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Abstract

In this thesis we are concerned with constructing algorithms that address prob-
lems of biological relevance. This activity is part of a broader interdisciplinary
area called computational biology, or bioinformatics, that focuses on utiliz-
ing the capacities of computers to gain knowledge from biological data. The
majority of problems in computational biology relate to molecular or evolu-
tionary biology, and focus on analyzing and comparing the genetic material of
organisms. One deciding factor in shaping the area of computational biology
is that DNA, RNA and proteins that are responsible for storing and utilizing
the genetic material in an organism, can be described as strings over finite al-
phabets. The string representation of biomolecules allows for a wide range of
algorithmic techniques concerned with strings to be applied for analyzing and
comparing biological data. We contribute to the field of computational biology
by constructing and analyzing algorithms that address problems of relevance to
biological sequence analysis and structure prediction.

The genetic material of organisms evolves by discrete mutations, most promi-
nently substitutions, insertions and deletions of nucleotides. Since the genetic
material is stored in DNA sequences and reflected in RNA and protein se-
quences, it makes sense to compare two or more biological sequences to look
for similarities and differences that can be used to infer the relatedness of the
sequences. In the thesis we consider the problem of comparing two sequences
of coding DNA when the relationship between DNA and proteins is taken into
account. We do this by using a model that penalizes an event on the DNA by
the change it induces on the encoded protein. We analyze the model in de-
tail, and construct an alignment algorithm that improves on the existing best
alignment algorithm in the model by reducing its running time by a quadratic
factor. This makes the running time of our alignment algorithm equal to the
running time of alignment algorithms based on much simpler models.

If a family of related biological sequences is available, it is natural to derive
a compact characterization of the sequence family. Among other things, such
a characterization can be used to search for unknown members of the sequence
family. One widely used way to describe the characteristics of a sequence family
is to construct a hidden Markov model that generates members of the sequence
family with high probability and non-members with low probability. In the
thesis we consider the general problem of comparing hidden Markov models.
We define novel measures between hidden Markov models, and show how to
compute them efficiently using dynamic programming. Since hidden Markov
models are widely used to characterize biological sequence families, our mea-
sures and methods for comparing hidden Markov models immediately apply to
comparison of entire biological sequence families.
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Besides comparing sequences and sequence families, we also consider prob-
lems of finding regularities in a single sequence. Looking for regularities in a
single biological sequence can be used to reconstruct part of the evolutionary
history of the sequence or to identify the sequence among other sequences. In
the thesis we focus on general string problems motivated by biological applica-
tions because biological sequences are strings. We construct an algorithm that
finds all maximal pairs of equal substrings in a string, where each pair of equal
substrings adheres to restrictions in the number of characters between the oc-
currences of the two substrings in the string. This is a generalization of finding
tandem repeats, and the running time of the algorithm is comparable to the
running time of existing algorithms for finding tandem repeats. The algorithm
is based on a general technique that combines a traversal of a suffix tree with
efficient merging of search trees. We use the same general technique to con-
struct an algorithm that finds all maximal quasiperiodic substrings in a string.
A quasiperiodic substring is a substring that can be described as concatenations
and superpositions of a shorter substring. Our algorithm for finding maximal
quasiperiodic substrings has a running time that is a logarithmic factor better
than the running time of the existing best algorithm for the problem.

Analyzing and comparing the string representations of biomolecules can
reveal a lot of useful information about the biomolecules, although the three-
dimensional structures of biomolecules often reveal additional information that
is not immediately visible from their string representations. Unfortunately, it is
difficult and time-consuming to determine the three-dimensional structure of a
biomolecule experimentally, so computational methods for structure prediction
are in demand. Constructing such methods is also difficult, and often results
in the formulation of intractable computational problems. In the thesis we
construct an algorithm that improves on the widely used mfold algorithm for
RNA secondary structure prediction by allowing a less restrictive model of
structure formation without an increase in the running time. We also analyze
the protein folding problem in the two-dimensional hydrophobic-hydrophilic
lattice model. Our analysis shows that several complicated folding algorithms
do not produce better foldings in the worst case, in terms of free energy, than
an existing much simpler folding algorithm.
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Chapter 1

Introduction

We’ll start the war from right here.
— Theodore Roosevelt, Jr., Utah Beach, June 6, 1944.

An algorithm is a description of how to solve a specific problem such that the
intended recipient of the description can follow it in a mechanical fashion to
solve the problem addressed by the algorithm. With the advent of automated
computing devices such as modern computers, an algorithm has in most con-
texts become synonymous with a description that can be turned into a computer
program that instructs a computer how to solve the problem addressed by the
algorithm. The ability of modern computers to perform billions of simple calcu-
lations per second and to store billions of bits of information, makes it possible
by using the proper computer programs to address a wide range of problems
that would otherwise remain out of reach. Such possibilities have spawned sev-
eral interdisciplinary activities where the objective is to utilize the capacities of
computers to gain knowledge from huge amounts of data. An important part
of such activities is to construct good algorithms that can serve as basis for the
computer programs that are needed to utilize the capacities of computers.

1.1 Computational Biology

The work presented in this thesis is concerned with constructing algorithms that
address problems with biological relevance. Such work is part of an interdisci-
plinary area called computational biology which is concerned with utilizing the
capacities of computers to address problems of biological interest. Computa-
tional biology spans several classical areas such as biology, chemistry, physics,
statistics and computer science, and the activities in the area are numerous.
From a computational point of view the activities are ranging from algorithmic
theory focusing on problems with biological relevance, via construction of com-
putational tools for specific biological problems, to experimental work where a
laboratory with test tubes and microscopes is substituted with a fast computer
and a hard disk full of computational tools written to analyze huge amounts of
biological data to prove or disprove a certain hypothesis.

The area of computational biology is also referred to as bioinformatics. The
two names are used interchangeably, but there seems to be a consensus forming
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where computational biology is used to refer to activities which mainly focus on
constructing algorithms that address problems with biological relevance, while
bioinformatics is used to refer to activities which mainly focus on constructing
and using computational tools to analyze available biological data. It should be
emphasized that this distinction between computational biology and bioinfor-
matics only serves to expose the main focus of the work. This can be illustrated
by the work presented in Chapter 6. There we focus on constructing an effi-
cient algorithm for comparing hidden Markov models, but we also implement
the constructed algorithm and perform experiments on biological data in order
to validate the biological relevance of the algorithm. The work thus contains
aspects of both computational biology and bioinformatics.

The work of constructing algorithms that address problems with biological
relevance, that is, the work of constructing algorithms in computational biology,
consists of two interacting steps. The first step is to pose a biological interesting
question and to construct a model of the biological reality that makes it possible
to formulate the posed question as a computational problem. The second step
is to construct an algorithm that solves the formulated computational problem.
The first step requires knowledge of the biological reality, while the second
step requires knowledge of algorithmic theory. The quality of the constructed
algorithm is traditionally measured by standard algorithmic methodology in
terms of the resources, most prominently time and space, it requires to solve
the problem. However, since the problem solved by the algorithm originates
from a question with biological relevance, its quality should also be judged by
the biological relevance of the answers it produces.

The quality of an algorithm that solves a problem with biological relevance
is thus a combination of its running time and space assumption and the bio-
logical relevance of the answers it produces. These two aspects of the quality
of an algorithm both depend on the modeling of the biological reality that led
to the formulation of the computational problem that is addressed by the algo-
rithm. Constructing a good algorithm that address a problem with biological
relevance is therefore an interdisciplinary activity that involves interchanging
between modeling the biological reality and constructing the algorithm, until a
reasonable balance between the running time and space assumption of the algo-
rithm, and the biological relevance of the answers it produces, is achieved. The
degree of interchanging between modeling and constructing of course depends
on how closely related the problem addressed by the algorithm is to a specific
biological application, and therefore how relevant it is to judge the algorithm
by the biological relevance of the answers it produces.

The details of a specific model and algorithm of course depend on the
questions being asked. Most questions in computational biology are related
to molecular or evolutionary biology and focus on analyzing and comparing the
composition of the key biomolecules DNA, RNA and proteins, that together
constitute the fundamental building blocks of organisms. The success of ongo-
ing efforts to develop and use techniques for getting data about the composition
of these biomolecules, most prominently DNA sequencing methods for extract-
ing the genetic material from DNA molecules, e.g. [39, 192, 202], has resulted
in a flood of available biological data to compare and analyze.
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5’ Phosphate Sugar
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Phosphate Sugar
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Phosphate Sugar
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Figure 1.1: An abstract illustration of a segment of a DNA or RNA molecule.
It shows that the molecule consists of a backbone of sugars linked together by
phosphates with an amine base side chain attached to each sugar. The two
ends of the backbone are conventionally called the 5’ end and the 3’ end.

1.2 Biological Sequences

The genetic material of an organism is the blueprint of the molecules it needs for
the complex task of living. Questions about how the genetic material is stored
and used by an organism have been studied intensively. This has revealed that
the biomolecules DNA, RNA and proteins are the important players of the
game, and thus important components to model in any method for comparing
and analyzing the genetic material of organisms.

The DNA (deoxyribonucleic acid) molecule was discovered in 1869 while
studying the chemistry of white blood cells. The very similar RNA (ribonucleic
acid) molecule was discovered a few years later. DNA and RNA are chain-
like molecules, called polymers, that consist of nucleotides linked together by
phosphate ester bonds. A nucleotide consists of a phosphoric acid, a pentose
sugar and an amine base. In DNA the pentose sugar is 2-deoxyribose and
the amine base is either adenine, guanine, cytosine, or thymine. In RNA the
pentose sugar is ribose instead of 2-deoxyribose and the amine base thymine is
exchanged with the very similar amine base uracil. As illustrated in Figure 1.1
a DNA or RNA molecule is a uniform backbone of sugars linked together by the
phosphates with side chains of amine bases attached to each sugar. This implies
that a DNA or RNA molecule can be specified uniquely by listing the sequence
of amine base side chains starting from one end of the sequence of nucleotides.
The two ends of a nucleotide sequence are conventionally denoted the 5’ end
and the 3’ end. These names refer to the orientation of the sugars along the
backbone. It is common to start the listing of the amine base side chains from
the 5’ end of the sequence. Since there is only four possible amine base side
chains, the listing can be described as a string over a four letter alphabet.

Proteins are polymers that consists of amino acids linked together by pep-
tide bonds. An amino acid consists of a central carbon atom, an amino group,
a carboxyl group and a side chain. The side chain determines the type of the
amino acid. As illustrated in Figure 1.2 chains of amino acids are formed by
peptide bonds between the nitrogen atom in the amino group of one amino
acid and the carbon atom in the carboxyl group of another amino acid. A
protein thus consists of a backbone of the common structure shared between
all amino acids with the different side-chains attached to the central carbon
atoms. Even though there is an infinite number of different types of amino
acids, only twenty of these types are encountered in proteins. Similar to DNA
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Figure 1.2: An abstract illustration of a segment of a protein. It shows that
the molecule consists of a backbone of elements shared between the amino acids
with a variable side chain attached to the central carbon atom in each amino
acid. The peptide bonds linking the amino acids are indicated by gray lines.

and RNA molecules, it is thus possible to uniquely specify a protein by listing
the sequence of side chains. Since there is only twenty possible side chains, the
listing can be described as a string over a twenty letter alphabet.

The chemical structure of DNA, RNA and protein molecules that makes it
possible to specify them uniquely by listing the sequence of side chains, also
called the sequence of residues, is the reason why these biomolecules are often
referred to as biological sequences. Referring to a biomolecule as a biological
sequence signals that the emphasis is only on the sequence of residues and not
on other aspects of the biomolecule, e.g. its three-dimensional structure. The
correspondence between biological sequences and strings over finite alphabets
has many modeling advantages, most prominently its simplicity. For example,
a DNA sequence corresponds to a string over the alphabet {A,G,C,T}, where
each character represent one of the four possible nucleotides. Similarly, an RNA
sequence corresponds to a string over the alphabet {A,G,C,U}. The relevance
of modeling biomolecules as strings over finite alphabets follows from the way
the genetic material of an organism is stored and used.

Probably one of the most amazing discoveries of this century is that the
entire genetic material of an organism, called its genome, is (with few excep-
tions) stored in two complementary DNA sequences that wound around each
other in a helix. Two DNA sequences are complementary if the one is the
other read backwards with the complementary bases adenine/thymine and gua-
nine/cytosine interchanged, e.g. ATTCGC and GCGAAT are complementary
because ATTCGC with A and T interchanged and G and C interchanged be-
comes TAAGCG, which is GCGAAT read backwards. Two complementary
bases can form strong interactions, called base pairings, by hydrogen bonds.
Hence, two complementary DNA sequences placed against each other such that
the head (the 5’ end) of the one sequence is placed opposite the tail (the 3’ end)
of the other sequence is glued together by base pairings between opposition
complementary bases. The result is a double stranded DNA molecule with the
famous double helix structure described by Watson and Crick in [201]. Despite
the complex three-dimensional structure of this molecule, the genetic material
it stores only depends on the sequence of nucleotides and can thus be described
without loss of information as a string over the alphabet {A,G,C,T}.

The genome of an organism contains the templates of all the molecules
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2nd
1st U C A G 3rd

Phe Ser Tyr Cys U
Phe Ser Tyr Cys C

U Leu Ser TC TC A
Leu Ser TC Trp G

Leu Pro His Arg U
Leu Pro His Arg C

C Leu Pro Gln Arg A
Leu Pro Gln Arg G

Ile Thr Asn Ser U
Ile Thr Asn Ser C

A Ile Thr Lys Arg A
Met Thr Lys Arg G

Val Ala Asp Gly U
Val Ala Asp Gly C

G Val Ala Glu Gly A
Val Ala Glu Gly G

Figure 1.3: The genetic code that describes how the 64 possible triplets of
nucleotides are translated to amino acids. The table is read such that the
triplet AUG encodes the amino acid Met. The three triplets UAA, UAG and
UGA are termination codons that signal the end of a translation of triplets.

necessary for the organism to live. A region of the genome that encodes a single
molecule is called a gene. A chromosome is a larger region of the genome that
contains several genes. When a particular molecule is needed by the organism,
the corresponding gene is transcribed to an RNA sequence. The transcribed
RNA sequence is complementary to the complementary DNA sequence of the
gene, and thus – except for thymine being replaced by uracil – identical to the
gene. Sometimes this RNA sequence is the molecule needed by the organism,
but most often it is only intended as an intermediate template for a protein.

In eukaryotes (which are higher order organisms such as humans) a gene
usually consists of coding parts, called exons, and non-coding parts, called
introns. By removing the introns and concatenating the exons, the intermediate
template is turned into a sequence of messenger RNA that encodes the protein.
The messenger RNA is translated to a protein by reading it three nucleotides at
a time. Each triplet of nucleotides, called a codon, uniquely describes an amino
acid which is added to the sequence of amino acids being generated.

The correspondence between codons and amino acids are given by the almost
universal genetic code shown in Figure 1.3. For example, the RNA sequence
UUC CUC is translated to the amino acid sequence PheLeu. Finding the genes
in a genome are of immense interest. It is difficult and not made any easier by
the fact that every nucleotide in the genome can be part of up to six different
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genes. This follows because a nucleotide can end up in any of the three positions
in a codon depending on where the transcription starts, combined with the fact
that the genome can be transcribed in both directions.

1.3 Outline of Thesis

The rest of this thesis is divided into two parts. The first part of the thesis is a
partial overview of the field of computational biology with focus on the results
in biological sequence analysis and structure prediction that are described in
the papers presented in the second part of the thesis.

The first part consists of three chapters. In Chapter 2 we consider prob-
lems of comparing biological sequences and biological sequence families. We
focus on methods for comparing two biological sequences in order to determine
their evolutionary relatedness, and on methods for comparing entire biological
sequence families. This involves the more abstract problem of comparing two
hidden Markov models. In Chapter 3 we consider problems of finding regulari-
ties in strings. We focus on methods for finding tandem repeats, maximal pairs
and maximal quasiperiodic substrings. The methods we present are general
string algorithms that can be applied to biological sequence analysis because
biological sequences are strings. In Chapter 4 we consider problems in struc-
ture prediction concerned with predicting elements of the full three-dimensional
structure of a biomolecule from its description as a biological sequence. We fo-
cus on methods for predicting the secondary structure of RNA sequences, and
on methods for predicting the tertiary structure of proteins.

The second part consists of Chapters 5 through 10. Each of these six chap-
ters contains a reprint of a paper that present research done during my Ph.D.
program. Each chapter is self-contained and begins with a short description of
the publication status of the results presented in the chapter.
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Chapter 2

Comparison of Sequences

This was their finest hour.
— Winston S. Churchill, House of Commons, June 18, 1940.

Sequences of characters are among the primary carriers of information in our
society. Textual sources such as books, newspapers and magazines document
almost every corner of society and provide information for future generations.
Reading and comparing the information contained in fragments of old textual
sources help historians to reconstruct the history of objects and events.

For a biologist interested in the history of life, fragments of biological se-
quences that describe the genetic material of organisms serve much the same
purpose as fragments of old texts to a historian. Just as new texts are printed
everyday and old texts disappear, the genetic material evolves by small dis-
crete changes, called mutations or evolutionary events, that over the course of
evolution result in a multitude of different organisms. Mutations that result
in organisms that are unfit to survive in the real world most likely result in a
branch of evolution that quickly wither away. As the genetic material is stored
in DNA sequences and reflected in RNA and protein sequences, it makes sense
to compare two or more biological sequences that are believed to have evolved
from the same ancestral sequence in order to look for similarities and differ-
ences that can help to infer knowledge about the relatedness of the sequences
and perhaps to reconstruct part of their common evolutionary history.

For a historian who has to dig through thousands of pages of text in order
to establish the circumstances of a historical event the amount of information
available can seem staggering, but usually it is nothing compared to the amount
of information that face a biologist in terms of known biological sequences. Cur-
rently (in July 1999) GenBank, which is a database of known DNA sequences,
contains approximately 2.975.000.000 characters distributed in 4.028.000 se-
quences. This corresponds to a book of 743.750 pages each containing 50 lines
of 80 characters. The amount of available data is staggering and grows fast,
e.g. in [7] it is referred that plans are that the complete human genome consist-
ing of approximately 3.500.000.000 characters will be sequenced and available
for analysis by the end of year 2001. (On June 26, 2000, Celera Genomics,
www.celera.com, announced the first assembly of the complete human genome
consisting of 3.12 billion base pairs.) To dig through such an amount of data
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one cannot expect to get far by manual methods. Computational methods to
analyze the data are needed. In this Chapter we focus on methods that can be
applied to compare biological sequences. In Section 2.1 we focus on the com-
parison of two sequences in order to determine their evolutionary relatedness.
This relates to the work in our paper Comparison of Coding DNA presented in
Chapter 5. In Section 2.2 we focus on the comparison of more sequences with
an emphasis on comparing families of sequences. This relates to the work in
our paper Measures on Hidden Markov Models presented in Chapter 6.

2.1 Comparison of Two Sequences

When comparing two objects a direct approach is to look for similarities in their
appearance. For example, to compare people by their eye colors or the shape of
their noses. A more indirect approach is to look for similarities in their history.
For example, to compare people by their genealogies. Which approach should
be taken depends on the objects and the purpose of the comparison. When
comparing two biological sequences both approaches are applicable. The direct
approach makes sense because similarities between biological sequences indicate
common functionality or three dimensional structure. The indirect approach
makes sense because differences between biological sequences can be explained
by evolution of the genetic material. Because similarity and evolutionary relat-
edness of biological sequences are highly correlated it is difficult to draw a clear
line between the two approaches.

We focus on the problem of comparing two biological sequences in order to
determine their relatedness based on the evolution that has occurred between
them. The evolution of a biological sequence is commonly explained as a se-
ries of evolutionary events that have transformed an ancestral sequence into
the sequence. Two sequences are said to be homologous if they have evolved
from a common ancestral sequence. The evolution between two homologous
sequences, called their evolutionary history, can be explained as the evolution-
ary events that have occurred in the evolution from the common ancestor to
the two sequences. The answer to the question of the evolutionary relatedness
of two sequences should be based on their evolutionary history. Most often
we can only guess on the evolutionary history of two homologous sequences
because no information about the common ancestor or the occurred events is
available. To make an educated guess we can use an evolutionary model that
models the evolution of sequences in such a way that the evolutionary history
according to the evolutionary model can be inferred computationally. In the
following sections we first describe a widely used way of modeling evolution and
formalizing evolutionary relatedness, and then review methods for computing
the evolutionary relatedness of two sequences based on this formalization.

2.1.1 Evolutionary Models

An evolutionary model is an abstraction of evolution in nature; biological se-
quences are abstracted as strings over a finite alphabet Σ, evolutionary events
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Figure 2.1: Two possible evolutions from TTG to TTGCTC.

are limited to events from a set E of allowed events, and evolution is quanti-
fied by a score function that assigns a score to every possible way of evolving
one string into another by a sequence of allowed events. For example, DNA
sequences are usually abstracted as strings over the alphabet {A,G,C,T} and
the evolutionary events acting on them limited to substitutions, insertions and
deletions of characters. Figure 2.1 shows two possible evolutionary paths from
TTG to TTGCTC that both involves one substitution and one insertion.

To predict evolution we need a guideline. A biological reasonable guideline
is the parsimony principle which says that evolution in nature follows the path
of least resistance. Hence, if we construct the score function of an evolutionary
model such that the cost cost(x E→ y) of evolving string x into string y by a
sequence E of events is a measure of the believed resistance of the corresponding
evolutionary path in nature, then the parsimony principle tells us that the most
likely evolutionary path chosen by nature to evolve one string into another is
a sequence of events of minimum cost. This leads to the definition of the
parsimony cost of evolving string x into string y as the minimum cost of a
sequence of events that evolves x into y, that is

evol(x, y) = min{cost(x E→ y) | E ∈ E∗} . (2.1)

Two homologous sequences a and b are not necessarily related by a direct
evolutionary path but rather via a common ancestor c that has evolved into a
and b respectively. The total parsimony cost evol(c, a) + evol(c, b) of evolving
the common ancestor c into the sequences a and b is thus a measure of the
evolutionary relatedness of a and b. An evident problem of this measure is that
the common ancestor c is usually unknown. The parsimony principle yields a
solution saying that since nature is cheap, a good guess on a common ancestor
is a sequence that minimizes the total parsimony cost of evolving into a and b.
This leads to the definition of the evolutionary distance between two homologous
sequences a and b as the minimum total parsimony cost of evolving a common
ancestor into a and b, that is

dist(a, b) = min{evol(c, a) + evol(c, b) | c ∈ Σ∗} . (2.2)



12 Chapter 2. Comparison of Sequences

The evolutionary distance is a widely used way of formalizing the evolution-
ary relatedness of biological sequences, e.g. [171, 173, 102, 78, 19]. Most often it
is formulated under two reasonable assumptions that simplify its computation
by eliminating the need to minimize over all possible common ancestors.

The first assumption is that the score function is additive. Since we have
already assumed that evolution can be explained as discrete events it seems
reasonable to define the cost of a sequence of events as the sum of the costs of
each event. Let cost(x e→ y) be a function that assigns costs to transforming x
into y by a single event e. Let E be a sequence of events e1, e2, . . . , ek that
transforms one string x(0) into another string x(k) as x(0) e1→ x(1) e2→ · · · ek→ x(k).
The cost of evolving string x(0) into string x(k) by the sequence of events E is

cost(x(0) E→ x(k)) =
k∑

i=1

cost(x(i−1) ei→ x(i)) . (2.3)

The second assumption is that events are reversible, that is, for any event e
that transforms x into y, there is an event e′ that transforms y into x such that
cost(x e→ y) = cost(y e′→ x), then instead of considering the possible evolutions
from c to a and from c to b, we can reverse the direction and consider the
possible evolutions from a to c and from c to b. Combined with the assumption
of an additive score function this simplifies Equation 2.2 to

dist(a, b) = min{evol(a, c) + evol(c, b) | c ∈ Σ∗}
= min{cost(a E→ c) + cost(c E′→ b) | c ∈ Σ∗ and E,E′ ∈ E∗}
= min{cost(a E→ b) | E ∈ E∗}

(2.4)

The hardness of computing the evolutionary distance between two strings a
and b and its relevance as a measure of the evolutionary relatedness of the
corresponding biological sequences depends entirely on the parameters of the
underlying evolutionary model. The allowed events should be chosen to reflect
the events that are believed to have been important in the evolution of the
biological sequences in nature and the score function should be chosen to reflect
the believed frequency of these events.

In nature evolutionary events affect DNA sequences directly and are re-
flected in the encoded RNA and protein sequences. The most frequent evo-
lutionary events are substitution of a nucleotide with another nucleotide, and
insertion or deletion of a small block of consecutive nucleotides. Less frequent
evolutionary events are events that change larger segments of a DNA sequence
such as inversion that replace a segment with the reversed segment, transposi-
tion that moves a segment, and translocation that exchanges segments between
the ends of two chromosomes, and duplication that copies a segment.

When considering the most frequent events substitutions, insertions and
deletions, the problem of computing the evolutionary distance is usually for-
mulated as an alignment problem. We return to this approach in the next
section. When considering the less frequent events, e.g. inversion, the problem
of computing the evolutionary distance is usually called genome rearrangement
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Figure 2.2: An alignment of TTG and TTGCTC.

to indicate that these events rearrange larger parts of the genome. Most work
in this area has been done on computing the so called inversion (or reversal) dis-
tance between a sequence of genes. The general idea is to abstract the genome
as an integer sequence where each integer represent an encoded gene. Given
two integer sequences (the one can without loss of generality be assumed to be
the sorted sequence) that describe the order of the same genes in two genomes,
the problem is to determine the minimum number of inversions that translate
the one sequence into the other. For example, 3241 can be transformed into
1234 by two inversions as 3241 → 3214 → 1234. The problem of computing the
inversion distance between two integer sequences has been shown NP complete
in [35]. Variations of the problem have been studied, e.g. [63, 27, 187], and
several approximation algorithms have been formulated, e.g. [103, 18].

The modeling of sequence evolution and the derived measure of evolutionary
distance as presented in this section is of course not the only approach to
formalize the evolutionary relatedness of sequences, but it is probably the most
widely used due to its connection to the alignment problem addressed in the
next section. Another approach is to model evolution as a stochastic process and
to define the score of a sequence of events as the likelihood of that sequence
of events as the outcome of the stochastic process. The evolution between
two sequences is then predicted as the most likely sequence of events under
assumption of the model. One such model is presented by Thorne, Kishino and
Felsenstein in [182]. An advantage of the stochastic approach is that it provides
a statistical framework that allows us to talk about the likelihood of different
evolutionary paths. This makes it more natural to model that evolution in
nature most likely, but not necessarily, follows the path of least resistance.

2.1.2 Pairwise Alignment

An alignment of two strings is a way to communicate a comparison of the two
strings. Formally, an alignment of two strings a and b over an alphabet Σ is a 2×
` matrix where the entries are either characters from the alphabet or the blank
character “−” such that concatenating the non-blank characters in the first and
second row yields the strings a and b respectively. Two non-blank characters
in the same column of an alignment are said to be aligned, or matched, by the
alignment. A maximal block of columns in an alignment where one row consists
of only blank characters is called a gap in the alignment. Figure 2.2 shows an
alignment of TTG and TTGCTC with three matches and one gap. Columns
of two blank characters are normally not allowed in an alignment because they
have no meaning in most interpretations of an alignment.
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An alignment score function is a function that assigns a score to each possi-
ble alignment that describes its quality with respect to some criteria. Depending
on the score function, we say that an alignment of a and b with either minimum
or maximum score has optimal score and is an optimal alignment of a and b.
The alignment problem for a given alignment score function is to compute an
optimal alignment of two strings a and b.

The alignment notation has been used to compare biological sequences to
such an extend that the word “alignment” in many contexts is synonymous
with the phrase “comparison of two biological sequences”. Responsible for this
success is that the alignment notation is useful both as a way to emphasize
similarities between strings, and as a way to explain differences between strings
in terms of substitutions, insertions and deletions of characters. The success is
also due to the fact that efficient methods to solve the alignment problem for
biological reasonable score functions have been known since the late 1960’s. We
review these methods in the next section.

It should come as no surprise that there are many opinions on how to con-
struct a biological reasonable alignment. Much work has been done to construct
alignment score functions that attempt to capture how an “expert” would align
two sequences. In the rest of this section we review how to formulate an align-
ment score function that connects the alignment problem with the problem of
computing the evolutionary distance cf. Equation 2.4. We take a slightly more
general approach than what is common in the literature, e.g. [171, 173], because
we want to emphasize the connection between the alignment problem using a
classical score function and the alignment problem using the more complicated
score function presented in Chapter 5 by explaining how both score functions
are instances of the same general score function.

The idea is to view an alignment of two strings a and b as describing a set of
substitutions, insertions and deletions of characters that explain the difference
between a and b. The aligned characters describe substitutions, and the gaps
describe insertions and deletions. For example, the alignment in Figure 2.2
explains the difference between TTG and TTGCTC by a substitution and an
insertion that can transform TTG into TTGCTC as shown in Figure 2.1. We
define the score of an alignment of a and b as the cheapest way of transforming a
into b by a sequence of the events described by the alignment, that is, the score
of an alignment A of a and b that describes events e1, e2, . . . , ek is

score(A) = min{cost (a E→ b) | E = π(e1, e2, . . . , ek)} , (2.5)

and the score of an optimal alignment of a and b is

align(a, b) = min{score(A) | A is an alignment of a and b} . (2.6)

The function cost(x E→ y) that assigns costs to transforming x into y by
a sequence E of events is defined cf. Equation 2.3, that is, defined in terms
of a function cost(x e→ y) that assigns costs to transforming x into y by a
single event e. Since an event is either a substitution, insertion or deletion, this
cost function is commonly specified by two functions; the substitution cost that
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assigns costs to transforming x into y by a single substitution, and the gap cost
that assigns costs to transforming x into y by a single insertion or deletion.

The optimal alignment score of a and b defined by Equation 2.6 is almost
the same as the evolutionary distance between a and b defined by Equation 2.4
when allowed evolutionary events are limited to substitutions, insertions and
deletions. However, there is a subtle difference because different sequences of
events are considered. When computing the evolutionary distance cf. Equa-
tion 2.4 we minimize over all possible sequences of substitutions, insertions,
and deletions that can transform a into b. When computing the optimal align-
ment score cf. Equation 2.6 we only minimize over sequences of substitutions,
insertions, and deletions that can be expressed as an alignment. This excludes
sequences of events where several events act on the same position in the string,
e.g. a substitution of a character followed by a deletion of the character. Ex-
cluding such sequences of events can be justified by the parsimony principle by
saying that nature is unlikely to use two events if one is enough.

For most biological reasonable choices of score function, i.e. substitution
and gap cost, the difference in definition between optimal alignment score and
evolutionary distance is thus irrelevant because the score function ensures that
the cheapest sequence of events which yields the evolutionary distance is not a
sequence excluded when computing the optimal alignment score. For example,
Wagner and Fisher in [196], and Sellers in [173], show that if the substitution
cost is a metric that only depends on the characters being substituted, and the
gap cost is a sub-additive function that only depends on the length of the inser-
tion or deletion, then the cheapest sequence of events that transform one string
into another can always be expressed as an alignment. This can be generalized
to most reasonable score functions including the one presented in Chapter 5.
We will not delve by this issue but concentrate on the algorithmic aspects of
computing an optimal alignment using the score function in Equation 2.6 for
various choices of substitution and gap cost. The structure of these functions
decides the complexity of computing an optimal alignment.

Pairwise Alignment using a Classical Score Function

If the substitution cost is given by a function d : Σ × Σ → R such that d(σ, σ′)
is the cost of changing character σ to character σ′, and the gap cost is given
by a function g : N → R such that g(k) is the cost of insertion or deletion of k
characters, then we say that the score function is a classical score function.

A classical score function implies that the score of an alignment cf. Equa-
tion 2.5 is the sum of the costs of each event described by the alignment. This
eliminates the need to minimize over all possible orders of the events described
by an alignment when computing the score of the alignment, e.g. the score of
the alignment in Figure 2.2 is d(T, T )+g(3)+d(T, T )+d(G,C). We say that the
classical score of an alignment does not depend on the order in which the events
described by the alignment take place. This is a significant simplification that
makes it possible to compute an optimal alignment of two strings efficiently.

Let D(i, j) denote the score of an optimal alignment of the prefixes a[1 .. i]
and b[1 .. j] of the two strings a and b of lengths n ≥ m. The score of an
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optimal alignment of a and b is D(n,m). Since the score of an alignment does
not depend on the order of the events, we can choose to compute it as the sum
of the cost of the rightmost event and the costs of the remaining events. The
rightmost event in the alignment in Figure 2.2 is the substitution of G with C
described by the rightmost column and the remaining alignment are the events
described by the other five columns. We can thus compute the score D(i, j) of an
optimal alignment of a[1 .. i] and b[1 .. j] by minimizing the sum of the cost of the
rightmost event and the optimal cost of the remaining events over all possible
rightmost events. The rightmost event is either a substitution, an insertion of
length k, or a deletion of length k. This leads to the following recurrence for
computing D(i, j), where D(0, 0) = 0 is the terminating condition.

D(i, j) = min




D(i − 1, j − 1) + d(a[i], b[j]) if i > 0, j > 0

min
0<k≤i

{D(i − k, j) + g(k)} if i > 0, j ≥ 0

min
0<k≤j

{D(i, j − k) + g(k)} if i ≥ 0, j > 0
(2.7)

By using dynamic programming, i.e. storing the score D(i, j) in a table
entry when computed for the first time, this recurrence gives an algorithm that
in time O(n3) computes the optimal score D(n,m) of an alignment of a and b.
By using the table storing the scores D(i, j) for 0 ≤ i ≤ n and 0 ≤ j ≤ m that
was built during the computation of the optimal score D(n,m), we can compute
an optimal alignment of a and b, and not only its score, by backtracking the
steps of the computation of D(n,m) to successively decide what was chosen as
the rightmost event. For each step in the backtracking we have to decide among
O(n) possible rightmost events, so backtracking takes time O(n2).

The ideas of this dynamic programming method to compute the optimal
score of an alignment of two strings were presented by Needleman and Wunsch
in [149]. Their motivation for developing the method was not to compute the
evolutionary distance, but to detect similarities between amino acid sequences.
In their presentation of the method they want to maximize a similarity instead
of minimizing a cost. The original method by Needleman and Wunsch is cleanly
explained by Waterman, Smith and Byers in [200].

In many cases the structure of the gap cost allows for a more efficient com-
putation than the one just outlined. If the gap cost is linear, i.e. g(k) = αk for
α > 0, then the cost of a gap of length k is equal to the cost of k gaps of length
one. In this case the score of an alignment can be computed by considering
the columns of the alignment independently. Using the above terminology, the
rightmost event is either a substitution, an insertion of length one, or a deletion
of length one. This leads to the following simplification of the above recurrence
where we avoid to consider all possible gap lengths.

D(i, j) = min




D(i − 1, j − 1) + d(a[i], b[j]) if i > 0, j > 0
D(i − 1, j) + α if i > 0, j ≥ 0
D(i, j − 1) + α if i ≥ 0, j > 0

(2.8)
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By using dynamic programming this simplified recurrence gives an algorithm
that in time O(n2) computes an optimal alignment of two strings a and b of
lengths at most n using linear gap cost. The score of an optimal alignment
of two strings using linear gap cost is often referred to as the weighted edit
distance cf. [196], or the weighted Levenshtein distance cf. [117], between the
two strings. (If the gap cost only counts the number of inserted or deleted
characters, i.e. g(k) = k, and the substitution cost only depends on the equality
of the characters, i.e. d(x, y) = 0 if x = y and d(x, y) = 1 if x 6= y, then the
prefix “weighted” is removed.)

Distance measures between strings similar to the weighted edit distance, and
dynamic programming methods based on recurrences similar to Equation 2.8,
have been presented independently by several authors in areas such as speech
processing, molecular biology, and computer science. Kruskal in [112, pp. 23–
29] gives a good overview of the history and the various discoveries of methods
to compute measures similar to the weighted edit distance. These methods are
the founding algorithms of computational biology and one feels tempted to de-
scribe the period of their discovery by the quote beginning this chapter. Sankoff
in [171] formulates a method motivated by comparison of biological sequences.
He also describes a variation of the method that makes it possible to specify a
bound on the maximum number of insertions and deletions allowed. Wagner
and Fisher in [196] formulate a method motivated by automatic spelling cor-
rection. They also note that the method for a particular choice of substitution
and gap cost can be used to compute the longest common subsequence of two
strings. Sellers in [173] considers the mathematical properties of the weighted
edit distance and shows that if the substitution cost is a metric on characters,
then the weighted edit distance is a metric on strings.

Biologists tend to believe that longer gaps (insertions or deletions) are more
common than shorter gaps, e.g. [55, 65, 23]. To model this belief the gap cost
should penalize shorter gaps and favor longer gaps. A commonly used way
to do this is to use an affine gap cost function, i.e. a function of the form
g(k) = αk + β for α, β > 0. Gotoh in [67], and others in [61, 3], show how
to compute an optimal alignment of two strings of lengths at most n using
affine gap cost in time O(n2). A more general way is to use a concave gap cost
function, i.e. a function g where g(k + 1) − g(k) ≤ g(k) − g(k − 1) as proposed
by Waterman in [198]. Both Miller and Myers in [140], and Eppstein, Galil and
Giancarlo in [52], show how to compute an optimal alignment of two strings
of lengths at most n using concave gap cost in time O(n2 log n). Choosing a
biological reasonable gap cost is difficult. Biologists want to use a gap cost
function that results in the best alignment according to an “experts opinion”.
Many empirical studies have been done, e.g. Benner et al. in [23] propose a
concave gap cost function g(k) = 35.03− 6.88 log10 d+17.02 log10 k for aligning
proteins (where the parameter d is chosen to indicate how much the proteins
are believed to have diverged during evolution).

From an algorithmic perspective it is interesting to note that the align-
ment problem for certain non-trivial choices of substitution and gap cost can
be solved more efficient than using the simple quadratic time dynamic pro-
gramming method. Hunt and Szymanski in [93] show how to compute the
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Figure 2.3: If the coding DNA sequence a of a gene encodes a protein A then
each amino acid in A is encoded by a triplet of consecutive nucleotides in a.
A triplet of nucleotides that encodes an amino acid is called a codon. Because
of introns (non-coding parts of the genome) the codons in the coding DNA
sequence of the gene are not necessarily consecutive in the genome.

longest common subsequence of two strings a and b of lengths at most n in
time O(r log n) where r = |{(i, j) | a[i] = b[j]}|. In the worst case the param-
eter r is O(n2) but if a and b are strings over a large alphabet then it can be
expected to be much smaller. In the worst case the method is thus slower than
the simple dynamic programming method but if the alphabet size is large it
can be expected to perform better. Masek and Paterson in [133] show how to
compute the edit distance between two strings a and b of lengths at most n
in time O(n2/ log2 n). They use a general technique to speed up dynamic pro-
gramming methods introduced in [13] that is commonly known as the “Four
Russians” technique. This technique is also used by Myers in [146, 147] to
formulate efficient methods for regular expression pattern matching.

So far we have only been concerned with the time it takes to compute an
optimal alignment but space consumption is also important. The dynamic
programming methods presented above to compute an optimal alignment of
two strings of lengths at most n uses space O(n2) to store the table of scores
D(i, j) used during backtracking. If we avoid backtracking, and only want to
compute the score of an optimal alignment, then the space consumption can
be reduced to O(n) by observing that the table of scores can be computed row
by row. The observation follows because the content of a row only depends on
the content of the previous row. It is however not obvious how to compute an
optimal alignment, and not only its score, in space O(n).

Hirschberg in [86] presents how to compute the longest common subsequence
of two strings of lengths at most n in time O(n2) and space O(n). The method
he uses to compute the longest common subsequence is a dynamic program-
ming method based on a recurrence similar to Equation 2.8. The space-saving
technique can thus be used to compute an optimal alignment of two strings of
lengths at most n using linear gap cost in time O(n2) and space O(n). The
technique is generalized by Myers and Miller in [148] to compute an optimal
alignment of two strings of lengths at most n using affine gap cost in time O(n2)
and space O(n). The technique has become a “common trick” to reduce the
space consumption of dynamic programming methods based on recurrences sim-
ilar to Equation 2.8. A different formulation of the space-saving technique is
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presented by Durbin et al. in [46, Section 2.6]. This formulation makes it easier
to adapt the technique to more complicated dynamic programming alignment
methods, e.g. the alignment method based on the DNA/Protein score function
presented in Chapter 5 and reviewed in next section.

The applications and variations of the alignment methods reviewed in this
section are too many to mention. One very popular application is to use align-
ment methods to search among known sequences stored in a database for se-
quences that are similar, or closely related, to a new sequence. Heuristic align-
ment methods such as BLAST [4, 5] and FASTA [118, 119] are probably some
of the most used programs in biological sequence analysis. These heuristics
achieve a significant speedup compared to the exact dynamic programming
method reviewed in this section. This speedup is vital for a biologist who want
to search large sequence databases such as GenBank several times a day.

Pairwise Alignment using the DNA/Protein Score Function

In Section 1.2 we explained how proteins are encoded by genes. Figure 2.3
illustrates that each triplet of nucleotides, called a codon, in the coding DNA
sequence of a gene encodes an amino acid of the encoded protein cf. the genetic
code. The redundancy of the genetic code makes it possible for very different
looking DNA sequences to encode the same protein. For example, the two
DNA sequences TTGTCT CGC and CTT AGC AGG both encode the same
amino acids LeuSerArg. This shows that many mutations can occur in a
DNA sequence with little or no effect on the encoded protein and implies that
proteins evolve slower than the underlying coding DNA sequences.

If we want to compare two DNA sequences that both encode a protein it
is difficult to decide whether to compare the DNA sequences or the encoded
proteins. If we chose to compare the DNA sequences we risk missing similari-
ties that are only visible in the slower evolving proteins, on the other hand, if
we chose to compare the proteins there is no way of telling how alike the un-
derlying codons of two amino acids are and we restrict ourselves to insertions
and deletions of amino acids instead of nucleotides. It would be desirable to
consider the DNA sequences and the encoded proteins simultaneously.

Hein in [83] presents an algorithm that aligns coding DNA sequences us-
ing a score function that models that an event on a coding DNA sequence
also influences the encoded protein. We refer to this score function as the
DNA/Protein score function. Hein shows how to compute an alignment of two
strings of lengths at most n with minimum DNA/Protein score in time O(n4).
In Chapter 5 we examine the DNA/Protein score function in details and present
an improved algorithm that computes an alignment of two strings of lengths
at most n with minimum DNA/Protein score in time O(n2). The alignment
problem using score functions derived from the DNA/Protein score function is
considered by Arvestad in [14] and Hua, Jiang and Wu in [89].

The DNA/Protein score function is a hierarchical score function that pe-
nalizes a substitution, insertion or deletion of a nucleotide on the DNA level
and on the protein level. Let a be a DNA sequence that encodes a protein A
as illustrated in Figure 2.3. An event that transforms a to a′ affects one or
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Figure 2.4: The alignment of TTG and TTGCTC in Figure 2.2 describes the
substitution G → C and the insertion of TGC. These two events can occur in
two different orders with different DNA/Protein score. The DNA/Protein score
of the alignment thus depends on the order in which the events take place.

more codons and therefore also transforms the encoded protein from A to A′.
Because of the redundancy in the genetic code it is possible that A and A′ are
equal. The cost of an event is the sum of its DNA level cost and its protein level
cost. The DNA level cost should reflect the difference between a and a′. This
is done by a classical score function that specifies the DNA level cost of sub-
stituting a nucleotide x with y as the DNA level substitution cost cd(x, y), and
the DNA level cost of inserting or deleting k nucleotides as the DNA level gap
cost gd(k). The protein level cost should reflect the difference between A and A′.
This is done by defining the protein level cost of an event that changes A to A′

as the distance between A and A′ given by the score of an optimal alignment
of A and A′ when using a classical score function with substitution cost cp and
gap cost gp. We use distp(A,A′) to denote this distance and say that cp is the
protein level substitution cost and that gp is the protein level gap cost.

The DNA/Protein score of an alignment of two strings is defined cf. Equa-
tion 2.6 as the cheapest way of transforming the one string into the other string
by a sequence of the events described by the alignment, where the cost of each
event is given by the DNA/Protein score function. Figure 2.4 illustrates that
in contrast to the classical score of alignment, the DNA/Protein score of an
alignment depends on the order in which the event take place. The reason is
that the protein level cost distp(A,A′) of an event that changes A to A′ can
depend on all the characters in A and A′, and therefore can depend on all the
events that have occurred before it. An important step towards formulating an
efficient alignment algorithm using the DNA/Protein score function is to reduce
this dependency. Two reasonable assumptions make this possible.
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The first assumption is to restrict insertions and deletions to lengths that
are divisible by three. The reason for this assumption is that an insertion or
deletion of length not divisible by three changes the reading frame and causes a
frame shift. Figure 5.1 on page 72 illustrates that a frame shift in a sequence of
coding DNA has the power to change the entire suffix of the encoded protein.
The assumption to disregard frame shifts can be justified by their rareness in
nature that is due to their dramatic effects. The absence of frame shifts implies
that an event on a sequence of coding DNA only changes the encoded protein
locally, that is, if an event affects only nucleotides in codons that encode a
segment X of A, then it changes A = UXV to A′ = UX ′V . The second
assumption is restrictions on the protein level substitution and gap cost such
that the protein level cost of an event only depends on the amino acids that
are encoded by codons affected by the event, that is, such that the protein level
cost of an event that changes A = UXV to A′ = UX ′V only depends on X
and X ′. The details are stated in Section 5.2.3 and Lemma 5.1 on page 74.

These two assumptions make it possible to compute the protein level cost
of an event as illustrated in Figure 5.3 on page 73. In Section 5.3 we explain
how this simplification of the protein level cost makes it possible to decompose
an alignment into codon alignments and compute the DNA/Protein score of
the alignment by summing the DNA/Protein score of each codon alignment.
A codon alignment is a minimal part of the alignment which aligns an inte-
ger number of codons. Figure 2.5 shows an alignment decomposed into codon
alignments. Figure 5.5 on page 76 shows another example of an alignment de-
composed into codon alignments. The DNA/Protein score of each codon align-
ment can be computed independently by minimizing over all possible orders of
the events described by the codon alignment. Hence, if each codon alignment
describes at most some fixed number events independent of the total number
of events in the alignment, then the DNA/Protein score of the alignment can
be computed in time proportional to the number of codon alignments in the
decomposition. This would be a significantly speedup compared to consider-
ing all possible orders of the events described by the entire alignment, and an
important step towards an efficient alignment algorithm.

Unfortunately, as explained in Section 5.3, a codon alignment in the decom-
position of an alignment can describe as many events as the alignment itself.
The way to circumvent this problem is to consider only alignments that can
be decomposed into (or built of) codon alignments that describe at most some
fixed number of events. In the appendix after Section 5.7 we show that if the
combined gap cost g(k) = gd(3k)+ gp(k) is affine, i.e. g(k) = αk +β, and obeys
that α ≥ 2β ≥ 0, then an alignment with minimum DNA/Protein score can
always be decomposed into codon alignments that describe at most five events.
The fifteen different types of codon alignments that describe at most five events
are shown in Figure 5.7 on page 77 and Figure 5.14 on page 89.

If we adhere to this assumption on the combined gap cost, the alignment
problem using the DNA/Protein score function is thus reduced to computing
an alignment of minimum DNA/Protein score that can be decomposed into
codon alignments that describe at most five events. The fifteen types of codon
alignments that describe at most five events are thus the building blocks of the
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Figure 2.5: Splitting an alignment into codon alignments.

alignments we have to consider in order to find an optimal alignment. When
using a classical score function we can compute the score of an alignment as the
sum of the cost of the rightmost event and the costs of the remaining events.
Similarly, when using the DNA/Protein score function we can compute the score
of an alignment as the sum of the cost of the rightmost codon alignment and the
costs of the remaining codon alignments, where the cost of a codon alignment is
its DNA/Protein score. This observation suggests a simple algorithm for com-
puting an optimal alignment using the DNA/Protein score function presented
by Hein in [83] and summarized in Section 5.4.

The general idea of the algorithm is similar to Equation 2.8. We construct
a table D where entry (i, j) holds the score of an optimal alignment of a[1 .. 3i]
and b[1 .. 3j]. To compute entry (i, j) we minimize over all possible rightmost
codon alignments of an alignment of a[1 .. 3i] and b[1 .. 3j], the sum of the cost of
the rightmost codon alignment and the optimal cost of the remaining alignment.
The cost of the rightmost codon alignment can be computed in constant time
as it describes at most five events. The optimal cost of the remaining alignment
is D(i′, j′), where i′ and j′ depend on the choice of rightmost codon alignment.
By using dynamic programming this implies that we can compute entry (i, j)
in time proportional to the number of possible rightmost codon alignments in
an alignment of a[1 .. 3i] and b[1 .. 3j]. This number is bounded by O(i2 + j2).
In total this gives an algorithm that computes an alignment of two strings of
lengths at most n with minimum DNA/Protein score in time O(n4).

In Section 5.5 we describe how to construct an alignment that computes
an alignment of two strings of lengths at most n with minimum DNA/Protein
score in time O(n2). The general idea of the algorithm is similar to the above
algorithm. The problem is to avoid having to minimize over all possible right-
most codon alignments. This problem is solved by a lot of bookkeeping in
arrays that, so to say, keep track of all possible future situations in such a way
that we can pick the best rightmost codon alignment in constant time when
the future becomes the present. The idea of keeping track of future situations
is vaguely inspired by Gotoh [67] who uses three arrays to keep track of future
situations when computing an optimal alignment with affine gap cost. Our
bookkeeping is albeit more complicated. By being careful we “only” have to
keep approximately 400 arrays. This roughly implies that the constant factor
of the O(n2) running time of our method is about 400 times bigger than the
constant factor of the O(n2) running time of an alignment method based on
Equation 2.8. The algorithm as described in Section 5.5 only considers codon
alignments of types 1–11. Extending the algorithm to consider also codon align-
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ments of types 12–15 is not difficult and is done in a recent implementation of
the algorithm available at www.daimi.au.dk/∼cstorm/combat.

Using this implementation we have performed some preliminary experiments
to compare the DNA/Protein score function to simpler score functions that ig-
nore the protein level in order to determine the effects of taking the protein level
into account. These experiments indicate that aligning using the DNA/Protein
score function is better than aligning using a score function that ignores the
protein level when there are few changes on the protein compared to the changes
on the underlying DNA. This is not surprising when taking into account how
the DNA/Protein score function is designed. We choose not to describe the
experiments, or the results, in further details because they are preliminary.

2.2 Comparison of More Sequences

A sequence family is a set of homologous sequences. Members of a sequence
family diverge during evolution and share similarities, but similarities that span
the entire family might be weak compared to similarities that span only few
members of the family. When comparing any two members of the family the
faint similarities that span the entire family are thus likely to be shadowed
by the stronger similarities between the particular two members. To detect
similarities that span an entire sequence family it is therefore advisable to use
other methods than just pairwise comparisons of the members.

Comparison of several sequences is a difficult problem that involves many
modeling choices. The comparison of several sequences is typical communi-
cated using a multiple alignment that express how the sequences relate by
substitutions, insertions, and deletions. In this section we focus on methods to
compute multiple alignments and ways to extract a compact characterization
of a sequence family based on a comparison of its members. Such a charac-
terization can be used to search for unknown members of the family, and for
comparison against the characterizations of other families. This relates to the
work presented in Chapter 6.

2.2.1 Multiple Alignment

A multiple alignment of a set of strings S1, S2, . . . Sk over an alphabet Σ is a
natural generalization of a pairwise alignment. A multiple alignment is a k × `
matrix A = (aij), where the entries aij , 1 ≤ i ≤ k and 1 ≤ j ≤ `, are either
symbols from the alphabet or the blank symbol “−”, such that the concatena-
tion of the non-blank characters in row i yields Si. Figure 2.6 shows a multiple
alignment of five strings. Computing a good multiple alignment of a set of
strings is a difficult and much researched problem. Firstly, it involves choosing
a score function that assigns a score to each possible multiple alignment describ-
ing its quality with respect to some criteria. Secondly, it involves constructing
a method to compute a multiple alignment with optimal score.

The sum-of-pairs score function introduced by Carillo and Lipman in [36]
defines the score of a multiple alignment of k strings as the sum of the scores
of the k(k − 1)/2 pairwise alignments induced by the multiple alignment. It
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A A G A A − A
A T − A A T G
C T G − G − G
C C − A G T T
C C G − G − −




Figure 2.6: A multiple alignment of five strings.

is difficult to give a reasonable biological justification of the sum-of-pairs score
function but nonetheless it has been widely used, e.g. [16, 68, 145]. If a clas-
sical score function with linear gap cost is used to compute the score of the
induced pairwise alignments, then an optimal sum-of-pairs multiple alignment
of k strings of lengths at most n can be computed in time O(2k · nk) and space
O(nk) by a generalization of the dynamic programming method for computing
an optimal pairwise alignment. Despite the simplicity of this multiple alignment
method, its steep running time and space consumption makes it impractical
even for modestly sized sets of relatively short strings.

Wang and Jiang in [197] show that the problem of computing a multiple
alignment with optimal sum-of-pairs score is NP hard. However, the need for
good multiple alignments has motivated several heuristics and approximation
algorithms for computing a multiple alignment with a good sum-of-pairs score.
For example, Feng and Doolittle in [54] present a heuristic based on combining
good pairwise alignments. Combining good pairwise alignments is also the
general idea of the approximation algorithm presented by Bafna et al. in [17]
which in polynomial time computes a multiple alignment of k strings with a
sum-of-pairs score that for any fixed l < k is at most a factor 2 − l/k from
the optimal score. The approximation algorithm is a generalization of ideas
presented by Gusfield in [73] and Pevzner in [163].

Many score functions other than sum-of-pairs, and corresponding methods
for computing an optimal multiple alignment, have been proposed in the liter-
ature. For example, to construct a multiple alignment of biological sequences
it seems natural to take the evolutionary relationships between the sequences
into account. Hein in [82] presents a heuristic which simultaneously attempts
to infer and use the evolutionary relationships between members of a sequence
family to guide the construction of a multiple alignment of the members of the
sequence family. Krogh et al. in [111] present a popular and successful heuristic
for computing multiple alignments, which use profile hidden Markov models to
describe the relationships between members of a sequence family. We return to
profile hidden Markov models in Section 2.2.2.

A multiple alignment of a set of strings is useful for many purposes. The
relationships between strings expressed by a multiple alignment is used to guide
many methods that attempt to infer knowledge such as evolutionary history, or
common three-dimensional structure, from a set of biological sequences. On the
other hand, knowledge about the evolutionary history, or the common three-



2.2. Comparison of More Sequences 25

dimensional structure, of a set of biological sequences can also be used to pro-
duce a good multiple alignment. As mentioned above, the method by Hein
in [82] attempts to incorporate the correspondence between evolutionary his-
tory and multiple alignments into a single method for constructing a multiple
alignment while reconstructing the evolutionary history.

