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Foreword

This book provides an excellent introduction to the ideas and basic mathematical techniques needed for a study
of Einstein’s superb – and now widely observationally confirmed – general theory of relativity. The underlying
concepts and basicmathematics are presented with utmost clarity and by numerous greatly illuminating diagrams.
The reader is taken on a gentle but comprehensive route up to cosmology, as currently understood, and to the
strange features of rotating black holes and to gravitational waves. I am sure that it will inspire many students
and other readers to enter into the beauties and of the power of this subject, which deeply underlies much of the
physics of our world, and perhaps it will inspire others to carry this understanding further into what is currently
unknown.

Roger Penrose
July 2021
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1The organization of the
book

1.1 The evolution of the book
There is little doubt that relativity theory captures the imagination. Nor
is it surprising: the counter-intuitive properties of special relativity, the
bizarre characteristics of black holes, the new era of gravitational wave
detection and with it the advent of gravitational wave astronomy, and the
sheer scope and nature of cosmology and its posing of ultimate questions;
these and other issues combine to excite the minds of the inquisitive. Yet,
if we are to look at these issues meaningfully, then we really require both
physical insight and a sound mathematical foundation. The aim of this
book is to help provide these.

This book is a substantial extension of the book Introducing Einstein’s
Relativity. The original book grew out of some notes written in the mid-
1970s to accompany a UK course on general relativity. Originally, the
course was a third-year undergraduate option aimed at mathematicians
and physicists. It subsequently grew to include MSc students and some
first-year PhD students. The notes were originally pitched principally at
the undergraduate level, but the book contained sufficient depth and cov-
erage to interest many students at the first-year graduate level. This book
has been extended to include more advanced material which would be
more appropriate for graduate-level students. To help fulfil this dual pur-
pose, the more advanced sections (Level 2 material) are indicated by a
hatched bar alongside the appropriate section. We emphasise that Level 1
material is essential to the understanding of the book. To help put a bit
more light and shade into the book, the more important equations and
results are given in tinted panels.

Part A on special relativity is designed to provide an introduction to
special relativity sufficient for the needs of the rest of the book. The book is
then designed to give students insight and confidence in handling the basic
equations of the theory. From the mathematical viewpoint, this requires
good manipulative ability with tensors. Part B is devoted to developing
the necessary expertise in tensors for the rest of the book. It is essentially
written as a self-study unit. Students are urged to attempt all the exer-
cises which accompany the various sections. Experience has shown that
this is the only real way to be in a position to deal confidently with the
ensuing material. Part C then starts by using tensors to reformulate spe-
cial relativity. From the physical viewpoint, in our view, the best route
to understanding relativity theory is to follow the one taken by Einstein.

Introducing Einstein’s Relativity. Second Edition. Ray d’Inverno and James Vickers, Oxford University Press.
© Ray d’Inverno and James Vickers (2022). DOI: 10.1093/oso/9780198862024.003.0001
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Thus, the second chapter of Part C is devoted to discussing the principles
which guided Einstein in his search for a relativistic theory of gravitation.
The field equations are approached first from a largely physical viewpoint
using these principles and subsequently from a purely mathematical view-
point using the variational principle approach. After a chapter devoted
to investigating the quantity which goes on the ‘right-hand side’ of the
equations, the structure of the equations is discussed as a prelude to solv-
ing them in the simplest case. This part ends by considering solar system
tests of the experimental status of general relativity. The main purpose of
the book is to develop the theory in such a way that it is possible to reach
three major topics of current interest, namely, black holes, gravitational
waves, and cosmology. These topics form the subject matter of Parts D,
E, and F, respectively.

Each of the chapters is supported by exercises, numbering over 350 in
total. The bulk of these are straightforward calculations used to fill in parts
omitted in the text. The numbers in parentheses indicate the sections to
which the exercises refer. Although the exercises in general are impor-
tant in aiding understanding, their status is different from those in Part
B. Those exercises are absolutely essential for understanding the rest of
the book and they should not be omitted. The remaining exercises are
desirable. The book is neither exhaustive nor complete, since there are
topics in the theory which are not covered or only met briefly. However,
it is hoped that it provides the reader with a sound understanding of the
basics of the theory.

1.2 Acknowledgements
Very little of this book is wholly original in character. Thus, to take an
example right from the beginning of the book, the k-calculus provides
the best introduction to special relativity because it offers insight from the
outset through the simple diagrams that can be drawn. Indeed, one of
the themes of this book is the provision of a large number of illustrative
diagrams (over 250, in fact). The visual sense is the most immediate we
possess and helps lead directly to a better comprehension. A good subtitle
for the book would be An approach to relativity via space-time pictures. The
k-calculus is an approach developed by Herman Bondi from the earlier
ideas of A. Milne. So the fact that this and many of the approaches in
the book have been borrowed from one author or another has been to
organize the material in such a way that it is more readily accessible to the
majority of students.

General relativity has the reputation of being intellectually very de-
manding. There is the apocryphal story attributed to Sir Arthur Edding-
ton, who, when asked whether he believed it true that only three people in
the world understood general relativity, replied, “Who is the third?” In-
deed, the intellectual leap required by Einstein to move from the special
theory to the general theory is, there can be little doubt, one of the great-
est in the history of human thought. So it is not surprising that the theory
has the reputation it does. However, general relativity has been with us for
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over a century, and our understanding is such that we can now build it up
in a series of simple logical steps. This brings the theory within the grasp
of most undergraduates equipped with the right background. So the book
has been written in the spirit that any explanation that aids understanding
should ultimately reside in the pool of human knowledge and thence in
the public domain and therefore not belong to any one author.

1.3 The status of scientific research
Einstein’s theory of relativity is arguably the greatest scientific achieve-
ment of the human mind. It comprises the ‘special theory’ developed
around 1905, concerned with physics in the absence of gravitation, and
the ‘general theory’, developed some ten years later, which incorporates
gravitation. Most surprisingly, it was the product of the work of just one
theoretical physicist – Albert Einstein. The development of special rel-
ativity was remarkable enough since it was achieved when Einstein was
working in a patent office, and not in a scientific community or a uni-
versity. However, the move to the general theory, which took Einstein ten
years of endeavour, was a colossal achievement not just involving a deeper
insight into the underlying physical principles but requiring a whole new
mathematical machinery to make these ideas explicit. This book attempts
to retrace the ideas of Einstein in leading up to the special and general
theories. It is our belief that this route leads to a deeper understanding of
the theory.

However, the question arises: Would we have arrived at these theories
without Einstein? It was already clear at the turn of the twentieth century
that something was wrong with the current understanding at the time of
basic physical ideas, especially as it related to motion involving high veloc-
ities and the propagation of light. The new physics required was encoded
in the Lorentz transformations, which had been produced on an ad hoc
basis to reconcile underlying inconsistencies. Einstein’s key contribution
was to derive them from two physical principles and demonstrate that they
rested on a deeper understanding of the concept of simultaneity. Most
historians of science would agree that, sooner or later, the new physics of
the special theory would likely have been arrived at. However, whether
the move to the general theory, and with it the accompanying revolution
in our understanding of basic physical ideas, would have been achieved
without Einstein is less clear. This raises the question: How does science
develop and will it necessarily refine our ideas and thereby lead to an ‘ul-
timate’ understanding of the world we live in? Einstein’s work led to the
development of the field of cosmology – modelling the universe – which
is the science of the very large. He also made significant contributions to
the other great theory of the twentieth-century quantum theory – the sci-
ence of the very small. Yet these two theories remain in basic conflict and
considerable research effort has gone into trying to find a theory of quan-
tum gravity which reconciles the two. We end this section by exploring
the question: Where are we currently in the search?
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In 1955 a conference on general relativity and gravitation was held in
Bern, Switzerland, now referred to as GR0. Two other conferences were
held in 1957 and 1959, named GR1 and GR2, respectively, and after that
they have been held generally every 3 years, with subsequent conferences
being numbered accordingly (see Table 1.1). GR0 was held some forty
years after the discovery of general relativity and, at the time, involved
a relatively small community of scholars. Such has the world of scien-
tific research grown in the interim that the conferences now include more
than a thousand attendees. Even so, the field of classical general relativ-
ity research is a relatively small one in physics, although there is growth
in the field of detection of gravitational waves, and cosmology has essen-
tially become a discipline in its own right. So there are many thousands
of people involved in fundamental research and, not surprisingly, there is
a spread of opinion as to the progress that has been made. The biggest
field of research in this area currently is in ‘string theory’, and its adherents
would likely consider this to be the right way forward, but the jury is out
on its efficacy, especially as regards to any experimental verification. In
contradistinction, general relativity now has a considerable weight of ex-
perimental support. There have been a score or more attempts to provide
an alternative classical theory of gravitation, but the consensus is that Ein-
stein’s theory is both consistent with current observations and is, in some
sense, the simplest theory. But the issue of a theory of quantum gravity is
more complex. First of all, there is an explosion in the research literature,
and keeping track of it is a tall order. Howwould one know if someone had
made the equivalent ‘Einsteinian’ breakthrough to a theory of quantum
gravity? Many would agree that two of the most important theoreticians
since Einstein are the UK mathematical physicists Stephen Hawking and
Roger Penrose. Indeed, in 2020 Penrose was awarded a Nobel Prize for
his pioneering work in showing ‘that black hole formation is a robust pre-
diction of the general theory of relativity’, although he did not receive the
prize until he was at the advanced age of 89. Perhaps Hawking did not live
long enough to receive his recognition. In fact, Einstein was only awarded
a Nobel Prize for his work on the photoelectric effect and not for his more
important, although possibly controversial at the time, work on relativity.
BothHawking and Penrose have independently suggested a route to a the-
ory of quantum gravity but neither is, what one might say, currently in the
main stream of scientific endeavour in that relatively few researchers are
continuing work using their suggested approaches. Indeed, the authors of
this book have suggested a potential canonical quantization programme
but it has received scant attention.We are not saying that our approach, or
that of Hawking or Penrose, or string theory is ‘right’. What we are saying
is that the world of research is much more complex than in the time of
Einstein and we are into other areas such as ‘reputation’ and ‘fashion’ (see
Penrose 2017). There is also the question as to whether there will ever be
a ‘Theory of Everything’. In the very large – the world of cosmology –

Table 1.1

GR0 1955 Bern, Switzerland

GR1 1957 Chapel Hill, USA

GR2 1959 Royaumont, France

GR3 1962 Jablonna, Poland

GR4 1965 London, UK

GR5 1968 Tbilisi, USSR

GR6 1971 Copenhagen, Denmark

GR7 1974 Tel-Aviv, Israel

GR8 1977 Waterloo, Canada

GR9 1980 Jena, DDR

GR10 1983 Padova, Italy

GR11 1986 Stockholm, Sweden

GR12 1989 Boulder, USA

GR13 1992 Cordoba, Argentina

GR14 1995 Florence, Italy

GR15 1997 Pune, India

GR16 2001 Durban, South Africa

GR17 2004 Dublin, Ireland

GR18 2007 Sydney, Australia

GR19 2010 Mexico City, Mexico

GR20 2013 Warsaw, Poland

GR21 2016 New York, USA

GR22 2020 Valencia, Spain

there appears to be a need for a theory of ‘dark matter’ and ‘dark energy’
and, at the time of writing, no such compelling theory exists. In the other
direction – the world of the small – we have, in turn, theories of atoms,
fundamental particles, quarks, and so on …but does it necessarily lead



A note for students on studying from a book 5

to an ultimate theory? Looking back and doing so with our current un-
derstanding, you could argue that general relativity is almost forced on
you. The hope is that, if and when a successful theory of quantum grav-
ity is produced, it will also force itself on you, but detecting that is likely
to be a more challenging task. Fundamental science does not unfold at a
constant pace, but rather it does so in fits and starts. It is all the more re-
markable that the work of just one man led to such a giant leap forward in
our understating of the physical world, and this is the focus of this book.

1.4 A note for students on studying
from a book

A few words of advice if you find studying from a book hard going.
Remember that understanding is not an all-or-nothing process. One un-
derstands things at deeper and deeper levels, as various connections are
made or ideas are seen in different contexts or from a different perspec-
tive. So do not simply attempt to study a section by going through it line
by line and expect it all to make sense at the first go. It is better to begin
by reading through a few sections quickly – skimming – thereby trying
to get a general feel for the scope, level, and coverage of the subject mat-
ter. A second reading should be more thorough, but should not stop if
ideas are met which are not clear straightaway. In a final pass, the sections
should be studied in depth with the exercises attempted at the end of each
section. However, if you get stuck, do not stop there; press on. You will
often find that the penny will drop later, sometimes on its own, or that
subsequent work will produce the necessary understanding. Many exer-
cises (and exam questions) are hierarchical in nature. They require you
to establish a result at one stage which is then used at a subsequent stage.
If you cannot establish the result, then do not give up. Try and use it in
the subsequent section. You will often find that this will give you the nec-
essary insight to allow you to go back and establish the earlier result. For
most students, frequent study sessions of not too long a duration are more
productive than occasional long, drawn-out sessions. The best study envi-
ronment varies greatly from one individual to another. Try experimenting
with different environments to find out what is the most effective for you.

As far as initial conditions are concerned, that is, assumptions about
your background, it is difficult to be precise, because you can probably
get by with much less than the book might seem to indicate (see §1.5).
Added to which, there is a big difference between understanding a topic
fully and only having some vague acquaintance with it. On the mathemat-
ical side, you certainly need to know calculus, up to and including partial
differentiation, and solution of simple ordinary differential equations. Ba-
sic algebra is assumed and somematrix theory, although you can probably
take eigenvalues and diagonalization on trust. Familiarity with vectors and
some exposure to vector fields is assumed. It would also be good to have
met the ideas of a vector space and bases. We use Taylor’s theorem a lot,
but probably knowledge of Maclaurin’s theorem will be sufficient. On the
physics side, you obviously need to know Newton’s laws and Newtonian
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gravitation. It would be helpful also to know a little about the potential for-
mulation of gravitation (though, again, just the basics will do). The book
assumes some familiarity with electromagnetism (Maxwell’s equations,
in particular) and fluid dynamics (the Navier-Stokes equation, in partic-
ular), but neither of these are absolutely essential. It would be very helpful
to havemet some ideas about waves (such as the fundamental relationship
c = λν) and the wave equation in particular. In cosmology, it is assumed
that you know something about basic astronomy but, to gain an under-
standing of modern cosmology in the final chapter, you will need much
more of a background in contemporary physics.

Having listed all these topics, then, if you are still unsure about your
background, try the book and see how you get on. If it gets beyond you
(and it is not a Level 2 section) press on for a bit and, if things do not get
any better, then cut out. Hopefully, you may still have learnt a lot, and you
can always come back to it when your background is stronger. In fact, it
should not require much background to get started, for Part A on special
relativity assumes very little. After that, you hit Part B, and this is where
your motivation will be seriously tested. If you make it through the first
half of the book, then the pickings on the other side are very rich indeed.

1.5 A final note for the less able student
from Ray

I was far from being a child prodigy, and yet I learnt relativity at the age of
15! Let me elaborate. As testimony to my intellectual ordinariness, I had
left my junior school at the age of 11, having achieved the unremarkable
feat of coming 22nd in the class in my final set of examinations. Yet I really
did know some relativity four years on – and I don’t just mean the special
theory, but the general theory (up to and including the Schwarzschild
solution and the classical tests). I remember detecting a hint of disbelief
when I recounted this to Alan Tayler, who was later to become my tutor,
in an Oxford entrance interview. He followed up by asking me to define a
tensor and, when I rattled off a definition, he seemed somewhat surprised.
As it turned out, Alan was instrumental in enabling Introducing Einstein’s
Relativity to be published by Oxford University Press thirty years later.
In fact, we did not cover very much more than I first knew in the Oxford
third-year specialist course on general relativity. So how was this possible?

Fig. 1.1 ‘The product of two tensors
is equal to another’, according to Hugh
Lieber.

I, too, had heard the story about how only a few people in the world
really understood relativity, and it had aroused my curiosity. I went to
the local library and, as luck would have it, I pulled out a book entitled
Einstein’s Theory of Relativity by Lillian Lieber (2008; originally published
in 1945). This is a very bizarre book in appearance. The book is not set
out in the usual way but rather as though it were concrete poetry. More-
over, it is interspersed by surrealist drawings by Hugh Lieber involving
the symbols from the text (Fig. 1.1). I must confess that at first sight the
book looks rather cranky; but it is not. Indeed, it has been reprinted in
recent years (see Further reading). I worked through the book, filling in
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all the details missing from the calculations as I went. What was amaz-
ing was that the book did not make too many assumptions about what
mathematics the reader needed to know. For example, I had not then met
partial differentiation in my school mathematics, and yet there was suf-
ficient coverage in the book for me to cope. It felt almost as if the book
had been written just for me. The combination of the intrinsic interest of
the material and the success I had in doing the intervening calculations
provided sufficient motivation for me to see the enterprise through to the
end.

Perhaps, if you consider yourself a less able student, you are a bit
daunted by the intellectual challenge that lies ahead. I will not deny that
the book includes some very demanding ideas (indeed, I do not under-
stand every facet of all of these ideas myself). But I hope the two facts that
the arguments are broken down into small steps and that the calculations
are doable will help you on your way. Even if you decide to cut out after
Part C, you will have come a long way. Take heart from my little story –
I am certain that, if you persevere, you will consider it worth the effort in
the end.

1.6 A final note for the more able student
from James

In revising and extending Ray’s book Introducing Einstein’s Relativity,
I wanted to keep to the style of the original version, which attempted as
far as possible to give a self-contained account of the key areas of general
relativity and which provided all the details of the calculations either in
the text or in the exercises. However, since Ray wrote the original version
of the book nearly thirty years ago, the range of topics that deserve atten-
tion has expanded considerably and this has made it harder to keep the
material quite as self-contained so you may need to do more background
reading. There are two reasons why the scope has expanded.

The first reason is that, from a mathematical point of view, the idea
of general relativity as an entirely geometric theory of gravity described
in terms of the curvature of space-time has been supplemented by an
increasing emphasis on an approach where one thinks of Einstein’s
equations as a system of partial differential equations. This is needed in
attacking outstanding theoretical problems such as ‘cosmic censorship’
as well as constructing stable numerical relativity codes to simulate events
such as colliding black holes. This has resulted in extending the chapter
on ‘The structure of the field equations’ and adding a new chapter, ‘The
3+1 and 2+2 formalisms’, which goes into more detail about the passage
from the geometrical formulation of Einstein’s equations to a description
in terms of evolution equations.

The second reason comes from the increasingly detailed experimen-
tal information that we now have about the structure of the universe. For
example, we now know considerably more about gravitational waves from
the direct measurements, made by the LIGO gravitational wave obser-
vatories, of radiation from colliding black holes, as well as the indirect
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measurements of gravitational radiation coming from the orbits of binary
pulsars (see Chapter 21 for details). We also have much more accu-
rate information about the expansion of the universe and the cosmic
microwave background (CMB). These developments have resulted in en-
larging the chapter on gravitational waves considerably to provide details
of both the generation and the detection of gravitational waves, as well
as adding a new chapter describing the modern approach to cosmology,
in which one uses experimental evidence to determine the cosmological
parameters of our universe. Understanding the sources of gravitational
waves and cosmological models requires input from a broader range of
physics than the rest of the book. Rather than get bogged down in the
details, we have tried to keep to a summary of the essential points, but
much of the current research in these areas involves an understanding of
other areas of physics in extreme relativistic conditions.

Much of the additional content is Level 2 material, which is more suit-
able for graduate students. As a result, we decided to extend the further
reading sections for all the chapters in the book and include more ref-
erences to ongoing research. In order to ensure that these references are
easily accessible and remain up to date, our first port of call has been to
the online journal Living Reviews in Relativity (see Further reading). This
journal contains full, open-access, online articles that provide critical re-
views of the current state of research, and available sources in all areas
of relativity. Furthermore, as the name implies, authors are encouraged
to update these reviews to take account of any recent developments. My
advice to all readers of this book is to keep a broad outlook and to try and
maintain an interest in both the mathematics and the underlying physics.
Although Einstein’s equations have remained unchallenged as the corner-
stone of relativity, our approach to analysing them has changed over time.
Once it was sufficient to know about differential geometry and tensor
analysis. Although these still provide the key mathematical tools, current
research in relativity now covers a wide spectrum and involves a variety
of different formalisms. One also requires a knowledge of areas such as
algebraic and differential topology and mathematical analysis, as well as
more applied areas such as signal processing and relativistic astrophysics.
As alluded to earlier, one of the big challenges is to provide a quantum
theory of gravity and this brings in still other areas of mathematics and
physics. Despite some progress, it would seem that we are still quite a long
way from having an an accepted theory of quantum gravity and it might
well be that this requires both new mathematics and new physics.

Like Ray, I would like to end by saying something about the books that
have influenced me. Before going to university, I read a short book enti-
tled Space-Time Algebra by David Hestenes. While there was much in the
book I did not understand, it introduced me to the concept of ‘spinors’
as a way of describing both classical and quantum physics. Several years
later, this drew me to the work of Roger Penrose, who saw conformal ge-
ometry and spinors as playing a key role in understanding gravitational
physics, which influenced my own work on using spinors to investigate
gravitational energy. The two-volume book Spinors and Space-Time by
Penrose and Rindler provides a comprehensive treatment of these topics
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and more. A second source which was profoundly influential to both Ray
andmyself wasThe Large Scale Structure of Space-Time by Stephen Hawk-
ing and George Ellis. Indeed, for researchers of our generation, this was
regarded as something akin to the status of the Bible in the field and, like
the work of Penrose, it continues to inspire the current generation. How-
ever, it is written at a level which is perhaps too sophisticated for most
undergraduates (in parts too sophisticated for many specialists!). Part D
of the book owes much to the approach of Hawking and Ellis and we
hope that this part of the book will provide a small stepping stone to The
Large Scale Structure of Space-Time. To that end, and because we cannot
improve on it, we have in places included extracts from that source virtu-
ally verbatim. We felt that, if students were to consult this text, then the
familiarity of some of the material might instil confidence and encourage
them to delve deeper. We are hugely indebted to the authors for allowing
us to borrow from their superb book.

1.7 Research interests of the authors
To provide some background about the authors to our readers and
scientific colleagues, here is a summary of our fields of research interests.

Ray
Computer algebra in general relativity
Exact solutions and their invariant classification
The 2+2 formalism
Numerical relativity and the CCM (Cauchy-Characteristic Matching)
approach
A 2+2 canonical quantization programme

James
Quasi-local mass in general relativity
Low regularity solutions of Einstein’s equations
Gravitational singularities
Numerical relativity and the CCM (Cauchy-Characteristic Matching)
approach
A 2+2 canonical quantization programme

Exercises

1.1 Go online and look at the latest two volumes of Living Reviews in
Relativity at https://www.springer.com/journal/41114/.

1.2 Go online and look at the titles of the new submissions in
the general relativity and quantum cosmology section of arXiv at
https://arxiv.org/list/gr-qc/new and see if you can find articles that relate
to the topics you found when looking at Living Reviews in Relativity.
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1.3 Read a biography of Einstein (see Part A of the Bibliography at the
end of this book).

Further reading

The first four references relate to the discussion in §1.3 on quantum
gravity. For a non-technical review of various approaches to quantum
gravity, see also the article by Kiefer (2005). The remaining references
are formative influences on the authors of this book.

Hawking, S. W. (1979). ‘Euclidean quantum gravity’, in Lévy, M., and
Deser, S., eds, Recent Developments in Gravitation. NATO Advanced
Study Institutes Series (Series B: Physics), vol 44. Springer, Boston, MA,
145–73.

Penrose, R. (1968). Twistor quantisation and curved space-time. Inter-
national Journal of Theoretical Physics, 1(1), 61–99.

d’Inverno, R. A., and Vickers, J. A. (1995). 2+2 decomposition of
Ashtekar variables. Classical and Quantum Gravity, 12(3), 753.

Penrose, R. (2016). Fashion, Faith and Fantasy in the New Physics of the
Universe. Princeton University Press, Princeton, NJ.

Kiefer, C. (2006). Quantum gravity: General introduction and recent
developments. Annalen der Physik, 15(1–2), 129–48.

Lieber, L. R. (2008). The Einstein Theory of Relativity (reprint of 1945
edition). Paul Dry Books, Philadelphia, PA.

Iya, B. (ed.) Living Reviews in Relativity, https://www.springer.com/
journal/41114/, accessed 16 April 2021.

Hestenes, D. (2015) Space-Time Algebra (2nd edn). Birkhäuser, Basel.

Penrose, R., and Rindler, W. (1986). Spinors and Space-Time. Vols 1 and
2, Cambridge University Press, Cambridge.

Hawking, S. W., and Ellis, G. F. R. (1973). The Large Scale Structure of
Space-Time. Cambridge University Press, Cambridge.

https://www.springer.com/journal/41114/
https://www.springer.com/journal/41114/
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2The k-calculus

2.1 Model building
Before we start, we should be clear what we are about. The essential activ-
ity of mathematical physics, or theoretical physics, is that of modelling
or model building. The activity consists of constructing a mathematical
model which we hope in some way captures the essentials of the phenom-
ena we are investigating. I think we should never fail to be surprised that
this turns out to be such a productive activity. After all, the first thing you
notice about the world we inhabit is that it is an extremely complex place.
The fact that so much of this rich structure can be captured by what are,
in essence, a set of simple formulae is quite astonishing. Just think how
simple Newton’s universal law of gravitation is and yet it encompasses
a whole spectrum of phenomena, from a falling apple to the shape of a
globular cluster of stars. As Einstein said, ‘The most incomprehensible
thing about the world is that it is comprehensible’ (Einstein, 1954).

The very success of the activity of modelling has, throughout the his-
tory of science, turned out to be counterproductive. Time and again, the
successful model has been confused with the ultimate reality, and this, in
turn, has stultified progress. Newtonian theory provides an outstanding
example of this. So successful had it been in explaining a wide range of
phenomena that, after more than two centuries of success, the laws had
taken on an absolute character. Thus it was that, when at the end of the
nineteenth century it was becoming increasingly clear that something was
fundamentally wrong with the current theories, there was considerable re-
luctance to make any fundamental changes to them. Instead, a number of
artificial assumptions were made in an attempt to explain the unexpected
phenomena. It eventually required the genius of Einstein to overthrow the
prejudices of centuries and demonstrate in a number of simple thought
experiments that some of the most cherished assumptions of Newtonian
theory were untenable. This he did in a number of brilliant papers writ-
ten in 1905, proposing a theory which has become known today as the
special theory of relativity. Of course, the special theory of relativity
was not the end of the story, and Einstein went on to develop general
relativity – a relativistic theory of gravitation.

We should perhaps be discouraged from using words like ‘right’ or
‘wrong’ when discussing a physical theory. If we remember that the es-
sential activity is model building, a model should then rather be described
as ‘good’ or ‘bad’ depending on how well it describes the phenomena

Introducing Einstein’s Relativity. Second Edition. Ray d’Inverno and James Vickers, Oxford University Press.
© Ray d’Inverno and James Vickers (2022). DOI: 10.1093/oso/9780198862024.003.0002
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it encompasses. Thus, Newtonian theory is an excellent theory for
describing a whole range of phenomena. For example, if one is concerned
with describing the motion of a car, then the Newtonian framework is
likely to be the appropriate one. However, it fails to be appropriate if we
are interested in very high speeds (comparable with the speed of light)
or very intense gravitational fields (such as in a neutron star). To put it
another way, together with every theory, there should go its range of va-
lidity. Thus, to be more precise, we should say that Newtonian theory is
an excellent theory within its range of validity. From this point of view,
developing our models of the physical world does not involve us in con-
stantly throwing theories out, since they are perceived to be wrong, or in
unlearning them, but rather it consists more of a process of refinement
in order to increase their range of validity. So the moral of this section
is that, for all their remarkable success, one must not confuse theoretical
models with the ultimate reality they seek to describe.

2.2 Historical background
In 1865, James Clerk Maxwell put forward the theory of electromag-
netism. One of the triumphs of the theory was the discovery that light
waves are electromagnetic in character. Since all other known wave
phenomena required a material medium in which the oscillations were
carried, it was postulated that there existed an all-pervading medium,
called the ‘luminiferous ether’, which carried the oscillations of electro-
magnetism. It was then anticipated that experiments with light would
allow the absolute motion of a body through the ether to be detected.
Such hopes were upset by the null result of the famous (and techni-
cally difficult) Michelson–Morley experiment in 1881, which attempted
to measure the velocity of the Earth relative to the ether and found it to
be undetectably small. In order to explain this null result, two ad hoc hy-
potheses were put forward by Lorentz, Fitzgerald, and Poincaré in 1895,
namely, the contraction of rigid bodies and the slowing down of clocks
when moving through the ether. These effects were contained in some
simple formulae called the ‘Lorentz transformations’. This would affect
every apparatus designed to measure the motion relative to the ether so
as to neutralize exactly all expected results. Although this theory was
consistent with the observations, it had the philosophical defect that its
fundamental assumptions were unverifiable.

In fact, the essence of the special theory of relativity is contained in
the Lorentz transformations. However, Einstein was able to derive them
from two postulates, the first being called the ‘principle of special rela-
tivity’ – a principle which Poincaré had also suggested independently in
1904 – and the second concerning the constancy of the velocity of light.
In so doing, he was forced to re-evaluate our ideas of space and time and
he demonstrated through a number of simple thought experiments that
the source of the limitations of the classical theory lay in the concept of
simultaneity. Thus, although in a sense Einstein found nothing new, in
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Fig. 2.1 Train travels in straight line.

that he rederived the Lorentz transformations, his derivation was physi-
cally meaningful and in the process revealed the inadequacy of some of
the fundamental assumptions of classical thought. Herein lies his chief
contribution.

2.3 Newtonian framework
We start by outlining the Newtonian framework. An event intuitively
means something happening in a fairly limited region of space and for
a short duration in time. Mathematically, we idealize this concept to be-
come a point in space and an instant in time. Everything that happens in
the universe is an event or collection of events. Consider a train travel-
ling from one station P to another R, leaving at 10 a.m. and arriving at
11 a.m. We can illustrate this in the following way: for simplicity, let us
assume that the motion takes place in a straight line (say, along the x-axis
(Fig. 2.1)); then we can represent the motion by a space-time diagram
(Fig. 2.2) in which we plot the position of some fixed point on the train,
which we represent by a pointer, against time. The curve in the diagram
is called the history or world-line of the pointer. Notice that at Q the
train was stationary for a period. 10

11

t

P Q R x

Fig. 2.2 Space-time diagram of pointer.
We shall call individuals equipped with a method of measuring time

(an ideal clock) and a method of measuring distance (an ideal ruler) ob-
servers. Had we looked out of the train window on our journey at a
clock in a passing station, we would have expected it to agree with our
watch. One of the central assumptions of the Newtonian framework is
that two observers will, once they have synchronized their clocks, always
agree about the time of an event, irrespective of their relative motion. This
implies that, for all observers, time is an absolute concept. In particular,
all observers can agree to synchronize their clocks so that they all agree
on the time of an event. In order to fix an event in space, an observer may
choose a convenient origin in space together with a set of three Cartesian
coordinate axes. We shall refer to an observer’s clock and coordinate axes
as a frame of reference (Fig. 2.3). Then an observer is able to coor-
dinatize events, i.e. determine the time t an event occurs and its relative
position (x, y, z).

x

t

y

z

Fig. 2.3 Observer’s frame of reference.We have set the stage with space and time; they provide the backcloth,
but what is the story about? The stuff which provides the events of the
universe is matter. For the moment, we shall idealize lumps of matter
into objects called bodies. If the body has no physical extent, we refer
to it as a point particle or point mass. Thus, the role of observers in
Newtonian theory is to chart the history of bodies.
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Fig. 2.4 Two observed bodies and their inertial frames.

2.4 Galilean transformations
Now, relativity theory is concerned with the way different observers see
the same phenomena. One can ask: are the laws of physics the same for all
observers or are there preferred states of motion, preferred reference sys-
tems, and so on? Newtonian theory postulates the existence of preferred
frames of reference. The existence of these is essentially implied by the
first law, which we shall call N1 and state in the following form:

N1: Every body continues in its state of rest or of uniform motion in a
straight line unless it is compelled to change that state by forces acting
on it.

Thus, there exists a privileged set of bodies, namely, those not acted on
by forces. The frame of reference of a co-moving observer is called an
inertial frame (Fig. 2.4). It follows that, once we have found one inertial
frame, then all others are at rest or travel with constant velocity relative
to it (since otherwise, Newton’s first law would no longer be true). The
transformation which connects one inertial frame with another is called
a Galilean transformation. To fix ideas, let us consider two inertial
frames called S and S′ in standard configuration, i.e. with axes parallel
and S′ moving along S’s positive x-axis with constant velocity (Fig. 2.5).
We also assume that the observers synchronize their clocks so that the
origins of time are set when the origins of the frames coincide. It follows
from Fig. 2.5 that x = x′ + vt so the Galilean transformation connecting
the two frames is given by

x′ = x− vt, y′ = y, z′ = z, t′ = t. (2.1)

The last equation provides a manifestation of the assumption of abso-
lute time in Newtonian theory. Now, Newton’s laws hold only in inertial
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Fig. 2.5 Two frames in standard configuration at time t.

frames. From a mathematical viewpoint, this means that Newton’s laws
must be invariant under a Galilean transformation.

2.5 The principle of special relativity
We begin by stating the relativity principle which underpins Newtonian
theory.

Restricted principle of special relativity:
All inertial observers are equivalent as far as dynamical experiments
are concerned.

This means that, if one inertial observer carries out some dynamical ex-
periments and discovers a physical law, then any other inertial observer
performing the same experiments must discover the same law. Put an-
other way, these laws must be invariant under a Galilean transformation.
That is to say, if the law involves the coordinates x, y, z, t of an iner-
tial observer S, then the law relative to another inertial observer S′ will
be the same, with x, y, z, t replaced by x′, y′, z′, t′, respectively. Many
fundamental principles of physics are statements of impossibility, and the
above statement of the relativity principle is equivalent to the statement
of the impossibility of deciding, by performing dynamical experiments,
whether a body is absolutely at rest or in uniform motion. In Newtonian
theory, we cannot determine the absolute position in space of an event,
but only its position relative to some other event. In exactly the same
way, uniform velocity has only a relative significance; we can only talk
about the velocity of a body relative to some other. Thus, both position
and velocity are relative concepts.

Einstein realized that the principle as stated above is empty because
there is no such thing as a purely dynamical experiment. Even on a
very elementary level, any dynamical experiment we think of perform-
ing involves observation, i.e. looking, and looking is a part of optics, not
dynamics. In fact, the more one analyses any one experiment, the more it
becomes apparent that practically all the branches of physics are involved
in the experiment. Thus, Einstein took the logical step of removing the
restriction of dynamics in the principle and took the following as his first
postulate.
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Postulate I. Principle of special relativity:
All inertial observers are equivalent.

Hence we see that this principle is in no way a contradiction of Newtonian
thought, but rather constitutes its logical completion.

2.6 The constancy of the velocity of light
We previously defined an observer in Newtonian theory as someone
equipped with a clock and a way of measuring distance with which to
map the events of the universe. In many textbooks, the concept of a ‘rigid
ruler’ is introduced to do this. However, as pointed out by Bondi (1966),
although quantum theory gives us a practical mechanism for producing
an ideal clock (such as an atomic clock) the concept of a ‘rigid ruler’ is
fraught with difficulty. What is rigidity anyway? If a moving frame ap-
pears non-rigid in another frame, which, if either, is the rigid one? The
approach of the k-calculus is to dispense with the rigid ruler and use
radar methods for measuring distances. In the radar method, an ob-
server measures the distance of an object by sending out a light signal
which is reflected off the object and received back by the observer. The
distance is then simply defined as half the time difference between
emission and reception. Note that, by this method, the speed of light
is automatically one and distances are measured in intervals of time, like
the light year or the light second (∼3× 108 m).

Why use light? The reason is that we know that the velocity of light is
independent of many things. Observations from double stars tell us that
the velocity of light in vacuo is independent of the motion of the sources
as well as independent of colour, intensity, etc. For, if we suppose that the
velocity of light were dependent on the motion of the source relative to an
observer (so that if the source were coming towards us, the light would
be travelling faster, and vice versa), then we would no longer see double
stars moving in Keplerian orbits (circles, ellipses) about each other: their
orbits would appear distorted; yet, no such distortion is observed. There
are many experiments which confirm this assumption. However, these
were not known to Einstein in 1905, who adopted the second postulate
mainly on philosophical grounds. We state the second postulate in the
following form.

Postulate II. Constancy of velocity of light:
The velocity of light is the same in all inertial systems.

The speed of light is conventionally denoted by c (from the Latin celer-
itas meaning ‘speed’) and, in SI units, it has the exact numerical value
2.997924580 × 108 ms-1 (so that the metre is defined in the SI system
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as the distance travelled by light in a vacuum in 1/299792458 of a sec-
ond). In this book, we shall mostly work in relativistic units, in which c
is taken to be unity (i.e. c = 1). Note, in passing, that another reason for
using radar methods is that other methods are totally impracticable for
large distances. In fact, these days, distances from the Earth to the Moon
and Venus can be measured very accurately by bouncing radar signals off
them.

2.7 The k-factor
For simplicity, we shall begin by working in two dimensions, one spatial
dimension and one time dimension. Thus, we consider a system of ob-
servers distributed along a straight line, each equipped with a clock and a
flashlight. We plot the events they map in a two-dimensional space-time
diagram. Let us assume we have two observers, A at rest and B moving
away from A with uniform (constant) speed. Then, in a space-time di-
agram, the world-line of A will be represented by a vertical straight line,
and the world-line of B by a straight line at an angle to A’s, as shown in
Fig. 2.6.

Space

Time
A B

Fig. 2.6 The world-lines of observers A
and B.

A light signal in the diagramwill be denoted by a straight linemaking an
angle of 45◦ (π/4 radians) with the axes, because we are taking the speed
of light to be 1. Now, suppose A sends out a series of flashes of light to
B, where the interval between the flashes is denoted by T according to
A’s clock. Then it is plausible to assume that the intervals of reception by
B’s clock are proportional to T, say, kT. Moreover, the quantity k, which
we call the k-factor, is clearly a characteristic of the motion of B relative
to A. We now assume that if A and B are inertial observers, then the
k-factor is a constant in time and independent of T. Indeed, we will
go further and assume that it is independent of the point in space-time
where the measurement is made and only depends on the relative speed of
the two inertial observers. From a mathematical point of view, this is the
assumption that space-time ishomogeneous, i.e. the same at every point.
From B’s point of view, A is moving away from B with the same relative
speed, so the principle of special relativity requires that the relationship
between A and B must be reciprocal. So that, if B emits two signals with
a time lapse of T according to B’s clock, then A receives them after a time
lapse of kT according to A’s clock (Fig. 2.7). Note that, in interchanging
the roles of A and B, we are assuming that there are no directional effects,
which amounts to the assumption that space-time is isotropic, i.e. it is
the same in any direction.

Light rays

A B

T

T

kT

kT

Fig. 2.7 The reciprocal nature of the k-
factor.
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Fig. 2.8 Coordinatizing events.

In the radar method, an observer A assigns coordinates to an event P
by bouncing a light signal off it. Suppose a light signal is sent out at a time
t = t1, and received back at a time t = t2 (Fig. 2.8); then, since the velocity
of light in both directions is the same, the time (as measured by A) at the
point P is halfway between t1 and t2. Furthermore, since by assumption
the speed of light is 1, the distance to P is half the time for the round
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trip. Hence, according to our radar definition of distances, the space-time
coordinates of P are given by

(t, x) = ( 1
2 (t1 + t2), 1

2 (t2 − t1)). (2.2)

We now use the k-factor to develop the k-calculus.

2.8 Relative speed of two inertial observers
Consider the configuration shown in Fig. 2.9 and assume that A and B
synchronize their clocks to zero when they cross at event O. After a time
T, A sends a signal to B, which is reflected back at event P. From B’s point
of view, a light signal is sent to A after a time lapse of kT by B’s clock. It
follows from the definition of the k-factor that A receives this signal after
a time lapse of k(kT). Then, using (2.2) with t1 = T and t2 = k2T, we
find the coordinates of P according to A’s clock are given by

(t, x) = ( 1
2 (k

2 + 1)T, 1
2 (k

2 − 1)T). (2.3)

Thus, as T varies, this gives the coordinates of the events which constitute
B’s world-line. Hence, if v is the velocity of B relative to A, we find

v =
x
t
=
k2 − 1
k2 + 1

.

Solving for k2 in terms of v, and taking the positive square root in order
to have the same direction of time for A and B, we find

k =
(

1 + v
1− v

) 1
2
. (2.4)
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kT
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T

k2T

Fig. 2.9 Relating the k-factor to the rel-
ative speed of separation.

We shall see in the next chapter that this is the usual relativistic formula
for the radial Doppler shift. If B is moving away from A, then k > 1,
which represents a ‘red’ shift, whereas, if B is approaching A, then k < 1,
which represents a ‘blue’ shift. Note that the transformation v → −v
corresponds to interchanging the roles of A and B and results in k→ 1/k.
Moreover,

v = 0 ⇐⇒ k = 1,

as we should expect for observers relatively at rest: once they have
synchronized their clocks, the synchronization remains (Fig. 2.10).

T

T

T

Fig. 2.10 Observers relatively at rest
(k = 1).
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2.9 Composition law for velocities
Consider the situation in Fig. 2.11, where kAB denotes the k-factor be-
tween A and B, with kBC and kAC defined similarly. It follows immediately
that

kAC = kABkBC. (2.5)

Using (2.4), we find the corresponding composition law for velocities:

CT

A B
kBCkABT

kABT

Fig. 2.11 Composition of k-factors.

vAC =
vAB + vBC
1 + vABvBC

. (2.6)

This formula has been verified experimentally to very high precision. In-
deed, formula (2.6) was first proposed empirically (prior to the theory of
special relativity) by Fizeau in 1851 in order to explain the results of an
experiment measuring the speed of light in a rapidly moving fluid. Note
that, if vAB and vBC are small compared with the speed of light, i.e.

vAB � 1, vBC � 1,

then we obtain the classical Newtonian formula

vAC = vAB + vBC,

to lowest order. Although the composition law for velocities is not simple,
the one for k-factors is and, in special relativity, it is the k-factors which
are the directly measurable quantities. Note also that, formally, if we sub-
stitute vBC = 1, representing the speed of a light signal relative to B, in
(2.6), then the resulting speed of the light signal relative to A is

vAC =
vAB + 1
1 + vAB

= 1,

in agreement with the constancy of the velocity of light postulate.
From the composition law, we can show that, if we add two speeds less

than the speed of light, then we again obtain a speed less than the speed of
light (exercise). This does not mean, as is sometimes stated, that nothing
can move faster than the speed of light in special relativity, but rather that
the speed of light is a border which can not be crossed or even reached.
More precisely, special relativity allows for the existence of three classes
of particles:

1. Particles that move slower than the speed of light are called sublu-
minal particles. They include material particles and elementary particles
such as electrons and neutrons.

2. Particles that move with the speed of light are called luminal parti-
cles. They include the carrier of the electromagnetic field interaction, the
photon, other zero rest-mass particles (see §4.5) and, theoretically, the
carrier of the gravitational field interaction, called the graviton.

3. Particles that move faster than the speed of light are called superlu-
minal particles or tachyons. There was some excitement in the 1970s
surrounding the possible existence of tachyons, but all attempts to detect
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them to date have failed. This suggests two likely possibilities: either
tachyons do not exist or, if they do, they do not interact with ordinary
matter. This would seem to be just as well, for otherwise they could be
used to signal back into the past and so would appear to violate causality.
For example, it would be possible theoretically to construct a device which
sent out a tachyon at a given time and which would trigger a mechanism
in the device to blow it up before the tachyon was sent out! We will there-
fore assume for the rest of this book that tachyons do not exist and that
nothing can travel faster than the speed of light.

2.10 The relativity of simultaneity
For Einstein, the relativity of simultaneity was at the very heart of spe-
cial relativity and resolves many of the paradoxes that the classical theory
gives rise to. Consider two events P and Q which take place at the same
time, according to A, at points which are equal but opposite distances
away. A could establish this by sending out and receiving the light rays as
shown in Fig. 2.12 (continuous lines). Suppose now that another inertial
observer B meets A at the time these events occur according to A. B
also sends out light rays RQU and SPV to illuminate the events, as shown
(dashed lines). By symmetry, RU = SV and so these events are equidis-
tant, according to B. However, the signal RQ was sent before the signal
SP and since the events are equidistant B concludes that the eventQ took
place before P. Hence, although A judges P and Q to be simultaneous,
B considers Q to have occurred first. Indeed, it is not hard to see that, by
making a very small change in the time of P (according to A), one can
have P occurring before Q for observer A but after Q to occur before P
for observer B. This is an example of the relativity of simultaneity.

Q

U

A

P

V
B

O

S

R

Fig. 2.12 Relativity of simultaneity.

Einstein realized the crucial role that simultaneity plays in the theory
and, in his popular work Relativity: The Special and General Theory, gave
the following simple thought experiment (which we slightly update) to
illustrate its dependence on the observer. Imagine a train travelling along
a straight track with velocity v relative to a stationary observer A on the
bank of the track. In the train, B is an observer situated at the centre of
one of the carriages. We assume that there are two electrical devices on
the track that are the length of the carriage apart and equidistant from A.
When the carriage containing B goes over these devices, they fire and
activate two light sources which are situated at the end of the carriage
(Fig. 2.13) and which each emit a photon. From the configuration, it is
clear that, according to Observer A, the two photons will be emitted si-
multaneously. However, from A’s point of view, B is travelling towards
the light emanating from light source 2 and away from the light emanating
from light source 1. Since the speed of light is a constant, A will observe
B meeting the light from source 2 before the light from source 1. Hence,
B will observe the photon from light source 1 strike the front of the train
before the other photon strikes the back. This is in accordance with the
space-time diagram given above where P is the photon hitting the back
of the train and Q is the photon hitting the front. These are simultaneous
for observer A on the bank but Q occurs before P for observer B on the
train.
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Light source 1 Light source 2

v

B

A

xx

Fig. 2.13 Photons emanating from the two sources.

2.11 Causality

G

H

J

ElsewhereElsewhere

(Absolute)
past

(Absolute)
future

E

F

O

‘Light cone’

Fig. 2.14 Event relationships in special
relativity.

In Newtonian theory, the notion of absolute time, which all observers
agree on, enables one to unambiguously say that a ‘cause’ precedes its ‘ef-
fect’. Given the example of the previous section in which different inertial
observers can disagree about the order of events, one might worry about
how the notion of causality survives in special relativity. However, the as-
sumption that nothing can travel faster than the speed of light comes to
our rescue. Given an eventO, we say that an event E (say) is on the future
light cone of O if it lies on a light ray starting from O that then reaches
E (see Fig. 2.14). The fact that it is a cone will become clearer later when
we take all the spatial dimensions into account. Since all inertial observers
agree on the speed of light, the future light cone does not depend on the
particular choice of inertial observer but is invariantly defined. Simi-
larly, we say an event H (say) is on the past light cone of O if there is a
light ray starting from H that reaches O. The observer-independent con-
cept of light cone thus divides space-time into three regions. The future
of O consists of points E, F, and so on. that can be reached by travelling
at speeds less than or equal to the speed of light. Since nothing can travel
faster than the speed of light, these are the points in space-time that can
be influenced by what happens at O. For this reason, we often call these
points the causal future ofO. Similarly, points in thepast ofO are points
such asH, J, and so on, where it is possible to reachO by travelling at less
than or equal to the speed of light. Again, since nothing can travel faster
than the speed of light, these are the only points in space-time that can
have an effect on O, so justifying the name causal past. Note that the
world-line of any inertial observer or material particle passing through O
must lie within the light cone at O. Finally, points in the region labelled
‘elsewhere’ in Fig. 2.14 consist of points that cannot affect or cannot be
affected by what happens at O. This is because to go from O to a point
G in the ‘elsewhere’ region (or vice versa) would require travelling faster
than the speed of light. The temporal relationship to O of events in the
‘elsewhere’ region will not be something all observers will agree upon. For
example, one class of observers will say thatG took place afterO, another
class will say thatG took place beforeO, and yet another will say they took
place simultaneously.



24 The k-calculus

2.12 The clock paradox
Consider three inertial observers as shown in Fig. 2.15, with the relative
velocity vAC = −vAB. Assume that A and B synchronize their clocks at O
and that C’s clock is synchronized with B’s at P. Let B and Cmeet after a
time T according to B, whereupon they emit a light signal to A. According
to the k-calculus, A receives the signal at R after a time kT since meeting
B. Remembering that C is moving with the opposite velocity to B (so
that k → k−1), then A will meet C at Q after a subsequent time lapse of
k−1T. The total time that A records between events O and Q is therefore
(k + k−1)T. For k 6= 1, this is greater than the combined time intervals
2T recorded between events OP and PQ by B and C. But should not the
time lapse between the two events agree? This is one form of the so-called
clock paradox.

B

A

T

k–1T

R

Q

P

C

T

kT

O

V

V

Fig. 2.15 The clock paradox.

However, it is not really a paradox; rather, what it shows is that, in
relativity, time, like distance, is a route-dependent quantity. The point
is that the 2T measurement is made by two inertial observers, not one.
Some people have tried to reverse the argument by setting B and C to
rest, but this is not possible since they are in relative motion to each other.
Another argument says that, when B and Cmeet, C should take B’s clock
and use it. But, in this case, the clock would have to be accelerated when
being transferred to C and so it is no longer inertial. Some opponents of
special relativity have argued that the short period of acceleration should
not make such a difference, but this is analogous to saying that a journey
between two points which is straight nearly all the time is about the same
length as one which is wholly straight (as shown), which is clearly not true
(Fig. 2.16). The moral is that, in special relativity, time is a more difficult
concept to work with than the absolute time of Newton.

Fig. 2.16 Spatial analogue of clock para-
dox.

A more subtle point revolves around the implicit assumption that the
clocks of A and B are ‘good’ clocks, i.e. that the seconds of A’s clock are
the same as those of B’s clock. One suggestion is that A has two clocks,
adjusts the tick rate until they are the same, and then sends one of them
to B at a very slow rate of acceleration. The assumption here is that the
very slow rate of acceleration will not affect the tick rate of the clock.
However, what is there to say that a clock may not be able to somehow
add up the small bits of acceleration and so affect its performance? Amore
satisfactory approach would be for A and B to use identically constructed
atomic clocks (which is, after all, what physicists use today to measure
time). The objection then arises that their construction is based on ideas in
quantum physics which is, a priori, outside the scope of special relativity.
However, this is a manifestation of a point raised earlier, that virtually any
real experiment which one can imagine carrying out involves more than
one branch of physics. The whole structure is intertwined in a way which
cannot easily be separated.
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2.13 The Lorentz transformations
We have derived a number of important results in special relativity, which
only involve one spatial dimension, by use of the k-calculus. Other results
follow essentially from the transformations connecting inertial observers,
the famous Lorentz transformations. We shall finally use the k-calculus to
derive these transformations.

Let eventP have coordinates (t, x)measured byA, and (t′, x′)measured
by B (Fig. 2.17). Assume that A and B both set their clocks to zero when
they meet. Let A send out a light signal at time t1 to illuminate P which is
reflected back and received by A at time t2. Since, according to the radar
method, t = 1

2 (t1 + t2) and x = 1
2 (t2 − t1), we can solve these to obtain

t1 = t− x and t2 = t+ x. An identical calculation for observer B, using the
primed coordinates, gives t′1 = t′ − x′ and t′2 = t′ + x′. On the other hand,
according to the k-calculus, t′1 = kt1 while t2 = kt′2 This gives

A B

t – x

t + x

t´– x´

P
(t´, x´)
(t, x)

t´+ x´

Fig. 2.17 Coordinatization of events by
inertial observers.

t′ − x′ = k(t− x), t + x = k(t′ + x′). (2.7)

After some rearrangement, and using equation (2.4), we obtain (exer-
cise) the so-called special Lorentz transformation

t′ =
t− vx

(1− v2)
1
2

, x′ =
x− vt

(1− v2)
1
2

. (2.8)

This is also referred to as a boost in the x-directionwith speed v, since
it takes one from A’s coordinates to B’s coordinates, and B is moving away
from A, with speed v. Some simple algebra reveals the result (exercise)

t′2 − x′2 = t2 − x2,

showing that the quantity t2 − x2 is an invariant under a special Lorentz
transformation or boost.

To obtain the corresponding formulae in the case of three spatial
dimensions, we consider Fig. 2.5 with two inertial frames in standard con-
figuration. Now, since, by assumption, the xz-plane (y = 0) of A must
coincide with the x′z′-plane (y′ = 0) of B, then the y and y′ coordinates
must be connected by a transformation of the form

y = ny′, (2.9)

because

y = 0 ⇐⇒ y′ = 0.

We now use the assumption that space is isotropic. We then reverse the
direction of the x- and y-axes of A and B and consider the motion from
B’s point of view (see Figs. 2.18 and 2.19). Clearly, from B’s point of
view, the roles of A and B have interchanged. Hence, by symmetry, we
must have

y′ = ny. (2.10)
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Fig. 2.18 The x- and y-axes from Figure 2.5, reversed.
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Fig. 2.19 Figure 2.18 from B’s point of view.

Combining (2.9) and (2.10), we find

n2 = 1 ⇒ n = ±1.

The negative sign can be dismissed since, as v→ 0, we must have y′ → y,
in which case n = 1. Hence, we find y′ = y, and a similar argument for z
produces z′ = z.

2.14 The four-dimensional world view
We now compare the special Lorentz transformation of the last section
(using relativistic units in which the speed of light is one) with theGalilean
transformation connecting inertial observers in standard configuration
(see Table 2.1). In a Galilean transformation, the absolute time coordi-
nate remains invariant. However, in a Lorentz transformation, the time
and space coordinates get mixed up (note the symmetry in x and t). In
the words of Minkowski (1952), ‘Henceforth space by itself, and time by
itself are doomed to fade away into mere shadows, and only a kind of
union of the two will preserve an independent reality.’

In the old Newtonian picture, time is split off from three-dimensional
Euclidean space. Moreover, since we have an absolute concept of si-
multaneity, we can consider two simultaneous events with coordinates
(t, x1, y1, z1), and (t, x2, y2, z2); then, the square of the Euclidean dis-
tance between them,

σ2 = (x1 − x2)
2 + (y1 − y2)

2 + (z1 − z2)
2, (2.11)
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Table 2.1

Galilean transformation Lorentz transformation

t′ = t t′ =
t− vx

(1− v2)1/2

x′ = x− vt x′ =
x− vt

(1− v2)1/2

y′ = y y′ = y

z′ = z z′ = z

is invariant under a Galilean transformation. In the new special relativity
picture, time and space merge together into a four-dimensional con-
tinuum called space-time. In this picture, the square of the interval
between any two events (t1, x1, y1, z1) and (t2, x2, y2, z2) is defined by

s2 = (t1 − t2)
2 − (x1 − x2)

2 − (y1 − y2)
2 − (z1 − z2)

2, (2.12)

and it is this quantity which is invariant under a Lorentz transformation.
Note that, formally, we always denote the ‘square’ of the interval by s2,
but the quantity s is only defined if the right-hand side of (2.12) is non-
negative. If we consider two events separated infinitesimally, (t, x, y, z) and
(t + dt, x + dx, y + dy, z + dz), then this equation becomes

ds2 = dt2 − dx2 − dy2 − dz2, (2.13)

where all the infinitesimals are squared in (2.13). A four-dimensional
space-time continuum in which the above form is invariant is called
Minkowski space-time and provides the background geometry for
special relativity. We will discuss this in more detail in the next chapter.

So far, we have only met a special Lorentz transformation which
connects two inertial frames in standard configuration. A full Lorentz
transformation connects two frames in general position (Fig. 2.20). It
can be shown that a full Lorentz transformation can be decomposed into
an ordinary spatial rotation, followed by a boost, followed by a further or-
dinary rotation. Physically, the first rotation lines up the x-axis of S with
the velocity v of S′. Then a boost in this direction with speed v trans-
forms S to a frame which is at rest relative to S′. A final rotation lines
up the coordinate frame with that of S′. The spatial rotations introduce
no new physics. The only new physical information arises from the boost
and that is why we can, without loss of generality, restrict our attention to
a special Lorentz transformation.
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Fig. 2.20 Two frames in general position.

Exercises

2.1 (§2.4) Write down the Galilean transformation from observer S to
observer S′, where S′ has velocity v1 relative to S. Find the transforma-
tion from S′ to S and state in simple terms how the transformations are
related. Write down the Galilean transformation from S′ to S′′ where S′′

has velocity v2 relative to S′. Find the transformation from S to S′′. Prove
that the Galilean transformations form an Abelian (commutative) group.

2.2 (§2.7) Draw the four fundamental k-factor diagrams (see Fig. 2.7)
for the cases of two inertial Observers A and B approaching and receding
with uniform velocity v:
(i) as seen by A;
(ii) as seen by B.

2.3 (§2.8) Show that v → −v corresponds to k → k−1. If k > 1 corre-
sponds physically to a red shift of recession, what does k < 1 correspond
to?

2.4 (§2.9) Show that (2.6) follows from (2.5). Use the composition law
for velocities to prove that, if 0 < vAB < 1 and 0 < vBC < 1, then
0 < vAC < 1.

2.5 (§2.9) Establish the fact that, if vAB and vBC are small compared with
the velocity of light, then the composition law for velocities reduces to the
standard additive law of Newtonian theory.

2.6 (§2.10) In the event diagram of Fig. 2.14, find a geometrical con-
struction for the world-line of an inertial observer passing throughO who
considers event G as occurring simultaneously with O. Hence, describe
the world-lines of inertial observers passing throughO who considerG as
occurring before or after O.
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2.7 (§2.12) Draw Fig. 2.15 from B’s point of view. Coordinatize the
events O, R, and Q with respect to B and find the times between O and
R, and R and Q, and compare them with A’s timings.

2.8 (§2.13) Deduce (2.8) from (2.7). Use (2.7) to deduce directly that

t′2 − x′2 = t2 − x2.

Confirm the equality under the transformation formula (2.8).

2.9 (§2.13) In S, two events occur at the origin and a distanceX along the
x-axis simultaneously at t = 0. The time interval between the events in S′

isT. Show that the spatial distance between the events in S′ is (X2+T2)1/2

and determine the relative velocity v of the frames in terms of X and T.

2.10 (§2.14) Show that the interval between two events (t1, x1, y1, z1) and
(t2, x2, y2, z2) defined by

s2 = (t1 − t2)2 − (x1 − x2)2 − (y1 − y2)2 − (z1 − z2)2,

is invariant under a special Lorentz transformation. Deduce the
Minkowski line element (2.13) for infinitesimally separated events. What
does s2 become if t1 = t2 and how is it related to the Euclidean distance σ
between the two events?

Further reading

This chapter is based on Bondi’s article in the Brandeis lectures (Traut-
mann et al. 1964). A slightly more popular version is in the book of his
1965 Tarner lectures (Bondi 1967). We consider a more conventional in-
troduction to special relativity in the next chapter. The classical text by
Einstein (100th anniversary edition of the 1915 original) gives an insight
into his views on various aspects of relativity theory and, in particular,
the importance of the relativity of simultaneity. The 100th anniversary
edition has a useful commentary by Guttfreund and Renn.

Trautmann A., Pirani F. A. E., and Bondi, H. (1964). Lectures on General
Relativity. Brandeis Summer Institute on Theoretical Physics, 1964, vol.
1. Prentice-Hall, Englewood Cliffs, NJ.

Bondi, H. (1967). Assumption and Myth in Physical Theory. Cambridge
University Press, Cambridge.

Einstein, A. (2015). Relativity: The Special and General Theory (100th
anniversary edn). Princeton University Press, Princeton, NJ.





3The key attributes of special
relativity

3.1 Standard derivation of the Lorentz
transformations

We start this chapter by deriving again the Lorentz transformations, but
this time by using a more standard approach. We shall work in non-
relativistic units in which the speed of light is denoted by c. We restrict
attention to two inertial observers S and S′ in standard configuration.
As before, we shall show that the Lorentz transformations follow from
the two postulates, namely, the principle of special relativity and the
constancy of the velocity of light.

Now, by the first postulate, if the observer S sees a free particle, i.e. a
particle with no forces acting on it, travelling in a straight line with con-
stant velocity, then so will S′. Thus, using vector notation, it follows that,
under a transformation connecting the two frames,

r = r0 + ut ⇐⇒ r′ = r′0 + u′t′.

Since straight lines get mapped into straight lines, it suggests that the
transformation between the frames is linear and so we shall assume that
the transformation from S to S′ can be written in matrix form

t′

x′

y′

z′

 = L


t
x
y
z

 , (3.1)

where L is a 4×4matrix of quantities which can only depend on the speed
of separation v. Using exactly the same argument as we used at the end of
§2.13, the assumption that space is isotropic leads to the transformations
of y and z being

y′ = y and z′ = z. (3.2)

We next use the second postulate. Let us assume that, when the origins of
S and S′ are coincident, they zero their clocks, i.e. t = t′ = 0, and emit a
flash of light. Then, according to S, the light flash moves out radially from
the origin with speed c. The wave front of light will constitute a sphere. If
we define the quantity I by

I(t, x, y, z) = x2 + y2 + z2 − c2 t2,

Introducing Einstein’s Relativity. Second Edition. Ray d’Inverno and James Vickers, Oxford University Press.
© Ray d’Inverno and James Vickers (2022). DOI: 10.1093/oso/9780198862024.003.0003
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then the events comprising this sphere must satisfy I = 0. By the second
postulate, S′ must also see the light move out in a spherical wave front
with speed c and satisfy

I ′ = x′2 + y′2 + z′2 − c2 t′2 = 0.

Thus it follows that, under a transformation connecting S and S′,

I = 0 ⇐⇒ I ′ = 0, (3.3)

and, since the transformation is linear by (3.1), we may conclude

I = nI ′, (3.4)

where n is a quantity which can only depend on v. Using the same argu-
ment as we did in §2.13, we can reverse the role of S and S′ and so, by the
relativity principle, we must also have

I ′ = nI. (3.5)

Combining the last two equations, we find

n2 = 1 ⇒ n = ±1.

In the limit as v→ 0, the two frames coincide and I ′ → I, from which we
conclude that we must take n = 1.

Substituting n = 1 in (3.4), this becomes

x2 + y2 + z2 − c2 t2 = x′2 + y′2 + z′2 − c2 t′2,

and, using (3.2), this reduces to

x2 − c2t2 = x′2 − c2t′2,

or, in relativistic units with c = 1,

x2 − t2 = x′2 − t′2. (3.6)

P
P´P´

Q´

Q

Q´

Fig. 3.1 A hyperbolic rotation for points
on t2 − x2 = 1.

In the same way that two points (x, y) and (x′, y′) on a circle are related
by rotations (so that x′ = x cos θ + y sin θ, and y′ = −x sin θ + y cos θ),
two points on the hyperbola x2 − t2 = constant are related by hyperbolic
rotations (Fig 3.1) so that

x′ = x coshα− t sinhα, (3.7)

t′ = −x sinhα + t coshα. (3.8)

Indeed, using (3.7) and (3.8), one can verify that (3.6) is satisfied (ex-
ercise). Now, the origin of S′ (x′ = 0), as seen by S, moves along the
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positive x-axis of S with speed v and so x′ = 0 must correspond to x = vt.
Substituting into (3.7), we see

0 = vt coshα− t sinhα,

so that

tanhα = v. (3.9)

Using the identity cosh2 α− sinh2 α = 1 and (3.9), we obtain

coshα =
1

(1− tanh2 α)1/2
=

1
(1− v2)1/2

,

sinhα = tanhα coshα =
v

(1− v2)1/2
.

Substituting in (3.7) and (3.8) gives

x′ =
(x− vt)

(1− v2)1/2
,

t′ =
(t− vx)

(1− v2)1/2
,

as we found in §2.13.
Writing the above equation in non-relativistic units by inserting factors

of c to give the variables the correct dimensions, we obtain the formula
for a special Lorentz transformation or boost:

t′ = β(t− vx/c2), x′ = β(x− vt), y′ = y, z′ = z. (3.10)

where we have introduced the standard quantity β given by

β(v) :=
1

(1− v2/c2)
1
2

,

and the symbol := here means ‘is defined to be’.

3.2 Mathematical properties of Lorentz
transformations

From the results of the last section, we find the following properties of a
special Lorentz transformation or boost.

1. A boost along the x-axis of speed v is equivalent to a hyperbolic ro-
tation in (x, t)-space through an amount α (called the rapidity in some
textbooks) given by tanhα = v/c.
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2. If we consider v to be very small compared with c, for which we use the
notation v�c, and neglect terms of order v2/c2, then we regain a Galilean
transformation

t′ = t, x′ = x− vt, y′ = y, z′ = z.

We can obtain this result formally by taking the limit c→ ∞ in (3.10).

3. If we solve (3.10) for the unprimed coordinates, we get

t = β(t′ + vx′/c2), x = β(x′ + vt′), y = y′, z = z′.

This can also be obtained formally from (3.10) by interchanging primed
and unprimed coordinates and replacing v by −v. This is what we should
expect from physical reasons, since, if S′ moves along the positive x-axis
of Swith speed v, then Smoves along the negative x′-axis of S′ with speed
v or, equivalently, Smoves along the positive x′-axis of S′ with speed −v.

4. Special Lorentz transformations form a group:

(a) The identity element is given by v = 0.

(b) The inverse element is given by −v (as in 3 above).

(c) The product of two boosts with velocities v and v′ is another boost
with velocity v′′. Since boosts with velocities v and v′ correspond to
hyperbolic rotations in (x, t)-space with rapidities α and α′, where

tanhα = v/c and tanhα′ = v′/c,

then their resultant is a hyperbolic rotation of α′′ = α + α′, where

v′′/c = tanhα′′ = tanh(α + α′) =
tanhα + tanhα′

1 + tanhα tanhα′ ,

from which we immediately obtain

v′′ =
v + v′

1 + vv′/c2
. (3.11)

Compare this with equation (2.6) in relativistic units.

(d) Associativity is left as an exercise.

5. The square of the infinitesimal interval between infinitesimally sepa-
rated events (see (2.13)),

ds2 = c2dt2 − dx2 − dy2 − dz2, (3.12)

is invariant under a Lorentz transformation.
We now turn to the key physical attributes of Lorentz transformations.

Throughout the remaining sections, we shall assume that S and S′ are in
standard configuration with non-zero relative velocity v.
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S´

xÁ

vS

xB́

Fig. 3.2 A rod moving with velocity v relative to S.

3.3 Length contraction
Consider a rod fixed in S′ with endpoints x′A and x′B, as shown in Fig. 3.2.
In S, the ends have coordinates xA and xB (which, of course, vary in time)
given by the Lorentz transformations

x′A = β(xA − vtA), x′B = β(xB − vtB). (3.13)

In order to measure the lengths of the rod according to S, we have to find
the x-coordinates of the end points at the same time according to S. If we
denote the rest length, namely the length in S′, by

ℓ0 = x′B − x′A,

and the length in S at time t = tA = tB by

ℓ = xB − xA.

Then, subtracting the formulae in (3.13), we find the result

ℓ = β−1 ℓ0. (3.14)

Since

|v| < c ⇐⇒ β > 1 ⇐⇒ ℓ < ℓ0,

the result shows that the length of a body in the direction of its motion
with uniform velocity v is reduced by a factor (1 − v2/c2)1/2. This
phenomenon is called length contraction. Clearly, the body will have
greatest length in its rest frame, in which case it is called the rest length, or
proper length. Note also that the length approaches zero as the velocity
approaches the velocity of light.

