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Foreword

Risk Theory has been identified and recognized as an important part of actuarial
education; this is for example documented by the Syllabus of the Society of
Actuaries and by the recommendations of the Groupe Consultatif. Hence it is
desirable to have a diversity of textbooks in this area.

I welcome the arrival of this new text in risk theory, which is original in several
respects. In the language of figure skating or gymnastics, the text has two parts, the
compulsory part and the free-style part. The compulsory part includes Chapters
1–4, which are compatible with official material of the Society of Actuaries.
This feature makes the text also useful to students who prepare themselves for
the actuarial exams. Other chapters are more of a free-style nature, for example
Chapter 10 (Ordering of Risks, a speciality of the authors). And I would like to
mention Chapter 8 in particular: to my knowledge, this is the first text in risk theory
with an introduction to Generalized Linear Models.

Special pedagogical efforts have been made throughout the book. The clear
language and the numerous exercises are an example for this. Thus the book can
be highly recommended as a textbook.

I congratulate the authors to their text, and I would like to thank them also in the
name of students and teachers that they undertook the effort to translate their text
into English. I am sure that the text will be successfully used in many classrooms.

H.U. Gerber Lausanne, October 3, 2001
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Preface

This book gives a comprehensive survey of non-life insurance mathematics. It was
originally written for use with the actuarial science programs at the Universities
of Amsterdam and Leuven, but its Dutch version has been used at several other
universities, as well as by the Dutch Actuarial Society. It provides a link to the
further theoretical study of actuarial science. The methods presented can not only
be used in non-life insurance, but are also effective in other branches of actuarial
science, as well as, of course, in actuarial practice.

Apart from the standard theory, this text contains methods that are directly rele-
vant for actuarial practice, for instance the rating of automobile insurance policies,
premium principles and IBNR models. Also, the important actuarial statistical
tool of the Generalized Linear Models is presented. These models provide extra
features beyond ordinary linear models and regression which are the statistical
tools of choice for econometricians. Furthermore, a short introduction is given to
credibility theory. Another topic which always has enjoyed the attention of risk
theoreticians is the study of ordering of risks.

The book reflects the state of the art in actuarial risk theory. Quite a lot of the
results presented were published in the actuarial literature only in the last decade
of the previous century.

Models and paradigms studied
An essential element of the models of life insurance is the time aspect. Between
paying premiums and collecting the resulting pension, some decennia generally
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viii PREFACE

elapse. This time-element is less prominently present in non-life insurance math-
ematics. Here, however, the statistical models are generally more involved. The
topics in the first five chapters of this textbook are basic for non-life actuarial
science. The remaining chapters contain short introductions to some other topics
traditionally regarded as non-life actuarial science.

1. The expected utility model
The very existence of insurers can be explained by way of the expected utility
model. In this model, an insured is a risk averse and rational decision maker, who
by virtue of Jensen’s inequality is ready to pay more than the expected value of
his claims just to be in a secure financial position. The mechanism through which
decisions are taken under uncertainty is not by direct comparison of the expected
payoffs of decisions, but rather of the expected utilities associated with these pay-
offs.

2. The individual risk model
In the individual risk model, as well as in the collective risk model that follows
below, the total claims on a portfolio of insurance contracts is the random variable
of interest. We want to compute, for instance, the probability that a certain capital
will be sufficient to pay these claims, or the value-at-risk at level 95% associated
with the portfolio, being the 95% quantile of its cumulative distribution function
(cdf). The total claims is modelled as the sum of all claims on the policies, which
are assumed independent. Such claims cannot always be modelled as purely dis-
crete random variables, nor as purely continuous ones, and we provide a notation
that encompasses both these as special cases. The individual model, though the
most realistic possible, is not always very convenient, because the available data
is used integrally and not in any way condensed. We study other techniques than
convolution to obtain results in this model. Using transforms like the moment
generating function helps in some special cases. Also, we present approximations
based on fitting moments of the distribution. The Central Limit Theorem, which
involves fitting two moments, is not sufficiently accurate in the important right-
hand tail of the distribution. Hence, we also look at two more refined methods
using three moments: the translated gamma approximation and the normal power
approximation.

3. Collective risk models
A model that is often used to approximate the individual model is the collective risk
model. In this model, an insurance portfolio is viewed as a process that produces
claims over time. The sizes of these claims are taken to be independent, identically
distributed random variables, independent also of the number of claims generated.
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This makes the total claims the sum of a random number of iid individual claim
amounts. Usually one assumes additionally that the number of claims is a Poisson
variate with the right mean. For the cdf of the individual claims, one takes an
average of the cdf’s of the individual policies. This leads to a close fitting and
computationally tractable model. Several techniques, including Panjer’s recursion
formula, to compute the cdf of the total claims modelled this way are presented.

4. The ruin model
In the ruin model the stability of an insurer is studied. Starting from capital at
time his capital is assumed to increase linearly in time by fixed annual
premiums, but it decreases with a jump whenever a claim occurs. Ruin occurs
when the capital is negative at some point in time. The probability that this ever
happens, under the assumption that the annual premium as well as the claim gen-
erating process remain unchanged, is a good indication of whether the insurer’s
assets are matched to his liabilities sufficiently well. If not, one may take out more
reinsurance, raise the premiums or increase the initial capital.

Analytical methods to compute ruin probabilities exist only for claims distribu-
tions that are mixtures and combinations of exponential distributions. Algorithms
exist for discrete distributions with not too many mass points. Also, tight upper and
lower bounds can be derived. Instead of looking at the ruin probability, often one
just considers an upper bound for it with a simple exponential structure (Lundberg).

5. Premium principles
Assuming that the cdf of a risk is known, or at least some characteristics of it like
mean and variance, a premium principle assigns to the risk a real number used as
a financial compensation for the one who takes over this risk. Note that we study
only risk premiums, disregarding surcharges for costs incurred by the insurance
company. By the law of large numbers, to avoid eventual ruin the total premium
should be at least equal to the expected total claims, but additionally, there has to
be a loading in the premium to compensate the insurer for being in a less safe posi-
tion. From this loading, the insurer has to build a reservoir to draw upon in adverse
times, so as to avoid getting in ruin. We present a number of premium principles,
together with the most important properties that can be attributed to premium
principles. The choice of a premium principle depends heavily on the importance
attached to such properties. There is no premium principle which is uniformly best.

6. Bonus-malus systems
With some types of insurance, notably car insurance, charging a premium based
exclusively on factors known a priori is insufficient. To incorporate the effect of
risk factors of which the use as rating factors is inappropriate, such as race or quite
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often sex of the policy holder, and also of non-observable factors, such as state of
health, reflexes and accident proneness, many countries apply an experience rating
system. Such systems on the one hand use premiums based on a priori factors such
as type of coverage and catalogue price or weight of a car, on the other hand they
adjust these premiums by use of some kind of bonus-malus system, where one gets
more discount after a claim-free year, but pays a higher premium after filing one
or more claims. In this way, premiums are charged that reflect the exact driving
capabilities of the driver better. The situation can be modelled as a Markov chain.

7. Credibility theory
The claims experience on a policy may vary by two different causes. The first
is the quality of the risk, expressed through a risk parameter. This represents the
average annual claims in the hypothetical situation that the policy is monitored
without change over a very long period of time. The other is the purely random
good and bad luck of the policyholder that results in yearly deviations from the
risk parameter. Credibility theory assumes that the risk quality is a drawing from
a certain structure distribution, and that conditionally given the risk quality, the
actual claims experience is a sample from a distribution having the risk quality as
its mean value. The predictor for next year’s experience that is linear in the claims
experience and optimal in the sense of least squares turns out to be a weighted
average of the claims experience of the individual contract and the experience for
the whole portfolio. The weight factor is the credibility attached to the individual
experience, hence it is called the credibility factor, and the resulting premiums are
called credibility premiums. As a special case, we study a bonus-malus system for
car insurance based on a gamma-Poisson mixture model.

8. Generalized linear models
Many problems in actuarial statistics can be written as Generalized Linear Mod-
els (GLM). Instead of assuming the error term to be normally distributed, other
types of randomness are allowed as well, such as Poisson, gamma and binomial.
Moreover, the expected value of the dependent variable is not necessarily linear
in the regressors, but it may also be equal to a function of a linear form of the
covariates, for instance the logarithm. In this last case, one gets the multiplicative
models which are appropriate in most insurance situations.

This way, one can for instance tackle the problem of estimating the reserve to
be kept for IBNR claims, see below. But one can also easily estimate the premiums
to be charged for drivers from region in bonus class with car weight

In credibility models, there are random group effects, but in GLM’s the effects
are fixed, though unknown. For the latter class of problems, software is available
that can handle a multitude of models.
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9. IBNR techniques
An important statistical problem for the practicing actuary is the forecasting of the
total of the claims that are Incurred, But Not Reported, hence the acronym IBNR,
or not fully settled. Most techniques to determine estimates for this total are based
on so-called run-off triangles, in which claim totals are grouped by year of origin
and development year. Many traditional actuarial reserving methods turn out to be
maximum likelihood estimations in special cases of GLM’s.

10. Ordering of risks
It is the very essence of the actuary’s profession to be able to express preferences
between random future gains or losses. Therefore, stochastic ordering is a vital
part of his education and of his toolbox. Sometimes it happens that for two losses
X and Y, it is known that every sensible decision maker prefers losing X, because
Y is in a sense ‘larger’ than X. It may also happen that only the smaller group of
all risk averse decision makers agree about which risk to prefer. In this case, risk
Y may be larger than X, or merely more ‘spread’, which also makes a risk less at-
tractive. When we interpret ‘more spread’ as having thicker tails of the cumulative
distribution function, we get a method of ordering risks that has many appealing
properties. For instance, the preferred loss also outdoes the other one as regards
zero utility premiums, ruin probabilities, and stop-loss premiums for compound
distributions with these risks as individual terms. It can be shown that the collec-
tive model of Chapter 3 is more spread than the individual model it approximates,
hence using the collective model, as a rule, leads to more conservative decisions
regarding premiums to be asked, reserves to be held, and values-at-risk. Also, we
can prove that the stop-loss insurance, proven optimal as regards the variance of
the retained risk in Chapter 1, is also preferable, other things being equal, in the
eyes of all risk averse decision makers.

Sometimes, stop-loss premiums have to be set under incomplete information.
We give a method to compute the maximal possible stop-loss premium assuming
that the mean, the variance and an upper bound for a risk are known.

In the individual and the collective model, as well as in ruin models, we assume
that the claim sizes are stochastically independent non-negative random variables.
Sometimes this assumption is not fulfilled, for instance there is an obvious depen-
dence between the mortality risks of a married couple, between the earthquake
risks of neighboring houses, and between consecutive payments resulting from a
life insurance policy, not only if the payments stop or start in case of death, but
also in case of a random force of interest. We give a short introduction to the risk
ordering that applies for this case. It turns out that stop-loss premiums for a sum
of random variables with an unknown joint distribution but fixed marginals are
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maximal if these variables are as dependent as the marginal distributions allow,
making it impossible that the outcome of one is ‘hedged’ by another.

Educational aspects
As this text has been in use for more than a decade at the University of Amsterdam
and elsewhere, we could draw upon a long series of exams, resulting in long lists
of exercises. Also, many examples are given, making this book well-suited as a
textbook. Some less elementary exercises have been marked by and these
might be skipped.

The required mathematical background is on a level such as acquired in the first
stage of a bachelors program in quantitative economics (econometrics or actuarial
science), or mathematical statistics, making it possible to use the book either in
the final year of such a bachelors program, or in a subsequent masters program in
either actuarial science proper or in quantitative financial economics with a strong
insurance component. To make the book accessible to non-actuaries, notation
and jargon from life insurance mathematics is avoided. Therefore also students
in applied mathematics or statistics with an interest in the stochastic aspects of
insurance will be able to study from this book. To give an idea of the mathematical
rigor and statistical sophistication at which we aimed, let us remark that moment
generating functions are used routinely, while characteristic functions and measure
theory are avoided. Prior experience with regression models is not required, but
helpful.

As a service to the student help is offered, in a separate section at the end of
the book, with most of the exercises. It takes the form of either a final answer to
check one’s work, or a useful hint. There is an extensive index, and the tables that
might be needed on an exam are printed in the back. The list of references is not
a thorough justification with bibliographical data on every result used, but more a
list of useful books and papers containing more details on the topics studied, and
suggesting further reading.

Ample attention is given to computing techniques, but there is also attention
for old fashioned approximation methods like the Central Limit Theorem (CLT).
These methods are not only fast, but also often prove to be surprisingly accurate,
and moreover they provide solutions of a parametric nature such that one does not
have to recalculate everything after a minor change in the data. Also, we want to
stress that ‘exact’ methods are as exact as their input. The order of magnitude of
errors resulting from inaccurate input is often much greater than the one caused
by using an approximate method.

The notation used in this book conforms to what is usual in mathematical
statistics as well as non-life insurance mathematics. See for instance the book by
Bowers et al. (1986), the non-life part of which is similar in design to the first part
of this book.
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About this translation
This book is a translation of the Dutch book that has been in use on several uni-
versities in The Netherlands and Belgium for more than ten years. Apart from a
few corrections and the addition of a section on convex order and comonotonic
risks which have gotten in vogue only in the short period since the second edition
of the Dutch version appeared, it has remained largely the same, except that the
Dutch and Belgian bonus-malus systems of Chapter 6 were replaced by a generic
bonus-malus system.
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1
Utility theory and insurance

1.1 INTRODUCTION

The insurance industry exists because people are willing to pay a price for being
insured which is higher than their expected claims. As a result, an insurer collects
a premium that is larger than the expected claim size. In this chapter, we sketch
an economic theory that explains why insureds are willing to pay a premium that
is larger than the net premium, i.e., the mathematical expectation of the insured
loss. The theory that explains this phenomenon postulates that a decision maker,
generally without being aware of it, attaches a value to his wealth instead of
just where is called his utility function. If the decision maker has to choose
between random losses X and Y, then he compares with
and chooses the loss with the highest expected utility. With this model, the insured
with wealth is able to determine the maximum premium he is prepared
to pay for a random loss X. This is done by solving the equilibrium equation

At the equilibrium, he doesn’t care, in terms of utility,
whether he is insured or not. The model applies to the other party involved as well.
The insurer, with his own utility function and perhaps supplementary expenses,
will determine a minimum premium If the insured’s maximum premium

1



2 UTILITY THEORY AND INSURANCE

is larger than the insurer’s minimum premium both parties involved increase
their utility if the premium is between and

Although it is impossible to determine a person’s utility function exactly, we can
give some plausible properties of it. For instance, more wealth generally implies a
larger utility level, so should be a non-decreasing function. It is also logical
that ‘reasonable’ decision makers are risk averse, which means that they prefer
a fixed loss over a random loss that has the same expected value. We will define
some classes of utility functions which possess these properties and study their
advantages and disadvantages.

Suppose that an insured can choose between an insurance policy with a fixed
deductible and another policy with the same expected payment by the insurer
and with the same premium. It can be shown that it is better for the insured to
choose the former policy. If a reinsurer is insuring the total claim amount of an
insurer’s portfolio of risks, then the insurance with a fixed maximal own risk is
called a stop-loss reinsurance. From the theory of ordering of risks, we will see
that this type of reinsurance is optimal for risk averse decision makers. In this
chapter, we will prove that a stop-loss reinsurance results in the smallest variance
of the retained risk. We will also discuss a situation where the insurer prefers a
proportional reinsurance, with a reinsurance payment proportional to the claim
amount.

1.2 THE EXPECTED UTILITY MODEL

Imagine that an individual runs the risk of losing an amount B with probability
0.01. He can insure himself against this loss, and is willing to pay a premium P
for this insurance policy. How are B and P related? If B is very small, then P will
be hardly larger than 0.01 B. However, if B is somewhat larger, say 500, then P
will be a little larger than 5. If B is very large, P will be a lot larger than 0.01B,
since this loss could result in bankruptcy. So clearly, the premium for a risk is not
homogeneous, i.e., not proportional to the risk.

Example 1.2.1 (St. Petersburg paradox)
For a price P, one may enter the following game. A fair coin is tossed until a head
appears. If this takes trials, the gain is an amount Therefore, the expected
gain from the game equals Still, unless P is small, it turns
out that very few are willing to enter the game, which means no one merely looks
at expected profits.
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In economics, the model developed by Von Neumann & Morgenstern (1947)
describes how decision makers choose between uncertain prospects. If a decision
maker is able to choose consistently between potential random losses X, then
there exists a utility function to appraise the wealth such that the decisions
he makes are exactly the same as those resulting from comparing the losses X
based on the expectation In this way, a complex decision is reduced
to the comparison of real numbers.

For the comparison of X with Y, the utility function and its linear transform
for some are equivalent, since they result in the same decision:

if and only if

So from each class of equivalent utility functions, we can select one, for instance
by requiring that and Assuming we could also use
the utility function with and

It is impossible to determine which utility functions are used ‘in practice’. Utility
theory merely states the existence of a utility function. We could try to reconstruct
a decision maker’s utility function from the decisions he takes, by confronting
him with a large number of questions like: "Which premium P are you willing to
pay to avoid a loss 1 that could occur with probability "? Then, with

and initial wealth 0, we find out for which value of P we have

In practice, we would soon experience the limitations of utility theory: the deci-
sion maker will grow increasingly irritated as the interrogation continues and his
decisions will become inconsistent, for instance because he asks a larger premium
for a smaller risk or a totally different premium for nearly the same risk. Mistakes
of this kind are inevitable, unless the decision maker is explicitly using a utility
function.

Example 1.2.2 (Risk loving versus risk averse)
Suppose that a person owns a capital and that he values his wealth by the utility
function He is given the choice of losing the amount with probability or
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just paying a fixed amount He chooses the former if the latter if
and if he doesn’t care. Apparently the person likes a little gamble, but he’s
afraid of a larger one, like someone with a fire insurance policy who takes part in
a lottery. What can be said about the utility function

The value of is irrelevant in this case: we can choose by switching to
a utility function shifted over a distance Furthermore, we assume that

and The decision maker is indifferent between a loss 2 with
probability and a fixed loss 1 This implies that

For and we have apparently

and

Because of these inequalities, the function is neither convex, nor concave. Note
that we use the term convex function for what is currently known as a function
which is ‘concave up’, and concave for ‘concave down’.

Since and (1.4) and (1.5) yield

and

A smooth curve through these five points lies below the diagonal for
and and above the diagonal for

We assume that utility functions are non-decreasing, although the reverse is con-
ceivable, for instance in the event of capital levy. Hence, the marginal utility is
non-negative: An important class of decision makers are the risk averse
ones. They have a decreasing marginal utility, so Note that we will
not be very rigorous in distinguishing between the notions increasing and non-
decreasing. If needed, we will use the phrase ‘strictly increasing’. To explain why
such decision makers are called risk averse, we use the following fundamental
theorem (for a proof, see Exercises 1.2.1 and 1.2.2):

Theorem 1.2.3 (Jensen’s inequality)
If is a convex function and Y is a random variable, then
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with equality if and only if is linear on the support of Y or Var[Y] = 0.

From this inequality, it follows that for a concave utility function

So this particular decision maker is rightly called risk averse: he prefers to pay a
fixed amount E[X] instead of a risky amount X.

Now, suppose that a risk averse insured with capital uses the utility function
Assuming he is insured against a loss X for a premium P, his expected utility

will increase if

Since is a non-decreasing continuous function, this is equivalent to
where denotes the maximum premium to be paid. It is the solution to the
following utility equilibrium equation

The insurer, with utility function and capital W, will insure the loss X for a
premium P if hence where denotes
the minimum premium to be asked. This premium follows from solving the utility
equilibrium equation reflecting the insurer’s position:

A deal improving the expected utility for both sides will be possible if
From a theoretical point of view, insurers are often considered to be virtually

risk neutral. So for any risk X, disregarding additional costs, a premium E[X] is
sufficient. Therefore,

for any risk X.

In Exercise 1.2.3 it is proven that this entails that the utility function must
be linear.

Example 1.2.4 (Risk aversion coefficient)
Given the utility function how can we approximate the maximum premium

for a risk X?
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Let and denote the mean and variance of X. Using the first terms in the
series expansion of in we obtain

Taking expectations on both sides of the latter approximation yields

Substituting (1.10) into (1.14), it follows from (1.13) that

Therefore, the maximum premium for a risk X is approximately

This suggests the following definition: the (absolute) risk aversion coefficient
of the utility function at a wealth is given by

Then the maximum premium to be paid for a risk X is approximately

Note that does not change when is replaced by From (1.18),
we see that the risk aversion coefficient indeed reflects the degree of risk aversion:
the more risk averse one is, the larger the premium one is prepared to pay.
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1.3 CLASSES OF UTILITY FUNCTIONS

Besides the linear functions, other families of suitable utility functions exist which
have interesting properties:

linear utility:

quadratic utility:

logarithmic utility:

exponential utility:

power utility:

These utility functions, and of course their linear transforms as well, have a non-
negative and non-decreasing marginal utility; for the quadratic utility function, we
set if The risk aversion coefficient for the linear utility function
is 0, while for the exponential utility function, it equals For the other utility
functions, it can be written as for some and see Exercise 1.3.1.

Example 1.3.1 (Exponential premium)
Suppose that an insurer has an exponential utility function with parameter What
is the minimum premium to be asked for a risk X?

Solving the equilibrium equation (1.11) with yields

where is the moment generating function of X at argument
We observe that this exponential premium is independent of the insurer’s current
wealth W, in line with the risk aversion coefficient being a constant.

The expression for the maximum premium is the same as (1.20), see
Exercise 1.3.3, but now of course represents the risk aversion of the insured.
Assume that the loss X is exponentially distributed with parameter Taking

yields If the insured’s utility function is exponential
with parameter then

so the insured is willing to accept a sizable loading on the net premium E[X].
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The approximation (1.18) from Example 1.2.4 yields

Obviously, the approximation (1.22) is decreasing with but also the premium
(1.20) is decreasing if X is a non-negative random variable with finite variance,
as we will prove next. Let

with Then, is a strictly concave function. From Jensen’s inequality,
it follows that

for any random variable Y with Var[Y] > 0. Choosing yields
and

Therefore,

which implies that, for any

Just as for the approximation (1.18), the limit of (1.20) as is the net
premium. This follows immediately from the series expansion of see
also Exercise 1.3.4.

Example 1.3.2 (Quadratic utility)
Suppose that for the insured’s utility function is What
is the maximum premium as a function of for an insurance
policy against a loss 1 with probability What happens to this premium if
increases?
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Again, we solve the equilibrium equation (1.10). The expected utility after a
loss X equals

and the utility after paying a premium P equals

By the equilibrium equation (1.10), the right hand sides of (1.28) and (1.29) should
be equal, and after some calculations we find the maximum premium as

One may verify that see also Exercise 1.3.2. We observe that a
decision maker with quadratic utility is willing to pay larger premiums as his
wealth increases towards the saturation point 5. Because of this property, the
quadratic utility is considered to be less appropriate to model the behavior of risk
averse decision makers. The quadratic utility function still has its uses, of course,
since knowing only the expected value and the variance of the risk suffices to do
the calculations.

Example 1.3.3 (Uninsurable risk)
A decision maker with an exponential utility function with risk aversion
wants to insure a gamma distributed risk. Determine and prove that

When is and what does that mean?
From formula (1.20), it follows that

for
for

Since for all we have also
and consequently So, the resulting premium is larger than the
net premium. If then which means that the decision maker is
willing to pay any finite premium. An insurer with risk aversion insuring
the risk will suffer a loss, in terms of utility, for any finite premium P, since also

For such insurers, the risk is uninsurable.
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Remark 1.3.4 (Allais paradox (1953), Yaari’s dual theory (1987))
Consider the following possible capital gains:

with probability 1

with probability 0.10
with probability 0.89
with probability 0.01

with probability 0.11
with probability 0.89

with probability 0.10
with probability 0.90

Experimental economy has revealed that, having a choice between X and Y,
many people choose X, but at the same time they prefer W over V. This result
violates the expected utility hypothesis, since, assuming an initial wealth of 0,
the latter preference is equivalent to

but the former leads to exactly the opposite inequal-
ity. Apparently, expected utility does not always describe the behavior of decision
makers adequately. Judging from this example, it would seem that the attraction
of being in a completely safe situation is stronger than expected utility indicates,
and induces people to make irrational decisions.

Yaari (1987) has proposed an alternative theory of decision making under risk
that has a very similar axiomatic foundation. Instead of using a utility function,
Yaari’s dual theory computes ‘certainty equivalents’ not as expected values of
transformed wealth levels (utilities), but with distorted probabilities of large gains
and losses. It turns out that this theory leads to paradoxes that are very similar to
the ones vexing utility theory.

1.4 OPTIMALITY OF STOP-LOSS REINSURANCE

Reinsurance treaties usually cover only part of the risk. Stop-loss (re)insurance
covers the top part. It is defined as follows: if the loss is X (we assume ),
the payment equals

if
if
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The insurer retains a risk (his retention) and lets the reinsurer pay for the
remainder. In the reinsurance practice, the retention equals the maximum amount
to be paid out for every single claim and is called the priority. Why this type of
coverage is called ‘stop-loss’ is obvious: from the insurer’s point of view, the loss
stops at We will prove that, regarding the variance of the insurer’s retained loss,
a stop-loss reinsurance is optimal. The other side of the coin is that reinsurers don’t
offer stop-loss insurance under the same conditions as other types of reinsurance.

By a stop-loss premium, we mean the net premium for a stop-loss
contract. We write

In the discrete case, where is a step function with a step in as
well as in the continuous case, where has as its derivative, it can be
shown that the stop-loss premium is given by

A graphical ‘proof’ for the discrete case is given in Figure 1.1. The right hand side
of the equation (1.34), i.e., the total shaded area enclosed by the graph of
the horizontal line at 1 and the vertical line at is divided into small bars with
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a height and a width We see that the total area equals the left hand
side of (1.34).

The continuous case can be proven in the same way by taking limits, considering
bars with an infinitesimal height. To prove it by partial integration, write

The only choice for an antiderivative of that might produce
finite terms on the right hand side is That the integrated term vanishes
for is proven as follows: since the integral is
convergent, and hence the ‘tails’ tend to zero, so

for

From (1.34), it follows that:

Since each cdf is continuous from the right. Accord-
ingly, the derivative in (1.37) is a right hand derivative. From (1.37), we see that

is a continuous function which is strictly decreasing as long as
Indeed, it is evident that a stop-loss premium decreases when the retention in-
creases. If X is non-negative, then while always
These properties are illustrated in Figure 1.2.

In the next theorem, we prove that a stop-loss insurance minimizes the variance
of the retained risk.

Theorem 1.4.1 (Optimality of stop-loss reinsurance)
Let I(X) be the payment on some reinsurance contract if the loss is X, with

Assume that holds for all Then,

Proof. Note that because of the above remarks, for every we can find a
retention such that the expectations are equal. We write the retained risks as
follows:

and
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Since E[V(X)] = E[W(X)] , it suffices to prove that

A sufficient condition for this to hold is that with
probability one. This is trivial in the event since then holds.
For we have and hence

This completes the proof.

As stated before, this theorem can be extended: using the theory of ordering of
risks, one can prove that stop-loss insurance not only minimizes the variance of
the retained risk, but also maximizes the insured’s expected utility, see Chapter
10.

In the above theorem, it is crucial that the premium for a stop-loss coverage
is the same as the premium for another type of coverage with the same expected
payment. Since the variance of the reinsurer’s capital will be larger for a stop-loss
coverage than for another coverage, the reinsurer, who is without exception at
least slightly risk averse, in practice will charge a higher premium for a stop-loss
insurance.

Example 1.4.2 ( Optimality of proportional reinsurance)
To illustrate the importance of the requirement that the premium does not depend
on the type of reinsurance, we consider a related problem: suppose that the insurer
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collects a premium and that he is looking for the most profitable
reinsurance I(X) with and given variance

The insurer wants to maximize his expected profit, under the assumption that the
instability of his own financial situation is fixed in advance. We consider two
methods for the reinsurer to calculate his premium for I ( X ) . In the first scenario
(A), the reinsurer collects a premium just like the insurer’s (original terms). So,
the premium equals In the second scenario (B), the reinsurer
determines the premium according to the variance principle, which means that
he asks a premium which equals the expected value plus a loading equal to a
constant, say times the variance of I ( X ) . Then, the insurer can determine his
expected profit, which equals the collected premium minus the expected value of
the retained risk minus the reinsurance premium, as follows:

As one sees, in both scenarios the expected profit equals the original expected
profit reduced by the expected profit of the reinsurer. Clearly, we have to
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minimize the expected profit of the reinsurer, hence the following minimization
problems arise:

and

Problem B is the easier one to solve. We can write

Since the first two terms on the right hand side are fixed, the left hand side is
minimal if the covariance term is maximized. Because the variances are given, this
can be accomplished by taking X and X – I(X) linearly dependent, choosing

From we find       and from (1.42),
it follows that So, if the variance of the retained risk is
given and the reinsurer uses the variance principle, then proportional reinsurance

with is optimal.
For the solution of problem A, we use Theorem 1.4.1. By calculating the

derivatives with respect to see Exercise 1.4.3, we can prove that
as well as are continuously increasing in

Notice that and
In Figure 1.3, we plot the points for for some loss

random variable X. Because of Theorem 1.4.1, other reinsurance contracts
can only have an expected value and a variance of the retained risk above the
curve in the since the variance is at least as large as for the stop-loss
reinsurance with the same expected value. This also implies that such a point can
only be located to the left of the curve. From this we conclude that, just as in
Theorem 1.4.1, the non-proportional stop-loss solution is optimal for problem A.
The stop-loss contracts in this case are Pareto-optimal: there are no other solutions
with both a smaller variance and a higher expected profit.

1.5 EXERCISES

Section 1.2

1. Prove Jensen’s inequality: if is convex, then Use the following
definition of convexity: a function is convex if, and only if, for every      a line

exists, such that and moreover for all [usually,
is a tangent line of Pay special attention to the case
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2.

3.

4.

Also prove the reverse of Jensen’s inequality: if for every random variable
X, then is convex.

Prove: if for every random variable X, then     is linear.

A decision maker has utility function He is given the choice between
two random amounts X and Y, in exchange for his entire present capital The probability
distributions of X and Y are given by

and

Show that he prefers X to Y. Determine for which values of he should decline the offer. Can
you think of utility functions with which he would prefer Y to X?

Prove that for risk averse insurers.

An insurer undertakes a risk X and after collecting the premium, he owns a capital
What is the maximum premium the insurer is willing to pay to a reinsurer to take over the
complete risk, if his utility function is and Pr[X = 0] = Pr[X = 36] = 0.5?
Determine not only the exact value, but also the approximation (1.18) of Example 1.2.4.

Assume that the reinsurer’s minimum premium to take over the risk of the previous exercise
equals 19 and that the reinsurer has the same utility function. Determine his capital W.

Describe the utility function of a person with the following risk behavior: after winning an
amount 1, he answers ‘yes’ to the question ‘double or quits?’; after winning again, he agrees
only after a long huddle; the third time he says ‘no’.

5.

6.

7.

8.

Section 1.3

1.

2.

3.

4.

5.

6.

7.

Prove that the utility functions in (1.19) have a non-negative and non-increasing marginal
utility. Show how the risk aversion coefficient of all these utility functions can be written as

Show that, for quadratic utility, the risk aversion increases with the capital. Check (1.28)-(l .30)
and verify that in (1.30).

Prove the formula (1.20) for for the case of exponential utility. Also show that (1.10) yields
the same solution for

Prove that the exponential premium in (1.20) decreases to the net premium if the risk
aversion tends to zero.

Show that the approximation in Example 1.2.4 is exact if and is exponential.

Using the exponential utility function with determine which premium is higher: the
one for X ~ N (400, 25 000) or the one for Y ~ N(420, 20 000). Determine for which values
of the former premium is higher.

Assume that the marginal utility of is proportional to i.e., for some
and all What is With this utility function, which prices P in the St.

Petersburg paradox of Example 1.2.1 make entering the game worthwhile?



EXERCISES 17

8.

9.

10.

11.

For the premium P an insurer with exponential utility function asks for a
distributed risk it is known that What can be said about his risk aversion If the
risk X has dimension ‘money’, then what is the dimension of

For a random variable X with mean and variance it is known that for
every possible the zero utility premium with exponential utility with risk aversion
contains a relative safety loading What distribution can X have?

Show that approximation (1.18) is exact in the case that and is exponential.

Which utility function results if in the class of power utility functions we let [Look at the
linear transformation

Section 1.4

1.

2.

3.

4.

5.

6.

Sketch the stop-loss transform corresponding to the following cdf:

for
for
for

Determine the distribution of S if

Prove that, for the optimization of problem A,

and

Verify that both are non-negative.

What happens if we replace ‘=’ by in (1.42), taking V to be an upper bound for the
variance of the retained risk in the scenarios A and B?

Define the coefficient of variation for a risk X with an expected value and a variance
as By comparing the variance of the retained risk resulting from
a stop-loss reinsurance with the one obtained from a suitable proportional reinsurance, show
that Also show that is decreasing in by using the following
equality: if then

Suppose for the random loss X ~ N(0, 1) an insurance of franchise type is in operation: the
amount paid in case the damage is equals when for some and zero
otherwise. Show that the net premium for this type of insurance is where is the
standard normal density. Compare this with the net stop-loss premium with a retention
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The individual risk model

2.1 INTRODUCTION

In this chapter we focus on the distribution function of the total claim amount S
for the portfolio of an insurer. We intend to determine not only the expected value
and the variance of the insurer’s random capital, but also the probability that the
amounts paid exceed a fixed threshold. A model for the total claim amount S is
also needed to be able to apply the theory of the previous chapter. To determine
the value-at-risk at, say, the 99.9% level, we need also good approximations for
the inverse of the cdf, especially in the far tail. In this chapter we deal with models
which still recognize the individual, usually different, policies. As is done often in
non-life insurance mathematics, the ‘time’ aspect will be ignored. This aspect is
nevertheless important in disability and long term care insurance. For this reason,
these types of insurance are sometimes counted as life insurances.

In the insurance practice, risks usually can’t be modelled by purely discrete
random variables, nor by purely continuous random variables. For instance, in
liability insurance a whole range of positive amounts can be paid out, each of them
with a very small probability. There are two exceptions: the probability of having
no claim, i.e., claim size 0, is quite large, and the probability of a claim size which
equals the maximum sum insured, i.e., a loss exceeding that threshold, is also

19
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not negligible. For the expected value of such mixed random variables, we use the
Riemann-Stieltjes integral, without going too deeply into its mathematical aspects.
A simple and flexible model that produces random variables of this type is a mixture
model. Depending on the outcome of one event (’no claim or maximum claim’
or ‘other claim’), a second drawing is done from either a discrete distribution,
producing zero or the maximal claim amount, or a continuous distribution. In the
sequel, we present some examples of mixed models for the claim amount per
policy.

Assuming that the risks in a portfolio are independent random variables, the
distribution of their sum can be calculated by making use of convolution. It turns
out that this technique is quite laborious, so there is a need for other methods. One
of the alternative methods is to make use of moment generating functions (mgf)
or of related transformations like characteristic functions, probability generating
functions (pgf) and cumulant generating functions (cgf). Sometimes it is possible
to recognize the mgf of a convolution and consequently identify the distribution
function.

A totally different approach is to approximate the distribution of S. If we
consider S as the sum of a ‘large’ number of random variables, we could, by virtue
of the Central Limit Theorem, approximate its distribution by a normal distribution
with the same mean and variance as S. We will show that this approximation
usually is not satisfactory for the insurance practice, where especially in the tails,
there is a need for more refined approximations which explicitly recognize the
substantial probability of large claims. More technically, the third central moment
of S is usually greater than 0, while for the normal distribution it equals 0. We
present an approximation based on a translated gamma random variable, as well
as the normal power (NP) approximation. The quality of these approximations is
comparable. The latter can be calculated directly by means of a N(0, 1) table, the
former can be calculated numerically using a computer or, if desired, it can be
approximated by the same N(0, 1) table.

Another way to approximate the individual risk model is to use the collective
risk models described in the next chapter.

2.2 MIXED DISTRIBUTIONS AND RISKS

In this section, we discuss some examples of insurance risks, i.e., the claims on an
insurance policy. First, we have to slightly extend our set of distribution functions,
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because purely discrete random variables and purely continuous random variables
both turn out to be inadequate for modelling the risks.

From the theory of probability, we know that everyfunction which satisfies

is non-decreasing

is right-continuous

is a cumulative distribution function (cdf). If is a step function, i.e., a function
with constant parts and a denumerable set of discontinuities (steps), then and
any random variable X with are called discrete. The associated
probability density function (pdf) represents the height of the step at so

For all we have and where the sum is taken over all
satisfying

Another special case is when is absolutely continuous. This means that if
then

In this case is called the probability density function, too. Again,
while now Note that, just as is customary in mathematical statistics,
this notation without integration limits represents the definite integral of over
the interval and not just an arbitrary antiderivative, i.e., any function
having as its derivative.

In statistics, almost without exception random variables are either discrete or
continuous, but this is definitely not the case in insurance. Many distribution func-
tions that are employed to model insurance payments have continuously increasing
parts, but also some positive steps. Let Z represent the payment on some contract.
Then, as a rule, there are three possibilities:

1.

2.

3.

The contract is claim-free, hence Z = 0.

The contract generates a claim which is larger than the maximum sum
insured, say M. Then, Z = M.

The contract generates a ‘normal’ claim, hence 0 < Z < M.
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Apparently, the cdf of Z has steps in 0 and in M. For the part in-between we could
use a discrete distribution, since the payment will be some entire multiple of the
monetary unit. This would produce a very large set of possible values, each of them
with a very small probability, so using a continuous cdf seems more convenient.
In this way, a cdf arises which is neither purely discrete, nor purely continuous. In
Figure 2.2 a diagram of a mixed continuous/discrete cdf is given, see also Exercise
1.4.1.

The following two-staged model allows us to construct a random variable with
a distribution that is a mixture of a discrete and a continuous distribution. Let
I be an indicator random variable, with values I = 1 or I = 0, where I = 1
indicates that some event has occurred. Suppose that the probability of the event
is If I = 1, the claim Z is drawn from the distribution
of X, if I = 0, then from Y. This means that

If I = 1 then Z can be replaced by X, if I = 0 it can be replaced by Y. Note that
we can consider X and Y to be stochastically independent of I, since given I = 0
the value of X is irrelevant, so we can take
just as well. Hence, the cdf of Z can be written as

Now, let X be a discrete random variable and Y a continuous random variable.
From (2.5) we get

and

This construction yields a cdf with steps where but it is not
a step function, since on the range of Y.

To calculate the moments of Z, the moment generating function and the
stop-loss premiums we have to calculate the expectations of functions
of Z. For that purpose, we use the iterative formula of conditional expectations:
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We apply this formula with for an appropriate function and replace
V by I. Then, introducing we get

By we mean the limit from the left; we have because
cdf’s are continuous from the right.

Remark 2.2.1 (Riemann-Stieltjes integrals)
Note that the result in (2.8), consisting of a sum and an ordinary Riemann integral,
can be written as a right hand Riemann-Stieltjes integral:

The differential replaces the probability of i.e.,
the height of the step at if there is one, or if there is no step at Here,

denotes a positive infinitesimal number. This a ‘number’ that can be regarded
as what is left of an just before it actually vanishes. Its main properties are
that it is positive, but smaller than any other positive number. Note that the cdf

is continuous from the right. In life insurance mathematics,
Riemann-Stieltjes integrals, also known as generalized Riemann integrals, give
rise to the problem of determining which value of the integrand should be used:
the limit from the right, the limit from the left, or the actual function value. We
avoid this problem by considering continuous integrands only.

Remark 2.2.2 (Mixed random variables and distributions)
We can summarize the above as follows: a mixed continuous/discrete cdf

arises when a mixture of random variables
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is used, where X is a discrete random variable, Y is a continuous random variable
and I is a Bernoulli random variable independent of X and Y. The cdf of Z is
again a mixture, in the sense of convex combinations, of the cdf’s of X and Y, see
(2.5):

For expectations of functions of Z we get the same mixture of expectations
of and see (2.8):

It is important to note that the convex combination does not
have (2.11) as its cdf, although (2.12) is valid for See also Exercises
2.2.8 and 2.2.9.

Example 2.2.3 (Insurance against bicycle theft)
We consider an insurance policy against bicycle theft which pays in case the
bicycle is stolen, upon which event the policy ends. Obviously, the number of
payments is 0 or 1 and the amount is known in advance, just like in most life
insurance policies. Assume that the probability of theft is and let denote
the claim payment, where I is a Bernoulli distributed indicator random variable.
Then I = 1 if the bicycle is stolen, I = 0 if not. In analogy to (2.4), we can rewrite
X as The distribution and the moments of X can be obtained
from those of I:

Now, suppose that only half the amount is paid out in case the bicycle was not
locked. In the Netherlands, many bicycle theft insurance policies incorporate a
distinction like this. Insurers check this by requiring that all the original keys have
to be handed over in the event of a claim. Then, X = IB, where B represents
the stochastic payment. Assuming that the probabilities of a claim X = 400 and
X = 200 are 0.05 and 0.15, we get

Hence, Pr[I = 1] = 0.2 and consequently Pr[I = 0] = 0.8. Also,
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This represents the conditional probability that the bicycle was locked given the
fact that it was stolen.

Example 2.2.4 (Exponential claim size, if there is a claim)
Suppose that risk X is distributed as follows:

for

where denotes a positive infinitesimal number. What is the expected value of
X, and what is the maximum premium for X that someone with an exponential
utility function with risk aversion is willing to pay?

The random variable X is not continuous, because the cdf of X has a step in 0.
It is also not a discrete random variable, since the cdf is not a step function, as the
derivative, which can be written as using infinitesimal
numbers, is positive for We can calculate the expectations of functions of
X by dealing with the steps in the cdf separately, see (2.9). This leads to

If the utility function of the insured is exponential with parameter then
(1.21) yields for the maximum premium

This same result can of course be obtained by writing X as in (2.10).

Example 2.2.5 (Liability insurance with a maximum coverage)
Consider an insurance policy against a liability loss S. We want to determine the
expected value, the variance and the distribution function of the payment X on
this policy, when there is a deductible of 100 and a maximum payment of 1000.
In other words, if then X = 0, if then X = 1000, otherwise
X = S – 100. The probability of a positive claim (S > 100) is 10% and the
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probability of a large loss is 2%. Given 100 < S < 1100, S has a
uniform(100, 1100) distribution. Again, we write X = IB where I denotes the
number of payments, 0 or 1, and B represents the amount paid, if any. Hence,

for

Integrating the latter probability over (0, 1000) yields 0.8, so
The conditional distribution function of B, given I = 1, is neither discrete, nor

continuous. In Figure 2.1 we attempt to depict a pdf by representing the probability
mass at 1000 by a bar with infinitesimal width and infinite height such that the area
equals 0.2. In actual fact we have plotted where on (0, 1000)
and on (1000, with very small and positive.

For the cdf F of X we have

which yields

for
for
for
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A graph of the cdf F is shown in Figure 2.2. For the differential (‘density’) of F,
we have

The moments of X can be calculated by using this differential.

The variance of risks of the form I B can be calculated through the conditional
distribution of B, given I, by use of the well-known variance decomposition rule,
cf. (2.7):

Note that the conditional distribution of B given I = 0 is irrelevant. For conve-
nience, let it be equal to the one of B, given I = 1, meaning that we take I and
B to be independent. Then, letting and
we have and E[X|I = 0] = 0. Therefore,

and analogously, Hence,

and
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from which it follows that

2.3 CONVOLUTION

In the individual risk model we are interested in the distribution of the total S of
the claims on a number of policies, with

where denotes the payment on policy The risks are
assumed to be independent random variables. If this assumption is violated for
some risks, for instance in case of fire insurance policies on different floors of the
same building, then these risks should be combined into one term in (2.25).

The operation ‘convolution’ calculates the distribution function of X + Y from
those of two independent random variables X and Y, as follows:

The cdf is called the convolution of the cdf’s and For
the density function we use the same notation. If X and Y are discrete random
variables, we find

and
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where the sum is taken over all with If X and Y are continuous
random variables, then

and, taking the derivative under the integral sign,

Note that convolution is not restricted to two cdf’s. For the cdf of X + Y + Z, it
does not matter in which order we do the convolutions, hence we have

For the sum of independent and identically distributed random variables with
marginal cdf F, the cdf is the convolution power of F, which we write as

Example 2.3.1 (Convolution of two uniform distributions)
Suppose that X ~ uniform(0,l) and Y ~ uniform(0,2) are independent. What is
the cdf of X + Y?

To facilitate notation, we introduce the concept ‘indicator function’. The indi-
cator function of a set A is defined as follows:

Indicator functions provide us with a concise notation for functions that are defined
differently on some intervals. For all the cdf of X can be written as

while for all which leads to the differential
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The convolution formula (2.26), applied to Y + X rather than X + Y, then yields

The interval of interest is Subdividing it into [0, 1), [1, 2) and [2, 3)
yields

Notice that X + Y is symmetric around Although this problem could be
solved in a more elegant way graphically by calculating the probabilities by means
of areas, see Exercise 2.3.5, the above derivation provides an excellent illustration
that convolution can be a laborious process, even in simple cases.

Example 2.3.2 (Convolution of discrete distributions)
Let for for and
for Let denote the convolution of and and let denote
the convolution of and To calculate we need to compute the
values as shown in Table 2.1. In the discrete case, too, convolution is clearly
a laborious exercise. Note that the more often we have the more
calculations need to be done.

Example 2.3.3 (Convolution of iid uniform distributions)
Let be independent and identically uniform(0, 1) distributed.
By using the convolution formula and induction, it can be shown that for all
the pdf of equals

where denotes the integer part of See also Exercise 2.3.4.
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Example 2.3.4 (Convolution of Poisson distributions)
Let X ~ Poisson and Y ~ Poisson be independent random variables. From
(2.27) we have, for

where the last equality is the binomial theorem. Hence, X + Y is Poisson
distributed. For a different proof, see Exercise 2.4.2.