In the rest of this section we will not focus on any specific application of
multiple alignments, but instead focus on the problem of deriving a compact
characterization of a set of strings from a multiple alignment of its members. If
the set of strings is a biological sequence family, such a compact characterization
has at least two interesting applications. Firstly, it can be used to search a
sequence database for unknown members of the family. Secondly, it can be
used to compare sequence families by comparing their characterizations rather
than comparing the individual members of the families.

The consensus string of a set of strings S1, S2, . . . , Sk is a string that at-
tempts to capture the essence of the entire set of strings. There is no consensus
on defining a consensus string, but if a multiple alignment of the set of strings
is available it seems natural to use the relationships expressed by the multiple
alignment to construct the consensus string. Most often this is done by extract-
ing the dominant character from each column in the multiple alignment. In the
simplest case the dominant character is chosen as the most frequent occurring
character, where ties are broken arbitrarily. Because blanks are not part of the
alphabet of the strings, it is common to ignore columns where the dominant
character is a blank. This implies that each position in the consensus string
corresponds to a column in the multiple alignment, but that columns in the
multiple alignment where the dominant character is blank do not correspond
to positions in the consensus string. Using this definition a possible consensus
string of the multiple alignment in Figure 2.6 is the string CTGAGG, where the
sixth column does not correspond to a position in the consensus string because
the most frequent character in this column is a blank.

If the aligned set of strings is a biological sequence family, then the extracted
consensus string is usually referred to as the consensus sequence of the family. It
is natural to interpret the consensus sequence of a family as a possible ancestral
sequence from which each sequence in the family has evolved by substitutions,
insertions, and deletions of characters. Each row in the multiple alignment of
the family then describes how the corresponding sequence has evolved from the
consensus sequence; a character in a column that corresponds to a position in
the consensus sequence has evolved from that position in the consensus sequence
by a substitution; a blank in a column that corresponds to a position in the
consensus sequence indicates that the character in that position in the consensus
sequence has been deleted; a character in a column that does not correspond
to a position in the consensus sequence has been inserted.

The consensus sequence is a very compact characterization of a multiple
aligned sequence family. The simplicity of the consensus sequence characteri-
zation is attractive because it makes it possible to compare sequence families
by their consensus sequences using any method for sequence comparison. How-
ever, the consensus sequence characterization of a multiple aligned sequence
family is probably to coarse-grained because it abstracts away all information
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1 2 3 4 5 6 7
A 0.4 0.2 0.6 0.4 0.2
C 0.6 0.4
G 0.6 0.6 0.4
T 0.4 0.4 0.2
- 0.4 0.4 0.6 0.2

Figure 2.7: The profile of a multiple alignment in Figure 2.6. The entries of the
profile that are not filled are zero. An entry for a character in a column of the
profile is the frequency with which that character appears in the corresponding
column in the multiple alignment.

in the multiple alignment except for the dominant character in each column.
The profile of a multiple alignment as introduced by Gribskov et al. in [71, 70]
is a more fine-grained method to characterize a set of strings from a multiple
alignment of its members that attempts to remedy this problem.

A profile of a multiple alignment describes for each column the frequency
with which each character in the alphabet (and the blank character) appears
in the column. Figure 2.7 shows the profile of the multiple alignment in Fig-
ure 2.6. Gribskov et al. in [71, 70] show how to compare a profile and a string
in order to determine how likely it is that the string is a member of the set of
strings characterized by the profile. The general idea of the method is similar
to alignment of two strings. The profile is viewed as a “string” where each
column is a “character”. The objective is to compute an optimal alignment of
the string and the profile where the score reflects how well the string fits the
profile. This is done by using a position dependent scoring scheme that defines
the cost of matching a character from the string against a column in the profile
as the sum of the costs of matching the character to each character in alphabet
weighted with the frequency with which the character appears in the column
of the profile. For example, the cost of matching character G to the second
column of the profile in Figure 2.7 is 0.2 · d(A,G) + 0.4 · d(C,G) + 0.4 · d(T,G),
where d(x, y) is the cost of matching character x with character y. An optimal
alignment of a string of length n and a profile of m columns can be computed in
time O(|Σ|nm), where |Σ| is the size of the alphabet of the string and profile.
Gotoh in [69] shows how to compare two profiles which makes it possible to
compare sequence families by their profile characterizations. The general idea
of the method is once again similar to alignment of two strings.

2.2.2 Hidden Markov Models

One of the most popular and successful way to characterize sequence families
is to use profile hidden Markov models, which are are simple types of hidden
Markov models. A hidden Markov model M over an alphabet Σ describes a
probability distribution PM over the set of finite strings S ∈ Σ∗, that is, PM (S)
is the probability of the string S ∈ Σ∗ under the model M . A hidden Markov
model M can be used to characterize a family of strings by saying that a string S
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is a member of the family if the probability PM (S) is significant.
Similar to a Markov model, a hidden Markov model consists of a set of states

connected by transitions. Each state has a local probability distribution, the
state transition probabilities, over the transitions from that state. We use Pq(q′)
to denote the probability of a transition from state q to q′. The transition struc-
ture of a hidden Markov model is can be illustrated as a directed graph with a
node for each state, and an edge between two nodes if the corresponding state
transition probability is non-zero. Unlike a Markov model, a state in a hidden
Markov model can generate a character according to a local probability distri-
bution, the symbol emission probabilities, over the characters in the alphabet.
We use Pq(σ) to denote the probability of generating character σ ∈ Σ in state q.
A state that does not have symbol emission probabilities is a silent state.

It is convenient to think of a hidden Markov model as a generative model
in which a run generates a string S ∈ Σ∗ with probability PM (S). A run starts
in a special start-state, and continues from state to state according to the state
transition probabilities, until a special end-state is reached. Each time a non-
silent state is entered, a character is generated according to the symbol emission
probabilities of that state. A run thus follows a Markovian sequence of states
and generates a sequence of characters. The name “hidden Markov model” is
because the Markovian sequences of states, the path, is hidden while only the
generated sequence of characters, the string, is observable.

The basic theory of hidden Markov models was developed and applied to
problems in speech recognition in the late 1960’s and early 1970’s. Rabiner
in [166] gives a very good overview of the theory of hidden Markov models
and its applications to problems in speech recognition. Hidden Markov models
were first applied to problems in computational biology in the late 1980’s and
early 1990’s. Since then they have found many applications, e.g. modeling of
DNA [38], protein secondary structure prediction [15], gene prediction [110],
and recognition of transmembrane proteins [175]. Probably the most popular
application, introduced by Krogh et al. in [111], is to use profile hidden Markov
models to characterize a sequence family by modeling how the sequences relate
by substitutions, insertions and deletions to the consensus sequence of the fam-
ily. The prefix “profile” is because profile hidden Markov models address the
same problem as profiles of multiple alignments.

A profile hidden Markov model is characterized by its simple transition
structure. Figure 2.8 shows the transition structure of a small profile hidden
Markov model. The transition structure consists of repeated elements of match,
insert, and silent delete states. The number of repeated elements is the length
of the model. Each element of a match, insert and delete state models a position
in the consensus sequence of the sequence family, and describes how members
of the family deviate from the consensus sequence at that position. The match
state models that the generated character has evolved from the position in the
consensus sequence. The insert state models that the generated character has
been inserted between the two neighboring positions in the consensus sequence.
The self-loop on the insert state models that several consecutive characters can
be inserted between two positions in the consensus sequence. The delete state
models that the position has been deleted from the consensus sequence.
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Start End

Figure 2.8: The transition structure of a profile hidden Markov model. The
squares are the match-states, the diamonds are the insert-states and the circles
are the silent delete-states. This figure is copied from the paper in Chapter 6.

The parameters of a profile hidden Markov model M (the length and the
transition and emission probabilities) should be chosen to reflect the character-
istics of the modeled sequence family (the length of the consensus sequence and
how each member relates to the consensus sequence), such that the probability,
PM (S), that it generates a string S can be used to distinguish between members
and non-members of the family. The parameters can be chosen in consistence
with an existing multiple alignment of members of the sequence family by set-
ting the length of the model to the length of the consensus sequence of the
multiple alignment, and by setting the transition and emission probabilities ac-
cording to the frequency with which each character occurs in each column of the
multiple alignment. This approach is similar to constructing a standard profile
of a multiple alignment as discussed in the previous section. More interestingly,
the parameters can also be estimated from an unaligned set of members of the
sequence family. The estimation is done by setting the length of the model to
the believed length of the consensus sequence, and by successively adjusting the
transition and emission probabilities to maximize the probability of the model
having generated the known members of the family.

Adjusting the parameters of a hidden Markov model M to maximize the
probability, PM (S), that it generates a given string S is a fundamental and
difficult problem. No exact method exists to decide, in general, the parame-
ters that maximize PM (S). However, iterative methods that successively refine
the parameters of the model, such that PM (S) is guaranteed to converge to a
local maximum, are available. Refining the parameters of a model M to max-
imize PM (S) for a given string S is called training the model M with respect
to S. Many training methods use the forward algorithm (which is described
below) to compute for any pair of state q and index i, the probability of being in
state q having generated prefix S[1 .. i] of the string S. This set of probabilities
is subsequently used to adjust the parameters of the model. Training methods
are addressed in details by Rabiner in [166], and by Krogh et al. in [111].
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Fundamental Algorithms for Hidden Markov Models

Many applications of hidden Markov models in speech recognition and compu-
tational biology are variations of two fundamental problems and their solutions.
The first problem is to determine the probability, PM (S), that a model, M , gen-
erates a given string S. The second problem is to determine the most likely
path in a model M that generates a given string S. Because the ideas behind
the algorithms solving these problems are fundamental to many applications of
hidden Markov models, including the algorithms for comparing hidden Markov
models we present in Chapter 6, we present the algorithms in further details
below. In the presentation we assume that the transition structure of a model
contains no cycles of silent states. If the transition structure contains cycles
of silent states, the presentation of the algorithms is more technical, but the
asymptotic running times of the algorithms are unaffected by the presence of
cycles of silent states. The full details are described in [166, 46].

The first problem, i.e. computing the probability PM (S) that model M
generates string S, is solved by the forward algorithm. The general idea of
the forward algorithm is to build a table, A, indexed by states from M and
indices from S, such that entry A(q, i) holds the probability of being in state q
in M having generated the prefix S[1 .. i] of S. The entry indexed by the end-
state and the length of S then holds the desired probability PM (S) of being in
the end-state having generate S. To explain the algorithm we call state q′ a
predecessor of state q in M , if the transition probability from q′ to q, Pq′(q), is
non-zero. The probability of being in state q having generated S[1 .. i] is then
the sum over all predecessors q′ of q of the probability of coming to state q via
predecessor q′ having generated S[1 .. i]. There are two cases. If q is a non-silent
state, the last character of S[1 .. i] is generated in q. In this case A(q, i) is the
sum over all predecessors q′ of q of terms A(q′, i − 1) · Pq′(q) · Pq(S[i]). If q is a
silent state, no character is generated in q. In this case A(q, i) is the sum over
all predecessors q′ of q of terms A(q′, i) · Pq′(q). In summary we get:

A(q, i) =




∑
q′→q

A(q′, i − 1) · Pq′(q) · Pq(S[i]) if q is non-silent

∑
q′→q

A(q′, i) · Pq′(q) if q is silent
(2.9)

By using dynamic programming this recurrence yields an algorithm for com-
puting PM (S) with running time and space consumption O(mn), where m is
the number of transitions in M , and n is the length of S.

The second problem, i.e. computing the probability of the most likely path
in model M that generates string S, and the path itself, is solved by the Viterbi
algorithm. The only difference between the Viterbi algorithm and the forward
algorithm is that entry A(q, i) holds the probability of the most likely path to
state q that generates S[1 .. i]. This probability is the maximum, instead of
the sum, over all predecessors q′ of q of the probability of coming to state q
via predecessor q′ having generated S[1 .. i]. The entry indexed by the end-
state and the length of S holds the probability of the most likely path in M
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that generates S. The most likely path can be obtained by backtracking the
performed maximization steps. The running time and space consumption of
the Viterbi algorithm, including backtracking, is the same as the running time
and space consumption of the forward algorithm.

The forward and the Viterbi algorithms are both useful when applied to
profile hidden Markov models. The probability that a model generates a given
string, which is computed by the forward algorithm, and the probability of
the most likely path that generates a given string, which is computed by the
Viterbi algorithm, are both plausible measures of how likely it is that a string is
a member of the sequence family modeled by the profile hidden Markov model.
Both measures can be used to search a sequence database for new members of
the family, or inversely, to search a database of profile hidden Markov models
(families) for the model (family) that most likely describe a new sequence.

Another application of the Viterbi algorithm is to construct a multiple align-
ment. The idea is to interpret the most likely path in a profile hidden Markov
model M that generates the string S as an alignment of S against the consensus
sequence of sequence family modeled by M . The interpretation is as follows;
if the most like path passes the kth match state, such that S[i] is most likely
generated by the kth match state, then S[i] should be matched against the kth
character in the consensus sequence; if the most like path passes the kth insert
state, such that S[i] is most likely generated by the kth insert state, then S[i]
should be inserted between the kth and (k + 1)st character in the consensus
sequence; finally, if the most likely path passes the kth delete state, then the
kth character in the consensus sequence has been deleted from S. The most
likely path thus explains how to construct S by matching, inserting and deleting
characters from the consensus sequence, i.e. describes an alignment of S against
the consensus sequence. Alignments of several sequences against the consensus
sequence can be combined to a multiple alignment of the sequences.

Constructing multiple alignments using the Viterbi algorithm, combined
with training methods to construct profile hidden Markov models from un-
aligned set of sequences, is one of the most popular and successful heuristics
for multiple sequence alignment. It was also the primary application of profile
hidden Markov models by Krogh et al. in [111]. Other applications of profile hid-
den Markov models are described by Durbin et al. in [46], and Eddy in [48, 49].
Software packages, e.g. SAM [91] and HMMER [47], that implement methods
using profile hidden Markov models are widely used, and libraries, e.g. Pfam
(available at http://pfam.wustl.edu), that store multiple alignments and profile
hidden Markov models characterizations of sequences families are available and
growing. In July 1999, the Pfam library contained multiple alignments, and
profile hidden Markov models characterizations, of 1488 protein families. (In
June 2000, it contained 2290 protein families characterization.)

Algorithms for Comparing Hidden Markov Models

The availability of profile hidden Markov models characterizations, e.g. the
Pfam library, motivates the application of comparing entire protein families by
comparing their profile hidden Markov model characterizations. This applica-
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tion motivates the more general problem of comparing hidden Markov models.
A general method for comparing any systems that can be described by hidden
Markov models seems desirable, but the problem of comparing hidden Markov
models has not been studied in the literature. Perhaps because the motivation
for comparing hidden Markov models has not been apparent until the above
stated application of comparing entire biological sequence families by their pro-
file hidden Markov model characterizations.

In Chapter 6 we present measures and methods for comparing hidden Markov
models. The proposed measures and methods are not limited to profile hidden
Markov models, and are thus applicable to applications beyond comparison of
sequence families characterized by profile hidden Markov models.

We define the co-emission probability, A(M1,M2), of two hidden Markov
models, M1 and M2, that generate strings over the alphabet Σ, as the proba-
bility that the two models independently generate the same string, that is

A(M1,M2) =
∑

S∈Σ∗
PM1(S)PM2(S). (2.10)

The co-emission probability is the building block of our measures. The
complexity of computing the co-emission probability depends on the transition
structure of the two models M1 and M2. If the two models are profile hidden
Markov models, we can compute the co-emission probability using a dynamic
programming algorithm very similar to the forward algorithm. The idea is to
build a table, A, indexed by states from the two hidden Markov models, such
that entry A(q, q′), where q is a state in M1, and in q′ is a state in M2, holds the
probability of being in state q in M1, and state q′ in M2, having independently
generated identical strings on the path to q in M1, and on the path to q′ in M2.
The entry indexed by the two end-states then holds the probability of being
in the end-state in both models having generated identical strings, that is, the
co-emission probability, A(M1,M2), of the two models.

The details of computing A(q, q′) for a pair of states, (q, q′), in two profile
hidden Markov models, are described in Section 6.3. The general idea is to
compute A(q, q′) by summing the probabilities of the possible ways of reaching
state q in M1, and state q′ in M2, having generated the same strings. For a
pair of states, (g, g′), we say that it is a predecessor pair of (q, q′), if there is
a transition from state g to state q in M1, and a transition from state g′ to
state q′ in M2. The probability, to be stored in A(q, q′), of being in state q in
M1, and in state q′ in M2, having generated the same strings, is the sum over
every possible predecessor pair (g, g′) of (q, q′) of the probability of reaching
(q, q′) via (g, g′) having generated the same strings. If we define

p =
∑
σ∈Σ

Pq(σ) · Pq′(σ) (2.11)

as the probability of generating the same character in state q in M1, and in
state q′ in M2, we can compute A(q, q′) by the following recurrence:
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A(q, q′) =




∑
g→q
g′→q′

p · A(g, g′) · Pg′(q′) · Pg(q) if q, q′ are non-silent

∑
g→q
g′→q′

A(g, g′) · Pg′(q′) · Pg(q) if q, q′ are silent

∑
g→q

A(g, q′) · Pg(q)
if q is silent, and
q′ are non-silent

(2.12)

If every predecessor pair (g, g′) of (q, q′) is different from (q, q′), the above
recurrence shows how to compute A(q, q′) recursively. Unfortunately, if both q
and q′ are insert states, the self-loops on insert states imply that (q, q′) is a
predecessor pair of (q, q′), which seems to imply that we need to know A(q, q′)
in order to compute A(q, q′). The trick to circumvent this dilemma is to consider
how the path to state q in M1, and the path to state q′ in M2, loops in the
self-loop. More precisely, let Ak(q, q′) denote the probability of being in insert
states q in M1, and in insert state q′ in M2, having generated the same string,
under the additional assumption that one path, say the path to q, has looped
exactly k times in the self-loop, ant that the other path, say the path to q′,
has looped at least k times in the self-loop. The probability A(q, q′) of being in
insert states q in M1, and in insert state q′ in M2, having generated the same
strings is then the infinite sum over Ak(q, q′) for all k ≥ 0.

It turns out that this infinite sum can be computed efficiently. The first
step is to observe that A0(q, q′) can be computed without considering (q, q′) as
a possible predecessor pair of (q, q′). The reason is that we know by definition
that one path, say the path to q, does not loop in the self-loop, so the predecessor
of q cannot be q itself. The details are in Equation 6.5 on page 98. The second
step is to observe that Ak(q, q′) = rAk−1(q, q′) = rkA0(q, q′), where r is the
probability of independently choosing the self-loops and generating the same
character in state q and q′, cf. Equation 6.7 on page 99. The second observation
implies that the infinite sum over Ak(q, q′), for all k > 0, is a geometric series
that can be computed as A(q, q′) =

∑∞
k=0 rkA0(q, q′) = A0(q, q′)/(1 − r).

The running time of the described algorithm for computing the co-emission
probability, A(M1,M2), of two profile hidden Markov models, M1 and M2, is
bounded by the time it takes to compute all entries in the table A. Since
an entry, A(q, q′), can be computed in time proportional to the number of
predecessor pairs of (q, q′), the running time is O(m1m2), where mi is the
number of transitions (edges in the transition structure) in Mi.

The above algorithm for computing the co-emission probability for profile
hidden Markov models can also be used to compute the co-emission probability
for slightly more general hidden Markov models. The only property of the tran-
sition structures of the models required by the algorithm is that the states can
be numbered such that a transition from state i to state j implies that i ≤ j.
Hidden Markov models with this property are called left-right models cf. [166].
The transition structure of left-right models is, except for self-loops, a directed
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acyclic graph. In Section 6.5.1 we describe how to extend the algorithm further
to handle models, where each state is allowed to be on a single cycle in the
transition structure. The extension is quite technical but the running time of
the extended algorithm remains O(m1m2). In Section 6.5.2 we describe how
to approximate the co-emission probability for general hidden Markov models.
The approximation is an iterative process that is guaranteed to converge expo-
nentially fast to the co-emission probability of the models. More precisely, in k
rounds we can find an upper and lower bound on A(M1,M2) that differ by at
most a factor ck from A(M1,M2), where c < 1 is a constant that depends on
M1 and M2. The running time of each round is O(m1m2).

More generally, it is possible to compute the exact co-emission probability
for any pair of hidden Markov models, M1 and M2, in polynomial time. This is
not described in Chapter 6, only hinted at by Equation 6.22 on page 107. The
idea is to consider A(q, q′) as a variable contributed by state q in M1 and state q′

in M2, which value is the probability of being in state q in M1, and in state q′ in
M2, having independently generated the same string. Two models M1 and M2

in total contribute n1n2 variables, where ni is the number of states in Mi. Each
variable can be described in terms of other variables by a linear equation cf.
the recurrence in Equation 2.12. The result is a set of n1n2 linear equations
with n1n2 unknowns, where the co-emission probability of M1 and M2 is the
value of the variable A(q, q′), which corresponds to the pair of end-states. The
value of this variable can be computed by solving the set of linear equations.
The algorithm described above for computing the co-emission probability of
two profile hidden Markov models, and more generally, two left-right models,
can thus be seen as an efficient way of solving the set of linear equations when
the structure of the equations has special properties.

The co-emission probability has a nice mathematically interpretation as an
inner product in the infinite dimensional space spanned by all finite strings over
a finite alphabet. Consider a hidden Markov model, M , generating strings over
a finite alphabet Σ. The probability distribution over the set of finite strings
S ∈ Σ∗ described by the hidden Markov model can be seen as a vector in the
infinite dimensional space spanned by all finite strings over the alphabet Σ,
where the coordinate corresponding to a string S in the probability, PM (S), of
model M generating S. In this interpretation of hidden Markov models, the
co-emission probability A(M1,M2) of two hidden Markov models, M1 and M2,
over the same alphabet, is simply the inner product, 〈M1,M2〉 = |M1||M2| cos v,
of the models, where v is the angle between the models, and |Mi| =

√〈Mi,Mi〉
is the length of Mi. This formulation of the co-emission probability implies
that the co-emission probability A(M1,M2) is not itself a good measure of
the similarity of the models M1 and M2. To see why, consider A(M1,M1) =
|M1||M1| and A(M1,M2) = |M1||M2| cos v, and observe that if |M2| cos v >
|M1|, then A(M1,M2) > A(M1,M1). It is thus perfectly possible, as describe
in Proposition 6.1 on page 100, that the model having the largest co-emission
probability with a specific model is not the model itself.

To circumvent the problems of the co-emission probability as a similarity
measure, we define in Section 6.4 four measures using the co-emission probabil-
ity as the building block. The four measures are summarized in Figure 2.9. The
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Dangle(M1,M2) = arccos
(
A(M1,M2)

/√
A(M1,M1)A(M2,M2)

)
Ddiff(M1,M2) =

√
A(M1,M1) + A(M2,M2) − 2A(M1,M2)

S1(M1,M2) = cos (Dangle(M1,M2))

S2(M1,M2) = 2A(M1,M2) /(A(M1,M1) + A(M2,M2))

Figure 2.9: The four measures between hidden Markov models M1 and M2

defined in Chapter 6 using the co-emission probability as the building block.

first two measures are metrics, where Dangle(M1,M2) is the angle between the
two models, i.e. arccos (〈M1,M2〉 /(|M1||M2|)), and Ddiff(M1,M2) is the Eu-
clidean norm of the difference between the two models, i.e. |M1−M2|. The last
two measures, S1(M1,M2) and S2(M1,M2), are similarity measures that fulfill
some useful properties stated and explained on page 102. All four measures can
be computed within the time it takes to compute the co-emission probabilities
A(M1,M1), A(M2,M2) and A(M1,M2).

To evaluate the four measures in practice, we have implemented the algo-
rithm for computing the co-emission probability for left-right models, such that
we can compute each of measures efficiently for this type of hidden Markov
models. In Section 6.6 we describe an experiment, where we compared fifteen
hidden Markov models for three classes of signal peptides. The fifteen models
are constructed such that they group into three groups of five models each. The
models in each group describe similar properties, and should therefore be more
similar, or closer, to each other than to the models in the other groups. To
test this hypothesis, we performed all pairwise comparisons between the fifteen
models using each of the four measures. The results are shown in Figure 6.4
and 6.5 on page 110 and 111, which show that all measures capture that models
within the same group are more alike than models from different groups.

An experiment we plan to perform is to use our measures to evaluate the
profile hidden Markov model training methods included in the software packages
SAM and HMMER. (Recall that training a (profile) hidden Markov model is
to estimate its parameters to maximize the probability of a set of strings being
generated by the model.) The general idea of the experiment is to take a
model, M , from the Pfam library of models, and use this model to generate a
set of strings, which are used to train a model, M ′, using the traning methods
included in SAM and HMMER. Finally, the models M and M ′ are compared
to see how similar, or close, the trained model is to real model. Performing the
experiment for different models and training methods, hopefully improves the
knowledge of how to train a model. For example, how many strings are needed
to make the trained model, M ′, sufficiently similar to the real model, M , and
how do training methods perform if M and M ′ do not contain the same number
of repeated elements, that is, if one model is longer than the other.
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Regularities in Sequences

Never was so much owed by so many to so few.
— Winston S. Churchill, House of Commons, August 20, 1940.

Regularities in experimentally obtained data often reveal important knowledge
about the underlying physical system. The physical system could be the quo-
tations on the stock market, the weekly lotto numbers, or biological sequences.
Regularities in a biological sequence can be used to identify the sequence among
other sequences such as explained below, or to infer information about the evo-
lution of the sequence such as explained in [24].

The genomes of eukaryotes, i.e. higher order organisms such as humans,
contain many regularities. Tandem repeats, or tandem arrays, which are con-
secutive occurrences of the same string, are the most frequent. For example, the
six nucleotides TTAGGG appear at the end of every human chromosome in tan-
dem arrays that contain between one and two thousand copies [144]. A number
of diseases, such as Fragile X syndrome, Huntington’s disease and Kennedy’s
disease, are all related to tandem repeated regions of the genome. These dis-
eases are caused by an increasing numbers of tandem repeats of a three base
long DNA sequence, which somehow interfere with the normal transcription of
particular proteins and thereby cause the disease.

Other tandem repeated regions of a genome, the so called variable number
of tandem repeat (VNTR) regions, are tandem arrays in which the number of
repeated DNA sequences varies highly between each individual. If the repeated
DNA sequence in a VTNR region is short (between three and five bases), the
region is often referred to as a short tandem repeat (STR) region. VNTR and
STR regions occur frequently and regularly in many genomes, including the
human genome, and are very useful as genetic fingerprints because two genomes
can be distinguished with very high probability by only comparing the number
of repeated strings in a few VNTR or STR regions.

Genetic fingerprinting has many applications, most prominently as a tool in
forensics or as evidence is criminal or paternity cases. For example, the Dan-
ish Department of Justice decided in 1997 that the quality of paternity testing
should be such that the probability of an erroneous identification is at most
0.0001. In [142] it is reported that this quality can be achieved by looking at
only 9–12 STR regions (and in some cases up to eight other VNTR regions) in
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the genomes of the child and the potential father. The testing is done by taking
blood samples from the child and the potential father. The blood samples are
processed in a laboratory to produce data which are examined to “count” the
number of repeats in the examined regions. The paternity is decided by com-
paring the difference between the counts with the expected difference between
two random individuals. Genetic fingerprinting is a fascinating combination of
molecular, computational and statistical methods. The applications of genetic
fingerprinting are numerous and important, so it might turn out that the quote
of this chapter also applies to small repeated segments of DNA.

In this chapter we concentrate on the computational aspects of finding cer-
tain well defined regularities in strings over a finite alphabet. In Section 3.1
we review tools and methods that combine to a general technique for finding
regularities in strings that we apply in the following sections. In Section 3.2.1
we review methods for finding tandem repeats. In Section 3.2.2 we consider the
more general problem of finding pairs of identical substrings where the number
of characters between the substrings are bounded. This relates to the work in
our paper Finding Maximal Pairs with Bounded Gap presented in Chapter 7.
In Section 3.2.3 we review methods for the problem of finding quasiperiodic
substrings which are substrings that can be constructed by concatenations and
superpositions of a shorter string. This relates to the work in our paper Finding
Maximal Quasiperiodicities in Strings presented in Chapter 8.

The methods we present in this chapter can all be applied to biological
sequence analysis because biological sequences are strings. There are however
two typical objections against this application. The first objection is that most
repetitive structures in biological sequences are not exact repetitive structures,
but rather repetitions of nearly identical strings. The second objection is that
simpler brute force methods are sufficient to find the repetitive structures of
current interest in biological sequences. To a large extend these two objections
reflect that the methods we present in this chapter are not developed specifically
towards biological sequence analysis but rather as general string algorithms.

3.1 Tools and Techniques

In this section we present three useful tools for detecting regularities in strings;
suffix trees, height-balanced trees, and sums for analyzing the running time of
algorithms. When combined, these three tools imply a general technique for
finding regularities in a string S of length n in time O(n log n) plus the time
it takes to report the detected regularities. In short, the general technique is a
traversal of the suffix tree, where we at each node compute and use a height-
balanced tree that stores the leaf-list of the node.

Throughout this chapter we will use S,α, β and γ to denote strings over
some finite alphabet Σ. We will let |S| denote the length of S, S[i] the ith
character in S for 1 ≤ i ≤ |S|, and S[i .. j] = S[i]S[i + 1] · · · S[j] a substring
of S. If i > j then S[i .. j] is the empty string. We say that a string α occurs
at position i in the string S if α = S[i .. i + |α| − 1].
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Figure 3.1: The suffix tree of the string Mississippi where each node, except
the root, is annotated with its leaf-list.

3.1.1 Tries and Suffix Trees

A trie is a tree-based data structure for storing a set of strings over some finite
alphabet. Every edge in a trie is labelled with a character from the alphabet.
The concatenation of the characters on the path from the root to a node v is
the path-label of v, and is denoted L(v). The labelling of the edges is such that
no two edges out of the same node are labelled with the same character, and
such that every path-label is a prefix of one or more of the stored strings. This
implies that every internal node in a trie has between one and the size of the
alphabet children, and that every string stored in a trie is equal to the path-
label of a single node. A compressed trie is a trie where chains of single-child
nodes are compressed into single edges. The edges in a compressed trie are
labelled with strings rather than single characters.

The concept of a trie-like structure to represent a set of strings was pre-
sented early in this century by Thue in [184]. Fredkin in [60] presented the trie
structure (almost) as done above. He also introduced the name “trie” from the
word “information retrieval”. Morrison in [143] presented a tree structure for
storing a set of strings based on a trie storing a binary representation of the
strings in the set. Knuth describes tries and their history in [105, Section 6.3].

For string matching problems a particular useful variant of the trie is the
suffix tree. The suffix tree T (S) of a string S is the compressed trie of all
suffixes of the string S$, where $ 6∈ Σ. The termination character “$” ensures
that no suffix of S$ is a prefix of another suffix of S$. This implies a one-to-
one correspondence between the leaves in the suffix tree and the suffixes of S$.
Each leaf in the suffix tree is annotated with an index i that corresponds to its
path-label S[i .. n]$, where n = |S|. The set of indices stored at the leaves in the
subtree rooted at node v is the leaf-list of v, and is denoted LL(v). Figure 3.1
shows the suffix tree of the string Mississippi, where each node, except the root,
is annotated with its leaf-lists.

The suffix tree T (S) of a string S of length n has n+1 leaves and at most n
internal nodes. Each edge is labelled with a substring of S$ which can be
compactly represented by two indices into S$. The suffix tree T (S) can thus be
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stored in O(n) space. The suffix tree T (S) can be constructed in time O(n2) by
building and compressing the trie of the strings S[i .. n]$ for i = 1, 2, . . . , n+1 in
the standard way as described in e.g. [105]. However, the n + 1 strings, of total
length n(n + 1)/2, which are stored in T (S) are all suffixes of the same string.
This relationship has been exploited to construct algorithms that construct the
suffix tree T (S) in linear-time O(n).

The first linear-time construction algorithm was presented by Weiner in [203]
in 1973. The algorithm was actually presented for the construction of position
trees, but was easily adapted for the construction of suffix trees. Few years
later, McCreight in [137] presented another linear-time construction algorithm
that excels in being more space efficient in practice than Weiner’s algorithm.
Several years later, Ukkonen in [189] presented an on-line linear-time construc-
tion algorithm that is much simpler than the earlier construction algorithms
by Weiner and McCreight. Ukkonen however suggested that his algorithm is
a heavily disguised version of McCreight’s algorithm. The connection is not
obvious to the untrained eye but explained in details by Giegerich and Kurtz
in [64]. Recently, Farach in [53] presented a construction algorithm that is well
suited for construction of suffix trees of strings over large alphabets.

The suffix tree can be used to solve complex string problems. Many appli-
cations are reported in [43, 74]. The immediate application of suffix trees is
for exact string matching, i.e. to decide if a pattern P of length m occurs in a
string S of length n. The classical Knuth-Morris-Pratt algorithm [106] solves
this problem in time Θ(n + m). This time bound can also be achieved using
suffix trees. If P occurs in S, then P is a prefix of a suffix of S and there is
a path in T (S) starting at the root that spells P . Constructing the suffix tree
T (S) takes time O(n). Searching for a path starting at the root that spells P
takes time O(m). For example, from the suffix tree in Figure 3.1 follows that
the pattern iss occurs in the string Mississipi at position 2 and 5 because the
path that spells iss ends on the edge above the node with leaf-list {2, 5}.

3.1.2 Bounding Traversal Time

The suffix tree T (S) captures many of the regularities in S because the posi-
tions in the leaf-list LL(v) tell where the path-label L(v) occurs in S. Many
algorithms for finding regularities in a string follow the general scheme of first
constructing the suffix tree of the string, then traversing it to examine the leaf-
lists in order to detect the regularities. The running time of such algorithms
is to a large extend determined by the time spent on examining the leaf-lists
at each node. In the worst case, the total length of all leaf-lists at the internal
nodes, in a suffix tree of a string of length n, is Θ(n2). For example, the total
length of all leaf-lists at the internal nodes, in the suffix tree of the string that
consists of n identical characters, is 2 + 3 + 4 + · · · + n = n(n + 1)/2 − 1.

The following two lemmas bound the time an algorithm can spend at each
node in a tree with n leaves without spending more than time O(n log n) in
total. The first bound, stated in Lemma 3.1, is referred to in the literature as
the “smaller-half trick”. It is used in the formulation and analysis of several
algorithms for finding tandem repeats, e.g. [41, 11, 177]. The second bound,
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stated in Lemma 3.2, is hinted at in [138, Exercise 35], and used in [139, Chap-
ter 5] for analysis of finger searches. In accordance with the common name
of the first bound, we refer to the second bound as the “extended smaller-half
trick”. In the papers presented in Chapter 7 and 8, both bounds are used ex-
tensively. There the “extended smaller-half trick” is stated and used under the
assumption that the tree summed over is a binary tree. Below we state and
prove a more general formulation of the “extended smaller-half trick”.

Lemma 3.1 (Smaller-half trick) If each internal node v in a tree with n
leaves supplies a term O(

∑k−1
i=1 ni), where n1 ≤ n2 ≤ · · · ≤ nk are the number

of leaves in the subtrees rooted at the children of v, then the sum over all terms
is O(n log n).

Proof. Let N = n1 + n2 + · · · + nk be the number of leaves in the subtree
rooted by v. Since ni ≤ nk for all i = 1, 2, . . . , k − 1, then ni ≤ N/2 for all
i = 1, 2, . . . , k − 1. This implies that a leaf is counted at most O(log n) times
in the sum. The O(n log n) bound follows because there are n leaves. 2

Lemma 3.2 (Extended smaller-half trick) If each internal node v in a tree
with n leaves supplies a term O(

∑k−1
i=1 ni log(N/ni)), where n1 ≤ n2 ≤ · · · ≤ nk

are the number of leaves in the subtrees rooted at the children of v and N =∑k
i=1 ni is the number of leaves in the subtree rooted at v, then the sum over

all terms is O(n log n).

Proof. As the terms are O(
∑k−1

i=1 ni log(N/ni)) we can find constants, a and b,
such that the terms are upper bounded by

∑k−1
i=1 (a + b ni log(N/ni)). We will

by induction in the number of leaves in the tree prove that the sum over all
terms is upper bounded by a(n − 1) + b n log n = O(n log n).

If the tree is a leaf then the upper bound holds vacuously. Now assume
inductively that the upper bound holds for all trees with at most n − 1 leaves.
Consider a tree with n leaves where the number of leaves in the subtrees rooted
at the children of the root are n1 ≤ n2 ≤ · · · ≤ nk. According to the induction
hypothesis the sum over all nodes in these subtrees, i.e. the sum over all nodes
in the tree except the root, is bounded by

∑k
i=1(a(ni − 1) + b ni log ni). The

entire sum is thus bounded by
k∑

i=1

(a(ni − 1) + b ni log ni) +
k−1∑
i=1

ni log(n/ni)

= a(n − 1) + b nk log nk +
k−1∑
i=1

b ni log n

< a(n − 1) +
k∑

i=1

b ni log n

= a(n − 1) + b n log n

which proves the lemma. 2
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3.1.3 Merging Height-Balanced Trees

A height-balanced tree is a binary search tree where each node stores an element
from a sorted list, such that for each node v, the elements in the left subtree
of v are smaller than the element at v, and the elements in the right subtree
of v are larger than the element at v. A height-balanced tree satisfies that for
each node v, the heights of the left and right subtree of v differ by at most
one. Figure 8.3 on page 150 shows a height-balanced tree with 15 elements.
A height-balanced tree with n elements has height O(log n). Operations such
as element insertions, element deletions, and membership queries, can all be
performed in time O(log n), where updates are based on performing left and
right rotations in the tree. AVL trees [1] are an example of height-balanced
trees. We refer to [2, 105] for further details.

When merging two sorted lists that contain n1 and n2 elements, there are(n1+n2

n2

)
possible placements of the elements of one list in the combined list.

For n1 ≤ n2 this gives that dlog (n1+n2

n2

)e = Θ(n1 log(n2/n1)) comparisons are
necessary to distinguish between the possible orderings. Hwang and Lin in [94]
show how to merge two sorted lists that contain n1 and n2 elements using less
than dlog (n1+n2

n2

)e + min{n1, n2} comparisons. Brown and Tarjan in [34] first
note that it seems difficult to implement the Hwang and Lin merging algorithm
with a running time proportional to the number of performed comparisons, then
show how to merge two height-balanced trees that store n1 and n2 elements,
where n1 ≤ n2, in time O(n1 log(n2/n1)). This time bound implies by the
“extended smaller-half trick” that n height-balanced trees, that each stores a
single element, can be merged together in an arbitrary order, until only one
tree remains, in time O(n log n). Brown and Tarjan in [34] propose this as a
way to perform merge sort in time O(n log n), we propose it as a way to keep
track of the leaf-lists during a traversal of a suffix tree.

Let T (S) be the suffix tree of a string S of length n. We define TB(S) as
the binary expansion of T (S), which is obtained by expanding every node v
in T (S) that has more than two children, v1, v2, . . ., vk, into a binary tree
with root v, and leaves v1, v2, . . ., vk. All new edges in TB(S) are labelled
with the empty string, such that all nodes expanded from v have the same
path-label as v. We want to perform a traversal of TB(S), where we at each
leaf construct a height-balanced tree that stores the index at the leaf, and at
each internal node v, with children v1 and v2, construct a height-balanced tree
that stores LL(v) by the merging the height-balanced trees that store LL(v1)
and LL(v2). The total time it takes to perform this traversal is clearly bounded
by the time it takes to construct the height-balanced trees at each internal node.
By using the Brown and Tarjan merging algorithm, we can construct the height-
balanced tree at node v that stores LL(v) by merging the height-balanced trees
that store LL(v1) and LL(v2) in time O(n1 log(n2/n1)), where n1 = |LL(v1)|,
n2 = |LL(v2)|, and n1 ≤ n2. The “extended smaller-half trick” then implies
that the total time it takes to perform the traversal is O(n log n).

Within this time bound we can also traverse T (S) directly, and thus avoid
to construct TB(S) explicitly. At node v we simply merge the height-balanced
trees that store the leaf-lists at its children in any sequence of merge operations,
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until only one height-balanced tree that stores LL(v) remains. However, since
there is a one-to-one correspondence between the performed merge operations
and the nodes in a possible binary expansion of T (S), the binary expansion
TB(S) is a good mental picture that might clarify the exposition an algorithm
based on traversing a suffix tree while merging height-balanced trees.

Traversing the suffix tree T (S), or its binary expansion TB(S), while keeping
track of the leaf-lists by efficient merging of height-balanced trees, is by itself not
very useful. What makes it a useful technique for solving various string prob-
lems, is the additional operations that can be performed on the height-balanced
trees during the traversal without affecting the total time of O(n log n) it takes
to perform the traversal. In Theorem 8.3, on page 150, we list a number of use-
ful operations on height-balanced trees. For example, MultiPred(T, e1, . . . , ek),
that for each ei finds max{x ∈ T | x ≤ ei}, and MultiSucc(T, e1, . . . , ek), that
for each ei finds min{x ∈ T | x ≥ ei}. All the listed operations, including Multi-
Pred and MultiSucc, take a sorted list, (e1, e2, . . . , ek), of elements as input, and
have running time O(k ·max{1, log(N/k)}), where N is the number of elements
in the height-balanced tree, T , the operation is performed on.

Operations with running time O(k ·max{1, log(N/k)}) are very useful when
combined with a traversal of TB(S), where we keep track of the leaf-lists in
height-balanced trees. If we at each node v in TB(S), where n1 = |LL(v1)|, n2 =
|LL(v2)|, and n1 ≤ n2, choose k ≤ n1, and N ≤ n1 + n2, then we can perform
any fixed number of such operations in time O(n1 log((n1 + n2)/n1)), which
by the “extended smaller-half trick” is the amount of time that we can spend
without affecting the total time of O(n log n) that it already takes to perform
the traversal. This approach has many applications. For example, in Chapter 7
we use height-balanced trees, T1 and T2, that store LL(v1) and LL(v2), to find,
for each element in LL(v1), its successor in LL(v2). This is done by performing
MultiSucc(T2, e1, e2, . . . , ek), where e1, e2, . . . , ek are the n1 elements in LL(v1)
in sorted order. The sorted list of elements can be constructed in time O(n1)
by traversing T1, and the MultiSucc operation takes time O(n1 log(n2/n1)). In
total, this is well within the time that we can afford to spend by the “extended
smaller-half trick” without using more than time O(n log n) in total.

The combination of suffix trees, efficient merging of height-balanced trees,
and operations on height-balanced trees, which has been presented in this sec-
tion, constitutes a general technique to search for regularities in strings. To
our knowledge, the general technique has not been applied to string problems,
except those presented in Chapter 7 and 8, but we believe that it can be used
to improve, or simplify algorithms, for various strings problems, e.g. to improve
the running time of the algorithm for the string statistic problem presented by
Apostolico and Preparata in [12] from O(n log2 n) to O(n log n).

3.2 Finding Regularities

In this section we review computational methods for finding mathematically
well defined regularities in strings. We focus on methods for finding tandem
repeats, maximal pairs and maximal quasiperiodicities. These are all types of
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regularities that can be detected by the suffix tree based methods which we
present in details in Chapter 7 and Chapter 8.

3.2.1 Tandem Repeats

A string w is a tandem array if it can be constructed by concatenations of
a shorter string, i.e. if w = αk for some α ∈ Σ+ and k ≥ 2; otherwise the
string w is primitive. A tandem array αk is a called primitive tandem array
if α is primitive. A tandem array αk occurs at position i in string S if αk =
S[i .. i + k|α| − 1]. A tandem array that contains only two repetitions is called
a a tandem repeat (or square), i.e. α2 = αα is a tandem repeat.

Tandem repeats are probably the most widely studied type of repetitive
structure. A tandem repeat αα is a primitive tandem repeat if α is primitive.
A tandem repeat αα occurs at position i in string S if αα = S[i .. i + |αα| − 1].
Two occurences of tandem repeats αα and ββ are of the same type if and only
if α = β. A string that contains no occurrences of tandem repeats is squarefree.
In the beginning of this century Thue in [183, 184] showed that it is possible to
construct arbitrary long squarefree strings over any alphabet of more than two
characters. Since then several methods have been presented that in time O(n)
decide if a string of length n is squarefree, e.g. [132, 165, 42, 43].

To construct and evaluate methods that find occurences of tandem re-
peats it is useful to know how many occurrences, and types of tandem re-
peats, there can be in a string of length n. From the definition of a tandem
repeat follows that a string that consists of n identical characters contains∑n

i=1bi/2c = Θ(n2) occurrences of tandem repeats. It is well known that a
string of length n contains at most O(n log n) occurrences of primitive tandem
repeats, e.g. [41, 11, 176, 177]. The detailed analysis in [176] actually shows an
upper bound of 1.45(n + 1) log n − 3.3n + 5.87 on the number of occurrences
of primitive tandem repeats in a string of length n. The highly repetitive Fi-
bonacci strings, defined as F0 = 0, F1 = 1 and Fn = Fn−1Fn−2, are often
analyzed when counting occurrences and types of tandem repeats. A Fibonacci
string of length n contains Θ(n log n) occurrences of primitive tandem repeats,
e.g. [41, 59]. The detailed analysis in [59] actually shows that the nth Fibonacci
string Fn contains 0.7962|Fn| log |Fn|+O(|Fn|) occurrences of primitive tandem
repeats. If we only count the number of different types of tandem repeats that
can occur in a string, a recent result by Fraenkel and Simpson in [58] shows
that for any position i, in a string S of length n, there are at most two types
of tandem repeats, whose rightmost occurrence in S, is at position i. This im-
plies that at most 2n different types of tandem repeats can occur in a string
of length n. The detailed analysis in [59] shows that 0.7639|Fn |+ o(1) types of
tandem repeats occur in the nth Fibonacci string Fn.

Crochemore in [41] was the first to present a method that finds all occur-
rences of primitive tandem repeats, in a string S of length n, in time O(n log n)
and space O(n). His algorithm is based on successively refining a partitioning of
the positions in S into classes, such that two positions i and j, after refinement
step k, are in the same class if and only if S[i .. i+ k− 1] = S[j .. j + k− 1]. Oc-
currences of primitive tandem repeats are detected during each refinement step,
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and each refinement step is done without looking at the positions in the largest
class in the current partitioning. The “smaller-half trick”, and the O(n log n)
bound on the number of occurrences of primitive tandem repeats,z are used in
the analysis of the running time of the algorithm.

Apostolico and Preparata in [11] present a different method for finding all
occurences of primitive tandem repeats, in a string S of length n, in time
O(n log n) and space O(n). The general idea of their algorithm is very similar to
the general technique for detecting regularities that we present in Section 3.1.3.
Their algorithm is also based on a traversal of the binary expansion of the suffix
tree T (S) during which they at each node construct a data structure, called a
leaf-tree, that stores its leaf-list by merging the leaf-trees that store the leaf-
lists of its two children. Occurrences of primitive tandem repeats are detected
while merging the leaf-trees. The algorithm differs from an application of the
general technique because a leaf-tree is a specially constructed data structure
that is less flexible than a general height-balanced tree. The key feature of a
leaf-tree is that merging together n leaf-trees, that each stores a single element,
by successively merging a smaller leaf-tree into a larger leaf-tree, until only one
leaf-tree remains, takes time O(n log n) by the “smaller-half trick”.

Since there are strings of length n that contain Θ(n2) occurrences of tandem
repeats, reporting all occurrences of tandem repeats in a string of length n takes
time Θ(n2) in the worst case. Main and Lorentz in [131] were the first to present
a method that finds all occurrences of tandem repeats, in a string of length n,
in time O(n log n + z), where z is the number of reported occurrences. The
algorithm is a divide-and-conquer method that recursively finds all occurrences
of tandem repeats fully contained in the first half of S, and all occurrence of
tandem repeats fully contained in the second half of S, then finds all occurrences
of tandem repeats that start in the first half of S and end in the second half S.
The algorithm does not use the suffix tree. Landau and Schmidt in [113] present
a similar algorithm with the same running time. However, their algorithm uses
a suffix tree to solve the subproblem of finding all occurrences of tandem repeats
that start in the first half of S and end in the second half of S, and it also extends
to find all occurrences of k-mismatch tandem repeats in time O(kn log(n/k)+z).
A k-mismatch tandem repeat is a string that becomes an exact tandem repeat
after k or fewer characters are changed.

Stoye and Gusfield in [177] present a simple algorithm that finds all occur-
rences of tandem repeats, in a string S of length n, in time O(n log n + z). It is
easy to modify such that it finds all occurrences of primitive tandem repeats in
time O(n log n). The algorithm is based on a traversal of the suffix tree T (S)
during which all branching occurrences of tandem repeats are detected. An
occurrence of a tandem repeat αα at position i in S is a brancing occurrence if
and only if S[i+ |α|] 6= S[i+ |αα|]. It is easy to verify that there is a branching
occurrence of a tandem repeat αα at position i in S, if and only if, there is
a node v in the suffix tree T (S) with path-label α, where the indices i and
j = i + |α| are in the leaf-lists of distinct children. Stoye and Gusfield show
that all occurrences of tandem repeats can be deduced from the branching oc-
currences of tandem repeats in time proportional to their number. This follows
because a non-branching occurrence of a tandem repeat αα at position i im-
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plies an occurrence of another tandem repeat α′α′ at position i + 1, where α is
a left-rotation of α′, i.e. α = wa and α′ = aw, for some a ∈ Σ and w ∈ Σ∗.

Recall that a string of length n contains at most 2n different types of tandem
repeats. A step towards finding an occurence of each type of tandem repeat that
occur in a string more efficiently than finding, and comparing, the occurrences
of all tandem repeats in the string, is taken by Kosaraju in [109], who presents
an algorithm which, in time O(n), for each position i, in a string S of length n,
finds the shortest tandem repeat that occurs at position i. Recently, extending
on an idea presented by Crochemore in [42], Gusfield and Stoye in [75] present
an algorithm which in time O(n) finds an occurrence of every type of tandem
repeat that occur in a string S of length n. Their algorithm annotates the
suffix tree T (S) with a marker for each type of tandem repeat that occur in S,
which describes the endpoint of the path from the root in T (S) that spells
the tandem repeat. Gusfield and Stoye show how to use the annotated suffix
tree to list all occurrences of tandem repeats in S in time proportional to their
number, which yields an algorithm that in time O(n + z) finds all occcurrences
of tandem repeats in a string of length n, where z is the number of reported
occurrences. Kolpakov and Kucherov in [107] also present an algorithm that
finds all occurrences of tandem repeats in time O(n + z).

3.2.2 Maximal Pairs

A pair in a string S is the occurrence of the same substring twice. Formally, we
say that (i, j, |α|) is a pair of α in S, if and only if, 1 ≤ i < j ≤ |S|− |α|+1, and
α = S[i .. i + |α| − 1] = S[j .. j + |α| − 1]. That is, if the substring α occurs at
positions i and j in S. The gap of a pair (i, j, |α|) is the number of characters
j − i − |α| between the two occurrences of α in S. A pair (i, j, |α|) is left-
maximal if S[i− 1] 6= S[j − 1], i.e. if the characters to the immediate left of the
two occurrences of α are different, and right-maximal if S[i + |α|] 6= S[j + |α|],
i.e. if the characters to the immediate right of the two occurrences of α are
different. A pair (i, j, |α|) is maximal if it is both left- and right-maximal.
For example, the two occurrences of ma in maximal form a maximal pair of ma
with gap two, and the two occurrences of si in Mississippi form a right-maximal
pair of si with gap one. From the definition follows that a string of length n
contains at most O(n3) pairs and O(n2) maximal pairs. This is witnessed by
the string (aab)n/3, which contains Θ(n3) pairs and Θ(n2) maximal pairs.

Gusfield in [74, Chapter 7] presents a simple suffix tree based algorithm that
finds all maximal pairs, in a string of length n, in time O(n+ z), where z is the
number of reported maximal pairs. The algorithm is based on the observation
illustrated in Figure 3.2, which states that (i, j, |α|) is a right-maximal pair in S
if and only if there is a node v in the suffix tree T (S) with path-label α, such
that i and j are elements in the leaf-lists of distinct children.

In Chapter 7 we consider the more general problem of finding all maximal
pairs in a string S of length n, that adhere to the restrictions on gaps given by
two simple functions, g1, g2 : N → N, that specify the upper and lower bound
on allowed gaps. In Section 7.3 we present an algorithm that finds all maximal
pairs (i, j, |α|) in S where g1(|α|) ≤ j − i − |α| ≤ g2(|α|), i.e. all maximal pairs
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Figure 3.2: The suffix tree of the string babaaaababaab, where the marked path
to v spells the string abaa. This string forms the right-maximal pairs (2, 9, 4),
because positions 2 and 9 are elements in leaf-lists of distinct children of v.

with gap between g1(|α|) and g2(|α|), in time O(n log n + z) and space O(n),
where z is the number of reported pairs. In Section 7.4 we present an algorithm
that finds all maximal pairs (i, j, |α|) in S where j − i − |α| ≥ g1(|α|), i.e. all
maximal pairs with gap at least g1(|α|), in time O(n + z) and space O(n),
where z is the number of reported pairs.

The general idea of both algorithms follows from the connection between
right-maximal pairs and suffix trees. The idea is to traverse the binary expan-
sion of the suffix tree, TB(S), and to report the right-maximal pairs (i, j, |α|)
at node v that are maximal and adhere to the restrictions on gaps given by
g1 and g2, where α is the path-label of v, and i and j are elements in the
leaf-lists of distinct children of v. A problem when implementing this idea is
to avoid to inspect all right-maximal pairs in order to decide which ones are
maximal with gaps adhering to the restrictions given by g1 and g2. We ad-
dress this problem in two steps. Firstly, we develop algorithms that find only
right-maximal pairs with gaps adhering to the restrictions given by g1 and g2.
Secondly, we extend these algorithms to filter out right-maximal pairs that are
not left-maximal. In the following we will explain the techniques we use to
implement these two steps in both algorithms. Throughout the explanation
we will use v to denote a node in TB(S) with path-label α and children v1

and v2, where LL(v1) = (p1, p2, . . . , ps) and LL(v2) = (q1, q2, . . . , qt) such that
|LL(v1)| ≤ |LL(v2)|, pi ≤ pi+1 for 1 ≤ i < s, and qj ≤ qj+1 for 1 ≤ j < t,

The algorithm for finding all maximal pairs with gap between g1(|α|) and
g2(|α|) is an application of the general technique for detecting regularities pre-
sented in Section 3.1.3. When we visit node v during the traversal of TB(S),
two height-balanced trees, T1 and T2, that store the leaf-lists LL(v1) and
LL(v2) are available. To report all right-maximal pairs (i, j, |α|) with gap
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between g1(|α|) and g2(|α|), where i ∈ LL(v1), and j ∈ LL(v2), we first
MultiSucc(T2, e1, e2, . . . , es), where ei = pi + g1(|α|) + |α|, which returns for
every pi in LL(v1) a reference to the node in T2 that stores the minimum
element qj in LL(v2) such that the pair (pi, qj , |α|) has gap at least g1(|α|).
Starting at that node, we traverse T2 in order to visit nodes that store in-
creasing elements such that we can report the right-maximal pairs (pi, qj , |α|),
(pi, qj+1, |α|), (pi, qj+2, |α|), and so on, until the gap exceeds g2(|α|).

