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ABSTRACT

In this dissertation we study bucketing algorithms for sorting, selection, Voronoi diagram con-
struction and the closest pair problem. Mathematical analyses of several algorithms are preseated.
The algorithms are implemented to verify these analyses and to gain insight into their performance
on actual machines.

The petformances of Distributive Partitioned Sort (DPS) and Quicksort are compared empir-
ically in a demand paging eavironment. It is found that DPS requires an amount of real memory
equal to appraximately 40% to S50% of its image size in order to run faster than Quicksort. The
performance of DPS deteriorates rapidly in smaller partitions due to excessive page faulting, while
that of Quicksort remains fairly constant.

The performance of a variant of Distributive Partitioned Sort is also investigated when the
number of buckets is some fraction a of the n items to be sorted. First, a detailed mathematical
analysis of the algorithm is presented to determine the expected number of times that each step is
executed as a function of both n and a. Then, an implementation of the algorithm is examined for
n in the range [10K, 300K] and 0.2 € a < 1. The experimental running times are used to ascertain
typical constants of proportionality. In so doing, the analysis is adjusted to take into account the
effect of a virtual to real address translation buffer. Finally, the value of o which minimizes the
runping time is determined by a combination of analytical and numerical techniques. It is found that
the optimal a lies in the range 0.33 < ap < 0.39 for six different processors on which experiments
were conducted. For machines supporting multilevel real memory, aoe varies with n and can drop
to as much as 50% of the asymptotic value which holds for both large and small n.

We also present a selection algorithm called BucketSelect which runs faster than Floyd-Rivest’s
Select because, while both algorithms use approximately the same number of comparisons,

BucketSelect uses far fewer data moves (asymptotically zero). Both methods determine an interval



in which the kth smallest is expected to lie with high probability. The key difference between the
two appraaches is that Select rearranges the entire data set about two pivot elements, while Bucket-
Select simply places all items that lie in a critical interval into an auxiliary bucket. In the extremely
unlikely event that the jtem sought does not lie in this critical interval, Select is used to find it. The
expected running time of BucketSelect is governed by the time taken to determine the items in this
bucket. A performance evaluation was done which shows that the running time of BucketSelect is
about 60% of Select for finding the median when n is in the range of 50,000 to 250,000 items. The
asymptotic percentage is shown to be 53.6%.

We consider two important problems in computational geometry. First, a method which is
free from numerical errors is presented for constructing the Voronoi diagram in the plane. The
algorithm, which is based on the incremental method of construction, avoids esrrors by using only
integer arithmetic. It performs fewer computations than a similar algorithm that uses floating point
arithmetic and produces a correct diagram even when degeneracies occur.

Ao efficient bucketing algorithm is also given for the closest pair problem. Its expected ruaning
time is asymptotically O(dn), where d is the dimension of the space and n is the number of points.
We show that for d < 5, the algorithm performs well for all n but, that when d is large, n must also
be large for the algorithm to work efficiently. Expressions are derived for the expected value of the
closest interpoint distance within the buckets and the expected number of distance computations
performed by the algorithm. The latter is the dominant factor controlling the running time of the
algorithm. Empirical results are presented showing that the values obtained for these expressions
agree well with the average of these quantities determined from experiments. We also show that the
running time of the algorithm is much less than that of several other algorithms for the case when
d=2.

Fipally, we discuss data transformation methods for dealing with non-uniform data distribu-
tions. We conclude that further empirical testing is required to determine which transformation

methods work best in practice.
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PREFACE

The inspiration for this research was the elegant O(n) expected time sorting algorithm by
Dobosiewicz called Distributive Partitioned Sort (DPS) [10] and the controversy that resulted from
it. We were concerned by the fact that many computer scientists considered sorting to be a closed
problem, for which “optimal” O(n logn) algorithms existed. We also felt that there was a shortage
of expected time analyses of these algorithms and a lack of empirical testing to validate the analyses.

In Chapters 2 and 3 we report the results of mathematical anlaysis and empirical testing on
DPS and a variant called Hybridsor!. The results from Chapter 2 have been published in [21]. These
results extend earlier studies of DPS by Mr. Philip J. Janus.

The research of Allison and Noga [2], in which the method of buckets was first applied to
the selection problem, inspired us to find a algorithm that would outperform the “near optimal”
comparison based algorithm of Floyd and Rivest [13]. These results are reported in Chapter 4 and
published in [22].

We have followed the research of Asano, Ohya, Sugihara et. al. [3,32,33,38] for the past several
years with greal interest. This, coupled with our desire to find and efficent algorithm for the
construction of Voronoi diagrams in the plane and a concern for numerical accuracy, motivated the
research reported in Chapter 5. These results are published in [23]. Our closest pair algorithm,
presented in Chapter 6, was inspired by earlier work by Yuval [42], Rabin [35] and Besntley et. al. [4].

The dissertation by Golin [14] provided valuable help in the analysis.
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CHAPTER 1

INTRODUCTION

In this thesis we study a class of problem solving methods known as bucketing algorithms.
The problems for which bucketing methods have been successfully applied include sorting, selec-
tion and several proximity problems in the area of compulational geometry. Many computational
problems can be solved by a “divide and conquer” approach wherein a problem of size n is split
into two subproblems of approximately half the original site. When, as is often the case, the work
needed to merge the two solutions into a global one is O(n), this leads to a recurrence of the form
T(n) = 2T(n/2)+ cn. In such cases, the running time of the algorithm is O(nlogn). In the method
of buckets, the data points are assigned to one of an buckets, where a is a constaat. Since the
work required to assign each item to a bucket is constant, the time needed to distribute all items
is linear. In many cases the number of items in each bucket is bounded by a constant. When this
is true, the expected running time of the algorithm is O(n). Usually the worst case complexity
at least Q)(nlogn), and perbaps even f}(n3). Bowever, the expected complexity is often a more
realistic indicator of the performance of such algorithms since the worst cases are extremely unlikely
to occur.

We will analyze existing bucketing algorithms more carefully than bas been previously done
and explore new applications of bucketing methods. In Chapter 2 we compare empirically the
performance of Distributive Partitioned Sort (DPS) [10] with that of Quicksort [18] in a demand
paging environment. We analyze mathematically a variant of DPS in Chapter 3 where the number
of buckets is some fraction o of the n items to be sorted. The optimal value of « is then determined
empirically for several implementations. An algorithm which runs faster that Floyd-Rivest’s Select
is presented in Chapter 4. The Select algorithm is acknowledged to be close to optimal in the

1



comparison tree model of computation. In Chapters 5 and 6 we investigate two importast problems
in compuational geometry. A method for mtmcting the Voronoi diagram in the plane is presented
in Chapter 5. This algorithm avoids numerical errors by using integer arithmetic. In addition,
it performs fewer computations than a similar algorithm that uses floating point arithmetic. In
Chapter 6 we present a method for solving the closest pair problem in d dimensional space in
O(n) expected time. It is assumed in Chapters 2 through 6 that the problem inputs are random
variables or veclors drawn from a continuous, uniform data distribution. In Chapter 7 we discuss
data transformation methods for dealing with non-uniform and unknown distributions. We conclude

that further empirical testing is required to determine which methods work best in practice.

1.1. Methods of Analysis

Most analytic work in the literature concentrates on the asymptotic behavior of algorithms. We
are interested in a more exact analysis for reasonable input sizes. We have tested actual implementa-
tions of the algorithms studied here to verify the analysis and to gain insight into their performance
on real machines, rather than abstract computational models.
Decision Trees versus Bucketing

Many clamses of algorithms may be represented by a k-ary tree using the decision tree model of
computation. Each internal node represents a decision with k alternatives and each external node
represents an outcome of the algorithm. If there are j levels in the tree then there can be at most k¥
external nodes. When sorting n items there are n! possible outcomes corresponding to all possihle
permutations of the data. If S(n) is the minimum number of decisions (comparisons) required to
sort n clements then, in order for a tree to have a sufficient height to support n! external nodes, we
have

< 5™ or  S(n) > Nog,n'].

Using Sterling's approximation, it can be shown that

flogynf] = nlogyn = n/(ln k) + 14logyn + O(1) (1.1)

2



Therefore, in the decision tree model of computation the sorting problem is (}(nlogn).

In the bucketing model there are no comparisons between items. Thus the lower bound es-
tablished in the decision tree model no longer holds. Since it is assumed that all of the data can
be amigned to one of an buckets (a a constant) in linear time, the time complexity of distributive
sorting is given by the relation T'(n) = en + Y=, P(i)T;(n;), where P(i) is the probability that an
item is assigned to the ith bucket and T,(n;) is the time required to sort the items in this bucket.
Further analysis requires an assumption about the probability distribution of the data. In Distribu-
tive Partitioned Sort ( DPS) [10], the algorithm is applied recursively so 7, = T. In Hybridsort [29],
a secondary sort such as Hespsort or Insertionsort is used to sort the items in the buckets. Thus
Ty(m) may be O(mlogm) or even O(m?). It has been shown in [6,7] that for many elasses of

distributions, T(n) = O(n) on the average for both DPS and Hybridsort.
Asﬁplolia versus Microenalysis

Much theoretical work in algorithm design is concerned with ﬁndi‘ng optimal algorithms in the
asymptotic sense. For example, in the decision tree model, we know from above that sorting is
(nlogn). Moreover, there are several known algorithms that are optimal in that they perform
O(nlogn) comparisons in the worst case or on the average. For instance, Quicksort is optimal in
the average case while Heapsort and Meryesort are optimal in the worst case as well as the average
case. Unfortunately, there is no way to compare such ssymptotically optimal algorithms against
each other. It takes a more detailed analysis to show that Quicksort is superior to the others on the
average [28].

One approach which is often used to compare algorithms with the same asymptotic complexity
is to count some “dominant” operation, such as comparisons. This dominance is usually based
on frequency of execution ‘nther than unit execution time. The disadvantage of this method is
that other instructions which are executed less often may be considerably more expensive and thus
significant. For example, exchanges done by comparison/exchange sorts and selection algorithms are
neglected in most analyses. An exchange may be over three times as costly as a comparison since

3



it requires three data moves. Some inputs may result in few exchanges while others may require
almost as many exchanges as comparisons.

Another problem with asymptotic analysis is that there are practical imitations on the size of
n, such as available space. While it is true that asymptotic results bold for large n, the range of n
for which such analyses are valid depends upon the problem. For example, suppose the execution

time of a particular algorithm is given by the equation
T(n) = cyn+ cynlogn. (1.2)

Using asymptotic analysis the algorithm is considered O(nlogn), regardless of the relative magni-
tudes of c; and ¢3 or the actual range of n which may be of interest. Suppose the problem size is
restricted to the range ng < n < n;. Then T(n) < n(c, + calogm ). If czlogn, < ¢, for the relevant
values of n, then the algorithm is linear in this range even though it is O(nlogn) asymptotically.
An alternative to asymptotic analysis is microanalysis. One technique is to determine the time
constants for an actual or hypothetical computer. In Knuth's monumental work [27,28], algorithms
ue. expressed in the assembly language of the hypothetical MIX computer. Each MIX instruction
is assigned an execution l.'uﬁe (most are one or two units). A program is analyzed by counting the
execution frequencies of each instruction and computing a sum weighted by the execution times.
This approach can be very tedious if a program is long. The method that we will use in this work
is to express the algorithm in pseudocode, which is close to a common high-level language such as
Pascal or C, and to assign a time constant to each part of the algorithm whose steps have common

execulion frequencies. These time constznts are then measured for representative implementations.
Data Representation and Models of Compatation

The way that real numbers are represented in a computer may not only affect the analysis of an
algorithm but actually determine whether the algorithm will produce correct results. In theoretical
models of computation, a common assumption is that operations on real numbers can be performed
in coustant time. Computers can represent only a small subset of the rationals using “floating

4



point” numbers containing a fixed number of bits. In this case, the assumption that operations can
be performed in constant time is realistic. Many analyses rely on the data points being distinct. For
example, distributive algorithms are frequently analyzed by assuming that the inputs are random
variables from a continuous distribution. This implies that all inputs are distinct since there is zero
probability of drawing two identical real numbers from a continuous distribution. For small n, the
probability of two inputs being equal is usually very small. However, as n gets large, there are an
increasing number of identical inputs which will eventually invalidate the analysis.

Another issue is computational um@. Suppose that a certain geometric algoritbm is required
to determine if a line passes through a particular paint. If floating point arithmetic is used, it may
be possible only to determine whether the line intersects a sphere of radius § surrounding the point.
Since in a formal model of computation, this determination could be made exactly, a theoretically
correct algorithm may fail to produce correct results when implemented on a computer using floating
point arithmetic.

Ezpected Case vs. Worst Case

Many results in algorithm analysis deal with worst case performance. According to Preparata
and Shamos [34], this arises from the mathematical intractability of dealing with the average case
and from the difficulty of constructing a probability model which fits the input data. Despite these
difficulties, there are several reasons for doing expected case analyses. First, while an algorithm
may require a long time to solve the least favorable instances of a problem, the time required on the
average may be appreciably shorter. From a practical perspective, the average behavior is the more
significant measurement of the algorithm’s performance when many instances of a problem have to
be solved. Next, consider what would happen if one placed too much emphasis on worst case at the
expense of expected case analysis. Then, such popular algorithms as Quicksort would not be used
despite the fact that, if the partitioning element is randomly chosen, the worst case is very unlikely
to occur. In the case of distributive algornithms presented in later chapters, the probability of the
worst case occurring is even more remote. For example, Dobosiewicz [11] states that a typical worst

L)



case n element input vector for Distributive Partitioning Sort is a sequence of factorials. We will

concentrate exclusively on expected case analyses in this dissertation.

1.2. Sorting

Although sorting is probably the most commonly studied problem in computer science, much
remains to be learned. In the most general sense the sorting problem may be defined as follows:
Given n elements from a set baving linear order, arvange them in non-decreasing order. Sorts can be
classified as erternel, where there are more records than can be stored in memory at one time, and
infernsl, in which all records are stored in random access memory. External sorting procedures have
diminished in importance over the years with the advent of inexpensive RAM and virtual memory

systems. We will study only internal sorting methods in this work.
Comparizon Sorting

Comparisons are the principal operation in all sorting algorithms that conform to the decision
tree model. In practical algorithms, either the records must be moved or a table of pointers kept
which specifies the sorted sequence, As n increases, the number of operalions required to rearrange
the records usually does not grow faster than the number of comparisons. Ald’iough such operations
are not important in asymptotic analysis, they must be taken into account in a more detailed
analysis,

There are several known sorting algorithms which are optimal in the asymptotic sense with
Tespect to the decision tree model. Of these, it is generally agreed that the one with the smallest
time constant in the expected case is Quicksort. Since we will be doing expected case analysis
exclusively in this work, we will use Quicksort as a “benchmark™ against which to compare the

performance of distributive sorting algorithms.
Distridative Sorting
When the inputs to a sorting algorithm are integers in a fixed range, it is poesible to sort in

O(n) time by introducing bit shifts and indirect addressing into the model of computation. This is



because computers represent a finite subset of integers using a fixed number of bits. The RadizSort
algorithm given below [I] indeed runs in O(n) time. Machines also represent a finite subset of
real numbers using a fixed number of bits. Assuming that the same number of bits are used to
represent these real numbers as are used to represent integers, the corresponding subsets are in one
to one correspondence. Thus, the representable real numbers can also be sorted in O(n) time using

RadizSort.

Algorithm RadizSort

// It is assumed that the inputs are unsigned integers composed of d digits. Each digit bas 3
possible values, 1,2,...0~1. //

1. Assign each integer to one of b buckets, numbered from 0 to b~ 1, such that the integer is placed
in the bucket whose number is the least significant digit of the integer.

2. Reassemble the data such that the iterns in each bucket are contiguous and the data from
different buckets are in the same order as the bucket numbers.

3. Repeat d — 1 times steps 1 and 2. Each time use the next least significant digit for bucket

assignmeat.

RadizSort is clearly not data dependent since steps 1 and 2 operate in time proportional to n for all
inputs and are each performed d times. The storage requirement is proportional to b + n while the
time constant is proportional to dn. In most applications, the time constant and space requirements
are both high.

Fortunately, there are practical alternatives which sacrifice O(n) worst case performance in
return for much more attractive space requirements and a considerably lower expected case time

constant. In 1978 Dobasiewicz published the.D'utributive Partitioned Sort algorithm ( DPS) [10].



Algorithm DPS.
1. Find the maximum (max), minimum (min) and median (med) of the data set.
2. Divide the ranges [min, med] and (med, maz] each into n/2 equal sized buckets.
3. Assign each data value to one of the buckets b as follows:
if X; < med then b = [g‘!‘a,-_%v;n]
else b = [ ﬁn]

4. Apply the algorithm recursively on all buckets containing more than one item.

Dobosiewicz [10] showed that the expected running time is O(n) for uniformly distributed data.
Assuming the clements are distinct, the worst case performance of the algorithm is O(nlogn).
This is because the use of the median guarantees that each pass produces a bucket of size at most
n/2. Although the median can he determined in O(n) time, the constant of proportionality to do
s0 is high. M. van der Nat [41] suggested replacing the median selection with a two-way merge
procedure. If one is willing to accept the premise that the bad cases are extremely unlikely to occur,
the median selection can be eliminated altogether. The expected case complexity remains O(n) and
the proportionality constant is reduced. Alternatively, a simpler measure of the central tendency
such as the midrange can be used to decrease the likelihood of poor performance [25].