In an attempt to explain the null result of the Michelson–Morley ex-
periment, Fitzgerald had suggested the shortening of a body in motion
relative to the ether. He speculated that the intermolecular forces are pos-
sibly of electrical origin so that material bodies would contract in the
line of motion. These ideas were subsequently developed by Lorentz and
Poincaré using various modifications to the electromagnetic forces. Ein-
stein was the first to completely remove the ad hoc character from the
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contraction hypothesis, by demonstrating that this contraction did not
require motion through a supposed ether, but could be explained using
special relativity, which changed our notions of space, time, and simul-
taneity. Unlike the Fitzgerald contraction, the special relativistic effect
is relative, i.e. a rod fixed in S appears contracted in S′ and, since the
space-time interval c2t2 − x2 remains unchanged, is better regarded as a
change of perspective in Minkowski space-time. Note also that there are
no contraction effects in directions transverse to the direction of motion.

3.4 Time dilation
Let a clock fixed at x′ = x′A in S′ record two successive events separated by
an interval of time T0 (Fig. 3.3). The successive events in S′ are (x′A, t

′
1)

and (x′A, t
′
1 + T0), say. Using the Lorentz transformation, we have in S

t1 = β(t′1 + vx′A/c
2), t2 = β(t′1 + T0 + vx′A/c

2).

On subtracting, we find the time interval in S defined by

T = t2 − t1,

S S´
World-line

of clock

T0T

Fig. 3.3 Successive events recorded by a
clock fixed in S′.

is given by

T = βT0. (3.15)

Thus, moving clocks go slow by a factor (1 − v2/c2)−1/2. This phe-
nomenon is called time dilation. The fastest rate of a clock is in its rest
frame and is called its proper rate. Again, the effect has a reciprocal
nature.

S

τ

t1

t0

World-line
of clock

Fig. 3.4 Proper time recorded by an ac-
celerated clock.

Let us now consider an accelerated clock. We define an ideal clock
to be one unaffected by its acceleration; in other words, its instantaneous
rate depends only on its instantaneous speed v, in accordance with the
above phenomenon of time dilation. This is often referred to as the clock
hypothesis. The time recorded by an ideal clock is called the proper
time τ (Fig. 3.4). If at time t the clock is moving with speed v(t), then
the infinitesimal version of (3.15) is

dτ =
(
1− v(t)2

c2

)1/2

dt.

So that just as in vector calculus, by approximating the world-line of the
clock by a number of short straight lines and taking the limit, the proper
time of an ideal clock between t0 and t1 is given by

τ =
∫ t1

t0

(
1− v(t)2

c2

)1/2

dt. (3.16)
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The general question of what constitutes a clock or an ideal clock is
a non-trivial one. However, an experiment has been performed where
an atomic clock was flown round the world and then compared with an
identical clock left back on the ground. The travelling clock was found on
return to be running slow by precisely the amount predicted by relativ-
ity. Another instance occurs in the study of cosmic rays. Certain mesons
reaching us from the top of the Earth’s atmosphere are so short-lived that,
even had they been travelling at the speed of light, their travel time in the
absence of time dilation would exceed their known proper lifetimes by
factors of the order of 10. However, these particles are, in fact, detected
at the Earth’s surface because their very high velocities, relative to ob-
servers on the Earth, keep them young, as it were. Of course, whether or
not time dilation affects the human clock, that is, biological ageing, is still
an open question. But the fact that we are ultimately made up of atoms,
which do appear to suffer time dilation, would suggest that there is no
reason by which we should be an exception.

3.5 Transformation of velocities
Consider a particle in motion (Fig. 3.5) with its Cartesian components of
velocity being

(u1, u2, u3) =
(

dx
dt

,
dy
dt

,
dz
dt

)
in S,

and

(u′1, u
′
2, u

′
3) =

(
dx′

dt′
,
dy′

dt′
,
dz′

dt′

)
in S′.

Taking differentials of a Lorentz transformation

t′ = β(t− vx/c2), x′ = β(x− vt), y′ = y, z′ = z,

we get

dt′ = β(dt− vdx/c2), dx′ = β(dx− vdt), dy′ = dy, dz′ = dz,

and hence

S´

u´
v

u

Path of particleS

Fig. 3.5 Particle in motion relative to S and S′.
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u′1 =
dx′

dt′
=

β(dx− vdt)
β(dt− vdx/c2)

=
dx/dt− v

1− v/c2 (dx/dt)
=

u1 − v
1− u1v/c2

, (3.17)

u′2 =
dy′

dt′
=

dy
β(dt− vdx/c2)

=
dy/dt

β [1− v/c2 (dx/dt)]
=

u2
β (1− u1v/c2 )

,

(3.18)

u′3 =
dz′

dt′
=

dz
β(dt− vdx/c2)

=
dz/dt

β [1− v/c2 (dx/dt)]
=

u3
β (1− u1v/c2 )

.

(3.19)

Notice that the velocity components u2 and u3 transverse to the direc-
tion of motion of the frame S′ are affected by the transformation. This
is due to the time difference in the two frames. To obtain the inverse
transformations, simply interchange primes and unprimes and replace v
by −v.

3.6 Relationship between space-time
diagrams of inertial observers

We now show how to relate the space-time diagrams of S and S′ (see
Fig. 3.6). We start by taking ct and x as the coordinate axes of S, so that
a light ray has slope 45◦ (in relativistic units). Then, to draw the ct′- and
x′-axes of S′, we note from the Lorentz transformation equations (3.10)

x´

x
O

V
R

ct ct́

P

Q
UU

Fig. 3.6 The world-lines in S of the fixed
points and simultaneity lines of S′. ct′ = 0 ⇐⇒ ct = (v/c)x,

that is, the x′-axis, given by ct′ = 0, is the straight line ct = (v/c)x with
slope v/c < 1. Similarly,

x′ = 0 ⇔ ct = (c/v)x,

that is, the ct′-axis, given by x′ = 0, is the straight line ct = (c/v)x with
slope c/v > 1. The lines parallel to Oct′ are the world-lines of fixed points
in S′. The lines parallel to Ox′ are the lines connecting points at a fixed
time according to S′ and are called lines of simultaneity in S′. The
coordinates of a general event P are (ct, x) = (OR,OQ) relative to S and
(ct′, x′) = (OV,OU) relative to S′. However, the diagram is somewhat
misleading because the length scales along the axes are not the same. To
relate them, we draw in the hyperbolae

x2 − c2t2 = x′2 − c2t′2 = ±1

as shown in Fig. 3.7. Then, if we first consider the positive sign, setting
ct′ = 0, we get x′ = ±1. It follows that OA is a unit distance on Ox′.
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Similarly, taking the negative sign and setting x′ = 0 we get ct′ = ±1 and
soOB is the unit measure onOct′. Then the coordinates of P in the frame
S′ are given by

(ct′, x′) =
(
OU
OA

,
OV
OB

)
.

x´

ct´

x = 1

ct = 1

Light ray

ct

x

A
P

B

U
O

V

Fig. 3.7 Length scales in S and S′.

Note the following properties from Fig. 3.7.

1. A boost can be thought of as a hyperbolic rotation given by (3.7)
and (3.8) in the (x, ct) plane through an amount given by the rapidity
α. Thus, a boost is equivalent to a skewing of both the coordinate axes
inwards through the angle tan(v/c). (This was not appreciated by some
past opponents of special relativity, who gave some erroneous counter
arguments based on the mistaken idea that a boost could be represented
by a real rotation in the (x, ct)-plane.)

2. The hyperbolae are the same for all frames and so we can draw in any
number of frames in the same diagram and use the hyperbolae to calibrate
them.

3. The length contraction and time dilation effects can be read off directly
from the diagram. For example, the world-lines of the end points of a unit
rod OA in S′, namely x′ = 0 and x′ = 1, cut Ox in less than unit distance.
Similarly, world-lines x = 0 and x = 1 in S cutOx′ insideOE, from which
the reciprocal nature of length contraction is evident.

4. Event A has coordinates (ct′, x′) = (0, 1) relative to S′ and hence, by a
Lorentz transformation, coordinates (ct, x) = (βv/c,β) relative to S. The
quantity OA defined by

OA = (c2t2 + x2)1/2 = β(1 + v2/c2)1/2,

is a measure of the calibration factor

(
1 + v2/c2

1− v2/c2

)1/2

,

which can be used to compare distance measures in S′ with those in S.
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3.7 Acceleration in special relativity
We start with the inverse transformation of (3.17), namely

u1 =
u′1 + v

1 + u′1v/c2
,

from which we find the differential

du1 =
du′1

1 + u′1v/c2
−
(

u′1 + v
(1 + u′1v/c2)2

)
v
c2

du′1

=
1
β2

du′1
(1 + u′1v/c2)2

.

Similarly, from the inverse Lorentz transformation

t = β(t′ + x′v/c2),

we find the differential

dt = β(dt′ + (dx′)v/c2) = β(1 + u′1v/c
2)dt′.

Combining these results, we find that the x-component of the acceleration
transforms according to

du1
dt

=
1

β3(1 + u′1v/c2)
3

du′1
dt′

. (3.20)

Similarly, we find

du2
dt

=
1

β2(1 + u′1v/c2)
2

du′2
dt′

− vu′2
c2β2(1 + u′1v/c2)

3

du′1
dt′

, (3.21)

du3
dt

=
1

β2(1 + u′1v/c2)
2

du′3
dt′

− vu′3
c2β2(1 + u′1v/c2)

3

du′1
dt′

. (3.22)

The inverse transformations can be found in the usual way.
It follows from the above formulae that acceleration does not trans-

form in the expected way under a Lorentz transformation, so does not
correspond to a vector in Minkowski space. However, it is clear from the
formulae that the existence or not of acceleration is an absolute quantity,
that is, all inertial observers agree whether a body is accelerating or not.
Put another way, if the acceleration is zero in one frame, then it is nec-
essarily zero in any other frame. We shall see that this is no longer the
case in general relativity. We summarize the situation in Table 3.1, which
indicates why the subject matter of the book is ‘relativity’ theory.

3.8 Uniform acceleration
The Newtonian definition of a particle moving under uniform accelera-
tion is

du
dt

= constant.
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Table 3.1

Theory Position Velocity Time Acceleration

Newtonian Relative Relative Absolute Absolute

Special
relativity Relative Relative Relative Absolute

General
relativity Relative Relative Relative Relative

This turns out to be inappropriate in special relativity since it would imply
that u→ ∞ as t→ ∞, which we know is impossible. We therefore adopt a
different definition. Acceleration is said to be uniform in special relativ-
ity if it has the same value in any instantaneously co-moving frame, that
is, at each instant, the acceleration in an inertial frame travelling with the
same velocity as the particle has the same value. This is analogous to the
idea in Newtonian theory of motion under a constant force. For example,
a spaceship whose motor is set at a constant emission rate would be uni-
formly accelerated in this sense. Taking the velocity of the particle to be
u = u(t) relative to an inertial frame S, then at any instant in a co-moving
frame S′ it follows that the velocity relative to S′ is 0, that is, u′ = 0, v = u
and the acceleration is a constant, a, say, i.e. du′/dt′ = a. Using (3.20),
we find

du
dt

=
1
β3 a =

(
1− u2

c2

)3/2

a.

We can solve this differential equation by separating the variables

du
(1− u2/c2)3/2

= adt

and integrating both sides. Assuming that the particle starts from rest at
t = t0, we find

u
(1− u2/c2)1/2

= a(t− t0).

Solving for u, we get

u =
dx
dt

=
a(t− t0)

[1 + a2(t− t0)2/c2]1/2
.

Next, integrating with respect to t, and setting x = x0 at t = t0, produces

(x− x0) =
c
a
[c2 + a2(t− t0)2]1/2 −

c2

a
.

This can be rewritten in the form(
x− x0 + c2/a

)2
(c2/a)2

− (ct− ct0)
2

(c2/a)2
= 1, (3.23)
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ct
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Event
horizons

I

x

O

Fig. 3.8 Hyperbolic motions.

which is a hyperbola in (x, ct)-space. If, in particular, we take
x0 − c2/a = t0 = 0, then we obtain a family of hyperbolae for differ-
ent values of a (Fig. 3.8). These world-lines are known as hyperbolic
motions and, as we shall see in Chapter 25, they have significance in
cosmology. It can be shown that the radar distance between the world-
lines is a constant. Moreover, consider the regions I and II bounded by
the light rays passing through O, and a system of particles undergoing
hyperbolic motions as shown in Fig. 3.8 (in some cosmological models,
the particles would be galaxies). Then, remembering that light rays ema-
nating from any point in the diagram do so at 45◦, no particle in region I
can communicate with another particle in region II, and vice versa. The
light rays are called event horizons and act as barriers beyond which no
knowledge can ever be gained. We shall see that event horizons will play
an important role later in this book.

3.9 The twin paradox
The twin paradox is a form of the clock paradox which has caused the
most controversy – a controversy which raged on and off for over fifty
years. The paradox concerns two twins whom we shall call A and Ā. The
twin Ā takes off in a spaceship for a return trip to some distant star. The
assumption is that Ā is uniformly accelerated to some given velocity which
is retained until the star is reached, whereupon the motion is uniformly
reversed, as shown in Fig. 3.9. According to A, Ā’s clock records slowly
on the outward and return journeys and so, on return, Ā will be younger
than A. If the periods of acceleration are negligible compared with the
periods of uniform velocity, then could not Ā reverse the argument and
conclude that it is A who should appear to be the younger? This is the
basis of the paradox.

ct

x

Uniform reversal
of direction

Uniform acceleration away
from the Earth

Uniform velocity

Uniform deceleration

A

A

Fig. 3.9 The twin paradox.

ct

x

Fig. 3.10 Simultaneity lines of Ā on the
outward and return journeys.

The resolution rests on the fact that the accelerations, however brief,
have immediate and finite effects on Ā but not on A, who remains iner-
tial throughout. One striking way of seeing this effect is to draw in the
simultaneity lines of Ā for the periods of uniform velocity, as in Fig. 3.10.
Clearly, the period of uniform reversal has a marked effect on the simul-
taneity lines. Another way of looking at it is to see the effect that the
periods of acceleration have on shortening the length of the journey as
viewed by Ā. Let us be specific: we assume that the periods of acceleration
are T1, T2, and T3, and that, after the period T1, Ā has attained a speed
v =

√
3c/2. Then, from A’s viewpoint, during the period T1, Ā finds that

more than half the outward journey has been accomplished, in that Ā has
transferred to a frame in which the distance between the Earth and the
star is more than halved by length contraction. Thus, Ā accomplishes the
outward trip in about half the time which A ascribes to it, and the same
applies to the return trip. In fact, we could use the machinery of previous
sections to calculate the time elapsed in both the periods of uniform ac-
celeration and uniform velocity, and we would again reach the conclusion
that on return Āwill be younger thanA. As we have said before, this points
out the fact that, in special relativity, time is a route-dependent quantity.
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The fact that in Fig. 3.9 Ā’s world-line is longer than A’s, and yet takes
less time to travel, can appear at first counterintuitive. However, this can
be shown to be a consequence of the fact that the usual three-dimensional
Euclidean metric appears with negative signs in the Minkowski metric

ds2 = c2dt2 − dx2 − dy2 − dz2,

which means that moving in space reduces the space-time length s.

3.10 The Doppler effect
All kinds of waves appear lengthened when the source recedes from the
observer: sounds are deepened, light is reddened. Exactly the opposite
occurs when the source, instead, approaches the observer. We first of all
calculate the classical (non-relativistic) Doppler effect.

Consider a source of light emitting radiation whose wavelength in its
rest frame is λ0. Consider an observer S relative to whose frame the source
is in motion with radial velocity ur. Then, if two successive pulses are
emitted at times differing by dt′ as measured by S′, the distance these
pulses have to travel will differ by an amount urdt′ (see Fig. 3.11). Since
the pulses travel with speed c, it follows that they arrive at S with a time
difference

∆t = dt′ + urdt′/c,

giving

∆t/dt′ = 1 + ur/c.

Now, using the fundamental relationship between wavelength and veloc-
ity, set

λ = c∆t and λ0 = cdt′.

We then obtain the classical Doppler formula

S´

S´

ur

ur

urdt´

S

S

(a)

(b)

Fig. 3.11 The Doppler effect: (a) first pulse; (b) second pulse.
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λ/λ0 = 1 + ur/c . (3.24)

Let us now consider the special relativistic formula. Because of time di-
lation (see Fig. 3.3), the time interval between successive pulses according
to S is βdt′ (Fig. 3.12). Hence, by the same argument, the pulses arrive
at S with a time difference

∆t = βdt′ + urβdt′/c,

vΔt

S´

dt´βdt´

S

Fig. 3.12 The special relativistic Dop-
pler shift.

v
kT

S´

TβT

S

Fig. 3.13 The radial Doppler shift k.

and so this time we find that the special relativistic Doppler formula
is

λ

λ0
=

1 + ur/c

(1− v2/c2)1/2
. (3.25)

If the velocity of the source is purely radial, then ur = v and (3.25)
reduces to

λ

λ0
=
(

1 + v/c
1− v/c

)1/2

. (3.26)

This is the radial Doppler shift, and, if we set c = 1, we obtain (2.4),
which is the formula for the k-factor. Combining Figs. 2.7 and 3.12,
the radial Doppler shift is illustrated in Fig. 3.13, where dt′ is replaced
by T. From (3.25), we see that there is also a change in wavelength, even
when the radial velocity of the source is zero. For example, if the source
is moving in a circle about the origin of S with speed v (as measured by
an instantaneous co-moving frame), then the transverse Doppler shift
is given by

λ

λ0
=

1

(1− v2/c2)1/2
. (3.27)

This is a purely relativistic effect due to the time dilation of the moving
source. Experiments with revolving apparatus using the so-called Möss-
bauer effect have directly confirmed the transverse Doppler shift in full
agreement with the relativistic formula, thus providing another striking
verification of the phenomenon of time dilation.



Exercises 45

Exercises

3.1 (§3.1) Verify that, if x′ = x coshα − t sinhα, and t′ = −x sinhα
+ t coshα, then

x2 − t2 = x′2 − t′2.

3.2 (§3.1) S and S′ are in standard configuration with v = αc (0 < α < 1).
If a rod at rest in S′ makes an angle of 45◦ with Ox in S, and 30◦ with O′x
in S′, then find α.

3.3 (§3.1) Note from the previous question that perpendicular lines in
one frame need not be perpendicular in another frame. This shows that
there is no obvious meaning to the phrase ‘two inertial frames are parallel’,
unless their relative velocity is along a common axis, because the axes
of either frame need not appear rectangular in the other. Verify that the
Lorentz transformation between frames in standard configuration with
relative velocity v = (v, 0, 0) may be written in vector form as

r′ = r +
(v·r
v2

(β − 1)− βt
)
v, t′ = β

(
t− v·r

c2

)
,

where r = (x, y, z). The formulae are said to comprise the ‘Lorentz trans-
formation without relative rotation’. Justify this name by showing that the
formulae remain valid when the frames are not in standard configuration,
but are parallel in the sense that the same rotation must be applied to each
frame to bring the two into standard configuration (in which case, v is the
velocity of S′ relative to S, but v = (v, 0, 0) no longer applies).

3.4 (§3.1) Aberration refers to the fact that the direction of travel of a
light ray depends on the motion of the observer. Hence, if a telescope
observes a star at an inclination θ′ to the horizontal, then show that,
classically, the ‘true’ inclination θ of the star is related to θ′ by

tan θ′ =
sin θ

cos θ + v/c
,

where v is the velocity of the telescope relative to the star. Show that the
corresponding relativistic formula is

tan θ′ =
sin θ

β(cos θ + v/c)
.
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3.5 (§3.2) Show that special Lorentz transformations are associative, that
is, if O(v1) represents the transformation from observer S to S′, then

(O(v1)O(v2))O(v3) = O(v1) (O(v2)O(v3)) .

3.6 (§3.3) An athlete carrying a horizontal 8 m-long pole runs at a speed
v such that (1−v2/c2)−1/2 = 2 into a 4 m-long room and closes the door.
Explain, in the athlete’s frame, in which the room is only 2 m long, how
this is possible. [Hint: no effect travels faster than light.] Show that the
minimum length of the room for the performance of this trick is 8/(

√
3

+2)m. Draw a space-time diagram to indicate what is going on in the rest
frame of the athlete. [Hint: You may find it helpful to look up the “pole in
the barn paradox” on the web for a detailed discussion of this problem.]

3.7 (§3.5)A particle has velocity u = (u1, u2, u3) in S and u′ = (u′1, u
′
2, u

′
3)

in S′. Prove from the velocity transformation formulae that

c2 − u2 =
c2(c2 − u′2)(c2 − v2)

(c2 + u′1v)2
.

Deduce that, if the speed of a particle is less than c in any one inertial
frame, then it is less than c in every inertial frame.

3.8 (§3.7) Check the transformation formulae for the components of ac-
celeration (3.20)–(3.22).
Deduce that acceleration is an absolute quantity in special relativity.

3.9 (§3.8) A particle moves from rest at the origin of a frame S along the
x-axis, with constant acceleration α (as measured in an instantaneous rest
frame). Show that the equation of motion is

αx2 + 2c2x− αc2t2 = 0,

and prove that the light signals emitted after time t = c/α at the origin will
never reach the receding particle. A standard clock carried along with the
particle is set to read 0 at the beginning of the motion and reads τ at time
t in S. Using the clock hypothesis, prove the following relationships:

u
c
= tanh

ατ

c
,

(
1− u2

c2

)−1/2

= cosh
ατ

c
,

αt
c

= sinh
ατ

c
, x =

c2

α

(
cosh

ατ

c
− 1
)
,

where u is the speed of the particle. Show that, if T2 � c2/α2, then,
during an elapsed time T in the inertial system, the particle clock will
record approximately the time T(1− α2T2/6c2).

If α = 3g, find the difference in recorded times by the spaceship clock and
those of the inertial system
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(a) after 1 hour;
(b) after 10 days.

3.10 (§3.9) A space traveller Ā travels through space with uniform ac-
celeration g (to ensure maximum comfort). Find the distance covered in
twenty-two years of Ā’s time. [Hint: using years and light years are used
as time and distance units, respectively, then g = 1.03]. If on the other
hand, Ā describes a straight double path XYZYX, with acceleration g on
XY and ZY, and deceleration g on YZ and YX, for six years each, then
draw a space-time diagram as seen from the Earth and find by how much
the Earth would have aged in twenty-four years of Ā’s time.

3.11 (§3.10) Let the relative velocity between a source of light and an
observer be u, and establish the classical Doppler formulae for the
frequency shift:

source moving, observer at rest:v =
ν0

1 + u/c
,

observer moving, source at rest:v = (1− u/c)ν0,

where ν0 is the frequency in the rest frame of the source. What are the
corresponding relativistic results?

3.12 (§3.10) How fast would you need to drive towards a red traffic
light for the light to appear green? [Hint: λred ' 7 × 10−7m, λgreen ' 5
× 10−7m.]

Further reading

There are many fine texts around on special relativity. One is a book by
Rindler (1982). Another excellent book is written by a Southampton ex-
colleague, Les Marder (1968).

Marder, L. (1968). An Introduction to Relativity. Longman, London.

Rindler, W. (1982). Introduction to Special Relativity. Oxford University
Press, Oxford.





4The elements of relativistic
mechanics

4.1 Newtonian theory
Before discussing relativistic mechanics, we shall review some basic ideas
of Newtonian theory. We have met Newton’s first law in §2.4, and it states
that a body not acted upon by a force moves in a straight line with uniform
velocity. The second law describes what happens if an object changes its
velocity. In this case, something is causing it to change its velocity and
this something is called a force. For the moment, let us think of a force as
something tangible like a push or a pull. Now, we know from experience
that it is more difficult to push a more massive body and get it moving
than it is to push a less massive body. This resistance of a body to mo-
tion, or rather change in motion, is called its inertia. To every body, we
can ascribe, at least at one particular time, a number measuring its inertia,
which (again, for the moment) we shall call its mass m. If a body is mov-
ing with velocity v, we define its linear momentum p to be the product
of its mass and velocity. Then Newton’s second law (N2) states that the
force acting on a body is equal to the rate of change of linear momentum.
The third law (N3) is less general and talks about a restricted class of
forces called internal forces, namely, forces acting on a body due to the
influence of other bodies in a system. The third law states that the force
acting on a body due to the influence of the other bodies, the so-called
action, is equal and opposite to the force acting on these other bodies
due to the influence of the first body, the so-called reaction. We state the
two laws below.

N2: The rate of change of momentum of a body is equal to the force
acting on it, and is in the direction of the force.

N3: To every action there is an equal and opposite reaction.

Then, for a body of mass m with a force F acting on it, Newton’s second
law states

F =
dp
dt

=
d(mv)

dt
. (4.1)

Introducing Einstein’s Relativity. Second Edition. Ray d’Inverno and James Vickers, Oxford University Press.
© Ray d’Inverno and James Vickers (2022). DOI: 10.1093/oso/9780198862024.003.0004
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If, in particular, the mass is a constant, then we obtain the well-known
formula

F = m
dv
dt

= ma, (4.2)

where a is the acceleration.
Now, strictly speaking, in Newtonian theory, all observable quantities

should be defined in terms of their measurement. We have seen how an
observer equipped with a frame of reference, a ruler, and a clock can
map the events of the universe, and hence measure such quantities as po-
sition, velocity, and acceleration. However, Newton’s laws introduce the
new concepts of force and mass, and so we should give a prescription for
their measurement. Unfortunately, any experiment designed to measure
these quantities involves Newton’s laws themselves in its interpretation.
Thus, Newtonian mechanics has the rather unexpected property that the
operational definitions of force and mass which are required to make the
laws physically significant are actually contained in the laws themselves.

To make this more precise, let us discuss how we might use the laws
to measure the mass of a body. We consider two bodies isolated from all
other influences other, than the force acting on one due to the influence
of the other, and vice versa (Fig. 4.1). Since the masses are assumed to
be constant, we have, by Newton’s second law in the form (4.2),

F1 = m1a1 and F2 = m2a2.

In addition, by Newton’s third law, F1 = −F2. Hence, we have

m1a1 = −m2a2. (4.3)

Therefore, if we take one standard body and define it to have unit mass,
then we can find the mass of the other body, by using (4.3). We can keep
doing this with any other body and in this way we can calibrate masses.
In fact, this method is commonly used for comparing the masses of el-
ementary particles. Of course, in practice, we cannot remove all other
influences, but it may be possible to keep them almost constant and so
neglect them.

F1 F2

m1 m2

Fig. 4.1 Measuring mass by mutually
induced accelerations.

We have described how to use Newton’s laws to measure mass. How
do we measure force? One approach is simply to use Newton’s second
law, work out ma for a body, and then read off from the law the force
acting on m. This is consistent, although rather circular, especially since
a force has independent properties of its own. For example, Newton has
provided us with a way for working out the force in the case of gravitation
in his universal law of gravitation (UG).

UG:Two particles attract each other with a force directly proportional
to their masses and inversely proportional to the distance between
them.
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If we denote the constant of proportionality by G (with value approxi-
mately 6.67 × 10−11 m3Kg−1s−2 in SI units), the so-called Newtonian
constant, then the law is (see Fig. 4.2)

F = −Gm1m2

r2
r̂, (4.4)

where a hat denotes a unit vector. There are other force laws which can
be stated separately. Again, another independent property which holds for
certain forces is contained in Newton’s third law. The standard approach
to defining force is to consider it as being fundamental, in which case
force laws can be stated separately or they can be worked out from other
considerations. We postpone a more detailed critique of Newton’s laws
until Part C of the book.

r

F

m1 m2

Fig. 4.2 Newton’s universal law of grav-
itation.

Special relativity is concerned with the behaviour of material bodies
and light rays in the absence of gravitation. So we shall also postpone
a detailed consideration of gravitation until we discuss general relativity in
Part C of the book. However, since we have statedNewton’s universal laws
of gravitation in (4.4), we should, for completeness, include a statement
of Newtonian gravitation for a distribution of matter. A distribution of
matter of mass density ρ = ρ(x, y, z, t) gives rise to a gravitational potential
ϕ which satisfies Poisson’s equation

∇2ϕ = 4πGρ, (4.5)

at points inside the distribution, where the Laplacian operator∇2 is given
in Cartesian coordinates by

∇2 =
∂2

∂x2
+
∂2

∂y2
+
∂2

∂z2
.

At points external to the distribution, this reduces toLaplace’s equation

∇2ϕ = 0. (4.6)

We assume that the reader is familiar with this background to Newtonian
theory.

4.2 Isolated systems of particles
in Newtonian mechanics

In this section, we shall, for completeness, derive the conservation of lin-
ear momentum in Newtonian mechanics for a system of n particles. Let
the ith particle have constant mass mi and position vector ri relative to
some arbitrary origin. Then the ith particle possesses linear momentum
pi defined by pi = miṙi, where the dot denotes differentiation with respect
to time t. If Fi is the total force on mi, then, by Newton’s second law, we
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have

Fi = ṗi = mir̈i. (4.7)

The total force Fi on the ith particle can be divided into an external force
Fext
i due to any external fields present and to the resultant of the internal

forces. We write

Fi = Fext
i +

n∑
j=1

Fij,

where Fij is the force on the ith particle due to the jth particle and where,
for convenience, we define Fii = 0. If we sum over i in (4.7), we find

d
dt

n∑
i=1

pi =
n∑
i=1

dpi
dt

=
n∑
i=1

Fext
i +

n∑
i,j=1

Fij.

Using Newton’s third law, namely, Fij = −Fji, then the last term is zero
and we obtain Ṗ = Fext, where P =

∑n
i=1 Pi is termed the total linear

momentum of the system, and Fext =
∑n

i=1 F
ext
i is the total external

force on the system. If, in particular, the system of particles is isolated,
then

Fext = 0 ⇒ P = C,

where C is a constant vector. This leads to the law of the conservation
of linear momentum of the system, namely,

Pinitial = Pfinal. (4.8)

4.3 Relativistic mass
The transition from Newtonian to relativistic mechanics is not, in fact,
completely straightforward, because it involves at some point or another
the introduction of ad hoc assumptions about the behaviour of particles
in relativistic situations. We shall adopt the approach of trying to keep
as close to the non-relativistic definition of energy and momentum as we
can. This leads to results which in the endmust be confronted with exper-
iment. The ultimate justification of the formulae we shall derive resides
in the fact that they have been repeatedly confirmed in numerous ex-
periments, for example in particle physics. We shall only derive them in
a simple case and state that the arguments can be extended to a more
general situation.

It would seem plausible that, since length and time measurements
are dependent on the observer, then mass should also be an observer-
dependent quantity. We thus assume that a particle which is moving with
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u
m(u)

U
m(U ) m(U )

M(U )
U

U

m0

M0

Before

After

in S

Before

After

in S´

Fig. 4.3 The inelastic collision in the frames S and S′.

a velocity u relative to an inertial observer has a mass, which we shall term
its relativistic mass, which is some function of u, that is,

m = m(u), (4.9)

where the problem is to find the explicit dependence of m on u. We re-
strict attention tomotion along a straight line and consider the special case
of two equal particles colliding inelastically (in which case they stick to-
gether), and look at the collision from the point of view of two inertial
observers S and S′ (see Fig. 4.3). Let one of the particles be at rest in the
frame S and the other possess a velocity u before they collide. We then
assume that they coalesce and that the combined object moves with ve-
locity U. The masses of the two particles are respectively m(0) and m(u)
by (4.9). We denotem(0) bym0 and term it the rest mass of the particle.
In addition, we denote the mass of the combined object by M(U). If we
take S′ to be the centre-of-mass frame, then it should be clear that, rel-
ative to S′, the two equal particles collide with equal and opposite speeds,
leaving the combined object with massM0 at rest. It follows that S′ must
have velocity U relative to S.

We shall assume both conservation of relativistic mass and conservation
of linear momentum and see what this leads to. In the frame S, we obtain

m(u) +m0 = M(U), m(u)u + 0 = M(U)U,

from which we get, eliminatingM(U),

m(u) = m0

(
U

u−U

)
. (4.10)

The left-hand particle has a velocity U relative to S′, which in turn has a
velocity U relative to S. Hence, using the composition of velocities law,
we can compose these two velocities, and the resultant velocity must be
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identical with the velocity u of the left-hand particle in S. Thus, by (2.6)
in non-relativistic units,

u =
2U

(1 +U2/c2)
.

Solving for U in terms of u, we obtain the quadratic

U2 −
(

2c2

u

)
U + c2 = 0,

which has roots

U =
c2

u
±

[(
c2

u

)2

− c2
]1/2

=
c2

u

[
1±

(
1− u2

c2

)1/2
]
.

In the limit u → 0, this must produce a finite result, so we must take the
negative sign (check), and, substituting in (4.10), we find finally

m(u) = γm0, (4.11)

where

γ(u) := (1− u2/c2)
−1/2

. (4.12)

This is the basic result which relates the relativistic mass of a moving par-
ticle to its rest mass. Note that this is the same in structure as the time
dilation formula (3.15), i.e. T = βT0, where β(v) = (1− v2/c2)

−1/2
,

except that time dilation involves the factor β(v), which depends on the
velocity v of the frame S′ relative to S, whereas γ(u) depends on the ve-
locity u of the particle relative to S. If we plot m against u, we see that
relativistic mass increases without bound as u approaches c (Fig. 4.4).

It is possible to extend the above argument to establish (4.11) in more
general situations. However, we emphasize that it is not possible to derive
the result a priori, but only with the help of extra assumptions. How-
ever it is produced, the only real test of the validity of the result is in the
experimental arena and here it has been extensively confirmed.

m(u)

m0

c u

Fig. 4.4 Relativistic mass as a
function of velocity.

4.4 Relativistic energy
Let us expand the expression for the relativistic mass, namely,

m(u) = γm0 = m0(1− u2/c2)−1/2,

in the case when the velocity u is small compared with the speed of light
c. Then we get

m(u) = m0 +
1
c2
( 1
2m0u2) +O

(
u4

c4

)
, (4.13)
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m0

m0

v1 v1

v2

m0

After

Before

m0

v2

Fig. 4.5 Two colliding particles.

where the final term stands for all terms of order (u/c)4 and higher. If
we multiply both sides by c2, then, apart from the constant m0c2, the
right-hand side is to first approximation the classical kinetic energy (k.e.),
that is,

mc2 = m0c2 + 1
2m0u2 + · · · ' constant + k.e. (4.14)

We have seen that relativistic mass contains within it the expression for
classical kinetic energy. In fact, it can be shown that the conservation of
relativistic mass leads to the conservation of kinetic energy in the New-
tonian approximation. As a simple example, consider the collision of two
particles with rest mass m0 and m̄0, initial velocities v1 and v̄1, and final
velocities v2 and v̄2, respectively (Fig. 4.5).

Conservation of relativistic mass gives

m0(1− v21/c
2)

−1/2
+ m̄0(1− v̄21/c

2)
−1/2

=m0(1− v22/c
2)

−1/2

+ m̄0(1− v̄22/c
2)

−1/2
.

(4.15)

If we now assume that v1, v̄1, v2, and v̄2 are all small compared with c,
then we find (exercise) that the leading terms in the expansion of (4.15)
give

1
2m0v21 + 1

2 m̄0v̄21 = 1
2m0v22 + 1

2 m̄0v̄22, (4.16)

which is the usual conservation of energy equation. Thus, in this sense,
conservation of relativistic mass includes within it conservation of energy.
Now, since energy is only defined up to the addition of a constant, the
result (4.14) suggest that we regard the energy E of a particle as given by

E = mc2. (4.17)

This is one of the most famous equations in physics. However, it is not
just a mathematical relationship between two different quantities, namely
energy and mass, but rather states that energy and mass are equivalent
concepts. Because of the arbitrariness in the actual value of E, a better
way of stating the relationship is to say that a change in energy is equal to
a change in relativistic mass, namely,

∆E = ∆(mc2).
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Using conventional units, c2 is a large number and indicates that a small
change in mass is equivalent to an enormous change in energy. As is well
known, this relationship and the deep implications it carries with it for
peace and war, have been amply verified. For obvious reasons, the term
m0c2 is termed the rest energy of the particle. Finally, we point out that
conservation of linear momentum, using relativistic mass, leads to the
usual conservation law in the Newtonian approximation. For example
(exercise), the collision problem considered above leads to the usual
conservation of linear momentum equation for slow-moving particles:

m0v1 + m̄0v̄1 = m0v2 + m̄0v̄2. (4.18)

Extending these ideas to three spatial dimensions, then a particle mov-
ing with velocity u relative to an inertial frame S has relativistic mass m,
energy E, and linear momentum p given by

m = γm0, E = mc2, p = mu. (4.19)

Some straightforward algebra (exercise) reveals that

(E/c)2 − p2x − p2y − p2z = (m0c)
2, (4.20)

where m0c2 is an invariant, since it is the same for all inertial observers. If
we compare this with the invariant (3.12), i.e.

(ct)2 − x2 − y2 − z2 = s2,

then it suggests that the quantities (E/c, px, py, pz) transform under a
Lorentz transformation in the same way as the quantities (ct, x, y, z). We
shall see in Part C that the language of tensors provides a better frame-
work for discussing transformation laws. For themoment, we shall assume
that energy and momentum transform in an identical manner, and quote
the results. Thus, in a frame S′ moving in standard configuration with
velocity v relative to S, the transformation equations are (see (3.10))

E′ = β(E− vpx), p′x = β(px − vE/c2), p′y = py, p′z = pz. (4.21)

The inverse transformations are obtained in the usual way, namely, by
interchanging primes and unprimes and replacing v by −v, which gives

E = β(E′ + vp′x), px = β(p′x + vE
′/c2), py = p′y, pz = p′z. (4.22)

If, in particular, we take S′ to be the instantaneous rest frame of the
particle, then p′ = 0 and E′ = E0 = m0c2. Substituting in (4.22), we
find
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E = βE′ =
m0c2

(1− v2/c2)1/2
= mc2,

where m = m0(1− v2/c2)−1/2 and p =
(
βvE′/c2, 0, 0

)
= (mv, 0, 0) = mv,

which are precisely the values of the energy, mass, andmomentum arrived
at in (4.19) with u replaced by v.

4.5 Photons
At the end of the 19th century, there was considerable conflict between
theory and experiment in the investigation of radiation in enclosed vol-
umes. In an attempt to resolve the difficulties, Max Planck proposed that
light and other electromagnetic radiation consisted of individual ‘packets’
of energy, which he called quanta. He suggested that the energy E of each
quantum was to depend on its frequency ν, and proposed the simple law,
called Planck’s hypothesis,

E = hν, (4.23)

where h is a universal constant known now as Planck’s constant. The
idea of the quantum was developed further by Einstein, especially in at-
tempting to explain the photoelectric effect. The effect is to do with the
ejection of electrons from a metal surface by incident light (especially
ultraviolet) and is strongly in support of Planck’s quantum hypothesis.
Nowadays, the quantum theory is well established and applications of it
to explain properties of molecules, atoms, and fundamental particles are
at the heart of modern physics. Theories of light now give it a dual wave–
particle nature. Some properties, such as diffraction and interference, are
wavelike in nature, while the photoelectric effect and other cases of the
interaction of light and atoms are best described on a particle basis.

The particle description of light consists in treating it as a stream of
quanta called photons. Using equation (4.19) and substituting in the
speed of light, u = c, we find

m0 = γ−1m = (1− u2/c2)
1/2
m = 0, (4.24)

that is, the rest mass of a photon must be zero! This is not so bizarre as it
first seems, since no inertial observer ever sees a photon at rest – its speed
is always c – and so the rest mass of a photon is merely a notional quantity.
If we let n̂ be a unit vector denoting the direction of travel of the photon,
then

p = (px, py, pz) = pn̂,

and (4.20) becomes

(E/c)2 − p2 = 0.
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Taking square roots (and remembering c and p are positive), we find that
the energy E of a photon is related to the magnitude p of its momentum by

E = pc. (4.25)

Combining these results with Planck’s hypothesis E = hν, we obtain
the following formulae for the energy E, and linear momentum p of the
photon:

E = hν, p = (hν/c)n̂. (4.26)

It is gratifying to discover that special relativity, which was born to recon-
cile conflicts in the kinematical properties of light andmatter, also includes
their mechanical properties in a single all-inclusive system.

We finish this section with an argument which shows that Planck’s hy-
pothesis can be derived directly within the framework of special relativity.
We have already seen in the last chapter that the radial Doppler effect for
a moving source is given by (3.26), namely

λ

λ0
=
(

1 + v/c
1− v/c

)1/2

,

where λ0 is the wavelength in the frame of the source and λ is the wave-
length in the frame of the observer. We write this result, instead, in terms
of frequency, using the fundamental relationships c = λν and c = λ0ν0,
to obtain

ν0
ν

==
(

1 + v/c
1− v/c

)1/2

. (4.27)

Now, suppose that the source emits a light flash of total energy E0. Let
us use (4.22) to find the energy received in the frame of the observer S.
Since, recalling Fig. 3.11, the light flash is travelling along the negative
x-direction of both frames, (4.25) leads to the result p′x = −E0/c, with the
other primed components of momentum zero. Substituting in the first
equation of (4.22), namely,

E = β(E′ + vp′x),

we get

E = β(E0 − vE0/c) =
E0(1− v/c)

(1− v2/c2)1/2
= E0

(
1− v/c
1 + v/c

)1/2

,

or

E0

E
=
(

1 + v/c
1− v/c

)1/2

. (4.28)
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Combining this with (4.27), we obtain

E0

ν0
=
E
ν
.

Since this relationship holds for any pair of inertial observers, it follows
that the ratio must be a universal constant, which we call h. Thus, we have
derived Planck’s hypothesis, E = hν.

We leave our considerations of special relativity at this point and
turn our attention to the formalism of tensors. This will enable us to
reformulate special relativity in a way which will aid our transition to gen-
eral relativity, that is, to a theory of gravitation consistent with special
relativity.

Exercises

4.1 (§4.1) Discuss the possibility of using force rather than mass as the
basic quantity, taking, for example, a standard weight at a given latitude
as the unit of force. How should one then define and measure the mass
of a body?

4.2 (§4.3) Show that, in the inelastic collision considered in §4.3, the rest
mass of the combined object is greater than the sum of the original rest
masses. Where does this increase derive from?

4.3 (§4.3) A particle of rest mass m̄0 and speed u strikes a stationary
particle of rest mass m0. If the collision is perfectly inelastic, then find the
rest mass of the composite particle.

4.4 (§4.4)
(i) Establish the transition from (4.15) to (4.16).
(ii) Establish the Newtonian approximation equation (4.18).

4.5 (§4.4) Show that (4.19) leads to (4.20). Deduce (4.21).

4.6 (§4.4) Newton’s second law for a particle of relativistic mass m is

F =
d
dt
(mu).

Define the work done dE in moving the particle from r to r + dr. Show
that the rate of doing work is given by

dE
dt

=
d(mu)

dt
·u.

Use the definition of relativistic mass to obtain the result

dE
dt

=
m0

(1− u2/c2)3/2
u
du
dt

.
[
Hint: u·du

dt
= u

du
dt

.
]
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Express this last result in terms of dm/dt and integrate to obtain

E = mc2 + constant.

4.7 (§4.4) Two particles whose rest masses are m1 and m2, move along a
straight line with velocities u1 and u2, respectively, measured in the same
direction. They collide inelastically to form a new particle. Show that the
rest mass and velocity of the new particle are m3 and u3, respectively,
where

m2
3 = m2

1 +m2
2 + 2m1m2γ1γ2(1− u1u2/c2),

u3 =
m1γ1u1 +m2γ2u2
m1γ1 +m2γ2

,

with

γ1 = (1− u21/c
2)−1/2, γ2 = (1− u22/c

2)−1/2.

4.8 (§4.4) A particle of rest mass m0, energy e0, and momentum p0 suf-
fers a head-on elastic collision (i.e. masses of particles unaltered) with a
stationary mass M. In the collision, M is knocked straight forward, with
energy E and momentum P, leaving the first particle with energy e and
momentum p.
(i) Show that

p + P = p0,

e + E = e0 +Mc2.

(ii) Squaring the above equations and using (4.20) show that

eE
c2

= pP + e0M,

(iii) Squaring the above equation and again using (4.20) show that

m2c2P2 +M2c2p2 = 2pPeoM +M2p20c
2.

(iv) Letting P = p0 − p in the above show that

p =
p0(m2c2 −M2c2)

2Me0 +M2c2 +m2
0c2

,

and

P =
2p0M(e0 +Mc2)

2Me0 +M2c2 +m2
0c2

.
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What do these formulae become in the classical limit?

4.9 (§4.4) Assume that the formulae (4.19) holds for a tachyon, which
travels with speed v > c. Taking the energy to be a measurable quantity,
then deduce that the rest mass of a tachyon is imaginary and define the
real quantity μ0 by m0 = iμ0.

If the tachyon moves along the x-axis and if we assume that the
x-component of the momentum is a real positive quantity, then deduce

m =
v
|v|
αμ0, p = μ0|v|α, E = mc2,

where α = (v2/c2 − 1)−1/2.

Plot E/m0c2 against v/c for both tachyons and subluminal particles.

4.10 (§4.5) Two light rays in the xy-plane of an inertial observer, making
angles θ and −θ, respectively, with the positive x-axis, collide at the ori-
gin. What is the velocity v of the inertial observer (travelling in standard
configuration) who sees the light rays collide head on?

4.11 (§4.5)An atom of rest massm0 is at rest in a laboratory and absorbs a
photon of frequency ν. Find the velocity andmass of the recoiling particle.

4.12 (§4.5) An atom at rest in a laboratory emits a photon and recoils. If
its initial mass is m0 and it loses the rest energy e in the emission, prove
that the frequency of the emitted photon is given by

ν =
e
h
(1− e/2m0c2).

Further reading

Again, the main reference is Rindler (1982), but the book by Dixon
(1978) and also the one by Taylor and Wheeler (1966) give alternative
approaches.

Dixon, W. G. (1978). Special Relativity, the Foundation of Modern Physics.
Cambridge University Press, Cambridge.

Rindler, W. (1982). Introduction to Special Relativity. Oxford University
Press, Oxford.

Taylor, E. F., and Wheeler, J. A. (1966). Spacetime Physics. Freeman, San
Francisco, CA.
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5Tensor algebra

5.1 Introduction
To work effectively in Newtonian theory, one really needs the language of
vectors. This language, first of all, is more succinct, since it summarizes
a set of three equations in one. Moreover, the formalism of vectors helps
to solve certain problems more readily, and, most important of all, the
language reveals structure and thereby offers insight. In exactly the same
way, in relativity theory, one needs the language of tensors. Again, the
language helps to summarize sets of equations succinctly and to solve
problems more readily, and it reveals structure in the equations. This part
of the book is devoted to learning the formalism of tensors, which is a pre
condition for the rest of the book.

The approach we adopt is to concentrate on the technique of ten-
sors without fully taking into account the deeper geometrical significance
behind the theory. We shall be concerned more with what you do
with tensors rather than what tensors actually are. There are two dis-
tinct approaches to the teaching of tensors: the abstract or index-free
(coordinate-free) approach and the more common approach in relativity
text books, which uses indices. The main advantage of the more abstract
approach is that it is based on the existence of an underlying geometrical
object defined on the whole manifold and thus offers deeper geometrical
insight, particularly when it comes to looking at global structure. How-
ever, it has a number of disadvantages. First of all, it requires much more
of a mathematical background, which in turn takes time to develop. The
other disadvantage is that the tensorial objects used in relativity have ob-
jects with large numbers of indices and complicated contractions which
are hard to write down in an index-free fashion. Finally, for all its elegance,
when one wants to do a real calculation with tensors, as one frequently
needs to, then recourse often has to be made to using a particular coor-
dinate system adapted to the problem in hand. We shall adopt the more
conventional index approach based on how tensors transform under a
change of coordinate system, because it will prove faster and more practi-
cal. In some ways, it also accords more with Einstein’s ideas that the laws
of physics should not depend on how one constructs the local coordinate
system. Furthermore, it also provides a quick route to the geometrical and
global ‘abstract index’ approach of Penrose (1968) in which indices are
used simply to indicate the type of a tensor and are not related to the use

Introducing Einstein’s Relativity. Second Edition. Ray d’Inverno and James Vickers, Oxford University Press.
© Ray d’Inverno and James Vickers (2022). DOI: 10.1093/oso/9780198862024.003.0005
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of a particular coordinate system. In any case, we advise those who wish
to take their study of the subject further to look at a more geometrical
approach at the first opportunity.

We repeat that the exercises are seen as integral to this part of
the book and should not be omitted.

5.2 Manifolds and coordinates
We shall start by working with tensors defined in n dimensions since, and
it is part of the power of the formalism, there is little extra effort involved.
A tensor is an object defined on a geometric entity called a (differential)
manifold. We shall not define a manifold precisely because it would in-
volve us in too much of a digression. But, in simple terms, a manifold
is something which ‘locally’ looks like a bit of n-dimensional Euclidean
space Rn. For example, compare a 2-sphere S2 with the Euclidean plane
R2. They are clearly different. But a small bit of S2 looks very much like a
small bit ofR2 (if we neglect metrical properties). The fact that S2 is ‘com-
pact’, i.e. in some sense finite, whereas R2 ‘goes off to infinity’ is a global
property rather than a local property. We shall not say anything precise
about global properties – the topology of the manifold – although the is-
sue will surface when we start to look carefully at solutions of Einstein’s
equations in general relativity.

We shall simply take an n-dimensional manifoldM to be a set of points
such that each point possesses a set of n coordinates (x1, x2, . . . , xn)
where each coordinate ranges over a subset of the reals, which may, in
particular, range from −∞ to +∞. The reason why the coordinates are
written as superscripts rather than subscripts will become clear later. Now
the key thing about a manifold is that it may not be possible to cover
the whole manifold by one non-degenerate coordinate system, namely,
one which ascribes a unique set of n coordinate numbers to each point.
Sometimes it is simply convenient to use coordinate systems with de-
generate points. For example, plane polar coordinates (R,ϕ) in the plane
have a degeneracy at the origin because ϕ is indeterminate there (Fig. 5.1).
However, here we could avoid the degeneracy at the origin by usingCarte-
sian coordinates. But in other circumstances we have no choice in the
matter. For example, it can be shown that there is no single coordinate
system which covers the whole of a 2-sphere S2 without degeneracy. The
smallest number needed is two, which is shown schematically in Fig. 5.2.
We therefore work with coordinate systems which cover only a portion of
the manifold and which are called coordinate patches. Figure 5.3 in-
dicates this schematically. A set of coordinate patches which covers the
whole manifold is called an atlas. The theory of manifolds tells us how
to get from one coordinate patch to another by a differentiable coordi-
nate transformation in the overlap region. The behaviour of geometric
quantities under coordinate transformations lies at the heart of tensor
calculus.

Half-lines
φ = constant

Circles
R = constant

φ indeterminate
at O

Fig. 5.1 Plane polar coordinate curves.
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First non-degenerate
coordinate system
covering North Pole

Second non-degenerate
coordinate system
covering South Pole

Overlap of coordinate
systems at equator

Fig. 5.2 Two non-degenerate coordinate systems covering an S2.

Coordinate patch

Coordinate patch

Overlap of
coordinate patches Manifold M

Fig. 5.3 Overlapping coordinate patches in a manifold.

5.3 Curves and surfaces
Given a manifold, we shall be concerned with points in it and subsets
of points which define curves and surfaces of different dimensions. We
shall frequently define these curves and surfaces parametrically. Thus
(in exactly the same way as is done in Euclidean 2- and 3-space), since a
curve has one degree of freedom, it depends on one parameter and so we
define a curve by the parametric equations

xa = xa(u), (a = 1, 2, . . . , n), (5.1)

where u is a parameter and x1(u), x2(u), . . . , xn(u) denote n functions of
u. Similarly, since a subspace or surface of m dimensions (m < n) has
m degrees of freedom,, it depends on m parameters and it is given by the
parametric equations
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xa = xa(u1, u2, . . . , um), (a = 1, 2, . . . , n). (5.2)

If, in particular, m = n – 1, the subspace is called a hypersurface. In this
case,

xa = xa(u1, u2, . . . , un−1), (a = 1, 2, . . . , n)

and the n−1 parameters can be eliminated from these n equations to give
one equation connecting the coordinates, i.e.

f(x1, x2, . . . , xn) = 0. (5.3)

From a different but equivalent point of view, a point in a general posi-
tion in a manifold has n degrees of freedom. If it is restricted to lie in a
hypersurface, an (n− 1)-subspace, then its coordinates must satisfy one
constraint, namely,

f(x1, x2, . . . , xn) = 0,

which is the same as equation (5.3). Similarly, points in anm-dimensional
subspace (m < n) must satisfy n−m constraints

f 1(x1, x2, . . . , xn) = 0,

f 2(x1, x2, . . . , xn) = 0,

...

f n−m(x1, x2, . . . , xn) = 0,


(5.4)

which is an alternative to the parametric representation (5.2).

5.4 Transformation of coordinates
As we have seen, a point in a manifold can be covered by many differ-
ent coordinate patches. The essential point about tensor calculus is that,
when we make a statement about tensors, we do not wish it simply to hold
just for one coordinate system but rather for all coordinate systems. Con-
sequently, we need to find out how quantities behave when we go from
one coordinate system to another one. We therefore consider the change
of coordinates xa → x′a given by the n equations

x′a = f a(x1, x2, . . . , xn) (a = 1, 2, . . . , n), (5.5)

where the f’s are single-valued continuous differentiable functions, at least
for certain ranges of their arguments. Hence, at this stage, we view a co-
ordinate transformation passively as assigning to a point of the manifold
whose old coordinates are (x1, x2, . . . , xn) the new primed coordinates
(x′1, x′2, . . . , x′n).We canwrite (5.5)more succinctly as x′a = f a(x), where,



Transformation of coordinates 69

from now on, lower-case Latin indices are assumed to run from 1 to n,
the dimension of the manifold, and the f a are all functions of the old un-
primed coordinates. Furthermore, we can write the equation more simply
still as

x′a = x′a(x), (5.6)

where x′a(x) denote the n functions f a(x). Notation plays an important
role in tensor calculus, and equation (5.6) is clearly easier to write than
equation (5.5).

We next contemplate differentiating (5.6) with respect to each of the
coordinates xb. This produces the n × n transformation matrix of
coefficients:

[
∂x′a

∂xb

]
=



∂x′1

∂x1
∂x′1

∂x2
· · · ∂x′1

∂xn
∂x′2

∂x1
∂x′2

∂x2
· · · ∂x′2

∂xn
...

∂x′n

∂x1
∂x′n

∂x2
· · · ∂x′n

∂xn


. (5.7)

The determinant J′ of this matrix is called the Jacobian of the transfor-
mation:

J ′ =
∣∣∣∣∂x′a∂xb

∣∣∣∣ . (5.8)

We shall assume that this is non-zero for some range of the coordinates
xb. Then it follows from the inverse function theorem that we can (in
principle) solve equation (5.6) uniquely for the old coordinates xa and
obtain the inverse transformation equations

xa = xa(x′). (5.9)

It follows from the product rule for determinants that, if we define the
Jacobian of the inverse transformation by

J =
∣∣∣∣ ∂xa∂x′b

∣∣∣∣ ,
then J = 1/J ′.

It is convenient to assume that the functions x′a = x′a(x) and xa = xa(x′)
are not just differentiable but smooth, which means that we can dif-
ferentiate the functions as often as we wish. A manifold for which the
transformation functions (5.6) and (5.9) are smooth is called a smooth
manifold and, from now onwards, unless we say otherwise, we will
assume that we are working on a smooth manifold.
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In three dimensions, the equation of a surface is given by z = f(x, y);
then its total differential is defined to be

dz =
∂f
∂x

dx +
∂f
∂y

dy.

Then, in an exactly analogous manner, starting from (5.6), we define the
total differential

dx′a =
∂x′a

∂x1
dx1 +

∂x′a

∂x2
dx2 + · · · + ∂x′a

∂xn
dxn,

for each a running from 1 to n. We can write this more economically by
introducing an explicit summation sign:

dx′a =
n∑
b=1

∂x′a

∂xb
dxb. (5.10)

This can be written more economically still by introducing the Einstein
summation convention: whenever a literal index is repeated, it is un-
derstood to imply a summation over the index from 1 to n, the dimension
of the manifold. Hence, we can write (5.10) simply as

dx′a =
∂x′a

∂xb
dxb. (5.11)

The index a occurring on each side of this equation is said to be free and
may take on separately any value from 1 to n. The index b on the right-
hand side is repeated and hence there is an implied summation from
1 to n. A repeated index is called bound or dummy because it can be
replaced by any other index not already in use. For example,

∂x′a

∂xb
dxb =

∂x′a

∂xc
dxc,

because c was not already in use in the expression. We define the
Kronecker delta δab to be a quantity which is either 0 or 1 according to

δab =

{
1 if a = b,
0 if a 6= b.

(5.12)

It therefore follows directly from the definition of partial differentiation
(check) that

∂x′a

∂x′b
=
∂xa

∂xb
= δab . (5.13)
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5.5 Contravariant tensors
The approach we are going to adopt is to define a geometrical quantity in
terms of its transformation properties under a coordinate transformation
(5.6). We shall start with a prototype and then give the general definition.

Let P be a point on the manifold and let γ(u) be a differentiable curve
parameterized by u such that P = γ(0). Now let (x1, . . . , xn) be a local
coordinate system in a neighbourhood of P; then we can write the curve
γ in these coordinates as being given by

xa = xa(u).

Then the derivative at u = 0 defines a tangent vector to the curve at P
(Fig. 5.4) which in these coordinates is given by

T a =
dxa

du
(0). (5.14)

P
xa = xa(u)

P

dxa

du

Fig. 5.4 The tangent vector to the curve
xa = xa(u) at P.

Now suppose we introduce a new coordinate system (x′1, . . . , x′n) in a
neighbourhood of P and look at the same curve γ in the x′a coordinate
system. Then using (5.6) we may write the curve γ(u) in this coordinate
system as

x′a(u) = x′a(x(u)). (5.15)

In terms of these coordinates, the tangent vector at P is given by

T ′a =
dx′a

du
(0). (5.16)

Then, by the function of a function rule for derivatives, we have

T ′a =
[
∂x′a

∂xb

]
P

[
dxb

du
(0)
]
=
[
∂x′a

∂xb

]
P
T b. (5.17)

Remember that the repeated index b is summed over. Thus, the compo-
nents of the tangent vector T ′a in the new coordinate system are nothing
but the components in the old coordinates multiplied by the n× n trans-
formation matrix [∂x′a/∂xb]P. We will take (5.17) as our prototype for
how a vector transforms at a point P and use it in future as our definition.

We now define a contravariant vector or contravariant tensor of
rank (order) 1 at P as a set of quantities, written Xa in the xa-coordinate
system, which transforms under a change of coordinates according to

X ′a =
∂x′a

∂xb
X b, (5.18)

where the transformation matrix is evaluated at P. The tangent vector
to a curve is just a special case of (5.18). It is important to distinguish
between the actual invariant geometric object like the tangent vector and
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its representation in a particular coordinate system. This is given by the
n numbers [dxa/du]P in the xa-coordinate system and the (in general)
different numbers [dx′a/du]P in the x′a-coordinate system. When we want
to talk about the tangent vector to the curve without referring to a specific
coordinate system, we will write it as γ̇(0) and we depict it with an arrow
in Fig. 5.5.

P
R

P

dxa

xa = xa(u)

du

R

dxa

du

Fig. 5.5 The tangent vector at two points
of a curve xa = xa(u).

We now generalize the definition (5.18) to obtain contravariant ten-
sors of higher rank or order. Thus, a contravariant tensor of rank 2
is a set of n2 quantities associated with a point P, denoted by Xab in the
xa-coordinate system, which transform according to

X′ab =
∂x′a

∂xc
∂x′b

∂xd
Xcd. (5.19)

The quantities X′ab are the components in the x′a-coordinate system,
the transformation matrices are evaluated at P, and the law involves two
dummy indices c and d. An example of such a quantity is provided by
the so-called tensor productYaZb, of two contravariant vectorsYa and Zb

(exercise). The definition of third- and higher-order contravariant tensors
proceeds in an analogous manner. An important case is a tensor of zero
rank, called a scalar or scalar invariant ϕ, which transforms according
to

ϕ′ = ϕ. (5.20)

at P.

5.6 Covariant tensors
In ordinary vector calculus in R3, there are two obvious geometric con-
structions which give rise to a vector. The first is taking the tangent to a
curve and the other is taking the gradient of a scalar function defining a
surface. The first provided our prototype for a contravariant vector while
the second will provide us with the prototype for a covariant vector. Let
ϕ be a differentiable scalar (real-valued) function on the manifold; then,
at a general point P in the manifold, ϕ(P) = k, where k is a real number.
Now, in R3 in standard Euclidean coordinates (x1, x2, x3), the equation
ϕ(xa) = k defines a surface S and

gradϕ =
(
∂ϕ

∂x1
,
∂ϕ

∂x2
,
∂ϕ

∂x3

)
,

gives a vector normal to the surface. We will show that this remains true in
the general case, but things are a bit more complicated using a general co-
ordinate system. Let ϕ be a scalar field and let (x1, . . . , xn) be a coordinate
system in the neighbourhood of the point P. Then in these coordinates
we may write

ϕ = ϕ(xa), (5.21)
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and by (5.2) the equation ϕ(xa) = k defines a hypersurface S through P.
The derivative of ϕ defines a covariant vector or co-vector at P normal
to S given in these coordinates by

Na =
[
∂ϕ

∂xa

]
P
. (5.22)

Note that the index on the covariant vector Na is below while that on the
contravariant vector Ta was above. As we will see below, the difference in
the position of the index is important and indicates that it transforms in a
different way.

Now let us introduce a different coordinate system (x′1, . . . , x′n) in the
neighbourhood of P. We now look at the same hypersurface but this time
described in terms of the x′a coordinate system so the hypersurface is now
given by ϕ(x′a) = k. Then in this coordinate system the components of
the normal co-vector are given by

N ′
a =

[
∂ϕ

∂x′a

]
P
. (5.23)

Remembering from equation (5.9) that xa can be thought of as a function
of x′b, equation (5.21) can be written equivalently as

ϕ = ϕ(xa(x′)).

Differentiating this with respect to x′b, using the function of a function
rule, we obtain

∂ϕ

∂x′b
=
∂ϕ

∂xa
∂xa

∂x′b
,

where ∂xa/∂x′b is evaluated at P. Then changing the order of the terms,
the dummy index, and the free index (from b to a) gives

∂ϕ

∂x′a
=
∂xb

∂x′a
∂ϕ

∂xb
, (5.24)

so that by (5.22) and (5.23)

N ′
a =

[
∂xb

∂x′a

]
P
Nb. (5.25)

This is the prototype equation we are looking for. Notice that compared
to (5.17) it involves the inverse transformation matrix ∂xb/∂x′a.

We therefore define a covariant vector or covariant tensor of rank
(order) 1 to be a set of quantities, writtenXa in the xa-coordinate system,
associated with a point P, which transforms according to

X ′
a =

∂xb

∂x′a
Xb, (5.26)
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where the transformation matrix occurring is assumed to be evaluated
at P. The normal co-vector to a hypersurface is just a special case of
(5.26). Again, it is important to distinguish between the actual invariant
geometric object like the normal co-vector (which we will write as dϕ) and
its representation in a particular coordinate system, given by the n num-
bers [∂ϕ/∂xa]P in the xa-coordinate system and the (in general) different
numbers [∂ϕ/∂x′a]P in the x′a-coordinate system.

Similarly, we define a covariant tensor of rank 2 by the transformation
law

X′
ab =

∂xc

∂x′a
∂xd

∂x′b
Xcd, (5.27)

and so on for higher-rank tensors. Note the convention that contravari-
ant tensors have raised indices whereas covariant tensors have lowered
indices. (The way to remember this is that co goes below.) The fact
that according to (5.10) the differentials dxa formally transform as the
components of a contravariant vector explains the convention that the co-
ordinates themselves are written as xa rather than xa, although note that
it is only the differentials and not the coordinates which have tensorial
character.

5.7 Mixed tensors
Following the pattern of (5.19) and (5.27), we go on to define mixed
tensors in the obvious way. For example, a mixed tensor of rank 3 – one
contravariant rank and two covariant rank – satisfies

X′a
bc =

∂x′a

∂xd
∂xe

∂x′b
∂xf

∂x′c
Xd

ef. (5.28)

If a mixed tensor has contravariant rank p and covariant rank q, then it is
said to have type or valence (p, q).

We now come to the reason why tensors are important in mathematical
physics. Let us illustrate the reason byway of an example. Suppose we find
in one coordinate system that two tensors,Xab and Yab, say, are equal, i.e.

Xab = Yab. (5.29)

Let us multiply both sides by the matrices ∂xa/∂x′c and ∂xb/∂x′d and take
the implied summations to get

∂xa

∂x′c
∂xb

∂x′d
Xab =

∂xa

∂x′c
∂xb

∂x′d
Yab.

Since Xab and Yab are both covariant tensors of rank 2, it follows that
X ′

ab = Y ′
ab. In other words, the equation (5.29) holds in any other coor-

dinate system. In short, a tensor equation which holds in one coordinate
system necessarily holds in all coordinate systems. Thus, although we
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introduce coordinate systems for convenience in tackling particular prob-
lems, if we work with tensorial equations, then they hold in all coordinate
systems. Put another way, tensorial equations are coordinate independent.
This is something that the index-free or coordinate-free approach makes
clear from the outset.

5.8 Tensor fields
In vector analysis, a fixed vector is a vector associated with a point,
whereas a vector field defined over a region is an association of a vec-
tor to every point in that region. In exactly the same way, a tensor is a set
of quantities defined at one point in the manifold. A tensor field defined
over some region of the manifold is an association of a tensor of the same
valence to every point of the region, i.e.

P→ T a···
b··· (P),

where Ta···b···(P) is the value of the tensor at P. The tensor field is called
continuous or differentiable if its components in all coordinate systems are
continuous or differentiable functions of the coordinates. The tensor field
is called smooth if its components are differentiable to all orders, which is
denoted mathematically by saying that all the components are C∞. Thus,
for example, a contravariant vector field defined over a region is a set of
n functions defined over that region, and the vector field is smooth if the
functions are all C∞. The transformation law for a contravariant vector
field then becomes

X′a(x′) =
[
∂x′a

∂xb

]
P
Xb(x), (5.30)

at each point P in the region, since the old components Xa are functions
of the old xa-coordinates and the new components X′a are functions of
the new x′a-coordinates.

As in the case of vectors and vector fields in vector analysis, the dis-
tinction between a tensor and a tensor field is not always made completely
clear. We shall for the most part be dealing with tensor fields from now
on, but to conform with general usage we shall often refer to tensor fields
simply as tensors. We will again shorten the transformation law such as
(5.30) to the form (5.26) with everything else being implied. If we wish
to emphasize that a tensor is a tensor field, we shall write it in functional
form, namely, as Ta···b···(x).

5.9 Elementary operations with tensors
Tensor calculus is concerned with tensorial operations, that is, opera-
tions on tensors which result in quantities which are still tensors. In this
section, we will look at algebraic operations on tensors, i.e. operations that
can be performed at a point. A simple way of establishing whether or not
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a quantity is a tensor is to see how it transforms under a coordinate trans-
formation. For example, we can deduce directly from the transformation
law that two tensors of the same type can be added together to give a
tensor of the same type, e.g.

Xa
bc = Ya

bc + Zabc. (5.31)

The same holds true for subtraction and multiplication by a real number.
A covariant tensor of rank 2 is said to be symmetric if Xab = Xba, in

which case it has only 1
2n(n + 1) independent components (check this by

establishing howmany independent components there are of a symmetric
matrix of order n). Symmetry is a tensorial property. A similar definition
holds for a contravariant tensor Xab. The tensor Xab is said to be anti-
symmetric or skew symmetric ifXab = −Xba, which has only 1

2n(n−1)
independent components; this is again a tensorial property. A notation
frequently used to denote the symmetric part of a tensor is

X(ab) = 1
2 (Xab +Xba) (5.32)

and the anti-symmetric part is

X[ab] = 1
2 (Xab −Xba). (5.33)

In general,

X(a1a2···ar) =
1
r!

(sum over all permutations of the indices a1 to ar)

and

X[a1a2···ar] =
1
r!

(alternating sum over all permutations of the indices

a1 to ar).