Since the sorted list of elements (e1, e2, . . . , es) can be constructed in time
O(n1) by traversing T1, and the MultiSucc operation can be performed in time
O(n1 log(n2/n2)), where n1 = |LL(v1)| and n2 = |LL(v2)|, the time we spend at
node v, not counting the time spent on reporting pairs, is well within the time
allowed by the “extended smaller-half trick”. It is easy to see that reporting
takes time time proportional to the number of reported pairs. The total running
time of the algorithm for finding right-maximal pairs with bounded gap is thus
O(n log +z), where z is the number of reported pairs.

To extend the reporting step of the above algorithm to report only maximal
pairs, we must avoid to report right-maximal pairs that are not left-maximal.
To ensure that the extended reporting step still takes time proportional to the
number of reported pairs, we must avoid to look explicitly at all right-maximal
pairs that are not left-maximal. This is achieved by maintaining an additional
height-balanced tree during the traversal of TB(S), which makes it possible, in
constant time, to skip blocks of consecutive elements in LL(v2) that all have
the same character to their immediate left in S. This height-balanced tree, the
block-start tree, is used to extend the reporting step such that whenever we are
about to report a pair (pi, qj, |α|), where S[pi − 1] = S[qj − 1], we instead skip
the block of elements in LL(v2) that starts with qj, and have S[pi − 1] as the
character to their immediate left in S, and continue reporting from the index
that follows this block. The details are in Section 7.3.2.

The algorithm for finding all maximal pairs with gap at least g1(|α|) is
also based on a traversal of TB(S). However, its running time of O(n + z)
implies that it cannot afford to keep track of the leaf-lists in height-balanced
trees. It turns out that the lack of an upper bound on the allowed gaps makes
it possible to report the proper pairs using a reporting scheme that can be
implemented without using height-balanced trees. The idea of the reporting
scheme is to report pairs (i, j, |α|) at node v, where we start with i and j being
from opposite ends of the leaf-lists LL(v1) and LL(v2), and work them inwards
in the leaf-lists, until the gap becomes smaller than g1(|α|).

More precisely, to report all right-maximal pairs (i, j, |α|) with gap at least
g1(|α|), where i ∈ LL(v1) and j ∈ LL(v2), we report for every pi, in increasing
order, the pairs (pi, qt, |α|), (pi, qt−1, |α|), (pi, qt−2, |α|), and so on, until the
gap becomes smaller than g1(|α|). We stop reporting when the gap of the pair
(pi, qt, |α|) is smaller than g1(|α|), when this happens, all pairs (pi′ , qt′ , |α|),
where i′ ≥ i and t′ < t, have an even smaller gap. If the leaf-lists, LL(v1) and
LL(v2), are stored in the heap-tree data structure described in Section 7.4.1,
then we can implement the reporting scheme in time proportional to the number
of reported pairs. The details are in Algorithm 7.3 in Section 7.4.2. The
key feature of heap-trees is that two heap-trees can be merged in amortized
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constant time. A traversal of TB(S), where we at each node construct a heap-
tree that stores its leaf-list by merging the heap-trees that store the leaf-lists of
its children, thus takes time O(n) in the worst case. Since the reporting at each
node takes time proportional to the number of reported pairs, this implies that
the total running of the algorithm for finding right-maximal pairs with lower
bounded gap time is O(n + z), where z is the number of reported pairs.

To extend the reporting step to report only maximal pairs, we need to store
the leaf-lists in a slightly more complicated data structure, which we call a
colored heap-tree. Besides supporting the operations of an ordinary heap-tree,
a colored heap-tree also makes it possible, in constant time, to skip blocks of
elements in LL(v2) that have the same character to their immediate left in S.
As in the previous algorithm, this operation is used during the reporting step
to avoid to inspect explicitly all right-maximal pairs that are not left-maximal.
The details are in Algorithm 7.4 in Section 7.4.2

Finding pairs with bounded gap is a flexible method for detecting various
regularities in strings. For example, a right-maximal pair (i, j, |α|) with gap zero
corresponds to a branching occurrence of a tandem repeat αα at position i. As
explained in Section 3.2.1, all occurrences of tandem repeats in a string can be
deduced from the set of branching occurrences of tandem repeats in the string
in time proportional to their number. This implies that the particular instance
of our algorithm which finds all right-maximal pairs with gap zero can be used
as yet another method for finding all occurrences of tandem repeats in time
O(n log n + z), where z is the number of reported occurrences.

3.2.3 Maximal Quasiperiodicities

Recall that a string is primitive if it cannot be constructed by concatenations of
a shorter string. The string abaabaabaab is primitive, but is can be constructed
by two superpositions of the string abaab. The string abaab is also primitive,
but unlike the string abaabaabaab it cannot be constructed by superpositions of
a shorter string. In some sense this makes the string abaab more primitive than
the string abaabaabaab. To formalize this difference between primitive stings,
Ehrenfeucht, cf. [8], suggested the notation of a quasiperiodic string.

A string is quasiperiodic if it can be constructed by concatenations and
superpositions of a shorter string; otherwise the string is superprimitive. We say
that a quasiperiodic string is covered by a shorter string, while a superprimitive
string is covered only by itself. It is perfectly possible that several different
strings cover the same quasiperiodic string. For example, abaab and abaabaab
both cover abaabaabaab. A superprimitive string α that covers a string γ is
a quasiperiod of γ. In Lemma 8.1 on page 146 we show that every string is
covered by exactly one superprimitive string. Hence, a superprimitive string α
that covers a string γ is the quasiperiod of γ. For example, the string abaab
is the quasiperiod of the string abaabaabaab. Apostolico, Farach and Iliopoulos
in [10] present an algorithm that finds the quasiperiod of a string of length n in
time O(n). This algorithm is simplified, and turned into an on-line algorithm,
by Breslauer in [28]. Moore and Smyth in [141] present an algorithm that finds
all substrings that cover a string of length n in time O(n).
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a a a b a a b b b a b a a b a a b a a b a a b b a a a b a a b b a b a a b a a b a a

a b a a b a b a a b a b a a b a b a a b a b a a b

a b a a b a b a a b a b a a b

3 10 13 17 20 27 33 36

Figure 3.3: A string of length 42 in which the substring from position 10 to
24 is a maximal quasiperiodic substring. To see why, consider the suffix tree
of the string, and let u be the node with path-label L(u) = abaab and leaf-list
LL(u) = (3, 10, 13, 17, 20, 27, 33, 36). There are four maximal runs in the leaf-
list LL(u); R1 = (3) from 3 to 7, R2 = (10, 13, 17, 20) from 10 to 24, R3 = (27)
from 27 to 31, and R4 = (33, 36) from 33 to 40. The run R2 spans the maximal
quasiperiodic substring abaabaabaabaab.

Before continuing with our treatment of quasiperiodic strings, we note a
small discrepancy in the common classification of strings. Recall that a string
is primitive if it cannot be written as αk for any k ≥ 2. Based on this definition,
and the correspondence between quasiperiodic and superprimitive, one would
expect that a periodic string is a string that can be written αk, for some k ≥ 2.
This is the definition by Gusfield in [74, page 40]. However, most commonly
a periodic string is defined as a string that can be written as αkα′, for some
k ≥ 2, where α′ is a prefix of α. This common definition of a periodic string
implies that a string can be both primitive and periodic. For example, bcabcabc
is primitive and periodic. This discrepancy is of course not a problem, but it
can be confusing if one is unaware of its presence.

Apostolico and Ehrenfeucht in [9] introduced the notion of maximal quasi-
periodic substrings of a string. A quasiperiodic substring γ = S[i .. j], with
quasiperiod α, is maximal if two properties hold. Firstly, no extensions of γ are
covered by α. Secondly, αa does not cover γa, where a = S[j+1] is the character
following γ in S. We identify a maximal quasiperiodic substring γ = S[i .. j]
with quasiperiod α by the triple (i, j, |α|).

For an illustration of maximal quasiperiodic substrings, consider the string S
of length 42 shown in Figure 3.3. The substring S[13 .. 21] = abaabaab is
quasiperiodic, but not maximal, because its quasiperiod abaab covers the exten-
sion S[10 .. 24] = abaabaabaabaab. On the other hand, the substring S[33 .. 40] =
abbabaab is quasiperiodic, but not maximal, because its quasiperiod abaab ex-
tended with S[41] = a covers S[33 .. 41] = abbabaaba. Finally, the substring
S[10 .. 24] = abaabaabaabaab is maximal quasiperiodic with quasiperiod abaab,
and it is identified by the triple (10, 20, 5).

A covering of a string γ by a shorter string α implies that γ contains an
occurrence of a tandem repeat ββ, where β is a prefix of α. For example, in
Figure 3.3 the covering of S[13 .. 21] = abaabaab by abaab implies the tandem
repeat abaaba. Every quasiperiodic string thus contains one or more occurrences
of tandem repeats. The result of Thue in [184], which states that arbitrary
long square-free strings exist, thus implies that arbitrary long strings which
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contain no quasiperiodic substrings also exist. Apostolico and Ehrenfeucht in [9]
present an algorithm that finds all maximal quasiperiodic substrings in a string
of length n in time O(n log2 n) and space O(n log n). In Chapter 8 we present
an algorithm that improves this algorithm by finding all maximal quasiperiodic
substrings in a string of length n in time O(n log n) and space O(n). Both
algorithms are based on traversals of the suffix tree of the string during which
maximal quasiperiodic substrings are detected at nodes with superprimitive
path-labels. To present the general idea of the algorithms in further details, we
need some additional terminology from Section 8.2.

Let S be the string in which we want to find maximal quasiperiodic sub-
strings. For a node v in the suffix tree T (S), we partition its leaf-list, LL(v) =
(i1, i2, . . . , ik), ij < ij+1 for 1 ≤ j < k, into a sequence of disjoint subsequences,
R1, R2, . . . , Rr, such that each R` is a maximal subsequence, ia, ia+1, . . . , ib,
where ij+1 − ij ≤ |L(v)|, for a ≤ j < b. Each R` is denoted a run at v, and
represents a maximal substring of S that can be covered by L(v), i.e. L(v) cov-
ers S[min R` .. |L(v)| − 1 + max R`]. We say that R` is a run from min R` to
|L(v)| − 1 + maxR`. A run R` at v coalesces at v if it contains indices from at
least two children of v, i.e. if for no child w of v we have that R` ⊆ LL(w). For
an example consider Figure 3.3, which illustrates a leaf-list LL(v) that contains
four runs. The run R2 = (10, 13, 17, 20) is a coalescing run because the oc-
curence of L(v) = abaab at position 20 is followed by the character b, while the
occurrences of abaab at the other positions in the run are followed by the char-
acter a. The run R4 = (33, 36) is not a coalescing run because the occurrences
of abaab at both positions in the run are followed by the same character a, i.e.
both positions are contained in the leaf-list at child w of v.

A fundamental connection between the maximal quasiperiodic substrings
of S and the suffix tree T (S) is stated by Apostolico and Ehrenfeucht in [9],
and restated in Theorem 8.2 on page 148. It says that (i, j, |α|) is a maximal
quasiperiodic substring of S, if and only if, there is a non-leaf node v in T (S)
with superprimitive path-label α, such that there is a coalescing run from i
to j + |α| − 1 at v. This yields the high level structure of both our algorithm,
and the algorithm by Apostolico and Ehrenfeucht; traverse the suffix tree T (S),
compute at each node v a data structure that keeps track of the runs in LL(v),
and report the coalescing runs if L(v) is superprimitive.

The algorithm by Apostolico and Ehrenfeucht keeps track of the runs in
LL(v) in a two-level data structure, where the first level is a balanced search
tree in which each leaf correspond to a run in LL(v), and the second level is
a set of balanced search trees, where each search tree corresponds to a leaf
in the first level, and stores the positions in the run that corresponds to that
leaf. Apostolico and Ehrenfeucht describe how to compute this data structure
at each node in T (S) in time O(n log2 n) in total. The tricky part of their
algorithm is to detect the nodes in the suffix tree that have superprimitive
path-labels. They sketch how to do this by inserting additional elements into
the data structure that are computed at every node during the traversal. The
analysis of the running time of the algorithm is done using the “smaller-half
trick”, but redoing the analysis using the knowledge of the “extended smaller-
half trick” does not yield a better analysis of the running time.
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Our algorithm presented in Section 8.5 is based on the general technique for
detecting string regularities explained in Section 3.1.3. The algorithm is split
into two phases. In the first phase we traverse the suffix tree T (S) in order to
identify the nodes that have superprimitive path-labels. In the second phase
we report the coalescing runs, i.e. the maximal quasiperiodic substrings, from
the nodes that have superprimitive path-labels. In contrast to the algorithm
by Apostolico, we do not keep track of the runs in LL(v) explicitely, instead
we compute at each node v a height-balanced tree which stores LL(v). The
operations on height-balanced trees listed in Theorem 8.3 on page 150 then make
it possible to compute the coalescing runs in LL(v) within the time permitted
by the “extended smaller-half trick”. The first phase, i.e. identifying the nodes
that have superprimitive path-labels, is the most difficult part of the algorithm.
It is implemented as two traversals of the suffix tree during which we pose and
answer questions about the superprimitivity of the path-labels.

A question about the superprimitivity of path-label L(v) is generated at
an ancestor node w of v, and posed at an ancestor node u of w. A question
about the superprimitivity of L(v) posed at node u is a triple (i, j, v), where
i ∈ LL(v) ⊂ LL(u), and j = i + |L(v)| − |L(u)| ∈ LL(u). The answer to
a question (i, j, v) posed at node u is true, if and only if, i and j are in the
same coalescing run at u. If the answer to the question (i, j, v) posed at u
is true, then L(u) covers L(v), i.e. L(v) is quasiperiodic. The idea is to pose
and answer enough questions to establish the superprimitivity of the path-label
of every node in T (S). This is done in two traversals of T (S). Questions are
generated in the first traversal, and answered in the second traversal. The many
details are explained in Step 1 and Step 2 in Section 8.5. To reduce the space
consumption of our algorithm to O(n), the two traversals must be implemented
as two interleaved traversals as explained in Section 8.7.

Recently, and independent of our work, Iliopoulos and Mouchard in [95] have
published work on detecting maximal quasiperiodic substrings, which includes
an algorithm that finds all maximal quasiperiodic substrings in time O(n log n).
Their algorithm is not based on the suffix tree, but on the partitioning technique
used by Crochemore in [41] to detect primitive tandem repeats, combined with
a data structure which supposedly is described by Imai and Asano in [97].
Together with the algorithm by Iliopoulos and Mouchard, our algorithm show
that finding maximal quasiperiodic substrings can be done in two different
ways corresponding to the algorithms by Crochemore [41] and Apostolico and
Preparata [11] for finding primitive tandem repeats.



Chapter 4

Prediction of Structure

Nuts!
— Anthony C. McAucliffe, Bastogne, December 22, 1944.

The simplicity, and the amount of information preserved, when describing com-
plex biomolecules as sequences of residues, i.e. strings over finite alphabets, is
the foundation of most algorithms in computational biology, including the ones
that have been presented in the previous chapters. However, in the real world
the biomolecules DNA, RNA, and proteins are not one-dimensional strings, but
full three-dimensional structures, e.g. the three-dimensional structure of the
double stranded DNA molecule that stores the genetic material of an organism
is the famous double helix described by Watson and Crick in [201].

The genetic material of an organism is, as described in Section 1.2, the
blueprint for the RNA and protein molecules that participate in the biochemi-
cal processes necessary for the organism to live. The functionality of an RNA or
protein molecule is the tasks it performs in the organism, that is, the biochem-
ical processes it participates in. It is widely believed that the functionality of a
biomolecule is determined primarily by its three-dimensional structure together
with a few key residues. Hence, the majority of the residues in an RNA or pro-
tein sequence are, by themselves, not very important for the functionality of
the biomolecule, and knowledge about the structure of a biomolecules is much
more important for deciding its functionality than knowledge about its entire
sequence of residues. Knowledge about the functionality of biomolecules is
highly valued because it can be used to design new biomolecules with a specific
and desired functionality, e.g. to cure or control a disease.

Since the structure of a biomolecule is more important for its functionality
than its sequence of residues, related biomolecules that perform similar tasks in
different organisms probably have very similar structures while their sequences
of residues can be quite different. This implies that it can be useful to include
structural information when comparing biomolecules from different organisms.
For example by alignment of structures as described in [181].

The structural information about a biomolecule is usually classified in four
structural levels. Each structural level can be seen as a stepping stone towards
the next structural level and a better understanding of the functionality of the
biomolecule. The primary structure describes the sequence of residues that
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forms the biomolecule. For an RNA molecule this is a sequence of nucleotides,
and for a protein this is a sequence of amino acids. The secondary structure
describes structural elements that are important in the formation of the full
three-dimensional structure of the biomolecule. For an RNA molecule this is a
set of base pairs, and for a protein this is segments of the amino acid sequence
that form regular structural patterns such as helices and strands. The tertiary
structure describes the full three-dimensional structure of the biomolecule. The
quaternary structure describes how several biomolecules come together and in-
teract to form larger aggregated structures.

To determine experimentally the higher structural levels of an RNA or pro-
tein molecule is a difficult and time consuming task. Methods for computational
prediction of the higher structural levels of a biomolecule based on its primary
structure, or other available information, are thus in demand. In the follow-
ing sections we review and present such methods. Our guideline is models for
structure formation based on energy minimization. In Section 4.2 we focus on
RNA secondary structure prediction and the results in our paper An Improved
Algorithm for RNA Secondary Structure Prediction presented in Chapter 9. In
Section 4.3 we focus on protein tertiary structure prediction and the results in
our paper Protein Folding in the 2D HP Model presented in Chapter 10.

4.1 Free Energy Models

To computationally predict the structure of a biomolecule it is necessary to have
a precise model which abstracts the formation of structure in the real world to
the desired level of detail. The three-dimensional structure of a biomolecule is
not static, but vibrates around an equilibrium called the native state. Experi-
ments reported by Anfinsen et al. in [6] show that a protein in the real world
folds into, i.e. vibrates around, a unique three-dimensional structure, the native
conformation, independent of its starting conformation. The same is true for
an RNA molecule. The structure prediction problem is to predict the native
conformation of a biomolecule in a model of structure formation.

A quantum mechanical description of the interaction between all the atoms
in the biomolecule would be a possible model of structure formation, but the
structure prediction problem in such a model would be difficult, if not impos-
sible, to solve. Since biomolecules are part of the real world they are believed
to obey the laws of thermodynamics which say that a biomolecule will spend
most of its time in a state of least free energy. The most stable structure of
a biomolecule, i.e. the native conformation, should thus be a structure of least
free energy. Aspects such as kinetics, or interactions with other biomolecules,
also influence the structure of a biomolecule, but in the natural environment
of the biomolecule the minimization of free energy is believed to be the most
important force of structure formation.

The constraints of thermodynamics yields a guideline for constructing mod-
els of structure formation in which the structure prediction problem is cast as a
minimization problem of the free energy over the possible conformations of the
biomolecule. The specification of a model of structure formation following this
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guideline, hereafter called a free energy model, should include the following:

• A model of the biomolecule, that is, an abstraction of the atoms in the
biomolecule and the various bonds between them.

• A model of the possible conformations of the abstracted biomolecule, that
is, a set of rules describing the legal conformations.

• A computable energy function that assigns a free energy to every legal
conformation of the abstracted biomolecule.

The solution to the structure prediction problem in a free energy model is
the conformations of the abstracted biomolecule that minimize the free energy
function. A conformation that minimizes the free energy function is called
a native conformation in the model. The relevance of the predicted native
conformation in a model, and the computational resources such as time and
space needed to compute it, depend entirely on the choice of model.

If a native conformation of a biomolecule in a model can be computed in
polynomial time in the size of the abstraction of the biomolecule, then the
model is called tractable; otherwise the model is called intractable. For a model
to be relevant it has to reflect some of the properties of structure formation
in the real world. An obvious property to reflect is visual equivalence between
native conformations in the model and native conformations in the real world.
For tertiary structure prediction, visual equivalence is to aim for the full three-
dimensional structure. For secondary structure prediction, visual equivalence is
to aim for the secondary structure which is similar to the secondary structure
that can be inferred from the full three-dimensional structure. A more subtle,
but still useful, property to reflect is behavioral equivalence between structure
formation in the model and structure formation in the real world. Tractable
and relevant models are of course in demand.

In the following sections we consider models for RNA secondary structure
prediction and protein tertiary structure prediction which illustrate how the
choice of model influences the relevance and tractability of the structure pre-
diction problem. This exemplifies the interplay between modeling the biological
reality and constructing a relevant algorithm mentioned in Chapter 1

4.2 RNA Secondary Structure Prediction

The secondary structure of a biomolecule describes structural elements that are
important in the formation of the full three-dimensional structure. Recall that
an RNA molecule is a single sequence of nucleotides that consists of a back-
bone of sugars linked together by phosphates with an amine base, adenine (A),
uracil (U), guanine (G) or cytosine (C), attached to each sugar. The key force
in the formation of the three-dimensional structure of an RNA molecule is hy-
drogen bonds, called base pairs, between the amine bases. Base pairs are also
responsible for the formation of the double helix structure of a double stranded
DNA molecule. The double helix structure is stabilized by base pairs between
the complementary bases, A and T , and, C and G, on the two complementary
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DNA sequences that form the molecule. Base pairs between complementary
bases are called Watson-Crick base pairs. In an RNA molecule base pairs be-
tween the complementary bases, A and U , and, C and G, are the most common,
but other base pairs, most frequently G,U base pairs, are also observed.

The secondary structure of an RNA molecule is the base pairs in the three-
dimensional structure of the molecule. Since base pairs are formed between
nucleotides, we talk about the secondary structure of an RNA sequence. The
secondary structure of an RNA sequence S ∈ {A,G,C,U}∗ is a set S of base
pairs i · j with 1 ≤ i < j ≤ |S|, such that no base S[i] is paired with more than
one other base S[j], that is, ∀i · j, i′ · j′ ∈ S : i = i′ ⇔ j = j′.

A secondary structure contains pseudoknots if it contains overlapping base
pairs i · j and i′ · j′, where i < i′ < j < j′. Pseudoknots occur in real world
structures of RNA molecules. Recently Rivas and Eddy in [167] presented
an algorithm that predicts the secondary structure of an RNA sequence of
length n allowing certain pseudoknots in time O(n6). Most often pseudoknots
are ignored in order to allow for faster algorithms which for large classes of
RNA sequences still predict biological relevant secondary structures. (Recently
we have considered the problem of pseudoknots in [125].)

In the rest of this section we focus on prediction of pseudoknot-free RNA
secondary structures. To formulate this problem as a structure prediction prob-
lem in a free energy model, we have to specify an energy function that assigns
a free energy to every possible pseudoknot-free RNA secondary structure.

From the definition of an RNA secondary structure it seems natural to
specify the energy function in terms of the formed base pairs by assigning a
free energy to every possible base pair, and state the free energy of a secondary
structure as the sum of the free energies of its base pairs. This is somewhat
similar to a classical score function for the pairwise alignment problem which
assigns a cost to every possible column of an alignment. The algorithm by
Nussinov et al. in [155] implements this idea by using a free energy function
that is minimized when the secondary structure contains the maximum number
of complementary base pairs. The algorithm takes time O(n3) for predicting the
secondary structure of an RNA sequence of length n but is generally considered
to be too simplistic to give accurate secondary structure predictions.

The most common way to specify an energy function that yields more accu-
rate secondary structure predictions is to specify the free energy of a secondary
structure in terms of more complex structural elements than just individual
base pairs. The general idea is to consider a pseudoknot-free RNA secondary
structure S as a collection of loops and external unpaired bases. To define these
structural elements we need to introduce some terminology.

If i < k < j and i · j ∈ S then we say that k is accessible from i · j ∈ S if
there is no base pair between i ·j and k, that is, if there is no base pair i′ ·j′ ∈ S
such that i < i′ < k < j′ < j. The absence of pseudoknots implies that a base
is accessible from at most one base pair. If a base is not accessible from any
base pairs it is called an external base. For each base pair i · j ∈ S we define
the loop closed by that base pair to consist of all bases that are accessible from
it. We say that i · j is the exterior base pair of the loop, and that all base pairs
i′ · j′, where i′ and j′ are accessible from i · j, are the interior base pairs of the
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Figure 4.1: An example RNA structure. Bases are depicted by circles, the RNA
backbone by straight lines and base pairings by zigzagged lines. This figure is
copied from the paper in Chapter 9.

loop. The absence of pseudoknots implies that if i′ is accessible from i · j, and
i′ · j′ ∈ S, then i′ · j′ is an interior base pair of the loop closed by i · j.

As illustrated in Figure 4.1 loops are named according to the number of
interior base pairs. If there is no interior base pairs then the loop is called a
hairpin loop. If there is one interior base pair then there are three possibilities
to consider; if there are no unpaired bases in the loop then the loop is called a
stacked base pair ; if there are unpaired bases between the exterior and interior
base pair only on one side, then the loop is called a bulge; finally, if there are
unpaired bases between the exterior and interior base pair on both sides, then
the loop is called an internal loop. If there are more than one interior base
pair then the loop is called a multibranched loop. The absence of pseudoknots
implies that a secondary structure can be decomposed into a collection of loops
and external bases that are are disjoint except if the exterior base pair of one
loop is also an interior base pairs of another loop, in which case the two loops
share a single base pair.

Tinoco et al. in [186] propose a model for the free energy of a secondary
structure of an RNA molecule that is based on the decomposition of the struc-
ture into loops. The model states that the free energy of a secondary structure
is the sum of independent energies for each loop in the structure. To spec-
ify this free energy function we must specify how to compute the free energy
for each type of loop. To get a good secondary structure prediction, the loop
specific free energy functions should reflect the biophysics that govern RNA
structure formation in the real world. To achieve this, the first step is to decide
on the mathematical structure of the free energy functions, and the second step
is to determine the proper parameters of the free energy functions. Perform-
ing experiments to estimate the energies of the various types of loops in RNA
structures is ongoing work. Recent results are published in [134].

Using a loop dependent free energy function, Zuker and Stiegler in [213],
and Nussinov and Jacobsen in [154], present a recursive algorithm that finds
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the minimum free energy of a secondary structure of an RNA sequence S of
length n in time O(n3). An optimal structure of S, i.e. a secondary structure
of S with the minimum free energy, can be found by backtracking the recursive
computation. The general idea of both algorithms is to find for every substring
S[i .. j] the minimum free energy of the secondary structure of the substring
that contains the base pair i · j. This is done by minimizing, over every possible
loop that can be closed by the base pair i · j, the sum of the free energy of
that loop and the free energies of the optimal structures that are closed by the
interior base pairs of that loop.

It is convenient to think of this minimization as being split according to the
type of loop being closed by i · j, that is, first we find the minimum free energy
of a secondary structure of S[i .. j] where base pair i · j close a specific type of
loop, then we minimize over the possible types of loops. We say that we for
every base pair i ·j handle every type of loop. Since there is only a fixed number
of types of loops, the running time of the algorithm is determined by the time
it takes to handle a specific type of loop. The full algorithm using dynamic
programming is outlined in Section 9.2. The algorithm is usually referred to
as the mfold algorithm because it forms the basis of the mfold server for RNA
secondary structure prediction [214].

The general idea of the mfold algorithm is independent of the loop specific
free energy functions, but to obtain the stated running time of O(n3) certain
assumptions are necessary. By counting follows that a base pair i·j can close an
exponential number of multibranched loops. Hence, if the free energy function
of multibranched loops is such that we have to consider every possible multi-
branched loop that is closed by a specific base pair in order to determine the
loop of minimum free energy, then the running time of the entire mfold algo-
rithm becomes exponential. To avoid this, the free energy of multibranched
loops is, cf. Equation 9.5 on page 165, usually specified as a linear combination
of the number of unpaired bases in the loop and the number of interior base
pairs in the loop, plus a constant term. This makes it possible to handle all
multibranched loops closed by the base pair i · j in time O(j − i), which im-
plies that we use time O(n3) in total to handle all multibranched loops. The
bottleneck of the computation then becomes the handling of internal loops. By
counting follows that a base pair i · j can close O((j − i)2) internal loops, which
implies that there are O(n4) possible internal loops to consider in total. To get
a total running time of O(n3) we cannot afford to consider each of these internal
loops explicitly. It is therefore often assumed that the size of internal loops, i.e.
the number of bases in the loop, is upper bounded by some constant k, which
is called the cutoff size of internal loops. Since a base pair i · j can close O(k2)
internal loops of size at most k, it is possible to handle all internal loops with
size at most k in time O(k2n2). The assumption of a cutoff size thus reduces
the total running time of the mfold algorithm to O(n3).

For certain free energy functions it is possible to remove the restriction on
the size of internal loops without increasing the asymptotic running time of the
entire algorithm, that is, without making it necessary to consider every one of
the O(n4) possible internal loops. Waterman and Smith in [199] describe how
to handle internal loops in time O(n3) using a free energy function of internal
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loops that depends only on the size of the loop and the stacking of the exterior
and interior base pair. Eppstein et al. in [51] describe how to reduce the time
to O(n2 log n) if the free energy function of internal loops is a convex function
of the size of the loop. If the free energy function of internal loops is an affine
function of the size of the loop, the time can be reduced to O(n2) by adapting
the technique from the method by Gotoh [67] for pairwise alignment with affine
gap cost. Unfortunately none of these free energy functions are sufficiently close
to reality to give accurate secondary structure predictions.

Experiments has led to the acceptance of a free energy function for internal
loops that is a sum of independent terms contributed by the size of the loop,
the base pair stacking of the exterior and interior base pair, and the asymmetry
of the loop, that is, the relation between the number of unpaired bases on
each side of the exterior and interior base pair. These terms are illustrated in
Figure 9.2 on page 166. The asymmetry term implies that we cannot use the
method by Waterman and Smith [199] to handle internal loops in time O(n3).
Papanicolaou et al. in [156] propose that the asymmetry term should be given
by a Ninio type asymmetry function cf. Equation 9.15 on page 171, which is
the most commonly used type of asymmetry functions in practice.

In Chapter 9 we describe how to handle internal loops with cutoff size k using
a free energy function cf. Figure 9.2, and a Ninio type asymmetry function, in
time O(kn2). By setting the cutoff size to n this reduces the time it takes to
handle unrestricted internal loops using a realistic free energy function to O(n3).
The general idea is to observe that if the number of unpaired bases on each side
of the two base pairs in an internal loop is larger than some small constant, then
the asymmetry term given by an asymmetry function of the Ninio type only
depends on the lopsidedness of the internal loop, that is, it only depends on the
difference between the number of unpaired bases on each side of the exterior
and interior base pair. This observation makes it possible to determine the
optimal interior base pair of most equal sized internal loops closed by a specific
base pair i · j in constant time, which implies the reduced running time. The
details are in Section 9.3. The method can also be used to improve the handling
of internal loops when computing the full equilibrium partition function by the
method described by McCaskill in [136]. The details are in Section 9.3.3.

In Section 9.5 we describe several experiments that examine if removing the
upper bound on the size of internal loops improves the quality of the predicted
secondary structures. In the first experiment we construct an artificial RNA
sequence with a secondary structure that cannot be predicted properly with
an upper bound on the size of internal loops. In the second experiment we
examine a real RNA sequence for which an upper bound on the size of inter-
nal loops seems to influence proper secondary structure prediction, when the
sequence is folded at high temperatures, where “temperature” is modeled by
the parameters of the free energy function. The two experiments indicate that
a cutoff size of 30 (the most commonly used in practice) is reasonable for most
practical applications. However, our method removes any speculations about a
reasonable cutoff size without increasing the asymptotic running time.

Free energy minimization methods to predict the secondary structure of an
RNA molecule based on its primary structure are useful, but unfortunately they
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seldom predict the true secondary structure. Mathews et al. in [134] report that
on average only 73 percent of the base pairs in the true secondary structure are
found in a secondary structure predicted by free energy minimization methods,
while a secondary structure that contains more true base pairs is usually found
among the structures with energy close to the minimum free energy. Zuker
in [211] presents a method for finding suboptimal secondary structures of an
RNA sequence which can be used to search for these structures.

If related RNA sequences are available, the fact that structure similarity is
more conserved than sequence similarity can be used to improve the quality of
the structure prediction. One approach is to construct the secondary structure
from the parsing of a stochastic context-free grammar which parameters are es-
timated from a multiple alignment of the related RNA sequences, e.g. [104, 172].
Another approach is to combine the alignment of the related RNA sequences
with the prediction of a consensus secondary structure, e.g. [66, 50].

4.3 Protein Tertiary Structure Prediction

The structural elements that are important in the formation of the three-
dimensional structure of a protein, i.e. the secondary structure of a protein,
are segments of consecutive amino acids forming regular structural patterns
called α-helices and β-strands. An α-helix is a winding spiral that stabilizes by
forming hydrogen bonds between neighboring turns, and a β-strand is a straight
segment of the amino acids sequence that stabilizes by forming hydrogen bonds
between neighboring β-strands that run in parallel forming β-sheets.

Predicting protein secondary structure is usually addressed by pattern recog-
nition methods such as neural networks [164, 168] or hidden Markov models [15].
The general idea when using hidden Markov models to predict protein secondary
structure is to construct a model in which the most likely sequence of states
that generates a given amino acid sequence can be interpreted as deciding for
each amino acid whether it is located on a α-helix or on a β-strand. Knowledge
about the secondary structure of a protein is useful, but knowing its tertiary
structure, i.e. the three-dimensional structure of the native state of the protein,
is much more useful. The tertiary structure contains the full description of
the secondary structure, and is an important step towards understanding the
quaternary structure, and hopefully the functionality of the protein.

4.3.1 Modeling Protein Structure

To computationally predict the structure of a protein using a free energy model,
we must decide how to model the protein, how to model the possible conforma-
tions of the protein, and how to model the free energy of a conformation. These
decisions influence the level of detail of the predicted protein structure. Fig-
ure 4.2 shows three possible levels of detail. In the following we will consider
possible free energy models for protein structure prediction which gradually
decrease the level of detail of the predicted protein structure.

In chemistry a molecule is usually viewed as a collection of atoms connected
by bonds. Using this as the model for proteins, we can specify the tertiary struc-
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Figure 4.2: The two leftmost figures shows the structure of a hemoglobin protein
from the same angle but with a different level of detail. In the figure to the
left all atoms except hydrogen atoms are present. In the middle figure only the
backbone of the protein is shown. The figure to the right is an example of a
structure in the two-dimensional hydrophobic-hydrophilic lattice model.

ture of a protein by stating the angle, the length, and the torsion of every bond
in its structure. This is a very complex description that involves information
about every atom in the protein. To reduce the complexity of the description
some atoms can be omitted, or some atoms can be grouped together into larger
units which are treated as single atoms in the model. Such reductions affect the
level of detail by reducing the visual equivalence between native conformations
in the model and native conformations in the real world.

A model with a detailed description of the protein structure which involves
information about individual atoms, is often referred to as an analytic model.
The free energy function in an analytic model is most often specified by terms
contributed by bonded and non-bonded atoms. For bonded atoms the terms
depend on the bond lengths, the bond angles, and the bond torsions. For non-
bonded atoms the terms depend on physical principles such as Coulombic and
van der Walls forces, or statistical information inferred from known structures,
such as mean force potentials [174]. The detailed description of the protein
structure, and the many parameters of the free energy function, hint that the
structure prediction problem in an analytic model is computationally hard. It
is therefore not surprising that Ngo and Marks in [150] prove that the structure
prediction problem in a typical analytic model is NP hard.

One way to reduce the complexity of an analytic model is to limit the bond
lengths, angles and torsions to fixed sets of legal values. This makes it possible
to enumerate all legal conformations of a protein, and, if time permits, to solve
the structure prediction problem by considering each of the finitely many legal
conformations of a protein. Pedersen and Moult in [160] suggest that he sets of
legal values should be compiled from known protein structures.

Another approach to protein structure prediction is the threading problem
suggested by Jones, Taylor and Thornton in [100]. This approach can be
thought of as an analytic model in which bond lengths, angles and torsions
are limited to those occurring in a fixed set of known structures. The general
idea of threading is to compare a protein with unknown structure against a set
of known structures, and to predict its structure as the known structure that
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fits best according to some energy function. The legal conformations of a pro-
tein is thus limited to a set of known structures. The name threading follows
from the mental picture of threading the amino acids of the protein with un-
known structure onto every one of the known structures in order to determine
the known structure that fits best. Threading is motivated by the belief that
the number of essential different protein structures is small compared to the
number of different proteins [37], which should make it possible to collect a rep-
resentative collection of known protein structures to compare against. Treading
methods using branch-and-bound techniques [115] and genetic algorithms [206]
have been used successfully. A polynomial time algorithm has been proposed for
a specific class of threading problems [205], but the general threading problem
has been proven NP complete by Lathrop in [114].

For computational and modeling purposes it might be desirable to limit the
legal bond lengths, angles and torsions to the point where legal conformations
of a protein are reduced to embeddings of its atoms into a lattice. A model with
this property is often referred to as a lattice model. A lattice model is most often
subject to further simplifications than an analytic model with similar bounds
on legal bond lengths, angles and torsions. Typically the protein is modeled
only as a sequence of bonded amino acids, the legal conformations limited to
self-avoiding embeddings of the sequence of amino acids into a lattice, where
bonded amino acids are required to occupy neighboring lattice points, and the
free energy of a conformation specified only in terms of the pairs of non-bonded
amino acids that occupy neighboring lattice points. In short, lattice models
aim to simplify analytic models by avoiding the atomic details.

The most widely used type of lattice is the two- or three-dimensional square
lattice. The rightmost figure in Figure 4.2 shows a conformation of a protein
in a two-dimensional square lattice. It is obvious that there is little visual
equivalence between the native conformation in a square lattice model and
the native conformation in the real world. But Dill et al. in [45] describe
experiments that support some behavioral equivalence between the structure
formation process in square lattice models and the structure formation process
in the real world. The behavioral equivalence is also addressed by Sali et al.
in [170], who based on experiments using square lattice models suggest that
only proteins for which the structure of minimum free energy has significantly
less free energy than other structures of the protein, can be expected to fold
into the structure of minimum free energy. Lattice models have become popular
because of their simplicity which allows the structure prediction problem to be
solved by considering each of the finitely many legal conformations of a protein.
This, of course, is only feasible for small proteins, but still useful for studying
the behavioral equivalences. The structure prediction problem has been proven
NP complete in several square lattice models, e.g. [57, 157, 190, 26, 40].

The hydrophobic-hydrophilic model proposed by Dill in [44] is one of the
simplest, but most popular square lattice models. It models the belief that a
major contribution to the free energy of the native conformation of a protein
is due to interactions between hydrophobic amino acids, which tend to form a
core in the spatial structure that is shielded from the surrounding solvent by
hydrophilic amino acids. The model is called the HP model, where H stands for
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hydrophobic, and P stands for polar. In the HP model a protein is abstracted
as a sequence of amino acids where each amino acid is classified as being either
hydrophobic or hydrophilic. If we use “0” to denote a hydrophilic amino acid,
and “1” to denote a hydrophobic amino acid, then we can describe this abstrac-
tion of a protein as a string over the alphabet {0, 1}. A legal conformation, or
folding, of a protein in the HP model is a self-avoiding embedding of its ab-
straction as a string into the two- or three-dimensional square lattice such that
adjacent characters in the string, i.e. adjacent amino acids in the sequence, oc-
cupy adjacent lattice points. The free energy of a conformation is proportional
to the number of non-local hydrophobic bonds. A non-local hydrophobic bond
is a pair of non-adjacent hydrophobic amino acids that occupy adjacent lattice
points. The HP model is described in more details in Section 10.2.

The rightmost figure in Figure 4.2 shows a conformation in the 2D HP model
with nine non-local hydrophobic bonds. Several heuristics have been applied to
predict the native conformation of a protein in the HP model, e.g. [191, 207],
but most interestingly from our point of view is that the HP model was the
first reasonable model for protein structure formation in which approximation
algorithms for the protein structure prediction problem were formulated. This
was done by Hart and Istrail in [80]. For a while it was even believed that
the protein structure prediction problem in the HP model would be solvable in
polynomial time, but recently it has been shown NP complete in [26, 40].

The hardness of the protein structure prediction problem, even in very sim-
ple free energy models such as the two-dimensional HP model, makes it ap-
parent that in order to computationally investigate protein structure formation
one has to think about heuristics, approximation algorithms, or other model-
ing approaches. If someone claims that an efficient method for predicting the
atomic details of a protein structure will be available soon, he or she certainly
risks being classified according to the quote beginning this chapter.

4.3.2 Approximating Protein Structure

An approximation algorithm is an algorithm that gives solutions guaranteed
close to the optimal solution. Besides the algorithmic challenges, the motiva-
tion for studying approximation algorithms for the protein structure prediction
problem is very well captured by Ngo et al. in [151, page 46]:

“An approximation algorithm (for the protein structure prediction
problem in any reasonable model) might be of significant practical use in
protein-structure prediction, because exactness is not an absolute require-
ment. If the guaranteed error bound were sufficiently small, an approx-
imation algorithm might be useful for generating crude structures that,
though not necessarily folded correctly, are close enough to the native
structure to be useful. If not, merely knowing that the energy of the opti-
mal structure is below a certain threshold (by running the approximation
algorithm) could still be of use as part of a larger scheme.”

The first approximation algorithms for the protein structure prediction
problem were formulated in the HP model by Hart and Istrail in [80]. As
explained in Section 10.2, the free energy of a conformation in the HP model is
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proportional to the number of non-local hydrophobic bonds. We say that the
number of non-local hydrophobic bonds in a conformation is the score of the
conformation. Let OPT(S) be the optimal, i.e. maximum, number of non-local
hydrophobic bonds possible in a conformation of S ∈ {0, 1}∗ in the HP model. A
conformation of S with this maximum number of non-local hydrophobic bonds
is a native conformation of S in the 2D HP model.

An approximation algorithm for the structure prediction problem in the
HP model should find a conformation of S with score, A(S), that is guaranteed
close to the optimal score OPT(S). We focus on the case where the guarantee
is given by an approximation ratio that specifies the possible deviation from
the optimal solution by a multiplicative constant. We say that an approxi-
mation ratio α is absolute if ∀S ∈ {0, 1}∗ : A(S) ≥ α · OPT(S). Sometimes
an absolute approximation ratio cannot be guarantee because of an additive
term that becomes negligible small to OPT(S) when OPT(S) becomes large.
To handle this situation we say that an approximation ratio α is asymptotic if
∀ε > 0 ∃k ∀S ∈ {0, 1}∗ : OPT(S) ≥ k ⇒ A(S) ≥ (α − ε) · OPT(S).

Hart and Istrail in [80] present an approximation algorithm for the structure
prediction problem in the 2D HP model with an absolute approximation ratio
of 1/4, and an approximation algorithm for the structure prediction problem in
the 3D HP model with an asymptotic approximation ration of 3/8. The running
time of both algorithms is O(n), where n is the length of the string to fold. The
general idea of both algorithms is the same. The better approximation ratio in
the 3D HP model follows because of the additional degree of freedom in the 3D
square lattice compared to the 2D square lattice. In the following we focus on
the algorithm in the 2D HP model and some possible improvements.

The approximation algorithm in the 2D HP model is based on dividing
the hydrophobic amino acids in S, i.e. the 1’s, into two sets depending on
their position: EVEN(S) is the set of even-indexed positions in S that contain
a hydrophobic amino acid, and ODD(S) is the set of odd-indexed positions
in S that contain a hydrophobic amino acid. Hart and Istrail show that 2 ·
min{|EVEN(S)|, |ODD(S)|}+ 2 is an upper bound on OPT(S), and that there
is a position in S that splits S into two parts, such that the one part contains at
least half of the positions in EVEN(S), and the other part contains at least half
of the positions in ODD(S). They construct a folding of S by bending it at that
position such that the two parts of S are placed opposite of each other in the 2D
square lattice forming the two stems of an “U”. The two stems are contracted
by loops such that every other lattice point along the face of each contracted
stem is occupied by an hydrophobic amino acid. The contraction is performed
such that these hydrophobic amino acids occupy positions in S that are either
totally contained in EVEN(S), or totally contained in ODD(S), depending on
the stem. The resulting fold is an U-fold such as illustrated in Figure 10.2 on
page 185, where at least min{|EVEN(S)|, |ODD(S)|}/2 non-local hydrophobic
bonds are formed between the contracted stems. The upper bound on OPT(S)
implies an asymptotic approximation ratio of 1/4. By being a little bit more
careful it is possible to achieve an absolute approximation ratio of 1/4.

In Chapter 10 we present three attempts to improve on the approximation
ratio of the Hart and Istrail folding algorithm in the 2D HP model. The first
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attempt is based on the observation that the Hart and Istrail folding algorithm
only attempts to maximize the number of non-local hydrophobic bonds between
the two contracted stems under the restriction that all non-local bonded hy-
drophobic amino acids on each contracted stem must occupy positions in S
that have indices of equal parity. It seems like an obvious improvement to re-
move this restriction, and simply compute the U-fold that has the maximum
number of non-local hydrophobic bonds between the two contracted stems. As
explained in Section 10.3 this can be done in time O(n2), but as illustrated in
Figure 10.4 on page 187 it does not improve on the approximation ratio.

Another way to try to improve on the approximation ratio is to consider a
larger set of legal conformations than U-folds. Figure 10.5 on page 187 shows
two such generalizations that we consider in Section 10.3. The first general-
ization, S-folds, is to allow multiple bends combined with loops on the outer
stems. The second generalization, C-folds, is to allow two bends that fold the
two ends of the string towards each other combined with loops to contract the
two stems. Computing an S- or C-fold that has the maximum number of non-
local hydrophobic bonds between the stems can be done in time O(n3) by using
dynamic programming. The S-fold generalization does not improve on the ap-
proximation ratio. The C-fold generalization is more tricky. We have not been
able to prove, or disprove, that the approximation ratio of the C-fold general-
ization is better than 1/4, but in Section 10.4 we present a transformation of
the folding problem in the 2D HP model into a circular matching problem by
which we can prove that the approximation ratio of the C-fold generalization
is at most 1/3. Experiments based on the circular matching problem suggest
that the approximation ratio of the C-fold generalization is indeed 1/3.

The C-fold generalization is also mentioned by Hart and Istrail in [80]. They
present an algorithm that computes a C-fold with the maximum number of non-
local hydrophobic bonds between the stems under the restriction that all non-
local bonded hydrophobic amino acids on each contracted stem must occupy
positions in S that have indices of equal parity. Under this restriction they can
prove that the C-fold generalization does not improve on the approximation
ratio of 1/4. Mauri, Pavesi and Piccolboni in [135] present an approximation
algorithm for the structure prediction problem in the 2D HP model formulated
in terms of a stochastic context-free grammar for {0, 1}∗. The grammar is
constructed such that the most probable parsing can be interpreted as a C-fold
with the maximum number of non-local hydrophobic bonds. Using a standard
parsing algorithm they can find this C-fold in time O(n3). Based on experiments
they conjecture that their folding algorithm has an approximation ratio of 3/8.
Our 1/3 upper bound does not disprove their conjecture because our upper
bound holds for C-folds where only non-local hydrophobic bonds that occur
between the stems are counted. However, we believe that the upper bound also
holds for C-folds where all non-local hydrophobic bonds are counted.

Whether or not the presented approximation algorithms for the structure
prediction problem in the 2D HP model can be used as suggested by the quote
from Ngo et al. [151, page 46] at the beginning of this section is not clear. A
worst case approximation ratio between 1/4 and 1/3 is not spectacular. It is
however perfectly possible that an approximation algorithm performs better one
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the average than its stated worst case approximation ratio. However, all the
folding algorithms presented in this section attempt to make only one non-local
hydrophobic bond for each hydrophobic amino acid instead of the maximum of
two, on the average one should thus not expect a predicted structure to contain
much more than half of the optimal number of non-local hydrophobic bonds.
Whether or not this is sufficient to generate structures that are close enough to
an optimal conformation to be useful is not clear. Hart and Istrail in [80] argue
that the structures that are generated by their folding algorithms resemble the
molten globule state, which is an intermediate state on the path towards the
native state that is observed in real protein structure formation. Whether or
not this is true is questionable. To what extend the presented approximation
algorithms for the structure prediction problem in the 2D HP model are bio-
logical relevant is thus debatable. Hart and Istrail in [79, 81] describe how to
transform foldings in the HP model into foldings in more complex lattice mod-
els. This may, or may not, increase the biological relevance of approximation
algorithms in the HP model. But no matter what, the problem of formulating
anything better than a 1/4 approximation algorithm for the structure predic-
tion problem in the simple 2D HP model is certainly yet another witness of the
challenges that face everyone who is interested in protein structure prediction.
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Chapter 5

Comparison of Coding DNA

The paper Comparison of Coding DNA presented in this chapter has been
published in part as a technical report [158] and a conference paper [159].

[158] C. N. S. Pedersen, R. B. Lyngsø, and J. Hein. Comparison of coding
DNA. Technical Report RS-98-3, BRICS, January 1998.

[159] C. N. S. Pedersen, R. B. Lyngsø, and J. Hein. Comparison of coding
DNA. In Proceedings of the 9th Annual Symposium on Combinatorial
Pattern Matching (CPM), volume 1448 of Lecture Notes in Computer
Science, pages 153–173, 1998.

Except for minor typographical changes and the addition of the appendix after
Section 5.7, the content of this chapter is equal to the conference paper [159]. An
implementation of the alignment method presented in this chapter is available
at www.daimi.au.dk/∼cstorm/combat.
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Comparison of Coding DNA

Christian N. S. Pedersen∗ Rune B. Lyngsø† Jotun Hein‡

Abstract

We discuss a model for the evolutionary distance between two coding
DNA sequences which specializes to the DNA/Protein model previously
proposed by Hein. We discuss the DNA/Protein model in details and
present a quadratic time algorithm that computes an optimal alignment
of two coding DNA sequences in the model under the assumption of affine
gap cost. We believe that the constant factor of the quadratic running
time is sufficiently small to make the algorithm usable in practice.

5.1 Introduction

A straightforward model of the evolutionary distance between two coding DNA
sequences is to ignore the encoded proteins and compute the distance in some
evolutionary model of DNA. We say that such a model is a DNA level model.
The evolutionary distance between two sequences in a DNA level model can
most often be formulated as a classical alignment problem and be efficiently
computed using a dynamic programming approach, e.g. [149, 171, 173, 196].

It is well known that proteins evolve slower than its coding DNA, so it is
usually more reliable to describe the evolutionary distance based on a compar-
ison of the encoded proteins rather than on a comparison of the coding DNA
itself. Hence, most often the evolutionary distance between two coding DNA
sequences is modeled in terms of amino acid events, such as substitution of a
single amino acid and insertion-deletion of consecutive amino acids, necessary to
transform the one encoded protein into the other encoded protein. We say that
such a model is a protein level model. The evolutionary distance between two
coding DNA sequences in a protein level model can most often be formulated
as a classical alignment problem of the two encoded proteins. Even though a
protein level model is usually more reliable than a DNA level model, it falls
short because it postulates that all insertions and deletions on the DNA occur
at codon boundaries and because it ignores similarities on the DNA level.
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In this paper we present a model of the evolutionary distance between two
coding DNA sequences in which a nucleotide event is penalized by the change it
induces on the DNA as well as on the encoded protein. The model is a natural
combination of a DNA level model and a protein level model. The DNA/Protein
model introduced by Hein in [83, 85] is a biological reasonable instance of the
general model in which the evolution of coding DNA is idealized to involve only
substitution of a single nucleotide and insertion-deletion of a multiple of three
nucleotides. Hein in [83, 85] presents an O(n2m2) time algorithm for computing
the evolutionary distance in the DNA/Protein model between two sequences of
length n and m. This algorithm assumes certain properties of the cost function.
We discuss these properties and present an O(nm) time algorithm that solves
the same problem under the assumption of affine gap cost.

The practicality of an algorithm not only depends on the asymptotic running
time but also on the constant factor hidden by the use of O-notation. To
determine the distance between two sequences of length n and m our algorithm
computes 400nm table entries. Each computation involves a few additions,
table lookups and comparisons. We believe the constant factor is sufficiently
small to make the algorithm usable in practice.

The problem of comparing coding DNA is also discussed by Arvestad in [14]
and by Hua, Jiang and Wu in [89]. The models discussed in these papers are
inspired by the DNA/Protein model, but differ in the interpretation of gap cost.
A heuristic algorithm for solving the alignment problem in the DNA/Protein
model is described by Hein in [84]. A related problem of how to compare a
coding DNA sequence with a protein has been discussed in [161, 208].

The rest of this paper is organized as follows: In Section 5.2 we introduce
and discuss the DNA/Protein model. In Section 5.3 we describe how to deter-
mine the cost of an alignment. In Section 5.4 we present the simple alignment
algorithm of Hein [83]. In Section 5.5 we present a quadratic time alignment
algorithm. Finally, in Section 5.7 we discuss future work.

5.2 The DNA/Protein Model

A DNA sequence can be described as a string over the alphabet {A,C,G,T},
where each symbol represents one of the four possible nucleotides. We will use
a = a1a2a3 . . . a3n−2a3n−1a3n to denote a sequence of coding DNA of length 3n
with a reading frame starting at nucleotide a1. We will use ai

1a
i
2a

i
3 to denote the

ith codon a3i−2a3i−1a3i in a, and Ai to denote the amino acid encoded by this
codon. The amino acid sequence A = A1A2 . . . An thus describes the protein
encoded by a. Similarly we will use b = b1b2b3 . . . b3m−2b3m−1b3m, bi

1b
i
2b

i
3 and

B = B1B2 . . . Bm to denote another sequence of coding DNA.

5.2.1 A General Model

We want to quantify the evolutionary distance between two sequences of cod-
ing DNA. According to the parsimony principle, it is biological reasonable to
define the distance as the minimum cost of a sequence of evolutionary events
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that transforms the one DNA sequence into the other DNA sequence. An evo-
lutionary event e on the coding DNA that transforms a to a′ will also change
the encoded protein from A to A′. Since the same amino acid is encoded by
several different codons, the proteins A and A′ can be identical.