2.4 TRANSFORMATIONS

Determining the distribution of the sum of independent random variables can
often be made easier by using transformations of the cdf. The moment generating
function (mgf) suits our purposes best. For a non-negative random variable X, it
is defined as

for some Since the mgf is going to be used especially in an interval around 0,
we require If X and Y are independent, then
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So, the convolution of cdf’s corresponds to simply multiplying the mgf’s. Note
that the mgf-transformation is one-to-one, so every cdf has exactly one mgf, and
continuous, so the mgf of the limit of a series of cdf’s is the limit of the mgf’s. See
Exercises 2.4.12 and 2.4.13.

For random variables with a heavy tail, such as the Cauchy distribution, the mgf
does not exist. The characteristic function, however, always exists. It is defined as
follows:

A possible disadvantage of the characteristic function is the need to work with
complex numbers, although experience tells us that applying the same function
formula derived for real to imaginary as well produces the correct results most
of the time, resulting for instance in as the characteristic function of
the N(0, 2) distribution which has mgf

As their name indicates, moment generating functions can be used to generate
moments of random variables. The usual series expansion of yields

so the moment of X equals

A similar technique can be used for the characteristic function.
The probability generating function (pgf) is used exclusively for random vari-

ables with natural numbers as values:

So, the probabilities in (2.44) serve as coefficients in the series expan-
sion of the pgf. The series (2.44) always converges if

The cumulant generating function (cgf) is convenient for calculating the third
central moment; it is defined as:
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Differentiating (2.45) three times and setting one sees that the coefficients of
for are E[X], Var[X] and The quantities generated

this way are the cumulants of X, and they are denoted by An
alternative derivation goes as follows: let denote and let denote
‘terms of order to the power or higher’. Then,

which, using yields

The skewness of a random variable X is defined as the following dimension-free
quantity:

with and If large values of are likely to
occur, hence the (right) tail of the cdf is heavy. A negative skewness indi-
cates a heavy left tail. If X is symmetrical then but having zero skewness
is not sufficient for symmetry. For some counterexamples, see the exercises.

The cumulant generating function, the probability generating function, the char-
acteristic function and the moment generating function are related to each other
through the formal relationships



34 THE INDIVIDUAL RISK MODEL

2.5 APPROXIMATIONS

A well-known method to approximate a cdf using the standard normal cdf is the
Central Limit Theorem (CLT). Its simplest form is

Theorem 2.5.1 (Central Limit Theorem)
If are independent and identically distributed random variables
with mean and variance then

Proof. We restrict ourselves to proving the convergence of the cgf. Let
then for

which converges to the cgf of the N(0,1) distribution, with mgf exp

As a result, we can approximate the cdf of by

This approximation can safely be used if is ‘large’. It is difficult to define ‘large’
formally, as is shown in the following classical examples.

Example 2.5.2 (Generating normal random deviates)
A fast and easy way of generating N(0,1) distributed numbers, without the time-
consuming calculation of logarithms or the inversion of the normal cdf, is to add
up twelve uniform(0,1) numbers and to subtract 6 from this sum. This technique
is based on the CLT with Comparing this cdf with the normal cdf, for
instance by using (2.37), yields a maximum difference of 0.002. Hence, the CLT
performs quite well in this case. See also Exercise 2.4.5.
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Example 2.5.3 (Illustrating the various approximations)
Suppose that a thousand young men take out a life insurance policy for a period
of 1 year. The probability of dying within this year is 0.001 for every man and the
payment for every death is 1. We want to calculate the probability that the total
payment is at least 4. This total payment is binomial(1000, 0.001) distributed and
since is quite large and is quite small, we will approximate
this probability by a Poisson distribution. Calculating the probability at
instead of at 4, applying a continuity correction needed later on, we find

Note that the exact binomial probability is 0.01893. Although is much larger than
in the previous example, the CLT gives a poor approximation: with
and we find

The CLT approximation is so bad because of the extreme skewness of the terms
and the resulting skewness of S, which is In the previous example, we

started from symmetrical terms, leading to a higher order of convergence, as can
be seen from derivation (2.51).

As an alternative for the CLT, we give two more refined approximations: the
translated gamma approximation and the normal power approximation (NP). In
numerical examples, these approximations turn out to be much more accurate than
the CLT approximation, while their respective inaccuracies are comparable, and
are minor compared with the errors that result from the lack of precision in the
estimates of the first three moments that are involved.

Translated gamma approximation
Most total claim distributions have roughly the same shape as the gamma distribu-
tion: skewed to the right a non-negative range and unimodal. Besides the
usual parameters and we add a third degree of freedom by allowing a shift
over a distance Hence, we approximate the cdf of S by the cdf of where
Z ~ gamma We choose and in such a way that the approximating
random variable has the same first three moments as S.
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The translated gamma approximation can then be formulated as follows:

where

Here is the gamma cdf. To ensure that and are chosen such
that the first three moments agree, hence and they
must satisfy

and

For this approximation to work, the skewness has to be strictly positive. In the
limit  the normal approximation appears. Note that if the first three moments
of the cdf are the same as those of by partial integration it can be shown
that the same holds for This leaves little room
for these cdf’s to be very different from each other.

Example 2.5.4 (Illustrating the various approximations, continued)
If S ~ Poisson(l), we have and (2.56) yields and

Hence, This value
is much closer to the exact value than the CLT approximation.

The translated gamma approximation leads to quite simple formulas to approxi-
mate the moments of a stop-loss claim or of the retained loss
A potential disadvantage may be the need of a numerical algorithm to evaluate
the gamma cdf, but in most spreadsheet programs the gamma distribution is in-
cluded, although the accuracy often leaves much to be desired. Note that in many
applications, notably MS Excel, the parameter should be replaced by

In the unlikely event that only tables are available, the evaluation problem can
also be solved by using a and the fact that, if Y ~ gamma then

It generally will be necessary to interpolate in the to obtain
the desired values. Another way of dealing with the evaluation problem is to use the
relation that exists between the gamma distribution, with integer-valued,
and the Poisson distribution, see the exercises.
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Example 2.5.5 (Translated gamma approximation)
A total claim amount S has expected value 10000, standard deviation 1000 and
skewness 1. From (2.56) we have and Hence,

The exact value is 0.010, which agrees with the 99% critical value (= 20.1) of the
distribution. The regular CLT approximation is much smaller: 0.0013.
From the same table of critical values we find that

hence, the value-at-risk on a 95% level is found by reversing the computation
(2.57), resulting in 11875.

Remark 2.5.6 (Normal approximation to the translated gamma cdf)
For large values of we could approximate the gamma distribution by a nor-
mal distribution, using the CLT and the fact that, for integer a gamma ran-
dom variable is the convolution of exponential distributions. Of course, in this
context this would be pointless since this simply leads to the CLT-approximation
again, and we are looking for more accuracy. A better way is to use the following
approximation: if Y ~ gamma with thus then roughly

see also Exercise 2.5.14. For the translated gamma
approximation for S with parameters and this yields

The corresponding inverse, i.e., the quantile which is needed to approximate
values-at-risk, follows from

where is such that
When we substitute and as found in (2.56) into (2.59), we find
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The right hand side of the inequality is written as plus a correction to compensate
for the skewness of S. The inverse (2.58) leads to

If the skewness tends to zero, both correction terms in (2.60) vanish, while (2.61)
can be shown to tend to

NP approximation
The following approximation is very similar to (2.60). The correction term has
a simpler form, and it is slightly larger. It can be obtained by the use of certain
expansions for the cdf, but we will not reproduce that derivation here.

If and then, for

or, equivalently, for

The latter formula can be used to approximate the cdf of S, the former produces
approximate quantiles. If the correction term is negative, which
implies that the CLT gives more conservative results.

Example 2.5.7 (Illustrating the various approximations, continued)
If S ~ Poisson(l), then the NP approximation yields

Again, this is a better result than the CLT approximation.

Example 2.5.8 (Recalculating Example 2.5.5 by the NP approximation)
We apply (2.62) to determine the capital that covers S with probability 95%:

if

hence for the desired 95% quantile of S we find
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To determine the probability that capital 13000 will be insufficient to cover the
losses S, we apply (2.63) with and

Note that the translated gamma approximation gave 0.010, while the approxima-
tions (2.58) or (2.61) yield 0.007, against only 0.0013 for the CLT.

2.6 APPLICATION: OPTIMAL REINSURANCE

An insurer is looking for an optimal reinsurance for a portfolio consisting of 20000
one-year life insurance policies which are grouped as follows:

The probability of dying within one year is for each insured, and the
policies are independent. The insurer wants to optimize the probability of being
able to meet his financial obligations by choosing the best retention, which is
the maximum payment per policy. The remaining part of a claim is paid by the
reinsurer. For instance, if the retention is 1.6 and someone with insured amount
2 dies, then the insurer pays 1.6, the reinsurer pays 0.4. After collecting the
premiums, the insurer holds a capital B from which he has to pay the claims
and the reinsurance premium. This premium is assumed to be 120% of the net
premium.

First, we set the retention equal to 2. From the point of view of the insurer, the
policies are then distributed as follows:
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The expected value and the variance of the insurer’s total claim amount S are equal
to

By applying the CLT, we get for the probability that the costs, consisting of S plus
the reinsurance premium 1.2 × 0.01 × 5000 × 1 = 60, exceed the available capital
B:

We leave it to the reader to determine this same probability for retentions between
2 and 3, as well as to determine which retention for a given B leads to the largest
probability of survival. See the exercises with this section.

2.7 EXERCISES

Section 2.2

1.

2.

3.

4.

5.

Determine the expected value and the variance of X = IB if the claim probability equals 0.1.
First, assume that B equals 5 with probability 1. Then, let B ~ uniform(0,10).

Throw a true die and let X denote the outcome. Then, toss a coin X times. Let Y denote the
number of heads obtained. What are the expected value and the variance of Y?

In Example 2.2.4, plot the cdf of X. Also determine, with the help of the obtained differential,
the premium the insured is willing to pay for being insured against an inflated loss 1.1X. Do
the same by writing X = I B. Has the zero utility premium followed inflation exactly?

Calculate E[X], Var[X] and the moment generating function  in Example 2.2.5 with the
help of the differential. Also plot the ‘density’.

If X = I B, what is
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6.

7.

8.

9.

Consider the following cdf F:

Determine independent random variables I, X and Y such that Z = IX + (1 – I)Y has cdf
F, I ~ Bernoulli, X is a discrete and Y a continuous random variable.

Consider the following differential of cdf F:

for and
for
elsewhere

Find a discrete cdf G, a continuous cdf H and a real constant with the property that
for all

Suppose that and Z = IX + (1 – I)Y with I ~ Bernoulli Compare
to

In the previous exercise, assume additionally that X and Y are independent N(0,1). What
distributions do T and Z have?

Section 2.3

1.

2.

3.

4.

5.

Calculate                     for  when and ~  Poisson

Determine the number of multiplications of non-zero numbers that are needed for the calculation
of all probabilities in Example 2.3.2. How many multiplications are needed to
calculate if for

Prove by convolution that the sum of two independent normal distributions has a normal distri-
bution.

Verify the expression (2.37) in Example 2.3.3 for by using convolution. Deter-
mine for these values of Using induction, verify (2.37) for arbitrary

Assume that X ~ uniform(0, 3) and Y ~ uniform( –1, 1). Calculate graphically by
using the area of the sets and

Section 2.4

1.

2.

3.

4.

Determine the cdf of where the are independent and exponential distributed.
Do this both by convolution and by calculating the mgf and identifying the corresponding density
using the method of partial fractions.

Same as Example 2.3.4, but now by making use of the mgf’s.

What is the fourth cumulant in terms of the central moments?

Determine the cgf and the cumulants of the following distributions: Poisson, binomial, normal
and gamma.



42 THE INDIVIDUAL RISK MODEL

5.

6.

7.

8.

9.

Prove that the sum of twelve independent uniform(0, l) random variables has variance 1 and
expected value 6. Determine and

Determine the skewness of a Poisson distribution.

Determine the skewness of a gamma distribution.

If X is symmetrical, then Prove this, but also, for with ~
Bernoulli(0.4), ~ Bernoulli(0.7) and ~ Bernoulli all independent, calculate the value
of such that S has skewness and verify that S is not symmetrical.

Determine the skewness of a risk of the form where I ~ Bernoulli and is a fixed amount.
For which values of and is the skewness equal to zero, and for which of these values is I
actually symmetrical?

10.

11.

12.

13.

14.

15.

16.

17.

Determine the pgf of the binomial, the Poisson and the negative binomial distribution.

Prove that cumulants actually cumulate in the following sense: if X and Y are independent,
then the cumulant of X + Y equals the sum of the cumulants of X and Y.

Show that X and Y are equal in distribution if they have the same range and the
same pgf. If are risks, again with range such that the pgf’s of
converge to the pgf of Y for each argument when verify that also

for all

Show that X and Y are equal in distribution if they have the same range for
some and moreover, they have the same mgf.

Examine the equality from (2.49), for the special case that X ~ exponen-
tial(1). Show that the characteristic function is real-valued if X is symmetrical around 0.

Show that the skewness of Z = X + 2Y is 0 if X ~ binomial and Y ~ Bernoulli
For which values of is Z symmetrical?

For which values of is the skewness of equal to 0, if X ~ gamma(2,1) and Y ~
exponential(l)?

Can the pgf of a random variable be used to generate moments? Can the mgf of an integer-valued
random variable be used to generate probabilities?

Section 2.5

1.

2.

3.

4.

5.

6.

What happens if we replace the argument 3.5 in Example 2.5.3 by 3 – 0, 3 + 0, 4 – 0 and 4 + 0?
Is a correction for continuity needed here?

Prove that both versions of the NP approximation are equivalent.

Derive (2.60) and (2.61).

Show that the translated gamma approximation as well as the NP approximation result in the
normal approximation (CLT) if and are fixed and

Approximate the critical values of a distribution for with the
NP approximation and compare the results with the exact values to be found in any
What is the result if the translated gamma approximation is used?

Approximate G(4.5; 4, 2) by using the methods proposed in Example 2.5.4.
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7.

8.

9.

Use the identity ‘having to wait longer than for the nth event’ ‘at most events occur
in ’ in a Poisson process to prove that if Z ~ gamma and
N ~ Poisson How can this fact be used to calculate the translated gamma approximation?

Compare the exact critical values of a distribution for with the
approximations obtained from (2.59).

An insurer’s portfolio contains 2000 one-year life insurance policies. Half of them are charac-
terized by a payment and a probability of dying within 1 year of For the other
half, we have and Use the CLT to determine the minimum safety loading, as a
percentage, to be added to the net premium to ensure that the probability that the total payment
exceeds the total premium income is at most 5%.

10.

11.

12.

13.

14.

15.

16.

As the previous exercise, but now using the NP approximation. Employ the fact that the third
cumulant of the total payment equals the sum of the third cumulants of the risks.

Show that the right hand side of (2.63) is well-defined for all What are the minimum
and the maximum values? Is the function increasing? What happens if

Suppose that X has expected value and standard deviation Determine
the skewness if (i) X ~ gamma (ii) X ~ inverse Gaussian or (iii) X ~ lognor-
mal Show that the skewness is infinite if (iv) X ~ Pareto.

A portfolio consists of two types of contracts. For type the claim probability is
and the number of policies is If there is a claim, then its size is with probability

Assume that the contracts are independent. Let denote the total claim amount of the contracts
of type and let Calculate the expected value and the variance of a contract
of type Then, calculate the expected value and the variance of S. Use the CLT to
determine the minimum capital that covers all claims with probability 95%.

Let Y ~ U ~ gamma and Show that
and                                 so Also compare the third and fourth moments of T with
those of Y.

A justification for the ‘correction for continuity’, see 2.5.3, used to approximate cdf’s of
integer valued random variables by continuous ones, goes as follows. Let G be the continuous
cdf of some non-negative random variable, and construct cdf H by

Using the midpoint rule with intervals of length 1 to approximate the
rhs of (1.34) at show that the means of G and H are about equal. Conclude that if G is
a continuous cdf that is a plausible candidate for approximating the discrete cdf F and has the
same mean as F, by taking one gets an approximation with the proper
mean value. [Taking instead, one gets a mean that is about instead of
Thus very roughly speaking, each tail probability of the sum approximating (1.34) will be too
big by a factor ]

To get a feel for the approximation error as opposed to the error caused by errors in the estimates
of and needed for the NP approximation and the gamma approximation, recalculate
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Example 2.5.5 if the following parameters are changed: (i) (ii) (iii)
and (iv) Assume that the remaining parameters are as they

were in Example 2.5.5.

Section 2.6

1.

2.

3.

In the situation of Section 2.6, calculate the probability that B will be insufficient for retentions
Give numerical results for and if B = 405.

Determine the retention which minimizes this probability for B = 405. Which
retention is optimal if B = 404?

Calculate the probability that B will be insufficient if by using the NP approximation.



3
Collective risk models

3.1 INTRODUCTION

In this chapter, we introduce collective risk models. Just as in Chapter 2, we
calculate the distribution of the total claim amount in a certain time period, but
now we regard the portfolio as a collective that produces a claim at random points
in time. We write

where N denotes the number of claims and is the claim, and by convention,
we take S = 0 if N = 0. So, the terms of S in (3.1) correspond to actual claims;
in (2.25), there are many terms equal to zero, corresponding to the policies which
do not produce a claim. The number of claims N is a random variable, and we
assume that the individual claims are independent and identically distributed.
We also assume that N and are independent. In the special case that N is
Poisson distributed, S has a compound Poisson distribution. If N is (negative)
binomial distributed, then S has a compound (negative) binomial distribution.

In collective models, some policy information is ignored. If a portfolio contains
only one policy that could generate a high claim, this term will appear at most once
in the individual model (2.25). In the collective model (3. 1), however, it could occur

45
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several times. Moreover, in collective models we require the claim number N and
the claim amounts to be independent. This makes it somewhat less appropriate
to model a car insurance portfolio, since for instance bad weather conditions will
cause a lot of small claim amounts. In practice, however, the influence of these
phenomena appears to be small.

The main advantage of a collective risk model is that it is a computationally
efficient model, which is also rather close to reality. We give some algorithms
to calculate the distribution of (3.1). An obvious but quite laborious method is
convolution. We also discuss the sparse vector algorithm (usable if N ~ Poisson),
which is based on the fact that the frequencies of the claim amounts are independent
Poisson random variables. Finally, for a larger class of distributions, we can use
Panjer’s recursion, which expresses the probability of recursively in terms
of the probabilities of We can also express the
moments of S in terms of those of N and With this information we can again
approximate the distribution of S with the CLT if E[N] is large, as well as with
the more refined approximations from the previous chapter.

Next, we look for appropriate distributions for N and such that the collective
model fits closely to a given individual model. It will turn out that the Poisson
distribution and the negative binomial distribution are often appropriate choices
for N. We will show some relevant relations between these distributions. We will
also discuss some special properties of the compound Poisson distributions.

In the last few years, stop-loss insurance policies have become more wide-
spread, for instance for insuring absence due to illness. We give a number of
techniques to calculate stop-loss premiums for discrete distributions, but also for
several continuous distributions. With the help of the approximations for dis-
tribution functions introduced in Chapter 2, we can also approximate stop-loss
premiums.

3.2 COMPOUND DISTRIBUTIONS

Assume that S is a compound distribution as in (3.1), and that the terms are
distributed as X. Further use the following notation:

We can then calculate the expected value of S by using the conditional distribution
of S, given N. First, we use the condition to substitute outcome for
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the random variable N on the left of the conditioning bar below. Next, we use
the independence of and N to get rid of the condition This gives the
following computation:

Note that the expected claim total equals expected claim frequency times expected
claim size.

The variance can be determined with the formula of the conditional variance,
see (2.7):

The same technique as used in (3.3) yields for the mgf:
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Example 3.2.1 (Compound distribution with closed form cdf)
Let N ~ geometric and X ~ exponential(1). What is the cdf of S?

Write First, we compute the mgf of S, and then we try to identify it.
For which means we have

Since X ~ exponential(1), i.e. (3.5) yields

so the mgf of S is a mixture of the mgf’s of the constant 0 and of the exponential
distribution. Because of the one-to-one correspondence of cdf’s and mgf’s, we may
conclude that the cdf of S is the same mixture:

for

This is a distribution function which has a jump of size in 0 and is exponential
otherwise.

Convolution formula for a compound cdf
The conditional distribution of S, given allows us to calculate F:

so

These expressions are called the convolution formulae for a compound cdf.
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Example 3.2.2 (Application of the convolution formula)
Let for and let By
using (3.10), can be calculated as follows:

The probabilities in the bottom row are multiplied by the numbers in
a higher row. Then, the sum of these results is put in the corresponding row in the
column For instance: 0.2 x 0.6 + 0.3 x 0.16 = 0.168.

Example 3.2.3 (Compound distributions, exponential claim amounts)
From expression (3.10) for we see that it is convenient to choose the
distribution of X in such a way that the convolution is easy to calculate. This
is the case for the normal and the gamma distribution: the sum of independent

distributions is while the sum of gamma random
variables is a gamma random variable.

Suppose the claim amounts have an exponential(1) distribution, thus
From queueing theory, see also Exercise 2.5.7, we know that the probability of
waiting at least a time for the event, which is at the same time the probability
that at most events have occurred at time is a Poisson probability. Hence
we have

This can also be proven with partial integration, or by comparing the derivatives,
see Exercise 3.2.7. So, for
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This gives an efficient algorithm, since we can stop the outer summation as soon
as is smaller than the required precision. Also, two successive inner
sums differ by the final term only, which implies that a single summation suffices.

It will turn out that computing the distribution of the sum is much easier if
the terms are discrete, so we will often approximate X by a discrete random
variable.

3.3 DISTRIBUTIONS FOR THE NUMBER OF CLAIMS

In practice, we will not have a lot of relevant data at our disposal to choose a
distribution for N. Consequently, we should resort to a model for it, preferably
with only a few parameters. To describe ‘rare events’, the Poisson distribution
which has only one parameter is always the first choice. It is well-known that the
expected value and the variance of a Poisson distribution are both equal to
If the model for the number of claims exhibits a larger spread around the mean
value, one may use the negative binomial distribution instead. We consider two
models in which the latter distribution is derived as a generalization of a Poisson
distribution.

Example 3.3.1 (Poisson distribution, uncertainty about the parameter)
Assume that some car driver causes a Poisson distributed number of accidents
in one year. The parameter is unknown and different for every driver. We assume
that is the outcome of a random variable The conditional distribution of N,
the number of accidents in one year, given is Poisson What is the
marginal distribution of N?

Let denote the distribution function of Then we can
write the marginal distribution of N as

while for the mean and variance of N we have
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Now assume additionally that ~ gamma then

where so N has a negative binomial distribution.
Obviously, the value of for a particular driver is a non-observable random

variable. It is the ‘long run claim frequency’, the value to which the observed
average number of accidents in a year would converge if the driver could be
observed for a very long time, during which his claims pattern doesn’t change.
The distribution of is called the structure distribution, see also Chapter 7.

Example 3.3.2 (Compound negative binomial is also compound Poisson)
At some intersection there are N fatal traffic accidents in a year. The number
of casualties in the accident is so the total number of casualties is

Now, assume N ~ Poisson and ~ logarithmic
hence

and

The division by the function serves to make the sum of the probabilities equal
to 1. From the usual series expansion of it is clear that this function
is equal to hence the name logarithmic distribution. What is
the distribution of S?

The mgf of the terms is given by

Then, for the mgf of S, we get

which we recognize as the mgf of a negative binomial distribution with parameters
and
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On the one hand, the total payment Z for the casualties has a compound
Poisson distribution since it is the sum of a Poisson number of payments per
fatal accident. On the other hand, summing over the casualties leads to a compound
negative binomial distribution. It can be shown that if is compound negative
binomial with parameters and and claims distribution then
has the same distribution as where is compound Poisson distributed with
parameter and claims distribution given by:

and

In this way, any compound negative binomial distribution can be written as a
compound Poisson distribution.

Remark 3.3.3 (Compound Poisson distributions in probability theory)
The compound Poisson distributions are also object of study in probability theory.
If we extend this class with its limits, to which the gamma and the normal distrib-
ution belong, then we have just the class of infinitely divisible distributions, which
consists of the random variables X with the property that for each a sequence
of iid random variables exists with X ~

3.4 COMPOUND POISSON DISTRIBUTIONS

In this section we prove some important theorems on compound Poisson distribu-
tions and use them to construct a better algorithm to calculate First, we show
that the class of compound Poisson distributions is closed under convolution.

Theorem 3.4.1 (Sum of compound Poisson is compound Poisson)
If are independent compound Poisson random variables with
Poisson parameter and claims distribution then

is compound Poisson distributed with parameters

and

Proof. Let be the mgf of Then S has the following mgf:
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So S is a compound Poisson mgf with parameters (3.20).

Consequently, a combination of independent compound Poisson portfolios, or
the same portfolio considered in years, assuming that the annual results are
independent, is again compound Poisson distributed.

A special case is when the have fixed claims hence with ~
Poisson The random variable

is compound Poisson with parameters, assuming the to be all different:

and

We can also prove the reverse statement, as follows:

Theorem 3.4.2 (Frequencies of claim sizes are independent Poisson)
Assume that S is compound Poisson distributed with parameter and with discrete
claims distribution

If S is written as (3.22), where denotes the frequency of the claim amount
i.e., the number of terms in S with value then are independent
and Poisson distributed random variables.

Proof. Let and Conditionally on
we have ~ Multinomial Hence,

By summing over all we see that is marginally Poisson
distributed. The are independent since is the
product of the marginal probabilities of
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Example 3.4.3 (Application: sparse vector algorithm)
If the claims X are integer-valued and non-negative, we can calculate the com-
pound Poisson cdf F in an efficient way. We explain this by the following example:
let and Then, gathering together terms as we did
in (3.22), we can write S as and calculate the distribution
of S by convolution. We can compute as follows:

The total amount of the claims of size is convoluted with In
the column with probabilities of only the rows are filled, which
is why this algorithm is called a ‘sparse vector’ algorithm. These probabilities are
Poisson probabilities.

3.5 PANJER’S RECURSION

Although the sparse vector algorithm was a lot better than the convolution formula,
there was still some room for improvement. In 1981, Panjer described a method to
calculate the probabilities recursively. Similar relations were already derived
in the queueing theory. As a result of Panjer’s publication, a lot of other articles
have appeared in the actuarial literature covering similar recursion relations. The
recursion relation described by Panjer is as follows:

Theorem 3.5.1 (Panjer’s recursion)
Consider a compound distribution with integer-valued non-negative claims with
pdf for which the probability of having claims satisfies
the following recursion relation
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for some real and Then, the following relations for the probability of a total
claim equal to hold:

if
if

Proof. gives us the starting value
Write First, note that because of symmetry:

This expectation can also be determined in the following way:

Because of (3.26) and the previous two equalities, we have, for

from which the second relation of (3.27) follows immediately.
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Example 3.5.2 (Distributions suitable for Panjer’s recursion)
Only the following distributions satisfy relation (3.26):

1. Poisson with and in this case, (3.27) simplifies to:

2. Negative binomial with and so and

3. Binomial with so

If then and for so we get a Poisson(0)
distribution. For other values of and than the ones used above, (3.26) doesn’t
produce a probability distribution: if then results in negative
probabilities, and the same happens if and for all if
and (3.26) implies hence
and consequently

Example 3.5.3 (Panjer’s recursion)
Consider again, see also Example 3.4.3, a compound Poisson distribution with

and Then (3.31) yields, with
and

and the starting value is We have

and so on.
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Example 3.5.4 (Panjer’s recursion and stop-loss premiums)
For an integer-valued S, we can write the stop-loss premium in an integer retention

as follows, see Section 1.4:

The stop-loss premium is piecewise linear in the retention on the intervals where
the cdf remains constant, since for the right hand derivative we have

The stop-loss premiums for non-integer follow by interpolation..
With Panjer’s recursion the stop-loss premiums can be calculated recursively,

too, since from the last relation in (3.34), we have for integer

As an example, take S ~ compound Poisson(1) with Then,
Panjer’s recursion relation (3.31) simplifies to

with starting values

This leads to the following calculations:
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Remark 3.5.5 (Proof of Panjer’s recursion through pgf’s)
Panjer’s recursion can also be proven by using probability generating functions.
For the compound Poisson distribution, this goes as follows. First write

Because of

the derivative also equals For other distributions, similar
expressions can be derived, using (3.26). Now for and substitute their
series expansions:

Comparing the coefficients of in (3.39) and (3.41) yields

which is equivalent with Panjer’s recursion relation (3.31) for the Poisson case.

Remark 3.5.6 (Convolution using Panjer’s recursion)
How can we calculate the convolution of a distribution on 0, 1, 2, … with
Panjer’s recursion?

Assume that If we replace by where
and then has the same distribution as

which gives us a compound binomial distribution with as required in
Example 3.5.2. Another method is to take limits for in (3.27) for those
values of and that produce a binomial distribution.
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3.6 APPROXIMATIONS FOR COMPOUND DISTRIBUTIONS

The approximations in the previous chapter were refinements of the CLT in which
the distribution of a sum of a large number of random variables is approximated
by a normal distribution. These approximations can also be used if the number
of terms in a sum is a random variable with large values. For instance, for the
compound Poisson distribution with large we have the following counterpart
of the CLT; similar results can be derived for the compound (negative) binomial
distributions.

Theorem 3.6.1 (CLT for compound Poisson distributions)
Let S be compound Poisson distributed with parameter and general claims cdf

with finite variance. Then, with and

Proof. If is a series of independent Poisson(1) random variables and
if are independent random variables with cdf
then for integer-valued we have

since

As S in (3.44) is the sum of independent and identically distributed random
variables, the CLT can be applied directly. Note that taking to be an integer
presents no loss of generality, since the influence of the fractional part vanishes
for large

To use the approximations, one needs the cumulants of S. Again, let denote
the moment of the claims distribution. Then, for the compound Poisson distri-
bution, we have

From (2.45) we know that the coefficients of are the cumulants. Hence

and
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The skewness is proportional to

Remark 3.6.2 (Asymptotics and underflow)
There are certain situations where one would have to resort to approximations. First

we need a lot of multiplications, see Exercise 3.5.4. Second, the recursion might
not ‘get off the ground’: if is extremely small and consequently numerically
undistinguishable from 0 (underflow), then all probabilities in (3.31) are
zero too. For instance, if we use a 6-byte real data type as it was used in some
programming languages, then the underflow already occurs if So
for a portfolio of life insurance policies with probabilities of claim equal to 0.5%,
the calculation of Pr[S = 0] already experiences underflow for The
present generation of processors allow real arithmetic with a much larger precision,
and can easily cope with portfolios having i.e.

Fortunately, the approximations improve with increasing they are asymptot-
ically exact, since in the limit they coincide with the usual normal approximation
based on the CLT.

3.7 INDIVIDUAL AND COLLECTIVE RISK MODEL

In the preceding sections we have shown that replacing the individual model by
the collective risk model has distinct computational advantages. In this section we
focus on the question which collective model should be chosen. We consider a
situation from life insurance, but it can also be applied to non-life insurance, for
instance when fines are imposed (malus) if an employee gets disabled.

Consider one-year life insurance policies. The claim on policy has two
possible values: at death, which happens with probability the claim amount is

assumed positive, otherwise it is 0. We want to approximate the total amount
of the losses and profits over all policies with a collective model. For that purpose,
we replace the payments of size for policy where ~ Bernoulli by
a Poisson distributed number of payments Instead of the cdf of the total
payment in the individual model, i.e.,

with

of all, if the calculation time is too long: for the calculation of in (3.31) for large
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we consider the cdf of the following approximating random variable:

with and

If we choose the expected number of payments for policy is equal in both
models. To stay on the safe side, we could also choose
With this choice, the probability of 0 claims on policy is equal in both the
collective and the individual model. This way, we incorporate implicit margins by
using a larger total claim size than the original one. See also Example 10.4.1.

Although (3.49) still has the form of an individual model, S is a compound
Poisson distributed random variable, because of Theorem 3.4.1, so it is indeed a
collective model as in (3.1). The parameters are:

and

with the indicator function if and 0 otherwise. From this it is
clear that the expected numbers of payments are equal if is taken:

Also, by (3.48) and (3.49), the expectations of and S are then equal:

For the variances of S and we have

We see that S has a larger variance. If then using a collective model will
result in risk averse decision makers tending to take more conservative decisions,
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see further Chapter 10. Also notice that the smaller the less the
collective model will differ from the individual model.

Remark 3.7.1 (The collective model)
By the collective model for a portfolio, we mean a compound Poisson distribution
as in (3.50) with We also call it the canonical collective approximation.

In Exercise 3.7.3 we show that in the situation (3.48), the collective model can be
obtained as well by replacing each claim by a Poisson(1) number of independent
claims with the same distribution as We can also do this if the random variables

are more general than those in (3.48). For instance, assume that contract can
take values with probabilities Then we can
write

where for the marginal distributions of we have
and for their joint distribution we have since equals

exactly one of the possible claim sizes. One can show that if we choose the
canonical collective model, we actually replace by the compound Poisson
distributed random variable with

where the are independent Poisson random variables. In this way, the
expected frequencies of all claim sizes remain unchanged.

Remark 3.7.2 (Model for an open portfolio)
The second proposed model with can be used to model an
open portfolio, with entries and exits not on renewal times. Assume that in a
certain policy the waiting time W until death has an exponential distribution.
To make the probability of no claims equal to the desired value

has to hold, i.e. Now assume that, at the moment
of death, each time we replace this policy by an identical one. Thus, we have
indeed an open model for our portfolio. The waiting times until death are always
exponentially distributed. But from the theory of the Poisson process, see also
Exercise 2.5.7, we know that the number of deaths before time 1 is Poisson
distributed. In this model, replacing for each the payment on the policy by a
Poisson distributed number of copies, we end up with the safer open
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collective model as an approximation for the individual model, see also Example
10.4.1.

Remark 3.7.3 (Negative risk amounts)
If we assume that the are positive integers, then we can quickly calculate
the probabilities for S, and consequently quickly approximate those for with
Panjer’s recursion. However, if the can be negative as well as positive, we can’t
use this recursion. In that case, we can split up S in two parts where

is precisely the sum of the terms in (3.49) with As can be seen from
Theorem 3.4.2, and are independent compound Poisson random variables
with non-negative terms. The cdf of S can then be calculated by convolution of
those of and

If one wants to calculate the stop-loss premium for only one value
of then the time consuming convolution of and can easily be avoided.
Conditioning on the total of the negative claims, we can rewrite the stop-loss
premium as follows:

To calculate this we only need the stop-loss premiums of which follow as a
by-product of Panjer’s recursion, see Example 3.5.4. Then the desired stop-loss
premium can be calculated with a simple summation. For the convolution, a double
summation is necessary.

3.8 SOME PARAMETRIC CLAIM SIZE DISTRIBUTIONS

For a motor insurance portfolio, we could use a collective model with Poisson
parameter equal to the average number of claims in the preceding years, adjusted
for the trend in the number of policies. The cdf for the individual claim size could
be estimated from the observed distribution of the past, and adjusted for inflation.

For some purposes, for instance to compute premium reductions in case of a
deductible, it is convenient to use a parametric distribution that fits the observed
claims distribution well. The following well-known distributions of positive ran-
dom variables are suitable:

1. gamma distribution: in particular, this distribution is used if the tail of
the cdf is not too ‘heavy’, such as in motor insurance for damage to the own
vehicle;
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2.

3.

lognormal distribution: for branches with somewhat heavier tails, like
fire insurance;

Pareto for branches with a considerable probability of large claims,
notably liability insurance.

In the exercises we derive some useful properties of these distributions. Besides
these distributions there are a lot more possibilities, including the inverse Gaussian
and mixtures/combinations of exponential distributions.

Inverse Gaussian distributions
A distribution that sometimes pops up in the actuarial literature, for several pur-
poses, is the inverse Gaussian. Its properties resemble those of the above-mentioned
distributions. Various parametrizations are in use. We will use the one with a shape
parameter and a scale parameter just like the gamma distribution. The inverse
Gaussian distribution has never gained much popularity because it is hard to man-
age mathematically. For instance, it is already hard to prove that the probability
density function integrates to 1. The most convenient way is to start by defining
the cdf, on as

Note that the limit for is zero; for it is one. Its derivative is the
following function, positive on

So (3.57) is indeed a cdf. Using the fact that (3.58) is actually a density, we can
prove that the mgf equals

Notice that the mgf is finite for but not for The name inverse
Gaussian derives from the fact that the cumulant function is the inverse of the one
of normal distribution.

The special case with is also known as the Wald distribution. By using
the mgf, it is easy to prove that is indeed a scale parameter, since is inverse
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Gaussian distributed if X ~ inverse Gaussian We also see that adding
two independent inverse Gaussian distributed random variables, with parameters

and yields an inverse Gaussian random variable with parameters
The expected value and the variance are and respectively,

just as in the gamma distribution; the skewness is hence somewhat larger
than for a gamma distribution with the same mean and variance. The flexibility of
the inverse Gaussian distributions, from very skew to almost normal, is illustrated
in Figure 3.1. Note that all depicted distributions have the same expected value 1.

Mixtures/combinations of exponential distributions
Other useful parametric distributions are the mixtures/combinations of exponential
distributions, sometimes also referred to as Coxian distributions. A mixture arises
if the parameter of an exponential distribution is a random variable which equals

with probability and with probability The density is then given by

For each with the function is a probability density function. But
also for or in (3.60) is sometimes a pdf. In that case
for all must hold. From Exercise 3.8.4, we learn that it suffices if If
we assume that then is equivalent with and
in this case (3.60) is called a combination of exponential distributions.
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An example of a proper combination of exponential distributions is given by

i.e. and A second example is the function

If X ~ exponential and Y ~ exponential with then

so a sum of independent exponential random variables has a combination of
exponential distributions as its density. The reverse is not always true: (3.61) is
the pdf of the convolution of an exponential(1) and an exponential(2) distribution,
since but the pdf (3.62) can’t be written as such a convolution.

If then and X + Y tends to a gamma distri-
bution. Hence, the gamma distributions with are limits of densities that
are combinations of exponential distributions, and the same holds for all gamma
distributions with an integer scale parameter.

There is a two-stage model which produces all random variables with pdf
(3.60). Let X, Y and I be independent with X and Y ~ exponential(1) and I ~
Bernoulli with and let  Then

has the following mgf

To show that this is the mgf of a combination or a mixture of exponential distrib-
utions, it suffices to find using partial fractions, such that (3.65) equals the mgf
of (3.60), which is
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Comparing (3.65) and (3.66) we see that

hence

Since we have that if and then Z is
mixture of exponential distributions. If then and Z is
a combination of exponential distributions. The loss Z in (3.64) can be viewed as
the result of an experiment where one suffers a loss in any case and where
it is decided by tossing a coin with probability of success whether one loses
an additional amount Another interpretation is that the loss is drawn from
either or since If
then again a sum of two exponential distributions arises.

3.9 STOP-LOSS INSURANCE AND APPROXIMATIONS

The payment by a reinsurer in case of a stop-loss reinsurance with retention for
a loss S is equal to In this section we look for analytical expressions
for the net stop-loss premium for several distributions. Note that expressions for
stop-loss premiums can also be used to calculate net excess of loss premiums.

If denotes the stop-loss premium for a loss with cdf as a function of
then This fact can be used to verify the expressions for

stop-loss premiums. For the necessary integrations, we often use partial integration.

Example 3.9.1 (Stop-loss premiums for the normal distribution)
If X ~ N what is the stop-loss premium for X if the retention is

As always for non-standard normal distributions, it is advisable to consider the
case and first, and then use the fact that if U ~ N(0,1), then

The required stop-loss premium follows from

Since we have the following relation
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It immediately follows that

and hence

For a table with a number of stop-loss premiums for the standard normal dis-
tribution, we refer to Example 3.9.5 below. See also Table C at the end of this
book.

Example 3.9.2 (Gamma distribution)
Another distribution which has a rather simple expression for the stop-loss pre-
mium is the gamma distribution. If S ~ gamma and denotes the
cdf of S, then

We can also derive expressions for the higher moments of the stop-loss payment
Even the mgf can be calculated analogously, and

consequently also exponential premiums for the stop-loss payment.

Remark 3.9.3 (Moments of the retained loss)
Since either so or so the
following equivalence holds in general:

With this, we can derive the moments of the retained loss from those
of the stop-loss payment, using the equivalence

This holds since, due to (3.73), the remaining terms in the binomial expansion
vanish.

In this way, if the loss approximately follows a translated gamma distribution, one
can approximate the expected value, the variance and the skewness of the retained
loss. See Exercise 3.9.4.
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Example 3.9.4 (Stop-loss premiums approximated by NP)
The probabilities of for some random variable can be approximated quite
well with the NP approximation. Is it possible to derive an approximation for the
stop-loss premium for X too?

Define the following auxiliary functions for and

and

From section 2.5 we know that and Furthermore,
and are monotonically increasing, and Let Z be a
random variable with expected value 0, standard deviation 1 and skewness
We will derive the stop-loss premiums of random variables X with

and skewness from those of Z with the help of (3.68).
The NP approximation states that

Assume that U ~ N(0, 1) and define if V = 1 otherwise, i.e.
Then,

Hence,

The stop-loss premium of Z in can be approximated through the stop-loss
premium of V, since

To calculate this integral, we use the fact that and
hence
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Substituting the relations (3.69) and (3.80) and the function into (3.79) yields

as an approximation for the net stop-loss premium for any risk Z with mean 0,
variance 1 and skewness

Example 3.9.5 (Comparing CLT and NP stop-loss approximations)
What are approximately the stop-loss premiums for X with

and skewness for retentions
If the skewness equals 0, we apply formula (3.71), otherwise (3.81). Although

formula (3.81) was only derived for we use it for and anyway.
This results in:

So a positive skewness leads to a much larger stop-loss premium. For arbitrary
and one has to use (3.68). In that case, first determine then

multiply the corresponding stop-loss premium in the above table by and if
necessary, use interpolation.

Example 3.9.6 (Stop-loss premiums of translated gamma distribution)
What are the results if the stop-loss premiums in the previous example are calcu-
lated with the translated gamma approximation instead?

The parameters of a translated gamma distributed random variable with expected
value 0, variance 1 and skewness are and
For (3.72) yields the stop-loss premiums for a N(0, 1) distribution. All
of the gamma stop-loss premiums are somewhat smaller than those of the NP
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approximation. Indeed, in (2.60) we see that the tail probabilities of the gamma
approximation for are smaller than those of the NP approximation.
Only in case of a substantial skewness there is a larger difference.

From this table it would seem that the results for small cannot be correct. Even
the approximation (3.81), although only derived for yields more plausible
results for and since these increase with increasing skewness. But
from (3.83) below, it immediately follows that if all stop-loss premiums for one
distribution are larger than those of another distribution with the same expected
value, then the former has a larger variance. Since in this case the variances are
equal, besides larger stop-loss premiums of the translated gamma, there have to
be smaller ones as well.

Note that the translated gamma approximation gives the stop-loss premium
for a risk with the right expected value and variance. On the other hand, the NP
approximation gives approximating stop-loss premiums for a random variable with
the appropriate tail probabilities beyond Obviously, random variables exist
having the NP tail probabilities and the correct first three moments at the same
time.

3.10 STOP-LOSS PREMIUMS IN CASE OF UNEQUAL VARIANCES

In this section we compare the stop-loss premiums of two risks with equal expected
value, but with unequal variance. It is impossible to formulate an exact general
rule, but we can state some useful approximating results.

Just as one gets the expected value by integrating the distribution function over
one can in turn integrate the stop-loss premiums. In Exercise 3.10.1, the
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reader is invited to prove that, if with probability 1,

The integrand in this equation is always non-negative. From (3.82), it follows that
if U and W are risks with equal expectation then

By approximating the integral in (3.83) with the trapezoid rule with interval width
1, we can say the following about the total of all differences in the stop-loss
premiums of U and W (notice that we don’t use absolute values):

So, if we replace the actual stop-loss premiums of U by those of W, then (3.84)
provides an approximation for the total error in all integer-valued arguments. In
Chapter 10 we examine conditions for to hold for
all If that is the case, then all terms in (3.84) are positive and consequently, the
maximum error in all of these terms will be less than the right-hand side.

It is not very unreasonable to assume that the ratio of two integrands is approx-
imately equal to the ratio of the corresponding integrals. Then, (3.82) yields the
following approximation

This approximation is exact if and with I ~
Bernoulli independent of U and see Exercise 3.10.2.

If then so the approximation (3.85) simplifies to the
following rule of thumb:

Rule of thumb 3.10.1 (Ratio of stop-loss premiums)
For retentions larger than the expectation we have for the
stop-loss premiums of risks U and W:
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This rule works best for intermediate values of see below.

Example 3.10.2 (‘Undefined wife’)
Exercise 3.7.4 deals with the situation where it is unknown for which of the insureds
a widows’ benefit might have to be paid. If the frequency of being married is 80%,
we can either multiply all risk amounts by 0.8 and leave the probability of dying
within one year as it is, or we can multiply the mortality probability by 0.8 and
leave the payment as it is. We derived that the resulting variance of the total claim
amount in the former case is approximately 80% of the variance in the latter case.
So, if we use the former method to calculate the stop-loss premiums instead of
the correct method, then the resulting stop-loss premiums for retentions which are
larger than the expected claim cost are approximately 20% too small.

We will check Rule of thumb 3.10.1 by considering the case with fixed
and Write for the stop-loss premium of a distributed

random variable, for for the N(0,1) cdf and for
the corresponding pdf. With we can rewrite (3.71) as follows:

To see how varies by changing and keeping constant, we calculate
the partial derivative with respect to

Hence if we replace by for small this roughly affects the stop-loss
premium as follows:
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The first term in (3.89) is precisely the Rule of thumb. One can show that integrating
the second term over yields 0. This term is negative if is close to
zero if and positive for large From this, we may conclude that the
Rule of thumb will work best for retentions approximately equal to

Example 3.10.3 (Numerical evaluation of the Rule of thumb)
We calculated the stop-loss premiums for a N(0,1.01) and a N(0,1.25) distribution
at retentions to compare them with those of a N(0,1) distribu-
tion. According to Rule of thumb 3.10.1, these should be 1.01 and 1.25 times as big
respectively. Table 3.1 gives the factor by which that factor should be multiplied
to get the real error. For instance, for the quotient
equals 1.005 instead of 1.01, so the error is only 50% of the one predicted by
the Rule of thumb. As can be seen, the Rule of thumb correction factor is too
large for retentions close to the expected value, too small for large retentions and
approximately correct for retentions equal to the expected value plus 0.75 standard
deviation. The Rule of thumb correction factor has a large error for retentions in the
far tail where the stop-loss premiums of the distribution with the smaller variance
are negligible but those of the distribution with the larger variance are not.

