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Preface

To our wives, Masha and Marian

Interest to the so-called completely integrable systems with infinite num-
ber of degrees of freedom aroused immediately after publication of the fa-
mous series of papers by Gardner, Greene, Kruskal, Miura, and Zabusky
[75, 77, 96, 18, 66, 19] (see also [76]) on striking properties of the
Korteweg—de Vries (KdV) equation. It soon became clear that systems of
such a kind possess a number of characteristic properties, such as infinite
series of symmetries and/or conservation laws, inverse scattering problem
formulation, L — A pair representation, existence of prolongation structures,
etc. And though no satisfactory definition of complete integrability was yet
invented, a need of testing a particular system for these properties appeared.

Probably, one of the most efficient tests of this kind was first proposed
by Lenard [19] who constructed a recursion operator for symmetries of the
KdV equation. It was a strange operator, in a sense: being formally integro-
differential, its action on the first classical symmetry (a-translation) is well-
defined and produces the entire series of higher KdV equations. But applied
to the scaling symmetry, it gave expressions containing terms of the type
J wdz which had no adequate interpretation in the framework of the existing
theories. And it is not surprising that P. Olver wrote “The deduction of the
form of the recursion operator (if it exists) requires a certain amount of in-
spired guesswork...” [80, p. 315]: one can hardly expect efficient algorithms
in the world of rather fuzzy definitions, if any.

In some sense, our book deals with the problem of how to construct
a well-defined concept of a recursion operator and use this definition for
particular computations. As it happened, a final solution can be explicated
in the framework of the following conceptual scheme.

We start with a smooth manifold M (a space of independent variables)
and a smooth locally trivial vector bundle 7: ' — M whose sections play
the role of dependent variables (unknown functions). A partial differential
equation in the bundle 7 is a smooth submanifold & in the space J*(r) of k-
jets of . Any such a submanifold is canonically endowed with a distribution,
the Cartan distribution. Being in general nonintegrable, this distribution
possesses different types of maximal integral manifolds a particular case of
which are (generalized) solutions of £. Thus we can define geometry of the

xi
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equation £ as geometry related to the corresponding Cartan distribution.
Automorphisms of this geometry are classical symmetries of £.

Dealing with geometry of differential equations in the above sense, one
soon finds that a number of natural constructions arising in this context is
in fact a finite part of more general objects existing on differential conse-
quences of the initial equation. This leads to introduction of prolongations
E! of £ and, in the limit, of the infinite prolongation £ as a submanifold
of the manifold J°°(7) of infinite jets. Using algebraic language mainly,
all finite-dimensional constructions are carried over both to J*°(7) and £%°
and, surprisingly at first glance, become there even more simple and elegant.
In particular, the Cartan distribution on £°° becomes completely integrable
(i.e., satisfies the conditions of the Frobenius theorem). Nontrivial symme-
tries of this distribution are called higher symmetries of £.

Moreover, the Cartan distribution on £ is in fact the horizontal dis-
tribution of a certain flat connection C in the bundle £ — M (the Cartan
connection) and the connection form of C contains all vital geometrical in-
formation about the equation £. We call this form the structural element of
€ and it is a form-valued derivation of the smooth function algebra on £°.
A natural thing to ask is what are deformations of the structural element
(or, of the equation structure on £). At least two interesting things are
found when one answers this question.

The first one is that the deformation theory of equation structures is
closely related to a cohomological theory based on the Frolicher—Nijenhuis
bracket construction in the module of form-valued derivations. Namely, if
we denote by D1A*(€) the module of derivations with values in i-forms, the
Frolicher—Nijenhuis bracket acts in the following way:

[, -]™: DIAY(E) x DIAN(E) — DIATI(E).
In particular, for any element Q € D1A'(€) we obtain an operator
dq: D1AY(E) — DIATLH(E)

defined by the formula dq(©) = [Q,0]™ for any © € DAY(E). Since
DiA*(E) = @2, D1AY(€) is a graded Lie algebra with respect to the
Frolicher—Nijenhuis bracket and due to the graded Jacobi identity, one can
see that the equality Oq o dq = 0 is equivalent to [[Q,Q]]fn = 0. The last
equality holds, if € is a connection form of a flat connection. Thus, any
flat connection generates a cohomology theory. In particular, natural co-
homology groups are related to the Cartan connection and we call them
C-cohomology and denote by HA(E).

We restrict ourselves to the vertical subtheory of this cohomological the-
ory. Within this restriction, it can be proved that the group H2(£) coincides
with the Lie algebra of higher symmetries of the equation & while H}(&)
consists of the equivalence classes of infinitesimal deformations of the equa-
tion structure on £. It is also a common fact in cohomological deformation
theory [20] that the group HZ(E) contains obstructions to continuation of
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infinitesimal deformations up to formal ones. For partial differential equa-
tions, triviality of this group is, roughly speaking, the reason for existence
of commuting series of higher symmetries.

The second interesting and even more important thing in our context
is that the contraction operation defined in D;A*(€) is inherited by the
groups H(E). In particular, the group H}(E) is an associative algebra
with respect to this operation while contraction with elements of HQ(&)
is a representation of this algebra. In effect, having a nontrivial element
R € H}(E) and a symmetry sg € HQ(E) we are able to obtain a whole
infinite series s, = R"sg of new higher symmetries. This is just what is
expected of recursion operators!

Unfortunately (or, perhaps, luckily) a straightforward computation of
the first C-cohomology groups for known completely integrable equations
(the KdV equation, for example) leads to trivial results only, which is not
surprising at all. In fact, normally recursion operators for nonlinear inte-
grable systems contain integral (nonlocal) terms which cannot appear when
one works using the language of infinite jets and infinite prolongations only.
The setting can be extended by introduction of new entities — nonlocal
variables. Geometrically, this is being done by means of the concept of a
covering. A covering over £%° is a fiber bundle 7: W — £°° such that the
total space W is endowed with and integrable distribution C and the dif-
ferential 7, isomorphically projects any plane of the distribution C to the
corresponding plane of the Cartan distribution C on £%°. Coordinates along
the fibers of 7 depend on coordinates in £°° in an integro-differential way
and are called nonlocal.

Geometry of coverings is described in the same terms as geometry of
infinite prolongations, and we can introduce the notions of symmetries of
W (called nonlocal symmetries of £), the structural element, C-cohomology,
etc. For a given equation &£, we can choose an appropriate covering and may
be lucky to extend the group Hé(é’ ). For example, for the KAV equation it
suffices to add the nonlocal variable u_; = [wdz, where u is the unknown
function, and to obtain the classical Lenard recursion operator as an ele-
ment of the extended C-cohomology group. The same effect one sees for the
Burgers equation. For other integrable systems such coverings may be (and
usually are) more complicated.

To finish this short review, let us make some comments on how recursion
operators can be efficiently computed. To this end, note that the module
D(E) of vector fields on £ splits into the direct sum D(€) = DV(E)BCD(E),
where DY(E) are w-vertical fields and CD(E) consists of vector fields lying in
the Cartan distribution. This splitting induces the dual one: A(£) = A} (€)@
CA(€). Elements of A}(€) are called horizontal forms while elements of
CAY(E) are called Cartan forms (they vanish on the Cartan distribution).

By consequence, we have the splitting A*(£) = D, 1, CPA(E) ® A1(E),
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where

CPA(E) =CANE) N -~ ACAME), ALE)=AL(E) N ANAL(E).

p times q times

This splitting generates the corresponding splitting in the groups of C-
cohomologies: Hp(E) = @B, =i H24(€) and nontrivial recursion operators

are elements of the group Hcl’O(E).

The graded algebra C*A(E) = @,5(CPA(E) may be considered as the
algebra of functions on a super differential equation related to the initial
equation £ in a functorial way. This equation is called the Cartan (odd)
covering of £. An amazing fact is that the symmetry algebra of this covering
is isomorphic to the direct sum H?O(E) @ HS’O (€). Thus, due to the general
theory, to find an element of Hg’o(é’ ) we have just to take a system of forms
Q = (wh,...,w™), where w/ € CPA(E) and m = dimm, and to solve the
equation fgw = 0, where f¢ is the linearization of £ restricted to £°°. In
particular, for p = 1 we shall obtain recursion operators, and the action
of the corresponding solutions on symmetries of £ is just contraction of a
symmetry with the Cartan vector-form ).

*x Kk K

This scheme is exposed in details below. Though some topics can be
found in other books (see, e.g., [60, 12, 80, 5, 81, 101]; the collections [39]
and [103] also may be recommended), we included them in the text to make
the book self-contained. We also decided to include a lot of applications in
the text to make it interesting not only to those ones who deal with pure
theory.

The material of the book is arranged as follows.

In Chapter 1 we deal with spaces of finite jets and partial differential
equations as their submanifold. The Cartan distribution on J*(r) is intro-
duced and it maximal integral manifolds are described. We describe auto-
morphisms of this distribution (Lie-Bécklund transformations) and derive
defining relations for classical symmetries. As applications, we consider clas-
sical symmetries of the Burgers equation, of the nonlinear diffusion equation
(and obtain the so-called group classification in this case), of the nonlinear
Dirac equation, and of the self-dual Yang—Mills equations. For the latter,
we get monopole and instanton solutions as invariant solutions with respect
to the symmetries obtained.

Chapter 2 is dedicated to higher symmetries and conservation laws. Ba-
sic structures on infinite prolongations are described, including the Cartan
connection and the structural element of a nonlinear equation. In the con-
text of conservation laws, we briefly expose the results of A. Vinogradov
on the C-spectral sequence [102]. We give here a complete description for
higher symmetries of the Burgers equation, the Hilbert—Cartan equation,
and the classical Boussinesq equation.



PREFACE XV

In Chapter 3 we describe the nonlocal theory. The notion of a covering
is introduced, the relation between coverings and conservation laws is dis-
cussed. We reproduce here quite important results by N. Khor’kova [43] on
the reconstruction of nonlocal symmetries by their shadows. Several appli-
cations are considered in this chapter: nonlocal symmetries of the Burgers
and KdV equation, symmetries of the massive Thirring model and symme-
tries of the Federbush model. In the last case, we also discuss Hamiltonian
structures for this model and demonstrate the existence of infinite number
of hierarchies of symmetries. We finish this chapter with an interpretation
of Bécklund transformations in terms of coverings and discuss a definition
of recursion operators as Backlund transformations belonging to M. Marvan
[73].

Chapter 4 starts the central topic of the book: algebraic calculus of form-
valued derivations. After introduction of some general concepts (linear dif-
ferential operators over commutative algebras, algebraic jets and differential
forms), we define basic constructions of Frolicher—Nijenhuis and Richardson—
Nijenhuis brackets [17, 78] and analyze their properties. We show that to
any integrable derivation X with values in one-forms, i.e., satisfying the
condition [X, X ]]fn = 0, a complex can be associated and investigate main
properties of the corresponding cohomology group. A source of examples
for integrable elements is provided by algebras with flat connections. These
algebras can be considered as a model for infinitely prolonged differential
equation. Within this model, we introduce algebraic counterparts for the
notions of a symmetry and a recursion operator and prove some results
describing the symmetry algebra structure in the case when the second co-
homology group vanishes. In particular, we show that in this case infinite
series of commuting symmetries arise provided the model possesses a non-
trivial recursion operator.

Chapter 5 can be considered as a specification of the results obtained
in Chapter 4 to the case of partial differential equations, i.e., the algebra
in question is the smooth function algebra on £°° while the flat connection
is the Cartan connection. The cohomology groups arising in this case are
C-cohomology of £. Using spectral sequence techniques, we give a com-
plete description of the C-cohomology for the “empty” equation, that is for
the spaces J°°(7m) and show that elements of the corresponding cohomol-
ogy groups can be understood as graded evolutionary derivations (or vector
fields) on J°(m). We also establish relations between C-cohomology and
deformations of the equation structure and show that infinitesimal defor-
mations of a certain kind (elements of Hcl’o(é'), see above) are identified
with recursion operators for symmetries. After deriving defining equations
for these operators, we demonstrate that in the case of several classical
systems (the Burgers equation, KdV, the nonlinear Schrédinger and Boussi-
nesq equations) the results obtained coincide with the well-known recursion
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operators. We also investigate the equation of isometric immersions of two-
dimensional Riemannian surfaces into R?® (a particular case of the Gauss—
Mainardi-Codazzi equations, which we call the Sym equation) and prove its
complete integrability, i.e., construct a recursion operator and infinite series
of symmetries.

Chapter 6 is a generalization of the preceding material to the graded
case (or, in physical terms, to the supersymmetric case). We redefine all
necessary algebraic construction for graded commutative algebras and in-
troduce the notion of a graded extension of a partial differential equation. It
is shown that all geometrical constructions valid for classical equations can
be applied, with natural modifications, to graded extensions as well. We
describe an approach to the construction of graded extensions and consider
several illustrative examples (graded extensions of the KdV and modified
KdV equations and supersymmetric extensions of the nonlinear Schrédinger
equation).

Chapter 7 continues the topics started in the preceding chapter. We
consider here two supersymmetric extensions of the KdV equations (one-
and two-dimensional), new extensions of the nonlinear Schrodinger equation,
and the supersymmetric Boussinesq equation. In all applications, recursion
operators are constructed and new infinite series of symmetries, both local
and nonlocal, are described.

Finally, in Chapter 8 we briefly describe the software used for

computations described in the book and without which no serious ap-
plication could be obtained.

*x kK

Our collaboration started in 1991. It could not be successful without
support of several organizations among which:

e the University of Twente,

e NWO (Nederlandse Organisatie voor Wetenschappelijk Onderzoek),
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band Mathematische Fysica),

INTAS (International Association for the promotion of co-operation
with scientists from the New Independent States of the former Soviet
Union).

We are also grateful to Kluwer Academic Publishers and especially to Pro-
fessor Michiel Hazewinkel for the opportunity to publish this book.
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CHAPTER 1

Classical symmetries

This chapter is concerned with the basic notions needed for our exposi-
tion — those of jet spaces and of nonlinear differential equations. Our main
purpose is to put the concept of a nonlinear partial differential equation
(PDE) into the framework of smooth manifolds and then to apply powerful
techniques of differential geometry and commutative algebra. We completely
abandon analytical language, maybe good enough for theorems of existence,
but not too useful in search for main underlying structures.

We describe the geometry of jet spaces and differential equations (its
geometry is determined by the Cartan distribution) and introduce classical
symmetries of PDE. Our exposition is based on the books [60, 12]. We also
discuss several examples of symmetry computations for some equations of
mathematical physics.

1. Jet spaces

We expose here main facts concerning the geometrical approach to jets
(finite and infinite) and to nonlinear differential operators.

1.1. Finite jets. Traditional approach to differential equations consists
in treating them as expressions of the form

-
G e

where x1,...,x, are independent variables, while v = u(zy,...,z,) is an
unknown function (dependent variable). Such an equation is called scalar,
but one can consider equations of the form (1.1) with F = (F!,... F")
and u = (ul,...,u™) being vector-functions. Then we speak of systems of
PDE. What makes expression (1.1) a differential equation is the presence of
partial derivatives du/0z1,... in it, and our first step is to clarify this fact
in geometrical terms.

To do it, we shall restrict ourselves to the situation when all func-
tions are smooth (i.e., of the C'*°-class) and note that a vector-function
u = (u!,...,u™) can be considered as a section of the trivial bundle
1m: R™ x R® = R*"™™™ — R". Denote R™ x R by J%n,m) and con-
sider the graph of this section, i.e., the set I’y C J°(n,m) consisting of the
points

F(z1,..., @y, ) =0, (1.1)

{(xl,...,xn,ul(xl,...,xn),...,um(wl,...,xn)},

1



2 1. CLASSICAL SYMMETRIES

which is an n-dimensional submanifold in R™*™,

Let © = (x1,...,zy,) be a point of R” and 6§ = (x,u(x)) be the corre-
sponding point lying on I'y,. Then the tangent plane to I', passing through
the point # is completely determined by x and by partial derivatives of u at
the point z. It is easy to see that the set of such planes forms an mn-di-
mensional space R™" with coordinates, say, u;,
where u] “corresponds” to the partial derivative of the function uw) with
respect to z; at x.

Maintaining this construction at every point § € J%(n,m), we obtain

the bundle J'(n,m) R J%(n,m) — J%mn,m). Consider a point

61 € J'(n,m). By doing this, we, in fact, fix the following data: values
of independent variables, z, values of dependent ones, u’/, and values of
all their partial derivatives at x. Assume now that a smooth submanifold
£ C JY(n,m) is given. This submanifold determines “relations between
points” of J!(n,m). Taking into account the above given interpretation of
these points, we see that £ may be understood as a system of relations on
unknowns u/ and their partial derivatives. Thus, £ is a first-order differential
equation! (Or a system of such equations.)

With this example at hand, we pass now to a general construction.

Let M be an n-dimensional smooth manifold and 7: £ — M be a
smooth m-dimensional vector bundle! over M. Denote by I'(7r) the C°°(M)-
module of sections of the bundle 7. For any point x € M we shall also
consider the module I (7; x) of all local sections at x.

1=1,...,n, g=1,....m,

REMARK 1.1. We say that ¢ is a local section of 7 at z, if it is defined on
a neighborhood U of x (the domain of ¢). To be exact, ¢ is a section of the
pull-back €*m = 7 |y, where e: U < M is the natural embedding. If , ¢’ €
[oe(m; ) are two local sections with the domains U and U’ respectively,
then their sum ¢ + ¢’ is defined over Y NU’'. For any function f € C°(M)
we can also define the local section f¢ over U.

For a section ¢ € I'oc(m;2), ¢(x) = 0 € E, consider its graph I', C E
and all sections ¢’ € [ye(m;x) such that

(a) p(z) = ¢'(2);

(b) the graph I' s is tangent to I', with order & at 6.
It is easy to see that conditions (a) and (b) determine an equivalence relation
~F on Tyoe(m;x) and we denote the equivalence class of ¢ by [p]X. The
quotient set T'yc(m; )/ Nﬁ becomes an R-vector space, if we put

o)z + W5 = lp + ¥I5. alels = lagly, @9 €Toc(miz), a €R,  (1.2)

'In fact, all constructions below can be carried out — with natural modifications
— for an arbitrary locally trivial bundle 7 (and even in more general settings). But we
restrict ourselves to the vector case for clearness of exposition.
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while the natural projection I'ioe(7;x) — Tioe(m;x)/ ~F becomes a linear
map. We denote this space by J¥(r). Obviously, JO(r) coincides with
E, = 7~ !(z), the fiber of the bundle 7 over the point x € M.

REMARK 1.2. The tangency class [¢]”* is completely determined by the

point x and partial derivatives up to order k£ at x of the section . From
here it follows that J¥(7) is finite-dimensional. It is easy to compute the
dimension of this space: the number of different partial derivatives of order
i equals (”:{1_11) and thus

k .
ok n+i—1 n+k
= = . 1.
dim J; () miE:()( I ) m( k (1.3)
DEFINITION 1.1. The element [p]® € J¥(7) is called the k-jet of the
section ¢ € I'oe(m; ) at the point x.

The k-jet of ¢ can be identified with the k-th order Taylor expansion of
the section ¢. From the definition it follows that it is independent of coor-
dinate choice (in contrast to the notion of partial derivative, which depends
on local coordinates).

Let us consider now the set

Jo) = | ) (1.4)
xeM

and introduce a smooth manifold structure on J*(7) in the following way.
Let {Uya},, be an atlas in M such that the bundle 7 becomes trivial over each
Uy, i.e., W_I(Ua) ~ U, x V, where V is the “typical fiber”. Choose a ba-

sis ef,...,e% of local sections of m over U,. Then any section of |y,
is representable in the form ¢ = u'e§ + --- + u™e%, and the functions
T1,...,Tn, ut,...,u™, where x1,...,x, are local coordinates in U,, con-

stitute a local coordinate system in 77 '(U,). Let us define the functions
ug': Upew, JF(r) — R, where 0 = (01,...04), |o| =01+ +0, <k, by

o], 3
j k d;f 07l
ul ([e]y) |

T

(1.5)

0xs o (0x1)?' ... (Oxy)". Then these functions, together with local coor-

dinates 1, ..., Tp, define the mapping fo: U,ey, JE(7) — Uy x RN, where
N is the number defined by (1.3). Due to computation rules for partial
derivatives under coordinate transformations, the mapping

(fa o f5") oty : Ua NUG) x RN — (U NUUg) x RN
is a diffeomorphism preserving the natural projection (U, NUg) x R™ —

(Us NUp). Thus we have proved the following result:

PROPOSITION 1.1. The set J*(r) defined by (1.4) is a smooth manifold
while the projection my,: J¥(1) — M, m: [p]¥ — 2, is a smooth vector
bundle.
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Note that linear structure in the fibers of m is given by (1.2).

DEFINITION 1.2. Let nm: E — M be a smooth vector bundle, dim M =
n, dim F =n + m.
(i) The manifold J*(x) is called the manifold of k-jets for T;
(ii) The bundle 7y : J*(7) — M is called the bundle of k-jets for T;
(iii) The above constructed coordinates {z;, uf,}, where i = 1,...,n, j =
1,...,m, |o| <k, are called the special (or adapted) coordinate system
on Jk(r) associated to the trivialization {Uy,},, of the bundle 7.

Obviously, the bundle 7y coincides with .

Note that tangency of two manifolds with order k implies tangency with
less order, i.e., there exists a mapping 7 ;: J*(7) — Ji(7), [p]% = [p]}, k >
[. From this remark and from the definitions we obtain the commutative

diagram

Tk,

JE () JY(m)

where k > [ > s and all arrows are smooth fiber bundles. In other words,
we have

Tls © Tl = Th,s, O T = Tk, k>1>s. (1.6)
On the other hand, for any section ¢ € I'(7) (or € I'joc(7;x)) we can define
the mapping jx(¢): M — J¥(m) by setting jr(¢): x — [@]F. Obviously,

Je(p) € T(my) (respectively, ji(¢) € Tioc(mi; ).

DEFINITION 1.3. The section ji(p) is called the k-jet of the section .
The correspondence ji: I'(w) — I'(my) is called the operator of k-jet.

From the definition it follows that

Tkl o]k(@) = jl(@), ]0(90) =@, k> l> (17)
for any ¢ € I'(m).
Let ¢,1 € I'(m) be two sections, z € M and ¢(z) =¢(x) =0 € E. It is
a tautology to say that the manifolds I', and I'y, are tangent to each other
with order k+1 at 6 or that the manifolds I';, (), T, () C J*(7) are tangent
with order [ at the point 0, = jr()(z) = Jr(¥)(x).

DEFINITION 1.4. Let 0 € J*(7). An R-plane at ) is an n-dimensional
plane tangent to some manifold of the form I';, () such that [©]k = 6y
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Immediately from definitions we obtain the following result.

PROPOSITION 1.2. Let 6, € J*() be a point in a jet space. Then the
fiber of the bundle w11 ,: J¥TH(m) — J*(7m) over Oy coincides with the set
of all R-planes at 0y,.

For a point 0, € J*1 (1), we shall denote the corresponding R-plane
at O, = i1,k (O+1) by Loy, C T, (J*(m)).

1.2. Nonlinear differential operators. Since J¥(7) is a smooth
manifold, we can consider the algebra of smooth functions on J*(x). De-
note this algebra by Fj(m). Take another vector bundle n’: E/ — M and
consider the pull-back 7} (7"). Then the set of sections of 7 (7’) is a mod-
ule over Fj(m) and we denote this module by Fy(m,#'). In particular,
Fi(m) = Fi(m,1pr), where 1y is the trivial one-dimensional bundle over
M.

The surjections m,; and m; generate the natural embeddings vy def
Tyt Fi(m, ') — F(m,7') and v o w5 D(n') — F(m, 7). Due to (1.6),

we have the equalities
Vg1 OV s =Vks, VklOUV = Uk, k>1>s. (1.8)

Identifying F;(m, 7’) with its image in F (7, 7') under vy, we can consider
Fi(m,7’) as a filtered module,

F(T‘J) — fO(”v 7T/) ... fk—l(ﬂv’fr,) — fk(ﬂvwl)v (19)
over the filtered algebra
C®(M) — Fo(m) — ... — Fr_1(m) — Fi(m). (1.10)

Let F € Fy(m, 7). Then we have the correspondence
A=Ap:T(r) =), Alp)  ju(@)*(F), @el(n). (111)

DEFINITION 1.5. A correspondence A of the form (1.11) is called a (non-
linear) differential operator of order? < k acting from the bundle 7 to
the bundle 7. In particular, when A(fy + gv0) = fA(p) + gA(v) for all
@, € I'(m) and f,g € C°°(M), the operator A is said to be linear.

From (1.9) it follows that operators A of order k are also operators of
all orders k' > k, while (1.8) shows that the action of A does not depend on
the order assigned to this operator.

EXAMPLE 1.1. Let us show that the k-jet operator ji: I'(m) — I'(mg)
(see Definition 1.3) is differential. To do this, recall that the total space of
the pull-back }(my) consists of points (6, 0;) € J¥(w) x J¥(x) such that

2For the sake of briefness, we shall use the words operator of order k below as a
synonym of the expression operator of order < k.



6 1. CLASSICAL SYMMETRIES

mk(0x) = m(0}). Consequently, we may define the diagonal section pj, of

the bundle 7} (7;,) by setting py(0x) def (0, 0r). Obviously, ji, = A,,, ie.,

k(@) (ok) = gr(®), @ €T(m).
The operator j is linear.

ExaMpPLE 1.2. Let 7*: T*M — M be the cotangent bundle of M and
T N’ T*M — M be its p-th external power. Then the de Rham differ-
ential d is a first order linear differential operator acting from 7 to 7,4,
p=>0.

ExaMpPLE 1.3. Consider a pseudo-Riemannian manifold M with a non-
degenerate metric g € T'(S?7*) (by S%€ we denote the g-th symmetric power
of the vector bundle £). Let g* € T'(S?7) be its dual, 7: TM — M be-
ing the tangent bundle. Then the correspondence Ay: f — g*(df,df) is a
(nonlinear) first order differential operator from C*°(M) to C*°(M).

Let A: I'(m) — I'(#') and A": T'(7") — I'(7”) be two differential opera-
tors. It is natural to expect that their composition A’ o A: T'(7) — T'(7”)
is a differential operator as well. However to prove this fact is not quite
simple. To do it, we need two new and important constructions.

Let A: I'(r) — T'(7’) be a differential operator of order k. For any
Or = [p]F € J*(7), let us set

def
alk) = [A(P)]E = (Alp))(2). (1.12)
Evidently, the mapping ® A is a morphism of fiber bundles? , i.e., the diagram
P
J¥ () 2 E
N \
% <
M

is commutative.

DEFINITION 1.6. The map ®a is called the representative morphism of
the operator A.

For example, for A = ji we have ®;, =id jx(,). Note that there exists a
one-to-one correspondence between nonlinear differential operators and their
representative morphisms: one can easily see it just by inverting equality
(1.12). In fact, if ®: J*(r) — E’ is a morphism of the bundle 7 to 7,
a section ¢ € F(m, ') can be defined by setting p(br) = (0, P(6k)) €
J¥(7) x E'. Then, obviously, ® is the representative morphism for A = A,,.

DEFINITION 1.7. Let A: I'(w) — I'(7’) be a k-th order differential oper-
ator. Its [-th prolongation is the composition A®) def JioA: T'(m) = I'(m).

3But not of vector bundles!
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LEMMA 1.3. For any k-th order differential operator A, its I-th prolon-
gation is a (k + 1)-th order operator.

PROOF. In fact, for any point 0;; = [p]¥+! € J¥(7) let us set <I>(Al) f

[A(p)]L. € JY(m). Then the operator [J, for which the morphism (IJ(AZ) is
representative, coincides with A, O

COROLLARY 1.4. The composition A’ o A of two differential operators
A:T(n) = T(n") and A": T'(x") — T(x") of order k and k' respectively is a
(k + K')-th order differential operator.

PROOF. Let <I>(Ak/): JEHE () — J¥ (7') be the representative morphism
for A Then the operator O, for which the composition ® A/ o <I>(Ak ) is the

representative morphism, coincides with A’ o A. O

To finish this subsection, we shall list main properties of prolongations
and representative morphisms trivially following from the definitions.

PROPOSITION 1.5. Let A: T'(w) — I(x), A": T'(x") — T'(x") be two
differential operators of orders k and k' respectively. Then:
(i) Daron = Bar o D),
(i) ®X 0 jiti(p) = AD(p) for any € T(w), 1 >0,
(iii) mp o (ID(AZ) = <I>(Al/) O Thtl k5 I-€., the diagram

0
Jk—l-l(ﬂ_) A Jl(ﬂ'/)
T+ T (1.13)
)
! @ I
JkJrl (71') A Jl (77-/)

is commutative for all 1 > 1" > 0.

1.3. Infinite jets. We now pass to infinite limit in all previous con-
structions.

DEFINITION 1.8. The space of infinite jets J°°(mw) of the fiber bundle
w: E — M is the inverse limit of the sequence

o T () B R ) s Y () 25 BT M,
Le., J®°(m) = projlim, k> JF ().

Though J*°(7) is an infinite-dimensional manifold, no topological or
analytical problems arise, if one bears in mind the genesis of this manifold
(i.e., the system of maps 7 ;) when maintaining all constructions. Below
we demonstrate how this should be done, giving definitions for all necessary
concepts over J(m).
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A point 6 of J*(m) is a sequence of points {x,0;}k>0, + € M,0; €
Jk(m), such that m(0x) = x and 7 (k) = 6, k > I. Let us represent
any ) in the form 0, = [pg]f. Then the Taylor expansions of any two
sections, ¢ and ¢;, k > [, coincide up to the [-th term. It means that the
points of J°(7m) can be understood as m-dimensional formal series. But
by the Whitney theorem on extensions of smooth functions [71], for any
such a series there exists a section ¢ € I'(7) such that its Taylor expansion
coincides with this series. Hence, any point § € J*°(7) can be represented
in the form 6 = [p]5°.

A special coordinate system can be chosen in J°°(7) due to the fact
that if a trivialization {U, } gives special coordinates for some J*(r), then
these coordinates can be used for all jet spaces J* () simultaneously. Thus,

the functions zi,...,Zn,...,u%,... can be taken for local coordinates in
J(m), where j = 1,...,m and o is an arbitrary multi-index of the form
(01,...,00).

A tangent vector to J°°(m) at a point 6 is defined as follows. Let
0 = {x,0;} and w € T,M, vy € Ty, J*(m). Then the system of vectors
{w, vg }r>0 determines a tangent vector to J°°() if and only if (7y).vr = w,
(Wk’l)*vk = U for all k& > l > 0.

A smooth bundle ¢ over J*°(m) is a system of bundles n: Q@ — M,
&k: Py — JF() together with smooth mappings Vy.: P, — Q, Uy Py —
P, k>12>0, such that

VioWp; =V, V0V o=V, k>1>s2>0,

and all the diagrams

&k & n

Ty R gl v

are commutative. For example, if n: Q — M is a bundle, then the pull-backs
T (n): 7(Q) — J¥(7) together with the natural projections 7} (n) — 77 (n),
75 (n) — @ form a bundle over J*°(m). We say that ¢ is a vector bundle
over J*°(m), if n and all §;, are vector bundles and the mappings ¥y, ¥y,
are fiber-wise linear.

A smooth mapping of J*(7) to J*(n'), where 7: E — M, n': B/ —
M', is defined as a system F of mappings F_o: M — M', Fy: JF(r) —
JF=3(x"), k > s, where s € Z is a fixed integer called the degree of F, such
that

Th—rk—s—1 © Fly = F—1 0 g -1, k>s+1
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For example, if A: I'(r) — T'(n’) is a differential operator of order s, then
the system of mappings F_o, = idys, Fr = @g_s), k > s (see the previous
subsection), is a smooth mapping of J*°(m) to J* (7).

We say that two smooth mappings F' = {Fy},G = {Gy}: J®(n) —
J(7') of degrees s and [ respectively, | > s, are equivalent, if the diagrams

/
T s k—1

J]{I—S(ﬂ_’) Jk_l(ﬂ'/)

% o

J* ()

are commutative for all admissible & > 0. When working with smooth
mappings, one can always choose the representative of maximal degree in
any class of equivalent mappings. In particular, it can be easily seen that
mappings with negative degrees reduce to zero degree ones in such a way.

REMARK 1.3. The construction above can be literally generalized to the
following situation. Consider the category M°, whose objects are chains

MfooﬂMoﬂMlH"'HMkkaHH'“,
where M_., and all My, k > 0, are finite-dimensional smooth manifolds
while m and my1 are smooth mappings. Let us set

def def
Mg = MOomigO- - O0Mgk_1, Mkl = Mi41]0 " OMgk_1, k>1.
Define a morphism of two objects, { My}, { N}, as a system F' of mappings
{F_oo, F}} such that the diagram

My
M, ————— M,

Fy, F

N
Ni—s ——— N,

is commutative for all admissible k& and a fixed s (degree of F).

EXAMPLE 1.4. Let M and N be two smooth manifolds, F': N — M be
a smooth mapping, and 7w: £ — M a be vector bundle. Consider the pull-

backs F*(m) o Trk: JE(7) — N, where JE(7) denotes the corresponding

total space. Thus {N, J&(7)} x>0 is an object of M.

To any section ¢ € I'(my), there corresponds the section ¢p € I'(mpy)

defined by ¢p(x) def (x,pF(x)), x € N (for any z € N, we set ¢pp(z) &f

(x,¢(F(x))). In particular, for ¢ = ji(¢), ¢ € I'(w) we obtain the section
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Jik(@)r. Let & H — N be another vector bundle and v be a section of the
pull-back 77, (£). Then the correspondence

A=Ay:D(m) =T(), ¢ (@)r(),
is called a (nonlinear) differential operator of order < k over the mapping
F. As before, we can define prolongations A : T'(74;) — I'(&) and these
prolongations would determine smooth mappings <I>(Al): Jf}“(ﬂ) — JYE).
The system {tID(Al)}lzo is a morphism of {J(m)} to {J*(&)}.
Note that if F': N — M, G: O — N are two smooth maps and A, [J are

two nonlinear operators over F' and G respectively, then their composition
is defined and is a nonlinear operator over F o G.

EXAMPLE 1.5. The category M of smooth manifolds is embedded into
M if for any smooth manifold M one sets Mo, = {Mj, mp—1} with
My, = M and my, ;1 = idps. For any smooth mapping f: M — N we also
set foo = {fx} with fr = f. We say that F' is a smooth mapping of J>(r)
to a smooth manifold N, if F' = {F},} is a morphism of {J*(7), mxx_1} to
Ny In accordance to previous constructions, such a mapping is completely
determined by some f: J¥(7) — N.

Taking R for the manifold N in the previous example, we obtain a defi-
nition of a smooth function on J*° (7). Thus, a smooth function on J*°(7)
is a function on J¥(7) for some finite but an arbitrary k. The set F(r) of
such functions is identified with (J;—, Fi(m) and forms a commutative fil-
tered algebra. Using the well-known duality between smooth manifolds and
algebras of smooth functions on these manifolds, we deal in what follows
with the algebra F(m) rather than with the manifold J°(7) itself.

From this point of view, a vector field on J°(7) is a filtered derivation
of F(r), i.e., an R-linear map X : F(7) — F(m) such that

X(fg)=fX(9)+9X(f),  f.geF(m), X(Fi(m))C Fip(r),
for all k£ and some [ = I(X). The latter is called the filtration of the field
X. The set of all vector fields is a filtered Lie algebra over R with respect
to commutator [X,Y] and is denoted by D () = J;so DW (7).

Differential forms of degree i on J°° () are defined as elements of the

filtered F (m)-module A’(r) € (J,o A(my), where Af(my) © AZ(J%(r)) and

the module A?(7;) is considered to be embedded into A*(myy1) by Tt ke

Defined in such a way, these forms possess all basic properties? of differential

forms on finite-dimensional manifolds. Let us mention most important ones:

(i) The module A’(7) is the i-th external power of the module A'(7),

Ai(m) = /\iAl(ﬂ’). Respectively, the operation of wedge product

A AP(m) ® Ad(mr) — APT9(m) is defined and A*(w) = Y0 AY(m)
becomes a commutative graded algebra.

“In fact, as we shall see in Section 1 of Chapter 2, A’(r) is structurally much richer
than forms on a finite-dimensional manifold.
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(i) The module D(r) is dual to A'(7), i.e.,
D(r) = hom ., (A (m), F(m)), (1.14)

where hom?.(ﬂ) (+,-) denotes the module of all filtered homomorphisms

over F(m). Moreover, equality (1.14) is established in the following
way: there is a derivation d: F(w) — A!(7) such that for any vector
field X there exists a uniquely defined filtered homomorphism fx for
which the diagram

is commutative. ‘ ‘
(iii) The operator d is extended up to maps d: A*(1) — A“! () in such
a way that the sequence

0— F(r) -5 Al(r) — -+ — Al(r) -5 A (1) — - -

becomes a complex, i.e., d od = 0. This complex is called the de
Rham complex on J°°(w) while d is called the de Rham differential.
The latter is a derivation of the superalgebra A* ().

Using the identification (1.14), we can define the inner product (or con-
traction) of a field X € D(r) with a 1-form w € Al(r):

ivw < fy(). (1.15)

We shall also use the notation X _iw for the contraction of X to w. This
operation extends onto A*(r), if we set

ixf=0, ix(w/\e):ix(w)/\e-l-(—l)ww/\i)((e)

for all f € F(n) and w,f € A*(w) (here and below we always write (—1)“
instead of (—1)de&w),

With the de Rham differential and interior product defined, we can
introduce the Lie derivative of a form w € A*(w) along a field X by setting

Lyw iy (dw) + d(ixw)
(the infinitesimal Stokes formula). We shall also denote the Lie derivative by
X (w). Other constructions related to differential calculus over J*°(7) (and
over infinite-dimensional objects of a more general nature) will be described
in Chapter 4.
Linear differential operators over J°°(m) generalize the notion of
derivations and are defined as follows. Let P and @ be two filtered F(r)-

modules and A € hom]ﬁ(P, Q). Then A is called a linear differential operator
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of order k acting from P to @, if
(05,005, O”'O(ka)A:O

for all fo,..., fr € F(n), where (6yA)p & fA(p) — A(fp). We write k =

ord(A).

Due to existence of filtrations in F(7), P and @, one can define differ-
ential operators of infinite order acting from P to @, [51]. Namely, let
P ={P}, Q@ ={Qi}, P C Py1, Qi C Quy1, B, Qi being Fi(m)-modules.
Let A € homfg(P, Q) and s be filtration of A, i.e., A(P) C Qi4+s. We can

always assume that s > 0. Suppose now that A, et A lp P — Qis a
linear differential operator of order o; over Fi(mw). Then we say that A is a
linear differential operator of order growth o;. In particular, if o = al 4 (3,
a, B € R, we say that A is of constant growth a.

Distributions. Let § € J*°(w). The tangent plane to J*°(7m) at the
point @ is the set of all tangent vectors to J°°(m) at this point (see above).
Denote such a plane by Ty = Ty(J>®(7)). Let 6 = {x, 04}, 2 € M, 0}, € J*(x)
and v = {w, v}, v = {w', v} } € Ty. Then the linear combination A\v+puv’ =
{Aw+pw’, v+ p) } is again an element of Ty and thus Tp is a vector space.
A correspondence 7 : 0 +— Ty C Ty, where 7y is a linear subspace, is called a
distribution on J*°(w). Denote by 7 D(w) C D(w) the submodule of vector
fields lying in 7', i.e., a field X belongs to 7 D(n) if and only if Xy € 7y for all
6 € J°°(m). We say that the distribution 7 is integrable, if it satisfies formal
Frobenius condition: for any vector fields X,Y € 7 D(x) their commutator
lies in 7D(7) as well, or [TD(w),TD(r)] C TD(x).

This condition can expressed in a dual way as follows. Let us set

T'A(m) = {w € AY(n) | ixw =0,X € TD(n)}

and consider the ideal 7A*(7) generated in A*(m) by 7'A(w). Then the
distribution 7 is integrable if and only if the ideal 7A*(7) is differentially
closed: d(7TA*(m)) C TA*(m).

Finally, we say that a submanifold N C J* () is an integral manifold
of T, if TyN C Ty for any point § € N. An integral manifold N is called
locally mazimal at a point @ € N, if there exist no other integral manifold
N’ such that N ¢ N'.

2. Nonlinear PDE

In this section we introduce the notion of a nonlinear differential equa-
tion and discuss some important concepts related to this notion: solutions,
symmetries, and prolongations.

2.1. Equations and solutions. Let 7: E — M be a vector bundle.

DEFINITION 1.9. A submanifold £ C J¥(r) is called a (nonlinear) dif-
ferential equation of order k in the bundle 7. We say that £ is a linear
equation, if £ N7, () is a linear subspace in 7, () for all z € M.
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We say that the equation &£ is determined, if codim £ = dim, that it
is overdetermined, if codim& > dimw, and that it is underdetermined, if
codim & < dim .

We shall always assume that £ is projected surjectively onto F under
7'[']@70.

DEFINITION 1.10. A (local) section f of the bundle 7 is called a (local)
solution of the equation &, if its graph lies in &: ji(f)(M) C €£.

Let us show that these definitions are in agreement with the traditional
ones. Choose in a neighborhood U of a point 6 € £ a special coordinate sys-

tem x1,..., 2, ul, ... u™, .. ub, ..., where |o| <k, j=1,...,m. Then,

in this coordinate system, £ will be given by a system of equations
Fl(zy, .. gt oo u™ o ul o u™, ) =0,
................................................. (1.16)
Fr(zy, ... xp,ut, o u™, o ul oo um ) =0,

where the functions F!,... F" are functionally independent. Now, let

f € Tioe(m) be a section locally expressed in the form of relations u! =

Az, zn), . u™ = f™(xq,...,2,). Then its k-jet is given by the
equalities
i olol i
Yo = Oxy '
where j =1,...,m, 0 < |0 <k, and ji,(f)(U), U = m(UU) C M, lies in & if
and only if the equations

ololft glol gm
e om

olol gt olol fm
Fr(zy,....xn, f5 oo ™ Sy e
(21 n f ! 0y 0y
are satisfied. Thus we are in a complete correspondence with the analytical
definition of a differential equation.

Flzy, .o xn, fLo ™.

) =0.

REMARK 1.4. There exists another way to represent differential equa-
tions. Namely, let 7’': R” x U — U be the trivial r-dimensional bundle.
Then the set of functions F!,..., F" can be understood as a section ¢ of
the pull-back (m, |i/)" ('), or as a nonlinear operator A = A, defined in U,
while the equation £ is characterized by the condition

ENU= {0, €U | p(6)) =0} (1.17)

More general, any equation & C J¥(7) can be represented in the form similar
to (1.17). Namely, for any equation £ there exists a fiber bundle 7’: ' — M
and a section ¢ € Fy(m, ) such that £ coincides with the set of zeroes for
¢: & = {p = 0}. In this case we say that £ is associated to the operator
A =A,:T(r) — I'(r’) and use the notation & = En.
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ExamPLE 1.6. Consider the bundles 7 = 7,: APT*M — M, 7' =
Tt NPT T*M — M and let d: T(r) = AP(M) — I(x') = APFY(M)
be the de Rham differential (see Example 1.2). Thus we obtain a first-order
equation &; in the bundle 7;. Consider the case p =1, n > 2 and choose
local coordinates 1, ..., 2, in M. Then any form w € A'(M) is represented
as w = u'dry + - - + u"dz, and we have

€a = {uy, =i, |1 <3},

where 1; denotes the multi-index (0,...,1,...,0) with zeroes at all positions
except for the i-th one. This equation is underdetermined when n = 2,
determined for n = 3 and overdetermined for n > 3.

EXAMPLE 1.7 (see [69]). Consider an arbitrary vector bundle 7: E —
M and a differential form w € AP(J¥(r)), p < dim M. The condition
Je()*(w) = 0, ¢ € I'(m), determines a (k + 1)-st order equation &, in
the bundle 7. Consider the case p = dim M = 2, k = 1 and choose a special
coordinate system x,y, u, Uz, Uy in JF(7). Let ¢ = o(z,y) be a local section
and

w = Adu, N duy + (B duy + By duy) A du
+ dug A (BU dx + Bia dy) + duy N (Bgl dx + Bag dy)
+du N (Cirdx + Cody) + Ddx A dy,

where A, B;, B;;, C;, D are functions of x, y, u, uz, uy. Then we have

J1(0) ' w = AP (@re dx + Pay dy) A (Qye dx + pyy dy)
+ (Bf(%-x dx + oy dy) + By (pye d + oy, dy)) A (e dz + oy dy)
+ (P AT+ gy dy) A (BY, dz+ B, dy) + (Pyz dx~+@yy dy) A (B3, dx+ B3, dy)
+ (¢z dz + @y dy) A (CY dx + C3 dy) + D? dz A dy,

where Fv % Ji1(p)*F for any F' € Fi(m). Simplifying the last expression,
we obtain

Ji(e)'w = (A“"(wmcpyy — @) + (yBY + By)¢aa — (9o BS + Biy)pyy
+ (0yBS = 92 BY + B3, — Bfy)pay + 02C5 — 0y Cf + D“")) dz A dy.
Hence, the equation &, is of the form
a(Upplyy — uiy) + b11Uzg + b12Uzy + bo2Uyy + ¢ =0, (1.18)

where a = A, b1 = uyBy + B2, bio = uyBs — u; By + Bas — By, by =
uz By + Bia, ¢ = uyCy — uyCy1 + D are functions on JY (). Equation (1.18)
is the so-called two-dimensional Monge—-Ampere equation and obviously any
such an equation can be represented as &, for some w € AL(J!(x)).
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Note that we have constructed a correspondence between p-forms on
JF(m) and (p + 1)-order operators. This correspondence will be described
differently in Subsection 1.4 of Chapter 2

ExaMpPLE 1.8. Consider again a fiber bundle 7: £ — M and a section
V:E — JYn) of the bundle mo: J'(7) — E. Then the graph &y =
V(E) C JY(7) is a first-order equation in the bundle 7. Let 61 € &y. Then,
due to Proposition 1.2 on page 5, 1 is identified with the pair (6, Ly, ), where
0o = m1,0(61) € E, while Ly, is the R-plane at 6 corresponding to #;. Hence,
the section V (or the equation £y) may be understood as a distribution
of horizontal® n-dimensional planes on E: Ty: E 3 0 +— 01 = Ly@g). A
solution of the equation &y, by definition, is a section ¢ € I'(m) such that
J1(p)(M) C V(E). It means that at any point § = ¢(z) € (M) the plane
7Tv (0) is tangent to the graph of the section . Thus, solutions of £y coincide
with integral manifolds of 7v .

. ] j def 4
In local coordinates (@1, ..., zn, ut, ..., u™, ... ,ul,...), where u] = i,
i1=1,...,n,j5=1,...,m, the equation &y is represented as
J_xJ 1 m - -
u = Vi(x1,...,op,u, .. u™), i=1,...,n, j=1,...,m, (1.19)

Vg being smooth functions.

EXAMPLE 1.9. As we saw in the previous example, to solve the equation
Ev is the same as to find integral n-dimensional manifolds of the distribution
Ty . Hence, the former to be solvable, the latter is to satisfy the Frobenius
theorem conditions. Thus, for solvable £y, we obtain conditions on the
section V € I'(m1 o). Let us write down these conditions in local coordinates.

Using representation (1.19), note that 7y is given by the 1-forms

wj:duj—zvgd:ci, j=1....,m.
i=1n

Hence, the integrability conditions may be expressed as
m .
de:Zpg/\wi, j=1,...,m,
i=1

for some 1-forms p§ After elementary computations, we obtain that the
functions V? must satisfy the following relations:

Az ANe) v Ao) v AN v/
= 1L =_—F h— 1.2
Oz + Z Va ouy Oz, + Z Vs ouY (1.20)
y=1 =1
forall j =1,...,m, 1 <a < B <m. Thus we got a naturally constructed

first-order equation Z(7) C J!(m1 o) whose solutions are horizontal n-dimen-
sional distributions in E = J!(r).

® An n-dimensional plane L C Ty, (J*(r)) is called horizontal, if it projects nondegen-
erately onto T, M under (), x = mx(0).
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REMARK 1.5. Let us consider the previous two examples from a bit dif-
ferent point of view. Namely, the horizontal distribution 7y (or the section
V: JO%xw) — J(n), which is the same, as we saw above) may be understood
as a connection in the bundle 7. By the latter we understand the following.

Let X be a vector field on the manifold M. Then, for any point x € M,
the vector X, € T, M can be uniquely lifted up to a vector Vx, € TyF,
m(0) = xz, such that X, € 7y(f). In such a way, we get the correspon-
dence D(M) — D(FE) which we shall denote by the same symbol V. This
correspondence possesses the following properties:

(i) it is C*°(M)-linear, ie., V(fX + gY) = fV(X) + gV(Y), X,Y €
D(M), f,g € C>®(M);

(ii) for any X € D(M), the field V(X) is projected onto M in a well-
defined way and 7,.V(X) = X.

Equation (1.20) is equivalent to flatness of the connection V, which means
that

V(X,Y]) = [V(X),V(Y)] =0, X, YeM, (1.21)

i.e., that V is a homomorphism of the Lie algebra D (M) of vector fields on
M to the Lie algebra D(E).

In Chapter 4 we shall deal with the concept of connection in a more
extensive and general manner. In particular, it will allow us to construct
equations (1.20) invariantly, without use of local coordinates.

EXAMPLE 1.10. Let 7: R™ xR"*! — R+ be the trivial m-dimensional
bundle. Then the system of equations

J _ ] a
u1n+1 - fj (.’L’l, s Tpgly ey U’O'l,‘..,(rn,07 ce ), (122)
where j,a = 1,...,m, is called evolutionary. In more conventional notations
this system is written down as
o’ ot tongyQ

— = fl(z1,...,zp,t, ..

ot

"83:‘1’1...81"%”’”')’
where the independent variable ¢ corresponds to xy1.

2.2. The Cartan distributions. Now we know what a differential
equation is, but cannot speak about geometry of these equation. The rea-
son is that the notion of geometry implies the study of smooth manifolds
(spaces) enriched with some additional structures. In particular, transfor-
mation groups preserving these structures are of great interest as it was
stated in the Erlangen Program by Felix Klein [45].

Our nearest aim is to use this approach to PDE and the main question
to be answered is

What are the structures making differential equations of smooth man-
ifolds?
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At first glance, the answer is clear: solutions are those entities for the sake of
which differential equations are studied. But this viewpoint can hardly con-
sidered to be constructive: to implement it, one needs to know the solutions
of the equation at hand and this task, in general, is transcendental.

This means that we need to find a construction which, on one hand,
contains all essential information about solutions and, on the other hand,
can be efficiently studied by the tools of differential geometry.

DEFINITION 1.11. Let w: E — M be a vector bundle. Consider a point
0r € J*(m) and the span Cgk C Ty, (J*(m)) of all R-planes (see Definition
1.4) at the point 6.

(i) The correspondence C¥ = CF(r): 6 + Cgk is called the Cartan dis-

tribution on J*(r).

(ii) Let £ C J¥(r) be a differential equation of order k. The correspon-
dence CF(£): € 3 6}, — Cg’k NTy.E C Tp, E is called the Cartan dis-
tribution on £. We call elements of the Cartan distributions Cartan
planes.

(iii) A point 0, € & is called regular, if the Cartan plane Cgk (&) is of
maximal dimension. We say that & is a regular equation, if all its
points are regular.

In what follows, we deal with regular equations or in neighborhoods of
regular points®.

We are now going to give an explicit description of Cartan distribu-
tions on J¥() and to describe their integral manifolds. Let 6, € J*(7) be
represented in the form

O =[elz,  pel(m), z=m(6h). (1.23)
Then, by definition, the Cartan plain Cgk is spanned by the vectors
Ji ()2 (v), veT,M, (1.24)
for all ¢ € Ioc(m) satisfying (1.23).
Let o1, ., Tn, .. s U, ..., j=1,...,m, |o| <k, be a special coordinate

system in a neighborhood of 6. Introduce the notation Ox; def 0/0x;,

Uy def 0/0uy. Then the vectors of the form (1.24) can be expressed as

linear combinations of the vectors

) PLALSCPY 1.25

T+ Z Z 81’0—8.’131 g ( . )
lo|<k j=1

where i = 1,...,n. Using this representation, we prove the following result:

PROPOSITION 1.6. For any point 05, € J*(x), k > 1, the Cartan plane
C;fk s of the form Cg”k = (Tkx—1)s (Lo, ), where Ly, is the R-plane at the

STt is clear that for any regular point there exists a neighborhood of this point all
points of which are regular.
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point mx—1(0k) € J¥H(r) determined by the point 0) (see p. 5 for the
definition of Ly,).

PROOF. Denote the vector (1.25) by vf"p. It is obvious that for any two
sections ¢, ¢ satisfying (1.23) the difference vf’w — vf"p, is a 7, —1-vertical
vector and any such a vector can be obtained in this way. On the other
hand, the vectors vf_l"p do not depend on ¢ satisfying (1.23) and form a

basis in the space Lg, . O

REMARK 1.6. From the result proved it follows that the Cartan distri-
bution on J¥(7) can be locally considered as generated by the vector fields

m
Dz[k]:(?a:i—i— Z Zufﬂrliau{;, Vi=0ul, |t|=k,s=1,...,m.

|o|<k—1 j=1
(1.26)
From here, by direct computations, it follows that [V.?, Dl[k]] =V ,,, where
s _ ‘/(7'17...77'1'—1,...77'”)7 if TP > 07
(T1sesmn) =L 0, otherwise.

But, as it follows from Proposition 1.6, vector fields V for lo| < k do not
lie in C*.

Let us consider the following 1-forms in special coordinates on J**+!(r):

n
wl o dul — Z ufTHi dx;, (1.27)
i=1
where j =1,...,m, |o| < k. From the representation (1.26) we immediately

obtain the following important property of the forms introduced:

PROPOSITION 1.7. The system of forms (1.27) annihilates the Cartan
distribution on J*(7), i.e., a vector field X lies in C* if and only if ixw) =
forallj=1,....,m, |o| < k.

DEFINITION 1.12. The forms (1.27) are called the Cartan forms on

JF(m) associated to the special coordinate system x;, u?.

Note that the F(m)-submodule generated in A'(J¥(m)) by the forms
(1.27) is independent of the choice of coordinates.

DEFINITION 1.13. The Fj,(7)-submodule generated in A'(J*(7)) by the
Cartan forms is called the Cartan submodule. We denote this submodule by

CAL(J* ().

Our last step is to describe maximal integral manifolds of the Cartan
distribution on J*(7). To do this, we start with the “infinitesimal estimate”.
Let N C J*(r) be an integral manifold of the Cartan distribution. Then
from Proposition 1.7 it follows that the restriction of any Cartan form w onto
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N vanishes. Similarly, the differential dw vanishes on N. Therefore, if vector
fields X,Y are tangent to N, then dw |y (X,Y) = 0.

DEFINITION 1.14. Let Cgk be the Cartan plane at 6 € J*(r).

(i) We say that two vectors v, w € Cg’k are in involution, if the equality
dw g, (v,w) =0 holds for any w € CA*(J*(r)).
(ii) A subspace W C Cé’k is said to be involutive, if any two vectors
v,w € W are in involution.
(iii) An involutive subspace is called mazimal, if it cannot be embedded
into other involutive subspace.

Consider a point 0 = [¢]X € J¥(x). Then from Proposition 1.7 it follows
that the direct sum decomposition

k
Co, = Tp, © Ty,
is valid, where Té’k denotes the tangent plane to the fiber of the projection
Tk k—1 Passing through the point 6}, while Tg; is the tangent plane to the
graph of jx(p). Hence, the involutiveness is sufficient to be checked for the
following pairs of vectors v, w € Cé“k:
(i) v,w € 1
(ii) v,w €T, i;
(iii) v € Tj ,w € Tg‘;.
Note now that the tangent space Ty, is identified with the tensor product
SH(T¥)® By, x = m(0y) € M, where T} is the fiber of the cotangent bundle
to M at the point x, E, is the fiber of the bundle 7 at the same point while

S* denotes the k-th symmetric power. Then any tangent vector w € T, M
determines the mapping 6,,: S¥(T%) ® E, — S*YT}) ® E, by

k
5w(p1®-"®Pk)®€:Zm@"'®<ﬂiaw>®"'®ﬂk®€,
i=1
where ® denotes multiplication in S*(T7), p; € T, e € E,, while (-, -) is the
natural pairing between T and 7.

PROPOSITION 1.8. Let v,w € Cf . Then:

(i) All pairs v,w € Ty are in involution.
(ii) All pairs v,w € Tg; are in involution too.
(i) If v € Ty and w € Ti, then they are in involution if and only if
57rk,*(w)v =0.

PRrROOF. Note first that the involutiveness conditions are sufficient to be
checked for the Cartan forms (1.27) only. All three results follow from the
representation (1.26) by straightforward computations. O
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Consider a point 6 € J*(r). Let Fy, be the fiber of the bundle 7y, 1

passing through the point 0, and H C T, M be a subspace. Define the
7
space

Ann(H) = {v € Fy, | 6,v =0, Yw € H}.

Then, as it follows from Proposition 1.8, the following description of maximal
involutive subspaces takes place:

COROLLARY 1.9. Let ), = [¢]¥, ¢ € Tioe(7). Then any mazimal invo-
lutive subspace V. C C(’}k (m) is of the form

V = jr(p)«(H) & Ann(H)
for some H C T, M.

If V is a maximal involutive subspace, then the corresponding space
H is obviously 7 (V). We call dimension of H the type of the maximal
involutive subspace V' and denote it by tp(V').

ProPOSITION 1.10. Let V' be a maximal involutive subspace. Then

diszm(nTzkl) + 7,

where n = dim M, m = dimm, r = tp(V).

ProOF. Choose local coordinates in M in such a way that the vectors

dx1,...,0x, form a basis in H. Then, in the corresponding special system in
J¥ (), coordinates along Ann(H) will consist of those functions u}, |o| = k,
for which o7 =--- =0, = 0. O

We can now describe maximal integral manifolds of the Cartan distri-
bution on J*(7).

Let N C J*(x) be such a manifold 6, € N. Then the tangent plane to
N at the point 0y is a maximal involutive plane. Assume that its type is
equal to r(6y).

DEFINITION 1.15. The number
def

tp(N) = 0r).

p(N) ggﬁr( k)

is called the type of the maximal integral manifold N of the Cartan distri-
bution.

Obviously, the set

def
g(N) = {6 € N [ 7(6x) = tp(N)}
is everywhere dense in N. We call the points 0 € g(N) generic. Let 0y be
such a point and U be its neighborhood in N consisting of generic points.
Then:

7Using the linear structure, we identify the fiber Fy, of the bundle 7y r—1 with its
tangent space.
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(i) N' = m—1(N) is an integral manifold of the Cartan distribution on
JF (m);
(i) dim(N') = tp(V);
(iii) mk—1 |n7 : N' — M is an immersion.
THEOREM 1.11. Let N C J*¥=Y(x) be an integral manifold of the Cartan
distribution on J*(w) and U C N be an open domain consisting of generic
points. Then

U= {0y € J¥(n) | Lo, D Ty, U},
where O_1 = T k—1(0k), U = T 11 (U).

PROOF. Let V' = m;_1(U') C M. Denote its dimension (which equals
the number tp(N)) by 7 and choose local coordinates in M in such a way
that the submanifold V' is determined by the equations z,41 = -+ =2z, =0
in these coordinates. Then, since 4’ C J¥~1(7) is an integral manifold
and m,_1 |y : U — V' is a diffeomorphism, in the corresponding special
coordinates the manifold U’ is given by the equations

olelpi
W= B if o =(01,...,0,0,...,0),
0, otherwise,
forallj =1,...,m, |o| < k—1 and some smooth function ¢ = p(z1,...,z,).

Hence, the tangent plane H to U’ at 0_1 is spanned by the vectors of the
form (1.25) with ¢ = 1,...,7. Consequently, a point 6, such that Ly, O H,
is determined by the coordinates
ol
u) =4 0w,
arbitrary real numbers, otherwise,

ifo =(01,...,0,,0,...,0),

where j = 1,...,m, |o| < k. Hence, if 6y, 6; are two such points, then the
vector 0 — 0 lies in Ann(H), as it follows from the proof of Proposition
1.10. As it is easily seen, any integral manifold of the Cartan distribution
projecting onto U’ is contained in U/, which finishes the proof. O

REMARK 1.7. Note that maximal integral manifolds N of type dim M
are exactly graphs of jets jx(¢), ¢ € I'oc(m). On the other hand, if tp(N) =
0, then N coincides with a fiber of the projection 7y, x—1: J*(7) — J*=1(n).

2.3. Symmetries. The last remark shows that the Cartan distribution
on J¥(m) is in a sense sufficient to restore the structures specific to the jet
manifolds. This motivates the following definition:

DEFINITION 1.16. Let U, U’ C J*() be open domains.

(i) A diffeomorphism F: U — U’ is called a Lie transformation, if it

preserves the Cartan distribution, i.e.,
k k

for any point 0 € U.



22 1. CLASSICAL SYMMETRIES

Let £,&" C J*(r) be differential equations.

(ii) A Lie transformation F': U — U is called a (local) equivalence, if
FUunég =u'né.

(i) A (local) equivalence is called a (local) symmetry, if &€ = &’ and
U =U'. Such symmetries are also called classical®.

Below we shall not distinguish between local and global versions of the
concepts introduced.

REMARK 1.8. There is an alternative approach to the concept of a sym-
metry. Namely, we can introduce the Cartan distribution on £ by setting

Co(6) Y eonTpe,  Oeé,

and define interior symmetries of £ as a diffeomorphism F': £ — & preserv-
ing C(€). In general, the group of these symmetries does not coincide with
the above introduced. A detailed discussion of this matter can be found in
[60].

EXAMPLE 1.11. Consider the case J%(w) = E. Then, since any n-di-
mensional horizontal plane in Ty F is tangent to some section of the bundle
7, the Cartan plane Cg coincides with the whole space TyE. Thus the Car-
tan distribution is trivial in this case and any diffeomorphism of F is a Lie
transformation.

EXAMPLE 1.12. Since the Cartan distribution on J*(r) is locally deter-
mined by the Cartan forms (1.27), the condition of F' to be a Lie transfor-
mation cam be reformulated as

m
Frol =) > Mo j=1,....m, o<k, (1.28)

a=1|r|<k

where A} are smooth functions on J¥(7). Equations (1.28) are the base
for computations in local coordinates.

In particular, if dim7 = 1 and k& = 1, equations (1.28) reduce to the only
condition F*w = Aw, where w = du — )" | uy, dz;. Hence, Lie transforma-
tions in this case are just contact transformations of the natural contact
structure in J! (7).

EXAMPLE 1.13. Let F: J%(x) — J%(7) be a diffeomorphism (which can
be considered as a general change of dependent and independent coordi-
nates). Let us construct a Lie transformation F(1) of J'(7) such that the

8Contrary to higher, or generalized, symmetries which will be introduced in the next
chapter.
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diagram
)
JH(m) —— J}(7)
71,0 71,0
F
JO () —— JO(7)
is commutative, i.e., m g o FO = Fo m1,0. To do this, introduce local
coordinates x1,..., Ty, ul,...,u™ in JO(r) and consider the correspondmg

special coordinates in J!(7) denoting the functions u{ by p!. Express the

transformation F' in the form
x> Xi(wy, . ap,ul, o u™), W= Uz, .., ut, . u™),
i=1,...,n,j=1,...,m, in these coordinates. Then, due to (1.28), to find
F(l):pg r—>Pi](acl,...,xn,u17...,um,p%,...,p:’f),

one needs to solve the system

vl - anpg dX; = il N (du® — ip? dz;),

j =1,...,m, with respect to the functions Pl-j for arbitrary smooth coeffi-
cients A, Using matrix notation p = ||p!||, P = ||P/|| and A = [|A\*?||, we
see that
ou 0X
A=——Po—
ou ° u
and
oU  oU X ax \ '
P=—+— — + — 1.29
<8x+60p>o<8x+8u0p> ’ (1:29)
where
0X oxX ou _|ou~ ou _ ||ou“
or || Oxg u 8u3 or | Oxg ou | ouP

denote Jacobi matrices. Note that the transformation F()| as it follows
from (1.29), is undefined at some points of J!(r), i.e., at the points where
the matrix 0X/0z + 0X/0u o p is not invertible.

ExAMPLE 1.14. Let m: R"xR™ — R" i.e., dim 7 = dim M and consider
the transformation u’ +— z;, x; — u’, i = 1,...,n. This transformation is
called the hodograph transformation. From (1.29) it follows that the corre-
sponding transformation of the functions pg is defined by P = p~1.



24 1. CLASSICAL SYMMETRIES

EXAMPLE 1.15. Let &; be the equation determined by the de Rham
differential (see Example 1.6), i.e., & = {dw = 0}, w € AY(M). Then for
any diffeomorphism F': M — M one has F*(dw) = d(F*w) which means
that F' determines a symmetry of £;. Symmetries of this type are called
gauge symmetries.

The construction of Example 1.13 can be naturally generalized. Let

F: J¥(m) — J*(7) be a Lie transformation. Note that from the defi-
nition it follows that for any maximal integral manifold N of the Cartan
distribution on J¥(7), the manifold F(N) possesses the same property. In
particular, graph of k-jets are taken to n-dimensional maximal integral man-
ifolds. Let now 0x11 be a point of J k“(w) and let us represent ;1 as a pair
(O, Ly, ,,), or, which is the same, as a class of graphs of k-jets tangent to
each other at 6. Then, since diffeomorphisms preserve tangency, the image
Fi(Lg,_,) will almost always (cf. Example 1.13) be an R-plane at F(0).

Denote the corresponding point in J*+1(7) by F(l)(9k+1).

DEFINITION 1.17. Let F: J¥(r) — J*¥(x) be a Lie transformation. The
above defined mapping F(1: ¥+ (1) — J*+1(7) is called the 1-lifting of F.

The mapping F(V) is a Lie transformation at the domain of its definition,
since almost everywhere it takes graphs of (k+ 1)-jets to graphs of the same

kind. Hence, for any [ > 1 we can define F() o (FU=1)1) and call this
map the [-lifting of F'.

THEOREM 1.12. Letm: E— M be an m-dimensional vector bundle over
an n-dimensional manifold M and F: J*(r) — J*() be a Lie transforma-
tion. Then:

(i) If m > 1 and k > 0, the mapping F is of the form F = G®*) for some

diffeomorphism G: JO(w) — JO(7);
(i) If m =1 and k > 1, the mapping F is of the form F = G*=1) for
some contact transformation G: J1(7) — J(7).

PROOF. Recall that fibers of the projection 7 _1: J¥(m) — JF~1(7)
for k > 1 are the only maximal integral manifolds of the Cartan distribution
of type 0 (see Remark 1.7). Further, from Proposition 1.10 it follows that
in the cases m > 1, k > 0 and m = 1, kK > 1 they are integral manifolds
of maximal dimension, provided n > 1. Therefore, the mapping F' is 7y .-
fiberwise, where e = 0 for m > 1 and € = 1 for m = 1.

Thus there exists a mapping G: J*(7w) — J®(m) such that 7. o F =
G o . and G is a Lie transformation in an obvious way. Let us show
that F = G*~9). To do this, note first that in fact, by the same reasons,
the transformation I generates a series of Lie transformations G;: J!(7) —
Ji (), l =¢,..., k, satisfying m—10G = G_jomy_1and Gy, = F, G. = G.
Let us compare the mappings F' and G,(Cl_)l.

From Proposition 1.6 and the definition of Lie transformations we obtain

Fu((mr—1)7 ' (Loy)) = F(C5.) = Cr(oy) = (Tii—1)x " (Lr(oy))
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for any 0y € J¥(7). But Fu((mg-1)s"(Lo,)) = (Thi—1)s " (Gr-1+(Lo,)) and
consequently G _1,«(Lg,) = Lr,)- Hence, by the definition of 1-lifting we

have F' = G,(Cl_)l. Using this fact as a base of elementary induction, we obtain
the result of the theorem for dim M > 1.

Consider the case n = 1, m = 1 now. Since all maximal integral man-
ifolds are one-dimensional in this case, it should treated in a special way.
Denote by V the distribution consisting of vector fields tangent to the fibers

of the projection 7y, ;1. Then

for any Lie transformation F', which is equivalent to F' being 7y, ,,_1-fiberwise.
Let us prove (1.30). To do it, consider an arbitrary distribution P on a
manifold NV and introduce the notation

PD ={X € D(N) | X lies in P} (1.31)
and
Dp={XeD(N)|[X,Y]eP, VY € PD}. (1.32)
Then one can show (using coordinate representation, for example) that
DY = DC* N Diper pery

for kK > 2. But Lie transformations preserve the distributions at the right-
hand side of the last equality and consequently preserve D). O

We pass now to infinitesimal analogues of Lie transformations:

DEFINITION 1.18. Let m: E — M be a vector bundle and £ C J*(r) be
a k-th order differential equation.

(i) A vector field X on J¥(7) is called a Lie field, if the corresponding
one-parameter group consists of Lie transformations.

(ii) A Lie field is called an infinitesimal classical symmetry of the equa-
tion &, if it is tangent to &£.

It should be stressed that infinitesimal classical symmetries play an im-
portant role in applications of differential geometry to particular equations.

Since in the sequel we shall deal with infinitesimal symmetries only, we
shall skip the adjective infinitesimal and call them just symmetries. By
definition, one-parameter groups of transformations corresponding to sym-
metries preserve generalized solutions.

REMARK 1.9. Similarly to the above considered situation, we may in-
troduce the concepts both of exterior and interior infinitesimal symmetries
(see Remark 1.8), but we do not treat the second ones below.

Let X be a Lie field on J*(7) and F;: J*(r) — J¥(7) be its one-param-
eter group. The we can construct [-liftings Ft(l): JHH (7)) — Jk(r) and

the corresponding Lie field X on J**+ (7). This field is called the I-lifting
of the field X. As we shall see a bit later, liftings of Lie fields, as opposed
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to those of Lie transformations, are defined globally and can be described
explicitly.

An immediate consequence of the definition and of Theorem 1.12 is the
following result:

THEOREM 1.13. Letw: E — M be an m-dimensional vector bundle over
an n-dimensional manifold M and X be a Lie field on J*(r). Then'

(1) If m > 1 and k > 0, the field X is of the form X = Y®) for some

vector field Y on JO( );
(ii) If m =1 and k > 1, the field X is of the form X =Y =1 for some
contact vector field Y on J(r).

Coordinate expressions for Lie fields can be obtained as follows. Let
T1,...,Tn,...,Uy,... be a special coordinate system in J¥(7) and w} be
the corresponding Cartan forms. Then X is a Lie field if and only if the
following equations hold

I oD SR S E T
a=1|r|<k

where M$ are arbitrary smooth functions. Let the vector field X be repre-

sented in the form
X = ZX -+ Z > Xﬂa -

J=1o|<k
Then from (1.33) it follows that the coefficients of the field X are related by
the following recursion equalities

X7, = Di(X2) ZUUH (1.34)

where

Di = 5 +Z >l (1.35)

j=110|>0

are the so-called total derivatives.
Recall now that a contact field X on J!(7), dim7 = 1, is completely

determined by its generating function which is defined as f def xw, where
w = du—Y_, uy, dz; is the Cartan (contact) form on J! (7). The contact field
corresponding to a function f € Fi(m) is denoted by X and is expressed as

Zai]; ail ( Z““au )

of af\ 9
+;(axi .50y, (130)

1;
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in local coordinates.

Thus, starting with a field (1.36) in the case dimm = 1 or with an
arbitrary field on J(w) for dimm > 1 and using (1.34), we can obtain
efficient expressions for Lie fields.

REMARK 1.10. Note that in the case dim7 > 1 we can introduce
vector-valued generating functions by setting fI def ixw!, where w/ =
du/ — >, u}, dx; are the Cartan forms on JY(m). Such a function may be
understood as an element of the module F;(m, 7). The local conditions that
a section f € Fj(m, ) corresponds to a Lie field is as follows:

ofr off  of«

= 3 = 07 « 7é ﬁ
ouf, ouf, aui

In Chapter 2 we shall generalize the theory and get rid of these conditions.
We call f the generating section (or generating function, depending on
the dimension of 7) of the Lie field X, if X is a lifting of the field X.

Let us finally write down the conditions of a Lie field to be a symmetry.
Assume that an equation € is given by the relations Fl =0,...,F" =0,
where F7 € Fi(m). Then X is a symmetry of £ if and only if

,
X(F)y=Y MF*  j=1...,m
a=1

where N, are smooth functions, or
X(F)|g =0 j=1,...,r (1.37)

These conditions can be rewritten in terms of generating sections and we
shall do it in Chapter 2 in a more general situation.

Let £ C J*(n) be a differential equation and X be its symmetry. Then
for any solution ¢ of this equation, the one-parameter group {A;} corre-
sponding to X transforms ¢ to some new solution ¢; almost everywhere. In
special local coordinates, evolution of ¢ is governed by the following evolu-
tionary equation:

Op _ Oy  Op
87’5 *f(xh "7xn7Q07 axla"'78xn)7

if 7 is one-dimensional and f is the generating function of X, or by a system
of evolutionary equations of the form

(1.38)

9 _ 9t Op™

—— = fJ LR, s S 1.39

at f (xla yTn,y, Py 2 8x17 3 8xn )7 ( )
where j = 1,...,m = dim7 and f/ are the components of the generating

section.
In particular, we say that a solution is invariant with respect to X, if
it is transformed by {A:} to itself, which means that it has to satisfy the
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equation

dp Ip

Ty Py Ty ey

n ¥ axl alin

or a similar system of equations when dim7 > 1. If g is a subalgebra in the

symmetry algebra of £, we can also define g-invariant solutions as solutions
invariant with respect to all elements of g.

F(z1,.. ) =0 (1.40)

2.4. Prolongations. The idea of prolongation originates from a simple
observation that, a differential equation given, not all relations between
dependent variables are explicitly encoded in this equation. To reconstruct
these relations, it needs to analyze “differential consequences” of the initial
equations.

ExaAMPLE 1.16. Consider the system
Uggy = vs, Ugyy = Vg + Uy.
Then, differentiating the first equation with respect to y and the second one
with respect to x, we obtain
Uy = 20yVyy, Ugzyy = Uz + Uzy
and consequently
20yVyy = Vgg + Ugy.

ExXAMPLE 1.17. Let
1,
Vg = U, vt:§u =+ Uy .

Then
Ut = Uy + Ugy
by a similar procedure.

EXAMPLE 1.18. Consider equations (1.19) from Example 1.8 on p. 15.
Then as consequences of these equations we obtain equations (1.20) which
may be viewed at as compatibility conditions for equations (1.19). One can
see that if the functions Vf satisfy (1.20), i.e., if the connection V is flat,
then these conditions are void; otherwise we obtain functional relations on
the variables u].

Geometrically, the process of computation of differential consequences is
expressed by the following definition:

DEFINITION 1.19. Let £ C J*¥(r) be a differential equation of order k.
Define the set

51 = {0k+1 € Jk+1(7r) ’ 7Tk+1,k(9k+l) (S g,Lng C T7rk+1,k(9k+l)g}

and call it the first prolongation of the equation &.
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If the first prolongation £' is a submanifold in J*+1(7), we define the
second prolongation of £ as (€)' ¢ J*+2(7), etc. Thus the I-th prolongation
is a subset & C J*+ (7).

Let us redefine the notion of I-th prolongation directly. Namely, take a
point 05 € £ and consider a section ¢ € T'jo¢(7) such that the graph of ji(¢)
is tangent to £ with order I. Let 74(6;) = z € M. Then [p]k*! is a point of
JF+ (1) and the set of all points obtained in such a way obviously coincides
with &', provided all intermediate prolongations £, ..., ! be well defined
in the sense of Definition 1.19.

Assume now that locally £ is given by the equations

Fl=0,...,F" =0, FI e F(m)

and 0, € &£ is the origin of the chosen special coordinate system. Let u' =

O w1, .. T0), ..., u™ = @™ (z1,...,2,) be a local section of the bundle 7.
Then
A . olol e
] *FI = Y
]k((p) (xlv y Ly ) 8x0 ;

x; + o(x),

aFJ OF7 flol+1
2:: 8301 P ou¥ 0xyy1,
where the sums are taken over all admissible indices. From here it follows,
that the graph of ji(y) is tangent to £ at the point under consideration if

and only if
" [ OFI OF7 glol+1 o
Z 0x; + e oug 0xg41,

=1

O

O
Hence, the equations of the first prolongation are

" [ OFI .
SIS S

=1

From here and by comparison with the coordinate representation of prolon-
gations for nonlinear differential operators (see Subsection 1.2), we obtain
the following result:
PROPOSITION 1.14. Let €& C J* () be a differential equation. Then
(i) If the equation & is determined by a differential operator A: T'(7w) —
[(n'), then its I-th prolongation is given by the l-th prolongation
AW T (1) — T(n)) of the operator A.
(ii) If € is locally described by the system of equations
F'=0,...,F" =0, FI e Fy(n),
then the system
D,F7 =0, lo| <1, j=1,...,rm (1.41)
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where Dy def D' o---0 D3~ corresponds to E'. Here D; stands for

the i-th total demvatwe (see (1.35)).

From the definition it follows that for any I > I’ > 0 one has the
embeddings 7rk+l’k+l/(€l) c &' and consequently one has the mappings
Tl 41/ - gl

DEFINITION 1.20. An equation & C J*(7) is called formally integrable,
if

(i) all prolongations £' are smooth manifolds
and

(ii) all the mappings mj 41 41: EFF — £ are smooth fiber bundles.

In the sequel, we shall mostly deal with formally integrable equations.

The rest of this chapter is devoted to classical symmetries of some par-
ticular equations of mathematical physics.

3. Symmetries of the Burgers equation

As a first example, we shall discuss the computation of classical symme-
tries for the Burgers equation, which is described by

Up = Uy + Ugg- (1.42)

The equation holds on J?(x,t;u) = J?(w) for the trivial bundle m: R x
R? — R? with x, ¢t being coordinates in R? (independent variables) and u a
coordinate in the fiber (dependent variable). The total derivative operators
are given by

D, = g +u g +u i
T Ox T ou " Ouy,
+u 0 +u 0 +u 0 +u 0 +
xt au TTIT aUM xxt auﬂ xtt 8Utt )
Dy = 0 +u 0 +u 0
ot " tou " ouy
0 0 0 0
+ wg Bu, + Ugat Du. + Ugtt 77— By + Uy Dun + - (1.43)
We now introduce the vector field V' of the form
0 0 0 0
V=Vt VItV — + Ve — 1.44
oV at a T D’ (144)

where in (1.44) V* V! V% are functions depending on x, ¢, u, while the
components with respect to 9/0uy, 0/0us, 0/Uyy, O/OUgt, O/Ouy, which
are denoted by VU= VUt Vtuax T Uzt VUit are given by formula (1.34) and
are of the form

Vi = Dp(VY = up VT — V) 4 g VE 4 ug VY,

Vi = Dy(V¥ — ugV® — V) 4+ ug VE + uy VY,
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Y laz — Dg(V“ — uxVx — utVt) + Umcwi + Umztvta
Yt — D;th(VU — vax — Utvt) + umxtvm + u:pttvt7
Vit = DEVY — u V' — w V') + gy VO + u V7. (1.45)

The symmetry condition (1.37) on V', which is just the invariance condition
of the hypersurface £ C J?(z,t;u) given by (1.42) under the vector field V,
results in the equation

Vi — VY — Vi — Vier =0, (1.46)

Calculation of the quantities V%, V¥ VU= required in (1.46) yields

DO (VY (0 o)
oz * Ou "\ oz * ou oz T ou )’
Vit = oVt ut% —u (% ut%) <8Vt —i—utth)
ot ou ot ou ot 0
PPVEPVE  LORVe gy
V= T T e g g T ey
—2u (%—i—u %> —2u (8_Vt+u 8—‘/t>
"\ 0 " ou “\or T ou
P2V Ve Ve avT
- < 927 T2 guay T g2 T ey, )
217t 27t 21t t
o <%7‘2 2t gxgu o %z‘; um%lu) ' (1.47)

Substitution of these expressions (1.47) together with

Ut = Uly + Uy,
Ugt = U2 + Uty + Upzz, (1.48)
into (1.46) leads to a polynomial expression with respect to the variables
Uppr, Upz, Uz, the coeflicients of which should vanish.

The coefficient at .., which arises solely from the term u,; in V%=
leads to the first condition

ox T ou

from which we immediately obtain that OV¢/dz = 0, OV!/0u = 0, or

=0, (1.49)

Vix, t,u) = Fy(t), (1.50)
i.e., the function V! is dependent just on the variable ¢.

REMARK 1.11. Although V! is a function dependent just on one variable
t, we prefer to write in the sequel partial derivatives instead of ordinary
derivatives.
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Now, using the obtained result for the function V*(z,t,u) we obtain
from (1.46), (1.47), (1.48), (1.49) that the coefficients at the corresponding
terms vanish:

ov®
czly 2 =0,
ozt ou
oVt oveE
oz . ——— +2 =0,
! ot 0w
o*ve
3. _
ux : W = 0,
a2vu 82vx
2 - 2 —
e ou? * OxOu 0,
L OV VU vt YV Y
v ot ot Oz drou  Ox2
u u 21U
1: o —uav _oV = 0. (1.51)

ot oz O0z?
From the first and the fourth equation in (1.51) we have
Ve =F1<l',t), 1% ZFQ(.%',t) —|—F3(m,t)u. (1.52)

Substitution of this result into the second, fifth and sixth equation of (1.51)
leads to
8F0(t) _ 26F1(.1‘,t) —0

ot ox
8F1 (CL‘, t) 8F0(t)
5 +u o + Fo(x,t) + uF3(x,t)
8F1($,t) 8F3({B,t) 82F1<$,t) o
B 2 ox 02
OFy(z,t) u@Fg(x,t) B 0?Fy(z, 1)
ot Ox Ox?
8F3(J,',t) 8F3($?t) 82F3(xat) _
+u < T e =0. (1.53)
We now first solve the first equation in (1.53):
. T 8F0(t)
Fl(x’t) - 5 ot +F4(t)a (154)

The second equation in (1.53) is an equation polynomial with respect to u,
so we obtain from this the following relations:

OFy(1)

+ 2F3(£L‘,t) =0,

ot
OF3(x,t) OF4(t) 0 Fy(t)
o TP a Tt
while from the third equation in (1.53) we obtain
OF3(x,t)
Ox

+2Fy(z,t) =0, (1.55)

=0,
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8F3(x,t) _ 82F3(33,t) _ 8F2(a:,t)

ot , Ox? Ox ’
) OB (156)
From (1.55) we can obtain the form of Fy(, ) and Fy(z,1), i.e.,
Fy(z,t) = _%8178075@)’
Pz, t) = —a%t(t) - gazgfz(t) (1.57)

The first and second equation in (1.56) now fulfill automatically, while the
third equation is a polynomial with respect to x; hence we have

82F4(t) §83Fg(t)

=0, 1.58
ot2 2 o3 ( )

from which we finally arrive at
Fo(t) = c1 + cot + e3t?,  Fyu(t) = ¢4 + cst. (1.59)

Combining the obtained results we finally have:
V¥(z,t,u) =cq + %CQQZ + cst + csat,
Vi(z,t,u) = c1 + cat + c3t?,
V¥ (x,t,u) = —c5 — c3x — %czu — c3tu,

which are the components of the vector field V', whereas c1, ..., c5 are arbi-
trary constants.

From (1.59) we have that the Lie algebra of classical symmetries of the
Burgers equation is generated by five vector fields

Vl:%a 9 1 0

V= ot T T 2
I@,:xt%H?%—(Htu)%,

V4—(%,

Vs = t% — a%. (1.60)

The commutator table for the generators (1.60) is presented on Fig. 1.1.
Note that the generating functions ¢; = V; _ (du — uy, dz — uy dt) corre-
sponding to symmetries (1.60) are

Y1 = —Uyg,

1
pg = —§(u + Uy + 2tuy),



34 1. CLASSICAL SYMMETRIES

ViVl [Vi[Val Va | Vi | V5
%1 0| V1|2V, 0 Vi
Va 0 [ Vs | -1Va|1V5
Vs 0 —Vs 0
Vi 0 0
Vs 0

FiGure 1.1. Commutator table for classical symmetries of
the Burgers equation

03 = —(x + tu + xtu, + tuy),
P4 = —Ug,
w5 = —(tug +1). (1.61)

The computations carried through in this application indicate the way
one has to take to solve overdetermined systems of partial differential equa-
tions for the components of a vector field arising from the symmetry con-
dition (1.37). We also refer to Chapter 8 for description of computer-based
computations of symmetries.

4. Symmetries of the nonlinear diffusion equation

The (3 + 1)-nonlinear diffusion equation is given by
AP + ku? = uy, (1.62)

where u = u(x,y,2,t), A = 0%/02> + 0%/0y*> + 0?/022, p,k,q € Q, and
p# -1

We shall state the results for the Lie algebras of symmetries for all
distinct values of p, k, q.

First of all we derived that there are no contact symmetries, i.e., the
coefficients of any symmetry V,

0 0 0 0 0
—_ T Yy z 7 t u_ -
1% Vax+vay+vaz+vaﬁ+vaw

Ve VY VZ VE V% depend on z, y, 2, t, u only.
REMARK 1.12. Such symmetries are called point symmetries contrary

to general contact symmetries whose coefficients at 9/0z; and 9/0u may
depend on coordinates in J!(m) (see Theorem 1.12 (ii)).

Secondly, for any value of p, k, ¢, equation (1.62) admits the following
seven symmetries:

0 0 0 0
Vl—%,‘/é 8_3/7‘/3_({')2,%_&’
0 0 0 0 0 0
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We now summarize the final results, while the complete Lie algebras are
given for all the cases that should be distinguished.

4.1. Case 1: p =0, k = 0. The complete Lie algebra of symmetries of
the equation

Au) = uy (1.64)
is spanned by the vector fields Vi, ..., V7 given in (1.63) and
Vo = 2t§ — xuaa
Vi = Qt% - yU88
Vi1 = 2t% — zué%,
Via :x;m +y§y +Z§Z+2t§t,

0 0 0 0 1 0
Vig =t +yt— + 2t =— + Tyt 22 —6t)— (1.65
3= wtg Yyl g Tl Ty my m G (165)
together with the continuous part F(x,y, z,t)0/0u, where F(x,y, z,t) is an
arbitrary function which has to satisfy (1.64). In fact, all linear equations
possess symmetries of this type.

4.2. Case 2: p =0, k£ # 0, ¢ = 1. The complete Lie algebra of
symmetries of the equation

Au) + ku = ug (1.66)
is spanned by the fields Vi, ..., V7 given in (1.63) and

0
Vé —’U,%,

0 0
\% —2t2 — YUu—

0 0
Vll = 2t& — ZU@,

0 0 0 0

Vig =5 V5, a2+ 2hut o

0 0 0 ,0 1 9 0
V13—$t8 —l—yta—-i- t8_+t 8_—’_1 w(4kt* — 2% — o — 22 —6t)8u

(1.67)
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Since (1.66) is a linear equation, it also possesses symmetries of the form
F(x,y,z,t)0/0u, where

A(F) + kF = F;. (1.68)

4.3. Case 3: p =0, k # 0, ¢ # 1. The complete Lie algebra of

symmetries of the equation

Au) + ku? = wy (1.69)
is spanned by Vi,..., V7 given in (1.63) and the field

0 0 0 0 2 0

ngx——l—ya—y—i-z——i-2t—

Ox 0z ot q-— 1“0u” (1.70)

4.4. Case 4: p = —4/5, k = 0. The complete Lie algebra of symmetries

of
A(ut?) = (1.71)
is spanned by Vi,..., V7 given in (1.63) together with the fields
0 0
— 4t 4 Bu—
Vo =i, toug,

0 0 0 0
WA WA LA i
Vo x8$+ y8y+ “52 5u8u’

0 0 0 0
N S RS N CANTI VR GNP SN o
Vio= (2" —y Z)8x+ :ryay+ :L‘zaz 5mu8u,
) s o 9 D 9 )
= 2y~ + (— — AL oy L syu
Vi1 xy8x+( ¥ +y Z)8y+ Yy Byuau,
) ) s o g O 9
=21z 2yr 4 (—a? — Y s 1.72
Via xzax—l- yzay—i-( T y%—z)a,z 5zuau (1.72)

4.5. Case 5: p # —4/5, p # 0, k = 0. The complete Lie algebra of
symmetries of the equation

A(uPT) = uy (1.73)
is spanned by Vi, ..., V7 given in (1.63) and two additional vector fields

ot ou
0 0 0 0

4.6. Case 6: p = —4/5, k # 0, ¢ = 1. The complete Lie algebra of
symmetries of the equation

A + ku = (1.75)
is spanned by Vi,..., V7 given in (1.63) and
4kt a 4kt a

Vs 26T§+kueT%,
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0 0 0 0

0 0 0 3}
(2,22 _
Vio=(z* -y~ — = )ax + 2zy a9 + 22z 5 Sxu 5

U PP R R
V11—2xyax+( Tt +y Z)8y+2yzaz 5yu6u,

N T Y )
V12—2xzam—|—2yzay+( x y—l—z)az 5zuau. (1.76)

4.7. Case 7: p #0, p# —4/5, k # 0, ¢ = 1. The complete Lie algebra
of symmetries of the equation

AP + ku = uy (1.77)
is spanned by Vi,..., V7 given in (1.63) and by

0 0
Ve = —pkt
s8=¢ <8 4ku8u)

0 0 d 0
Vg—pxa +pya +pza—+2u% (1.78)

4.8. Case 8: p#0, p# —4/5, ¢ = p+ 1. The complete Lie algebra of
symmetries of the equation

AP + kuP T =y (1.79)
is spanned by Vi, ..., V7 given in (1.63) and by the field

Vs = pt2 —u—. (1.80)

4.9. Case 9: p #0, p # —4/5, ¢ # 1, ¢ # p+ 1. The complete Lie
algebra of symmetries of the equation

A(uPth) + ku? = uy (1.81)
is spanned by Vi,..., V7 given in (1.63) and by the field

0 0 0 0 0
Vs =(— -1 — — — 20 — Dt— —2u—. (1.82
c=Crta=1) (o by g ) 4 2a - gy - g (L8
The results in these nine cases are a generalization of the results of
other authors [13]. We leave to the reader to describe the corresponding Lie

algebra structures in the cases above.

5. The nonlinear Dirac equations

In this section, we consider the nonlinear Dirac equations and compute
their classical symmetries [33]. Symmetry classification of these equations
leads to four different cases: linear Dirac equations with vanishing and non-
vanishing rest mass, nonlinear Dirac equation with vanishing rest mass, and
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general nonlinear Dirac equation (with nonvanishing rest mass). We con-
tinue to study the last case in the next chapter (Subsection 2.2) and compute
there conservation laws associated to some symmetries.

We shall only give here a short idea of the solution procedure, since all
computations follow to standard lines. The Dirac equations are of the form
[11]:

3

Zl 52 g;f (gg) +mocth + nop (@) =0, (1.83)
where
T4 = ct,
b = (11,4, 13, 90) ",
O = (¥1, 93, =95, —3), (1.84)

T stands for transposition, * is complex conjugate and =1, 72, 3, Y4 are
4 x 4-matrices defined by

00 0 —i 0 0 0 -1
10 0 —i O 0 01 0
=10 i 0o o =10 10 0]
i 0 0 O -1 0 0 O
0 0 —i 0 10 0 O
0 0 0 1 01 0 0
B=1io0 0 of =10 0 -1 0 (1.85)
0 —¢ 0 O 00 0 -1
After introduction of the parameter
h
A= — 1.86
— (1.86)

we obtain
AZ T (1) = Az—(w) +9+ Nep(fy) =0 (1.87)

In computatlon of the symmetry algebra of (1.87) we have to distinguish
the following cases:

1. ¢ =0, A~! = 0: Dirac equations with vanishing rest mass,

2. € =0, A™! # 0: Dirac equations with nonvanishing rest mass,

3. € 20, A™! = 0: nonlinear Dirac equations with vanishing rest mass,

4. € #0, A~! % 0: nonlinear Dirac equations.
These cases are equivalent to the respective choices of mg and ng in (1.83):
e.g., e =0, A1 =0 is the same as mg = ng = 0, etc.