Several empirical comparisons have been made between variants of DPS and Quicksort
[10,20,25). With uniformly distributed data, DPS outperforms Quicksort for file sizes above a small
threshold value in all such studies wben system effects, such as demand paging, are ignored.

Van der Nat [41] showed tbat the O(n) expected time performance bolds for uniform data as
long as, at each stage of the algorithm, the number of buckets into which data is distributed is
proportional to n. Several authors have observed that unnecessary overbead is incurred when the
DPS algorithm is applied recursively to buckets containing a small number of items. Huits and
Kumar [20] suggested using straight fasertionsort to sort buckets containing less than 20 items.
Sedgewick [36] used such an approach in his implementation of Quicksort to reduce the overhead



incurred in sorting amall subfiles recursively. He found nine to be an optimal “cutofl”. Janus and
Lamagna [25] also employed this method in their investigation of noo-uniform data distributions.
Meijer and Akl [29] introduced Hybridsort which eliminates secondary distribution passes altogetber.
They suggested using an O(nlogn) worst case secondary sort like Heapsort to insure that the overall
algorithm is O(nlogn) in the worst case. Unfortunately, this approach is inefficient when there are
many buckets containing a small aumber of items due to the high overhead in using Hespsort to

sort amall buckets.

A practical alternative is to use an O(n?) secondary sort. Insertionsortis a good choice because
it can be applied to the entire data set more efficiently than to the individual buckets. Devroye [7]
showed that even if the secondary sort is O(n?), there are a wide class of distributions for which
Hybridsort is O(n). The problem is that in some cases the time constant can be quite large. As will
be discussed in Chapter 7, O(n) data transformations may be used to reduce the time constant and

to augment the class of distributions for which O(n) behavior can be achieved.

Hybridsort has an important advantage over DPS in that it is easily adaptable to sorting al-
phanumeric keys. A fixed number of most significant bits of the key can be mapped, using an order
preserving transformation, to an integer. This integer is then used for the distribution step. Finally,

a comparison-based secondary sort is used to complete the job.

Even if one is willing to assume that either the distribution underlying the input data is uniform
or that an O(n) data transformation can be applied to smooth the data, there are still several issues
that require investigation. Although it is known that the asymptotic behavior of Hybridsort is O(n)
in the expected case, there are several factors which must be considered when a detailed analysis
is done. These include the optimal number of buckets to use and the possible consequences of
memory management effects such as demand paging and caching. In Chapter 2 we investigate the
effects of demand paging by comparing the performance of DPS and Quicksort in a demand paging
environment. Quicksort accesses items in an array systematically by working from the front and
back toward the middle. On the other hand, DPS references items randomly through pointers. It
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would seein that, due to this “locality of reference,” Quicksort would perform better under demand
paging because it references only a small number of pages at one time.

Most modern computers bave memory caches which allow more rapid access to data that are
used frequently and slower access to data used infrequently. Therefore, the assumption that a data
value may be assigned to a bucket in constant time, independent of the value or order of the data,
may not bold. In Chapter 3 we investigate these memory management effects on several computing
platforms.

In Chapter 3 we also examine a, the ratio of buckets to n, to determine its optimal value. In
order for Hybridsort to be O(n), it is only necessary that a be O(1). A detailed analysis reveals
tbe following tradeofl. Overhead is required to initialize each bucket and to process each non-empty
bucket. In addition, the greater the number of buckets, the less locality of reference. On the other
hand, the work done by the secondary sort increases when the number of buckets decreases. Even if
the sott is carried out in real memory, hardware effects such as data caches may affect the algoritbm’s
performance. Since a detailed analysis depends on machine constants, we have tested Hybridsort
on several platforms. It was found that that the optimal a does not vary greatly from machine to
machine. Finding a good value for the parameter a may save considerable space as well as optimite

the running time of the algorithm.

1.3. Selection

Many situations, including numerous statistical applications, call for selecting one or more
ranked items. One example is finding confidence intervals about the median. Anotber application
is to use ranked data from a small sample to divide items to be sorted into approximately equal
proportions.

In this section we will employ the notation used in [12]. Let X be a finite set of distinct elements
which are ordered such that for z;,z3 € X ecither z; < z; or £3 < z;. We define £0X to be the kth
smallest element of X and zpX to be the rank of z in X. Thus (zpX)0X ==.

It has been known for‘evenl years that the sclection problem is ©(n) in the worst case [1]. In
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1961, Hoare [17] published a selection algorithm called Find.

Algorithm Find
1. Select an element, u, at random from X.
2. Partition Xinto A= (z€ X :2<u}, B={u},and C={z€X:z>u}.
3. If upX = k then retum u
else if upX < k apply tbe algoritbm recursively to C

else apply the algorithm recursively to A.

Although the performance of the algorithm is O(n?) in the worst case, it is shown in [I] to be at
least five times faster on average than an efficient O(n) worst case algorithm.

In 1975, Floyd and Rivest [13] published Algorithm Select which, by proper choice of partitioning
elements, achieves an even better, and close to optimal, expected case performance with respect to

the number of comparisons.

Algorilthm Select

1. Select a sample S from X whose cardinality, s, is o{n).

2. Find kK(s/n)dS by applying the algorithm recursively and compute its standard deviation.

3. Select u and v from S such that upS and vpS are d standard deviations less than and greater
than k respectively.

4. Partition X into A=(r€X:z<u}, B={r€X:u<z<vjandC={z€ X :z>v)}.

S. If ubX < k < v8X apply the algorithm recursively to B
else if udX > k apply the algorithm recursively to A

else apply the algorithm recursively to C.

Because 90X is expected to lie in B with high probability and the expected cardinality of B is o{n),
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the running time of the algorithm is governed by the time required to petform step 4.

Allison and Noga (2] first applied the method of buckets to the selection problem. Their al-
gorithm involved distributing the items into ¢y/n buckets and determining the bucket in which the
desired item was located by counting the bucket cardinalities. The empirical results that they gave
showed that Select was superior in all cases.

We have done extensive research which indicates that the use of multiple buckets in an attempt
to find an algorithm that is faster than Select is doomed to failure because of the overhead incurred
when maintaining the buckets as linked lists. However, the following variation produces an algorithm
that is faster on average than Select. We observe that Select identifies the members of all three sets A,
B and C despite the fact that it relies on the item being sought belonging to B with high probability
for its superior expected time performance. We therefore propose that only the members of B be
isolated. In the unlikely event that kX ¢ B, Select can be applied to the entire data set. A
single bucket, which can be implemented as an array, can be used to store the members of B. The
operations required to isolate B are o{n) and thus asymptotically zero. The dominant part of the
algorithm is, therefore, the number of operations required to isolate B.

Since only one bucket is used, membership in the bucket should be determined by comparisons.
The algorithm will perform the same number of comparisons, on the average, as Select but with far
fewer data moves. It will always outperform Select as long as £0X is successfully isolated in B. In

Chapter 4 we analyte an implementation of this algorithm and compare its performance to Select.
1.4. Computational Geometry

Our research bas important implicationsin the rapidly growing field of computational geometry,
which concerns the algorithmic study of geometric problems. One particular class of problems for
which the method of buckets is well suited is that involving the proximity of points. Two problems

in this class that we investigate are Voronoi diagram construction and closest pair.
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Construction of the Voronoi Diagram

The Voronoi diagram may be defined as follows: Given n points in the plane, partition the
plane into n regions where each region, /4, is the space that is closer to point i than the other n - |
points. The ith point is referred to as the generutor of the ith region. The regions R; are convex
polygons which are called Voronoi regions. The vertices of these regions are called Voronoi points

and the boundaries of the regious are called Voronoi polygons.

The problem of constructing the Voronoi diagram in the plane has received considerable atten-
tion in the literature over the last fiteen years. Several methods [33,19,34] based on the principle
of divide and conquer have been proposed for Voronoi diagram construction that achieve optimal
O(nlogn) worst case performance in the decision tree model. Using the method of buckets it is
possible to achieve O(n) behavior, at least on the average. Bentley, Weide and Yao [4] were the first
to show this. Their algorithm, however, is impractical to implement. A practical method achieving
O(n) average case performance was published by Obya et. al. [32,33,3]). Their method is based on
the incremental construction algorithm of Green and Sibson [15] in which generators are sdded one
at a time. If the generators are introduced in arbitrary order, the construction has a worst case
performance of O(n?). However, if the generators are added in a certain canonical order, Ohya et.
al. have shown that, under suitable assumptions about the data distribution of the generators, it is
possible to achieve expected O(n) performance.

A major problem with the incremental method concerns the computational accuracy and how
to handle so-called degeneracies. The incremental construction algorithm adds a new generator by
first finding its nearest neighbor, p, among the generators already added. It is then necessary to
find the edges in the Voronoi polygon of p that intersect the perpendicular bisector of p and the
new generator. A degeneracy occurs when this bisector intersects a vertex of the Voronoi polygon.
If the computation is precise, this degeneracy can be handled, otherwise the algorithm may not
terminate. Sugihara and 1ri [38] proposed a solution to the problem in which topological properties
of the diagram are given highest priority and numerical computations are employed only to resolve
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ambiguities. Using this approach, they are able to construct a diagram for one million generators
using single-precision arithmetic. The problem is that many important properties of the diagram
are sacrificed. For example, they require that there be as maay Voronoi regions as generators hut it
is possible, depending on the computational aceuracy employed, that some regions may have more
than one generator while others have none.

The work of Sugibara and Iri [38] shows clearly the relationship between the generators and the
Voronoi points. Since only a finite subset of rational numbers can be represented on a real computer,
it is reasonable to impose a restriction on the precision of the generators.

In Chapter 5 we discuss improvements to the incremnental method of Vorono; diagram construc-
tion which handle correctly so-called “degeneracies™ and eliminate computational inaccuracies. To
accomplish this we avoid using floating point arithmetic. We will show that, if integer coordinates
are used for the generatars, the Voronoi points may be represented by an integer triple (two rational
coordinates with a common denominator). The exact precisica required to compute I.Ild' to represent
the Voronoi points are easily calculated functious of the precision of the generators. Computations

are restricted to addition, subtraction, multiplication and comparison of integers.
The Closest Pair Problem

The closest pair problem may be stated as follows: Given n points in d dimensional space, find
the two paints that are the closest. A hrute force approach is to find the minimum of all pairwise
distances between points using O(n?) comparisons. Optimal decision tree algorithms usually employ
a divide and conquer approach. The idea is to first divide the space into two subsets of points. Next,
the minimum inter-point distance in each subset is found by applying the algorithm recursively. The
results are then comhined by processing a alice at the junction of the subsets which can be shown to
contain at most a constant number of points. Bentley, Weide and Yao [4] bave given O(n) expected
time algorithms for solving a number of closest point prohlems in d dimensional space. For example,
they show how under certain conditions on the probability density function that the e/l mesrest
neighbors problem can be solved in linear expected time. Since one of the pairs of nearest neighbors
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is the closest pair, it immediately follows that the closest pair problem can also be solved in O(n)
expected time‘ming n -1 additiopal comparisons. It may still be possible, however, to obtain a more
efficient closest pair algorithm since finding all nearest neighbors is not a prerequisite for solving
the problem. Of course, such an algorithm would be still O(n), but with a smaller constant of

proportionality.

In Chapter 6 we present a claseat pair algorithm, CPeir, that is more efficient than existing
algorithms and is easily generalized to higher dimensions. CPair is based on a theorem by G. Yuval
{42] which may be stated as follows: It is possible to construct d+ 1 partitions of d space with
every pair of poiats less that § apart lying in the same region in at least one partition. Yuval used
this observation as the basis for an O(nlogn) worst case divide and conquer algorithm. However,
by coupling this theorem with the method of huckets, we have developed CPair which does run in

Rabin [35] published a probabilistic clasest pair algorithm in 1976 that is based on Yuval's
theorem and which bas linear expected time performance. His method is to use a large number of
huckets whose size is determined by the closest pairwise distance among points in a random sample.
The key idea is that the number of non-empfy bﬁcket.l is bounded above by a constant times n. At
the expease of considerable overhead, the problem is reduced to sorting a sequence of integers, each
corresponding to the index of a non-empty bucket. Rabin claims that this can usually be done by
bhashing in O(n) time. The difficulty is that, even for uniformly distributed data points, the integer

sequence is highly non-uniform.

CPair solves the closest pair problem in d dimensional space more efficiently by using a number
of buckets proportional to n, but no more than n — 1, Lo insure that at least one bucket contains
two points. The first distribution stage determines a tentative closest pair and the distance between
them. At most d+1 subsequent distributions are required. At each distribution stage, the majority of
points used in the previous stage are eliminated from consideration for closest pair. The complexity
of this algorithm is O(dn) for sufficiently smooth data compared to the exponential growth with d
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of the methods given by Bentley, Weide and Yao (4).

1.5. Data Transformations

When the data distribution is known, it is possible to apply a transformation to the inputs in
such a way that the transformed data is uniform. This was demonstrated in the case of sorting by
Meijer and Akl [29). However, there are times when it is difficult to assume a particular probability
distribution for all instances of the problem. Moreover, the relative frequency of problem instances
may change in an unpredictable way. One remedy is to employ a probabilistic approach, such as the
one used in the selection algorithmsin Chapter 4 and which Rabin bas applied to the closest pair
and other prohlems (35). Another method is to adapt the transformation methods to the situation
where the probabilty density is unknown. We discuss the ismsue of dealing with non-uniform data

distributions further in Chapter 7.
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CHAPTER 2
PERFORMANCE OF DISTRIBUTIVE PARTITIONED SORT

IN A DEMAND PAGING ENVIRONMENT

2.1. Introduction

Distributive Partitioned Sort, or DPS, is an internal sorting technique described in Dobasiewicz
{10]. Empirical evidence presented there and in Janus and Lamagns [25] suggests that the algorithm
runs considerably faster than several commonly used sorts including Quicksort [18,36).

Unfortunately, previous experiments with DPS were conducted in such a way that all of the data
and pointers resided in main memory during the entire sorting process. Such an assumption may
not be realistic, in practice, when large or even moderate sized files are sorted on virtual memory
computer systems [5].

In this chapter we investigate the effect of demand paging on DPS, comparing its performance

to that of Quicksort, as the amount of real memory available to the sorts is reduced.

2.2. Experimental Design

Two algorithms were studied - DPS with midrange selection as described by Janus and La-
magua [25] and the version of Quicksort described by Sedgewick [36]. The algorithms were coded
in Pascal for implementation on a VAX-11/750 running Version 4.2 of VMS. The data (o the sorts
consisted of uniformly distributed real numbers in the unit interval.

Each datum was a single precision real number occupying four bytes of storage. The bucket
headers and linked list pointers for DPS, and the pointers (o the endpoints of partitions in Quick-
sort, were implemented as longword integers occupying four bytes. DPS requires approximately 3n
long=ords, or 12n bytes, Lo sort n items since it associates one pointer with each datum and employs
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a number of buckets equal to the size of the file. Quicksort uses only 4n hytes for data and has a
maximum stack size of log, n pairs of endpoints occupying at most 8log; n bytes.

The experiments were conducted in such a way that the sorts ran stand-alone on the system.
The only other processes executing were essential operating system routines like the swapper. For
each run, the working set W,, or maximum amount of physical memory available to the process, was
specified as a parameter to the operating system. There is a minimum working set, W,,,, of about
95 page frames that is required (o load and execute an object module on the system.

The capacity W,, or minimum number of pages that must be allocated for DPS to reside entirely
in main memory, was determined for each file size considered. Experiments were then run on both
DPS and Qsicksort with working sets expressed as percentages W of this capacity (less W) given
by (W, = W )/(We — Wan).

The virtual address space of a process running under VMS consists of three parts:

(1) pages residing in physical memory allocated to the process,

(2) pages residing in physical memory but not available to the process, called the page file, and

(3) pages residing on disk.

A page faslt occurs whenever a reference is made Lo a location in a page of the second or third type.
Each page on the VAX contains 512 bytes. Details of the VAX/VMS memory management system
can be found in [8).

In most of the experiments, all page faults were of the real memory (o real memory type. The
bandling of an in-memory page faultvconsisu of updating the allocation of storage between pages of
the first and second types enumerated above. The time required by the operating system to process
such a fault is considerably less than that to handle one involving disk access.

Because !u’gc, uninitialized data areas are initially paged to the page file under VMS, it is
actually impossible to run DPS fault-free since all pointers are outside of real memory when the sort
begins. In order Lo obtain a fault-free running time, it is therefore necessary (o reference all of the
data and pointers once before sorting. This causes all of the required pages to reside in memory
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Working set n=10000 n=20000 =40000 n=80000
w

DPS QS DPS QS DPS QS DPS QS

100 430 523 867 1l.14 17.86 23.84 136.85 5046
90 442 522 896 1l.14 1854 2387 3821 50.49
80 446 521 922 11.13 1940 2385 3993 504!
70 455 522 930 1115 1929 23.86 39.97 5035
60 457 522 963 1115 20.07 2385 40.55 50.37
S0 476 522 1009 1l.14 2240 2383 4850 350.55
40 5.18 522 1244 1L17 2834 2387 G63.10 5045
30 6.77 525 1760 1125 41.17 24.04 9218 50.92
20 1148 528 3404 1139 70.64 2422 152,13 51.20
10 25.47 5.37 6199 11.49 11884 24.50 22437 52.04

Wen - 5.50 - 1213 - 26.92 - §9.46

Table 2.1. Run times (in seconds).