If one wants to squeeze a little more precision out of the Rule of thumb, one
can find an appropriate correction factor in Table 3.1. For instance, if the retention
equals and if the quotient of the variances equals then one should
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multiply the stop-loss premium by a factor to approximate the stop-loss
premium, assuming the risks resemble a normal distribution.

3.11 EXERCISES

Section 3.2

1.

2.

3.

4.

5.

6.

7.

Calculate (3.3), (3.4) and (3.5) in case N has the following distribution: a) Poisson b)
binomial and c) negative binomial

Give the counterpart of (3.5) for the cumulant generating function.

Assume that the number of eggs in a bird’s nest is a Poisson distributed random variable, and
that the probability that a female hatches out equals Determine the distribution of the number
of females in a bird’s nest.

Let S be compound Poisson distributed with and Apply
(3.10) to calculate the probabilities of for

Complete the table in Example 3.2.2 for Determine the expected value and the
variance of N, X and S.

Determine the expected value and the variance of 5, where S is defined as in Example 3.2.2,
except that N is Poisson distributed with

Prove relation (3.11) by partial integration. Do the same by differentiating both sides of the
equation and examining one value, either or

Section 3.3

1.

2.

3.

Show that the Poisson distribution also arises as the limit of the negative binomial distrib-
ution if and such that remains constant.

Under which circumstances does the usual Poisson distribution arise instead of the negative
binomial in Examples 3.3.1 and 3.3.2?

Prove (3.19).

Section 3.4

1 .

2.

3.

4.

5.

The same as Exercise 3.2.4, but now with the sparse vector algorithm.

What happens with (3.23) if some are equal in (3.22)?

Assume that is compound Poisson with and claims and
is also compound Poisson with and If and are independent,
then what is the distribution of

In Exercise 3.2.3, prove that the number of males is independent of the number of females.

Let denote the number of claims of size in Example 3.2.2. Are and
independent?
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6.

for Prove that S and have the same distribution by comparing their

yields the same probabilities

Verify Example 3.5.2.

In case of a compound Poisson distribution for which the claims have mass points
determine how many multiplications have to be done to calculate the probability using
Panjer’s recursion. Distinguish the cases and

Prove that if satisfies (3.26).

In Example 3.5.4, determine the retention for which

Let and be independent and Poisson(l) distributed. For the retention
determine

Assume that is compound Poisson distributed with parameter and claim sizes
Let where N is Poisson(l) distributed and independent of

Determine the mgf of What is the corresponding distribution? Determine
Leave the powers of unevaluated.

Determine the parameters of an integer-valued compound Poisson distributed Z if for some
Panjer’s recursion relation equals

[Don’t forget the case

Assume that S is compound Poisson distributed with parameter and
Calculate and for Also calculate

Derive formulas from (3.34) for the stop-loss premium which only use
and respectively.

Give a formula, analogous to (3.36), to calculate

Section 3.6

1.

2.

Assume that S is compound Poisson distributed with parameter and uniform(0,1)
distributed claims. Approximate with the CLT approximation, the translated gamma
approximation and the NP approximation.

Assume that S is compound Poisson distributed with parameter and distributed
claims. Approximate the distribution function of S with the translated gamma approximation.
With the NP approximation, estimate the quantile such that as well as the
probability

mgf’s. Also show that holds because the frequencies of the claim amounts in
(3.22) have the same distribution.

Section 3.5

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

The same as Exercise 3.2.4, but now with Panjer’s recursion relation.

The same as Exercise 3.4.6, first part, but now by proving with induction that Panjer’s recursion

Assume that S is compound Poisson distributed with parameter and with discrete claims
distribution  Consider  a compound Poisson distribution with parameter

for some with and with claims distribution where and
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Section 3.7

1.

2.

3.

Show that yields both a larger expectation and a larger variance of S in
(3.49) than does. For both cases, compare and
in (3.48) and (3.49), as well as the cdf’s of and

Consider a portfolio of 100 one-year life insurance policies which are evenly divided between
the insured amounts 1 and 2 and probabilities of dying within this year 0.01 and 0.02. Determine
the expectation and the variance of the total claims Choose an appropriate compound Poisson
distribution S to approximate and compare the expectations and the variances. Determine for
both S and the parameters of a suitable approximating translated gamma distribution.

Show, by comparing the respective mgf’s, that the following representations of the collective
model are equivalent:

1.

2.

3.

4.

The compound Poisson distribution with parameter and claims distribution
[Hence is the arithmetic mean of the cdf’s of the

claims. It can be interpreted as the cdf of a claim from a randomly chosen policy, where
each policy has probability ]

The compound Poisson distribution specified in (3.50) with

The random variable from (3.49) with

The random variable where the are compound Poisson distributed with
claim number parameter 1 and claims distribution equal to those of

4.

5.

6.

7.

In a portfolio of one-year life insurance policies for men, the probability of dying in this year
equals for the policyholder. In case of death, an amount has to be paid out, but only if
it turns out that the policy holder leaves a widow behind. This information is not known to the
insurer in advance (‘undefined wife’), but from tables we know that this probability equals 80%
for each policy. In this situation, we can approximate the individual model by a collective one
in two ways: by replacing the insured amount for policy by or by replacing the claim
probability for policy by Which method is correct? Determine the variance of the total
claims for both methods. Show how we can proceed in both cases, if we have a program at our
disposal that calculates stop-loss premiums from a mortality table and an input file containing
the sex, the age and the risk amount.

At what value of in (3.56) may we stop the summation if an absolute precision is
required?

Consider a portfolio with 2 classes of policies. Class contains 1000 policies with claim size
and claim probability 0.01, for Let denote the number of claims in class

Write the total claims S as and let denote the number of claims.
Consider the compound binomial distributed random variable with

Compare S and T as regards the maximum value, the
expected value, the variance, the claim number distribution and the distribution. Do the same
for and ~Poisson(10).

Consider an excess of loss reinsurance on some portfolio. In case of a claim the reinsurer pays
out an amount The claims process is a compound Poisson process with claim
number parameter 10 and uniform( 1000,2000) distributed claim sizes. For
determine the distribution of the total amount to be paid out by the reinsurer in a year.
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8.

9.

10.

Consider two portfolios P1 and P2 with the following characteristics:

For the individual risk models for P1 and P2, determine the difference of the variance of the
total claims amount. Check if the collective approximation of P1 equals the one of P2, both
constructed with the recommended methods.

A certain portfolio contains two types of contracts. For type the claim probability
equals and the number of policies equals If there is a claim, then with probability
it equals as follows:

Assume that all policies are independent. Construct a collective model T to approximate the
total claims. Make sure that both the expected number of positive claims and the expected total
claims agree. Give the simplest form of Panjer’s recursion relation in this case; also give a
starting value. With the help of T , approximate the capital that is required to cover all claims
in this portfolio with probability 95%. Use an approximation based on three moments, and
compare the results with those of Exercise 2.5.13.

Consider a portfolio containing contracts that all produce a claim 1 with probability
What is the distribution of the total claims according to the individual model, the collective
model and the open collective model? If with   fixed, does the individual model
S converge to the collective model T, in the sense that the difference of the probabilities

converges to 0?

Section 3.8

1.

2.

3.

Determine the mean and the variance of the lognormal and the Pareto distribution, see also Tables
A. Proceed as follows: if Y ~ lognormal then log if Y ~ Pareto
then ~ Pareto and

Determine which parameters of the distributions in this section are scale parameters, in the sense
that or more general X for some function has a distribution that does not depend on

Show that neither the skewness nor the coefficient of variation depend on such
parameters. Determine these two quantities for the given distributions.

Prove that the expression in (3.57) is indeed a cdf, which is 0 in tends to 1 for
and has a positive derivative (3.58)). Also verify that (3.59) is the mgf, and confirm the

other statements about the inverse Gaussian distributions.
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4.

5.

6.

7.

Show that the given conditions on in (3.60) are sufficient for to be a pdf.

Determine the cdf and the stop-loss premium for a mixture or combi-
nation Z of exponential distributions as in (3.60). Also determine the conditional distribution of

given

Determine the mode of mixtures and combinations of exponential distributions. Also determine
the mode and the median of the lognormal distribution.

Determine the mode of the inverse Gaussian distribution. For the parameter values of
Figure 3.1, use your computer to determine the median of this distribution.

Section 3.9

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Assume that X is normally distributed with expectation 10000 and standard deviation 1000.
Determine the stop-loss premium for a retention 13000. Do the same for a random variable Y
that has the same first two moments as X, but skewness 1.

Show that

If X ~ N show that and determine

Verify (3.72). Also verify (3.73) and (3.74), and show how these can be used to approximate the
variance of the retained loss.

Give an expression for the net premium if the number of claims is Poisson distributed and
the claim size is Pareto distributed. Assume that there is a deductible

Let X ~ lognormal Determine the stop-loss premium for
Compare your result to the Black-Scholes option pricing formula, and explain.

In the table from Example 3.9.5, does using linear interpolation to calculate the stop-loss
premium in e.g. for one of the given values for yield a result that is too high or too
low?

Assume that N is an integer-valued risk with for
where U ~ N(0, 1). Determine Pr[N = 1].

Let denote the stop-loss premium for U ~ N(0, 1) and retention
Show that satisfies Sketch

In Sections 3.9 and 3.10, the retention is written as so it is expressed in terms of a
number of standard deviations above the expected loss. However, in the insurance practice, the
retention is always expressed as a percentage of the expected loss. Consider two companies for
which the risk of absence due to illness is to be covered by stop-loss insurance. This risk is
compound Poisson distributed with parameter and exponentially distributed individual losses
X with E[X] = 1000. Company 1 is small: company 2 is large: What are
the net stop-loss premiums for both companies in case the retention equals 80%, 100% and
120% of the expected loss respectively? Express these amounts as a percentage of the expected
loss and use the normal approximation.

Section 3.10

1. Prove (3.82) and (3.83) and verify that the integrand in (3.82) is non-negative.
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2.

3.

4.

5.

6.

Show that (3.85) is exact if with and I ~ Bernoulli for

Verify (3.88) and (3.89). Also verify that integrating the last term in (3.89) yields 0.

Assume that are independent and identically distributed risks that represent the
loss on a portfolio in consecutive years. We could insure these risks with separate stop-loss
contracts for one year with a retention but we could also consider only one contract for the
whole period of years with a retention Show that

If examine how .the total net stop-loss premium for
the one-year contracts relates to the stop-loss premium for the period

Let ~ binomial(4,0.05), ~ binomial(2,0.1), and T ~ Poisson(0.4). For
the retentions use the Rule of thumb 3.10.1 and discuss the results.

Derive (3.84) from the trapezoid rule with interval
width



4
Ruin theory

4.1 INTRODUCTION

In this chapter we focus again on collective risk models, but now in the long
term. We consider the development in time of the capital of an insurer.
This is a stochastic process which increases continuously because of the earned
premiums, and decreases stepwise because of the payment of claims. When the
capital becomes negative, we say that ruin occurs. Let denote the probability
that this ever happens, provided that the annual premium and the claims process
remain unchanged. This probability is a useful tool for the management since it
serves as an indication of the soundness of the insurer’s combined premiums and
claims process, given the available initial capital A high probability of
ruin indicates instability: measures such as reinsurance or raising some premiums
should be considered, or the insurer should attract extra working capital.

The probability of ruin enables one to compare portfolios with each other, but
we cannot attach any absolute meaning to the probability of ruin, as it doesn’t
actually represent the probability that the insurer will go bankrupt in the near
future. First of all, it might take centuries for ruin to actually happen. Moreover,
potential interventions in the process, for instance paying out dividends or raising
the premium for risks with an unfavorable claims performance, are ruled out in the

81
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determination of the probability of ruin. Furthermore, the effects of inflation on
the one hand and the return on the capital on the other hand are supposed to cancel
each other out exactly. The ruin probability only accounts for the insurance risk,
not the managerial blunders that might occur. Finally, the state of ruin is nothing
but a mathematical abstraction: with a capital of –1 Euro, the insurer isn’t broke
in practice, and with a capital of +1 Euro, the insurer can hardly be called solvent.

The calculation of the probability of ruin is one of the classical problems in actu-
arial science. Although it is possible to determine the moment generating function
with the probability of not getting ruined (the non-ruin probability), only
two types of claim distributions are known for which the probability of ruin can
easily be calculated. These are the exponential distributions and sums, mixtures
and combinations of these distributions, as well as the distributions with only a
finite number of values. For other distributions, however, an elegant and usually
sufficiently tight upper bound can be found. The real number R
in this expression is called the adjustment coefficient. This so-called Lundberg
upper bound can often be used instead of the actual ruin probability: the higher
R, the lower the upper bound for the ruin probability and, hence, the safer the
situation. The adjustment coefficient R can be calculated by solving an equation
which contains the mgf of the claims, their expectation and the ratio of premium
and expected claims.

Multiplying both the premium rate and the expected claim frequency by the
same factor does not change the probability of eventual ruin: it doesn’t matter
if we make the clock run faster. There have been attempts to replace the ruin
probability by a more ‘realistic’ quantity, for instance the finite ruin probability,
which is the probability of ruin before time But this quantity behaves somewhat
less orderly and introduces an extra problem, namely the choice of the length of
the time interval. Another alternative arises if we consider the capital in discrete
time points 0, 1, 2, … only, for instance at the time of the closing of the books.
For this discrete time model, we will derive some results.

First, we will discuss the Poisson process as a model to describe the development
in time of the number of claims. A characteristic feature of the Poisson process is
that it is memoryless: the occurrence of a claim in the next second is independent
of the history of the process. The advantage of a process being memoryless is the
mathematical simplicity; the disadvantage is that it is often not realistic. The total
of the claims paid in a Poisson process constitutes a compound Poisson process.

In the second part of this chapter, we will derive the mgf of the non-ruin prob-
ability by studying the maximal aggregate loss, which represents the maximum
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difference between the earned premiums and the total payments up to any mo-
ment. Using this mgf, we will determine the value of the ruin probability in case
the claims are distributed according to variants of the exponential distribution.
Next, we will consider some approximations for the ruin probability.

4.2  THE RISK PROCESS

A stochastic process consists of related random variables, indexed by the time
We define the surplus process or risk process as follows:

where

with

A typical realization of the risk process is depicted in Figure 4.1. The random
variables denote the time points at which a claim occurs. The slope of
the process is if there are no claims; if, however, for some then the
capital drops by which is the size of the claim. Since in Figure 4.1, at time

the total of the incurred claims is larger than the initial
capital plus the earned premium the remaining surplus is less than
0. This state of the process is called ruin and the point in time at which this occurs
for the first time is denoted by T. So,

if for all

The random variable T is defective, as the probability of is positive. The
probability that ruin ever occurs, i.e., the probability that T is finite, is called the
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ruin probability. It is written as follows:

Before we turn to the claim process i.e., the total claims up to time we
first look at the process of the number of claims up to We will assume that

is a so-called Poisson process:

Definition 4.2.1 (Poisson process)
The process is a Poisson process if for some intensity the increments
of the process have the following property:

for all and each history

As a result, a Poisson process has the following properties:

the increments are independent: if the intervals
are disjoint, then the increments are independent;

the increments are stationary: is Poisson distributed
for every value of

Next to this global definition of the claim number process, we can also consider
infinitesimal increments where the infinitesimal ‘number’
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again is positive, but smaller than any real number larger than 0. For the Poisson
process we have:

Actually, these equalities are not really quite equalities: they are only valid if we
ignore terms of order

A third way to define such a process is by considering the waiting times

Because Poisson processes are memoryless, these waiting times are independent
exponential random variables, and they are also independent of the history of
the process. This can be shown as follows: if the history H represents an arbitrary
realization of the process up to time with the property that then

If is a Poisson process, then is a compound Poisson process; for a fixed
the aggregate claims have a compound Poisson distribution with

parameter
Some more notation: the cdf and the moments of the individual claims are

The loading factor or safety loading is defined by hence

4.3 EXPONENTIAL UPPER BOUND

In this section we give a short and elegant proof of F. Lundberg’s exponential
upper bound. Later on, we will derive more accurate results. First we introduce
the adjustment coefficient.
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Definition 4.3.1 (Adjustment coefficient)
The adjustment coefficient R for claims with is the positive
solution of the following equation in

See also Figure 4.2.

In general, the adjustment coefficient equation (4.10) has one positive solution:
is strictly convex since

and, almost without exception, continuously. Note that for the
limit of R is 0, while for we see that R tends to the asymptote of
or to

Remark 4.3.2 (Equivalent equations for the adjustment coefficient)
The adjustment coefficient can also be found as the positive solution of any of the
following equivalent equations, see Exercise 4.3.1:

where S denotes the total claims in an interval of length 1 and consequently – S
is the profit in that interval. Note that S is compound Poisson distributed with
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parameter and hence From the last equation we
see that the adjustment coefficient R corresponds to the risk aversion in case of
an exponential utility function which leads to an annual premium see (1.20). In
the second equation of (4.11), which can be proven by partial integration, R = 0
is no longer a root. The other equations still admit the solution R = 0.

Example 4.3.3 (Adjustment coefficient for an exponential distribution)
Assume that X is exponentially distributed with parameter The corre-
sponding adjustment coefficient is the positive solution of

The solutions of this equation are the trivial solution and

This situation admits an explicit expression for the adjustment coefficient.

For most distributions, there is no explicit expression for the adjustment coeffi-
cient. To facilitate solving (4.10) by a spreadsheet or a computer program, one can
use the fact that see Exercise 4.3.2.

In the next theorem, we prove F. Lundberg’s famous exponential inequality for the
ruin probability. Surprisingly, the proof involves mathematical induction.

Theorem 4.3.4 (Lundberg’s exponential bound for the ruin probability)
For a compound Poisson risk process with an initial capital a premium per unit
of time claims with cdf and mgf and an adjustment coefficient R
that satisfies (4.10), we have the following inequality for the ruin probability:

Proof. Define and as the probability that
ruin occurs at or before the claim. Since the limit of for equals

for all it suffices to prove that for each For the
inequality holds, since if and if Assume
that the first claim occurs at time This event has a ‘probability’ Also
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assume it has a size which has a probability Then the capital at that
moment equals Integrating over and yields

Now assume that the induction hypothesis holds for i.e.,
for all real Then, (4.15) leads to

where the last equality follows from (4.11).

Remark 4.3.5 (Interpretation of the adjustment coefficient; martingale)
The adjustment coefficient R has the property that is constant in
In other words, is a martingale: it can be interpreted as the fortune of a
gambler who is involved in a sequence of fair games. This can be shown as follows:
since and ~ compound Poisson with parameter we
have, using again (4.11):

Note that if R is replaced by any other real number, the expression in square
brackets in (4.17) is unequal to 1, so in fact the adjustment coefficient is the unique
positive number R with the property that is a martingale.

4.4 RUIN PROBABILITY AND EXPONENTIAL CLAIMS

In this section we give an expression for the ruin probability which involves the
mgf of U (T), i.e., the capital at the moment of ruin, conditionally given the event
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that ruin occurs in a finite time period. This expression enables us to give an exact
expression for the ruin probability in case of an exponential distribution.

Theorem 4.4.1 (Ruin probability)
The ruin probability for satisfies

Proof. Let R > 0 and Then,

From Remark 4.3.5, we know that the left-hand side equals For the first
conditional expectation in (4.19) we take and write, using

see also (4.17):

The total claims between and has again a compound Poisson
distribution. What happens after is independent of what happened before
so and are independent. The term in curly brackets equals 1.
Equality (4.20) holds for all so
also holds.

Since for it suffices to show that the last
term in (4.19) vanishes for For that purpose, we split the event
according to the size of More precisely, we consider the cases
and for some function Notice that implies that we are
not in ruin at time i.e., so We have
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The second term vanishes if For the first term, note that
has an expected value and a variance
Because of Chebyshev’s inequality, it suffices to choose the function such
that We can for instance take

Corollary 4.4.2 (Some consequences of Theorem 4.4.1)

1.

2.

3.

4.

5.

If then the chord in Figure 4.2 tends to a tangent line and, because of
Theorem 4.4.1, if then the ruin probability equals 1, see
Exercise 4.4.1.

If then Hence, the denominator in (4.18) is larger than
or equal to 1, so this is yet another proof of Theorem 4.3.4.

If the claims cannot be larger than then from which we
can deduce an exponential lower bound for the ruin probability:

It is quite plausible that the denominator of (4.18) has a finite limit for
say Then, of course, This yields the following asymptotic

approximation for for large we have

If R > 0, then for all As a consequence, if
for some then R = 0 and for all

Example 4.4.3 (Expression for the ruin probability, exponential claims)
From (4.18), we can derive an exact expression for the ruin probability if the claims
have an exponential distribution. For this purpose, assume that ruin occurs at a
finite time and that the capital U (T – 0) just before ruin equals Then, for
each value of and if H represents an arbitrary history of the process with

and we have:

Apparently, the deficit –U (T) at ruin also has an exponential distribution, so
the denominator of (4.18) equals ). With and
see (4.13), and thus we have the following exact expression
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for the ruin probability in case of exponential claims:

Notice that Lundberg’s exponential upper bound boils down to an equality here
except for the constant In this case, the denominator of (4.18) does not
depend on In general, however, it will depend on

4.5 DISCRETE TIME MODEL

In the discrete time model, we consider more general risk processes than the
compound Poisson process from the previous sections, but now only on the time
points 0,1,2,… Instead of we write Let denote the
profit between the time points and therefore

Later on, we will discuss what happens if we assume that is a compound
Poisson process, but for the moment we only assume that the profits
are independent and identically distributed, with but

We define a discrete time version of the ruin time the ruin probability
and the adjustment coefficient as follows:

The last equation has a unique solution. This can be seen as follows: since E [G] > 0
and Pr[G < 0] > 0, we have and for while

so is a convex function.

Example 4.5.1 (Compound Poisson distributed annual claims)
In the special case that is a compound Poisson process, we have
where denotes the compound Poisson distributed total claims in year From
(4.11), we know that R satisfies the equation Hence,

Example 4.5.2 (Normally distributed annual claims)
If with then follows from:
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Combining this result with the previous example, we observe the following. If we
consider a compound Poisson process with a large Poisson parameter, i.e., with
many claims between the time points 0 , 1 , 2 , . . . , then will approximately follow
a normal distribution. Consequently, the adjustment coefficients will be close to
each other, so On the other hand, if we take
and in Exercise 4.3.2, then it turns out that is an upper bound for
R.

Analogously to Theorem 4.4.1, one can prove the following equality:

So in the discrete time model one can give an exponential upper bound for the ruin
probability, too, which is

4.6 REINSURANCE AND RUIN PROBABILITIES

In the economic environment we postulated, reinsurance contracts should be com-
pared by their expected utility. In practice, however, this method is not applicable.
As an alternative, one could compare the ruin probabilities after a reinsurance
policy. This too is quite difficult. Therefore we will concentrate on the adjustment
coefficient and try to obtain a more favorable one by reinsurance. It is exactly from
this possibility that the adjustment coefficient takes its name.

In reinsurance we transfer some of our expected profit to the reinsurer, in
exchange for more stability in our position. These two conflicting criteria cannot
be optimized at the same time. A similar problem arises in statistics where one
finds a trade-off between the power and the size of a test. In our situation, we can
follow the same procedure as it is used in statistics, i.e., maximizing one criterion
while restricting the other. We could, for instance, maximize the expected profit
subject to the condition that the adjustment coefficient R is larger than some

We will consider two situations. First, we use the discrete time ruin model,
take out a reinsurance policy on the total claims in one year and then examine the
discrete adjustment coefficient In the continuous time model, we compare R
for two types of reinsurance, namely proportional reinsurance and excess of loss
reinsurance, with a retention for each claim.
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Example 4.6.1 (Discretisized compound Poisson claim process)
Again consider the compound Poisson distribution with and

from Example 3.5.4. What is the discrete adjustment coefficient for the total
claims S in one year, if the loading factor equals 0.2, i.e., the annual premium
equals 1.8?

The adjustment coefficient is calculated as follows:

Now assume that we take out a stop-loss reinsurance with For a reinsurance
with payment Y, the reinsurer asks a premium with If
the reinsurance premium amounts to
To determine the adjustment coefficient, we calculate the distribution of the profit
in one year which consists of the premium income minus the reinsurance
premium minus the retained loss. Hence,

The corresponding discrete adjustment coefficient which is the solution of
(4.25), is approximately 0.199.

Because of the reinsurance, our expected annual profit is reduced. It is equal to
our original expected profit minus the one of the reinsurer. For instance, for
it equals In the following table, we show the results
for different values of the retention

We see that the decision is not rational: it is dominated by
as well as i.e., no reinsurance, since they all yield both a higher expected
profit and more stability in the sense of a larger adjustment coefficient.

Example 4.6.2 (Reinsurance, individual claims)
Reinsurance may also affect each individual claim, instead of only the total claims
in a period. Assume that the reinsurer pays an amount if the claim amount
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is In other words, the retained loss equals We consider two special
cases:

Obviously, proportional reinsurance can be considered as a reinsurance on the total
claims just as well. We will examine the usual adjustment coefficient which
is the root of

where denotes the reinsurance premium. The reinsurer uses a loading factor
on the net premium. Assume that and for and
Furthermore, let and consider two values and

In case of proportional reinsurance the premium equals

so, because of (4.32) leads to the equation

For we have and we have
Next, we consider the excess of loss reinsurance with

The reinsurance premium equals

while and therefore is the root of
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In the table below, we give the results for different values of compared
with the same results in case of proportional reinsurance with the same expected
payment by the reinsurer:

For the loading factors of the reinsurer and the insurer are equal,
and the more reinsurance we take, the larger the adjustment coefficient is. If
the reinsurer’s loading factor equals then for the expected retained loss

is not less than the retained premium
Consequently, the resulting retained loading factor is not positive, and eventual ruin
is a certainty. The same phenomenon occurs in case of excess of loss reinsurance
with In the table below, this situation is denoted by the symbol *.

From the table we see that all adjustment coefficients for excess of loss coverage
(XL) are at least as large as those for proportional reinsurance (Prop.) with the
same expected payment. This is not a coincidence: by using the theory on ordering
of risks, it can be shown that XL coverage always yields the best R-value as well
as the smallest ruin probability among all reinsurance contracts with the same
expected value of the payment, see Example 10.4.4.

4.7 BEEKMAN’S CONVOLUTION FORMULA

In this section we show that the non-ruin probability can be written as a com-
pound geometric distribution function. For this purpose, we consider the maximal
aggregate loss, i.e., the maximal difference between the payments and the earned
premium up to time

Since S(0) = 0, we have The event occurs if, and only if, a finite
point in time exists for which In other words, the inequalities
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and are equivalent and consequently

Next, we consider the points where the surplus process reaches a new record low.
This happens necessarily at points in time when a claim is paid. Let the random
variables denote the amounts by which the record low is
less than the – 1st one, see Figure 4.3 where there are three new record lows,
assuming that the process drifts away to in the time period not shown. Let M
be the random number of new records. We have

From the fact that a Poisson process is memoryless, it follows that the probability
that a particular record low is the last one is the same every time. Hence, M follows
a geometric distribution. For the same reason, the amounts of the improvements

are independent and identically distributed. The parameter of M, i.e.,
the probability that the previous record is the last one, equals the probability to
avoid ruin starting with initial capital 0, hence it equals

So L has a compound geometric distribution. Both the value of the geometric
parameter and the distribution of conditionally given follow
from the following theorem:
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Theorem 4.7.1 (Distribution of the capital at time of ruin)
If the initial capital equals 0, then for all we have:

Proof. In a compound Poisson process, the probability of having a claim in the
interval equals which is independent of and of the history of
the process up to that time. So, between 0 and there is either no claim (with
probability ), and the capital increases from to or one claim with
size X. In the latter case, there are two possibilities. If the claim size is less than

then the process continues with capital Otherwise ruin occurs, but
the capital at ruin is only larger than if Defining

we can write

If denotes the partial derivative of G with respect to then

Substitute (4.43) into (4.42), subtract from both sides and divide by
Then we get

Integrating this over yields
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The double integrals in (4.45) can be reduced to single integrals as follows. For
the first double integral, exchange the order of integration, substitute
and again exchange the integration order. This leads to

In the second double integral in (4.45), we substitute Then,

Hence,

For the first term on both sides of (4.48) vanishes, leaving

which completes the proof.

This theorem has many important consequences.

Corollary 4.7.2 (Consequences of Theorem 4.7.1)

1. The ruin probability at 0 depends on the safety loading only. Integrating

2. Assuming that there is at least one new record low, has the same distri-
bution as the amount with which ruin occurs starting from (if ruin

(4.40) for                    yields                      so regardless of         we have



BEEKMAN’S CONVOLUTION FORMULA 99

occurs). So we have the following expression for the density function of the
record improvements:

3.

4.

Let H denote the cdf of and the parameter of M. Then, since L
has a compound geometric distribution, the non-ruin probability of a risk
process is given by Beekman’s convolution formula:

where

and

The mgf of the maximal aggregate loss L which because of (4.38) is also
the mgf of the non-ruin probability is given by

Proof. Only the last assertion requires a proof. Since with
M ~ for we have

The mgf of follows from its density (4.51):
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since the integrated term disappears at because for

Substituting (4.56) into (4.55) then yields (4.54).

Remark 4.7.3 (Recursive formula for ruin probabilities)
The ruin probability in can be expressed in the ruin probabilities at smaller initial
capitals, as follows:

To prove this, note that implies that the surplus eventually will drop below
the initial level, so

where we have substituted

4.8 EXPLICIT EXPRESSIONS FOR RUIN PROBABILITIES

Two situations exist for which we can give expressions for the ruin probabilities.
In case of exponential distributions, and mixtures or combinations of these, an
analytical expression arises. For discrete distributions, we can derive an algorithm.

In the previous section, we derived the mgf with the non-ruin probability
In some cases, it is possible to identify this mgf, and thus give an

expression for the ruin probability. We will describe how this works for mix-
tures and combinations of two exponential distributions, see Section 3.7. Since

and
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it follows from (4.54) that the ‘mgf’ of the function equals

Note that, except for a constant, is a density function, see Exercise 4.8.1.
Now, if X is a combination or a mixture of two exponential distributions as in
(3.27), i.e., for some and it has density function

then the right-hand side of (4.61), after multiplying both the numerator and the
denominator by can be written as the ratio of two polynomials
in By using partial fractions, this can be written as a sum of terms of the form

corresponding to times an exponential distribution. We give two
examples to clarify this method.

Example 4.8.1 (Ruin probability for exponential distributions)
In (4.62), let and hence the claims distribution is exponential(1).
Then, for and the right-hand side of (4.61) leads to

Except for the constant this is the mgf of an exponential distribution. We con-
clude from (4.61) that  – is equal to the density function of this distribution.
By using the boundary condition we see that for the exponential(1)
distribution

which corresponds to (4.23) in Section 4.4 for

Example 4.8.2 (Ruin probability, mixtures of exponential distributions)
Choose and Then
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So, after some calculations, the right-hand side of (4.61) leads to

for

The ruin probability for this situation is given by

Notice that indeed holds.

This method works fine for combinations of exponential distributions, too, and
also for the limiting case gamma see Exercises 4.8.5–7. It is possible to
generalize the method to mixtures/combinations of more than two exponential
distributions, but then roots of polynomials of order three and higher have to be
determined.

To find the coefficients in the exponents of expressions like (4.67) for the ruin
probability, i.e., the asymptotes of (4.66), we need the roots of the denominator
of the right-hand side of (4.61). Assume that, in the density (4.62), and

We have to solve the following equation:

Notice that the right-hand side of this equation corresponds to the mgf of the
claims only if is to the left of the asymptotes, i.e., if If is larger, then
this mgf is hence we write instead of for these branches in
Figure 4.4. From this figure, one sees immediately that the positive roots and

are real numbers that satisfy

Remark 4.8.3 (Ruin probability for discrete distributions)
If the claims X can have only a finite number of positive values
with probabilities the ruin probability equals
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where The summation extends over all values
of leading to and hence is finite. For a proof of
(4.70), see Gerber (1989).

4.9 APPROXIMATION OF RUIN PROBABILITIES

For other distributions than the ones above, it is difficult to calculate the exact
value of the ruin probability Furthermore, one may argue that this exact
value is not very important, since in case of doubt, other factors will be decisive.
So there is a need for good and simple approximations for the ruin probability.

First of all, we give some global properties of the ruin probability that should
preferably be satisfied by the approximations. Equation (4.50) yields

Next, we know that and thus, with partial integration,

These moments of the maximal aggregate loss L follow easily since
has a compound geometric distribution, with the distribution of M and
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given in Section 4.7. The required moments of are

Since we have

It can also be shown that

hence

After this groundwork, we are ready to introduce a number of possible approxi-
mations.

1.

2.

Replacing the claims distribution by an exponential distribution with the
same expected value, we get, see (4.23):

For the approximation is correct, but in general, the integrals over
the left-hand side and the right-hand side are different.

Approximating by with chosen such that (4.74) holds
yields as an approximation

Note that if the claims are exponential distributed, then so
not only (4.77) but also (4.78) gives the correct ruin probability.
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3.

4.

5.

6.

7.

We can approximate the ruin probability by a gamma distribution:

To fit the first two moments, the parameters and of the gamma cdf
must meet the following conditions:

Just as in the first approximation, one can replace the claims distribution
by another with a few moments in common, for which the corresponding
ruin probability can be easily calculated. A suitable candidate for such a
replacement is a mixture or combination of exponential distributions.

Another possible replacement is a discrete distribution. The ruin probabili-
ties can easily be computed from (4.70). For each claims distribution, one
can find a two-point distribution with the same first three moments. This
is not always possible in case of a mixture/combination of two exponential
distributions. Both methods yield good approximations.

From the theory of ordering of risks, it follows that one gets a lower bound for
the ruin probability if one replaces the claims distribution with expectation

by a one-point distribution on A simple upper bound can be obtained
if one knows the maximum value of the claims. If one takes a claims
distribution with probability for and probability for 0, then a
Poisson process arises which is equivalent to a Poisson process with claims
always equal to and claim number parameter instead of So, both
the lower bound and the upper bound can be calculated by using (4.70) with

The geometric distribution allows the use of Panjer’s recursion, provided
the individual terms are integer-valued. This is not the case for the terms

of L, see (4.51). But we can easily derive lower and upper bounds this
way, by simply rounding the down to an integer multiple of to get a
random variable which is suitable for Panjer’s recursion, and gives an
upper bound for since Rounding up leads
to a lower bound for By taking small, we get quite good upper and
lower bounds with little computational effort.
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4.10 EXERCISES

Section 4.2

1.

2.

Assume that the waiting times are independent and identically distributed random
variables with cdf and density function Given and for
some what is the conditional probability of a claim occurring between points in time
and (This generalization of a Poisson process is called a renewal process.)

Let be a Poisson process with parameter and let and
Show that and interpret these

formulas by comparing with

Section 4.3

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Prove that the expressions in (4.11) are indeed equivalent to (4.10).

Use for and to prove that

If the claims distribution is discrete with then determine if it is given that
R = log 3.

Which premium yields

If then determine R by using a spreadsheet, for and

Assume that the claims X in a ruin process with arise as follows: first, a value Y is drawn
from two possible values 3 and 7, each with probability Next, conditionally on the
claim X is drawn from an exponential distribution. Determine the adjustment coefficient R.
If R = 2 for the same distribution, is larger or smaller than

In some ruin process, the individual claims have a gamma(2,1) distribution. Determine the
loading factor as a function of the adjustment coefficient R. Also, determine If the
adjustment coefficient equals does hold? Using a sketch of the graph of the mgf of the
claims, discuss the behavior of R as a function of

Discuss the determination of the adjustment coefficient R if in a ruin process the claims are
lognormally distributed. Also, if the claims are inverse Gaussian.

Argue that Use the relation where S denotes the total claim
in some period of length 1, to derive that an exponential premium increases with the parameter
(risk aversion)

Section 4.4

1.

2.

From Theorem 4.4.1, we know that if Why does this imply that if

Which compound Poisson processes have a ruin probability

For and determine the values of for which is
finite, and also determine R.
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3.

4.

5.

6.

For a compound Poisson process, it is known that the continuous ruin probability depends on
the initial capital in the following way: Determine the adjustment
coefficient for this process. Can anything be said about the Poisson parameter in this risk process?
What is

Assume that By looking at the event "non-ruin & no claim before with
denoting the premium income per unit of time, show that must hold.

For a certain risk process, it is given that and Which of the
numbers 0, 1 and 6 are roots of the adjustment coefficient equation
Which one is the real adjustment coefficient?
One of the four expressions below is the ruin probability for this process; determine which
expression is the correct one, and argue why the other expressions can’t be the ruin probability.

The ruin probability for some ruin process equals By using
the fact that for ruin processes, in general, for some
determine the adjustment coefficient R and the appropriate constant in this case.

Section 4.5

1.

2.

3.

4.

Assume that the distribution of satisfies and
Further, and is an integer. Determine if Express in terms of

and both and in terms of and

Assume that an insurer uses an exponential utility function with risk aversion Prove
that if and only if and interpret this result.

Show that with probability 1, as well as for all if both are determined
for a compound Poisson risk process.

Assume that the continuous infinite ruin probability for a compound Poisson process equals
in case of an initial capital for some constant Furthermore, the claims follow an

exponential distribution with parameter 2 and the expected number of claims a year is 50.
Determine the safety loading for this process. Also determine an upper bound for the discrete
infinite ruin probability.

Section 4.6

1. The claim process on some insurance portfolio is compound Poisson with and
The loading factor is Calculate the adjustment coefficient in case one takes out a

proportional reinsurance with a loading factor Calculate the relative loading
factor after this reinsurance. Which restrictions apply to
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2.

3.

4.

For the same situation as in the previous exercise, but now with excess of loss coverage
write down the adjustment coefficient equation, and determine the loading factor after

reinsurance.

Assume that the claims per year are R(5,1) distributed and that A
reinsurer covers a fraction of each risk, applying a premium loading factor Give the
adjustment coefficient for the reinsured portfolio, as a function of Which value optimizes
the security of the insurer?

A total claims process is compound Poisson with and The relative
loading factor is One takes out a proportional reinsurance The relative
loading factor of the reinsurer equals 1. Determine the adjustment coefficient For which
values of is ruin not a certainty?

Section 4.7

1.

2.

3.

What is the mgf of if the claims (a) are equal to with probability 1, and (b) have an
exponential distribution?

Prove that

In Exercises 4.4.3 and 4.4.6, what is

Section 4.8

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

For which constant is a density?

Make sketches like in Figure 4.4 to determine the asymptotes of (4.61), for a proper combination
of exponential distributions and for a gamma distribution.

Calculate and R if Which values of are
possible taking into account that decreases in and that the safety loading is positive?

If and then determine (4.61), and an
explicit expression for

Determine ] in the previous exercise, with the help of (4.17). Determine independent
random variables X, Y and I such that IX + (1 – I)Y has density

Just as Exercise 4.8.4, but now is a gamma density, and

Sketch the density of in case of a discrete claims distribution.

Prove (4.70) in case of and

Assume that the individual claims in a ruin process are equal to the maximum of two independent
exponential(1) random variables, i.e., with exponential(l). Deter-
mine the cdf of and use this to prove that the corresponding density is a combination
of exponential distributions. Determine the loading factor in the cases that for the adjustment
coefficient, we have R = 0.5 and R = 2.5.

Determine if and the claims are equal to with and
exponential( 1) and independent.
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11. The ruin processes of company 1 and 2 are both compound Poisson with intensities
and claims distributions exponential(3) and exponential(6), and loading factors
and The claims process of company 1 is independent of the one of company 2.
These companies decide to merge, without changing their premiums. Determine the intensity,
claims distribution and loading factor of the ruin process for the merged company. Assume
that both company 1 and 2 have an initial capital equal to 0, then obviously so does the
merged company. Compare the probabilities of the following events (continuous infinite ruin
probabilities): “both companies never go bankrupt” with “the merged company never goes
bankrupt”. Argue that, regardless of the values of the initial capitals and for the separate

Verify (4.72), (4.73), (4.75)/(4.76), and (4.80). Solve and from (4.80).

Work out the details of the final approximation.

companies, and consequently of for the merged company, the following holds: the event
“both companies never go bankrupt” has a smaller probability than “the merged company never
goes bankrupt”.

Section 4.9

1.

2.



5
Premium principles

5.1 INTRODUCTION

The activities of an insurer can be described as an input-output system, in which
the surplus increases because of (earned) premiums and interest, and decreases
because of claims and costs, see also the previous chapter. In this chapter we discuss
some mathematical methods to determine the premium from the distribution of the
claims. The actuarial aspect of a premium calculation is to calculate a minimum
premium, sufficient to cover the claims and, moreover, to increase the expected
surplus sufficiently for the portfolio to be considered stable.

Bühlmann (1985) described a top-down approach for the premium calculation.
One primarily looks at the premium required by the total portfolio. Secondly,
one considers the problem of spreading the total premium over the policies in
a ‘fair’ way. To determine the minimum annual premium, we use the discrete
ruin probability as introduced in the previous chapter (with some simplifying
assumptions). The result is an exponential premium (see Chapter 1), where the
parameter follows from the maximal ruin probability allowed and the initial capital.
Assuming that the suppliers of the initial capital are to be rewarded with a certain
annual dividend, and that the resulting premium should be as low as possible,
therefore as competitive as possible, we can derive the optimal initial capital.

111
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Furthermore we show how the total premium can be spread over the policies in a
fair way, while the total premium keeps meeting our objectives.

For the policy premium, a lot of premium principles can be justified. Some
of them can be derived from models like the zero utility model, where the ex-
pected utility before and after insurance are equal. Other premium principles can
be derived as an approximation of the exponential premium principle. We will
verify to which extent these premium principles satisfy a number of reasonable
requirements. We will also consider some characterizations of premium principles.
For instance, it turns out that the only utility preserving premium principles for
which the total premium for independent policies equals the sum of the individual
premiums are the net premium and the exponential premium.

As an application, we analyze how insurance companies should handle if they
want to form a ‘pool’. It turns out that the most competitive total premium is
obtained when the companies each take a fixed part of the pooled risk (coinsur-
ance), where the proportion is inversely proportional to their risk aversion. See
also Gerber (1979).

5.2 PREMIUM CALCULATION FROM TOP-DOWN

As argued in Chapter 4, insuring a certain portfolio of risks leads to a surplus which
increases because of collected premiums and decreases in the event of claims. The
following equalities hold in the discrete time ruin model:

Ruin occurs if for some We assume that the annual total claims
are independent and identically compound Poisson distributed, say

The following question then arises: how large should the initial capital
and the premium be for ruin not to occur with high probability?

The probability of ruin is bounded from above by where R denotes the
adjustment coefficient, i.e. the root of the equation see Section 4.5.
Note that, for the selected conditions, the discrete adjustment coefficient and
the usual adjustment coefficient R coincide. If we set the upper bound equal to
then Hence, we get a ruin probability bounded by by choosing
the premium as

where
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This premium is the exponential premium (1.20) with parameter R. From Example
1.3.1, we know that the adjustment coefficient can be interpreted as a measure for
the risk aversion: for the utility function with risk aversion the utility
preserving premium is

A characteristic of the exponential premium is that choosing this premium for
each policy also yields the right total premium for S. So, if the denoting
the payment on policy are independent, then, as the reader may
verify,

Another premium principle which is additive in this sense is the variance principle,
where for a certain parameter the premium is determined by

This premium can also be obtained as an approximation of the exponential pre-
mium by considering only two terms of the Taylor expansion of the cgf, assuming
that the risk aversion R is small, since

For the approximation of (5.2) by (5.4), should thus be taken equal to From

(5.2) and we can roughly state that:

doubling the loading factor in (5.4) decreases the upper bound for the ruin
probability from to

halving the initial capital requires the loading factor to be doubled if one
wants to keep the same maximal ruin probability.

We will introduce a new aspect in the discrete time ruin model (5.1): how large
should be, if the premium is to contain a yearly dividend for the shareholders
who have supplied the initial capital? A premium at the portfolio level which takes
this into account is
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i.e. the premium according to (5.2), (5.4) and (5.5), plus the dividend We
choose such that the premium is as competitive as possible, therefore as low as
possible. By setting the derivative equal to zero, we see that a minimum is reached
for Substituting this value into (5.6), it turns out that the
optimal premium is a standard deviation premium:

In the optimum, the loading equals the dividend notice that;
if increases, then decreases, but increases.

Finally, we have to determine which premium should be asked at the down
level. We can’t just use a loading proportional to the standard deviation. The sum
of these premiums for independent risks doesn’t equal the premium for the sum,
and consequently the top level wouldn’t be in balance: if we add a contract, the
total premium no longer satisfies the specifications. On the other hand, as stated
before, the variance principle is additive, just like the exponential and the net
premium. Hence, (5.6) and (5.7) lead to the following recommendation for the
premium calculation:

1.

2.

Compute the optimal initial capital for S, and

Spread the total premium over the individual risks by charging the
following premium:

where

Note that in this case the loading factor of the variance premium is twice as
large as it would be without dividend, see (5.4) and (5.5). The total dividend and
the necessary contribution to the expected growth of the surplus which is required
to avoid ruin are spread over the policies in a similar way.

Bühlmann gives an example of a portfolio consisting of two kinds (A and B) of
exponential risks:
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Choose hence Then, for the model with dividend, we
have the following table of variance premiums for different values of

The portfolio premium and the optimal follow from (5.7), R from (5.2), and the
premiums for A and B are calculated according to (5.8). We observe that:

the higher the required return on the supplied initial capital the lower
the optimal value for

the loading is far from proportional to the risk premium: the loading as a
percentage for risks of type A is 5 times the one for risks of type B;

the resulting exponential premiums are almost the same: if then the
premium with parameter 2R is 6.18 for risks of type A and 1.037 for risks
of type B.

5.3 VARIOUS PREMIUM PRINCIPLES

In this section, we give a list of premium principles which can be applied at the
policy level as well as at the portfolio level. In the next section, we give a number
of mathematical properties that one might argue a premium principle should have.
Premium principles depend exclusively on the marginal distribution function of
the random variable. Consequently, we will use both notations and
for the premium of X, if is the cdf of X. We will assume that X is a bounded
random variable. Most premium principles can also be applied to unbounded and
possibly negative claims. This may result in an infinite premium, which implies
that the risk at hand is uninsurable.