For example, we shall need to make use of the result

X[abc] = 1
6 (Xabc −Xacb +Xcab −Xcba +Xbca −Xbac). (5.34)

(Away to remember the above expression is to note that the positive terms
are obtained by cycling the indices to the right and the corresponding
negative terms by flipping the last two indices.) A totally symmetric
tensor is defined to be one equal to its symmetric part, and a totally
anti-symmetric tensor is one equal to its anti-symmetric part.

Given a tensor field of type (p, q), we may multiply it by a scalar field
ϕ (i.e. a tensor field of type (0, 0)) to obtain a tensor field also of type
(p, q). More generally, we can multiply the components of two tensors of
type (p1, q1) and (p2, q2) together and obtain the components of a tensor
of type (p1 + p2, q1 + q2), for example

Xa
bcd = Ya

bZcd. (5.35)
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This is an example of the tensor product of two tensors. One can read-
ily show (exercise) that the above definition does not depend on the
coordinate system used to undertake the multiplication.

Another particularly important example of a tensorial operation is
contraction. We start with an example. Let Xa be a contravariant vector
field and let Ya be a covariant vector field. Then at each point they define
a real number

ϕ = XaYa, (5.36)

(remember that the repeated index a is summed over), called the contrac-
tion of Ya with Xa. What does this look like in another set of coordinates?
Using the transformation laws (5.18) and (5.26) for X ′a and Y ′

a, we find

X ′aY ′
a =

(
∂x′a

∂xb
Xb
)(

∂xc

∂x′a
Yc

)
=
(
∂x′a

∂xb
∂xc

∂x′a

)
XbYc

= δcbX
bYc

= XcYc

= XaYa.

Thus

(X ′aY ′
a)P = (X aYa)P = ϕ(P). (5.37)

This is a very important result as it shows that the contraction of a covari-
ant vector with a contravariant vector gives a scalar field ϕ, which does
not depend on the coordinates. This is important physically as it shows
how to obtain coordinate independent results using tensors. Although we
will not make use of it in this book, this result is also important mathe-
matically for the coordinate-free approach to differential geometry as it
shows that covariant vectors are, in the language of linear algebra, dual
to contravariant vectors and explains the alternative name of co-vectors.

We now consider the contraction of two general tensors. Given a tensor
of mixed type (p, q), we can form an object of type (p − 1, q − 1) by
the process of contraction, which simply involves setting a raised and
lowered index equal. For example,

Xa
bcd −→ Xa

acd = Ycd, contraction on a and b.

One can show that by doing this one obtains a tensor of type (p−1, q−1),
i.e. in the above example, a tensor of type (1, 3) has become a tensor of
type (0, 2) and that the tensor one obtains does not depend upon the
coordinate system in which one does the contraction. Notice that we can
also contract a tensor by multiplying by the Kronecker tensor δab , e.g.

Xa
acd = δbaX

a
bcd. (5.38)
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In effect, multiplying by δab turns the index b into a (or, equivalently, the
index a into b). If one starts with some tensorial object of type (p, p) and
contracts all the indices to obtain an object of type (0, 0) this gives a scalar
field or tensor invariant whose value does not depend upon the co-
ordinate system. It was the fact that contracting tensorial objects results
in scalar quantities, which can in principle be measured and do not de-
pend on the coordinates used, that led Einstein to use tensors as a way of
formulating the laws of physics.

5.10 Index-free interpretation of
contravariant vector fields

As we pointed out in §5.5, we must distinguish between the actual geo-
metric object itself and its components in a particular coordinate system.
The important point about tensors is that we want to make statements
which are independent of any particular coordinate system being used.
This is abundantly clear in the index-free approach to tensors. We shall
get a feel for this approach in this section by considering the special case
of a contravariant vector field, although similar index-free interpretations
can be given for any tensor field. The key idea is to interpret the vector
field as an operator which maps real-valued functions into real-valued
functions. Thus, if X represents a contravariant vector field, then X op-
erates on any real-valued function f to produce another function g, i.e.
X f = g. We shall show how actually to compute X f by introducing a
coordinate system. However, as we shall see, we could equally well intro-
duce any other coordinate system, and the computation would lead to the
identical result.

In the xa-coordinate system, we introduce the notation

∂a :=
∂

∂xa
,

and then X is defined as the operator

X = Xa∂a, (5.39)

so that, for any real function f,

Xf = (Xa∂a)f = Xa(∂af), (5.40)

and, in the xa-coordinate system, X gives the directional derivative in
the Xa direction. Let us compute X in some other x′a-coordinate system.
We need to use the result (5.13) expressed in the following form: we may
take xa to be a function of x′b by (5.9) and x′b to be a function of xc by
(5.6), and so, using the function of a function rule, we find

δab =
∂xa

∂xb
=

∂

∂xb
xa(x′c(xd)) =

∂xa

∂x′c
∂x′c

∂xb
. (5.41)



Index-free interpretation of contravariant vector fields 79

Then, using the transformation law (5.18) and (5.24) together with the
above trick, we get

X ′a∂ ′
a = X ′a ∂

∂x ′a

=
∂x ′a

∂x b
X b ∂x

c

∂x ′a
∂

∂x c

=
∂x c

∂x ′a
∂x ′a

∂x b
X b ∂

∂x c

= δ cbX
b ∂

∂x c

= X b ∂

∂x b

= X a∂a.

Thus, the result of operating on f by X will be the same irrespective of
the coordinate system employed in (5.39), and this provides the key idea
in the coordinate-free approach to differential geometry.

In any coordinate system, we may think of the quantities [∂/∂xa]P as
forming a basis for all the vectors at P, since any vector at P is, by (5.39),
given by

Xp = [Xa]P

[
∂

∂xa

]
P
,

that is, a linear combination of the [∂/∂xa]P. The vector space of all the
contravariant vectors at P is known as the tangent space at P and is
written TPM (Fig. 5.6). In general, the tangent space at any point in a
manifold is different from the underlying manifold. For this reason, we
need to be careful in representing a finite contravariant vector by an ar-
row in our figures since, strictly speaking, the arrow lies in the tangent
space, not the manifold. Two exceptions to this are Euclidean space and
Minkowski space-time, where the tangent space at each point coincides
with the manifold.

As we remarked at the end of §5.9, equation (5.37) shows that covari-
ant vectors at P are elements of the so-called dual vector space to TPM,
which is called the cotangent space and is denoted T *

PM. General ten-
sors in the coordinate-free approach are then constructed by taking tensor
products of elements of TPM and T *

PM or, equivalently, by considering
multi-linear maps from copies of TPM and T *

PM to R. We will not pursue
the coordinate-free approach here but see, for example, Wald (1984) for
further details.

Given two vector fields, X and Y, we can define a new vector field
called the commutator or Lie bracket of X and Y by

[X,Y] = XY− YX. (5.42)
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P

Manifold M

Tangent space TP(M)

Contravariant vectors

Fig. 5.6 The tangent space at P.

Letting [X,Y] = Z and operating with it on some arbitrary function f

Zf = [X,Y ]f

= (XY− YX )f

= X(Yf )− Y(Xf )

= X(Y a∂af )− Y(Xa∂af )

= Xb∂b(Ya∂af )− Yb∂b(Xa∂af )

= (Xb∂bYa − Yb∂bXa)∂af−XaYb(∂b∂af− ∂a∂bf )

= (Xb∂bYa − Yb∂bXa)∂af,

since the last term vanishes from the commutativity of second mixed
partial derivatives, i.e.

∂a∂b =
∂2

∂xa∂xb
=

∂2

∂xb∂xa
= ∂b∂a.

We therefore see that the Lie bracket of two vector fields also defines a
directional derivative and is therefore itself a vector field with components
Za given by

Za = [X,Y ]
a = X b∂bY a − Y b∂bXa, (5.43)

since f is arbitrary. It also follows, directly from the definition (5.42)
(exercise), that

[X,X] ≡ 0, (5.44)

[X,Y] ≡ −[Y,X], (5.45)

[X, [Y,Z]] + [Z, [X,Y]] + [Y, [Z,X]] ≡ 0. (5.46)
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Equation (5.45) shows that the Lie bracket is anti-commutative. The
result (5.46) is known as Jacobi’s identity. Notice it states that the left-
hand side is not just equal to zero but is identically zero. What does this
mean? The equation x2 − 4 = 0 is only satisfied by particular values of x,
namely, +2 and −2. The identity x2 − x2 ≡ 0 is satisfied for all values of
x. But, you may argue, the x2 terms cancel out, and this is precisely the
point. An expression is identically zero if, when all the terms are written
out fully, they all cancel in pairs.

Exercises

5.1 (§5.3) In Euclidean 3-space R3:
(i) Write down the equation of a circle of radius a lying in the xy-plane
centred at the origin in (a) parametric form and (b) constraint form.
(ii) Write down the equation of a hypersurface consisting of a sphere of
radius a centred at the origin in (a) parametric form and (b) constraint
form. Eliminate the parameters in form (a) to obtain form (b).

5.2 (§5.4) Write down the change of coordinates from Cartesian coor-
dinates (xa) = (x, y, z) to spherical polar coordinates (x′a) = (r, θ,ϕ) in
R3. Obtain the transformation matrices and express them both in terms
of the primed coordinates. Obtain the Jacobians J and J ′. Where is J ′ zero
or infinite?

5.3 (§5.4) Show by manipulating the dummy indices that

(Zabc + Zcab + Zbca)XaXbXc = 3ZabcXaXbXc.

5.4 (§5.4) Show that
(i) δbaX

a = Xb,
(ii) δbaXb = Xa,
(iii) δbaδ

c
bδ
d
c = δda .

5.5 (§5.5) If Ya and Za are contravariant vectors, then show that YaZb is
a contravariant tensor of rank 2.

5.6 (§5.5) Write down the change of coordinates from Cartesian coor-
dinates (xa) = (x, y) to plane polar coordinates (x′a) = (R,ϕ) in R2 and
obtain the transformation matrix [∂x′a/∂xb] expressed as a function of
the primed coordinates. Find the components of the tangent vector to
the curve consisting of a circle of radius a centred at the origin with the
standard parametrization (see Exercise 5.1 (i)) and use (5.18) to find its
components in the primed coordinate system.

5.7 (§5.6) Write down the definition of a tensor of type (2,1).

5.8 (§5.6) Show that, if one assumes that δba is defined by (5.12) in the xa

coordinates and has the tensor character indicated, then (5.12) is true in
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any coordinate system. Thus, δba is a constant or numerical tensor, that
is, it has the same components in all coordinate systems.

5.9 (§5.6) Show, by differentiating (5.24) with respect to x′c, that
∂2ϕ/∂xa∂xb is not a tensor.

5.10 (§5.9) Show that, if Ya
bc and Zabc are tensors of the type indicated,

then so is their sum and difference.

5.11 (§5.9)
(i) Show that the fact that a covariant second-rank tensor is symmetric in
one coordinate system is a tensorial property.
(ii) If Xab is anti-symmetric and Yab is symmetric, then prove that
XabYab = 0.

5.12 (§5.9) Prove that any covariant (or contravariant) tensor of rank 2
can be written as the sum of a symmetric and an anti-symmetric tensor.
[Hint: consider the identity Xab = 1

2 (Xab +Xba) + 1
2 (Xab −Xba).]

5.13 (§5.9)Verify that the definition of the tensor product given by (5.35)
does not depend on the coordinate system used.

5.14 (§5.9) If Xa
bc is a tensor of the type indicated, then prove that the

contracted quantity Yc = Xa
ac is a covariant vector.

5.15 (§5.9) Evaluate δaa and δabδ
b
a in n dimensions.

5.16 (§5.10) Check that the definition of the Lie bracket leads to the
results (5.44), (5.45), and (5.46).

5.17 (§5.10) In R2, let (xa) = (x, y) denote Cartesian and (x′a) = (R,ϕ)
plane polar coordinates (see Exercise 5.6).
(i) If the vector field X has components X a = (1, 0), then find X′a.
(ii) The operator grad can be written in each coordinate system as

grad f =
∂f
∂x
i +

∂f
∂y
j =

∂f
∂R

R̂ +
1
R
∂f
∂ϕ

ϕ̂

where f is an arbitrary function and

R̂ = cosϕi + sinϕj, ϕ̂ = − sinϕi + cosϕj.

Take the scalar product of grad f with i, j, R̂, and ϕ̂ in turn to find rela-
tionships between the operators ∂/∂x, ∂/∂y, ∂/∂R, and ∂/∂ϕ.
(iii) Express the vector field X as an operator in each coordinate system.
Use Part (ii) to show that these expressions are the same.
(iv) If Ya = (0, 1) and Za = (−y, x), then find Y ′a, Z′a, Y and Z.
(v) Evaluate all the Lie brackets of X, Y, and Z.
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Further reading

As discussed in the book, we consider tensors via the index approach,
as we consider it the quickest route to being proficient in using tensors
in practice. The older texts adopt the same approach, and one example
of a classic text on differential geometry, which was a major source for
this book, is the one by Synge and Schild (1949). Many of the modern
books which introduce tensors using the index-free approach are, in our
opinion, quite sophisticated for a first course in general relativity. One ex-
ception, however, is the excellent book of Schutz (1985). This is written
at about the same level as this book and contains material not covered in
this book, somay be considered as a companion text to this book. The ear-
lier book of Schutz (1980) provides a more solid grounding in differential
geometry. The book by Wald (1984) is also excellent and contains some
more advanced material. Adopting a completely index-free approach is
notationally difficult in many calculations, so that the abstract index nota-
tion of Penrose (1968) provides an excellent and practical coordinate-free
method of doing tensorial calculations. The most advanced and complete
treatment of this and other geometrical methods can be found in the two
volumes of Penrose and Rindler (1986). Our treatment has one impor-
tant omission, and that is the topic of differential forms (which is omitted
because we do not use it). The book by Hughston and Tod (1990) on
general relativity includes both a treatment and a subsequent application
in discussing anisotropic cosmologies. The various sign conventions can
be found on the inside cover of Misner et al. (1973). We use the time-
like convention of Landau and Lifshitz (1971). We also list some other
more mathematical texts on Lorentzian geometry that readers who want
to go into more detail may find useful. These include the books by O’Neil
(1983) and by Choquet-Bruhat, De Witt-Morette, and Dillard-Bleick,
(1977).

Choquet-Bruhat, Y., De Witt-Morette, C., and Dillard-Bleick, M.
(1977). Analysis, Manifolds and Physics. North-Holland, Amsterdam.

Hughston, L. P., and Tod, K. P. (1990). An Introduction to General
Relativity. Cambridge University Press, Cambridge.

Landau, L. D., and Lifshitz, E. M. (1971). The Classical Theory of Fields.
Pergamon, Oxford.

Misner, C. W., Thorne, K. S., and Wheeler, J. A. (1973). Gravitation.
Freeman, San Francisco, CA.

O’Neil, B. (1983). Semi-RiemannianGeometry:With Application to Rela-
tivity. Pure and Applied Mathematics Series. Academic Press, New York,
NY.

Penrose, R. (1968). ‘Structure of space-time’, in DeWitt, C. M., and
Wheeler, J. A., eds, Battelle Rencontres 1967 Lectures in Mathematics and
Physics. W. A. Benjamin, New York, NY, 121–235.
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Penrose, R., and Rindler, W. (1986). Spinors and Space-Time. Vols 1 and
2, Cambridge University Press, Cambridge.

Schutz, B. F. (1980). Geometrical Methods in Mathematical Physics.
Cambridge University Press, Cambridge.

Schutz, B. F. (1985). A First Course in General Relativity. Cambridge
University Press, Cambridge.

Synge, J. L., and Schild, A. (1949).Tensor Calculus. University of Toronto
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6Tensor calculus

6.1 Partial derivative of a tensor
In the last chapter, wemet algebraic operations which are tensorial, that is,
which convert tensors into tensors. The operations are addition, subtrac-
tion, contraction, and tensor products. The next question which arises is,
What differential operations are there that are tensorial? The answer to
this turns out to be very much more involved. The first thing we shall see
is that partial differentiation of tensors is not tensorial. Different authors
denote the partial derivative of a contravariant vector Xa by

∂bXa or
∂Xa

∂xb
or Xa

,b or Xa
|b

and similarly for higher-rank tensors. We shall use a mixture of all the
first three notations. (Note that, in the literature, the partial derivative
of a tensor is often referred to as the ordinary derivative of a tensor,
to distinguish it from the tensorial differentiation we shall shortly meet).
Now differentiating (5.18) with respect to x′c, we find

∂′cX ′a =
∂

∂x′c

(
∂x′a

∂xb
Xb
)

=
∂xd

∂x′c
∂

∂xd

(
∂x′a

∂xb
Xb
)

=
∂x′a

∂xb
∂xd

∂x′c
∂dXb +

∂2x′a

∂xb∂xd
∂xd

∂x′c
Xb. (6.1)

If the first term on the right-hand side alone were present, then this would
be the usual tensor transformation law for a tensor of type (1, 1). However,
the presence of the second term prevents ∂bXa from behaving like a tensor.

There is a fundamental reason why this is the case. By definition, the
process of differentiation involves comparing a quantity evaluated at two
neighbouring points, P andQ, say, dividing by some parameter represent-
ing the separation of P and Q, and then taking the limit as this parameter
goes to zero. In the case of a contravariant vector field Xa, this would
involve computing

lim
δu→0

[Xa]P − [Xa]Q
δu

,

Introducing Einstein’s Relativity. Second Edition. Ray d’Inverno and James Vickers, Oxford University Press.
© Ray d’Inverno and James Vickers (2022). DOI: 10.1093/oso/9780198862024.003.0006
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for some appropriate parameter δu. However, from the transformation
law in the form (5.30), we see that

X′a
P =

[
∂x′a

∂xb

]
P
Xb
P and X′a

Q =
[
∂x′a

∂xb

]
Q
Xb
Q.

This involves the transformation matrix evaluated at different points,
fromwhich it should be clear thatXa

P−Xa
Q is not a tensor. Similar remarks

hold for differentiating tensors in general.
It turns out that, if we wish to differentiate a tensor in a tensorial man-

ner, then we need to introduce some auxiliary structure onto themanifold.
We shall meet three different types of differentiation. First of all, in the
next section, we shall introduce a contravariant vector field onto the man-
ifold and use it to define the Lie derivative. Then we shall introduce
a quantity called an affine connection and use it to define covari-
ant differentiation. Finally, we shall introduce a tensor called a metric
and from it build a special affine connection, called the metric connec-
tion, and again define covariant differentiation but relative to this specific
connection.

6.2 The Lie derivative
The argument we present in this section is rather intricate. It rests on
the idea of interpreting a coordinate transformation actively as a point
transformation, rather than passively, as we have done up to now. The
important results occur at the end of the section and consist of the formula
for the Lie derivative of a general tensor field and the basic properties of
Lie differentiation.

We start by considering a congruence of curves defined such that
only one curve goes through each point in the manifold. Then, given any
one curve of the congruence,

xa = xa(u),

we can use it to define the tangent vector field dxa/du along the curve.
If we do this for every curve in the congruence, then we end up with a
vector field Xa (given by dxa/du at each point) defined over the whole
manifold (Fig. 6.1).

Fig. 6.1 The tangent vector field result-
ing from a congruence of curves.

Conversely, given a non-zero vector fieldXa(x) defined over themanifold,
then this can be used to define a congruence of curves in the manifold
called the integral curves or trajectories of Xa. The procedure is ex-
actly the same as the way in which a vector field gives rise to field lines or
streamlines in vector analysis. These curves are obtained by solving the
ordinary differential equations

dxa

du
= Xa (x (u)) . (6.2)
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‘Tensor’ at P ‘Tensor’ at Q

‘Dragged-along tensor’ at Q

P

Q

X a(Q)
X a(P)

Fig. 6.3 Using the congruence to compare tensors at neighbouring points.

The existence and uniqueness theorem for ordinary differential equations
guarantees a solution, at least for some subset of the reals. In
what follows, we are really only interested in what happens locally
(Fig. 6.2).

We therefore assume that Xa has been given and we have used it to
construct the local congruence of integral curves. Suppose we have some
tensor field Ta···b···(x), which we wish to differentiate usingXa. Then the es-
sential idea is to use the congruence of curves to drag the tensor at some
point P (i.e. Ta···b···(P)) along the curve passing through P to some neigh-
bouring point Q, and then compare this ‘dragged-along tensor’ with the
tensor already there (i.e.Ta···b···(Q)) (Fig. 6.3). Since the dragged-along ten-
sor will be of the same type as the tensor already at Q, we can subtract
the two tensors atQ and so define a derivative by some limiting process
as Q tends to P. The technique for dragging involves viewing the coor-
dinate transformation from P to Q actively, and applying it to the usual
transformation law for tensors. We shall consider the detailed calculation
in the case of a contravariant tensor field of rank 2, Tab(x), say.

Fig. 6.2 The local congruence of curves
resulting from a vector field.

Consider the transformation

x̃a = xa + δuXa(x), (6.3)

where δu is small. This is called a point transformation and is to be
regarded actively as sending the point P, with coordinates xa, to the point
Q, with coordinates xa+δuXa(x), where the coordinates of each point are
given in the same xa-coordinate system, i.e.

P→ Q,

xa → xa + δuXa(x).

The point Q clearly lies on the curve of the congruence through P which
Xa generates (Fig. 6.4). Differentiating (6.3), we get

∂x̃a

∂xb
= δab + δu ∂bXa. (6.4)

Next, consider the tensor field Tab at the point P. Then its components
at P are Tab(x) and, under the point transformation (6.3), we have the
mapping

Tab(x) → T̃ab(x̃),
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i.e. the transformation ‘drags’ the tensor Tab along from P to Q. The
components of the dragged-along tensor are given by the usual trans-
formation law for tensors (see (5.30)), and so, using (6.4)

xa-coordinate chart

P
Q

Xa

P
Q

Xa

Fig. 6.4 The point P transported toQ in
the same xa coordinate system.

T̃ab(x̃) =
∂x̃a

∂xc
∂x̃b

∂xd
Tcd(x)

= (δac + δu∂cXa)(δbd + δu∂dX
b)Tcd(x)

= Tab(x) +
[
∂cXaTcb(x) + ∂dXbTad(x)

]
δu +O(δu2). (6.5)

Applying Taylor’s theorem to first order, we get

Tab(x̃) = Tab(xc + δuXc(x)) = Tab(x) + δuXc ∂c Tab(x). (6.6)

We are now in a position to define the Lie derivative of Tab with respect
to Xa, which is denoted by LXTab, as

LXTab = lim
δu→0

Tab(x̃)− T̃ab(x̃)
δu

. (6.7)

This involves comparing the tensor Tab(x̃) already at Q with T̃ab(x̃), the
dragged-along tensor at Q. Using (6.5) and (6.6), we find

LX Tab = Xc ∂c Tab − Tac ∂cXb − Tcb ∂cXa. (6.8)

It can be shown that it is always possible to introduce a coordinate sys-
tem such that the curve passing through P is given by x1 varying, with
x2, x3, . . . , xn all constant along the curve, and such that

Xa ∗
= δa1 = (1, 0, 0, . . . , 0) (6.9)

along this curve. The notation
∗
= used in (6.9) means that the equation

holds only in a particular coordinate system. Then it follows that

X = Xa∂a
∗
= ∂1,

and equation (6.8) reduces to

LXTab
∗
= ∂1Tab. (6.10)

Thus, in this special coordinate system, Lie differentiation reduces to or-
dinary differentiation. In fact, one can define Lie differentiation starting
from this viewpoint.

We end the section by collecting together some important properties
of Lie differentiation with respect to X which follow from its definition.
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1. It is linear; for example

LX(λYa + μZa) = λLXYa + μLXZa, (6.11)

where λ and μ are constants. Thus, in particular, the Lie derivative of the
sum and difference of two tensors is the sum and difference, respectively,
of the Lie derivatives of the two tensors.

2. It is Leibniz; that is, it satisfies the usual product rule for differentia-
tion, for example

LX(Ya Zbc) = Ya(LX Zbc) + (LXYa)Zbc. (6.12)

3. It is type preserving; that is, the Lie derivative of a tensor of type
(p, q) is again a tensor of type (p, q).

4. It commutes with contraction; for example

δabLX Tab = LX Taa. (6.13)

5. The Lie derivative of a scalar field ϕ is given by

LXϕ = Xϕ = Xa ∂a ϕ. (6.14)

6. The Lie derivative of a contravariant vector field Ya is given by the
Lie bracket of X and Y, that is,

LXYa = [X,Y]a = Xb ∂bYa − Yb ∂bXa. (6.15)

7. The Lie derivative of a covariant vector field Ya is given by

LXYa = Xb∂bYa + Yb∂aXb. (6.16)

8. The Lie derivative of a general tensor field Ta···b··· is obtained as
follows: we first partially differentiate the tensor and contract it with X.
We then get an additional term for each index of the form of the last two
terms in (6.15) and (6.16), where the corresponding sign is negative for
a contravariant index and positive for a covariant index, that is,

LXT a···
b··· = Xc ∂c T a···

b··· − T c···
b··· ∂cX

a − · · · + T a···
c··· ∂bX

c + · · · . (6.17)



90 Tensor calculus

6.3 The affine connection and covariant
differentiation

Consider a contravariant vector field Xa(x) evaluated at a point Q, with
coordinates xa + δxa, near to a point P, with coordinates xa. Then, by
Taylor’s theorem,

Xa(x + δx) = Xa(x) + δxb∂bXa (6.18)

to first order. If we denote the second term by δXa(x), i.e.

δXa(x) = δxb ∂bXa = Xa(x + δx)−Xa(x), (6.19)

then it is not tensorial, since it involves subtracting tensors evaluated at
two different points. We are going to define a tensorial derivative by intro-
ducing a vector at Q which in some general sense is ‘parallel’ to Xa at P.
Since xa+δxa is close to xa, we can assume that the parallel vector only dif-
fers from Xa(x) by a small amount, which we denote δ̄Xa(x) (Fig. 6.5).
By the same argument as in §6.1 above, δ̄Xa(x) is not tensorial, but we
shall construct it in such a way as to make the difference vector‘Parallel’ vector

P Q

X a X a + δX a

Xa + δX a

δX a – δX a

Fig. 6.5 The parallel vector Xa + δXa at
Q.

[Xa(x) + δXa(x) ] − [Xa(x) + δ̄Xa(x)] = δXa(x)− δ̄Xa(x) (6.20)

tensorial. It is natural to require that δ̄Xa(x) should vanish wheneverXa(x)
or δxa does. Then the simplest definition is to assume that δ̄Xa is linear in
both Xa and δxa, which means that there exist multiplicative factors Γabc
where

δ̄Xa(x) = −Γabc(x)X
b(x)δxc (6.21)

and the minus sign is introduced to agree with convention.
We have therefore introduced a set of n3 functions Γabc(x) on the mani-

fold, whose transformation properties have yet to be determined. We now
define the covariant derivative of Xa, written in one of the notations
(where we shall use a mixture of the first two)

∇cXa or Xa
;c or Xa

||c

by the limiting process

∇cXa = lim
δxc→0

1
δxc
{
Xa(x + δx)−

[
Xa(x) + δ̄Xa(x)

]}
.

In other words, it is the difference between the vector Xa(Q) and the vec-
tor at Q parallel to Xa(P), divided by the coordinate differences, in the
limit as these differences tend to zero. Using (6.18) and (6.21), we find

∇cXa = ∂cXa + ΓabcX
b. (6.22)

Note that in the formula the differentiation index c comes second in the
downstairs indices of Γ. If we now demand that ∇cXa is a tensor of type
(1, 1), then a straightforward calculation (exercise) reveals that Γabc must
transform according to
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Γ′a
bc =

∂x′a

∂xd
∂xe

∂x′b
∂xf

∂x′c
Γdef −

∂xd

∂x′b
∂xe

∂x′c
∂2x′a,

∂xd∂xe
, (6.23)

or, equivalently (exercise),

Γ′a
bc =

∂x′a

∂xd
∂xe

∂x′b
∂xf

∂x′c
Γdef +

∂x′a

∂xd
∂2xd

∂x′b∂x′c
. (6.24)

If the second term on the right-hand side were absent, then this would
be the usual transformation law for a tensor of type (1, 2). However,
the presence of the second term reveals that the transformation law is
linear inhomogeneous, and so Γabc is not a tensor. Note, however, the
inhomogeneous term in (6.23) is exactly what is needed to cancel the in-
homogeneous term in (6.1) and so guarantees that (6.22) defines a tensor.
Any quantity Γabc which transforms according to (6.23) or (6.24) is called
an affine connection or sometimes simply a connection or affinity. A
manifold with a continuous connection prescribed on it is called an affine
manifold.

We next define the covariant derivative of a scalar field to be the same
as its ordinary derivative, i.e.

∇a ϕ = ∂a ϕ. (6.25)

If we now demand that covariant differentiation satisfies the Leibniz rule,
then we find (exercise)

∇cXa = ∂cXa − ΓbacXb. (6.26)

Notice again that the differentiation index comes last in the Γ-term and
that this term enters with a minus sign. The name covariant derivative
stems from the fact that the derivative of a tensor of type (p, q) is of type
(p, q + 1), that is, it has one extra covariant rank. The expression in the
case of a general tensor is (compare and contrast with (6.17))

∇cTa···b··· = ∂cTa···b··· + ΓadcT
d···
b··· + · · · − ΓdbcT

a···
d··· − · · · . (6.27)

It follows directly from the transformation laws that the sum of two con-
nections is not a connection or a tensor. However, the difference of two
connections is a tensor of valence (1, 2), because the inhomogeneous term
cancels out in the transformation. For the same reason, the antisymmetric
part of a Γabc, namely,

Tabc = Γabc − Γacb

is a tensor called the torsion tensor. If the torsion tensor vanishes, then
the connection is symmetric, i.e.

Γabc = Γacb. (6.28)
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From now on, unless we state otherwise, we shall restrict ourselves
to symmetric connections, in which case the torsion vanishes. The
assumption that the connection is symmetric leads to the following useful
result. In the expression for a Lie derivative of a tensor, all occurrences
of the partial derivatives may be replaced by covariant derivatives. For
example, in the case of a vector (exercise),

LXYa = Xb∂bYa − Yb∂bXa = Xb∇bYa − Yb∇bXa. (6.29)

6.4 Affine geodesics
If Ta···b··· is any tensor, then we introduce the notation

∇X Ta···b··· = Xc∇cT a···
b···, (6.30)

that is, ∇X of a tensor is its covariant derivative contracted with X. Now
in §6.2 we saw that a contravariant vector field X determines a local
congruence of curves,

xa = xa(u),

where the tangent vector field to the congruence is

dxa

du
= Xa.

We next define the absolute derivative of a tensor Ta···b··· along a curve C
of the congruence, written DTa···b···/Du, by

D
Du

(Ta···b···) = ∇X Ta···b···. (6.31)

The tensor Ta···b··· is said to be parallely propagated or transported
along the curve C if

D
Du

(Ta···b···) = 0. (6.32)

This is a first-order ordinary differential equation for Ta···b···, and so given
an initial value for Ta···b···, say, T

a···
b···(P), equation (6.32) determines a tensor

along C which is everywhere parallel to Ta···b···(P).
Using this notation, an affine geodesic is defined as a privileged curve

along which the direction of the tangent vector is propagated parallel to
itself. In other words, the parallely propagated vector at any point of the
curve is parallel, that is, proportional, to the tangent vector at that point:

D
Du

(
dxa

du

)
= λ(u)

dxa

du
.

Using (6.31), the equation for an affine geodesic can be written in the
form

∇XXa = λXa, (6.33)
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or, equivalently (exercise)

d2xa

du2
+ Γabc

dxb

du
dxc

du
= λ

dxa

du
. (6.34)

Note that Γabc appears in the equation multiplied by the symmetric quan-
tity (dxb/du)(dxc/du), and so, even if we had not assumed that Γabc was
symmetric, the equation picks out just its symmetric part.

The property of being a geodesic as defined by (6.34) does not depend
on the choice of parameter. If we introduce a new parameter ũ along the
curve by an invertible transformation ũ = ũ(u), then

dxa

dũ
=

du
dũ

dxa

du
, and

d2xa

dũ2
=

d2u
dũ2

dxa

du
+
(

du
dũ

)2 d2xa

du2
.

Hence

d2xa

dũ2
+ Γabc

dxb

dũ
dxc

dũ
=
(

du
dũ

)2
(

d2xa

du2
+ Γabc

dxb

du
dxc

du

)
+

d2u
dũ2

dxa

du

=

[(
du
dũ

)2

λ +
d2u
dũ2

]
dxa

du
,

using (6.34). So defining a new parameter

λ̃ =
du
dũ
λ +

dũ
du

d2u
dũ2

, (6.35)

we obtain (check)

d2xa

dũ2
+ Γabc

dxb

dũ
dxc

dũ
= λ̃

dxa

dũ
, (6.36)

which has the same form as (6.34). From (6.35) we see that by choosing
ũ suitably it is possible to parameterize the curve in such a way that λ̃
vanishes and hence the tangent vector is covariantly constant along
the curve. Such a parameter is a privileged parameter called an affine
parameter, often conventionally denoted by s, and the affine geodesic
equation reduces to

d2xa

ds2
+ Γabc

dxb

ds
dxc

ds
= 0 (6.37)

or, equivalently,

∇XXa = 0. (6.38)

We can also see from (6.35) that an affine parameter s is only defined up
to an affine transformation (exercise)
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s→ αs + β,

P

Fig. 6.6 Two affine geodesics passing
through P, with given directions.

where α and β are constants. We can use the affine parameter s to define
the affine length of the geodesic between two points P1 and P2 by

∫ P2

P1
ds,

and so we can compare lengths on the same geodesic. However, we
cannot compare lengths on different geodesics (without a metric) because
of the arbitrariness in the parameter s. From the existence and uniqueness
theorem for ordinary differential equations, it follows that, corresponding
to every direction at a point, there is a unique geodesic passing through the
point (Fig. 6.6). Similarly, any point can be joined to any other point, as
long as the points are sufficiently ‘close’, by a unique geodesic. However,
in the large, geodesics may focus, that is, meet again (Fig. 6.7).

P

Q

Fig. 6.7 Two affine geodesics from P,
refocusing at Q.

6.5 The Riemann tensor
Covariant differentiation, unlike partial differentiation, is not in general
commutative. For any tensor Ta···b···, we define its commutator to be

∇c∇dTa···b··· −∇d∇cTa···b··· .

Let us work out the commutator in the case of a vector Xa. From (6.22),
we see that

∇cXa = ∂cXa + ΓabcX
b.

Remembering that this is a tensor of type (1, 1) and using (6.27), we find

∇d∇cXa = ∂d
(
∂cXa + ΓabcX

b) + Γaed
(
∂cXe + ΓebcX

b)− Γecd
(
∂eXa + ΓabeX

b) ,
with a similar expression for ∇c∇dXa, namely,

∇c∇dXa = ∂c
(
∂dXa + ΓabdX

b)+Γaec
(
∂dXe + ΓebdX

b)−Γedc
(
∂eXa + ΓabeX

b) .
Subtracting these last two equations and assuming that

∂d∂cXa = ∂c∂dXa,

we obtain the result

∇c∇dXa −∇d∇cXa = RabcdXb + (Γecd − Γedc)∇eXa, (6.39)

where Rabcd is defined by

Rabcd = ∂c Γ
a
bd − ∂d Γ

a
bc + Γebd Γ

a
ec − Γebc Γ

a
ed. (6.40)

Moreover, since we are only interested in torsion-free connections, the
last term in (6.39) vanishes, so using (5.33) we have
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∇[c∇d]X
a = 1

2R
a
bcdXb. (6.41)

Since the left-hand side of (6.41) is a tensor, and Xa is an arbitrary vec-
tor, it follows that Rabcd is a tensor of type (1, 3). It is called the Riemann
tensor. It can be shown that, for a symmetric connection, the commu-
tator of any tensor can be expressed in terms of the tensor itself and the
Riemann tensor. Thus, the vanishing of the Riemann tensor is a neces-
sary and sufficient condition for the vanishing of the commutator of any
tensor. In Section 6.7, we shall search for a geometrical characterization
of the vanishing of the Riemann tensor.

6.6 Geodesic coordinates
We first prove a very useful result. At any point P in a manifold, we
can introduce a special coordinate system, called a geodesic coordinate
system, in which

[Γabc]P
∗
= 0.

To see this result we can, without loss of generality, choose P to be at
the origin of coordinates xa

∗
= 0 and consider a transformation to a new

coordinate system

xa → x′a = xa + 1
2Q

a
bc x

bxc, (6.42)

where Qa
bc = Qa

cb are constants to be determined. Differentiating (6.42),
we get

∂x′a

∂xd
= δad +Qa

bdx
d and

∂2x′a

∂xd∂xe
= Qa

de.

Then, since xa vanishes at P, we have

[
∂x′a

∂xb

]
P
= δab ,

from which it follows immediately that the inverse matrix

[
∂xa

∂x′b

]
P
= δab .



96 Tensor calculus

Substituting these results in (6.23), we find

[Γ′a
bc]P = [Γabc]P −Qa

bc.

Since the connection is symmetric, we can choose the constants so that

Qa
bc = [Γabc]P ,

and hence we obtain the promised result

[Γ′a
bc]P

∗
= 0. (6.43)

Many tensorial equations can be established most easily in geodesic
coordinates. Note that, although the connection vanishes at P,

[
Γ′a
bc,d

]
P

*
6=0

in general. It can be shown that the result can be extended to obtain a
coordinate system in which the connection vanishes along a curve, but
not in general to a neighbourhood of P. If, however, there exists a special
coordinate system in which the connection vanishes everywhere, then the
manifold is called affine flat or simply flat. We shall next see that this is
intimately connected with the vanishing of the Riemann tensor.

6.7 Affine flatness
In a general affine manifold, the intuitive concept of parallelism breaks
down. For, if we parallely transport a vector from one point to another
along two different curves, we will obtain two different vectors (Fig. 6.8).
If, however, we can transport a vector from one point to any other and the
resulting vector is independent of the path taken, then the connection is
called integrable. Thus, for the usual concept of parallelism to hold, the
manifold must possess an integrable connection. We now prove two lem-
mas which connect together the concepts of affine flatness, integrability,
and vanishing Riemann tensor.

Lemma: A necessary and sufficient condition for a connection to be
integrable is that the Riemann tensor vanishes.

P
Q

C2

C1

Fig. 6.8 Parallel transport round
two curves in a general affine manifold.

We consider, first, necessity. Since Γabc is integrable, we can start with a
vector Xa at any point and from it construct a unique vector field Xa(x)
over the manifold by parallely propagating Xa. The equation for parallely
propagating Xa is

DXa

Du
=

dxc

du
∇cXa = 0,
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and, since dxa/du is arbitrary, it follows that the covariant derivative of
Xa must vanish, i.e.

∇cXa = ∂cXa + ΓabcX
b = 0. (6.44)

Hence, this equation must possess solutions. A necessary condition for
a solution of this first-order partial differential equation is the so-called
integrability condition

∂d∂cXa = ∂c∂dXa, (6.45)

namely, the second mixed partial derivatives should commute. In the pre-
vious section, we met the identity for the commutator of a vector field
(6.39), which for a torsion-free connection gives

∇c∇dXa −∇d∇cXa = ∂c∂dXa − ∂d∂cXa + RabcdXb.

The left-hand side of this equation vanishes by construction, that is, by
(6.44); hence, it follows that (6.45) will hold if and only if

RabcdXb = 0.

Finally, since Xb is arbitrary at every point, a necessary condition for
integrability is Rabcd = 0 everywhere.

xa

X a

xa + Δxa

xa + δxa

xa + δxa + Δxa

Fig. 6.9 Transporting Xa around
an infinitesimal loop.

We next prove sufficiency. We start by considering the difference in
parallely propagating a vectorXa around an infinitesimal loop connecting
xa to xa + δxa + ∆xa, first via xa + δxa and then via xa + ∆xa (Fig. 6.9).
From §6.3, if we parallely transport Xa from xa to xa + δxa, we obtain the
vector

Xa(x + δx) = Xa + δ̄Xa(x),

where, by (6.21),

δ̄Xa(x) = −Γabc(x)X
b(x)δxc.

Similarly, if we transport this vector subsequently to xa + δxa + ∆xa, we
obtain the vector

Xa(x + δx +∆x) = Xa(x + δx) + δ̄Xa(x + δx),

where, in this case,

δ̄Xa(x + δx) = −Γabc(x + δx)Xb(x + δx)∆xc.

Expanding by Taylor’s theorem and using the previous results, we obtain
(where everything is assumed evaluated at xa)

δ̄Xa(x + δx) = −(Γabc + ∂dΓ
a
bcδx

d)(Xb − ΓbefX
eδxf)∆xc

= −ΓabcX
b∆xc − ∂dΓ

a
bcX

bδxd∆xc

+ ΓabcΓ
b
efX

eδxf∆xc + ∂dΓabcΓ
b
efX

eδxdδxf∆xc.
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Neglecting the last term, which is third order, we have

Xa(x + δx +∆x) = Xa − ΓabcX
bδxc − ΓabcX

b∆xc − ∂dΓ
a
bcX

bδxd∆xc

+ ΓabcΓ
b
efX

eδxf∆xc.

To obtain the equivalent result for the path connecting xa to xa+δxa+∆xa

via xa + δxa, we simply interchange δxa and ∆xa to give

Xa(x +∆x + δx) = Xa − ΓabcX
b∆xc − ΓabcX

bδxc − ∂dΓ
a
bcX

b∆xdδxc

+ ΓabcΓ
b
efX

e∆xfδxc.

Hence, the difference between these two vectors is

∆Xa = Xa(x + δx +∆x)−Xa(x +∆x + δx)

= (∂dΓ
a
bc − ∂cΓ

a
bd + ΓaedΓ

e
bc − ΓaecΓ

e
bd)X

bδxc∆xd

= RabdcXbδxc∆xd

= −RabcdXbδxc∆xd,

Q

C1

C2

P

Fig. 6.10 Deforming C1 into C2

(infinitesimally at each stage).

by (6.40) and the fact that the Riemann tensor is antisymmetric on its
last pair of indices (see (6.78)). Thus, the vector Xa will be the same at
xa+ δxa+∆xa, irrespective of which path is taken, if and only if Rabcd = 0.
It follows that, if the Riemann tensor vanishes, then the vector Xa will
not change if parallely transported around any infinitesimal closed loop.
Using this result and assuming themanifold has no holes (i.e. themanifold
is simply connected), then we can continuously deform one curve into
another by deforming the curves infinitesimally at each stage (Fig. 6.10),
which establishes that the connection is integrable (check).

The second lemma is as follows.

Lemma: A necessary and sufficient condition for a manifold to be
affine flat is that the connection is symmetric and integrable.

Sufficiency is established by first choosing n linearly independent
vectors

Xi
a (i = 1, 2, . . . , n)

at P, where the bold index i runs from 1 to n and labels the vectors. Using
the integrability assumption, we can construct the parallel vector fields
Xi

a(x) and these will also be linearly independent everywhere. Therefore,
at each point P, Xi

a(P) is a non-singular matrix of numbers and so we
can construct its inverse, denoted by X i

b, which must satisfy

X i
bXi

a = δab , (6.46)

where there is a summation over i. Multiplying the propagation equation

∂bXi
a + ΓaebXi

e = 0,
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by Xi
c produces

Γacb = −X i
c∂bXi

a. (6.47)

Differentiating (6.46), we obtain

Xi
a∂cX i

b = −X i
b∂cXi

a = Γabc, (6.48)

by (6.47). Using (6.48), we find that

Xi
a (∂cX i

b − ∂bX i
c
)
= Γabc − Γacb = 0,

because the connection is symmetric by assumption. Since the determi-
nant ofXi

a is non-zero, it follows that the quantity in bracketsmust vanish,
from which we get

∂cX i
b = ∂bX i

c.

This in turn implies that Xi
b must (locally) be the gradient of n scalar

fields, f i(x), say, that is,

X i
b = ∂bf i(x).

If we consider the transformation

xa → x′a = f a(x),

then

∂x′a

∂xb
= ∂b f a(x) = X a

b, (6.49)

and so, taking inverses,

∂xa

∂x′b
= Xb

a. (6.50)

Multiplying (6.23) by Xa
h and using (6.49) and (6.50) and then (6.46)

and (6.48), we find

Xa
hΓ′a

bc = Xa
h(Xa

dXb
eXc

fΓdef −Xb
eXc

f∂eXa
f)

= δhdXb
eXc

fΓdef −Xb
eXc

fΓhef ≡ 0.

Again, since the determinant of Xa
h is non-zero, Γ′a

bc vanishes every-
where in this coordinate system and hence the manifold is affine flat. The
necessity is straightforward and is left as an exercise.

If we put these two lemmas together, we get the result we have been
looking for.

Theorem: A necessary and sufficient condition for a manifold to be
affine flat is that the Riemann tensor vanishes.
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6.8 The metric
Consider a symmetric covariant tensor field of type (0, 2), say gab(x). The
determinant of gab is denoted by

g = det (gab), (6.51)

and, provided the determinant det gab 6= 0, then gab is said to define a
(non-singular) metric. Since gab is a symmetric matrix, at every point P
we may calculate the eigenvalues at P. We define the signature of the
metric (at P) to be the number of positive eigenvalues minus the number
of negative eigenvalues (there are no zero eigenvalues – why?). Although
the eigenvalues themselves depend on the choice of coordinates the sig-
nature does not (why?). For a Riemannian metric, all the eigenvalues
are positive. A manifold endowed with such a metric is called a Rieman-
nian manifold. A Riemannian metric can be used to define distances
and lengths of vectors. The infinitesimal distance (or interval in rela-
tivity), which we call ds, between two neighbouring points xa and xa+dxa

is defined by

ds2 = gab(x)dxa dxb. (6.52)

Note that this gives the square of the infinitesimal distance, (ds)2, which
is conventionally written as ds2. The equation (6.52) is also known as the
line element and gab is also called themetric form or first fundamen-
tal form. The square of the length or norm of a contravariant vector
Xa is defined by

X2 := gab(x)XaXb. (6.53)

The metric is said to be positive definite if, for all non-zero vectors
X, X2 > 0. It then follows from the definition that a Riemannian metric is
nothing but a positive definite metric. For relativity theory, as we will see,
one has one positive and three negative eigenvalues, so the signature is
−2. We call such a metric Lorentzian. (Note that some authors adopt a
different convention in which a Lorentzian metric has three positive and
one negative eigenvalues so the signature is +2). Because a Lorentzian
metric has eigenvalues of different signs, one can find non-zero vectors
such that

gabXaXb = 0. (6.54)

We call such vectors null vectors. Just as in special relativity, the set of
null vectors at a point P form a null cone (in the tangent space TPM)
which divides the vectors at P into ‘timelike’, ‘spacelike’, or ‘null’.
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We may also use the metric to define the angle between two vectors
Xa and Ya with X2 6= 0 and Y2 6= 0. This is given by

cos (X,Y) =
gabXaYb

(|gcdXcXd|)
1
2 (|gefYeYf|)

1
2

. (6.55)

In particular, the vectors Xa and Ya are said to be orthogonal if

gabXaYb = 0. (6.56)

So that a null vector is orthogonal to itself.
Since a metric satisfies g 6= 0, at every point we may define the inverse

metric gab in the xa-coordinates, by

gab gbc = δca. (6.57)

Although it is not completely obvious, it follows from this definition that
gab is a contravariant tensor of rank 2 and it is called the contravariant
metric (exercise).Wemay now use gab and gab to lower and raise tensorial
indices by defining

T······
··· a ··· = gab T··· b ···

··· ··· , (6.58)

and

T··· a ···
··· ··· = gab T··· ···

··· b ···, (6.59)

where we use the same kernel letter for the tensor irrespective of the posi-
tion of the indices. Since from now on we shall be working with a manifold
endowed with a metric, we shall regard such associated contravariant and
covariant tensors as representations of essentially the same geometric ob-
ject. Thus, in particular, Tab, Tab, Tab, and Tab may all be thought of as
different representations of the same geometric object. Since we can raise
and lower indices freely with the metric, we must be careful about the or-
der in which we write contravariant and covariant indices. For example,
in general, Xa

b will be different from Xb
a.

6.9 Metric geodesics
Consider a timelike curve γ (i.e. a curve with timelike tangent vector) with
parametric equation xa = xa(u). Dividing equation (6.52) by the square
of du, we get

(
ds
du

)2

= gab
dxa

du
dxb

du
. (6.60)
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Then the interval s between two points P1 and P2 on γ is given by

s =
∫ P2

P1

ds =
∫ P2

P1

ds
du

du =
∫ P2

P1

(
gab

dxa

du
dxb

du

)1/2

du. (6.61)

We define a timelike metric geodesic between any two points P1 and
P2 as the privileged curve joining them whose interval is stationary un-
der small variations that vanish at the end points. Hence, the interval may
be a maximum, a minimum, or a saddle point. Deriving the geodesic
equations involves the calculus of variations and we postpone this to
the next chapter. In that chapter, we shall see that the Euler-Lagrange
equations result in the second-order differential equations

gab
d2xb

du2
+ {bc, a} dxb

du
dxc

du
=

(
d2s
du2

/
ds
du

)
gab

dxb

du
, (6.62)

where the quantities in curly brackets are called theChristoffel symbols
of the first kind and are defined in terms of derivatives of the metric by

{ab, c} = 1
2 (∂b gac + ∂a gbc − ∂c gab) . (6.63)

Multiplying through by gad and using (6.57), we get the equations

d2xa

du2
+
{
a
bc

}
dxb

du
dxc

du
=

(
d2s
du2

/
ds
du

)
dxa

du
, (6.64)

where
{
a
bc

}
are theChristoffel symbols of the second kind defined by

{
a
bc

}
= gad {bc, d} . (6.65)

In addition, the norm of the tangent vector dxa/du is given by (6.60).
If, in particular, we choose a parameter u which is linearly related to the
interval s, that is,

u = αs + β, (6.66)

where α and β are constants, then the right hand side of (6.64) vanishes.
In the special case when u = s, the equations for a metric geodesic
become

d2xa

ds2
+
{
a
bc

}
dxb

ds
dxc

ds
= 0 (6.67)

and
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gab
dxa

ds
dxb

ds
= 1. (6.68)

Apart from trivial sign changes, similar results apply for spacelike
geodesics, except that we replace s by σ, say, where

dσ2 = −gabdxadxb.

However, in the case of an indefinite metric, there exist geodesics for
which the distance between any two points is zero called null geodesics.
It can also be shown that these curves can be parametrized by a special
parameter u, called an affine parameter, such that their equation does
not possess a right hand side, and again takes the form

d2xa

du2
+
{
a
bc

}
dxb

du
dxc

du
= 0, (6.69)

where

gab
dxa

du
dxb

du
= 0. (6.70)

The last equation follows since the distance between any two points is
zero, or, equivalently, the tangent vector is null. Again, any other affine
parameter is related to u by the transformation

u→ αu + β,

where α and β are constants.
Manifold M

Affine
geodesics

Metric
geodesics

Fig. 6.11 Affine andmetric geodesics on
a manifold.

6.10 The metric connection
In general, if we have a manifold endowed with both an affine connec-
tion and metric, then it possesses two classes of curves, affine geodesics
and metric geodesics, which can be different (Fig. 6.11). In standard Eu-
clidean space, both classes are given by straight lines. Affine geodesics
generalize the notion of a straight line as one which does not change direc-
tion, while metric geodesics generalise the notion of a straight line as the
shortest distance between two points. However, comparing (6.37) with
(6.67), the two classes will coincide if we take

Γabc =
{
a
bc

}
, (6.71)

or, using (6.65) and (6.63), if

Γabc =
1
2g

ad (∂bgdc + ∂cgdb − ∂dgbc) . (6.72)
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It follows from the last equation that the connection is necessarily sym-
metric, i.e.

Γabc = Γacb. (6.73)

In fact, if one checks the transformation properties of
{
a
bc

}
from first prin-

ciples, it does indeed transform like a connection (exercise). This special
connection built out of the metric and its derivatives is called the met-
ric connection and ensures that the two notions of geodesic coincide.
From now on, we shall always work with the metric connection and we
shall denote it by Γabc rather than

{
a
bc

}
where Γabc is defined by (6.72). This

definition leads immediately to the identity (exercise)

∇c gab ≡ 0, (6.74)

so that the metric is ‘covariantly constant’. Conversely, if we require that
(6.74) holds for an arbitrary symmetric connection, then it can be de-
duced (exercise) that the connection is necessarily the metric connection.
Thus, we have the following important result.

Theorem: If ∇a denotes the covariant derivative with respect to the
symmetric affine connectionΓabc, then the necessary and sufficient con-
dition for the covariant derivative of the metric to vanish is that the
connection is the metric connection.

In addition, we can show that

∇cδ
a
b ≡ 0, (6.75)

and

∇c gab ≡ 0. (6.76)

6.11 Metric flatness
Now, at any point P of a manifold, gab is a symmetric matrix of real num-
bers. Therefore, by standard matrix theory, there exists a transformation
which reduces the matrix at P to diagonal form with every diagonal term
either +1 or −1. The excess of plus signs over minus signs in this form
is just the signature that we defined earlier. Assuming that the metric is
continuous over the manifold, then, since the determinant is non-zero, it
follows that the signature is an invariant. In general, it will not be possible
to find a coordinate system in which the metric reduces to this diago-
nal form everywhere. If, however, there does exist a coordinate system
in which the metric reduces to diagonal form with ±1 diagonal elements
everywhere, then the metric is called flat.
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How does metric flatness relate to affine flatness in the case we are
interested in, that is, when the connection is the metric connection? The
answer is contained in the following result.

Theorem: A necessary and sufficient condition for a metric to be flat
is that its Riemann tensor vanishes.

Necessity follows from the fact that there exists a coordinate system in
which the metric is diagonal with ±1 diagonal elements. Since the met-
ric is constant everywhere, its partial derivatives vanish and therefore the
metric connection Γabc vanishes as a consequence of the definition (6.72).
Since Γabc vanishes everywhere then so must its derivatives. (One way to
see this is to recall the definition of partial differentiation which involves
subtracting quantities at neighbouring points. If the quantities are always
zero, then their difference vanishes, and so does the resulting limit.) The
Riemann tensor therefore vanishes by the definition (6.40).

Conversely, if the Riemann tensor vanishes, then by the theorem of
§6.7, there exists a special coordinate system in which the connection
vanishes everywhere. Since this is the metric connection, by (6.74),

∇cgab = ∂cgab − Γdacgdb − Γdbcgad = 0,

from which we get

∂cgab = Γdac gdb + Γdbc gad, (6.77)

and it follows that ∂cgab = 0. The metric is therefore constant everywhere
and hence can be transformed into diagonal form with diagonal elements
±1. Note the result (6.77), which expresses the ordinary derivative of the
metric in terms of the connection. This equation will prove useful later.

Combining this theoremwith the theorem of §6.7, we see that, if we use
the metric connection, then metric flatness coincides with affine flatness.

6.12 The curvature tensor
The curvature tensor or Riemann–Christoffel tensor (Riemann
tensor for short) is defined by (6.40), namely,

Rabcd = ∂cΓ
a
bd − ∂dΓ

a
bc + ΓebdΓ

a
ec − ΓebcΓ

a
ed,

where Γabc is the metric connection, which by (6.72) is given as

Γabc =
1
2g

ad(∂bgdc + ∂cgdb − ∂dgbc).

Thus, Rabcd depends on the metric and its first and second derivatives.
It follows immediately from the definition that it is anti-symmetric on its
last pair of indices

Rabcd = −Rabdc. (6.78)
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The fact that the connection is symmetric leads to the identity (exercise)

Rabcd + Radbc + Racdb ≡ 0. (6.79)

Lowering the first index with the metric, then it is easy to establish, for
example by using geodesic coordinates, that the lowered tensor is sym-
metric under interchange of the first and last pair of indices, that is
(exercise),

Rabcd = Rcdab. (6.80)

Combining this with equation (6.78), we see that the lowered tensor is
anti-symmetric on its first pair of indices as well:

Rabcd = −Rbacd. (6.81)

Collecting these symmetries together, we see that the lowered curvature
tensor satisfies

Rabcd = −Rabdc = −Rbacd = Rcdab,

Rabcd + Radbc + Racdb ≡ 0.
(6.82)

These symmetries considerably reduce the number of independent com-
ponents; in fact, in n dimensions, the number is reduced from n4 to
1
12n

2(n2 − 1). In addition to the algebraic identities, it can be shown,
again most easily by using geodesic coordinates, that the curvature tensor
satisfies a set of differential identities called the Bianchi identities:

∇aRdebc + ∇cRdeab +∇bRdeca ≡ 0. (6.83)

We can use the curvature tensor to define several other important tensors.
The Ricci tensor is defined by the contraction

Rab = Rcacb = gcdRdacb, (6.84)

which by (6.80) is symmetric. A final contraction defines the curvature
scalar or Ricci scalar R by

R = gabRab. (6.85)

These two tensors can be used to define the Einstein tensor

Gab = Rab − 1
2gabR, (6.86)

which is also symmetric and, by (6.83), the Einstein tensor can be shown
to satisfy the contracted Bianchi identities

∇bGa
b ≡ 0. (6.87)

Note that some authors adopt a different sign convention, which leads to
the Riemann tensor or the Ricci tensor having the opposite sign to ours.
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6.13 The Weyl tensor
We shall mostly be concerned with tensors in four dimensions or less.
The algebraic identities (6.82) lead to the following special cases for the
curvature tensor:

(1) if n = 1, Rabcd = 0;

(2) if n = 2, Rabcd has one independent component – essentially R;

(3) if n = 3, Rabcd has six independent components – essentially Rab;

(4) if n = 4, Rabcd has twenty independent components – ten of which
are given by Rab and the remaining ten by the Weyl tensor.

TheWeyl tensor or conformal tensorCabcd is defined in n dimensions,
(n ⩾ 4) by

Cabcd = Rabcd +
1

n− 2
(gadRcb + gbcRda − gacRdb − gbdRca)

+
1

(n− 1)(n− 2)
(gacgdb − gadgcb)R.

Thus, in four dimensions, this becomes

Cabcd = Rabcd + 1
2 (gadRcb + gbcRda − gacRdb − gbdRca)

+ 1
6 (gacgdb − gadgcb)R. (6.88)

It is straightforward to show that the Weyl tensor possesses the same
symmetries as the Riemann tensor, namely,

Cabcd = −Cabdc = −Cbacd = Ccdab,

Cabcd +Cadbc +Cacdb ≡ 0.
(6.89)

However, it possesses an additional symmetry

Ca
bad ≡ 0. (6.90)

Combining this result with the previous symmetries, it then follows that
the Weyl tensor is trace-free; in other words, it vanishes if one contracts
any pair of indices. One can think of the Weyl tensor as that part of the
curvature tensor for which all contractions vanish.

Two metrics gab and ḡab are said to be conformally related or
conformal to each other if

ḡab = Ω2gab, (6.91)

where Ω(x) is a non-zero differentiable function. Given a manifold with
two metrics defined on it which are conformal, then it is straightforward
from (6.53) and (6.55) to show that angles between vectors and ratios
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of magnitudes of vectors, but not lengths, are the same for each met-
ric. Moreover, the null geodesics of one metric coincide with the null
geodesics of the other (exercise). The metrics also possess the same Weyl
tensor, i.e.

C̄a
bcd = Ca

bcd. (6.92)

Any quantity which satisfies a relationship like (6.92) is called confor-
mally invariant. Note the position of the indices on the Weyl tensor is
important (with one index up and three indices down). The Weyl tensor
with, for example, two indices up and two down is not conformally in-
variant. Other examples of quantities which are not conformally invariant
are gab, Γabc, and R

a
bcd. A metric is said to be conformally flat if it can be

reduced to the form

gab = Ω2ηab, (6.93)

where ηab is a flat metric. We end this section by quoting two results
concerning conformally flat metrics.

Theorem: A necessary and sufficient condition for a metric to be
conformally flat is that its Weyl tensor vanishes everywhere.

Theorem:Any two-dimensional Riemannianmanifold is conformally
flat.

Exercises

6.1 (§6.2) Prove (6.13) by showing that LXδ
a
b = 0 in two ways: (i) using

(6.17), and (ii) from first principles (remembering Exercise 5.8).

6.2 (§6.2) Use (6.17) to find expressions for LXZbc and LX(YaZbc). Use
these expressions and (6.15) to check the Leibniz property in the form
(6.12).

6.3 (§6.3) Establish (6.23) by assuming that the quantity defined by
(6.22) has the tensor character indicated. Take the partial derivative of

δ′ac =
∂x′a

∂x′c
=
∂x′a

∂xd
∂xd

∂x′c
,

with respect to x′b to establish the alternative form, (6.24).

6.4 (§6.3) Show that covariant differentiation commutes with contraction
by checking that ∇cδ

a
b = 0.

6.5 (§6.3) Assuming (6.22) and (6.25), apply the Leibniz rule to the
covariant derivative of XaYa, where Ya is arbitrary, to verify (6.26).
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6.6 (§6.3) Check (6.29).

6.7 (§6.4) If X, Y and Z are vector fields, f and g smooth functions, and
λ and μ constants, then show that
(i) ∇X(λY + μZ) = λ∇XY + ν∇XZ,
(ii) ∇fX+gYZ = f∇XZ + g∇YZ,
(iii) ∇X(fY) = (Xf)Y + f∇XY.

6.8 (§6.4) Show that (6.33) leads to (6.34).

6.9 (§6.4) If s is an affine parameter, then show that, under the transfor-
mation

s→ s̄ = s̄(s),

the parameter will be affine only if s̄ = αs+β where α and β are constants.

6.10 (§6.5) Show that

∇c∇dXa
b −∇d∇cXa

b = RaecdXe
b − RebcdXa

e.

[Hint: write out all the terms on the LHS and many should cancel in pairs
leaving the terms on the RHS.]

6.11 (§6.5) Show that

∇X(∇YZa)−∇Y(∇XZa)−∇[X,Y]Z
a = RabcdZbXcYd.

[Hint: write out all the terms on the LHS and many should cancel in pairs
leaving the terms on the RHS.]

6.12 (§6.7) Prove that, if a manifold is affine flat, then the connection is
necessarily integrable and symmetric.

6.13 (§6.8) Show that if gab is defined by (6.57) then it is a rank 2 con-
travariant tensor. [Hint: one method is to start from the primed version
of (6.57).]

6.14 (§6.8) Show that if ga is diagonal, i.e. gab = 0 if a 6= b, then gab is
also diagonal with corresponding reciprocal diagonal elements.

6.15 (§6.8) The line elements of R3 in Cartesian, cylindrical polar, and
spherical polar coordinates are given respectively by
(i) ds2 = dx2 + dy2 + dz2,
(ii) ds2 = dR2 + R2dϕ2 + dz2,
(iii) ds2 = dr2 + r2dθ2 + r2 sin2 θdϕ2.
Find gab, gab, and g in each case.

6.16 (§6.8) Express Tab in terms of Tcd.

6.17 (§6.9) Write down the tensor transformation law of gab. Show
directly that {

a
bc

}
= 1

2g
ad(∂bgdc + ∂cgdb − ∂dgbc),
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transforms like a connection.

6.18 (§6.9) Find the geodesic equation for R3 in cylindrical polars. [Hint:
use the results of Exercise 6.15(ii) to compute the metric connection and
substitute in (6.69).]

6.19 (§6.9) Consider a 3-space with coordinates (xa) = (x, y, z) and line
element

ds2 = dx2 + dy2 + dz2.

Prove that the null geodesics are given by

x = ℓu + ℓ′, y = mu +m′, z = nu + n′,

where u is a parameter and ℓ, ℓ′, m, m′, n, and n′ are arbitrary constants
satisfying ℓ2 +m2 − n2 = 0.

6.20 (§6.10) Prove that ∇cgab ≡ 0. Deduce that ∇bXa = gac∇bXc.

6.21 (§6.10) Suppose we have an arbitrary symmetric connection Γabc
satisfying ∇cgab = 0. Deduce that Γabc must be the metric connection.
[Hint: use the equation to find expressions for ∂bgdc, ∂cgdb, and −∂dgbc, as
in (6.77), add the equations together, and multiply by 1

2g
ad.]

6.22 (§6.11) The Minkowski line element in Minkowski coordinates

(xa) = (x0, x1, x2, x3) = (t, x, y, z),

is given by

ds2 = dt2 − dx2 − dy2 − dz2.

(i) What is the signature?
(ii) Is the metric non-singular?
(iii) Is the metric flat?

6.23 (§6.11) The line element of R3 in a particular coordinate system is

ds2 = (dx1)2 + (x1)2(dx2)2 + (x1 sin x2)2(dx3)2.

(i) Identify the coordinates.
(ii) Is the metric flat?

6.24 (§6.12) Establish the identities (6.79) and (6.80). [Hint: choose an
arbitrary point P and introduce geodesic coordinates at P.] Show that
(6.79) is equivalent to Ra[bcd] ≡ 0.

6.25 (§6.12) Establish the identity (6.83). [Hint: use geodesic coordi-
nates.] Show that (6.83) is equivalent to Rde[ab;c] ≡ 0. Deduce (6.87).

6.26 (§6.12) Show that Gab = 0 if and only if Rab = 0.
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6.27 (§6.13) Establish the identity (6.90). Deduce that the Weyl tensor
is trace-free on all pairs of indices.

6.28 (§6.13) Show that angles between vectors and ratios of lengths of
vectors, but not lengths, are the same for conformally related metrics.

6.29 (§6.13) Prove that the null geodesics of two conformally relatedmet-
rics coincide. [Hint: the two classes of geodesics need not both be affinely
parametrized.]

6.30 (§6.13) Given two metrics with are conformally related i.e.

ḡab = Ω2gab,

then defining

W = lnΩ, Wc = ∇c(ln Ω), Wcd = ∇c(∇d(ln Ω)),

show that
(i)

Wcd = Wdc.

(ii)

Γ̄abc = Γabc + δ
a
bWc + δacWb − gbcW a.

(iii)

R̄abcd = Rabcd + δadWcb − δacWbd − gbdW a
c − gbcW a

d + δ
a
dWbWd − δac gbdWeW e

− gbcWdW a − δadWbW c − δadgbcWeW e − gbdWcW a.

(iv) Use the definition (6.88) to deduce (6.92). [Hint: parts (iii) and (iv)
involve quite long but straightforward calculations (that is if you are care-
ful about symmetries and dummy indices) and eventually some of the
terms cancel in pairs to give simpler expressions.]

6.31 (§6.13) Establish the theorem that any two-dimensional Lorentzian
manifold (i.e. at any point the metric can be reduced to the diagonal form
(+1,−1)) is conformally flat. [Hint: use null curves as coordinate curves,
that is, change to new coordinates

λ = λ(x0, x1), ν = ν(x0, x1),

satisfying

gabλ,aλ,b = gabν,aν,b = 0,
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and show that the line element reduces to the form

ds2 = e2μdλdν,

and, finally, introduce new coordinates 1
2 (λ + ν) and 1

2 (λ− ν).]

6.32This final exercise consists of a long calculation which will be needed
later in the book. If we take coordinates

(xa) = (x0, x1, x2, x3) = (t, r, θ,ϕ),

then the four-dimensional spherically symmetric line element can be
shown to have the form (see Chapter 15 equation (15.37))

ds2 = eνdt2 − eλdr2 − r2dθ2 − r2 sin θ2dϕ2,

where ν = ν(t, r) and λ = λ(t, r) are arbitrary functions of t and r.
(i) Find gab, g and gab (see Exercise 6.14).
(ii) Use the expressions in (i) to find Γabc. [Hint: remember Γabc = Γacb.]
(iii) Calculate Rabcd [Hint: use the symmetry relations (6.82).]
(iv) Calculate Rab, R, and Gab.
(v) Calculate Ga

b(= gacGcb = Gb
a).

Further reading

Here again we recommend the same set of books as suggested for
Chapter 5.
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Hughston, L. P., and Tod, K. P. (1990). An Introduction to General
Relativity. Cambridge University Press, Cambridge.

Landau, L. D., and Lifshitz, E. M. (1971). The Classical Theory of Fields.
Pergamon, Oxford.