We put ¢; = uw? +iv/, j =1,...,4, and obtain a system of eight coupled
partial differential equations

Mot — Muj + s + Mot + (1 + MeK)u! =0,
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M2+ dus — Avs + i+ (14 MeK)u? =0,
A0 4 Aud — Aok — Avd 4 (1 + APeK)ud =0,
— v — Auj 4+ Aog — Avg + (1 + XeK)u' =0,
At — Ay — dud — A + (1 4+ N3eK)v' =0,
—/\qu + AUS’ + /\u§ — /\ui +(1+ )\?’eK)UQ =0,
A 4 Avd 4 dud 4+ dud + (14 MeK)vd =0,
At — Mg — Mg+ duj + (14 NeK)v'! =0, (1.88)
where
up = g—i, v, = 2—;;, Gok=1,...,4,
and

K = (u')’ + (u®)” = (u®)” = (u")” + (01)* + ()% = (2°)" = (v)%. (1.89)
Thus (1.87) is a determined system & C J!() in the trivial bundle 7: RS x
R* — R%.

Using relations (1.34) and symmetry conditions (1.37), we construct the
overdetermined system of partial differential equations for the coefficients of
the vector field V/

L0 4 0

B, B,
S AT L PR 1.
1% R A ek A v B (1.90)

From the resulting overdetermined system of partial differential equations
we derive in a straightforward way the following intermediate result:

1: Fo .. F® are independent of u',...,v*,
2: F*t ..., F* are polynomials of degree 3 in x1, ..., x4,
3: F“l7 e F" are linear with respect to u', ..., vt (1.91)

Combination of this intermediate result (1.91) with the remaining system of
partial differential equations leads to the following description of symmetry
algebras in the four specific cases.

5.1. Case 1: ¢ = 0, A™' = 0. The complete Lie algebra of classical
symmetries for the Dirac equations with vanishing rest mass is spanned by 23
generators. In addition, there is a continuous part generated by functions

F“l, e ,F”4 dependent on z1,...,z4 and satisfying the Dirac equations
(1.88) due to the linearity of these equations. The Lie algebra contains the
fifteen infinitesimal generators of the conformal group X1, ..., X15 and eight
vertical vector fields Xyg, ..., Xo3:
0 0 0 0
X1 =— =—, Xg=—, Xy=—
1 8$1 ; 2 P} ’ 3 61’3 ) 4 a$4 ’
0 0 0 0 0
X:—9 9 L 12 2 0 3 0 4 9
> 20z 1 0z Y aut + Ou? Ou3 v Out
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0 0 0 0
10 o 0 3 0 40
tu ol Y a2 tu o ot

o1 Oxs oul ou? ou3 out
0 0 0 0
2 1 4 3
TVl TV a2 TV e TV Bt
0 0 0
X — —Qpa— 4+ Qo —— 2_Y 1 4 3
T x3ax2 oz T our TV 8wz T BuB v out

Xg = 2oy~ F 29616—4 + u4w + u3% + UQ% + u1%
+U4T+U3W+UZ%+ 18(24,
X9—29U4(9 ; +2$28ix4+v4%— 3%—1—’02%— 1%
X1 = xla— —|—xga(; +m38ix3 —i—m%,
X = (23 — 23 — 23 + xi)(%l + 23:13:2(%2 + 23:13:3% + 23:13:47
— (Bz1ut — xovt — z3u® — x4u4)w
— (3z1u® + mov? + z3u' — x4u3)%
— (3zu® — zo0® — zaut — $4u2)%
— (Bzyut + zpv? + 2303 — mu”%
— (3z1v! 4 zout — 230? — 1:4@4)%
— (3m1v2 — zou® + z3vt — mﬁ)%
— (3z10° + zou® — z30* — xw%%
0

— (3:1:11)4 — zout 4+ 230% — x4v1)—,
ovt
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Xi3 = 2$1x28—1 - (x% - azg + :c% - xi)ai + 2:623338 + 2:623348 o
— (3x2u1 + zot — z30? — xwﬁﬁ
— (3:L“2u2 — 210% — z3vt + 1:41)3)%
- (3:U2u3 + 2103 — z30t — xw%%
— (3:r2u4 — vt — 230 + xwﬂw
— (30t — zut + z3u® + x4u4)w
- (3362112 + z1u? + zgut — mu%%
— (3x90® — zyu® 4 23ut + x4u2)ﬁ
— (Bzov? 4+ zyut + 2303 — mu”%,
X = 2x1$3i + 2x2$3i — (x% + x% — CL‘% — $i) + 2wy ——
O0x; Oz O3 Oxy
— (3:1:3u1 + zov? + zyu? — x4u3)%
— (3m3u2 + zov! — zut + muﬂ%
— (3x3u3 + zovt + zut — mu”%
— (3:):3u4 + 290 — zud + x4u2)%
— (330t — wou® + x0? — mv%%
— (33;31)2 — zoul — ot + mvﬂ%
— (33:31)3 — zout + 210t — x4vl)a?)3
— (3:631)4 — zou® — z0® + xw%%,
X5 = 2$1$4£ + 2$2$48 + 2w3$48i3 + (22 + o+ a2+ :Lci)aix4
— (3:L“4u1 — zovt — zgu® — x1u4)%
- (3m4u2 + 2903 + zgut — x1u3)%
0

2 1 2
— 3:U4u3 — 2oV — T3U — T1U°)=—=
( ) 53
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The result is in full agreement with that of Ibragimov [5].

1. CLASSICAL SYMMETRIES

0

— (3zqu? U pasu? — mul) ==

(B3z4u™ + xov™ + 73 1 )8u4
0

— (31’41}1 + xout — xg0® — 1:1114)%
0

— (3z40% — 3 vt — 0% —
(Bx4v® — zou® + x3 1 )81;2
0

— (3:1:4113 + xou® — xgv’ — xlvg)%
0

(3t — 1 v? — )=
( T4U ToU +.%'3 1 )81}4

X16:u1%+u2%+u3%+u4%+v1%
+v2?+v3%+v4%,

X8 = 3w+u4%+ulm+u2%+v3%
+U4W+vl%+ 2884,
ﬂsazﬂz%_ 18?14’

Xo0 = 1%4— 2%4—113%—# 4%— 1%
.0 40 40

ov? ov3 ovt’

Xy = 2%7 1%74%+v3%+ 2%
g g+ g

X22—U3F+U4W+01%+v2%_ 3%
A 9 _ 1i_ 2 0

ov? ovs v’

X23—v4%— 3%— 2%—1—@1%—1—1&%

— 3%—712%%—111%,

(1.92)
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5.2. Case 2: ¢ =0, A~! # 0. The complete Lie algebra of symmetries
for the Dirac equations with nonvanishing rest mass is spanned by four-
teen generators, including ten infinitesimal generators of the Poincaré group
X1,...,X10 and the generators X19, Xop, Xo3, X16. There is also a contin-
uous part generated by the functions F“l, . ,F“4 dependent on x1, ..., x4,
which satisfy Dirac equations (1.83) with nonvanishing rest mass.

5.3. Case 3: € # 0, A! = 0. The complete Lie algebra in this situation
is spanned by fourteen generators. These generators are X1, ..., X109, X1o,
X0, Xo3, and X11 — Xi6/2.

5.4. Case 4: ¢ # 0, A™! # 0. The complete Lie algebra of symmetries
for the nonlinear Dirac equations with nonvanishing rest mass is spanned
by thirteen generators. The generators in this case are the ten infinitesimal
generators of the Poincaré group, Xi,..., X1, and X9, X9, Xo3. This
result generalizes the result by Steeb [94] where X9 was found as additional
symmetry to the generators of the Poincaré group.

6. Symmetries of the self-dual SU(2) Yang—Mills equations

We study here classical symmetries of the self-dual SU(2) Yang-Mills
equations. T'wo cases are considered: the general one and of the so-called
static gauge fields. In the first case we obtain two instanton solutions (the
Belavin—Polyakov—Schwartz—Tyupkin [6] and 't Hooft instantons [84]) as
invariant solutions for a special choice of symmetry subalgebras. In a similar
way, for the second case we derive a monopole solution [83].

We start with a concise description of the SU(2)-gauge theory referring
the reader to the survey paper by M. K. Prasad [83] for a more extensive
exposition.

6.1. Self-dual SU(2) Yang—Mills equations. Let M be a 4-dimen-
sional Euclidean space with the coordinates x1,...,x4. Due to nondegen-
erate metric in M, we make no distinction between contravariant and co-
variant indices, z, = z#. The basic object in the gauge theory is the Yang—
Mills gauge potential. The gauge potential is a set of fields Af, € C*°(M )
a=1,...,3, p=1,...,4. It is convenient to introduce a matrix-valued
vector field A, (z), by setting

Ay =gT A%, T=—-,a=1,..3 p=1,..4 (1.93)

where 0% are the Pauli matrices

1 {0 1 o (0 —i 3 (1 0
a—(l 0>, a—(i O)’ O‘—(O _1>, (1.94)

g being a constant, called the gauge coupling constant. Throughout this
section we shall use the Einstein summation convention when an index oc-
curs twice. From the matrix gauge potential A, dx, one constructs the
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matrix-valued field strength F},,(x) by
0 0
Fo=—A,— 2 A, +[A, A, v=1,...,4, 1.95
14 axu 8x,, 1 +[ 1 ] w,v ( )

where [A,,A,] = A, A, — A A,. If one defines the covariant derivative

0
D,=—+A 1.96
12 ax# + 123 ( )
then (1.95) is rewritten as
Fu =[Dy,D,). (1.97)
In explicit component form, one has
E, = gT“F;jV, (1.98)
where
a 0 a 0 a b gc
F/.LI/ = @AV — 8—1‘1/14“ + gEabcA“AV (199)
and

+1 if abc is an even permutation of (1,2,3),
€ape = § —1 if abc is an odd permutation of (1,2,3), (1.100)
0 otherwise.

We shall use the expression static gauge field to refer to gauge potentials
that are independent of x4 (24 to be considered as time), i.e.,

0
—A =0 =1,...,4. 1.101
8.734 M(x) ’ 1% ’ ) ( )
For gauge potentials that depend on all four coordinates z1,..., x4, the
action functional is defined by
1
5= /F;jVF;j,, diz, (1.102)

the integral taken over R*, while for static gauge fields we define the energy
functional by

4 pvt py

whereas in (1.103) the integral is taken over R3.

The extremals of the action S (or of the energy E for static gauge fields)
are found by standard calculus of variations techniques leading to the Euler—
Lagrange equations

1
E = —/F“ Fe d3z, (1.103)

0
5 L + 1A Fuw] = [Dy, Fru] =0, (1.104)
“w
or in components
0
——F, + geac AL FY, = 0. (1.105)

Oz,
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Equations (1.105) is a system of second order nonlinear partial dif-
ferential equations for the twelve unknown functions Aj, a = 1,...,3,
pw=1,...,4, that seems hard to solve.

Then one introduces the dual gauge field strength *F),, as

N 1
FHV - §€HV>\[)F>\P7 (1106)

where €,,,5, is the completely antisymmetric tensor on M defined by
+1 if purAp is an even permutation of (1,2,3,4),
€urp = § —1 if prdp is an odd permutation of (1,2,3,4), (1.107)
0 otherwise.

Since the fields D,, (1.96) satisfy the Jacobi identity

[Dkv [D;M DVH + [Dua [DV, D)\H + [DV7 [DA’ D,U«H = Oa (1108)
multiplication of (1.108) by €., and summation result in
Dy, *Fp] = 0. (1.109)

If we compare (1.104) with (1.109), we see that any gauge field which is
self-dual, i.e., for which

*Fup = Fu, (1.110)

automatically satisfies (1.101). Consequently, the only equations to solve are
(1.110) with *F},, given by (1.106). This is a system of first order nonlinear
partial differential equations.

Instanton solutions for general Yang—Mills equations and monopole so-
lutions for static gauge fields satisfy (1.110) under the condition that S
(1.102) or FE (1.103) are finite.

Written in components, (1.110) takes the form

Fi9g = F3y4, Fiz3=—Foy, Fiy= F3. (1.111)

So in components, the self-dual Yang-Mills equations are described as a
system of nine nonlinear partial differential equations,

—Apy Az — Ajg o+ Apy — g(ATA] — AJAG + ASAT — ALAT) =
_A?Ll + A% o — A 23T A} 4+ g(ATA3 — ALAS + ALAS — ALA3) =
~AY - AD, - Al + AD, - g(ALAT - ALA 4 ALA - AlAD) =
Al + ALy — Ay — Az 2+ g(ATAS + AZA3 — A2A3 — A3AD) =
ARy + ATy — A5 — A3, — g(A1AT - A3AT - ARAY - AJAD) =
)=
5) =
)=
)=

0,
0,
0,
g(A 0,
A 0,

A3+ Af, - AYs - A24—%g<A%A§+—A§AZ——A§A? ALAZ) =0
A%,l _A% A43 +A34 + g(ATAS — A3A3 — A2A3 + A3A3) =0
Ajy— Al — Al — g(A1A3 — AJAT — ALAS + AJA3) =0
Aj - A%, — A43+A34+gAA 0
1

)

—9(
(
(
(
(
(A1 :
(A1A3 — ASAT — A3AG + AJA3

)

(1.112)
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whereas in (1.112)

a 8 a
A=A a=L 3 pr =14 (1.113)

Thus, we obtain a system & C J!(7) for 7: R!2 x R* — R%.

6.2. Classical symmetries of self-dual Yang—Mills equations. In
order to construct the Lie algebra of classical symmetries of (1.112), we start
at a vector field V' given by

X1 8 T4 8 A a A a
V= V81 +V84+V 8A1 SV 8A3
The condition for V' to be a symmetry of equations (1.112) now leads to an
overdetermined system of partial differential equations for the components
Ve L Ve VA1 VAi, which are functions dependent of the variables
xl,...,a:4,A,.. A3
The general solutlon of this overdetermined system of partial differential

equations constitutes a Lie algebra of symmetries, generated by the vector
fields

(1.114)

= Fagan +f;26?41 +fisail +f;4ail
A3 aig o3 aig Ploa s~ 1o aig,
Vi = — g3 831 2943 831 2943 83% fngiaiAi

+ 294 832 + J%z%% + f%%% +f%g A}*aii

~Eom - Pog - an e

_fggAlail +1 A2ail +1 A?’ail +1 Aiai}l

- B~ g~ s~ P

—f%A%%—f%A%%—fg‘gAgaAg, FigA 34
Vi o Vo= o Vo= oo, Vom o

A —A%aiz + Al — Al
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B 0 0 L0 L0
Py T DY VR By
0 , 0 ;0 B,
~ g tAigm At A
B 0 0 L0 L0
Vio= g ag s~ Aigar T A
0 0 0 0
A2 2_ Y 43 3
Agas T g Mg T g
0 0 L0 0
Vin = ~tag -t org A36A1 AT DAL
0 0 0 0
A2 2_ Y 43 3 ¢
Nga T gar  Bem T e
D 0 L0 L0
V12 = 1'48—'%.2 — $26—$4 + A48—14% — A2a—14411
0 0 0 0
A2 = A2 O3 O A3
A T e TN T e
0 0 .0 .0
Vis = —tag o sy~ Agar T A
0 0 0 0
42 2 Y 43 3_~
Az T Nga Mg T Mg
Vid = 210t mp o 4w g
14 — xla x28 Lo $3a T3 m48$4
6 0 0 0
_Al__Al__Al__Al_
oAl T2aAl TPaAl oAl
0 0 0 0
_AQ__AQ__AQ__AQ_
1oA2  TP9AZ TPaAZ oAl
0 0 0 0
_A3__A3__A3__ 3_ ¥
LoA3  T29A3 TPaAd TtoAd
0
2 2 2 2 Y = _
Vis = (—x] + 25 + x5 + $4)8x1 21129 P 21173
0
+ 2(.%’114% + ach% + 1’314:13 + x4Ai)@ + 2(;U1A2
1 1, 0 0
+ 2(.%’1A3 — .%'3141)8—14% + 2($1A4 $4A )8A1
0
+ 2(.213114% + .TQA% + .’L'3A§ + 1'414121)@ + 2($1A% —
1
0 0
2 2 2 2
+ 2(x1A3 — .’L'3A1)8—14§ + 2(.’1}1144 — $4A1)8—14421

.Z'QA )

_— — 2:61.%4—
z3

0
AL

47
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0 5]
+ 2(21 A7 + 2243 + 23A3 + $4A4)8A3 +2(x1 A — $2A§’)8—A§
2(x1 A3 A3 o 2(x1 A3 A3 0
+2(x1 A3 — 23 )aAg + 2(x1 Ay — x4 1)8—/12’
0 0 0
V16 = —2$2$18—$1 + (CL’% — I% =+ .’Eg + 33421)8—1:2 — 2332.’E3a—1:3 — 21E2.’E4a—x4
0 0
+ 2(—21 A + 29 AD) — §AT + 2(21 A} + 2o AL 4+ 23A% + $4A4)8A1
A A 8 1, 0
2 A2 A2 8 2(z A2 A? A A2 4
+2(—21A5 + 22 )6A2 + 2(x1 A + 22A5 + 23435 + 24 4)8—A§
2(x9 A2 A2 o 2(x9A2 A2 0
+ 2(z2A35 — 23 )8A2+ (2247 — 24 2)6—14421
0 0
+ 2(—z1 A3 + $2A?)8—14? + 2(21 A3 + 29 A3 4 23A3 + mAi)a—A%
2(x9 A3 A3 o 2(x9 A3 A3 0
+2(z0A3 — 23 2)8—143—1_ (2247 — 24 2)8—142’
Vie = —2x301 — — 2:n3xgi + (ZL’% + x% — m?, + xi) — 223T4— 0
8.21;‘1 ox i) 81‘3 81‘4
0 0
+2(—z1 A + asgA%)@ + 2(—z2 AL + ”’BA%)aTx;
0 0
+ 2(:5114% + ng% + :L‘3A§ + :L‘4A}l)@—A?1) + Z(mgA}l — $4A%’)6—A}1
0 0
0 0
+ 2(.%‘114% + ZEQA% + ZL‘3A§ + 1‘414121)@ + 2($3A?1 — $4A§)6—Ai
2 A3 A3 4 2 A3 A3 0
+2(—x1A5 + 3 1)8—Ai’+ (—w2A3 + 3 )814%’
0 0
+ 2(.%'114:% + 96214% + 1’3A§ + x4Ai)8—14§ + 2(.%3143 — $4A§)8—14i’
0 0 0
Vig = =2 —_— =2 — =2 —_— 2 2 22—
18 T4 By T422 B T4T3 D25 + (z7 + 25 + 3 x4)8x4
0 0
1 1 1 1
+ 2(—x1A4 + 1’4141)8—14% + 2(—x2A4 + ZB4A2)8—14%
0 0
+ 2(—%’314411 + 1‘414%)@ + 2(.22114% + .%'214% + .T3Aé + $4A111)@
3 4
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+ ( IE1A4 + 934142)832 ( $2A4 + 354142)632
+ 2(790314421 + 334A2) 9 + 2(561A + 29 AZ + 1:3A2 + 24 A2 )= 9
0AZ ! 2 oAz
+ 2(—21 A3 + 24 A —— 0 + 2(—29 A3 + 24 A3) —— 0
0A3 4 0A3

3} 0
+ 2(—z3 A3 + x4A§)? + 2(21 A3 + 29 A3 4 23A3 + £4A3)

HA3 A3
(1.115)

The functions F', F?2, F? in the symmetries Vi, V5, V3 are arbitrary,
depending on the variables x1, z2, x3, 4. The vector fields Vi, V5, V3 are
just the generators of the gauge transformations.

The vector fields Vy, V5, Vi, V7 are generators of translations while the
fields Vk, ..., Vi3 refer to infinitesimal rotations in R*, X4, ..., Xig being the
infinitesimal generators of the conformal group.

6.3. Instanton solutions. In order to construct invariant solutions
associated to symmetries of the self-dual Yang—Mills equations (1.112), we
start from the vector fields X, X9, X3 defined by

fl 2 f3
X =Vo+ Vv vt
1 2 3
Xo=Vo+ V2 + V2 + v,
1 2 3

Xy =Vig+ V{* + V§* + V%, (1.116)

i.e., we take a combination of a rotation and a special choice for the
gauge transformations choosing particular values f} of arbitrary func-
tions fJ. We also construct commutators of the vector fields X, Xo, X3,

(X1, Xo], [X1,X3], [X2,Xj] (1.117)
and make the following choice for the gauge transformations
fi=0, fi=-1, fi =0,
f2 =0, f3 =0, fi=-1,
f3=-1, f3=0, fi=o. (1.118)

In order to derive invariant solutions (see equations (1.40) on p. 28), we
impose the additional conditions. Namely, we compute generating functions

(goi){t:YHwAﬂ, j=1,...,3, p=1,...,4, (1.119)
whereas in (1.119) w,, is the contact form associated to Aﬂ, ie.,
m

Wy = dAj, — A}, dx,,
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while Y; refers to the fields Xy, X9, X3, [X1, X2], [X1, X3], [X2, X3]. Then
we impose additional equations

(gpi)i(xl,...,x4,...,Ai,...,Aiy,...) =0 (1.120)

and solve them together with the initial system. From conditions (1.119)
we arrive at a system of 6 x 12 = 72 equations.

The resulting system can be solved in a straightforward way, leading to
the following intermediate presentation

Al = 24 F(r), Al = z3F(r), Aé = —xoF(r), Al=—z,F(r),
A? = —x3F(r), A2=ax4F(r), A% =x1F(r), A2 = —ayF(r),
A3 = 2o F(r), A3 = —z 1 F(r), Ag =x4F(7), A3 = —a3F(r),
(1.121)
where
r= (a:%#—x%—km%—i—xi)%. (1.122)

When obtaining the monopole solution (see below), we shall discuss in some
more detail how to solve a system of partial differential equations like (1.120).
Substitution of (1.122) in (1.95) yields an ordinary differential equation for
the function F(r), i.e.,
dF(r)
dr
the solution of which is given by

+ grF(r)> =0, (1.123)

1
(r) = 2

Ve e
C' being a constant. The result (1.124) is just the Belavin—Polyakov—
Schwartz—Tyupkin instanton solution!
More general, if we choose

(1.124)

fP=41, f3==41, fi=4=1, (1.125)
and
fififs =1, (1.126)
or equivalently
fs=—1113, (1.127)

we arrive at

A% = x4 F(r), A% = x3F(r), Azl,) = —xoF(r), A}l = —x1F(r),

AT =x3F(r)ff, A3 =—mF(r)ff, Aj=-mF(r)ff, Aj=—zF()ft,

A? = —$2F(T)f32, A% = :L'lF(T)fg, A3 = —:1:4F(1")f§, Ai = —ng(r)f??,
)
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while (1.128) with F(r) has to satisfy (1.112), which results in

F
OF(r) 89 +grfifiF(r)? =0. (1.129)
Choosing fZ, f3, f1 as in (1.125) but with
F5fs = +1, (1.130)

then the result is

Al = 24 F(r), A = — 23F(r), AL = 29 F (1), Al =— 2 F(r),
AT = —w3F(r)ff, A3 =—waF(r)ff, A3=wF(r)ff, Af=xF(r)ft,
Al =0 F(nf5,  Aj=-mF(f§, Aj=-zaF(r)f3, Aj=usF(r)f3,

(1.131)
while F'(r) has to satisfy
dF
r% +AF(r) + grif2f3F(r)? = 0. (1.132)
The solution of (1.132)
2 a?
F(ry=-=(f2f3) ' —s— 1.133
(T) g(fl f2) (7“2 +a2)r2 ( )

together with (1.131) is just the ’t Hooft instanton solution with instanton
number k£ = 1. This solution can be obtained from (1.124) by a gauge
transformation.

6.4. Classical symmetries for static gauge fields. The equations
for the static SU(2) gauge field are described by (1.109) and (1.101). The
symmetries for the static gauge field are obtained from those for the time-
dependent case or straightforwardly in the following way . The respective
computations then results in the following Lie algebra of symmetries for the
static self-dual SU(2) Yang—Mills equations

1 0 0 0
Ve = Cgla—A% +C§2871% +C;38—A%)

+ ClgA3 0 + ClgA3 0 4+ ClgA3 0 +ClgAs 0

19A2 2942 39A2 19A2
- ClgA%aiAg” - Clgf@a%% — ClgAgaiAg - ClgAiaiAiv
v = —Cz‘gA(f‘(%% — 0291438%% - 0291458%% - 029144213%&
+ C2gA%aiA% + CQQAiaiA% + CQQA;‘E)LA% + 029Aiaijﬁ
RS N RN

QAT TTOAT T OAY
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1/303 = ngA 8?11 + C'3gAQai1 + C’3gA aié +C39A28i/1}1
~Chg Ol
— C3gAl 633 — C3gA} ai3 - C3gA§6iA§ - C39A‘lla%§’
V4:8ixl’ 52%, Gzaixsa
Vi = 962% 5618%32 +A%8iA% A%aiA%
+£5%A%%ghﬁ£%ﬁé%,
ng—:vgail—i— 683—0—14%%—14%%4%
B Agai? *A%aig B Agaii* “ﬁ)aig’
Vo = —:cgai +x26%3 — Aé% +A§%
_Aga; +A%aiAg B Agai?’ +A2ai3’
Vlg—a:li+x2 + 3 — 0 + 4= 0
ox1 0xa 0xs 0xa
eﬁgé—ﬁé%—A%gg—gé%—ﬁi%. (1.134)

In (1.134) Ct, C?,

C? are arbitrary functions of z1,...,z3, while Vi,

V4, V3 themselves are just the generators of the gauge transformations. The
fields V7, Vg, Vg generate rotations, while Vig is the generator of the scale

change of variables.

6.5. Monopole solution. In order to construct invariant solutions to

the static SU(2) gauge

field, we proceed in a way analogously to the one for

the time-dependent field setting. We define the vector fields Y7, Y2, Y3 by

:%_V;v
Yo = Vg — V4,
V3 =Vy — Vi,

(1.135)
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ie., put C', C?, and C® equal to g~ !. It results in 36 equations for the
functions A

1: A3 4+ Al — ngil + 37114%,2 = 0, nonumber (1.136)
2 —A] + A5 — 2AT | + 1147, =0,
3 A3 — ngil + wlA:f’z =0,
4 —A} + A3 — 2245, + 2143, =0,
5: —A? Al - $2A3,1 + a:1A%’2 =0,
6: —A3 — :1:2Ag71 + a:lA%’z =0,
7: A3 — ng:l),J + :clA:l))Q =0,
8: —Al - $2A§,1 + CL‘1A§’2 =0,
9: —nggJ + m1A§72 =0,
10 : A2 — :L‘QA}M + :UlA}LQ =0,
11 : —A} — Al + 1143, =0,
12 —w9 A} | + 1A, =0, (1.137)
13: —A3 AL - I'lA},S + :):3A%71 =0,
14 : — A5 — 1A% 3 + 134T =0,
15: Al — A — 21 AT 3+ 34T =0,
16 : —A3 xlAig + ngil =0,
17: —x1A§73 + 35314%,1 =0,
18 : Ab — A3 — x1A§73 + .73314%’1 =0,
19 : Al - $1A§73 + angzl))’l =0,
20 : A2 — x1A§73 + :C3A§?1 =0,
21: A3+ AL — x1A§73 + CL‘3A§’1 =0,
22 : —A} — w1 Aj 3+ 2345, =0, (1.138)
23 : —IL‘1A42173 + :BgAil =0,
24 : A} — @1 Af 3+ 23AT =0, (1.139)
25 : —ngig, + :UgAiz =0,
26 : —A3 — @Aig) + :1:3A%72 =0,
27 : A3 — ngig + mgAiQ =0,
28 : —A} — ngig + 37314%,2 =0,
29 : —A3 — A2 - ng%g + 95314%,2 =0,
30 : A3 — A§ — 29 A3 5+ a3A3, =0,
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31: Al — :L‘2A§73 + :BgAil)),Q =0,
32 A5 — A3 — 20 A% 5 + 23A3, = 0.
33 : AS + A3 — 20 A3 5 + 23A3, = 0.
34 : —.I'QA}LS + x3A41172 = 0.
35 : — A3~ ng?m + x;;AiQ =0.
36 Af — 2 Af 5 + 2343, = 0. (1.140)

We shall now indicate in more detail how to solve (1.140).
Note, that due to (1.137)

Aj = F'(r12,73), (1.141)
where
rio = (22 + a2)2, (1.142)
and due to (1.139)
8F1(r12 .1:3) X3 8F1(r12 .1:3)
Al = Al St Rk CA el B Lt el A 1.143
4= < Ox3 1,2 ori2 ) ( )

Now let

OFY(ri2,73) a3 OFY(r12,73) det
2 - — 2 = H . 1.144
6:1:3 71,2 37'172 (TLQWTB) ( )

Substitution of (1.141) and (1.144) into (1.138) results in

2
X 8H (7”1 2 CC3) 8H(T1 2 xg)
1 , H , 1 )4 _ 2 )< ,
F(r12,23) = x3H (112, x3) + —7“1,2 r1s x] Ds

(1.145)

or

1 0H(r12,x OH(ri12,x
Fl(rl,2,x3) _ LL‘3H(T’172,$3) _ l’% (_ ( 1,2 3) o ( 1,2 3)) )

1,2 67’1,2 (9:B3
(1.146)
Differentiation of (1.146) with respect to 1, x2 yields
L 8H(T’1’2, .’Eg) . 8H(r172, $3) —0
1,2 67“172 01‘3 ’
Fl(T172,£L‘3) = xgH(Tl,Q,xg). (1.147)
From the second equation in (1.147) and equation (1.144) we obtain
H(ri2,23) =1(r), (1.148)
where
r= (m%—kx%%—x%)%, (1.149)

and finally, due to (1.147) and (1.123), one has
A2 =xl(r), A% =umol(r), A} =ax3l(r). (1.150)
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Handling the remaining system in a similar way, a straightforward but te-
dious computation leads to the general solution of (1.123), i.e.,

Al = %xff(r) + k(r), Ab = %mmf(?”) — z3u(r),

A= Conasf(r) F o), A= smml(r) +asu(r),

A3 = SaB() + K(r), A3 = Zapwsf(r) — anulr),

A= %stf(r) — zau(r), A3 = %$2$3f(r) +z1u(r),

A= L3 Fr) + k() A3 = 2l(r),

A2 = l(r), A3 = x3l(r), (1.151)

where u, I, k, f are functions of r.
Substitution of (1.151) into (1.95) and (1.95) yields a system of three
ordinary differential equations for the functions u, I, k, f:

U+ — gru® — grul + %grfk =0,
r2u 4+ 2ru — rl — griul + grk® + %gr‘gfk =0,
K — %rf — grku — grlk — %gr?’fu =0. (1.152)
If we choose
f(r)=Fk(r)=0, I(r)=——= u(r)= —M, (1.153)

we are led by (1.151), (1.153) to the monopole solution obtained by Prasad
and Sommerfeld [84] by imposing the ansatz (1.151), (1.153).
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CHAPTER 2

Higher symmetries and conservation laws

In this chapter, we specify general constructions described for infinite jets
to infinitely prolonged differential equations. We describe basic structures
existing on these objects, give an outline of differential calculus over them
and introduce the notions of a higher symmetry and of a conservation law.

We also compute higher symmetries and conservation laws for some
equations of mathematical physics.

1. Basic structures

Now we introduce the main object of our interest:

DEFINITION 2.1. The inverse limit projlim; . &' with respect to pro-
jections myq1; is called the infinite prolongation of the equation £ and is
denoted by £ C J*®(m).

In the sequel, we shall mostly deal with formally integrable equations
£ C J¥(r) (see Definition 1.20 on p. 30), which means that all £ are smooth
manifolds while the mappings mj 441 k+i: EHL — £l are smooth locally
trivial fiber bundles.

Infinite prolongations are objects of the category M (see Example 1.5
on p. 10). Hence, general approach exposed in Subsection 1.3 of Chapter 1
can be applied to them just in the same manner as it was done for manifolds
of infinite jets. In this section, we give a brief outline of calculus over £>° and
describe essential structures specific for infinite prolongations of differential
equations.

1.1. Calculus. Let 7: E — M be a vector bundle and £ C J*(x) be
a k-th order differential equation. Then we have the embeddings ¢;: £ C
JEFH () for all I > 0. We define a smooth function on E' as the restriction
flgt of a smooth function f € Fjpiy(m). The set Fi(£) of all functions
on & forms an R-algebra in a natural way and e} : Fjy(m) — F(€) is a
homomorphism. In the case of formally integrable equations, the algebra

Fi(€) coincides with C°(&£Y). Let I L rer ef.

57
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Due to commutativity of the diagram

Fonlm) —— F(e)

* *
Thti+1,k+1 Thtl+1,k+1
*

€l
Fryig1(m) ——— Fry1(€)

one has I;(£) C [111(€). Then I(£) = ;s Li(€) is an ideal in F(m) which
is called the ideal of the equation €. The function algebra on £*° is the quo-
tient F(€) = F(mw)/I1(E) and coincides with injlim;_,  F;(€) with respect
to the system of homomorphisms WZ+Z+1,k+l' For all [ > 0, we have the
homomorphisms €;: F(€) — F(E). When £ is formally integrable, they
are monomorphic, but in any case the algebra F (&) is filtered by the images
of €}.

ZNOW, to construct differential calculus on £€°°, one needs the general
algebraic scheme exposed in Chapter 4 and applied to the filtered algebra
F(E). However, in the case of formally integrable equations, due to the
fact that all £ are smooth manifolds, this scheme may be simplified and
combined with a purely geometrical approach (cf. similar constructions of
Subsection 1.3 of Chapter 1).

Namely, differential forms in this case are defined as elements of the
module A*(E) e Uso A*(EY), where A*(E!) is considered to be embedded
into A*(£!*1) by Thtt41 k- A vector field on £ is a derivation X: F(€) —
F(€) agreed with filtration, i.e., such that X (F;(£)) C Fi1a(E) for some
integer o = a(X) € Z. Just like in the case J*°(7), we define the de Rham
complex over £ and obtain “usual” relations between standard operations
(contractions, de Rham differential and Lie derivatives).

In special coordinates the infinite prolongation of the equation £ is de-
termined by the system similar to (1.41) on p. 29 with the only difference
that |o| is unlimited now. Thus, the ideal I(£) is generated by the functions
DyF7, o] > 0,7 =1,...,m. From these remarks we obtain the following
important fact.

EXAMPLE 2.1. Let £ be a formally integrable equation. Then from the
above said it follows that the ideal I(€) is stable with respect to the action

of the total derivatives D;, i = 1,...,n = dim M. Consequently, the action

D¢ ©f p, ’ 7y  F(€) — F(&) is well defined and D¢ are filtered deriva-

tions. We can reformulate it in other words by saying that the vector fields
D; are tangent to any infinite prolongation and thus determine vector fields
on £>°. We shall often skip the superscript £ in the notation of the above
defined restrictions.

The fact established in the last example plays a crucial role in the theory
of infinite prolongations. We continue to discuss it in the next section.
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To finish this one, let us make a remark concerning local coordinates.
Let £ be locally represented with equations (1.41). Assume that the latter
is resolved in the form

(e y .
u_j :fj(xl,...,xn,...,ug,...), j=1,...,r

in such a way that
(i) the set of functions w1, ..., ugr has at the left-hand side the empty

intersection with the set of functions ug at the left-hand side and

(i) uoi,, = uj§+T, for no 7,7’ unless i = j.
In this case, all coordinate functions in the system under consideration may
be partitioned into two parts: those of the form uj§+T, || >0,7=1,...,r,
and all others. We call the latter ones internal coordinates on £°°. Note
that all constructions of differential calculus over £°° can be expressed in

terms of internal coordinates.

ExAMPLE 2.2. Consider a system of evolution equations of the form

(1.22) (see p. 16). Then the functions x1,...,xn,t,... 7u5717---70'n70’ o; > 0,
j=1,...,m, where t = x,,41, may be taken for internal coordinates on £*°.
The total derivatives restricted onto £*° are expressed as
0 - ; 0
_ J .
Di— 6.’BZ +Z Z uo_‘—lia—ug’ 1= 1,...,7’1,,
j=1c|>0
0 - 0
Dy = — D, (f7)=— 2.1
b=t Y Dalf) g 21)
Jj=1|c|>0
in these coordinates, while the Cartan forms are written down as
n
wl = dul — Z ul i drg — Do (f7)dt, (2.2)
i=1

where all multi-indices o are of the form o = (o01,...,0,,0).

1.2. Cartan distribution. Let 7: E — M be a vector bundle and
£ C J*(r) be a formally integrable equation.

DEFINITION 2.2. Let 6 € J*°(w). Then
(i) The Cartan plane Cg = Co(m) C TyJ>°(m) at 0 is the linear envelope of
tangent planes to all manifolds joo(¢)(M), ¢ € I'(), passing through
the point 6.
(i) If 0 € £, the intersection Cy(E) e Co(m) N TyE™> is called Cartan
plane of £ at 6.
The correspondence 6 +— Cy(w), 0 € J(m) (respectively, 0 — Cg(E>),
0 € £%) is called the Cartan distribution on J*°(m) (respectively, on £°).

The following result shows the crucial difference between the Cartan
distributions on finite and infinite jets (or between those on finite and infinite
prolongations).
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PROPOSITION 2.1. For any vector bundle 7: E — M and a formally
integrable equation € C J* () one has:

(i) The Cartan plane Cy(r) is n-dimensional at any point § € J* ().
(il) Any point 6 € £ is generic, i.e., Co(m) C ToE™ and thus Co(E>) =
Co(J™).
(iii) Both distributions, C(J*°) and C(E°°), are integrable.

PROOF. Let 6 € J*(m) and mo(f) = © € M. Then the point § com-
pletely determines all partial derivatives of any section ¢ € ', () such that
its graph passes through 6. Consequently, all such graphs have a common
tangent plane at this point which coincides with Cy(7). This proves the first
statement.

To prove the second one, recall Example 2.1: locally, any vector field D;
is tangent to £°. But as it follows from (1.27) on p. 18, one has ip,ws =
for any D; and any Cartan form w}. Hence, linear independent vector fields
Dy, ..., D, locally lie both in C(7) and in C(£°°) which gives the result.

Finally, as it follows from the above said, the module

cD(r) ¥ {X € D(n) | X lies in C(m)} (2.3)
is locally generated by the fields Dy,...,D,. But it is easily seen that
[Do,Dg] = 0 for all o, = 1,...,n and consequently [CD(w),CD(r)] C
CD(m). The same reasoning is valid for

CD(E) X {X € D(E®) | X lies in C(£%)}. (2.4)

This finishes the proof of the proposition. O

We shall describe now maximal integral manifolds of the Cartan distri-
butions on J*°(7) and £°°.

PROPOSITION 2.2. Mazimal integral manifolds of the Cartan distribu-
tion C(m) are graph of joo(¥), p € Tioe(m).

PRrROOF. Note first that graphs of infinite jets are integral manifolds of
the Cartan distribution of maximal dimension (equaling to n) and that any

integral manifold projects onto J*(7) and M without singularities.

Let now N C J*°(r) be an integral manifold and N* o Too kN C JE(T),

N TooN C M. Hence, there exists a diffeomorphism ¢’: N’ — NV such

that ™o ¢/ = idys. Then by the Whitney theorem on extension for smooth
functions [71], there exists a local section ¢: M — E satisfying ¢ [n = ¢/
and j(¢)(M) D NF for all k> 0. Consequently, joo(¢)(M) D N. O

COROLLARY 2.3. Mazimal integral manifolds of the Cartan distribution
on £ coincide locally with graphs of infinite jets of solutions.

We use the results obtained here in the next subsection.
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1.3. Cartan connection. Consider a point § € J*°(7) and let x =
Too(0) € M. Let v be a tangent vector to M at the point xz. Then, since
the Cartan plane Cy isomorphically projects onto T, M, there exists a unique

tangent vector Cv € TpJ>(m) such that 7 «(Cv) = v. Hence, for any vector

field X € D(M) we can define a vector field CX € D(w) by setting (CX)g e

C(Xr.(9))- Then, by construction, the field CX is projected by 7o« to X
while the correspondence C: D(M) — D(w) is C°°(M)-linear. In other
words, this correspondence is a connection in the bundle 7o, : J*(7) — M.

DEFINITION 2.3. The connection C: D(M) — D(w) defined above is
called the Cartan connection in J* (7).

Let now & C J¥(m) be a formally integrable equation. Then, due to
the fact that Cp(E>°) = Cy(m) at any point § € £, we see that the fields
CX are tangent to £ for all vector fields X € D(M). Thus we obtain the
Cartan connection in the bundle 7,: £ — M which is denoted by the
same symbol C. ‘

Let x1,...,Zn,...,u%,... be special coordinates in J®(r) and X =
X10/0z1 + -+ + X,0/0xy, be a vector field on M represented in this co-
ordinate system. Then the field CX is to be of the form CX = X 4+ X7,
where X'=3%, X} 20/ dul. is a mao-vertical field. The defining condltlons

ic Xwg =0, where wff are the Cartan forms on J* (), imply

CX = ZX o +Z o—+118 ZXD (2.5)

=1

In particular, we see that C(0/dx;) = D, i.e., total derivatives are just
liftings to J°°(m) of the corresponding partial derivatives by the Cartan
connection.

To obtain a similar expression for the Cartan connection on £, it needs
only to obtain coordinate representation for total derivatives in internal
coordinates. For example, in the case of equations (1.22) (see p. 16) we have

C (Z; Xia—xi + Ta> = ;X,Di +TDy,

where Dy, ..., Dy, D; are given by formulas (2.1) and X;, 7 € C*°(M) are
the coefficients of the field X € D(M).

Consider the following construction now. Let V be a vector field on £
and 0 € £ be a point. Then the vector Vy can be projected parallel to
the Cartan plane Cy onto the fiber of the projection 7y : £ — M passing
through 0. Thus we get a vertical vector field VV. Hence, for any f € F(&)
a differential one-form Ug(f) € A'(€) is defined by

v (Ue() € V), VeDE). (2.6)
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The correspondence f — Ug(f) is a derivation of the algebra F (&) with the
values in the F(&)-module A(E), i.e.,

Ue(fg) = fUe(g) + gUs(f)

for all f,g € F(€). This correspondence contains all essential data about
the equation &.

DEFINITION 2.4. The derivation Ug: F(£) — A(€) is called the struc-
tural element of the equation £.

For the “empty” equation, i.e., in the case £>° = J*°(7), the structural
element U is locally represented in the form

Ur=> wi® 9 (2.7)

j )
jo O

where w? are the Cartan forms on J°°(7). To obtain the expression in the

general case, one needs to rewrite (2.7) in local coordinates. For example,
in the case of evolution equations we get the same expression with o =
(01,...,00,0) and the forms w) given by (2.2). Contrary to the Cartan
forms, the structural element is independent of local coordinates.

We shall now give a “more algebraic” version of the Cartan connection
definition.

PROPOSITION 2.4. For any vector field X € D(M), the equality

Joo (@) (CX(F)) = X (oo ()" (/) (2.8)

takes place, where f € F(mw) and ¢ € I'oc(m). Equality (2.8) uniquely deter-
mines the Cartan connection in J(r).

PROOF. Both statements follow from the fact that in special coordinates
the right-hand side of (2.8) is of the form

) olel i
Z —J; X ( 33:90 ) '
g |joo () (M) o

j7g
COROLLARY 2.5. The Cartan connection in £ is flat, i.e.,
C[X,Y]=[CX,CY]

for any X, Y € D(M).

PROOF. Consider the case £%° = J*°(m). Then from Proposition 2.4 we
have

Joo (@) (CIX, YI(F)) = [X, Y](Goo(9)"(£))

= X(Y(Joo ()" (/) = Y (X (oo ()" (f)))
for any ¢ € T'oc(m), f € F(m). On the other hand,
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Joo ()" ([CX, CY](f)) = Joo () (CX(CY(f)) — CY(CX([)))
= X(Joo ()" (Y(f))) = Y (oo ()" (CX()))

= X(Y (Joo (0)* (/) = Y (X (Joo (0)*(f)))
To prove the statement for an arbitrary formally integrable equation &, it

suffices to note that the Cartan connection in £°° is obtained by restricting
the fields CX onto infinite prolongation of £. O

The construction of Proposition 2.4 can be generalized.

1.4. C-differential operators. Let 7: E — M be a vector bundle and
&: By — M, &: Ey — M be another two vector bundles.

DEFINITION 2.5. Let A: I'(§1) — I'(§2) be a linear differential operator.
The lifting CA: F(m, &) — F(m, &) of the operator A is defined by

Joo(9)*(CA(S)) = Aldoo ()" (£)), (2.9)

where ¢ € I'oc(m) and f € F(m, &) are arbitrary sections.

Immediately from the definition, we obtain the following properties of
operators CA:

PROPOSITION 2.6. Let m: E — M, &: E; — M, i = 1,2,3, be vector
bundles. Then
(i) For any C*°(M)-linear differential operator A: T'(&1) — I'(&2), the
operator CA is an F(r)-linear differential operator of the same order.
(il) For any A,O0: T'(&) — T'(&2) and f,g € F(w), one has
C(fA+¢g0) = fCA + gCO.
(ili) For A1:T'(&1) — I'(§2), Ag: I'(&2) — I'(&3), one has
C(AQ o) Al) = CAQ @) CAl
From this proposition and from Proposition 2.4 it follows that if A is a

scalar differential operator C*>°(M) — C°°(M) locally represented as A =
>, 45091 /0x,, a, € C(M), then

CA=> a,D, (2.10)

in the corresponding special coordinates. If A = ||A;;]| is a matrix operator,
then CA = ”CAWH

From Proposition 2.6 it follows that CA may be understood as a dif-
ferential operator acting from sections of the bundle 7 to linear differential
operators from I'(£1) to I'(§2). This observation is generalized as follows.

DEFINITION 2.6. An F(m)-linear differential operator A: F(m, &) —
F(m, &) is called a C-differential operator, if it admits restriction onto graphs

of infinite jets, i.e., if for any section ¢ € I'(m) there exists an operator
Ay: T'(&) — T'(&2) such that

Joo () (A(S)) = By joo(#)"(f)) (2.11)
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for all f € F(m, &).

Thus, C-differential operators are nonlinear differential operators taking
their values in C°°(M)-modules of linear differential operators. The follow-
ing proposition gives a complete description of such operators.

PROPOSITION 2.7. Let m, &1, &2 be vector bundles over M. Then any C-
differential operator A: F(mw,&1) — F(mw, &) can be presented in the form

A= ZaaCAa, aq € F(m),
[e%

where A,, are linear differential operators acting from T'(§1) to I'(&2).

PRrROOF. Recall first that we consider the filtered theory; in particular,
there exists an integer [ such that A(Fi(m,&1)) C Fry(m, &) for all k.
Consequently, since I'(£7) is embedded into Fy(7,&1), we have A(T'(&1)) C
Fi(m, &) and the restriction A = A|p,) is a C°°(M)-differential operator
taking its values in Fj(m,&2). Then one can easily see that the equality
Ay = joo()* o A holds, where ¢ € I'oe(m) and A, is the operator from
(2.11). It means that any C-differential A operator is completely determined
by its restriction A.

On the other hand, the operator A is represented in the form A =
Y0 @ala, aq € Fi(m) and Ay: (&) — I'(§2) being C°°(M)-linear dif-

ferentiz_ﬂ operators. Let us define CA def Y 0 @aCAq. Then the difference
A — CA is a C-differential operator such that its restriction onto I'(§1) van-
ishes. Therefore A = CA. O

REMARK 2.1. From the result obtained it follows that C-differential op-
erators are operators “in total derivatives”. By this reason, they are called
total differential operators sometimes.

COROLLARY 2.8. C-differential operators admit restrictions onto infinite
prolongations: if A: F(m, &) — F(m, &) is a C-differential operator and
£ C J¥(n) is a k-th order equation, then there exists a linear differential
operator Ag: F(E,&1) — F(E,&) such that

e oA =Agoce",
where £: £ — J®() is the natural embedding.

PRrROOF. The result immediately follows from Example 2.1 and Proposi-
tion 2.7. O

We shall now consider an example which will play a very important role
in the sequel.

EXAMPLE 2.3. Let § = 7%, §& = 7/, where 750 A\PT*M — M (see
Example 1.2 on p. 6), and A = d: A*(M) — A"(M) be the de Rham
differential. Then we obtain the first-order operator dj, ©f ca: Al (m) —
At (r), where AP () denotes the module F(r, 7,). Due Corollary 2.8, the
operators d: A} (£) — AZF(€) are also defined, where AP (€) = F(€, )
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DEFINITION 2.7. Let £ C J*(7) be an equation.

(i) Elements of the module A} (&) are called horizontal i-forms on €.
(i) The operator dj: AL (E) — AL1(E) is called the horizontal de Rham
differential on E*°.
(iii) The sequence

0— F(E) LALE) — - — AL(E) LA (E) — -
is called the horizontal de Rham sequence of the equation £.

From Proposition 2.6 (iii) it follows that dod = 0 and hence the de Rham
sequence is a complex. It cohomologies are called the horizontal de Rham
cohomologies of € and are denoted by H} (€) = ;50 Hi(E).

In local coordinates, horizontal forms of degree p on £ are represented
as w = Zi1<~~<ip iy..ip, dxiy A - A dxg,, where a3, € F(E), while the
horizontal de Rham differential acts as

dh(w) = Z Z Di(ail,_ip) de; Ndzi N A dxip. (2.12)

i=1 i1 <-<ip
In particular, we see that both A} (€) and Hj,(£) vanish for i > dim M.

REMARK 2.2. In fact, the above introduced cohomologies are horizontal
cohomologies with trivial coefficients. The case of more general coefficients
will be considered in Chapter 4 (see also [98, 52]). Below we make the first
step to deal with a nontrivial case.

Consider the algebra A*(€) of all differential forms on £ and let us note
that one has the embedding A} (€) — A*(£). Let us extend the horizontal
de Rham differential onto this algebra as follows:

(i) dp(dw) = —d(dn(w)),

(ii) dp(w A 0) =dp(w) NI+ (—=1)“w A dp(6).
Obviously, conditions (i), (ii) define the differential dj,: A*(£) — A™1(€) and
its restriction onto A} (&) coincides with the horizontal de Rham differential.

Let us also set d¢ L dp: Aj(€) — A (E). Then, by definition,
d=dy+de, dpodp=dcode=0, decodp+dpode=0.

In other words, the pair (dp,d¢) forms a bicomplex in A*(€) with the total
differential d. Hence, the corresponding spectral sequence converges to the
de Rham cohomology of £%°.

REMARK 2.3. We shall redefine this bicomplex in a more general alge-
braic situation in Chapter 4. On the other hand, it should be noted that
the above mentioned spectral sequence (in the case, when dj, is taken for the
first differential and d¢ for the second one) is a particular case of the Vino-
gradov C-spectral sequence (or the so-called variational bicomplex) which is
essential to the theory of conservation laws and Lagrangian formalism with
constraints; cf. Subsection 2.2 below.
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To conclude this section, let us write down the coordinate representation
for the differential d¢ and the extended dp. First note that by definition and
due to (2.12), one has

de(ul) = d(ul) — dy,(ul) = dul — ZUUH dz;,

i.e., d¢ takes coordinate functions ul to the corresponding Cartan forms.

Since obviously d¢(z;) = 0 for any coordinate function on the base, we
obtain
of
de(f) =) Wit fe F(m). (2.13)
j?o— g

The same representation, written in internal coordinates, is valid on £.
Therefore, the image of dc spans the Cartan submodule CA(E) in AL(E).
By this reason, we call d¢ the Cartan differential on £%°. From the equality
d = dyj, + d¢ it follows that the direct sum decomposition

A(E) = AL(E) D CAL(E)
takes place which extends to the decomposition
= P AlE)ecraE). (2.14)
ptq=i
Here the notation
CPAE) WA E) A -+ ACAL(E)

p times

is used. Consequently, to finish computations, it suffices to compute dh(wg).
But we have

dp(wl) = dpde(ul) = —dedp(ul)

and thus
=Y Wl Ada (2.15)

Note that from the results obtained it follows, that
(AL (E) ® CPA(E)) € ATTHE) @ CPA(E),
de(AL(E) @ CPA(E)) C AL(E) @ CPTIA(E).
REMARK 2.4. Note that the sequence dj,: A} (£) ® C*(€) — A‘,]ZH(E) ®

C*(€) can be considered as the horizontal de Rham complex with coefficients
in Cartan forms
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REMARK 2.5. From (2.14) it follows that to any form w € A*(E) we
can put into correspondence its “purely horizontal” component wy, € A} (E).
Moreover, if the form w “lives” on J¥(7), then, due to the equality duj =
S Ugt1, dxi + W, the form wy, belongs to A*(J**1(x)). This correspon-
dence coincides with the one used in Example 1.7 on p. 14 to construct
Monge-Ampere equations.

2. Higher symmetries and conservation laws

In this section, we briefly expose the theory of higher (or Lie-Bécklund)
symmetries and conservation laws for nonlinear partial differential equations
(for more details and examples see [60, 12]).

2.1. Symmetries. Let 7: E — M be a vector bundle and €& C J*(7)
be a differential equation. We shall still assume £ to be formally integrable,
though is it not restrictive in this context.

Consider a symmetry F of the equation £ and let 0, be a point of £
such that 741 (0ky1) = Ok € £ Then the R-plane Ly, , is taken to an
R-plane Fi(Lg, ) by F, since I is a Lie transformation, and Fi(Lg,,,) C
Tr(g,), since F is a symmetry. Consequently, the lifting F @ Jhtl(7) —
JFHL(7) is a symmetry of £, By the same reasons, F' @) is a symmetry of the
I-th prolongation of £. From here it also follows that for any infinitesimal
symmetry X of the equation &, its [-th lifting is a symmetry of £ as well.
In fact, the following result is valid:

PROPOSITION 2.9. Symmetries of a formally integrable equation £ C
JF(1) coincide with symmetries of any prolongation of this equation. The
same is valid for infinitesimal symmetries.

PROOF. We have shown already that to any (infinitesimal) symmetry
of € there corresponds an (infinitesimal) symmetry of €. Consider now an
(infinitesimal) symmetry of £. Then, due to Theorems 1.12 and 1.13 (see
pp. 24 and 26), it is w4 k-fiberwise and therefore generates an (infinitesimal)
symmetry of £. O

The result proved means that a symmetry of £ generates a symmetry of
E°° which preserves every prolongation up to finite order. A natural step to
generalize the concept of symmetry is to consider “all symmetries” of €.
Let us clarify such a generalization.

First of all note that only infinitesimal point of view may be efficient
in the setting under consideration. Otherwise we would have to deal with
diffeomorphisms of infinite-dimensional manifolds with all natural difficul-
ties arising as a consequence. Keeping this in mind, we proceed with the
following definition. Recall the notation

cD(r) ¥ {X € D(n) | X lies in C(n)},

cf. (1.31) on p. 25.
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DEFINITION 2.8. Let 7 be a vector bundle. A vector field X € D(w) is
called a symmetry of the Cartan distribution C(7) on J*°(7), if [X,CD(m)] C
CD(m).

Thus, the set of symmetries coincides with D¢ (7) (see (1.32) on p. 25)
and forms a Lie algebra over R and a module over F (7). Note that since the
Cartan distribution on J°°(7) is integrable, one has CD(mw) C D¢(w) and,
moreover, CD(7) is an ideal in the Lie algebra D¢ ().

Note also that symmetries belonging to CD(m) are of a special type:
they are tangent to any integral manifold of the Cartan distribution. By
this reason, we call such symmetries trivial. Respectively, the elements of
the quotient Lie algebra

sym(r) & De(r)/CD(n)

are called nontrivial symmetries of the Cartan distribution on J*° ().

Let now £ be the infinite prolongation of an equation & C J*(r).
Then, since CD(7) is spanned by the fields of the form CY, Y € D(M) (see
Example 2.1), any vector field from CD(r) is tangent to £°°. Consequently,
either all elements of the coset [X] = X mod CD(w), X € D(r), are tangent
to £ or neither of them is. In the first case we say that the coset [X] is
tangent to £°°.

DEFINITION 2.9. An element [X] = X mod CD(7), X € D(r), is called
a higher symmetry of £, if it is tangent to £°°.

The set of all higher symmetries forms a Lie algebra over R and is de-
noted by sym(&). We shall usually omit the adjective higher in the sequel.
Let us describe the algebra sym(€) in efficient terms. We start with
describing sym() as the first step. To do this, note the following. Consider
a vector field X € D(7). Then, substituting X into the structural element
Ur (see (2.7)), we obtain a field XV € D(x). The correspondence U, : X —
X" = X U, possesses the following properties:
(i) The field X" is vertical, i.e., X"(C*°(M)) = 0.
(il) XV = X for any vertical field.
(iii) X =0 if and only if the field X lies in CD(m).
Therefore, we obtain the direct sum decomposition®

D(m) = D*(m) ® CD(w),

where D"(m) denotes the Lie algebra of vertical fields. A direct corollary of
these properties is the following result.

PROPOSITION 2.10. For any coset [X| € sym(E) there exists a unique
vertical representative and thus

sym(€) ={X € D(€) | [X,CD(E)] C CD(E)}, (2.16)
where CD(E) is spanned by the fields CY,Y € D(M).

!Note that it is the direct sum of F(7)-modules but not of Lie algebras.
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Using this result, we shall identify symmetries of £ with vertical vector
fields satisfying (2.16).

LEMMA 2.11. Let X € sym(m) be a vertical vector field. Then it is
completely determined by its restriction onto Fo(mw) C F(mw).

PROOF. Let X satisfy the conditions of the lemma and Y € D(M).
Then for any f € C°°(M) one has

[(X,CY](f) = X(CY(f)) - CY(X(f)) = X(Y(f)) =0

and hence the commutator [X,CY] is the vertical vector field. On the other
hand, [X,CY] € CD(x), because CD(7) is a Lie algebra ideal. Consequently,
[X,CY] =0.

Note now that in special coordinates we have D;(u%) = ul, 4, forall o
and j. From the above said it follows that

X(ul 1) = Di(X(ul)). (2.17)

But X is a vertical derivation and thus is determined by its values at the

functions ul. O

Let now Xo: Fo(m) — F(m) be a derivation. Then equalities (2.17)
allow one to reconstruct locally a vertical derivation X € D(w) satisfying
X ’ Fo(r) = Xo. Obviously, the derivation X thus constructed lies in sym()
over the neighborhood under consideration. Consider two neighborhoods
Uy, Uy C J°(m) with the corresponding special coordinates in each of them
and two symmetries X¢ € sym(n |y, ), i = 1,2, arising by the described
procedure. But the restrictions of X! and X2 onto Fo( |y,rus ) coincide.
Hence, by Lemma 2.11, the field X! coincide with X? over the intersection
U1 NUs. In other words, the reconstruction procedure Xy — X is a global
one. So we have established a one-to-one correspondence between elements
of sym(m) and derivations Fo(m) — F(m).

To complete description of sym(7), note that due to vector bundle struc-
ture in m: E — M, derivations Fo(m) — F(m) are identified with sections
of the pull-back 7% (7), or with elements of F(m, 7).

THEOREM 2.12. Let m: E — M be a vector bundle. Then:

(i) The F(m)-module sym(m) is in one-to-one correspondence with ele-
ments of the module F(m, 7).

(i1) In special coordinates the correspondence F(m,m) — sym(m) is ex-
pressed by the formula

def 0
o 9 Y Dol(¢))—, (2.18)
i ouy
where © = (P, ..., ™) is the component-wise representation of the

section ¢ € F(m,m).

PRrROOF. The first part of the theorem has already been proved. To prove
the second one, it suffices to use equality (2.17). O
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DEFINITION 2.10. Let 7: E — M be a vector bundle.
(i) The field 9, of the form (2.18) is called an evolutionary vector field
on J*®(7).
(ii) The section ¢ € F(m,m) is called the generating section of the field
9.

REMARK 2.6. Let (: N — M be an arbitrary smooth fiber bundle and
&: P — M be a vector bundle. Then it is easy to show that any (-verti-
cal vector field X on N can be uniquely lifted up to an R-linear mapping

XE:T(C*(€)) — T(¢*(€)) such that
XE(fe) = X (e + fXW), feC®(N),  eT(C* ). (219)
In particular, taking 7, for ¢, for any evolution derivation 9, we obtain
the family of mappings 95: F(m, &) — F(m, &) satisfying (2.19).
Consider the mapping 97 : F(m,m) — F(m,7) and recall that the diag-

onal element py € Fo(m,m) C F(w, ) is defined (see Example 1.1 on p. 5).
As it can be easily seen, the following identity is valid

95(po) = (2.20)
which can be taken for the definition of the generating section.

Let 9,, 9y be two evolutionary derivations. Then, since sym(r) is a Lie
algebra and by Theorem 2.12, there exists a unique section {p, 1} satisfying

(D, Oy] = Oy u}-

DEFINITION 2.11. The section {p,¢} is called the (higher) Jacobi
bracket of the sections ¢, € F(m).

PROPOSITION 2.13. Let ¢, € F(m, ) be two sections. Then:

(i) {9} = 97 (¢) — 97 (p).
(ii) In special coordinates, the Jacobi bracket of ¢ and 1 is expressed by
the formula

o} =% (Da«aa)

a,o

o

oud

_ Dawa)a—“‘”) , (2.21)

oug

where superscript j denotes the j-th component of the corresponding
section.

PRrROOF. To prove (i) let us use (2.20):

(0,8} = OF, . (p0) = BI(37 (o) — T (DX (po)) = DZ(6) — DT ().
The second statement follows from the first one and from equality (2.18). O

Consider now a nonlinear differential operator A: I'(r) — I'(£) and let

oA be the corresponding section. Then for any ¢ € F(m,m) the section
9, (pa) € F(m,§) is defined and we can set

(a(p) = 9y(pn). (2.22)
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DEFINITION 2.12. The operator ¢a: F(m,m) — F(m,&) defined by
(2.22) is called the wuniversal linearization operator of the operator
A:T(m) — T(9).

From the definition and equality (2.18) we obtain that for a scalar dif-
ferential operator

o] pi
A:@»—>F<x1,...,$n,...,aa L ,)
Lo
one has {a = (¢&,...,0%), m = dimn, where
o« N, (2.23)

A= — Do
— Jug

If dim&=r>1and A =(Aq,...,A,), then

0o Ay
on £§2 eﬁz, e 594
A_ .. e DR DR (. )
O G o 0%

In particular, we see that the following statement is valid.

PROPOSITION 2.14. For any differential operator A, its universal lin-
earization is a C-differential operator.

Now we can describe the algebra sym(€), £ C J*(x) being a formally
integrable equation. Let I(£) C F(m) be the ideal of the equation &£ (see
Subsection 1.1). Then, by definition, 9, is a symmetry of £ if and only if

9,(I(€)) C I(E). (2.25)

Assume now that £ is given by a differential operator A: I'(m) — I'(§) and
locally is described by the system of equations

F'=0, ..., F"=0, F/¢cF(n).

Then the functions F! ... F" are differential generators of the ideal I(€)
and condition (2.25) may be rewritten as

Op(FI) = alDy(F*),  j=1,...,m, af€ F(m). (2.26)

With the use of (2.22), the last equation acquires the form?
lpi(p) =) afDe(F*),  j=1,...,m, a € F(n). (2.27)
a,0

But by Proposition 2.14, the universal linearization is a C-differential op-
erator and consequently can be restricted onto £°° (see Corollary 2.8). It
means that we can rewrite equation (2.27) as

Cpslgw (Qle=) =0, j=1,....,m. (2.28)

“Below we use the notation £, F € F(r, &), as a synonym for £a, where A: T'(7) —
I'(¢) is the operator corresponding to the section F'.
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Combining these equations with (2.23) and (2.24), we obtain the following
fundamental result:

THEOREM 2.15. Let £ C J¥(m) be a formally integrable equation and
A = Ag: T'(m) — I'(€) be the operator corresponding to £. Then an evolu-
tionary derivation 9,, ¢ € F(w,m), is a symmetry of £ if and only if

le(p) =0, (2.29)

where e and ¢ denote restrictions of {a and ¢ on E° respectively. In other
words,

sym(&) = ker l¢. (2.30)

REMARK 2.7. From the result obtained it follows that higher symmetries
of £ can be identified with elements of F(&, ) satisfying equation (2.29).
Below we shall say that a section ¢ € F(E,7) is a symmetry of £ keeping
in mind this identification. Note that due to the fact that sym(&) is a
Lie algebra, for any two symmetries ¢, 1» € F(E,7) their Jacobi bracket
{p,0}e ={p, ¥} € F(E,7) is well defined and is a symmetry as well.

2.2. Conservation laws. This subsection contains a brief review of
the main definitions and facts concerning the theory of conservation laws for
nonlinear differential equations. We confine ourselves with main definition
and results referring the reader to [102] and [52] for motivations and proofs.

DEFINITION 2.13. Let £ C J¥(x), 7: E — M being a vector bundle, be
a differential equation and n be the dimension of the manifold M.

(i) A horizontal (n — 1)-form p € A}1(E) on £% is called a conserved
density on &, if dpp = 0.
(ii) A conserved density p is called trivial, if p = dpp’ for some p' €
APT2(E).
(iii) The horizontal cohomology class [p] € H ,?_1 (&) of a conserved density
p is called a conservation law on .

We shall always assume below that the manifold M of independent vari-
ables is cohomologically trivial which means triviality of all de Rham coho-
mology groups H'(M) except for the group H°(M).

Note now that the group HP(£) is the term E)" ' = E)" (&) of
the spectral sequence associated to the bicomplex (dp,d¢) (see Subsection
1.4 and Remark 2.3 in particular). This fact is not accidental and to clarify
it we shall need more information about this spectral sequence. Let us start
with the “trivial” case and first introduce preliminary notions and notations.

For any equation &£, we shall denote by » = »(€) the module F(&, 7).
In particular, »(7) denotes the module s in the case £>° = J*(7). Let &
and ¢ be two vector bundles over M and P = F(&,€), Q = F(&,(). Denote
by C Diff*(P, Q) the F(£)-module of R-linear mappings

A: PR---QP —Q
—_——

| times
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such that:
(i) A is skew-symmetric,
(ii) for any p1,...,p—1 € P, the mapping
AP17~~.,P171 : P — Q7 b= A(plv <o 7pl717p)a
is a C-differential operator.

In particular, C Diff(P, Q) denotes the module of all C-differential operators
acting from P to Q.
Define the complex

P
0 — C Diff(P, A)(E)) i, C Diff(P, A},(€)) — - -+ — C Diff(P, AL(E))

.
D, CDIf(P,AYT(€)) — - — CDIff(P,A}E)) — 0 (2.31)

by setting d’ (A) aof dp o A.

LEMMA 2.16. The above introduced complex (2.31) is acyclic at all terms
except for the last one. The cohomology group at the n-th term equals the
module P % hom z(g) (P, A} (E)).

Let A: P — @ be a C-differential operator. Then it generates the
cochain mapping

A': (CDiff(Q, AL (€)),d?) — (CDiff(P, Aj(E)),d})
and consequently the mapping of cohomology groups
A*: Q = homp(e)(Q, AR (€)) — P = homg(e)(P, A} (E)). (2.32)
DEFINITION 2.14. The above introduced mapping A* is called the ad-

joint operator to the operator A.

In the case £ = J*(m), the local coordinate representation of the
adjoint operator is as follows. For the scalar operator A = )" a,D, one
has

A* =Y (1D, 0 a,. (2.33)
e
In the multi-dimensional case, A = ||A;;|, the components of the adjoint
operator are expressed by

(A%)i = Ay, (2.34)
where A7; are given by (2.33).

Relation between the action of an C-differential A: P — @ and its ad-
joint A*: @ — Pis given by

PROPOSITION 2.17 (Green’s formula). For any elements p € P and q €
Q there exists an n — 1-form w € AZ_l(E) such that

(p, A%(q)) — (A(p), q) = dpw, (2.35)
where (R, R) — AR (E) denotes the natural pairing.
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Finally, let us define F(&)-submodules K;(P) C CDiff!t (P, P), I > 0,
by setting

K(P) =

{A € CDiff (P, P) | A} = —Api. p1a> D1, D12 € P}

P1,--,P1—2

THEOREM 2.18 (one-line theorem). Let m: E — M be a vector bundle
over a cohomologically trivial manifold M, dim M = n. Then:

(i) B () = H"(E)-

(i) Ep’ (™) = ( (7)), p > 0.
(i) E2(r) =

(iv) qu( )= 0 in all other cases.

Moreover, the following result is valid.

THEOREM 2.19. The sequence

1I,n

d )
AO(m) 2 pn(ry B B S R (2.36)
where the operator E is the composition
FUB
E: AP (7) — HJ((n) = EY™(n) —— E"(n), (2.37)
the first arrow being the natural projection, is exact.

DEFINITION 2.15. Let w: E — M be a vector bundle, dim M = n.

(i) The sequence (2.36) is called the variational complex of the bundle 7.
(ii) The operator E defined by (2.37) is called the Euler-Lagrange opera-
tor.

It can be shown that for any w € A} (7) one has

E(w) = £5(1), (2.38)

from where an explicit formula in local coordinates for E is obtained:

E =) (-1)Dyo 9 (2.39)

. 8ug
The differentials d}"" can also be computed explicitly. In particular, we have
dy"(p) = by — U5, o€ By (n) = 5(n). (2.40)

Let us now describe the term EPY(£) for a nontrivial equation £. We
shall do it for a broad class of equations which is introduced below.
Note first that a well-defined action of C-differential operators A €

C Diff(F(€,€) on Cartan forms w € CA!(E) exists. Namely, for a zero-

order operator (i.e., for a function on £%°) we set A(w) © A w. If now

A= _X,, where X, =CX;, 0---0CX;, , Xo € D(M), then
def
Aw = Y Ly, (. Lx, W)...).

o=(41...is)
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In general, such a action is not well defined because of the identity
Loy (w) = aLy (w) + d(a) A iy (w).

But if Y = CX and w € CAY(E), the second summand vanishes and we
obtain the action we seek for.

Let now A € CDiff(s, F(£)) and Al, ..., A™ be the components of this
operator. Then we can define the form

wa A Wh) 4o+ AT W),

where w/ = wgo .0 are the Cartan forms. Thus we obtain the mapping

C Diff (s, F(E)) — CAY(E), A +— wa. On the other hand, assume that
the equation & is determined by the operator A: I'(m) — TI'(§) and let
P = F(&,€). Then to any operator (1 € C Diff(P, F(£)) we can put into cor-
respondence the operator Jolg € C Diff (3¢, F(E)), where ¢ is the restriction
of {a onto £°. It gives us the mapping C Diff (P, F(£)) — C Diff(s, F(£)).
In Chapter 5 it will be shown that the forms wrog, vanish which means that
the sequence

0 — CDiff (P, F(E)) — CDiff (s, F(£)) — CAY(E) — 0 (2.41)
is a complex.

DEFINITION 2.16. We say that equation & is f-normal if (2.41) is an
exact sequence.

THEOREM 2.20 (two-line theorem). Let & C J*(r) be a formally inte-

grable £-normal equation in a vector bundle m: E — M over a cohomologi-
cally trivial manifold M, dim M = n. Then:

(i) EP(E) =0, ifp>1and ¢g#n—1,n.
(ii) The differential d*"~1: E?’n_l(é’) — Ell’n_l(g) is a monomorphism
and its image coincides with ker(d" 1),
(iii) The group Ell’nfl(é’) coincides with ker(€%).

REMARK 2.8. The theorem has a stronger version, see [98], but the one
given above is sufficient for our purposes.

REMARK 2.9. The number of nontrivial lines at the top part of the term
FE relates to the length of the so-called compatibility complex for the opera-
tor L¢ (see [98, 52]). For example, for the Yang-Mill equations (see Section
6 of Chapter 1 one has the three-line theorem, [21].

DEFINITION 2.17. The elements of E;™ (&) = ker(/;) are called gen-
erating sections of conservation laws.

Theorem 2.20(iii) gives an efficient method to compute generating sec-
tions of conservation laws. The following result shows when a generating
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section corresponds to some conservation law.? Let £ () = 0 and the equa-
tion &€ be given by the operator A = Ap. Then ¢} (¢) = O(F') for some C-
differential operator [1.

PROPOSITION 2.21. A solution ¢ of the equation £g(p) = 0 corresponds
to a conservation law of the £-normal equation &, if there exists a C-differ-
ential operator V such that V* =V and the equality

&p +0"=Vola
1s valid being restricted onto £°°.

Let us describe the action of symmetries on the space of generating
sections. Assume, as above, that £ is given by equations F' = 0.

PROPOSITION 2.22. Let w be a conservation law of an £-normal equation
E and 1), be the corresponding generating section. Then, if ¢ € sym(E) is a
symmetry, then the generating section

Op(my) + 1 (¢0)

corresponds to the conservation law 9,(w), where the operator [ is such
that 9,(F) = O(F).

We finish this subsection with a discussion of Euler—Lagrange equations
and Nother symmetries.

DEFINITION 2.18. Let m: E — M, dim M = n, be a vector bundle and
L =w] € H}}(m), w € Aj(m), be a Lagrangian. The equation £, = {E(L) =
0} is called the Fuler—Lagrange equation corresponding to the Lagrangian
L, where E is the Euler-Lagrange operator (2.38).

We say that an evolutionary vector field 9, is a Nother symmetry of L,
if 9,(L) = 0 and denote the Lie algebra of such symmetries by sym(L). It
easy to show that sym(L) C sym(&r).

PROPOSITION 2.23 (NGther theorem). To any Néther symmetry 9, €
sym(L) there corresponds a conservation law of the equation ..

ProOF. In fact, since 9, € sym(L), one has 9,(w) = dpp for some
p € A7~1(7). Then, by Green’s formula (2.35), one has

9p(w) = dn(p) = £ = w(p) — dn(p) = £;,(1)(¢) + dnb(p) — dn(p)
=E(L) () + dn(0(p) — p) = 0.
Hence, the form dp,(6(¢) — p) vanishes on £, and n = 0(p) — ple=, is a
desired conserved density. O

We illustrate relations between symmetries and conserved densities by
explicit computations for the nonlinear Dirac equations (see Section 5 of
Chapter 1).

31t B2 1(E) = 0, then, as it follows from Theorem 2.20(ii), there is a one-to-one
correspondence between conservation laws and their generating sections.
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EXAMPLE 2.4 (Conservation laws of the Dirac equations). Let us con-
sider the nonlinear Dirac equations with nonvanishing rest mass (case 4
in Section 5 of Chapter 1). Among the symmetries of this equation there
are the following ones:

0 0 0 0
— X0 =t 3 2 1
Vi=d=us r — 0 en ~ s T g
0 0 0 0
4 3 2 1
Y Bt v (%2+U 93 " ot
0 0 0 0
_ _ 1 2 3 4
R i R e R
0 0 0 0
1 2 3 4
T el T a2 T M e T Gt
0 0 0 0
_ _ 4 3 2 1
V=X =vgr —Vm Vs T g
0 0 0 0
4 3 2 1
T T T e T el T gt (242)
The generators Vi, Vi, V3 are vertical vector fields on the space JO(w) =
R® x R* -5 R* with coordinates a1, ..., x4 in the base and u!, ..., v* along

the fiber. The fields under consideration are generated by 9/0u', 9/0u?,
d/0u?, 9/0u*, 0/ov', 0/Ov?, 8)ov3, 3/Ov?, i.e.,

V=0, j=1,...,3.
In fact, we need the prolonged vector fields Vl(l), ‘/2(1)7 Vg(l) to J1(7) which

can be calculated from (2.42) using formulas (1.34) on p. 26.
Let L(u,v,u;,v;) be the Lagrangian defined on J!(7) by

= 240 =g
L = —u'v] + vl —uded + 0303 — u?od +0%ud — ulof +olud

- v4v% - u4u§ + v%% + ugug — v2v§’ - uzug’ + vlvg + ulué1

- u3v§ + v?’u% + u4v§ - v4u§ — ulvg’ + vlu§ + uzv:;l + v2ui

- ulvi + vlui - uzvi + v2ui — u%i’ + v3ui - u4vﬁ + v4ui

- K1+ %A?’eK), (2.43)

where

(z,u,v,u;,v;) = (z1,...,zqut, ot ud, oo ud, 0 0] (2.44)

are local coordinates on J'(r) = R*. An easy calculation shows that the
Euler-Lagrange equations associated to (2.43), i.e.,
0 0L oL
Ox, 0224 024
are just nonlinear the Dirac equations (1.88), see p. 39. In (2.45) we used the
notation z4, A = 1,...,8, instead of u!,...,u? o', ..., v* and summation
convention over A =1,...,8 a=1,...,4, if an index occurs twice.

0 (2.45)
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Let us introduce the form © by
O = Lw + (9%_)0 A w,, (2.46)
where

w = dzt Ada? Ada® A da?,

0 0 . 0
8(1_%’614_82’—147814_@7
Wq = 0y 1w,
04 = dz* — 22 da?, (2.47)

and z4 refers to either u, or v}. From (2.45) we derive
O = Lw + (0%L)(dz") Aw,y — (94 L) 23w
= (L — (05L) 2 )w + (04L)(dz™) Awq.  (2.48)
Since L defined by (2.43) is linear with respect to zZ' we derive
L—(04L)A = —K(1+ %)\%K). (2.49)
We now want to compute the Lie derivatives
Vi(l)@’

i.e., the Lie derivatives of the form © with respect to the vector field Vi(l),
1=1,2,3. We prove the following

LEMMA 2.24. The form © is V;-invariant, i.e.,
viWe =0, i=1,2,3.
PROOF. The proof splits in two parts:
1: VYKRQ+ %/\SeK)w =0,i=1,23, (2.50)
2: VW@O4L)dzA Aw=0,i=1,2,3, a=1,...,4. (2.51)
Proof of 1. One has
VWK + %A%K)w =V L (~1 - MeK)dK Aw
and due to the definition of K (1.89) on p. 39, dK = 2(u'du' + u?du® —
uddu® — utdu* + vldvt +v2dv? — v3dv3 — v*du?) an easy calculation leads to
vl LdK =0, i=1,2,3, (2.52)

which completes the proof of part 1.
Proof of 2. In order to prove (2.51), we introduce four 1-forms

Vi = (04 L)dz" = vtdut + vPdu?
+ v?du® + vtdut — utdo! — Wddv® — WPdv® — uldo?,

Vs = (03L)dz" = —utdu! + uPdu?
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—w?dud + utdut — vidot + v3de? — v?dud + vldv?,
Vi = (93 L)dz" = v3du! — v*du?
+oldu? — v2du® — uddvt + utdev® — utde® + udo?,
Vi = (04L)dz" = vtdut + v2du?
+ v3du® + v dut — utdot — WPdv® — WBdv® — utdo?,
from which we obtain
AV = =2(dut A dv* + du® A dv® + du® A dv® + dutd A ob),
dVy = 2(dut A du® — du® A du® 4 dvt A dvt — dv? A dv?),
dVy = 2(—dut A dv® 4 du? A dv? — dud A dot 4 dut A dv?),
AV = —=2(dut A dvt 4 du® A dv? + du® A do® + du* A do?). (2.53)

Using (2.42) and (2.53), a somewhat lengthy calculation leads to the follow-
ing result

v =0, i=1,2,3 j=1,..,4 (2.54)
This completes the proof of the lemma. O
Now due to the relation
vie = vy _do+dvV _e)=0, i=1,2,3, (2.55)
and
V) Ldo =0, i=1,2,3, (2.56)

on the “equation manifold”, [95], we arrive at
avV _ey=0, i=1,23 (2.57)

on the “equation manifold”. This means that %(1)46 are conserved currents,
i=1,2,3. Combination of (2.42), (2.48), and (2.54) leads to

VY Lo = (O LV w, (2.58)
i.e., the conserved currents associated to Vi, Vo, V3 are given by
1: 2<u4v4 — w30 —u® + u1v1> dxo N x3 A dxy
_ ((u1)2 +(w2)? — (W3)? — (uh)? — ()2 — ()2
+ (v3)% + (1)4)2> dxy A dxs A dxy
+ 2(u4v3 +udot —uPol — u1v2) dzi N dxo N\ dxy
— 2(u4vl — w0 —uPod + ulv4) dx1 N dxo N dzxg,

2: 2(1}1114 +v20% +ulut + u2u3> dro N dxs N dzry
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— 2( — vt +ud? — PP + u1v4> dx1 A dxg A dxy

+2( — %t +utud — u2u4)d:1:1/\dx2/\d:c4
( 2 4 ()2 4 (ut)? + ()2 + (v2)?2

+ (©*)% + (vh) ) dzy A dxe A dxs,

3. (_ ()2 4+ (W?)? + (43)? — ()2 + (01)? — (02)?

— ()% + (04)2) dzo N\ dxs A dzy

— 2(u4v4 — w30 4+ u? + ulvl) dr1 Ndxg N\ dzy

+ 2(1} vt — 2ot — et + u1u2) dx1 AN dxo A dxy
2(1} vt —v30? —ulut + uzug) dri N dxo N dzs.

REMARK 2.10. It is possible to derive the conservation laws obtained
above by the Nother theorem 2.23, but we preferred here the explicit way.

3. The Burgers equation
Consider the Burgers equation &
Up = Ugy + Uy (2.59)

and choose internal coordinates on £°° by setting up = ug). Below we
compute the complete algebra of higher symmetries for (2.59) using the
method described in [60] and first published in [105].

3.1. Defining equations. Let us rewrite restrictions onto £ of all
basic concepts in this coordinate system.
For the total derivatives we obviously obtain

D, = 8— + Z Uil - (2.60)
0 = )
D=5 + z_: D: (uy + u0u1)8Ui. (2.61)

The operator of universal linearization for £ is then of the form
le = Dy —uy — ugD, — D2, (2.62)

and, as it follows from Theorem 2.15 on p. 72, an evolutionary vector field

Z Di(p (%Z (2.63)
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is a symmetry for £ if and only if the function ¢ = ¢(x, t, ug, . .., ux) satisfies
the equation

Dy = uy + ugDyyp + D2, (2.64)
where Dy, D, are given by (2.60), (2.61). Computing D2 we obtain

D?p D?p
Do = 922 +2ZU1+16 o0+ Z Uil +Z z+2
7 .

,J

while

. )
D} (upuy + ug) = Z <a> UqWi—a+1 T Wit3-

a=0

Hence, (2.64) transforms to

k 7 .
at " 2.2 <a>“a“i—a+18—ui =up+uogs + o5

i=1 a=1
k k
0% 0%
2 E ] ——— E ; 11—, (2.65
' i—1 UZH‘%@W * 2 Mt Ou;0u; (2.65)

)=

2. Higher order terms. Note now that the left-hand side of (2.65)
is independent of uy,1 while the right-hand one is quadratic in this variable
and is of the form

0% 0% Al 0%

2

) i1 — .
Yht1 Gui + Skt <6$8uk + ;uzﬂ Ou; Ouy,

It means that

o = Aug + 9, (2.66)

where A = A(t) and ¢ = (¢, z,ug,...,ur—1). Substituting (2.66) into
equation (2.65) one obtains

] . k
. o 7 &b k
Au+ 5 +2 2 <a> ati-atigy + D ( )“Z“’“ w1

0? — 02
= ul(Auk +¢) +UQ8—¢ + a_?é) + 2271@‘_:,_1833811'
— i

0%y
+ Z Uz+1ug+1a o,

4,j=0
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where A % 44 /dt. Here again everything is at most quadratic in uy, and
equating coefficients at ui and ug we get

2 k—2 2 2
Y _ 0, 2 (Zuz‘ﬂaua Ld 0% ) = ku1 A+ A.
i=0

+
8u%_1 Oup_1  O0xlup_1

Hence,

(kupA + Az + @)up_y + Olk — 2],

DO | =

P =

where a = a(t) and O[l

—

denotes a function independent of u;, ¢ > [. Thus
1 .
o = Aug, + i(kqu + Az + a)up—1 + O[k — 2] (2.67)
which gives the “upper estimate” for solutions of (2.64).

3.3. Estimating Jacobi brackets. Let

(p:SD(t7x7u07"‘7uk)7 'lp:w(t7x7u07"'7ul)
be two symmetries of £. Then their Jacobi bracket restricted onto £ looks
as
Lo s By
{e0} =) Dilp)g— =D Di()z=. (2.68)
P U uj

v =0

Suppose that the function ¢ is of the form (2.67) and similarly
1 i :
¥ = Bu; + i(luoB + Bz + b)uj—1 + O[l — 2]

and let us compute (2.68) for these functions temporary denoting kugA +
A+ a and lugB + B + b by A and B respectively. Then we have:

1~ 1, 1- _
{9} = DL (Auy + EAuk:—l)B + §D§; N Aug + §Auk—1)B

1 1 1- _
— Dy(Bui + 5 Bui1)A = 5Dy~ (Bug + 5 Bui1) A+ Ok +1 - 1]

1 — _ _ 1 1 -
= 5 (IDo(A)tkt1-2 + Aupi-1)B + S (Auppi—1 + 5 Aup1-2) B
1 _ _ _ 1 1_
- §(kDa:(B)uk+l—2 + Bugy-1)A — §(Buk+l—1 + EBUI@-H—Q)A +
Ok +1— 3,
or in short,

{o, 0} = %(ZAB — KBA)ujyi_o+ Ok +1—3)]. (2.69)
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3.4. Low order symmetries. These computations were done already
in Section 3 of Chapter 1 (see equation (1.61)). They can also be done
independently taking k = 2 and solving equation (2.64) directly. Then one
obtains five independent solutions which are

1 1 1
3 = tug + (tug + 556)11,1 + 5o,
03 = t*ug + (t*ug + tx)uy + tug + . (2.70)
3.5. Action of low order symmetries. Let us compute the action

j def j
T! = {o], e} = 9@{ —f@z

of symmetries <pg on other symmetries of the equation £.
For ¢! one has
0

0
Tlo = ‘911,1 _Eul = Zu%i,laiuz - Dm = —%

i>0

Hence, if ¢ = Auy+O[k —1] is a function of the form (2.67), then we obtain
1.
T p = —§Auk_1 + Olk —2].

Consequently, if ¢ is a symmetry, then, since sym(€) is closed under the
Jacobi bracket,

1\*t dk-1A
ONk—1,_
(IT7)" = <—§> proal + O[0]

is a symmetry as well. But from (2.70) one sees that first-order symmetries
are linear in . Thus, we have the following result:

PROPOSITION 2.25. If ¢ = Aug + O[k — 1] is a symmetry of the Burgers
equation, then A is a k-th degree polynomial in t.

3.6. Final description. Note that direct computations show that the
equation £ possesses a third-order symmetry of the form

d=u +§u U +§u2+§u2u
%03—320220401.
Using the actions 7% and T! :? , one can see that
3)’“ Kk —1)!

5 WI%-FO[]C— 1] (27)

((T2)i o (19 o T2)Vyuy = (—

is a symmetry, since u; is the one.
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THEOREM 2.26. The symmetry algebra sym(E) for the Burgers equation
E = {u = uuy + uz}, as a vector space, is generated by elements of the
form

o =tup + Ok —1], k>1,i=0,...,k,

which are polynomial in all variables. For the Jacobi bracket one has
; 1. N it
{eh o} = 5 — k)i, + Ok +1- 3] (2.72)
The Lie algebra sym(&) is simple and has Y, p3, and cpg as its generators.

ProOOF. It only remains to prove that all @}; are polynomials and that
sym(&) is a simple Lie algebra. The first fact follows from (2.71) and from
the obvious observation that coefficients of both 7% and T¥ are polynomials.

Let us prove that sym(€) is a simple Lie algebra. To do this, let us
introduce an order in the set {¢%} defining

def 4
¢ = Py
D 4 = P

Then any symmetry may be represented as > o _; Aq®q, A € R.

Let I C sym(€) be an ideal and & = &, + 23;11 Ao @, be its element.
Assume that &, = @}; for some k> 1 and 7 < k.

Note now that

0 0 0
T = Dt )— —tDy = — —t—
! Z o (fun + )3ua Oug Oz
a>0
and
T20 = ZDQ(UQ —I—uoul)i — D2 — uoDx —Uuy = —2.
* Ouy, z Ot
a>0
Therefore,

(T 1o (T9)")® = et

where the coefficient ¢ does not vanish. Hence, I contains the function ¢?.
But due to (2.71) the latter, together with the functions ¢3 and ¢9, generates
the whole algebra. O

Further details on the structure of sym(€) one can find in [60].

4. The Hilbert—Cartan equation

We compute here classical and higher symmetries of the Hilbert—Cartan
equation [2]. Since higher symmetries happen to depend on arbitrary func-
tions, we consider some special choices of these functions [38].



4. THE HILBERT-CARTAN EQUATION 85

4.1. Classical symmetries. The Hilbert—Cartan equation is in effect
an underdetermined system of ordinary differential equations in the sense of
Definition 1.10 of Subsection 2.1 in Chapter 1. The number of independent
variables, n, is one while the number of dependent variables, m, is two. Local
coordinates are given by z,u,v in J°(), while the order of the equations is
two, i.e.,

Up = V3 (2.73)
The representative morphism (see Definition 1.6 on p. 6) ® is given by
DA (T, U, V, Ug, Vg, U, Vo) = Ug — Vo (2.74)

The total derivative operator D, is given by the formula

0 0 8 8 8

To construct classical symmetries for (2.73), we start from the vector field
X, given by

+U1(x’u’x’“x’vz)a_%+V1(557U71’7Ux7vx)8i%
+ Us(z,u, z, Uy, Uy, u U)i-l-V(xuxuz;u U)a
20, Wy Ly Uy y Ugy Uy Uz 8Uxx 20y Uy Ly Uy y Ugy Uy Vg 81):0;'

The deﬁnlng relations (1.34) (see p. 26) for Uy, Vi, Us, V5 are
D(Up) —uyD(X) = D(Up — up X) + uge X,
D(Vp) —veD(X) = D(Vh — 0, X) 4 032 X,
D(Uy) — uzeD(X) = D*(Uy — up X) + tgee X,
v2 = D(V1) = vze D(X) = D*(Vo — 02 X) + Vg X. (2.76)
From (2.76) we derive the following explicit expressions for Uy, Vi, Us, Va:
Uy = Upa + Uputie + Up Ve — Uz (Xoz + Xowte + Xo,0ve),
Vi = Vou + Voutz + Vouve — e (Xoz + Xoutz + Xo,002),
Uz = Upea + 2U0zute + 2U0 vV + Unuutty + 2U0,uvtizVs + Uo ulas
+ Upupv2 + Up wVzz — 2z (Xo.w + Xowtte + Xo040z)
— Uy (X020 + 2X0 zulte + 2X0 2002
+ Xouutt + 2X0,u0taVs + Xoutlzs + XowwVs + Xopves),
Va = Vouo + 2Vozutts + 2Vo,e0vs + Vouutiy + 2Vo.untizVe + Voutlzs
+ Vo003 + VoUsr — 2uaz(Xow + Xoutis + Xowvs)
— U (X022 + 2X0 zutls + 2X0 200 + Xo,uuug
+ 2X0,uptz Ve + Xo ez + Xowvs + XowVez)- (2.77)
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Now the symmetry-condition X (®a)|s = 0 results in
Uil — 20, Vo = Mug — v2 ) (2.78)

Trr

which is equivalent to
Uy — 2(uz)2Va = 0 mod ®p = 0, (2.79)
which results in
Uo e + Uoutiz + Uppvy — ug(Xoz + Xowtla + XowUz)
— (Vo,m + 2V zutte + 2V 2oV + Vouuts + 2V0.uvtiaVe + Vo,ullzs
+ Voot + VoUar — 2uaa(Xoz + Xoutis + Xo,u0z)
— 02 (Xo 2 + 2X0.zutls + 2X0 200z + X0 uutt + 2X0 00Uz Vs
+ X0 ulUzs + Xo,wvf; + Xo,vvm)> . 2(ux)1/2 = 0. (2.80)
Equation (2.80) is a polynomial in the “variables” (uz)/2, vy, Ugs, the

coefficients of which should vanish. From this observation we obtain the
following system of equations:

1: Uoe =0,
uy/? —2Vo 40 = 0,
uglc/va : —4Vo av +2X0,02 =0,
ul Py, —2Vpu =0,
uglg/Qumvm : 2X0u =0,
ul/?v? 2V + 4 X020 = 0,
ul/%3 2Xo00 =0,
Ug Uou — Xog —2Vo +4X0, =0,
UgVy —Xo0 +4X0 +2X0, =0,
uz, : —Xo,u +4X0,u =0,
ul/? ~ 40,40 = 0,
ud?v, —4Vo,uv + 4 X0 2w = 0,
ui/%i 4X0uw =0,
ud/? —2Vo,uu = 0,
u/?v, 2Xouu =0,
Vg Up» = 0. (2.81)

From system (2.81) we first derive:

XO,u = XO,v = 07

VO,uu = V(],uv = VO,vv =0= VO,u = %,x:}ca
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A A [ A [ A [As | Ag | A5 [ A6 |

A, 010]0] 0| A | 43
A, 0|0 |245] —345] 0
A, 0 A; | 0 0
Ay 0 0 | —Ag
A 0 | Ag
Ag 0

FiGURE 2.1. Commutator table for classical symmetries of
the Hilbert—Cartan equation

which results in the equality X (z,u,v) = H(z) and in the fact that V is
independent of u, being of degree 1 in v and of degree 1 in z, i.e.,

X(z,u,v) =H(x), Vo=ap+ a1z+ agv+ azzv.
Now from the equation labeled by ut*v, in (2.81) we derive
H(x) = azz® + agzx + as. (2.82)
From the equations Uy, = 0 and Uy, + 3 X0z — 2Vh,, = 0 we get
Uy = —(4asx + 2az — 3as)u + G(z). (2.83)

Finally from Uy, = 0 we arrive at a3 = 0, G(z) = ag, from which the general
solution is obtained as

X =aqx +as, Uy=(2a2 —3aq)u+ag, Vp=ag+arx+ agv.