We have encountered the following five premium principles in Section 5.2:

(a) Net premium:
Also known as the equivalence principle; this premium is sufficient for a
risk neutral insurer only.



116 PREMIUM PRINCIPLES

(b)

(c)

(d)

(e)

Expected value principle:
Here, the loading equals where is a parameter.

Variance principle:
Here, the loading is proportional to Var[X], and again

Standard deviation principle:
Here also

Exponential principle:
The parameter is called the risk aversion. We already showed in
the first chapter that the exponential premium increases if increases. For

the net premium arises; for the resulting premium equals
the maximal value of X, see Exercise 5.3.11.

In the following two premium principles, the ‘parameter’ is a function; therefore,
one could call them premium models.

(f)

(g)

Zero utility premium:
This concept was already considered in Chapter 1. The function repre-
sents the utility a decision maker attaches to his present capital plus So,

is the utility of the present capital and is the utility after
insurance of a risk X against premium The premium which solves the
utility equilibrium equation is called the zero utility premium. Each linear
transform of yields the same premium. The function is usually
assumed to be non-decreasing and concave. Accordingly it has positive but
decreasing marginal utility The special choice
leads to exponential utility; the net premium results for linear See
Chapter 1.

Mean value principle:
The function is a convex and increasing valuation function. Again, the
net premium and the exponential premium are special cases with
and

The following premium principles are chiefly of theoretical importance:

(h) Percentile principle:
The probability of a loss on contract X is at most
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(i)

(j)

Maximal loss principle:
This premium arises as a limiting case of other premiums: (e) for
and (h) for ‘practical’ example: a pregnant woman pays some
premium for an insurance contract, which guarantees that the baby will be
a girl; if it’s a boy, the entire premium is refunded.

Esscher principle:
Here, is a parameter with This premium is actually the net pre-
mium for a risk As one sees, Y results from X by
enlarging the large values of X, while reducing the small values. It is also
the expectation for the so-called Esscher transformation of which
has as a ‘density’:

This is the differential of a cdf with the same range as X, but for which
the probabilities of small values are reduced in favor of the probabilities of
large values. By doing so, a ‘safe’ premium arises.

5.4 PROPERTIES OF PREMIUM PRINCIPLES

Below, we give five desirable properties for premium principles Other useful
properties such as order preserving, which means that premiums for ‘smaller’ risks
should indeed be smaller, will not be covered. For this property, see Chapter 10.

(1)

(2)

(3)

Non-negative loading:
A premium without a loading will lead to ruin with certainty.

No rip-off:
The maximal loss principle (i) is a boundary case. If X is unbounded, this
premium is infinite.

Consistency: for each
If we raise the claim by some fixed amount then the premium should also
be higher by the same amount. A probably clearer synonym for consistency
is translation invariance. Note that in this chapter, a ‘risk’ is not necessarily
a non-negative random variable, though to avoid some technical problems
it is assumed to be bounded from below.



118 PREMIUM PRINCIPLES

(4)

(5)

Additivity: for independent X, Y
Joining independent risks together doesn’t influence the total premium.

Iterativity: for all X, Y
The premium for X can be calculated in two steps. First, apply to the
conditional distribution of X, given This yields a function of so
again a random variable, denoted by Then, apply the same premium
principle to this random variable. For an iterative premium principle, the
same premium results as when one applies the premium principle to X.

For the net premium, iterativity follows from the iterativity property for expected
values (2.7). At first sight, this criterion seems to be artificial. It can be explained
as follows: assume that a certain driver causes a Poisson number N of accidents
in one year, where the parameter is drawn from the distribution of the structure
variable The number of accidents varies because of the Poisson deviation from
the expectation and because of the variation of the structure distribution. In case
of iterativity, if we set premiums for both sources of variation one after another,
we get the same premium as if we determined the premium for N directly.

Example 5.4.1 (Iterativity of the exponential principle)
The exponential premium principle is iterative. This can be shown as follows:

After taking the expectation in an exponential premium, the transformations that
were done before are successively undone.

Example 5.4.2 (Compound distribution)
Assume that is additive as well as iterative, and that S is a compound distrib-
ution with N terms distributed as X. The premium for S then equals

Furthermore, if is also proportional, (or homogeneous), which means that
for all then In general, proportionality

doesn’t hold, see for instance Section 1.2. However, this property is used as a
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local working hypothesis for the calculation of the premium for similar contracts;
without proportionality, the use of a tariff is meaningless.

In Table 5.1, we summarize the properties of our various premium principles.
A “+” means that the property holds in general, a “–” that it doesn’t, while
especially an means that the property only holds in case of an exponential
premium (including the net premium). We assume that S is bounded from below.
The proofs of these properties are asked in the exercises, but for the proof of most
of the characterizations that zero utility and mean value principles with a certain
additional property must be exponential, we refer to the literature. See also the
following section.

Summarizing, one may state that only the exponential premium, the maximal
loss principle and the net premium principle satisfy all these properties. Since the
maximal loss premium principle and the net premium principle are of minor prac-
tical importance, only the exponential premium principle survives this selection.
See also Section 5.2. A drawback of the exponential premium has already been
mentioned: it has the property that a decision maker’s decisions do not depend on
the capital he has currently acquired. On the other hand, this is also a strong point
of this premium principle, since it is very convenient not to have to know one’s
current capital, which is generally either random or simply not precisely known at
each point in time.
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5.5 CHARACTERIZATIONS OF PREMIUM PRINCIPLES

In this section we investigate the properties marked with in Table 5.1, and also
some more characterizations of premium principles. Note that linear transforms of
the functions and in (f) and (g) yield the same premiums. The technique
to prove that only exponential utility functions have a certain property consists
of applying this property to risks with a simple structure, and derive a differential
equation for which holds only for exponential and linear functions. Since
the linear utility function is a limit of the exponential utility functions, we won’t
mention them explicitly in this section. For full proofs of the theorems in this
section, we refer to Gerber (1979, 1985) as well as Goovaerts et al. (1984).

The entries in Table 5.1 are studied in the following theorem.

Theorem 5.5.1 (Characterizing exponential principles)
The following assertions hold:

1.

2.

3.

4.

A consistent mean value principle is exponential.

An additive mean value principle is exponential.

An additive zero utility principle is exponential.

An iterative zero utility principle is exponential.

Proof. Since for a mean value principle we have con-
sistency is just additivity with the second risk degenerate, so the second assertion
follows from the first. The proof of the first, which will be given below, involves
applying consistency to risks that are equal to plus some Bernoulli random
variable, and computing the second derivative at to show that a valuation
function with the required property necessarily satisfies the differential equa-

tion which is satisfied only by the linear and exponential
valuation functions. The final assertion is proven in much the same way. The proof
that an additive zero utility principle is exponential proceeds by deriving a similar
equation, for which it turns out to be considerably more difficult to prove that the
exponential utility function is the unique solution.

To prove that a consistent mean value principle is exponential, assume that
which is a convex increasing function, yields a consistent mean value principle.
Let denote the premium, considered as a function of for a Bernoulli
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risk Then, by definition,

The right-hand derivative of this equation in yields

so The second derivative in gives

Because of the consistency, the premium for equals for each
constant and therefore

The second derivative at of this equation yields

and, since we have for all that

Consequently, is linear if and exponential if

Remark 5.5.2 (Continuous and mixable premiums)
Another interesting characterization is the following one. A premium principle

is continuous if in distribution implies If furthermore
admits mixing, which means that for

cdf’s F and G, then it can be shown that must be the expected value principle

Finally, the Esscher premium principle can be justified as follows.

Theorem 5.5.3
Assume an insurer has an exponential utility function with risk aversion If he
charges a premium of the form where is a continuous increasing
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function with his utility is maximized if hence if he
uses the Esscher premium principle with parameter

Proof. The proof of this statement is based on the technique of variational calculus
and adapted from Goovaerts et al. (1984). Let be a convex increasing utility
function, and introduce Then, because increases continuously, we
have Write To derive a condition for

to be maximal for all choices of continuous increasing functions when
consider a function for some arbitrary continuous function

A little reflection will lead to the conclusion that the fact that is optimal,
and this new function is not, must mean that

But this derivative is equal to

For this derivative equals zero if

Writing this can be rewritten as

Since the function is arbitrary, by a well-known theorem from variational
calculus we find that necessarily

Using and we see that

Now, if is exponential so then
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Since we obtain for the optimal standardized
weight function. The resulting premium is an Esscher premium with parameter

Notice that the insurer uses a different weighting function for risks having different
values of though these functions differ only by a constant factor.

5.6  PREMIUM REDUCTION BY COINSURANCE

Consider cooperating insurers which individually have exponential utility func-
tions with parameter Together, they want to insure a risk S by
defining random variables with

with denoting the risk insurer faces. S might for instance be a new risk they
want to take on together, or it may be their combined insurance portfolios that they
want to redistribute. The total premium they need is

This total premium depends on the choice of the How should the insurers
split up the risk S in order to make the pool as competitive as possible, hence to
minimize the total premium P?

It turns out that the optimal choice for the insurers is when each of them
insures a fixed part of S, to be precise

with

So, each insurer covers a fraction of the pooled risk which is proportional to
the reciprocal of his risk aversion. By (5.27), the corresponding total minimum
premium is
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This shows that the pool of cooperating insurers acts as one insurer with an
exponential premium principle with risk aversion

The proof that for all other appropriate choices of
goes as follows. We have to prove that (5.28) is smaller than (5.26), so

which can be rewritten as

This in turn is equivalent to

or

with

We can prove inequality (5.32) as follows. Note that and that
by definition Since is a convex function, we have for all real

and this implies that

Holder’s inequality, which is well-known, arises by choosing and
in (5.30). See the exercises.
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5.7 EXERCISES

Section 5.2

1.

2.

Show that (5.7) is valid.

What are the results in the table in case of a dividend and Calculate the
variance premium as well as the exponential premium.

Section 5.3

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

Let X ~ exponential(1). Determine the premiums (a)–(e) and (h)–(j).

Prove that is an increasing function of by showing that the
derivative with respect to is positive (see also Example 1.3.1).

Assume that the total claims for a car portfolio has a compound Poisson distribution with
gamma distributed claims per accident. Determine the expected value premium if the loading
factor equals 10%.

Determine the exponential premium for a compound Poisson risk with gamma distributed
individual claims.

Calculate the variance premium for the claims distribution as in Exercise 5.3.3.

Show that the Esscher premium equals where is the cgf of X.

What is the Esscher transformed density with parameter for the following densities: exponen-
tial binomial and Poisson

Show that the Esscher premium for X increases with the parameter

Calculate the Esscher premium for a compound Poisson distribution.

Show that the Esscher premium for small values of boils down to a variance premium principle.

Assume that X is a finite risk with maximal value hence but
0 for all Let denote the exponential premium for X. Show that

Section 5.4

1.

2.

3.

4.

In Table 5.1, prove the properties which are marked “+”.

Construct counterexamples for the first 4 rows and the second column for the properties which
are marked “–”.

Investigate the additivity of a mixture of Esscher principles of the following type:
for some where is the Esscher premium for

risk X with parameter

Formulate a condition for dependent risks X and Y that implies that
for the variance premium (subadditivity). Also show that this property holds for the standard
deviation principle, no matter what the joint distribution of X and Y is.
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Section 5.5

1. For a proof of Hölder’s inequality in case of let and satisfy
Successively prove that

if and then (write and );

if and then

2. Whose inequality arises for in the previous exercise?
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Bonus-malus systems

6.1 INTRODUCTION

This chapter deals with the theory behind bonus-malus methods for automobile
insurance. This is an important branch of non-life insurance, in many countries even
the largest in total premium income. A special feature of automobile insurance
is that quite often and to everyone’s satisfaction, a premium is charged which
depends for a great deal on the claims filed on the policy in the past. In experience
rating systems such as these, bonuses can be earned by not filing claims, and a
malus is incurred when many claims have been filed. Experience rating systems
are common practice in reinsurance, but in this case, it affects the consumer
directly. Actually, by charging a randomly fluctuating premium, the ultimate goal
of insurance, namely being in a completely secure financial position, is not reached.
But it can be shown that in this type of insurance, the uncertainty is greatly reduced.
This same phenomenon can also be observed in other types of insurance; think
for instance of the part of the claims that is not reimbursed by the insurer because
there is a deductible.

That ‘lucky’ policyholders pay for the damages caused by less lucky insureds
is the essence of insurance (probabilistic solidarity). But in private insurance,
solidarity should not lead to inherently good risks paying for bad ones. An insurer
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trying to impose such subsidizing solidarity on his customers will see his good
risks take their business elsewhere, leaving him with the bad risks. This may occur
in the automobile insurance market when there are regionally operating insurers.
Charging the same premiums nationwide will cause the regional risks, which for
automobile insurance tend to be good risks because traffic is not so heavy there, to
go to the regional insurer, who with mainly good risks in his portfolio can afford
to charge lower premiums.

There is a psychological reason why experience rating is broadly accepted with
car insurance, and not, for instance, with health insurance. Bonuses are seen as
rewards for careful driving, premium increases as an additional and well-deserved
fine for the accident-prone. Many think that traffic offenses cannot be punished
harshly and often enough. But someone who is ill is generally not to blame, and
does not deserve to suffer in his pocket as well.

Traditionally, car insurance covers third party liability, as well as the damage to
one’s own vehicle. The latter is more relevant for rather new cars, since for reasons
of moral hazard, insurers do not reimburse more than the current value of the car.

In Section 6.2, we describe the Dutch bonus-malus system, which we consider
to be typical for such systems. Also, we briefly describe the reasons which have
led to this system. Bonus-malus systems lend themselves for analysis by Markov
chains, see Section 6.3. In this way, we will be able to determine the Loimaranta
efficiency of such systems, which is the elasticity of the mean asymptotic premium
with respect to the claim frequency. In Chapter 7, we present a bonus-malus system
that is a special case of a so-called credibility method. In Chapter 8, we study among
other things some venerable non-life actuarial methods for automobile premium
rating in the light of generalized linear models.

6.2 AN EXAMPLE OF A BONUS-MALUS SYSTEM

Every country has his own bonus-malus system, the wheel having been reinvented
quite a few times. The Dutch system is the result of a large-scale investigation of
the Dutch market by five of the largest companies in 1982, prompted by the fact
that the market was chaotic and in danger of collapsing. Many Dutch insurers still
utilize variants of the proposed system.

First, a basic premium is determined using rating factors like weight, catalogue
price or capacity of the car, type of use of the car (privately or for business), and
of course the type of coverage (comprehensive, third party only, or a mixture).
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This is the premium that drivers without a known claims history have to pay. The
bonus and malus for good and bad claims experience are implemented through
the use of a so-called bonus-malus scale. One ascends one step, getting a greater
bonus, after a claim-free year, and descends several steps after having filed one
or more claims. The bonus-malus scale, including the percentages of the basic
premium to be paid and the transitions made after 0, 1, 2, and 3 or more claims,
is depicted in Table 6.1. In principle, new insureds enter at the step with premium
level 100%. Other countries might use different rating factors and a different
bonus-malus scale. The group of actuaries that proposed the new rating system in
the Netherlands investigated about 700000 policies of which 50 particulars were
known, and which produced 80000 claims. Both claim frequency and average
claim size were studied.

The factors that were thought relevant about each policy were not all usable as
rating factors. Driving capacity, swiftness of reflexes, aggressiveness behind the
wheel and knowledge of the highway code are hard to measure, while mileage
is prone to deliberate misspecification. For some of these relevant factors, proxy
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measures can be found. One can get a good idea about mileage by looking at
factors like weight and age of the car, as well as the type of fuel used, or type
of usage (private or professional). Diesel engines, for instance, tend to be used
only by drivers with a high mileage. Traffic density can be deduced from region
of residence, driving speed from horse power and weight of the car. But it will
remain impossible to assess the average future claim behavior completely using
data known in advance, hence the need arises to use the actual claims history as
a rating factor. Claims history is an ex post factor, which becomes fully known
only just before the next policy year. Hence one speaks of ex post premium rating,
where generally premiums are fixed ex ante.

In the investigation, the following was found. Next to the car weight, cylinder
capacity and horse power of the car provided little extra predicting power. It proved
that car weight correlated quite well with the total claim size, which is the product
of claim frequency and average claim size. Heavier cars tend to be used more
often, and also tend to produce more damage when involved in accidents. Car
weight is a convenient rating factor, since it can be found on official car papers.
In many countries, original catalogue price is used as the main rating factor for
third party damage. This method has its drawbacks, however, because it is not
reasonable to assume that someone would cause a higher third-party claim total if
he has a metallic finish on his car or a more expensive audio system. It proved that
when used next to car weight, catalogue price also did not improve predictions
about third party claims. Of course for damage to the own vehicle, it remains
the dominant rating factor. Note that the premiums proposed were not just any
function of car weight and catalogue price, but they were directly proportional to
these numbers.

The factor ‘past claims experience’, implemented as ‘number of claim-free
years’, proved to be a good predictor for future claims, even when used in connec-
tion with other rating factors. After six claim-free years, the risk still diminishes,
although slower. This is reflected in the percentages in the bonus-malus scale given
in Table 6.1. Furthermore, it proved that drivers with a bad claims history are worse
than beginning drivers, justifying the existence of a malus class with a premium
percentage of more than 100%.

An analysis of the influence of the region on the claims experience proved that in
less densely populated regions, fewer claims occurred, although somewhat larger.
It appeared that the effect of region did not vanish with an increasing number of
claim-free years. Hence the region effect was incorporated by a fixed discount,
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in fact enabling the large companies to compete with the regionally operating
insurers on an equal footing.

The age of the policyholder is very important for his claim behavior. The claim
frequency at age 18 is about four times the one drivers of age 30–70 have. Part
of this bad claim behavior can be traced back to lack of experience, because after
some years, the effect slowly vanishes. That is why it was decided not to let
the basic premium vary by age, but merely to let young drivers enter at a more
unfavorable step in the bonus-malus scale.

For commercial reasons, the profession of the policy holder as well as the make
of the car were not incorporated in the rating system, even though these factors
did have a noticeable influence.

Note that for the transitions in the bonus-malus system, only the number of
claims filed counts, not their size. Although it is clear that a bonus-malus system
based on claim sizes is possible, such systems are hardly ever used with car
insurance.

6.3 MARKOV ANALYSIS

Bonus-malus systems are special cases of Markov processes. In such processes,
one goes from one state to another in time. The Markov property says that the
process is in a sense memory less: the probability of such transitions does not
depend on how one arrived in a particular state. Using Markov analysis, one may
determine which proportion of the drivers will eventually be on which step of the
bonus-malus scale. Also, it gives a means to determine how effective the bonus-
malus system is in determining adjusted premiums representing the driver’s actual
risk.

To fix ideas, let us look at a simple example. In a particular bonus-malus system,
a driver pays a high premium if he files claims in either of the two preceding
years, otherwise he pays with To describe this system by a bonus-malus
scale, notice first that there are two groups of drivers paying the high premium, the
ones who claimed last year, and the ones that filed a claim only in the year before.
So we have three states (steps):

1.

2.

3.

Claim in the previous policy year; paid at the previous policy renewal;

No claim in the previous policy year, claim in the year before; paid

Claim-free in the two latest policy years; paid
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First we determine the transition probabilities for a driver with probability of
having one or more claims in a policy year. In the event of a claim, he falls to state
1, otherwise he goes one step up, if possible. We get the following matrix P of
transition probabilities to go from state to state

The matrix P is a stochastic matrix: every row represents a probability distribution
over states to be entered, so all elements of it are non-negative. Also, all row
sums are equal to 1, since from any state one has to go to some state
Apparently we have

Hence the matrix P has as a right-hand eigenvector for eigenvalue 1.
Assume that initially at time the probability for each driver to be in
state is given by the row-vector with and

Often, the initial state is known to be and then will be
equal to one. The probability to start in state and to enter state after one year
is equal to so the total probability of being in state after one year, starting
from an initial class with probability equals In matrix notation, the
following vector gives the probability distribution of drivers over the states
after one year:

Drivers that produce a claim go to state 1. The probability of entering that state
equals Non-claimers go to a higher state, if possible. The
distribution over the states after two years is independent of since
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The state two years from now does not depend on the current state, but only
on the claims filed in the coming two years. Proceeding like this, one sees that

So we also have
The vector is called the steady state distribution. Convergence will not always
happen this quickly and thoroughly. Taking the square of a matrix, however, can
be done very quickly, and doing it ten times starting from P already gives
Each element of this matrix can be interpreted as the probability of going
from initial state to state in 1024 years. For regular bonus-malus systems, this
probability will not depend heavily on the initial state nor will it differ much
from the probability of reaching from in an infinite number of years. Hence all
rows of will be virtually equal to the steady state distribution. But there is
also a more formal way to determine it. This goes as follows. First, notice that

hence

But this means that the steady state distribution is a left-hand eigenvector of
P with eigenvalue 1. To determine we only have to find a non-trivial solution
for the linear system of equations (6.5), which is equivalent to the homogeneous
system and to divide it by the sum of its
components to make a probability distribution. Note that all components of

are necessarily non-negative, because of the fact that

Remark 6.3.1 (Initial distribution over the states)
It is not necessary to take to be a probability distribution. It also makes sense
to take for instance In this way, one considers a thousand
drivers with initial state 1. Contrary to the vectors as well as

do not represent the exact number of drivers in a particular state, but just
the expected values of these numbers. The actual numbers are binomial random
variables with as probability of success in a trial, the probability of being in that
particular state at the given time.

Efficiency
The ultimate goal of a bonus-malus system is to make everyone pay a premium
which is as near as possible the expected value of his yearly claims. If we want
to investigate how efficient a bonus-malus system performs this task, we have to
look at how the premium depends on the claim frequency To this end, assume
that the random variation about this theoretical claim frequency can be described
as a Poisson process, see Chapter 4. Hence, the number of claims in each year is
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a Poisson variate, and the probability of a year with one or more claims equals
The expected value of the asymptotic premium to be paid is called

the steady state premium. It of course depends on and in our example where
and the premiums are it equals

This is the premium one pays on the average after the effects of in which state one
initially started have vanished. In principle, this premium should be proportional
to since the average of the total annual claims for a driver with claim frequency
intensity parameter is equal to times the average size of a single claim, which
in all our considerations we have taken to be independent of the claim frequency.
Define the following function for a bonus-malus system:

This is the so-called Loimaranta efficiency; the final equality is justified by the
chain rule. It represents the ‘elasticity’ of the steady state premium with
respect to For ‘small’ it can be shown that if increases by a factor

increases by a factor which is approximately so we have

Ideally, the efficiency should satisfy In view of the explicit expression
(6.6) for for our particular three-state example the efficiency amounts to

As the steady state premium doesn’t depend on the initial state, the same holds for
the efficiency, though both of course depend on the claim frequency

Remark 6.3.2 (Efficiency less than one means subsidizing bad drivers)
The premium percentages in all classes are positive and finite, hence and

hold. In many practical bonus-malus systems, we have
over the whole range of This is for instance the case for formula (6.9) and all

see Exercise 6.3.4. Then we get
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As log decreases with so does from as to 0 as
So there is a claim frequency such that the steady state premium for
exactly equals the net premium. Drivers with pay less than they should,
drivers with pay more. This means that there is a capital transfer from
the good risks to the bad risks. The rules of the bonus-malus system punish the
claimers insufficiently. See again Exercise 6.3.4.

Remark 6.3.3 (Hunger for bonus)
Suppose a driver with claim probability who is in state 3 in the above system,
causes a damage of size in an accident. If he is not obliged to file this claim with
his insurance company, when exactly is it profitable for him to do so?

Assume that, as some policies allow, he only has to decide on December 31st
whether to file this claim, so it is certain that he has no claims after this one
concerning the same policy year. Since after two years the effect of this particular
claim on his position on the bonus-malus scale will have vanished, we use a
planning horizon of two years. His costs in the coming two years (premiums plus
claim), depending on whether or not he files the claim and whether he is claim-free
next year, are as follows:

Of course he should only file the claim if it makes his expected loss lower, which
is the case if

From (6.11) we see that it is unwise to file very small claims, because of the loss of
bonus in the near future. This phenomenon, which is not unimportant in practice,
is called hunger for bonus. On the one hand, the insurer misses premiums that are
his due, because the insured in fact conceals that he is a bad driver. But this is
compensated by the fact that small claims also involve handling costs.

Many articles have appeared in the literature, both on actuarial science and
on stochastic operational research, about this phenomenon. The model used can
be much refined, involving for instance a longer or infinite time-horizon, with
discounting. Also the time in the year that a claim occurs is important.
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Remark 6.3.4 (Steady state premiums and Loimaranta efficiency)
To determine the steady state premium as well as the Loimaranta efficiency for
a certain bonus-malus system, one may proceed as follows. Let denote the
number of states. For notational convenience, introduce the functions with

to describe the transition rules, as follows:

if by claims in a year, one goes from state to

otherwise.

The probability of a transition from state to state when the parameter equals
is

Next consider the initial distribution where is
the probability of finding a contract initially, at time in state for

Then the vector of probabilities to find a driver in class at time
can be expressed in the state vector as follows:

The sum of the is unity for each In the steady state we find, taking limits
for

with

As noted before, the steady state vector is a left-hand
eigenvector of the matrix P corresponding to the eigenvalue 1. In the steady state,
we get for the asymptotic average premium (steady state premium) with claim
frequency

with the premium for state Note that depends on but not on the
initial distribution over the states.
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Having an algorithm to compute as in (6.16), we can easily approximate
the Loimaranta efficiency All it takes is to apply (6.8). But it is also possible
to compute the efficiency exactly. Write then

where These derivatives can be determined by taking derivatives
in the system (6.15). One finds the following equations:

where the derivatives of can be found as

Using the fact that the efficiency can be computed for every
by solving the resulting system of linear equations. In this way, one can compare
various bonus-malus systems as regards efficiency, for instance by comparing the
graphs of for the plausible values of ranging from 0.05 to 0.2, or by looking
at some weighted average of values.

6.4 EXERCISES

Section 6.2

1. Determine the percentage of the basic premium to be paid by a Dutch driver, who originally
entered the bonus-malus scale at level 100%, drove without claim for 7 years, then filed one
claim during the eighth policy year, and has been driving claim-free for the three years since
then. Would the total of the premiums he paid have been different if his one claim occurred in
the second policy year?

Section 6.3

1.

2.

Prove (6.8).

Determine with P as in (6.1). What is the meaning of its elements? Can you see directly
from this that must hold?
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3.

4.

5.

6.

7.

Determine in the example with three steps in this section if in state 2, instead of the
premium is Argue that the system can now be described by only two states, and determine P
and

Show that in (6.9) for every and with When is close to 1?

Recalculate (6.11) for a claim at the end of the policy year when the interest is

Calculate the Loimaranta efficiency (6.9) by method (6.17)–(6.19).

Determine the value of such that the transition probability matrix P has vector as its
steady state vector, if P is given by

8.

9.

If for the steady state premium we have if and for
estimate the Loimaranta efficiency at

For the following transition probability matrix:

determine the relation between and that holds if the steady state vector equals
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Credibility theory

7.1 INTRODUCTION

In insurance practice it often occurs that one has to set a premium for a group of
insurance contracts for which there is some claim experience regarding the group
itself, but a lot more on a larger group of contracts that are more or less related.
The problem is then to set up an experience rating system to determine next year’s
premium, taking into account not only the individual experience with the group,
but also the collective experience. There are two extreme positions possible. One
is to charge the same premium to everyone, estimated by the overall mean of
the data. This makes sense if the portfolio is homogeneous, which means that all
risk cells have identical mean claims. But if this is not the case, the ‘good’ risks
will take their business elsewhere, leaving the insurer with only ‘bad’ risks. The
other extreme is to charge to group its own average claims as a premium.
Such premiums are justified if the portfolio is heterogeneous, but they can only be
applied if the claims experience with each group is large enough. As a compromise,
already since the beginning of the 20th century one often asks a premium which
is a weighted average of these two extremes:

139
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The factor that expresses how ‘credible’ the individual experience of cell
is, is called the credibility factor; a premium such as (7.1) is called a credibility
premium. Charging a premium based on collective as well as individual experience
is justified because the portfolio is in general neither completely homogeneous, nor
completely heterogeneous. The risks in group have characteristics in common
with the risks in other groups, but they also possess unique group properties.

One would choose close to one under the following circumstances: the risk
experience with cell is vast, it exhibits only little variation, or the variation
between groups is substantial. There are two methods to try and determine a
value for In limited fluctuation credibility theory, a cell is given full credibility

if the experience with it is large enough. This means that the probability
of having at least a certain relative error in the individual mean does not exceed
a given threshold. If not, the credibility factor equals the ratio of the experience
actually present and the experience needed for full credibility. More interesting is
the greatest accuracy credibility theory, where the credibility factors are derived
as optimal coefficients in a Bayesian model with variance components. This model
was developed in the 1960’s by Bühlmann.

Note that apart from claim amounts, the data can also concern loss ratios, i.e.,
claims divided by premiums, or claims as a percentage of the sum insured, and
so on. Quite often, the claims experience in a cell relates to just one contract,
observed in a number of periods, but it is also possible that a cell contains various
‘identical’ contracts.

In practice, one should use credibility premiums only if one only has very
few data. If one has additional information in the form of collateral variables, for
instance, probably using a generalized linear model (GLM) such as described in
the following chapter is indicated. The main problem is to determine how much
virtual experience, see Remark 7.2.7 and Exercise 7.4.7, one should incorporate.

In Section 7.2 we present a basic model to illustrate the ideas behind credibility
theory. In this model the claims total for contract in period is decomposed
into three separate components. The first component is the overall mean the
second a deviation from this mean which is specific for this contract, the third is a
deviation for the specific time period. By taking these deviations to be independent
random variables, we see that there is a covariance structure between the claim
amounts, and under this structure we can derive estimators of the components
which minimize a certain sum of squares. In Section 7.3 we show that these exact
covariance structures, and hence the same optimal estimators, also arise in more
general models. Furthermore, we give a short review of possible generalizations
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of the basic model. In Section 7.4, we investigate the Bühlmann-Straub model, in
which the observations are measured in different precisions. In Section 7.5 we give
an application from motor insurance, where the numbers of claims are Poisson
random variables with as a parameter the outcome of a structure parameter which
is assumed to follow a gamma distribution.

7.2 THE BALANCED BÜHLMANN MODEL

To clarify the ideas behind credibility theory, we study in this section a stylized
credibility model. Consider the random variable representing the claim sta-
tistic of cell in year For simplicity, we assume that the cell
contains a single contract only, and that every cell has been observed during T
observation periods. So for each the index has the values
Assume that this claim statistic is the sum of a cell mean plus ‘white noise’,
i.e., that all are independent and distributed, with possibly un-
equal mean for each cell, but with the same variance We can test for
equality of all group means using the familiar statistical technique of analysis of
variance (ANOVA). If the null-hypothesis that all are equal fails to hold, this
means that there will be more variation between the cell averages around the
overall average than can be expected in view of the observed variation within
the cells. For this reason we look at the following random variable, called the
sum-of-squares-between or S S B:

One may show that, under the null-hypothesis that all group means are equal,
the random variable S S B has mean Since is unknown, we must
estimate this parameter separately. This estimate is derived from the sum-of-
squares-within or S SW, which is defined as

It is easy to show that the random variable S SW has mean Dividing
S S B by J – 1 and S SW by J (T – 1) we get two random variables, each with
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mean called the mean-square-between (M S B) and the mean-square-within
(MSW) respectively. We can perform an F-test now, where large values of the
M S B compared to the M S W indicate that the null-hypothesis that all group
means are equal should be rejected. The test statistic to be used is the so-called
variance ratio or F-ratio:

Under the null-hypothesis, S S B divided by has a distribution, while
S S W divided by has a distribution. Furthermore, it is possible
to show that these random variables are independent. Therefore, the ratio F has an
F(J — 1, J(T — 1)) distribution. Proofs of these statements can be found in many
texts on mathematical statistics, under the heading ‘one-way analysis of variance’.
The critical values of F can be found in an F-table (Fisher distribution).

Example 7.2.1 (A heterogeneous portfolio)
Suppose that we have the following observations for 3 groups and 5 years:

As the reader may verify, the M S B equals 500 with 2 degrees of freedom, while
the M S W is 109 with 12 degrees of freedom. This gives a value F = 4.6, which
is significant at the 95% level, the critical value being 3.89. The conclusion is that
the data show that the mean claims per group are not all equal.

If the null-hypothesis fails to be rejected, there is apparently no convincing statis-
tical evidence that the portfolio is heterogeneous. Accordingly, we should ask the
same premium for each contract. In case of rejection, apparently there is variation
between the cell means In this case one may treat these numbers as fixed
unknown numbers, and try to find a system behind these numbers, for instance
by doing a regression on collateral data. Another approach is to assume that the
numbers  have been produced by a chance mechanism, hence by ‘white noise’
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similar to the one responsible for the deviations from the mean within each cell.
This means that we can decompose the claim statistics as follows:

with  and independent random variables for which

Because the variance of in (7.5) equals the sum of the variances of its compo-
nents, models such as (7.5) are called variance components models. Model (7.5) is
a simplified form of the so-called classical Bühlmann model, because we assumed
independence of the components where Bühlmann only assumes the correlation
to be zero. We call our model which has equal variance for all observations, as
well as equal numbers of policies in all cells, the balanced Bühlmann model.

The interpretation of the separate components in (7.5) is the following.

1.

2.

3.

is the overall mean; it is the expected value of the claim amount for an
arbitrary policyholder in the portfolio.

denotes a random deviation from this mean, specific for contract The
conditional mean, given of the random variables equals
It represents the long-term average of the claims each year if the length of the
observation period T goes to infinity. The component describes the risk
quality of this particular contract; the mean equals zero, its variation
describes differences between contracts. The distribution of depicts the
risk structure of the portfolio, hence it is known as the structure distribution.
The parameters and characterizing the risk structure are called the
structural parameters.

The components denote the deviation for year from the long-term
average. They describe the within-variation of a contract. It is the variation of
the claim experience in time through good and bad luck of the policyholder.

Note that in the model described above, the random variables are dependent
for fixed   since they share a common risk quality component One might say
that independent random variables with the same probability distribution involving
unknown parameters in a sense are dependent anyway, since their values all depend
on these same unknown parameters.
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In the next theorem, we are looking for a predictor of the as yet unobserved
random variable We require this predictor to be a linear combination of
the observable data with the same mean as Furthermore,
its mean squared error must be minimal. We prove that under model (7.5), this
predictor has the credibility form (7.1), so it is a weighted average of the individual
claims experience and the overall mean claim. The theorem also provides us with
the optimal value of the credibility factor We want to know the optimal predictor
of the amount to be paid out in the next period T + 1, since that is the premium we
should ask for this contract. The distributional assumptions are assumed to hold
for all periods Note that in the theorem below, normality is not
required.

Theorem 7.2.2 (Balanced Bühlmann model; homogeneous estimator)
Assume that the claim figures     for contract in period can be written as the
sum of stochastically independent components, as follows:

where the random variables are iid with mean and and
also the random variables are iid with mean and for
all and Furthermore, assume the random variables to be independent of the

Then, the homogeneous linear combination which is
the best unbiased predictor of in the sense of minimal mean squared error
(MSE)

equals the credibility premium

where

is the resulting best credibility factor (which in this case is equal for all ),
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is the collective estimator of and

is the individual estimator of

Proof. Because of the independence assumptions and the equal distributions, the
random variables with are interchangeable. By convexity, (7.8) has a
unique minimum. For symmetry reasons, in the optimum all values of
must be identical. The same goes for all values Combining this
with the unbiasedness restriction, we see that the homogeneous linear estimator
with minimal MSE must be of the form (7.9) for some We only have to find its
optimal value.

Since and all have mean we can rewrite the MSE (7.8) as:

This quadratic form in is minimal for the following choice of

where it is left to the reader (Exercise 7.2.1) to verify the final equality by proving
and filling in the necessary covariances:

So indeed predictor (7.9) leads to the minimal MSE (7.8) for the value of given
in (7.10).
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Remark 7.2.3 (Asymptotic properties of the optimal credibility factor)
The credibility factor in (7.10) has a number of plausible asymptotic properties:

1.

2.

3.

4.

If then The more claims experience there is, the more faith
we can have in the individual risk premium. This asymptotic case is not very
relevant in practice, because it assumes that the risk does not change over
time.

If then If the expected individual claim amounts are identically
distributed, there is no heterogeneity in the portfolio. But then the collective
mean see (7.16) below, or its best homogeneous estimator in (7.9),
are optimal linear estimators of the risk premium.

If then This is also intuitively clear. In this case, the result
on the other contracts does not provide information about risk

If then If for a fixed risk parameter, the claims experience
is extremely variable, the individual experience is not useful for estimating
the real risk premium.

Note that (7.9) is only a statistic if the ratio is known; otherwise its distribution
will contain unknown parameters. In Example 7.2.5 below we show how this ratio
can be estimated as a by-product of the ANOVA. The fact that the credibility factor
(7.14) does not depend on is due to the simplifying assumption we have made
that the number of observation periods is the same for each as well as that all
observations have the same variance,

If we allow that our linear estimator contains a constant term, hence look at
the best inhomogeneous linear predictor we get
the next theorem. Two things should be noted. One is that it will prove that the
unbiasedness restriction is now superfluous. The other is that (7.16) below looks
just like (7.9), except that the quantity is replaced by But this means that
the inhomogeneous credibility premium for group does not depend on the data
from other groups The homogeneous credibility premium assumes the ratio

to be known; the inhomogeneous credibility premium additionally assumes
that is known.

Theorem 7.2.4 (Balanced Bühlmann model; inhomogeneous estimator)
Under the same distributional assumptions about as in the previous theorem,
the inhomogeneous linear combination to predict
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next year’s claim total which is optimal in the sense of mean squared error
is the credibility premium

where and are as in (7.10) and (7.12).

Proof. The same symmetry considerations as in the previous proof tell us that
the values of are identical in the optimal solution, just as those of

So for certain and the inhomogeneous linear predictor
of with minimal MSE is of the following form:

The MSE can be written as variance plus squared bias, as follows:

The second term on the right hand side is zero, and hence minimal, if we choose
This entails that the estimator we are looking for is necessarily

unbiased. The first term on the right hand side of (7.18) can be rewritten as

because the covariance term vanishes since depends only of
with Hence any solution with can be improved, since a
lower value of (7.19) is obtained by taking Therefore choosing

is optimal. So all that remains to be done is to minimize the following
expression for

which has as an optimum
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so the optimal is just as in (7.10). The final equality can be verified by filling
in the relevant covariances (7.15). This means that the predictor (7.16) for
has minimal MSE.

Example 7.2.5 (Credibility estimation in Example 7.2.1)
Consider again the portfolio of Example 7.2.1. It can be shown (see Exercise
7.2.8), that in model (7.5) the numerator of F in (7.4) (the MSB ) has mean

while the denominator M S W has mean Hence will be close
to which means that we can use to estimate Note that
this is not an unbiased estimator, since The resulting
credibility factor is for each group. So the optimal forecasts for the
claims next year in the three groups are
resulting in 102.18, 110 and 117.82. Notice the ‘shrinkage effect’: the credibility
estimated premiums are closer together than the original group means 100, 110
and 120.

Remark 7.2.6 (Estimating the risk premium)
One may argue that instead of aiming to predict next year’s claim figure
including the fluctuation       we actually should estimate the risk premium

of group But we will show that, whether we allow a constant term in
our estimator or not, in each case we get the same optimum that we found before.
Indeed we have for every random variable Y:

If Y depends only on the that are already observed, hence with the
covariance term must be equal to zero. Since it follows from (7.22) that the MSE’s
for Y as an estimator of and of differ only
by a constant we conclude that both MSE’s are minimized by
the same estimator Y.

The credibility premium (7.16) is a weighted average of the estimated individual
mean claim, with as a weight the credibility factor and the estimated mean claim
for the whole portfolio. Because we assumed that the number of observation years
T for each contract is the same, by asking premium (7.16) on the lowest level we
receive the same premium income as when we would ask as a premium from
everyone. For the individual premium equals the collective premium. This is
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acceptable in a homogeneous portfolio, but in general not in a heterogeneous one.
For a premium is charged which is fully based on individual experience.
In general, this individual information is scarce, making this estimator unusable
in practice. Sometimes it even fails completely, like when a prediction is wanted
for a contract that up to now has not produced any claim.

The quantity represents the heterogeneity of the portfolio as depicted in
the risk quality component and is a global measure for the variability within
the homogeneous groups.

Remark 7.2.7 (Virtual experience)
Write then an equivalent expression for the credibility
premium (7.16) is the following:

So if we add a virtual claims total to the actually observed claim total
and also extend the number of observation periods by an extra periods,

the credibility premium is nothing but the average claim total, adjusted for virtual
experience.

7.3 MORE GENERAL CREDIBILITY MODELS

In model (7.5) of the previous section, we assumed the components and to
be independent random variables. But from (7.14) and (7.15) one sees that actually
only the covariances of the random variables are essential. We get the same
results if we impose a model with weaker requirements, as long as the covariance
structure remains the same. An example is to only require independence and
identical distributions of the conditionally given with
for all If the joint distribution of and is like that, the are not necessarily
independent, but they are uncorrelated, as can be seen from the following lemma:

Lemma 7.3.1 (Conditionally iid random variables are uncorrelated)
Suppose that given the random variables are iid with mean zero.
Then we have
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Proof. Because of the decomposition rule for conditional covariances, see Exercise
7.3.1, we can write for

This equals zero since, by our assumptions, and
0. Clearly, as well. Because

the random variables and are uncorrelated as well.

Note that in the model of this lemma, the random variables are not marginally
uncorrelated, let alone independent.

Example 7.3.2 (Mixed Poisson distribution)
Assume that the random variables represent the numbers of claims in a year
on a particular motor insurance policy. The driver in question has a number of
claims in that year which has a Poisson distribution, where the parameter
is a drawing from a certain non-degenerate structure distribution. Then the first
component of (7.5) represents the expected number of claims
of an arbitrary driver. The second is it represents the difference
in average numbers of claims between this particular driver and an arbitrary
driver. The third term equals the annual fluctuation around
the mean number of claims of this particular driver. In this case, the second and
third component, though uncorrelated, are not independent, for instance because

See also Section 7.5.

Remark 7.3.3 (Parametrization through risk parameters)
The variance components model (7.5), even with relaxed independence assump-
tions, sometimes is too restricted for practical applications. Suppose that as
in (7.5) now represents the annual claims total of the driver from Example 7.3.2,
and also suppose that this has a compound Poisson distribution. Then apart from
the Poisson parameter, there are also the parameters of the claim size distribution.
The conditional variance of the noise term, given the second term (mean annual
total claim costs), is now no longer a function of the second term. To remedy this,
Bühlmann studied slightly more general models, having a latent random variable

that might be vector-valued, as a structure parameter. The risk premium is the
conditional mean instead of simply If
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is not a one-to-one function of it might occur that contracts having the same
in the basic model above, have a different pattern of variation

in Bühlmann’s model, therefore the basic model is insufficient here. But it can
be shown that in this case the same covariances, and hence the same optimal
estimators, are found.

Unfortunately, Bühlmann’s way of describing the risk structure is copied in
many texts and articles about credibility theory. The gain in generality and flexi-
bility is slight, and the resulting models are much more cumbersome technically
as well as conceptually.

It is possible to extend credibility theory to models that are more complicated than
(7.5). Results resembling the ones from Theorems 7.2.2 and 7.2.4 can be derived
for such models. In essence, to find an optimal predictor in the sense of least squares
one minimizes the quadratic MSE over its coefficients, if needed with an additional
unbiasedness restriction. Because of the symmetry assumptions in the balanced
Bühlmann model, only a one-dimensional optimization was needed there. But in
general we must solve a system of linear equations that arises by differentiating
either the MSE or a Lagrange function. The latter situation occurs when there is
an unbiasedness restriction. One should not expect to obtain analytical solutions
such as above.

Possible generalizations of the basic model are the following.

Example 7.3.4 (Bühlmann-Straub model; varying precision)
Credibility models such as (7.5) can be generalized by looking at that are
averages over a number of policies. It is also conceivable that there are other
reasons to assume that not all have been measured equally precisely, i.e., have
the same variance. For this reason, it may be expedient to introduce weights in
the model. By doing this, we get the Bühlmann-Straub model. In principle, these
weights should represent the total number of observation periods of which the
figure is the mean (natural weights). Sometimes this number is unknown. In
that case, one has to make do with approximate weights, like for instance the total
premium paid. If the actuary deems it appropriate, he can adjust these numbers
to express the degree of confidence he has in the individual claims experience of
particular contracts. In Section 7.4 we prove a result, analogous to Theorem 7.2.2,
for the homogeneous premium in the Bühlmann-Straub model.

Example 7.3.5 (Jewell’s hierarchical model)
A further generalization is to subdivide the portfolio into sectors, and to assume that
each sector has its own deviation from the overall mean. The claims experience
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for contract in sector in year can then be decomposed as follows:

This model is called Jewell’s hierarchical model. Splitting up each sector into
subsectors each with its own deviation and so on, leads to a hierarchical
chain of models with a tree structure.

Example 7.3.6 (Cross classification models)
It is conceivable that is the risk in sector and that index corresponds to
some other general factor to split up the policies, for instance if is the region and

the gender of the driver. For such two-way cross classifications it doesn’t make
sense to use a hierarchical structure for the risk determinants. Instead, one could
add to (7.27) a term to describe the risk characteristics of group In this way,
one gets

This is a cross classification model. In Chapter 8, we study similar models, where
the row and column effects are fixed but unknown, instead of being modelled as
random variables such as here.

Example 7.3.7 (De Vijlder’s credibility model for IBNR)
Credibility models are also useful to tackle the problem of estimating IBNR
reserves to be held, see also Chapter 9. These are provisions for claims that are
not, or not fully, known to the insurer. In a certain calendar year T, realizations are
known for random variables representing the claim figure for policies written
in year in their year of development, A credibility model
for this situation is

where the numbers are development factors, for instance with a sum equal to
1, that represent the fraction of the claims paid on average in the development
period, and where represents the claims, aggregated over all development
periods, on policies written in year

Example 7.3.8 (Regression models; Hachemeister)
We can also generalize (7.5) by introducing collateral data. If for instance
represents a certain risk characteristic of contract like for instance the age of the
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policy holder in year might be written as a linear, stochastic, function of
Then the claims in year are equal to

which is a credibility-regression model. Classical one-dimensional regression

arises when This means that there are no latent risk character-
istics. Credibility models such as (7.30) were first studied by Hachemeister.

