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Preface

The relative scarcity of results that guarantee the existence of solutions

for boundary value problems on unbounded domains, contrasts with the

high applicability on real problems with differential equations defined on

the half-line or on the whole real line. This gap is the main reason that led

to this work.

This book contains four parts with different problems composed

by differential equations, from second to higher orders, and integral

Hammerstein equations, several types of boundary conditions, for example,

Sturm–Liouville, Lidstone and functional conditions, and solutions with

diverse qualitative properties, such as impulsive, homoclinic, and hetero-

clinic solutions.

The noncompactness of the time interval and the possibility of studying

the unbounded functions will require the definition of adequate Banach

spaces. In fact, the space considered, the functional framework assumed

and the set of admissible solutions for each problem are defined under a

main goal: the functions must remain bounded for the space and the norm

in consideration. This is achieved by defining some weight functions (poly-

nomial or exponential) in the space or assuming some asymptotic behavior.

We underline some new features of the content:

• relation between some properties of the Green’s functions defined on

the real line, the existence of homoclinic solutions and the solvability of

Lidstone-type problems;

• existence of heteroclinic solutions for semi-linear problems without

growth or asymptotic assumptions on the nonlinearity;

ix
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x Higher Order Boundary Value Problems on Unbounded Domains

• solvability of Hammerstein integral equations on the whole line, with

discontinuous and sign-changing kernels and with nonlinear dependence

on several derivatives.

In addition to the existence, solutions will be localized in a strip. The

lower and upper solutions method will play an important role, and combined

with other tools like the one-sided Nagumo growth conditions, Green’s func-

tions or Schauder’s fixed-point theorem, provide the existence and location

results for differential equations with various boundary conditions.

Different applications to real phenomena will be presented, most of them

translated into classical equations as Duffing, Bernoulli–Euler–v. Karman,

Fisher–Kolmogorov, Swift–Hohenberg, Emden–Fowler or Falkner–Skan-

type equations.

All these applications have a common denominator: they are defined in

unbounded intervals and the existing results in the literature are scarce or

proven only numerically in discrete problems.

Feliz Manuel Minhós

Hugo Carrasco
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Introduction

The leitmotiv of this book is related with higher order boundary value

problems (BVPs) defined on unbounded domains, more precisely on the

half-line or on the whole real line.

Roughly speaking, we can say that BVPs are rather different from ini-

tial (or final) value problems as they do not have a continuous dependence

on the boundary data. In fact, small perturbations on boundary values may

cause vital changes on the qualitative properties of the corresponding solu-

tions, and even on the existence, nonexistence or multiplicity of solutions.

The following example will illustrate this fact.

Consider the second-order homogeneous differential equation

y′′ + y = 0. (1)

The initial value problem, known as Cauchy problem, composed by (1)

and the initial values

y(0) = k1, y′(0) = k2

has a unique solution given by y(x) = k1 cosx + k2 sinx, for every real

k1, k2.

However, the BVP with (1) and the Dirichlet boundary conditions

y(0) = 0, y(π) = ε(�= 0)

has no solution, but the Dirichlet BVP with (1) and

y(0) = 0, y(β) = ε, with 0 < β < π,

has a unique solution, y(x) = ε sin x
sin β , and the BVP composed by (1) together

with the boundary conditions

y(0) = 0, y(π) = 0,

has infinite solutions of the type y(x) = c sinx, with arbitrary c ∈ R.

xi
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xii Higher Order Boundary Value Problems on Unbounded Domains

In the past decades, the study of BVPs defined on compact intervals

has been considered by many authors with application of a huge variety of

methods and techniques. However, BVPs defined on unbounded intervals

are scarce, as they require other types of techniques to overcome the lack

of compactness.

Historically, these problems began at the end of nineteenth century

with A. Kneser. This pioneer work described monotone solutions of second-

order ordinary differential equations. Others followed his results and dif-

ferent techniques have been studied, namely the lower and upper solutions

method (see [13] and the references therein).

Several real problems were modeled by BVPs defined on infinite inter-

vals. As examples, we refer to the study of unsteady flow of a gas through a

semi-infinite porous medium; the discussion of electrostatic probe measure-

ments in solid-propellant rocket exhausts; the analysis of the mass transfer

on a rotating disk in a non-Newtonian fluid; the heat transfer in the radial

flow between parallel circular disks; the investigation of the temperature

distribution in the problem of phase change of solids with temperature-

dependent thermal conductivity, as well as numerous problems arising in

the study of draining flows, circular membranes, plasma physics, radially

symmetric solutions of semi-linear elliptic equations, nonlinear mechanics,

and non-Newtonian fluid flows; and the bending of infinite beams and its

applications in the railways and highways. More details and examples can

be seen in [5] and the references therein.

This book is divided into four parts, each one related to some type of

BVPs on unbounded intervals.

The first part, Boundary Value Problems on the Half-Line, is dedicated

to higher order BVPs, defined on the half-line, and it is composed of three

chapters:

• Chapter 1 — Third-Order Boundary Value Problems. Third-order differ-

ential equations on infinite intervals can describe the evolution of physical

phenomena like draining or coating fluid flow problems. The noncom-

pactness of the time interval and the possibility of studying unbounded

functions require the redefinition of the admissible Banach space and its

weighted norms. This chapter will prove the existence and localization

of, at least, one solution for a BVP with Sturm–Liouville-type bound-

ary conditions. The tools involved will be the one-sided Nagumo-type

growth condition, Green’s functions, lower and upper solutions method

and Schauder’s fixed-point theorem. An example will conclude the

chapter.
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Introduction xiii

• Chapter 2 — General nth-Order Problems. This chapter arises from an

attempt to generalize the previous one to order n. In a particular case,

fourth-order differential equations can model the bending of an elastic

beam. An example is shown to demonstrate the importance of the one-

sided Nagumo-type growth condition.

• Chapter 3 — Impulsive Problems on the Half-Line with Infinite Impulse

Moments. Some of the previous techniques are applied in a second-order

impulsive problem on the half-line, with generalized impulsive functions,

depending on the unknown function and its derivative, and allowing

an infinite number of impulse moments. The notion of Carathéodory

sequence is a key argument in the method.

The second part, Homoclinic Solutions and Lidstone Problems,

considers BVPs on the whole real line, looking for sufficient conditions on

the nonlinearity to guarantee the existence of homoclinic solutions, and its

relation to solutions for Lidstone-type problems. It contains three chapters:

• Chapter 4 — Homoclinic Solutions for Second-Order Problems. In this

chapter, the lower and upper solutions method will be used with

unordered functions. An existence and localization result will be settled.

Specific applications to Duffing-type equations and beam equations with

damping will conclude the chapter.

• Chapter 5 — Homoclinic Solutions to Fourth-Order Problems. Different

problems involving Bernoulli–Euler–v. Karman, Fisher–Kolmogorov or

Swift–Hohenberg equations are strongly linked with fourth-order differ-

ential equations. This chapter will establish the existence results and

examples for each particular case.

• Chapter 6 — Lidstone Boundary Value Problems. The Lidstone theory,

initially applied to interpolation problems, is considered, in this chapter,

in the whole real line with a strong connection to the homoclinic solutions.

In this final chapter of this part, a problem of an infinite beam resting

on granular foundations with moving loads will be studied.

The third part, Heteroclinic Solutions and Hammerstein Equations,

contains four chapters:

• Chapters 7–9 provide sufficient conditions for the existence of hete-

roclinic solutions for three types of φ-Laplacian equations, sometimes

named as semi-linear equations, on the real line. We point out that these

heteroclinic solutions are obtained without the usual monotone or growth

assumptions on the nonlinearity.
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xiv Higher Order Boundary Value Problems on Unbounded Domains

• Chapter 10 studies integral equations, more precisely, Hammerstein

equations, defined on the whole real line, with discontinuous nonlineari-

ties, which may depend, not only on the unknown function, but also on

some derivatives, without monotone or asymptotic assumptions. More-

over, the kernels and their partial derivatives in order to the first variable,

are very general functions: they may be discontinuous and may change

the signal. A simple criterion is included to see if the existing solutions

are homoclinic or heteroclinic solutions, together with an application to

a fourth-order BVP.

In the last part, Functional Boundary Value Problems, we study BVPs

with functional boundary conditions, that is, with boundary data that can

depend globally on the correspondent variables. In this way, it contains and

generalizes many types of boundary conditions such as multipoint, advanced

or delayed, nonlocal, integro-differential, with maximum or minimum argu-

ments, among others. Part IV is divided into three chapters, each one with

a different type of problems:

• Chapter 11 — Second-Order Functional Problems. BVPs involving func-

tional boundary conditions can model thermal conduction, semiconduc-

tor and hydrodynamic problems. An application to a problem composed

by an Emden–Fowler-type equation and an infinite multipoint condition

will be formulated and solved.

• Chapter 12 — Third-Order Functional Problems. Falkner–Skan equa-

tions are obtained from partial differential equations. They can model

the behavior of a viscous flow over a plate. Until now, only numerical

techniques could deal with this type of problems, however, this chapter

will prove an existence and localization result by topological methods.

• Chapter 13 — Phi-Laplacian Equations with Functional Boundary Con-

ditions. This final chapter will deal with weighted norms, namely the

Bielecki norm. This will be a fundamental tool to manage unbounded

solutions. An important fact is that the homeomorphism φ does not need

to be surjective.

Throughout this work, the usual lemma of Arzèla–Ascoli could not be

used due to lack of compactness, and this issue is overcome with some

methods, techniques and specific tools. We point out some of them:

• Weighted spaces and the corresponding weighted norms;

• Carathéodory functions admissible for the nonlinearities;
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• Green’s functions on unbounded domains;

• Equiconvergence at ∞.

The space considered and the functional framework assumed define the

set of admissible solutions for each problem with a main goal: the functions

must remain bounded for the space and the norm in consideration. This

is achieved by defining some weight functions (polynomial or exponential)

in the space or assuming some asymptotic behavior. Therefore, for each

problem, the specific space and norm to be used are presented.

The type of nonlinearities in the different problems has a common fea-

ture: roughly, they must be measurable in the time variable, continuous

almost everywhere, on the space variables, and having a growth controlled

by an L1-function on [0,+∞[ or R. A function with such properties is

called in the literature as an L1-Carathéodory function. To avoid bor-

ing repetitions we define them for an general unbounded interval I (see

Definition 1.2.1), which will be the half-line, or the whole real line, accord-

ing to each problem.

The Green’s functions and their properties play a key role in some prob-

lems, for which we carry out more detailed considerations.

Basically, these functions are solutions of a linear BVP, irrespective of

whether they are homogeneous or not, and they will guarantee the exis-

tence of at least one solution, and, moreover, they can provide the explicit

expression of the solution for the studied BVP. In a broader sense, they can

be seen as a particular case of the so-called kernel functions, as they are

related with the kernel of linear operators.

When dealing with linear and homogeneous ordinary differential equa-

tions on the form

Lu(t) = 0,

it is clear that any homogeneous solution is a linear combination of some

independent functions (in the same number as the degree of the ODE).

However, when the differential equation is nonhomogeneous

Lu(t) = e(t), (2)

it is fundamental to find a particular solution for each function e and then

add it to the linear combination referred.

The Green’s functions method is due to George Green (1793–1841), the

first mathematician to use such kind of kernels to solve BVPs.

If equation (2), coupled with homogeneous boundary conditions, has

only the trivial solution for e(t) = 0, then the associated linear operator is

 H
ig

he
r 

O
rd

er
 B

ou
nd

ar
y 

V
al

ue
 P

ro
bl

em
s 

on
 U

nb
ou

nd
ed

 D
om

ai
ns

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 9
2.

11
3.

80
.1

63
 o

n 
10

/2
9/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.



August 3, 2017 10:52 Higher Order Boundary Value Problems. . . – 9in x 6in spi-b2901-9x6 b2901-fm page xvi

xvi Higher Order Boundary Value Problems on Unbounded Domains

invertible and its inverse operator, L−1e, is characterized with an integral

kernel, G(t, s), called the Green’s function. The solution of this problem is

then given by

u(t) = L−1e(t) :=

∫ b

a

G(t, s)e(s)ds, ∀t ∈ [a, b].

A remarkable characteristic of the explicit expression of the Green’s

functions is the fact that it is independent on the function e. After that, one

needs to calculate the integral expression and then it is possible to obtain

some additional qualitative information about solutions: sign, oscillation

properties, a priori bounds or their stability. All these issues transform the

theory of Green’s functions in a fundamental tool in the analysis of differ-

ential equations. It has been widely studied in the literature and reveals to

be very important in order to use monotone iterative techniques, lower and

upper solutions, fixed point theorems or variational methods (see [39] and

references therein).

The equiconvergence at ∞, sometimes called as the stability at ∞, is a

crucial argument to recover the compacity of the operator on unbounded

domains. Indeed, with such concept, we can formulate a criterion that plays

the role of the Arzèla–Ascoli theorem for bounded domains. More precisely,

if, in some subset M of the space, the functions are uniformly bounded,

equicontinuous on some subintervals of [0,∞) or R, and equiconvergent at

∞, or ±∞, then M is relatively compact.

As it can easily be seen, the above notion depends on the space con-

sidered, the weights defined, and on the order of the derivatives involved.

Therefore, for the reader’s convenience, we specify in each problem the

detailed criterion referred.

Finally, we point out that in all chapters there are examples to illustrate

each theorem or, even, concrete applications to real phenomena.
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Part I

Boundary Value Problems
on the Half-Line

1
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Introduction

Sturm–Liouville theory was initiated by Jacques Charles François Sturm

(1803–1855) and Joseph Liouville (1809–1882) to study second-order linear

differential equations of the form
d

dt

(
p(t)

dy

dt

)
+ (λw(t) − q(t))y = 0,

where p, q are positive functions, λ is a constant and w is a known function

called either the density or weighting function.

The common approach to this equation deals with bounded intervals,

that is, t ∈ [a, b], a, b ∈ R, a < b, and with boundary conditions of the

form

c1y(a) + c2y
′(a) = 0, c3y(b) + c4y

′(b) = 0, c1, c2, c3, c4 ∈ R.

This kind of boundary conditions will, in this first part, be generalized

to third and nth-order BVPs, defined on unbounded intervals. Thus, in

what follows, BVPs with Sturm–Liouville boundary conditions may also be

called simply as Sturm–Liouville problems.

The great novelty of this part is to assume a one-sided Nagumo condi-

tion. In fact, the usual bilateral Nagumo condition used in the literature

requires a subquadratic growth for the nonlinearities. As far as we know,

it is the first time where the unilateral Nagumo conditions are adapted to

unbounded domains. In this way, the nonlinearities may have an asymmet-

ric growth, being, for example, asymptotically unbounded on one side and

retaining the subquadratic growth on the other side.

This first part is separated into three chapters, dealing with problems

defined on the half-line.

In Chapter 1, the existence of at least one solution for a BVP involving

a third-order differential equation is proved, and it is based on [117]. Other

3
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4 Higher Order Boundary Value Problems on Unbounded Domains

properties are proved for such solutions like localization and asymptotic

properties.

Chapter 2 is assigned to a generic nth-order problem, where the main

result is an existence and localization result, meaning that it provides not

only the existence but also the localization of the unknown function and its

derivatives via lower and upper solutions method.

In Chapter 3, the previous techniques are applied to a second-order

impulsive problem in the half-line with a full nonlinearity and infinite

impulsive effects, on the unknown function and its first derivative, given

by generalized functions. The notion of Carathéodory sequences and the

equi-convergence at +∞ and at each impulsive moment are key arguments

to have a compact operator.

Lower and upper solutions method is a useful technique to deal with

BVPs as, from their localization part, some qualitative data about solution

variation and behavior can be obtained (see [32, 71, 99, 113, 120]). Another

important tool is the Nagumo condition, useful to obtain a priori esti-

mates on some derivative of the solution, generalizing subquadratic growth

assumptions on the nonlinear part of the differential equation.

As it can be seen in the references above, the usual growth condition

of the Nagumo type is a bilateral one. However, the same estimation holds

with a similar one-sided assumption, allowing that the BVPs can include

unbounded nonlinearities. In this way, it generalizes the two-sided condi-

tion, as it is proved in [62, 75].

Finally, it is worth mentioning that, in both chapters, the nonlinearities

are L1-Carathéodory functions and, therefore, they may have discontinu-

ities in time.
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Chapter 1

Third-Order Boundary
Value Problems

1.1. Introduction

Third-order differential equations arise in many areas, such as the deflection

of an elastic beam having a constant or varying cross-section, three-layer

beam, electromagnetic waves or gravity-driven flows (see [73] and the

references therein).

In infinite intervals, third-order BVPs can describe the evolution of

physical phenomena, for example, some draining or coating fluid-flow

problems (see [139]).

Due to the noncompactness of the interval, the discussion about

sufficient conditions for the solvability of BVPs is more delicate. In the

literature, existence results to such problems are, mainly, due to the exten-

sion of continuous solutions on the corresponding finite intervals, under a

diagonalization process and fixed point theorems, in special Banach spaces

(see [4, 19, 98, 146] and the references therein).

The present chapter will study a general Sturm–Liouville-type BVP,

composed by a third-order differential equation defined on the half-line

u′′′(t) = f(t, u(t), u′(t), u′′(t)), a.e. t ≥ 0 (1.1.1)

together with boundary conditions

u(0) = A, au′(0) + bu′′(0) = B, u′′(+∞) = C, (1.1.2)

5
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6 Higher Order Boundary Value Problems on Unbounded Domains

with f :R+
0 ×R

3→R an L1-Carathéodory function (eventually discontinuous

on time), where u′′(+∞) := limt→+∞ u′′(t), a, b, A, B, C ∈ R and

a > 0, b < 0.

The setback of dealing with unbounded intervals and the possibility

of studying unbounded functions can be overcome with new definitions of

weighted spaces and norms.

1.2. Definitions and auxiliary results

As solutions can be unbounded, the functional framework must be defined

with some weight functions and the corresponding weighted norms.

Consider the space

X1 =

{
x ∈ C2(R+

0 ) : lim
t→+∞

x(i)(t)

ωi(t)
∈ R, i = 0, 1, 2

}

with ωi(t) = 1 + t2−i, i = 0, 1, 2 and the norm

‖x‖X1 = max {‖x‖0, ‖x′‖1, ‖x′′‖2},
where

‖y‖i = sup
t≥0

∣∣∣∣ y(t)ωi(t)

∣∣∣∣ , for i = 0, 1, 2.

By standard arguments, it can be proved that (X1, ‖ · ‖X1) is a Banach

space.

Let us express the concept of L1-Carathéodory functions to be used

forward.

Definition 1.2.1. LetE be a normed space and I be an unbounded interval

(I = R
+
0 or I = R).

A function f : I×R
n → R is L1-Carathéodory if it verifies the following

conditions:

(i) for each ξ ∈ R
n, t �→ f(t, ξ) is measurable on I;

(ii) for almost every t ∈ I, ξ �→ f(t, ξ) is continuous in R
n;

(iii) for each ρ > 0, there exists a positive function ϕρ ∈ L1(I) such that,

for ‖ξ‖E < ρ,

|f(t, ξ)| ≤ ϕρ(t), a.e. t ∈ I.

For each particular structure of the space E, and the corresponding

norm, condition (iii) assumes different forms of inequalities.
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Third-Order Boundary Value Problems 7

Let γi,Γi ∈ C(R+
0 ), such that γi(t) ≤ Γi(t), ∀t ≥ 0, i = 0, 1 and

E1 =
{
(t, x0, x1, x2) ∈ R

+
0 × R

3 : γi(t) ≤ xi ≤ Γi(t), i = 0, 1
}
.

The following one-sided Nagumo condition generalizes the usual

bilateral one.

Definition 1.2.2. A function f : E1 → R is said to satisfy a one-sided

Nagumo-type growth condition in E1 if, for some positive and continuous

functions ψ, h and some ν > 1, such that

∫ +∞

0

ψ(s)ds < +∞, sup
t≥0

ψ(t)(1 + t)ν < +∞,

∫ +∞

0

s

h(s)
ds = +∞,

(1.2.1)

it verifies either

f(t, x, y, z) ≤ ψ(t)h(‖z‖2), ∀(t, x, y, z) ∈ E1 (1.2.2)

or

f(t, x, y, z) ≥ −ψ(t)h(‖z‖2), ∀(t, x, y, z) ∈ E1. (1.2.3)

An important goal of this condition is to give an a priori bound on the

second derivative of all existent solutions.

Lemma 1.2.3. Let f : R
+
0 × R

3 → R be an L1-Carathéodory function

satisfying (1.2.1) and, either (1.2.2) or (1.2.3) in E1. Then there exists

R > 0 (not depending on u) such that every solution u of (1.1.1),(1.1.2)

satisfying

γ(t) ≤ u(t) ≤ Γ(t), γ′(t) ≤ u′(t) ≤ Γ′(t), ∀t ≥ 0 (1.2.4)

verifies ‖u′′‖2 < R.

Proof. Let u be a solution of (1.1.1), (1.1.2) verifying (1.2.4). Consider

r > 0 such that

r > max

{∣∣∣∣B − aΓ′(0)
b

∣∣∣∣ ,
∣∣∣∣B − aγ′(0)

b

∣∣∣∣ , |C|
}
. (1.2.5)
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8 Higher Order Boundary Value Problems on Unbounded Domains

By the previous inequality, it is impossible that |u′′(t)| > r, ∀t ≥ 0 because

|u′′(0)| =
∣∣∣∣B − au′(0)

b

∣∣∣∣ ≤ max

{∣∣∣∣B − aΓ′(0)
b

∣∣∣∣ ,
∣∣∣∣B − aγ′(0)

b

∣∣∣∣
}
< r.

If |u′′(t)| ≤ r, ∀t ≥ 0, taking R > r
2 , the proof is complete as

‖u′′‖2 = sup
t≥0

∣∣∣∣u
′′(t)
2

∣∣∣∣ ≤ r

2
< R.

In the following, it will be proved that even when there exists t > 0 such

that |u′′(t)| > r, the norm ‖u′′‖2 remains bounded, in all possible cases, f

verifies either (9.2.13) or (1.2.3).

Suppose there exists t > 0 such that |u′′(t)| > r, that is, u′′(t) > r or

u′′(t) < −r. In the first case, by (1.2.1), one can take R > r such that

∫ R

r

s

h(s)
ds > M max

{
M1 + sup

t≥0

Γ′(t)
1 + t

ν

ν − 1
,M1 − inf

t≥0

γ′(t)
1 + t

ν

ν − 1

}

with M := supt≥0 ψ(t)(1 + t)νandM1 := supt≥0
Γ′(t)
(1+t)ν − inft≥0

γ′(t)
(1+t)ν .

If condition (1.2.2) holds, then, by (1.2.5), there are t∗, t+ ∈ R
+ such

that t∗ < t+, u
′′(t∗) = r and u′′(t) > r, ∀t ∈ (t∗, t+]. Therefore,

∫ u′′(t+)

u′′(t∗)

s

h(s)
ds =

∫ t+

t∗

u′′(s)
h(u′′(s))

u′′′(s)ds ≤
∫ t+

t∗
ψ(s)u′′(s)ds

≤ M

∫ t+

t∗

u′′(s)
(1 + s)ν

ds

= M

∫ t+

t∗

[(
u′(s)

(1 + s)ν

)′
+

νu′(s)
(1 + s)1+ν

]
ds

≤ M

(
M1 + sup

t≥0

Γ′(t)
1 + t

∫ +∞

0

ν

(1 + s)ν
ds

)
<

∫ R

r

s

h(s)
ds.

Consequently, u′′(t+) < R and as t∗ and t+ are arbitrary in R
+, then

u′′(t) < R, ∀t > 0. Similarly, the case where there are t−, t∗ ∈ R
+ can be

proved such that t− < t∗ and u′′(t∗) = −r, u′′(t) < −r, ∀t ∈ (t−, t∗).
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Third-Order Boundary Value Problems 9

Therefore, ‖u′′‖2 < R
2 < R, ∀t ≥ 0.

Now, consider that f verifies (1.2.3). By (1.2.5), consider that there are

t−, t∗ ∈ R
+ such that t− < t∗ and u′′(t∗) = r, u′′(t) > r, ∀t ∈ (t−, t∗).

Therefore, following similar steps as before,

∫ u′′(t−)

u′′(t∗)

s

h(s)
ds =

∫ t−

t∗

u′′(s)
h(u′′(s))

u′′′(s)ds ≤
∫ t∗

t−
ψ(s)u′′(s)ds

≤
∫ t∗

t−
ψ(s)u′′(s)ds ≤M

∫ t∗

t−

u′′(s)
(1 + s)ν

ds

= M

(
M1 + sup

t≥0

Γ′(t)
1 + t

ν

ν − 1

)
<

∫ R

r

s

h(s)
ds. (1.2.6)

So, u′′(t−) < R and by the arbitrariness of t− and t∗ in R
+, then

u′′(t) < R, ∀t > 0. The case where there are t∗, t+ ∈ R
+, with t∗ < t+,

such that u′′(t∗) = −r, u′′(t) < −r, ∀t ∈ (t∗, t+] is proved in the

same way. �

The exact solution for the associated linear problem can be obtained by

Green’s functions method.

Lemma 1.2.4. If e ∈ L1(R+
0 ), then the BVP

{
u′′′(t) + e(t) = 0, t ≥ 0,

u(0) = A, au′(0) + bu′′(0) = B, u′′(+∞) = C
(1.2.7)

has a unique solution in X1. Moreover, this solution can be expressed as

u(t) = g(t) +

∫ +∞

0

G(t, s)e(s)ds, (1.2.8)

where

g(t) =
Ct2

2
+
B − bC

a
t+A,

G(t, s) =



− b

a
t+ st− s2

2
, 0 ≤ s ≤ t,

1

2
t2 − b

a
t, 0 ≤ t ≤ s < +∞.
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10 Higher Order Boundary Value Problems on Unbounded Domains

Moreover, u′(t) = g′(t) +
∫ +∞
0

G1(t, s)e(s)ds with

G1(t, s) =



− b

a
+ s, 0 ≤ s ≤ t,

− b

a
+ t, 0 ≤ t ≤ s < +∞.

(1.2.9)

The lack of compactness is overcome by the following lemma which gives

a general criterium for relative compactness (see [4]).

Lemma 1.2.5. A set M ⊂ X1 is relatively compact if the following condi-

tions hold:

(i) all functions from M are uniformly bounded;

(ii) all functions from M are equicontinuous on any compact interval of

R
+
0 ;

(iii) all functions from M are equiconvergent at infinity, that is, for any

given ε > 0, there exists a tε > 0 such that

∣∣∣∣u
(i)(t)

ωi(t)
− u(i)(+∞)

ωi(+∞)

∣∣∣∣ < ε,

for all t > tε, u ∈M and i = 0, 1, 2.

The well-known Schauder’s fixed-point theorem will be the existence

tool.

Theorem 1.2.6 ([152]). Let Y be a nonempty, closed, bounded and con-

vex subset of a Banach space X, and suppose that P : Y → Y is a compact

operator. Then P is at least one fixed point in Y .

An important tool to bound the solution and its derivatives is the

lower and upper solution method. Let us define the usual lower and upper

functions.

Definition 1.2.7. Given a > 0, b < 0, and A,B,C ∈ R, a function α ∈
C3(R+

0 ) ∩X1 is a lower solution of problem (1.1.1),(1.1.2) if



α′′′(t) ≥ f(t, α(t), α′(t), α′′(t)), t ≥ 0,

α(0) ≤ A, aα′(0) + bα′′(0) ≤ B, α′′(+∞) < C.
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A function β ∈ C3(R+
0 ) ∩ X1 is an upper solution if it satisfies the

reversed inequalities.

1.3. Existence and localization result

The main result of this chapter will be given by the following theorem.

Theorem 1.3.1. Let f : R+
0 × R

3 → R be an L1-Carathéodory function.

Suppose there are α, β ∈ C3(R+
0 ) ∩ X1 lower and upper solutions of the

problem (1.1.1),(1.1.2), respectively, such that

α′(t) ≤ β′(t), ∀t ≥ 0. (1.3.1)

If f verifies either the one-sided Nagumo condition (9.2.13) or (1.2.3)

in the set

E∗ =
{
(t, x, y, z) ∈ R

+
0 × R

3, α(t) ≤ x ≤ β(t), α′(t) ≤ y ≤ β′(t)
}
,

and

f(t, α(t), y, z) ≥ f(t, x, y, z) ≥ f(t, β(t), y, z), (1.3.2)

for (t, y, z) fixed and α(t) ≤ x ≤ β(t), then the problem (1.1.1),(1.1.2)

has at least one solution u ∈ C3(R+
0 )∩X1 and there exists R > 0 such that

α(t) ≤ u(t) ≤ β(t), α′(t) ≤ u′(t) ≤ β′(t), ‖u′′‖2 < R, ∀t ≥ 0.

Remark 1.3.2. By Theorem 1.3.1 and Definition 1.2.7, the following

inequality is valid

α(t) ≤ β(t), ∀t ≥ 0,

and, therefore, E∗ is well defined and inequalities (1.3.2) make sense.

Proof. Let α, β ∈ C3(R+
0 )∩X1 be, respectively, lower and upper solutions

of (1.1.1),(1.1.2) verifying (1.3.1).

Consider the truncated and perturbed equation

u′′′(t) = f (t, δ0(t), δ1(t), u
′′(t)) +

1

1 + t2
u′(t)− δ1(t)

1 + |u′(t)− δ1(t)| , t ≥ 0,

(1.3.3)
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where functions δj : R
+
0 × R → R, j = 0, 1 are given by

δj(t) := δj(t, u(t)) =




β(j)(t), u(j)(t) > β(j)(t),

u(j)(t), α(j)(t) ≤ u(j)(t) ≤ β(j)(t),

α(j)(t), u(j)(t) < α(j)(t).

(1.3.4)

Note that the relation α(t) ≤ β(t) is obtained by integration from (1.3.1)

by the boundary conditions (1.1.2) and by Definition 1.2.7.

The proof will include three steps:

Step 1: If u is a solution of problem (1.3.3),(1.1.2), then

α(t) ≤ u(t) ≤ β(t), α′(t) ≤ u′(t) ≤ β′(t), ∀t ≥ 0.

Suppose, by contradiction, that there exists t ∈ R
+
0 with α′(t) > u′(t) and

define

inf
t≥0

(u′(t)− α′(t)) = u′(t∗)− α′(t∗) < 0.

• If t∗ ∈ R
+, then u′′(t∗) = α′′(t∗) and u′′′(t∗)−α′′′(t∗) ≥ 0. Therefore, by

(1.3.2) and Definition 1.2.7, the following contradiction holds:

0 ≤ u′′′(t∗)− α′′′(t∗)

= f(t∗, δ0(t∗), δ1(t∗), u′′(t∗)) +
1

1 + t2∗

u′(t∗)− α′(t∗)
1 + |u′(t∗)− α′(t∗)| − α′′′(t∗)

≤ f(t∗, α(t∗), α′(t∗), α′′(t∗)) +
1

1 + t2∗

u′(t∗)− α′(t∗)
1 + |u′(t∗)− α′(t∗)| − α′′′(t∗)

≤ 1

1 + t2∗

u′(t∗)− α′(t∗)
1 + |u′(t∗)− α′(t∗)| < 0.

• If t∗ = 0, then

min
t≥0

(u′(t)− α′(t)) := u′(0)− α′(0) < 0,
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and

u′′(0)− α′′(0) ≥ 0.

By Definition 1.2.7 and since a > 0, b < 0, it yields the contradiction

0 ≥ bu′′(0)− bα′′(0) ≥ B − au′(0)−B + aα′(0)

= a(α′(0)− u′(0)) > 0.

• If t∗ = +∞, then

inf
t≥0

(u′(t)− α′(t)) := u′(+∞)− α′(+∞) < 0,

u′′(+∞)− α′′(+∞) ≤ 0,

and the following contradiction holds:

0 ≥ u′′(+∞)− α′′(+∞) > C − C = 0.

So, α′(t) ≤ u′(t), ∀t ≥ 0. In a similar way, it can be proved that β′(t) ≥
u′(t), ∀t ≥ 0.

Integrating α′(t) ≤ u′(t) ≤ β′(t) on [0, t] for t ≥ 0, by (1.1.2) and

Definition 1.2.7, it can be proved that α(t) ≤ u(t) ≤ β(t), ∀t ≥ 0.

Step 2: If u is a solution of the modified problem (1.3.3),(1.1.2), then there

exists R > 0, not depending on u, such that

‖u′′‖2 < R. (1.3.5)

By the previous step, all solutions of equation (1.3.3) are solutions of

(1.1.1), and as f verifies either the one-sided Nagumo condition (9.2.13) or

(1.2.3), this claim is a direct application of Lemma 1.2.3.

Step 3: Problem (1.3.3),(1.1.2) has at least one solution.

Take ρ > max {‖α‖0 , ‖β‖0 , ‖α′‖1 , ‖β′‖1 , R} with R given by (1.3.5).

Define the operator T : X1 → X1 given by

Tu(t) = g(t) +

∫ +∞

0

G(t, s)F (u(s))ds
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with

g(t) :=
C

2
t2 +

B − bC

a
t+A

and

F (u(s)) := f(s, δ0(s), δ1(s), u
′′(s)) +

1

1 + s2
u′(s)− δ1(s)

1 + |u′(s)− δ1(s)| .

As f is a L1-Carathéodory function, for any u ∈ X1 with ‖u‖X1 < ρ, then

F ∈ L1 because

∫ +∞

0

|F (u(s))| ds ≤
∫ +∞

0

ϕρ(s) +
1

1 + s2
|u′(s)− δ1(s)|

1 + |u′(s)− δ1(s)|ds

≤
∫ +∞

0

ϕρ(s) +
1

1 + s2
ds < +∞. (1.3.6)

By Lemma 8.2.1, the fixed points of T are solutions of problem

(1.3.3),(1.1.2). So it is enough to prove that T has a fixed point.

Claim 1. T : X1 → X1is well defined.

By the Lebesgue Dominated Theorem and Lemma 1.2.4,

lim
t→+∞

(Tu)(t)

1 + t2
≤ C

2
+

1

2

∫ +∞

0

F (u(s))ds < +∞.

Analogously, by (1.2.9),

lim
t→+∞

(Tu)′(t)
1 + t

= lim
t→+∞

g′(t)
1 + t

+

∫ +∞

0

lim
t→+∞

G1(t, s)

1 + t
F (u(s))ds

≤ C +

∫ +∞

0

F (u(s))ds < +∞,

and

lim
t→+∞

(Tu)′′(t)
2

≤ C

2
+

1

2
lim

t→+∞

∫ +∞

t

F (u(s))ds =
C

2
< +∞.

Therefore, Tu ∈ X1.
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Claim 2. T is continuous.

Consider a convergent sequence un → u in X1. Then there exists r1 > 0

such that ‖un‖X1 < r1 and

‖Tun − Tu‖X1 ≤
∫ +∞

0

max




supt≥0

∣∣∣∣G(t, s)1 + t2

∣∣∣∣ ,

supt≥0

∣∣∣∣G1(t, s)

1 + t

∣∣∣∣ , 12




×|F (un(s))− F (u(s))|ds

≤
∫ +∞

0

|F (un(s)) − F (u(s))| ds −→ 0, (1.3.7)

as n→ +∞.

Claim 3. T is compact.

Let

M(s) := max

{
sup
t≥0

|G(t, s)|
1 + t2

, sup
t≥0

|G1(t, s)|
1 + t

}
.

Consider a bounded set B ⊂ X1 defined by B := {u ∈ X1 : ‖u‖X1 < r1}
for some r1 > 0 such that

r1 > max

{
ρ,

|C|
2

+

∫ +∞

0

M(s)

(
ϕρ(s) +

1

1 + s2

)
ds

}

with ρ given by (1.3.6).

Claim 3.1. TB is uniformly bounded.

For any u ∈ B, as ‖α‖0 ≤ ‖δ0‖0 ≤ ‖β‖0 , ‖α′‖1 ≤ ‖δ1‖1 ≤ ‖β′‖1 , by
(1.2.2), one has

‖Tu‖0 = sup
t≥0

|Tu(t)|
1 + t2

≤ sup
t≥0

|g(t)|
1 + t2

+

∫ +∞

0

sup
t≥0

|G(t, s)|
1 + t2

|F (u(s))| ds

≤ |C|
2

+

∫ +∞

0

M(s)

(
ϕρ(s) +

1

1 + s2

)
ds < r1,

‖Tu‖1 = sup
t≥0

|(Tu)′(t)|
1 + t

≤ sup
t≥0

|g′(t)|
1 + t

+

∫ +∞

0

sup
t≥0

|G1(t, s)|
1 + t

|F (u(s))| ds

≤ |C|+
∫ +∞

0

M(s)

(
ϕρ(s) +

1

1 + s2

)
ds < r1,
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and

‖Tu‖2 = sup
t≥0

|(Tu)′′(t)|
2

≤ |C|
2

< r1.

Thus, ‖Tu‖X1 < r1, TB is uniformly bounded, and, moreover, TB ⊂ B.

Claim 3.2. TB is equicontinuous.

For T > 0 and t1, t2 ∈ [0, T ],

∣∣∣∣Tu(t1)1 + t21
− Tu(t2)

1 + t22

∣∣∣∣ ≤
∣∣∣∣ g(t1)1 + t21

− g(t2)

1 + t22

∣∣∣∣

+

∫ +∞

0

∣∣∣∣G(t1, s)1 + t21
− G(t2, s)

1 + t22

∣∣∣∣
× |F (u(s))| ds −→ 0, as t1 → t2.

Analogously,∣∣∣∣(Tu)
′(t1)

1 + t1
− (Tu)′(t2)

1 + t2

∣∣∣∣ =
∣∣∣∣ g

′(t1)
1 + t1

− g′(t2)
1 + t2

∣∣∣∣

+

∫ +∞

0

∣∣∣∣G1(t1, s)

1 + t1
− G1(t2, s)

1 + t2

∣∣∣∣
× |F (u(s))| ds −→ 0, as t1 → t2,

and∣∣∣∣ (Tu)
′′(t1)
2

− (Tu)′′(t2)
2

∣∣∣∣ =
∣∣∣∣
∫ t2

t1

F (s)ds

∣∣∣∣

≤
∫ t2

t1

(
ϕρ(s) +

1

1 + s2

)
ds −→ 0, as t1 → t2.

Claim 3.3. TB is equiconvergent at infinity. Indeed,∣∣∣∣Tu(t)1 + t2
− lim

t→+∞
Tu(t)

1 + t2

∣∣∣∣ ≤
∣∣∣∣ g(t)1 + t2

− C

2

∣∣∣∣

+

∫ +∞

0

∣∣∣∣G(t, s)1 + t2
− lim

t→+∞
G(t, s)

1 + t2

∣∣∣∣
× |F (u(s))| ds −→ 0, as t → +∞,
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∣∣∣∣(Tu)
′(t)

1 + t
− lim

t→+∞
(Tu)′(t)
1 + t

∣∣∣∣ ≤
∣∣∣∣ g

′(t)
1 + t

− C

∣∣∣∣

+

∫ +∞

0

∣∣∣∣G1(t, s)

1 + t
− lim

t→+∞
G1(t, s)

1 + t

∣∣∣∣
× |F (u(s))|ds −→ 0, as t→ +∞,

and ∣∣∣∣(Tu)
′′(t)
2

− lim
t→+∞(Tu)′′(t)

∣∣∣∣ =
∣∣∣∣
∫ +∞

t

F (u(s))ds

∣∣∣∣

≤
∫ +∞

t

(
ϕρ(s) +

1

1 + s2

)

× ds −→ 0, as t→ +∞.

So, by Lemma 1.2.5, TB is relatively compact.