Misner, C. W., Thorne, K. S., and Wheeler, J. A. (1973). Gravitation.
Freeman, San Francisco.

O’Neil, B. (1983). Semi-Riemannian Geometry: With Application to Rela-
tivity. Pure and Applied Mathematics Series. Academic Press, New York,
NY.

Penrose, R. (1968). ‘Structure of space-time’ in DeWitt, C. M., and
Wheeler, J. A., eds, Battelle Rencontres 1967 Lectures in Mathematics and
Physics. W. A. Benjamin, New York, NY, 121–235.

Penrose, R., and Rindler, W. (1986). Spinors and Space-Time. Vols 1 and
2, Cambridge University Press, Cambridge.
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7Integration, variation, and
symmetry

7.1 Tensor densities
A tensor density of weightW, denoted conventionally by a gothic letter,
Ta···b···, transforms like an ordinary tensor, except that, in addition, theWth
power of the Jacobian

J =
∣∣∣∣ ∂xa∂x′b

∣∣∣∣ ,
appears as a factor, i.e.

T ′a···
b··· = JW ∂x

′a

∂xc
· · · ∂xd

∂x′b
· · · Tc···d···. (7.1)

Then, with certain modifications, we can combine tensor densities in
much the same way as we do tensors. One exception, which follows from
(7.1), is that the product of two tensor densities of weight W1 and W2 is
a tensor density of weightW1 +W2. There is some arbitrariness in defin-
ing the covariant derivative of a tensor density, but we shall adhere to the
definition that, if Ta···b··· is a tensor density of weightW, then

∇cT
a···
b··· = usual terms if Ta···b···were a tensor−WΓddcT

a···
b···. (7.2)

For example, the covariant derivative of a vector density of weightW is

∇cT
a = ∂cT

a + ΓabcT
b −WΓbbcT

a.

In the special case when W = +1 and c = a, we get the important result
(check)

∇aT
a = ∂aT

a, (7.3)

that is, the covariant divergence of a vector density of weight +1 is
identical to its ordinary divergence. It can be shown that both these
quantities are scalar densities of weight +1 (exercise).

Introducing Einstein’s Relativity. Second Edition. Ray d’Inverno and James Vickers, Oxford University Press.
© Ray d’Inverno and James Vickers (2022). DOI: 10.1093/oso/9780198862024.003.0007
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7.2 The Levi-Civita alternating symbol

We introduce a quantity which is a generalization of the Kronecker delta
δab , but which turns out to be a tensor density. TheLevi-Civita alternat-
ing symbol εabcd is a completely anti-symmetric tensor density of weight
+1 and contravariant rank 4, whose values in any coordinate system is
+1 or −1 if abcd is an even or odd permutation of 0123, respectively,
and zero otherwise. Thus, for example, in four dimensions, if we let the
coordinates range from 0 to 3 (as we shall), i.e.

(xa) = (x0, x1, x2, x3),

then some of its values are

ε0123 = ε2301 = −ε0132 = −ε0321 = +1,

and

ε0120 = ε0331 = ε0101 = 0.

We can use εabcd to define the determinant of a second-rank covariant
tensor Tab by

det(Tab) =
1
4!
εabcdεefghTaeTbfTcgTdh, (7.4)

which can be shown to be equal to the standard definition where one
expands in rows and etc. Since εabcd is a tensor density of weight +1, we
see from (7.4) that det(Tab) is a scalar density of weight +2. This is in
agreement with the fact that

T ′
ab(x

′) =
∂xc

∂x′a
∂xd

∂x′b
Tcd(x) ⟹ detT ′ = J 2 detT.

Assuming the determinant is non-zero, we can construct the inverse of a
second-rank tensor. Similarly, we can define the covariant version εabcd,
which has weight−1. It can be used, in particular, to form the determinant
of a second-rank contravariant tensor Tab,

detTab =
1
4!
εabcdεefghTaeTbfTcgTdh,

which is a scalar density of weight −2. The covariant derivatives of both
εabcd and εabcd vanish identically (exercise), which from one point of view
motivates the definition (7.2).

We define the generalized Kronecker delta by

δabcd =


+1 for a 6= b, a = c, b = d

-1 for a 6= b, a = d, b = c

0 otherwise
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and similarly for higher-order tensors. They are constant tensors of the
type indicated, and can be defined in terms of the Kronecker delta by the
determinant relationships

δabcd =
∣∣∣∣δac δbc
δad δbd

∣∣∣∣ ,
and

δabcdef =

∣∣∣∣∣∣
δad δbd δcd
δae δbe δce
δaf δbf δcf

∣∣∣∣∣∣ ,
and so forth. In four dimensions they are related to products of the
alternating symbols according to

εabcdεefgh = δabcdefgh ,

εabcdεefgd = δabcefg ,

εabcdεefcd = 2δabef ,

εabcdεebcd = 3!δae ,

εabcdεabcd = 4!.

7.3 The metric determinant
If we have a Riemannian manifold with metric gab, then it transforms
according to

g′ab(x
′) =

∂xc

∂x′a
∂xd

∂x′b
gcd(x), (7.5)

and so, taking determinants, we have

g′ = J2g.

Hence the metric determinant g is a scalar density of weight +2. In later
chapters, we shall be working with metrics of negative signature, in
which case g will be negative, and so we write the last equation in the
equivalent form

(−g′) = J2(−g).
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Since all these terms are now positive, we can take square roots, to get√
−g′ = J

√
−g

and hence
√
−g is a scalar density of weight +1. The quantity

√
−g

plays an important role in integration. Given any tensorTa···b···, we can form
the product

√
−gTa···b··· which is then a tensor density of weight + 1.

In particular, we can deduce an important result from equation (7.3),
namely, for any vector T a,

∇a[
√
−gT a] = ∂a[

√
−gT a]. (7.6)

Now, at any point, the covariant and contravariant metrics are sym-
metric matrices which are inverse to each other by

gabg bc = δca.

Let us digress for a moment and consider the general case of finding
the derivative of a determinant of a matrix whose elements are functions
of the coordinates. Consider any square matrix A = (aij). Then its inverse,
(bij), say, is defined by

(bij) =
1
a
(Aij)T =

1
a
(A ji), (7.7)

where a is the determinant of A, Aij is the cofactor of aij, and T denotes
the transpose. Let us fix i, and expand the determinant a by the ith row.
Then

a =
n∑
j=1

aijAij,

where the index i is not summed and we have explicitly used the summa-
tion sign for summing over j for clarity. If we partially differentiate both
sides with respect to aij, then we get

∂a
∂aij

= Aij, (7.8)

since aij does not occur in any of the cofactors Aij (i fixed, j runs from 1
to n). Repeating the argument for every i, as i runs from 1 to n, we see
that the formula (7.8) is quite general. Let us suppose that the aij are all
functions of the coordinates x k. Then the determinant is a functional of
the aij, which in turn are functions of the x k, that is,

a = a(aij(x k)).
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Differentiating this partially with respect to x k, using the function of a
function rule and equation (7.8), we obtain

∂a
∂x k

=
∂a
∂aij

∂aij
∂x k

= Aij
∂aij
∂x k

= ab ji
∂aij
∂x k

,

by equation (7.7). Applying this result to the metric determinant g and
remembering that gab is symmetric, we get the useful equation

∂cg = ggab∂cgab. (7.9)

We now combine this result with (6.77) (which comes directly from the
vanishing of the covariant derivative of the metric) and find

∂cg = ggab(Γdacgdb + Γdbcgad)

= gδadΓ
d
ac + gδ

b
dΓ

d
bc

= 2gΓaac. (7.10)

Let us compute the covariant derivative of g using (7.2). Then, since
g is a scalar density of weight +2, we have

∇cg = ∂cg− 2gΓaac,

and so by equation (7.10) it follows that

∇cg ≡ 0. (7.11)

This is again intimately connected with the choice of the definition (7.2).
Similarly, we find from equation (7.10) that

∂c
√
−g−

√
−gΓaac = 0,

that is, by (7.2),

∇c
√
−g ≡ 0. (7.12)

In particular, for any tensor Ta···b···, this leads to the identity

∇c[
√
−gTa···b···] =

√
−g(∇cTa···b···), (7.13)

that is, we can pull factors of
√
−g and g through covariant deriva-

tives in the same way as we can with factors involving the covariant or
contravariant metric.
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7.4 Integrals and Stokes’ theorem

Unlike tensors in general, we can add a scalar field ϕ evaluated at two
different points, x1 and x2, say, and the resulting quantity is still a scalar
since, under a coordinate transformation, the sum transforms like

ϕ′(x′1) + ϕ′(x′2) = ϕ(x1) + ϕ(x2), (7.14)

by (5.20). Hence, we might imagine that it is possible to integrate a scalar
field ϕ over some n-dimensional region Ω of a manifold M. However, it
turns out that the volume element dΩ is not a scalar but, as we shall see, a
scalar density of weight−1. It follows that we can integrate a scalar density
Φ of weight +1 over a region Ω, ∫

Ω
ΦdΩ, (7.15)

since at each point ΦdΩ is a scalar and can be added together by (7.14).
There are analogous statements which can bemade about integration over
curves, surfaces, and hypersurfaces.

Consider anm-dimensional subspace ofMwhose parametric equation
by (5.2) is

xa = xa(ui), (i = 1, 2, . . . ,m).

The ‘volume’ element of this subspace is defined to be

dτ a1a2···am = δa1a2···amb1b2···bm
∂xb1

∂u1
∂xb2

∂u2
· · · ∂x

bm

∂um
du1du2 · · · dum. (7.16)

This element is an mth rank contravariant tensor under coordinate
transformations and behaves like a scalar under arbitrary change of
parameter. Hence, if Xa1 a2···am is an mth rank covariant tensor, then
Xa1 a2···amdτ

a1 a2···am is a scalar under both coordinate and parameter trans-
formations, and we can form the integral∫

Ωm

Xa1 a2···amdτ
a1 a2···am (7.17)

over some region Ωm of the subspace.
We now state Stokes’ theorem for a simply connectedm-dimensional

subspace Ωm bounded by the (m−1)-dimensional subspace ∂Ωm = Ωm−1:∫
∂Ωm

Xa1 a2 ··· am−1dτ
a1 a2 ··· am−1 =

∫
Ωm

∂amXa1 a2 ··· am−1dτ
a1 a2 ··· am . (7.18)

Writing this in terms of the parameters ui, this is nothing but the stan-
dard version of Stokes’ theorem for a region in Rn. We will be particularly
interested in the special case of a four-dimensional region Ω of a four-
dimensional manifold M, where Ω is bounded by the hypersurface ∂Ω
(Fig 7.1). Stokes’ theorem then becomes the divergence theorem or
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Ω �Ω
x0

x3

x2

x1

Fig. 7.1 A four-dimensional region Ω bounded by ∂Ω.

Gauss’s theorem for a contravariant vector density Ta of weight +1,
which we write in the form∫

∂Ω
TadSa =

∫
Ω
Ta,adΩ, (7.19)

where

dSa =
1
3!
εabcddτ bcd, (7.20)

and

dΩ =
1
4!
εabcddτ abcd. (7.21)

If we use the coordinates xa as parameters, then dΩ is written as d4x,
where

d4x := dx0dx1dx2dx3, (7.22)

and

dSa = (dx1dx2dx3, dx0dx2dx3, dx0dx1dx3, dx0dx1dx2). (7.23)

Note from the definition (7.21) that d4x is a scalar density of
weight −1.

A particularly important case of (7.19) is when we take Ta =
√
−gTa

and we use (7.6) and (7.13) to write

Ta,a = ∂a(
√
−gTa)

= ∇a(
√
−gTa)

=
√
−g∇aTa,

in which case (7.19) becomes the covariant divergence theorem∫
∂Ω
Ta

√
−gdSa =

∫
Ω
∇aT

a√−gdΩ. (7.24)
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7.5 The Euler-Lagrange equations
The variational principle and with it the Euler-Lagrange equations will
play an important role in this book. So, although it is something of a di-
gression, we shall, for completeness, include a brief discussion of their
derivation. Then, as a first indication of their usefulness, we shall show
in the next section how they provide an efficient method for obtaining
geodesics.

A functionalmay be defined as a correspondence between a real num-
ber and a function belonging to some class. Thus, a functional is a kind
of function where the independent variable is itself a function. One of the
basic problems in the calculus of variations is that of finding the stationary
values (maxima, minima, saddle points) of the action I defined by

I[y] =
∫ x2

x1
L(y, y′, x)dx, (7.25)

where L is a functional of the dynamical variable y(x), its derivative
y′ = dy/dx, and the coordinate x, and is called the Lagrangian. The
problem is easily generalized. In order to solve the problem, we need to
make use of the following result.

Lemma: If
∫ x2
x1
ϕ(x)η(x)dx = 0, where ϕ(x) is continuous and η(x) is

an arbitrary twice-differentiable function vanishing at the end points,
i.e. η(x1) = η(x2) = 0, then ϕ(x) ≡ 0.

To establish this, we suppose that ϕ(x) 6= 0 for some x = ξ in the
interval (x1, x2). To fix ideas, let us assume ϕ(ξ) > 0. Then, by continuity,
there exists a neighbourhood of ξ, (ξ1 < ξ < ξ2) for which ϕ(x) > 0.
Setting

η(x) =

{
(x− ξ1)

4(x− ξ2)
4 for x ∈ (ξ1, ξ2)

0 otherwise,

we find that η(x) satisfies the conditions of the above lemma. Furthermore,

∫ x2

x1
ϕ(x)η(x)dx =

∫ ξ2

ξ1

ϕ(x)η(x)dx > 0,

which produces a contradiction. Similarly, if we assume ϕ(ξ) < 0, then
again we get a contradiction, and so the result follows.

Returning to (7.25), we assume L is twice differentiable with respect
to its three variables. Let us vary y by an arbitrary small amount and
write

ȳ = y + εη(x), (7.26)
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where ε is small and η(x) satisfies the conditions of the lemma, that is,
it has continuous second derivatives and vanishes at x1 and x2 but is
otherwise arbitrary. We define a variation of y by

δy := ȳ− y = εη(x). (7.27)

Differentiating (7.26) with respect to x and using the prime notation, we
get

ȳ′ = y′ + εη′,

so that

δ(y′) := ȳ′ − y′ = εη′ = (δy)′,

from which we see that δ and d/dx acting on y commute. Then, working
to first order in ε,

I[ȳ] = I[y + δy]

=
∫ x2

x1
L(y + εη, y′ + εη′, x)dx

=
∫ x2

x1

(
L(y, y′, x) +

∂L
∂y
εη +

∂L
∂y′

εη′
)

dx,

by Taylor’s theorem. Thus defining the quantity

δI := I[y + δy]− I[y],

we get

δI = ε

∫ x2

x1

(
∂L
∂y
η +

∂L
∂y′

η′
)

dx.

The last term can be integrated by parts, to give∫ x2

x1

∂L
∂y′

η′dx =
[
∂L
∂y
η

]x2
x1

−
∫ x2

x1

d
dx

(
∂L
∂y′

)
η dx.

The term in square brackets vanishes since η(x1) = η(x2) = 0, and hence

δI = ε

∫ x2

x1

[
∂L
∂y

− d
dx

(
∂L
∂y′

)]
ηdx. (7.28)

If y = y(x) is a stationary curve, then δImust vanish to first order, and so,
using the above lemma, we find that y must satisfy the Euler-Lagrange
equation for L, that is,

∂L
∂y

− d
dx

(
∂L
∂y′

)
= 0. (7.29)
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Introducing some further notation which serves as a useful abbrevia-
tion, we define the variational derivative, functional derivative, or
Euler-Lagrange derivative of L by

δL
δy

:=
∂L
∂y

− d
dx

(
∂L
∂y′

)
,

so that (7.28) can be written as

δI =
∫ x2

x1

δL
δy
δydx. (7.30)

Then, in this formalism, the principle of stationary action requires

δI = 0, (7.31)

for arbitrary δy, which leads immediately by the lemma to the Euler-
Lagrange equation

δL
δy

= 0. (7.32)

The argument can be generalized to n dynamical variables, each of which
consists of functions of one variable y1(x), . . . , yn(x) in a straightforward
manner. Then the action is defined in terms of the Lagrangian by

I[y1, . . . , yn] =
∫ x2

x1
L(y1, . . . , yn, y′1, . . . , y

′
n, x)dx (7.33)

and the variations

yi → ȳi = yi + δyi (i = 1, 2, . . . , n),

where

δyi = εηi(x), ηi(x1) = ηi(x2) = 0,

lead to

δI =
∫ x2

x1

δL
δyi

δyidx (summed over i),

with

δL
δyi

:=
∂L
∂yi

− d
dx

(
∂L
∂y′i

)
.
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The principle of stationary action, δI = 0, for arbitrary independent
variations δyi, produces the Euler-Lagrange equations

∂L
∂yi

− d
dx

(
∂L
∂y′i

)
= 0. (i = 1, 2, . . . , n). (7.34)

The further generalization to a system of m dynamical variables yA(x)
(A = 1, 2, . . .m), defined on an n-dimensional manifold M, starts from
the action

I =
∫
Ω
L(yA,yA,b,xa)dΩ, (7.35)

where a comma in the subscript denotes a partial derivative, i.e.
yA,b = ∂byA, and the Lagrangian L is a scalar density of weight +1 and
leads to the Euler-Lagrange equations

δL
δyA

:=
∂L
∂yA

−
(
∂L
∂yA,b

)
,b
= 0 (A = 1, 2, . . .m). (7.36)

The significance of the variational principle approach is that most, if
not all, physical theories may be formulated by specifying a suitable La-
grangian. The Euler-Lagrange equations can then be computed in a
straightforward manner and these constitute the field equations of the
theory.

7.6 The variational method for geodesics

We now apply the technique of the last section to finding a convenient
way for computing the geodesics of a given metric. We start from the
Lagrangian functional (compare with (7.33))

L = L(xa, ẋa, u),

where u is a parameter along a timelike curve and the dot denotes
differentiation with respect to u, defined in terms of the metric by

L = [gab(x)ẋaẋb]
1/2

. (7.37)

It follows from (6.60) that the action is∫ P2

P1

Ldu =
∫ P2

P1

ds = s, (7.38)

where s is the interval between any two points P1 and P2 on a curve con-
necting them. The metric geodesic between these points P1 and P2 is
defined as that curve joining themwhose interval is stationary under small
variations which vanish at the end points. In other words, we need to solve
the principle of stationary action problem δs = 0. The solution consists
of the Euler-Lagrange equations (7.34) in the form
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∂L
∂xa

− d
du

(
∂L
∂ẋa

)
= 0. (7.39)

In principle these equations solve the problem, but in practice there are a
number of difficulties. First of all, it is much better to work where possible
with L2 rather than L to avoid square roots. Then there is the freedom in
the choice of the parameter u. Finally, in the case of an indefinite metric,
there is the distinction between null and non-null geodesics. Assuming
L 6= 0 and multiplying (7.39) by −2L, we get

2L
[

d
du

(
∂L
∂ẋa

)
− ∂L
∂xa

]
= 0 (7.40)

which can be rewritten as

d
du

(
∂L2

∂ẋa

)
− ∂L2

∂xa
= 2

∂L
∂ẋa

dL
du

. (7.41)

Substituting for L2, the left-hand side of (7.41) produces

d
dx

(
∂L2

∂ẋa

)
− ∂L2

∂xa
=

d
du

[
∂

∂ẋa
(gbcẋbẋc)

]
− ∂

∂xa
(gbcẋbẋc)

=
d
du

(2gabẋb)− (∂agbc)ẋbẋc

= 2gabẍb + 2∂cgabẋbẋc − ∂agbcẋbẋc

= 2gabẍb + 2ẋbẋc[ 12 (∂cgba + ∂bgca − ∂agbc)]

= 2gabẍb + 2ẋbẋc{bc, a},

where we have used symmetry, interchange of dummy indices, and
(6.63). If we again assume that L 6= 0, then the right-hand side of (7.41)
produces

2
∂L
∂ẋa

dL
du

= 2
∂

∂ẋa
(gbcẋxẋc)

1
2
d
du

(
ds
du

)
= 2(gbcẋbẋc)−

1
2 gadẋd

d2s
du2

= 2

(
d2s
du2

/
ds
du

)
gabẋb.

Equating these two results and dividing by 2 gives the equation (6.62).
Multiplying through by gad and using (6.65) leads to

ẍa + Γabcẋ
bẋc = (̈s/ṡ)ẋa. (7.42)

If we choose the parameter u = s, then the right-hand side vanishes, giving
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ẍa + Γabcẋ
bẋc = 0, (7.43)

and hence s is an affine parameter. It follows from (7.42) that any other
affine parameter is related to s by

s̄ = αs + β, (7.44)

where α and β are constants. A similar argument applies to spacelike
geodesics (exercise).

In the case of an indefinite metric, the interval ds between neighbour-
ing points on a curve may be zero. A null geodesic is a geodesic whose
interval between any of its two points is zero. It follows from (7.37) that
L vanishes and so the argument given above breaks down. However, it
is possible to modify the argument (we shall not do it) to show that the
general equations of a null geodesic are

ẍa + Γabcẋ
bẋc = λ(u)ẋa,

where λ(u) is some function of the curve’s parameter u and where the
tangent vector ẋa satisfies gabẋaẋb = 0. As before, if the geodesic equations
do not possess a right-hand side, that is, λ = 0, then the parameter u is
called affine. Any other parameter ū will be affine if it is related to u by

ū = αu + β, (7.45)

where α and β are constants.
Summarizing, if we define the quantity K by

K := 1
2gabẋ

aẋb, (7.46)

and if we take u to be an affine parameter, then the most useful form of
the geodesic equations is (exercise)

∂K
∂xa

− d
du

(
∂K
∂ẋa

)
= 0, (7.47)

where along any geodesic the quantity K is a constant, with

2K =

 0,
+1,
-1,

(7.48)

depending onwhether the tangent vector is null, or has positive or negative
length, respectively, and where in the last two cases we take u to be the
distance parameters s and σ. This is the approach we shall adopt in our
ensuing work. It is possible, by (7.43), to read off directly from (7.47) the
components of the connection Γabc, and this proves to be a very efficient
way of calculating Γabc.
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7.7 Isometries

Tensor calculus is largely concernedwith how quantities change under co-
ordinate transformations. It is of particular interest when a quantity does
not change, i.e. remains invariant, under coordinate transformations. For
example, coordinate transformations which leave a metric invariant are
of importance since they contain information about the symmetries of
a Riemannian manifold. Just as in an ordinary Euclidean space, there are
two sorts of transformations: discrete ones, like reflections, and con-
tinuous ones, like translations and rotations. In most applications, these
latter types are the more important ones and they can in principle be ob-
tained systematically by obtaining the so-called Killing vectors of a metric,
which we now discuss below.

Consider a map ϕ : M → M that is invertible and smooth (i.e. can
be differentiated as often as we want). Such a map is called a diffeomor-
phism. Suppose we introduce a coordinate system (x1, . . . , xn); then ϕ,
treated as an active transformation, takes the pointPwith coordinates xa to
the point Q with coordinates x̃a, say. Since x̃a depends on the coordinates
of P, we may write

x̃a = x̃a(x1, . . . , xn),

and, since ϕ is invertible,

xa = xa(x̃1, . . . , x̃n).

We may use ϕ to take a tensor at the point P to a tensor at the pointQ. For
example, given the tensor Tab at the point P, we define T̃ab at the point Q
by

T̃ab :=
∂xc

∂x̃a
∂xd

∂x̃b
Tcd. (7.49)

This is called the push-forward map. Note, despite the similarity to
the formula (5.27) for a change of coordinates, formula (7.49) takes the
xa-components of a tensor at the point P to the xa-components of a ten-
sor at the point Q, so is an active transformation describing a change of
location rather than a passive one describing a change of coordinates (as
in §6.2).

Conversely, we may take a tensor T̃ab back fromQ to the point P using

Tab :=
∂x̃c

∂xa
∂x̃d

∂xb
T̃cd. (7.50)

This is called the pull-back map.
Rather than consider a fixed tensor at P, we now consider a tensor field

Tab(x). We say that ϕ is a symmetry of the tensor field if taking T̃ab in
(7.50) to be the value of the tensor field at Q, i.e. T̃ab = Tab(x̃) and then
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pulling T̃ab back to the point P just gives the same as Tab(x) at the point P.
Thus, ϕ is a symmetry if

Tab(x) =
∂x̃c

∂xa
∂x̃d

∂xb
Tcd(x̃(x)), (7.51)

where both sides are now a function of x.
Of special interest is the case where the tensor field is the metric gab.

A symmetry of the metric is called an isometry and satisfies

gab(x) =
∂x̃c

∂xa
∂x̃d

∂xb
gcd(x̃(x)). (7.52)

In general, the condition (7.52) is very complicated, but it may be greatly
simplified if we consider the special case of an infinitesimal coordinate
transformation

xa → x̃a = xa + εXa(x), (7.53)

where ε is small and arbitrary and Xa is a vector field. Differentiating
(7.53) gives

∂x̃a

∂xb
= δab + ε∂bXa,

and so, substituting in (7.52) and using Taylor’s theorem, we get

gab(x) = (δca + ε∂aX
c)(δdb + ε∂bXd)gcd(xe + εXe)

= (δca + ε∂aX
c)(δdb + ε∂bXd)[gcd(x) + εXe∂egcd(x) + · · · ]

= gab(x) + ε[gad∂bXd + gbd∂aXd +Xe∂egab] +O(ε2).

Working to first order in ε and subtracting gab(x) from each side, it follows
that the quantity in square brackets must vanish. This quantity is simply
the Lie derivative of gab with respect to X by (6.17), namely,

LXgab = Xe∂egab + gad∂bXd + gbd∂aXd. (7.54)

Now we can replace ordinary derivatives by covariant derivatives in any
expression for a Lie derivative and so, using (6.74) and (6.58), the
condition for an infinitesimal isometry becomes

LXgab = ∇bXa +∇aXb = 0. (7.55)

These are called Killing’s equations and any solution of them is called
a Killing vector field Xa. In the language of §6.2, equation (7.55) states
that the metric is ‘dragged into itself ’ by the vector field Xa. We have thus
established the following important result.
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Theorem: An infinitesimal isometry is generated by a Killing vector
Xa(x) satisfying LXgab = 0.

It proves sufficient to restrict attention to infinitesimal transformations
because it can be shown that it is possible to build up any finite trans-
formation with non-zero Jacobian (i.e. a continuous transformation) by
an integration process involving an infinite sequence of infinitesimal
transformations.

Exercises

7.1 (§7.1) Write down the expression for the covariant derivative of a
scalar density Φ of weight +1.

7.2 (§7.2)Use the definition of the covariant derivative of a tensor density
(7.2) to show that the covariant derivatives of both εabcd and εabcd vanish
identically.

7.3 (§7.3) Denoting the transformation matrices by

Jab =
(
∂xa

∂x′b

)
, Jab =

(
∂x′a

∂xb

)
,

use the argument of §7.3 to show that

∂c J = JJba∂c Jab,

where J = det(Jab) is the Jacobian. Hence show from first principles that,
if Ta is a vector density of weight +1, then ∂aT

a is a scalar density of
weight +1.

7.4 (§7.3) Start from the assumption that, for an arbitrary vector field Ta,

∇a
[√

−gTa
]
= ∂a

[√
−gTa

]
,

and show that this leads directly to the result

∇a[
√
−g] = ∂a

[√
−g
]
− Γbba

√
−g

(which is consistent with the definition in Exercise 7.1).

7.5 (§7.4) Show that, for any vector field Ta, the divergence theorem in
four dimensions can be written in the form∫

∂Ω
Ta

√
−gdSa =

∫
Ω
∇aTa

√
−gd4x.

7.6 (§7.5) Find the Euler–Lagrange equations for the Lagrangians
(i) L(y, y′, x) = y2 + y′2,
(ii) L(y1, y2, y′1, y

′
2, x) = xy31 + y1y2 + y1(y′

2
1 + y′22).
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7.7 (§7.6)Trace the variational argument which leads to the equations for
a spacelike geodesic. Defining K by (7.46) and (7.48), show that (7.41)
can be written in the form (7.47). [Hint: if u is affine, then dL/du = 0.]

7.8 (§7.7) Use (7.46), (7.47), and (7.48) to find the geodesic equations
of the spherically symmetric line element given in Exercise 6.32. Use the
equations to read off directly the components and check them with those
obtained in Exercise 6.32(ii). [Hint: remember Γabc = Γacb.]

7.9 (§7.7) Find all Killing vector solutions of the metric

gab =
(
x2 0
0 x

)
,

where (xa) = (x0, x1) = (x, y).

7.10 (§7.7) Deduce (7.55) from (7.54).

7.11 (§7.7) Find all the Killing vectors Xa of the three-dimensional
Euclidean line element

ds2 = dx2 + dy2 + dz2.

[Hint: deduce from Killing’s equations that ∂bXa+∂aXb = 0, differentiate
with respect to xc, permute the indices to show that ∂b∂cXa = 0, and inte-
grate to getXa = ωabXb+t a, where ωab and t a are constants of integration,
usually termed parameters.]

Denoting the six independent constants of integration by λ1, λ2, λ3, λ4,
λ5, and λ6, respectively, write the general solution for Xa in the form

λ1

1
Xa +λ2

2
Xa +λ3

3
Xa +λ4

4
Xa +λ5

5
Xa +λ6

6
Xa .

Find expressions for the vector fields
i
X, (i = 1, 2, . . . , 6) and hence, or

otherwise, find all values of [
i
X,

ȷ

X]. Interpret the six Killing vector fields
in terms of geometrical transformations.

7.12 (§7.7) Show that, if Xa and Ya are Killing vectors, then so is any
linear combination λXa + μYa , where λ and μ are constants.

7.13 (§7.7) Consider the following operator identity:

LXLY − LYLX = L[X,Y].

(i) Check it holds when applied to an arbitrary scalar function f.
(ii) Check it holds when applied to an arbitrary contravariant vector field
ma. [Hint: use the Jacobi identity.]
(iii) Deduce that the identity holds when applied to a covariant vector
field Va. [Hint: let f = WaVa where Wa is arbitrary.]

Use the identity to prove that, if X and Y are Killing vector fields, then so
is their commutator [X,Y].

Given that ∂/∂x and −y∂/∂x + x∂/∂y are Killing vector fields, find
another.
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7.14 (§7.7) Express (∇c∇b − ∇b∇c)Xa in terms of the Riemann tensor.
Use this result to prove that any Killing vector satisfies

gbc∇b∇aXc − RabXb = 0.

7.15 (§7.7) By making use of the identity

Rabcd + Radbc + Racdb ≡ 0,

or otherwise, prove that a Killing vector satisfies

∇c∇bXa = RabcdXd.
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8.1 Minkowski space-time
As we saw in Chapter 2, special relativity discards the old Newtonian pic-
ture in which absolute time is split off from three-dimensional Euclidean
space. Instead, we introduce a four-dimensional continuum called space-
time in which an event has coordinates (t, x, y, z), and where the square of
the infinitesimal interval ds between infinitesimally separated events sat-
isfies the Minkowski line element (2.13). The essence of special relativity
lies in the special Lorentz transformations, and the significance of the
Minkowski line element is that it is invariant under such transformations.
We now use the language of Part B to formulate this more precisely.

Minkowski space-time, or simply flat space, is defined as a four-
dimensional manifold endowed with a flat metric of signature −2. Then,
by definition, since the metric is flat, there exists a special coordinate sys-
tem covering the whole manifold in which the metric is diagonal, with
diagonal elements equal to ±1. From now on, we shall use the conven-
tion that lower-case latin indices run from 0 to 3. The special coordinate
system is called a Minkowski coordinate system and is written

(xa) = (x0, x1, x2, x3) = (t, x, y, z). (8.1)

We adopt the sign convention in which the Minkowski line element
takes the form

ds2 = dt2 − dx2 − dy2 − dz2. (8.2)

We write this in tensorial form as

ds2 = ηab dxa dxb, (8.3)

where from now on we will always take ηab to denote the Minkowski
metric

Introducing Einstein’s Relativity. Second Edition. Ray d’Inverno and James Vickers, Oxford University Press.
© Ray d’Inverno and James Vickers (2022). DOI: 10.1093/oso/9780198862024.003.0008
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ηab :=


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 = diag (1, −1, −1, −1). (8.4)

If we use some other general coordinate system then we shall write the
metric in the form

ds2 = gabdxadxb.

For example, in spherical polar coordinates,

(xa) = (t, r, θ,ϕ),

where, as usual,

x = r sin θ cosϕ, x = r sin θ sinϕ, z = r cos θ,

the line element becomes

ds2 = dt2 − dr2 − r2dθ2 − r2 sin2 θdϕ2,

and the metric is

gab = diag(1,−1,−r2,−r2 sin2 θ).

One of the main results of Part B is the theorem of §6.11, which states
that a necessary and sufficient condition for a metric to be flat is that
its Riemann tensor vanishes. In Minkowski coordinates, the metric ηab
is constant and so the connection Γabc vanishes in this coordinate system,
from which it is clear that the Riemann curvature tensor vanishes. How-
ever, in a general coordinate system, the connection components will not
necessarily vanish. For example, in spherical polar coordinates, we find
that Γabc has non-vanishing components

Γ1
22 = −r, Γ1

33 = −r sin2 θ,

Γ2
12 = r−1, Γ2

33 = − sin θ cos θ,

Γ3
13 = r−1, Γ3

23 = cot θ,

(8.5)

but, if we compute the Riemann tensor, we will again find

Rabcd = 0,

as required by the theorem.
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8.2 The null cone
In Minkowski space-time, the ‘square’ of the length or norm of a vector
is defined as usual by

X2 = gabXaXb = XaXa. (8.6)

The vector is said to be

timelike if gabXaXb > 0,

spacelike if gabXaXb < 0,

null or lightlike if gabXaXb = 0.

(8.7)

Two vectors Xa and Ya are orthogonal if their inner product vanishes,
that is,

gabXaYb = 0,

from which it follows that a null vector is orthogonal to itself.
The set of all null vectors at a point P of a Minkowski manifold

forms a double cone called the null cone or light cone. In Minkowski
coordinates, the null vectors Xa at P satisfy

ηabXaXb = 0,

that is,

(X 0)
2 − (X 1)

2 − (X 2)
2 − (X 3)

2
= 0, (8.8)

which is the equation of a double cone. This null cone lies in the tangent
space Tp at P but, since it is easy to show that the tangent space is itself
a Minkowski manifold (by (8.8)), we can identify the tangent space with
the underlying manifold and regard the null cone as lying in the manifold.
We will not be able to do this when we go on to consider non-flat mani-
folds. If we define the timelike vector Ta in Minkowski coordinates by Ta

= (1, 0, 0, 0), then a timelike or null vector Xa is said to be

future-pointing if ηabXaTb > 0,

past-pointing if ηabXaTb < 0.

The future-pointing vectors all lie inside or on one sheet of the cone called
the future sheet, and past-pointing vectors lie inside or on thepast sheet
(Fig. 8.1).



138 Special relativity revisited

Past-pointing timelike vector

Future-pointing timelike vector

Future-pointing null vector

Null cone

Spacelike vector

y

t

x

Fig. 8.1 The null cone with one dimension (the z-direction) suppressed.

8.3 The Lorentz group
The Lorentz transformations are defined as those linear homogeneous
transformations

xa → x′a = Labxb, (8.9)

of Minkowski coordinates which leave the Minkowski metric ηab invari-
ant. From (8.9),

∂x′a

∂xb
= Lab,

and, substituting in the transformation formula for a metric (7.5) (with
primes and unprimes interchanged), we get (exercise)

Lac Lbd ηab = ηcd, (8.10)

since the metric remains invariant. We see from (7.52) that Lorentz
transformations are isometries. It follows immediately from (8.10) that
Lorentz transformations preserve lengths and inner products of vectors.
The Lorentz transformations form a group called the Lorentz group L.
The identity element of the group is δab and the inverse element is given
by the inverse matrix. The matrix Lab is invertible because, if we take
determinants of each side of (8.10), we get

(detLab)2 = 1 ⇒ detLab = ±1,

and so the matrix is non-singular. If we set c = d = 0 in (8.10), we also
find that

(L0
0)

2 −
[
(L1

0)
2 + (L2

0)
2 + (L3

0)
2] = 1,
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from which it follows that (L0
0)

2 ⩾ 1 and so either L0
0 ⩾ 1 or L0

0 ⩽ −1.
We divide Lorentz transformations into four separate classes depending
on whether detLab = ±1 and L0

0 ⩾ 1 or L0
0 ⩽ −1. If detLab = +1,

then Lab is called proper or orientation preserving. An example of an
improper Lorentz transformation is the discrete transformation

t′ = t, x′ = −x, y′ = y, z′ = z,

which reverses the x-direction. If L0
0 ⩾ 1, then Lab is called or-

thochronous or time-orientation preserving. An example of a non-
orthochronous Lorentz transformation is the discrete transformation

t′ = −t, x′ = x, y′ = y, z′ = z,

which reverses the t-direction. The proper orthochronous transforma-
tions, denoted by L↑

+ (read ‘L arrow plus’), form a subgroup of L. Clearly,
L↑

+ contains the identity, whereas the other three subsets do not and hence
are not subgroups.

In fact, L↑
+ is a six-parameter continuous group of transformations. We

can interpret the parameters physically by considering the transformation
actively as transforming one inertial frame S into another inertial frame
S′ in general position which is moving with velocity v relative to S (see
Chapter 2, Fig. 2.20). Then two parameters correspond to the two Euler
rotations required to line up the x-axis of S with the velocity of S′, one
parameter corresponds to a boost from S to a frame at rest relative to S′

(and this parameter depends on the speed of S′ relative to S), and the
final three parameters correspond to the three Euler rotations required to
rotate the frame into the same orientation that S′ has. Another subgroup
of L is the ordinary three-dimensional rotation group.

ThePoincaré group P consists of those linear inhomogeneous trans-
formations which leave ηab invariant. A Poincaré transformation is made
up of a Lorentz transformation together with an arbitrary translation (in
space and time), i.e.

xa → x′a = Lab xb + ta. (8.11)

The Lorentz group L is a proper subgroup of P, and the translations
form an invariant (normal) subgroup of P. The Poincaré group P is
a ten-parameter group, consisting of six Lorentz parameters plus four
translation parameters. The continuous Poincaré transformations con-
stitute the full set of isometries of the Minkowski metric. Physically, a
Poincaré transformation maps one inertial frame S into another inertial
frame S′ in general position.
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8.4 Proper time
A timelike world-line or timelike curve is defined as a curve whose
tangent vector is everywhere timelike. If, in particular, the curve is a
geodesic, it is called a timelike geodesic. Timelike curves represent
tracks on which material particles or observers can travel. From §8.2, we
see that the velocity tangent vector to a timelike curve at any point Pmust
lie within the null cone emanating from P (Fig. 8.2). This is a manifesta-
tion of the special relativity result that material particles travel with speeds
always less than the speed of light. Spacelike and null curves and geodesics
are defined in an analogous manner to timelike ones.

Null cone at PP

Velocity tangent
vector at P

y

x

t

Fig. 8.2 World-line of a material
particle.

At any point P, we define the null cone or light cone, which consists
of all null geodesics passing through P. This coincides with the null cone
of null vectors passing through P. Then the null cone divides space-time
into three distinct regions, namely future, past, and elsewhere (Fig. 8.3).
Any point in the future or past may be reached by a future-directed or
past-directed timelike geodesic, respectively. Any point in the region ex-
terior to the null cone, called elsewhere, can be reached by a geodesic
which is everywhere spacelike. This is an invariant division of events
which all observers agree upon. This follows because of the invariance
of ηab under a Lorentz transformation, which means that null cones get
mapped onto null cones. Moreover, events to the future of P get mapped
into events which are still to the future of P under an orthochronous
Lorentz transformation. A similar result holds for past events. How-
ever, non-orthochronous Lorentz transformations reverse the past and
future.

Since Γabc vanishes in Minkowski coordinates, the equations for a non-
null geodesic (7.43), in these coordinates, reduce to

d2xa

dμ2
= 0, (8.12)

y

x

t

P A S T

F U T U R E Null cone (future sheet)

Null cone (past sheet)

PE
L

S E W H E R
E

Fig. 8.3 Invariant classification of events relative to P.
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for some affine parameter μ, where the tangent vector satisfies

ηab
dxa

dμ
dxb

dμ
= k. (8.13)

The geodesic is timelike or spacelike depending on whether k > 0 or
k < 0, respectively. In the case when k > 0, we introduce a new parameter

μ → μ̄ = μ̄(μ),

satisfying (
dμ̄
dμ

)2

= k.

It follows from (8.13) that the new tangent vector dxa/dμ̄ has unit length.
The parameter μ̄ is called the proper time and is denoted by τ . Thus, in
relativistic units, from (8.3) and (8.13), the proper time satisfies

dτ2 = ds2. (8.14)

This shows that proper time τ is an affine parameter along timelike
geodesics.

In non-relativistic units, the equation for the proper time becomes

dτ2 =
1
c2

ds2, (8.15)

which checks dimensionally since s is a distance parameter. Let us see
how proper time τ relates to coordinate time t for any observer whose
3-velocity at time t is v, where

v =
(

dx
dt

,
dy
dt

,
dz
dt

)
.

From (8.15) and (3.12), we have

dτ2 =
1
c2

ds2

=
1
c2
(c2dt2 − dx2 − dy2 − dz2)

= dt2
{
1− 1

c2

[(
dx
dt

)2
+
(

dy
dt

)2
+
(

dz
dt

)2]}

= dt2
(
1− v2

c2

)
.

So the proper time between t0 and t1, is given by
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τ =
∫ t1

t0

(
1− v2

c2

) 1
2
dt, (8.16)

in agreement with (3.16).

8.5 An axiomatic formulation of special
relativity

We are now in a position to give a completely precise formulation of spe-
cial relativity which will prove useful when we wish to generalize to the
general theory. We do this by stating two sets of postulates or axioms.

Axiom I. Space and time are represented by a four-dimensional man-
ifold endowed with a symmetric affine connection Γabc and a metric
tensor gab satisfying the following:

(i) gab is non-singular with signature −2;

(ii) ∇cgab = 0;

(iii) Rabcd = 0.

Axiom II. There exist privileged classes of curves in the manifold
singled out as follows:

(i) ideal clocks travel along timelike curves and measure the param-
eter τ (called the ‘proper time’) defined by dτ2 = gabdxadxb;

(ii) free particles travel along timelike geodesics ;

(iii) light rays travel along null geodesics.

The first axiom defines the geometry of the theory and the second ax-
iom puts in the physics. Thus, the first axiom states that Γabc is the metric
connection (by I(ii)) and that the metric is flat (by I(iii)) and defines a
formal parameter whose physical significance is given in the second ax-
iom. The first part of the second axiom makes physical the distinction
between space and time in the manifold. In canonical (Minkowski) coor-
dinates, it distinguishes the coordinate x0 from the other three as the ‘time’
coordinate. More precisely, it states that it is the proper time τ which a
clock measures in accordance with the clock hypothesis. The remainder
of Axiom II singles out the privileged curves that free particles and light
rays travel along.

Looking at this theory from a purely axiomatic viewpoint, one can ask,
Is there any a priori reason for singling out timelike and null geodesics as
trajectories for material particles and photons for light rays, or could one
make some other choice (say, spacelike geodesics)? In Newtonian the-
ory, free particles travel in straight lines, by Newton’s first law. It would
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seem natural, therefore, to take geodesics as the analogue of straight lines.
The significance of timelike geodesics is that their choice, unlike the case
of spacelike geodesics, is consistent with causality. As we have seen,
Minkowski space-time admits the Poincaré group as its invariance group.
Hence, if two neighbouring events P andQ of the history of a free particle
occur on a timelike geodesic at proper times τ and τ + dτ , respectively,
then an orthochronous Poincaré transformation preserves the fact that Q
occurs after P. This is consistent with causality, since we say that the
arrival of the particle at Q is caused by its having previously been at P.

Null geodesics possess a special property which makes them natural
candidates for light signals. The equation of a null geodesic in Minkowski
coordinates is

d2xa

dμ2
= 0, (8.17)

where

ηab
dxa

dμ
dxb

dμ
= 0, (8.18)

for an affine parameter μ. Integrating (8.17), we get

dxa

dμ
= ka, (8.19)

where the components of ka are constants of integration. Substituting in
(8.18), we obtain

ηab kakb = 0, (8.20)

and so ka is a null vector. Let us define the 3-velocity u along the null
geodesic by

u =
(
u1, u2, u3

)
=
(

dx1

dx0
,
dx2

dx0
,
dx3

dx0

)
=
(
k1

k0
,
k2

k0
,
k3

k0

)
, (8.21)

using (8.19) and the fact that k0 6= 0 (why?). Writing (8.20) out fully, we
find

(k0)2 − (k1)2 − (k2)2 − (k3)2 = 0,

and hence it follows from (8.21) that u2 = 1. Thus, null geodesics have
associated with them a characteristic velocity of magnitude 1. Further-
more, this property is preserved under a Poincaré transformation, and so
they seem natural candidates for encoding the constancy of the velocity
of light.
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8.6 A variational principle approach
to classical mechanics

We met an introduction to relativistic mechanics in Chapter 4. We shall
now look for a formulation which rests on a variational principle. The
importance of the variational formulation of a physical theory is that it
is often very simple and elegant and, moreover, it is one method which
lends itself easily to generalization. Indeed, most current theories use the
variational approach as their starting point. We start by summarizing the
variational formulation of a classical system moving under a conservative
force.

A mechanical system is described by n generalized coordinates
xa (a = 1, 2, . . . , n) which are functions of time t, n generalized veloc-
ities ẋa, the kinetic energy T = 1

2gabẋ
aẋb, and the potential energy

V(x), which gives rise to n generalized forces Fa = −∂V/∂xa. The
Lagrangian L is defined to be

L := T− V.

Then the principle of stationary action is

δS = δ

∫ t2

t1
Ldt = 0,

and this leads to the Euler-Lagrange equations

∂L
∂xa

− d
dt

(
∂L
∂ẋa

)
= 0.

A straightforward calculation leads to the equations of motion

ẍa + Γabcẋ
bẋc = Fa, (8.22)

where Γabc is the metric connection of gab. If there are no external forces,
then the above equations can be thought of as defining geodesics on an
n-dimensional Riemannian manifold, with metric gab called configura-
tion space. We define generalized momenta

pa := ∂L/∂ẋa (8.23)

and the Hamiltonian H by

H := paẋa − L. (8.24)

If H is time-independent, then it can be shown to be equal to the total
energy E of the system.

As an example of this formalism, let us consider the simple case of
a free particle moving in three dimensions with velocity u. Adopting
Cartesian coordinates, we have

(xa) = (x1, x2, x3) = (x, y, z).
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Then

T = 1
2mu

2 = 1
2m(ẋ

2 + ẏ2 + ż2),

from which we find

gab = diag(m,m,m) = mδab.

By assumption, V = 0, and so

L = T = 1
2mu

2, (8.25)

giving generalized momenta

px =
∂L
∂x

= mẋ, py =
∂L
∂y

= mẏ, pz =
∂L
∂z

= mż.

The Euler-Lagrange equations are

d
dt
(mẋ) = 0,

d
dt
(mẏ) = 0,

d
dt
(mż) = 0,

which are just the three components of Newton’s second law. The
Hamiltonian is

H = u · u− L = m(ẋ2 + ẏ2 + ż2)− T = 1
2mu

2 = T = E.

In general, if we consider a system with no forces acting, then the
Lagrangian reduces to

T = 1
2gabẋ

aẋb.

This Lagrangian is identical to the quantity K defined in (7.46) of §7.6.
In that section, we saw that (if we work with affine parameters) this gives
the same Euler-Lagrange equations as the Lagrangian (7.38), namely, as

ds
dt

= (gabẋaẋb)
1
2 ,

does. Thus, for convenience, we may take the action S for a free particle
to be

S =
∫ t2

t1

ds
dt

dt =
∫ t2

t1
ds. (8.26)
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8.7 A variational principle approach
to relativistic mechanics

We now consider a free particle in relativistic mechanics moving on a
curve

xa = xa(τ),

where τ is the proper time. Since τ is an affine parameter, we assume
from (8.26) of the last section that the action can be written as

S = −α
∫ τ2

τ1

ds, (8.27)

where α is a constant to be determined. Working in Minkowski coordi-
nates and introducing a new parameter μ, where μ = μ(τ), we can write
the action as

S = −α
∫ u2

u1

(
ηab

dxa

dμ
dxb

dμ

)1/2

dμ.

The Euler-Lagrange equations

∂L
∂xa

− d
dμ

(
∂L

∂(dxa/dμ)

)
= 0,

lead to

d
dμ

[
α

(
ηcd

dxc

dμ
dxd

dμ

)−1/2

ηab
dxb

dμ

]
= 0. (8.28)

Since

ηcd
dx c

dμ
dx d

dμ
=
ηcddxcdxd

dμ2
=

ds2

dμ2
=

dτ2

dμ2
,

In relativistic units, the field equations give

0 =
d
dμ

[
αηab

dμ
dτ

dxb

dμ

]
=

d
dμ

[
αηab

dxb

dτ

]
= αηab

d2xb

dτ2

dτ
dμ

,

which leads to ẍb = 0, where now we are using dot to denote differentia-
tion with respect to τ , and which are the standard geodesic equations in
Minkowski coordinates.

Instead of using the proper time τ as our time parameter, let us use
instead the coordinate time t and see how various quantities are defined
in terms of time and space coordinates. The equation of the world-line of
the particle is now

x = x(t), y = y(t), z = z(t),
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and it has a 3-velocity u defined by

u = (u1, u2, u3) =
(

dx
dt

,
dy
dt

,
dz
dt

)
.

Using

ds2 = ηabdxadxb

= dt2 − dx2 − dy2 − dz2

= dt2(1− u2),

we can write the action (8.27) as

S = −α
∫ t2

t1
(1− u2)1/2dt,

where the new Lagrangian (which we shall also write as L) is

L = −α(1− u2)1/2 = −α + 1
2αu

2 + · · ·

for small velocities. Comparing this with the classical expression (8.25),
namely 1

2mu
2, we may identify α with the mass of the particle as u → 0.

Note that the additive constant−α in the Lagrangian is unimportant (see
Exercise 8.9). Thus α is equal to the rest massm0 of the particle. Hence,
we have

L = −m0
(
1 − u2

)1/2
. (8.29)

We define the 3-momentum p by (check)

p =
(
∂L
∂u1

,
∂L
∂u2

,
∂L
∂u3

)
= m0

(
1− u2

)−1/2
u. (8.30)

Comparing this with the classical relationship p = mu, we define the
relativistic mass m by (see (4.11))

m = m0
(
1 − u2

)1/2
.

Using the Hamiltonian to define the energy E (see (4.17)), we find

E = H = p · u− L = m0
(
1 − u2

)−1/2
= m, (8.31)

after some simple algebra. We have thus regained the results of (4.19) in
relativistic units.
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8.8 Covariant formulation of relativistic
mechanics

We finish this discussion of relativistic mechanics by giving a full
4-dimensional or covariant formulation of the variational principle.
The action S is a coordinate independent quantity, so in a general
coordinate system (8.27) becomes

S = −m0

∫ τ2

τ1

(gabẋaẋb)1/2dτ ,

where gab is a flat metric and is used for raising and lowering indices. The
4-velocity ua is defined by

ua :=
d xa

dτ
= ẋa, (8.32)

and the 4-acceleration ab by

ab :=
dub

dτ
=

d2xb

dτ2 = ẍb. (8.33)

The covariant 4-momentum pa is defined by

pa :=
∂L
∂ẋa

,

from which we find that

pa = −m0gabub(gcducud)1/2.

So in Minkowski coordinates the spatial components are given by

(p1, p2, p3) = m0(u1, u2, u3), (8.34)

so that p = m0u as expected.
If a particle is acted on by a force, then the four-dimensional version

of Newton’s second law becomes

f a =
dpa

dτ
, (8.35)

where f a is called the 4-force. If there is no external force acting, then

dpa

dτ
= 0 ⇒ pa = ka, (8.36)

where ka is a constant 4-vector. This is the conservation of
4-momentum law and generalizes to an isolated system of n particles
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with 4-momenta pia (i = 1, 2, . . . , n)

n∑
=1

pa = ka,

where ka is a constant 4-vector. Finally, we define the angular momen-
tum tensor ℓab of the particle in Minkowski coordinates by

ℓab = xapb − xbpa. (8.37)

If we now assume thatm0 is a scalar, then it follows that all the quantities
have the tensor character indicated under a general coordinate transfor-
mation. If, in particular, we restrict attention to Minkowski coordinates,
we can relate these four-dimensional quantities to the three-dimensional
ones of the last section andChapter 4.We can then consider how the four-
dimensional quantities transform under a Lorentz transformation and
so obtain the transformation law for the three-dimensional quantities (ex-
ercise). Thus, in particular, we can confirm the transformation equations
(4.21) for the energy and momentum of a particle.

We have considered the main ingredients of special relativistic me-
chanics, but we shall not pursue the topic further. We shall, rather,
concentrate on our main task – that of establishing the general theory.

Exercises

8.1 (§8.1) Check (8.5) and show that the Riemann tensor vanishes.

8.2 (§8.2) Show that a timelike vector cannot be orthogonal to a null vec-
tor or to another timelike vector. Show that two null vectors are orthogonal
if and only if they are parallel.

8.3 (§8.2) The vectors T, X, Y, and Z have components

Ta = (1, 0, 0, 0), Xa = (0, 1, 0, 0),

Ya = (0, 0, 1, 0), Za = (0, 0, 0, 1).

Show that the only non-vanishing inner products between the vectors are

T2 = −X2 = −Y2 = −Z2 = 1.

Define the following:

La =
1√
2
(Ta + Za), Na =

1√
2
(Ta − Za),

Ma =
1√
2
(Xa + iYa), M̄a =

1√
2
(Xa − iYa),
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where i =
√
−1. TreatingMa and M̄a as vectors, show that all four vectors

are null and the only non-vanishing inner products are

LaNa = −MaM̄a = 1.

8.4 (§8.3)
(i) Check that (8.9) leads to (8.10), assuming invariance.
(ii) Show that the Lorentz transformations form a group.
(iii) Show that the Poincaré transformations form a group.

8.5 (§8.3) Show that a Killing vectorXa satisfies the equation ∂b∂cXa = 0
in flat space in Minkowski coordinates. [Hint: use Exercise 7.10 or
Exercise 7.14.] Deduce that the Killing vectors are given by

Xa = ωabxb + ta,

where ωab = −ωba and ta are arbitrary parameters (constants of integra-
tion). How many parameters are there in:
(a) an n-dimensional manifold?
(b) Minkowski space-time?

What do the parameters correspond to physically in Minkowski space-
time?

8.6 (§8.4) Prove that the proper time τ is an affine parameter along a
timelike geodesic for a general space-time. [Hint: Use (7.42).]

8.7 (§8.6) Establish the equation of motion (8.22).

8.8 (§8.6) Consider two masses m1 and m2 suspended on the ends of a
rope passing over a frictionless pulley. Show that the Lagrangian can be
written in the form

L = 1
2 (m1 +m2)ẋ2 +m1gx +m2g(ℓ− x),

where the massm1 is a distance x below the horizontal and ℓ is a constant.
Find the Euler–Lagrange equation of motion. Define the generalized
momentum for the system and hence obtain the Hamiltonian.

8.9 (§8.7) If L is a Lagrangian, then show that the Lagrangians L1 and L2,
where (i) L1 = λL and (ii) L2 = L+ μ, with λ and μ constants, possess the
same field equations as L. Show also that, if L 6= 0, then the Lagrangians
(iii) L3 = L2 and (iv) L4 = L1/2 give rise to the same field equations.

8.10 (§8.8) Show that, in Minkowski space-time in Minkowski coordi-
nates, ua = (u0, u1, u2, u3) = (γ, γu), where γ = (1 − u2)−1/2. Show also
that pa = (E,p).

By considering the invariant papa, deduce that (see (4.20))

E2 − p2 = m2
0.
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Use the four-dimensional version of Newton’s second law to identify the
4-force in Minkowski coordinates as

fa = (γu·F, γF),

where F is the force acting on the particle. Show also that

dpa
dτ

=
(
γ
dE
dt

, γ
dp
dt

)
and give a physical interpretation of the zero component of the four-
dimensional Newton’s law.

8.11 (§8.8)
(i) Use the tensor transformation law on the 4-velocity ua to find the trans-
formation properties of u under a special Lorentz transformation between
two frames in standard configurationmoving with velocity v. Show in par-
ticular, that γ′/γ = β(1− uxv), where β = (1− v2)−1/2.
(ii) Find the transformation properties of E and p under a special Lorentz
transformation.
(iii) Find the transformation properties ofF under a special Lorentz trans-
formation. Are forces still absolute quantities in special relativity?
(iv) A particle moves parallel to the x-axis under the influence of a force
F = (F, 0, 0). What is the force in a frame co-moving with the particle?

Further reading

The axiomatic description of special relativity given here is that of
Trautmann, Pirani, and Bondi (1964). For further consideration of the
Lorentz group, see the book by Carmeli and Malin (1976).

Carmeli, M., and Malin, S. (1976). Representation of the Rotation and
Lorentz Groups: An Introduction. Dekker, New York, NY.

Trautmann A., Pirani F. A. E., and Bondi, H. (1964). Lectures on Gen-
eral Relativity. Brandeis Summer Institute on Theoretical Physics, 1964,
vol. 1. Prentice-Hall, Englewood Cliffs, NJ.





9The principles of general
relativity

9.1 The role of physical principles
We are at last ready to embark on our central task, namely, that of ex-
tending special relativity to a theory which incorporates gravitation. In
this chapter, we shall undertake a detailed consideration of the physi-
cal principles which guided Einstein in his search for the general theory.
There is a school of thought that considers this an unnecessary process,
but rather argues that it is sufficient to state the theory and investigate
its consequences. There seems little doubt, however, that consideration
of these physical principles helps give insight into the theory and pro-
motes understanding. The mere fact that they were important to Einstein
would seem sufficient to justify their inclusion. If nothing else, it will
help us to understand how one of the greatest achievements of the hu-
man mind came about. Many physical theories today start by specifying a
Lagrangian from which everything else flows. Indeed, we could adopt the
same attitude with general relativity, but in so doing we would miss out
on gaining some understanding of how the framework of general relativ-
ity is different again from the framework of Newtonian theory or special
relativity. Moreover, if we discover limitations in the theory, then there is
more chance of rescuing it by investigating the physical basis of the theory
rather than simply tinkering with the mathematics. It is perhaps signifi-
cant that Einstein devoted much of his later life to an attempt to unify
general relativity and electromagnetism by various mathematical devices,
but without success.

There are five principles which, explicitly or implicitly, guided Einstein
in his search. Their names are:

(1) Mach’s principle,

(2) the principle of equivalence,

(3) the principle of covariance,

(4) the principle of minimal gravitational coupling,

(5) the correspondence principle.

The status of these principles has been the source of much controversy.
For example, the principle of covariance is considered by some authors
(e.g. Bondi, Fock) to be empty, whereas there are others (e.g. Anderson)
who believe it possible to derive general relativity more or less solely from
this principle. Similarly, although the ideas behind Mach’s principle were
important to Einstein in deriving the field equations, there are consider-
able doubts about whether relativity is a fully Machian theory (e.g. Bondi,
Samuel). On the other hand, there is general agreement that the principle

Introducing Einstein’s Relativity. Second Edition. Ray d’Inverno and James Vickers, Oxford University Press.
© Ray d’Inverno and James Vickers (2022). DOI: 10.1093/oso/9780198862024.003.0009
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of equivalence is the key principle and we discuss in Chapter 16 how this
leads to a metric theory of gravity. One source of confusion over the role
of the various principles arises from the fact that their formulation differs
quite markedly from author to author. Since some of the principles are
more of a philosophical nature, this is perhaps not so surprising. We shall
attempt to give some precise formulations of them in the hope that we can
ultimately check the principles out against the theory. We now discuss the
principles in turn.

9.2 Mach’s principle
The essence of the first two principles comes from understanding the
nature of Newton’s laws more precisely. Do Newton’s laws hold in all
frames of reference? As we have seen before, they are stated only for a
privileged class of frames called inertial frames. So the question arises
as to how inertial frames are determined by the properties of the Universe
andwhat formNewton’s laws take in other, non-inertial, reference frames.

We shall investigate the status of Newton’s second law for a non-inertial
frame S′ being uniformly accelerated relative to an inertial frame S with
acceleration a. For simplicity, we shall assume the frames are in standard
configuration with the acceleration along the common axis (Fig. 9.1). As-
suming that the observers initialize their clocks when they meet, then the
relationship between the frames is given by

x = x′ + s, y = y′, z = z′, t = t′. (9.1)

Letting a dot denote differentiation with respect to t (or t′, which is the
same by the last equation), then we find from the first equation that

ẋ = ẋ + ṡ,

and, differentiating again,

ẍ = ẍ′ + s̈ = ẍ′ + a, (9.2)

by assumption. Consider a particle of mass m moving along the x-axis
under the influence of a force F = (F, 0, 0). Then Newton’s second law
becomes F = mẍ, which by (9.2) gives

F = mẍ = mẍ′ +ma.

s

x

y

z

x´

y´

z´

S S´

Acceleration a

Fig. 9.1 Positions of S and S′ at time t.
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From the point of view of the observer S′, this equation can be rewritten
in a standard form with the term mass times acceleration relative to S′

on the right-hand side, to give

F−ma = mẍ′. (9.3)

Thus, compared to S, observer S′ detects a reduction of the force on
the particle by an amount ma. This additional force is called an inertial
force. Other well-known inertial forces are centrifugal and Coriolis
forces arising in a frame rotating relative to an inertial frame (exercise).
Notice that all inertial forces have the mass as a constant of propor-
tionality in them. The status of inertial forces is again a controversial one.
One school of thought describes them as apparent or fictitious forces
which arise in non-inertial frames of reference (and which can be elimi-
nated mathematically by putting the terms back on the right-hand side).
We shall adopt the attitude that, if you judge them by their effects, then
they are very real forces. For, after all, inertial forces cause astronauts to
blackout in rocket ships, and flywheels to break under centrifugal effects.
Is it enough to describe these as being due to apparent forces or reference
frame effects? There must be some interaction going on to cause such
dramatic effects. The question arises, What is the physical origin of iner-
tial forces? Newtonian theory makes no attempt to answer this question;
the Machian viewpoint, as we shall see, does.

Let us ask another fundamental question. If Newton’s laws only hold
in inertial frames, then how do we detect inertial frames? Newton realized
that this was a fundamental question and attempted to answer it by devis-
ing an ingenious thought experiment – the famous bucket experiment.
He first of all postulated the existence of absolute space: ‘Absolute space,
in its own nature, without relation to anything external, remains always
similar and immovable’. Thus, he saw absolute space as a fixed backcloth
against which all motion is observed. An inertial observer then becomes
an observer at rest or in uniformmotion relative to absolute space. Inertial
forces arise in the manner described above only when an observer is in
absolute acceleration relative to absolute space. The bucket experi-
ment is a device for detecting such motion. More precisely, the experi-
ment determines whether or not a system is in absolute rotation relative
to absolute space.

The experiment consists of suspending a bucket containing water by a
rope in an inertial frame. The rope is twisted and the bucket is released.
The motion divides into four phases:

B1: At first, the bucket rotates, but the water does not, its surface
remaining flat.

Fig. 9.2 The bucket and water in abso-
lute rotation.

B2: The frictional effects between the bucket and the water eventually
communicate the rotation to the water. The centrifugal forces cause
the water to pile up round the edges of the bucket and the surface
becomes concave (Fig. 9.2). The faster the water rotates, the more
concave the surface becomes.

B3: Eventually the bucket will slow down and stop, but the water will
continue rotating for a while, its surface remaining concave.
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B4: Finally, the water will return to rest with a flat surface.

Newton’s explanation of this experiment is that the curvature of the water
surface in B2 and B3 arises from centrifugal effects due to the rotation of
the water relative to absolute space. This curvature is not directly con-
nected to local considerations such as the bucket’s rotation since, in B1,
the surface is flat when the bucket is rotating and, in B3, curved when the
bucket is at rest. In this way, Newton gave a prescription for determining
whether a system is in absolute rotation or not. Similar arguments apply
to systems which are linearly accelerated relative to absolute space. Here,
the surface becomes inclined at angle to the horizontal (Fig. 9.3) (see Ex-
ercise 9.1(ii)). In simple terms, all observers should be equipped with a
bucket of water. Then an observer will be inertial if and only if the surface
of the water is flat.

Acceleration a

Fig. 9.3 Inclination of the surface of the
water in absolute linear acceleration.

Earth

Fig. 9.4 Pendulum swinging in a
non-rotating frame.

We now turn to the view which was proposed by Mach in 1893, al-
though it grew out of similar ideas arrived at earlier by Bishop Berkeley.
This is a semi-philosophical view, the starting point of which is that there
is no meaning to the concept of motion, but only to that of relative mo-
tion. For example, a body in an otherwise empty universe cannot be said
to be in motion according to Mach, since there is nothing to which the
body’s motion can be referred. Moreover, in a populated universe, it is
the interaction between all the matter in the universe (over and above the
usual gravitational interaction) which is the source of the inertial effects
we have discussed above. In our universe, the bulk of the matter resides in
what is historically called the ‘fixed stars’. Then, from Mach’s viewpoint,
an inertial frame is a frame in some privileged state of motion relative to
the average motion of the fixed stars. Thus, it is the fixed stars through
their masses, distribution, and motion which determine a local inertial
frame. This is Mach’s principle in essence. Returning to the bucket ex-
periment, Newton gives no reason why the surface curves up when it is
in rotation relative to absolute space. Mach, however, says that the cur-
vature stems from the fact that the water is in rotation relative to the
fixed stars. One way of seeing the difference between the two viewpoints
is to ask what would happen if the bucket was fixed and the universe
(i.e. the fixed stars) rotated. Since all motion is relative, it follows from
the Machian viewpoint that the surfaces of the water would be curved,
whereas in Newtonian theory no such effect would be detected. Hence,
Mach sees all matter coupled together in such a way that inertial forces
have their physical origin in matter. The bucket has very little effect on
the water’s motion because its mass is so small. On the other hand, the
fixed stars contain most of the matter in the universe and this counteracts
the fact that they are a very long way away.

There is one very outstanding and simple fact that lends support to
the Machian viewpoint. Consider a pendulum set swinging at the North
Pole (Fig. 9.4). According to Newton, the pendulum swings in a frame
which is not rotating relative to absolute space. In this frame, the Earth is
rotating under the pendulum. An observer fixed on the Earth will see the
pendulum rotating. The time taken for the pendulum to swing through
360◦ is therefore the time taken for the Earth to rotate through 360◦ with
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respect to absolute space. We can also measure how long the Earth takes
to rotate through 360◦ relative to the fixed stars. The remarkable fact is
that, within the limits of experimental accuracy, the two times are the
same. In other words, the fixed stars are not rotating relative to absolute
space, from which it follows that inertial frames are those in which
the fixed stars are not rotating. In Newtonian theory, there is nothing
a priori to predict this; it is simply a coincidence. Whenever we find
coincidences in a physical theory, we should be highly suspicious of the
theory – it is usually saying that something fundamental is going on. From
the Machian viewpoint, it is the fixed stars which determine the inertial
frames and the result is precisely what we would expect.

Can one say anything more precise about the interaction postulated
by Mach? Since inertial forces involve the mass of the body experiencing
them, it would seem likely for reasons of reciprocity that the effect of
the stars should be due to their masses and proportional to them. On
the other hand, inertial forces are unaffected (at least to the accuracy of
experiment) by local masses such as the Earth or the Sun. Accordingly,
the influence of the distant bodies preponderates. So we would not expect
inertial effects to vary appreciably from place to place.

Consider the motion of a particle in an otherwise empty universe.
Then, according to Mach, since there are no other masses in existence,
the particle cannot experience any inertial effects. Now introduce another
particle of tiny mass. It is inconceivable that the introduction of this very
small mass would restore the inertial properties of the first particle to its
customary magnitude – its effect can only be slight. This implies that
the magnitude of an inertial force on a body is determined by the mass
of the universe and its distribution. If, in particular, the universe were
not isotropic, then inertial effects would not be isotropic. For example, if
there were a preponderance of matter in a particular direction, then iner-
tial effects would be direction dependent (as illustrated schematically in
Fig. 9.5).

