapid than the preceding methods.

Proposition 10.5.12 Let F be a function of class C2 from RN into RN , and u a
simple zero of F (that is, F (u) = 0 and F ′(u) is invertible). There exists a real ε > 0
such that, if u0 is close to u in the sense where ‖u−u0‖ ≤ ε, Newton’s method defined
by (10.125) converges, that is to say that the sequence (un) converges to u, and there
exists a constant C > 0 such that

‖un+1 − u‖ ≤ C‖un − u‖2. (10.127)

Proof. By continuity of F ′ there exists ε > 0 such that F ′ is invertible at every point
of the ball with centre u and radius ε. Let us assume that un lies near to u, in the
sense that ‖u− un‖ ≤ ε, therefore F ′(un) is invertible. As F (u) = 0, we deduce from
(10.125)

un+1 − u = un − u− (F ′(un))−1 (F (un)− F (u))

which, by Taylor expansion around un, becomes

un+1 − u = (F ′(un))−1O
(
‖un − u‖2) .

As ‖u−un‖ ≤ ε, we deduce that there exists a constant C > 0 (independent of n and
linked to the modulus of continuity of F ′ and F ′′ over the ball of centre u and radius
ε) such that

‖un+1 − u‖ ≤ C‖un − u‖2. (10.128)

If ε is sufficiently small so that Cε ≤ 1, we deduce from (10.128) that un+1 remains
in the ball of centre u and radius ε. This allows us to verify, by recurrence, the
hypothesis that ‖u− un‖ ≤ ε for all n ≥ 0, and we have the conclusion. �

Remark 10.5.13 Of course, we must remember that each iteration of Newton’s
method (10.125) needs the solution of a linear system, which is costly. Further,
the rapid (‘quadratic’) convergence given by (10.127) only holds if F is of class C2,
and if u0 is quite close to u, which are more restrictive hypotheses than those we have
used up until now. Effectively, even in a very simple case in R, Newton’s method
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can diverge for certain initial data u0; we must also note that the quadratic con-
vergence (10.127) only happens in the neighbourhood of a simple zero, as is seen in
the application of Newton’s method to the function F (x) = ‖x‖2 in RN , for which
the convergence is only geometrical. In addition, if we apply Newton’s method to
the minimization of a function J as explained above, it may be that the method con-
verges to a maximum or a saddle point of J , and does not tend to a minimum, since it
only looks for the zeros of J ′. Newton’s method is therefore not better in all ways to
the preceding algorithms, but the property of local quadratic convergence (10.127),
however, makes it particularly interesting. •

Remark 10.5.14 A major drawback of Newton’s method is the need to know the Hessian
J ′′(v) (or the derivative matrix F ′(v)). When the problem is very large or if J is not
easily twice differentiable, we can modify Newton’s method to avoid the calculation of this
matrix J ′′(v) = F ′(v). The methods, called quasi-Newton, propose iteratively calculating
an approximation Sn of (F ′(un))−1. We replace the formula (10.125) by

un+1 = un − SnF (un) for n ≥ 0.

In general, we calculate Sn by a recurrence formula of the type

Sn+1 = Sn + Cn

where Cn is a matrix of rank 1 which depends on un, un+1, F (un), F (un+1), chosen so that
Sn − (F ′(un))−1 converges to 0. For more details about these quasi-Newton methods we
refer to [3] and [30]. •

We can adapt Newton’s method to the minimization of a function J with equality
constraints. Let J be a function of class C3 from RN into R, G = (G1, . . . , GM ) a
function of class C3 from RN into RM (with M ≤ N), and let u be a local minimum of

min
v∈RN , G(v)=0

J(v). (10.129)

If the vectors (G′1(u), . . . , G′M (u)) are linearly independent, the necessary optimality
condition of theorem 10.2.8 is

J ′(u) +
M∑
i=1

λiG
′
i(u) = 0, Gi(u) = 0 1 ≤ i ≤M. (10.130)

where the λ1, . . . , λM ∈ R are the Lagrange multipliers. We can then solve the system
(10.130) of (N +M) equations with (N +M) unknowns (u, λ) ∈ RN+M by a Newton
method. We therefore set

F (u, λ) =
(

J ′(u) + λ ·G′(u)
G(u)

)
,

whose matrix derivative is

F ′(u, λ) =
(

J ′′(u) + λ ·G′′(u) (G′(u))∗

G′(u) 0

)
.

We can then apply the Newton algorithm (10.125) to this function F (u, λ) if the
matrix F ′(u, λ) is invertible. We shall see that this condition is ‘natural’ in the sense
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that it corresponds to a slightly stronger version of the second order optimality con-
dition of proposition 10.2.11. The matrix F ′(u, λ) is invertible if it is injective. Let
(w, µ) be an element of its kernel{

J ′′(u)w + λ ·G′′(u)w + (G′(u))∗µ = 0
G′i(u) · w = 0 for 1 ≤ i ≤M

We deduce that

w ∈ KerG′(u) =
M⋂
i=1

KerG′i(u) and (J ′′(u) + λ ·G′′(u))w ∈ Im(G′(u))∗.

Now Im(G′(u))∗ = [ KerG′(u)]⊥. Consequently, if we assume that

(J ′′(u) + λ ·G′′(u)) (w,w) > 0 ∀w ∈ KerG′(u), w �= 0, (10.131)

the matrix F ′(u, λ) is invertible. We remark that (10.131) is the strict inequality in
the second order optimality condition of proposition 10.2.11. It is therefore natural
to make the hypothesis (10.131) which allows us to use the Newton algorithm. We
can therefore prove the convergence of this method (see [3]).

It is interesting to interpret this algorithm as a minimization method. We intro-
duce the Lagrangian L(v, µ) = J(v) + µ · G(v), its derivatives with respect to v, L′,
and L′′, and we verify that the equation

(un+1, λn+1) = (un, λn)− (F ′(un, λn))−1
F (un, λn)

is the optimality condition so that un+1 is a minimum point of the quadratic problem
with affine constraints

min
w∈RN

G(un)+G′(un)·(w−un)=0

Qn(w), (10.132)

with

Qn(w) =
(
L(un, λn) + L′(un, λn) · (w − un) +

1
2
L′′(un, λn)(w − un) · (w − un)

)
,

and λn+1 is the Lagrange multiplier associated with the minimum point of (10.132).
We remark that in (10.132) we have made a Taylor expansion of order two at w of the
Lagrangian L(w, λn) and we have linearized the constraint G(w) around the point un.

Remark 10.5.15 In (10.132) we have used a quadratic approximation of the
Lagrangian and not of the function J . We could try the following iterative method
for the solution of the quadratic approximation with affine constraints

min
w∈RN

G(v)+G′(v)·(w−v)=0

(
J(v) + J ′(v) · (w − v) +

1
2
J ′′(v)(w − v) · (w − v)

)
. (10.133)

Unfortunately, the method based on (10.133) cannot converge! In particular, it is not
obvious that the Hessian J ′′(v) is positive definite over the space of constraints (it
is the Hessian of the Lagrangian which is positive as is affirmed by the second order
optimality condition of proposition 10.2.11). •



This page intentionally left blank 



11 Methods of operational
research
(Written in collaboration with Stéphane Gaubert)

11.1 Introduction

In this chapter, we present several tools from OR (operational research). In OR, the
word ‘operational’ was initially used in its proper sense: OR was born, mainly, from
planning problems which arose during the Second World War and shortly after. Thus
G. Dantzig, the inventor of the simplex algorithm, was an adviser for the American
airforce, and the planning of the Berlin airlift in 1948 is a famous application of linear
programming (see [31] for more detail). Since then the domain has been considerably
developed and civilized. The problems of OR abound in industry and the service
sector: we can cite, for example, timetabling problems (for aircrews, for the employ-
ees of a call centre, etc.), routing of vehicles, networks, siting of warehouses, stock
management, workshop scheduling, etc. OR borrows tools from many scientific fields:
continuous optimization and combinatorial optimization, but also from discrete math-
ematics and in particular from graph theory; from computing, on the one hand via
complexity theory, which allows us to identify ‘easy’ problems, which are solvable in
polynomial time in the size of the problem, from difficult problems, and on the other
hand via constraint programming, or ‘CP’ (which allows us to enumerate the solutions
intelligently). Some questions in OR are also linked to probability theory (for exam-
ple, to understand stochastic optimization algorithms such as simulated annealing),
to computing or game theory (for dynamical decision problems). A significant part of
the activity in OR is linked to the practice (modelling, heuristics, etc.). Our intention
in this chapter is not to present OR, but rather to consider a mathematical part of the
field, combinatorial optimization, which has strong ties to the continuous optimization
treated in the preceding chapters: the most efficient methods for the exact solution
of combinatorial problems are often based on convex programming, and in return,

347



348 CHAPTER 11. METHODS OF OPERATIONAL RESEARCH

considering discrete problems and objects (problems of flows, assignment problems
extreme points of polyhedra, electrical networks, Laplacians of graphs, etc.), often
allow better understanding of the analogues of these problems and objects which
occur in analysis.

In this chapter we shall present five important methods. Linear programming,
which will be the subject of Section 11.2, will allow us to solve efficiently continuous
optimization problems where the constraints and the criterion are expressed linearly,
which is very common in OR. Sometimes, it is essential to find an integer solution.
We shall see in Section 11.3, with the help of the idea of an integer polyhedron,
that this can be done without increasing the complexity in certain special cases, which
includes the important class of flow problems. Section 11.4 presents another method,
dynamic programming, which is naturally adapted to problems of shortest path,
and which is also useful in more difficult combinatorial problems. Section 11.5 gives
an example of a greedy algorithm: greedy algorithms are only optimal for very
particular problems, but they are often useful to produce heuristics. We shall see
finally in Section 11.6, that when the preceding tools cannot be applied directly, it is
often possible to obtain an optimal solution by separation and evaluation (‘branch
and bound’), that is, by a tree search combined with an approximation of the problem.

11.2 Linear programming

We have not yet said anything about example 9.1.1 which is typical of a very large
class of problems, called linear programming problems. Because of the practical
importance of these problems we shall now devote a whole section to their study.

11.2.1 Definitions and properties

We want to solve the following linear programming problem,

inf
x∈Rnsuch that Ax=b, x≥0

c · x, (11.1)

where A is a matrix of size m×n, b ∈ Rm, c ∈ Rn, and the constraint x ≥ 0 means that
all the components of x are positive or zero. In everything that follows we shall assume
that m ≤ n and that the range of A is exactly m. In effect, if rg(A) < m, certain rows
of A are linked and two possibilities arise: either the constraints (corresponding to
these rows) are incompatible, or they are redundant and we can therefore eliminate
the extra rows.

Problem (11.1) seems to be a particular case of linear programming since the
inequality constraints are only of the type x ≥ 0. This is not the case, and every
linear programming problem of the type

inf
x∈Rnsuch that Ax≥b, A′x=b′

c · x.
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can be put into the standard form (11.1) by rescaling the data. In effect, let us
remark first of all that the equality constraints A′x = b′ are obviously equivalent to
the inequality constraints A′x ≤ b′ and A′x ≥ b′. We can therefore restrict ourselves
to the following case (which only contains inequality constraints)

inf
x∈Rnsuch that Ax≥b

c · x. (11.2)

In (11.2) we can replace the inequality constraint by introducing new variables, called
slack variables, λ ∈ Rm. The inequality constraint Ax ≥ b is then equivalent to
Ax = b + λ with λ ≥ 0. Thus (11.2) is equivalent to

inf
(x,λ)∈R(n+m)such that Ax=b+λ, λ≥0

c · x. (11.3)

Finally, if we decompose each component of x into its positive and negative parts,
that is if we set x = x+ − x− with x+ = max(0, x) and x− = −min(0, x), we obtain
that (11.2) is equivalent to

inf
(x+,x−,λ)∈R(2n+m)such that Ax+−Ax−=b+λ, x+≥0,x−≥0,λ≥0

c · (x+ − x−). (11.4)

which is in the standard form (but with more variables). There is therefore no loss of
generality in studying the standard linear programming problem (11.1).

x3

x2

x1

Figure 11.1. Admissible set for example (11.5).

We have already given a concrete motivation to linear programming at the
beginning of Chapter 9 (see example 9.1.1). Let us consider for the moment a
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simple example which will allows us to understand some essential aspects of linear
programming

min
x1≥0,x2≥0,x3≥0
2x1+x2+3x3=6

x1 + 4x2 + 2x3 . (11.5)

On Figure 11.1 we have traced the set of (x1, x2, x3) which satisfies the constraints: a
plane triangle T . This is a closed compact set of R3, therefore the continuous function
x1 + 4x2 + 2x3 attains its minimum that we denote M . To determine this minimum
we can consider the family of parallel planes x1 + 4x2 + 2x3 = c parameterized by
c. By increasing the value of c starting from −∞, we ‘sweep’ the space R3 until we
reach the triangle T , and the minimum M is attained when the plane ‘touches’ this
triangle. In other words, every minimum point of (11.5) is on the boundary of the
triangle T . Another way to see this is to say that the function x1 + 4x2 + 2x3 has
a nonzero gradient in T therefore its extrema are found on the boundary of T . For
example (11.5), the (unique) minimum point is the vertex (0, 3, 0) of T . We shall
see that this is a general fact: a minimum point (if it exists) can always be found at
one of the vertices of the geometrical set of vectors x which satisfy the constraints.
It is ‘enough’ then to enumerate all the vertices in order to find the minimum: it is
exactly this that is (in an intelligent way) the simplex algorithm that we see in the
next section.

To establish this property generally for the standard linear programming prob-
lem (11.1), we need some definitions which allow us to specify the vocabulary.

Definition 11.2.1 The set Xad of vectors of Rn which satisfy the constraints of
(11.1), that is

Xad = {x ∈ Rn such that Ax = b, x ≥ 0} ,

is called the set of admissible solutions. We say vertex or extremal point of Xad
for every point x ∈ Xad which cannot be decomposed into a (nontrivial) convex com-
bination of two other points of Xad, that is, if there exist y, z ∈ Xad and θ ∈]0, 1[ such
that x = θy + (1− θ)z, then y = z = x.

Remark 11.2.2 The vocabulary of optimization is misleading for neophytes. We say
(admissible) solution for a vector which satisfies the constraints. Conversely, a vector
which attains the minimum of (11.1) is called the optimal solution (or minimum
point). •

We easily verify that the set Xad is a a polyhedron (possibly empty). (Let us
recall that a polyhedron is a finite intersection of halfspaces of Rn.) Its extreme points
are therefore the vertices of this polyhedron. When Xad is empty, by convention we
note that

inf
x∈Rnsuch that Ax=b, x≥0

c · x = +∞.
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Lemma 11.2.3 There exists at least one optimal solution (or minimum point) of the
standard linear programming problem (11.1) if and only if the minimum value is finite

−∞ < inf
x∈Rnsuch that Ax=b, x≥0

c · x < +∞.

Proof. Let (xk)k≥1 be a minimizing sequence of (11.1). We introduce the matrix A
defined by

A =
(

c∗

A

)
.

The sequence Axk belongs to the following cone

C =

{
n∑
i=1

xiAi with xi ≥ 0

}
,

where the Ai are the columns of the matrix A. From the Farkas lemma 10.2.17 the
cone C is closed, which implies that

lim
k→+∞

Axk =
(

z0
b

)
∈ C,

therefore there exists x ≥ 0 such that(
z0
b

)
=
(

c · x
Ax

)
,

and the minimum is attained at x. �

Definition 11.2.4 We say basis associated with (11.1) for a basis of Rm composed
of m columns of A. We denote this basis by B which is a submatrix of A, which is
square of order m and invertible. After permutation of its columns we can write A in
the form (B,N) where N is a matrix of size m × (n −m). In the same way we can
decompose x into (xB , xN ) so that we have

Ax = BxB + NxN .

The components of the vector xB are called basic variables and those of xN nonbasic
variables. A basic solution is a vector x ∈ Xad such that xN = 0. If moreover one
of the components of xB is zero, we say that the basic solution is degenerate.

The idea of a basic solution corresponds to that of a vertex of Xad.

Lemma 11.2.5 The vertices of the polyhedron Xad are exactly the basic solutions.



352 CHAPTER 11. METHODS OF OPERATIONAL RESEARCH

Proof. If x ∈ Xad is a basic solution, in a certain basis of Rn we have x =
(x1, . . . , xm, 0, . . . , 0) and there exists a basis (b1, . . . , bm) of Rm such that

∑m

i=1 xibi = b.
Let us assume that there exists 0 < θ < 1 and y, z ∈ Xad such that x = θy + (1 − θ)z.
Necessarily, the n −m last components of y and z are zero and, as y and z belong to Xad,
we have

∑m

i=1 yibi = b and
∑m

i=1 zibi = b. By uniqueness of the decomposition in a basis,
we deduce that x = y = z, and therefore x is a vertex of Xad.

Conversely, if x is a vertex of Xad, we denote by k the number of its nonzero components,
and after a possible rearrangement we have b =

∑k

i=1 xiai where the (ai) are the columns
of A. To show that x is a basic solution it is enough to prove that the family (a1, . . . , ak)
is linearly independent in Rm (we obtain a basis B by supplementing this family). Let us
assume that this is not the case: there then exists y �= 0 such that

∑k

i=1 yiai = 0 and
(yk+1, . . . , yn) = 0. As the components (x1, . . . , xk) are strictly positive, there exists ε > 0
such that (x + εy) ∈ Xad and (x − εy) ∈ Xad. The fact that x = (x + εy)/2 + (x − εy)/2
contradicts the extremal character of x, therefore x is a basic solution. �

The following fundamental result tells us that it is sufficient to look for an optimal
solution among the vertices of the polyhedron Xad.

Proposition 11.2.6 If there exists an optimal solution of the standard linear pro-
gramming problem (11.1), then there exists an optimal basic solution.

Proof. The proof is very similar to that of lemma 11.2.5. Let x ∈ Xad be an optimal
solution of (11.1). We denote by k the number of its nonzero components, and after
a possible rearrangement we have

b =
k∑
i=1

xiai,

where the (ai) are the columns of A. If the family (a1, . . . , ak) is linearly independent
in Rm, then x is an optimal basic solution. If (a1, . . . , ak) is linearly dependent, then
there exists y �= 0 such that

k∑
i=1

yiai = 0 and (yk+1, . . . , yn) = 0.

As the components (x1, . . . , xk) are strictly positive, there exists ε > 0 such that
(x± εy) ∈ Xad. As x is a minimum point, we must have

c · x ≤ c · (x± εy),

that is c · y = 0. We then define a family of points zε = x + εy parameterized by ε.
Starting from the value ε = 0, if we increase or decrease ε we stay in the set Xad up to
a value ε0 beyond which the constraint zε≥ 0 is violated. In other words, zε0 ∈ Xad
has more than (k − 1) nonzero components and is an optimal solution. We then
repeat the preceding argument with x = zε0 and a family of (k− 1) columns (ai). By
decreasing the size of this family, we will finally obtain a linearly independent family
and a basic optimal solution. �



LINEAR PROGRAMMING 353

Remark 11.2.7 By applying proposition 11.2.6 when c = 0 (every admissible solu-
tion is then optimal), we see thanks to lemma 11.2.5 that as soon as Xad is nonempty,
Xad has at least one vertex. This property does not hold for general polyhedra (con-
sider a half-plane of R2). •

Exercise 11.2.1 Solve the following linear programming problem

max
x1≥0,x2≥0

x1 + 2x2

under the constraints ⎧⎨
⎩
−3x1 + 2x2 ≤ 2
−x1 + 2x2 ≤ 4
x1 + x2 ≤ 5

In practice, the number of vertices of the polyhedron Xad is gigantic as they can
be exponential with respect to the number of variables. We verify this in an example
in the following exercise.

Exercise 11.2.2 Show that we can choose the matrix A of size m× n and the vector
b ∈ Rm in such a way that Xad is the unit cube [0, 1]n−m in the affine subspace of
dimension n−m defined by Ax = b. Deduce that the number of vertices of Xad is then
2n−m.

11.2.2 The simplex algorithm

The simplex algorithm was introduced by G. Dantzig in the 1940s. It consists of
visiting the vertices of the polyhedron of admissible solutions until we find an optimal
solution (which is guaranteed if the linear programming problem has an optimal
solution). The simplex algorithm is not content with enumerating all the vertices, it
decreases the value of the function c · x passing from one vertex to the next.

We consider the standard linear programming problem (11.1). Let us recall that
a vertex (or basic solution) of the set of admissible solutions Xad is characterized by
a basis B (m linearly independent columns of A). After permutation of its columns,
we can write

A = (B,N) and x = (xB , xN ),

so that we have Ax = BxB + NxN . All admissible solutions can be written xB =
B−1(b−NxN ) ≥ 0 and xN ≥ 0. The vertex associated with B is defined (if it exists)
by xN = 0 and xB = B−1b ≥ 0. If we also decompose c = (cB , cN ) in this basis, then
we can compare the cost of an arbitrary admissible solution x with that of the basic
solution x. We easily see that c · x ≤ c · x if and only if

cB ·B−1b ≤ cB ·B−1(b−NxN ) + cN · xN . (11.6)

We deduce the following optimality condition.
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Proposition 11.2.8 Let us assume that the basic solution associated with B is non-
degenerate, that is, B−1b > 0. A necessary and sufficient condition so that this basic
solution associated with B is optimal is that

c̃N = cN −N∗(B−1)∗cB ≥ 0. (11.7)

The vector c̃N is called the vector of reduced costs.

Proof. Let x be a nondegenerate basic solution associated with B. If c̃N ≥ 0, then
for every admissible solutions x we have

c · x− c · x = c̃N · xN ≥ 0 ,

since xN ≥ 0. Thus the condition (11.7) is sufficient for x to be optimal. Con-
versely, let us assume that there exists a component i of c̃N which is strictly neg-
ative, (c̃N · ei) < 0. For ε > 0 we then define a vector x(ε) by xN (ε) = εei and
xB(ε) = B−1(b − NxN (ε)). By construction Ax(ε) = b and, as B−1b > 0, for suffi-
ciently small values of ε we have x(ε) ≥ 0, therefore x(ε) ∈ Xad. On the other hand,
x(0) = x and, as ε > 0, we have

c · x(ε) = c · x(0) + ε(c̃N · ei) < c · x,

which shows that x is not optimal. Thus the condition (11.7) is necessary. �

Remark 11.2.9 In the framework of proposition 11.2.8, if the basic solution is
degenerate, condition (11.7) remains sufficient but is no longer necessary. •

We deduce from proposition 11.2.8 a practical method to decrease the value of the
cost function c · x starting from a basic solution x (nondegenerate and nonoptimal).
As x is nonoptimal, there exists a component of the reduced cost vector c̃N such that
c̃N · ei < 0. We then define x(ε) as above. Since the cost decreases linearly with ε, it
is beneficial to take the largest possible value of ε such that we remain in Xad. This
is the principle of the simplex algorithm that we now present.

The simplex algorithm

• Initialization (phase I): We look for an initial basis B0 such that the associated
basic solution x0 is admissible

x0 =
(

(B0)−1b
0

)
≥ 0.

• Iterations (phase II): at step k ≥ 0, we have a basis Bk and an admissible
basic solution xk. We calculate the reduced cost c̃kN = ckN − (Nk)∗(Bk−1)∗ckB .
If c̃kN ≥ 0, then xk is optimal and the algorithm is finished. Otherwise, there
exists a nonbasis variable with index i such that (c̃N · ei) < 0, and we denote
by ai the corresponding column of A. We set

xk(ε) = (xkB(ε), xkN (ε)) with xkN (ε) = εei, xkB(ε) = (Bk)−1(b− εai).
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– Either we can choose ε > 0 as large as we want with xk(ε) ∈ Xad. In this
case, the minimum of the linear programming problem is −∞.

– Or there exists a maximal value εk and an index j such that the jth com-
ponent of xk(εk) is zero. We thus obtain a new basis Bk+1 deduced from
Bk by replacing its jth column by the column ai. The new admissible
basic solution xk+1 has a cost less than or equal to that of xk.

There are a certain number of practical points still to be specified in the simplex
algorithm. We quickly review them.

Degeneracy and cycling

We always have c · xk+1 ≤ c · xk, but we can have equality if the admissible basic
solution xk is degenerate, in which case we can find εk = 0 (if it is not degenerate, the
proof of proposition 11.2.8 guarantees a strict inequality). We have therefore changed
the basis without improving the cost: this is the phenomenon of cycling which can
prevent the convergence of the algorithm. There are ways of stopping this, but in
practice cycling never occurs.

In the absence of cycling, the simplex algorithm traverses a subset of vertices of Xad
(strictly) diminishing the cost. As there are a finite number of vertices, the algorithm
must necessarily find an optimal vertex with minimal cost. We have therefore proved
the following result.

Lemma 11.2.10 If all admissible basic solutions xk produced by the simplex algo-
rithm are nondegenerate, then the algorithm converges in a finite number of steps.

A priori the number of iterations of the simplex algorithm can be as large as the
number of vertices (which is exponential with respect to the number of variables n; see
exercise 11.2.2). Although there exist (academic) examples where this is effectively the
case, in practice this algorithm converges in a number of steps which is a polynomial
function of n.

Choice of the change of basis

If there are many components of the reduced cost vector c̃kN which are strictly negative,
we must make a choice in the algorithm. Many strategies are possible, but in general
we choose the most negative.

Initialization

How do we find a basic admissible solution at the initialization? (Let us recall that the
condition of admissibility xB = B−1b ≥ 0 is not obvious in general.) We could know
one because of the structure of the problem. For example, for the problem (11.4)
which has m slack variables, − Im is a basis of the ‘global’ matrix of the equality
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constraints of (11.4). If b ≤ 0, the vector (x0, λ0) = (0,−b) is then a basic admissible
solution for (11.4).

In the general case, we introduce a new variable y ∈ Rm, a new cost vector k > 0,
and a new linear programming problem

inf
x≥0, y≥0
Ax+y=b

c · x + k · y (11.8)

where we have already multiplied all the equality constraints corresponding to the
negative components of b by −1 so that b ≥ 0. The vector (x0, y0) = (0, b) is a
basic admissible solution for this problem. If there exists an admissible solution of
the original linear programming problem (11.1) and if the minimum of (11.1) is not
−∞, then the optimal solutions of (11.8) must satisfy y = 0. By applying the simplex
algorithm to (11.8), we find a basic admissible solution for (11.1) if one exists. If none
exists (that is, if Xad = ∅), we detect this as the minimum of (11.8) is attained by a
vector (x, y) with y �= 0. Obviously, to quickly find an admissible solution for (11.1)
it is in our interest to choose k very large with respect to c.

Inversion of the basis

As we have described it, the simplex algorithm needs the inversion of Bk at each step,
which can be very costly for large problems (with many constraints since the order of
Bk is equal to the number of constraints). We can use the fact that Bk+1 only differs
from Bk by one column to develop a better strategy. In effect, if it is the jth column
which changes, we have

Bk+1 = BkEk with Ek =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 l1
. . .

... 0

1
...
lj
... 1

0
...

. . .
ln 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and Ek is easy to invert

(Ek)−1 =
1
lj

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −l1
. . .

... 0
1 −lj−1

1
−lj+1 1

0
...

. . .
−ln 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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We therefore use the formula, in a factorized form,

(Bk)−1 = (Ek−1)−1(Ek−2)−1 · · · (E0)−1(B0)−1.

Exercise 11.2.3 Solve, by the simplex algorithm, the linear programming problem

min
x1≥0, x2≥0, x3≥0, x4≥0, x5≥0

x1 + 2x2

under the constraints ⎧⎨
⎩
−3x1 + 2x2 + x3 = 2
−x1 + 2x2 + x4 = 4
x1 + x2 + x5 = 5

Exercise 11.2.4 Solve, by the simplex algorithm, the linear programming problem

min
x1≥0, x2≥0

2x1 − x2

under the constraints x1 + x2 ≤ 1 and x2 − x1 ≤ 1/2.

Exercise 11.2.5 Solve, by the simplex algorithm, the linear programming problem

min
x1≥0, x2≥0, x3≥0, x4≥0

3x3 − x4

under the constraints {
x1 − 3x3 + 3x4 = 6
x2 − 8x3 + 4x4 = 4

11.2.3 Interior point algorithms

Since the work by Khachian and Karmarkar at the beginning of the 1980s, a new
class of algorithms, called interior point algorithms, have emerged to solve linear
programming problems. The name of this class of algorithms comes from the fact
that it is the opposite of the simplex method (which, traversing the vertices, remains
on the boundary of the polyhedron Xad). These interior point algorithms evolve in
the interior of Xad and only reach the boundary on convergence. We shall describe
here one of these algorithms that we also call the central trajectory algorithm.
There are two new ideas in this method: first, we penalize certain constraints with
the help of potentials or ‘barrier’ functions; second, we use a Newton method to go
from one iterate to the following.

Let us describe this method for the standard linear programming problem

inf
x∈Rnsuch that Ax=b, x≥0

c · x. (11.9)

We define a logarithmic potential for x > 0

π(x) = −
n∑
i=1

log xi. (11.10)
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For a penalization parameter µ > 0, we introduce the strictly convex problem

min
x∈Rnsuch that Ax=b, x>0

µπ(x) + c · x. (11.11)

Let us remark that in practice the constraint x > 0 is not important as it is never
active: when we minimize (11.11) we cannot ‘approach’ the boundary of x > 0 as we
would ‘explode’ the potential π(x) to +∞.

The principle of the central trajectory algorithm is to minimize (11.11) by a
Newton method for smaller and smaller values of µ. In effect, when µ tends to
zero, the penalized problem (11.11) tends to the linear programming problem (11.9).