7.4 THE BÜHLMANN-STRAUB MODEL

Just as in (7.7), in the Bühlmann-Straub model the observations can be decomposed
as follows:

where the unobservable risk components are iid with mean
zero and variance the are also independent with mean zero. The compo-
nents and are assumed to be independent, too. The difference between the
Bühlmann and the Bühlmann-Straub models is that in the latter the variance of the

components is where is the weight attached to observation
This weight represents the relative precision of the various observations. Obser-
vations with variances like this arise when is an average of replications,
hence where with iid with zero
mean and variance The random variables then denote deviations from the
risk premium for the individual contract in time period and group
In this case, the weights are called natural weights. Sometimes the natural weights
are not available, or there is another mechanism that leads to different variances.
In that case we can approximate the volume by the total premium for a cell.

To find the best homogeneous linear predictor of the risk premium (cf.
Remark 7.2.6), we must minimize the following MSE:

subject to
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The following notation will be used, cf. (7.10)–(7.12):

Notice the difference between, e.g., and If a appears as an index,
this indicates that there has been a weighted summation over this index, using
the (natural or other) weights of the observations. An index denotes a weighted
summation with credibility weights, while a is used for an unweighted sum-
mation. We do not allow for different numbers of observation periods T in our
notation. The easiest way to remedy this is to add observations with weight zero
when necessary.

In Theorem 7.4.1 below, we derive the optimal values in (7.32) for the coeffi-
cients They produce the following MSE-best estimator of the risk premium

cf. (7.9):

Here is the individual estimator of the risk premium, is the credibility
weighted collective estimator, and is the credibility factor for contract

The proof that of all the linear combinations of the observations to estimate
that have the same mean, (7.34) has the smallest MSE, can be given

by Lagrange optimization. One has to solve the first order conditions to find an
extremum. In the proof below, we prove the result by capitalizing on the fact that
linear combinations of uncorrelated random variables with a given mean have
minimal variance if the coefficients are inversely proportional to the variances;
see Exercise 7.4.1. First we derive the optimal ‘mix’ of the contracts in
group The best choice proves to be from this we see that
the observations have to appear in (7.32) in the form Then we derive that
the totals of the coefficients with group are best taken proportional to

Finally, the optimal value of is derived.
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Theorem 7.4.1 (Bühlmann-Straub model; homogeneous estimator)
The MSE-best homogeneous unbiased predictor of the risk premium

in model (7.31) is the credibility estimator (7.34).

Proof. From (7.32) we see that the following problem must be solved to find the
best predictor of

The restriction is the unbiasedness constraint in (7.32). By this constraint,
the expectation in (7.35) is also the variance. Substituting decomposition (7.31)
for we get from (7.35):

or, what is the same because of the variances of the components and and
the independence of these components:

First we optimize the inner sum. Because of Exercise 7.4.1 the optimal values
of prove to be So we can replace the observations
1,2,… , T by their weighted averages and we see that the credibility esti-
mator has the form where the values of are still to be determined.

The minimal value for the inner sum equals From (7.33) we see that
So we can rewrite (7.37) in the form

As we have So again because of Exercise
7.4.1, the optimal choice in (7.38) for the factors is



156 CREDIBILITY THEORY

The minimal value for the sum in (7.38) is so (7.38) leads to

The optimal value for  finally, can be found by once again applying Exercise
7.4.1. This optimal value is, as the reader may verify,

Because of (7.39) we see that which implies that (7.34)
is indeed the MSE-optimal homogeneous unbiased linear predictor of the risk
premium

Notice that if we replace in (7.31) by the constant i.e., we take we get
the classical weighted mean This is because in that case the relative weight

for is equal to the credibility weight
The inhomogeneous estimator of contains a constant next to the

homogeneous linear combination of the in (7.32). One may show, just as in
Theorem 7.2.4, that the unbiasedness restriction is superfluous in this situation.
The inhomogeneous estimator is equal to the homogeneous one, except that
in (7.34) is replaced by The observations outside group do not occur in the
estimator. For the inhomogeneous estimator, both the ratio and the value of

must be known. By replacing by its best estimator under model (7.31),
we get the homogeneous estimator again. Just as in Remark 7.2.6, the optimal
predictor of is also the optimal predictor of The asymptotic prop-
erties of (7.34) are analogous to those given in Remark 7.2.3. Also, the credibility
premium can be found by combining the actual experience with virtual experience,
just as in Remark 7.2.7. See the exercises.

Parameter estimation in the Bühlmann-Straub model
The credibility estimators of this chapter depend on the generally unknown struc-
ture parameters and To be able to apply them in practice, one has to
estimate these portfolio characteristics. Some unbiased estimators (not depending
on the structure parameters that are generally unknown) are derived in the theorem
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below. We can replace the unknown structure parameters in the credibility estima-
tors by these estimates, hoping that the quality of the resulting estimates is still
good. The estimators of and are based on the weighted sum-of-squares-within:

and the weighted sum-of-squares-between

Note that if all weights are taken equal to one, these expressions reduce to
(7.2) and (7.3), defined in the balanced Bühlmann model.

Theorem 7.4.2 (Unbiased parameter estimates)
In the Bühlmann-Straub model, the statistics

are unbiased estimators of the corresponding structure parameters.

Proof. The proof of is easy. Using the covariance relations (7.15),

we get for
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For we have

Taking in (7.44), using (7.45) and (7.46) we see that is unbiased as well.

Remark 7.4.3 (Negativity of estimators)
The estimator is of course non-negative, but might well be negative. Although
this may be an indication that holds, it can also happen if Let us
elaborate on Example 7.2.1, returning to the balanced Bühlmann model where all
weights are equal to one. In that case, defining MSW and MSB as in (7.4),
the estimators of and in Theorem 7.4.2 reduce to

To estimate we substitute these estimators into and we get the
following statistic:

Using and defining we see that the SSW
can be written as
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Under the assumption that the are iid the right hand side, divided
by has a distribution. It is independent of the averages and
hence also of the averages So MSW is independent of the

hence also of MSB.
Assuming that the components are iid we find in similar fashion

that

is distributed. So under the normality assumptions made, if it is multi-
plied by the constant the variance ratio MSB /MSW of
Section 7.2 is still F(J – 1, J(T – 1)) distributed. Thus,

In this way, can be computed for different values of J, T and see
for instance Exercise 7.4.9.

Note that by (7.47), the event is the same as MSB /MSW < 1.
In Section 7.2 we established that the data indicates rejection of equal means,
which boils down to here, only if MSB /MSW exceeds the right-hand
F( J– 1, J(T– 1)) critical value, which is surely larger than one. Thus we conclude
that, although for every obtaining such a value means that
a Fisher test for based on this data would not have led to rejection. This in
turn means that there is in fact no statistical reason not to charge every contract
the same premium.

In order to estimate in practice, one would be inclined to use
as an estimator, but, though still consistent, this is of course no longer

an unbiased estimator.

Remark 7.4.4 (Credibility weighted mean and ordinary weighted mean)
The best unbiased estimator of in model (7.31) is not but This
is in line with Exercise 7.4.1, since both and are linear combinations
of the random variables and the variances thereof are not proportional to
the original weights but rather to the credibility adjusted weights So a
lower variance is obtained if we estimate by the credibility-weighted mean
instead of by the ordinary weighted mean The problem of course is that
we do not know the credibility factors to be used, because they depend on the
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unknown parameters that we are actually estimating. One way to achieve better
estimators is to use iterative pseudo-estimators, that determine estimates of the
structure parameters by determining a fixed point of certain equations. For these
methods, we refer to more advanced literature on credibility theory.

7.5 NEGATIVE BINOMIAL MODEL FOR THE NUMBER OF CAR
INSURANCE CLAIMS

In this section, we expand on Example 7.3.2, considering a driver with an accident
proneness which is a drawing from a non-degenerate distribution, and, given that
his accident proneness equals a Poisson distributed number of claims in a
year. Charging a credibility premium in this situation leads to an experience rating
system which resembles the bonus-malus systems we described in Chapter 6.

If for a motor insurance policy, all relevant variables for the claim behavior of
the policyholder can be observed as well as used, the number of claims still is
generated by a stochastic process. Assuming that this process is a Poisson process,
the rating factors cannot do more than provide us with the exact Poisson intensity,
i.e., the Poisson parameter of the number of claims each year. Of the claim size, we
know the probability distribution. The cell with policies sharing common values for
all the risk factors would be homogeneous, in the sense that all policy holders have
the same Poisson parameter and the same claims distribution. In reality, however,
some uncertainty about the parameters remains, because it is impossible to obtain
all relevant information on these parameters. So the cells are heterogeneous. This
heterogeneity is the actual justification of using a bonus-malus system. In case of
homogeneity, each policy represents the same risk, and there is no reason to ask
different premiums within a cell.

The heterogeneity of the claim frequency can be modelled by assuming that
the Poisson parameter has arisen from a structure variable with structure
distribution In this section, we look at the number of claims

of driver in period There are J drivers, who have been observed for
periods. For convenience, we drop the index from our notation, unless in case
we refer back to earlier sections. Just as in (7.5), we can decompose the number
of claims for driver in time period as follows:
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Here iid. The last two components are not independent, although un-
correlated. See Exercise 7.5.6. Component has variance
for component just as in Example 3.3.1,
remains. As one sees, the structural parameters and coincide because of the
Poisson distributions involved.

Up to now, except for its first few moments, we basically ignored the structure
distribution. Several models for it come to mind. Because of its mathematical
properties and good fit (see later on for a convincing example), we will prefer the
gamma distribution. Another possibility is the structure distribution that produces
a ‘good’ driver, having claim frequency with probability or a ‘bad’ driver
with claim frequency The number of claims of an arbitrary driver then
has a mixed Poisson distribution with a two-point mixing distribution. Though one
would expect more than two types of drivers to be present, this ‘good driver/bad
driver’ model quite often fits rather closely to the data that is found in practice.

It is known, see again Example 3.3.1, that if the structure distribution is
gamma the marginal distribution of the number of claims of driver
in time period has a negative binomial distribution with as the number of suc-
cesses required, and as the probability of a success. In Lemaire (1985),
we find data from a Belgian portfolio with J = 106 974 policies. The number
denotes the number of policies with accidents, If
the maximum likelihood estimate for equals the average number of claims. It
can be shown (see the exercises), that fitting    and by maximum likelihood in
the gamma-Poisson model gives the following parameter estimates and

where

and is the solution to the equation

As one sees from (7.53), the first moment of the estimated structure distribution,
hence also of the marginal distribution of the number of claims, coincides with the
first sample moment. The parameters and of the good driver/bad driver
model have been estimated by the method of moments. Note that this method does
not with certainty produces admissible estimates and The
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resulting estimates for the three models considered were

Observed and estimated frequencies can be tabulated as follows:

The in the bottom row represents the usual computed as
When computing one usually combines

cells with estimated numbers less than 5 with neighboring cells. By doing this,
the last three rows are joined together into one row representing 3 or more claims.
The two mixed models provide an excellent fit; in fact, the fit of the negative
binomial model is almost too good to be true. Note that we fit 4 numbers using 2
or 3 parameters. But homogeneity for this portfolio is rejected without any doubt
whatsoever.

Though the null-hypothesis that the numbers of claims for each policy holder
are independent Poisson random variables with the same parameter is rejected,
while the mixed Poisson models are not, we cannot just infer that policy holders
have a fixed unobservable risk parameter, drawn from a structure distribution. It
might well be that the numbers of claims are just independent negative binomial
random variables, for instance because the number of claims follows a Poisson
process in which the intensity parameter is drawn independently from a gamma
structure distribution each year.

With the model of this section, we want to predict as accurately as possible the
number of claims that a policy holder produces in the next time period T+1. This
number is a Poisson random variable, with an observation of of which
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the prior distribution is known to be, say, gamma Furthermore, observations
from the past are known. We may show that the posterior distribution

of given is also a gamma distribution, with adjusted
parameters and with Assuming a
quadratic loss function, in view of Exercise 7.2.9, the best predictor of the number
of claims next year is the posterior expectation of

We can interpret (7.56) as the observed average number of claims per time unit,
provided we include for everyone a virtual prior experience of claims in a time
period of length See also Remark 7.2.7.

Prediction (7.56) is a special case of a credibility forecast. The forecast is
proportional to a linear combination of a priori premium and policy average,
because, cf. (7.10):

for

Remark 7.5.1 (Non-linear estimators; exact credibility)
In Theorems 7.2.2 and 7.2.4 it was required that the predictors of were
linear in the observations. Though such linear observations are in general the
easiest to deal with, one may also look at more general functions of the data.
Without linearity restriction, the best predictor in the sense of MSE for
is the so-called posterior Bayes estimator, which is just the conditional mean

See also (7.56). If the and the are indepen-
dent normal random variables, the optimal linear estimator coincides with the
Bayes-estimator. In the literature, this is expressed as ‘the credible mean is exact
Bayesian’. Also combining a gamma prior and a Poisson posterior distribution
gives such ‘exact credibility’, because the posterior Bayes estimator happens to
be linear in the observations. See Exercise 7.5.2. The posterior mean of the claim
figure is equal to the credibility premium (7.57).

If we split up the premium necessary for the whole portfolio according to the
mean value principle, we get a solid experience rating system based on credibility,
because of the following reasons, see also Lemaire (1985):

1. The system is fair. Upon renewal of the policy, every insured pays a premium
which is proportional to his estimated claim frequency (7.56), taking into
account all information from the past.
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2.

3.

4.

The system is balanced financially. Write for the total
number of claims generated, then so

This means that for every policy, the mean of the proportionality factor (7.56)
is equal to its overall mean So the expected value of the premium to
be paid by an arbitrary driver remains constant over the years.

The premium only depends on the number of claims filed in the previous
T years, and not on how these are distributed over this period. So for the
premium next year, it makes no difference if the claim in the last five years
was in the first or in the last year of this period. The bonus-malus system in
Section 6.2 doesn’t have this property. But it is questionable if this property
is even desirable. If one assumes, like here, the intensity parameter to
remain constant, K is a sufficient statistic. In practice, however, the value
of is not constant. One gets past his youth, or past his prime, or one’s son
gets old enough to borrow the family car. Following this reasoning, later
observations should count more heavily than old ones.

Initially, at time everyone pays the same premium, proportional to
If T tends to the expected value converges

to which in the limit represents the actual risk on the policy. The
variance converges to zero. So in the long run, everyone
pays the premium corresponding to his own risk; the influence of the virtual
experience vanishes.

Using the values and see (7.55) and Lemaire (1985), we have
constructed Table 7.1 giving the optimal estimates of the claim frequencies in case
of various lengths of the observation period and numbers of claims observed. The
initial premium is set to 100%, the other a posteriori premiums are computed by
the formula:

One sees that in Table 7.1, a driver who caused exactly one claim in the past ten
years represents the same risk as a new driver, who is assumed to carry with him
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a virtual experience of 1.6 claim in 16 years. A person who drives claim-free for
ten years gets a discount of After a claims experience of
16 years, actual and virtual experience count just as heavily in the premium.

Example 7.5.2 (Contrast with the bonus-malus system of Chapter 6)
As an example, we look at the premiums to be paid by a driver in the 6th year
of insurance if he has had one claim in the first year of observation. In Table 7.1,
his premium next year equals 124%. In the system of Table 6.1, his path on the
ladder has been so now he pays the premium of step
5, which equals 70%. The total of the premiums paid according to Table 7.1 is
100 + 153 + 144 + 137 + 130 + 124 = 788% of the premium for a new entrant. In
the system of Table 6.1, he has paid only 100 + 120 + 100 + 90 + 80 + 70 = 560%.
Note that for the premium next year in Table 7.1, it makes no difference if the
claim occurred in the first or the fifth year of observation, though this does affect
the total claims paid.

Remark 7.5.3 (Overlapping claim frequencies)
Consider a policyholder for which T years of claims experience is known. The
posterior distribution of the expected number of claims is gamma
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if claims were filed. As noted in Lemaire (1985), if T = 3, in the two situations
and the premium to be paid next year differs by a factor

189/84 = 2.25. But the posterior distributions of both claim frequencies overlap
to a large extent. Indeed, in the first situation the probability is 60.5% to have a
claim frequency lower than the average for drivers with a
similar claims experience, since but in the second
situation there also is a substantial probability to have a better Poisson parameter
than the average of drivers as above, since
for and T = 3. Experience rating by any bonus-malus system will turn
out to be very unfair for all ‘good’ drivers that are unlucky enough to produce
claims.

7.6     EXERCISES

Section 7.2

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Finish the proofs of Theorems 7.2.2 and 7.2.4 by filling in and deriving the relevant covariance
relations (7.15). Use and verify the linearity properties of covariances: for all random variables
X ,Y and Z, we have Cov[X,Y + Z] = Cov[X,Y] + Cov[X,Z], while for all real

Let be uncorrelated random variables with mean and variance Consider
the weighted average where the weights satisfy

Show that and

[If especially we get and

Show that the sample variance is an unbiased estimator of

Show that the best predictor of is at the same time the best estimator of the risk premium
in the situation of Theorem 7.2.2. What is the best linear unbiased estimator (BLUE)

of

Determine the variance of the credibility premium (7.9). What is the MSE? Also determine the
MSE of (7.9) as an estimator of

Determine the credibility estimator if the unbiasedness restriction is not imposed in Theorem
7.2.2. Also investigate the resulting bias.

Show that if each contract pays the homogeneous premium, the sum of the credibility premiums
equals the average annual outgo in the observation period.

Show that in model (7.5), the MSB has mean while the MSW has mean

Prove that for each random variable Y, the real number which is the best predictor of it in the
sense of MSE is

Let be the vector containing the
observable random variables in (7.7). Describe the covariance matrix
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Section 7.3

1. Derive the formula Cov[X, Y] = E[Cov[X, Y|Z]] + Cov[E[X |Z], E[Y|Z]] for the decomposi-
tion of covariances into conditional covariances.

Section 7.4

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Let be independent random variables with variances for certain
positive numbers Show that the variance of the linear combi-
nation with is minimal when we take where the symbol means
‘proportional to’. Hence the optimal solution has Prove also that the minimal
value of the variance in this case is

Prove that in model (7.31), we have See Remark 7.4.4.

Determine the best homogeneous linear estimator of

Show that in determining the best inhomogeneous linear estimator of the unbiasedness
restriction is superfluous.

Show that, just as in Remark 7.2.6, the optimal predictors of and coincide in
the Bühlmann-Straub model.

Describe the asymptotic properties of in (7.33); cf. Remark 7.2.3.

In the same way as in Remark 7.2.7, describe the credibility premium (7.34) as a mix of actual
and virtual experience.

Show that (7.9) follows from (7.34) in the special case (7.5)–(7.6) of the Bühlmann-Straub
model given in (7.31).

In the situation of Remark 7.4.3, for and use an F-table to show
that the probability of the event equals 0.05.

Estimate the credibility premiums in the Bühlmann-Straub setting when the claims experience
for three years is given for three contracts, each with weight The claims on the contracts
are as follows:

Section 7.5

1. Consider a sample from a negative binomial distribution with parameters
and Define the number of these random variables with value as

If show that the maximum likelihood estimators of
and indeed are given by (7.53) and (7.54).
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2.

3.

4.

5.

6.

7.

Suppose that has a gamma prior distribution, and that given the annual
numbers of claims are independent Poisson random variables. Prove that the
posterior distribution of given is gamma where

By comparing with in the previous exercise, show that the
numbers of claims are not marginally independent. Also show that they are not uncorrelated.

Show that the mode of a gamma distribution, which represents the argument where the
density is maximal, is

Determine the estimated values for and the statistic if and are estimated by
the method of moments.

Show that in the model (7.52) of this section, and are uncorrelated. Taking
and determine the ratio [Since no model for can do more than
determine the value of as precisely as possible, this ratio provides an upper bound for the
attainable ‘percentage of explained variation’ on an individual level.]

What is the Loimaranta efficiency of the system in Table 7.1? What is the steady state
distribution?



8
Generalized linear models

8.1 INTRODUCTION

In econometrics, the most widely used statistical technique is multiple linear
regression. Actuarial statistics models situations that do not always fit in this
framework. Regression assumes normally distributed disturbances with a constant
variance around a mean that is linear in the collateral data. In actuarial applications,
a symmetric normally distributed random variable with a fixed variance does not
adequately describe the situation. For counts, a Poisson distribution is generally
a good model, if the assumptions of the Poisson processes such as described in
Chapter 4 are valid. For these random variables, the mean and variance are the
same, but the data sets encountered in practice generally exhibit a variance greater
than the mean. A distribution to describe the claim size should have a thick right-
hand tail. Rather than a variance not depending of the mean, one would expect
the coefficient of variation to be constant. Furthermore, the phenomena to be
modelled are rarely additive in the collateral data. A multiplicative model is much
more plausible. Moving from downtown to the country, or replacing the car by
a car 200 kilograms lighter, without changing other policy characteristics, would
result in a reduction in the average total claims by some fixed percentage of it, not
by a fixed amount independent of the original risk.

169
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Both these problems can be solved by not working with ordinary linear models,
but with Generalized Linear Models (GLM). The generalization is twofold. First, it
is allowed that the random deviations from the mean obey another distribution than
the normal. In fact, one can take any distribution from the exponential dispersion
family, including apart from the normal distribution also the Poisson, the (negative)
binomial, the gamma and the inverse Gaussian distributions. Second, it is no
longer necessary that the mean of the random variable is a linear function of the
explanatory variables, but it only has to be linear on a certain scale. If this scale
for instance is logarithmic, we have in fact a multiplicative model instead of an
additive model.

Often, one does not look at the observations themselves, but at transformed
values that are better suited for the ordinary multiple regression model, with
normality, hence symmetry, with a constant variance and with additive systematic
effects. This, however, is not always possible. A transformation to make a Poisson
random variable Y symmetric is while taking
stabilizes the variance and taking log Y reduces multiplicative systematic effects
to additive ones. It should be noted that some of the optimality properties in the
transformed model, notably unbiasedness and in some cases even consistency,
may be lost when transforming back to the original scale.

In this chapter, we will not deal with Generalized Linear Models in their full
generality. For simplicity, we restrict to cross-classified observations, which can
be put into a two-dimensional table in a natural way. The relevant collateral data
with random variable are the row number and the column number In the
next chapter, we will also include the ‘diagonal number’ as an explanatory
variable. For more general models, e.g., tables with more than two dimensions,
we refer to other texts. In general, the observations are arranged in a vector of
independent but not identically distributed random variables, and there is a design
matrix containing the explanatory variables in a directly usable form.

Many actuarial problems can be tackled using specific Generalized Linear Mod-
els, such as ANOVA, Poisson regression and logit and probit models, to name a
few. They can also be applied to IBNR problems, as demonstrated in the next
chapter, to survival data, and to compound Poisson distributions. Furthermore,
it proves that many venerable heuristic actuarial techniques are really instances
of GLM’s. In the investigation that led to the bonus-malus system of Chapter 6,
estimation techniques were chosen on the basis of their simple heuristic founda-
tion, but they also turn out to produce maximum likelihood estimates in specific
GLM’s. The same holds for some widely used techniques for IBNR estimation,
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as explained in the next chapter. As opposed to credibility theory, there is a lot
of commercial software that is able to handle GLM’s. Apart from the special-
ized program GLIM (Generalized Linear Interactive Modelling), developed by the
Numerical Algorithms Group (NAG), we mention the module GenMod included
in the widely used program SAS, as well as the program S-Plus. The study of
Generalized Linear Models was initiated by Nelder and Wedderburn. They gave a
unified description, in the form of a GLM, of a multitude of statistical methods,
including ANOVA, probit-analysis and many others. Also, they gave an algorithm
to estimate all these models optimally and efficiently. In later versions of GLIM,
other algorithms were implemented to improve stability in some situations.

In Section 8.2, we briefly present the ordinary and the generalized linear models.
In Section 8.3, we show how some rating techniques used in actuarial practice can
be written as instances of GLM’s. In Section 8.4, we study the deviance (and the
scaled deviance) as a measure for the goodness of fit. For normal distributions,
these quantities are sums of squared residuals, hence related statistics, but in
general they are related to the loglikelihood. In Section 8.5 we present an example.
In Section 8.6, we provide some additional theory about GLM’s, in line with other
texts on GLM’s. We give the general definition of a GLM, briefly describe the
all-purpose algorithm of Nelder and Wedderburn, and explain what the canonical
link is. For the application of GLM’s to IBNR problems, see the next chapter.

8.2 GENERALIZED LINEAR MODELS

Generalized Linear Models have three characteristics:

1. There is a stochastic component, which states that the observations are inde-
pendent random variables with a density in the exponential
dispersion family. The most important examples for our goal are:

random variables;

Poisson random variables;

means of samples with size of Poisson distributed
random variables;

random variables (hence, the proportion of suc-
cesses in trials);

gamma random variables;
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inverse Gaussian random variables.

It can be seen that in all these examples, the parametrization chosen leads to
the mean being equal to while is a parameter that does not affect the
mean, but only the variance of the random variable. See Exercise 8.2.1. We
take to be equal to where is the so-called dispersion parameter,
and the weight of observation Just as for the weight in the Bühlmann-
Straub setting of the previous chapter, in principle it represents the number
of iid observations of which our observation is the arithmetic average
(natural weight). Note that, e.g., doubling has the same effect on the
variance as doubling the weight (sample size) has.

2.

3.

The systematic component of the model attributes to every observation a
linear predictor linear in the parameters

The expected value of is linked to the linear predictor by the link
function:

Remark 8.2.1 (Canonical link)
Each of the distributions has a natural link function associated with it, called the
canonical link function. Using these link functions has some technical advantages,
see Section 8.6. For the normal distribution, the canonical link is the identity,
leading to additive models, for the Poisson it is the logarithmic function, leading
to loglinear, multiplicative models. For the gamma, it is the reciprocal.

Remark 8.2.2 (Variance function)
Note that the parametrizations used in the stochastic component above are not
always the usual, nor the most convenient ones. The parameter is the mean, and
it can be shown that in each case, the variance equals for some function

which is called the variance function. Assume for the moment that
hence for every observation The list of distributions above contains
distributions with a variety of variance functions, making it possible to adequately
model many actuarial statistical problems. In increasing order of the exponent of

in the variance function, we have:

1. the normal distribution with a constant variance (homoscedas-
ticity).
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2.

3.

4.

the Poisson distribution with a variance equal to the mean, hence
and the class of Poisson sample means which have a variance proportional
to the mean, hence

the gamma distributions, having, in the parametrization as listed, a
fixed shape parameter, and hence a constant coefficient of variation
therefore

the inverse Gaussian distributions, having in the parametrization
as listed, a variance equal to

The variance of describes the precision of the observation. Apart from
weight, this precision is constant for the normally distributed random variables.
Poisson random variables are less precise for large parameter values than for small
ones so the residuals for smaller observations should be smaller than for larger
ones. This is even more strongly the case for gamma distributions, as well as for
the inverse Gaussian distributions.

Remark 8.2.3 (‘Null’ and ‘full’ models)
The least refined linear model that we study uses as a systematic component only
the constant term, hence ascribes all variation to chance and denies any influence
of the collateral data. In the GLM-literature, this model is called the null model.
Every observation is assumed to have the same distribution, and the average is
the best estimator for every At the other extreme, one finds the so-called full
model, where every unit of observation has its own parameter. Maximizing the
total likelihood then produces the observation as an estimator. The model merely
repeats the data, without condensing it at all, and without imposing any structure.
In this model, all variation between the observations is due to the systematic
effects. The null model will in general be too crude, the full model has too many
parameters for practical use. Somewhere between these two extremes, one has to
find an ‘optimal’ model. This model has to fit well, in the sense that the predicted
outcomes should be close to the actually observed values. On the other hand, the
fewer parameters it has, the easier the model is to ‘sell’, not just to potential policy
holders, but especially to the manager. The latter will insist on thin tariff books and
a workable and understandable model. There is a trade-off between the predictive
power of a model and its manageability.

In GLM analyses, the criterion to determine the quality of a model is the loglikeli-
hood of the model. It is known that under the null-hypothesis that a certain refine-
ment of the model is not an actual improvement, the gain in loglikelihood (×2, and
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divided by the dispersion parameter approximately has a with
degrees of freedom the number of parameters that have to be estimated addition-
ally. Based on this, one can look at a chain of ever refined models and judge which
of the refinements lead to a significantly improved fit, expressed in the maximal
likelihood. A bound for the loglikelihood is the one of the full model, which can
serve as a yardstick. Not only should the models to be compared be nested, with
subsets of parameter sets, possibly after reparametrization by linear combinations,
but also should the link function and the error distribution be the same.

Remark 8.2.4 (Residuals)
To judge if a model is good enough and where it can be improved, we look at the
residuals, the differences between actual observations and the values predicted for
them by the model, standardized by taking into account the variance function as
well as parameter estimates. We might look at the ordinary Pearson residuals, but
in this context it is preferable to look at residuals based on the contribution of this
observation to the maximized loglikelihood. For the normal distribution with as
a link the identity function, the sum of the squares of the standardized (Pearson)
residuals has a distribution and is proportional to the difference in maximized
likelihoods; for other distributions, this quantity provides an alternative for the
difference in maximized likelihoods to compare the goodness of fit.

8.3 SOME TRADITIONAL ESTIMATION PROCEDURES AND GLM’S

In this section, we illustrate the ideas behind GLM’s using I × J contingency
tables. We have a table of observations classified
by two rating factors into I and J risk classes. Hence, we have I J independent
observations indexed by and instead of observations indexed by as before.
Generalization to more than two dimensions is straightforward. The collateral data
with each observation consists of the row number and the column number in
the table. With these factors, we try to construct a model for the expected values
of the observations. There are many situations in which this example applies.
For instance, the row number may indicate a certain region/gender combination
such as in the example of Section 8.5, the column number may be a weight class
for a car or a step in the bonus-malus scale. The observations might then be the
observed total number of accidents for all drivers with the characteristics and

Other examples, see also the next chapter, arise if is the year that a certain
policy was written, and the development year, and the observations denote the
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total amount paid in year regarding claims pertaining to policies of the
year The calendar year is then used as a third collateral variable. We
will assume that the probability distribution of the observations obeys a GLM,
more specifically, a loglinear model with and as explanatory variables. This
means that for the expected values of the we have

The parameters of the model are and There are at least two parameters
too many; without loss of generality we will first assume that holds.
Later on, we will find it more convenient to fix        instead of so can
be interpreted as the expected value of the reference cell One gets
an additive model in (8.1) by adding the parameters instead of multiplying them.
As stated earlier, such models are not often relevant for actuarial practice.

Remark 8.3.1 (Connection with loglinear models)
One may wonder how our model (8.1) can be reconciled with the second and
third characteristic of a GLM as listed above. A loglinear model in and arises,
obviously, when for some and In
that case we call the regressors and variates. They must be measured on an
interval scale; the contribution of to the linear predictor has the form and
the parameter has the special form (the first  is an index, the second
an exponent). If, as in (8.1), variable classifies the data, and the numerical values
of act only as labels, we call  a factor. The parameters with a factor are arbitrary
numbers To achieve this within the GLM model as stated, i.e.,
to express as a loglinear form of the collateral data, for each observation
we recode the row number by a series of I dummy variables of which

if the row number for this observation is the others are zero. The
contribution to (8.1) of a cell in row can then be written in the loglinear form
exp

Remark 8.3.2 (Aliasing)
To avoid the identification problems arising from redundant parameters in the
model such as occur when a constant term is present in the model or when more
than one factor is replaced by a set of dummies, we leave out the redundant
dummies. In GLIM parlance, these parameters are aliased. This phenomenon is
also known as ‘multicollinearity’ and as the ‘dummy trap’.
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Remark 8.3.3 (Interaction between variables)
Sometimes two factors, or a factor and a variate, ‘interact’, for instance when
gender and age (class) are regressors, but the age effect for males and females is
different. Then these two variables can be combined into one that describes the
combined effect of these variables and is called their interaction. If two factors
have I and J levels, their interaction has I J levels. See further Section 8.5.

Remark 8.3.4 (Weights of observations)
For every cell next to an observed claim figure    there is also a weight
In actuarial applications, several interpretations are possible for these quantities:

1.

2.

3.

is the average claim frequency if is the number of claims
and is the exposure of cell which is the total number of years that
policies in it have been insured;

is the average claim size if is the total claim amount for the cell and
is the number of claims;

is the observed pure premium if is the total claim amount for the cell
and is the exposure.

Any of these interpretations may apply in the examples below. The weights
are assumed to be constants, measured with full precision, while the and hence
the are random variables with outcomes denoted as and

In the sequel, we give some methods to produce estimates and of the
parameters and in such a way that we fix        These methods
have been used in actuarial practice without some users being aware that they were
actually statistically quite well founded methods. For each method we give a short
description, and indicate also for which GLM this method computes the maximum
likelihood estimates, or which other estimates are computed.

Property 8.3.5 (Bailey-Simon = Minimal chi-square with Poisson)
In the Bailey-Simon method, the parameter estimates and in the multiplicative
model are determined as the solution of

with
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A justification of this method is that if the denote Poisson distributed numbers
of claims, BS in (8.2) is just the since (8.2) can be rewritten as

So minimizing BS is nothing but determining the estimator. The
model hypotheses can be easily tested.

Solving the normal equations arising from differentiating BS in (8.2) with
respect to each parameter, we get a system of equations that can be written as
follows:

One method to solve this system of equations iteratively is as follows. First we
choose initial values for for instance for all From these,
we get first estimates for by using the first set of equations. Substitute these
values in the second set to get updated values of Repeat this procedure until the
parameter values do not change any longer; an equilibrium has been reached. This
method is known as successive substitution. Generally, it converges rather quickly.
If it doesn’t, one should try some other initial solution, or look for another method
to determine the required minimum altogether. From the many possible equivalent
solutions, we choose the one with See also the numerical Example 8.3.12
at the end of this section. Essentially, successive substitution provides us with a
fixed point of the equation with the parameter vector and denoting
the right hand side of (8.4).

Remark 8.3.6 (Compound Poisson distributions)
In the case of compound Poisson distributed total claims we can apply
under some circumstances. Let denote the total claim amount and the
total exposure of cell Assume that the number of claims caused by each
insured is Poisson distributed. The individual claim amounts are iid random
variables, distributed as X. Hence the mean claim frequency varies, but the claim
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size distribution is the same for each cell. Then we have

and

hence with we get

So the random variable BS is the sum of the squares of random variables with
mean zero and a constant variance. This is also the case when only the ratio

is the same for all cells. If we correct BS for this factor and if
moreover our estimation procedure produces best asymptotic normal estimators
(BAN), such as maximum likelihood estimation does, asymptotically we get a

with (I – 1)(J – 1) degrees of freedom. This is not necessarily
true if represents the observed pure premium, even if the claim sizes are iid
and we standardize BS by dividing by

Property 8.3.7 (Bailey-Simon leads to a ‘safe’ premium)
The Bailey-Simon method in the multiplicative model has a property that will
certainly appeal to actuaries. It proves that with this method, the resulting total
premium is larger than the observed loss. We can even prove that this holds when
premiums and losses are accumulated over rows or over columns. In other words,
we can prove that, assuming that and solve (8.4), we have

for all

A summation over for all means that the sum has to be taken not only
over for all but also over for all To prove (8.7) we rewrite the first set of
equations in (8.4) as

But this is just if U is a random variable with where

and
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Since for any random variable U, we have immediately

hence

In the same way one proves that the estimated column totals are at least the
observed totals.

Property 8.3.8 (Marginal Totals = ML with Poisson)
The basic idea behind the method of marginal totals is the same as the one behind
the actuarial equivalence principle: in a ‘good’ tariff system, for large groups of
insureds, the total premium equals the observed loss. We determine the values
and in such a way that this condition is met for all groups of risks for which one
of the risk factors, either the row number or the column number is constant. The
equivalence does not hold for each cell, but it does on the next-higher aggregation
level of rows and columns.

In the multiplicative model, to estimate the parameters we have to solve the
following system of equations consisting of I + J equations in as many unknowns:

for all

If all estimated and observed row totals are the same, the same holds for the sum of
all these row totals. So the total of all observations equals the sum of all estimates.
Hence, one of the equations in the system (8.11) is superfluous, since each equation
in it can be written as a linear combination of all the others. This is in line with
the fact that the and the in (8.11) are only identified up to a multiplicative
constant.

One way to solve (8.11) is by successive substitution, starting from any positive
initial value for the For this, rewrite the system in the form:

A few iterations generally suffice to produce the optimal estimates.
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The heuristic justification of the method of marginal totals applies for every in-
terpretation of the But if the denote claim numbers, there is another
explanation, as follows.

Property 8.3.9 (Loglinear Poisson GLM = Marginal totals method)
Suppose the number of claims caused by each of the insureds in cell
has a Poisson distribution with Then estimating and by
maximum likelihood or by the marginal totals method gives the same results.

Proof. The total number of claims in cell has a Poisson distribution.
The likelihood of the parameters with the observed numbers of claims then
equals

By substituting into (8.13) the relation

and maximizing (8.13) for and we get exactly the equations (8.11).

Property 8.3.10 (Least squares = ML with normality)
In the method of least squares, estimators are determined that minimize the total of
the squared differences of observed loss and estimated premium, weighted by the
exposure in a cell. This weighting is necessary to ensure that the numbers added
have the same order of magnitude. If the variance of is proportional to
which is for instance the case when is the sum of iid random variables with
the same variance, all terms in (8.15) below have the same mean, hence it makes
sense to add them up. The parameters and are estimated by solving:

with

The normal equations produce the following system, written in a form that is
suitable to be tackled by successive substitution:
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Because of the form of the likelihood of the normal distribution, one may show
that minimizing SS is tantamount to maximizing the normal loglikelihood. See
also Exercise 8.3.7.

Property 8.3.11 (Direct method = ML with gamma distribution)
The direct method determines estimates for the parameters and by solving,
for instance by successive substitution, the following system:

The justification for this method is as follows. Assume that we know the correct
multiplicities Then all random variables have mean
Estimating by a weighted average, we get the equations (8.17) of the direct
method. The same reasoning applied to gives estimates for See also
Exercise 8.3.4.

The direct method also amounts to determining the maximum likelihood in
a certain GLM. We will prove that it produces ML-estimators when ~
gamma This means that is the sum of ran-

dom variables, with a fixed coefficient of variation and a mean The
likelihood of the observation in cell can be written as

With we find by differentiating with respect to

The derivatives with respect to produce analogous equations. Setting the normal
equations (8.19) arising from ML-estimation equal to zero produces, after a little
algebra, exactly the system (8.17) of the direct method.
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Example 8.3.12 (Numerical illustration of the above methods)
We applied the four methods given above to the data given in the following table,
which gives for

The following fitted values arose from the different methods:

Here describes the goodness of the fit; it is
of course minimal for the Bailey-Simon method. The systems of equations from
which the and the have to be determined are alike, but not identical. See also
Exercise 8.3.2. The results of the methods are very similar. The reader is invited
to either try and duplicate the optimizations needed above, or merely to verify if
the solutions obtained are correct by checking if they satisfy the equations for the
optimum given.

In the preceding we emphasized the method of successive substitution, which has
the advantage of being simple to implement, once the system of equations has
been written in a suitable form. Of course many other algorithms may be used to
handle the likelihood maximization.

8.4 DEVIANCE AND SCALED DEVIANCE

As a measure for the difference between vectors of fitted values and of observa-
tions one generally looks at the Euclidean distance, i.e., the sum of the squared
differences. If the observations are from a normal distribution, minimizing this
distance is the same as maximizing the likelihood of the parameter values with the
given observations. In GLM-analyses, one looks at the difference of the ‘optimal’
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likelihood of a certain model, compared with the maximally attainable likelihood
if one doesn’t impose a model on the parameters, hence for the full model with a
parameter for every observation.

The scaled deviance of a model is –2 times the logarithm of the likelihood
ratio, which equals the quotient of the likelihood maximized under our particular
model, divided by the likelihood of the full model. The deviance equals the scaled
deviance multiplied by the dispersion parameter From the theory of mathemat-
ical statistics it is known that the scaled deviance is approximately distributed,
with as degrees of freedom the number of observations minus the number of es-
timated parameters. Also, if one model is a submodel of another, it is known that
the difference between the scaled deviances has a

For three suitable choices of the distribution of the random variation around
the mean in a GLM, we will give expressions for their deviances. We will always
assume that the expected values of our observations follow a
certain model, for instance a multiplicative model with rows and columns such as
above. We denote by the optimally estimated means under this model, and by

the mean, optimally estimated under the full model, where every observation
has its own parameter and the maximization of the total likelihood can be done
term by term. We will always take the observation to be the mean of single
iid observations. All these have a common dispersion parameter We already
remarked that this dispersion parameter is proportional to the variances, which, as
a function of the mean are equal to where the function is the
variance function.

Example 8.4.1 (Normal distribution)
Let be independent normal random variables, where is the average
of random variables with an distribution, hence
Let L denote the likelihood of the parameters with the given observations. Further
let and denote the values of L when and are substituted for We have

It is clear that in the full model, maximizing (8.20) term by term, we can simply
take for each If D denotes the deviance, we have
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This means that for the normal distribution, minimizing the deviance, or what is
the same, maximizing the likelihood, is the same as determining the parameter
estimates by least squares.

Example 8.4.2 (Poisson sample means)
Now let with When this is the case, we
write In the special case that as well as we
have ordinary Poisson random variables. If is an integer, can be regarded
as the average of Poisson random variables, but without this restriction
we also have a valid model. For the likelihood we have

The term in this expression is maximal for the value of that maximizes
which is for so we see that just as with the normal distribution,

we get by simply taking the residual equal to zero. It turns out that this holds
for every member of the exponential dispersion family; see also Examples 8.4.1
and 8.4.3, as well as Exercise 8.6.5.

It is easy to see that the scaled deviance is equal to the following expression:

Notice that and hence
Weights are needed for instance to model the average claim frequency of a

driver in a cell with policies in it. By not taking the weights into account, one
disregards the fact that the observations in cells with many policies in them have
been measured with much more precision than the ones in practically empty cells.

By changing we get distributions of which the variance is not equal to the
mean, but remains proportional to it. One speaks of overdispersed Poisson distri-
butions in this case. The random variable in this example has as a support the
integer multiples of but obviously the deviance (8.23) allows minimization
for other non-negative values of as well. This way, one gets pseudo-likelihood
models.



DEVIANCE AND SCALED DEVIANCE 185

Example 8.4.3 (Gamma distributions)
Now let hence has the distribution of an
average of gamma random variables, or equivalently, of
random variables with an exponential distribution. We have again

For this case, we have for the full model as well, since

if and only if

One can easily verify that the scaled deviance is equal to the following expression:

The of course must be positive here.

The value of the deviance D can be computed from the data alone; it is a statistic
and does not involve unknown parameters. Notice that in each of the three classes
of distributions given above, the maximization over gave results that did not
depend on Only the relative values of the parameters with each observa-
tion are relevant. The estimation of can hence be done independently from the
determining of optimal values for the To estimate the value of one often pro-
ceeds as follows. Under the null-hypothesis that the minimized
sum of squares (8.21) has a with as its parameter the number
of observations minus the number of parameter estimates needed in evaluating
Then one can estimate by the method of moments, setting (8.21) equal to its
mean value and solving for To ensure that the differences between and
the fitted values are caused by chance and not by systematic deviations because
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one has used too crude a model, the estimation of is done in the most refined
model that still can be estimated, even though there will generally be too many
parameters in this model. Hence, for this model the scaled deviance equals the
value of Another possibility is to estimate by maximum likelihood.

The interpretation for the dispersion parameter is different for each class of
distributions. For the normal distributions, it is simply the variance of the errors.
For a pure Poisson distribution, we have in case of overdispersion it is the
ratio of variance and mean, as well as the factor by which all Poisson variables
have been multiplied. For the gamma distributions, denotes the coefficient of
variation for individual observations.

8.5 EXAMPLE: ANALYSIS OF A CONTINGENCY TABLE

In this section, we analyze an artificial data set created by a computer. We generated
numbers that represent the number of days spent in hospital of a group of 14 742
persons for a certain disease. They spent a total of 58 607 days hospitalized because
of this disease. See Table 8.1. The group is split up according to characteristic
which represents different region/gender combinations. Odd values of denote
females, while denote region I, 4 region II, and 6 region III.
In we have coded the age class. Group has ages 15-25, group 2 has ages
25–35, and so on; the last group represents the people of 65 and older. We try
to predict the number of days spent in hospital by a multiplicative model
with the expected value in cell (1,1), hence We will assume that
the observations have a Poisson distribution around this mean. With GLM-fitting
programs we can try several models. We can let and be arbitrary, but also
let or We can require that the follow a geometric pattern with

for a certain value of This requirement is less meaningful for the
it only makes sense if a factor is measured on an ‘interval scale’, in the sense

that the difference between and is the same as that between
and or between and But the classification is not
even on an ordinal scale. By taking we investigate a model where the age
has no influence at all on the hospitalization pattern. Choosing we see
that with increasing age class, the mean number of days in the hospital grows, or
shrinks, by a fixed factor. For an overview of the various models to be used and
their performance, see Table 8.2.
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Comparing models I-III with IV-VI, one sees that in the latter, a geometric
progression with age class is assumed. Judging by the distances between fitted and
observed values, the resulting fits are quite comparable. But upon replacing by

or even by 1, the quality of the fit gets so bad that the conclusion is that this
variable definitely will have to stay in the model in its most complicated form, as
a factor. In Table 8.1, one finds the fitted values for the models I and IV

The predictions for model IV have been computed in the following
way:

Up to now, we only looked at models where the fitted values were determined as
the product of two main effects, the row effect and the column effect. In general
it is quite conceivable that these effects do not operate independently, but that
there is interaction between the two. This means that it is possible in this case
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to have a different row effect for each column. The resulting expected values
can be written in a quite general form In our examples, where by
tabulation we combined all observations for cell into one, this model boils
down to the full model, with a parameter for each observation unit, each with
a certain associated precision We might also look at models in which each
region/gender combination has its own geometric progression. Then we get model
X, where we have Since even though not all other models are
nested in it, this model is the most refined that we want to estimate, we determine an
estimate for the scale factor linking deviance and scaled deviance as the average
deviance per degree of freedom of model X. This gives an overdispersion equal to

So, the distances in Table 8.2 have been scaled in such a way that model
X has a distance 24 with 24 degrees of freedom. There are 36 observations, and
12 parameters have been estimated, since with every region/gender combination,
there is an initial level (for age class 15-25) as well as an increase factor. The
estimates for model X have been computed as:

In Table 8.2 one sees that model IV, having 4 parameters less than model I which is
nested in it, has a scaled deviance between data and fitted values that is 10.2 larger.
To test if this is significant, observe that, under the null-hypothesis, this number is a
drawing from a distribution which is approximately with 4 degrees of freedom.
The 95% critical value of a distribution is 9.5, so it can be concluded
that model I is better than model IV. In the class of models without interaction
of rows and columns, IV is good, since all coarser models have a significantly
larger distance between observations and fitted values. The more refined model I
is significantly better, though, if only by a small margin. But the transition from
IV to X, involving dropping the condition that does lead to a statistically
significant, as well as practically meaningful, improvement of the fit. With only 5
extra parameters, a gain in distance of 38.8 is achieved.