This results in a 6-dimensional Lie algebra, the generators of which are given
by

A= a}

Ag = ?,

" %’6 0
A4:2u%+va—,
As :x%—i’)u%,
Ag—x%,

while the commutator table is given on Fig. 2.1.

4.2. Higher symmetries. As a very interesting and completely com-
putable application of the theory of higher symmetries developed in Subsec-
tion 2.1, we construct in this section the algebra of higher symmetries for
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the Hilbert—Cartan equation &

Uy —v2, = 0. (2.84)
First of all, note that £ is given by the system of equations:
Di(ug —v2,) =0, i=0,1,... (2.85)
where D is defined by
0 = 0 > 0
D=— — — 2.86
Ox * ; has Ouy, * kz—o Vki1 vy’ (2.86)

and up = ug ... g. So from (2.84) we have
=

k times
DlF = U — 21121)3 = O,

D?*F = u3 — 203 — 2u9vy = 0,

7 .
. (3
D'F =uiq; — E (l>v2+lv2+i—l =0,

=0

i=3,..., with F(z,u,v,ui,v1,u2,v9) = uy —v3 = 0.
In order to construct higher symmetries of (2.84), we introduce internal
coordinates on £*° which are

T,Uu,v,v1,V, 03, - (2.87)
The total derivative operator restricted to £°°, again denoted by D, is given

by the following expression

0
D——Jrvg(9 + o +sz+1

0
0 0 0 0
DM = — 42— 4 — e 2.88
Ox +U28u+vlﬁv +§vz+1avi ( )
Suppose that a vertical vector field V = 9g with the generating function &,
d = (f“(:c,u, V01, . 0), (T u 0,01, ,vn)), (2.89)
is a higher symmetry of £. We introduce the notation
flok] = flz,u,v 01, .00 ). (2.90)
Since the vertical vector field V is formally given by
0 0 0 0
V= f“[vn]% + f”[vn]% 1o {U"H]a_vl + fU2 [“”“]8—1)2 +..., (291)

we derive the following symmetry conditions from (2.84)
) f¥fo,] = 203 f [t 2] = 0,
D™ f¥[vg] = f** [vn41] = 0,
DO foiy ] — fP2[upge] = 0. (2.92)
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In effect, the second and third equation of (2.92) are just the definitions
of fU vp+1] and fV2[v,42], due to the evolutionary property of 95. We now
want to construct the general solution of system (2.92). In order to do so,
we first solve the third equation in (2.92) for f“2[v,42],

F2[onya] = DU o w4, (2.93)
and the system reduces to
D™ flv,] — 20, DD U1y, ] =0,
D™ v, = £ ] = 0. (2.94)

REMARK 2.11. At this stage it would be possible to solve the last equa-
tion for fY*[v,41], but we prefer not to do so.

Now (2.94) is a polynomial in v, 49 of degree 1 and (2.94) reduces to

U1
Un+2 . _2’02M — O,
8Un-i—l
1: D™ ffu,] = 202D 1 o] = 0,
D(n)fv [Un] _ fvl [Un] =0. (295)

In (2.95) and below, “v,49 :” refers to the coefficient at v,9 in a particular
equation. From (2.95) we arrive, due to the fact that second and third
equation are polynomial in vy, at

of*vp, Of“|vp
1- D(nfl)fu [Un] _ 21}2D(n71)fv1 [Un] =0,
af"[vn
Up+1 fa’l}[v ] =0
L DO ] - ffe) =0, (2:96)

To solve system (2.96), we first note that
fPlon] = fvp-1]. (2.97)

By differentiation of the fourth equation in (2.96) twice with respect to v,
we obtain

82]0111 [Un]
—— =0. 2.98
502 (2.98)
By consequence, fY! is linear with respect to vy, i.e.,
P vn] = H [vp-1] + vo H?[vn-1]. (2.99)

Now, substitution of (2.97) and (2.99) into (2.96) yields the following
system of equations
Af*[vn]
ovy,

— 209 H?[v,_1] = 0,
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D("_l)fu [vn] — 2v2D("_1)H1[vn_1] — 2v2’unD("_1)H2[vn_1]
DD v, 1] — H vn—-1] — va H2[v—1]

We solve the first equation in (2.100) for f“[v,], i.e.,
o] = 2020, H2[vn 1] + H3[vn 1], (2.101)

and from the second and third equation in (2.100) we arrive at
Qusv, H? [Un-1] + 2090, D" H2 [Un-1] + D=1 3 [Up—1]
— 20, DY HY [, _1] — 2090, D"V H?[0,,_1] = 0,

DD oy, 1] — H'vp—1] — vnH?[vp—1] = 0. (2.102)

I

0
0. (2.100)

Due to cancellation of second and fifth term in the first equation of (2.102)
and its polynomial structure with respect to v,, we obtain a resulting system
of four equations:

8H3[’Un,1] 8H1[vn,1]
ni o 2usH2[up_q] + 9, O U=l
v VU3 [U 1] + D01 V9 90, 1 0
1: D=2 [3[v, 1] — 20, DD H [0, 1] = 0,
A" [vn—1] 2
n ——— —Hon1] =0,
v o [Un—1] =10
1: D=2 £y, 1] — H'[v,_1] = 0. (2.103)
From (2.103) we solve the third equation for H?[v, 1],
Af[vn—1]
H?[v,_q] = —1"—2 2.104
on-a] = (2:104)
and integrate the first one in (2.103):
af” [Unfl] 8H3 [’Unfl] 8H1[Un,1]
2 —2up——— =0 2.105
S o * Ovp—1 P v ’ ( )
which leads to
H3vp_1] = 200 H [v_1] — 203f [vn_1] + H*[vp_2). (2.106)

By obtaining (2.106), we have to put in the requirement n — 1 > 3 and we
shall return to this case in the next subsection.

We now proceed by substituting the results (2.104) and (2.106) into
(2.103), which leads to

22)3H1[Un_1] + 2U2D(n72)H1[Un_1] — 22)4fv[vn_1} — 27)3D(n72)fv [Un_1]
+ D" 2 H4 v, o] — 205DV H v,,_1] = 0,
D2 Uy, 1] — H'[v,_1] = 0. (2.107)

By cancellation of the second and sixth term in the first equation of (2.107),
we finally arrive at

D=2 oy, ] — H'vp_1] =0,
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D=2 H4 v, o] — 204 f % [vn_1] = 0, (2.108)

where the first equation in (2.108) can be considered as defining relation
for H'[v,_1], while the second equation determines f“[v,_1] in terms of an
arbitrary function H*[v,_»]. The final result can now be obtained by (2.104)
and (2.106):

2 _ Of"lvn-1]
o) =0
H3vp_1] = 200 H [up_1] — 203 [vn-1] + H*[vn_2], (2.109)

together with (2.108) and (2.101):
afv ['Unfl]

fu [Un] = 2090y, avnil
folon] = ¥ on-1], (2.110)

whereas in (2.110) f¥[v,_1], H'[v,_1] are defined by (2.108) in terms of an
arbitrary function H*[v,_»]! The general result of this section can now be
formulated in the following

+ 205 H [vp—1] — 203 f*[vp—1] + H*[vn—2],

THEOREM 2.27. Let H be an arbitrary function of the variables x, u,
VyoovyUn—2, &€,

H = Hlvn_o), (2.111)

and let us define

1
fv [Unfl] = —D(n_2)H[Unf2]a

2’1)4
Fvn] = 202DV f2lu, 1] — 203 [on-1] + Hvn_a). (2.112)
Then the vector field
u 8 v 8

is a higher symmetry of (2.85).
Conversely, given a higher symmetry of (2.85), then there exists a func-
tion H, such that the components f*, f¥ of V are defined by (2.112).

4.3. Special cases. Due to the restriction n > 4 the result (2.109) and
(2.110) holds for

n=>5,... (2.114)
meaning that H*[v, 2] is a free function of z, u, v,...,v,_2 and f’[v,_1] is
obtained by (2.109)

1
FPlon-1] = =—D" D H*v,_]. (2.115)

21}4
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From (2.115) and (2.109) it is clear that f"[v,_1] is linear with respect
to the variable v,_1 and

Un—1 oH* [Un72]
2U4 8vn,2

Folon_1] = + fVlvp_s]. (2.116)

Moreover, the requirement that fY[v,_1] is independent of v,,—; reduces to
H*[v,_s] to be independent of v, s, i.e.,

afy [vn—l]
Ovp—1
The result (2.117) holds for all n > 5.
The results for higher symmetries, or Lie-Béacklund transformations, for
n < 6 are obtained by imposing additional conditions on the coefficient fv
of the evolutionary vector field.
The case n = 5.

fopo] — L O] | p0H ) | 9]

= 0= H' v, o] = H[v,_3]. (2.117)

204 ox 2 Hu o
6H4 [1)3] 8H4 [1)3} 8H4 [1)3]
+ 2 (91)1 + s (91)2 + s 81)3 )

The requirement that f¥[v4] is independent of v4 now leads to a genuine first
order partial differential equation, i.e.,
oH*  ,0H* oH* oH* oH*
=0, 2.118
ox T ou Tt ov +02(%1 +v3(%2 ( )
and the general solution is given in terms of the invariants of the correspond-
ing vector field

0 5 0 0 0 0
Y., 29,,9_ .9 .2 2.11
v 8a:+028u+v18v+v28v1+v38vg’ ( 9)

where the set of invariants is given by
21 = Vs,
29 = V2 — 3T,
z3 = 2u1 — 2vox + v3x2,

z4 = 6V — 6V + 3U2.CE2 — ngg,

25 = 3u — 3vsx + 3vguzr® — vixd. (2.120)
So H* is given by
H4 = H4(21,ZQ,Z3,Z4,Z5), (2.121)
whereas the formulas for f¥ and f* reduce to
oH* OH* 0?H*
U _ H4 _ _
f V2 905 U3 —(%3 + V24 —8v§ )
10H*
f'= 19 . (2.122)
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The case n = 4. The requirement the function fv is independent of
vz reduces to

O*H*
——— =0, 2.123
o3 ( )
and (2.118)
oH*  ,oH* oH* oH* OH*
= 0. 2.124
ar T2 0 T T80 T o0, (2124)
Substitution of (2.123) into (2.124) immediately leads to the condition
o 0
———H*"=0 2.125
8@2 81)3 ’ ( )
ie.,
U=z, u,v,01), (2.126)

and the result completely reduces to the second order higher symmetries
obtained by Anderson [3] and [2] leading to the 14-dimensional Lie algebra
Ga.

5. The classical Boussinesq equation

The classical Boussinesq equation is written as the following system
of partial differential equations in J3(x), where 7: R? x R? — R? with
independent variables z,t and u, v for dependent ones:

up = (U0 + QUzg )y = Uz + UVE + WVggy,
1
v = (u+ —02)1 = Uy + VVg. (2.127)

So in this application u = (u,v) and (z1,22) = (z,t). In order to construct
higher symmetries of (2.127), we have to construct solutions of the symmetry
condition which are discussed in Section 2. For evolution equations it is
custom to choose internal coordinates as z,t, u, v, uq, v1,u2,vs, ..., where

o B o'
oz T pt
The partial derivative operators D, and Dt are defined on £ by

+ Z uz+1 + Z Uz—i—l
+ Z Uit g+ Z Vit (2.129)

while expressions for u;; and v are derived from (2.127) by

ui = Di(w), vy = Di(vy). (2.130)

u; = (2.128)
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From (2.127) we derive the universal linearization operator as a 2 x 2 matrix
operator by of the form

, (va + v ozDg +uD, + u1>
A = .

D, Dot o (2.131)

To construct higher symmetries for equations (2.127), we start from a
vertical vector field of evolutionary type, i.e.,

> 0 > 0
Y8y =) DLY")— DL(YY)—. 2.132
From this and the presentation of the universal linearization operator we
derive the condition for Y = (Y%, Y") to be a higher symmetry of (2.127),
i.e.,
VDY + 1Y% 4 (aD3 4+ uD, + u) YV = 0,
D,Y" 4+ (vDy 4+ v1)YY =0. (2.133)

It is quite of interest to make some remarks here on the construction
of solutions of this overdetermined system of partial differential equations
for Y*, Y. Recall that we require Y and Y" to be dependent of a finite
number variables. Equations (2.127) are graded, i.e., they admit a scaling
symmetry,

L VAP A
x&’c Ot u@u Uav’

from where we have

deg(z) = —1, deg(u) = 2, deg (%) = -2,
deg(t) = —2 deg(v) = 1 deg (L) = 1
eg(t) = -2, eg(v) =1, |5, ) =1

Due to the grading of (2.127), equations (2.132) and (2.133) are graded too
and we require

Y* to dependent on z,t,v,u,v1,...,us, Vs, Us, Vg,
Y" to dependent on x,t, v, u, vy, ..., Us, Us.

The general solution of (2.133) is then given by the following eight vector
fields

Sy,

Zza(yiu’yiv), izl,...,S,
where
Y = avs + ujv + vu,
Yf) = Uy + v1v;
u
}/2 = usy,

v .
Y2 = V135
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YE’)U = tuq,

Yy =tu + 1;
o 1

Y= S%u1 + t(avs + uv + viu) + u,
L1 1

Yy = vt + t(ug +v1v) + 3Y;

1 3 3
Y = %:L‘(Oﬂ)g + uv + viu) + t(U3 + S V3Y + 3vouy + Eul(UQ + 2u)

4 )+32+1
—v1ou v —ou
2a 2 a

1 3 3 1 1
Yy = gx(ul + v1v) + t(vs + 25 1Y + Evl(UZ + 2u)) + 502 + LU

Y = 2avs + dugv + v3(3v% + 5u) + Yugvy 4+ 10vu; + 1209010
1 3
+ aulv(UQ + 6u) + 303 + avlu(vz + u),

3 1
Yy = 2us + 4vsv + Tvguy + —ul(UQ +u) + —010(212 + 6u);
o o

, 5 15 5 25
Y = aus + S UsY + 5 VUL + 5'&3(1) +u) + 5 Q32

5 45 25 5
+ ngv(UQ + 5u) + bugu + 4 davtv + — v2u1Y + 5@201(302 + 5u)

) 15 )
+ gulv% + 16—au1(v4 + 120%u + 6u?) + Zv%v + Zvlvu(UQ + 3u),

5 5 35
Y = avs + Uy + 51}3(1)2 + u) + bugvy + Svouy + 4 V2u1Y

) 15 )
+ Zulv(UZ + 3u) + g“? + o0 (vt + 120%u + 6u?);

3 3 3
Ye = us + 51}31} + 3vouy + Bul(v2 + 2u) + ﬁvlvu,

3 3
Y = = = o1 (v? + 2u). 2.134
s v3+2au1v+4av1(v + 2u) (2.134)

The Lie algebra structure of these symmetries is constructed by comput-
ing the Jacobi brackets of the respective generating functions Y; = (Y;*,Y}").

The commutators of the associated vector fields are given then in Fig. 2.2.
The generating function Yy is defined here by

5 15 5 105
Yy = Jovr + 5 usv + §v5(15v2 + 14u) + 25u4v1 + — i
+225 +175 +25 ( 2 3 )+175 +375
401V + —u3vy + —uzv(v Uu) + ——v3U + —— V302V
4 4U1 4 302 4 3 4 3U2 4 3V2
1125 25 75
+ WUSU% + 32—avg(3v4 + 30v%u + 14u?) + o U2utY
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VY] [n[Ya| Y | Ya | ¥ [ Y% [Y5| ¥ |

Vi 0[-Y2[ - [ -Ys [ 0] O] 0O
Ys 0 |—3Ya |- O] 0] 0
Y3 2Vs | oYa [4Ys |3Y6 | ooVh
Yy 2Ys | 2¥s | 5Y7 | 5Ys
Ys Y7 | Yy | £V
Y5 0] 0
Yz 0
Yy

Figure 2.2. Commutator table for symmetries of the
Boussinesq equation

25 375 4 25

+ Fuwl(Z?v + 26u) + V21 + 8av2u1(1502 + 14u)
M W 50 4+ 202, 4 1125,
—vouyv(v u) + —ujv; + ——uvgv
do 21 do " 160 Y
15 )
+ 5902 wrv(vt + 200%u + 30u?) + 60 — 3 (3v% + bu)
)
+ 5902 viu(vt 4 6v%u + 2u?),
) 15 25 125
Yy = U5 + 5 UsY + 20w4v1 + @U3(3U2 + 2u) + — Usv2
+ 2 (0 4 3u) + gy + +
—uwsv(v u) + —uguy + —U2V1V + — VULV
da ® 20 21 T2 2t 20 2
25 425 75
16 = wgu1 (2102 + 22u) + 16au1v% + 5902 (v* + 6v%u + 2u?)
225 15
+ ™™ v3v + 90 2v1v(v4 + 20v%u + 30u?). (2.135)
In order to transform the Lie algebra we introduce
Z1 = OKY5, Zy = Y47 Z1= YE%
1 1
Wi =Y, Wy =M, Ws = ja¥s,
3 3 3
Wi = Za¥s, Ws = Say, We = 50°%s, (2.136)

which results in the Lie algebra structure presented in Fig. 2.3.

It is very interesting to note that the classical Boussinesq equation ad-

mits a higher symmetry Z; (see (2.134)) which is local and which has the
property of acting as a recursion operator for the (x,t)-independent symme-
tries of the classical Boussinesq equation, thus giving rise to infinite series
of higher symmetries. In Chapter 5 we shall construct the associated
recursion operator by deformations of the equation structure of the classical
Boussinesq equation.
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(FA 2] Zo [ Za [ Wa [ Wo [ W5 [ Wa [ W5

Zy [0 -2 [-Zo [ Wy [ W5 [ Wy | W5 | W
Zo | O] 0 [3Z [sWi| Wy [SWs|2Wy | SWs
Z 0] o 0 | 0 |4Wh|sWy|3Ws|5Wy
Wi 0] o ool oo oo
W, [0] © oo oo ]]of]o
Ws [ 0] © oo oo ]]of]o
Wy [0] O oo oo oo
Ws [ 0] © o Jo oo J]o]o

FiGure 2.3. Commutator table for symmetries of the
Boussinesq equation (2)
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CHAPTER 3

Nonlocal theory

The facts exposed in this chapter constitute a formal base to introduce
nonlocal variables to the differential setting, i.e., variables of the type [ ¢ dz,
© being a function on an infinitely prolonged equation. These variables are
essential for introducing nonlocal symmetries of PDE as well as for existence
of recursion operators. A detailed exposition of this material can be found
in [62, 61] and [12].

1. Coverings

We start with fixing up the setting. To do this, extend the universum
of infinitely prolonged equations in the following way. Let N be a chain of
smooth maps --- — NT! SUAEUNS N N .-+, i.e., an object of the category
M® (see Chapters 1 and 2), where N are smooth finite-dimensional mani-
folds. As before, let us define the algebra F(N') of smooth functions on N as

the direct limit of the homomorphisms - -- — C(N?) T, C®(NHH —
-++. Then there exist natural homomorphisms 77 ;: C*°(N Y — F(N) and
the algebra F(N') may be considered to be filtered by the images of these
maps. Let us consider calculus (cf. Subsection 1.3 of Chapter 1) over F(N)
agreed with this filtration. We define the category DM as follows:
1. The objects of the category DM™ are the above introduced chains
N endowed with integrable distributions Dar C D(F(N')), where the
word “integrable” means that [Dar, Dyr] C Dys.
2. Ny = {N{, 7y 1}, No = {N3, 77, ;} are two objects of DM, then
a morphism ¢: N1 — N> is a system of smooth mappings ¢, : N1i+a —
N, where a € Z is independent of i, satisfying 7'22_’_177; 0 WYit1 = Pi o
Tl-lJraJrLHa and such that . g(Dn;,9) C Doy, p(0) for any point 6 € M.

DEFINITION 3.1. A morphism ¢: N7 — N is called a covering in the
category DM if ¢, : Da o — Dagy,p(0) 1s an isomorphism for any
point 6 € V.

Dy 0

In particular, manifolds J*°(7) and £*° endowed with the corresponding
Cartan distributions are objects of DM and we can consider coverings
over these objects.

ExAMPLE 3.1. Let A: T'(r) — I'(n’) be a differential operator of order
< k. Then the system of mappings <I>(Al) . JHH (1) — JY(7') (see Definition 1.6

99
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on p. 6) is a morphism of J°°(m) to J*°(n’). Under unrestrictive conditions
of regularity, its image is of the form £° for some equation £ in the bundle
7/ while the map J*°(7w) — £ is a covering.

DEFINITION 3.2. Let ¢': N — N and ¢”: N/ — N be two coverings.
1. A morphism 1: N/ — N” is said to be a morphism of coverings, if
! !
@ =" o,
2. The coverings ¢, " are called equivalent, if there exists a morphism
i N — N which is a diffeomorphism.

Assume now that ¢: NV — N is a linear (i.e., vector) bundle and denote

by L(N') € F(N’) the subset of functions linear along the fibers of the
mapping .

DEFINITION 3.3. A covering ¢: N/ — N is called linear, if

1. The mapping ¢ is a linear bundle.
2. Any element X € D(N”) preserves L(N7).

EXAMPLE 3.2. Let £ C J*(7) be a formally integrable equation and £
be its infinite prolongation and TE* — £%° be its tangent bundle. Denote
by 7v: VE® — £%° the subbundle whose sections are mws.-vertical vector
fields. Obviously, any Cartan form wy = de(f), f € F(E%) (see (2.13) on
p. 66) can be understood as a fiber-wise linear function on VE>:

wiV) Y Lwp, Y eT(r), (3.1)

and any function ¢ € L(VE®) is a linear combination of the above ones
(with coefficients in F(£)).

Take the Cartan distribution C for the distribution Dg~ and let us define
the action of any vector field Z lying in this distribution on the functions of
the form (3.1) by

Z(wy) e Lzwy.

Since any Z under consideration is (at least locally) of the form Z =
> [iCXi, X € D(M), f; € F(£), one has

Z(ws) =Ly, pexiwr = Y (fLex,def + dfi Aex, (def))

_ Z de(CXif) = Z fiwex,(p):

7

But defined on linear functions, you obtain a vector field ZNOH the entire
manifold VE*. Obviously, the distribution spanned by all Z is integrable
and projects to the Cartan distribution on £°° isomorphically. Thus we
obtain a linear covering structure in 7v: VE® — £°° which is called the
(even) Cartan covering.
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REMARK 3.1. In Chapter 6 we shall introduce a similar construction
where the functions wy will play the role of odd variables. This explains the
adjective even in the above definition.

If the equation & C J*¥(r) is locally presented in the form & = {F =
0}, then the object VE® is isomorphic to the infinite prolongation of the
equation

F=0,
OF . (3.2)
2o 57 e =0,
g

where wg def FE Thus, VE> corresponds to the initial equation together

with its hnearlzatlon

Let N be an object of DM and W be a smooth manifold. Consider
the projection Ty : N'x W — N to the first factor. Then we can make a
covering of Ty by lifting the distribution D to N' x W in a trivial way.

DEFINITION 3.4. A covering 7: N/ — N is called trivial, if it is equiva-
lent to the covering 7y for some W.

Let again ¢': NV — N, ¢”: N — N be two coverings. Consider the
commutative diagram

N XNN// ‘2 (90) N
" (¢") ©"

N YN

where

/\/’/ XNN” — { (9/7 9//) GN, ><-/\/‘// | (,0’(9’) — g0//(9//)}
while ¢ ("), ©"*(¢') are the natural projections. The manifold N x xr N/
is supplied with a natural structure of an object of DM and the mappings

(©)*(¢"), (¥")*(¢") become coverings.
DEFINITION 3.5. The composition
S0/ XN S0// — SO,O()O/*(()OH) — QONOQO”*(QO/)I Nl XNN’// *)./\/’
is called the Whitney product of the coverings ¢’ and ¢”.

DEFINITION 3.6. A covering is said to be reducible, if it is equivalent to
a covering of the form ¢ x s 7, where 7 is a trivial covering. Otherwise it is
called irreducible.

From now on, all coverings under consideration will be assumed to be
smooth fiber bundles. The fiber dimension is called the dimension of the
covering o under consideration and is denoted by dim ¢.
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PROPOSITION 3.1. Let & C J*(r) be an equation in the bundle m: E —
M and o: N — £ be a smooth fiber bundle. Then the following statements
are equivalent:

1. The bundle @ is equipped with a structure of a covering.
2. There exists a connection C? in the bundle Too0op: N — M, C?: X
X% X € D(M), X% € D(N), such that
(a) [X¥,Y¥] =[X,Y]%, ie., C¥ is flat, and
(b) any vector field X¥ is proyectzble to £ under gy and ¢, (X¥) =
CX, where C is the Cartan connection on £°°.

The proof reduces to the check of definitions.

Using this result, we shall now obtain coordinate description of coverings.
Namely, let 21, ..., z,,u!,...,u™ be local coordinates in J°(7) and assume
that internal coordinates in £°° are chosen. Suppose also that over the
neighborhood under consideration the bundle p: N' — £°° is trivial with the
fiber W and w',w?,...,w®,... are local coordinates in W. The functions
w’ are called nonlocal coordinates in the covering ¢. The connection C¥
puts into correspondence to any partial derivative 9/0x; the vector field
C¥(8/0x;) = D;. By Proposition 3.1, these vector fields are to be of the
form

8 —, =1,

Di=D;+ X} = D+Z ¢ ., (3.3)

where D; are restrictions of total derlvatlves to £€%°, and satisfy the condi-
tions

[Di, Di] = [Di, Dj] + [Di, XJ]+ [X], Dj] + [X], X]]
= [DZ-,X;’] + [ X7, D] + [ XY, X”] =0 (34)
foralli,j=1,...,n

We shall now prove a number of facts that simplify checking of triviality
and equivalence of coverings.

PROPOSITION 3.2. Let o1: N1 — £ and po: Ny — £ be two cover-
ings of the same dimensions r < co. They are equivalent if and only if there
ezists a submanifold X C N1 xgoo No such that

1. The equality codim X = r holds.
2. The restrictions ©3(v2) |x and ©5(1) |x are surjections.
3. One has (DaxpooNy )0 C ToX for any point 0 € X.

PRrROOF. In fact, if ¢: N1 — N> is an equivalence, then its graph

Gy ={(,v(y) lycN}

is the needed manifold X. Conversely, if X is a manifold satisfying the
assupmtions of the proposition, then the correspondence

y = ¢1(p2) ((1(92)) " (y) N X)
is an equivalence. O
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Submanifolds X satisfying assumption (3) of the previous proposition are
called invariant.

PROPOSITION 3.3. Let p1: N1 — E% and pa: No — £ be two irre-
ducible coverings of the same dimension r < co. Assume that the Whitney
product of w1 and s is reducible and there exists an invariant submanifold
X in N1 Xgoo Ny of codimension r. Then o1 and ps are equivalent almost
everywhere.

PROOF. Since ¢; and ¢4 are irreducible, X is to be mapped surjectively
almost everywhere by ¢ (p2) and ¢3(¢1) to N7 and Ns respectively (other-
wise, their images would be invariant submanifolds). Hence, the coverings
are equivalent by Proposition 3.2. O

COROLLARY 3.4. If o1 and @y are one-dimensional coverings over £
and their Whitney product is reducible, then they are equivalent.

PROPOSITION 3.5. Let p: N — E be a covering and U C E* be a
domain such that the the manifold U= o YU) is represented in the form
U xR", r < oo, while ¢|; is the projection to the first factor. Then the
covering ¢ s locally irreducible if the system

DY(f)=0,....DF(f) =0 (3.5)
has constant solutions only.
PROOF. Suppose that there exists a solution f # const of (3.5). Then,
since the only solutions of the system
Di(f)=0,...,D,(f) =0,
where D; is the restriction of the i-th total derivative to £°°, are constants, f
depends on one nonlocal variable w® at least. Without loss of generality, we
may assume that df /0w’ # 0 in a neighborhood U’ x V, U’ C U, V C R".
Define the diffeomorphism ¢: U’ C U — (U' C U) by setting
V(o iy Dl w® ) = (D fw? L w ).
Then 9, (DY) = Di + Y- X0/0w® and consequently ¢ is reducible.
Let now ¢ be a reducible covering, i.e., ¢ = ¢’ Xge 7, where 7 is trivial.
Then, if f is a smooth function on the total space of the covering 7, the

function f* = (T*(gp’))*(f) is a solution of (3.5). Obviously, there exists an
f such that f* # const. O

2. Nonlocal symmetries and shadows

Let A be an object of DM with the integrable distribution P = Py.
Define

Dp(N) ={X e DN) | [X,P]C P}

and set sym N = Dp(N')/Pyr. Obviously, Dp(N) is a Lie R-algebra and D
is its ideal. Elements of the Lie algebra sym N are called symmetries of the
object V.
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DEFINITION 3.7. Let ¢: N — &£ be a covering. A nonlocal ¢-
symmetry of £ is an element of sym A. The Lie algebra of such symmetries
is denoted by sym,, €.

EXAMPLE 3.3. Consider the even Cartan covering 77: VE® — £%° (see
Example 3.2) and a symmetry X € sym& of the equation £. Then we can
define a vector field X€ on VE* by setting X¢(f) = X (f) for any function
feF(€) and

Xwy) =Lx(dcf) = de(X f) = wxy.
Then, by obvious reasons, X¢ € sym,., £ and 77X¢ = X. In other, words
X°€ is a nonlocal symmetry which is obtained by lifting the corresponding

higher symmetry of £ to VE™.
On the other hand, we can define a field X° by X°(f) = 0 and

XO(wy) = ix(def) = X(f)
Again, X? is a nonlocal symmetry in 7, but as a vector field it is 7V-vertical.
So, in a sense, this symmetry is “purely nonlocal”.
Due to identities [LX,Ly] = L[X,Y]a [Lx,iy] = i[X,Y]a and [ix,iy] =0,
we have

(XY ]=[X,Y], [X9Y%=[X,Y]°, [X°Y°=0.

A base for computation of nonlocal symmetries is the given by following
two results.

THEOREM 3.6. Let o: N — £ be a covering. The algebra sym,, € is
isomorphic to the Lie algebra of vector fields X on N such that
1. The field X s vertical, i.e., X(¢*(f)) = 0 for any function f €
C>®(M) C F(€).
2. The identities [ X, D{] = 0 hold for all i =1,...,n

PRrOOF. Note that the first condition means that in coordinate repre-
sentation the coefficients of the field X at all 9/0z; vanish. Hence the
intersection of the set of vertical fields with D vanish. On the other hand, in
any coset [X] € sym,, & there exists one and only one vertical element X*.
In fact, let X be an arbitrary element of [X]. Then X = X — > q,Df
where a; is the coefficient of X at 0/0x;. O

THEOREM 3.7. Let o: N = E® x R" — £ be the covering locally de-
termined by the fields
D? = D; +Z ‘ a ——, i=1,...,n, XeFWN),

where w', w?, ... are coordinates in R" (nonlocal variables). Then any non-

local p-symmetry of the equation € = {F = 0} is of the form

. . T . 0
Qw,a = Qw + Z a awa) (36)
a=1
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where ¥ = (Y',...,¥™), a = (a*,...,ad"), ¥, a® € F(N) are functions
satisfying the conditions

Df(a®) = Dy.a(X{) (3.8)
while
Sy = ZDf (@D)% (3.9)

and O is obtained from {p by changing total derivatives D; for DY.

PROOF. Let X € sym,&. Using Theorem 3.6, let us write down the
field X in the form

' .0 . 0
X = E b — + g a® ) (3.10)
J «
o, auU a=1 Ow
where “prime” over the first sum means that the summation extends on
internal coordinates in £°° only. Then, equating to zero the coefficient at

d/dul in the commutator [X, DY], we obtain the following equations

DF (b)) = {b]

o)
X(ul.,) otherwise.
Solving these equations, we obtain that the first summand in (3.10) is of the
form 9y, where 1) satisfies (3.7). O

if w; is an internal coordinate,

ot

Comparing the result obtained with the description of local symmetries
(see Theorem 2.15 on p. 72), we see that in the nonlocal setting an additional
obstruction arises represented by equation (3.8). Thus, in general, not every
solution of (3.7) corresponds to a nonlocal p-symmetry. We call vector fields
9y, of the form (3.9), where 1 satisfies equation (3.7), p-shadows. In the next
subsection it will be shown that for any ¢-shadow 91/1 there exists a covering
¢': N' — N and a nonlocal ¢ o ¢/-symmetry S such that ¢, (S) = 9.

3. Reconstruction theorems

Let & C J*(7) be a differential equation. Let us first establish relations
between horizontal cohomology of £ (see Definition 2.7 on p. 65) and cover-
ings over £%°. All constructions below are realized in a local chart U C £°.

Let us consider a horizontal 1-form w = Y7 ; X; dz; € A},(€) and define
on the space £>° x R the vector fields

0
D?):Di+Xia_7 X; Ef(g), (3.11)

w
where w is a coordinate along R. By direct computations, one can easily see
that the conditions [Dy’, DY] = 0 are fulfilled if and only if dpw = 0. Thus,
(3.11) determines a covering structure in the bundle p: £ x R — £° and
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this covering is denoted by ¢“. It is also obvious that the coverings ¢* and

¢ are equivalent if and only if the forms w and w’ are cohomologous, i.e.,

if w—w' =df for some f € F(E).

DEFINITION 3.8. A covering over £ constructed by means of elements
of H} (&) is called Abelian.

Let [wi],...,[w"],... be an R-basis of the vector space H} (). Let us
define the covering a1 : A'(E) — > as the Whitney product of all @<=,
It can be shown that the equivalence class of a; o does not depend on the
basis choice. Now, literary in the same manner as it was done in Definition
2.7 for £, we can define horizontal cohomology for A!(£) and construct
the covering ag1: A%(€) — AL(E), etc.

DEFINITION 3.9. The inverse limit of the chain

co AR L AR ) o Al E) B g (3.12)
is called the universal Abelian covering of the equation £ and is denoted by
a: A(E) — E°.

Obviously, H}(A(E)) = 0.

THEOREM 3.8 (see [43]). Let a: A(E) — £ be the universal Abelian
covering over the equation € = {F = 0}. Then any a-shadow reconstructs
up to a nonlocal a-symmetry, i.e., for any solution ¢ = (YL, .. ™), Pl €
F(A(E)), of the equation p (1)) = 0 there exists a set of functions a = (aq.;),
where aq; € F(A(E)), such that By, is a nonlocal a-symmetry.

PROOF. Let w?®, j < k, be nonlocal variables in A*(£) and assume
that the covering structure in a is determined by the vector fields D} =

Di+3ia Xf’aa/awj’a, where, by construction, X7* € F(AI~1(€)), i.e.,
the functions X7** do not depend on w*® for all k > j.
Our aim is to prove that the system

D{aja) = Dyl X)) (3.13)

is solvable with respect to a = (a; ) for any ¢ € ker . We do this by
induction on j. Note that

[ng’ éw,a] = Z (ng(aj,oz) - éw,a(Xz'j@))

j?a

0

8wj7a

for any set of functions (a; ). Then for j =1 one has [D, éd,,a](X,i’o‘) =0,
or

& 1, = 1,
D?(sz,a(Xk a)) = 9% (Dia(Xk a))7
since X ,1’0‘ are functions on £°°.
But from the construction of the covering a one has the following equal-
ity:
DY(XE") = DR(X[),

(2
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and we finally obtain
1, 1,
D} (9y(X)) = Di(9u(X; ).
Note now that the equality H} (A(€)) = 0 implies existence of functions aj 4
satisfying
Df(a1,0) = Dp(X;%),

i.e., equation (3.13) is solvable for j = 1.
Assume now that solvability of (3.13) was proved for j < s and the func-

tions (a1,a,---,aj_1.4) are some solutions. Then, since [D§, Dy 4] |Aj—1(€) =
0, we obtain the needed a;, literally repeating the proof for the case
j=1. 0

Let now ¢: N — £ be an arbitrary covering. The next result shows
that any ¢-shadow is reconstructable.

THEOREM 3.9 (see also [44]). For any p-shadow, i.e., for any solution
v = (L. Q™) Y € F(N), of the equation £r(1)) = 0, there exists a

coverin, - N, *, N £ €% and a -symmetry Sy, such that Sy |ge =
¢ g Pyt Ny P ¥ ¥

9¢ |goo .
PROOF. Let locally the covering ¢ be represented by the vector fields
T
0
©_p. o
Df = D; +;Xi o

r < oo being the dimension of ¢. Consider the space R* with the coordi-

nates wi*, « = 1,...,7, 1 =0,1,2,..., w§ = w*, and set Ny = N x R®
with
Py A ! a 0
DY =D+ (9¢ + sw) (X )8wl°“ (3.14)
l,a

where

2 ' (. k 9 « 0

By =2 DiWN g Su=D ufigs (3.15)

U,k g a,l

and “prime”, as before, denotes summation over internal coordinates.
Set Sw = 911, + Sw. Then

[Sy, DY) = Z% ma,ﬁZ(@ﬁS) (X7 3
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Here, by definition, @¥, = Df (uk) |y .
Now, using the above proved equality, one has

D77, D) =37 (DF* (B + 8u) (X7) = DF¥ (D + 5) (X2))

l,a

wy*

0
owy

—Z Dy + Su) (DS (X9) — DY (X)) =0,

since D" (X§) — D%(XO‘) DY (X§) — DP(X{) =0. O

Let now ¢: N — £ be a covering and ¢’: N’ 2. N %5 £% be another
one. Then, by obvious reasons, any ¢-shadow 1 is a ¢’-shadow as well.
Applying the construction of Theorem 3.9 to both ¢ and ¢’, we obtain two
coverings, ¢, and 902/) respectively.

LEMMA 3.10. The following commutative diagram of coverings
4

' Y

N ¥ N ¥ £

takes place. Moreover, if Sy, and Sz/p are nonlocal symmetries corresponding

in Ny and N, constructed by Theorem 3.9, then S}, |r () = Sy-

PRrROOF. It suffices to compare expressions (3.14) and (3.15) for the cov-
erings Ny and N, O

As a corollary of Theorem 3.9 and of the previous lemma, we obtain the
following result.

THEOREM 3.11. Let ¢o: N — E°°, where €= { F =0}, be an arbitrary
covering and 1,...,1s € F(N) be solutions of the equation gp(w) = 0.
Then there exists a covering py: Ny — N 2, &% and Py -symmetries
Sy Sy, such that Sy, |ge = 9¢i lgo, i=1,...,s

PROOF. Consider the section 1 and the covering ¢y, : Ny, SAIIY VRN
£ together with the symmetry Sy, constructed in Theorem 3.9. Then

is a ¢y, -shadow and we can construct the covering

Py, Py
90¢17¢2:Nw171112 — N¢1 - £

with the symmetry Sy,. Applying this procedure step by step, we obtain
the series of coverings

Py rentbs P11 Py g Pyq Y aoo
Nt oops = Ny e Ny, N =€
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with the symmetries Sy, , ..., Sy,. But ¥ is a @y, . ,-shadow and we can
construct the covering ¢, : j\/;&) — Nyy,...ps — E°° with the symmetry SQ(;I)

satisfying Sq(ﬁll) FNy,) = O (see Lemma 3.10), etc. Passing to the inverse
limit, we obtain the covering My we need. O

4. Nonlocal symmetries of the Burgers equation

Consider the Burgers equation £ given by
Up = Ugy + Ully (3.16)

and choose internal coordinates on £ by setting u = up = (), ur =
u(r,0)- Below we use the method described in [60]. The Lie algebra of
higher symmetries of the Burgers equation is well known and is described
in Section 3 of Chapter 2.

The total derivative operators D,, D; are given by

o R~ G,
-Dx:— +15
ox +k§0u+18ui

0

D, =
Y

+ Z D (ug + uuq)

. (3.17)
=0 8ul

We now start from the only one existing conservation law for Burgers
equation, i.e.,

Dy(2u) = Dy (u® 4 2uy). (3.18)

From (3.18) we introduce the new formal variable p by defining its partial
derivatives as follows:

pe =2u, pp=u’+2u, (3.19)

which is in a formal sense equivalent to

p= /(2u) dz, (3.20)

from which we have p is a nonlocal variable. Note at this moment that (3.18)
is just the compatibility condition on py, p;. We can now put the question:
What are symmetries of equation £ which is defined by

Up = Ugg + Uy,
D = 2u,
pr = (u? + 2uy). (3.21)

In effect (3.21) is a system of partial differential equations for two depen-
dent variables, u and p, as functions of x and ¢. The infinite prolongation of
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£ , denoted by 6’/&’, admits internal coordinates x, ¢, u, p, u1, ug,..., while
the total derivative operators D, and D; are given by

o a . 0
Dy = — + (u? + 2u) o + ZD;(uz + um)a (3.22)

ot P U

In order to search for higher symmetries, we search for vertical vector
fields with generating function ¢ = (p*, ¢P), where ", P are functions
dependent on the internal coordinates x, t, u, p, u1, ua. ...

The remarkable result is a symmetry 9, whose generating function ¢ =

(", ") is
u 8g($,t) —p/4
¥ = (— 27 +g(x,t)u)e
P = —dg(xz, t)e P/, (3.23)

where g(z,t) is an arbitrary solution to the heat equation

dg(x,t) 0?g(x,t)

=0. .24
ot 0z2 0 (3.24)

If we now contract the vector field 9., ¢ given by (3.23), with the Cartan
one-form associated to the nonlocal variable p, i.e.,

de(u) = du — ugdxr — (uzz + wuy)dt, (3.25)

we obtain an additional condition to &, (3.21), i.e

dg(z,1)
2 ox

+g(z,t)u =0, (3.26)

or equivalently,

-1 ag (x ’ t)
u=2(g(x,t)) P (3.27)

Substitution of (3.27) into (3.16) yields the fact that any function u(zx, t)
of the form (3.27), where g(z,t) is a solution of the heat equation (3.24),
is a solution of Burgers equation (3.16). Note that (3.27) is the well-known
Cole—Hopf transformation.

This rather simple example of the notion of nonlocal symmetry indicates
its significance in the study of geometrical structures of partial differential
equations. Further applications of the nonlocal theory, which are more in-
tricate, will be treated in the next sections.
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5. Nonlocal symmetries of the KDV equation

In order to demonstrate how to handle calulations concerning the con-
struction of nonlocal symmetries and the calculation of Lie brackets of the
corresponding vertical vector fields, or equivalently, the associated Jacobi
bracket of the generating functions, we discuss these features for the KdV
equation

Up = Uy + Ugps- (3.28)
The infinite prolongation of (3.28), denoted by £°°, is given as
Ut = Uy + Ugga,
Uzt = Dy (Ut + Ugzz) = s + Uty + Usgaa,
Ug..gt = Dy ... Dy(utiy + tggy),

where total partial derivative operators D, and D; are given with respect

to the internal coordinates x, t, u, Uy, Uzpy, Uppy,... aS
D —g—i—u g—ku i—ku i-l—
T 0 Tou T Ou, Oy
D —g—l—ug—i-u i—i—u i%—
T ot Fou Oy T gy
Classical symmetries of KdV Equation are given by
— 0
Vi=——,
! Ox
— 0
Vo=——
2 ot )
— 0 0
Vs=t—+ —
2T ox + ou’

— 0 0 0

or equivalently, the generating functions associated to them, given by

‘/1u = Uy,
VYQU = UUy + Uggq,
V3t =1 — tuy,

Vi = zugy + 3t(uug + Uges) + 2u.

Associated to (3.28), we can construct conservation laws A,, A; such that

Di(Ag) = Dz(Ay), (3.29)
which leads to
Al =,
Al = 1u2 + Ugz,
2
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2
A? = §u3 — U2 42Ul (3.30)

A few higher conservation laws are given by
3 3 2
AL = v’ — 3ug,

3
Af’ = —(u4 + 4Py, — 8uu:25 + 4u92m — BuglUzys),

4
36
Ai =ut = 12uui + g“iw
4
Al = gu5 + 4Py — 18uu2 — 24Uty per + 1202 Usy,
96 72 36
+ guuiz + Euxxuxxmc - Euim; (331)

We now introduce nonlocal variables associated to two of conservation
laws (3.30) in the form

p3 = /(uQ)d:c. (3.32)
We also introduce the grading to the polynomial functions on the KdV
equation by setting
[z] = -1, [t]=-3, [ul=2, [uz]=3, Jul=5,... (3.33)
Then the nonlocal variables p; and p3 are of degree
[l =1, [ps]=3.

In order to study nonlocal symmetries of the KAV equation, we consider the
augmented system

Ut = Uy + Uggsr,

(pl)l" = U,
1 2
(p1)e = U+ Uga,
(p3)$ = UZ,
2
(p3)e = gug — ui + 2Ulgy. (3.34)

We note here that system (3.34) is in effect a system of partial differen-
tial equations in three dependent variables u, pi, ps and two independent
variables x, t. We choose internal coordinates on £ x R? as

z, t, w, p1, P3, Uz, Uzy, Ugzs, Uzzzz, Wzzczz,-- - (335)

while the total derivative operators D, D; are given as

D, =Dy +u—— + u*—,
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— 1 0 2 0
D;,=D “u? Uy, | — ud — w4 2uug, | —. 3.36
t t+(2u +u >8p1+(3u uy + 2uu >8p3 ( )

A vertical vector field V on £ x R? has as its generating functions V%,
VPr VPs. The symmetry conditions resulting from (3.34) are

D,V = Vi, +uD, V" + DoV,

D, VPt =V,
D, VP = 2V". (3.37)
For the vertical vector fields Vi,...,V, we derive from this after a short
computation
Viu = Uy, Vgu = UlUg + Uggy,
1
lel =u, Vv2p1 = 5”2 + Ugy,
. 2
‘/1p3 = 'LLQ, ‘/épd = §u3 + QUUJ::I: - Ui,
Vit=1—tug, V' = aug + 3t(uug + toes) + 2,
1
Vépl ::E—t’u? ‘Qpl =xu+ 3t <2U2+u;m:) + p1,

. ; 2
VP = 2p; — tu?, VP = xu’ + 3t <§u3 + 2Ulgy — ui) +3p3.  (3.38)

It is a well-known fact [80] that the KAV equation (3.28) admits the Lenard
recursion operator for higher symmetries, i.e.,

2 1
L=D2+ Sut gumD;P (3.39)
From this we have
L(‘/lu) = V2u>
u u 10 5 9
L(VQ ) = V5 = Ugpazr + gux:mcu + ?umxux + 6Uxu ,
2 1 1
L(V3") = Ut 3T + t(uuy + Ugzy) = §V4“. (3.40)

We now compute the action of the Lenard recursion operator L on the
generating function V;* of the symmetry V4. The result is

Vit = L(V}') = 2(ugsy + vuy)

5 10 5 4, 1
+ 3t | Uzzoze + gux:r:pu + ?uxa@ux + gu:pu + 4z + gu + gumpl-

(3.41)

It is a straightforward check that V;* satisfies the first condition of (3.37),
ie.,

Dt(vE)u) = V5uuw + UEQ;V::)“ + ﬁng‘ (3.42)
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The component V¥ can be computed directly from the second condition
in (3.37), i.e.,
DL (V") = V&', (3.43)
which readily leads to

1
‘/'5171 =z <u:c:c + 5”2)

5 5 5 1 1
+ 3t (umm + gumu + Eui + EU3> + 3u, + gupl + §p3. (3.44)

The construction of the component V¥, which should result from the third
condition in (3.37), i.e.,

D, (VP = 2uV, (3.45)
causes a problem:

It is impossible to derive a formula for VF* in this setting.

The way out of this problem is to augment system (3.34) once more with
the nonlocal variable ps resulting from

(p5)l‘ = u3 - 3“3)

3
(ps)t = 1(u4 + 4uPugy — Suu? + 4ul, — Suztzes), (3.46)
or equivalently
s = /(u3 — 3u?) dz, (3.47)
and extending total derivative operators D, D; to
0

~ - 3 0
D, =D, + Z(U4 + 4uP Uy — Suu? 4 4u?, — Suytipe,) (3.48)

ps’

Within this once more augmented setting, i.e., having a system of par-
tial differential equations for w, p1, p3, and ps, it is posssible to solve the
symmetry condition for ps, (3.34):

D, (VP%) = 2uVy", (3.49)
the result being the vertical vector field V5 whose generating functions are
given by (3.41), (3.44), and from (3.49) we obtain

5 10 5
Vet = x(uggs + uug) + 3t (umzm + guxmu + gumux + 6“3:“2)

+4 + = 2+—1
Uu u Uu
Tx 3 3 zP1,

1 ) ) )
‘/5191 =z <uxa: + 5”2) + 3t <Ua:a:xz + guxzu + 8”325 + EU?’)
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1 1
+ 3ug + gUPl + §p3,

1 1
VP =2g <uum — §u§ + §u3>

1 2 5 2 5 5
+ 6t | VlUzzer — UgUzze + U, + gu Uggy + ﬂu

1 5
+ 6uuy + §u2p1 + 35 (3.50)

The outline above indicates that we are working in effect in an aug-
mented system of partial differential equations in which all nonlocal vari-
ables associated to all conservation laws for the KdV equation are incorpo-
rated (cf. Theorem 3.8).

The computation of Lie brackets of vertical vector fields, or equivalently,
the computation of the Jacobi brackets for the associated generating func-
tions, is to be carried out in this augmented setting. To demonstrate this,
we want to compute the Lie bracket of the symmetry V7 and the nonlocal
symmetry Vs with the generating functions

Vi' = U,
V5! = 2(ugas + uug) + 3t <ux:p:rxx + guxmu + ?Umxuz + guzu2>
+ dug, + §u2 + éuxpl. (3.51)
The associated Jacobi bracket {V;*, Vi*} is defined as
V= (V' = 8 () - 9v (1), (3.52)

which, using in this computation the equality V' = u, results in
VU = Ugpe + Uy = V5o

In a similar way the Jacobi bracket {V3*, V3'} equals

1
{V5u7 VQU} =3 (szxacac + gu:mxu + gouacxu;r + %Uacu2) )

which is just the generating function of the classical first higher symmetry
of the KdV equation.

REMARK 3.2. The functions V;*, i =1,...,5, are just the so-called shad-
ows (see the previous section) of the symmetries V;, @ = 1,...,5, in the
augmented setting, including all nonlocal variables.

6. Symmetries of the massive Thirring model

We shall establish higher and nonlocal symmetries of the so-called mas-
sive Thirring model [32], which is defined as the following system &Y of
partial differential equations defined on J'(7), where m: R* x R? — R? is
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the trivial bundle with the coordinates u, v1, ug, vo in the fiber (unknown
functions) and z, ¢ in the base (independent variables):

6(91;31 + a;tl = muvy — (u% +v§)vla
% % = muy — (u? + v})vy,
% — % = mug — (u% +v§)u1,

For this system of equations we choose internal coordinates on £' as z, t, u1,
V1, U2, V2, U1.1, V1,1, U2,1, V2,1, While internal coordinates on &% are chosen as

T, t, uq, V1, U2, V2,5 UL, V1d, U245 V2,4, where w; j, v; j refer to 07u;/0x?,
v J0x?,i=1,2,j =1,...,4. In a similar way coordinates can be choosen
on £%.

6.1. Higher symmetries. According to Theorem 2.15 on p. 72, we
construct higher symmetries (symmetries of order 2) by constructing vertical
vector fields 9,, where the generating functions ¢“*, p“t, p“2, "2 depend
on the local variables x, t, w1, vi, u2, v2, 1,1, V1,1, U2,1, V2,1, U1,2, V1,2, U22,
v22 [41]. The symmetry condition then is

— D"t + D"t = mp¥? — 2(ugp? + v vy + (us + v3) ',
D" + D" = mp" — 2(u19" + v19"2)va + (uf + 07)p"2,
)

— 2(u2p™ + vo"?)uy + (uj + Uz)@
)

(
(

U1

Ul

D;g@vl _ thvl — mg&“Q

—Dop” — Dyp?? = mp™t — 2(u1 9" + v19%)ug + (uf + vd)p (3.54)
The result then is the existence of four symmetrles Xq,..., X4 of order 1
the generating functions of which, ¢, @', ¢:?, @72, i =1,...,4, are given

as

1
oyt = 5(—mv2 + v1(u3 + v3)),

1

ey = 5 (muz — uy (u3 + v3)),

1
P1* = 5 (2ua1 = mur + va(uf + 07)),

1
(,011)2 — 5(202’1 + muy — U2(U% + U%))v

1
4t = L 442

2
1

py = 5 (2vn1 = mus + i (uj + 03)),
1

()0721’2 = —(mU1 - /UQ(U% + ’U%)),

2
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) 1 2 2
Py = 5(—7’”‘1 + uz(uy + v1)),

1
w3t =uia(x +t) + mooz + St~ (u3 +v3)z,
1
g0§1 = 'Ul,l(vx + t) — musx + 5'01 + ug (Ug + ’U%)l‘,
1
032 = ug(—x +t) + muix — QU2 — va(uf +19)z,

1
s =va1(—x+t) +mujx — 5 V2 +uz(uf +of)e,

oyt =1,

SDZI = —u,

047 = v,

o0 = —uy. (3.55)

Thus in effect, the fields X1, Xo, X3 are of the first order, while Xy is of
order zero.

In order to find symmetries of higher order, we take great advantage of
the fact that the massive Thirring model is a graded system, as is the case
with all equations possessing a scaling symmetry, i.e.,

deg(z) = deg(t) = -2,
deg(uy) = deg(v1) = deg(ug) = deg(v2) = 1,
8’&1
d =2,d — | =3,... 3.56
ce(om) =2, deg (52 (3.56)
Due to this grading, all equations in (3.53) are of degree three; the total
derivative operators D, D; are graded too as is the symmetry condition

9,(E%) = 0 mod . (3.57)

The solutions of (3.57) are graded too. Note that the fields X1, ..., Xy are
of degrees 2, 2, 0, 0 respectively.
We now introduce the following notation:

[u] refers to uy, vi, ug, ve,
[u]g refers to w1, vi1, 21, V21,

In our search for higher symmetries we are not constructing the general
solution of the overdetermined system of partial differential equations for
the generating functions @"!, @1, "2, p¥2, resulting from (3.57).

We are just looking for those (z,t)-independent functions which are of
degree five; so the presentation of these functions is as follows:

" = [ulew + ([ul® + [m]) [uls + ([u]® + [m][u]® + [m]*[u]). (3.58)
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Using the presentation above, we derive two higher symmetries, X5 and Xg
of degree 4 and order 2, whose generating functions are given as
1
gogl = Z(2u2,1(—m + 21)11)2) — 41)27111,21)1 — mvg(R1 + Rg)
—2muv R+ vl(Rg +2R1Ry)),

1
(pgl = 1(21)2,1(—771 -+ 2u1uQ) — 4714271’1)27141 + mu2(R1 + Rz)

4+ 2mul R — ul(Rg +2R1Ry)),

P§2 = i(—4v2,2 + 2uq 1 (—m + 2uqug) + 4ug 1 (R1 + Ra) + 41 1ugvy
— mwy(Ry + Ry) — 2muaR + v2(R2 + 2R Ry)),

QL = %( ug,2 + 201 1(—m + 2v1v2) + 4va 1 (R + R2) + 4uq 1vouy
+ muy (Ry + R2) + 2musR — ug(R% + 2R1 Ry)),

1
gt = 1(4711,2 + 2ug 1 (—m + 2ugug) + 4uq 1 (R + R2) + 4va 1uive

+ muy(Ry + Ro) + 2mui R + v (R3 + 2R Ry)),
o — i(—zml,z 201 (—m + 20109) + dvr1 (Ry + Ra) + 4us,usvy
— mug(Ry + Ry) — 2mui R + uy (R3 + 2R Ry)),
% = i(2u1,1(—m + 2v1v2) — 4vy 1urve + mui (R + Ra)
+ 2mwaR — va(R3 4+ 2R 1 Ry)),
P2 = 3(21)1,1(—1% + 2urug) — duy yugvy — mui(Ry + Ra)
— 2mus R + ug(R? 4+ 2R Ry)), (3.59)

whereas in (3.59)
Ry = u% + v%, Ry = u% + U%, R = ujug + v1v9.

For third order higher symmetries the representation of the generating func-
tions, whose degree is seven, is

0" = [ulawe + ([u]” + M) [u]ze + [u][ul?
+ ([l + [m][w)? + [m]*)[u],
+ ([u]” + [m][w)® + [m]*[u]® + [m][u]).
After a massive computation, we arrive at the existence of higher symmetries
X7 and Xg of degree 6 and order 3, given by

u]

u]

1
QO?1 = §(8U272U2'U1 + 41)272(22)11)2 — m) — 411,%711)1

+ 4uz71(m(R1 + Ry + v% + v%) — 3v1v2(Ry + Rg)) — 41)%’11)1
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+ 4vg 1 (—m(u1v1 + ugv2) + 3ugui (R1 + Rp)) + 4ui1mR
—2m%v1(R1 + Ry) — 4vym?R + 4vymR(R; + 2Ry)
+ vom(R? + 4R1 Ry + R%) — v1(R3 + 6R3R, + 3Ry R?)),

1
o7 = g(—8v2,2712u1 — duz(2uruy — m) + 403 11y

+ 4vg 1 (m(Ry + Ry + ud + ud) — 3ujua(Ry + Ry))
+ 4u%71u1 + 4dug 1 (—m(urv1 + ugv2) + 3veui (Ry + Ra)) + 4v11mR
+ 2m%uy (Ry + Ro) + 4uam?R — 4uymR(Ry + 2R»)
— ugm (R} + 4R Ry + R3) + u1(R3 + 6R3Ry + 3R2RY)),
o7 = %(87&,3 + 12092 (R1 + R2) + 8uy guiva + 4v1 2(2v1v2 —m)
— 12u3 v + 24ug,1v21up + 2uz1 (10mR — 3R} — 12R1 Ry — 3R3)
+ 121)%71@2 + 24vo 1u1 1u1 + 24v 101,101 + 81&11}2
+ 4uy 1 (m(Ry + Ry +ui + u3) — 3urug(R1 + Ry)) + 8vf 1v2
+ 4v1 1 (m(ugvy + ugva) — 3ugvy (Ry + Ra)) — 4m?*vi R
— 2m?vy(Ry + Ro) + mu1(R3 + 4R Ry + R3) + 4muvaR(Ry + 2R;)
— v9(R} 4+ 6RIR, + 3R R3)),
1

8
— 1203 jug — 24ug,1v2102 + 202,1(10mR — 3R} — 12R1 Ry — 3R3)

+ 12u%711@ + 24us 101,101 + 24u2 1u1,1U1 — 811%11@

+ 4v11(m(R1 + Ry + v% + v%) — 3vjve(Ry + Rg)) — 8ui1u2

+ 4dug 1 (m(u1vr + ugv2)) — 3vgui (R + Ra) + 4mPui R

+ 2m2ug(R1 + Ry) — muy (R3 + 4R Ry + R?)

— 4musR(Ry 4 2R1) + ua (RS + 6R2Ry + 3R R2)). (3.60)

V2

Q07 (81)273 — 12’11,272(R1 + RQ) + 81)1,211/21)1 — 4u172(2u1uQ — m)

The vector field associated to g = (¢g*, ¥5', Pg?, s°) can be derived from
w7 by the transformation

up — u2, vV1F>v2, U2+ uUp, V21,
T: ¢ 9/0x — —0/0z, (3.61)
Ri— Ry, Ro— Ry, R— R

in the following way:

wé“ = _T(‘P7
wg® = —T(p7"), g’ = =T (7"). (3.62)
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The Lie bracket of vector fields can be computed by calculation of the
Jacobi bracket of the associated generating functions:

(X3, X, = Xi(X)) = X;(X)), l=wa,...,vy i,j=1,...,8, (3.63)

where X; = 9,,, which results in the following nonzero commutators:

[9#717 9</73] = 99017

[aﬂw 9%] - _9902a
2
m
[Stps’ 9905] = —29p; — 75%947

m2

[Qtpm 9</76] - 23%06 - 799047
2

m
[930?,, 9307] = =39, + 7(9301 + 9@2)7
2

m
(D3, Dips] = 3 — 7(9@1 + 9,)- (3.64)
Transformation of the vector fields 9, ..., 9,4 by
Y1 =9,
Yy = 9,,,
Y; = 9«,03a
Yy = 9,,,
2
m
Y5 = 9y + Tapu
2
m
Y = 9906 - Iaﬂu
m? m?
Y7 = 9y, — 79@1 Tapza
m? m?
Yg = Ops — Iam - 79@; (3.65)

then leads to the following commutator table presented on Fig. 3.1.
Note that from (3.64) and (3.65) we see that [Y;,Y;] =0, 14,5 =1,2,5,6,
7,8, while Y3 is the scaling symmetry.

6.2. Nonlocal symmetries. Here we shall discuss nonlocal symme-
tries of the massive Thirring model [41]. In order to find nonlocal variables
for the system

8U1 E)ul

—E + E = Mmuvo — (u% + U%)Ul,
3U2 aUQ
% + E = muvy — (u% + U%)Ug,
81)1 81}1

— — — = muy — (U3 + v3)u,

ox ot
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] [Yi|Ye| Vs [Ya] Y5 [ Y6 | V7 | Y |

Yi [0JO] Y. [0] 0 [ O] 0 | O
Y, |0]0|-Y2|0] 0 [ 0] 0 |0
Ys | 00| 0 | 0|—2Ys|2Ys| —3Ys | 3Ys
Y J0l0] 0 0] 0 [0 0 |0
Ys |0J0] 0 0] 0 [0 0 |0
Ys |0J0] 0 |0] 0 [ 0] 0 |0
Y 0l0] 0 0] 0 [ 0] 0 |0
Ys |O0JO0] 0 0] 0 [0 0 |0

Figure 3.1. Commutator table for symmetries of the mas-
sive Thirring model

81)2 81}2 2 2
——— — —— =1mu; — (u V1)U 3.66
9 ot 1— (uq +v7)ug, (3.66)
we first have to construct conservation laws, i.e., sets (A¥, Al) satisfying the

condition
Dy(A7) = Do (A7),

from which we can introduce nonlocal variables.

6.2.1. Construction of nonlocal symmetries. To construct conservation
laws, we take great advantage of the grading of system (3.66).

Since

deg(x) = deg(t) = —2,

we start from two arbitrary polynomials A%, A’ with respect to the variables
Ul,...,V2, UL1,--.,V21,-.. such that the degree with respect to the grading
isjust k, k=1,...

It should be noted here that to get rid of trivial conservation laws, we
are making computations modulo total derivatives: this means in practice
that we start from a general polynomial A§ of degree k — 2 (with respect to
the grading), and eliminate resulting constants in Af by equating terms in
the expression

A" — Dy (AD).

to zero. This procedure is quite effective and has been used in several
applications. Another way to arrive at conservation laws here, is to start
from symmetries and to apply the Nother theorem (Theorem 2.23).

The result is the following number of conservation laws, (A7, Af), i =

" 1
1= 5( 101,1 — U1,101 + UgV2 ] — U2 1V2),
‘ 1
Al = §(U1U1,1 — U101 — UV2,1 + U2 1V2 + R Ry),
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A = %(Ulvl,l — U101 — UgV2,1 + U2 1V2 + R1 Ry — 2mR),
Al = %(ulvm — U101 + UgV21 — U2,1V2),
A5 = S(Ry+ o),
Ay = S(Ry - o)
Af = %:ﬁ(ulvm — 1,101 — ugV2,1 + u21v2 + R1 Ry — 2mR)
+ %t(uwm — U1,101 + U2V21 — U, 1V2),
Al = %x(ulvl,l — U101 + ugV21 — U2,1V2)
+ %t(ulvm —wpv) — usvas + s 10z + RiR), (3.67)

where in (3.67) we have
Ry =u}+v?, Ry=ui+v3, R=ujus+vvs.
We now formally introduce variables the pg, p1, p2 by
po = /Agdx: %/(Rl + Rp) dz,
b1 = /( 1+ A3)dr = /(Ulvl,l — U101 + %R1R2 —mR)dz,
P2 = /(A:f — A%)dx = /(u2v271 — U, 1V2 — %Rle +mR)dx.  (3.68)
Note that pg, p1, p2 are of degree 0, 2, 2 respectively (see (3.56)).

We now arrive from these nonlocal variables to the following augmented
system of partial differential equations

2 2

—u1,1 + ure = mug — (uj + vy)vi,
_ 2 2

ug,1 + Uz = muy — (ui + vi)va,
2 2

v1,1 — v = mug — (u3 + v3)ug,
2 2

—v2,1 — Vo = muy — (uj + vi)uz,

(e = 3 (1 + Ro),

1

(po)t = §(R1 — Ry),

1
(p1)e = wivi1 —uiv1 + §R1R2 —mR,

1
(p1)¢ = wrvi1 — u1,1v1 + 531327
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1
(P2)e = ugv2,1 — uz1v2 — §R1Rz + mR,

1
(p2)t = —ugua 1 + u21v2 + §R1R2. (3.69)

We want to construct nonlocal higher symmetries of (3.53) which are just
higher symmetries of (3.69) (see Section 2). In effect we shall just con-
struct the shadows of nonlocal symmetries, as discussed in Section 2. For
a more detailed exposition of the construction we refer to the construction
the nonlocal symmetries of the KdV equation in Section 5.

To construct nonlocal symmetries of (3.53), we start from a vertical
vector field Z of degree 2 and of polynomial degree one with respect to
x, t. So the generating functions Z"1, ..., Z"? are of degree 3. The total
derivative operators D, D; are given by (3.70):

Dy = Dy + (Po)xaipo + (pl)xaipl + (Pz)xaim,

Dy = Dit (polip + (1) + (p2)ip
Ipo Oop1 Op2

while the symmetry condition for the generating functions Z%1,... Z%2 is

(Z") 4+ Dy(Z") = mZ" — v1(2ua Z"2 + 202 2"2) — RoZ™,

(Z"2) + Dy(Z"2) = mZ" — vo(2u1 Z"* + 201 Z") — R Z'2,

+ (p2) (3.70)

-D,
D,
Dy (Z") — Dy(Z") = mZ" — uq (2ua 2" + 209 Z%%) — RoZ™,

—D,(Z%) — Dy(Z"?) = mZ" — ug(2u1 Z" + 201 Z") — R1Z">.  (3.71)

Application of these conditions does lead to a number of equations for the
generating functions Z%1, ... ZV2.

The result is the existence of two nonlocal higher symmetries 97, and
9z,, where the generating functions 7, = (2}, Z{*, Z|*, Z}*) and

Zy = (Zy', Z3*, Zy?, Z3?) are given by

2 — vipy + 2(—208 — mPv;) + 12011 + %muQ,

Z" = —uipy + o(—2®5 + muy) + t(204) + %m”%

7% = vgpy + 2(—20%2 — mPug) + t(2042) + gmm + 3v21,
- gR1U2 - %R2U2,

73 = —ugps + x(—2®5? + mPuz) + t(2P5?) + gmvl — 3ug1,

3 1
- 53102 — —Rovy,

3
Z3 = vipy + 2(—205" + mPoy) + t(—20F") + g2 — 3v11
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3 1
- §R2U1 - §R1u17

3
Zy' = —uipy + x(—2P¢" — m?uy) + t(—20¢") + oMLz +3u1a
3 1
— §R2’U1 - §Rlvla

1
23 = vapy + 2(—2B + %) + H(~2B2) + S,

2
1
ZP = —ugpy + 2(—20 — mPug) + t(—29) + ML (3.72)
The components Zfo, e ZfQ, zr ZgQ can be obtained from the invari-

ance of the equations

1
(Po)e = §(R1 + Ry),
1
(p1)e = wiv11 — U101 + §R1R2 —mR,

1
(P2)z = ugv21 — u21v2 — §R132 +mR. (3.73)

6.2.2. Action of nonlocal symmetries. In order to derive the action of
the nonlocal symmetries 9z,, 9z, on the symmetries ¢1, ..., pg, we have to
extend the Lie bracket of vector fields in a way analogous to (3.52). This
is in effect, as has been demonstrated for the KdV equation in previous
Section 5, where we extended the Jacobi bracket to the nonlocal variables,
i.e., u versus u, p, in this situation from wuq, vy, ue, vo to p1, p2. Since the
nonlocal variable py does not take part in the presentation of the vector
fields @1, ..., g, Z1, Z2, we discard in this subsection the nonlocal variable
Do, see (3.68).

The extended Lie bracket of the evolutionary vector fields 9z, 1 =

1,2, and 9, ..., 9y is obtained from the extended Jacobi bracket for the
generating functions, which is given by
{Zia (Pj}w = QZz((p;U) - QSOj(Zzw)’ (3'74)

where in (3.74),i=1,2,j=1,...,6, w =uq,...,v2.

Since the generating functions ¢’ are local, we do not need to compute
the components Z*, Z? 7' ZP? in order to calculate the first term
in the right-hand side of (3.74)). The calculation of the second term in
the righ-thand side of (3.74) however does require the components ¢!",
o2, ... b, @?. These components result from the invariance of the partial
differential equations (3.73) for the variables p1, p2, leading to the equations

- 1
Dz(@?) = Iy, (U1U1,1 — U1,1v1 + §R1R2 - mR),

)

1
1(80?2) = 9903» (U2U2,1 — U2,1V2 — §R1R2 + mR). (3.75)
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From this we obtain the generating functions in the nonlocal, augmented
Setting uy, v1, U2, V2, p1, P2:

1
oY = 5(—mv2 +01(u3 + v3)),

1
W = L — (0 +03).

1

©1? = 5 (2uzg —moy + va(uf + 7)),
a2 — 220 — u(uf + v}

1= 5lev2 + muy — ug(ui +v7)),

1

OV = —ZmR,

1 2m

1 1

P = —vqug 1 + ugva 1 + §mR - §R1R27

oy = %(ZUM + muy — vy (u3 + v3)),

ot = %(21}1,1 — musg + ul(ug + v%)),

0y = %(mvl — va(uf +07)),

B = 5 (—mu + ua(uf + o)),

PN = —vyui +ugvrg — %mR + %R1R27

P2 = %mR,

O3 = uy 1 (x4 t) + muox + %ul — vy (u3 + v3),
O3 = vy 1 (x +t) — mugx + %vl + up (U3 + v3),
O3 = ug 1 (—x +t) + muiz — %UQ — va(uf + v})m,

1
D2 = vg1(—z +t) + muix — 52 +ug(uf +0f)a,

1
‘I)gl = —(.CE + t)(2u1v1,1 — 2U1U171 + RlRQ) —tmR + p1,

2
1
5 = 5 (@ +)(=2ugva1 + 2vgus1 + RiRa) + tmR — po,
(I)Zl = V1,
@Zl = —uq,
(I)ZQ = V2,

(I)ZQ = —Uu2,
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o =0,
oF2 = 0 (3.76)

and similar for @5, ®g

1
(I)gl = 1(2’&2,1(—771 + 2’011)2) — 4112,1’112’01 — m’Ug(Rl + RQ)

—2mu R+ v (R3 + 2R Ry)),
1
oY = Z(2112,1(—771 + 2uiug) — dug 1v2ur + muz(R1 + Ra)
+ 2mu R — uy (R + 2R Ry)),
1
o2 ==
5 4(
+ 4'U1’1U2U1 — mvl(Rl + RQ) —2muvaR + U2(R% + 2R1R2))’

—4vg 9 + 2uy 1 (—m + 2uguz) + 4ug 1 (R1 + R2)

1
Y = Z(_4u2’2 + 2011 (—m + 2v1v2) + 4va 1 (R1 + Ra) + 4ug 1v2ug
+ mul(Rl + Rg) + 2mus R — UQ(R% + 2R1R2)),

1 1 1 1
(1)1501 = —§mvlu2’1 + imUIUQ’l — ZmR(Rl + Ry) + Zm2(R1 + Rs),
1
DL = ugpuy + v vy — U3y — V3, — o MU2VLL + MULU2,1
1
+ §mvgu1,1 — mujv 1 — u271112(R2 + 2R1) + 02,1u2(R2 + 2R1)
1

3 1
— ZmQ(Rl + Rs) + ZmR(Rl + Ry) + §R1R2(R1 + Ry),

gt = 3(41;1,2 + 2ug 1 (—m + 2ugug) + 4uy 1 (R + R2)
+ 4va 1u1vg + mua(Ry + Ro) + 2mui R + v1(R3 + 2R Ry)),
o = i(_gmm + 2091 (—m + 2v1ve) + 4v1 1 (Ry + Ra)
+ dug yupuv; — mug(Ry + Ry) — 2mui R+ uy (RS + 2Ry Ry)),
g2 = i(+2u171(7m + 2v1v2) — 4vy jurve + mur (R + Re) + 2mus R
— va(RE 4+ 2Ry Ry)),
g2 = i(+2v1,1(—m + 2uyug) — duy yugvy — muy(Ry + Ra)
— 2musR + ua(R? + 2R Ry)),

1
pL o 2 2
Og' = —ujpu; —v12v1 + vigtuig — §mu1v2,1 + muoug q

1
+ imvluzl — MUV, — U1,101 (R1 + 2R2) + U171u1(R1 + 2R2)
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g2 (Ba 4 Ba) — SmB(Ry + Ra) — L RaRo(Ra + Ro),
P = —%mvgum + %mugvl,l + imR(Rl + Rg) — %m2(R1 + Rs). (3.77)
The 0/0pi-component of 9z, and the 9/0ps-component of 9z, are given by
AR %(a} —t)(—2muivg 1 + 2murugy — (—m? + mR)(R1 + Ry)

— —m(ujvy — ugvy),

2
1
25" = 5 (@ + 1)(=2mugvr1 + 2muvzu, + (+m® —mR)(R1 + Ry)
1
+ §m(’LL1U2 — ’LL2U1). (3'78)

Computation of the Jacobi brackets (3.74) then leads to the following com-
mutators for the evolutionary vector fields:

1
[92,, 9,] = —§m29¢4 — 29,
1
[9Z2a 9<I>1] — §m29¢‘47
1
[9Z1a 9‘132] — *§m29¢’45
1
[92,, 9¢,] = §m29¢4 29,
[972,, Pa,) = 97,,
[92,, P0,;) = 97,,
[SZN 9‘1’4] = 07
[9Z27 9‘1’4] = 07
[Qzl, 9@5] = 49@7 —2m 9@1 —m 9@2,
[92,, Da;] = m*9s,,
[9Z1a 9‘%] = m29<l>2a
[922, 9@6] = 49@8 —-m 9@1 — 2m29¢,2,
[92,, B2,] = —2m*9g,. (3.79)
Transformation of the vector fields by
Yl = 9@17
Y2 = 9‘1927
Y3 = 9@37
Y4 = 9‘1947

2
m
Y; = 9@5 + 79@1,
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(e[ Z] 2 [ Y [ Yo [V [Ya] Y5 [ ¥ | V7 | V5|
Z o] —2m?vs | 2vs | -2vi | Zi | 0] 47 [mPva| B
ZQ 0 mTY4 —2Y6 —Z2 0 m2Y1 4}/8 * *
Vi 0 0 Yi 0] 0 0 0 0
Ya 0 Yo | 0] 0 0 0 0
Ys 0 | 0| —2Ys | 2Ys | —3Ys | 3Ys
Ya 0] o 0 0 0
Ys 0 0 0 0
Ys 0 0 0
Yo 0 0
Ys 0

FiGure 3.2. Commutator table for nolocal symmetries of
the massive Thirring model

m
Yﬁ — 9@@ - TQCIM’
m2 m2
Y7 - 9‘1)7 7‘94)1 - TS(I)?’
m2 m2
Ys = 9, T&bl 79@7 (3.80)

leads us to the following commutator table presented on Fig. 3.2.

From the commutator table we conclude that Z; acts as a generating
recursion operator on the hierarchy Y = (Y1,Y5,...) while Zy acts as a
generating recursion operator on the hierarchy ¥ = (Y2,Ys,...). The
action of Z7 on Ys, Yy is of a decreasing nature just as Z, acts on Y7, Y5.
We expect that the vector fields Z1, Z5 generate a hierarchy of commuting
higher symmetries.

REMARK 3.3. In (3.78), only those components of Z; and Z, are given
that are necessary to compute the Jacobi bracket of the generating functions,
i.e., for Z; the 0/0p1- and for Zy the 0/0pa-component

{21, Z,} = —2m>Y3. (3.81)

We should mention here that Z; does not admit a d/dps-component,
while Z; does not admit a d/9p;-component in this formulation. The asso-
ciated components can be obtained after introduction of nonlocal variables
arising from higher conservation laws, a situation similar to the nonlocal
symmetries of the KdV equation, Section 5.
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7. Symmetries of the Federbush model

We present here results of symmetry computations for the Federbush
model. The Federbush model is described by the matrix system of equations

(2™ s Bjom) (v22) =4 (o).
(3.82)

where in (3.82) s = +1 and VU4(z,t) are two component complex-valued
functions R? — C.

Suppressing the factor 47 from now on (we set A’ = 47 \) and introducing
the eight variables ui, vi, ug, v9, us, v3, ug, v4 by

Ui11 = uy + vy, V19 = ug + ive, m(+1) =my,
\11_171 = ug + 1vs3, \I’_LQ = uq + 14, m(—l) = ma, (383)

equation (3.82) is rewritten as a system of eight nonlinear partial differential
equations for the component functions wuq, ..., vy, i.e.,

2 2
U+ ULy — MV2 = A(ug +vi)vi,

2 2
—U1t — V1, — Mtz = A(ug + vi)u,

Uy — Uz — Mo = —A(u3 + v3)va,
—V2t + V2 — MUl = )\(U3 + 1)3)UQ,
ugt + U3 ; — Mavg = —\(u3 + v3)vs,
—U3t — VU3¢ — M2Ug = — (Uz + 02)U3»

Ugt — Uqp — TRV3 = )\(Uz + 7)2)”47

—U4t + Vip — Mol = )\(u% + U%)U4. (3.84)
The contents of this section is strongly related to a number of papers [42,
36, 92| and references therein.

7.1. Classical symmetries. The symmetry condition (2.29) on p. 72
leads to the following five classical symmetries

0
‘/1_8?7
0
‘/2 av
V- t2+x2+1( i+v 0 4,0 —ui
) ot "2  'ou T tou Coup S ow
+uz— + 9 i—v a)
Sous | Ous Yous  tou”
T S R B )
17 1(9U1 18’01 261@ 2(9122’
0 0 0 0
Vv5 = —1}38—% + us 81)3 ’U4a—u4 + U48—U4 (385)
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Associated to these classical symmetries, we construct in a straightforward
way the conservation laws (C%, C}), satisfying
D, (C}) — Dy(CL) =0, (3.86)

ie.,

Ol = U101 — U1V1, + UnzUa — UnV2y + ULV — U3V3 + Uz Vs — UgVsz,

Cl = —u1a01 + U115 + UzpV2 — UnV2p — USRS + UgV3y + UszVs — Uslsg
+ A(R1R4 — RQR,?,),
= —UIgV1 + UIV1g + UL V2 — UV2z — U3z U3 + UV3z + Udz V4 — U4V4g
+ 2mq (U1U2 + 1)11)2) + 2m2(U3U4 + 1)31)4) + )\(R1R4 — R2R3),

2

sy
2

Cf = U101 — U1V1z + U2,V2 — UV + Uz V3 — UIV3g + Usz V4 — U4Vdg,

C3 = 2C?% 4-tC),

C? = 2C? +-tC},

C} = Ry + Ry,

C} = —Ri + Ry,

C? = R3 + Ry,

CP = —R3 + Ry. (3.87)

n (3.87) we used the notations
Ry =ui+v], Ro=wu3+v3, Ry=ui+vi, Ry=uj+vi (3.88)

7.2. First and second order higher symmetries. We now con-
struct first and second order higher symmetries of the Federbush model.
In obtaining the results, we observe the remarkable fact of the existence of
first order higher symmetries, which are not equivalent to classical symme-
tries.

The results for first order symmetries are

A 0 A 0 A 0 A 0
X1 = v Ry— Ry— Ry— — —uwoR
1 2211 4(%1 2“1 48 + Uz 462 U2 4(%2
. 1 0 1 0
— MUy —— U
2 2,04(9U3 2 2 48113
+ L sy + movs + Aa(Ry + Ro)) -2
5 U4y + TM2V3 v4(ftq 2 I
1
+ —(2v4e — mouz — Auyg(R1 + R2))=—
2 vy’
A 0 A 0 A 0 A 0
X9 = —viR3— — —u1R3— + —v9R3— — —ugR3—
2 22}1 33’&1 2U1 381)1 + 2U2 361@ QUQ 38’02
1
5(2U3x maovy + Avs(R1 + Re)) 333
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1 0
+ 5(2v3x + mouy — )\U3(R1 + Rz))a s
1 0 n 1 0
— =M —Mol,
2 2 38 2 2 38214
1 8 1 0
X il oz -~
3= 2m1v2 6u1 2 iz (%1
1 0
5(2ugx + miv1 — /\UQ(R?, + R4))8—UQ
1 0
5(21)% miuy + /\UQ(R;J, + R4))3—02
A 0 A 0 )\ 0 A 0
- 51}3323—u3 + §U3R23—03 — —v4Ro— (9 + —U4R28—U47
1 0
Xy = 5(2u1w Mmiv9 — AU (R?, + R4))8—
1 0
5(211135 + myug + Aug (R3 + R4))8_
— 1m v i + 1m U 0
2 T 9us T2 oy
A 0 A 0 A 0 A 0
— —v3R1— Ri— — R R
203 1a +2U3 1(93 114 18 +2u4 184

Recall that two symmetries, X and Y are equivalent (we use the notation
=), see Chapter 2, if their exist functions f, g € F (&) such that

X =Y+ fD, + gDy, (3.89)

where D,, D, are the total derivative operators.
From this one notes that

1/0 0
X2+X4i_§ <___>7

or Ot
. 1 /0 0
X1+X3:—§ (6:5+6t> . (3.90)

We did find these first order higher symmetries of the Federbush model
using the following grading of the model:

deg(z) = deg(t) = —2, nonumber (3.91)
deg(aa ) = deg(gt) = 2, nonumber (3.92)
deg(uy) = - - - = deg(vs) = 1, nonumber (3.93)
0 0
deg(a—m) == deg(av4) —1, nonumber (3.94)
deg(mq) = deg(my) = 2. (3.95)

In order to find first order higher symmetries which are equivalent to the
vector field V3 (3.85), we searched for a vertical vector field of the following
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presentation:
V:le—i-tHQ—i-C, (396)

where Hy, Hs are combinations of the vector fields Vy, V5, X1, ..., X4, while
C is a correction of an appropriate degree.

From (3.96) and condition (3.91) we obtain two additional first order
higher symmetries X5, Xg, i.e.,

1 0 0 0 0
X5 = x(Xl —Xo) +t(X1+ Xo) — B} <U3a—u3 + 038—’03 — U4a—u4 - U4(9—’U4> )
1 15) 0 0 0
X6 = ZL'(Xg — X4) +t(X3 +X4) — 5 <U18—u1 +U18—v1 — UQB—W — U28—1)2> .
(3.97)
Note that
X5+ Xg = — V5. (3.98)

In order to construct second order higher symmmetries of the Feder-
bush model, we searched for a vector field V, whose defining functions

Vur ..., V% are dependent on the variables ui,..., v4,..., Ulzz, ..., Vizs-
Due to the above introduced grading (3.91) the presentation of the defining
functions V%, ... V" is of the folowing structure:
V* = [ulae + ([W)? + [m)) [u]e + ([u)® + [m][u]® + [m]?[u]) (3.99)

whereas in (3.99)

[u] refers to  u1,...,vs,

[u]lz refers to wuig,..., Vs,

[u]ze refers to iz, ..., Vigs,

X
[m]  refers to my,ma.

From presentation (3.99) and the symmetry condition we derive an overde-
termined system of partial differential equations. The solution of this sys-
tem leads to four second-order higher symmetries of the Federbush model,
)(77 ce ,Xl(), ie.:

A A A A
X,;Ll = §U1K’77 X;)I = —§U1K’7, X?2 — §U2K77 X’;}2 = _§U2K7’

u 1 v, 1
X;? = e (2uaz + Ava(R1 + Ry)), X7 = Zm2(2v4a: — Aug(R1 + Rp)),

X — %( ~ ogy + 22ua(Ry + Ra)o + Duge(Ry + Ro) + 2myus,
+ Amaus(Ry + Ra) + MNvy(Ry + Rz)z),

X2t = %(4’&4931‘ + 204 (R1 + R2)z + 4 g (R1 + R2) + 2mavs,
— dmous(Ry + Re) — Nus(Ry + Ro)?),

A A A A
Xt = 5 U1k, Xg' = —5 ks, Xg* = 5 v2Ks, Xg* = —5 U2k,
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X = %( — 4030 + 20 uz(R1 + Ra)s + 4 uze(R1 + Ra) — 2motiy,
— Amouy(R1 + R2) + )\21)3(R1 + 32)2)7

X3 = § (dusee + 2005(Fr + Bo) + v (Br + o) — 2movis
+ Amaus(Ry + Ro) — Nug(Ry + Ra)?),

Xg* = %mz( — 2uzy — Avs(Ri + Ra)),

1
Xgt = ng( — 2u3, + Aus(Ry + Ra)),

Xgt = %ml (2ugz — Ava(R3 + Ry)),

X = iml (2022 4+ Aua(R3 + Ra)),

X2 = %( — 4vggy — 2Xug(R3 + Ry)z — 4huge (Rs 4+ Ry) + 2myugy
— Xmyvi (Rs + Ra) + Ava(R3 + Ry)?),

X = %(4@” — 2 \v9(R3 + Ry)z — 4\voy(R3 + R4) + 2myvi,
+ Amyui (R + Ry) — Nuo(R3 + R4)2),

A ) A A A
X33 = 5 U3k, Xg® = —5usKo, Xg* = 5 valSo, Xgt = — 5 ualSy,

X = %( — Q14 — 22 ug(R3 + Ry)z — 4 \u1.(Rs + Ry) — 2myug,
+ Mmnyve(Rs + Ra) + N1 (Rs + R4)?),

X5 = %(41“” — 2 \v1(R3 + Ry)z — 4 \v1.(R3 + Ry) — 2myva,
— dmyua(Rs + Ra) — Nui (R + Ra)?),

w 1
Xi = g (= 2use + Wi (B + Ry)),

v 1
X1(2) — Zml( — 2V1 — )\ul(Rg + R4))a

A A
U v
X165 = 53K, X156 = —5usKio,

2 2
A A
Xig = 5 Va0, Xip = —5uat0, (3.100)

whereas in (3.100)

K7 = 2u4zv4 — 2ugvsy + ma(uzug + v304) + AR4(R1 + Ra),
Kg = 2us,v3 — 2usvsg, — ma(usug + v3vg) + AR3(R1 + Ra),
K9 = —2ug,v9 + 2ugva, — my(uruz + v1v2) + ARa(R3 + Ry),
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K19 = —2u1,v1 + 2uqv1, + m(uruz + v1v2) + ARy (R3 + Ry). (3.101)

The Lie bracket for vertical vector fields V;, i € N, defined by

0 0 0 0
Vi=VW v oy 3.102
’8u1+lav1+ +18U4+Z8’U4 ( )
is given by
Vi, V;1* =Vi(Vj*) = V;(V®), a=wu,...,v. (3.103)
The commutators of the associated vector fields Vy, Vs, X1,..., X4, X5, Xg,
X7,..., X0 are given by the following nonzero commutators:
(X1, X5] = — X1,
[X2, X5] = Xo,
(X3, X¢] = — X,
(X4, X¢] = Xy,

1
[X5, Xs] = —2X5 + SmiVs,
1
[X6, Xo] = 2Xo — 5miVi,
1
[ X6, X10] = —2X10 + §m§V4- (3.104)

We now transform the vector fields by

Yi = Vi, Vi =V,
YT = X3, Yy =X,
Y =Xy, Y5, =Xy,
Vi = Xo — miVi, Yy = Xp - mdls,
Y = X - mivi, L
Z§ = X, Zy = Xs. (3.105)
From (3.103) and (3.105) we obtain a direct sum of two Lie algebras: each
“+”-denoted element commutes with any “—”-denoted element and
[Z0,Yi] =iY;, [Yi,Yj]=0, ij=-2...2 (3.106)

In (3.106) Zy, Y;, where ¢ = —2,...,2, are assumed to have the same upper
sign, + or —.



7. SYMMETRIES OF THE FEDERBUSH MODEL 135

7.3. Recursion symmetries. We shall now construct four (z,t)-de-
pendent higher symmetries which act, by the Lie bracket for vertical vector
fields, as recursion operators on the above constructed (z,t)-independent
vector fields X71,..., Xy, X7,...,X10. We are motivated by the results for
the massive Thirring model, which were discussed in Subsections 6.1 and
6.2, and the results of Subsection 7.2, leading to the direct sum of two Lie
algebras, each of which having a similar structure to the Lie algebra for
the massive Thirring model. So we are forced to search for nonlocal higher
symmetries, including the nonlocal variables (3.87) associated to the vector
fields V1, V5 in (3.85).

Surprisingly, carrying through the huge computations, the nonlocal vari-
ables dropped out automatically from intermediate results, finally leading
to local (x,t)-dependent higher symmetries. So, for simplicity we shall dis-
cuss the search for creating and annihilating symmetries, assuming from the
beginning that they are local.

The formulation of creating and annihilating symmetries will follow from
the Lie brackets of these symmetries with Yii, meaning going up or down in
the hierarchy. The symmetries YO+, Y, are of degree 0, Y1+, Y_+17 Y, Y5
are of degree 2, while the symmetries Y2+, Y_+2, Y, , Y, are of degree 4, see
(3.105).

We now search for an (z,t)-dependent higher symmetry of second order,
linear with respect to z, ¢, and of degree 2, i.e., for a vector field V' of the
form

V:$H1+tH2+C*, (3.107)

where Hy, Hs are higher symmetries of degree four and, due to the fact that
my, my are of degree two, Hi, Ho are assumed to be linear with respect
to Yo©, Yy ,..., Y5 , Y&, Yo, Yo, while V in (3.107) has to satisfy the
symmetry condition. From these conditions we obtained the following result.

The symmetry condition is satisfied under the special assumption for V',
(3.107), leading to the following four higher symmetries:

X1 = JJ< Y+ + 4m1Y+> <Y+ + 4m1Y+> +Clla

Xio==x < - —m1 ) (}/+ + 4m +> +0123

1
Xiz=u ( Yo, + m2Y0 ) +1 (Y__Q + ngYO_> + Cis,
1
Xu==z (Y 5 — > +t (Y__Q + Zm%YO_) + C14. (3.108)
where in (3.108) the functions Ciy,...,C14 are given by the following ex-
pressions

1 0
Cn = 3 (20193 + myug + Auq (Rs + R4)) Dy
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0
( — 2U1z + MU + )\Ul(Rg + R4)) a—,

+
(%1
0
Cio = ( — 29, + Miul — )\UQ(Rg + R4)> a—
0
+ (mm mivor — Ava(Rs + R4)) Sor
0
2U3y + Moty — /\U3(R1 + Rz)) Dus

Q
w
+ Il
wIH ROl = DO = po] = N w|~ M|

Q
~
Il

=5(
( 2ug, + movy — Avg(Ry + RQ)) 8%)3’
( 2045 + maus + Aug(Ry + RQ)) 8i

0
(QU4x + movs + )\1)4(R1 + RQ)) a—

From (3.108) and (3.109) we define

Zi_l = X1, Zf_ = X2, Z:l = X3, Zl_ = X14.