As T is completely continuous, then by Schauder’s fixed-point theorem

(Theorem 1.2.6), T has at least one fixed point u ∈ X1. �

1.4. Example

Consider the next third-order BVP

u′′′(t) =

1

(t+ 1)2
(− arctan (u(t))− 10|u′′(t)|eu′′(t)), t ≥ 0,

u(0) = A, au′(0) + bu′′(0) = B, u′′(+∞) = C,

(1.4.1)

with A ∈ (−1, 0], a > 0, b < 0 such that−2(a+b) ≤ B ≤ 0 and C ∈ (−2, 0).

Define

Eex1 =
{
(t, x, y, z) ∈ R

+
0 × R

3 : −(t+ 1)2 ≤ x ≤ 0,−2t− 2 ≤ y ≤ 0
}
.

Function f : R+
0 × R

3 → R defined by

f(t, x, y, z) :=
1

(t+ 1)2
(− arctanx− 10|z|ez)

verifies on Eex1 the inequality |f(t, x, y, z)| ≤ Kρ

(t+1)2 := ϕρ(t) for some

Kρ > 0 and ρ such that max {2, ‖z‖2} < ρ. Therefore, f is L1-Carathéodory.

Functions α(t) = −(t + 1)2 and β(t) ≡ 0 are, respectively, lower and

upper solutions of problem (1.4.1) with α(t) ≤ β(t) and α′(t) ≤ β′(t),
∀t ≥ 0, verifying (1.3.2).
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As

f(t, x, y, z) ≤ 1

(t+ 1)2
π

2
,

the one-sided Nagumo-type growth condition (9.2.13) holds in Eex1 with

ψ(t) :=
1

(t+ 1)2
, ν ∈ (1, 2), and h(|z|) := π

2
.

Therefore, by Theorem 1.3.1, there is at least a solution u of (1.4.1)

with

−(t+ 1)2 ≤ u(t) ≤ 0, −2t− 2 ≤ u′(t) ≤ 0, ‖u′′‖2 < R, ∀t ≥ 0.

Moreover, from the localization part of the theorem, one can express

some qualitative properties of this solution: it is nonpositive, nonincreasing

and, as C �= 0, this solution is unbounded.

Note that f does not satisfy the usual two-sided Nagumo-type condition.

In fact, if there exist ψ1, h1 ∈ C(R+
0 ,R

+) satisfying

|f(t, x, y, z)| ≤ ψ1(t) h1(|z|), ∀(t, x, y, z) ∈ Eex1,

with
∫ +∞
0

s
h1(s)

ds = +∞, then, in particular,

−f(t, x, y, z) ≤ ψ1(t) h1(|z|), ∀(t, x, y, z) ∈ Eex1.

So, for x = 0, y, z ∈ R, one has

−f(t, 0, y, z) = 10

(t+ 1)
2 |z|ez ≤ ψ1(t) h1(|z|).

Considering ψ1(t) :=
1

(t+1)2
, the following contradiction holds:

+∞ >

∫ +∞

0

s

10ses
ds ≥

∫ +∞

0

s

h1(s)
ds = +∞.
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Chapter 2

General nth-Order Problems

2.1. Introduction

As shown in Chapter 1, nth-Order BVPs on infinite intervals occur in

different areas. For example, fourth-order differential equations can model

the bending of an elastic beam and, in this sense, they are called beam equa-

tions. Other higher order problems are related with the study of radially

symmetric solutions of nonlinear elliptic equations, fluid dynamics, bound-

ary layer theory, semiconductor circuits and soil mechanics, either on the

bounded domains (see [12, 40, 62, 120]) or on the real line ( [3, 50, 86, 87,

100]).

The study of BVPs on bounded domains is vast, but focus on infinite

intervals is scarce. Different methods, such as fixed point theorems, shooting

methods, upper and lower technique, are used to prove the existence of

solutions. However, these solutions are usually bounded.

Lower and upper solutions method, coupled with the Nagumo-type con-

dition, guarantees the existence of at least one solution lying on the strip

defined by lower and upper solutions (see [100]) but, to the best of our

knowledge, there are no results when the nonlinearity satisfies only the

one-sided Nagumo-type condition on unbounded intervals.

This chapter concerns the study of a general Sturm–Liouville-type BVP

composed by the nth-order differential equation defined on the half-line

u(n)(t) = f(t, u(t), u′(t), . . . , u(n−1)(t)), a.e. t ≥ 0, (2.1.1)

19
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and




u(i)(0) = Ai,

u(n−2)(0) + au(n−1)(0) = B,

u(n−1)(+∞) = C,

(2.1.2)

with f : R+
0 × R

n → R an L1-Carathéodory function, a < 0, Ai, B, C ∈R

for i = 0, 1, . . . , n−3, and u(n−1)(+∞) := limt→+∞ u(n−1)(t).

The functional setting will be adapted to the nth-order case, namely, the

weight space, the corresponding norms and the notion of L1-Carathéodory.

As an application of this result, we include a particular case of a fourth-

order problem with a beam equation, referred to in [46].

2.2. Preliminary results

A new admissible space will be needed.

For polynomial functions ωi(t) = 1+ tn−1−i, i = 0, 1, . . . , n−1, let us define

the space

X2 =

{
x ∈ Cn−1(R+

0 ) : lim
t→+∞

x(i)(t)

ωi(t)
∈ R, i = 0, 1, . . . , n− 1

}
,

with the norm ‖x‖X2 = max
{‖x‖0, ‖x′‖1, . . . , ‖x(n−1)‖n−1

}
, where

‖y‖i = sup
t≥0

∣∣∣∣ y(t)ωi(t)

∣∣∣∣ , for i = 0, 1, . . . , n− 1.

It is clear that (X2, ‖ · ‖X2) is a Banach space.

Let γi,Γi ∈ C(R+
0 ), γi(t) ≤ Γi(t), ∀t ≥ 0, i = 0, 1, . . . , n− 2 and define

E2 = {(t, x0, . . . , xn−1) ∈ R
+
0 × R

n : γi(t) ≤ xi ≤ Γi(t), i = 0, 1, . . . , n− 2}.

Now, the one-sided growth condition can be formulated in the

following way.

Definition 2.2.1. A function f : E2 → R is said to satisfy a one-sided

Nagumo-type growth condition in E2 if, for some positive and continuous
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General nth-Order Problems 21

functions ψ, h and some ν > 1, such that
∫ +∞

0

ψ(s)ds < +∞, sup
t≥0

ψ(t)(1 + t)ν < +∞,

∫ +∞

0

s

h(s)
ds = +∞,

(2.2.1)

it verifies either

f(t, x0, . . . , xn−1) ≤ ψ(t)h(‖xn−1‖n−1), ∀(t, x0, . . . , xn−1) ∈ E2

(2.2.2)

or

f(t, x0, . . . , xn−1) ≥ −ψ(t)h(‖xn−1‖n−1), ∀(t, x0, . . . , xn−1) ∈ E2.

(2.2.3)

Now, the a priori estimation is obtained on u(n−1), given by the follow-

ing lemma, where the proof follows the same technique as in Lemma 1.2.3

and, for this reason, is omitted.

Lemma 2.2.2. Let f : R
+
0 × R

n → R be an L1-Carathéodory function

satisfying (2.2.1) and (2.2.2), or (2.2.3), in E2. Then there exists R > 0

(not depending on u) such that every u solution of (2.1.1), (2.1.2) satisfying

γi(t) ≤ u(i)(t) ≤ Γi(t), ∀t ≥ 0, i = 0, 1, . . . , n− 2 (2.2.4)

verifies
∥∥u(n−1)

∥∥
n−1

< R.

The exact solution for the associated linear problem can be obtained by

a Green function.

Lemma 2.2.3. If e ∈ L1(R+
0 ), then the BVP



u(n)(t) + e(t) = 0, a.e. t ≥ 0,

u(i)(0) = Ai, i = 0, 1, . . . , n− 3,

u(n−2)(0) + au(n−1)(0) = B,

u(n−1)(+∞) = C

(2.2.5)

has a unique solution in X2. Moreover, this solution can be expressed as

u(t) = p(t) +

∫ +∞

0

G(t, s)e(s)ds, (2.2.6)
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where

p(t) =

n−3∑
k=0

Ak

k!
tk +

B − aC

(n− 2)!
tn−2 +

C

(n− 1)!
tn−1,

and

G(t, s)

=




n−2∑
k=0

(−1)k

(k + 1)!(n− 2− k)!
sk+1tn−2−k − atn−2

(n− 2)!
, 0 ≤ s ≤ t < +∞,

1

(n− 1)!
tn−1 − a

(n− 2)!
tn−2, 0 ≤ t ≤ s < +∞.

General nth-order definitions of lower and upper functions are presented

next.

Definition 2.2.4. Given a < 0 and Ai, B, C ∈ R, i = 0, 1, . . . , n − 3, a

function α ∈ Cn(R+
0 ) ∩X2 is a lower solution of problem (2.1.1),(2.1.2) if




α(n)(t) ≥ f(t, α(t), α′(t), . . . , α(n−1)(t)), t ≥ 0,

α(i)(0) ≤ Ai,

α(n−2)(0) + aα(n−1)(0) ≤ B,

α(n−1)(+∞) < C.

A function β ∈ Cn(R+
0 ) ∩ X2 is an upper solution if it satisfies the

reversed inequalities.

2.3. Existence and localization result

The existence theorem to the nth-order case follows similar arguments of

Theorem 1.3.1, and the proof is omitted.

Theorem 2.3.1. Let f : R+
0 × R

n → R be an L1-Carathéodory function.

Suppose there are α, β ∈ Cn(R+
0 ) ∩ X2, lower and upper solutions of the

problem (2.1.1),(2.1.2), respectively, such that

α(n−2)(t) ≤ β(n−2)(t), ∀t ≥ 0. (2.3.1)
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If f verifies either the one-sided Nagumo condition (2.2.2) or (2.2.3) in

the set

E∗ = {(t, x0, . . . , xn−1) ∈ R
+
0 ×R

n : α(i)(t) ≤ xi ≤ β(i)(t), i = 0, . . . , n−2},
and

f(t, α(t), . . . , α(i)(t), . . . , un−2, un−1)

≥ f(t, u0, . . . , ui, . . . , un−2, un−1)

≥ f(t, β(t), . . . , β(i)(t), . . . , un−2, un−1), (2.3.2)

for (t, un−2, un−1) fixed when α(i)(t) ≤ ui ≤ β(i)(t), i = 0, . . . , n − 3, then

problem (2.1.1),(2.1.2) has at least one solution u ∈ Cn(R+
0 )∩X2 and there

exists R > 0 such that

α(i)(t) ≤ u(i)(t) ≤ β(i)(t), i = 0, 1, . . . , n− 2 and

‖u(n−1)‖n−1 < R, ∀t ≥ 0.

Remark 2.3.2. Note that by integration on [0, t] of (2.3.1) and Definition

2.2.4, lower and upper solutions and their derivatives (until order n − 3)

are well ordered, that is,

α(i)(t) ≤ β(i)(t), i = 0, 1, . . . , n− 3, ∀t ≥ 0,

and E∗ is well defined.

2.4. Example

Consider the next fourth-order BVP

u(iv)(t) =

−u(t)|u′′′(t)− 6|eu′′′(t) − e−t(6t+ 2− u′′(t))
1 + t2

, t ≥ 0,

u(0)=A, u′(0)=0, u′′(0) + au′′′(0)=0, u′′′(+∞) = C,

(2.4.1)

with A ≥ 0, − 1
3 ≤ a < 0 and 0 < C < 6.

This BVP is a particular case of (2.1.1), (2.1.2) with A0 =A,A1 =0,

B = 0 and

f(t, x, y, z, w) =
−x|w − 6|ew − e−t(6t+ 2− z)

1 + t2
. (2.4.2)
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Moreover, functions α(t) ≡ A and β(t) = t3 + t2 + A are, respectively,

lower and upper solutions for (10.3.1), and Nagumo condition with (2.2.2)

is verified with

ψ(t) =
1

1 + t2
, 1 < ν < 2, h(|w|) ≡ 1,

on

Eex2 =



(t, x, y, z, w) ∈ R

+
0 × R

4 :

A ≤ x ≤ t3 + t2 +A

0 ≤ y ≤ 3t2 + 2t

0 ≤ z ≤ 6t+ 2



.

Also, f verifies (2.3.2) and all assumptions of Theorem 2.3.1 are fulfilled,

therefore, there is at least a nontrivial solution u of (2.4.1) such that

A ≤ u(t) ≤ t3 + t2 +A,

0 ≤ u′(t) ≤ 3t2 + 2t,

0 ≤ u′′(t) ≤ 6t+ 2,

‖u′′′‖3 ≤ R, ∀t ≥ 0.

Remark that this solution is unbounded and, from the location part, it

is nondecreasing and convex.

It is important to stress that the nonlinearity (2.4.2) does not satisfy

the usual two-sided Nagumo-type condition. Therefore, the existent results

in the literature cannot be applied to problem (2.4.1).

In fact, if there exist ψ2, h2 ∈ C(R+
0 ,R

+) satisfying

|f(t, x, y, z, w)| ≤ ψ2(t)h2(|w|), ∀(t, x, y, z, w) ∈ Eex2,

with
∫ +∞
0

s
h2(s)

ds = +∞, then, in particular,

−f(t, x, y, z, w) ≤ ψ2(t)h2(|w|),
and, for t ≥ 0, x = 1, 0 ≤ y ≤ 3t2 + 2t, z = 6t+ 2, and w ∈ R,

−f(t, 1, y, 6t+ 2, w) =
|w − 6|ew
1 + t2

≤ ψ2(t)h2(|w|).

For ψ2(t) =
1

1+t2 , one has |w− 6|ew ≤ h2(|w|) and the following contradic-

tion holds:

+∞ >

∫ +∞

0

s

(s− 6)es
ds ≥

∫ +∞

0

s

h2(s)
ds = +∞.
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Chapter 3

Impulsive Problems on the Half-Line
with Infinite Impulse Moments

3.1. Introduction

This chapter concerns the following boundary value problem composed by

the differential equation

u′′(t) = f (t, u(t), u′(t)) , a.e. t ∈]0,+∞[, t �= tk, (3.1.1)

where f : [0,+∞[×R
2 → R is an L1-Carathéodory function, the two-point

boundary conditions on the half-line

u(0) = A,
(3.1.2)

u′(+∞) = B,

with A,B ∈ R, u′(+∞) := limt→+∞ u′(t), and the impulsive effects

∆u(tk) = I0k(tk, u(tk), u
′(tk)),

∆u′(tk) = I1k(tk, u(tk), u
′(tk)), (3.1.3)

where k ∈ N, ∆u(i)(tk) = u(i)(t+k ) − u(i)(t−k ), Iik ∈ C([0,+∞[×R
2,R),

i = 0, 1, and I0k with tk fixed points such that 0 = t0 < t1 < t2 < · · · <
tk < · · · and limk→+∞ tk = +∞.

Impulsive boundary value problems (IBVP) of different types have been

the object of increasing attention (see, for example, [21, 34, 56, 66, 67, 104,

116, 129, 131]) as they are well adapted to describe real phenomena where

a sudden change of their state occurs at certain moments. These situations

often happen in physics, chemistry, population dynamics, biotechnology,

25
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economics and control theory, among others (see [20, 95] and the references

therein).

In the recent years, these problems had also been considered on

unbounded domains with finite or infinite impulsive instants, applying

different methods to deal with the lack of compactness: variational tech-

niques, lower and upper solutions, coincidence degree theory and fixed point

theorems on adequate Banach spaces (see, for instance, [54, 101, 145]).

Motivated by these works, we consider problem (3.1.1)–(3.1.3). To the

author’s best knowledge, it is the first time where the second-order IBVP

is considered in the half-line with general nonlinearity and with infinite

impulsive effects, on the unknown function and its first derivative, given by

generalized functions. Therefore, this problem can model cases where the

occurrence of infinite jumps depends not only on the instant, but also on

their amplitude and frequency.

The arguments are applied in an adequate Banach space defined with

weighted norms with Green’s functions to obtain an integral operator and

Schauder’s fixed-point theorem. We point out that the equiconvergence at

+∞ and at each impulsive moment is a key point to have a compact oper-

ator. Moreover, the notion of Carathéodory sequences is useful to control

the behavior of the impulsive functions. In this way, no other assumptions,

such as sublinearity, superlinearity or monotone types, are needed.

3.2. Definitions and preliminary results

This section contains some definitions and auxiliary results used along the

chapter.

For u(t±k ) := limt→t±k
u(t), consider the sets

PC ([0,+∞[) =




u : u ∈ C([0,+∞[,R)

continuous for t �= tk, u(tk) = u(t−k )

u(t+k ) exists for k ∈ N



,

PC1 ([0,+∞[) = {u : u′(t) ∈ PC ([0,+∞[)}, and the space

X =

{
x ∈ PC1 ([0,+∞[) : lim

t→+∞
x(t)

1 + t
∈ R, lim

t→+∞x′(t) ∈ R

}
.
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Defining the norm ‖x‖X = max {‖x‖0 , ‖x′‖1}, where

‖ω‖0 := sup
0≤t<+∞

|ω(t)|
1 + t

and ‖ω‖1 := sup
0≤t<+∞

|ω(t)|,

then (X, ‖ · ‖X) is a Banach space.

The function is a solution u of problem (3.1.1)–(3.1.3) if u(t) ∈ X and

verifies conditions (3.1.1)–(3.1.3).

Definition 3.2.1. A sequence (wn)n∈N : [0,+∞[×R
2→R is a Carathéo-

dory sequence if it verifies the following conditions:

(i) for each u, v ∈ R, (u, v) → wn(t, u, v) is continuous for all n ∈ N;

(ii) for each ρ > 0, there are nonnegative constants Ψn,ρ ≥ 0 with∑+∞
n=1 Ψn,ρ < +∞ such that for |u| < ρ(1 + t), t ∈ [0,+∞[, |v| < ρ

we have

|wn(t, u, v)| ≤ ψn,ρ, for every n ∈ N, t ∈ [0,+∞[.

For a linear problem associated with the initial one, we have the

following uniqueness result obtained via Green’s functions by standard

techniques.

Lemma 3.2.2. Let h : [0,+∞[→ R be an L1-Carathéodory function and

I1k : [0,+∞[×R
2 → R be a Carathéodory sequence. Then the problem com-

posed by the differential equation

u′′(t) = h(t), a.e. t ∈ [0,+∞[, (3.2.1)

and conditions (3.1.2), (3.1.3), has a unique solution defined by

u(t) = A+Bt+
∑

0<tk<t<+∞
[I0k(tk, u(tk), u

′(tk))

+ I1k(tk, u(tk), u
′(tk))(t− tk)]

− t
+∞∑
k=1

I1k(tk, u(tk), u
′(tk)) +

∫ +∞

0

G(t, s) h(s) ds, (3.2.2)
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where

G(t, s) =

{−s, 0 ≤ s ≤ t,

−t, t ≤ s < +∞.

The next lemma provides a general criterion for relative compactness

on X.

Lemma 3.2.3 ([3]). A set M ⊂ X is relatively compact if the following

conditions hold:

(i) all functions from M are uniformly bounded;

(ii) all functions from M are equicontinuous on any compact interval of

[0,+∞[;

(iii) all functions from M are equiconvergent at infinity, that is, for any

given ε > 0, there exists a tε > 0 such that∣∣∣∣ x(t)1 + t
− lim

t→+∞
x(t)

1 + t

∣∣∣∣ <ε,
∣∣∣∣x′(t)− lim

t→+∞x′(t)
∣∣∣∣ <ε for all t > tε, x ∈M.

3.3. Main result

In this section, sufficient conditions are given for the solvability of problems

(3.1.1)–(3.1.3).

Theorem 3.3.1. Let f : [0,+∞[×R
2 → R be an L1-Carathéodory func-

tion. If I0k, I1k : [0,+∞[×R
2 → R are Carathéodory sequences with non-

negative constants ϕk,ρ ≥ 0, ψk,ρ ≥ 0 with
∑+∞

k=1 ϕk,ρ < +∞,
∑+∞

k=1 ψk,ρ <

+∞, such that

|I0k(tk, x, y)| ≤ ϕk,ρ, |I1k(tk, x, y)| ≤ ψk,ρ, (3.3.1)

for |x| < ρ(1 + t), t ∈ [0,+∞[, |y| < ρ, then problem (3.1.1)−(3.1.3) has at

least a solution u ∈ X.

Proof. Define the operator T : X → X

Tu(t) = A+Bt+
∑

0<tk<t<+∞
[I0k(tk, u(tk), u

′(tk))

+ I1k(tk, u(tk), u
′(tk))(t− tk)]

− t

+∞∑
k=1

I1k(tk, u(tk), u
′(tk)) +

∫ +∞

0

G(t, s)f(s, u(s), u′(s))ds.
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By Lemma 3.2.2, a fixed point of T is a solution of problem (3.1.1)–(3.1.3).

The proof that operator T has a fixed point will follow several steps.

Step 1. T is well defined and continuous on X .

As f is an L1-Carathéodory function, Tu ∈ PC1([0,+∞[). Moreover,

by the Lebesgue Dominated Convergence Theorem,

lim
t→+∞

(Tu)(t)

1 + t
= lim

t→+∞
A+Bt

1 + t

+
1

1 + t

∑
0<tk<t<+∞

[I0k(tk, u(tk), u
′(tk))

+ I1k(tk, u(tk), u
′(tk))(t− tk)]

− t

1 + t

+∞∑
k=1

I1k(tk, u(tk), u
′(tk))

+

∫ +∞

0

lim
t→+∞

G(t, s)

1 + t
f(s, u(s), u′(s))ds

= B +
∑

0<tk<t<+∞
I1k(tk, u(tk), u

′(tk))

−
+∞∑
k=1

I1k(tk, u(tk), u
′(tk))−

∫ +∞

0

f(s, u(s), u′(s))ds

≤ B + 2

+∞∑
k=1

ψk,ρ1 +

∫ +∞

0

ϕρ(s)ds < +∞,

and

lim
t→+∞(Tu)′(t) = B +

+∞∑
k=1

I1k(tk, u(tk), u
′(tk))−

+∞∑
k=1

I1k(tk, u(tk), u
′(tk))

− lim
t→+∞

∫ +∞

t

f (s, u(s), u′(s)) ds

= B < +∞.

Therefore, Tu ∈ X .
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Step 2. TD is uniformly bounded for D any bounded set on X.

Let D ⊂ X be a bounded subset on X . So, there exists ρ1 > 0 such that

‖u‖X < ρ1, ∀u ∈ D. (3.3.2)

For u ∈ D and M(s) := sup0≤t<+∞
|G(t,s)|
1+t , by (3.3.1) and

Definition 1.2.1,

‖Tu‖0 = sup
0≤t<+∞

|Tu(t)|
1 + t

≤ sup
0≤t<+∞

(
|A+Bt|
1 + t

+
1

1 + t

∑
0<tk<t<+∞

|I0k(tk, u(tk), u′(tk))

+ I1k(tk, u(tk), u
′(tk))(t− tk)|+ t

1 + t

+∞∑
k=1

|I1k(tk, u(tk), u′(tk))|
)

+

∫ +∞

0

sup
0≤t<+∞

|G(t, s)|
1 + t

|f(s, u(s), u′(s))|ds

≤ max{|A|, |B|}+ sup
0≤t<+∞

1

1 + t

( ∑
0<tk<t<+∞

[ϕk,ρ1 + ψk,ρ1 t]

)

+ sup
0≤t<+∞

t

1 + t

+∞∑
k=1

ψk,ρ1 +

∫ +∞

0

M(s)ϕρ1 (s)ds

≤ max{|A|, |B|}+
+∞∑
k=1

ϕk,ρ1 + 2
+∞∑
k=1

ψk,ρ1

+

∫ +∞

0

M(s)ϕρ1(s)ds < +∞,

and

‖(Tu)′‖1 = sup
0≤t<+∞

∣∣(Tu(t))′∣∣

≤ |B|+
∑

0<tk<t<+∞
|I1k(tk, u(tk), u′(tk))|
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+

+∞∑
k=1

|I1k(tk, u(tk), u′(tk))|+
∫ +∞

t

|f (s, u(s), u′(s))| ds

≤ |B|+ 2
+∞∑
k=1

ψk,ρ1 +

∫ +∞

0

ϕρ1 (s)ds < +∞.

Therefore, ‖Tu‖X := max{‖Tu‖0, ‖(Tu)′‖1} < +∞, and TB is uni-

formly bounded in X .

Step 3. TD is equicontinuous on each finite interval ]tk, tk+1], for k =

0, 1, 2, . . . .

Consider an interval J ⊆]tk, tk+1] and τ1,τ2 ∈ J such that τ1 ≤ τ2. For

u ∈ D, the following limits hold uniformly as τ1 → τ2 :

lim
τ1→τ2

∣∣∣∣Tu(τ1)1 + τ1
− Tu(τ2)

1 + τ2

∣∣∣∣

≤ lim
τ1→τ2

∣∣∣∣A+Bτ1
1 + τ1

− A+Bτ2
1 + τ2

∣∣∣∣+
∣∣∣∣∣

1

1 + τ1

∑
0<tk<τ1

[I0k(tk, u(tk), u
′(tk)

+ I1k(tk, u(tk), u
′(tk))(τ1 − tk)]− τ1

1 + τ1

+∞∑
k=1

I1k(tk, u(tk), u
′(tk))

− 1

1 + τ2

∑
0<tk<τ2

[I0k(tk, u(tk), u
′(tk)) + I1k(tk, u(tk), u

′(tk)) (τ2 − tk)]

+
τ2

1 + τ2

+∞∑
k=1

I1k(tk, u(tk), u
′(tk))

∣∣∣∣∣+
∫ +∞

0

∣∣∣∣G(τ1, s)1 + τ1
− G(τ2, s)

1 + τ2

∣∣∣∣
× |f(s, u(s), u′(s))|ds = 0

and

lim
τ1→τ2

|(Tu)′(τ1)− (Tu)′(τ2)|

≤ lim
τ1→τ2

∣∣∣∣∣
∑

0<tk<τ1

I1k(tk, u(tk), u
′(tk))−

∑
0<tk<τ2

I1k(tk, u(tk), u
′(tk))

∣∣∣∣∣
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+

∣∣∣∣
∫ +∞

τ1

f (s, u(s), u′(s)) ds−
∫ +∞

τ2

f(s, u(s), u′(s))ds
∣∣∣∣

≤ lim
τ1→τ2

∑
τ1<tk<τ2

|I1k(tk, u(tk), u′(tk))|+
∫ τ2

τ1

|f (s, u(s), u′(s))| ds

≤ lim
τ1→τ2

∑
τ1<tk<τ2

ψk,ρ1 +

∫ τ2

τ1

ϕρ1 (s)ds = 0.

So, TD is equicontinuous on J ⊆]tk, tk+1].

Step 4. TD is equiconvergent at t = t+i , i = 0, 1, 2, . . . , and at infinity.

In fact,

∣∣∣∣∣
Tu(t)

1 + t
− lim

t→t+i

Tu(t)

1 + t

∣∣∣∣∣

≤
∣∣∣∣A+Bt

1 + t
− A+Bti

1 + ti

∣∣∣∣+
∣∣∣∣∣

1

1 + t

∑
0<tk<t<+∞

[I0k(tk, u(tk), u
′(tk))

+ I1k(tk, u(tk), u
′(tk)) (t− tk)]− t

1 + t

+∞∑
k=1

I1k(tk, u(tk), u
′(tk))

− 1

1 + ti

∑
0<tk<t+i

[I0k(tk, u(tk), u
′(tk)) + I1k(tk, u(tk), u

′(tk)) (ti − tk)]

+
ti

1 + ti

+∞∑
k=1

I1k(tk, u(tk), u
′(tk))

∣∣∣∣∣+
∫ +∞

0

∣∣∣∣G(t, s)1 + t
− G(ti, s)

1 + ti

∣∣∣∣
×ϕρ1(s)ds −→ 0, uniformly as t→ t+i ,

and

∣∣∣∣∣(Tu)′(t)− lim
t→t+i

(Tu)′(t)

∣∣∣∣∣

≤
∣∣∣∣∣∣

∑
0<tk<t<+∞

I1k(tk, u(tk), u
′(tk))−

∑
0<tk<t+i

I1k(tk, u(tk), u
′(tk))

∣∣∣∣∣∣
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+

∣∣∣∣
∫ +∞

ti

|f (s, u(s), u′(s))| −
∫ +∞

t

|f (s, u(s), u′(s))| ds
∣∣∣∣

≤
∣∣∣∣∣∣

∑
0<tk<t<+∞

I1k(tk, u(tk), u
′(tk))−

∑
0<tk<t+i

I1k(tk, u(tk), u
′(tk))

∣∣∣∣∣∣

+

∫ t

ti

ϕρ1(s)ds −→ 0, uniformly as t→ t+i .

Therefore, TD is equiconvergent at t = t+i , i = 0, 1, 2, . . ..

Moreover, as G(t,s)
1+t is bounded in [0,+∞[ and f is bounded on D by an

L1-function, by Lebesgue’s Dominated Convergence Theorem, we have

∣∣∣∣Tu(t)1 + t
− lim

t→+∞
Tu(t)

1 + t

∣∣∣∣

=

∣∣∣∣∣
(
A+ Bt

1 + t
+

1

1 + t

∑
0<tk<t<+∞

[I0k(tk, u(tk), u
′(tk))

+ I1k(tk, u(tk), u
′(tk))(t− tk)]− t

1 + t

+∞∑
k=1

I1k(tk, u(tk), u
′(tk))

+
1

1 + t

∫ +∞

0

G(t, s)f(s, u(s), u′(s))ds
)
−
(
B + lim

t→+∞
1

1 + t

×
∑

0<tk<t<+∞
[I0k(tk, u(tk), u

′(tk)) + I1k(tk, u(tk), u
′(tk))(t− tk)]

−
+∞∑
k=1

I1k(tk, u(tk), u
′(tk)) +

∫ +∞

0

lim
t→+∞

G(t, s)

1 + t
f(s, u(s), u′(s))ds

)∣∣∣∣∣

≤
∣∣∣∣A+Bt

1 + t
−B

∣∣∣∣+
∣∣∣∣∣

1

1 + t

∑
0<tk<t<+∞

[I0k(tk, u(tk), u
′(tk))

+ I1k(tk, u(tk), u
′(tk))(t − tk)]−

∑
0<tk<t<+∞

I1k(tk, u(tk), u
′(tk))

∣∣∣∣∣
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+

∣∣∣∣∣
+∞∑
k=1

I1k(tk, u(tk), u
′(tk))− t

1 + t

+∞∑
k=1

I1k(tk, u(tk), u
′(tk))

∣∣∣∣∣

+

∫ +∞

0

∣∣∣∣G(t, s)1 + t
− lim

t→+∞
G(t, s)

1 + t

∣∣∣∣ϕρ1 (s)ds.

As each modulus tends to 0, uniformly on u ∈ D, as t→ +∞, then

∣∣∣∣Tu(t)1 + t
− lim

t→+∞
Tu(t)

1 + t

∣∣∣∣ −→ 0, uniformly on u ∈ D, as t→ +∞.

By similar arguments,

∣∣∣∣(Tu)′(t)− lim
t→+∞(Tu)′(t)

∣∣∣∣

=

∣∣∣∣∣
(
B +

∑
0<tk<t<+∞

I1k(tk, u(tk), u
′(tk))−

+∞∑
k=1

I1k(tk, u(tk), u
′(tk))

−
∫ +∞

t

f(s, u(s), u′(s))ds
)
−
(
B + lim

t→+∞

∫ +∞

t

f(s, u(s), u′(s))ds
)∣∣∣∣

≤
∣∣∣∣∣

∑
0<tk<t<+∞

I1k(tk, u(tk), u
′(tk))−

+∞∑
k=1

I1k(tk, u(tk), u
′(tk))

∣∣∣∣∣

+

∫ +∞

t

|f(s, u(s), u′(s))| ds

≤
∣∣∣∣∣

∑
0<tk<t<+∞

I1k(tk, u(tk), u
′(tk))−

+∞∑
k=1

I1k(tk, u(tk), u
′(tk))

∣∣∣∣∣

+

∫ +∞

t

ϕρ1(s)ds −→ 0, uniformly on u ∈ D as t→ +∞,

that is, TD is equiconvergent at +∞.

So, by Lemma 3.2.3 adapted to the impulsive case, TD is relatively

compact and T is completely continuous.

Step 5. TΩ ⊂ Ω, for Ω is a nonempty, bounded, closed and convex subset

of X.
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Consider a subset Ω ⊂ X defined as Ω := {u ∈ X : ‖u‖X ≤ ρ2} with

ρ2 := max

{
ρ1,max{|A|, |B|}+

+∞∑
k=1

(ϕk,ρ1 + 2ψk,ρ1)

+

∫ +∞

0

M1(s)ϕρ1 (s)ds

}
,

where ρ1 is given by (3.3.2) and

M1(s) := max

{
1, sup

0≤t<+∞

|G(t, s)|
1 + t

}
.

Remark that 0 ≤M1(s) ≤ 1, for s ∈ [0,+∞[, and, therefore,

∫ +∞

0

M1(s)ϕρ1(s)ds ≤
∫ +∞

0

ϕρ1(s)ds < +∞.

For u ∈ Ω,

‖Tu‖0 = sup
0≤t<+∞

|Tu(t)|
1 + t

≤ sup
0≤t<+∞

|A+Bt|
1 + t

+
1

1 + t

∑
0<tk<t<+∞

|I0k(tk, u(tk), u′(tk))

+ I1k(tk, u(tk), u
′(tk))(t− tk)|+ t

1 + t

+∞∑
k=1

|I1k(tk, u(tk), u′(tk))|

+

∫ +∞

0

sup
0≤t<+∞

|G(t, s)|
1 + t

|f (s, u(s), u′(s))| ds

≤ max {|A|, |B|}+ sup
0≤t<+∞

1

1 + t

(
+∞∑
k=1

ϕk,ρ1 + ψk,ρ1 (t− tk)

)

+ sup
0≤t<+∞

t

1 + t

+∞∑
k=1

ψk,ρ1 +

∫ +∞

0

M1(s) ϕρ1(s)ds

≤ max {|A|, |B|}+
+∞∑
k=1

ϕk,ρ1 + 2

+∞∑
k=1

ψk,ρ1 +

∫ +∞

0

M1(s) ϕρ1 (s)ds

< ρ2,
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and

‖(Tu)′‖1 = sup
0≤t<+∞

∣∣(Tu(t))′∣∣

≤ |B|+
∑

0<tk<t<+∞
|I1k(tk, u(tk), u′(tk))|

+

+∞∑
k=1

|I1k(tk, u(tk), u′(tk))|+
∫ +∞

t

|f (s, u(s), u′(s))| ds

≤ |B|+ 2

+∞∑
k=1

ψk,ρ1 +

∫ +∞

0

ϕρ1 (s)ds < ρ2.

Therefore, ‖Tu‖X < ρ2 and TΩ ⊂ Ω.

Then by Schauder’s fixed-point theorem, T has at least one fixed point

u ∈ X . So, the problem (9.1.1)–(3.1.3) has a solution u ∈ X .

Moreover, u is bounded if B = 0, and unbounded if B �= 0. �

3.4. Example

Consider the second-order two-point impulsive problem composed by the

fully differential equation in the half-line

u′′(t) =
(1 + e−t)u(t) + (u′(t))3

1 + t4
, a.e. t > 0, (3.4.1)

the boundary conditions

u(0) = 1, u′(+∞) =
1

2
, (3.4.2)

and the impulsive effects

∆u(k) =
1

k3
1[

(u(k))2 + 1
] [

(u′(k))2 + 1
] , (3.4.3)

∆u′(k) =
|u(k)|+ |u′(k)|

kα
,

with k = 1, 2, 3, . . . , α ∈ R, α > 2.
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We point out that problem (3.4.1)–(3.4.3) is a particular case of (3.1.1)–

(3.1.3) with

f(t, x, y) =
(1 + e−t)x+ y3

1 + t4
,

A = 1, B =
1

2
,

tk = k, k ∈ N,

I0k(tk, x, y) =
1

k2
1

(x2 + 1)(y2 + 1)
,

I1k(tk, x, y) =
|x|+ |y|
kα

.

As f is an L1-Carathéodory function in [0,+∞[, with

ϕρ(t) :=
2ρ(1 + t) + ρ3

1 + t4
,

for |x| < ρ(1 + t) and |y| < ρ, the function

I0k(k, x, y) :=
1

k3 (x2 + 1) (y2 + 1)

is a Carathéodory sequence for every x, y ∈ R, with Ψ0
k,ρ := 1

k3 , and

I1k(k, x, y) :=
|x|+ |y|
kα

is also a Carathéodory sequence for ρ > 0 such that |x| < ρ(1 + k) and

|y| < ρ, with Ψ1
k,ρ := ρ(k+2)

kα (α > 2).

Therefore, by Theorem 3.3.1, problem (3.4.1)–(3.4.3) has at least an

unbounded solution.
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Part II

Homoclinic Solutions
and Lidstone Problems

39
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Introduction

Qualitative analysis of differential equations has had an increasingly

important role, especially the analytic study of their asymptotic behavior

and stability.

A homoclinic orbit is a trajectory of a flow of a dynamical system which

joins a saddle equilibrium point to itself. If a path in the phase space of

a dynamical system joins two different equilibrium points, it receives the

name of a heteroclinic orbit.

Homoclinic trajectory, heteroclinic connection and heteroclinic cycle

The interest in these trajectories goes far beyond mathematics itself as

homoclinic and heteroclinic solutions appear in a variety of mathematical

models born in mechanics, chemistry, or biology.

The history of these homoclinic and heteroclinic solutions is already

long. In addition to the phase portrait analysis, whose applicability is

restricted to autonomous differential equations of second order, the study

of these solutions started with a geometric approach. Poincaré, Melnikov,

and Smale were some of the first names to cover this topic in the nine-

teenth century. At the end of the last century, a more functional and ana-

lytical approach gave new tools like variational methods and the theory of

41
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critical points. It is worth highlighting Ambrosetti, Ekeland and Rabinowitz

(see [44] and references therein).

This part is separated into three chapters, and each one provides the

existence of homoclinic solutions for higher order nonlinear BVPs, not nec-

essarily autonomous.

Chapter 4 will be addressed to problems with second-order equations.

Three different applications will be presented to illustrate the main results

of the chapter: a problem with discontinuity in time, an application to a

Duffing equation, and another over a forced cantilever beam equation with

damping.

Chapter 5 confirms the existence of homoclinic solutions to some

fourth-order BVPs. A generic example and an application to a

Bernoulli–Euler–v. Karman BVP complete the chapter.

Finally, Chapter 6 focuses the attention on Lidstone’s BVPs, putting

a link between the solutions of Lidstone BVPs in the whole real line and

homoclinic solutions. The results of this chapter will be applied to an infinite

beam resting on granular foundations with moving loads.
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Chapter 4

Homoclinic Solutions
for Second-Order Problems

4.1. Introduction

The existence of homoclinic solutions for autonomous and nonautonomous

differential equations and Hamiltonian systems is an important subject in

qualitative theory. It can be considered as a special case of the so-called

convergent solutions, i.e., solutions defined on the half-line (or the real line),

and having a finite limit to +∞ (respectively ±∞), see [16].

In this chapter, we consider the second-order discontinuous equation in

the real line,

u′′(t)− ku(t) = f(t, u(t), u′(t)), a.e. t ∈ R, (4.1.1)

with k > 0 and f : R
3 → R an L1-Carathéodory function. The main

purpose is to find homoclinic orbits to 0, that is, nontrivial solutions of

(4.1.1) such that

u(±∞) := lim
t→±∞u(t) = 0, u′(±∞) := lim

t→±∞u
′(t) = 0. (4.1.2)

Several works prove the existence of homoclinic and heteroclinic

solutions for small perturbations (see [48, 156]), or deal with some

superquadratic or subquadratic conditions at infinity (see [135, 140]) or

with asymptotically quadratic conditions (see [55]). Another point of view

is to obtain a homoclinic orbit as a limit of 2kT -periodic solutions of a cer-

tain sequence of periodic boundary value problems (see [10, 74, 85]). The

main arguments used in this method apply variational methods, upper and

lower solutions and fixed point theory (see [17, 28, 138, 146]).