The observations with even values of concern males. By inspecting the co-
efficients  in (8.27) for as well as we see that men spend
about 3% less days in the hospital, after correction for age group. The effect of
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region is slightly stronger, and it would seem that region II is about 75% of region
I, regardless of gender, and region III is about 85%. It turns out that a better model
than IV arises if one allows three main effects: age class (geometrically), gender
and region, without interaction between the two last ones.

Note that the theory above was given for two exogenous variables only. Here we
have three, but instead of gender and region separately, we looked at the interaction
of these two, by constructing a classifying variable with a separate class for each
gender/region combination. But of course it is easy to extend the theory to more
than two regressors.

8.6 THE STOCHASTIC COMPONENT OF GLM’S

A possible way to introduce GLM’s, which is followed in many texts, is to start
by defining the exponential dispersion family of densities, which contains all the
examples we introduced above as special cases. Next, starting from this general
likelihood, one may derive properties of this family, including the mean and
variance. Then, the algorithm to determine ML estimates for this family is derived.
The algorithm can be applied with any link function. Since the general formula
of the density is essential only for deriving the panacea algorithm and provides
no help to the occasional user of a GLM, we postponed its introduction to this
separate section, to be skipped at first reading. In this section we also study the
so-called canonical link function, which has some very nice properties, and give a
very short description of the Nelder and Wedderburn algorithm.

The exponential dispersion family
In Section 8.2, we introduced the distributions to possibly describe the randomness
in Generalized Linear Models by listing a number of important examples. Below,
we give a more general definition of the family of possible densities to be used
for GLM’s. It can be shown that all our examples, normal, Poisson, Poisson
multiples, gamma, inverse Gaussian and binomial proportions, are special cases
of the following family.

Definition 8.6.1 (The exponential dispersion family)
The exponential dispersion family of densities consists of the densities of the
following type:
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Here and are real parameters, and are real functions. The support
of the density is

cases, the value of is fixed and unknown, too, in GLM-literature the above
family is referred to as the one-parameter exponential family. The function is
called the cumulant function, see later. The support does not depend on The
same goes for the function that acts as a normalizing function, ensuring that
the density sums or integrates to 1. For the continuous distributions the support

Poisson multiples for instance, is the set In the following,
we list some examples of members of the exponential dispersion family. For the
specific form of the function as well as the support we refer to Table E.
In the exercises, the reader is asked to verify the entries in this table.

Example 8.6.2 (Some members of the exponential dispersion family)
The following parametric families are the most important members of the expo-
nential dispersion family:

1.

2.

3.

4.

5.

6.

[Note that since the parameter denotes the mean here,
may not depend on ]

The Poisson distributions, with parameter while

For all natural assumed fixed and known, the binomial distribu-
tions, with and

For all positive assumed fixed and known, the negative binomial
distributions, for and

The gamma distributions, after the reparametrizations
and Note that must hold in this case.

The inverse Gaussian distributions, with and
Again, must hold.

The status of the parameter  is not the same as that of because  does not affect
the mean, in which we are primarily interested. The linear models we described
in the earlier sections only aimed to explain this mean. Though except in special

is for the normal distribution, and for the gamma and inverse Gaussian
distributions. It may also be a countable set, in case of a discrete density. For the

The distributions, after reparametrizations and
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Note that there are three different parametrizations involved: the ‘standard’ para-
meters used throughout this book, the parametrization by mean and dispersion
parameter which proved convenient in Section 8.2, and the parametrization with

and as used in this section. This last parametrization is known as the natural
or canonical parametrization, since the factor in the density (8.29) involving both
the argument and the parameter which determines the mean has the specific
form instead of for some function

Example 8.6.3 (Gamma distribution and exponential dispersion family)
As an example, we will show how the gamma distributions fit in the exponential
dispersion family. The customary parametrization, used in the rest of this text, is
by a shape parameter and a scale parameter To determine as well as we
compare the logarithms of the gamma density with (8.29). This leads to

The parameters must be chosen in such a way that and appear together
in the log-density only in a term of the form This is achieved by taking

and Note that in this case, we have To make the left
and right hand side coincide, we further take which leaves

for the terms not involving In
the  parametrization, is simply the mean, so We see that in the
parametrization, the mean of these random variables does not depend on since
it equals

The variance is

So the variance is where is the variance function

The density (8.29) in its general form permits one to derive the mgf of Y. From
this, we can derive some useful properties of the exponential dispersion family.
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Lemma 8.6.4 (Mgf of the exponential dispersion family)
For each real number such that replacing by in (8.29) also produces a
density, the moment generating function at argument of the density (8.29) equals

Proof. We give a proof for the continuous case only; for the proof of the discrete
case, it suffices to replace the integrations over the support in this proof by
summations over We can successively rewrite the mgf as follows:

The last equality follows since the second integrand in (8.34) was assumed to be
a density.

Corollary 8.6.5 (Cgf, cumulants, mean and variance)
If Y has density (8.29), then its cumulant generating function equals

As a consequence, for the cumulants we have

Because of this, the function is called the cumulant function. From (8.36) with
we see that the mean and variance of Y are given by:

Note that the mean depends only on while the variance equals the dispersion
parameter multiplied by The variance function equals
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Corollary 8.6.6 (Taking sample means)
Let be a sample of independent copies of the random variable
Y, and let be the sample mean. If Y is a member of
an exponential dispersion family with fixed functions and and with
parameters and then is in the same exponential dispersion family with
parameters and if this pair of parameters is allowed.

Proof. By (8.33), we have

This is exactly the mgf of a member of the exponential dispersion family with
parameters and

Note that for the (negative) binomial distributions, only is allowed. For the
other error distributions, any positive value of is allowed.

Example 8.6.7 (Poisson multiples and sample means)
By Corollary 8.6.6, the sample means of Poisson random variables as
introduced earlier have a density in the exponential dispersion family (8.29), with

and the same as for the Poisson density, but instead of
and support Such a sample mean is a Poisson random

variable, multiplied by Extending this idea, let be arbitrary, not
specifically equal to for some integer and look at

where

It can be shown that Y has density (8.29) with and just as
with ordinary Poisson distributions, but with arbitrary In this way for each a
subclass of the exponential dispersion family is found with parameter The
possible values for Y are

As we saw, for we get the average of Poisson random variables.
When the resulting random variable has the property that taking the average
of a sample of size of it, we get a Poisson distribution. So it is natural to call
such random variables Poisson sample means. If (8.39) is the sample
average of random variables of the type with So for these values, too, it
is rational to call the random variable Y a Poisson average. But in view of (8.39),
we also speak of such random variables as Poisson multiples. Note that for
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we get a random variable with a variance larger than the mean. Hence we also see
the name ‘overdispersed Poisson’ for such random variables in the literature.

Remark 8.6.8 (Binomial and negative binomial distributions)
The negative binomial distributions can be described by (8.29) only if one

into describing all the negative binomial distributions in accordance with
(8.29). Now consider two such distributions with the same hence the same mean,
and different variances, hence different If the negative binomial parameters are

and then in view of (8.36), the ratio of their variances is the ratio of
their and the ratio of their third cumulants is the square of that ratio,
so we must have:

The last two inequalities can only hold simultaneously if holds, and
therefore also By a similar reasoning, it follows that the of
the binomial distributions must be fixed, as well.

Another important consequence of the mgf derived in Lemma 8.6.4 is that we
can obtain other members of the exponential dispersion family with the same
but with different This is done by using the Esscher transformation that we
encountered before, e.g., in Chapter 5.

Corollary 8.6.9 (Exponential dispersion family and Esscher transform)
The Esscher transform with parameter of a continuous density is the density

provided the denominator is finite, i.e., the mgf with exists at A similar
transformation of the density can be performed for discrete distributions. In both
cases, the mgf with the transformed density equals For a density

takes and fixed. Indeed, suppose that there exists a reparametrization from
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in the exponential dispersion family, the cgf of has the form

which is again a cgf of an exponential dispersion family member with parameter
and the same

Remark 8.6.10 (Generating the exponential dispersion family)
It can be shown that the Esscher transform with parameter transforms

1.

2.

3.

4.

5.

6.

N(0, 1) into

Poisson(1) into Poisson

binomial into binomial

negative binomial into negative binomial when

gamma(1,1) into gamma when

inverse Gaussian(1,1) into inverse Gaussian when

So we see that all the examples of distributions in the exponential dispersion
family that we have given can be generated by starting with prototypical elements
of each type, and next taking Esscher transforms and multiples of type (8.39), if
allowed.

The canonical link
In the definition of the exponential dispersion family we gave, the parametrization
used leads to a term of the form in the loglikelihood. Because of this property,
we refer to as the natural or canonical parameter. There is also a natural choice
for the link function.

Definition 8.6.11 (Canonical link function)
If the link function is such that the parameter and the linear predictor

coincide, one speaks of the standard link or canonical link.
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Note that so holds if the link function is the inverse
of The canonical link has several interesting properties. Recall that

for the linear predictor.

Property 8.6.12 (Canonical link and marginal totals)
Property 8.3.9 shows that in a Poisson GLM with log-link, the marginal fitted and
observed totals coincide. This result can be extended. If is the fitted value for
the observation under a maximum likelihood estimation in any
GLM with canonical link, it can be proven that the following equalities hold:

If the are dummies characterizing membership of a certain group like a row
or a column of a table, and the are averages of iid observations, on the left
hand side we see the observed total, and on the right the fitted total.

To prove that equalities (8.43) hold, we use the fact that the that maximize
the loglikelihood must satisfy the normal equations. The loglikelihood of the
parameters when is observed equals

An extremum of the total loglikelihood of the entire set of observations
satisfies the conditions:

For the partial derivative of with respect to we have by the chain rule and by
the fact that for the canonical link:

With dispersion parameter and known a priori weights using (8.29) and
see (8.37), we get for observation
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The loglikelihood with the whole sample is obtained by summing over
all observations Setting the normal equations equal to zero then
directly leads to maximum likelihood equations of the form (8.43).

A related property of the standard link is the following.

Property 8.6.13 (Sufficient statistics and canonical links)
In a GLM, if the canonical link is used, the quantities

are a set of sufficient statistics.

Proof. We will prove this using the factorization criterion, hence by showing that
the joint density of can be factorized as

for and suitable functions and But we
have

From this representation, the required functions and in (8.48) can be
derived immediately. The fact that the support of Y does not depend on nor on
the parameters, is essential in this derivation.

Sometimes it happens in actuarial practice that not all the separate entries in a
table are given, but only the marginal totals of rows and columns. If one uses
a standard link, these marginal totals apparently are sufficient statistics, hence



THE STOCHASTIC COMPONENT OF GLM’S 199

knowing only their outcomes, the maximum likelihood parameter estimates can
still be determined. The standard link also has advantages when the optimization
algorithm of Nelder and Wedderburn is used. It leads to somewhat less iteration
steps being necessary, and also divergence is much more exceptional.

Example 8.6.14 (Canonical links for various error distributions)
As stated above, the canonical link is and so the canonical link
is nothing but The canonical links are listed in Table E. For the
normal distributions with the canonical link is the identity function.
For the Poisson and the Poisson multiples, we have and hence the
log-link is the standard link. For the gamma, the canonical link is the reciprocal,
for the binomial it is the logit link (log-odds).

If and moreover then apparently holds, and the sequence
of cumulants (8.38) implied by this belongs to the normal distribution.

Example 8.6.15 (Threshold models: logit and probit analysis)
Assume that the observations denote the fractions of successes in independent
trials, each with probability of success Further assume that a trial
results in a success if the ‘dose’ administered to a person exceeds his tolerance
which is a random variable having an distribution. Here is a linear
form in the ancillary variables. Apparently

Therefore, we have a valid GLM with a binomial distribution for the random
component and with as a link function. For the binomial distribution
we have the following canonical link function:

so

Solving this for leads to Now if we replace the distribution of
the tolerance by a logistic distribution with cdf
for it can easily be seen that we get a binomial GLM with
standard link.

In case the threshold is assumed to be normally distributed, we speak of
probit analysis, in the other case of logit analysis. The second technique is nothing
but a GLM involving a multiplicative model not for the probability of success
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itself, but rather for the so-called odds-ratio Probit analysis can be
applied in the same situations as logit analysis, and produces similar results.

Logit and probit models can be applied with credit insurance. Based on certain
characteristics of the insured, the probability of default is estimated. Another
application is the problem to determine probabilities of disability. In econometrics,
analyses such as these are used for instance to estimate the probability that some
household owns a car, given the number of persons in this household, their total
income, and so on.

The algorithm by Nelder and Wedderburn
In (8.45), we gave the set of equations to be fulfilled by the maximum likelihood
parameter estimates One way to solve these equations is to use
Newton-Raphson iteration, which, in a one-dimensional setting, transforms the
current best guess for the root of an equation into a hopefully better
one as follows:

For an optimization, this same formula is valid, except that the
points are now vectors, and the reciprocal is now the inverse of a matrix of
partial derivatives. In view of (8.45), this means that we need the matrix of second
derivatives of i.e., the Hessian matrix. The algorithm of Nelder and Wedderburn
does not use the Hessian itself, but rather its expected value, the information
matrix. The technique that arises in this way is called Fisher’s scoring technique.
It can be shown that the iteration step in this case boils down to solving a weighted
regression problem.

8.7 EXERCISES

Section 8.2

1.

2.

Of the distributions mentioned in the random component of a GLM, give the density (including
the range), the mean and the variance.

the same coefficient of variation, What is the skewness?

Section 8.3

1. Verify (8.4), (8.16) and (8.17). Also verify if (8.11) describes the maximum of (8.13) under
assumption (8.14).

Show that if   with parameters                    and           all have
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2.

3.

4.

5.

6.

7.

8.

9.

Show that the methods of Bailey-Simon, marginal totals and least squares, as well as the direct
method, can all be written as methods of weighted marginal totals, where the following system
is to be solved:

for all

where Bailey-Simon,

marginal totals,

least squares,

direct method.

10.

Show that the additive models of the direct method as well as the least squares method coincide
with the one of the marginal totals.

Which requirement should the means and variances of  fulfill in order to make (8.17)
produce optimal estimates for (See Exercise 7.4.1.)

Starting from determine and in Example 8.3.12. Verify if the solution found
for satisfies the corresponding equation in each system of equations. Determine the results
for the different models after the first iteration step, with initial values and after rescaling
such that Explain why the results for the Bailey-Simon methods agree so closely with
the ones for the marginal totals method.

In Example 8.3.12, compare the resulting total premium according to the different models. What
happens if we divide all weights by 10?

Show that the least squares method leads to maximum likelihood estimators in case the have
a normal distribution with variance

What can be said about the sum of the residuals if the and the are
fitted by the four methods of this section?

Complete the proof of Property 8,3.9.

Prove that in Property 8.3.11, setting (8.19) to zero indeed leads to the system (8.17).

Section 8.4

1.

2.

3.

4.

Verify if (8.23) is the scaled deviance for a Poisson distribution.

Verify if (8.26) is the scaled deviance for a gamma distribution.

Show that in the model of Property 8.3.9, the second term of (8.23) is always zero.

Also show that the second term of deviance (8.26) is zero in a multiplicative model for the
expected values, if the parameters are estimated by the direct method.
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Section 8.5

1.

2.

3.

4.

For check if the models (8.27) and (8.28) lead to the fitted values for models IV and
X as given in Table 8.2.

From Table 8.2, determine which values and were used. With these, verify the value
of

For the models I–X, write down chains, as long as possible, of nested models, i.e., with less and
less restrictions on the parameters. Sketch a graph with the models as nodes, and with edges
between nodes that follow each other directly in the longest possible chains.

Determine how many degrees of freedom the model with main effects age class, gender and
region described in the closing remarks of this section has. Where can this model be put in the
graph of the previous exercise?

Section 8.6

1.

2.

3.

4.

5.

6.

7.

8.

Prove the relations as well as where

for as in (8.29). With these relations, derive the mean and the variance with

Check the validity of the entries in Table E for all distributions listed. Verify the reparametriza-
tions, the canonical link, the cumulant function, the mean as a function of and the variance
function. Also determine the function

The marginal totals equations are fulfilled, by (8.43), for the Poisson distribution in case of
a log-link. Prove that the same holds for the link functions by adding
up the ML-equations, weighted by What is the consequence for the deviance of Poisson
observations with this link function?

The same as the previous exercise, but now for gamma observations.

Prove that for all members of the exponential dispersion family, the maximum likelihood
estimator for is under the full model.

Show that in general, the scaled deviance equals

From the expression in the previous exercise, derive expressions for the scaled deviances for the
normal, Poisson, binomial, gamma and inverse Gaussian distributions.

Prove the statements about Esscher transforms in Remark 8.6.10.



9
IBNR techniques

9.1 INTRODUCTION

Up to just a few decades ago, non-life insurance portfolios were financed through a
pay-as-you-go system. All claims in a particular year were paid from the premium
income of that same year, irrespective of the year in which the claim originated.
The financial balance in the portfolio was realized by ensuring that there was an
equivalence between the premiums collected and the claims paid in a particular
financial year. Technical gains and losses arose because of the difference between
the premium income in a year and the claims paid during the year.

The claims originating in a particular year often cannot be finalized in that year.
For instance, long legal procedures are the rule with liability insurance claims, but
there may also be other causes for delay, such as the fact that the exact size of the
claim is hard to assess. Also, the claim may be filed only later, or more payments
than one have to be made, as in disability insurance. All these factors will lead to
delay of the actual payment of the claims. The claims that have already occurred,
but are not sufficiently known, are foreseeable in the sense that one knows that
payments will have to be made, but not how much the total payment is going to be.
Consider also the case that a premium is paid for the claims in a particular year,

203
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and a claim arises of which the insurer is not notified as yet. Here also, we have
losses that have to be reimbursed in future years.

As seems proper and logical, such claims are now connected to the years for
which the premiums were actually paid. This means that reserves have to be kept
regarding claims which are known to exist, but for which the eventual size is
unknown at the time the reserves have to be set. For claims like these, several
acronyms are in use. One has IBNR claims (Incurred But Not Reported) for
claims that have occurred but have not been filed. Hence the name IBNR methods,
IBNR claims and IBNR reserves for all quantities of this type. There are also
RBNS claims (Reported But Not Settled), for claims which are known but not
(completely) paid. Other acronyms are IBNFR, IBNER and RBNFS, where the F
is for Fully, the E for Enough. Large claims which are known to the insurer are
often handled on a case-by-case basis.

When modelling these situations, one generally starts from a so-called run-off
triangle, which is for instance compiled in the following way:

1.

2.

3.

4.

5.

6.

We start in 2000 with a portfolio consisting of a number of contracts. Let us
assume that the total claims to be paid are fully known on January 1, 2008,
seven years after the end of this year of origin;

The claims occurring in the year 2000 have to be paid from the premiums
collected in 2000;

These payments have been made in the year 2000 itself, but also in the years
2001-2007;

In the same way, for the claims pertaining to the year of origin 2001, one
has the claims which are known in the years 2001–2007, and it is unknown
what has to be paid in 2008;

For the year 2005, the known claims are the ones paid in the period 2005–
2007, but there are also unknown ones that will come up in the years 2008
and after;

For the claims concerning the premiums paid in 2007, on December 31,
2007 only the payments made in 2007 are known, but we can expect that
more payments will have to be made in and after 2008. We may expect that
the claims develop in a pattern similar to the one of the claims in 2000–2007.
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The development pattern can schematically be depicted as in the triangle of Table
9.1. The numbers in the triangle are the known total payments, grouped by year of
origin (row-wise) and development year (column-wise). The row corresponding
to year 2002 contains the six numbers which are known on December 31, 2007.
The third element in this row, for instance, denotes the claims incurred in 2002,
but paid for in the third year of development, hence 2004. In the triangle of Table
9.1, we look at new contracts only, which may occur for instance when a new type
of policy was issued for the first time in 2000. The business written in this year
on average has had only half a year to produce claims in 2000, which is why the
numbers in the first column are somewhat lower than those in the second. The
numbers on the diagonal with denote the payments that were made in
calendar year There are many ways to group these same data into a triangle, but
the one given in Table 9.1 is the customary one. On the basis of the claim figures
in Table 9.1, we want to make predictions about claims that will be paid, or filed,
in future calendar years. These future years are to be found in the bottom-right
part of Table 9.1. The goal of the actuarial IBNR techniques is to predict these
figures, so as to complete the triangle into a square. The total of the figures found
in the lower right triangle is the total of the claims that will have to be paid in
the future from the premiums that were collected in the period 2000–2007. This
total is precisely the reserve to be kept. We assume that the development pattern
lasts eight years. It is obvious that there are many branches, notably in liability,
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where claims may still be filed after a time longer than eight years. In that case, we
have to make predictions about development years after the seventh, of which our
run-off triangle provides no data. We not only have to complete a square, but we
have to extend the triangle into a rectangle containing more development years.
The usual practice is to assume that the development procedure is stopped after a
number of years, and to apply a correction factor for the payments made after the
development period considered.

The future payments are estimated following well-established actuarial practice.
Sometimes one central estimator is given, but also sometimes a whole range of
possibilities is considered, containing both the estimated values and, conceivably,
the actual results. Estimates of the mean as well as of the variance of the results
are very important. Methods to determine the reserves have been developed that
each meet specific requirements, have different model assumptions, and produce
different estimates. In practice, the method which is the most likely to produce the
‘best’ estimator is used to determine the estimate of the expected claims, while the
results of other methods are used as a means to judge the variation of the stochastic
result, which is of course a rather unscientific approach.

Using the triangle in Table 9.1, we can give various methods that each reflect
the influence of a number of exogenous factors. In the direction of the year of
origin, variation in the size of the portfolio will have an influence on the claim
figures. On the other hand, for the factor development year (horizontally), changes
in the claim handling procedure as well as in the speed of finalization of the claims
will produce a change. The figures on the diagonals correspond to payments in a
particular calendar year. Such figures will change due to monetary inflation, but
also by changing jurisprudence or increasing claim proneness. As an example,
in liability insurance for the medical profession the risk increases each year, and
if the amounts awarded by judges get larger and larger, this is visible along the
diagonals. In other words, the separation models which have as factors the year
of development and the calendar year would be the best choice to describe the
evolution of portfolios like these.

Obviously, one should try to get as accurate a picture as possible about the
stochastic mechanism that produced the claims, test this model if possible, and
estimate the parameters of this model optimally to construct good predictors for
the unknown observations. Very important is how the variance of claim figures
is related to the mean value. This variance can be more or less constant, it can
be proportional to the mean, proportional to the square of the mean, or have
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some other relation with it. See the following section, as well as the chapter on
Generalized Linear Models.

Just as with many rating techniques, see the previous chapter, in the actuarial
literature quite often a heuristic method to complete an IBNR triangle was de-
scribed first, and a sound statistical fundament was provided only later. There is a
very basic GLM for which the ML-estimators can be computed by the well-known
chain ladder method. On the other hand it is possible to give a model which in-
volves a less rigid statistical structure and in which the calculations of the chain
ladder method produce an optimal estimate in the sense of mean squared error.
We give a general GLM-model, special cases of which can be shown to boil down
to familiar methods of IBNR estimation such as the arithmetic and the geometric
separation methods, as well as the chain ladder method. A numerical illustration
is provided in Section 9.3.

9.2 A GLM THAT ENCOMPASSES VARIOUS IBNR METHODS

In this section we present a Generalized Linear Model that contains as special cases
some often used and traditional actuarial methods to complete an IBNR triangle.
For variants of these methods, and for other possible methods, we refer to the
literature. In Table 9.2, the random variables for denote the
claim figure for year of origin and year of development meaning that the claims
were paid in calendar year For combinations with

has already been observed, otherwise it is a future observation. As well as
claims actually paid, these figures may also be used to denote quantities such as
loss ratios. As a model we take a multiplicative model, with a parameter for each
row each column and each diagonal as follows:

The deviation of the observation on the left hand side from its model value on the
right hand side is attributed to chance. As one sees, if we assume further that the
random variables are independent and restrict their distribution to be in the
exponential dispersion family, (9.1) is a Generalized Linear Model in the sense
of the previous chapter, where the expected value of is the exponent of the
linear form such that there is a logarithmic link.
Year of origin, year of development and calendar year act as explanatory variables
for the observation We will determine maximum likelihood estimates of the
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parameters and under various assumptions for the probability distribution
of the It will turn out that in this simple way, we can generate many widely
used IBNR techniques.

Having found estimates of the parameters, it is easy to extend the triangle to a
square, simply by taking

A problem is that we have no data on the values of the for calendar years with
The problem can be solved, for instance, by assuming that the have a

geometric relation, with for some real number

Chain ladder method
The first method that can be derived from model (9.1) is the chain ladder method.
We assume the following about the distributions:

the parameters and are estimated by maximum likelihood.
The idea behind the chain ladder method is that in any development year, about

the same total percentage of the claims from each year of origin will have been
settled. In other words, in the run-off triangle, the columns are proportional. But
the same holds for the rows, since all the figures in a row are the same multiple of
the payment in year of development 1. One may determine the parameters by least
squares or by a heuristic method (‘mechanical smoothing’). This last method boils
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down to maximizing the likelihood, but proves to be less reliable if the assumption
about the proportions settled each year is violated. Since for instance in medical
liability, many more lawsuits are started than there used to be, it is clear that the
premise of the ratios of the columns remaining constant cannot be upheld. This
can be redressed by introducing other assumptions like a linear development of
the ratio between successive columns as a function of the year of origin. Such
methods are then variants of the chain ladder method.

To show how the likelihood maximization problem (9.3) can be solved, we
first remark that one of the parameters is superfluous, since if we replace all

and by and we get the same expected values. To resolve this
ambiguity, we impose an additional restriction on the parameters. A natural one
is to impose since this allows the to be interpreted as the
fraction of claims settled in development year and as the ‘volume’ of year
of origin it is the total of the payments made. We know that the observations

follow a Poisson distribution with a logarithmic
model for the means. By Property 8.3.9 it follows that the marginal totals of the
triangle, hence the row sums and the column sums of the observed figures

must be equal to the predictions and for these quantities.
By the special triangular shape of the data, the resulting system of marginal totals
equations admits a simple solution method, see also Table 9.3.

1. From the first row sum equality it follows that
Then from we find the value of
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2.

3.

Assume that, for a certain we have found estimates and
Then we look at the following two marginal totals equations:

By the fact that we take the first of these equations
directly produces a value for and then we can compute from the
second one.

Repeat step 2 for

We will illustrate by an example how we can express the predictions for the
unobserved part of the rectangle resulting from these parameter estimates in the
observations, see Table 9.4. Consider the (3,4) element in this table, which is
denoted by This is a claim figure for the next calendar year 6, which is just
beyond the edge of the observed figures. The prediction of this element is

Here for instance, denotes the total of the B-elements in Table 9.4, which are
the observed values. The last equality in (9.5) is valid because the estimates and

satisfy the marginal totals property, and and are directly row and column
sums of the observations, while is expressible in
these quantities as well.
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The prediction for can be computed from the marginal totals in exactly
the same way, by

where the sum includes Note that this is not an actual observation but a
prediction for it, constructed as above. Exactly the same prediction is obtained by
taking

hence by following the same procedure as for an observation in the next calendar
year. This procedure is exactly how the rectangle is completed from the run-off
triangle in the basic chain ladder method. Note that this procedure produces the
same estimates to complete the square if we exchange the roles of development
year and year of origin, hence take the mirror image of the triangle around the
diagonal.

The basic principle of the chain ladder method admits many variants. One may
wonder if there is indeed proportionality between the columns. Undoubtedly, this
is determined by effects that operate along the axis describing the year of origin of
the claims. By the chain ladder method, only the run-off pattern can be captured,
given that all other factors, at least the ones having an influence on the proportion
of claims settled, remain unchanged over time.

Arithmetic separation method
In both the arithmetic and the geometric separation method the claim figures
are also explained by two aspects of time, namely a calendar year effect where

and a development year effect So inflation and run-off pattern are
the determinants for the claim figures in this case. For the arithmetic separation
method we assume

Again, and are estimated by maximum likelihood. Since this is again a
Poisson model with log-link, because of Property 8.3.9 the marginal totals property
must hold here as well. In model (8.8) these marginal totals are the column sums
and the sums over the diagonals, with
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In the separation models, one assumes that in each year of development a
fixed percentage is settled, and that there are additional effects that operate in the
diagonal direction (from top-left to bottom-right) in the run-off triangle. So this
model describes best the situation that there is inflation in the claim figures, or
when the risk increases by other causes. The medical liability risk, for instance,
increases every year. This increase is characterized by an index factor for each
calendar year, which is a constant for the observations parallel to the diagonal.
One supposes that in Table 9.3, the random variables are average loss figures,
where the total loss is divided by the number of claims, for year of origin and
development year

By a method very similar to the chain ladder computations, we can also ob-
tain parameter estimates in the arithmetic separation method. This method was
originally described in Verbeek (1972), and goes as follows. We have

Again, the parameters describe the proportions settled
in development year Assuming that the claims are all settled after develop-
ment years, we have Using the marginal totals equations, cf.
Table 9.3, we can determine directly the optimal factor reflecting base level
times inflation, as the sum of the observations on the long diagonal
Since occurs in the final column only, we have With this, we can
compute and then and so on. Just as with the chain ladder method,
the estimates thus constructed satisfy the marginal totals equations, and hence are
maximum likelihood estimates because of Property 8.3.9.

To fill out the remaining part of the square, we also need values for the para-
meters to be multiplied by the corresponding estimate. We find
values for these parameters by extrapolating the sequence in some way.
This can be done with many techniques, for instance loglinear extrapolation.

Geometric separation method
The geometric separation method involves maximum likelihood estimation of the
parameters in the following statistical model:

Here is an unknown variance. We get an ordinary regression model with
Its parameters can be estimated in the usual

way, but they can also be estimated recursively in the way described above, starting
from
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Note that the values in this model are not the expected values of
In fact, they are only the medians; we have

and

De Vijlder’s least squares method
In De Vijlder’s least squares method, we assume that holds, while and

are determined by minimizing the sum of squares But this
is tantamount to determining and by maximum likelihood in the following
model:

Just as with the chain ladder method, in this method we assume that the payments
for a particular year of origin/year of development combination result from two
elements. First, a parameter characterizing the year of origin, proportional to the
size of the portfolio in that year. Second, a parameter determining which proportion
of the claims is settled through the period that claims develop. The parameters are
estimated by least squares.

9.3 ILLUSTRATION OF SOME IBNR METHODS

Obviously, introducing parameters for the three time aspects year of origin, year
of development and calendar year sometimes leads to overparametrization. From
all these parameters, many should be dropped, i.e., taken equal to 1. Others might
be required to be equal, for instance by grouping classes having different values
for some factor together. Admitting classes to be grouped leads to many models
being considered simultaneously, and it is sometimes hard to construct proper
significance tests in these situations. Also, a classification of which the classes are
ordered, such as age class or bonus-malus step, might lead to parameters giving a
fixed increase per class, except perhaps at the boundaries or for some other special
class. In a loglinear model, replacing arbitrary parameter values, associated with
factor levels (classes), by a geometric progression in these parameters is easily
achieved by replacing the dummified factor by the actual levels again, or in GLIM
parlance, treating this variable as a variate instead of as a factor. Replacing arbitrary
values with by a geometric progression for some real means
that we assume the portfolio to grow, or shrink, by a fixed percentage each year.
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Doing the same to the parameters means that the proportion settled decreases
by a fixed fraction with each development year. Quite often, the first development
year will be different from the others, for instance because only three quarters are
counted as the first year. In that case, one does best to allow a separate parameter
for the first year, taking parameters for some real numbers and

Instead of with the original parameters one works with only two
parameters. By introducing a new dummy explanatory variable to indicate whether
the calendar year with observation is before or after and letting
it contribute a factor 1 or to the mean, respectively, one gets a model involving
a year in which the inflation was different from the standard fixed inflation of the
other years.

From the differenceoof the maximally attainable likelihood and the one of a
particular model, one may determine a certain ‘distance’ between the data and
the predictions. For this distance, we take the (scaled) deviance introduced in the
previous chapter. Using this, one may test if it is worthwhile to complicate a model
by introducing more parameters. For a nested model, of which the parameter
set can be constructed by imposing linear restrictions on the parameters of the
original model, it is possible to judge if the distance between data and predictions
is ‘significantly’ larger. It proves that this difference in distance, under the null-
hypothesis that the eliminated parameters are superfluous, is approximately
distributed. In similar fashion, the ‘goodness of fit’ of non-nested models can be
compared.

Some software to solve regression problems leaves it to the user to resolve the
problems arising from introducing parameters with variables which are dependent
of the others, the so-called ‘dummy trap’ (multicollinearity). Other programs are
more convenient in this respect. For instance if one takes all three effects in (9.1)
geometric, with as predictors

GLIM simply proceeds as if the last of these three parameters is equal to 1. Notice
that by introducing in (9.12), all three parameter estimates can have the form

and In the same way, we can take in (9.1).
The parameter is the level in the first year of origin and development
year 1. It can be shown that we get the same predictions using either of the
models and Completing the triangle of
Table 9.1 into a square by using chain ladder estimates produces Table 9.5. The
column ‘Total’ contains the row sums of the estimated future payments, hence
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exactly the amount to be reserved regarding each year of origin. The figures in the
top-left part are estimates of the already observed values, the ones in the bottom-
right part are predictions for future payments. To judge which model best fits the
data, we estimated a few models for (9.1), all assuming the observations to be
Poisson See Table 9.6. Restrictions like or were
imposed to reproduce the various models from the previous section. The reader
may verify why in model I, one may choose without loss of generality.
This means that model I has only 6 more parameters to be estimated than model II.
Notice that for model I with there are parameters
to be estimated from observations, hence model I only makes sense if

All other models are nested in Model I, since its set of parameters contains all
other ones as a subset. The predictions for model I best fit the data. About the
deviances and the corresponding numbers of degrees of freedom, the following
can be said. The chain ladder model II is not rejected statistically against the fullest
model I on a 95% level, since it contains six parameters less, and the critical
value is 12.6 while the difference in scaled deviance is only 12.3. The arithmetic
separation model III fits the data approximately as well as model II. Model IV with
an arbitrary run-off pattern and a constant inflation is equivalent to model V,
which has a constant rate of growth for the portfolio. In Exercise 9.3.3, the reader
is asked to explain why these two models are identical. Model IV, which is nested
in III and has six parameters less, predicts significantly worse. In the same way,
V is worse than II. Models VI and VII again are identical. Their fit is bad. Model
VIII, with a geometric development pattern except for the first year, seems to be
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the winner: with five parameters less, its fit is not significantly worse than model
II in which it is nested. It does fit better than model VII in which the first column
is not treated separately. Comparing VIII with IX, we see that a constant rate of
growth in the portfolio must be rejected in favor of an arbitrary growth pattern. In
model X, there is a constant rate of growth as well as a geometric development
pattern. The fit is bad, mainly because the first column is so different.

From model XI, having only a constant term, we see that the ‘percentage of
explained deviance’ of model VIII is more than 98%. But even model IX, which
contains only a constant term and three other parameters, already explains 97.4%
of the deviation.

The estimated model VIII gives the following predictions:

where should be read as a Boolean expression, with value 1 if true, 0 if false
(in this case, for the special column with ). Model IX leads to the following



ILLUSTRATION OF SOME IBNR METHODS 217

estimates:

The Poisson distribution with year of origin as well as year of development as
explanatory variables, thus the chain ladder method, is appropriate to model the
number of claims. Apart from the numbers of claims given in Table 9.1, we also
know the average claim size; it can be found in Table 9.7. For these claim sizes, the
portfolio size, characterized by the factors is irrelevant. The inflation, hence
the calendar year, is an important factor, and so is the development year, since only
large claims lead to delay in settlement. So for this situation, the separation models
are more suited. We have estimated the average claim sizes under the assumption
that they arose from a gamma distribution with a constant coefficient of variation,
with a multiplicative model.

The various models resulted in Table 9.8. As one sees, the nesting structure in
the models is models 4 and 5 are both between 6
and 3, but they are not nested in one another. We have scaled the deviances in
such a way that the fullest model 1 has a scaled deviance equal to the number of
degrees of freedom, hence 15. This way, we can test the significance of the model
refinements by comparing the gain in scaled deviance to the critical value of the

distribution with as a parameter the number of extra parameters estimated. A
statistically significant step in both chains is the step from model 7 to 6. Taking
the development parameters arbitrary as in model 5, instead of geometric
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as in model 6, does not significantly improve the fit. Refining model 6 to model
4 by introducing a parameter for inflation also does not lead to a significant
improvement. Refining model 4 to model 3, nor model 3 to model 2, improves the
fit significantly, but model 1 is significantly better than model 2. Still, we prefer
the simple model 6, if only because model 6 is not dominated by model 1, because
at the cost of 19 extra parameters, the gain in scaled deviance is only 26.2. So the
best estimates are obtained from model 6. It gives an initial level of 129 in the first
year of development, increasing to in the eighth year. Notice
that if the fit is not greatly improved by taking the coefficients arbitrary
instead of geometric or constant, it is better either to ignore inflation or to use a
fixed level, possibly with a break in the trend somewhere, otherwise one still has
the problem of finding extrapolated values of

By combining estimated average claim sizes by year of origin and year of
development with the estimated claim numbers, see Table 9.5, we get the total
amounts to be reserved. These are given in Table 9.9, under the heading Total
est.’. The corresponding model is found by combining both multiplicative models
6 and IX, see (9.14); it leads to the following estimated total payments:

This model can also be used if, as is usual in practice, one is not content with a
square of observed and predicted values, but also wants estimates concerning these
years of origin for development years after the one that has last been observed,
hence a rectangle of predicted values. The total estimated payments for year of
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origin are equal to Obviously, these are finite only if the coefficient
for each development year in models 6 and IX combined is less than 1 in (9.15).

Remark 9.3.1 (Variance of the estimated IBNR totals)
To estimate the variance of the IBNR totals is vital in practice because it enables
one to give a prediction interval for these estimates. If the model chosen is the
correct one and the parameter estimates are unbiased, this variance is built up from
one part describing parameter uncertainty and another part describing the volatility
of the process. If we assume that in Table 9.5 the model is correct and the parameter
estimates coincide with the actual values, the estimated row totals are predictions of
Poisson random variables. As these random variables have a variance equal to this
mean, and the yearly totals are independent, the total estimated process variance
is equal to the total estimated mean, hence
If there is overdispersion present in the model, the variance must be multiplied by
the estimated overdispersion factor. The actual variance of course also includes
the variation of the estimated mean, but this is harder to come by. Again assuming
that all parameters have been correctly estimated and that the model is also correct,
including the independence of claim sizes and claim numbers, the figures in Table
9.9 are predictions for compound Poisson random variables with mean The
parameters of the numbers of claims can be obtained from Table 9.5, the second
moments of the gamma distributed payments can be derived from the estimated
means in (9.13) together with the estimated dispersion parameter. Doray (1996)
gives UMVUEs of the mean and variance of IBNR claims for a model with
lognormal claim figures, explained by row and column factors.
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Remark 9.3.2 (‘The’ stochastic model behind chain ladder)
As we have shown, ML-estimation in a model with independent Poisson
variables can be performed using the algorithm known as the chain ladder
method. Mack (1993) has described a less restrictive set of distributional assump-
tions under which doing these calculations makes sense. Aiming for a distribution-
free model, he cannot specify a likelihood to be maximized, so he endeavors to
find minimum variance unbiased estimators instead.

9.4 EXERCISES

Section 9.1

1. In how many ways can the data in Table 9.1 be organized in a table, by year of origin, year of
development and calendar year, vertically or horizontally, in increasing or decreasing order?

Section 9.2

1.

2.

3.

Show that (9.6) and (9.7) indeed produce the same estimate.

Prove (9.10). What is the mode of the random variables in model (9.9)?

Apply the chain ladder method to the given IBNR triangle with cumulated figures. What could
be the reason why run-off triangles to be processed through the chain ladder method are usually
given in a cumulated form?

4.

5.

Apply the arithmetic separation method to the same data of the previous exercise. Determine
the missing     values by linear or by loglinear interpolation, whichever seems more appropriate.

Which distance between data and predicted values is minimized by the chain ladder method?
Which by the separation methods?

Section 9.3

1. Verify that the same predictions (9.12) are obtained from the models and
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2.

3.

4.

5.

Argue why in model I, where for we have the
parameter can be taken equal to 1 without loss of generality, meaning that for model I
has only six more parameters to be estimated than model II. Verify that with model I there are

parameters to be estimated from observations, so model I makes sense only
if

Explain why models IV and V are equivalent.

For compute the values predicted by models (9.13) and (9.14), and compare
these to the actual observations.

Verify (9.15). Use it to determine



10
Ordering of risks

10.1 INTRODUCTION

Comparing risks is the very essence of the actuarial profession. This chapter offers
some mathematical concepts and tools to do this, and gives some important results
of non-life actuarial science that can be derived. A risk, by which we mean a
non-negative random variable, can be preferable to another for two reasons. One is
that the other risk is larger, see Section 10.2, the second is that it is thicker-tailed
(riskier), see Section 10.3. Thicker-tailed means that the probability of large values
is larger, making a risk with equal mean less attractive because it is more spread
and therefore less predictable. We show that having thicker tails means having
larger stop-loss premiums.

We also show that the latter is equivalent to the common preferences between
risks of all risk averse decision makers. From the fact that a risk is smaller or less
risky than another, one may deduce that it is also preferable in the mean-variance
ordering that is used quite generally. In this ordering, one prefers the risk with
the smaller mean, and the variance serves as a tie-breaker. This ordering concept,
however, is inadequate for actuarial purposes, since it leads to decisions that many
sensible decision makers would dispute. We give several invariance properties of
the stop-loss order. The most important one for actuarial applications is that it is

223
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preserved under compounding, when either the number of claims or the claim size
distribution is replaced by a riskier one.

In Section 10.4 we give a number of applications of the theory of ordering risks.
One is that the individual model is less risky than the collective model. In Chapter
3, we saw that the canonical collective model has the same mean but a larger
variance than the individual model, while the open collective model has a larger
mean (and variance). We will prove here some stronger assertions, for instance
that any risk averse decision maker would prefer a loss with the distributional
properties of the individual model to a loss distributed according to the usual
collective model, and also that all stop-loss premiums for it are smaller.

From Chapter 4 we know that the non-ruin probability can be written as the
cdf of a compound geometric random variable L, which represents the maximal
aggregate loss. We will show that if we replace the individual claims distribution
in a ruin model by a distribution which is preferred by all risk averse decision
makers, this is reflected in the ruin probability getting lower. Under somewhat
more general conditions, the same holds for Lundberg’s exponential upper bound
for the ruin probability.

Many parametric families are monotonic in their parameters, in the sense that the
risk increases (or decreases) with the parameters. We will show that if we look at
the subfamily of the gamma distributions with a fixed mean the stop-
loss premiums at each grow with the variance hence with decreasing In
this way, it is possible to compare all gamma distributions with the gamma
distribution. Some will be preferred by all decision makers with increasing utility,
some only by those who are also risk averse, while for others, the opinions will
differ.

In Chapter 1, we showed that stop-loss reinsurance is optimal in the sense that
it gives the lowest variance for the retained risk when the mean is fixed. In this
chapter we are able to prove the stronger assertion that stop-loss reinsurance leads
to a retained loss which is preferable for any risk averse decision maker.

We also will show that quite often, but not always, the common good opinion
of all risk averse decision makers about some risk is reflected in a premium to be
asked for it. If every risk averse decision maker prefers X to Y as a loss, X has
lower zero utility premiums, including for instance exponential premiums.

Another field of application is given in Section 10.5. Sometimes one has to
compute a stop-loss premium for a single risk of which only certain global char-
acteristics are known, such as the mean value an upper bound and possibly



INTRODUCTION 225

the variance We will determine risks with these characteristics that produce
upper and lower bounds for such premiums.

It is quite conceivable that the constraints of non-negativity and independence
of the terms of a sum imposed above are too restrictive. Many invariance prop-
erties depend crucially on non-negativity, but in financial actuarial applications,
we must be able to incorporate both gains and losses in our models. The inde-
pendence assumption is often not nearly fulfilled, for instance if the terms of a
sum are consecutive payments under a random interest force, or in case of earth-
quake and flooding risks. Also, the mortality patterns of husband and wife are
obviously related, both because of the ‘broken heart syndrome’ and the fact that
their environments and personalities will be alike (‘birds of a feather flock to-
gether’). Nevertheless, most traditional insurance models assume independence.
One can force a portfolio of risks to satisfy this requirement as much as possible
by diversifying, therefore not including too many related risks like the fire risks
of different floors of a building or the risks concerning several layers of the same
large reinsured risk.

The assumption of independence plays a very crucial role in insurance. In fact,
the basis of insurance is that by undertaking many small independent risks, an
insurer’s random position gets more and more predictable because of the two
fundamental laws of statistics, the Law of Large Numbers and the Central Limit
Theorem. One risk is hedged by other risks, since a loss on one policy might
be compensated by more favorable results on others. Moreover, assuming inde-
pendence is very convenient, because mostly, the statistics gathered only give
information about the marginal distributions of the risks, not about their joint
distribution, i.e., the way these risks are interrelated. Also, independence is math-
ematically much easier to handle than most other structures for the joint cdf. Note
by the way that the Law of Large Numbers does not entail that the variance of an
insurer’s random capital goes to zero when his business expands, but only that the
coefficient of variation, i.e., the standard deviation expressed as a multiple of the
mean, does so.