Preponderance
of matter

Same body
accelerated
in different
directions

Inertial
frame

S

S˝

S´

a

m2a

a

m1a

Fig. 9.5 Direction-dependent inertial effects in an anisotropic universe
(m1 ̸= m2).
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Experiments were carried out separately byHughes andDrever around
1960 which established that mass is isotropic to at least one part in 1018.
The Hughes–Drever experiment has been called the most precise null ex-
periment ever performed. This null result can be interpreted in two ways.
EitherMach’s principle is untenable or the universe is highly isotropic. In-
deed the uniform nature of the cosmic microwave background radiation
(CMB) puts strong upper limits on the lack of isotropy in the Universe.

In Newtonian theory, the gravitational potential ϕ at a point a distance
r from the origin due to a particle of mass m situated at the origin is
ϕ = −Gm/r, whereG is Newton’s gravitational constant. The potential at
any point can only depend on the properties of the body itself. However,
from the Machian point of view, the mass m of the body depends on the
state of the universe. Hence, the ratio of these two effects, namelyG, con-
tains information about the universe. In particular, if the universe was
in a different state at any earlier epoch, then the ‘constant’ G would have
a different value. An evolutionary universe would require G = G(t), i.e. a
function of epoch. Again, if the universe did not present the same aspect
from every point (except for local irregularities),Gwould vary from point
to point. A fully Machian theory should essentially allow one to calculate
G from a knowledge of the structure of the universe.

What is the status of Mach’s principle? The biggest limitation of the
principle is that it does not give a quantitative relation for the interac-
tion of matter. Similarly, it can be argued that Mach’s ideas do not really
contribute to an understanding of why there appears to be such a fun-
damental distinction between unaccelerated and accelerated motion in
nature, that is, it does not explain why the interaction should be velocity
independent but acceleration dependent. Some critics claim that Mach
only replaced Newton’s absolute space by the distant stars and learnt
nothing new thereby. However, the principle was considered to be of
great importance to Einstein, who attempted to incorporate it into his
general theory. This, as we shall see, he only partially succeeded in doing
(although, an alternative theory to general relativity, called the Brans–
Dicke theory developed in the 1960s, claims to be more fully Machian).

An imprecise version of Mach’s principle is ‘matter there influences
inertia here’ (Misner, Thorne, and Wheeler 1973) but going from this
to a precise formulation is difficult. For example, Bondi and Samuel list
ten versions of Mach’s principle and there are many further variations on
these given by other researchers. To give a flavour of these, we list three
variants below. The first statement tries to incorporate the essential part
of Mach’s ideas.

M1.Thematter distribution determines the geometry of the Universe,

where by the ‘geometry’ of the Universe we mean the privileged paths
along which particles and light rays travel.

The next statement refers to the belief that it is impossible to talk about
motion or geometry in an empty universe, so that there should be no
solution corresponding to an empty universe.
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M2. If there is no matter then there is no geometry.

The final statement refers to a universe containing just one body, then,
since there is nothing for it to interact with, it should not possess any
inertial properties.

M3. A body in an otherwise empty universe should possess no inertial
properties.

9.3 Mass in Newtonian theory
Up to now, we have talked rather glibly about the mass m of a body. Even
in Newtonian theory, we can ascribe three masses to any body which
describe quite different properties. Their names, notation, and general
description are:

(1) inertial mass mI, which is a measure of the body’s resistance to
change in motion;

(2) passive gravitational mass mP, which is a measure of its reaction
to a gravitational field;

(3) active gravitational mass mA, which is a measure of its source
strength for producing a gravitational field.

We shall discuss each of these in turn.
Inertial mass mI is the quantity occurring in Newton’s second law,

which we met in Chapter 4. It is at any one time a measure of a body’s
resistance to change in motion and is also called the body’s inertia.
Newton’s second law, stated more precisely, is

F =
d(mIv)

dt
, (9.4)

or

F = mIa, (9.5)

for constant inertial mass mI. Note that, a priori, mI has nothing directly
to do with gravitation. The next two masses, however, do.

Passive gravitational mass mP measures a body’s response to being
placed in a gravitational field. Let the gravitational potential at some point
be denoted by ϕ. Then, if mP is placed at this point, it will experience a
force on it given by

F = −mP gradϕ. (9.6)
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m1 m2
I

Before After

Splat

miràcolo!
I

Fig. 9.6 Galileo’s Pisa experiments.

Active gravitationalmassmA measures the strength of the gravitational
field produced by the body itself. If mA is placed at the origin, then the
gravitational potential at any point distant r from the origin is given by

ϕ = −Gm
A

r
. (9.7)

We shall now see how these three masses are related in the Newtonian
framework. We start from the observational result that if we neglect non-
fundamental forces, like air resistance, then two bodies dropped from the
same height will reach the ground together. In other words they suffer
the same acceleration irrespective of their internal composition. This
empirical result is attributed to Galileo in his famous Pisa experiments
(Fig. 9.6).

Of course, you would not get this result with a hammer and a feather,
say, because the air resistance would slow down the fall of the feather. It
would be possible on the Moon, however, since the Moon has no atmo-
sphere. Indeed, readers may know of the incident on one of the Moon
landings when an astronaut tried this ‘experiment’ and confirmed the
anticipated result (Fig. 9.7).

Let us assume that two particles of inertial masses mI
1 and mI

2, and
passive gravitational massesmP

1 andmP
2 are dropped from the same height

in a gravitational field. Then, from (9.5) and (9.6), we have

mI
1a1 = F1 = −mP

1 gradϕ,

mI
2a2 = F2 = −mP

2 gradϕ.

The observational result is a1 = a2, from which we get

mI
1/m

P
1 = mI

2/m
P
2 .

Repeating this experiment with other bodies, we see that the ratio mI/mP

for any body is equal to a universal constant, α, say. By a suitable choice
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How about
that!

Before After

Fig. 9.7 The Moon landing ‘experiment’.

of units, we can, without loss of generality, take α = 1, from which we
obtain the result

inertial mass = passive gravitational mass. (9.8)

We discuss the experimental verification of (9.8) in Chapter 16 but here
we simply note that this equality is one of the best attested results in
physics and has been verified to one part in 1012 (see §16.3).

In order to relate passive gravitational mass to active gravitational mass,
we make use of the observation that nothing can be shielded from a grav-
itational field. All matter is both acted upon by a gravitational field and is
itself a source of a gravitational field. Consider two isolated bodies situ-
ated at pointsQ andRmoving under their mutual gravitational interaction
(Fig. 9.8). The gravitational potential due to each body is, by (9.7),

ϕ1 = −Gm
A
1

r
, ϕ2 = −Gm

A
2

r
.

The force which each body experiences is, by (9.6),

F1 = −mP
1 gradQ ϕ2, F2 = −mP

2 gradR ϕ1,

Body 1 Body 2

RQ F2F1

Fig. 9.8 The mutual gravitational interaction of two isolated bodies.



162 The principles of general relativity

If we take Q to be the origin, then the gradient operators are

gradR = r̂
∂

∂r
= −gradQ,

so that

F1 =
GmP

1m
A
2

r2
r̂, F2 = −Gm

P
2m

A
1

r2
r̂.

But, by Newton’s third law, F1 = −F2, and so we conclude

mP
1/m

A
1 = mP

2/m
A
2 .

Using the same argument as before, we see that

passive gravitational mass = active gravitational mass. (9.9)

This is why in Newtonian theory we can simply refer to the mass m of a
body, where

m = mI = mP = mA.

9.4 The principle of equivalence
Wedefine a gravitational test particle to be a test particle which experi-
ences a gravitational field but does not itself alter the field or contribute to
the field. We wish to embody the empirical result of the Pisa experiments
in a principle.

P1. The motion of a gravitational test particle in a gravitational field
is independent of its mass and composition.

This is known as the strong form of the principle of equivalence, and we
are going to build general relativity on this principle. Notice the difference
in its status in the two theories. In Newtonian theory, it is an observational
result – another coincidence. It could be possible, for example, that if we
looked closer (with an accuracy greater than 1 in 1012) then different bod-
ies would possess different accelerations when placed in a gravitational
field. This would not upset Newtonian theory, which could accommo-
date such a result. In general relativity, it forms an essential hypothesis of
the theory and, if it falls, then so does the theory.

Next, we wish to make explicit the assumption that matter both re-
sponds to, and is a source of, a gravitational field. However, we have seen
in special relativity that matter and energy are equivalent, so the statement
about the gravitational field applies to energy as well. We incorporate this
result into a statement which is known as the weak form of the principle
of equivalence.
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P2. The gravitational field is coupled to everything.

Thus, no body can be shielded from a gravitational field. However, it is
possible to remove gravitational effects locally from our theory and so
regain special relativity. This we do by considering a frame of reference
which is in free fall, i.e. co-moving with a gravitational test particle. If,
in particular, we choose a freely falling frame which is not rotating, then
we regain the concept of an inertial frame, at least locally. We mean
here by ‘locally’ that observations are confined to a region over which the
variation of the gravitational field is unobservably small. In such inertial
frames, test particles remain at rest or move in straight lines with uni-
form velocity. This leads to the following statement of the principle of
equivalence.

P3.There are no local experiments which can distinguish non-rotating
free fall in a gravitational field from uniform motion in space in the
absence of a gravitational field.

In Einstein’s words, ‘for an observer falling freely from the roof of a
house there exists no gravitational field’. He described this as the ‘hap-
piest thought of my life’, and it played an important role in devising the
general theory of relativity. Notice that once again in P3 we have encoded
our principle as a statement of impossibility.

Einstein noticed one other coincidence in Newtonian theory which
proved to be of great importance in formulating a statement of the prin-
ciple of equivalence. All inertial forces are proportional to the mass of the
body experiencing them. There is one other force which behaves in the
same way, that is, the force of gravitation. For, if we drop two bodies in
the Earth’s gravitational field, then they experience forces m1g and m2g,
respectively. This coincidence suggested to Einstein that the two effects
should be considered as arising from the same origin. Thus he suggested
that we treat gravitation as an inertial effect as well; in other words, it
is an effect which arises from not using an inertial frame. Comparing the
force mg of a falling body with the inertial force ma of (9.3) suggests the
following version of the principle of equivalence.

P4. A frame linearly accelerated relative to an inertial frame in special
relativity is locally identical to a frame at rest in a gravitational field.

g

mg

Fig. 9.9 Case 1: The lift in an acceler-
ated rocket ship.

These last two versions of the principle of equivalence can be vividly clari-
fied by considering the famous thought experiments (Gedankenexperiment
in German) of Einstein, which are called the lift experiments.

We consider an observer confined to a lift or, more precisely, a
room with no windows in it or other means of communication with the
outside world. The observer is allowed equipment to carry out simple
dynamical experiments. The object of the exercise is to try and deter-
mine the observer’s state of motion. We consider four states of motion
(Figs. 9.9–9.12).
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Case 1. The lift is placed in a rocket ship in a part of the universe far
removed from gravitating bodies. The rocket is accelerated forward with
a constant acceleration g relative to an inertial observer. The observer in
the lift releases a body from rest and (neglecting the influence of the lift,
etc.) sees it fall to the floor with acceleration g.

Case 2. The rocket motor is switched off so that the lift undergoes uni-
form motion relative to the inertial observer. A released body is found to
remain at rest relative to the observer.

? ? ? ? ? ? ?

Fig. 9.10 Case 2: The lift in an unaccel-
erated rocket ship.

Case 3. The lift is next placed on the surface of the Earth, whose rota-
tional and orbital motions are ignored. A released body is found to fall to
the floor with acceleration g.

Case 4. Finally, the lift is placed in an evacuated lift shaft and allowed
to fall freely towards the centre of the Earth. A released body is found to
remain at rest relative to the observer.

Clearly, from the point of view of the observer, Cases 1 and 3 are indis-
tinguishable, as required by P4, and Cases 2 and 4 are indistinguishable,
as required by P3. Let us trace the argument that shows that these
requirements lead to the concept of a non-flat, i.e. a curved space-time.

mg

Earth

Fig. 9.11 Case 3: The lift placed on the
Earth’s surface.

g

Fig. 9.12 Case 4: The lift dropped
down an evacuated lift shaft.

In special relativity, in a coordinate system adapted to an inertial frame,
namely, Minkowski coordinates, the equation for a test particle is

d2xa

dτ2 = 0.

If we use a non-inertial frame of reference, then this is equivalent to using
a more general coordinate system. In this case, the equation becomes

d2xa

dτ2 + Γabc
dxb

dτ
dxc

dτ
= 0,

where Γabc is the metric connection of gab, which is still a flat metric but
not the Minkowski metric ηab. The additional terms involving Γabc which
appear are precisely the inertial force terms we have encountered be-
fore. Then the principle of equivalence requires that the gravitational
forces, as well as the inertial forces, should be given by an appropriate
Γabc. In this case, we can no longer take space-time to be flat, for other-
wise there would be no distinction from the non-gravitational case. The
simplest generalization is to keep Γabc as the metric connection, but now
take it to be the metric connection of a non-flat metric. If we are to in-
terpret the Γabc as force terms, then it follows that we should regard the
gab as potentials. The field equations of Newtonian gravitation consist
of second-order partial differential equations in the gravitational poten-
tial ϕ. In an analogous manner, we would expect general relativity also
to involve second-order partial differential equations in the potentials gab.
The remaining task which will allow us to build a relativistic theory of
gravitation is to choose a likely set of second-order partial differential
equations.
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9.5 The principle of general covariance
Recall the principle of special relativity, namely, that all inertial observers
are equivalent. As we have seen in the last section, general relativity at-
tempts to include non-inertial observers into its area of concern in order
to cope with gravitation. Einstein argued that all observers, whether in-
ertial or not, should be capable of discovering the laws of physics. If this
were not true, then we would have little chance in discovering them since
we are bound to the Earth, whose motion is almost certainly not inertial.
Thus, Einstein proposed the following as the logical completion of the
principle of special relativity.

Principle of general relativity: All observers are equivalent.

Observers are intimately tied up with their reference systems or coordi-
nate systems. So, if any observer can discover the laws of physics, then any
old coordinate system should do. The situation is somewhat different in
special relativity, where, because the metric is flat and the connection inte-
grable, there exists a canonical or preferred coordinate system: namely,
Minkowski coordinates. In a curved space-time, that is, a manifold with
a non-flat metric, there is no canonical coordinate system. This is just
another statement of the non-existence of a global inertial observer. How-
ever, the statement needs to be treated with caution, because in many
applications, there will be preferred coordinate systems. For example,
many problems possess symmetries and the simplest thing to do is to
adapt the coordinate system to the underlying symmetry. It is not so much
that any coordinate system will do, but rather that the theory should be
invariant under a coordinate transformation. Thus, the full import of the
principle of general relativity is contained in the following statement.

Principle of general covariance: The equations of physics should
have tensorial form.

Some authors argue that this statement is empty, because it is possible
to formulate any physical theory in tensorial form. (Of course, this real-
ization only came after the advent of general relativity.) Whether or not
this is the case, it was clearly of central importance to Einstein, as is ev-
ident from the name he gave it. We shall make use of it in the form of
the principle of general covariance, which is why we undertook our major
digression in Part B to learn the language of tensors.

9.6 The principle of minimal gravitational
coupling

The principles we have discussed so far do not tell us how to obtain
field equations of systems in general relativity when the corresponding
equations are known in special relativity. The principle of minimal grav-
itational coupling is a simplicity principle or Occam’s razor that
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essentially says we should not add unnecessary terms in making the tran-
sition from the special to the general theory. For example, we shall later
meet the conservation law

∂bTab = 0, (9.10)

in special relativity inMinkowski coordinates. The simplest generalization
of this to the general theory is to take the tensor equation

∇bTab = 0. (9.11)

However, we could equally well take

∇bTab + gbeRabcd∇eTcd = 0, (9.12)

since Rabcd = 0 in special relativity and (9.12) again reduces to (9.10) in
Minkowski coordinates. We therefore adopt the following principle.

Principle of minimal gravitational coupling: No terms explic-
itly containing the curvature tensor should be added in making the
transition from the special to the general theory.

The principle was not stated by Einstein but was used implicitly. Unfor-
tunately, it is rather vague and ambiguous and needs to be used with care.

9.7 The correspondence principle
As we stated from the outset, we are engaged withmodelling, and together
with any model should go its range of validity. Then any new theory must
be consistent with any acceptable earlier theories within their range of va-
lidity. General relativity must agree on the one hand with special relativity
in the absence of gravitation and on the other hand with Newtonian grav-
itational theory in the limit of weak gravitational fields and low velocities
(compared with the speed of light). This gives rise to a correspondence
principle, as indicated in Fig. 9.13, where arrows indicate directions of
increased specialization.

Special relativity

General relativity
Newtonian theory

of gravitation

Newtonian mechanics
in the absence of

gravitation

Fig. 9.13 The correspondence principle for general relativity.
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Exercises

9.1 (§9.2)
(i) A pendulum is suspended from the roof of a car moving in a straight
line with uniform acceleration a. Find the angle the pendulum makes with
the vertical. Explain what is happening from the viewpoint of an inertial
observer external to the car and a non-inertial observed fixed in the car.
(ii) A bucket of water is located in the car as well. Find the angle which
the surface of the water makes with the horizontal.
(iii) A bucket of water slides freely under gravity down a slope of fixed
angle α to the horizontal. What is the angle of inclination of the surface
of the water relative to the base of the bucket?

9.2 (§9.2)
(i) Consider a body rotating relative to an inertial frame about a fixed
point O with angular velocity ω in Newtonian theory. The velocity v of
any point P in the body with position vector O⃗P = r is given by

v = ω× r.

Let i, j, k denote unit vectors in the inertial frame S, and i′, j′, k′ denote
unit vectors in a frame S′ fixed in the body, where both origins are at O.
If u = u(t) is a general vector with components

u = u′1i
′ + u′2j

′ + u′3k
′,

in S′, show, by differentiating this equation, that[
du
dt

]
S
=
[
du
dt

]
S′

+ ω×u.

(ii) Consider a non-inertial frame S′ moving arbitrarily relative to an iner-
tial frame S, where the position of the origin O′ of S′ relative to the origin
O of S is s(t) and its angular velocity is ω(t). A particle of constant mass
m situated at a point with position vectors r and r′ relative to S and S′,
respectively, is acted on by a force F. Show that S′ can write the equation
of motion of the particle in the form

F−
[
ma + 2mω× ṙ′ +mω× (ω× r′) +mω̇× r′

]
= mr̈′,

where a is the acceleration of O′ relative to O and a dot denotes differen-
tiation with respect to time in the frame of S′. What are the quantities in
square brackets? Interpret these quantities physically.

9.3 (§9.3) Fill in the details that lead to the equalities (9.8) and (9.9).

9.4 (§9.3) Write down the equations of motion for an isolated system
of three bodies of inertial masses mI

1, m
I
2, and m

I
3. Eliminate the internal
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forces from these equations and demonstrate that, if two of the bodies
are rigidly bound to form a composite system, then the inertial mass is
additive.

9.5 (§9.4) In the lift experiments, explain the motion of the released body
from the point of view of: case (1) an inertial observer, case (2) an inertial
observer who initially sees the rocket moving away with constant velocity
v, and case (4), an observer at rest on the surface of the Earth.

9.6 (§9.4) Consider a sphere of non-interacting particles falling towards
the Earth’s surface. Taking into account the different accelerations of
particles in the sphere, what is the ensuing shape of the enclosing volume?

9.7 (§9.4) Find the geodesic equations for R3 in cylindrical polar coor-
dinates (see Exercise 6.18). Interpret the terms occurring which involve
Γabc.

9.8 (§9.4) What is the path of a free particle
(i) in an inertial frame?
(ii) in the presence of a uniform gravitational field?

Use the principle of equivalence and the particle theory of light to find the
path of a light ray in the above two cases and hence deduce light bending
in a gravitational field.

9.9 (§9.6) Write down a generalization of (9.10) to a curved space which
involves a term quadratic in the Riemann tensor.

9.10 (§9.6) An anti-symmetric tensor Fab satisfies the equation in special
relativity in Minkowski coordinates

∂[aFbc] = 0.

Write down the simplest generalization to a curved space-time and show
that it is identical to the original equation.

9.11 (§9.7) Write down the correspondence principle for the transition
from special relativity (in non-relativistic units) to Newtonian theory in
the absence of gravitation. Express this transition as a limit involving the
speed of light. Draw a sequence of diagrams to indicate what happens
to the null cone in this limit. What happens to the three regions defined
by the null cone in special relativity? What happens to the concept of
simultaneity in the limit?

Further reading

There are many excellent textbooks suitable for a first course in general
relativity. The book A first course in general relativity by Schutz (1985) is
at a similar level to this book. The book by Carroll (2004) is also suitable
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for a first course and covers a slightly different range of topics. The book
by Hartle adopts what is calls a ‘physics first’ approach, so those with
a strong physics background will find it a useful alternative. For those
wanting something at a more advanced level, the first recommendation
would be the book by Wald (1984).

Carroll, S. M. (2004). Spacetime and Geometry: An Introduction to General
Relativity. Addison Wesley, San Francisco, CA.

Hartle, J. B. (2003). Gravity: An Introduction to Einstein’s General Relati-
vity. Addison Wesley, San Francisco, CA.

Schutz, B. F. (1985). A First Course in General Relativity. Cambridge
University Press, Cambridge.

Wald, R. M. (1984). General Relativity. University of Chicago Press,
Chicago, IL.





10The field equations of
general relativity

10.1 Non-local lift experiments
The considerations of the last chapter led us to conclude that, locally,
i.e. neglecting variations in the gravitational field, we can regain special
relativity. However, in a non-local situation, we require a non-flat met-
ric which may be thought of as the potentials of the gravitational field.
Correspondence with Newtonian theory then suggests that we require
second-order field equations in these potentials, and, moreover, from the
principle of covariance, these equations must be tensorial in character. In
this chapter, we shall pursue the Newtonian correspondence further and
reformulate Newtonian theory in such a way that it leads naturally to the
particular set of field equations of general relativity.

We return to the lift experiments and consider performing the follow-
ing non-local experiments. We assume that the observer’s equipment
is sufficiently sensitive to detect variations in the gravitational field. The
four experiments take the same form as before, but this time the ob-
server releases two bodies, whose mutual interactions we ignore (Figs.
10.1–10.4).

Case 1. From the point of view of the observer in the lift, the two bodies
fall to the ground parallel to each other.

Case 2. The bodies remain at rest relative to the observer.

Case 3. The two bodies fall towards the centre of the Earth and hence
fall on paths which converge.

Case 4. The bodies appear to the observer to move closer together, be-
cause they are falling on lines which converge towards the centre of the
earth.

g

Fig. 10.1 Case 1: The lift in an acceler-
ated rocket ship.

? ? ? ? ? ? ?

Fig. 10.2 Case 2: The lift in an unaccel-
erated rocket ship.

It follows that the observer can distinguish the uniform inertial field
of Case 1 from the Earth’s non-uniform gravitational field of Case 3 by
considering the relative motion of test particles. Again, in free fall, bodies
travel on geodesics in a gravitational field which converge (or diverge),
as in Case 4. The point of these thought experiments is that the pres-
ence of a genuine gravitational field, as distinct from an inertial field, is
verified by the observation of the variation of the field rather than by
the observation of the field itself. We shall see that in general relativity
this variation is described by the Riemann tensor through the equation of
geodesic deviation.

Introducing Einstein’s Relativity. Second Edition. Ray d’Inverno and James Vickers, Oxford University Press.
© Ray d’Inverno and James Vickers (2022). DOI: 10.1093/oso/9780198862024.003.0010
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10.2 The Newtonian equation of deviation
The non-local lift experiments reveal that we should focus our atten-
tion on two neighbouring test particles in free fall in a gravitational field.
We look at this motion first of all in Newtonian theory using the tensor
apparatus of Part B. We introduce Cartesian coordinates

Earth

Fig. 10.3 Case 3: The lift placed on the
Earth’s surface.

Fig. 10.4 Case 4: The lift dropped down
an evacuated lift shaft.

(xa) = (x1, x2, x3) = (x, y, z),

where, for the rest of this chapter, Greek indices run from 1 to 3, and then
the line element of Euclidean 3-space R3 is

dσ2 = dx2 + dy2 + dz2,

from which we obtain the Euclidean metric

gαβ =δαβ = diag (1, 1, 1). (10.1)

We therefore raise and lower indices with the three-dimensional Kro-
necker delta. This means that in Newtonian theory there is really no
distinction between raised and lowered indices, but we will retain the no-
tation in order to help us compare results later with the general theory.
We consider the paths of two neighbouring gravitational test particles of
unit mass travelling in vacuo in a gravitational field whose potential is ϕ.

Let the particles travel on curves C1 and C2 so that they reach the
points P and Q at time t (Fig. 10.5). If we use the time t as the parameter
along the curves, then the parametric equations of C1 are

xα = xα(t), (10.2)

and those of C2 can be written as

xα = xα(t) + ηα(t), (10.3)

where ηα is a small connecting vector which connects points on the
two curves with equal values of t. Since the particles have unit mass, the

x1

x2

C2C1

xα

ηα

P
Q

x3

Fig. 10.5 Freely falling gravitational test particles at time t.
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equation of motion of the first particle, by (9.5) and (9.6), can be written
in the tensor form

ẍα = −∂α ϕ, (10.4)

where a dot denotes differentiation with respect to time and

∂αϕ = δαβ ∂β ϕ =
(
∂ϕ

∂x
,
∂ϕ

∂y
,
∂ϕ

∂z

)
= (gradϕ)P. (10.5)

Similarly, the equation of motion of the second particle is

ẍα + η̈α = −(∂α ϕ)Q. (10.6)

Since ηα is small, we may expand the term on the right-hand side by
Taylor’s theorem (exercise), to obtain

− (∂α ϕ)Q = −(∂α ϕ)P −
(
ηβ ∂β ∂

α ϕ
)
P, (10.7)

to first order. Subtracting (10.4) from (10.6), we get

η̈α = − ηβ ∂β ∂
α ϕ. (10.8)

If we define the tensor Kαβ by

Kαβ := ∂α∂β ϕ, (10.9)

then the equation of motion (10.8) of the connecting vector ηα, which we
call the Newtonian equation of deviation, becomes

η̈α +Kαβ ηβ = 0. (10.10)

Note that Kαβ = ∂α∂βϕ is symmetric. This equation is intimately con-
nected with the Newtonian field equations in empty space, namely,
Laplace’s equation (4.6), which can be written (exercise)

Kαα = 0. (10.11)

In other words, the tensorKαβ is symmetric and trace-free. We now
search for a relativistic generalization of these equations.

10.3 The equation of geodesic deviation
Following the axioms of §8.5, we assume that free test particles in general
relativity travel on timelike geodesics. We therefore consider a 2-surface
S ruled by a congruence of timelike geodesics , that is, a family of
geodesics such that exactly one of the curves goes through every point of
S. The parametric equation of S is given by
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xa = xa(τ , σ), (10.12)

where τ is the proper time along the geodesics, and σ labels distinct
geodesics. We define two vector fields on S by

V a =
∂xa

∂τ
, (10.13)

and

ξa =
∂xa

∂σ
. (10.14)

Then V a is the tangent vector to the timelike geodesic at each point,
and ξa is a connecting vector connecting two neighbouring curves in
the congruence (Fig. 10.6). The commutator of V a and ξa satisfies

[V, ξ]a = V b∂bξ
a − ξb∂bV a

=
∂xb

∂τ

∂

∂xb

(
∂xa

∂σ

)
− ∂xb

∂σ

∂

∂xb

(
∂xa

∂τ

)
=
∂2xa

∂τ∂σ
− ∂2xa

∂σ∂τ

= 0 (10.15)

since the mixed partial derivatives commute. (It can be shown that the
vanishing of the commutator is a necessary and sufficient condition for the
vector fields to be surface-forming, which means that the congruences
generated by the two vectors knit together to form a 2-surface.)

S

C2C1

P

Va

ξa

Fig. 10.6 The vectors V a and ξa at a
point P in S.

By (6.15), the commutator is also equal to the Lie derivative LVξ
a.

We now use the result which allows us to replace partial derivatives by
covariant derivatives in an expression for a Lie derivative

0 = LVξ
a

= V b∂b ξ
a − ξb ∂b V a

= V b∇b ξ
α − ξb∇b V a

= ∇V ξ
a −∇ξ V a. (10.16)

Taking the covariant derivative of this equation with respect to V a, we
find

∇V∇Vξ
a = ∇V∇ξ V a. (10.17)

The equation we are seeking derives from the identity (Exercise 6.11)

∇X (∇Y Za)−∇Y (∇X Za)−∇[X,Y] Z
a = RabcdZbXcYd. (10.18)

If we set Xa = Za = V a and Ya = ξa, then the second term on the left
vanishes, because V a is tangent to an affinely parametrized geodesic, and
so, by (6.38),
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∇VV a = 0. (10.19)

The third term vanishes by (10.15), since the covariant derivative of any
tensor with respect to the zero tensor is zero. Thus, (10.18) becomes

∇V∇ξ V a − Rabcd V b V c ξd = 0. (10.20)

By definition,

D2ξa

Dτ2 = ∇V∇Vξ
a,

and so, using (10.17), equation (10.20) becomes the promised equation
of geodesic deviation

D2ξa

Dτ2 − Rabcd V b V c ξd = 0. (10.21)

The absolute derivative along the curve is the tensorial analogue of the
time derivative along the curve in (10.10).

10.4 The vacuum field equations of general
relativity

We now want to compare the relativistic equation (10.21) to the Newto-
nian result (10.10). To do this we define

Ka
b = RacbdV cV d, (10.22)

so that equation (10.21) becomes

D2ξa

Dτ2 +Ka
bξ
b = 0. (10.23)

Comparing this with the Newtonian equation (10.10), we see that Ka
b

defined by (10.22) is the relativistic analogue of the Newtonian quantity
Kαβ defined by (10.11). Continuing with this analogy, we now tentatively
suggest that the relativistic version of (10.11) is

Ka
a = 0. (10.24)

From (10.22) this gives

RacadV cV d = 0,

and thus RabV aV b = 0 along any timelike geodesic, where V a is the tan-
gent to the geodesic. Since at any point P and for any timelike vector V a
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we can find a geodesic through P with this tangent vector, it follows that

RabV aV b = 0, (10.25)

at any point P and for any timelike vector V a. Since Rab is symmetric, it
follows (exercise) that this is only possible if

Rab = 0. (10.26)

We therefore take (10.26) as the vacuum field equations for general
relativity, i.e. the field equations in the absence of matter.

10.5 Freely falling frames
As our first test of these field equations, we want to look at the Newtonian
limit of (10.26) and show that it gives Laplace’s equation ∇2ϕ = 0 for the
Newtonian gravitational potential ϕ. The relationship betweenNewtonian
theory and general relativity is best understood in a local inertial frame
which is given by a freely falling frame. Such a frame consists of a set
of four vectors eib (where the bold index i = 0, 1, 2, 3 labels the vector,
and the roman index b = 0, 1, 2, 3 gives the components of the vector)
defined along γ, the geodesic x(τ)a of a freely falling particle parametrized
by proper time. We choose

e0b := V b = ẋb,

to be tangent to the geodesic, and eαb, where α is a bold label running
from 1 to 3, to be spacelike vectors which together with e0 satisfy the
following orthonormality relations

e0a e0a = −e1ae1a = −e2ae2a = −e3ae3a = 1,
e0a e1a = e0ae2a = e0ae3a = e1ae2a = e1ae3a = e2ae3a = 0.

These can be succinctly summarized as

gabeiaejb = ηiij, (10.27)

where ηiij is the Minkowski metric, that is,

ηiij = diag(1,−1,−1,−1).

The four vectors eia (ii = 0, 1, 2, 3) are said to form a frame or tetrad
(vierbein, in German) at P.

Treating eia as a 4× 4 matrix at P, we can define its inverse (called the
dual frame) eja by requiring

eiaeja = δji, (10.28)
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where δji is the Kronecker delta, or the identity matrix in matrix terms. We
have introduced the frame notation merely as a convenience so far, but it
turns out that frames possess a powerful formalism of their own (which
is outside the scope of this book, but see §20.1). For example, in exactly
the same way that we raise and lower tensor indices with the metric gab,
we can raise and lower frame indices (i, j, . . .) with the frame metric
ηij. Let us multiply (10.28) by eib and write it in the form

(eibeia)eja = ejb,

from which it should be clear that the quantity in parentheses must be the
tensorial Kronecker delta, namely,

eibeia = δab . (10.29)

The physical interpretation of the frame is as follows: e0a = V a is the
4-velocity of an observer whose world-line is γ, and the three spacelike
vectors eαa are rectangular coordinate vectors (such as the usual Cartesian
basis i, j, and k, for example) at P, where the bold Greek indices run from
1 to 3. So far, the frame has only been defined at P, but we also want the
spatial vectors to be non-rotating which requires that

∇Veαb = 0. (10.30)

It can be shown that this follows from the physical fact that the spin of a
gyroscope is parallely propagated along a geodesic (Schiff 1960, Hartle
2003). Note that, since e0b = V b, we automatically have

∇Ve b0 = ∇VV b = 0. (10.31)

Taking (10.30) and (10.31) together, we see that a freely falling frame
also satisfies

D
Dτ

(eia) = 0, (10.32)

from which we see that the frame is parallely transported along the
curve γ.

In the same way as we can get the Cartesian components of a three-
dimensional vector by taking the scalar product of it with i, j, and k, we
define the frame components of the connecting vector ξa by

ξα = eαaξa. (10.33)

ξa

C2

P

C1

e1
a

e2
a

e3
a

e0
a

Fig. 10.7 The frame and the
connecting vector at P.

We represent the various quantities schematically in Fig. 10.7. Indeed, we
can find the frame components of any tensor by contracting with eib and
ejd in order to saturate all the unbold indices and replace them by bold
indices. For example, the frame components of a rank 2 tensor Tab are
given by

Tij = Tcdeicejd.



178 The field equations of general relativity

To find the equation of geodesic deviation as measured by a freely
falling inertial observer, we multiply (10.21) by eia and use the fact that
V a = e0a. Taking account of the symmetries of the curvature tensor, this
gives

eia
D2ξa

Dτ2 + eiaRabcde0b e0d ξc = 0. (10.34)

Now, by (10.32)

eia
D2ξa

Dτ2 =
D2(eiaξa)

Dτ2 =
D2ξi

Dτ2 , (10.35)

and, using (10.29)

eiaRabcde0b e0d ξc = eiaRabcde0b e0dejcejfξf = Ri0j0ξj. (10.36)

So that the freely falling frame version of (10.21) is

D2ξi

Dτ2 + Ri0j0ξj = 0. (10.37)

Note that, because the curvature tensor vanishes if j = 0 in the above, we
may write this as an equation for the orthogonal connecting vector,
which is given by ηi = (0, ξα). The spatial part of this ηα is the precise
analogue of the vector ηα of §10.2. In terms of ηα, the spatial part of the
equation of geodesic deviation is

D2ηα

Dτ2
+Kα

β η
β = 0, (10.38)

where

Kα
β = Rabcd eαae0beβced0 = Rα

0β0. (10.39)

Equation (10.38) is the spatial part (10.21) as measured in an inertial
frame whose Newtonian limit we now calculate to compare with (10.10).

10.6 The Newtonian correspondence
In this section, we consider more precisely the Newtonian limit of a slowly
varying weak gravitational field. We shall work in non-relativistic units. In
theNewtonian limit, we assume that there exists a privileged coordinate
system

(xa) = (x0, x1, x2, x3) = (x0, xα) = (ct, x, y, z),

in which themetric gab differs only slightly from theMinkowski metric ηab.
Moreover, we assume that the field is produced by bodies whose velocities
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are small compared with the velocity of light. If v is a typical velocity of
the bodies, then we let ε denote a small dimensionless parameter of order
v/c, and our basic assumption is

gab = ηab + εhab +O(ε2), (10.40)

where throughout we shall work to lowest order in ε. In time δt, a body
moves a distance δxα with velocity v, i.e.

δxα ∼ velocity × time ∼ vδt ∼ (v/c)cδt ∼ εδx0,

and so

ε/δxα ∼ 1/δx0.

Then, for any function f, we assume the slow-motion approximation

ε
∂f
∂xα

∼ ∂f
∂x0

, (10.41)

that is, derivatives with respect to x0 are of order ε times the spatial deriva-
tives. The conditions (10.40) and (10.41) are the starting assumptions for
obtaining the Newtonian limit.

We consider the motion of a free test particle moving with a speed of
the order of v on a world-line xa = xa(τ) parametrized by the proper time.
It travels on a timelike geodesic

d2xa

dτ2 + Γabc
dxb

dτ
dxc

dτ
= 0. (10.42)

By definition,

c2dτ2 = ds2

= c2dt2 − dx2 − dy2 − dz2

= dt2(c2 − v2)

= c2dt2(1− ε2),

and so, taking square roots,

dτ
dt

= 1 +O(ε2). (10.43)

Hence, working to lowest order in ε, we can replace τ by t in (10.42).
Moreover, from our slow-motion approximation,

dxα ∼ εcdt,
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so that

1
c
dxα

dt
= O(ε). (10.44)

In addition

Γabc =
1
2g

ad (∂cgbd + ∂bgcd − ∂dgbc)

= 1
2η

adε (∂c hbd + ∂b hcd − ∂d hbc) +O(ε2), (10.45)

so that

Γabc = O(ε). (10.46)

Since we are interested in the Newtonian limit, we restrict our attention
to the spatial part of (10.42), i.e. when a = α, and we obtain, by using
(10.43) and dividing by c2

0 =
1
c2

d2xα

dt2
+

1
c2
Γαbc

dxb

dt
dxc

dt
[1 +O(ε)]

=
1
c2

d2xα

dt2
+ Γα00 + 2Γα0β

(
1
c
dxβ

dt

)
+ Γαβγ

(
1
c
dxβ

dt

)(
1
c
dxγ

dt

)
+O(ε2).

From (10.44) and (10.46), the third and fourth terms in this equation are
O(ε2) and O(ε3), respectively. From (10.45), the second term is

Γα00 = − 1
2ε

(
2
∂h0α
∂x0

− ∂h00
∂xα

)
= 1

2ε
∂h00
∂xα

+O(ε2), (10.47)

by the slow motion approximation (10.41). So the spatial part of the
geodesic equation can be written

d2xα

dt2
= − 1

2 c
2 ∂g00
∂xα

[1 +O(ε)] , (10.48)

using (10.40). We compare this with the corresponding Newtonian
equation (10.4), namely,

d2xα

dt2
= − ∂ϕ

∂xα
,

where ϕ is the Newtonian gravitational potential. Noting that, at large
distances from the sources of the field, ϕ→ 0 and g00 → 1, we conclude

g00 = 1 +
2ϕ
c2

+O(v/c ). (10.49)

This is called the weak-field limit.
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Let us consider the effect of an infinitesimal coordinate transformation

xa → x′a = xa + εXa(x),

which is consistent with the two assumptions (10.40) and (10.41). Then
we find (exercise)

g′ab = gab − ε (∂aXb + ∂bXa) +O
(
ε2
)
, (10.50)

where

Xa = ηabXb.

To preserve (10.41), we require

∂Xa

∂x0
∼ ε

∂Xa

∂xα
,

which means from (10.50) that g00 is the only component of gab that does
not alter to first order in ε. We have therefore shown that the only compo-
nent of the metric tensor which is well defined to first order for a slowly
varying weak gravitational field is determined to this order by the require-
ment that the theory should agree with Newtonian theory to this order,
and it is given by (10.49). Note that no mention of the field equations has
been made in deriving (10.49). It arises purely from assuming geodesic
motion and the Newtonian limit as embodied in the equations (10.40)
and (10.41).

Having obtained an expression for the weak-field limit, we are now in
a position to calculate the Newtonian limit of equation (10.38). We start
by looking at the curvature tensor. This consists of derivatives of the con-
nection Γabc and terms quadratic in the connection. Since the connection is
O(ε), we see that the curvature is also O(ε), with the leading order terms
given by the derivative terms. Hence,

Rabcd = Γabd,c − Γabc,d +O(ε2).

In particular,

Rα0γ0 = Γα00,γ − Γα0γ,0 +O(ε2).

Furthermore, using the slow-motion approximation (10.41) the second
term involves a time derivative and so is also O(ε2). Thus, ignoring the
terms of O(ε2) and setting c = 1, we have

Rα0γ0 = Γα00,γ

= 1
2ε

∂

∂xγ

(
∂g00
∂xα

)
=

∂2ϕ

∂xα∂xγ
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by (10.47) and (10.49). Finally, we note that, for a metric given by
(10.40), the components of the frame differ from those of a Minkowski
frame by terms of O(ε) so, to leading order, we may use a standard
Minkowski frame whose components coincide with the coordinate vec-
tors. Thus, in the slow-motion weak-field approximation, we find

Kα
β = Rα0β0 =

∂2ϕ

∂xα∂xβ
. (10.51)

Furthermore, in the slow-motion approximation, D/Dt is the same as
d/dt, and the spatial components of the equation of geodesic deviation
(10.38) reduce to

d2ηα

dt2
+ δαγ

∂2ϕ

∂xγ∂xβ
= 0,

which is identical to the Newtonian equation (10.10).
If we take the trace of Ra0b0, we get R0

000 +Rα0α0. Since the first term
vanishes, the trace is just Rα0α0 = Kαα which, using (10.51) and the field
equation (10.26), gives

δαβ
∂2ϕ

∂xα∂xβ
= ∇2ϕ = 0,

which is just Laplace’s equation for the gravitational potential.
We have therefore shown the following result:

In the slow-motion weak field approximation, the relativistic equation
of geodesic deviation (10.21) reduces to the Newtonian equation of
deviation (10.10), and the relativistic vacuum field equations Rab = 0
reduce to the empty-space Newtonian field equations ∇2ϕ = 0.

10.7 Einstein’s route to the field equations
of general relativity

Our arrival at the vacuum field equations of general relativity has involved
rather a long story. This is not so surprising when you consider that it
took Einstein over ten years of endeavour to move from the formulation
of the special theory (1905) to a final formulation of the general theory
(1916). It might be helpful, therefore, to outline again the main points of
the argument.

1. The principle of equivalence reveals that, if we freefall in a gravita-
tional field, then we can eliminate gravity locally and regain special
relativity.

2. It also states that, locally, we cannot distinguish a gravitational field
from a (uniform accelerating) inertial field and, consequently, we
should regard gravitation as an inertial force.



Einstein’s route to the field equations of general relativity 183

3. Following special relativity, we assume that free test particles travel
on timelike geodesics. Then inertial forces arise in the geodesic
equations in the terms involving the metric connection of a flat met-
ric. In order to include the extra effect of gravitation in the metric
connection, we generalize the metric to being curved.

4. The metric then plays the role of the potentials of the theory and,
in analogy with Newtonian theory, we seek a set of second-order
partial differential equations for the potentials as field equations of
the theory. Moreover, by the covariance principle, these equations
must be tensorial.

5. If we now take non-local effects into account; then, a genuine gravi-
tational field can be observed by the variation in the field rather than
by an observation of the field itself. This variation causes test par-
ticles to travel on timelike geodesics which converge (or diverge),
and the convergence is described by the Riemann tensor through
the equation of geodesic deviation.

6. TheRiemann tensor is a tensor which involves second partial deriva-
tives of the metric and so we might expect the field equations of the
theory to involve the Riemann tensor. The fact that the Newtonian
vacuum field equations involve the vanishing of a contracted tensor
suggests that we might consider a contraction of the Riemann ten-
sor. There is only one meaningful contraction (why?), namely, the
Ricci tensor, and its vanishing is equivalent to the vanishing of the
Einstein tensor.

We thus arrive at the equations

Rab = 0. (10.52)

By Exercise 6.26, the vanishing of the Ricci tensor is equivalent to the van-
ishing of the Einstein tensor, so that we can write (10.52) in the alternative
form

Gab = 0. (10.53)

Equations (10.52) or (10.53) are the equations which Einstein proposed
should serve as the vacuum field equations of general relativity. We
briefly indicate below why (10.53) is the more natural form when we at-
tempt to generalise Poisson’s equation ∇2ϕ = 8πGρ in order to include
matter sources for the gravitational field.
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10.8 The full field equations of general
relativity

For completeness, we introduce briefly the full field equations, which hold
in the presence of fields other than gravitation. As we shall see, these
fields are described by the energy-momentum tensor Tab. Now the
equivalence of mass and energy from special relativity suggests that all
forms of energy act as sources for the gravitational field; indeed, this
is the content of the weak form of the principle of equivalence P2. We
therefore take Tab as a source term in the field equations. In special rel-
ativity in Minkowski coordinates, the energy-momentum tensor satisfies
the conservation equations (see Chapter 12)

∂bTab = 0.

The principle of minimal gravitational coupling suggests the general
relativistic generalization

∇bTab = 0.

However, we know that the covariant derivative of the Einstein tensor
vanishes through the contracted Bianchi identities (6.87):

∇bGab = 0.

The last two equations suggest that the two tensors are proportional, and
one can write consistently

Gab = κTab, (10.54)

where κ is a constant of proportionality called the coupling constant.
Note that this equation is in line with Mach’s principle in the form
M1, since the matter (Tab) determines the geometry (Gab) and hence is
the source of inertial effects. The constant κ is then determined by the
correspondence principle, since this equation must reduce to Poisson’s
equation (4.5) in the appropriate limit. We shall see in §12.3 that this is
given in non-relativistic units by

κ = 8πG/c4 . (10.55)

The equations (10.54) subject to (10.55) constitute the full field
equations of general relativity. We shall, for the most part, work in rel-
ativistic units, in which we can take both c = 1 and G = 1, and then the
coupling constant is simply

κ = 8π. (10.56)

At this stage, we shall define the theory of general relativity to consist
of the axioms of special relativity as stated in §8.5 except that I(iii) is
now replaced by equation (10.54) subject to (10.55). However, before
we consider further the significance of the field equations, we shall look
at, in the next chapter, an alternative derivation based on a mathematical
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principle rather than physical principles, namely, the variational principle,
and follow this up with an investigation of the right hand side of (10.54),
namely, the energy-momentum tensor.

Exercises

10.1 (§10.2) Taylor’s theorem in three dimensions can be written

f(x + h) = f(x) +
∞∑
1

(h·∇)n

n!
f(x),

where

x = xi + yj + zk,

h = h1i + h2j + h3k,

∇ = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
.

Write out the first three terms of the expansion.

10.2 (§10.2) (i) Use Exercise 10.1 to verify (10.7).
(ii) Verify that Laplace’s equation can be written in the form (10.11).

10.3 (§10.3) If Va = dxa/dτ is the tangent vector to a timelike geodesic
parametrized by the proper time, and ξa is an arbitrary vector field, show
that
(i) ∇VVa = 0,
(ii) ∇VVa = 0,
(iii) Va∇ξVa = 0,
(iv) Va∇ξVa = 0.

10.4 (§10.3) Let hab = δab−VaVb be the projection operator into the space
orthogonal to Va. Show that, if we define the orthogonal connecting
vector ηa by ηa := habξb, then (10.21) implies

D2ηa

Dτ2 − RabcdVbVcηd = 0.

10.5 (§10.3) Show that a Killing vector Xa satisfies the equation of
geodesic deviation

D2Xa

Du2
− Rabcd

dxb

du
dxc

du
Xd = 0

along any geodesic xa = xa(u). [Hint: use Exercise 7.15.]

10.6 (§10.3) If, at some point P, the symmetric tensor Rab satisfies

Rabvavb = 0
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for an arbitrary timelike vector va, then deduce that Rab must vanish at
P. [Hint: let va = ta+λsa, where tata = 1, sasa = −1, tasa = 0, 0 ⩽ λ < 1, λ
arbitrary, and consider a special coordinate system in which ta

∗
= δa0 and

sa
∗
= δa1, δ

a
2, δ

a
3 in turn.]

10.7 (§10.5) Show that, if a frame eia is parallelly propagated along C,
then so is its dual frame eia.

10.8 (§10.5) If ηij is the inverse of ηij, then show that

gab = ηijeiaejb and gab = ηijeiaejb.

If (xa) = (t, r, θ,ϕ) and

ea0 = (A−1/2, 0, 0, 0), ea1 = (0,A1/2, 0, 0),

ea2 = (0, 0, 1/r, 0), ea3 = (0, 0, 0, 1/r sin θ),

where A = A(r) is an arbitrary function, then find gab, gab, and the line
element ds2.

10.9 (§10.6) Write out the argument fully which deduces (10.49) from
(10.48).

10.10 (§10.6) Check (10.50). Deduce that g00 is the only component not
to alter to order ε.

10.11 (§10.7) What principles are used in each of the six steps outlined
in §10.7?

10.12 (§10.8)What principles are used in the transition to the full theory?

Further reading

The references for this chapter are similar to those for Chapter 9. The
article by Schiff (1960) discusses the motion of gyroscopes in general
relativity. This is also discussed in the book by Hartle (1984).

Carroll, S. M. (2004). Spacetime and Geometry: An Introduction to General
Relativity. Addison Wesley, San Francisco, CA.

Hartle, J. B. (2003). Gravity: An Introduction to Einstein’s General Relativ-
ity. Addison Wesley, San Francisco, CA.

Schutz, B. F. (1985). A First Course in General Relativity. Cambridge
University Press, Cambridge.

Schiff, L. I. (1960). Motion of a gyroscope according to Einstein’s theory
of gravitation. Proceedings of the National Academy of Sciences of the United
States of America, 46(6), 871–82.

Wald, R. M. (1984). General Relativity. University of Chicago Press,
Chicago, IL.



11General relativity from
a variational principle

11.1 The Palatini equation
Many tensor identities are best derived using the technique of geodesic
coordinates, where we choose an arbitrary point P at which Γabc

∗
= 0. Then,

in particular, covariant derivatives reduce to ordinary derivatives at the
point P. The Riemann tensor (6.40) reduces to

Rabcd
∗
= ∂cΓ

a
bd − ∂dΓ

a
bc. (11.1)

We now contemplate a variation of the connection Γabc, to a new connec-
tion Γ̄abc

Γabc → Γ̄abc = Γabc + δΓ
a
bc. (11.2)

Then δΓabc, being the difference of two connections, is a tensor of type
(1, 2). This variation results in a change in the Riemann tensor

Rabcd → R̄abcd = Rabcd + δRabcd,

where

δRabcd
∗
= ∂c(δΓ

a
bd)− ∂d(δΓ

a
bc)

∗
= ∇c(δΓ

a
bd)−∇d(δΓ

a
bc),

since partial derivative commutes with variation and is equivalent to co-
variant derivative in geodesic coordinates. Now both δRabcd, being the
difference of two tensors, and the quantities on the right-hand side of the
last equation are tensors, and so, by our fundamental result (if a tensor
equation holds in one coordinate system it must hold in all coordinate
systems), we can deduce the Palatini equation

δRabcd = ∇c(δΓ
a
bd)−∇d(δΓ

a
bc), (11.3)

at the pointP. SinceP is an arbitrary point, the result holds quite generally.
Contraction on a and c gives the useful result

δRbd = ∇a(δΓ
a
bd)−∇d(δΓ

a
ba). (11.4)

Introducing Einstein’s Relativity. Second Edition. Ray d’Inverno and James Vickers, Oxford University Press.
© Ray d’Inverno and James Vickers (2022). DOI: 10.1093/oso/9780198862024.003.0011
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11.2 Differential constraints on the field
equations

The variational principle proceeds from the specification of a Lagrangian
density L, which is assumed to be a functional of the metric gab and its
first and possibly higher derivatives, that is,

L = L(gab, ∂cgab, ∂d∂cgab, . . .). (11.5)

L is required to be a scalar density of weight +1 so that we can form the
action integral

I =
∫
Ω
LdΩ, (11.6)

over some region Ω of the manifold. The principle of stationary action
then states that, if we make arbitrary variations of the gab which vanish on
the boundary ∂Ω of Ω, then Imust be stationary.Writing this out formally
using the variational notation of Chapter 7, we obtain

gab → gab + δgab ⇒ I→ I + δI with δI = 0, (11.7)

where

δI =
∫
Ω
LabδgabdΩ, (11.8)

and Lab is the Euler-Lagrange derivative

Lab :=
δL
δgab

. (11.9)

The field equations are then

Lab = 0. (11.10)

Since δI is the difference between two scalars, it must itself be a scalar,
and hence from (11.8) it follows that Lab is a symmetric tensor density of
weight +1. We shall consider the details of the calculation of Lab in later
sections. However, before we do this we shall derive some very important
differential constraints on the field equations which hold whether or not
the field equations hold and which follow simply from the fact that L
is a density. In general relativity, these will turn out to be the contracted
Bianchi identities.

The idea is to generate a ‘variation’ in the gab, which is brought about
simply by carrying out a change of coordinates in Ω. Then, since I remains
invariant it follows that δI must be identically zero,

δI ≡ 0. (11.11)
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We consider an infinitesimal change of coordinates (7.53) in Ω,

xa → x′a = xa + εXa(x), (11.12)

where Xa is a smooth vector field which vanishes on the boundary of Ω.
Performing a similar calculation to that of §7.7, we find (exercise)

δgab = g′ab(x)− gab(x) = −LεXgab = −ε(∇bXa +∇aXb). (11.13)

Hence, combining this with (11.8) and (11.11), we obtain

0 ≡ δI = −2ε
∫
Ω
Lab(∇bXa)dΩ,

since Lab is symmetric by the definition (11.9). We now use a standard
trick, called integration by parts, to write the integral as a difference of
two terms, namely (check),

0 ≡ 2ε
∫
Ω
(∇bLab)XadΩ− 2ε

∫
Ω
∇b[LabXa]dΩ. (11.14)

The term in square brackets is a vector density of weight +1, and hence by
(7.3) its covariant divergence can be replaced by an ordinary divergence.
Then the divergence theorem (7.19) gives

2ε
∫
Ω
∂b[LabXa]dΩ = 2ε

∫
∂Ω

LabXadSb, (11.15)

which converts the last term in (11.14) to a surface integral. But, by as-
sumption, Xa vanishes on Ω, and hence this term must vanish. Thus,
(11.14) reduces to ∫

Ω
(∇bLab)XadΩ ≡ 0, (11.16)

and, since Ω is arbitrary, we must conclude (exercise)

(∇bLab)Xa ≡ 0. (11.17)

Finally, since Xa is arbitrary, we obtain the promised differential iden-
tities

∇bLab ≡ 0. (11.18)

11.3 A simple example

Let us use the following notation: a gothicized tensor is to represent the
corresponding tensor multiplied by

√
−g. Thus, for example,

gab =
√
−ggab and Tab =

√
−gTab.

Then all tensors in gothic type will be tensor densities of weight +1.
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The simplest scalar density that we can make out of gab alone is
√
−g

itself, namely,

L(gab) =
√
−g, (11.19)

where
√
−g is to be regarded as a functional of the dynamical variable gab.

Recalling (7.8), we write

∂g
∂gab

= ggab, (11.20)

and so

∂
√
−g

∂gab
= 1

2

(−g)√
−g

gab = 1
2

√
−ggab = 1

2g
ab, (11.21)

from which we deduce that

Lab =
∂L
∂gab

= 1
2g

ab.

Clearly, gab = 0 cannot serve as field equations. The identities (11.18)
become

∇bg
ab ≡ 0, (11.22)

which is trivially satisfied, since both gab and
√
−g have vanishing covari-

ant derivatives by (6.74) and (7.12).

11.4 The Einstein Lagrangian

The Lagrangian (11.19) clearly cannot serve as the Lagrangian of a phys-
ical theory. However, it turns out that the next most complicated scalar
which can be built out of gab and its derivatives – and it is very much more
complicated – is the curvature scalar R. The resulting Lagrangian,

LG =
√
−gR, (11.23)

is called the Einstein Lagrangian, where the label G denotes that it
is the Lagrangian for gravitation. We shall employ the notation of a
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comma for partial differentiation, otherwise we end up writing terms like
∂L/∂(∂cgab). Then, explicitly,

LG =
√
−ggcdRcd

= gcdReced

= gcd(Γecd,e − Γece,d + ΓfcdΓ
e
fe − ΓfceΓ

e
fd)

= gcd{[ 12g
ef(gcf,d + gdf,c − gcd,f)],e

− [ 12g
ef(gcf,e + gef,c − gce,f)],d

+ [ 12g
fh(gch,d + gdh,c − gcd,h)][ 12g

ei(gfi,e + gei,f − gfe,i)]

− [ 12g
fh(gch,e + geh,c − gce,h)][ 12g

ei(gfi,d + gdi,f − gfd,i)]}. (11.24)

We must think of this as a functional of gab and its first and second
derivatives, namely,

LG = LG(gab, gab,c, gab,cd),

where we regard gab and g (and therefore gab) as functions of gab. Note
that we could equally well regard LG as a functional of one of gab, gab,
or gab and their corresponding first and second derivatives. In the case
where gab are the dynamical variables, the Euler-Lagrange derivative is a
generalization of (7.36) and becomes

δLG

δgab
=
∂LG

∂gab
−
(
∂LG

∂gab,c

)
,c
+
(
∂LG

∂gab,cd

)
,cd

. (11.25)

Following the procedure of the last section, we would expect next to cal-
culate actual expressions for each of these terms. For example (exercise),

δLG

δgab,cd
=
√
−g[ 12 (g

acgbd + gadgbc)− gabgcd]. (11.26)

The calculation of the remaining terms, though straightforward, is, unfor-
tunately, absolutely horrendous andwe shall not pursue it further. Instead,
we will exploit the variational formalism in the next section and show how
this indirect approach leads to a more tractable calculation. However, had
we proceeded, then we would have found (exercise for the completely
dedicated reader!)

LabG =
δLG

δgab
= −

√
−gGab, (11.27)

and so the Euler-Lagrange equations lead to the vacuum field equations

−
√
−gGab = 0, (11.28)
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that is, the vanishing of the Einstein tensor. In addition the identities
(11.18) become

∇b[−
√
−gGab] ≡ 0 ⇒ ∇bGab ≡ 0, (11.29)

that is, the contracted Bianchi identities.

11.5 Indirect derivation of the field
equations

The approach depends on exploiting the δ notation fully. It can be shown
(exercise) that δ behaves much like a derivative when applied to sums,
differences, and products. For example, let us see what happens when we
apply δ to the tensor δac . The variation

gab → gab + δgab,

induces a variation in gab, which we write

gab → gab + δgab. (11.30)

Then

δac = gabgbc → (gab + δgab)(gbc + δgbc)

= δac + δgabgbc + gabδgbc +O(δ2).

But, since δac is a constant tensor, it cannot change and therefore

δgabgbc + gabδgbc = 0, (11.31)

to first order, or, multiplying through by gcd,

δgad = −gabgcdδgbc. (11.32)

Compare and contrast this with the corresponding relationship between
partial derivatives (7.9).

Starting from I written in the form

I =
∫
Ω
gabRabdΩ,

we carry out a variation and use the Leibniz rule for products, to get

δI =
∫
Ω
(δgabRab+gabδRab)dΩ. (11.33)
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We now use the Palatini equation in the form (11.4), so that the second
term on the right-hand side becomes∫

Ω
gabδRabdΩ =

∫
Ω
gab [∇c(δΓ

c
ab)−∇b(δΓ

c
ac)]dΩ

=
∫
Ω

[
∇c(g

abδΓcab)−∇b(g
abδΓcac)

]
dΩ

=
∫
Ω
∂c(g

abδΓcab − gacδΓbab)dΩ,

since the covariant derivative of gab vanishes identically and the quantities
in parentheses are vector densities of weight +1. Using the same argument
as we did in §11.2, this can be converted to a surface integral by the di-
vergence theorem, which vanishes because the variations are assumed to
vanish on the surface of Ω. Hence, (11.33) reduces to

δI =
∫
Ω
RabδgabdΩ

=
∫
Ω
Rabδ[

√
−ggab]dΩ

=
∫
Ω
[Rabgabδ

√
−g + Rab

√
−gδgab]dΩ

=
∫
Ω

√
−g( 1

2Rg
cd − Rabgacgbd)δgcddΩ

= −
∫
Ω

√
−g(Rcd − 1

2Rg
cd)δgcddΩ

=
∫
Ω
[−

√
−gGab]δgabdΩ, (11.34)

where we have used (11.31) and the result (exercise)

δ
√
−g = 1

2

√
−ggabδgab. (11.35)

Using (11.8), we again get the vacuum field equation in the form (11.28)
and the contracted Bianchi identities (11.29) as the corresponding differ-
ential constraints on the field equations.

11.6 An equivalent Lagrangian
The resulting field equations are second order in the partial derivatives.
This is at first sight rather surprising since by (11.25) we might expect the
last term to produce fourth-order equations. However, it turns out, as we
have seen in (11.26), that ∂LG/∂gab,cd only involves undifferentiated gab’s
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and ∂LG/∂gab,c only involves once differentiated gab’s (exercise). In this
section, we make the second-order nature of the equations more evident
by showing that

LG = L̄G +Qa
,a, (11.36)

where L̄G depends on the metric and its first derivatives only. It can
be shown that in applying the variational principle argument to such an
equation the divergence term Qa

,a can be discarded (by converting to a
vanishing surface integral), and hence it follows that LG and L̄G give rise
to the same field equations. However, L̄G is no longer a scalar density.
We sketch the argument below.

The Einstein Lagrangian

LG =
√
−gR

= gabRab

= gab(Γcab,c − Γcac,b + ΓcabΓ
d
cd − ΓdacΓ

c
bd)

= gabΓcab,c − gabΓcac,b − L̄G, (11.37)

where

L̄G = gab(ΓdacΓ
c
bd − ΓcabΓ

d
cd). (11.38)

Integrating the first two terms in (11.37) by parts, we get

LG = −gab,cΓ
c
ab + gab,bΓ

c
ac − L̄G +Qa

,a, (11.39)

where

Qa = gbcΓabc − gabΓcbc. (11.40)

From the fact that the covariant derivative of gab vanishes, we find
(exercise)

gab,c = Γddcg
ab − Γadcg

db − Γbdcg
ad. (11.41)

Substituting in (11.39) and simplifying, we obtain the result (11.36).
Once again, we could consider L̄G as a functional of one of gab, gab,

gab, or gab and their corresponding first derivatives. For example, let us
choose the gab as the dynamical variables. Then

L̄G = L̄G(g
ab, gab,c),

from which it can be shown that
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∂L̄G

∂gab
= −ΓdacΓ

c
bd + ΓcabΓ

d
cd, (11.42)

and

∂L̄G

∂gab,c
= −Γcab +

1
2δ
c
aΓ

d
bd +

1
2δ
c
bΓ

d
ad. (11.43)

The Euler-Lagrange equations

L̄abG =
∂L̄G

∂gab
−
(
∂L̄G

∂gab,c

)
,c
= 0, (11.44)

then lead to

L̄abG = Γcab,c − 1
2Γ

d
bd,a − 1

2Γ
d
ad,b + ΓcabΓ

d
cd − ΓdacΓ

c
bd. (11.45)

If we use the result (exercise)

[ln
√
−g],a = Γdad, (11.46)

then

Γdad,b =
[
ln(

√
−g)

]
,ab =

[
ln(

√
−g)

]
,ba = Γdbd,a,

and so (11.45) gives

L̄abG = Γcab,c − Γdad,b + ΓcabΓ
d
cd − ΓdacΓ

c
bd = Rab.

The field equations are correspondingly Rab = 0.

11.7 The Palatini approach

The Palatini approach is very elegant and is based on the idea of treating
both the metric and the connection separately as dynamical variables in
the Einstein Lagrangian. To be specific, let us choose LG as a functional
of gab and a symmetric connection Γabc and its derivatives, i.e.

LG = LG(g
ab,Γabc,Γ

a
bc,d),

where

LG = gabRab

= gab(Γcab,c − Γdad,b + ΓcabΓ
d
cd − ΓdacΓ

c
bd), (11.47)

so that the Ricci tensor depends on Γabc and its derivatives only. Then, if
we carry out a variation with respect to gab only,
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δI =
∫
Ω
δgabRabdΩ

and the principle of stationary action gives immediately the vacuum field
equations Rab = 0.

We next carry out a variation with respect to Γabc so that

δI =
∫
Ω
gabδRabdΩ

=
∫
Ω
gab [∇c(δΓ

c
ab)−∇b(δΓ

c
ac)]dΩ,

by the corollary of the Palatini equation (11.4). Integrating by parts and
discarding the divergence term by the usual argument, we get

δI =
∫
Ω

[
∇bg

abδΓcac −∇cg
abδΓcab

]
dΩ

=
∫
Ω

[
(δbc∇dg

ad −∇cg
ab)δΓcab

]
dΩ.

Since δI vanishes for arbitrary volumes Ω, the integrand must
vanish, i.e.

(δbc∇dg
ad −∇cg

ab)δΓcab.

The variations δΓcab are arbitrary, but symmetric in a and b, and so only
the symmetric part of the expression in brackets vanishes, i.e.

1
2δ
b
c∇dg

ad + 1
2δ
a
c∇dg

bd −∇cg
ab = 0. (11.48)

Manipulating this equation, one can show in turn (exercise) that the co-
variant derivatives of gab,

√
−g, gab, and gab vanish. Finally, by Exercise

6.21, if

∇cgab = 0,

and the connection is symmetric, then it follows that Γabc is necessarily the
metric connection

Γabc =
1
2g

ad(gbd,c + gcd,b − gbc,d).

To summarize, the Palatini approach starts from the Einstein Lagrangian
(11.47) considered as a functional of a metric and an arbitrary symmet-
ric connection and its derivatives. Variation with respect to the metric
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produces the vacuum field equations of general relativity, and variation
with respect to the connection reveals that the connection is necessarily
the metric connection.

11.8 The full field equations

So far, we have been concerned with the vacuum field equations. To ob-
tain the full field equations, we assume that there are other fields present
beside the gravitational field, which can be described by an appropriate
Lagrangian density LM – the matter Lagrangian. The action is then

I =
∫
Ω
(LG + 2κLM)dΩ, (11.49)

where κ is the coupling constant and the reason for the factor of 2 is
explained below. Both Lagrangians are to be considered as functionals of
the metric and its derivatives, and so, varying with respect to gab (say), we
obtain

δLG

δgab
= −

√
−gGab, (11.50)

and

δLM

δgab
= 1

2

√
−gTab, (11.51)

where the latter equation defines the energy-momentum tensor Tab

for the fields present as being given by

Tab =
2√
−g

δLM

δgab
. (11.52)

The reason for the factor of 2 is so that this expression agrees with the so-
called canonical energymomentum tensor defined in special relativity (see
Exercise 11.13). Calculating the Euler-Lagrange equations for (11.49)
and dividing through by

√
−g, the field equations become

Gab = κTab, (11.53)

in agreement with (10.54). Note that some authors omit the factor of 2 in
both (11.49) and (11.52) which also gives (11.53). In the next chapter,
we shall investigate the right-hand side of this equation and look at the
definition of the energy-momentum tensor for various important fields.
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Exercises

11.1 (§11.2) Show that, under an infinitesimal change of coordinates

xa → x′a = xa + εXa(x),

the transformed metric satisfies

g′ab(x)− gab = −ε(∇bXa +∇aXb)

to first order in ε.

11.2 (§11.4) Show that

∂LG

∂gab,cd
=
√
−g
[
1
2 (g

acgbd + gadgbc)− gabgcd
]
.

11.3 (§11.4) Show that

∂gcd

∂gab
= − 1

2 (g
acgbd + gadgbc).

11.4 (§11.4) Check that ∂LG/∂gab,c depends only on gab and its first
derivatives. [Hint: consider (11.24).]

11.5 (§11.5) If yA are dynamical variables and L1 = L1(yA) and L2

= L2(yA), then show from first principles that
(i) δ(λL1 + μL2) = λδL1 + μδL2, where λ and μ are constants,
(ii) δ(L1L2) = L1δL2 + L2δL1.