Working set n=10000 n=20000 n=40000 n=80000

w
DPS QS DPS QS DPS QS DPS QS
100 ¢ o 0 o 0 0 0 0
90 199 0 441 o 950 0 1931 0
80 26 2 88 0 2156 0 4656 0
70 39 2 91 o0 2147 0 4702 0
60 412 3 1436 0 3305 0 8207 0
6 715 3 2008 2 67719 0 17572 0
40 1212 3 5329 3 15912 2 3973 0
J0 3118 60 12308 137 35507 269 88881 6M
20 8072 84 31699 305 78808 469 176350 939

10 20519 198 57839 483 129840 931 276113 2143
W - 295 - 770 - 1778 - 4139

Table 2.2. Number of page faults.

allocated to the process, and no further paging will occur if the working set is at capacity.
2.3. Results and Conclusions

Table 2.1 shows the running times of DPS and Quicksort for four different file sizes: n = 10,000,
20,000, 40,000, 80,000. Table 2.2 shows the number of page faults generated. Some variation in the
run times was observed due to a degree of randomness in the bebavior of the system when processing
page faults. This effect is more noticeable with very small working sets or very large file sizes. To
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Figure 2.1. Run times for n = 40,000.

mitigate this difficulty, the data reported in the tables are the averages of five runs on the same

input.

Figure 2.1 plots the times for n = 40,000. It can be seen that the crossover point for the two
algorithms occurs just below W = 50%, with Quicksort outperforming DPS in smaller partitions.
Below the crossover, the running time of DPS rises dramatically due to excessive page faulting, or

threshing. The curves obtained for the other values of n are similar,

The results also show that the running time of Quicksort increases very slowly as the size of
the memory partition is reduced. In fact, one should not expect any rise at all until W = 3314 R is
reached since Quicksort requires only about one-third the space of DPS. Theoretically, the running
time of Quicksort will rise as sharply as that of DPS if the partition is reduced enough, or if the
file size n becomes mﬁciélly large. However, this will not occur because the partition cannot be
smaller than W,,. At W,,, the running time of Quicksort is only 5% greater than its fault-free value

for n = 10,000 and 18% greater for n = 80,000.

The rise in the running time of Quicksort is amall because of a phenomenon known as locslity of
reference. Quicksort has a high degree of locality since it accesses items in an array by systematically
working from the front and the back toward the middle. At any point, only three pages of data are
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reference. Quicksort has a high degree of locality since it accesses items in an array by systematically
working from the front and the back toward the middle. At any point, only three pages of data are A
of interest - those containing the pivot and the iterns scanned by the forward and backward moving
pointers. These pointers cross page boundaries infrequently. DPS, on the other hand, accesses
data items randomly via linked lists of pointers. This greatly increases the number of page faults
generated.

In conclusion, while DPS runs faster than Quicksort when all of the information associated with
the sorts resides in physical main memory, its performance in a demand paging environment may be
somewhat less impressive. This is caused by two principal factors. First, DPS uses appraximately
three times as much storage as Quicksort. Secondly, DPS accesses data randomly via linked lists of
pointers, while Quicksort exhibits an extremely high locality of reference.

Empirical results presented here indicate that an amount of memory equal to about 40% to
S0% of that required for the data plus pointers must be available for DPS to outperform Quicksort.
These results were obtained when most page faults were of the real memory to real memory type.
The performance of DPS would have suffered more if disk accesses were required to resolve page

faults.
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CHAPTER 3
SORTING BY DISTRIBUTIVE PARTITIONING

WITH FEWER THAN n BUCKETS

3.1. Introduction

Distributive Partitioned Sort, or DPS, is a fast internal sorting technique first described by
Dobosiewicz [10]. The method has an expected running time which is linear in the number of
items n to be sorted when it is applied to data with probability densities that are bounded and
have compact support [7]. Comparison-based sorts require {I(n log n) key comparisons and cannot
achieve linear running times.

One of the problems associated with DPS is the extra storage required for pointers. In the
distribution phase, the items are placed into one of n buckets, implemented as linked lists. This
requires 2n pointers — n list headers plus one pointer to place each item on a list. It has been
reported in Chapter 2 that at least 40% of the memory required for the input data and pointers
must be available for DPS to outperform Quicksort in a typical demand paging environment.

One way to reduce the space overhead is to use fewer buckets. DPS can be speeded by using a
final insertion sort pass to order buckets containing multiple items below some cutoff (9 or 10 items
works well). As shown in [25], the probability of a bucket being abave such a cutoff is extremely
small when a transformation is employed to smooth the data. This suggests that fewer than n
buckets might be used. In fact, the run time could actually be reduced since there is an overhead
associated with maintaining each bucket.

Meijer and Akl [29] bave described an algorithm called Hybridsort having a single distribution
pass. Buckets containing more than one item are ordered with a secondary sort whose run time is
proportional to mlogm, where m is the number of items to be ordered. Devroye (7] shows that
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even a simple O(m?) secondary sort leads to O(n) bebavior for Hybridsort over a wide class of data
distributions including the uniform. In this chapter we analyze an implementation of Hybridsort
called BucketSort which uses insertion sort to accomplish the secondary sorting. Insertion sort has
the desirable property tbat it can be applied to an array of appended buckets with no more work
than applying it to the members of each bucket separately.

We examine the performance of BuckelSort when the number of buckets used is some fraction
a, 0.2 < a < 1, of the file size n. First, an overview of the algorithm is presented. A detailed
rendering of the procedure is then analyzed to determine the expected number of times each step
is executed as 3 function of @ and n assuming the data to be sorted are uniformly distributed. We
restrict ourselves to this case since it has been shown that many nonuniform distributions may be
transformed into the uniform distribution with only a small penalty in the running time [25,29]. The
execution counts are related to actual running times by examining several implementations of the
algorithm. In doing so we develop a model which considers the effect of multilevel memory on the
time to access data. The value of a which minimizes the running time is determined using numerical

techniques for several different machines.

3.2. Analysis of the BucketSort Algorithm

The BucketSort algorithm consists of six steps:

1. initialize an array of an bucket headers,

2. determine the maximum and minimum elements of the n items to be sorted,

3. distribute the n data items into buckets,

4. chain the buckets into a single linked list,

S. rearrange the array of data items according to the order of the corresponding pointers in the
list, and

6. perform a single insertion sort pass over the entire data array.
In this section, the salient features of each phase are presented and an analysis of its expected

running time is developed. Expressions for the running time of each step are given under the
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assumption that the time to access data from memory is constant. A pseudo-coded version of the
algorithm appears in Appendix A, where each line is annotated with the expected number of times
that it is executed.
Step |. Bucket Initislizstion

In this phase, the headers for each of an buckets, maintained as singly linked lists, are assigned
null values. The running time is given to a close approximation hy Ty = ¢jan.
Step 2. Determining the Mazimum snd Minimzm

To locate the maximum and minimum, each consecutive pair of items is compared. The larger
is then compared o the current maximum, and the smaller to the current minimum. Hence the
total number of comparisons is 33n. Assuming all n! permutations of the data are equally likely to
oceur, the probability that the ith pair contains the largest (or the smallest) of the first i pairs is 1/i.
Thns the expected number of times the maximum (or minimum) is updated in the n/2 comparisons
it makes is given by $°7/31/i = Hajz=1, where H,a is the mth harmonic number. Since Hoj2 < n,
the work done in making comparisons will dominate the time spent in updating the maximum and
minimum, and we bave T3 = e3n.
Step 3. Bucket Distribution

The range of values is divided into an equal length intervals. Then esch item is placed in a
bucket hy computing the fraction of the way into the range it lies. The running time for this phase
is proportional to the number of items being distributed, T3 = can.
Anslysis of [tem Distribution into Buckets

To obtain execution counts for the bucket chaining and insertion sort pbases, the distribution of
items into buckets must be examined. Since the input is uniformly distributed, the number of items
in any bucket is a binomially distributed random variable with parameters n and ;l; F(i,n, a), the

expected fraction of buckets containing exactly i items, is given by

o= () (a) (%55)

A




02 03 04 0.5 0.6 0.7 0.8 0.9 1.0

B(a) 0.199 0.289 0367 0.432 0487 0.532 0.571 0.604 0.632
D(a) 2.812 1.544 0981 0.681 0.500 0.383 0.303 0.246 0.203

Table 3.1. Values of B(a) and D(a).

When ;’; is small and n is large, (3.1) may be approximated closely by the Poisson distribution

which is independent of n [26]. In this case (3.1) may be written as

F(i,a) = a—:ﬁc"”.

Step {. Bucket Cheaining

The buckets are chained together into a single linked list by copying the header for each into
the tail of the preceding one. The implementation consists of a Joop that is executed once for each
of the an buckets. The expected number of nonempty buckets which must be processed is given by
B(a)n, where B(a) = a(l —~ F(0,a)). Typical values for B(a) ate shown in Table 3.1. The number
of pointers which must be traversed is (1 —¢)n == n, where ¢ is the miniscule fraction (expected value
=) of items in the last bucket. The running time of this step is closely approximated by a linear
combination of an, B(&)n and n, Ty = [c4. a0+ cayB(a) + can]n.

Step 5. The MscLsren Rouline

In this pbase, the items in the data array are reordered according to a list of pointers using a
technique developed by M. D. MacLaren [28, p. 596) that does not use any additional storage. The
implementation consists of a loop that is executed once for each data item. Within this is an ioner
loop that is exccuted once for each item that must be displaced from its original position in the
array. The only items which are not displaced are those that complete a cycle in the permutation.
The expected cycles can be shown to be Hn [27, p. 176 and 28, p. 596), and so the inner loop is '
executed n— H, times. Since H,, < n, the running time of this step can also be regarded as directly

proportional to n, Ty = esn.



Step 6. Insertion Sort

A single insertion sort pass over the entire array is used to order the items in each bucket.
Since the huckets are properly ordered with respect to one another, an item will not be moved by
this process beyond the boundaries of the bucket into which it is placed. Thus, a single insertion
sort pass acts as a sequence of independent sorts on the individual huckets. Two quantities are of
importance here — the number of items requiring insertions and the number of data moves.

Cousider the case when a bucket containing m elements is ordered by insertion sort. When the
Jjth item is processed, the j—1 succeeding elements in the bucket have already been ordered. Since
any permutation of the items within a bucket is equally likely to occur, the probability that the jth
item is smallest is 1/ and so an insertion will be performed with probability 1-1/j. Summing from

J = 1 to m gives the expected number of insertions performed on a bucket of size m,

f:(l -1/j) = m=He.

i=1

To obtain the expected number of insertions per bucket, D{a), this quantity must be multiplied
by the expected fraction of buckets containing m items, F(m, a), and summed over all possible

values of m,

D(a)= Y a,:m!e-'l°(m - Ho).

This sum is best dealt with by treating each term separately. The first component is easy,

S gt g S U

from the Taylor series expansion for ¢!/. The second component reduces to the exponential gener-
ating function, G(z), for the harmonic numbers with z = 1/a,
G(Z) = Z H’n mt’
m=0
when e='/% is factored out of the sum. Therefore, the expected number of insertions per bucket is
given by
D(a) = 1/a=e~Y2G(1/a).
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Unfortunately, no closed form in terms of elementary functions exists for G(z) and D(a) must

be determined numerically. The harmonic numbers are defined by the recurrence

1
Hﬁ\ =Hm—l+—
m

for m > 1 with Ho®'0. Multiplying both sides by mz™/m! and summing aver all m > | yields

[d Z'. o« z,._l @« :.-
Z mH..-"i =z Z H..-|(—m—:T)i+ Z g

Again using the Taylor series for ¢* and letting

o0 me-]
)= 53(;1). = mHa
mzl
this is equivalent to
2G'(z) = 2G(z) +¢* - L.

The resulting differential equation may be solved using the integrating factor e~*,

l—-e"*

;;la(z)e"] =e"'G'(z) = e *G(z) =

and so we obtain

-1 ’ ] l - e—l
G(s) = (e a(|)+/ ar).
1
D(a) can now be computed numerically by taking a sufficient number of termsin the series expansion
starting with an initial value of G(1) = 2.50259. Representative values are presented in Table 3.1.

The expected number of data moves in insertion sort is given by

Y G-1n2=m(m-1)/4,
i=t

where m is the number of items in a bucket [28, p. 82]. To obtain the expected number of data
moves per bucket, E(a), this quantity must be multiplied by the fraction of buckets containing m

items, F(m, a), and summed over all possible values of m,

E(a) = '.Z-° a'.lm!‘_-llo lll(n;— |).
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This may be simplified to

E(a)=

eVe * mim-—1 e~V = (l/a)"-:
y, ezl =

1
f~—3 —
4 & ao™m! 4a? &2 (m-2)!  4a?

by again recognizing that the second sum is just the Taylor series expansion for ¢'/°.

The insertion sort consists of a main loop that is executed n — | times. As each new item
is considered, it is compared with its successor to delermine whether an insertion must be per-
formed. From tbe analysis given above, the expected number of insertions is D(a)av;. The first
data move is made immediately after the test, and so these instructions are executed D(a)an
times. The remainder of the E(a)an data moves expected are made within a while loop, and
20 the expected number of iterations through the body of the loop is (E(a) — D(a))an. Adding
these contributions together, the overall running time of the insertion phase may be expressed as

T¢ = (cs.4aD{a) + cs aE(a) + cs ) 0.

3.3. Experimental Results

When an algorithm is actually implemented, there are several factors which can greatly influence
its running time. Among these are the programming language, compiler, operating system and,
of course, the hardware of the underlying computer. Our algorithm was implemented on several
hardware platforms using either Pascal or C. In what follows, we shall describe in some detail the
results obtained on a VAX-11/750 running VMS Version 4.7 with the algorithm coded in Pascal. We
chose this machine for our experimental work because it was available for our use “stand-alone” 50 the
influences of a multiprogramming environment could be eliminated. Since this machine is antiquated
by today's standards, we will summarize the results obtained for a number of newer computers at the
end of this section. The data obtained for the VAX-11/750 are particularly interesting due to one
of its hardware features, an address translation buffer. Most modermn computers have a multilevel
memory hierarchy and some have memory management schemes that cause BucketSori to perfonn
in a fashion that closely resembles its bebavior on the VAX-11/750.

In the experiments, random integers over the range (0, 10°) were sorted; these are implemented
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n (x10%)

a 10 30 50 80 120 150 170 200 250 300

0.20 1.082 3.462 6.288 10.871 16.626 21.062 23.893 28.905 36.662 44.718
025 1.070 3.410 6215 10570 16446 21.033 24.109 28.725 36.610 44.568
0.30 1.055 3394 6.174 10.520 16509 21.113 24.398 28.826 36.704 44.400
0.35 1.053 3.382 6.169 10.522 16.612 21.236 24.458 29.014 36.717 44.569
040 1062 3.388 6.176 10.515 16.697 21.344 24.541 29.157 136.963 44.628
050 1.066 3402 6211 10.700 16.918 21.567 24.563 20.224 37.221 44.965
0.75 1.093 3489 6417 11.120 17.400 22.138 25.373 30.082 38.019 46.118
100 1.120 3590 6662 11.435 17.883 22.716 25.772 30.840 38.932 46.984

Table 3.2. Execution times (in seconds) for selected values of a and n.

on the VAX in four bytes. Each pointer also requires four bytes, s0 the overall space requirement is
about (8 + 4a)n bytes. The CPU times were determined experimentally for each step. Values of n
ranged from 10,000 to 300,000 in increments of 10,000, while a ranged from 0.2 to 1.0 in increments
of 0.05. This range enabled accurate measurement of the CPU time l.o.0.0I seconds, while sufficient
real memory was available to prevent page faults. The times for each (a, n) pair were obtained by
averaging experimental results from five runs on each of five different input sets. It may be seen from
the representative run times in Table 3.2 that the maximum and minimum times for each n vary
by only 6% to 8%, indicating that the effect of a on run time is not appreciable. If one arbitrarily
chose a = 0.2 for all n, a space savings of slightly over 25% would result while the running time
would be still be less than that fora = 1.

Table 3.3 presents timings for each step of the algoritbm with a = 0.6 and n in the range [10,000,
100,000]. These are typical of those obtained with other values of a. For a fixed value of a, the
running times of steps 1, 2 and 6 are proportional to n as predicted by the analysis in Section 3.2.
However, the times for steps 3 through 5 display a departure from linearity due to the effect of
multilevel memory causing the access times for data to vary. Thus, determining the constants for
steps 1, 2 and 6 is relatively straightforward, but for steps 3 through 5 we will have to examine
the memory structure of the machine more carefully. The constants ¢; and cy were ascertained by
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n (x10%)

Step 10 20 30 40 50 60 70 80 90 100

0.041 0.080 0.118 0.157 0.198 0.233 0.272 0313 0.350 0.388
0.102 0.202 0.301 0.402 0.503 0.600 0.701 0799 0.903 1.00]
0.237 0476 0.716 0.965 1.219 1518 1.852 2.184 2527 2.863
0.169 0.339 0.523 0.771 1.037 1309 1.576 1846 2.120 2390
0358 0.772 1.284 1.883 2.500 3.132 3.767 4.408 5.064 5.706
0.168 0.330 0.493 0.657 0.822 0986 1.150 1314 1471 1639

[- N

Total 1.074 2.199 3434 4.834 6.280 7.729 9.318 10.864 12.434 13.986

Table 3.3. Execution times (in seconds) for each step, a = 0.6.

taking an average of the run times over the entire range of n and a, normalized by dividing by an
and n, respectively. Thus, T = 6.505 x 10~%an and T3 = 10.02 x 10~*n. The constants for step
6 were determined by performing a linear regression. For cach value of a, the experimental times

were averaged over the entire range of n to give
Te = (6.935aD(a) + 9.593a E(a) + 10.31) x 10~ ¢n.