In Section 10.6 we will try to determine how to make safe decisions in case
we have a portfolio of insurance policies that produce gains and losses of which
the stochastic dependency structure is unknown. It is obvious that the sum of
random variables is risky if these random variables exhibit a positive dependence,
which means that large values of one term tend to go hand in hand with large
values of the other terms. If the dependence is absent such as is the case for
stochastic independence, or if it is negative, the losses will be hedged. Their total
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becomes more predictable and hence more attractive in the eyes of risk averse
decision makers. In case of positive dependence, the independence assumption
would probably underestimate the risk associated with the portfolio. A negative
dependence means that the larger the claim for one risk, the smaller the other ones.
The central result here is that sums of random variables are the riskiest if these
random variables are maximally dependent (comonotonic).

10.2 LARGER RISKS

In this section and the three that follow, we compare risks, i.e., non-negative
random variables. It is easy to establish a condition under which we might call
one risk Y larger than (more correctly, larger than or equal to) another risk X:
without any doubt a decision maker with increasing utility will consider loss X to
be preferable to Y if it is smaller with certainty, hence if This
leads to the following definition:

Definition 10.2.1 (‘Larger’ risk)
For two risks, Y is ‘larger’ than X if a pair ( Y) exists with ~ X and

Note that in this definition, we do not just look at the marginal cdf’s and
but at the joint distribution of and Y. See the following example.

Example 10.2.2 (Binomial random variables)
Let X denote the number of times heads occur in 7 tosses with a fair coin, and Y
the same in 10 tosses with a biased coin having probability of heads. If X
and Y are independent, event X > Y has a positive probability. Can we set up
the experiment in such a way that we can define random variables Y and on
it, such that has the same cdf as X, and such that Y is always at least equal to

To construct an ~ X such that we proceed as follows.
Toss a biased coin with probability of falling heads ten times, and denote the
number of heads by Y. Every time heads occurs in the first seven tosses, we toss
another coin that falls heads with probability Let be the number of heads

shown by the second coin. Then ~ binomial just as X, because the
probability of a success with each potential toss of the second coin is
Obviously, and Y are not independent, and as required,
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The condition for Y to be ‘larger’ than X proves to be equivalent to a simple
requirement on the marginal cdf’s:

Theorem 10.2.3 (A larger random variable has a smaller cdf)
A pair ( Y) with ~ X and exists if, and only if,

for all

Proof. The ‘only if’-part of the theorem is evident. For the ‘if’-part, we only give a
proof for two important special cases. If both and are continuous and
monotone increasing, we can simply take . Then can
be shown to be uniform(0,1), and therefore ~ X. Also,
holds.

For X and Y discrete, look at the following functions, which are actually the
inverse cdf’s with and and are defined for all with

if

if

Next, take U ~ uniform(0,l). Then ~ Y and ~ X, while
for all implies that for all so

Remark 10.2.4 (‘Larger’ vs. larger risks)
To compare risks X and Y, we look only at their marginal cdf’s and Since
the joint distribution doesn’t matter, we can, without loss of generality, look at
any copy of X. But this means we can assume that if Y is ‘larger’ than X in the
sense of Definition 10.2.1, actually the stronger assertion holds.
So instead of just stochastically larger, we may assume the risk to be larger with
probability one. All we do then is replace X by an equivalent risk.

In many situations, we consider a model involving several random variables as
input. Quite often, the output of the model increases if we replace any of the input
random variables by a larger one. This is for instance the case when comparing
X + Z with Y + Z, for a risk Z which is independent of X and Y (convolution).
A less trivial example is compounding, where both the number of claims and the
claim size distributions may be replaced. We have:

Theorem 10.2.5 (Compounding)
If the individual claims are ‘smaller’ than for all the counting variable
M is ‘smaller’ than N, and all these random variables are independent, then

is ‘smaller’ than
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Proof. In view of Remark 10.2.4 we can assume without loss of generality that
as well as hold with probability one. Then the second expression

has at least as many terms which are all at least as large.

The order concept ‘larger than’ used above is called stochastic order, and the
notation is as follows:

Definition 10.2.6 (Stochastic order)
Risk X precedes risk Y in stochastic order, written if Y is ‘larger’ than
X.

In the literature, often the term ‘stochastic order’ is used for any ordering concept
between random variables or their distributions. In this book, it is reserved for the
specific order of Definition 10.2.6.

Remark 10.2.7 (Stochastically larger risks have a larger mean)
A consequence of stochastic order i.e., a necessary condition for it,
is obviously that and even E[X] < E[Y] unless X ~ Y. See
for instance formula (1.34) at The opposite doesn’t hold:
doesn’t imply A counterexample is X ~ Bernoulli with and

for a with

Remark 10.2.8 (Once-crossing densities are stochastically ordered)
An important sufficient condition for stochastic order is that the densities exhibit
the pattern for small and the opposite for large A proof of
this statement is asked in Exercise 10.2.1.

It can be shown that the order has a natural interpretation in terms of utility
theory. We have

Theorem 10.2.9 (Stochastic order and increasing utility functions)
holds if and only if for every non-decreasing

utility function

Proof. If holds for every non-decreasing then it
holds especially for thefunctions . But is
just For the ‘only if’ part, if then for some

~ X, and therefore

So the pairs of risks X and Y with are exactly those pairs of losses about
which all decision makers with an increasing utility function agree.
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10.3 MORE DANGEROUS RISKS

In economics, when choosing between two potential losses, the usual practice is
to prefer the loss with the smaller mean. If two risks have the same mean, some
decision makers will simply choose the one with the smaller variance. This mean-
variance ordering concept forms the basis for the CAPM-models in economic
theory. It is inadequate for the actuary, who also has to keep events in mind with
such small probability that they remain invisible in the variance, but have such
impact that they might lead to ruin. All risk averse actuaries would, however, agree
that one risk is riskier than another if its extreme values have larger probability.

Definition 10.3.1 (Thicker-tailed)
Risk Y is said to have thicker tails than risk X if E[X] = E[Y], and moreover
some real number exists such that for all but

for all

In this definition, the property ‘thicker-tailed’ is expressed directly in the cdf’s of
X and Y: there is a number such that to the left of the cdf of X is smaller,
to the right of the cdf of Y. The cdf’s cross exactly once, in A sufficient
condition for two crossing cdf’s to cross exactly once is that the difference of these
cdf’s increases first, then decreases, and increases again after that. Hence we have:

Theorem 10.3.2 (Densities crossing twice means cdf’s crossing once)
Let X and Y be two risks with equal mean but different densities. If intervals

and exist with and between and such
that the densities of X and Y satisfy both on and while

on then the cdf’s of X and Y cross only once.

Proof. Note first that because of E[X] = E[Y], the cdf’s and must cross
at least once, since we assumed that not This is because if they would
not, one of the two would be larger in stochastic order by Theorem 10.2.3, and the
means would then be different by Remark 10.2.7. Both to the left of 0 and at the
difference of the cdf’s equals zero. The densities represent either the derivatives
of the cdf’s, or the jumps therein, and in both cases it is seen that the difference
of the cdf’s increases first to a maximum, then decreases to a minimum, and next
increases to zero again. So there is just one point, somewhere in where the
difference in the cdf’s crosses the hence the cdf’s cross exactly once.

Note that or may occur if the densities are discrete.
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Example 10.3.3 (Binomial has thinner tails than Poisson)
If we compare a binomial distribution with a Poisson distribution, we
know that they have the same mean, while the latter has a greater variance. Is it
also thicker-tailed than the binomial distribution?

We will show that the discrete densities, say and respectively, have
the crossing properties of the previous theorem. We do this by showing that the
ratio of these densities increases up to a certain value of and decreases
thereafter. Writing as usual, we get for this ratio

Now consider the ratio of successive values of

if and only if

Because and have the same mean, they must cross at least twice. But this
means that must cross the horizontal level 1 twice, so must hold for
small as well as for large values of while must hold for intermediate
values near Now apply the previous theorem to see that the Poisson
distribution indeed has thicker tails than the binomial distribution.

Remark 10.3.4 (Thicker-tailed is not a transitive ordering)
It is easy to construct examples of random variables X, Y and Z where Y is
thicker-tailed than X, Z is thicker-tailed than Y, but Z is not thicker-tailed than
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X. In Figure 10.1, the cdf’s of X and Y cross once, as do the ones of Y and Z, but
those of X and Z cross three times. So being thicker-tailed is not a well-behaved
ordering concept: order relations should be transitive. Transitivity can be enforced
by extending the relation, let’s temporarily write for it, to pairs X and Z
such that a sequence of random variables exists with

as well as Extending the relation in
this way, we get the finite transitive closure of the relation which we will call
indirectly thicker-tailed from now on.

If X precedes Y in stochastic order, their cdf’s do not cross. If Y is (indirectly)
thicker-tailed than X, it can be shown that their stop-loss transforms

and do not cross. By proceeding inductively, it suffices to
prove this for the case where Y is directly thicker-tailed than X. But in that case,
the difference can be seen to be zero at because the means
of X and Y are equal, zero at increasing as long as the derivative of the
difference is positive, and decreasing thereafter.
Hence, Y thicker-tailed than X means that Y has higher stop-loss premiums.

We can prove the reverse of this last statement, too. If Y has larger stop-
loss premiums than X and E[X] = E|Y], then a possibly infinite sequence of
increasingly thicker-tailed cdf’s must exist connecting X and Z.

Theorem 10.3.5 (Thicker-tailed vs. higher stop-loss premiums)
If E[X] = E[Z] and for all then there exists a sequence

of increasingly thicker-tailed cdf’s with X ~ and Z ~

Proof. We sketch the proof for when Z is a random variable with finitely many
possible values. Then the cdf of Z is a step-function, so the stop-loss transform is
a piecewise linear continuous convex function. Hence, for certain linear functions

it can be written in the form

Now define the following functions

These function are stop-loss transforms, say with the cdf’s
As the reader may check, X ~ Z ~ and has thicker tails than

See also Exercise 10.3.25. If the support of Z is infinite, we must
take the limit of the cdf’s in the sense of convergence in distribution.
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For pairs of random variables with ordered stop-loss premiums we have the fol-
lowing definition.

Definition 10.3.6 (Stop-loss order)
If X has smaller stop-loss premiums than Z, we say that X is smaller than Z in
stop-loss order, and write

A random variable that is stop-loss larger than another risk with the same mean
will be referred to as ‘more dangerous’ in the sequel. Note that for stop-loss order,
equality of the means E[X] = E[Z] is not required. In case E[X] < E[Z], we may
show:

Theorem 10.3.7 (Separation theorem for stop-loss order)
If and E[X] < E[Z], then there exists a random variable Y for which

1.

2. and E[Y] = E[Z].

Proof. The random variable with chosen such that
E[Y] = E[Z], satisfies both these requirements, as the reader is asked to verify in
Exercise 10.3.12.

The random variable Y separates X and Y in a sense stronger than merely For
another separator in a similar sense, with the stochastic inequalities interchanged,
see Exercise 10.3.13. A risk Z that is stop-loss larger than X is unattractive for
two reasons: it is ‘more dangerous’ than a risk Y which in turn is ‘larger’ than X.

Just like stochastic order, stop-loss order can be expressed in a utility context
as the common preferences between risks of a group of sensible decision makers:

Theorem 10.3.8 (Stop-loss order, concave increasing utility functions)
holds if and only if for every concave increas-

ing utility function

Proof. In view of Theorem 10.3.7, it suffices to give the proof for the case that
E[X] = E[Y]. Then, it follows as a special case of Theorem 10.6.2 later on. See
also Exercise 10.3.17.

So stop-loss order represents the common preferences of all risk averse decision
makers. Stop-loss order applies to losses, i.e., non-negative risks. Two general
random variables with the same mean and ordered stop-loss premiums for all
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are called convex ordered, see Section 10.6. As a consequence of Theorem 10.3.8,
expected values of convex functions are ordered. Since all functions with
are convex, for the moments of X and Y we have
In particular, a more dangerous risk (with the same mean) has a higher variance.
But if the means of X and Y are not equal, this is not always the case. A trivial
counterexample is X ~ Bernoulli and

Next to stochastic order and stop-loss order, there is another useful ordering
concept to be derived from the expected utility model.

Definition 10.3.9 (Exponential order)
If for all decision makers with an exponential utility function with risk
aversion prefer loss X to Y, we say that X precedes Y in exponential order,
written

Remark 10.3.10 (Exponential order and stop-loss order)
is clearly is equivalent to X having a smaller mgf than Y on the

interval A sufficient condition for exponential order between risks is stop-
loss order, since the function is a convex function on for hence

holds for all But this can be seen from utility considerations
as well, because the exponential order represents the preferences common to the
subset of decision makers for which the risk attitude is independent of their current
wealth.

Exponential order represents the common preferences of a smaller group of
decision makers than stop-loss order. Indeed there exist pairs of random variables
that are exponentially ordered, but not stop-loss ordered. See Exercise 10.4.10.

For stop-loss order, by and large the same invariance properties hold as we derived
for stochastic order. So if we replace a particular component of a model by a more
dangerous input, we often obtain a stop-loss larger result. For actuarial purposes, it
is important whether the order is retained in case of compounding. First we prove
that adding independent random variables, as well as taking mixtures, does not
disturb the stop-loss order.

Theorem 10.3.11 (Convolution preserves stop-loss order)
If for risks X and Y we have and risk Z is independent of X and Y,
then If further is the sum of independent copies of X
and is the same for Y, then
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Proof. The first stochastic inequality can be proven by using the relation:

The second follows by iterating the first inequality.

Theorem 10.3.12 (Mixing preserves stop-loss order)
Let cdf’s and satisfy for all real let be any cdf, and let

Then

Proof. The stop-loss premiums with F are equal to

Hence, follows immediately.

Corollary 10.3.13 (Mixing ordered random variables)
The following conclusions are immediate from Theorem 10.3.12:

1.

2.

3.

4.

If and
for all then we obtain by taking the cdf of N to be

The event might for instance indicate the nature of a particular
claim (small or large, liability or comprehensive, bonus-malus class, and so
on).

Taking especially and where F and G are
the cdf’s of individual claims and respectively, produces

Hence stop-loss order is preserved
under compounding, if the individual claim size distribution is replaced by
a stop-loss larger one.

If is a structure variable with cdf U, and conditionally on the event
X ~ and Y ~ then for all implies

Let denote the cdf of the degenerate random variable on
and the conditional cdf of X, given the event Then it is easy to
see that holds. The function is the cdf of the
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random variable while is the cdf of X. Hence we
have for all X and always, conditional means are less
dangerous than the original random variable.

We saw that if the terms of a compound sum are replaced by stop-loss larger
ones, the result is also stop-loss larger. To prove that the same happens when we
replace the claim number M by the stop-loss larger random variable N is tougher.
The general proof, though short, is not easy, hence we will start by giving an
important special case. We take M ~ Bernoulli and As usual, define

if

Theorem 10.3.14 (Compounding with a riskier claim number, 1)
If M ~ Bernoulli N is a counting random variable with and

are independent copies of a risk X, then we have

Proof. First we prove that for each the following event has probability one:

There only is something to prove if the right hand side is non-zero. If, say, the first
term is positive, then because of the first two
in (10.9) can be dropped, leaving

which is always fulfilled if and Writing
for we have, using (10.9):
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The last inequality is valid since by assumption.

Theorem 10.3.15 (Compounding with a riskier claim number, 2)
If for two counting random variables M and N we have and

are independent copies of a risk X, then

Proof. It is sufficient to prove that is a convex
and increasing function of since by Theorem 10.3.8 this implies

for all which is the same as
Because it is obvious that To prove convexity,
we need to prove that holds for
each By taking the expectation over the random variables and

one sees that for this it is sufficient to prove that for all
and all we have

where If both middle terms of this inequality are zero, so
is the last one and the inequality is valid. If at least one of them is positive, say the
one with on the left hand side of (10.12), remains, and the right hand
side is equal to this if and smaller otherwise, as can be verified easily.

Combining Theorems 10.3.12 and 10.3.15, we see that a compound sum is riskier if
the number of claims, the claim size distribution, or both are replaced by stop-loss
larger ones.

Remark 10.3.16 (Functional invariance)
Just like stochastic order (see Exercise 10.2.8), stop-loss order has the property of
functional invariance. Indeed, if and are non-decreasing convex functions,
the composition is convex and non-decreasing as well, and hence we see
immediately that holds if This holds in particular
for the two most important types of reinsurance: excess of loss reinsurance, where

and proportional reinsurance, where for

10.4 APPLICATIONS

In this section, we give some important actuarial applications of the theory of
ordering of risks.
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Example 10.4.1 (Individual versus collective model)
In Section 3.7 we described how the collective model resulted from replacing every
policy by a Poisson(1) distributed number of independent copies of it. But from
Theorem 10.3.14 with we see directly that doing this, we in fact replace the
claims of every policy by a more dangerous random variable. If subsequently we
add up all these policies, which we have assumed to be stochastically independent,
then for the portfolio as a whole, a more dangerous total claims distribution en-
sues. This is because stop-loss order is preserved under convolution, see Theorem
10.3.11.

As an alternative for the canonical collective model, in Remark 3.7.2 we intro-
duced an open collective model. If the claims of policy are for some fixed
amount at risk and a Bernoulli distributed random variable the term in the
collective model corresponding to this policy is with ~ Poisson In
the open collective model, it is with ~ Poisson for
and hence So in the open model each policy is replaced by a compound
Poisson distribution with a stochastically larger claim number distribution than
with the individual model. Hence the open model will not only be less attractive
than the individual model for all risk averse decision makers, but even for the larger
group of all decision makers with increasing utility functions. Also, the canonical
collective model is preferable to the open model for this same large group of de-
cision makers. Having a choice between the individual and the collective model,
some decision makers might prefer the latter. Apparently, these decision makers
are not consistently risk averse.

Example 10.4.2 (Ruin probabilities and adjustment coefficients)
In Section 4.7, we derived the result that the non-ruin probability can
be written as the cdf of a compound geometric random variable

where M ~ geometric is the number of record lows in the surplus,
is the amount by which a previous record low in the surplus was broken, and L

represents the maximal aggregate loss. We have from (4.50) and (4.51):

and

Here is the safety loading, and is the cdf of the claim sizes in the ruin
process. Now suppose that we replace cdf P by Q, where and Q has the
same mean as P. From (10.13) it is obvious that since the stop-loss premiums with
Q are larger than those with P, the probability is increased when P



238 ORDERING OF RISKS

is replaced by Q. This means that we get a new compound geometric distribution
with the same geometric parameter because and hence are unchanged, but a
stochastically larger distribution of the individual terms This leads to a smaller
cdf for L, and hence a larger ruin probability. Note that the equality of the means

of P and Q is essential here, to ensure that remains the same and that the
random variables increase stochastically.

Now suppose further that we replace the claim size cdf Q by R, with
while leaving the premium level unchanged. This means that we replace the
ruin process by a process with the same premium per unit time and the same
claim number process, but ‘larger’ claims. By Remark 10.2.4, without loss of
generality we can take each claim to be larger with probability one, instead of just
stochastically larger. This means that also with probability one, the new surplus

will be lower than or equal to at each instant This in turn
implies that for the ruin probabilities, we have It may happen
that one gets ruined in the R-process, but not in the Q-process; the other way
around is impossible. Because in view of the Separation Theorem 10.3.7, when P
is replaced by R we can always find a separating Q with the same expectation as P
and with we see that whenever we replace the claims distribution
by any stop-loss larger distribution, the ruin probabilities are increased for every
value of the initial capital

From Figure 4.2 we see directly that when the mgf with the claims is replaced by
one that is larger on the resulting adjustment coefficient R is smaller. This
is already the case when we replace the claims distribution by an exponentially
larger one, see Remark 10.3.10. So we get larger ruin probabilities by replacing
the claims by stop-loss larger ones, but for the Lundberg exponential upper bound
to increase, exponential order suffices.

We saw that stop-loss larger claims lead to uniformly larger ruin probabilities.
The weaker exponential order is not powerful enough to enforce this. To give a
counterexample, first observe that pairs of exponentially ordered random variables
exist that have the same mean and variance. Take for instance

and Y ~ 3 – X. See also Exercise 10.4.10. Now if for
all would hold, with inequality for some the cdf’s of the maximal aggregate
losses and would not cross, hence would hold, which would
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imply But this is not possible since

Note that if the two ruin probability functions are equal, the mgf’s of and
are equal, and therefore also the mgf’s of and see (4.55), hence in view
of (4.51), the claim size distribution must be the same.

Example 10.4.3 (Order in the family of gamma distributions)
The gamma distribution is important as a model for the individual claim size, for
instance for damage to the own vehicle, see also Chapter 8. For two gamma dis-
tributions, say with parameters and it is easy to compare means and
variances. Is there perhaps more to be said about order between such distributions,
for instance about certain tail probabilities or stop-loss premiums?

In general when one thinks of a gamma distribution, one pictures a density which
is unimodal with a positive mode, looking a little like a tilted normal density. But if
the shape parameter we get the exponential distribution, which is unimodal
with mode 0. In general, the gamma has mode The skewness of a
gamma distribution is Thus, the distributions with are more skewed
than the exponential, and have larger tail probabilities.

From the form of the mgf one may show that
gamma random variables are additive in We have

so if X and Y are independent gamma random variables with the
same their sum is a gamma random variable as well. From
one sees that ~ gamma if X ~ gamma and in this sense, the
gamma distributions are multiplicative in the scale parameter But from these
two properties we have immediately that a gamma random variable gets
‘larger’ if is replaced by and ‘smaller’ if is replaced by for

Hence there is monotonicity in stochastic order in both parameters, see also
Exercise 10.2.2.

Now let us compare the gamma with the gamma distribution
when it is known that they have the same mean, so Suppose that

therefore also We will show by investigating the densities
that the gamma distribution, having the larger variance, is also the more
dangerous one. A sufficient condition for this is that the densities cross exactly
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twice. Consider the ratio of these two densities (where the symbol denotes
equality apart from a constant, not depending on ):

The derivative of is positive if negative if so the ratio
(10.15) crosses each horizontal level at most twice. But because both densities
have the same mean, there is no stochastic order, which means that they must
intersect more than once. So apparently, they cross exactly twice, which means
that one of the two random variables is more dangerous than the other. One can find
out which by looking more closely at where each density is larger than the other.
But we already know which one is the more dangerous, since it must necessarily
be the one having the larger variance, which is the one with parameters

We may conclude that going along the diagonal in the plane from
towards the origin, one finds increasingly more dangerous parameter combinations.
Also we see in Figure 10.2 that if a point can be reached from
by first going along the diagonal in the direction of the origin, and next either to
the right or straight down, this points corresponds to a stop-loss larger gamma
distribution, because it is stochastically larger than a separating more dangerous
distribution. In Figure 10.2, one sees the distributions stochastically larger than

in the quarter-plane to the right and below this point. In the opposite
quarter-plane are the stochastically smaller ones. The quarter-plane to the left and
below has stop-loss larger distributions below the diagonal, while for
the distributions above the diagonal one may show that the means are lower, but
the stop-loss premiums for are higher than for The latter can
be proven by applying the rule of 1’Hopital twice. Hence, there is a difference
of opinion about such risks between the risk averse decision makers. See also
Exercise 10.4.8.

Example 10.4.4 (Optimal reinsurance)
In Theorem 1.4.1, we have proven that among the reinsurance contracts with
the same expected value of the reimbursement, stop-loss reinsurance leads to a
retained loss that has the lowest possible variance. Suppose the loss equals the
random variable X, and compare the cdf of the retained loss
under stop-loss reinsurance with another retained loss Y = X – I ( X ) , where
E[Y] = E[Z]. Assume that the function is non-negative, then it follows that
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holds, and hence for all Further,
so for all and for Clearly, the cdf’s of
Z and Y cross exactly once, at and Y is the more dangerous risk. So

Many conclusions can be drawn from this. First, we have
for every concave increasing utility function Also, we see confirmed that The-
orem 1.4.1 holds, because obviously We can also conclude that
excess of loss coverage is more effective than any other reinsurance with the same
mean that operates on separate claims. Note that these conclusions depend cru-
cially on the fact that the premiums asked for different form of reinsurance depend
only on the expected values of the reimbursements.

Example 10.4.5 (Do stop-loss larger claims require larger premiums?)
If a loss X is stop-loss smaller than Y, all risk averse decision makers prefer losing
X. Does this show in the premiums that are needed to compensate for this loss?

Surprisingly, the answer to this question is not always affirmative. Consider
for instance the standard deviation premium principle, see Chapter 5, leading to
a premium If X ~ Bernoulli and while

the premium for X is larger than the one for Y even though
The zero utility premiums, including the exponential premiums, do respect

stop-loss order. For these, the premium for a risk X is calculated by solving
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the utility equilibrium equation (1.11), in this case leading to:

The utility function is assumed to be risk averse, and is the current wealth.
If holds, we also have The
right hand side equals Since increases in P and because

must hold, it follows that

Example 10.4.6 (Mixtures of Poisson distributions)
In Chapter 7, we have studied, among other things, mixtures of Poisson distrib-
utions as a model for the number of claims on an automobile policy, assuming
heterogeneity of the risk parameters. In (7.53) for instance we have seen that the
estimated structure distribution has the realization as its mean, but we might
estimate the parameter in a different way than (7.54). If we replace the struc-
ture distribution by a more dangerous one, we increase the uncertainty present
in the model. Does it follow from this that the resulting marginal claim number
distribution is also stop-loss larger?

A partial answer to this question can be given by combining a few facts that we
have seen before. First, by Example 3.3.1, a gamma mixture of Poisson variables
has a negative binomial distribution. In Exercise 10.3.9, we saw that a negative
binomial distribution is stop-loss larger than a Poisson distribution with the same
mean. Hence, a gamma mixture of Poisson distributions is stop-loss larger
than a pure Poisson distribution with the same mean To give a more
general answer, we first introduce some more notation. Suppose that the structure
variables are and assume that given the random variables

have a Poisson distribution. Let be the cdf of We want to prove
that implies To this end, we introduce the function

with ~ Poisson Then holds if and
only if for all So all we have to do is to prove that
the function is convex increasing, hence to prove that is positive and
increasing in This proof is rather straightforward:
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The last expression is positive, and increasing in because for all

Example 10.4.7 (Spreading of risks)
Suppose one can invest a total amount 1 in possible funds. These funds produce
iid yields per share. How should one choose the fraction of a share to buy
from fund if the objective is to maximize the expected utility?

Assume that the utility of wealth is measured by the risk averse function
We must solve the following constrained optimization problem:

subject to

We will prove that taking is optimal. Write
for the average yield. Observe that because we have

and for symmetry reasons the outcome should be the same for
every This implies

By part 4 of Corollary 10.3.13, we have hence
because is concave, the maximum in (10.18) is found when

Remark 10.4.8 (Rao-Blackwell theorem)
The fact that the conditional mean E[Y|X ] is less dangerous than Y itself is also
the basis of the Rao-Blackwell theorem, to be found in any text on mathematical
statistics, which states that if Y is an unbiased estimator for a certain parameter,
then E[Y |X ] is a better unbiased estimator, provided it is a statistic, i.e., it contains
no unknown parameters. On every event the conditional distribution of
Y is concentrated on its mean leading to a less dispersed and hence
better estimator.

Remark 10.4.9 (Transforming several identical risks)
Consider a sequence of iid risks and non-negative functions

Then we can prove that

where
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This inequality expresses the fact that given identical risks, to get the least variable
result the same treatment should be applied to all of them. To prove this, we prove
that if V is the random variable on the right and W the one on the left in (10.20),
we have Next, we use that see part 4 of Corollary
10.3.13. We have

For symmetry reasons, the result is the same if we replace the by for each
But this means that we also have

This last expression can be rewritten as

So we have proven that indeed and the required stop-loss inequality
in (10.20) follows immediately from Corollary 10.3.13.

Remark 10.4.10 (Law of large numbers and stop-loss order)
The weak law of large numbers expresses that for sequences of iid observa-
tions ~ X with finite mean and variance the average

converges to in the sense that when and we have

for all

In terms of stop-loss order, we may prove the following assertion:
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Hence the sample averages all having the same mean decrease in danger-
ousness. As the stop-loss premiums at each converge
to which is the stop-loss premium of the degenerate random vari-
able on The proof of (10.25) can be given by taking in the previous remark

and resulting in

10.5 INCOMPLETE INFORMATION

In this section we study the situation that we only have limited information about
the distribution of a certain risk Y, and try to determine a safe stop-loss
premium at retention for it. From past experience, from the policy conditions,
or from the particular reinsurance that is operative, it is often possible to fix a
practical upper bound for the risk. Hence in this section we will assume that we
know an upper bound for the payment Y. We will also assume that we have a good
estimate for the mean risk as well as sometimes for its variance In reinsurance
proposals, sometimes these values are prescribed. Also it is conceivable that we
have deduced mean and variance from scenario analyses, where for instance the
mean payments and the variance about this mean are calculated from models
involving return times of catastrophic spring tides or hurricanes. With this data the
actuary, much more than the statistician, will tend to base himself on the worst
case situation where under the given conditions on and the upper bound
the distribution is chosen that leads to the maximal possible stop-loss premium.

Example 10.5.1 (Dispersion and concentration)
The class of risks Y with a known upper bound and mean contains a most
dangerous element Z. It is the random variable with

This random variable Z has mean and upper bound so it belongs to the class
of feasible risks Y. It is clear that if Y also belongs to this class, their cdf’s cross
exactly once, hence See Figure 10.3. The distribution of Z arises from
the one of Y by dispersion of the probability mass to the boundaries 0 and
The random variable Z is the most dispersed one with this given mean and upper
bound. For every retention the random variable Z has the maximal possible
stop-loss premium The variance Var[Z] is maximal as well. This is
obvious because Z is more dangerous than any feasible risk, but it can also be
shown directly, since
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This same class of risks on the other hand also contains a least dispersed element.
It arises by concentration of the probability mass on If then
see again Figure 10.3, and the stop-loss premium of X at each is minimal, as
is its variance. The problem of determining a minimal stop-loss premium is less
interesting for practical purposes. Hence in the sequel, we will concentrate on
maximal stop-loss premiums.

Note that if the risks X and Y have the same mean and variance, stop-loss order
is impossible, because their stop-loss transforms must cross at least once. This is
because in view of (3.83), if for all either Var[X] < Var[Y] or
X ~ Y must hold.

Dispersal and concentration can also be restricted to only the probability mass in
some interval, still resulting in stop-loss larger and stop-loss smaller distributions
respectively. See the Exercises 10.5.5 and 10.5.6.

Remark 10.5.2 (Compound distributions and ruin processes)
For each we found the same minimal X and maximal Z in Example 10.5.1.
Hence holds, implying that we also have results for compound
distributions. For instance if then For
ruin processes, if Z as in (10.26) is the claim size distribution in a ruin process,
then the ruin probability is maximal for every initial capital Notice that this
leads to a ruin process with claims zero or hence in fact to a process with only
one possible claim size.
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Now let’s further assume that also the variance is known. First notice that the
following conditions are necessary for feasible distributions to exist at all:

The need for the first three inequalities is obvious. The last one says that is at
most the variance of Z in Example 10.5.1, which we proved to be maximal for
risks with this range and mean. We will assume the inequalities in (10.27) to be
strict, so as to have more than one feasible distribution.

Later on we will prove that the random variable Y with the largest stop-loss
premium at necessarily has a support consisting of two points only. Which
support this is depends on the actual value of Hence it will not be possible
to derive attainable upper bounds for compound stop-loss premiums and ruin
probabilities as we did for the case that the variance was unspecified. First we
study two-point distributions with mean and variance

Lemma 10.5.3 (Two-point distributions with given mean and variance)
Suppose a random variable T with but not necessarily

has a two-point support Then and are related by

Proof. We know that must hold. This implies

For a given we can solve for leading to (10.28).

So for any given the number denotes the unique point that can form, together
with  a two-point support with known and Note the special points and
The probability is uniquely determined by

This means that there is exactly one two-point distribution containing The
bar-function assigning to has the following properties:

for is increasing in

if then
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So if and are two possible two-point supports with and
then must hold, in line with the fact that because the

distributions have equal mean and variance, their stop-loss transforms must cross
at least once, their cdf’s at least twice, and their densities three or more times.

In our search for the maximal stop-loss premiums, we prove next that the
maximal stop-loss premium in any retention cannot be attained by a distribution
with a support contained in that consists of more than two points. For this
purpose, assume that we have a support of a feasible distribution with

It can be verified that as well as
From a sketch of the stop-loss transforms, see Figure 10.4, it is easy to see that
on the two-point distribution on has a stop-loss premium at least
equal to the one corresponding to while on the same holds for

In the same fashion, a distribution with mass points is dominated by one
with  mass points. To see why,  just let and be the last three points in the

support. The conclusion is that the distribution with a maximal stop-loss
premium at retention is to be found among the distributions with a two-point
support.

So to find the random variable X that maximizes for a particular
value of and for risks with the properties
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and we only have to look at random variables X with two-point
support Note that in case either or we have

which is in fact the minimal possible stop-loss premium,
so we look only at the case First we ignore the range constraint

and solve the following maximization problem:

This is equivalent to

Dividing by and taking the derivative with respect to leads to

Setting the numerator equal to zero gives a quadratic equation in

The solution with is given by

Notice that we have The numbers and of (10.36) constitute the
optimal two-point support if one ignores the requirement that
Imposing this restriction additionally, we get boundary extrema. Since
implies we no longer maximize over but only over the values

If which is equivalent to the optimum is
If hence the optimum is From this discussion

we can establish the following theorem about the supports leading to the maximal
stop-loss premiums, leaving it to the reader to actually compute the optimal values:

Theorem 10.5.4 (Maximal stop-loss premiums)
For values the maximal stop-loss premium for a risk with
given mean variance and upper bound is the one with the two-point support

with and as in (10.36). For the distribution with support
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has the maximal stop-loss premium, and for the optimal support is

Example 10.5.5 (Minimal and maximal stop-loss premiums)
In Figure 10.5, the minimal and maximal stop-loss premiums are plotted for all

for the case and It can be seen that both
the minimal possible stop-loss premiums and the maximal stop-loss premiums
constitute a convex decreasing function, hence both are the stop-loss transform
with a certain risk. It is evident from the diagram that these have the correct mean
and upper bound but not the right variance Further it can be noticed that there
are no cdf ’s that lead to large stop-loss premiums uniformly, since for instance the
risk with support has maximal stop-loss premiums for low retentions but
minimal ones when

For reinsurance as occurring in practice, it is the large retentions with
say, that are of interest. One may show that if is small, for all these the
stop-loss premium is maximal for the support This support is optimal as
long as and holds if  as the
reader may check. See Exercise 10.5.8.

The distributions that produce the maximum stop-loss premium have a two-
point support, and their stop-loss transforms are tangent lines at to the graph
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with the upper bounds. Minima are attained at when or In
those cases, the support is For intermediate values of  we will argue that the
minimal stop-loss premium is attained by a distribution with support
In a sense, these distributions have a two-point support as well, if one counts the
boundary points 0 and of which the location is fixed but the associated probability
can be chosen freely, for one half. In Figure 10.5 one sees that connecting the points

and gives a stop-loss transformation with not only the
right mean but also with an upper bound since Moreover,
the variance is equal to This is because the area below the stop-loss transform,
which equals the second moment of the risk, is equal to the corresponding area
for the risks with support as well as with To see this, use the areas
of triangles with base line to Note that is the minimal value of
a stop-loss premium at because any stop-loss transform through a point
with leads to a second moment strictly less than On the interval

one may show that the function runs parallel to the line connecting
to

Remark 10.5.6 (Related problems)
Other problems of this type have been solved as well. There are analytical results
available for the extremal stop-loss premiums given up to four moments, and
algorithms for when the number of known moments is larger than four. The
practical relevance of these methods is somewhat questionable, since the only
way to have reliable estimates of the moments of a distribution is to have many
observations, and from these one may estimate a stop-loss premium directly. There
are also results for the case that Y is unimodal with a known mode M. As well
as the extremal stop-loss premiums, also the extremal tail probabilities can be
computed.

Example 10.5.7 (Verbeek’s inequality; mode zero)
Let Y be a unimodal risk with mean upper bound b and mode 0. As is concave
on must hold. Further, let X and Z be risks with
and

and zero otherwise. Then X and Z are also unimodal with mode zero, and E[X] =
E[Y]  = E[Z], as well as   See Exercise 10.5.2. So this class
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of risks also has elements that have uniformly minimal and maximal stop-loss
premiums, respectively, allowing results extending to compound distributions and
ruin probabilities.

10.6 SUMS OF DEPENDENT RANDOM VARIABLES

In order to be able to handle both gains and losses, we start by extending the concept
of stop-loss order somewhat to account for more general random variables with
possibly negative values as well as positive ones, instead of the non-negative risks
that we studied up to now. Then we state and prove the central result in this theory,
which is that the least attractive portfolios are those for which the policies are
maximally dependent. Next, we give some examples of how to apply the theory.
A lot of research is being done in this field, enough to fill a monograph of its own.

With stop-loss order, we are concerned with large values of a random loss,
and call random variable Y less attractive than X if the expected values of all
top parts are larger than those of X. Negative values for these random
variables are actually gains. But with stability in mind, excessive gains are just
as unattractive for the decision maker, for instance for tax reasons. Hence X will
be more attractive than Y only if both the top parts and the bottom
parts have a lower mean value than for Y. This leads to the following
definition:

Definition 10.6.1 (Convex order)
If both the following conditions hold for every

and

then the random variable X is less than Y in convex order, written

Note that adding to the first set of inequalities and letting leads to
Subtracting in the second set of inequalities and letting

on the other hand, produces Hence E[X] = E[Y] must hold
for two random variables to be convex ordered. Also note that the first set of
inequalities combined with equal means implies the second set of (10.38), since

So two random variables with equal means
and ordered stop-loss premiums are convex ordered, while random variables with
unequal means are never convex ordered.
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Stop-loss order is the same as having ordered expected values for all
non-decreasing convex functions see Theorem 10.3.8. Hence it represents
the common preferences of all risk averse decision makers. On the other hand,
convex order is the same as ordered expectations for all convex functions. This is
of course where the name convex order derives from. In a utility theory context,
it represents the common preferences of all risk averse decision makers between
random variables with equal mean. One way to prove that convex order implies
ordered expectations of convex functions is to use the fact that any convex function
can be obtained as the uniform limit of a sequence of piecewise linear functions,
each of them expressible as a linear combination of functions and
This is the proof that one usually finds in the literature. A simpler proof, involving
partial integrations, is given below.

Theorem 10.6.2 (Convex order means ordered convex expectations)
If and is convex, then
If for every convex function  then

Proof. To prove the second assertion, consider the convex functions
and for arbitrary The first two functions lead to

E[X] = E[Y], the last one gives
To prove the first assertion, consider where
is some point where the function is differentiable. Since E[X] = E[Y], the

inequality assuming these expectations exist, is equivalent
to Write and Since

the integrated terms below vanish, so by four partial integrations
we get

from which the result immediately follows because since is convex, so is
and therefore for all

The stop-loss transforms of two random variables with equal mean
have common asymptotes. One is the the other the line
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Generalizing (3.82), it can be shown that
Hence, just as for risks, the integrated difference between the stop-loss

transforms of two arbitrary random variables with the same mean is half the
difference in their variances. See Figure 10.6.

Consider some univariate cumulative distribution function F. It is well-known
that if U ~ uniform(0,l), the random variable is distributed according
to F (probability integral transform). Note that it is irrelevant how we define

for arguments where there is an ambiguity, i.e., where
holds for an interval of Just as the cdf of a random variable can have only
countably many jumps, it can be shown that there can only be countably many
such horizontal segments. To see this, observe that in the interval there
are only finitely many intervals with a length over where is constant,
and let Hence, if and are two different choices for the inverse
cdf, and will be equal with probability one. The customary choice is
to take to be the left-hand endpoint of the interval of (generally
containing one point only) with Then, is non-decreasing and
continuous from the left.

Now consider any random Define a set in to
be comonotonic if each two vectors in it are ordered componentwise, i.e., all
components of the larger one are at least the corresponding components of the
other. We will also call a distribution comonotonic if its support is comonotonic.
Also, any random vector having such a distribution is comonotonic. We have:
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Theorem 10.6.3 (Comonotonic joint distribution)
For some U ~ uniform(0,1), define the following random vector:

This vector has the same marginals as
Its support is comonotonic.
Its joint cdf equals the so-called Fréchet/Höffding upper bound:

Proof. First, we have for all

Next, the support of is a curve that
increases in all its components. If and are two elements
of it with for some then must hold, and
hence for all

Further, we have

which proves the final assertion of the theorem.

The set S that is the support of  consists of a series of connected closed
curves, see Figures 10.7 and 10.8, possibly containing just one point. Together they
form a comonotonic set. The connected closure of S is a continuous curve which
is also comonotonic. It arises by connecting the endpoints of consecutive curves
by straight lines. Note that this has to be done only countably many times, at
discontinuities of one of the inverse cdf’s in the components. The set thus
produced is a continuously increasing curve in

Note that by (10.41), the joint cdf of i.e., the probability that all
components have small values simultaneously, is as large as it can be without
violating the marginal distributions; trivially, the right hand side of this equality
is an upper bound for any joint cdf with the prescribed marginals. Also note that
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comonotonicity entails that no is in any way a hedge for another component
In view of the remarks made in the introduction of this chapter, it is not surprising
that the following theorem holds.

Theorem 10.6.4 (Comonotonic random vector has convex largest sum)
The random vector in Theorem 10.6.3 has the following property:

Proof. It suffices to prove that the stop-loss premiums are ordered, since it is
obvious that the means of these two random variables are equal. The following
holds for all when

Assume that is such that holds; if not, the stop-loss
premiums of  and  can be seen to be equal. The connected
curve containing the support S of the comonotonic random vector
points upwards in all coordinates, so it is obvious that has exactly one point of
intersection with the hyperplane From now
on, let denote this point of intersection. In specific examples, it is
easy to determine this point, but for now, we only need the fact that such a point
exists. For all points in the support S of we have the
following equality:

This is because for this particular choice of by the comonotonicity,
whenever for any we also have for all when all

obviously the left hand side is 0 as well. Now replacing constants by the
corresponding random variables in the two relations above and taking expectations,
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we get

since and have the same marginal distribution for all

Example 10.6.5 (A three-dimensional continuous random vector)
Let X ~ uniform on the set Y ~ Beta(2,2), Z ~ N(0,1). The
support of the comonotonic distribution is the set

See Figure 10.7. Actually, not all of the support is depicted. The part left out
corresponds to and extends along the asymptotes, the vertical
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lines and The thick continuous line is the support S, while the
dotted line is the straight line needed to make S into the connected curve Note
that has a horizontal segment between and The projection
of along the can also be seen to constitute an increasing curve, as do
projections along the other axes.

Example 10.6.6 (A two-dimensional discrete example)
For a discrete example, take X ~ uniform{0, 1, 2, 3} and Y ~ binomial It
is easy to verify that

At the boundaries of the intervals for one may take the limit from either the left
or the right. The points (1,1) and (2,2) have probability the other points of the
support S of the comonotonic distribution have probability The curve arises
by simply connecting these points consecutively with straight lines, the dotted
lines in Figure 10.8. The straight line connecting (1, 1) and (2, 2) is not along one
of the axes. This happens because at level both and have
horizontal segments. Note that any non-decreasing curve connecting (1, 1) and
(2, 2) would have led to a feasible

Example 10.6.7 (Mortality risks of husband and wife)
Let X ~ Bernoulli and Y such that ~ Bernoulli This describes
the situation of life insurances on two lives, one male of age and with amount at
risk 1, and one female of age with amount at risk 2. Assume the mortality risks
to be dependent random variables, and write Then we
can represent the joint distribution of ( X , Y ) as follows:
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For each convex function the following is increasing in

Hence, one gets the maximal X + Y in convex order by taking the as large as
possible, so Assume that holds, then we get:
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The joint distribution can only be comonotonic if one or both of the events X =
1, Y = 0 and X = 0, Y = 2 have probability zero. In the comonotonic distribution
for if X = 1 occurs, necessarily event Y = 2 occurs as well. If
the situation is reversed. So the comonotonic joint mortality pattern is such that
if the person with the smaller mortality probability dies, so does the other. For

we have Y = 2X with probability one.

Example 10.6.8 (Cash-flow in a random interest term structure)
Assume that we have to make payments 1 at the end of each year for the coming
years. The interest is not fixed, but it varies randomly. We assume that the discount
factor for a payment to be made at time is equal to

where the yearly interests are assumed to obey some multinormal distribution,
for instance a geometric Brownian motion. Hence ~ lognormal, and the
total present value of all payments is the sum of dependent lognormal random
variables. It is not easy to handle such random variables analytically. Since is
a convex function, each is maximized by taking comonotonic.
As a consequence, the total expected payment is also maximized if
the random variables are taken comonotonic, i.e.,

for some U ~ uniform(0,l). If the random variables all happen
to have the same distribution, it is equivalent to simply let
The random variable is in this case the sum of a finite geometric series.