11.6 (§11.5) Show that
(i) gabδgab = −gabδgab,
(ii) δg = ggabδgab (compare this with (7.9)),
(iii) δ

√
−g = 1

2

√
−ggabδgab.

11.7 (§11.5) Show that, if we regard gab, gab, and gab, respectively, as
dynamical variables, then

(i)
δLG

δgab
= Rab,

(ii)
δLG

δgab
= −Rab,

(iii)
δLG

δgab
=
√
−gGab.

What differential constraints do each of these quantities satisfy?

11.8 (§11.5)
(i) If

∫
Ω ΦdΩ = 0, where Ω is arbitrary, then prove that Φ = 0. [Hint:



Exercises 199

choose an arbitrary point P where Φ(P) > 0, say, use continuity to show
that there is a region surrounding PwhereΦ remains positive, deduce that∫
Ω ΦdΩ > 0 for a suitable Ω, and derive a contradiction; then complete

the proof.]
(ii) IfW aXa = 0whereXa is arbitrary, then show thatW a = 0. [Hint: take
Xa

∗
= (1, 0, 0, 0), etc.]

11.9 (§11.6) If the Lagrangians L(y, y′, x) and L̄(y, y′, x) differ by a
divergence, i.e.

L = L̄ +
dQ(y, y′, x)

dx
,

then show that L and L̄ give rise to the same field equation.

11.10 (§11.6)
(i) Establish the results (11.41) and (11.46).
(ii) Establish the result (11.36) for the Einstein Lagrangian.
(iii) Use (11.41) to deduce

gab,c = −gabΓcbc.

(iv) Use parts (i) and (ii) to establish the result

gab,cΓ
c
ab − gab,bΓ

c
ac = −2L̄G.

(v) Defining Lab by

Lab = ΓdacΓ
c
bd − ΓcabΓ

d
dc,

so that L̄G = gabLab, then show that

gab,cδΓ
c
ab − gab,bδΓ

a
ac = Labδgab − δL̄G.

[Hint: Use parts (i) and (ii) to re-express the LHS and the product law
on δL̄G to re-express the RHS.]
(vi) Take the variation of the equation in part (iv) to establish the result

δL̄G =
[
1
2 (δ

c
aΓ

d
bd − δcbΓ

d
ad)− Γcab

]
δgab,c − Labδgab,

and regarding L̄G = L̄G(gab, gab,c) then deduce (11.42) and (11.43).
[Hint: Use part (v) and the symmetry of δgab,c on a and b.]

11.11 (§11.7) Show that, if

1
2δ

b
c∇dg

ad + 1
2δ

a
c∇dg

bd −∇cg
ab = 0,

for an arbitrary symmetric connection, then
(i) ∇cg

ab = 0,



200 General relativity from a variational principle

(ii) ∇c
√
−g = 0,

(iii) ∇cgab = 0,
(iv) ∇cgab = 0,
and deduce that the connection is necessarily the metric connection.

11.12 (§11.7) Use the variational principle approach to find the field
equations of the theory (considered by A. S. Eddington) with Lagrangian

L =
√
−gRabcdRabcd,

treating gab and Rabcd as independent variables.

11.13 (§11.8) In Minkowski space, the Lagrangian for a scalar field ϕ(xa)
moving in a potential V(ϕ) is (using our signature)

L = − 1
2g

cdϕ,cϕ,d + V(ϕ).

(i) The ‘canonical’ energy-momentum tensorΘa
b inMinkowski space for

a field with Lagrangian L(ϕ, ∂aϕ) is defined to be given by

Θa
b := − ∂L

∂(ϕ,a)
ϕ,b + δabL.

Calculate Θab = ηacΘ
c
a for a scalar field and show that

Θ00 = 1
2 (ϕ̇

2 + |∇ϕ|2) + V(ϕ),

(which is what one would expect for the energy density as the sum of the
kinetic and potential energy of the field.)

(ii) Using the the principle of minimal coupling, explain why the La-
grangian density for a scalar field in a curved space-time is

L = [− 1
2g

cdϕ,cϕ,d + V(ϕ)]
√
−g.

(iii) Find the energy-momentum tensor Tab for the above Lagrangian
density and show that, if we look at this expression in Minkowski space,
we find

Tab = Θab,

so that the two definitions agree. [Hint: Tab
√
−g = −2δL/δgab.]

11.14 (§11.8) In calculating the energy-momentum tensor of a field
where the Lagrangian involves covariant derivatives, one needs to cal-
culate the variation of the connection. Show that

δΓabc = 1
2g

ad[∇c(δgdb) +∇b(δgdc)−∇d(δgbc)].

[Hint: Use the method of geodesic coordinates as used in §11.1.]
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Further reading

The approach to the variational principle described here is based on the
lovely little book by Schrödinger (1950). A more modern source is the
book by Choquet-Bruhat et al. (1977).

Choquet-Bruhat, Y., De Witt-Morette, C., and Dillard-Bleick, M.
(1977). Analysis, Manifolds and Physics. North-Holland, Amsterdam.

Schrödinger, E. (1950). Space-time Structure. Cambridge University
Press, Cambridge.





12The energy-momentum
tensor

12.1 Preview
Our programme for this chapter is to look at the three most important
energy-momentum tensors in general relativity, namely, the energy-
momentum tensors for incoherent matter or dust, a perfect fluid, and
the electromagnetic field . In passing, we shall encounter a tensor formu-
lation of Maxwell’s equations governing the electromagnetic field. Again,
our treatment will not be exhaustive or complete, but will be sufficient
for generating the explicit expressions for the three tensors, and these ex-
pressions will be essentially all that we require in future chapters. We shall
also look at the Newtonian limit of the field equations and discuss the
calculation for determining the coupling constant.

12.2 Incoherent matter
We start by considering the simplest kind of matter field, namely, that
of non-interacting incoherent matter, or dust. Such a field may be
characterized by two quantities, the 4-velocity vector field of flow

ua =
dxa

dτ
,

where τ is the proper time along the world-line of a dust particle
(Fig. 12.1), and a scalar field

ρ0 = ρ0(x),

describing the proper density of the flow, that is, the density which
would be measured by an observer moving with the flow (a co-moving
observer). The simplest second-rank tensor we can construct from these
two quantities is

ua

Fig. 12.1 The world-lines of dust
particles.

Tab = ρ0uaub, (12.1)

and this turns out to be the energy-momentum tensor for the matter field.

Introducing Einstein’s Relativity. Second Edition. Ray d’Inverno and James Vickers, Oxford University Press.
© Ray d’Inverno and James Vickers (2022). DOI: 10.1093/oso/9780198862024.003.0012
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Let us investigate this tensor in special relativity in Minkowski coordi-
nates. Then, by Exercise 8.10, the 4-velocity is

ua = γ(1,u), (12.2)

where γ = (1− u2)−1/2. The proper time is defined by

dτ2 = ds2

= ηab dxa dxb

= dt2 − dx2 − dy2 − dz2

= dt2
(
1− u2

)
= γ−2dt2. (12.3)

Then the zero–zero component of Tab is

T00 = ρ0
dx0

dτ
dx0

dτ
= ρ0

dt2

dτ2 = γ2ρ0, (12.4)

by (12.3). This quantity has a simple physical interpretation. First of
all, in special relativity, the mass of a body in motion is greater than its
rest mass by a factor γ, by (4.11). In addition, if we consider a moving
three-dimensional volume element, then its volume decreases by a fac-
tor γ through the Lorentz contraction. Thus, from the point of view of
a fixed as opposed to a co-moving observer, the density increases by a
factor γ2. Hence, if a field of material of proper density ρ0 flows past a
fixed observer with velocity u, then the observer will measure a density

ρ = γ2 ρ0. (12.5)

The component T00 may therefore be interpreted as the relativistic en-
ergy density of the matter field, since the only contribution to the energy
of the field is from themotion of the matter (note that this requires a factor
of c2 in the definition (12.1) in non-relativistic units).

The components of Tab can be written, using (12.2) and (12.5), in the
form (exercise)

Tab = ρ


1 ux uy uz
ux u2x uxuy uxuz
uy uxuy u2y uyuz
uz uxuz uyuz u2z

 . (12.6)

We now show that the equations governing the force-free motion of a
matter field of dust can be written in the following very succinct way

∂b Tab = 0. (12.7)
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Using (12.6), in the case when a = 0, this equation becomes (exercise)

∂ρ

∂t
+
∂

∂x
(ρux) +

∂

∂y
(ρuy) +

∂

∂z
(ρuz).

This is precisely the classical equation of continuity

∂ρ

∂t
+ div (ρu) = 0. (12.8)

In classical fluid dynamics, this expresses the conservation of matter with
density ρ moving with velocity u. Since matter is the same as energy in
special relativity, it follows that the conservation of energy equation for
dust is ∂bT0b = 0. The equations corresponding to a = α (α = 1, 2, 3) are
similarly found to be (exercise)

∂

∂t
(ρu) +

∂

∂x
(ρuxu) +

∂

∂y
(ρuyu) +

∂

∂z
(ρuzu) = 0.

Combining this with (12.8), the equation can be written as (exercise)

ρ

[
∂u
∂t

+ (u·∇)u
]
= 0. (12.9)

Comparing this with the Navier–Stokes equation of motion for a
perfect fluid in classical fluid dynamics, namely,

ρ

[
∂u
∂t

+ (u·∇)u
]
= − grad p + ρX, (12.10)

where p is the pressure in the fluid, and X is the body force per unit mass,
we see that (12.9) is simply this equation in the absence of pressure and
external forces, which is the appropriate equation for dust.

We have seen that the requirement that the energy-momentum ten-
sor has zero divergence in special relativity is equivalent to demanding
conservation of energy and conservation of momentum in the matter
field – hence the name energy-momentum tensor. Moreover, (12.7)
is known as the energy-momentum conservation law. If we use a non-
Minkowskian metric in special relativity, then (12.7) is replaced by its
covariant counterpart

∇bTab = 0. (12.11)

We now make the transition to general relativity and once again define
the energy-momentum tensor for incoherent matter by (12.1), and, us-
ing the principle of minimal gravitational coupling, retain (12.11) as the
statement of the conservation law.
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12.3 The coupling constant
Before moving on to consider other energy-momentum tensors, we look
at the Newtonian limit of the full field equations for incoherent matter, in
order to determine the coupling constant. In the weak-field approximation
we have

gab = ηab + εhab +O(ε2). (12.12)

Then, as we will see in Chapter 21, if we apply the gauge condition
(21.24), then

Gab = − 1
2ε□

(
hab − 1

2ηabη
cdhcd

)
+O (ε2).

so that the full field equations Gab = κTab become

− 1
2ε□

(
hab − 1

2ηabη
cdhcd

)
= κTab +O (ε2). (12.13)

Contracting with ηab and applying the slow-motion approximation
(10.41), we find (exercise)

1
2ε∇

2hab = κ
(
Tab − 1

2ηabη
cdTcd

)
+O (ε2). (12.14)

Let us take, as the source of the field, a distribution of dust of small
proper density ρ0 moving at low velocity of order v. This assumption
means that we neglect terms both of order v/c and ρ0v/c, and then, by
(12.6), in non-relativistic units, the energy-momentum tensor reduces in
our privileged coordinate system to

Tab = c2ρ0 δa0 δ
b
0, (12.15)

which, in turn, implies

Tab = c2ρ0 δ0a δ
0
b and ηcd Tcd = c2ρ0. (12.16)

The zero–zero component of the field equations (12.14) then becomes

ε∇2h00 = c2κρ0 +O (ε2). (12.17)

But, by (12.12),

g00 = 1 + εh00 +O(ε2),

so that

∇2g00 = ε∇2h00 +O(ε2),

and, by (10.49),

∇2g00 = ∇2
(

2ϕ
c2

)
+O(ε).
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Substituting these results in (12.17), we get

∇2ϕ = 1
2 c

4κρ0 +O(ε).

Comparing this with Poisson’s equation (4.5), namely,

∇2ϕ = 4πGρ0,

we obtain the result (10.55), namely,

κ = 8πG/c4. (12.18)

In relativistic units, this reduces to

κ = 8π. (12.19)

We have therefore used the correspondence principle with Newtonian
theory to obtain the coupling constant κ appearing in the full field
equations (10.54).

12.4 Perfect fluid
A perfect fluid is characterized by three quantities: a 4-velocity
ua = dxa/dτ , a proper density field ρ0 = ρ0(x), and a scalar pres-
sure field p = p(x). In the limit as p vanishes, a perfect fluid reduces
to incoherent matter. This suggests that we take the energy-momentum
tensor for a perfect fluid to be of the form

Tab = ρ0 uaub + pSab, (12.20)

for some symmetric tensor Sab. The only second-rank tensors which are
associated with the fluid are uaub and the metric gab, and so the simplest
assumption we can make is

Sab = λuaub + μgab, (12.21)

where λ and μ are constants. Proceeding as we did in the last section,
we investigate the conservation law ∂bTab = 0 in special relativity in
Minkowski coordinates and demand that it reduces in an appropriate
limit to the continuity equation (12.8) and the Navier–Stokes equation
(12.10) in the absence of body forces. This requirement leads to λ = 1
and μ = −1. Then (12.20) and (12.21) give

Tab = (ρ0 + p) uaub − pgab, (12.22)

which we take as the definition for the energy-momentum tensor of a
perfect fluid. If we use a non-Minkowskian metric in special relativity,
then we again take the covariant form (12.11) for the conservation law.
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In the full theory, we also take (12.22) as the definition of a perfect fluid,
and (12.11) as the conservation equations.

In addition, p and ρ are related by an equation of state govern-
ing the particular sort of perfect fluid under consideration. In general,
this is an equation of the form p = p(ρ,T), where T is the absolute
temperature. However, we shall only be concerned with situations in
which T is effectively constant, so that the equation of state reduces to

p = p(ρ).

12.5 Maxwell’s equations
In this section, we wish to reformulateMaxwell’s equations for the electro-
magnetic field in tensorial form. We start by rewriting them in special
relativity in Minkowski coordinates. Working in Heaviside–Lorentz units
with c = 1, we find that Maxwell’s equations in vacuo for the electro-
magnetic field split up into two pairs of equations, namely, the source
equations

divE = ρ, (12.23)

curlB− ∂E
∂t

= j, (12.24)

and the internal equations

divB = 0, (12.25)

curlE +
∂B
∂t

= 0, (12.26)

where E is the electric field, B is the magnetic induction, ρ is the charge
density, and j is the current density. In simple physical terms, (12.23)
is the differential form of Gauss’s law relating the flux through a closed
surface to the enclosed charge, (12.24) is a generalized Ampère’s law re-
lating themagnetic field to a flow of current (where the term involvingE is
Maxwell’s displacement current, added in part to produce wave equations
for E and B), (12.25) is the statement that magnetic monopoles do not
exist, and (12.26) is essentially Faraday’s law of induction. The quanti-
ties ρ and j cannot be prescribed independently because, differentiating
(12.23) with respect to t, we get (remembering that ∂/∂t commutes with
∂/∂x, ∂/∂y, and ∂/∂z)

div
(
∂E
∂t

)
=
∂ρ

∂t
,

and taking the divergence of (12.24) gives

−div
(
∂E
∂t

)
= div j.
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Thus, ρ and j must satisfy the equation of continuity

∂ρ

∂t
+ div j = 0. (12.27)

If we interpret j as a convection current, i.e. j = ρu, where u is the velocity
field of the material with charge density ρ, then (12.27) is identical to
(12.8), the continuity equation of fluid dynamics.

In order to write these equations in tensorial form, we define an
anti-symmetric tensor Fab, called the electromagnetic field tensor or
Maxwell tensor, by

Fab =


0 Ex Ey Ez

−Ex 0 Bz −By
−Ey −Bz 0 Bx
−Ez By −Bx 0

 , (12.28)

and the current density or source 4-vector ja by

ja = (ρ, j) . (12.29)

Then (exercise) the source equations and internal equations can be
written in the form

∂bF ab = j a, (12.30)

∂aFbc + ∂cFab + ∂bFca = 0. (12.31)

The anti-symmetry of Fab means that (12.31) can be written more
succinctly as

∂[aFbc] = 0. (12.32)

The continuity equation (12.27) becomes

∂a j
a = 0. (12.33)

Let us be clear what we have done so far. We have merely shown
that, given the definitions (12.28) and (12.29), Maxwell’s equations
(12.23)–(12.26) can be written formally as (12.30) and (12.31). We
have treated Fab and ja as tensors, but the only justification for doing this is
knowing their transformation properties under Lorentz transformations.
Before the advent of special relativity, their transformation properties
were, in fact, unclear. Indeed, from one point of view, it was precisely the
desire to make Maxwell’s equations Lorentz-covariant that led to the de-
velopment of special relativity. The approach we shall adopt is to propose
(12.28) and (12.29) as a working hypothesis and, from these definitions,
work out their transformation properties. The ultimate justification then,
as always, lies in comparing the predictions with observation, and there
are a host of experiments which support the ansatz.
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12.6 Potential formulation of Maxwell’s
equations

Rather than working with the fields E and B directly, it is usually more
convenient to work in terms of the potentials. The scalar potential ϕ
and the vector potential A are defined by

E = −grad ϕ− ∂A
∂t

, (12.34)

B = curl A. (12.35)

If we define the 4-potential by

ϕa = (ϕ,A) , (12.36)

then we find that (12.34) and (12.35) are equivalent to (exercise)

Fab = ∂b ϕa − ∂a ϕb. (12.37)

The 4-potential is not defined uniquely by this equation, since we may
perform a gauge transformation

ϕa → ϕ̄a = ϕa + ∂a ψ, (12.38)

whereψ is an arbitrary scalar field. Although a gauge transformation alters
the potentials, it leaves Fab, and henceE andB, unchanged (exercise), and
these are the strictly measurable quantities.

In solving particular problems, it is often convenient to reduce the
gauge freedom by imposing a constraint on ϕa, called a gauge condition,
which in turn simplifies the problem. For example, an important gauge for
discussing electromagnetic radiation is provided by the Lorentz gauge

ηabϕa,b = ϕa,a = 0. (12.39)

Applying this constraint to (12.38), we find that the scalar field ψ is no
longer arbitrary but must be a solution of the wave equation

□ψ ≡ ηabψ,ab = 0, (12.40)

where □ is the d’Alembertian operator

□ ≡ ∂2
0 − ∂2

1 − ∂2
2 − ∂2

3 .

The definition (12.37) results in the internal equations (12.31) being
automatically satisfied, that is, they become identities (exercise). The
source equations (12.30) become, in terms of the 4-potential,

∂b
[
ηacηbd (∂d ϕc − ∂c ϕd)

]
= j a. (12.41)

In the Lorentz gauge, this reduces to (exercise)

□ϕa = j a. (12.42)
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In source-free regions, ja vanishes, and this becomes

□ϕa = 0, (12.43)

from which it follows that ϕa and Fab, and therefore E and B, all satisfy
wave equations (exercise).

So far, we have restricted our attention to special relativity in
Minkowski coordinates. To obtain the covariant formulation, we simply
replace ordinary derivatives by covariant derivatives. However, it is not
necessary in equations (12.32) and (12.37) because (exercise)

∇[aFbc] = ∂[aFbc], (12.44)

and

∇[b ϕa] = ∂[b ϕa]. (12.45)

The covariant formulation of Maxwell’s equations in vacuo in special
relativity is thus

∇bF ab = j a, (12.46)

∂[aFbc] = 0, (12.47)

subject to

∇a j a = 0. (12.48)

In terms of the 4-potential, we still have

Fab = ∂b ϕa − ∂a ϕb. (12.49)

Using the principle of minimal gravitational coupling, we adopt equations
(12.46) and (12.47) in general relativity, where, however, the metric is no
longer flat but is a solution of the full field equations Gab = κTab, and Tab

is the energy-momentum tensor arising from the electromagnetic field –
which we now seek.

12.7 The Maxwell energy-momentum
tensor

We shall construct the energy-momentum tensor for the electromag-
netic field from a variational approach. For simplicity, we shall work
in vacuo in special relativity in Minkowski coordinates and restrict at-
tention to a source-free region, i.e. a region where ja vanishes. Consider
the Lagrangian for the electromagnetic field defined by

LE (ϕa, Fab) =
1
8π

[
− 1

2FabF
ab + (ϕa,b − ϕb,a)F ab] . (12.50)
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Then

δLE

δ ϕa
=
∂LE

∂ϕa
−
(
∂LE

∂ϕa,b

)
,b

= 0− 1
8π

(
F ab − Fba

)
,b

and the field equations corresponding to a variation with respect to ϕa
become (

Fab − Fba
)
,b = 0. (12.51)

Similarly,

δLE

δFab
=
∂LE

∂Fab

=
1
8π

∂

∂Fab

[
− 1

2η
ceηdfFcdFef + ηceηdf(ϕc,d − ϕd,c)Fef

]
=

1
8π

[
− 1

2η
aeηbfFef − 1

2η
caηdbFcd + ηcaηdb(ϕc,d − ϕd,c)

]
=

1
8π
ηacηbd [−Fcd + (ϕc,d − ϕd,c)] ,

and the field equations corresponding to a variation with respect to Fab
become

Fab = ϕa,b − ϕb,a. (12.52)

This last equation defines Fab in terms of the 4-potential and reveals
that Fab is anti-symmetric. The definition also means that the internal
equations are satisfied automatically and (12.51) reduces to

Fab,b = 0,

namely, the source equations (in source-free regions). The result (12.52)
also allows us to re-express the Lagrangian as

LE =
1

16π
ηacηbdFabFcd. (12.53)

We now make the transition to the full theory and assume that

LE =
√
−g

16π
gacgbdFabFcd, (12.54)

together with the definition (12.52) of Fab in terms of ϕa. The factor
√
−g

is included to ensure that LE is a scalar density (note that it reduces to 1
in special relativity in Minkowski coordinates). Then we find (exercise)
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∂LE

∂gab
= −

√
−g
8π

(
−gcdFacFbd + 1

4gabFcdF
cd) . (12.55)

The analogue of (11.51) for the contravariant metric is

δLE

δgab
= −

√
−g
2

Tab. (12.56)

These last two equations lead to the definition of the Maxwell energy-
momentum tensor Tab in source-free regions

Tab =
1
4π

(
−gcdFacFbd + 1

4 gabFcdF
cd) . (12.57)

From (12.19), we have κ=8π in relativistic units. Thus, the full field
equations in source-free regions, called the Einstein–Maxwell
equations, become

Gab = −2gcdFacFbd + 1
2gabFcdF

cd. (12.58)

Let us look at some of the components of Tab in special relativity in
Minkowski coordinates. In particular, we find that the energy density
of the electromagnetic field is given by

T00 =
1
8π

(
E2 +B2) , (12.59)

which agrees with the usual expression for energy density in electrody-
namics. Again, the momentum density is

(T01,T02,T03) = − 1
4π
E×B, (12.60)

where the vector E×B is the Poynting vector of electrodynamics and
represents the momentum density of the electromagnetic field. In addi-
tion, it is straightforward to verify that Maxwell’s equations imply that Tab

is divergenceless, (exercise) i.e.

∇bT ab = 0. (12.61)

12.8 Other energy-momentum tensors
We have met two methods for obtaining energy-momentum tensors. The
first is an ad hoc method which constructs likely looking tensors out
of the matter and energy fields present and investigates the conserva-
tion equations (12.7) in the non-relativistic limit. The second method
proceeds from a variational principle formulation and investigates the
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field equations arising from a proposed Lagrangian. We can construct
energy-momentum tensors for other fields or combination of fields using
either approach or a combination of them. In particular, we can combine
non-interacting fields by superimposing them. For interacting fields, we
have to take the interactions into account.

We illustrate this with one example of each procedure. The energy-
momentum tensor for a field of charged matter of proper mass density ρ0
and 4-velocity ua is (see (12.1) and (12.57))

T ab = ρ0 uaub +
1
4π

(
−F acFbc + 1

4g
abFcdF cd) . (12.62)

The conservation equations then express the conservation of energy and
the equations of motion for the field. The Lagrangian for an elementary
particle of rest massm0, for example the π0-meson, is described by a scalar
field ϕ(x) given by

Ls = −
√
−g
2

(
gab∇aϕ∇bϕ−m0

2 ϕ2) , (12.63)

where m0 is the rest mass of the particle. The energy-momentum tensor
is defined by (12.56), and again the conservation equations express the
conservation of energy and the equations of motion of the field.

12.9 The dominant energy condition
In general, the components of any tensor in a particular coordinate system
do not have an invariant meaning. However, if we choose an invariantly
defined frame and look at the frame components of the tensor, then
these will have physical significance. In the case of the energy-momentum
tensor Tab, we choose a frame at a point by looking for solutions of the
eigenvalue equation

Tabua = λub,

where ua is the eigenvector corresponding to the eigenvalue λ. This has
characteristic equation

det(Tab − λδba) = 0.

For all types of standard matter, this equation has real non-zero roots, and
the corresponding eigenvectors can be normalized to form a frame eia of
one timelike and three spacelike vectors. The frame components of Tab
are

Tij = Tabeiaejb = diag(μ, p1, p2, p3),

since the matrix is diagonal with the eigenvalues as elements. The eigen-
value μ is called the energy density, and ua = e0a is the 4-velocity of
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the medium. The eigenvalues pα (α = 1, 2, 3) are called the principal
stresses, and the corresponding eigenvectors eαa, the principal axes
of stress. An energy-momentum tensor will only represent a physically
realistic matter field if the energy density is non-negative and dominates
any stresses present. More precisely, all known matter fields satisfy the
dominant energy condition (Hawking and Ellis 1973)

μ ⩾ 0, −μ ⩽ pα ⩽ μ. (12.64)

The latter condition can be shown to be equivalent to requiring that the
local speed of sound is not greater than the local speed of light.

If, in particular, the three principal stresses are positive and equal
to p say, then setting μ = ρ0, the energy-momentum tensor takes the
form of a perfect fluid, (12.22). If the three principal stresses van-
ish, then the energy-momentum tensor takes the form of dust, (12.1).

Exercises

12.1 (§12.2) Establish (12.6) from (12.1). Show that (12.7) leads to
(12.8) and (12.9).

12.2 (§12.3) Derive (12.14) from (12.13) and deduce (12.17).

12.3 (§12.4) Show that the conservation equations for a perfect fluid
lead to the equation of continuity and the equation of motion, in special
relativity in Minkowski coordinates.

12.4 (§12.5)
(i) Show that Maxwell’s equations can be written in the form (12.30) and
(12.31), given the definitions (12.28) and (12.29).
(ii) Show that the internal equations can be written in the form (12.32).
(iii) Show that the continuity equation can be written in the form (12.33).
Show directly from (12.30) that this equation is an identity.

12.5 (§12.5) Find the transformation properties of E, B, ρ, and j under
a boost in the x-direction. [Hint: consider Fab and ja.]

12.6 (§12.6)
(i) Show that (12.37) is equivalent to (12.34) and (12.35).
(ii) Show that Fab is invariant under a gauge transformation.
(iii) Show that, if Fab is defined in terms of a 4-potential, then the internal
equations are automatically satisfied.

12.7 (§12.6) Show that, in an appropriate gauge, Maxwell’s equations
reduce to□ϕa = ja in regions where the source 4-vector is non-zero.What
remaining gauge freedom is left? Deduce that E and B satisfy the wave
equation in source-free regions.

12.8 (§12.6) Check (12.44) and (12.45).



216 The energy-momentum tensor

12.9 (§12.7)
(i) Establish (12.55) and (12.57). [Hint: Operate on each side with δ and
express each term on the RHS as products with the factor δgab.]
(ii) Confirm (12.59) and (12.60).
(iii) Show that the conservation equation (12.61) is equivalent to ∂bTab

= 0 and show that this is satisfied by virtue of Maxwell’s equations.

12.10 (§12.8) Investigate the conservation equations for the energy-
momentum tensor arising from (12.63).

Further reading

All the standard texts listed in the previous chapter have a treatment of the
energy-momentum tensor. The book by Hawking and Ellis (1973) has a
good treatment of the dominant energy condition as well as the strong
and weak energy conditions used in the singularity theorems which we
discuss in §20.13. The treatment on the Newtonian limit is based on that
of Trautman , Pirani, and Bondi (1964), but see also the book by Hartle
(2003).

Hartle, J. B. (2003). Gravity: An Introduction to Einstein’s General Relativ-
ity. Addison Wesley, San Francisco, CA.

Hawking, S. W., and Ellis, G. F. R. (1973). The Large Scale Structure of
Space-Time. Cambridge University Press, Cambridge.

Trautmann A., Pirani F. A. E., and Bondi, H. (1964). Lectures on Gen-
eral Relativity. Brandeis Summer Institute on Theoretical Physics, 1964,
vol. 1. Prentice-Hall, Englewood Cliffs, NJ.



13The structure of the field
equations

13.1 Interpretation of the field equations
Before attempting to solve the field equations, we shall consider some of
their important physical and mathematical properties in this chapter. The
full field equations (in relativistic units) are

Gab = 8πTab. (13.1)

They can be viewed in three different ways.
1. The field equations are differential equations for determining the met-
ric tensor gab from a given energy-momentum tensor Tab. Here, we
are reading the equations from right to left. This is aMachian way of view-
ing the equations since one specifies a matter distribution and then solves
the equations to ascertain the resulting geometry. However, Einstein’s
equations are not entirely Machian since, without imposing additional
conditions, the matter distribution does not determine a unique geome-
try. The most important case of the equations is when Tab = 0, in which
case we are concerned with finding vacuum solutions.
2. The field equations are equations from which the energy-momentum
tensor can be read off corresponding to a givenmetric tensor gab. Here,
we are reading the equations from left to right. It was originally thought
that this would be a productive way of determining energy-momentum
tensors. We simply choose arbitrarily ten functions of the coordinates,
namely, the symmetric gab, and then we can computeGab and read off Tab
from (13.1). However, this rarely turns out to be very useful in practice
because the resulting Tab are usually physically unrealistic and violate the
dominant energy conditions. In particular, it frequently turns out that the
energy density goes negative in some region, which we reject as unphysi-
cal because the positive character of energy density dominates gravitation
theory.
3. The field equations consist of ten equations connecting twenty
quantities, namely, the ten components of gab and the ten components of
Tab. Hence, from this point of view, the field equations are to be viewed as
constraints on the simultaneous choice of gab and Tab. For example, when
looking at electromagnetism, one solves the Einstein-Maxwell equations
(12.58) for themetric given the energy-momentum tensor (12.57), where
Fab := ϕa,b − ϕb,a with Fab;b = 0. This approach is also used when
one can partly specify the geometry and the energy-momentum tensor
from physical considerations and then the equations are used to try and
determine both quantities completely.

Introducing Einstein’s Relativity. Second Edition. Ray d’Inverno and James Vickers, Oxford University Press.
© Ray d’Inverno and James Vickers (2022). DOI: 10.1093/oso/9780198862024.003.0013



218 The structure of the field equations

13.2 Determinacy, non-linearity, and
differentiability

Let us consider solving the vacuum field equations

Gab = 0, (13.2)

for gab. Then, at first sight, the problem seems well posed: there are ten
equations for the ten unknowns gab. However, the equations are not in-
dependent but are connected by four differential constraints through the
contracted Bianchi identities

∇bGab ≡ 0. (13.3)

So we seem to have a problem of under-determinacy, since there are
fewer equations than unknowns. However, we cannot expect complete
determinacy for any set gab, since any metric can be transformed with
fourfold freedom by a coordinate transformation

xa → x′a = x′a(x) (a = 0, 1, 2, 3),

into an equivalent metric which describes the same geometry, but in dif-
ferent coordinates. From this point of view, we should regard the solutions
of Einstein’s equations as equivalence classes of space-times possessing
metrics which are related by coordinate transformations. In order to work
with a particular representative of the equivalence class, we can use the co-
ordinate freedom to impose four conditions on the gab. These are known
as coordinate conditions or gauge conditions. For example, we could
introduce Gaussian or normal coordinates in which

g00
∗
= 1, g0α

∗
= 0. (13.4)

Then the remaining six unknowns gαβ can be determined by the six inde-
pendent equations in (13.2). However, there is rather more to the story,
but we postpone its consideration until §13.5. Similar remarks apply to
the full theory.

The field equations are very difficult to handle because they are non-
linear. They do not therefore possess a principle of superposition, that
is to say, if you have two solutions of the field equations, then you can-
not add them together to obtain a third. Put another way, it means that
you cannot analyse a complicated physical problem by breaking it up into
simpler constituent parts. The non-linearity reveals itself physically in the
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following way: the gravitational field produced by some source contains
energy and hence, by special relativity, mass, and this mass in turn is it-
self a source of a gravitational field; that is to say, the gravitational field
is coupled to itself. This non-linearity means that the equations are very
difficult to solve in general. Indeed, originally Einstein anticipated that
one would never be able to find an exact solution of them. It came as
something of a surprise whenK. Schwarzschild found an exact solution in
1916 shortly after the publication of the theory. However, Schwarzschild’s
solution arises by making a symmetry assumption, indeed the simplest
assumption of all, namely, spherical symmetry. Today there are a large
number of solutions in existence, probably in excess of four figures (de-
pending on how you count them). Nearly all of them have been obtained
by imposing symmetry conditions or other simplifying assumptions. We
discuss the role they play in understanding the behaviour of solutions to
Einstein’s equations in more detail in §13.10 below.

Ideally, one wants to knowwhat the theory says about physically impor-
tant situations. In cases where symmetry is absent, or where the symmetry
conditions are not strong enough to determine a solution, then recourse
has to be made to either numerical or approximation methods. Approxi-
mation methods are used in situations where the the gravitational field is
weak so that some of the terms in Einstein’s equations can be ignored.
We met an example of using approximation methods in the Newtonian
limit of the last chapter. Another situation in which the gravitational field
is weak is when we are looking at the gravitational field a long way from
an isolated source. From a mathematical viewpoint, the weakness of the
gravitational field means that the linear terms in certain equations are
more important than the rest. We shall meet a linearized form of the field
equations in Chapter 21. Numerical methods are also very important and
have played an important role in constructing numerical models of, for
example, the gravitational radiation produced by colliding black holes,
which have been an essential ingredient in the detection of gravitational
waves. The basis of numerical relativity is the so-called 3+1 formalism
which we describe in Chapter 14.

There are important mathematical questions concerning the differen-
tiability of solutions to Einstein’s equations. However, we shall not take
them into account since we will assume that all our fields are smooth or
C∞, so that they can be differentiated indefinitely. This condition can be
weakened considerably; for example, if we assume that the metric is C2,
which means that it can be differentiated twice, then this ensures that the
Einstein tensorGab can be defined and thus the field equations can be con-
structed. There are other conditions affecting the differentiability which
are connected with surfaces of discontinuities that arise in the theory, for
example the surface of a material body. One important set of conditions
(analogous to the continuity conditions of potential theory) are the Lich-
nerowicz conditions: second and higher derivatives of gab need not be
continuous across a surface of discontinuity S, but gab and gab,c must be
continuous across S.
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13.3 The cosmological term
Einstein was rather sceptical about the full field equations (13.1) and
regarded the vacuum field equations (13.2) as more fundamental. How-
ever, Einstein considered that even these equations were deficient in
that they violated Mach’s principle in the form M2, since they admit
Minkowski space-time as a solution. This means that a test body in an
otherwise empty universe would possess inertial properties (as all bod-
ies do in special relativity) even though there is no matter to produce the
inertia. As we pointed out before, a set of partial differential equations pos-
sesses large classes of solutions, many of which are unphysical. In order
to decide which solutions are realized in nature, one must also prescribe
boundary conditions. A natural requirement would be to take space-
time to be asymptotically flat so that the Riemann tensor vanishes at
spatial infinity. However, this requirement does not preclude a flat space
solution of the vacuum field equations.

Einstein, realizing the need for prescribing appropriate boundary con-
ditions, adopted a different approach. Cosmology, that is, the modelling
of the universe, had not really emerged as a separate science prior to gen-
eral relativity. In as much as there was some generally accepted model of
the universe in existence then, it was rather an imprecise one. It suggested
that, overall, the universe is static (i.e. not undergoing any large-scale
motion) and homogeneous (i.e. filled uniformly with matter). There are
two possible ideas about the spatial extent of the universe, either it is open
(or infinite), in which case it goes on forever in spatial directions, or it
is closed (compact or finite), in which case it is bounded in spatial
directions. Einstein therefore tried to incorporate a simple model of the
universe into the theory and then use this model to prescribe boundary
conditions. In particular, he tried to find a static closed solution of the field
equations, corresponding to a universe uniformly filled with matter. In so
doing, he found he was forced to modify the field equations by introduc-
ing an extra term, the cosmological term Λgab, where Λ is a constant
called the cosmological constant, so that they become (with our sign
conventions)

Gab − Λgab = 8πTab. (13.5)

Since

∇bgab = 0,

we see that (13.5) is consistent with the requirement

∇bTab = 0. (13.6)

Using the results of §11.3, the corresponding Lagrangian becomes

L = (R + 2Λ)
√
−g + 2κLM. (13.7)
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Indeed, if, quite generally, we demand that the gravitational field
equations should

(1) be generally covariant,

(2) be of second differential order in gab,

(3) involve the energy-momentum tensor Tab linearly,

then it can be shown that the only equation which meets all of these
requirements is

Rab + μRgab − Λgab = κTab, (13.8)

where μ, Λ, and κ are constants. The demand that Tab satisfies the con-
servation equations (13.6) then leads to μ = − 1

2 . In fact, it was in the
same year as Einstein proposed his equations that the great mathemati-
cian Hilbert derived them independently from a variational principle.
Of course, they lacked the physical meaningfulness which Einstein had
bestowed on them, especially through their reliance on the principle of
equivalence.

The full field equations with the cosmological term are Machian in the
sense that they no longer admit flat space as a solution. However, shortly
after Einstein obtained the static cosmological solution, it was discovered
that the universe is not in fact static, but rather is undergoing large-scale
expansion, as evidenced by the galactic red shift. Einstein therefore dis-
carded the static solution. At the same time non-static closed solutions
of the field equations without the cosmological term, corresponding to
an expanding distribution of matter, were found. Worse still, from the
Machian viewpoint, de Sitter discovered a vacuum solution of the field
equations with the cosmological term. These discoveries led Einstein to
reject the cosmological term. He did so with some vehemence; he report-
edly described his original decision to include it as his ‘biggest blunder’.
However, despite the fact that the inclusion of the term does not make the
theory any more Machian, there is no a priori reason to leave it out. The
constant Λ is assumed to be ‘very small’ in some sense and only of sig-
nificance on a cosmological scale. Most treatments of cosmology include
the term, but it is usually omitted for considerations connected with ter-
restrial or solar system phenomena and, indeed, we shall neglect it until
we come to relativistic cosmology. From the cosmological perspective,
rather than regard the term −Λgab as sitting on the left-hand side of the
Einstein equations, one can regard +Λgab as a source term sitting on the
right-hand side of the equations describing the energy-momentum tensor
of so-called dark-energy. We will look at this in more detail when we con-
sider relativistic cosmology in Chapter 26. It is also worth noting that it
is possible to incorporate a number of ad hoc assumptions into Newto-
nian theory and obtain a cosmological theory which has much in common
with relativistic cosmology (see §22.3). In the Newtonian model, if Λ > 0,
then all matter experiences a ‘cosmic repulsion’, which tends to disperse
the matter to spatial infinity. Conversely, Λ < 0 corresponds to a cos-
mic attraction. Since all matter experiences the force, it provides, in some
sense, a realization of a long-range Machian-type interaction.
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13.4 The conservation equations
We have suggested an axiomatic formulation of general relativity which
replaces Rabcd = 0 by Gab = 8πTab in Axiom I(iii) of §8.5. However, it
turns out that, rather surprisingly, the geodesic Axioms II (ii) and II(iii)
need not be stated separately in general relativity because it can be shown
that they must hold automatically by virtue of the field equations
themselves. That this is possible can be made plausible by considering
more carefully the motion of a test particle or photon in a gravitational
field. Strictly speaking, the test particle or photon is itself part of the
energy and matter present and so should be contained in the energy-
momentum tensor. This tensor, in turn, being the source term in the
field equations, determines the geometry of space-time and in particular
its geodesic structure. In this sense, the motion of a test particle should
somehow be contained in the field equations. In fact, it is coded into the
Bianchi identities, since they lead to the requirement that

∇bTab = 0, (13.9)

namely, the conservation equations. It is possible to show that these
equations specify unique equations ofmotion for a point particle in a grav-
itational field and that the ensuing trajectory of that particle is a geodesic
of the corresponding metric. The original demonstration of this result
was started by Einstein and Grommer, and developed further by Einstein
with contributions from Infeld and Hoffman. Their approach rests on
treating test particles as singularities of the field and, as a consequence,
relies on a special mathematical apparatus which they had to construct to
cope adequately with these singularities. The resulting work is both very
complicated and voluminous and we will make no attempt to describe it.
However, the results were confirmed subsequently by Geroch and Jang,
and by Gralla and Wald using more modern mathematical machinery.

There is one neat little calculation which is very suggestive of what
happens in essence in the general case. It consists of investigating the
equations for a distribution of dust,

Tab = ρ0uaub.

Then the conservation equations (13.9) require

∇b[ρ0uaub] = 0.

The trick is to think of the term in square brackets as being the product
of (ρ0ub) and ua and to apply the Leibniz rule to this product:

ua∇b(ρ0ub) + ρ0ub(∇bua) = 0. (13.10)

We next contract this equation with ua and use the result

uaua = 1 ⇒ ua(∇bua) = 0,
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which makes the second term vanish, leaving

∇b(ρ0ub) = 0.

Substituting this result back in (13.10) and dividing by ρ0 6= 0, we get

ub∇bua = 0,

which is the condition for ua to be tangent to a geodesic. In other
words, the conservation equations necessitate geodesic motion for the
dust particles.

13.5 The Cauchy problem
In this section, we look in some detail at the following mathematical
problem:

Given the metric tensor gab and its first derivatives at some initial time,
then construct the metric which corresponds to a space-time for all
future time.

This is the problem of finding the causal development of a physical system
from initial data and is a fundamental problem in the theory of partial
differential equations. It is known as the Cauchy problem or initial
value problem, or IVP for short. For simplicity, we will concentrate on
the case of vacuum solutions of the Einstein equations.

We start with a three-dimensional spacelike hypersurface Σ0 in the
manifold, which we can take without loss of generality to be given by
x0 = 0. We specify gab and its first derivatives gab,c on Σ0 (Fig. 13.1).
However, if we know gab everywhere on Σ0, then we know its spacelike
derivatives gab,α everywhere on Σ0. Hence, it is sufficient to specify the
following initial data on Σ0:

gab, gab,0,

that is, the metric potentials and their time derivatives. Our problem is
then to use the second-order vacuum field equations to try and solve for
the second time derivatives gab,00. Let us suppose that we have found some
equations for determining gab,00. Then, by repeatedly differentiating these
equations with respect to time, we can get all higher time derivatives of gab.

S

Prescribe
gab

x0 = 0gab,0

Fig. 13.1 The initial data for the Cauchy IVP.
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It follows that, if we assume that gab is an analytic function of x0, we can
develop it in a power series in x0. More precisely, if P andQ are the points
(0, xα0 ) and (x0, xα0 ) so that Q lies on the x0-curve passing through P (Fig.
13.2), then, by Taylor’s theorem,

gab(Q) = gab(P) + gab, 0(P)x0 +
∞∑
n=2

1
n!
∂n0gab|P(x

0)
n
. (13.11)

Before considering the more complicated situation of the vacuum Ein-
stein equations, we illustrate the idea by applying the method to determine
solutions of the wave equation. The wave equation in Minkowski space
may be written as

∂2ϕ

∂t2
=
∂2ϕ

∂x2
+
∂2ϕ

∂y2
+
∂2ϕ

∂z2
. (13.12)

Since this is a second-order equation in time, we expect that, if we specify
ϕ and ϕ,t := ∂ϕ/∂t on some initial hypersurface Σ0 given by t = 0, then
there will exist a unique solution of the wave equation satisfying these
initial conditions. We now show that this is true in the special case that we
have real analytic initial data (i.e. both ϕ(0,x) and ϕ,t(0,x) are smooth
functions with convergent Taylor series).

If we are given ϕ at t = 0, then, by differentiating in the hypersurface
Σ0, we know the terms on the right-hand side of (13.12) and hence we
know ϕ,tt at t = 0. Differentiating (13.12) with respect to t, we obtain

∂3ϕ

∂t3
=

∂3ϕ

∂t∂x2
+

∂3ϕ

∂t∂y2
+

∂3ϕ

∂t∂z2
, (13.13)

So, if we are given ϕ,t on Σ0, then, by differentiating in the hypersurface
again, we obtain the terms on the right-hand side and hence we can find
ϕ,ttt at t = 0.

Similarly, if we differentiate (13.13), we obtain

∂4ϕ

∂t4
=

∂2ϕ

∂t2∂x2
+

∂4ϕ

∂t2∂y2
+

∂4ϕ

∂t2∂z2
, (13.14)

P

Qx α = x0
α

S

x0 = 0

Fig. 13.2 Determining the metric at a later time x0.
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However, since we now know ϕ,tt on t = 0, we can calculate the right-
hand side of (13.14) and read off the value of ϕ,tttt at t = 0. Carrying on
in this way, we can obtain all the t derivatives of ϕ at t = 0. We now regard
these as the coefficients of a Taylor series expansion in t of ϕ(x, t) about
t = 0. This gives us the power series

ϕ(t, x) =
∞∑
n=0

(
∂nϕ

∂tn
(0,x)

)
tn. (13.15)

This will be our required solution, provided the series converges. In this
simple case, we see that the coefficients of t2k are just the sums of the
2k derivatives with respect to x, y, and z of ϕ(0, x, y, z) but, since this is
real analytic in x, y, and z, we can bound these coefficients by those of
a convergent series. For the odd coefficients, a similar result applies, this
time using the fact that ϕ,t(0, x, y, z) is real analytic.

A very general result which gives existence and uniqueness of solu-
tions to systems of analytic partial differential equations with analytic
initial conditions is provided by the following theorem due to Cauchy and
Kowalevskya.

Theorem (Cauchy–Kowalevskya)
Let ΦA(t,x), A = 1, 2, . . . ,N, x ∈ Rn, be functions that satisfy the system
of partial differential equations

∂2ΦA

∂t2
= FA

(
t,x,ΦB,

∂ΦB

∂xα
,
∂2ΦB

∂xα∂xβ
,
∂2ΦB

∂t∂xα

)
, (13.16)

where FA for A = 1, 2, . . .N are analytic functions of their arguments.
Then, given analytic initial data,

ΦA(0,x) = PA(x),
∂ΦA

∂t
(0,x) = QA(x), (13.17)

the initial value problem given by (13.16) has a unique analytic solution
in a neighbourhood of t = 0.

We do not give the proof of the above theorem but simply remark that
the basic idea is to repeatedly differentiate (13.16) and use the initial data
to obtain a power series expansion in t for ΦA(t,x), just as we did for
the wave equation. One then uses the analyticity of FA to construct a
simpler scalar equation that we can explicitly solve whose solutions are
analytic and bound |ΦA(x, t)|. Such an equation is said to majorize the
PDE (13.16). Then, by comparing the Taylor series expansions in t, one
concludes that the power series expansion for ΦA(t,x) converges (for suf-
ficiently small t). Uniqueness follows from the fact that the majorizing
solution vanishes for zero initial data.
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13.6 Einstein’s equations as evolution
equations

We now show how Einstein’s equations can be regarded as evolution
equations. To get an idea of how this works, we introduce a local coordi-
nate system (xa) = (x0, xα), α = 1, 2, 3, where x0 is a timelike coordinate
(i.e. g00 > 0) and xα are spacelike coordinates which provide coordinates
on the spacelike hypersurfaces Σt given by x0 = t = constant.

For simplicity, we will specialize to the vacuum case Rab = 0 and split
Rab = 0 into three equations

R00 = 0, (13.18)

R0α = 0, (13.19)

Rαβ = 0. (13.20)

A straightforward calculation (exercise) reveals that the field equations
can be written in the following form:

R00 = − 1
2g
αβgαβ, 00 +M00 = 0, (13.21)

R0α = 1
2g

0βgαβ,00 +M0α = 0, (13.22)

Rαβ = − 1
2g

0 0gαβ,0 0 +Mαβ = 0, (13.23)

where the terms involving M can be expressed solely in terms of the
initial data on Σ0. This gives rise to two problems of determination:

1. The system (13.21)–(13.23) does not contain g0a,00; hence, we have a
problem of under-determination.

2. The system (13.21)–(13.23) represents ten equations in the six un-
knowns gαβ,00; hence, we have a problem of over-determination. This
means that there must be compatibility requirements for the initial data
on Σ0.

We have met Problem 1 before, and it is not unexpected, since it relates to
the fourfold freedom of coordinate transformations. Since the evolution
of g0a is not constrained by (13.21)–(13.23), we therefore take the bold
step of prescribing g0a in a neighbourhood of Σ0. As we will see below,
this amounts to a coordinate or gauge condition and does not affect the
geometric or physical content of the equations. For example, one could
choose coordinates xα on Σ0 and extend these to a neighbourhood of Σ0

by choosing xα to be constant along geodesics which have initial vectors as
unit normal to the hypersurface, and choosing x0 to be the corresponding
affine parameter. This results in Gaussian normal coordinates, where
one has g00

∗
= 1 and g0α

∗
= 0. More generally, a choice of g0a amounts

to a choice of lapse and shift (see §14.10 for details). Having specified
g0a, we see that equation (13.23) has the required form in order to ap-
ply the Cauchy–Kowalevskya theorem. So that given analytic initial data
gαβ(0, xγ) and gαβ,0(0, xγ) on Σ0, we obtain a unique analytic solution for
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gαβ(x0, xγ) for x0 in a neighbourhood of t = 0. Combining this with the
g0a terms, this determines the metric in a neighbourhood of the initial hy-
persurface. For this reason, we call the equations Rαβ = 0 the evolution,
dynamical, or main equations.

However, this all seems too good to be true.We appear to have obtained
the metric gab without using the R0α = 0 and R00 = 0 equations. This is
where we need to address Problem 2. If wewant ourmetric to be a solution
of the vacuum Einstein equations, we also need (13.21) and (13.22) to
be satisfied. Using (13.23) on the initial hypersurface, we can replace the
gαβ,00 terms in both these equations by expressions that depend only on
the initial data. It therefore transpires that we are not able to choose the
initial data freely but must choose it so that the constraints R00 = 0 and
R0α = 0 are satisfied.

To summarize the situation so far, we chose a gauge by specifying g0a
in a neighbourhood of Σ0 and then chose initial data which satisfy the
constraints on Σ0. Note this is a non-trivial task; see §14.12 for details.
We may then use the Cauchy–Kowalevskya theorem to solve the dynam-
ical equation (13.23) and obtain gαβ in a neighbourhood of Σ0 which,
together with g0a, determines the full metric gab in a neighbourhood of
Σ0. However, this is not enough for a solution of Einstein’s equations. We
need the constraints to be satisfied not only for t = 0 but at later times as
well and it is not at all obvious if this is true. The reassuring answer to this
question is that, if the constraints are satisfied on the initial hypersurface
Σ0, they are also satisfied in a neighbourhood of t = 0. The reason for this
is the contracted Bianchi identities, as we sketch out below. We first show
that, if Rαβ = 0, then the constraint equations R0α = 0 and R00 = 0 are
equivalent to Ga

0 = 0.
If Rαβ = 0, then the scalar curvature is given by

R = g00R00 + 2g0αR0α. (13.24)

So, using Ga
b = Rab − 1

2δ
b
aR, we have (exercise)

G0
0 = 1

2g
00R00, (13.25)

Gα0 = g00R0α. (13.26)

Since g00 6= 0, it immediately follows that, if Rαβ = 0, then the constraint
equations imply that G0

0 = 0 and Gα0 = 0. On the other hand, we now
show that, if Rαβ = 0, then Ga

0 = 0 implies Ga
b = 0 and hence, in

particular, (13.19) and (13.18) are satisfied. From the definition of Ga
b,

and equation (13.24) for R, we have

Gαβ = g0βR0α − 1
2δ
β
α(g

00R00 + 2g0λR0λ). (13.27)

But, by (13.25) and (13.26), Ga
0 = 0 implies that R0a = 0 so that, by the

above equation, we must have Gαβ = 0. We also have

G0
β = R0

β = g0βR00 + gβλR0λ, (13.28)
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which again vanishes by virtue of (13.25) and (13.26). Indeed, if we have
Rαβ = 0 and know Ga

0, then we may use (13.25) and (13.26) to give R00

and R0α and then substitute these in (13.27) and (13.28) and divide by
g00 6= 0 to obtain the remaining terms (exercise):

G0
β =

2gβ0

g00
G0

0 +
gβλ

g00
Gλ0, (13.29)

Gαβ =
g0β

g00
Gα0 − 1

2δ
β
α

(
2G0

0 +
2g0λ

g00
Gλ0

)
. (13.30)

Thus, following Lichnerowicz, we may write the vacuum field equations
in the normal form

Rαβ = 0, Ga
0 = 0,

where the first six equations are evolution equations for gαβ,00 and the
last four equations are constraint equations which the initial data must
satisfy on Σ0. This resolves Problem 2.

We now prove a remarkable result

If the constraint equations are satisfied on Σ0, then they are satisfied
for all time, by virtue of the contracted Bianchi identities.

Writing out the contracted Bianchi identity ∇bGa
b = 0 in coordinates

gives

∂tGa
0 = −∂βGa

β + Γca0Gc
0 + ΓcaβGc

β − Γbb0Ga
0 − ΓbbγGa

γ . (13.31)

Substituting for G0
β and Gαβ using equations (13.29) and (13.30), we

obtain a linear first-order homogeneous system for Ga
0. Since the con-

straints are satisfied on the initial surface, we also have Ga
0 = 0 when

t = 0. In the analytic case that we are considering here, we may apply
the Cauchy–Kowalevskya theorem to show the existence of a unique so-
lution to the above initial value problem. However, since Gb

0 appears in
every term on the right-hand side of the differential equation, we see that
Gb

0 ≡ 0 is a solution, which by uniqueness must be the only solution.
We have therefore used the contracted Bianchi identity together with the
vanishing of Rαβ to show that, if the constraints are satisfied on the ini-
tial hypersurface, they are satisfied at subsequent times. Furthermore, we
have also showed that, if Rαβ = 0 and the constraints Ga

0 are satisfied for
all t, then Einstein’s equations are satisfied.

In summary, we have shown that, if we have a hypersurface Σ0 with
coordinates (xα) and we want to solve the Cauchy problem, we first need
to choose analytic initial data gαβ(0) and gαβ,0(0) which satisfy the con-
straint equationsGa

0 = 0 on Σ0. We next need to specify the components
of g0a as analytic functions in a neighbourhood of the hypersurface. As
we will see in §14.10, this amounts to choosing how we develop the co-
ordinates (xα) on Σ0 into coordinates (x0, xα) in a neighbourhood of Σ0.
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Having done this, we need to solve the dynamical equations Rαβ = 0 for
gαβ , which are 6 equations for 6 unknowns. In the case of analytic initial
data, we know from the Cauchy–Kowalevskya theorem that there exists a
unique analytic solution to these equations. Furthermore, we know that,
because of the contracted Bianchi identities for analytic initial data, the
constraints are satisfied not just onΣ0 but in a neighbourhood of the initial
hypersurface. By combining gαβ with g0a, we obtain the space-time met-
ric gab, which satisfies both the dynamical equations and the constraints
and is therefore the required solution to the vacuum Einstein equations.
Furthermore, in the given coordinates, this solution is unique.

The above discussion made extensive use of the Cauchy–Kowalevskya
theorem, which required analytic coordinate conditions and analytic data.
Physically, this is rather a strong restriction, since an analytical function is
fully determined by its value and those of its derivatives at a single point.
Thus, a knowledge of the function in an arbitrary small region determines
its value everywhere. This does not fit in well with our notion of causality
in general relativity, where nothing can travel faster than light. Because
of this, a major breakthrough in the Cauchy problem was achieved by
Choquet-Bruhat in 1952 when she showed the existence and uniqueness
of solutions to the vacuum Einstein equations in a small neighbourhood
of Σ0 for smooth (or more precisely at least C5) initial data. For com-
pleteness, we sketch the proof in the next section, which makes use of
harmonic coordinates.

13.7 Solving Einstein’s equations
in harmonic coordinates

As we have seen above, obtaining a unique solution of Einstein’s equations
requires specifying a choice of coordinates. A particularly useful choice
is to make use of harmonic coordinates, in which the coordinate
functions xa, regarded as scalar fields, satisfy the wave equation

□xa := gcd∇c∇dxa = 0, a = 0, . . . , 3. (13.32)

A short calculation (exercise) shows that this is equivalent to the har-
monic gauge condition

Ha := gcdΓacd = 0. (13.33)

In a general coordinate system, one can show that the Ricci curvature may
be written

Rab = RHab +H(a,b), (13.34)

where

RHab = − 1
2g
cdgab,cd +Qab(g, ∂g), (13.35)
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and Q(g, ∂g) only depends on gab, gab, and gab,c and contains no second-
order derivatives.

So in harmonic coordinates the vacuum Einstein equations become
the reduced Einstein equations given by

RHab = 0. (13.36)

Since the terms involving the highest derivatives are proportional to
gcd∂c∂dgab, the reduced equations give a hyperbolic wave-like equation
for gab. Because of this (and unlike the full Einstein equations), these
equations are in a form where one can apply standard PDE theory to
show the existence of a unique smooth solution given smooth initial data
for gab and gab,0 on Σ0. Note that, unlike the previous analytic case, we
solve (13.36) for all the components of gab, not just gαβ . Of course,
solving the reduced Einstein equations is not the same as solving the full
Einstein equations, unless one can also ensure thatHa = 0 onM. We now
show that one can choose the initial data in such a way that this is true.

To obtain the initial data for (13.36), one first sets g00 = 1 and g0α = 0
on Σ0 and then solves the constraint equations

Ga0 = Ga
0 = 0, (13.37)

on Σ0 to determine a positive definite metric γαβ := −gαβ and a symmet-
ric tensor Kαβ = gαβ,0 on Σ0. To complete the initial data for (13.36), we
still need to choose g0b,0 on Σ0 and it turns out (exercise) that one can do
this in such a way as to ensure that

Ha = 0 on Σ0. (13.38)

Furthermore, the constraint G0a = 0 on Σ0 shows that, if Ha vanishes on
Σ0, then so does Ha,0. On the other hand, the contracted Bianchi identity
∇aGa

b = 0 implies that Ha satisfies a wave-like evolution equation, which
again can be shown to have unique solutions in the smooth case. Since
setting Ha = 0 everywhere on M satisfies both the wave-like evolution
equation and the initial conditions, by uniqueness it must be the solution.
Thus, we have shown that we can find initial conditions gab and gab,0 for
(13.36) that satisfy the constraints and ensure thatHa vanishes identically.
We now use standard hyperbolic PDE theory to solve RHab = 0 for gab and,
since Ha vanishes, it follows that we also have Rab = 0. Thus, the gab that
we obtain is also a solution of the vacuumEinstein equations. It remains to
show that all solutions of Einstein’s equations can be obtained in this way.
We postpone this to the next chapter, where we adopt a more geometrical
approach to the Cauchy problem.

A major improvement to this local result was made with the subse-
quent global existence and uniqueness theorem by Choquet-Bruhat and
Geroch. This global theorem shows that, among all the space-times (M, g)
which are solutions of the vacuum Einstein equations and such that Σ0 is
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an embedded Cauchy surface on which the metric induces the specified
initial data, there exists a maximal space-time (M*, g*) and it is unique.
Here the term maximal means that any space-time (M, g) that is a solu-
tion of the Cauchy problem is isometric to part of (M*, g*). The questions
of existence, uniqueness, and stability (i.e. do ‘small’ variations of the
initial data result in ‘small’ variations in the solution?), and the extent
to which solutions can be developed in general relativity, are deep and
complex questions, and are the topics of current research.

13.8 The hole problem
We have, in fact, been somewhat imprecise in setting up the Cauchy prob-
lem and in so doing we have covered up something which had originally
caused Einstein considerable difficulty. We defined the Cauchy problem
as starting with a manifold with no metric on it (a so-called bare mani-
fold), prescribing initial data on a hypersurface in the manifold, and then
using the field equations to generate a unique solution for the metric g.
However, as we know from the principle of general covariance, we may
then apply a coordinate transformation to g and so obtain another solution
ḡ, say. How are the solutions g and ḡ related physically?

P P

P´

Matter distribution
known

HH HH

Fig. 13.3 The hole problem.

This question had troubled Einstein and was one of the reasons why,
even though the principle of general covariance was formulated in 1907,
another eight years were to elapse before the field equations were finally
obtained. Einstein raised the question in the form of the ‘hole problem’.
Suppose that thematter distribution is known everywhere outside of some
holeH in the manifold. Then the field equations together with the bound-
ary conditions will enable the metric g to be determined inside H and, in
particular, at some point P, say. Now carry out a coordinate transforma-
tion which leaves everything outside H fixed, but which (from the active
viewpoint) moves points around inside H, for example moving P to P′,
say (Fig. 13.3). Next, determine afresh the metric ḡ in H. Is ḡ the same
as g? The answer is that, although ḡ will in general be functionally differ-
ent from g (i.e. the components of ḡ will involve different functions of its
coordinates compared with g), it will still represent the same physical so-
lution. How can this be so if the points inside H have moved? The nub of
the argument is that the point P in the bare manifold is not distinguished
from any other point. It does not become a point with physical meaning
(that is, an event) until a metric is determined inH. As John Stachel puts
it so succinctly, ‘no metric, no nothing’ (2001). Thus, a physical solu-
tion, that is, a space-time, consists of a manifold together with a metric.
Two space-times are physically equivalent, in other words, give rise to the
same gravitational field, if the two metrics can be transformed into each
other. Mathematically, we should regard physical solutions as equivalence
classes of space-times possessing metrics which are related by coordinate
transformations.
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13.9 The equivalence problem
The question which then arises is, Given two metrics, g and ḡ, are they
in fact the same, that is, does there exist a coordinate transformation
transforming one into the other? This is a classic problem in differential
geometry, known as the equivalence problem, and its classic solution
by E. Cartan involves computation and comparison of the tenth covariant
derivatives of the Riemann tensors of g and ḡ.

As one discovers in working out the Riemann tensor, even for some-
thing as simple as the Schwarzschild solution (see Exercise 6.32), it is a
non-trivial task. It is all too easy to make slips in a longhand calculation.
In fact, this task of undertaking large amounts of algebraic calculation
has been made much more tractable and less error-prone with the ad-
vent of general purpose computer algebra systems, the best known of
which include MATHEMATICA, MAPLE, and REDUCE. The system
originally most used in general relativity (for which it was specifically
designed) is the system SHEEP, together with its extensions CLASSI
(for classifying metrics) and STENSOR (for symbolic tensor manipula-
tion). These systems make possible computations which would have been
impossible to contemplate undertaking by hand. Even so, they are not ca-
pable currently of computing anything like the tenth covariant derivatives
of Riemann tensors and so appear to be of little use in the equivalence
problem.

The situation has been improved profoundly by the work of A. Karl-
hede (1980). We will not pursue the details, but in broad outline the
Karlhede approach is to classify a geometry by introducing a frame or
tetrad, which is defined in stages, such that the Riemann tensor and
its covariant derivatives take on a simple or rather canonical form at
each stage. This is a well-defined procedure leading to a set of invariant
quantities characterizing a given geometry. With this approach, the worst
case theoretically involves computing the seventh covariant derivative,
although, for vacuum solutions of the Einstein equations, it was shown
(Ramos and Vickers, 1996) that this can be lowered to the fifth derivative.
However, experience in using the algorithm suggests that one rarely needs
go beyond the third derivative and often the first derivative is enough.
This makes computer calculation a viable proposition. Thus, given two
metrics, one first computes their invariant classification. If the two sets
are different, then so are the metrics. If they are the same, then there may
be a transformation relating them. The problem is then reduced to solv-
ing a set of four algebraic equations to determine the transformation. In
general, this is non-algorithmic but, in practice, it is often manageable.

13.10 The status of exact solutions
The field equations of general relativity are incredibly difficult to solve.
First, they are non-linear so, in particular, you cannot superimpose solu-
tions or break down complex physical situations into its simpler compo-
nents. But, more immediately, when seen as a set of second-order partial
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Fig. 13.4 The first twenty-six terms of the Ricci tensor component R00 for a
general space-time.

differential equations for the metric, they are, indeed, incredibly compli-
cated. One of the authors was the first to write out the equations explicitly
using a computer algebra system he had designed called LAM (Lisp
Algebraic Manipulator) (see d’Inverno 1980). If we reduce the num-
ber of terms by denoting the determinant of the metric as the symbol g
(rather than the explicit expression for g in terms of the metric gab) and
write out the components of the metric explicitly as (G00,G01, . . . ,G33)
which are all functions of the four coordinates (T,X,Y,Z), then the first
twenty-six terms of the componentsR00 are shown in Fig. 13.4. There are
of the order of 100,000 terms in the Ricci tensor and, if we were to output
the equations in a normal-size font on A4 paper and stack up the paper,
then the stack would be of the order of 3 m high! Not surprisingly, Ein-
stein thought it would not be possible to find exact solutions of the field
equations. So it came as something of a shock when Schwarzschild pro-
duced a vacuum solution in January 1916, a little over a month after the
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publication of the field equations. Schwarzschild looked for the simplest
solution, namely a static spherically symmetric solution. As we shall see,
we do not need the assumption of a static space-time because the vacuum
field equations force a spherically symmetric solution to be static, again
illustrating the special nature of solutions of non-linear partial differential
equations. This solution turns out to be the prototype of a massive black
hole and was eventually generalized to the Kerr–Newman solution with
mass, charge, and spin. Moreover, we have the general theorem that an
isolated black hole tends asymptotically in time to the Kerr–Newman so-
lution, so exact solutions have lead to a good understanding of an isolated
black hole.

Perhaps more surprisingly, in the following years many thousands of
exact solutions were discovered. One way to search for exact solutions is
to consider an ansatz of some kind on the functional form of the met-
ric and then try and solve the resulting field equations. This approach
has proved to be very fruitful. As an example, Harrison assumed that the
metric took on a particular form based on the method of separation of
variables and was able to find explicit forms for forty vacuum solutions
(Harrison 1955). Using the computer algebra system LAM, it was possi-
ble to determine explicitly that the solutions were, indeed, vacuum. This
involves a set of calculations which it is estimated would take more than a
lifetime to complete by hand - and hence the need for computer algebra
systems. Moreover, using the successor system SHEEP (LAM(B) grown
up!) and its extension CLASSI, it is possible to provide an invariant geo-
metrical classification of the solutions. This led to the discovery that two of
the solutions are in fact the same, i.e. there exists a coordinate transforma-
tion transforming one solution into the other. This invariant classification
is important for classifying solutions and thereby distinguishing between
solutions which are in fact different and not simply exhibited in differ-
ent coordinate systems. Examples of this are well known: indeed, the
Schwarzschild solution itself has apparently been ‘discovered’ in the lit-
erature on some twenty different occasions! The classic book on exact
solutions (Kramer et al. 2009) has put the many known exact solutions
into an encyclopaedic form.

The fact that there are many known exact solutions would seem like
good news. The bad news is that many of them are unphysical in character
in that they possess singularities or other unphysical regions and so are un-
likely to approximate to real physical situations. It seems to be the nature
of non-linear partial differential equations that they throw up these un-
physical exact solutions. There are some insightful exact solutions which
can be viewed as abstracted away from sources, and exact cosmological
solutions have played an important role in cosmology historically. There
are many important situations where we would like to have exact solutions
but none are know to exist. These include the 2-body problem, interior
black hole solutions, and radiation from an isolated source. Since exact
solutions for these situations are unavailable, recourse has to be made to
approximation theory and numerical relativity, that is, solving Einstein’s
equations numerically on a computer.
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Exercises

13.1 (§13.3) Show that the Lagrangian (13.7) gives rise to the full field
equations with cosmological term (13.5).