(3.109)

(3.110)

Computation of the commutators of Zfl, Zf , Z_4, Z{ and Y;i, where
1= —2,...,2, leads to the following result:

1
A= g =
[Zi_lv Y1+] = Zmlyo—i_v [ZP_, Y+] Y2+7
[Zi_l,Y'()+] =0, [ZP_’)/()+] =0,
1
(Zt, Y] =-YT%, [z, Yh] = —Zm%YJ,nonumber
1
ZF,Yh]=Y1, Zf, Y75 = Qm%Yfl,nonumber
_ 1 _ e _
[Z—DYQ ]:_imgyl ) [Zl Y ]:Yt‘ﬂ )
I | _ e _
(22, Y] = Zm%Yo ) [Z0. Y] =Y,,
[Z:DYO_] =0, [Zf’Yo_] =0,
1
(Z~,, Y] =-Y, Z7,Y ] = —Zm%YO_,nonumber
o _ Lo 1 _
(220, Y] =Y, (21, Y 5] = Eng_l,
while
+ ot L oo+ - - L oo,
(27, Z]] = —§m1Z0 , Z~,,Z{] = §m2Z0 .

(3.111)

(3.112)

(3.113)

(3.114)

(3.115)
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All other commutators are zero. The vector field Y:;r is given by

m
Y3+,u1 = Tl( — Quogyr — 4AR34u9y + 2miuy — 4)\u2(R34)(1)

+ m%UQ — Amy R3qv1 + )\2R§4v2),
o= 1 - — 4hwa(R
Yo = LT Quggy — AAR34V2 + 2myv1y v2(R34) (1)
— m%uz + /\m1R34u1 — )\2R§4UQ>,

1
i/;_’u?' — Z( — Uoprr — 4M1V1zr + 12AR34V255 + 8)\U2(R34)(2)
+ 24020 (Rs4) (1) + 8Av2(R34)(1,1) + taz(4m3 + 6A*R3y)
— 4Amy Ryquig + 12X\%ug Rsa(Raa) (1) — 4Amaus (Ras) (1)

+ mi’vl — 2)\m%R34v2 + )\2m1R§4v1 — )\3R§4vg>,

1
Y;—,vz — Z( — 8Vorpr + 4MiUize — 12)\R34U21m + 8/\U2(R34)(2)

— 24uge (R34)(1) — 8Auz(Rsa)(1,1) + vae(4mi + 6A°R3,)
— 4Amy Rs4v1, + 12X\*v9 Ra4(Ras) (1) — 4Amyv1 (Raa) 1)

— m:{‘ul + QAm%R34UQ — /\2m1R§4u1 + /\3R§4UQ>,
A A
Y = szL, Yy = —ZuzL,

A A
YE;F’M _ ZU4L7 Y;’M — _ZU4L’ (3.116)

where in (3.116)

R34 = R3 + Ry,
(R34)(1) = ususe + V303 + UsUsy + V4V4z,
(R34)(2) = U3U3ge + V3V3z0 + UsUsge + V4V4zz,
(Rs4)(1,1) = U3, + V3, + U, + Uy,
L = 8(ugugey + vavozs) — 4(u3, + v3,) + 12AR34(u2,v2 — voguz)
+ 4y (u1v2, — V1Uzg + UV — Vout) — MI(2Re + Ry)

+ 4m1AR34(U1UQ + 1)11)2) — 3)\2R2R§4.

The results for the vector fields Y5, Y™, Y are similar to (3.116) and
are not given here, but are obtained from discrete symmetries ¢ and 7, to
be described in the next section.

From the above it is clear now, why the vector fields Zfl, Zf', 47, Zy
are called creating and annihilating operators.
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We thus have four infinite hierarchies of symmetries of the Federbush
model, i.e., Y Y.F Y Y~ ne&N. A formal proof of the infiniteness of
the hierarchies is given in Subsection 7.5.3.

7.4. Discrete symmetries. In deriving the specific results for the
symmetry structure of the Federbush model, we realised that there are dis-
crete transformations which transform the Federbush model into itself and
by consequence transform symmetries into symmetries. Existence of these
disrete symmetries allow us to restrict to just one part of the Lie algebra of
symmetries, the discrete symmetries generating the remaining parts. These
discrete symmetries o, 7 are given by

g U < U3, V1 <> V3,UQ <> Ug, V9 <> Vg, M7 <> mQ,)\ s —A,t s t;
T DU 5 U, V] <> V2, U3 > Ug, U3 <> Vg, A > —\, & «— —x,t <t (3.117)
The transformations satisfy the following rules:
o? =id,
7% =id,
coOT=ToOO.

Physically, the transformation o denotes the exchange of two particles.
The action of the discrete smmetries on the Lie algebra of symmetries
is as follows:

oV =Y,
(V") =YZ,
T(Y;7) =Y,
where ¢ = 0,1, 2,
o(Z7) = 2y,
T(Zfr) = Zi—l?
T(Z7) =24, (3.118)

while ng, Y, , Y, arising in the previous section, are defined by
Yh=7(Y"), Y5 =o(¥y"), Y3 =r10(¥y). (3.119)

7.5. Towards infinite number of hierarchies of symmetries. In
this subsection, we demonstrate the existence of an infinite number of
hiearchies of higher symmetries of the Federbush model. We shall do this
by the construction of two (x,t)-dependent symmetries of degree 0 which
are polynomial with respect to z, t and of degree 2. This will be done in
Subsection 7.5.1.

Then, after writing the Federbush model as a Hamiltonian system, we
show that all higher symmetries obtained thusfar are Hamitonian vector
fields; this will be done in Subsection 7.5.2. Finally in Subsection 7.5.3
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we give a proof of a lemma from which the existence of infinite number of
hierarchies of Hamiltonians becomes evident, and from this we then obtain
the obvious result for the symmetry structure of the Federbush model.

7.5.1. Construction of Y(2,0) and Y(2,0). First, we start from the
presentation of these vector fields, which is assumed to be of the following
structure

Y1(2,0) = 23 (1Y + aomi YT 4+ azmiYy" + agmi Y 4+ asYH)
+20t(B1Ys + Bar Y7 + BsmiYyT + Bami Y + BsY )
+ 2 (Y + yem Yy 4+ yamiYsT 4+ uma Y 4 Y )

+ 20 +tCy + Cf, (3.120)
In (3.120), the fields Yi‘*', i = —2,...,2, are given in previous sections, ay,
Bi, vi, t = 1,...,5, are constant, while Cf, C;’, C’J, which are of degree 2,

2 and 1 respectively, have to be determined.

From the symmetry condition (2.29) on p. 72 we obtained the following
result: There does exist a symmetry of presentation (3.120), which is given
by

1
Y*+(2,0) = 372(Y2+ - im%YoJr +Y) + 22tV — YD)

1
+ 2 (Y5h + im%Y(ﬁ +Y7h) +2Ct +tCy, (3.121)
whereas in (3.120) and (3.121),

0 0
Ci‘_ = (—21)13[; —miug — AR34U1)8—U1 + (2%13; — mivg — )\R341)1)8—v1

0
+ (—21)295 + miu; — AR34U2)— + <2u% + miv; — )\R341)2)

8U2 8—1)27
. ) )
02 = (21)11 + miug + /\R34u1)— + (—2u1$ + mivg + )\R341)1)—
ouy ovy
+ (—2v2; + miug — AR u)i—&—(Qu +miv; — AR v)i
2z 1d1 34'U2 8'1112 2z 1v1 3402 8'1)27
CS‘ =0. (3.122)

In a similar way, motivated by the structure of the Lie algebra obtained
thusfar, we get another higher symmetry of a similar structure, i.e.,

1
Y7(2,0) = 2(Yy = om3Yy +Y5) +20t(Y; = Y5)
1
+12(Yy, — §m§Y(f +Y,) +20] +tCy, (3.123)
whereas in (3.123),

_ 0 0
Cl = (—21}31 — Mouy + )\R12U3)a—u3 + (QUQ,x — Moy + )\R12v3)a—vg
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0 0
+ (—2v4y + moug + )\R12U4)a_u4 + (2u4y + movs + )\R1204)8—U4,

_ 0 0
02 = (21)39; + mouy — >\R12u;ﬁ,)a—u3 + (—2ugx + movy — )\R12v3)8—03

0 0
-+ (—2U4x + mousz + )\R12U4)— + (QU4x + movs + )\R121)4)—,
Ouy Ovy
CO_ =0. (3.124)

To give an idea of the action of the vector fields Y (2,0), Y~(2,0), we
compute their Lie brackets with the vector fields Y1+, Y0+, Y_+1, Y, Y,

Y, yielding the following results

[Y1(2,0),Y]"] =22, [Y~(2,0),Y ]| =22,
[Y*(2,0),Y,] =0, [Y~(2,0),Y;] =0,
[Y+<27O)7Y—+1] = 2Zj17 [Y7(270)7Y—_1] = 2Z:1,
[Y*(2,0),Y;7] =0, [Y~(2,0), VY] =0, (3.125)
where ¢ = —1,0, 1. These results suggest to set
YE(1,i) = ZF, Y*0,i)=Y*,  icZ (3.126)

The complete Lie algebra structure is obtained in Subection 7.5.3.
7.5.2. Hamiltonian structures. We shall now discuss Hamiltonians (or
conserved functionals) for the Federbush model described by (3.84),
(2 12
Ul + Ul y —myve = AN(uj + vi)vi,

(
—v14 — V1 — miug = A(uj + 07 )uq,

g — e —mivy = —A(u3 + v3)va,
—V2t + V2 — MUl = —)\(ug + U%)UQ,
U3 ¢ + U3 x — MUy = —)\(U% + U%)Ug,
—U3,t — V3z — MUy = —)\(Ug + v%)u;»,,

2 2
Ugt — Usgp — Maovs = A(uj + v3)va,

—U4¢ + Vqqp — MUz = U3 4 v3)uy. (3.127)

We introduce functions R1,..., R4 by
Rlzu%—i-v%, Rgzug—i-v%,
R3 = u3 + 03, Ry = uj + v}
We first rewite the Federbush model as a Hamiltonian system, i.e.,

du
— =Q5H 3.128
7 ; ( )
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where ) is a symplectic operator, H is the Hamiltonian and §H is the
Fréchet derivative! of H, u = (u1,v1,...,us,v4). In (3.128) we have

0

0 0 1
= 0] J‘(—l 0)’
J

SO Oy
SO GO
SO GoO o

and
>*1
H:/ 5(ulxvl—Ulle_UQxU2+u2U2m+u3mU3_U3U3I_u4$v4+u4v4x) dx
—00

A A
— ml(’LL1’LL2 + Ulvg) — mQ(U3U4 + U31)4) — §R1R4 + §R2R3.
By definition, to each Hamiltonian symmetry Y (also called canonical sym-
metry) there corresponds a Hamiltonian F'(Y'), where

FY) = /_ " R da, (3.129)

F(Y) being the Hamiltonian density, such that
Y =Q 5F(Y), (3.130)

and the Poisson bracket of F(Y) and H vanishes.
Suppose that Y7, Y2 are two Hamiltonian symmetries. Then [Y7,Y3] is a
Hamiltonian symmetry and

(Y1, Y3]) = {F (), F(Ya)}, (3.131)
where {-, -} is the Poisson bracket defined by
{F(n), F(Y2)} = (6F(Y1), Ya), (3.132)
(-,-) denoting the contraction of a 1-form and a vector field:
d
&H(x + €y)|e=o = (0H, y). (3.133)

The Hamiltonians F'(X) associated to the Hamiltonian densities F(X) are
defined by (3.134):

F(X) = /_OO F(X)da. (3.134)

From these definitions it is a straightforward computation that the symme-
tries YOJF, Yfr, le, Y, , Y, Y, obtained sofar are all Hamiltonian, where
the Hamiltonian densities are given by

1
F(Yy) = §(R1 + Ra),

1 1
.7:(}/1"‘) = —§(U2x112 - Ugvgx) + ZR34R2 - Eml(u1u2 + 1}1112),

!By the Fréchet derivative the components of the Euler-Lagrange operator are
understood.
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1 A 1
F(YH) = _§(U1xv1 — UV1) + ZR34R1 + §m1(u1U2 + v1v2),
_ 1
F(Yo) = 5(Bs + Ra),
_ 1 A 1
}—(Yl )= _§(U4xv4 — UgVsg) — ZR12R4 — §m2(U3U4 + v3vy),
_ 1 A 1
F(Y5) = _§(u3xv3 — u3v3y) — ZRlzRS + §m2(u3u4 + v3vg),  (3.135)
whereas the densities F (Yii), 1= —2,2, are given by
1 A 1
F(Y; ) = —§(U§x +v3,) + 5334(1621:112 — Uz ) — §m1(u2x7}1 — U1V2y)
1 1 1
— §A2R§4R2 + Zmlx\R34(u1uQ + 1)11)2) — gm%ng,
+ Lo o 9y, A 1
FY5) = —§(U1x +v1,) + §R34(U1xvl —UV1g) + §m1(U1xU2 — UV1g)
1 1 1
— §A2R§4R1 — Zmlx\R34(u1uQ + 1)11)2) — gm%ng,
_ A 1
F(Yy )= —5( 1o +05,) — §R12(U4xv4 — UgV4z) — §m2(u4x7}3 — UZV4z)
1 1 1
— §A2R%2R4 — ZmQAR12(u3u4 + 1)31)4) — §m§R34,
_ A 1
F(Y,) = —§(U§x +v3,) — 5312(1&31:113 — U3V3y) + §m2(U3xv4 — UgV3y)
1 1 1
— g)\QR%gR;J, + ngAng(’U,gUA + 1)31)4) — gm%RQA, (3136)
and the densities associated to Y3+, Y_+3 are given by
f(Y;L) = _(UZMUUQQ: - U211u2x) - >\R34(u2xacu2 + U211U2)

A
+ §R34 (u%x + ’U%x)
3
- ml(uleQm + leUQm) - Z)\QR§4(U2xU2 - UQUQ:E)
1
+ §m1/\R34(u1:pU2 — U V2g + U2z U1 — UV1y)
— Zml(ulxvl — U V1) — §m1(u2x02 — UgU9y) — Zml(uluQ + vyv9)
1 1 1
+ §A3R§4R2 — ZmlA2R§4(u1uz + v1v9) + grn%A1~z?,4(Rl +2Ry),
A
]:(Y:%) = UlgzViz — ViggUle T )\R34(u1xxul + lex”l) + §R34(U%x + U%a;)

3
— mq(UipUog + VigV2g) + Z)‘2R§4(ulxvl — UV1g)

1
+ §m1>\334(ulx1}2 — U Vg + U2z U1 — U2V1g)
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1
+ —m%(ulxvl — ulvlm) + Zm%(u%vg — ’U,Q’UQx) — —mi’(uluQ + ’Ulvg)

2 4
1 1 1
— §A3R§4R1 — Zml)\2R§4(U1U2 + 7)11)2) — ém%)\R34(2R1 + Rg).

The vector fields Zfl, Zfr , Z_, Z; are Hamiltonian vector fields too,
and the associated densities are given by

F(Zy) = x(F(Y,) - f(Y* ) +t(F(YT) + Jf(Y+ ),
F(Z7)

Il
8
el
~
_
|
e

S,
Bl
'~<
J

+H(F(RN) + m1f(Y+))

(

F(Z5) = (- F(Y > + mlﬂYo ) +H(F(Y) + mlﬂYO ),
(FO) - f(Y_1>) +H(F(YT) + f(Y:1>>,
(

FZp) = 2(FO7) - m3F () +1(FO) + 1m%ﬂYo‘)),
F(27,) = o~ F (V) + gmdF() +1(F (V) + gmdF().

We now arrive at the following remarkable fact: The vector fields Y *(2,0)
and Y~ (2,0) are again Hamiltonian vector fields, the corresponding Hamil-
tonian densities being given by

FY(2,0) = 2*(F(Yy) - mw’f( )+ F(YS))
+2mt(}"(Y )—J-"(Y_g))
+(F(Yy ) + me( C)+F(YS))

— S+ ) - OF ()

2); (3.137)

and similarly

FYH(2,0) = (z +1)*F(V5") — gmi(z + t)(x — ) F (V")

) =
+(z — )2 F(YH), (3.138)

Now the Hamiltonians F(Z;), F(Z*)), F(Z]), F(Z~,) act as cre-
ating and annihilating operators on the (x,t)-independent Hamiltonians
F(YY),..., F(Y3") and F(Y73),...,F(Y; ), by the action of the Poisson
bracket: for example

{F(z]), F(Y{")} =0,

(FE, PO} = gt [ (Rt ) = PO
(P(Z1), POV ) = —F ().
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In the next subsection we give a formal proof for the existence of in-
finite number of hierarchies of higher symmetries by proving existence of
infinite number of hierarchies of Hamiltonians, thus leading to those for the
symmetries.

7.5.3. The infinity of the hierarchies. We shall prove here a lemma con-
cerning the infiniteness of the hierarchies of Hamiltonians for the Federbush
model. From this we obtain a similar result for the associated hierarchies of
Hamiltonian vector fields.

LEMMA 3.12. Let H] (u,v) and K (u,v) be defined by

[ee]
HY (u,0) = / o (u2 4 02),

—00
oo
K] (u,v) = / 2" (Up41Vn — Vpt1Un), (3.139)
— 0o
whereas in (3.139) r,n = 0,1,..., and r, n are such that the degrees of

H (u,v) and K] (u,v) are positive.
Let the Poisson bracket of F' and L, denoted by {F, L}, be defined as

(F L} = /OO (fs_f% - %%). (3.140)
Then the following results hold

{H{,H} = 4(n —r) Ky,

{H{, K3} = (4(n — ) + 2)Hyy +r(r = 1)(r —n — 1) H; 72,

{H, Hy} = 4(2n — ) KT,

{HY, K} = (2n+1—r)(AH] D1 —r?H 7Y, (3.141)
r,mn=0,1,...

PROOF. We shall now prove the third and fourth relation in (3.141), the
proofs of the other two statements running along similar lines.
Calculation of the Fréchet derivatives of H,, K] yields

5H’I§ n T
ou = (=Dg)" (22" up),
5H;’L n T
o (=Dg)" (22" vp),
5K77:‘L n 'S n 'S
Su = (=Dz) +1(w vp) = (=Dz)" (2" vp 1),
SKT
Mn = —(=D)" M (2 up) + (—Dp)" (2" tpy1).- (3.142)
Substitution of (3.142) into the third relation of (3.141) yields
(2. 17) = [ =Da(2aen) (1) DE )

+ D$(2x2u1) (=1)"DZ(2z"vy,)
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= )2 1/ D™ (22%u;) D, (22" vy,) — D™ (22%v1) Dy (22" uy,)

4/ (a: Un+1 + 2nzuy, + n(n — 1)Un 1)(33%”“ + ’I“-’L‘T_lvn)
—0o0
_ (:I;2Un+1 + 2nav, +n(n — Dvy_1) (2" Uny1 + m’”_lun)
o
- _4/ P2 (U 100 — Vg 1tn) — 202" (U1 U0 — Vg 1)
—0o0

+n(n — 1)z (Vpp1tn-1 — Unt1Vp—1) + n(n — Dra” N (vptn_1 — upvn_1)
=4(2n — )K" (3.143)

which proves the third relation in (3.141).
The last equality in (3.143) results from the fact that the last two terms
are just constituting a total derivative of

n(n — 1)z" (vpun—1 — UpVn_1). (3.144)

In order to prove the fourth relation in (3.141), we substitute (3.142),
which leads to

{(H}, H) = / " _D,(20%0). (1" D @ vn) = (~1)" Dip(a"vn11) )

+ Dy (22%u) - ((—1)"+1D2+1(xrun) - (—1)nD;(x7"un+1)). (3.145)

Integration, n times, of the terms in brackets leads to

o0
(=2 [ D ) - (Do) + o)
— 00
+ Dpt (a?un) - (Da(2un) + 2 ung1)

oo
= 2/ (x2vn+2 +2(n+ 1)ave1 + n(n 4 1)Un)(2wrvn+1 + Tl'r_lvn)

—0o0
+ (22 up o+ 2(n 4+ D2ty + n(n 4+ Dup) (22 upy1 + 72" tuy,).  (3.146)

By expanding the expressions in (3.146), we arrive, after a short calculation,
at

{HY, K]} = (2n+1—r)(4H] T — r*H, ), (3.147)
which proves the fourth relation in (3.141). O

We are now in a position to formulate and prove the main theorem of this
subsection.

THEOREM 3.13. The conserved functionals F(Y*(2,0)) associated to
the symmetries Y(2,0) generate infinite number of hierarchies of Hamilto-
nians, starting at the hierarchies F(Yf), F(Y;"), where i € Z, by repeated

action of the Poisson bracket (3.140). The hierarchies F(ZJTF), F(Z;),
Jj € Z, are obtained by the first step of this procedure.
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Moreover, the hierarchies F(YJ*), F(Y[), j € Z, are obtained from
F(YE) by repeated action of the conserved functionals F(ZE))

F(Z%) = %F([Yi(z, 0),Y)). (3.148)

PROOF. The proof of this theorem is a straightforward application of
the previous lemma, and the observation that the (A, m1, ms)-independent
parts of the conserved densities Y, Y*(2,0), Y~(2,0) are just given by

1
:F<Y1+) - _§<U2$U2 - 7}23:u2>7

1
F(YH) — —§(u1x01 — V1zU1),

_ 1
.F(Yl ) — —E(U4xv4 — U4xU4),

FY,) — -1

_ 5 (U3xv3 - U'g,xu?)),

1
i(x - t)2(u%50 + 0%1)7

1
§(x - t)Q(ugr + U?Q):c)

Note that in applying the lemma we have to choose (u,v) = (u,v1), etc. O

FVH(2,0)) — — 3 (a + 1) (s, +03,) -

FY™(2,0) — — 3w + 1) (u, +vd,) -

7.6. Nonlocal symmetries. In this last subsection concerning the
Federbush model, we discuss existence of nonlocal symmetries. We start
from the conservation laws, conserved quantities and the associated nonlo-
cal variables py, po:

Pz = Ri1 + Ry, p1it = —R1 + Ry,
P2z = R3 + Ru, por = —R3 + Ry. (3.149)
Including these two nonlocal variables, we find two new nonlocal symmetries
0 0 0 0 0
Z7(0,0) = u; — — — = A ( — —U3—
(0,0) = ula ™ + vy =— 9o; + uo Duy + v2 B0g 1| vs s us3 95
Fot — 2 ) +2 0
48 » 4(9 on P15 — opy’
0 0 0 0 0
Z7(0,0) = uz— A ( — — U
(0,0) = 1@,63—1—213,(9 +u484+v48 + Ap2 vlal uav1
g —u i)+2 o (3.150)
28 ) 2a ) P2 Opa’ .

Analogously to the construction of conservation laws and nonlocal variables
in previous sections, we obtained nonlocal variables ps, p4, p5, ps defined by

1
D3z = 5)\(Rl + RQ)R4 + mQ(U3U4 + U3U4) — UqV4gy + V4U4,,

1
P3t = §A<R1 + Ro) Ry — uqvyy + V4llyy,
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1
Pag = §A(R1 + R2)R3 + ma(usug + v3v4) + ugvsy — v3Us,,
1
Par = 5)\(1%1 + Ro)R3 — usvs, + v3ugy,
1
Psr = 5)\(R3 —+ R4)R2 —mi (U1U2 + 'UlUl) + U2y — V2U2y,
1
D5t = §>\(R3 + R4)Ro + ugva, — vouUay,
1
jr— 5)\(R3 + Ry) Ry + mq(ugug + v1v1) + U101, — V11,
1
Pet = 75)\(R3 + R4)R1 — uqv15 + V1U1g- (3.151)

Using these nonlocal variables we find four additional nonlocal symmetries
Z+(O7 _1)7 Z+(07 +1)a Zi(ov _1)1 Zi(Oa +1):

1 0
Z1(0,-1) = 5( — Aui(R3 + Ry) — myug — 2U1$> Jur
1 0
+ 5( — A1 (R3 + Ry) — myve + 2U1x> o
1 0 1 0

— M S 2 1?118
(%)

2 811,2
0 0 0 0
+ /\pﬁ(”?’a—ug - U:’)a—v3 +v46—u4 - u48—v4)’

1 0 1 0
ZH0,+1) = = —+ = —
(0,41) 2m1u28u1 + levgavl

1 0
+ 5( — )\UQ(R:J, + R4) + miu; — 2?123;) 8—11,2
1 0
+ 5( - )\'UQ(Rg + R4) + mqyv; + 2u21> 8—’02
0 0 0 0
+ )\p5(v38—u3 - Usa—vg +U46—u4 - U48’U4)
0 0 0 0
Z7(0,-1) = — = -
(0,-1) >\p4(vla o M50 +oap - U2av2)
1 0
+ §< — Aug(R1 + Ra) — mauy — 2U3m) s
1 0
+ B ( + Avg(R1 + Ra2) — mavy + 2U3m> o0s
LT 1 0
2 2 38u4 81}
_ 0 0 0 0
Z7(0,+1) = Apg(vla—ul g, +028—u2 - UQa—w)
1 0 1 0
+ sMmaug7— + MoV 7—

2 ous 2 Ovs
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1 0
+ 3 (AU4(R1 + Ra) + moug — 2U4a:> E

0
B’
According to standard lines of computations, including prolongation towards
nonlocal variables as explained in previous sections, we arrive at the follow-
ing commutators:

1
+ 3 <>\v4(R1 + R2) + mavs + 2U4az>

[Y*(1,£1), Z%(0,0)] = 0,
[Y*(1,-1),Z27(0,-1)] = Z1(0,—-2),

[Y+(1,-1),27(0,+1)] = —imfﬁ(o,m,
V(1 +1), ZH(0, -1)] = imfzﬂo,()),
[YT(1,+1),Z2%(0,+1)] = Z1(0,+2)

and

[Y~=(1,-1),Z2(0,-1)] = 2 (0,-2),
[Y=(1,-1),Z2(0,+1)] = —%mgz—(o,o),

[Y=(1,+1),Z2(0,-1)] = imgz—(o,o),
[Y~(1,41),Z2(0,+1)] = Z7(0,+2), (3.152)

the vector fields Z7(0, —2), Z7(0,+2), Z~(0,—2), Z~ (0, +2) just being new
nonlocal symmetries.
Summarising these results, we conclude that the action of the symmetries
Y*(1,+1) on Z*(0,41) constitute hierarchies of nonlocal symmetries.
Finally we compute the Lie brackets of Y (2,0), (3.121), and Z*(0, £1)
which results in

[Y+(27 0)7 Z+(07 _1)] = Z+(17 _1)7
[Y(2,0),Z27(0,+1)] = Z7(1,+1), (3.153)
whereas in (3.153) Z7(0,+1) are defined by

Zt(1,-1) =2(—x +t)Z7(0,-2) + %mf(x +1)Z%(0,0)

0 0
+ (AU1R34 +mive — 2ulz> i (AU1R34 +miug + Qle)
1

vy
A0 ) o) o)
= O e —— — e — — uu— KT
2 (U3 8’&3 s 81}3 T GU4 t 8’04) b
1
ZT(1,41) = 2(x + ) Z7(0, -2) + 5m%(az —1)Z%(0,0)

0

+ (Av2R34 — myvy — 2u2x> —
8U2
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0
— <)\u2R34 +miuy + 2U21> -
81}2
A/ D 0 d O\t
__( 8 s U3a—vg+v4a—u4—U4a—v4)K+1, (3154)

while KL are given by

8/ / F(Y1(0,-2)) m/oo OOfW(o,o)),
1—8/ / FYH0,42)) m/oo g;fyﬂo,o». (3.155)

The previous formulas reflect the fact that Y *(2,0) constructs an (z,t)-
dependent hierarchy Z* (1, *) from Z* (0, *) by action of the Lie bracket. We
expect similar results for the action of Y+ (2,0) on the hierarchy Z*(1, ).

Results conserning the action of Y 7(2,0) on Z~ (0, *) and from this, on
Z~ (1, %) will be similar.

8. Backlund transformations and recursion operators

In this section, we mainly follow the results by M. Marvan exposed in
[73]. Our aim here is to show that recursion opeartors for higher symmetries
may be unberstood as Backlund transformations of a special type.

Let & and & be two differential equations in unknown functions «! and
u? respectively. Informally speaking, a Bicklund transformation between &;
and & is a third equation £ containing both independent variables u! and
u? and possessing the following property:

1. If u} is a solution of &7, then solving the equation E[u}] with respect
to u?, we obtain a family of solutions to &;.

2. Vice versa, if u3 is a solution of £, then solving the equation &[u3]
with respect to u', we obtain a family of solutions to &;.

Geometrically this construction is expressed in a quite simple manner.

DEFINITION 3.10. Let A7 and N3 be objects of the category DM™>. A
Bdklund transformation between N7 and N3 is a pair of coverings

N

)y 2

N 1 N 2
where N is a third object of DM>. A Bécklund transformation is called a
Bicklund auto-transformation, if N7 = N5.

In fact, let NVj = &, 4= 1,2, and s C £° be a solution. Then the set
o ls J\/ is fibered by solutions of N and they are projected by @2 (at
nonsingular points) to a family of solutions of £5°.
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We are now interested in Béacklund auto-transformations of the total
space of the Cartan covering 7V: VE® — £ (see Example 3.2). The reason
to this is the following

PROPOSITION 3.14. A section X : £ — VE™ of the projection 7V is a
symmetry of the equation & if and only if it is a morphism in the category
DM i.e., if it preserves Cartan distributions.

The proof is straightforward and is based on the definition of the Cartan
distribution on VE>. The result is in full agreement with equalities (3.2)
on p. 101: the equations for VE are just linearization of £ and symmetries
are solutions of the linearized equation.

Thus, we can hope that Backlund auto-transformations of VE* will
relate symmetries of £ to each other. This motivates the following

DEFINITION 3.11. Let £°° be an infinitely prolonged equation. A recur-
ston operator for symmetries of £ is a pair of coverings K, L: R — VE™®
such that the diagram

R

EOO
is commutative. A recursion operator is called linear, if both K and L are
linear coverings.

EXAMPLE 3.4. Consider the KdV equation & = {u; = uuy + Uggs}-
Then VE is described by additional equation

Vi = UVg + UgV + VUggg-
Let us take for R the system of equations
Wy =,
Wi = Vgy + UV,
UVt = UggaUUz + Uy,
Ut = Uggr + Ulyg,
while the mappings K and L are given by

K:v=w,,

L:v=uvg+ guv + gul«w.
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Obviously, K and L determine covering structures over VE (the first being
one-dimensional and the second three-dimensional) while the triple (R, K, L)
corresponds to the classical Lenard operator D2 + %u + %uxD; L

Let us now study action of recursion operators on symmetries in more
details. Let X be a symmetry of an equation £. Then, due to Proposition
3.14, it can be considered as a section X : £ — VE* which is a morphism
in DM®°. Thus we obtain the following commutative diagram

X* L
R* R ve>

P = X*(K) K v

g X yge T g
where the composition of the arrows below is the identity while P = X*(K)
is the pull-back. As a consequence, we obtain the following morphism of

coverings

LoX*
° VE®

R*
gOO

But a morphism of this type, as it can be easily checked, is exactly a shadow
of a nonlocal symmetry in the covering P (cf. Section 2). And as we know,
action of the Lenard operator on the scaling symmetry of the KdV equation
results in a shadow which can be reconstructed using the methods of Section
3.

We conclude this section with discussing the problem of inversion of re-
cursion operators. This nontrivial, from analytical point of view, procedure,
becomes quite trivial in the geometrical setting.

In fact, to invert a recursion operator (R, K, L) just amounts to changing
arrows in the corresponding diagram:

R
v <
7 N\
¢ \

VeE> veE®

Ne, /
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We shall illustrate the procedure using the example of the modified KdV
equation (mKdV).

EXAMPLE 3.5 (see also [28, 27, 29]). Consider the mKdV eqiation
written in the form

Ut = Uy — U Usg.
Then the corresponding Cartan covering is given by the pair of equations
Ut = Uggx — 'LLQZLZ,
Vt = Vggw — u2vx — 2uugv,

while the recursion operator for the mKdV equation comes out of the cov-
ering R of the form

Wy = U,

Wt = UV L — Uz Vg + UgprpV — udv

and is of the form L: z = vy — %u% — %uxw, where z stands for the nonlocal

coordinate in the second copy of VE™.

To invert L, it needs to reconstruct the covering over the second copy
of V& using the above information. From the form of L we obtain v,, =
z+ %u% + %uxw, from where it follows that the needed nonlocal variables
are v, w, and s satisfying the relations

Wy = UV,
Vg = S,
2 5
Sy = guww—i-gu v+ z
and

2 I
Wy = guuxw + | Upy — gu 2 — UgpS + UZ,

2 1

Uy = gumw — §u23 + Zg,
2 2 e 2 4 2 N 1,
St = —U — =Uuu w —Uuu — =U UV — —UULS Ze — —U Z.

Consequently, we got the covering L': R’ — VE™> with (w,v, s) — v, and it
is natural to identify the triple (R’ = R, L' = K, K’ = L) with the inverted
recursion operator.

It should be noted that the covering R’ can be simplified in the following

way: set
+—w+\/§ _—w—\/g ——guw+8
p = 5 P = 5 4= 3 .
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Then we get
2 3
+ +
Pz = i\/;up + \/;q,
e = 2,

2 1 3
pf = i\/; (um — gug) pi — <um + gﬁ) q=* \/;za; + uz,

2
gt = Zgx — U Z,

while K acquires the form v = p* — p~.

153
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CHAPTER 4

Brackets

This chapter is of a purely algebraic nature. Following [99] (see also
[60, Ch. 1]), we construct differential calculus in the category of modules
over a unitary commutative K-algebra A, K being a commutative ring with
unit (in the corresponding geometrical setting K is usually the field R and
A = C*®(M) for a smooth manifold M). Properly understood, this calculus
is a system of special functors, together with their natural transformations
and representative objects.

In the framework of the calculus constructed, we study form-valued
derivations and deduce, in particular, two types of brackets: the Richardson—
Nijenhuis and Frolicher—Nijenhuis ones. If a derivation is integrable in the
sense of the second one, a cohomology theory can be related to it. A source
of integrable elements are algebras with flat connections.

These algebras serve as an adequate model for infinitely prolonged dif-
ferential equations, and we shall also show that all basic conceptual con-
structions introduced on £ in previous chapters are also valid for algebras
with flat connections, becoming much more transparent. In particular, the
notions of a symmetry and a recursion operator for an algebra with flat
connection are introduced in cohomological terms and the structure of sym-
metry Lie algebras is analyzed. Later (in Chapter 5) we specify all these
results for the case of the bundle £*° — M.

1. Differential calculus over commutative algebras

Throughout this section, K is a commutative ring with unit, A is a
commutative K-algebra, P, (@, ... are modules over A. We introduce linear
differential operators A: P — @, modules of jets J*(P), derivations, and
differential forms A?(A).

1.1. Linear differential operators. Consider two A-modules P and
@ and the K-module homg (P, Q). Then there exist two A-module struc-
tures in homg (P, @): the left one

Lf)(p) =af(p), a€A, [fechomg(PQ), peP
and the right one

(raf)(p) = f(ap), ac€A, fechomg(P,Q), pecP.

Let us introduce the notation d, =1, — 1.

155
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DEFINITION 4.1. A linear differential operator of order < k acting from
an A-module P to an A-module @ is a mapping A € homg (P, Q) satisfying
the identity

(0gg 0+ 00q,)A =0 (4.1)
for all ag,...a; € A.
For any a,b € A, one has
lyory =101,

and consequently the set of all differential operators of order < k

(i) is stable under both left and right multiplication and
(ii) forms an A-bimodule.

This bimodule is denoted by Diff\"(P,Q), while the left and the right
multlphcatlons in it are denoted by aA and a™A respectively, a € A, A €

lef (P Q). When P = A, we use the notation Diff,(:_)(Q).
Obv10usly7 one has embeddings of A-bimodules

lef (P Q) — lefk, (P,Q)

for any k < k' and we can define the module

Diff " (P, Q) € ] Diff{"” (P, Q).
k>0

Note also that for £ = 0 we have lef ( , Q) = homa (P, Q).

Let P,Q, R be A-modules and A P — Q, A’': Q — R be differential
operators of orders k and &k’ respectively. Then the composition A’ocA: P —
R is defined.

PROPOSITION 4.1. The composition A’ o A is a differential operator of
order <k + k.

PROOF. In fact, by definition we have

0a(A 0 A) = §,(A") o A+ A’ 0 5,(A). (4.2)
for any a € A. Let a = {agp,...,as} be a set of elements of the algebra
A. Say that two subsets a, = {a;,,...,a; } and a1 = {a;,,...,a;,_,.,}

form an unshuffle of a, if iy < -+ < 'ip, j1 < -+ < Js—rg1. Denote the set

of all unshuffles of a by unshuffle(a) and set 4 def Jgp O+ -+ 00g,. Then from
(4.2) it follows that

oA o AT) = S Ga(B)ode (&) (@3)
(ar,a5—r41)€unshuffle(a)

for any A, A’. Hence, if s > k + k' + 1, both summands in (4.3) vanish
which finishes the proof. O
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REMARK 4.1. Let M be a smooth manifold, 7, £ be vector bundles over
M and P =T'(7), @ =T(§). Then A is a differential operator in the sense
of Definition 4.1 if and only if it is a linear differential operator acting from
sections of w to those of &.

First note that it suffices to consider the case M = R™, w and £ being
trivial one-dimensional bundles over M. Obviously, any linear differential
operator in a usual analytical sense satisfies Definition 4.1. Conversely, let
A: C®(M) — C*™(M) satisfy Definition 4.1 and be an operator of order
k. Consider a function f € C°°(M) and a point 2° € M. Then in a
neighborhood of z¥ the function f is represented in the form

r — 20 lo]
foy= Y BB 0T

! 8.’17' |
ag.
|0|<k}

+ 3 (@ —a®)g(a),

z=x0 |o|=k+1

where (7 —2%)7 = (z1 —20)% ... (2, —20), 0! = i1!...4,!, and g, are some
smooth functions. Introduce the notation

Ay =A (L — "”O)O> :

ol

then
o]
A=Y a, 2

o=k g 81’|‘7|
o<

+A [ D (@—2g,(2) | . (4.4)

x=z0 |o|=k+1

Due to the fact that A is a k-th order operator, from equality (4.3) it
follows that the last summand in (4.4) vanishes. Hence, Af is completely
determined by the values of partial derivatives of f up to order k£ and depends
on these derivatives linearly.

Consider a differential operator A: P — @ and A-module homomor-
phisms f: Q — R and f': R’ — P. Then from Definition 4.1 it follows that
both foA: P — R and Ao f': R — @ are differential operators of order
ord A. Thus the correspondence (P, Q) — Diff,(j)(P, Q), k=0,1,..., %, is
a bifunctor from the category of A-modules to the category of A-bimodules.

PROPOSITION 4.2. Let us fix a module Q. Then the functor Diffz'(o, Q)
s representable in the category of A-modules. Moreover, for any differen-

tial operator A: P — @Q of order k there exists a unique homomorphism
fa: P — Diff; (Q) such that the diagram

P A Q

A

%
~y
=
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is commutative, where the operator [y is defined by i (0O)
Diff} (Q).

PROOF. Let p € P,a € A and set (fa(p))(a) def A(ap). Tt is easily seen

that it is the mapping we are looking for. O

DEFINITION 4.2. Let A: P — @ be a k-th order differential operator.

The composition A def L o A: P — Diff; (Q) is called the [-th Diff-
prolongation of A.

Consider, in particular, the I-th prolongation of the operator /. By
definition, we have the following commutative diagram

Diff}", (P) A Diff; (P)
(g
Clk 'U(/) Ay
Diff}h, , (P) A+t P

where Diff;;t,...,in def Diff;-t 0-+-0 Diff;-t1 and ¢k def faom- The mapping
c k= ck(P): Diff) ,(P) — Diff;(P) is called the gluing homomorphism
while the correspondence P = ¢; (P) is a natural transformation of functors
called the gluing transformation.

Let A: P — @, : @ — R be differential operators of orders k and [

respectively. The A-module homomorphisms
fA: P —Difff(Q), fooa: P— Difff,(R), fo:Q — Diff;"(R)

are defined. On the other hand, since Diff; () is a functor, we have the
homomorphism Diff; ( fo): Diff} (Q) — Diff} (Diff;" (R)).

ProproOSITION 4.3. The diagram

fDoA

P Diff;" ,(R)
fa Ch.l (4.6)
. Diff; (fo) .
Diff;} (Q) ————= Diff; ,(R)

15 commutative.

By this reason, the transformation c;; is also called the universal com-
position transformation.
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1.2. Jets. Let us now study representability of the functors Diff (P, e).
Consider an A-module P and the tensor product A ® g P endowed with
two A-module structures

*(b®p) = (ab) @p, 1*(b®p)=>b® (ap), a,beA, peP.
We also set 6% = 1%—1? and denote by py, the submodule! in A®x P spanned
by all elements of the form
(0% o0--06%)(a®p), ag,...,as €A, s>k

DEFINITION 4.3. The module J%(P) e (A®K P)/ux is called the mod-

ule of k-jets for the module P. The correspondence
je: P— JP),  p— (1®p)mod uy,
is called the k-jet operator.
PROPOSITION 4.4. The mapping ji is a linear differential operator of
order < k. Moreover, for any linear differential operator A: P — @ there

exists a uniquely defined homomorphism f2: J¥(P) — Q such that the
diagram

P ]k jk(P)

Q

15 commutative.

Hence, Diff;(P,e) is a representable functor. Note also that J*(P)
carries two structures of an A-module (with respect to 1* and r*) and the
correspondence P = J¥(P) is a functor from the category of A-modules to
the category of A-bimodules.

Note that by definition we have short exact sequences of A-modules

1%
0 = pisr/px — TH(P) =5 THP) = 0
and thus we are able to define the A-module
T°(P) ¥ projlim 7%(P)
{Vk+1,k}
which is called the module of infinite jets for P. Denote by veg j: J(P) —
J¥(P) the corresponding projections. Since Vk41,k°Jk = Jr+1 for any k > 0,
the system of operators ji induces the mapping jo: P — J°(P) satisfying
the condition v ;0 joo = ji. Obviously, J7°°(P) is the representative object
for the functor Diff,(P, ) while the mapping j, possesses the universal
property similar to that of ji: for any A € Diff, (P, Q) there exists a unique

Tt makes no difference whether we span iy, by the left or the right multiplication due
to the identity 1 6*(b® p) = 1% §* (bR p) 4+ 6° *(b® p).
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homomorphism f2: J°(P) — @ such that A = f2 o0 j... Note that j is
not a differential operator in the sense of Definition 4.1.2

The functors J*(e) possess the properties dual to those of Diff; (e).
Namely, we can define the [-th Jet-prolongation of A € Diffy(P,Q) by
setting

AOE oA P TUQ)
and consider the commutative diagram

Jk

p JH(P)
%
Jk+ i
L.k
jk+l (P) c jljk (P)

TONN . . . .
where ¢* = fir" is called the cogluing transformation. Similar to Diagram
(4.6), for any operators A: P — @, 0: Q@ — R of orders k and [ respectively,
we have the commutative diagram

o
jk—H(P) f 2 R
Cl’k flj
(A
T THP) J(f) 7HQ)

and call ¢“* the universal cocompositon operation. This operation is coasso-
ctative, i.e., the diagram
CkJrl,s

jk+l+s (P) ijrljS(P)

holts kil

jk Cl,s
jk)jH‘S(P) L) jkjljS(P)
is commutative for all k,1,s > 0.

1.3. Derivations. We shall now deal with special differential operators
of order 1.

DEFINITION 4.4. Let P be an A-module. A P-valued derivation is a
first order operator A: A — P satisfying A(1) = 0.

2One might say that jo, is a differential operator of “infinite order”, but this concept
needs to be more clarified. Some remarks concerning a concept of infinite order differential
operators were made in Chapter 1, see also [51] for more details.
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The set of such derivations will be denoted by D(P). From the above
definition and from Definition 4.1 it follows that A € D(P) if and only if

A(ab) = aA(b) + bA(a), a,b e A. (4.7)

It should be noted that the set D(P) is a submodule in Diff;(P) but not in
Diff{ (P).

REMARK 4.2. In the case A = C*°(M), M being a smooth manifold,
and P = A the module D(A) coincides with the module D(M) of vector
fields on the manifold M.

For any A-homomorphism f: P — @ and a derivation A € D(P), the

composition D(f) o f oA lies in D(Q) and thus P = D(P) is a functor

from the category of A-modules into itself. This functor can be generalized
as follows.
Let P be an A-module and N C P be a subset in P. Let us define
D(N) ¥ {A e D(P)| A(A) C N}.

Let us also set (Diff])? def Diff{ o --oDiff{, where the composition is taken
1 times. We now define a series of functors D;, i > 0, together with natural
embeddings D;(P) — (Diff{")!(P) by setting Do(P) = P, D1(P) = D(P)
and, assuming that all D;(P), j < i, were defined,

D;(P) = D(D;_1(P) c (Diff{)"~1(P)).
Since
D(D;_1(P) C (Diff{)"1(P)) ¢ D((Ditf{)""1(P)) c (Diff]){(P), (4.8)

the modules D;(P) are well defined.

Let us show now that the correspondences P = D;(P) are functors for
all 4 > 0. In fact, the case ¢ = 0 is obvious while i = 1 was considered
above. We use induction on ¢ and assume that ¢ > 1 and that for j < all
Dj are functors. We shall also assume that the embeddings a,: D;(P) —
(Diff{)!(P) are natural, i.e., the diagrams

ol ,
D;(P) — (Diff{ )/ (P)

D;(f) (Diffy ) (f) (4.9)
o |
D;(Q) —= (Diff} )’ (Q)

are commutative for any homomorphism f: P — @ (in the cases j = 0,1,
this is obvious). Then, if A € D;(P) and a € A, we set (D;(f))(A) o
D;_1(A(a)). Then from commutativity of diagram (4.9) it follows that D;(f)
takes D;(P) to D;(Q) while (4.8) implies that ab: D;(P) — (Diff]){(P) is
a natural embedding.
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Note now that, by definition, elements of D;(P) may be understood as
K-linear mappings A — D;_1(P) possessing “special properties”. Given an
element a € A and an operator A € D;(P), we have A(a) € D;_1(P), i.e.,
A: A— D;_1(P), etc. Thus A is a polylinear mapping

—_———
1 times
Let us describe the module D;(P) in these terms.

PROPOSITION 4.5. A polylinear mapping of the form (4.10) is an ele-
ment of D;(P) if and only if
Aal,...,aq-1,0b, 0041, ..., 0;)
=aA(...,a0-1,b,a0+1,...) +BA(...,a0-1,0,00+41,...) (4.11)
and
A a0, ... a08,...) = (—1)O‘BA(...,ag,...,aa,...) (4.12)

foralla,b,ai,...,a; € A, 1 < a < <1i. In other words, D;(P) consists of
skew-symmetric polyderivations (of degree i) of the algebra A with the values
mn P.

PRroOF. Note first that to prove the result it suffices to consider the
case ¢ = 2. In fact, the general case is proved by induction on i whose step
literally repeats the proof for ¢ = 2.

Let now A € Dy(P). Then, since A is a derivation with the values in
Diff{ (P), one has

A(ab) = atA(b) + bTA(a), a,be A.
Consequently,
A(ab,c) = A(b,ac) + A(a, be) (4.13)
for any ¢ € A. But A(ab) € D(P) and thus A(ab, 1) = 0. Therefore, (4.13)
implies A(a,b) + A(b,a) = 0 which proves (4.12). On the other hand, from
the result proved we obtain that A(ab,c) = —A(c, ab) while, by definition,
one has A(c) € D(P) for any ¢ € A. Hence,
A(ab,c) = —A(c,ab) = —aA(c,b) — bA(c,a) = aA(b, c) + bA(a, )
which finishes the proof. O
To finish this subsection, we establish an additional algebraic structure

in the modules D;(P). Namely, we define by induction the wedge product
N: Di(A) @k D;j(P) — D;;;(P) by setting

alp def ap, a € Dy(A)=A, pe Dy(P)=P, (4.14)

and

(AAD) (@) ¥ AAD(a) + (-1)7A(a) AO (4.15)

for any A € D;(A), O e Dj(P),i+j>0.
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PROPOSITION 4.6. The wedge product of polyderivations is a well-
defined operation.

PROOF. It needs to prove that A A O defined by (4.14) and (4.15) lies
in D;;;(P). To do this, we shall use Proposition 4.5 and induction on i + j.
The case i + j < 2 is trivial.

Let now ¢4 7 > 2 and assume that the result was proved for all k < i+ 3.
Then from (4.15) it follows that (A AO)(a) € Dit;—1(P). Let us prove that
A A O satisfies identities (4.11) and (4.12) of Proposition 4.5. In fact, we
have

(AAD)(a,b) = (AAO()(d) + (—1)7(A(a) AD)(b
= AAD(a,b) + (1)’ 7TAD) AD(a) + (=1)? (Ala) A D(b)
+ (=1)Aa,b) AO) = —(AAD(b,a) + (—1) 1 A(a) AO(b)
+(=1)7A(b) AD(a) + A(b,a) AD) = —(A AD) (b, a),
where a and b are arbitrary elements of A.
On the other hand,
(A ADO)(ab) = AAD(ab) + (—1)A(ab) AN O
= A A (a(b) +b0(a)) + (—1)? (aA(b) + bA(a)) AT
=a(AADD) + (-1)ADB) AD) +b(AAD(a) + (—1)/A(a) AD)
=a(AAD)(b) +b(A AD)(a).

We used here the fact that A A (ad) = a(A A Q) which is proved by trivial
induction. O

PROPOSITION 4.7. For any derivations A, A1, Ay € D, (A) and O, Oy,
09 € Dy (P), one has
(1) (A1—|—A2)/\D:A1/\D—|—A2/\D,
(11) A/\(D1+Dg) = AN +AAOs,
(111) JASIA (AQ VAN \:‘) = (Al AN Ag) AL,
(IV) AL NAg = (—1)“12A2 A A1,
where Al c Di1 (A), AQ S DZ‘2 (A)
ProoF. All statements are proved in a similar way. As an example, let
us prove equality (iv). We use induction on i1 + ia. The case i1 + i = 0 is

obvious (see (4.14)). Let now i1 + is > 0 and assume that (iv) is valid for
all k < i1+ i2. Then

(Al A A )(a) =A1 A Ag(a) + (—1)12A1(CL) A Ao

= (=1)1@"DA,(a) A A+ (—1)2(=1) DAy A A4 (a)

= (=1)""2(A2 A Ax(a) + (=1)" Az(a) A A1) = (=1)""2(Az A Ar)(a)
for any a € A. O
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COROLLARY 4.8. The correspondence P = D, (P) is a functor from the
category of A-modules to the category of graded modules over the graded
commutative algebra Dy (A).

1.4. Forms. Consider the module J'(A4) and the submodule in it gen-
erated by ji(1), i.e., by the class of the element 1 ® 1 € A®x A. Denote by
v: JHA) — JHA)/(A- j1(1)) the natural projection of modules.

DEFINITION 4.5. The quotient module A'(A) = J1(A)/(A- ji(1)) is
called the module of differential 1-forms of the algebra A. The composition

d=d ¥ vo j1: A — AY(A) is called the (first) de Rham differential of A.

ProproSITION 4.9. For any derivation A: A — P, a uniquely defined
A-homomorphism pa: A (A) — P exists such that the diagram

\/

1s commutative. In particular, A1 is the representative object for the
functor D(e).

PRrROOF. The mapping d, being the composition of j; with a homomor-
phism, is a first order differential operator and it is a tautology that f¢ (see
Proposition 4.4) coincides with the projection v: J!(A) — A!(A). On the
other hand, consider the diagram

def

Since A is a first order differential operator, there exists a homomorphism
2 JYA) — P satisfying the equality A = f2 o j;. But A is a derivation,
i.e., A(1) = 0, which means that ker(f?) contains A - j;(1). Hence, there
exists a unique mapping @ such that the above diagram is commutative.

O

REMARK 4.3. From the definition it follows that A'(A), as an A-module,
is generated by the elements da, a € A, with the relations

d(aa + Bb) = ada + Bdb,  d(ab) = adb + bda,
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a,0 € K, a,b € A, while the de Rham differential takes a to the coset
amod (A - j1(1)).

Let us set now

A(A) =AY (A A---AA(A). (4.16)
7 times
The elements of A*(A) are called differential i-forms of the algebra A. We

also formally set A°(A) L 4.

PROPOSITION 4.10. The modules A'(A), i > 0, are representative ob-
jects for the functors D;(e).

PROOF. The case ¢ = 0 is trivial while the case : = 1 was proved already
(see Proposition 4.9). Let now i > 1 and a € A. Define the mappings
Ao homy(AY(A), P) — homa (A1 (A), P), i4: Di(P) — D;_1(P)

by setting

(M) (@) E p(danw), 1.4 E Aa),

where w € A""1(A), ¢ € hom4(A¥(A), P), and A € D;(P).
Using induction on i, let us construct isomorphisms
in such a way that the diagrams

i

homA(Ai(A), P) ———— D;(P)

Ao i, (4.17)
h i—1 %—1
oma (A1 (A), P) == D;_1(P)

are commutative for all a € A.
The case ¢ = 1 reduces to Proposition 4.9. Let now ¢ > 1 and assume
that for ¢ — 1 the statement is valid. Then from (4.17) we should have

(Yi(9))(a) = Yi—1(Xa(9)), ¢ € homa(A'(A), P),

which completely determines ;. From the definition of the mapping A, it
follows that

Aab = aAp +bAg, AgoAp = —Apo g, a,be A,

i.e., imv; € D;(P) (see Proposition 4.5).
Let us now show that 1; constructed in such a way is an isomorphism.
Take A € D;(P), ai,...,a; and set

_ def (?,Z);_ll(X(al))) (dCLQ A A dal)

¢i(da1 N dal) =
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It may be done since 1), 11 exists by the induction assumption. Directly from
definitions one obtains that ; o y; = id, 1; o 1; = id. It is also obvious that
the isomorphisms 1; are natural, i.e., the diagrams

hom 4 (A% (A) D;(P)
homA(Ai (A)7 f) {
hom 4 (A’(A) D;(Q)
are commutative for all homomorphlsms f € homy (P, Q). O
From the result proved we obtain the pairing
(,): Dj(P) @4 A'(A) — P (4.18)

defined by
(A,w) E (¢71(A) (W), weA(A), AcDy(P).
A direct consequence of the proof of Proposition 4.10 is the following
COROLLARY 4.11. The identity
(A, da ANw) = (A(a),w) (4.19)
holds for any w € A'(A), A € Diy1(A), a € A.

Let us define the mappings d = d;: A" }(A) — A(A) by taking the first
de Rham differential for d; and setting

di(ao dai N+ A daz) dﬁf dag ANdai A -+ Ada;

for ¢ > 1. From (4.16) and Remark 4.3 it follows that the mappings d; are
well defined.

PROPOSITION 4.12. The mappings d; possess the following properties:
(i) di is a first order differential operator acting from Ai_l(A) to AZ(A)7
(i) d(w A b)) =d(w) A0+ (—1)'wAd(B) for any w € A*(A), § € N (A);

(111) dl o difl =0.
The proof is trivial.
In particular, (iii) means that the sequence of mappings

0— A ATA) = o AT(A) D AT (4.20)
is a complex.

DEFINITION 4.6. The mapping d; is called the (i-th) de Rham differ-
ential. The sequence (4.20) is called the de Rham complex of the algebra
A.
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REMARK 4.4. Before proceeding with further exposition, let us make
some important comments on the relation between algebraic and geometrical
settings. As we saw above, the algebraic definition of a linear differential
operator is in full accordance with the analytical one. The same is true if we
compare algebraic “vector fields” (i.e., elements of the module D(A)) with
vector fields on a smooth manifold M: derivations of the algebra C'°°(M)
are identical to vector fields on M.

This situation changes, when we pass to representative objects. A simple
example illustrates this effect. Let M = R and A = C*°(M). Consider the
differential one-form w = de® — % dw € A*(A). This form is nontrivial as an
element of the module A'(A). On the other hand, for any A-module P let
us define the value of an element p € P at point x € M as follows. Denote
by w; the ideal

po {f € C¥(M) | f(2) = 0} € C=(M)
and set p,. def p mod .. In particular, if P = A, thus defined value coincides
with the value of a function f at a point. One can easily see that w, = 0
for any x € M. Thus, w is a kind of a “ghost”, not observable at any point
of the manifold. The reader will easily construct similar examples for the
modules J¥(A). In other words, we can state that

AY(M) # A(C¥(M)), T(m) # T*(L(x))

for an arbitrary smooth manifold M and a vector bundle 7: £ — M.
Let us say that C°°(M)-module P is geometrical, if

() pe- P =0.
rxeM

Obviously, all modules of the form I'(7) are geometrical. We can introduce
the geometrization functor by setting

&P) < P/ () pa P.
xeM
Then the following result is valid:

PROPOSITION 4.13. Let M be a smooth manifold and m: E — M be a
smooth vector bundle. Denote by A the algebra C*°(M) and by P the module
[(m). then:

(ii) The functor D;(e) is representable in the category of geometrical A-
modules and one has

D;(Q) = hom4(B(A'(4)), Q)
for any geometrical module Q.

(i) The functor Diff(P, e) is representable in the category of geometrical
A-modules and one has

Diffy(P, Q) = homa(6(J*(P)), Q)

for any geometrical module Q.



168 4. BRACKETS

In particular,
N(M) = BA(C=(M)),  T(my) = (T*(T(m))).

1.5. Smooth algebras. Let us introduce a class of algebras which
plays an important role in geometrical theory.

DEFINITION 4.7. A commutative algebra A is called smooth, if A1(A)
is a projective A-module of finite type while A itself is an algebra over the
field of rational numbers Q.

Denote by S?(P) the i-th symmetric power of an A-module P.

- LEMMA 4.14. Let A be a smooth algebra. Then both S{(AY(A)) and
A'(A) are projective modules of finite type.

PROOF. Denote by T* def T (A*(A)) the i-th tensor power of Al(A).
Since the module A'(A) is projective, then it can be represented as a direct
summand in a free module, say P. Consequently, T" is a direct summand
in the free module T%(P) and thus is projective with finite number of gen-
erators.

On the other hand, since A is a Q-algebra, both S?(A%(A)) and A*(A)
are direct summands in 7" which finishes the proof. O

PRrROPOSITION 4.15. If A is a smooth algebra, then the following isomor-
phisms are valid:
(i) Di(A) ~ D1(A)A---ANDy(A),
% times
where P is an arbitrary A-module.

PROOF. The result follows from Lemma 4.14 combined with Proposition
4.10 O

For smooth algebras, one can also efficiently describe the modules
J¥(A). Namely, the following statement is valid:

PROPOSITION 4.16. If A is a smooth algebra, then all the modules J*(A)
are projective of finite type and the isomorphisms

THA) ~ P si(AN(A)
i<k
take place.
ProoF. We shall use induction on k. First note that the mapping a —

aji(1) splits the exact sequence

V1,0

0 — ker(vy ) — JHA) —= J%A) = A — 0.

But by definition, ker(v1 o) = A1(A) and thus J1(A) = A ® Al(A).
Let now & > 1 and assume that for £ — 1 the statement is true. By
definition, ker(vy x—1) = pg—1/ptk, where p; C A ®k A are the submodules
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introduced in Subsection 1.2. Note that the identity a®b = a(b®1)—ad®(1®
1) implies the direct sum decomposition pux—1 = pr O (pg—1/px) and thus
the quotient module py_1/ux is identified with the submodule in A @ A
spanned by

(0" o0---00%)(1®1), ag,...,ar € A.
Consequently, any a € A determines the homomorphism
0% ph—a/h—1 — -1/ 1k
by
0 :d ®d" — ad ®d" —d @ad".
But one has 6% = aé® 4+ b6® and hence 6: a — §% is an element of the

module Dj(homa(pg—o/pk—1, pr—1/1x)). Consider the corresponding ho-
momorphism

¢ = @5 € hom (A (A), hom g (pk—2/pr—1, ftk—1/ k)

Due to the canonical isomorphism

hom 4 (A" (A), homa (pug—a/ pr—1, -1/ k) =
~ homy (A" (A) ®4 pk—a/ k-1, tk—1/ 11k,
we obtain the mapping
@1 A(A) @4 (r—2/pe—1) = Hr—1/ 1,

and repeating the procedure, get eventually the mapping ¢: T% — u;_1 /-
Due to the identity d, 00, = 0004, this mapping induces the homomorphism
¢s: S¥(AY(A)) — pp_1/ps which, in terms of generators, acts as

ws(day - -+ - dap) = (0" o...00")(1®1)

and thus is epimorphic.
Consider the dual monomorphism

@ M1/ p. = Diffx(A)/ Diff_1 (A) — (S*(A'(A4)))" = SH(D1(4)).

Let o € Diff;(A)/Diffy_1(A) and A € Diff;(A) be a representative of the
class 0. Then

(ps(o))(day - --- - dag) = (0ay © -+ - 0 0a;) (A).
But, on the other hand, it is not difficult to see that the mapping
1
@g: X1-... Xy — H[Xlo...Xk},

@5t S¥(D1(A)) — Diff(A)/ Diffy_1(A), where [A] denotes the coset of
the operator A € Diffy(A) in the quotient module Diffy(A)/ Diffy_1(A), is
inverse to ¢g. Thus, ¢% is an isomorphism. Then the mapping

pe—1 [tk — (-1 /)™ = SH(A(4)),

where the first arrow is the natural homomorphism, is the inverse to pg.
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From the above said it follows that jup_1/pr ~ S¥(A'(A)) and we have
the exact sequence

0— SH(AY(A) — THA) - TF1(4) — 0.

But, by the induction assumption, J k=1(A) is a projective module isomor-
phic to @,;,_; S*(A(A)). Hence,

THA) = S*(AN(A) @ TF 1 (A) = P s' (A (4))
i<k
which finishes the proof. O

DEFINITION 4.8. Let P be an A-module. The module Smbl,(P) e

> k>0 Smblg(P), where

Smbl,,(P) % Diff,(P)/ Diff;_1(P),
is called the module of symbols for P. The coset of A € Diffy(P) in Smbly(P)
is called the symbol of the operator A.

Let 0 € Smbl;(A) and ¢’ € Smbl;(A) and assume that A € Diff;(A) and
A’ € Diff;(A) are representatives of o, o’ respectively. Define the product
oo’ as the coset of A o A" in Diff; ;(A). It is easily checked that Smbl,(A)
forms a commutative A-algebra with respect to thus defined multiplication.

As a direct consequence of the last proposition and of Proposition 4.4,
we obtain

COROLLARY 4.17. If A is a smooth algebra, then the following state-
ments are valid:
(ii) Diff.(A), as an associative algebra, is generated by A = Diffy(A) and
Dl(A) C lefl(A),
(iii) Smblg(P) ~ Smbl(A) ®4 P,
(iv) Smbl.(A), as a commutative algebra, is isomorphic to the symmetric
tensor algebra of D1(A).

REMARK 4.5. It should be noted that Smbl, A is more than just a com-
mutative algebra. In fact, in the case A = C°°(M), as it can be easily seen,
elements of Smbl, A can be naturally identified with smooth functions on
T* M polynomial along the fibers of the natural projection T*M — M. The
manifold 7% M is symplectic and, in particular, the algebra C*°(T*M) pos-
sesses a Poisson bracket which induces a bracket in Smbl, A C C*°(T*M).
This bracket, as it happens, is of a purely algebraic nature.

Let us consider two symbols o1 € Smbl;, A, o2 € Smbl;, A such that
or = A, mod Diff; 1 A, r=1,2, and set

{01,009} 2 [A1, Ay) mod Diff;, 4s,_o . (4.21)

The operation {-,-} defined by (4.21) is called the Poisson bracket in the
algebra of symbols and in the case A = C°°(M) coincides with the classical
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Poisson bracket on the cotangent space. It possesses the usual properties,
ie.,

{0'1,0'2} + {02, 01} =0,
{o1,{02,03}} + {02, {03, 01}} + {03,{01,02}} =0,
{o1,0003} = {01,02}03 + 02{01,03}

and, in particular, Smbl, A becomes a Lie K-algebra with respect to this
bracket. This is a starting point to construct Hamiltonian formalism in a
general algebraic setting. For details and generalizations see [104, 53, 54].

2. Frolicher—Nijenhuis bracket

We still consider the general algebraic setting of the previous section
and extend standard constructions of calculus to form-valued derivations.
It allows us to define Frolicher—Nijenhuis brackets and introduce a coho-
mology theory (V-cohomologies) associated to commutative algebras with
flat connections. In the next chapter, applying this theory to infinitely
prolonged partial differential equations, we obtain an algebraic and analyt-
ical description of recursion operators for symmetries and describe efficient
tools to compute these operators. These and related results, together with
their generalizations, were first published in the papers [55, 56, 57| and
(59, 58, 40].

2.1. Calculus in form-valued derivations. Let k be a field of char-
acteristic zero and A be a commutative unitary k-algebra. Let us recall the
basic notations:

e D(P) is the module of P-valued derivations A — P, where P is an
A-module;

e D;(P) is the module of P-valued skew-symmetric i-derivations. In
particular, Dy (P) = D(P);

e A%(A) is the module of differential i-forms of the algebra A;

o d: ANi(A) — A"tL1(A) is the de Rham differential.

Recall also that the modules A?(A) are representative objects for the
functors D;: P = D;(P), i.e., D;(P) = Hom(A*(A), P). The isomorphism
D(P) = Homa(A'(A), P) can be expressed in more exact terms: for any
derivation X: A — P, there exists a uniquely defined A-module homomor-
phism ¢x: A'(A) — P satisfying the equality X = ¢x od. Denote by
(Z,w) € P the value of the derivation Z € D;(P) at w € AY(A).

Both A*(A) = @;5q A (A) and D, (A) = @;>q Di(A) are endowed with
the structures of superalgebras with respect to the wedge product operations

A AY(A) @ N (A) — AT (A),
At Di(A) ® Dj(A) — Diyj(A),

the de Rham differential d: A*(A) — A*(A) becoming a derivation of A*(A).
Note also that D, (P) = ;5 Di(P) is a D«(A)-module.
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Using the paring (-, -) and the wedge product, we define the inner product
(or contraction) ixw € A?7'(A) of X € D;(A) and w € AV(A), i < j, by
setting

(Y,ixw) = (—=1)'V" (X A Y, w), (4.22)

where Y is an arbitrary element of D;_;(P), P being an A-module. We
formally set ixw = 0 for ¢ > j. When ¢ = 1, this definition coincides with
the one given in Section 1. Recall that the following duality is valid:

(X,da Nw) = (X(a),w), (4.23)

where w € AY(A), X € D;41(P), and a € A (see Corollary 4.11). Using the
property (4.23), one can show that

ix(wAf) =ix(w)AO+(=1)*wAix(w)

for any w,0 € A*(A), where (as everywhere below) the symbol of a graded
object used as the exponent of (—1) denotes the degree of that object.
We now define the Lie derivative of w € A*(A) along X € D,(A) as

Lyw= (ixod— (-1)*doix)w = [ix,dw, (4.24)

where [-,-] denotes the graded (or super) commutator: if A;A": A*(A) —
A*(A) are graded derivations, then

A AT=Ao0A — (=1)2* Ao A.

For X € D(A) this definition coincides with the ordinary commutator of
derivations.

Consider now the graded module D(A*(A)) of A*(A)-valued deriva-
tions A — A*(A) (corresponding to form-valued vector fields — or, which
is the same — vector-valued differential forms on a smooth manifold).
Note that the graded structure in D(A*(A)) is determined by the splitting
D(A*(A)) = @;>q D(AY(A)) and thus elements of grading i are derivations
X such that im X C A%(A). We shall need three algebraic structures asso-
ciated to D(A*(A)).

First note that D(A*(A)) is a graded A*(A)-module: for any X €
D(A*(A)), w € A*(A) and a € A we set (w A X)a = w A X(a). Second,
we can define the inner product ixw € A ~1(A4) of X € D(AY(A)) and
w € A (A) in the following way. If j = 0, we set ixw = 0. Then, by induc-
tion on j and using the fact that A*(A) as a graded A-algebra is generated
by the elements of the form da, a € A, we set

ix(da Aw) = X(a) Aw— (—=1)¥da Nix(w), a€ A. (4.25)

Finally, we can contract elements of D(A*(A)) with each other in the fol-
lowing way:

(ixY)a=ix(Ya), X,Y € D(A*(A)), ac A (4.26)

Three properties of contractions are essential in the sequel.
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PROPOSITION 4.18. Let X,Y € D(A*(A)) and w,0 € A*(A). Then

ix(wA ) =ix(w)AO+ (=1)*FVyAix(0), (4.27)
ix(WAY) =ix(W)AY + (—=1)*F D Aix(Y), (4.28)
lix,iy] = ipx vy, (4.29)
where
[X, YT = ix (V) = (=)F D Dip(X). (4.30)

PRrROOF. Equality (4.27) is a direct consequence of (4.25). To prove
(4.28), it suffices to use the definition and expressions (4.26) and (4.27).

Let us prove (4.29) now. To do this, note first that due to (4.26), the
equality is sufficient to be checked for elements w € AJ(A). Let us use
induction on j. For j = 0 it holds in a trivial way. Let a € A; then one has

lix,iv](da Aw) = (ix oiy — (~1)F DV Vi 0ix)(da A w)
= ix(iy(da Aw)) = (=1)X DT Diy (i (da A w)).
But
ix(iy(da Aw)) =ix(Y(a) Aw — (=1)Yda A iyw)
=ix(Y(@) Aw+ (DX DY (a) Aixw — (—1)V (X (a) Alyw
— (—l)Xda Nix (iyw)),
while
iy (ix(da A w) =iy (X (a) Aw — (=1)%da A ixw)
—iy(X(a) Aw+ (D)X VX (a) Aiyw — (—=1)% (Y (@) Aixw
— (=1)¥da A iy (ixw)).
Hence,
lix, iy](da Aw) = (ix(Y(a)) — (1) F DV Diy (X (a)) Aw
+ ()X da A (ix(iyw) — (~1)F DT Diy (iyw)).
But, by definition,
ix(Y(a)) = (=)D Viy (X (a))
= (ixY = (=1)X Vi X)) (a) = [X, Y]™(a),
whereas
ix(iyw) — (=) F D iy (iyw) =iy ypn (w)
by induction hypothesis. O
Note also that the following identity is valid for any X,Y,Z € D(A*(A)):
X_o(YLZ2)=(X_LY)_Z+(-D)X(XAY)Z (4.31)
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DEFINITION 4.9. The element [X,Y]™ defined by (4.30) is called the
Richardson—Nijenhuis bracket of elements X and Y.

Directly from Proposition 4.18 we obtain the following

PROPOSITION 4.19. For any derivations X,Y,Z € D(A*(A)) and a form
w € A*(A) one has

[X,YT™ + (~1)FHDOHD [y, X = o, (4.32)
7{ (- FVEEAX, Y™, Z]™ = 0, (4.33)
[X,w AY]™ =ix(w) AY + (—=1)X ey A [X, Y™ (4.34)

Here and below the symbol § denotes the sum of cyclic permutations.

REMARK 4.6. Note that Proposition 4.19 means that D(A*(A))! is a
Gerstenhaber algebra with respect to the Richardson—-Nijenhuis bracket [48].
Here the superscript ! denotes the shift of grading by 1.

Similarly to (4.24), let us define the Lie derivative of w € A*(A) along
X € D(A*(A)) by

Lyw=(ix od — (1) ldoix)w = [ix, dw (4.35)
REMARK 4.7. Let us clarify the change of sign in (4.35) with respect to

formula (4.24). If A is a commutative algebra, then the module D.(A*(A))
is a bigraded module: if A € D;(AJ(A)), then bigrading of this element is

(7,7). We can also consider the total grading by setting deg A dg i+j. In
this sense, if X € D;(A), then deg X = i, and for X € D;(A7(A)), then
deg X = j + 1. This also explains shift of grading in Remark 4.6.

From the properties of ix and d we obtain

PROPOSITION 4.20. For any X € D(A*(A)) and w,0 € A*(A), one has
the following identities:

Lyx(wA8) =Lx(w)Af+ (—1)%“wALx(6), (4.36)
Loax =w ALx + (=1)“TXd(w) Ay, (4.37)
[Lx,d] = 0. (4.38)

Our main concern now is to analyze the commutator [Lx, Ly] of two Lie
derivatives. It may be done efficiently for smooth algebras (see Definition
4.7).

PROPOSITION 4.21. Let A be a smooth algebra. Then for any derivations
X,Y € D(A*(A)) there exists a uniquely determined element [X,Y]™ €
D(A*(A)) such that

[LX, LY] - L[[X,Y]]fn' (4-39)
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PRrROOF. To prove existence, recall that for smooth algebras one has
D;(P) = Homu(AY(A),P) = P ®4 Homy(AY(A), A) = P ®4 D;(A)

for any A-module P and integer ¢ > 0. Using this identification, let us
represent elements X,Y € D(A*(A)) in the form

X=weX and Y =0@Y’ for w,0 € A*(A), X", Y' € D(A).
Then it is easily checked that the element
Z=wA0R[X"Y]4+wALxy0®Y + (—1)“dw Nix 0 @Y’
— (=¥ ALyw® X' — (=1)@%40 A iyiw @ X!
—wAIR X Y+ Lx0Y — (—1)“’Lyw ® X' (4.40)

satisfies (4.39).
Uniqueness follows from the fact that Lx(a) = X(a) for any a € A. O

DEFINITION 4.10. The element [X,Y]™ € Dit(A*(A)) defined by for-
mula (4.39) (or by (4.40)) is called the Frélicher—Nijenhuis bracket of form-
valued derivations X € D*(A*(A)) and Y € D7(A*(A)).

The basic properties of this bracket are summarized in the following

PROPOSITION 4.22. Let A be a smooth algebra, X,Y,Z € D(A*(A)) be
derivations and w € A*(A) be a differential form. Then the following iden-
tities are valid:

(XY™ 4+ ()X [, X]™ = 0, (1.41)
f (—)YEAX [y, 2] = o, (4.42)
iy = [Lx,iy] + (—)XOHIL, (4.43)
17 [[X, Y]] = [[izX, Y]]fn + (_1)X(Z+1) [[X, iZY]]fn
X3 (X41)Y: (4.44)
+ (_1) IIIZ,X]]fnY - (_].) IIIZ,Y]]an7

[X,wAY]" =LywAY — (=) XD+ gy A iy X

(4.45)

+ (=1)“w A [X, Y]™

Note that the first two equalities in the previous proposition mean that
the module D(A*(A)) is a Lie superalgebra with respect to the Frolicher—
Nijenhuis bracket.

REMARK 4.8. The above exposed algebraic scheme has a geometrical
realization, if one takes A = C*°(M), M being a smooth finite-dimensional
manifold. The algebra A = C°°(M) is smooth in this case. However,
in the geometrical theory of differential equations we have to work with
infinite-dimensional manifolds? of the form N = proj lim{ﬁk+ i} N, where

3Infinite jets, infinite prolongations of differential equations, total spaces of coverings,
etc.
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all the mappings mj41%: N1 — g are surjections of finite-dimensional
smooth manifolds. The corresponding algebraic object is a filtered algebra
A = Upez Ak, Ak C Agq1, where all Ay are subalgebras in A. As it was al-
ready noted, self-contained differential calculus over A is constructed, if one
considers the category of all filtered A-modules with filtered homomorphisms
for morphisms between them. Then all functors of differential calculus in
this category become filtered, as well as their representative objects.

In particular, the A-modules A*(A) are filtered by Agz-modules A?(Ayg).
We say that the algebra A is finitely smooth, if A1(Ay) is a projective Aj-
module of finite type for any k € Z. For finitely smooth algebras, elements
of D(P) may be represented as formal infinite sums ), py ® X}, such that
any finite sum S, =Y, ., pr ® X}, is a derivation A,, — P, for some fixed
s € Z. Any derivation X is completely determined by the system {S,} and
Proposition 4.22 obviously remains valid.

REMARK 4.9. In fact, the Frolicher—Nijenhuis bracket can be defined in
a completely general situation, with no additional assumption on the algebra
A. To do this, it suffices to define [X,Y]™ = [X,Y], when X,Y € D;(A)
and then use equality (4.44) as inductive definition. Gaining in generality,
we then loose of course in simplicity of proofs.

2.2. Algebras with flat connections and cohomology. We now
introduce the second object of our interest. Let A be an k-algebra, k being
a field of zero characteristic, and B be an algebra over A. We shall assume
that the corresponding homomorphism ¢: A — B is an embedding. Let P
be a B-module; then it is an A-module as well and we can consider the B-
module D(A, P) of P-valued derivations A — P.

DEFINITION 4.11. Let V*®: D(A,e) = D(e) be a natural transforma-
tions of the functors D(A,e): A = D(A,P) and D(e): P = D(P) in the
category of B-modules, i.e., a system of homomorphisms V¥: D(A, P) —
D(P) such that the diagram

D(A, P) v, D(P)

D(A, f) D(f)

\va%
is commutative for any B-homomorphism f: P — ). We say that V*® is a
connection in the triad (A4, B, ¢), if VP(X)‘A = X for any X € D(A, P).
Here and below we use the notation Y|, = Y o ¢ for any derivation
Y € D(P).

REMARK 4.10. When A = C*°(M), B = C®(E), ¢ = 7", where M and
FE are smooth manifolds and 7: F — M is a smooth fiber bundle, Definition
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4.11 reduces to the ordinary definition of a connection in the bundle 7. In
fact, if we have a connection V*® in the sense of Definition 4.11, then the
correspondence

D(A) — D(A, B) Y2 D(B)

allows one to lift any vector field on M up to a w-projectable field on E.
Conversely, if V is such a correspondence, then we can construct a natural
transformation V* of the functors D(A,e) and D(e) due to the fact that
for smooth finite-dimensional manifolds one has D(A, P) = P®4 D(A) and
D(P) = P ®p D(P) for an arbitrary B-module P. We use the notation
V = V¥ in the sequel.

DEFINITION 4.12. Let V*® be a connection in (A, B, ¢) and consider two
derivations X,Y € D(A, B). The curvature form of the connection V* on
the pair X,Y is defined by

Ry(X,Y) = [V(X),V(Y)] - V(V(X) oY — V(Y) 0 X). (4.46)

Note that (4.46) makes sense, since V(X)oY — V(Y) o X is a B-valued
derivation of A.

Consider now the de Rham differential d = dg: B — A'(B). Then the
composition dp o p: A — B is a derivation. Consequently, we may consider
the derivation V(dpg o ¢) € D(A'(B)).

DEFINITION 4.13. The element Uy € D(A(B)) defined by
Uy =V(dpoy)—dp (4.47)
is called the connection form of V.
Directly from the definition we obtain the following
LEmMMA 4.23. The equality
i (Ug) = X — V(X],) (4.48)
holds for any X € D(B).
Using this result, we now prove
PROPOSITION 4.24. If B is a smooth algebra, then
iyix[Uv, Uv]™ = 2Ry (X| 4, Y] ,) (4.49)
for any X, Y € D(B).

PROOF. First note that degUy = 1. Then using (4.44) and (4.41) we
obtain

ix[Uv, Uv]™ = [ixUv, Uv]™ + [Uv, ixUS]™ =iy yo o Uy — iy popmUv

= 2([ix Uy, Uy]™ — iy o Uv)-
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Applying iy to the last expression and using (4.42) and (4.44), we get now
ivix[Uy, Ug]™ = 2([ix Uy, iy Uv]™ = i yyUv)-

But [V, W]™ = [V, W] for any V,W € D(A%(A)) = D(A). Hence, by (4.48),

we have

ivix[Uy, Ug]™ = 2([X = V(X],),Y = V(Y] )] = (X, Y] = V([X,Y]]4))).

It only remains to note now that V(X|,)[, = X[, and [X,Y]|, = X o
Y|y —YoX]|,. O

DEFINITION 4.14. A connection V in (A, B, ) is called flat, if Ry = 0.

Fix an algebra A and let us introduce the category FC(A), whose objects
are triples (A, B, ) endowed with a connection V*® while morphisms are

defined as follows. Let O = (A, B,¢,V*®) and O = (A,E,QZ, 6') be two
objects of FC(A). Then a morphism from O to O is a mapping f: B — B
such that:

(i) f is an A-algebra homomorphism, i.e., the diagram

B / B
A

is commutative, and
(ii) for any B-module P (which can be considered as a B-module as well
due to the homomorphism f the diagram

D(B, P) (B, /) D(B, P)
D(A, P)

is commutative, where D(B, f)(X) = X o f for any derivation
X: B— P.
Due to Proposition 4.24, for flat connections we have
[Uv, Us]™ = 0. (4.50)

Let U € D(AY(B)) be an element satisfying equation (4.50). Then from
the graded Jacobi identity (4.42) we obtain

2[[U7 [[U> X]]fn]]fn = [[[[U’ U]]fn> X]]fn =0
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for any X € D(A*(A)). Consequently, the operator
v = [U,-]™: D(AY(B)) — D(A""!(B))
defined by the equality 9y (X) = [U, X]™ satisfies the identity dy o 9y = 0.
Consider now the case U = Uy, where V is a flat connection.

DEFINITION 4.15. An element X € D(A*(B)) is called wvertical, if
X(a) = 0 for any a € A. Denote the B-submodule of such elements by
D (A*(B)).

LEMMA 4.25. Let V be a connection in (A, B, ). Then

(1) an element X € D(A*(B)) is vertical if and only if ixUy = X;

(2) the connection form Uy is vertical, Uy € D*(AY(B));

(3) the mapping Oy preserves verticality, i.e., for all i one has the em-
beddings Oy (DV(AY(B))) C DY(A™Y(B)).

PrOOF. To prove (1), use Lemma 4.23: from (4.48) it follows that
ixUy = X if and only if V(X]|,) = 0. But V(X|,)|, = X]|4. The second
statements follows from the same lemma and from the first one:

ivg Uy = Uy — V(Uy|,) = Uy — V( Uy — V(Uv|))|4) = Uv.
Finally, (3) is a consequence of (4.44). O

DEFINITION 4.16. Denote the restriction aUv|Dv(A*(A)) by Oy and call
the complex

0 — D*(B) 2% DY(AY(B)) — --- — D*(AY(B)) 2% DY(AY(B)) — - --

(4.51)

the V-complex of the triple (A, B, ¢). The corresponding cohomology is de-

noted by HY(B; A, ) = @izo H(B; A, @) and is called the V-cohomology
of the triple (A, B, ¢).
Introduce the notation

Y =Lyg: AY(B) — A™(B). (4.52)

PROPOSITION 4.26. Let V be a flat connection in a triple (A, B, @) and

B be a smooth (or finitely smooth) algebra. Then for any X,Y € DY(A*(A))
and w € A*(A) one has

Ov[X, Y™ = [6¢ X, Y]™ + (=1)¥[X, o9 Y]™, (

lix,0v] = (—1)%igg x, (4.54
Ov(wAX)=(dg —d)(w) AN X + (-1)“w A Iy X, (
(4%, ix] = iogx + (~1)*Lx. (

PROOF. Equality (4.53) is a direct consequence of (4.42). Equality
(4.54) follows from (4.44). Equality (4.55) follows from (4.45) and (4.48).
Finally, (4.56) is obtained from (4.43). O
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COROLLARY 4.27. The module HS(B; A, p) inherits the graded Lie al-

fn

gebra structure with respect to the Frélicher—Nijenhuis bracket [-,-]™, as well

as the contraction operation.

ProOOF. Note that DYV(A*(A)) is closed with respect to the Frolicher—
Nijenhuis bracket: to prove this fact, it suffices to apply (4.44). Then the
first statement follows from (4.53). The second one is a consequence of

(4.54). O

REMARK 4.11. We preserve the same notations for the inherited struc-
tures. Note, in particular, that H%(B; A, p) is a Lie algebra with respect to
the Frolicher—Nijenhuis bracket (which reduces to the ordinary Lie bracket
in this case). Moreover, Hy(B; A, ¢) is an associative algebra with respect
to the inherited contraction, while the action

Ro: X —ixQ, X € HY(B;A,¢), Qe HS(B;A p)
is a representation of this algebra as endomorphisms of HY(B; A, ¢).

Consider now the mapping d¢ : A*(B) — A*(B) defined by (4.52) and
define d% =dp — dy.
PROPOSITION 4.28. Let B be a (finitely) smooth algebra and V be a flat
connection in the triple (B; A, p). Then
(1) The pair (d%,d%) forms a bicomplex, i.e.,

Vody =0, dbodl=0, d&od% +d%odh=0. (4.57)

(2) The differential d% possesses the following properties
[d%,ix] = —logx, (4.58)
Iv(wAX) = —d%b(w) A X + (=1)%w A Iy X, (4.59)

where w € A*(B), X € DY(A*(B)).
PRrROOF. (1) Since degdy, = 1, we have
2d% o d% = [d%, d%] = [Lurg, Lg) = Ly yopm = 0.

Since d¥, = Ly, the identity [dp, d%] = 0 holds (see (4.38)), and it concludes
the proof of the first part.

(2) To prove (4.58), note that

(4%, ix] = [dp — dy,ix] = (-1)* Lx — [dy,ix],

and (4.58) holds due to (4.56). Finally, (4.59) is just the other form of
(4.55). O

DEFINITION 4.17. Let V be a connection in (A, B, ¢).

(1) The bicomplex (B, d%,d%) is called the variational bicompler associ-
ated to the connection V.

(2) The corresponding spectral sequence is called the V-spectral sequence
of the triple (A, B, p).
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Obviously, the V-spectral sequence converges to the de Rham cohomology
of B.

To finish this section, note the following. Since the module A!(B) is
generated by the image of the operator dg: B — A!(B) while the graded
algebra A*(B) is generated by A'(B), we have the direct sum decomposition

@ @ M oao)
1>0 p+qg=1
where

AY(B) = Ay(B) A+ A (B),  AJ(B) = Aj(B) A~ AN (B),

p times q times

while the submodules Al(B) C AY(B), Aj(B) C A(B) are spanned in
A'(B) by the images of the differentials d3y, and d% respectively. Obviously,
we have the following embeddings:

d (AD(B) ® Af(B)) C AL(B) © AT (B),
dy (AL(B) ® Aj(B)) € ATH(B) ® Aj(B).

Denote by DP(B) the module D”(AY(B) ® Aj(B)). Then, obviously,
D?(B) = @;>0 Dy g—i P"*(B), while from equalities (4.58) and (4.59) we
obtain -

dv (DP(B)) c DM (B).

Consequently, the module H (B; A, p) is split as

Hy(B; A,o) =D €D HE(B; A, ) (4.60)
>0 p+g=1

with the obvious meaning of the notation H%?(B; A, ¢).

PROPOSITION 4.29. If O = (B, V) is an object of the category FC(A),
then

H%O(B) = ker (3V

D%(CPA(B))) :

3. Structure of symmetry algebras

Here we expose the theory of symmetries and recursion operators in the
categories FC(A). Detailed motivations for the definition can be found in
previous chapters as well as in Chapter 5. A brief discussion concerning rela-
tions of this algebraic scheme to further applications to differential equations
the reader will find in concluding remarks below.
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3.1. Recursion operators and structure of symmetry algebras.
We start with the following

DEFINITION 4.18. Let O = (B, V) be an object of the category FC(A).
(i) The elements of H%’O(B) = HY(B) are called symmetries of O.
(ii) The elements of H%’O(B) are called recursion operators of O.
We use the notations
S def Ho O(B)
and
Rec def H (B)
From Corollary 4.27 and Proposition 4.29 one obtains

THEOREM 4.30. For any object O = (B,V) of the category FC(A) the
following facts take place:

(i) Sym is a Lie algebra with respect to commutator of derivations.
(ii) Rec is an associative algebra with respect to contraction, Uy being the
unit of this algebra.
(iii) The mapping R: Rec — Endg(Sym), where

Rao(X) =ix (), Q€ Rec,X € Sym,

is a representation of this algebra and hence
(iv) 4(sym)(Rec) C Sym.

In what follows we shall need a simple consequence of basic definitions:
PROPOSITION 4.31. For any object O = (B,V) of FC(A)
[ Sym, Rec] C Rec
and

[Rec, Rec] C H%’O(B).

COROLLARY 4.32. If H%’O(B) = 0, then all recursion operators of the
object O = (B, V) commute with each other with respect to the Frolicher—
Nigenhuis bracket.

We call the objects satisfying the conditions of the previous corollary
2-trivial. To simplify notations we denote

Rao(X) =QX), Qe€Rec, X €Sym.
From Proposition 4.31 and equality (4.42) one gets

PROPOSITION 4.33. Consider an object O = (B,V) of FC(A) and let
X,Y € Sym, Q.0 € Rec. Then

[€2,61(X,Y) = [Q(X),0(Y)] + [0(X), 2Y)] = Q([6(X), Y]
+[X,0(Y)]) — 0([QX), Y] + [X, QY)]) + (08 +00Q) [X,Y].
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In particular, for = 6 one has

S[0, 010X, Y) = [2(X), 2(v)
~Q(9(X), ¥]) ~ AL, QYY) + UK, V). (461

The proof of this statement is similar to that of Proposition 4.24. The
right-hand side of (4.61) is called the Nijenhuis torsion of Q (cf. [49]).

COROLLARY 4.34. If O is a 2-trivial object, then
[€2(X), Q(Y)] = Q([QX), Y]+ [X,Q(Y)] - Q[X,Y]). (4.62)

Choose a recursion operator {2 € Rec and for any symmetry X € Sym
denote Q'(X) = R4 (X) by X;. Then (4.62) can be rewritten as

(X1, V1] = [X1, Y] + [X, V1] — [X, Y] (4.63)
Using (4.63) as the induction base, one can prove the following
PROPOSITION 4.35. For any 2-trivial object O and m,n > 1 one has
(X, Yol = [ X, Y + [ X, Yol — [X, Y]man-

Let, as before, X be a symmetry and {2 be a recursion operator. Then
def

Qx = [X,Q] is a recursion operator again (Proposition 4.31). Due to
(4.42), its action on Y € Sym can be expressed as
Qx(Y) = [X,Q(Y)] - Q[X, Y]. (4.64)

From (4.64) one has

PROPOSITION 4.36. For any 2-trivial object O, symmetries X,Y € Sym,
a recursion €2 € Rec, and integers m,n > 1 one has

n—1

[X7 Yn] = [X, Y]n + Z(QXY;)n—z’—l
=0
and
m—1
[vay] Z Q1/)( m j—1-
7=0

From the last two results one obtains

THEOREM 4.37 (the structure of a Lie algebra for Sym). For any 2-
trivial object O, its symmetries X,Y € Sym, a recursion operator {2 € Rec,
and integers m,n > 1 one has

n—1 m—1
[va Yn] = [X’ Y]m+n + Z(QXYi)m—i—n—i—l - Z (QYXj)m—i-n—j—l-
i=0 j=0

COROLLARY 4.38. If X,Y € Sym are such that Qx and Qy commute
with € Rec with respect to the Richardson—Nijenhuis bracket, then

[Xm’ Yn] = [Xa Y]m+n + n(QXY)m+n71 - m(QYX)ernfl-
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We say that a recursion operator 2 € Rec is X -invariant, if Qx = 0.

COROLLARY 4.39 (on infinite series of commuting symmetries). If O is
a 2-trivial object and if a recursion operator 2 € Rec is X-invariant,
X € Sym, then a hierarchy {X,}, n = 0,1,..., generated by X and
18 commutative:

[Xm, Xn] =0
for all m,n.