When assigning a cost to an evolutionary event, it should reflect the changes
on the DNA as well as the changes on the encoded protein implied by the event.
We will define the cost of an event e that change a to a′ and A to A′ as the
sum of its DNA level cost and its protein level cost, that is

cost(a e→ a′) = costd(a
e→ a′) + costp(A

e→ A′) . (5.1)

We have assumed that the total cost of an evolutionary event is the sum of its
DNA level cost and its protein level cost, but other combination of functions are
of course also possible. We will define the cost of a sequence E of evolutionary
events e1, e2, . . . , ek that transforms a(0) e1→ a(1) e2→ a(2) e3→ · · · ek→ a(k) as some
function of the costs of each event. Throughout this paper, we will assume that
the function is the sum of the costs of each event, that is

cost(a(0) E→ a(k)) =
k∑

i=1

cost(a(i−1) ei→ a(i)) . (5.2)

According to the parsimony principle, we define the evolutionary distance
between two coding sequences of DNA a and b as the minimum cost of a se-
quence of evolutionary events that transforms a to b, that is

dist(a, b) = min{cost(a E→ b) | E is a sequence of events} . (5.3)

This is a general model of the evolutionary distance between two sequences
of coding DNA, to compute dist(a, b) we have to specify a set of allowed evo-
lutionary events and define the cost of each event on the DNA and protein
level. The choice of allowed events and their cost influences both the biological
relevance of the measure and the complexity of computing the distance.

5.2.2 A Specific Model

The DNA/Protein model introduced by Hein in [83] can be described as an
instance of the above general model, where the evolution of coding DNA is ide-
alized to involve only substitutions of single nucleotides and insertion-deletions
of a multiple of three consecutive nucleotides. The reason for restricting the
insertion-deletion lengths is because an insertion or deletion of a length not
divisible by three will change the reading frame and cause a frame shift. Fig-
ure 5.1 shows that a frame shift can change the entire encoded amino acid
sequence. Since frame shifts are believed to be rare in coding regions, ignoring
them is not an unreasonable assumption.

The DNA level cost of an event is defined in the classical way by specifying
a substitution cost and a gap cost. More precisely, the DNA level cost of
substituting a nucleotide σ with another nucleotide σ′ is cd(σ, σ′), for some
metric cd on nucleotides, and the cost of inserting or deleting 3k consecutive
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Thr
A C G

Val
G T G
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Gln
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A T T · · ·

A C G
Thr
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Gly

G A C
Asp

G C A
Ala

A A T
Asn

T · · ·

Figure 5.1: An insertion or deletion of a number of nucleotides that is not
divisible by three changes the reading frame and causes a frame shift.

[
T T G C T − − − C
T − − − C A T G C

]

T TGC T C
T
C
A
T
G
C

Figure 5.2: An alignment can be described by a matrix or a path in the align-
ment graph. The above alignment describes three matches and two gaps of
combined length six.

nucleotides is gd(3k), for some sub-additive1 gap cost function gd : N → R
+.

The protein level cost of an event that changes the encoded protein from A
to A′ is defined to reflect the difference between the proteins A and A′. More
precisely, as the cost distp(A,A′) of an optimal distance alignment of A and A′,
where the substitution cost is given by a metric cp on amino acids, and the
gap cost is given by a sub-additive gap cost function gp : N → R

+. Additional
restrictions on the protein level cost will be given in Section 5.2.3.

Except for the restriction on insertion-deletion lengths, the DNA/Protein
model allows the traditional set of symbol based nucleotide events. This allows
us to use the notion of an alignment. An alignment of two sequences describes a
set of substitution or insertion-deletion events necessary to transform one of the
sequences into the other sequence. As illustrated in Figure 5.2, an alignment
is most often described by a matrix or as a path in a grid-graph. We will
define the cost of an alignment as the optimal cost of a sequence of the events
described by the alignment. The evolutionary distance dist(a, b) between two
coding DNA sequences‘a and b in the DNA/Protein model is thus the cost of
an optimal alignment of a and b in the DNA/Protein model. In the rest of
this paper we will address the problem of computing the cost of an optimal
alignment of a and b in the DNA/Protein model.

If the cost of any sequence of events is independent of the order but only
depends on the set of events, an optimal alignment can be computed efficiently
using dynamic programming, e.g. [149, 171, 173, 196]. In the DNA/Protein
model the cost of an event is the sum of the DNA level cost and the protein
level cost. The DNA level cost of a sequence of events is independent of the order
the events, but that the protein level cost of a sequence of event depends on the
order of the events, see [83, Figure 2] for further details. This implies that we

1A function is sub-additive if f(i + j) ≤ f(i) + f(j). A sub-additive gap cost function
implies that an insertion-deletion of a block of nucleotides is best explained as a single event.
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[
A1 A2 · · · Ai−1

A1 A2 · · · Ai−1

Ai

A′
i

Ai+1 · · · An

Ai+1 · · · An

]

(a) A substitution in the ith codon. The cost is cp(Ai, A
′
i).

[
A1 A2 · · · Ai−1 Ai

A1 A2 · · · Ai−1 Ai

Ai+1 · · · Ai+k

− · · · −
Ai+k+1 · · · An

Ai+k+1 · · · An

]

(b) An insertion-deletion of 3k nucleotides affecting exactly k codons. The
cost is gp(k).

[
A1 A2 · · · Ai−1

A1 A2 · · · Ai−1

Ai · · · Aj−1 Aj Aj+1 · · · Ai+k

− · · · − υ − · · · −
Ai+k+1 · · · An

Ai+k+1 · · · An

]

(c) An insertion-deletion of 3k nucleotides affecting k + 1 codons. The remaining amino
acid υ is matched with one of the amino acids affected by the deletion. The cost is
minj=0,1,...,k {gp(j) + cp(Ai+j , υ) + gp(k − j)}.

Figure 5.3: The protein level cost of a nucleotide event can be determined by
considering only the amino acids affected by the event.

cannot use one of the classical alignment algorithms to compute an optimal
alignment in the DNA/Protein model. To construct an efficient alignment
algorithm, we have to examine the protein level cost in more details.

5.2.3 Restricting the Protein Level Cost

A single nucleotide event affects nucleotides in one or more consecutive codons.
We observe that since a nucleotide event in the DNA/Protein model cannot
change the reading frame, only amino acids encoded by the affected codons are
affected by the nucleotide event. A single nucleotide event thus changes protein
A = UXV to protein A′ = UX ′V , where X and X ′ are the amino acids affected
by nucleotide event. Hein in [83] implicitly assumes that distp(A,A′) is the cost
of a distance alignment of X and X ′ that describes the minimum number of
insertion-deletions. This assumption implies that distp(A,A′) is the cost of the
minimum cost alignment among the alignments shown in Figure 5.3.

To compute distp(A,A′), it is thus sufficient to search for the minimum cost
alignment among the alignments in Figure 5.3. This reduction of alignments to
consider when computing distp(A,A′) is essential to the alignment algorithms
in Sections 5.4 and 5.5. However, if the minimum cost alignment of A and A′

among the alignments in Figure 5.3 is not a global minimum cost alignment of A
and A′, then the assumption conflicts with the definition of distp(A,A′) as the
minimum cost of an alignment of A and A′. Lemma 5.1 states restrictions on the
protein level substitution and gap cost for avoiding this conflict. In the special
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case where the protein level gap cost function is affine, that is gp(k) = αp+βpk,,
for some αp, βp ≥ 0 (and define gp(0) to be zero), the restrictions in Lemma 5.1
become cp(σ, τ) + αp + βpk ≤ 2αp + βp(k + 2l), for any amino acids σ, τ , and
all lengths 0 < l ≤ n − k. This simplifies to cp(σ, τ) ≤ αp + 2βp for all amino
acids σ and τ , which is biological reasonable because insertions and deletions
are rare compared to substitutions.

Lemma 5.1 Assume a nucleotide event changes A = UXV to A′ = UX ′V .
Let n = |A| and k =

∣∣|A| − |A′|∣∣. If there for any amino acids σ, τ and for
all 0 < l ≤ n − k exists 0 ≤ j ≤ k such that cp(σ, τ) + gp(j) + gp(k − j) ≤
gp(l)+ gp(l+k), then distp(A,A′) is the cost of an alignment describing exactly
k insertions or deletions. Furthermore distp(A,A′) only depends on X and X ′.

Proof. First observe that the alignments in Figure 5.3 describe the minimum
number of insertion-deletions, and that their costs only depend on the sub-
alignments of X and X ′ illustrated by the shaded parts. We will argue that
the assumption on cp and gp stated in the lemma implies that distp(A,A′) is
the cost of one of the alignments in Figure 5.3. We argue depending on the
event that has transformed A to A′. Since distp(A,A′) is equal to distp(A′, A),
the cost of an insertion transforming A to A′ is equal to the cost of a deletion
transforming A′ to A. We thus only consider substitutions and deletions.

A substitution of a nucleotide in the ith codon of A transforms Ai to A′
i.

The alignment in Figure 5.3(a) describes no insertion-deletions and has cost
cp(Ai, A

′
i). Any other alignment of A and A′ must describe an equal number of

insertions and deletions, so by sub-additivity of gp the cost is at least 2gp(l) for
some 0 < l ≤ n. The assumption in the lemma implies that cp(Ai, A

′
i) ≤ 2gp(l)

for any 0 < l ≤ n. The alignment in Figure 5.3(a) is thus optimal and the
protein level cost of the substitution is cp(Ai, A

′
i).

A deletion of 3k nucleotides affecting k codons transforms A = A1A2 · · ·An

to A′ = A1A2 · · ·AiAi+k+1Ai+k+2 · · ·An. Any alignment of A and A′ must
describe l insertions and l + k deletions for some 0 ≤ l ≤ n − k, so the cost is
at least gp(l) + gp(l + k). The alignment in Figure 5.3(b) describes k deletions
and has cost gp(k). The assumption in the lemma and the sub-additivity of gp

implies that gp(k) ≤ gp(j) + gp(k − j) ≤ gp(l) + gp(l + k) for all l > 0. The
alignment in Figure 5.3(b) is thus optimal and the protein level cost of the
deletion is gp(k).

A deletion of 3k nucleotides affecting k + 1 codons, say a deletion of the 3k
nucleotides ai

3a
i+1
1 ai+1

2 ai+1
3 · · · ai+k

1 ai+k
2 , transforms A = A1A2 · · ·An to A′ =

A1A2 · · ·Ai−1υAi+k+1 · · ·An, where υ is the amino acid encoded by ai
1a

i
2a

i+k
3 .

We say that υ is the remaining amino acid, and that ai
1a

i
2a

i+k
3 is the remaining

codon. Any alignment of A and A′ describing exactly k deletions must align υ
with Ai+j for some 0 ≤ j ≤ k, so by sub-additivity of gp the cost is at least
gp(j)+ cp(Ai+j , υ)+ gp(k− j). Figure 5.3(c) illustrates one of the k +1 possible
alignments of A and A′ where υ is aligned with an affected amino acid and all
non-affected amino acids are aligned. Such an alignment describes exactly k
deletions, and the cost of an optimal alignment among them has cost

min
j=0,1,...,k

{gp(j) + cp(Ai+j , υ) + gp(k − j)}, (5.4)
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[
A B E F C D
A B G − C D

] [
A B E F − C D
A B − − G C D

]
Figure 5.4: Two alignments of the amino acids ABEFCD and ABGCD.

and is thus optimal for any alignment describing exactly k deletions. Any other
alignment of A and A′ must describe l insertions and l + k deletions for some
0 < l ≤ n − k, so the cost is at least gp(l) + gp(l + k). The assumption in
the lemma implies that the cost given by Equation 5.4 is less than or equal
to gp(l) + gp(l + k). The protein level cost of the deletion is thus given by
Equation 5.4. 2

The assumption in Lemma 5.1 is sufficient to ensure that we can compute
the protein level cost of a nucleotide event efficiently, but the formulation of the
lemma is to general to make the assumption necessary. The following example
however suggests when the assumption is necessary. Consider a deletion of three
nucleotides that transforms the six amino acids ABEFCD to ABGCD, i.e. X =
EF and X ′ = G. Consider the two alignments shown in Figure 5.4. If we assume
that cp(E,G) ≤ cp(F,G) then the cost of the alignment in Figure 5.4 (left) is
cp(E,G) + gp(1) while the cost of the alignment in Figure 5.4 (right) is gp(2) +
gp(1). If the assumption in Lemma 5.1 does not hold then gp(2) + gp(1) might
be less than cp(E,G) + gp(1) because cp(E,G) can be arbitrary large. Hence,
the protein level cost of the deletion would not be the cost of an alignment
describing the minimum number of insertion-deletions.

5.3 The Cost of an Alignment

Before describing how to compute the cost of an optimal alignment of two
sequence in the DNA/Protein model, we need to know how to compute the
cost of a given alignment in the DNA/Protein model.

An alignment of two sequences describes a set of events necessary to trans-
form one of the sequences into the other sequence, but it does not describe the
order of the events. As observed in Section 5.2.2 the DNA level cost of an align-
ment is independent of the order of the events whereas the protein level cost
depends on the order of the events. This implies that the DNA level cost of an
alignment is just the sum of the DNA level costs of the events described by the
alignment whereas the protein level cost of the same alignment is somewhat
harder to determine. An obvious way to determine the protein level cost of
an alignment is to minimize over all possible sequences of the events described
by the alignment. This method is however not feasible in practice due to the
factorial number of possible sequences one has to consider.

If Lemma 5.1 is fulfilled, the protein level cost of a nucleotide event only
depends on the affected codons. This allows us to decompose the computation
of the protein level cost of an alignment into smaller subproblems. The idea
is to decompose the alignment into codon alignments. A codon alignment is a
minimal part of the alignment that corresponds to a path connecting two nodes
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Figure 5.5: An alignment of two sequences decomposed into codon alignments.

(3i′, 3j′) and (3i, 3j) in the alignment graph. As illustrated in Figure 5.5, we
can decompose an alignment uniquely into codon alignments.

The assumption that the length of an insertion or deletion is a multiple
of three implies that a codon alignment either describes no substitutions (see
Type 2 and 3 in Figure 5.7) or exactly three substitutions. If a codon align-
ment describes exactly three substitutions then it can also describe one or more
insertion-deletions. More precisely, between any two consecutive substitutions
in the codon alignment there can be an alternating sequence of insertions and
deletions each of length a multiple of three. Such a sequence of insertion-
deletions corresponds to a “staircase” in the alignment graph. Figure 5.6 il-
lustrates the set of codon alignments that describe three substitutions and at
most one insertion and deletion between two consecutive substitutions, i.e. the
set of codon alignments where the “staircase” is limited to at most one “step”.
A particular codon alignment in this set corresponds to choosing which sides of
the two dotted rectangles to traverse.

We observe that nucleotide events described by two different codon align-
ments in the decomposition do not affect the same codons. Hence, the protein
level cost of a codon alignment can be computed independently of the other
codon alignments in the decomposition. We can thus compute the protein level
cost of an alignment as the sum of the protein level cost of each of the codon
alignments in the decomposition. Since a codon alignment can describe an al-
ternating sequence of insertion-deletions between two consecutive substitutions,
it is possible that a decomposition of an alignment of two sequences of length n
and m contains codon alignments that describe Θ(n + m) events. This implies
that the problem of computing the cost of the codon alignments in a decompo-
sition of an alignment is not any easier in the worst case than computing the
cost of the alignment itself.

One way to circumvent this problem is to consider only alignments that can
be decomposed into (or built of) codon alignments with at most some maximum
number of insertion-deletions between any two consecutive substitutions. This
upper bounds the number of events described by any codon alignment by some
constant, which implies that we can determine the cost of a codon alignment
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Figure 5.6: A summary of all possible codon alignments with at most one
insertion and one deletion between two consecutive substitutions.

Type 1: Type 2: Type 3: Type 4:

Type 5:

Type 6:

Type 7:

Type 8:

Type 9:

Type 10: Type 11:

Figure 5.7: The eleven types of codon alignments with at most one insertion or
one deletion between two consecutive substitutions.

in constant time simply by minimizing over all possible sequences of the events
described by the codon alignment. The protein level cost of an alignment can
thus be determined in time proportional to the number of codon alignments in
the decomposition of the alignment.

Hein in [83] allows at most one insertion or one deletion between any two
consecutive substitutions in a codon alignment. Besides the two codon align-
ments that describe no substitutions, this corresponds to the set of codon align-
ments obtainable from Figure 5.6 when either the width or the height of each
of the two dotted rectangles must be zero. As illustrated in Figure 5.7 this im-
plies that there are eleven different types of codon alignments. In the appendix
after Section 5.7 we consider the problem of restricting the set of possible codon
alignments in further details.

5.4 A Simple Alignment Algorithm

Let a1a2 · · · a3n and b1b2 · · · b3m be two coding sequences of DNA. Hein in [83]
describes how the decomposition into codon alignments makes it possible to
compute the cost of an optimal alignment of a and b in the DNA/Protein
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model in time O(n2m2). The algorithm assumes that Lemma 5.1 is fulfilled, and
that we only allow codon alignments with some maximum number of insertion-
deletions between two consecutive substitutions, e.g. the eleven types of codon
alignments in Figure 5.7. The algorithm can be summarized as follows.

Let D(i, j) denote the cost of an optimal alignment of a1a2 · · · a3i and
b1b2 · · · b3j . We define D(0, 0) to be zero and D(i, j) to be infinity for i < 0
or j < 0. An optimal alignment of a1a2 · · · a3i and b1b2 · · · b3j can be decom-
posed into codon alignments ca1, ca2, . . . , cak. We say that cak is the last codon
alignment and that ca1, ca2, . . . , cak−1 is the remaining alignment.

If the last codon alignment cak is an alignment of a3i′+1a3i′+2 · · · a3i and
b3j′+1b3j′+2 · · · b3j for some (i′, j′) < (i, j)2, then D(i, j) is equal to D(i′, j′) +
cost(cak). This is the cost of the last codon alignment plus the cost of the
remaining alignment. We can compute D(i, j) by minimizing the expression
D(i′, j′) + cost(ca) over all (i′, j′) < (i, j) and all possible codon alignments ca
of a3i′+1a3i′+2 · · · a3i and b3j′+1b3j′+2 · · · b3j.

The upper bound on the number of insertion-deletions in a codon alignment
implies that the number of possible codon alignments of a3i′+1a3i′+2 · · · a3i and
b3j′+1b3j′+2 · · · b3j , for all (i′, j′) < (i, j), is upper bounded by some constant.
For example, if we only consider the eleven types of codon alignments in Fig-
ure 5.7 there are at most three possible codon alignments of a3i′+1a3i′+2 · · · a3i

and b3j′+1b3j′+2 · · · b3j . Hence, if we assume that D(i′, j′) is known for all
(i′, j′) < (i, j) then we can compute D(i, j) in time O(ij). By dynamic pro-
gramming this implies that we can compute D(n,m) in time O(n2m2) and
space O(nm). By back-tracking we can also get an optimal alignment (and not
only the cost) within the same time and space bound.

5.5 An Improved Alignment Algorithm

Let a and b be coding sequences of DNA as introduced above. We will describe
how to compute the cost of an optimal alignment of a and b in the DNA/Protein
model in time O(nm) and space O(n). Besides the assumptions of the simple
algorithm described in the previous section, we also assume that the function
g(k) = gd(3k) + gp(k) is affine, i.e. g(k) = α + βk for some α, β ≥ 0. We say
that g is the combined gap cost function.

The idea behind the improved algorithm is similar to the idea behind the
simple algorithm in the sense that we compute the cost of an optimal align-
ment by minimizing the cost over all possible last codon alignments. We define
Dt(i, j) to be the cost of an optimal alignment of a1a2 · · · a3i and b1b2 · · · b3j

under the assumption that the last codon alignment is of type t. Remember
that we only allow codon alignments with some maximum number of insertion-
deletions between two consecutive substitutions. This implies that the number
of possible codon alignment, i.e. types of codon alignments, is upper bounded
by some constant. We define Dt(0, 0) to be zero and Dt(i, j) to be infinity for

2We say that (i′, j′) < (i, j) iff i′ ≤ i ∧ j′ ≤ j ∧ (i′ 6= i ∨ j′ 6= j).
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i < 0 or j < 0. We can compute D(i, j) as

D(i, j) = min
t

Dt(i, j) . (5.5)

Lemma 5.1 ensures that Dt(i, j) is the cost of some last codon alignment (of
type t) plus the cost of the corresponding remaining alignment. This allows us to
compute Dt(i, j) by minimizing the cost over all possible last codon alignments
of type t. The assumption that g is affine makes it possible to compute Dt(i, j)
in constant time if Dt′(k, l) is known for some (k, l) < (i, j) and some t′. Since
we only consider a constant number of possible codon alignments (e.g. the types
in Figure 5.7) this implies that we can compute D(n,m) in time O(nm) and
space O(n). The technique described Hirschberg in [86], or the variant described
in Durbin et al. in [46, page 35–36], allows us to get an optimal alignment (and
not only the cost) within the same time and space bound.

Our method for computing Dt(i, j) is applicable to any type of last codon
alignment, but the bookkeeping, and thereby the constant overhead of the
computation increases with the number of gaps described by the last codon
alignment. By restricting ourselves to the eleven types of codon alignments in
Figure 5.7, the computation of an optimal alignment has a reasonable constant
overhead. We therefore focus on these eleven types of codon alignments. The
detailed description of how to compute Dt(i, j) for t = 1, 2, . . . , 11 is divided
into three cases depending on the number of gaps within a codon – internal
gaps – described by a codon alignment of type t. Codon alignments of type 1–3
describe no internal gaps, codon alignments of type 4–7 describe one internal
gap, and codon alignments of type 8–11 describe two internal gaps.

Case I – No Internal Gaps

We introduce the function c∗p : {A,C,G,T}3 × {A,C,G,T}3 → R, where
c∗p(σ1σ2σ3, τ1τ2τ3) is the distance between the codons σ1σ2σ3 and τ1τ2τ3 in the
DNA/Protein model. This distance is computable in constant time as the min-
imum over the costs of the six possible sequences of the three substitutions
σ1 → τ1, σ2 → τ2 and σ3 → τ3, where we use the term cost to denote the DNA
level cost plus the protein level cost.

The cost D1(i, j) is the cost of the last codon alignment of type 1 plus the
cost of the remaining alignment. The last codon alignment is an alignment of
ai

1a
i
2a

i
3 and bj

1b
j
2b

j
3, which by definition of c∗p has cost c∗p(ai

1a
i
2a

i
3, b

j
1b

j
2b

j
3). The

cost of the remaining alignment is D(i − 1, j − 1), that is

D1(i, j) = D(i − 1, j − 1) + c∗p(a
i
1a

i
2a

i
3, b

j
1b

j
2b

j
3) . (5.6)

A codon alignment of type 2 or 3 describes a gap between two codons. Since
the combined gap cost function is affine, we can apply the technique by Gotoh
in [67] saying that a gap ending in (i, j) is either a continuation of an existing
gap ending in (i − 1, j) or (i, j − 1), or the start of a new gap, that is

D2(i, j) = min{D(i, j − 1) + α + β,D2(i, j − 1) + β} , (5.7)

D3(i, j) = min{D(i − 1, j) + α + β,D3(i − 1, j) + β} . (5.8)
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ai′
1ai′

2 ai′
3 ai

1 ai
2 ai

3

bj
1

bj
2

bj
3

(3i,3j)

(3i−3k−3,3j−3)

Figure 5.8: The last codon alignment of type 6.
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Figure 5.9: The evolution of ai′
1 ai′

2 ai′
3 · · · ai

1a
i
2a

i
3 to bj

1b
j
2b

j
3 described by the last

codon alignment.

Case II – One Internal Gap

We will only describe how to compute D6(i, j). The other cases where the last
codon alignment describes a single internal gap can be handled similarly. The
cost D6(i, j) is the cost of the last codon alignment of type 6 plus the cost of
the remaining alignment. The last codon alignment of type 6 describes three
substitutions and one deletion. If the deletion has length k (a deletion of 3k
nucleotides) then the cost of the remaining alignment is D(i− k− 1, j − 1) and
the last codon alignment is an alignment of ai′

1 ai′
2 ai′

3 · · · ai
1a

i
2a

i
3 and bj

1b
j
2b

j
3, where

i′ = i − k. This situation is illustrated in Figure 5.8.
The cost of the last codon alignment is the minimum cost of a sequence of

the three substitutions and the deletion. Any sequence of these four events can
be divided into three steps: The substitutions occurring before the deletion,
the deletion, and the substitutions occurring after the deletion. Figure 5.9
illustrates the three steps of the evolution of ai′

1 ai′
2 ai′

3 · · · ai
1a

i
2a

i
3 to bj

1b
j
2b

j
3, where

x1, x2 and x3 are the result of the up to three substitutions before the deletion.
For example, if the substitution ai′

1 → bj
1 occurs before the deletion, then x1 is bj

1,
otherwise it is ai′

1 . We say that x1 ∈ {ai′
1 , bj

1}, x2 ∈ {ai′
2 , bj

2} and x3 ∈ {ai
3, b

j
3}

are the status of the three substitutions before the deletion, and observe that
the codon x1x2x3 is the remaining codon of the deletion.

The substitutions occurring before the deletion change codon ai′
1 ai′

2 ai′
3 to

x1x2a
i′
3 , and codon ai

1a
i
2a

i
3 to ai

1a
i
2x3. The substitutions occurring after the

deletion change codon x1x2x3 to bj
1b

j
2b

j
3. Recall that the cost of changing codon

σ1σ2σ3 to codon τ1τ2τ3 by a sequence of the substitutions σ1 → τ1, σ2 → τ2 and
σ3 → τ3 is given by c∗p(σ1σ2σ3, τ1τ2τ3). Since an identical substitution has cost
zero, the cost of the three substitutions in the last codon alignment is equal to
the cost of the induced codon changes, that is

cost(subs) = c∗p(a
i′
1 ai′

2 ai′
3 , x1x2a

i′
3 )+

c∗p(a
i
1a

i
2a

i
3, a

i
1a

i
2x3) + c∗p(x1x2x3, b

j
1b

j
2b

j
3) . (5.9)

The cost of deleting 3k nucleotides in the last codon alignment is the sum
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of the DNA level cost gd(3k) and the protein level cost cf. Equation 5.4. Since
the combined gap cost function g(k) = gd(3k) + gp(k) = α + βk is affine, and
the remaining codon of the deletion is x1x2x3, we can write this sum as

cost(del ) = min




α + βk + cp(ai
1a

i
2x3, x1x2x3)

αp + α + βk + min0<l<k cp(ai−l
1 ai−l

2 ai−l
3 , x1x2x3)

α + βk + cp(x1x2a
i′
3 , x1x2x3)

(5.10)

where cp(σ1σ2σ3, τ1τ2τ3) is used as convenient notation for cp(σ, τ), where σ and
τ are the amino acids encoded by the codons σ1σ2σ3 and τ1τ2τ3. The cost of
the deletion depends on the deletion length, the remaining codon x1x2x3 and a
witness. The witness can be the start-codon x1x2a

i′
3 , the end-codon ai

1a
i
2x3, or

one of the internal codons ai−l
1 ai−l

2 ai−l
3 for some 0 < l < k. The witness encodes

the amino acid aligned with the remaining amino acid.
Assuming a deletion length k and remaining codon x1x2x3 of the deletion

in the last codon alignment, we can compute D6(i, j) as the sum cost(subs) +
cost(del)+D(i−k−1, j−1). We can thus compute D6(i, j) by minimizing this
sum over all possible combinations of deletion length k and remaining codon
x1x2x3. A combination of deletion length k and remaining codon x1x2x3 is
possible if x1 ∈ {ai′

1 , bj
1}, x2 ∈ {ai′

2 , bj
2}, and x3 ∈ {ai

3, b
j
3} where i′ = i − k.

Since the terms c∗p(ai
1a

i
2a

i
3, a

i
1a

i
2x3) and c∗p(x1x2x3, b

j
1b

j
2b

j
3) of cost(subs) do not

depend on the deletion length, we can split the minimization as

D6(i, j) = min
x1x2x3

{c∗p(ai
1a

i
2a

i
3, a

i
1a

i
2x3)+

c∗p(x1x2x3, b
j
1b

j
2b

j
3) + D6

x1x2x3
(i, j)} (5.11)

where

D6
x1x2x3

(i, j) = min
0<k<i

{D(i − k − 1, j − 1)+

c∗p(a
i−k
1 ai−k

2 ai−k
3 , x1x2a

i−k
3 ) + cost(del)} (5.12)

is the minimum cost of the terms that depend on both the deletion length and
the remaining codon under the assumption that the remaining codon is x1x2x3.
If we expand the term cost(del) we get

D6
x1x2x3

(i, j) = min
0<k<i

{len6
x1x2

(i, j, k)+

min




cp(ai
1a

i
2x3, x1x2x3)

αp + min0<l<k cp(ai−l
1 ai−l

2 ai−l
3 , x1x2x3)

cp(x1x2a
i−k
3 , x1x2x3)

} (5.13)

where

len6
x1x2

(i, j, k) = D(i − k − 1, j − 1)+

c∗p(a
i−k
1 ai−k

2 ai−k
3 , x1x2a

i−k
3 ) + α + βk (5.14)

is the cost of the remaining alignment plus the part of the cost of the last codon
alignment that does not depend on the codon ai

1a
i
2a

i
3 and the witness.
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Figure 5.10: The four cases in the computation of D6
x1x2x3

(i, j). We use z1z2z3

as short notation for ai−1
1 ai−1

2 ai−1
3 .

The cost len6
x1x2

(i, j, k) is defined if x1 ∈ {ai−k
1 , bj

1} and x2 ∈ {ai−k
2 , bj

2}.
The cost D6

x1x2x3
(i, j) is defined if there exists a deletion length k such that k

and x1x2x3 is a possible combination of deletion length and remaining codon.
We observe that there are at most 32 possible remaining codons x1x2x3. This
observation follows because we known that x3 must be one of the two known
nucleotides ai

3 or bj
3. If we can compute D6

x1x2x3
(i, j) in constant time for each

of the possible remaining codons then we can also compute D6(i, j) in constant
time. To compute D6

x1x2x3
(i, j) we must determine a combination of witness

and deletion length that minimizes the cost. We say that we must determine
the witness and deletion length of D6

x1x2x3
(i, j).

The combination of witness and deletion length that minimizes D6
x1x2x3

(i, j)
must be one of the four cases illustrated in Figure 5.10. We can thus compute
D6

x1x2x3
(i, j) by minimizing the cost over these four cases. The cost of Cases 1–3

can be computed by simplifying Equation 5.13 for the particular combination
of witness and deletion length, whereas the cost of Case 4 is more difficult to
compute because both the witness and the deletion length are unknown.

Case 1. The end-codon is the witness and the deletion length is at least one.
The cost is min

0<k<i
len6

x1x2
(i, j, k) + cp(ai

1a
i
2x3, x1x2x3).

Case 2. The last internal codon is the witness and the deletion length is at least
two. The cost is min

1<k<i
len6

x1x2
(i, j, k) + αp + cp(ai−1

1 ai−1
2 ai−1

3 , x1x2x3).

Case 3. The start-codon is the witness and the deletion length is one. The cost
is len6

x1x2
(i, j, 1) + cp(x1x2a

i−1
3 , x1x2x3).
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Case 4. The witness is neither the end-codon nor the last internal codon and
the deletion length is at least two. If the witness of D6

x1x2x3
(i−1, j) is not

the end-codon ai−1
1 ai−1

2 x3, we observe from optimality of D6
x1x2x3

(i−1, j)
that the cost of Case 4 is D6

x1x2x3
(i − 1, j) + β.

The observation in Case 4 implies that we can use dynamic programming to
keep track of D6

x1x2x3
(i, j) under the assumption that the end-codon is not the

witness, i.e. use dynamic programming to keep track of the minimum cost of
Cases 2–4. For this purpose, we introduce tables F 6

x1x2x3
corresponding to the 64

combinations of x1x2x3, such that if x1x2x3 is a possible remaining codon, and
the end-codon ai

1a
i
2x3 is not the witness of D6

x1x2x3
(i, j), then entry F 6

x1x2x3
(i, j)

is equal to D6
x1x2x3

(i, j). If we define F 6
x1x2x3

(0, j) to infinity, then

F 6
x1x2x3

(i, j) = min




cost of Case 2
cost of Case 3
F 6

x1x2x3
(i − 1, j) + β

(5.15)

In order to compute the cost of case 1 and 2 in constant time we maintain
the minimum of len6

x1x2
(i, j, k) over k by dynamic programming. We introduce

tables L6
x1x2

corresponding to the 16 combinations of x1x2 such that L6
x1x2

(i, j)
is equal to min0<k<i len6

x1x2
(i, j, k). If we define L6

x1x2
(0, j) to infinity, then

L6
x1x2

(i, j) = min
{

len6
x1x2

(i, j, 1)
L6

x1x2
(i − 1, j) + β

(5.16)

We can now compute D6
x1x2x3

(i, j) in constant time as the minimum cost
of Cases 1–4. The cost of Case 1 is L6

x1x2
(i, j) + cp(ai

1a
i
2x3, x1x2x3), and the

minimum cost of case 2–4 is F 6
x1x2x3

(i, j), that is

D6
x1x2x3

(i, j) = min
{

L6
x1x2

(i, j) + cp(ai
1a

i
2x3, x1x2x3)

F 6
x1x2x3

(i, j)
(5.17)

To compute D6(i, j) using Equation 5.11, we must compute D6
x1x2x3

(i, j)
using Equation 5.17 for all 32 possible remaining codons, which involves com-
puting entry (i, j) in the 16 L6

x1x2
tables and the 64 F 6

x1x2x3
tables. Since the

computation of each table entry takes constant time, the total computation
of D6(i, j) takes constant time. The other three cases where the last codon
alignment describes one internal gap (codon alignments of type 4, 5 and 7) can
be handled similarly. However, if the last codon alignment is of type 4 or 5,
it follows that only the first nucleotide x1 in the remaining codon depends on
the deletion (or insertion) length. This limits the number of possible remaining
codons to 16, and implies that only four tables are needed in order to keep track
of values min0<k<i lent

x1
(i, j, k). Hence, to compute Dt(i, j), for t = 4, 5, 6, 7,

we compute 2 · 4 + 2 · 16 + 4 · 64 = 296 table entries in total.

Case III – Two Internal Gaps

We will only describe how to compute D8(i, j). The other cases where the
last codon alignment describes two internal gaps can be handled similarly. The
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ai′′
1 ai′′

2 ai′′
3 ai′

1 ai′
2 ai′

3 ai
1 ai

2 ai
3

bj
1

bj
2

bj
3

(3i,3j)

first deletion

�

second deletion

�

Figure 5.11: The last codon alignment of type 8

cost D8(i, j) is the cost of the last codon alignment of type 8 plus the cost
of the remaining alignment. The last codon alignment of type 8 describes
three substitutions and two deletions. If the first deletion has length k′ and
the second deletion has length k, then the cost of the remaining alignment
is D(i − k − k′ − 1, j − 1), and the last codon alignment is an alignment of
ai′′

1 ai′′
2 ai′′

3 · · · ai′
1 ai′

2 ai′
3 · · · ai

1a
i
2a

i
3 and bj

1b
j
2b

j
3, where i′ = i − k and i′′ = i′ − k′.

This situation is illustrated in Figure 5.11.

Similar to computing D6(i, j), we will compute D8(i, j) by minimizing the
cost over all possible combinations of deletion length, k, and remaining codon,
x1x2x3, of the second deletion. Computing D8(i, j) is then reduced to com-
puting D8

x1x2x3
(i, j), which is the cost under the assumption that the remain-

ing codon of the second deletion is x1x2x3. There are 32 possible remaining
codons of the second deletion. The method used to compute D6

x1x2x3
(i, j) can

be adapted to compute D8
x1x2x3

(i, j). An inspection of Equations 5.15, 5.16 and
5.17 reveals that all we have to do is to replace the term len6

x1x2
(i, j, 1) with the

corresponding part of the cost D8(i, j), which we denote len8
x1x2x3

(i, j, 1).

More precisely, if we assume that the second deletion has length k and re-
maining codon x1x2x3, then len8

x1x2x3
(i, j, k) is the part of D8(i, j) that does not

depend on the codon ai
1a

i
2a

i
3 and the witness of the second deletion. We observe

that this cost depends on the order of the two deletions in the last codon align-
ment. Hence, we introduce len8′

x1x2x3
(i, j, k) and len8′′

x1x2x3
(i, j, k) to denote the

cost when the first deletion occurs before the second deletion and vice versa, and
define len8

x1x2x3
(i, j, k) as the minimum min{len8′

x1x2x3
(i, j, k), len8′′

x1x2x3
(i, j, k)}.

Because we only have to compute len8
x1x2x3

(i, j, 1), we can restrict ourselves to
the situation where the second deletion has length one and the first deletion
has length k′. We split the explanation of how to compute len8

x1x2x3
(i, j, 1) into

two cases depending on the order of the deletions. For notational convenience,
we will use i′ and i′′ to denote i − 1 and i′ − k′ respectively.

Figure 5.12 illustrates the evolution of the last codon alignment (of type 8)
when the second deletion has length one and occurs after the first deletion.
The nucleotides y1, y2 and y3 are the status of the substitutions before the first
deletion, and the nucleotides x1, x2 and x3 are the status of the substitutions
before the second deletion. Similar to Equation 5.9, we can compute the cost
of the three substitutions as the cost of the induced codon changes. It thus
follows from Figure 5.12 that the cost of the three substitutions is
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1 y2ai′
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Figure 5.12: The first deletion occurs before the second deletion and the second
deletion has length one.

cost(subs) = c∗p(a
i′′
1 ai′′

2 ai′′
3 , y1a

i′′
2 ai′′

3 ) + c∗p(a
i′
1 ai′

2 ai′
3 , ai′

1 y2a
i′
3 )+

c∗p(a
i
1a

i
2a

i
3, a

i
1a

i
2y3) + c∗p(y1y2a

i′
3 , x1x2a

i′
3 )+

c∗p(a
i
1a

i
2y3, a

i
1a

i
2x3) + c∗p(x1x2x3, b

j
1b

j
2b

j
3) . (5.18)

We can compute the cost of the two deletions similar to Equation 5.10. If
we recall that the first deletion has length k′, the second deletion has length
one, and the notation i′ = i − 1 and i′′ = i′ − k′, we can write the costs as

cost(del1) = min




α + βk′ + cp(ai′
1 y2a

i′
3 , y1y2a

i′
3 )

αp + α + βk′ + min0<l<k′ cp(ai′−l
1 ai′−l

2 ai′−l
3 , y1y2a

i′
3 )

α + βk′ + cp(y1a
i′′
2 ai′′

3 , y1y2a
i′
3 )

(5.19)

cost(del2) = α + β + min
{

cp(x1x2a
i′
3 , x1x2x3)

cp(ai
1a

i
2x3, x1x2x3)

(5.20)

If we assume that the first deletion occurs before the second deletion, and
that the second deletion has length one and remaining codon x1x2x3, then
D8(i, j) is cost(subs)+cost(del1)+cost(del2)+D(i′−k′−1, j−1) minimized over
all possible combinations of y1y2y3 and k′. Recall that the cost len8′

x1x2x3
(i, j, 1)

is the part of D8(i, j) that neither depends on ai
1a

i
2a

i
3 nor the witness of the sec-

ond deletion. Inspecting the above expressions shows that len8′
x1x2x3

(i, j, 1) must
include everything but c∗p(ai

1a
i
2a

i
3, a

i
1a

i
2y3) and c∗p(ai

1a
i
2y3, a

i
1a

i
2x3) of cost(subs),

and min{cp(x1x2a
i′
3 , x1x2x3), cp(ai

1a
i
2x3, x1x2x3)} of cost(del2). It can be ver-

ified that the value D4
y1y2a

i′
3
(i′, j) is equal to the sum D(i′ − k′ − 1, j − 1) +

c∗p(ai′′
1 ai′′

2 ai′′
3 , y1a

i′′
2 ai′′

3 ) + cost(del1) minimized over the deletion length k′ of the
first deletion, which makes it possible to compute len8′

x1x2x3
(i, j, 1) as

len8′
x1x2x3

(i, j, 1) = α + β + c∗p(x1x2x3, b
j
1b

j
2b

j
3)+

min
y1y2

{c∗p(ai′
1 ai′

2 ai′
3 , ai′

1 y2a
i′
3 ) + D4

y1y2ai′
3

(i′, j) + c∗p(y1y2a
i′
3 , x1x2a

i′
3 )} , (5.21)
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Figure 5.13: The second deletion occurs before the first deletion and the second
deletion has length one.

where y1 ∈ {ai′′
1 , x1} and y2 ∈ {ai′

2 , x2}. The cost len8′
x1x2x3

(i, j, 1) is defined if
the remaining codon x1x2x3 allows the second deletion to have length one, i.e.
if x1 ∈ {ai′′

1 , bj
1}, x2 ∈ {ai′

2 , bj
2}, and x3 ∈ {ai

3, b
j
3}. The nucleotide ai′′

1 depends
on the unknown deletion length of the first deletion, so we must assume that it
can be any of the four nucleotides.

Figure 5.13 illustrates the evolution of the last codon alignment when the
second deletion has length one and occurs before the first deletion. The nu-
cleotides z1, x2 and x3 are the status of the substitutions before the second
deletion, and the nucleotides y1, y2 and y3 are the status of the substitutions
before the first deletion. We observe that x1 is just ai′

1 .
The cost of this case can be described as above. This would reveal that

len8′′
x1x2x3

(i, j, 1) includes everything but c∗p(ai
1a

i
2a

i
3, a

i
1a

i
2x3)+c∗p(ai

1a
i
2x3, a

i
1a

i
2y3)+

cp(x1x2x3, w1w2w3), where w1w2w3 is the witness of the second deletion. Fur-
thermore, it would reveal that D4

y1y2y3
(i′, j) is equal to the sum of the cost of

the remaining alignment, the cost of the first deletion, and the cost of changing
codon ai′′

1 ai′′
2 ai′′

3 to z1a
i′′
2 ai′′

3 to y1a
i′′
2 ai′′

3 , minimized over the deletion length k′

of the first deletion. This makes it possible to compute len8′′
x1x2x3

(i, j, 1) as

len8′′
x1x2x3

(i, j, 1) = α + β + c∗p(a
i′
1 ai′

2 ai′
3 , x1x2a

i′
3 )+

min
y1y2y3

{c∗p(ai′
1 x2x3, a

i′
1 y2y3) + D4

y1y2y3
(i′, j) + c∗p(y1y2y3, b

j
1b

j
2b

j
3)} , (5.22)

where y1 ∈ {z1, b
j
1}, y2 ∈ {x2, b

j
2} and y3 ∈ {x3, b

j
3}. The nucleotide z1 depends

on the unknown deletion length of the first deletion, so we must assume that
z1 can be any of the four nucleotides. The cost len8′′

x1x2x3
(i, j, 1) is defined if the

remaining codon x1x2x3 allows the second deletion to have length one, i.e. if
x1 = ai′

1 , x2 ∈ {ai′
2 , bj

2} and x3 ∈ {ai
3, b

j
3}.

We are finally in a position where we can describe how to use the method
from the previous section to compute D8(i, j). The cost len8

x1x2x3
(i, j, k) de-

pends on x1, x2 and x3, so instead of 16 tables we need 64 tables, L8
x1x2x3

,
to keep track of min0<k<i len8

x1x2x3
(i, j, k). We still need 64 tables, F 8

x1x2x3
, to

keep track of the cost under the assumption that the end-codon ai
1a

i
2x3 is not

the witness (of the second deletion). We compute entry (i, j) in these tables as
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L8
x1x2x3

(i, j) = min
{

len8
x1x2x3

(i, j, 1)
L8

x1x2x3
(i − 1, j) + β

(5.23)

F 8
x1x2x3

(i, j) = min




L8
x1x2x3

(i − 1, j) + β + αp + cp(ai−1
1 ai−1

2 ai−1
3 , x1x2x3)

len8
x1x2x3

(i, j, 1) + cp(x1x2a
i−1
3 , x1x2x3)

F 8
x1x2x3

(i − 1, j) + β

(5.24)

We compute D8
x1x2x3

(i, j) using the above tables, and D8(i, j) by minimizing
over the 32 possible remaining codons of the second deletion, that is

D8
x1x2x3

(i, j) = min
{

L8
x1x2x3

(i, j) + cp(ai
1a

i
2x3, x1x2x3)

F 8
x1x2x3

(i, j)
(5.25)

D8(i, j) = min
x1x2x3

{c∗p(ai
1a

i
2a

i
3, a

i
1a

i
2x3) + D8

x1x2x3
(i, j)} (5.26)

The compute D8(i, j), we compute entry (i, j) in 128 tables. Each computa-
tion takes constant time. The other three cases where the last codon alignment
describes two internal gaps can be handled similarly. To compute Dt(i, j), for
t = 8, 9, 10, 11, we thus compute 4 · 128 = 512 table entries in total.

5.6 Reducing Space Consumption

The computations of D6(i, j) and D8(i, j) are very similar, the essential differ-
ence is the computations of len6

x1x2
(i, j, 1) and len8

x1x2x3
(i, j, 1). This similarity

follows because codon alignments of type 6 and type 8 end in the same way. By
“end in the same way” we mean that the events described on the codon ai

1a
i
2a

i
3

are the same. It follows from Figure 5.7 that a codon alignment of type 11 also
ends in the same way as codon alignments of type 6 and 8.

The similarities between the computations of Dt(i, j) for t = 6, 8, 11 can be
used to reduce the total number of tables necessary to maintain. We can replace
the three tables L6

x1x2
, L8

x1x2x3
and L11

x1x2x3
by a single table, L6,8,11

x1x2x3, where
entry (i, j) holds the minimum over entry (i, j) in the three tables it replaces.
Similarly, we can replace the tables F 6

x1x2x3
, F 8

x1x2x3
and F 11

x1x2x3
by a single

table F 6,8,11
x1x2x3 . We can compute L6,8,11

x1x2x3(i, j) and F 6,8,11
x1x2x3(i, j) by expressions

similar to Equations 5.23 and 5.24, all we essentially have to do is to replace
the term len8

x1x2x3
(i, j, 1) by

len6,8,11
x1x2x3

(i, j, 1) = min
t=6,8,11

lent
x1x2x3

(i, j, 1) , (5.27)

where we in order to ensure that the terms lent
x1x2x3

(i, j, 1), for t = 6, 8, 11,
all describe the same part of the total cost need to redefine len6

x1x2x3
(i, j, 1) as

len6
x1x2

(i, j, 1) + c∗p(x1x2x3, b
j
1b

j
2b

j
3). We introduce D6,8,11(i, j) as the minimum

of Dt(i, j) over t = 6, 8, 11. We can compute D6,8,11(i, j) by using L6,8,11
x1x2x3 and
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F 6,8,11
x1x2x3 in expressions similar to Equations 5.25 and 5.26. The computation

of D6,8,11(i, j) requires us to compute only 64 + 64 = 128 table entries while
the individual computations of Dt(i, j), for t = 6, 8, 10, require us to compute
80 + 128 + 128 = 336 table entries.

Further inspections of Figure 5.7 shows that codon alignments of type 7, 9
and 10 also end in the same way. Hence, we can also combine the computa-
tion of Dt(i, j), for t = 7, 9, 10, into the computation of D7,9,10(i, j). Finally,
to compute D(i, j) by Equation 5.5 we must minimize over D1(i, j), D2(i, j),
D3(i, j), D4(i, j), D5(i, j), D6,8,11(i, j) and D7,9,10(i, j). In total this computa-
tion requires us to compute 1 + 7 + 68 + 68 + 128 + 128 = 400 table entries.

5.7 Conclusion

We are working on implementing the alignment algorithm described in the
previous section in order to compare it to the heuristic alignment algorithm
described in [84]. The heuristic algorithm allows frame shifts, so an obvious
extension of our exact algorithm would be to allow frame shifts, e.g. to allow
insertion-deletions of arbitrary length. This however makes it difficult to split
the evaluation of the alignment cost into small independent subproblems (codon
alignments) of known size.

Another interesting extension would be to annotate the DNA sequence with
more information. For example, if the DNA sequence codes in more than one
reading frame (overlapping reading frames) then the DNA sequence should be
annotated with all the amino acid sequences encoded and the combined cost
of a nucleotide event should summarize the cost of changes induced on all the
amino acid sequences encoded by the DNA sequence. This extension also makes
it difficult to split the evaluation of the alignment cost into small independent
subproblems. To implement these extensions efficiently it might be fruitful to
investigate reasonable restrictions of the cost functions.

Appendix – Number of Codon Alignments

In Section 5.3 we observe that there between any two consecutive substitutions
in a codon alignment can be an alternating sequence of insertion-deletions.
In general it is difficult (if not impossible) to say anything useful about the
number of insertion-deletions in a codon alignment. If we however assume that
the combined gap cost function is affine, i.e. g(k) = α+ βk, then we can bound
the number of insertion-deletions in a codon alignment as follows.

Consider the two substrings a3i′+1a3i′+2 · · · a3i and b3j′+1b3j′+2 · · · b3j of a
and b. One possible alignment of the two substrings is a deletion of length
k1 = i − i′ and an insertion of length k2 = j − j′. The cost of this alignment is

2α + β(k1 + k2). (5.28)

Another possible alignment of the two substrings is a codon alignment that de-
scribes three substitutions and c insertion-deletions. Observe that the combined
length of the c insertion-deletions is k1 + k2 − 2. Remember that the cost of
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Type 12: Type 13: Type 14: Type 15:

Figure 5.14: The addition four codon alignments

an insertion-deletion within a codon alignment not only depends on the length
but also on the witness. If we use use cost(subs) to denote the cost of the three
substitutions and cost(witnesses) to denote the cost of the c witnesses, then we
can write the cost of the codon alignment of the two substrings as

cost(subs) + cost(witnesses) + cα + β(k1 + k2 − 2). (5.29)

If the codon alignment is part of the optimal alignment of a and b then the
cost given by Equation 5.29 must be less than the cost given by Equation 5.28.
Since cost(subs) and cost(witnesses) are at least zero, this is only possible if

cα + β(k1 + k2 − 2) < 2α + β(k1 + k2). (5.30)

If we assume that α > 0, this simplifies to

c < 2(1 +
β

α
). (5.31)

Hence, if we assume that α ≥ 2β then we only have to consider codon alignments
that describes at most two insertion-deletions. In addition to the eleven types of
codon alignments in Figure 5.7 this includes the four types of codon alignments
in Figure 5.14. Extending the algorithm in Section 5.5 to handle the additional
four types of codon alignments, i.e. to compute Dt(i, j) for t = 12, 13, 14, 15,
can be done by the technique used to handle the other types of codon alignment
that describes two gaps. The extension roughly doubles the number of table
entries that is computed during the computation of an optimal alignment.





Chapter 6

Measures on Hidden Markov Models

The paper Measures on Hidden Markov Models presented in this chapter has
been published in part as a technical report [126] and a conference paper [127].

[126] R. B. Lyngsø, C. N. S. Pedersen, and H. Nielsen. Measures on hidden
Markov models. Technical Report RS-99-6, BRICS, April 1999.

[127] R. B. Lyngsø, C. N. S. Pedersen, and H. Nielsen. Metrics and similarity
measures for hidden Markov models. In Proceedings of the 7th Interna-
tional Conference on Intelligent Systems for Molecular Biology (ISMB),
pages 178–186, 1999.

The technical report extends the conference paper by adding a section about
generalizing the measures to other types of hidden Markov models than left-
right models. Except for minor typographical changes the content of this chap-
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Measures on Hidden Markov Models

Rune B. Lyngsø∗ Christian N. S. Pedersen† Henrik Nielsen‡

Abstract

Hidden Markov models were introduced in the beginning of the 1970’s
as a tool in speech recognition. During the last decade they have been
found useful in addressing problems in computational biology such as
characterizing sequence families, gene finding, structure prediction and
phylogenetic analysis. In this paper we propose several measures between
hidden Markov models. We give an efficient algorithm that computes the
measures for left-right models, e.g. profile hidden Markov models, and dis-
cuss how to extend the algorithm to other types of models. We present
an experiment using the measures to compare hidden Markov models for
three classes of signal peptides.

6.1 Introduction

A hidden Markov model describes a probability distribution over a potentially
infinite set of sequences. It is convenient to think of a hidden Markov model as
generating a sequence according to some probability distribution by following a
first order Markov chain of states, called the path, from a specific start-state to
a specific end-state and emitting a symbol according to some probability dis-
tribution each time a state is entered. One strength of hidden Markov models
is the ability efficiently to compute the probability of a given sequence as well
as the most probable path that generates a given sequence. Hidden Markov
models were introduced in the beginning of the 1970’s as a tool in speech recog-
nition. In speech recognition the set of sequences might correspond to digitized
sequences of human speech and the most likely path for a given sequence is the
corresponding sequence of words. Rabiner [166] gives a good introduction to the
theory of hidden Markov models and their applications to speech recognition.

Hidden Markov models were introduced in computational biology in 1989
by Churchill [38]. Durbin et al. [46] and Eddy [48, 49] are good overviews of
the use of hidden Markov models in computational biology. One of the most
popular applications is to use them to characterize sequence families by using
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so called profile hidden Markov models introduced by Krogh et al. [111]. For a
profile hidden Markov model the probability of a given sequence indicates how
likely it is that the sequence is a member of the modeled sequence family, and
the most likely path for a given sequence corresponds to an alignment of the
sequence against the modeled sequence family.

An important advance in the use of hidden Markov models in computational
biology within the last two years, is the fact that several large libraries of profile
hidden Markov models have become available [49]. These libraries not only
make it possible to classify new sequences, but also open up the possibility of
comparing sequence families by comparing the profiles of the families instead
of comparing the individual members of the families, or of comparing entire
sequence families instead of the individual members of the family to a hidden
Markov model constructed to model a particular feature. To our knowledge
little work has been published in this area, except for alignment of profiles [69].

In this paper we propose measures for hidden Markov models that can be
used to address this problem. The measures are based on what we call the
co-emission probability of two hidden Markov models. We present an efficient
algorithm that computes the measures for profile hidden Markov models and
observe that the left-right architecture is the only special property of profile
hidden Markov models required by the algorithm. We describe how to extend
the algorithm to broader classes of models and how to approximate the measures
for general hidden Markov models. The method can easily be adapted to various
special cases, e.g. if it is required that paths pass through certain states.

As the algorithm we present is not limited to profile hidden Markov mod-
els, we have chosen to emphasize this generality by presenting an application
to a set of hidden Markov models for signal peptides. These models do not
strictly follow the profile architecture and consequently cannot be compared
using profile alignment [69].

The rest of the paper is organized as follows. In Section 6.2 we discuss hid-
den Markov models in more detail. In Section 6.3 we introduce the co-emission
probability of two hidden Markov models and formulate an algorithm for com-
puting this probability of two profile hidden Markov models. In Section 6.4 we
use the co-emission probability to formulate several measures between hidden
Markov models. In Section 6.5 we discuss extensions to more general mod-
els. In Section 6.6 we present an experiment using the method to compare
three classes of signal peptides. Finally in Section 6.7 we briefly discuss how to
compute relaxed versions of the co-emission probability.