Exercise 11.2.6 Show that, if Xad is bounded and nonempty, (11.11) has a unique
optimal solution xµ. Write the optimality conditions and deduce that, if (11.9) has a
unique optimal solution x0, then xµ converges to x0 when µ tends to zero.

11.2.4 Duality

The theory of duality (already stated in Section 10.3.3) is very useful in linear pro-
gramming. Let us again consider the standard linear programming problem that we
shall call primal (as opposed to dual)

inf
x∈Rn such that Ax=b, x≥0

c · x, (11.12)

where A is a matrix of size m × n, b ∈ Rm, and c ∈ Rn. For p ∈ Rm, we introduce
the Lagrangian of (11.12)

L(x, p) = c · x + p · (b−Ax), (11.13)

where we have only ‘dualized’ the equality constraints. We introduce the associated
dual function

G(p) = min
x≥0

L(x, p),

which, after calculation, becomes

G(p) =
{

p · b if A∗p− c ≤ 0
−∞ otherwise. (11.14)

The dual problem of (11.12) is therefore

sup
p∈Rm such that A∗p−c≤0

p · b. (11.15)

The space of admissible solutions of the dual problem (11.15) is denoted by

Pad = {p ∈ Rm such that A∗p− c ≤ 0} .
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Let us recall that the space of admissible solutions of (11.12) is

Xad = {x ∈ Rn such that Ax = b, x ≥ 0} .

The linear programming problems (11.12) and (11.15) are called duals. The interest
in this idea comes from the following result which is a particular case of the duality
theorem 10.3.11.

Theorem 11.2.11 If (11.12) or (11.15) has an optimal finite value, then there exists
x ∈ Xad an optimal solution of (11.12) and p ∈ Pad an optimal solution of (11.15)
which satisfy(

min
x∈Rn such that Ax=b, x≥0

c · x
)

= c · x = p · b =
(

max
p∈Rm such that A∗p−c≤0

p · b
)

(11.16)
Further, x and p are optimal solutions of (11.12) and (11.15) if and only if they
satisfy the Kuhn–Tucker optimality conditions

Ax = b, x ≥ 0, A∗p− c ≤ 0, x · (c−A∗p) = 0. (11.17)

If (11.12) or (11.15) has an optimal infinite value, then the set of admissible solutions
of the other problem is empty.

Remark 11.2.12 An immediate consequence of the duality theorem 11.2.11 is that,
if x ∈ Xad and p ∈ Pad are two admissible solutions of (11.12) and (11.15), respect-
ively, they satisfy

c · x ≥ b · p.
Likewise, if x ∈ Xad and p ∈ Pad satisfy

c · x = b · p

then x is an optimal solution of (11.12) and p of (11.15). These two properties allow
us easily to find bounds for the optimal values of (11.12) and (11.15), and to test if a
couple (x, p) is optimal. •

Proof. Let us assume that Xad and Pad are nonempty. Take x ∈ Xad and p ∈ Pad.
As x ≥ 0 and A∗p ≤ c, we have

c · x ≥ A∗p · x = p ·Ax = p · b,

since Ax = b. In particular, this inequality implies that the optimal values of the
two problems, primal and dual, are finite, therefore they have optimal solutions as
a consequence of lemma 11.2.3. The equality (11.16) and the optimality condition
(11.17) are then a consequence of the duality theorem 10.3.11.

Let us assume now that one of the two problems, primal or dual, has an optimal
finite value. To fix ideas, let us assume that it is the dual problem (a symmetric
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argument works for the primal problem). Then, lemma 11.2.3 tells us that there exists
an optimal solution p of (11.15). If Xad is nonempty, we are reduced to the preceding
situation which finishes the proof. Let us show therefore that Xad is nonempty by
again using the Farkas lemma 10.2.17. For p ∈ Rm, we introduce the vectors of Rm+1

b̃ =
(

b
−b · p

)
and p̃ =

(
p
1

)
.

We verify that b̃ · p̃ = b · p − b · p ≤ 0, for every p ∈ Pad. On the other hand, the
condition p ∈ Pad can be rewritten

p̃ ∈ C =
{
p̃ ∈ Rm+1 such that p̃m+1 = 1, Ã∗p̃ ≤ 0

}
with Ã =

(
A
−c∗

)
.

As b̃ · p̃ ≤ 0 for every p̃ ∈ C, the Farkas lemma 10.2.17 tells us that there exists x̃ ∈ Rn

such that x̃ ≥ 0 and b̃ = Ãx̃, that is, x̃ ∈ Xad which is therefore not empty.
Finally, let us assume that the optimal value of the primal problem (11.12) is −∞.

If Pad is nonempty, for every x ∈ Xad and every p ∈ Pad, we have c · x ≥ b · p. By
taking a minimizing sequence in Xad we obtain b ·p = −∞, which is absurd. Thus Pad
is empty. A similar argument shows that, if the optimal value of (11.12) is infinite,
then Xad is empty. �

The interest in duality to solve the linear programming problem (11.12) is multiple.
On the one hand, depending on the algorithm chosen, it can be easier to solve the dual
problem (11.15) (which has m variables and n inequality constraints) that the primal
problem (11.12) (which has n variables, m equality constraints, and n inequality
constraints). On the other hand, we can construct very efficient numerical algorithms
for the solution of (11.12) which use the two forms, primal and dual, of the linear,
programming problem.

Exercise 11.2.7 Use duality to solve ‘by hand’ (and without calculation!) the linear
programming problem

min
x1≥0, x2≥0, x3≥0, x4≥0

8x1 + 9x2 + 4x3 + 6x4

under the constraints {
4x1 + x2 + x3 + 2x4 ≥ 1
x1 + 3x2 + 2x3 + x4 ≥ 1

Exercise 11.2.8 Find the dual problem of (11.12) when we also dualize the constraint
x ≥ 0, that is, when we introduce the Lagrangian

L(x, p, q) = c · x + p · (b−Ax)− q · x

with q ∈ Rn such that q ≥ 0. Compare with (11.15) and interpret the new dual variable
q. Deduce from this that there is no interest in also ‘dualizing’ the constraint x ≥ 0.
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Exercise 11.2.9 Verify that the dual problem of (11.15) is again (11.12).

Exercise 11.2.10 Take v ∈ Rn, c ∈ Rn, A a matrix of size m × n and b ∈ Rm. We
consider the linear programming problem

inf
v≥0
Av≤b

c · v . (11.18)

Show that the dual problem can be put in the following form, with q ∈ Rm

sup
q≥0

A∗q≤c

b · q . (11.19)

Let v and q be admissible solutions of (11.18) and (11.19), respectively. Show that v and
q are optimal solutions if, and only if,

(c−A∗q) · v = 0 and (b−Ac) · q. (11.20)

The two equalities of (11.20) are called complementary slack conditions (primal
and dual, respectively). Generalize to the case where the primal problem also includes
equality constraints.

11.3 Integer polyhedra

We have until now treated problems of continuous optimization: the function to
be minimized was differentiable, and the set of admissible solutions was defined by the
intersection of a finite number of inequality constraints, likewise differentiable. Com-
binatorial optimization, conversely, treats problems for which the set of admissible
solutions is discrete. Thus, in the case of the assignment problem which was the
object of example 9.1.2, the set of admissible solutions was the set of permutations
of n elements. The difficulty of combinatorial problems is on the one hand, that we
cannot enumerate the set of admissible solutions, which is too large (with cardinality
n! in the case of the assignment problem), and on the other hand, that the discrete na-
ture of the space of solutions does not allow us to write optimality conditions directly
with the help of the differential calculus.

We shall, however, see in the rest of this chapter that, despite appearances, the
methods of continuous optimization are useful in combinatorial optimization. Let us
consider the typical combinatorial problem

sup
x∈P∩Zn

c · x, (11.21)

where P is a polyhedron of Rn, that is, an intersection of a finite number of half-spaces,
and c ∈ Rn. The formulation (11.21) shows the difference between a combinatorial
problem and a continuous problem: if we ignore the integer constraint in (11.21), we
obtain

sup
x∈P

c · x, (11.22)
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which is a linear programming problem, sometimes qualified as a relaxed continuous
version of (11.21). (Generally, we talk of a relaxed problem, when we ignore certain
constraints.) Relaxed problem (11.22) can be effectively treated by the methods of the
preceding sections: all the difficulty in (11.21) comes from the fact that we restrict
ourselves to the integer points of the polyhedron P (by integer point, we mean
a point with integer coordinates). We shall now characterize the case where the
solution of the discrete problem (11.21) is equivalent to that of its continuous relaxed
version (11.22). These cases, which can seem exceptional, are in fact very important
in practice, as they appear naturally in a certain number of concrete combinatorial
problems: shortest path, assignment, and more generally flow problems with minimum
cost.

11.3.1 Extreme points of compact convex sets

The idea which will allow us to link combinatorial problems and discrete problems is
that of extremal point, an idea already seen in definition 11.2.1: an extremal point
of a convex set K is a point x such that x = (y+z)/2 and y, z ∈ K implies y = z = x.
We denote by extrK the set of extremal points of K. Let us recall also that if X is
a subset of Rn, we say convex envelope of X, and we say coX, for the smallest
convex set containing X, which we verify is equal to the set of barycentres of a finite
number of elements of X. The closed convex envelope of X, denoted by coX, is
the smallest convex closed set containing X. It is equal to the closure of coX. The
following result is fundamental.

Theorem 11.3.1 (Minkowski) A compact convex set of Rn is the convex envelope
of the set of its extremal points.

This theorem confirms therefore that K = co extrK when K is a convex compact
set of Rn. A fortiori, K = co extrK since K is closed. The proof of the Minkowski
theorem relies on the idea of a hyperplane of support, introduced in the appendix on
Hilbert spaces: an affine hyperplane H = {y ∈ Rn | c · y = α}, with c ∈ Rn, c �= 0,
and α ∈ R is a hyperplane of support of a convex set K, at the point x ∈ K, if
α = c · x ≤ c · y, for every y ∈ K. We will use the following observation.

Lemma 11.3.2 If H is a hyperplane of support of a convex set K ⊂ Rn, then every
extremal point of H ∩K is an extremal point of K.

Proof. Take H = {y ∈ Rn | c · y = α} with c ∈ Rn, c �= 0, and α ∈ R, a
hyperplane of support of K. If x = (y + z)/2 with y, z ∈ K, and if x ∈ K ∩ H,
we have α = c · x = (c · y + c · z)/2, and as α ≤ c · y and α ≤ c · z, we must
have α = c · y = c · z, therefore y, z ∈ K ∩ H. If we assume that x is an extremal
point of K ∩ H, we therefore have x = y = z, which shows that x is an extremal
point of K. �

Proof of the Minkowski theorem 11.3.1. We suppose obviously that K �= ∅
(otherwise, the result is trivial). Let us recall that the dimension of a nonempty
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convex set is by definition the dimension of the affine space which it generates. We
shall prove the theorem by induction on the dimension of K. Replacing Rn by an
affine subspace, we can assume that K has dimension n. If n = 0, K is reduced to a
point, and the theorem is satisfied. Let us assume therefore that the theorem is proved
for compact convex sets of dimension at most n− 1, and let us show that every point
x of K is a barycentre of a finite number of extremal points of K. If x is a boundary
point of K, corollary 12.1.20 gives a hyperplane of support H of K at x. As K ∩H
is a compact convex set of dimension at most n− 1, by the induction hypothesis, x is
a barycentre of a finite number of extremal points of K ∩H, which are also extremal
points of K according to lemma 11.3.2. Let us now take an arbitrary point x of K,
and let D be an affine line passing through x. The set D ∩ K is a segment of the
form [y, z], where the points y, z are boundary points of K. From before, y and z are
barycentres of a finite number of extremal points of K. As x is itself a barycentre of
y and z, the theorem is proved. �

Remark 11.3.3 The Minkowski theorem is a particular case in finite dimensions of a result
from functional analysis, the Krein–Milman theorem, which says that a compact convex set
is a closed convex envelope of the set of extremal points (this result, which is a consequence
of the Hahn–Banach theorem, holds in very general spaces and in particular in the Banach
spaces). We note that in infinite dimensions, it is the closed convex envelope, and not the
convex envelope, which occurs in the statement of the theorem. •

We now apply the Minkowski theorem to the problem of combinatorial optimiza-
tion (11.21). In this case, the cost function J(x) = c ·x is linear, but it will be clearer
to consider more generally the maximization of convex functions, which has very
different properties from the minimization of convex functions treated in Chapters 9
and 10. We also consider an arbitrary set X, instead of P ∩ Zn.

Proposition 11.3.4 (maximization of a convex function) For every convex func-
tion J :Rn → R, and for every subset X ⊂ Rn,

sup
x∈X

J(x) = sup
x∈coX

J(x) = sup
x∈coX

J(x) , (11.23)

and if X is bounded,
sup
x∈X

J(x) = sup
x∈extr coX

J(x) . (11.24)

Proof. If y ∈ coX, we can write y =
∑

1≤i≤k αixi, with xi ∈ X, αi ≥ 0,
and

∑
1≤j≤k αj = 1. Since J is convex, we have J(y) ≤ ∑

1≤j≤k αjJ(xj) ≤
max1≤j≤k J(xj) ≤ supx∈X J(x), and since this is true for every y ∈ coX, we
have supx∈coX J(x) ≤ supx∈X J(x). In addition, for every z ∈ coX, we can write
z = limk→∞ yk, with yk ∈ coX. As a convex function Rn → R must be continuous (cf.
exercise 9.2.7) we have J(z) = limk→∞ J(yk) ≤ supx∈coX J(x), and since this is true
for every z ∈ coX, we have supx∈coX J(x) ≤ supx∈coX J(x). The other inequalities
being trivial, we have shown (11.23). When X is bounded, coX which is also bounded,
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is compact. From the Minkowski theorem 11.3.1, coX = co extr coX, and by applying
(11.23), supx∈extr coX J(x) = supx∈co extr coX J(x) = supx∈coX J(x) = supx∈X J(x),
which proves (11.24). �

Proposition 11.3.4 suggests to us to consider the convex envelope of the admissible
set X = P ∩ Zn of our initial problem (11.21).

Definition 11.3.5 We say integer envelope of a polyhedron P ⊂ Rn, for the con-
vex envelope of the set of integer points of P , which we denote by Pe = co (P ∩ Zn).

The term ‘integer envelope’ is traditional but misleading: usually, an envelope is a
larger object, whereas here Pe ⊂ P .

Corollary 11.3.6 If J :Rn → R is convex, and if P ⊂ Rn is a polyhedron, then

sup
x∈P∩Zn

J(x) = sup
x∈Pe

J(x). (11.25)

Thus, we can always replace the discrete problem (11.21) by a problem whose admis-
sible set is convex. When J is linear, the problem on the right of (11.25) is a classical
linear programming problem: we have thus concentrated the difficulty in the calcula-
tion, or the approximation, of the polyhedron Pe. There is a case where everything
becomes easy.

Definition 11.3.7 We say that a polyhedron P is an integer polyhedron
if P = Pe.

We shall now give sufficient (precise) conditions so that a polyhedron is integral.

11.3.2 Totally unimodular matrices

An arbitrary polyhedron can be written

P = {x ∈ Rn | Ax ≤ b} (11.26)

with A ∈ Rm×n and b ∈ Rm. It should be noted that such a polyhedron is more
general than the polyhedron Xad of admissible solutions of the standard linear pro-
gramming problem (cf. definition 11.2.1): indeed, Xad is by definition included in the
positive cone of Rn, and we have besides already noted that Xad, if it is nonempty, al-
ways has extremal points which is not the case for an arbitrary polyhedron (cf. remark
11.2.7). The characterization of extremal points of Xad (lemma 11.2.5) extends, how-
ever, in the following way.

Lemma 11.3.8 An extremal point of the polyhedron P defined by (11.26) must be a
solution of a system A′x = b′, where A′ is an invertible submatrix composed of n rows
of A, and b′ is the vector composed of the corresponding rows of b.



INTEGER POLYHEDRA 365

Proof. Let x be an extremal point of P , and take I(x) = {1 ≤ i ≤ m | Ai · x = bi}
(the set of active constraints at x), where Ai denotes the ith row of A. If the family
{Ai}i∈I(x), does not have rank n, we can find a nonzero vector y such that Ai · y = 0
for every i ∈ I(x). As x is the middle of the points x − εy and x + εy, which are
elements of P if ε is small enough, we contradict the extremality of x. Thus, we can
find a subset I ′ ⊂ I(x) of cardinality n such that the n × n matrix whose rows are
Ai, with i ∈ I ′, is invertible. The system Ai · x = bi, i ∈ I ′, then characterizes x. �

Lemma 11.3.8 shows in particular that a polyhedron only has a finite number of
extremal points.

Exercise 11.3.1 Show conversely that if x is a point of P satisfying A′x = b′, with A′

and b′ as in lemma 11.3.8, then x is an extremal point.

Lemma 11.3.8 suggests studying the case where the solution of a linear system is
an integer.

Proposition 11.3.9 Let A ∈ Zn×n be an invertible matrix. The following assertions
are equivalent:

(1) detA = ±1;

(2) for every b ∈ Zn, we have A−1b ∈ Zn.

Proof. The implication (1)⇒(2) follows immediately from Cramer’s formulas.
Conversely, let us assume that A satisfies assertion 11.3.9. Let us show first that A−1

has integer coefficients. By taking b as the ith vector of the canonical basis of Rn, we
see that the ith column of A−1, which coincides with A−1b, has integer coefficients.
As this is true for every 1 ≤ i ≤ n, we have A−1 ∈ Zn×n. Thus detA−1 ∈ Z, and
1 = detAdetA−1 shows that detA divides 1, that is, detA = ±1. �

Definition 11.3.10 We say that a matrix A ∈ Zn×n is unimodular when detA =
±1, and that a matrix B ∈ Zm×n is totally unimodular when every square subma-
trix extracted from B has determinant ±1 or 0.

By taking 1× 1 submatrices, we see in particular that the coefficients of a totally
unimodular matrix must be ±1 or 0. The introduction of totally unimodular matrices
is justified by the following result.

Corollary 11.3.11 (optimality of integer solutions) Let D ∈ Zm×n be a totally
unimodular matrix, f ∈ (Z ∪ {+∞})m, f ′ ∈ (Z ∪ {−∞})m, g ∈ (Z ∪ {+∞})n, and
g′ ∈ (Z ∪ {−∞})n. Then, the extremal points of the polyhedron

Q = {x ∈ Rn | f ′ ≤ Dx ≤ f, g′ ≤ x ≤ g} (11.27)



366 CHAPTER 11. METHODS OF OPERATIONAL RESEARCH

must be integer. In particular, if Q is bounded, we have Q = Qe, and for every convex
function J of Rn in R, we have

sup
x∈Q

J(x) = sup
x∈Q∩Zn

J(x) . (11.28)

Proof. We can write
Q = {x ∈ Rn | Ax ≤ b} , (11.29)

where b is a finite integer vector and A is a matrix where each row is either of the
form ±Di, with Di an arbitrary row of D, or of the form ±ej , where ej is the jth
vector of the canonical basis of Rn, for an arbitrary index 1 ≤ j ≤ n.

We first show that A is totally unimodular. Let M be a k×k submatrix extracted
from A. Let us show by induction over k that detM ∈ {±1, 0}. If k = 1, this follows
immediately from the total unimodularity of D. Let us now assume that the result is
proved for all square submatrices of A with dimension at most k− 1, and let us prove
it for M . If M contains a row equal to a vector ±ej , we expand detM with respect to
this row, and by induction, the result is proved. If M contains two rows equal up to a
given sign, detM = 0, and the result is again proved. Otherwise, M coincides, up to
a change of sign of some row, with a submatrix of D, and as D is totally unimodular,
detM ∈ {±1, 0}, which finishes the proof of the total unimodularity of A.

As Q is given by (11.29), with b an integer and A totally unimodular, it follows
from lemma 11.3.8 and from proposition 11.3.9 that the extremal points of Q, if they
exist, are integer.

If we suppose besides that Q is bounded, Q is compact, and from the Minkowski
theorem 11.3.1, Q = co extrQ. As extrQ is composed of integer vectors, Qe =
co (Q ∩ Zn) ⊃ co extrQ = Q, and in addition the inclusion Qe ⊂ Q is trivial. The
equality (11.28) is then obtained by applying corollary 11.3.6. �

Exercise 11.3.2 We shall establish the reciprocal of corollary 11.3.11. Let us start by
examining the special case of the polyhedron Xad = {x ∈ Rn | Ax = b, x ≥ 0} of
admissible solutions of the standard linear programming problem, with A ∈ Zm×n with
range m. Show that the two following properties are equivalent:

(1) for every b ∈ Zm, the extremal points of Xad are integer;

(2) all the m×m submatrices of A have determinant ±1 or 0.

Let now D ∈ Zm×n, and let us consider Q = {x ∈ Rn | Dx ≤ b, x ≥ 0} . Deduce from
the equivalence above the equivalence of the following two properties (Hoffman–Kruskal
theorem):

(3) for every b ∈ Zm, the extremal points of Q are integer;

(4) D is totally unimodular.
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Remark 11.3.12 We will note that corollary 11.3.11 does not set any condition on
J , except the convexity. In particular, if J(x) = c · x is linear, the integer character
of the optimal solutions is not directly linked to the integer character of the cost
vector c. •

Remark 11.3.13 The corollary 11.3.11 does not say that all the optimal solutions
are integer. Moreover, when J is linear, it cannot be thus unless the optimal solution
is unique, as every barycentre of optimal solutions of a linear programming problem
is an optimal solution. •

Remark 11.3.14 The condition that Q is bounded is not necessary to ensure that
Q = Qe in corollary 11.3.11: we limit ourselves to bounded polyhedra, which are
sufficient in practice to model most of the combinatorial problems, to simplify the
exposition. See [37] for more detail. •

There exist numerous results on totally unimodular matrices. We restrict ourselves
here to giving a very useful sufficient condition.

Proposition 11.3.15 (Poincaré) If A is a matrix with coefficients ±1 or 0, with
at most one coefficient 1 per column, and at most one coefficient −1 per column, then
A is totally unimodular.

Proof. As the property that A satisfies pass to the submatrices, it is enough to see
that if A is square, detA ∈ {±1, 0}. If A has a zero column, detA = 0. If A has a
column with only one nonzero coefficient, we expand the determinant with respect to
this column, and we conclude by induction that detA ∈ {±1, 0}. It only remains to
consider the case where each column of A has exactly one coefficient 1 and exactly
one coefficient −1: then, each column has zero sum, therefore detA = 0. �

We apply proposition 11.3.15 to flow problems in the following section. Let us give
for the moment as an exercise a case where we can calculate the total unimodularity
by hand.

Exercise 11.3.3 (covering problem) A telephone call centre has a load curve: ct is
the number of clients being serviced at the discrete moment t ∈ {1, . . . , T}. A certain
number of client advisers respond to the calls. We simplify the problem by assuming that
all the calls are of the same type. We shall assume that there are k possible shifts, the shift
i being characterized by an interval [αi, βi], with 1 ≤ αi ≤ βi ≤ T , which amounts to
ignoring breaks. We denote by Si the salary of a client adviser working from the moment
αi to the moment βi. We set uit = 1 if αi ≤ t ≤ βi, and uit = 0 otherwise. Justify the
problem

inf
x ∈ N

k∑
1≤i≤k

xiuit ≥ ct, ∀1 ≤ t ≤ T

∑
1≤i≤k

xiSi . (11.30)
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Show that the set of admissible solutions of this problem can be written as the set of
integer points of a polyhedron of the form (11.27), where the matrix D is a matrix of
intervals, that is, a matrix with coefficients 0, 1 such that the 1s appear consecutively in
a column. Show that a matrix of intervals is totally unimodular. Conclude.

11.3.3 Flow problems

Before defining flow problems, let us consider an oriented graph G = (N ,A): N is the
set of nodes, and A ⊂ N ×N is the set of arcs. An arc going from node i to node j
is thus noted (i, j). We equip each arc (i, j) ∈ A with a capacity uij ∈ R+ ∪ {+∞}
and a cost cij ∈ R. (The ‘u’ in uij is for ‘upper bound’.) We also take, at each node
of the graph, an entrant flow bi ∈ R (if bi < 0, it is an exiting flow, algebraically). We
say flow for a function x ∈ RA, (i, j) �→ xij , satisfying the Kirchoff law

bi +
∑

j∈N ,(j,i)∈A
xji =

∑
j∈N ,(i,j)∈A

xij , ∀i ∈ N , (11.31)

and the positivity constraint

0 ≤ xij , ∀(i, j) ∈ A . (11.32)

By summing (11.31), we see that a necessary condition for the existence of a flow is
that the sum of the entrant flows is zero∑

i∈N
bi = 0 . (11.33)

We always assume that the condition (11.33) is satisfied. A flow is called admissible
if it satisfies the capacity constraints

xij ≤ uij , ∀(i, j) ∈ A . (11.34)

Definition 11.3.16 We say flow problem with minimum cost for the linear
programming problem

min
∑

(i,j)∈A
cijxij under the constraints (11.31), (11.32), (11.34). (11.35)

The flow problem with minimum cost has many important subproblems, such as the
transport problem of example 9.1.1, or the assignment problem of example 9.1.2.

Exercise 11.3.4 Make explicit the flow problem with minimum cost corresponding to
the transport problem of example 9.1.1. (We will draw the graph.)

A particular fundamental case of the flow problem with minimum cost is the
problem of maximal flow, or more properly the flow problem, which only concerns
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the capacities (and not the costs). It will be convenient to assume that G has two
distinct nodes, s and p, called respectively source and sink, such that s has no
predecessor ({i ∈ N | (i, s) ∈ A} = ∅), and p has no successor ({i ∈ N | (p, i) ∈
A} = ∅). Let v ∈ R+. We say admissible flow from s to p with value v for a
solution x of (11.31), (11.32), (11.34), with

bi =

{
v if i = s,
−v if i = p,
0 otherwise.

Definition 11.3.17 The maximal flow problem consists of finding an admissible
flow from s to p of maximal value.

Exercise 11.3.5 Show that the maximal flow problem is effectively a particular case of
the flow problem with minimal cost. (Hint: add an arc to the graph appearing in the
definition of the maximal flow problem.)

In practice, we often look for integer solutions of a flow problem: for example, for
the transport problem of example 9.1.1, the goods to be delivered could be parcels, and
to deliver a half-parcel is meaningless. It is therefore natural to ask if a flow problem
with minimum cost automatically has optimal integer solutions. Before applying
corollary 11.3.11, let us note that the Kirchoff law (11.31) can be written Ax = b,
where the matrix A ∈ RN×A, called the incidence matrix of G, is defined by

Ai,(j,k) =

{−1 if i = k,
1 if i = j,
0 otherwise.

The matrix A is well defined, except in the degenerate case where the graph has a loop,
that is, an arc (j, k) such that j = k. A flow circulating on a loop has a contribution
which is simple in the Kirchoff law (11.31), and there is no loss of generality to assume
that the graph does not have a loop, which we shall do in the rest of the section.

We can now write the set of admissible flows

{x ∈ RA | Ax = b, 0 ≤ x ≤ u} . (11.36)

Proposition 11.3.18 The incidence matrix of a graph is totally unimodular.

Proof. This is an immediate consequence of proposition 11.3.15. �

Corollary 11.3.19 (optimality of integer flows) If the entrant flows bi are inte-
ger, and if the capacities uij are integer or infinite, then, the extremal points of the
set (11.36) of admissible solutions of a flow problem with minimal cost are integer.
In particular, if the set of admissible flows is bounded and nonempty, there exists an
optimal integer flow.
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Proof. This is an immediate consequence of corollary 11.3.11 and of proposition
11.3.18. �

Exercise 11.3.6 Show that the covering problem (exercise 11.3.3) can be modelled by
a flow problem with minimum cost, and thus recover the conclusion of exercise 11.3.3.

Exercise 11.3.7 Take again the assignment problem, introduced in example 9.1.2. We
always consider n boys and n girls, but here, aij is a real number which represents
the happiness of the couple (i, j), and we look for a permutation σ ∈ Sn, the optimal
solution of

max
σ∈Sn

∑
1≤i≤n

aiσ(i) . (11.37)

1. Show that this problem is equivalent to the integer linear problem

max
x∈Bn∩Zn×n

∑
1≤i,j≤n

aijxij , (11.38)

where Bn denotes the set of bistochastic matrices, that is, the set of real matrices x =
(xij) of size n× n such that

∀i ∈ {1, . . . , n}, 1 =
∑

1≤k≤n
xik,

∀j ∈ {1, . . . , n}, 1 =
∑

1≤k≤n
xkj ,

∀i, j ∈ {1, . . . , n}, 0 ≤ xij

2. Show that the problem (11.38) is an integer flow problem with minimum cost (we shall
draw the graph). Deduce that the polyhedron Bn is an integer. What can we conclude
as to the difficulty of the assignment problem?
3. Deduce from above that every bistochastic matrix is the barycentre of a finite number
of permutation matrices (this theorem is due to Birkhoff).
4. Deduce from the above that if at a ball, there are n boys and n girls, each boy having
been presented to r girls, and each girl having been presented to r boys, with r ≥ 1, it
is possible to form n dance couples so that the dancers of each couple have already been
presented to each other (this theorem is due to König).