Sometimes the dependency structure is known, but it is so cumbersome that we
cannot fruitfully use it. In the example below we give stochastic bounds for

for the special case that a random variable Z exists such that
the cdf of Z is known and the same holds for all the conditional distributions
of given A structure variable such as one encounters in credibility
contexts is a good example. In view of Corollary 10.3.13, a convex lower bound
for is then A better convex upper bound than
the comonotonic one arises by replacing, for each the conditional distribution
of given by the comonotonic joint distribution, and again
taking the weighted average of the resulting distributions. As opposed to the lower
bound, the improved upper bound can be shown to have the prescribed marginals,
hence it is lower than the comonotonic upper bound which uses only the marginal
distributions. See Exercise 10.6.12.
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Example 10.6.9 (Stochastic bounds when a structure variable exists)
We illustrate this technique of conditioning on the value of a structure random
variable by an example. The multinormal distribution is very useful in this context,
because the conditional and marginal distributions are known. Let and take

to be independent N(0,1) random variables. Look at the sum
where ~ lognormal(0,1), and ~ lognormal(0,2). For
Z, we take a linear combination of in this case For the
lower bound as described above, denoted by note that while

and hence

where is the moment generating function. This
leads to

So the lower bound is

The comonotonic upper bound, say, has for some
W ~ N(0,l). The improved upper bound, denoted by has as its second term
again The first term equals with Z and W mutually independent,
Z ~ N(0,2) and W ~ N(0,l). All terms occurring in these bounds are lognormal
random variables, so the variances of the bounds are easy to compute. Note that to
compare variances is meaningful when comparing stop-loss premiums of convex
ordered random variables. This is because half the variance difference between
two convex ordered random variables equals the integrated difference of their
stop-loss premiums, see, e.g., Figure 10.6. This implies that if and in
addition Var[X] = Var[Y], then X and Y must necessary be equal in distribution.
Moreover, the ratio of the variances for random variables with the same mean is
roughly equal to the ratio of the stop-loss premiums, minus their minimal possible



262 ORDERING OF RISKS

value. We have, as the reader may verify,

Hence,

So a stochastic lower bound for S, much better than just E[S], is obtained by
conditioning on and the improved upper bound has in fact the same
distribution as S. In general, for pairs of random variables, the distributions of
and S coincide when one conditions on one of the variables. See Exercise 10.6.22.

For the lower bound, recall that Var[S] = E[Var[S |Z]] + Var[E[S |Z]]. The vari-
ance of is just the second term. To maximize the second term is to minimize the
first, so we look for a Z which resembles S as closely as possible. Approximating

and by and respectively, we see that
hence taking instead of as our conditioning random variable
might lead to a better lower bound. It is left as Exercise 10.6.11 to check whether
this is indeed the case.

Example 10.6.10 (More related joint db’s; PQD)
We have seen that two random variables are maximally related if their joint distri-
bution is comonotonic, hence if their joint cdf is as large as possible. This inspires
us to advance a partial order between pairs of random variables having the same
marginals. Assume that all random variables and below have the
same marginal cdf F, and all corresponding random variables Y have marginal
cdf G. We call ( X , Y) more related than if the probability
that X and Y are both small is larger than this probability for and for all

and If and are independent, and has a comonotonic joint
distribution, then obviously the pair is more related than
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In fact it is more related than any other pair, hence, ‘most related’, or maximally
dependent. Any pair which is more related than will be called PQD,
for positive quadrant dependent. Hence X and Y are PQD if

for all and

There is also a joint distribution with the right marginals that is ‘least related’, or
‘most antithetic’. It follows from the following lower bound for the joint cdf, also
studied by Fréchet/Höffding:

This inequality follows directly from Bonferroni’s inequality, see Exercise 10.6.8.
A pair with this cdf is here Y is small when
X is large and vice versa. In fact, in this case X and – Y are most related; X and
Y are not comonotonic, but countermonotonic.

To compare pairs of random variables as regards degree of relatedness, one
might of course simply compare their values of association measures such as the
customary correlation coefficient also
known as the Pearson product-moment correlation, or the Spearman rank corre-
lation defined as This procedure has the advantage
of leading to a total order, but it has some drawbacks as well, see e.g. Exercise
10.6.19. An important property of the concept of being ‘more related’ is that the
sum of the more related pair is larger in convex order. This can be inferred from
combining the equality
with the following one, derived by reversing the order of integration (Fubini):

See the exercises for some more characteristics of the PQD property. In particular,
as one would expect, the pair (X, X ) is PQD, as well as (X, X + Z) and (X +
Y, X + Z ) when X, Y and Z are independent. The concept can also be generalized
to dimension
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Example 10.6.11 (Copulas)
Consider continuous two-dimensional random vectors (X, Y) with joint distribu-
tion The marginals are assumed given, and again written as

and Copulas provide a means to construct random vectors
with a wide range of possible joint distributions. A copula is a function
that maps the marginals to the joint distribution, hence
We will illustrate the concept by three special cases, see also the previous example:

As one sees, is the Fréchet/Höffding upper bound for any copula function,
and it produces the most related (comonotonic) pair in the sense of the previous
example. On the other hand, is a lower bound; it produces the most
antithetic pair. The other copula function simply represents the case that
X and Y are independent. By considering the special case that and

on (0,1), one sees that must itself be a two-dimensional cdf. It
has uniform(0,1) marginals, and hence and

Assume for the moment that (U, V) is a random vector with joint cdf generated
by some copula function and that the marginals are both uniform(0,l).
Then if we have if we have and if
U and V are independent. Mixtures of copulas are again a copula. We will show
how by taking a convex combination of the three copulas used above, we can get
a random vector with uniform marginals that has any correlation between –1 and
+ 1. Indeed if for with we have

then the random vector (U,V) has the distribution of

where are dependent Bernoulli random variables with
and ~ uniform(0,l), independent of U. To determine the correlation
note that
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leading to

Hence if (the comonotonic upper bound), if
(the countermonotonic lower bound), and holds if

Independence holds only if
It is easy to simulate a random drawing from a joint cdf if this cdf is generated by

a copula. First generate outcome of U ~ uniform(0,l), simply taking a computer
generated random number. Then, draw an outcome for V from the conditional
cdf of V , given This is a trivial matter in the three cases considered above;
in general, this cdf equals Next, to produce an outcome of (X, Y ), one
simply takes and Note that the above calculation (10.63)
does not produce the ordinary Pearson product-moment correlation but
rather the Spearman rank correlation

Copulas exist that are flexible enough to produce many realistic joint distrib-
utions, allowing us to simulate drawings from more and less dangerous sums of
random variables.

10.7 EXERCISES

Section 10.2

1.

2.

3.

4.

5.

6.

7.

Let and be two continuous densities (or two discrete densities) that cross exactly
once, in the sense that for a certain we have if and
if Show that Why do the densities and cross at least once?

Show that if X ~ gamma and Y ~ gamma with then The
same if Y ~ gamma  with

Prove that the binomial distributions increase in with respect to stochastic order, by
constructing a pair ( X , Y ) just as in Example 10.2.2 with X ~ binomial and Y ~

binomial  for  with additionally

Prove the assertion in the previous exercise with the help of Exercise 10.2.1.

As Exercise 10.2.3, but now for the case that X ~ binomial and Y ~ binomial
for Then, give the proof with the help of Exercise 10.2.1.

If N ~ binomial(2, 0.5) and M ~ binomial show that is necessary and
sufficient for

For two risks X and Y having marginal distributions and
construct a simultaneous distribution with the

property that
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8. Prove that is functionally invariant, in the sense that for every non-decreasing function
we have implies Apply this property especially to the excess of loss
part of a claim and to proportional (re-)insurance for some

Section 10.3

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

Prove that if M ~ binomial and N ~ binomial Show that in
the limit for the Poisson stop-loss premium is found for any retention

If N ~ binomial(2, 0.5) and M ~ binomial show that is necessary and sufficient
for

Show that if X ~ Y, then Is it necessary that X and Y are independent?

Let X and Y be two risks with the same mean and with the same support with
Show that either or must hold. Also give an example

of two random variables, with the same mean and both with support {0,1, 2, 3}, that are not
stop-loss ordered.

Compare the cdf F of a risk with another cdf G with the same mean and with on
and but is constant on Note that G results from F by dispersion

of the probability mass on to the endpoints of this interval. Show that holds.
Sketch the stop-loss transforms with F and G.

As the previous exercise, but now for the case that the probability mass of F on has been
concentrated on an appropriate i.e., such that is constant both on and Also
consider that case that all mass on the closed interval is concentrated.

Consider the following differential of cdf F:

for and
for
otherwise

Show that this cdf is indirectly more dangerous than the uniform(0, 3) cdf.

Let and be independent Bernoulli random variables with parameters
and If when is when is
and when does neither of these stochastic inequalities hold?

Show that a negative binomial random variable N is stop-loss larger than any Poisson random
variable M having The same for M ~ binomial.

Suppose it is known that for every value of the risk aversion the exponential premium for the
risk X is less than for Y. Which order relation holds between X and Y?

Show that the stop-loss transforms in (10.5) correspond to cdf’s that increase in
dangerousness.

Complete the proof of Theorem 10.3.7 by proving that the random variable Y satisfies the
requirements, using sketches of the stop-loss transform and the cdf.
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13.

14.

15.

16.

17.

18.

19.

20.

21.

Let and E[X] < E[Z]. Consider the function that has for
for and for Here and are

chosen in such a way that and is the tangent line to at Show
that is convex, and hence the stop-loss transform of a certain risk Y. Sketch the cdf’s of X,
Y and Z. Show that as well as E[X] = E[Y] and [In this way,
Y is another separator between X and Z in a sense analogous to Theorem 10.3.7.]

Show that if and for then
[This means especially that if and then The moments
of X and Y are called lexicographically ordered.]

For risks X and Y and for a certain we have while Can
or hold?

Let X ~ uniform(0,1), and for a certain Sketch the cdf’s
of V, W and X. Investigate for which we have and for which we have

Prove Theorem 10.3.8 for the case E[X] = E[Y] by using partial integrations. Use the fact that
the stop-loss transform is an antiderivative of and consider again
To make things easier, look at and assume that is differentiable
at 0.

The following risks are given.

1.

2.

3.

4.

5.

~ binomial

~ binomial

~ Poisson(5);

~ negative binomial

~ 15I, where I ~ Bernoulli

Do any two decision makers with increasing utility function agree about preferring to
For each pair with determine if holds. Determine if

or its reverse holds, Does

Consider the following class of risks with Y and Z independent
exponential(1) random variables, and a number in Note that ~ exponential (1),
while ~ gamma(2,2). Are the risks in this class stochastically ordered? Show that decision
makers with an exponential utility function prefer losing to if and only if Prove
that

The cdf’s and are given by

Here F is the cdf of an arbitrary risk, and denotes the convolution power of cdf F. For
is the cdf of the constant 0. Determine with such

that and moreover V and G have equal mean.

Compare two compound Poisson random variables and in the three stochastic orders
and if the parameters of and are given by
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1.

2.

for

for

22.

23.

24.

25.

26.

Investigate the order relations and for risks X and Y with where C
and X are independent and Pr[C = 0.5] = Pr[C = 1.5] = 0.5.

Let N ~ binomial and M ~ Poisson For which do and
hold?

In the proof of Theorem 10.3.5, sketch the functions for the case that Y ~ uniform(0, 3)
and Z integer-valued with and for Describe the

Let ~ Bernoulli be independent random variables, and let
Show that binomial

[This exercise proves the following statement: Among all sums of independent Bernoulli
random variables with equal mean total the binomial is the stop-loss largest. Note that
in this case by replacing all probabilities of success by their average, thus eliminating variation
from the underlying model, we get a more spread result.]

Let and Y ~ binomial For which do
and hold?

Section 10.4

1.

2.

3.

4.

5.

6.

7.

8.

Consider the family of distributions defined as for some
and Investigate for which parameter values and the cdf is

stochastically or stop-loss larger or smaller than and when it is neither stop-loss
larger, nor stop-loss smaller.

Investigate the order relations and in the class of binomial distributions,

Show that exponential order is preserved under compounding: if and then

What can be said about two individual claim amount random variables X and Y if for two
risk processes with the same claim number process and the same premium per unit of time,
and individual claims such as X and Y respectively, it proves that for each the adjustment
coefficient with the second ruin process is at most the one with the first?

Let S have a compound Poisson distribution with individual claim sizes ~ X, and let and
be such that For an arbitrary compare

and

If two risks have the same mean and variance but the skewness of the first risk is larger,
what can be said about the stop-loss premiums?

Compare the risks S and T in Exercise 3.7.6 as regards exponential, stochastic and stop-loss
order.

In Example 10.4.3, show that, in areas where the separation argument does not lead to the
conclusion that one is stop-loss larger than the other, the stop-loss premiums are sometimes
larger, sometimes smaller.

transitions  in terms of dispersion.
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9.

10.

Prove that indeed in Remark 10.4.10.

Show that the random variables X and Y at the end of Example 10.4.2 are exponentially ordered,
but not stop-loss ordered.

Section 10.5

1.

2.

3.

4.

5.

6.

7.

8.

Let hold. Risk X has risk Y has If the
means and variances of X and Y are equal, show that

Show that holds in Example 10.5.7. Use the fact that a unimodal continuous
density with mode 0 is the same as a concave cdf on Consider the case that Y is not
continuous separately.

Compute the minimal and the maximal stop-loss premium at retention and for
risks with and a support contained in [0, 4].

Give expressions for the minimal and the maximal possible values of the stop-loss premium in
case of mean variance and a support contained in cf. Figure 10.5. In this figure,
sketch the stop-loss transform of the feasible risk which has the minimal stop-loss premium at
retention

Which two-point risk with mean variance and support contained in has the largest
skewness? Which one has the smallest?

Show that the solutions of the previous exercise also have the extremal skewnesses in the class
of arbitrary risks with mean variance and support contained in

Let with N ~ Poisson and Show
that if M ~ Poisson What are the means and variances of these
three random variables?

Verify the assertions in the middle paragraph of Example 10.5.5.

Section 10.6

1.

2.

3.

4.

Prove that the first set of inequalities of (10.38) together with equal means implies the second
set, by using

Show that equality (3.82) can be generalized from risks to arbitrary random variables X with
mean leading to

The function is convex decreasing. Give an example with but not

Consider married couples with one-year life insurances, all having probability of death 1%
for her and 2% for him. The amounts insured are unity for both sexes. Assume that the mortality
between different couples is independent. Determine the distribution of the individual model
for the total claims, as well as for the collective model approximating this, a) assuming that the
mortality risks are also independent within each couple, and b) that they follow a comonotonic
distribution. Compare the stop-loss premiums for the collective model in case of a retention of
at least
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5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

In Example 10.6.7, sketch the stop-loss transform of for various values of In this
way, show that increases with in stop-loss order.

Show that holds if and only if their comonotonic joint density has the property
for

Describe a comonotonic joint density for the case of a 2-dimensional random vector (X, Y)
with values and for the components.

Prove Bonferroni’s inequality: Use it to derive the lower
bound (10.57). Check that the right hand side of (10.57) has the right marginal distributions.
Prove that has this lower bound as its cdf.

Let and be the length of two random persons. Suppose that these lengths are iid random
variables with What is the distribution of the comonotonic
upper bound Determine the distribution of the lower bound if we take as a conditioning
variable Z = the gender of person 1, of which we know it is independent of the length of person
2, while as well as

What is the distribution of the improved upper bond Compare the
variances of the various convex upper and lower bounds derived.

Let X and Y be independent N(0,l) random variables, and let S = X + Y. Assume
for some real What is the conditional distribution of X, given Determine

the distribution of the convex lower bound Also determine the distribution of the
comonotonic upper bound and the improved convex upper bound. Compare the variances of
these bounds for various values of Consider especially the cases and

i.e.,

In Example 10.6.9, compute the variance of the lower bound in case we take instead

In case the event occurs, the improved upper bound of Example 10.6.9 can be written as
Write the terms of this sum as then is the

unconditional contribution of component to the improved upper bound
In general, these random variables will not be comonotonic. Show that has the same
marginal distribution as Conclude that the improved upper bound is indeed an improvement
over the comonotonic upper bound.

If ( X , Y) are PQD, what can be said of

Show that the random pairs ( X , X), ( X , X + Z) and (X + Y, X + Z) are all PQD if X, Y
and Z are independent random variables.

Let the joint cdf of X and Y be where and
are the marginal cdf’s, and where is defined by
Which values of are permitted? What is the Spearman rank correlation of

X and Y?

For ( X , Y) continuous with cdf prove that there exists a two-dimensional cdf
with uniform(0,l) marginals (copula function) such that where
again and denote the marginal cdf’s. [This result is known as Sklar’s theorem.]

Next to the customary correlation and Spearman’s there is another association measure which
is useful in mathematical statistics. It is called Kendall’s For ( X , Y) continuous, it is defined

of  as the conditioning random variable.  For which is this variance maximal?
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18.

19.

20.

21.

22.

as the following quantity: where is
independent of ( X , Y) and has the same joint cdf. Prove that both Spearman’s and Kendall’s

can be computed from the copula function, see the previous exercise.

For continuous random variables, compute and for the comonotonic random variables. Prove
that or imply comonotonicity.

Determine the correlation as a function of if X ~ lognormal(0,1) and Y ~
lognormal and Verify that it equals 1 for and tends to zero
for Also compute and

Prove that if random variables X and Y are comonotonic, then Can X and Y
be at the same time comonotonic and independent?

Let ( X , Y) ~ bivariate normal, and let be comonotonic with the same marginals.
Show that the cdf’s of X + Y and cross only once, and determine where.

Prove that for a pair of random variables (X, Y), the distributions of
and S = X + Y coincide when one conditions on



Hints for the exercises

CHAPTER 1

Section 1.2

1.

2.

3.

4.

5.

6.

7.

8.

Take If we get

Consider especially the rv’s X with

Use the previous exercise.

Examine the inequalities and X is preferred over for

Apply Jensen’s inequality to (1.11).

W = 161.5.

Taking and gives and
There are with and with

Section 1.3

4.

5.

Use or use a Taylor series argument.

See Table A at the end for the mgf of X.

273
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6.

7.

8.

9.

11.

Logarithmic.

Dimension of is

Normal

Logarithmic utility. Use l’Hopital.

Section 1.4

1.

2.

3.

4.

5.

6.

Linear on with and
on In your sketch it should be visible that

(1.37) gives on (0, 1), 0 elsewhere.

Use partial integration.

Use that when the variance is fixed, stop-loss is optimal; next apply the previous exercise.

Use (1.38).

CHAPTER 2

Section 2.2

1.

2.

3.

4.

5.

6.

7.

8.

9.

a) E[X] = 1/2; Var[X ] = 9/4; b) E[X] = 1/2; Var[X] = 37/12.
E[Y ] = 7/4, Var[Y ] = 77/48.

Not quite perfectly.

Condition on I = 1 and I = 0.

IX + (1 – I)Y for I ~ Bernoulli(0.5), and Y ~ uniform(2, 4), independent.

E[T] = E[Z],

and N(0, 1).

Section 2.3

1.

2.

3.

4.

Cf. Table 2.1.

Total number of multiplications is quadratic:

Write (2.29) as

For the second part, use induction, the convolution formula, and the relation
for all and
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Section 2.4

1.

3.

4.

5.

6.

8.

9.

See Tables A and B at the end of the book for the mgf’s.

Use (2.48) and Tables A and B.

X is symmetrical around if Computer:

(see Table B at the end). If X is symmetrical, then the third central moment
equals 0, therefore must hold. Symmetry holds for all three of these

10.

11.

12.

13.

14.

15.

16.

17.

Use (2.49) and the tables at the end of the book.

The cumulants are the coefficients of in the cgf.

Their pgf’s are polynomials of degree that are identical only if all their coefficients are the
same.

Show that and have the same pgf.

Where is the mgf defined, where the characteristic function? Sometimes this function can be
extended to all complex numbers, like for the exponential distribution.

implies that the imaginary part of the functions must be equal to zero.

Use Exercise 11. For symmetry, Pr[Z = 0] = Pr[Z = 10] is necessary. Prove that Z is
symmetric whenever this is the case.

Show that and argue that the raw moments can be
computed from these so-called factorial moments. See (2.49).

Section 2.5

1. You should get the following results:

2.

4.

5.

Solve for Verify if this inversion is allowed!

Use the rule of l’Hopital to prove that Take
then approximate by where

and Z ~ gamma with skewness therefore Then for we have
because of the CLT.

Using (2.62), we see that the critical value at          is if
See further a
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6.

7.

8.

9.

Using and interpolation in a one
finds 0.978. Exact value: 0.9788.

If is integer, Poisson-probabilities can be used to find gamma-cdf’s.

For instance for table gives 28.9, (2.25) gives 28.59. The NP approximation from
Exercise 5 gives 28.63.

Loading = 21.14%.

10.

11.

12.

13.

14.

Loading = 21.60%.

For we find under the square-root sign.

Using Table A one finds

Let be a claim of type 1, then
capital is

therefore

Section 2.6

1.

2.

3.

with

Maximize

CHAPTER 3

Section 3.2

1.

2.

3.

4.

5.

6.

7.

For Poisson

Use (2.49).

Let denote the number of females, then we have if N is the number
of eggs and if from the egg, a female hatches. Now use (3.5) to prove that ~
Poisson

E[S] = 3.2 (cf. Exercise 5), Var[S] = 5.6.

Use mathematical induction. Or: prove that lhs=rhs by inspecting the derivatives as well as one
value, e.g. at
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Section 3.3

1.

2.

3.

Examine the mgf’s; fill in in the negative binomial mgf and let Use that

In 3.3.1 if is degenerate; in 3.3.2 if

Compare the claim numbers and the claim sizes.

Section 3.4

1.

2.

3.

4.

5.

6.

See Example 3.4.3.

If the frequency of this claim amount is

Show that for all and Or:
apply Theorem 3.4.2 with and

Show that
(Note that Theorem 3.4.2 was proven for the Poisson-case only.)

and

Section 3.5

1.

2.

3.

4.

5.

6.

7.

8.

9.

Verify separately; for use (3.15) and induction.

Check if every point in the plane has been dealt with. Make a sketch.

There are multiplications for For for
Asymptotically the number of operations increases linearly with

if the maximal claim size is finite, and quadratically otherwise.

and so on.

Interpolate between and [The stop-loss premiums are linear because the
cdf is constant.]

Use Panjer and interpolation.

with ~ Poisson(2) and ~ Poisson(l). Should you interpolate to
determine the cdf?

and

10.

11.

12.

Subtract (3.34) from

Start with If is the expression to be computed,
then
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Section 3.6

1.

2.

CLT: 0.977, gamma: 0.968, NP: 0.968.

NP: and
(Note:

Section 3.7

1.

2.

4.

5.

6.

7.

8.

9.

10.

If S* is the collective model approximation with prove that hence
analogously for the variance.

S ~ compound Poisson with
therefore E = 2.25, V = 3.75,

and

The second. The ratio of the resulting variances is approximately 80%.

Use the fact that the first factor of the terms in the sum decreases with

Max[S] = 3000, Max[T] = 4000; E[S] = E[T] = 30; Var[S] = 49.5, Var[T] = 49.55; the
claim number distribution is binomial(2000, 0.01) for both; S ~ weighted sum of binomial
random variables, T ~ compound binomial. If ~ Poisson, then ~ compound
Poisson.

Compound Poisson with claims ~ uniform Or: compound
Poisson(10) with claims ~

P2: larger. ‘The’ collective model: equal. The ‘open’ collective
model: different.

Replacing the claims on a contract of type 1 by a compound Poisson(1) number of such
claims leads to a random variable ~ with So

with ~ Poisson(25), ~ Poisson(20), ~ Poisson(5).
Panjer: Apply
NP or gamma.

Binomial Poisson Poisson no.

Section 3.8

1.

2.

4.

5.

6.

Additionally use that where the mgf’s can be found in Table A.

~ gamma if X ~ gamma ~ Pareto if X ~ Pareto
~ Lognormal if X ~ Lognormal ~ IG if X ~ IG

A vital step is that for all

is monotonous with

The median of the lognormal distribution is Mode: holds for
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Section 3.9

1.

2.

3.

4.

5.

6.

7.

8.

9.

1000 × 0.004; 1000 × .0070 (NP) or 1000 × .0068 (Translated gamma).

Subtract from

Work with ( rather than with

To compute approximate just as in (3.29).

Write and determine

is convex.

Determine the left and right hand derivatives of from difference ratios.
Pr[N = 1] = 0.2408.

Use the fact that U is symmetric.

Use Exercises 3.2.1 and 3.9.9.10.

Section 3.10

1.

4.

5.

6.

Use partial integration and The function consists of two
tangent lines to the stop-loss transform.

Use and prove that and apply induction. Further,
use the given rule of thumb to show that the premiums are about equal.

Var[T]/Var[S] = 1.081;
Note that

Take and we have

CHAPTER 4

Section 4.2

1.

2. Both sides denote the
probability of claims in

Section 4.3

1.

2.

3.

4.

5.

See further the remarks after (4.11).

Use (4.10).

for and R = 1.

with
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6.

7.

8.

9.

Using e.g. ‘goal seek’ in Excel, one finds R = 0.316.

R = 1; (or use

Solve and R from for 0 < R < 1; this produces
No: R < 1 must hold.

is finite for and respectively, and infinite otherwise.

Consider Then use10.

Section 4.4

1.

2.

3.

4.

5.

6.

Compare the surpluses for and using the same sizes and times of occurrence of
claims.

See (4.23): therefore gives hence X ~
exponential with is arbitrary. Or: claims ~ IX with I ~ Bernoulli

Because of Corollary 4.4.2 we have R = 1; no;

Pr [no claim before & no ruin starting from Or: therefore
R > 0, therefore by (4.17).

R = 6 is ruled out since R = 0 is also not feasible. Then, look at and the
previous exercise, and at for large

R = 0.5;

Section 4.5

1.

2.

3.

4.

with

Processes with adjustment coefficient apparently are only profitable (as regards expected
utility) for decision makers that are not too risk averse.

It is conceivable that ruin occurs in the continuous model, but not in the discrete model; the
reverse is impossible; implies that for all

Use (4.23). with R = 1. But a better bound is

Section 4.6

1.

2.

3.

4.

relative safety loading after reinsurance:
must satisfy and

Safety loading after reinsurance:

is maximal for

so

Section 4.7

1. ~ exponential with the same parameter as the claims.
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2.

3.

L = 0 means that one never gets below the initial level.

as well as · · ·, and hence · · ·

Section 4.8

1.

3.

4.

5.

6.

7.

8.

R = 2, Use that decreases if

I ~  Bernoulli

One gets a non-increasing step function, see (4.28). A density like this is the one of a mixture
of uniform distributions; it is unimodal with mode 0.

take care when R = 2.5.

and so on.

10.

11.

Section 4.9

1.

CHAPTER 5

Section 5.2

1.

2.

Take the derivative of (5.6) and set zero.

Portfolio premium = 49.17; optimal optimal R = 0.0287; premiums for A and B
are 5.72 and 1.0287 (variance premium) and 5.90 and 1.0299 (exponential premium).

Section 5.3

1.

2.

3.

4.

5.

6.

7.

8.

(a) 1 (b),(c),(d)

Show that with the Esscher transform of X with parameter

and so on.

Members of the same family with different parameters result.

Show: derivative of the Esscher premium = variance of the Esscher transform.

If N ~ Poisson and X ~ gamma then the premium is



282 HINTS FOR THE EXERCISES

9.

10.

11.

Use Exercise 5.3.6 and a Taylor expansion.

Use

Section 5.4

3.

4.

Such a mixture is additive.

X and Y not positively correlated; use

Section 5.5

2. Cauchy-Schwarz; check this in any text on mathematical statistics.

CHAPTER 6

Section 6.2

1. 45%; 760% vs. 900%

Section 6.3

1.

2.

3.

4.

7.

8.

9.

See the text before (6.8).

All rows of are

Use and for
for and small.

CHAPTER 7

Section 7.2

1.

4.

5.

6.

The basis for all these covariance relations is that
if

a) Minimize

hence biased downwards.
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7.

8.

9.

10.

Sum of premiums paid is

Use and

Set or start from

Block-diagonal with blocks with I the identity matrix and J a matrix of ones.

Section 7.3

1. Take expectations in Cov[X, Y|Z] = E[XY |Z] – E[X |Z]E[Y |Z].

Section 7.4

1.

2.

3.

4.

9.

10.

The Lagrangian for this constrained minimization problem is
Setting the derivatives with respect to equal to zero gives for all
Or:

See the remarks at the end of this section.

Follow the proof of Theorem 7.4.1, starting from the MSB of a linear predictor of instead of

Analogous to Theorem 7.2.4; apply Exercise 7.2.9.

See Remark 7.4.3.

Section 7.5

1.

2.

3.

4.

5.

6.

Write down the likelihood, take the logarithm, differentiate and set zero.

Use Bayes’ rule.

Use Exercise 7.3.1 to determine

Take the derivative of the density and set zero.

Use that

CHAPTER 8

Section 8.2

1.

2.

Cf. Table E.

Coefficient of variation:
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Section 8.3

4.

6.

8.

Constant coefficient of variation.

The same values result for but 0.1 times the value.

Negative with BS, 0 with marginal totals method.

Section 8.4

1.

3.

and can be found by filling in and in (8.22).

Take the sum in (8.11) over both and

Section 8.5

3.

4.

For instance:

There are the constant term, 4 extra parameters for age class, 2 for region and 1 for gender.

Section 8.6

1.

2.

3.

5.

6.

7.

8.

Start from and exchange the order of integration and differentiation.

See also Example 8.6.3.

Use

Use

Fill in and in see (8.29), and cf. (8.21), (8.23) and (8.26).

Derive from and

Compute the densities, or look at the mgf’s.

CHAPTER 9

Section 9.1

1. 24.

Section 9.2

2.

5.

Replace the in the first model by

The mode of the lognormal distribution is see Exercise 3.8.6.

See the previous chapter.

Section 9.3

1.
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2.

4.

5.

if

(9.13) implies (9.14) implies

Use that

CHAPTER 10

Section 10.2

1.

2.

3.

6.

7.

Use Theorem 10.2.3.

Use the previous exercise, or the additivity/multiplicativity properties of gamma random vari-
ables.

Compare to for suitable Bernoulli variables.

Verify that for Why is that sufficient for

Take Y = X + I with I = I ( X ) = 0 if and I = 1 otherwise.
Alternatively, fill a table with probabilities such that the marginals are correct
and for

Section 10.3

1.

2.

3.

4.

5.

7.

8.

9.

10.

14.

15.

16.

Look at the ratio of the densities. To avoid convergence problems, write the stop-loss premiums
as finite sums:

Use the previous exercise and Exercise 10.2.3.

Use that for all non-negative and From this,
it follows that independence is
not necessary.

so and
cannot cross. Or: the cdf’s cross once, the densities twice. For such a counterexample, see, e.g.,
Example 10.4.2.

Let on and let Then on
on Note that unless everywhere nor everywhere can

hold, otherwise unequal means result.

If H is the uniform(0, 3) cdf, consider G with G = F on G = H on

See Exercise 4.

a) Consider the ratio of the densities; b) use a) for Poisson(E[M]).

Consider a series expansion for

No, no, no. [Why is it sufficient to prove only the last case?]

then since the cdf’s cross once.
If then If we never have If hence
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17.

18.

19.

20.

21.

22.

23.

25.

26.

See Theorem 10.6.2.

because of earlier exercises. by dispersion.
nor since but and the same

for To show that exponential order doesn’t hold, consider as
or use a similar argument as above.

No: The mgf of is Use
as well as and Corollary 10.3.13.

G and V are cdf’s of compound distributions with claim size ~ So determine such that

By gathering terms, write and Or:
for Note: only compare compound Poisson distributions with the

same

E[X] = E[Y] rules out stochastic order.

because of convexity.

such that and hence . . . ;

If replace and by and
and use Exercise 10.3.8. Proceed by induction.

Examine when the densities cross once, when twice. There is stochastic order when or
stop-loss order when hence and stop-loss order the other

way when Verify that for neither Y nor X holds.

Section 10.4

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

The cdf is monotonous in as well as The stop-loss premiums are In case of equal
means there is stop-loss monotony in

Use earlier results found on order between binomial random variables.

One recognizes the stop-loss premiums at of the retained claims after reinsurance of type
stop-loss, excess of loss and proportional, all with equal expected value.

The reasoning that larger skewness implies fatter tails implies larger stop-loss premiums breaks
down because of (3.82).

First show that T if instead of 1000 policies, there is only one policy in class

Compare the means, i.e., the stop-loss premiums at and also the stop-loss premiums for
large

See the final sentence of this section.
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Section 10.5

1.

3.

5.

6.

7.

If then for all because of the form
of the stop-loss transform of X. This is impossible in view of (3.82).

If (10.36) applies, it is the maximum, otherwise it is the best of and

resp. Express the third raw moment in

Use concentration and dispersion. Variances:

Section 10.6

3.

4.

6.

7.

10.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

X ~ Bernoulli(0.5),

By the Rule of thumb 3.10.1, the ratio of the stop-loss premiums is about 5 : 3.

For point with to be in the support of the comonotonic joint cdf
we must have This is impossible because of

In a table of probabilities, every row and every column has only one positive entry. The positive
entries follow a diagonal pattern.

The conditional distribution of X, given is again normal, with as parameters
and for

hence • • •

Use and condition on and

Prove that C(1,1) = 1 and if and that the marginal cdf’s are uniform(0,1).
To determine the Spearman rank correlation of X and Y, compute to show
that this correlation is

Both and

Since implies there exist
perfectly dependent random variables with correlation arbitrarily close to zero. But
for any value of hence Kendall’s and Spearman’s association measures are more well-behaved
than Pearson’s.

Consider the convex function What does it mean that
for all

Determine the distributions of X + Y and

Conditionally on the first term of equals with probability one, the second has the
conditional distribution of Y, given

Consider for  and



Notes and references

CHAPTER 1

Basic material in the actuarial field on utility theory and insurance goes back to
the work of Borch (1968, 1974). The origin of the utility concept dates back to
Von Neumann and Morgenstern (1944). The Allais paradox is described in Allais
(1953). Results on the stability of an insurance portfolio, see also Chapter 5, can
be found in Bühlmann (1970). Recently an alternative ordering of risks concept
based on Yaari’s (1987) dual theory of risk has made its entrance in the actuarial
literature. References are Wang & Young (1998) and Denuit et al. (1999). Both
utility theory and Yaari’s dual theory can be used to construct risk measures that
are important in the framework of solvency, both in finance and in insurance, see
e.g. Wason et al. (2001).

CHAPTER 2

A good reference for the individual model is Gerber (1979), as well as Bowers
et al. (1986, 1997). Since the seminal article of Panjer (1981), many recursion

289
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relations for calculating the distribution of the individual model were given, based
on the known recursion relations or involving manipulating power series, see e.g.
Sundt & Jewell (1981). We refer to De Pril (1986) and Dhaene and De Pril (1994)
for an overview of different methods.

CHAPTER 3

The chapter on collective models draws upon the textbook Bowers et al. (1986,
1997) already mentioned. An early reference is Beard et al. (1977, 1984), which
contains a lot of material about the NP approximation. Other books covering this
topic are Seal (1969), Bühlmann (1970), Gerber (1979), Goovaerts et al. (1990),
Heilmann (1988) and Sundt (1991), as well as the recent work by Rolski et al.
(1998). While collective risk models assume independence of the claim severities, a
new trend is to study the sum of dependent risks, see e.g. Dhaene et al. (2001a,b). A
text on statistical aspects of loss distributions is Hogg and Klugman (1984). Some
references propagating the actuarial use of the inverse Gaussian distributions are
Ter Berg (1980a, 1980b, 1994).

CHAPTER 4

Ruin theory started with Cramér (1930, 1955) as well as Lundberg (1940). An
interesting approach based on martingales can be found in Gerber (1979). The
ruin probability as a stability criterion is described in Bühlmann (1970). The book
by Beekman (1964) gives an early connection of Poisson processes and Wiener
processes and is definitely worth reading in the context of financial insurance
modelling. A recent book is Embrechts et al. (1997). Many papers have been
published concerning the numerical calculation of ruin probabilities, starting with
Goovaerts and De Vijlder (1984). The derivation of the algorithm (4.49) to compute
ruin probabilities for discrete distributions can be found in Gerber (1989).

CHAPTER 5

The section connecting premium principles to the discrete ruin model is based on
Bühlmann (1985); the section about insurance risk reduction by pooling is based
on Gerber (1979). In the 1970’s premium principles were a hot topic in actuarial



NOTES AND REFERENCES 291

research. The basics were introduced in Bühlmann (1970). See also Gerber (1979,
1983) and Goovaerts et al. (1984). The results in that period were mainly derived
in the classical risk models with independent claims. Several sets of desirable
properties for premium principles were derived, resulting in different outcomes.
It emerged that general properties could not be applied to all insurance situations.
While for independent risks the economic principle of subadditivity is desirable, it
is clear that in some cases, superadditivity is desirable. Two unrelated earthquake
risks may be insured for the total of the individual premiums, or somewhat less,
but if they are related, the premium should be higher than that from an insurance
point of view. Premium principles provide absolute quantities in some way, namely
the price one has to pay for transferring the risk. Risk measures as they appear
in finance, on the other hand, are relative, and serve only to rank risks. The
desirable properties of premium principles are also used in deriving appropriate
risk measures in finance, but quite often, the dependence structure is overlooked.
Some recent results about premium principles can be found in Wang (1996). For
a characterization of Wang’s class of premium principles, see e.g. Goovaerts &
Dhaene (1998).

CHAPTER 6

Pioneering work in the theoretical and practical aspects of bonus-malus systems
can be found in Bichsel (1964), as well as in Loimaranta (1972). Lemaire (1985)
gives a comprehensive description of the insurance aspects of bonus-malus sys-
tems. A paper trying to introduce penalization based both on claim intensity and
claim severity is Frangos & Vrontos (2001). The study that led to the Dutch bonus-
malus system described in this chapter was described fully in De Wit et al. (1982).
Bonus-malus systems with non-symmetric loss functions are considered in Denuit
& Dhaene (2001).

CHAPTER 7

The general idea of credibility theory can be traced back to the papers by Mow-
bray (1914) and Whitney (1918). A sound theoretical foundation was given by
Bühlmann (1967, 1969). There are several approaches possible for introducing the
ideas of credibility theory. The original idea was to introduce a risk parameter
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considered to be a random variable characterizing some hidden risk quality, and
using a least squares error criterion. A more mathematical approach applies pro-
jections in Hilbert spaces, as in De Vijlder (1996). Of course these approaches are
equivalent descriptions of the same phenomena. The educational approach taken
in the text is based on the variance components model such as often encountered
in econometrics. The advantage of this approach, apart of course from its sim-
plicity and elegance, consists in the explicit relationship with ANOVA, in case of
normality. A textbook on variance components models is Searle et al. (1992). We
have limited ourselves to the basic credibility models of Bühlmann, because with
these, all the relevant ideas of credibility theory can be illustrated, including the
types of heterogeneity as well as the parameter estimation. For a more complete
treatment of credibility, the reader is referred to Dannenburg et al. (1996), which
was the basis for our Chapter 7, or to the Ph.D. thesis of Dannenburg (1996). The
interpretation of a bonus-malus system by means of credibility theory was initiated
by Norberg (1976); for the negative binomial model, we refer to Lemaire (1985).

CHAPTER 8

The paper by Nelder and Wedderburn (1972) introduces the generalized linear
models. It gives a unified description of a broad class of statistical models, all with
a stochastic regressand of exponential family type, of which the mean is related
to a linear form in the regressors by some rather arbitrary link function. The
textbook McCullagh and Nelder (1989) contains some applications in insurance
rate making. Much more readable introductions in GLM application are provided
by the manuals of, e.g., SAS and GLIM, see Francis et al. (1993). The heuristic
methods we gave are treated more fully in Van Eeghen et al. (1983). Alting von
Geusau (1989) attempts to fit a combined additive/multiplicative model to health
insurance data.

CHAPTER 9

The first statistical approach to the IBNR problem goes back to Verbeek (1972).
Another early reference is De Vijlder and Goovaerts (1979), in which the three
dimensions of the problem are introduced. An encyclopedic treatment of the var-
ious methods is given in Taylor (1986). The relation with generalized additive
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and multiplicative linear models is explored in Verrall (1996, 2000). The model
behind the chain ladder method is defended in Mack (1993). Doray (1996) gives
UMVUEs of the mean and variance of IBNR claims for a model with lognor-
mal claim figures, explained by row and column factors. While all of the above
mentioned literature is concerned with the statistical approach to the estimation
of the claims run-off, the present research goes in the direction of determining the
economic value of run-off claims, taking into account discounting. The statistical
framework gives the extrapolated claim figures as a cash flow, and the calendar
year becomes definitely of another nature than the development year and the year
of origin because it includes inflation and discounting. A reference dealing with
this different approach is Goovaerts and Redant (1999).

CHAPTER 10

The notion of stop-loss order entered into the actuarial literature through the paper
by Bühlmann et al. (1977). In the statistical literature many results generalizing
stop-loss order are available in the context of convex order. See, e.g., Karlin and
Studden (1966). A standard work for stochastic orders is Shaked & Shanthikumar
(1994). Applications of ordering principles in operations research and reliability
can be found in Stoyan (1983). Recently, the concept of convex order has been
applied in the financial approach to insurance where the insurance risk and the
financial risk are integrated. Object of study are sums of dependent risks. Some
very interesting properties have been found recently and they will be published
in a subsequent book by the same authors. Comonotonic risks play an important
role in these dependency models. A review paper about this topic is Dhaene et al.
(2001).

Chapter 10 has some forerunners. The monograph by Kaas et al. (1994) was
based on the Ph.D. thesis by Van Heerwaarden (1991), see also the corresponding
chapters of Goovaerts et al. (1990).
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Examples of use:

NP approximation: If S has mean variance and skewness then

and

Translated gamma approximation: If is the gamma cdf, then

with
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Index

Accident proneness, 160
Additive, 113–114, 118, 120, 172, 239
Additive model, 170, 175, 201
Adjustment coefficient, 82, 86–88, 92–94, 106–108,

112–113, 237–238, 268, 280
after reinsurance, 92–93, 95
discrete time, 91–93, 112
equations for, 86
martingale, 88
upper bound, 87, 106

Aliased, 175
Allais paradox, 9, 289
Alting von Geusau, 292
ANOVA, 141, 146, 170–171, 292
Association measure, 263, 270, 287
Bühlmann, 111, 114, 140, 150–151, 153, 289–291,

293
classical model, 143

Bühlmann-Straub, 141, 151, 153, 156-157, 167, 172
Bühlmann-Straub model

homogeneous estimator, 155
Bailey-Simon, 176, 178, 182, 201, 284
Balanced Bühlmann model, 141, 143–144, 151,

157–158
inhomogeneous estimator, 146

BAN, 178
Bayes-estimator, 163
Beard, 290
Beekman, 290
Beekman’s convolution formula, 95, 99
Best linear unbiased estimator (BLUE), 166
Bichsel, 291
Binomial theorem, 31
Black-Scholes option pricing formula, 79
Block-diagonal, 283
Bonferroni’s inequality, 263, 270
Bonus-malus, ix–x, xiii, 127–128, 131, 133–137, 160,

164–166, 170, 174, 213, 234, 291–292
Borch, 289
Bowers, 289–290
Brownian motion (geometric), 260
Canonical (standard) link, 171–172, 190, 196–199,

202
Capital at ruin, 90

distribution, 97
CAPM, 229
Cauchy-Schwarz, 282
Central Limit Theorem (CLT), xii, 34–40, 42–43, 46,

59–60, 76, 225, 275, 278
Chain ladder method, 207–208, 211–214, 217, 220
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Chain ladder model, 215, 220
Chain rule, 197
Characteristic function, xii, 20, 32–33, 42, 275
Chebyshev’s inequality, 90
Chi-square, 36, 162, 168, 171, 177, 275–276,

283–284
Claim frequency, 47
Coefficient of variation, 17, 78, 169, 173, 181, 186,

200, 217, 225, 283–284
Coinsurance, 112, 123
Collective experience, 139
Collective model, viii, xi, 20, 45, 60, 62–63, 77–78,

81, 224, 237, 269, 278
open, 62–63, 78, 237, 278
the/canonical, 62, 77–78, 224, 237, 278

Comonotonic, xiii, 226, 254–258, 260–265, 269–271,
287

Comonotonic joint distribution, 255
Comonotonic random vector, 256
Compound distribution, 46, 54, 118, 235–236, 246,

252, 286
approximation, 59
binomial, 58, 77, 278
geometric, 95–96, 99, 103, 224, 237
negative binomial, 45, 51–52, 59
Poisson, 45, 51–54, 56–59, 61–62, 75–77, 79, 86,

88–89, 91, 112, 125, 150, 170, 177, 219,
267–268, 278, 286

with negative risk amounts, 63
with cdf in closed form, 47
with exponential claims, 49

Compounding, 224, 227, 233–234, 236, 268
Comprehensive, 234
Concave, 4–5, 8, 116, 232, 241, 243, 251, 269
Concave down, 4
Concave up, 4
Concentration, 245
Conditional covariances

decomposition rule, 150, 167, 283
Conditional mean, 243
Conditional variance, 47
Conditionally iid random variables, 149
Consistency, 117, 120
Contingency tables, 174
Convex, 4, 15, 86, 91, 116, 120, 122, 124, 145, 231,

233, 236, 242, 250, 253, 259-260, 267, 269,
279, 286

Convex lower bound, 260
Convex order, xiii, 233, 252–253, 256, 259, 261, 263,

270, 293
Convolution, viii, 20, 28–32, 37, 41, 46, 49, 52, 54,

58, 63, 66, 227, 233, 237, 267

Convolution formula, 48, 54, 274
Copula, 264, 270–271

convex combination, 264
Countermonotonic, 263
Covariance structure, 140
Covariate, x
Coxian distributions, 65
Cramér, 290
Credibility, vii, x, 128, 139, 260
Credibility factor, 140, 144, 146

asymptotic properties, 146
Credibility forecast, 163
Credibility models, 151
Credibility premium, x, 140, 147–148, 166

homogeneous, 146
inhomogeneous, 146

Credibility theory, x, 151, 171, 291
greatest accuracy, 140
limited fluctuation, 140

Credible mean is exact Bayesian, 163
Credit insurance, 200
Cross classification model, 152
Crossing cdf’s, 229
Crossing properties, 230
Cumulant, 33, 41–43, 59, 193, 195, 199, 275, 281
Cumulant function, 191, 193, 202
Cumulant generating function (cgf), 20, 32–33, 75,

125, 193, 275
Cumulative distribution function (cdf), viii, 12, 21
Dannenburg, xiii, 292
De Pril, 290
De Vijlder, 290, 292
De Vijlder’s IBNR-credibility model, 152
De Vijlder’s least squares, 213
De Wit, 291
Defective, 83
Degenerate, 120, 234, 277
Denuit, xiii
Design matrix, 170
Deviance, 171, 182–185, 189, 201–202, 214–215

scaled, 171, 182–186, 189, 201–202, 214, 217–218
Dhaene, xiii, 290, 293
Differential, 23, 27, 29, 40–41, 117, 266
Direct method, 181
Discount factor, 260
Dispersion, 245
Distribution

Bernoulli, 24, 41–42, 60, 66, 72, 80, 120, 228, 233,
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280–281, 285–287
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