43
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Equation (4.1.1) arises in several real phenomena, for instance, as the

study of traveling wave fronts for parabolic reaction–diffusion equations

with a local reaction term, and generalizes several classical equations such

as Duffing-type equations (see [76, 130]) or Liénard-like systems (see [154]).

In this chapter, we combine the method of lower and upper solutions,

not necessarily ordered, as suggested in [75, 113]. Moreover, our result

improves the literature as the existence and localization of homoclinic solu-

tions is proved without extra assumptions on the growth, sign or asymptotic

behavior of the nonlinear part.

4.2. Preliminaries

Define the space

XH2 =

{
x ∈ C1(R) : lim

|t|→+∞
x(t) ∈ R

}
,

with the norm ‖x‖XH2 = max{‖x‖∞, ‖x′‖∞}, where ‖y‖∞ := supt∈R |y(t)|.
In this way, (XH2, ‖ · ‖XH2) is a Banach space (see [149, 153]).

An important property of functions on space XH2 is shown in the

following lemma.

Lemma 4.2.1. Let x ∈ Cn(R), n ∈ N, n ≥ 1. If x(+∞) = l ∈ R then

x(n)(+∞) = 0, for n ≥ 1.

Proof. In the case where x(+∞) = l, for any δ0 > 0, there exists T0 > 0

such that for t > T0, one has |x(t)− l| < δ0.

For n = 1, take h > 0, δ0 =
h δ1
2 and t > T1, for some T1 > 0. Therefore,

for t > max{T0, T1}, one has

|x′(t)| = lim
h→0

|x(t+ h)− x(t)|
h

= lim
h→0

|x(t + h)− l + l − x(t)|
h

≤ lim
h→0

|x(t+ h)− l|+ |x(t)− l|
h

≤ lim
h→0

h δ1
2 + h δ1

2

h
= δ1,

for any δ1 > 0, that is, x′(+∞) = 0.

For n > 1, the proof follows by the mathematical induction.

The case x(−∞) = l can be proved by using the same technique. �

The following result will play an important role in the proof of the main

result, giving a solution of some linear second-order problem via Green’s

functions.
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Lemma 4.2.2 ([3]). If h ∈ L1(R), then problem{
u′′(t)− ku(t) = h(t), a.e. t ∈ R,

u(±∞) = u′(±∞) = 0
(4.2.1)

has a unique solution in XH2. Moreover, this solution can be expressed as

u(t) =

∫ +∞

−∞
G(t, s)h(s)ds, (4.2.2)

where

G(t, s) = − 1

2
√
k
e−

√
k|s−t|. (4.2.3)

Proof. The homogeneous solution of the linear equation is given by

u(t) = c1e
√
kt + c2e

−√
kt, for c1, c2 ∈ R.

As the null function is the only solution of the homogeneous problem asso-

ciated to (4.2.1), its solution is given by

u(t) = − 1

2
√
k

∫ +∞

−∞
e−

√
k|s−t|h(s)ds.

For G(t, s) := − 1
2e

−√
k|s−t|, one has

u(t) =

∫ +∞

−∞
G(t, s)h(s)ds.

�

Some trivial properties can easily be proved for Green’s functions.

Remark 4.2.3. The above Green’s functions verify the following

properties:

• G(t, s) and ∂G(t,s)
∂t are continuous,

• lim|t|→+∞G(t, s) = 0,

• lim|t|→+∞
∂G(t,s)

∂t = 0.

To deal with the lack of compactness of set XH2, next compactness

criterion plays a key role, following arguments suggested in [51, 128, 149].

Theorem 4.2.4. A set M ⊂ XH2 is compact if the following conditions

hold:

(i) both {t→ x(t) : x ∈M} and {t→ x′(t) : x ∈M} are uniformly

bounded;

 H
ig

he
r 

O
rd

er
 B

ou
nd

ar
y 

V
al

ue
 P

ro
bl

em
s 

on
 U

nb
ou

nd
ed

 D
om

ai
ns

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

T
IO

N
A

L
 U

N
IV

E
R

SI
T

Y
 O

F 
SI

N
G

A
PO

R
E

 o
n 

10
/2

9/
17

. F
or

 p
er

so
na

l u
se

 o
nl

y.



August 3, 2017 10:38 Higher Order Boundary Value Problems. . . – 9in x 6in spi-b2901-9x6 b2901-ch04 page 46

46 Higher Order Boundary Value Problems on Unbounded Domains

(ii) both {t→ x(t) : x ∈M} and {t→ x′(t) : x ∈M} are equicontinuous

in any compact interval of R;

(iii) both {t→ x(t) : x ∈M} and {t→ x′(t) : x ∈M} are equiconvergent

at ±∞, that is, given ε > 0, there exists T (ε) > 0 such that

|f(t)− f(±∞)| < ε and |f ′(t)− f ′(±∞)| < ε for all |t| > T (ε) and

f ∈M .

Proof. In order to prove that the subset M is relatively compact in XH2,

as we are in a Banach space, we only need to show thatM is totally compact

or bounded in XH2, that is, for ε > 0, M has a finite ε-net.

For any given ε > 0, by (i)–(iii), there exist constants A > 0, δ > 0, and

an integer N > 0, such that

• |x(t1) − x(t2)| ≤ ε
3 , |x′(t1) − x′(t2)| ≤ ε

3 with t1, t2 < −N or t1, t2 > N

and x ∈M, ‖x‖XH2
≤ A;

• |x(t1) − x(t2)| ≤ ε
3 , |x′(t1) − x′(t2)| ≤ ε

3 with t1, t2 ∈ [−N,N ] and

|t1 − t2| < δ, x ∈ XH2.

Define X[−N,N ] =
{
x|[−N,N ] : x ∈ XH2

}
. For x ∈ X[−N,N ], define

‖x‖N = max

{
sup

t∈[−N,N ]

|x(t)| , sup
t∈[−N,N ]

|x′(t)|
}
.

It can be proved that X[−N,N ] is a Banach space with the

norm ‖·‖N .

Let M[−N,N ] = {t→ x(t), t ∈ [−N,N ] : x ∈M}. Then M[−N,N ] is a

subset of X[−N,N ]. By the Arzèla–Ascoli theorem, M[−N,N ] is relatively

compact in X[−N,N ]. Thus, there exist x1, x2, . . . , xk ∈ M such that

‖x− xi‖N ≤ ε
3 , for any x ∈M and i = 1, 2, . . . , k.

Therefore, for x ∈M , we find that for j = 0, 1,

‖x(j) − x
(j)
i ‖X = max

{
sup
t∈R

|x(j)(t)− x
(j)
i (t)|

}

= max




sup
t≤−N

|x(j)(t)− x
(j)
i (t)|

sup
|t|≤N

|x(j)(t)− x
(j)
i (t)|

sup
t≥N

|x(j)(t)− x
(j)
i (t)|




≤ max

{
sup

t≤−N
|x(j)(t)− x

(j)
i (t)|, ε

3
, sup
t≥N

|x(j)(t)− x
(j)
i (t)|

}
.
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Moreover,

sup
t≤−N

|x(t)− xi(t)| ≤ sup
t≤−N

|x(t) − x(−N)|+ |x(−N)− xi(−N)|

+ sup
t≤−N

|xi(−N)− xi(t)| ≤ ε

3
+
ε

3
+
ε

3
= ε.

Similarly, we can prove that all sup|t|>N |x(j)(t)− x
(j)
i (t)| ≤ ε.

So, for any ε > 0, M has a finite ε-net {Ux1 , Ux2, . . . , Uxk
}, that is, M

is totally bounded in XH2. Hence, M is relatively compact in XH2. �

To provide the localization part of the main result, lower and upper

solutions technique is used, based on the following definition.

Definition 4.2.5. A function α ∈ XH2 is said to be a lower solution of

problem (4.1.1),(4.1.2) if

α′′(t)− k α(t) ≥ f(t, α(t), α′(t)), a.e. t ∈ R, and α(±∞) ≤ 0.

A function β ∈ XH2 is an upper solution if the reversed inequalities

hold.

Usually, in the literature, these functions have some order relation: well

ordered or reversed ordered. However, next definition can be applied to α(t)

and β(t) with no definite order.

Definition 4.2.6. Functions α, β ∈ XH2 are a pair of lower and upper

solutions of problem (4.1.1),(4.1.2), respectively, if



α′′(t)− k α(t) ≥ f(t, α(t), α′(t)), t ∈ R,

β′′(t)− k β(t) ≤ f(t, β(t), β′(t)), t ∈ R,

α(±∞) ≤ 0, β(±∞) ≥ 0,

where α(t) = α(t)− supt∈R |α(t) − β(t)| .

4.3. Existence and localization of homoclinics

First result requires that lower and upper solutions are well ordered to

guarantee the existence of homoclinic solutions of problem (4.1.1),(4.1.2).

Theorem 4.3.1. Let f : R
3 → R be an L1-Carathéodory function

and α, β ∈ XH2 be lower and upper solutions of problem (4.1.1),(4.1.2),
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respectively, with

α(t) ≤ β(t), ∀t ∈ R. (4.3.1)

If f(t, x, y) is monotone in y (nonincreasing or nondecreasing) for

(t, x) ∈ R
2 fixed, then problem (4.1.1),(4.1.2) has a homoclinic solution

u ∈ XH2 such that α(t) ≤ u(t) ≤ β(t), ∀t ∈ R.

Proof. Consider the modified equation

u′′(t)− ku(t) = f(t, δ(t, u(t)), u′(t)), a.e. t ∈ R, (4.3.2)

where function δ : R2 → R is given by

δ(t, u(t)) =



β(t), u(t) > β(t),

u(t), α(t) ≤ u(t) ≤ β(t),

α(t), u(t) < α(t).

Step 1. The modified problem (4.3.2),(4.1.2) has a solution.

Define the operator T : XH2 → XH2 by

Tu(t) =

∫ +∞

−∞
G(t, s)Fu(s)ds,

where

Fu(t) = f(t, δ(t, u(t)), u′(t)),

and G(t, s) is the Green Function given by Lemma 4.2.2. So, it is enough

to prove that T has a fixed point, which is done in the following claims.

Claim 1.1. T : XH2 → XH2 is well defined.

Let u ∈ XH2. If f is an L1-Carathéodory function, then Tu is continuous.

For r0 > 0 such that

r0 > max {‖α‖∞, ‖β‖∞}, (4.3.3)

there exists ϕr0 with |f(t, x, y)| ≤ ϕr0
(t), for supt∈R {|x(t)|, |y(t)|} < r0

and a.e. t ∈ R. As Tu and (Tu)′ are continuous, passing to the limit, by the

Lebesgue Dominated Theorem and Remark 4.2.3,

lim
|t|→∞

(Tu)(t) =

∫ +∞

−∞
lim

|t|→∞
G(t, s)Fu(s)ds = 0,

lim
|t|→∞

(Tu)′(t) =
∫ +∞

−∞
lim

|t|→∞
∂G(t, s)

∂t
Fu(s)ds = 0,

and, therefore, Tu ∈ XH2.
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Claim 1.2. T is compact.

Let

M(s) := max

{
sup
t∈R

|G(t, s)|, sup
t∈R

∣∣∣∣∂G(t, s)∂t

∣∣∣∣
}
.

Consider a bounded set B ⊂ XH2 defined by

B := {u ∈ XH2 : ‖u‖XH2 < r1} ,

for some r1 > 0, such that r1 > max
{
r0,
∫ +∞
−∞ M(s)ϕr0(s)ds

}
with r0 given

by (4.3.3). Then, for t ∈ R,

|Tu(t)| ≤
∫ +∞

−∞
M(s)|Fu(s)|ds ≤

∫ +∞

−∞
M(s)ϕr(s)ds < r1,

and analogously |(Tu)′(t)| < r1. Therefore, TB is bounded and TB⊂B.
For a > 0 and t1, t2 ∈ [−a, a], because of the continuity of the Green’s

functions and its derivative, one has

lim
t1→t2

|Tu(t1)− Tu(t2)|

≤
∫ +∞

−∞
lim

t1→t2
|G(t1, s)−G(t2, s)||Fu(s)|ds = 0,

lim
t1→t2

|(Tu)′(t1)− (Tu)′(t2)|

≤
∫ +∞

−∞
lim

t1→t2

∣∣∣∣∂G∂t (t1, s)−
∂G

∂t
(t2, s)

∣∣∣∣ |Fu(s)|ds = 0.

So, TB is equicontinuous.

To prove that TB is equiconvergent at ±∞, note that

∣∣∣∣Tu(t)− lim
t→±∞(Tu(t))

∣∣∣∣ ≤
∫ +∞

−∞
|G(t, s)||Fu(s)|ds

≤
∫ +∞

−∞
|G(t, s)|ϕr(s)ds −→ 0, t→ ±∞,

∣∣∣∣(Tu)′(t)− lim
t→±∞(Tu)′(t)

∣∣∣∣ ≤
∫ +∞

−∞

∣∣∣∣∂G∂t (t, s)
∣∣∣∣ |Fu(s)|ds

≤
∫ +∞

−∞

∣∣∣∣∂G∂t (t, s)
∣∣∣∣ϕr(s)ds −→ 0, t→ ±∞.
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Therefore, by Theorem 4.2.4, T is compact, and by Theorem 1.2.6, T has

at least one fixed point u ∈ XH2.

Step 2. Every solution of the modified problem (4.3.2),(4.1.2) is a solution

of the initial problem (4.1.1),(4.1.2).

Let u be a solution of problem (4.3.2),(4.1.2). In order to obtain this step,

it is sufficient to prove that

α(t) ≤ u(t) ≤ β(t), ∀t ∈ R.

Suppose, by contradiction, that there exists t ∈ R such that α(t) > u(t)

and define

inf
t∈R

(u(t)− α(t)) < 0.

This infimum cannot be attained at ±∞. Otherwise, by (4.1.2) and Defini-

tion 4.2.5, this contradiction holds:

0 > u(±∞)− α(±∞) ≥ 0.

So, there is t∗ ∈ R such that

min
t∈R

(u(t)− α(t)) = u(t∗)− α(t∗) < 0.

Then there exists an interval [t−, t+] such that t∗ ∈ [t−, t+] and

u(t)− α(t) < 0, u′′(t) − α′′(t) ≥ 0 a.e. t ∈ [t−, t+]. Also, u′(t) − α′(t) ≤ 0,

for t ∈ [t−, t∗], and u′(t)− α′(t) ≥ 0 for t ∈ [t∗, t+].

If f(t, x, y) is nonincreasing in y, for t ∈ [t∗, t+] then the following contra-

diction is achieved

0 ≤
∫ t

t∗
u′′(s)− α′′(s)ds =

∫ t

t∗
[f(s, δ(s, u(s)), u′(s)) + ku(s)− α′′(s)]ds

≤
∫ t

t∗
[f(s, α(s), α′(s)) + ku(s)− α′′(s)]ds

≤ k

∫ t

t∗
u(s)− α(s)ds < 0.

By the previous arguments, a similar contradiction holds if f is nonde-

creasing, but with an integration on [t−, t∗] ⊂ [t−, t+].
So, α(t) ≤ u(t), ∀t ∈ R. In a similar way, it can be proved that β(t) ≥

u(t), ∀t ∈ R. �
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If the nonlinearity f verifies an anti-symmetric-type property, there is

also homoclinic solutions for the symmetric equation

−u′′(t) + ku(t) = f(t, u(t), u′(t)), t ∈ R. (4.3.4)

Theorem 4.3.2. Let α, β ∈ XH2 be lower and upper solutions of prob-

lem (4.1.1),(4.1.2), respectively, verifying (4.3.1). If f : R3 → R is an L1–

Carathéodory function, with f(t, x, y) monotone in y, for (t, x) ∈ R
2 fixed,

satisfying

f (t,−x,−y) = −f (t, x, y) , ∀(t, x, y) ∈ R
3, (4.3.5)

then there is a pair of homoclinic solutions (u,−u) ∈ X2
H2 such that u

is a solution of problem (4.1.1),(4.1.2) and −u solution of (4.3.4), (4.1.2),

verifying

α(t) ≤ u(t) ≤ β(t),

−β(t) ≤ −u(t) ≤ −α(t), ∀t ∈ R.

Proof. Let α ∈ XH2 be lower and upper solutions of problem

(4.1.1),(4.1.2). Then, by (4.3.5),

−α′′(t) + k α(t) = − [α′′(t)− k α(t)]

≤ −f(t, α(t), α′(t)) = f(t,−α(t),−α′(t)), for t ∈ R,

that is, −α(t) is an upper solution of problem (4.3.4),(4.1.2).

Analogously, it can be proved that −β(t) is a lower solution of problem

(4.3.4),(4.1.2).

So, by Theorem 4.3.1, there is a solution −u of problem (4.3.4),(4.1.2),

such that

−β(t) ≤ −u(t) ≤ −α(t), ∀t ∈ R. �

The well-ordered relation (4.3.1) can be removed if lower and upper

functions are defined as a pair of functions, applying a translation technique

suggested in [63].

In this case, the main theorem can be formulated in the following way.

Theorem 4.3.3. Let f : R
3 → R be an L1-Carathéodory function and

α, β ∈ XH2 a pair of lower and upper solutions of problem (4.1.1),(4.1.2),

respectively, according to Definition 4.2.6.

If f(t, x, y) is monotone in y (nonincreasing or nondecreasing) for

(t, x) ∈ R
2 fixed, then problem (4.1.1), (4.1.2) has a homoclinic solution

u ∈ XH2 such that α(t) ≤ u(t) ≤ β(t).
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The proof is similar to Theorem 4.3.1 replacing the truncature function

δ by δ : R2 → R given as

δ(t, u(t)) =



β(t), u(t) > β(t),

u(t), α(t) ≤ u(t) ≤ β(t),

α(t), u(t) < α(t).

Note that α and β do not need to be well ordered or even ordered

at all.

4.4. Example of a discontinuous BVP

Consider the second-order, nonlinear and discontinuous BVP



u′′(t)− u(t) =

sgn(t)u3(t) + 0.1− 100u′(t)
1 + t2

, t ∈ R,

u(±∞) = u′(±∞) = 0.

(4.4.1)

where

sgn(t) =

{
1, t ≥ 0,

−1, t < 0.

The nonlinear and discontinuous function f : R3 → R defined by

f(t, x, y) :=
sgn(t)x3 + 0.1− 100y

1 + t2

is monotone in y for (t, x) ∈ R
2 fixed and for |x| , |y| < ρ, and an

L1-Carathéodory function with ϕρ(t) =
ρ3+0.1+100ρ

1+t2 .

Functions α(t) = arctan(t) and β(t) ≡ 0 are, respectively, a pair of lower

and upper solutions of problem (4.4.1) according to Definition 4.2.6 with

α(t) = arctan(t)− π/2.

Therefore, by Theorem 4.3.3, there is at least a nonpositive solution u

of (4.4.1) with arctan(t)− π/2 ≤ u(t) ≤ 0, ∀t ∈ R.

Note that the null function is not a solution for the problem and f is

discontinuous on t (Fig. 4.4.1).
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Fig. 4.4.1. Admissible region for solution u.

4.5. Duffing equation

In [8], the authors consider equation

−u′′(t) + u(t) = a(t) |u(t)|p−1 u(t), t ∈ R, (4.5.1)

with p > 1, which models the forced vibrations of a cantilever beam in the

nonuniform field of two permanent magnets.

The structure and behavior of function a : R → R is a key point for

the existence of homoclinic solutions. Applying the main result, it can be

proved that there exists at least one nontrivial solution in cases not covered,

as far as we know, by results in the existent literature.

For example, if a(t) = − 1
1+t2 , p = 3, k = 0.1, then let us seek a nontrivial

and homoclinic solution for

u′′(t)− 0.1u(t) =

|u(t)|2 u(t)
1 + t2

, t ∈ R,

u(±∞) = u′(±∞) = 0.

(4.5.2)

The nonlinear function f : R2 → R defined by

f(t, x) =
|x|2 x
1 + t2
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0.3

Fig. 4.5.1. Admissible regions for both solutions u and −u, respectively.

is an L1-Carathéodory function with |x| < ρ and ϕρ(t) =
ρ3

1+t2 . Functions

α(t) = 1
3+t2 −0.3 and β(t) ≡ 0.3 are lower and upper solutions, respectively,

of problem (4.5.2).

Therefore, by Theorem 4.3.2, there are at least two homoclinic solutions:

u of (4.5.2) and −u of problem



−u′′(t) + 0.1u(t) =
|u(t)|2 u(t)

1 + t2
, t ∈ R,

u(±∞) = u′(±∞) = 0

(4.5.3)

with 1
3+t2 −0.3 ≤ u(t) ≤ 0.3, and −0.3 ≤ −u(t) ≤ − 1

3+t2 +0.3 for t ∈ R.

Note that the null function is not a solution, and therefore, u and −u
are nontrivial solutions (Fig. 4.5.1).

4.6. Forced cantilever beam equation with damping

The second-order differential equation

x′′(t) + bx′(t)− x+ x3 = F cos(ωt) (4.6.1)

can model the forced vibrations of a cantilever beam in a nonuniform field

of two magnets.

As illustrated in Fig. 4.6.1, a slender steel beam is clamped in a rigid

framework which supports the magnets. Their attractive forces overcome

the elastic ones, which would otherwise keep the beam straight. In the

absence of some external force, the beam settles with its tip close to one

or the other of the magnets. The variable x represents a measure of the

beam’s position, say its tip displacement.
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electrical signal

strain gauge

beam

Sinusoidal
exciting
force

magnets

rigid frame

N

S S

N x

Fig. 4.6.1. Interaction between a cantilever beam, two magnets and an excitation force.

As an example, let us consider the following equation:

u′′(t) + b(t)u′(t) + c(t)g(t, u) = 0, (4.6.2)

with b(t) = − 0.01
1+t2 , c(t) = 1, g(t, u) = −u− 100u4

1+t2 .

This class of ODE arises in diffusion phenomena in biomathematics. For

more details, see [15, 92].

Note that in this case, the BVP



u′′(t)− u(t) =

0.01u′(t) + 100u4(t)

1 + t2
, t ∈ R,

u(±∞) = u′(±∞) = 0

(4.6.3)

is not covered by any kind of existent results to the best of our knowledge.

The nonlinear function f : R3 → R defined by

f(t, x, y) =
0.01y + 100x4

1 + t2

is monotone in y for (t, x) ∈ R
2 fixed, and for |x| , |y| < ρ, it is an

L1-Carathéodory function with ϕρ(t) =
0.01ρ+ρ4

1+t2 .
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Functions α(t) = 1
1+t2 and β(t) ≡ 0.5 are, respectively, lower and upper

solutions of problem (4.6.3), according to Definition 4.2.6, with α(t) =
1

1+t2 − 0.5.

Therefore, by Theorem 4.3.3, there is at least a homoclinic solution u

of (4.6.3) such that

1

1 + t2
− 0.5 ≤ u(t) ≤ 0.5, ∀t ∈ R.
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Chapter 5

Homoclinic Solutions
to Fourth-Order Problems

5.1. Introduction

This chapter provides sufficient conditions for the existence of homoclinic

solutions of fourth-order nonlinear ODEs. Different applications are pre-

sented to illustrate new results, such as the nonlinear Bernoulli–Euler–v.

Karman problem, Extended Fisher–Kolmogorov problem and the Swift–

Hohenberg problem. The method will use Green’s functions to formulate a

new modified integral equation which is equivalent to the original nonlin-

ear one. Moreover, in an adequate function space, the corresponding non-

linear integral operator is compact, and an existence result by Schauder’s

fixed-point theorem can be applied.

We study the existence of homoclinic solutions to the fourth-order non-

linear differential equation

u(iv)(t) + ku(t) = f(t, u(t), u′(t), u′′(t), u′′′(t)), t ∈ R, (5.1.1)

with k > 0 and f : R5 → R a continuous function, verifying an adequate

asymptotic condition.

Note that no further condition will be necessary on the nonlinearity

f(t, x, y, z, w) to obtain the existence of homoclinic orbits to 0, that is,

nontrivial solutions of (5.1.1) such that

u(±∞) := limt→±∞ u(t) = 0, u′(±∞) := limt→±∞ u′(t) = 0. (5.1.2)

In the last decades, the study of autonomous and nonautonomous

fourth-order differential equations attracted many researchers. To be more

57
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precise, equations of the type

u(iv)(t) + ku′′(t) + g(u(t)) = 0, t ∈ R, (5.1.3)

with k ∈ R, and g a locally Lipschitz function, arise in several theoretical

cases and real phenomena such as:

• if k < 0, it is known as the Extended Fisher–Kolmogorov equation and if

k > 0, it is referred to as Swift–Hohenberg equation (see [126]);

• if g(u) = u − u2, it is applied in the dynamic phase-space analogy of a

nonlinearly supported elastic strut (see [83]);

• if g(u) = u3 − u, it models the pattern formation in many physical,

chemical or biological systems (see [27]);

• if g(u) = u5−u3+u, it is used to study the localization and spreading of

deformation of a strut confined by an elastic foundation (see [11, 125]);

• if g(u) = (u+1)+ − 1, where (u+1)+ = max {u+ 1, 0}, equation (5.1.3)

arises in the search of traveling waves solutions [132] in the study of

deflection in railway tracks [1] and undersea pipelines [26].

The existence of homoclinic solutions was proved by using several meth-

ods and techniques. Some examples, without pretending to be exhaustive,

are shown in [134], where the above nonlinearities by variational arguments

and the Palais–Smale condition are considered.

For equation

u(iv)(t) + ku′′(t) + a(t)u(t)− b(t)u2(t)− c(t)u3(t) = 0,

the existence of one nontrivial homoclinic solution is proved in [138] with

a(t) and c(t) positive bounded and continuous functions, and b(t) a bounded

continuous function, applying Mountain Pass Theorem, and the existence

of nontrivial homoclinic solutions in the nonperiodic case is proved in [97].

In [89], the authors show the existence of two homoclinic solutions for some

nonperiodic fourth-order equations with a perturbation.

This chapter emphasizes on a perturbation with an unknown function

where the nonlinearity is given by a generic continuous function with depen-

dence on u and all derivatives till order three.

As far as we know, it is the first time where such perturbation associated

to generic nonlinearity, which has to verify only an asymptotic condition,

is considered (see assumption (5.3.1)).

The arguments are based in the explicit form of the Green’s functions

associated to the linear perturbation of (5.1.1) in a compactness criterion

and fixed point theory.
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5.2. Definitions and auxiliary results

Let us define the space

XH4 =

{
x ∈ C3(R) : lim

|t|→+∞
x(t) = 0, lim

|t|→+∞
x(i)(t) ∈ R, i = 1, 2, 3

}

with the norm ‖x‖XH4 = max{‖x‖∞, ‖x′‖∞, ‖x′′‖∞, ‖x′′′‖∞}, where

‖ω‖∞ = supt∈R |ω(t)|.
In this way, (XH4, ‖·‖XH4) is a Banach space.

Remark 5.2.1. Note that if u ∈ X , then

lim
|t|→∞

u(j)(t) = 0, j = 1, 2, 3.

By u solution of problem (9.1.1),(10.3.2), we mean u ∈ X such that u

verifies (9.1.1).

The following result will play an important role in the proof of the main

result, giving a solution of some linear fourth-order problem via Green’s

functions.

Lemma 5.2.2. If h ∈ L1(R), then, for some k > 0, the problem


u(iv)(t) + ku(t) = h(t), t ∈ R,

u(±∞) = u′(±∞) = 0
(5.2.1)

has a unique solution in XH4. Moreover, this solution can be expressed as

u(t) =

∫ +∞

−∞
G(t, s)h(s)ds, (5.2.2)

where

G(t, s) =
4
√
k

2k
e

− 4√
k|s−t|√
2 sin

(
4
√
k|s− t|√

2
+
π

4

)
. (5.2.3)

Proof. The homogeneous solution of the linear equation is given by

u(t) = eAt (c1 cos(At) + c2 sin(At)) + e−At (c3 cos(At) + c4 sin(At))

with A = 4

√
k
4 and c1, c2, c3, c4 ∈ R.

As the null function is the only solution of the homogeneous prob-

lem, Green’s functions can be defined and the general solution of (5.2.1) is
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given by

u(t) =
4
√
k

2k

∫ +∞

−∞
e−

4
√

k
4 |s−t| sin

(
4

√
k

4
|s− t|+ π

4

)
h(s)ds.

For G(t, s) :=
4√k
2k e

−A|s−t| sin
(
A|s− t|+ π

4

)
, one can write

u(t) =

∫ +∞

−∞
G(t, s)h(s)ds.

�

The following properties of the Green function can easily be proved.

Remark 5.2.3. For i = 0, 1, 2, 3, defining

G−
i (t, s) : =

4
√
k
i+1

2k
e

− 4√
k(s−t)√

2 sin

(
4
√
k(s− t)√

2
+
π(3i+ 1)

4

)
,

G+
i (t, s) : =

4
√
k
i+1

2k
e

− 4√
k(t−s)√

2 sin

(
4
√
k(t− s)√

2
+
π(3i+ 1)

4

)
,

then, for j = 0, 1, 2, 3,

u(j)(t) =

∫ t

−∞
G−

j (t, s)h(s)ds+ (−1)j
∫ +∞

t

G+
j (t, s)h(s)ds, (5.2.4)

lim
|t|→∞

∂jG(t, s)

∂tj
= 0, (5.2.5)

∣∣∣∣∂
jG(t, s)

∂tj

∣∣∣∣ ≤ ( 4√
k)

j+1

2k . (5.2.6)

The following theorem is a key argument to deal with the lack of com-

pactness of the set XH4.

Theorem 5.2.4 ([51]). Let M ⊂ (Cl,R) with

Cl :=

{
x ∈ C[0,+∞) : there exists lim

t→+∞ x(t)

}
.

Then M is compact if the following conditions hold:

(i) M is bounded in Cl;

(ii) functions f ∈ M are equicontinuous on any compact interval of

[0,+∞);
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(iii) functions from M are equiconvergent, that is, given ε > 0, there exists

T (ε) > 0 such that |f(t)− f(+∞)| < ε for all t > T (ε) and f ∈M .

The proof of this result can easily be applied to compact intervals of

the form [−T, T ], for some T > 0, as it is suggested in [128], to obtain a

similar result to the set XH4.

Theorem 5.2.5. A set M ⊂ XH4 is relatively compact if the following

conditions hold:

(i) M is bounded in XH4;

(ii) the functions belonging to M are equicontinuous on any compact inter-

val of R;

(iii) the functions from M are equiconvergent at ±∞, that is, given ε > 0,

there exists T (ε) > 0 such that |f (i)(t) − f (i)(±∞)| < ε, for all |t| >
T (ε), i = 0, 1, 2, 3 and f ∈M .

5.3. Existence results

This section contains an existent result for homoclinic solutions of

problem (5.1.1),(5.1.2) without monotone, periodic or extra assumptions

on the nonlinear part.

Theorem 5.3.1. Let f : R5 → R be a continuous function. If for each r > 0

with max{‖x‖∞, ‖y‖∞, ‖z‖∞, ‖w‖∞} < r, there exists a positive function

φr ∈ L1(R) such that

|f(t, x, y, z, w)| < φr(t), (5.3.1)

then problem (5.1.1),(5.1.2) has a homoclinic solution u ∈ XH4.

Proof. Define

Fu(t) := f(t, u(t), u′(t), u′′(t), u′′′(t))

and consider the operator T : XH4 → XH4 given by

Tu(t) =

∫ +∞

−∞
G(t, s)Fu(s)ds

with G(t, s) defined by (5.2.3).

As f is a continuous function verifying (5.3.1) and u ∈ XH4, it is obvious

that Fu ∈ L1(R) and, by Lemma 5.2.2, the fixed points of T are solutions of

problem (5.1.1),(5.1.2). So, it is enough to prove that T has a fixed point.
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Clearly, Tu ∈ C3(R) and by (5.2.5) and Lebesgue’s Dominated Conver-

gence Theorem,

lim
|t|→∞

(Tu)(t) =

∫ +∞

−∞
lim

|t|→∞
G(t, s)Fu(s)ds = 0

and, for i = 1, 2, 3,

lim
|t|→∞

(Tu)(i)(t) =

∫ +∞

−∞
lim

|t|→∞
∂(i)G(t, s)

∂ti
Fu(s)ds = 0.

Therefore, Tu ∈ XH4, and T : XH4 → XH4 is well defined.

Now, for any bounded subset B ⊂ XH4 and any u ∈ B with

‖u‖XH4 ≤ r1, by (5.2.6) and (5.3.1), one has

|Tu(t)| ≤
∫ +∞

−∞
|G(t, s)||Fu(s)|ds ≤

4
√
k

2k

∫ +∞

−∞
φr1 < +∞, ∀t ∈ R,

and, therefore, {Tu(t) : Tu ∈ B} is relatively compact in R.

For a > 0 and t1, t2 ∈ [−a, a], one has, as t1 → t2,

|Tu(t1)− Tu(t2)| =
∫ +∞

−∞
|G(t1, s)−G(t2, s)||Fu(s)|ds −→ 0,

and

|(Tu)(i)(t1)− (Tu)(i)(t2)|

=

∫ +∞

−∞

∣∣∣∣∂
(i)G

∂ti
(t1, s)− ∂(i)G

∂ti
(t2, s)

∣∣∣∣ |Fu(s)|ds −→ 0, for i = 0, 1, 2, 3.

So, the set {u : [a,−a] → R} ⊂ B is equicontinuous.

By the continuity of f for any ε > 0, there exist t+ > 0 and δ > 0 such

that when |u(t)− v(t)| ≤ ε, for t > t+, then

|Fu(t+)− Fv(t+)| ≤ δ.

So, for i = 1, 2, 3, and by (5.2.6),

|(Tu)(i)(t)− (Tv)(i)(t)| =
∫ +∞

−∞

∣∣∣∣∂
(i)G

∂ti
(t, s)

∣∣∣∣ |Fu(s)− Fv(s)|ds −→ 0,

as t→ +∞.

Analogously, when |u(t)− v(t)| ≤ ε, for t < −t+, then
|Fu(−t+)− Fv(−t+)| ≤ δ.
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So, T is equiconvergent at ±∞, and by Theorem 5.2.5, TB is relatively

compact.

Consider now a subset D ⊂ XH4 defined as

D := {u ∈ XH4 : ‖u‖XH4 < r2}
with

r2 > max

{
r,

∫ +∞

−∞
M φr(s)ds

}
,

where r > 0 is given by (5.3.1) and

M := max

{
1,

1

2
4
√
k3
,

1

2
√
k
,

1

2 4
√
k

}

with G−
3 (t, s) and G

+
3 (t, s) given by Remark 5.2.3.

For t ∈ R, by (5.2.6) and (5.3.1),

‖Tu‖ = supt∈R

∣∣∣∣
∫ +∞

−∞
G(t, s)Fu(s)ds

∣∣∣∣

≤
∫ +∞

−∞

1

2
4
√
k3

|f(s, u(s), u′(s), u′′(s), u′′′(s))|ds

≤
∫ +∞

−∞

1

2
4
√
k3
φr(s)ds < r2,

‖(Tu)(i)‖ = supt∈R

∣∣∣∣
∫ +∞

−∞

∂(i)G

∂ti
(t, s)Fu(s)ds

∣∣∣∣

≤
∫ +∞

−∞

(
4
√
k
)i+1

2k
φr(s)ds < r2, for i = 1, 2,

and

‖(Tu)′′′‖ = supt∈R

∣∣∣∣
∫ t

−∞
G−

3 (t, s)Fu(s)ds −
∫ +∞

t

G+
3 (t, s)Fu(s)ds

∣∣∣∣

≤
∫ +∞

−∞
supt∈R

(|G−
3 (t, s)|+ |G−

3 (t, s)|
)
φr(s)ds

≤
∫ +∞

−∞
φr(s)ds < r2. (5.3.2)

Therefore, TD ⊂ D and, by Theorem 1.2.6, T has at least a fixed point

u ∈ XH4. �
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With more information on the asymptotic behavior of the nonlinearity,

it is possible to derive more data on solutions of (5.1.1).

Lemma 5.3.2. Let k > 0, u be a solution of (5.1.1),(5.1.2) and f be a

continuous function verifying

lim
|t|→+∞

(x,y)→(0,0)

f(t, x, y, z, w) = 0. (5.3.3)

Then u(i)(±∞) = 0, i = 0, 1, 2, 3, 4.

Proof. Let us rewrite equation (5.1.1) as

d

dt
(et(u′′′(t)− u′′(t) + u′(t)− u(t))) = δ1(t)e

t (5.3.4)

with δ1(t) = f(t, u(t), u′(t), u′′(t), u′′′(t)) − (k + 1)u(t).

By (5.3.3), for any ε > 0, there is σ > 0 such that |δ1(t)| < ε, for every

t > σ, |u(t)| < σ, and |u′(t)| < σ.

Fix ε > 0 and integrate (5.3.4) over ]σ, t[, for any t > σ, to obtain

et(u′′′(t)− u′′(t) + u′(t)− u(t)) = C +

∫ t

σ

δ1(s)e
sds,

for some C ∈ R, and, subsequently,

|u′′′(t)− u′′(t) + u′(t)− u(t)| ≤ |C|e−t + εe−t

∫ t

σ

esds

≤ |C|e−t + ε(1− eσ−t),

for t > σ.

By letting t → +∞ and by the arbitrariness of ε, the following can be

defined:

δ2(t) := u′′′(t)− u′′(t) + u′(t)− u(t) (5.3.5)

for some continuous function δ2 vanishing as t → +∞. Rewriting again

equation (5.3.4),

d

dt
(et(u′′(t)− 2u′(t) + 3u(t))) := δ3(t)e

t (5.3.6)

with δ3(t) = δ2(t) + 4u(t). Arguing as for (5.3.4), it may be defined that

δ4(t) := u′′(t)− 2u′(t) + 3u(t) (5.3.7)

for some continuous function δ4(t) vanishing as t→ +∞.
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Since both u(t), u′(t) → 0, then u′′(t) → 0. Similarly, from (5.3.5), it

can be demonstrated that u′′′(t) → 0, whereas from (5.1.1), u(iv)(t) → 0.�

5.4. Example

Consider the fourth-order BVP


u(iv)(t) + u(t) =

u(t)(u′′(t)− (u(t))2) + (u′(t))2 (u′′′(t))3 + 1

1 + t2
, t ∈ R,

u(±∞) = u′(±∞) = 0.

(5.4.1)

Function f(t, x, y, z, w) = x(z−x2)+y2w3+1
1+t2 is continuous and verifies

(5.3.1) for max{‖x‖∞ , ‖y‖∞ , ‖z‖∞ , ‖w‖∞} < r1, (r1 > 0) with

φr1(t) :=
r21 + r31 + r51 + 1

1 + t2
.

Therefore, by Theorem 5.3.1 there exists a nonnegative homoclinic solu-

tion of problem (5.4.1) with the phase portrait and its graphic given by

Figs. 5.4.1 and 5.4.2.

0.15

0.10

0.05

–0.05

0.1 0.2 0.3 0.4 0.5
u

u'

–0.10

–0.15

Fig. 5.4.1. Phase portrait of the homoclinic solution u of (5.4.1).
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u(x)

0.4

0.3

0.2

0.1

–6 –4 –2 2 4 6
x

0.5

Fig. 5.4.2. Graph of the homoclinic solution u of (5.4.1).