Effect of Meltilevel Memory

To determine the coefficients ¢y, ¢4 and ¢35, we must develop a cost model for data access
time which accounts for the behavior of the memory management bardware in our experimental
environment. The machine bas a virtual to real address translation buffer to decrease the time
required to access data from main memory [9). The execution time for each data access may be
modeled by the equation

taPA + (1~ paAYlm = tem ~ (tm ~ La)P, 32)

where p,, is the probability that the real address referenced is in the translation buffer, and ¢, and
tm are the times in the case of a “buffer hit” and “buffer miss”, respectively (fm = 2{, on the VAX).

The running times of steps 3 through 5 are governed by three kinds of processing: 1) sequential
array access, 2) random array access, and 3) other references (including scalar variables and array
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data already in the buffer). For the first and third types, p) is close to one because references
repeatedly access the same page. For the second type, suppose an array of size r is accessed randomly
with a buffer addressing b words. When r < b, most of the array’s page translations will fit in the
buffer and p, is again close to one. When r > b, most of the b locations in the buffer are occupied
by translations to the array and p, is about 8/r. Since r is proportional to n in this algorithm, it
can be shown from (3.2) that the contribution of random array references to the running time may
be approximated by a linear function in n when r > b. A “hreak point” hetween these two distinct
linear regious occurs when r is close to b.

The real memory access time varies according to whether the virtual to real address translation
is resident in the translation buffer and, in the case of a memory read, whether the data value is
resident in the memory cache. Because the memory cache is small (4K bytes), only the effect of the
translation buffer can be seen in the data. The buffer holds 256 page translations which map to 256
x 128 = 32,768 four byte words since there are 128 words per page. The translation buffer creates
the illusion of a cache that holds up to b = 32,768 words.

Bucket Distribution

In this step, the bucket head array of size r = an is accessed randomly; the data and link arrays
are accessed sequentially. The break point occurs at about an = 30,000. The running time of this
step can be expressed as

= | B90x 10-*n an < 30,000
3713332 107%n - 2352¢ o > 30,000.

Bucket Chsining

In this phase, the linked list of site r = n is accessed randomly. Most random references occur
at line 8 (sce Appendix A) where the pointer holding the current position in the list is updated.
Thus, c4x is discontinuous while ¢4 o and cq4 are not. A break point occurs at about n = 30,000.
The run time of this step may be modeled by

T. = { (5.905a + 13.108(a) + 7.214)n x 10~¢ n < 30,000
*~ 102164 4 ((5.905a + 13.108(a))n + 16.87(n ~ 30,000)) x 10~° n > 30,000.
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The MacLaren Rouline

In this step both the data and lisk arrays, each of size r = n, are accessed randomly. When
n < b/2, the translatious to both arrays fit in the buffer and p, is close to one. For b/2 < n < b,
the translations to the link array dominate the buffer because it is referenced twice as often as the
data array. When n > b, the hit probabilities for both arrays are inversely proportional to n and
decrease rapidly. The running time in each region may be approximated by a linear function. The

break points occur at n = 17,000 and 37,000. Thus we bave

35.75x 10~%n n < 17,000
Ts = ¢ 0.6078 4 53.45 x 10~%(n ~ 17,000) 17,000 < n < 37,000
1.677 + 64.83 x 10~%(n ~ 37,000) n > 37,000.

Determination of Optimel Alpha

The equation for the overall running time, T'(n,a), is obtained by adding the times for the
individual steps. The optimal value of alpha, ag(n), minimizes T(n,a) for a fixed value of n.
Because of the form taken by the run time for each step, we may write T(n, a) = Ti(n) + T3(n,a),
where T} is the portion of the time for all steps that does not vary with a and T is the portion that

does. We seek the solution of
mnia) - ai"("'a) =o

(n.0) _ ofs(n (33)
Ti(n, a) may be written as
fitnio) = { NI X1 e THET000 64

where f(a) = (12.41+6.935D(a)+9.593E(a))a+ 13.10B(a). Substituting (3.4) into (3.3), we bave

{!’(ﬂ) an < 30,000

l(o)+ —Eq;l— an > 30,000.
When an < 30,000, the optimal value of a is the solution to f’(a) = 0 and is independent of
n. Since D(a) does not have a closed form, numerical techniques were used to find that agpe = 0.37
in this range.
Figure 3.1 shows a plot of agpe versus n. While L’*}'ﬂ is discontinuous at an = 30,000, aope
ushlleqml!oONuntﬂn—?## 81,000. As n increases above 81,000, the discontinuity causes
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Figure 3.1. acp, for the VAX-11/750.

%ﬂ to change sign until an n is reached such that %"—. < |f'(a®})], where a® = 30,000/n is
the value of a at the point of discontinuity. This occurs at n = 155,000. For n between 81,000 and
155,000, acpe(n) is 30,000/n and thus decreases with n. For n > 155,000, agu(n) increases slowly
to approach once again a value of 0.37 asymptotically. The data access time does not vary for very
large n since the probability of a huffer bit is close to zero and almost every random reference to
memory accesses data not in the huffer. For ao to be within 10% of the asymptotic value of 0.37,

our model predicts that n must be close to six million.
Resulls for Other Machines

The insertion sort step always dominates the overall running time when a is small_while the
bucket averhead (initialization and append steps) dominates when a is large. Thus, the graph of
T(n, a) versus o is always convex when a < 1 for a fixed value of n. This implies there is a unique
aopm(n) which minimizes the run time, although its value is machine dependent. Moreover, since
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Figure 3.2. a,u for the DECStation 5100/200, MIPS.

@ope does Dot vary with n when the data access time is constant, any observed variation of agm(n)
is due to transitory memory management effects peculiar to a specific machine. In such cases it is
observed that a,n(n) approaches an asymptotic value, aggpe, for both large and small n where the

model of constant data access time applies.

Experiments were also conducted on several newer computers. The DECstation 5000/200 is a
MIPS machine with an R3000 processor, a 64K byte data cache and an address translation buffer
capable of addressing 64K words [39], twice that of the VAX-11/750. The curve obtained for agpe(n)
isshown in Figure 3.2. There are two dips caused hy the cache and the translation huffer, respectively.
The VAXstation 3100 bas a 32K hyte memory cache hut no translation buffer. Its curve is similar
in shape to that of the VAX-11/750 except that the dip is less pronounced and occurs at a smaller
value of n (see Figure 3.3). Experiments were also conducted on a SUN 3/60, which has no cache or
transiation buffer. As predicted by the constant data access time model, the curve of T versus n is
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Figure 3.3. aopu for the VAXStation 3100.

linear and aop = 0.39 does not vary with n. The asymptotic value of @y for these four machines
is confined to the narrow range [0.33, 0.39]). Two other machines were tested, the SUN 3861/150 and
the SUN 4/60. While the lack of a controlled environment prevented an accurate determination of
T(n, @), the average value of agp was found to be 0.36 % 0.04 for the 386i/150 and 0.39 & 0.02 for
the 4/60.

3.4. Conclusions

Altbough it has been suggested that a number of buckets other than n be used in conjuction with
variations of DPS [7,29], previous analyses have ignored the details associated with implementing the
huckets as linked lists. Doing 90, leads to the false conclusion that the running time will continue to
decrease indefinitely as a increases. A more careful microanalysis of the algorithm using the mode
of constant data access time reveals that there is an optimal value of @, agx, which is machine
dependent. The analysis can be further refined for machines with multilevel memory hicrarchies
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to show that agye actually varies with n. For such machines, a constant data access time applies
when n is small and is approached asymptotically when n is large. At values of n between these
extremes, agu(n) is smaller than its limiting value due to the fact that the running time of the
bucket distribution step, actually increases with a.

The value of agpe does not vary greatly from machine to machine in the absence of transitory
memory management effects. For the machines considered here, the asymptotic value of agp was
in the narrow range [0.33, 0.39). In fact, if unit weights are given to each data assignment and to
each comparison and zero weights are given to all other instructions, the resulting aop is 0.36 —
squarely in the middle of the observed range. This and the fact that the run time varies slowly with
a indicates that aop = 0.36 could be used with confidence for most machines.

Moreover, the execution time at a = 0.2 was less than that for a = 1 on all of the machines
investigated at any fixed value of n. Choosing a = 0.2 results in a space savings of over 25% while
still reducing the execution time from its value at a = 1, albeit by a small amount. If a greater
space savings is desired, one could decrease a even further until a value for this parameter is found
which yiclds a run time equal to that for @ = 1. On the DECstation 3100, a machine typical of those
investigated, this value was found to be a = 0.13, resulting in a space savings of approximately 30%

over that fora = 1.
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CHAPTER 4
AN APPLICATION OF THE METHOD OF BUCKETS

TO THE SELECTION PROBLEM

4.1. Introduction

There are many situations which call for selecting one or more ranked items including aumerous
statistical applications. One example is finding confidence intervals about the median. Another
example from computer science is distributive sorting. Here, ranked data from a small sample can
be used to divide the items to be sorted into approximately equal proportions.

The worst case performance of the selection problem is 8(n) [1]. In 1961, Hoare published a
selection algorithm called Find [17). Although the performance of the algorithm is O(n?) in the
worst case, it is shown in [1] to be at least five times faster on average than an efficient O(n) worst
case algorithm. In 1975, Floyd and Rivest published Algorithm Select [13] which, by proper choice of
partitioning elements, achieves an even better, and close to optimal, expected case performance with
repect to the number of comparisons. Allison and Noga first applied the method of buckets to the
selection problem [2]. Their method was to distribute the items into ¢/n buckets and to determine
the bucket in which the desired item is located by counting the bucket cardinalities. Empirical
results in [2] showed that Select was superior in all cases.

We present here an algorithm called BucketSelect, based on the partitioning strategy of Select,
that applies the bucketing principle to the problem of selecting the kth smallest of n items. Since
this problem is symmetrical to that of finding the kth largest, we will only consider the case where
k < n/2. When only one ranked item is sought, the use of multiple buckets is not feasihle because of
the overbead incurred to maintain huckets as linked lists. Therefore, we use only one bhucket which
can be maintained in an array.
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We will employ the notation used in [12]. Let X be a finite set of distinct elements which are
ordered such that for z,, 21 € X either z; < z3 or £3 < z;. We define k68X to be the kth smallest
element of X and zpX to he the rack of z in X. Thus (zpX)8X = z. The number of items in the
set X is denoted by |X|. As it will be clear from the context, we will also use X to stand for the
array in which the set X is stored and X, to refer to the set element occupying the kth pasition in
the array.

BucketSelect is based on Floyd and Rivest’s method [12] for choosing two members of X, u
and v, such that £0X satisfies u < £8X < v with high probability. The elements are chosen hy
picking random samples, S, of size s from X and applying the selection algoritbm recursively to

each sample. Their method is to partition the dataset, X, into three subscts

A={z€X:z2<u}
B={z€eX:u<z<v)

C={z€X:2> ) (4.1)

The difference hetween our algorithm and Floyd-Rivest’s Select algorithm is the way in which the
partitioning is done. Both implementatious store the elements of X in an array of size | X|. In Select
the partitioning is done by rearranging the array elements using Hoare's Partition algorithm [17].
In BucketSelect all elements of B are placed in an auxilliary array and the items in 4 and C are
ignored. The kth smallest item is expected to be in set B with high probability. In the unlikely event
that this item is not in B then Select is applied to X, otherwise BuckelSelect is applied recursively
to the set B. When n is small, neither of these algorithms should be used because of the overhead
involved, and so small subsets are partitioned using the algorithm Find [17). We will denote this
cutoff value by n,. The cost of incorporating Partition into Select to rearrange the array elements
is considerable, especially when £ is close to n/2. When k = n/2 the running time of BucketSelect
decreases from 64% to 59% of that for Select when n increases from 50,000 to 250,000 items, with

an asymptotic percentage of 53.6%.



First we discuss how u and v are selected to insure that P (k60X ¢ B) is small and, at the same
time, E (|B]) = o(n). Next we examine the optimal sample size, s, and the method of choosing the
sample. We show that the implementation of Select requires a larger sample when £ < n/2 than
BucketSelect and the same sample size when £ = n/2. We also note that the samples used to find u
and v in BucketSelect are independent while those in Select are not. Finally we present an analysis
of the two algorithms. We first derive equations for the expected running times of the partitioning
phases for BucketSelect and Select, T, and Ts,. These equations involve time constants which
are implementation dependent. The constants are measured for a typical implementation with the
result that Ts, > Ty, for all k and n, with the maximum difference occurring when k = n/2. We
then derive equations which neglect only times that are o(s), where s is the sample size, and show
that the O(s) terms which are included constitute a significant part of the running time for both

algorithms when n is as high as 250,000.

4.2. Method of Selecting u and v
In order to determine the partitioning elements u and v, a sample S of size s is selected from

X. The probability that i6S = k0.X is given by

P(i6S = b0X) = 52.'() -()‘::.

since there are (;-)) ways to choose the i — | itemns that are less than i8S from the k— 1 items that

(4.2)

are less than k60X, ('::f) ways to choose the s—i items that are greater than i6S from the n—k items
that are greater that k0.X, and there are (7) possible samples with each possible ordering considered
equally likely to occur. The probability density defined by (4.2) is known as a hypergeometic
distribution and corresponds to the classical probability model of sampling without replacement.
Wkhen n is large compared to s, (4.2) approaches a binomial distribution which corresponds to
sampling with replacement. Using this model, we can take p = k/n to be the probability that any
z € S is less than or equal to £8X. The probability that any particular group of 5 items in S is less
than or equal to k6X while the rest are greater is p*(1 — p)’~*. Since there are () possible choices



for the i items, the probability that exactly i items are less than or equal to k80X is given by the
binomial deasity 8, ,(i) = (2)p'(1 —p)’~*, with mean sp and standard deviation o = \/sp(1 — p).
To insure that u < k80X < v with high probability, we wish to find a greatest integer i) and a
smallest integer i3 such that y = i,0S, v = i30S and
P(i,0S > k8X) =¢, and P(i26S < k6X) = 3,

g, < 1.

We note that E(upX) = i,:—:—Tl s iynfs, E(vpX) s ian/s and E(|B]) s (ia = ir)n/s. P(ir0S >
£8X) equals the probability that at mast iy — 1 items are less than k60X and is given by
h=1
« = P(i165 > k8X) = ,Z, b, 5(§) = Bip(ir — 1) (43)
where B, ,(i) is the cumulative binomial density. Similarly, P (i20S < £9.X) equals the probability
that at least iy items are less than £9X. Since P (i30S = k6.X) is very small, a close approximation
to this probability is given by
’
= P(i26S <k8X) = Y b,,(j) = 1= B y(iz - 1). (4.4)
J=ts

Thus the probability ¢ that £8X does not lie between u and v is given by
¢=¢| +(’=B.’(i|— l)+l-8.’(|.’- l). (4-5)

It is well known [26] that the binomial density approaches the normal asymptotically provided

p = 6(s). Hence for large s, B, ,(i) = ¥,, (i), where ® is the cumulative normal density. If we

choose a factor d such that i, and iy are d standard deviations to the left and right of the mean
(ie., i1 = |sp— do] and iy = [sp+ do]) then (4.5) becomes

e =2(1 = ¥,, ,(sp+ do)) = 2(1 — ¥o,1(d)). (4.6)

Under the assumption that (4.6) bolds, E(|A|) = k — don/s, E(|B]) = 2dom/s and E(|C|) =

n—k—don/s. f welet &= E(|A]).b=E(|B]) and é= E(IC]) thena =k~ § andé=n—k-}.

We choase d Lo be a slowly growing function of n such that as n gets large § and ¢ are small. Letting
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d = V2(2+1nn/n.)"? insures that ¢ = o(1) and is sufficiently small for fairly small values of n
(d>2).

When p is small, it is possible for i; to be less than 1. This implics that there is no u € S such
that (4.3) holds for ¢, sufficiently small. In this case we take u = —co, implying A =@ and ¢, = 0.
Similarly, when p is close to 1, iy could be greater than s implying that there is no v € S such that

(4.4) bolds for ¢ sufficiently small. We then take v = +oo implying that C =9 and ¢; = 0.

4.3. Choice of Sample

Sample Size

For both algorithms the choice of sample size, s, involves the following considerations. First, s
should be optimized with respect to b. Since the work done by the recursive calls in BucketSelect
and Select grows linearly with both s and B, we wish to pick s such that the respective growth rates

are the same. For BucketSelect we define

’3("-’) - (&2:-1)) |I3n2[3(2 + ln(n/n,))""'

Then
+ = xga(n.p) “7
and
b= —os(n.p) (48)

The choice of x requires knowledge of the time constants for the implementation and will be discussed
in the next section.