Exercise 11.3.8 This exercise presents an algorithm which is fundamental in the theory
of the flows, due to Ford and Fulkerson. We consider the maximal flow problem from
a source s to a sink p in a graph G = (N ,A) (see definition 11.3.17). For simplicity,
we shall assume that each of the capacities uij do not take the value +∞. For every
I, J ⊂ N , and for every x = (xij) ∈ RA, we set x(I, J) =

∑
i∈I, j∈J, (i,j)∈A xij . We say

that a partition of N into two subsets S and S̄ is a cut separating s from p if s ∈ S and
p ∈ S̄, and we say that u(S, S̄) is the capacity of this cut.
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1. Show that for every cut (S, S̄) separating s from p, and for every admissible flow x
from s to p with value v,

x(S, S̄)− x(S̄, S) = v .

Deduce that the value of every admissible flow from s to p is bounded above by the
capacity of each cut separating s from p.
2. Given an admissible flow x from s to p, we define the residual graph Gr(x) =
(N ,Ar(x)) where Ar(x) denotes the set of couples (i, j) such that either (i, j) ∈ A
and xij < uij , or (j, i) ∈ A and xji > 0. Show that if there exists a path γ from s to
p in the residual graph Gr(x), it is possible to construct a new admissible flow x′ from
s to p with value strictly greater than x, by modifying only the values xij when (i, j) or
(j, i) is an arc of the path γ. Notice besides that if x is integer and if the capacities are
integer, we can choose x′ integer.
3. We suppose now that there is no path from s to p in Gr(x). Let S be the set of
accessible nodes since s is in Gr(x), and S̄ the complement of S is in N . Show that
(S, S̄) is a cut separating s from p whose capacity is equal to the value of the flow x.
4. Conclude that the maximal value of the flow from s to p is equal to the minimal
capacity of a cut separating s from p. (This is the ‘max-flow min-cut’ theorem of Ford
and Fulkerson.)
5. Deduce an algorithm allowing us, when the capacities are integers, to calculate a
maximal flow from s to p in a time O(v∗|A|), where v∗ is the maximal value of a flow
from s to p, and |A| is the number of arcs.

Remark 11.3.20 We recognize in the ‘max-flow min-cut’ theorem of Ford and Fulk-
erson (Question 4 of exercise 11.3.8) a particular case of the duality theorem in linear
programming. The reader will be able to write the dual of the problem of maximal
value flow, and thus recover the Ford–Fulkerson theorem. •

Remark 11.3.21 The Ford–Fulkerson algorithm, presented in exercise 11.3.8, is only the
simplest of the flow algorithms. A variant of this algorithm, the Edmonds–Karp algorithm,
(also due to Dinits), can be implemented in a time O(nm2) independent of the integer
character of the capacities, where n = |N | denotes the number of nodes, and m = |A|
denotes the number of arcs. This refinement consists very simply of selecting, at each step
of the Ford–Fulkerson algorithm, the shortest path from s to p, that is, the path from s to p
which has the smallest number of arcs. There also exists a very different flow algorithm, the
‘preflow-push’ algorithm of Goldberg and Tarjan (1986), which has a time of execution of the
order of O(n2m). All these ideas generalize to the case of the flow problem with minimum
cost. See [1] for the state of the art. •

11.4 Dynamic programming and shortest
path problems

Dynamic programming, developed by R. Bellman in the 1950s, is a very general
method which is applied to decision problems in time (such as optimal control,
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except that the time variable is sometimes disguised). For each problem the question
is that of identifying a good idea of a state. With each state we associate an optimal
value starting from this state, and the dynamic programming equation links the value
of a state at a given moment to those states which are available at the following mo-
ment. (Dynamic programming is exactly to optimization what the Markovian point
of view is to probability theory.)

11.4.1 Bellman’s optimality principle

Dynamic programming is based on the Bellman optimality principle, which can be
stated very simply in the particular case of the shortest path problem: if the shortest
path from a town A to a town B passes through a town C, then the subpath going
from A to C is again the shortest path from A to C. Denoting by dXY the distance
from X to Y , we obtain

dAB = min
C

(dAC + dCB), (11.39)

where the min is taken on the set of the towns C through which we can pass going from
A to B. The equation (11.39) is a particular case of a dynamic programming equation,
or the Bellman equation, it will allow us to calculate d recursively knowing that
dXY is known when X and Y are neighbouring towns. The idea of a state appears
here naturally: we set ourselves the problem of calculating dAB , where A and B are
two fixed towns, and we see that it is useful to tabulate the distances dCB (or dAC)
for all the intermediate towns C. The details of the calculation must of course be
fixed to give a true algorithm: it is this that we shall do in the two subsections which
follow. First of all we treat a simpler version of the problem, where the time appears
explicitly, in Section 11.4.2, then return to the shortest path problem, under a more
general form, in Section 11.4.3.

11.4.2 Finite horizon problem

Let us consider a small problem of an economic nature, which merits the name of a
problem of discrete optimal control at finite horizon. Let G = (N ,A) be an oriented
graph, equipped with weights c : A → R, which we interpret as a cost. Let us recall
that a path is a sequence of nodes linked consecutively by arcs, and that a path whose
first and last node coincide is called a circuit. The cost of a path is by definition
the sum of the costs of its arcs. Let us fix an integer T (the horizon), and an initial
node i ∈ N . We want to calculate the total cost starting from i to the horizon T that
we denote

vTi = min
(�0, . . . , �T ) path

�0 = i

c�0,�1 + · · ·+ c�T−1,�T . (11.40)

The function i �→ vTi , which we can represent by a vector vT ∈ (R ∪ {+∞})N , is
traditionally called the function value (at horizon T ). We agree by writing (11.40)
that min ∅ = +∞, which reduces to writing vTi = +∞ when there are no paths of
length T starting from i in the graph. Another special case is T = 0: the paths which
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appear in (11.40) are then of length zero. We agree that for every vertex of the graph,
there is a circuit of length zero passing through this vertex, and their cost is zero. In
particular, v0

i = 0.
A naive evaluation of (11.40) consists of enumerating all the paths of length T ,

whose number increases exponentially with T . Dynamic programming will allow us
to factorize this calculation, and thus carry it out in polynomial time (the notion of
polynomial time is defined in remark 11.6.6).

The idea for calculating vTi is to vary the horizon and the initial state, by calcu-
lating vtk for every 0 ≤ t ≤ T and k ∈ N . In effect, we can write for every i ∈ N , and
t ≥ 1,

vti = min
k∈N , (i,k)∈A

(ci,k + vt−1
k ) , (11.41)

v0
i = 0. (11.42)

The equation (11.41) follows from the Bellman optimality principle: the optimal cost
starting from i, in t steps, is obtained by choosing the first movement i→ k, in such
a way as to minimize the cost of this first movement, that is, ci,k plus the optimal
cost starting from k with horizon t − 1. The initial condition (11.42) is trivial: if
nothing remains to be done we pay nothing. We shall write the dynamic programming
equation, or Bellman equation, adapted to our problem: it allows us to calculate
by induction the sequence of vectors v0, v1, . . . ∈ (R ∪ {+∞})N .

It is easy to solve more general problems by modifying (11.42). Let us consider,
for example, the new value function

vTi = min
(�0, . . . , �T ) path

�0 = i

c�0,�1 + · · ·+ c�T−1,�T + φ�T , (11.43)

where φ ∈ (R ∪ {+∞})N is a vector representing a penalty associated with the final
state. When φ = 0, we recover (11.40). When φ is the indicator function of a vertex
j ∈ N , that is,

φk =
{

0 if k = j
+∞ otherwise, (11.44)

(11.43) forces us to finish in the state j, and vTi then gives the minimal cost in T
steps to go from i to j. The function value (11.43) always satisfies (11.41), with the
new initial condition for the Bellman equation

v0 = φ . (11.45)

This is the moment to remark that the time T which occurs in the Bellman equation
(11.41), (11.45) flows in an inverse sense from the physical time which occurs
in the trajectories (11.43): in our modelling, T is the time which remains, also a
penalty on the terminal state of the trajectory (�0, . . . , �T ) leads to changing the
initial condition of the Bellman equation. We say that the Bellman equation is a
retrograde equation. This inversion of time is inherent in decision problems: it is
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often only at a bad end that we understand that we did not need to play at the
beginning.

The interest in the Bellman equation (11.41) is that vt can be calculated starting
from vt−1 in time O(|A| + |N |), where |A| and |N | denote respectively the number
of arcs and the number of nodes, see remark 11.4.1 for more detail. Thus, vT can be
calculated in time O(T (|A|+ |N |)), compared with, for example, the time O(|N |pT )
of a naive algorithm enumerating the paths of length T in a graph where each vertex
has exactly p successors. We very simply obtain, on the other hand, an optimal path
from the Bellman equation (11.41), (11.45): we set �0 = i, then we choose �1 realizing
the minimum in (11.41), that is, vT�0 = c�0,�1 + vT−1

�1
, and more generally �r+1 such

that vT−r�r
= c�r,�r+1 + vT−r−1

�r+1
. By construction, vTi = c�0,�1 + · · · + c�T−1,�T + φ�T ,

which shows that (�0, . . . , �T ) is an optimal path for the problem (11.43).

Example 11.4.1 To illustrate the above, let us consider the case of a taxi driver
cruising in the imaginary town represented in Figure 11.2. The town is formed of
three zones, H, a posh district, A an airport, and B a suburb (from where the driver
usually returns empty). The taxi driver wants to make T runs, starting from H, and
maximize the total gain, which is the sum of the gains of the runs c, and of a bonus,
φ, expressing a preference for the final state of the last run. We have represented the
gains of the runs on the arcs, and the bonuses by the exiting arcs. The bonus −∞
at B means that the taxi does not want to finish its journey at B. We will assume
in addition that the taxi has the ability to choose its runs. As this is a maximization
problem, the dynamic programming equation is written with max instead of min, and
−∞ instead of +∞:

vtH = max(3 + vt−1
H , 10 + vt−1

A )
vtA = max(12 + vt−1

H , 7 + vt−1
B )

vtB = max(−5 + vt−1
H ,−3 + vt−1

A )

v0
H = 0, v0

A = 2, v0
B = −∞ .

Let us now calculate the optimal strategy of the taxi at horizon 2 starting from
H. It is enough to evaluate

v1
H = max(3 + 0, 10 + 2) = 12 (11.46)
v1
A = max(12 + 0, 7 +−∞) = 12 (11.47)
v1
B = max(−5 + 0,−3 + 2) = −1 (11.48)
v2
H = max(3 + 12, 10 + 12) = 22, (11.49)

where we have underlined the terms which realize the maximum. We deduce that the
optimal gain, 22, is obtained by first realizing the max in (11.49) (we go first from H
to A), then realizing the max in (11.47) (we return from A to H). •
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Figure 11.2. A very deterministic taxi driver.

Remark 11.4.1 A classical way to code a graph G = (N ,A) with n = |N | nodes and
m = |A| arcs equipped with cost c, consists of defining three vectors: a vector h ∈ {1, . . . , n}m
(for ‘head’), a vector t ∈ {1, . . . , n}m (for ‘tail’), as well as a vector of real numbers, c ∈ Rm.
This representation reduces to numbering the arcs of A from 1 to m, by saying that the arc
(i, j) ∈ A which has the number k going from hk = i to tk = j, and has a cost ck = ci,j.
The graph therefore occupies a space in memory of O(n +m). We easily see that with the
graph coded like this, it is possible to calculate vt starting from vt−1 by using (11.41), in
time O(n+m). •

11.4.3 Minimum cost path, or optimal stopping, problem

Let us now consider the problem of the minimum cost path which, given two
vertices i and j, consists of finding a path of arbitrary length going from i to j and
with minimum cost. This is a generalization of the shortest path problem already
stated in Section 11.4.1: as opposed to the case of distances, we do not assume
here that the costs are positive. By exploiting the preceding notation, we must now
calculate

vi = inf
T∈N

vTi = inf
(�0, . . . , �T ) path
T ∈ N, �0 = i

c�0,�1 + · · ·+ c�T−1,�T + φ�T , (11.50)

where the vector φ penalizing a final state other than j is given by (11.44). We can
also consider an arbitrary penalty φ ∈ (R ∪ {+∞})N , which does not change the
results. We will note that vi now has values in R = R∪{±∞} (the sums on the right
of (11.50) can be +∞, in addition, it is possible that these sums are not bounded
below, as we consider for arbitrarily long paths). The function value v satisfies the
new Bellman equation

vi = min
(
φi, min

k∈N , (i,k)∈A
(ci,k + vk)

)
, ∀i ∈ N . (11.51)

By comparison with (11.41), the presence of a supplementary term in the min gives
the possibility of stopping in any state k with the final penalty φk, which in the special
case (11.44), prevents us from stopping elsewhere than j.
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We must now show that the system (11.51) allows us to calculate the function
value. Let us recall that we call a maximal solution of an equation a solution which
bounds all the others above.

Theorem 11.4.2 The function value v defined by (11.50) is the maximal solution of
the Bellman equation (11.51).

Proof. We have already shown that v satisfies (11.51). Let v′ ∈ RN be an arbitrary
solution of (11.51). Let us show that v′ ≤ v. Let (�0, . . . , �T ) be an arbitrary path
starting from i. As v′ satisfies (11.51), we can write v′�r ≤ c�r,�r+1 + v′�r+1

, for every
0 ≤ r ≤ T − 1, and v′�T ≤ φ�T . By combining these inequalities,

v′i ≤ c�0,�1 + · · ·+ c�T−1,�T + φ�T

and by taking the infimum over all the paths (�0, . . . , �T ) starting from i, v′i ≤ vi.
Thus v′ ≤ v, which shows that v is a maximal solution of (11.51). �

Exercise 11.4.1 Show that the Bellman equation (11.51) can have many finite solu-
tions. (Hint: consider a graph with a single vertex.)

Exercise 11.4.2 We say that the graph is coaccessible for φ if for every node i of the
graph, there exists a path from i to a node j such that φj �= +∞. We shall show that
if the graph does not have a circuit of negative cost and is coaccessible for φ, then the
Bellman equation (11.51) has a unique finite solution, equal to v. For this, we consider
v′ ∈ RN a solution of the Bellman equation (11.51). We introduce the continuation set

C = {i ∈ N | φi ≥ min
k∈N , (i,k)∈A

(ci,k + v′k)},

and we choose for each i ∈ C a node π(i) such that

v′i = ci,π(i) + v′π(i).

We thus define a mapping π:C → N . Show that for arbitrary i ∈ C, there exists an
integer k such that the kth iterate πk(i), does not belong to C. Conclude that v′ ≥ v.

We can rewrite (11.51) as a fixed point equation v = f(v), with an obvious defin-
ition of f : RN → RN . Also theorem 11.4.2 suggests calculating v with the help
of a fixed point algorithm. To decide about the convergence of fixed point methods,
we often refer to contraction arguments. Here, the convergence analysis will rather
use the ordering. We equip RN with the usual partial order, defined component
by component, and for this order, the mapping f : x �→ f(x) is increasing. Since
f(φ) ≤ φ, an immediate recurrence shows that fr+1(φ) ≤ fr(φ), for every r ≥ 0.
The sequence {fr(φ)}r≥0 which decreases must converge to a vector v′ ∈ RN . (The
reader will note here that we allow the value −∞ for the coefficients of v′.) We have
f(v′) = v′ by continuity of f . On the other hand, if v′′ is an arbitrary fixed point of f ,
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we have trivially v′′ ≤ φ, therefore since f is increasing, v′′ = fr(v′′) ≤ fr(φ), for
every r ≥ 0, therefore by taking the infimum on the r ≥ 0, v′′ ≤ v′, therefore v′ is
the largest fixed point of f . Since from theorem 11.4.2, the function value is also the
largest fixed point of f , we shall show the following result.

Theorem 11.4.3 (value iteration) The sequence {fr(φ)}r≥0 decreases to the
function value v defined by (11.50).

More generally, given a dynamic programming operator f of which we want to calculate
a fixed point, the algorithm consists of constructing a sequence fr(φ), either starting from
an arbitrary supersolution φ (we say that φ is a supersolution of the fixed point equation
x = f(x) if f(φ) ≤ φ), or starting from an arbitrary subsolution φ (defined by reversing
the inequality) is called value iteration. For general dynamic programming problems,
particularly in stochastic control, a Newton type method, called policy iteration (see, for
example, D. Bertsekas, Dynamic Programming and Optimal Control, Vol. I and II, Athena
Sci., Belmont, MA, 1995), is often more rapid. The interest in value iteration is its simplicity.
In the deterministic case, we have convergence in finite time for value iteration.

Exercise 11.4.3 (convergence in finite time) Show that if G does not have circuits of
strictly negative cost, then f |N|−1(φ) = v. If conversely G has a circuit of strictly negative cost,
and if G is coaccessible for φ (see exercise 11.4.2 for this idea) then f |N|(φ) < f |N|−1(φ).

Exercise 11.4.3 suggests implementing the value iteration algorithm as follows. We cal-
culate by induction the sequence by satisfying at each step if xr = xr−1, in which case xr = v
and we stop (the interest in this test is that the time of convergence is often much smaller
than |N | − 1). In the worst case, we arrive at r = |N | and we stop then: we know that
there exists a circuit of strictly negative cost. In practice, we rarely program this value iter-
ation algorithm, but rather the following variant of Gauss–Seidel, called the Ford–Bellman
algorithm, which updates as soon as possible all the coordinates in the value iteration. It is
faster to program this variant than to describe it.

Algorithm 11.4.4 (Ford–Bellman) Take G = (N ,A) and c : A → R, with variables:
v ∈ (R ∪ {+∞})N , b Boolean, r integer, i, k ∈ N .

Initialization: r ← 0, b← true; for every i ∈ N , vi ← φi.

As long as r < |N | and b make:

b← false;

r ← r + 1

for every i ∈ N and for every (i, k) ∈ A, if ci,k + vk < vi, let vi ← ci,k + vk and
b← true.

If r < |N |, v is the solution, if r = |N |, there exists a circuit of strictly negative cost.

In order to illustrate the value iteration, let us revisit the problem of the taxi driver rep-
resented in Figure 11.2, and we will be interested in the value of the paths of maximum
gain and arbitrary length starting from H. As there is a circuit of gain which is strictly
positive (going from H to A, and returning, which pays 22), our driver may find it beneficial
to make an infinite number of runs, and we have in particular vH = +∞. In order to tackle



378 CHAPTER 11. METHODS OF OPERATIONAL RESEARCH

a problem which is less degenerate, let us, for example, take a tax of 11 from the price of
each run. The operator f defined starting from (11.51) becomes

[f(x)]H = max(0,−8 + xH,−1 + xA)

[f(x)]A = max(2, 1 + xH,−4 + xB)

[f(x)]B = max(−16 + xH,−14 + xA) .

The value iteration consists of calculating x0 = φ, x1 = f(x0), . . . , let

x0 = φ = (0, 2,+∞)

x1
H = max(0,−8 + 0,−1 + 2) = 1

x1
A = max(2, 1 + 0,−4 +−∞) = 2

x1
B = max(−16 + 0,−14 + 2) = −12
x2 = x1 = v, stop,

and by considering the arg max, we see that it is optimal to stop when we are at A, and if
we are at B or H, we must go to A.

Exercise 11.4.4 How can we complete the Ford–Bellman algorithm to construct a circuit of
negative cost?

Remark 11.4.5 There exist many variants of the Ford–Bellman algorithm, which differ in
the order in which we traverse the nodes i and the arcs (i, k) in the loop of the algorithm
11.4.4: we will find the generic term ‘label correcting algorithms’ in the literature. The
algorithms in this family, and in particular the Ford–Bellman algorithm, are among the
quickest for calculating paths of minimum cost, in the case of an oriented graph which has
circuits (of positive or zero cost) and whose costs can be negative. In two special cases,
we can do much better than Ford–Bellman. When the graph G does not have a circuit, we
make a topological order, that is, we equip the vertices with a total order ≤, such that if
there is a path from i to j, then i ≤ j. Often, the nodes are already naturally ordered (for
example, by increasing time) and if they are not, we can find such an order in linear time;
see, for example, [1] for more detail. (We say that an algorithm is in linear time if the time
of execution is bounded by a constant times the size of the data, which is the best we can
hope, see remark 11.6.6 for more detail on the idea of calculation time.) Once the nodes are
ordered, it is enough to start v at +∞, and to make once and only once the substitution
vi ← min(φi,mink∈N , (i,k)∈A ci,k + vk) for each i, by traversing the i in decreasing order, to
obtain the function value, which takes a linear time. Another particular remarkable case is
that where the costs are positive or zero: in this case, we can employ a (greedy) algorithm
(cf. section 11.5), called the Moore–Dijsktra algorithm, see, for example, [1]. •

Exercise 11.4.5 We return to example 9.1.3, that is the classical knapsack problem. We
assume here that the weights are integer. We therefore take n objects with respective weights
p1, . . . , pn ∈ N, and respective utilities u1, . . . , un ∈ R, and we denote by P ∈ N the maximal
weights that we can carry. We set xi = 1 if we put the ith object in the knapsack, and xi = 0
otherwise. We want to maximize the utility of the knapsack under the weight constraint

max
x ∈ {0, 1}n∑

1≤i≤n
xipi ≤ P

∑
1≤i≤n

xiui. (11.52)
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For this, we consider, for every 1 ≤ t ≤ n and 0 ≤ Q ≤ P , the problem

max
x ∈ {0, 1}t∑

1≤i≤t
xipi ≤ Q

∑
1≤i≤t

xiui, (11.53)

where we denote by vtQ the optimal value. We denote by vt = (vtQ)0≤Q≤P .
1. Express vt as a function of vt−1 with the help of a dynamic programming equation.
2. Deduce an algorithm to solve (11.52). What is the time of execution of the algorithm?
3. Apply the algorithm to the following example:

max
x ∈ {0, 1}3

2x1 + 3x2 + 5x3 ≤ 6

8x1 + 2x2 + 9x3. (11.54)

Exercise 11.4.6 (minimum cost path with time constraint) Let G = (N ,A) be an
oriented graph, equipped with two valuations, c ∈ RA, a cost, and τ ∈ NA, a time, and
φ ∈ (R ∪ {+∞})N a final penalty. We fix a source node s and a date limit T ∈ N, and we look
for a path (�0, . . . , �m) of arbitrary length, starting from s (that is, �0 = s), such that the total
gain c�0,�1 + · · ·+c�m−1,�m +φ�m is minimal, under the constraint of respecting the date limit T ,
that is, under the constraint τ�0,�1 + · · ·+ τ�m−1,�m ≤ T . We shall assume that there is a circuit
whose arcs have zero time. Formulate a dynamic programming algorithm to solve this problem.
Application: find by dynamic programming the minimum cost path from node 1 to node 6, in
time at most 10, for the example (11.6.2) which will be treated later by Lagrangian relaxation.

Exercise 11.4.7 Let us consider a theatre lover, who goes in July for one day to see parts of
the Avignon festival. The festival has many hundreds of pieces. Each piece is characterized by
a single place in the town (a theatre), and a unique time in the day (for example, 16:00-17:30).
We also know the time that is necessary to go from one theatre to another. By reading the
programme before going to the festival, our spectator assigns to each piece an expected pleasure,
measured on a scale from 0 to 5. His aim is to see in the day a sequence of pieces, so to maximize
the sum of the expected pleasures for the different pieces chosen. Show that this problem can
be reduced to a minimal cost path in a graph without circuits, and that it can be solved in a
time which is quadratic in the number of pieces of the festival (we will neglect time needed for
meals).

Exercise 11.4.8 We can imagine that, on the planet Mars, the extraterrestrials teach the
children to count with the addition (a, b) �→ a ⊕ b = min(a, b), and the multiplication (a, b) �→
a⊗b = a+b (we borrow this joke from V.P. Maslov, Operational methods, MiR, Moscow, 1976).
The corresponding algebraic structure, (R ∪ {+∞},⊕,⊗) is called the minplus semiring. It
satisfies the same axioms as rings, except that addition, instead of being a group law, satisfies
a⊕ a = a. For our Martians, the Bellman equation associated with the problem at finite horizon
(11.41) is none other than a minplus matrix product

vTi =
⊕
k∈N

Mi,k ⊗ vT−1
k ,

with Mi,k = ci,k if (i, k) ∈ A, and Mi,k = +∞ otherwise. The Martians, which use the same
matrix notation as us, but in the minplus semiring, write very simply,

vt =Mvt−1 and vT =MTφ.
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As for the Bellman equation (11.51), they write it

v =Mv ⊕ φ . (11.55)

Show that the minimum cost of a path of length t going from i to k is given by (M t)i,k. Show
that the maximal solution of (11.55) is equal to v = M∗φ, where M∗ = M0 ⊕M ⊕M2 ⊕ · · ·.
Thus recover theorem 11.4.2. Show that if G does not have a circuit of negative (or zero) cost,
limT→∞ MT = +∞ (the matrix all whose coefficients are equal to +∞). Thus recover the
uniqueness result of exercise 11.4.2.

Exercise 11.4.9 Let us say finite Markovian game for a game with two players, ‘white’, and
‘black’, who in turn move a token on a finite graph, starting from an initial position (it is white
who starts). Certain vertices of the graph are final: when the token is in this vertex, we know
that white has won, or black has won, or it is a draw. Can we model chess or draughts by such
a game? We assume that the game always finishes. Write a dynamic programming equation
expressing the value of a position for white. (Hint: this equation will use, at the same time, both
min and max.) Deduce that of the three following assertions, only one is true: white can always
win; black can always win; white and black can always be forced to draw.

Remark 11.4.6 Having arrived at this point, the reader could have the impression that
everything can be solved by dynamic programming. This is almost true and dynamic
programming is a powerful tool, except that, just like Markovian methods in probability,
dynamic programming is subject to what we call the ‘curse of dimensionality’: in the case
of truly difficult problems, the necessary state space can be very large (think of the game of
chess). •

11.5 Greedy algorithms

11.5.1 General points about greedy methods

We say that an algorithm to minimize a criterion is greedy, if it constructs an
admissible solution by taking a sequence of decisions, where we take the best decision
at each step according to a local criterion, and never reconsidering the preceding
decisions. When the admissible solutions thus obtained are suboptimal, we talk of a
greedy heuristic. For example, if we have a certain number of parcels of various
sizes to put in containers, and if we want to minimize the number of containers used
(this is a version of the ‘packing’ problem), we can imagine a method which consist
of arranging the parcels as a function of their volume, and putting the parcels in the
containers starting with the largest: this is a typical example of a greedy heuristic.
The interest in greedy heuristics is that they are often very simple to implement.
Their defect is obviously their myopia, thus the difficulty of evaluating how far their
solution is from the optimum. There is however a particular class of problems for
which a greedy method gives an optimal solution (see remark 11.5.5). We will be
content with presenting, in the paragraph which follows, a fundamental example of a
greedy algorithm giving an optimal solution.
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11.5.2 Kruskal’s algorithm for the minimum
spanning tree problem

We are now interested in a nonoriented graph. Let us denote by V the set of vertices
and E the set of edges, which is a subset of the set of the pairs of two elements of
V. We therefore have {i, j} ∈ E if there is an edge linking the vertices i and j. Let
us note that to distinguish the nonoriented case from the oriented case, we speak of
vertices and edges, instead of nodes and arcs for an oriented graph.

A (nonoriented) graph is called connected if two arbitrary vertices can be linked
by a path. An arbitrary (nonoriented) graph can be decomposed into connected
components, which are by definition the equivalence classes for the relation R such
that iRj if there is a path linking i and j. We say forest for a (nonoriented) graph
without a circuit. A tree is a connected forest. We say that a subgraph G′ covers
a graph G if each vertex of G is an extremity of at least one edge of G′. Given a
(nonoriented) connected graph G = (V, E), whose edges are equipped with a cost
function E → R, {i, j} �→ cij , the problem of the minimum spanning tree consists
of finding a covering tree T whose cost∑

{i,j}∈T
cij ,

is minimum. This optimization problem is met, for example, in cabling problems,
when we want to connect electrically a set of points to each other by minimizing the
length of wire.

The Kruskal algorithm constructs a sequence of forests. We start from the forest
comprising all the vertices and no edge. At each step, we choose to add to the forest,
among all the edges whose addition does not create a circuit, that whose cost is
minimum. The algorithm finishes when the forest is a covering tree.

Theorem 11.5.1 If G = (V, E) is a (nonoriented) connected graph, equipped with an
arbitrary cost function c : E → R, the Kruskal algorithm gives a minimum spanning
tree.

Before showing theorem 11.5.1, we state a very elementary property of covering trees,
whose verification is left to the reader as an exercise.

Lemma 11.5.2 (exchange lemma) If T is a covering tree of a graph G, and if i
and j are two vertices of G, there exists a unique path of T linking i to j. Moreover,
if {i, j} is an edge of G which does not belong to T , we again obtain a covering tree
if we replace an arbitrary edge of the path of T linking i to j by {i, j}.

We can now state the optimality condition.

Lemma 11.5.3 Let G and c be as in theorem 11.5.1, and let T be a tree covering G.
The following assertions are equivalent.
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(1) T has minimum cost;

(2) for each edge {i, j} which is not in T , the unique path of T linking i and j is
formed of edges each with cost less than or equal to cij;

(3) for each edge {r, s} of T , for every connected component C of the graph obtained
by removing {r, s} from T , and for every edge {i, j} with exactly one end in C,
crs ≤ cij.

Proof. The implication (not 2)⇒(not 1) follows from the exchange lemma 11.5.2: if
{i, j} is an edge which is not in T , and if {r, s} is an edge of the unique path of T
linking i and j, such that cij < crs, we obtain by using {i, j} in place of {r, s} in T a
new covering tree of cost strictly less than that of T .