5.5. Bernoulli–Euler–v. Karman problem

In [87], the nonlinear Bernoulli–Euler–v. Karman BVP is considered:



EIu(iv)(t) + ku(t) = 3

2EA(u
′(t))2u′′(t) + ω(t), t ∈ R,

u(±∞) = u′(±∞) = 0,
(5.5.1)

which is related to the analysis of moderately large deflections of infinite

nonlinear beams resting on elastic foundations under localized external

loads. More precisely, E is the Young’s modulus, I the mass moment of

inertia, ku(t) the spring force upward, in which k is a spring constant (for

simplicity, the weight of the beam is neglected), A the cross-sectional area

of the beam and ω(t) the applied loading downward (see Fig. 5.5.1).

An example of this family of problems is given by



u(iv)(t) + 3u(t) =

3.4 + u3(t)− u′′(t) (u′(t))2

1 + t4
, t ∈ R,

u(±∞) = u′(±∞) = 0.

(5.5.2)
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Fig. 5.5.1. Infinite nonlinear beam resting on nonuniform elastic foundations.

Here, the loading force ω(t)= 3.4
1+t4 and the nonlinear function

g : R4 → R is defined by

g(t, x, y, z) :=
x3 − zy2

1 + t4
.

The function f(t, x, y, z) := g(t, x, y, z) + ω(t) is continuous and verifies

(5.3.1) for max{‖x‖∞ , ‖y‖∞ , ‖z‖∞} < r2, (r2 > 0) with

φr2(t) :=
3.4 + 2r32
1 + t4

.

By Theorem 5.3.1, there is a nontrivial homoclinic solution u∗. More-

over, as f verifies (5.3.3), by Corollary 5.3.2, this homoclinic solution u∗ of

(5.5.2) verifies (u∗)(i) (±∞) = 0 for i = 0, 1, 2, 3, 4.

5.6. Extended Fisher–Kolmogorov and

Swift–Hohenberg problems

In [89], the authors consider a fourth-order differential equation which can

be written as

u(iv)(t) + u(t) = 2u(t)− au′′(t)− u3(t), t ∈ R. (5.6.1)

In the literature, when a < 0, this equation corresponds to the well-

known Extended Fisher–Kolmogorov (EFK) equation, proposed in [52], to

study phase transitions. If a > 0, equation (5.6.1) is related to Swift–

Hohenberg (SH) equation, which is a general model for pattern-forming
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u
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Fig. 5.6.1. Phase portrait of the homoclinic solution of (5.6.2), (5.1.2).
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Fig. 5.6.2. Graph of the homoclinic solution of (5.6.2), (5.1.2).
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process, to describe random thermal fluctuations in the Boussinesq equation

(see [137]) and in the propagation of lasers (see [96]).

In this sense, equation

u(iv)(t) + u(t) =
(1 + u(t))

(
1 + u′′(t)− u2(t)

)
1 + t4

, t ∈ R (5.6.2)

can be seen as a generalized (EFK), or (SH), where the coefficient of u′′(t)
depends on the unknown function and it does not have a definite signal.

In both cases of the coefficient sign, the nonlinear function f : R3 → R

defined by

f(t, x, z) :=
(1 + x)(1 + z − x2)

1 + t4

is continuous and for max{‖x‖∞ , ‖z‖∞} < r3, (r3 > 0), f verifies (5.3.1)

with

φr3(t) :=
(1 + r3)(1 + r3 + r23)

1 + t4
.

Therefore, by Theorem 5.3.1, there is a homoclinic solution u∗ of prob-

lem (5.6.2),(5.1.2). As illustrated in Figs. 5.6.1 and 5.6.2, this homoclinic

solution is a sign-changing function.
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Chapter 6

Lidstone Boundary Value Problems

6.1. Introduction

George James Lidstone (1870–1952) was an English mathematician who

worked, among other things, on the study of polynomial interpola-

tion. In 1929, he introduced a generalization of Taylor’s series, where

the innovation part was an approximation of a given function in the

neighborhood of two points instead of one.

Essentially, this interpolating polynomial is a solution of a BVP given

by an elementary even-order differential equation and boundary conditions

defined on a bounded interval

u(2m)(t) = 0, t ∈ [a, b],

u(j)(a) = Aj , u
(j)(b) = Bj , j = 0, 1, . . . ,m− 1.

In the field of approximation theory, the Lidstone interpolating polyno-

mial of degree (2m − 1) matches u(t) and its (m − 1) even derivatives at

both ends of the compact interval.

The homogeneous differential equation can be generalized and, coupled

with boundary conditions, generates the next BVP

u(2m)(t) = f(t, u(t), u′(t), . . . , u(2m−1)(t)), t ∈ [0, 1],

u(j)(0) = Aj , u
(j)(1) = Bj , j = 0, 1, . . . ,m− 1.

This kind of BVP is known as Lidstone boundary value problems.

71
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The particular case m = 2 frequently occurs in engineering and other

branches of physical sciences. For instance, the deflection of a uniformly

loaded rectangular plate, supported over the entire surface by an elastic

foundation and rigidly supported along the edges, leads to this type of

problem, or modeling the deformations of an elastic beam where the type

of boundary conditions considered depends on how the beam is supported

at the two endpoints (see [77] and the references therein).

In this specific case, Lidstone boundary conditions,

u(a) = u′′(a) = u(b) = u′′(b) = 0,

mean that both endpoints of the beam are simply supported.

Recently, it was introduced the so-called complementary Lidstone

boundary value problems (see [6, 7, 143]) with differential equations of odd

order together with odd boundary derivatives conditions only, of the fol-

lowing type, were introduced:



u(2m−1)(t) = f(t, u(t), u′(t), . . . , u(2m−2)(t)), t ∈ [a, b],

u(a) = A0, u
(2j−1)(a) = Aj , u

(2j−1)(b) = Bj , j = 1, . . . ,m.

These types of problems with full nonlinearities, that is, with depen-

dence on even and odd derivatives, are very scarce (see [62, 64, 119]). How-

ever, as far as we know, Lidstone or complementary Lidstone problems were

never applied to the whole real line.

This chapter is concerned with the study of a fully nonlinear differential

equation on the real line

u(iv)(t) + k4u(t) = f(t, u(t), u′(t), u′′(t), u′′′(t)), t ∈ R, (6.1.1)

where k ∈ R, f : R5 → R is a continuous function and two Lidstone-type

boundary conditions: the classical ones, with even derivatives,

u(±∞) = u′′(±∞) = 0, (6.1.2)

with u(i)(±∞) := limt→±∞ u(i)(t), i = 0, 2 and the so-called complementary

Lidstone boundary conditions

u(±∞) = u′(±∞) = 0. (6.1.3)

Note that solutions of problem (6.1.1),(6.1.3) are homoclinic solutions

and in this way, the results of this chapter complement and generalize the

ones achieved in Chapter 5.
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The main arguments are based on the explicit form of Green’s functions

associated to problem (6.1.1),(6.1.2) in a compactness criterion and fixed

point theory.

The problem (6.1.1),(6.1.2) can model several real phenomena in beam

theory (see [1, 16]), suspension bridges (see [13, 22]) and elasticity theory,

among others. Equation (6.1.1) is often referred to as a beam equation

because it describes the deflection of an elastic beam under a certain force.

The boundary conditions (6.1.2) mean that the beam is simply supported

at infinity.

6.2. Auxiliary definitions and Green’s functions

The space of admissible functions to be used forward will be

XL =

{
x ∈ C3(R) : lim

|t|→+∞
x(t) = 0

}
,

equipped with the norm ‖x‖XL = max{‖x‖∞, ‖x′‖∞, ‖x′′‖∞, ‖x′′′‖∞},
where ‖ω‖∞ = supt∈R |ω(t)|.

In this way, (XL, ‖ · ‖XL) is a Banach space.

The following result will play an important role in the proof of the main

result, giving an explicit solution of some linear fourth-order problem via

Green’s functions.

Lemma 6.2.1. If h ∈ L1(R), then for k ∈ R, the linear problem



uiv(t) + k4u(t) = h(t), t ∈ R,

u(±∞) = u′′(±∞) = 0
(6.2.1)

has a unique solution in XL which can be expressed as

u(t) =

∫ +∞

−∞
G(t, s)h(s)ds,

where

G(t, s) =
e−k∗|s−t|
√
2
5
k3∗

sin
(
k∗|s− t|+ π

4

)
(6.2.2)

with k∗ = k
√
2

2 .
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Proof. The homogeneous solution of the linear equation is given by

u(t) = ek∗t (c1 cos(k∗t) + c2 sin(k∗t)) + e−k∗t (c3 cos(k∗t) + c4 sin(k∗t))

with c1, c2, c3, c4 ∈ R and the general solution of the homogeneous problem

associated to (6.2.1) is given by

u(t) =
1

2k3

∫ +∞

−∞
e−k∗|s−t| sin

(
k∗|s− t|+ π

4

)
h(s)ds.

For G(t, s) := G(t, s) = e−k∗|s−t|
√
2
5
k3∗

sin(k∗|s− t|+ π
4 ), one can write

u(t) =

∫ +∞

−∞
G(t, s)h(s)ds.

�

Some properties of these Green’s functions are in the following remark.

Remark 6.2.2. For i = 0, 1, 2, 3, defining

G−
i (t, s) : =

ek∗(s−t)

√
2
5−i

k3−i∗
sin

(
k∗(t− s) +

π(3i+ 1)

4

)
,

G+
i (t, s) : =

ek∗(t−s)

√
2
5−i

k3−i∗
sin

(
k∗(s− t) +

π(3i+ 1)

4

)
,

one has

u(i)(t) =

∫ t

−∞
G−

i (t, s)h(s)ds+ (−1)i
∫ +∞

t

G+
i (t, s)h(s)ds. (6.2.3)

The following properties of the Green function can easily be proved:

lim
|t|→+∞

G(t, s) = lim
t→+∞G−

i (t, s) = lim
t→−∞G+

i (t, s) = 0, (6.2.4)

|Gi(t, s)| ≤ 1
√
2
5−i

k3−i∗
, i = 0, 1, 2, 3. (6.2.5)

The following theorem is a key argument to deal with the lack of com-

pactness.

Theorem 6.2.3. For a set D ⊂ XL to be relatively compact, it is necessary

and sufficient that

(i) {x(t) : x ∈ D} is relatively compact in R for any t ∈ R;

(ii) for each a> 0, the family Da := {x : [−a, a]→R}⊂D is equi-

continuous;
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(iii) D is stable at ±∞, i.e., for arbitrary functions x and y in D, and any

ε > 0, there exist T > 0 and δ > 0, such that if |x(i)(T )− y(i)(T )| ≤ δ,

then |x(i)(t) − y(i)(t)| ≤ ε for t > T, and if |x(i)(−T )− y(i)(−T )| ≤ δ,

then |x(i)(t)− y(i)(t)| ≤ ε for t < −T for each i = 0, 1, 2, 3.

Proof. The proof is a direct application of [128, Theorem 1]. �

6.3. Existence result

The main result of this chapter is given by the following theorem.

Theorem 6.3.1. Let f : R5 → R be a continuous function. If for each

r > 0 with max{‖x‖∞, ‖y‖∞, ‖z‖∞, ‖w‖∞} < r, there exists a positive

function φr : R → [0,+∞) such that

|f(t, x, y, z, w)| < φr(t) and

∫ +∞

−∞
φr(t)dt < +∞, (6.3.1)

then problem (6.1.1),(6.1.2) has a solution u ∈ XL, which is also a homo-

clinic solution.

Proof. Define

Fu(t) := f(t, u(t), u′(t), u′′(t), u′′′(t)),

and consider the operator T : XL → XL given by

Tu(t) =

∫ +∞

−∞
G(t, s)Fu(s)ds

with G(t, s) defined by (6.2.2).

As f is a continuous function, u ∈ XL, and verifies (6.3.1), it is obvious

that Fu ∈ L1(R), and, by Lemma 6.2.1, fixed points of T are solutions of

problem (6.1.1),(6.1.2). So, it is enough to prove that T has a fixed point.

Clearly, Tu ∈ C3(R) and, by Lebesgue’s Dominated Convergence The-

orem and (6.2.4),

lim
|t|→+∞

(Tu)(t) =

∫ +∞

−∞
lim

|t|→+∞
G(t, s)Fu(s)ds = 0,

lim
|t|→+∞

(Tu)′′(t) =
∫ +∞

−∞
lim

|t|→+∞
G2(t, s)Fu(s)ds = 0,
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and

lim
|t|→+∞

(Tu)′(t) =
∫ t

−∞
lim

t→+∞G−
1 Fu(s)ds−

∫ +∞

t

lim
t→−∞G+

1 Fu(s)ds = 0,

lim
|t|→+∞

(Tu)′′′(t) =
∫ t

−∞
lim

t→+∞G−
3 Fu(s)ds−

∫ +∞

t

lim
t→−∞G+

3 Fu(s)ds = 0.

Therefore, Tu ∈ XL, and T : XL → XL is well defined.

Let B ⊂ XL be a bounded subset, that is, there is r1 > 0 such that, for

any u ∈ B, one has ‖u‖XL < r1. By (6.2.5) and (6.3.1), for i = 0, 1, 2, 3,

|(Tu(t))(i)| ≤
∫ +∞

−∞
|Gi(t, s)||Fu(s)|ds

≤ 1√
2
5−i

k3−i∗

∫ +∞

−∞
φr1(s)ds < +∞, ∀t ∈ R,

and therefore, {Tu(t) : Tu ∈ B} is relatively compact in R.

For some a > 0 and t1, t2 ∈ [−a, a], as t1 → t2,

|Tu(t1)− Tu(t2)| =
∫ +∞

−∞
|G(t1, s)−G(t2, s)||Fu(s)|ds −→ 0,

|(Tu)′′(t1)− (Tu)′′(t2)| =
∫ +∞

−∞
|G2(t1, s)−G2(t2, s)||Fu(s)|ds −→ 0,

and for i = 1, 3,

∫ t

−∞
|G−

i (t1, s)−G−
i (t2, s)||Fu(s)|ds

+

∫ +∞

t

|G+
i (t1, s)−G+

i (t2, s)||Fu(s)|ds −→ 0.

So, the set {u : [−a, a] → R} ⊂ B is equicontinuous.

As the stability at ±∞, by the continuity of f , for any ε > 0, there

exist t+ > 0 and δ > 0 such that when |u(t)− v(t)| ≤ ε, for t > t+, then

|Fu(t+)− Fv(t+)| ≤ δ.
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So, for i = 0, 1, 2, 3,

|(Tu)(i)(t)− (Tv)(i)(t)| ≤
∫ t

−∞
|G−

i (t, s)||Fu(s)− Fv(s)|ds

+

∫ +∞

t

|G+
i (t, s)||Fu(s)− Fv(s)|ds −→ 0,

as t→ +∞.

Analogously, when |u(t)− v(t)| ≤ ε, for t < −t+, then

|Fu(−t+)− Fv(−t+)| ≤ δ.

So, T is stable at ±∞, and by Theorem 6.2.3, TB is relatively compact.

Consider now a subset D ⊂ XL defined as

D := {u ∈ XL : ‖u‖XL ≤ r2}

with

r2 > max

{
r,

∫ +∞

−∞
M φr(s)ds

}
,

where r > 0 is given by (6.3.1) and

M := max

{
1,

1√
2
5
k3∗
,

1

2k2∗
,

1√
2
3
k∗

}
.

For t ∈ R, by (6.2.5) and (6.3.1),

‖Tu‖∞ = sup
t∈R

∣∣∣∣
∫ +∞

−∞
G(t, s)Fu(s)ds

∣∣∣∣

≤
∫ +∞

−∞

1√
2
5
k3∗

|f(s, u(s), u′(s), u′′(s), u′′′(s))| ds

≤
∫ +∞

−∞

1√
2
5
k3∗
φr(s)ds < r2,

‖(Tu)′′‖∞ = sup
t∈R

∣∣∣∣
∫ +∞

−∞
G2(t, s)Fu(s)ds

∣∣∣∣ ≤
∫ +∞

−∞

1√
2
3
k∗
φr(s)ds < r2,
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and

‖(Tu)′‖∞ = sup
t∈R

∣∣∣∣
∫ t

−∞
G−

1 (t, s)Fu(s)ds−
∫ +∞

t

G+
1 (t, s)Fu(s)ds

∣∣∣∣

≤
∫ +∞

−∞
sup
t∈R

(∣∣G−
1 (t, s)

∣∣+ ∣∣G−
1 (t, s)

∣∣)φr(s)ds

≤ 1

2k2∗

∫ +∞

−∞
φr(s)ds < r2,

‖(Tu)′′′‖∞ = sup
t∈R

∣∣∣∣
∫ t

−∞
G−

3 (t, s)Fu(s)ds−
∫ +∞

t

G+
3 (t, s)Fu(s)ds

∣∣∣∣

≤
∫ +∞

−∞
sup
t∈R

(∣∣G−
3 (t, s)

∣∣+ ∣∣G−
3 (t, s)

∣∣)φr(s)ds

≤
∫ +∞

−∞
φr(s)ds < r2.

Therefore, TD ⊂ D and, by Theorem 1.2.6, T has at least a fixed point

u ∈ XL.

This fixed point is a solution of (6.1.1),(6.1.2) and, moreover, a homo-

clinic solution of (6.1.1),(6.1.2), by Lemma 4.2.1. �

Remark 6.3.2. By Lemma 4.2.1, the solution of problem (6.1.1),(6.1.2)

given by the previous theorem, is also a solution of the complementary

Lidstone problem (6.1.1),(6.1.3).

6.4. An infinite beam resting on granular foundations

Soil improvement via stone columns (filling a cylindrical cavity with

granular material) is achieved by accelerating the consolidation of the soft

soil due to the shortened drainage path with an increase in the load-carrying

capacity and/or a decrease in the settlement due to the inclusion of stronger

granular material.

Apart from improving the ground below the foundations of residential

as well as industrial buildings, stone columns are also installed in soft soils

or loose sand for railways and roadways due to the stringent settlement

restrictions.

Many studies are available on the analysis of rails, treated as infinite

beams on elastic foundations, subjected to concentrated moving loads as
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H

P

s

d

Infinite
beam

Stone
column

Soft foundation
soil (Soft clay)

Granular fill

Fig. 6.4.1. Railway beam resting on reinforced granular fill-poor soil system.

well as dynamic loads, using different techniques. For details, see [107, 109,

122] and the references therein.

A longitudinal section of a rail idealized as an infinite beam resting on

a ballast layer of a granular fill-stone column-reinforced soft soil system is

sketched in Fig. 6.4.1.

The beam is founded on a granular fill layer of thickness H overlying

saturated soft soil. The shear modulus of the granular fill layer is G. The

diameter and the spacing of the stone columns are d and s, respectively.

In [107], the differential equation of an infinite beam with a uniform

cross-section and a moving load can be written as

EI
d4w

dξ4
+ ρv2

d2w

dξ2
− c

dw

dξ
+ q = P (ξ),

where EI is the flexural rigidity of the infinite beam, ξ is the distance from

the point of action of load at time t has been considered as ξ = x − vt,

where v is the constant velocity at which the load is moving on the infinite

beam, w(ξ) is the transverse displacement of the beam at ξ, ρ is the mass

per unit length of the beam, c is the coefficient of viscous damping per unit

length of the beam, P (ξ) is the applied load intensity and q is the reaction

of the granular fill on the beam, a function that involves the shear modulus

G and the thickness of the granular fill layer H .

Suppose that, (see [107]),

q :=

(
1− 1

1 + ξ2

)
a w −GH

d2w

dξ2
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for some positive parameters a, b and d. Then an example of this type of

problems is given by the Lidstone boundary value problem in the whole

real line, composed by the differential equation

d4w

dξ4
+

a

EI
w =

1

1 + ξ2
1

EI

[
(GH − ρv2)

d2w

dξ2
+ cv

dw

dξ
+ aw + P (ξ)

]
,

(6.4.1)

together with the boundary conditions (6.1.2).

This problem (6.4.1),(6.1.2) is a particular case of the initial problem

(6.1.1),(6.1.2) with k4 = a
EI and

f(ξ, x1, x2, x3, x4) :=
1

1 + ξ2
1

EI

[(
GH − ρv2

)
x3 + cvx2 + a x1 + P (ξ)

]

is a continuous function.

If the applied load P (ξ) is bounded, that is, there is K > 0 such that

‖P‖ ≤ K, and not identically to 0, then f verifies (6.3.1) with

φr(ξ) :=
1

1 + ξ2
1

EI

[|GH − ρv2|r + (cv + a) r +K
]
.

By Theorem 6.3.1, there is a nontrivial solution w of problem

(6.4.1),(6.1.2), which is, by Lemma 4.2.1, a homoclinic solution.
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Part III

Heteroclinic Solutions and
Hammerstein Equations

81
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Introduction

This part combines several fields of differential and integral equations,

such as heteroclinic connections between two equilibrium points, semi-linear

problems, or problems with φ-Laplacian equations, and integral equations

of Hammerstein type, all of them defined on the whole real line.

The interest in heteroclinic connections arises in part from the role they

play in some models for phase transitions, in particular time-dependent and

stationary solutions, that is why heteroclinic solutions are often referred as

transitional solutions. The study of sufficient conditions to guarantee the

existence of heteroclinic solutions for some boundary value problems has

increased in recent years, mainly due to the applications to non-Newtonian

fluid theory, diffusion of flows in porous media, nonlinear elasticity and

its relations to processes in which the variable transits from an unstable

equilibrium to a stable one.

Differential equations including nonlinear differential operators have

been widely studied. Perhaps, the most investigated operator is the classical

p-Laplacian, φp(y) := y|y|p−2 with p > 1, which, in the recent years, has

been generalized to other types of differential operators that preserve the

monotonicity of the p-Laplacian. These more general operators are usually

referred to as φ-Laplacian or semi-linear operators. Therefore, the related

nonlinear differential equation has, for a second-order fully differential

equation, the form

(φ(u′(t)))′ = f(t, u(t), u′(t)),

where φ : R → R is an increasing homeomorphism such that φ(0) = 0. More

recently, the case has been considered in which the increasing homeomor-

phism φ is defined on the whole real line but is not surjective (see, e.g., [23]),

83
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and the case in which φ is defined only on a bounded domain (see, e.g., [24]).

In this case, such an operator is also called singular φ-Laplacian.

As it is known, the main difficulty to pass from p = 2 to p �= 2 is the

fact that in the first case, when p = 2, the differential equation can be

written as an equivalent integral equation applying the Green’s function

technique. However, for p �= 2, it is impossible to find such Green’s function

in the equivalent integral operator since the differential operator (φ(u′))′ is
nonlinear.

The first three chapters of this part present sufficient conditions for

three different semi-linear problems, involving general φ-Laplacian equa-

tions defined on the whole real line, including for some of them, the singular

φ-Laplacian case. Let us point out that, in each case, the existence of het-

eroclinic solutions is obtained without asymptotic, growth or other extra

assumptions on the nonlinearities φ and f. Roughly speaking, our method

applies conditions on the inverse operator φ−1, rather than on φ and f, as

it is usual in the literature. Moreover, this technique remains useful, even

in the case where φ(y) = y.

As it was mentioned in the case of the p-Laplacian, a key method to deal

with BVP is to write an equivalent integral equation. In this way, we can

see the integral equations as generalizations of BVPs. In fact, the nonlinear

Hammerstein integral equations have been one of the most important fields

of application of the methods and techniques of nonlinear functional anal-

ysis and they have been extensively studied since Hammerstein published

the seminal paper [80].

Chapter 10 contains a Hammerstein integral equation defined on the real

line, where the discontinuous nonlinearity can depend on the derivatives

too, without assuming monotone or asymptotic conditions. We point out

that the kernel functions, k(t, s), and their partial derivatives in order to

the first variable, may be discontinuous and may change signal. Our method

presents two features, among others:

• the value of the limit of k(t, s), when |t| → ∞, can be seen as a criterion

to classify the existent solutions as homoclinic or heteroclinic solutions;

• it can be applied to boundary value problems with differential equations

of any order n > m, m being the higher order of derivatives on the

nonlinearity.

The last section contains an application to a fourth-order nonlinear

boundary value problem, which models moderately large deflections of

infinite nonlinear beams resting on elastic foundations under localized

external loads.
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Chapter 7

Heteroclinic Solutions
for Semi-linear Problems (i)

7.1. Introduction

In the recent years, a wide literature has been produced to study boundary

value problems (BVPs) composed by differential equations of the form

(φ(u′(t)))′ = f(t, u(t), u′(t))

with φ an increasing homeomorphism, and different types of boundary

conditions. A classical operator of this family is the p-Laplacian φp(y) =

|y|p−2y, (p > 1), which arises in many models, such as non-Newtonian fluids

theory, diffusion of flows in porous media and nonlinear elasticity, among

others (see, for example, [14, 23, 42, 59, 108, 123, 127]).

More recently, BVPs on the half or the whole line have been considered

with surjective or nonsurjective (singular) homeomorphisms, and sufficient

conditions for the existence of homoclinic or heteroclinic solutions were

obtained (see, for instance, [9, 43, 85, 101, 111, 135, 138, 140] and the

references there in) or for the solvability of problems with integral boundary

conditions (see [102, 103]).

In [37], the problem is studied

(φ(u′(t)))′ = f(t, u(t), u′(t)), on R,

u(−∞) = −1, u(+∞) = 1,

with the following assumptions on the nonlinearity f :

(f0) f : R3 → R is continuous and satisfies the symmetry condition

f(t, x, y) = −f(−t,−x, y) for all (t, x, y) ∈ R
3;

85
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(f1) f(t, 1, y) = 0 = f(t,−1, y) for all t, y ∈ R;

(f2) f(t, x, y) < 0 for all t > 0,−1 < x < 1 and y ∈ R. Moreover, for

every compact set of the form K = [−r, r]× [−ε, ε], where 0 < r < 1

and 0 < ε < 1, there exist tK ≥ 0 and a continuous function hK :

[tK ,∞) → R such that

f(t, x, y) ≤ hK(t) for all t ≥ tK and (x, y) ∈ K,

and ∫ +∞

−∞
hK(s) ds = −∞.

In [103], the problem is considered

(φ(ρ(t)x′(t)))′ + f(t, x(t), x′(t)) = 0, on R,

lim
t→−∞x(t) =

∫ +∞

−∞
g (s, x(s), x′(s)) ds,

lim
t→+∞x(t) =

∫ +∞

−∞
h(s, x(s), x′(s))ds,

where

• ρ ∈ C(R, [0,∞)) with ρ(t) ≥ 0 for all t ∈ R and satisfying
∫ +∞
−∞

ds
ρ(s) <

+∞;

• φ : R → R is a strictly increasing sup-multiplicative-like function;

• f, g, h defined on R
3, are Carathéodory functions, verifying some growth

conditions, at most linear on the space variables.

In this chapter, we consider the second-order discontinuous equation in

the real line,

(φ(a(t)u′(t)))′ = f(t, u(t), u′(t)), a.e. t ∈ R, (7.1.1)

with φ an increasing homeomorphism such that φ(0) = 0 and φ(R) = R,

a ∈ C(R) with a(t) > 0, for t ∈ R, and f : R3 → R an L1-Carathéodory

function.

We look for heteroclinic orbits, that is, nontrivial solutions of (7.1.1)

such that

u(−∞) := lim
t→−∞u(t) = A, u(+∞) := lim

t→+∞u(t) = B, (7.1.2)

where A,B ∈ R such that A < B.

Remark that the existence of heteroclinic solutions for (7.1.1) is obtained

without asymptotic, growth or extra assumptions on the nonlinearities φ

and f, applying similar arguments as in [71, 72]. Moreover, this result still
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holds when φ(y) = y, that is, for equation

(a(t)u′(t))′ = f (t, u(t), u′(t)) , a.e. t ∈ R.

7.2. Definitions and preliminary results

In this section, we present the functional framework for our problem and

some auxiliary results.

Consider the space

X =

{
u ∈ C1(R) : lim

|t|→+∞
u(i)(t) ∈ R, i = 0, 1

}

with the norm ‖x‖X = max{‖x‖∞, ‖x′‖∞}, where ‖y‖∞ := supt∈R |y(t)|.
It is clear that (X, ‖ · ‖X) is a Banach space.

By a solution of problem (7.1.1),(7.1.2), we mean a function u ∈ X such

that φ ◦ (a · u′) ∈ W 1,1(R), which satisfies (7.1.1),(7.1.2).

The following will be assumed:

(H1) φ is an increasing homeomorphism with φ(0) = 0 and φ(R) = R such

that

∣∣φ−1(x)
∣∣ ≤ φ−1(|x|); (7.2.1)

(H2) a ∈ C(R) with a(t) > 0, ∀t ∈ R, such that lim|t|→+∞ 1
a(t) ∈ R, and

∫ +∞

−∞

ds

a(s)
< +∞. (7.2.2)

The next result states the relation between the boundary value

problem (7.1.1),(7.1.2) and the correspondent integral form.

Lemma 7.2.1. Suppose that f is an L1-Carathéodory and assumptions

(H1), (H2) hold. Then u ∈ X is a solution of problem (7.1.1),(7.1.2) if and

only if

u(t) = A+

∫ t

−∞

1

a(s)
φ−1

(
τu +

∫ s

−∞
f (r, u(r), u′(r)) dr

)
ds, (7.2.3)

where τu is the unique solution of the equation

∫ +∞

−∞

1

a(s)
φ−1

(
τu +

∫ s

−∞
f (r, u(r), u′(r)) dr

)
ds = B −A. (7.2.4)
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Moreover,

τu ∈ [y1u, y3u] (7.2.5)

with

y1u = −
∫ +∞

−∞
|f (r, u(r), u′(r))| dr (7.2.6)

and y3u to be defined forward.

Proof. Let u be a solution of problem (7.1.1),(7.1.2). So, for some constant

τu ∈ R,

φ (a(t)u′(t)) = τu +

∫ t

−∞
f(r, u(r), u′(r))dr, for t ∈ R,

and

u′(t) =
1

a(t)
φ−1

(
τu +

∫ t

−∞
f (r, u(r), u′(r)) dr

)
.

By (7.1.2),

u(t) = A+

∫ t

−∞

1

a(s)
φ−1

(
τu +

∫ s

−∞
f (r, u(r), u′(r)) dr

)
ds

and

A+

∫ +∞

−∞

1

a(s)
φ−1

(
τu +

∫ s

−∞
f (r, u(r), u′(r)) dr

)
ds = B.

To show that τu is the unique solution of (7.2.4), consider the function

F (yu) :=

∫ +∞

−∞

1

a(s)
φ−1

(
yu +

∫ s

−∞
f (r, u(r), u′(r)) dr

)
ds

and remark that F (y) is strictly increasing on R,

lim
yu→−∞F (yu) = −∞ and lim

yu→+∞F (yu) = +∞. (7.2.7)

Moreover,

F (y1u) =

∫ +∞

−∞

1

a(s)
φ−1

(
y1u +

∫ s

−∞
f (r, u(r), u′(r)) dr

)
ds ≤ 0,

for y1u given by (7.2.6), and, for

y2u =

∫ +∞

−∞
|f (r, u(r), u′(r))| dr, (7.2.8)
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we have

F (y2u) =

∫ +∞

−∞

1

a(s)
φ−1

(
y2u +

∫ s

−∞
f (r, u(r), u′(r)) dr

)
ds ≥ 0.

By (7.2.7), there are k > 0 and

y3u := y2u + k (7.2.9)

such that

F (y3u) > F (y2u) +B −A.

Therefore, the equation F (y) = B − A has a unique solution τu, and τu ∈
[y1u, y3u].

If u(t) verifies (7.2.3) and (9.2.5), then by standard arguments, it can

be shown that u(t) is a solution of problem (7.1.1),(7.1.2). �

To overcome the lack of compactness of set X, we apply the following

compactness criterion, suggested in [51].

Lemma 7.2.2. A set M ⊂ X is compact if the following conditions hold:

(1) M is uniformly bounded in X ;

(2) the functions belonging to M are equicontinuous on any compact

interval of R;

(3) the functions from M are equiconvergent at ±∞, that is, given

ε > 0, there exists T (ε) > 0 such that |f(t)− f(±∞)| < ε and

|f ′(t)− f ′(±∞)| < ε, for all |t| > T (ε) and f ∈M .

7.3. Existence of heteroclinics

The main theorem gives sufficient conditions for the existence of heteroclinic

solutions of problem (7.1.1),(7.1.2), without asymptotic, growth or extra

conditions on the homeomorphism φ or on the nonlinearity f.

Theorem 7.3.1. Assume that f : R3 → R is an L1-Carathéodory function

and assumptions (H1), (H2) hold. Then problem (7.1.1),(7.1.2) has at least

a solution u ∈ X, that is, a heteroclinic solution of (7.1.1).

Proof. Define the operator T : X → X given by

Tu(t) = A+

∫ t

−∞

1

a(s)
φ−1

(
τu +

∫ s

−∞
f (r, u(r), u′(r)) dr

)
ds

with τu the unique solution of (7.2.4).
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To prove the theorem by Lemma 7.2.1, it is enough to show that T has

a fixed point.

Claim 1. T : X → X is well defined.

Let u ∈ X . So, there is ρ > 0, such that ‖u‖X < ρ.

As f is an L1-Carathéodory function then there exists a positive function

ϕρ ∈ L1(R) such that |f (t, u(t), u′(t))| ≤ ϕρ(t), a.e. t ∈ R, and

∫ t

−∞
|f (r, u(r), u′(r))| dr ≤

∫ +∞

−∞
|f (r, u(r), u′(r))| dr

≤
∫ +∞

−∞
ϕρ(t)dt < +∞. (7.3.1)

So, by (H1), (H2), Tu is continuous on R.

In the same way, it is clear that

(Tu)
′
(t) =

1

a(t)
φ−1

(
τu +

∫ t

−∞
f (r, u(r), u′(r)) dr

)

is continuous on R. Therefore Tu ∈ C1(R).

Moreover,

lim
t→−∞ Tu(t) = lim

t→−∞A+

∫ t

−∞

1

a(s)
φ−1

×
(
τu +

∫ s

−∞
f (r, u(r), u′(r)) dr

)
ds = A,

by (7.2.4),

lim
t→+∞Tu(t) = lim

t→+∞A+

∫ t

−∞

1

a(s)
φ−1

×
(
τu +

∫ s

−∞
f (r, u(r), u′(r)) dr

)
ds = B,

and, by (H1), (H2) and (7.3.1),

lim
t→±∞ (Tu)

′
(t) = lim

t→±∞
1

a(t)
φ−1

×
(
τu +

∫ t

−∞
f (r, u(r), u′(r)) dr

)
∈ R.

Therefore Tu ∈ X.
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Claim 2. T is compact.

Let B ⊂ X be a bounded subset and u ∈ B. Then there is ρ1 > 0 such that

‖u‖X < ρ1, that is, ‖u‖∞ < ρ1 and ‖u′‖∞ < ρ1.

To apply Lemma 7.2.2, we follow several steps:

Step 2.1. TB is uniformly bounded, for B any bounded set in X.

By (7.2.1), (7.2.5) and (H1), we have

‖Tu‖∞ = sup
t∈R

∣∣∣∣A+

∫ t

−∞

1

a(s)
φ−1

(
τu +

∫ s

−∞
f (r, u(r), u′(r)) dr

)
ds

∣∣∣∣

≤ sup
t∈R

|A|+
∫ t

−∞

1

a(s)

∣∣∣∣φ−1

(
τu +

∫ s

−∞
f (r, u(r), u′(r)) dr

)∣∣∣∣ ds

≤ sup
t∈R

|A|+
∫ t

−∞

1

a(s)
φ−1

(
|τu|+

∫ s

−∞
|f (r, u(r), u′(r))| dr

)
ds

≤ |A|+
∫ +∞

−∞

1

a(s)
φ−1

(
|τu|+

∫ s

−∞
ϕρ1(r)dr

)
ds

≤ |A|+ φ−1

(
2

∫ +∞

−∞
ϕρ1 (r)dr + k

)∫ +∞

−∞

1

a(s)
ds < +∞,

and

∥∥(Tu)′∥∥∞ = sup
t∈R

∣∣∣∣ 1

a(t)
φ−1

(
τu +

∫ t

−∞
f (r, u(r), u′(r)) dr

)∣∣∣∣

≤ sup
t∈R

1

a(t)
φ−1

(
|τu|+

∫ t

−∞
|f (r, u(r), u′(r))| dr

)

≤ sup
t∈R

1

a(t)
φ−1

(
|τu|+

∫ +∞

−∞
ϕρ1(r)dr

)

≤ φ−1

(
2

∫ +∞

−∞
ϕρ1(r)dr + k

)
sup
t∈R

1

a(t)
< +∞.

Therefore, TB is uniformly bounded in X.

Step 2.2. TB is equicontinuous onX.

For L > 0 consider t1, t2 ∈ [−L,L]. Assume, without loss of generality,

that t1 < t2.
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Then, by (7.2.1), (7.2.5) and (H1),

|Tu(t1)− Tu(t2)| =

∣∣∣∣
∫ t1

−∞

1

a(s)
φ−1

(
τu +

∫ s

−∞
f (r, u(r), u′(r)) dr

)
ds

−
∫ t2

−∞

1

a(s)
φ−1

(
τu +

∫ s

−∞
f (r, u(r), u′(r)) dr

)
ds

∣∣∣∣

=

∣∣∣∣
∫ t2

t1

1

a(s)
φ−1

(
τu +

∫ s

−∞
f (r, u(r), u′(r)) dr

)
ds

∣∣∣∣

≤
∫ t2

t1

1

a(s)
φ−1

(
|τu|+

∫ s

−∞
|f (r, u(r), u′(r)) dr|

)
ds

≤ φ−1

(
2

∫ +∞

−∞
ϕρ1 (r)dr + k

)∫ t2

t1

1

a(s)
ds

−→ 0, uniformly in u ∈ B, as t1 → t2,

and

∣∣(Tu)′ (t1)− (Tu)
′
(t2)

∣∣ =

∣∣∣∣ 1

a(t1)
φ−1

(
τu +

∫ t1

−∞
f (r, u(r), u′(r)) dr

)

− 1

a(t2)
φ−1

(
τu +

∫ t2

−∞
f (r, u(r), u′(r)) dr

)∣∣∣∣

≤ φ−1

(
2

∫ +∞

−∞
ϕρ1 (r)dr + k

)(
1

a(t1)
− 1

a(t2)

)

−→ 0, uniformly in u ∈ B, as t1 → t2.

So, TB is equicontinuous on X .

Step 2.3. TB is equiconvergent at ±∞.

Let u ∈ B. Then, as previously,∣∣∣∣Tu(t)− lim
t→−∞(Tu(t))

∣∣∣∣

=

∣∣∣∣
∫ t

−∞

1

a(s)
φ−1

(
τu +

∫ s

−∞
f (r, u(r), u′(r)) dr

)
ds

∣∣∣∣

≤ φ−1

(
2

∫ +∞

−∞
ϕρ1(r)dr

)∫ t

−∞

1

a(s)
ds

−→ 0, uniformly in u ∈ B, as t→ −∞,
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and ∣∣∣∣Tu(t)− lim
t→+∞(Tu(t))

∣∣∣∣

=

∣∣∣∣
∫ t

−∞

1

a(s)
φ−1

(
τu +

∫ s

−∞
f (r, u(r), u′(r)) dr

)
ds

−
∫ +∞

−∞

1

a(s)
φ−1

(
τu +

∫ s

−∞
f (r, u(r), u′(r)) dr

)
ds

∣∣∣∣

=

∣∣∣∣
∫ +∞

t

1

a(s)
φ−1

(
τu +

∫ s

−∞
f (r, u(r), u′(r)) dr

)
ds

∣∣∣∣

≤ φ−1

(
2

∫ +∞

−∞
ϕρ1(r)dr + k

)∫ +∞

t

1

a(s)
ds

−→ 0, uniformly in u ∈ B, as t→ +∞.