The second consideration involved in choosing s is that it be large enough for the normal
approximation to the binomial to apply. As noted in previously, there is a cutoff value, n,, below

which neither BucketSelect nor Select will be used. An exact determination of n, is extremely difficult

! The factor (2 + In(n/n.))'/> insures that ¢ = o{L). Floyd and Rivest incorrectly used In'/>n
in their analysis [12] and neglected it entirely in the computation of s in [13].
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and involves the expense of computing s, o and d, the running time of Fiad and the depth of the
recursion {which is a function of the initial n). Any value between 500 and 2,000 could be used
without significantly affecting the results of either algorithm, and so we shall choase n. = 1,000
for both algorithma. If we let n = n, = 1,000 and x = 1 in (4.7), we get s = [100(p(1 —p))"/*]
since s must be a positive integer. When p = 0.5, s = 63; when p = 1/n. = 0.001, its smallest
possible value, s = 10. For n = 1,000 the largest value of P (k8X ¢ B) occurs when we are forced
to pick iy = 0 and i = 1. The largest probability consistent with this choice is p = 0.008,
yielding P(k6X ¢ B) = 0.148404. Although this probability is fairly high, the consequences of
a “bad split” are minimal for this n because the running time of BucketSelect, Select, and Find
are approximately the same. The probability drops sharply with increasing p. For instance when
p 2 0.02, P(k8X ¢ B) < 0.101079 and when p > 0.03, P(#0X ¢ B) < 0.075902. When p = 0.5,
P(k8X ¢ B) falls to 0.032766. Although it cannot be proven that P (k8X) is snaller than 0.148404
for all p when n > n., experimental evidence indicates that the methods work well for larger n even

ifp=1/n.
Choice of Sample Elements

In Select the partitioning is done in two stages. At each stage s contiguous items surrounding X,
are selected from the array X. Thus, most of the sample elements from the determination of u are
reused in choosing v. In certain cases this can result in a “bad split” {i.c., k60X ¢ B), especially when
s is small. The formula for o that is used in the Floyd-Rivest analysis, o = }/42=2), somewhat
alieviates the problem of bad splits since it results in the use of a larger sample size than u-tua.lly
required. The factor of !/2 comes from taking p(1 — p) equal to its maximum value of /5. The /25¢
factor arises from the exact formula for tbe standard deviation derived from the hypergeometric
distribution (4.2). Retaining this factor is not consistent with the use of the normal approximation
but its effect is small since it is alwaya close to one (n > ).

In the implementation of BucketSelect, the samples used to pick u and v are disjoint. For
convenience we pick the first sample to be the first S elements of X and the second to be the next s
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Select(X[ 1,E,n)

{ 12 (n>n,)
{ compute s, o, d and S
12 (k < n/f2)
compute i = iy;
else L.
compute i =1i;
i0S = Select(S,i,s); .
detarmine A = {r:z <i8X}, B = (i8S},
C={z:z>X

a=|A| and e=|Cl;

it (i8S = k8 .X)

return (i6S)
else

it (i6S € A)

return (Select(A,k,a));

else

retuxn (Select(C,k—a—-1,¢));

else
retuxa (Find(X,E,n)); )
Figure 4.1. Algorithm Select.

BucketSelect( X[ 1,k,n)
{ BL J:

it (n > n,)
{ compute s,0,d,1),43;
i2 (L >1)
u = BucketSelect(A, iy, s);
alse
u = —00;
it (i3 <)
v « BucketSelect(A + 8,i3.8);
else
v= :
determine B={z:u<z <},
a= |A| and b=|§|:
it (a<k<a+b)
return (BuckelSelect(B,k —a,b));
else
return (Select(X,E,n)); )
else
return (Find(X, k,n)))

Figure 4.2. Algorithm BucketSelect.

elements. Our method retains the more exact formula for o and the consequent reduction in sample

size {from that required to determine the median.

4.4. Analysis of the Algorithms
Figure 4.1 describes the Select algorithm as it is given in {13) using the notation introduced
earlier. Items are split into the sets A, B and C as defined by (4.1) in two stages. When £ < 3,
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the first stage determines A|J B and C, while the second splits A|J B into A and B. The algorithm
uses $72X2=) exchanges oo the average to determine each partition, where m is the cardinality of
the set being split. This is true because each of the £ — 1 elements to the left of k6X bas an equal
probability of having any rank in X other than k and, therefore, a probability of 2=% of having a
rank bigger than k and thus of being swapped.

Figure 4.2 describes the BucketSelect algorithm. Considering only the case where 1 < i) < i3 <
s, k > don/s and n > n., the following recurrence may be written for the running time of both

Seleet and BucketSelect:
T(n, k) = Ty(n, )+ T(s,5,) + T(s,i2) + T(}, k - a),

where 7; is the time required to do the partitioning, T'(s, i) and (s, i3) are the times to find the
two pivoting elements, and T(n, k — a) is the time for locating the desired element in the set B by
applying the algorithm recursively. If we replace the parameters in the preceding equation by their

expected values and note that E(k —a) = k — E(a) = 1/, we get
T(n, k) = Ty(n, k) + 2T'(s, ps — do) + T (3, 1129).

Since do is small compared to s, we may alternatively express the running time T entirely in terms
ofnand p=1Lk/n as

T(n,p) = Ti(n, p) + 2T(s,p) + T(3, 1A2). (4.9)

The primary difference in the running times of the two algorithms is the nature of 7, although the
lower order terms in Bucke(Select are also smaller due to the less conservative formula for s.

We will now investigate the form of T, for each algorithm. Figures 4.3 and 4.4 show the C
programming language code for the partitioning steps of BucketSelect and Select along with the
expected number of titnes that each line is executed. The partitioning loop of BucketSelect executes

n times with a single data assigument executed 35 = o{n) times.? Since there are two steps in the

? Because ) is different in BucketSelect and BucketSelect, we will use the notation g and bs
to distinguish between them.

4



a = 0;
pPA=A; pC=C;
foxr ( i= i <n;++14;)
it (spA > v} ;
alse
i1 (epA > u)
o(+ + pC) = opA
else
+a;

b=pC-~C;
Figure 4.3. Partitioning step of BuckctSeleet.

~ [,
{ +
btiion gepiter 3 3 I

i=l; j=r; 1

uhile (i < j) a+1
{ swap (Ai. Aj) ; a
++i——J
while (A; < v) f+a
++i; [
while (4; > v) T7+a
-=ji } 7

Figure 4.4. Partitioning step of Select.

partitioning process of Select, the inner while loops execute a total of n + k times while the swap,
which bhas a cost almost three times that of the data assignment in BucketSelect, is executed O(n)

times asymptotically. We will now derive T} for the two algorithms.
BucketSelect

The running time of the partitioning step in BucketSelect may be described by the equation

Ta1(n.p) = (&1 +pe3)n + exbp (4.10)

The conttants ), ¢; and cy can be measured for a particular implementation by performing a series
of experiments with various values of n and p. Each experiment is performed twice on the same
random data. ln one experiment the actual CPU titne required to execute the loop is measured, while
in the other the actual execution frequencies are measured. A linear regression is then performed to
determine the constants.

The algorithmn was programmed in C and implemented on a VAXstation 3100 running VMS
Version 5.3. For the sake of efficiency, the algorithm was coded without the explicit use of recursion.
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Twenty five sets of random data were used for each n and &, with n ranging from 10,000 Lo 100,000
in increments of 10,000. The following values of p were used: 1/n, 0.01, 0.02, 0.1, 0.25 and 0.5.
For small values of n and p, the assumptions that give rise to the expected execution frequencics
in Figure 4.3 do not hold. However, since actual rather that expected execution counts are used
in the regression, these data points do contribute to the accurate determination of the constants.
For the same reason, any convenient sample size may be used, so we chose x = 1 in (4.7). The
coustants obtained for this implementation are: ¢, = 2.72933 x 10~¢, ¢; = 1.23664 x 10~%, 3=

1.69048 x 10-S.
Select

The code in Figure 4.4 is repeated twice. When £ < n/2, | = 1 for both stages. In the first
stage r = n while in the second it has an expected value of k+ 1/ads. Since the time constants for the
steps with counts § and v are the same and since 2a+ §+ 7 = r, the running time may be expressed
by the equation T = ¢4r + c3a. Performing a similar set of experiments for an implementation of
this algorithm, also coded without the explicit use of recursion, we obtained ¢4 = 3,00348 x 10~
and c3 = 4.65353 x 10~¢. The expected value of a for the first stage is p(1 — p)n, and for the second

stage it is %’;— =3 \abs when k > bs. Combining the two stages we get
s

Ts1 = ca((1+ p)n + 1ads) + s (p(1 — p)n + 1hbs)

cat+cy
> bs.

=(ca+(ata)p—csp?)n+ (4.11)

4.5. Timing Results

Substituting the values of the constants into (4.10) and (4.11), the running times for the parti-
tioning steps of the two algorithms may be expressed in microseconds as

Tp, = (8.949 + 2.669p)n + 5.113b5,
) (4.12)
Ts, = (10.049 + 26.439p — 16.390p%)n + 13.22055.

As a result Ts, > T, for all n and p with the maximum difference occuring when p = 4.
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Assuming s > n. we may obtain expressious for the running times of the two algonthms which
include terms that are O(s) and neglect only those terms that are ofs). Substituting (4.10) into
(4.9) we bave

Ta(n,p) = (&1 + pea)n + csbp + 2Ta(s,p) + Ta(bs, ). (4.13)

Substituting the expressions in (4.7) and (4.8) for s and b5 and ignoring terms that are ofs), we
obtain
Ta(n,p) = (1 + pea)n

4 (4.14)
+ ((c. +ther+ ) T +2(a +rc:)'=) 98(n.p).

which is maximized by choosing

o (e
€ + pex ’

Finally substituting this value into (4.14), we find
Ta(n,p) = (&1 +pea)n
(4.15)
+8(c1 +pe2) *(er + they + )98 (n,p).
If we take gs(n) = n¥/3(2+ In(n/n.))"’> and s = 1h95(n) then bs = 4/P(1 — p)gs(n). Re-
placing bs by this value in (4.11) and substituting the resulting expression in (4.9) we have
Ts(n,p) = (ca(l + p) + cxp(l — p))n
+ ((8es + 3c3)V/P(1 - p) (4.16)
+ ca(1 + p) + exp(1 — p))gs(n).
Formulas (4.15) and (4.16) apply well when n > 30,000 and p is not too small. The neglected
ofs) terms do not vary greatly with p when p > 0.1. At n = 30,000 the neglected terms in (4.15)
account for about 16% of the running time. This percentage decreases to about 7% at n = 250,000.
In (4.16) the corresponding percentages are 10% at n = 30,000 and 4% at n = 250,000. The
asymptotic ratio of the running times of the two algorithms may be calculated by considering only
the coefficients of n in (4.15) and (4.16). When p = 1/ the ratio is 0.536. The largest ratio occurs
when p = 1/n, where the ratio approaches c, /cq = 0.89.
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Bucket
a k Select Select %

250,000 125,000 1.006 1.682 59.8
250,000 62,500 0.913 1.371 66.6
250,000 25,000 0.824 1.109 743
200,000 100,000 0.814 1.366 59.3
200,000 50,000 0.735 1.122 65.5
200,000 20,000 0.669 0.903 74.1
150,000 75,000 0.621 1.025 60.6
150,000 37,500 0.562 0.847 66.6
150,000 15,000 0.507 0.688 73.7
100,000 50,000 0.430 0.700 61.4
100,000 25,000 0.388 0.574 67.6
100,000 10,000 0.355 0.467 76.0

50,000 25,000 0.232 0.363 83.9

50,000 12,500 0.206 0.304 67.8
§0,000 5,000 0.186 0.250 744

% = BucketSelect/Select expressed as a percentage
Table 4.1. Average execution times (in seconds) for BucketSelect and Select.

We note that the usual asymptotic analysis would neglect all o{n) terms and approximate T by
Ty. For lazge n such as 250,000, Tp, accounts for only 83.2% of the running time of BucketSelect
with about 10% coming from the O(s) terms in (4.15). In Select, Ts, accounts for 87.8% of the
running time with an additional 8% coatributed by the O(s) terms in (4.16).

The timing results for the two algorithms are shown in Table 4.1 with each time representing
the mean of 25 runs on different data sets. The standard deviation was low for each reported
time, indicating that P{t8X ¢ B) is small, as expected. Although the exact results are system
dependent, BucketSelect will outperform Select on all machines because, although both algorithms
make n + b comparisons asymptotically, the data moves in Select are O(n) when k = 6(n) while
those of BucketSelect are o(n) for all k. A consequence of using the auxillary array is that some extra
storage is required. However the extra storage requirement is o{n). When n = 250,000, BucketSelect
requires only Mt 6% more storage than Select. 1n addition, since the array accesses are sequential,
excessive page faults are not generated on a virtual memory system, as is the case when bucketing
algorithms are implemented with Linked lists.
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4.6. Conclusion

In this paper we have presented a unique application of the bucketing principle to t& prohlem
of selecting a single ranked item from a dataset. It is unique in the sense that only one bucket is
used. Algorithms using multiple huckets to select one item do not compare favorably with the fastest
known algorithm, Select, because there is too much averbead required to maintain the huckets.

Our algorithm, BucketSe'ect, outperforms Select hecause it eliminates the expense of rearranging
the data elements. The data expected to be candidates for the required ranked item are copied to
an auxilliary array, or hucket. Since the probability of not placing the desired item in the hucket is
very small, the expected performance of BuckelSelect is governed only by the comparisons required
to determine bucket membership and the expense of copying their values. We have shown that the
exchanges required by Select are O(n) while the copying of data values in BucketSclect is o(n). We
have also shown that it is possible to use a smaller sample size than used in the implementation of
Select, thereby reducing the work done by the recursive calls. Finally, we have shown that the usual
asymptotic analysis neglects a significant portion of the running time of both algorithms even when

n is quite large.
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CHAPTER §
ERROR FREE INCREMENTAL CONSTRUCTION

OF VORONOI DIAGRAMS IN THE PLANE

S.1. Introduction

In this chapter we present an eficient, error-free method of constructing the Voronoi diagram
in the plane. A Voronoi diagram is defined as follows: Suppose that there exist n points in the
Plane called generators. The Voronoi polygon P; of point p; is defined to be the set of all points
that are closer to p; than to any other generator. The planar graph which consists of all points that
are equidistant to two or more generators is called the Voronoi diagram. An example of a Voronoi
diagram is given in Figure 5.1. The vertices and edges of the graph are called Voronoi points and
Voronoi edges, respectively. The graph is also known in the literature by the names Dirichlet tesse-
lation and Thiessen tessellation. This diagram plays an important role in computational geometry
and has applications in several fields [37,34]. An example is the problem of determining the location
of public facilities in such a way that the cost of inhabitants gaining access to the nearest facility is
minimized [3]. The solution of this prohlem requires the repeated construction of Voronoi diagrams
and is only feasible if this can be done efficiently.

Several algorithms based on the principle of divide and conquer can construct the diagram in
O(nlogn) timein the worst case, which is optimal in the decision tree model of computation [37,19).
Bentley, Weide and Yao were the first to show that it is possible to construct an O(n) expected time
algorithm [4]. However, their algorithm is quite complex and, to the tast of our knowledge, bas
Dever been implemented. In 1984, Ohya, Iri and Murota published an O(n) expected time algorithm
[32,33] which is based on the incremental method of Green and Sibson [15]. The problem with
algorithms based on the incremental method is that they are sensitive to numerical errors which
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Figure 5.1. The addition of a new generator, ps, to a Voronoi diagram. Construction starts in
polygon P, and proceeds in the order indicated by the arrows. The generators are indicated by the
dots.

may prevent them from terminating despite the fact that they may be otherwise correct.

In 1989, Sugihara and Iri published an implementation of the incremental method which, al-
though guaranteed to terminate regardless of the computational precision, sacrifices certain proper-
ties of the diagram [38]. For instance, although their construction insures that there are as many
Voronoi polygons as points, it is possible to produce polygons with no generator inside them.

In this chapter we present an algorithm which, hy placing restrictions on the allowable values of
the generator coordinates, always constructs a correct Voronoi diagram. Correctness is insured by
using integer arithm&ic, instead of floating point computation which ean introduce numerical errors.
We will show that our method requires considerably fewer multiplications to add a generator than
does Sugihara and Iri’s algorithm and also greatly reduces the number of additions and suhtractions

required.
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5.2. The Incremental Method

The incremental methad starts with a trivial diagram for three generators. It then processes the
remaining generators one at a time, adding and deleting lines to the diagram as each new generator
is considered. The process of adding a generator is illustrated in Figure 5.1. First, the nearest
neighbor generator, p,,, of the new point p, is found and the perpendicular hisector of the line
between them is erected. The bisector, which is represented by a heavy line in Figure 5.1, is given
a direction such that p, is on the right. The front of the bisector intersects an edge of F., at x. At
this point it enters the neighboring polygon P.. Next the bisector of the line pup, is erected and the
intersection y with the front of this bisector and an edge of P, is located. In this manner, a sequence
of bisectors is constructed until a cycle is completed by returning to polygon P,,. Finally the points
and edges enclosed by this sequence of bisectors are removed and the cycle just constructed and its
interior becomes the polygon of the new generator.