Let us show now (not 3)⇒(not 2). Let us remark first of all that the graph
obtained by removing {r, s} from T has exactly two connected components, C and
C = V \ C. Let us assume that we have an edge {i, j} with i ∈ C and j ∈ C, such
that cij < crs. The unique path linking i to j in T must contain {r, s}, which shows
that condition (2) is not satisfied.

Let us show finally (3)⇒(1). Let T be a tree satisfying (3), and let T ′ be a tree
of optimal cost, that we can choose such that the number of common edges between
T and T ′ is maximal. We shall show that T = T ′. In the opposite case, we can
find an edge {r, s} in T and not in T ′. The graph obtained by adding {r, s} to
T ′ contains a circuit, C, containing the edge {r, s}. Let us now consider the two
connected components C and C of the graph obtained by removing {r, s} from T . As
the circuit C already contains an edge linking C to C, that is {r, s}, it must contain
another edge, {i, j}, linking C and C. The graph T ′′ obtained by replacing {i, j}
by {r, s} in T ′ is again a covering tree, from the exchange lemma, and condition (3)
shows that the cost of T ′′ is less than or equal to that of T ′. Thus, T ′′ is again a
covering tree of minimum cost, and as T ′′ has, in common with T , one edge more
than T ′, we contradict the maximality hypothesis in the definition of T ′, We have
shown T ′ = T . �

Proof of theorem 11.5.1. It is immediate that the Kruskal algorithm, applied
to a connected graph, finishes with a covering tree. This tree satisfies assertion 2 of
lemma 11.5.3. �

Remark 11.5.4 It is possible to implement the Kruskal algorithm in time O(|E|| log E|)
where |E| is the number of edges of the graph, see [11]. •

Remark 11.5.5 The optimality of greedy methods is always due to strong properties of
structure. For example, the reader has already met a greedy algorithm in linear algebra:
we can view the problem consisting of constructing a basis of a finite dimensional vector
space E as an optimization problem, consisting of maximizing the cardinality of a linearly
independent family of E. The algorithm which starts from an empty family, and at each
step, adds to the family an arbitrary vector of E which is not a linear combination of the
vectors already in the family, is a greedy algorithm (which gives an optimal solution, that is,
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a basis). The proof that the method works is based on a simple result of linear algebra, the
exchange lemma, readers will already have noticed the analogy with lemma 11.5.2 above.
More generally, the properties which allow us to show that the greedy algorithm is correct
have been studied in the framework of the theory of the matroids and antimatroids, see
particularly [11]. •

11.6 Separation and relaxation of
combinatorial problems

In the solution of an OR problem, one of the first tasks is to recognize if an efficient
exact method (path algorithm, flow algorithm, greedy algorithm, etc.) is applicable.
What can we do, however, when even with good modelling, polynomial methods can-
not be applied? We can of course revert to particular heuristics, or to metaheuristics
such as simulated annealing or tabu search, see remark 11.6.7. In the spirit of this
course, we concentrate on the exact methods, based on mathematical programming
and tree searches, which allow us to prove the optimality of the solution found, or at
least, to measure the variation from the optimum.

11.6.1 Separation and evaluation (branch and bound)

Let us consider the very general combinatorial problem

min
x∈X

J(x), (11.56)

with X finite (but large), and J : X → R. In the method of separation and evaluation
(or commonly ‘branch and bound’), the separation consists of representing the set X
of the admissible solutions by the leaves of a tree, which we will explore. The internal
nodes of the tree represent the partial decisions (corresponding to fixing some decision
variables, but not all), the node at the root represents an initial situation, at which
we have made no decisions. The evaluation is concerned, for each internal node s of
the tree, with the conditional cost

v(s) = min
s′ is a leaf which is descendant from s

J(s′). (11.57)

(The word ‘descendant’ has the genealogical meaning, that is, we orient the tree with
the root at the top, and the leaves at the bottom.) The calculation of this conditional
cost at s is often as hard as that of the initial problem (11.56) (in particular, when s
is the root, (11.57) coincides with (11.56)), this is why we shall simplify the problem
(11.57), by allowing ourselves the introduction of a lower bound b(s) of the conditional
cost at s:

b(s) ≤ v(s), (11.58)

that we will have to define for every internal node of the tree.
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Statement of the separation and evaluation algorithm

The separation and evaluation algorithm consists of exploring the nodes of the tree,
starting from the root. During the exploration, we remember m, the minimal cost
of the solutions already found, therefore of the corresponding solution. We initialize
the algorithm with m = +∞. When we visit an internal node s of the graph for the
first time, we evaluate the bound b(s). If b(s) ≥ m, we do not explore the daughter
branches of the node s, since the cost of the leaves there is not better than the cost
of the best solution already found, and we go back up to the father node of s in order
to continue the exploration of the tree (we can visualize this by saying that we cut
the branch of the tree from the node s). If conversely b(s) < m, it is possible that
the branch starting from s contains a better solution m: in this case we continue the
exploration of the tree, going to the daughter nodes of s. When we arrive at a leaf of
the tree which represents an admissible solution x ∈ X of (11.56), it only remains to
calculate the value J(x): if J(x) < m, the best solution found is x, we therefore set
m = J(x), and we remember x instead of the old best solution. We then continue the
exploration of the tree by returning to the father node of the current leaf.

The algorithm visits each leaf at most once. The worst case is that where the
bound b never allows us to cut a branch: the algorithm reduces in this case to listing
all the admissible solutions of (11.56).

Illustration: example of the travelling salesman

Before detailing the method, let us consider the travelling salesman problem, already
stated in example 9.1.4. We shall here treat the nonoriented version of the travel-
ling salesman problem, which considers a complete nonoriented graph G = (V, E)
(complete means that E is formed of all the pairs of vertices of V). We will take
V = {1, . . . , n}, with n = |V|. We associate with each pair of vertices {i, j} a time
that we denote by tij (which is an abbreviation for t{i,j}, we therefore have tij = tji
since the graph is nonoriented). The aim is to find a circuit, that is, a sequence of
vertices �1, . . . , �n comprising each vertex of G once and only once, and such that the
total time

t�1�2 + t�2�3 + · · ·+ t�n�1 (11.59)

is a minimum.
By using the invariance of the criterion (11.59) by cyclic permutation, we can

always suppose that we start from the vertex 1, or �1 = 1. The circuit is then specified
uniquely by the sequence �2, . . . , �n−1. The separation of the problem reduces to
organizing the choice of a circuit in a sequence of decisions. For example, we can
consider the choice of �2 ∈ V \{�1} as a first decision, the choice of �3 ∈ V \{�1, �2} as
a second decision, and so on up to �n−1. An internal vertex of the tree of separation
will therefore correspond to a subsequence (1 = �1, �2, . . . , �k), with k ≤ n− 2, which
we shall call a ‘partial circuit’. It will bound below the conditional cost (11.57), that
is, bound the total time of the circuits which start with �1, . . . , �k. We can give, for
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example, the naive bound

b1(�1, . . . , �k) = t�1�2 + · · ·+ t�k−1�k + min
j∈V\{�1,...,�k−1}

t�kj +

min
m∈V\{�2,...,�k}

tm�1 + (n− k − 2)
(

min
j,m ∈ V \ {�1, . . . , �k}

j �= m

tjm

)
. (11.60)

In effect, the time of the circuit (11.59) is the sum of the time of the partial circuit
(�1, �2, . . . , �k), that is t�1�2 + · · ·+ t�k−1�k , plus the time of the edge {�k, �k+1}, that
we have bounded below by the first min in (11.60), plus the time of the edge {�n, �1},
that we bound symmetrically by the second min in (11.60), and finally, the time of
the path (�k+1, . . . , �n). As this path is of length n− k − 2 and does not contain any
vertex of {�1, . . . , �k}, we can bound its time below by the last min in (11.60), which
shows that b1(�1, . . . , �k) ≤ v(�1, . . . , �k).

Let us now apply the separation and evaluation algorithm, with the bound b1,
to a small example of a travelling salesman. Let us consider the town to be like
Manhattan represented in Figure 11.3. We shall take the set V = {1, . . . , 5} whose
elements correspondent to the points represented on the picture, with coordinates
P1 = (0, 0), P2 = (3, 0), P3 = (1, 1), P4 = (3, 2), and P5 = (0, 3) (the frame of
reference is towards the East and the South), and tij will represent the journey time
from the point Pi to the point Pj , that is, the norm ‖Pi − Pj‖1.

1

4

5

3

2

Figure 11.3. A travelling salesman in Manhattan.

The course through the corresponding tree is represented on Figure 11.4. We start
from the node (1), which corresponds to an empty partial circuit starting from the
point 1 of the town. The first step of the algorithm consists of choosing the following
point of the town that we shall visit, which can be 2, 3, 4, or 5. Let us choose,
for example, the point 2, which brings us to node (1, 2) that we have represented
on the left of the tree, with the partial circuit to which it corresponds. As we have
no admissible solutions for the moment, m = +∞, and as the test b1(1, 2) < m is
automatically satisfied, we do not calculate b1(1, 2). Let us follow the path deeper:
we arrive at node (1, 2, 3) (we have again represented the partial circuit), then to
node (1, 2, 3, 4), which is a leaf, since it uniquely determines the admissible solutions
x = (1, 2, 3, 4, 5), with time m = 16. The complete circuit thus obtained is represented
at the leaf. Having arrived at a leaf, the search returns to the father node, to go back
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down to the following leaf, which represents the solution (1, 2, 3, 5, 4), with time 18
worse than m. The next new node explored is (1, 2, 4), and we calculate b1(1, 2, 4) =
13 < m: we therefore explore the first daughter of (1, 2, 4), which gives the solution
x = (1, 2, 4, 5, 3), with time 14, which is better than m: we therefore set m = 14. The
other daughter of (1, 2, 4) gives another solution with time 14, (1, 2, 4, 3, 5). The next
new node visited is (1, 2, 5), with b1(1, 2, 5) = 17 ≥ m: we therefore cut the subtree
starting from (1, 2, 5), and the next new node is (1, 3). We leave the reader to finish
the calculation, and to show thus that x = (1, 2, 4, 5, 3) is a circuit whose time 14 is
optimal.

(1)

(1, 2) (1, 3), b1 = 12

(1, 2, 4), b1 = 13 (1, 2, 5), b1 = 17

(1, 5)(1, 4)

(1, 2, 3)

16 18 14 14
x = (1, 2, 3, 4, 5), m = 16x = (1, 2, 4, 5, 3), m = 14

Figure 11.4. Part of the separation and evaluation tree, for the travelling salesman
problem of Figure 11.3.

Remark 11.6.1 The travelling salesman problem in Manhattan is a particular case
of the travelling salesman metric, in which tij is the distance from i to j for a certain
metric, here, that of the norm ‖ · ‖1. A classical application of the travelling salesman
metric is the manufacturing of printed circuits, if we consider the case of a machine
having to drill a sequence of holes (according to the type of tool, we obtain a travelling
salesman problem for the Euclidean norm, for the norm ‖ · ‖∞, etc.). The travelling
salesman problem is a classical example of an NP-difficult problem (see remark 11.6.6).
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The importance of the quality of the bound

The reader may believe that the bound b1 is reasonable, but let us see how the
algorithm behaves when we increase the number of vertices of the graph. We have
programmed the above algorithm, and solved similar instances of the travelling sales-
man in Manhattan, but by varying the number n of vertices. Here is a typical set
of results, giving the number of nodes of the tree of separation and evaluation, as a
function of n:

n 5 6 7 8 9 10 11 12 13 14 15
tree 10 20 51 805 2175 10 598 58 414 199 276 499 887 1 250 530 3 598 585

The case n = 15 already takes a minute on a normal PC. We have just seen what we
call a combinatorial explosion.

Retrospectively, the coarse character of the bound b1 appears: when n−k is large,
it is bad to bound the length of the complementary partial circuit of (�1, . . . , �k)
by (n − k − 2) time the minimum of the time of the edges between the remaining
vertices, this reduces to multiplying an error by a term of order n. We see here
that in a separation and evaluation algorithm, it is essential to have a bound which
sufficiently captures the ‘physics’ of the problem.

The 1-tree bound for the travelling salesman

Let us give a first example of such a bound for the nonoriented travelling salesman.
Given a partial circuit (�1, �2, . . . , �k) of G, with k ≤ n− 2, let us construct the graph
G′ induced by the subset of vertices V ′ = V \{�1, . . . , �k}, that is, the graph of the set
of vertices V ′ and of the set of edges E ′ = {{i, j} ∈ E | i, j ∈ V ′}. Let us denote by
ac(G′) the minimum cost of a covering tree G′. (Let us recall that the idea of covering
tree has been defined in Section 11.5, where we have also seen that a covering tree of
minimum cost is calculated in time O(|E| log |E|) by the Kruskal algorithm.) We have
the following lower bound

b2(�1, . . . , �k) = t�1�2 + · · ·+ t�k−1�k + min
j∈V\{�1,...,�k−1}

t�kj

+ min
m∈V\{�2,...,�k}

tm�1 + ac(G′). (11.61)

In the special case where the partial circuit is of length zero, let k = 1, we can refine
the bound b2 very slightly by noting that in this case, the edges {�1, �2} and {�k, �1}
of the circuit must be distinct (assuming that the graph has at least three vertices),
which gives the new bound

b′2(�1) = min
j,m∈V\{�1}, j �=m

(t�1j + tm�1) + ac(G′). (11.62)

This last, classical, bound is known under the name of 1-tree bound (a 1-tree of a
graph is a subgraph formed on the one hand by a tree covering all vertices except
a distinct vertex noted ‘1’, and on the other hand by two distinct edges where 1 is
the extremity). For example, for the graph of Figure 11.3, the Kruskal algorithm
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gives the 1-tree of minimal cost represented on Figure 11.5. The cost of this 1-tree
is b′2(1) = 13. Returning to the tree of Figure 11.4, we see that to replace b1 by b2
would have allowed us not to visit the descendants of node (1, 3), as b2(1, 3) = 14 is
greater (in fact, equal) to the value m = 14 of the best solution met before at the
visit of (1, 3).

1

4

5

3

2

Figure 11.5. The 1-tree bound b′2(1), for the travelling salesman problem of Fig-
ure 11.3. The covering tree G′ is in thick lines, the two edges connecting this tree to
the vertex 1 are in dotted lines.

Choice of the tree and the order of exploration of the branches

There are in general many ways to represent the set of admissible solutions X, and the
choice is often suggested by the technique being used to construct the bound. Thus,
we see in Section 11.6.2 that we can model the travelling salesman by an integer linear
programming problem, by introducing for each {i, j} ∈ E a variable xij being 1 if the
edge {i, j} belongs to the circuit considered and 0 otherwise. With such a model,
we can construct a binary separation and evaluation tree, in which an elementary
decision consists of fixing the value of a variable xij at 0 or 1. Another determining
parameter is the order in which we visit the vertices: it is judicious to examine as
soon as possible (that is, close to the root of the tree) the decisions that we think
have the most influence on the cost of the solution, the aim being to cut the branches
as high as possible in the tree. In the same spirit, initializing m with the value of a
solution obtained heuristically, instead of +∞, only helps to cut the branches earlier.

11.6.2 Relaxation of combinatorial problems

A systematic way to obtain lower bounds for the optimal value of the cost of a com-
binatorial problem consists of relaxing the problem, that is, to make the admissible
set bigger in such a way as to obtain an easier problem, giving a lower bound for the
initial problem. When the admissible set is represented by the constraints, a way to
relax is very simply to ignore some constraints. We have already seen an example of
relaxation with the bound of the 1-tree for the travelling salesman: the circuits are
exactly the 1-trees such that each vertex has two neighbours. We shall now present
some general techniques of relaxation.
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Continuous relaxation

The efficiency of the linear programming tools often suggest modelling combinatorial
problems by integer linear programming problems: we then obtain a lower bound by
relaxing the integer constraints.

To illustrate this idea let us present the relaxation of the travelling salesman
problem proposed by Dantzig, Fulkerson, and Johnson in an article in 1954, which
at that time solved a problem with 49 towns. This was the starting point of a
series of works allowing us today to solve exactly problems with many thousands
of towns (for a history and a recent state of the art, we refer to D. Applegate, R.
Bixby, V. Chvátal, and W. Cook, ‘On the solution of traveling salesman problems’,
Documenta Math., Extra volume ICM 1998, III, 645–656, and more generally on the
web http://www.math.princeton.edu/tsp).

We use the notation of the preceding section for the travelling salesman problem:
G = (V, E) is a complete nonoriented graph (that is, E contains all the edges linking
two elements of V), with a function time t : E → R, {i, j} �→ tij . With each circuit,
we associate a vector x ∈ {0, 1}E such that xij = 1 if {i, j} is part of the circuit,
and xij = 0 otherwise. Conversely, a vector x ∈ {0, 1}E represents the subgraph of
G having for edges the {i, j} such that xij = 1. We must now express by the linear
constraints the fact that x ∈ {0, 1}E represents a circuit. As each vertex of a circuit
has exactly two neighbours, x must satisfy

∑
k∈V,{k,j}∈E

xkj = 2, for every j ∈ V. (11.63)

The constraints (11.63) are not sufficient to characterize a circuit, since the set of
edges {i, j} such that xij = 1 can be disconnected: in fact, we can see that the
x ∈ {0, 1}E , the solutions of (11.63), exactly represent the disjoint unions of circuits.
In order to eliminate the parasitical solutions, we can add the following constraints,
called subtour inequalities,

for every S ⊂ V, such that S �= ∅ and S �= V,
∑

k,m∈S,{k,m}∈E
xkm ≤ |S|−1. (11.64)

We easily see that x ∈ {0, 1}E satisfies (11.63) and (11.64) if, and only if, it represents
a circuit: in effect, every vector associated with a circuit satisfies these constraints,
and conversely, as every x ∈ {0, 1}E satisfying (11.63) represents a disjoint union of
circuits, it is enough to take for S the set of vertices of an arbitrary circuit to obtain∑
k,m∈S,{k,m}∈E xkm = |S|, and if x satisfies the subcircuit inequalities (11.64), we

must have S = V, which shows that x represents a circuit. This allows us to formulate
the travelling salesman problem as an integer linear programming problem.

(V C) : min
∑
{i,j}∈E

tijxij under the constraints x ∈ {0, 1}E , (11.63), (11.64),

http://www.math.princeton.edu/tsp
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and we immediately obtain a lower bound by considering the relaxed linear program-
ming problem in continuous variables

(V C)rel : min
∑
{i,j}∈E

tijxij under the constraints 0 ≤ xij ≤ 1, (11.63), (11.64).

Despite the exponential number of constraints in (11.64), it is possible to solve (V C)rel
efficiently by proceeding as follows. We start by minimizing

∑
{i,j}∈E tijxij under the

constraints 0 ≤ xij ≤ 1 and (11.63), ignoring the subcircuit constraints (11.64). We
thus find a first x ∈ [0, 1]E . We then see if there exists a subset S ⊂ V, S �= ∅, S �= V,
for which the inequality of (11.64) is violated, which can be done (exercise 11.6.1) very
efficiently. If none exists, we have solved (V C)rel. If conversely we have found S such
that (11.64) is not satisfied, we again minimize

∑
{i,j}∈E tijxij under the constraints

0 ≤ tij ≤ 1 and (11.63), by adding the subcircuit inequality associated with S. Fol-
lowing this sequence of minimizations and successive additions of inequalities, we are
finally led to a solution of (V C)rel. This method can be interpreted geometrically by
speaking of intersections. Indeed let us denote by P the polytope of the admissible
solutions of problem (V C)rel, and let t : x �→∑

{i,j}∈E tijxij be the linear form that
we minimize. The method that we have outlined reduces to defining a decreasing
sequence of polytopes P 1 ⊃ P 2 ⊃ · · · ⊃ P . We take, first of all, for P 1 the set defined
by 0 ≤ xij ≤ 1 and (11.63). We minimize t over P 1, and the minimum is attained
at a point x1. If x1 is in P , we have solved (V C)rel, otherwise detecting a constraint
(11.64) violated by x1 reduces to separating x1 from P , that is of finding a particular
half-space H1 such that x1 �∈ H1, and P ⊂ H1, and the following step reduces to
minimizing t on the new polytope P 2 = P 1 ∩ H1, obtained by ‘intersecting’ P 1 by
H. We therefore construct a decreasing sequence of polytopes of which we can say,
intuitively, that they ‘approximate’ P in the neighbourhood of the point where t is
minimal. Such techniques can even give the solution of the original problem (V C), if
we can find other intersections, of a combinatorial nature, allowing us to approximate
sufficiently well the integer closure Pe of P .

Exercise 11.6.1 Show that in the problem (V C)rel, we can replace the constraints
(11.64) by the constraints

for every S ⊂ V, such that S �= ∅ and S �= V,
∑

k∈V, m∈S\V,{k,m}∈E
xkm ≥ 2 .

(11.65)
Show, by using the Ford–Fulkerson theorem (Question 4 of exercise 11.3.8) that we can
check if a vector x ∈ [0, 1]E satisfies (11.65) with the help of a flow algorithm.
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Lagrangian relaxation

Let us consider the very general problem

minimize J(x) under the constraints:
x ∈ X,
Fi(x) ≤ 0, i = 1, . . . ,m,
Fi(x) = 0, i = m + 1, . . . ,m + q,

(11.66)

where J, F1, . . . , Fm+q are functions from Rn into R, and X is a nonempty subset of
Rn. Let us consider the Lagrangian L : X × Λ → R, with Λ = (R+)m × Rq and

L(x, λ) = J(x) + λ1F1(x) + · · ·+ λm+qFm+q(x).

Let J∗ be the optimal value of (11.66). We have already noted in remark 10.3.10 that
we always have the weak duality inequality

J∗ = inf
x∈X

sup
λ∈Λ

L(x, λ) ≥ sup
λ∈Λ

inf
x∈X

L(x, λ) = sup
λ∈Λ

D(λ), (11.67)

where
D : Λ → R ∪ {−∞}; D(λ) = inf

x∈X
L(x, λ) (11.68)

is the dual function. The method of Lagrangian relaxation consists of using the
right-hand side of (11.67) as a lower bound for the value J∗ of the original problem
(11.66). Every Lagrange multiplier λ ∈ Λ gives a bound D(λ) ≤ J∗, but it is natural
to look for the best bound possible, which reduces to maximizing D. Now D, which
is an infimum of affine functions, is concave. If, as is the case for most of the com-
binatorial problems, X is finite, D which is a finite infimum of affine functions, is a
nondifferentiable function (except of course in the degenerate cases). Maximizing
D therefore raises the problem of nondifferentiable optimization, which treats the
minimization of nondifferentiable convex functions (or maximization of nondifferen-
tiable concave functions).

We shall briefly present a very simple method, the subgradient method, which
generalizes the gradient methods of Section 10.5.2. We must first define the ideas
of subgradient (for convex functions) or of supergradient (for concave functions)
which are fundamental ideas in convex analysis (we will be content with a short
review). It will be useful to consider convex functions with values in R ∪ {+∞},
and, symmetrically, concave functions with values in R ∪ {−∞}, since for example
the function D defined by (11.68) is concave and can take the value −∞ (the value
+∞ is not possible, as we have excluded the case X = ∅). When J is convex from
Rn to R ∪ {+∞}, let us denote by domJ = {x ∈ Rn | J(x) < +∞} the domain
of J . Symmetrically, if J is a concave function from Rn into R ∪ {−∞}, we define
dom J = {x ∈ Rn | J(x) > −∞}. It is useful only to treat the case of convex
functions, given that all the results have symmetrical versions for concave functions.
The reader can symmetrize the results to be applied to the maximization of dual
functions associated with minimization problems.
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Definition 11.6.2 If J is a convex function of Rn in R ∪ {+∞}, and if x ∈ dom J ,
we say subdifferential of J at x for the set

∂J(x) = {p ∈ Rn | J(y)− J(x) ≥ p · (y − x), ∀y ∈ Rn}. (11.69)

The elements of ∂J(x) are called subgradients. The ideas of superdifferential and
supergradient of a concave function of Rn in R∪ {−∞} are defined symmetrically by
reversing the inequality in (11.69).

It follows immediately from definition (11.69) that the subdifferential ∂J(x) is a
convex closed set of Rn. On the other hand, if 0 ∈ ∂J(x), x is obviously a minimum
point of J .

Remark 11.6.3 The subdifferentials can be defined by (11.69) even when J is not
convex. They are, however, especially useful when J is convex, as in this case
∂J(x) �= ∅ at every point x in the interior of domJ (this is a consequence of the
geometrical form of the Hahn–Banach theorem). The convexity also guarantees the
equivalence of definition 11.6.2 of the subgradients with that of the local definitions.
We can in effect define the subgradients of an arbitrary function J of Rn in R∪{+∞},
by saying that p is a subgradient of J at a point x ∈ dom J if J is locally ‘above’ the
affine function y �→ J(x) + p · (y − x), that is,

J(y) ≥ J(x) + p · (y − x) + o(y − x), when y → x.

When J is convex, this inequality is equivalent to p ∈ ∂J(x). •

Let us now apply these ideas to the dual function D. It will be convenient to
extend D to Rm+q by setting D(λ) = −∞, if λ �∈ Λ, which defines a concave function
from Rm+q into R ∪ {−∞}. When X is finite, domD = Λ. A supergradient of the
dual function D is calculated easily, with the help of the following observation.

Proposition 11.6.4 Let us assume that X is finite, let D be the dual function defined
by (11.68), and for every λ ∈ Λ, let us set Γ(λ) = arg maxx∈XL(x, λ) = {x ∈
X | L(x, λ) = D(x)}. Then, for every x ∈ Γ(λ), F (x) = (Fi(x))1≤i≤m+q is a
supergradient of D at the point λ.

Proof. For every x ∈ Γ(λ), and for every µ ∈ Λ, we have D(µ)−D(λ) ≥ L(x, µ)−
L(x, λ) = F (x) · (µ − λ), which shows that F (x) is a supergradient of D at the
point λ. �

Remark 11.6.5 Proposition 11.6.4 is a weak version of the following result on the
subdifferentials of the maxima of convex functions. If J from Rn into R∪{+∞} is of
the form J(x) = supi∈I Ji(x), where I is a finite set, and if x �→ Ji(x) is convex, for
every i ∈ I, then, for every x ∈ dom J ,

∂J(x) = co
( ⋃

i ∈ I
Ji(x) = J(x)

∂Ji(x)
)
. (11.70)

The proof of this identity is the object of exercise 11.6.5. •
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Let PΛ be the projection from Rm+q into Λ, λ �→ (λ+
1 , . . . , λ

+
m, λm+1, . . . , λm+q).

The (projected) supergradient algorithm to maximize the concave function D
consists of constructing the sequence

λk+1 = PΛ

(
λk +

ρk
‖pk‖

pk

)
, (11.71)

where λ0 ∈ Λ is chosen arbitrarily, where pk is an arbitrary supergradient of D at the
point λk, and where ρk is a sequence of strictly positive real numbers such that

ρk → 0,
∑
i

ρi = +∞ . (11.72)

Obviously, the value λk+1 is only well defined if pk �= 0. When pk = 0, the algorithm
stops: λk is then the maximum of J (by definition of the supergradients the nullity
of a supergradient at a point implies that the function is maximal in this point).

Let us now illustrate Lagrangian relaxation by treating the example of the min-
imum cost path with time constraint, already mentioned in exercise 11.4.6 as an
application of dynamic programming. Let us therefore consider an oriented graph
G = (N ,A), the arc (i, j) being equipped with the cost cij and with the time τij . To
fix ideas, we will look for the minimum cost path and with total time at most 10,
going from the source node s = 1 to the sink node p = 6, in the graph

6

8, 1

2, 3
5

2 4

1

3

1, 4

2, 21, 8

1, 6

3, 6

2, 1

(11.73)

We have represented on each arc the values of c and τ , in this order, for example,
the arc (1, 2) costs c12 = 1 and takes τ12 = 8 units of time.

We must first of all formulate this problem in the form (11.66). For this, we
represent a path by the Boolean vector x ∈ RA such that xij = 1 if (i, j) belongs to
the path, and xij = 0 otherwise. The problem of the shortest path from a source s
to a sink p in time at most T is then written

minimize
∑

(i,j)∈A cijxij
under the constraints: x ∈ {0, 1}A,

x represents a path from s to p,∑
(i,j)∈A τijxij ≤ T .

(11.74)

There are of course many ways to write a program (11.66). Thus, it is voluntarily
that we have left the constraint ‘x represents a path from s to p’ in a literal form. We
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could have clarified this constraint by using the Kirchoff law (11.31). But dualizing
this law is a bad idea for the success of Lagrangian relaxation depends precisely on
the capacity to identify the ‘smallest’ set of constraints whose relaxation leads to a
simpler problem, preferably solvable by a direct combinatorial method. Here, it is
the time constraint that we must relax, since if we ignore this constraint, we obtain a
problem purely of minimum cost path. By dualizing the time constraint, the function
D : R+ → R ∪ {−∞} is written

D(λ) = inf
x ∈ {0, 1}A

x represents a path from s to p

( ∑
(i,j)∈A

cijxij
)

+ λ
( ∑

(i,j)∈A
τijxij − T

)
,

= −λT + inf
x ∈ {0, 1}A

x represents a path from s to p

∑
(i,j)∈A

(cij + λτij)xij .