Moreover,∣∣∣∣(Tu)′(t)− lim
t→−∞(Tu)′(t)

∣∣∣∣

=

∣∣∣∣ 1

a(t)
φ−1

(
τu +

∫ t

−∞
f (r, u(r), u′(r)) dr

)

− lim
t→−∞

1

a(t)
φ−1 (τu)

∣∣∣∣

≤
∣∣∣∣ 1

a(t)
φ−1

(
τu +

∫ t

−∞
ϕρ1(r)dr

)
− lim

t→−∞
1

a(t)
φ−1 (τu)

∣∣∣∣
−→ 0, uniformly in u ∈ B, as t→ −∞,

and ∣∣∣∣(Tu)′(t)− lim
t→+∞(Tu)′(t)

∣∣∣∣

=

∣∣∣∣ 1

a(t)
φ−1

(
τu +

∫ t

−∞
f (r, u(r), u′(r)) dr

)

− lim
t→+∞

1

a(t)
φ−1

(
τu +

∫ +∞

−∞
f (r, u(r), u′(r)) dr

)∣∣∣∣

≤ φ−1

(
2

∫ +∞

−∞
ϕρ1 (r)dr + k

) ∣∣∣∣ 1

a(t)
− lim

t→+∞
1

a(t)

∣∣∣∣
−→ 0, uniformly in u ∈ B, as t→ +∞.
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Therefore, TB is equiconvergent at ±∞, and, by Lemma 7.2.2, T is

compact.

Claim 3. TD ⊂ D for D ⊂ X a closed and bounded set.

Consider D ⊂ X defined by

D = {x ∈ X : ‖x‖X ≤ ρ2}
with ρ2 given by

ρ2 > max

{
ρ1, |A|+K

∫ +∞

−∞

1

a(s)
ds, K sup

t∈R

1

a(t)

}
,

where

K := φ−1

(
2

∫ +∞

−∞
ϕρ1(r)dr + k

)
.

Applying the same technique as in Step 2.1, we have

‖Tu‖∞ = sup
t∈R

|Tu(t)|

≤ |A|+
∫ +∞

−∞

1

a(s)
φ−1

(
|τu|+

∫ s

−∞
ϕρ1(r)dr

)
ds

≤ |A|+ φ−1

(
2

∫ +∞

−∞
ϕρ1 (r)dr + k

)∫ +∞

−∞

1

a(s)
ds < ρ2,

and ∥∥(Tu)′∥∥∞ = sup
t∈R

∣∣(Tu)′ (t)∣∣

≤ sup
t∈R

1

a(t)
φ−1

(
|τu|+

∫ t

−∞
|f (r, u(r), u′(r))| dr

)

≤ φ−1

(
2

∫ +∞

−∞
ϕρ1(r)dr + k

)
sup
t∈R

1

a(t)
< ρ2.

So, TD ⊂ D and, by Theorem 1.2.6, T has at least one fixed point

u ∈ X, which, by Lemma.7.2.1, is a heteroclinic solution of (7.1.1). �

7.4. Example

Consider the second-order differential equation

[(
(
t2 + 1

)
u′(t))3]′ =

[(u(t))2 − 1][(u′(t))6 + 1]

1 + t2
, a.e. t ∈ R, (7.4.1)
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and the boundary conditions

u(−∞) = −1, u(+∞) = 1.

The above problem is a particular case of problem (7.1.1),(7.1.2), with

φ(w) = w3,

a(t) = 1 + t2,

f(t, x, y) =

(
x2 − 1

) (
y6 + 1

)
1 + t2

,

A = −1, B = 1.

All assumptions of Theorem 7.3.1 are satisfied, namely f is an

L1-Carathéodory function with

ϕρ(t) =

(
ρ2 + 1

) (
ρ6 + 1

)
1 + t2

,

and therefore, there is a heteroclinic solution of (7.4.1) linking the two

equilibrium points −1 and 1.

We point out that, as far as we know, the existence of heteroclinic

solutions for (7.4.1) was not covered by the existent literature, namely,

because the nonlinearity f does not verify the asymptotic conditions in [9,

43, 112], or the growth assumptions of [102], for example.
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Chapter 8

Heteroclinic Solutions for Semi-linear
Problems (ii)

8.1. Introduction

This chapter considers the second-order nonlinear discontinuous equation

in the real line,

(a(t)φ(u′(t)))′ = f(t, u(t), u′(t)), a.e. t ∈ R, (8.1.1)

where φ is an increasing homeomorphism with φ(0) = 0 and φ(R) = R,

a ∈ C(R,R\ {0}) ∩ C1(R,R) with a(t) > 0, or a(t) < 0, for t ∈ R, and

f : R3 → R an L1-Carathéodory function.

We are looking for heteroclinic solutions, that is, nontrivial solutions of

(8.1.1) such that

u(−∞) := lim
t→−∞ u(t) = ν−, u(+∞) := lim

t→+∞u(t) = ν+, (8.1.2)

with ν−, ν+ ∈ R such that ν− < ν+.

In [53], the lower and upper solutions method is applied to study the

equation

(a(x(t))φ(x′(t)))′ = f(t, x(t), x′(t)), a.e. t,

97
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where a : R → R is a positive continuous function, and f : R3 → R is a

Carathéodory function verifying, in short, the following assumptions on f :

• there exist a constant H > 0, a continuous function θ : R+ → R
+ and a

function λ ∈ Lq([−L,L]), with 1 ≤ q ≤ ∞, such that

|f(t, x, y)| ≤ λ(t)θ(a(t, x)|φ(y)|), for a.e. |t| ≤ L, (8.1.3)

every x ∈ I : = [inft∈R α(t), supt∈R β(t)], and |y| ≥ H ;

• for every C > 0, there exist functions ηC ∈ L1(R), KC ∈W 1,1
loc ([0,+∞)),

null in [0, L] and positive in [L,+∞), and NC(t) ∈ L1(R) such that

f(t, x, y) ≤ −K ′
C(t)φ(|y|),

f(−t, x, y) ≥ K ′
C(t)φ(|y|), for a.e. t ≥ L, every x ∈ I, |y| ≤ NC(t),

|f(t, x, y)| ≤ ηC(t) if x ∈ I, |y| ≤ NC(t)

+ |α′(t)|+ |β′(t)|, for a.e. t ∈ R. (8.1.4)

In [112], the author considers

(a(t, x(t))φ(x′(t)))′ = f(t, x(t), x′(t)), a.e. t,

x(−∞) = ν−, x(+∞) = ν+,

with φ a general increasing homeomorphism on R, a : R2 → R a positive

continuous function and f : R3 → R a Carathéodory function verifying, in

short the following:

• φ has a definite growth at infinity (sublinear, linear or superlinear);

• f(t, ν−, 0) ≤ 0 ≤ f(t, ν+, 0), for a.e. t ∈ R;

• there exist constants L,H > 0, a continuous function θ : R+ → R
+ and

a function λ ∈ Lq([−L,L]), with 1 ≤ q ≤ ∞, such that

|f(t, x, y)| ≤ λ(t)θ (a(t, x) |φ(y)|) , for a.e. |t| ≤ L,

every x ∈ [ν−, ν+] , and |y| ≥ H ;

• for every C > 0, there exist functions ηC ∈ L1(R), ΛC ∈ L1
loc([0,+∞)),

null in [0, L] and positive in [L,+∞), and NC(t) ∈ L1(R) such that

f(t, x, y) ≤ −ΛC(t)(|y|),
f(−t, x, y) ≥ ΛC(t)(|y|), for a.e. t ≥ L,
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for every x ∈ [ν−, ν+], |y| ≤ NC(t),

|f(t, x, y)| ≤ ηC(t) if x ∈ [ν−, ν+], |y| ≤ NC(t), for a.e. t ∈ R.

Motivated by these two works, we consider Eq. (8.1.1) where the

function a(t) must have a definite sign, but can be positive or negative. This

information is important in some applications to traveling wave solutions

for reaction–diffusion equations: diffusion phenomena if a(t) is positive,

diffusion–aggregation processes if a(t) changes sign (see, for example, [25,

61, 70]).

We point out that, in this work, the existence of heteroclinic solutions for

(8.1.1) is obtained without asymptotic growth or other extra assumptions

on the nonlinearities φ and f , applying similar techniques suggested in

[71, 72]. On the other hand, our method remains valid for φ ≡ I, that is,

for equation

(a(t)u′(t))′ = f (t, u(t), u′(t)) , a.e. t ∈ R.

The study of boundary value problems on the whole real line, and the

existence of homoclinic or heteroclinic solutions, had an increasing inter-

est in the recent years due to the applications to non-Newtonian fluids

theory, diffusion of flows in porous media, nonlinear elasticity (see, for

instance, [9, 25, 43, 85, 101, 111, 135, 138, 140] and the references therein).

In particular, heteroclinic connections are related to processes in which the

variable transits from an unstable equilibrium to a stable one (see, for exam-

ple, [14, 23, 37, 42, 59, 61, 70, 108, 123, 127]). In this sense, heteroclinic

solutions are often referred as transitional solutions.

8.2. Auxiliary results

The functional set is defined as

X =

{
u ∈ C1(R) : lim

|t|→+∞
u(i)(t) ∈ R, i = 0, 1

}

with the norm

‖x‖X = max {‖x‖∞, ‖x′‖∞} , where ‖y‖∞ := sup
t∈R

|y(t)| .

It can be proved, by standard arguments, that (X, ‖·‖X) is a Banach

space.

By a solution of problem (8.1.1),(8.1.2), we consider a function u ∈ X

such that a · (φ ◦ u′) ∈W 1,1(R), satisfying (8.1.1),(8.1.2).
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The following assumptions will be considered forward:

(A1) φ is an increasing homeomorphism with φ(0) = 0 and φ(R) = R

such that

∣∣φ−1(w)
∣∣ ≤ φ−1(|w|); (8.2.1)

(A2) a ∈ C(R,R\ {0}) with a(t) > 0, or a(t) < 0, ∀t ∈ R, such that

lim
|t|→+∞

|a(t)| = +∞

and

∫ +∞

−∞
φ−1

(
2
∫+∞
−∞ ϕρ(r)dr

|a(s)|

)
ds < +∞. (8.2.2)

The solvability of the integral equation associated to the problem

(8.1.1),(8.1.2) is studied in the next lemma.

Lemma 8.2.1. Consider that f is an L1-Carathéodory and assumptions

(A1), (A2) hold. Then u ∈ X is a solution of problem (8.1.1),(8.1.2) if and

only if

u(t) = ν− +

∫ t

−∞
φ−1

(
τu +

∫ s

−∞ f (r, u(r), u′(r)) dr

a(s)

)
ds (8.2.3)

with τu the unique solution of the equation

∫ +∞

−∞
φ−1

(
τu +

∫ s

−∞ f (r, u(r), u′(r)) dr

a(s)

)
ds = ν+ − ν−. (8.2.4)

Moreover,

τu ∈ [w1, w2] , if a(t) > 0, ∀t ∈ R, (8.2.5)

or

τu ∈ [w2, w1] , if a(t) < 0, ∀t ∈ R, (8.2.6)
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with

w1 := −
∫ +∞

−∞
|f (r, u(r), u′(r)) |dr (8.2.7)

and

w2 :=

∫ +∞

−∞
|f (r, u(r), u′(r)) |dr. (8.2.8)

Proof. For u a solution of problem (8.1.1),(8.1.2), there is a constant

τu ∈ R, such that

a(t) φ (u′(t)) = τu +

∫ t

−∞
f (r, u(r), u′(r)) dr, for t ∈ R,

and

u′(t) = φ−1

(
τu +

∫ s

−∞ f (r, u(r), u′(r)) dr

a(t)

)
.

By (8.1.2),

u(t) = ν− +

∫ t

−∞
φ−1

(
τu +

∫ s

−∞ f (r, u(r), u′(r)) dr
a(s)

)
ds

and

ν− +

∫ +∞

−∞
φ−1

(
τu +

∫ s

−∞ f (r, u(r), u′(r)) dr

a(s)

)
ds = ν+.

To see that τu is the unique solution of (8.2.4), define the function

F (y) :=

∫ +∞

−∞
φ−1

(
y +

∫ s

−∞ f (r, u(r), u′(r)) dr

a(s)

)
ds.

As f is an L1-Carathéodory function, by (A1) and (A2), F is well defined.

If a(t) > 0, ∀t ∈ R, then F (y) is strictly increasing in R, and

lim
y→+∞F (y) =

∫ +∞

−∞
φ−1 (+∞) ds = +∞,

lim
y→−∞F (y) =

∫ +∞

−∞
φ−1 (−∞) ds = −∞.
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Otherwise, if a(t) < 0, ∀t ∈ R, then F (y) is strictly decreasing in R, and

lim
y→+∞F (y) =

∫ +∞

−∞
φ−1 (−∞) ds = −∞,

lim
y→−∞F (y) =

∫ +∞

−∞
φ−1 (+∞) ds = +∞.

Therefore, the equation F (y) = ν− − ν+ has a unique solution τu.

Moreover, F (w1) and F (w2) have opposite signs. For example, in the

case a(t) > 0, ∀t ∈ R, we have

F (w1) =

∫ +∞

−∞
φ−1

(
w1 +

∫ s

−∞ f (r, u(r), u′(r)) dr

a(s)

)
ds ≤ 0,

for w1 given by (8.2.7), and

F (w2) =

∫ +∞

−∞
φ−1

(
w2 +

∫ s

−∞ f (r, u(r), u′(r)) dr

a(s)

)
ds ≥ 0,

for w2 given by (8.2.8). So τu ∈ [w1, w2] , if a(t) > 0, ∀t ∈ R, and τu ∈
[w2, w1] , if a(t) < 0, ∀t ∈ R. �

8.3. Existence of heteroclinics solutions

The main result presents sufficient conditions for the existence of hetero-

clinic solutions of problem (8.1.1),(8.1.2) without the usual asymptotic or

growth assumptions on φ or on f.

Theorem 8.3.1. Suppose that f : R3 → R is an L1-Carathéodory function

and hypothesis (A1), (A2) hold. Then problem (8.1.1),(8.1.2) has at least a

solution u ∈ X, that is, there is a heteroclinic solution for (8.1.1).

Proof. Define the operator T : X → X by

Tu(t) = ν− +

∫ t

−∞
φ−1

(
τu +

∫ s

−∞ f (r, u(r), u′(r)) dr

a(s)

)
ds,

where τu is the unique solution of (8.2.4).
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From Lemma 8.2.1, it is enough to prove that T has a fixed point.

For clearance, we use several steps.

Step 1. T : X → X is well defined.

For each u ∈ X, there is ρ > 0 such that ‖u‖X < ρ, and, as f is an

L1-Carathéodory function, a positive function ϕρ ∈ L1(R) such that

|f (t, u(t), u′(t))| ≤ ϕρ(t), a.e. t ∈ R,

and

∫ t

−∞
f (r, u(r), u′(r)) dr ≤

∫ +∞

−∞
ϕρ(t)dt < +∞. (8.3.1)

By (A1), (A2), Tu is continuous on R.

For the derivative of the operator,

(Tu)
′
(t) = φ−1

(
τu +

∫ t

−∞ f (r, u(r), u′(r)) dr
a(t)

)

is continuous on R, and, therefore, Tu ∈ C1(R).

lim
t→−∞Tu(t) = lim

t→−∞ ν− +

∫ t

−∞
φ−1

(
τu +

∫ s

−∞ f(r, u(r), u′(r))dr

a(s)

)
ds = ν−,

by (8.2.4),

lim
t→+∞ Tu(t) = lim

t→+∞ ν− +

∫ t

−∞
φ−1

(
τu +

∫ s

−∞ f(r, u(r), u′(r))dr

a(s)

)
ds = ν+.

From (A1), (A2), (8.2.5), or (8.2.6), and (8.3.1),

lim
t→−∞ (Tu)

′
(t) = lim

t→−∞φ−1

(
τu +

∫ t

−∞ f (r, u(r), u′(r)) dr

a(t)

)

= φ−1

(
τu

limt→−∞ a(t)

)
= 0
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and

lim
t→+∞ (Tu)

′
(t) = φ−1

(
τu +

∫ +∞
−∞ f (r, u(r), u′(r)) dr

limt→+∞ a(t)

)
= 0.

So, Tu ∈ X.

Step 2. T is compact.

Consider a bounded subset B ⊂ X , u ∈ B, and ρ0 > 0 such that

‖u‖X < ρ0. Therefore, ‖u‖∞ < ρ0 and ‖u′‖∞ < ρ0.

To verify the assumptions of Lemma 7.2.2, we consider some claims.

Claim 2.1. TB is uniformly bounded, for B a bounded set in X.

By (8.2.1), (8.2.5), or (8.2.6), and (A1), we have

‖Tu‖∞ = sup
t∈R

∣∣∣∣∣ν− +

∫ t

−∞
φ−1

(
τu +

∫ s

−∞ f(r, u(r), u′(r))dr

a(s)

)
ds

∣∣∣∣∣

≤ sup
t∈R

|ν−|+
∫ t

−∞
φ−1

(∣∣∣∣∣
τu +

∫ s

−∞ f(r, u(r), u′(r))dr

a(s)

∣∣∣∣∣
)
ds

≤ sup
t∈R

|ν−|+
∫ t

−∞
φ−1

(
|τu|+

∫ s

−∞ |f(r, u(r), u′(r))|
|a(s)| dr

)
ds

≤ |ν−|+
∫ +∞

−∞
φ−1

(
|τu|+

∫ s

−∞ ϕρ0(r)dr

|a(s)|

)
ds

≤ |ν−|+
∫ +∞

−∞
φ−1

(
2
∫ +∞
−∞ ϕρ0(r)dr

|a(s)|

)
ds < +∞,

and, by (A2),

‖(Tu)′‖∞ = sup
t∈R

∣∣∣∣∣φ−1

(
τu +

∫ t

−∞ f (r, u(r), u′(r)) dr
a(t)

)∣∣∣∣∣

≤ sup
t∈R

φ−1

(
|τu|+

∫ t

−∞ |f(r, u(r), u′(r))|dr
|a(t)|

)
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≤ sup
t∈R

φ−1

(
|τu|+

∫ +∞
−∞ ϕρ0 (r)dr

|a(t)|

)

≤ sup
t∈R

φ−1

(
2
∫+∞
−∞ ϕρ0 (r)dr

|a(t)|

)
< +∞.

So, TB is uniformly bounded in X.

Claim 2.2. TB is equicontinuous on X.

For L > 0, consider t1, t2 ∈ [−L,L]. Assume, without loss of generality,

that t1 < t2.

Then, by (8.2.1), (8.2.5) and (A1),

|Tu(t1)− Tu(t2)| =
∣∣∣∣∣
∫ t1

−∞
φ−1

(
τu +

∫ s

−∞ f(r, u(r), u′(r))dr

a(s)

)
ds

−
∫ t2

−∞
φ−1

(
τu +

∫ s

−∞ f(r, u(r), u′(r))dr

a(s)

)
ds

∣∣∣∣∣

=

∣∣∣∣∣
∫ t2

t1

φ−1

(
τu +

∫ s

−∞ f(r, u(r), u′(r))dr
a(s)

)
ds

∣∣∣∣∣

≤
∫ t2

t1

φ−1

(
|τu|+

∫ s

−∞ |f(r, u(r), u′(r))dr|
|a(s)|

)
ds

≤
∫ t2

t1

φ−1

(
2
∫+∞
−∞ ϕρ0 (r)dr

|a(s)|

)
ds

−→ 0, uniformly as t1 → t2,

and

∣∣(Tu)′ (t1)− (Tu)
′
(t2)
∣∣ =

∣∣∣∣∣φ−1

(
τu +

∫ t1
−∞ f (r, u(r), u′(r)) dr

a(t1)

)

−φ−1

(
τu +

∫ t2
−∞ f (r, u(r), u′(r)) dr

a(t2)

)∣∣∣∣∣
−→ 0, uniformly as t1 → t2.

Therefore, TB is equicontinuous on X .
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Claim 2.3. TB is equiconvergent at ±∞.

Let u ∈ B. As in the previous claims

∣∣∣∣Tu(t)− lim
t→−∞(Tu(t))

∣∣∣∣ =
∣∣∣∣∣
∫ t

−∞
φ−1

(
τu +

∫ s

−∞ f (r, u(r), u′(r)) dr

a(s)

)
ds

∣∣∣∣∣

≤
∫ t

−∞
φ−1

(
2
∫ +∞
−∞ ϕρ0(r)dr

|a(s)|

)
ds

−→ 0, as t→ −∞,

and

∣∣∣∣Tu(t)− lim
t→+∞(Tu(t))

∣∣∣∣ =
∣∣∣∣∣
∫ t

−∞
φ−1

(
τu +

∫ s

−∞ f (r, u(r), u′(r)) dr

a(s)

)
ds

−
∫ +∞

−∞
φ−1

(
τu +

∫ s

−∞ f (r, u(r), u′(r)) dr
a(s)

)
ds

∣∣∣∣∣

=

∣∣∣∣∣
∫ +∞

t

φ−1

(
τu +

∫ s

−∞ f (r, u(r), u′(r)) dr

a(s)

)
ds

∣∣∣∣∣

≤
∫ +∞

t

φ−1

(
2
∫ +∞
−∞ ϕρ0 (r)dr

|a(s)|

)
ds

−→ 0, as t→ +∞.

Moreover,

∣∣∣∣(Tu)′(t)− lim
t→−∞(Tu)′(t)

∣∣∣∣ =
∣∣∣∣∣φ−1

(
τu +

∫ t

−∞ f (r, u(r), u′(r)) dr

a(t)

)

− φ−1

(
τu

limt→−∞ a(t)

)∣∣∣∣

≤
∣∣∣∣∣φ−1

(
τu +

∫ t

−∞ ϕρ0(r)dr

a(t)

)∣∣∣∣∣
−→ 0, as t→ −∞,
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and∣∣∣∣(Tu)′(t)− lim
t→+∞(Tu)′(t)

∣∣∣∣ =
∣∣∣∣∣φ−1

(
τu +

∫ t

−∞ f (r, u(r), u′(r)) dr
a(t)

)

−φ−1

(
τu +

∫ +∞
−∞ f (r, u(r), u′(r)) dr

limt→+∞ a(t)

)∣∣∣∣∣
−→ 0, as t→ +∞.

So, TB is equiconvergent at ±∞. By Lemma 7.2.2, T is compact.

Step 3. Let D ⊂ X be a closed bounded set. Then TD ⊂ D.

Suppose D ⊂ X defined by

D = {x ∈ X : ‖x‖X ≤ ρ1} ,
where ρ1 is such that

ρ1 := max

{
ρ0, |ν−|+

∫ +∞

−∞
φ−1

(
K

a(s)

)
ds, sup

t∈R

φ−1

(
K

a(t)

)}
,

with

K := 2

∫ +∞

−∞
ϕρ0(r)dr.

Let u ∈ D. By the same arguments as in Claim 2.1,

‖Tu‖∞ = sup
t∈R

|Tu(t)|

≤ ∣∣ν−∣∣+
∫ +∞

−∞
φ−1

(
|τu|+

∫ s

−∞ ϕρ0 (r)dr

|a(s)|

)
ds

≤ ∣∣ν−∣∣+
∫ +∞

−∞
φ−1

(
2
∫+∞
−∞ ϕρ0(r)dr

|a(s)|

)
ds < ρ1,

and

‖(Tu)′‖∞ = sup
t∈R

|(Tu)′(t)|

≤ sup
t∈R

φ−1

(
|τu|+

∫ t

−∞ |f(r, u(r), u′(r))|dr
|a(t)|

)

≤ sup
t∈R

φ−1

(
2
∫+∞
−∞ ϕρ0 (r)dr

|a(t)|

)
< ρ1.
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Therefore, TD ⊂ D. By Theorem 1.2.6, T has at least one fixed point

u ∈ X. That is, by Lemma 8.2.1, u is a heteroclinic solution of (8.1.1). �

8.4. Examples

Example 1. Consider the boundary value problem composed by the dif-

ferential equation

[
(
t2 + 1

)
(u′(t))3]′ =

[(u(t))
2 − 1] eu

′(t)

1 + t2
, a.e. t ∈ R, (8.4.1)

and the boundary conditions

u(−∞) = −1, u(+∞) = 1. (8.4.2)

This problem is a particular case of problem (8.1.1),(8.4.1), with

φ(w) = w3,

a(t) = 1 + t2,

f(t, x, y) =

(
x2 − 1

)
ey

1 + t2
,

ν− = −1, ν+ = 1.

It can be seen that all assumptions of Theorem 8.3.1 are satisfied and

f is an L1-Carathéodory function with

ϕρ(t) =

(
ρ2 + 1

)
eρ

1 + t2
.

Therefore, there is a heteroclinic connection linking the two equilibrium

points −1 and 1.

Example 2. The differential equation

[−(t2n + 1)|u′(t)|p−2u′(t)]′ =
[(u(t))2 − 1][(u′(t))6 + k]

1 + t4
, a.e. t ∈ R,

(8.4.3)

where n ∈ N, k > 0, and (8.4.2), is a particular case of problem

(8.1.1),(8.1.2), with

φ(y) = |y|p−2y,

a(t) = −(1 + t2n),
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f(t, x, y) =
(x2 − 1)(y6 + k)

1 + t4
,

ν− = −1, ν+ = 1.

The assumptions of Theorem 9.2.6 are verified with

ϕρ(t) =
(ρ2 + 1)(ρ6 + 1)

1 + t4
,

and there is a heteroclinic solution of (8.4.3) between the equilibrium points

−1 and 1.
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Chapter 9

Heteroclinic Solutions for Semi-linear
Problems (iii)

9.1. Introduction

In this chapter, we study the second-order nonautonomous half-linear equa-

tion on the whole real line,

(a (t, u(t))φ (u′(t)))′ = f (t, u(t), u′(t)) , a.e. t ∈ R, (9.1.1)

with φ an increasing homeomorphism, φ(0) = 0 and φ(R) = R, a ∈
C(R2,R) such that a(t, x) > 0 for (t, x) ∈ R

2, and f : R3 → R an L1-

Carathéodory function, together with the boundary conditions

u(−∞) := lim
t→−∞u(t) = ν−, u(+∞) := lim

t→+∞u(t) = ν+, (9.1.2)

with ν+, ν− ∈ R, such that ν− < ν+. Moreover, an application to singular

φ-Laplacian equations will be shown.

The problem (9.1.1),(9.1.2) was studied in [53, 112]. This chapter con-

tains several results and criteria. For example, Theorem 2.1 guarantees

the existence of a heteroclinic solution under, in short, the following main

assumptions:

• φ grows at most linearly at infinity;

• f(t, ν−, 0) ≤ 0 ≤ f(t, ν+, 0) for a.e. t ∈ R;

111
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• there exist constants L,H > 0, a continuous function θ : R+ → R
+ and

a function λ ∈ Lp([−L,L]), with 1 ≤ p ≤ ∞, such that

|f(t, x, y)| ≤ λ(t) θ (a(t, x) |y|) , for a.e. |t| ≤ L, every x ∈ [ν−, ν+] ,

|y| > H,

∫ +∞ s1−
1
q

θ(s)
ds = +∞;

• for every C > 0, there exist functions ηC ∈ L1(R), ΛC ∈ L1
loc([0,+∞)),

null in [0, L] and positive in [L,+∞), and NC(t) ∈ L1(R) such that

f(t, x, y) ≤ −ΛC(t)φ (|y|) ,
f(−t, x, y) ≥ ΛC(t)φ (|y|) , for a.e. t ≥ L, every x ∈ [ν−, ν+] ,

|y| ≤ NC(t),

|f(t, x, y)| ≤ ηC(t) if x ∈ [ν−, ν+] , |y| ≤ NC(t), for a.e. t ∈ R.

Motivated by these works, we prove, in this paper, the existence of hete-

roclinic solutions for (9.1.1) assuming a Nagumo-type condition on the real

line, and without asymptotic assumptions on the nonlinearities φ and f. The

method follows arguments suggested in [71, 72, 115], applying the technique

of [115] to a more general function a, to an adequate functional problem and

to classical and singular φ-Laplacian equations. The most common appli-

cation for φ is the so-called p-Laplacian, that is φ(y) = |y|p−2p, p > 1, and

even in this particular case verifies (9.1.3), the new assumption on φ. On

the other hand, to the best of our knowledge, the main result is even new

when φ(y) = y, that is, for equation

(a (t, u(t))u′(t))′ = f(t, u(t), u′(t)), a.e. t ∈ R.

The study of differential equations and boundary value problems on the

half-line or the whole real line and the existence of homoclinic or heteroclinic

solutions have attracted increasing attention in the recent years due to the

applications to non-Newtonian fluids theory, diffusion of flows in porous

media, and nonlinear elasticity (see, for instance, [9, 25, 43, 85, 104, 110,

111, 135, 138, 140] and the references therein). In particular, heteroclinic

connections are related to the processes in which the variable transits from

an unstable equilibrium to a stable one (see, for example, [37, 42, 59, 61, 70,

108, 123, 127]), this is why heteroclinic solutions are often called transitional

solutions.
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Throughout this chapter, we consider the setX := BC1(R) of the C1(R)

bounded functions, equipped with the norm ‖x‖X = max {‖x‖∞ , ‖x′‖∞},
where ‖y‖∞ := supt∈R |y(t)|.

By using standard procedures, it can be shown that (X, ‖·‖X) is a

Banach space.

As solution of problem (9.1.1),(9.1.2) we mean a function u ∈ X such

that t �→ (a (t, u(t))φ (u′(t))) ∈ W 1,1(R), satisfying (9.1.1),(9.1.2).

The following hypotheses will be assumed:

(H1) φ is an increasing homeomorphism with φ(0) = 0 and φ(R) = R

such that
∣∣φ−1(w)

∣∣ ≤ φ−1(|w|); (9.1.3)

(H2) a ∈ C(R2,R) is a continuous and positive function with a(t, x) → +∞
as |t| → +∞.

9.2. Existence results

The first existence result for heteroclinic connections will be obtained for

an auxiliary functional problem without the usual asymptotic or growth

assumptions on φ or on the nonlinearity f .

Consider two continuous operators A : X → C(R), x �−→ Ax, with

Ax > 0, ∀x ∈ X, and F : X → L1(R), x �−→ Fx, and the functional

problem composed by

(Au(t) φ (u
′(t)))′ = Fu(t), a.e. t ∈ R, (9.2.1)

and the boundary conditions (9.1.2).

Define, for each bounded set Ω ⊂ X,

m(t) := min
x∈Ω

Ax (t) (9.2.2)

and, for the above operators, assume that

(F1) For each η > 0 there is ψη ∈ L1(R), with ψη(t) > 0, a.e. t ∈ R, such

that |Fx(t)| ≤ ψη(t), a.e. t ∈ R, whenever ‖x‖X < η.

(A1) Ax(t) → +∞ as |t| → +∞ and

∫ +∞

−∞
φ−1

(
2
∫+∞
−∞ ψη(r)dr

m(s)

)
ds < +∞. (9.2.3)
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Theorem 9.2.1. Assume that conditions (H1), (F1) and (A1) hold. Then

there exists u ∈ X such that Au · (φ ◦ u′) ∈ W 1,1(R) verifying (9.2.1) and

(9.1.2).

Moreover, this solution is given by

u(t) = ν− +

∫ t

−∞
φ−1

(
τu +

∫ s

−∞ Fu (r) dr

Au(s)

)
ds, (9.2.4)

where τu is the unique solution of

∫ +∞

−∞
φ−1

(
τu +

∫ s

−∞ Fu (r) dr

Au(s)

)
ds = ν+ − ν− (9.2.5)

with

τu ∈ [w1, w3] , (9.2.6)

for

w1 := −
∫ +∞

−∞
|Fu (r)| dr, (9.2.7)

w2 :=

∫ +∞

−∞
|Fu (r)| dr, and w3 = w2 + k, (k ≥ 0). (9.2.8)

Proof. For every x ∈ X , define the operator T : X → X by

Tx(t) = ν− +

∫ t

−∞
φ−1

(
τx +

∫ s

−∞ Fx (r) dr

Ax(s)

)
ds,

where τx ∈ R the unique solution of

∫ +∞

−∞
φ−1

(
τx +

∫ s

−∞ Fx (r) dr

Ax(s)

)
ds = ν+ − ν−.

To show that τx is the unique solution of (9.2.5), consider the strictly

increasing function in R

G(y) :=

∫ +∞

−∞
φ−1

(
y +

∫ s

−∞ Fx (r) dr

Ax(s)

)
ds,

and remark that

lim
y→−∞G(y) =

∫ +∞

−∞
φ−1 (−∞) ds = −∞,
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and

lim
y→+∞G(y) =

∫ +∞

−∞
φ−1 (+∞)ds = +∞. (9.2.9)

Moreover, for w1 given by (9.2.7) and w2 given by (9.2.8), G(w1) and

G(w2) have opposite signs, such as

G(w1) =

∫ +∞

−∞
φ−1

(
w1 +

∫ s

−∞ Fx (r) dr

Ax(s)

)
ds ≤ 0 < ν+ − ν−,

G(w2) =

∫ +∞

−∞
φ−1

(
w2 +

∫ s

−∞ Fx (r) dr

Ax(s)

)
ds ≥ 0.

As G is strictly increasing in R, by (9.2.9), there is k ≥ 0 such that w3 =

w2 + k and G(w3) ≥ ν+ − ν−. Therefore, the equation, G(y) = ν− − ν+,

has a unique solution τx, and by Bolzano’s theorem, τx ∈ [w1, w3] .

It is clear that if T has a fixed point u, then u is a solution of problem

(9.2.1),(9.1.2).

To prove the existence of such fixed point, we consider several steps:

Step 1. T : X → X is well defined

with the positivity of A and the continuity of A and F , Tx and

T ′
x(t) = φ−1

(
τx +

∫ t

−∞ Fx (r) dr

Ax(t)

)

are continuous on R, that is, Tx ∈ C1(R).

Moreover, by (H1), (F1), (A1) and (9.2.5), Tx and T ′
x are bounded.

Therefore, Tx ∈ X.

Step 2. T is compact.

Let B ⊂ X be a bounded subset, x ∈ B, and ρ0 > 0 such that ‖x‖X < ρ0.

Consider m(t) given by (9.2.2) with Ω = B.

Claim. TB is uniformly bounded in X .

By (9.1.3), (9.2.6) and (A1), we have

‖Tx‖∞ = sup
t∈R

∣∣∣∣∣ν− +

∫ t

−∞
φ−1

(
τx +

∫ s

−∞ Fx (r) dr

Ax(s)

)
ds

∣∣∣∣∣

≤ sup
t∈R

(∣∣ν−∣∣+
∫ t

−∞
φ−1

(∣∣∣∣∣
τx +

∫ s

−∞ Fx (r) dr

Ax(s)

∣∣∣∣∣
)
ds

)
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≤ sup
t∈R

(∣∣ν−∣∣+
∫ t

−∞
φ−1

(
|τx|+

∫ s

−∞ |Fx (r)|
Ax(s)

dr

)
ds

)

≤ ∣∣ν−∣∣+
∫ +∞

−∞
φ−1

(
|τx|+

∫ s

−∞ ψρ0(r)dr

Ax(s)

)
ds

≤ ∣∣ν−∣∣+
∫ +∞

−∞
φ−1

(
2
∫ +∞
−∞ ψρ0(r)dr + k

m(s)

)
ds < +∞,

and

‖T ′
x‖∞ = sup

t∈R

∣∣∣∣∣φ−1

(
τx +

∫ t

−∞ Fx (r) dr

Ax(t)

)∣∣∣∣∣

≤ sup
t∈R

φ−1

(
|τx|+

∫ t

−∞ |Fx (r)| dr
Ax(t)

)

≤ sup
t∈R

φ−1

(
|τx|+

∫ +∞
−∞ ψρ0(r)dr

Ax(t)

)

≤ sup
t∈R

φ−1

(
2
∫ +∞
−∞ ψρ0(r)dr + k

m(t)

)
< +∞.

So, TB is uniformly bounded in X.

Claim. TB is equicontinuous on X .

For M > 0, consider, t1, t2 ∈ [−M,M ], and, without loss of generality,

t1 < t2.

Then, by (9.1.3), (9.2.6) and (A1),

|Tx(t1)− Tx(t2)| =

∣∣∣∣∣
∫ t1

−∞
φ−1

(
τx +

∫ s

−∞ Fx (r) dr

Ax(s)

)
ds

−
∫ t2

−∞
φ−1

(
τx +

∫ s

−∞ Fx (r) dr

Ax(s)

)
ds

∣∣∣∣∣

=

∣∣∣∣∣
∫ t2

t1

φ−1

(
τx +

∫ s

−∞ Fx (r) dr

Ax(s)

)
ds

∣∣∣∣∣
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≤
∫ t2

t1

φ−1

(
|τx|+

∫ s

−∞ |Fx (r)| dr
Ax(s)

)
ds

≤
∫ t2

t1

φ−1

(
2
∫ +∞
−∞ ψρ0(r)dr + k

m(s)

)
ds

−→ 0, uniformly as t1 → t2,

and

|T ′
x(t1)− T ′

x(t2)| =

∣∣∣∣∣φ−1

(
τx +

∫ t1
−∞ Fx (r) dr

Ax(t1)

)

− φ−1

(
τx +

∫ t2
−∞ Fx (r) dr

Ax(t2)

)∣∣∣∣∣
−→ 0, uniformly as t1 → t2.

Therefore, TB is equicontinuous on X .

Claim. TB is equiconvergent at ±∞.

Let u ∈ B. As in the claims above,

∣∣∣∣Tx(t)− lim
t→−∞(Tx(t))

∣∣∣∣ =

∣∣∣∣∣
∫ t

−∞
φ−1

(
τx +

∫ s

−∞ Fx (r) dr

Ax(s)

)
ds

∣∣∣∣∣

≤
∫ t

−∞
φ−1

(
2
∫+∞
−∞ ψρ0(r)dr + k

m(s)

)
ds

−→ 0, as t→ −∞,

and

∣∣∣∣Tx(t)− lim
t→+∞(Tx(t))

∣∣∣∣ =

∣∣∣∣∣
∫ t

−∞
φ−1

(
τx +

∫ s

−∞ Fx (r) dr

Ax(s)

)
ds

−
∫ +∞

−∞
φ−1

(
τx +

∫ s

−∞ Fx (r) dr

Ax(s)

)
ds

∣∣∣∣∣
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=

∣∣∣∣∣
∫ +∞

t

φ−1

(
τx +

∫ s

−∞ Fx (r) dr

Ax(s)

)
ds

∣∣∣∣∣

≤
∫ +∞

t

φ−1

(
2
∫+∞
−∞ ψη(r)dr + k

m(s)

)
ds

−→ 0, as t → +∞.

Moreover, by (A1),

∣∣∣∣T ′
x(t)− lim

t→−∞T ′
x(t)

∣∣∣∣ =

∣∣∣∣∣φ−1

(
τx +

∫ t

−∞ Fx (r) dr

Ax(t)

)

−φ−1

(
τx

limt→−∞ Ax(t)

)∣∣∣∣

≤
∣∣∣∣∣φ−1

(
τx +

∫ t

−∞ ψρ0 (r)dr

Ax(t)

)∣∣∣∣∣
−→ 0, as t→ −∞,

and

∣∣∣∣T ′
x(t)− lim

t→+∞ T ′
x(t)

∣∣∣∣ =

∣∣∣∣∣φ−1

(
τx +

∫ t

−∞ Fx (r) dr

Ax(t)

)

− φ−1

(
τx +

∫ +∞
−∞ Fx (r) dr

limt→−∞Ax(t)

)∣∣∣∣∣
−→ 0, as t→ +∞.

So, TB is equiconvergent at ±∞, and, by Lemma 7.2.2, T is compact.

Step 3. Let D ⊂ X be a closed and bounded set. Then TD ⊂ D.