13.2 (§13.3) Show that, if (13.8) is to be consistent with (13.6), then
μ = − 1

2 .

13.3 (§13.3) Show that the trace of the Maxwell energy-momentum ten-
sor is zero. If Λ = 0, then what value of μ ensures that both sides of (13.8)
are trace-free? Hence, propose an alternative Einstein–Maxwell theory.

13.4 (§13.3) Show that flat space is not a solution of (13.5).

13.5 (§13.4)
(i) Show that the conservation equations for a perfect fluid lead to

(ρ0 + p)ua∇aub + (uaub − gab)∇ap = 0

(ii) We suppose that ρ0 = ρ0(p) and define the following quantities:

f = exp
(∫ p.

p + ρ0(p)

)
,

Ca = fua,

Ωab = 1
2 (∇bCa −∇aCb).

Deduce that CaΩab = 0.

13.6 (§13.5) If gab is known everywhere on Σ0, then establish that gab,α is
known everywhere on S.

13.7 (§13.5) Establish the equations (13.21), (13.22), and (13.23).

13.8 (§13.5) Show that the condition Rαβ = 0 leads to equations (13.25)
and (13.26). [Hint: use the device of breaking up all latin indices into their
zero and Greek consituents, e.g. g0aR0a = g00R00 + g0αR0α, etc. ]

13.9 (§13.5) Derive (13.29) and (13.30).

13.10 (§13.5)
(i) Establish (13.31).
(ii) Show that Ga

0 satisfies a homogeneous differential equation of the
form

Ga
0
,0 = Cbα

aGb
0
,α +Db

aGb
0,

where Cbα
a and Db

a only depend on the metric and its first derivatives.
(iii) Assuming that Ga

0 is an analytic function of x0, use (ii) above to
develop it in a formal power series in x0. Show that, if [Ga

0]S = 0, then
Ga

0 ≡ 0.
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13.11 (§13.7) Show that □xa = 0 implies that

Ha := gcdΓacd = 0.

[Hint: for fixed index a, the coordinate function xa is just a scalar field
which you can write as x(a) to indicate that a is just a label. It then follows
that its derivative∇bx(a) is a covector field (rather than a type (1, 1) tensor
as might first appear). So establish the result for a fixed a and then relax
the restriction.]

13.12 (§13.7) Show that, if gαβ and gαβ,0 satisfy the constraint equations
on Σ0, one can choose g0b,0 on Σ0 so that

Ha = 0 on Σ0.

[Hint: first use H0 = 0 to obtain an expression for g00,0 in terms of gαβ
and gαβ,0, then use Hα = 0 to find g0α,0].

13.13 (§13.10) There are a number of calculations in the book and
the ensuing exercises which involve long but straightforward calcula-
tions and they would benefit from the use of a computer algebra system.
The more important systems include MATHEMATICA, MAPLE, RE-
DUCE, MACSYMA and AXIOM, but there are many others. The
optional exercise is to investigate whether you wish and are able to gain
access to such a system. There are then the questions of their cost, if any,
whether your institution (if you have one) has access to them, how much
time and effort is involved in learning to use them, and the associated issue
of supporting documentation and help facilities. It is worth mentioning
that all the postgraduates currently doing gravity research known to us
make use of these systems. The system SHEEP, which we reported on in
§13.10 for investigating exact solutions in general relativity, is currently
freely available from http://www.maths.qmul.ac.uk/ mm/shp/. See also
the Living Reviews article of Malcolm MacCallum “Computer algebra
in gravity research” at https://link.springer.com/article/10.1007/s41114-
018-0015-6 which has many other links.

Further reading

The treatment of the Cauchy problem is based on that in Adler et al.
(1975) and Wald (1984). For a comprehensive treatment of the Cauchy
problem, see the book by Ringström (2009). A survey of the use of alge-
braic computing in general relativity is given in the article by d’Inverno
(1980), which appears in the Einstein centenary volume edited by Held
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(1980). Most of the known solutions to Einstein’s equations can be found
in the book by Kramer et al. (2009).

Adler, R., Bazin, M., and Schiffer, M. (1975). Introduction to General
Relativity (2nd edn). McGraw-Hill, New York, NY.

d’Inverno, R.A. (1980). ‘Algebraic computing in general relativity’, in
Held, A., ed., General Relativity and Gravitation: One Hundred Years after
the Birth of Albert Einstein, vol. 1. Plenum, New York, NY, 491–537.

Held, A. (ed.) (1980). General Relativity and Gravitation: One Hundred
Years after the Birth of Albert Einstein, vol. 1. Plenum, New York, NY.
Kramer, D., Stephani, H., Herlt E., and MacCallum, M. A. H. (2009).
Exact Solutions of Einstein’s Field Equations (2nd edn). Cambridge Uni-
versity Press, Cambridge.

Ringström, H. (2009). The Cauchy Problem in General Relativity. Euro-
pean Mathematical Society, Zurich.

Wald, R. M. (1984). General Relativity. University of Chicago Press,
Chicago, IL.





14The 3+1 and 2+2
formalisms

14.1 The geometry of submanifolds
In the previous chapter, we looked at the Cauchy problem using a spe-
cial coordinate system. In this chapter, we will look at a more geometrical
approach to the problem. We will start by looking at the way in which a
hypersurface Σ is embedded in a space-time and the geometric data that
one needs to reconstruct the curvature of the space-time, from this. The
key quantities are the induced metric and the extrinsic curvature of
the hypersurface Σ. We then go on to look at the way in which one can
introduce a time function t and use this to slice up the space-timeM by a
family of spacelike hypersurfaces, or foliation, Σt. The geometry of the
foliation can be described in terms of the lapse function, and the extrin-
sic curvature can be given an alternative description in terms of the rate
of change of the induced metric. The final ingredient is to introduce a
timelike vector field, or fibration, whose integral curves may be used to
identify points on neighbouring, t = constant, hypersurfaces. The geom-
etry of the fibration can then be defined in terms of the shift vector. The
lapse and shift are freely specifiable and encode the fourfold coordinate
freedom in describing the geometry. This machinery allows one to view
general relativity from a different perspective as a dynamical theory in
which Einstein’s equations are encoded in a pair of first-order differential
equations which describe the way in which the dynamical variables, the
induced metric, and the extrinsic curvature, evolve with the time func-
tion t. A knowledge of the induced metric and the lapse and shift may be
used to reconstruct the space-time metric and hence the geometry of the
space-time. A slightly different form of these equations, called the ADM
formalism, was derived by Arnowitt, Deser, and Misner (1959) from
their Hamiltonian formulation of general relativity and formed the ba-
sis for what Wheeler (1963) called geometrodynamics. In §14.13 we
look at an alternative approach called the 2+ 2 formalism, in which one
decomposes space-time into two families of spacelike 2-surfaces. This
approach identifies the gravitational degrees of freedom in a geometri-
cally transparent way and is also particularly suited to situations where
the initial data is given on a null surface.

Introducing Einstein’s Relativity. Second Edition. Ray d’Inverno and James Vickers, Oxford University Press.
© Ray d’Inverno and James Vickers (2022). DOI: 10.1093/oso/9780198862024.003.0014
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14.2 The induced metric
Let Σ be a smooth spacelike hypersurface. Then the unit normal na to Σ
is timelike, may be taken to be future pointing, and satisfies

nana = 1. (14.1)

We may use the unit normal na to construct the projection operator

Bba = δab − nbna, (14.2)

which projects a space-time vector Xa into the hypersurface to give
X̄a = BbaXb. We can verify that X̄a is tangent to the surface since

X̄ana = BbaXbna

= δabX
bna − nbnaXbna

= Xbnb −Xbnb

= 0.

Similarly, if Ya is a space-time co-vector, then Ȳa = BabYb satisfies
Ȳana = 0 (exercise). Both these results also follow directly from the fact
that

Babnb = 0. (14.3)

We also note (exercise) that

BacBcb = Bab, (14.4)

as one would expect from a projection operator.
Wemay useBab to project tensor fields onM onto tensor fields onΣ. In

particular, we may project the 4-dimensional metric gab onto Σ to obtain
the induced metric

hab := BacBbdgcd. (14.5)

Using (14.1) and (14.2), we find that

hab = gab − nanb. (14.6)

So, for vectors X̄a and Ȳa tangent to Σ, we have

habX̄aȲb = gabX̄aȲb. (14.7)

It is often convenient to introduce coordinates

(xa) = (x0, xα) = (t, x1, x2, x3), (14.8)
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adapted to the hypersurface in which the hypersurface is given by
t = 0 and (xα), α = 1, 2, 3 are coordinates on the hypersurface. It fol-
lows that, in these coordinates, a vector X̄a tangent to the hypersurface
has components (0, X̄α) so that by (14.7)

hαβX̄αȲβ
∗
= gαβX̄αȲβ , (14.9)

(where Greek indices are summed over 1 to 3). In other words, in these
coordinates, hαβ are just the spatial components of gab. With our choice of
space-time signature for the metric as (1,−1,−1,−1), we see that hαβ is
a metric with signature (−1,−1,−1). It is therefore convenient to define
a positive definite Riemannian metric on Σ by

γab = −hab. (14.10)

14.3 The induced covariant derivative

Let X̄ be a vector field on Σ. We now extend this to a vector fieldX on the
whole ofM in such a way the the vector field remains the same on Σ. We
now consider the projection of the space-time covariant derivative onto
the hypersurface:

Bac∇cXb = Bac∂cXb + BacΓbcdX
d. (14.11)

Since Xb is tangent to Σ and Bac∂c only involves tangential derivatives we
see that this is well-defined on Σ and does not depend on how we have
extended X̄ from Σ to M.

Although Bac∇cXb is well-defined, it may not be tangent to Σ. We
therefore make a further projection and define the induced covariant
derivative Da for vector fields on Σ by

DaXb := BdbBac∇cXd. (14.12)

In a similar way, if Ta1···akb1···bℓ is a tensor field on Σ, then we define

DeT
a1···ak

b1···bℓ := Bc1
a1 · · ·BckakBb1d1 · · ·BbℓdℓBef∇fT

c1···ck
d1···dℓ . (14.13)

In particular, we find

Dehab = BacBbdBef∇f(gcd − ncnd)

= −BacBbdBef∇f(ncnd)

= −BacBbdndBef∇f(nc)− BacncBbdBef∇f(nd)

= 0,

by (14.3). It also follows (exercise) from the fact that ∇a is torsion-free
that Da is also torsion-free. Since Da is a torsion-free covariant derivative
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that satisfies Dahbc = 0, it must be the (unique) covariant derivative given
by the 3-metric hab. We have thus shown the following:

The induced covariant derivative Da on Σ is the metric covariant
derivative of the induced metric hab on Σ.

If we use coordinates adapted to the hypersurface Σ, we see that DaXb

only has spatial components which are given by

DαXβ
∗
= ∂αXβ + ΓβαγX

γ . (14.14)

On the other hand, since Dα is the metric covariant derivative of hαβ , we
have

DαXβ
∗
= ∂αXβ + (3)ΓβαγX

γ , (14.15)

where (3)Γβαγ are the Christoffel symbols of hαβ . (Note: these are the same
as the connection coefficients of γαβ = −hαβ , since the Christoffel sym-
bols are quadratic in the metric). Comparing (14.14) and (14.15), we see
that, in adapted coordinates,

Γβαγ
∗
= (3)Γβαγ . (14.16)

Returning to the term Bac∇cXb given by (14.11), we now take the normal
component by contracting with nb. This gives a term nbBac∇cXb. Since
Xb is tangent to Σ, we have nbXb = 0, so that

nb∇cXb +Xb∇cnb = 0.

Hence

nbBac∇cXb = −XbBac∇cnb (14.17)

= −XdBdbBac∇cnb,

where Xb = BdbXd, since Xb is tangent to Σ.
We now define the tensor Kab by

Kab := −BacBbd∇cnd. (14.18)

We call Kab the extrinsic curvature of the hypersurface, since it mea-
sures the way in which the normal co-vector to the hypersurface bends
as it moves about the hypersurface. It follows immediately from the
definition that

Kabna = Kabnb = 0, (14.19)

so that Kab defines a tensor field on Σ. It also follows from the fact that
the space-time derivative is torsion-free that
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Kab = Kba. (14.20)

Another useful way of thinking of the extrinsic curvature is as the
difference between the space-time covariant derivative and the induced
covariant derivative for vector fields Xa and Ya, which, when restricted
to Σ, are tangential. It follows from (14.18) that the tangential part of
Yb∇bXa is just YbDbXa and from (14.17) that the normal component is
given by KabXaYb. So, by splitting Yb∇bXa into its tangential and normal
parts on Σ, we obtain the very useful equation

Yb∇bXa = YbDbXa + (KcdXcYd)na, (14.21)

which can be written in coordinate-free notation as

∇YX = DYX +K(X,Y)n. (14.22)

14.4 The Gauss–Codazzi equations

In the previous section, we showed how the space-time metric gab and
the covariant derivative ∇a can be used to define the induced metric
hab = −γab and the extrinsic curvature Kab on Σ. We now show that a
knowledge of γab and Kab is enough to reconstruct all but one component
of the space-time curvature. The first result we will derive in §14.5 be-
low is the Gauss equation, which gives an expression for the space-time
curvature with all the components projected into the hypersurface

BaeBbfBcgBdhRefgh = (3)Rabcd +KadKbc −KacKbd. (14.23)

In adapted coordinates, this is just

Rαβμν
∗
= (3)Rαβμν +KανKβμ −KαμKβν . (14.24)

The second key equationwewill derive in §14.6 is theCodazzi equation,
which gives an expression for the space-time curvature with three com-
ponents projected onto the hypersurface and one component contracted
with na

BaeBbfBcgnhRefgh = DbKac −DaKbc, (14.25)

which, in adapted coordinates, is just

ndRαβγd
∗
= DβKαγ −DαKβγ . (14.26)



244 The 3+1 and 2+2 formalisms

The Gauss and Codazzi equations enable us to obtain all the components
of the space-time curvature in terms of γαβ and Kαβ apart from Rα0β0

(exercise). However, this component requires a knowledge of derivatives
of n in the normal direction, which depends on the way the space-time is
sliced up into a foliation by the constant time surfaces, so we will postpone
this to §14.8.

By contracting the Gauss and Codazzi equations, we may obtain ex-
pressions for the constraint equation Gabnanb = 0 in terms of the intrinsic
and extrinsic geometry of Σ. Contracting (14.23) with gac and using
gac = hac + nanc, we obtain

BbfBdhRfh − nengBbfBdhRefgh = (3)Rbd −Ka
aKbd +Ka

dKba. (14.27)

Contracting again on b and d gives, after a short calculation (exercise),

R− 2nbndRbd = (3)R−Ka
aKb

b +KabKab. (14.28)

On the other hand, Gab = Rab − 1
2gabR. Contracting this with nanb gives

Gabnanb = Rabnanb − 1/2R

= −1/2
(
(3)R−Ka

aKb
b +KabKab

)
. (14.29)

So (in vacuum) the ‘constraint’ Gabnanb = 0 becomes

(3)R− (Ka
a)(Kb

b) +KabKab = 0, (14.30)

or, in adapted coordinates,

(3)R− (Kαα)(Kββ) +KαβKαβ = 0. (14.31)

Note that, in the above, (3)R and contractions ofKab are carried out using
hαβ . not γαβ . However, the above equation involves an even number of
occurrences of hαβ and its inverse so that one gets the same answer if one
were to use the positive definite metric γαβ = −hαβ .

Contracting the Codazzi equation (14.25) on a and c, one obtains

BbcndRcd = DbKa
a −DaKa

b. (14.32)

It then follows that BacndGcd is given by

BacndGcd = Bacnd(Rcd − 1
2gcdR)

= BacndRcd

= DaKb
b −DbKb

a (14.33)

by (14.32). So that the ‘constraint’ BacndGcd = 0 is given by

DbKb
a −DaKb

b = 0, (14.34)
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or, in adapted coordinates,

DβKβα −DαKββ = 0. (14.35)

We therefore see from (14.31) and (14.35) that the nanbGab and the
naBcbGab components of the Einstein equations only depend on γαβ ,Kαβ ,
and their tangential derivatives so are constraints on the intrinsic and
extrinsic 3-geometry.

14.5 Calculating the Gauss equation
Let Za be a vector field tangent to Σ (i.e. Zana = 0); then, since Da is the
covariant derivative of hab (and also γab), we have

DaDbZc −DbDaZc = (3)RcdabZd. (14.36)

Now

DaDbZc = Da(BbdBec∇dZe)

= BafBbgBkc∇f(BgdBek∇dZe)

= BafBbgBkcBgdBek∇f∇dZe

+ BafBbgBkcBek(∇fBgd)(∇dZe)

+ BafBbgBkcBgd(∇fBek)(∇dZe)

= BafBbdBec(∇f∇dZe) + BafBbgBec(∇fBgd)(∇dZe)

+ BafBbdBkc(∇fBek)(∇dZe) ,

using (14.4). Now

∇fBgd = ∇f(δ
d
g − ngnd) = −ng(∇fnd)− nd(∇fng), (14.37)

so that

BafBbg(∇fBgd) = −BafBbgng(∇fnd)− ndBafBbg∇fng = ndKab. (14.38)

Similarly, we find using (14.3), (14.4), and (14.18) that

BafBkc(∇fBek) = neKa
c. (14.39)

Hence,

DaDbZc = BafBbdBec(∇f∇dZe) + BecKabnd(∇dZe) + BbdKa
cne(∇dZe).

(14.40)
Now themiddle term vanishes when we anti-symmetrize on a and b. Since
neZe = 0, we also have ne(∇dZe) = −Ze∇dne, so that

Bbdne(∇dZe) = −ZeBbd∇dne = ZeKeb. (14.41)
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Putting all this together, we have

DaDbZc−DbDaZc = BafBbdBec(∇f∇dZe−∇d∇fZe)+ZeKa
cKeb−ZeKb

cKea,
(14.42)

which immediately gives

(3)RcfabZ f = BafBbdBecRehfdZ h + Z fKa
cKfb − ZfKb

cKfa. (14.43)

We now take Z to be an arbitrary vector field (not necessarily tangent to
Σ) and replace Zh by its tangential component BfhZf. Then the above
equation remains true and, since Zh is arbitrary, we have (after some
relabelling of indices)

(3)Rabcd = BaeBbfBcgBdhRefgh +KacKbd −KadKbc, (14.44)

which is the Gauss equation (14.23).

14.6 Calculating the Codazzi equation
To calculate the Codazzi equation, we differentiate Kab, which from
(14.18), is given by

Kab = −BacBbd∇cnd.

Since Kab is a tensor tangent to the hypersurface Σ, the 3-dimensional
covariant derivativeDaKab is well-defined. Using the definition of Da (see
(14.13)), we get

−DcKab = −BaeBbfBcg∇gKef

= BaeBbfBcg∇g(BejBfk∇jnk)

= BaeBbfBcgBfk(∇gBej)(∇jnk)

+ BaeBbfBcgBej(∇gBfk)(∇jnk)

+ BaeBbfBcgBejBfk(∇g∇jnk)

= BaeBbkBcg(∇gBej)(∇jnk)

+ BajBbfBcg(∇gBfk)(∇jnk)

+ BajBbkBcg(∇g∇jnk),

using (14.4). Now the first two terms cancel when one anti-symmetrizes
on a and c, so that

DaKbc −DcKba = BajBbkBcg(∇g∇jnk −∇j∇gnk)

= −BajBbkBcgRℓkgjnℓ, (14.45)

which, on relabelling of indices, is just the Codazzi equation (14.25).
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14.7 The geometry of foliations
A Cauchy surface is a spacelike hypersurface Σ such that each endless
timelike or null curve intersects Σ exactly once (Fig 14.1). A space-time
that possesses a Cauchy surface is called globally hyperbolic. The name
comes from the fact that the wave equation gab∇a∇bϕ = 0 (a hyperbolic
PDE) has a unique globally defined solution on such a space-time. From
the point of view of Einstein’s equations, the important fact about globally
hyperbolic space-times is that the manifold M has topology

M = Σ× R, (14.46)

so that the manifold can be sliced up into hypersurfaces Σt , which are the
level surfaces of some time function. We call such a slicing a foliation,
which we define more precisely below.

S
spacelike

hypersurface

Space-time

Fig. 14.1 A Cauchy surface.

By a foliation of a manifold, we mean that there exists a smooth scalar
field ϕ (our time function)

ϕ : M→ R, (14.47)

which has non-vanishing gradient and whose level surfaces

Σt = {x ∈M : ϕ(x) = t}, (14.48)

give the whole of M, so that

M = ∪
t∈R

Σt. (14.49)

Since ϕ has non-vanishing gradient, it follows that the hypersurfaces Σt

are non-intersecting, so that each point x on M lies on precisely one
hypersurface Σt (see Fig. 14.2).

�3

�2

�1

Fig. 14.2 A foliation of space-time by
spacelike hypersurfaces Σt.

Since we want to consider Einstein’s equations, as evolution equations,
we will be interested in the case where the hypersurfaces Σt are spacelike
and so we now specialize to this case. Let na be the unit, future-pointing,
timelike normal to the constant time surfaces Σt. Since we now have a
family of hypersurfaces Σt rather than a single hypersurface Σ, we may
also take derivatives of na off the hypersurfaceΣt. This enables us to define
a new geometric quantity, A = ∇nn, which in coordinates is given by

Aa = nb∇bna. (14.50)

As na is a unit timelike vector, it can be regarded as tangent to the world-
line of an observer. The quantity Aa therefore measures the acceleration
of such an observer. In the differential geometry literature, Aa is called
the geodesic curvature of the unit normal curves, since it vanishes
when the worldlines are affinely parametrized geodesics. Differentiating
the equation nana = 1 and contracting with nb gives

nanb∇bna = 0, (14.51)
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which implies that

naAa = 0. (14.52)

So that Aa is a spacelike vector tangent to the Σt hypersurfaces.
We have seen that we may use geometric quantities defined on the hy-

persurface, namely the inducedmetric hab and the extrinsic curvatureKab,
to reconstruct all but one component of the space-time curvature.We now
show that Aa is the additional quantity that we need to know on the hy-
persurface to obtain the missing piece of the space-time curvature. This
is given by the Ricci equation

BacndBbenfRcdef = LnKab +DaAb − AaAb +Ka
cKcb. (14.53)

14.8 Derivation of the Ricci equation
Now that we have the definition of the acceleration, we may compute all
the components of ∇anb (not just those in the hypersurface). Then we
find (exercise)

∇anb = −Kab + naAb. (14.54)

We are now in a position to compute LnKab. From the definition of the
Lie derivative

LnKab = nc∇cKab + (∇anc)Kcb + (∇bnc)Kac. (14.55)

Now by (14.54) the last two terms can be written

(∇anc)Kcb + (∇bnc)Kac = (−Ka
c +naAc)Kcb + (−Kb

c +nbAc)Kac. (14.56)

Again using (14.54), we may write the first term as (exercise)

nc∇cKab = −nc(∇c∇anb) + AaAb + nanc(∇cAb). (14.57)

Now

nanc(∇cAb) = (δca − Bac)∇cAb

= ∇aAb − Bac(∇cAb)

= ∇aAb −DaAb − (Ka
cAc)nb. (14.58)

Also using (14.52) and (14.54), we obtain

∇aAb = ∇a(nc∇cnb)

= (∇anc)(∇cnb) + nc∇a∇cnb

= (−Ka
c + naAc)(−Kcb + ncAb) + nc∇a∇cnb

= Ka
cKcb − naAcKcb + nc(∇a∇cnb). (14.59)
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Combining (14.57), (14.58), and (14.59), we obtain for the first term in
(14.55)

nc∇cKab =− nc(∇c∇a −∇a∇c)nb + AaAb −DaAb +Ka
cKcb

− naAcKcb − nbAcKca. (14.60)

Using nc(∇c∇a−∇a∇c)nb = −ncndRdbca and substituting for (14.56) and
(14.60) in (14.55) gives

LnKab = ncndRdbca + AaAb −DaAb −Ka
cKcb. (14.61)

Note that, because of the symmetries of the Riemann tensor, contracting
ncndRdbca with na or nb gives zero and hence ncndRdbca is a tensor in the
hypersurface. Equation (14.61) can therefore be written as

BacndBbenfRcdef = LnKab +DaAb − AaAb +Ka
cKcb, (14.62)

which is just the Ricci equation. In adapted coordinates, this is

ncndRαcβd = LnKαβ +DαAβ − AαAβ +KαγKγβ . (14.63)

14.9 The lapse function

Since the gradient of ϕ is orthogonal to the level surfaces, this corresponds
to the case where wa = gabϕ,b is a timelike vector (i.e. gabwawb > 0), which,
without loss of generality, we may assume to be future pointing. In such a
case, ϕ is called a time function and we will write the scalar field as t(x)
rather than ϕ(x). Since wa is normal to the constant time hypersurfaces,
it must be proportional to the future-pointing normal na to Σt. We may
therefore write

na = Nwa, (14.64)

for some scalar functionNwhich is called the lapse of the foliation. Since
both wa and na are future pointing, the lapse is positive, so that (check)

N =
1√

gabt,at,b
. (14.65)

Note that, in the numerical relativity literature, where it is common to use
the alternative (−, +, +, +) signature, a time function that increases to the
future results in a past-pointing wa = gab∇bT, so that, to ensure that N is
positive, na is taken to be equal to −Nwa.

Since na is a unit timelike vector field, it can be regarded as tangent to
the worldline of some observer. We call such an observer an Eulerian
observer for the foliation. The constant time hypersurfaces Σt are then
orthogonal to the worldlines of such an observer and consist of events that
are considered simultaneous from their point of view.
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Let xa be an event on the hypersurface Σt and let x̃a be an event at
a small proper time δτ later on the worldline of an Eulerian observer
(Fig 14.3). Since na is a unit vector tangent to the worldline and δτ is
small, we may write

xa

xa~

(δτ)na

Fig. 14.3 Two hypersurfaces for an Eu-
lerian observer.

x̃a = xa + (δτ)na. (14.66)

To find out what hypersurface x̃a is on, we calculate t(x̃a)

t(x̃a) = t(xa + (δτ)na)

= t(xa) +
(
∂t
∂xb

)
(δτ)nb +O

(
(δτ)2

)
' t(xa) + (δτ)wbnb

= t(xa) + (δτ)/N,

so that x̃a lies on the hypersurface Σt+δt, where δt = δτ/N. In other words,
δτ = Nδt, so that N ' δτ/δt and in the limit we have

N =
dτ
dt

. (14.67)

This tells us that the lapse is just the rate of change of proper time with
respect to coordinate time for an Eulerian observer.

Since we now have a family of spacelike hypersurfaces Σt rather than a
single hypersurface, we can calculate how the induced metric changes in
going from one hypersurface to the next. The rate of change of hab with
respect to proper time τ as measured by an Eulerian observer is given
geometrically by Lnhab. Now

Lnhab = Ln(gab − nanb). (14.68)

Calculating the first term gives

Lngab = nc(∇cgab) + (∇anc)gcb + (∇bnc)gac

= ∇anb +∇bna, (14.69)

since the covariant derivative of themetric vanishes, while the second term
gives (exercise)

Ln(nanb) = Aanb + Abna. (14.70)

Hence, substituting for (14.69) and (14.70) in (14.68) gives

Lnhab = (∇anb − naAb) + (∇bna − nbAa) = −2Kab, (14.71)

by (14.54). So, in the case of a foliation, we have
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Kab = − 1
2Lnhab. (14.72)

Note that, in the numerical relativity literature, this is sometimes taken
as the definition of the extrinsic curvature but it relies on the existence
of a foliation, while the definition we gave in §14.3 only requires a single
hypersurface.

If we introduce coordinates (xα) on some initial hypersurface Σ0,
then we may use the worldlines of the Eulerian observers to give space-
time coordinates (t, xα) in a neighbourhood of Σ0 by requiring that their
worldlines are given by xα = constant, α = 1, 2, 3. Since in these coor-
dinates the geometric version of ∂/∂t is LNn, we may write (14.72) as
(exercise)

γ̇αβ
∗
= 2NKαβ , (14.73)

where γαβ = −hαβ and a dot indicates a derivative with respect to the
coordinate time t rather than the proper time τ .

We may also use the lapse to give an expression for the acceleration
vector Ab (exercise)

Aa = − 1
N
DaN. (14.74)

Hence,

Aa = −Da(lnN). (14.75)

We can use this to simplify (14.61) since

DaAb − AaAb = − 1
N
DaDbN +

1
N2 (DaN)(DbN)− 1

N2 (DaN)(DbN)

= − 1
N
DaDbN.

Substituting this into (14.61) gives

LnKab = ncndRdbca −Ka
cKcb +

1
N
DaDbN− 2KacKb

c. (14.76)

We may then use the contracted Gauss equation (14.27) to replace the
term ncndRdbca by the space-time Ricci tensor. This gives an evolution
equation for the extrinsic curvature in terms of quantities defined in the
hypersurface

LnKab = BacBbdRcd− (3)Rab+Kc
cKab+

1
N
DaDbN−2KacKb

c. (14.77)
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14.10 The 3+1 decomposition of the metric
In the previous section, we introduced observers who move along world-
lines that are normal to the foliation and used them to construct adapted
coordinates (t, xα). However, although this is geometrically convenient,
it is both physically and mathematically a restriction. We therefore now
consider an arbitrary congruence of curves which are nowhere tangent
to the leaves of the foliation Σt and with the property that every point
on M lies on precisely one such curve. This is called a fibration in dif-
ferential geometry. Since the curves are nowhere tangent to the constant
time surfaces, we may parameterize these curves by t and define Ta to be
the corresponding tangent vector. Such a vector field is called a rigging
vector. We may now project Ta into components normal and tangential
to Σt and write

Ta = αna + βa, (14.78)

where α = Tana and βa = BbaTb (Fig. 14.4). Note that, by the
definition of Ta, moving the hypersurface Σt forward by δtTa results in
the hypersurface Σt+δt, so that α is just the lapse

α = N =
1√

gabt,at,b
. (14.79)

The quantity βa is called the shift. By definition, it is tangent to the
hypersurfaces so that

βana = 0. (14.80)

Writing equation (14.78) in the form

na =
1
N
(Ta − βa), (14.81)

and recalling that gab = hab + nanb, we find

gab =
1
N2 (T

a − βa)(Tb − βb) + hab. (14.82)

We now introduce coordinates adapted to the foliation and rigging as fol-
lows. Let (xα), α = 1, 2, 3, be coordinates on some initial slice Σ0. Then
we may extend these to coordinates (x0, xα) onM by defining the curves
in the fibration to be given, in these coordinates, by x0 = t, xα = constant,
α = 1, 2, 3.

�t

�t + dt

xa + dxaxa

dxa

Tadt

�ndt

naNdt

Fig. 14.4 A fibration showing the rig-
ging vectorTa decomposed into the lapse
and shift.

It then follows that, in these coordinates,

T =
∂

∂t
, (14.83)

so that

Ta
∗
= δa0. (14.84)
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Since βa and hab have purely spatial components given by βμ and hμν , it
follows that

βa
∗
= δaμβ

μ, (14.85)

hab
∗
= δaμδ

a
νh

μν . (14.86)

Substituting these into (14.82) gives

gab =
(

1/N2 −βμ/N
−βμ/N −γμν + βμβν/N2

)
, (14.87)

where γμν := −hμν .
We note from taking the determinant of gab that det gab = −det γμν/N2

so that det (γμν) = −N2 det (gab) and γμν is invertible. If we now define
γμν by

γμνγ
νσ = δσμ (14.88)

and use γμν and γμν to raise and lower Greek indices, then, inverting
(14.87) using gabgbc = δca, we obtain

gab =
(
N2 + βσβσ −βμ

−βμ −γμν

)
. (14.89)

Hence we find the line element (using our choice of metric signature) is
given by

ds2 = (N2 + βσβσ)dt2 − 2βμdtdxμ − γμνdxμdxν . (14.90)

Notice that, in these coordinates, gαβ = −γαβ (where the minus sign
has been introduced to make γαβ a positive definite Riemannian metric).
Note, however, that gαβ 6= −γαβ unless we choose coordinates in which
the shift vanishes.

14.11 The 3+1 decomposition of the
vacuum Einstein equations

So far, we have adopted a purely geometric approach in which we have
given a decomposition of the metric relative to a foliation of a space-time
by spacelike hypersurfaces transvected by a timelike fibration. The ex-
trinsic curvature of a given Σ(t) also describes the manner in which the
hypersurface is embedded in the enveloping 4-geometry.

An alternative 3+1 viewpoint regards general relativity as a dynamical
theory in which space time is comprised of the ‘time history’ of a spacelike
hypersurface Σ(t) regarded as an ‘instant of time’. The geometry of Σ(t)
is described by the 3-metric γμν while the rate of change of γμν gives an
expression for the extrinsic curvature of Σ(t). These together with the
acceleration enable one to reconstruct the 4-metric gab, which gives the
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geometry of the space-time. There are two types of variables: the four
functions comprising the lapse α and shift β are kinematical and are freely
specifiable, since they embody the fourfold coordinate freedom of general
relativity. The six functions comprising the 3-metric γμν are the dynamical
variables. We now show how these dynamical equations can be can be
formulated as a pair of partial differential equations which are first order
in time.

The first step is to split the ten vacuum Einstein equationsGab = 0 into
three parts. The first is a part where we project in the direction normal to
the hypersurface

nanbGab = 0. (14.91)

Using the twice-contracted Gauss equation (14.29), we have shown this
can be written

(3)R− (Ka
a)(Kb

b) +KabKab = 0. (14.92)

This only depends on the intrinsic and extrinsic geometry of the hyper-
surface and, in adapted coordinates, is given by

(3)R− (Kαα)(Kββ) +KαβKαβ = 0, (14.93)

where (3)R is the scalar curvature of γαβ and the Greek indices in the
above equation are raised using γαβ .

The second part involves projecting one component normal to the
hypersurface and one component into the hypersurface

BacndGcd = 0. (14.94)

Using the contracted Codazzi equation (14.33), we have shown that this
can be written

DbKb
a −DaKb

b = 0. (14.95)

Again, this only depends on the intrinsic and extrinsic geometry of the
hypersurface and, in adapted coordinates, is given by

DβKβα −DαKββ = 0, (14.96)

where Dα is the metric covariant derivative of γαβ and the Greek indices
are raised with γαβ .

The third part involves projecting both components of the Einstein
equations into the hypersurface. However, rather than work with the pro-
jection of Gab = 0, it is mathematically more convenient to work with the
projection of Rab = 0, which gives

BacBbdRcd = 0. (14.97)
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As previously shown in §13.6, equations (14.91), (14.94), and (14.97) are
equivalent to Gab = 0 so there is no problem in using (14.97) rather than
BacBbdGcd = 0. We have already shown in (14.77) that the Ricci equation
gives rise to a propagation equation for Kab

LnKab = −(3)Rab +Kc
cKab − 2KacKc

b +
1
N
DaDbN. (14.98)

We also have a propagation equation for hab

Lnhab = −2Kab, (14.99)

which together with (14.98) may be regarded as a second-order evolution
equation for the 3-metric γab = −hab. However, to use these equations
in computations, we need to write them in the form of partial differen-
tial equations rather than in the geometrical form given above. The key
to doing this is to note that the Lie derivative with respect to the vector
field Ta is just the partial derivative ∂/∂t in the adapted coordinates. We
therefore look at modified versions of (14.98) and (14.99) which involve
LT rather than Ln. We start with equation (14.99). Using the fact that
Ta = Nna + βa, we have

LThab = LNnhab + Lβhab. (14.100)

Now for the first term we have

LNnhab = Nnc(∇chab) + (∇a(Nnc))hcb + (∇b(Nnc)hac

= Nnc(∇chab) +N(∇anc)hcb + nc(∇aN)hcb +N(∇bnc)hac

+ nc(∇bN)hac

= Nnc(∇chab) +N(∇anc)hcb +N(∇bnc)hac

= NLnhab

= −2NKab,

using nahab = 0 from (14.5). For the Lβhab term, we expand the Lie
derivative using the 3-dimensional covariant derivative Da and use the
fact that Dchab = 0. This gives

Lβhab = βcDchab + (Daβ
c)hcb + (Dbβ

c)hac

= Daβb +Dbβa.

Combining these results, we have

LThab = −2NKab +Daβb +Dbβa. (14.101)

In the adapted coordinates, this is

∂γμν
∂t

∗
= 2NKμν −Dμβν −Dνβμ. (14.102)
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We thus obtain an expression for Kμν in terms of derivatives of hypersur-
face quantities

Kμν =
1
2N

(
∂γμν
∂t

+Dμβν +Dνβμ

)
. (14.103)

We now compute LTKab. This is given by

LNn+βKab = LNnKab + LβKab. (14.104)

Now

LNnKab = Nnc∇cKab + (∇a(Nnc))Kcb + (∇b(Nnc)Kac

= Nnc∇cKab +N(∇anc)Kcb + nc(∇aN)Kcb +N(∇bnc)Kac

+ nc(∇bN)Kac

= Nnc∇cKab +N(∇anc)Kcb +N(∇bnc)Kac

= NLnKab

= DaDbN−N
(
(3)Rab + 2KacKc

b −K c
cKab

)
,

using (14.19) and (14.98). For the LβKab term, we have

LβKab = βcDcKab + (Daβ
c)Kcb + (Dbβ

c)Kac. (14.105)

Combining these, we have

LTKab = DaDbN + βcDcKab + (Daβ
c)Kcb + (Dbβ

c)Kac

−N
(
(3)Rab + 2KacKc

b −K c
cKab

)
, (14.106)

which in the adapted coordinates becomes

∂Kμν

∂t
∗
= DμDνN + βρDρKμν + (Dμβ

ρ)Kρν + (Dνβρ)Kμρ

−N
(
(3)Rμν + 2KμρKρν −K ρ

ρKμν

)
. (14.107)

This gives the time derivative of Kμν in terms of quantities in the hyper-
surface. If one now uses (14.103) to substitute for Kμν in the above, one
sees that this gives a second-order evolution equation for γμν .

Notice that, with this 3+1 decomposition of Einstein’s equations, we
do not have evolution equations for the lapse N or the shift βa; instead,
these are ‘gauge’ quantities that can be thought of as defining the coordi-
nate system rather than as dynamical variables that describe the geometry
of space-time. Indeed, the lapse and shift encode essentially the same in-
formation as g0a, which, as we saw from §13.6, is part of the data we need
to specify to find an analytic solution.
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The procedure for solving the Cauchy problem for the vacuum Ein-
stein equations is therefore as follows. One first fixes a coordinate system
xα on Σ0 and finds initial data γμν(0) and Kμν(0) that solve the constraint
equations (14.93) and (14.96). Note that this is a non-trivial task (see
brief discussion below). One then specifies the lapse and shift, which ex-
tends the coordinates xα to give coordinates xa on a neighbourhood ofΣ0.
This enables one to evolve γμν andKμν forward in time, for some interval
0 ⩽ t ⩽ C, as a pair of first-order evolution equations, using (14.102),
(14.107), and the initial data. The Bianchi identities show that, if the con-
straints are initially satisfied, they are satisfied at future times so we now
have γμν(t) and Kμν(t) which satisfy (14.91), (14.94), and (14.97) for
0 ⩽ t ⩽ C and hence satisfy Gab = 0 on that interval.

Writing the Einstein equations in this way was first derived by Dar-
mois, as early as 1927, in the special case N = 1 and βa = 0 i.e. these
are the so-called Gaussian normal coordinates corresponding to the
motion of Eulerian observers with the foliation parametrized by proper
time. The case N 6= 1, but still with βa = 0, was considered by Lich-
nerowicz in 1939 and the general case with arbitrary lapse and shift by
Choquet-Bruhat in 1948. A slightly different form, with Kab replaced by
the ‘momentum conjugate to γab’, namely pab :=

√
γ(Kγab−Kab), was de-

rived by Arnowitt, Deser, andMisner from their Hamiltonian formulation
of general relativity in 1959. This is the origin of the term Hamiltonian
constraint and momentum constraint for equations (14.30) and (14.34)
and explains why this description of the Einstein equations as a first-order
system is sometimes called the ADM formalism.

In the previous chapter, we outlined the proof of the existence of solu-
tions to the coordinate version of the Cauchy problem in the analytic case
by means of the Cauchy-Kowalevskya theorem. A similar strategy in the
analytic case also works with the above formulation of the equations, as
shown by Darmois and Lichnerowicz. However, from the physical point
of view, asking for analytic initial data seems an unreasonable require-
ment. Unfortunately, it is much harder to prove existence and uniqueness
with non-analytic initial data but the above formalism is the basis for writ-
ing Einstein’s equations as a well-posed initial value problem for which
one can apply standard theorems from the theory of partial differential
equations.

14.12 The 3+1 equations and numerical
relativity

In this section, wewill review the current status of the 3+1 formalismwith-
out considering the calculational details. The 3+1 approach has been used
extensively in numerical relativity, that is, solving Einstein’s equations
numerically on a computer, and has played a key role in our current
understanding of gravitational collapse and gravitational waves.
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We begin by discussing how to solve the constraint equations. Unlike
the case for the rest of the book we will mostly just be quoting results from
the literature in this section. One of the most useful ways of solving this
is the conformal approach of York and O’Murchadha. The key idea
here is to introduce conformal scalings so that the constraint equations are
cast into a set of four quasilinear elliptic partial differential equations for
four gravitational ‘potentials’. This idea facilitates both theoretical analysis
as well as providing a numerical technique. We start by introducing a
conformal factor ψ and write the 3-metric γμν in the form

γμν = ψ4γ̂μν . (14.108)

The conformal factor is one of the ‘potentials’ which will be fixed by
the Hamiltonian constraint (14.30). Then, among other things, the scalar
curvature transforms as

R = ψ−4R̂− 8ψ−5(D̂μD̂μ)ψ. (14.109)

We then perform a so-called transverse traceless decomposition of the
extrinsic curvature tensor, which introduces three additional ‘potentials’
Xμ which will be fixed by the momentum constraints. Defining the trace-
free part of the extrinsic curvature by

Aμν = Kμν − 1
3
γμνK, (14.110)

then the choice

Aμν = ψ−10Âμν , (14.111)

results in the property

DνAμν = ψ−10D̂νÂμν . (14.112)

As with any traceless symmetric tensor, Aμν can be decomposed into a
part ÂμνTT with vanishing divergence and trace, and another trace-free part
which can be obtained from differentiating a vector potentialWν , namely

Âμν = ÂμνTT + (ℓ̂W)μν , (14.113)

where

(ℓ̂W)μν = D̂μWν + D̂νWμ − 2
3
γ̂μνD̂σWσ (14.114)

and the TT (Transverse-Traceless) part ÂμνTT satisfies

D̂νÂ
μν
TT = 0. (14.115)
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In practice, it will generally be inconvenient to give the freely specifiable
part of the conformally scaled extrinsic curvature in terms of a transverse-
traceless tensor. So we ‘reverse decompose’ ÂμνTT as

ÂμνTT = T̂μν − (ℓ̂V)μν , (14.116)

where the traceless, symmetric tensor T̂μν is freely specifiable and Vν is
another vector field. Then

Âμν = T̂μν + (ℓ̂W)μν − (ℓ̂V)μν

= T̂μν + (ℓ̂X)μν , where X = W− V.

The Hamiltonian and momentum constraints become, in this ap-
proach,

∆̂ψ := (D̂νD̂ν)ψ =
1
8
R̂ψ+

1
12
K2ψ5− 1

8

(
T̂μν + (ℓ̂X)μν

)2
ψ−7, (14.117)

(∆̂ℓ)
μ := D̂ν(ℓ̂X)μν = −D̂νT̂μν +

2
3
ψ6D̂μK. (14.118)

These equations are a set of four quasilinear, coupled elliptic PDEs for
the four gravitational potentials {ψ,Xν}. So, to summarize, the procedure
is:

• freely specify {γ̂μν ,K, T̂μν},
• solve the constraints for the potentials {ψ,Xν},
• construct physical initial data using

γμν = ψ4γ̂μν , (14.119)

Kμν =
(
T̂μν + (ℓ̂X)μν

)
ψ−10 +

1
3
Kψ−4γ̂μν. (14.120)

A particularly simple choice for solving the constraints is:

• introduce Cartesian coordinates (x, y, z) and take the conformal
metric to be flat i.e. γ̂μν = diag(1, 1, 1),

• choose the initial slice to be maximal i.e. K = Kμ
μ = 0,

• choose a minimal radiation condition i.e. T̂μν = 0.

With the above choices, the constraints become

∆̂ψ = −18(ℓ̂X)μν(ℓ̂X)μνψ−7, (14.121)

(∆̂ℓX)μ = 0. (14.122)
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This greatly simplifies the problem since the momentum constraint is de-
coupled from theHamiltonian constraint and is linear. It has been possible
this way to even find analytic solutions of the momentum constraints, for
example, corresponding to one or more black holes with freely specified
linear and angular momentum.

The second issue we need to address is the choice of gauge condi-
tions for the choice of lapse and shift. There are two requirements which
motivate the choice of a particular gauge:

• The avoidance of both coordinate and physical singularities: The
latter can be avoided by slowing down the evolution of the spatial
region near the singularity: This is controlled by the lapse N.

• Making the Einstein evolution equations as simple as possible, so
that a numerical solution is not unduly complicated: This is often
controlled by the shift βa. For example, a good choice can lead to
several of the components of γμν vanishing, which reduces the size
of expressions such as that for (3)R.

Choices for the lapse are as follows:

Geodesic slicing. If N = 1 is combined with βa = 0 then we are using
Eulerian observers who are freely falling. The spatial hypersurfaces are
geodesically parallel. This slicing is singularity seeking.

Lagrangian slicing. In spherical symmetry, we can use NU0 = 1 com-
bined with βμ = 0, whereU0 is the time-component of the fluid 4-velocity.
Then Uμ = 0 and fluid world-lines are orthogonal to the spatial hyper-
surfaces (which is possible because there is no vorticity). Since βμ = 0,
the coordinates follow the matter. The fluid world-lines will focus towards
any singularity and so this slicing is again singularity seeking.

Maximal slicing. We can avoid the focusing of world-lines towards sin-
gularities by choosing N in such a way that K = Kαα remains zero on
each hypersurface if it is zero on the initial one. Physically, K measures
the expansion of a congruence of world-lines normal to the foliation.
Substituting both K = 0 and ∂K/∂t = 0 into the evolution equations
gives

γμνDμDνα− α(3)R = 4π(S− 3ρ). (14.123)

This is an elliptic equation for α to be solved on each slice Σ(t), which
means that it can be computationally expensive.

Choices for the shift are as follows:

Eulerian gauge.We simply set βμ = 0 so that the coordinate congruence
is normal to the foliation. Early stellar collapse codes used this gauge.

Lagrangian gauge. For space-times containing matter, we can set
βμ = Uμ/U0, where Ua is the fluid 4-velocity. Thus, the coordinate
congruence coincides with the congruence of the fluid world-lines. For
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one-dimensional flows, this is a convenient choice but, in two or three di-
mensions, where vorticitymay be present, the coordinate grid can become
severely distorted, leading to a loss of accuracy.

Isothermal and radial gauge. A particular choice of βμ can simplify
Einstein’s equations by making certain components of the 3-metric zero.
Three conditions on βμ enable three components to be eliminated, for
example giving a diagonal line element

dσ2 = γxxdx2 + γyydy2 + γzzdz2. (14.124)

In an isothermal gauge, γrθ = 0 and γrr = γθθ. In a radial gauge, γrθ
= γrϕ = 0 and γθθγϕϕ − γ2

θϕ = r4 sin2 θ, and the metric has the form

dσ2 = A2dr2 + r2B−2dθ2 + r2B2(sin θdϕ + ξdθ)2, (14.125)

where A, B, and ξ are metric functions to be determined. This is a par-
ticularly useful gauge for gravitational radiation in asymptotically flat
space-times.

14.13 The 2+2 and characteristic
approaches

There are two major limitations of the 3+1 approach. The first is that the
initial data is not freely specifiable, but must satisfy the constraints. The
conformal approach is a powerful technique for achieving this but does
not reveal what the freely specifiable initial data i.e. the true gravitational
degrees of freedom are in clear geometric terms.

Let us do some counting in the 3+1 regime. Restricting attention to
the vacuum case, we start off with ten field unknowns, namely the com-
ponents of the 4-dimensional metric, and ten vacuum field equations.
However, four of these unknowns may be prescribed arbitrarily because
of the fourfold coordinate field freedom, leaving six components of the
4-metric freely specifiable. Moreover, the field equations are not inde-
pendent but satisfy four differential constraints, namely the contracted
Bianchi identities. The Lichnerowicz lemma reveals that, if the constraints
are satisfied initially and the evolution equations hold generally, then the
constraints are satisfied for all time by virtue of the contracted Bianchi
identities. Then, as we have seen in the 3+1 first-order formulation of
the initial value problem, we end up needing to specify on an initial slice
the six components of the 3-metric γμν together with the six variables
Kμν subject to the four constraints. So this leaves eight variables freely
specifiable. However, there exists a threefold coordinate freedom within
the initial slice. This can be used, for example, to specify three of the
γμν . This leaves five variables free. Finally, there is a condition which de-
scribes the embedding of the initial slice into the 4-geometry. This is a
little harder to see, but we have already met examples of conditions like
this such as maximal slicing K = 0. The point is that relationships like
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these are constraints between the γμν and the Kμν which encode the na-
ture of the embedding. Such a constraint finally reduces the number of
freely specifiable data to 4. These can be thought of, from a Lagrangian
point of view, as being two q’s and two q̇’s, that is, two pieces of infor-
mation encoded in the metric and two pieces in its time derivative (or,
equivalently, two pieces of information in the extrinsic curvature). It is in
this sense that we say the gravitational field has two dynamical degrees of
freedom. But what are they explicitly in the 3+1 case? Moreover, why are
there six evolution equations rather than the two you would expect for a
system with two degrees of freedom? The 2+2 approach answers these
questions in a transparent way.

The second problem is that the 3 + 1 approach fails if the foliation
becomes null and, furthermore, null foliations are important in their
own right, as we shall see when discussing gravitational radiation in
Chapter 23.S0

ν2

ν1

Fig. 14.5 2-dimensional manifold and
two transvecting submanifolds.

The basis of the 2+2 approach is to decompose space-time into two
families of spacelike 2-surfaces. We can view this as a constructive pro-
cedure in which an initial 2-dimensional submanifold S is chosen in a
bare manifold, together with two vector fields n0 and n1 which transvect
the submanifold everywhere (Fig. 14.5). The two vector fields can then
be used to drag the initial 2-surface out into two foliations of 3-surfaces.
The character of these 3-surfaces will depend in turn on the character
of the two vector fields. The most important cases are when at least one
of the vector fields is taken to be null. For example, if both vector fields
are null, we obtain a double-null foliation (indicated schematically in Fig.
14.6) or, if one is null and the other is timelike, we obtain a null-timelike
foliation (Fig. 14.7).

The most elegant way of proceeding is to introduce a formalism which
is manifestly covariant and which uses projection operators and Lie
derivatives associated with the two vector fields. The resulting formalism
is called the 2+2 formalism (d’Inverno and Smallwood 1980). When
the vector fields are of a particular geometric character, then this can be
refined further into a 2+(1+1) formalism. Finally, in analogy to the con-
formal approach of the last chapter, one extracts a conformal factor from
the spacelike 2-geometries to isolate the gravitational degrees of freedom.

ν1

ν2

S0: initial 2-surface

Fig. 14.6 Double null foliation.

: initial 2-surface
ν1

ν2

S0

Fig. 14.7 Null timelike foliation.

The resulting formalism leads to a number of advantages. First of all,
it identifies the two gravitational degrees of freedom in an explicit ge-
ometrical way as residing in the conformal 2-geometry (d’Inverno and
Stachel 1978). Secondly, the data is unconstrained and satisfies two dy-
namical equations which are simply ordinary differential equations along
the vector fields. Most importantly, the formalism applies to situations
where the foliation either is null or becomes null. Such initial value prob-
lems are called null or characteristic initial value problems. They are
the natural vehicle for studying gravitational radiation problems (since
gravitational radiation propagates along null geodesics), asymptotics of
isolated systems (since future and past null infinity are null hypersur-
faces), and problems in cosmology (since we gain information about
the universe along our past null cone). From a calculational viewpoint,
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this formalism allows null infinity to be incorporated into the calcula-
tional domain and so allows one to define gravitational radiation in an
unambiguous manner.

We shall not develop the 2+2 formalism in the same detail as we did
with the 3+1 formalism in the previous section. This is partly because it is
rather complicated looking at first sight. However, much of the procedure
is analogous to that of the 3+1 decomposition, and largely rests on the
use of projection operators and Lie derivatives. The only new entities are
tensors which essentially encode 2-dimensional Lie derivatives. However,
we shall look in detail at the 2+2 decomposition of the metric so we can
compare it with the 3+1 case.

14.14 The 2+2 metric decomposition
In the 3+1 formalism, we slice up space-time into spacelike hypersurfaces
which are the level surfaces of a time function. In the 2+2 formalism, we
instead slice up space-time using a 2-parameter family of 2-surfaces. We
can think of these 2-surfaces as being obtained from the intersection of
two hypersurfaces Σ0 and Σ1, which may be defined as the level surfaces
of two scalar functions ϕ0 and ϕ1. We then define

Σ0(u) = {x ∈M : ϕ0(xa) = u = constant},

Σ1(v) = {x ∈M : ϕ1(xa) = v = constant},

where we use the bold numbers 0 and 1 to label the hypersurfaces and
associated geometric quantities. We now assume that these hypersurfaces
intersect to define a family of 2-surfaces by

S(u, v) = Σ0(u) ∩ Σ1(v),

and restrict attention to the case when S(u, v) is spacelike. At each point
on S(u, v), we may define the set of tangent directions {S} and a set of
directions orthogonal to {S} which we call {T} (see Fig. 14.8). We say
that {T} is integrable if we can find a 2-surface T such that the vectors
in {T} are all tangent to T . However, as we now show, in general {T} will
not be integrable.

P

S

T

Fig. 14.8 The timelike 2-space {T} or-
thogonal to {S} at P.

We first use ϕ0 and ϕ1 to define co-vectors normal to Σ0 and Σ1,
respectively, by

n0a =
∂ϕ0

∂xa
and n1a =

∂ϕ1

∂xa
(14.126)

We then use these to define a pair of vectors na0 and na1 which satisfy

naAn
B
a = δAB, where A,B = 0, 1. (14.127)

These vectors together span {T} and are called a vector dyad for {T}.
The condition for a pair of vectors to be surface forming is that the Lie
bracket vanishes. However,
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[n0,n1] 6= 0 in general, (14.128)

so that {T} does not form an integrable distribution. If, however, the Lie
bracket vanishes, then {T} forms a 2-dimensional subspace of M and is
said to be holonomic. We use the nA to define a 2× 2 matrix of scalars
NAB by

NAB = gabnaAn
b
B, (14.129)

where the bold letters A and B etc range over 0 and 1. Because n0 and n1

are independent, the matrix NAB is invertible, with inverse denoted NAB.
We may use NAB and NAB to relate nAa and nbB since

naA = gabNABnBb , (14.130)

and

nAa = gabNABnbB. (14.131)

We define projection operators into {S} and {T} by

Bab = δab − naAn
A
b , (14.132)

Tab = naAn
A
b , (14.133)

where A is summed over 0 and 1. The 2-metric induced on S is given by
the projection

2gab = BcaB
d
bgcd = BadBdb = Bab.

Similarly, the 2-metric induced on {T} is given by the projection

hab = TcaT
d
bgcd = TadTdb = Tab.

Since the components of hab lie in {T}, we may use n0 and n1 to give the
dyad components of hab by defining hAB := habnaAn

b
B. It then follows that

hAB = habnaAn
b
B = gabnaAn

b
B = NAB.

so thatNAB are just the dyad components of the orthogonal metric hab. In
particular, the elements N00 and N11 define the lapses of S in {Σ0} and
{Σ1}, respectively.

We now choose a pair of vectors EaA which connect neighbouring
2-surfaces in {S}. We choose them such that

nAa E
a
B = δAB, (14.134)

which defines EaA up to an arbitrary shift vector baA, i.e.

EaA = naA + baA, (14.135)
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with

nAa b
a
B = 0. (14.136)

Although, in general, the vectors naA do not commute, it is always possible
to choose the baA so that

[E0,E1] = 0. (14.137)

Thus, each EaA is tangent to a congruence of curves in ΣA parametrized
by ϕA(xa). We may therefore choose coordinates such that ϕ0(xa) = x0,
ϕ1(xa) = x1, with x2 and x3 being constant along the congruence of curves.

In these coordinates,

E0 =
∂

∂x0
, E1 =

∂

∂x1
,

so that

n0 = E0 − b0 = (1, 0,−b0i),

n1 = E1 − b1 = (0, 1,−b1i),

where i ranges over 2 and 3. This results in the 2+2 decomposition of the
contravariant metric

gab =
(

NAB −NABbiB
−NABbiB

2gij +NABbiAb
j
B

)
, (14.138)

where the indices i and j range over 2 and 3. The contravariant metric has
components

gab =
(
NAB + 2gijbiAb

j
B

2gijb
j
A

2gijb
j
A

2gij

)
. (14.139)

Compare and contrast (14.138) and (14.139) with (14.87), and (14.89),
respectively. Note that, in the 2+2 case, the lapse function becomes a 2×2
lapse matrix and there are two shift vectors

b0 = ba0∂/∂x
a and b1 = ba1∂/∂x

a. (14.140)

In the 2+2 formalism, the next procedure is to extract the conformal
factor γ given by

γ = |2gij|, (14.141)

and define the conformal 2-structure 2ḡij by

2ḡij =
(
γ−2) 2gij. (14.142)
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An analysis of the field equations goes to show that the two gravitational
degrees of freedom may be chosen to lie in the conformal 2-structure
2ḡij. An attractive feature of this formalism is that, if we determine the
Euler-Lagrange equations generated by these two degrees of freedom for
the Einstein action, then they turn out to be precisely the two dynamical
Einstein equations. We will not pursue the matter further here but will
consider a particular application of the 2+2 formalism to describe Bondi’s
radiating metric in Chapter 23 (see Fig. 14.9).

Timelike geodesic

u = u1

u = u0

r

N0 : initial null cone

����

Fig. 14.9 Bondi type coordinates.

Exercises

14.1 (§14.2) Show that, if Ya is a space-time co-vector, then Ȳa = BabYb

satisfies Ȳana = 0.

14.2 (§14.2) Show that the projection operator Bab satisfies BacBcb = Bab.

14.3 (§14.3)
(i) Show that, if the vector fields Xa and Ya are both tangent to Σ, then
so is the Lie bracket [X,Y].
(ii) If Da is the induced covariant derivative on Σ, then show that

XaDaYb − YaDaXb = Bdb(Xa∇aYd − Ya∇aXd).

(iii) Deduce that

XaDaYb − YaDaXb = Xa∇aYb − Ya∇aXb,

and explain why this shows that Da is torsion-free.

14.4 (§14.3) Calculate γαβ and Kαβ for the t = 0 slice of the spherically
symmetric metric (considered in §15.4) given by

ds2 = eνdt2 − eλdr2 − r2(dθ2 + sin2 θdϕ2),

where ν = ν(t, r) and λ = λ(t, r).

14.5 (§14.4) Show that, by using the Gauss and Codazzi equations, one
can obtain expressions for all the components of the space-time curvature
in terms of γαβ and Kαβ apart from Rα0β0. [Hint: use na = (e

ν
2 , 0, 0, 0).].

14.6 (§14.4) Establish equation (14.28).

14.7 (§14.8)
(i) Show that ∇anb = −Kab + naAb. [Hint: start from ∇anb = δcaδ

d
b∇cnd
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and write δba in terms of the projection operator Bab].
(ii) Show that

nc∇cKab = −nc(∇c∇anb) + AaAb + nanc∇cAb.

14.8 (§14.9) Show that the Lie derivative Ln applied to the normal
covector na satisfies

Ln(nanb) = Aanb + Abna.

14.9 (§14.9) Show that in coordinates adapted to an Eulerian observer
one may write (14.72) as

γ̇αβ
∗
= 2NKαβ ,

where γαβ = −hαβ and a dot indicates a derivative with respect to the
coordinate time t. [Hint: use n = (1/N)∂/∂t.].

14.10 (§14.9) Show that one may write the acceleration as

Aa = −Da(lnN),

where N is the lapse

14.11 (§14.9) Use equation (14.76) together with (14.27) to establish
(14.77).

14.12 (§14.14)
(i) Use the definition of the projection operator in (14.132) to show that
the 2-metric on S is given in terms of the 4-metric by

2gab = gab −NABnaAn
b
B,

where A,B = 0, 1.
(ii) Use (14.135) to write naA in terms of EaA and baA.
(iii) Use adapted coordinates in which

E0
∗
= (1, 0, 0, 0), E1

∗
= (0, 1, 0, 0), b0

∗
= (0, 0, bi0), b1

∗
= (0, 0, bi1),

to establish the 2 + 2 decomposition of the contravariant metric given in
(14.138).
(iv) Confirm the form of the 2 +2 covariant metric given in (14.139).
[Hint: use block multiplication of the matrices in (14.138) and (14.139)
to show that gabgbc = δca.]
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Further reading

There are many standard treatments of the 3+1 formalism in general rela-
tivity; see, for example, the book by Smarr (1979). Our approach follows
that of Gourgoulhon (2012), who is careful to look at the intrinsic and
extrinsic geometry of hypersurfaces before going on to look at foliations
and finally introducing the lapse and shift. The 3+1 formalism plays a key
role in numerical relativity by converting the Cauchy problem into a set of
first-order PDEs. However, many of the treatments of the 3+1 formalism
aimed at numerical relativity go straight to the lapse and shift description.
Also note that in numerical relativity it is usual to take a metric to have the
signature (−, +, +, +) rather than (+,−,−,−), which accounts for some
sign differences in some of the equations.

The 3+1 formalism is not well adapted to looking at the ‘characteris-
tic initial data problem’ in which one specifies the initial data on a null
hypersurface rather than a Cauchy surface. It turns out that the 2+2 for-
malism is particularly well adapted to this. The approach we follow here
is based on the summary in the article by d’Invero (1996). For a detailed
description, see the article by d’Inverno and Smallwood (1980) and, for
an alternative treatment, see the paper by Brady et al. (1996).
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15The Schwarzschild solution

15.1 Stationary solutions
We now turn our attention to solving the vacuum field equations in the
simplest case, namely, that of spherical symmetry. As a preliminary, in
the next two sections, we make clear the distinction between station-
ary and static solutions. In simple terms, a solution is stationary if it is
time-independent. This does not mean that the solution is in no way evo-
lutionary, but simply that the time does not enter into it explicitly. On the
other hand, the stronger requirement that a solution is static means that
it cannot be evolutionary. In such a case, nothing would change if at any
time we ran time backwards, i.e. static means time-symmetric about any
origin of time. Think of the motion of gas in a pipe (Fig. 15.1). If it is
being pumped by some time-dependent device, then the motion will be
non-stationary. If the gas travels with constant velocity at each point in the
pipe, then the motion is stationary. If the gas velocity is zero everywhere,
then the system is static. x2

Before (t = t1)

(a)

x1 x2

After (t = t2 > t1)

x1

x2

(b)

x1 x2x1

x2

(c)

x1 x2x1

Fig. 15.1 Two gas particles in a pipe in
(a) non-stationary, (b) stationary, and (c)
static flow.

A metric will be stationary if there exists a special coordinate system in
which the metric is visibly time-independent, i.e.

∂gab
∂x0

∗
=0, (15.1)

where x0 is a timelike coordinate. Of course, in an arbitrary coordinate
system, the metric will probably depend explicitly on all the coordinates;
so we need to make the statement (15.1) coordinate-independent. If we
define a vector field

Xa ∗
= δa0, (15.2)

in the special coordinate system, then

LXgab = Xcgab,c + gacXc
,b + gbcXc

,a

∗
= δc0gab,c = gab,0 = 0,

by (15.1). However, LXgab is a tensor so if it vanishes in one coordinate
system it vanishes in all coordinate systems. Hence, it follows that Xa is
a Killing vector field. Conversely, given a timelike Killing vector field
Xa, then there always exists a coordinate system which is adapted to the

Introducing Einstein’s Relativity. Second Edition. Ray d’Inverno and James Vickers, Oxford University Press.
© Ray d’Inverno and James Vickers (2022). DOI: 10.1093/oso/9780198862024.003.0015
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Killing vector field, that is, in which (15.2) holds, and then

0 = LXgab
∗
= gab,0,

and so the metric is stationary. We have therefore established the
coordinate-independent definition:

A space-time is said to be stationary if and only if it admits a timelike
Killing vector field.

15.2 Hypersurface-orthogonal vector fields
In order to discuss static solutions in a coordinate-independent way, we
need to introduce the concept of a hypersurface-orthogonal vector field,
which we do in this section. We start with the equation of a family of
hypersurfaces given by

f(xa) = μ, (15.3)

µ = µ3
µ = µ2

µ = µ1

Fig. 15.2 A family of hypersurfaces la-
belled by μ.

where different members of the family correspond to different values of
μ (Fig. 15.2). Let P be a point on S and let Ta be a tangent vector to S
at P. Then we can find a curve xa(s) lying in S such that xa(0) = P and
ẋa(0) = Ta. Since S is given by f(xa) = μ = constant, we have

f(xa(s)) = constant.

Differentiating this with respect to s by the function of a function rule, we
have

∂f
∂xa

dxa

ds
= 0, (15.4)

at P. If we define the covariant vector field na to the family of
hypersurfaces by

na :=
∂f
∂xa

, (15.5)

f(xa) = µdxa

na

QP
S

Fig. 15.3 The normal vector field na at
the point P.

then (15.4) becomes

naTa = gabnaTb = 0,

at P. Since Ta is an arbitrary tangent vector to S, this tells us that na is
orthogonal to the tangent space of S and is therefore known as thenormal
vector field to S at P (Fig. 15.3). Any other vector field Xa is said to be
hypersurface-orthogonal if it is everywhere orthogonal to the family of
hypersurfaces, in which case it must be proportional to na everywhere, i.e.

Xa = λ(x)na, (15.6)

for some proportionality factor λ, which in general will vary from point
to point.
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µ = µ3

X a

µ = µ2

µ = µ1

Fig. 15.4 A hypersurface-orthogonal
vector field Xa.

Then the integral curves ofXa are orthogonal to the family of hypersur-
faces (Fig. 15.4). From (15.6) and (15.5), the hypersurface-orthogonal
condition can also be written

Xa = λf,a, (15.7)

and so

Xa∂bXc = λf,aλ,bf, c + λ2f, a f, cb.

Taking the totally anti-symmetric part of this equation and noting that
the first term on the right is symmetric in a and c and the second term is
symmetric in b and c, we see that their totally anti-symmetric parts vanish,
and hence

X[a∂bXc] = 0. (15.8)

This equation is unchanged if we replace the ordinary derivative by a
covariant derivative (exercise), namely,

X[a∇bXc] = 0. (15.9)

We have shown that any hypersurface-orthogonal vector field sat-
isfies (15.9). We shall now establish a partial converse, namely, any
non-null Killing vector field satisfying (15.9) is necessarily hypersurface
orthogonal. Since Xa is a Killing vector, it satisfies (7.55), namely,

LXgab = ∇bXa +∇aXb = 0.

It follows that interchanging indices on the covariant derivative of Xa

introduces a minus sign:

∇aXb = −∇bXa. (15.10)

Using this, the six terms in (15.9) reduce to three terms:

Xa∇bXc +Xc∇aXb +Xb∇cXa = 0.

Contracting with Xc and writing X2 = XaXa, we get

XaXc∇bXc +X2∇aXb +XbXc∇cXa = 0,

or, using (15.10),

XaXc∇bXc +X2∇aXb −XbXc∇aXc = 0. (15.11)

Interchanging the raised and lowered indices for the dummy index c (why
can we do this?) and using (15.10) on the middle term, this becomes

XaXc∇bXc −X2∇bXa −XbXc∇aXc = 0. (15.12)
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Adding (15.11) and (15.12), we get

Xa∇bX2 −Xb∇aX2 +X2(∇aXb −∇bXa) = 0,

or, sinceX2 is a scalar field and the terms in the parentheses involving the
connection vanish (see (12.45)),

Xa∂bX2 −Xb∂aX2 +X2(∂aXb − ∂bXa) = 0.