With fixed λ, the calculation of D(λ) reduces to solving a classical problem of min-
imum cost path without time constraints in the graph of costs cij + λτij , this
which can be done by dynamic programming, and which takes a linear time in the
case of a graph without circuits, as is the case, for example, (11.6.2). Let us now
apply the supergradient algorithm (11.71) to this example. For λ1 = 0, we must find
the minimum cost path 1 → 6 in the graph equipped with the costs cij + 0τij
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21
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2

The set Γ(0) of the optimal paths is reduced to the paths (1, 2, 4, 6), and (1, 2, 5, 6)
represented in thick lines, which have cost 4. Thus, D(0) = 4 − 0T = 4. From
proposition 11.6.4, we have the supergradient

p1 = τ12 + τ24 + τ46 − T = 4 .

With a step ρ1 = 1, (11.71) gives λ2 = 1, and the new graph equipped with the costs
cij + 1τij
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As the optimal path has not changed we have the same supergradient p2 = p1. By
taking, for example, ρ2 = 1, we have λ3 = 2, which gives the graph
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There are this time two optimal paths: Γ(λ3) = {(1, 3, 4, 6), (1, 3, 5, 6)}, of cost 21.
In particular, the supergradient corresponding to the path (1, 3, 5, 6) is τ13 + τ35 +
τ56 − T = 0. The supergradient algorithm therefore stops: maxλ∈R+ D(λ) = D(2) =
31−20 = 11. As the path (1, 3, 5, 6) has time 10 ≤ T and cost 11 = D(2), we solve not
only the relaxed Lagrangian problem, which consists of maximizing D(λ), but also
the initial problem (11.74). The fact that the relaxed Lagrangian provides a solution
of the initial problem is, however, exceptional. In general, there is a duality gap,
but the x achieving the min in the dual function (11.68), evaluated at a maximum
point λ of D, can often be modified without adding too much to the cost to arrive at a
(suboptimal) solution of the initial problem. We talk then of Lagrangian heuristics.

To conclude this illustration of Lagrangian relaxation, let us revisit the travelling
salesman problem in a complete nonoriented graph G = (V, E), equipped with a time
function t : E → R+, {i, j} �→ tij . We can write the travelling salesman problem in
the form of an integer linear programming problem, equivalent to (V C),

min
∑
{i,j}∈E tijxij under the constraints
x ∈ {0, 1}E ,∑
k∈V,{k,j}∈E xkj = 2, for every j ∈ V,

x represents a connected graph with |V| edges covering all the vertices.

Let us distinguish a particular vertex 1 ∈ V. If, for every j ∈ V \ {1}, we relax the
constraints

∑
k∈V,{k,j}∈E xkj = 2, we obtain the dual function D : RV\{1} → R

D(λ) = min
∑
{i,j}∈E tijxij +

∑
j∈V\{1} λj(

∑
k∈V, {k,j}∈E xkj − 2)

under the constraints
x ∈ {0, 1}E∑
k∈V,{k,1}∈E xk1 = 2
x represents a connected graph with |V| edges covering all the vertices.

Up to a term −∑
j∈V\{1} 2λj , we recognize in D(λ) the minimum cost of a 1-tree for

the graph D = (V, E), where each edge {i, j} is equipped with the cost tij + λi + λj ,
for i, j ∈ V \ {1}, and where each edge {i, 1}, for i ∈ V \ {1}, has cost t1i + λi. As
we have already remarked in Section 11.6.1, the Kruskal algorithm of Section 11.5
makes it possible to calculate a 1-tree of minimum cost in time O(|E| log |E|), which
allows us to efficiently implement the supergradient algorithm (11.71) to calculate
the following bound: supλ∈RV\{1} D(λ). This remarkable bound for the travelling
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salesman problem, is due to Held and Karp. The 1-tree bound seen in Section 11.6.1
coincides with the value D(0) obtained by not paying for the transgression of the
constraints

∑
k∈V,{k,j}∈E xkj = 2, for every j ∈ V \ {1}.

Exercise 11.6.2 Calculate the dual function D(λ) for the problem (11.6.2), and thus
recover the value of maxλ∈R+ D(λ).

Exercise 11.6.3 Propose a Lagrangian relaxation giving an upper bound for the
knapsack problem (11.52), and apply it to example (11.54).

Exercise 11.6.4 The ‘oriented’ version of the travelling salesman problem consists of
considering an oriented graph G = (N ,A), equipped with a time function t : A → R+,
and of looking for an oriented circuit passing once and only once through each node.
Propose a Lagrangian relaxation, by making it so that for each vector λ of Lagrange
multipliers, the calculation of the dual function D(λ) amounts to solving an assignment
problem. Explain why this relaxation is less interesting than the bound of Held and Karp,
in the particular case of the problem of the nonoriented travelling salesman problem.

Exercise 11.6.5 We shall prove formula (11.70), in the case where all the Ji are convex
functions from Rn into R. (The exclusion of the value +∞ is only a convenience, which
will allow us to apply directly the results of Chapter 10, proved in the case of convex
functions with finite values). Let us denote by C the right-hand side of (11.70). (1)
Show that C ⊂ ∂J(x). (2) We assume that 0 ∈ ∂J(x). By considering the convex
programming problem

min t under the constraints y ∈ Rn, t ∈ R, Ji(y) ≤ t, ∀i ∈ I,

show that 0 ∈ C. (3) Conclude that generally, C = ∂J(x).

Remark 11.6.6 Even though this is not the object of this course, let us say some words
on the question of complexity. An algorithm is called polynomial (respectively linear)
if its time of execution (on a normal computer) is bounded by a polynomial (respectively
affine) function of the size of the data. We say that a problem is polynomial if it can be
solved by a polynomial algorithm. The class P of polynomial problems formalizes the idea
of a problem that we can solve ‘well’ in practice. For example, exercise 11.4.3 shows that
the problem consisting of finding a path of minimal cost from one node to another, in a
graph, is polynomial. Another example of a polynomial problem is the linear programming
problem (the simplex algorithm can take an exponential time in some degenerate situations,
but the interior point algorithms outlined in Section 11.2.3 finish in polynomial time). A
class of combinatorial problems which seemed more difficult has received much attention.
These are NP problems. Intuitively, a decision problem is NP if we can verify that a solution
is correct in polynomial time. For example, the Hamiltonian Circuit problem which consists
of deciding if there exists a circuit visiting each vertex of a graph once and only once, is an
NP problem, since if you are given an arbitrary circuit, you can verify if it is Hamiltonian
in polynomial time (it is enough to count the number of visits to each vertex). Another
example of an NP problem is the Sat (satisfiability) problem, which consists of deciding if
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a system of Boolean equations has a solution. A problem is called NP-difficult if it is at
least as difficult as all the NP problems, which means that if we knew how to solve this
problem in polynomial time, we would know how to solve all NP problems in polynomial
time. The NP-complete problems are decision problems which are at the same time NP-
difficult and in NP: the existence of such problems is a theorem due to Cook and Levin.
For example, Sat and Hamiltonian Circuit are NP-complete problems. We say also that an
optimization problem is NP-difficult when its decision version is NP-complete. For example,
to find a Hamiltonian circuit of minimum cost, that is, a circuit for a travelling salesman
of minimum cost, is an NP-difficult problem; the knapsack problem of exercise 11.4.5, or
the shortest path problem with constraints of exercise 11.4.6, are also NP-difficult. We
might think that NP-difficult problems are really more difficult than polynomial problems:
to show that this is true, that is to show that P �= NP, is a famous open problem. The reader
interested in these questions can consult M.R. Garey and D.S. Johnson, Computers and
Intractability, Freeman, San Francisco 1979, and also C.H. Papadimitriou, Computational
Complexity, Addison–Wesley, Reading 1995. •

Remark 11.6.7 To conclude this chapter of initiation into OR, let us mention the existence
of two important approaches which are outside of the framework of this course. For problems
which do not have good structure properties, or which are too large to apply exact methods,
we often revert to neighbourhood methods: stochastic algorithms (whose most classical
is simulated annealing, see, for example, [2]), or even tabu search [22]. A neighbourhood
method is a heuristic which consists of exploring the space of solutions by successive mod-
ifications of an admissible solution. If we only accept the modifications which improve the
criterion, we simply obtain a greedy heuristic, which can converge to a local minimum. Al-
gorithms such as simulated annealing or tabu search specify how to manage modifications
which temporarily degrade the criterion, and therefore arrive more often at a global opti-
mum. A second very different general technique, (which often allows us to solve medium
size problems optimally) is constraint programming, or CP, which intelligently explores the
space of solutions using software which reduces the combinations by logical deductions. •
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Appendix Review of Hilbert
spaces

We briefly give some properties of Hilbert spaces (for more details, we refer to [4],
[25]). To simplify the presentation, we only consider the case of Hilbert spaces over R.

Definition 12.1.8 A real Hilbert space is a vector space over R, equipped with a
scalar product, denoted 〈x, y〉, which is complete for the norm associated with this
scalar product, denoted ‖x‖ =

√
〈x, x〉. (We recall that a normed vector space is

complete if every Cauchy sequence is a convergent sequence whose limit belongs to
this space.)

In everything that follows we denote by V a real Hilbert space, and 〈x, y〉 its
associated scalar product.

Definition 12.1.9 A set K ⊂ V is called convex if, for all x, y ∈ K and every real
θ ∈ [0, 1], the element (θx + (1− θ)y) belongs to K.

An essential result is the projection theorem over a convex set.

Theorem 12.1.10 (projection over a convex set) Let V be a Hilbert space. Let
K ⊂ V be a convex closed nonempty subset. For all x ∈ V , there exists a unique
xK ∈ K such that

‖x− xK‖ = min
y∈K

‖x− y‖.

Equivalently, xK is characterized by the property

xK ∈ K, 〈xK − x, xK − y〉 ≤ 0 ∀y ∈ K. (12.1)

We call xK the orthogonal projection over K of x.

399
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Remark 12.1.11 Theorem 12.1.10 allows us to define a mapping PK , called the
projection operator on the convex set K, by setting PKx = xK . We easily verify that
PK is continuous and weakly contracting, that is to say that

‖PKx− PKy‖ ≤ ‖x− y‖ ∀x, y ∈ V . (12.2)

•

Remark 12.1.12 A particular case of a convex closed K is a closed vector subspace
W . In this case, the characterization (12.1) of xW becomes

xW ∈W, 〈xW − x, z〉 = 0 ∀z ∈W.

In effect, in (12.1) it is enough to take y = xK ± z with z arbitrary in W . •
Proof. Let yn be a minimizing sequence, that is to say that yn ∈ K satisfies

dn = ‖x− yn‖ → d = inf
y∈K

‖x− y‖ when n→ +∞.

Let us show that yn is a Cauchy sequence. By using the symmetry of the scalar product, it
becomes ∥∥∥x− 1

2
(yn + yp)

∥∥∥2

+
∥∥∥12(yn − yp)

∥∥∥2

=
1
2
(d2

n + d2
p).

Now, by the convexity of K, (yn + yp)/2 ∈ K, and ‖x− 1
2 (y

n + yp)‖2 ≥ d2. Consequently,

‖yn − yp‖2 ≤ 2(d2
n + d2

p)− 4d2,

which shows that yn is a Cauchy sequence. As V is a Hilbert space, it is complete, therefore
the sequence yn converges to a limit xK . In addition, as K is closed, this limit xK belongs
to K. Consequently, we have d = ‖x − xK‖. As every minimizing sequence is convergent,
the limit is inevitably unique, and xK is the only minimum point of miny∈K ‖x− y‖.

Let xK ∈ K be this minimum point. For all y ∈ K and θ ∈ [0, 1], by the convexity of K,
xK + θ(y − xK) belongs to K and we have

‖x− xK‖2 ≤ ‖x− (xK + θ(y − xK))‖2.

By expanding the right-hand side, it becomes

‖x− xK‖2 ≤ ‖x− xK‖2 + θ2‖y − xK‖2 − 2θ〈x− xK , y − xK〉,

which gives for θ > 0
0 ≥ −2〈x− xK , y − xK〉+ θ‖z‖2.

By making θ tend to 0, we obtain the characterization (12.1). Conversely, take xK which
satisfies this characterization. For all y ∈ K we have

‖x− y‖2 = ‖x− xK‖2 + ‖xK − y‖2 + 2〈x− xK , xK − y〉 ≥ ‖x− xK‖2,

which proves that xK is the orthogonal projection of x over K. �

Definition 12.1.13 Let V be a Hilbert space for the scalar product 〈, 〉. We say
(countable) Hilbertian basis of V for a countable family (en)n≥1 of elements of V
which is orthonormal for the scalar product and such that the vector space generated
by this family is dense in V .
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Proposition 12.1.14 Let V be a Hilbert space for the scalar product 〈, 〉. Let (en)n≥1
be a Hilbertian basis of V . For every element x of V , there exists a unique sequence
(xn)n≥1 of real numbers such that the partial sum

∑p
n=1 xnen converges to x when p

tends to infinity, and this sequence is defined by xn = 〈x, en〉. Further, we have

‖x‖2 = 〈x, x〉 =
∑
n≥1

|〈x, en〉|2. (12.3)

We then write
x =

∑
n≥1

〈x, en〉en.

Proof. If there exists a sequence (xn)n≥1 of real numbers such that limp→+∞
∑p

n=1 xnen =
x, then by projection over en (and as this sequence is by definition independent of p) we
have xn = 〈x, en〉, which proves the uniqueness of the sequence (xn)n≥1. Let us now show
its existence. By the definition of a Hilbertian basis, for all x ∈ V and for all ε > 0, there
exists y, a finite linear combination of (en)n≥1, such that ‖x − y‖ < ε. Thanks to theorem
12.1.10 we can define a linear mapping Sp which, for every point z ∈ V , produces Spz = zW ,
where zW is the orthogonal projection over the vector subspace W generated by the first p
vectors (en)1≤n≤p. From (12.1), (z − Spz) is orthogonal to every element of W , therefore in
particular to Spz. We deduce that

‖z‖2 = ‖z − Spz‖2 + ‖Spz‖2, (12.4)

which implies
‖Spz‖ ≤ ‖z‖ ∀z ∈ V.

As Spz is generated by the (en)1≤n≤p, and (z−Spz) is orthogonal to each of the (en)1≤n≤p,
we easily see that

Spz =
p∑

n=1

〈z, en〉en.

For sufficiently large p, we have Spy = y as y is a finite linear combination of (en)n≥1.
Consequently,

‖Spx− x‖ ≤ ‖Sp(x− y)‖+ ‖y − x‖ ≤ 2‖x− y‖ ≤ 2ε.

We deduce the convergence of Spx to x. From this convergence and from equation (12.4) we
have

lim
p→+∞

‖Spx‖2 = ‖x‖2,

which is none other than the Parseval summation formula (12.3). �

The existence of a countable Hilbertian basis is not guaranteed for all Hilbert
spaces. The following proposition gives a necessary and sufficient condition for the
existence of a countable Hilbertian basis.

Proposition 12.1.15 Let V be a separable Hilbert space (that is, there exists a count-
able family which is dense in V ). Then there exists a countable Hilbertian basis of V .
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Proof. Let (vn)n≥1 be the family whose generated vector subspace is dense in V (even if
it means renumbering the vn and removing some of them, we can always assume that they
are linearly independent). By an application of the Gram–Schmidt procedure to this family,
we obtain an orthonormal family (en)n≥1. As [v1, . . . , vn] = [e1, . . . , en], we deduce that
the vector subspace generated by (en)n≥1 coincides with that generated by (vn)n≥1 which
is dense in V . Therefore, (en)n≥1 is a Hilbertian basis. �

Definition 12.1.16 Let V and W be two real Hilbert spaces. A linear mapping A
from V into W is called continuous if there exists a constant C such that

‖Ax‖W ≤ C‖x‖V ∀x ∈ V.

The smallest constant C which satisfies this inequality is the norm of the linear map-
ping A, in other words

‖A‖ = sup
x∈V,x�=0

‖Ax‖W
‖x‖V

.

Often, we will use the equivalent notation of the operator instead of mapping
between Hilbert spaces (we will speak of a continuous linear operator rather than a
continuous linear mapping). If V is finite dimensional, then all the linear mappings
from V into W are continuous, but this is no longer true if V is infinite dimensional.

Definition 12.1.17 Let V be a real Hilbert space. Its dual V ′ is the set of contin-
uous linear forms over V , that is to say, the set of continuous linear mappings from
V into R. By definition, the norm of an element L ∈ V ′ is

‖L‖V ′ = sup
x∈V,x�=0

|L(x)|
‖x‖ .

In a Hilbert space, duality has a very simple interpretation thanks to the Riesz
representation theorem which allows us to identify a Hilbert space with its dual by
isomorphism.

Theorem 12.1.18 (Riesz representation) Let V be a real Hilbert space, and let
V ′ be its dual. For every continuous linear form L ∈ V ′ there exists a unique y ∈ V
such that

L(x) = 〈y, x〉 ∀x ∈ V.

Further, we have ‖L‖V ′ = ‖y‖.
Proof. Let M = KerL. This is a closed subspace of V since L is continuous. If M = V ,
then L is identically zero and we have y = 0. If M �= V , then there exists z ∈ V \M . Let
zM ∈ M be its projection over M . As z does not belong to M , z − zM is nonzero and, by
theorem 12.1.10, is orthogonal to every element of M . Finally, let

z0 =
z − zM
‖z − zM‖ .
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Every vector x ∈ V can be written

x = w + λz0 with λ =
L(x)
L(z0)

.

We see easily that L(w) = 0, therefore w ∈ M . This proves that V = Vect(z0) ⊕M . By
definition of zM and of z0, we have 〈w, z0〉 = 0, which implies

L(x) = 〈x, z0〉L(z0),

from where then we have the result with y = L(z0)z0 (the uniqueness is obvious). On the
other hand, we have

‖y‖ = |L(z0)|,

and

‖L‖V ′ = sup
x∈V,x
=0

|L(x)|
‖x‖ = L(z0) sup

x∈V,x
=0

〈x, z0〉
‖x‖ .

The maximum in the last term of this equality is attained by x = z0, which implies that
‖L‖V ′ = ‖y‖. �

An essential result to prove the Farkas lemma 10.2.17 (used in optimization) is
the following geometrical property which is completely in agreement with intuition.

Theorem 12.1.19 (separation of a point and a convex set) Let K be a closed
convex nonempty set of a Hilbert space V , and x0 /∈ K. Then there exists a closed
hyperplane of V which separates x0 and K strictly, that is to say, there exists a linear
form L ∈ V ′ and α ∈ R such that

L(x0) < α < L(x) ∀x ∈ K . (12.5)

Proof. Let us denote by xK the projection of x0 overK. Since x0 /∈ K, we have xK−x0 �= 0.
Let L be the linear form defined for all y ∈ V by L(y) = 〈xK − x0, y〉, and let α =
(L(xk) + L(x0))/2. From (12.1), we have L(x) ≥ L(xK) > α > L(x0) for all x ∈ K, which
finishes the proof. �

We finally need, to prove the Minkowski theorem 11.3.1, a variant of the separation
theorem, involving the important notion of hyperplane of support. If K is a convex
set of a Hilbert space V , we say hyperplane of support of K at a point x to mean
an affine hyperplane H = {y ∈ V | L(y) = α}, with L ∈ V ′, L �= 0, and α ∈ R, such
that α = L(x) ≤ L(y), for all y ∈ C.

Corollary 12.1.20 (hyperplane of support) There exists a hyperplane of support
at every boundary point of a convex closed set K of a finite dimensional Hilbert space.
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Proof. Let x be a boundary point of K: there then exists a sequence xn ∈ V \ K, with
xn → x. The separation theorem 12.1.19 gives, for all n, a nonzero linear form Ln such that
Ln(xn) ≤ Ln(y) for all y ∈ K. We can choose Ln with norm 1. As V is finite dimensional,
the unit sphere of V ′ is compact, and replacing Ln by a subsequence, we can assume that Ln

converges to a linear form L, which is nonzero, since it has norm 1. It is enough now to pass
to the limit in Ln(xn) ≤ Ln(y), which we justify by writing Ln(xn) = Ln(xn − x) + Ln(x)
and by noting that |Ln(xn − x)| ≤ ‖Ln‖‖xn − x‖ = ‖xn − x‖, to obtain L(x) ≤ L(y)
no matter what y ∈ K. Thus, H = {y ∈ V | L(y) = L(x)} is a hyperplane of support
of K at x. �

Remark 12.1.21 The proof of corollary 12.1.20 does not extend to infinite dimensions: in
this case, the sequence Ln has a value of adherence L for the weak topology, but nothing
says that L �= 0. As a counterexample, let us consider the set K of sequences of �2 with
positive or zero terms, which is a convex closed set of �2 with empty interior. Every point
of K is therefore a boundary point, but if x is a sequence of �2 with strictly positive terms,
there does not exist a hyperplane of support at x. •



Appendix Matrix Numerical
Analysis

This appendix is dedicated to the numerical analysis of matrix calculations and more
precisely to algorithms used to solve linear systems (particularly those coming from
the finite element method), and to calculating the eigenvalues and eigenvectors of a
self-adjoint matrix (occurring in the calculation of the eigenmodes of a mechanical
model). For more details we refer to the works [8] and [24].

13.1 Solution of linear systems

We say linear system for the problem which consists of finding the solutions x ∈ Rn

(if they exist) of the following algebraic equation

Ax = b, (13.1)

where A belongs to the set Mn(R) of real square matrices of order n, and b ∈ Rn

is a right-hand side vector. Of course, we have the well-known Cramer formulas at
our disposal which, for an invertible matrix A with columns (a1, . . . , an), gives the
solution of (13.1) in its components

xi =
det(a1, . . . , ai−1, b, ai+1, . . . , an)

detA
.

We might believe that this explicit formula is enough for our needs. But it is not, as
the Cramer formulas are completely unsuited to calculating efficiently the solution
of a linear system. Indeed, their cost in execution time on a computer is prohibitive:
we must calculate n+1 determinants and if we use the method of expansion by row (or
column) each determinant needs more than n! multiplications. In total, the Cramer
method therefore needs more than (n + 1)! multiplications, which is unimaginable:
for example, for n = 50, if the calculations are carried out on a computer operating
at 1 Gigaflop (a billion operations per second), the time of calculation is of the order
of 4.8 × 1049 years! Even if we use a better method to calculate the determinants,
the Cramer method is not competitive compared with the algorithms that we shall
see (where the number of operations will typically be of the order of n3).
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We shall see two types of methods for the solution of linear systems: those called
direct, that is to say which allow us to calculate the exact solution in a finite number
of operations, and those called iterative, that is to say which calculate a sequence of
approximate solutions which converge to the exact solution.

13.1.1 Review of matrix norms

We start by recalling the idea of subordinate norm for matrices. We denote by
Mn(R) (respectively Mn(C)) the set of real (respectively complex) square matrices
of order n. Even if we consider real matrices, it is necessary, for technical reasons
which will be seen in remark 13.1.4, to consider complex matrices.

Definition 13.1.1 Let ‖ · ‖ be a vector norm on Cn. We associate with it a matrix
norm, called subordinate to this vector norm, defined by

‖A‖ = sup
x∈Cn,x �=0

‖Ax‖
‖x‖ .

By abuse of language we use the same notation for vector norms and subordinate
matrix norms. We easily verify that a subordinate norm defined in this way is a
matrix norm over Mn(C) or Mn(R).

Lemma 13.1.2 Let ‖ · ‖ be a subordinate matrix norm over Mn(C).

1. For every matrix A, the norm ‖A‖ is also defined by

‖A‖ = sup
x∈Cn,‖x‖=1

‖Ax‖ = sup
x∈Cn,‖x‖≤1

‖Ax‖.

2. There exists xA ∈ Cn, xA �= 0 such that ‖A‖ =
‖AxA‖
‖xA‖

.

3. The identity matrix satisfies ‖ I‖ = 1.

4. Let A and B be two matrices. We have ‖AB‖ ≤ ‖A‖ ‖B‖.
Proof. The first point is obvious. The second can be shown by remarking that the
continuous function ‖Ax‖ attains its maximum on the compact set {x ∈ Cn, ‖x‖ = 1}.
The third is obvious, while the fourth is a consequence of the inequality ‖ABx‖ ≤
‖A‖ ‖Bx‖. �

Remark 13.1.3 There exist matrix norms which are not subordinate to any vector
norm. The best example is the Euclidean norm defined by ‖A‖ =

√∑n
i,j=1 |aij |2.

Indeed, we have ‖ I‖ =
√
n, which is not possible for a subordinate norm. •

We denote by ‖A‖p the matrix norm subordinate to the vector norm on Cn defined
for p ≥ 1 by ‖x‖p = (

∑n
i=1 |xi|p)

1/p, and for p = +∞ by ‖x‖∞ = max1≤i≤n |xi|. We
can calculate explicitly some of these subordinate norms. (In everything that follows
we denote by A∗ the adjoint matrix of A.)
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Exercise 13.1.1 Show that

1. ‖A‖2 = ‖A∗‖2 = maximum singular values of A,

2. ‖A‖1 = max1≤j≤n (
∑n
i=1 |aij |) ,

3. ‖A‖∞ = max1≤i≤n
(∑n

j=1 |aij |
)
.

Remark 13.1.4 A real matrix can be considered to be a matrix of Mn(R), or a
matrix ofMn(C) as R ⊂ C. If ‖·‖C is a vector norm in Cn, we can define its restriction
‖ · ‖R to Rn which is also a vector norm in Rn. For a real matrix A ∈Mn(R), we can
therefore define two subordinate matrix norms ‖A‖C and ‖A‖R by

‖A‖C = sup
x∈Cn,x �=0

‖Ax‖C

‖x‖C

and ‖A‖R = sup
x∈Rn,x �=0

‖Ax‖R

‖x‖R

.

A priori these two definitions can be distinct. Thanks to the explicit formulas of
exercise 13.1.1, we know that they coincide if ‖x‖C is one of the norms ‖x‖1, ‖x‖2,
or ‖x‖∞. However, for other vector norms we can have ‖A‖C > ‖A‖R. In addition,
in the proof of proposition 13.1.7 we need the definition over C of the subordinate
norm even if the matrix is real. This is why we use C in the definition 13.1.1 of the
subordinate norm. •

Definition 13.1.5 Let A be a matrix inMn(C). We say spectral radius of A, denoted
by ρ(A), for the maximum of the modulus of the eigenvalues of A.

The spectral radius ρ(A) is not a norm overMn(C). Indeed, we can have ρ(A) = 0
with A �= 0 (take, for example, a triangular matrix with zeros on the diagonal).
However, the lemma below shows that this is a norm on the set of normal matrices.

Lemma 13.1.6 If U is a unitary matrix (U∗ = U−1), we have ‖UA‖2 = ‖AU‖2 =
‖A‖2. Consequently, if A is a normal matrix (A∗A = AA∗), then ‖A‖2 = ρ(A).

Proof. As U∗U = I, we have

‖UA‖2
2 = sup

x∈Cn,x�=0

‖UAx‖2
2

‖x‖2
2

= sup
x∈Cn,x �=0

〈U∗UAx,Ax〉
〈x, x〉 = ‖A‖2

2.

On the other hand, the change of variable y = Ux satisfies ‖x‖2 = ‖y‖2, and therefore

‖AU‖2
2 = sup

x∈Cn,x �=0

‖AUx‖2
2

‖x‖2
2

= sup
y∈Cn,y �=0

‖Ay‖2
2

‖U−1y‖2
2

= sup
y∈Cn,y �=0

‖Ay‖2
2

‖y‖2
2

= ‖A‖2
2.

If A is normal, it is diagonalizable in an orthonormal basis of eigenvectors and we
deduce from the preceding results that ‖A‖2 = ‖diag(λi)‖2 = ρ(A). �

We now compare the norm of a matrix A with its spectral radius ρ(A).
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Proposition 13.1.7 Let ‖ · ‖ be a subordinate norm over Mn(C). We have

ρ(A) ≤ ‖A‖.

Conversely, for every matrix A and for all real numbers ε > 0, there exists a subordin-
ate norm ‖ · ‖ (which depends on A and ε) such that

‖A‖ ≤ ρ(A) + ε. (13.2)

Proof. Let λ ∈ C be an eigenvalue of A such that ρ(A) = |λ|, and x0 �= 0 an
associated eigenvector (Ax0 = λx0). We have

‖λx0‖ = ρ(A)‖x0‖ = ‖Ax0‖ ≤ ‖A‖‖x0‖,

from which we deduce ρ(A) ≤ ‖A‖. As the eigenvector x0 can be complex, it is essen-
tial to use a vector norm on Cn even for a real matrix (cf. remark 13.1.4). Conversely,
there exists an invertible matrix U such that T = U−1AU is upper triangular. For all
δ > 0 we define a diagonal matrix Dδ = diag(1, δ, δ2, . . . , δn−1) such that the matrix
Tδ defined by

Tδ = (UDδ)−1A(UDδ) = D−1
δ TDδ

satisfies

Tδ =

⎛
⎜⎜⎜⎜⎝

t11 δt12 · · · δn−1t1n

0
. . .

...
...

. . . . . . δtn−1n
0 · · · 0 tnn

⎞
⎟⎟⎟⎟⎠ with T =

⎛
⎜⎜⎜⎜⎝

t11 t12 · · · t1n

0
. . .

...
...

. . . . . .
...

0 · · · 0 tnn

⎞
⎟⎟⎟⎟⎠ .

Given ε > 0, we can choose δ sufficiently small so that the off-diagonal elements of Tδ
are also very small, for example, so that for all 1 ≤ i ≤ n− 1,

n∑
j=i+1

δj−i|tij | ≤ ε.