Consider D ⊂ X defined as

D = {x ∈ X : ‖x‖X ≤ ρ1},

with ρ1, such that

ρ1 := max

{
ρ0, |ν−|+

∫ +∞

−∞
φ−1

(
K

m∗(s)

)
ds, sup

t∈R

φ−1

(
K

m∗(t)

)}
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with

K := 2

∫ +∞

−∞
ψρ0(r)dr + k,

and

m∗(t) := min
x∈B

Ax (t) .

Let x ∈ D. Following similar arguments as in previous claims, with m(t)

given by (9.2.2) and Ω = D,

‖Tx‖∞ = sup
t∈R

|Tx(t)|

≤ ∣∣ν−∣∣+
∫ +∞

−∞
φ−1

(
|τx|+

∫ s

−∞ ψρ0 (r)dr

Ax(s)

)
ds

≤ ∣∣ν−∣∣+
∫ +∞

−∞
φ−1

(
2
∫+∞
−∞ ψρ0(r)dr + k

m∗(s)

)
ds < ρ1,

and

‖T ′
x‖∞ = sup

t∈R

|T ′
x(t)| ≤ sup

t∈R

φ−1

(
|τx|+

∫ t

−∞ |Fx (r)| dr
Ax(t)

)

≤ sup
t∈R

φ−1

(
2
∫ +∞
−∞ ψρ0(r)dr + k

m∗(t)

)
< ρ1.

Therefore, TD ⊂ D. By Theorem 1.2.6, Tx has a fixed point in X , that

is, there is a heteroclinic solution of problem (9.2.1),(9.1.2). �

To make the relation between the functional problem and the initial

one, we apply lower and upper solutions method, according to the following

definition.

Definition 9.2.2. A function α ∈ X is a lower solution of problem

(9.1.1),(9.1.2) if t �→ (a (t, α(t)) φ(α′(t))) ∈W 1,1(R),

(a (t, α(t)) φ(α′(t)))′ ≥ f(t, α(t), α′(t)), a.e. t ∈ R, (9.2.10)

and

α(−∞) ≤ ν−, α(+∞) ≤ ν+. (9.2.11)
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An upper solution β ∈ X of problem (9.1.1),(9.1.2) satisfies t �→ (a(t, β(t))

φ(β′(t))) ∈W 1,1(R) and the reversed inequalities.

To have some control on the first derivative, we apply a Nagumo-type

condition.

Definition 9.2.3. An L1-Carathéodory function f : R3 → R satisfies a

Nagumo-type growth condition relative to α, β ∈ X, with α(t) ≤ β(t),

∀t ∈ R, if there are positive and continuous functions ψ, θ : R → R
+, such

that

sup
t∈R

ψ(t) < +∞,

∫ +∞

0

∣∣φ−1 (s)
∣∣

θ (|φ−1 (s)|)ds = +∞, (9.2.12)

and

|f(t, x, y)| ≤ ψ(t) θ(|y|), for a.e. t ∈ R and α(t) ≤ x ≤ β(t).

(9.2.13)

Lemma 9.2.4. Let f : R3 → R be an L1-Carathéodory function f : R3 → R

satisfying a Nagumo-type growth condition relative to α, β ∈ BC(R), with

α(t) ≤ β(t), ∀t ∈ R. Then there exists N > 0 (not depending on u) such

that for every solution u of (9.1.1), (9.1.2) with

α(t) ≤ u(t) ≤ β(t), for t ∈ R, (9.2.14)

we have

‖u′‖∞ < N. (9.2.15)

Proof. Let u be a solution of (9.1.1),(9.1.2) verifying (9.2.14). Take r > 0

such that

r > max
{∣∣ν−∣∣ , ∣∣ν+∣∣} . (9.2.16)

If |u′(t)| ≤ r, ∀t ∈ R, the proof would be complete by taking N > r.

Suppose there is t0 ∈ R such that |u′(t0)| > N.

In the case u′(t0) > N , by (9.2.12), we can take N > r such that

∫ a(t,u(t))φ(N)

a(t,u(t))φ(r)

|φ−1( s
a(s,u(s)) )|

θ(|φ−1( s
a(s,u(s)) )|)

ds > M

(
sup
t∈R

β(t)− inf
t∈R

α(t)

)
, (9.2.17)

with M := supt∈R
ψ(t), which is finite by (9.2.12).
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By (9.1.2), there are t1, t2 ∈ R such that t1 < t2, u
′(t1) = N , u′(t2) = r

and r ≤ u′(t) ≤ N, ∀t ∈ [t1, t2]. So, the following contradiction with (9.2.17)

holds by (9.2.12):

∫ a(t,u(t))φ(N)

a(t,u(t))φ(r)

∣∣∣φ−1
(

s
a(s,u(s))

)∣∣∣
θ
(∣∣∣φ−1

(
s

a(s,u(s))

)∣∣∣
)ds

=

∫ a(t,u(t))φ(u′(t1))

a(t,u(t))φ(u′(t2))

∣∣∣φ−1
(

s
a(s,u(s))

)∣∣∣
θ
(∣∣∣φ−1

(
s

a(s,u(s))

)∣∣∣
)ds

=

∫ t1

t2

u′(s)
θ(u′(s))

(φ (u′ (s)))′ ds

= −
∫ t2

t1

f(s, u(s), u′(s))
θ(u′(s))

u′(s) ds

≤
∫ t2

t1

|f(s, u(s), u′(s))|
θ(u′(s))

u′(s) ds

≤
∫ t2

t1

ψ(s) u′(s) ds ≤M

∫ t2

t1

u′(s) ds

≤M (u (t2)− u (t1))

≤M

(
sup
t∈R

β(t) − inf
t∈R

α(t)

)
.

So, u′(t) < N, ∀t ∈ R.

By similar arguments, it can be shown that u′(t) > −N, ∀t ∈ R.

Therefore, ‖u′‖∞ < N, ∀t ∈ R. �

The following lemma, in [141], provides a technical tool to use forward.

Lemma 9.2.5. For v, w ∈ C(I) such that v(x) ≤ w(x), for every x ∈ I,

define

q(x, u) = max{v,min{u,w}}.
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Then, for each u ∈ C1(I), the next two properties hold:

(a) d
dxq(x, u(x)) exists for a.e. x ∈ I.

(b) If u, um ∈ C1(I) and um → u in C1(I), then

d

dx
q(x, um(x)) → d

dx
q(x, u(x)) for a.e. x ∈ I.

The main result will be given by the following theorem.

Theorem 9.2.6. Suppose that f : R3 → R is an L1-Carathéodory function

verifying a Nagumo-type condition and hypothesis (H1), (H2). If there are

lower and upper solutions of problem (9.1.1),(9.1.2), α and β, respectively,

such that

α(t) ≤ β(t), ∀t ∈ R,

then there is a function u ∈ X with t �→ (a (t, u(t))φ (u′(t))) ∈ W 1,1(R),

solution of problem (9.1.1),(9.1.2) and

α(t) ≤ u(t) ≤ β(t), ∀t ∈ R.

Proof. Define the truncation operator Q : W 1,1(R) → X ⊂ W 1,1(R)

given by

Q(x) := Qx(t) =




β(t), x(t) > β(t),

x(t), α(t) ≤ x(t) ≤ β(t),

α(t), x(t) < α(t).

Consider the modified equation

(
a(t, Qu(t)) φ

(
d

dt
Qu(t)

))′
= f

(
t, Qu(t),

d

dt
Qu(t)

)

+
1

1 + t2
u(t)−Qu(t)

1 + |u(t)−Qu(t)| , (9.2.18)

for a.e. t ∈ R, which is well defined by Lemma 9.2.5.

Claim 1. Every solution u(t) of problem (9.2.18),(9.1.2) verifies

α(t) ≤ u(t) ≤ β(t), ∀t ∈ R.
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Let u be a solution of problem (9.2.18),(9.1.2), and suppose, by contra-

diction, that there is t0 such that α(t0) > u(t0). Remark that, by (9.2.11),

t0 �= ±∞ as u(±∞)− α(±∞) ≥ 0.

Define

min
t∈R

(u(t)− α(t)) := u(t1)− α(t1) < 0.

So, there is an interval ]t2, t1] such that u(t)− α(t) < 0, for a.e. t ∈]t2, t1],
and, by (9.2.10), this contradiction is achieved:

(a(t, α(t)) φ(α′(t)))′ =
(
a(t, Qu(t)) φ

(
d

dt
Qu(t)

))′

= f

(
t, Qu(t),

d

dt
Qu(t)

)
+

1

1 + t2
u(t)−Qu(t)

1 + |u(t)−Qu(t)|

< f(t, α(t), α′(t)) ≤ (a(α(t)) φ(α′(t)))′ .

Therefore, α(t) ≤ u(t), ∀t ∈ R. Following similar arguments, it can be

proved that u(t) ≤ β(t), ∀t ∈ R.

Claim 2. Problem (9.2.18),(9.1.2) has a solution.

Let A : X → C(R) and F : X → L1(R) be the operators given by

Ax := a(t, Qx(t)) and

Fx := f

(
t, Qx(t),

d

dt
Qx(t)

)
+

1

1 + t2
u(t)−Qx(t)

1 + |u(t)−Qx(t)| .

If, for

ρ := max {‖α‖∞ , ‖β‖∞ , ‖α′‖∞ , ‖β′‖∞ , N} ,
with N given by (9.2.15),

|Fx| ≤
∣∣∣∣f
(
t, Qx(t),

d

dt
Qx(t)

)∣∣∣∣+ 1

1 + t2
|u(t)−Qx(t)|

1 + |u(t)−Qx(t)|

≤
∣∣∣∣f
(
t, Qx(t),

d

dt
Qx(t)

)∣∣∣∣ ≤ ϕρ(t),

then Fx verifies (F1). Moreover, from

a(t, Qx(t)) ≥ min
t∈R

{a(t, α(t)), a(t, β(t))} ,
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we obtain that A satisfies (A1) with 0<m(t)≤ mint∈R{a(t, α(t)),
a(t, β(t))}.

So, by Theorem 9.2.1, problem (9.2.18),(9.1.2) has a solution, which, by

Claim 1, is a solution of problem (9.1.1),(9.1.2). �

9.3. Example

Consider the boundary value problem, defined on the whole real line, com-

posed by the differential equation

[
(
(tu(t))4 + 1

)
(u′(t))3]′ =

[(u(t))
2 − 1] (u′(t))2

1 + t2
, a.e. t ∈ R, (9.3.1)

coupled with the boundary conditions

u(−∞) = −1, u(+∞) = 1. (9.3.2)

Remark that the null function is not a solution of problem (9.3.1),(9.3.2),

which is a particular case of (9.1.1),(9.1.2), with

φ(w) = w3,

a(t, x) = 1 + (tx)4 ,

f(t, x, y) =

(
x2 − 1

)
y2

1 + t2
,

ν− = −1, and ν+ = 1.

All hypotheses of Theorem 9.2.6 are satisfied. In fact,

• f is an L1-Carathéodory function with

ϕρ(t) =

(
ρ2 + 1

)
ρ2

1 + t2
;

• φ(w) verifies (H1) and function a(t, x) satisfies (H2);

• the constant functions α(t) ≡ −1 and β(t) ≡ k, with k ∈ [1,+∞[, are

lower and upper solutions of problem (9.3.1),(9.3.2), respectively.

• f(t, x, y) verifies a Nagumo-type condition for −1 ≤ x ≤ k with

ψ(t) =
k

1 + t2
and θ(y) = y2.

So, by Theorem 9.2.6, there is a heteroclinic connection u between two

equilibrium points −1 and 1 of problem (9.3.1),(9.3.2), such that

−1 ≤ u(t) ≤ k, ∀t ∈ R, k ≥ 1.
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9.4. Singular φ-Laplacian equations

The previous theory can be easily adapted to singular φ-Laplacian

equations, such that for equations

(a (t, u(t))φ (u′(t)))′ = f (t, u(t), u′(t)) , a.e. t ∈ R, (1s)

where φ verifies

(Hs) φ : (−b, b) → R, for some 0 < b < +∞, this is an increasing homeo-

morphism with φ(0) = 0 and φ(−b, b) = R such that

∣∣φ−1(w)
∣∣ ≤ φ−1(|w|).

In this case, a heteroclinic solution of (1s), that is, a solution for problem

(1s),(9.1.2), is a function u ∈ X such that u′(t) ∈ (−b, b), for t ∈ R, and

t �→ (a (t, u(t))φ (u′(t))) ∈ W 1,1(R), satisfying (1s),(9.1.2).

The theory for singular φ-Laplacian equations is analogous to Theorems

9.2.1 and 9.2.6, replacing assumption (H1) with (Hs).

As an example, we can consider the problem, for n ∈ N and k > 0,





((tu(t))

2n
+ 1)

u′(t)√
1− (u′(t))2




′

=

(
(u(t))

2 − 1
)
(|u′(t)|+ k)

1 + t2
, a.e. t ∈ R,

u(−∞) = −1, u(+∞) = 1.

(9.4.1)

Clearly, problem (9.4.1) is a particularization of (9.1.1),(9.1.2), with

φ(w) =
w√

1− w2
, for w ∈ (−1, 1),

which models mechanical oscillations under relativistic effects,

a(t, x) = 1 + (tx)
2n
, (9.4.2)

f(t, x, y) =

(
x2 − 1

)
(|y|+ k)

1 + t2
, (9.4.3)

ν− = −1, and ν+ = 1.
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Moreover, the nonlinearity f given by (9.4.3) is an L1-Carathéodory

function with

ϕρ(t) =
(ρ2 + 1)(ρ+ k)

1 + t2
.

Conditions of Theorem 9.2.6 are satisfied with (H1) replaced by (Hs),

such as

• the function a(t, x), defined by (9.4.2), verifies (H2);

• the constant functions α(t) ≡ −1 and β(t) ≡ 1 are lower and upper

solutions of problem (9.4.1), respectively;

• f(t, x, y) verifies a Nagumo-type condition for −1 ≤ x ≤ 1 with

ψ(t) = 1 and θ(y) = |y|+ k.

So, there is a heteroclinic connection u between two equilibrium

points −1 and 1, for the singular φ-Laplacian problem (9.4.1), such that

−1 ≤ u(t) ≤ 1, ∀t ∈ R.
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Chapter 10

Hammerstein Integral Equations
with Sign-Changing Kernels

10.1. Introduction

In this chapter, we consider a Hammerstein generalized integral equation

u(t) =

∫ +∞

−∞
k(t, s) f(s, u(s), u′(s), . . . , u(m)(s)) ds, (10.1.1)

where k : R2 → R is a Wm,∞(R2), m ∈ N, kernel function and f : Rm+2 →
R is an L1-Carathéodory function.

The existence of solutions of integral equations, in general, and

Hammerstein equations, in particular, has been widely studied (see [18,

22, 41, 49, 84, 90, 148, 150], and the references therein). However, such

equations where the nonlinearity can depend on the derivatives are scarce.

In fact, this chapter considers discontinuous nonlinearities with derivative

dependence, without monotone or asymptotic assumptions, on the whole

real line.

We point out that the kernels, and their partial derivatives in order to

the first variable, are very general functions: they may be discontinuous and

may change sign. Moreover, the value of the limit of k(t, s), when |t| → ∞
provides an easy criterion to see if the existent solutions are homoclinic or

heteroclinic.

The main tool to deal with the lack of compactness of the opera-

tor is the concept of equiconvergence at ±∞, suggested, for example,

in [51, 128] (see Lemma 10.1.1). Our method for integral equations can

be applied to boundary value problems which include differential equations

of any order n > m.

127
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In this sense, the last section of this chapter contains an application to a

fourth-order nonlinear boundary value problem, which models moderately

large deflections of infinite nonlinear beams resting on elastic foundations

under localized external loads.

Along the chapter, E := BCm (R) is considered, the space of bounded

and continuous functions on R, with bounded and continuous derivatives

on R, till order m, equipped with the norm

‖u‖E := max{‖u(j)‖∞, j = 0, 1, . . . ,m},
where ‖y‖∞ := supt∈R |y(t)|. For Wm,∞(R2), the space of functions in

L∞(R2), with derivatives, till orderm, in L∞(R2), we assume the following:

(A1) Function k : R2 → R verifies k ∈Wm,∞(R2),

lim
t→±∞ k(t, s) ∈ R, lim

t→±∞

∣∣∣∣∂
(i)k

∂ti
(t, s)

∣∣∣∣ ∈ R, for i = 1, . . . ,m, ∀s ∈ R,

and for all τ ∈ R,

lim
t→τ

∣∣∣∣∂
(j)k

∂tj
(t, s)− ∂(j)k

∂tj
(τ, s)

∣∣∣∣ = 0, for a.e. s ∈ R and j = 0, . . . ,m.

(A2) There are positive functions ψj : R → R
+ such that∣∣∣∣∂

(j)k

∂tj
(t, s)

∣∣∣∣ ≤ ψj(s) for t ∈ R, a.e. s ∈ R and j = 0, . . . ,m

with ∫ +∞

−∞
ψj(s)ϕr(s)ds < +∞, for j = 0, . . . ,m.

The following lemma (see [51, 128]) provides a compactness criterion to

deal with the lack of compactness:

Lemma 10.1.1. A set M ⊂ X is relatively compact if the following condi-

tions hold:

(i) M is bounded in X :

(ii) the functions belonging to M are equicontinuous on any compact

interval of R,

(iii) the functions from M are equiconvergent at ±∞, that is, given ε > 0,

there exists T (ε) > 0 such that

|g(i)(t)− g(i)(+∞)| < ε and |g(i)(t)− g(i)(−∞)| < ε,

for all |t| > T (ε), i = 0, 1, . . . ,m, m ∈ N, and g ∈M .
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10.2. Main result

The main theorem is as follows.

Theorem 10.2.1. If f : Rm+2 → R is an L1-Carathéodory function and

assumptions (A1)–(A2) hold, then problem (10.1.1) has at least one solution

u(t) ∈ BCm(R).

Proof. Define the continuous integral operator T : E → E given by

Tu(t) :=

∫ +∞

−∞
k(t, s) f(s, u(s), u′(s), . . . , u(m)(s)) ds. (10.2.1)

Take u ∈ E. Then, there is ρ > 0 such that ‖u‖E ≤ ρ.

To prove that the operator T is compact, it is enough to show that the

assumptions of Lemma 10.1.1 hold. For clarity, we divide the proof into

several steps.

Step 1. T is well defined and uniformly bounded in E.

As f is L1-Carathéodory, by the Lebesgue Dominated Convergence Theo-

rem, (A1) and (A2), we have, for i = 0, . . . ,m,

‖ (Tu)(i) ‖∞ = sup
t∈R

∣∣∣∣
∫ +∞

−∞

∂(i)k

∂ti
(t, s)f(s, u(s), u′(s), . . . , u(m)(s))ds

∣∣∣∣

≤
∫ +∞

−∞
ψi(s)

∣∣∣f(s, u(s), u′(s), . . . , u(m)(s))
∣∣∣ ds

≤
∫ +∞

−∞
ψi(s)ϕr(s)ds < +∞.

Therefore ‖Tu‖E < +∞, and, therefore, TE ⊂ E and T is uniformly

bounded in E.

Step 2. T is equicontinuous in E.

Consider t1, t2 ∈ [0, 1]. By (A1),

|Tu(t1)− Tu(t2)|

≤
∫ +∞

−∞
|k(t1, s)− k(t2, s)|

∣∣∣f(s, u(s), u′(s), . . . , u(m)(s))
∣∣∣ ds

≤
∫ +∞

−∞
|k(t1, s)− k(t2, s)|ϕr(s)ds → 0, as t1 → t2,
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and for i = 1, . . . ,m,∣∣∣(Tu)(i) (t1)− (Tu)
(i)

(t2)
∣∣∣

≤
∫ +∞

−∞

∣∣∣∣∂
(i)k

∂ti
(t1, s)− ∂(i)k

∂ti
(t2, s)

∣∣∣∣
∣∣∣f(s, u(s), u′(s), . . . , u(n−1)(s))

∣∣∣ ds

≤
∫ +∞

−∞

∣∣∣∣∂
(i)k

∂ti
(t1, s)− ∂(i)k

∂ti
(t2, s)

∣∣∣∣ϕr(s)ds → 0, as t1 → t2.

Therefore, T is equicontinuous in E.

Step 3. T is equiconvergent at ±∞.

For u ∈ E, and for i = 0, 1, . . . ,m,∣∣∣∣(Tu(t))(i) − lim
t→±∞ (Tu(t))(i)

∣∣∣∣

=

∣∣∣∣
∫ +∞

−∞

(
∂(i)k

∂ti
(t, s)− ∂(i)k

∂ti
(±∞, s)

)
f(s, u(s), u′(s), . . . , u(m)(s))ds

∣∣∣∣

≤
∫ +∞

−∞

∣∣∣∣∂
(i)k

∂ti
(t, s)− ∂(i)k

∂ti
(±∞, s)

∣∣∣∣ϕr(s)ds→ 0, as t→ ±∞.

Then, by Lemma 10.1.1, T is compact in E.

Step 4. TD ⊂ D, for some D ⊂ X a closed and bounded set.

Consider a subset D ⊂ X defined as

D := {u ∈ X : ‖u‖X ≤ r1} ,
with

r1 := max

{
r,

∫ +∞

−∞
ψi(s)ϕr(s)ds, for i = 1, . . . ,m

}
,

where r > 0 is given by the L1-bound of f .

Arguing as in Step 1, it can be shown that, for i = 0, 1, . . . ,m,

‖ (Tu)(i) ‖∞ ≤
∫ +∞

−∞
ψi(s)ϕr(s)ds ≤ r1.

Therefore, TD ⊂ D and, by Schauder’s fixed-point theorem, T has at

least a fixed point u ∈ X, which is the solution of equation (10.1.1). �

Corollary 10.2.2. If limt→−∞ k(t, s) = limt→+∞ k(t, s), the solution of

(10.1.1) is a homoclinic solution. If not, this solution is a heteroclinic

solution.
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10.3. Application to fourth-order BVPs and infinite beams

The integral equation (10.1.1) can be applied to boundary value problems

of order n such that n > m, defined on the whole real line.

As an application, we consider the case n = 4 and m = 2 through the

study of infinite beams deflection.

Jany, in [87] considers the nonlinear Bernoulli–Euler–v. Karman prob-

lem composed by the fourth-order differential equation

EIu(4)(t) + ku(t) =
3

2
EA(u′(t))2u′′(t) + ω(t), t ∈ R, (10.3.1)

and the boundary conditions

u(±∞) := lim
t→±∞ u(t) = 0, u′(±∞) := lim

t→±∞u′(t) = 0. (10.3.2)

This problem is related to the analysis of moderately large deflections of

infinite nonlinear beams resting on elastic foundations under localized exter-

nal loads. More precisely, E is the Young’s modulus, I the mass moment of

inertia, ku(t) the spring force upward, in which k is a spring constant (for

simplicity, the weight of the beam is neglected), A the cross-sectional area

of the beam and ω(t) the localized and applied loading downward.

As it was proved in [47], the above problem (10.3.1),(10.3.2) can be

written as an integral equation

u(t) =

∫ +∞

−∞
G(t, s)f(s, u(s), u′(s), u′′(s))ds, (10.3.3)

where G(t, s) is the Green’s function associated to (10.3.1),(10.3.2),

defined by

G(t, s) =
4
√
ξ

2ξ
e

− 4√ξ|s−t|√
2 sin

(
4
√
ξ |s− t|√

2
+
π

4

)
, (10.3.4)

with ξ = k
EI .

By standard calculus, the following properties of the Green’s function

(10.3.4) can easily be obtained:

lim
|t|→∞

∂iG(t, s)

∂ti
= 0,

∣∣∣∣∂
iG(t, s)

∂ti
,

∣∣∣∣ ≤
(

4
√
ξ
)i+1

2ξ
, for i = 0, 1, 2.
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An example of this family of problems is given by the differential

equation

u(4)(t) + 3u(t) =
3.4 + u3(t)− u′′(t) (u′(t))2

1 + t4
, t ∈ R, (10.3.5)

and the boundary conditions (10.3.2).

Here, the loading force ω(t) = 3.4
1+t4 and the nonlinear function

g : R4 → R is defined by

g(t, x, y, z) :=
x3 − zy2

1 + t4
.

The function

f(t, x, y, z) := g(t, x, y, z) + ω(t) (10.3.6)

is L1-Carathéodory and for max{‖x‖, ‖y‖, ‖z‖}< r, (r > 0), we have

ϕr(t) :=
3.4 + 2r3

1 + t4
.

From the above, it is clear that (10.3.5) is a particular case of (10.1.1)

for k = 3, m = 2, and the nonlinearity is given by (10.3.6). Moreover, the

assumptions (A1) and (A2) are satisfied with

k(t, s) = G(t, s), ψj(s) ≡
(

4
√
ξ
)i+1

2ξ
, for j = 0, 1, 2.

Therefore, by Theorem 10.2.1, the integral equation (10.3.3) is a solu-

tion u(t) ∈ BC2[0, 1], which is a solution of the boundary value problem

(10.3.5),(10.3.2). Moreover, from Corollary 10.2.2, as in (10.3.4)

lim
t→−∞G(t, s) = lim

t→+∞G(t, s) = 0,

this solution is a homoclinic solution of problem (10.3.5),(10.3.2).
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Part IV

Functional Boundary
Value Problems

133
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Introduction

Many phenomena of real life have a retrospective effect, i.e., their status

in the future may depend not only on the present but also on what hap-

pened in the past. One of the mathematical processes appropriate to study

this effect distributed over time is given by Functional Differential Equa-

tions (FDEs). It should be noted that the concept of FDEs generalizes the

common differential equations into functions with a continuous argument.

Let us express the meaning of “functional” a little more. In Algebra, we

deal with algebraic equations involving one or more unknown real numbers.

Functional equations are much like algebraic equations, except that the

unknown quantities are functions rather than real numbers.

From a historic point a view, as far as we know, the first time when func-

tional equations were studied was in the fourteenth century in the work

of mathematician Nicole Oresme (1323–1382) who provided an indirect

definition of linear functions by means of a functional equation: in mod-

ern terminology, we have three distinct real numbers x, y, and z, and,

associated to each one, a variable (the “intensity” of the quality at each

point) which we can write as f(x), f(y), and f(z), respectively (for more

details, see [133]). The function f , considered as a linear function, is defined

by the relation

y − x

z − y
=
f(y)− f(x)

f(z)− f(y)
, for all distinct values of x, y, z.

FDEs only appear, to the best of our knowledge, in the second half of

the last century (see, for example, [58, 79, 91]).

However, the word “functional” was restricted to delay, advanced

or neutral differential equations. This concept was adapted to a global

unknown functional variable in, for instance, [31, 36]. If the functional part

135
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appears in the differential equation, then it covers differential, integral or

integro-differential equations, delay, neutral or advanced equations, among

others. If the functional variation exists in the boundary conditions, then

these boundary value problems include the classical two-point or multipoint

conditions, and also nonlocal, integral boundary data, and cases where the

global behavior of the unknown variable and its derivatives are involved. As

an illustration of this type of functional problem with functional boundary

conditions, we refer the problem in [114], with a functional variation in u, u′

and u′′ in the differential equation,

−(φ(u′′′(x)))′ = f(x, u′′(x), u′′′(x), u, u′, u′′),

for a.e. x∈ ]a, b[, where φ is an increasing homeomorphism, I := [a, b],

and f : I × R
2 × (C(I))

3 → R
2 is an L1-Carathéodory function, and the

boundary conditions

0 = L1 (u (a) , u, u
′, u′′) ,

0 = L2 (u
′ (a) , u, u′, u′′) ,

0 = L3 (u
′′ (a) , u′′ (b) , u′′′ (a) , u′′′ (b) , u, u′, u′′) ,

0 = L4 (u
′′ (a) , u′′ (b)) ,

where Li, i = 1, 2, 3, 4, are suitable functions with L1 and L2 not necessarily

continuous, satisfying some monotonicity assumptions.

In all the above references, functional boundary value problems are con-

sidered on bounded intervals. On unbounded domains, the techniques are

more delicate due to the lack of compactness of the correspondent opera-

tors. For this reason, for example, the usual Arzèla–Ascoli theorem cannot

be applied.

Part IV will present methods and techniques in order to consider some

of these types of functional problems to unbounded domains, namely, the

half-line or the whole real line.

In Chapter 11, an existence and localization result for a second-order

BVP with functional boundary conditions will be proved. An application

to an Emden–Fowler equation will be shown to illustrate the main result

of the chapter.

Chapter 12 deals with third-order BVPs with functional boundary con-

ditions. These types of problems can be observed, for example, in a Falkner–

Skan equation and may describe the behavior of a viscous flow over a flat
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plate. The localization of a solution and, moreover, some of its qualitative

properties will be presented in this chapter.

Chapter 13 covers the study of φ-Laplacian equations. An existence

and localization result will be proved and, in order to demonstrate the

applicability of the main result, two examples will be shown.
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Chapter 11

Second-Order Functional Problems

11.1. Introduction

Previous chapters have shown that some real phenomena are modeled by

differential equations of various orders with different types of boundary

conditions such as Sturm–Liouville, Homoclinic or Lidstone-type. There

are, however, other problems with functional conditions, that is, situations

where the boundary data do not depend on particular points but on the

global variation of the unknown function. These may, for example, be pro-

vided with integral, differential, maximum or minimum arguments.

In order to cover a wide range of applications, in this chapter, we study

the general second-order differential equation

u′′(t) = f(t, u(t), u′(t)), t ≥ 0, (11.1.1)

where f : R+
0 ×R

2 → R is a continuous function, coupled with the functional

conditions 

L(u, u(0), u′(0)) = 0,

u′(+∞) = B,
(11.1.2)

with L : C(R+
0 )×R

2 → R a continuous function, verifying some monotone

assumption, B ∈ R, and u′(+∞) := limt→+∞ u′(t).
Note that this functional dependence allows not only conditions on the

boundary but also multipoint conditions, that is, requirements on one or

more interior points.

BVP (11.1.1),(11.1.2) covers a huge variety of problems such as sepa-

rated, multipoint, nonlocal, integrodifferential, periodic, anti-periodic with

139
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maximum or minimum arguments. For example, in the case of integral

conditions, it covers problems that arise naturally in the description of

physical phenomena, for instance, thermal conduction, semiconductor and

hydrodynamic problems (see [29, 71, 88, 98, 121, 136, 146, 151, 153] and

references therein).

In most cases, positive solutions are searched in compact intervals. How-

ever, results on the solvability of BVPs on unbounded intervals (half-line

or real line) are scarce.

The main technique relies on the lower and upper solutions. Rather than

the existence of bounded or unbounded solutions, their localization provides

some qualitative data, like, for example, signal variation and behavior (see

[33, 113]). Some results are concerned with the existence of bounded or

positive solutions, as in [105, 147] and the references therein. For problem

(11.1.1),(11.1.2), the existence of two types of solutions is proved, depending

on B: if B �= 0, the solution is unbounded; if B = 0, the solution is bounded.

This chapter is organized as, follows. First, some auxiliary results are

defined such as the adequate space functions, some weighted norms, a cri-

terion to overcome the lack of compactness, and the definition of lower

and upper solutions. Section 11.3 contains the main result, an existence

and localization theorem, whose proof combines lower and upper solutions

technique with the fixed point theory. Finally, Sections 11.4 and 11.5 con-

tain one example and an application to some problem composed by an

Emden–Fowler-type equation with infinite multipoint conditions, which are

not covered by the existent literature.

11.2. Definitions and auxiliary results

Consider the space of admissible functions

XF =

{
x ∈ C1(R+

0 ) : lim
t→+∞

x(t)

1 + t
∈ R, lim

t→+∞x′(t) ∈ R

}
,

equipped with the norm ‖x‖XF = max {‖x‖0, ‖x′‖1}, where

‖ω‖0 := sup
t≥0

|ω(t)|
1 + t

and ‖ω′‖1 := sup
t≥0

|ω′(t)|.

In this way, (XF , ‖ · ‖XF ) is a Banach space.
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Solutions of the linear problem associated to (11.1.1) and usual bound-

ary conditions are defined with Green’s function, which can be obtained by

standard calculus.

Lemma 11.2.1. Let th, h ∈ L1(R+
0 ) and A,B ∈ R. Then the linear BVP



u′′(t) = h(t), t ≥ 0,

u(0) = A,

u′(+∞) = B

(11.2.1)

has a unique solution in XF , given by

u(t) = A+Bt+

∫ +∞

0

G(t, s)h(s)ds, (11.2.2)

where

G(t, s) =



−s, 0 ≤ s ≤ t,

−t, t ≤ s < +∞.
(11.2.3)

Proof. If u is a solution of problem (11.2.1), then the general solution for

the differential equation is

u(t) = c1 + c2 t+

∫ t

0

(t− s)h(s)ds,

where c1, c2 ∈ R. Since u should satisfy the boundary conditions, one has

c1 = A, c2 = B −
∫ +∞

0

h(s)ds.

The solution becomes

u(t) = A+Bt− t

∫ +∞

0

h(s)ds+

∫ t

0

(t− s)h(s)ds,

and by computation,

u(t) = A+Bt+

∫ +∞

0

G(t, s)h(s)ds

with G given by (11.2.3).

Conversely, if u is a solution of (11.2.2), it is easy to show that it satisfies

the differential equation in (11.2.1). Also, u(0) = A and u′(+∞) = B. �
The lack of compactness of XF is overcome by the following lemma

which gives a general criterion for relative compactness, referred to in [3].

Lemma 11.2.2. A set M ⊂ XF is relatively compact if the following

conditions hold:
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(i) all functions from M are uniformly bounded;

(ii) all functions from M are equicontinuous on any compact interval of

R
+
0 ;

(iii) all functions from M are equiconvergent at infinity, that is, for any

given ε > 0, there exists a tε > 0 such that∣∣∣∣ x(t)1 + t
− lim

t→+∞
x(t)

1 + t

∣∣∣∣ < ε,

∣∣∣∣x′(t)− lim
t→+∞ x′(t)

∣∣∣∣ < ε

for all t > tε and x ∈M .

The functions considered as lower and upper solutions for the initial

problem are defined as follows.

Definition 11.2.3. Given B ∈ R, a function α ∈ XF is a lower solution of

problem (11.1.1),(11.1.2) if




α′′(t) ≥ f(t, α(t), α′(t)), t ≥ 0,

L(α, α(0), α′(0)) ≥ 0,

α′(+∞) < B.

A function β ∈ XF is an upper solution if it satisfies the reverse

inequalities.

11.3. Existence and localization results

In this section, the existence of at least one solution for the

problem (11.1.1),(11.1.2) is proved, and, moreover, some localization

data, following the arguments applied in [45] are given.

Theorem 11.3.1. Let f : R+
0 ×R

2 → R be a continuous function, and for

each ρ > 0, there exists a positive function ϕρ with ϕρ, tϕρ ∈ L1(R+
0 ) such

that for (x(t), y(t)) ∈ R
2 with supt≥0

{
|x(t)|
1+t , |y(t)|

}
< ρ,

|f(t, x, y)| ≤ φρ(t), t ≥ 0. (11.3.1)

Moreover, if L(x1, x2, x3) is nondecreasing on x1 and x3 and there are α, β,

lower and upper solutions of (11.1.1),(11.1.2), respectively, such that

α(t) ≤ β(t), ∀t ≥ 0, (11.3.2)
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then problem (11.1.1),(11.1.2) has at least one solution u ∈ XF with α(t) ≤
u(t) ≤ β(t) for t ≥ 0.

Proof. Let α and β be, respectively, lower and upper solutions of (11.1.1),

(11.1.2) verifying (11.3.2). Consider the modified problem


u′′(t) = f(t, δ(t, u(t)), u′(t)) +
1

1 + t3
u(t)− δ(t, u(t))

1 + |u(t)− δ(t, u(t))| , t ≥ 0,

u(0) = δ(0, u(0) + L(u, u(0), u′(0))),

u′(+∞) = B,

(11.3.3)

where δ : R+
0 × R → R is given by

δ(t, x) =




β(t), x > β(t),

x, α(t) ≤ x ≤ β(t),

α(t), x < α(t).

For clarity, the proof will follow several steps.

Step 1. If u is a solution of (11.3.3), then α(t) ≤ u(t) ≤ β(t), ∀t ≥ 0.

Let u be a solution of the modified problem (11.3.3) and suppose, by con-

tradiction, that there exists t ≥ 0 such that α(t) > u(t). Therefore,

inf
t≥0

(u(t)− α(t)) < 0.

If there is t∗ > 0 such that

min
t≥0

(u(t)− α(t)) := u(t∗)− α(t∗) < 0,

one has u′(t∗) = α′(t∗) and u′′(t∗) − α′′(t∗) ≥ 0. By Definition 11.2.3, the

following contradiction holds:

0 ≤ u′′(t∗)− α′′(t∗)

= f(t∗, δ(t∗, u(t∗)), u′(t∗)) +
1

1 + t3∗

u(t∗)− δ(t∗, u(t∗))
1 + |u(t∗)− δ(t∗, u(t∗))| − α′′(t∗)

= f(t∗, α(t∗), α′(t∗)) +
1

1 + t3∗

u(t∗)− α(t∗)
1 + |u(t∗)− α(t∗)| − α′′(t∗)

≤ u(t∗)− α(t∗)
1 + |u(t∗)− α(t∗)| < 0.

So, u(t) ≥ α(t), ∀t > 0.
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If the infimum is attained at t = 0, then

min
t≥0

(u(t)− α(t)) := u(0)− α(0) < 0.

As u is solution of (11.3.3), by the definition of δ, the following contradiction

is achieved:

0 > u(0)− α(0) = δ(0, u(0) + L(u, u(0), u′(0)))− α(0) ≥ α(0)− α(0)

= 0.

If

inf
t≥0

(u(t)− α(t)) := u(+∞)− α(+∞) < 0,

then u′(+∞) − α′(+∞) ≤ 0. As u is solution of (11.3.3), by Definition

11.2.3, the following contradiction holds:

0 ≥ u′(+∞)− α′(+∞) = B − α′(+∞) > 0.

Therefore, u(t) ≤ α(t), ∀t ≥ 0.

In a similar way, it can be proved that u(t) ≥ β(t), ∀t ≥ 0.

Step 2. Problem (11.3.3) has at least one solution.

Let u ∈ XF and define the operator T : XF → XF

Tu(t) = ∆ +Bt+

∫ +∞

0

G(t, s)Fu(s)ds

with

Fu(s) := f(s, δ(s, u(s)), u′(s)) +
1

1 + s3
u(s)− δ(s, u(s))

1 + |u(s)− δ(s, u(s))| ,

∆ := δ(0, u(0) + L(u, u(0), u′(0))) and G is the Green function given by

(11.2.3).

Therefore, problem (11.3.3) becomes




u′′(t) = Fu(t), t ≥ 0,

u(0) = ∆,

u′(+∞) = B,

(11.3.4)

and if tFu(t), Fu(t) ∈ L1(R+
0 ), by Lemma 11.2.1, it is enough to prove that

T has a fixed point.
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Step 2.1. T is well defined.

As f is a continuous function, Tu ∈ C1(R+
0 ) and, by (11.3.1), for any

u ∈ XF with ρ > max {‖α‖XF , ‖β‖XF },
∫ +∞

0

|Fu(s)| ds ≤
∫ +∞

0

(
φρ(s) +

1

1 + s3

)
ds < +∞,

that is, Fu(t) and tFu(t) ∈ L1(R+
0 ). By Lebesgue Dominated Convergence

Theorem,

lim
t→+∞

(Tu)(t)

1 + t
= lim

t→+∞
∆+Bt

1 + t
+

∫ +∞

0

lim
t→+∞

G(t, s)

1 + t
Fu(s)ds

≤ B +

∫ +∞

0

(
φρ(s) +

1

1 + s3

)
ds < +∞,

and analogously for

lim
t→+∞(Tu)′(t) = B − lim

t→+∞

∫ +∞

t

Fu(s)ds = B < +∞.