3.2. Concluding remarks. Here we briefly discuss relations of the
above exposed algebraic scheme to geometry of partial differential equations
exposed in the previous chapters and the theory of recursion operators dis-
cussed in Chapters 5-7.

First recall that correspondence between algebraic approach and geo-
metrical picture is established by identifying the category of vector bun-
dles over a smooth manifold M with the category of geometrical mod-
ules over A = C*°(M), see [60]. In the case of differential equations, M
plays the role of the manifold of independent variables while B = |, Ba
is the function algebra on the infinite prolongation of the equation £ and
B, = C®(&%), where £% a =0,1,...,00, is the a-prolongation of £. The
mapping ¢: A — B is dual to the natural projection mo: € — M and
thus in applications to differential equations it suffices to consider the case
A=, Ba.

If £ is a formally integrable equation, the bundle 7o, : £ — M pos-
sesses a natural connection (the Cartan connection C) which takes a vector
field X on M to corresponding total derivative on £°°. Consequently, the
category of differential equations [100] is embedded to the category of alge-
bras with flat connections FC(C*°(M)). Under this identification the spec-
tral sequence defined in Definition 4.17 coincides with A. Vinogradov’s C-
spectral sequence [102] (or variational bicomplex), the module Sym, where
O = (C®(M),C>®(E®),C), is the Lie algebra of higher symmetries for the
equation £ and, in principle, Rec consists of recursion operators for these
symmetries. This last statement should be clarified.

In fact, as we shall see later, if one tries to compute the algebra Rec
straightforwardly, the results will be trivial usually — even for equations
which really possess recursion operators. The reason lies in nonlocal char-
acter of recursion operators for majority of interesting equations [1, 31, 4].
Thus extension of the algebra C'°°(£°°) with nonlocal variables (see 3) is the
way to obtain nontrivial solutions — and actual computation show that all
known (as well as new ones!) recursion operators can be obtained in such
a way (see examples below and in [58, 40]). In practice, it usually suffices
to extend C°°(£°°) by integrals of conservation laws (of a sufficiently high
order).

The algorithm of computations becomes rather simple due to the follow-
ing fact. It will shown that for non-overdetermined equations all cohomology
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groups Hé”q (&) are trivial except for the cases ¢ = 0,1 while the differential
dc: DY(CP(E)) — DY(CP(E) A AR(E)) coincides with the universal lineariza-
tion operator £¢ of the equation £ extended to the module of Cartan forms.
Therefore, the modules Hg’O(E) coincide with ker(fg) (see 4.29)

HEO(E) = ker() (4.65)

and thus can be computed efficiently.

In particular, it will shown that for scalar evolution equations all coho-
mologies Hg’o (£), p > 2, vanish and consequently equations of this type are
2-trivial and satisfy the conditions of Theorem 4.37 which explains commu-
tativity of some series of higher symmetries (e.g., for the KdV equation).
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CHAPTER 5

Deformations and recursion operators

In this chapter, we apply the algebraic formalism of Chapter 4 to the
specific case of partial differential equations. Namely, we consider a formally
integrable equation & C J¥(r), m: E — M, taking the associated triple
(C®°(M),F(&),n%) for the algebra with flat connection, where F (&) =
Ug Fi(€) is the algebra of smooth functions on £%°, mo: £ — M is the
natural projection and the Cartan connection C plays the role of V.

We compute the corresponding cohomology groups for the case £ =
J° () and deduce defining equations for a general £. We also establish
relations between infinitesimal deformations of the equation structure and
recursion operators for symmetries and consider several illustrative exam-
ples.

We start with repeating some definitions and proofs of the previous
chapter in the geometrical situation.

1. C-cohomologies of partial differential equations

Here we introduce cohomological invariants of partial differential equa-
tions based on the results of Sections 1, 2 of Chapter 4. We call these in-
variants C-cohomologies since they are determined by the Cartan connection
C on £*. We follow the scheme from the classical paper by Nijenhuis and
Richardson [78], especially in interpretation of the cohomology in question.

Let £: P — M be a fiber bundle with a connection V, which is considered
as a C°°(M)-homomorphism V: D(M) — D(P) taking a field X € D(M) to
the field V(X) = Vx € D(P) and satisfying the condition Vx(£*f) = X (f)
for any f € C*°(M).

Let y € P, {(y) = z € M, and denote by P, = £ '(z) the fiber of
the projection € passing through y. Then V determines a linear mapping
Vy: Tp(M) — T,(P) such that &, ,(Vy(v)) = v for any v € T,(M). Thus
with any point y € P a linear subspace V(T (M)) C Ty(P) is associated. It
determines a distribution Dy on P which is called the horizontal distribution
of the connection V. If V is flat, then Dy is integrable.

As it is well known (see, for example, [46, 47]), the connection form
U = Uy € A'(P) ® D(P) can be defined as follows. Let y € P, Y € D(P),
Y, € T,(P) and v = & (Y,). Then we set

(Y _Uy)y =Y, — V,(v). (5.1)

187
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In other words, the value of Uy at the vector Y, € T, (P) is the projection of
Y, onto the tangent plane T}, (P) along the horizontal plane! passing through
y € P.

If (1, ...,2,) are local coordinates in M and (y!,...,y*) are coordinates
along the fiber of ¢ (the case s = oo is included), we can define V by the
following equalities

0 0 . _; 0
Then Uy is of the form
S ) n . a
— J . _—
Uy = z;(dyj _ Z;vi dasZ) ® 57 (5.3)
j= i=
From equality (4.40) on p. 175 it follows that
vk B}
[Uv, Uv]™ = 22( Zv )dmdx] 3 (5.4)
i,J:k

Recall that the curvature form Ry of the connection V is defined by the
equality

RV(va):[vXavY]_v[X,Y]a X7Y€D(M)

We shall express the element [Uy, Uv]]fn in terms of the form Ry now
(cf. Proposition 4.24). Let us consider a field X € D(P) and represent it in
the form

X =X"+Xx" (5.5)
where, by definition,
X=X _Uy, X'=X-X"

are wertical and horizontal components of X respectively. In the same
manner one can define vertical and horizontal components of any element
Qe A*(P)® D(P).

Obviously, X" € DV(P), where

D*(P)={X € D(P) | X£*(f) =0, feC™(M)},
while the component X" is of the form

= fiVx,, [fi€C®(P), X; € D(M),
and lies in the distribution Dy .

M'With respect to V.
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PROPOSITION 5.1. Let V: D(M) — D(P) be a connection in the fiber
bundle &: P — M. Then for any &-vertical vector field XV one has

X' L [Uy, Uy]™ = 0.
[f Xh = Zz fiVXi7 Y= ngjvyj’ fi’gj € OOO(P)’ X“Y} < D(M)7

are horizontal vector fields, then

thth[[Uv,Uv]]fn = QZfiijV(Xthj)a (5'6)
1,7
or, to be short,

[[Uv, Uv]]fn = 2Ry.

PRrROOF. Let X € D(P). Then from equality (4.45) on p. 175 it follows
that

X oo, u)™ =2(u, X]™ U — [U, X U™,
where U = Uy. Hence, if X = X" is a vertical field, then
XU LU, U™ = 2(u, XV LU - [U, XY U™ = —2([U, X))

But the left-hand side of this equality is vertical (see (5.4)) and thus vanishes.
This proves the first part of the proposition.
Let now X = X" be a horizontal vector field. Then

X" _[u,u)™ = 2[u, x"™ LU = 2([u, X"
Hence, if Y is another horizontal field, then, by (4.31) on p. 173, one has
Yh (X" [, ™) = 2vh L (U, XM o) = 20! Lo, XM L.
But from (4.45) (see p. 175) it follows that
Yh U, XM = (xR v U = (X YR LU
Therefore,
Yh L Xh LU Ul = 2[xh v Lo = 2([xh, YR - [xP YR
=23 figi([Vx., V] = [Vx,. Vv, ")
i\j
for X =5, fiVx, and Y = Zj g;Vy;. But obviously, for any f € C°°(M)
one has
[Vx,, Vy;I(f) = [Xi, Y5](f)
and, consequently,
[V Vy, 1" = Vix,vy),
which finishes the proof. O
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From equality (5.6) and from the considerations in the end of Section 2
of Chapter 4 it follows that if the connection in question is flat, i.e. Ry = 0,
then the element Uy determines a complex

0 — D(P) 2% AN (P)® D(P) — -

L A(P)® D(P) 2% A (P) @ D(P) — -, (5.7)
where dy = 0L = [Us, - ]™

REMARK 5.1. Horizontal vector fields X" are defined by the condition
X" Ug = 0. Denote the module of such fields by D% (P):

DL (P)={X e D(P) | X LUy = 0}.
Then, by setting © = U = Uy in (4.31) on p. 173, one can see that
Oov(Q_U)=0v(Q) U

for any Q € A*(P) ® D(P). Hence,

Ov(A*(P)® D*(P)) C A*(P)® D"(P)
and

Ov (A*(P) ® DY (P)) C A*(P) ® DY(P).
Considering a direct sum decomposition

A*(P)® D(P) = A*(P) ® D"(P) @ A*(P) ® D&(P)
one can see that
Oy = 0% @ 0%,

where

(9% — 8V|A*(P)®DU(P)7 (")% — 3v A*(P)@D%(P)‘

To proceed further let us compute 0-cohomology of the complex (5.7).
From equality (4.31) on p. 173 it follows that for any two vector fields
Y, Z € D(P) the equality

Z LRY +(Z2,Y] LUy = [Z LUy,Y]
holds. Thus Y € ker(dY) if and only if
1Z,Y] Uy = [Z _Usg, Y]

for any Z € D(P). Using decomposition (5.5) for the fields Y and Z and
substituting it into the last equation, we get that the condition Y € ker(9%)
is equivalent to the system of equations

[z°, Y Uy = [2z°,Y"], [Z" YY) .Uy =0. (5.8)
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Let Y* =Y. fiVx, (see above). Then from the first equality of (5.8) it
follows that

ZZ“(f»m = Zfi[vxﬂ Al

But the left-hand side of this equation is a horizontal vector field while the
right-hand side is always vertical. Hence,

> Z°(fi)Vx, =0

for any vertical field Z¥. Choosing locally independent vector fields X;, we
see that the functions f; actually lie in C*°(M) (or, strictly speaking, in
£(C®(M)) C C>=(P)). It means that, at least locally, Y" is of the form

Yh=Vyx, XeDWM).

But since Vx = V- if and only if X = X'/, the field X is well defined on
the whole manifold M.

On the other hand, from the second equality of (5.8) we see that YV €
ker(0%) if and only if the commutator [Z",Y"] is a horizontal field for any
horizontal Z". Thus we get the following result:

PROPOSITION 5.2. A direct sum decomposition
ker(9%) = D%(P) © V(D(M))
takes place, where V(D(M)) is the image of the mapping V: D(M) — D(P)
and
Dg(P) ={Y € D"(P) | [Y, D%,(P)] C DG(P)}.

One can see now that D (P) consists of nontrivial infinitesimal sym-
metries of the distribution Dy while the elements of V(D(M)) are trivial
symmetries (in the sense that the corresponding transformations slide inte-
gral manifolds of Dy along themselves). To skip this trivial part of ker(9%),
note that

(i) Uy € AY(P)® DV(P),
and (see Remark 5.1)
(ii) 0L (AY(P)® D*(P)) C A"™*Y(P)® D(P).

Thus we have a vertical complex
80
0 — DY(P) —% AY(P)® DY(P) — - --

— AY(P) @ D*(P) %, ATYP)® DY(P) — -- -,

the i-th cohomology of which is denoted by HL(P). From the above said it
follows that HY(P) coincides with the Lie algebra of nontrivial infinitesimal
symmetries for the distribution Dy.
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Consider now an infinitely prolonged equation £ C J°°(7) and the
Cartan connection C = Cg¢ in the fiber bundle my,: £ — M. The corre-
sponding connection form Uy, where V = C, will be denoted by Ug in this
case. Knowing the form Ug, one can reconstruct the Cartan distribution on
£°°. Since this distribution contains all essential information about solutions
of £, one can state that Ug determines the equation structure on £ (see
Definition 2.4 in Chapter 2).

By rewriting the vertical complex defined above in the case £ = 7, we
get a complex

0— D'(€) % ANE) © DY(E) — - -
L AI(E) @ DU(E) L AHU(E) © DYE) -, (5.9)

where, for the sake of simplicity, A () stands for AY(£°°). The cohomologies
of (5.9) are denoted by H/;(€) and are called C-cohomologies of the equation
E.

From the definition of the Lie algebra sym(€) and from the previous
considerations we get the following

THEOREM 5.3. For any formally integrable equation £ one has the iso-
morphism

HY(E) = sym(E).

To obtain an interpretation of the group H}(E), consider the element
U =Us € AY(€)® D?(€) and its deformation U(e), U(0) = U, where ¢ € R
is a small parameter. It is natural to expect this deformation to satisfy the
following conditions:

(i)
Ue) e AYE) @ DY(E) (verticality)
and
(i)
[U@E),UE)]™ =0 (integrability). (5.10)
Let us expand U(¢) into a formal series in ¢,
UE)=Uy+Ue+ -+ Ug'+---, (5.11)

and substitute (5.11) into (i) and (ii). Then one can see that U; € A1(€) ®
Dv(€) and

[Uo, U1]™ = 0.
Since Uy = U(0) = U, it follows that U; € ker(d}). Thus ker(d}) con-

sists of all (vertical) infinitesimal deformations of U preserving the natural
conditions (i) and (ii).
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On the other hand, im(02) consists of elements of the form 62(X) =
[U, X]™, X € D¥(&). Such elements can be viewed as infinitesimal defor-
mations of U originating from transformations of £°° which are trivial on
M (i.e., fiber-wise transformations of the bundle 7 : £ — M). In fact,
let P be a manifold and A;: P — P, t € R, Ay = id, be a one-parameter
group of diffeomorphisms with

d

— A;) =X € D(P).

|, (P)

Then for any © € A*(P) ® D(P) one can consider the element A;,(Leg)
defined by means of the commutative diagram

A*(P) A*(P)

A A (5.12)

ar(py Aerlo) yuip

Then, obviously, for any homogeneous element © =0 ® Y € A*(P) ® D(P)
and a form w € A*(P) we have

dt

Ar«(Lo)(w)
t=0

_ % (A7(0) A ATY A* oo + (—1)°dAT0 A AZ(Y S A* )
t=0
=XO)AY(W)+0A[X,Y])(w)+ (=1)%dX(0) A (Y Lw)

+(=1)%d0 A [X,Y] 5w = Ly gyym (@)-

Thus, if one takes © = ). 0; ® Y; € A*(P) ® D(P) and sets
A(© ZA* ) ® AFY;AY,, (5.13)

then
O(t) = © + [X,0]™¢t + o(t).

In other words, [X, @]]fn is the velocity of the transformation of © with re-
spect to A;. Taking P = £*° and © = U, one can see that the elements
V=[UX ]]fn are infinitesimal transformations of U arising from transfor-
mations Ay: £ — £, If Moy 0 Ay = e, then X € DY(E) and V € im(82).
It is natural to call such deformations of U trivial.

Since, as it was pointed out above, the element U determines the struc-
ture of differential equation on the manifold £ we obtain the following
result.
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THEOREM 5.4. The elements of HX(E) are in one-to-one correspondence
with the classes of nontrivial infinitesimal vertical deformations of the equa-
tion &.

REMARK 5.2. One can consider deformations of Ug not preserving the
verticality condition. Then classes of the corresponding infinitesimal defor-
mations are identified with the elements of the first cohomology module of
the complex (5.7) (for P = £ and V = C). The theory of such deformations
is quite interesting but lies beyond the scope of the present book.

REMARK 5.3. Since the operation [-,-]™ defined on H}(E®) takes its
values in H3(&) the elements of the module H3(E) (or a part of them at least)
can be interpreted as the obstructions for the deformations of £ (cf. [78]).

Local coordinate expressions for the element Ug and for the differentials
Oc = 0¢ in the case £*° = J*°(m) look as follows.

Let (x1,...,2n,u',...,u™) be local coordinates in J°() and pé, j =
1,...,m, |o] > 0, be the corresponding canonical coordinates in J°(7).
Then from equality (1.35) on p. 26 and (5.3) it follows that

- 0
U=> wlo—, (5.14)
o Ops

where wp are the Cartan forms on J* () given by (1.27) (see p. 18).

Consider an element © =3, 07 ® 9/dpy € A*(7) ® D"(rr). Then, due
to (5.14) and (4.40), p. 175, we have

n m
0:(0)=>"> "> dz; A (95%_ - Di(eg,)) ® %, (5.15)
i=1 j=1|o|>0 Po
where D;(0) is the Lie derivative of the form 6 € A*(€) along the vector field
As it follows from the above said, the cohomology module H}(£) inherits
from A* ® Dy the structure of the graded Lie algebra with respect to the
Frolicher—Nijenhuis bracket. In the case when U = Uy is the connection
form of a connection V: D(M) — D(P), additional algebraic structures
arise in the cohomology modules HE (P) = Y, HL(P) of the corresponding
vertical complex.
First of all note that for any element Q2 € A*(P) ® DV(P) the identity

Q_ Uy =0 (5.16)

holds. Hence, if © € A*(P) ® DV(P) is a vertical element too, then equality
(4.31) on p. 173 acquires the form

Q_0v0 + (—1)%0g(Q 1 0) = dv(Q) 6. (5.17)
From (5.17) it follows that
ker(0y) nker(0y) Cker(dy),
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ker(dy) —im(dy) Cim(dy),
im(0dy) wker(dy) Cim(dy).
Therefore, the contraction operation
_: AY(P) ® D*(P) x A(P) ® D*(P) — A""~Y(P) ® D(P)
induces an operation
it HY(P) @p HL(P) — HS'(P),
which is defined by posing
] . [6] = [2 6],

where [-] denotes the cohomological class of the corresponding element.

In particular, H %(P) is closed with respect to the contraction operation,
and due to (4.31) this operation determines in Hy,(P) an associative algebra
structure. Consider elements ¢ € HY(P) and © € Hy(P). Then one can
define an action of © on ¢ by posing

Ro(p) = ¢ .0 € HY(P). (5.18)
Thus we have a mapping
R: HL(P) — Endg(H(P))

which is a homomorphism of associative algebras due to (4.31) on p. 173.
In particular, taking P = £ and & = 7., we obtain the following

PROPOSITION 5.5. For any formally integrable equation & C J*(m) the
module Hcl (&) is an associative algebra with respect to the contraction opera-
tion .. This algebra acts on HY(E) = sym(E) by means of the representation
R defined by (5.18).

When (5.16) takes place, equality (4.55), see p. 179, acquires the form
O (p A Q) = (Lug — dp) AQ+ (~1)7p A D (). (5.19)
Let us set
d% = d — Ly (5.20)
and note that
(d%)? = (Lvg)* ~ Lug 0d — doLyg +d* = ~Lyg od — do L.
But
Lood=(-1)%doLg (5.21)
and, therefore, (d%)? = 0. Thus we have the differential
d%: AY(P) — ATTYP), i=0,1,...,
and the corresponding cohomologies

HE'(P) = ker(d%™™) /im(d%").
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From (5.19) it follows that
ker(d%) A ker(dy) C ker(dy),
im(d%) A ker(dy) Cim(dy),
ker(d%) VAN im(av) - im(av),
and hence a well-defined wedge product
A: HEY(P) @g HL(P) — HZ (P).
Moreover, from (5.20) and (5.21) it follows that
Lo od$ =L g + (=1)%d o Lg
for any Q € A*(P) ® DY(P). It means that by posing
Lig[w] = [Law], w € A*(P)
we get a well-defined homomorphism of graded Lie algebras
L: Hy(P) — D& (HE"(P)),
where HL*(P) = Y2, HE'(P).

If (z1,...,%n,y",...,y%) are local coordinates in P, then an easy com-
putation shows that

dy(f) = Z Vi(f)dxi,

d% (dz;) = 0,
Ao (dy’) = " dVI A da, (5.22)

where f € C®(P), i =1,...,n, j = 1,...,s, while the coefficients Vg
and vector fields V; are given by (5.2). Obviously, the differential dg is
completely defined by (5.22).

2. Spectral sequences and graded evolutionary derivations

In this section, we construct three spectral sequences associated with
C-cohomologies of infinitely prolonged equations. One of them is used to
compute the algebra Hj(m) = H3(J>°(m)) of the “empty” equation. The
result obtained leads naturally to the notion of graded evolutionary deriva-
tions which seem to play an important role in the geometry of differential
equations.

The first of spectral sequences to be defined originates from a filtration
in A*(£) ® DV(€) associated with the notion of the degree of horizontality.
Namely, an element © € AP(E) ® DV(E) is said to be i-horizontal if

Xlg(ng...(Xp_i_HJ@)...):O

for any Xi,...,X,—iy1 € DY(E). Denote by HY(E) the set of all such ele-
ments. Obviously, H}(£) D HE ,(E).
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PROPOSITION 5.6. For any equation &, the embedding
de(HI(E)) C MY (€)
takes place.
To prove this we need some auxiliary facts.

LEMMA 5.7. For any vector fields X1,...,X, € D(E) and an element
© € A*(E) ® DY(E) the equality

X1 ... p48c(@):(—1)p8c(X14...4 pge)
p
+Y (1PPX L X L0e(X) o Xip o 0 X, O (5.23)
=1

holds.
PRrROOF. Recall that for any 2 € A*(€) ® DY(E) one has
Q_LUs =Q (5.24)
and, by (5.17)
Q_00(0) =0e(Q) 10 — (=1)%9:(2_0). (5.25)
In particular, taking Q = X € DV(E), we get
X 1000 =9¢(X) 50 —0c(X 10O). (5.26)

This proves (5.23) for p = 1. The proof is finished by induction on p starting
with (5.26). O

LeMMA 5.8. Consider vertical vector fields Xi,...,Xp4+1 € DV(E) and
an element © € HE(E) = AP(E) @ DV(E). Then

qu...q p+1_l(a(j@):0,
i.e., de(HH(E)) € HETH(&).

This result is a direct consequence of (5.23).

Recall that a form 0 € AP(E) is said to be horizontal if the identity
X 0 = 0 holds for any X € D"(); the set of such forms is denoted by
AP(E). Tt is easy to see that HY(E) = AL (E) A HE '(E), ie., any element
© € HP(E) can be represented as

©=> p.AOy, (5.27)

where ps, € AD(E), ©5, € AP7{(E) ® DY(E). Applying (5.19) and (5.20) to
(5.27) in the case when V is the Cartan connection C, we get

00(0) = 3 (~db(pg) A O+ (—1)'p, A 0e(O,)). (5.28)

S
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LEMMA 5.9. 1 Let £&: P — M be a fiber bundle with a flat connection
V: D(M) — D(P) and
Ny(P) = {p € A*(P) | Y 5p =0, Y € D"(P)}

be the module of horizontal forms on P. Then for any form p € Ag(P) one
has

dl(p) € AT (P).

PROOF. Let Q@ € A*(P) ® D(P), p € A*(P), and Y € D(P). Then
standard computations show that

Y i (Lap) = Ly _ayp + (—1) La(Y Zp) = (1), Y]™ Lp. (5.29)
In particular, if Q@ = Uy and Y € DY(P), using (5.16) one has
Y o (Lugp) =Y (p) — Lug (Y —p) + 0v(Y) —p,
from where it follows that
Y Ldg(p) = —dG(Y —ip) = 0v(Y) wip,

since, by definition, d% =d— Lyg.
Hence, if Y € DY(P) and p € A}(P), then one has oy (Y) € AY(P) ®
DY(P) and Y _d%(p) = 0. O

Proposition 5.6 now follows from Lemmas 5.8, 5.9 and identity (5.28).

REMARK 5.4. From the definition of the differential dé it immediately
follows that its restriction on A} (&), denoted by dj, coincides with the hor-
izontal de Rham complex of the equation & (see Chapter 2). As it follows
from (5.22), in local coordinates this restriction is completely determined by
the equalities

dn(f) = Z D;(f)dz;,  dp(dzi) =0, (5.30)

wherei=1,...,n, f € F(€) and Dy,..., D, are total derivatives. One can
show that the action L of H3(E) can be restricted onto the module Hj ()
of horizontal cohomologies. In fact, if p € Aj(E) and X, Y € DV(E), then

X_IY(,O) = Y(X_lp) =+ [X,Y]_tp =0.
On the other hand, if Q € A*(£) ® DV(E), then from (5.29) it follows that
Y o (Lap) = Ly _ayp.
Hence, by induction,

L(A*(5)®DU(5)) (A;‘;(E)) - AZ(g)

On the other hand, the operator Ly, is exactly the Cartan differential of
the equation & (see also Chapter 2).
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Let us now define a filtration in A*(€) ® DY(E) by setting
FI(AP(€) @ DY(€)) = HE ,(E). (5.31)
Obviously,
FI(AP(&) ® DY(€)) D FITY(AP(€) ® D*(E))
and Proposition 5.6 is equivalent to the fact that
oc(F'(A"(€) @ D'())) < F'(AP1(€) @ D"(£)).

Thus (5.31) defines a spectral sequence for the complex (5.9) which we call
‘H-spectral. Its term Ej is of the form

By =y ()Mol 1 (), (5.32)
where p=0,-1,...,¢=—2p,...,—2p+ n.

To express Ef? in more suitable terms, let us recall the splitting
ALE) = AR(E) B CAN(E),

where CAY(€) is the set of all 1-forms vanishing on the Cartan distribution
on &. Let

C'A(E) =CAYE)A--- NCAL(E).

i times

Then for any p the module AP(E) can be represented as

p
Zcp TAE) A AL (E).

s

Thus
P

HP(E) = (Z CPIA(E) A A (5)) ® D(E)
i=0
from where it follows that
EP9=C7PAE) AAFTUE) @ DY(E).
The configuration of the term Ejy for the H-spectral sequence is presented
on Fig. 5.1, where D” = D"(€), A}, = A}, (£), etc.

The second spectral sequence to be defined is in a sense complementary
to the first one. Namely, we say that an element © € AP(£) ® DY(€) is
(p—i+1)-Cartan, if X; 5... 2X; 1O =0 for any X1,...,X; € CD(£), and
denote the set of all such elements by CF'(£) C AP(E) ® DV(E). Obviously,
Cr(E) © Oy (€):

PROPOSITION 5.10. For any equation £ C J*(7) one has
0(CI(E) © CIE (£).

To prove this proposition, we need some preliminary facts.
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C?ANA} ® DV
C2ANA @ DY
CPAANA2@DV| C'AAA}® DY
CIAANA'® DY
CIAANAT2@D"| AP@DY |g=n
A7'@ DY | g=n-1

C?ANA}L ® DV

C*A® DV C'ANAZ @ DY
C'ANA} ® DV
C'A® DY AN oD |qg=2
Al@Dv |g=1
DY q=0
p=-2 p=-—1 p=20

FIGURE 5.1. The H-spectral sequence configuration (term Fjp).

LEMMA 5.11. For any vector fields X1, ..., X, € CD(E) and an element
© € A*(E) ® DY(E) the equality

Xl_l...4 p48c(@):(—1)p8c(X14...4 p4®)

P
+Y (1P L L X DX X o 0 X, O] LU, (5.33)
=1

holds.

PROOF. We proceed by induction on p. Let X € CD(E). Then, since
X LUg =0 and [X,Ug]™ = 0, from equality (4.45) on p. 175 it follows that
X L00(0) = —9p(X 10) — [X,0]™ L Ug, (5.34)
which gives us the starting point of induction.
Suppose now that (5.33) is proved for all s < r. Then by (5.34) we have
D, CRED, G r+148C(@) = Xl_l(XQ_l. e r+1_|8c(@))
= (—1)TX1 _ 80(X2 DU, ¢S @)

r+1
+ X0 (D)X L Xy S [XG X o 0 X 20)™ LU
=2
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:(—1)r<—8c(X14..._1 7«+14@)—[[X1,X24...4 r+14@]]fn_:Ug>

r+1
+Y (D)X Xy o Xy S [XG X o 0 X 20)™ LU
=2

= (-1)""o(X1 ... 5 X412 0)
r41 '
+Y (D)X L X o[ X X o X 0] LU,
=1

which finishes the proof of lemma. U
LEMMA 5.12. For any X € CD(E) and © € CY(E) we have

X .0 e ()

[X,0]™ e cr(é).

PROOF. The first statement is obvious. To prove the second one, note
that from equality (4.45) on p. 175 it follows that for any X, X; € D(€) and
O € A*(€) ® D¥(E) one has

X1 [[X, @]]fn = |IX, X1 @]]fn + [[Xl,X]]fn 0.
Now, by an elementary induction one can conclude that

X1 . oX X e =[x, X, ... X, 6]

i
+ZX1_I..._IXsfl_l[[Xs,Xﬂfn4Xs4...JXZ‘_I(") (5.35)
s=1

for any X1,...,X; € D(E).
Consider vector fields X, X1, ..., X; € CD(E) and an element © € C(€).

Then, since [X,, X]™ = [X,, X] € CD(E), all the summands on the right-
hand side of (5.35) vanish. O

PROOF OF PROPOSITION 5.10. Consider an element © € CP(€) and
fields X1,...,Xit1 € CD(E). Then, by (5.33), one has
X100 X1 200(0) = (=) 9e(X L. .. 1 X1 1 O)
i+1 A
+) (D)X X [ X Xy o0 0 X 2 0]" LUe. (5.36)
s=1

The first summand on the right-hand side vanishes by definition while the
rest of them, due to equality (4.31) on p. 173 and since Ug € AL(E)® D¥(&),
can be represented in the form

(—1)i*s (X1 Xy D[ X Xy e o X J@}]f“) L Ue.
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Since © € CP(€) and X;, ..., X411 € CD(E), we have
Xsy1 ... 0Xi a0 e C?:i+871(5)

and by Lemma 5.12 (ii) the element [X, X541 0. X4 _.6]™ belongs
to Cf:ﬁs_l(é') as well. Hence, all the summands in (5.36) vanish. O

Let us now define a filtration in A*(€) ® DV(€) by setting
FIAP(E) @ DY(E)) =Ch_,,(E). (5.37)
Obviously,
FI(AP(£) ® DY(€)) D FITH(AP(€) ® D*(E))
and, by Proposition 5.10,
de (Fl(Ap(e) ® D”(E))) c FLAPHL(E) @ DV(E)).

Thus, filtration (5.37) defines a spectral sequence for the complex (5.9) which
we call the C-spectral sequence for the equation E.

REMARK 5.5. As it was already mentioned before, C-spectral sequences
were introduced by A.M. Vinogradov (see [102]). As A.M. Vinogradov
noted (a private communication), the H-spectral sequence can also be viewed
as a C-spectral sequence constructed with respect to fibers of the bundle
Too: € — M. It is similar to the classical Leray—Serre sequence.

The term Ej of the C-spectral sequence is of the form

R = CIH(E) [CRHI(E), p=0.L.... q=0,1....n.

To describe these modules explicitly, note that

p+q
cra(g) = (Z CIA(E) A Af;fq—"(g)) © DY(E)

while
ptq '
CcrH(E) = ( ST CIAE) A Af‘H(f:)) © DY(E).
i=p+1
Thus

Ey9 =CPAE) NA(E) ® D (E).

The configuration of the term FEy for the C-spectral sequence is given on
Fig. 5.2.

REMARK 5.6. The 0-th column of the term Ej coincides with the hori-
zontal de Rham complex for the equation £ with coefficients in the bundle of
vertical vector fields. Complexes of such a type were introduced by T. Tsu-
jishita in [97].
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qg=n AP@DY | APACIA®DY | ... | AP ACPA® DY

g=n—1{A}'@D" | A}7'ACIA®DY | ... | A} ACPA® DY
AloD” | AJACIA®DY | ... | AJACPA® DY

g=1 AL @D" | AjJAC'A®@DY | ... | AjACPA® DY

q=0 DY ClA ® DV CPA ® DV
p=0 p=1

FIGURE 5.2. The C-spectral sequence configuration (term Fj).

Consider, as before, a formally integrable equation £ C J*(x) and the
corresponding algebra F(€) filtered by its subalgebras F;(E).
We say that an element © € AP(E) ® DV(E) is i-vertical if

and denote by VP(E) the set of all such elements. Obviously, V'(€) D
VP (E) and VI (E) = AP(E) @ DV(E).

PROPOSITION 5.13. For any equation £ the embedding
Qe(VI(€) € VI (€)
takes place.

PRrOOF. Obviously, Ly, (F;(€)) C Fj+1(E) for any j > —k—1. Consider
elements © € VP (€) and ¢ € F;_j_2(E). Then, by definition,

Lac(e)(¢) = L[U&@]]fﬂ (¢) = LUs (L®(¢)) - (_I)GLG(LUs (¢)> =0,

which finishes the proof. O
Let us define a filtration in A*(€) ® DY(E) by setting
F'(AP(E) @ DY(£)) = VI (€). (5.39)
Obviously,
FI(AP(€) ® DU(€)) C FITH(AP(€) @ D*(€))
and

dc(F'(AP(€) @ D°(£))) € F'(AP*1(€) ® DY(€)).

Thus, (5.39) defines a spectral sequence for the complex (5.9) which we call
V-spectral. The term Ey for this spectral sequence is of the form

Equ == V’i—gq<€)/vfi_§<€)’ b= 07 1a ey, 4= 07 _17 SR 28
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p=0 p=1
q=0 FVo FVeAl(r) | ... FV @ AP(T)
q=-—1 FVeSiDM) | ... | F¥ @ AP~ L(7) ® S'D(M)
qg=—p FV © SPD(M)

FiGureE 5.3. The V-spectral sequence configuration for
Jo°(m) (term Ejp).

Now we shall compute the algebra Hj(E) = Hp () for the “empty equa-
tion” J°°(7) using the V-spectral sequence.

First, we shall represent elements of the modules EJ*? in a more conve-
nient way. Denote —q by 7 and consider the bundle 7, ,—1: J"(7) — J"~1(7)
and the subbundle .,y : TV(J" (7)) — J"(mw) of the tangent bundle
T(J"(w)) — J"(m) consisting of m, ,_j-vertical vectors. Then we have the
induced bundle:

Too,r(T(J" () — TO(J" ()

W;om(ﬁr,r—l,V) Trr—1,V

J®(1) ———— J"(7)
and obviously,
E(])L—T — Ap_ ( ) ®f 7r) F( (WT,T—I,V))'

On the other hand, the bundle 7%, (7, ,—1,v) can be described in the fol-
lowing way. Consider the tangent bundle 7: T'(M) — M, its rth symmetric
power S"(7): S"T (M) — M and the bundle

ty @m*(8"(7)): T°(J(m)) @ w* (ST (M) — JO(m),

where 7y : TV(J%(7)) — JO(7) is the bundle of 7-vertical vectors. Then, at
least locally,

Trr—1,v & Ty o(my @ 7 (S7(7))).
It means that locally we have an isomorphism
p B~ = F(m,mv) @pqx) A1) @cee(ar) ST(D(M)).

Thus the term Ey of the V-spectral sequence is of the form which is presented
on Fig. 5.3, where FV o F(m,my).
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Let (z1,...,x,) be local coordinates in M, p} be the coordinates arising
naturally in J*°(7), and & = 0/0z1,...,&, = 0/0x, be the local basis in
T(M) corresponding to (x1,...,2,). Denote also by v/, j = 1,...,m, local
vector fields 9/0u’, where v/ = pZO,...,O) are coordinates along the fiber of

the bundle 7. Then any element © € E5™" is of the form

0= Z Y biw —, 0 € AP (),

j=1 |o|=r

while the identification p can be represented as

Q=p(® ZZ“J‘MJ (_50)
j=1lo|=r

where 0 = (01,...,04), 0l =01+~ opl, &7 =&
Let us now represent €2 in the form

p—r
0= Zpi A w;i ® Qi
where p; € F(m,my) @ CP"7A(m), w; € Al(7), and Q; = Q;(€) are homo-
geneous polynomials in &7,..., &, of the power q.
From equality (5.15) it follows that in this representation the differential
d: B — ES’JH in the following way

p—r n
; 0
() = Z(—l)p*’"’lpi A Z drs Nw; ® % (5.40)
i=0 s=1 8

Thus, the differential 9y reduces to J-Spencer operators (see [93]) from which
it follows that all its cohomologies are trivial except for the terms Eg’o. But
as it is easily seen from (5.40) and from the previous constructions,

EPY = B [00(EY) = F(m,my) ©(m) CPA(m).
Hence, only the 0-th row survives in the term E7 and it is of the form
0,0
0 — F(m,my) —— F(m,my) @ CtA(r) —
a0
— F(m,my) @ CPA(r) —— F(m,my) @ CPTIA(7) —
Recall now that 9; is induced by the differential 0, and that the latter
increases the degree of horizontality for the elements from A*(7) ® DV(w)
(Proposition 5.6). Again, we see that 0 is trivial. Thus, we have proved
the following

THEOREM 5.14. The V-spectral sequence for the “empty” equation
E>X = J™(m) stabilizes at the term Ey, i.e., By = Ey = -+ = Ey, and
C-cohomologies for this equation are of the form

Hg(ﬂ) ~ F(m,my) QF(m) CPA(m).
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REMARK 5.7. When 7 is a vector bundle, then F(m, my) ~ F(mw, 7) and
we have the isomorphism

Hf(m) = F(m,m) @p(xy CPA(T).

This result allows to generalize the notion of evolutionary derivations
and to introduce graded (or super) evolutionary derivations. Namely, we

choose a canonical coordinate system (z, py) in J°(7) and for any element
w=(wh...,wm) € F(r ry)®CPA(r), w € CPA(T), set

; 0
Oy = Dy(w?) @ — € AP(7) @ DY (7). 5.41
]Z; (w’) P} () () (5.41)
We call 9, a graded evolutionary derivation with the generating form w €
F(m,my) @ CPA(m). Denote the set of such derivations by xP(m).

The following local facts are obvious:
(i)
Lo, (F(m)) € CPA(m),
(ii)
9, € ker(0P),
(iii) the correspondence w +— 9, splits the natural projection
ker(92) — HE(m)
and thus
ker(92) = im(92~1) @ kP ().

We shall show now that Definition (5.41) is independent of local coor-
dinates. The proposition below, as well as its proof, is quite similar to that
one which has been proved in [60] for “ordinary” evolutionary derivations
(see also Chapter 2).

PROPOSITION 5.15. Any element Q € A*(w) ® DV(w) which satisfies
the conditions (1) and (ii) abowve, i.e., for which Lo(F(w)) C CPA(7) and
0:(2) = 0, is uniquely determined by the restriction of Lo onto Fo(m) =
C(J(m)).

PROOF. First recall that € is uniquely determined by the derivation
Lo € D& (A*) (see Proposition 4.20). Further, since Lg is a graded deriva-
tion and due to the fact that

La(df) = (=1)"d(La(0)) (5.42)

for any 6 € A*(m) (Proposition 4.20), L is uniquely determined by its
restriction onto F () = A%(r).
Now, from the equality 0,(2) = 0 it follows that

0= [Ux, 2]™(¢) = Ly, (La(¢)) — (=1)%La(Ly, (4)). (5.43)
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Let © be such that Lg)| Fo(m) = 0 and suppose that we have proved that

Lolz,(r = 0. Then taking ¢ = Py, |o| = 7, and using equality (5.43), we
obtain

(~1)La(dp] = Y P, dai) = Lo, (La(p)) = 0.
=1

In other words,

Lo (Z Pha, dﬂ?z’) =Y La(p),) dz;
=1 =1
= Lo(dp}) = (=1)%d(La(p]) = 0.

Since LQ(pi+1i) € C*A(m), we conclude that Lg(péﬂi) = 0, i.e., we have
LQ’}—T+1(7T) == 0 I:‘

REMARK 5.8. The element Ur =~ (dp(];—zi pﬂHi dz;) ®8/0p) itself
is an example of an evolutionary derivation: U, = 9, w = (wé, W),
where W), = du? — 3, p] du;.

Since

F(m,my) @ C*A(m) = F(m,my) @ Y C'A()
i>0

is identified with the module Hj(7), it carries the structure of a graded Lie
algebra. The corresponding operation in F (7w, 7y ) ® C*A(w) is denoted by
{-,-} and is called the graded Jacobi bracket. Thus, for any elements w €

F(m,my) @CPA(m) and § € F(m,my) @ C1A(7) we have {w,0} € F(m,7my) ®
CPTIA(r) and

{w, 0} + (_1)pq{07w} =0,
FE0@Iw, (6.0)) =0,

where p € F(m,my) @ C"A(r) and ¢, as before, denotes the sum of cyclic
permutations.

To express the graded Jacobi bracket in more efficient terms we prove
the following

PROPOSITION 5.16. The space k*(7) = >+ k' () of super evolutionary
derivations is a graded Lie subalgebra in A*(m) @ D(r), i.e., for any two
generating forms w,0 € F(m,my) ® C*A(x) the bracket [9,, 25]™ is again
an evolutionary derivation and

[0, 96]™ = D00y (5.44)

PRrOOF. First note that it is obvious that [3,,, 95]™ lies in ker(dy).
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Consider a vector field X € CD(7). Then, since X 9, = X 19y =0,
from equality (4.45) on p. 175 it follows that
X L [8, 99]™ = (=1)“[X, 8.]™ 1 9y — (=)@ X, 5]™ L 2,

Let X = D;, where D; is the total derivative along x; in the chosen coordi-
nate system. Then we have

[D;, 9,]™ = %C;(Dg(wj) ® [Di, %] 4 Dpir, (W) ® %) —0.
Since any X € CD(n) is a linear combination of the fields D;, one has
CD(7) = [Du; D)™ =0,
i.e., [Ou, 99]™ € C*A(r) @ D(x). Hence, Proposition 5.15 implies that the
bracket [9,,, 25]™ is an evolutionary derivation. O

From (5.44) and from Proposition 5.16 it follows that if (w!,...,w™)
and (6',...,0™) are local representations of w and 6 respectively then

w.0) =3 (900 ~ (-1 9(")). (5.45)
j=1
where i =1,...,m.
For example, if w = Ly, (f) = df — >, Di(f) dz; and § = Ly, (g), where
f,g € I'(m), then

i i agi i 8fi
{w,0} = Z (LU,T<DU<fﬂ>> ALy, (@) + Lu, (Do (%)) A Lo, v )>,

where i = 1,...,m. In particular,

{wriﬂw’]r‘} =0, (546)

where w?, w! are the Cartan forms (see (1.27) on p. 18).

3. C-cohomologies of evolution equations

Here we give a complete description for C-cohomologies of systems of
evolution equations and consider some examples.
Let £ be a system of evolution equations of the form

ou? - ololy,

— = ]x,t,u,...,—,...) i=1,...,m, |o| <k 5.47

5= ) om. ol <k, (5.47)
where © = (21,...,7,), u = (u',...,u™). Then the functions , t, pl, where
j=1,....,m,0 = (01,...,0,), can be chosen as internal coordinates on £*°.

In this coordinate system the element Ug is represented in the form

Ue = Z(dpcjr - Zpiﬂi dz; — Do(f?) dt) ® %, (5.48)

J,o Po
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where D, = D{* o---0 D7 for o = (01,...,0,). If
j 0 * v j *
O=> tlo—cA(E)®D"E), 6l A E),
. op?
3T

then, as it follows from (4.40) on p. 175, the differential J¢ acts in the
following way

z(zd% 1~ D)

J7T

+dt A <Z o Dt(eﬂ))) ®dpl, (5.49)
where
D,(
+ Z apL

To proceed with computations consider a direct sum decomposition
AP(E) @ DY(E) = AP(x) ® D¥(rr) @ dt A AP~ () @ D¥(m), (5.50)

where 7: R™ x R™ — R" is the natural projection with the coordinates

(ul,...,u™)and (21,...,2,) in R™ and R™ respectively, while A} (7) denotes

the algebra of exterior forms on J°°(7) with the variable ¢ € R as a parameter
in their coefficients. From (5.49) and due to (4.45) on p. 175 it follows that
if © € AP(€) ® D(E) and

©=0°+dtAert
is the decomposition corresponding to (5.50), then
0c(0) = 0,(OP) + dt A (Lg(OP) — 0-(0P71)), (5.51)

where

Le©) = (X 5 (D)6 thi))@%- (5.52)

5T 80
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Consider a diagram

0 0

. AeD " AT gD

dt A\ Lg dt A Lg (5.53)

s dtAN QDY —— s dtAANT DY
K —id A 0! ¢

™

0 0

where Al @ DV o Ai(m) ® D¥(wr). From (5.51) and from the fact that
Or 0 0 = 0 it follows that (5.53) is a bicomplex whose total differential is
Jc. Thus, from the general theory of bicomplexes (cf. [70]) we see that to
calculate H%(E) it is necessary:

(i) To compute cohomologies of the upper and lower lines of (5.53). De-
note them by H/(m) and Hj () respectively.
(ii) To describe the mappings L : Hi(m) — H () induced by dt A Le.

Then we have
H(E) = ker(L:) @ coker(Li ). (5.54)

From Theorem 5.14 it follows that Hi(7) = ki(w) and Hi(7) = dt A
ki71(7), where kP (7) is the set of all evolutionary derivations with generating
forms from F(m,m) ® CPA¢(m) parameterized by ¢ (we write F(m, ) instead
of F(m,my) since 7 is a vector bundle in the case under consideration). Let

w = (w!,...,w™) be such a form. Then, as it is easily seen from (5.52),

Lg(aw) = aég’)(w)’

where

® of! sy _ J 9
(P (w) = XJ:(Z.: 5y (D) = Dile )) ® 5 (5.55)
Comparing (5.55) with equality (2.23) on p. 71, we see that E(gp) is the
extension of the universal linearization operator for the equation (5.47) onto
the module F(m, ) ® CPA¢(7).
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REMARK 5.9. Note that when the operator A is the sum of monomials
Xq0---0X,, the action

Alw) =Y X1 (Xa(... (X, (w))...))

is well defined for any form w such that X; ww =0,7=1,...,r. It is just the
case for formula (5.55), since X w = 0 for any X € CD(E) and w € CPA(E).

Thus we have the following generalization of Theorem 2.15 (see p. 72).

THEOREM 5.17. Let £ be a system of evolution equations of the form
(5.47), le = 6(50) be corresponding universal linearization operator restricted
onto €% and Eép) be the extension of lg onto F(m,m) @ CPAy(m). Then

HE(E) ~ ker({P) @ dt A coker(£PV).

REMARK 5.10. The result proved is, in fact, valid for all /~-normal equa-
tions (see Definition 2.16). The proof can be found in [98]. Moreover, let
us recall that the module HG(€) splits into the direct sum

n
Hy (&) =P @ HE(€) = P H(E),
120 ptq=i q=1
where the superscripts p and ¢ correspond to the number of Cartan and
horizontal components respectively (see decomposition (4.60) on p. 181).

As it can be deduced from Proposition 4.29, the component H, 570 (&) always

coincides with ker E‘(gp ).

As a first example of application of the above theorem, we shall prove
that evolution equations in one space variable are 2-trivial objects in the
sense of Section 3 of Chapter 4.

PROPOSITION 5.18. For any evolution equation £ of the form
0 0
v flz,t,u, ... ug), 9f #£0, k>0,
ot
2,0
one has Hy"(£) = 0.

Ouy,

PROOF. To prove this fact, we need to solve the equation

kg !
_ i
Dyw = z; %wa, (5.56)
with w = Za>ﬁ PapWa N wg, where po3 € F(E) and wq,wp are the Cartan
forms on £°°. Let us represent the form w as

W= Pmm—1Wm N Wm—1 + g Pm,aWm N\ Wa
a<m—1

+ > Pmo1pwm1 Awg+olm—1], (5.57)
B<m—2
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where the term o[m — 2| does not contain Cartan forms of degree higher
than m — 2.
Note now that for any Cartan form w; one has

- of of . of
Dw; = D, h Wa = 5 Wi Dy | —— i+k—
tw mazo 8uaw 8Ukw+k—|—z <8uk)w+k 1

and
k

of of of )
DSw; = ——w; — Wik k —2].
2 Bun W 8ukw 4kt 6uk,1w tk—1 Fo[i + ]

Substituting (5.57) into (5.56) and using the above decompositions, one can
easily see that the coefficients ¢,, o vanish, from where, by induction, it
follows that w = 0. O

Now we shall look more closely at the module
HE(E) ~ ker(ﬁg)) @ dt N coker(ﬁfgo))

and describe infinitesimal deformations of evolution equations in the form
ready for concrete computations. From the decomposition given by the
previous theorem we see that there are two types of infinitesimal defor-

mations: those ones which lie in ker(ﬁ(gl)) and those which originate from
dt A coker(f(go)). The latter ones are represented by the elements of the form

. B
Uy :Zg]dt®% =dt®0, (5.58)
J

where ¢/ € F(£). Deformations corresponding to (5.58) are of the form
U(e) =Us +Uje+... (5.59)

But it is easily seen that the first two summands in (5.59) determine an
equation of the form

W =fl e, j=1,...,m, (5.60)

which is infinitesimally equivalent to the initial equation if and only if 6 €
im(ééo)). The deformations (5.60) preserve the class of evolution equations.
The other ones lie in ker(ﬁél)) and we shall deduce explicit formulas for their
computation. For the sake of simplicity we consider the case dim(7) = m =
1, dim(M) = n = 2 (one space variable).

Let w; = dp; — piy1dr — Di(f)dt, i = 0,1,..., be the basis of Cartan
forms on £%, where f = f!(x,t,po,...,pr), * = x1, and p; corresponds to
O'u/0xt. Then any form w € C'A(E) can be represented as

w=>Y dw, ¢ cFE) (5.61)

=0
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Thus we have

(W (w (Z £;D2 Dt) (Z d)lwl), (5.62)

where f; denotes 0f/dp;. By deﬁn1t10n, we have

(DD = D (Da(e)-.) = 53 (1) D@Dz

s=0
But
Dx(wl) = Wi+1 (563)
and therefore,
J .
10D =3 (1) i@ (5.6)
s=0
On the other hand,
Di(¢'w;) = Di(¢"w; + ¢ Dy(w;). (5.65)
Since w; = Di(wp) and [Dy, D,] = 0, one has
Dy(wi) = Di(Dy(wo)) = Dy (De(wn))- (5.66)

But wy = Ly, (po) and [Dy, Ly, | = 0. Hence,
Di(wo) = Lu, (Dt(po)) = L (f Z fiwj. (5.67)

Combining now (5.62)—(5.67), we find out that the equation E(gl) (w)=0
written in the coordinate form looks as

ZZfJZ< )DJ S(W)WH-S
=0 j=0 s=0
= Z(Dt Jwi +¢ZZZ( )DZ *(f; wj—i—s) (5.68)

7=0 s=0

Taking into account that {w;}i>o is the basis in C'A(£) and equating
the coefficients at w;, we obtain that (5.68) is equivalent to

le(®®) =) 6" Di(fs)
i=0
s r i k ]
7 yi—l j—l( 15—l
£ (X))o - X () s ) 6o
=1 i=l 7=l

where s = 0,1,..., k+r—1, which is the final form of (5.62) for the concrete
calculations (we set ¢* = f; =0 for i > r and j > k in (5.69)).



214 5. DEFORMATIONS AND RECURSION OPERATORS

Consider some examples now.
ExaMPLE 5.1. Let £ be the heat equation
Up = Uy
For this equation (5.69) looks as
D3(¢°) = Di(¢"),
D(9") +2Dx(¢°) = Dy(9"),

DZ(¢") + 2D (¢ 1) = Di(¢"),
D;(¢") = 0. (5.70)

Simple but rather cumbersome computations show that the basis of solutions
for (5.70) consists of the functions

S
; x
#° = E :A(J+S)_,
= (25)!

for r = 2s and

T 2j+1

ZAU+S+1)7
= (27 + 1)V

s—1i /. . i
@2 = 2% Z (1 +s— J)A(j—i-s—i—l-l) g¥t

= 2i (25 4+ 1)!
¢2”1—22”1SZE it s =G+ 1) s 27
N = 2i+1 (25)!

for r =2s+ 1.
In both cases A =1,¢,...,t" and A® denotes d'A/dt.
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REMARK 5.11. Let ¢ = >, ¢'w; be an element of H}(E) and ¢ €
F(m,m) be a symmetry of the equation £. Then, as it follows from (5.18),
the element R4(¢)) is a symmetry of £ again. In particular, since the equa-
tion under consideration is linear, it possesses the symmetry 1 = u. Hence,
its symmetries include those of the form

Ro(u) = ¢'pj,
J

where ¢/ are given by the formulae above.
ExXAMPLE 5.2. The second example we consider is the Burgers equation

Up = Uy + Ugy- (5.71)

THEOREM 5.19. The only solution of the equation E(gl)(w) = 0 for the
Burgers equation (5.71) is w = awg, o = const.

PROOF. Let w = ¢%wg + -+ + ¢"w,. Then equations (5.69) transform
into

poDx(¢") + D2(¢°) = Di(¢°) + ijﬂﬁbj,
=1

poDa(¢") + D2(¢") +2D4(6°) = Dy(¢") + Y (G + Vpse,
j=2

T .
, . . ) +1 .
poDz(¢) + D2(¢") + 2D, (6" 1) = Dy(¢') + ) <‘7 ; >10ji+1¢57,
j=i+1
PoDu(¢") + D3(¢") +2D,(¢" ") = Dy(¢") + 719",
D,(¢") = 0.
(5.72)
To prove the theorem we apply the same scheme which was used to
describe the symmetry algebra of the Burgers equation in Chapter 2.

Denote by IC, the set of solutions of (5.72). A direct computation shows
that

Ki={awy | « € R} (5.73)
and that any element w € IC,., 7 > 1, is of the form
r 1
W = qpw, + (ipoozr + Eﬂcaﬁl) + ar,1>wr,1 +Q(r —2), (5.74)
where a, = a,(t), a1 = a,—1(t), a) denotes dia/dt' and Q(s) is an

arbitrary linear combination of wy, . ..,ws with the coefficients in F(E).
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LEMMA 5.20. For any evolution equation £ one has
[sym(&), ker((E]™ < ker(e).

PROOF OF LEMMA 5.20. In fact, we know that there exists the natural
action of sym(€) = HJ(E) on HE(E). On the other hand, if X = 94 €
sym(é‘) and © = 9y € ker(f( )) where ¢ € F(€) and 0 € C'A(w), then
[X,0]™ = = 94,0} But the element

(6.0} = 240) - o) = (L 040 D)5-)0) - (S Di)5-) (0

i

obviously lies in C1A(7). O

Thus, if 9, € sym(€) and w € ker(¢S”) then {¢,w} lies in ker(¢)) as
well.
Let ¢ = p1. Then we have

() = (S ieagy, ) ) = Do) = )
If w € K, then, since p; is a symmetry of £, from (5.74) and from Lemma
5.20 we obtain that
adg;_l)(w) = al" Vw; +Q(0) € Ky,
where adg = {¢,-}. Taking into account (5.73) we get that ol = 0, or
ar =ag+ait+ - +ar_ot" 2, a; €R. (5.75)
Recall now (see Chapter 2) that

® = t*py + (po + tz)p1 + tpo +

is a symmetry of (5.71) and compute {®,w} for w of the form (5.74). To do
this, we shall need another lemma.

LEMMA 5.21. For any ¢ € F(E) the identity
9p 0Ly =Lyo 9y
holds, where U = Ug.
Proor oF LEMMA 5.21. In fact,
0=0c(9¢) = [Lu, 9¢] = Ly 0 9y — 9y 0 Ly.
O
Consider the form w = ¢ws, ¢* € F(E). Then we have
{0, 0°ws} = 9o (P°ws) — I pow,) (P) = Do (¢°)ws + ¢° I (ws) — I psw,) (D).
But
¢ (ws) = 9oL (ps) = Lu s (ps) = Lu D3 (®)
= Ly (B*pst2 + (t2po + t2)pss1 + (s + 1)(#2p1 + t)ps) + Qs — 1).
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On the other hand,

Do) (B) = P wera + (2° Dy (6°) + (Ppo + t2) %) wsta
+ (2 D2(¢°) + (po + t2) Dy(6°) + (t2p1 + )6 )ws.
Thus, we finally obtain

(@, p*ws} = {®, ¢° hws + (5 4+ 1) (t2p1 + t)ws
— 22D, (¢*)wsr1 + Qs — 1) (5.76)
Applying (5.76) to (5.74), we get
ade(w) = {®,w} = (rta, — t2aM)w, + Q(r — 1). (5.77)

Let now w € K, and suppose that w has a nontrivial coefficient «,. of the
form (5.75) and a; is the first nontrivial coefficient in «,. Then, by (5.77),

ady (W) = dlw, +Q(r — 1) € K,

where o/, is a polynomial of the degree r — 1. This contradicts to (5.75) and
thus finishes the proof. O

4. From deformations to recursion operators

The last example of the previous section shows that our theory is not
complete so far. In fact, it is well known that the Burgers equation pos-
sesses a recursion operator. On the other hand, in Chapter 4 we identified
the elements of the group HCI’O(S ) with the algebra of recursion operators.
Consequently, the result of Theorem 5.19 contradicts to practical knowledge.
The reason is that almost all known recursion operators contain “nonlocal
terms” like D;!. To introduce terms of such a type into our theory, we
need to combine it with the theory of coverings (Chapter 3), introducing
necessary nonlocal variables

Let us do this. Namely, let £ be an equation and p: N' — £ be a
covering over its infinite prolongation. Then, due to Proposition 3.1 on
p. 102, the triad (F(N),C®(M), (T © ¢)*) is an algebra with the flat
connection C¥. Hence, we can apply the whole machinery of Chapter 4 to
this situation. To stress the fact that we are working over the covering ¢, we
shall add the symbol ¢ to all notations introduced in this chapter. Denote
by UZ the connection form of the connection C¥ (the structural element of
the covering ).

In particular, on A/ we have the C¥-differential

0 = £ 1" D*(N'(N)) — DY (A™H(N)),
whose 0-cohomology HJ(E, ¢) coincides with the Lie algebra sym,, & of non-
local p-symmetries, while the module Hcl,’o(é’ ,p) identifies with recursion
operators acting on these symmetries and is denoted by R(E, ). We also

have the horizontal and the Cartan differential dj and d on A and the
splitting AY(N) = P .CPAP(N) @ A (N).

pt+g=t
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Choose a trivialization of the bundle p: N' — £ and nonlocal coordi-
nates w',w?, ... in the fiber. Then any derivation X € DY(A*(N)) splits to
the sum X = X¢+ XY, where X¢(w?) =0 and X" is a ¢-vertical derivation.

LEMMA 5.22. Let ¢: E° x RV — £, N < oo, be a covering. Then
Hg’o(g,go) = ker@&p’CpA(/\/’). Thus the module Hg’o(é',cp) consists of
derivations Q: F(N) — CPA(N) such that

[Ug, 918 =0, ([Ug.9")" =0. (5.78)

PROOF. In fact, due to equality (4.55) on p. 179, any element lying in
the image of 8(? contains at least one horizontal component, i.e.,

IZ(DY(CPA(N))) C D (CPA(N) @ A} (N)).
Thus, equations (5.78) should hold. O

We call the first equation in (5.78) the shadow equation while the second
one is called the relation equation. This is explained by the following result
(cf. Theorem 3.7).

PROPOSITION 5.23. Let £ be an evolution equation of the form

ok

Uy :f(a:,t,u,...,W)

and @: N = E® x RN — £ be a covering given by the vector fields?
D,=D,+X, D,=D +T,
where [Dy, Dy = 0 and

s 0 _ s 0
X:§s Xoos T_Es TS5
1 s

wr, ..., w*, ... being nonlocal variables in ¢. Then the group Hg’o(é’,(p)
consists of elements

U = Z\y@@ +Z¢SaseD”(cpA(N))

such that W; = D' Wy and

i () =0, (5.79)
0X*
S D2 (o) + Z O = Dau), (5.50)
oT*
a—DO‘ W) Z W = Dy(1p*), (5.81)
s=1,2,..., where Zg.) is the natural extension of the operator E ) to N.

2To simplify the notations of Chapter 4, we denote the lifting of a C-differential
operator A to N by A.
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PrOOF. Consider the Cartan forms
wi = du; — uj 1 de — DL(f)dt, 6° =dw® — X®dex —T*dt

on N. Then the derivation
0 0
0 _ , s
Ug = E@ wi® Gt ES 0" ® 5

is the structural element of the covering ¢. Then, using representation (4.40)
on p. 175, we obtain

+thZ(Za(D;f)qfa—Dt\m) &2

Oy Ou;
0X?® 0X? ~ 0
el hubalelPYNC R s
+dxA§Sj( 3 8uawa+zﬁjawﬁw Du(¥)) © 5
oT* or? ~ 0
- PN s i
+thzs:< 3 aua%JrzB:awﬁw Dyt ))®8w5,
which gives the needed result. O

Note that relations ¥; = D! (Wg) together with equation (5.79) are
equivalent to the shadow equations. In the case p = 1, we call the solu-
tions of equation (5.79) the shadows of recursion operators in the covering
¢. Equations (5.80) and (5.81) are exactly the relation equations on the
case under consideration.

Thus, any element of the group Hé’o(é’ , ) is of the form

B .0
\I/:E;Dx(w)ééaui +28:w D5 (5.82)

where the forms ¢ = Wg, ¥* € C'A(N) satisfy the system of equations
(5.79)—(5.81).
As a direct consequence of the above said, we obtain the following

COROLLARY 5.24. Let U be a derivation of the form (5.82) with v, ° €
CPA(N). Then 1) is a solution of equation (5.79) in the covering ¢ if and
only if OF (V) is a p-vertical derivation.

We can now formulate the main result of this subsection.

THEOREM 5.25. Let ¢o: N — E be a covering, S € sym, & be a -
symmetry, and ¢ € C'A(N) be a shadow of a recursion operator in the
covering ¢. Then ) =igi is a shadow of a symmetry in p, i.e., Lg(y)') = 0.
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PROOF. In fact, let ¥ be a derivation of the form (5.82). Then, due to
identity (4.54) on p. 179, one has

Of(isW¥) = ige s —is(0fW) = —is(OFV),

since S is a symmetry. But, by Corollary 5.24, 95 ¥ is a p-vertical derivation
and consequently 9F (ig¥) = —ig(9F ¥) is p-vertical as well. Hence, ig¥ is
a ¢-shadow by the same corollary. O

Using the last result together with Theorem 3.11, we can describe the
process of generating a series of symmetries by shadows of recursion op-
erators. Namely, let 1/ be a symmetry and w € C'A(N) be a shadow of a
recursion operator in a covering ¢: ' — £°°. In particular, v is a ¢-shadow.
Then, by Theorem 3.9, there exists a covering ¢y : Ny — N £, £ where
9y can be lifted to as a ¢,-symmetry. Obviously, w still remains a shadow
in this new covering. Therefore, we can act by w on 1 and obtain a shadow
Y1 of a new symmetry on Ny;. By Theorem 3.11, there exists a covering,
where both v and v are realized as nonlocal symmetries. Thus we can
continue the procedure applying w to 11 and eventually arrive to a covering
in which the whole series {1} is realized.

Thus, we can state that classical recursion operators are nonlocal de-
formations of the equation structure. Algorithmically, computation of such
deformations fits the following scheme:

1. Take an equation £ and solve the linear equation Ké»l)w = 0, where w

is an arbitrary Cartan form.

2. If solutions are trivial, take a covering ¢: N' — £ and try to find
shadows of recursion operators. Usually, such a covering is given by
conservation laws of the equation £.

3. If necessary, add another nonlocal variable (perhaps, defined by a
nonlocal conservation law), etc.

4. If you succeeded to find a nontrivial solution €2, then the correspond-
ing recursion operator acts by the rule Rq: ¢ +— 9y 1§}, where 9 is
the generating function of a symmetry.

In the examples below, we shall see how this algorithm works.

REMARK 5.12. Let us establish relation between recursion operators in-
troduced in this chapter with their interpretation as Backlund transforma-
tions given in Section 8 of Chapter 3.

Let © be a shadow of a recursion operator in come covering ¢: N — £,
Then we can consider the following commutative diagram:

1%
NNy

o

% Ve

oo Te
E Ve VE
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where T(c}/ and 7'/‘\// are the Cartan coverings of the equation and its covering
respectively, V,, is naturally constructed by ¢, while the mapping Vg is
defined by Vo(v) = v 2 Q, v € VN. The pair (V,, Vq) is the Bécklund
transformation corresponding to the recursion operator defined by 2.

This interpretation is another way to understand why shadows of recur-
sion operators take symmetries to shadows of symmetries (see Section 8 of
Chapter 3).

5. Deformations of the Burgers equation

Deformations of the Burgers equation
Uy = UUT + Us (5.83)

will be discussed from the point of view of the theory of deformations in
coverings. We start with the following theorem (see Theorem 5.19 above):

THEOREM 5.26. The only solution of the deformation equation
1
) =0
for the Burgers equation (5.83) is w = awy where « is a constant and
wo = du — uy dx — (uuq + ug) dt
i.e., Cartan form associated to u. This leads to the trivial deformation of

Ug for (5.83).

In order to find nontrivial deformations for the Burgers equation, we
have to discuss them in the nonlocal setting. So in order to arrive at an
augmented system, a situation similar to that one for the construction of
nonlocal symmetries (see Section 4 of Chapter 3), we first have to construct
conservation laws for the Burgers equation and from this we have to intro-
duce nonlocal variables.

The only conservation law for the Burgers equation is given by

Dy(u) = D, (%u2 + u1>, (5.84)

which is just the Burgers equation itself.
In (5.84), the total derivative operators D, and D; are given in local

coordinates on &, x, t, u, uy, uz,..., by
D—g—i-ug—i—ui—i-
YT 0r " ou Cou T
0 0 0
Dt:——l—ut——l—ult——i—... (585)

ot ou ouq

The conservation law (5.84) to the introduction of the new nonlocal variable
y, which satisfies formally the additional partial differential equations

Yo = U,

1
yr = §u2 + uy. (5.86)
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We now start from the covering £' = £ xR, where the Cartan distribution,
or equivalently the total derivative operators D,, Dy, is given by

- )
D:z: = D:Jc Y
+u8y
D= Dy + <§u n u1>a—y, (5.87)

where y is the (formal) nonlocal variable y = [*wudz with the associated
Cartan form w_; defined by

1
w1 =dy —udr — (§u2 + ul) dt. (5.88)

Local coordinates in £! are given by

(x7t7y7u7u17‘ . )

We now demonstrate the calculations involved in the computations of defor-
mations of a partial differential equation or a system of differential equations.
In order to construct deformations of the Burgers equation (5.83)

U=> DL ® aii’ (5.89)
we start at the generating form
Q= Fowg + Flo) + Fluy 4+ F3ws + Flw_q, (5.90)
where F?, i = —1,...,3, are functions dependent on u, u1, us, us, U4, us, Y.
The Cartan forms w_1,...,ws are given by
wo = du — uy dz — (uuy + ug) dt,
w1 = duy — ug dz — (u% + uug + ug) dt,
wo = dug — uz dx — (uug + 3ujug + ug) dt,
wsg = dus — ug dz — (uuyg + 4ujus + 3u§ + us) dt,
w_1=dy —udx — (%u2 + u1) dt, (5.91)
and it is a straightforward computation to show that
ﬁm (wi) = wiy1,
Dy(w_1) = uwp + w1,
ﬁt(wo) = uiwp + uwi + wa,
INDt(wl) = uswp + 2ujwi + uws + ws,
5t(w2) = ugwp + 3uswi + 3uiwe + uws + wy,
5t(w3) = ugwo + duzwi + 6usws + duiws + uws + ws, (5.92)
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Now the equation for nonlocal deformations is (4.65), see p. 185,

g1 (Q) = 0.
Since this one amounts to
Dy(Q) — u1Q — uD,(Q) — D2(Q) = 0, (5.93)
we are led to an overdetermined system of partial differential equations for
the functions F~1, ..., F3, by equating coefficients of w_1,...,ws to zero,
ie.,

wi: 0=—2D,(F%
w3: 0=—2D,(F%) + (D; — uDy — u; — D?)(F®) + 4u, F?,
(FY + (Dy — uDy — uy — D2)(F?) + 6ugF® + 3ui F?,
(F7) D

(D; — uDy — ug — D?)(F') 4 4usF3 + 3up F?

T

wy: 0=—2D,(F!
w1 : 0272]536 FO

wo: 0=—2D,(F "+ (D —uDy —uy — D2)(F°) + ugF> + usF>
+ U2F1 + ulFoa

wo1: 0= (D;—uDy—u —D3)(F7Y). (5.94)
Note that in each coefficient related to w_1, ..., ws there is always a number
of terms which together are just

(D¢ —uDy —ui — DA)(FY),  i=-1,0,1,2,3, (5.95)

which arise by action of Eél on the coefficient F? of the term Fiw; in 2,
(5.90). From these equations we obtain the solution by solving the system
in the order as given by the equations in (5.94).

This leads to the following solutions

F3 = C1,
3
F? = Zciu+ co,
2
3
Fl =C (ZU? +3U1> + cou + c3,

1 . 9 1 3 1
FO = c1 (—u‘3 + —uuy + 2u2> + 02<—u2 + —ul) + —c3u + cq4,

8 4 4 2 2
Fl=c¢ (§u2u +§uu +§u2+1u)+c (luu +lu)+lcu +c
—18 Lt Ut U 23 22 1 22 231 5.

(5.96)

Combination of (5.90) and (5.96)) leads to the following independent solu-
tions

W = wy,

wW? = UIW_1 + ugwp + 2w1,
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W4 = 2(uuy + ug)w_1 + (u? 4 6wy )wy + 4uwr + 4ws,
W7 = (3uuy + 6uug + 6uf + 4us)w_1 + (u® + 18uuy + 16us)wy
+ 6(u? + duy )wi + 12uwy + 8ws. (5.97)
In case we start from functions F?, i = —1,...,2, in (5.90), dependent on

x, t, u, ui, ug, Uz, Us, us, y, and taking F3 = 0, and solving the system of
equations (5.96) in a straightforward way, we arrive to

F2 = C1 (t),
1
Pl = 50/1(t)x + c1(t)u + ea(t),
1
FO = g(c'll(t):c2 + 2¢) (t)zu + 2¢1 (H)u? + 12¢1 (t)ug + 4ch(t)x
+ dez(t)u + es(t)),
1
F 1= E(c’{'(t)m?’ — 6] () + 126} (t)u + 12¢) () zuq
+ 24¢1 (8) (uug + ug) + 65 (t)x? + 24co(t)uy + 24c5(t)x + 48¢4(t)).
(5.98)
Finally, from the last equation in (5.94) we arrive at
ci(t) = on + ast + ast?,
Cg(t) = o4 + Oé5t,
3
c3(t) = ag + §t,
1
ca(t) = =505, (5.99)
which leading to the six independent solutions
Qg - Wt = wy,
oy W2 = wpw_1 + uowo + 2wi,
o W3 = (tug + Dw_1 + (tu + 2)wo + 2twy,
o1 ¢ Wt = 2(uuy + ug)w_1 + (u2 + 6uq)wo + duwy + dws,
Qo9 W5 = (2tuuy + 2tug + zug + u)w_1,
+ (tu2 + 6tuy + zu)wo + (dtu + 2x)wy + 4tws,
as : WO = (2t (uuy + ug) + 2tazu; + 2tu + 22)w_1,
+ (£ (uu? + 6uy) + 2tzu + 6t + %)wo,
+ (4t%u + 4tx)w; + 4t2ws. (5.100)

If we choose the term F? in (5.90) to be dependent of z, t, u, u1, us,
us, U4, us, y too, the general solution of the deformation equation (5.93),
or equivalently the resulting overdetermined system of partial differential
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equations (5.94) for the coefficients F, i = —1,...,3, is a linear combination
of the following ten solutions

Wl = w,

W? = ugw_1 + upwo + 2w1,

W? =
W4
WP =

W9

WlO

(tug + Dw—_1 + (tu + x)wo + 2tws,
= 2(uuy + ug)w_1 + (u? + 6u1)wo + duw; + dws,
(2tuug + 2tug + Tuy + u)w_q
+ (tu® + 6tuy + 2u)wy + (dtu + 22)w; + 4tws,
= (2t*(uuy + up) + 2txuy + 2tu + 22)w_;
+ (2 (u® 4 6uy) + 2tau + 6t + 2w
+ (4820 + 4tx)w; + 4t%w,,
= (3uPuy + 6uuy + 6uf + dus)w_1 + (u® + 18uuy + 16uz)wo
6(u + 4uy)wy + 12uws + 8ws,
(t(3uPuy + 6uug + 6u 4 4uz) + 2(2uuy + 2ug) + u?)w_
+ (t(u® + 18uuy + 16uz) + x(u® + 6u;) + 2u)wo
+ (t(6u? + 24u1) + z(4u))w;
+ (12tu + 4z)ws
+ 8tws,
= (*(3uuy + 6uuy + 6u? + 4ugz) + tr(duuy + 4us) + 2% (uq)
+ 2tu? + 2zu — 6)w_1 + (t2(u® 4 18uuy + 16us) + tx(2u? + 12uy)
+ 220 + 4tu — 22)wo + (12 (6u? + 24uy) + Stzu 4 222w,
+ (12620 + 8tz )ws + (8t ws,
= (t3(3u2u1 + 6uug + Gu% + 4dus) + t2x(6uu1 + 6us) + 3tx’uy
+ t2(3u® + 12u1) + 6tzu + 327 + 6t)w_1 + (£*(u® + 18uu; + 16us)
+ 122 (3u? + 18uy) + 3txu + 2% 4 18t%u + 18tx)wo + (3 (6u® + 24uy)
+ 126220 + 6ta? + 2412wy + (1263 + 12t%0)we + (8tH)wz.  (5.101)

+

In order to compute the classical recursion operators for symmetries
resulting from the deformations constructed in (5.100) induced by the char-
acteristic functions Wy, Wa, ..., we use Proposition 4.29. Suppose we start
at a (nonlocal) symmetry 9x of the Burgers equation; its presentation is

9x = X_ 1—+ZD’ (5.102)

8uZ
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The nonlocal component X_; is obtained from the invariance of the equa-
tions, cf. (5.87)

Yo = U,
_ Ll
yt - 2“ Ul,
ie.,
Dy(X_1) =X, (5.103)
from which we have
X1 =D Y(X). (5.104)

Theorem 4.30, stating that 9x Uj is a symmetry, yields for the component
0/0u,

Ox uW? =uy X1 +uX +2D,X = (D' +u+2D,)X  (5.105)
and similar for W3

Ox W3 = (tug + DX_1 + (tu + 2)X + 2tD, X
= ((tw1 + 1)D; ' + (tu+ z) + 2tD,) X.  (5.106)

From formulas (5.105) and (5.106) together with similar results with respect
to Wy, ..., Wy we arrive in a straightforward way at the recursion operators

Ry = id,

Ry = w1 D' +u+2D,,

Ry =t(uy D, +u+2D,) + 2+ D,

Ry = 2(uuy + ug) D' + (u + 6uy) + 4uD, + 4D2,

Rs = t((2uuy + 2u) D" + (u® 4 6uy) + 4uD, + 4D3)

+z(uiD; ' +u+2Dg) +uD; ',

Rg = t*((2uu1 + 2u2) Dy ' + (u® + 6u1) + 4uD, + 4D2)
+ 215:c(u1D9;1 +u+ 2Dz) + 22
+t(2uD;* + 6) + 22D} !,

R; = (3u2u1 + 6uug + 6u% + 4’LL3)D;1 + (u3 + 18uuy + 16us)
+ 6(u® + 4uy) D, + 12uD? + 8D3. (5.107)

The operator R is just the identity operator while Ro is the first classical
recursion operator for the Burgers equation.

This application shows that from the deformations of the Burgers equa-
tion one arrives in a straightforward way at the recursion operators for
symmetries. It will be shown in forthcoming sections that the representa-
tion of recursion operators for symmetries in terms of deformations of the
differential equation is more favorable, while it is in effect a more condensed
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presentation of this recursion operator. Moreover the appearance of formal
integrals in these operators is clarified by their derivation.

The deformation of an equation is a geometrical object, as is enlightened
in Chapter 6: it is a symmetry in a new type of covering.

6. Deformations of the KdV equation

Motivated by the results obtained for the Burgers equation, we search
for deformations in coverings of the KdV equation. In order to do this, we
first have to construct conservation laws for the KdV equation

up = uuy + ug, (5.108)
i.e., we have to find functions F*, F'*, depending on z, t, u, u1, ... such that
on £% one has
Dy(F*) = D.(F"), (5.109)
where D, D; are total derivative operators, which in local coordinates z, t,
u, U1, Uz, usz,... on £ have the following presentation
D 0 +u g +u +u 0 +-
T 0 ou T Cou g
0 0 0
Dy = — 5.110
En +Uta +Utlau1+ut28u2+ ( )
Since the KAV equation is graded,
deg(z) = —1, deg(t) = -3
deg(u) = 2, deg(ui) =3,..., (5.111)

F? F! will be graded too being of degree k and k + 2 respectively.

In order to avoid trivialities in the construction of these conservation
laws, we start at a function F'"V which is of degree k — 1 and remove in the
expression F* — D, (F'™V) special terms by choosing coefficients in F'*1V in
an appropriate way, since the pair (D, (F™V), Dy(F"V)) leads to a trivial
conservation law.

After this, we restrict ourselves to conservation laws of the type (F* —
D, (F"Y) Ft — Dy(F%"V)). Searching for conservation laws satisfying the
condition deg(F*) < 6, we find the following three conservation laws

1
lezu, Ff:(§u2+u2)a
1 1 1
Fy = §u2 Fl = (3u3 — 3% +uu2>

3
FY =u®—3u?, Fi= (Zu4 + 3uPuy — 6uut — 6ujus + 3u§). (5.112)

We now introduce the new nonlocal variables y1, y2, y3 by the following
system of partial differential equations

(yl)x =,
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1
(y1)r = ~u* + ug,

2
1
(y2)x = 5“ )
1 1
(y2)r = gu — iu% + uus

(y3)1‘ = u3 - 3“’%7

%u4 + 3uuy — 6uu’ — 6uyug + 3u3. (5.113)
The compatibility conditions for these equations (5.113) are satisfied because
of (5.109).

If we now repeat the construction of finding conservation laws on £ x
R3, where local variables are given by x, t, u, y1, Y2, Y3, U1, Uz,... and
where the system of partial differential equations is given for w, y1, y2, ¥3
by (5.113), we find yet another conservation law

(y3)t =

FZ = Y1,
Ff=u1+y» (5.114)

leading to the nonlocal variable y,4, satisfying the partial differential equa-
tions

(y4)ﬂ»‘ = Y1,
(ya)r = u1 + yo. (5.115)

The conservation law (Ff, F}) is in effect equivalent to the well-known clas-
sical (z,t)-dependent conservation law for the KdV equation, i.e.,

- 1

Fy{ =2u+ §tu2,

ot Lo L3 Lo

F; = :c(§u +u2> —|—t(§u + uug — §u1> —uy. (5.116)

We now start at the four-dimensional covering £ x R* of the KdV equation
EOO

U = uuy + us, (5.117)

where the prolongation of the Cartan distribution to £ x R* is given by

0 1 0 0 0
Dy =Dy +u— + ~t>— + (u* -3
T +Ua 1+ ay2+(u ul)ay +ylay4
~ 1 0 1 1 0
Dt:Dt—l—(§u +U2)61+< u3—§u1+uu2)a2
—|—(§u4—|—3u2u — 6uu?t — 6uju +3u2)i+(u + )i (5.118)
1 2 1 1u3 2 A3 1T Y2 ET :
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where D, D, are the total derivative operators on £, (5.110). In fact y,
Y2, y3 are just potentials for the KdV equation, i.e.,

x
ylz/ Ud.iU,
1
ygz/ Pl 2 dx,

x
Y3 = / u® — 3u? d, (5.119)
while y,4 is the nonlocal potential
x
Y4 = / y1 dx. (5.120)
The Cartan forms associated to yi,...,ys are denoted by w_1,...,w_4,
while wg,w1, . .. are the Cartan forms associated to ug, ui,... The generating
function for the deformation U; is defined by
6
Q= Flu+F o+ F w o+ Flw s+ F .y, (5.121)
i=0
where F' i = —4,...,6, are dependent on the variables
x,t,u,...,U7,y1,...,y4.

The overdetermined system of partial differential equations resulting from
the deformation equation (4.65) on p. 185

£(@) =0,
ie.,

Dy(Q) — u1Q — uD,(Q) — D3(Q) = 0, (5.122)
can be solved in a straightforward way which yields the following character-
istic functions

W() = wo,

2 1
Wy = §qu + wo + gulw_l,

4
9u + uz)wo+2u1w1+3uw2+w4

1
(uuy + u3)w 1 guiw-2,

!
3
( ud + uu2 + 2u1 + ZU4>w0 + (duug + Susz)wy

20
+ u + —u2>w2 + dSujws + 2uwg + we
1

1
3 (5u”uy 4 10uuz + 20w ug 4 6us)w_1 + g(uul + uz)w_2

—_
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1
+ 5—411,10.)_3. (5'123)

Note that the coefficients of w_1, w_9, w_3 in (5.123) are just higher sym-
metries in a agreement with the remark made in the case of the Burgers
equation.

From these results it is straightforward to obtain recursion operators for
the KdV equation, i.e.,

~ 2 1
Ry = Zu+ D? + gungl
~ 4 4 4
Ry = (§u2 + §u2> +2u1D, + zuD? + D}
1 1
+ g(uul +u3)Dy '+ §u1D;1u, (5.124)

while

Ry = (o + - 4, 2
R3 = (27u + —uug + 2u1 + QU4) + (4uu1 + 5u3) Dy + (= w2+ —u2) D2

3 3 3
+ 5u1 D3 + 2uD? + DS + 18 (5u uy + 10uuz + 20ujug + 6us) D, !
1 1
+ §(uu1 +uz) D tu + 5—4u1D;1(3u2 — 6u1D,). (5.125)
The last term in }~%2 and the last two terms in Eg arise due to the invariance
of
1
v2 =D, (2 2)’
y3 = DM (u? — 3u?). (5.126)

The operators El, Eg, Rg are just classical recursion operators for the KdV
equations (5.119). From (5.125) one observes the complexity of the recursion
operators in the last two terms of this expression, due to the complexity of
the conservation laws. The complexity of these operators increases more if
higher nonlocalities are involved.

REMARK 5.13 (Linear coverings for the KdV equation). We also con-
sidered deformations of the KdV equations in the linear covering and the
prolongation coverings, performing computations related to these coverings.

1. Linear covering £ x R%. Local coordinates are z, t, u, ug,... ,s1,
s9 while the Cartan distribution is given by
5:6:D:c+2328i1+ (—é82u1+% 9)\52)622
D; = D, — A+ u)a%1 + (— S1ug + %szm — %81u2 + %)\slu
+2N%) (5.127)
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The only deformation admitted here is the trivial one. There is how-
ever a yet unknown symmetry in this case, i.e.,

0
V= —. 12
S1592 8u (5 8)
2. Prolongation covering £ x R!. In this case the Cartan distribution
is given by
~ 1 0
Dcc = Dar; + (U+ 6(]2 —l—a)a—q,
~ 1 1 1 1
Dy =D, + <u2 + 3qm + §U2 + u(§q2 - ga)
—Zal= _. 5.129
3054 +0)) 5 (5.129)

But here no nontrivial results were obtained.

In effect these special coverings did not lead to new interesting deformation
structures.

7. Deformations of the nonlinear Schrédinger equation

In this section deformations and recursion operators of the nonlinear
Schrodinger (NLS) equation

U = —vg + k‘v(u2 + 112),

v = ug — ku(u?® 4 v?) (5.130)

will be discussed in the nonlocal setting.

In previous sections we explained how to compute conservation laws for
partial differential equations and how to construct from them the nonlocal
variables, thus “killing” the conservation laws, i.e., in the coverings the
conservation laws associated to the nonlocal variables become trivial.

We introduce the nonlocal variables y1, y2, y3 associated to the conser-
vation laws of the NLS equation and given by

Y1z = U2 + 'UQ,
Y1 = 2(—uvy + vuy),

Y24 = UV,
3 1 1 1 1
Yor = —ZkuA‘ — iku2v2 + Zkv4 +uug — iu% - 5“% (5.131)

and

Y3z = k(u? +0%)? + 2u? + 20%,
Y3 = 4((—kuv1 + kvul)(u2 + v2) — ugvg + vlu2). (5.132)
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In the three-dimensional covering £* x R3 of the NLS equation the Cartan
distribution is given by

_ 3 9
Dac = Da; + Zyix_v
preZ

~ 0
Dy =Dy + Zyit—, (5.133)
el
while D,, D; are total derivative operators on £°°, which in internal coor-
dinates z, t, u, v, uy, v1,... have the representation
0 + Uz+1 + Uikl -
" or
a [o.¢]
D; = En + Uzt -I- Z Vit (5.134)

Now in order to construct a deformation of the NLS equation, we con-
struct a tuple of characteristic functions

3 , 3
W= (flwf + Fuwl) + Y fiwy,

i=0 i=1
3 ‘ 3
W= (gwi +g'w) + ) Glwy,, (5.135)
i=0 =
where in (5.135) w}', w}, w,, are the Cartan forms associated to u;, vi, y;

respectively; the coefﬁments fir, f@', ¢', G', §' are dependent on
x? t? u7 v? A 7u47v47y17y27 y3'

The solution constructed from the deformation equation (4.65) leads to the
following nontrivial results.

u v
Wi = Ewl — Wy,
W”——l T+

1= kwl Uy, ,

1
2 2
Wy = (u” + v7)wy + uvwy — —wy + JUIWy, — VWyy,

2k

1
v 2, v
W3 =vwy — —wj + 5 U1@y, + UWy,,

2k

2
W3' = 8uviwy + 12vmnwh + duvwy’ + (4u® 4 8vH)w? — Ewé}

+2(—k(u® + 070 + v2)wy, + duwy, — vwy,,
W3 = (—12uuy — 4vvy)wy + (—4uvy — 8vug )wg
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2
+ (—8u? — 40wl — duvw? + Ewéf

+ 2(k(u? + v?)u — ug)wy, + 4v1wy, + uwy,. (5.136)
Suppose we have a shadow of a nonlocal symmetry
0 0 0 0 0
X=X—4+.. . +X"—+. . 4+ X 11—+ X o—+ X 3—. (5137
ga bt X gy Tt X g s+ Xoag - X (5137)

Then the nonlocal component X_; associated to y; is obtained from the
invariance of the equations

Yio = u® + 07,
Y1t = 2(—uvy + vuq). (5.138)
So from (5.138) we arrive at the following condition
Dy(X_1) =2uX" + 20X",
or formally
X 1 =D (2uX" + 20X"Y). (5.139)
From the invariance of the partial differential equations for ys, ys3, (5.131),
(5.132) we obtain in a similar way
X_o =D, (uDy(X") + v1.X"),

X_g =D, (4k(u® + v*)(uX" + vX") + 4uy Dy (X") + 4v1 D, (XY)).
(5.140)

Using these results, we arrive from W', W} in a straightforward way at
the well-known recursion operator

_ —vD;1(2u) —vD; 1 (2v) + 1D,
= <+qu1(2u) ~1p,  +uD;'(20) (5.141)

Recursion operators resulting from W}, W7, ¢ = 2,3,..., can be ob-

tained similarly, using constructed formulas for X_o, X_3, see (5.140).

8. Deformations of the classical Boussinesq equation
Let us discuss now deformations of Classical Boussinesq equation
U = U + VU1,
U = U1V + uvy + ovs. (5.142)
To this end, we start at a four-dimensional covering £> x R* of the Boussi-
nesq equation, where local coordinates are given by
(T, 0,y e YLy ey Yd)
with the Cartan distribution defined by
~ 0

0 0 0
D,=D,+v—4+u—+uv——+ u2+uv2+vva—,
’ Y on Y2 Y3 ( ? )32/4



234 5. DEFORMATIONS AND RECURSION OPERATORS

~ 1
D, =D, + <u+§v2>i+(uv—|—vga) 0

oy a—yz
1 1 0
+ <§u2 + uv® + vvgo — 51}%0) 8—y3
+ (2u2v + uv® 4 20uvy + 200309 + cvuy — avlul)a—. (5.143)
Ya
The nonlocal variables y1, y2, y3, Y4 satisfy the equations
(yl)a: =",
L,
(yl)t =u-+ 51} )
(yQ)&? = u,
(y2): = wv + va0,
(y3 xr = uv,
Ly 2 L,

(y3): = U + uv® 4 vvgo — 10,
(y4)z = u? + wv? + vugo,
(ya)r = 2020 + uv® + 20uvy + 200%v9 + cvus — oVLUY. (5.144)

We assume the characteristic functions W, W*" to be dependent on wf,
Wiy Wey WE, Wy, - .., Wy, Whereas the coefficients are required to be de-
pendent on x, t, v, u,..., V5, U5, Y1, .., Y4-

Solving the overdetermined system of partial differential equations re-
sulting from the deformation condition (4.65), we arrive at the following
nontrivial characteristic functions

WY = vwy + 2wy + viwy, ,
Wi = 2uwg + vwy + 20wy + uiwy,,
Wy = (4u + v*)wf + dvwl + dow} + (2001 + 2uy )wy, + 201wy,,
W3 = (4uv + 60v9)wy + (4u + v?)wl + 6viow! + dovwy + dowy
+ (2uvy + 2vuy + 2003)wy, + 2uiwy, (5.145)

and two more deformations.
As in the preceding section we use the invariance of the equations

(yl)x =,
(Y2)z =u (5.146)

to arrive at the associated recursion operators

- v+o Dyt 2
= <2u +20D2 + u; D v> (5.147)
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and
(4u + v?) + 40 D2 + (2vv1 + 2up) Dt ‘ 4o + 201 D1
(4u + v?) +40D?
+2u; D1

Ry = | (4uv + 609v9) + 60v1 D, + dovD?

+(2uvy + 2vu; + 20v3) Dt
(5.148)

Note that R is just equivalent to double action of the operator Ry, i.e.,

Ry = Rio Ry = (Ry)% (5.149)

9. Symmetries and recursion for the Sym equation

The following system of partial differential equations plays an interesting
role in some specific areas of geometry [16]:

ou ow
9z + (u— v)% =0,
ov ow
o~ (W= )5 =0
Pw  J*w
2wy = 7 . Nl
uve " + 92 + B 0 (5.150)

The underlying geometry is defined as the manifold of local surfaces which
admit nontrivial isometries conserving principal curvatures, the so-called
isothermic surfaces.

In this section we shall prove that this system (5.150) admits an infinite
hierarchy of commuting symmetries and conservation laws, [7]. Results will
be computed not for system (5.150), but for a simplified system obtained by

w w

the transformation u — ue™", v — ve™ %, i.e.,
ou ow 0
—_— = — =
Oz Ox ’
0 15
v _ dw_,
dy Oy
0w 0*w

9.1. Symmetries. In this subsection we discuss higher symmetries for
system (5.151):

Uy —VWe =0, vy —uwy =0, Wyy+ uv + Wy = 0. (5.152)
This system is a graded system of differential equations, i.e.,
deg(z) = deg(y) = —1,
deg(u) = deg(v) = 1,
deg(w) = 0. (5.153)
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All objects of interest for system (5.152), like symmetries and conservation
laws, turn out to be homogeneous with respect to this grading, e.g.,

deg(u;j) = deg(u) — ideg(w) — j deg(y) = 1+ + .

deg <uv

0
) = deg(u) + deg(v) — deg(wzy) = 0, (5.154)
OWyy
whereas in (5.154) u;j =ug ... zy...y-
i times j times
For computation of higher symmetries we have to introduce vertical
vector fields 9¢ with generating function ® = (®,, ®,, ®,,), which has to

satisfy the symmetry condition
lp(®) =0, (5.155)
where (p is the universal linearization operator for system (5.152), i.e.,
D, —-w, —vD,

lp=|-w, D, —uD, (5.156)
v u D2+ DS
The system ¢p(®) = 0 is homogeneous with respect to the degree, so

the symmetry with the generating function ® = (®,,®,,P,) is homo-
geneous with respect to the degree, i.e., deg(®,0/0u) = deg(®,0/0v) =
deg(®,,0/0w), leading to the required degree of ®:

deg(®,) = deg(®,) = deg(Py) + 1. (5.157)
Internal coordinates of £%°, where £ is system (5.152), are chosen to be

Ty Y, Uy, Uy W, Uy y Ugy Wy Wyyy Uyyyy Uy Wy Wary, Uyyys Vazay; Wrax, Wray, - - - -
(5.158)
Thus £ is solved for u;, vy, wy, and their differential consequences ug.. s,
Vy..ys Wz zy.yy- With this choice of internal coordinates, the symmetry
equation (5.155) reads

Dy (®,) — wy®y — vDy(Py) =0
—wy @y, + Dy(®,) — uDy(®,,) =0,
0Py + udy + D3(Py) + D} (®y) = 0. (5.159)

The generating function ¢ = (®,, ¢, ®,,) depends on a finite number of in-
ternal coordinates, ® being defined on £°°. Dependencies for the generating
function are selected with respect to degree, i.e., ® depends on the internal
coordinates of degree n or less. According to (5.157), this means that ®,,
depends on internal coordinates of degree n — 1 or less.