Then the mapping B → ‖(UDδ)−1B(UDδ)‖∞ is a subordinate norm (which depends
on A and ε) which satisfies (13.2). �

Lemma 13.1.8 Let A be a matrix of Mn(C). The following four conditions are
equivalent

1. limi→+∞Ai = 0,

2. limi→+∞Aix = 0 for every vector x ∈ Cn,

3. ρ(A) < 1,

4. there exists at least one subordinate matrix norm such that ‖A‖ < 1.
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Proof. Let us show first of all that (1) implies (2). The inequality

‖Aix‖ ≤ ‖Ai‖‖x‖

shows that limi→+∞Aix = 0. Then, (2) implies (3) as, if ρ(A) ≥ 1, then there exists
λ and x �= 0 such that Ax = λx and |λ| = ρ(A), and, consequently, the sequence
Aix = λix cannot converge to 0. As ‘(3) implies (4)’ is an immediate consequence of
proposition 13.1.7, it only remains to show that (4) implies (1). For this, we consider
the subordinate matrix norm such that ‖A‖ < 1, and we have

‖Ai‖ ≤ ‖A‖i → 0 when i→ +∞,

which shows that Ai tends to 0. �

13.1.2 Conditioning and stability

Before describing the algorithms for the solution of linear systems, we must consider
the problems of precision and stability due to rounding errors. Indeed, in a computer
there are no exact calculations, and the precision is limited because of the number of
bits used to represent real numbers: usually 32 or 64 bits (which makes about 8 or 16
significant figures). We must therefore pay great attention to the inevitable rounding
errors and to their propagation throughout a calculation. Numerical methods for the
solution of linear systems which do not amplify these errors are called stable. In
practice, we shall therefore use algorithms which are both efficient and stable.
This amplification of errors depends on the matrix considered. To quantify this
phenomenon, we introduce the idea of the condition number of a matrix.

Definition 13.1.9 Take a subordinate matrix norm that we denote by ‖A‖ (see defin-
ition 13.1.1). We say the condition number of a matrix A ∈ Mn(C), relative to this
norm, for the value defined by

cond(A) = ‖A‖ · ‖A−1‖.

This idea of condition number will allow us to measure the amplification of the
errors in the data (right-hand side or matrix) which result.

Proposition 13.1.10 Let A be an invertible matrix. Let b �= 0 be a nonzero vector.

1. Let x and x + δx be the respective solutions of the systems

Ax = b and A(x + δx) = b + δb.

Then we have
‖δx‖
‖x‖ ≤ cond(A)

‖δb‖
‖b‖ . (13.3)
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2. Let x and x + δx be the respective solutions of the systems

Ax = b and (A + δA)(x + δx) = b.

Then we have
‖δx‖

‖x + δx‖ ≤ cond(A)
‖δA‖
‖A‖ . (13.4)

Moreover, these inequalities are optimal.

Remark 13.1.11 We shall say that a matrix is well conditioned if its condition
number is close to 1 (its minimal value) and that it is ill conditioned if its condition
number is large. Because of the results of proposition 13.1.10, in practice it will
be necessary to pay attention to rounding errors if we solve a linear system for an
ill-conditioned matrix. •

Proof. To show the first result, we remark that Aδx = δb, and therefore ‖δx‖ ≤
‖A−1‖·‖δb‖. However, we also have ‖b‖ ≤ ‖A‖‖x‖, which gives (13.3). This inequality
is optimal in the following sense: for every matrix A, there exists δb and x (which
depend on A) such that (13.3) is in fact an equality. Indeed, from a property of
subordinate matrix norms (see lemma 13.1.2) there exists x such that ‖b‖ = ‖A‖‖x‖
and there exists δb such that ‖δx‖ = ‖A−1‖‖δb‖.

To obtain (13.4) we remark that Aδx + δA(x + δx) = 0, and therefore ‖δx‖ ≤
‖A−1‖‖δA‖‖x+δx‖, which implies (13.4). To prove the optimality, we shall show that
for every matrix A there exists a perturbation δA and a right-hand side b for which
there is equality. Thanks to lemma 13.1.2 there exists y �= 0 such that ‖A−1y‖ =
‖A−1‖‖y‖. Let ε be a nonzero scalar. We set δA = εI and b = (A + δA)y. We verify
then that y = y + δx and δx = −εA−1y, and as ‖δA‖ = |ε| we obtain the equality in
(13.4). �

The condition numbers most used in practice are

condp(A) = ‖A‖p‖A−1‖p for p = 1, 2,+∞,

where the norms ‖A‖p are explicitly defined in lemma 13.1.1. We easily verify a
certain number of properties of condition number.

Exercise 13.1.2 Take a matrix A ∈Mn(C). Verify that

(1) cond(A) = cond(A−1) ≥ 1, cond(αA) = cond(A) ∀α �= 0,

(2) for an arbitrary matrix, cond2(A) = µn(A)/µ1(A), where µ1(A), µn(A) are re-
spectively the smallest and the largest singular value of A,

(3) for a normal matrix, cond2(A) = |λn(A)|/|λ1(A)|, where |λ1(A)|, |λn(A)| are
respectively the smallest and the largest eigenvalue in modulus of A,
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(4) for every unitary matrix U , cond2(U) = 1,

(5) for every unitary matrix U , cond2(AU) = cond2(UA) = cond2(A).

Exercise 13.1.3 Show that the condition number of the stiffness matrix Kh, given by
(6.12) for the P1 finite element method applied to the Laplacian, is

cond2(Kh) ≈ 4
π2h2 . (13.5)

We shall show that the eigenvalues of Kh are

λk = 4h−2 sin2
(

kπ

2(n + 1)

)
1 ≤ k ≤ n,

for eigenvectors uk

ukj = sin
(

jkπ

n + 1

)
1 ≤ j, k ≤ n.

Remark 13.1.12 The estimate (13.5) of the condition number of the stiffness matrix
Kh seems very pessimistic, even catastrophic. Indeed, the finite element method
converges if h = 1/(n + 1) tends to zero. In other words, precise results can only
be obtained if the matrix is very large and very ill conditioned. But in this case,
the inevitable rounding errors on the right-hand side or on the matrix risk being
amplified enormously to the point of making the discrete solution uh very different
from its predicted limit. Very fortunately, this does not happen in practice as the
right-hand side bh of the linear system KhUh = bh is not arbitrary and does not
make the inequalities of proposition 13.1.10 optimal. If we return to the proof of the
optimality of these inequalities, we realize that it is obtained for a vector b which is
an eigenvector of Kh associated with its largest eigenvalue λn. From exercise 13.1.3,
such an eigenvector oscillates strongly on the mesh (its components change sign from
one element to the next). If the right-hand side bh is more ‘regular’ (that is to say
that it is a linear combination of the K first eigenvectors uk of Kh), we can improve
the result of proposition 13.1.10 by obtaining

‖δx‖
‖x‖ ≤ C(K)

‖δb‖
‖b‖ ,

where C(K) is a constant independent of n. This is exactly what happens in practice,
and this last inequality justifies the use of the finite element method despite the
presence of rounding errors in calculations on computers. •

13.1.3 Direct methods

Gaussian elimination

The principal idea of this method is to reduce the problem to the solution of a linear
system whose matrix is triangular. Indeed, the solution of a linear system, Tx = b,
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where the matrix T is triangular and invertible, is very easy by simple recursive
substitution. Indeed, the system⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

t1,1x1+ t1,2x2+ · · · · · · t1,nxn = b1

t2,2x2+
.. . · · · t2,nxn = b2
. . . . . .

...
tn−1,n−1xn−1+ tn−1,nxn = bn−1

tn,nxn = bn

.

is solved by first calculating xn = bn/tn,n, then xn−1, and so on until x1. We call this
procedure back substitution (in the case of a lower triangular matrix, the similar
procedure which calculates the components of the solution from x1 to xn is called
forward substitution). Let us remark that we have therefore solved the system
Tx = b without inverting the matrix T . In the same way, the method of Gaus-
sian elimination will solve the system Ax = b without calculating the inverse of the
matrix A.

Gaussian elimination decomposes into three steps:

(1) elimination: calculation of an invertible matrix M such that MA = T is upper
triangular,

(2) update of the right-hand side: simultaneous calculation of Mb,

(3) substitution: solution of the triangular system Tx = Mb by simple back substi-
tution.

The existence of such a matrix M is guaranteed by the following result for which
we will give a constructive proof which is none other than Gaussian elimination.

Proposition 13.1.13 Let A be a square matrix (invertible or not). There exists at
least an invertible matrix M such that the matrix T = MA is upper triangular.

Proof. The principle is to construct a sequence of matrices Ak, 1 ≤ k ≤ n, whose first
(k− 1) columns are filled with zeros under the diagonal. By successive modifications, we go
from A1 = A to An = T which is upper triangular. We denote by

(
akij

)
1≤i,j≤n

the elements

of the matrix Ak, and say pivot of Ak for the element akkk. To go from the matrix Ak to the
matrix Ak+1, we must be sure first of all that the pivot akkk is not zero. If it is, we permute
the kth row with another row to put a nonzero element in the position of the pivot. Then
we proceed to the elimination of all the elements of the kth column below the kth row by
making linear combinations of the current row with the kth row.

More precisely, we carry out the following operations. We multiply Ak by a permutation
matrix P k to obtain Ãk = P kAk such that its pivot ãkkk is nonzero. If akkk �= 0, then it is
enough to take P k = I. Otherwise, if there exists akik �= 0 with i ≥ k + 1, we permute the
kth row with the ith by taking P k = (e1, . . . , ek−1, ei, ek+1, . . . , ei−1, ek, ei+1, . . . , en) (if all
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the elements of the kth column under the diagonal, akik with i ≥ k, are zero, then there is
nothing to do!). Then we multiply Ãk by a matrix Ek, defined by

Ek =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

0
. . .

... 1

... − ãk
k+1,k

ãk
k,k

1

...
...

. . .

0 − ãk
n,k

ãk
k,k

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (13.6)

which eliminates all the coefficients of the kth column below the diagonal. We set

Ak+1 = EkÃk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ã1
11 · · · · · · · · · · · · ã1

1n

0
. . .

...
...

. . . ãkk,k ãkk,k+1 · · · ãkk,n
... 0 ak+1

k+1,k+1 · · · ak+1
k+1,n

...
...

...
...

0 . . . 0 ak+1
n,k+1 · · · ak+1

n,n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with ak+1
ij = ãkij − (ãki,k/ã

k
k,k)ã

k
k,j for k + 1 ≤ i, j ≤ n. The matrix Ak+1 therefore has the

desired form with its k first columns having zeros under the diagonal. After (n − 1) steps,
the matrix An is upper triangular and satisfies An = MA with M = En−1Pn−1 · · ·E1P 1.
The matrix M is invertible as detP i = ±1 and detEi = 1.

We can update the right-hand side (that is to say calculate Mb) as we calculate the
matrices P k and Ek. We construct a sequence of right-hand sides (bk)1≤k≤n defined by

b1 = b, bk+1 = EkP kbk for 1 ≤ k ≤ n− 1,

and we have bn =Mb. To solve the linear system Ax = b it only remains to solve the system
Anx =Mb where An = T is an upper triangular matrix. �

Remark 13.1.14 Let us mention some practical aspects of the Gaussian elimination
method.

1. We never calculateM ! We do not need to multiply the matrices Ek and P k to calculate
Mb and An.

2. If A is not invertible, one of the diagonal coefficients of An = T is zero and we will
not be able to solve Tx =Mb. Conversely, the elimination is always possible.

3. At step k, we only modify the part of the rows k + 1 to n between the columns k + 1
to n.

4. As a by-product of Gaussian elimination, we can calculate the determinant of the
matrix A. Indeed, we have detA = ± detT according to the number of permutations
carried out.
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5. To obtain better numerical stability in the calculations on computers we should choose
the pivot ãkkk carefully. To avoid the propagation of rounding errors we must choose
the largest pivot possible in absolute value. Even when the natural pivot akkk is not
zero, we permute to put in its place a larger pivot ãkkk. We say that we make a partial
pivot if we take the largest pivot possible in the kth column below the diagonal (as
we have done in the proof above). We say that we make a total pivot if we take the
largest pivot possible in the submatrix below the diagonal of size (n− k)× (n− k) (in
this case we permute row and column).

•

LU factorization

The LU method consists of factorizing the matrix A into a product of two triangular
matrices A = LU , where L is lower triangular and U is upper triangular. It is in fact
the same algorithm as Gaussian elimination in the particular case where we never
pivot. Once we have established the LU factorization of A, the solution of the linear
system Ax = b is equivalent to the simple solution of two triangular systems Ly = b
then Ux = y.

Proposition 13.1.15 Take a matrix A = (aij)1≤i,j≤n of order n such that all the
diagonal submatrices of order k, defined by

∆k =

⎛
⎜⎝

a11 · · · a1k
...

. . .
...

ak1 · · · akk

⎞
⎟⎠

are invertible. There exists a unique pair of matrices (L,U), with U upper triangular,
and L lower triangular having a diagonal 1, such that

A = LU.

Remark 13.1.16 The hypothesis of proposition 13.1.15 is not unreasonable. Indeed,
it is true if, for example, A is positive definite. If ∆k is not invertible, then there exists
a nonzero vector xk ∈ Ker∆k and complementing it by zeros, we construct a nonzero
vector x = (xk, 0) which satisfies Ax · x = 0, which contradicts the positive definite
character of A. •

Proof. Let us assume that during Gaussian elimination we do not need to make
permutations to change the pivot, that is to say that all the natural pivots akkk are
nonzero. Then, with the notation of proposition 13.1.13 we have An = En−1...E1A
with Ek defined by (13.6). We set U = An and L = (E1)−1...(En−1)−1. Then we
have A = LU and it simply remains to verify that L is lower triangular. An easy
calculation shows that (Ek)−1 is obtained starting from Ek by changing the sign of the
elements under the diagonal, that is to say, setting lik = aki,k/a

k
k,k, for k + 1 ≤ i ≤ n,
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we have

Ek =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

0
. . .

... 1

... −lk+1,k
. . .

...
...

. . .
0 −ln,k 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (Ek)−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

0
. . .

... 1

... +lk+1,k
. . .

...
...

. . .
0 +ln,k 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Another calculation shows that L is lower triangular and that its kth column is the
same as that of (Ek)−1

L =

⎛
⎜⎜⎜⎜⎝

1 0 . . . 0

l2,1
. . . . . .

...
...

. . . . . . 0
ln,1 . . . ln,n−1 1

⎞
⎟⎟⎟⎟⎠ .

We must now verify that the pivots are not zero under the hypothesis made on the
matrices ∆k. We verify this by induction. The first pivot a11 is nonzero as it is
equal to ∆1 which is invertible. We assume that all the pivots up to the order k − 1
are nonzero. Let us show that the new pivot akkk is also nonzero. As the k − 1 first
pivots are nonzero we could calculate the matrix Ak. We then write the equality
(E1)−1 · · · (Ek−1)−1Ak = A in the form of an equality between block matrices(

Lk11 0
5Lk21 I

)(
Uk11 Ak12
Ak21 Ak22

)
=
(

∆k A12
A21 A22

)
,

with Uk11, Lk11, and ∆k square blocks of size k, and Ak22, I, and A22 square blocks of
size n− k. By applying the rules for multiplication block matrices, we obtain

Lk11U
k
11 = ∆k,

where Uk11 is an upper triangular matrix, and Lk11 a lower triangular matrix with ‘1s’
on the diagonal. We deduce that the matrix Uk11 = (Lk11)−1∆k is invertible as the
product of invertible matrices. Its determinant is therefore nonzero. Or

detUk11 =
k∏
i=1

akii �= 0.

Therefore the pivot akkk at the step k is nonzero.
It only remains to verify the uniqueness. Take two LU decompositions of the

matrix A = L1U1 = L2U2. We deduce that L−1
2 L1 = U2U

−1
1 , where the matrix



416 APPENDIX MATRIX NUMERICAL ANALYSIS

L−1
2 L1 is lower triangular and U2U

−1
1 is upper triangular from lemma 13.1.17. They

are therefore both diagonal, and as the diagonal of L−1
2 L1 is composed of 1s, we have

L−1
2 L1 = U2U

−1
1 = I. �

Lemma 13.1.17 Let T be a lower triangular matrix. Its inverse (if one exists) is also
a lower triangular matrix and its diagonal elements are the inverses of the diagonal
elements of T . Let T ′ be another lower triangular matrix. The product TT ′ is also
lower triangular, and its diagonal elements are the product of diagonal elements of T
and of T ′.

We leave to the reader the elementary proof of lemma 13.1.17.

Practical calculation of LU factorization. We calculate the LU factorization
(if it exists) of a matrix A by identification with the product LU . By setting A =
(aij)1≤i,j≤n, and

L =

⎛
⎜⎜⎜⎜⎝

1 0 . . . 0

l2,1
. . . . . .

...
...

. . . . . . 0
ln,1 . . . ln,n−1 1

⎞
⎟⎟⎟⎟⎠ , U =

⎛
⎜⎜⎜⎜⎝

u1,1 . . . . . . u1,n

0 u2,2
...

...
. . . . . .

...
0 . . . 0 un,n

⎞
⎟⎟⎟⎟⎠ ,

as L is lower triangular and U upper triangular, for 1 ≤ i, j ≤ n it becomes

ai,j =
n∑
k=1

li,kuk,j =
min(i,j)∑
k=1

li,kuk,j .

Identifying the columns of Aij in increasing order, we deduce the columns of L and of
U . Thus, after having calculated the (j− 1) first columns of L and of U as a function
of the (j − 1) first columns of A, we read the jth column of A

ai,j =
i∑
k=1

li,kuk,j ⇒ ui,j = ai,j −
i−1∑
k=1

li,kuk,j for 1 ≤ i ≤ j,

ai,j =
j∑
k=1

li,kuk,j ⇒ li,j =
ai,j −

∑j−1
k=1 li,kuk,j
ujj

for j + 1 ≤ i ≤ n.

We therefore calculate the first j components of the jth column of U and the last
n− j components of the jth column of L as a function of their (j − 1) first columns.
We divide by the pivot ujj which must therefore be nonzero!

Numerical algorithm. We write the algorithm corresponding to the LU decom-
position method in a computational pseudo-language. We have seen that we traverse
the matrix A column by column: at the step k we calculate the kth column of L,
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then we place zeros under the diagonal of the kth column by making linear combina-
tions of the kth row with each of the rows from k + 1 to n. Since at the step k the
first k rows and the first k − 1 columns of the matrix are no longer modified, we can
store in the same array which initially contained the matrix A, the matrices Ak and
Lk = (E1)−1 · · · (Ek−1)−1 (we only store the nontrivial elements of Lk instead of the
zeros of Ak under the diagonal of its first k − 1 columns). At the end, this array will
contain the matrices L and U (L in its lower part—without the diagonal of 1s—and
U in its upper part).

For k = 1, n− 1 ←− step k
For i = k + 1, n ←− row i

aik = aik/akk ←− new column of L
For j = k + 1, n

aij = aij − aikakj ←− combination of rows i and k
End of the loop in j

End of the loop in i
End of the loop in k

Operations count. To measure the efficiency of the LU decomposition algorithm
we count the number of operations needed to carry it out (which will be proportional
to its time of execution on a computer). We do not calculate this number of operations
exactly, and we are content with the first term of its asymptotic expansion when the
dimension n is large. Moreover, for simplicity we only count the multiplications and
divisions (and not the additions whose number is in general the same order of size).

• Elimination or LU decomposition: the number of operations Nop is

Nop =
n−1∑
j=1

n∑
i=j+1

⎛
⎝1 +

n∑
k=j+1

1

⎞
⎠ ,

which, to the first order, gives Nop ≈ n3/3.

• Substitution (or back substitution–forward substitution on the two triangular
systems): the number of operations Nop is given by the formula

Nop = 2
n∑
j=1

j,

which, to the first order, gives Nop ≈ n2.

In total the solution of a linear system Ax = b by LU factorization needs Nop ≈ n3/3
operations as n2 is negligible compared with n3 when n is large.

Remark 13.1.18 We also use the method of LU factorization to calculate the deter-
minant and the inverse of a matrix. To obtain A−1, we decompose A into LU factors
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and we solve n linear systems with, as right-hand sides, the basis vectors (ei)1≤i≤n
(two substitutions per solution, but the basis vectors ei have many zero components,
which makes the forward substitution step with L cheap). The number of operations
to calculate A−1 is

Nop ≈
n3

3
+

n∑
j=1

j2

2
+ n

(
n2

2

)
≈ n3.

To calculate the determinant of A, we decompose A into LU factors and we calculate
the determinant of U (that of L is 1), for which we only need to multiply the diagonal
elements of U together (n−1 multiplications). The number of operations to calculate
detA is therefore Nop ≈ n3/3. •

The Cholesky method

This is a method which is only applicable to real symmetric, positive definite matrices.
It consists of factorizing a matrix A in the form A = BB∗ where B is a lower triangular
matrix (and B∗ its adjoint or transpose).

Proposition 13.1.19 Let A be a real symmetric, positive definite matrix. There
exists a unique real matrix B which is lower triangular, such that all its diagonal
elements are positive, and which satisfies

A = BB∗.

Proof. By application of proposition 13.1.15, there exists a unique pair of matrices
(L,U) such that A = LU with U upper triangular and L lower triangular having a
diagonal of 1s. We denote by D the diagonal matrix defined by D = diag(

√
uii). It

is possible to take the square root of the elements of the diagonal of U as a block
matrix multiplication argument shows that

∏k
i=1 uii = det∆k > 0, where ∆k is

the diagonal submatrix of order k extracted from A, therefore each uii is strictly
positive. We then set B = LD and C = D−1U which verifies A = BC. As A =
A∗, we deduce C(B∗)−1 = B−1(C∗). From lemma 13.1.17 the matrix C(B∗)−1 is
upper triangular, while B−1C∗ is lower triangular. They are therefore both diagonal.
Moreover, the diagonal elements of B and C are the same, therefore, the diagonal
of B−1C∗ is only composed of 1s, that is to say, C(B∗)−1 = B−1C∗ = I, therefore
C = B∗. To show the uniqueness of the Cholesky decomposition, we assume that
there exist two factorizations A = B1B

∗
1 = B2B

∗
2 , from which B−1

2 B1 = B∗2(B∗1)−1.
From lemma 13.1.17, we deduce that B−1

2 B1 = D = diag(d1, . . . , dn), and therefore
that A = B2B

∗
2 = B2(DD∗)B∗2 . As B2 is invertible, it becomes D2 = I therefore

di = ±1. Now all the diagonal coefficients of a Cholesky decomposition are positive
by hypothesis. Therefore di = 1, which implies B1 = B2. �

Practical calculation of Cholesky factorization. In practice, we calculate the
Cholesky factor B by identification in the equality A = BB∗. Let A = (aij)1≤i,j≤n,
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B = (bij)1≤i,j≤n with bij = 0 if i < j. For 1 ≤ i, j ≤ n, it becomes

aij =
n∑
k=1

bikbjk =
min(i,j)∑
k=1

bikbjk.

By identifying the columns of A in increasing order (or its rows, which comes to
the same thing as A is symmetric) we deduce the columns of B. Thus, after having
calculated the first (j − 1) columns of B as a function of (j − 1) first columns of A,
we read the jth column of A below the diagonal

ajj =
j∑
k=1

(bjk)2 ⇒ bjj =

√√√√ajj −
j−1∑
k=1

(bjk)2

ai,j =
j∑
k=1

bjkbi,k ⇒ bi,j =
ai,j −

∑j−1
k=1 bjkbi,k
bjj

for j + 1 ≤ i ≤ n.

We therefore calculate the jth column of B as a function of its (j − 1) first columns.
Because of the preceding theorem, we are sure that, if A is symmetric positive definite,
the terms under the square roots are strictly positive. Conversely, if A is not positive
definite, we will find that ajj −

∑j−1
k=1(bjk)2 ≤ 0 for a certain range j, which prevents

the algorithm from terminating.

Numerical algorithm. The Cholesky algorithm can be written in a very compact
fashion by using one array which originally contains A which is replaced step by step
with the factor B. Let us remark that it is enough to store the lower half of A since
A is symmetric.

For j = 1, n
For k = 1, j − 1

ajj = ajj − (bjk)2

End of the loop in k
ajj = √

ajj
For i = j + 1, n

For k = 1, j − 1
aij = aij − bjkbik

End of the loop in k
aij = aij/ajj

End of the loop in i
End of the loop in j

Operations count. To measure the efficiency of the Cholesky method we count
the number of operations (only the multiplications) necessary to carry it out. The
number of square roots is n which is negligible in this operations count.
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• Cholesky factorization: the number of operations Nop is

Nop =
n∑
j=1

⎛
⎝(j − 1) +

n∑
i=j+1

j

⎞
⎠ ,

which, to the first order, gives Nop ≈ n3/6.

• Substitution: we must make a back substitution and a forward substitution on
the triangular systems associated with B and B∗. The number of operations is
to the first order Nop ≈ n2.

The Cholesky method is therefore approximately twice as quick as the Gaussian
elimination method for a symmetric positive definite matrix.

Banded matrices and sparse matrices

When a matrix has many zero coefficients, we say that it is sparse. If the nonzero
elements are near to the diagonal, we say that the matrix has a banded structure.
For these two types of matrices (which appear naturally in the finite element method
as in most of the other methods), we can improve the operations count and the storage
necessary to solve a linear system. This gain is very important in practice.

Definition 13.1.20 A matrix A ∈ Mn(R) is called a banded matrix, with half-
bandwidth p ∈ N if its elements satisfy ai,j = 0 for |i − j| > p. The size of the
band is then 2p + 1.

The interest in banded matrices comes from the following property.

Exercise 13.1.4 Show that the LU and Cholesky factorizations conserve the banded
structure of matrices.

Remark 13.1.21 While the LU and Cholesky factorizations preserve the banded
structure of matrices, this is not so for their sparse structure. In general, if A is
sparse (even inside a band), the factors L and U , or B and B∗ are ‘full’ (the opposite
of sparse) in the interior of the same band. •

The following exercise allows us to quantify the gain that comes from using banded
matrices.

Exercise 13.1.5 Show that, for a banded matrix of order n and half-bandwidth p, the
operations count of LU factorization is O(np2) and that of Cholesky factorization is
O(np2/2).
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Let us pass to the case of sparse matrices. Let us explain first of all how to store
these sparse matrices in the computer memory. As we only store the nonzero elements
of the matrix, we obtain an appreciable saving in space. We present a storage method,
called Morse storage, in a simple example, given that we only use it in practice for
large matrices. Take therefore the matrix

A =

⎛
⎜⎝

9 0 −3 0
7 −1 0 4
0 5 2 0
1 0 −1 2

⎞
⎟⎠ .

The elements of A are stored, row by row, in an array with only one dimension
stocka. We define an array debutl which indicates the beginnings of the rows of A
in stocka: more precisely stocka(debutl(i)) is the first nonzero element of the row
i. We also need an array indicc which indicates the column of each element stored in
stocka: if ai,j is stored in stocka(k), then indicc(k) = j. The number of nonzero
elements of A is equal to the size of the vector indicc (or of the vector stocka). The
number of rows of A is equal to the size of the vector debutl. In our example, we have

stocka indicc debutl
9 1 1

−3 3 3
7 1 6

−1 2 8
4 4
5 2
2 3
1 1

−1 3
2 4

In general, the LU and Cholesky factorizations of a sparse matrix produce ‘full’
factors with few nonzero elements (there exist algorithms which minimize this ‘fill-
ing’ but they are less efficient than in the case of banded matrices). In practice,
sparse matrices are often associated with the iterative methods that we shall see in
Section 13.1.4. Indeed, matrix-vector products are easy to evaluate with this type of
storage.

Equivalence of operations and the Strassen algorithm

We remark that all these methods for the solution of linear systems have an operations
count of the order of n3, as does the calculation of the inverse (see remark 13.1.18) or the
multiplication of two matrices of order n. It is not a coincidence as the following result
shows, in a surprising way, that the inversion of a matrix has the same complexity as the
multiplication of two matrices, even if the inversion seems, at first glance, to be a more
complicated operation.
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Lemma 13.1.22 The inversion of matrices and matrix multiplication have the same asymp-
totic complexity, that is to say that if there exists an algorithm for one of these operations
such that its number of operations is bounded by O(nα) with α ≥ 2, then we can construct
an algorithm for the other operation whose number of operations is also bounded by O(nα).

Proof. Let I(n) be the number of operations to calculate A−1 by a given algorithm, such
that there exist C and α ≥ 2 satisfying I(n) ≤ Cnα. Let us show that there exists an
algorithm to calculate the product AB whose number of operations P (n) is such that there
exists C′ for which P (n) ≤ C′nα with the same exponent α. We remark that

(
I A 0
0 I B
0 0 I

)−1

=

(
I −A AB
0 I −B
0 0 I

)
.

Consequently, the product AB is obtained by inverting a matrix three times larger.
Therefore,

P (n) ≤ I(3n) ≤ C3αnα.

Now let P (n) be the number of operations to calculate AB by a given algorithm, such that
there exists C and α satisfying P (n) ≤ Cnα. Let us show that there exists an algorithm
to calculate A−1 whose number of operations I(n) is such that there exists C′ for which
I(n) ≤ C′nα with the same exponent α. We remark that(

A B
C D

)−1

=

(
A−1 +A−1B∆−1CA−1 −A−1B∆−1

−∆−1CA−1 ∆−1

)
,

with ∆ = D − CA−1B (sometimes called the Schur complement). We deduce

I(2n) ≤ 2I(n) + 6P (n),

if we neglect the additions. Iterating this formula for n = 2k, we obtain

I(2k) ≤ 2kI(1) + 6
k−1∑
i=0

2k−i−1P (2i) ≤ C

(
2k +

k−1∑
i=0

2k−i−1+αi

)
.