Therefore, Tu ∈ XF .

Step 2.2. T is continuous.

Consider a convergent sequence un → u in XF , there exists ρ1 > 0 such

that max {‖α‖XF , ‖β‖XF } < ρ1.

With M := supt≥0
|G(t,s)|
1+t , one has

‖Tun − Tu|XF = max {‖Tun − Tu|0, ‖(Tun)′ − (Tu)′‖1}

≤
∫ +∞

0

M |Fun(s)− Fu(s)|ds

+

∫ +∞

t

|Fun(s)− Fu(s)|ds −→ 0,

as n→ +∞.

Step 2.3. T is compact.

Let B ⊂ XF be any bounded subset. Therefore, there is r > 0 such that

‖u‖XF < r, ∀u ∈ B.
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For each u ∈ B, and for max {r, ‖α‖XF , ‖β‖XF } < r1

‖Tu‖0 = sup
t≥0

|Tu(t)|
1 + t

≤ sup
t≥0

|∆+Bt|
1 + t

+

∫ +∞

0

sup
t≥0

|G(t, s)|
1 + t

|Fu(s)|ds

≤ sup
t≥0

|∆+Bt|
1 + t

+

∫ +∞

0

M

(
φr1(s) +

1

1 + s3

)
ds < +∞,

‖(Tu)′‖1 = sup
t≥0

|(Tu)′(t)| ≤ |B|+
∫ +∞

t

|Fu(s)|ds

≤ |B|+
∫ +∞

t

(
φr1(s) +

1

1 + s3

)
ds < +∞.

So, ‖Tu‖XF = max{‖Tu‖0, ‖(Tu)′‖1} < +∞, that is, TB is uniformly

bounded in XF .

TB is equicontinuous because, for L > 0 and t1, t2 ∈ (0, L], one has, as

t1 → t2,

∣∣∣∣Tu(t1)1 + t1
− Tu(t2)

1 + t2

∣∣∣∣
≤
∣∣∣∣∆+Bt1

1 + t1
− ∆+Bt2

1 + t2

∣∣∣∣

+

∫ +∞

0

∣∣∣∣G(t1, s)1 + t1
− G(t2, s)

1 + t2

∣∣∣∣ |F (u(s))|ds

≤
∣∣∣∣∆+Bt1

1 + t1
− ∆+Bt2

1 + t2

∣∣∣∣

+

∫ +∞

0

∣∣∣∣G(t1, s)1 + t1
− G(t2, s)

1 + t2

∣∣∣∣
(
φr1(s) +

1

1 + s3

)
ds −→ 0,

|(Tu)′(t1)− (Tu)′(t2)| =
∣∣∣∣
∫ +∞

t1

Fu(s)ds−
∫ +∞

t2

Fu(s)ds

∣∣∣∣

≤
∫ t2

t1

|Fu(s)|ds ≤
∫ t2

t1

(
φr1(s) +

1

1 + s3

)
ds −→ 0.

So, TB is equicontinuous.
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Moreover, TB is equiconvergent at infinity because, as t→ +∞,

∣∣∣∣Tu(t)1 + t
− lim

t→+∞
Tu(t)

1 + t

∣∣∣∣

≤
∣∣∣∣∆+Bt

1 + t
−B

∣∣∣∣+
∫ +∞

0

∣∣∣∣G(t, s)1 + t
+ 1

∣∣∣∣ |Fu(s)|ds

≤
∣∣∣∣∆+Bt

1 + t
−B

∣∣∣∣+
∫ +∞

0

∣∣∣∣G(t, s)1 + t
+ 1

∣∣∣∣
(
φρ1 +

1

1 + s3

)
ds→ 0,

and

∣∣∣∣(Tu)′(t)− lim
t→+∞(Tu)′(t)

∣∣∣∣ ≤
∫ +∞

t

|Fu(s)|ds

≤
∫ +∞

t

(
ρ1 +

(
1

(1 + s3)

))
ds −→ 0, as t→ +∞.

So, by Lemma 11.2.2, TB is relatively compact.

Then by Schauder’s fixed-point theorem (Theorem 1.2.6), T has at least

one fixed point u1 ∈ XF .

Step 3. u1 is a solution of problem (11.1.1),(11.1.2).

By Step 1, if u1 is a solution of (11.3.3), then α(t) ≤ u1(t) ≤ β(t) for all

t ≥ 0. So, the differential equation (11.1.1) is obtained. It remains to be

proved that α(0) ≤ u1(0) + L(u1, u1(0), u
′
1(0)) ≤ β(0).

Suppose, by contradiction, that α(0) > u1(0)+L(u1, u1(0), u
′
1(0)). Then

u1(0) = δ(0, u1(0) + L(u1, u1(0), u
′
1(0))) = α(0)

and by the monotony of L and Definition 11.2.3, the following contradiction

holds:

0 > u1(0) + L(u1, u1(0), u
′
1(0))− α(0)

= L(u1, α(0), u
′
1(0)) ≥ L(α, α(0), α′(0)) ≥ 0.

So, α(0) ≤ u1(0) + L(u1, u1(0), u
′
1(0)) and in a similar way, it can be

proved that u1(0) + L(u1, u1(0), u
′
1(0)) ≤ β(0).

Therefore, u1 is a solution of (11.1.1), (11.1.2). �
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A similar result can be obtained if f is an L1-Carathéodory function

and equation (11.1.1) is replaced by

u′′(t) = f(t, u(t), u′(t)), a.e. t ≥ 0. (11.3.5)

However, in this case, an extra assumption on f must be assumed.

Theorem 11.3.2. Let f : R+
0 × R

2 → R be an L1-Carathéodory function

such that f(t, x, y) is monotone on y. If there are α, β, lower and upper solu-

tions of (11.3.5),(11.1.2), respectively, verifying (11.3.2) and L(x1, x2, x3) is

nondecreasing on x1 and x3, then problem (11.3.5),(11.1.2) has at least one

solution u ∈ XF with α(t) ≤ u(t) ≤ β(t), ∀t ≥ 0.

Proof. The proof is similar to Theorem 11.3.1 except the first step.

Let u be a solution of the modified problem composed by

u′′(t) = f(t, δ(t, u(t)), u′(t)) +
1

1 + t3
u(t)− δ(t, u(t))

1 + |u(t)− δ(t, u(t))| , a.e. t ≥ 0,

and the boundary conditions

u(0) = δ(0, u(0) + L(u, u(0), u′(0))),

u′(+∞) = B.

If, by contradiction, there is t∗ > 0 such that

min
t≥0

(u(t)− α(t)) := u(t∗)− α(t∗) < 0,

then u′(t∗) = α′(t∗), u′′(t∗) − α′′(t∗) ≥ 0, and there exists an interval

I− :=]t−, t∗[ where u(t) < α(t), u′(t) ≤ α′(t), ∀t ∈ I−.
By Definition 11.2.3 and if f(t, x, y) is nondecreasing on y, this contra-

diction holds for t ∈ I−:

0 ≤ u′′(t)− α′′(t)

= f(t, δ(t, u(t)), u′(t)) +
1

1 + t3
u(t)− δ(t, u(t))

1 + |u(t)− δ(t, u(t))| − α′′(t)

≤ f(t, α(t), α′(t)) +
1

1 + t3
u(t)− α(t)

1 + |u(t)− α(t)| − α′′(t)

≤ u(t)− α(t)

1 + |u(t)− α(t)| < 0.
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The same remains valid if f is nonincreasing, considering an interval

I+ :=]t∗, t+[ where u(t) < α(t), u′(t) ≥ α′(t), ∀t ∈ I+.

So, in both cases, u(t) ≥ α(t), ∀t ≥ 0.

The remaining steps are identical to the proof of Theorem 11.3.1, and

it will be omitted. �

11.4. Example

Consider the second-order problem on the half-line with functional bound-

ary conditions



u′′(t) =
sin(u(t) + 1) + (u′(t))3 + u(t)e−t

1 + t3
, t ≥ 0,

4u2(0) + min
t≥0

u(t) + u′(0)− 2 = 0,

u′(+∞) = 0, 5.

(11.4.1)

Remark that the above problem is a particular case of (11.1.1), (11.1.2)

with

f(t, x, y) =
sin(x+ 1) + y3 + xe−t

1 + t3
,

B = 0, 5,

L(a, b, c) = 4b2 +min
t≥0

a(t) + c− 2.

If f is continuous in R
+
0 , then for u ∈ XF , assumption (11.3.1) holds,

with ϕρ = k
1+t3 , for some k > 0 and ρ > 1.

The function L(a, b, c) is not decreasing in a and c, and α(t) ≡ −1 and

β(t) = t are lower and upper solutions for (11.4.1), respectively, then, by

Theorem 11.3.1, there is at least an unbounded solution u of (11.4.1) such

that

−1 ≤ u(t) ≤ t, ∀t ≥ 0.

11.5. Emden–Fowler equation

Emden–Fowler-type equations (see [144]) can model the heat diffusion

perpendicular to parallel planes by

∂2u(x, t)

∂x2
+
α

x

∂u(x, t)

∂x
+ af(x, t)g(u) + h(x, t) =

∂u(x, t)

∂t
, 0 < x < t,
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where f(x, t)g(u)+h(x, t) means the nonlinear heat source and u(x, t) gives

the temperature at time t.

In the steady-state case, and with h(x, t) ≡ 0, last equation becomes

u′′(x) +
α

x
u′(x) + af(x)g(u) = 0, x ≥ 0. (11.5.1)

If f(x) ≡ 1 and g(u) = un, then (11.5.1) is called the Lane–Emden

equation of the first kind, whereas in the second kind, one has g(u) = eu.

Both cases are used in the study of thermal explosions. For more details,

see [82].

In the literature, Emden–Fowler-type equations are associated to Dirich-

let or Neumann boundary conditions (see [78, 142]). To the best of author’s

knowledge, this is the first time when some Emden–Fowler-type equations

are considered together with functional boundary conditions on the half-

line.

Consider that one looks for nonnegative solutions for the problem com-

posed by the discontinuous differential equation

u′′(x) =
u′(x)
1 + x3

+
u4(x)

ex
, a.e. x > 0, (11.5.2)

coupled with the infinite multipoint conditions


+∞∑
n=1

anu(ηn)− u(0) + u′(0) = 0,

u′(+∞) = δ (0 < δ < 1),

(11.5.3)

where an and ηn are nonnegative sequences such that

a1η1 ≥ a2η2 ≥ · · · ≥ anηn ≥ · · · ,
+∞∑
n=1

anu(ηn) and
+∞∑
n=1

anηn

are convergent with
∑+∞

n=1 an(ηn + k) ≤ 1− k (0 < k < 1).

This is a particular case of (11.3.5), (11.1.2), where

f(x, y, z) =
z

1 + x3
+
y4

ex
,

B = δ,

L(v, y, z) =

+∞∑
n=1

anv(ηn)− y + z.

|f(x, y, z)| ≤ k1
1 + x3

+
k2
ex

:= ϕr(x), k1, k2 > 0, r > 1.
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If ϕr(x), xϕr(x) ∈ L1(R+
0 ), then f is L1-Carathéodory, and, moreover,

f is monotone on z (is nondecreasing).

If L(v, y, z) is not decreasing in v and z, and functions α(x) ≡ 0 and

β(x) = x + k are lower and upper solutions of problem (11.5.2),(11.5.3),

respectively, then, by Theorem 11.3.2, there is at least an unbounded and

nonnegative solution u of (11.5.2),(11.5.3) such that

0 ≤ u(x) ≤ x+ k, ∀x ≥ 0.
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Chapter 12

Third-Order Functional Problems

12.1. Introduction

In this chapter, we consider a third-order BVP, composed by a fully differ-

ential equation

u′′′(t) = f(t, u(t), u′(t), u′′(t)), t ≥ 0, (12.1.1)

where f : R+
0 ×R

3 → R is an L1-Carathéodory function, and the functional

boundary conditions on the half-line

L0(u, u(0)) = 0,

L1(u, u
′(0)) = 0, (12.1.2)

L2(u, u
′′(+∞)) = 0,

with Li : C(R
+
0 ) × R → R, i = 0, 1, 2 continuous functions, verifying some

monotone assumptions and

u′′(+∞) := lim
t→+∞ u′′(t).

There is an extensive literature on BVP defined in bounded domains as

this type of problem is an adequate tool to describe countless phenomena of

real life, such as models on chemical engineering, heat conduction, thermo-

elasticity, plasma physics, fluids flow, etc. (see, for instance, [30, 60, 69, 81,

88, 93, 106, 124]). However, on the real line or half-line, the results are very

scarce (see, for example, [3, 151] and the references therein).

In some backgrounds, the models require different kinds of nonlocal or

integral boundary conditions. In this way, it is useful to consider generalized

153
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boundary data, which include usual and nonclassic boundary conditions. In

fact, if BVP contains a functional dependence on the unknown functions,

or in its derivatives, either in the differential equation, or in the boundary

data, these functional BVPs allow many more varieties of problems such

as separated, multipoint, nonlocal, integro-differential, with maximum or

minimum arguments, etc., as it can be seen, for instance, in [35, 38, 65, 71,

72, 121].

To the author’s best knowledge, it is the first time where these types

of functional boundary conditions are applied to third-order BVP on the

half-line. From the different arguments used, weighted norms, fixed point

theory and lower and upper solutions method can be highlighted. This

last technique provides a location result, which is particularly useful to get

some qualitative properties on the solution, such as positivity, monotony,

convexity, etc.

The chapter is organized as follows: in the first section, some auxiliary

results are defined such as the adequate space of admissible functions, the

weighted norms, an existence result for a linear BVP via Green’s functions,

an a priori bound for the second derivative from a Nagumo-type condi-

tion, a criterion to overcome the lack of compactness, and the definition

of lower and upper solutions. Section 12.3 contains the main result of the

chapter — an existence and localization theorem, whose proof combines

lower and upper solutions technique with the fixed point theory. Finally,

an application to a Falkner–Skan equation is shown to illustrate the main

result, which is not covered by previous works in the literature as far as

we know.

12.2. Definitions and a priori bounds

Consider the space of admissible functions

XF3 =



x ∈ C2(R+

0 ) : lim
t→+∞

x(t)

1 + t2
∈ R,

lim
t→+∞

x′(t)
1 + t

∈ R, lim
t→+∞x′′(t) ∈ R



,

with the norm ‖x‖XF3 = max {‖x‖0, ‖x′‖1, ‖x′′‖2}, where

‖ω‖0 := sup
t≥0

|ω(t)|
1 + t2

, ‖ω‖1 := sup
t≥0

|ω(t)|
1 + t

and ‖ω‖2 := sup
t≥0

|ω(t)|.

Defining in this way, (XF3, ‖ · ‖XF3) is a Banach space.
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The solutions of the linear problem associated to (12.1.1), with the

two-point boundary conditions on the half line, can be defined with Green’s

function.

Lemma 12.2.1. Let t2h, th, h ∈ L1(R+
0 ). Then the linear BVP



u′′′(t) = h(t), a.e. t ≥ 0,

u(0) = A,

u′(0) = B,

u′′(+∞) = C,

(12.2.1)

with A,B,C ∈ R, has a unique solution given by

u(t) = A+Bt+
Ct2

2
+

∫ +∞

0

G(t, s)h(s)ds, (12.2.2)

where

G(t, s) =




s2

2
− ts, 0 ≤ s ≤ t,

− t
2

2
, 0 ≤ t ≤ s < +∞.

(12.2.3)

Proof. If u is a solution of problem (12.2.1), then the general solution for

the differential equation is

u(t) = c1 + c2t+ c3t
2 +

∫ t

0

(
s2

2
− ts+

t2

2

)
h(s)ds,

where c1, c2, c3 are real constants. Since u(t) should satisfy the boundary

conditions,

c1 = A, c2 = B, c3 =
C

2
− 1

2

∫ +∞

0

h(s)ds,

and, therefore,

u(t) = A+Bt+
Ct2

2
− t2

2

∫ +∞

0

h(s)ds+

∫ t

0

(
s2

2
− ts+

t2

2

)
h(s)ds,

which can be written as (12.2.2) with G(t, s) given by (12.2.3). �

Some trivial properties of (12.2.3) will play an important role forward.

Lemma 12.2.2. Function G(t, s) defined by (12.2.3) verifies

(i) lim
t→+∞

G(t, s)

1 + t2
∈ R, ∀s ≥ 0;
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(ii) G1(t, s) :=
∂G(t, s)

∂t
:=



−s, 0 ≤ s ≤ t,

−t, 0 ≤ t ≤ s < +∞;

(iii) lim
t→+∞

G1(t, s)

1 + t
∈ R, ∀s ≥ 0.

Let γ,Γ ∈ XF3 such that γ(t) ≤ Γ(t), γ′(t) ≤ Γ′(t), ∀t ≥ 0 and

γ′′(+∞) ≤ Γ′′(+∞). Consider the set

EF3 =



(t, x, y, z) ∈ R

+
0 × R

3 :

γ(t) ≤ x ≤ Γ(t)

γ′(t) ≤ y ≤ Γ′(t)

γ′′(+∞) ≤ z(+∞) ≤ Γ′′(+∞)



.

The following Nagumo condition allows some a priori bounds on the

second derivative of the solution.

Definition 12.2.3. A function f : EF3 → R is said to satisfy a Nagumo-

type growth condition in EF3 if, for some positive continuous functions ψ, h

and some ν > 1, such that

supψ(t)(1 + t)ν < +∞,

∫ +∞

0

s

h(s)
ds = +∞, (12.2.4)

it verifies

|f(t, x, y, z)| ≤ ψ(t)h(|z|), ∀(t, x, y, z) ∈ EF3. (12.2.5)

Lemma 12.2.4. Let f : R+
0 × R

3 → R be an L1-Carathéodory function

satisfying (12.2.4) and (12.2.5) in EF3. Then for every solution u of (12.1.1)

satisfying, for t ≥ 0,

γ(t) ≤ u(t) ≤ Γ(t),

γ′(t) ≤ u′(t) ≤ Γ′(t),

γ′′(+∞) ≤ u′′(+∞) ≤ Γ′′(+∞),

(12.2.6)

there exists R > 0 (not depending on u) such that ‖u′′‖2 < R.

Proof. Let u be a solution of (12.1.1) verifying (12.2.6). Consider r > 0

such that

r > max {|γ′′(+∞)|, |Γ′′(+∞)|} . (12.2.7)

By the previous inequality, |u′′(t)| > r, ∀t ≥ 0 cannot happen because

|u′′(+∞)| < r.
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If |u′′(t)| ≤ r, ∀t ≥ 0, taking R > r, the proof is complete as

‖u′′‖2 = sup
t≥0

|u′′(t)| ≤ r < R.

In the following, it will be proved that even when there exists t ≥ 0 such

that |u′′(t)| > r, the norm ‖u′′‖2 remains bounded.

Suppose there exists t0 > 0 such that |u′′(t0)| > r, that is, u′′(t0) > r

or u′′(t0) < −r.
In the first case, by (12.2.4), one can take R > r such that

∫ R

r

s

h(s)
ds > M max

{
M1 + sup

t≥0

Γ′(t)
1 + t

ν

ν − 1
,M1 − inf

t≥0

γ′(t)
1 + t

ν

ν − 1

}

with M := supt≥0 ψ(t)(1 + t)ν and M1 := supt≥0
Γ′(t)
(1+t)ν − inft≥0

γ′(t)
(1+t)ν .

If condition (12.2.5) holds, then by (12.2.7), there are t∗, t+ ≥ 0 such

that t∗ < t+, u
′′(t∗) = r and u′′(t) > r, ∀t ∈ (t∗, t+]. Therefore,

∫ u′′(t+)

u′′(t∗)

s

h(s)
ds =

∫ t+

t∗

u′′(s)
h(u′′(s))

u′′′(s)ds ≤
∫ t+

t∗
ψ(s)u′′(s)ds

≤ M

∫ t+

t∗

u′′(s)
(1 + s)ν

ds

= M

∫ t+

t∗

[(
u′(s)

(1 + s)ν

)′
+

νu′(s)
(1 + s)1+ν

]
ds

≤ M

(
M1 + sup

t≥0

Γ′(t)
1 + t

∫ +∞

0

ν

(1 + s)ν
ds

)
<

∫ R

r

s

h(s)
ds.

So, u′′(t+) < R and as t∗ and t+ are arbitrary in R
+
0 , one has that

u′′(t) < R, ∀t ≥ 0.

Similarly, the case where there are t−, t∗ ≥ 0 such that t− < t∗ and

u′′(t∗) = −r, u′′(t) < −r, ∀t ∈ [t−, t∗) can be proved.

Therefore, ‖u′′‖2 < R, ∀t ≥ 0. �

The lack of compactness of XF3 is overcome by the following lemma

which gives a general criterion for relative compactness, suggested in [3]

or [51].

Lemma 12.2.5. A set Z ⊂ XF3 is relatively compact if the following

conditions hold:

(i) all functions from Z are uniformly bounded;
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(ii) all functions from Z are equicontinuous on any compact interval

of R+
0 ;

(iii) all functions from Z are equiconvergent at infinity, that is, for any

given ε > 0, there exists a tε > 0 such that∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x(t)

1 + t2
− lim

t→+∞
x(t)

1 + t2

∣∣∣∣ < ε,

x′(t)
1 + t

− lim
t→+∞

x′(t)
1 + t

∣∣∣∣ < ε,

x′′(t)− lim
t→+∞x′′(t)

∣∣∣∣ < ε for all t > tε, x ∈ Z.

The functions considered as lower and upper solutions for the initial

problem are defined as follows with W 3,1
(
R

+
0

)
the usual Sobolev space.

Definition 12.2.6. A function α ∈ XF3 ∩W 3,1
(
R

+
0

)
is a lower solution of

problem (12.1.1),(12.1.2) if


α′′′(t) ≥ f(t, α(t), α′(t), α′′(t)), t ≥ 0,

L0(α, α(0)) ≥ 0,

L1(α, α
′(0)) ≥ 0,

L2(α, α
′′(+∞)) > 0.

A function β ∈ XF3 ∩ W 3,1
(
R

+
0

)
is an upper solution if it satisfies the

reverse inequalities.

Remark 12.2.7. If α′(t) ≤ β′(t), a.e. t ≥ 0 and α(0) ≤ β(0), by integra-

tion on [0, t], one has α(t) ≤ β(t), ∀t ≥ 0.

The following lemma, suggested by [141], will ensure the existence

and convergence of the derivative of some truncature function to be used

forward.

Lemma 12.2.8 ([141]). For y1, y2 ∈ C1(R+
0 ) such that y1(t) ≤ y2(t),

∀t ≥ 0, define

p(t, v) =




y2(t), v > y2(t),

v, y1(t) ≤ v ≤ y2(t),

y1(t), v < y1(t).

Then, for each v ∈ C1
(
R

+
0

)
, the next two properties hold:
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(i) d
dtp(t, v(t)) exists for a.e. t ≥ 0;

(ii) If v, vm ∈ C1
(
R

+
0

)
and vm → v in C1

(
R

+
0

)
, then

d

dt
p(t, vm(t)) → d

dt
p(t, v(t)) for a.e. t ≥ 0.

12.3. Existence and localization results

In this section, the existence and localization of at least one solution for

the problem (12.1.1),(12.1.2) is proved.

The following assumptions are needed:

(H1) There are α, β lower and upper solutions of (12.1.1),(12.1.2), respec-

tively, with α′(t) ≤ β′(t), t ≥ 0, α(0) ≤ β(0) and α′′(+∞) ≤
β′′(+∞);

(H2) f satisfies the Nagumo condition on EF3 defined with γ = α and

Γ = β;

E∗ :=


(t, x, y, z) ∈ R

+
0 × R

3 :

α(t) ≤ x ≤ β(t)

α′(t) ≤ y ≤ β′(t)

α′′(+∞) ≤ z(+∞) ≤ β′′(+∞)


 ;

(H3) f(t, x, y, z) verifies the growth condition

f(t, α(t), α′(t), α′′(t)) ≥ f(t, x, α′(t), α′′(t)),

f(t, β(t), β′(t), β′′(t)) ≤ f(t, x, β′(t), β′′(t))

for t ≥ 0 fixed and α(t) ≤ x ≤ β(t);

(H4) The continuous functions Li : C(R+
0 ) × R → R, i = 0, 1, 2 are such

that, for α ≤ v ≤ β,


Li(α, α
(i)(0)) ≤ Li(v, α

(i)(0)) and

Li(β, β
(i)(0)) ≥ Li(v, β

(i)(0)), for i = 0, 1;

L2(α, α
′′(+∞)) ≤ L2(v, α

′′(+∞)) and

L2(β, β
′′(+∞)) ≥ L2(v, β

′′(+∞)),

limt→+∞ L2(v, w) ∈ R, and α′′(+∞) ≤ w ≤ β′′(+∞).

Theorem 12.3.1. Let f : R+
0 × R

3 → R be an L1-Carathéodory function.

If hypotheses (H1)–(H4) are verified, then problem (12.1.1),(12.1.2) has at
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least a solution u ∈ XF3 ∩W 3,1
(
R

+
0

)
and there exists R > 0 such that

α(t) ≤ u(t) ≤ β(t), α′(t) ≤ u′(t) ≤ β′(t), −R ≤ u′′(t) ≤ R, t ≥ 0,

and

α′′(+∞) ≤ u′′(+∞) ≤ β′′(+∞).

Proof. Let α, β ∈ XF3 ∩W 3,1
(
R

+
0

)
verifying (H1).

Consider the modified and perturbed problem composed by the third-

order differential equation

u′′′(t) = f

(
t, δ0(t, u(t)), δ1(t, u

′(t)),
d

dt
(δ1(t, u

′(t)))
)

(12.3.1)

+
1

1 + t4
u′(t)− δ1(t, u

′(t))
1 + |u′(t)− δ1(t, u′(t))| , t ≥ 0,

and the functional boundary equations

u(0) = δ0(0, u(0) + L0 (δF (u), u(0))),

u′(0) = δ1(0, u
′(0) + L1 (δF (u), u

′(0))),

u′′(+∞) = δ∞(u′′(+∞)) + L2 (δF (u), δ∞(u′′(+∞))) ,

(12.3.2)

where functions δi : R
+
0 × R → R are given by

δi(t, x) =




β(i)(t), x > β(i)(t),

x, α(i)(t) ≤ x ≤ β(i)(t), i = 0, 1,

α(i)(t), x < α(i)(t),

δ∞(x(+∞)) =




β′′(+∞), x(+∞) > β′′(+∞),

x(+∞), α′′(+∞) ≤ x(+∞) ≤ β′′(+∞),

α′′(+∞), x(+∞) < α′′(+∞),

δF (v) =




β, v > β,

v, α ≤ v ≤ β,

α, v < α.

For clarity, the proof follows several steps:

Step 1. If u is a solution of (12.3.1),(12.3.2), then

α′(t) ≤ u′(t) ≤ β′(t), α(t) ≤ u(t) ≤ β(t), −R ≤ u′′(t) ≤ R, ∀t ≥ 0,
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and

α′′(+∞) ≤ u′′(+∞) ≤ β′′(+∞).

Let u be a solution of the modified problem (12.3.1),(12.3.2) and sup-

pose, by contradiction, that there exists t ≥ 0 such that α′(t) > u′(t).
Therefore,

inf
t≥0

(u′(t)− α′(t)) < 0.

• If the infimum is attained at t = 0, then

min
t≥0

(u′(t)− α′(t)) = u′(0)− α′(0) < 0,

therefore, the contradiction holds

0 > u′(0)− α′(0) = δ1(0, u
′(0) + L1 (δF (u), u

′(0)))− α′(0)

≥ α′(0)− α′(0) = 0.

• If the infimum occurs at t = +∞, then

inf
t≥0

(u′(t)− α′(t)) = u′(+∞)− α′(+∞) < 0.

Therefore, u′′(+∞) − α′′(+∞) ≤ 0 and by (H4) and Definition 12.2.6,

the contradiction holds:

0 ≥ u′′(+∞)− α′′(+∞) = δ∞(u′′(+∞)) + L2 (δF (u), δ∞(u′′(+∞)))

≥ L2(δF (u), α
′′(+∞)) ≥ L2(α, α

′′(+∞)) > 0. (12.3.3)

• If there is an interior point t∗ ∈ R
+ such that

min
t≥0

(u′(t)− α′(t)) := u′(t∗)− α′(t∗) < 0,

then there exists 0 ≤ t1 < t∗ where

u′(t)− α′(t) < 0, u′′(t)− α′′(t) ≤ 0, ∀t ∈ [t1, t∗],

u′′′(t)− α′′′(t) ≥ 0, a.e. t ∈ [t1, t∗].

Therefore, for t ∈ [t1, t∗] by (H3) and Definition 12.2.6, the contradiction

holds:

0 ≤
∫ t

t1

[u′′′(s)− α′′′(s)] ds

=

∫ t

t1

[
f

(
(s, δ0(s, u(s)), δ1(s, u

′(s)),
d

ds
(δ1(s, u

′(s)))
)

+
1

1 + s4
u′(s)− δ1(s, u

′(s))
1 + |u′(s)− δ1(s, u′(s))| − α′′′(s)

]
ds
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≤
∫ t

t1

[
f(s, α(s), α′(s), α′′(s)) +

u′(s)− α′(s)
1 + |u′(s)− α′(s)| − α′′′(s)

]
ds

≤
∫ t

t1

[
u′(s)− α′(s)

1 + |u′(s)− α′(s)|
]
ds < 0.

So, u′(t) ≥ α′(t) for t > 0.

In a similar way, it can be proved that u′(t) ≤ β′(t), and, therefore,

α′(t) ≤ u′(t) ≤ β′(t), ∀t ≥ 0. (12.3.4)

Remark that α(0) ≤ u(0), otherwise, by (H4) and Definition 12.2.6, the

contradiction will happen:

0 > u(0)− α(0) = δ0(0, u(0) + L0 (δF (u), u(0)))− α(0)

≥ L0 (δF (u), u(0))) ≥ L0 (α, α(0))) ≥ 0.

Analogously, it can be proved that u(0) ≤ β(0). So, integrating (12.3.4)

in [0, t], it is easily obtained that α(t) ≤ u(t) ≤ β(t), ∀t ≥ 0.

Arguing like in (12.3.3), one can prove that u′′(+∞) ≥ α′′(+∞) and,

similarly, that u′′(+∞) ≤ β′′(+∞).

Therefore, (t, u(t), u′(t), u′′(t)) ∈ E∗ and the inequality −R ≤ u′′(t) ≤ R

is a direct consequence of Lemma 12.2.4.

Step 2. The problem (12.3.1),(12.3.2) has at least one solution.

Define the operator T : XF3 → XF3

Tu(t) = ∆ + Γt+
Ψt2

2
+

∫ +∞

0

G(t, s)Fu(s)ds,

where

∆ := δ0 (0, u(0) + L0(δF (u), u(0))) ,

Γ := δ1(0, u
′(0) + L0(δF (u), u

′(0))),

Ψ := δ∞(u′′(+∞)) + L2 (δF (u), δ∞(u′′(+∞))) ,

G(t, s) is the Green function given by (12.2.3) associated with the problem


u′′′(t) = Fu(t), t ≥ 0,

u(0) = ∆,

u′(0) = Γ,

u′′(+∞) = Ψ,

(12.3.5)
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and

Fu(t) := f

(
t, δ0(t, u(t)), δ1(t, u

′(t)),
d

dt
(δ1(t, u

′(t)))
)

+
1

1 + t4
u′(t)− δ1(t, u

′(t))
1 + |u′(t)− δ1(t, u′(t))| .

By Lemma 12.2.1, the fixed points of T are solutions of (12.3.5) and,

therefore, of problem (12.3.1),(12.3.2).

So, it is enough to prove that T has a fixed point.

Step 2.1. T is well defined and, for a compact D ⊂ XF3, TD ⊂ D.

As f is an L1-Carathéodory function, Tu ∈ C2
(
R

+
0

)
and for any u ∈ XF3

with

ρ > max{‖u‖XF3
, ‖α‖XF3

, ‖β‖XF3
, R},

there exists a positive function φρ(t) such that t2φρ(t), tφρ(t), φρ(t) ∈
L1
(
R

+
0

)
and
∫ +∞

0

|Fu(s)| ds ≤
∫ +∞

0

(
φρ(s) +

1

1 + s4

)
ds < +∞,

∫ +∞

0

|sFu(s)| ds ≤
∫ +∞

0

(
sφρ(s) +

s

1 + s4

)
ds < +∞,

∫ +∞

0

∣∣s2Fu(s)
∣∣ ds ≤

∫ +∞

0

(
s2φρ(s) +

s2

1 + s4

)
ds < +∞,

that is, Fu, tFu, t
2Fu ∈ L1

(
R

+
0

)
.

By Lebesgue Dominated Convergence Theorem, Lemma 12.2.3 and

(H4), setting

lim
t→+∞L2 (δF (u), δ∞(u′′(+∞))) := L,

and

M∞ := max {|α′′(+∞)|+ |L|, |β′′(+∞)|+ |L|} ,
one has

lim
t→+∞

(Tu)(t)

1 + t2
= lim

t→+∞
∆+ Γt+ Ψt2

2

1 + t2
+

∫ +∞

0

lim
t→+∞

G(t, s)

1 + t2
Fu(s)ds

≤ M∞
2

+
1

2

∫ +∞

0

(
φρ(s) +

1

1 + s4

)
ds < +∞,
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lim
t→+∞

(Tu)′(t)
1 + t

= lim
t→+∞

Γ +Ψt

1 + t
+

∫ +∞

0

lim
t→+∞

G1(t, s)

1 + t
Fu(s)ds

≤ M∞ +

∫ +∞

0

(
φρ(s) +

1

1 + s4

)
ds < +∞,

lim
t→+∞(Tu)′′(t) = M∞ + lim

t→+∞

∫ +∞

t

Fu(s)ds < +∞.

Therefore, Tu ∈ XF3.

Consider now the subset D ⊂ XF3 given by

D := {x ∈ XF3 : ‖u‖XF3
< ρ0},

with ρ0 > 0, such that

ρ0 > max {|α(0)| , |β(0)|}+max {|α′(0)| , |β′(0)|}+ |k0|

+

∫ +∞

0

M(s)

(
φρ(s) +

1

1 + s4

)
ds,

where

k0 := max {|α′′(+∞)|, |β′′(+∞)|}+ sup
t≥0

L2(v, w),

for α ≤ v ≤ β and α′′(+∞) ≤ w ≤ β′′(+∞), and

M(s) := max

{
sup
t≥0

|G(t, s)|
1 + t2

, sup
t≥0

|G1(t, s)|
1 + t

, 1

}
.

So, for t ≥ 0,

‖Tu‖0 = sup
t≥0

|Tu(t)|
1 + t2

≤ sup
t≥0



∣∣∣∆+ Γt+ Ψt2

2

∣∣∣
1 + t2


+ sup

t≥0

(∫ +∞

0

|G(t, s)|
1 + t2

|Fu(s)| ds
)

≤ |∆|+ |Γ|+ |Ψ|
2

+

∫ +∞

0

M(s)

(
φρ0(s) +

1

1 + s4

)
ds < ρ0,

‖(Tu)′‖1 = sup
t≥0

|(Tu)′|
1 + t

≤ sup
t≥0

( |Γ +Ψt|
1 + t

+

∫ +∞

0

|G1(t, s)|
1 + t

|Fu(s)| ds
)

≤ |Γ|+ |Ψ|+
∫ +∞

0

M(s)

(
φr1(s) +

1

1 + s4

)
ds < ρ0,
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and

‖(Tu)′′‖2 = sup
t≥0

|(Tu)′′| ≤ sup
t≥0

(
|Ψ|+

∫ +∞

t

|Fu(s)| ds
)

≤ sup
t≥0

(
|Ψ|+

∫ +∞

t

φr1(s) +
1

1 + s4
ds

)
< ρ0.

So, TD ⊂ D.

Step 2.2. T is continuous.

Consider a convergent sequence un → u in XF3, there exists ρ1 > 0 such

that max{supn ‖un‖XF3 ,‖α‖XF3 ,‖β‖XF3 , R} < ρ1. By Lemma 12.2.8, one

has

‖Tun − Tu‖X = max {‖Tun − Tu‖0 , ‖(Tun)′ − (Tu)′‖1 ,
‖(Tun)′′ − (Tu)′′‖2}

≤
∫ +∞

0

M(s) |Fun(s)− Fu(s)| ds −→ 0, as n→ +∞.

Step 2.3. T is compact.

Let B ⊂ XF3 be any bounded subset. Therefore, there is r > 0 such that

‖u‖XF3
< r, ∀u ∈ B.

For each u ∈ B, and for max{r, R, ‖α‖XF3 ,‖β‖XF3} < r1, similar argu-

ments to Step 2.1 can be applied to prove that ‖Tu‖0, ‖(Tu)′‖1 and

V ert(Tu)′′‖2 are finite.

So, ‖Tu‖XF3 = max{‖Tu‖0,‖(Tu)′‖1, ‖(Tu)′′‖2} < +∞, that is, TB is

uniformly bounded in XF3.

TB is equicontinuous because, for L > 0 and t1, t2 ∈ [0, L], one has, as

t1 → t2,

∣∣∣∣Tu(t1)1 + t21
− Tu(t2)

1 + t22

∣∣∣∣

≤
∣∣∣∣∣
∆+ Γt1 +

Ψt1
2

1 + t21
− ∆+ Γt2 +

Ψt2
2

1 + t22

∣∣∣∣∣

+

∫ +∞

0

∣∣∣∣G(t1, s)1 + t21
− G(t2, s)

1 + t22

∣∣∣∣ |F (u(s))| ds
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≤
∣∣∣∣∣
∆+ Γt1 +

Ψt1
2

1 + t21
− ∆+ Γt2 +

Ψt2
2

1 + t22

∣∣∣∣∣

+

∫ +∞

0

∣∣∣∣G(t1, s)1 + t21
− G(t2, s)

1 + t22

∣∣∣∣
(
φr1(s) +

1

1 + s4

)
ds −→ 0,

∣∣∣∣(Tu)
′(t1)

1 + t1
− (Tu)′(t2)

1 + t2

∣∣∣∣
≤
∣∣∣∣Γ + Ψt1
1 + t1

− Γ +Ψt2
1 + t2

∣∣∣∣

+

∫ +∞

0

∣∣∣∣G1(t1, s)

1 + t1
− G1(t2, s)

1 + t2

∣∣∣∣ |F (u(s))| ds

≤
∣∣∣∣Γ + Ψt1
1 + t1

− Γ +Ψt2
1 + t2

∣∣∣∣

+

∫ +∞

0

∣∣∣∣G1(t1, s)

1 + t1
− G1(t2, s)

1 + t2

∣∣∣∣
(
φr1(s) +

1

1 + s4

)
ds −→ 0,

|(Tu)′′(t1)− (Tu)′′(t2)| =
∣∣∣∣
∫ +∞

t1

Fu(s)ds−
∫ +∞

t2

Fu(s)ds

∣∣∣∣

≤
∫ t2

t1

|Fu(s)| ds

≤
∫ t2

t1

(
φr1(s) +

1

1 + s4

)
ds −→ 0.