6.2 Hidden Markov Models

Let M be a hidden Markov model that generates sequences over some finite
alphabet Σ with probability distribution PM , i.e. PM (s) denotes the probability
of s ∈ Σ∗ under model M . Like a classical Markov model, a hidden Markov
model consists of a set of interconnected states. We use Pq(q′) to denote the
probability of a transition from state q to state q′. These probabilities are
usually called state transition probabilities. The transition structure of a hidden
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Start End

Figure 6.1: The transition structure of a profile hidden Markov model. The
squares are the match-states, the diamonds are the insert-states and the circles
are the silent delete-states.

Markov model is often shown as a directed graph with a node for each state,
and an edge between two nodes if the corresponding state transition probability
is non-zero. Figure 6.1 shows an example of a transition structure. Unlike a
classical Markov model, a state in a hidden Markov model can generate or emit
a symbol according to a local probability distribution over all possible symbols.
We use Pq(σ) to denote the probability of generating or emitting symbol σ ∈ Σ
in state q. These probabilities are usually called symbol emission probabilities.
If a state does not have symbol emission probabilities we say that the state is
a silent state.

It is often convenient to think of a hidden Markov model as a generative
model, in which a run generates or emits a sequence s ∈ Σ∗ with probabil-
ity PM (s). A run of a hidden Markov model begins in a special start-state and
continues from state to state according to the state transition probabilities until
a special end-state is reached. Each time a non-silent state is entered, a symbol
is emitted according to the symbol emission probabilities of the state. A run
thus results in a Markovian sequence of states as well as a generated sequence
of symbols. The name “hidden Markov model” comes from the fact that the
Markovian sequence of states, also called the path, is hidden, while only the
generated sequence of symbols is observable.

Hidden Markov models have found applications in many areas of computa-
tional biology, e.g. gene finding [110] and protein structure prediction [175], but
probably the most popular use is as profiles for sequence families. A profile is
a position-dependent scoring scheme that captures the characteristics of a se-
quence family, in the sense that the score peaks around members of the family.
Profiles are useful when searching for unknown members of a sequence family
and several methods have been used to construct and use profiles [71, 120, 180].
Krogh et al. [111] realized that simple hidden Markov models, which they called
profile hidden Markov models, were able to capture all other profile methods.

The states of a profile hidden Markov model are divided into match-, insert-
and delete-states. Figure 6.1 illustrates the transition structure of a simple
profile hidden Markov model. Note the highly repetitive transition structure.
Each of the repeated elements consisting of a match-, insert- and delete-state
models a position in the consensus sequence for the sequence family. The silent
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delete-state makes it possible to skip a position while the self-loop on the insert-
state makes it possible to insert one or more symbols between two positions.
Another distinctive feature of the structure of profile hidden Markov models
is the absence of cycles, except for the self-loops on the insert-states. Hidden
Markov models with this property are generally referred to as left-right [99] (or
sometimes Bakis [20]) models, as they can be drawn such that all transitions
go from left to right.

The state transition and symbol emission probabilities of a profile hidden
Markov model (the parameters of the model) should be such that PM (s) is
significant if s is a member of the sequence family. These probabilities can
be derived from a multiple alignment of the sequence family, but more impor-
tantly, several methods exist to estimate them (or train the model) if a multiple
alignment is not available [21, 46, 49].

6.3 Co-Emission Probability of Two Models

When using a profile hidden Markov model, it is sometimes sufficient just to
focus on the most probable path through the model, e.g. when using a profile
hidden Markov model to generate alignments. It is, however, well known that
profile hidden Markov models possess a lot more information than the most
probable paths, as they allow the generation of an infinity of sequences, each
by a multitude of paths. Thus, when comparing two profile hidden Markov
models, one should look at the entire spectrum of sequences and probabilities.

In this section we will describe how to compute the probability that two
profile hidden Markov models independently generate the same sequence, that
is for models M1 and M2 generating sequences over an alphabet Σ we compute∑

s∈Σ∗
PM1(s)PM2(s). (6.1)

We will call this the co-emission probability of the two models. The algorithm
we present to compute the co-emission probability is a dynamic programming
algorithm similar to the algorithm for computing the probability that a hidden
Markov model will generate a specific sequence [46, Chapter 3]. We will describe
how to handle the extra complications arising when exchanging the sequence
with a profile hidden Markov model.

When computing the probability that a hidden Markov model M generates
a sequence s = s1 . . . sn, a table indexed by a state from M and an index from s
is usually built. An entry (q, i) in this table holds the probability of being in the
state q in M and having generated the prefix s1 . . . si of s. We will use a similar
approach to compute the co-emission probability. Given two hidden Markov
models M1 and M2, we will describe how to build a table A indexed by states
from the two hidden Markov models, such that the entry A(q, q′), where q is
a state of M1 and q′ is a state of M2, holds the probability of being in state q
in M1 and q′ in M2 and having independently generated identical sequences
on the paths to q and q′. The entry indexed by the two end-states will then
hold the probability of being in the end-states and having generated identical
sequences, that is the co-emission probability.
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To build the table, A, we have to specify how to fill out all entries of A.
For a specific entry A(q, q′) this depends on the types of states q and q′. As
explained in the previous section, a profile hidden Markov model has three types
of states (insert-, match- and delete-states) and two special states (start and
end). We postpone the treatment of the special states until we have described
how to handle the other types of states. For reasons of succinctness we will
treat insert- and match-states as special cases of a more general type, which
we will call a generate-state; this type encompasses all non-silent states of the
profile hidden Markov models.

The generate-state will be a merging of match-states and insert-states, thus
both allowing a transition to itself and having a transition from the previous
insert-state; a match-state can be viewed as a generate-state with probability
zero of choosing the transition to itself, and an insert-state can be viewed as a
generate-state with probability zero of choosing the transition from the previous
insert-state. Note that this merging of match- and insert-states is only concep-
tual; we do not physically merge any states, but just handle the two types of
states in a uniform way. This leaves two types of states and thus four different
pairs of types. By observing that the two cases of a generate/delete-pair are
symmetric and can be handled in the same way, the number of different pairs
of types can be reduced to three.

The rationale behind the algorithm is to split paths up in the last transi-
tion(s)1 and all that preceded this. We will thus need to be able to refer to the
states with transitions to q and q′. In the following, m, i and d will refer to
the match-, insert- and delete-state with a transition to q, and m′, i′ and d′ to
those with a transition to q′. Observe that if q (or q′) is an insert-state, then i
(or i′) is the previous insert-state which, by the generate-state generalization,
has a transition to q (or q′) with probability zero. Let us consider each of the
three different pairs of types individually.

delete/delete entry Assume that q and q′ are both delete-states. As these
states don’t emit symbols, we just have to sum over all possible combinations
of immediate predecessors of q and q′, of the probability of being in these
states and having independently generated identical sequences, multiplied by
the joint probability of independently choosing the transitions to q and q′. For
the calculation of A(q, q′) we thus get the equation

A(q, q′) =
A(m,m′)Pm(q)Pm′(q′) + A(m, i′)Pm(q)Pi′(q′) + A(m,d′)Pm(q)Pd′(q′)
+ A(i,m′)Pi(q)Pm′(q′) + A(i, i′)Pi(q)Pi′(q′) + A(i, d′)Pi(q)Pd′(q′)
+ A(d,m′)Pd(q)Pm′(q′) + A(d, i′)Pd(q)Pi′(q′) + A(d, d′)Pd(q)Pd′(q′).

(6.2)

delete/generate entry Assume that q is a delete-state and q′ is a generate-
state. Envision paths leading to q and q′ respectively while independently gen-
erating the same sequence. As q does not emit symbols while q′ does, the path

1In some of the cases explained below, we will only extend the path in one of the models
with an extra transition, hence the unspecificity.
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to q’s immediate predecessor (that is, the path to q with the actual transition
to q removed) must also have generated the same sequence as the path to q′.
We thus have to sum over all immediate predecessors of q, of the probability
of being in this state and in q′ and having generated identical sequences, mul-
tiplied by the probability of choosing the transition to q. For the calculation
of A(q, q′) in this case we thus get the following equation

A(q, q′) = A(m, q′)Pm(q) + A(i, q′)Pi(q) + A(d, q′)Pd(q). (6.3)

generate/generate entry Assume that q and q′ are both generate-states.
The last character in sequences generated on the paths to q and q′ are generated
by q and q′ respectively. We will denote the probability that these two states
independently generate the same symbol by p, and it is an easy observation
that

p =
∑
σ∈Σ

Pq(σ)Pq′(σ). (6.4)

The problem with generate/generate entries is that due to the self-loops of
generate states the last transitions on paths to q and q′ might actually come
from q and q′ themselves. It thus seems that we need A(q, q′) to be able to
compute A(q, q′).

So let us start out by assuming that at most one of the paths to q and q′

has a self-loop transition as the last transition. Then we can easily compute
the probability of being in q and q′ and having independently generated the
same sequence on the paths to q and q′, by summing over all combinations
of states with transitions to q and q′ (including combinations with either q
or q′ but not both) the probabilities of these combinations, multiplied by p (for
independently generating the same symbol at q and q′) and the joint probability
of independently choosing the transitions to q and q′. We denote this probability
by A0(q, q′), and by the above argument the equation for computing it is

A0(q, q′) =p(A(m,m′)Pm(q)Pm′(q′) + A(m, i′)Pm(q)Pi′(q′)
+ A(m,d′)Pm(q)Pd′(q′) + A(m, q′)Pm(q)Pq′(q′)
+ A(i,m′)Pi(q)Pm′(q′) + A(i, i′)Pi(q)Pi′(q′)
+ A(i, d′)Pi(q)Pd′(q′) + A(i, q′)Pi(q)Pq′(q′)
+ A(d,m′)Pd(q)Pm′(q′) + A(d, i′)Pd(q)Pi′(q′)
+ A(d, d′)Pd(q)Pd′(q′) + A(d, q′)Pd(q)Pq′(q′)
+ A(q,m′)Pq(q)Pm′(q′) + A(q, i′)Pq(q)Pi′(q′)
+ A(q, d′)Pq(q)Pd′(q′)).

(6.5)

Now let us cautiously proceed, by considering a pair of paths where one of the
paths has exactly one self-loop transition in the end, and the other path has at
least one self-loop transition in the end. The probability – that we surprisingly
call A1(q, q′) – of getting to q and q′ along such paths while generating the
same sequences is the probability of getting to q and q′ along paths that do not
both have a self-loop transition in the end, multiplied by the joint probability of



6.4. Measures on Hidden Markov Models 99

independently choosing the self-loop transitions, and the probability of q and q′

emitting the same symbols. But this is just

A1(q, q′) = rA0(q, q′), (6.6)

where
r = pPq(q)Pq′(q′) (6.7)

is the probability of independently choosing the self-loop transitions and emit-
ting the same symbols in q and q′. Similarly we can define Ak(q, q′), and by
induction it is easily proven that

Ak(q, q′) = rAk−1(q, q′) = rkA0(q, q′). (6.8)

As any finite path ending in q or q′ must have a finite number of self-loop
transitions in the end, we get

A(q, q′) =
∞∑

k=0

Ak(q, q′) =
∞∑

k=0

rkA0(q, q′) =
1

1 − r
A0(q, q′). (6.9)

Despite the fact that there is an infinite number of cases to consider, we observe
that the sum over the probabilities of all these cases comes out as a geometric
series that can easily be computed.

Equations 6.2, 6.3 and 6.9 give that each of the entries of table A pertain-
ing to match- insert- and delete-states can be computed in constant time using
the above equations. As for the start-states (denoted by s and s′) we initial-
ize A(s, s′) to 1 (as we have not started generating anything and the empty
sequence is identical to itself). Otherwise, even though they do not generate
any symbols, we will treat the start-states as generate states; this allows for
choosing an initial sequence of delete-states in one of the models. The start-
states are the only possible immediate predecessors for the first insert-states,
and together with the first insert-states the only immediate predecessors of the
first match- and delete-states; the equations for the entries indexed by any of
these states can trivially be modified according to this. The end-states (denoted
by e and e′) do not emit any symbols and are thus akin to delete-states, and
can be treated the same way.

The co-emission probability of M1 and M2 is the probability of being in the
states e and e′ and having independently generated the same sequences. This
probability can be found by looking up A(e, e′). In the rest of this paper we
will use A(M1,M2) to denote the co-emission probability of M1 and M2.

As all entries of A can be computed in constant time, we can compute the
co-emission probability of M1 and M2 in time O(n1n2) where ni denotes the
number of states in Mi. The straightforward space requirement is also O(n1n2)
but can be reduced to O(n1) by a standard trick [74, Chapter 11].

6.4 Measures on Hidden Markov Models

Based on the co-emission probability we define two metrics that hopefully, to
some extent, express how similar the families of sequences represented by two
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hidden Markov models are. A problem with the co-emission probability is that
the models having the largest co-emission probability with a specific model, M ,
usually will not include M itself, as shown by the following proposition.

Proposition 6.1 Let M be a hidden Markov model and p = max{PM (s) |
s ∈ Σ∗}. The maximum co-emission probability with M attainable for any
hidden Markov model is p. Furthermore, the hidden Markov models attaining
this co-emission probability with M , are exactly those models, M ′, for which
PM ′(s) > 0 ⇔ PM (s) = p for all s ∈ Σ∗.

Proof. Let M ′ be a hidden Markov model with PM ′(s) > 0 ⇔ PM (s) = p. Then∑
s∈Σ∗,PM (s)=p

PM ′(s) = 1 (6.10)

and thus the co-emission probability of M and M ′ is∑
s∈Σ∗

PM (s)PM ′(s) =
∑

s∈Σ∗,PM (s)=p

PM (s)PM ′(s) = p. (6.11)

Now let M ′ be a hidden Markov model with PM ′(s′) = p′ > 0 for some s′ ∈ Σ∗

with PM (s′) = p′′ < p. Then the co-emission probability of M and M ′ is∑
s∈Σ∗

PM (s)PM ′(s) = p′p′′ +
∑

s∈Σ∗\{s′}
PM (s)PM ′(s)

≤ p′p′′ + (1 − p′)p
< p.

(6.12)

This proves that a hidden Markov model M ′ has maximum co-emission proba-
bility p with M if and only if the assertion of the proposition is fulfilled. 2

Proposition 6.1 indicates that the co-emission probability of two models not
only depends on how alike they are, but also on how ‘self-confident’ the models
are, that is, to what extent the probabilities are concentrated to a small subset
of all possible sequences.

Another way to explain this undesirable property of the co-emission proba-
bility, is to interpret hidden Markov models – or rather the probability distribu-
tion over finite sequences of hidden Markov models – as vectors in the infinite
dimensional space spanned by all finite sequences over the alphabet. With this
interpretation the co-emission probability, A(M1,M2), of two hidden Markov
models, M1 and M2, simply becomes the inner product,

〈M1,M2〉 = |M1||M2| cos v, (6.13)

of the models. In the expression on the right hand side, v is the angle between
the models – or vectors – and |Mi| =

√〈Mi,Mi〉 is the length of Mi. One
observes the direct proportionality between the co-emission probability and the
length (or ‘self-confidence’) of the models being compared. If the length is to be
completely ignored, a good measure of the distance between two hidden Markov
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models would be the angle between them – two models are orthogonal, if and
only if they can not generate identical sequences, and parallel (actually identical
as the probabilities have to sum to 1) if they express the same probability
distribution. This leads to the definition of our first metric on hidden Markov
models.

Definition 6.1 Let M1 and M2 be two hidden Markov models, and let A(M,M ′)
denote the co-emission probability of two hidden Markov models M and M ′. We
define the angle between M1 and M2 as

Dangle(M1,M2) = arccos
(
A(M1,M2)

/√
A(M1,M1)A(M2,M2)

)
.

Having introduced the vector interpretation of hidden Markov models, another
obvious metric to consider is the standard metric on vector spaces, that is, the
(Euclidean) norm of the difference between the two vectors

|M1 − M2| =
√

〈M1 − M2,M1 − M2〉. (6.14)

Considering the square of this, we obtain

|M1 − M2|2 = 〈M1 − M2,M1 − M2〉
=
∑
s∈Σ∗

(PM1(s) − PM2(s))
2

=
∑
s∈Σ∗

(
PM1(s)

2 + PM2(s)
2 − 2PM1(s)PM2(s)

)
= A(M1,M1) + A(M2,M2) − 2A(M1,M2).

(6.15)

Thus this norm can be computed based on co-emission probabilities, and we
propose it as a second choice for a metric on hidden Markov models.

Definition 6.2 Let M1 and M2 be two hidden Markov models, and A(M,M ′)
be the co-emission probability of M and M ′. We define the difference be-
tween M1 and M2 as

Ddiff(M1,M2) =
√

A(M1,M1) + A(M2,M2) − 2A(M1,M2).

One problem with the Ddiff metric is that |M1| − |M2| ≤ Ddiff(M1,M2) ≤
|M1| + |M2|. If |M1| � |M2| we therefore get that Ddiff(M1,M2) ≈ |M1|, and
we basically only get information about the length of M1 from Ddiff.

The metric Dangle is not prone to this weakness, as it ignores the length of the
vectors and focuses on the sets of most probable sequences in the two models
and their relative probabilities. But this metric can also lead to undesirable
situations, as can be seen from Figure 6.2 which shows that Dangle might not
be able to discern two clearly different models. Choosing what metric to use,
depends on what kind of differences one wants to highlight.

For some applications one might want a similarity measure instead of a
distance measure. Based on the above metrics or the co-emission probability
one can define a variety of similarity measures. We decided to examine the
following two similarity measures.
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(a) Hidden Markov model M1 with
PM1(a) = 1.
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(b) Hidden Markov model
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Figure 6.2: Two distinctly different models can have an arbitrarily small dis-
tance in the Dangle metric. It is easy to see that A(M1,M1) = 1, A(M1,M2) =
1/2 and A(M2,M2) = 1/4 + 1/(8n − 4); for n → ∞ one thus obtains
Dangle(M1,M2) → 0 but Ddiff(M1,M2) → 1/2.

Definition 6.3 Let M1 and M2 be two hidden Markov models and A(M,M ′) be
the co-emission probability of M and M ′. We define the similarity between M1

and M2 as

S1(M1,M2) = cos (Dangle(M1,M2))

= A(M1,M2)
/√

A(M1,M1)A(M2,M2)

and
S2(M1,M2) = 2A(M1,M2) /(A(M1,M1) + A(M2,M2)) .

One can easily prove that these two similarity measures possess the following
nice properties.

1. 0 ≤ Si(M1,M2) ≤ 1.

2. Si(M1,M2) = 1 if and only if ∀s ∈ Σ∗ : PM1(s) = PM2(s).

3. Si(M1,M2) = 0 if and only if ∀s ∈ Σ∗ : PMi(s) > 0 ⇒ PM3−i(s) = 0, that
is, there are no sequences that can be generated by both M1 and M2.

The only things that might not be immediately clear are that S2 satisfies prop-
erties 1 and 2. This however follows from

A(M1,M1) + A(M2,M2) − 2A(M1,M2) =
∑
s∈Σ∗

(PM1(s) − PM2(s))
2, (6.16)

cf. Equation 6.15, wherefore 2A(M1,M2) ≤ A(M1,M1)+A(M2,M2), and equal-
ity only holds if for all sequences their probabilities in the two models are equal.

6.5 Other Types of Hidden Markov Models

Profile hidden Markov models are not by far the only type of hidden Markov
models used in computational biology. Other types of hidden Markov models
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have been constructed for e.g. gene prediction [110] and recognition of trans-
membrane proteins [175]. We observe that the properties of the metrics and
similarity measures introduced in the previous section do not depend on the
structure of the underlying models, so once we can compute the co-emission
probability of two models, we can also compute the distance between and sim-
ilarity of the two models. The question is if our method can be extended to
compute the co-emission probability for other types of hidden Markov models.

The first thing one can observe, is that the only feature of the underlying
structure of profile hidden Markov models we use, is that they are left-right
models, i.e. we can number the states such that if there is a transition from
state i to state j then i ≤ j (if the inequality is strict, that is i < j, then we do
not even need the geometric sequence calculation, and the calculation of the co-
emission probability reduces to a calculation similar to the forward/backward
calculations [46, Chapter 3]). For all left-right hidden Markov models, e.g. pro-
file hidden Markov models extended with free insertion modules [22, 92], we
can thus use recursions similar to those specified in Section 6.3 to compute the
co-emission probability.

With some work the method can even be extended to all hidden Markov
models where each state is part of at most one cycle, even if this cycle consists
of more than the one state of the self-loop case. We will denote such models as
hidden Markov models with only simple cycles. This extension can be useful
when comparing models of coding DNA, that will often contain cycles with
three states, or models describing a variable number of small domains. For
general hidden Markov models we will have to resort to approximating the
co-emission probability. In the rest of this section we will describe these two
generalizations.

6.5.1 Hidden Markov Models with Only Simple Cycles

Assume that we can split M and M ′ into a number of disjoint cycles and single
nodes, {Ci}i≤k and {C ′

i}i≤k′ , such that {Ci} and {C ′
i} are topologically sorted,

i.e. for p ∈ Ci (p′ ∈ C ′
i) and q ∈ Cj (q′ ∈ C ′

j) and i < j there is no path from q
to p in M (from q′ to p′ in M ′). To compute the co-emission probability of M
and M ′, we will go from considering pairs of single nodes to considering pairs
of cycles, i.e. we look at all nodes in a cycle at the same time.

Let Ci and C ′
i′ be cycles2 in M and M ′ respectively. Assume that we

have already computed the co-emission probability, A(q, q′), for all pairs of
nodes, q, q′, where q ∈ Cj, q′ ∈ C ′

j′ , j ≤ i, j′ ≤ i′ and (i, i′) 6= (j, j′). We will
now describe how to compute the co-emission probability, A(p, p′), for all pairs
of nodes, p, p′, with p ∈ Ci and p′ ∈ C ′

i′ .
As with the profile hidden Markov models, cf. Section 6.3, we will proceed

in a step by step fashion. We start by restricting the types of paths we consider,
to get some intermediate results; we then expand the types of paths allowed –
using the intermediate results – until we have covered all possible paths.

2If Ci or C′
i′ is not a cycle but a single node, the calculations of the co-emission probabilities

pertaining to pairs of nodes from Ci and C′
i′ trivializes to calculations similar to Equation 6.17

below.
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The first types of paths we consider are paths, π and π′, generating identical
sequences that ends in p and p′, but where the immediate predecessor of p on π
is not in Ci, or the immediate predecessor of p′ on π′ is not in C ′

i′ . We will
denote the co-emission probability at p, p′ of paths of this type as Ae(p, p′), as
it covers the co-emission probability of paths entering the pair of cycles, Ci, C

′
i′ ,

at p, p′; it can easily be computed as

Ae(q, q′) =
∑

r→q,r′→q′
(r, r′) 6∈ Ci × C′

i′

Pr(q)Pr′(q′)A(r, r′)
∑
σ∈Σ

Pq(σ)Pq′(σ), (6.17)

where r → q (r′ → q′) denotes that there is a transition from r to q in M (from r′

to q′ in M ′). Here we assume that both q and q′ are non-silent states; if both
are silent, the sum over all symbols factor,

∑
σ∈Σ Pq(σ)Pq′(σ) (the probability

that q and q′ generates identical symbols), should be omitted, and if one is silent
and the other non-silent, the sum should furthermore only be over non-Ci (or
non-C ′

i′) predecessors of the silent state.
Before we proceed further, we will need some definitions that allow us to

talk about successors of states and successors of pairs of states in Ci, C
′
i′ , and

some related probabilities.

Definition 6.4 Let q ∈ Ci (q′ ∈ C ′
i′). The successor of q in Ci (q′ in C ′

i′) is
the unique state r ∈ Ci (r′ ∈ C ′

i′) for which there is a transition from q to r
(from q′ to r′).

The uniqueness of the successor follows from the requirement that the models
only have simple cycles. For successors of pairs of states things are a little bit
more complicated, as we want the successor of a pair to be the unique pair to
which we can get to, generating the same number of symbols (zero or one) using
one transition in one or both models. This is captured by Definition 6.5.

Definition 6.5 Let q ∈ Ci and q′ ∈ C ′
i′. The successor of q, q′ in Ci, C

′
i′ ,

suc(q, q′), is the pair of states r, r′ where

• if the successor of q in Ci is silent or the successor of q′ in C ′
i′ is non-

silent, then r is the successor of q; otherwise r = q.

• if the successor of q′ in C ′
i′ is silent or the successor of q in Ci is non-

silent, then r′ is the successor of q′; otherwise r′ = q′.

By this definition the successor of a pair of states, q, q′, is the pair of successors
of q and q′ if both successors are silent or both successors are non-silent states.
If the successor of q is a non-silent state and the successor of q′ is a silent state
then the successor of q, q′ is the pair consisting of q and the successor of q′.

We will use Pq,q′(suc(q, q′)) to denote the probability of getting from q, q′ to
suc(q, q′) generating identical symbols. If r, r′ = suc(q, q′) are both non-silent,
then Pq,q′(r, r′) = Pq(r)Pq′(r′)

∑
σ∈Σ Pr(σ)Pr′(σ); if one or both are silent,

the sum over all symbols factor,
∑

σ∈Σ Pr(σ)Pr′(σ), should be omitted, and
if only r (r′) is silent, the Pq′(r′) factor (Pq(r) factor) should furthermore be
omitted as q′ = r′ (as q = r).
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More generally we will use Pq,q′(r, r′), where q, r ∈ Ci and q′, r′ ∈ C ′
i′ , to de-

note the probability of getting from q, q′ to r, r′ generating identical sequences
without cycling, i.e. by just starting in q, q′ and going through successors un-
til we reach r, r′ the first time. We resolve the ambiguity of the meaning of
Pq,q′(q, q′) by setting Pq,q′(q, q′) = 1. To ease notation in the following, we
furthermore define P ′

q,q′(r, r
′) = Pq,q′(suc(q, q′))Psuc(q,q′)(r, r′). The probability

P ′
q,q′(q, q

′) is thus the probability of going through one full cycle of successors
to q, q′ until we are back at q, q′; if r, r′ 6= q, q′ then P ′

q,q′(r, r
′) = Pq,q′(r, r′).

One can observe that r, r′ might not be anywhere in the sequence of succes-
sors starting at q, q′. If we can get to r, r′ from q, q′ going through consecutive
successors, then there is a pair of paths from q to r and from q′ to r′, respec-
tively, generating an equal number of symbols. Such a pair of paths does not
necessarily exist. E.g. assume there is an even number of non-silent states in
both Ci and C ′

i′ , and that the successor, r, of q in Ci is non-silent. Any path that
starts in q and ends in r will generate an uneven number of symbols, while any
path starting and ending in q′ ∈ C ′

i′ will generate an even number of symbols.
It is thus impossible to get from q, q′ to r, q′ going through successors.

More formally, let dq(r) (resp. dq′(r′)) denote the number of non-silent states
we go through going from q to r in Ci (from q′ to r′ in C ′

i′), and let h (h′) denote
the total number of non-silent states in Ci (in C ′

i′). Then by similar reasoning
as in the above, we can get from q, q′ to r, r′ going through successors if and
only if dq(r) ≡ dq′(r′) mod gcd(h, h′). It is evident that we can always get
back to q, q′ when starting in q, q′, and thus the pairs of states from Ci, C

′
i′

can be partitioned into cycles of consecutive successors, cf. Figure 6.3. If it is
possible to get from q, q′ to p, p′ generating an equal number of symbols, i.e. q, q′

and p, p′ are in the same cycle of pairs, we will say that q, q′ and p, p′ belong to
the same class, as the partition of pairs in this manner is actually a partition
into equivalence classes.

We are now ready to compute the probability of getting simultaneously to p
and p′ having generated identical sequences, without having been simultane-
ously in p and p′ previously on the paths. This is

A0(p, p′) =
∑

q, q′ belongs to the
same class as p, p′

Ae(q, q′)Pq,q′(p, p′) (6.18)

as we sum over all possible pairs, q, q′, where paths ending in p, p′ can have
entered Ci, C

′
i′ . It is similar to A0(p, p′) for profile hidden Markov models in the

sense, that it is the probability of reaching p and p′ having generated identical
sequences without having looped through p, p′ previously.

To compute the A0 entries efficiently for all pairs of states in a class, we
exploit the fact that Pq,q′(p, p′) = Pq,q(suc(q, q′))Psuc(q,q′)(p, p′) (for q, q′ 6= p, p′);
we can thus compute A0(p, p′) in an incremental way, starting at the successor
of p, p′ and going through the cycle of successors, adding the Ae values and
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(a) Two example cycles, Ci = {q0, q1, q2}
and C′

i′ = {q′0, q′1, q′2, q′3, q′4}. Hollow cir-
cles denote silent states and filled circles
denote non-silent states.

q0, q
′
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π, π′

(b) The cycle of the class of pairs in Ci ×
C′

i′ containing q0, q
′
0.

Figure 6.3: An example of a pair of cycles in M and M ′ and one of the induced
cycles of pairs. A path, π, ending in q2 in Ci and a path, π′, ending in q′2
in C ′

i′ are shown with zigzagged lines. If we assume that the two paths generate
identical sequences, then the co-emission path, π, π′, ends in q2, q

′
2 in Ci, C

′
i′ .

Though π′ enters C ′
i′ at q′4, the co-emission path, π, π′, enters Ci, C

′
i′ at q0, q

′
0,

as the first symbol in the sequence generated by π and π′ that is generated by
states in both Ci and C ′

i′ , the second last symbol of the sequence, is generated
by q0 and q′0 respectively.

multiplying by the probability of getting to the next successor. Furthermore, as

A0(p,p′)Pp,p′(suc(p, p′)) + Ae(suc(p, p′))

=
∑

q, q′ belongs to the
same class as p, p′

Ae(q, q′)Pq,q′(p, p′)Pp,p′(suc(p, p′))

+ Ae(suc(p, p′))Psuc(p,p′)(suc(p, p′))
= A0(suc(p, p′)) + Ae(suc(p, p′))P ′

suc(p,p′)(suc(p, p′))

(6.19)

we do not need to start from scratch when computing A0 for the other pairs
that belong to the same class as p, p′ – which would require time proportional
to the square of the number of pairs in the class – but can reuse A0(p, p′) to
compute A0(suc(p, p′)) in constant time. Finally we observe that

A(p, p′) =
∞∑
i=0

P ′
p,p′(p, p′)iA0(p, p′) =

1
1 − P ′

p,p′(p, p′)
A0(p, p′) (6.20)



6.5. Other Types of Hidden Markov Models 107

Algorithm 6.1 Computation of the co-emission probabilities at all pairs of
states that are in the same class as p, p′.

q, q′ = p, p′

AccumulatedP = Ae(p, p′)
r = 1

while suc(q, q′) 6= p, p′ do
AccumulatedP = AccumulatedP · Pq,q′(suc(q, q′)) + Ae(suc(q, q′))
r = r · Pq,q′(suc(q, q′))
q, q′ = suc(q, q′)

end while

r = r · Pq,q′(suc(q, q′))

repeat /* AccumulatedP = A0(q, q′) and r = P ′
q,q′(q, q

′) */
A(q, q′) = AccumulatedP · 1

1−r
AccumulatedP

= AccumulatedP · Pq,q′(suc(q, q′)) + (1 − r) · Ae(suc(q, q′))
q, q′ = suc(q, q′)

until suc(q, q′) = p, p′

and
P ′

p,p′(p, p′) = P ′
q,q′(q, q

′) (6.21)

for all q, q′ that belong to the same class as p, p′. This allows us to formulate
Algorithm 6.1 for computing the co-emission probability at all pairs in a cycle.

It is an easy observation that we run through all pairs of the class twice –
once in the while-loop and once in the repeat-loop – thus using time proportional
to the number of pairs in the class to compute the co-emission probabilities at
each pair. Therefore, the overall time for handling the entries pertaining to
the pair of cycles, Ci, C

′
i′ , is O(|Ci||C ′

i′ |) once we have computed the Ae entries;
thus the time used to compute the co-emission probability of two hidden Markov
models with only simple cycles is proportional to the product of the number of
transitions in the two models. This is comparable to the complexity of O(n1n2)
for profile hidden Markov models, as this result relied on there only being a
constant number of transitions to each state. In general we can compute the
co-emission probability of two hidden Markov models, M1 and M2, with only
simple cycles – including left-right hidden Markov models – in time O(m1m2),
where mi denotes the number of transitions in Mi.

6.5.2 General Hidden Markov Models

For more complex hidden Markov models, let us examine what is obtained by
iterating the calculations. Let A′

i(q, q
′) be the value computed for entry (q, q′)

in the i’th iteration. If we assume that q and q′ are either both silent or both
non-silent states, then we can compute the new entry for (q, q′) as

A′
i+1(q, q

′) = p
∑
r→q
r′→q′

A′
i(r, r

′)Pr(q)Pr′(q′), (6.22)
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where p is as defined in Equation 6.4 if q and q′ are non-silent states, and is 1 if q
and q′ are silent states. If q and q′ are of different types, the summation should
only be over the predecessors of the silent state as in Equation 6.3. In each
iteration we thus extend co-emission paths with one pair of states, and A′

i(q, q
′)

is the probability of getting to q, q′ having generated identical sequences on a
co-emission path of length i.

The resemblance of this iterated computation to the previous calculation of
Ai is evident, but a well-known mathematical sequence is not easily recognizable
in Equation 6.22. Instead we observe that A′

i(q, q
′) holds the probability of being

in states q and q′ and having generated identical prefixes in the two models
after i iterations. If we assume that the only transitions from the end-states
are self-loops with probability 1 (this makes the A′

i(e, e
′) entry accumulate the

probabilities of generating identical sequences after at most i iterations), then

A′
i(e, e

′) ≤ A(M1,M2) ≤
∑

q∈M1, q′∈M2

A′
i(q, q

′) (6.23)

where A(M1,M2) is the true co-emission probability of M1 and M2. This follows
from the fact, that to generate identical sequences we must either already have
done so, or at least have generated identical prefixes so far.

Now assume that for any two states, we can choose transitions to non-silent
states (or the end-states) and emit different symbols with probability at least
1 − c where c < 1. Then the total weight with which A′

i(q, q
′) contributes to

the entries – not counting the special (e, e′) entry – of A′
i+1 is at most c. Thus∑

q∈M1, q′∈M2

(q,q′)6=(e,e′)

A′
i+1(q, q

′) ≤ c
∑

q∈M1, q′∈M2

(q,q′)6=(e,e′)

A′
i(q, q

′) (6.24)

and by induction we get∑
q∈M1, q′∈M2

A′
i(q, q

′) − A′
i(e, e

′) =
∑

q∈M1, q′∈M2

(q,q′)6=(e,e′)

A′
i(q, q

′) ≤ ci, (6.25)

which shows that the iteration method approximates the co-emission probability
exponentially fast.

Though our assumption about the non-zero probability of choosing transi-
tions and emissions such that we generate different symbols in the two models
is valid for most, if not all, hidden Markov models used in practice, it is not
even necessary. If d is the minimum number of paired transitions we have to
follow from q and q′ to get to the end-states3 or states where we can emit differ-
ent symbols after having generated identical prefixes, and c′ is the probability
of staying on this path and emit different symbols, we still get the exponen-
tial approximation of Equation 6.25 with c = (c′)1/d. By these arguments we
can approximate the co-emission probabilities and thus the metrics and sim-
ilarity measures presented in Section 6.4 of arbitrary hidden Markov models
exponentially fast.

3The end-states ensures that d exists – if we can not get to e and e′, then we can not pass
through q and q′ and generate identical sequences. Therefore we may just as well ignore the
(q, q′) entry.
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6.6 Experiments

We have implemented the method described in the previous sections for com-
puting the co-emission probabilities of two left-right models. The program also
computes the two metrics and two similarity measures described in this paper
and is currently available at www.brics.dk/∼cstorm/hmmcomp. The program
was used to test the four measures in a comparison of hidden Markov models
for three classes of secretory signal peptides – cleavable N-terminal sequences
which target secretory proteins for translocation over a membrane.

Signal peptides do not have a well-defined consensus motif, but they do share
a common structure: an N-terminal region with a positive charge, a stretch of
hydrophobic residues, and a region of more polar regions containing the cleavage
site, where two positions are partially conserved [193]. There are statistical
differences between prokaryotic and eukaryotic signal peptides concerning the
length and composition of these regions [194, 152], but the distributions overlap,
and in some cases, eukaryotic and prokaryotic signal peptides are found to be
functionally interchangeable [25].

The hidden Markov model used here is not a profile HMM, since signal
peptides of different proteins are not necessarily related, and therefore do not
constitute a sequence family that can be aligned in a meaningful way. Instead,
the signal peptide model is composed of three region models, each having a
characteristic amino acid composition and length distribution, plus seven states
modeling the cleavage site – see Nielsen and Krogh [153] for a detailed descrip-
tion. A combined model with three branches was used to distinguish between
signal peptides, signal anchors (a subset of transmembrane proteins), and non-
secretory proteins; but only the part modeling the signal peptide plus the first
few positions after the cleavage site has been used in our comparisons.

The same architecture was used to train models of three different signal pep-
tide data sets: eukaryotes, Gram-negative bacteria (with a double membrane),
and Gram-positive bacteria (with a single membrane). For cross-validation
of the predictive performance, each model was trained on five different train-
ing/test set partitions, with each training set comprising 80% of the data – i.e.,
any two training sets have 75% of the sequences in common.

The comparisons of the models are shown in Figures 6.4 and 6.5. In general,
models trained on cross-validation sets of the same group are more similar than
models trained on data from different groups, and the two groups of bacteria
are more similar to one another than to the eukaryotes. However, there are
some remarkable differences between the measures. According to Ddiff, the two
bacterial groups are almost as similar as the cross-validation sets, but according
to Dangle and the similarity measures, they are almost as dissimilar as the
bacterial/eukaryotic comparisons.

This difference actually reflects the problem with the Ddiff measure discussed
in Section 6.4. The distribution of sequences for models trained on eukaryotic
data are longer in the vector interpretation, i.e. the probabilities are more con-
centrated, than the distributions for models trained on bacterial data. What we
mainly see in the Ddiff values for bacterial/eukaryotic comparisons is thus the
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Figure 6.4: Plots of the results obtained with the different measures. Models
1 through 5 are the models trained on eukaryotic sequences, models 6 through
10 are the models trained on Gram-positive bacterial sequences, and models
11 through 15 are the models trained on Gram-negative bacterial sequences.
This gives 9 blocks, each of 25 entries, of different pairs of groups of organisms
compared, but as all the measures are symmetric we have left out half the
blocks showing comparisons between different groups of organisms. This should
increase clarity, as no parts of the plots are hidden behind peaks.

length of the eukaryotic models. This reflects two properties of eukaryotic signal
peptides: they have a more biased amino acid composition in the hydrophobic
region that comprises a large part of the signal peptide sequence; and they are
actually shorter than their bacterial counterparts, thus raising the probability
of the most probable sequences generated by this model.

Dangle also shows that the differences within groups are larger in the Gram-
positive group than in the others. This may simply reflect the smaller sample
size in this group (172 sequences vs. 356 for the Gram-negative bacteria and
1137 for the eukaryotes).
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Euk Gpos Gneg

Euk 0.231 1.56 1.52
Gpos 0.864 1.47
Gneg 0.461

(a) Table of Dangle values

Euk Gpos Gneg

Euk 6.77 · 10−11 2.56 · 10−10 2.67 · 10−10

Gpos 1.95 · 10−11 9.09 · 10−11

Gneg 4.43 · 10−11

(b) Table of Ddiff values

Euk Gpos Gneg

Euk 0.967
Gpos 1.06 · 10−2 0.547
Gneg 4.74 · 10−2 0.102 0.866

(c) Table of S1 values

Euk Gpos Gneg

Euk 0.955
Gpos 1.78 · 10−3 0.511
Gneg 2.93 · 10−2 4.78 · 10−2 0.839

(d) Table of S2 values

Figure 6.5: Tables of the average values of each block plotted in Figure 6.4.
The empty entries corresponds to the blocks left out in the plots.

The values of Dangle in between-group comparisons are quite close to the
maximal π/2. Thus the distributions over sequences for models of different
groups are close to being orthogonal. This might seem surprising in the light
of the reported examples of functionally interchangeable signal peptides; but
it does not mean that no sequences can be generated by both eukaryotic and
bacterial models, only that these sequences have low probabilities compared to
those that are unique for one group. In other words: if a random sequence is
generated from one of these models, it may with a high probability be identified
which group of organisms it belongs to.

6.7 Conclusion

Recall that the co-emission probability is defined as the probability that two
hidden Markov models, M1 and M2, generate completely identical sequences,
i.e. as

∑
s1,s2∈Σ PM1(s1)PM2(s2) where s1 = s2. One problem with the co-

emission probability – and measures based on it – is that it can be desirable
to allow sequences to be slightly different. One might thus want to loosen the
restriction of “s1 = s2” to, e.g., “s1 is a substring (or subsequence) of s2,” or
even “|s1| = |s2|” ignoring the symbols of the sequences and just comparing the
length distributions of the two models.

Another approach is to take the view that the two hidden Markov models do
not generate independent sequences, but instead generates alignments with two
sequences. Inspecting the equations for computing the co-emission probability,
one observes that we require that when one model emits a symbol the other
model should emit an identical symbol. This corresponds to only allowing
columns with identical symbols in the produced alignments. A less restrictive
approach would be to allow other types of columns, i.e. columns with two
different symbols or a symbol in only one of the sequences, and weighting a
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column according to the difference it expresses. The modifications proposed in
the previous paragraph can actually be considered special cases of this approach.
Our method for computing the co-emission probability can easily be modified
to encompass these types of modifications.
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Chapter 7

Finding Maximal Pairs with Bounded Gap

The paper Finding Maximal Pairs with Bounded Gap presented in this chapter
has been published in part as a technical report [29], a conference paper [30]
and a journal paper [31]

[29] G. S. Brodal, R. B. Lyngsø, C. N. S. Pedersen, and J. Stoye. Finding
maximal pairs with bounded gap. Technical Report RS-99-12, BRICS,
April 1999.

[30] G. S. Brodal, R. B. Lyngsø, C. N. S. Pedersen, and J. Stoye. Finding
maximal pairs with bounded gap. In Proceedings of the 10th Annual
Symposium on Combinatorial Pattern Matching (CPM), volume 1645 of
Lecture Notes in Computer Science, pages 134–149, 1999.

[31] G. S. Brodal, R. B. Lyngsø, C. N. S. Pedersen, and J. Stoye. Finding
maximal pairs with bounded gap. To appear in Journal of Discrete Al-
gorithms, 2000.

The technical report and the journal paper extend the conference paper by
adding a section describing how to find all maximal pairs with a lower bounded
gap in linear time. Except for minor typographical changes the content of this
chapter is equal to the journal paper [31].
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Finding Maximal Pairs with Bounded Gap

Gerth Stølting Brodal∗ Rune B. Lyngsø†

Christian N. S. Pedersen∗ Jens Stoye§

Abstract

A pair in a string is the occurrence of the same substring twice. A pair
is maximal if the two occurrences of the substring cannot be extended to
the left and right without making them different, and the gap of a pair is
the number of characters between the two occurrences of the substring. In
this paper we present methods for finding all maximal pairs under various
constraints on the gap. In a string of length n we can find all maximal pairs
with gap in an upper and lower bounded interval in time O(n log n + z),
where z is the number of reported pairs. If the upper bound is removed the
time reduces to O(n + z). Since a tandem repeat is a pair with gap zero,
our methods is a generalization of finding tandem repeats. The running
time of our methods also equals the running time of well known methods
for finding tandem repeats.

7.1 Introduction

A pair in a string is the occurrence of the same substring twice. A pair is left-
maximal (right-maximal) if the characters to the immediate left (right) of the
two occurrences of the substring are different. A pair is maximal if it is both
left- and right-maximal. The gap of a pair is the number of characters between
the two occurrences of the substring, e.g. the two occurrences of the substring
ma in the string maximal form a maximal pair of ma with gap two.

Gusfield in [74, Section 7.12.3] describes how to use a suffix tree to report all
maximal pairs in a string of length n in time O(n+ z) and space O(n), where z
is the number of reported pairs. The algorithm presented by Gusfield allows no
restrictions on the gaps of the reported maximal pairs, so many of the reported
pairs probably describe occurrences of substrings that are either overlapping
or far apart in the string. In many applications this is unfortunate because
it leads to a lot of redundant output. The problem of finding occurrences of
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similar substrings not too far apart has been studied in several papers, e.g. [101,
116, 169].

In the first part of this paper we describe how to find all maximal pairs in a
string with gap in an upper and lower bounded interval in time O(n log n + z)
and space O(n). The interval of allowed gaps can be chosen such that we report
a maximal pair only if the gap is between two constants c1 and c2; but more
generally, the interval can be chosen such that we report a maximal pair only if
the gap is between g1(|α|) and g2(|α|), where g1 and g2 are functions that can
be computed in constant time and |α| is the length of the repeated substring.
This, for example, makes it possible to find all maximal pairs with gap between
zero and some fraction of the length of the repeated substring. In the second
part of this paper we describe how removing the upper bound g2(|α|) on the
allowed gaps makes it possible to reduce the running time to O(n + z). The
methods we present all use the suffix tree as the fundamental data structure
combined with efficient merging of search trees and heap-ordered trees.

Finding occurrences of repeated substrings in a string is a widely studied
problem. Much work has focused on constructing efficient methods for finding
occurrences of contiguously repeated substrings. An occurrence of a substring
of the form αα is called an occurrence of a square or a tandem repeat. Several
methods have been presented that in time O(n log n + z) find all z occurrences
of tandem repeats in a string of length n, e.g. [41, 11, 131, 109, 177]. Methods
that in time O(n) decide if a string of length n contains an occurrence of a
tandem repeat have also been presented, e.g. [132, 42]. Extending on the ideas
presented in [42], two methods [108, 75] have been presented that find a compact
representation of all tandem repeats in a string of length n in time O(n). The
problem of finding occurrences of contiguous repeats of substrings that are
within some Hamming- or edit-distance of each other is considered in e.g. [113].

In biological sequence analysis searching for tandem repeats is used to reveal
structural and functional information [74, pp. 139–142]. However, searching for
exact tandem repeats can be too restrictive because of sequencing and other
experimental errors. By searching for maximal pairs with small gaps (maybe
depending on the length of the substring) it could be possible to compensate
for these errors. Finding maximal pairs with gap in a bounded interval is also
a generalization of finding occurrences of tandem repeats. Stoye and Gusfield
in [177] say that an occurrence of the tandem repeat αα is a branching occur-
rence of the tandem repeat αα if and only if the characters to the immediate
right of the two occurrences of α are different, and they explain how to de-
duce the occurrence of all tandem repeats in a string from the occurrences of
branching tandem repeats in time proportional to the number of tandem re-
peats. Since a branching occurrence of a tandem repeat is just a right-maximal
pair with gap zero, the methods presented in this paper can be used to find
all tandem repeats in time O(n log n + z). This matches the time bounds of
previous published methods for this problem, e.g. [41, 11, 131, 109, 177].

The rest of this paper is organized in two parts which can be read indepen-
dently. In Section 7.2 we present the preliminaries necessary to read either of
the two parts; we define pairs and suffix trees and describe how in general to
find pairs using the suffix tree. In the first part, Section 7.3, we present the
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methods to find all maximal pairs in a string with gap in an upper and lower
bounded interval. This part also presents facts about efficient merging of search
trees which are essential to the formulation of the methods. In the second part,
Section 7.4, we present the methods to find all maximal pairs in a string with
gap in a lower bounded interval. This part also includes the presentation of two
novel data structures, the heap-tree and the colored heap-tree, which are essen-
tial to the formulation of the methods. Finally, in Section 7.5 we summarize
our work and discuss open problems.

7.2 Preliminaries

Throughout this paper S will denote a string of length n over a finite alphabet Σ.
We will use S[i], for i = 1, 2, . . . , n, to denote the ith character of S, and use
S[i .. j] as notation for the substring S[i]S[i+1] · · · S[j] of S. To be able to refer
to the characters to the left and right of every character in S without worrying
about the first and last character, we define S[0] and S[n+1] to be two distinct
characters not appearing anywhere else in S.

In order to formulate methods for finding repetitive structures in S, we
need a proper definition of such structures. An obvious definition is to find all
pairs of identical substrings in S. This, however, leads to a lot of redundant
output, e.g. in the string that consists of n identical characters there are Θ(n3)
such pairs. To limit the redundancy without sacrificing meaningful structures
Gusfield in [74] proposes maximal pairs.

Definition 7.1 (Pair) We say that (i, j, |α|) is a pair of α in S formed by i
and j if and only if 1 ≤ i < j ≤ n − |α| + 1 and α = S[i .. i + |α| − 1] =
S[j .. j + |α|− 1]. The pair is left-maximal ( right-maximal) if the characters to
the immediate left (right) of two occurrences of α are different, i.e. left-maximal
if S[i − 1] 6= S[j − 1] and right-maximal if S[i + |α|] 6= S[j + |α|]. The pair
is maximal if it is right- and left-maximal. The gap of a pair (i, j, |α|) is the
number of characters j − i − |α| between the two occurrences of α in S.

The indices i and j in a right-maximal pair (i, j, |α|) uniquely determine |α|.
Hence, a string of length n contains in the worst case O(n2) right-maximal
pairs. The string an contains the worst case number of right-maximal pairs
but only O(n) maximal pairs. However, the string (aab)n/3 contains Θ(n2)
maximal pairs. This shows that the worst case number of maximal pairs and
right-maximal pairs in a string are asymptotically equal.

Figure 7.1 illustrates the occurrence of a pair. In some applications it might
be interesting only to find pairs that obey certain restrictions on the gap, e.g.
to filter out pairs of substrings that are either overlapping or far apart and
thus reduce the number of pairs to report. Using the “smaller-half trick” (see
Section 7.3.1) and Lemma 7.1 it can be shown that a string of length n in the
worst case contains Θ(n log n) right-maximal pairs with gap in an interval of
constant size.

In this paper we present methods for finding all right-maximal and maximal
pairs (i, j, |α|) in S with gap in a bounded interval. These methods all use the
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gap
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Figure 7.1: An occurrence of a pair (i, j, |α|) with gap j − i − |α|.

suffix tree of S as the fundamental data structure. We briefly review the suffix
tree and refer to [74] for a more comprehensive treatment.

Definition 7.2 (Suffix tree) The suffix tree T (S) of the string S is the com-
pressed trie of all suffixes of S$, where $ /∈ Σ. Each leaf in T (S) represents
a suffix S[i .. n] of S and is annotated with the index i. We refer to the set of
indices stored at the leaves in the subtree rooted at node v as the leaf-list of v
and denote it LL(v). Each edge in T (S) is labelled with a nonempty substring
of S such that the path from the root to the leaf annotated with index i spells
the suffix S[i .. n]. We refer to the substring of S spelled by the path from the
root to node v as the path-label of v and denote it L(v).

Several algorithms construct the suffix tree T (S) in time O(n), e.g. [203,
137, 189, 53]. It follows from the definition of a suffix tree that all internal
nodes in T (S) have out-degree between two and |Σ|. We can turn the suffix
tree T (S) into the binary suffix tree TB(S) by replacing every node v in T (S)
with out-degree d > 2 by a binary tree with d − 1 internal nodes and d − 2
internal edges in which the d leaves are the d children of node v. We label each
new internal edge with the empty string such that the d − 1 nodes replacing
node v all have the same path-label as node v has in T (S). Since T (S) has n
leaves, constructing the binary suffix tree TB(S) requires adding at most n− 2
new nodes. Since each new node can be added in constant time, the binary
suffix tree TB(S) can be constructed in time O(n).

The binary suffix tree is an essential component of our methods. Defini-
tion 7.2 implies that there is an internal node v in T (S) with path-label α if
and only if α is the longest common prefix of S[i .. n] and S[j .. n] for some
1 ≤ i < j ≤ n. In other words, there is a node v with path-label α if and
only if (i, j, |α|) is a right-maximal pair in S. Since S[i + |α|] 6= S[j + |α|] the
indices i and j cannot be elements in the leaf-list of the same child of v. Using
the binary suffix tree TB(S) we can thus formulate the following lemma.

Lemma 7.1 There is a right-maximal pair (i, j, |α|) in S if and only if there is
a node v in the binary suffix tree TB(S) with path-label α and distinct children w1

and w2, where i ∈ LL(w1) and j ∈ LL(w2).

The lemma implies an approach to find all right-maximal pairs in S; for
every internal node v in the binary suffix tree TB(S) consider the leaf-lists at
its two children w1 and w2, and for every element (i, j) in LL(w1) × LL(w2)
report a right-maximal pair (i, j, |α|) if i < j and (j, i, |α|) if j < i. To find all
maximal pairs in S the problem remains to filter out all right-maximal pairs
that are not left-maximal.
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p
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L(p, |α|) R(p, |α|)

|α| + g2(|α|) |α| + g2(|α|)
|α| + g1(|α|) |α| + g1(|α|)

Figure 7.2: If (p, q, |α|) (respectively (q, p, |α|)) is a pair with gap between g1(|α|)
and g2(|α|), then one occurrence of α is at position p and the other occurrence
is at a position q in the interval R(p, |α|) (respectively L(p, |α|)) of positions.

7.3 Pairs with Upper and Lower Bounded Gap

We want to find all maximal pairs (i, j, |α|) in S with gap between g1(|α|)
and g2(|α|), i.e. g1(|α|) ≤ j − i − |α| ≤ g2(|α|), where g1 and g2 are functions
that can be computed in constant time. An obvious approach to solve this
problem is to generate all maximal pairs in S but only report those with gap
between g1(|α|) and g2(|α|). However, as explained in the previous section there
might be asymptotically fewer maximal pairs in S with gap between g1(|α|) and
g2(|α|) than maximal pairs in S in total. We therefore want to find all maximal
pairs (i, j, |α|) in S with gap between g1(|α|) and g2(|α|) without generating and
considering all maximal pairs in S.

A step towards finding all maximal pairs with gap between g1(|α|) and g2(|α|)
is to find all right-maximal pairs with gap between g1(|α|) and g2(|α|). Fig-
ure 7.2 shows that if one occurrence of α in a pair with gap between g1(|α|)
and g2(|α|) is at position p, then the other occurrence of α must be at a posi-
tion q in one of the two intervals:

L(p, |α|) = [ p − |α| − g2(|α|) .. p − |α| − g1(|α|) ] (7.1)
R(p, |α|) = [ p + |α| + g1(|α|) .. p + |α| + g2(|α|) ] (7.2)

Combined with Lemma 7.1 this gives an approach to find all right-maximal
pairs in S with gap between g1(|α|) and g2(|α|): for every internal node v in the
binary suffix tree TB(S) with path-label α and children w1 and w2, we report
for every p in LL(w1) the pairs (p, q, |α|) for all q in LL(w2)∩R(p, |α|) and the
pairs (q, p, |α|) for all q in LL(w2) ∩ L(p, |α|).