As α ≥ 2, we deduce
I(2k) ≤ C′2αk.

If n �= 2k for all k, there exists k such that 2k < n < 2k+1. We inscribe the matrix A in a
larger matrix of size 2k+1 (

A 0
0 I

)
,

where I is the identity of order 2k+1 − n. We obtain

I(n) ≤ C′(2k+1)α ≤ C′2αnα,

which is the desired result. �

It was believed for a long time that the matrix multiplication of order n (and therefore
their inversion) could not be done in less that n3 operations. But since a discovery by



SOLUTION OF LINEAR SYSTEMS 423

Strassen in 1969, we know that this is not true. Indeed, Strassen developed an algorithm
for matrix multiplication which needs far fewer operations for large n. He obtained, for this
algorithm, an operations count

Nop(n) = O(nlog27) with log2 7 ∼ 2, 81. (13.7)

This result, itself surprising, has since been improved: we have found other algorithms, more
and more complicated, for which the number of operations grows less quickly for large n,
but we have not always found the best algorithm possible (that is to say that which leads to
the smallest exponent α such that Nop(n) = O(nα)). Obviously, for very large matrices, the
gain in time obtained by these algorithms is appreciable (the Strassen algorithm has actually
been used on supercomputers).Unfortunately, these algorithms often have numerical stability
problems (they amplify the rounding errors) which limit their practical use.

The Strassen algorithm relies on the following lemma which appears benign!

Lemma 13.1.23 (Strassen algorithm) The product of two matrices of order 2 can be
made with 7 multiplications and 18 additions (instead of 8 multiplications and 4 additions
by the usual rules).

Proof. A simple calculation shows that(
a b
c d

)(
α β
γ δ

)
=

(
m1 +m2 −m4 +m6 m4 +m5

m6 +m7 m2 −m3 +m5 −m7

)
,

with
m1 = (b− d)(γ + δ) m5 = a(β − δ)
m2 = (a+ d)(α+ δ) m6 = d(γ − α)
m3 = (a− c)(α+ β) m7 = (c+ d)α
m4 = (a+ b)δ

We count 7 multiplications and 18 additions. �

The crucial point in lemma 13.1.23 is that Strassen’s multiplication rule is also valid if
the matrix coefficients are in a noncommutative algebra. In particular, this is therefore true
for block matrices.

Take then a matrix of size n = 2k. We cut this matrix into four blocks of size 2k−1, and
we apply the Strassen rule. If we count not only the multiplications but also the additions,
the number of operations Nop(n) to make the product of two matrices satisfies

Nop(2k) = 7Nop(2k−1) + 18(2k−1)2,

as the addition of two matrices of size n requires n2 additions. A simple induction gives

Nop(2k) = 7kNop(1) + 18
k−1∑
i=0

7i4k−1−i ≤ 7k (Nop(1) + 6) .

We deduce easily that the optimal number of operations Nop(n) satisfies the bound (13.7).
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13.1.4 Iterative methods

Iterative methods are particularly interesting for very large matrices or sparse matri-
ces. Indeed, in this case direct methods can have a prohibitive calculation and storage
cost (recall that LU or Cholesky factorization need of the order of n3 operations). Let
us start with a very simple class of iterative methods.

Definition 13.1.24 Let A be an invertible matrix. We introduce a regular decompos-
ition of A (sometime called a ‘splitting’), that is to say a pair of matrices (M,N) with
M invertible (and easy to invert in practice) such that A = M − N . The iterative
method based on the splitting (M,N) is defined by{

x0 given in Rn,
Mxk+1 = Nxk + b ∀k ≥ 1. (13.8)

If the sequence of approximate solutions xk converges to a limit x when k tends
to infinity, then, by passage to the limit in the induction (13.8), we obtain

(M −N)x = Ax = b.

Consequently, if the sequence of approximate solutions converges, its limit is the
solution of the linear system.

From a practical point of view, we must know when to stop the iteration, that is
to say at what moment xk is sufficiently close to the unknown solution x. As we do
not know x, we cannot decide to stop the calculation as soon as ‖x−xk‖ ≤ ε where ε
is the desired precision. On the other hand, we know Ax (which is b), and a stopping
criterion frequently used is ‖b− Axk‖ ≤ ε. However, if the norm of A−1 is large this
criterion can be misleading as

‖x− xk‖ ≤ ‖A−1‖ ‖b−Axk‖ ≤ ε‖A−1‖

which will not be small.

Definition 13.1.25 We say that an iterative method is convergent if, whatever
the choice of the initial vector x0 ∈ Rn, the sequence of approximate solutions
xk converges to the exact solution x.

We start by giving a necessary and sufficient condition for convergence of an
iterative method with the help of the spectral radius of the iteration matrix (see
definition 13.1.5 for the idea of spectral radius).

Lemma 13.1.26 The iterative method defined by (13.8) converges if and only if the
spectral radius of the iteration matrix M−1N satisfies ρ(M−1N) < 1.

Proof. We define the error ek = xk − x. We have

ek = (M−1Nxk−1 + M−1b)− (M−1Nx + M−1b) = M−1Nek−1 = (M−1N)ke0.



SOLUTION OF LINEAR SYSTEMS 425

By application of lemma 13.1.8 we deduce that ek tends to 0, for any e0, if and only
if ρ(M−1N) < 1. �

In practice the spectral radius of a matrix is difficult to calculate (we must calculate
its eigenvalues). This is why we use other sufficient conditions of convergence, as indicated
below.

Lemma 13.1.27 Let A be a Hermitian, positive definite matrix. Take a regular decompos-
ition of A defined by A =M−N with M invertible. Then the matrix (M∗+N) is Hermitian.
Moreover, if (M∗ +N) is also positive definite, then

ρ(M−1N) < 1.

Proof. First, let us show that M∗ +N is Hermitian:

(M∗ +N)∗ =M +N∗ = (A+N) +N∗ = A∗ +N∗ +N =M∗ +N.

We define the vector norm |x|A =
√

〈Ax, x〉 over Rn (which is a norm as A is positive defi-
nite). We denote by ‖.‖ the matrix norm subordinate to |.|A. We will show that ‖M−1N‖ < 1
which implies the desired result thanks to proposition 13.1.7. We calculate

‖M−1N‖2 = max
|v|A=1

|M−1Nv|2A.

Now, from lemma 13.1.2, there exists v, dependent on M−1N , such that |v|A = 1 and

|M−1Nv|2A = ‖M−1N‖2.

As N =M −A, we obtain, by setting w =M−1Av,

|M−1Nv|2A = 〈AM−1Nv,M−1Nv〉
= 〈AM−1(M −A)v,M−1(M −A)v〉
= 〈(Av −AM−1Av), (I −M−1A)v〉
= 〈Av, v〉 − 〈AM−1Av, v〉

+〈AM−1Av,M−1Av〉 − 〈Av,M−1Av〉
= 1− 〈M−1Av,MM−1Av〉

+〈AM−1Av,M−1Av〉 − 〈MM−1Av,M−1Av〉
= 1− 〈w,Mw〉+ 〈Aw,w〉 − 〈Mw,w〉
= 1− 〈(M∗ +N)w,w〉.

Now 〈(M∗ + N)w,w〉 > 0 , as (M∗ + N) is positive definite, and w �= 0 as A and M are
invertible. Therefore

‖M−1N‖2 = 1− 〈(M∗ +N)w,w〉 < 1,

which finishes the proof. �

Since these iterative methods for the solution of linear systems are intended to be used on
computers whose calculations are not exact but polluted by rounding errors, it is necessary
to verify that these errors do not propagate to the point of destroying the convergence of
the methods or, worse, make them converge to false solutions. Very happily this is not the
case as the following result shows.
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Lemma 13.1.28 Take a regular decomposition of A defined by A =M −N with M invert-
ible. Take a right-hand side b ∈ Rn and the solution x ∈ Rn such that Ax = b. We assume
that at each step k the iterative method has an error εk ∈ Rn in the sense that xk+1 is not
exactly given by (13.8) but rather by

xk+1 =M−1Nxk +M−1b+ εk.

We assume that ρ(M−1N) < 1 and that there exists a vector norm and a positive constant
ε such that for all k ≥ 0

‖εk‖ ≤ ε.

Then there exists a constant K, which only depends on M−1N , such that

lim sup
k→+∞

‖xk − x‖ ≤ Kε.

Proof. We again define the error ek = xk − x and we have now ek+1 =M−1Nek + εk. We
deduce

ek =
(
M−1N

)k
e0 +

k−1∑
i=0

(
M−1N

)i
εk−i−1. (13.9)

By application of proposition 13.1.7 there exists a subordinate matrix norm ‖ · ‖s such that
‖M−1N‖s < 1 since ρ(M−1N) < 1. We denote in the same way the associated vector norm.
Now all the vector norms on Rn are equivalent: there, therefore, exists a constant C ≥ 1,
which only depends on M−1N , such that

C−1‖y‖ ≤ ‖y‖s ≤ C‖y‖ ∀y ∈ R
n.

By bounding (13.9) above it becomes

‖ek‖s ≤ ‖M−1N‖ks‖e0‖s +
k−1∑
i=0

‖M−1N‖isCε ≤ ‖M−1N‖ks‖e0‖s +
Cε

1− ‖M−1N‖s

from which we obtain the result with K = C2/(1− ‖M−1N‖s). �

It is time to give the most classical examples of iterative methods based on a
regular decomposition.

Definition 13.1.29 (Jacobi method) Take A = (aij)1≤i,j≤n. We denote by D =
diag(aii) the diagonal of A. We say Jacobi method for the iterative method associated
with the decomposition

M = D, N = D −A.

This is the simplest of iterative methods. So that it is well defined, the diagonal
matrix D must, of course, be invertible. By application of lemma 13.1.27, in the case
where A is real symmetric, the Jacobi method converges if A and 2D−A are positive
definite.
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Definition 13.1.30 (Gauss–Seidel method) Take A = (aij)1≤i,j≤n. We decom-
pose A in the form A = D − E − F where D = diag(aii) is the diagonal, −E is
the (strictly) lower triangular part, and −F is the (strictly) upper triangular part
of A. We say the Gauss–Seidel method for the iterative method associated with the
decomposition

M = D − E, N = F.

So that the Gauss–Seidel method is well defined, the matrix D − E must be
invertible, that is to say that D is invertible (the matrix (D − E) is easy to invert
as it is triangular). By application of lemma 13.1.27, if A is real symmetric positive
definite, the Gauss–Seidel method converges.

Definition 13.1.31 (method of successive over-relaxation (SOR)) Take ω ∈
R+. We say method of successive over-relaxation (or SOR), for the parameter ω, for
the iterative method associated with the decomposition

M =
D

ω
− E, N =

1− ω

ω
D + F

So that the method of successive over-relaxation is well defined, we must again
have the matrix D invertible. For ω = 1, we recover the Gauss–Seidel method. If
ω < 1, it is in fact a method of under-relaxation, while ω > 1 corresponds to a method
of over-relaxation. In general, there exists an optimal parameter ωopt which minimizes
the spectral radius of the iteration matrix M−1N , and therefore which maximizes the
rate of convergence.

Exercise 13.1.6 Let A be a Hermitian positive definite matrix. Show that for all ω ∈
]0, 2[, the method of successive over-relaxation converges.

Exercise 13.1.7 Show that, for the method of successive over-relaxation, we always
have

ρ(M−1N) ≥ |1− ω|, ∀ω �= 0,

and therefore that it only converges if 0 < ω < 2.

Definition 13.1.32 (gradient method) Take a real parameter α �= 0. We say
gradient method for the iterative method associated with the decomposition

M =
1
α
I and N =

(
1
α

I−A

)
.

The gradient method seems more primitive then the preceding methods, but it has
an interpretation as a method of minimization of the function f(x) = 1

2Ax · x− b · x
which gives it wide applicability.
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Lemma 13.1.33 Let A be a matrix with eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn. If λ1 ≤
0 ≤ λn, then the gradient method does not converge for any value of α. If 0 < λ1 ≤
· · · ≤ λn, then the gradient method converges if and only if 0 < α < 2/λn, and the
optimal parameter α, which minimizes ρ(M−1N), is

αopt =
2

λ1 + λn
and min

α
ρ(M−1N) =

λn − λ1

λn + λ1
.

Remark 13.1.34 If λ1 ≤ · · · ≤ λn < 0, then we have the symmetric result to the
positive definite case by changing α to −α. For the optimal parameter αopt, the
spectral radius of the iteration matrix is an increasing function of the ratio λn/λ1. If
A is self-adjoint, then this ratio is none other than the condition number cond2(A)
of the matrix A. Consequently, the more the matrix A is well conditioned, the better
is the convergence of the gradient method. •

Proof. From lemma 13.1.26, we know that the gradient method is convergent if and
only if ρ(M−1N) < 1. Now M−1N = (I − αA), therefore,

ρ(M−1N) < 1 ⇔ |1− αλi| < 1 ⇔ −1 < 1− αλi < 1, ∀i.

This implies that αλi > 0 for all 1 ≤ i ≤ n. Consequently, all the eigenvalues of A
must be nonzero and of the same sign as α. The gradient method, therefore, does
not converge if λ1 ≤ 0 ≤ λn, no matter what α is. If, on the contrary, we have
0 < λ1 ≤ · · · ≤ λn, then we deduce that we must have 0 < α < 2/λn. To calculate
the optimal parameter αopt, we remark that the function λ→ |1− αλ| is decreasing
on ]−∞, 1/α] then increasing on [1/α,+∞[, therefore

ρ(M−1N) = max{|1− αλ1|, |1− αλn|}.

Consequently, the minimum of the function α → ρ(M−1N) is attained at the point
of intersection αopt = 2/(λ1 + λn) of these two lines. �

13.1.5 The conjugate gradient method

The conjugate gradient method is the iterative method of choice to solve linear systems
whose matrix is real symmetric positive definite. It displays a spectacular improve-
ment on the gradient method (above all if it is combined with a preconditioner, see
definition 13.1.43). To construct the conjugate gradient method, we introduce the
idea of a Krylov space.

Definition 13.1.35 Let r0 be a vector in Rn. We say the Krylov space associated
with the vector r0, denoted by Kk, for the vector subspace of Rn generated by the k+1
vectors {r0, Ar0, ..., A

kr0}.

The Krylov spaces (Kk)k≥0 form an increasing sequence of vector subspaces Kk ⊂
Kk+1 ∀k ≥ 0. As Kk ⊂ Rn, this sequence must become stationary at a certain point.
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More precisely, we leave the reader to verify that there exists a critical dimension k0,
with 0 ≤ k0 ≤ n− 1, such that{

dimKk = k + 1 if 0 ≤ k ≤ k0,

dimKk = k0 + 1 if k0 ≤ k.

By taking r0 = b − Ax0, it is easy to see that, for the gradient method, the iterate
xk belongs to the affine space [x0 + Kk−1] (defined as the set of vectors x such that
(x−x0) ∈ Kk−1), which implies that the residual rk = b−Axk belongs to the Krylov
space Kk (associated with the residual initial r0).

To improve the gradient method, we decide ‘to choose better’ xk in the affine space
[x0 + Kk−1]. The conjugate gradient method consists, starting from an initial vector
x0 ∈ Rn and from its residual r0 = b − Ax0, of constructing a sequence of vectors
xk ∈ [x0 + Kk−1] such that rk = b − Axk is orthogonal to the subspace Kk−1, for
k ≥ 1.

Lemma 13.1.36 Let A be a real symmetric positive definite matrix of order n. Take
x0 ∈ Rn, r0 = b − Ax0, and (Kk)k≥0 the sequence of Krylov spaces associated with
r0. The conjugate gradient method is defined, for k ≥ 1, by

xk ∈ [x0 + Kk−1] and rk = b−Axk⊥Kk−1. (13.10)

For all k ≥ 1, there exists a unique vector xk given by (13.10). Moreover, this method
converges to the solution of the linear system Ax = b in n iterations.

Remark 13.1.37 Lemma 13.1.36 shows that the conjugate gradient algorithm that
we have conceived as an iterative method is in fact a direct method since it converges in
a finite number of iterations (exactly k0 +1 where k0 is the critical Krylov dimension).
However, in practice we use it as an iterative method which converges ‘numerically’
in often less than k0 + 1 iterations. Intuitively, it is easy to see why the conjugate
gradient improves on the simple gradient. Indeed, the residual rk is orthogonal to a
an increasingly large subspace Kk. •

Proof. Let us show first of all that there exists a unique xk which satisfies the
hypotheses. As A is positive definite, we can define the scalar product 〈x, y〉A = Ax ·y
over Rn. We look for xk in the form xk = x0 + yk with yk ∈ Kk−1, and the condition
of orthogonality of rk becomes

〈A−1r0 − yk, y〉A = 0 ∀ y ∈ Kk−1,

which is none other than the characterization of yk as the orthogonal projection of
A−1r0 on the subspace Kk−1 (for the scalar product 〈, 〉A). This proves the existence
and uniqueness of xk.

Let k0 be the critical dimension of the Krylov spaces, that is to say, for all k ≥ k0,
dimKk = k0 +1. In particular, AKk0 ⊂ Kk0+1 = Kk0 , therefore rk0+1 = b−Axk0+1 =
r0 − Ayk0+1 belongs to Kk0 while being orthogonal. Consequently, rk0+1 = 0 and
xk0+1 is the exact solution of the linear system. �
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Remark 13.1.38 The conjugate gradient method has been presented as a procedure
of orthogonalization with respect to the Krylov space. We see later that, equivalently,
we can introduce it as a minimization problem. More precisely, xk ∈ [x0 + Kk−1]
attains the minimum in [x0 + Kk−1] of

f(x) =
1
2
Ax · x− b · x,

or equivalently the residual rk = b−Axk minimizes, in Kk, the function

g(r) =
1
2
A−1r · r

with r = b−Ax. •

Exercise 13.1.8 Let A be a symmetric positive definite matrix. Let (xk)0≤k≤n be the
sequence of approximate solutions obtained by the conjugate gradient method. We set
rk = b−Axk and dk = xk+1 − xk. Show that

(1) the Krylov space Kk is also equal to

Kk = [r0, . . . , rk] = [d0, . . . , dk],

(2) the sequence (rk)0≤k≤n−1 is orthogonal

rk · rl = 0 for all 0 ≤ l < k ≤ n− 1,

(3) the sequence (dk)0≤k≤n−1 is conjugate with respect to A

Adk · dl = 0 for all 0 ≤ l < k ≤ n− 1.

The definition we have just given of the conjugate gradient method is purely
theoretical. Indeed, we have not indicated an algorithm to construct rk orthogonal to
Kk−1, nor commented on how we calculate xk in practice. The following proposition
gives particularly simple practical formulas to calculate these vectors.

Proposition 13.1.39 Let A be a symmetric positive definite matrix, and x0 ∈ Rn.
Let (xk, rk, pk) be three sequences defined by the induction relations

p0 = r0 = b−Ax0, and for 0 ≤ k

⎧⎨
⎩

xk+1 = xk + αkpk
rk+1 = rk − αkApk
pk+1 = rk+1 + βkpk

(13.11)

with

αk =
‖rk‖2

Apk · pk
and βk =

‖rk+1‖2

‖rk‖2 .

Then, (xk)0≤k≤k0+1 is the sequence of approximate solutions of the conjugate gradient
method defined by (13.10).



SOLUTION OF LINEAR SYSTEMS 431

Proof. It is easy to show by induction that the relations

r0 = b−Ax0 and

{
rk+1 = rk − αkApk
xk+1 = xk + αkpk

imply that the sequence rk is that of the residual, that is, rk = b − Axk. Another easy
induction shows that the relations

r0 = p0 and

{
rk = rk−1 − αk−1Apk−1

pk = rk + βk−1pk−1

imply that pk and rk belong to the Krylov space Kk, for all k ≥ 0. We deduce, by the
induction relation xk+1 = xk + αkpk, that xk+1 belongs to the affine space [x0 + Kk]. To
conclude, we must show that rk+1 is orthogonal to Kk. First, we shall show by induction
that rk+1 is orthogonal to rj, for all 0 ≤ j ≤ k, and that pk+1 is conjugate to pj, for all
0 ≤ j ≤ k, that is to say, Apk+1 · pj = 0. For the index 0 we have

r1 · r0 = ‖r0‖2 − α0Ap0 · r0 = 0

as p0 = r0, and

Ap1 · p0 = (r1 + β0p0) ·Ap0 = α−1
0 (r1 + β0r0) · (r0 − r1) = 0.

We assume that up to the index k we have

rk · rj = 0 for 0 ≤ j ≤ k − 1 and Apk · pj = 0 for 0 ≤ j ≤ k − 1.

Let us show that this is again true for the index k + 1. Because of the induction formula
which gives xk+1 we have

rk+1 · rj = rk · rj − αkApk · rj,
and because of the relation rj = pj − βj−1pj−1 we obtain

rk+1 · rj = rk · rj − αkApk · pj + αkβj−1Apk · pj−1.

Because of the induction hypothesis, we deduce easily that rk+1 · rj = 0 if j ≤ k − 1, while
the formula for αk implies that rk+1 · rk = 0. On the other hand, the induction formula
which gives pk+1 leads to

Apk+1 · pj = pk+1 ·Apj = rk+1 ·Apj + βkpk ·Apj,

and as Apj = (rj − rj+1)/αj we deduce

Apk+1 · pj = α−1
j rk+1 · (rj − rj+1) + βkpk ·Apj.

For j ≤ k − 1, the induction hypothesis and the orthogonality of rk+1 (that we have just
obtained) proves that Apk+1 · pj = 0. For j = k, we obtain Apk+1 · pk = 0 thanks to
the formulas giving αk and βk. This finishes this induction. As the family (rk)0≤k≤k0 is
orthogonal, it is linearly independent as long as rk �= 0. Now rk ∈ Kk, which implies
Kk = [r0, . . . , rk] as these two spaces have the same dimension. Consequently, rk+1 is
orthogonal to Kk, and the sequence xk is that of the conjugate gradient. �



432 APPENDIX MATRIX NUMERICAL ANALYSIS

Remark 13.1.40 We say that the sequence (pk) is conjugate with respect to A as it is
orthogonal for the scalar product 〈x, y〉A = Ax · y. It is this property which gives the name
to the method.

The reader might wonder how the formulas (13.11) have been ‘invented’. In fact, there
exists a reciprocal to proposition 13.1.39. More precisely, exercise 13.1.8 shows that the
sequence dk = xk+1 − xk is conjugate with respect to A and that the subspace generated
by (d0, . . . , dk) coincides with Kk. We deduce therefore practical means of constructing the
sequence dk: we apply the procedure of Gram–Schmidt orthonormalization to (r0, . . . , Akr0)
for the scalar product 〈x, y〉A. The result found is the sequence pk which is necessarily
colinear to dk (we find that dk = αkpk). Thanks to the symmetry of A, the Gram–Schmidt
formulas which define pk simplify considerably, and we are led (after some calculation) to
the formulas (13.11). •

Numerical algorithm. In practice, when we apply the conjugate gradient algo-
rithm, the formulas (13.11) of proposition 13.1.39 are programmed in the following
way

initialization

{
initial choice x0
r0 = p0 = b−Ax0

iterations k ≥ 1

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

αk−1 = ‖rk−1‖2/Apk−1 · pk−1
xk = xk−1 + αk−1pk−1
rk = rk−1 − αk−1Apk−1
βk−1 = ‖rk‖2/‖rk−1‖2

pk = rk + βk−1pk−1

As soon as rk = 0, the algorithm has converged, that is to say that xk is the solution
of the system Ax = b. We know that the convergence is attained in k0 + 1 iterations,
where k0 ≤ n − 1 is the critical dimension of the Krylov spaces (which we do not
know a priori). However, in practice, the calculations on computers are often subject
to rounding errors, and we do not find rk0+1 = 0 exactly. This is why, we introduce
a ‘small’ parameter ε (typically 10−4 or 10−8 according to the desired precision), and
we decide that the algorithm has converged as soon as

‖rk‖
‖r0‖

≤ ε.

In addition, for large systems (for which n and k0 are ‘large’, of the order of 104–106),
the conjugate gradient method is used as an iterative method, that is to say that it
converges, in the sense of the criterion above, in a number of iterations much less
than k0 + 1 (cf. proposition 13.1.42).

Remark 13.1.41

1. In general, if we do not have any idea about the solution, we choose to initialize
the conjugate gradient method by x0 = 0. If we solve a sequence of problems a
little different from each other, we can initialize x0 by the preceding solution.
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2. At each iteration we only need to make one matrix-vector product, that is Apk,
as rk is calculated by the induction formula and not by the relation rk = b−Axk.

3. To implement the conjugate gradient method, it is not necessary to store the
matrix A in an array if we know how to calculate the matrix-vector product Ay
for every vector y.

4. The conjugate gradient method is very efficient and heavily used. There are
many variants or generalizations, particularly in the case of nonsymmetric posi-
tive definite matrices.

•

Exercise 13.1.9 If we consider the conjugate gradient method as a direct method, show
that in the most unfavourable case, k0 = n−1, the number of operations (multiplications
only) to solve a linear system is Nop = n3 (1 + o(1)).

We have the following convergence result (see [8]).

Proposition 13.1.42 Let A be a real symmetric positive definite matrix. Let x be the
exact solution of the system Ax = b. Let xk be the sequence of approximate solutions
of the conjugate gradient method. Then

‖xk − x‖2 ≤ 2
√

cond2(A)

(√
cond2(A)− 1√
cond2(A) + 1

)k
‖x0 − x‖2.

We recall that in the case of a real symmetric positive definite matrix, the condition
number is given by the formula cond2(A) = λn/λ1, where λ1, λn are respectively
the smallest and the largest eigenvalue of A. Proposition 13.1.42 improves lemma
13.1.33 which says that the conjugate gradient method converges much faster than
the gradient method.

We deduce from this result three important consequences. First, the conjugate
gradient method functions well as an iterative method. Indeed, even if we do not
make the n iterations required for convergence, we reduce the error between x and
xk as we iterate. On the other hand, the rate of convergence depends on the square
root of the condition number of A, and not on the condition number itself as for the
simple gradient method. The conjugate gradient method therefore converges much
faster than the simple gradient (we say that the convergence is quadratic instead of
being linear). Finally, the convergence will be all the more rapid as cond2(A) is close
to 1, that is to say that A is well conditioned.

Preconditioning

As the rate of convergence of the conjugate gradient method depends of the condition
number of the matrix A, the idea of the preconditioner is to premultiply the linear
system Ax = b by a matrix C−1 such that the condition number of (C−1A) is smaller
than that of A. In practice we choose a matrix C ‘close’ to A but more easy to invert.
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Definition 13.1.43 We will solve the linear system Ax = b. We say preconditioner
of A for a matrix C (easy to invert) such that cond2(C−1A) is smaller than cond2(A).
We call the equivalent system the preconditioned system C−1Ax = C−1b.

In general, the matrix C−1A is no longer symmetric, which poses a problem to
apply the conjugate gradient method. This is why we often apply a ‘symmetric’
preconditioner which we describe now. Let us assume (for simplicity) that C is a
symmetric positive definite matrix which has a Cholesky decomposition C = BB∗.
We replace the original system Ax = b by the equivalent system

Ãx̃ = b̃, with Ã = B−1AB−∗, b̃ = B−1b, and x̃ = B∗x. (13.12)

The matrix Ã being symmetric positive definite, we can use the conjugate gradient
algorithm to solve this system. Nevertheless, we often do not know the Cholesky
factorization of C (or we do not want to calculate it on grounds of cost). There then
exists an astute way to transform the conjugate gradient algorithm for the system
(13.12) into an algorithm where only C appears (and not the factor B).

Exercise 13.1.10 We denote by a tilde ·̃ all the quantities associated with the conjugate
gradient algorithm applied to the linear system (13.12). Take xk = B−∗x̃k, rk = Br̃k =
b− Axk, and pk = B−∗p̃k. Show that the conjugate gradient algorithm for (13.12) can
also be written in the form

initialization

⎧⎨
⎩

initial choice x0
r0 = b−Ax0
p0 = z0 = C−1r0

iterations k ≥ 1

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

αk−1 = zk−1 · rk−1/Apk−1 · pk−1
xk = xk−1 + αk−1pk−1
rk = rk−1 − αk−1Apk−1
zk = C−1rk
βk−1 = zk · rk/zk−1 · rk−1
pk = zk + βk−1pk−1

The technique of preconditioning is very effective and essential in practice for rapid
convergence. We indicate three possible choices of C from the most simple to the most
complicated. The simplest preconditioner is the ‘diagonal preconditioner’: it consists
of taking C = diag(A). It is unfortunately not very effective, and we often prefer
the ‘SSOR preconditioner’ (for symmetric successive over-relaxation). Denoting by
D = diag(A) the diagonal of a symmetric matrix A and −E its strictly lower part
such that A = D − E − E∗, for ω ∈]0, 2[, we set

Cω =
ω

2− ω

(
D

ω
− E

)
D−1

(
D

ω
− E∗

)
.
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We verify that, if A is positive definite, then C is also. The system Cz = r is easy
to solve as C is already in a factorised form as the product of triangular matrices. The
name of this preconditioner comes from the fact that to invert C reduces to making
two successive iterations of the successive over-relaxation (SOR) iterative method,
with two symmetric iteration matrices.

Exercise 13.1.11 Let A be the matrix of order n coming from the discretization of the
Laplacian in N = 1 dimension with a constant space step h = 1/(n + 1)

A = h−1

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 · · · 0

−1 2 −1
. . .

...

0
. . .