Moreover, TB is equiconvergent at infinity because, as t→ +∞,

∣∣∣∣Tu(t)1 + t2
− lim

t→+∞
Tu(t)

1 + t2

∣∣∣∣

≤
∣∣∣∣∣
∆+ Γt+ Ψt2

2

1 + t2
− Ψ

2

∣∣∣∣∣

+

∫ +∞

0

∣∣∣∣G(t, s)1 + t2
+

1

2

∣∣∣∣ |Fu(s)| ds

≤
∣∣∣∣∣
∆+ Γt+ Ψt2

2

1 + t2
− Ψ

2

∣∣∣∣∣
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+

∫ +∞

0

∣∣∣∣G(t, s)1 + t2
+

1

2

∣∣∣∣
(
φρ1 +

1

1 + s4

)
ds → 0,

∣∣∣∣ (Tu)
′(t)

1 + t
− lim

t→+∞
Tu(t)

1 + t

∣∣∣∣
≤
∣∣∣∣Γ + Ψt

1 + t
−Ψ

∣∣∣∣

+

∫ +∞

0

∣∣∣∣G1(t, s)

1 + t
+ 1

∣∣∣∣ |Fu(s)| ds

≤
∣∣∣∣Γ + Ψt

1 + t
−Ψ

∣∣∣∣

+

∫ +∞

0

∣∣∣∣G1(t, s)

1 + t
+ 1

∣∣∣∣
(
φρ1 +

1

1 + s4

)
ds→ 0,

and

∣∣∣∣(Tu)′′(t)− lim
t→+∞(Tu)′′(t)

∣∣∣∣ =
∫ +∞

t

|Fu(s)| ds

≤
∫ +∞

t

(
φρ1 +

1

1 + s4

)
ds −→ 0.

So, by Lemma 12.2.5, TB is relatively compact.

Then by Schauder’s fixed-point theorem (Theorem 1.2.6), T has at least

one fixed point u1 ∈ XF3.

Step 3. u1 is a solution of (12.1.1), (12.1.2).

Suppose, by contradiction, that

α(0) > u1(0) + L0(δF , u1(0)).

Then, by (12.3.2), u1(0) = α(0) and, by (H4) and Definition 12.2.6, the

following contradiction holds:

u1(0) + L0(δF (u1), u1(0)) = α(0) + L0(δF (u1), α(0))

≥ α(0) + L0(α, α(0)) ≥ α(0).

So, α(0) ≤ u1(0)+L0(δF , u1(0)). In a similar way, it can be proved that

u1(0) + L0(δF (u1), u1(0)) ≤ β(0).
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Assuming, by contradiction, that α′(0) > u′1(0) + L1(δF (u1), u
′
1(0)),

u′1(0) = α′(0) and, by (H4) and Definition 12.2.6, the following contradic-

tion is achieved:

u′1(0) + L1(δF (u1), u
′
1(0)) = α′(0) + L1(δF (u1), α

′(0))

≥ α′(0) + L1(α, α
′(0)) ≥ α′(0).

So, α′(0) ≤ u′1(0) + L1(δF (u1), u
′
1(0)). By similar arguments, it can be

proved that u′1(0) + L1(δF (u1), u
′
1(0)) ≤ β′(0).

By Step 1, α(0) ≤ u1(0) ≤ β(0), α′(0) ≤ u′1(0) ≤ β′(0) and −R ≤
u′′1(+∞) ≤ R, and therefore, u1(t) verifies the differential equation (12.1.1)

and boundary conditions (12.1.2), that is, u1 is a solution of (12.1.1),

(12.1.2). �

12.4. Falkner–Skan equation

A classical third-order differential equation, known as the Falkner–Skan

equation, is of the form

u′′′(t) + au(t)u′′(t) + b(1− (u′(t))2) = 0, t ≥ 0. (12.4.1)

This general equation is obtained from partial differential equations by

using some transformation technique (see [155]).

When b = 0, equation (12.4.1) is known as the Blasius equation, and it

models the behavior of a viscous flow over a flat plate. A boundary layer

is created by a two-dimensional flow over a fixed impenetrable surface, and

particles move more slowly near the surface than near the free stream.

In this way, equation (12.4.1) can be subject to the following boundary

conditions on the half line:

u(0) = 0, u′(0) = 0, u′(+∞) = 1. (12.4.2)

In the literature, only numerical techniques are applied to deal with

these types of problems, (12.4.1),(12.4.2), with general a, b (see, for instance,

[157]).

To illustrate the main result, let us consider a boundary value problem

of this family, composed by the third-order fully differential equation

u′′′(t) =
(u′(t))2 − 1

1 + t6
− u(t)|u′′(t)|

e3t
+
u′′(t)
1 + t4

, t ≥ 0, (12.4.3)
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and the functional boundary conditions on the half-line:

∫ +∞

0

|u(t)|
(t2 + t+ 1)(t2 + 1)

dt− 2u(0) = 0,

u′(0) = 1, (12.4.4)

inf
t≥0

u(t)

1 + t2
− u′′(+∞) = −0.5.

Remark that the above problem is a particular case of (12.1.1),(12.1.2)

with

f(t, x, y, z) =
y2 − 1

1 + t6
− x|z|

e3t
+

z

1 + t4
,

L0(a, b) =

∫ +∞

0

|a(t)|
(t2 + t+ 1)(t2 + 1)

dt− 2b,

L1(a, c) = c− 1, (12.4.5)

L2(a, d) = inf
t≥0

a(t)

1 + t2
− d+ 0.5.

Functions β(t) = t2 + t + 1 and α(t) = t are, respectively, upper and

lower solutions of the problem (12.4.3),(12.4.4), verifying (H1).

The nonlinear function f : R+
0 × R

3 → R verifies the assumptions of

Theorem 12.3.1. In fact,

• f is an L1-Carathéodory function as for |x| < ρ(1 + t2), |y| < ρ(1 + t)

and |z| < ρ, one has

|f(t, x, y, z)| ≤ ρ2(1 + t)2 + 1

1 + t6
+
ρ2(1 + t2)

e3t
+

ρ

1 + t4
:= φρ(t)

with φρ, tφρ, t
2φρ ∈ L1(R+

0 );

• f verifies the Nagumo condition on the set

E∗ =


(t, x, y, z) ∈ R

+
0 × R

3 :

t ≤ x ≤ t2 + t+ 1

1 ≤ y ≤ 2t+ 1

0 ≤ z(+∞) ≤ 2




with ψ(t) = k
1+t4 and h = 1, where k > 0 is a real constant;

• f(t, x, y, z) is nonincreasing in x, therefore, it satisfies (H3);
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As the functions Li, i = 0, 1, 2, given by (12.4.5) verify (H4), then,

by Theorem 12.3.1, there is at least a solution u of (12.4.3),(12.4.4)

such that

t ≤ u(t) ≤ t2 + t+ 1, 1 ≤ u′(t) ≤ 2t+ 1, 0 ≤ u′′(t) ≤ 2, for t ≥ 0.

This localization part shows that this solution is unbounded, nonnega-

tive, increasing and convex.
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Chapter 13

φ-Laplacian Equations with
Functional Boundary Conditions

13.1. Introduction

This chapter is concerned with the study of φ-Laplacian equations, some-

times called in the literature as half-linear equations. More precisely, we

consider a fully nonlinear equation on the half-line

(φ(u′(t)))′ + q(t)f(t, u(t), u′(t)) = 0, t ≥ 0, (13.1.1)

where φ : R → R is an increasing homeomorphism with φ(0) = 0, f : R+
0 ×

R
2 → R and q : R+ → R

+
0 are both continuous functions, verifying adequate

assumptions, but q is allowed to have a singularity when t = 0, coupled with

the functional boundary conditions

L(u, u(0), u′(0)) = 0, u′(+∞) := lim
t→+∞u′(t) = B, (13.1.2)

where L : C
(
R

+
0

)×R
2 → R is a continuous function with properties to be

expressed later and B ∈ R.

Boundary value problems, usually, are considered on compact domains.

However, problems on the half-line are becoming increasingly more popular

in the literature due to their applications in fields like engineering, chem-

istry and biology (see, for instance, [117, 147, 151]). Moreover, if equation

(13.1.1) is considered on the whole real line, some techniques to guarantee

the existence of homoclinic and heteroclinic solutions have been developed

in the recent years, as it can be seen in [110–112, 115].

Problems defined on unbounded domains require more delicate proce-

dures to deal with the lack of compactness. In this chapter, this is overcome

171
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by applying the so-called Bielecki norm and the equiconvergence at ∞, as

in [51].

It is important to note that, in this chapter, two types of new features

are introduced:

• The homeomorphism φ does not need to be surjective, that is φ(R) can

be different from R. This is overcome by an auxiliary surjective homeo-

morphism that extends, eventually, φ.

• A new and more general type of boundary conditions, given by a func-

tional that can depend globally on the unknown function.

Moreover, this method can be applied to classical or singular

φ-Laplacian, that is, even for homeomorphism φ : (−a, a) → R, with

0 < a < +∞ (for more details, see [24, 37]).

In general, the lower and upper solutions method is a very adequate

and useful technique to deal with functional boundary value problems as

it provides not only the existence of bounded or unbounded solutions, but

also their localization and, from that, some qualitative data about solutions,

their variation and behavior (see [35, 71, 72, 99, 100, 113]).

The technique used in this chapter follows the work [68], and applies

some arguments suggested in [57], combined with the upper and lower solu-

tions and a Nagumo condition to control the first derivative. The usage of

such tool allows to improve the existent solutions, namely the introduction

of functional boundary conditions in the problem. These boundary con-

ditions are very general in nature. Not only they generalize most of the

classical boundary conditions, but they also cover the separated and mul-

tipoint cases, nonlocal or integral conditions or other boundary conditions

with maximum/minimum arguments, that is, for example, of the type

u(0) = max
t≥0

u(t) or u′(τ) = min
t≥0

u′(t), with τ ≥ 0,

provided that the assumptions on L are satisfied.

The chapter is organized as follows. In the first section, some auxiliary

result are defined such as the space, the weighted norms, lower and upper

solutions to be used and the necessary lemmas to proceed. The second sec-

tion contains new results of existence and localization of solutions. Finally,

two examples, which are not covered by the existent literature, show the

applicability of the main theorems. In the first one, the Nagumo conditions

are verified. On the other hand, in the second one, these assumptions are

replaced by a stronger condition on lower and upper solutions together with

a local monotone growth on f .

 H
ig

he
r 

O
rd

er
 B

ou
nd

ar
y 

V
al

ue
 P

ro
bl

em
s 

on
 U

nb
ou

nd
ed

 D
om

ai
ns

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

T
IO

N
A

L
 U

N
IV

E
R

SI
T

Y
 O

F 
SI

N
G

A
PO

R
E

 o
n 

10
/2

8/
17

. F
or

 p
er

so
na

l u
se

 o
nl

y.



August 3, 2017 10:52 Higher Order Boundary Value Problems. . . – 9in x 6in spi-b2901-9x6 b2901-ch13 page 173

φ-Laplacian Equations with Functional Boundary Conditions 173

13.2. Preliminary results

In this section, some definitions and auxiliary results needed for the proof

of the main result are presented. Consider the following space

Xφ =

{
x ∈ C1(R+

0 ) : lim
t→+∞

x(t)

eθt
∈ R

}

equipped with a Bielecki norm type in C1(R+
0 ),

‖x‖Xφ
:= max {‖x‖0, ‖x′‖1} ,

where

‖w‖0 = sup
t≥0

|w(t)|
eθt

and ‖w‖1 = sup
t≥0

|w(t)|.

In this way, it is clear that (Xφ, ‖·‖Xφ
) is a Banach space.

In addition, the following conditions must hold:

(H1) φ : R → R is an increasing homeomorphism with φ(0) = 0.

(H2) The function f : R+×R
2 → R is continuous and f(t, x, y) is uniformly

bounded for t > 0 when x and y are bounded.

(H3) The function q : R+ → R
+
0 is integrable, not identically to 0 in a

subinterval of R+.

(H4) L : C (R+) × R
2 → R is a continuous function, nondecreasing in the

first and third variables.

The approach to problem (13.1.1),(13.1.2) will be from the perspective

of a fixed point problem. In this order, the next lemmas will establish the

link between problem (13.1.1),(13.1.2) and its integral formulation.

Let γ,Γ ∈ Xφ be such that γ(t) ≤ Γ(t), ∀t ≥ 0. Consider the set, for

θ > 0,

Eθ =

{
(t, x, y) ∈ R

+
0 × R

2 :
γ(t)

eθt
≤ x ≤ Γ(t)

eθt

}
.

The following Nagumo condition allows some a priori bounds on the

first derivative of the solution.

Definition 13.2.1. A function f : Eθ → R is said to satisfy a Nagumo-

type growth condition in Eθ if, for some positive and continuous functions

ψ, h, such that

sup
t≥0

ψ(t) < +∞,

∫ +∞

0

|φ−1(s)|
h(|φ−1(s)|)ds = +∞, (13.2.1)
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it verifies

|q(t)f(t, x, y)| ≤ ψ(t)h(|y|), ∀(t, x, y) ∈ Eθ. (13.2.2)

Lemma 13.2.2. Let f : R+
0 × R

2 → R be a continuous function satisfy-

ing a Nagumo-type growth condition in Eθ. Then there exists N > 0 (not

depending on u) such that every solution u of (13.1.1),(13.1.2) with

γ(t)

eθt
≤ u(t) ≤ Γ(t)

eθt
, for t ≥ 0, θ > 0,

has

‖u′‖1 < N. (13.2.3)

Proof. Let u be a solution of (13.1.1),(13.1.2) with (t, u(t), u′(t)) ∈ Eθ.

Consider r > 0, such that

r > |B|. (13.2.4)

If |u′(t)| ≤ r, ∀t ≥ 0, taking N > r the proof is complete as

‖u′‖1 = sup
t≥0

|u′(t)| ≤ r < N.

Suppose there exists t0 ≥ 0 such that |u′(t0)| > N , that is, u′(t0) > N

or u′(t0) < −N .

In the first case, by (13.2.1), one can take N > r such that

∫ φ(N)

φ(r)

|φ−1(s)|
h(|φ−1(s)|)ds > M

(
sup
t≥0

Γ(t)

eθt
− inf

t≥0

γ(t)

eθt

)
(13.2.5)

with M := supt≥0 ψ(t).

Consider t1, t2 ∈ [t0,+∞) such that t1 < t2, u
′(t1) = N, u′(t2) = r

and r ≤ u′(t) ≤ N, ∀t ∈ [t1, t2]. Therefore, the following contradiction with

(13.2.5) is achieved:

∫ φ(N)

φ(r)

|φ−1(s)|
h(|φ−1(s)|)ds =

∫ φ(u′(t1))

φ(u′(t2))

φ−1(s)

h(φ−1(s))
ds

=

∫ t1

t2

u′(s)
h(u′(s))

(φ(u′(s)))′ds

= −
∫ t2

t1

q(s)f(s, u(s), u′(s))
h(u′(s))

u′(s)ds
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≤
∫ t2

t1

|q(s)f(s, u(s), u′(s))|
h(u′(s))

u′(s) ds

≤
∫ t2

t1

ψ(s)u′(s) ds ≤M

∫ t2

t1

u′(s) ds

≤ M(u(t2)− u(t1)) ≤M

(
sup
t≥0

Γ(t)

eθt
− inf

t≥0

γ(t)

eθt

)
.

So u′(t) < N, ∀t ≥ 0.

Similarly, it can be proved that u′(t) > −N, ∀t ≥ 0, and, therefore,

‖u′‖1 < N, ∀t ≥ 0. �

Define a surjective homeomorphism ϕ : R → R as

ϕ(y) =



φ(y) if |y| ≤ R

φ(R)− φ(−R)
2R

y +
φ(R) + φ(−R)

2
if |y| > R

(13.2.6)

with R > 0 is to be defined later.

Lemma 13.2.3. Let v ∈ L1
(
R

+
0

)
. Then u ∈ Xφ such that (ϕ(u′(t))) ∈

AC
(
R

+
0

)
is the unique solution of

(ϕ(u′(t)))′ + v(t) = 0, t ≥ 0 (13.2.7)

u(0) = A

u′(+∞) = B,

with A, B ∈ R, if and only if

u(t) = A+

∫ t

0

ϕ−1

(
ϕ (B) +

∫ +∞

s

v (τ) dτ

)
ds (13.2.8)

Proof. Let u ∈ Xφ be a solution of (13.2.7). Then

(ϕ(u′(t)))′ = −v(t),
and by integration, one has

ϕ(u′(t)) = ϕ(B) +

∫ +∞

t

v(s)ds.

As ϕ is continuous and ϕ(R) = R, then

u′(t) = ϕ−1

(
ϕ(B) +

∫ +∞

t

v(s)ds

)
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and by integration again,

u(t) = A+

∫ t

0

ϕ−1

(
ϕ(B) +

∫ +∞

s

v (τ) dτ

)
ds.

�

The lack of compactness is overcome by the following lemma, which will

provide a general criteria for relative compactness.

Lemma 13.2.4. ([51]). Let M ⊂ Xφ. The set M is said to be relatively

compact if the following conditions hold:

(a) M is uniformly bounded in Xφ;

(b) the functions belonging to M are equicontinuous on any compact

interval of R+
0 ;

(c) the functions f from M are equiconvergent at +∞, i.e., given ε > 0,

there exists T (ε) > 0 such that ‖f(t)− f(+∞)‖Xφ
< ε for any t > T (ε)

and f ∈M.

The adaptation of the Euclidean norm of Rn to the weighted norms of

Xφ is a scholar exercise and, by this reason, was omitted.

To prove the main result, it is important to rely on the upper and

lower solutions method. The functions to be considered as upper and lower

solutions are defined as follows.

Definition 13.2.5. A function α ∈ Xφ ∩ C2(R+) such that φ(α′) ∈
AC(R+

0 ) is said to be a lower solution of problem (13.1.1),(13.1.2) if

(φ(α′))′(t) + q(t)f(t, α(t), α′(t)) ≥ 0

and

L(α, α(0), α′(0)) ≥ 0, α′(+∞) < B, (13.2.9)

where B ∈ R.

A function β ∈ Xφ ∩ C2 (R+) is an upper solution if it satisfies the

reversed inequalities.

The following condition is applied for well-ordered lower and upper solu-

tions of problem (13.1.1),(13.1.2).

(H5) There are α and β lower and upper solutions of (13.1.1),(13.1.2),

respectively, such that

α(t) ≤ β(t), ∀t ≥ 0. (13.2.10)
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Throughout the proof of the main result, a modified and perturbed

problem will be considered. It is given by



(ϕ(u′(t)))′ + q(t)f(t, δ0(t, u), δ1(t, u
′)) = 0,

u(0) = δ0(0, u(0) + L(u, u(0), u′(0))),

u′(+∞) = B

(13.2.11)

with the truncature δ0 : R+
0 × R → R is given by

δ0(t, y) =




β(t), y > β(t),

y, α(t) ≤ y ≤ β(t),

α(t), y < α(t),

(13.2.12)

and δ1 : R → R by

δ1(w) =




N, w > N,

w, −N ≤ w ≤ N,

−N, w < −N,
(13.2.13)

where N is defined in Lemma 13.2.2, for functions f satisfying Nagumo’s

condition.

Consider ϕ : R → R given by (13.2.6) where R := max{N, ‖α′‖1,
‖β′‖1}, with N given by (9.2.15).

The operator T : Xφ → Xφ associated to (13.2.11) can then be defined

as

(Tu)(t) := δ0(0, u(0) + L(u, u(0), u′(0)))

+

∫ t

0

ϕ−1

(
ϕ(B) +

∫ +∞

s

q(τ)f(τ, δ0(τ, u), δ1(τ, u
′))dτ

)
ds.

(13.2.14)

One of the essential steps is to prove that the operator T has a fixed

point. However, the function q may, or may not, be singular at the origin.

In this way two results are presented: one for the regular case, where q is

not singular when t = 0, and another result for the singular case.

First, let us start by presenting some lemmas for the regular case.

Lemma 13.2.6. (Regular case). Assume that q : R+
0 → R

+
0 is continuous

and that conditions (H1)–(H3) and (H5) hold. Then the operator T is well

defined.
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Proof. For any u ∈ Xφ there is K > 0 such that ‖u‖Xφ
< K.

From (13.2.11) and (13.2.12)

lim
t→+∞

(Tu)(t)

eθt
≤ lim

t→+∞
β(0)

eθt

+ lim
t→+∞

∫ t

0 ϕ
−1(ϕ(B) +

∫ +∞
s q(τ)f(τ, δ0(τ, u), δ1(τ, u

′))dτ)ds
eθt

≤ lim
t→+∞

∫ t

0
ϕ−1(ϕ(B) +

∫ +∞
s

q(τ)f(τ, δ0(τ, u), δ1(τ, u
′))dτ)ds

eθt
.

As δ0(τ, u) and δ1(τ, u
′) are bounded, by (H2), then

f(τ, δ0(τ, u), δ1(τ, u
′))

is uniformly bounded. Let us define

SK := sup
t≥0

{f(t, x, y), t ≥ 0, |x| ∈ (0,K0), |y| ∈ (0, N)} , (13.2.15)

with

K0 = max {‖α‖0, ‖β‖0} (13.2.16)

and N given by (13.2.3).

Remark that SK does not depend on u.

From (H3), a real number k1 can be defined such that
∫ +∞

s

q(τ)SKdτ := k1. (13.2.17)

As ϕ is nondecreasing, the previous inequality now becomes

lim
t→+∞

(Tu)(t)

eθt
≤ lim

t→+∞

∫ t

0
ϕ−1(ϕ(B) + SK

∫ +∞
s

q(τ)dτ)ds

eθt

≤ lim
t→+∞

∫ t

0 ϕ
−1 (ϕ(B) + k1) ds

eθt

≤ lim
t→+∞

ϕ−1 (ϕ(B) + k1) t

eθt
= 0. (13.2.18)

For

lim
t→+∞(Tu)′(t) = ϕ−1

(
ϕ(B) +

∫ +∞

t

q(τ)f(τ, δ0(τ, u), δ1(τ, u
′))dτ

)

= B < +∞.

Therefore, T is well defined. �
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Lemma 13.2.7. (Regular case). Assume that q : R
+
0 → R

+
0 is con-

tinuous and that conditions (H1)–(H5) hold. Then the operator T is

continuous.

Proof. Consider a convergent sequence un → u ∈ Xφ.

By the arguments used in the previous lemma, the upper bounds are

uniform and, therefore, do not depend on n.

Defining

Θ := ϕ(B) +

∫ +∞

s

q(τ)f(τ, δ0(τ, un), δ1(τ, u
′
n))dτ

and as ϕ is continuous, by (H2) and Lebesgue’s Dominated Convergence

Theorem, one has

‖(Tun)− (Tu)‖0

= sup
t≥0

e−θt

∣∣∣∣∣∣∣∣∣

δ (0, un (0) + L (un, un (0) , u
′
n (0))) +

∫ t

0

ϕ−1(Θ)ds

−δ (0, u (0) + L (u, u (0) , u′ (0)))−
∫ t

0

ϕ−1(Θ)ds

∣∣∣∣∣∣∣∣∣
→ 0,

as n→ +∞, and

‖(Tun)′ − (Tu)′‖1

≤ sup
t≥0

∣∣∣∣∣∣∣∣∣

ϕ−1(ϕ(B) +

∫ +∞

t

q(τ)f(τ, δ0(τ, un), δ1(τ, u
′
n))dτ)

−ϕ−1(ϕ(B) +

∫ +∞

t

q(τ)f(τ, δ0(τ, u), δ1(τ, u
′))dτ)

∣∣∣∣∣∣∣∣∣
→ 0,

as n→ +∞.

Therefore, T is continuous in Xφ. �

Lemma 13.2.8. The operator T is compact.

Proof. The idea in this proof is to apply Lemma 13.2.4. For that,

it is important to show that the operator T is equicontinuous and

equiconvergent at +∞.

Let us consider t1, t2 ∈ (0, T0), where T0 > 0 and t1 < t2.
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Defining Θ := ϕ(B)+
∫ +∞
s

q(τ)f(τ, δ0(τ, u), δ1(τ, u
′))dτ , then, for θ > 0,

∣∣∣∣(Tu)(t1)eθt1
− (Tu)(t2)

eθt2

∣∣∣∣ ≤ max {|α(0)|, |β(0)|} e
θt2 − eθt1

eθ(t1+t2)

+

∣∣∣∣e
θt2 − eθt1

eθ(t1+t2)

∫ t1

0

ϕ−1(Θ)ds

∣∣∣∣+
∣∣∣∣∣
eθt1

∫ t2
t1
ϕ−1(Θ)ds

eθ(t1+t2)

∣∣∣∣∣

≤ max {|α(0)|, |β(0)|} e
θt2 − eθt1

eθ(t1+t2)

+

∣∣∣∣∣
eθt2 − eθt1

∫ t1
0 ϕ−1(ϕ(B) + SK

∫ +∞
s q(τ)dτ)

eθ(t1+t2)

∣∣∣∣∣

+

∣∣∣∣∣
eθt1

∫ t2
t1
ϕ−1(ϕ(B) + SK

∫ +∞
s

q(τ)dτ)

eθ(t1+t2)

∣∣∣∣∣→ 0,

as t1 → t2.

Also, as ϕ−1 is continuous, defining F := q(τ)f(τ, δ0(τ, u), δ1(τ, u
′)), by

(13.2.15) and (13.2.17),

|(Tu)′(t1)− (Tu)′(t2)| =
∣∣∣∣ϕ−1

(∫ +∞

t1

Fdτ

)
− ϕ−1

(∫ +∞

t2

Fdτ

)∣∣∣∣→ 0,

as t1 → t2. Therefore, T is equicontinuous.

For the equiconvergence at +∞ of the operator T, one has, by (13.2.18),

∣∣∣∣ (Tu)(t)eθt
− lim

t→+∞
(Tu)(t)

eθt

∣∣∣∣ =
∣∣∣∣e−θt

∫ t

0

ϕ−1(Θ)ds

∣∣∣∣→ 0,

as t→ +∞. For
∣∣∣∣(Tu)′(t)− lim

t→+∞(Tu)′(t)
∣∣∣∣ =

∣∣∣∣ϕ−1(Θ)− lim
t→+∞ϕ

−1(Θ)

∣∣∣∣
it tends to 0 as t→ +∞, from (H3) and the continuity of ϕ−1.

As T is equicontinuous and equiconvergent, then from Lemma 13.2.4,

T is compact. �

Now let us consider the singular case.

Lemma 13.2.9. (Singular case). Let q be singular at t = 0. Then the

operator T given by (13.2.14) is completely continuous.
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Proof. For each n ≥ 1 and Θ := ϕ(B)+
∫ +∞
s

q(τ)f(τ, δ0(τ, u), δ1(τ, u
′))dτ

let us define the approximating operator Tn : Xφ → Xφ given by

(Tnu) (t) := δ0(0, u(0) + L(u, u(0), u′(0))) +
∫ t

1
n

ϕ−1(Θ)ds. (13.2.19)

In this case, it is sufficient to show that Tn tends to T on Xφ. In fact,

from (H1)–(H3), (13.2.15) and (13.2.17), one has

∣∣∣∣(Tu)(t)eθt
− (Tnu)(t)

eθt

∣∣∣∣ =
∣∣∣∣∣
∫ 1

n

0
ϕ−1(Θ)ds

eθt

∣∣∣∣∣

≤
∫ 1

n

0
ϕ−1(ϕ(B) + SK

∫ +∞
s

q(τ)dτ)

eθt
→ 0,

as n→ +∞, and

|(Tu)′(t)− (Tnu)
′(t)|

=

∣∣∣∣∣
ϕ−1(ϕ(B) +

∫ +∞
1
n

q(τ)f(τ, δ0(τ, u), δ1(τ, u
′))dτ)

−ϕ−1(ϕ(B) +
∫ +∞
0 q(τ)f(τ, δ0(τ, u), δ1(τ, u

′))dτ)

∣∣∣∣∣→ 0,

as n→ +∞.

Hence, the operator T is completely continuous. �

13.3. Existence and localization result

In this section, the existence and location result for (13.1.1), (13.1.2) is

proved.

Theorem 13.3.1. Let f : R+
0 × R

2 → R and q : R+
0 → R be both contin-

uous functions, where q can have a singularity when t = 0, and f verifies

the Nagumo conditions (13.2.1) and (13.2.2). If conditions (H1)–(H5) are

satisfied, then problem (13.1.1),(13.1.2) has at least one solution u ∈ Xφ

and there exists N > 0 such that

α(t) ≤ u(t) ≤ β(t) and −N < u′(t) < N, ∀t ≥ 0.

Proof.

Claim 1. Every solution u of (13.2.11) verifies α(t) ≤ u(t) ≤ β(t) and

there is N > 0 such that −N < u′(t) < N, ∀t ≥ 0.
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Let u ∈ Xφ be a solution of the modified problem (13.2.11) and suppose,

by contradiction, that there exists t > 0 such that α(t) > u(t). Therefore,

inf
t≥0

(u(t)− α(t)) < 0.

Suppose that this infimum is attained as t→ +∞. Therefore,

lim
t→+∞(u′(t)− α′(t)) = u′(+∞)− α′(+∞) ≤ 0.

By Definition 13.2.5, one gets the contradiction,

0 ≥ u′(+∞)− α′(+∞) = B − α′(+∞) > 0.

Analogously, the infimum does not happen at t = 0, otherwise the fol-

lowing contradiction holds:

0 > u(0)− α(0) = δ(0, u(0) + L(u, u(0), u′(0)))− α(0) ≥ 0.

Therefore, there are t∗ > 0 and t0 < t∗ such that

min
t≥0

(u(t)− α(t)) := u(t∗)− α(t∗) < 0,

u′(t∗) = α′(t∗),

u(t) < α(t), u′(t) < α′(t), ∀t ∈ [t0, t∗[,

and, by (H1),

ϕ(u′(t)) < ϕ(α′(t)), ∀t ∈ [t0, t∗[. (13.3.1)

So, for t ∈ [t0, t∗[, by (13.2.11), (13.2.12), (13.2.6) and Definition 13.2.5,

one has

(ϕ(u′(t)))′ = −q(t)f(t, δ0(t, u), δ1(t, u′))
= −q(t)f(t, α(t), α′(t))

≤ (φ(α′(t)))′ = (ϕ(α′(t)))′.

Therefore, the function ϕ(u′(t)) − ϕ(α′(t)) is nonincreasing on [t0, t∗[
and

ϕ(u′(t0))− ϕ(α′(t0)) ≥ ϕ(u′(t∗))− ϕ(α′(t∗)) = 0,

which is a contradiction with (13.3.1).

So, u(t) ≥ α(t), ∀t ≥ 0.

Analogously, it can be shown that u(t) ≤ β(t), ∀t ≥ 0.
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The first derivative inequalities are an immediate consequence of Lemma

13.2.2, taking

γ(t) =
α(t)

eθt
and Γ(t) =

β(t)

eθt
, for t ≥ 0, θ > 0.

From the lemmas in the previous section, one has that the operator T

is completely continuous, both for the singular and regular cases.

Claim 2. The problem (13.2.11) has at least a solution u ∈ Xφ.

In order to apply Schauder’s fixed-point theorem, we consider a closed and

bounded set D defined as

D = {u ∈ Xφ : ‖u‖X ≤ ρ} ,
with ρ such that

ρ := max

{
K0 + sup

t∈[0,+∞)

(
ϕ−1 (ϕ (B) + k1) t

eθt

)
,
∣∣ϕ−1 (ϕ (B) + k1)

∣∣
}
,

where K0 is given by (13.2.16) and k1 by (13.2.17).

For u ∈ D, arguing as in the proof of Lemma 13.2.6, as ϕ−1 is increasing,

we have, for SK given by (13.2.15),

‖Tu‖0 = sup
t∈[0,+∞)

|(Tu) (t)|
eθt

≤ sup
t∈[0,+∞)

(
K0 +

∫ t

0
ϕ−1

(
ϕ (B) +

∫∞
s
q (τ)SK

)
ds

eθt

)

≤ sup
t∈[0,+∞)

(
K0 +

∫ t

0
ϕ−1 (ϕ (B) + k1) ds

eθt

)

= sup
t∈[0,+∞)

(
K0 +

ϕ−1 (ϕ (B) + k1) t

eθt

)
≤ ρ,

and ∥∥(Tu)′∥∥
1
= sup

t∈[0,+∞)

∣∣(Tu)′ (t)∣∣

≤ sup
t∈[0,+∞)

∣∣∣∣∣
ϕ−1 (ϕ (B)

+
∫∞
0 q (τ) f (τ, δ0(τ, u), δ1(τ, u

′)) dτ
)
∣∣∣∣∣

≤ sup
t∈[0,+∞)

∣∣ϕ−1 (ϕ (B) + k1)
∣∣ ≤ ρ.

Therefore, TD ⊆ D.
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Then by Schauder’s fixed-point theorem (Theorem 1.2.6), T has at least

one fixed point u ∈ Xφ, that is, the problem (13.2.11) has at least one

solution u ∈ Xφ.

Claim 3. Every solution u of the problem (13.2.11) is a solution of problem

(13.1.1),(13.1.2).

Let u be a solution of the modified problem (13.2.11). By the last claim,

function u verifies equation (13.1.1).

Then, it is enough to prove the inequalities

α(0) ≤ u(0) + L(u, u(0), u′(0)) ≤ β(0).

Suppose, by contradiction, that α(0) > u(0) + L(u, u(0), u′(0)).
By (13.2.11) and (13.2.12),

u(0) = δ0(0, u(0) + L(u, u(0), u′(0))) = α(0).

Therefore, by Claim 1, u′(0) ≥ α′(0).
By (H4) and Definition 13.2.5, the following contradiction is obtained

0 > u(0) + L(u, u(0), u′(0))− α(0) ≥ L(α, α(0), α′(0)) ≥ 0.

In a similar way one can prove that u(0) + L(u, u(0), u′(0)) ≤ β(0). �

Remark 13.3.2. Theorem 13.3.1 still remains true for singular φ-Laplacian

equations. Indeed, from Nagumo condition and Lemma 13.2.2, for every u

solution of problem (13.2.11), ‖u′(t)‖1 < N, and, therefore, considering in

(13.2.6), R > N, one has

φ :]−N,N [→ R and φ(u′(t)) ≡ ϕ(u′(t)), ∀t ∈ R
+
0 .

The control on the first derivative given by Nagumo condition and

Lemma 13.2.2, which implies a subquadratic growth on the nonlinearity,

can be overcome assuming stronger conditions on lower and upper solu-

tions, as in the next theorem.

Theorem 13.3.3. Let f : R+
0 ×R

2 → R and q : R+
0 → R be both continuous

functions, where q can have a singularity when t = 0. Assume that there

are α and β lower and upper solutions of (13.1.1),(13.1.2), respectively, such

that

α′(t) ≤ β′(t), ∀t ≥ 0, (13.3.2)

and

α(0) ≤ β(0). (13.3.3)
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If conditions (H1)–(H4) are satisfied and

f(t, α(t), y) ≤ f(t, x, y) ≤ f(t, β(t), y), (13.3.4)

for α(t) ≤ x ≤ β(t) and y ∈ R fixed, then problem (13.1.1),(13.1.2) has at

least a solution u ∈ Xφ such that

α′(t) ≤ u′(t) ≤ β′(t), ∀t ≥ 0.

Remark 13.3.4. Condition (13.3.2) together with (13.3.3) imply (H5).

Proof. The proof follows analogous steps as in Claims 1 and 2 of Theorem

13.3.1, with ϕ defined by

R := max {‖α′‖1 , ‖β′‖1} . (13.3.5)

It remains to prove that α′(t) ≤ u′(t) ≤ β′(t), ∀t ≥ 0.

Assume that there is a t ≥ 0 such that u′(t) < α′(t), and define t0 ≥ 0

as

inf
t≥0

(u′(t)− α′(t)) := u′(t0)− α′(t0) < 0. (13.3.6)

By (13.1.2), there is t1 ∈ (t0,+∞) such that u′(t1) = α′(t1).
By (13.3.4), for t ∈ [t0, t1],

(ϕ (u′(t)))′ (t) = −q (t) f (t, δ0(t, u), δ1(t, u′)) = −q (t) f (t, δ0(t, u), α′(t))

≤ −q (t) f (t, α (t) , α′(t)) ≤ (φ (α′(t)))′ = (ϕ (α′(t)))′ .

Therefore, ϕ (u′(t))− ϕ (α′(t)) is nonincreasing on [t0, t1] and

ϕ (u′(t0))− ϕ (α′(t0)) ≥ ϕ (u′(t1))− ϕ (α′(t1)) = 0.

So, ϕ (u′(t0)) ≥ ϕ (α′(t0)) , and by (H1), u′(t0) ≥ α′(t0) which contra-

dicts (13.3.6). That is, α′(t) ≤ u′(t), ∀t ≥ 0.

In the same way it can be shown that u′(t) ≤ β′(t), ∀t ≥ 0. �

Remark 13.3.5. Theorem 13.3.3 holds for singular φ-Laplacian equations.

If in (13.2.6). R is considered given by (13.3.5), one has

φ :]−R,R[→ R and φ(u′(t)) ≡ ϕ(u′(t)), ∀ t ≥ 0.
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13.4. Examples

In order to demonstrate the applicability of the results in this chapter two

examples will follow. In the first one the nonlinearity f satisfies the Nagumo

conditions and, in the second one, this assumption is replaced by a mono-

tone behavior in f .

In both cases, the null function is not a solution of the referred problem.

Example A. Consider for some θ > 0 the nonlinear problem composed by

the differential equation

u′′(t)
1 + (u′(t))2

− 1

1 + t2
u(t)(u′(t))2

1 + u2(t)
= 0, t ≥ 0, (13.4.1)

and the functional boundary conditions

max
t≥0

|u(t)|
eθt

+ (u′(0))3 − u(0) = 0, u′(+∞) =
1

2
. (13.4.2)

Remark that this problem (13.4.1),(13.4.2) is a particular case of

(13.1.1)–(13.1.2) with

• φ(v) = arctan v;

• f(t, x, y) = − xy2

1 + x2
;

• q(t) =
1

1 + t2
;

• L(u, x, y) = maxt∈R
+
0

|u(t)|
eθt + y3 − x;

• B =
1

2
.

We point out that:

• f(t, x, y) and q(t) verify (H2), (H3) and the Nagumo conditions (13.2.1)

and (13.2.2) with ψ(t) ≡ 1 and h(|y|) = y2;

• L(u, x, y) satisfies (H4);

• the functions α(t) = 0, 5 and β(t) = t + 2 are, respectively, lower and

upper solutions of (13.4.1),(13.4.2) verifying (H5);

• as φ is a nonsurjective homeomorphism satisfying (H1), it can be

extended by a surjective homeomorphism ϕ, like in (13.2.6), that is

ϕ (y) =




arctan(y) if |y| ≤ R,

arctan (R)

R
y if |y| > R,
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with

R := max {‖α′‖1 , ‖β′‖1} = 1.

So, by Theorem 13.3.1, there is at least a solution u of (13.4.1),(13.4.2)

such that

0, 5 ≤ u(t) ≤ t+ 2, ∀t ≥ 0.

Moreover, this solution is unbounded and, from the location part,

strictly positive in R
+
0 .

Example B. The functional problem


3(u′(t))2u′′(t) +
1

1 + t3

(
arctan

(
(u(t))3

)− 2
(u′(t))5

1 + |u′(t)|5
)

= 0, t ≥ 0,

∫ 1

0

u(t)

eθt
dt− 5u(0) + u′(0) = 1,

u′(+∞) = B,

for some θ > 0 and B > −1, is a particular case of (13.1.1),(13.1.2) with

• φ(v) = v3;

• f(t, x, y) = arctan
(
x3
)− 2

y5

1 + |y|5 ;

• q(t) =
1

1 + t3
;

• L(u, x, y) =

∫ 1

0

u(t)

eθt
dt− 5x+ y − 1.

Remark that, in this case, φ is a surjective homeomorphism and f does

not satisfy the Nagumo conditions but it verifies (13.3.4).

As the functions α(t) = −t − 1 and β(t) ≡ 0 are, respectively, lower

and upper solutions of (13.4), satisfying assumptions (13.3.2) and (13.3.3),

then, by Theorem 13.3.3, there is at least a solution u of (13.4) such that

−t− 1 ≤ u(t) ≤ 0, ∀t ≥ 0.

Indeed, this solution is unbounded if B �= 0 and bounded if B = 0, and,

in any case, nonpositive in R
+
0 .
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