To report the right-maximal pairs efficiently we must be able to find for
every p in LL(w1) the proper elements q in LL(w2) to report it against, without
looking at all the elements in LL(w2). It turns out that search trees make this
possible. In this paper we use AVL trees, but other types of search trees, e.g.
(a, b)-trees [90] or red-black trees [72], can also be used as long as they obey
Lemmas 7.2 and 7.3 stated below. Before we can formulate algorithms we
review some useful facts about AVL trees.

7.3.1 Data Structures

An AVL tree T is a balanced search tree that stores an ordered set of elements.
AVL trees were introduced in [1], but are explained in almost every textbook
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on data structures. We say that an element e is in T , or e ∈ T , if it is stored at
a node in T . For short notation we use e to denote both the element and the
node at which it is stored in T . We can keep links between the nodes in T in
such a way that we in constant time from the node e can find the nodes next(e)
and prev(e) storing the next and previous element. We use |T | to denote the
size of T , i.e. the number of elements stored in T .

Efficient merging of two AVL trees is essential to our methods. Hwang
and Lin [94] show how to merge two sorted lists using the optimal number
of comparisons. Brown and Tarjan [34] show how to implement merging of
two height-balanced search trees, e.g. AVL trees, in time proportional to the
optimal number of comparisons. Their result is summarized in Lemma 7.2,
which immediately implies Lemma 7.3.

Lemma 7.2 Two AVL trees of size at most n and m, where n ≤ m, can be
merged together in time O(n log(m/n)).

Lemma 7.3 Given a sorted list of elements e1, e2, . . . , en and an AVL tree T
of size at most m, where n ≤ m, we can find qi = min

{
x ∈ T

∣∣ x ≥ ei

}
for all

i = 1, 2, . . . , n in time O(n log(m/n)).

Proof. Construct the AVL tree of the elements e1, e2, . . . , en in time O(n).
Merge this AVL tree with T according to Lemma 7.2, except that whenever
the merge-algorithm would insert one of the elements e1, e2, . . . , en into T , we
change the merge-algorithm to report the neighbor of the element in T instead.
This modification does not increase the running time. 2

The “smaller-half trick” is used in several methods for finding tandem re-
peats, e.g. [41, 11, 177]. It says that the sum over all nodes v in an arbitrary
binary tree of size n of terms that are O(n1), where n1 ≤ n2 are the numbers of
leaves in the subtrees rooted at the two children of v, is O(n log n). Our meth-
ods for finding maximal pairs rely on a stronger version of the “smaller-half
trick” hinted at in [138, Exercise 35] and used in [139, Chapter 5, page 84]; we
summarize it in the following lemma.

Lemma 7.4 If each internal node v in a binary tree with n leaves supplies
a term O(n1 log((n1 + n2)/n1)), where n1 ≤ n2 are the number of leaves in
the subtrees rooted at the two children of v, then the sum over all terms is
O(n log n).

Proof. As the terms are O(n1 log((n1 +n2)/n1)) we can find constants, a and b,
such that the terms are upper bounded by a + bn1 log((n1 + n2)/n1). We will
by induction in the number of leaves of the binary tree prove that the sum over
all terms is upper bounded by (n − 1)a + bn log n = O(n log n).

If the tree is a leaf then the upper bound holds vacuously. Now assume
inductively that the upper bound holds for all trees with at most n − 1 leaves.
Consider a tree with n leaves where the number of leaves in the subtrees rooted
at the two children of the root are n1 and n2 where 0 < n1 ≤ n2. According
to the induction hypothesis the sum over all nodes in these two subtrees, i.e.
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the sum over all nodes in the tree except the root, is bounded by (n1 − 1)a +
bn1 log n1 + (n2 − 1)a + bn2 log n2. The entire sum is thus bounded by

a + bn1 log((n1 + n2)/n1) + (n1 − 1)a + bn1 log n1 + (n2 − 1)a + bn2 log n2

= (n − 1)a + bn1 log n + bn2 log n2

< (n − 1)a + bn1 log n + bn2 log n

= (n − 1)a + bn log n

which proves the lemma. 2

7.3.2 Algorithms

We first describe an algorithm that finds all right-maximal pairs in S with
bounded gap using AVL trees to keep track of the elements in the leaf-lists
during a traversal of the binary suffix tree TB(S). We then extend it to find all
maximal pairs in S with bounded gap using an additional AVL tree to filter out
efficiently all right-maximal pairs that are not left-maximal. Both algorithms
run in time O(n log n + z) and space O(n), where z is the number of reported
pairs. In the following we assume, unless stated otherwise, that v is a node in
the binary suffix tree TB(S) with path-label α and children w1 and w2 named
such that |LL(w1)| ≤ |LL(w2)|. We say that w1 is the small child of v and
that w2 is the big child of v.

Right-Maximal Pairs with Upper and Lower Bounded Gap

To find all right-maximal pairs in S with gap between g1(|α|) and g2(|α|) we
consider every node v in the binary suffix tree TB(S) in a bottom-up fashion,
e.g. during a depth-first traversal. At every node v we use AVL trees storing the
leaf-lists LL(w1) and LL(w2) at the two children of v to report the proper right-
maximal pairs of the path-label α of v. The details are given in Algorithm 7.1
and explained next.

At every node v in TB(S) we construct an AVL tree, a leaf-list tree T , that
stores the elements in LL(v). If v is a leaf then we construct T directly in Step 1.
If v is an internal node then LL(v) is the union of the disjoint leaf-lists LL(w1)
and LL(w2). By assumption LL(w1) and LL(w2) are stored in the already
constructed T1 and T2. We construct T by merging T1 and T2 using Lemma 7.2,
where |T1| ≤ |T2|. Before constructing T in Step 2c we use T1 and T2 to report
right-maximal pairs from node v by reporting every p in LL(w1) against every q
in LL(w2) ∩ L(p, |α|) and LL(w2) ∩ R(p, |α|), where L(p, |α|) and R(p, |α|) are
the intervals defined by (7.1) and (7.2). This is done in two steps. In Step 2a
we find for every p in LL(w1) the minimum element qr(p) in LL(w2)∩R(p, |α|)
and the minimum element q`(p) in LL(w2) ∩ L(p, |α|) by searching in T2 using
Lemma 7.3. In Step 2b we report pairs (p, q, |α|) and (q, p, |α|) for every p in
LL(w1) and increasing q’s in LL(w2), starting with qr(p) and q`(p) respectively,
until the gap violates the upper or lower bound.

To argue that Algorithm 7.1 finds all right-maximal pairs with gap between
g1(|α|) and g2(|α|) by Lemma 7.1 it is sufficient to show that we for every p
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in LL(w1) report all right-maximal pairs (p, q, |α|) and (q, p, |α|) with gap be-
tween g1(|α|) and g2(|α|). The rest follows because we at every node v in TB(S)
consider every p in LL(w1). Consider the call Report(qr(p), p + |α| + g2(|α|))
in Step 2b. The implementation of Report implies that p is reported against
every q in LL(w2) ∩ [qr(p) .. p + |α| + g2(|α|)]. The construction of qr(p) and
the definition of R(p, |α|) implies that the set LL(w2)∩ [qr(p) .. p+ |α|+g2(|α|)]
is equal to LL(w2) ∩ R(p, |α|). Hence, the call to Report reports all right-
maximal pairs (p, q, |α|) with gap between g1(|α|) and g2(|α|). Similarly the
call Report(q`(p), p − |α| − g1(|α|)) reports all right-maximal pairs (q, p, |α|)
with gap between g1(|α|) and g2(|α|).

Now consider the running time of Algorithm 7.1. Building the binary suffix
tree TB(S) takes time O(n) [203, 137, 189, 53], and creating an AVL tree of
size one at each leaf in Step 1 also takes time O(n). At every internal node
in TB(S) we perform Step 2. Since |T1| ≤ |T2|, the searching in Step 2a and
the merging in Step 2c take time O(|T1| log(|T2|/|T1|)) by Lemmas 7.3 and 7.2
respectively. The reporting of pairs in Step 2b takes time proportional to |T1|,
because we consider every p in LL(w1), plus the number of reported pairs.
Summing this over all nodes gives by Lemma 7.4 that the total running time
is O(n log n + z), where z is the number of reported pairs. Constructing and
keeping TB(S) requires space O(n). Since no element at any time is stored in
more than one leaf-list tree, Algorithm 7.1 requires space O(n) in total.

Theorem 7.1 Algorithm 7.1 finds all right-maximal pairs (i, j, |α|) in a string S
of length n with gap between g1(|α|) and g2(|α|) in time O(n log n + z) and
space O(n), where z is the number of reported pairs.

Maximal Pairs with Upper and Lower Bounded Gap

We now turn our attention towards finding all maximal pairs in S with gap
between g1(|α|) and g2(|α|). Our approach is to extend Algorithm 7.1 to filter
out all right-maximal pairs that are not left-maximal. A simple solution is to
extend the procedure Report to check if S[p− 1] 6= S[q− 1] before reporting the
pair (p, q, |α|) or (q, p, |α|) in Step 2b. This solution takes time proportional
to the number of inspected right-maximal pairs, and not time proportional to
the number of reported maximal pairs. Even though the maximum number of
right-maximal pairs and maximal pairs in strings of a given length are asymp-
totically equal, many strings contain significantly fewer maximal pairs than
right-maximal pairs. We therefore want to filter out all right-maximal pairs
that are not left-maximal without inspecting all right-maximal pairs. In the
remainder of this section we describe one approach to achieve this.

Consider the reporting step in Algorithm 7.1. Assume that we are about
to report from a node v with children w1 and w2. At this point the leaf-list
trees T1 and T2, where |T1| ≤ |T2|, are available and they make it possible to ac-
cess the elements in LL(w1) = {p1, p2, . . . , ps} and LL(w2) = {q1, q2, . . . , qt} in
sorted order. Our approach is to divide the sorted leaf-list LL(w2) into blocks
of contiguous elements, such that the elements qi−1 and qi are in the same block
if and only if S[qi−1 − 1] = S[qi − 1]. We say that we divide the sorted leaf-list
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Algorithm 7.1 Find all right-maximal pairs in string S with bounded gap.

1. Initializing: Build the binary suffix tree TB(S) and create at each leaf an
AVL tree of size one that stores the index at the leaf.

2. Reporting and merging: When the AVL trees T1 and T2, where |T1| ≤ |T2|,
at the two children w1 and w2 of a node v with path-label α are available,
we do the following:

(a) Let {p1, p2, . . . , ps} be the elements in T1 in sorted order. For each
element p in T1 we find

qr(p) = min
{
x ∈ T2

∣∣ x ≥ p + |α| + g1(|α|)
}

q`(p) = min
{
x ∈ T2

∣∣ x ≥ p − |α| − g2(|α|)
}

by searching in T2 with the two sorted lists {pi + |α| + g1(|α|) | i =
1, 2, . . . , s} and {pi − |α| − g2(|α|) | i = 1, 2, . . . , s} using Lemma 7.3.

(b) For each element p in T1 we call Report(qr(p), p + |α| + g2(|α|)) and
Report(q`(p), p−|α|−g1(|α|)) where Report is the following procedure.

Report(from , to)
q = from
while q ≤ to do

report pair (p, q, |α|) if p < q, and (q, p, |α|) otherwise
q = next(q)

(c) Build the leaf-list tree T at node v by merging T1 and T2 applying
Lemma 7.2.

into blocks of elements with equal left-characters. To filter out all right-maximal
pairs that are not left-maximal we must avoid to report p in LL(w1) against any
element q in LL(w2) in a block of elements with left-character S[p − 1]. This
gives the overall idea of the extended algorithm; we extend the reporting step in
Algorithm 7.1 such that whenever we are about to report p in LL(w1) against q
in LL(w2) where S[p − 1] = S[q − 1], we skip all elements in the current block
containing q and continue reporting p against the first element q′ in the following
block, which by the definition of blocks satisfies that S[p − 1] 6= S[q′ − 1].

To implement this extended reporting step efficiently we must be able to
skip all elements in a block without inspecting each of them. We achieve this
by constructing an additional AVL tree, the block-start tree, that keeps track
of the blocks in the leaf-list. At each node v during the traversal of TB(S)
we thus construct two AVL trees; the leaf-list tree T that stores the elements
in LL(v), and the block-start tree B that keeps track of the blocks in the sorted
leaf-list by storing all the elements in LL(v) that start a block. We keep links
from the block-start tree to the leaf-list tree such that we in constant time can
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Figure 7.3: The data structure constructed at each node v in TB(S). The
leaf-list tree T stores all elements in LL(v). The block-start tree B stores all
elements in LL(v) that start a block in the sorted leaf-list. We keep links from
elements in the block-start tree to corresponding elements in the leaf-list tree.

go from an element in the block-start tree to the corresponding element in the
leaf-list tree. Figure 7.3 illustrates the leaf-list tree, the block-start tree and
the links between them. Before we present the extended algorithm and explain
how to use the block-start tree to efficiently skip all elements in a block. We
first describe how to construct the leaf-list tree T and the block-start tree B at
node v from the leaf-list trees, T1 and T2, and the block-start trees, B1 and B2,
at its two children w1 and w2.

Since the leaf-list LL(v) is the union of the disjoint leaf-lists LL(w1) and
LL(w2) stored in T1 and T2 respectively, we can construct the leaf-list tree T by
merging T1 and T2 using Lemma 7.2. It is more involved to construct the block-
start tree B. The reason is that an element pi that starts a block in LL(w1) or
an element qj that starts a block in LL(w2) does not necessarily start a block
in LL(v) and vice versa, so we cannot construct B by merging B1 and B2. Let
{e1, e2, . . . , es+t} be the elements in LL(v) in sorted order. By definition the
block-start tree B contains all elements ek in LL(v) where S[ek−1−1] 6= S[ek−1].
We construct B by modifying B2. We choose to modify B2, and not B1, because
|LL(w1)| ≤ |LL(w2)|, which by the “smaller-half trick” allows us to consider all
elements in LL(w1) without spending too much time in total. To modify B2 to
become B we must identify all the elements that are in B but not in B2 and
vice versa.

Lemma 7.5 If ek is in B but not in B2 then ek ∈ LL(w1) or ek−1 ∈ LL(w1).

Proof. Assume that ek is in B and that both ek and ek−1 are in LL(w2).
In LL(w2) the elements ek and ek−1 are neighboring elements. Let these neigh-
boring elements in LL(w2) be denoted qj and qj−1. Since ek is in B and therefore
starts a block in LL(v) then S[qj − 1] = S[ek − 1] 6= S[ek−1 − 1] = S[qj−1 − 1].
This shows that qj = ek is in B2 and the lemma follows. 2

In the following NEW denotes the set of elements ek in B where either ek

or ek−1 is in LL(w1). It follows from Lemma 7.5 that NEW contains at least
all elements in B that are not in B2. We can construct NEW in sorted order
while merging T1 and T2 as follows. When an element ek from T1, i.e. from
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LL(w1), is placed in T , i.e. in LL(v), we include it in the set NEW if it starts a
block in LL(v). Similarly the next element ek+1 in LL(v) is included in NEW
if it starts a block in LL(v).

Constructing the set NEW is the first step in modifying B2 to become B.
The next step is to identify the elements that should be removed from B2, that
is, to identify the elements that are in B2 but not in B.

Lemma 7.6 An element qj in B2 is not in B if and only if the largest ele-
ment ek in NEW smaller than qj in B2 has the same left-character as qj.

Proof. If qj is in B2 but does not start a block in LL(v), then it must be in a
block started by some element ek with the same left-character as qj. This block
cannot contain qj−1 because qj being in B2 implies that S[qj −1] 6= S[qj−1−1].
We thus have the ordering qj−1 < ek < qj. This implies that ek is the largest
element in NEW smaller than qj. If ek is the largest element in NEW smaller
than qj, then no block starts in LL(v) between ek and qj, i.e. all elements e in
LL(v) where ek < e < qj satisfy that S[e−1] = S[ek−1], so if S[ek−1] = S[qj−1]
then qj does not start a block in LL(v). 2

To identify the elements that should be removed from B2, we search B2

with the sorted list NEW using Lemma 7.3 to find all pairs of elements (ek, qj),
where ek is the largest element in NEW smaller than qj in B2. If the left-
characters of ek and qj in such a pair are equal, i.e. S[ek − 1] = S[qj − 1],
then by Lemma 7.6 the element qj is not in B and must therefore be removed
from B2. It follows from the proof of Lemma 7.6 that if this is the case then
qj−1 < ek < qj, so we can, without destroying the order among the nodes in B2,
remove qj from B2 and insert ek instead, simply by replacing the element qj

with the element ek at the node storing qj in B2.
We can now summarize the three steps it takes to modify B2 to become B.

In Step 1 we construct the sorted set NEW that contains all elements in B
that are not in B2. This is done while merging T1 and T2 using Lemma 7.2. In
Step 2 we remove the elements from B2 that are not in B. The elements in B2

being removed and the elements from NEW replacing them are identified using
Lemmas 7.3 and 7.6. In Step 3 we merge the remaining elements in NEW into
the modified B2 using Lemma 7.2. Adding links from the new elements in B
to the corresponding elements in T can be done while replacing and merging
in Steps 2 and 3. Since |NEW | ≤ 2 |T1| and |B2| ≤ |T2|, the time it takes to
construct B is dominated by the the time it takes to merge a sorted list of
size 2 |T1| into an AVL tree of size |T2|. By Lemma 7.2 this is within a constant
factor of the time it takes to merge T1 and T2, so the time is takes to construct B
is dominated by the time it takes to construct the leaf-list tree T .

Now that we know how to construct the leaf-list tree T and block-start
tree B at node v from the leaf-list trees, T1 and T2, and block-start trees, B1

and B2, at its two children w1 and w2, we can proceed with the implementation
of the extended reporting step. The details are shown in Algorithm 7.2. This
algorithm is similar to Algorithm 7.1 except that we at every node v in TB(S)
construct two AVL trees; the leaf-list tree T that stores the elements in LL(v),
and the block-start tree B that keeps track of the blocks in LL(v) by storing
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Algorithm 7.2 Find all maximal pairs in string S with bounded gap.

1. Initializing: Build the binary suffix tree TB(S) and create at each leaf
two AVL trees of size one, the leaf-list and the block-start tree, storing
the index at the leaf.

2. Reporting and merging: When the leaf-list trees T1 and T2, where |T1| ≤
|T2|, and the block-start trees B1 and B2 at the two children w1 and w2

of node v with path-label α are available, we do the following:

(a) Let {p1, p2, . . . , ps} be the elements in T1 in sorted order. For each
element p in T1 we find

qr(p) = min
{
x ∈ T2

∣∣ x ≥ p + |α| + g1(|α|)
}

q`(p) = min
{
x ∈ T2

∣∣ x ≥ p − |α| − g2(|α|)
}

br(p) = min
{
x ∈ B2

∣∣ x ≥ p + |α| + g1(|α|)
}

b`(p) = min
{
x ∈ B2

∣∣ x ≥ p − |α| − g2(|α|)
}

by searching in T2 and B2 with the sorted lists {pi+|α|+g1(|α|) | i =
1, 2, . . . , s} and {pi − |α| − g2(|α|) | i = 1, 2, . . . , s} using Lemma 7.3.

(b) For each element p in T1 we call ReportMax(qr(p), br(p), p +
|α| + g2(|α|)) and ReportMax(q`(p), b`(p), p − |α| − g1(|α|)), where
ReportMax is the following procedure.

ReportMax(from in T , from in B , to)
q = from in T
b = from in B
while q ≤ to do

if S[q − 1] 6= S[p − 1] then
report pair (p, q, |α|) if p < q, and (q, p, |α|) otherwise
q = next(q)

else
while b ≤ q do b = next(b)
q = b

(c) Build the leaf-list tree T at node v by merging T1 and T2 using
Lemma 7.2. Build the block-start tree B at node v by modifying B2

as described in the text.

the subset of elements that start a block. If v is a leaf, we construct T and B
directly. If v is an internal node, we construct T by merging the leaf-list trees T1

and T2 at its two children w1 and w2, and we construct B by modifying the
block-start tree B2 as explained above.

Before constructing T and B we report all maximal pairs from node v with
gap between g1(|α|) and g2(|α|), by reporting every p in LL(w1) against every q
in LL(w2) ∩ L(p, |α|) and LL(w2) ∩ R(p, |α|) where S[p − 1] 6= S[q − 1]. This
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is done in two steps. In Step 2a we find for every p in LL(w1) the minimum
elements q`(p) and qr(p), as well as the minimum elements b`(p) and br(p)
that start a block, in LL(w2) ∩ L(p, |α|) and LL(w2) ∩ R(p, |α|) respectively.
This is done by searching in T2 and B2 using Lemma 7.3. In Step 2b we
report pairs (p, q, |α|) and (q, p, |α|) for every p in LL(w1) and increasing q’s
in LL(w2) starting with qr(p) and q`(p) respectively, until the gap violates the
upper or lower bound. Whenever we are about to report p against q where
S[p−1] = S[q−1], we instead use the block-start tree B2 to skip all elements in
the block containing q and continue with reporting p against the first element
in the following block.

To argue that Algorithm 7.2 finds all the maximal pairs with gap between
g1(|α|) and g2(|α|) it is sufficient to show that we for every p in LL(w1) report
all maximal pairs (p, q, |α|) and (q, p, |α|) with gap between g1(|α|) and g2(|α|).
The rest follows because we at every node in TB(S) consider every p in LL(w1).
Consider the call ReportMax(qr(p), br(p), p + |α| + g2(|α|)) in Step 2b. The im-
plementation of ReportMax implies that unless we skip elements by increasing b,
we consider every q in LL(w2)∩R(p, |α|) exactly as in Algorithm 7.1. The test
S[q − 1] 6= S[p − 1] ensures that we only report maximal pairs. Whenever
S[q − 1] = S[p − 1] we increase b until b = min{x ∈ B2 | x > q}, which by
construction of B2 and br(p) is the element that starts the block following the
block containing q. Hence, all the elements q′, where q < q′ < b, we skip by
setting q to b thus satisfy that S[p − 1] = S[q − 1] = S[q′ − 1]. We conclude
that ReportMax(qr(p), br(p), p + |α| + g2(|α|)) reports p against exactly those q
in LL(w2)∩R(p, |α|) where S[p− 1] 6= S[q− 1], i.e. it reports all maximal pairs
(p, q, |α|) at node v with gap between g1(|α|) and g2(|α|). Similarly, the call
ReportMax(q`(p), b`(p), p−|α|−g1(|α|)) reports all maximal pairs (q, p, |α|) with
gap between g1(|α|) and g2(|α|).

We now consider the running time of Algorithm 7.2. We first argue that
the call ReportMax(qr(p), br(p), p + |α|+ g2(|α|)) takes constant time plus time
proportional to the number of reported pairs (p, q, |α|). To do this all we have to
show is that the time used to skip blocks, i.e. the number of times we increase b,
is proportional to the number of reported pairs. By construction br(p) ≥ qr(p),
so the number of times we increase b is bounded by the number of blocks in
LL(w2) ∩ R(p, |α|). Since neighboring blocks contain elements with different
left-characters, we report p against an element from at least every second block
in LL(w2) ∩ R(p, |α|). The number of times we increase b is thus proportional
to the number of reported pairs. Similarly the call ReportMax(q`(p), b`(p), p −
|α| − g1(|α|)) also takes constant time plus time proportional to the number of
reported pairs (q, p, |α|). We thus have that Step 2b takes time proportional
to |T1| plus the number of reported pairs. Everything else we do at node v,
i.e. searching in T2 and B2 and constructing the leaf-list tree T and block-start
tree B, takes time O(|T1| log(|T2|/|T1|)). Summing this over all nodes gives by
Lemma 7.4 that the total running time of the algorithm is O(n log n+z), where z
is the number of reported pairs. Since constructing and keeping TB(S) requires
space O(n), and since no element at any time is in more than one leaf-list tree,
and maybe one block-start tree, Algorithm 7.2 requires space O(n).
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Theorem 7.2 Algorithm 7.2 finds all maximal pairs (i, j, |α|) in a string S
of length n with gap between g1(|α|) and g2(|α|) in time O(n log n + z) and
space O(n), where z is the number of reported pairs.

As a closing remark we can observe that Algorithm 7.2 never uses the block-
start tree B1 at the small child w1. This observation can be used to ensure that
only one block-start tree exists during the execution of the algorithm. If we
implement the traversal of TB(S) as a depth-first traversal in which we at each
node v first recursively traverse the subtree rooted at the small child w1, then
we do not need to store the block-start tree returned by this recursive traversal
while recursively traversing the subtree rooted at the big child w2. This implies
that only one block-start tree exists at all times during the recursive traversal
of TB(S). The drawback is that we at each node v need to know in advance
which child is the small child, but this knowledge can be obtained in linear time
by annotating each node of TB(S) with the size of the subtree it roots.

7.4 Pairs with Lower Bounded Gap

If we relax the constraint on the gap and only want to find all maximal pairs
in S with gap at least g(|α|), where g is a function that can be computed in
constant time, then a straightforward solution is to use Algorithm 7.2 with
g1(|α|) = g(|α|) and g2(|α|) = n. This obviously finds all maximal pairs with
gap at least g(|α|) in time O(n log n+z). However, the missing upper bound on
the gap makes it possible to reduce the running time to O(n+z) since reporting
from each node during the traversal of the binary suffix tree is simplified.

The reporting of pairs from node v with children w1 and w2 is simpli-
fied, because the lack of an upper bound on the gap implies that we do not
have to search LL(w2) for the first element to report against the current el-
ement in LL(w1). Instead we can start by reporting the current element in
LL(w1) against the biggest (and smallest) element in LL(w2), and then con-
tinue reporting it against decreasing (and increasing) elements from LL(w2)
until the gap becomes smaller than g(|α|). Unfortunately this simplification
alone does not reduce the asymptotic running time because inspecting every el-
ement in LL(w1) and keeping track of the leaf-lists in AVL trees alone requires
time Θ(n log n). To reduce the running time we must thus avoid to inspect every
element in LL(w1) and find another way to store the leaf-lists. We achieve this
by using the priority-queue like data structures presented in the next section
to store the leaf-lists during the traversal of the binary suffix tree.

7.4.1 Data Structures

A heap-ordered tree is a tree in which each node stores an element and has a
key. Every node other than the root satisfies that its key is greater than or equal
to the key at its parent. Heap-ordered trees have been widely studied and are
the basic structure of many priority queues [204, 56, 195, 62]. In this section we
utilize heap-ordered trees to construct two data structures, the heap-tree and
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the colored heap-tree, that are useful in our application of finding pairs with
lower bounded gap but might also have applications elsewhere.

A heap-tree stores a collection of elements with comparable keys and sup-
ports the following operations.

Init(e, k): Return a heap-tree of size one that stores element e with
key k.

Find(H,x): Return all elements e stored in the heap-tree H with key
k ≤ x.

Min(H): Return the element e stored in H with minimum key.

Meld(H,H ′): Return a heap-tree that stores all elements in H and H ′

with unchanged keys and colors.

A colored heap-tree stores a collection of colored elements with comparable
keys. We use color (e) to denote the color of element e. A colored heap-tree
supports the same operations as a heap-tree except that it allows us to find all
elements not having a particular color. The operations are as follows.

ColorInit(e, k): Return a colored heap-tree of size one that stores element e
with key k.

ColorFind(H,x, c): Return all elements e stored in the colored heap-tree H
with key k ≤ x and color (e) 6= c.

ColorMin(H): Return the element e stored in H with minimum key.

ColorSec(H): Return the element e stored in H with minimum key such
that color (e) 6= color(ColorMin(H)).

ColorMeld(H,H ′): Return a colored heap-tree that stores all elements in H
and H ′ with unchanged keys.

In the following we will describe how to implement heap-trees and colored
heap-trees using heap-ordered trees such that Init, Min, ColorInit, ColorMin and
ColorSec take constant time, Find and ColorFind take time proportional to the
number of returned elements, and Meld and ColorMeld take amortized constant
time. This means that we can meld n (colored) heap-trees of size one into
a single (colored) heap-tree of size n by an arbitrary sequence of n − 1 meld
operations in time O(n) in the worst case.

Heap-Trees

We implement heap-trees as binary heap-ordered trees as illustrated in Fig-
ure 7.4. At every node in the heap-ordered tree we store an element from the
collection of elements we want to store. The key of a node is the key of the
element it stores. We use v.elm to refer to the element stored at node v, v.key
to refer to the key of node v, and v.right and v.left to refer to the two children
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Figure 7.4: Heap-trees are binary heap-ordered trees. The figure shows two
heap-trees H and H ′. The nodes on the backbone of the heap-trees are shaded.

of node v. Besides the heap-order we maintain the invariant that the root of
the heap-ordered tree has no left-child.

We define the backbone of a heap-tree as the path in the heap-ordered tree
that starts at the root and continues via nodes reachable from the root via
a sequence of right-children. We define the length of the backbone as the
number of edges on the path it describes. Consider the heap-trees H and H ′

in Figure 7.4; the backbone of H is the path r, v1, . . . , vs of length s and the
backbone of H ′ is the path r′, v′1, . . . , v′t of length t. We say that the node on
the backbone farthest from the root is at the bottom of the backbone. We keep
track of the nodes on the backbone of a heap-tree using a stack, the backbone-
stack, in which the root is at the bottom and the node farthest from the root
is at the top. The backbone-stack makes it easy to access the nodes on the
backbone from the bottom and up towards the root.

We now turn to the implementation of Init, Min, Find and Meld. The imple-
mentation of Init(e, k) is straightforward. We construct a single node v where
v.elm = e, v.key = k and v.right = v.left = null and a backbone-stack of size
one that contains node v. The implementation of Min(H) is also straightfor-
ward. The heap-order implies that root r of H stores the element with minimum
key, i.e. Min(H) = r.elm .

The implementation of Find(H,x) is based on a recursive traversal of H
starting at the root. At each node v we compare v.key to x. If v.key ≤ x, we
report v.elm and continue recursively with the two children of v. If v.key > x,
then by the heap-order all keys at nodes in the subtree rooted at v are greater
than x, so we return from v without reporting. Clearly this traversal reports
all elements stored at nodes v with v.key ≤ x, i.e. all elements stored with
key k ≤ x. Since each node has at most two children, we make for each reported
element at most two additional comparisons against x corresponding to the at
most two recursive calls from which we return without reporting. The running
time of Find(H,x) is thus proportional to the number of reported elements.

The implementation of Meld(H,H ′) is done in two steps. Figure 7.5 illus-
trates the melding of the heap-trees H and H ′ from Figure 7.4. We assume that
r.key ≤ r′.key . In Step 1 we merge the backbones of H and H ′ together such
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Figure 7.5: The two steps of melding the heap-trees H and H ′ shown in Fig-
ure 7.4. The heap-tree to the left is the result of merging the backbones. The
heap-tree to the right is the result of shortening the backbone by moving the
right-child of r′ in the merged backbone to the left-child. The nodes on the
backbones are marked.

that the heap-order is satisfied in the resulting tree. The merged backbone is
constructed from the bottom and up towards the root by popping nodes from
the backbone-stacks of H and H ′. Step 1 results in a heap-tree with a backbone
of length s+t+1. Since r.key ≤ r′.key , a prefix of the merged backbone consists
of nodes r, v1, v2, . . . , vi solely from the backbone of H. In Step 2 we shorten
the merged backbone. Since the root r′ of H ′ has no left-child, the node r′ on
the merged backbone has no left-child either, so by moving the right-child of r′

to this empty spot, making it the left-child of r′, we shorten the length of the
merged backbone to i + 1.

The two steps of Meld(H,H ′) clearly construct a heap-ordered tree that
stores all elements in H and H ′ with unchanged keys. Since r.key ≤ r′.key , the
root of the constructed heap-ordered tree is the root of H and therefore has
no left-child. The constructed heap-ordered tree is thus a heap-tree as wanted.
The backbone of the new heap-tree is the path r, v1, . . . , vi, r

′. We observe that
the backbone-stack of H after Step 1 contains exactly the nodes r, v1, . . . vi. We
can thus construct the backbone-stack of the new heap-tree by pushing r′ onto
what remains of the backbone-stack of H after Step 1.

Now consider the running time of Meld(H,H ′). Step 1 takes time propor-
tional to the total number of nodes popped from the two backbone-stacks.
Since i + 1 nodes remains on the backbone-stack of H, Step 1 takes time
(s + 1) + (t + 1) − (i + 1) = s + t − i + 1. Step 2 and construction of the new
backbone-stack takes constant time, so, except for a constant factor, melding
two heap-trees with backbones of length s and t takes time T (s, t) = s+t−i+1.
In our application of finding pairs we are more interested in bounding the total
time required to do a sequence of melds rather than bounding the time of each
individual meld. We therefore turn to amortized analysis [179].

On a forest F of heap-trees we define the potential function Φ(F ) to be the



132 Chapter 7. Finding Maximal Pairs with Bounded Gap

sum of the lengths of the backbones of the heap-trees in the forest. Melding two
heap-trees with backbones of length s and t, as illustrated in Figure 7.5, changes
the potential of the forest with ∆Φ = i+1−(s+t). The amortized running time
of melding the two heap-trees is thus T (s, t)+∆Φ = (s+t−i+1)+(i−s−t+1) =
2, so starting with n heap-trees of size one, i.e. a forest F0 with potential
Φ(F0) = 0, and doing a sequence of n− 1 meld operations until the forest Fn−1

consists of a single heap-tree, takes time O(n) in the worst case.

Colored Heap-Trees

We implement colored heap-trees as colored heap-ordered trees in much tqhe
same way as we implemented heap-trees as uncolored heap-ordered trees. The
implementation only differs in two ways. First, a node in the colored heap-
ordered tree stores a set of elements instead of just a single element. Secondly,
a node, including the root, can have several left-children. The elements stored
at a node, and the references to the left-children of a node, are kept in uncolored
heap-trees. More precisely, a node v in the colored heap-ordered tree has the
following attributes.

v.elms : A heap-tree that stores the elements at node v. Find(v.elms , x) returns
all elements stored at node v with key less than or equal to x. All
elements stored at node v have identical colors. We say that this color
is the color of node v and denote it by color (v).

v.key : The key of node v. We set the key of a node to be the minimum key
of an element stored at the node, i.e. the key of node v is the key of
the element stored at the root of the heap-tree v.elms .

v.right : A reference to the right-child of node v.

v.lefts : A heap-tree that stores the references to the left-children of node v.
A reference is stored with a key equal to the key of the referenced
left-child, so Find(v.lefts , x) returns the references to all left-children
of node v with key less than or equal to x.

As for the heap-tree we define the backbone of a colored heap-tree as the
path that starts at the root and continues via nodes reachable from the root via
a sequence of right-children. We use a stack, the backbone-stack, to keep track
of the nodes on the backbone. In addition to the heap-order, saying that the
key of every node other than the root is greater than or equal to the key of its
parent, we maintain the following three invariants about the color of the nodes
and the relation between the elements stored at a node and its left-children.

I1: Every node v other than the root r has a color different from its
parent.

I2: Every node v satisfies that |Find(v.elms , x)| ≥ |Find(v.lefts , x)| for
any x.
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I3: The root r satisfies that |Find(r.elms , x)| ≥ |Find(r.lefts , x)| + 1 for
any x ≥ Min(r.elms).

We now turn our attention towards the implementation of the operations
on colored heap-trees. ColorInit(e, k) is straightforward. We simply construct a
single node v where v.key = k, v.elms = Init(e, k) and v.right = v.lefts = null
and a backbone-stack that contains node v. ColorMin(H) is also straightforward.
The heap-order implies that the element with minimum key is stored in the
heap-tree r.elms at the root r of H, so ColorMin(H) = Min(r.elms). The heap-
order and I1 imply that ColorSec(H) is the element stored with minimum key
at a child of r. The element stored with minimum key at the right-child is
Min(r.right ) and the element stored with minimum key at a left-child must
by the heap-order of r.lefts be the element stored with minimum key at the
left-child referenced by the root of r.lefts , i.e. Min(Root(r.lefts).elm). Both
ColorMin(H) and ColorSec(H) can thus be found in constant time.

We implement ColorFind(H,x, c) as a recursive traversal of H starting at the
root. More precisely, we implement ColorFind(H,x, c) as ReportFrom(r) where r
is the root of H and ReportFrom is the following recursive procedure.

ReportFrom(v)
if key(v) ≤ x then

if color (v) 6= c then
E = Find(v.elms , x)
for e in E do

report e
ReportFrom(v.right)
W = Find(v.lefts , x)
for w in W do

ReportFrom(w)

The correctness of this implementation is established as follows. The heap-
order ensures that all nodes v with v.key ≤ x are visited during the traversal.
The definition of v.key implies that any element e with key k ≤ x is stored at
a node v with v.key ≤ x, i.e. among the elements returned by Find(v.elms , x)
for some v visited during the traversal. Together with the test color (v) 6= c
this implies that all elements e with key k ≤ x and color different from c are
reported by ColorFind(H,x, c).

Now consider the running time of ColorFind(H,x, c). Since Find(v.elms , x)
and Find(v.lefts , x) both take time proportional to the number of returned el-
ements, it follows that the running time is dominated by the number of re-
cursive calls plus the number of reported elements. To argue that the running
time of ColorFind(H,x, c) is proportional to the number of reported elements we
therefore argue that the number of reported elements dominates the number of
recursive calls. We only make recursive calls from a node v if v.key ≤ x. Let v
be such a node and consider two cases.

If color (v) 6= c then we report at least one element, namely the element with
key v.key , and by the invariants I2 and I3 we report at least as many elements
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as the number of left-children we call when reporting from v. Hence, except for
a constant term that we can charge for visiting node v, the number of reported
elements at v accounts for the call to v and all the recursive calls from v.

If color (v) = c then we do not report any elements at v, but the invariant I1

ensures that we have reported elements at its parent (unless v is the root)
and that we will be reporting elements at all left-children we call from v. The
call to v is thus already accounted for by the elements reported at its parent,
and except for a constant term that we can charge for visiting node v, all
calls from v will be accounted for by elements reported at the children of v.
We conclude that the number of reported elements dominates the number of
recursive calls, so ColorFind(H,x, c) takes time proportional to the number of
reported elements.

We implement ColorMeld(H,H ′) similar to Meld(H,H ′) except that we must
ensure that the constructed colored heap-tree obeys the three invariants. Let H
and H ′ be colored heap-trees with roots r and r′ named such that r.key ≤ r′.key .
We implement ColorMeld(H,H ′) as the following three steps.

1. Merge. We merge the backbones of H and H ′ together such that the re-
sulting heap-ordered tree stores all elements in H and H ′ with unchanged
keys. The merging is done by popping nodes from the backbone-stacks
of H and H ′ until the backbone-stack of H ′ is empty

2. Solve conflicts. A node w on the merged backbone with the same color
as its parent v is a violation of invariant I1. We solve conflicts between
neighboring nodes v and w of equal color by melding the elements and
left-children of the two nodes and removing node w. We say that parent v
swallows the child w.

v.elms = Meld(v.elms , w.elms)
v.lefts = Meld(v.lefts , w.lefts)
v.right = w.right

3. Shorten backbone. Let v be the node on the merged backbone correspond-
ing to r′ or the node that swallowed r′ in Step 2. We shorten the backbone
by moving the right-child of v to the set of left-children of v.

v.lefts = Meld(v.lefts , Init(v.right , v.right .key))
v.right = null

The main difference from Meld(H,H ′) is Step 2 where the invariant I1 is restored
along the merged backbone. To establish the correctness of the implementation
of ColorMeld(H,H ′) we consider each of the three steps in more details.

In Step 1 we merge the backbones of H and H ′ together such that the
resulting tree is a heap-ordered tree that stores all elements in H and H ′ with
unchanged keys. Since the merging does not change the left-children or the
elements of any node and since H and H ′ both obey I2 and I3, the constructed
heap-ordered tree also obeys I2 and I3. The merged backbone can however
contain neighboring nodes of equal color. These conflicts are a violation of I1.
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In Step 2 we restore I1. We solve all conflicts on the merged backbone
between neighboring nodes v and w of equal color by letting the parent v
swallow the child w as illustrated in Figure 7.6. We observe that since H and H ′

both obey I1 a conflict must involve a node from both of them. This implies
that a conflict can only occur in the part of the merged backbone made of
nodes popped off the backbone-stacks in Step 1. We also observe that solving a
conflict does not induce a new conflict. Combined with the previous observation
this implies that the number of conflicts is bounded by the number of nodes
popped off the backbone-stacks in Step 1. Finally, we observe that solving a
conflict does not induce violations of I2 and I3, so after solving all conflicts on
the merged backbone we have a colored heap-tree that stores all elements in H
and H ′ with unchanged keys.

In Step 3 we shorten the merged backbone. It is done by moving the right-
child of r′ to its left-children, or in case r′ has been swallowed by a node v in
Step 2, by moving the right-child of v to its left-children. The subtree rooted
by the right-child moved follows along, and thus becomes a subtree rooted by
the new left-child of r′ (or v). To argue that shortening the backbone does not
induce violations of I2 and I3 we start by making two observations. First, we
observe that moving the right-child of a node that obeys I3 to its set of left-
children results in a node that obeys I2. Secondly, we observe that if a node
that obeys I2 (or I3) swallows a node that obeys I2 it results in a node that
still obeys I2 (or I3).

Since r′ is the root of H ′, it obeys I3 before Step 2. We consider two cases.
First, if r′ is not swallowed in Step 2, the first observation immediately implies
that it obeys I2 after Step 3. Secondly, if r′ is swallowed by a node v in Step 2,
we might as well think of Steps 2 and 3 as occurring in opposite order as this
does not affect the resulting tree. Hence, first we move the right-child of r′

to its set of left-children, which by the first observation results in a node that
obeys I2, then we let node v swallow this node, which by the second observation
does not affect the invariants obeyed by v.

We conclude that the implementation of ColorMeld(H,H ′) constructs a col-
ored heap-tree that obeys all three invariants and stores all elements in H
and H ′ with unchanged keys and colors. The backbone-stack of the colored
heap-tree constructed by ColorMeld(H,H ′) is what remains on the backbone-
stack of H after popping nodes in Step 1 with the node r′ pushed onto it, unless
the node r′ is swallowed in Step 2.

Now consider the time it takes to meld n colored heap-trees of size one
together by a sequence of n − 1 melds. If we ignore the time it takes to meld
the heap-trees storing elements and references to left-children when solving
conflicts in Step 2 and shortening the backbone in Step 3, then we can bound
the time it takes to do the sequence of melds by O(n) exactly as we did in
the previous section. Melding n colored heap-trees of size one involves melding
at most n heap-trees of size one storing elements, and at most n heap-trees of
size one storing references to left-children. Since melding n heap-trees of size
one takes time O(n), we have that melding the heap-trees storing elements and
references to left-children also takes time O(n), so melding n colored heap-trees
of size one takes time O(n) in the worst case.
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Figure 7.6: This figure illustrates how a conflict on the merged backbone is
solved. If color (v) = color (w) then I1 is violated. The invariant is restored by
letting node v swallow node w, i.e. melding the elements and left-children at
the two nodes and removing node w. Since color (u) 6= color (w) = color (v) and
color (u′) 6= color (v), solving a conflict does not induce another conflict.

7.4.2 Algorithms

In the following we present two algorithms to find pairs with lower bounded
gap. First we describe a simple algorithm to find all right-maximal pairs with
lower bounded gap using heap-trees, then we extend it to find all maximal
pairs with lower bounded gap using colored heap-trees. Both algorithms run in
time O(n + z) where z is the number of reported pairs.

Right-Maximal Pairs with Lower Bounded Gap

We find all right-maximal pairs in S with gap at least g(|α|), by for each node v
in the binary suffix tree TB(S) considering the leaf-lists at its two children w1

and w2. The pair (p, q, |α|), for p ∈ LL(w1) and q ∈ LL(w2), is right-maximal
and has gap at least g(|α|) if and only if q ≥ p + |α| + g(|α|). If we let pmin

denote the minimum element in LL(w1) this implies that every q in

Q = {q ∈ LL(w2) | q ≥ pmin + |α| + g(|α|)}

forms a right-maximal pair (p, q, |α) with gap at least g(|α|) with every p in

Pq = {p ∈ LL(w1) | p ≤ q − g(|α|) − |α|} .

By construction Pq contains pmin and we have that (p, q, |α|) is a right-maximal
pair with gap at least g(|α|) if and only if q ∈ Q and p ∈ Pq. We can construct Q
and Pq using heap-trees. Let Hi and H̄i be heap-trees that store the elements
in LL(wi) ordered by “≤” and “≥” respectively. By definition of the operations
Min and Find we have that pmin = Min(H1), Q = Find(H̄2, pmin + |α| + g(|α|)
and Pq = Find(H1, q − g(|α|) − |α|).

This leads to the formulation of Algorithm 7.3 in which we at every node v
in TB(S) construct two heap-trees, H and H̄, that store the elements in LL(v)
ordered by “≤” and “≥” respectively. If v is a leaf, we construct H and H̄
directly by creating two heap-trees of size one each storing the index at the leaf.
If v is an internal node, we construct H and H̄ by melding the corresponding
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Algorithm 7.3 Find all right-maximal pairs in S with lower bounded gap.

1. Initializing: Build the binary suffix tree TB(S). Create at each leaf two
heap-trees of size one, H ordered by “≤” and H̄ ordered by “≥”, that
both store the index at the leaf.

2. Reporting and melding: When the heap-trees H1 and H̄1 at the left-child
of node v, and the heap-trees H2 and H̄2 at the right-child of node v
are available we report pairs of α, the path-label of v, and construct the
heap-trees H and H̄ as follows

1 Q = Find(H̄2,Min(H1) + |α| + g(|α|))
2 for q in Q do
3 Pq = Find(H1, q − g(|α|) − |α|)
4 for p in Pq do
5 report pair (p, q, |α|)
6 P = Find(H̄1,Min(H2) + |α| + g(|α|))
7 for p in P do
8 Qp = Find(H2, p − g(|α|) − |α|)
9 for q in Qp do

10 report pair (q, p, |α|)
11 H = Meld(H1,H2)
12 H̄ = Meld(H̄1, H̄2)

heap-trees at the two children (lines 11–12). Before constructing H and H̄ at
node v, we report right-maximal pairs of its path-label (lines 1–10).

To argue that Algorithm 7.3 finds all right-maximal pairs in S with gap at
least g(|α|) it is sufficient to show that we at each node v in TB(S) report all
pairs (p, q, |α|) and (q, p, |α|), where p ∈ LL(w1) and q ∈ LL(w2), with gap at
least g(|α|). The rest follows because we consider every node in TB(S). Let v be
a node in TB(S) at which the heap-trees H1, H̄1, H2, and H̄2 at its two children
are available. As explained above (p, q, |α|) is a right-maximal pair with gap at
least g(|α|) if and only if q ∈ Q and p ∈ Pq, which are exactly the pairs reported
in lines 1–5. Symmetrically we can argue that (q, p, |α|) is a right-maximal pair
with gap at least g(|α|) if and only if p ∈ P and q ∈ Qp, which are exactly the
pairs reported in lines 6–10.

Now consider the running time of the algorithm. We first note that con-
structing two heap-trees of size one at each of the n leaves in TB(S) and melding
them together according to the structure of TB(S) takes time O(n) because each
of the n− 1 meld operation takes amortized constant time. We then note that
the reporting of pairs at each node, lines 1–10, takes time proportional to the
number of reported pairs because the find operation takes time proportional
to the number of returned elements and the set Pq (and Qp) is non-empty for
every element q in Q (and p in P ). Finally we recall that constructing the
binary suffix tree TB(S) takes time O(n). Now consider the space needed by
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the algorithm. The binary suffix tree requires space O(n). The heap-trees also
requires space O(n) because no element at any time is stored in more than one
heap-tree. Finally, since no leaf-list contains more than n elements, storing the
elements returned by the find operations during the reporting requires no more
than space O(n). In summary we formulate the following theorem.

Theorem 7.3 Algorithm 7.3 finds all right-maximal pairs (i, j, |α|) in a string S
of length n with gap at least g(|α|) in time O(n + z) and space O(n), where z
is the number of reported pairs.

Maximal Pairs with Lower Bounded Gap

Essential to the above algorithm is that we in time proportional to its size
can construct the set Q that contains all elements q in LL(w2) that form a
right-maximal pair (pmin, q, |α|) with gap at least g(|α|). Unfortunately the
left-characters S[q−1] and S[pmin −1] can be equal, so Q can contain elements
that do not form a maximal pair with any element in LL(w1). Since we aim
for the reporting of pairs to take time proportional to the number of reported
pairs, this implies that we cannot afford to consider every element in Q if we
only want to report maximal pairs.

Fortunately we can efficiently construct the subset of LL(w2) that con-
tains all the elements that form at least one maximal pair. An element q
in LL(w2) forms a maximal pair if and only if there is an element p in LL(w1)
such that q ≥ p + |α| + g(|α|) and S[q − 1] 6= S[p − 1]. We can construct
this subset of LL(w2) using colored heap-trees. We define the color of an el-
ement to be its left-character, i.e. the color of p in LL(w1) and q in LL(w2)
is S[p − 1] and S[q − 1] respectively. Let Hi and H̄i be colored heap-trees
that store the elements in LL(wi) ordered by “≤” and “≥” respectively. Using
pmin = ColorMin(H1) and psec = ColorSec(H1) we can characterize the ele-
ments in LL(w2) that form at least one maximal pair with gap at least g(|α|)
by considering two cases.

First, if q ≥ psec + |α| + g(|α|) then (pmin, q, |α|) and (psec, q, |α|) both
have gap at least g(|α|) and since S[pmin − 1] 6= S[psec − 1] at least one of
them is maximal, so every q ≥ psec + |α| + g(|α|) forms a maximal pair with
gap at least g(|α|). If # is a character not appearing anywhere in S, i.e. no
element in LL(w2) has color #, this is the same as saying that every q in
Q′ = ColorFind(H̄2, psec + |α| + g(|α|),#) forms a maximal pair with gap at
least g(|α|). Secondly, if q < psec + |α| + g(|α|) forms a maximal pair (p, q, |α|)
with gap at least g(|α|) then pmin ≤ p < psec. This implies that S[p − 1] =
S[pmin−1], so (pmin, q, |α|) is also maximal and has gap at least g(|α|). We thus
have that q < psec + |α| + g(|α|) forms a maximal pair with gap at least g(|α|)
if and only if (pmin, q, |α|) is maximal and has gap at least g(|α|), i.e. if and
only if S[q − 1] 6= S[pmin − 1] and q ≥ pmin + |α| + g(|α|). This implies
that the set Q′′ = ColorFind(H̄2, pmin + |α|+ g(|α|), S[pmin − 1]) contains every
q < psec + |α| + g(|α|) that forms a maximal pair with gap at least g(|α|).

By construction of Q′ and Q′′ the set Q′ ∪ Q′′ contains all elements in
LL(w2) that form a maximal pair with gap at least g(|α|). More precisely,
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Algorithm 7.4 Find all maximal pairs in S with lower bounded gap.

1. Initializing: Build the binary suffix tree TB(S). Create at each leaf two
colored heap-trees of size one, H ordered by “≤” and H̄ ordered by “≥”,
that both store the index at the leaf with color corresponding to its left-
character.

2. Reporting and melding: When the colored heap-trees H1 and H̄1 at the
left-child of node v, and the colored heap-trees H2 and H̄2 at the right-
child of node v are available we report pairs of α, the path-label of v,
and construct the colored heap-trees H and H̄ as follows, where # is a
character not appearing anywhere in S.

1 pmin, psec = ColorMin(H1),ColorSec(H1)
2 Q′ = ColorFind(H̄2, psec + |α| + g(|α|),#)
3 Q′′ = ColorFind(H̄2, pmin + |α| + g(|α|), S[pmin − 1])
4 for q in Q′ ∪ Q′′ do
5 Pq = ColorFind(H1, q − g(|α|) − |α|, S[q − 1])
6 for p in Pq do
7 report pair (p, q, |α|)
8 qmin, qsec = ColorMin(H2),ColorSec(H2)
9 P ′ = ColorFind(H̄1, qsec + |α| + g(|α|),#)

10 P ′′ = ColorFind(H̄1, qmin + |α| + g(|α|), S[qmin − 1])
11 for p in P ′ ∪ P ′′ do
12 Qp = ColorFind(H2, p − g(|α|) − |α|, S[p − 1])
13 for q in Qp do
14 report pair (q, p, |α|)
15 H = ColorMeld(H1,H2)
16 H̄ = ColorMeld(H̄1, H̄2)

every q in the set Q′ ∪ Q′′ forms a maximal pair (p, q, |α|) with gap at least
g(|α|) with every p ≤ q − g(|α|) − |α| in LL(w1) where S[p − 1] 6= S[q − 1],
i.e. with every p in the set Pq = ColorFind(H1, q − g(|α|) − |α|, S[q − 1]) which
by construction is non-empty. We can construct the set Q′ ∪ Q′′ efficiently as
follows. Every element in Q′′ greater than psec + |α| + g(|α|) is also in Q′, so
we can construct Q′ ∪ Q′′ by concatenating Q′ and what remains of Q′′ after
removing all elements greater than psec + |α| + g(|α|) from it. Combined with
the complexity of ColorFind this implies that we can construct the set Q′ ∪ Q′′

in time proportional to |Q′| + |Q′′| ≤ 2|Q′ ∪ Q′′|.
This leads to the formulation of Algorithm 7.4. The algorithm is similar to

Algorithm 7.3 except that we maintain colored heap-trees during the traversal
of the binary suffix tree. At every node we report maximal pairs of its path-
label. In lines 1–7 we report all maximal pairs (p, q, |α|) by constructing and
considering the elements in Pq for every q in Q′ ∪ Q′′. In lines 8–15 we anal-
ogously report all maximal pairs (q, p, |α|). The correctness of the algorithm
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follows immediately from the above discussion. Since the operations on col-
ored heap-trees have the same complexities as the corresponding operations on
heap-tress, the running time and space requirement of the algorithm is exactly
as analyzed for Algorithm 7.3. In summary we can formulate the following
theorem.

Theorem 7.4 Algorithm 7.4 finds all maximal pairs (i, j, |α|) in a string S of
length n with gap at least g(|α|) in time O(n + z) and space O(n), where z is
the number of reported pairs.

7.5 Conclusion

We have presented efficient and flexible methods to find all maximal pairs
(i, j, |α|) in a string under various constraints on the gap j − i− |α|. If the gap
is required to be between g1(|α|) and g2(|α|), the running time is O(n log n+ z)
where n is the length of the string and z is the number of reported pairs. If the
gap is only required to be at least g1(|α|), the running time reduces to O(n+z).
In both cases we use space O(n).