This construction assumes that all neighboring polygons are closed. Green and Sibson intro-
duced a method of dealing with unbounded polygons. However, the complexity of the method far
outweighs its benefits. Asano et. al. have developed a simple technique to avoid dealing with open
polygons [3]. They start with three pseudo generators that are known to be outside the convex hull
of the actual generators. The diagram for these three generators alone consists of one real! Voronoi
point and three semi-infinite rays. Each additional hisector must intersect either another bisector or
one of the three semi-infinite rays. Thus all polygons, except for those of the three pseudo genera-
tors, are closed. Figure 5.2 depicts a wider view of the same Voranoi diagram as Figure 5.1 showing
the three paeudo generators.

Time Complerity

Bentley, Weide and Yao give the conditions for which the nearest neighbor of a new generator
can be found in constant time [4]. These conditions are: 1) the generators be chasen independently
from the same distribution over a bounded, convex, open region in the plane, and 2) the probability
of a point being assigned to a region of area A lies between ¢, A and c3A, where ¢; and c3 are
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Figure 5.2. A wide view of the Voronoi diagram of Figure 5.1 showing the three pscudo generators
P1,p2 and p3.

constants satisfying the relation 0 <cg <.

Obya, Iri and Murota introduced a canonical method of adding the generators. They showed
that their algorithm finds the nearest neighbor of the new generator in constant time, provided that
the number of edges in any intermediate diagram is bounded above by a constant. This is true
for a wide range of distributions for the generator coordinates. They also showed that under these
conditions the remaining steps in adding a new generator are O(1) [33]. Intuitively, the generators
that are already in the diagram should be distributed approximately uniformly around the new
genentor... In this paper, we will assume that the data distribution u sufficiently well-behaved that
the expected time to add a new generator is O(1) and we will concentrate on reducing the time

constant.
Degeneracies

A degeneracy takes place when the perpendicular hisector of the line between the new generator
and an old generator intersects a Voronoi point. This can happen when the new generator lies on
a circle containing three existing generators. In this case, the bisectors of the four generators meet
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Figure 5.3. The effect of numerical errors on the constuction of the Voronoi diagram. The new
vertex is actually located at r hut, because of numerieal error, may be incorrectly located at y or 2.

al a common point which, if it is a Voronoi point, will be degenerate. Numerical errors can cause
the mcremenhl algorithm not to terminate when this hisector passes through, or close to, a Voronoi
point. In Figure 5.3, the hisector of pmps intersects polygon P, at point z 80 the construction should
continue in polygon P,. Suppose, however, the intersection point were incotrectly computed as y.
Then an intersection of the hisector of p,p, with polygon P., which in this example does not exist,
would be sought. The avoidance of such errors is of fundamental importance in the implementation

of the incremental method.

5.3. The Algorithm of Sugihara and Iri

A pseudocoded version of the algorithm used hy Sugihara and Iri [38] to construct the Voronoi
diagram is given in Appendix B. First the nearest existing generator, pm, of the new generator p,, is
found. A quarternary tree data structure enables this to be done in constant time [33]. Next, each
vertex of the polygon P. associated with p,, is checked to determine if it lies inside or outside the
new polygon F.,. In Figure 5.1, the Voronoi points labeled a,b and ¢ would be determined to be
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inside P,. This judgement is made hy evaluating the determinant

oW ((:‘:+v.-’,))$22

z ¥ z;’ +y,

nom (@+nd)2) S
Za Ya (za? +37)/2

”(Pi-PhPth) =

where p;, p; and p, are the old generators that surround the vertex in counterclockwise order. For
example, for vertex c in Figure 5.1 we could take i = p,j = r and t = m (any permutation of p,r
and m which maintains the counterclockwise order would yield the same result). If H < 0 (resp.
H > 0), the vertex is judged to be inside (resp. outside) P,. If H = 0, an edge of P, passes through
a vertex of Py and a degeneracy occurs. The Sugibara and Iri algorithm does not check for H =0,
0 in this case a vertex would be judged to be outside P,. These anthors denote hy T the set of
vertices of P that are inside P,. Then they augment T by first calculating H at each vertex which
iaonihcoppaileend of an edge connecting an element of T with a vertex not in 7. Then, if the
computed H is negative, the new vertex is added to T. In Figure 5.1, vertex d is added to T by
this process. Next, the new Voronoi points, which are the vertices of P,, are located on the edges
which connect a vertex of T with one that is not in T. This computation is done as follows: Let
HOXi, j. k), s =2,3,4, be the matrix obtained by deleting the fourth row and the sth column of H
and denote by ¢(i, j, k) the Voronoi point surrounded in counterclockwise order by polygons P, P;

and P,. Then the coordinates of ¢(i, j, k) are given by
9s = —H®[H®) and ¢, = HO HW). (5.2)

By subtracting the first row of H from tbe second and third rows, H?), H®) and H®) may be

written in the following form:

ooy - (=5 + 2 (25 - 2) + (y; + w) i - w))/2
HOG, 5,k = |yi “% (= + 5)En = =0) + (o 4+ 50)(om — W2 (5:30)

T —x; ((‘j + 3‘)(‘! -5)+ (Vi + “)(Vi ~-w))/2 (5.38)

HOG,j, 0=~ (2 + z)(22 — 2) + (r + W) — w))/2

HOG b= 070 Woh I (53¢)
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The final step is Lo construct P, hy connecting the vertices calculated hy (5.3) and (5.2) and
then to remove ail edges and vertices in the interior of P,. Sugibara and Iri observe that if numerical
erTors occur, it is passible that the sign of H may be determined incorrectly. By making checks for
topological consistency which do not involve floating point arithmetic each time a vertex is added to
T, they claim that the following topological properties of the diagram are satisfied after the addition
of each generator:

P1. There are as many polygons as generators.

P2. Two polygons do not share more than one edge as part of their common boundary.

There is a problem, however, with this approach. The algorithm requires that a new vertex be
generated on an edge connecting a vertex in T with one not in 7. However, if 3 numerical error
results when applying Equations (5.3) and (5.2), the computed vertex may not lie on this edge.
Moreover, if this vertex is close to an existing one, it is possihle that the new polygon may enclose a
Voronoi point which is not in 7. In this case, property P2 may be violated. In Figure 5.3, suppose
that r is a true vertex of polygon P, but that it is incorrectly located at z. Then the boundaries of
F.. and P, will have two edges in common and ¢(p, m, r), which is not in T', will be enclosed hy P..

If there are no numerical errors, the algorithm will construct the Voronoi diagram correctly.
When a degeneracy occurs, Algorithm Incrementall will construct an extra edge but the length of
this edge will approach zero with increasing precision. However, as we will show, the computational
expense of this method is considerably more than that of an algorithm using a straightforward

geometrical construction that we will introduce.

S.4. A Straightforward Implementation of the Incremental Method

In this section we present a method that produces an exact diagram by requiring that the
generator coordinates be even integers. Such an approach is realistic since only a finite subset of real
numbers can be represented on a computer. This algorithm requires that the range of generators
be bounded and implicitly constructs an equally spaced grid on which the generators must lie. The
use of floating point numbers also impases a grid, albeit one with logarithmically spaced points.

56



We observe from Equations (5.3) that, if the inputs are even integers, the computation of
the coordinates of the Voronoi points can be done using integer arithmetic. (The fact that the
integers are even allows for division by two with no remainder.) Therefore, we assume that the
generator coordinates belong to a finite subset of the even integers. Equations (5.2) and (5.3) give
the intersection of the bisector b of generators p; and p; with the hisector | of generators p; and
Pr- These same relations can also be obtained by equating the equations of the lines 5 and 7. Sinee
all Voronoi points are determined by intersections of this type and since the generators are even
integers, each Voronoi point may be represented as an integer triple giving the numerators of each
coordinate and their common denominator. If p hits are used to represent the generators, it can be
scen from Equations (5.3) that 3p + 2 bits are needed to store each numerator and 2p + 3 bits o
store the denominator. This is a consequence of the fact that the product of two p bit quantities

requires 2p bits while their sum or difference requires p + 1 bits to represent.

Since the hisector { is already in the diagram, it must also be determined if the intersection of
Iy and T lies between the endpoints of 7 or, in the case of a degeneracy, at one of the endpoints.
To do this, Voronoi points must be compared. Since the numerators and denominators are cross

multiplied, two temporaries with at least 5p+ 5 bits are required to compare two Voronoi coordinates.

A pseudocoded rendition of our implementation of the incremental method is given in Appendix
B. We call it AlgoritAm Incremental?. The computations are performed by the procedures Bisect
and Intersectl. Bisect computes a point on the perpendicular hisector ® of the new generator pn and
an existing generator p; which lies on the line papi. /nfersect computes the intersection of b and
the extension of a line | in an adjacent polygon. It then determines whether the intersection lies
between the endpoints of T or coincides with one of its endpoints. The construction starts in the
nearest neighbor polygon P,. Thus, initially i = m. After an intersection is found, the procedure
is repeated in the other polygon adjacent to the intersected edge. This process is repeated until an

intersection with rear of the bisector erected in P, is reached, which completes the cycle.

We give Iy an orientation such tbat p, lies to the right of the bisector. The edges of the polygon
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Figure 5.4. Constructing aa edge i in the new polygon. P,. Point a, as we!l as the slope of b are

stored. The extensions of the lines I. through l. intersect the front of b. However, only line I;
is intersected between its endpoints. Since the starting edze is arbitrary, the expected number of
intersection computations in this polygon is 2.5.

bave a counterclockwise orientation but are added to the diagram in clockwise order. We refer to
the left endpoint of an edge as that which is clockwise adjacent to the other endpoint. Finally, we
say that a point or edge of a polygon lies to the left (resp. right) of another point or edge in the
polygon if it is encountered first (resp. last) in traversing the polygon from the starting point in
counterclockwise order. Figure 5.4 shows the bisector B of PP along with o, the point computed

on b.
The following features are included to minimize computations:

1. The coordinates of the point on the perpendicular bisectors that are computed by Bisect are
stored. The numerator and denominator of the slope of each bisector, which are computed by
taking the difference two generator coordinates, are also stored. These sums and differences of
generator coordinates are computed only once for each line. This avoids repeating the additions
and subtractions in Equations (5.3) several times.

2. From the orientation of p, and p; and the relative slopes of b and 1, it is possible to determine
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Figure 5.5. Inspection of edges in polygon P, starts with line F; since an intersection with F.. is
impossible. In determining that there is no intersection with Iy, it l-'.lln determined that there is
0o intersection to the right of Is. Hence, only the right endpoint of I3 has to be checked.

if the front of b intersecta T extended. On the average, balf of the edges in the adjacent polygon
are eliminated as candidates for intersection without having to compcte a possible intersection
point. This is true since, in order for an edge to intersect the froat of -b.. ita front endpoint with
répeﬂ. to the direction of b must at least as close to -b. as its rear endpoint. If we assume that
each line orientation is equally likely, then this occurs with probability one half. In Figure 5.4,
the extensions lines ;; through z intersect the front of -b. and those of the rest of the lines in
P do not.

3. With the exception of the nearest neighbor polygon Pu,, in which the starting point is arbitrary,
the search for an intersection starts with an edge such that the number of intersection checks is
minimal. We see in Figure 5.5 that since b; turns elockwise with respect to by, a counterclock
wise search will result in fewer edges being inspected. Because another intersection with I; is
impossible, the best edge to start with is Iz. In the example depicted two ed;g. 1; and I, have
to be inspected in order to locate the next intersection. Experiments reveal that an average 2.0
intersection checks are needed in P,, and only 1.4 in uch of the other polygons adjacent to P,.
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Figure 5.6. A nopn-degenerate intersection. Voronoi point z and lines I.. and ;; are added. The
dotted line indicates the portion of [ that is removed. The arrows indicate the orientation of the
edges in the polygons.

4. Once it has been determined that b intersects | extended, it must then be decided if this
intersection lies between the endpoints of T inclusive. Due to the order in which the edges are
checked, it is necessary to check both endpoints only in P. In the other polygons, if bisector
Iy passes Lo the left of an edge it must intersect a previously inspected edge. This follows since

the inspection starts to the right of 3.
Handliag Degeacracies

Figure 5.6 shows an example of a nondegenerate intersection. First, the intersection z of I.. and
T is determined. Then lhcpoﬂionof-l.on lheameuideofi; as pn is removed and z becomes
an endpoint of I; and a new endpoint of T. The three polygons affected by the addition of the
new Voronoi point are the new polygon P,, its nearest neighbor P, and polygon P, which is on
the opposite side of I from Pm. When the cycle is complete, b (which is constructed in P,) is
connected loi; in P..E; is connected to [ in Pm, md-l. is connected t.o;;in P,. The connections
turn counterclockwise around generators ps, pm a0d p,, respectively.



Figure 5.7. A degenerate intersection. Lines b, and b; are added and 1 is deleted. The degree of
vertex z increases from 3 to 4.

Figure 5.7 illustrates the degenerate casz. Before point p, is added, vertex z has degree three.
Since ;; passes through z, a right turn must be made around ;; into its other adjacent polygon
P,. The conveation used is that a bisector intersects only right endpoints. Thus in the figure, b
is considered to intersect the endpoint of 7; rather than that of ;.. The next polygon is, therefore,
P,. Bisector ;; is then erected in P,. At the end of the cycle, ;; is connected to I; in P,, E; is
connected to E (the counterclockwise successor of F,' in Pa) and E (the clockwise successor of ;;)
is connected to by in P,. Just as in the non-degenerate case, the connections turn counterclockwise
around generators ps, pm and p, respectively. Line T; becomes disconnected by this process and is
marked as deleted. After the addition of the generator p,, vertex z has degree four. Regardless of

the initial degree of vertex z, it is increased by one by this process.

5.5. Efficency Considerations

As we have stated in Section 5.2, the incremental method takes constant time to add a point
for a broad class of distributions of geaerators. We have concentrated on reducing the time constant
a3 much as pomsible in developing /acremental?. In this section we will compare the number of



Incremental | Incremental?

Multiplications 180n 112n
Additions/Subtractions 360n 57n
Divisions by two 36n 12n

Table 5.1. Average computations performed by each algorithm.

arithmetic operations done by Incremental? with those done by Incrementall.

According to Sugihara and Iri, /ncrementall requires about 30 x 107 computations of H to
construct a diagram for one million generators, or about 30 computations per generator. However,
an efficient implementation of the algorithm can significantly reduce this total. It is well known that
the number of edges in a Voronoi polygon approaches six from below as the number of generators
increases [38]. A reasopable estimate of the number of computations of H required to add a generator
may be obtained as follows: First, one computation is required for each vertex (edge) of the nearest
neighbor polygon P,,. We recall from Section 5.2 that T is defined as the set of vertices to be removed
from the diagram when generator p, is added. One computation is required for each element of T
that is a vertex of P since two of its three adjacent vertices are in Py and have thus already been
checked. Finally, two compnﬁtions are required for every other element of T since one of its adjacent
vertices has already been added to T and the other two have not.

In order to obtain a comparison of the number of arithmetic operations performed by the two
algorithms, we will assume that both the new polygon, Pa, and polygon P, have six aga. which
is the asymptotic average for individual polygons. Then T will contain four vertices since, in the
absence of degeneracies, the total number of Voronoi points always increases by two when a new
generator is added. Let us also assume that two elements of T are vertices of P

Table 5.1 summarizes the average number of arithmetic operations performed by each algorithm
under these assumptions. The total number of computations of H required to add generator p, is
twelve. An efficient computation of H requires 15 multiplications, 30 additions/subtractions and 3
divisions by two. Thus, for the case where polygons P and Ps each have six edges and two elements
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of T are vertices of P, 180 multiplications, 360 addition/subtractions and 36 divisions by two are
required to add the generator.

We consider now the computation required by /ncremental? to add the same generator. Since
P, bas six edges, there are six calls to Bisect which require a total of 12 additions/subtractions and
12 divisions by two. There are two calls to Inlersect on the average when processing polygon F,.
This is so because only edges having potential intersections with the front of the bisector must be
checked and there are three such intersections, on the average, for a polygon of size six. In each of
the other polygons Infersect is called slightly more than once on the average because of the order in
which the edges are inspected. Experiments reveal that for a polygon with six edges, there are an
average of seven calls to Intersect for the remaining polygons adjacent to P,. As observed previously,
both endpoints bave to be checked when Infersect is called in P and only one when it is called
in the other polygons. Thus, on the average, there are a total of nine calls to Intersect and eleven
endpoint checks required to add a polygon with six edges.

Each call to Intersect requires 10 multiplications and 5 additions/subtractions and each end-
point check requires 2 multiplications. Therefore, adding the new generator requires a total of 112
multiplications, 57 additions/subtractions and 12 divisions by two.