The results for the generating function ® depending on the internal
coordinates of degree 6 or less are as follows. There are two symmetries of
degree 0:

X% =1(0,0,1),
YO0 = (u+ zvws + yuy, v+ 20, + yuwy, 2w, + yw,). (5.160)
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The second symmetry in (5.160) corresponds to the scaling or grading of
systems (5.152), (5.153). Other symmetries appear in pairs of degrees 1, 3
and 5. The symmetries of degree 1 are

X! = (uy, uwy, wy),
Y1 = (vwg, v, wy). (5.161)

They are equivalent to the vector fields of 9/0y and 9/0x respectively.
The symmetries of degree 3 are

X3 = 6u’ vwy + 3u? Uy + 6UWy Wy + 3uy 3uyw + 2Uyyy,
X,i’ =3 wy + 3uwxwy — 3uwy — 2UWyay + 2UyWesz + 2WyUyy,
X3 = vw, — 20uy + 3wiw, — wg — 2Wyay (5.162)

and

Yi’ = 33w, — vafg + 3vwxw5 + 20Wage + 2WaVpr — 2Weg Vs,

Yv3 = 3020, — 6VWWey — SuJivx + 3w§vx + 2Upm,

Y3 = 30w, — wd + 3w$w§ + 2Wapn . (5.163)
Finally the components of the generating functions ® = (®,,, ®,, ®,,) of the
two symmetries of degree 5 are given by
XS = — 60u4va + 15u4uy — 60u3wywm — 14Ou202uy + 60u2vw§wy

— 60u2vw2 — 80u2vwmy + 3Ou2uyw§ + 110u2uyw§ — 40u2wyvm

+ 20u2uyyy — 40uv2wywm — 200uvuywzy — 120uvWwy 0,

— 40uw$w2w$y — 60uw§’wm + 120uvwytiyy — 40utywy v,

+ 80uttytyy + 60uw§wywm — 40UWyWazrr — 80UW Lz Waey

— 4Ov2uyw§ + 80vu12/wy + 20u3 + 15uyw4 — 50uyw; 2 2 — 40Uy W Warr

+ 15uyw3 + 80Uy Wy Wagy — 60uyw + 20uyw + 20w 2+ Uyyy

+ 40w Uyy Wy — 20w§uyyy + 80Wy Wiy Uyy + SUyyyyys

X;:’ =+ 3u5wy 20u3v? Wy + 10u3w? 2 Wy + 10u3w3 4u3wmy

— 16u2va7vugc;E + 1202 Uy Weg — 8u? Wy Wy Vg + 20u2wyuyy — 16u1)2w2wy

+ 8uv2wmy + 80uvuyw2 + 24uvv Wy + 20uu12/wy + 15uwf;wy
50uw2wy 20uw? 2 Wrry — 400w Wy Warr — 40UWL Wz Wey + 15uw2

+60uwywmy 20uwyw +20uwyw + 8UWazrzy — 81}2uywm

— 24vuy WL v, + 20uywxwm + 20uyw Wrg — SUyWrgrs + QOwgwyuyy

Y
3
— 20wyuyy + BWylUyyyy + BWezlyyy — SWraylyy,

3

2
Y~ AU Wegy

X) = 3u4wy 20u%v? Wy — 12u? VUy + 10u?w? 2Wy — 10u?w

2 2
— 16uvwy Wy — BUWLWyVz + BUWyUyy — 1602 WEWy + 8V Waay
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— 2OUuyw + QOUuyw 8vuyyy + 24vv,wey — 4u2wy

+ BUy Vg + 15w s Wy — 30w — 20w? P Wazy — 40WWyWegs

— A0WpWapWay + 3wy + 20wywmy — 20wywm + 20wyw$y + 8Wezray
(5.164)

and

Yi’ =4 151}52050 — 50v3w§’3 + 30v3wxw§ + 201}3wxm + 60v2wxvm

+ 2002wy vy + 15vw2 — 50vw3w2 — Gvazwmx

+ 15vwxw§ + 400w Wy Wigy — 20vwxw + Qvaxv + 20vw,w y
+ 20vw§wxm + 40V Wy Wez Wy + 8VWigrrr — Zmevm — 20wmwmvx

2 2
+ 20wxwyvzx + 8wy Vpzan — 20wywmzvx — BWagVazzr + SWazaVza

- SUacw;vzx:m

Yv5 =+ 151}4% — Gngwxwm — 90v%w? U + 3002 w? YUz T 2002 Vprr
+ 60vw3wm — 4va§wywxy — 601)wmw§wm — 400 WL W zre
— 80VWapWigr + 800V v, + 15wf;vx — 50w§w§vm — 20w§vmm
— 80W Wz Var — 80WaWare Vs + 15w3v$ + 20wvamC + 40wy Uz Wey

+ 40wy U Wy — GOngvz + 201}2 + Qvawgy + S8Vprrrr,
Y£ =+ 15v4wm — 300%w> o+ 30v2wgﬂ,u2 + 20U2wzmx + 400wy Vey
+ 40vwep v, + 3w — 30w — 20w? S Waas + 15wzw + 40w, Wy Wezy

— 20wmw + QmeU + 20wzw + 20w? yWaze + 40WyWag Wiy
L T — (5.165)

Apart from the second symmetry in (5.160), these symmetries commute,
e., [Pa,9¢/] = 0. The Lie bracket with the second symmetry in (5.160)
acts as multiplication by the degree of the symmetry.

REMARK 5.14. One should note that for system (5.152) there exists a
discrete symmetry

T:x—y, yr— T, ur v, 0 U W w, (5.166)

from which we have

T(X% = XY, (Y% =YY,
(X =11, T(Y!) = X1,
T(X3) =Y3, T(Y3) = X3,
T(X%) =Y5, T(Y®) = X°. (5.167)



9. SYMMETRIES AND RECURSION FOR THE SYM EQUATION 239

9.2. Conservation laws and nonlocal symmetries. As in previous
applications, we first construct conservation laws in order to arrive at non-
local variables and the augmented system of partial differential equations
governing them.

To construct conservation laws, we start at functions F'* and FY, such
that

Dy(F*) = Dy (F¥)

We construct conservation laws for functions F'* and FY of degree 0 until 4.
For degree 2 we obtained two solutions,

2 2 2
V"t wy —w
Yy
F* = 5 , FY = wyw,,
2 2 2
U+ wy —w
F* = —w,w,, FY = # (5.168)
Degree 4 yields two conservation laws, which are
F*=— (u2wxwy — u2wxy — 2uvwywy + 2uvwg, + wiwy - wxwg

+ 2wa}a:wxy) s

Y :(u4 — 4udv + 4 + 2u2wg — 6u2w§ — 4u2wm + Suvwyy

+ Buwyuy + wy — 6wiw; + w, + 4wl, — dul, — 4wl,) /4,

F* = — (v — 60%w? + 21}2102 + 40%Wey + SVWLV, + W — 6w§w§ + w;l
+dw?, — 4wl — 4v2) /4,
FY = — 2uvwzwy + vzwxwy - v2wxy — wiwy + wxwg — 2WapWay. (5.169)

Associated to the conservation laws given in (5.168), (5.169), we introduce
nonlocal variables.
The conservation laws (5.168) give rise to two nonlocal variables, p and
q of degree 1,
—0? +wi —w
Pz = fa Dy = WxWy,

u? + w2 — w?

Y
. 1
: (5.170)

To the conservation laws (5.169) there correspond two nonlocal variables r
and s of degree 3:

Qe = — Wz Wy, Qy =

2 2 3 3
Tz = — U W Wy + U Wey + 2UVWeWy — 2U0W5y — WyWy + Wywy, — 2Wp Wey,
Ty :(u4 — 4udv + 4u*0? + 2u2w§ — 6u2w§ — 4P Wey + SUVWey + Uy Uy
4 2.2 4 2 2 2
+ wy, — 6wiwy, + w), + 4wy, — duy — 4wy, ) /4,

4

Sy :(—114 + 6v2w? — 21}2103 — 2wy — SVWLVE — wi + ngwz — w),

— dw?, + 4w§y + 4v2) /4,
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8y = — 2u0Wewy + V2Ww, — Vi, — wiw, + wew? — 2wew (5.171)
y = z Wy z Wy zy Wy Wy zzWry- :

We now discuss the existence of symmetries in the covering of (5.152) by
nonlocal variables p, ¢, 7, s, i.e., in £%° xR*. The system of partial differential
equations in this covering is constltuted by (5.152), (5.170) and (5.171).

Total derivative operators Dm D are defined on £ x R*, and are given by

~ —v2 + w2 —w? 9 0 o o
DI:D%++8_p_wzwy8_q+rxa+sz%’

- ) u2+w2—w2 o o o
Dy:Dy—{—wxwya—p—'—#a—q—FTyE—'—Sy%, (5172)

where 74, 7y, Sz, Sy are given by (5.171).

Symmetries 9¢ in this nonlocal setting, where the generating function
¢ = (®,, Py, Py) is dependent on the internal coordinates (5.158) as well as
on the nonlocal variables p, ¢, r, s, have to satisfy the symmetry condition

(p(®) =0, (5.173)

where £ is the universal linearization operator for the augmented system
(5.152) together with (5.170), (5.171), i.e

lp=|-w, D, -—uD, (5.174)
v u D2+ D;
This does lead to the following nonlocal symmetry 9, of degree 2, where
Zy = — 2pvw, — 2quy
+z (31}3w$ — 3fuw§ + 3vwxw§ + 20Wgge + 2WaVge — 2wmvx)
+y (—6u2va — 3u2uy — buwyWey — 3ung2£ + 3uyw§ — 2uyyy)

— 2u® — 2uv? — duw? + 6uw§

— 20Wgyp + 4wV — Oy,
Zy = — 2pvg — 2quwy
+x (3?)2% — VWL Wy — 3w2vx + 3w2vx + 2vxm)
+y ( u? Wy — Suw? 2 Wy + 3uw + 2UWezy — 2UyWey — 2wyuyy)
— 2wy + 20° — 6vwx + 4va — 4duywy + 6V,
Zy = — 2pwy; — 2qwy
+x (3v2wx — w3+ 3wxw§ + 2Wgas )
+y ( u? wy + 20Uy — 3w§,wy + wz’ + 2wmy)
+ 2uv + 4wy, (5.175)

One should note that the coefficients at p, g, i.e., (—2vwy, —2v,, —2w;) and
(—2uy, —2uwy, —2wy), are just the generating functions of the symmetries
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(5.161). This nonlocal symmetry is just the recursion symmetry, acting by
the extended Jacobi brackets on generating functions on £* x R%.

There is another symmetry of degree 4, dependent on p, ¢,r,s. For an
explicit formula of this symmetry we refer to [10]. Finally we mention that
starting from £ x R*, there is an additional nonlocal conservation law

Dy(p) = Da(—q).
The nonlocal variable associated to this conservation law did not play an
essential role in the construction of the nonlocal symmetry (5.175).

9.3. Recursion operator for symmetries. We now arrive at the
construction of the classical recursion operator for symmetries of the Sym
equation [7]

o ow_,
Oz or
oo
oy u[“)y_7
Pw  *w

We could arrive at this recursion operator by the construction of deforma-
tions of system (5.176), but we decided not to do so. We shall demonstrate
how we can, from the knowledge we have of the nonlocal structure of defor-
mations, arrive at the formal classical recursion operator, which, by means of
its presentation as integral differential operator is of a more complex struc-
ture. Due to the structure of conservation laws, we can make an ansatz for
the recursion operator.

We expect that as in the previous problems, in the deformation structure
of our system (5.176) the Cartan forms associated to the nonlocal variables

p’ q7 i'e'7

2 2 2
vt wy —w
wp = dp — % dx — wywy dy,
u? + w? —wg
wq = dq + wywy dx — — dy (5.177)

play an essential role. According to this, the associated nonlocal components
of the symmetries play a significant role too. These components have to be
constructed from the invariance of the associated differential equations for
p and q. Since the system at hand is not of evolutionary type, we have a
choice to compute these components from the invariance of either p, or p,
and similar for the g, and gy.

Due to the discrete symmetry (5.166), we choose the invariance of the
following equations

Dy =Wz Wy,

Gz = — WgyWy.
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From these invariances, we obtain for the generating function of a symmetry
® = (D, Dy, Py ), terms like

P, = ngl(wny(%) + wy Dy (Pw)),

@, = D, (wy Dy () + wy Dy (D)) (5.178)
From the above considerations we expect the recursion operator to contain
terms like D! (w,Dy(-) + wyDe(+)), Dy HweDy(+) + wyDy(+)).

Moreover from the expected degree of the operator, which probably will

be equal to 2, due to the degrees of the symmetries of the previous sub-

section, we arrive at the ansatz for the recursion operator for symmetries.
From this ansatz we arrive at the following expression for R:

D; +u?+ w% — wz Wz Dy + 00 + Wep  wwe Dy — 2uwy Dy
R = Wy Dy + Wey —D2 —v? +w? — wg 20wz Dy — vwy Dy
0 U D;

00 waD%_l(wny + wyDy) — uyDgl(wyDz + wy Dy)
+ 10 0 veDy (wyDy +wzDy) — uwy D (wy Dy + wy Dy)
0 0 weD, (wyDy +wyDy) —wy Dy (wyDy + wy D)
It is a straightforward check that the operator R is a recursion operator for

higher symmetries since

(5.179)

KFOR:SOZF, (5180)
where the matrix operator S is given by

D§+u2+wg—w2 —D2 —v? 4 w? —wi —uDy — vwy
S = —wy Dy — 2wy Wy Dy + 2wy UW,, (5.181)

831 832 333
where S31, S32, S33 are given by
S31 = 2(uv + wm)D;lu — wyD_lDyu,

xX
S39 = 2me;1v + mengmv,
S33 = 2me;1wy + wny*lewy + 2(uv 4 Wee) D, wy

— wy Dy ' Dyw, + D 4w} — wj. (5.182)
It would have been possible not to start from the invariance of p,, g, but
from the invariance of for instance p., ¢, but in that case we had to in-
corporate terms like D v, D 'w, Dy, Dy w, D, into the matrix recursion

operator R.



CHAPTER 6

Super and graded theories

We shall now generalize the material of the previous chapters to the case
of super (or graded) partial differential equations. We confine ourselves to
the case when only dependent variables admit odd gradings and develop a
theory closely parallel to that exposed in Chapters 1-5.

We also show here that the cohomological theory of recursion operators
may be considered as a particular case of the symmetry theory for graded
equations, which, in a sense, explains the main result of Chapter 5, i.e.,
Hg’o(é’) = ker K(gp ). It is interesting to note that this reduction is accom-
plished using an odd analog of the Cartan covering introduced in Example
3.3 of Chapter 3.

Our main computational object is a graded extension of a classical partial
differential equation. We discuss the principles of constructing nontrivial
extensions of such a kind and illustrate them in a series of examples. Other
applications are considered in Chapter 7.

1. Graded calculus

Here we redefine the Frolicher—Nijenhuis bracket for the case of n-graded
commutative algebras. All definitions below are obvious generalizations of
those from 4. Proofs also follow the same lines and are usually omitted.

1.1. Graded polyderivations and forms. Let R be a commutative
ring with a unit 1 € R and A be a commutative n-graded unitary algebra
over R, i.e.,

A= Z .Ai, .AZ.A] C .AH_J‘
i€Z"
and
ab = (—=1)*%ba
for any homogeneous elements a, b € A. Here and below the notation (—1)ab
means (—1)1tnin where i = (i1,...,4), j = (j1,---,Jjn) € Z" are the
gradings of the elements a and b respectively. We also use the notation a - b
for the scalar product of the gradings of elements a and b. In what follows,
one can consider Zj-graded objects as well. We consider the category of n-
graded (left) A-modules Mod = Mod(.A) and introduce the functors
D;: Mod(A) = Mod(A)

243
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as follows (cf. [54, 58]):
Do(P) = P
for any P € Ob(Mod), P =", ;n P, and

D, ;(P) = {A € hompg(A, P) | A(A;) C Piyj, Aab)
= Aa)b+ (=1)2%aA(b)},
where j = (j1,...,Jn) = gr(A) € Z™ is the grading of A; we set

Di(P) =Y Dy;(P).

iGZ"

REMARK 6.1. We can also consider objects of Mod(A) as right A-mod-
ules by setting pa = (—1)*Pap for any homogeneous a € A, p € P. In
a similar way, for any graded homomorphism ¢ € hompg(P, @), the right
action of ¢ can be introduced by (p)p = (—1)P?p(p).

Further, if Dy, ..., Dy are defined, we set

DS+17j(P) = {A € hOHlR<.A, DS(P)> ’ A(Az) C D57i+j(P),
A(ab) = A(a)b + (=1)2 %A (D), Ala,b) + (—1)*°A(b,a) = 0}

and

Dsy1(P) = Z Dg11,4(P).
jezn

Elements of D4(P) a called graded P-valued s-derivations of A and elements
of Di(P) =3 50 Ds(P) are called graded P-valued polyderivations of A.

PROPOSITION 6.1. The functors Dg, s = 0,1,2,..., are representable in
the category Mod(A), i.e., there exist n-graded modules A°,A',... A%, ...,
such that

Dy(P) = homy(A®, P)
for all P € Ob(Mod).

Elements of the module A®* = A®(A) are called graded differential forms
of degree s.

Our local target is the construction of graded calculus in the limits needed
for what follows. By calculus we mean the set of basic operations related to
the functors D, and to modules A® as well as most important identities con-
necting these operations. In further applications, we shall need the following
particular case:

(i) Ao = C*°(M) for some smooth manifold M, where 0 = (0,...,0);
(ii) All homogeneous components P; of the modules under consideration
are projective Ag-modules of finite type.



1. GRADED CALCULUS 245

REMARK 6.2. In fact, the entire scheme of calculus over commutative
algebras is carried over to the graded case. For example, to define graded
linear differential operators, we introduce the action d,: homp(P,Q) —
homp(P,Q), a € A, by setting d,p = ap — (—1)%p - a, ¢ € homp(P,Q),
and say that ¢ is an operator of order < k, if

(0ag © -+ 0 day)p = 0

for all ag,...,ax € A, etc. A detailed exposition of graded calculus can be
found in [106, 52].

1.2. Wedge products. Let us now consider some essential algebraic
structures in the above introduced objects.

PROPOSITION 6.2. Let A be an n-graded commutative algebra. Then:

(i) There exists a derivation d: A — A' of grading O such that for any
A-module P and any graded derivation A: A — P there exists a
uniquely defined morphism fa: A — P such that fa od = A.

(i) The module A' is generated over A by the elements da = d(a), a € A,
with the relations

d(aa + b) = ada + Bdb,  d(ab) = (da)b + adb, a,be A
The j-th homogeneous component of A is of the form
A ={> adb|a,be A gr(a) +gr(b) = j},
(iii) The modules A® are generated over A by the elements of the form
Wi A Aws,  wi,...,ws € AL
with the relations
WA+ (1)’ Nw=0, wAabl=waAb, w,0 e, ae A.
The j-th homogeneous component of A® is of the form
A% = {Zwl A Aws | wi € A gr(wy) + -+ 4 gr(ws) = 5}
(iv) Letw € A, j = (j1,---sJn). Set gr'(w) = (j1,...,9n,5). Then
A=A =) A
s>0 s>0 jezZm

is an (n + 1)-graded commutative algebra with respect to the wedge
product

WAD=wWA - Aws AL A ANOp, wENA, 0EN, w,,05€ A,
i.e.,
WAO=(—1)TTg A w,

where w - 0 in the power of (—1) denotes scalar product of gradings
inherited by w and 0 from A.
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REMARK 6.3. When working with the algebraic definition of differential
forms in the graded situation, one encounters the same problems as in a pure
commutative setting, i.e., the problem of ghost elements. To kill ghosts, the
same procedures as in Chapter 4 (see Remark 4.4) are to be used.

A similar wedge product can be defined in D,(A). Namely for a,b €
Dy(A) = A we set
aNb=ab

and then by induction define
(AAV)(@) ¥ AAV(a) + (1) A(a) AV, (6.1)
where a € A, A € Dy(A), V € D,(A) and V in the power of (—1) denotes
the grading of V in the sense of the previous subsection.
PROPOSITION 6.3. For any n-graded commutative algebra A the follow-
ing statements are valid:
(i) Definition (6.1) determines a mapping
A: Ds(A) @4 Dy (A) — Dgyr(A),
which is in agreement with the graded structure of polyderivations:
Ds,i(A) A Dy (A) C Diyriivj (A).
(ii) The module Di(A) = 3" 50 jezn Ds,j is an (n+1)-graded commu-
tative algebra with respect to the wedge product:
ANV = (=1)AVHSY A A

for any A € Dy(A), V € D,.(A).!

(iii) If A satisfies conditions (i), (ii) on page 244, then the module D, (A)
is generated by Do(A) = A and D1(A), i.e., any A € Dg(A) is a sum
of the elements of the form

alq Ao AN Ay, AZ'EDl(.A), ac A.

REMARK 6.4. One can define a wedge product A: D;(A) ® 4 Dj(P) —
D;;(P) with respect to which D,(P) acquires the structure of an (n + 1)-
graded D, (A)-module (see [54]), but it will not be needed below.

1.3. Contractions and graded Richardson—Nijenhuis bracket.
We define a contraction of a polyderivation A € D4(A) into a form w € A"
in the following way

iwWw=A_w=0,ifs>r,
iaw = A(w), if s =, due to the definition of A",
low = aw, if a € A= Dy(A),

IThis distinction between first n gradings and additional (n 4 1)-st one will be pre-
served both for graded forms and graded polyderivations throughout the whole chapter.
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and for r > s set by induction
ia(da Aw) = ip@) (W) + (1) da A (w). (6.2)
PROPOSITION 6.4. Let A be an n-graded commutative algebra.

(i) For any A € Ds(A) definition (6.2) determines an (n + 1)-graded
differential operator

in: A¥ — A*
of the order s.
(ii) In particular, if A € D1(A), then ia is a graded derivation of A*:
IAN(WAB) =ia(w) A+ (—1)2“TTwAinl, we AT, 0 e A"
Now we consider tensor products of the form A"® 4 Ds(.A) and generalize
contraction and wedge product operations as follows
WRAABDA) = (-1 WA @ (AAV),
lweA(@ @ V) =wAia(d)®V,
where w,0 € A*, A,V € D,(A). Let us define the Richardson—Nijenhuis
bracket in A* ® D4(A) by setting
[2, 015" = iq(©) — (~1)HH EFHI=I =i (), (6.3)
where Q =w®A € A" ® D(A), =00V € A?® Ds(A). In what follows,

we confine ourselves with the case s = 1 and introduce an (n + 1)-graded
structure into A* ® D1 (\A) by setting

griw® X) = (gr(w) + gr(X),r), (6.4)

where gr(w) and gr(X) are initial n-gradings of the elements w € A", X €
D1(A). We also denote by 2 and €5 the first n and (n + 1)-st gradings of
Q respectively in the powers of (—1).

PROPOSITION 6.5. Let A be an n-graded commutative algebra. Then:
(i) For any two elements Q,0 € A* ® D1(A) one has
lio,ie] = ifo,efm-
Hence, the Richardson—Nijenhuis bracket [-,-]™ = [-,-]]" determines
in A* ® Dy (A) the structure of (n+ 1)-graded Lie algebra with respect
to the grading in which (n+1)-st component is shifted by 1 with respect
to (6.4), i.e.,
(i) [, 0] + (~1)2+@E D6, o =,
(iii) §(—1)®OFDHOHDR+E)[[Q, O™, Z]™ = 0, where, as before, §
denotes the sum of cyclic permutations.
(iv) Moreover, if p € A*, then
[2,p AT = (2 5p) AO + (=1)PP A [0, 0] ™.
(v) In conclusion, the composition of two contractions is expressed by

igoig =ig_e + (—I)Qlig/\@.
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1.4. De Rham complex and Lie derivatives. The de Rham differ-
ential d: A" — A"t is defined as follows. For » = 0 it coincides with the
derivation d: A — A! introduced in Proposition 6.2. For any adb € A!,
a,be A, we set

d(adb) = da A db

and for a decomposable formw = 0Ap e A", 0 €A™, pe A, r> 1,7 r" <
r, set

dw=dO Ap+(—1)"0 A dp.
By definition, d: A* — A* is a derivation of grading (0, 1) and, obviously,
dod=0.
Thus, one gets a complex

0—ALA i AT S dAT

9

which is called the de Rham complex of A.
Let X € Di(A) be a derivation. A Lie derivative Lx: A* — A* is
defined as

Lx =[ix,d] =ix od+doix. (6.5)
Thus for any w € A* one has
Lyw=X _dw+d(X _w).
The basic properties of Lx are described by
PROPOSITION 6.6. For any commutative n-graded algebra A one has
(i) If w,0 € A*, then
Ly(wAf) =LxwAf+ (1) “wALx,

i.e., Lx really is a derivation of grading (gr(X),0).
(ll) [Lx,d] :LX Od—dOLX =0.
(ili) For any a € A and w € A* one has

Lox(w) = alxw + da N ix (w).

(iv) [Lx,iv] = [ix,Ly] =ixy]-
(v) [Lx,Ly] = L[X,Y]-

Now we extend the classical definition of Lie derivative onto the elements
of A*® D1(A) and for any Q € A* ® D;(A) define

Lq = [in,d] = igod+ (=1)'doig.
If Q =w® X, then one has
Logx =w ALy + (—1)“"dw Aiy.

PROPOSITION 6.7. For any n-graded commutative algebra A the follow-
ing statements are valid:
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(i) For any Q2 € A* ® D1(A) one has
La(pA0) = La(p) A0+ (=1)7 TP p AL, p,0 € A,
i.e., Lo is a derivation of A* whose grading coincides with that of €.
(ii) [Lg,d] =Lgod— (=1)*1doLg = 0.
(ili) Loag = p A Lg + (=11 4dp Aig, p € A*.
To formulate properties of Lq similar to (iv) and (v) of Proposition 6.6,

one needs a new notion.

1.5. Graded Frolicher—Nijenhuis bracket. We shall now study the
commutator of two Lie derivatives.

PROPOSITION 6.8. Let, as before, A be an n-graded commutative alge-

bra.

(i) For any two elements Q,0 € A* @ Di(A), the commutator of
corresponding Lie derivatives [Lq,Le] is of the form Lz for some
= A*® D1 (A)

(ii) The correspondence L: A* @ D1(A) — D1(A*), Q — Lq, is injec-
tive and hence Z in (i) is defined uniquely. It is called the (graded)
Frolicher—Nijenhuis bracket of the elements 2,0 and is denoted by
2 = [Q,0]™. Thus, by definition, one has

[LQ,L@] — LII91®]]fn.
(iii) If Q and © are of the form
D=weX, 6=0QY, wlcA* X,YeD(A),
then
[Q,e]™ DX A0 [X,Y]+wALxA®Y
DMdwA (X L0) QY

=(-1)
(-1)
— (—1)¥OFUOIP A Lyw @ X
- (=1)
=(-1)

_l’_

1)FO+HRHDO1gg A (Y _w) @ X
D¥Pw A0 [X,Y]+Lo(B) @Y
— (=) 5 () @ X. (6.6)

(iv) If Q= X,0 =Y € D1(A) = A°® D;(A), then the graded Frélicher—
Nijenhuis bracket of Q0 and © coincides with the graded commutator
of vector fields:

[X,Y]™ = [X,Y].
The main properties of the Frélicher—Nijenhuis bracket are described by
PROPOSITION 6.9. For any Q,0,Z € A*® D1(A) and p € A* one has
(i)
[Q, 0] + (—1)+O N[0, o)™ = 0. (6.7)
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Fp@@ermiEieq o, =17 —o, (68)
i.e., [-,-]™ defines a graded Lie algebra structure in A* @ Dy(A).
(i)
[0 A O] =TLa(p) A O — (=1)*EFAHEFDNOrro1) gy £ 60
+ (=)o 5 A TQ,0]™. (6.9)
(iv)
[La,io] + (_1)9'9+91~(91+1)L@49 = i[[Q’G]]ﬁ,. (6.10)
(v)
iE|I97 @]]fn _ IIiEQ7 @]]fn + (_1)Q.E+Ql-(51+1) [[Q, iE@]]fn
+ (~1) Mg O — (—1)9'9+<Ql+1>'91i[[a@]]fnﬁ. (6.11)

REMARK 6.5. Similar to the commutative case, identity (6.11) can be
taken for the inductive definition of the graded Frolicher—Nijenhuis bracket.

Let now U be an element of A ® Di(A) and let us define the operator

oy =[U, ]™: A" @ D1(A) — A" @ Dy (A). (6.12)
Then from the definitions it follows that
ou(U) = [U,U]" = (1 + (-)"Y)Ly o Ly (6.13)

and from (6.7) and (6.8) one has
(L+ (=17 Nou(0v) + (-1 [ [U,U]"]" = 0

for any Q € A* ® D1(A).
We are interested in the case when (6.12) is a complex, i.e., 9y o dy = 0,
and give the following

DEFINITION 6.1. An element U € A! ® D;(A) is said to be integrable, if
(i) [U,U]™ = 0 and
(i) (=1)YV equals 1.
From the above said it follows that for an integrable element U one has
Oy o Oy = 0, and we can introduce the corresponding cohomologies by
1y (A) = XerOu: A7 © Di(A) — A" @ Di(A))
v N im(9y: A71 ® D1(A) — A" ® D1(A)) ‘
The main properties of Jyy are described by

PROPOSITION 6.10. Let U € A' ® D1(A) be an integrable element and
2,0 e A*®@Di(A), pe A*. Then

(1) du(p A Q) =Ly(p) AQ — (=1)V @40 dp NiqU + (1)U PHP1p A 9.
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(ii) [LU,iQ] = iaUQ + (—I)U{H—QlLQJU.
(i) [io, 0] + (=1)7 iy gmU = [iaU, O™ + (—1)U iy, 0.
(iv) ou[2, 61" = [9r2, 0] + (~1)V N[0, oye]™.
From the last equality it follows that the Frolicher—Nijenhuis bracket is

inherited by the module H;(A) = >~ 5 H{;(A) and thus the latter forms
an (n + 1)-graded Lie algebra with respect to this bracket.

2. Graded extensions

In this section, we adapt the cohomological theory of recursion opera-
tors constructed in Chapter 5 (see also [55, 58]) to the case of graded (in
particular, super) differential equations. Our first step is an appropriate
definition of graded equations (cf. [87] and the literature cited there). In
what follows, we still assume all the modules to be projective and of finite
type over the main algebra Ay = C°°(M) or to be filtered by such modules
in a natural way.

2.1. General construction. Let R be a commutative ring with a unit
and A_; C Ag be two unitary associative commutative Z"-graded R-alge-
bras. Let D =Dy C D(A_1, Ap) be an Ap-submodule in the module

D(A_1,Ap) = {0 € hompg(A_1, Ap) | O(ad’)
=da-d +(-1)%%-9dd, a,d’ € A_1}.
Let us define a Z"-graded Ap-algebra A; by the generators
[0,a], a€ Ay, O€ Dy, grl0,a] =gr(0)+ gr(a),

with the relations

[0, ao] = Oao,
[0,a+d'] =[0,a] + [0,d],
[a/8/+a//8// ]_ a [6/ ] [6// ]
[0, ad'] = [0, a] - a + (—=1)""a - [0,d],

where ag € A_1, a,d’,d” € A, 0,0',0" € Dy.
For any d € Dy we can define a derivation 1) € D(Ag, A1) by setting

oW(a) = [8,a], ac A.

Obviously, ?Ma = da for a € Ag. Denoting by D; the A;-submodule in
D(Ayp, Ay) generated by the elements of the form OW, one gets the triple

{Ao, A1, D1}, Ao C A1, D1 C D(Ap, A1),

which allows one to construct {4, Az, Dy}, etc. and to get two infinite
sequences of embeddings
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and
Do —Dy— -+ —Di—Dip1 — -,
where Ai—i—l = (Ai)ly ’Dl‘+1 = (Dz)l C D(Ai_l,Ai), and Di — Di+1 is a

morphism of A;41-modules.
Let us set

Ay =injlim 4;, Dy = injlim D;.

1—00 1—00
Then Do C D(As) and any element 0 € Dy determines a derivation
D(9) = 9(>®) € D(As). The correspondence D: Dy — D(As) possesses
the following properties

D(X)(a) = X(a) fora € A_q,
D(aX) = aD(X) for a € Ay.
Moreover, by definition one has
[D(X),D(Y)](a) = D(X)(Y (a) — (~1)* ' D(Y)(X(a)),
a€ A1, X,Y € Dy.

2.2. Connections. Similar to Chapter 5, we introduce the notion of a
connection in the graded setting.

Let A and B be two n-graded algebras, A C B. Consider modules the
of derivations D(A, B) and D(B) and a B-linear mapping

V: D(A,B) — D(B).

The mapping V is called a connection for the pair (A, B), or an (A, B)-
connection, if

V(X)|4 = X.

From the definition it follows that V is of degree 0 and that for any
derivations X,Y € D(A, B) the element

V(X)oY — (-1D)¥YV(Y)o X
again lies in D(A, B). Thus one can define the element
Ry(X,Y) = [V(X),V(Y)] = V(V(X) oY — (=1)* " V(Y) 0 X)
which is called the curvature of the connection V and possesses the following
properties
Ry(X,Y)+ (-1)*YRy(Y,X)=0, X,Y € D(A,B),
Ry(aX,Y)=aRvy(X,Y), ac€ B,
Ry (X,bY) = (-1)X"Ry(X,Y), be B.
A connection V is called flat, if Ry(X,Y) =0 for all X,Y € D(A, B).

Evidently, when the grading is trivial, the above introduced notions
coincide with the ones from Chapter 5.
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2.3. Graded extensions of differential equations. Let now M be
a smooth manifold and 7: £ — M be a smooth locally trivial fibre bundle
over M. Let £ C J*(r) be a k-th order differential equation represented as
a submanifold in the manifold of k-jets for the bundle 7. We assume £ to
be formally integrable and consider its infinite prolongation £ C J* (7).

Let F(€) be the algebra of smooth functions on £ and CD(E) C
D(E) = D(F(E)) be the Lie algebra generated by total derivatives CX,
X € D(M), C: D(M) — D(€) being the Cartan connection on £ (see
Chapter 2).

Let F be an n-graded commutative algebra such that Fo = F(£). De-
note by CDy(€) the F-submodule in D(F(E),F) generated by CD(E) and
consider the triple (F(&),F,CDy(£)) as a starting point for the construc-

tion from Subsection 2.1. Then we shall get a pair (Foo,CDoo(€)), where

CD (&) & (CDy(E))oo- We call the pair (Foo,CDoo(E)) a free differential

F-extension of the equation £.

The algebra F is filtered by its graded subalgebras F;,i = —1,0,1,...,
and we consider its filtered graded CD(€)-stable ideal I. Any vector field
(derivation) X € CDoo(E) determines a derivation X; € D(Fy), where
Fr = F/I. Let CD;(€) be an Fr-submodule generated by such deriva-
tions. Obviously, it is closed with respect to the Lie bracket. We call the
pair (F7,CDy(E)) a graded extension of the equation &, if I N F(E) = 0,
where F(€) is considered as a subalgebra in F.

Let F_oo = C°°(M). In an appropriate algebraic setting, the Cartan
connection C: D(F_s) — D(F(E)) can be uniquely extended up to a con-
nection

C[: D(f_oo,f[) — CD[(g) C D(f])

In what follows we call graded extensions which admit such a connection
C-natural. From the flatness of the Cartan connection and from the defini-
tion of the algebra CD.(€) (see Subsection 2.1) it follows that C; is a flat
connection as well, i.e.,

Re,(X,Y) =0,

where XY € D(F_w,Fr), for any C-natural graded extension
(F1,CD1(€)).

2.4. The structural element and C-cohomologies. Let us consider
a C-natural graded extension (F7,CD;(€)) and define a homomorphism Uy €
hOmj:I (D(f[), D(f[)) by
Ur(X)=X -C1(X_-), X€EDFr), Xooo=X|r .. (6.14)
The element U; is called the structural element of the graded extension
(F1.€D1(€)).
Due to the assumptions formulated above, Uy is an element of the module

Dy (A*(Fr)), where F is finitely smooth (see Chapter 4) graded algebra, and
consequently can be treated in the same way as in the nongraded situation.
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THEOREM 6.11. For any C-natural graded extension (Fi(€),CD(E)),
the equation £ being formally integrable, its structural element is integrable:

[Ur, U]™ = 0.

PROOF. Let X,Y € D(F;) and consider the bracket [Ur,U;]™ as an
element of the module homyg, (D;(E) ADr(€), Dr(€)). Then applying (6.11)
twice, one can see that

WU U™ (X,Y) = (=07 U200, Un(¥)] = ()7 Uy (U3 (X), Y))
— U([X,Ui(V))) + UR(X. YD), (6.15)

where £ = (—1)% Y (1+(-1)Y"Y). Expression (6.15) can be called the graded
Nijenhuis torsion (cf. [49]).

From (6.14) if follows that the grading of Uy is 0, and thus (6.15) trans-
forms to

[Ur, U™(X,Y) = (-7 2([U1(X), Ur(Y)] = UrlUr(X), Y]
~ UI[X, Uy(Y)] + UPIX, Y1) (6.16)
Now, using definition (6.14) of Uy, one gets from (6.16):
[Ur, U™ (X,Y)
= (=X 2([CH(X o), €1 (V-0)] = Cr([Cr (X 0), Y] -x)
= Cr([X, Cr(Yooo]-o0) + Cr((C (X, Y] -0)) )
But for any vector fields X,Y € D(Fj) one has
(Cr(X-o0)) =00 = X oo
and
(X, Y] so=Xo0Y o — (1) ¥Y 0 X.
Hence,
[Ur, UI]]fn(Xa Y)= (_1)X.Y ’ 2([CI(X700)’CI(Y700)]
CCHCH(X —o0) 0 Yoo — (—1)XYCr (Vo) o X_Oo))

= (—-1)XY2R¢, (X,Y) = 0.
O

Hence, with any C-natural graded £-equation, in an appropriate alge-
braic setting, one can associate a complex

0 — D(F;) — AY(F) @ D(Fp) — -
-+ — AN (F;) @ D(Fp) i AT‘H(}"]) ®@ D(F1) — -+, (6.17)
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where 8;(Q) = [Ur, Q]™, Q € A7(F;)® D(F;), with corresponding cohomol-
ogy modules.

Like in Chapters 4 and 5, we confine ourselves with a subtheory of this
cohomological theory.

2.5. Vertical subtheory.

DEFINITION 6.2. An element Q € A*(Fr) @ D(Fy) is called vertical, if
La(p) =0 for any ¢ € F_o C Fr = A°(Fp).

Denote by DY(Fr) the set of all vertical vector fields from D(Fj) =
AY(Fr) ® D(Fp).

PROPOSITION 6.12. Let (Fr,CDy(E)) be a C-natural graded extension of
an equation £. Then

(i) The set of vertical elements in A"(Fr) ® D(Fr) coincides with the
module A" (Fr) ® DY(Fr).

(ii) The module A*(Fr) @ DY(Fr) is closed with respect to the Fréolicher—
Nijenhuis bracket as well as with respect to the contraction operation:

[A"(F1) © DV (F1), A*(Fp) @ DU(FDI™ CA™(Fr) © DV (),
(A" (F1) @ D*(Fr)) = (A°(Fr) ® DU(Fp)) CA™7H(F) @ DY(Fp).
(iii) An element Q € A*(Fr) ® D(Fy) lies in A*(F) ® DV (Fr) if and only
if
iQ(U]) = Q.
(iv) The structural element is vertical: Uy € A (Fy) @ DY(F).

From the last proposition it follows that complex (6.17) can be restricted
up to

0 — DY(F;) — AY(F;) @ D¥(Fp) —
o N(F) @ DU(FD) 2 AN F) @ DY(Fr) — -+ (6.18)

Cohomologies
ker(dy: A7(Fy) @ DY(Fy) — A"TY(F;) ® D*(Fy))
im(9r: A=Y (Fp) ® DV(Fy) — A" (Fr) @ D*(Fp))

are called C-cohomologies of a graded extension. The basic properties of the
differential 9y in (6.18) are corollaries of Propositions 6.9 and 6.12:

Hi(€) =

PROPOSITION 6.13. Let (F;(E),CD1(E)) be a C-natural graded extension
of the equation £ and denote by Ly the operator Ly,. Then for any Q,0 €
AN (Fr) ® D (Fr) and p € A*(Fr) one has

(i) 9r(p A Q) = (Lr(p) — dp) AN Q2+ (=1)P* - p A O19,

(ii) [Lr.ie] =ip0 + (~1)"'Lg,
(i) [in,07]© = (—1)"1(9;Q) L O,
) 97[Q, 0]™ = [0:9, 0]™ + (-1)™1[Q, §;0]™.

(iv
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Let dp, = d—Ljy: A*(Fr) — A*(Fr). From (6.13) and Proposition 6.6 (ii)
it follows that djody, = 0. Similar to the nongraded case, we call dj, the hori-
zontal differential of the extension (Fr,CDy(€)) and denote its cohomologies
by Hj(E;1).

COROLLARY 6.14. For any C-natural graded extension one has

(i) The module Hy () =", ~o H[(€) is a graded H;(E;I)-module.

(ii) H}(E) is a graded Lie algebra with respect to the Frélicher—Nijenhuis
bracket inherited from A*(Fr) @ DV(Fy).
(ili) Hf(E) inherits from A*(Fr) ® DY(Fr) the contraction operation
H(€) S Hj(€) € HI ™€),

and Hj(E), with the shifted grading, is a graded Lie algebra with re-
spect to the inherited Richardson—Nijenhuis bracket.

2.6. Symmetries and deformations. Skipping standard reasoning,
we define infinitesimal symmetries of a graded extension (F7(£),CD(€)) as
De,(€) ={X € D1(€) | [X,CD(€)] € CD1(E)};

D¢, (&) forms an n-graded Lie algebra while CD(€) is its graded ideal con-
sisting of trivial symmetries. Thus, a Lie algebra of nontrivial symmetries
is

sym;E = D¢, (€)/CDy(E).
If the extension at hand is C-natural, then, due to the connection C;, one
has the direct sum decompositions
D(Fp) = D*(F1) @CD(€), De, (€)= D¢, (€) ®CD((E), (6.19)
where
De, (&) ={X € D}(E) | [X,CD(€)] = 0} = D*(Fr) N De, (€),

and sym; € is identified with the first summand in (6.19).
Let ¢ € R be a small parameter and U;(¢) € AY(F;) ® DY(F) be a
smooth family such that
(i) Ur(0) = Ur,
(ii) [Ur(e),Ur(e)]™ = 0 for all .
Then Uyp(e) is a (vertical) deformation of a graded extension structure,
and if

Ur(e) =Ur + Ut - e+ o(e),

then U} is called (vertical) infinitesimal deformation of Ur. Again, skipping
motivations and literally repeating corresponding proof from Chapter 5, we
have the following

THEOREM 6.15. For any C-natural graded extension (Fr,CDi(E)) of the
equation £ one has

(i) HP(€) = sym;(€);
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(ii) The module H}(E) consists of the classes of nontrivial infinitesimal
vertical deformations of the graded extension structure Uy.

The following result is an immediate consequence of the results of pre-
vious subsection:

THEOREM 6.16. Let (F;,CD;(E)) be a graded extension. Then

(i) The module H} () is an associative algebra with respect to contrac-
tion.
(ii) The mapping

R: Hi(E) — Endgr(H{(E)),
where
Ro(X)=X_Q, Xe€H)E), Qe H(E),
is a representation of this algebra. And consequently,
(iii)
(sym; E) L H}(E) C sym; E.
2.7. Recursion operators. The first equality in (6.19) gives us the
dual decomposition
AN(Fr) = CANFr) & A (F1), (6.20)
where
CAYNFr) = {w e AY(Fp) | CD1(€) sw =0},
AL(Fr) = {w e AYFr) | DY(Fr) sw =0}

In fact, let w = > fad9a, fa,9a € Fr, be a one-form. Then, since by
definition d = dj, + L, one has

=" faldnga + Li(ga).

Let X € DY(Fy). Then from Proposition 6.13 (ii) it follows that
X oLi(g) = —Li(X 2g) + 0r(X) 29+ Lx(9) = X(9), g€ 7FI.
Hence,
X udpg=X o(d-L1)g=X(g) — X(9) = 0.
On the other hand,
Li(g) = Ur —dg,
and if Y € CDy(€), then
Y LLi(9) =Y o (Ur wdg) = (Y L Ur) wdg
due to Proposition 6.5 (v); but Y Uy =0 for any Y € CD;(E).
Thus, similar to the nongraded case, one has the decomposition
AT(Fr)= Y CPA(F) AAL(FD), (6.21)
ptq=r
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where
CpA(]:[) = CAl(fj) A A CAI(]:[),

p times

and
AJ(Fr) = M(Fr) A+ NA,

q times

and the wedge product A is taken in the graded sense (see Subsection 1.2).

REMARK 6.6. The summands in (6.21) can also be described in the fol-
lowing way
CpA(f[) /\A;]L(f[) = {w € Ap+q(f[) ’ X1 ... pHl W = 0,
Yi ... g+l JWw = 0 for all X, € Dv(f[),Yb S CD[(g)}

PROPOSITION 6.17. Let (F7,CDr(E)) be a C-natural extension. Then
one has

Ar(CPA(Fr) A AL(Fr) @ DU(Fr)) € CPA(Fr) A AT (Fr) @ DU(Fp)
for all p,q > 0.
The proof is based on two lemmas.
LEMMA 6.18. dpC'A(Fr) C CPA(Fr) A A} (Fr).
Proor oF LEMMA 6.18. Due to Remark 6.6, it is sufficient to show that
XY Y'Y dpw =0, X" YY" e DY(Fy), (6.22)
and
XM _oyh Ldpw =0, X" YhecCD(E), (6.23)
where w € CYA(F;). Obviously, we can restrict ourselves to the case w =
Li(g9), g € Fr:
Y ydpw =YY udpL(g) = =YY L Ldpg
=L(Y" 2dng) + Lyo(dng) = dpY"(g).
Hence,
XYY udpw = XY dpY?(g) =0,
which proves (6.22). Now,
Y dpw = —Y" L Lidpg =YY" L (d(Ur Sdng) — Ur 2 d(dng)).
But Uy is a vertical element, i.e., Uy € AY(F;) ® DV(F;). Therefore,
Ur udpg=20

and

Yh 1 dhw = —Yh 1 U[ 1 d(dhg)
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= —Y" _Up) Ld(dpg) — (Y AU Zd(dpg).
The first summand in the right-hand side of the last equality vanishes, since,
by definition, Y L U; = 0 for any Y" € CD;(€). Hence,
XY Ldpw = =X (Y AU d(dng)
= —(X" L (Y" AUD) wd(dng) — (X" AY" AUT) Zid(dng)
= —(X"AY" AUT) Ld(dpg).
But X" AY" AU; is a (form valued) 3-vector while d(dyg) is a 2-form;
hence
X"y Ldpw =0,
which finishes the proof of Lemma 6.18. U
LEMMA 6.19. 8;D(Fr) C A} ® DV(Fy).

ProoOF OF LEMMA 6.19. One can easily see that it immediately follows
from Proposition 6.13 (iii). O

PROOF OF PROPOSITION 6.17. The result follows from previous lem-
mas and Proposition 6.13 (i) which can be rewritten as

Or(p A Q) = —dp(p) N2+ (=1)"p A 01 ().
O

Taking into account the last result, one has the following decomposition
Hy(€) = > H'(E),
ptg=r
where
) 5 . 5 —1
HPI(E) = ker(9p7) /m(@ ),
where 9491 C'A(Fy) A A (Fr) ® DY(Fr) — CH(Fp) AN (F1) ® DU(Fp).
In particular,
HHE) = HY (&) o HY(E). (6.24)
Note now that from the point of view of H}(&)-action on HY(&) =
symj &€, the first summand in (6.24) is of no interest, since
D(Fr) 5 A (Fr) = 0.
We call H;’O(S) the Cartan part of Hj(£), while the elements of HILO(E)

are called recursion operators for the extension (Fr,CD(£)). One has the
following

PROPOSITION 6.20. H?*(£) = ker 97,
PROOF. In fact, from Proposition 6.17 one has
im(9r) N (C*A(Fr) @ DY (Fr)) =0,
which proves the result. O
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Note that H}k’o (€) inherits an associative graded algebra structure with
respect to contraction, H}’O (€) being its subalgebra.

2.8. Commutativity theorem. In this subsection we prove the fol-
lowing

TurorEM 6.21. [H°(E), H (&)™ c H(€).
The proof is based on the following
LEMMA 6.22. For any w € C*A(F;) one has
U sw=w. (6.25)

PROOF OF LEMMA 6.22. It is sufficient to prove (6.25) for the genera-
tors of the module C*A(F) which are of the form

w="Li(g), ge€Fr.
From (6.10) one has
Lyoiy, —iy, oLr+ Ly, _u, = i[UI’UI]]fn,
or
L;oiy, —iy, oL; + Ly = 0. (6.26)
Applying (6.26) to some g € Fj, one sees that
Ur - Li(g) = Li(g)-
O

PROOF OF THEOREM 6.21. Let 2,0 € H}’O(é’), ie, Q,0 € CA(F))
and 07Q = 010 = 0. Then from (6.11) it follows that

Ur o[, @]]fn = [[U[ 8, @]]fn +[Q,Ur @]]fn,
or, due to Lemma 6.22,
Ur L[, 0)™ = 2[0, e]™.

Hence,
[0, 01" = LUy [0, €]" = L0r L (Ur [, 6]")
— (U S 10,61 - (U AU S 19,617)
= S WS [92, 01" = (U1 A UL S [, 0])
= 310.61" — LU AU [0
or

1
[2,0]" = —5(Ur AU = [, 0]™
But U; € C*A(F;) ® DV(F;) which finishes the proof. O
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COROLLARY 6.23. The element Uy is a unit of the associative algebra
H2(E).

PROOF. The result follows from the definition of the element U; and
from Lemma 6.22. O

COROLLARY 6.24. Under the assumption H?’O(E) =0, all recursion op-
erators for the graded extension (Fr,CDi(E)) commute with respect to the
Frolicher—Nijenhuis bracket.

Let Q € HII’O(S) be a recursion operator. Denote its action on HY(€) =
sym;(€) by Q(X) =X .Q, X € HY(E). Then, from (6.11) it follows that

Y X (0,00 = (1) (-1 2 [e(x), e(v)
+(=1)CO(X), Q(Y)]
— (=1)*PQ((=1)"P[B(X),Y] + [X,0(Y)])
—O((=1)"QX), Y] + [X, (Y)))
F((—1)%®000 + 00 0)X, Y]), (6.27)
for all X,Y € sym;(€), 2,0 € H°(€).
COROLLARY 6.25. If HIQ’O(S) = 0, then for any symmetries X,Y €
sym;(€) and recursion operators Q2,0 € H}’O(S) one has
(—)" (X)), 0(Y)] + (1) CO(X), (Y)]
= (~1)*PQ((-D)O(X), Y] + [X,0(Y)]) + O((-1) " [Q(X), Y]
+ X, Q) + ((-1)®Q00 + 00 Q)[X,Y]. (6.28)

In particular,
(1+ (=D (=) Q(X), (V)]
—(—D)YRQI(X), Y] - QX, Q(Y)] + Q2[X, Y]) —0,

and if Q- Q is even, then

[Q(X), (V)] = Q(QX), Y] + (-)"?[X, QY)] - (-1)"?Q[X, Y]()G- 29)

Using Corollary 6.25, one can describe a Lie algebra structure of sym; &£
in a way similar to Section 3 of Chapter 4.

3. Nonlocal theory and the case of evolution equations

Here we extend the theory of coverings and that of nonlocal symmetries
(see Chapter 3 to the case of graded equations (cf. [87]). We confine our-
selves to evolution equations though the results obtained, at least partially,
are applicable to more general cases. For any graded equation the notion of
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its tangent covering (an add analog of the Cartan covering, see Example 3.2
on p. 100) is introduced which reduces computation of recursion operators to
computations of special nonlocal symmetries. In this setting, we also solve
the problem of extending “shadows” of recursion operators up to real ones.

3.1. The GDE(M) category. Let M be a smooth manifold and A =
C*(M). We define the GDE(M) category of graded differential equations
over M as follows. The objects of GDE(M) are pairs (F,V £), where F is
a commutative n-graded A-algebra (the case n = oo is included) endowed
with a filtration

A=F ooC...CFCFiy1C..., U]:i:j:’ (6.30)

while V£ is a flat (A, F)-connection (see Subsection 2.2), i.e.,
(1) Vr e hom]:(D(A,}—),D(]:)),
(i) Vr(X)(a) = X(a), X € D(A, F), a € A,
(ili) [V#(X),V£(Y)] = Ve(Ve(X) oY = Vz(Y)o X), X,Y € D(A, F).
From the definition it follows that the grading of V£ is 0, and we also
suppose that for any X € D(A, F) the derivation V £(X) agrees with the
filtration (6.30), i.e

V]:(X)(.E) - E-&-s

for some s = s(X) and all 7 large enough.

Let (F,Vz) and (G,Vg) be two objects and ¢: F — G be a graded
filtered homomorphism. Then for any X € D(A, F) the composition ¢ o X
lies in D(A,G). We say that it is a morphism of the object (F,Vz) to
(G,Vg) if the diagram

— G
V#(X) | (poX)
g

is commutative for all X € D(A,]-" ). If ¢ is a monomorphism, we say that
it represents a covering of (G, Vg) over (F,Vx).

REMARK 6.7. Let £ be an equation in some bundle over M. Then all
graded extensions of £ are obviously objects of GDE(M).

REMARK 6.8. The theory of the previous section can be literally applied
to the objects of GDE(M) as well.

3.2. Local representation. In what follows, we shall deal with the
following kinds of objects of the category GDE(M):
(i) infinite prolongations of differential equations;
(ii) their graded extensions;
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coverings over (i) and (ii).

For particular applications local versions of these objects will be consid-
ered. It means the following:

(i)
(i)

(iii)

In a neighborhood O C M local coordinates x = (z1,...,x,) are
chosen (independent variables);
the bundle 7: £ — M in which &£ is defined is supposed to be a

vector bundle, and it trivializes over O. If (ej,...,e,) is a basis
of local sections of m over O, then f = u'e; + --- + u™e,, for any
f € I'(r|o), and u!,...,u™ play the role of dependent variables for

the equation &;
the equation £ is represented by a system of relations
F(x,...,ub,...) =0,

where vl = 8|U|uj/8:vg, 0= (i1,...,in), lo| =101+ +ip, <k, are
coordinates in the manifold of k-jets J*(7), k being the order of &;
a graded extension F of F(E) (see Subsection 2.3 is freely generated

over F (&) by homogeneous elements v, v? . It means that F
generated by v, where v}, = v/ and
J
U(ib---,is-i-l,---,i ) [Ds,’U(“ Zn)]’

D; being the total derivative on £%° corresponding to 9/0zs. In this
setting any graded extension of £ can be represented as

(Fy(x,...,ub,...) + o1z, uly . vl ) =0,

¢7‘+1 (l’, 7u{7a ,Ug'a ) = 07
¢7‘+l(w7 ,'U,(])—, U$—7 ) — 07
where ¢1, ..., ¢, are functions such that ¢; = 0,..., ¢, = 0 for vl =

for any covering ¢: F — G of the graded extension F by an object
(G, Vg) we assume that G is freely generated over F by homogeneous
elements w!, w?,... and

d dof -
vg< ) D+Z ZaUJS:Di
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0
ZXZa s’ Z Jaws]zo’

where 4,5 = 1,...,n, X/ € G, and Dq,..., D, are total derivatives
extended onto F: D; = V£(0/0x;). Elements w', w?,... are called
nonlocal variables related to the covering ¢, the number of nonlocal
variables being called the dimension of ¢.

3.3. Evolution equations. Below we deal with super (Zo-graded) evo-
lution equations £ in two independent variables x and ¢:

U% = f (l’,t,u "um, 7uka 7u7kn)a
....................................... (6.31)
u;n = fm(l.at?ul? 7um7 7“]%;7 7u2‘n)7

1 m

where ul,...,u™ are either of even or of odd grading, and u’ denotes

ou’ /0x°. We take x,t,u(l),...,ug‘,...,u},...ug,... for the internal coor-

dinates on £°°. The total derivatives D, and D; restricted onto the infinite
prolongation of (6.31) are of the form

+ZZ H—la j

=0 j=1
+ Z Z DL(f))— ol (6.32)
=0 j=1 ou

In the chosen local coordinates, the structural element U = Ug of the
equation & is represented as

o0 m 8
= —_— ’L ‘7
U ; j;(d wl . dr — D'(f1)dt) ® ol (6.33)

Then for a basis of the module C*A(E ) one can choose the forms
w] = Ly(ul) = du! —ul,, dv — D'(f7)dt,
while (6.33) is rewritten as
U= ZZw ® (6.34)
=0 j=1

Let © =370, >, 0] © 8/0ul € AP(E) @ D’(E). Then from (6.6) one
has

05(0) = [U,0]"™ = > 3" (du A (8, — Du(8)))

i=0 j=1

+ dt A ZZeﬂaDZ —Dt(egf)))@ﬁ. (6.35)
=0a=1 8”
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From (6.35) one easily gets the following

THEOREM 6.26. Let £ be an equation of the form (6.31). Then Hg’o(é’)
consists of the elements

99—222117 (67) e
) J %

where 6 = (0%,...,0™), 09 € CPA(E), is a vector-valued form satisfying the
equations

k. m
97l
ZZDQ(W)—“C:O, I=1,....,m, (6.36)
i=0 j=1 du;
or in short,
HYO(E) = kerét(gp),
where fép) 1s the extension of the operator of universal linearization operator

onto the module CPA(E) @ R™:

(E(p) ZZDZ 9; 8 J, l=1,...,m. (6.37)

=0 j=1

3.4. Nonlocal setting and shadows. Let now ¢ be a covering of
equation (6.31) determined by nonlocal variables w!,w?,... with the ex-
tended total derivatives of the form

D.t = Da: +ZXsaia

Ws

(6.38)

satisfying the identity
(D, Di] = 0. (6.39)
Denote by F(&,) the corresponding algebra of functions and by A*(&,)

and D(&,) the modules of differential forms and vector fields on F(&,)
respectively. Then the structural element of the covering object is

0

Up=U+) (dws — Xydo — Ty dt) @ Fo.

and the identity
[U s Us@]]fn =
is fulfilled due to (6.39).

If now
O = ZZGf@ +Zps

=0 j=1
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is an element of the module AP(€,) ® DV(&,), then one can easily see that

0,(0) = [U,, o)™ ZZ <da:/\ D.(67))

=0 j=1
+dt A ZZeﬂaD oS’ Dt(eg')))@%
B=0a=1 u;
ﬁ 0a=1
0
+th( vaa ps))> ® 5= (6.40)
B=0a=1 s

Again, confining oneself to the case © € CPA(E,) ® DY(E,), one gets the
following

THEOREM 6.27. Let € be an equation of the form (6.31) and ¢ be its
covering with nonlocal variables wi,ws,... and extended total derivatives
given by (6.38). Then the module Hp’o(é’ ) consists of the elements

sg,p_ZZDl 67) ®—+Zps —, (6.41)

=0 j=1

where = (01,....0™) and p = (p1,...,ps,...), 09,ps € CPA(E,), are

vector-valued forms satisfying the equations

i) =0, (6.42)
and
>3 Bl 2 = Dulpy),
B=0a=1
B(pe »

ZZD (0%) 5 a+z ] = Dy(ps), (6.43)

B=0a=1
= 1,2,..., where Zép) is the natural extension of Kép) with Dy and Dy

replaced by Dy and Dy in (6.37).

Similar to Chapter 5, we call (6.42) shadow equations and (6.42) relation
equations for the element (0, p); solutions of (6.42) are called shadow solu-
tions, or simply shadows. Our main concern lies in reconstruction elements
of the module H, g’o(&,) from their shadows. Denote the set of such shadows

by SHE(E,).
REMARK 6.9. Let ¢ be a covering. Consider horizontal one-forms

wy, = dpws = Xsdr +Tsdt, s=1,2,...,
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where dj, is the horizontal de Rham differential associated to ¢. Then (6.42)
can be rewritten as

9,p(W3) =dnps, s=1,2,... (6.44)

REMARK 6.10. When X, and T do not depend on nonlocal variables,
the conditions of ¢ being a covering is equivalent to

dpwy, =0, s=12,...,

dp, being the horizontal differential on £. In particular, one-dimensional
coverings are identified with elements of ker(dy). We say a one-dimensional
covering ¢ to be trivial if corresponding form w, is exact (for motivations see
Chapter 3). Thus, the set of classes of nontrivial one-dimensional coverings ¢
with w, independent of nonlocal variables is identified with the cohomology
group H ,{(5 ), or with the group of nontrivial conservation laws for £.

3.5. The functors K and 7. Keeping in mind the problem of recon-
structing recursion operators from their shadows, we introduce two functors
in the category GDE(M). One of them is known from the classical (non-
graded) theory (cf Chapter 3), the other is specific to graded equations and
is a super counterpart of the Cartan even covering constructed in Chapter
3 (see also [97]).

Let (F,Vz) be an object of the category GDE(M) and H}](F) be the
R-module of its first horizontal cohomology. Let {w,} be a set of generators
for H}(F), each w, being the cohomology class of a form w, € A}(F),
wa = Yy Xt dr;. We define the functor K: GDE(M) = GDE(M) of
killing H}(F) as follows.

The algebra KF is a graded commutative algebra freely generated by
{wa} over F with gr(w,) = gr(X%). The connection V g # looks as

) ) .0
Vikr (al'1> =Vr (8%) +ZQ:XQM'

From the fact that H}! is a covariant functor from GDE(M) into the category
of R-modules it easily follows that K is a functor as well.

To define the functor T: GDE(M) = GDE(M), let us set TF = C*A(F),
where C*A*(F) = 3_ o CPA(F) is the module of all Cartan forms on F (see
Subsection 2.7). If F is n-graded, then T'F carries an obvious structure of
(n + 1)-graded algebra. The action of vector fields V£(X), X € D(M), on
A*(F) by Lie derivatives preserves the submodule C*A(F). Since C*A(F),
as a graded algebra, is generated by the elements x and d¢v, x, v € F, this
action can be written down as

Ly,.x)x = V£(X)x,
Ly, (x)det) = deV £ (X)(¥),
Ly, x)(xdc) = Ly - (x) - dep + xLv - (x)dct)-
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Moreover, for any X € D(M) and w € C*A(F) one has
V£(X) sw=0;
hence, for any 0 € C*A(F)

(0 A Ly,(x) (W)
=0 ALy, x)(w) + (-1)"d0 A (V£(X) 2w) = 0 ALy . (x), (W),

which means that we have a natural extension of the connection Vz in F
up to a connection Vrx in TF. It is easy to see that the correspondence
T: (F,Vr)= (TF,Vrg) is functorial. We call (TF, Ars) the (odd) Car-
tan covering of (F,Vr).

In the case when (F, V £) is an evolution equation £ of the form (6.31),
T(F,V ) is again an evolution equation T€ with additional dependent vari-

ables v!,...,v™ and additional relations
oft
=2,
ij Ou
............... (6.45)
afm
mo__ Z +UJ
s ou]

Note that if a variable u’ is of grading (i1, .. .,%,), then the grading of v/ is
(i1, in, 1).

3.6. Reconstructing shadows. Computerized computations on non-
local objects, such as symmetries and recursion operators, can be effectively
realized for shadows of these objects (see examples below). Here we describe
a setting which guarantees the existence of symmetries and, in general, el-
ements of Hg’o(c‘f ) corresponding to the shadows computed. Below we still
consider evolution equations only.

PROPOSITION 6.28. Let £ be an evolution equation and @ be its covering.
Let 0 € SHg’O(&p). Then, if the coefficients Xs and Ty for the extensions of
total derivatives do not depend on nonlocal variables for all s, then

(i) for any extension g, of 0 up to a vector field on E, the forms

sy def ~g
99,9(%0) =0

(see Remark 6.9 in Subsection 3.4) are dp-closed on E;

ii) the element 6 is extendable up to an element of HEO(E if and only
¢ \Cyp
if all Q° are dy-exact forms.

Proor. To prove the first statement, note that using Proposition
6.13 (i) one has

0
0= 62(9070) =0y <Z(997p(w2) + dpps) ® &us)



3. NONLOCAL THEORY AND THE CASE OF EVOLUTION EQUATIONS 269

.0
= —Zs:th ® B (6.46)

The second statement immediately follows from (6.43). O

REMARK 6.11. If X, T, depend on wy,wsa, ..., then (6.46) transforms
into

S S 8XS 8T5 a o
ZS: (th — (Q° + dpps) A <a—wsda:+ 8wsdt>> D G = 0.  (6.47)

Let now 0 € SHg’O(&p) and ¢ € H(({JO(&p). Then from Proposition
6.13 (iii) it follows that

lip, 0p]0 = (—1)%(0,P) 6 = 0.
Hence, since by the definition of shadows 9,0 is a -vertical element,

ipd,0 is vertical too. It means that O,igf is a -vertical element, i.e.,

i,0 € SHETTN(E,). Tt proves the following result (cf. similar results of
Chapter 5):

PROPOSITION 6.29. For any 0 € SHg’O(&p) and ® € Hg’o(é’@) the ele-

ment ® 160 lies in SHngq_l(&p). In particular, when applying a shadow of
a recursion operator to a symmetry, one gets a shadow of a symmetry.

The next result follows directly from the previous ones.

THEOREM 6.30. Let £ be an evolution equation of the form (6.31) and
&, be its covering constructed by infinite application of the functor K: £, =
K& where

K€ =injlim(K"E), K"€=(Ko---0K)E.
n—00 ———

n times

Then for any shadow R of a recursion operator in £, and a symmetry ®
sym &, the shadow R(P) can be extended up to a symmetry of E,. Thus, an

action ofSHé’O (&p) onsym(Ey,) is defined modulo “shadowless” symmetries.

To be sure that elements of SH, é’o (€,) can be extended up to recursion
operators in an appropriate setting, we prove the following two results.

PROPOSITION 6.31. Let & be an equation and £, be its covering by means
of TE. Then there exists a natural embedding

Tsym: Hg’o(é’) — sym(TE)
of graded Lie algebras.

PROOF. Let @ € HE’O(E). Then Lg acts on A*(€) and this action pre-
serves the submodule C*A(E) C A*(&), since

[L(I), dc} == L[¢7U£]fn = 0.
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Let X € CD(E). Then, due to (6.11), [X,®]™ Uz = 0. But, using
(6.11) again, one can see that [X,®]™ is a vertical element. Hence,

[X, ®]™ L Ue = [X, ®]™ = 0.
0

Proposition 6.31 allows one to compute elements of H, 5’0(5 ) as nonlocal
symmetries in £, = T'€. This is the base of computational technology used
in applications below.

The last result of this subsection follows from the previous ones.

THEOREM 6.32. Let £ be an evolution equation and £, be its covering
constructed by infinite application of the functor K oT. Then any shadow
NS SH;’O(&/,) can be extended up to an element of Hé’o(&o). In particular,

to any shadow SHé’O(&p) a recursion operator corresponds in E,.

REMARK 6.12. For “fine obstructions” to shadows reconstruction one
should use corresponding term of A.M. Vinogradov’s C-spectral sequence
([102], cf. [58]).

4. The Kupershmidt super KdV equation

As a first application of the graded calculus for symmetries of graded par-
tial differential equations we discuss the symmetry structure of the so-called
Kupershmidt super KdV equation, which is an extension of the classical
KdV equation to the graded setting [24].

At this point we have already to make a remark. The equation under
consideration will be a super equation but not a supersymmetric equation
in the sense of Mathieu, Manin—Radul, where a supersymmetric equation
is an equation admitting and odd, or supersymmetry [74], [72]. The super
KdV equation is given as the following system of graded partial differential
equations & for an even function u and an odd function ¢ in J3(7; ), where
J3(m; ) is the space J3(7) for the bundle 7: R x R? — R2, (u,x,t) — (z,1),
extended by the odd variable ¢:

U = 6Uly — Ugzr + 30Prz,
ot = 3ugp + 6upy — 4Przx, (6-48)

where subscripts denote partial derivatives with respect to z and t. As
usual, ¢ is the time variable and x is the space variable. Here u, x, t, u, u,,
Ut, Ugy, Uzyy are even (commuting) variables, while ¢, ©r, Yrr, Qrze are
odd (anticommuting) variables. In the sequel we shall often use the term
“graded” instead of “super”.

We introduce the total derivative operators D, and D; on the space
J (5 ), by
0 0 0 0

0
D. = — 4 ...
v = o +ux8u+<px390+um8uz —Hpm&px + )
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0 0 0 0 0
Dy = — — — — — 6.49
t 8t+ut8u+¢t8<p+utx8uw+¢tw8gox+ ( )
The infinite prolongation £ is the submanifold of J>°(m; ) defined by
the graded system of partial differential equations
Dngn(ut — buuy + Uggr — 39030:1%) =0,
DI D (@1 — 3ugp — 6upy + 40zr) = 0, (6.50)
where n,m € N.
We choose internal coordinates on £%° as x,t,u, @, u1, @1, ..., where we
introduced a further notation
Uy = UL, Qg = P1, Ugy = U2, Doz = ©2,-- . (6.51)

The restriction of the total derivative operators D, and D; to £°°, again
denoted by the same symbols are then given by

9]
e Z Un+17 -~ + Prtlg, );

n>0 "
Di=Dy Z«un)ta% +lonligs) (6:52)

We note that (6.48) admits a scaling symmetry, which leads to the in-
troduction of a degree to each variable,

deg(z) = —1, deg(t) = -3,
deg(u) = 2, deg(ui) = 3,.
deg(i) = . des(ipr) = g (6.5)

From this we see that each term in (6.48) is of degree 5 and 4% respectively.

4.1. Higher symmetries. We start the discussion of searching for
(higher) symmetries at the representation of vertical vector fields,
0 0 0 0
Op = P — + ¥ — + D} (®%)— + D2(®¥) , (6.54)
ou dp = Ouy, O,

where & = (®¥, ®¥) is the generating function of the vertical vector field 9g.
We restrict our search for higher symmetries to even vector fields, meaning
that ®“ is even, while ®¥ is odd.

Moreover we restrict our search for higher symmetries to vector fields
g whose generating function ® = (®%, &%) depends on the variables z, t,
U, Y,...,us, @s. These requirements lead to a representation of the func-
tion & = (®¥, d¥), ®4 ¥ € C°(x,t,u,u1,...,us) @ A(p,...,ps5) in the
following form

= fo+ fippr + fappe + f3pps + fapps + f5005 + feprp2
+ frp1p3 + fap10a + fop19s + flopews + fiipaps + flap2es
+ fizpspa + frapses + fispaps + fieppip2p3 + firppipapa
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+ fispp1p205 + fropp1p304 + faopp103ps + farop1paps
+ fa20020304 + fa30020305 + foappapaps + fas 0030405
+ fosprp20304 + farP1920305 + fasp2030405

+ f2000102030405,

DY = g1+ 92001 + g3p2 + Gaps + gspa + geps
+ grpP1p2 + g8PP1P3 + G9PP1P4 + groPP1Ps + gr1LP2L3
+ 9120P204 + 913PP2P5 + G14PP3P4 + J15PP3P5 + J16PP4Ps
T 917919203 + g18P1P2P4 + G19P1P2P5 + J20L1P3P4 + 9219019305
+ 922010495 + g23P2P304 + 924020305 + J25P2P4P5 + 926L3P4P5
T G27PP1P2P3P4 + G- PP1P2P3P5 T G29PP1P2PAP5 + G30PP1PIPAPs

+ 931092030405 + g320102030405, (6.55)
where fo, ..., fo9, g1,...,932 are functions depending on the even variables
x, t, u, ui,...,us. We have to mention here that we are constructing

generic elements, even and odd explicitly, of the following exterior alge-
bra C*(z,t,u,...,us) @ Alp,...,p5), where A(p,...,p5) is the (exterior)
algebra generated by ¢, ..., ps The symmetry condition (6.37) for p = 0
reads in this case to the system
Dy(®") = 99 (6uus — usz + 3pps),
Dy(D¥) = 9 (3uip + 6up; — 4¢3), (6.56)
which results in equations
Di(®") — 6@%uy — 6uD,(®") + D2(PY) — 30¥py — 3pD2(¥) =0,
Dy(®%) — 3D, (D) — 3uy B — 6B“p; — 6uD,(B?) 4 4D3(D¥) = 0.
(6.57)
Substitution of the representation(6.55) of ® = (&%, %)), leads to an
overdetermined system of classical partial differential equations for the co-
efficients fo,..., fos, 91,---, 932, which are, as mentioned above, functions
depending on the variables z, t, u, u1,...,us.

The general solution of equations (6.57) and (6.55) is generated by the
functions

ut, ¢1);

6uuy — u3 + 3ppa, 3u1p + bup — 4p3);
6tuy + 1, 6tp1);

3t(6uuy — ug + 3pps) + x(u1) + 2u,

o = (
Dy = (
®3 = (
Dy = (

3
3t(Bu1p + bupr — 4pz) + w1 + S0);
&5 = (us — 10ugu — 20ugu + 30uqu?

+ 30u1 1 + 30upps,

— 15pps — 1013
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165 — 40up3 — 60uyp2 — 50ugpy + 30u2<p1 + 30ujup — 15u3¢p).
(6.58)

We note that the vector fields 9¢,, 9¢,, 90,, 9o, are equivalent to the
classical symmetries

0
Sl - %7
0
SQ - av
0 10
% = " Gau
Sy = —:t:2 — 3152 + QUE + 3 i (6.59)

ox ot ou 2% Oy

In (6.59) Si, Sa reflect space and time translation, S3 reflects Galilean
invariance, while Sy reflects the scaling as mentioned already. In (6.50), the
evolutionary vector field 94, is the first higher symmetry of the super KdV
equation and reduces to

0
(us — 10ugu — 20ugu; + 30u1u2)8— + ..., (6.60)
U
in the absence of odd variables ¢, 1, ..., being then just the classical first
higher symmetry of the KdV equation
uy = buu; — us. (6.61)

4.2. A nonlocal symmetry. In this subsection we demonstrate the
existence and construction of nonlocal higher symmetries for the super KdV
equation (6.48). The construction runs exactly along the same lines as it is
for the classical equations.

So we start at the construction of conservation laws, conserved densities

and conserved quantities as discussed in Section 2. According to this con-
struction we arrive, amongst others, at the following two conservation laws,
ie.,

Dy(u) = D (3u® — ug + 3p¢1),
Dy(u® + 3pp1) = Dy (4u® + u? — 2uug + 12uppy + 8102 — dpps), (6.62)

from which we obtain the nonlocal variables

x
—00

p3 = / (u® + 3pp1) da. (6.63)

—00
Now using these new nonlocal variables pi, ps, we define the augmented
system &' of partial differential equations for the variables w, p1, p3, @,
where u, p1, p3 are even and ¢ is odd,

Uy = 6UlUy — Uzzr + 3PPzas
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Pt = 3uzrp + 6ups — 4puaa,
(P1)z = u,
(p1): = 3u* — uz + 3pp1,
(p3)e = u” + 31,
(p3)e = 4u® + ud — 2uus + 121 + 812 — 4. (6.64)

Internal coordinates for the infinite prolongation £° of this augmented
system (6. 64) are glven as z, t, u, p1, P3, ¥, U1, P1,.... The total derivative
operators D, and D, on £'™ are given by

~ d %)
D, = Dy +u—=— + (u® + 3pp1) —,
Op1 ( S0@1)5]33

0
D; = Dy + (3u® —us + 390('01)8]91

0
+ (4u® 4+ uf — 2uun + 12uppy + 8192 — dpps) ~— (6.65)

p3’

We are motivated by the result for the classical KAV equation (see Sec-
tion 5 of Chapter 3) and our search is for a nonlocal vector field 9¢ of the
following form

P = C1tPy + Cox®y + C3p1 Py + p3®* + O™, (6.66)

whereas in (6.66) C1, Co, C3 are constants and ®* = (®** O*?) o** =
(P**%, &**¢) are functions to be determined.

We now apply the symmetry condition resulting from the augmented
system (6.64), compare with (6.57)

Dy(®") — 60" u; — 6uD,(D") + D3 (B") — 30%py — 30D (%) = 0,

Dy(9%) — 3D (D% — 3u B — 60%p; — 6uD,(P¥) 4 4D (%) = 0.
(6.67)

Condition (6.67) leads to an overdetermined system of partial differential
equations for the functions ®*%, ®*#¢ &**4 @**¢? whose dependency on the
internal variables is induced by the scaling of the super KdV equation, which
means that we are in effect searching for a vector field 94, where &%, ¥
are of degree 4 and 3% respectively. Solving the overdetermined system of
equations leads to the following result.
The vector field 93 with ® defined by

P = —2#195 — ixfbg - %pl‘bl + O, (668)
where @5, ®o, ®; are defined by (6.58) and

% = (uy ~ 22— Jppr, 1o — Bup), (6.69

is a nonlocal higher symmetry of the super KdV equation (6.48). In effect,
the function ® is the shadow of the associated symmetry of (6.64).
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The 0/0p1- and 0/0ps-components of the symmetry ¢ can be com-
puted from the invariance of the equations (6.70),

(pl):v = u,
(p3)s = u” + 3pp1, (6.70)

but considered in a once more augmented setting. The reader is referred to
the construction of nonlocal symmetries for the classical KAV equation for
the details of this calculation.

It would be possible to describe the recursion here, but we prefer to
postpone it to the chapter devoted to the deformations of the equation
structure (see Chapter 7), from which the recursion operator can be obtained
rather easily and straightforwardly.

5. The Kupershmidt super mKdV equation

As a second application of the graded calculus for symmetries of graded
partial differential equations, we discuss the symmetry structure of the so-
called Kupershmidt super mKdV equation, which is an extension of the
classical mKdV equation to the graded setting [24].

The super mKdV equation is given as the following system of graded
partial differential equations £ for an even function v and an odd function
¥ on J3(m; 1)) (see the notation in the previous section),

3 3 3 3
Uy = 6U2Uz — VUggx + Zd’aﬂ/}xv’c + wamrx + 57):1:1/”»090 + 57)1/}1/}1’11}7
P = (60" — 6021y + (6VV2 — Bvp2) — s (6.71)

where subscripts denote partial derivatives with respect to x, t. Here t is the
time variable and z is the space variable, v, x, t, v, v, V¢, Ugz, Uzze are even
(commuting) variables, while ©, 1, ¥z, Yrre are odd (anticommuting)
variables.

We introduce the total derivative operators D,, Dy on J*(m;1) by

0 0 0 0 0
Da::_ TS T Tx Tx )
(%—I—v av+¢ 8¢+U 8vz+w 81/135—1_
0 0 0 0 0
Dt: ——|—’Ut——|-’lﬂt—+vm—+¢tx—+"' (672)

ot ov o v, Oy

The infinite prolongation £ is the submanifold of J°(7; ) defined by
the graded system of partial differential equations

3 3 3 3
DQDT(W — GUQ'Um + Vpar — Z¢mwwm - waxm: — 5%1/1% - §U¢wm¢) =0,

DPD™ (1) — (602 — 60y)1hy — (6VV; — 3020 )0 + 4pe) = 0, (6.73)
where n,m € N.
We choose internal coordinates on £ as z, t, v, ¥, vi, ¥1,..., where

we use a notation
Ve = V1, Yp =1, Vpp =V2, Yzp=1Y2,... (6'74)
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The restriction of the total derivative operators D, D; to £°°, again denoted
by the same symbols, are then given by

0
e Z <Un+1 + ¢n+13¢ >

D = % Y (wn)ta% n <wn>ta‘%> . (6.75)

We note that (6.71) admits a scaling symmetry, which leads to the assigning
a degree to each variable,

deg(z) = —1, deg(t) = -3,
deg(v) =1, deg(v1) =2,...,
deg(t) = 5. deg() = 5, (6.76)

From this we see that each term in (6.71) is of degree 4 and 3% respectively.

5.1. Higher symmetries. We start the discussion of searching for
(higher) symmetries at the representation of vertical vector fields,

8 8
— PV __ ’lZJ n v n P

where ® = (®?, ®¥) is the generating function of the vertical vector field 9g.
We restrict our search for higher symmetries to even vector fields, meaning
that ® is even, while ®¥ is odd. Moreover we restrict our search for higher
symmetries to vector fields 9¢ whose generating function ® = (®V, d¥)
depends on the variables x, ¢, v, ¥,...,vs5, ¥5. The above mentioned re-
quirements lead to a representation of the function ® = (®¥, ®¥) in the
following form

DY = fo+ frvr + fooibe + fbis + fahiba + fsihs + ferbrte
+ fri1s + fs1va + fotrs + frovevs + frithahs + frahats
+ f13¥3va + f1avss + fi5¥ats + frev1ves + fird19eys
+ fis¥1v2t0s + fro1vsths + faoth1v3ths + far1vpars
+ foophatpsths + faspibatisths + foaprbatpaths + fasibsiarhs
+ fast192v3t0s + forp1hosihs + fogath3ha)s
+ faothp11patb3ibars,

Y = g11p + gath1 + gstba + gats + g5t + gets
+ g1 + gsbhis + gopi1va + grob s + gr1aths
+ g129Y2tbs + g13YPatis + g1avPs3ha + G5 Pss + giePiPas
+ 171203 + gisP1batha + grov1teths + gaot13a + ga1t1Y3Ps
+ 22145 + gosahstha + gaathathsihs + gasthataths + gosP3aths
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+ gor1P2th31hy + gagPrh1hath3hs + gaoP19apar)s + gz 13 ars
+ 931929345 + g3201921039 415, (6.78)

where fo, ..., fo9, g1,...,932 are functions depending on the even variables
x,t, v, v1,...,v5. We have to mention here that we are constructing generic
elements, even and odd explicitly, of the exterior algebra C*(z,t,v,...,v5)®
A, ... 5), where A(1),...,15) is the exterior algebra generated by the
elements v, ..., 5. The symmetry condition (6.37) reads in this case
Dy(®") = 9 (6v%v1 — v3 + g"lbll/}z + %1#1/13 + ;Uﬂ/flbl + ngwQ)v

Dy(®¥) = 9 ((602 — 6v1)1; + (6vvy — uz)th — das), (6.79)

which results in equations

3
Dy(DV) — 120Yvv; — 602D, (DY) + D3(DY) — ZD:,C(qﬂ’)z/@

3 3 3
= JDI(®Y) = T8V — JYDi(8Y)
3 v 3 P 3 P
- §Dx((1) )by — §U1(I) Py — EUN/’Dx(q) )
3 3 3
— 5P s — SvBVey — Cup D (V) =0,

Dy(DY) — (120" — 6D, (®Y))1h1 — (6v* — 6v1) Dy (DY)
— (6001 + 6vD, (DY) — 3D2(Y))e
— (6vvy — 3v2)®Y 4 4D3(®¥) = 0. (6.80)
Substitution of the representation (6.78) for ® = (®v, ®¥)), leads to
an overdetermined system of classical partial differential equations for the
coefficients fo, ..., fos, 91,-..,g32 which are as mentioned above functions
depending on the variables z, t, v, vy, ..., vs.
The general solution of equations (6.80) and (6.78) is generated by the
functions

@1 = (v1,91),

3 3
by = (—v3 + 6v201 + 52}111)2/)1 + v

5 Yipoy + ZT/)% + Zd}ﬂ/}z,

— da)3 + (6’1)2 — 61}1)’¢1 + (6’[)’1)1 — 3’[)2)’(,[)),
Pz = 22D — 6Py + (*2’0, *’Qb),

15 25 )
@Z = V5 — 10U3U2 — 40v9v1v — 10’0:1)) + 30U1U4 - ZT/H/Jg, — Z%M - §¢2¢3

- %mb@m — Suth1ehz + (%712 — 15v1)¢ehs + (12—51)2 — 5u1)¢1¢2

15
+ (150% + 15010 — 1502)¢hthe + (450102 — 7”03)1/11#1,

DY = 1615 + (400, — 400%)h3 + (60vy — 1200101,
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+ (5003 — 100V — 60v102 — T00? 4 30v% )1y
+ (15v4 — 30v3v — 300902 — 60vzv — 60V + 60v1v3)1p. (6.81)

We note that the vector fields 94,, 9¢,, 90, are equivalent to the classical
symmetries

0
Sl - %7
0
SQ - a7
0 0

In (6.82), S1, Sa reflect space and time translatlon, while S5 reflects the scal-
ing as mentioned already, (6.73). The field 94, is the first higher symmetry
of the super mKdV equation and reduces to the evolutionary vector field

0
(vs — 10v30* — 40v9v1v — 10V3 + 301}11)4)6— +..., (6.83)
v
in the absence of odd variables 1, 11, ..., being then just the classical first
higher symmetry of the mKdV equation.
v = 6020y — Vg (6.84)

REMARK 6.13. It should be noted that this section is just a copy of
the previous one concerning the Kupershmidt super KdV equation, except
for the specific results! This demonstrates the algorithmic structure of the
symmetry computations.

5.2. A nonlocal symmetry. In this subsection we demonstrate the
existence and construction of nonlocal higher symmetries for the super
mKdV equation (6.71). The construction runs exactly along the same lines
as it is for the classical equations.

So we start at the construction of conservation laws, conserved densities
and conserved quantities as discussed in Section 2. According to this con-
struction, we arrive, amongst others, at the following two conservation laws,
ie.,

Dt(v> = Da(20% — vy + Sy + Svip),
Dy(v* + WM) Dy (30" — 2v00 + v} — P + 24190
+ 5”@#2 — 3vihr + E’UQWM), (6.85)

from which we obtain the nonlocal variables

x
—00

p1= /m (v? + iwwl)d:c. (6.86)
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Now using these new nonlocal variables py, p1 we define the augmented
system &' of partial differential equations for the variables v, po, p1, ¥,
where v, pg, p1 are even and v is odd,

3 3 3 3
Uy = 67}27}1 — Ugzz + 1¢x¢xz + 1¢¢xwx + 5%7#)% + §U¢¢m7

¢t = (6'02 - 67}:0)1[)90 + (67}1}1‘ - 37}1:1:)7;[) - 4¢xmc7
(pO)x =,

(po)t = 20° — vy + Z%Wz + ;UWM,
(1)e = 0 + 3%,

() = 30 — 2030+ 0% — s+ Hpatin + Svitn — Boatn + S,

(6.87)
Internal coordinates for the infinite prolongation £° of this augmented
system (6.87)) are given as z, t, v, po, p1, ¥, v1, ¥1,.... The total derivative
operators D, and D; on £ are given by
~ 0 1 0
D, =D — 24z —
T :p+vap0+(v +4¢¢1)6p1,

_ 3 3 0
_ 3 _ e = __
Dy = Dy + (20° — vg + 4W2 + 2”W1)8p0

3 9 0
+ (3v* — 2090 + v} — Pas + 219 + QU2 — Suryyn + §U2¢¢1)a—pl-

(6.88)

We are motivated by the result for the classical KAV equation (see Section 5
of Chapter 3) and our search is for a nonlocal vector field 9¢ of the following
form

D = Citdy + CoxPo + Cyp1 Py + (I)*, (6.89)

whereas in (6.89) Cy, Cy, C5 are constants and ®* is a two-component
function to be determined.

We now apply the symmetry condition resulting from the augmented
system (6.87) (compare with (6.80)):

~ ~ ~ 3~
Dy(®Y) — 120Yvv; — 602D, (®°) + D3 (DY) — pr(cb%ﬁ)z/;z

— SO DBV S0V — SUDY@Y) - Du(8)us — 0@V

3 ~ 3 3 3 =~
— Su1tDa(®Y) = SOy — JvB¥ehy — Sv DF(SY) =0,

Dy(®%) — (1209Y — 6D, (")) — (60 — 6v1) Dy (DY)
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— (6BVv) + 60D, (DY) — 3D2 (D)) — (6vv) — 3v2)BY + 4D3(®Y) = 0.
(6.90)

Condition (6.90) leads to an overdetermined system of partial differential
equations for the functions ®**, &%, whose dependency on the internal
variables is induced by the scaling of the super mKdV equation, which means
that we are in effect searching for a vector field 9, where ®¥, ®¥ are of
degree 3 and 2% respectively.

Solving the overdetermined system of equations leads to the following
result.

The vector field D¢ with ® defined by

3
—t
2
where ®4, ®o, ®; are defined by (6.81) and

1
d=—td, — §$‘1>2 + p1 @1 + D, (6.91)

" = (—gUQ + 20° + vty + gwwz, —5thy — vtp + 402 — dvyep),  (6.92)

is a nonlocal higher symmetry of the super mKdV equation (6.71). In effect,
the function ® is the shadow of the associated symmetry of (6.87).

The 0/0po- and 9/9p1-components of the symmetry 9¢ can be com-
puted from the invariance of the equations

(pO)x =1,
(p1)e = v + iwl, (6.93)

but considered in a once more augmented setting. The reader is referred to
the construction of nonlocal symmetries for the classical KAV equation for
the details of this calculation.

6. Supersymmetric KdV equation

In this section we shall discuss symmetries and conservation laws of the
supersymmetric extension of the KdV equation as it was proposed by several
authors [68, 74, 87].

We shall construct a supersymmetry transforming odd variables into
even variables and vice versa. We shall also construct a nonlocal symmetry of
the supersymmetric KdV equation, which together with the already known
supersymmetry generates a graded Lie algebra of symmetries, comprising a
hierarchy of bosonic higher symmetries and a hierarchy of nonlocal higher
fermionic (or super) symmetries. The well-known supersymmetry is just
the first term in this hierarchy.

Moreover, higher even and odd conservation laws and conserved quan-
tities arise in a natural and elegant way in the construction of the infinite
dimensional graded Lie algebra of symmetries. The construction of higher
even symmetries is given in Subsection 6.1, while the construction of the
above mentioned nonlocal symmetry together with the graded Lie algebra
structure is given in Subsection 6.2.
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6.1. Higher symmetries. The existence of higher even symmetries of
the supersymmetric extension of KAV equation

ou Pu ou

- 6u 6.94

ot~ o ox (6.94)
shall be discussed here. We start at the supersymmetric extension given by

Mathieu [74], i.e
up = —ug + 6uuy — apps,
o = —p3 + (6 — a)pru + apu;. (6.95)
n (6.95), integer indices refer to differentiation with respect to z, i.e., ug =
?3u/0x3; x, t, u are even, while ¢ is odd; the parameter a is real. Taking
v =0, we get (6.94).
For internal local coordinates on the infinite jet bundle J*(m;¢) we

choose the functions z, t, u, @, ui, 1,... The total derivative operators
D,, D; are defined by
D, = 0 +u 0 + +u 0 + 0 +-
*= 5 19, Y1 Do 250, u P27 Do,
0 0 0 0 0
D; = D, —+ D, e 6.96
Py + Uty + @ta(p + (Ut)aul + ((pt)&m + (6.96)

The vertical vector field V', the representation of which is given by

V= inc(@“ +ZD1 %)
=0 =0

with generating function ® = (&%, &%), is a symmetry of (6.95), if the
following conditions are satisfied

Dy(®") = —D3 (DY) + ®“6u; + Do (P*)6u — ad¥ @y + aDZ(¥)p,
Dy(®%) = —D3(®%) + (6 — a) Do (P¥)u + (6 — a)B%p; + ad?uy
+ aD,(®%)ep. (6.98)
In (6.98), ®*, ¥ are functions depending on a finite number of jet variables.
We restrict our search for higher symmetries at this moment to even vec-

tor fields, moreover our search is for vector fields, whose generating function
® = (%, &%) depends on z, t, u, @, ui, ¢1,...,us, 5. More specifically,

8% (6.97)

Y= f1+ fappr + fapwr + fapes + fspps + fepr102 + fro1es,
PP = g1p + gai1 + G392 + gaps + gspa + geps, (6.99)

whereas in (6.99) f1,..., f7, g1,...,96 are dependent on the even variables
x, t, u,...,us. Formula (6.99) is motivated by the standard grading in the
classical case of (6.94),

deg(z) = —1, deg(t) = —3, deg(u) =2, deg(go):g. (6.100)

and results for other problems.