In some cases it might be interesting only to find maximal pairs (i, j, |α|)
fulfilling additional requirements on |α|, e.g. to filter out pairs of short sub-
strings. This is straightforward to do using our methods by only reporting
from the nodes in the binary suffix tree whose path-label α fulfills the require-
ments on |α|. In other cases it might be of interest just to find the vocabulary
of substrings that occur in maximal pairs. This is also straightforward to do
using our methods by just reporting the path-label α of a node if we can report
one or more maximal pairs from the node.

Instead of just looking for maximal pairs, it could be interesting to look
for an array of occurrences of the same substring in which the gap between
consecutive occurrences is bounded by some constants. This problem requires a
suitable definition of a maximal array. One definition and approach is presented
in [169]. Another definition inspired by the definition of a maximal pair could
be to require that every pair of occurrences in the array is a maximal pair.
This definition seems very restrictive. A more relaxed definition could be to
only require that we cannot extend all the occurrences in the array to the left
or to the right without destroying at least one pair of occurrences in the array.
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Chapter 8

Finding Maximal Quasiperiodicities in Strings

The paper Finding Maximal Quasiperiodicities in Strings presented in this
chapter has been published as a technical report [32] and a conference pa-
per [33].

[32] G. S. Brodal and C. N. S. Pedersen. Finding maximal quasiperiodicities
in strings. Technical Report RS-99-25, BRICS, September 1999.

[33] G. S. Brodal and C. N. S. Pedersen. Finding maximal quasiperiodicities in
strings. In Proceedings of the 11th Annual Symposium on Combinatorial
Pattern Matching (CPM), volume 1848 of Lecture Notes in Computer
Science, pages 397–411, 2000.

Except for minor typographical changes the content of this chapter is equal to
the technical report [32].





8.1. Introduction 143

Finding Maximal Quasiperiodicities in Strings

Gerth Stølting Brodal∗ Christian N. S. Pedersen∗

Abstract

Apostolico and Ehrenfeucht defined the notion of a maximal quasiperi-
odic substring and gave an algorithm that finds all maximal quasiperiodic
substrings in a string of length n in time O(n log2 n). In this paper we give
an algorithm that finds all maximal quasiperiodic substrings in a string of
length n in time O(n log n) and space O(n). Our algorithm uses the suffix
tree as the fundamental data structure combined with efficient methods for
merging and performing multiple searches in search trees. Besides finding
all maximal quasiperiodic substrings, our algorithm also marks the nodes
in the suffix tree that have a superprimitive path-label.

8.1 Introduction

Characterizing and finding regularities in strings are important problems in
many areas of science. In molecular biology repetitive elements in chromo-
somes determine the likelihood of certain diseases. In probability theory reg-
ularities are important in the analysis of stochastic processes. In computer
science repetitive elements in strings are important in e.g. data compression,
speech recognition, coding, automata and formal language theory.

A widely studied regularity in strings are consecutive occurrences of the
same substring. Two consecutive occurrences of the same substring is called
an occurrence of a square or a tandem repeat. In the beginning of the last
century, Thue [183, 184] showed how to construct arbitrary long strings over
any alphabet of more than two characters that contain no squares. Since then
a lot of work have focused on developing efficient methods for counting or
detecting squares in strings. Several methods that determine if a string of
length n contains a square in time O(n) have been presented, e.g. [132, 165, 42].
Several methods that find occurrences of squares in a string of length n in
time O(n log n) plus the time it takes to output the detected squares have
been presented, e.g. [41, 11, 131, 177]. Recently two methods [107, 75] have
been presented that find a compact representation of all squares in a string of
length n in time O(n).

A way to describe the regularity of an entire string in terms of repetitive
substrings is the notion of a periodic string. Gusfield [74, page 40] defines

∗Basic Research In Computer Science (BRICS), Center of the Danish National Re-
search Foundation, Department of Computer Science, University of Aarhus, Ny Munkegade,
8000 Århus C, Denmark. E-mail: {gerth,cstorm}@brics.dk.
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string S as periodic if it can be constructed by concatenations of a shorter
string α. The shortest string from which S can be generated by concatenations
is the period of S. A string that is not periodic is primitive. Some regularities in
strings cannot be characterized efficiently using periods or squares. To remedy
this, Ehrenfeucht, as referred in [8], suggested the notation of a quasiperiodic
string. A string S is quasiperiodic if it can be constructed by concatenations
and superpositions of a shorter string α. We say that α covers S. Several strings
might cover S. The shortest string that covers S is the quasiperiod of S. A
covering of S implies that S contains a square, so by the result of Thue not all
strings are quasiperiodic. A string that is not quasiperiodic is superprimitive.
Apostolico, Farach and Iliopoulos [10] presented an algorithm that finds the
quasiperiod of a given string of length n in time O(n). This algorithm was
simplified and made on-line by Breslauer [28]. Moore and Smyth [141] presented
an algorithm that finds all substrings that covers a given string of length n in
time O(n).

Similar to the period of a string, the quasiperiod of a string describes a
global property of the string, but quasiperiods can also be used to characterize
substrings. Apostolico and Ehrenfeucht [9] introduced the notion of maximal
quasiperiodic substrings of a string. Informally, a quasiperiodic substring γ
of S with quasiperiod α is maximal if no extension of γ can be covered by α
or αa, where a is the character following γ in S. Apostolico and Ehrenfeucht
showed that the maximal quasiperiodic substrings of S correspond to path-
labels of certain nodes in the suffix tree of S, and gave an algorithm that finds
all maximal quasiperiodic substrings of a string of length n in time O(n log2 n)
and space O(n log n). The algorithm is based on a bottom-up traversal of the
suffix tree in which maximal quasiperiodic substrings are detected at the nodes
in the suffix tree by maintaining various data structures during the traversal.
The general structure of the algorithm resembles the structure of the algorithm
by Apostolico and Preparata [11] for finding tandem repeats.

In this paper we present an algorithm that finds all maximal quasiperiodic
substrings in a string of length n in time O(n log n) and space O(n). Simi-
lar to the algorithm by Apostolico and Ehrenfeucht, our algorithm finds the
maximal quasiperiodic substrings in a bottom-up traversal of the suffix tree.
The improved time and space bound is a result of using efficient methods for
merging and performing multiple searches in search trees, combined with ob-
serving that some of the work done, and data stored, by the Apostolico and
Ehrenfeucht algorithm is avoidable. The analysis of our algorithm is based
on a stronger version of the well known “smaller-half trick” used in the algo-
rithms in [41, 11, 177] for finding tandem repeats. The stronger version of the
“smaller-half trick” is hinted at in [138, Exercise 35] and stated in Lemma 8.6.
In [139, Chapter 5] it is used in the analysis of finger searches. In [30] it is used
in the analysis and formulation of an algorithm to find all maximal pairs with
bounded gap.

Recently, and independent of our work, Iliopoulos and Mouchard in [96] re-
port an algorithm with running time O(n log n) for finding all maximal quasiperi-
odic substrings in a string of length n. Their algorithm differs from our algo-
rithm as it does not use the suffix tree as the fundamental data structure, but
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uses the partitioning technique used by Crochemore [41] combined with several
other data structures. Finding maximal quasiperiodic substrings can thus be
done in two different ways similar to the difference between the algorithms by
Crochemore [41] and Apostolico and Preparata [11] for finding tandem repeats.

The rest of this paper is organized as follows. In Section 8.2 we define
the preliminaries used in the rest of the paper. In Section 8.3 we state and
prove properties of quasiperiodic substrings and suffix trees. In Section 8.4
we state and prove results about efficient merging of and searching in height-
balanced trees. In Section 8.5 we stated our algorithm to find all maximal
quasiperiodic substrings in a string. In Section 8.6 we analyze the running
time of our algorithm and in Section 8.7 we show how the algorithm can be
implemented to use linear space.

8.2 Definitions

In the following we let S,α, β, γ ∈ Σ∗ denote strings over some finite alphabet Σ.
We let |s| denote the length of S, S[i] the ith character in S for 1 ≤ i ≤ |S|, and
S[i .. j] = S[i]S[i + 1] · · · S[j] a substring of S. A string α occurs in a string γ
at position i if α = γ[i .. i+ |α|− 1]. We say that γ[j], for all i ≤ j ≤ i+ |α|− 1,
is covered by the occurrence of α at position i.

A string α covers a string γ if every position in γ is covered by an occurrence
of α. Figure 8.1 shows that γ = abaabaabaabaab is covered by α = abaab.
Note that if α covers γ then α is both a prefix and a suffix of γ. A string is
quasiperiodic if it can be covered by a shorter string. A string is superprimitive
if it is not quasiperiodic, that is, if it cannot be covered by a shorter string. A
superprimitive string α is a quasiperiod of a string γ if α covers γ. In Lemma 8.1
we show that if α is unique, and α is therefore denoted the quasiperiod of γ.

The suffix tree T (S) of the string S is the compressed trie of all suffixes of
the string S$, where $ /∈ Σ. Each leaf in T (S) represents a suffix S[i .. n] of S
and is annotated with the index i. We refer to the set of indices stored at the
leaves in the subtree rooted at node v as the leaf-list of v and denote it LL(v).
Each edge in T (S) is labelled with a nonempty substring of S such that the
path from the root to the leaf annotated with index i spells the suffix S[i .. n].
We refer to the substring of S spelled by the path from the root to node v as
the path-label of v and denote it L(v). Figure 8.2 shows a suffix tree.

For a node v in T (S) we partition LL(v) = (i1, i2, . . . , ik), where ij < ij+1

for 1 ≤ j < k, into a sequence of disjoint subsequences R1, R2, . . . , Rr, such that
each R` is a maximal subsequence ia, ia+1, . . . , ib, where ij+1 − ij ≤ |L(v)| for
a ≤ j < b. Each R` is denoted a run at v and represents a maximal substring
of S that can be covered by L(v), i.e. L(v) covers S[min R` .. |L(v)|−1+max R`],
and we say that R` is a run from minR` to |L(v)| − 1 + maxR`. A run R` at v
is said to coalesce at v if R` contains indices from at least two children of v, i.e.
if for no child w of v we have R` ⊆ LL(w). We use C(v) to denote the set of
coalescing runs at v.
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γ = S[i .. j]
a a a b a a b b b a b a a b a a b a a b a a b b a a a b a

α

Figure 8.1: The substring γ = abaabaabaabaab is a maximal quasiperiodic sub-
string with quasiperiod α = abaab. The quasiperiod α covers the substring γ.

8.3 Maximal Quasiperiodic Substrings

If S is a string and γ = S[i .. j] a substring covered by a shorter string α =
S[i .. i+|α|−1], then γ is quasiperiodic and we describe it by the triple (i, j, |α|).
A triple (i, j, |α|) describes a maximal quasiperiodic substring of S, in the fol-
lowing abbreviated MQS, if the following requirements are satisfied.

1. γ = S[i .. j] is quasiperiodic with quasiperiod α.

2. If α covers S[i′ .. j′], where i′ ≤ i ≤ j ≤ j′, then i′ = i and j′ = j.

3. αS[j + 1] does not cover S[i .. j + 1].

Figure 8.1 shows a maximal quasiperiodic substring. The problem we con-
sider in this paper is for a string S to generate all triples (i, j, |α|) that describe
MQSs. This problem was first studied by Apostolico and Ehrenfeucht in [9]. In
the following we state important properties of quasiperiodic substrings which
are essential to the algorithm to be presented.

Lemma 8.1 Every quasiperiodic string γ has a unique quasiperiod α.

Proof. Assume that γ is covered by two distinct superprimitive strings α and β.
Since α and β are prefixes of γ we can without loss of generality assume that α
is a proper prefix of β. Since α and β are suffixes of γ, then α is also a proper
suffix of β. Since α and β cover γ, and α is a prefix and suffix of β it follows
that α covers β, implying the contradiction that β is not superprimitive. 2

Lemma 8.2 If γ occurs at position i and j in S, and 1 ≤ j − i ≤ |γ|/2, then γ
is quasiperiodic.

Proof. Let α be the prefix of γ of length |γ|−(j−i), i.e. α = S[i .. i+|γ|−(j−i)−
1] = S[j .. i+ |γ|−1]. Since j− i ≤ |γ|/2 implies that i−1+ |γ|− (j− i) ≥ j−1,
we conclude that α covers γ. 2

Lemma 8.3 If the triple (i, j, |α|) describes a MQS in S, then there exists a
non-leaf node in the suffix tree T (S) with path-label α.

Proof. Assume that α covers the quasiperiodic substring S[i .. j] and that no
node in T (S) has path-label α. Since all occurrences of α in S are followed by
the same character a = S[i + |α|], αa must cover S[i .. j + 1], contradicting the
maximality requirement 3. 2
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Lemma 8.4 If γ is a quasiperiodic substring in S with quasiperiod α and u is
a non-leaf node in the suffix tree T (S) with path-label γ, then there exists an
ancestor node v of u in T (S) with path-label α.

Proof. Since u is a non-leaf node in T (S) of degree at least two, there exist
characters a and b such that both γa and γb occur in S. Since α is a suffix
of γ we then have that both αa and αb occur in S, i.e. there exist two suffixes
of S having respectively prefix αa and αb, implying that there exists a node v
in T (S) with L(v) = α. Since α is also a prefix of γ, v is an ancestor of u
in T (S). 2

Lemma 8.5 If v is a node in the suffix tree T (S) with a superprimitive path-
label α, then the triple (i, j, |α|) describes a MQS in S if and only if there is a
run R from i to j that coalesces at v.

Proof. Let (i, j, |α|) describe a MQS in S and assume that the run R ∈ C(v)
from i and j does not coalesce at v. Then there exists a child v′ of v in T (S) such
that R ⊆ LL(v′). The first symbol along the edge from v to v′ is a = S[i+ |α|].
Every occurrence of α in R is thus followed by a, i.e. αa covers S[i .. j + 1].
This contradicts the maximality requirement 3 and shows the “if” part of the
lemma.

Let R be a coalescing run from i to j at node v, i.e. L(v) = α covers
S[i .. j], and let a = S[j + 1]. To show that (i, j, |α|) describes a MQS in S
it is sufficient to show that αa does not cover S[i .. j + 1]. Since R coalesces
at v, there exists a minimal i′′ ∈ R such that αa does not occur in S at
position i′′. If i′′ = i = min R then αa cannot cover S at position i′′ since it by
the definition of R cannot occur at any position ` in S satisfying i−|α| ≤ ` ≤ i.
If i′′ 6= i = min R then αa occurs at min R and maxR, i.e. there exists i′, i′′′ ∈ R,
such that i′ < i′′ < i′′′, αa occurs at i′ and i′′′ in S, and αa does not occour at
any position ` in S satisfying i′ < ` < i′′′. To conclude that (i, j, |α|) describes a
MQS we only have to show that S[i′′′−1] is not covered by the occourence of αa
at position i′, i.e. i′′′ − i′ > |α| + 1. By Lemma 8.2 follows that i′′ − i′ > |α|/2
and i′′′ − i′′ > |α|/2, so i′′′ − i′ ≥ |α| + 1. Now assume that i′′′ − i′ = |α| + 1.
This implies that |α| is odd and that i′′ − i′ = i′′′ − i′′ = (|α|+ 1)/2. Using this
we get

a = S[i′ + |α|] = S[i′′ + (|α| − 1)/2] = S[i′′′ + (|α| − 1)/2] = S[i′′ + |α|] 6= a .

This contradiction shows that (i, j, |α|) describes a MQS and shows the “only
if” part of the theorem. 2

Theorem 8.1 Let v be a non-leaf node in T (S) with path-label α. Since v
is a non-leaf node in T (S) there exists i1, i2 ∈ LL(v) such that S[i1 + |α|] 6=
S[i2 + |α|]. The path-label α is quasiperiodic if and only if there exists an
ancestor node u 6= v of v in T (S) with path-label β that for ` = 1 or ` = 2
satisfies the following two conditions.
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Figure 8.2: The suffix tree of the string babaaaababaab. Node v has a super-
primitive path-label aba. There is a coalescing run at v from 7 to 11. Hence
the substring ababa occurring at position 7 in babaaaababaab is a maximal
quasiperiodic substring.

1. Both i` and i` + |α| − |β| belong to a coalescing run R at u, and

2. for all i′, i′′ ∈ LL(u), |i′ − i′′| > |β|/2.

Proof. If α is superprimitive, then no string β covers α, i.e. there exists no
node u in T (S) where C(u) includes a run containing both i` and i` + |α| − |β|
for ` = 1 or ` = 2. If α is quasiperiodic, then we argue that the quasiperiod β
of α satisfies conditions 1 and 2. Since β is superprimitive, condition 2 is
satisfied by Lemma 8.2. Since β is the quasiperiod of α, we by Lemma 8.4 have
that β is the path-label of a node u in T (S). Since β = S[i1 .. i1 + |β| − 1] =
S[i2 .. i2 + |β|− 1] = S[i1 + |α|− |β| .. i1 + |α|− 1] = S[i2 + |α|− |β| .. i2 + |α|− 1]
and S[i1 + |α|] 6= S[i2 + |α|] then either S[i1 + |α|] 6= S[i1 + |β|] or S[i2 + |α|] 6=
S[i2 + |β|], which implies that either i1 and i1 + |α|− |β| are in a coalescing run
at u, or i2 and i2 + |α| − |β| are in a coalescing run at u. Hence, condition 1 is
satisfied. 2

Theorem 8.2 A triple (i, j, |α|) describes a MQS in S if and only if the fol-
lowing three requirements are satisfied

1. There exists a non-leaf node v in T (S) with path-label α.

2. The path-label α is superprimitive.

3. There exists a coalescing run R from i to j at v.

Proof. The theorem follows directly from the definition of MQS, Lemma 8.3
and Lemma 8.5. 2

Figure 8.2 illustrates the properties described by Theorem 8.2.
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8.4 Searching and Merging Height-Balanced Trees

In this section we consider various operations on height-balanced binary trees,
e.g. AVL-trees [1], and present an extension of the well-known “smaller-half
trick” which implies a non-trivial bound on the time it takes to perform a se-
quence of operations on height-balanced binary trees. This bound is essential to
the running time of our algorithm for finding maximal quasiperiodic substrings
to be presented in the next section.

A height-balanced tree is a binary search tree where each node stores an
element from a sorted list, such that for each node v, the elements in the left
subtree of v are smaller than the element at v, and the elements in the right
subtree of v are larger than the element at v. A height-balanced tree satisfies
that for each node v, the heights of the left and right subtree of v differ by at
most one. Figure 8.3 shows a height-balanced tree with 15 elements. A height-
balanced tree with n elements has height O(log n), and element insertions,
deletions, and membership queries can be performed in time O(log n), where
updates are based on performing left and right rotations in the tree. We refer
to [2] for further details.

For a sorted list L = (x1, . . . , xn) of n distinct elements, and an element x
and a value δ, we define the following functions which capture the notation of
predecessors and successors of an element, and the notation of ∆-predecessors
and ∆-successors which in Section 8.5 will be used to compute the head and
the tail of a coalescing run:

pred(L, x) = max{y ∈ L | y ≤ x} ,

succ(L, x) = min{y ∈ L | y ≥ x} ,

max-gap(L) = max{0, x2 − x1, x3 − x2, . . . , xn − xn−1} ,

∆-pred(L, δ, x) = min{y ∈ L | y ≤ x ∧ max-gap(L ∩ [y, x]) ≤ δ} ,

∆-succ(L, δ, x) = max{y ∈ L | y ≥ x ∧ max-gap(L ∩ [x, y]) ≤ δ} .

For an example, consider the list L = (5, 7, 13, 14, 17, 21, 25, 30, 31). In
this list pred(L, 20) = 17, succ(L, 20) = 21, max-gap(L) = 13 − 7 = 6,
∆-pred(L, 4, 20) = 13, and ∆-succ(L, 4, 20) = 25. Note that by definition
pred(L, x) = ∆-pred(L, 0, x) and succ(L, x) = ∆-succ(L, 0, x).

We consider an extension of hight-balanced trees where each node v in
addition to key(v), height(v), left(v), right(v), and parent(v), which respectively
stores the element at v, the height of the subtree Tv rooted at v, pointers to the
left and right children of v and a pointer to the parent node of v, also stores the
following information: previous(v) and next(v) are pointers to the nodes which
store the immediate predecessor and successor elements of key(v) in the sorted
list, min(v) and max(v) are pointers to the nodes storing the smallest and largest
elements in the subtree rooted at v, and max-gap(v) is the value of max-gap
applied to the list of all elements in the subtree Tv rooted at v. Figure 8.3
shows a height-balanced tree and the corresponding extended height-balanced
tree (previous and next pointers are omitted in the figure).

If v has a left child v1, min(v) points to min(v1). Otherwise min(v) points
to v. Symmetrically, if v has a right child v2, max(v) points to max(v2). Oth-
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Figure 8.3: A height-balanced tree with 15 elements, and the corresponding
extended height-balanced tree. Each node in the extended height-balanced tree
with at least one child is annotated with min (left), max (right) and max-gap
(bottom). The emphasized path is the search path for ∆-Pred(T, 4, 42)

erwise max(v) points to v. If v stores element e and has a left child v1 and a
right child v2, then max-gap(v) can be computed as

max-gap(v) = max{0,max-gap(v1),max-gap(v2),
key(v) − key(max(v1)), key(min(v2)) − key(v)} . (8.1)

If v1 and/or v2 do not exist, then the expression is reduced by removing
the parts of the expression involving the missing nodes/node. The equation
can be used to recompute the information at nodes being rotated when rebal-
ancing a height-balanced search tree. Similar to the function max-gap(L) and
the operation max-gap(v), we can define and support the function min-gap(L)
and the operation min-gap(v). The operations we consider supported for an
extended height-balanced tree T are the following, where e1, . . . , ek denotes a
sorted list of k distinct elements. The output of the four last operations is a
list of k pointers to nodes in T containing the answer to each search key ei.

• MultiInsert(T, e1, . . . , ek) inserts (or merges) the k elements into T .

• MultiPred(T, e1, . . . , ek) for each ei finds pred(T, ei).

• MultiSucc(T, e1, . . . , ek) for each ei finds succ(T, ei).

• Multi-∆-Pred(T, δ, e1, . . . , ek) for each ei finds ∆-pred(T, δ, ei).

• Multi-∆-Succ(T, δ, e1, . . . , ek) for each ei finds ∆-succ(T, δ, ei).

We merge two height-balanced trees T and T ′, |T | ≥ |T ′|, by inserting the
elements in T ′ into T , i.e. MultiInsert(T, e1, e2, . . . , ek) where e1, e2, . . . , ek are
the elements in T ′ in sorted order. The following theorem states the running
time of the operations.

Theorem 8.3 Each of the operations MultiInsert, MultiPred, MultiSucc, Multi-
∆-Pred, and Multi-∆-Succ can be performed in time O(k · max{1, log(n/k)}),
where n is the size of the tree and k is the number elements to be inserted or
searched for.
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Proof. If k ≥ n, the theorem follows immediately. In the following we therefore
assume k ≤ n. Brown and Tarjan in [34] show how to merge two (standard)
height-balanced trees in time O(k · max{1, log(n/k)}), especially their algo-
rithm performs k top-down searches in time O(k · max{1, log(n/k)}). Since a
search for an element e either finds the element e or the predecessor/successor
of e it follows that MultiPred and MultiSucc can be computed in time O(k ·
max{1, log(n/k)}) using the previous and next pointers. The implementation
of MultiInsert follows from the algorithm of [34] by observing that only the
O(k · max{1, log(n/k)}) nodes visited by the merging need to have their as-
sociated min, max and max-gap information recomputed due to the inserted
elements, and the recomputation can be done in a traversal of these nodes in
time O(k · max{1, log(n/k)}) using Equation 8.1.

We now consider the Multi-∆-Pred operation. The Multi-∆-Succ operation
is implemented symmetrically to the Multi-∆-Pred operation, and the details of
Multi-∆-Succ are therefore omitted. The first step of Multi-∆-Pred is to apply
MultiPred, such that for each ei we find the node vi with key(vi) = pred(T, ei).
By definition ∆-pred(T, δ, ei) = ∆-pred(T, δ, key(vi)). Figure 8.4 contains code
for computing ∆-pred(T, δ, key(vi)). The procedure ∆-pred(v, δ) finds for a
node v in T the node v′ with key(v′) = ∆-pred(T, δ, key(v)). The procedure
uses the two recursive procedures ∆-pred-max(v, δ) and ∆-pred-min(v, δ) which
find nodes v′ and v′′ satisfying respectively key(v′) = ∆-pred(Tv, δ, key(max(v)))
and key(v′′) = ∆-pred(T, δ, key(min(v))). Note that ∆-pred-max only has search
domain Tv. The search ∆-pred(v, δ) basically proceeds in two steps: in the first
step a path from v is followed upwards to some ancestor w of v using ∆-pred-
min, and in the second step a path is followed from w to the descended of w
with key ∆-pred(T, δ, key(v)) using ∆-pred-max. See Figure 8.3 for a possible
search path.

A ∆-predecessor search can be done in time O(log n), implying that we
can find k ∆-predecessors in time O(k log n). To improve this time bound we
apply dynamic programming. Observe that each call to ∆-pred-min corresponds
to following a child-parent edge and each call to ∆-pred-max corresponds to
following a parent-child edge. By memorizing the results of the calls to ∆-pred-
min and ∆-pred-max it follows that each edge is “traversed” in each direction
at most once, that all calls to ∆-pred-min and textsf∆-pred-max correspond to
edges in at most k leaf-to-root paths.

From [34, Lemma 6] we have the statement: If T is a height-balanced tree
with n nodes, and T ′ is a subtree of T with at most k leaves, then T ′ contains
O(k ·max{1, log(n/k)}) nodes and edges. We conclude that Multi-∆-Pred takes
time O(k · max{1, log(n/k)}), since the time required for the k calls to ∆-Pred
is O(k) plus the number of non-memorized recursive calls. 2

If each node in a binary tree supplies a term O(k), where k is the number
of leaves in the smallest subtree rooted at a child of the node, then the sum
over all terms is O(N log N). In the literature, this bound is often referred
to as the “smaller-half trick”. It is essential to the running time of several
methods for finding tandem repeats [41, 11, 177]. Our method for finding
maximal quasiperiodic substrings uses a stronger version of the “smaller-half
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proc ∆-pred(v, δ)
if left(v) 6= nil and key(v) − key(max(left(v))) > δ

return v
if left(v) = nil or max-gap(left(v)) ≤ δ

return ∆-pred-min(v, δ)
return ∆-pred-max(left(v), δ)

proc ∆-pred-max(v, δ)
if right(v) 6= nil and (max-gap(right(v)) > δ or key(min(right(v))) − key(v) > δ)

return ∆-pred-max(right(v), δ))
if left(v) = nil or (key(v) − key(max(left(v))) > δ

return v
return ∆-pred-max(left(v), δ))

proc ∆-pred-min(v, δ)
if parent(v) = nil

return min(v)
if v = left(parent(v))

return ∆-pred-min(parent(v), δ)
if key(min(v)) − key(parent(v)) > δ

return min(v)
if left(parent(v)) 6= nil and key(parent(v)) − key(max(left(parent(v)))) > δ

return parent(v)
if left(parent(v)) 6= nil and max-gap(left(parent(v))) > δ

return ∆-pred-max(left(parent(v)), δ))
return ∆-pred-min(parent(v), δ)

Figure 8.4: Code for computing the ∆-predecessor of a node in an extended
height-balanced tree.

trick” hinted at in [138, Exercise 35] and stated in Lemma 8.6. It implies that
we at every node in a binary tree with N leaves can perform a fixed number of
the operations stated in Theorem 8.3, with n and k as stated in the lemma, in
total time O(N log N).

Lemma 8.6 If each internal node v in a binary tree with N leaves supplies a
term O(k log(n/k)), where n is the number of leaves in the subtree rooted at v
and k ≤ n/2 is the number of leaves in the smallest subtree rooted at a child
of v, then the sum over all terms is O(N log N).

Proof. As the terms are O(k log(n/k)) we can find constants, a and b, such
that the terms are upper bounded by a + bk log(n/k). We will by induction in
the number of leaves of the binary tree prove that the sum is upper bounded
by (N − 1)a + bN log N = O(N log N). If the tree is a leaf then the upper
bound holds vacuously. Now assume inductively that the upper bound holds
for all trees with at most N −1 leaves. Consider a tree with N leaves where the
number of leaves in the subtrees rooted at the two children of the root are k and
N −k where 0 < k ≤ N/2. According to the induction hypothesis the sum over
all nodes in these two subtrees, i.e. the sum over all nodes of in the tree except
the root, is bounded by (k−1)a+bk log k+((N −k)−1)a+b(N −k) log(N −k).
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The the entire sum is thus bounded by

a + bk log(N/k) + (k − 1)a+bk log k + ((N − k) − 1)a + b(N − k) log(N − k)
= (N − 1)a + bk log N + b(N − k) log(N − k)
< (N − 1)a + bk log N + b(N − k) log N

= (N − 1)a + bN log N

which proves the lemma. 2

8.5 Algorithm

The algorithm to find all maximal quasiperiodic substrings in a string S of
length n first constructs the suffix tree T (S) of S in time O(n) using any existing
suffix tree construction algorithm, e.g. [203, 137, 189], and then processes T (S)
in two phases. Each phase involves one or more traversals of T (S). In the first
phase the algorithm identifies all nodes of T (S) with a superprimitive path-
label. In the second phase the algorithm reports the maximal quasiperiodic
substrings in S. This is done by reporting the coalescing runs at the nodes
which in the first phase were identified to have superprimitive path-labels.

To identify nodes with superprimitive path-labels we apply the concepts of
questions, characteristic occurrences of a path-label, and sentinels of a node.
Let v be a non-leaf node in T (S) and u 6= v an ancestor node of v in T (S).
Let v1 and v2 be the two leftmost children of v, and i1 = min(LL(v1)) and
i2 = min(LL(v2)). A question posed to u is a triple (i, j, v) where i ∈ LL(v) ⊂
LL(u) and j = i + |L(v)| − |L(u)| ∈ LL(u), and the answer to the question is
true if and only if i and j are in the same coalescing run at u.

We define the two occurrences of L(v) at positions i1 and i2 to be the
characteristic occurrences of L(v), and define the sentinels v̂1 and v̂2 of v as
the positions immediately after the two characteristic occurrences of L(v), i.e.
v̂1 = i1 + |L(v)| and v̂2 = i2 + |L(v)|. Since i1 and i2 are indices in leaf-lists of
two distinct children of v, we have S[v̂1] 6= S[v̂2]. In the following we let SL(v)
be the list of the sentinels of the nodes in the subtree rooted at v in T (S). Since
there are two sentinels for each non-leaf node, |SL(v)| ≤ 2|LL(v)| − 2.

Theorem 8.1 implies the following technical lemma which forms the basis
for detecting nodes with superprimitive path-labels in T (S).

Lemma 8.7 The path-label L(v) is quasiperiodic if and only if there exists a
sentinel v̂ of v, and an ancestor w of v (possibly w = v) for which there exists
j ∈ LL(w)∩ ]v̂−2 ·min-gap(LL(w)) ; v̂[ such that (v̂−|L(v)|, j, v) is a question
that can be posed and answered successfully at an ancestor node u 6= v of w
(possibly u = w) with |L(u)| = v̂ − j and min-gap(LL(u)) > |L(u)|/2.

Proof. If there exists a question (v̂− |L(v)|, v̂ − |L(u)|, v) that can be answered
successfully at u, then v̂ − |L(v)| and v̂ − |L(u)| are in the same run at u, i.e.
L(u) covers L(v) and L(v) is quasiperiodic. If L(v) is quasiperiodic, we have
from Theorem 8.1 that there for i` = v̂` − |L(v)|, where ` = 1 or ` = 2, exists



154 Chapter 8. Finding Maximal Quasiperiodicities in Strings

an ancestor node u 6= v of v where both i` and i` + |L(v)| − |L(u)| belong to
a coalescing run at u and min-gap(LL(u)) > |L(u)|/2. The lemma follows by
letting w = u and j = v̂` − |L(u)|. 2

Since the position j and the sentinel v̂ uniquely determine the question
(v̂ − |L(v)|, j, v), it follows that to decide the superprimitivity of all nodes
it is sufficient for each node w to find all pairs (v̂, j) where v̂ ∈ SL(w) and
j ∈ LL(w) ∩ ]v̂ − 2 · min-gap(LL(w)) ; v̂[, or equivalently j ∈ LL(w) and v̂ ∈
SL(w) ∩ ]j ; j + 2 · min-gap(LL(w))[. Furthermore, if v̂ and j result in a ques-
tion at w, but j ∈ LL(w′) and v̂ ∈ SL(w′) for some child w′ of w, then v̂ and j
result in the same question at w′ since min-gap(LL(w′)) ≥ min-gap(LL(w)),
i.e. we only need to find all pairs (v̂, j) at w where v̂ and j come from two
distinct children of w. We can now state the details of the algorithm.

Phase I – Marking Nodes with Quasiperiodic Path-Labels

In Phase I we mark all nodes in T (S) that have a quasiperiodic path-label
by performing three traversals of T (S). We first make a depth-first traversal
of T (S) where we for each node v compute min-gap(LL(v)). We do this by
constructing for each node v a search tree TLL(v) that stores LL(v) and sup-
ports the operations in Section 8.4. In particular the root of TLL(v) should
store the value min-gap(TLL(v)) to be assigned to v. If v is a leaf, TLL(v)
only contains the index annotated to v. If v is an internal node, we con-
struct TLL(v) by merging the TLL trees of the children of v from left-to-right
when these have been computed. If the children of v are v1, . . . , vk we merge
TLL(v1), . . . , TLL(vi+1) by performing a binary merge of TLL(vi+1) with the re-
sult of merging TLL(v1), . . . , TLL(vi). As a side effect of computing TLL(v) the
TLL trees of the children of v are destroyed.

We pose and answer questions in two traversals of T (S) explained below as
Step 1 and Step 2. For each node v we let Q(v) contain the list of questions
posed at v. Initially Q(v) is empty.

Step 1 (Generating Questions) In this step we perform a depth-first
traversal of T (S). At each node v we construct search trees TLL(v) and TSL(v)
which store respectively LL(v) and SL(v) and support the operations men-
tioned in Section 8.4. For a non-leaf node v with leftmost children v1 and v2,
we compute the sentinels of v as v̂1 = min(TLL(v1)) + |LL(v1)| and v̂2 =
min(TLL(v2)) + |LL(v1)|. The TLL trees need to be recomputed since these
are destroyed in the first traversal of T (S). The computation of TSL(v) is done
similarly to the computation of TLL(v) by merging the TSL lists of the chil-
dren of v from left-to-right, except that after the merging the TSL trees of the
children we also need to insert the two sentinels v̂1 and v̂2 in TSL(v).

We visit node v, and call it the current node, when the TLL and TSL trees at
the children of v are available. During the traversal we maintain an array depth
such that depth(k) refers to the node u on the path from the current node to
the root with |L(u)| = k if such a node exists. Otherwise depth(k) is undef. We
maintain depth by setting depth(|L(u)|) to u when we arrive at node u from its
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parent, and by setting depth(|L(u)|) to undef when we return from node u to
its parent.

When v is the current node we have from Lemma 8.7 that it is sufficient
to generate questions for pairs (ŵ, j) where ŵ and j come from two different
children of v. We do this while merging the TLL and TSL trees of the children.
Let the children of v be v1, . . . , vk. Assume LLi = LL(v1) ∪ · · · ∪ LL(vi) and
SLi = SL(v1)∪· · · ∪SL(vi) has been computed as TLLi and TSLi and we are in
the process of computing LLi+1 and SLi+1. The questions we need to generate
while computing LLi+1 and SLi+1 are those where j ∈ LLi and ŵ ∈ SL(vi+1) or
j ∈ LL(vi+1) and ŵ ∈ SLi. Assume j ∈ TLL and ŵ ∈ TSL, where either TLL =
TLLi and TSL = TSL(vi+1) or TLL = TLL(vi+1) and TSL = TSLi . There are two
cases. If |TLL| ≤ |TSL| we locate each j ∈ TLL in TSL by performing a MultiSucc
operation. Using the next pointers we can then for each j report those ŵ ∈ TSL

where ŵ ∈ ]j ; j + 2 · min-gap(LL(v))[. If |TLL| > |TSL| we locate each ŵ ∈ TSL

in TLL by performing a MultiPred operation. Using the previous pointers we can
then for each ŵ report those j ∈ TSL where j ∈ ]ŵ − 2 · min-gap(LL(v)) ; ŵ[.
The two sentinels v̂1 and v̂2 of v are handled similarly to the later case by
performing two searches in TLL(v) and using the previous pointers to generate
the required pairs involving the sentinels v̂1 and v̂2 of v.

For a pair (ŵ, j) that is generated at the current node v, we generate a
question (ŵ − |L(w)|, j, w) about descendent w of v with sentinel ŵ, and pose
the question at ancestor u = depth(ŵ − j) by inserting (ŵ − |L(w)|, j, w) into
Q(u). If such an ancestor u does not exists, i.e. depth(ŵ − j) is undef, or
min-gap(u) ≤ |L(u)|/2 then no question is posed.

Step 2 (Answering Questions) Let Q(v) be the set of questions posed at
node v in Step 1. If there is a coalescing run R in C(v) and a question (i, j, w) in
Q(v) such that min R ≤ i < j ≤ maxR, then i and j are in the same coalescing
run at v and we mark node w as having a quasiperiodic path-label.

We identify each coalescing run R in C(v) by the tuple (min R,maxR). We
answer question (i, j, w) in Q(v) by deciding if there is a run (min R,max R)
in C(v) such that min R ≤ i < j ≤ max R. If the questions (i, j, w) in Q(v)
and runs (min R,max R) in C(v) are sorted lexicographically, we can answer all
questions by a linear scan through Q(v) and C(v). In the following we describe
how to generate C(v) in sorted order and how to sort Q(v).

Constructing Coalescing Runs The coalescing runs are generated in a
traversal of T (S). At each node v we construct TLL(v) storing LL(v). We
construct TLL(v) by merging the TLL trees of the children of v from left-to-
right. A coalescing run R in LL(v) contains an index from at least two distinct
children of v, i.e. there are indices i′ ∈ LL(v1) and i′′ ∈ LL(v2) in R for two
distinct children v1 and v2 of v such that i′ < i′′ are neighbors in LL(v) and
i′′ − i′ ≤ |L(v)|. We say that i′ is a seed of R. We identify R by the tuple
(min R,maxR). We have min R = ∆-pred(LL(v), |L(v)|, i′) and max R = ∆-
succ(LL(v), |L(v)|, i′).

To construct C(v) we collect seeds ir1 , ir2 , . . . , irk
of every coalescing run
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in LL(v) in sorted order. This done by checking while merging the TLL trees
of the children of v if an index gets a new neighbor in which case the in-
dex can be identified as a seed. Since each insertion at most generates two
seeds we can collect all seeds into a sorted list while performing the merging.
From the seeds we can compute the first and last index of the coalescing runs
by doing Multi-∆-Pred(TLL(v), |L(v)|, ir1 , ir2 , . . . , irk

) and Multi-∆-Succ(TLL(v),
|L(v)|, ir1 , ir2 , . . . , irk

). Since we might have collected several seeds of the same
run, the list of coalescing runs R1, R2, . . . , Rk might contain doublets which can
be removed by reading through the list once. Since the seeds are collected in
sorted order, the resulting list of runs is also sorted.

Sorting the Questions We collect the elements in Q(v) for every node v
in T (S) into a single list Q that contains all question (i, j, w) posed at nodes
in T (S). We annotate every element in Q with the node v it was collected
from. By construction every question (i, j, w) posed at a node in T (S) satisfies
that 0 ≤ i < j < n. We can thus sort the elements in Q lexicographically
with respect to i and j using radix sort. After sorting the elements in Q we
distribute the questions back to the proper nodes in sorted order by a linear
scan through Q.

Phase II – Reporting Maximal Quasiperiodic Substrings

After Phase I all nodes that have a quasiperiodic path-label are marked, i.e.
all unmarked nodes are nodes that have a superprimitive path-label. By The-
orem 8.2 we report all maximal quasiperiodic substrings by reporting the coa-
lescing runs at every node that has a superprimitive path-label. In a traversal of
the marked suffix tree we as in Phase I construct C(v) at every unmarked node
and report for every R in C(v) the triple (min R,maxR, |L(v)|) that identifies
the corresponding maximal quasiperiodic substring.

8.6 Running Time

In every phase of the algorithm we traverse the suffix tree and construct at
each node v search trees that stores LL(v) and/or SL(v). At every node v we
construct various lists by considering the children of v from left-to-right and
perform a constant number of the operations in Theorem 8.3. Since the overall
merging of information in T (S) is done by binary merging, we by Lemma 8.6
have that this amounts to time O(n log n) in total. To generate and answer
questions we use time proportional to the total number of questions generated.
Lemma 8.8 states that the number of questions is bounded by O(n log n). We
conclude that the running time of the algorithm is O(n log n).

Lemma 8.8 At most O(n log n) questions are generated.

Proof. We will prove that each of the 2n sentinels can at most result in the
generation of O(log n) questions. Consider a sentinel ŵ of node w and assume
that it generates a question (ŵ − |L(w)|, j, w) at node v. Since ŵ − j < 2 ·
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min-gap(LL(v)), j is either pred(LL(v), ŵ − 1) (a question of Type A) or the
left neighbor of pred(LL(v), ŵ − 1) in LL(v) (a question of Type B). For ŵ we
first consider all indices resulting in questions of Type A along the path from w
to the root. Note that this is an increasing sequence of indices. We now show
that the distance of ŵ to the indices is geometrically decreasing, i.e. there are at
most O(log n) questions generated of Type A. Let j and j′ be two consecutive
indices resulting in questions of Type A at node v and at an ancestor node u of v.
Since j < j′ < ŵ and j′− j ≥ min-gap(LL(u)) and ŵ− j′ < 2 ·min-gap(LL(u)),
we have that ŵ−j′ < 2

3 (ŵ−j). Similarly we can bound the number of questions
of Type B generated for a sentinel ŵ by O(log n). 2

8.7 Achieving Linear Space

Storing the suffix tree T (S) uses space O(n). During a traversal of the suffix
tree we construct search trees as explained. Since no element, index or sentinel,
at any time is stored in more than a constant number of search trees, storing
the search trees uses space O(n). Unfortunately, storing the sets C(v) and Q(v)
of coalescing runs and questions at every node v in the suffix tree uses space
O(n log n). To reduce the space consumption we must thus avoid to store C(v)
and Q(v) at all nodes simultaneously. The trick is to modify Phase I to alternate
between generating and answering questions.

We observe that generating questions and coalescing runs (Step 1 and the
first part of Step 2) can be done in a single traversal of the suffix tree. This
traversal is Part 1 of Phase I. Answering questions (the last part of Step 1)
is Part 2 of Phase I. To reduce the space used by the algorithm to O(n) we
modify Phase I to alternate in rounds between Part 1 (generating questions
and coalescing runs) and Part 2 (answering questions).

We say that node v is ready if C(v) is available and all questions from it has
been generated, i.e. Part 1 has been performed on it. If node v is ready then
all nodes in its subtree are ready. Since all questions to node v are generated
at nodes in its subtree, this implies that Q(v) is also available. By definition
no coalescing runs are stored at non-ready nodes and Lemma 8.9 states that
only O(n) questions are stored at non-ready nodes. In a round we produce ready
nodes (perform Part 1) until the number of questions plus coalescing runs stored
at nodes readied in the round exceed n, we then answer the questions (perform
Part 2) at nodes readied in the round. After a round we dispose questions and
coalescing runs stored at nodes readied in the round. We continue until all
nodes in the suffix tree have been visited.

Lemma 8.9 There are at most O(n) questions stored at non-ready nodes.

Proof. Let v be a node in T (S) such that all nodes on the path from v to
the root are non-ready. Consider a sentinel ŵ corresponding to a node in the
subtree rooted at v. Assume that this sentinel has induced three questions
(ŵ − |L(w)|, j′, w), (ŵ − |L(w)|, j′′, w) and (ŵ − |L(w)|, j′′′, w), where j′ < j′′ <
j′′′, that are posed at ancestors of v. By choice of v, these ancestors are non-
ready nodes. One of the ancestors is node u = depth(ŵ − j′). Since question
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(ŵ − |L(w)|, j′, w) is posed at u, min-gap(LL(u)) > |L(u)|/2. Since j′, j′′, j′′′ ∈
LL(u) and j′′′−j′ ≤ ŵ−j′ = |L(u)|, it follows that min-gap(LL(u)) ≤ min{j′′−
j′, j′′′ − j′′} ≤ |L(u)|/2. This contradicts that min-gap(LL(u)) > |L(u)|/2 and
shows that each sentinel has generated at most two questions to non-ready
nodes. The lemma follows because there are at most 2n sentinels in total. 2

Alternating between Part 1 and Part 2 clearly results in generating and
answering the same questions as if Part 1 and Part 2 were performed without
alternation. The correctness of the algorithm is thus unaffected by the mod-
ification of Phase I. Now consider the running time. The running time of a
round can be divided into time spent on readying nodes (Part 1) and time
spent on answering questions (Part 2). The total time spent on readying nodes
is clearly unaffected by the alternation. To conclude the same for the total time
spent on answering questions, we must argue that the time spent on sorting the
posed questions in each round is proportional to the time otherwise spent in
the round.

The crucial observation is that each round takes time Ω(n) for posing ques-
tions and identifying coalescing runs, implying that the O(n) term in each
radix sorting is neglectable. We conclude that the running time is unaffected
by the modification of Phase I. Finally consider the space used by the modi-
fied algorithm. Besides storing the suffix tree and the search trees which uses
space O(n), it only stores O(n) questions and coalescing runs at nodes read-
ied in the current round (by construction of a round) and O(n) questions at
non-ready nodes (by Lemma 8.9). In summary we have the following theorem.

Theorem 8.4 All maximal quasiperiodic substrings of a string of length n can
be found in time O(n log n) and space O(n).

8.8 Conclusion

We have presented an algorithm that finds all maximal quasiperiodic substrings
of a string of length n in time O(n log n) and space O(n). Besides improving on a
previous algorithm by Apostolico and Ehrenfeucht, the algorithm demonstrates
the usefulness of suffix trees combined with efficient methods for merging and
performing multiple searches in search trees. We believe that the techniques
presented in this paper could also be useful in improving the running time
of the algorithm for the string statistic problem presented by Apostolico and
Preparata [12] to O(n log n).



Chapter 9

Prediction of RNA Secondary Structure

The paper An Improved Algorithm for RNA Secondary Structure prediction
presented in this chapter has been published in part as a technical report [129],
a conference paper [130] and a journal paper [128]

[129] R. B. Lyngsø, M. Zuker, and C. N. S. Pedersen. An improved algorithm
for RNA secondary structure prediction. Technical Report RS-99-15,
BRICS, May 1999.

[130] R. B. Lyngsø, M. Zuker, and C. N. S. Pedersen. Internal loops in RNA
secondary structure prediction. In Proceedings of the 3th Annual Inter-
national Conference on Computational Molecular Biology (RECOMB),
pages 260–267, 1999.

[128] R. B. Lyngsø, M. Zuker, and C. N. S. Pedersen. Fast evaluation of
internal loops in RNA secondary structure prediction. Bioinformatics,
15(6):440–445, 1999.

The technical report presents the work described in the conference and journal
paper in a unified way. Except for minor typographical changes the content of
this chapter is equal to the technical report [129]. An implementation of the
method for RNA secondary structure prediction presented in this chapter is
available at www.daimi.au.dk/∼rlyngsoe/zuker.
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Prediction of RNA Secondary Structure

Rune B. Lyngsø∗ Michael Zuker† Christian N. S. Pedersen‡

Abstract

Though not as abundant in known biological processes as proteins,
RNA molecules serve as more than mere intermediaries between DNA and
proteins, e.g. as catalytic molecules. Furthermore, RNA secondary struc-
ture prediction based on free energy rules for stacking and loop formation
remains one of the few major breakthroughs in the field of structure pre-
diction. We present a new method to evaluate all possible internal loops
of size at most k in an RNA sequence, s, in time O(k|s|2); this is an
improvement from the previously used method that uses time O(k2|s|2).
For unlimited loop size this improves the overall complexity of evaluating
RNA secondary structures from O(|s|4) to O(|s|3) and the method applies
equally well to finding the optimal structure and calculating the equilib-
rium partition function. We use our method to examine the soundness of
setting k = 30, a commonly used heuristic.

9.1 Introduction

Structure prediction remains one of the most compelling, yet elusive areas of
computational biology. Not yielding to overwhelming numbers and resources
this area still poses a lot of interesting questions for future research. For RNA,
if one restricts attention to the prediction of unknotted secondary structures,
much progress has been achieved. Dynamic programming algorithms combined
with the nearest neighbor model and experimentally determined free energy
parameters give rigorous solutions to the problems of computing minimum free
energy structures, structures that are usually close to real world optimal fold-
ings, and partition functions that yield exact base pair probabilities.

Secondary structure in RNA is the list of base pairs that occur in a three
dimensional RNA structure. According to the theory of thermodynamics the
optimal foldings of an RNA sequence are those of minimum free energy, and
thus the native foldings, i.e. the foldings encountered in the real world, should
correspond to the optimal foldings. Furthermore, thermodynamics tells us that
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8000 Århus C, Denmark. E-mail: cstorm@brics.dk.



162 Chapter 9. Prediction of RNA Secondary Structure

the folding of an RNA sequence in the real world is actually a probability distri-
bution over all possible structures, where the probability of a specific structure
is proportional to an exponential of the free energy of the structure. For a set
of structures, the partition function is the sum over all structures of the set of
the exponentials of the free energies.

Information on the secondary structure of an RNA molecule can be used as
a stepping-stone to modeling the full structure of the molecule, which in turn
relates to the biological function. As recent experiments have shown that RNA
molecules can undertake a wide range of different functions [88], the prediction
of RNA secondary structure should continue to be important for biomolecule
engineering.

A model was proposed in [186, 185] to calculate the stability (in terms of
free energy) of a folded RNA molecule by adding independent contributions
from base pair stacking and loop destabilizing terms from the secondary struc-
ture. This model has proven a good approximation of the forces governing
RNA structure formation, thus allowing fair predictions of real structures by
determining the most stable structures in the model of a given sequence.

Based on this model, algorithms for computing the most stable structures
have been proposed e.g. in [213, 154]. Zuker [211] proposes a method to deter-
mine all base pairs that can participate in structures with a free energy within
a specified range from the optimal. McCaskill [136] demonstrates how a related
dynamic programming algorithm can be used to calculate equilibrium parti-
tion functions, which lead to exact calculations of base pair probabilities in the
model.

A major problem for these algorithms is the time required to evaluate pos-
sible internal loops. In general, this requires time O(|s|4) which is often circum-
vented by assuming that only ‘small’ loops need to be considered (e.g. [136]).
This risks missing some optimal large internal loops, especially when folding at
high temperatures, but the time required for evaluating internal loops is reduced
to O(|s|2) thus reducing the overall complexity to O(|s|3). If the stability of an
internal loop can be assumed only to depend on the size of the internal loop,
Waterman et. al. [199] describes how to reduce the time requirement to O(|s|3)1.
This is further improved to O(|s|2 log2 |s|) for convex free energy functions by
Eppstein et al. [51]. Affine free energy functions (i.e. of the form a + bn, where
n is the size of the loop) allows for O(|s|2) computation time by borrowing a
simple method used in sequence alignment [67].

Unfortunately the currently used free energy functions for internal loops
are not convex, let alone affine. Furthermore, the technique described in [51]
hinges on the objective being to find a structure of maximum stability, and thus
does not translate to the calculation of the partition function of [136] where a
Boltzmann weighted sum of contributions to the partition function is calculated.

In this paper we will describe a method based on a property of current free
energy functions for internal loops that allows all internal loops to be evaluated

1This method is also referred to by [136] where a combination of the above methods is
proposed - a free energy function only dependent on loop size is used for large loops, while
small loops are treated specially.
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in time O(|s|3). This method is applicable both to determining the most stable
structure and to calculating the partition function.

The rest of this paper is structured as follows. In Section 9.2 we briefly
review the basic dynamic programming algorithm for RNA secondary struc-
ture prediction and introduce the notation we will be using. In Section 9.3 we
present a method yielding cubic time algorithms for evaluating internal loops
for certain free energy functions. We argue that this method can be used with
currently used free energy functions in Section 9.3.2, and describe how the same
technique can be used to calculate the contributions to the partition function
from structures with internal loops in Section 9.3.3. In Section 9.4 we com-
pare our method to the previously used method, and in Section 9.5 we present
an experiment using the new algorithm to analyze a hitherto commonly used
heuristic. In Section 9.6 we discuss some future directions for improvements.

9.2 Basic Dynamic Programming Algorithm

A secondary structure of a sequence s is a set S of base pairs i · j with 1 ≤ i <
j ≤ |s|, such that ∀i · j, i′ · j′ ∈ S : i = i′ ⇔ j = j′. Thus, any base can take
part in at most one base pair. We will further assume that the structure does
not contain pseudo-knots. A pseudo-knot is two “overlapping” base pairs, that
is, base pairs i · j and i′ · j′ with i < i′ < j < j′.

One can view a pseudo-knot free secondary structure S as a collection of
loops together with some external unpaired bases (see Figure 9.1). Let i < k < j
with i ·j ∈ S. Then k is said to be accessible from i ·j if for all i′ ·j′ ∈ S it is not
the case that i < i′ < k < j′ < j. The base pair i · j is said to be the exterior
base pair of (or closing) the loop consisting of i · j and all bases accessible from
it. If i′ and j′ are accessible from i ·j and i′ ·j′ ∈ S – observe that for a structure
without pseudo-knots either both or none of i′ and j′ will be accessible from
i · j if i′ · j′ ∈ S – then i′ · j′ is called an interior base pair of the loop and is said
to be accessible from i · j. If there are no interior base pairs the loop is called a
hairpin loop. With one interior base pair it is called a stacked pair if i′ = i + 1
and j′ = j − 1, and otherwise it is called an internal loop (bulges are a special
kind of internal loops with either i′ = i + 1 or j′ = j − 1). Loops with more
than one interior base pair are called multibranched loops. Unpaired bases and
base pairs not accessible from any base pair are called external.

RNA secondary structure prediction is the problem of determining the most
stable structure for a given sequence. We measure stability in terms of the free
energy of the structure. Thus we want to find a structure of minimal free
energy which we will also call an optimal structure. The energy of a secondary
structure is assumed to be the sum of the energies of the loops of the structure
and furthermore the loops are assumed to be independent, that is, the energy
of a loop only depends on the loop and not on the rest of the structure [185].

Based on these assumptions one can specify a recursion to calculate the
energy of the optimal structure for a sequence s [213, 154]. Before presenting
our improvement to the part of the algorithm dealing with internal loops, we
will briefly review the hitherto used method. We use the same notation as
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Figure 9.1: An example RNA structure. Bases are depicted by circles, the RNA
backbone by straight lines and base pairings by zigzagged lines.

in [188]. Four arrays2 – W , V , VBI and VM – are used to hold the minimal
free energy of certain restricted structures of subsequences of s. The entries
of these arrays are interdependent and can be calculated recursively using pre-
specified free energy functions – eS, eH, eL and eM – for the contributions
from the various types of loops as follows.