. . .
. . . 0

...
. . . −1 2 −1

0 · · · 0 −1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

Show that for the optimal value

ωopt =
2

1 + 2 sin(π/2n)
� 2

(
1− π

n

)

the condition number of the matrix C−1
ω A is bounded above by

cond2(C−1
ω A) ≤ 1

2
+

1
2 sin(π/2n)

,

and therefore that, for n large, we gain an order in n in the rate of convergence.

A last example is the ‘incomplete Cholesky factorization preconditioner’. The
matrix C is sought in the form BB∗ where B is the ‘incomplete’ factor of the Cholesky
factorization of A (see proposition 13.1.19). This lower triangular matrix B is obtained
by applying the Cholesky factorization algorithm to A by forcing the equality bij = 0
if aij = 0. This modification of the algorithm assures us, on the one hand, that the
factor B will be as sparse as the matrix A, and, on the other hand, that the calculation
of this incomplete factor will be much less expensive (in time of calculation) than
the calculation of the exact factor if A is sparse (which is the case for finite elem-
ent discretization matrices). The incomplete Cholesky factorization preconditioner is
often the most effective preconditioner in practice.

13.2 Calculation of eigenvalues and eigenvectors

In this section we explain how to calculate the eigenvalues and the eigenvectors of a
real symmetric matrix. A typical example is the stiffness matrix which comes from
the approximation by finite elements of a partial differential equation. In this case,



436 APPENDIX MATRIX NUMERICAL ANALYSIS

its eigenvalues and eigenvectors are approximations of the eigenmodes of the physical
model (see (7.23)).

Since the eigenvalues of a matrix A are the roots of its characteristic polynomial
det(A− λ I). To calculate its eigenvalues, we could naively think that it is ‘sufficient’
to factorize its characteristic polynomial. It is nothing of the kind: we have known
since Galois and Abel that we cannot calculate by elementary operations (addition,
multiplication, extraction of roots) the roots of an arbitrary polynomial of degree
greater than or equal to 5. To be convinced, we can notice that any polynomial of
degree n,

P (λ) = (−1)n
(
λn + a1λ

n−1 + a2λ
n−2 + · · ·+ an−1λ + an

)
,

is the characteristic polynomial (expanded with respect to the last column) of the
matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

−a1 −a2 · · · · · · −an
1 0 · · · · · · 0

0
. . . . . .

...
...

. . . . . . . . .
...

0 · · · 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠
.

Consequently, there cannot exist direct methods (that is to say which gives the result
in a finite number of operations) for the calculation of eigenvalues! There therefore
only exist iterative methods to calculate eigenvalues (and eigenvectors). We find that
the practical calculation of eigenvalues and eigenvectors of a matrix is a much more
difficult task than the solution of a linear system. Very fortunately, the case of real
symmetric matrices (to which we limit ourselves as it is enough for our applications)
is more simple than the case of non-self-adjoint matrices.

We indicate three typical methods (there are other, possibly more efficient but
more complicated). The power method is the simplest but limited in its applicabil-
ity. The Givens–Householder method allows us calculate one (or several) eigenvalue
without having to calculate all the eigenvalues. Finally, the Lanczos method, which
‘resembles’ the conjugate gradient method, is at the foundation of many recent de-
velopments which leads to the most efficient methods for large sparse matrices.

13.2.1 The power method

A very simple method to calculate the largest or the smallest (in modulus) eigenvalue
of a matrix and an associated eigenvector is the power method. A limitation of
the method is that the extreme eigenvalue that we calculate must be simple (or
of multiplicity equal to 1, that is to say that the dimension of the corresponding
eigensubspace is 1). Let A be a real symmetric matrix of order n, with eigenvalues
(λ1, . . . , λn) with λn > |λi| for all 1 ≤ i ≤ n− 1. The power method to calculate the
largest eigenvalue λn is defined by the algorithm below.

1. Initialization: x0 ∈ Rn such that ‖x0‖ = 1.
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2. Iterations: for k ≥ 1

1. yk = Axk−1

2. xk = yk/‖yk‖
3. convergence test: if ‖xk − xk−1‖ ≤ ε, we stop.

In the convergence test ε is a small real number, typically equal to 10−6. If
δk = xk−xk−1 is small, then xk is an approximate eigenvector of A with approximate
eigenvalue ‖yk‖ as Axk − ‖yk‖xk = Aδk.

Proposition 13.2.1 We assume that the matrix A is real symmetric, with eigen-
values (λ1, . . . , λn), associated with an orthonormal basis of eigenvectors (e1, . . . , en),
and that the eigenvalue of largest modulus λn is simple and positive, that is to say
that |λ1|, . . . , |λn−1| < λn. We assume also that the initial vector x0 is not orthogonal
to en. Then the power method converges, that is to say

lim
k→+∞

‖yk‖ = λn, lim
k→+∞

xk = x∞ with x∞ = ±en.

The rate of convergence is proportional to the ratio |λn−1|/|λn|

|‖yk‖ − λn| ≤ C

∣∣∣∣λn−1

λn

∣∣∣∣
2k

, ‖xk − x∞‖ ≤ C

∣∣∣∣λn−1

λn

∣∣∣∣
k

.

Remark 13.2.2 The convergence of the sequence of approximate eigenvalues ‖yk‖ is
more rapid than that of the approximate eigenvectors xk (quadratic instead of linear).
The power method also works for nonsymmetric matrices, but the convergence of ‖yk‖
is only linear in this case. •

Proof. Let x0 =
∑n
i=1 βiei the initial vector, with βn �= 0. The vector xk is

proportional to Akx0 =
∑n
i=1 βiλ

k
i ei, from which it becomes

xk =
βnen +

∑n−1
i=1 βi(λi/λn)kei(

β2
n +

∑n−1
i=1 β2

i (λi/λn)2k
)1/2 .

As |λi| < λn we deduce that xk converges to sign(βn)en. Likewise, we have

‖yk+1‖ = λn

(
β2
n +

∑n−1
i=1 β2

i (λi/λn)2(k+1)
)1/2

(
β2
n +

∑n−1
i=1 β2

i (λi/λn)2k
)1/2 ,

which converges to λn. �
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In practice (and particularly for the calculation of eigenvalues from the discret-
ization of an elliptic boundary value problem), we are above all interested in the
smallest eigenvalue, in modulus, of A. We can adapt the preceding ideas, which
gives the inverse power method whose algorithm is written below. We consider a
real symmetric matrix A whose smallest eigenvalue in modulus is simple and strictly
positive 0 < λ1 < |λi| for all 2 ≤ i ≤ n.

1. Initialization: x0 ∈ Rn such that ‖x0‖ = 1.

2. Iterations: for k ≥ 1

1. solve Ayk = xk−1

2. xk = yk/‖yk‖
3. convergence test: if ‖xk − xk−1‖ ≤ ε, we stop.

If δk = xk−xk−1 is small, then xk−1 is an approximate eigenvector of the approxi-
mate eigenvalue 1/‖yk‖ as Axk−1 − xk−1/‖yk‖ = −Aδk.

Proposition 13.2.3 We assume that the matrix A is real symmetric, with eigen-
values (λ1, . . . , λn), associated with an orthonormal basis of eigenvectors (e1, . . . , en),
and that the eigenvalue of smallest modulus λ1 is simple and strictly positive, that
is to say 0 < λ1 < |λ2|, · · · , |λn|. We assume also that the initial vector x0 is not
orthogonal to e1. Then the inverse power method converges, that is to say

lim
k→+∞

1
‖yk‖

= |λ1|, lim
k→+∞

xk = x∞ with x∞ = ±e1.

The rate of convergence is proportional to the ratio λ1/|λ2|

∣∣‖yk‖−1 − λ1
∣∣ ≤ C

∣∣∣∣λ1

λ2

∣∣∣∣
2k

, ‖xk − x∞‖ ≤ C

∣∣∣∣λ1

λ2

∣∣∣∣
k

.

The proof is similar to that of proposition 13.2.1 and we leave it to the reader as
an exercice.

Remark 13.2.4 The considerations of remark 13.2.2 also apply to the inverse power
method. To accelerate the convergence, we can often translate the matrix A and
replace it by A− σ I with σ an approximation of λ1. •

13.2.2 The Givens–Householder method

The Givens–Householder method decomposes into two successive steps: first of all the
Householder algorithm which reduces a symmetric matrix A to a tridiagonal matrix
(this step is carried out in a finite number of operations), then the Givens bisection
algorithm which gives (iteratively) the eigenvalues of a tridiagonal matrix.
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Lemma 13.2.5 (Householder) Let A be a real symmetric matrix of order n. There
exist (n− 2) orthogonal matrices Hk such that

T = (H1H2 · · ·Hn−2)∗A(H1H2 · · ·Hn−2)

which are tridiagonal. Of course, A and T have the same eigenvalues.

Proof. Starting from A, we construct a sequence of matrices (Ak)1≤k≤n−1 such that A1 = A
and Ak+1 = H∗

kAkHk with Hk an orthogonal matrix chosen so that Ak has the following
block structure

Ak =

(
Tk E∗

k

Ek Mk

)

where Tk is a square tridiagonal matrix of size k, Mk is a square matrix of size n − k, and
Ek is a rectangular matrix with (n − k) rows and k columns whose last column, denoted
ak ∈ Rn−k is nonzero

Tk =

⎛
⎜⎜⎜⎝

× ×

×
. . .

. . .
. . .

. . . ×
× ×

⎞
⎟⎟⎟⎠ , and Ek =

⎛
⎜⎜⎜⎝

0 · · · 0 ak,1
...

... ak,2
...

...
...

0 · · · 0 ak,n−k

⎞
⎟⎟⎟⎠ .

It is clear that therefore An−1 will be tridiagonal. We remark that A is in this form for
k = 1. Let the matrix Hk be defined by

Hk =

(
Ik 0
0 H̃k

)
,

with Ik the identity matrix of order k and H̃k the Householder matrix of order n−k defined
by

H̃k = In−k − 2
vk(vk)∗

‖vk‖2 , with vk = ak + ‖ak‖e1, (13.13)

where e1 is the first vector of the canonical basis of Rn−k. Let us remark that H̃kak =
−‖ak‖e1, and that Hk is orthogonal and symmetric. Let us note that H̃k is only well defined
if vk �= 0, but if this is not the case then the kth column of Ak is already of the desired type,
and it is sufficient to take Hk = In. A simple calculation shows that

Ak+1 = H∗
kAkHk =

(
Tk (H̃kEk)∗

H̃kEk H̃kMkH̃k

)
with H̃kEk =

⎛
⎜⎜⎜⎝

0 · · · 0 −‖ak‖
...

... 0
...

...
...

0 · · · 0 0

⎞
⎟⎟⎟⎠ ,

therefore Ak+1 is in the form desired. �
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Let us now study the Givens bisection algorithm for a real symmetric tridiagonal
matrix

A =

⎛
⎜⎜⎜⎜⎝

b1 c1 0

c1
. . . . . .
. . . . . . cn−1

0 cn−1 bn

⎞
⎟⎟⎟⎟⎠ ,

where we assume, without loss of generality, that ci �= 0 for 1 ≤ i ≤ n− 1. Indeed, if
there exists an index i such that ci = 0, then we see easily that

det(A− λ I) = det(Ai − λ I) det(An−i − λ I)

where Ai and An−i are two matrices of the same type as A but of order i and n− i,
respectively. Let us first of all give two technical lemmas.

Lemma 13.2.6 For 1 ≤ i ≤ n, we define a matrix Ai of size i by

Ai =

⎛
⎜⎜⎜⎜⎝

b1 c1 0

c1
. . . . . .
. . . . . . ci−1

0 ci−1 bi

⎞
⎟⎟⎟⎟⎠ .

Let pi(λ) = det(Ai − λI) be its characteristic polynomial. The sequence pi satisfies
the induction formula

pi(λ) = (bi − λ)pi−1(λ)− c2
i−1pi−2(λ) ∀i ≥ 2,

with p1(λ) = b1− λ and p0(λ) = 1. Moreover, for all i ≥ 1, the polynomial pi has the
following properties

(1) lim
λ→−∞

pi(λ) = +∞,

(2) if pi(λ0) = 0, then pi−1(λ0)pi+1(λ0) < 0,

(3) pi has i real distinct roots which strictly separate the (i + 1) roots of pi+1.

Proof. By expanding det(Ai − λ I) with respect to the last row, we obtain the desired
induction formula. The first property is obvious from the definition of the characteristic
polynomial. To prove the second, we remark in the induction formula that, if pi(λ0) = 0,
then

pi+1(λ0) = −c2i pi−1(λ0).

As ci �= 0, we have pi−1(λ0)pi+1(λ0) ≤ 0. This inequality is in fact strict, as if pi−1(λ0) =
pi+1(λ0) = 0 the induction relation implies that pk(λ0) = 0 for all 0 ≤ k ≤ i + 1, which is
not possible since p0(λ0) = 1.
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To prove the third property, we start by remarking that pi(λ) has i real roots, denoted
λi1 ≤ · · · ≤ λii since Ai is real symmetric. Let us show by induction that these i roots of pi
are distinct and are separated by those of pi−1. First, this property is true for i = 2, as

p2(λ) = (b2 − λ)(b1 − λ)− c21

has two roots (λ2
1, λ

2
2) which enclose the only root λ1

1 = b1 of p1(λ), that is, λ2
1 < λ1

1 < λ2
2.

We assume that pi(λ) has i real distinct roots separated by those of pi−1. Let us show that
pi+1 has i + 1 real distinct roots separated by those of pi. We define a polynomial qi of
degree 2i by

qi(λ) = pi−1(λ)pi+1(λ).

We already know i− 1 roots of qi (those of pi−1) and there are i values of λ (the roots of pi)
such that qi(λ) < 0, that is to say

qi(λi−1
k ) = 0 1 ≤ k ≤ i− 1, qi(λik) < 0 1 ≤ k ≤ i,

with
λi1 < λi−1

1 < λi2 < · · · < λi−1
i−1 < λii.

Between λik and λ
i
k+1, either qi is cancelled by another term γk �= λi−1

k and we have therefore
found a supplementary root of qi therefore of pi+1, or qi is only zero at λi−1

k , but in this case
this is at least a double root as its derivative q′

i must also be zero at λi−1
k . However, λi−1

k

is a simple root of pi−1, therefore λi−1
k is also a root of pi+1. But, because of the induction

relation, this proves that λi−1
k is a root for all the polynomials pj with 0 ≤ j ≤ i+ 1, which

is not possible as p0 = 1. Consequently, we have just shown that between each pair λik, λ
i
k+1

there exists another root γk �= λi−1
k of the polynomial qi therefore of pi+1. In total, we have

found (i − 1) distinct roots of pi+1 which enclose those of pi. In addition, qi(λi1) < 0 and
qi(λii) < 0, while

lim
λ→±∞

qi(λ) = +∞.

We deduce the existence of two supplementary distinct roots of qi, therefore of pi+1, which
enclose those of pi. �

Lemma 13.2.7 For all µ ∈ R, we define

sgnpi(µ) =
{

sign of pi(µ) if pi(µ) �= 0,
sign of pi−1(µ) if pi(µ) = 0.

Let N(i, µ) the number of changes of sign between consecutive elements of the or-
dered family E(i, µ) = {+1, sgnp1(µ), sgnp2(µ), . . . , sgnpi(µ)}. Then, N(i, µ) is the
number of roots of pi which are strictly less than µ.

Proof. We remark first of all that sgnpi(µ) is defined unambiguously since, if pi(µ) = 0,
then pi−1(µ) �= 0 because of point 2 of lemma 13.2.6. We proceed by inductions on i. For
i = 1, we verify the result

µ ≤ b1 ⇒ E(1, µ) = {+1,+1} ⇒ N(1, µ) = 0,
µ > b1 ⇒ E(1, µ) = {+1,−1} ⇒ N(1, µ) = 1.
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We assume the result true up to the index i. Let (λik)1≤k≤i be the roots of pi and
(λi+1

k )1≤k≤i+1 those of pi+1, arranged in increasing order. We have

λi1 < · · · < λiN(i,µ) < µ ≤ λiN(i,µ)+1 < · · · < λii,

and
λiN(i,µ) < λi+1

N(i,µ)+1 < λiN(i,µ)+1,

from point 3 of lemma 13.2.6. There are three possible cases.
1. If λiN(i,µ) < µ ≤ λi+1

N(i,µ)+1, we have sgnpi+1(µ) = sgnpi(µ), therefore N(i + 1, µ) =
N(i, µ).
2. If λi+1

N(i,µ)+1 < µ < λiN(i,µ)+1, we have sgnpi+1(µ) = − sgnpi(µ), therefore N(i + 1, µ) =
N(i, µ) + 1.
3. If µ = λiN(i,µ)+1, we have sgnpi(µ) = sgnpi−1(µ) = − sgnpi+1(µ), therefore N(i+1, µ) =
N(i, µ) + 1, because of the second point of lemma 13.2.6.

In all the cases N(i+ 1, µ) is the number of roots of pi+1 strictly less than µ. �

The practical Givens algorithm. We denote by λ1 ≤ · · · ≤ λn the eigenvalues
of A arranged in increasing order. To calculate numerically the ith eigenvalue λi,
we take an interval [a0, b0] in which we are sure that λi can be found (for example,
−a0 = b0 = ‖A‖2). We then calculate the number N(n, (a0 + b0)/2) defined in
lemma 13.2.7 (the values of the sequence pj((a0 + b0)/2), for 1 ≤ j ≤ n, are calculated
by the induction formula of lemma 13.2.6). If we find that N(n, (a0 + b0)/2) ≥ i, then
we deduce that λi belongs to the interval [a0, (a0 + b0)/2[. If on the contrary we find
that N(n, (a0 + b0)/2) < i, then λi belongs to the other interval [(a0 + b0)/2, b0]. In
each case we have divided the initial interval which contains λi by two. Repeating
this procedure of division of the interval containing λi approximates the exact value
of λi with the desired precision.

13.2.3 The Lanczos method

The Lanczos method allows us to calculate the eigenvalues of a real symmetric matrix
by using the idea of a Krylov space, already introduced for the conjugate gradient
algorithm. This method and its numerous generalizations is very effective for large
matrices. Here we shall give the principle of this method rather than the details of
its numerical implementation.

In what follows, we denote by A a real symmetric matrix of order n, r0 �= 0 ∈ Rn a
given nonzero vector , and Kk the associated Krylov space, generated by the vectors
{r0, Ar0, . . . , A

kr0}. Let us recall that there exists an integer k0 ≤ n − 1, called
the critical Krylov dimension, such that, if k ≤ k0, the family (r0, Ar0, . . . , A

kr0) is
linearly independent and dimKk = k + 1, while if k > k0 we have Kk = Kk0 .

The Lanczos algorithm consists of constructing a sequence of vectors (vj)1≤j≤k0+1
by the following induction formula, for 2 ≤ j ≤ k0 + 1,

v̂j = Avj−1 − (Avj−1 · vj−1)vj−1 − ‖v̂j−1‖vj−2 , vj =
v̂j
‖v̂j‖

, (13.14)
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with v0 = 0 and v1 = r0/‖r0‖. For every integer k ≤ k0 + 1, we define a matrix
Vk of size n × k whose columns are the vectors (v1, . . . , vk), as well as a symmetric
tridiagonal matrix Tk of size k × k whose elements are

(Tk)i,i = Avi · vi, (Tk)i,i+1 = (Tk)i+1,i = ‖v̂i+1‖, (Tk)i,j = 0 if |i− j| ≥ 2.

With this notation, the Lanczos induction satisfies some remarkable properties.

Lemma 13.2.8 The sequence (vj)1≤j≤k0+1 is well defined by (13.14) as ‖v̂j‖ �= 0 for
all 1 ≤ j ≤ k0 + 1, while v̂k0+2 = 0. For 1 ≤ k ≤ k0 + 1, the family (v1, . . . , vk+1) co-
incides with the orthonormal basis of Kk constructed by the Gram–Schmidt procedure
applied to the family (r0, Ar0, . . . , A

kr0). Moreover, for 1 ≤ k ≤ k0 + 1, we have

AVk = VkTk + v̂k+1e
∗
k, (13.15)

where ek is the kth vector of the canonical basis of Rk,

V ∗k AVk = Tk and V ∗k Vk = Ik, (13.16)

where Ik is the identity matrix of size k × k.

Proof. Let us forget for the moment the definition (13.14) of the sequence (vj)1≤j≤k0+1

and replace it by the new definition (which we show is equivalent to (13.14))

v̂j = Avj−1 −
j−1∑
i=1

(Avj−1 · vi)vi, vj =
v̂j
‖v̂j‖

, j ≥ 2, (13.17)

with v1 = r0/‖r0‖. Of course, (13.17) only has a meaning if ‖v̂j‖ �= 0. If ‖v̂j‖ = 0, we say that
the algorithm stops at the index j. By definition, vj is orthogonal to vi for 1 ≤ i ≤ j − 1.
By induction, we easily verify that vj ∈ Kj−1. As the sequence of Krylov spaces Kj is
strictly increasing for j ≤ k0 + 1, we deduce that, as long as the algorithm do not stop, the
vectors (v1, . . . , vj) form an orthonormal basis of Kj−1. Consequently, vj being orthogonal
to (v1, . . . , vj−1) is also orthogonal to Kj−2. In particular, the family (v1, . . . , vj), defined
by (13.17), coincides with the orthonormal basis of Kj−1 constructed by the Gram–Schmidt
procedure applied to the family (r0, Ar0, . . . , Aj−1r0). This proves that the algorithm stops
exactly at the critical Krylov dimension k0, that is to say that ‖v̂j‖ �= 0 as long as j ≤ k0+1
and v̂k0+2 = 0.

Let us now show that the definitions (13.14) and (13.17) of the sequence (vj) are identical.
As A is symmetric, we have

Avj−1 · vi = vj−1 ·Avi = vj−1 · v̂i+1 +
i∑

k=1

(Avi · vk)(vj−1 · vk).

Thanks to the orthonormality properties of (vk), we deduce that Avj−1 ·vi = 0 if 1 ≤ i ≤ j−3,
and that Avj−1 · vj−2 = ‖v̂j−1‖. Therefore the definitions (13.14) and (13.17) coincide.

Finally, the relation (13.15), taken column by column, is none other than a rewriting of
(13.14) by eliminating v̂j. The property V ∗

k Vk = Ik follows from the orthonormal character
of the family (v1, . . . , vk), while the relation V ∗

k AVk = Tk is obtained simply by multiplying
(13.15) to the left by V ∗

k as V ∗
k v̂k+1 = 0. �
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Remark 13.2.9 The Lanczos algorithm appears to be a method of reduction to
tridiagonal form like the Householder algorithm seen above. Nevertheless, the Lanczos
algorithm is not used in practice as a method of tridiagonalization as, for n large, the
rounding errors destroy the orthogonality of the last vectors vj with respect to the
first. •

We shall now compare the eigenvalues and eigenvectors of the matrices A and
Tk0+1 (which are not of the same size in general). We denote by λ1 < λ2 < · · · < λm
the distinct eigenvalues of A (with 1 ≤ m ≤ n), and P1, . . . , Pm the matrices of
orthogonal projection over the corresponding eigensubspaces of A. We recall that

A =
m∑
i=1

λiPi, I =
m∑
i=1

Pi, and PiPj = 0 if i �= j. (13.18)

Lemma 13.2.10 The eigenvalues of Tk0+1 are simple and are also eigenvalues of A.
Conversely, if we assume that r0 satisfies Pir0 �= 0 for all 1 ≤ i ≤ m, then all the
eigenvalues of A are also eigenvalues of Tk0+1 and k0 + 1 = m.

Remark 13.2.11 In the case where Pir0 �= 0 for all i, the matrices A and Tk0+1
have exactly the same eigenvalues, but with possibly different multiplicity since the
eigenvalues of Tk0+1 are simple. We shall see in the proof of lemma 13.2.10 that there
also exists a link between the eigenvectors of A and Tk0+1. The condition demanded
on r0 for the reciprocal of this lemma is necessary. Indeed, if r0 is an eigenvector of
A, then k0 = 0 and the matrix Tk0+1 has a unique eigenvalue which is associated with
r0. •

Proof. Let λ and y ∈ Rk0+1 be an eigenvalue and an eigenvector such that Tk0+1y = λy. As
v̂k0+2 = 0, the relation (13.15) becomes, for k = k0+1, AVk0+1 = Vk0+1Tk0+1, and therefore,
by application to the vector y, we obtain A (Vk0+1y) = λ (Vk0+1y). The vector Vk0+1y is not
zero as y �= 0 and the columns of Vk0+1 are linearly independent. Consequently, Vk0+1y is
an eigenvector of A associated with the eigenvalue λ which is therefore equal to one of the
λi.

Conversely, we introduce the vector subspace Em of Rn generated by the vectors
(P1r0, . . . , Pmr0). If Pir0 �= 0 for all 1 ≤ i ≤ m, these vectors are linearly independent as the
projections Pi are pairwise orthogonal. Consequently, the dimension of Em is exactly m. We
shall show that in this case we have m = k0 + 1. By (13.18) we have Akr0 =

∑m

i=1 λ
k
i Pir0,

that is to say Akr0 ∈ Em, therefore the Krylov spaces satisfy Kk ⊂ Em for all k ≥ 0. In par-
ticular, this implies that dimKk0 = k0 + 1 ≤ m. In addition, in the basis (P1r0, . . . , Pmr0)
of Em, the coordinates of the vector Akr0 are (λk1 , . . . , λkm). In other words, the family
(r0, Ar0, . . . , Am−1r0) of Em is represented in the basis (P1r0, . . . , Pmr0) by the matrix M
defined by

M =

⎛
⎜⎝

1 λ1 λ2
1 · · · λm−1

1
...

...
1 λm λ2

m · · · λm−1
m

⎞
⎟⎠ .
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The matrix M is a Van Der Monde matrix of order m which is invertible as all the
λi are distinct. Therefore the family (r0, Ar0, . . . , Am−1r0) is linearly independent since
(P1r0, . . . , Pmr0) is. This implies that dimKm−1 = m, therefore m − 1 ≤ k0. From where,
we finally deduce that m = k0 + 1 and Em = Kk0 .

Thanks to the formula (13.18) we have A(Pir0) = λi(Pir0). As Pir0 is nonzero, it is
an eigenvector of A associated with the eigenvalue λi. As Em = Kk0 and the columns of
Vk0+1 form a basis of Kk0 , we deduce that there exists a nonzero vector yi ∈ Rm such that
Pir0 = Vk0+1yi. We multiply the first equality of (13.16) by yi to obtain

Tk0+1yi = V ∗
k0+1AVk0+1yi = V ∗

k0+1APir0 = λiV
∗
k0+1Pir0 = λiV

∗
k0+1Vk0+1yi = λiyi,

in other words, yi is an eigenvector of Tk0+1 for the eigenvalue λi. Which finishes the
proof. �

The result of lemma 13.2.10 could lead us to believe that we must apply Lanczos
induction up to the maximal iteration k0 + 1, then calculate the eigenvalues of Tk0+1
in order to deduce the eigenvalues and the eigenvectors of A. This would make the
Lanczos method comparable to that of Givens–Householder (in general k0 is of the
order of n, which makes the operations count similar in the two cases). Moreover,
applied like this the Lanczos method will be numerically unstable because of the loss
of orthogonality of the vectors vj caused by the inevitable rounding errors (see remark
13.2.9).

Very happily, the following result indicates that it is not necessary to make many
iterations of the Lanczos induction to obtain eigenvalues of Tk which are good ap-
proximations to those of A (with k much smaller than k0 or n).

Proposition 13.2.12 Take an integer 1 ≤ k ≤ k0 + 1. Let λ be an eigenvalue of Tk
and y ∈ Rk an associated nonzero eigenvector. There exists an eigenvalue λi of A
such that

|λ− λi| ≤ ‖v̂k+1‖
|ek · y|
‖y‖ ≤ ‖v̂k+1‖,

where ek is the kth vector of the canonical basis of Rk.

Remark 13.2.13 The first conclusion of proposition 13.2.12 is that, if ‖v̂k+1‖ is
small, then the eigenvalues of Tk are good approximations of some eigenvalues of A.
The second conclusion is the more important in practice: if the last component of an
eigenvector of Tk is small, then the corresponding eigenvalue is a good approximation
to an eigenvalue of A. •

Proof. Take a nonzero eigenvector y ∈ Rk such that Tky = λy. Multiplying (13.15) by y
we obtain

AVky = VkTky + (ek · y)v̂k+1,

from where we deduce
A(Vky)− λ(Vky) = (ek · y)v̂k+1. (13.19)
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We then decompose Vky into the basis of eigenvectors of A

Vky =
m∑
i=1

Pi(Vky).

We take the scalar product of (13.19) with Vky, and with the help of the relations (13.18)
we have

m∑
i=1

(λi − λ) |Pi(Vky)|2 = (ek · y) (v̂k+1 · Vky). (13.20)

By bounding below the right-hand side and bounding above the left by the Cauchy–Schwarz
inequality, it becomes

min
1≤i≤m

|λi − λ| ‖Vky‖2 ≤ ‖y‖ ‖v̂k+1‖ ‖Vky‖.

As the columns of Vk are orthonormal, we have ‖Vky‖ = ‖y‖, and by simplification we obtain

min
1≤i≤m

|λi − λ| ≤ ‖v̂k+1‖.

This inequality can be improved if we do not apply Cauchy–Schwarz to the term < ek, y >
in (13.20). In this case we find

min
1≤i≤m

|λi − λ| ≤ ‖v̂k+1‖
|ek · y|
‖y‖ ,

which finishes the proof. �
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