As a result we sce that, on the average, Incremental? uses over one third fewer multiplications,

one sixth as many additions, and one third the number of divisions by two as Incrementall.
Space Complesity

The space required to implement /ncremental? is governed by the value selected for p, the
number of bits used to represent the generator coordinates, and by the size of the pointers. In
the following we assume that 16, 32 and 64 bit word sizes are available. The largest datum is the
numerator of a Voronoi point coordinate, which we take as close to 64 bits as possible. The largest p
consistent with this choice is 20 bits, which allows for about 500,000 different values for each generator
coordinate. If we choose, we can reduce p to 16 bits in order to save space if 32,000 coordinate values
are sufficient for the application. We can select two byte pointers for small diagrams (n < 64K) and
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Number Unit Total

Size Size
(bytes) (bytes)
Generators n 4 4n
Yoronoi Points 2n 24 48n
Lines
endpoint pointers 6n 4 24n
pointers to adjacent polygons 6n 4 24n
points/slopes 3n 16 48n
Polygon pointers 6n 4 24n
Polygon heads n 4 4n
Total 180n

Table 5.2. Space requirements of Incrementsal?.

four byte pointers for larger disgrams.

_ To obtain a realistic comparison with Incrementall, which was tested for one million generators,
we will assume that four byte pointers are used and that p = 20. Tuble 5.2 shows the details of the
space requirements for /ncremental! under these assumptions.

Sugihara and iri report that their algorithm uses 180 bytes per generator [38]. Included in this
total is the space occupied by the data structure that they use to determine the order in which to
add the generators. This, however, is a relatively small proportion of the overall space overhead,
about 15n bytes, assuming that four byte pointers are used. Thus, the storage requirements of the
two algorithms are comparable.

We note from Table 5.2 that storing the points and slopes, which makes the computation of
intersections efficient, contributes a significant amount to the space requirement (48n bytes). Of
course, this overhead eould be eliminated if one is willing to compute these quantities each time
they are needed. We also observe that over half of the space (100n bytes) is consumed by pointers.

For amall diagrams this total could be cut in half by using 18 bit pointers.



5.6. Conclusion

We have presented an efficient implementation of the incremental method for constructing the
Voronoi diagram in the plane. We assume that the possible sites for generators are evenly spaced and
that, therefore, their coordinates may be represented by even integers. This allows the construction
of an error-free diagram. We have compared our algorithm that of Sugihara and Iri, which is the
best known method of constructing the diagram in O(n) expected time. In doing 80 we have shown
that our technique makes about one third fewer multiplications and far fewer of the other types of
arithmetic operations. At the same time, it does not sacrifice any of the properties of the diagram
since there are no numerical errors.

Although we have concentrated on time efficiency in our implementation, the space requirements
for large diagrams are comparable Lo those of Sugihara and iri’s algorithm. In addition, adjustments
can be made in cases where space is the dominant coacern and the number of generators, n, is not
too large. Since over half of the space overhead is occupied by pointers, a considerable amount of
space can be saved by reducing the size of the pointers for small n. Also, the required space may be
reduced by over 25% if one is willing to compute the sums and differences of generator coordinates
each time they are used. In coocluding we observe that our algorithm is especially well suited to

situations where the probability of degeneracies occuring is significant.



CHAPTER 6

AN EFFICIENT CLOSEST PAIR ALGORITHM

6.1. Introduction

The closest pair problem may be stated as follows: Given n points in d dimensional Euclidean
space (R?), find the two points that are the closest. A brute force solution is to find the minimum
of all pairwise distances between points using O(n?) comparisons. Optimal decision tree algorithms
usually employ a divide and conquer approach. The idea is to first divide the space into two subsets
of points. Next, the minimum inter-point distance in each subset is found by applying the algorithm
recursively. The results are then combined by processing a alice, which can be shown to contain an
expected sublinear number of points, at the junction of the subseta. Bentley, Weide and Yao [4] have
given O(n) expected time algorithms for solving a number of closest point problems in d dimensional
space. For example, they show how under certain conditions on the probability deasity function that
the all nearest neighbors problem can be solved in linear expected time. Since one of the pairs of
Dearest neighbors is the closest pair, it follows immediately that the closest pair problem can also
be solved in O(n) expected time. It should be possible, however, to obtain a more efficient closest
pair algorithm since finding all nearest neighbors is not a prerequisite for solving the problem. Of
eourse, such an algorithm would be still O(n), but with a smaller constant of proportionality.

We present here an algorithm for the closest pair problem whose expected running time is
asymptotically proportional to dn, where d is the dimension of the space and n is the number of
points. This is an important achievemnent since, as Bentley et. al. [4] report, the constant of linearity
of most bucketing algorithms increases expanentially with d. We show that for d < 5, the algorithm
performs well for all n, but that when d is large, n must also be large for the algorithm to work
efficiently. It is believed that this is also true for all closest pair algorithms [4].



The key idea for this algorithmn comes from a theorem of Yuval {42], which he used to construct
an O(n log n) worst-case algorithm with the technique of divide and conquer. This result is as follows:
Construct a partition of d dimensional Euclidean space by subdividing the space into hypercubes
of size (d + 1)6 on a side, where § is a small positive real number. Then construct d additional
partitions by shifting the origin of the new partition —§ in all coordinate directions with respect to
the previous partition. If there exist two points that are closer than §, they must lie in the same cell
in at least one partition. Using this theorem, a closest pair algorithm will be developed here that
runs in linear expected time.

In 1976 Rabin [35] published a probabilistic closest pair algorithm based on Yuval's result
which has linear expected time performance. His method is to use a large number of buckets
whose size is determined by the closest pairwise distance among points in a random sample. The
algorithm requires computing and sorting d integer sequences, whose distrihution is highly non-
uniform. Moreover, it may be possible that the range of the sequence may exceed the range of
integers available on many computers. The advantage is that, if it can be implemented, its expected

performance is independent of the data distribution of the point coordinates.

Binrichs, Nievergelt and Schorn [16] bave published a two dimeusional plane sweep algorithm
that runs in O(n) expected time, provided the sorting phase can be assumed to be linear. Golin [14]
has shown that this algorithm can be simplified in that it is unnecessary to use complicated data
structures. Unfortunately, the algorithm does not retain its linear expected time property when

generalized to higher dimensions.

We will show that the closest pair prohlem in d dimensional space can be solved efficiently
using a bucketing approach. In Section 6.2 we present our closest pair algorithm. An expression
is derived in Section 6.3 for E(6g), the expected value of the closest intespoint distance within the
buckets. This permits the derivation of an expression for E(D), the expected value of the number of
distance computations performed by the algorithm. This quantity is the dominant factor controlling
the algorithm's running time. In Section 6.4 we present empirical data showing that values obtained
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Algorithm CPair
lnput: n points, X;4,i=1,2,...,m;j =1,2,...,d in [0,1}%.
Output: The closest pair, X,, X, and closest distance, §.
1. Find M; = max Xig.my = m‘in Xij5.d =1,2,...,d and construct a grid with at most n—1
rectangular buckets having minimum edge length ¢.

2. Distribute the points into the buckets and find the closest pair and clasest distance, &, within
any of the buckets by comparing all pairwise distances between points in the same bucket.

. Ifég > uﬁ’ then set ¢ = min{l,(d + 1)5}, redistrihute, and find a new closest pair and &
within the huckets.

4. ife<1thenforl:=1toddo
a) Shift the grid by ~& in each coordinate direction.
If X, is closer that (I4+1)ép to at least [ hucket boundaries, then distribute X; into a hucket.

h) Find the closest pair and the minimum distance, §; between all items placed into huckets
in step 4a.

¢) Set § = min{5p,§;) and save the pair of X; associated with the new §.
end for

5. Return the current § and closest pair.

Figure 6.1. Algorithm CPair.

from the expressions for E(D) and E(5y) agree well with the average of these quantities determined
from experiments. We also show that the running time of this algorithm is much less than that of

several others for the case when d = 2.

6.2. Our Closest Pair Algorithm

Our closest pair algorithm is given in Figure 6.1. The inputs are assumed to be random vectors
from [0, 1]%. We first construct a grid with at moat n ~ 1 rectangular buckets having minimum edge
length ¢. Then we distribute the points into the buckets and determine &, the closest interpoint
distance within any of the buckets. In the event that @1y < b0, we set ¢ = min(1,(d + 1)éo) and
redistribute. Provided ¢ < 1, we shift the grid by ~&; in each coordinate direction, since Yuval’s
result holds if the cells in the partition have edge lengths greater than (d + 1)6;. We then find
a new &g which is the same or smaller than the current one. The shifting process is repeated d
times. It turns out that in most cases only a fraction of the points considered at one pass need to
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a) [n the first pass only
points within &, of either the
z or y bucket boundaries
remain closest pair candi-
dates.

[Rre—pa— ‘<

b 4

b) In the second pass, only
points closer than & to e-
ther boundaries x and 3/ or
y and 2’ remain closest pair ‘ : - x
candidates. These points 35
are contained in a region — = — o —-aX’
whose points are less than

35 above 2* and v". ..l pem—.—. <

38

Figure 6.2. Points that remain closest pair candidates after the first two passes (d = 2).



be considered at the next. This is because for a point to remain a candidate for closest pair in the
{th pass, it must be closer than & to at least | — | perpendicular bucket boundaries, one from each
of the passes to date. Consequently, at the Ith pass, all clasest pair candidates are points that are
closer than 18 o at least ! — 1 of their lower hucket boundaries.

Figure 2 illustrates the case where d = 2. In Figure 2a the heavy lines represent the boundaries
of four contiguous buckets. All points in the shaded areas remain closest pair candidates for pass 2
hecause they are closer than & to at least one of two perpendicular bucket boundaries, and can
thus he closer than & to a point lying across one of the boundaries. In Figure 2b the lines z and
y represent hucket boundaries for pass 1, which are shifted for pass 2 to z’ and 3/ respectively. For
pass 3 these boundaries are shifted again to £” and y”’. Afler the second pass (Figure 6.2b), the
points in the shaded region remain candidates for pass 3 because they are closer than & to two
perpendicular boundaries, one cach from passes 1 and 2. Therefore, givea a point the shaded region,
say py, it may be possible to find another point p; that lies across two boundaries (z and /) and
ia still closer than & to p;- We see that the square of size 35y on a side contains these points.
Membership in these square regions can thus be determined efficiently using d (in this case, d = 2)

comparisons per point.

6.3. Analysis of the Algorithm

In order o analyze the performance of our algorithm, we assume the points to be indepen-
dent random vectors from R with a common density f having compact support. To simplify
the analysis we assume, without loss of generality, that the support is [0,1]¢. Devroye [7] bas
shown that, under these conditions, an algorithm using O(n) buckets has expected time complexity
O(n) if the amount of time, g(n), required to process points in the buckets satisfies the relation
2o 9(f(2))dz < oo. In algorithm CPair g(i) = ﬂ‘;—') , where i is the number of points in a partic-
ular bucket. If [ f?(z)dr < co, Cpair is clearly O(n) hy Devroye’s result. Whenever & < @ay
n — 1 huckets are used in each of the d + 1 passes. Intuitively, & must decrease as n increases so
that it must be less than TT:TU when n is larger than some ng. In fact since & ~ 0, the numher
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of distance computations is asymptotically the same as the number of comparisons performed by
Hybridsort (sce Chapter 3). However for values of n encountered in practice, & > Wi'ﬂ with
significant probability when d is large.

Ezpecied Number of Distonce Compulolions

First we derive a lower hound for the probability that & is leas than some z under the assumption

that the data density is uniform. This is a lower bound for all other densities as well.

Lemma. Given n points uniformly distributed in [0, 1], partition the space into n buckets of size —f
on aside. Let & be the closest interpoint distance within any of the huckets. Then P(& < z) > 1—e,
where e = [[7n,) 2L and m = g‘-

Proof. Construct a refinement of the current partition whose grid size is as close to 7’: as possihle.
Since the expected value of the range in each direction is extremely close to one, this grid contains
m= g cells. Therefore, ¢ is the probability that each cell contains at most one point since, if
the first i points lie in different huckets, the probability that the i + 1st point lies in an unoccupied
. hucket is ==, This implies that at least one cell contains no fewer than two points with probability

1 — ¢ and thus &, < 2. Since § may also be less than x when each cell contains at most one point,

1 — ¢ represents a lower bound on this probability.

For computational purposes, ¢ may be approximated well as follows. Using Stirling’s approxi-

mation for factorials we may write

m! = \/z_n_m"e-'-(l +0( ))

1
m

Taking 1 + O(L) = 1, we may approximate e closely by

_Hm-i_ 1 m!
e-;[=I. m  m1(m—n)
1 mm™+'h

= me (m — n)m-n+ R

- ()™

7



Setting { = M/n, ( thus m —n = n({ — 1)) and since m >> 1/, we have

t w{1-1)
e (m) e "

)-1)).

Since the preceding relation is a very close appraximation for ¢ and { > 1 we may write using series

Sexp(—n((l— Dia(—

expansions,
e= exp(—n (t=la(r=—) - 1))
< exp(—n (t-1)l(2 +-:-) - 1))
< exp(—n((t -1} - 55) - l))
ser(-5) =5 5+
Thus Po<s)21- exp(-"—;%z‘). a

Golin [14, p. 32] bas shown that, neglecting lower order terms,
P(s<z) <1 ( nl 9)
(<z $1-ep(~-Fwa),
where wy is the volume of the unit d dimeusional hypersphere. Since & > §, this is also an upper

bound for P(& < z). Thus we may write

P(o<z)=1 -up(-"?’ﬁ‘z‘), J—arr < B < wa. (6.1)

We observe that, except for very large d, the lower bound in (6.1) is tighter than the value wq/44
derived by Golin [14, p. 33] for P(§ < z).

We may estimate the expected number of distance computations, E(D), performed in a partic-
ular pass as follows. With a =1 and n — ] = n, the volume of each cell may be taken as 3/n. Let
the expected proportion of each bucket containing points that enter into distance computations in
a given pass be w. The probability that a region of volume £ contains i points is given in [26] by

() 6-2 -2

T2



The aumber of distance computations in such a region is {32, the number of point pairs. Since
the probability density is the same for all n regions, the expected number of distance computations

for each pass is

L T o _2 |,,

2 i-¢ 2
E(D) is, therefore, asymptotic to /s times the sum of the squares of w for each pass.

Assuming & < gy and letting r = % = n'/4 &, we obtain for d =2,
2 q
E(D) = n/,s(l + 4(2-- (2-)’) + (:lr) )
We see from Figure 6.2 that, for uniformly distributed points, w for each pass is the area of the

shaded regions in each bucket divided by the area of the hucket.

For d = 3 we may calculate
£D) = "hE(1+9(2r — ) +9(@@ey - ae7") + (@4r7)’).
and, in general, we bave
E(D) = "hE(1 + 47 + 0(r)). (62)
Since E(D) is determined by terms of the form r*, we wish to obtain an expression for E(8}), and

thus for E(r*). We can do this by using (6.1). It has been shown in [14, p. 31] that zpe, = sn—'M,

where s is a constant that depends on d. Thus

-ifé -

E(8) = /a-n =t P'(6 < z)ds

_ "2:‘4‘/0..-"4 o m(_ﬁ%‘z—‘)h- (6.3a)

Substituting v = ﬁ,‘—’:, (6.3a) may be written as
by ,enpy
2 ; Y ¥ .
E(st) = n-2tW (E) /a o Memvdy. (6.38)

Since Golin has further shown [14, p. 33) that

,/. R gy = r(bfd+1)+ o(%), -
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we have that
k b2\ M 1 '
E(r*) =n"M E@E) =n="M (E) (r(k/a+ 1)+o(;)). (6.3¢)
Setting k = 2 in (6.3c) and substituting into (6.2), we obtain
d
E(D) = n/z(n +adn W (B?Z) T(2/d+1) +o(n-‘H)). (64)

We note that since E(D) varies inversely with 8y, setting f4 = wa determines a lower bound for &
and E(D), whereas §; = 77’-, provides an upper bound.

It can be seen from (6.4) that E(D) ~ Nf. Since the number of arithmetic operations in each
distance computation is proportional to d, the expected running time is asymptotically proportional

to dn.

6.4. Experimental Results

In order to test the validity of (6.3c) and (6.4), and to determine the most likely value of g,
we tested an implementation of CPair in which the number of distance computations and the value
of & were computed after each pass. The results revealed that the values of & and § were very
close to the lower bound, therefore we chore f; = wy. By setting k = 1 and E(r) = gk, we can
calculate the value ng of n such that E(r) = g for a given d. Thus, for all n > no, E(r) < 2};.
These results are shown in Table 6.1. Table 6.2 shows values for E(&) obtained from (6.3c) with
B4 = wy and neglecting the O(1) term, along with the average & obtained by ten ruas of Cpair for
each n and d. Also shown are the average values of § obtained experimentally, when different from
8. Table 6.3 shows a comparison of the pumber of distance computations made by CPair in the
second and subsequent passes (Step 4b) with the value of the second term of (6.4).
Comparison with Other Algorithms

We have implemented this algorithm in Pascal on a VAXStation 3100, along with a classical
divide and conquer algorithm [34), Bentley, Weide and Yao's linear expected time algorithm [4] and
an algorithm based on the plane sweep method [16). Because these algorithms are either restricted
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2

3 4 5

6 7

'Ig‘

21

170 1,927 29,030 556,466

Table 6.1. Values of ng so that E(r) < ﬂ'h'f when n > no.