• The energy of an optimal structure of the subsequence from 1 through i:

W (i) = min{W (i − 1), min
1<j≤i

{W (j − 1) + V (j, i)}}. (9.1)

• The energy of an optimal structure of the subsequence from i through j
closed by i · j:

V (i, j) = min{eH(i, j), eS(i, j) + V (i + 1, j − 1),
VBI(i, j), VM(i, j)} (9.2)

where eH(i, j) is the energy of a hairpin loop closed by i · j and eS(i, j)
is the energy of stacking base pair i · j with i + 1 · j − 1.

• The energy of an optimal structure of the subsequence from i through j
where i · j closes a bulge or an internal loop:

VBI(i, j) = min
i<i′<j′<j

i′ − i + j − j′ > 2

{eL(i, j, i′, j′) + V (i′, j′)} (9.3)

where eL(i, j, i′, j′) is the energy of a bulge or internal loop with exterior
base pair i · j and interior base pair i′ · j′.

2Actually two arrays – V and W – suffices, but we will use four arrays to simplify the
description. Below we will introduce a fifth array WM that will also be needed in an efficient
implementation.
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• The energy of an optimal structure of the subsequence from i through j
where i · j closes a multibranched loop:

VM(i, j) = min
i<i1<j1<

···
<ik<jk<j

{eM(i, j, i1 , j1, . . . , ik, jk) +
k∑

l=1

V (il, jl)} (9.4)

where k > 1 and eM(i, j, i1, j1, . . . , ik, jk) is the energy of a multibranched
loop with exterior base pair i · j and interior base pairs i1 · j1, . . . , ik · jk.

When all entries of these arrays have been filled out, W (|s|) contains the free
energy for optimal structures and an optimal structure can be determined by
backtracking the calculations that led to this free energy.

To make the problem of determining the optimal secondary structure tractable
the following simplifying assumption is often made. The energy of multi-
branched loops can be decomposed into linear contributions from the num-
ber of unpaired bases in the loop, the number of branches in the loop and a
constant [212]3, that is

eM(i, j, i1, j1, . . . , ik, jk) =

a + bk + c
(

i1 − i − 1 + j − jk − 1 +
k−1∑
l=1

(il+1 − jl − 1)
)

. (9.5)

We introduce an extra array

• The energy of an optimal structure of the subsequence from i through
j that constitutes part of a multibranched loop structure, that is, where
unpaired bases and external base pairs are penalized according to Equa-
tion 9.5:

WM(i, j) = min{V (i, j) + b,WM(i, j − 1) + c,WM(i + 1, j) + c,

min
i<k≤j

{WM(i, k − 1) + WM(k, j)}} (9.6)

which enables us to restate the calculation of the energy of the optimal multi-
branched loop as

VM(i, j) = min
i+1<k≤j−1

{WM(i + 1, k − 1) + WM(k, j − 1) + a}. (9.7)

Based on these recurrence relations we can by dynamic programming calculate
the energy of the optimal structure in time O(|s|3) – assuming that the free
energy functions can be evaluated in constant time – except for the calculation
of the entries of VBI which requires O(|s|4) in total. The bottleneck of finding
the optimal structures is thus the evaluation of internal loops. In the following
section we will present a method to reduce the time used calculating the entries
of VBI from O(|s|4) to O(|s|3), thereby improving the time complexity of the
overall RNA secondary structure prediction algorithm from O(|s|4) to O(|s|3).

3It is known that the stability of a multibranched loop also depends on the stacking effects
of the base pairs in the loop and their neighboring unpaired bases. These effects can also be
handled efficiently, but for simplicity we have omitted the details here.
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9.3 Efficient Evaluation of Internal Loops

Examining the recursion for internal loops one observes that two base pairs,
i · j and i′ · j′, may be compared as candidates for the interior base pair for
numerous exterior base pairs. If V (i, j) � V (i′, j′), it is evident that we would
not have to consider i′ · j′ as a candidate interior base pair for any entry of VBI
where i · j would also be a candidate interior base pair.

Though it would often in practice be the case that we could a priori discard
many candidate interior base pairs by the above observation, we can not in
general guarantee this to be the case. To get an improvement in the worst
case performance of the evaluation of internal loops, we thus have to examine
properties of the energy functions for internal loop stability that will allow us
to group base pairs and entries of VBI, such that we only have to make one
comparison between i · j and i′ · j′ to determine which one would yield the more
stable structure for the entire group of entries. In this section we will exploit
such properties of currently used energy functions leading to an algorithm for
evaluating internal loops requiring worst case time O(|s|3).
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Figure 9.2: The energy function for internal loops can be split into a sum of
independent contributions.

Currently used energy rules for internal loop stability (cf. [210]) split the
contributions into three parts:

• An entropic term that depends on the size of the loop.

• Stacking energies for the mismatched base pairs adjacent to the enclosing
(exterior and interior) base pairs.

• An asymmetry penalty for asymmetric loops.
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With this separation we can rewrite the internal loop energy function as

eL(i, j, i′, j′) = size(i′ − i + j − j′ − 2)+
stacking(i · j) + stacking(i′ · j′)+
asymmetry(i′ − i − 1, j − j′ − 1).

(9.8)

Figure 9.2 gives a graphical representation of these components of the internal
loop energy function. In the following we will further assume that the lopsided-
ness and the size dependence of the asymmetry function can be separated out,
or more specifically that

asymmetry(k + 1, l + 1) = asymmetry(k, l) + g(k + l) (9.9)

holds. The change of the asymmetry function when varying the size while
maintaining lopsidedness thus only depends on the size of the loop. This is
equivalent to assuming that

asymmetry(k, l) = lopsidedness(|k − l|) + size′(k + l), (9.10)

where one can observe that the g term in Equation 9.9 corresponds to changes
in the size′ term in Equation 9.10. This size-dependence of the asymmetry
function can be moved to the size-function of the overall internal loop energy
function, thus allowing us to restate the assumption of Equation 9.9 as

asymmetry(k + 1, l + 1) = asymmetry(k, l). (9.11)

In the rest of this paper we will therefore omit the g term, but the formulation
of Equation 9.9 might be useful when specifying or recognizing an asymmetry
function obeying the assumption.

9.3.1 Finding Optimal Internal Loops

If the assumption of Equation 9.9 holds, we propose Algorithm 9.1 as an effi-
cient alternative to compute the VBI(i, j) entries in the dynamic programming
algorithm for predicting RNA secondary structure. The algorithm is an exten-
sion of the ideas in [199] where an O(n3) method for calculating the entries
of VBI, assuming that the stability of an internal loop only depends on the
size of the loop, was presented. The rationale behind the algorithm is, that
when we extend loops while retaining lopsidedness we can reuse comparisons as
depicted in Figure 9.3. Thus for a pair of indices, i and j, the algorithm does
not compute the V BI(i, j) entry. Instead, if we denote all internal loops with
a specific size and exterior base pair as a class of internal loops, the algorithm
evaluates all classes of internal loops where i · j is the middle candidate base
pair, that is, choosing i · j as the interior base pair results in a symmetric loop
(or almost symmetric – loops of odd size will always have a lopsidedness of at
least one).

Proposition 9.1 Algorithm 9.1 computes VBI correctly under the assumption
of Equation 9.9. Furthermore, the time required to compute the entire table is
O(n3).
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Figure 9.3: The difference in destabilizing energy when extending a loop from
being closed by i · j to being closed by i − 1 · j + 1 is determined solely by the
size of the loop and the change in stacking stability of the closing base pair.
We can thus reuse comparisons between different choices of interior base pairs,
e.g. i′ · j′ and i′′ · j′′.

The time complexity of O(n3) is easy to see, since the algorithm for each of
the O(n2) pairs of indices, i and j, uses time O(n). To prove the correctness
of the algorithm, we will start by sketching a simpler algorithm for which the
correctness is obvious, but that has the drawback of using space O(n3). Then we
will argue that Algorithm 9.1 is similar to this algorithm except for the order in
which the computations are carried out, that is, the order in which the different
candidate interior loops for a specific entry of VBI are evaluated. Hence, the
correctness of the simpler algorithm implies the correctness of Algorithm 9.1.

We define a new array VBI ′ such that VBI ′(i, j, l) is the minimal energy
of an internal loop of size l with exterior base pair i · j. The following lemma
establishes a useful relationship between the entries of VBI ′.

Lemma 9.1 If Equation 9.9 holds, then for l > 2

VBI ′(i, j, l) = min




VBI ′(i + 1, j − 1, l − 2)+
size(l) − size(l − 2)+
stacking(i · j) − stacking(i + 1 · j − 1)

V (i + 1, j − l − 1) + eL(i, j, i + 1, j − l − 1)
V (i + l + 1, j − 1) + eL(i, j, i + l + 1, j − 1).

(9.12)

Proof. By definition

VBI ′(i, j, l) = min
i<i′<j′<j

i′ − i + j − j′ − 2 = l

{eL(i, j, i′ , j′) + V (i′, j′)}. (9.13)
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Algorithm 9.1 Evaluation of classes of internal loops with size 2l + a and
exterior base pair i − l · j + l + a.

/* When a = 0 loops of even size are handled and when a = 1 loops of odd
size are handled; this is necessary as we increase the loop size by two in each
iteration. */
for a = 0 to 1 do

/* E maintains the energy of the optimal loop except for size and external
stacking contributions. */
E = ∞
/* Iterate through the exterior base pairs. For even sized loops we skip
l = 1 as this yields a stacked base pair. */
for l = 2 − a to min{i − 1, |s| − j − a} do

/* Examine the two new candidate interior base pairs, i.e. the interior
base pairs next to the currently considered exterior base pair. */
E = min{E, V (i − l + 1, j − l + 1)+

asymmetry(0, 2l + a − 2)+
stacking(i − l + 1, j − l + 1),

V (i + a + l − 1, j + a + l − 1)+
asymmetry(2l + a − 2, 0)+
stacking(i + a + l − 1, j + a + l − 1)}

/* Update VBI for the currently considered exterior base pair. */
VBI(i − l, j + a + l) = min{VBI(i − l, j + a + l),

E + size(2l + a − 2) + stacking(i − l, j + a + l)}
end for

end for

The last two entries of Equation 9.12 handle the cases where this minimum is
obtained by a bulge, that is at i′ = i + 1 or j′ = j − 1. Otherwise the minimum
is the minimum over

eL(i, j, i′, j′) + V (i′, j′)
= size(l) + asymmetry(i′ − i − 1, j − j′ − 1)

+ stacking(i · j) + stacking(i′ · j′) + V (i′, j′)
= size(l) + asymmetry(i′ − i − 2, j − j′ − 2)

+ stacking(i · j) + stacking(i′ · j′) + V (i′, j′)
= size(l − 2) + asymmetry(i′ − i − 2, j − j′ − 2)

+ stacking(i + 1 · j − 1) + stacking(i′ · j′) + V (i′, j′)
+ size(l) − size(l − 2)
+ stacking(i · j) − stacking(i + 1 · j − 1)

for all i′ < j′ with i′ > i+ 1, j′ < j − 1 and i′ − (i+ 1)+ (j − 1)− j′ − 2 = l− 2.
The last two lines of the last equation are independent of i′ and j′, and can
thus be moved out of the minimum. The minimum of the first two lines over i′

and j′ satisfying the above constraints is exactly VBI ′(i + 1, j − 1, l − 2), thus
proving the lemma. 2
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Lemma 9.1 yields the basic recursion needed to compute each entry of VBI ′

in constant time4. It is easily observed that VBI ′ contains O(n3) entries and
that VBI can be calculated from VBI ′ as

VBI(i, j) = min
l
{VBI ′(i, j, l)}, (9.14)

each of the O(n2) entries being computable in time O(n). Thus VBI can be
computed in time O(n3) including the time used to compute VBI ′. Unfortu-
nately the table VBI ′ requires space O(n3), thus rendering this method some-
what impractical. However, it can be observed that we only need VBI ′(i, j, l)
at most twice, namely when

• determining whether it is a candidate for VBI(i, j).

• calculating the value of VBI ′(i − 1, j + 1, l + 2).

This is used in Algorithm 9.1 to avoid maintaining the VBI ′ table. Instead we
use E to hold the value5 that should otherwise be stored in one of the entries
of VBI ′. We use this value to check it as a candidate for the relevant entry
of VBI, according to Equation 9.14, in the second minimum of the for-loop in
Algorithm 9.1. After this check we only need the value to calculate the value
corresponding to another entry of VBI ′; this is done in the first minimum in
the next iteration of the for-loop. Now the value can safely be discarded as it
is no longer needed. It is straightforward to verify that the value that should
otherwise have been stored in VBI ′(i′, j′, l) is handled when Algorithm 9.1 is
invoked with i = i′ + b l

2c and j = j′ − d l
2e. The correctness of the value

maintained in E can easily be proved by induction, using Lemma 9.1.

9.3.2 The Asymmetry Function Assumption

The assumption of Equation 9.9 might seem somewhat unrealistic as, for one
thing, we treat bulges just as if they were normal internal loops. If Equation 9.9
only holds for min(k, l) ≥ c− 1 we can however modify the algorithm to handle
this situation, a modification that does lead to an increase in time complexity
by a factor of c, for a total time complexity of O(cn3).

This is done simply by examining all the O(cn3) loops with a stem of un-
paired bases shorter than c separately, and then applying the technique of
extending loops while retaining lopsidedness to the rest of the loops, starting
the iteration at l = c and adding or subtracting c − 1 from the indices of the
interior base pairs considered, including where they partake in the parameters
of the asymmetry function. Thus bulges can be treated specially while only
doubling the time complexity.

4This is of course assuming that entries of V are ready at hand when we need them. The
cost of computing the entries of V can however be charged to V , and thus we don’t have to
consider it here.

5To avoid having to keep adding and subtracting the size and external stacking terms in
Algorithm 9.1 we defer adding these terms until the value is considered as a candidate for one
of the VBI entries.
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Papanicolaou et. al. [156] propose an asymmetry penalty function on the
form

asymmetry(k, l) = min{K,Nk,lf(Mk,l)}, (9.15)

usually called Ninio type asymmetry penalty functions, with Nk,l = |k − l|
and Mk,l = min{k, l, c}. The constants K and c and the function f are pa-
rameters of the penalty function. We observe that Nk+1,l+1 = Nk,l and that
Mk+1,l+1 = Mk,l if min{k, l} ≥ c. For min{k, l} ≥ c it thus follows that
asymmetry(k + 1, l + 1) = asymmetry(k, l), and thus asymmetry functions on
this form adheres to the above relaxed assumption, allowing us to solve the RNA
secondary structure prediction problem using Ninio type asymmetry penalty
functions in time O(cn3). In [156] an asymmetry function with c = 5 was pro-
posed. A modification of the parameters based on thermodynamic studies was
proposed in [162]. With these parameters c = 1 thus allowing us to treat only
bulges specially6.

9.3.3 Computing the Partition Function

In [136] it is described how to compute the full equilibrium partition functions
and thus the probabilities of all base pairs. The method used closely mimics
the free energy calculation described above, and thus it should be of no surprise
that the method presented in this paper also applies to the calculation of the
partition functions. In this section we will briefly sketch how to compute the
internal loops’ contribution to the partition functions. The reader is referred
to [136] for the full details on how to calculate the partition functions.

In [136] Qi,j denotes the partition function on the segment from base i
through base j, while Qb

i,j denotes the restricted partition function for the
same sequence segment with the added constraint that bases i and j form a
base pair7. We will specify how to calculate the contributions from structures
with an internal loop closed by i · j.

From [136, equations 4 and 7] it is seen that the contributions from these
structures – if we consider a stacked pair to be an internal loop of size 0 – are∑

i<h<l<j

e−eL(i,j,h,l)/kTQb
h,l , (9.16)

where [136, equation 7] uses F2(i, j, h, l) to gather the energies of all structures
with an internal loop with base pairs i · j and h · l, thus reducing the terms of
the sum to e−F2(i,j,h,l)/kT .

Similar to the approach in Section 9.3.1 we define Qil
i,j,l to be the partition

function for all structures with an internal loop of size l closed by i · j, thus
corresponding to VBI ′(i, j, l) in the energy calculations in Section 9.3.1. Now
it can be proved that

6Sequence dependent destabilizing energies are available for internal loops of size three.
These – and similar specific energy functions for small loops – can be handled as a special
case without affecting the general method for calculating internal loop stability though.

7Thus Qb
i,j corresponds to V (i, j) in energy calculations.
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Algorithm 9.2 Evaluation of classes of internal loops with size 2l + a and
exterior base pair i − l · j + l + a.

/* Make sure to handle both even sized and odd sized loops. */
for a = 0 to 1 do

/* Q maintains the partition function contribution for the current class of
internal loops except for size and external stacking factors. */
Q = 0
/* Iterate through the exterior base pairs. For even sized loops we skip
l = 1 as this yields a stacked base pair. */
for l = 2 − a to min{i − 1, |s| − j − a} do

/* Add contributions from the two new interior base pairs, i.e. the inte-
rior base pairs next to the currently considered exterior base pair. */
Q = Q + Qb

i−l+1,j−l+1e
−(asymmetry(0,2l+a−2)+stacking(i−l+1·j−l+1))/kT

+ Qb
i+a+l−1,j+a+l−1e

−(asymmetry(2l+a−2,0)+stacking(i+a+l−1·j+a+l−1))/kT

/* Update Qb with contributions from the currently considered class of
internal loops. */
Qb

i−l,j+a+l = Qb
i−l,j+a+l + Qe−(size(2l+a−2)+stacking(i−l·j+a+l))/kT

end for
end for

Qil
i,j,l = Qil

i+1,j−1,l−2e
(size(l−2)−size(l)+stacking(i+1·j−1)−stacking(i·j))/kT

+ Qb
i+1,j−l−1e

−eL(i,j,i+1,j−l−1)/kT + Qb
i+l+1,j−1e

−eL(i,j,i+l+1,j−1)/kT (9.17)

by similar arguments as in the proof of Lemma 9.1. There is a slight problem if
stacking(i·j) = ∞ or stacking(i+1·j−1) = ∞ – that is, if bases i and j or bases
i + 1 and j − 1 does not form a base pair – but in the proof of Equation 9.17
this can be handled by assuming that all stacking energies are finite. In the
algorithm we handle it by postponing the multiplication with the exponential
of the stacking energies until adding the contribution of Qil

i,j,l to Qb
i,j. We can

now rewrite Equation 9.16 as

j−i−2∑
l=0

Qil
i,j,l , (9.18)

and based on Equations 9.17 and 9.18 we can now proceed to present Algo-
rithm 9.2 to handle internal loop contributions to the partition function; the
observant reader will notice the close similarity between Algorithms 9.1 and 9.2.
Again it is an easy observation that the time complexity is O(n3), and the cor-
rectness of Algorithm 9.2 can be proven by arguments similar to the proof of
the correctness of Algorithm 9.1.
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9.4 Implementation

The method described in this paper has been implemented in ZUKER8, a C
program to find the optimal structure of an RNA sequence based on energy
rules. To be able to compare the performance of this method to previously
used methods, compiler directives determines whether the compiled code will
use complete enumeration of all internal loops or the method described here,
and whether only to consider loops smaller than a specified size. By this we
hope to have eliminated most of the noise due to differences in implementations
so as to get a comparison of the underlying methods.

We decided to test our method against the complete enumeration method,
both when using a cutoff size of 30 for internal loops (a commonly used cutoff
size) and when allowing loops of any size. All four methods were tested with
random sequences of length 500 and 1000, respectively, and the results are sum-
marized in Table 9.1. As expected a huge increase in performance is obtained
when allowing internal loops of any size, but even when limiting internal loops
to size at most 30, our method obtains a speedup of 30 – 40 % compared to the
complete enumeration method.

Sequence length 500 1000
Complete enumeration, unlimited loop size 2,119 s 35,988 s
Our method, unlimited loop size 127 s 1,123 s
Complete enumeration, loop size ≤ 30 48 s 264 s
Our method, loop size ≤ 30 30 s 182 s

Table 9.1: Comparison of different methods to evaluate internal loops. The
running times are as reported by the Unix time command on a Silicon Graphics
Indigo 2.

The current implementation encompasses the method for calculating the
optimal substructure on the parts of the sequence excluding the substring from
i through j, thus allowing the prediction of suboptimal structures as described
in [211] and calculation of base pair probabilities based on partition functions
as described in [136]. We are currently working on adding coaxial stacking
modifications to the multibranched loop evaluations, and on extending the pro-
gram to take other parameters, e.g. mutual information or base pair confidences
obtained from alignments, into account.

9.5 Experiments

To make the problem of determining the optimal secondary structure for an
RNA sequence more tractable it has hitherto been common practice to limit
the size of internal loops. The mfold server has a built-in limit of 30 and in [87]
a limit of 30 is also hinted at. With the ability to make a rigorous search for the
optimal structure, we decided to see whether this limit has been reasonable.

8ZUKER – Unlimited Ken Energy-based RNA-folding, the name reflecting that no limit is
imposed on how far to look for the closing base pair of an internal loop.
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(a) Maximum loop size 30; Energy:
−29.6 kcal/mol

(b) No maximum loop size; Energy:
−42.9 kcal/mol

Figure 9.4: Foldings of the sequence GGGGGGGGGGAAAAAAAAAAAAAAAAAAAA

GGGGGGGGGGAAAAACCCCCCCCCCAAAAAAAAAAAAAAACCCCCCCCCC

9.5.1 A Constructed “Mean” Sequence

The easiest way to find a loop of size larger than 30 is of course to construct
it yourself. We constructed a sequence of length 80 consisting only of C’s, G’s
and A’s (but no U’s), designed to fold into two stems of 10 base pairing C’s
and G’s separated by an internal loop of 35 unpaired A’s, and with a hairpin
loop consisting of 5 A’s. The result of folding this sequence at 37 ◦C with and
without a size limit of 30, respectively, is shown in Figure 9.4

One can observe that the prediction with a cutoff size of 30 does in fact pair
most of the C’s with G’s – but instead of having the A’s in one big internal
loop they are folded out as two bulges. A further observation is that there
can indeed be a major increase in stability by choosing one large internal loop
instead of two smaller bulges.

Though this example may be cute, the interesting question of course is
whether RNA sequences for which the optimal structure contains a large inter-
nal loop occur naturally. The reason that a cutoff size of 30 has been deemed
reasonable is of course that no internal loops even close to this size are observed
in a standard structure prediction at 37 ◦C. But when the temperature is in-
creased, base pairs become less stable which may cause short stems of stacking
base pairs to break up. We thus decided to look at a couple of sequences for
which structure prediction at higher temperatures would be interesting.
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Figure 9.5: Dot-plot of the prediction of the Qβ structure at 65 ◦C. The absence
of long range base pairings (dots far away from the diagonal) is apparent.

9.5.2 Qβ

Jacobson [98] reported on some experiments on determining structural features
in Qβ denatured to various extents. It is believed that denaturing effects relates
to temperature effects, and we thus chose to fold this sequence at nine different
temperatures in the range from 45 ◦C to 100 ◦C to see whether we would find
any of the structural features reported by Jacobson.

None of these predicted foldings showed any signs of the features Jacobson
reported – at higher temperatures the structure simply came apart as small
structural fragments, usually covering less than 100 nucleotides. Furthermore
we did not observe any internal loops larger than size 25. An example prediction
is shown in Figure 9.5.

9.5.3 Thermococcus Celer

Thermococcus celer is an organism that lives in solfataric marine water holes of
Vulcano, Italy, at temperatures around 90 ◦C; its optimal growth temperature
is reported to be around 88 ◦C [209]. Furthermore, the structure of the 23S
subunit exhibits an internal loop of size 33 closed by base pairs 1139 · 1268 and
1155 · 1249, cf. [77, 76].

Folding this sequence at 88 ◦C we did (almost) get the inner stem of this
internal loop but the outer stem came apart as two single strands (cf. Fig-
ure 9.6(b)). When lowering the temperature to 75 ◦C we did get both stems,
but the internal loop was split into two loops of size 2 and 27, respectively, by
a short stem consisting of the base pairs 1141 · 1266 and 1142 · 1265 (cf. Fig-
ure 9.6(c)).

We then tried to search the range of temperatures between 75 ◦C and 88 ◦C,
and at 82 ◦C we did in fact correctly predict the internal loop of size 33 (cf. Fig-
ure 9.6(d)). At this temperature we on the other hand missed the structure
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(a) Fragment of the structure be-
tween bases 1112 and 1288.
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(b) Prediction of the same frag-
ment at 88 ◦C.
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ment at 75 ◦C.
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(d) Prediction of the same frag-
ment at 82 ◦C.

Figure 9.6: Known and Predicted structures for thermococcus celer.

inside the inner stem, a structure that is quite well predicted at 75 ◦C; no tem-
perature thus seemed decisively best for predicting this structural fragment.
Generally, as with the Qβ predictions, these predictions missed long-range base
pairings and predicted structures consisting of fragments covering less than 300
bases.

It should however be mentioned that a prediction at 82 ◦C with a cutoff
size of 30 completely misses the outer stem and thus makes a prediction of this
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fragment identical to the prediction at 88 ◦C. Thus we get a decisively better
prediction at this temperature when examining internal loops of all sizes than
when using a cutoff size of 30.

9.6 Conclusion

It is well known that heuristics may speed up the evaluation of internal loops
in practice. One way to do this, is for all subsequences to keep track of the
most stable structure of any of its subsequences. This is then used to cut off
the evaluation of large loops closed by a specific base pair, when it is evident
that they can not be more stable than the most stable structure closed by that
base pair found so far.

As the method described in Section 9.3 actually evaluates the internal loops
closed by a specific base pair in order of decreasing size, the above heuristic can
not be combined with our method. We have instead implemented a heuristic
based on determining upper bounds for the free energy of the optimal multi-
branched loop closed by some base pair. This heuristic unfortunately does not
seem to have a positive effect for sequences shorter than 1000 nucleotides, as,
for all but very long sequences, the time spent determining when to stop further
evaluation exceeds the time that would have been spent evaluating the rest of
the loops.

It would of course be more interesting to obtain further improvements on
the worst-case behavior of the algorithm, possibly by applying some advanced
search techniques similar to those described in [51]. This is not a straightforward
task though, as our method has shifted the focus from the exterior (closing)
base pair to the interior base pair of an internal loop. The same interior base
pair might be optimal for several choices of exterior base pairs. Furthermore,
the exterior base pair that yields the most stable substructure with a specific
interior base pair might not even be one of them. Thus it is of no use just to
search for the exterior base pair yielding the most stable substructure.

Our studies of structure predictions at high temperatures did not show an
abundance of internal loops larger than the hitherto used cutoff size. There is
thus no reason to suspect that predictions using this cutoff size are generally
erroneous. We were however able to predict one internal loop that exceeds this
size limit. Furthermore we predicted a number of internal loops with size larger
than 20. This indicates that the cutoff size of 30 is probably a little bit to small
for safe predictions at high temperatures. Especially if also suboptimal foldings,
cf. [211], are sought for, or if calculating the partition functions as in [136], the
cutoff size – if used at all – should be set somewhat higher.

Another observation is that the energy parameters estimated for higher tem-
peratures by extrapolation of parameters experimentally determined at lower
temperatures do not seem to allow for a prediction of the long range base pair-
ings. One reason for this might be that structures at higher temperatures tend
to have more unpaired bases in multibranched loops. The effect of the number
of unpaired bases on the stability of multibranched loops should theoretically be
logarithmic but are modeled by a linear function for reasons of computational
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efficiency. This might be acceptable for multibranched loops with only a few
unpaired bases but becomes prohibitive as the number of unpaired bases grows.

Finally it should be mentioned that current methods for energy based RNA
secondary structure prediction only consider structures that do not contain
pseudo knots. Probably the open question of RNA secondary structure predic-
tion is to put forth a model including pseudo knots that allows fair predictions
within reasonable resources. Currently known methods suffer from either being
too time- and space-consuming (time O(n6) and space O(n4) for the method
presented in [167] and time O(n5) and space O(n3) for a restricted class of
pseudo knots presented in [121]) or shifting the focus from stability of loops
back to stability of pairs, cf. [178].
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Chapter 10

Protein Folding in the 2D HP Model

The paper Protein Folding in the 2D HP Model presented in this chapter has
been published as a technical report [123] and a conference paper [124].
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The conference paper and the technical report present work that to a large
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Protein Folding in the 2D HP Model

Rune B. Lyngsø∗ Christian N. S. Pedersen†

Abstract

We study folding algorithms in the two dimensional Hydrophobic-
Hydrophilic model for protein structure formation. We consider three
generalizations of the best known approximation algorithm. We show that
two of the generalizations do not improve the worst case approximation
ratio. The third generalization seems to be better. The analysis leads to
an interesting combinatorial problem.

10.1 Introduction

Proteins are polymer chains of amino acids. An interesting feature of nature
is that even though there are an infinite amount of amino acids, only twenty
different amino acids are used in the formation of proteins. The amino acid
sequence of a protein can thus be abstracted as a string over an alphabet of
size twenty. In nature proteins are of course not one dimensional strings but
fold into three dimensional structures. The three dimensional structure of a
protein is not static, but vibrates around an equilibrium known as the native
state. Famous experiments by Anfinsen et al. in [6] show that a protein in its
natural environment folds into, i.e. vibrates around, a unique three dimensional
structure, the native conformation, independent of the starting conformation.
The native conformation of a protein plays an essential role in the functionality
of the protein, and it is widely believed that the native conformation of a protein
is determined by the amino acid sequence of the protein. As experimental
determination of the native conformation is difficult and time consuming, much
work has been done to predict the native conformation computationally.

To predict the structure of a protein computationally it is necessary to model
protein structure formation in the real system, i.e. in the proteins natural en-
vironment. A model is relevant if it reflects some of the properties of protein
structure formation in the real system. One obvious property could be visual
equivalence between the native conformations in the model and the native con-
formations in the real system. Another more subtle, but useful property, could
be behavioral equivalence between protein structure formation in the model and
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†Basic Research In Computer Science (BRICS), Center of the Danish National Re-
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protein structure formation in the real system. As the laws of thermodynamics
state that the native state of a protein is the state of least free energy, the real
system is often modeled by a free energy model that specifies an energy function
that assigns a free energy to every conformation in a set of legal conformations.
The native conformation of a protein is then predicted to be a conformation
that minimizes the energy function over the set of legal conformations.

The hydrophobic-hydrophilic model proposed by Dill in [44] is a free energy
model that models the belief that a major contribution to the free energy of
the native conformation of a protein is due to interactions between hydrophobic
amino acids that tend to form a core in the spatial structure shielded from the
surrounding solvent by hydrophilic amino acids. In the model the amino acid
sequence of a protein is abstracted as a binary sequence of hydrophobic and
hydrophilic amino acids. Even though some amino acids cannot be classified
clearly as being either hydrophobic or hydrophilic, the model disregards this fact
to achieve simplicity. The model is usually referred to as the HP model where H
stands for hydrophobic and P stands for polar. The HP model is a lattice model,
so called because the set of legal conformations is embeddings of the abstracted
amino acid sequence in a lattice, in this case the two or three dimensional square
lattice. In legal conformations amino acids that are adjacent in the sequence
occupy adjacent grid points in the lattice, and no grid point in the lattice is
occupied by more than one amino acid. Depending on the dimension of the
square lattice we refer to the model as the 2D or 3D HP model. The free
energy of a conformation depends on the number of non-adjacent hydrophobic
amino acids that occupy adjacent grid points in the lattice. Figure 10.1 shows
a conformation in the 2D HP model where 9 non-adjacent hydrophobic amino
acids occupy adjacent grid points.

Despite the simplicity of the HP model, the folding process in the model
have behavioral similarities with the folding process in the real system, and
for most properties the 2D HP model has a behavior similar to the 3D HP
model [45]. The HP model has been used by chemists to evaluate new hypoth-
esis of protein structure formation [170]. The success of the HP model partly
stems from the fact that the discrete set of legal conformations makes it possible
to enumerate and consider all conformations of small proteins. Many attempts
have been made to predict the native conformation, i.e. the conformation of
lowest free energy, of a protein in the HP model [191, 207]. Most interestingly,
the HP model was the first relevant model for protein folding for which approx-
imation algorithms for the structure prediction problem, i.e. algorithms that
find a conformation with free energy guaranteed close to the free energy of the
native conformation, were formulated [80]. For a while it was believed that the
structure prediction problem in the HP model would be solvable in polynomial
time, but recently it was shown NP-complete [26, 40].

In this paper we describe three attempts to improve the best known approxi-
mation algorithm for the structure prediction problem in the 2D HP model [80].
We show that two generalizations of this algorithm, the U-fold algorithm and
S-fold algorithm, do not improve on the best known 1/4 worst case approx-
imation ratio, cf. Theorem 10.1, while the approximation ratio of the third
generalization, the C-fold algorithm, seems to be better. We prove that the
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worst case approximation ratio of the C-fold algorithm is at most 1/3, cf. The-
orem 10.2, and observe that it is closely related to an interesting combinatorial
problem which we examine experimentally. Independently of our work Mauri et
al. in [135] observe experimentally that the approximation ratio of an algorithm
similar to our C-fold algorithm seems to be around 3/8, but they do not develop
any worst case upper bound for the approximation ratio.

The rest of this paper is organized as follows. In Section 10.2 we formally
describe the 2D HP model and bound the free energy of the native conformation
of a protein in the model. In Section 10.3 we describe three attempts to improve
the currently best approximation algorithm for the structure prediction problem
in the 2D HP model. In Section 10.4 we describe and examine experimentally
an interesting problem that is related to the approximation ratio of one of the
approximation algorithms described in Section 10.3.

10.2 The 2D HP Model

In the 2D HP model a protein, i.e. an amino acid sequence, is abstracted as
a string describing the hydrophobicity of each amino acid in the sequence.
Throughout this paper we will use S to denote the abstraction of an amino
acid sequence of length n, that is, S is a string of length n over the alphabet
{0, 1} where S[i], for i = 1, 2, . . . , n, is 1 if the ith amino acid in the sequence
is hydrophobic and 0 if it is hydrophilic. We will use the term “hydrophobic
amino acid” to refer to a 1 at some position in S, and say that the parity of
the 1 is even if its position in S is even, and odd if its position in S is odd.

A folding of a protein in the 2D HP model is an embedding of its ab-
straction S in the 2D square lattice such that adjacent characters in S occupy
adjacent grid points in the lattice, and no grid point in the lattice is occupied
by more than one character. We say that two 1’s in S form a non-local 1-1 bond
if they occupy adjacent grid points in the lattice but are not adjacent in S. Fig-
ure 10.1 shows a folding of the string 111010100101001001 in the 2D HP model
with nine non-local 1-1 bonds. The free energy of a folding of S is the number
of non-local 1-1 bonds in the folding multiplied by some constant ε < 0. The
free energy function models the belief that the driving force of protein structure
formation is interactions between hydrophobic amino acids.

We say that the score of a folding of S is the number of non-local 1-1 bonds
in it, and that the optimal score of a folding of S, OPT(S), is the maximum
score of a folding of S. The simple energy function implies that the native
conformation of a protein in 2D HP model is a folding of its abstraction with
optimal score. The structure prediction problem in the 2D HP model is thus to
find a folding of S in the 2D square lattice with optimal score. This problem has
recently been shown to be NP-complete [26, 40], which makes it interesting to
look for approximation algorithms that find a folding of S with score guaranteed
to be some fraction of the optimal score of a folding of S. To issue such a
guarantee for a folding algorithm, we need an upper bound on OPT(S). To
derive an upper bound on OPT(S) we make two observations.

The first observation is that a hydrophobic amino acid can form at most two
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Figure 10.1: A conformation in the 2D HP model with 9 non-local 1-1 bonds.

non-local 1-1 bonds in the 2D square lattice except if it is the first or the last
amino acid in the sequence, in which case it can form at most three non-local
1-1 bonds. The second observation is that two hydrophobic amino acids, S[i]
and S[j], can occupy adjacent grid points in the 2D square lattice, i.e. form a
non-local 1-1 bond, if and only if i is even j is odd or vice versa. If we define
EVEN(S) as the set of even positions in S containing a hydrophobic amino
acid, i.e. {i | i is even and S[i] = 1}, and ODD(S) as the set of odd positions
in S containing a hydrophobic amino acid, i.e. {i | i is odd and S[i] = 1}, then
the two observations gives

OPT(S) ≤ 2 · min{|EVEN(S)|, |ODD(S)|} + 2. (10.1)

This upper bound was first derived by Hart and Istrail in [80], who used it in
the performance analysis of a simple folding algorithm that guarantees a folding
with score 1/4 of the optimal score. This algorithm and various attempts to
improve it is the topic of the next section.

10.3 The Folding Algorithms

A simple strategy for folding a string in the 2D square lattice is to find a
suitable folding point that divides the string into two parts, a prefix and a
suffix, that we fold against each other. This creates a “U” structure in which
non-local 1-1 bonds can be formed between 1’s on opposite stems of the “U”.
Loops protruding from the two stems of the “U” can be used to increase the
number of non-local 1-1 bonds between the stems by contracting parts of the
stems. We say that a folding created this way is a U-fold. Figure 10.2 shows a
schematic U-fold and the left part of Figure 10.3 shows a U-fold of the string
1001001010010101000011 with four non-local 1-1 bonds between the stems and
five non-local 1-1 bonds in total.

Hart and Istrail in [80] present a folding algorithm that computes a U-
fold of S with a guaranteed number of non-local 1-1 bonds between the stems.
By a simple argument they show that the folding point can always be chosen
such that at least half of the 1’s with position in EVEN(S) are on one stem
and at least half of the 1’s with position in ODD(S) are on the other stem.
Since there is an odd number of characters between any two characters in S
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Figure 10.2: A schematic U-fold.

with positions in either EVEN(S) or ODD(S), loops can be used to contract
each stem such that every second character on the contracted stem is a 1 with
even or odd parity depending on the stem. As each contracted stem contains
at least min{|EVEN(S)|, |ODD(S)|}/2 1’s with equal parity placed in every
second position along stem, the number of non-local 1-1 bonds between the
stems of the created U-fold is at least min{|EVEN(S)|, |ODD(S)|}/2, so except
for a constant term the created U-fold scores at least 1/4 of the upper bound
on OPT(S) given by (10.1). We say that the asymptotic approximation ratio of
the algorithm is 1/4. By being a little bit more careful in the choice of folding
point Hart and Istrail are able to formulate the folding algorithm such that the
create a U-fold, for every string S, scores at least 1/4 of the upper bound on
OPT(S). We say that the absolute approximation ratio of the algorithm is 1/4.
The folding algorithm runs in time O(n) where n is the length of S.

Our first attempt to improve the approximation ratio of the folding algo-
rithm by Hart and Istrail, is to count all non-local 1-1 bonds between the two
stems of the U-fold, and not only those where the 1’s on each stem have equal
parity. More precisely, we want to compute a U-fold of S with the maximum
number of non-local 1-1 bonds between the stems, i.e. a U-fold of S with op-
timal score between the stems. Computing such a U-fold is not difficult. As
illustrated in Figure 10.3, the trick is to observe that a U-fold of S, with folding
point k, that maximizes the number of non-local 1-1 bonds between the stems,
corresponds to the an alignment of the prefix S[1 .. k−1] with the reversed suffix
S[k + 2 .. n]R that maximizes the number of matches between 1’s, and allows
gaps to be folded as loops.

Such an alignment corresponds to an optimal similarity alignment between
S[1 .. k − 1] and S[k + 2 .. n]R, where a match between two 1’s score 1, and all
other matches and gaps score 0. To allow gaps to be folded out as loops, all
gaps must have even length and between any two gaps in the same string there
must be at least two matched characters. These additional rules on gaps can
be enforced without increasing the running time of the alignment algorithm,
so a U-fold of S with folding point k and optimal score between the stems can
be computed in the time required to compute an optimal similarity alignment,
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Figure 10.3: Left: Alignment of the prefix 1001001010 of the string
1001001010010101000011 with the rest of the string and the corresponding U-
fold. Right: An example of an alignment with illegal gaps. The transformation
to a folding implies that two loops protrude from the same element.

i.e. in time O(n2) where n is the length of S. By considering every folding
point this immediately gives an algorithm, the U-fold algorithm, that computes
a U-fold with optimal score between the stems in time O(n3). By observing
that the best folding point k corresponds to an entry (k − 1, n − k − 1) with
maximum value in the alignment matrix resulting from an alignment of S and
SR with the above parameters, i.e. matches between 1’s score 1, everything else
score 0, and gaps have to be expressible as loops, we can reduce the running
time of the U-fold algorithm to O(n2).

As the foldings considered by the folding algorithm by Hart and Istrail are
a subset of the foldings considered by our U-fold algorithm, the approximation
ratio of the U-fold algorithm is at least 1/4. Unfortunately it is no better in the
worst case. As illustrated in Figure 10.4, this follows because any string of the
form (10)i0(10)i00(10)i(01)i, i > 0, when folded as a U-fold with optimal score
between the stems only scores 1/4 of the score of an optimal folding. The 1/4
approximation ratio of our U-fold algorithm and the folding algorithm by Hart
and Istrail is thus tight. An obvious way to try to improve the approximation
ratio of the U-fold algorithm would be to also count and maximize the number
of non-local 1-1 bonds occurring between 1’s on the loops. Unfortunately, as
above, a set of strings can be constructed such that when folded this way they
only score 1/4 of the score of an optimal fold.

Another way to try to improve the approximation ratio of the U-fold algo-
rithm is to consider a larger set of foldings than U-folds. Figure 10.5 illustrates
two ways to do this. The first way is to allow multiple bends of the string and
loops on the outer stems. This gives rise to what we call S-folds. The second
way is to allow two bends of the string that fold the two ends of the string
towards each other and loops on the two stems. This gives rise to what we call
C-folds. Both the S-fold and the C-fold with optimal score between the stems
can be computed in time O(n3) using dynamic programming. For the C-fold it
is easy to see how. A C-fold of S is a U-fold of a prefix, S[1 .. k], and a U-fold of
a suffix, S[k + 1 .. n], glued together to form a C-fold. As there are less than n



10.3. The Folding Algorithms 187

An optimal folding A U-fold

Figure 10.4: A string of the form (10)i0(10)i00(10)i00(10)i(01)i. For these
strings the U-fold with optimal score between the stems is only 1/4 of the score
of the optimal folding.

(a) S-fold (b) C-fold

Figure 10.5: The S- and C-fold are two ways to generalize the U-fold.

ways to divide the string, the best C-fold can be found by computing and gluing
together 2n U-folds. As each of these U-folds can be computed in time O(n2),
the best C-fold can be computed in time O(n3). The computation of the best
S-fold in time O(n3) is somewhat more technical. We choose to omit the details
of the S-fold algorithm as it, as explained below, unfortunately turns out that
its approximation ratio is no better than 1/4.

As S- and C-folds are supersets of U-folds, the approximation ratio of both
the S- and C-fold algorithm is at least 1/4. Unfortunately this approxima-
tion ratio is tight for the S-fold algorithm because any string of the form
(10)i(02i+11)4i(10)i, i > 0, when folded as a S-fold with optimal score be-
tween the stems only scores 1/4 of the score of an optimal folding. Similar to
U-folds, we can show that counting and maximizing the number of non-local
1-1 bonds occurring between 1’s on the loops of the S-fold does not improve
the worst case approximation ratio of the folding algorithm. In contrast to U-
and S-folds, we have not been able to find a set of strings that show that the
1/4 approximation ratio of the C-fold algorithm is tight. In fact experiments
indicates, as explained in the next section, that the approximation ratio of the
C-fold algorithm is somewhat better than 1/4. This is also observed in [135].

In our analysis of the approximation ratio of the C-fold algorithm we came
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Figure 10.6: An example of a matching in a balanced string

up with a relation to an interesting matching problem. This is the topic of the
next section. We end this section by summarizing the presented results.

Theorem 10.1 The score of the best U- and S-fold of string S is at least, and
at most in the worst case, 1/4 of the score of an optimal fold of S. The score of
the best C-fold of string S is at least 1/4 of the score of the optimal fold of S.

10.4 The Circle Problem

Let P ∈ {+,−}∗ be a string that contains equally many +’s and −’s. We say
that P is a balanced string of length n = |P |. Consider P wrapped around the
perimeter of a circle. A matching in P is obtained by dividing the circle by
a line and connecting +’s with −’s using non-crossing lines that all intersect
the dividing line. The size of the matching is the number of non-crossing lines
connecting +’s with −’s that intersect the dividing line. Figure 10.6 shows an
example of a matching of size 6. A maximum matching in P is a matching in P
of maximum size. We use M(P ) to denote the size of a maximum matching in P
and we use M(n) to denote the minimum of M(P ) over all balanced strings P
of length n, that is

M(n) = min
P :|P |=n

M(P ).

The matching problem in balanced strings, or the circle problem as we
call it, is closely related to the approximation ratio of our C-fold algorithm.
To see the relation, we introduce the parity labelling of a string. The parity
labelling of a string S ∈ {0, 1}∗ is a string PS ∈ {+,−}∗ in which the ith
character indicates the parity of the ith 1 in S, e.g. the parity labelling of
100101110101 is −++−+++. A balanced parity labelling of S is a maximum
length subsequence of PS that contains equally many +’s and −’s. From the
definition of EVEN(S) and ODD(S) follows that PS contains |EVEN(S)| +’s
and |ODD(S)| −’s, so a balanced parity labelling of S is obtained by removing∣∣|EVEN(S)| − |ODD(S)|∣∣ +’s or −’s from PS . The length of a balance parity
labelling of S is 2 ·min{|EVEN(S)|, |ODD(S)|}, but the labelling is not unique
as there can be several ways to choose the +’s or −’s to remove from PS , e.g.
the parity labelling − + + − + + + gives − + +−, − + −+ and − − ++ as
possible balanced parity labellings.
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Figure 10.7: A folding of a string of the form (01)i000(01)i(010)2i(10)i000(10)i.
Only the two 1’s indicated with arrows have less than the optimal two
non-local bonds. The total number of non-local bonds in this folding is
2 · min{|EVEN(S)|, |ODD(S)|} − 1 = 4i − 1 and thus, by the balanced par-
ity labelling argument, the optimal score between the stems in a C-fold of this
string is approximately 1/3 of the optimal score.

10.4.1 Upper Bounding the C-fold Approximation Ratio

To get the relation to C-folds, we observe that a C-fold of S with k non-local
1-1 bonds between the stems corresponds to a matching of size k in a bal-
anced parity labelling of S. This implies that an upper bound on M(n) is
also an upper bound on the score between the stems of C-folds of strings with
balanced parity labellings of length n. In other words, if M(n) ≤ αn then
the score between the stems of a C-fold of S is upper bounded by α multi-
plied by the length of a balanced parity labelling of S, i.e. upper bounded by
α·2·min{|EVEN(S)|, |ODD(S)|}. Since the length of a balanced parity labelling
of S is equal to the upper bound on OPT(S) given by (10.1), M(n) ≤ αn im-
plies that the approximation ratio of the C-fold algorithm, with respect to the
upper bound on OPT(S) given by (10.1), is at most α.

It is easy to prove that M(+i −i (+−)i −i +i) = 2i + 1 for any i > 0.
Hence, M(n) ≤ n/3 + 1, so the asymptotic approximation ratio of our C-fold
algorithm is at most 1/3 if analyzed with respect to the upper bound on OPT(S)
given by (10.1). Fortunately, as illustrated in Figure 10.7, for any i > 0 there
exists a string (01)i000(01)i(010)2i(10)i000(10)i with balanced parity labelling
+i −i (+−)i −i +i for which OPT(S) deviates from the upper bound of (10.1)
by at most a constant term. This example proves the following theorem.

Theorem 10.2 The score of the best C-fold of string S is at most in the worst
case, 1/3 of the score of an optimal fold of S.

10.4.2 Lower Bounding the C-fold Approximation Ratio

To use a matching in a balanced parity labelling of S to improve on the 1/4
approximation ratio of the C-fold algorithm, two requirements must be met.
First, we need to be able to transform a matching in a balanced parity labelling
of S into a C-fold of S with a number of non-local bonds proportional by some
factor β to the size of the matching. Secondly, we need to lower bound the
asymptotic ratio of M(n)/n by some constant γ > 1/(4 · β). This would yield
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Figure 10.8: An example where the obvious transformation from a matching of
a balanced parity labelling of a string to a C-fold, trying to place two 1’s with
connected labels opposite each other on the stems of a C-fold, fails.
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Figure 10.9: Possible hydrophobic loops of eight consecutive 1’s. The positions
of the embedding of the last 1 in the stretch is indicated with an arrow.

an asymptotic approximation ratio of the C-fold algorithm of β · γ > 1/4. We
have not yet solved these problems but will in the following report on some
promising approaches and experiments.

The task of transforming a matching in a balanced parity labelling of S
to a C-fold of S is not as straightforward as transforming the non-local bonds
between the stems of a C-fold of S to a matching in one of the balanced parity
labellings of S. Though one can identify the labels with 1’s it will not always
be the case that there is a legal C-fold of S where the non-local bonds between
the stems corresponds to the connections between the corresponding labels in
a matching in a balanced parity labelling of S.

To observe this, consider the two strings S′ = 12i and S′′ = (100)2i−11, both
with balanced parity labellings PS′ = PS′′ = (−+)i. Assume that S contains
S′ and S′′ as substrings and that the labels of these two substrings have been
connected with each other in the matching in a balanced parity labelling of S.
As illustrated in Figure 10.8, we get the same problem as in the right-hand
example in Figure 10.3 with two loops protruding from the same element if
we try to make the obvious transformation of this matching to a C-fold of S.
We observe that the obvious transformation only fails when we have stretches
of consecutive 1’s in one of the stems. One approach to solve the problem of
transforming a matching in the balanced parity matching of S to a C-fold of S
would thus be to ‘eliminate’ or at least ‘shorten’ consecutive stretches of 1’s by
removing 1’s while ensuring compensatory non-local bonds.

This can be done in much the same way as when contracting the stems of
a C-fold by folding out loops. As illustrated in Figure 10.9 we can fold out a
stretch of an even number of consecutive 1’s in a hydrophobic loop such that
only two 1’s remains along the stem. In such a loop where 2i 1’s have been
removed, i of which are at positions in EVEN(S) and i of which are at positions
in ODD(S), there will be i non-local bonds. As long as β · γ ≤ 1/2 we can thus
ensure compensatory non-local bonds. This allows us to remove the 1’s that
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can be folded out in hydrophobic loops from S before finding a matching of a
balanced parity labelling of the modified sequence.

Two problems still remain, though. First, the hydrophobic loops make the
sequence less flexible since we cannot contract the stems immediately after a hy-
drophobic loop simply by folding out another loop. As indicated in Figure 10.9
we can however choose the position of the embedding of the last 1 in the stretch
of 1’s folded out rather freely which allows almost any contracting by an even
number of amino acids immediately after a hydrophobic loop. Only when the
loop removes 2i 1’s with i odd there is a problem with contracting the stem by
i + 1 amino acids as we have to round the corner of the loop from the position
furthest away from the stem where we can embed the last 1. Secondly, we have
not eliminated stretches of consecutive 1’s but merely limited them to being of
length at most three. Though we find this approach promising we have not yet
been able to carry through with the rigorous case-by-case analysis, an analysis
that will require additional tricks besides the hydrophobic loops to handle spe-
cial cases, of the various situations that can arise when trying to transform a
matching of a balanced parity labelling of S to a C-fold of S.

To lower bound the asymptotic ratio of M(n)/n it is easy to observe that
M(n) ≥ n/4. Unless we, unrealistically, hope to transform a matching in the
balanced parity labelling of S into a C-fold of S with more non-local bonds
than connections in the matching this lower bound does not say anything we
do not already known, namely that the approximation of the C-fold algorithm
is at least 1/4. Narrowing the gap between the trivial lower bound M(n) ≥ n/4
and the upper bound M(n) ≤ n/3 + 1 presented above has turned out to be a
very difficult problem.

To get an impression of whether or not the trivial lower bound is tight, we
did two experiments. First, we computed the value of M(n) for all n ≤ 34.
As illustrated in Figure 10.10, this showed that M(n) ≥ n/3 for all n ≤ 34.
Secondly, we computed M(n) for a large number of randomly selected larger
balanced strings. This random search did not produce a string in which the size
of the maximum matching was less than n/3. Combined these two experiments
lead us to believe that M(n) ≥ n/3.

To help prove a non-trivial lower bound, one might consider the restricted
matching problem where the dividing line must be chosen such that it divides
the circle into two halfs. This restriction does not seem to affect the lower
bound, as rerunning the experiment presented in Figure 10.10 gives the same
results. It might also be helpful to consider other formulations of the problem.
We observe that a dividing line in the circular representation of P corresponds
to a partition XYZ of P , where the one side of the divided circle is Y and the
other side is ZX. The maximum size of a matching in P given a partition XY Z
is the length of the longest common subsequence of Y and ZX

R, so

M(P ) = max
XYZ : P=XYZ

|LCS(Y,ZX
R)|.

In this terminology the above restriction of the problem, i.e. that the circle
should be divided into two halfs, corresponds to only maximizing over partitions
XYZ of P where |Y | = |ZX|. Another formulation of the problem follows from
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Figure 10.10: The minimum size of the maximum matching in balanced strings
with length up to 34.

the observation that part of LCS(Y,ZX
R) is a subsequence of a prefix Y and

X
R and the rest is a subsequence of the rest of Y and Z

R. We can thus split Y
according to this and reformulate the calculation of M(P ) as

M(P ) = max
X1,X2

{|X1| + |X2| | X1X1
R
X2X2

R is a subsequence of P}.

This lends an immediate generalization of the problem as we can define

Mk(P ) = max
X1,...,Xk

{
k∑

i=1

|Xi| | X1X1
R

. . . XkXk
R is a subsequence of P},

where M(P ) = M2(P ) and M1(P ) is the corresponding problem for the U-fold
(equivalent to fixing one end-point of the dividing line in the circle formulation
of the problem). One can observe that Mk(n) < n/2 for any k because the
string P = + + + − − + −− gives that Mk(P ) = M1(P ) = 3, but apart from
this we have not been able to come up with any non-trivial bounds for Mk(n).

10.5 Conclusion

We have presented three generalizations of the best known approximation al-
gorithm for structure prediction in the 2D HP model. We have shown that
two of these generalization do not improve the worst case approximation ratio,
while the third generalization might be better. The future work is clear. First,
prove that a matching in a balanced string can be transformed to a C-fold
with score equal to the size of the matching. Secondly, prove or disprove that
M(n) ≥ αn for some α > 1/4. Combined this would give whether or not our
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C-fold algorithm improves the best known 1/4 approximation ratio for struc-
ture prediction in the 2D HP model. The experiments described in this paper
make us conjecture that the described C-fold algorithm where non-local bonds
in the loops are considered has an approximation ratio of 1/3.
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