282 6. SUPER AND GRADED THEORIES

In effect, this means that we are not only searching for ®* and ®¥ in
the appropriate jet bundle but also restricted to a certain maximal degree.
In this case we assume the vector field to be of degree less than or equal to
5, which means that ®%, ®¥ are of degree at most 7 and 6% respectively.

Substitution of (6.99) into (6.98) does lead to an overdetermined system
of partial differential equations for the functions f1,..., f7, 91,...,96. The
solution of this overdetermined system of equations leads to the following
result

THEOREM 6.33. For a = 3, there are four vector fields 9g,,..., 9o,
satisfying the higher symmetry condition (6.98), i.e.,
Py = (u1,¢1),
®o = (uz — 6uru + 3pp2, p3 — 3p1u — 3puy),
&3 = —(us — 10usu — 20usuy + 30uju? + Dppg + D13
— 20upps — 20u1pp1, o5 — Sups — 10uips — 10ugpr + 10up
+ 20uup — busp),

3
by = -3tPy + 2P + (2’LL7 5()0) (6101)

If a # 3, then ¢, is not a symmetry of (6.95).
Next, our search is for odd vector fields (6.97) satisfying (6.98); the

assumption on the generating function ® = (®%, ®%) is
D = fip+ fopr + fapa + faps + frpa + fops + free,
DY = g1 + gapip1 + g3pp2 + gapps + Gsppa + gepps + grp12
+ gsP193 + G104 + G023, (6.102)
where f1,..., f7, 91,-.., 910 are dependent on x, t, u,...,us.

Solving the resulting overdetermined system of partial differential equa-
tions leads to:

THEOREM 6.34. There exists only one odd symmetry Y1 of (6.95), i.e.,
2
q’Yl = (@17“)' (6103)
2

In order to obtain the Lenard recursion operator we did proceed in a way
similar to that discussed in Section 5 of Chapter 3, but unfortunately we were
not successful. We shall discuss a recursion for higher symmetries, resulting
from the graded Lie algebra structure in the next subsection, while the
construction of the recursion operator for the supersymmetric KAV equation
is discussed in Chapter 7.

6.2. Nonlocal symmetries and conserved quantities. By the in-
troduction of nonlocal variables, we derive here a nonlocal even symmetry
for the supersymmetric KdV equation in the case a = 3

U = —uz + 6uiu — 3pps,
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Pt = —p3 + 3p1u + 3pu, (6.104)

which together with the supersymmetry 9y, generates two infinite hier-
2

archies of higher symmetries. The even and odd nonlocal variables and
conserved quantities arise in a natural way.
We start with the observation that

Dy(p) = Da(—¢p2 + 3pu) (6.105)

is a conservation law for (6.104), or equivalently,

T
= / pdz, (6.106)

—00

q

3
is a potential of (6.104), i.e.,

(41)e = ©,(q1)1 = —p2 + 3pu. (6.107)
The quantity @ 1 defined by

Q= /Oo odx (6.108)

is a conserved quantity of the supersymmetric KdV equation (6.104).
We now make the following observation:

THEOREM 6.35. The nonlocal vector field 9z,, whose generating func-
tion ®z, s

®z, = (q101, 010 — 1) (6.109)

is a nonlocal symmetry of the KdV equation (6.104). Moreover, there is
no nonlocal symmetry linear with respect to q1 which satisfies (6.95) with
2

a # 3.
The function ®z, is in effect the shadow of a nonlocal symmetry of the
augmented system of equations
up = —uz + 6uru — 3pps,
vt = —p3 + 3p1u + 3puy,
(91)z = o,

1
2
(1)t = —p2 + 3pu. (6.110)

(SIS

Total partial derivative operators D, and D, are given here by

0
D, :Dx+<p8q1,
2

0

lN)t = D; + (=2 + 3pu) 30,

N[
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and the generating function ®z, satisfies the invariance of the first and the
second equation in (6.110), i.e

Dy(®Y,) + D3(®Y,) — Y, 6uy — Do(®Y, )6u + 3% 2 — 3D2(%, )p = 0,
Dy(®% ) + D3(®%,) — 3Dy (D%, Ju — 30Y, 1 — 30% uy — 3Dy (DY, )p = 0.
The vector field 9z, together with the vector field 9y, play a fundamental

2

role in the construction of the graded Lie algebra of symmetries of (6.104).
From now on, for obvious reasons, we shall restrict ourselves to (6.104),
i.e., to the case a = 3.

REMARK 6.14. All odd variables ¢q, 1, ...,q1 are, with respect to the
2
grading (6.100), of degree n/2, where n is odd. The vector field 9z, is even,
while 9y, is odd.
2
We now want to compute the graded Lie algebra with 97, and 9y, as
2

“seed elements”.
In order to do so, we have to prolong the vector field 9y1 towards the

nonlocal variable q3, or by just writing le for this prolongatlon we have

to calculate the component 0/ 6q1, in the augmented setting (6.110)).

The calculation is as follows. The coefficient Yl 5 has to be such that the
vector field Dy, leaves invariant (6.105), i.e., the Lie derivative of (6.105)
with respect ‘50293/1 is to be zero.

Since :

2
Y?' = D,(YY) = Dy(u) = wy,
2

3
Y?? = Dy(Y') = Dy(ur) = u, (6.111)
2 2
the invariance of the third and fourth equation in (6.110) leads to

~ a1
D,(Y,?)—u=0,
2

— q1 —~2
DuY,2) + D, (Y¥) — 3YPu + 3pYE =0, (6.112)
2 2 2 2
from which we have
~ q1
D.(Y,?)—u=0,
2
~ q1
Dy(Y,?) +ug — 3u® + 3pp1 = 0. (6.113)
2

By (6.109), (6.111), (6.113) we are led in a natural and elegant way to the
introduction of a new nonlocal even variable p1, defined by

p1:/ udx (6.114)

—00
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and satisfying the system of equations

(pl)l’ =1u,
(p1)r = —ug + 3u? — 31, (6.115)

i.e., p1 is a potential of the supersymmetric KdV equation (6.104); the com-
patibility conditions being satisfied, while the associated conserved quantity
is Pl.
Now the vector field 9y, is given in the setting (6.110) by
2
0 0 0
Oy, = @1 — +U— + Pl +... 6.116
Yy ¢16u+u8<p+p18q;+ ( )
2
Computation of the graded commutator [9z, , Jy, | of Dz, and Dy, leads
2 2

us to a new symmetry of the KdV equation, given by
QY% = [9z,, QY%], (6.117)
where the generating function is given by
Py, = (2301 — 11+ up — 92,2q101 — pru+ u). (6.118)

This symmetry is a new nonlocal odd symmetry of (6.104) and is of degree
3

5.
Note that as polynomials in g1 and p;, the coefficients in (6.118) just
2
constitute the generating functions of the symmetries 29x, and —9y, re-
2

spectively, i.e.,
Dyy =291 P1 = p1Py; + (up — o, ). (6.119)
2 2

We now proceed by induction.
In order to compute the graded Lie bracket [9z,, 9y, ], we first have
2

to compute the prolongation of 9z towards the nonlocal variables p; and
q1, which is equivalent to the computation of the 9/0pi- and the 0/0q:-
2 2

components of the vector field 9z, , again denoted by the same symbol 9z, .

It is perhaps illustrative to mention at this stage that we are in effect
considering the following augmented system of graded partial differential
equations

Uy = —u3 + 6uru — 3ppa,
vt = w3+ 3p1u + 3puq,

(Q%)w =,
(Q%)t = —p2 + 3pu,
(pl)x =u,

(p1)e = —us + 3u® — 31, (6.120)
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We now consider the invariance of the fifth equation in (6.120), i.e., of
(p1)z = u, by the vector field 9z, which leads to the condition

Do (Z1") = g1, (6.121)
from which we have

ARES q1- (6.122)

q1
The 0/0q1-component of 9z, i.e., Z,? has to satisfy the invariance of the
2
third equation in (6.120), i.e., (q1)z = ¢ by the vector field 9z, which leads
2
to the condition

ie.,
~  q1
Do(Z,7) = qru+ 1 =0, (6.123)
from which we derive
q1 T
Z,? = Qp1—¢ = / predz. (6.124)
—00

So prolongation of 9z, towards the nonlocal variable g1, or equivalently,
2
computation of the 9/0q1-component of the vector field 9, , requires formal
2
introduction of a new odd nonlocal variable gz defined by
2

T
qs = / Py de, (6.125)
2 —00
where
(43)e = p1ep,
(Qg)t = p1(—p2 + 3up) — urp + w1, (6.126)

while the compatibility condition on (6.126) is satisfied; so ¢z is a new odd
2
potential, ()3 being the new odd conserved quantity.
2
The vector field 9z, is now given in the augmented setting (6.120) by

+ .
Bq% q%@3p1

(6.127)

The system of graded partial differential equations under consideration is
now the once more augmented system (6.120):

0 0
9z, = q%%% + (q%u— 801)% + (Q%pl 2 Qg)

ur = —us + 6uiu — 3ppa,
pr = —p3 + 3p1u + 3pu,
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(P1)z = u,

(p1)e = —uz2 + 3u® — 3pp1,

(C]g)m =Py,

(93): = p1(=tp2 + 3up) — wrp + ugpr. (6.128)

The prolongation of the vector field 9y, towards the nonlocal variables g1,
bl 2

2
p1 is now constructed from the respective equations for (q1), and (p1)q,
2
(6.128) resulting in

q% 1,
Y9 =2q q1u—pip = o1 (6.129)
2

Computation of the graded Lie bracket [9z,, Dy, ] leads to
2

1 0
vy = (223w + 5piv1 + pilp2 — wp) — durp — Bugr + 3) -

1
+ (—QQ%% + ipfu — prur +ug — 2u? + 90801)%

+ (—QQ%U + oP1¢ + p1y1 — 4up + 802)8—pl
+ (—2¢: +1pt it prug — S — )i+ (6.130)
Q%pﬁp 8P1 P1 piug 5 PPl 3q; ) .

whereas the 0/0p;- and 0/ 3Q3 -components of 9y5 are obtained by the in-

variance of the associated dlfferentlal equations for these variables in (6.128).
In order to obtain the 9/ 8q1 -component of 9y5 , we have to require the

invariance of the equation (g ;) —p =0, Wthh results in the following
2
condition
q1 1
Da(Y3?) = =201 + 5piu — prus + up — 2u” + ¢, (6.131)
2

from which we have
X

1
Ys - = ~p} —prutul — 2q3 ¢ + / (u® + 2(prp)p + o1 — 2u?) da

6 —00
1, o,
= gl Pt — 2q3 — (u” — 1) dx. (6.132)
— o

So expression (6.132) requires in a natural way the introduction of the even
nonlocal variable ps, defined by

Py = / (W — pp1) da, (6.133)

— 00

where

(p3)s = u® — @1,
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(P3)e = 4u’ — 2ugu +uf — Juppr + 3 — 20102 (6.134)
Here p3 is a well-known potential, P3 being the associated conserved quan-
tity.
Finally, the commutator 9y, = [9z,, 9y, | requires the prolongation
of the vector field 9z, towards the nonlocal variable g3, obtained by the
2
invariance of the condition (¢3); — p1y = 0 by 9z,, so
2

as
Do(Z,*) = 9z, (1) = (q10)0 + pr(qru— 1), (6.135)
Integration of (6.135) leads to
q3 1 T
Z* = gp?q; —p1y —/ (5Pt — up) dz. (6.136)
2 oo 2
The new odd nonlocal variable ¢s is, due to (6.136), formally defined by
2
qs = / (=pie — up) dx. (6.137)
2 oo 2

Here g5 is a nonlocal odd potential of the supersymmetric KdV equation
2
(6.104),
1
(a3) = 5Pie — ug,
1
)e = =i (—pa + 3up) + pr(—u1p + up1) + uap — urpr — 4u’p + ugps.

(g5)e B
(6.138)

Nt

Proceeding in this way, we obtain a hierarchy of nonlocal higher supersym-
metries by induction,

By , =[92,9

n+% n—

], neN. (6.139)

(S

The higher even potentials py, ps, ... arise in a natural way in the prolon-
gation of the vector fields 9y2n+ ! towards the nonlocal variable ¢ 1 whereas
the higher nonlocal odd potentials q1: 43, g5, are obtained in the pro-
longation of the recursion symmetry 9z, .

To obtain the graded Lie algebra structure of symmetries we calculate
the graded Lie bracket of the vector fields derived so far. The result is
remarkable and fascinating:

[SY%a QY%] = 29X17
Oy, Oy, | = 29x,,

2 2

[QY%, QY%] = 29x;, (6.140)

so the “squares” of the supersymmetries 9y, , 9y, , 9y, are just the “clas-
2 2 2

sical” symmetries 29y, , 29x,, 29, obtained previously (see (6.101)). The
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other commutators are

[9Y1 ) 9Y3 — O)
2 2

[9Y1 ) 61/5 == _29X37
2 2

[9Y§7 9Y§ = 07
2 2

1 Eiymn+1 =0, (6.141)

where n = 0,1,2, m = 0,1,2. We conjecture that in this way we obtain
an infinite hierarchy of nonlocal odd symmetries Y, 1, M € N, and an infi-
nite hierarchy of ordinary even higher symmetries Xs,+1, n € N, while the
even and odd nonlocal variables poj41, 1 and the associated conserved

G L
quantities Pojy1, @ are obtained by the prolongation of the vector fields

n+%
Y, 1 and Z; respectively.
2

We finish this section with a lemma concerning the Lie algebra structure
of the symmetries.

LEMMA 6.36. Let Xopy1, n € N, be defined by
1

Xopy1 = g[Yn+%aYn+%]; (6.142)
and assume that
[Zl,XQnJrl] =0, neN. (6143)
Then
LY Yo = (=)™ "2X 4 my1 M —n is even,

1 1 .
nty’imts 0 m —mn s odd.

2. [Y +%,X2m+1] =0, n,meN.

n

3. [X2n+17X2m+1] = 07 n,me N.

PROOF. The proof of (1) is by induction on &k = m — n. First consider
the cases k=1 and k = 2:

0=[2Z1. [V, 1. Y, 1l =Y, Yot + Yoy, Yoy

n+3’ n+1+%7 n+%
= Q[Yn-l—%?Yn—i-l—l-%]?
0= [, [Yn—l-%’ n+1+%H = [Yn+1+%’ n+1+%] + [Yn+%vYn+2+§]’ (6.144)
SO
[Yn+%7Yn+2+%] = —2Xo,13. (6.145)

For general k, the result is obtained from the identity

0=[20 Y 1Y il = Vo 0 Yo )+ Vo Yo g1, (6.146)
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ie.,

LT A e

ntd Yngk14l Y, J- (6.147)

ntl1+50 Tntktg
The proof of (3) is a consequence of (2) by

[X2n+le2m+1] = [[Yn—i-%?Yn—‘,-%]?sz-‘rl] = 2[Yn+%7 [Yn—‘,—%?XQm-Fl]] = 0.
(6.148)

So we are left with the proof of statement (2), the proof of which is by
induction too. Let us prove the following statement:

E(n): for all i <mn, j <n one has [YH%,XQ]-H] =0.

One can see that E(0) is true for obvious reasons: [Y%,Xl] = 0. The
induction step is in three parts,

(bl) [Yn+l+%7X2n+3] = 0; ‘

(b2):  [¥y 141, Xoj] =0, j < n;

(b3):  [Y,,1,Xont+3] =0, 1 <n.

z+% )
The proof of (bl) is obvious by means of the definition of Xgy,43.
The proof of (b2) follows from

Yorag 1 Xojnll = [[210, Y, 1], Xoj]
=21, Yoy 1, Xojal] + [[21, X2j1]. Y,

n n—i—%

] =0, (6.149)

while both terms in the right-hand side are equal to zero by assumption and
(6.144) respectively.
Finally, the proof of (b3) follows from

1

Yiy1s Xonsa] = SV

i 2 l+%a[y

n+1+%7Y Y

n+1+%“ = z+%’Yn+1+%]7Y

n+1+%] =0,
(6.150)

by statement 1 of Lemma 6.36, which completes the proof of this lemma. [

7. Supersymmetric mKdV equation

Since constructions and computations in this section are completely sim-
ilar to those carried through in the previous section, we shall here present
just the results for the supersymmetric mKdV equation (6.151)

vy = —v3 + 60201 — 3p(ver)1,
ot = —p3 + 3v(vp)1. (6.151)
Note that the supersymmetric mKdV equation (6.151) is graded
deg(z) = —1, deg(t) = -3,

deg(v) =1, deg(yp) = (6.152)

N | =
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The supersymmetry Y 1 of (6.151) is given by

0 0
— —. 6.153
vig +v 9 ( )
The associated nonlocal variable g1 and the conserved quantity Q1 are given
2 2

by

= [ wodn Q= o (6.154)
where
(q%)x = vy,
(G%)t = —v2pp + V11 — V2 + 307 (6.155)

The nonlocal symmetry Z is given by

= 0 0
Z1 =@y g, +@v - ey (6.156)

We now present the even nonlocal variables P, P and the odd nonlocal
variables §1, ¢s, ¢s, where
2 2 2

D1 = / (”2 — 1) dz,
—00
X
P = / (—v" — v} + 3pp1v? + p1¢2) da,
?fo
g1 = / (vp) da,
2 —00
X
g = / (Brog + ver) da,
—o0
X
as = / (=P2vp — 2pv01 + V39 — 20p9) da. (6.157)
— 00

The z-derivatives of these nonlocal variables are just the integrands in
(6.157), while the t-derivatives are given by

(P1): = 3v* + 0] — 2003 — WPpp1 + i3 — 20102,
(D3): = —40° + 4vp0® — 03 + 2v103 — 120203 + 210ty
— v + 3v%g0<,01 + 12001 s — 3023

+90%p102 — 1994 + 202003,

(@1): = —vap + v1p1 — Vg + 30,

N

(@3)e = Pr(—v2pp + w101 — vz + 30°p) + 2071
— U201 + 4U3g01 + v1p2 — VY3,
(ﬁg)t = P2 (—v2p + V11 — V2 + 3v3Y)
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+ 71 (2vps — 2v102 — 8vPp1 + 20201 — dvPv1)
+ 2vp4 — 2013 — 9213g02 + 2ugp9 — 1311201@1
+ dvpprpa + 5050 — 90 ugp. (6.158)

The resulting symmetries are given here by

— _ 0 _ 0 _ 0
Zi= (@) g, + (@ —wgo + @ue+ o) oo
(@371~ 73)
+(q1p1 — a3 94.’
2
Y 0 + + 0 +D 0
2
?3:(2_111 —D + vl — )£+(2_1 —_U—i-v)i
3 101 — Pi¥1 ¥ — 2 90 7191 =P 1 9o
0
+ (241 (v — 1) — Dyv — 2001 + V1Y) F—
2 p,
~ 1, 1, 9
+(2q10p — oP1+ v +80<P1)ﬁ,
2
75:(11_92 + Py (02 — v29) — 2Gsv; + —§02 — 3vv )2
5 21%01 1(¥2 2 3U1 T $3 5 $1 1 90
1_ _ _ 3 0
+ (QP%U — P11 — 2(]%901 + vo — 5’03 + 27190801)%
1
+ (5P1vp + 51 (201 — v19) — 233 (v° — i) + 202 — 20101
+ v2pp 71} 3p)— 0
0 — —
op,
+(1—3—2— — i +12)— T oy + 7)o
gP1 ~ 243ve — Pulewr + 5v7) = ppa +ovn + Ba)
2
1, 1., - _
+(gP1 = {PI(v" + 4pp1) — 25,7309 — Prpn
_ 11 1 0
— 2G5 001 — P12 + VPP — —v +UU2——U1) —
2 8 8
0
X — —
1= Vg —leﬁgo
— 0 5 0
X3 = (—v3 + 6v°v1 — Bupps — Bu1pp1) 5 + (—p3 + 3v @1 + Bvv1p) o=

ov
X5 = (v5 — 10030 — 4009010 — 100° + 30v1v*

oo’

+ 5upps + 100193 + 5uges 4+ 5urp1es — 2003 pps

0
+ 1OU2(,0Q02 + 5U3<p(p1 — 602]11}2@901)%
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+ (p5 — 5U2g03 — 15v1vp9 — 15v9vp — 10@%@1 + 10v4<p1

— Bugvp — 100901 + 200103 (6.159)

The graded Lie algebra structure of the symmetries is similar to the structure
of that for the supersymmetric extension of the KdV equation considered in

the previous section.

8. Supersymmetric extensions of the NLS

Symmetries, conservation laws, and prolongation structures of the su-
persymmetric extensions of the KdV and mKdV equation, constructed by
Manin-Radul, Mathieu [72, 74], have already been investigated in previous
sections.

A supersymmetric extension of the cubic Schrodinger equation has been
constructed by Kulish [15] and has been discussed by Roy Chowdhury [89],
who applied the Painlevé criterion to it. A simple calculation shows however
that the system does not admit a nontrivial prolongation structure. More-
over, as it can readily be seen, the resulting system of equations does not
inherit the grading of the classical NLS equation.

We shall now discuss a formal construction of supersymmetric extensions
of the classical integrable systems, the cubic Schrodinger equation being
just a very interesting application of this construction, which does inherit
its grading, based on considerations along the lines of Mathieu [74]. This
construction leads to two supersymmetric extensions, one of which contains
a free parameter. The resulting systems are proven to admit infinite series
of local and nonlocal symmetries and conservation laws.

8.1. Construction of supersymmetric extensions. We shall dis-
cuss supersymmetric extensions of the nonlinear Schrédinger equation

iqr = —qzz + k(q"q)q, (6.160)

where ¢ is a complex valued function. If we put ¢ = w + v then (6.160)
reduces to a system of two nonlinear equations

Up = —Vgy + k‘v(u2 + 112),

V= Ugy — ku(u® +v?). (6.161)
Symmetries, conservation laws and coverings for this system were discussed
by several authors, see [88] and references therein.

Now we want to construct a supersymmetric extension of (6.161). This
construction is based on two main principles:

1. The existence of a supersymmetry Y1, whose “square”
2

. 0
Yy, Y1) = o, (6.162)
where in (6.162)) “=" refers to equivalence classes of symmetries?.

2Recall that by the definition of a higher
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2. The existence of a higher (third) order even symmetry Xs, which
reduces to the classical symmetry of (6.162) in the absence of odd
variables.

The technical construction heavily relies on the grading of equations
(6.161) and (6.162),
deg(z) = —1, deg(t) = —2, deg(u) =1, deg(v) =1,
deg(us) = deg(vy) = 2, deg(uy) = deg(ve) =3,
deg(uzy) = deg(vyy) =3, ... (6.163)
Condition 1, together with the assumption that the odd variables ¢, ¥ to

be introduced are of degree > 0, immediately leads to two possible choices
for the degree of ¢, ¥ and the supersymmetry Y%, namely,

1
deg(p) = deg(v) = 3
0 0 u 0 v 0
Y%—‘Pl%"‘d’l%"‘i%""g%, (6.164)
or
3
deg(p) = deg(vy) = 2
. 8 8 U1 8 U1 8
e VAL W P T (6.165)

where it should be noted that the presentations (6.164), (6.165) for Y% are

not unique, but can always be achieved by simple linear transformations
(p, 1) — (¢, 9"). The choice (6.165) leads to just one possible extension of
(6.161), namely,

U = —Vgp + kv(u? + v?) + apy,

U = Uy — ku(u® +0%) + By,

o1 = filu,v, 0, 9],

Y = falu, v, 0,9, (6.166)

where f1, fo are functions of degree 7/2 depending on u, v, ¢, 1 and their
derivatives with respect to z.

A straightforward computer computation, however, shows that there
does not exist a supersymmetric extension of (6.162) satisfying the two
basic principles and (6.164) in this case. Therefore we can restrict ourselves
to the case (6.164) from now on.

For reasons of convenience, we shall use subscripts to denote differenti-
ation with respect to x in the sequel, i.e., u1 = ug, Uos = Uyy, etc. In the

symmetry (see Chapter 2), it a coset in the quotient D¢ (£)/CD. Usually, we choose a
canonical representative of this coset — the vertical derivation which was proved to be an
evolutionary one. But in some cases it is more convenient to choose other representatives.
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case of (6.164), a supersymmetric extension of (6.161) by two odd variables
©, Y is given by

up = —vy + kv(u® + %) + filu, v, 0,9,

ve =g + ku(u® + %) + falu, v, 0, ¥,

gpt = fg[uvll)?QOvd}L

¢t = f4[u,v,9071/}]7 (6167)
where f1, fo are functions in of degree 3 and f3, f4 are functions of degree
5/2. Expressing these functions into all possible terms of appropriate degree

requires the introduction of 72 constants.
Moreover, basic Principle 2 requires the existence of a vector field

0 0 0 0
X3 = gl[u7v7¢7w]% + 92[%”7%1“% +93[U7U790’¢]% +94[U7U7%¢]%
(6.168)

of degree 3 (i.e., g1, g2 and g3, g4 have to be functions of degree 4 and 7/2,
respectively) which is a symmetry of (6.167) and, in the absence of odd
variables, reduces to

X3 = (u3 — 3k(u® + v2)u1)% + (vg — 3k(u® + v2)v1)%,
the classical third order symmetry of (6.161). The condition that (6.168)
is a higher order symmetry of (6.167) gives rise to a large number of equa-
tions for both the 72 constants determining (6.167) and the 186 constants
determining (6.168). Solving this system of equations leads to the following
theorem.

(6.169)

THEOREM 6.37. The NLS equation (6.161) admits two supersymmetric
extensions satisfying the basic Principles 1 and 2. These systems are:

Case A. The supersymmetric equation in this case is given by
up = —vy + kv(u?® + %) + dkurpp — 4kv(ppr + Pi),
ve = up — ku(u® + %) + dkvigy + dku(ppr + ),
pr = =ty + k(v + v*) + dkppr,
Ve = g2 = k(u® + 0o + ki (6.170)

with a third order symmetry
X3 = <u3 — 3kuy (u® + v?) + 6kvapty + 3kui (oo + Vi)
+ 3kv1 (o1 + p19) + 3ku(ppz + Pih2) + 3kv(Yp2 — pibe) + 6kv¢1¢1) %
+ (U3 — 3kvy (u® + v*) — Bkugprp + 3kvi (@1 + Y1) — Bkuy (o1 + 19)

+ ko2 + Yn) — hu(pps — ) — Ghuprn) o
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+ (1o Okipnia = Jhu? 4 oP)ipr + S(us — uro)y — Sh(us + o)) 5
+ <¢3 —6kpippr — gk(u2 +o?)ir - %k(uvl —u1v)p— %k(um -leW) %
(6.171)
Case B. The supersymmetric equation in this case is given by
up = —vg 4 kv(u? +v?) — (¢ — 4k)uypp — dkvprp — (¢ + 8k)urppy
+ dkupr + cvppr,
vy = ug — ku(u?® +v?) — (¢ — 4k)v1 + dkupp + (¢ + 8k)vpiy
— dkvippr — cuhpr,
pr = =2 + k(3u® + 0 — 2kuvp + (¢ — 4k)pvpr,

Uy = @ — k(u? 4 30%) @ + 2kuvy — (¢ — 4k) Uiy, (6.172)
where ¢ is an arbitrary real constant. This system has a third order
symmetry

w

X3 = <U3 - 3ku1(u2 + 1)2) - 5(0 — 4k)vepth + 12kv (1 + @1))

3 3 9
= Sle+ dkyuripy + S (e + dk)upun + 12/-cw1¢1) o

3
+ (vg — 3kvy (u? + %) + E(C — 4k)uapp — 12kus (b1 + 19)

3 3 0
+ 5(0 + 4k)upps — 5(6 + 4k)vpps — 12kug01¢1) 30
+ <<P3 — 5(0 — 4k) by — 3k(u” + v7) @1 + 6kvy () — UﬁP)) 9o

3 0
+ <w3 + 5(0 — 4k)pbipa — 3k(u? + v*)y — 6kuy (ug) — vcp)) 90 (6.173)
Equations (6.170) and (6.172) may also be written in complex form.
Namely, if we put ¢ = v+ v and w = ¢ + i), equations (6.170) and (6.172)
are easily seen to originate from the complex equation

iqt = —q2 + k(¢"q)q — 2kq(w* w1 + wwi) + c2g(w*wi — ww?)
+ (e1 4 2k)(qw™ — ¢*w)wi + (¢1 — c2)qrww™,

1
iw = —wa + k(¢*q)w + §ng(q*w —qw*) + (1 — c2)ww wy, (6.174)

where c1, ¢y are arbitrary complex constants.

Now from (6.174), equation (6.170) can be obtained by putting ¢; = —4k
and ca = 0, while equation (6.172) can be obtained by putting ¢; = ¢,
Coy = 4k.

Hence we have found two supersymmetric extensions of the classical
NLS equation, one of them containing a free parameter. We shall discuss
symmetries of these systems in subsequent subsections.
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8.2. Symmetries and conserved quantities. Let us now describe
symmetries and conserved densities of equation (6.174).

8.2.1. Case A. In this section we shall discuss symmetries, supersym-
metries, recursion symmetries and conservation laws for case A, i.e., the
supersymmetric extension of the NLS given by equation (6.170).

We searched for higher or generalized local symmetries of this system
and obtained the following result.

THEOREM 6.38. The local generalized (z,t)-independent symmetries of
degree < 3 of equation (6.170) are given by

0 0
X() ’U%—U%,
= 2_ 0
0 o 1 0 1 0
Y: _¢1%+¢18 +§’l}% 511,%,
_ 0 g 1 0 1 0
Y%—gm%—i-%%—i—?u%—i—?)%,
0 0 0
X1 ul%—i-vl%-f— a +w18"¢
0
Xo= o, (6.175)

together with X3 as given by (6.171).

Similarly we obtained the following conserved quantities and conserva-
tion laws

THEOREM 6.39. All local conserved quantities of degree < 2 of system
(6.170) are given by

Py = /Zcpz/)d:c,

Q= [ - vp)dn

Q% = /_C:(U(P"i'vw) dx

P = /Z(zﬁ + 0?2 — 2001 — 2)y) da

Py = /_ Z(uvl 201001 da, (6.176)

with the associated conservation laws

Doz = PV,
Pot = PP1 + Y1,
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q1
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qLy

=
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= uw — vy,

= up1 + v — urp — V1Y,
= up + v,

= —u1 + vp1 + urh — v19,

Prz = u® + 07 — 2001 — 20y,

Pt = 2u1v — 2uvy

— 4191 + 2027 + 210,

D2,z = U1 + 20191,

P2t = U2U —

1 1
§(u% + v%) + Zk(vA‘

+ dku? (g1 + i) + dhuvi oy + 8kt .

2v? = 3ut) + 2(¢1th2 + @1¢02)

(6.177)

From the conservation laws given in Theorem 6.39 we can introduce
nonlocal variables by formally defining

Po = D;1p0,$;
_ —1

a1 = D, q1 o

_ —1=

a1 =Dy q1

pP1 = Dx_ Pi,x,

D2 = Dx_1p2,z

(6.178)

Using these nonlocal variables one can try to find a nonlocal generalized
symmetry, which might be used in the construction of an infinite hierarchy
of symmetries and conserved quantities for (6.170).
computations we arrive at the following theorem.

From the associated

THEOREM 6.40. The supersymmetric NLS equation given by (6.170) ad-
mits a nonlocal symmetry of degree 1 of the form

0 0 10 10

leq% w1—+¢1av+§—a¢—§—8w
_ 0 0 10 10
+q% @18 +w1 26<p+§_8w

0

- 2ww— + 2us0¢— +h o + ko

e
=qYi —q@ Y1 +B
2 2 2 2

where B is given by

0
B= —21}(,01#— + 2u<p¢ —i— k™ <p1— + k- 11/11

dp

0
oY
(6.179)

0

0 (6.180)

The existence of the symmetry Z; of the form (6.179) should be com-
pared with the existence of a similar symmetry for the supersymmetric KdV
equation, considered in the previous Sections 4.2 and 6. It should be noted
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that relation (6.179) just holds for the 9/0u-, 9/0v-, 9/d¢- and 9/O-
components. Starting from (6.175) and (6.179), we can construct new sym-
metries of (6.170) by using the graded commutator of vector fields

[(X,Y]=XoY — (-1)XIWly o x.
Computing the commutators of (6.175) we get the identities

[Y%,Y%] = X1, [Y%,Y%} = X1,
[X()aYl] - _la [X()? _l} = Yla
2 _ 2 _ _2 2
[XO,YI] = Y%, [Xo, %} = —Y%, (6.181)

all other commutators of (6.175) being zero.
In order to compute the commutators [Z7, Yl] and [Z1, Y1] we are forced

to compute the prolongations of the vector ﬁelds Y% Y% towards the nonlocal
variables a1 and cj 1. In other words we have to compute the 8/8q1— and
a/ 8Q1 components of the vector field Y1 and Y1 These components can be
obtalned by requiring the invariance of a1, and q1 €.,

Da(Y, ) = Yilqs,) = Yy (uh —vp) = Yoo +uY — Yo —oY¥
’ 2 2 2 2

)

I
:<

1(71,) = Yi(up+vy) = Yl +ul? + Y19 + oYY (6.182)
2 2 2 2

-

q a1
where Y, ? and Y1 2 are the 0/0q 1- and 0/0q 1 -components of Y% . Similar
2 —

_q1 1
relations hold for Y, * and Y

2
A straightforward computatlon yields
q1 1 _

N

q
Y;Z :_51017 1 = 1,
2
q1 _q1 1
Y1§ :Sowa 1§ :§p17
2 _2
Y7 = —(uy — vep), Y = up + vy (6.183)
2 2

Now the commutators [Z7, Y%] and [Z1, }7%] give the following results:
1
Yy =[Z1.Y1] =1 Xa + opY)
-1 2 9
+< ¢2+ (u® + 3v )¢+3<P1/J<P1+uvcp>a—
+ (K7 + (3u% + v2)p + Bpuhihy — ump)

- *k' oy + UWﬁ)* + (5143_ uy + §U<P¢>£,

+ 0

1
Y; = [Zl,Yé] = —Q1X1 + p1Y1

N
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(BT = 5 4 3070+ B vt ) o

1 B
+ (k‘1¢2 - 5(3u2 +v?)p — 3ppr — uw) 5

1, 3 o /1., 3 )

i.e., Y3 and Y3 are two new higher order supersymmetries of (6.170). In ef-
2 2
fect, we are here considering the supersymmetric NLS equation in the graded

Abelian covering by the variables pi,q1, 1, where the following system of
2 2
differential equations holds
ur = —va + ko(u? +0%) + dkur oy — 4kv(ppr + Pi),
ve = uz — ku(u® +v*) + dkvigy + dku(ppr + i),
pr = —tha + k(u® + v*)Y + kg,

b = 2 = k(u? + ) + 4k,
qi . = up — v,
q1, = upr + v —urp — vie,
q1 . = up + oy,

;= —u1 +vpr + w1y — v,

Q|

=

)

Pre =" + 0> = 2001 — 201y,
P1t = 2u1v — 2uvy — 4191 + 29021 + 2¢01)9. (6.185)

We are now able to prove the following lemma.

LEMMA 6.41. By defining

n+% = [Zl’Ynf%
YnJr% = [Zlayn,%], (6.186)
n=1,2,..., we obtain two infinite hierarchies of nonlocal supersymmetries

of equation (6.170).

PROOF. First of all note, that the vector field 9/dp; is a nonlocal sym-
metry of (6.170) and an easy computation shows that

0
[8—]91’ 1] - 07
0 1
a7
0 - 15
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Secondly, note that by an induction argument and using the Jacobi identity
and (6.187) it is easy to prove that
0 0
v N
[8p17 n+%] [apl
0 - 1
[y Vel = 3%n- 1
From (6.188) it immediately follows that the assumption Y, . 1= 0 leads to
the conclusion that also Y, _1 = 2[0/0p1, Y, 1] = 0, which proves that the
2 2

hierarchies {Y,, 1 }nen, {Y,,, 1 }nen are infinite. O
2 2

1
2t

=121, 5% ) =

1
2

(6.188)

Higher order conservation laws arise in the construction of prolongation
of the vector fields Yl, Y1 and Z; towards nonlocal variables, the first of

which resulted in (6. 183)

q1
In order to compute the Z;? component of the vector field Z; we have
to require the invariance of the equation g1 , = uy) — vy, i.e.,
2 b

q

1
Do(2,%) = Z1(q1 ) = 1 Y1 (a1 ,) — 41 Y1(q1 ) + Blg1 )
1 _
= ai(=5p1e) — 4y (p¥)r + Blay ;)

due to (6.177) and (6.179), from which we obtain

q

1
Z," = 5P - %(gow) + B (up — vy)

(S

+f " (Gl —vp) — KMt~ vig)) dr - (6.159)

and in a similar way

q
D.(Z,

=

piz) + B4y ,),

— 0103 9,
yielding
J% 1
Z = %(901/1) —5har Tt k™ (up + vi))
o1
+ / (gpl(ugp o)) — k™ Huyp + U1¢))> dx. (6.190)
—0o0
So the prolongation of Z; towards the nonlocal variables q1, g1 requires the
2 2
introduction of two additional nonlocal variables

gz = /w (%Pl(mb —vp) =k~ (uy — vl@) dz,

—0o0

s = /w (%pl (up 4 vp) — k™ (urp + Ulw)) dx. (6.191)

—00
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It is a straightforward check that ¢ 3 cj% are associated to nonlocal conserved

quantities Q3, Q3. Thus we have found two new nonlocal variables ¢s and
2 2 2
q3 with
2

qs , = sp1(u —vp) — K~ (wy — v1p),

Nl

=

G2, = 5pl(ucp +v1p) — k™ Hurp + v1). (6.192)

From this we proceed to construct the nonlocal components of Y1 and Y1
2 2
with respect to a3, (jg, which can be obtained by requiring the invariance of
q%,x and ng’m
In this way we find

a3
Dp(Y1?) = Y1(gs ,)
3 22

1 1
= Y1 (p)(w —vp) + S Y (ugp —vp)

- k’_lyé (ur1y) — v19)

_ 1 Lo Lo
= 2101( Y1y S~ PP — v )
_ 1 1
— kN (ot — QUL = Pap — 51)111) (6.193)
yielding
% 1o 1 4 5 o
Y% = gPi— i (u” +v7) + 4(pp1 + Yi) (6.194)

In similar way we find

q3 1 1 ’
Y7 = opioy — kTN + g + suw) — kl/ (wor + 21¢1) dz,

) 2 .
_q% 1 _1 1 -1 *
7= opipd =k (1 gy + Jue) — k (wor + 2191 da,
2 —00
vac N U S A S
1m=gh T Zk (u” 4+ v7) — 4(pp1 + Y¢). (6.195)

Hence we see from (6.193) that the computation of the nonlocal components
q3 _4qs3
Y, ? and Y, ? requires the introduction of a new nonlocal variable
2

2

p2 = /:v (uv1 + 2¢191) d. (6.196)

—00
It is easily verified that po is associated to a conserved quantity P». In
arriving at the previous results, (6.195), we are working in a covering of the
supersymmetric NLS equation with nonlocal variables p1, q1, G1, g3, @3,
2 2 2 2

p2; i.e., we consider system (6.185), together with the differential equations,
defining Q%v (jga p2.
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Summarizing the results obtained so far, we see that the odd potentials
Q:, Q1, Q3 and ()3 enter in a natural way in the prolongation of Zi,
2 2 2

whereas the even potentials P, and P» enter in the prolongation of Y% and
Y1. This situation is similar to that arising in the supersymmetric KdV
eq2uation treated in Section 6.

8.2.2. Case B. In order to gain insight in the structure of the super-
symmetric NLS equation (6.172), we start with the computation of (z,?)-
independent conserved quantities of degree < 3. We arrive at the following
result.

THEOREM 6.42. The supersymmetric NLS equation (6.172) admits the
following set of local even and odd conserved quantities of degree < 3:

1
P, = / Zkfl ((c + 4k)p1h1 + (¢ + 12k)k(u® + v*) ) — 4kuv1) dz,
oo
Qs = / —k (U¢2 — VP2
2 —00
— k(u? + v (up — vp) — dkpip(upy + m/q)) dx. (6.197)
Moreover, in the case where ¢ = —4k we have an additional local conserved

quantity of degree 3 given by

Ps = /00 (16UU(90¢1 — 1)

—0o0

+ 32uvptp + (u? 4 v?)? — 267 (uus + vv2)> drx. (6.198)

Motivated by the nonlocal results in case A, we introduce the nonlocal
variables pg, q1, p1, g3, p2 and ¢s as formal integrals associated to the
2 2
conserved quantities given in (6.197).
Including these new nonlocal variables in our computations, we get an
additional set of nonlocal conserved quantities

Q% = /_O; %<2q% + (c+ 4k)<p¢q%> dz,
P [ 3K (2 — wpday — (o + b)) o
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_ o0 1
Py = / —§k*1 <2k(ucp1 +oihr)qs — <P1¢1> dz, (6.199)
as well as an additional conserved quantity in the case ¢ = —4k, namely
po = / P1 dx.

This situation can be described as higher nonlocalities, or covering of a
covering, and as it will be shown lead to new interesting results.

REMARK 6.15. The results (6.197), (6.199) indicate the existence of a
double hierarchy of odd conserved quantities {Q,, , 1 tnen as well as a double

hierarchy of even conserved quantities { P, },en.

In order to obtain any further results, we also need the conserved quan-
tity @ 1 of degree 7/2 which is given by

|
Q7 = / ék‘l <2u<p3 + 2uih3 — 2kv3i — 2kudor — 6kuv?or + 6kuvi

— 12kuvvip + 2¢(uy) — vp)p191 — (¢ — 12k)pip(uhy — v<p2)> dx. (6.200)

Let us stress that now, by the introduction of the nonlocal variables q1, p1,
2
pa and qz, associated to the appropriate conserved quantities, we are able to
2

remove the condition ¢ = —4k on the existence of the conserved quantities
P; and Py. By also including 1, p1, p2 and qz in our computations, we
2 2

find four additional conserved quantities given by

Py = /Oo (pl + (c+4kz)pl> dx,

—00

_ 1.
Qs = /_OO 5k ! (%Qg + 2k (u® + UQ)Q% + (pp1 + Wl)q%) dz,
Py= [0 (2ot ) — vy + 2+ W) + %000

—2(c+ 12k)uvppr — 2(c — 4k)uvpi
+ 32kuyvet + k(u? + 0?2 — 2(uuy + vvz)) dr,

_ 0 q
Py = / 5]{_1 (4/@2(1“# — wp)qg + 2k(upr + le)Qg

—00

— (P19 + 1tpa) + (c — 4k;)<p¢<p1¢1> da. (6.201)

Note that the first equation in (6.201) and the third one in (6.201) reduce
to the second equations in (6.199) and (6.197) respectively under the con-
dition ¢ = —4k. Furthermore, from the computation of the ¢t-component
of the conservation law gs associated to Qs, it becomes apparent why the

2
introduction of the nonlocal variable gz is required in its construction.
2
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So Ps is just an ordinary conserved quantity of this supersymmetric ex-
tension; for ¢ = —4k it is just a local conserved quantity, while for other
values of ¢ it is a nonlocal one.

We now turn to the construction of the Lie algebra of even and odd
symmetries for the supersymmetric NLS equation (6.172). According to the
introduction of the nonlocal variables associated to the conserved quantities
obtained earlier in this section we find the following result.

THEOREM 6.43. The supersymmetric NLS equation (6.172) admits the
following set of even and odd symmetries of degree < 2. The symmetries of
degree 0 are given by

X—vg—ug—i- 0 0
"= Yau T Yoy Pay’

) o 1., 0 1 _, 0
Xo—wa pasge — gk & < ¢a¢’ (6.202)

the symmetries of degree 1/2 by

0 o 1 0 1 0
—|—¢1 + sum—+ sv

Yi=vig, 2%9, T 28y

(qyﬂ— Zk U)%
0

b

_ a
Yi=varg, ~ vy,

1
+(—a1p - Zk—lv) (6.203)

the symmetries of degree 1 by

0 0 0 0
Xl—ula——i-vla +g01 +¢18¢

X1 = ((C + 4743)(%01(]% + wq%) + 2k(c — 4k:)131v) (%
0
+ ((C +4k)(U1g1 — pgs) — 2k(c — 4k)ﬁlu) 50
+ ( — 4kuq% + 291 + 2]{2(6 — 4]4:)]311/)) i

( 4kvq1 —2¢1 — 2k(c — 4k:)p1<p> (6.204)

o0’
the symmetries of degree 3/2 by

Y3 = (vqs +uiqr — —/-c Yo 4+ uPth — uvp — —k 090¢901> 0

9
ou

ou
+<—UQ3+v1q1+ ks —w cp—i—uvz/J——k cgm/npl)a—
+ gw+qup1)aw (—qgsoJrq%%)%,
(

4kcu1q1 — (¢ — 4k) (g + cppipr) + k(e — 12k) (u® + v )1/1)

é
2



306 6. SUPER AND GRADED THEORIES

0
+ <4kcv1q1 + (¢ — 4k) (@2 — coihy) — k(c — 12k) (u? + v?)p )au
+ <4kcq1 ©1 + 2k(c — 12k)upy + 4k‘v1) 9
Iy
+ <4ch1 Y1+ 2k(c — 12k)vp) — 4k:u1) 9 (6.205)
2 o’

and finally the symmetries of degree 2 by
Xy = (UQ — kv(u? + v?) + (c — 4k)uyptp + 4k(vehy — upihy)

0
+ (¢ + 8k)upp; — cvcpgol) ™

— up + kv(u? + v?) + (¢ — 4k)v1oy — dk(upp; — vippr)

0
— (c+ 8k)vpr + cu<P<P1>

ov
+ (wg k(3u® + v + (c — 4k)prppr + Qkuvgo) 88<p
(= o — k(u? + 302 + (c — 4k)ppipy — 2kuvw> 55

( ¢+ k) (—ktpas +v2q1 — 3ku*yqs + copiqs)
(¢ — 4k)(4kpav + vip1 — vorhr)

+ 16k%vq1qs + (c— 12k‘)k02¢)q; + 4ck‘uv<pq;) 2
273 2 2/ Ou

+ ((C +4k)(kpgs — p2q1 + kv’ g1 + coviigy)
+ (¢ — 4k)(—4kpau — wippr + upi)

— 16k*uq1qs — (c— 12k)ku2cpq; — 4ckum/1q12> 2
2732 2 ov

(= 202 + (o — 4R) (kDo) + 2p05001) — 2(c — 12K kupiogy
0

+ (dku + 16k2wq%)q% - 4kv1q% — 4kuvt) + 4kv290> 7%

+ (= 292 — (¢ — 4k)(4kpaip + 200p1) — 2(c — 12k)kvpipgs

+ (4kv — 16K> <pq1)q3 + 4ku1Q1 — dkuvyp + 4kv21/1> 0 (6.206)

o’

Analogously to case A, we have the following result.

THEOREM 6.44. The nonlocal even symmetry X1 given by (6.204) acts
as a recursion symmetry on the hierarchies of odd symmetries.

In order to compute the graded commutators [X1,Y1] and [X1, Y1], we
2 2

have to compute the components of Y1 and Y1 with respect to the nonlocal
2 2
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variables ¢ 1,43 and p;. Analogously to the computations in Subsection 8,
we find

13
Y% = Wﬁa
q3 1
Ylg = —(u? +v?),
3 4
_ 1 1
V7' = pvqs + -k (up+vy) — Sk g (6.207)
3 2 4 2 ’
and
q1
Y,? =0,
2
q: 1
Yﬁ = ——k7 L (u? + %),
3 8
_ 1 1
VP =~k (up +vy) + 2k g3 (6208)
2

Moreover, the computation of [ X7, Y1] requires the /971 -component of X;
2 2
which is given to be

_q1
X2 = —(c+ 4k)pvqr — 2gs. (6.209)
2 2
Now the computation of the commutators leads to
_ 1 1 1o
N 1 o
[Xl,Y%] = (_Zk c+ 1)Y% + gk: Y%, (6.210)

indicating that X; acts as a recursion operator on the Y, Y hierarchies.

It is our conjecture that X7 is a Hamiltonian symmetry for equation
(6.172). We refer to the concluding remarks for more comments on this
issue.

9. Concluding remarks

In the previous sections we proposed a construction for supersymmetric
generalizations of the cubic nonlinear Schrédinger equation (6.160) and dis-
cussed symmetries, conserved quantities for the resulting interesting cases
A and B. In both cases we found an infinite set of (higher order) local and
nonlocal symmetries. These facts indicate the complete integrability of both
Systems.

It is possible to transform the results obtained thus far in the superfield
formulation. Namely, if we introduce the odd quantity @ by

¢ =w+0bq, (6.211)
where 6 is an additional odd variable, and put
10
Dyg=—-—+0D,, (6.212)

200
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then
[Dg, Dg] = Dy
and it is clear that Dy corresponds to the supersymmetry Y1 given by
2

(6.203). Notice that our definition of Dy differs a factor 1 in the 9/06
term. This is caused by our requirement that [Dg, Dg] = D,, whereas the
operator Dy introduced by Mathieu satisfies [Dy, Dy] = 2D,. In this setting
the general complex equation (6.174) takes the form

i®; = —4D§® + 2(c1 — o) PD* DED
+ 2(cg + 2k)PDy®Dpd* — 2c,0* (Dy®)?  (6.213)

Our hypothesis is that there exist Hamiltonian structures of the systems of
Cases A and B in this setting. Due to the conjecture that the nonlocal recur-
sion symmetry X given by (6.204) is a Hamiltonian symmetry associated to
a linear combination of P, and P, we hope to prove the formal construction
and the Lie superalgebra structure of the local and nonlocal symmetries and
the Poisson structure of the associated hierarchies of conserved quantities.

REMARK 6.16. The contents of this section clearly indicates how to con-
struct supersymmetric extensions of classical integrable systems, which can
be termed completely integrable by the existence of infinite hierarchies of
local and/or nonlocal symmetries and conservation Laws.



CHAPTER 7

Deformations of supersymmetric equations

We shall illustrate the developed theory of deformations of supersym-
metric equations and systems through a number of examples.

First of all we shall continue the theory for the supersymmetric extension
of the KdV equation [35, 72, 74, 87] started in Section 6 of the previous
chapter. We shall construct the recursion operator for symmetries, which is
just realized by the contraction of a symmetry and the deformation. More-
over we construct a new hierarchy of conserved quantities and a hierarchy
of (z,t)-dependent symmetries.

As a second application, we consider the two supersymmetric extensions
of the nonlinear Schrodinger equation (Section 2) leading to the recursion
operators for symmetries and new hierarchies of odd and even symmetries.

We shall also construct a supersymmetric extension of the Boussinesq
equation, construct deformations for this system and eventually arrive at
the recursion operator for symmetries and at hierarchies of odd and even
symmetries and conservation laws.

Finally, we construct two-dimensional supersymmetric extensions (i.e.,
extensions including two odd dependent variables) of the KdV and study
their symmetries, conservation laws, and deformations, obtaining recursion
operators and hierarchies of symmetries.

1. Supersymmetric KdV equation

We start at the supersymmetric extension of the KdV equation [72, 74]
and restrict our considerations to the case a = 3 in the system

uy = —uz + 6uuy — apps,
or = —p3+ (6 —a)pru + apuy (7.1)
(see Section 6 of Chapter 6).

Features and properties of the equation were discussed in several papers,
cf. [35, 87].

1.1. Nonlocal variables. In order to construct a deformation of (7.1),
we have to construct an appropriate covering by the introduction of a num-
ber of nonlocal variables. These nonlocal variables, which arise classically
from conserved densities related to conservation laws, have been computed
to be

q1 =D"'(y),
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g3 =D"'(p19),
gs =D <%p?<p — us@)
and
=D~ (u),
po =D (p1),
=D (¢qy),
=D~ 1(U2 — pp1),
ps =D7'(u® — 2upqy + uq1qs),
where D = D,.

(7.3)

0Odd nonlocal variables will be denoted by ¢, while even nonlocal vari-
ables will be denoted by p and p. We mention that, in effect, the total
derivative operator D, should be lifted to an appropriate covering, where it

is denoted by the same symbol D,, i.e.,

0 0 0 0
sz——i-ul +Uuy—+uUus—-+...

Oz ou Ouq Oug
_|_( )i"i‘( i i
Q% xaq% Q%
9
Ipo
0 0
+ P1)an= + P3)e =
(pl) 8])1 (p3) apg

Other odd nonlocal variables, ¢z and gg, are given by
2 2

+ (p())a:

- 1
a7 = D! <P380 +a1 (ip%u —prur +uz — UQ)),
gy =D~ <6p3p1<p +q1 (piu — 3pfur + 6prup — Gpru

+ 36uuy — 6u;>,)>.

(7.5)

Note that the variables 43,495,415 93, Do, D1, P3 contain higher nonlocalities.

1.2. Symmetries. For hierarchies {Yzni1}, {Xont1}, n € N, of sym-
2

metries of equation (7.1) we refer to 4 of Chapter 6. Recall that

0
Yg =(2q%U1 —prp1 + up — @2)@ + (26]%801 —pru—+ui)s—

0

0
X1 =u1 +<P18—,
2

ou
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0 0
X3 =— Ut g — %@a

X5 = — (us — 10uzu — 20upuy + 30uu? + 5wy + 5p1p3
d
— 20ugpp2 — 2OU1<p901)8—
u

— (5 — buws — 10u1p — 10uzpr + 10u2g01 + 20uyup — 5U3¢)%.
(7.6)

Moreover we found the supersymmetric analogue of the (x, t)-dependent
symmetry which acts as recursion on the even hierarchy {Xs,11}, n € N,
ie.,

Vo = —6tX5 — 22 X3 + Ho, (77)
where

Hy =( - q1(p2 +p1p1 — pu) +3g3 1 — 13ppy
0
+4p1ur — 2pyur — Bug + 16u2)a—
U
+ ( - ‘Z%(plu —uy) + Sq%u

0
+2p1p1 — 2D1p1 — Ta + 14g0u) @ (7.8)

It should be noted that the vector fields

o= g ga +xi
-1 - Opy % dqs % 0¢s (9q5 dpo
0
X 1==— .
' opy (7.9)

are symmetries of equation (7.1) in the covering defined by (7.2), (7.3).
These symmetries are vertical in the covering under consideration.
Computation of graded Lie brackets leads to the identities

[Y_%avé] :Yga
[(X_1,Va] =27, +4Xy,
[Yfla VYQ] = 2X1, (710)

where Z; is the nonlocal symmetry of degree 1 (cf. 4 of Chapter 6), which
acts, by its Lie bracket, as a recursion operator on the odd hierarchy {Y, , 1},
2

n € N. Recall that

) )
Hi=layen)g, +lagu—pr)go + (7.11)
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1.3. Deformations. In order to construct a deformation of (7.1), we
formally construct the infinite-dimensional Cartan covering (see Subsection
3.5 of Chapter 6) over the infinite covering of (7.1) by (7.2), (7.3).

In the setting under consideration, the Cartan covering is described by
the Cartan forms wy,...,wg,... on the infinite prolongation of the super-
symmetric KdV equation together with the forms corresponding to the non-
local variables (7.2), (7.3):

wq%’ wq%, Wq%v Wpos Wpiy Wpys Wpsy Wpy, (7.12)

where wy = Ly, (f) denotes the Cartan form corresponding to the potential
f (see (2.13) on p. 66). According to (7.12), we search for a generalized
vector field which is linear with respect to the Cartan forms. Applying the
deformation condition on this vector field and taking into account the grad-
ing of (7.1), (7.2), (7.3), and (7.12), we arrive at the following deformation

Uy = (ww + wyu(—4u) + we, (—2¢) + wu(e1)
+ wq% (q%u1 + P11 + p2 — up)

0
+ wp, (—2u1) + wp, (u1) + Way (—¢1)) Pu
+ (wiy + wy(—2u) + wu(—2¢)
+ Wq% (_Q%@l + pru—uy)
0
+ wp, (1) + wp, (¢1) +Wq%(_u))%' (7.13)

Similar to the results of Subsection 2.8 of Chapter 6, the element U; satisfies
the identity

[y, Uh]™ =0, (7.14)

which means that U; is a graded Nijenhuis operator in the sense [49].
We now redefine our hierarchies in the following way. First we put

0 0
Yy, —
i (9 +u8cp

0 0
Yg :(QQ%M — P11 +up — 902)% + (2(1%901 —p1u+ Ul)%a

0

X
1= 9’

8—1—
8 2

0 0
X1 Z(q%w)% +(q1u— 801)8 = 7,

0 0
Vo =(2u + zuy + 3tut) ( +zp1 + 3t<pt)% (7.15)
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and define the odd and even hierarchies of symmetries by

Vo1 = (- (Yo U ST ..) wUh) = Y3 WU,

n times
Yyups = Ya SO,
Xont1 = X1 U7,
Xont1 = X1 U7,
Von = Vo LU (7.16)

1.4. Passing from deformations to ‘“classical” recursion oper-
ators. Here we rewrite the main result of the previous subsection in more
conventional terms, i.e., as formal matrix integro-differential operators. We
shall see that this representation is far less “economical” than representation
(7.13). Moreover, if one uses conventional left action of differential opera-
tors, additional parasitic signs arise, which makes this representation even
more cumbersome.

Let X = 9(r,) be a nonlocal symmetry of (7.1) in the covering defined
by (7.2), (7.3) with 2-component generating function (F,G) and let |X| be
the degree of X; then one has |F| = |X| and |G| = |X]| + 1.

It means that X is of the form

x=Y (Di(F))ai' + Di(G) ai-)’ (7.17)
i—0 1 7

where F' and G satisfy the shadow equation for the covering in question and
D denotes the extension of the total derivative D, onto the covering. Then
one has

ix (wi,) = DI(F),
ix (@) = DI(C) (7.18)

for all ¢ = 0,1,... From the definition of nonlocal variables (see (7.2) and
(7.3)) one also has

1X(wq%

ix(wp,) =D Gqx - DN (@)y),

ix(wgg) = (DTN F)prp + %Gp? — Fyp — Gu),

ix(wpy) =D~ (2uF — Gepr + D(G)y), (7.19)

while



314 7. DEFORMATIONS OF SUPERSYMMETRIC EQUATIONS
ix(wp,) =D (2Fu —2Fpq1 — 2Gug: + 2D HG)uy
2 2

+ Fqiqs + D (G)ugs — D™ (DTN (F)p + Gpl)uq%> (7.20)

(the last equality is given for reasons of completeness only and will not be
used below).

Then the recursion operator R corresponding to the deformation Uy,
(7.13) acts as

R(X) = ix(Uy) (7.21)
and is of the form
R(F,G) = (F1,G1), (7.22)
where
Fy = D*(F) + F(—4u) + D(G)(=2¢) + G(¢1)
+D7HG)(~qru1 + pro1 + 2 — up) + D7H(F)(~2u1)
+ D~ (Gay = D™H(G)¢)ur + D~HDH(F)p + Gp1)(—¢1),
G1 = D*(G) + G(—2u) + F(—2p)
+D7HG)(~qr01 +pru—w) + DT F)(—1)
+ D71 (Ggy = DTHG)e) (@) + DTHDTH(F)p + Gp1)(—u).  (7.23)
Due to the relations
D (Gqy) = DN (G)ay — DTHD(G)p)
= ~(-1)¥lg; D) + (-1)X D (D (G)),
D~ YGp1) =D~ HG) — D1 (uD7H(@Q)), (7.24)
we rewrite F7, G1 in a left action notation as
Fy = D*(F) — 4uF 4+ (-1)X120D(@) — (-1)¥lp @
— (=DM (—qrur + pro1 + 2 — up)DTH(G) — 201 D7 (F)
— (=)™ lurg DTHEG) + (- )M DT (D 7H(G))
+ (=1)Muy D" (eD™HG)) + @1 D~ (DN (F)
+ (=)Mo1p D7HG) = (=1)X oD (D H(@))),
G, = D*(@) — 2uG — (—1)X2pF
+ (=q191 +pru—u) D7HG) = (=1)*pr D7H(F)
+ (~)Mi (-1)X g DHE) = (~1)¥FDH(eD7H(@)))
+ (=11 D7 (D (@) = (=1)XluD "N (eDTH(F))
—up1DHG) + uD N (uD7H(G)). (7.25)
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From this we finally arrive at
Fy = D*(F) — 4uF — 2uyD"Y(F) + o1 D" (oD Y(F))
+ (-1)X12D(G) — (=) G — (—1)¥ (2 — up)D7H(G)
+ (-1)*2u1 D7 (oD 7M@)
— (-)¥lp1 DN (wD (@),
G = —(—-1)M2pF — (-1)¥p D7Y(F)
— (~1)XluD (oD (F))
+ D*(G) — 2uG — u1 DG + 201D (oD7H@))
+uD Y uD7(@Q)), (7.26)
Fy = D*(F) — 4uF — 2u1 DY (F) + o; DY (oD~ L(F))
+ (-1 (20D(G) — p1G + (—p2 + up) DHG)
+2u D™ (pD™H(G)) — p1 D™ (uD (@),
G = (-)¥I(=20F — o1 D7H(F) —uD ™ (D7 (F)))
DQ(G) —2uG — ulD_l(G) + 201D~ 1(gDD 1(G)) + uD_l(uD_l(G)),

(7.27)
leading to the recursion operator R = R;j, where
Ri1 = D? —4u —2u1 D~ + ;D" pD ™!,
Riz = (~1)¥(2pD — 91 — 2D~ +upD ™' + 204 DD}
— D7D,
Ror = (—1)X(=2¢ — D' —uD~'pD™),
Rogs =D? —2u—u D'+ 20D oDt +uD tuD™ 1, (7.28)

Note that the classical recursion operator for the KdV equation is just the
p-independent part of Rii:

Ro = D* —4u — 2u; D1, (7.29)
From the above representation it becomes clear that the action of the re-
cursion operator considered as action from the left, requires introduction of

the sign (—1)/*!, which makes the operation not natural. Therefore we shall
restrict ourselves to representations similar to (7.13).

2. Supersymmetric extensions of the NLS equation

In this section, we shall discuss deformations and recursion operators for
the two supersymmetric extensions of the nonlinear Schrodinger equation
88]

up = —vy + kv(u? +v?) — ui(er — )y — dkvipihy
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—u(er + ez + 4k)Yp1 + coupypr + croppr,
v = ug — ku(u? 4+ v?) — vy (1 — c2)pth + dkupp
+v(er + co +4k) 1 — crughhy — cavibepn,
o = —th2 + (%C2u2 + ku® + ko) — %czuvgp — (c1 = )b,
Yy =2 — (%sz2 + ku® + ko) + %Cﬂwﬂ) — (e1 = e2)ppipn,
where in
Case A: c1 = —4k, cg =0,
Case B: c1 =c, co = 4k.

The construction of deformations will follow exactly the same lines as for the
supersymmetric KdV equation presented in Section 1, so for the nonlinear
Schrédinger equation we shall only present the results.

2.1. Case A. In order to work in the appropriate covering for the su-

persymmetric extension of the Nonlinear Schrodinger Equation we did con-
struct the following set of nonlocal variables, associated to conserved quan-

tities

Po, P1, P2 32_307 ]_)17 ]_727
qi, 41, 93, 43, 95, q
2 2 2 2 2

5,
2

which are defined by

po =D (p¥),
Po=D""(p1),
p1 =D Hu? + v — 2001 — 2911),

(
D™ k(v + pu)qy + k(yu — pv)qy — 2091 — 2001),
p2 = D™ (uvr + 20191),
Dy = D_l(k(21plv + 2p1u + kvopy + k:gpupl)q%
kE(—2vy1u + 2¢1v — kpupy + k(pvpl)ﬁé + 2uv1),

+

q1 = D™ (Yu — v),
71 =D (v + pu),
qs = D™ (kpupy — kovpy + 2¢1u — 2p1v),
a3 = D™ (kyopr + kpupy + 2110 + 2p1u).

After introduction of the associated Cartan forms, we found the deformation,
or Nijenhuis operator, for this case to be

U = (wvl + wp, (—kv) — 2wy kuy + wy (—2kpy)
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+ wp(—ku) — kvp) + wy (kv + kugp)

0
— wyy (kipr) + oy (k1)) -

+ ( — Wy + wp, (ku) — 2wy, kvt + wy(—2ke)

+ wo (—kvY) + kup) + wy (kuy + kop)
0

gy (ko) gy (ko)) -
+ <w¢1 + wy (k) + wm(—gw) + Wpo (—2k¢1)

+ gy (=50) oy (-50)) 70

+ ( — Wy, +wy(—kpy) + wp, (+§<P) + wpo (—2k11)
ey (5 oy (5)

%.
By starting at the symmetries (see [88])
0 0
Xo=v=— —u=—+...
0= Yo u8v+ ’
— 0 0
X = th— —
0 o 1 o0 1 0
Yi=—1— —v— — —u— +..
L= g, T, Ve, T 2tan T
— 0 g 1 o0 1 0
Yi=p1— — Ftsu—+ v
§ T, T, TR e, TRV T
and
So = (u+ zur + 20u) - + (v + 2oy + 2tv) 2
o= (u Ul Ut 8u v U1 (0 av
+(1 + zp1 + 21 )3+(1¢+ () +2tzp)3+
290 TPl Pt 9o ) HATS] taﬂ) e
the recursion operator U; = R generates five hierarchies of symmetries
X, = XoR",
Yn—&-% :Y%R ,
X, = XoR",
Yn+% :Y%Rn,
Sn = SoR”,

where XgR", ... should be understood as

Xp = XoR" = (... (XoUy) 2Uy) 1...) Uy

n times
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2.2. Case B. In this case the supersymmetric nonlinear Schrodinger
equation is

up = —vy + kv(u® + %) — (e — 4k)urp — Ak,
— (1 + 8k)uppr + dkupy + crvppr,
vy = ug — ku(u? +v?) — (¢ — 4k)v1Y + dkupe,
(c1 + 8k)vpin — crupypy — 4kvipeps,
p1 = —th2 + (3ku® + kv?)y) — 2kuve — (e1 — 4k) g,
1 = g — (ku? + 3kv?) @ + 2kuvey — (¢ — 4k) iy .

We introduce the following nonlocal variables, resulting from computed con-
servation laws,

0 =D (py),
Po=D""(p1+( 01+4k?p1)
p1 =D (w2 0?4 2k: (c1 + 4k) (w1 + ),
Py =D ((uyp —vp)g Zk(ﬂﬁsol +yn)),
g1 =D~ 1(uw—w),
_ _ 1
a1 =D (a3 + 5(c1 + 4k)evay),
q% =D~ 1(1)@[)1—{—“901)

and additionally
|

1
=D (- —
P2 (—uv + 4k(

_ 1
Py = D1 — (v + U‘Pl)q% + %@11[11)'

q_

1
2

1
c1 + 4k)p1¢1 + Z(cl + 12k) (u® + v2)<p1/1),

Within this covering, we constructed a deformation of the form
1
U, = (wvl + wu(i(cl — 4k)g0¢)

1 1
+ we (— dkuy + Z(cl — 4k)vp) + wy (Z(Cl — 4k)vp + dkup)

| =

1
+ wpo (5 (c1 — 4k)ur) + wy, (— kv) + wp, (— Shler + 12k)v)

1
k(ci + 12]6‘)’0(]% + 5(01 + 4k)g01)

—

N | = N

+wq%(

(e1 4+ 4k)5) )

N =

"’wq%(_
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1 1
+ ( — Wy, + wvﬁ(cl —4k)p + wy (—4kvy) — Z(Cl — 4k)up)
1
+ ww(—z(cl — 4k)up + dkvp)
1 1
+ Wpoi(cl — 4k)v1 + wp, (ku) + wp, §k(cl + 12k)u

(c1 +4k)i)

l\)
[\3“_.

1
+wa( Qk(01+12k) g1 +
3
1 0
+ wq% 5(01 + 4]4:)(,0) 70
1 1

o+ (wis + gwpler — 4R)pt + wp 3 (o1 — 4R)pr — wp, ki

0

1 1
— wp k(e +12k)9 + gy (=2ku — Sk(er + 12k)wq%)) ER

1 1
+ (— Wiy +ww1(c1 — 4k)pp +wp0§(cl — 4k) 1 + wp ke

1 0
+ wp, Gh(er + 12K)p + wyy (~2kv + 3 k(cl+12k)g0q1)> .
12 oy
The action of U; on the symmetries
0 0 0 0
X, — il
L= et 1o +¢18w+
— 0
X1 = ((c+4k)(p1ay + dag) + 2k(c — 4k)prv) -
0
+ ((c+4k)(V1qy — wag) — 2k(c — dk)pru) o
0
+ (= 4kuqy + 201 + 2k(c — 4k)p1¢) 5
0
+ ( — 4kvq% —2¢1 — 2k(c — 4k)ﬁ1cp)@ +...,
0 o 1 o0 1 0
Y%—Spla +¢1 2'11/%4-5’0%4-,
— 0 8 1 1 .0
Yi=qog- —qug-+(a1d = gu)g-+ (-aip - Ew@ +o
0 0 0
X() Ua— - % + @Z)% - % + 3
— 0 0 1 0
Xo = —Q%wa + UPa, ~ @80% - @#’@
0 0
Y_% ﬂ)% — (,0% +
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creates hierarchies of symmetries in a similar way as in the preceding sub-
section. Note that X is the nonlocal recursion symmetry constructed in
Section 8.2 of Chapter 6.

3. Supersymmetric Boussinesq equation

We discuss the construction of a supersymmetric extension of the Boussi-
nesq equation. Conservation laws, nonlocal variables, symmetries and re-
cursion operators for this supersymmetric system will be discussed too.

3.1. Construction of supersymmetric extensions. We start our
discussion from the classical system [14, 80]

1
Ut = _iu:px + uty + vy,
1
Ut = Vs + uvg + ugv. (7.30)

We construct a so-called fermionic extension [35] by setting
® = ¢ + Hu,
U =+ Ov, (7.31)

where ¢ 1, 0 are odd variables.
Due to the classical grading of equation (7.30), i.e

deg(u) = 17 deg(v) = 27 deg(x) = _11 deg(t) = _27
and the grading of the odd variables

1 1 3
deg(@) = _57 deg(@) = Ea deg(w) = 57

the variables ®, U are graded by
3
deg(¥) = —.

deg(q)) = Ea 9

Now we construct a formal extension of (7.30) by setting
[, v, 0, 9]
Vg = f2 [u U, @, ]
[, 0,0, 9]
[u, Y] (7.32)

where f1, fa, fs, fi are functions of degrees 3, 4, 5/2, 7/2 respectively
defined on the jet bundle J*(7), m: (z,t,u,v) — (z,t), extended by the
odd variables ¢ and 1. The construction of f; and fy should be done in
such a way that in the absence of odd variables f1, fo reduce to the right-
hand sides of (7.30). We now put on the following requirements on system
(7.32), see [88]:
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1. The existence of an odd symmetry of (7.32), i.e

8 0
Yl—sol +1/11 +”_a¢+
Y., Yi] = 8 = 2—a
[%7 %}— 2(uy 19 +U18 +<P1 +¢1aw) T T

2. The existence of an even symmetry of (7.32) of appropriate degree
which reduces to the classical first higher order symmetry of (7.30)
in the absence of odd variables, i.e.,

0

1
X = ( —ug — u? + 2uvy 4 20u; — uug + vty
3 811,

1 0
+ (5’03 + uyvy + 2vv1 + wvg + 2uuiv + u vl> (7.33)

v’

From the above requirements we obtained the following supersymmetric
extension of (7.30):

1
U = —§uz + uuy + v,
1
U= 502 + u1v + uvy + 191 + 210,

1
pr=—5%2 + 1 + uep,

Py = %1#2 + utpy + urp, (7.34)

while the symmetry X3 is given by

1 0
X3 = (gus — u? 4 2uu1 — uug 4 2uvy + uug + 1Py + @2111) 9u

1
+ (5’03 + uqv1 + 2vv1 + wvg + 2uvug + u2v1 + w1 + Y119
0
+ 2up1t1 — Piho + 22U + 2u1901¢> 0
1
+ (5@3 — ups + 2uhy + utpr +vp1 — urpr + UN/J) dp

( V3 + uthe + PPy + vy + urth + 2uut + Uﬂﬁ) (z

The resulting supersymmetric extension of the Boussinesq equation is just
the same as mentioned in [67].

(7.35)

3.2. Construction of conserved quantities and nonlocal vari-
ables. For the supersymmetric extension (7.34) of the Boussinesq equation
we constructed the following set of conserved densities (X ), associated con-
served quantities ([*_ X dz) and nonlocal variables D~(X), i.e, the vari-
ables p; of degree i, g; of degree j:

po=D""(u),
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D~ (v),
=D Y uw + p19),
= D7 (v? + uvr + wPv + 2up19 + pryn — i),
=D~ 1(171)
= D7 (vq1 + pv),
= D™ (pro — uptp + 11 — ubq1 + preiqy),

p3=2D"" ((P2801 — u?p — 209 + urth — prog — %0U1)Q%
+ (up — p1)qs + (—u® + pru— 20 + w1 — pi + pa)py

— v —uvy — v2>
and
¢ =D~ (),
a3 = DM up) + vp),
0L = D~ 1((1%0 + p1e1),
g5 = D7 (=p1pt + p2(20 — 201) — 2(p1v +v1)qy — 2091),
a5 = D! (%SDMD% + pa(—=2¢ + 1) + (uv — 2uuy
+wpy + ug)gy + 0901) :
Note that the variables py, Dy,... contain higher order nonlocahtles
In fact, introduction of the nonlocal variables pg, Py, . . . SERNEY qs, .

essential for the construction of nonlocal symmetries, While the assomated
Cartan forms wy,, Wg,, - -,Wq, , - - - pPlay a significant role in the construction
2

of deformations or recursion operators.

3.3. Symmetries. We obtained the following symmetries for the su-

persymmetric extension of Boussinesq equation (7.34):

0
Y 9 v v v
1 4,016 —i—¢18 +U8¢+an+ ,
_ o 0
Y% —@D—au —1-1111—8 +(u—p1)—8¢ + ...,
0 0
Xy = o — o
1 U1au+vla +¢18¢+¢18¢+ ;

0 0
X1 = (9 +@1Q%)% + (p1 + 19 +1/11q;)%

0
+(-uqs — gz — @1+ up) 5~ + (—vgs — —uw)

i ¢



3. SUPERSYMMETRIC BOUSSINESQ EQUATION 323
0
Yg = (—2Q%U1 — @2+ upy + pre1 — 3u + UW)@

0
+ (—QCI%Ul — g + 2uh + P11 — vp1 — v — 2ur) + 1)180)%

0
+ (—261% @1+ pp1 — u? + pru+ug + 2]92)%

0
+ (—261%1111 + 201 + b1 + uv + prv + ’Ul)@ +
— 0
Y = (—qrur — 1 — 2u + p1yp)
3 3 ou
0
+ (_Q%Ul — 1o — 2urhy + p1ip1 — QUM/J)—

1 0
—p? +p2)a —4qL 1/11

—i—(—q%gol—uQ—i—plu—v—&—ul 5

o "

3.4. Deformation and recursion operator. In a way, analogously to
previous applications, we construct a deformation of the equation structure
U related to the supersymmetric Boussinesq equation, i.e.,

0
U = (wul — 2wy — Wyl — Wyt — Weth + wa (2¢) — 901)) W
¥)

+ ( — Wy — Wyl — 2wy ¥ — 2w, Y — wptht + wy (1 +

0
— WpeV1 + wq% ¢1> e

+ (w% — 2wy + w¢(2p1 - ’LL) — WpoP1 + Wy, (QQ% + 90)

— Wgy — 2“’@3 + wau)
2 2 2

9
0
+ ( — Wy — Wtk — 2wyt — WY1 + wp, P — Wy, U) EWE
3 /oY
From the deformation U, we obtain four hierarchies of (z, t)-independent
symmetries {Yn+%}, {Yn+%}, {Xns1}, {Xnt1}, neN, by

Y, 1= (...(Y%JUl)...gUl),
?H% = (...(?%JUl)...AUl),
Xpnt1=(0.. (X1 2Uy) ... 2U),
Xpi1=(..(X12U1) ... o),
and an (z,t)-dependent hierarchy defined by
Sp=0(0..(SouUy)...2Uy),
where Sy is defined by

=

So = (u+ zug + 2tut)€% + (2v + zv + 2tvt)%
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+ (%90+$<p1+2tcpt>ﬁ+ (g¢+$¢1+2t¢t>%+“'

dp
In effect, the hierarchies {Y, 1} and {X,41} start at symmetries
2
v.,=2
2 Oy
and
— 0 0
Xo= (23 — 80)% + ?ﬁ@
respectively.

4. Supersymmetric extensions of the KdV equation, N =2

In this chapter we shall discuss the supersymmetric extensions of the
classical KdV equation

Up = —Ugpe + OUUL (7.36)

with two odd variables, the situation N = 2. The construction of such
supersymmetric systems runs along similar lines as has been explained
for the supersymmetric extension of the classical nonlinear Schrodinger
equation, cf. Section 8 of Chapter 6. For additional references see also
(68, 87, 64, 65, 63, 82, 79].

The extension is obtained by considering two odd (pseudo) total deriv-
ative operators D; and Dy given by

Dy = 091 +601D;, Dy= 692 4+ 02D, (737)
where 61,02 are two odd parameters. Obviously, these operators satisfy the
relations D? = D3 = D, and [Dy, D3] = 0.

The N = 2 supersymmetric extension of the KdV equation is obtained
by taking an even homogeneous field ®

S =w+0yp+ 9290 + 05601u (7.38)
with degrees deg(®) = 1, deg(u) = 2, deg(w) = 1, deg(y) = deg(v)) = 3/2,
deg(61) = deg(f2) = —1/2, and considering the most general evolution

equation for ®, which reduces to the KdV equation in the absence of the
odd variables ¢, 1.
Proceeding in this way, we arrive at the system

1
®, = D, <—D§<I> +30D1D;® + S (a — 1)D1 Dy ®? + a<I>3> : (7.39)

Rewriting this system in components, we arrive at a system of partial dif-
ferential equations for the two even variables u, w and the two odd variables

()0’ ,(Z}? i'e'7
up = Dy — us + 3u® — 3pp1 — 3y — (a — Dwi
— (a + 2)wws + 3auw* + 6awpp),
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¢t = Do — @2 + 3up + 3aw® o — (a+ 2wy — (a — D),

Yy = Dy (= b + 3utp + 3aw?y + (a4 2)we, + (a — Dwip),

wy = Dy ((— wy + aw? + (a4 2)uw + (a — D), (7.40)
or equivalently,

ug = —u3 + 6uny — 3oy — 31y — 3awwy — (a + 2)wws + 3auw?
+ 6auwwy + 6awYe + 6awhp + 6awer,
@1 = —p3 + 3urp + 3upy + 6awwyp + 3aw?e; — (a + 2)wiy
— (a4 2)wpy — (a — Vwep — (a — )wihy,
Uy = —1b3 + 3ury + 3urhy + 6awwi + 3aw? Yy + (a4 2)wiey
+ (a + 2)wps + (a — Dwap + (a — w1,
wy = —ws3 + 3aw*w; + (a + 2)uyw + (a + 2)uw; + (a — )b
+ (a = Dy (7.41)

It has been demonstrated by several authors [87, 74] that the interesting
equations from the point of view of complete integrability are the special
cases a = —2,1,4.

In Subsection 4.1 we discuss the case a = —2. We shall present in
the respective subsections results for the construction of local and nonlocal
conservation laws, nonlocal symmetries and finally present the recursion
operator for symmetries. A similar presentation is chosen for Subsections
4.2, where we deal with the case a = 4, and finally in Subsections 4.3 we
present the results for the most intriguing case a = 1.

The structure is extremely complicated in this case, which can be illus-
trated from the fact that in order to find a good setting for the recursion
operator for symmetries, we had to introduce a total of 16 nonlocal variables
associated to the respective conservation laws, while the complete computa-
tion for the recursion operation required the introduction and fixing of more
than 20,000 constants.

4.1. Case a = —2. In this subsection we discuss the case a = —2,
which leads to the following system of partial differential equations

uy = —us + 6uuy — 39y — 3ihy + 6w wy — 6ugw? — 12uww,
— 12w — 12wih1p — 12wipepy,
©r = — @3 + 3u1p + 3up — 120wy — 6w?e; + 3wer + 3w,
Py = —1h3 4 3u1t) + 3urhy — 12wwith — 6wy — 3wap — Swier,
wy = —ws3 — 6w?w; — 31 — 3. (7.42)

The results obtained in this case for conservation laws, higher symmetries
and deformations or recursion operator will be presented in subsequent sub-
sections.
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4.1.1. Conservation laws. For the even conservation laws and the asso-
ciated even nonlocal variables we obtained the following results.

1. Nonlocal variables po 1 and pg o of degree 0 defined by
(Po,1)x = w,
(Po.1)e = 3pth — 2w° — wy;
(Po2)z = P1,15
(Po2)t = 12p31 — w1 + 3wwn (7.43)

(see the definition of p;; and p3; below).
2. Nonlocal variables p1 1, p12, P13, P1,4 of degree 1 defined by the rela-
tions

)¢ = =301 — 3o + 1200w + 3u? — 6uw? — uy + 3w?;
(P12)e = V1 — Pq1,
(P12)e = =21 + paq1 + 3¢g1u
= 691 w” — 3yqrwn — 2 — 3pgiwr — 3pqiu+ Gpguw’ + 20p1;

(P1,3)2 = ¢Q%7
(PLa)e = —t2q1 + 3vqru — 6qLw® + 11 — 3pqrws — g

(Pra)e = waz +w?,
(P1a)e = —p2q1 + 3Pgrwr + 3pqru — ﬁwq%wQ
— 201 + 6w — 3w — 2wws + wi (7.44)

(the variables ¢ 1 and g 1 are defined below).
3. Nonlocal variable po 1 of degree 2 defined by

(p2.1)z = Q1q1u +rq1 + Y w + pqiw,

2 _
1w] — P3q1 — Yaqiw
2 2 2

2
(p2,1)t = 3q1q1u” — 611 uw” — q1G1us + 3¢17
2 2 2 2 2 2 2
~p2q1w+ ¢1G%W1 + 4¢1q%u - 6@01(1%102 —¢1q1u — 2p1q1w
+ 191 + 31/@%1“0 - 61#6%103 - 1/@%102 + 21/161%1&1 - 9¢q%ww1
= 31q1q1 — 2VY1w + ¢q1ur — 3pgLwws + 3pqiuw — Gpgyw’

—dpqrwy — Y2 = 3pp191q1 — 2pp1w + 12091 g1 w + pYu.
(7.45)

141
272

4. Finally, the variable p3 ;1 of degree 3 defined by

1
(P3,1)z = Z(_ﬂ”/fl — 1 + dppw + u? — 2uw?® — wwy),
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(p3,1)t = i(—mﬁl% — 20192 — 2101w + b3 + Thpaw — 9PiPru

+ 1201w + dp1hwr + o3 — Tovow + dpthrwy — Yppiu

+ 12pp1w? + 24ppuw — 480w — 10wy + 4u® — 12u%w?

— 2uug + 12uw® + duwwsg + 4uw% + u% — dujww; + 2ugw?

+ 6w wy + 6w?w? + wwy — wiws + w3). (7.46)

REMARK 7.1. It should be noted that the first lower index refers to the
degree of the object (in this case the nonlocal variable), while the second
lower index is referring to the numbering of the objects of that specific
degree. The number of nonlocal variables of degree 3 is 4, since this num-
ber is the same as for nonlocal variables of degree 1, cf. (7.44). This total
number will arise after introduction of these nonlocal variables and com-
putation of the conservation laws and the associated nonlocal variables in
this augmented setting. These conservation laws and their associated non-
local variables are of a higher nonlocality. We shall not pursue this further
here, because the number of nonlocal variables found will turn out to be
sufficient to compute the deformation of the system of equations (7.42), or
equivalently the construction of the recursion operator for symmetries. We
refer for a more comprehensive computation to Subsection 4.3, where all
nonlocal variables at the levels turn out to be essential in the computation
of the recursion operator for that case.

For the odd conservation laws and the associated odd nonlocal variables
we derived the following results.

1. At degree 1/2 we computed the variables g1 and g1 defined by
2 2

(Q%)x =,
(q1)e = —2 + 3w + 3pu — Gpw?;
(G%)t = —1hy + 3u — 6Yw? — 3pw;. (7.47)

2. At degree 3/2 we have the variables a3 and q% defined by
(Q’ )x
(gs)t

pw,

W

qiu —
2
36%102 - 6’@%%)2 —qiuz + 36%10% + pow — Y1u — 1wy — 31/%01@%

N

+ Yu; — Yww; — 3g0<p1§% + 12@1&6%10 — 3puw + 6g0w3 + pwo;

@g)x _(Q%u+¢w)7

(@z3)e = —3%“2 + GQ%UUJQ +qiuz — 3Q%w% + ow — YPrwr + pru+ 31/11/11(1%

N

— 3puw + 6w + Ypwy + 3@@1% — 12g0¢q%w — u1 + 3pww.
(7.48)
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3. Finally, at degree 5/2 we obtained qs and Gg defined by the relations

- 3@1

=q1p

1ip
2

1u+3q1ww1 + 1w + Yu — pp1iw,

3q%p1 1u? —6611p1 1uw? —a1p, 1u2+3q1p1 Jw? —18q1w w1

WW3 — P3W — Yo + Pap1,1W + Powi —

Pip1iu + Yrug

— p1p11w1 + 2p1uw — 61w’ — 1wy — 3vigipra — 9Pergiw

+p11ur — 3Ypr1ww + dpu? — 6huw? — Yug + Gwws

+ 9@/}16%10 - 3@?16%191,1 + 12@1/@%1?1,110 + 301

— 3pp11uw + 6pp11w® + op11ws — dpuwy + dpuyw — 120w wi;

(Gg) =

—q1p1au+qiun — 3q1ww1 + YPrw — Yp1a1w,

—3q1p1 1u —|—6q1p1 1uw +Q1p1 1u2—3q1p1 1w1+6Q1uu1

— 12q1uww; — Gq;ulw —qius + 18q;w w1 + 3q1wws + 6g1wiws
2 2 2 2 2 2

— 3w + Yap11w + Yowy

— 1p1awr + 21uw — 69w — hrws

+ 1p1au — prup — 3@1”/)2% + 31/”#1(1%]91,1 - 31#@1(1%10 — 3Yp11uw

+ 6hp1 1w + p1 1we — huwy + dpujw — 129wy — 390@2%

+ 3¢¢1q%w +3pp191p1,1 — 1209q1p11w + 12<pwq%w1 + 3y

— p1,1u1 + 3pp11wwy —

ou® + puy — 6pwwy.

(7.49)

Thus the entire nonlocal setting comprises the following 14 nonlocal vari-

ables:

Po,1, Po,2

P11, P1,2, P13, P14
P21

P31

i)

(SIS

qi,

1
2

2
e

iy
N|w

qs,
2

|
wlot

of degree 0,
of degree 1,
of degree 2,
of degree 3,

of degree —,

WM =

of degree —,

o o

fd —.
of degree o

(7.50)

In the next subsections the augmented system of equations associated
to the local and the nonlocal variables denoted above will be considered in
computing higher and nonlocal symmetries and the recursion operator.

4.1.2. Higher and nonlocal symmetries. In this subsection, we present
results for higher and nonlocal symmetries for the N = 2 supersymmetric
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extension of KdV equation (7.42),

0 0 0 0
_ vu w © (]
Y Y@u Y ow Y@cp Y@Q/)

We obtained the following odd symmetries, just giving here the components
of their generating functions,

Y;l =1, Y;Q = 1,

Y%ujl = —, Y;Q = o1,

Y;lz—wl, Y§2:Ua

Ygl = u; Yiz = w (7.51)

and
Y = 2q1ur — 2 + 31w — p1p11 + 3w + pu,
Y3 = QQ%wl + 1 —Yp11 + pw,

ngl = _2901(1% —priu+up — Jwws,
2’

Yy = —2¢1q1 + 209 = priwn — uw — wa;
:,

Yi'y =2q1u1 — o — d1p11 — 31w + Yu — 3puwn,
Yy =20 w1 — o1 +Pw + opra,

Yg@,z = =201 = 299 + priwn + uw + ws,
Y§2 = —2@016% —p1,1u + up — 3wws. (7.52)
We also obtained the following even symmetries:
Yih =,
Y _
Y(),l = =%
}qul = ui,
1/11,1)1 = wr,
legijl - @17
Y11{}1 =91

Vi = ¢1q3 + 2w,
}/llj}Q = ¢Q% + wi,
Yy, = —qLut 1 — Phw,
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Yf@ = —qrwr — pu;

Y = g1 — gy,

Vi3 = —¥q1 — a1,

Y, = qiwr +qiu— 1+ 29w,
Yffg = —qiu+qrwi + 1+ 2pw;

Yy, = —qiu+qiwi + U1+ 2pw,
Yfil = —qLwi —qru+ 1 — 2pw. (7.53)
Moreover there is a symmetry of degree 2 with the generating function
You =2q1q1un + g1 — p2q1 —1gs + 31g1w — 193 + 3p1q1w
+ 31w — Pgru+ pgru+ 3pqrwn + 19+,
Yo =2q1q w1 + 9141 + @191 — g —Yqiw + ¢gs + ¢qLw,
Yy = 3w +qsu—qiur + 3q1wwr + qruw +qrwz + P2 + 2¢141q1
— 2pu + 4puw® — 209q1 + 2pw,

l\J
M

Yzl,pl =qsu+ gswi +gruw +qrws +qrur — 3qrwwi — @2 + 2¢hig
+ 2wy — 2(,01/@% + 2pu — dpw?.

1
2

7.54)

1q
2
(
4.1.3. Recursion operator. Here we present the recursion operator R
for symmetries for this case obtained as a higher symmetry in the Cartan
covering of the augmented system of equations (7.50). The result is
0 0 0 a9 8

R u_ w_ (p_
R R G+ R RS

where the components R*, R, R¥, R¥ are given by

(7.55)

R, = wy, + wy(—4u + 4w2)
+ Wy, (—4w1) + wy (Buw — 2wy — 6p1))
+ wWey (—20) 4wy (1 — 8Yw) + wy, (=2¢) + wy (Y1 + 8pw)
+way (02 = 3w — 3w — pu — quy)
(1/)2 + 3p1w + 3wy — Yu — q%ul)
+ wq3 (¢ ) + WG% (—¢1) + Wpi 4 (2uq) + Wp1 o (u1)
+ Wpl,l(—Qul +dwwy + @191 +¢1q1),

Ry = Wy + wip(4w?) 4+ wip(—29) + wy (29)
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+wgy (=01 —pw —qrwn) +wg, (01 —Yw — )
+ gy () +wgy (—9) +wpyy (2wr) + wp, o (w1)
+ wpm(?ﬂQ% - 905%)
Ry = wy(—2) + wi, (—29) + wi (=91 + 8pw)
+ wyp, + ww(—Qu + 4w?) + wy (—2w)
+ way (—u1 + 3ww; + gplq%)
+wgy (—uw —wa + 209 + ¢1q1)
+wgy (—wi) +wgy (—u) + wp,, (201) +wp o (1)
+wpra (=91 = qru+qrun),
(—2¢) + wu, (2¢0) + wu(p1 + 8Yw)
+ wp (2w1) + Wy, + wy(—2u + 4w?)
+ wq, (uw + wa —2<p1/1+w1q1)

(

(—u1 + 3wwy + 1/)1Q%)

% (u) + wﬁg (—w1) + wp, 4 (201) + wp, (Y1)

+ wpl,l(—lh — quwi — q1u). (7.56)

R¢ = Wy

1
2
+UJ§

Nl

It should be noted that the components are given in the right-module struc-
ture (see Chapter 6).