E(5) from equation (3¢) Average & from
with 84 =wa experiments
d —n = 10,000 n = 100,000 n = 10,000 n = 100,000
2 [ 0.707109x 10-7 | 0.707109x 10" | 0.641467 x 10~' ( 0.659593 x 10~*
3 | 0.150370x 10-7 | 0.323963x 10~ | 0.158803 x 10~ | 0.359990 x 10>
4 0.723203 x 10-7 | 0.228697 x10-% | 0.659719x 10-2 | 0.174118x 10~7
3 0.190051 x 10-T | 0.756606 x 10-2 | 0.189496x 10-7 | 0.830968 x 102
Average §
(if different from &)

d n = 10,000 n = 100,000

2

3

4 | 0650909x10- | 0.166607x 10-7

S | 0.180288x 10-% | 0.802772x 10-7

Table 6.2. Expected value of &.

Experimental Second term of
Average Equation (4)
d ] n=10,000 | n=100,000 | n=10,000 | n= 100,000
2 5 r 5 )
3 206 490 214 461
4 1,191 3,235 1,805 5.709
5 5.423 26,421 7.567 30,124

Table 6.3. E(D) in step 4b of CPuir.

to the plane or are difficult to implement in higher dimensions, we have restricted the comparisons
to the case where the number of dimensions d = 2. The results, shown in Table 6.4, clearly indicate
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Algorithm

Space Execution Time (sec.)
(bytes) |n=1,000}n = 10,000} n = 50,000
CPair
24n 0.13 1.18 5.88
Divide and Conquer
(iterative improvement) 32n 0.68 8.93 47.65
Algorithm of
Beatley, Weide and Yao 24n 111 11.30 57.75
Plane Sweep
20n 0.50 5.37 28.35

Table 6.4. Execution times (in sec.) for various closest Pair Algorithms.

that our algorithm outperforms the others by wide margins.
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CHAPTER 7

DATA TRANSFORMATIONS

In this chapter we will consider methods for dealing with non-uniform data distributions. Al-
though we will confine our discussion to sorting, these methods can also be applied to geometric
problems in higher dimensions. In 1980, Meijer and Akl [29] obeerved that if the cumulative distri-
bution function, F(x), of the data is known and can be computed in constant time then Hybridsort
is O(n). However, the requirement for ¢ priori knowledge of the data distribution is a serious imped-
iment to the successful application of bucketing algorithms. A worthwhile goal is to apply an O(n)
order preserving transformation to data from an unknown distribution such that the transformed

data is close to uniform.
7.1. General Techniques

Several techniques have been employed to obtain an appraximation to F(z) if it is not known.
One approach is to subdivide a range of data values into equal length intervals, or “cells,” and to
obtain estimates, F(z), of F(z) at the endpoints of each interval. This can be done by constructing a
histogram based on the values of a random sample of the data. Various curve fitting techniques have
been tried [24,31) but it is generally agreed that piecewise linear appraximation works best. Since
the width of cach interval is the same, the cell that contains a given datum can be determined in
constant time and thus the required linear interpolation can be done rapidly. Janus and Lainagna [25)
employed this technique, which they called the “CDF adaptation,” using a fixed number of cells and
a fixed sample size. They subdivided the entire range of the data set into cells. Noga and Allison [31)
used a linear number of samples and cells (0.01n cells and about 0.2n samples). They split the semple
raage into equal width cells and used two additional cells for outliers.

(e



When the density bas compact support, F(z) provides a good estimate of F(z) for fairly small
samples [25]. Thus, there is no advantage to using s non-constant number of cells or samples.
Moreover, the more costly estimate of the range provided by the data set minimum and maximum
is not justified. On the other hand, when the density does not have compact support, there may be
an advantage to using a linear number of cells. This is because the sample maximum and minimum
divide the range into three regions - one containing the points between them and two outlier regions

containing the points above and below them. The expected proportion of outliers is - where

13
s is the sample size [30). Therefore, when s is linear in the number of data items, the expected
number of outliers is constant. However, since the sample range is unbounded, it is unclear under
what conditions the time required to sort the interior cells is O(n). Nogs and Allison [31] claim that
linearity holds for densities with “either expon~ntially vanishing tails or compact support (without
strong peaks)” hut do not provide sufficient proof of their claim. Even when the density has compact
support, there is a prohlem in using fixed width cells. If F(z) changes dramatically from one cell to

the next, the linear approximation of F fails to smooth the data.

Another approach is to subdivide the range of F into approximateiy equal intervals by sorting
a small sample of the data of size s. The ith smallest sample gives a good estimate of F"(ﬁ;
for moderate sized samples [30). This technique subdivides the range of F into s + 1 cells and
insures an even distribution of data points to thase cells. The problem is that the work required
to determine cell membership for each data point grows with the number of samples. Therefore,
s must be independent of n or the sort will be non-linear. Janus [24] tested an implementation
of this method, which he called the “Ranking Method,” and found that the overhead was costly.
However, the distributions he tested had either compact support or exponentially vanishing tails,
and therefore his CDF adaptation worked better. Devroye [7] implies that the Ranking technique
may be good for “thick tailed” densities such as the Cauchy. We have tested this method and have
found that it outperforms the CDF adaptation for practical input sizes when applied to Cauchy data
even though the algorithm is asymptotically non-linear. Since the number of cells must be fixed,
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there are a linear number of outliers. If Quicksort is used to sort the outliers, the overall complexity
is T(n) = einlogn + O(n). By proper choice of sample size, ¢; can be made sufficiently small so
that the sort appears to be linear for reasonable values of n. We present experimental results to
support this claim in Section 7.2.

Another way of treating densities with non-compact support is to apply an order-preserving
transformation, such as h(z) = {77 which maps [-00,00] onto (-1, 1]. Devroye (7] points out that
if the data density has exponentially dominated tails then the density of the transformed data is
bounded.

None o these methods work well with densities that have strong peaks. It has been shown [6]
that Hybridsort is O(n) for densities, f(z), with compact support if [ g(f(z))dr < oo, where g is
the complexity of the secondary sort. Unfortunately, it is pomible for the integral, and thus the time
coustant, to be quite lazrge albeit finite. On the other band, the integral may be infinite while the
sort is only marginally super-linear.

The ideal would be a probabilistic algorithm that does not depend on the data distribution. The
Ranking Method comes closest because it insures, with high probability, that tke cell proportions
are essentially equal. However, the data density still affects the bucket populations within the cells.
Using Rabin's probabilistic approach, the problem of sorting real numbers can be transformed to
that of sorting integers. As we observed in Chapter 1, however, a uniformly distributed set of reals
would generate a highly non-uniform integer sequence. Of course, radix sort could be used, in which
case the performance would be O(n) and not affected by tbe data distribution. The time coustant,
however, would not be favorable.

It follows from the preceding discussion that empirical testing is required to determine which

transformation method(s) work best in practice.

7.2. Experimental Results on Cauchy Data
The sorting method we used was as follows. We first selected the 0.5 and 99.5 percentiles of the
dataset in O(n) time. Since n is large, these values provided good estimates of the corresponding
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n Distribufion InsSort QSort Totsl
(1000 items) Phase
40 1230 0.97 0.08 11.35
50 14.10 1.20 0.09 14.39
60 15.90 1.44 0.11 17.41
70 18.63 1.67 0.13 20.43
80 21.44 1.90 0.15 23.49
90 24.26 2.13 0.17 26.56
100 27.07 2.36 0.18 29.61
110 29.88 2.60 0.20 32.68
120 32.69 2.54 0.22 35.75

Table 7.1. Running times (in sec.) for Hybridsort on Cauchy data.

percentiles of the population. Wethen distributed all of the points that fell between these pereentilél
into buckets using the Ranking method, and sorted the buckets using /nsertionsort. Since the
probability density of points restricted (o this range is bounded and has compact support, the time
to sort these points is O(n). The outliers were sorted using Quicksort. We see from the results in
Table 7.1 that, despite the fact that the Quicksort phase is non-linear, it accounts for only a small
fraction of the running time for n as high as 120,000.

We tested an implementation of the CDF adaptation on this same data and found that the run-
ning time was aver ten times slower than the Ranking method for the same values of n. Incidentally,
the running times of this algorithm are very close to that of Sedgewick's Quicksort, which of course
does not depend on the data distribution. Quicksort was slightly better for smaller values of n and

the Ranking method was a little better for the larger values of n tested. This is, of course, due to

the nlogn term in the running time of Quicksort.
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APPENDIX A

THE BUCKETSORT ALGORITHM

Expected
Exec. Freq.
{ initialize }
1 ifnisodd then 1
max := min := A[l]
max := maximum (A[1],A[2]);
min := minimum (A[1),A{2])
endif;
{ main loop }
for each pair of elements
(AG].A[i+1]) remaining do
2 i Af)] > Afi+1] then " nf2
3 if A(i] > max then nf4
4 max := Ali); Ha
5 if A[i+1] < mia then n/4
6 min := Afi+1] H,
7 if A[i] < min then nf4
8 min := Afi); Ha
9 if Afi+1] > max then nf4
10 max := Afi+1] Ha
endif;

Step 2. Determining the Maximum and Minimum.

Expected
Exec. Freq.
1 Rangelay := an/(max-min); 1
fori:=1ton do
begin
2 bucket := |(A[i}- min) « Rangelav+1}; n
3 S[i] := Libucket); n
4 Lbucket] := i n
end;

Step 3. Distribution of ltems into Buckets.



{initialige }
1 i:=1;
2 link := 0;
3 S[0]:=0;
{ loop for each bucket }
4 whilei <ando
begin
{ skip over empty buckets }
while Lfi] = 0 do
i:=i4l;
{ find tail of previous bucket }
7  whileSflink] # 0 do
8 link := S{link];

{ attach ith bucket to i—1st hucket )

9  Sflink] = L[i);
{ go to next bucket }
10 i:=i+l
end; { while )

an+1

‘(':— B(a))n

(14 B(a)—¢)n
(1-dn

B(a)n
B(a)n

Note: The value of maz in step 2 is adjusted slightly so that the largest item is placed in the last
bucket, thereby avoiding an extra comparison at each iteration of Line 4 of this step.
Step 4. Bucket Chaining.

{initialize }
1 link := S[0};
2 1:=1;
{ main loop }
3 whilelink> 0do
{ equivalently, i < n )
begin

{ chase pointers to find item }

while lick < i do

Link := S[link];
Swap (A[i), Aflink] );
{ wet pointers so that the
Afi] may be found in turn }
tempptr := S[link];
S{link] := S[i];

[- Y

S ©m=
» N
=3
[

e
-]
»

{ %o to next position
in data array }
11 =i+l
end; { while }

Expected
Exec. Freq.

nt+ 1

2n—Hp
n—-H,

Step 5. The MacLaren Routine.



Expected

Exec. Freq.
1 Al[no+]] := maxint; 1
2 fori:= n-1 downto | do n-1
3 if Afl] > A[i+1] then n-1
4  temp:= A} D(a)an
S )=+l D(a)an
6 while A[j] ; tempdo E(a)an
begin
7 AG-1) = AG; (E(2)- D(a)) an
8 )=j+1 (E(a) — D(a)) an
end; { while}
9 AB-1] := temp D(a)an
endif

Step 6. Insertion sort.



APPENDIX B

INCREMENTAL ALGORITHMS FOR VORONOI DIAGRAMS

Algorithm Incrementall

]/ Let G, be the Voronoi diagram for the first n generators //
1. Coustruct a triangle large enough to contain all the generators and consider the vertices of the
triangle as the initial generators p,, pz sad ps.
// Thus, Veoronoi polygons 4,5, . . . are closed. //
2. Forn=4,5,...0mer do
2.1 Select a subset, T, of the vertex set G, -, as follows:
2.1.1 Find the Voronoi polygon containing p,, and, among the Voronoi points ¢(i, j, k) on the
boundary of this polygon, find the one that gives the smallest value of H(pi,p;,pr. pn)-
Initialize T" to the singleton consisting of this poiat.
2.1.2 Repeat until T can no longer be augmented:
For each Voronoi point ¢(i, j, k) that is connected by a Voronoi edge to an element of
T, add this point to T if H{p;.pP;, Pr.Pm) < 0 and if the resultant T satisfies Lopological
conditions P1 and P2 of Section 3.
2.2 For every edge connecting a vertex in T to a vertex not in T", generate a new vertex on it and
divide the edge into two edges.
2.3 Coustruct new edges connecting the vertices generated in step 2.1 in such a way that they
form a cycle that enclases only the vertices of T,
2.4 Remove the vertices of T and the edges incident to them.
// The interior of the cycle is the Voronoi region of p, and the resulting embedded graph is G,,. //

Algorithm Incremental2

// Implementation:

p is the array of generators.

The array L contains lines that have been added to the diagram.

Removed lines are marked for deletion.

Actual deletion takes place after the new point has been added.

Each polygon, n, is represented by a circular edge list with an arbitrary edge, P(n], as the head.
The links point to the counterclockwise successor.

Left(e) denotes the counterclockwise adjacent edge of e.

Right(e) denotes its clockwise adjacent edge.

Since it is only rarely used (only in the case of degeneracies), Right(e) is implemented by traversing
the circular list counterclockwise which avoids maintaining pointers in both directions.

Since each line is contained in two polygons, it corresponds to two edges.

Lines and edges have the following relation:

The ith line corresponds to edges 2i — 1 and 2i.

Thus Line(e) = L[(e+ 1) div 2)}. //



procedure AddPoint(pa,n, L, P);
// lnput: pn,n, the new generator its polygon
L, P, the current set of lines and polygons
Output: L, P, The updated set of lines and polygons //
// local variables //
VAT Pm,Ps: point; m, k: polygon; ee, eo: edge;
begin
NearestNeighbor(pn, pm, P ):
/[ returns py,, the nearest neighbor of p, and its polygon, Pm //
k := P,;/[process the nearest neighbor polygon first//
Pt = Pu;
€o := head of Py;
// start the search for intersection at the head of P //
repeat
ProcessPolygon(pa, pa, €0, , ¢, 2, degen);
]/ Esects the perpendicular bisector, 5, of the line papy and returns the edge, ¢, in polygon
intersected by the front of b and the point of intersection, 2. If the intersection is degenerate, degen
is true, otherwise it is false. //
adddto L;
ko := k; /[ save the current polygon //
NextPolygon (¢, e+, k);
// Input is the current e and current polygon, k.
Output is the corresponding edge in the adjacent polygon, es, and the adjacent polygon, k //
P == plk}; // get generator of adjucent polygon //
/[ store the edges and current polygon for connection later, see Section 4 for details on how degen-
eracies are handled //
if degen then
EnqueAddEdges (Right(ee),Lefl(c),ko)
else

EnqueAddEdges (e, ¢, ko);
/[ start the search for next intersection at the counterclockwise adjacent edge of e //
€0 := Left(es);
until k =m;
for each polygon, k, processed do
DequeueAdjustEndpoints
(degenyy oy ,degen,pr, Speees 2,8, bpres I);
AdjustEndpoints(b, Pa, Pr, lpres . degenyees )
AdjustEndpoints(d, pu, P, I, degen);
DequeveAddEdges{cpren, ¢, £);
AddEdges(eprer, ¢, k.1, P)
end for;
end // AddPoint [/

procedure ProcessPolygon(pa, ps, k, €0, b, €, 2,degen):
// lnput: p,, the new generator p,, k, the generator and the polygon being processed, ¢g, the edge
at which the search for an intersection starts.
Output: b, the bisector of the line p, pa
¢, the edge in polygon k intersected by the front of b
2, the point of intersection of b with this edge
degen, true if the intersection is degenerate and false otherwise //



begin

ErectBisector(pa, P1, b);
e 1= €9,
repeat

if Line(e) extended intersects the front end of b then
// Intersect returns the intersection of b and [ (extended), z, and frue if z is between the end points
of | (degen = false). Intersect also returns frue if b intersects the endpoint of I that is located
counterclockwise from the other endpoint (degen = true). Otherwise, Intersect returns false. //
if Intersect(py, I, b, z,degen) then
EaqueAdjustEndpoints(degen, ps, 2, 8, );
return
eadif;
¢ := Left(e)
untile = ¢
end; // ProcessPolygon [/

procedure AdjustEndpoints(degen, ps, ps, 2,5, 1);
// Input: degen, true if the intersection is degenerate, false
otherwise.
Pw, the new generator
P, the generator of the pol_y;on being processed
5, the bisector of the line p.pa
1, the line in polygon k intersected by &
2, the point of intersection of b and 1.
Output: b and ! with their endpoints adjusted //
begin '
Using the endpoints of I, which have already been determined, and the location of p, and p,,
set one of the endpoints of b to z;
if not degen and this is the first call with this b then
reset one of the endpoints of [ to 2
end;

procedure AddEdges{e,, 3, k, n, P);
// Input: ¢, 2, the edges to be connected with new edges.
k,n, the polygon being processed and the new polygon, respectively. P, the set of polygons
Output: P, the set of polygons with the new edges added //
begin
Create an edge connecting ¢; and ez and prepend it to polygon P[n};
Create an edge connecting 2 and ¢, in polygon P([k], marking disconnected lines for deletion;
end;
begin // Algorithm Incremental2 [/
// Initialize P to the three pseudo points and L to the three semi-infinite rays //
Initialize(L, P);
forn :=4,5,...01me do
AddPoint (pa,n, L, P);
remove the lines marked for deletion;
end for
end. // Algorithm Incremental? [/
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