4.2. Case a = 4. In this subsection we discuss the case a = 4, which
does lead to the following system of partial differential equations:
wy = —us + 6uu — 3pps — 3Uthy — bwws — 12w ws + 2duww, + 12uw?
+ 24w — 241w — 24wy,
01 = —p3 + 3pu; 4 3p1u — 6w — NPwy — 3pws + 12¢1w? + 24pwwy,
Wy = =g + 3¢us + 31 + Gpaw + Ip1wr + 3pws + 12¢1w” + 24ww,
wy = —ws + 120w + 6uiw + 6uw, + 3o — 3. (7.57)

The results obtained in this case for conservation laws, higher symmetries
and deformations or recursion operator will be presented in subsequent sub-
sections.

4.2.1. Conservation laws. For the even conservation laws and the asso-
ciated even nonlocal variables we obtained the following results.

1. Nonlocal variables po 1 and pg o of degree 0 are

(pO,l)x = ’U),
(po,1)t = =3t + 6uw + 4w — wo;

(Po.2)a = P11,
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(Po2)t = —24p31 — u1 — 3ww;. (7.58)
2. Nonlocal variables p1,1 and p; 2 of degree 1 are defined by

(pl 1)
(p11)e = —377!11/)1 — 3pp1 — 240w + 3u? + 12uw? — uy — 6wwy — 3w%;
(P12)e = Pq1 + 71,
(p1,2)e —92q1 — 201 — 6P1gLw + 6prgiw — 3YgLwn + 3YPqru

+ 12wq%w — 2¢y + Bwq%u + 12<pq%w + 3g0q%w1

— 2pp1 — 12¢w. (7.59)

3. Nonlocal variables pa 1 and p 2 of degree 2 are

(p2,1)z = @Y — uw,
(p2,1)t = p1301 + Yo + NpPrw — Pihe + Ypprw + 6pYu + 36pPw?

— 6ulw — 12uw® + UW9 — UTW] + UsW + 6w2w2;

1
(P272)x=§(—q%% 1/JQ1w g0q1w+uw)
(p2,2)t = 3( 3Q1Q1u —12q1q1uw +Q1Q1U2+GQ% %ww2+3q%§%w%

+ g+ 201w + h1giu+ 6¢1q%w — 1w — 1g

—¢1q1u— 6p1q1 w® — Yaiur — 3PgLwwr — Ipgruw

- 12wq1w T Pqrwz + 3Ph1g1qs — YPrw — 9pgiuw — 1297 %

T @qLws + pqrur +3pqrwws + 3pP1q1q1 — pprw + 24p1hq1gLw

— 2pYu — 12cpww + 6ulw + 12uw® — uwW + ujw1

— ugw — 6w?ws). (7.60)
4. Finally, the variables p3 1 and p32 of degree 3 are defined by

1
(P3.1)z = g(ﬂ”/’l + 01 + 8w — u? — duw? + wws),

1
(p3,1)t = §(2¢11/12 + 20102 + 1dp11w — Pips + 17w + hu

+ T2¢1w? — 2pprwr — o3 — 1Tpaw + 2pP1w1 + Ippru
+ T20p1w? + 96phuw + 1920w — 1dpiwy — 4u® — 48u?w?

+ 2uuy — 48uw* 4 26uwwy + 2uw% — u% — 2uiww; + 10usw?

2

+ 36w3wy + 12w2w1 — ww4 + wiws — w%);

1
(p3,2) —(27q1qsu — 271 g3 w1 — 45¢1Gs w1 + 27q1q3u — 8q1G1p1, 1w
’ 27 272 272 272 272 27277
+6g1q1uw — 1011wz — 91/}2@1% — 9p2q1 — 186¢1Qg + 161#16%10
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+ 52?1)1(1%101,1 + 367,!)1%191,2 + 18¢1q3 — 24¢§g - 721/@%10
— 48yg1pa1 + 2833 ). (7.61)

For the odd conservation laws and the associated odd nonlocal variables
we derived the following results.

1. At degree 1/2, we have the variables ¢ 1 and g 1 defined by the relations
(Q% )x =1,

(a1)e = —v2 + 6prw + 3pu + 12¢w” + pwy;
(@%)t = — 9 — 61w — 3wy + 3pu + 12pw?. (7.62)

2. At degree 3/2, the variables are ¢3 and @z:
2 2

1
(43)z = 3(azu+ pw),

1
(Qg)t = 5(3(]%“2 + 12(]%1“02 —qiu2 — 6(]%’[01112 - 3‘]%“’% — 2w — P1U
— 61w + prwy — 3rgr + dur + 3pwwr = 3ppiq1 — 24pqLw
+ 9puw + 120w — pws);

(@3)z = %(G%u —pw),

1
(G3)t = §(3§1u2 +12G1uw? — Gaug — 6G1wwe — 3g1w? + Pow — Phrwy
2 2 2 2 2 2
— p1u — 6prw? — 3Yu1gL — Muw — 12¢w> + hwy — 3pp1ds
— 24pYq 1w + puy + 3pwws). (7.63)

3. Finally, at degree 5/2 we have ¢s and s which are defined by the
2 2
relations, i.e.,

1
(93)z = ﬂ@@%pmu — 2prw — 2pp11w + Ahpa1 + 2pu + pw?),

(Qg)t = 2—14(66%;0171& + 245%191,11“02 — 2q1p1,1u2 — 12q1p1 10w
- 65%1?1,110% + 293w + 2¢op1 1w — dpapa 1 — 292wr — 2¢p0u
— 15pow” — 21 p11wi — 241 uw — 42¢1w° + 21ws — 201p1,1u
— 12p1p1,1w” + 24p1pa 1w + 201Uy — G6epgipry — 18¢p11uw
— 24¢pp1 1w + 24hp1 1w + 12¢p2 1u + 48¢pa 1 w” — dpuw,
— 21w w; — 6pp1q1p11 — 48pPg1priw + 20Y¢n + 2¢p1au

+ 6pp11wwr + 120pe 1w1 + 8pu’ + 69puw?
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— 2pus + 36wt — 24pww,);

1
(ﬁg)x = 6(—46%1?1,1101 - QQ%pl,w + 2¢1p11 + 4@1%@% - 2p1w
— 3yw? — 6pprw). (7.64)

We omitted explicit expressions for (p32); and (gs); in (7.61) and (7.64)

5
2
because they are too massive.

Thus, we obtained the following 14 nonlocal variables:

Po,1; Po,2 of degree 0,
DP1,1, P1,2 of degree 1,
D21, D22 of degree 2,
P31, P32 of degree 3,
1
qi, q1 of degree —,
2 2 2
_ 3
qs, g3 of degree —,
2 2 2
_ )

s, 43 of degree 3" (7.65)

In the next subsections the augmented system of equations associated
to the local and the nonlocal variables denoted above will be considered in
computing higher and nonlocal symmetries and the recursion operator.

4.2.2. Higher and nonlocal symmetries. In this subsection we present
results for higher and nonlocal symmetries for the N = 2 supersymmetric
extension of the KAV equation (7.57) in the case a = 4,

0 0 0 0
Y =Y' 4 YY" V¥ —+YY ...
R A PRI Wi
We obtained the following odd symmetries. The components of their gener-

ating functions are given below:

Y%u71 = 1/}17 Y%ug = Y1,
Y _ L

Y;1 = —wi, Y%Q—u,

Yy =u; Yy, =w (7.66)
29 29

and
Y%u,l = _QG%UI + ©2 + 3¢1w + ‘Plpl,l + 3'(/11,01 — pu,
Yéwl = _2qlw1 + ¢1 + ¢p1,1 - 380w7
29

2
Yy =201G1 +prau — ur — 3wwy,
27

1
2

Yfl = 21/116% — 4o + p11wr + 3uw — wo;
2’
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Y, =2q1u — 2 — ¥apr1 + 3p1w + Yu + 3pwy,
Yguj2 = 2q%w1 + 1 + 3w + pp1 1,

Yf = —2¢1q1 — 4@ + praws + duw — wy,
Y_w2 = 27,/)1q1 — p11u + ug + Jwws. (7.67)
29

We also obtained the following even symmetries:

Y01f1 =0,
Yol,U1 =0,
Y(fl =9,
Yoﬁ = =¥

Y = @Z)ﬂ% +¥1q
Vi = 9q1 — eay,
Y= —qiutq

w1 + 1+ 2Pw,
Yfﬁ = —qiwi — qru+ Y1 — 2pw;
1/1?2 = u1,
1/11f2 = wr,
Y1<,P2 =¥
Yy = 1. (7.68)

4.2.3. Recursion operator. Here we present the recursion operator R for
symmetries for the case a = 4 obtained as a higher symmetry in the Cartan
covering of the augmented system of equations (7.65). This operator is of
the form

0 0 0 0
— RV w o ¥
R=R" 8u+R o +R &p+R a¢+ (7.69)

where the components R%, R, R¥, R¥ are given by
Ry = Wyy + wu(—4u — 4w?) + wy, (4w)
+ Wy, (6w1) + wy (—16uw + 6wa + 18ph)
2¢0) + wy (1 + 129w) + wy, (—29) + wy (Y1 — 12¢w)

(
+ we, (—
(%2 = 3p1w = 3pwi — Yu — giur)
a1 (
(3¢

+ wyq

(S

w2 + 31w + 3Yw — pu — Q%ul)
+way (391) + wgy (3¢1) + wpy o (u1)

—2u1 + 9191 + ¢1q1)

2wz — 8uwy — 8uiw + 811 + 8pih),

m\»—‘

+ wp1,1(
(

+ Wpo 1
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It should be noted that the components are again given here in the right-

Ry = wy(—4w) + Wiy + wy(—4u — 4w?) + wey(29) + wy(—2)
+wg, (—p1 — 3w — q%wl) +uwg, (1 —

7. DEFORMATIONS OF SUPERSYMMETRIC EQUATIONS

+ WQ% (_390) + wé% (3w) + Wp1 o (wl)

+ Wpy 1 (=201 + ¥q1 — 1) + wpy, (—2u1 — Bww),

R, = wu(—2¢) + ww, (2¢) + wy (51 — 12¢w)
+ Wiy + Wip(—2u — 4w?) + wy, (dw) + wy (dw)

+ wa (’wg
2

+ wq% (—3’LU1) + w@% (SU) + Wp1,2 (901)

+ wpy s (1 + 20w + qrwn — Gau)
+ wp0,1(2¢2 — 81w — S‘Pwl) + wp2,1(_2w)7
RT/J = wU(_2¢) + wml(_290) + ww(_5801 - 12¢w)

+ w@l

+ Wy,
2

‘l‘&)a

l\J\w

—4w) + wy(—dw1) + Wy, + wy(—2u — 4w?)

—uy — 3wwy + Y1q1)
3uw — wo — dpth + ¢1q1)
3“) + wﬁs (311)1) + Wpi 2 (¢1)

module structure (see Chapter 6).

REMARK 7.2. Personal communication with Prof. A. Sorin informed us
about existence of a deformation, or recursion operator of order 1 in this
specific case, a fact which might be indicated by the structure of the existing

nonlocal variables. The result is given by

Ry = (wu(Qw) — Wiy + Wi (4) + wp(—

)
0
gy (1) + gy (=) + i, (2u1)) -

~—

+ <wu + ww (2w) + wg, (¥
0

+ wﬁ% (‘P) + Wpo,1 (2w1)) %

+ (wu(30) = wiy +wp(20) + g (1)

0

gy (1) o, (1) + 0 (—9) ) 5

3pw —G%wl)

— 3uw + 4oy + g01q%) + wg, (—u1 — 3wwy + 17
2

1
2

)

—t1 = 2w — qru = rwr) + wpy, (=22 — 81w — 8wy
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+ (0 (36) + wipy + w0y (20) 4wy (1)
9
N’
4.3. Case a = 1. In this section we discuss the case a = 1, which does
lead to the following system of partial differential equations:

+ wq% (—u) + Wpo,1 (2¢1) + Wp1,1 (@))

up = —usz + 6uuy — 3pps — 3ihy — Jwws — Swiws + Suiw? 4+ Guww,
+ 691w — bpYrw — 6w,
pr = —p3 + 3pu1 + 3p1u — 3w — 31w + 3p1w? + bpwwi,
P = =13 + 3Pus + 31 + 3paw + 31wy + 3hw? + Ghww,
wy = —ws + 3w?w; + 3uw; + 3uw. (7.71)

The results obtained in this case for conservation laws, higher symmetries
and recursion symmetries will be presented in subsequent subsections.

4.3.1. Conservation laws. For the even conservation laws and the asso-
ciated even nonlocal variables we obtained the following results.

1. Nonlocal variables po 1 and pg o of degree 0 are
(po Ve =

(po 1)t = 3uw + w? — wo;

(Po2)e =
(Po2)t = —6p3 —uj. (7.72)
2. Nonlocal variables p11, p1,2, p1,3, and pi1 4 of degree 1 are defined by
(pl)x =
(p1)e = —3¢¢1 — 31 — 6w + 3u? + Juw? — uy — Jwws;
(PL1)w = co8(2p0,1) (941 5 + P11w) + sin(2po.) (a1 5 + w?),
(P1,1)¢ = cos(2p ,1)(*80241%,2 —1q1 yw — 20q1 w1 — Y1 + 3pqy pu

+ qu%ygw — 1 + 3pruw +p1w3 — prws + vwy — urw — w2w1)
+8i0(2p0,1) (— 1241 5 + 9101 5w + 30q1 yu + g1 yw* — 20
+ 2pq1 yw1 — 20w + Juw? + w* — 2wws + w%);

27

(P1,2)x = cos(2po,1) (a5 + w?) — sin(2po,1) (g1 5 + pruw),

(P12)t = cos(2po,1)(—12q1 5 + $141 yw + 31 Hu
+ wq%gw? — 2Py + 2<pq%72w1 — 200w + duw? + w — 2wws + w)
+5in(2p0,1) (P24 o + V191 yw + 20q1 ywi + Y1 — 3pqs yu
- SOQ%,QUP + o1 = 3pruw — prw’ + prwy — wwy + ww + wwy);
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(P1,3)x = —208(2po,1) g1 5 +sin(2po,1)(241 141 5w = Va1 5 + 941 1),
(P1,3)r = 2¢08(2p0,1)(P241 5 + 29191 0 + P1q1 W + g1 g
+1q1 1w + 11 — 3pq 5 — 2041 yw” — g1 ywr + @)
+ sin(2p0’1)(6q%71q%72uw + 2q%71q%72w3 — 2q%71q%72w2 + qu%Q
—92q1 1 — V141 1w — 9141 W — 30q1 yu — gy W
— 201 ywi + 201 — 2pq1 w1+ 3pqL 1u + g1 1w’ — 2001);
(P1a)z = c08(2p0,1)(2q1 191 9w = ¥q1 5 + g1 1) + 25I0(2p0.1) 91 o,
(Pra)e = cos(2po,1) (6q1 101 puw + 241 141 50° — 2q1 141 yw2 + 1241 4
—2q1 1 — V110 — 9101 5w — 31 yu — g1 sw? — 20qy ywn
+ 2001 — 2041 ywi + 3pq1 u+ g w? = 2pp1)
+28i0(2p01)(—241 5 — 20141 5w — P1q1 ;W — a1 w1 — Py yw
— Y01+ 3pq1 5t + 2041 yw* + g1 w1 — @) (7.73)

3. The variable p3 1 of degree 3 is
1
(p3,1)2 = §(¢¢1 + 1 + 20w — U — uw? + wws),

(p31)t = %(21/11@&2 + 201902 + 8p1v1w — Yih3 + Shpaw + IPru
+ 1201w + Yprwr — pps — Bpthaw — pPiwy + Ippiu
+ 120102 + 18pihuw + 12ppw® — 2wy — 4u® — 9u*w? + 2uusg
— 3uw* + 11luwwy — uw% — u% + wwwy + 4u2w2 + 6w3w2
+ 3ww? — wwy + wiwz — w3). (7.74)

For the odd conservation laws and the associated odd nonlocal variables
we derived the following results.

1. At degree 1/2 we have the variables q1 4, q1 5, q1 5, and q1 4, defined
27 27 2’ 27
by the relations

(Q%,l)ac =,

(a1,1)t = =2 — 31w + 3pu + 3pw?;

(41 2)2 =¥,

(q%z)t = —1)y + 31w + 3vu + 3Pw?;

(q%73)x = cos(2p0,1)q%71w + sin(2p0,1)q%’2w,

(91 3)¢ = cos(2po,1) (3¢ yuw + Q%,lwg — QL W2 — P1w — Yw? + pur)
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: 3 2.
+5in(2p0,1) (341 yuw + q1 yw” = g1 ywz = Yrw + Ywy + pw);

(91 4)x = c08(2p0,1)q1 yw — sin(2po,1)q1 yw,
(g1 4)¢ = cos(2po,1) (3¢ Huw + Q%ng — Q1 w2 — Prw + Pun + pw?)

+ sin(2p0,1)(—3q%,1uw - q%71w3 +q1 w2 + 1w+ Yw? — pwr)
(7.75)

2. At degree 3/2, we have ¢s ; and g3 ,:
27 2

(3,1)x = co8(2po1) (a1 psp1w + q1 yu — g1 1w” + 11 141 5 + Yw)

+sin(2p0,1)(91 91 — 43 90" — 43 1P1W — a3 101 5 — PW),
(3,1 = cos(2po,1) (3q1 pp1uw + q1 op1w” — g1 HP1W2 = 1 HuWY

+ q1 gt w + q%72w2w1 + 3q%71u2 — q%’luw2 —q1u2 — q%71w4
— g1 wwy — Q%,lw% — g1 191 o — Y2w — P1p1w + Yrwy
9141 191 oW — pru+ 201w° + 3P 191 yu+ wq%qu%yng
— Y11y — P11 o + Yp1wn + 3puw + 2¢w? — Ywy
+20q1 141 w1 — Y141 5 — P11 1 — dpar jw + pprw’
+ pu1 + pwwi)
+ Sin(2po71)(Sq%zu2 - q%yzuw2 —q1pu2 — q%72w4 — 41 Wi
—q15WF = 3q1  pruw — qu 1w’ + g1 prws + g1 uw
—q1 W — g1 wiwi + 9201 141 5 + 2w + V1q1 191 pw — Yru
+ 201w + prprw — prwr + 21q1 191 w1 = 3YYP1q1 5
— ¥e1q1 1 +prw’ +Yur +Ywwr = 39q1 101 Hu— 941 141 0
—PU1qL ) — PP1dL o — APy — pp1wn — Spuw
= 2pw® + pu);

(93 2)e = c08(2p0,1) (=43 ou + 41 2" + 41 P10 + a3 103 5+ W)
+5in(2p0,1) (41 pp1w + g1 yu — g1 1w + 91 1415 + Pw),

(Q%J)t = Cos(2p071)(—3q%’2u2 + q%zuw2 +q1 guz + q%’2w4 + g1 gww2
+q1wF + 3q1 pruw + g1 p1w’ — g1 prws — g1 juwt + 1 uw
+ q%,1w2w1 — 241 141 9 — P20 = P1q1 141 yw + P1u — 2w’
—p1p1iw + Q1w = 29q1 1q1 w1 + 3PPiq 5 +Ye1qL
— prw® — Yur — Ywwi +3¢q1 141 5u+ a1 11w+ PPiay
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T p1q1 5 + o1 yw + pprwr + 3puw + 20w’ — pw,)

+ sin(2po,1)(3¢1 ypruw + q;zplw?’ — 41 gP1W3 — g1 yuw

+ g1 oUW + q%72w2w1 + 3q%71u2 - q%71uw2 Ttz — Q%,1w4

— 41 wwy — q%Jw% — ¢2q%71Q%72 — Yow — P1prw + Prwy

9141 191 oW — pru+ 201w + 3¥q1 191 yu+ wq%qu%yng

— Y11y — Pp1qs o +Yp1wn + 3puw + 2¢w? — Pwy
+20q1 141 501 — Y141 5 — 3141 1 — dpar yw + pprw’

+ puy + pww). (7.76)

3. At level 1 and 3/2 there exist three more higher nonlocal conservation
laws, of which we only shall present here the z-components:

(P15)z = cos(2po1)(wq1 191 3+ WY1 941 4 + P13w)
+8in(2po,1) (wq1 591 5 — W41 141 4 — Praw)

T 2wq1 141 5+ a1 g3

(Q%;g)x = ¢05(2p0,1)(q1 4(=2p1w +w1) + g1 5(u + 2w?) + 41 5(~2p110)
+q1 1 (2p12w + 2p1aw) + Pp1a)
+in(2p0,1) (g1 4(—u — 20%) + q1 5(=2p1w + w1) + 1 5(2p120)
+q11(2p1aw + 2p1sw + Pp3)
T QL W1 gL o

(43 4)o = cos(2po1) (a1 4(—u — 20°) + g1 5(=2p1w +w1) + q1 H(~2p12w)
+q1 1 (=2p11w))
+5in(2p0,1)(q1 4 (21w — w1) + g1 5(~u — 20%) + q1 5(~2p1,1W)
+q1,(2p12w))
+q%71u+q%72w1 +1/Jq%71q%72. (7.77)

Thus, we obtained the following 16 nonlocal variables:

Po,1, Po,2 of degree 0,
P1, P1,1s P12, P1,3; P14, P15 of degree 1,
P31 of degree 3,

1
i1, dl2> L3, L4 of degree 2’

1
q31, 4395 433, 434 of degree 5" (7.78)
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In the next subsections the augmented system of equations associated to
the local and the nonlocal variables denoted above will be considered in
computing higher and nonlocal symmetries and the recursion operator.

4.3.2. Higher and nonlocal symmetries. In this subsection, we present
results for higher and nonlocal symmetries for the N = 2 supersymmetric
extension of KdV equation (7.71) in the case a = —1,

0 0 0 0
Y=Y YY" — 4+ Y+ VY — +...
R A PRI Wi
We obtained the following odd symmetries whose generating functions are:
Ylul - _1/}17
3
Y =
%71 @,
Yfl = wq,
27
Yy, = —u;

Yi', = cos(2po1) (1 — 2pw) + sin(2po 1) (—¢1 — 2¢w),

Y1’ = cos(2po,1)p + sin(2po,1)¥,

27

Yfz = coS(QPO,l)(WPQ%J +wy) + Sin(2p071)(2¢q%’2 —u) — 4¢q%747
(2po,1)

Y¥ = cos 2po1 (—2(pq%71 +u) + sin(2p071)(—2g0q%’2 +wy) + 4<pq%,4;

Y1, = cos(2po,1)(—p1 — 2¢w) + sin(2po,1) (—h1 + 2pw),
Y1’y = cos(2po1)y — sin(2po,1)p),
(
(

YY, = cos(2po, (2091 5 — u) +sin(2po1) (=201 | — wr) +4qy 5,

)
)
)
)

Ylw3 = cos(2po 1 (—2gpq%72 +wi) + sin(2p0’1)(2g0q%71 —u) — 4g0q%’3;

Ylu4 = ¥1,
27

Ylw4 =1,
27

Y? =u
24
P .

Y14 wi;

Y. = cos(2p0,1)(—2q%72u1 - 2q%72ww1 + 2q%71uw — 41 w2
2+ 1P+ 9141 141 5 — 21w + 2991 191 yw0 — Pu

— Yw® — pprw — pu)
+ sin(2p0,1)(2q%72uw — g1 w2 + 2q%71u1 + Qq%,lwwl — P9

+ 20191 141 5 — 2901w — p1p1 = PPp1w — Pwn = 2941 1q1 oW
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+ pu+ pw?) — 2q1 gu1 — P1p12 — Y1p14a + ©1P11,
Y3y = cos(2pop)(—ay yu+ w1 — ¥4y 141 5 +Yw)
+8in(2po,1)(=q1 pu + 1 — pw) = 21 w1 + Ypr1+ epLa + P14,
Y§1 = c0o8(2p0,1)(q1 191 pu + 191y + g1 1p1 = Pq1 W
— @+ 2uw — wy)
+8in(2po,1) (=141 5 — 20141y + g1 op1 = 2¢q1w + g1 Hw
— p1u + u1 + wwy) + 20191 5 — 21/1ng1 + p1,1u + p1awi + p14wi,
ngl = COS(QPO,I)(_q%’lq%,QwI + 21/11(1%72 +e1q1, + tbq%’lw
= 2041 5w — g1 1 p1+ pru — w1 — wwy)
+sin(2p0,1) (201 191 51 — 101 5 — Va1 KW = 9q1 oP1 — U + 2uw — wg)
+ 21/)1@[%,3 + 2@1%,1 + Pp1,1w1 — P12Uu — P14U. (7.79)

We also have

Ygug = cos(2p0,1)(—2q%72uw + q1 gW2 — 2q%71u1 — 2q%71ww1 + 2
= 29141 191 5 + 210 + eipy + Pprw + Pwr + 2041 191 w0
— pu— pw?)
+8in(2po,1) (=241 yu1 — 21 ywwy + 2q1 yuw — g1 W + P2 +Pipr
+ 9101101 5 — 2010 + 2041 141 5w — Yu — YW’ — pprw — pwr)
+2q1 yur = Y1p11 = ipLs — b,
Y%“jQ = cos(2po,1)(q%72u — Y1 + pw)
+8in(2po,1)(—q1 1w + @1 = ¥q1 191 5 + Yw)
+2q1 qw1 = PPz + P11,
Y{, = cos(2pon) ($1ay  + 20101 1 — Va1 501 + 2001 10 — 941 yw
+ pru — up — wwi)
+8in(2p0,1)(q1 191 pu +P1q1 y +PqL 1 P1— pq1 W — PP+ 2uw —w2)
- 2@1@[%,4 - 2@0(1%72 + p1i1w1 — p12u + P13W1,

ngg = c08(2p0,1) (=291 191 o + 191 5 + g1 oW + 91 HP1
+ o — 2uw + wy)
+8in(2po,1)(=q1 191 w1 + 20141 5 + 9191 ) +Pa1 W = 20q1 w0
—PqLapL T pru - Uy wwy)

= 29191 4+ 20q3 5 — P11U ~ P12WL — PL3U (7.80)
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and

Y§73 = cos(2p0,1)(—4q%74uw + 2q%74w2 + 2q%73u1 + 4q%73ww1
= 29141 191 4 V112 P11 — 20101 941 4 — P19 141 3+ 101
T e1p1s — 4Yq1 141 3w + 2¢praw + 2913w + 4pqi g1 4w
— 2pp1,2w — 2¢p1 4W)
+ sin(2p071)(—2q%74u1 — 4q%,4ww1 — 4q%73uw + 2q%73w2
= 2¢1q1 191 3+ Y111 YD1 — 20141 941 5+ 40191 1414
—P1p12 = 114+ AYq1 1q1 W — 2Pp12w = 2Ppraw
+4pq1 191 3w = 2¢p1,1w — 2pp1 3w)
+ 2q%72u1 + 2q%72ww1
+2q1 juw = q1 w2 — P2 = P1p1 — 4p1q; 391 4
— 9101141 5 + 2010 + Yu+ Yw? + pprw +
Y%ujg) = c08(2p0,1)(2q1 4u — 241 w1 — 2q1 541 4 — P11 — YP13
— 201 191 4 + P12 + PP14)
+5in(2p0,1) (291 ywi + 241 gu = 24q1 5q1 5+ P12 + Pp1a
— 2¢41 141 3+ PP1L1+ ¢P13)
= a1t o1 = 4Yq1 301 4 — a1 1q1 5 + Y,
Y{ ) = cos(2po1)(—2a1 501 4 — 201 143 4w1 — 441101 30 + 20101 4
+ 2@1(1%,3 + 21/1(1%74191 - 21#(1%721)1,1 - 21/1(1%,2131,3 - 4¢q%71q%72q%73
+ 201 112 + 2941 P14 — 2041 4w+ prau
+ p12wi + p13u + prawi)
+ sin(2p071)(—2q%72q%73u + 4q%71q%74u — 2q%71q%73w1 + 21&1(1%73
= 20191 4+ 2091 31 + 2941 P12 + 2991 9p14
+49q1 141 591 4+ 20q1 P11+ 2991 P13 — 2001 3w+ priw
— P1,2U + P13w1 — P14u)
- 4(1%,361%,4” — Q1191 5U ¢1q%,1 - 4¢q%,4p1,2 - 4¢q%,4p1,4
= 4q1 sp1a — APq1 gp13 — a1 1+ pqL w0 — Y+ 2uw — wa,
Yg’ﬁ = c08(2p0,1)(=2q1 2931 41 = 241 191 4 = 2P1q1 3+ 20141 4
+ 201 qw = 20q1 4p1 +4pq1 3w + 2041 HP11 + 2001 9P13
T 4pa1 191 541 3 — 2001 1P12 = 2041 P14 — PLIWL F P12u
— P1,3W1 + P14u)
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+in(2p0,1) (=241 941 sw1 — 291 141 3+ 2¢1q1 4 + 20141 5

T 29q1 3w — 4pq1 4w = 2041 3P1 — 2041 9P1,2 — 2041 9P1.4
—4pq1 191 941 4 — 20q1 11,1 — 2091 P13+ PLIU

+ p12w1 + p1,3u + prawr)

— 441 301 4W1 — q1 141 oW1 = 29141 5 — 141 ) — PgL W

+4pq1 4p12 +4pq1 4pra +49q1 gp11 + 4pqL P13+ 2091 Hw
#4111 — pru+ Ui + ww, (7.81)

together with

Y3
5.4

YLP

2

yY
34

= cos(2p071)(2q%74u1 + 4q%74ww1 + 4q%’3uw — 2q%73w2 - 4¢1q%72q%74
= 29141 191 3+ Y1011 — 20141 5q1 3 — P1P12 — 4PqL 501 gw

= 2¢p12w + 4pq1 541w — 2pp1,1w)

+ sin(2p071)(—4q%74uw +2q1 ywa + 291 gur + 4q1 gwwy — 4w1q%,2q%,3
T 20101 141 4 — V1P12 F 20101 941 4 — P1P11 F AP a1 4w

= 2¢praw + 4pq1 541 sw + 2¢p1 pw)

+2q1 yuw — q1 w2 — 291 ju1 — 2q1 ywwi + @2 — 49191 391 4

= 29141 141 5 + 2910 + @ip1 + Yp1w + Ywr + 2pq1 191 yw

— pu — pu?,

= cos(2p071)(—2q%74w1 —2q1 gu+ qu%,zq%,g +¥p12

+2¢q1 191 3+ ¢p11)

+8in(2p0,1)(2q1 4u — 291 gw1 — 20q;1 941 4+ ¥P1a

— 2041 141 4 — ¥P12)

— Q19U+ Y1+ 4pgr 591 4 — pw,

= c05(2p0,1) (=241 541 3u + 241 141 w1 + 20141 53— 20141 4

— 4q1 yw = 29q1 31 + 2991 op12 + 2091 111 — 2091 gw

+ priwi — p172u)

+5in(2p0,1) (241 591 4u = 291 191 w1 = 291931 4 — 20141 5 + 2041 4p1
—4g1 3w + 201 P11 — 2991 112 + 2041 4w = P1iu — Prawi)
441 301 gw1 + 9191 5 + 20101 | — 4q1 P11+ AP 3p12 — Pa1 o1
+ 21/1q%71w — a1 oW + pru — u; — wwn,

= cos(2p0’1)(—4q%72q%74u + 2q%72q%73w1 — 2q%71q%73u + 2¢1q%74
20191 3+ 2991 3w + 2091 3p1 = 2041 5P1.2 — 2041 1P1,1
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+p1r1u+ p1,2w1)

+8in(2p0,1) (=241 591 w1 = 441 541 gu+ 291 191 gu + 2P1q1 5

= 20101 4 — 291 4w — 2001 4P1 — 2091 9P11 + 2091 1P12

+ priwr — p1,2u)

—4g1 391 4u—2q1 191 U+ P1a1 5 + D1 oW +dpg1 4P1a

—4pq1 3p12 + 941 Hp1 — Y+ 2uw — wa. (7.82)

Even symmetries are

Yffl = uy,
Yfﬂ = wy,
Yf',ol = ¥1,
YY) = ¢n;

Yy = cos(2po1)(=¢191 1 — ¥141 o + 2041 yw — 2uw + wy)
+5in(2p0,1) (20141 1 +2¢q1 yw — ur — 2wwn) = 2014y 5,
Vi = cos(2po1)(=4q1 o — #q1 ; +u)
+ sin(2po,1)wi — 21/)(%73,
Y% = cos(2po) (s ou + g1 yw1 — ¥1 — ¥p1 + pw)
+8in(2p0,1) (=241 yu + ¢1 — 2041 141 5) +2(q1 gu+ Ypr2 + Pp1a),
Y, = c0s(2po,1)(q1 oW1 + g1 yu — 1 — Yw + op1)
+8in(2po,1) (=1 + 20q1 191 5 + 2pw) + 2(q1 g1 = PP12 — PP1LA);

Yyl = cos(2p0,1)(2g01q%71 + 2¢q%w —u1 — 2ww)
+ sin(2po71)(w1q%71 + P141 5 — 290‘]%,110 + 2uw — we) — 2901q%74,
Y13 = cos(2po,1)w1
+8in(2po,1) (Y1 + g1y —u) = 2q1 4,
Yy = cos(2po,1) (=241 yu + @1 — 20q1 141 o)
+ Sm(QPO,l)(—q%,gu —q1 w1+ 1 + Yp1 — pw)
+2(q1 4u = ¥p11 — Pp13);
Y7y = cos(2po,1) (=t + 2041 141 5 + 2pw)
+5in(2po,1) (=g w1 — g1 yu + 1+ Yw — op1)
+2(q1 4w + P11+ @P13); (7.83)

Yff4 = cos(2po71)(—2¢1q%72 + 2g0q%72w + ug + 2ww)
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+ Sin(2po,1)(¢1Q%,1 +1q1 5+ quéﬁw — 2uw + wo) — 21,11161%,3,
Y1) = — cos(2po,1)w1

+8in(2po1)(=q1 5 — pq1 1 +u) + 2041 5,
Y%, = cos(2po1) (1 + 2¢w)

+ sin(2po71)(—q%,2u taLw+ Y1 — Yp1 — pw)

+ 2(—6_1%,3101 +p1,1),
Ylip4 = cos(2p071)(2q%72u — 1)

+sin(2po,1) (g1 w1 — q1 yu + 1+ Yw + op1) + 2(q1 3w — Ppra)-
(7.84)

Finally, we got

Yyl = cos(2p0,1)(¢1q§1 1910+ quégw — 2uw + ws)
+5in(2p0,1) (24141 5 — 2¢0q1 Hw — uy — 2ww1) = 2P1qy y,

Y5 = COS@POJ)(—WI%Q —PqLg Tt u)
+ sin(2pp 1 )w1 + 2g0q%74,

Yf,gs = COS(QPOJ)(—Q%,QU +aq1 w1+ Y1 — Pp1 — pw)
+8in(2po,1) (=1 — 29w) + 2(—q1 w1 + ¢¥p12),

Yf,bs = c08(2p0,1)(q1 w1 — g1 1u + @1 + Yw + ¢p1)
+8in(2po,1) (=291 yu + 1) +2(q1 4u — ©)p12);

Yyl = COS(2P0,1)(—¢1C]%,3 1L+ qu%Aw + 2<pq%,3w)

+ Sin(2po,1)(¢1Q%’4 +$191 5+ 2¢q%’3w — 2¢q%74w)
— 141 9 — 1911 — PqL W+ g1y,

Yy = —cos(2po,1)(¥a1 4 + 41 3)
+8in(2po,1) (=9g1 5 + a1 4);

V1% = cos(2po,1) (=1 qu+ a1 g1 + 2041 541 4 + 2041 191 5)
+sin(2po,1) (—q1 4w1 — q1 30+ 2091 541 5 — 201 141 4)
Ty u— o1t 4%y 5a1 4 +9a1 401 — YW,

Yils = cos(2p0.1)(q1 41 + 1 30 — 2041 501 4 — 2041 141 5)
+in(2p0.1 ) (—q1 4t + q1 501 — 2001 541 5+ 2001 141 4)
41 ou =1 —4pq1 341 4 — Pa1 141 9 T P (7.85)
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4.3.3. Recursion operator. Here we shall discuss briefly the recursion
properties of the nonlocal symmetries Y72, Y13, Y14, Y15, Yi6 given in
(7.83) and (7.85).

We shall discuss their action on the supersymmetry Y1, of degree 1/2.

In order to compute the Lie bracket of these symmegcries, we have to
derive the nonlocal components, just for the vector field Yl,l'

Due to the invariance of the equations, defining the n20nloca1 variables
P01 P1s 41 15 41 95 41 3+ 41 4 A0d P11, P12, P13, P14, the nonlocal components
can be obtained.

The prolongation of the vector field Y%’l is then given as

v " 0 n 0 n 0 0
3l You T80 T e, T Yoy
ru? (P2t pLa) 5o — (pra +p13)
w — _
9q1 , P 941 , P12 T P14 ;1 - P11 TDP13 941,
20 27 20 20
0 0
s Yo
21 Opo op1
. 0
+ (c0s(2p0,1)(2q1 1p1 + q1 yw) + sin(2po,1) (291 op1) — 243 1) 75—
2 2> 2 2 ale
+ (cos(2p0,1) (241 9p1) — sin(2p0,1)(2¢1 11 + q1 yw) + 243 5)
2 2 2 2 8p172
+ (= cos(2p0.1) (243 11 + 291 yw) +sin(2po.1(q1 yw — g1 5p1)
+2q3 1) 57—
2’1)31?1,3
+ (cos(2po,1)(q1 yw — g1 op1) + 5in(2po,1) (241 1p1 + 241 Hw)
0
—2¢3 {)=—. 7.86
2’1)8])174 ( )
For the vector fields Y; 4, ¢ = 2,...,6, prolongation is not required due to
the locality of Y1 ;.
29
We obtain the following commutators:
[Yi2,Y1,] =0,
[Yi,37 Y%J] = 07
[YL4> Y%,l] = 2Yg,17
Y5, Y1) = —2Ys ,,
[YLG,Y%J] = —2Y%73, (7.87)

meaning that Y1, ¢ = 2,...,6, take symmetry Y%’l higher into the hierarchy.
Similar results are obtained for the local symmetry Y3 ,.
2’
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In order to compute the Lie brackets for Y1 o and Y1 3+ leading to similar

results too, prolongations of these vector ﬁelds are requ1red

The results are related to a similar action of the recursion symmetry for
the n = 1 supersymmetric KdV equation, discussed in Section 1.

The work on the contruction of the recursion operator as obtained for
the cases a = —2 by (7.56) and a = 4 by (7.70), is still in progress and will
be published elsewhere.



CHAPTER 8

Symbolic computations in differential geometry

To introduce this subject, it is nice to tell the story how NN computed
the tenth conservation law of the classical KAV equation at the end of the
sixties.

From previous results one had obtained nine conservation laws for the
KdV equation and the idea was that if one would be able to compute the
tenth then people would be convinced that there existed an infinite hierarchy
of conservation laws for the KdV equation. At that time, the notion of
recursion operators (the first one obtained by Lenard) was not yet known.

Then NN took the decision to retire for two weeks to a nice cabin some-
where high up in the mountains and to try to figure out whether he would be
able to find number ten. After two weeks he returned from his exile position
having found the next one in the hierarchy, thus “proving” the existence of
an infinite hierarchy.

With nowadays modern facilities it is possible to construct the first ten
or twenty in few seconds. This is just one of the examples demonstrating
the need for computer programs to do in principle simple, but in effect huge
algebraic computations to get to final results.

Towards the end of the seventies the first computer programs were con-
structed. Among them Gragert [22], Schriifer [90], Schwarz [91], Kersten
[34], ..., just doing part of the work on computations on differential forms,
vector fields, solutions of overdetermined systems of partial differential equa-
tions, covering conditions, etc.

Since then, quite a number of programs has been constructed and it
seems that nowadays each individual researcher in this field of mathematical
physics uses his or her own developed software to do the required computa-
tions in more or less the most or almost most efficient way. An overview of
existing programs in all distinct related areas was recently given by Hereman
in his extensive paper [30].

In the following sections, we shall discuss in some detail a number of
types of computations which can be carried through on a computer sys-
tem. The basis of these programs has been constructed by Gragert [22],
Kersten [37], Gragert, Kersten and Martini [24, 25], Roelofs [85, 86|, van
Bemmelen [9, 8] at the University of Twente, starting in 1979 with exterior
differential forms, construction and solution of overdetermined systems of
partial differential equations arising from symmetry computations, exten-
sion of the software to work in a graded setting, meaning supercalculus,

349
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required for the interesting field of super and supersymmetric extensions of
classical differential equations and at the end a completely new package,
being extremely suitable for classical as well as supersymmetrical systems,
together with packages for computation of covering structures of completely
integrable systems, and a package to handling the computations with to-
tal derivative operators. We should mention here too (super) Lie algebra
computations for covering structures by Gragert and Roelofs [23, 26].

We prefer to start in Section 1 with setting down the basic notions of the
graded or supercalculus, since classical differential geometric computations
can be embedded in a very effective way in this more general setting, which
will be done in Section 2.

In Section 3 we shall give an idea how the software concerning construc-
tion of solutions of overdetermined systems of partial differential equations
works, and what the facilities are.

Finally we shall present in Subsection 3.2 a computer session concerning
the construction of higher symmetries of third order of the Burgers equation,
i.e., defining functions involving derivatives (with respect to x up to order 3),
cf. Chapter 2.

1. Super (graded) calculus

We give here a concise exposition of super (or graded) calculus needed
for symbolic computations.

At first sight the introduction of graded calculus requires a completely
new set of definitions and objects. It has been shown that locally a graded
manifold, or equivalently the algebra of functions defined on it, is given as
C>®(U)®A(n), where A(n) is the exterior algebra of n (odd) variables, [50].
Below we shall set down the notions involved in the graded calculus and
graded differential geometry.

Thus we give a short review of the notions of graded differential ge-
ometry as far as they are needed for implementation by means of software
procedures, i.e., graded commutative algebra, graded Lie algebra, graded man-
ifold, graded derivation, graded vector field, graded differential form, exterior
differentiation, inner differentiation or contraction by a vector field, Lie de-
rivative along a vector field, etc.

The notions and notations have been taken from Kostant [50] and the
reader is referred to this paper for more details, compare with Chapter 6.
Throughout this section, the basic field is R or C and the grading will be
with respect to Zg = {0,1}.

1. A vector space V over R is a graded vector space if one has Vi and V;
subspaces of V, such that

V=VeW (8.1)

is a direct sum. Elements of Vj are called even, elements of V; are
called odd. Elements of Vj or V; are called homogeneous elements.
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IfveV;, i=0,1, then i is called the degree of v, i.e.,
lv| =14, i=0,1, ori € Zs. (8.2)

The notation |v| is used for homogeneous elements only.
2. A graded algebra B is a graded vector space B = By @ By with a
multiplication such that
B; - Bj C Bi_;,_j, 1,] € Zs. (83)
3. A graded algebra B is called graded commutative if for any two ho-
mogeneous elements x,y € B we have
zy = (—=1)Wlyy. (8.4)

4. A graded space V is a left module over the graded algebra B, if V is
a left module in the usual sense and

B; - ‘/J C ‘/;+j, 1,7 € Zo; (85)

right modules are defined similarly.
5. If V is a left module over the graded commutative algebra B, then V
inherits a right module structure, where we define

v by eV, be B (8.6)

Similarly, a left module structure is determined by a right module
structure.

6. A graded vector space g = go P g1, together with a bilinear operation
[,-] on g such that [x,y] € g|z|4|y| is called a graded Lie algebra if

[SE, y] = _(_1)|:E|\y|[y’ 33],
(_1)\x||z\[x’ [yv ZH + (_1)\z||y|[27 [a:,y]] + (_1)|y\|x|[y’ [27‘%'“ - 07 (8'7)
where the last equality is called the graded Jacobi identity.

If V is a graded vector space, then End(V') has the structure of a
graded Lie algebra defined by

[, 8] = af — (—=1)*PI3a,  «,3 € End(V). (8.8)

7. If B is a graded algebra, an operator h € End;(B) is called a graded
derivation of B if

h(zy) = h(z)y + (—=1)"1"zh(y). (8.9)

An operator h € End(B) is a derivation if its homogeneous compo-
nents are so.

The graded vector space of derivations of B, denoted by Der(B),
is a graded Lie subalgebra of End(B). Equality (8.9) is called graded
Leibniz rule. If B is a graded commutative algebra then Der(B) is a
left B-module: if ¢ € Der(B), f,g € B, then f( € Der(B), where

(fQg = f(Cg). (8.10)
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The local picture of a graded manifold is an open neighborhood U C
R™ together with the graded commutative algebra

C>®(U) ® A(n), (8.11)
where A(n) is the antisymmetric (exterior) algebra on n elements
S1,--,8n, |si|=1, sis; = —s;si, i,j=1,...,n. (8.12)

The pair (m|n) is called the dimension of the graded manifold at
hand. A particular element f € C*>°(U) ® A(n) is represented as

F=2 fus (8.13)
w

where p is a multi-index: € My, = {u = (p1,...,tn) | s €N, 1 <
p1 < po--- < pp <nj,

Sy =Su " Suy - Sup, Jfu € CT(WU). (8.14)

Graded vector fields on a graded manifold (U,C*(U) ® A(n)) are
introduced as graded derivations of the algebra C*°(U) ® A(n). They
constitute a left C*°(U)® A(n)-module. Locally, a graded vector field
V' is represented as

- 0 - 0

)

where f;, gj € C°(U) ® A(n), and r;, i = 1,...,m, are local coordi-
nates in U C R™.

The derivations 0/0r;, i = 1,...,m, are even, while the deriva-
tions 0/0sj, j =1,...,n, are odd. They satisfy the relations
87’k st 8Tk 881
({“)TZ‘ ik 673 ’ 88]' ’ aSj al ( )

foralli,k=1,...,m, j,l=1,...,n.
A graded differential k-form is introduced as k-linear mapping G on
Der(C*°(U) ® A(n)) which has to satisfy the identities

(Clyeees fGer G | BY = (—OVIZi=IGl gy G| B) (8.17)

and

7(j7<j+1~-7§k ‘ B>
= (71)1+‘Cj||(:j+1|<<17 .. 'aCj’<j+1a e 7C1€ | ﬂ>7 (8]—8)

for all ¢; € Der(C*(U) ® A(n)) and f € C*°(U) @ A(n). The set of
k-forms is denoted by QF(U).

REMARK 8.1. Actually we have to write Q*(U, C>®(U) ® A(n)),
but we made our choice for the abbreviated QF(U).
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The set QF(U) has the structure of a right C°°(U) ® A(n)-module
by

We also set Q0(U) = C*(U) ® A(n) and Q(U) = &2 Q).
Moreover Q(U) can be given a structure of a bigraded (Z,Z2)-com-
mutative algebra, that is, if 3; € Q% (U);,, i = 1,2, then

BBz € Qk1+k2(U>j1+j2 (8.20)

and
BB = (—1)Mktiizg, g, (8.21)
For the general definition of 313, see [50].

One defines the exterior derivative (or de Rham differential)
d: Q°(U) - QY U), [+ df, (8.22)
by the condition
(Cldf)y=¢f (8.23)
for ¢ € Der(C*®(U) ® A(n)) and f € Q°(U) = C*®(U) ® A(n). By
[50] and the definition of (313,
dri, 1=1,...,m, dsj, j=1,...,n, (8.24)
defined by
(g | dri) = 3 (o L dr) =0,
<a%€ | ds;) =0, <a% | ds;) = dj1, (8.25)
generate Q(U) and any § € Q(U) can be uniquely written as
B=> druds’ fu., (8.26)
1w
where
po= (1 pe), 1< <...<pp<n, () =k,
v=(v1,...,vn), vi€N=Z;\{0},
= v, fuw € CP(U) @ An). (8.27)
i=1
Note in particular that by (8.21),
dridrj = —drqr;, drids; = —ds;dr;, ds;ds, = dspds;, (8.28)

and by consequence
de N de 7& 0. (8.29)
S

k times
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By means of (8.22) and (8.23), the operator d: Q°(U) — Q(U) has
the following explicit representation

Ny N g 9F
df = ;drz e ;dsj By (8.30)

Since Q(U) is a (Z4, Z2)-bigraded commutative algebra, the algebra
End(2(U)) is bigraded too and if u € End(Q(U)) is of bidegree (b, j) €
(Z4,7Z3), then

u(QUU);) € Q0 (U) 4 4. (8.31)

Now, an element u € End(Q(U)) of bidegree (b, j) is a bigraded deriva-
tion of Q(U), if for any o € Q%(U);, f € Q(U) one has the Leibniz

rule

u(af) = u(e)f + (=1) ¥ aqu(p). (8.32)
There exists a unique derivation, the exterior differentiation,
d: QU) — Q) (8.33)
of bidegree (1,0), such that d ‘QO(U) is defined by (8.22), (8.30), and
d? = 0. (8.34)
If g € QU),
B=> druds" fu, (8.35)
%
then
dg = (-1)"WHdr, ds”df,,. (8.36)

v

Other familiar operations on ordinary manifolds have their counter-
parts in the graded case too.

If { € Der(C*(U) ® A(n)), inner differentiation by (, or contraction
by (, i¢ is defined by

(Clyeees G licB) = (~D)IIZE1GlC ¢, G | B) (8.37)

for ¢,C1,...,¢ € Der(C®(U) ® A(n)) and g € Q¥1(U). Moreover
ic: QU) — QU), B € QTYU), icB € Q°(U), is a derivation of
bidegree (—1, [(]).

Bigraded derivations on Q(U) can be shown to constitute a bi-
graded Lie algebra Der Q(U) by the following Lie bracket. If uy,ug €
Der Q(U) of bidegree (b;,b;), i = 1,2, then

[u1, ug] = ugug — (—1)b1b2+j1j2u2u1 € Der Q(U). (8.38)
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14. From (8.38) we have that Lie derivative by the vector field ¢ defined
by

LC = dic + icd (8.39)

is a derivation of Q(U) of bidegree (0, [(]).

The fact that exterior differentiation d, inner differentiation by ¢,
ic, and Lie derivative by ¢, L¢ are derivations, has been used to imple-
ment them on the computer system starting from the representation
of vector fields and differential forms (8.15) and (8.35).

15. If one has a graded manifold (U,C*>°(U) ® A(n)), the exterior deriv-
ative is easy to be represented as an odd vector field in the following

way
d:idm/\i+§:ds~/\i (8.40)
i1 87‘1' = J 883'7

where now the initial system has been augmented by n even variables
dsi,...,ds, and m odd variables dri,...,dr,. The implementation
of the supercalculus package is based on the theorem proved in [50]
that locally a supermanifold, or a graded manifold, is represented as
U,C®U) ® A(n), U C R", from which it is now easy to construct
the differential geometric operations.

Suppose we have a supermanifold of dimension (m|n). Local

variables are given by (r,s) = (r;,s5), ¢ = 1,...,m, j = 1,...,n.
Associated to these coordinates, we have (dr;,ds;), i = 1,...,m,
j=1,...,n. We have to note that dr;, ¢ = 1,...,m, are odd while
ds;j, j=1,...,n, are even.

So the exterior algebra is
C*(R™) @ R[ds] ® A(n) @ A(m), (8.41)

where in (8.41) a specific element is given by

F=Yds . dskrdry, . dry, fr (8.42)

while in (8.42) k; > 0,1 =1,...,m, 1 < 3 < --+ < pp < n, while
frp € CC(R™) @ A(n).

2. Classical differential geometry

We shall describe here how classical differential geometric objects are
realised in the graded setting of the previous section. We start at a super-
algebra A on n even elements, 71,...,r,, and n odd elements sq,..., sy,
ie.,

A=C®R") @ A(n), (8.43)
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where A(n) is the exterior algebra on n elements, si,...,s,. A particular
element f € A= C>®(R") ® A(n) is represented as
f = Z fusua (8.44)
m

where p is a multi-index p € M, = {p = (1, px) | i € Ny1 < g <
<o < pp <n} and

Sy = Su1Sus - S, fu € CF(R"), (8.45)
where we in effect formally assume:
si=dry, i=1,...,n. (8.46)

1. Functions are represented as elements of the algebra Ay = C*°(R").
2. Derivations of Ay can be identified with vector fields

0 0
V=Vi—+-+V,— 8.47
18r1+ + "o (8.47)
where V; € C*°(R"), i =1,...,n.
Differential forms are just specific elements of A.
4. Exterior derivative is a derivation of A which is odd and can be

represented as the vector field

w

d 0
— _ “ee N, i — Si. .4
d=dr o + - 4dr o, dr; = s (8.48)

5. Contraction by a V', where V' is given by (8.47), can be represented
as an odd derivation of A by

0 0
= — -+ V= . A4
V L« (‘/1881+ +Vasn)(oz) (8.49)
6. The Lie derivative by V can be easily implemented by the formula
Ly(a) =V _d(a) +d(V 2 a). (8.50)

3. Overdetermined systems of PDE

In construction of classical and higher symmetries, nonlocal symmetries
and deformations or recursion operators, one is always left with an overde-
termined system of partial differential equations for a number of so-called
generating functions (or sections). The final result is obtained as the general
solution to this resulting system.

In Section 3.1 we shall describe how by the procedure which is called
here solve equation, written in the symbolic language LISP, one is able
to solve the major part of the construction of the general solution of the
overdetermined system of partial differential equations resulting from the
symmetry condition (2.29) on p. 72 or the deformation condition (6.42) on
p. 266.

It should be noted that each specific equation or system of equations
arising from mathematical physics has its own specifics, e.g., the sine-Gordon
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equation is not polynomial but involves the sine function, similar to the
Harry Dym equations, where radicals are involved.

In Subsection 3.2 we discuss, as an application, symmmetries of the
Burgers equation, while finally in Subection 3.3 we shall devote some words
to the polynomial and graded cases.

3.1. General case. Starting at the symmetry condition (2.29), one
arrives at an overdetermined system of homogeneous linear partial differen-
tial equations for the generating functions F;, i = 1,...,m. First of all,
one notes that in case one deals with a differential equation! ¥ ¢ J*(z,u),
x=(x1,...,25),u = (U1, ...,Upy), then the r-th prolongation £¥*" is always
polynomial with respect to the higher jet variables in the fibre £+ — £F.

The symmetry condition (2.29) is also polynomial with respect to these
variables, cf. Subsection 3.2. So the overdetermined system of partial differ-
ential equations can always be splitted with respect to the highest variables
leading to a new system of equations.

These equations are stored in the computer system memory as right-
hand sides of operators equ(1),...,equ(te), where the variable te stands
for the Total Number_of Equations involved.

If at a certain stage, the computer system constructs new expressions
which have to vanish in order to generate the general solution to the system
of equations (for instance, the derivative of an equation is a consequence,
which might be easier to solve). These new equations are added to the
system as equ(te + 1),... and the value of te is adjusted automatically to
the new situation.

In the construction of solutions to the system of equations we distinguish
between a number of different cases:

1. CASE A: A partial differential equation is of a polynomial type in
one (or more) of the variables, the functions F, appearing in this
equation are independent of this (or these) variable(s). By conse-
quence, each of the coefficients of the polynomial has to be zero, and
the partial differential equation decomposes into some new additional
and smaller equations.

ExaMPLE 8.1. The partal differential equation is
equ(.) =27 (F1)a, + 21 F, (8.51)

where in (8.51) the functions Fy, F» are independent of x;.

By consequence, the coefficients of the polynomial in z; have to
be zero, i.e., (F1)z, and Fy. So equation (8.51) is equivalent to the
system

equ(.):=(1)az,,
equ(.):=F} (8.52)

''We use the notation J*(z,u) as a synonim for J*(r), where 7: (z,u) — (z).
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2. CASE B: The partial differential equations equ(.) represents a de-

rivative of a function F}. In general

eau() i=(F.) i, (3.53)

10y

is a mixed (k1 + --- + k,)-th order derivative.
The general solution of (8.53) is

r ks—1

F.:=)Y Y F,ai, (8.54)

s=1 t=0

whereas in (8.54) Fj, , depends on the same variables as F, except
for ;,,t=0,...,ks—1,s=1,...,r.

EXAMPLE 8.2.
equ(.) :=(F1)a; z»- (8.55)
The general solution to this equation is given by
Py := Fy + F3, (8.56)

where F5 depends on the same variables as Fy, except for x1, while
F3 depends on the same variables as F, except for xo.

. CASE C: The partial differential equation equ(.) contains a func-

tion Fi, depending on all variables present as arguments of some
other function(s) Fl., occuring in this equation, whereas there is no
derivative of a function F present in the equation.

The partial differential equation can then be solved for the func-
tion Fl.

EXAMPLE 8.3.
equ(.) :=x1F + x2(F2),,, (8.57)
where in (8.57) Fy, F» are dependent on 1, z2, x3. The solution is
Fy = (—22(F2)q,) /21 (8.58)

We have to make a remark here. There is a switch in the system
that checks for the coefficient for the function F. to be a number. In
case the switch coefficient_check is on, equ(.) will not be solved.
In case the switch coefficient check is off, the result is given as in
(8.58).

. CASE D: In the partial differential equation there is a derivative

of a function F, with respect to variables which are not present as
argument of any other function Fj,, while the coefficient of F} is a
number. By the assumption that x1,...,x, appear as polynomials,
the partial differential equation can be integrated.
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EXAMPLE 8.4. Let the partial differential equation be given by
equ(.) :=(F1)zy + 221, (8.59)

where F depends on x1, x3, 3 and F> depends on x1, xs.
The solution to (8.59) is

F := —xoxsFy + F3, (860)
whereas F3 depends on z1, zo and is independent of 3.

5. CASE E: In the partial differential equation a specific variable x; is
present just once as argument of some function F,. By appropriate
differentiation, one may arrive at a simple equation, which can be
solved.

Evaluation of the original equation can result in an equation which
can be solved too.

ExXAMPLE 8.5.
equ() ::xQ(Fl)CEQ,xg + x3F27 (861)

where F depends on x1, z3, 3 and F> depends on x1, xs.
Differentiation with respect to x3 twice results in

equ(.) ::x2(F1)m2,a:§- (8.62)
The solution to (8.62) is CASE B:
Fy := F322 + Fyx3 + F5 + Fg, (8.63)

where Fi, Fy, F5 are dependent on 1, x2, Fg depends on x1, x3.
Substitution of the result (8.63) into the original equation (8.61)

leads to

equ(.) :=2wox3(F3)y, + x2(Fy)y, + x3F5. (8.64)
Due to CASE A, the procedure solve_equation constructs two new
equations

equ(.):=2x9(F3),, + Fa,
equ(.):=x2(Fy)z, (8.65)
The complete result of the procedure solve_equation will in this case
be (8.63) and (8.65).
Now the procedure solve_equation is then useful to solve the last

two equations (8.65) constructed before; this last step is not carried
through automatically.

For this case there is a switch “differentiation” too, similar to
the previous case.

In practical situations, one is able to solve the overdetermined system
of partial differential equations, using the methods described in the CASES
A, B, C, D, E and some additional considerations, which are specific for the
problem at hand.
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3.2. The Burgers equation. We shall discuss the construction of
higher symmetries of order three of the Burgers equation in order to demon-
strate the facilities of the INTEGRATION package, in effect the procedure
solve_equation described in the previous subsection.

The Burgers equation is given by the following partial differential equa-
tion

Uy = uuq + u9, (8.66)

where partial derivatives with respect to x are given by indices 1,2,... We
start this example by introduction of the vector fields D,, D; in the jet
bundle where local coordinates are given by x, t, u, w1, ug, ug, uq, us, Ug,
u7, ug and a generating function Fi, which is dependent on the jet variables
z, t, u, ug, ug, U3.
So the representation of the vector fields D, D is given by
0 0 0 0 0 0 0

+U— tU— tU3T— Ft U — Tt UsT— T+ U=

D, =—
ox ou ouy Ous Ous Oug Ous

0 0 0 0 0 0

Dy = — — — — — -
ET ot + (“t)au Uy + (ut)zﬁuz + ()3 Ous + (ut)48U4

+ (Ut)si + (u)o 75— (8.67)
us Ue

(ug) = uug + ug,
ug)p = uug + ud + us,
)2 = uuz + 3ugug + ug,
)3 = uug + dujus + 3u% + us,
u)a = uus + Sujug + 10ugus + ug,

)5 = uug 4 6uius + 15usug + 10u3 + uz,
u)e = uuy + Tuiug + 21lugus + 3buguy + us. (8.68)
In the remaining part of this section we shall present in effect a computer
session and give some comments on the construction and use of the procedure
solve_equation. We shall stick as close as possible to the real output of
the computer system. Boldtext will refer to real input to the system, while

the rest is just the output on screen.
Now from the symmetry condition (2.29) we obtain

2: equ(l) = Dt(F1) - Dx(DxFi) — uDX(Fi) — 111F1; (869)

where the solution is to be determined in such a way that the right-hand
side in (8.69) has to vanish.
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The resulting equation is now given by

equ(l) = (F1)¢ — 2(F1)uu v1t2 — 2(F1)uus 1tz — 2(F1) y,us 1 g
— 2(F1)yzur — (Fl)uzu% — 2(F1 )uy up 2tz — 2(F1) g uz U2ta
— 2(F1 ), 2u2 — (Fl)ufug + (F1)uy 3 — 2(F1 )y s Uiy
— 2(F )y 0u3 — (Fl)ugug + 3(F1 ) up 12 — 2(F1 ) yg zUa — (Fl)ugui
+ 4(Fy ) uyuauz + 3(F1)usu3 — (F1)g2 — (Fi)pu — Frus$ (8.70)

The dependency of the function F7j is stored on a depl!* (dependency list):

3: lisp depllx;
((f 1) uz ug wr ut x)) (8.71)
Equ(1) is an equation, which is a polynomial with respect to the variable wuy,
so in order to be 0, its coefficients should be zero.
These coefficients will be detected by the procedure solve_equation(*),
i.e., CASE A:
4 : solve equation(1);

equ(1) breaks into equ(2),...,equ(4) by u4, us, ug, u7, us

5: print_equations(2,4);
equ(2) == — (F1),2%
Functions occurring :
Fi(ug, ug,ui,u,t,x)
equ(3) := — 2((F1)uusu1 + (F1)uyust2 + (F1)ugustt + (F1)ug2)$
Functions occurring :

Fi(us,u2,ui,u,t, )

equ(4) :=(F1); — 2(F1)uus uru2 — 2(F1)uupu1us — 2(F1)uzun

— (Fu)wpu = 2(F1)uy upuzuz — 2(F1)uy a2 — (F1) 203 + (Fi)u, uf
— 2(F1 )uy 0u3 — (Fl)ugug + 3(F)uyur iy + 4(F) )uguruz + 3(F1)usus
= (F1)z2 = (F1)au — Frun $

Functions occurring :
Fl(u37u27u17u7tax) (872)

We now are left with a system of three partial differential equations for the
function F3.

Equ(2) can now be solved, the result being a polynomial of degree 1 with
respect to the variable ug, while coefficients are functions still dependent on
z,t, u, U, u2.
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The construction of this solution, as in CASE B, is performed by the
procedure solve_equation(*) too, i.e.:

6 : solve_equation(2);

equ(2) : Homogeneous integration of (Fl)ug

7:Fy:=Fy;
) = Fyus + I%$ (8.73)
Substitution of this result into the third equation leads to:
8 : equ(3) := equ(3);
equ(3) := —2((F3)yu1 + (F3)u,u2 + (F3)u,us + (F3)z)$ (8.74)

and this equation splits up, since it is a polynomial of degree 1 with respect
to uz, CASE A:

9 : solve_equation(3);

equ(3) breaks into equ(5),...,equ(6) by us, ug, us, ug, Uz, - - -

10 : print_equations(5, 6);
equ(5) = —2(F3)y,$
Functions occurring:

F3(U2, uy, U,t, l‘)

equ(6) = —2((F3)yu1 + (F3)u,u2 + (F3)z)9
Functions occurring:

Fs(ug,u1,u,t, ) (8.75)

Now the procedure can be repeated, since equ(5) indicates that F3 is inde-
pendent of ug, in effect a polynomial of degree 0, and equ(6) can be splitted
with respect to us:

11: solve_equation(5);

equ(5) : Homogeneous integration of (F3)y,

12 : solve_equation(6);

equ(6) breaks into equ(7),...,equ(8) by ug,us, u4, us, ug, - - -
13 : print_equations(7,8);

equ(7) = —2(Fy)y,$

Functions occurring :

Fy(uy,u,t, x)

equ(8) := —2((Fy)uu1 + (Fy):)$

Functions occurring :
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Fy(uy,u,t, ) (8.76)

From equ(7) we have that F} is independent of u; and combination with
equ(8) then results in the fact that Fy is independent of u and x too:

14 :

15:

16 :

17

18:

solve_equation(7);

equ(7) : Homogeneous integration of (Fy),

solve_equation(8);

equ(8) breaks into equ(9),...,equ(10) by uy, ug, us, U4, us, . . .

print_equations(9, 10);

equ(9) = —2(F5),$
Functions occurring:
Fs5(u,t, x)

equ(10) := —2(F}5),$
Functions occurring:
F5(u,t,x)

solve_equation(9);

equ(9) : Homogeneous integration of (Fj),

solve_equation(10);

equ(10) : Homogeneous integration of (Fj), (8.77)

Summarising the results obtained thusfar, we are left with an expression for
the function F} in terms of F, and F7 and one equation, equ(4), which is
polynomial with respect to us:

19: £(1) :=£(1);
P = Fruz + F»$

20 : print_equations(1, te);
equ(4) = (F7)ius + (F2)r — 2(F2)uus uruz — 2(F2)uu,u1us

= 2(F)uztn — (Fo)y2tf — 2(F2)uy up tiztiz — 2(F2)uy wtiz — (Fa),2u3

(Fo)urui = 2(F2)us,atts — (F) 305 + 3(F2)uyurus — (F)g2
(Fg)a;u + 3F7uius + 3F7u§ — FHhu$

Functions occurring :

FQ(UZa ui,u, ta '1:)
Fr(t)

21 : solve_equation(4);

equ(4) breaks into equ(11),...,equ(13) by us, uq, us, ug, U7, . ..
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22 : print_equations(11,13);
equ(1l) = —(Fy),z%
Functions occurring :
Fy(ug,ui,u,t, )
equ(12) = (Fr)¢ — 2(F2)uusts — 2(F2)uy upti2 — 2(Fa)ug e + 3F7ur$
Functions occurring :
Fy(ug,ui,u,t, )
Fr(t)

equ(13) := (Fy); — 2(Fy)yu urtia — 2(Fo)uzur — (Fo)2ui

= 2(F)uy w2 — (F),203 + (Fo)u uf + 3(Fp)uyuiug — (Fa)g2

— (Fy)pu + 3Fu3 — Foui$

Functions occurring:

Fr(t)

Fy(ug,ui,u,t, ) (8.78)

The remaining system, equ(11), equ(12), equ(13), can be handled in a sim-
ilar way as before, leading to an expression for the function Fj:

23 : solve_equation(11);

equ(11) : Homogeneous integration of (FQ)U%
24 : equ(12) := equ(12);
equ(12) := —2(Fy)yu1 — 2(F9)u,uo — 2(Fo)x + (F7)r + 3F7u1 $

25 : solve_equation(12);

equ(12) breaks into equ(14),...,equ(15) by ue, us, u4, us, ug, - - -
26 : equ(14);

- 2(F9)u1$

27 : solve_equation(14);

equ(14) : Homogeneous integration of (Fy),,

28 : equ(15);
— 2(Fi0)uur — 2(Fi0)e + (Fr)e + 3Fru1

29 : solve_equation(15);
equ(15) breaks into equ(16),...,equ(17) by w1, ug, us, u4, us, . . .

30 : print_equations(16,17);
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equ(16) := —2(Fyg), + 3F;$
Functions occurring :
Fz(t)
Fip(u,t, ) (8.79)
and
equ(17) := —2(Fio)z + (Fr)$
Functions occurring :
Fr(t)
Fip(u,t,x)

31 : solve_equation(16);
CASE C:

equ(16) : Inhomogeneous integration of (Fig),

32 : solve _equation(17);

equ(17) : Inhomogeneous integration of (Fi1)s

33: £(2) := £(2);
Fy = ((F7)tUQCE + 2Fouo + 2Fg + 3F7’LL’LL2)/2$ (880)

while the original defining function F, and the remaining equation, equ(13),
are given by:

34 £(1) :=£(1);
Fy = ((F7)tu2m + 2Fouo + 2Fs + 3F7uus + 2F7U3)/2$

35 : print_equations(1,te);
equ(13) := (2(Fi2)¢u2 + 2(F8)s — 4(F8)u,u u1u2 — 4(FR)u U1
— 2(Fy) 2t} — 4(Fg)uy gz — 2(Fy),203 + 2(Fy)uyui — 2(F%) 2
— 2(Fg)u+ (F7)pusx + 2(Fr)uug + 2(Fr)uiusx + 4F2ujug
— 2Fguy + 6 Fruuiug + 6F7u3) /28
Functions occurring :
F(t)
Fs(uy,u,t, )
Fia(t) (8.81)

Equ(13) is a polynomial with respect to the variable uy, and the result is
again a system of three equations, the first two of them can be solved in
exactly the same way as before, leading to an expression for Fy:

36 : solve_equation(13);
equ(13) breaks into equ(18),...,equ(20) by usg, us, u4, us, Ug, - - -
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37 : print_equations(18,19);

38 :

39 :

40 -

41 :

42 .

43 -

equ(18) := 2(—(Fg)y, 2 + 3F7)$
Functions occurring :

F(t)

Fg(uy,u,t, )

equ(19) := 2(F12)t — 4(F8)uus 1 — 4(F8)uy o + (F7)p2x + 2(F7)iu
+ 2(F7)urx + 4F12u1 + 6 Fruus $

Functions occurring :

Fz(t)

Fg(uy,u,t, x)

Fis (t)

solve_equation(18);

equ(18) : Inhomogeneous integration of (Fy),>

print_equations(19,19);

equ(19) := —4(F14)yur — 4(F14)e + 2(F12)t + (F7)pex + 2(F7)wu
+ 2(F7)iurx + 4F19u1 + 6 Fruup $

Functions occurring:

Fr(t)

Fia(t)

Fiy(u,t, )

solve_equation(19);

equ(19) breaks into equ(21),...,equ(22) by w1, ug, us, uq, us, . . .

equ(21);
2(=2(F14)y + (F7)ix + 2F12 + 3F7u)$

solve_equation(21);

equ(21) : Inhomogeneous integration of (Fly4),

print_equations(22,22);

equ(22) := —4(F15)z + 2(F12) + (F7)pa8
Functions occurring:

Fz(t)

Fia(t)

Fi5(t,x)
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44 : solve_equation(22);

equ(22) : Inhomogeneous integration of (Fis5),

45 : £(8) := £(8);
Fy = (4(Fi2)purz + (Fr)puiz® 4+ 4(Fr)suuz 4 8Figu; + 8F3
+ 8Fpuuy + 6Fru*uy + 12Fu?) /8% (8.82)
while F} and the remaining equation, equ(20), are given as:
46 : £(1) :==£(1);
Fy = (4(Fi2)uiz + (F7)t2u1x2 + 4(F7)uuyx + 4(F7)pusx + 8Figug
+ 8F13 + 8Fouuq + 8F12us + 6F7u2u1 + 12F7uus
+ 12F7u? + 8Fuz3)/8$

47 : print_equations(1, te);
equ(20) := (8(Fip)iu1 + 8(F13)t — 16(Fi3)you1 — 8(Fi3)y2u?
— 8(Fi3) g2 — 8(Fi3)ou + 4(Fi2) purx + 4(Fi2)ruu + (Fr)puy o
+ 2(Fp) puuix — 2(Fr)puy + 2(Fr)uluy + 4(Fp)u? — 8Fi3u;) /4%
Functions occurring :
Fr(t)
Fia(t)
Fis(u,t, )
Fis(t) (8.83)

The remaining equation can then be solved in a straightforward way leading
to the final result:

48 : solve_equation(20);

equ(20) breaks into equ(23),...,equ(25) by u1, ug, us, ug, us, . . .
49 : equ(23);

4(=2(Fi3)2 + (F7)0)$
50 : solve_equation(23);

equ(23) : Inhomogeneous integration of (Fi3),2
51 : £(13) := £(13);

Fi3 := ((Fy)u? + 4Fgu + 4Fy7)/4$
52 : print_equations(24,24);

equ(24) = —16(F18)x + 8(F16)t + 4(F12)t2l’ + 4(F12)tu + (F7)t31132
+ 2(F7)pur — 2(Fr) ;2 — 8F1gu — 8F17$
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Functions occurring :

53 : solve_equation(24);
equ(24) breaks into equ(26),...,equ(27) by u, uj, ug, us, g, . . .

54 : print_equations(26,27);
equ(26) := 2(2(Fi2)t + (Fr)px — 4F15)$
Functions occurring:
Fig(t, x)
Fz(t)
Fia(t)

equ(27) := —16(Fis)s + 8(Fi6): + 4(Fi2) e + (Fr)pa’
+2(Fp)p — 8F14$

Functions occurring :

55 : solve_equation(26);
equ(26) : Solved for Fig

56 : solve_equation(27);
equ(27) : Solved forFiy

57 : print_equations(1, te);
equ(25) := 8(Fi6)2 + 4(Fi2)px
+ (Fr)pa® — 8(Fr)$
Functions occurring:
Fr(t)
Fio(t)
Fig(t) (8.84)
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and
58 : solve_equation(25);
equ(25) breaks into equ(28),...,equ(30) by z,u,u1, ug, us,. ..
59 : print_equations(28,30);
equ(28) := (F7)u$
Functions occurring:
Fz(t)
equ(29) = 4(F12)t3$
Functions occurring :
Fio(t)
equ(BO) = 8((F16)t2 - (F7)t3)$
Functions occurring:
Fr(t)
Fig(t)
60 : solve_equation(28);
equ(28) : Homogeneous integration of (Fr)u
61: £(7) :=£(7);
Fr = c(D)t3 + c(3)t? + c(2)t + ¢(1)$
62 : solve_equation(29);
equ(29) : Homogeneous integration of (Fj2)s
63 : £(12) := £(12);
Fia := c(T)t* + c(6)t + ¢(5)$
64 : equ(30) := equ(30);
equ(30) := 8(—6¢(4) + (Fig)2)$
65 : solve_equation(30);

equ(30) : Inhomogeneous integration of (Fig);2
66 : £(16) := £(16);
Fig := c(9)t + ¢(8) + 3c(4)t*$
67 : factor t,x; (8.85)

and

68 : £(1) := £(1);
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69 :

70 :
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Fy = (3c(4) (3uuy + 6uug + 6u? + 4ug)

+ 6t%zc(4) (uuy + us)

+ t2(4e(T)uuy + 4e(T)ug + 3e(4)u? + 12¢(4)u; + 3¢(3)u’u;
+ 6¢(3)uug + 6¢(3)ut + 4c(3)usz)

+ 3tz’c(4)uy

+ 2tx(2¢(T)ur + 3c(4)u + 2¢(3)uug + 2¢(3)ug)

+ t(4e(9)uy + 4e(T)u + 4e(6)uug + 4e(6)ug + 6¢(4)

+ 2¢(3)u® + 3¢(2)uuy + 6¢(2)uug + 6¢(2)u? + 4c(2)us3)

+ 2%(3c(4) + ¢(3)uq)

+22(2¢(7) + c(6)ur + c¢(3)u + c(2)uuy + ¢(2)us)

+4¢(9) + 4e(8)ur + 2¢(6)u + 4e(5)uug + 4e(5)ug — 6¢(3)
+ ¢(2)u? + 3e(1)uug + 6¢(1)uug + 6¢(1)uf + de(1)ug) /48 (8.86)

for i :=1:9 do write vec(i) :=df(£(1),c(i));
vec(1) := (3uuy + 6uug + 6u + 4usz)/4$

vec(2) := (t(3u’uy + 6uuy + 6u? + 4us) + 2z (uuy + us) + u?)/4$

vec(3) := (t2(3uuy + 6uug + 6u? + dug)
+ 4tz (uuy + ug) + 2tu? + 2?uy + 22u — 6)/4%

vec(4) := (t3(3uuy + 6uug + 6u3 + dug)
+ 6t2x (uug + ug) + 3t%(u® + duy) + 3tx*uy + 6teu + 6t + 32%)/4$

(8.87)

The previous application demonstrates in a nice way how calculations con-
cerning symmetries and other invariants of partial differential equations are
performed.
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We finish this section with the remark that it is possible to run the
program automatically on this system (8.66). Doing this, the complete con-
struction does take 0.3 seconds. Most problems need however the researcher
as operator in the construction of the general solution.

3.3. Polynomial and graded cases. A very often arising situation
is the construction of symmetries and of conservation laws for equations
admitting scaling symmetry.

Let us take for example:

ExAMPLE 8.6. The KdV equation is given by:

Up = Uy + Ugzr, (8.88)

which as we have seen in Section 5 of Chapter 3 admits a scaling symmetry
0 0 0

S=—-2——-3t—=+2u—+--- (8.89)

ox ot ou

This means that in physical terms all variables are of appropriate dimen-
sions, whereas in mathematical terms it means that all variables are graded?,
ie.,

degree(z) = [z] = —1, [t] = =3, [u] =2, [uz] =3, [u =5,.... (8.90)
This grading means that all objects are graded too, and for the generat-

ing functions of symmetries and conservation laws only those functions are
of interest which are of a specified degree in the variables.

ExaMPLE 8.7. Suppose that in the previous example we are interested
to have the most general functions F' and GG of degree 5 and 7 respectively,
with respect to the graded variables u, vy, Uz, Upzes Uszzrs Uzzzze Which
are of degree 2, 3, 4, 5, 6, 7 respectively. The result will be:

2
F = ciuges + coutly, G = C3Ugpgze + CAUUZze + C5UL Uz + CoU Usg.

(8.91)

If, however, we are in the situation that F is of degree 5 with respect to the
graded variables p1, u, Uz, Uzz, Uzrs, Uszrs, Uzerze Which are of degree 1, 2,
3, 4, 5, 6, 7 respectively, then the result will be:

F = iUy + Copruas + (c3u + capl)uy + cspiu + cop, (8.92)
while for G we have the general presentation
G = ClUzzzer + 2PV Uzze + (C3U+ CaPT ) Unzn
+ (CsUe + C6P1U A+ C7P} ) Ugr + C8P1US
+ (cou® + cropiu + c11pi)ug + cropru’
+ c1zpiu® + ciapiu + cispl. (8.93)

2The term graded here means that some weights can be assigned to all variables in
such a way that the equation becomes homogeneous with respect to these weights.
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Procedures are availabe to construct the most general presentation of
a function of a specified degree, with respect to a specified list of graded
variables.

Once one knows that all objects are graded, the conditions (1.37) do lead
to polynomial equations with respect to the jet variables, the coefficients
of which have to vanish. This process does lead to just algebraic linear
equations for the constants in the original expressions (8.92) and (8.93).
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conservation laws, 72
of supersymmetric extensions of the
Boussinesq equation, 323
of supersymmetric extensions of the
KdV equation, 328, 333, 339
of supersymmetric extensions of the
NLS equation, 318, 320
of the Dirac equations, 77
of the Federbush model, 130
of the KdV equation, 111, 227
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of the Kupershmidt super KdV equa-
tion, 274
of the Kupershmidt super mKdV
equation, 279
of the massive Thirring model, 121
of the supersymmetric KdV equation,
283, 311
of the supersymmetric mKdV equa-
tion, 291
of the supersymmetric NLS equation,
297, 304
of the Sym equation, 238
conserved densities, 72; see also conser-
vation laws
trivial, 72
contact transformations, 22
contraction, 172, 246, 356, 358
coverings, 263
Abelian, 106
Cartan even covering, 100
Cartan odd covering, 268
dimension, 101
equivalent, 100
in the category DM, 99
irreducible, 101
linear, 100
over £°°, 99
over supersymmetric extensions of the
KdV equation, 328, 333
over supersymmetric extensions of the
NLS equation, 318
over the Burgers equation, 109
over the supersymmetric KdV equa-
tion, 311
reducible, 101
trivial, 101
universal Abelian, 106
creating operators in the Federbush
model, 137, 143
C-spectral sequence, 65, 202
curvature form, 177, 188, 252

deformations

of a graded extension, 257

of an equation structure, 192

of supersymmetric extensions of the
Boussinesq equation, 325

of supersymmetric extensions of the
KdV equation, 332, 337, 348

of supersymmetric extensions of the
NLS equation, 318, 320

of the Boussinesq equation, 233

of the Burgers equation, 215

of the heat equation, 214
of the supersymmetric KdV equation,
314
depl!* list, 363
de Rham complex
graded, 248
of an algebra, 166
on £, 58
on J*°(m), 11
de Rham differential, 6, 11, 14, 164, 166,
355, 358
graded, 248
derivation, 160, 358
bigraded, 356
graded, 353
differential forms, 358
graded, 244, 354
of an algebra, 164, 165
on £%°, 58
on J*(m), 10
differential operators of infinite order, 12
differentiation switch, 361
Diff-prolongation, 158
dimension of a covering, 101
dimension of a graded manifold, 354
discrete symmetries of the Federbush
model, 138
distribution on J*°(7r), 12

equation associated to an operator, 13

equivalent coverings, 100

equ operator, 359

Euler-Lagrange equation, 76

Euler-Lagrange operator, 74, 141

evolutionary equation, 16

evolutionary vector field, 70

exterior derivative, see de Rham differ-
ential

Federbush model, 129
annihilating operators, 137
classical symmetries, 129
conservation laws, 130
Hamiltonian structures, 140
higher symmetries, 130, 138, 144
nonlocal symmetries, 146
recursion symmetries, 135

fermionic symmetries, 281

finitely smooth algebra, 176

flat connection, 16, 178, 252

formally integrable equation, 30

Fréchet derivative, see Euler-Lagrange

operator
free differential extension, 253



Frolicher—Nijenhuis bracket, 175
graded, 249

gauge coupling constant, 43
gauge potential, 43
gauge symmetries, 24
gauge transformations, 52
of the Yang—Mills equations, 49
generating form, see generating function
generating function
of a conservation law, 75
of a contact field, 26
of a graded evolutionary derivation,
206
of a Lie field, 27
of an evolutionary vector field, 70
generating section, see generating func-
tion
generic point of maximal integral mani-
fold of the Cartan distribution, 20
geometrical module, 167
geometrization functor, 167
g-invariant solution, 28
gluing homomorphism, 158
gluing transformation, 158
graded algebra, 353
graded commutative algebra, 353
graded evolutionary derivation, 206
graded extensions of a differential equa-
tion, 253; see also supersymmetric
extensions
graded Jacobi identity, 353
graded manifold, 354
graded module, 353
graded polyderivations, 244
graded vector space, 352
Green’s formula, 73

Hamiltonian structures of the Federbush
model, 140
heat equation, 110, 214
deformations, 214
higher Jacobi bracket, 70
graded, 207
higher symmetries, 68
of supersymmetric extensions of the
Boussinesq equation, 324
of supersymmetric extensions of the
KdV equation, 330, 336, 343
of supersymmetric extensions of the
NLS equation, 318, 320
of the Boussinesq equation, 96
of the Burgers equation, 84
of the Federbush model, 130, 144
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of the Hilbert—Cartan equation, 91-93

of the KdV equation, 111

of the Kupershmidt super KdV equa-
tion, 272

of the Kupershmidt
equation, 277

of the massive Thirring model, 116

of the supersymmetric KdV equation,

super mKdV

282, 312
of the supersymmetric mKdV equa-
tion, 291
of the supersymmetric NLS equation,
297, 304

of the Sym equation, 235
Hilbert—Cartan equation, 84

classical symmetries, 87

higher symmetries, 91-93
hodograph transformation, 23
horizontal de Rham cohomology, 65
horizontal de Rham complex, 65, 198

with coefficients in Cartan forms, 66
horizontal de Rham differential, 65, 256
horizontal distribution of a connection,

187

horizontal forms, 65, 197
horizontal plane, 15
‘H-spectral sequence, 199

ideal of an equation, 58

infinite prolongation of an equation, 57

infinitesimal deformation of a graded ex-
tension, 257

infinitesimal Stokes formula, 11

infinitesimal symmetries, 25

inner differentiation, see contraction

inner product, see contraction

instanton solutions of the Yang—Mills
equations, 45, 49

integrable distribution on J*° (), 12

integrable element, 250

integral manifold of a distribution on
J (), 12

INTEGRATION package, 362

interior symmetry, 22

internal coordinates, 59

invariant recursion operators, 183

invariant solutions, 27

of the Yang—Mills equations, 49

invariant submanifold of a covering, 103

inversion of a recursion operator, 151

involutive subspace, 19

irreducible coverings, 101

jet of a section, 4
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jet of a section at a point, 3
jet operator, 159
Jet-prolongation, 160

KdV equation, 111, 150, 227, 373
conservation laws, 111, 227
deformations, 227
graded extensions, 271, 281, 311, 326,

333, 339
conservation laws, 274, 283, 311,
328, 333, 339
coverings, 311, 328, 333, 339
deformations, 314, 332, 337, 348
higher symmetries, 272, 282, 312,
330, 336, 343
nonlocal symmetries, 274, 283, 312,
330, 336, 343
recursion operators, 315, 332, 337
recursion symmetries, 348
higher symmetries, 111
nonlocal symmetries, 111
recursion operators, 113, 227

killing functor, 268

Korteweg de Vries equation, see KdV

equation

Kupershmidt super KdV equation, 271,

271; see also graded extensions of
the KdV equation

Kupershmidt super mKdV equation,

276; see also graded extensions of
the mKdV equation

Leibniz rule
bigraded, 356
graded, 353
Lenard recursion operator, 113, 150
Lie algebra
bigraded, 356
graded, 353
Lie derivative, 172, 174, 357, 358
graded, 248
Lie field, 25
Lie transformation, 21
lifting
of a Lie field, 25
of a Lie transformation, 24
of a linear differential operator, 63
linear coverings, 100
linear differential equation, 12
linear differential operator, 5, 156
graded, 245
over J*°(m), 11
linear recursion operators, 150
{-normal equation, 75, 211

local equivalence of differential equa-
tions, 22

manifold of k-jets, 4
massive Thirring model, 115
conservation laws, 121
higher symmetries, 116
nonlocal symmetries, 120, 121, 124
recursion symmetries, 128
maximal integral manifolds of the Car-
tan distribution
on £, 60
on J*°(m), 60
on J*(x), 20
maximal involutive subspace, 19
mKdV equation, 152
graded extensions, 276, 291
conservation laws, 279, 291
higher symmetries, 277, 291
nonlocal symmetries, 279, 291
recursion operators, 152
modified Korteweg de Vries equation, see
mKdV equation
module of k-jets, 159
module of infinite jets, 159
module of symbols, 170
Monge—Ampere equations, 14, 67
monopole solutions of the Yang—Mills
equations, 45, 52, 55
morphism of coverings, 100

Nother symmetry, 76
Nother theorem, 76
V-cohomology, 179
V-complex, 179
Nijenhuis torsion, 182
graded, 254
NLS equation, 231
deformations, 231
graded extensions, 294, 317
conservation laws, 297, 304, 318,
320
coverings, 318, 320
deformations, 318, 320
higher symmetries, 297, 304, 318,
320
nonlocal symmetries, 297, 304, 318
recursion operators, 318, 320
recursion operators, 231
nonlinear differential equation, 12
formally integrable, 30
{-normal, 75
local equivalence, 22
regular, 17



nonlinear differential operator, 5
over a mapping, 10
nonlinear diffusion equation, 34
classical symmetries, 35-37
nonlinear Dirac equation
classical symmetries, 39, 42, 43
nonlinear Dirac equations
conservation laws, 77
nonlinear Schrédinger equation, see NLS
equation
nonlocal coordinates, 102
nonlocal symmetries, 104
p-symmetry, 104
of supersymmetric extensions of the
Boussinesq equation, 324
of supersymmetric extensions of the
KdV equation, 330, 336, 343
of supersymmetric extensions of the
NLS equation, 318, 320
of the Burgers equation, 109
of the Federbush model, 146
of the KdV equation, 111
of the Kupershmidt super KdV equa-
tion, 274
of the Kupershmidt super mKdV
equation, 279
of the massive Thirring model, 120,
121, 124
of the supersymmetric KdV equation,
283, 312
of the supersymmetric mKdV equa-
tion, 291
of the supersymmetric NLS equation,
297, 304
of the Sym equation, 238
nonlocal variables, 264
nontrivial symmetry
of a graded extension, 256
of the Cartan distribution on J*(pi),
68

one-line theorem, 74
operator of k-jet, 4

point of J(7r), 8
point symmetries, 34
Poisson bracket, 170
prolongation
of a differential equation, 28, 29
infinite, 57
of a differential operator, 6
Diff-prolongation, 158
Jet-prolongation, 160
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recursion operators, 149, 150, 181, 260
for supersymmetric extensions of the
Boussinesq equation, 325
for supersymmetric extensions of the
KdV equation, 332, 337
for supersymmetric extensions of the
NLS equation, 318, 320
for the Boussinesq equation, 233
for the Burgers equation, 221
for the KdV equation, 113, 227
for the mKdV equation, 152
for the NLS equation, 231
for the supersymmetric KdV equation,
315
for the Sym equation, 241
invariant, 183
inversion, 151
linear, 150
recursion symmetries
for supersymmetric extensions of the
KdV equation, 348
of the Boussinesq equation, 96
of the Federbush model, 135
of the massive Thirring model, 128
reducible coverings, 101
regular equation, 17
regular point, 17
relation equations, 218, 267
representative morphism, 6
Richardson—Nijenhuis bracket, 174
graded, 247
R-plane, 4

self-dual gauge field, 45
self-dual Yang—Mills equations, 45
shadow, 151, 267

of a nonlocal symmetry, 105

of recursion operators, 219
shadow equations, 218, 267
smooth algebra, 168
smooth bundle over J*°(7), 8
smooth functions

on £%°, 58

on J*(m), 10
smooth mapping of J*°(7), 8
solution of a differential equation, 13
solve_equation procedure, 358
space of infinite jets, 7
special coordinate system, 4

in J*(m), 8
spectral sequence associated to a connec-

tion, 180

structural element, 192, 253



384

of a covering, 217
of an equation, 62
structure of sym(£°), 72
structure of sym(w), 69
structure of Lie fields, 26
structure of Lie transformations, 24
structure of maximal integral manifolds
of Cartan distribution, 21
super evolutionary derivation, 206
supersymmetric extensions
of the Boussinesq equation, 322
of the KdV equation, 281, 311
(N =2), 326, 327, 333, 339
of the mKdV equation, 291
of the NLS equation, 294, 317
Sym equation, 235
conservation laws, 238
deformations, 241
higher symmetries, 235
nonlocal symmetries, 238
recursion operators, 241
symbol of an operator, 170
symmetries, 22, 72, 181
bosonic, 281
classical, 22, 25
discrete, 138
fermionic, 281
gauge, 24
higher, 68
nonlocal, 104
of an object of the category DM,
103
of the Cartan distribution on J*° (),
68
point, 34
recursion, 96, 128, 135

tangent vector to J*°(r), 8

te variable, 359

't Hooft instanton, 51

total derivatives, 26

total differential operators, see C-differ-
ential operators

trivial covering, 101, 267

trivial deformations, 193

trivial symmetry of the Cartan distribu-
tion on J*°(7r), 68

two-line theorem, 75

2-trivial object, 182

type of maximal integral manifold of the
Cartan distribution, 20

type of maximal involutive subspace, 20

universal Abelian covering, 106

universal cocompositon operation, 160

universal composition transformation,
158

universal linearization operator, 71, 210

unshuffle, 156

variational bicomplex, 65, 74
associated to a connection, 180
vector fields, 358
graded, 354
on £%°, 58
on J*°(m), 10
vectors in involution, 19
vertical derivation, 179
V-spectral sequence, 203

wedge product of polyderivations, 162
Whitney product of coverings, 101

Yang—Mills equations, 43, 75

Belavin—Polyakov—Schwartz—Tyupkin
instanton, 50

classical symmetries, 46, 51
instanton solutions, 45, 49
invariant solutions, 49
monopole solutions, 45, 52, 55
self-dual, 45
't Hooft instanton, 51