We write this in the form

X2∂aXb −Xb∂aX2 = X2∂bXa −Xa∂bX2,

or, equivalently, dividing by X4,

∂a

(
Xb

X2

)
= ∂b

(
Xa

X2

)
, (15.13)

since Xa is non-null by assumption and so X2 6= 0. This last equation
requires that the term in parentheses be a gradient of some scalar field, f,
say, i.e.

Xa

X2 = f, a, (15.14)

and so, finally,

Xa = X2f,a. (15.15)

This is the hypersurface-orthogonal condition (15.7) with λ = X2.

15.3 Static solutions
If a solution is stationary, then, in an adapted coordinate system, the
metric will be time-independent but the line element will still in gen-
eral contain cross terms in dx0dxα. If, in addition, the metric is static,
we would expect these cross terms to be absent for the following reason.
Consider the interval between two events (x0, x1, x2, x3) and (x0 + dx0, x1

+ dx1, x2, x3) in our special coordinate system. Then

ds2
∗
= g00(dx0)

2
+ 2g01dx0dx1 + g11(dx1)

2
, (15.16)

where all the gab depend on xα only (why?). Under a time reversal

x0 → x′0 = −x0, (15.17)

the gab remain unchanged, but ds2 becomes

ds2
∗
= g00(dx0)

2 − 2g01dx0dx1 + g11(dx1)
2
. (15.18)
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The assumption that the solution is static, means that ds2 is invariant un-
der a time reversal about any origin of time, and so, equating (15.16)
and (15.18), we find that g01 vanishes. Similarly, g02 and g03 must vanish,
and so we have shown that there are no cross terms dx0dxα in the line
element in the special coordinate system. Thus, for a static space-time,
there exists a coordinate system such that x0 is a timelike coordinate and
the metric takes the form

ds2
∗
= g00(xγ)(dx0)2 + gαβ(xγ)dxαdxβ , α,β = 1, 2, 3. (15.19)

Let us investigate the hypersurface-orthogonal condition (15.9) in a sta-
tionary space-time. We have shown that (15.9) implies (15.15) so that,
in a coordinate system adapted to the timelike Killing vector field, that is,
Xa ∗

= δa0 , then

Xa = gabXb ∗
= gabδb0 = g0a,

and

X2 = XaXa *
= g0aδa0 = g00.

So (15.15) gives

g0a
∗
= g00 f,a, (15.20)

for some scalar field f. When a = 0, this produces f, 0
∗
=1, and so

integration gives

f
∗
= x0 + h(xα),

where h is an arbitrary function of the spacelike coordinates only. Con-
sider the coordinate transformation defined by

x0 → x′0 = x0 + h(xα), xα → x′α = xα. (15.21)

Then we find, in the new coordinate system (exercise),

X′a ∗
= δa0, (15.22)

g′ab,0
∗
=0, (15.23)

g′00
∗
= g00, (15.24)

g′0α
∗
=0. (15.25)

The last equation reveals that there are no cross terms in dx0dxα and so the
solution is static. Conversely, if there exists a coordinate system in which
the metric takes the form (15.19), one can show (exercise) that Xa ∗

= δa0
is a hypersurface-orthogonal timelike Killing vector. We have therefore
established the following coordinate-free definition of a static space-time.
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A space-time is said to be static if and only if it admits a hypersurface-
orthogonal timelike Killing vector field.

Moreover, we have established the following important result.

In a static space-time, there exists a coordinate system adapted to the
timelike Killing vector field in which the metric is time-independent
and no cross terms appear in the line element involving the time, i.e.
the metric takes the form (15.19).

It can be shown (exercise) that there still exists the coordinate freedom

x0 → x′0 = Ax0 + B, xα → x′α = h′α(xβ), (15.26)

where A and B are constants and the functions h′α are arbitrary. If the
boundary conditions require g00 → 1 at spatial infinity, then this requires
A = ±1. Neglecting time reversal, then this fixes A to be 1, and so we have
defined a time coordinate, called world time, which is defined to within
an unimportant additive constant. Thus, in a static space-time, we have
regained the old Newtonian idea of an absolute time in the sense that
the manifold can be sliced up in a well-defined way into hypersurfaces
t = constant (Fig. 15.5). Then there exist a privileged class of observers
who measure world time and hence can agree on events being simul-
taneous. The corresponding coordinates are Gaussian, since g0a

∗
= δ0a.

t = t1

t = t2
t = t3P QQ

Fig. 15.5 Two ‘simultaneous’ events in
world time. 15.4 Spherically symmetric solutions

Spherical symmetry can be defined rigorously using the notion of isome-
try. In §7.7 we defined an isometry ϕ : xa → x̃a to be a map such that the
metric satisfied (7.52). It then follows that the inverse map ϕ−1 : x̃a → xa

is an isometry (exercise). If we have a second isometry, ψ : x̃a → x̂a, then
the composition of the two, ψ ◦ ϕ : xa → x̂a, is also an isometry (exercise).
As a result of this, the set of isometries of a metric forms a group, called
the isometry group. A space-time is spherically symmetric if the metric
remains invariant under a spatial rotation. More precisely:

A space-time is said to be spherically symmetric if and only if its
isometry group contains a subgroup isomorphic to the rotation group
in three dimensions, and the orbits of this group are topologically
2-spheres S2.

In particular, since there must be isometries that generate rotations, there
exist three linearly independent spacelike Killing vector fields Xa which
correspond to rotations about the x, y, and z axes and therefore satisfy

[X1,X2] = X3, [X2,X3] = X1, [X3,X1] = X2. (15.27)
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Then (see Exercise 7.4 and Exercise 8.5) there exists a coordinate system
in which the Killing vectors take on a standard form, as expressed in the
following result.

In a spherically symmetric space-time, there exists a coordinate system
(xa) (called Cartesian) in which the Killing fields Xa are of the form

X0 ∗
=0,

Xα
∗
=ωαβxβ , ωαβ = −ωβα.

The quantityωαβ depends on three parameters which specify three space-
like rotations. These results then lead to a canonical form for the line
element. The calculation is rather detailed, so we shall proceed in a dif-
ferent manner and present a heuristic argument for determining the form
of the line element.

Intuitively, spherical symmetry means that there exists a privileged
point, called the origin O, such that the system is invariant under spa-
tial rotations about O. Then, if we fix the time and consider a point P
a distance a from O, the spatial rotations will result in P sweeping out a
2-sphere centred on O. We can then introduce an axial coordinate ϕ and
an azimuthal coordinate θ on the sphere in the usual way. Dropping a
perpendicular from P to the equatorial plane z = 0 at Q, then ϕ is the
angle which OQ makes with the positive x-axis, and θ is the angle which
OP makes with the positive z-axis (Fig. 15.6). All points on the 2-sphere
will be covered by the coordinate ranges

0 ⩽ θ ⩽ π, (15.28)

−π < ϕ ⩽ π. (15.29)

Moreover, the line element of the 2-sphere is (exercise)

ds2 = a2(dθ2 + sin2θdϕ2). (15.30)

θ

φ

z

a

Qx

y

P

O

Fig. 15.6 The standard spherical coor-
dinates θ and ϕ.

It is then natural to assume that, in four dimensions, we can augment θ
and ϕwith an arbitrary timelike coordinate t and some radial-type param-
eter r, so that the line element reduces to the form (15.30) on a 2-sphere t
= constant, r = constant. Spherical symmetry requires that the line ele-
ment does not vary when θ and ϕ are varied, so that θ and ϕ only occur in
the line element in the form (dθ2 + sin2 θdϕ2). Moreover, using an argu-
ment analogous to the one we used at the beginning of §15.3, there can be
no cross terms in dθ or dϕ (exercise) because the metric must be invariant
separately under the reflections

θ → θ′ = π− θ, (15.31)

and

ϕ→ ϕ′ = −ϕ. (15.32)
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Our starting ansatz, then, for a spherically symmetric space-time is that
there exists a special coordinate system

(xa) = (x0, x1, x2, x3) = (t, r, θ,ϕ),

in which the line element has the form

ds2
∗
=Adt2 − 2Bdtdr−Cdr2 −D(dθ2 + sin2θ dϕ2), (15.33)

where A, B, C, and D are as yet undetermined functions of t and r, i.e.

A = A(t, r), B = B(t, r), C = C(t, r), D = D(t, r).

If we introduce a new radial coordinate by the transformation

r→ r′ = D
1
2 ,

then (15.33) becomes

ds2 = A′(t, r′)dt2 − 2B′(t, r′)dtdr′ −C′(t, r′)dr′2 − r′2(dθ2 + sin2θ dϕ2).
(15.34)

Consider the differential

A′(t, r′)dt− B′(t, r′)dr′.

The theory of ordinary differential equations tells us that we can always
multiply this by an integrating factor, I = I(t, r′), say, which makes it a
perfect differential. We use this result to define a new time coordinate t′

by requiring

dt′ = I(t, r′)[A′(t, r′)dt− B′(t, r′)dr′].

Squaring, we obtain

dt′2 = I 2(A′2dt2 − 2A′B′dtdr′ + B′2dr′2),

and so

A′dt2 − 2B′dtdr′ = A′−1I−2dt′2 − A′−1B′2dr′2,

and the line element (15.34) becomes

ds2 = A′−1I−2dt′2 − (C′ + A′−1B′2)dr′2 − r′2(dθ2 + sin2θ dϕ2).

Defining two new functions ν and λ by

A′−1I−2 = eν (15.35)
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and

C′ + A′−1B′2 = eλ, (15.36)

and dropping the primes, we finally obtain the form

ds2 = eνdt2 − eλdr2 − r2(dθ2 + sin2θ dϕ2), (15.37)

where

ν = ν(t, r), λ = λ(t, r).

The definitions of ν and λ in (15.35) and (15.36) are given in terms
of exponentials, which, since they are always positive, guarantees that
the signature of the metric is −2. In fact, there are rigorous arguments
which confirm that the most general spherically symmetric line element
in four dimensions (with signature −2) can be written in the canonical
form (15.37).

15.5 The Schwarzschild solution
We now use Einstein’s vacuum field equations to determine the unknown
functions ν and λ in (15.37). The covariant metric is

gab = diag(eν , − eλ, − r 2, − r 2 sin2 θ), (15.38)

and, since the metric is diagonal, its contravariant form is

gab = diag(e−ν , − e−λ, − r−2, − r−2 sin−2 θ). (15.39)

If we denote derivatives with respect to t and r by dot and prime, respec-
tively, then, by Exercise 6.32(v), the non-vanishing components of the
mixed Einstein tensor are

G0
0 = e−λ

(
λ′

r
− 1
r2

)
+

1
r2

, (15.40)

G0
1 = −e−λr−1λ̇ = −eλ−νG1

0, (15.41)

G1
1 = −e−λ

(
ν′

r
+

1
r2

)
+

1
r2

, (15.42)

G2
2 = G3

3 =
1
2
e−λ

(
ν′λ′

2
+
λ′

r
− ν′

r
− ν′

2

2
− ν′′

)

+
1
2
e−ν

(
λ̈ +

λ̇2

2
− λ̇ν̇

2

)
. (15.43)

The contracted Bianchi identities reveal that equation (15.43) vanishes
automatically if the equations (15.40), (15.41), and (15.42) all vanish
(exercise). Hence, there are three independent equations to solve, namely,
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e−λ
(
λ′

r
− 1
r2

)
+

1
r2

= 0, (15.44)

e−λ
(
ν′

r
+

1
r2

)
− 1
r2

= 0, (15.45)

λ̇ = 0. (15.46)

Adding (15.44) and (15.45), we get

λ′ + ν′ = 0,

and integration gives

λ + ν = h(t), (15.47)

where h(t) is an arbitrary function of integration. Here, λ is purely a func-
tion of r by (15.46), and so (15.44) is simply an ordinary differential
equation, which we write

e−λ − re−λλ′ = 1,

or, equivalently,

(r e−λ)′ = 1.

Integrating, we get

r e−λ = r + constant.

Choosing the constant of integration to be −2m, for later convenience,
we then obtain

eλ = (1− 2m/r)−1. (15.48)

It then follows from (15.47) that

eν = eh(t)e−λ = eh(t)(1− 2m/r). (15.49)

So, at this stage, the metric has been reduced to

gab = diag [eh(t)(1− 2m/r), − (1− 2m/r)−1, − r2, − r 2sin 2θ ] . (15.50)

The final stage is to eliminate h(t). This is done by transforming to a new
time coordinate t′, i.e. t→ t′, where t′ is determined by the relation

t′ =
∫ t

c
eh(u)/2du, (15.51)
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where c is an arbitrary constant. Then the only component of the metric
which changes is (exercise)

g′00 = (1− 2m/r).

Dropping primes, we have shown that it is always possible to find a co-
ordinate system in which the most general spherically symmetric solution
of the vacuum field equations is

ds2 = (1−2m/r)dt2−(1− 2m/r)−1dr2−r2(dθ2+sin2 θ dϕ2). (15.52)

This is the famous Schwarzschild line element.

15.6 Properties of the Schwarzschild
solution

We restrict attention to the exterior region r > 2m, where the coordinates
t and r are timelike and spacelike, respectively (see §17.1). It is immediate
from (15.52) that gab, 0

∗
=0, and so the solution is stationary. Moreover,

the coordinates are adapted to the Killing vector field Xa ∗
= δa0. Since

Xa = gabXb ∗
= gab δb0 = g0a = g00 δ0a = (1− 2m/r, 0, 0, 0),

we see that Xa is hypersurface-orthogonal, that is, Xa = λf, a, with

λ = X2 ∗
= g00 and f(xa)

∗
= t = constant.

Alternatively, we can check (exercise) that

X[a∂bXc] = 0. (15.53)

Thus, the timelike Killing vector field Xa is hypersurface orthogonal to
the family of hypersurfaces t = constant, and hence the solution is static
and t is a world time. Alternatively, it is immediate from (15.52) that the
solution is time-symmetric, since it is invariant under the time reflec-
tion t → t′ = −t, and time translation invariant, since it is invariant
under the transformation t→ t′ = t+constant, and so again it is static (see
Exercise 15.1). We have thus proved the following somewhat unexpected
result.

Birkhoff ’s theorem:A spherically symmetric vacuum solution in the
exterior region is necessarily static.

This is unexpected because, in Newtonian theory, spherical symmetry
has nothing to do with time dependence. This highlights the special char-
acter of non-linear partial differential equations and the solutions they
admit. In particular, Birkhoff ’s theorem implies that, if a spherically sym-
metric source like a star changes its shape, but does so always remaining
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spherically symmetric, then it cannot propagate any disturbances into the
surrounding space. Looking ahead, this means that a pulsating spherically
symmetric star cannot emit gravitational waves (Fig. 15.7). If a spherically
symmetric source is restricted to the region r ⩽ a for some a > 2m, then
the solution for r > a must be the Schwarzschild solution or, to give it its
full name, the Schwarzschild exterior solution. However, the converse
is not true: a source which gives rise to an exterior Schwarzschild solu-
tion is not necessarily spherically symmetric. Some counter examples are
known. Thus, in general, a source need not inherit the symmetry of its
external field.

S
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CStarStar
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A
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S

Fig. 15.7 A pulsating spherical star can-
not emit gravitational waves.

If we take the limit of (15.52) as r → ∞, then we obtain the flat space
metric of special relativity in spherical polar coordinates, namely,

ds2 = dt2 − dr2 − r2(dθ2 + sin2 θ dϕ2). (15.54)

We have therefore shown that a spherically symmetric vacuum solution is
necessarily asymptotically flat. Some authors obtain the Schwarzschild
solution from the starting assumptions that the solution is spherically sym-
metric, static, and asymptotically flat. However, as we have seen, there is
no need to adopt these last two assumptions a priori, because the field
equations force them on you. Let us attempt an interpretation of the con-
stant m appearing in the solution, by considering the Newtonian limit.
A point mass M situated at the origin O in Newtonian theory gives rise
to a potential ϕ = −GM/r. Inserting this into the weak-field limit (10.49)
gives

g00 ' 1 + 2ϕ/c2 = 1− 2GM/(c2r),

and, comparing this with (15.52), we see that

m = GM/c2 (15.55)

in non-relativistic units. In other words, if we interpret the Schwarzschild
solution as due to a particle situated at the origin, then the constant m is
simply the mass of the particle in relativistic units. It is clear from (15.52)
that m has the dimensions of length, which is consistent with the dimen-
sions given by (15.55). It is sometimes known as the geometric mass.
We postpone a discussion of the coordinate ranges and the interpretation
of the coordinates until Chapter 17. We end this section by summarizing
the properties we have met. The exterior Schwarzschild solution:
(1) is spherically symmetric;
(2) is stationary;
(3) has coordinates adapted to the timelike Killing vector field Xa;

(4) is static ⇔ is time-symmetric and time-translation invariant,

⇔ has a hypersurface-orthogonal timelike Killing vector

field Xa;

(5) is asymptotically flat;
(6) has geometric mass m = GMc−2.
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15.7 Isotropic coordinates
In this section, we seek an alternative set of coordinates in which the time
slices t = constant are as close as we can get them to Euclidean 3-space.
More specifically, we attempt to write the line element in the form

ds2 = A(r)dt2 − B(r)dσ2,

where dσ2 is the line element of Euclidean 3-space, namely,

dσ2 = dx2 + dy2 + dz2,

in Cartesian coordinates or, equivalently,

dσ2 = dr2 + r2dθ2 + r2 sin2 θ dϕ2,

in spherical polar coordinates. In this form, the metric in a slice
t = constant is conformal to the metric of Euclidean 3-space, and hence,
in particular, angles between vectors and ratios of lengths are the same for
each metric (see Exercise 6.28).

We consider a transformation in which the coordinates θ, ϕ, and t
remain unchanged while

r→ ρ = ρ(r), (15.56)

so that ρ is some other radial coordinate, and we attempt to put the
solution in the form

ds2 = (1− 2m/r)dt2 − [λ(ρ)]
2
[dρ2 + ρ2(dθ2 + sin2 θ dϕ2)]. (15.57)

We could consider how (15.52) transforms under the transformation
(15.56), but it is easier to proceed as follows. Comparing (15.57) with
(15.52), the coefficients of dθ2 +sin2 θ dϕ2 must be equal, which requires

r2 = λ2ρ2. (15.58)

Equating the two radial elements produces

(1− 2m/r)−1dr2 = λ2dρ2. (15.59)

Eliminating λ and taking square roots, we find

dr

(r2 − 2mr)
1
2

= ±dρ
ρ

. (15.60)



282 The Schwarzschild solution

This is an ordinary differential equation in which the variables are sepa-
rated. Since we require ρ → ∞ as r → ∞, we take the positive sign, and
by integration we find (exercise)

r = ρ(1 + 1
2m/ρ)

2
, (15.61)

and so, from (15.58),

λ2 = (1 + 1
2m/ρ)

4
. (15.62)

Using (15.61) to eliminate r, we find that the Schwarzschild solution can
be written in the following isotropic form

ds2 =
(1− 1

2m/ρ)
2

(1 + 1
2m/ρ)

2 dt
2 − (1 + 1

2m/ρ)
4
[dρ2 + ρ2(dθ2 + sin2 θ dϕ2)].

(15.63)

15.8 The Schwarzschild interior solution
We end this chapter with a brief discussion of static spherically symmetric
perfect fluid solutions of Einstein’s equations that can serve as an inte-
rior solution to the Schwarzschild solution. As before, the assumption of
spherical symmetry leads to the metric (15.37). However, since we are
now assuming that the solution is static, there is no t dependence so we
now have

ν = ν(r), λ = λ(r).

The matter is a perfect fluid with energy-momentum tensor given by
(12.22) so that

Tab = (ρ + p)uaub − pgab, (15.64)

where ua is the 4-velocity of the fluid. Since the solution is static, ua must
be proportional to the timelike Killing vector ξa = (1, 0, 0, 0) and, since it
is a 4-velocity, it must satisfy uaua = 1. Hence,

ua =
ξa

(ξbξb)1/2
. (15.65)

It follows from this (exercise) that

T0
0 = ρ, (15.66)

and

Tij = −pδji, i, j = 1, . . . , 3. (15.67)
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The expression for G0
0 is still given by (15.40) so that this component of

Einstein’s equations gives

8πρ = e−λ
(
λ′

r
− 1
r2

)
+

1
r2

,

=
1
r2

(
1− d

dr
(re−λ)

)
. (15.68)

We now define the function m(r), which in the Newtonian case would be
the total mass inside the radius r, by

m(r) = 4π
∫ r

0
ρ(s)s2ds. (15.69)

Then multiplying (15.68) by r2, rearranging, and integrating, we obtain
(exercise)

e−λ(r) = 1− 2m(r)
r

. (15.70)

The G1
1 component of Einstein’s equations gives

8πp = e−λ
(
ν′

r
+

1
r2

)
− 1
r2

, (15.71)

which, using (15.70), simplifies to (exercise)

dν
dr

=
1
r

(
1− 2m(r)

r

)−1(2m(r)
r

+ 8πr2p
)

. (15.72)

We now use the fact that ∇bTab = 0 to deduce (exercise) that

dp
dr

= −1
2
(ρ + p)

dν
dr

. (15.73)

Eliminating ν′ from (15.72) and (15.73) and rearranging gives

dp
dr

= − 1
r2
(ρ + p)(m(r) + 4πr3p)

(
1− 2m(r)

r

)−1

. (15.74)

This is called the Tolman–Oppenheimer–Volkoff equation, or TOV
equation for short, which describes the behaviour of a static spheri-
cally symmetric perfect fluid. If ρ(r) is a given function of r, then one
can, in principle, obtain expressions for the pressure and metric coef-
ficients. A particularly simple case is when the density is constant so
ρ = ρ0 = constant. This yields the so-called Schwarzschild interior
solution. If the radius of the star is R, then the total mass isM = 4

3πR
3ρ0,

and m(r) is given by (exercise)

m(r) =

{
Mr3/R3 r ⩽ R,
M r > R.

(15.75)
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Then (15.74) can be integrated with the boundary condition p(R) = 0
(so that the pressure vanishes at the edge of the star) to give the pressure
in the interior (r < R) as (exercise)

p(r) = ρ0

[
(1− 2M/R)1/2 − (1− 2Mr2/R3)1/2

(1− 2Mr2/R3)1/2 − 3(1− 2M/R)1/2

]
. (15.76)

Then λ(r) is given by (15.70) while ν(r) is given by integrating (15.72)
to give

eν(r) =

{[
3
2 (1− 2M/r)1/2 − 1

2 (1− 2Mr2/R3)1/2
]2

r ⩽ R,
1− 2M/r r > R.

(15.77)

The above equations give the pressure and metric functions for the
Schwarzschild interior solution.

However, it is important to note that, apart from the simple examples,
like the constant density case illustrated above, it is not usual to be able to
specify the density as a given function of r. Instead, one has an equation
of state giving a functional relationship between the pressure and the
density so that

p = p(ρ).

Differentiating this gives

dp
dr

=
dp
dρ

dρ
dr

,

which may be substituted into (15.74) to give a (complicated) non-linear
equation for the density. In general this cannot be solved in closed form,
and numerical methods must be used to obtain the solution of the TOV
equation.

Exercises

15.1 (§15.1) A system is time-symmetric if it is invariant under

t→ t′ = −t.

Give an example of a non-stationary time-symmetric system. Show that,
if a time-symmetric system is also time-translation invariant, i.e. invariant
under

t→ t′ = t + constant,

then the system is static. Deduce that a stationary time-symmetric system
is necessarily static.
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15.2 (§15.1) Show that, if gab is stationary, then there exists a privileged
coordinate system (t, xα) in which the Killing vector field X reduces to
X = ∂/∂t with X(gab) = 0. Show that X generates a time-translation
invariance

t→ t′ = t + constant.

15.3 (§15.2)
(i) Take the differential of (15.3) to confirm (15.4).
(ii) Show that (15.9) is equivalent to (15.8).
(iii) Check that (15.14) is consistent with (15.13).

15.4 (§15.3)
(i) Establish (15.22)–(15.25) under the transformation (15.21).
(ii) Show that there still remains the coordinate freedom (15.26).

15.5 (§15.3) Show that, if there exists a coordinate system in which the
metric takes the form (15.19), then Xa ∗

= δa0 is a hypersurface-orthogonal
timelike Killing vector.

15.6 (§15.4) Show that the composition of two isometries is an isometry.

15.7 (§15.4) Consider a point P on a 2-sphere of radius a centred at the
origin. Find the distance P travels under an increase of coordinates
(i) θ → θ + dθ,
(ii) ϕ→ ϕ = dϕ.

Use Pythagoras’ theorem to obtain the line element (15.30) for a 2-sphere.

15.8 (§15.4) Show that a spherically symmetric line element cannot pos-
sess cross terms in dθ and dϕ because the metric must be invariant under
the reflections (15.31) and (15.32). [Hint: assume that all the metric
components gab (a, b 6= 0) and g33 sin

−2 θ do not depend on θ or ϕ.]

15.9 (§15.5) Show that, if (15.40), (15.41), and (15.42) vanish, then so
does (15.43), by the contracted Bianchi identities.

15.10 (§15.5) Show that, under the transformation to a new time coordi-
nate t′ given by (15.51), the line element (15.50) is transformed into the
form (15.52), where primes have been dropped in (15.52).

15.11 (§15.6) Check that (15.53) holds for the Schwarzschild line
element where Xa is the timelike Killing vector field.

15.12 (§15.6) Find the dimensions of the gravitational constantG. [Hint:
use (4.4) and Newton’s second law.] Use (15.55) to show that m has the
dimensions of a length.

15.13 (§15.6) Find the non-zero components of Rabcd for the
Schwarzschild solution.
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15.14 (§15.7)
(i) Show that (15.60) taken with the positive sign integrates to give
(15.61).
(ii) Use (15.57), (15.61), and (15.62) to derive (15.63).

15.15 (§15.7) Consider (15.63) in the weak-field limit m � ρ to show
that g00 ' 1− 2m/ρ and confirm (15.55).

15.16 (§15.7) Which of the six properties listed at the end of §15.6 still
hold for the isotropic form of the Schwarzschild line element?

15.17 (§15.7) Confirm by direct computation that the isotropic form of
the Schwarzschild solution

ds2 =
(1−m/2ρ)2

(1 +m/2ρ)2
dt2 − (1 +m/2ρ)4

[
dx2 + dy2 + dz2

]
,

where

r = (x2 + y2 + z2)1/2 = ρ(1 +m/2ρ)2

admits the Killing vector fields

∂

∂t
, x

∂

∂y
− y

∂

∂x
, y

∂

∂z
− z

∂

∂y
, z

∂

∂x
− x

∂

∂z
.

[Hint: This is a fairly long calculation and you will need to compute in
turn ∂r/∂x, dr/dρ and hence ∂ρ/∂x. Then use the symmetry in x, y, and
z.] Find all their commutators.

15.18 (§15.8)
(i) Verify that, for a static perfect fluid, the energy-momentum tensor sat-
isfies (15.66) and (15.67).
(ii) Show that (15.68) leads to (15.70).
(iii) Show that ∇bTab = 0 implies (15.73). [Hint: you need only consider
the case a = 1 and then use the results of Exercise 6.32 (ii).]
(iv) Use (15.72) and (15.73) to obtain the TOV equation (15.74).
(v) Integrate the TOV equation for the constant density case, ρ
= 3M/4πR3 for 0 ⩽ r ⩽ R and ρ = 0 for r > R, to obtain (15.76).
Calculate λ(r) and ν(r), and show this gives the interior Schwarzschild
solution for r ⩽ R and the Schwarzschild exterior solution for r > R.
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Further reading

All the general relativity textbooks listed below contain material on the
Schwarzschild exterior solution. However, we have only sketched the
details of an interior source for the Schwarzschild solution. A simple
treatment of this is given in the book by Hughston and Tod (1990).

Carroll, S. M. (2004). Spacetime and Geometry: An Introduction to General
Relativity. Addison Wesley, San Francisco, CA.

Hartle, J. B. (2003). Gravity: An Introduction to Einstein’s General Relativ-
ity. Addison Wesley, San Francisco, CA.

Schutz, B. F. (1985). A First Course in General Relativity. Cambridge
University Press, Cambridge.

Wald, R. M. (1984). General Relativity. University of Chicago Press,
Chicago, IL.

Hughston, L. P., and Tod, K. P. (1990). An Introduction to General
Relativity. Cambridge University Press, Cambridge.





16Classical experimental tests
of general relativity

16.1 Introduction
In this chapter, we shall consider various experimental tests of general
relativity. In particular we will focus on the tests of general relativity that
can be carried out in the solar system. However, these tests are really tests
of general relativity in the weak-field regime, in which the gravitational
effects are not significantly different from the corresponding Newtonian
ones. We will show that, in this regime, it is possible to introduce a scheme
called the parametrized-post-Newtonian (PPN) framework in which
one can compare general relativity with alternative gravitational theories.
We will see that by using this framework for weak gravitational fields,
the predictions of general relativity, are confirmed with an error of just
a few tenths of a per cent. However, some of the most interesting predic-
tions of general relativity, such as the the structure of the early universe,
the existence of black holes, and the emission of gravitational waves by
colliding stars, involve strong gravitational fields so cannot be described
through a perturbation of Newtonian gravity. Indirect evidence for the
existence of gravitational waves comes from monitoring binary pulsars,
such as PSR 1913+16, whose orbits decay due to the emission of gravi-
tational radiation. Direct evidence for the existence of gravitational waves
comes from the measurement of gravitational waves by two LIGO detec-
tors in 2015, where the signal matched the numerical predictions of the
merger of two black holes. This event, which lasted only a few seconds,
was the most powerful astronomical event ever observed.We will describe
in more detail the experimental evidence for the existence of black holes
and gravitational radiation in Parts D and E.

Historically, the first tests of the theory were the three so-called clas-
sical tests of general relativity, namely, the precession of the perihelion
of Mercury, the bending of light, and the gravitational redshift. These
tests were augmented subsequently by a fourth classical test, the delay
of a light signal in a gravitational field. The test of gravitational redshift
was originally thought to be a direct test of general relativity, since it
makes use of the Schwarzschild solution but it was soon realized that it
is really just a test of the weak equivalence principle. However, since
the equivalence principle is such a fundamental part of general relativ-
ity, high-precision measurements of gravitational redshift are important
in confirming the foundations of the theory. Furthermore, taken together
with some tests of special relativity showing local Lorentz invariance and
other experiments showing local position invariance, one is able to provide
strong experimental evidence for the Einstein equivalence principle

Introducing Einstein’s Relativity. Second Edition. Ray d’Inverno and James Vickers, Oxford University Press.
© Ray d’Inverno and James Vickers (2022). DOI: 10.1093/oso/9780198862024.003.0016
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(see §16.4), which allows one to deduce that gravity can be described
through the curvature of space-time endowed with a symmetric metric.
This paves the way for using the other classical tests to compare general
relativity with othermetric theories using the PPN framework. There have
probably been at least a score of alternative relativistic theories of gravita-
tion proposed since the advent of general relativity. However, use of the
PPN formalism shows that the predictions of all these theories in terms of
the solar system tests must all be extremely close to those of general rela-
tivity. This taken with the observations of gravitational radiation strongly
supports general relativity as being the best and simplest classical theory
that we have. We end with a brief chronology of the main experimental
or observational events connected with general relativity.

16.2 Gravitational red shift
Since it is so central to the underpinning of the theory, and was the first
test suggested by Einstein, we begin by considering gravitational redshift.
As we have said, at first it was thought that this was a direct test of general
relativity since it employed the Schwarzschild solution, but it is now clear
that any relativistic theory of gravitation consistent with the principle of
equivalence will predict a redshift.We outline below a thought experiment
which leads directly to the existence of a gravitational redshift. Consider
an endless chain running between the Earth and the Sun, carrying buck-
ets containing atoms in an excited state on one side and an equal number
of atoms in the ground state on the other side (Fig. 16.1). Since the ex-
cited atoms possess greater energy, they must have greater mass (using
E = mc2). They will be heavier than the ground-state atoms and so, by
the principle of equivalence, they will fall towards the Sun, whose grav-
itational field predominates. Suppose we have a device which returns an
atom arriving at the Sun to its ground state, collects the emitted energy
radiated in amirror, and reflects it back to the Earth, where it is used to ex-
cite an incoming atom in the ground state. Then the rotating chain will run
on indefinitely. In this way, we have constructed a perpetuum mobile,
or perpetual-motion machine. Such a device contradicts the principle
of conservation of energy, the cornerstone of physics, and so something
must be wrong with the argument. It breaks down because the radiation
arriving at the Earth is not sufficiently energetic to excite the incoming
ground-state atom. In other words, it gets downgraded climbing up the
gravitational field: the radiation has been shifted to the red.

Sun

Ground
state
atoms

Excited
state
atoms

Parabolic
mirror

Earth

Fig. 16.1 A gravitational perpetuum
mobile?

We shall next obtain a quantitative expression for the redshift in the
special case of a general static space-time. The coordinates are taken
to be

(xa) = (x0, xα),

where x0 is the world time and xα are spatial coordinates. We con-
sider two observers carrying ideal atomic clocks whose world-lines are
xα = xα1 = constant and xα = xα2 = constant, respectively (see Fig. 16.2).
Let the first observer possess an atomic system which is sending out
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radiation to the second observer. We denote the time separation between
successive wave crests as measured by the first clock by dτ in terms of
proper time and by dx01 in terms of coordinate time. It follows from the
definition of proper time that

x0

xα

World-line
of
emitter

World-line
of absorber

dx0
1

dx0
2

xα
2xα

1

Fig. 16.2 Emission and reception of
successive wave crests of a signal.

dτ2 = gab (xα1 )dx
a
1 dx

b
1 = g00 (xα1 )

(
dx01
)2

, (16.1)

since gab can only depend on the spatial coordinates. Let the correspond-
ing interval of reception recorded by the second observer be kdτ in proper
time and dx02 in coordinate time. Then, similarly,

(kdτ)2 = g00 (xα2 )
(
dx02
)2

. (16.2)

However, the assumption that the space-time is static means that

dx01 = dx02, (16.3)

because otherwise there would be a build-up or depletion of wave crests
between the two observers, in violation of the static assumption. Dividing
(16.1) and (16.2), we find

k =
(
g00 (xα2 )
g00 (xα1 )

) 1
2
. (16.4)

The factor k records howmany times the second clock has ticked between
the reception of the two wave crests. It follows that, if the atomic system
has characteristic frequency ν1, then the second observer will measure a
frequency for the first clock of ν2, where

ν2 =
ν1
k

= ν1

(
g00 (xα1 )
g00 (xα2 )

) 1
2
. (16.5)

Then, in particular,

g00 (xα1 ) < g00 (xα2 ) ⇒ ν2 < ν1, (16.6)

which means that the frequency is shifted to the red. We define the
fractional frequency shift to be

∆ν

ν
=
ν2 − ν1
ν1

, (16.7)

which, in the case of the weak-field limit (10.49), namely,

g00 ' 1 + 2ϕ/c2,

gives (exercise)
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∆ν

ν
' ϕ1 − ϕ2

c2
. (16.8)

Note that we have obtained this expression without recourse to the field
equations. In the special case of the Schwarzschild solution, this becomes,
in non-relativistic units,

∆ν

ν
' −GM

c2

(
1
r1

− 1
r2

)
. (16.9)

Then

r1 < r2 ⇒ ∆ν < 0, (16.10)

and so the frequency is shifted to the red.
If we take r1 to be the observed radius of the Sun, and r2 the radius

of the Earth’s orbit (Fig. 16.3), then (neglecting the Earth’s gravitational
field)

∆ν/ν ' −2.12 × 10−6. (16.11)

Observations of the Sun’s spectra near its edge give results of this order,
but there is great difficulty in interpreting the results generally because
of lack of knowledge of the detailed structure of the Sun and the solar
atmosphere. Similar remarks hold about white dwarfs, which, because of
their small radii compared with their masses, have a more pronounced
shift.

Sun

O

Earth

r2

r1

O

r1

Fig. 16.3 Observation of the redshift of
atoms near the Sun’s edge.

Since there are difficulties associated with astronomical measurements
of the gravitational redshift, there has been interest in the possibility of
a terrestrial test. This is a difficult task because the expected shift over a
vertical distance of 30 m, say, is only of the order of 10−15. Fortunately,
the discovery of the Mössbauer effect in 1958 gave a method of produc-
ing and detecting gamma rays which are monochromatic to one part in
1012, and so makes a terrestrial test feasible. Pound and Rebka carried
out such a test in 1960. They placed a gamma ray emitter at the bot-
tom of a vertical 22 m tower with an absorber at the top. Gamma rays
emitted at the bottom then suffered a gravitational redshift climbing up
the Earth’s gravitational field to the top of the tower and were therefore
less favourably absorbed. By moving the emitter upwards at a small mea-
sured velocity, a compensatingDoppler shift was produced which allowed
the rays to be resonantly absorbed. The experimental result gave 0.997
± 0.009 times the predicted shift of 4.92×10−15, that is, an agreement of
better than 1%. Other experiments since 1960 have measured the change
in the rate of atomic clocks transported on aircraft, rockets, and satellites;
these have produced agreement with the theoretical predictions to about
the same order of accuracy. One example being the shift experienced by
radio signals from the space probe Voyager I in its flight past Saturn in
1980. The accuracy was increased by two more orders of magnitude over
the 1960 result in 1976 when a hydrogen maser clock was flown on a
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Scout rocket to an altitude of some 10,000 km and compared to a similar
clock on the ground; this showed that the differences between the the-
oretical and measured values for the redshift were less than one part in
2 × 10−4. It is intriguing to note that the length of the Scout rocket was
almost exactly the same as the height of the Jefferson Physical Laboratory
tower at Harvard University used for the 1960 experiment.

Although the time differences due to gravitational redshift are small,
it turns out that taking them into account is vital for the accuracy of the
Global Positioning System (GPS). The basic idea is that a GPS satel-
lite sends out a microwave signal encoded with the time and position of
the satellite (as measured in an inertial frame located at the Earth’s cen-
tre). An observer then measures the time at which they receive the signal
and, using the fact that the speed of light is c, they can work out their dis-
tance from the satellite at the time the signal was emitted. By doing this
for four or more satellites, the observer’s position can be fixed in space
and time even if the observer does not have an accurate clock. However,
in order to make accurate measurements of position, the measurements
need to be corrected for relativistic effects. The main corrections that are
needed are (i) to account for the special relativistic time dilation due to the
fact that the satellite is moving relative to the inertial frame of the Earth
and (ii) the gravitational redshift due to the fact that the satellite is further
from the centre of the Earth than the observer. Both these effects mean
that the signals will be received at a slower rate than the rate they were
emitted. The GPS satellites orbit at a radius of about RS = 2.7× 104 km,
which gives a radial speed of about 4 km/s and this results in a gamma
factor of γ ' 8 × 10−9. On the other hand, the fractional correction for
the gravitational redshift is by (16.9)

GMe

c2RS
' 16× 10−9. (16.12)

Thus, the effect of gravitational redshift is about twice that of the special
relativistic time dilation. Although neither of these effects seem very large,
they account for a time difference of approximately one nanosecond or
a distance of 30 cm. These errors will accumulate over time and without
taking into account the relativistic corrections quickly result in GPS errors
of tens of metres.

16.3 The Eötvös experiment
We have seen that the gravitational redshift is essentially a test of the prin-
ciple of equivalence. Since the principle of equivalence is so central to
general relativity, we mention briefly here the important Eötvös torsion
balance experiment, which tests the equivalence of gravitational and in-
ertial mass. The experiment grew out of the much earlier work of Newton
and Bessel using pendula. The Eötvös experiment consists of two objects
of different composition connected by a rod of length ℓ and suspended
horizontally by a fine wire (Fig. 16.4). If the gravitational acceleration of
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the two masses is different, then it can be shown that there will be a torque
N on the wire with

Fine wire

m1

m2

k

i

g

ω

Fig. 16.4 The Eötvös torsion
balance.

|N| = ηl (g× k) i, (16.13)

where g is the gravitational acceleration, i and k are unit vectors along the
rod and the wire, and η is a limit on the difference in acceleration called
the Eötvös ratio. If the apparatus is rotated with angular velocity ω, then
the torque will be modulated with period 2π/ω. In the original experiment
of Baron von Eötvös around the beginning of the last century, g was the
gravitational acceleration due to the Earth and the apparatus was rotated
about the direction of the wire. Eötvös found a limit on η of |η| < 5×10−9.

The experiment has been repeated and improved by Dicke at Prince-
ton and Braginski at Moscow. In their experiments, g was due to the Sun,
and the rotation of the Earth provided the modulation of the torque. The
torque was determined by measuring the force required to keep the rod
in place in the Princeton experiment and gave a result |η| < 10−11. In
the Moscow experiment, the torque was determined by measuring the
torsional motion of the rod and produced |η| < 10−12, one of the most
accurate results in physics. These results have been confirmed by Su et al.
(1994).

16.4 The Einstein equivalence principle
In Chapter 9, we considered the strong and weak forms of the equivalence
principle. However, in the context of the experimental tests of general rel-
ativity, it is useful to introduce a version called theEinstein equivalence
principle, which in some sense lies between the weak and strong versions,
and for which there is very good experimental evidence. The significance
of the principle is that it can be shown to lead to the conclusion that gravity
can be described geometrically as a metric theory, which enables one to
use the classical tests to compare general relativity with alternative metric
theories of gravity.

The Einstein equivalence principle states the following:

1. The trajectory of a freely moving ‘test’ particle is independent of
its internal structure and composition (i.e the weak equivalence
principle is valid).

2. The outcome of any local non-gravitational experiment is indepen-
dent of the velocity of the freely-falling reference frame in which it
is performed.

3. The outcome of any local non-gravitational experiment is indepen-
dent of where and when in the universe it is performed.

Mathematically, point (1) is just one version of the weak equivalence
principle, point (2) amounts to local Lorentz invariance, while point
(3) is local space-time position invariance in both space and time. In
the previous sections, we outlined strong experimental evidence for the
validity of the weak equivalence principle, using both measurements of
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gravitational redshift and Eötvös torsion balance experiments. Evidence
for local Lorentz invariance comes from the many high-precision tests
of special relativity. These include a refined version of the Michelson–
Morley experiment, measurements of the independence of the speed of
light of the velocity of the sources using binary X-ray sources and high-
energy pions as well as experiments demonstrating the isotropy of the
speed of light. Evidence of local position independence in space comes
from measurements of atomic clocks on rockets and satellites. Evidence
for local position independence in time comes from the measurement
of spectral lines in distant galaxies (where the light was emitted in the
distant past) as well as comparing the gravitational redshift of the Earth-
bound clocks relative to the highly stablemillisecond pulsar PSR 1937+21
(Will 2006).

The Einstein equivalence principle is of crucial importance because
it is possible to argue from this that gravitation must be a ‘curved
space-time phenomenon’, in which the effects of gravity are equivalent
to those of living in a curved space-time. Details of this assertion are
given in the book by Will (1993), but the argument is based on the
fact that, if the principle is valid, then, in local freely falling frames,
the laws governing experiments must be independent of the velocity
of the frame (local Lorentz invariance), with constant values for the
various fundamental constants in order to be independent of location.
The only laws we know of that fulfil these requirements are those that
are compatible with special relativity. Furthermore, according to the
equivalence principle, in local freely falling frames, test bodies appear
to be unaccelerated, in other words they move on straight lines; but
such ‘locally straight’ lines simply correspond to ‘geodesics’ in a curved
space-time. Thus, the concepts of inertial observer and Lorentz invari-
ance together imply the use of a Lorentz signature metric to describe the
kinematics.

As a consequence of these arguments, theories of gravity that satisfy the
Einstein equivalence principle must also satisfy the postulates of metric
theories of gravity, which are as follows:

1. Space-time is endowed with a symmetric metric.

2. The trajectories of freely falling test bodies are geodesics of that
metric.

3. In local freely falling reference frames, the non-gravitational laws
of physics are those written in the language of special relativity.

We will see in §16.9 that the two other ‘classical’ tests, the advance
of the perihelion and the bending of light, together with the Shapiro time
delay test, enable one to compare the predictions of general relativity with
other metric theories of gravity – a test general relativity passes with flying
colours.
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16.5 Classical Kepler motion
Before considering the motion of a test particle in the Schwarzschild met-
ric, we first review the classical Kepler problem, namely, the motion of a
test particle in the gravitational field of a massive body, before consider-
ing its general relativistic counterpart. It starts from the assumption that
a particle of mass m moves under the influence of an inverse square law
force whose centre of attraction is at the origin O, that is,

F = −m μ
r2
r̂, (16.14)

where μ is a constant. Then Newton’s second law is

mr̈ = −m
μ
r2
r̂. (16.15)

The angular momentum of m is defined as

L = r × mṙ, (16.16)

and so

dL
dt

= ṙ×mṙ + r×mr̈

= r×
(
−m μ

r2
r̂
)

= 0,

where the cross products of ṙ with itself and r with r̂ both vanish because
the vectors are parallel. Hence, the angular momentum is conserved and

L = mh, (16.17)

where h is a constant vector. Assuming h 6= 0, it follows from (16.16) that
r is always perpendicular to h, and so the particle is restricted to move in
a plane. If we introduce plane polar coordinates (R,ϕ), then the equation
of motion (16.15) becomes(

R̈− R ϕ̇2
)
R̂ +

1
R

d
d t

(
R2ϕ̇

)
ϕ̂ = − μ

R2 R̂. (16.18)

Taking the scalar product with ϕ̂ throughout and integrating produces

R2 ϕ̇ = h, (16.19)

which is conservation of angular momentum again, where h is the magni-
tude of the angular momentum per unit mass. Taking the scalar product
with R̂ throughout (16.18) gives

R̈− R ϕ̇2 = −μ/R2 . (16.20)

We are interested in obtaining the equation of the orbit of the particle,
which in plane polar coordinates is

R = R(ϕ). (16.21)
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If we introduce the new variable u = R−1, then this can also be written as
u = u(ϕ). Using the function of a function rule, we find

Ṙ =
dR
dt

=
d
dt

(
1
u

)
= − 1

u2
du
dϕ

dϕ
dt

= − 1
u2
hu2

du
dϕ

= −hdu
dϕ

by (16.19). Similarly (exercise),

R̈ = −h2u2 d
2u

dϕ2 , (16.22)

and so (16.20) becomes Binet’s equation

d2u
dϕ2 + u =

μ
h2

. (16.23)

Binet’s equation is the orbital differential equation for the particle, and
has solution (exercise)

u =
μ
h2

+C cos (ϕ− ϕ0) , (16.24)

where C and ϕ0 are constants. This can be written in terms of R as
(exercise)

ℓ/R = 1 + e cos (ϕ− ϕ0) , (16.25)

where ℓ = h2/μ and e = Ch2/μ. This is the polar equation of a conic
section in which ℓ (semi-latus rectum) determines the scale, e (eccentric-
ity) the shape, and ϕ0 the orientation (relative to the x-axis). In particular,
if 0 < e < 1, then the conic is an ellipse (Fig. 16.5), and the point of nearest
approach to the origin is called the perihelion.

Perihelion

φ0

m
ℓ

x
O

Fig. 16.5 Kepler motion in an ellipse.
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m1m1

m2O

r

Fig. 16.6 The two-body problem.

The motion of a test particle in the field of a massive body is called the
one-body problem. We shall establish the classic result that in Newto-
nian theory the two-body problem of two point masses moving under
their mutual gravitational attraction can be reduced to a one-body prob-
lem. Consider two masses m1 and m2 with position vectors r1 and r2,
respectively (Fig. 16.6). Define the position vector of m1 (say) relative to
m2 by

r = r1 − r2.

If F12 is the force on m1 due to m2, and F21 is the force on m2 due to m1,
then, by Newton’s third law,

F21 = −F12. (16.26)

Using Newton’s second law, (16.26), and Newton’s universal law of
gravitation (4.4), we obtain

F12 = m1r̈1 = −m2r̈2 = −Gm1m2

r2
r̂,
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and so

r̈ = r̈1 − r̈2 = −Gm2

r2
r̂− Gm1

r2
r̂ = −G(m1 +m2)

r2
r̂.

We find, finally, that the equation of motion can be written as

F12 = mr̈ = −m μ
r2
r̂, (16.27)

where m, the reduced mass, is given by

m = m1m2/(m1 +m2) (16.28)

and

μ = G (m1 +m2) . (16.29)

Comparing (16.27) with (16.15), we see that this is the one-body problem
we discussed earlier. In the simplest model of planetary motion, we take
m2 to be the mass of the sun, and m1 to be the mass of the planet. Then,
suitably interpreted (see Exercise 16.6), the motion of a planet is again a
Kepler ellipse.

16.6 Advance of the perihelion of Mercury
We now look at the one-body problem in general relativity. We assume
that the central massive body produces a spherically symmetric gravi-
tational field. The appropriate solution in general relativity is then the
Schwarzschild solution. Moreover, a test particle moves on a timelike
geodesic, and so we begin by studying some of the geodesics of the
Schwarzschild solution. The simplest approach is to employ the varia-
tional method of §7.6. Letting a dot denote differentiation with respect to
proper time τ , we then find, for timelike geodesics,

2K = (1− 2m/r ) ṫ2 − (1− 2m/r )−1ṙ2 − r2 θ̇2 − r 2sin2 θ ϕ̇2 = 1.
(16.30)
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We next work out the Euler-Lagrange equations. It turns out to be suffi-
cient to restrict attention to the three simplest equations, which are given
when a = 0, 2, 3 in (7.47) and which are

d
dτ

[(1− 2m/r ) ṫ] = 0, (16.31)

d
dτ

(
r2 θ̇
)
− r2 sin θ cos θ ϕ̇2 = 0, (16.32)

d
dτ

(
r 2 sin2 θ ϕ̇

)
= 0. (16.33)

This is because we need four differential equations to determine our four
unknowns, namely,

t = t(τ), r = r(τ), θ = θ(τ),ϕ = ϕ(τ).

However, (16.30) is itself an integral of the motion and so, together with
(16.31)–(16.33), provides the four equations needed. We have seen in
Newtonian theory that the corresponding motion is confined to a plane.
Let us see if this is still true in general relativity. Consider a particle with
initial position in Schwarzschild coordinates given by xa(0) and initial
velocity ẋa(0). Then, since the Schwarzschild solution is spherically sym-
metric, we can, without loss of generality, choose the coordinates such
that θ(0) = π/2 and θ̇(0) = 0. It then follows from (16.32) that θ̈(0) = 0.
Differentiating (16.32), we can show that all higher derivatives of θ must
vanish as well, and hence it follows that the motion is in the equatorial
plane (why?). Then, setting θ = π/2 in (16.33), this can be integrated
directly to give

r2ϕ̇ = h, (16.34)

where h is a constant. This is conservation of angular momentum (com-
pare with (16.19)) and note that, in the equatorial plane, the spherical
polar coordinate r is the same as the plane polar coordinate R. Similarly,
(16.31) gives

(1− 2m/r ) ṫ = k, (16.35)

where k is a constant. Substituting for ϕ̇ and ṫ in (16.30), we obtain

k2(1− 2m/r )−1 − (1− 2m/r )−1ṙ2 − r2ϕ̇2 = 1. (16.36)

We proceed as we did in the classical theory and set u = r−1, which leads to

ṙ = −hdu
dϕ
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t = constant

t

(a) (b)

Fig. 16.7 Motion of a test particle (a) in space-time and (b) projected onto
t = constant.

Then, using (16.34), we find (16.36) becomes(
du
dϕ

)2

+ u2 =
k2 − 1
h2

+
2m
h2
u + 2mu3. (16.37)

This is a first-order differential equation for determining the orbit of a
test particle or, more precisely, the trajectory of the test body projected
into a slice t = constant (Fig. 16.7). It can be integrated directly by using
elliptic functions. We shall use an approximation method to solve it.

Differentiating (16.37), we obtain the second-order equation

d2u
dϕ2 + u =

m
h2

+ 3mu2. (16.38)

This is the relativistic version of Binet’s equation (16.23) and differs
from the Newtonian result by the presence of the last term. For plane-
tary orbits, this last term is comparatively small, because the ratio of the
two terms on the right-hand side of (16.38) is given in relativistic units
by 3h2/r2, which for planetary orbits in the solar system is small. On this
assumption, we may solve the equation approximately by a perturbation
method. The first step is to write down equation (16.38) in a dimension-
less form, where we note that, in the relativistic units we are using, m,
r, and h all have the dimensions of length. For the Newtonian equation,
we have seen that u ∼ m/h2 so that we define the dimensionless variable
ũ = h2u/m, which in the Newtonian case is approximately one. Writing
(16.38) in terms of ũ, we obtain

d2ũ
dϕ2 + ũ = 1 +

3m2

h2
ũ2.

We now introduce the dimensionless quantity

ε = 3m2/h2, (16.39)

and write the differential equation as

d2ũ
dϕ2 + ũ = 1 + εũ2. (16.40)
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For a planetary orbit, ε is very small, for example ε ∼ 10−7 for Mercury,
and, since ũ ∼ 1 in the Newtonian case (when ε = 0), the additional
perturbation term on the right-hand side will produce an O(ε) change in
the solution. We may therefore assume that the equation has a solution of
the form

ũ = ũ0 + εũ1 +O(ε2). (16.41)

Substituting in (16.40), we find

ũ′′0 + ũ0 − 1 + ε
(
ũ′′1 + ũ1 − u20

)
+O(ε2) = 0. (16.42)

If we equate the coefficients of different powers of ε to zero, then the
zeroth-order solution u0 is the usual conic section (16.24)

ũ0 = (1 + e cosϕ),

where, for convenience, we have taken ϕ0 = 0. The first-order equation
is

ũ′′1 + ũ1 = ũ20, (16.43)

and so, substituting for u0, we get

ũ′′1 + ũ1 = (1 + e cosϕ)2

= (1 + 2e cosϕ + e2 cos2 ϕ)

= (1 + 1
2e

2) + 2e cosϕ + 1
2e

2 cos 2ϕ.

If we try a particular solution of the form

ũ1 = A + Bϕ sinϕ +C cos 2ϕ, (16.44)

then we find (exercise)

A = (1 + 1
2e

2),B = e,C = −e2

6
. (16.45)

Thus, the general solution of (16.40) is

ũ = (1 + e cosϕ) + ε
[
1 + eϕ sinϕ + e2( 1

2 − 1
6 cos 2ϕ)

]
. (16.46)

The most important correction to u0 is the term involving eϕ sinϕ, be-
cause, after each revolution, it gets larger and larger. If we neglect the
other corrections and multiply by m/h2 to obtain u, this gives

u ' m
h2

[1 + e cosϕ + εeϕ sinϕ],

or
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u ' m
h2

{1 + e cos [ϕ (1− ε)]} , (16.47)

again neglecting terms of order ε2 (check). Thus, the orbit of the test body
is only approximately an ellipse. The orbit is still periodic, but no longer
of period 2π; rather, it is of period

2π
1− ε

' 2π (1 + ε) . (16.48)

O Orbit 1
2��2πε

Orbit 2

Orbit 3

Fig. 16.8 Precession of the perihelion.

In simple intuitive terms, a planet will travel in an ellipse but the axis
of the ellipse will rotate, moving on by an amount ∆ϕ = 2πε between
two points of closest approach (Fig. 16.8). This is the famous preces-
sion of the perihelion. Using the fact that, in the Newtonian case,
h2 = ma(1− e2), where a is the semi-major axis of the ellipse, we get the
formula

∆ϕ ' 6πGM
c2a(1− e2)

, (16.49)

where we have used (15.55) to write m in non-relativistic units. Further-
more, we may also eliminate M and write this entirely in terms of the
orbital parameters as (exercise)

∆ϕ ' 24π3a2

c2T2 (1− e2)
, (16.50)

where T is the period of the orbit.
Now, in fact, in Newtonian theory, there is also an advance of the peri-

helion. This is because the planetary system is not a two-body system but
rather an n-body system, and all the other planets produce a perturbation
effect on the motion of one particular planet (rather similar in effect to
the perturbation in (16.38)). For example, the planet Jupiter produces a
measurable perturbation because its mass is relatively large, being about
0.1% of that of the Sun. Mercury has an orbit with high eccentricity and
small period (see (16.50)) and the perihelion position can be accurately
determined by observation. Before general relativity, there was a discrep-
ancy between the classical prediction and the observed shift of some 43
seconds of arc per century. Even though this is a very small difference, it is
very significant on an astrophysical scale and represents about a hundred
times the probable observational error. This discrepancy had worried as-
tronomers since the middle of the 19th century. In fact, in an attempt to
explain the discrepancy, it was suggested that there existed another planet,
which was given the name Vulcan, whose orbit was inside the orbit of
Mercury. (Indeed, there is a famous incident of its reported ‘observation’
by a French astronomer.) However, Vulcan does not exist, and general
relativity appears to explain the discrepancy, since it gives a theoretical
prediction of 42.98 seconds of arc per century. This compares very well
with the 2013 observation which constrains the anomalous precession to
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be 42.98± 5 seconds of arc per century (Lo et al. 2013). The perihelion
shift has also been measured for binary pulsar systems, with that for PSR
1913+16 amounting to 4.2◦ per year, in agreement with the predictions
of general relativity. We will analyse the behaviour of binary pulsars in
more detail in Chapter 21. The agreement of the residual perihelion pre-
cession with the other planets is not so marked because their observed
precessions are very small and some of the observational data involved is
not sufficiently accurate. One exception is a measurement in 1971 of the
residual precession of theminor planet Icarus, which once again is in good
agreement with the predicted values of general relativity (Table 16.1).

Table 16.1 Predicted and observed
values of residual perihelion precession.

Planet GR prediction Observed

Mercury 43.0 43.1± 0.5

Venus 8.6 8.4± 4.8

Earth 3.8 5.0± 1.2

Icarus 10.3 9.8± 0.816.7 Bending of light
We next consider the case of the trajectory of a light ray in a spherically
symmetric gravitational field. The calculation is essentially the same as
that given in the last section, except that a light ray travels on a null
geodesic and so a dot now denotes differentiation with respect to an affine
parameter, and the right-hand side of (16.30) is zero. The analogue of
(16.38) is easily found to be (exercise)

d2 u
dϕ2 + u = 3mu2. (16.51)

In the limit of special relativity, m vanishes and the equation becomes

d2u
dϕ2 + u = 0, (16.52)

the general solution of which can be written in the form

u =
1
D

sin (ϕ− ϕ0) , (16.53)

where D is a constant. This is the equation of a straight line (exercise) as
ϕ goes from ϕ0 to ϕ0 + π, where D is the distance of closest approach to
the origin. For convenience, without loss of generality, we may assume
that the coordinates have been chosen so that ϕ0 = 0. The straight-line
motion (Fig. 16.9) is the same as is predicted by Newtonian theory.

D

P

r

x
O φ0

φ

Fig. 16.9 Straight-line motion of a light
ray in special relativity.

The equation of a light ray in Schwarzschild space-time (16.51) can
again be thought of as a perturbation of the classical equation (16.52). As
before, the first step is to write down the differential equation in dimen-
sionless form by introducing the dimensionless variable ũ = Du, which,
in the Newtonian case, is approximately one. Writing (16.51) in terms of
ũ, we obtain

d2ũ
dϕ2 + ũ =

3m
D
ũ2.
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We now introduce the dimensionless quantity

ε =
3m
D

, (16.54)

and write the differential equation as

d2ũ
dϕ2 + ũ = εũ2. (16.55)

Then, for a light ray grazing the surface of the Sun, 3m/D ∼ 10−6, so we
may regard ε as a small parameter and, since ũ ∼ 1 in the unperturbed
case, we can expand the solution to (16.55) in powers of ε and look for a
solution of the form

ũ = ũ0 + εũ1 +O(ε2). (16.56)

Using the fact that, by (16.53), ũ0 = sinϕ, substituting into (16.55), and
equating powers of ε, we get

ũ′′1 + ũ1 = ũ20 = sin2 ϕ. (16.57)

This has (1 + C cosϕ + cos2 ϕ)/3 as solution (exercise), where C is an
arbitrary constant of integration. Substituting in (16.56) and dividing by
D, we see that u is given by

u =
sin ϕ
D

+
m
(
1 +C cosϕ + cos2ϕ

)
D2 +O(ε2). (16.58)

Sincem/D is small, this is clearly a perturbation from straight-linemotion.
We are interested in determining the angle of deflection, ∆ϕ, for a light
ray in the presence of a spherically symmetric source, such as the Sun.
A long way from the source, r → ∞ and hence u → 0, which requires
the right-hand side of (16.58) to vanish. Let us take the values of ϕ for
which r→ ∞ , that is, the angles of the asymptotes, to be −ε1 and π + ε2,
respectively, as shown in Fig. 16.10. Using the small-angle formulae for
ε1 and ε2, we get

−ε1
D

+
m
D2 (2 +C) = 0, −ε2

D
+
m
D2 (2−C) = 0.

Sun

Asymptotes

Apparent direction
of light ray

Apparent
position
of star

Light ray

r
φ

δ

ε1
ε2

Fig. 16.10 Deflection of light in a gravitational field.
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(b)(a)

Sun
(obscured
by Moon)

Fig. 16.11 Position of stars in a field (a) when the Sun is absent and (b) during
a total eclipse.

Adding, we find

∆ϕ = ε1 + ε2 = 4m/D , (16.59)

or, in non-relativistic units,

∆ϕ = 4GM/c2D . (16.60)

The deflection predicted for a light ray which just grazes the Sun is 1.75
seconds of arc. Attempts have been made to measure this deflection at
a time of total eclipse when the light from the Sun is blocked out by the
Moon, so that the apparent position of the stars can be recorded. Then,
if photographs of a star field in the vicinity of the Sun at a time of total
eclipse are compared with photographs of the same region of the sky taken
at a time when the Sun is not present, they reveal that the stars appear to
move out radially because of light deflection (Fig. 16.11).

The first expedition to record a total eclipse was one in 1919 under the
leadership of Sir Arthur Eddington. The fact that this took place shortly
after the end of World War I (and, moreover, that the expedition was
led by an English scientist attempting to confirm a theory of a German
scientist) caught the imagination of a war-weary world. When Edding-
ton reported that the observations confirmed Einstein’s theory, Einstein
became something of a celebrity, and the newspapers of the day carried
popular articles attempting to explain how we now lived in a curved four-
dimensional world. Einstein was so convinced that his theory was right
that he reportedly remarked that he would have been sorry for God if
the observations had disagreed with the theory. In fact, it is now be-
lieved that the observations were not as clear cut as they then seemed,
because of problems associated with the solar corona, systematic errors,
and photographic emulsions. There have been over ten attempts to make
eclipse measurements, and the results have varied markedly from 0.7
to 1.55 times the Einstein prediction. The 2017 eclipse measurement is
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regarded as one of the most accurate and agreed with the predicted value
to about 0.01%, with a measurement error of less than 3%. With the ad-
vent of large radio telescopes and the discovery of pointlike sources called
quasars (quasi-stellar objects), which emit huge amounts of electro mag-
netic radiation, the deflection can now be measured using long-baseline
interferometry when such a source passes close to the sun (Lebach et al.
1995), which gives excellent agreement with the predictions of general
relativity (see §16.9 for details).

Sun

Fig. 16.12 The gravitational lens effect
of a Schwarzschild field.

If one considers a family of curves representing light rays coming in
parallel to each other from a distant source, then the presence of a mas-
sive object like the Sun causes the light rays to converge and produce a
caustic line on the axis ϕ = 0. In this way, a spherically symmetric gravi-
tational field acts as a gravitational lens (Fig. 16.12). Moreover, distant
point-like sources can produce double images (see Fig. 16.13). There was
considerable interest in 1980 when astronomers first reported the iden-
tification of what was previously considered two distinct quasars (known
as 0957 + 561A, B) separated by 6 seconds of arc. The evidence is that
there is a galaxy, roughly a quarter of the way from us to the quasar, which
is the principal component of a gravitational lens. With the advent of the
Hubble space telescope, there have been numerous observations of grav-
itational lensing (see Fig 16.14). An important feature of gravitational
lensing, unlike optical lenses, is that it is achromatic, that is, the deflec-
tion is independent of the frequency of the light. Also, since gravitational
lensing only depends on the mass, it can be used as a method for detecting
matter in the universe whether it is visible or not, which is an important
issue in cosmology (see Chapter 26). The topic of gravitational lensing
is now an important one in modern astronomy (see e.g. Perlick 2004 for
more details on this.)

Image

Apparent
image

Galaxy

Fig. 16.13 Schematic representation of the double-image effect of the gravita-
tional lens.
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Fig. 16.14 Photograph of gravitational lensing taken from the Hubble space
telescope.

16.8 Time delay of light
A fourth test which may also be considered a classical test of general
relativity was proposed by Shapiro in 1964. The idea is to use radar meth-
ods to measure the time travel of a light signal in a gravitational field.
Because space-time is curved in the presence of a gravitational field, this
travel time is greater than it would be in flat space, and the difference can
be tested experimentally.

We begin by considering the path of a light ray in the equatorial plane
θ = π/2 in Schwarzschild space-time, where, using (15.52),

2K = (1− 2m/r ) ṫ2 − (1− 2m/r )−1 ṙ2 − r2 ϕ̇2 = 0, (16.61)

and the dot denotes differentiation with respect to an affine parameter
along the ray. To find the travel time of a light ray, we need to eliminate
ϕ in terms of r and so obtain a differential equation for dt/dr. The Euler–
Lagrange equation for ϕ gives conservation of angular momentum (see
(16.34))

r2ϕ̇ = h, (16.62)

where h is a constant, and the Euler–Lagrange equation for t is (see
(16.35))

(1− 2m/r)ṫ = k, (16.63)

where k is a constant. If we let r = D denote the point of closest approach
to the Sun (see Fig. 16.15), then, since r is increasing on either side of
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this it follows that

ṙ = 0 when r = D. (16.64)

Substituting this result into (16.61), we get, using (16.62), (16.63),
and (16.64) (exercise),

h2/k2 = D2/(1− 2m/D). (16.65)

Sun

Light ray Earth

Earth’s
orbitPlanet’s orbit

Planet

D
DP DE

Fig. 16.15 A light ray travelling from a
planet to the Earth in the Sun’s gravita-
tional field.

From (16.62) and (16.63), we also get

(
dϕ
dt

)2

=

(
ϕ̇

ṫ

)2

=
D2(1− 2m/r)2

r4(1− 2m/D)
, (16.66)

which we can use to eliminate ϕ̇ in (16.61) giving (exercise)(
dr
dt

)2

= (1− 2m/r)2
[
1− D2(1− 2m/r)

r2(1− 2m/D)

]
. (16.67)

Taking square roots, we get

dt = ±(1− 2m/r)−1
[
1− D2(1− 2m/r)

r2(1− 2m/D)

]−1/2

dr, (16.68)

and, using Taylor’s theorem to expand the right-hand side in powers of
m, we find to order m2 (exercise)

dt = ± r
(r2 −D2)1/2

(
1 +

2m
r

+
mD

r(r +D)

)
dr. (16.69)

If we denote the time a light ray travels from the planet to the closest
approach to the Sun as f(DP) then choosing the positive sign (since r > D),
we get

f(DP) =
∫ DP

D
dt =

∫ DP

D

r
(r2 −D2)1/2

(
1 +

2m
r

+
mD

r(r +D)

)
dr, (16.70)

and the three terms can be integrated directly to give (exercise)

f(DP) =
√
D2
P −D2 + 2m ln

(
DP +

√
D2
P −D2

D

)
+m

(
DP −D
DP +D

)1/2

.

(16.71)
A similar calculation gives the time taken for a light ray to travel from the
closest approach to the Sun to the Earth as given by the above formula
with DE replacing DP. The total time T for a light ray to travel from the
Earth to a planet and back is therefore

T = 2[f(DP) + f(DE)], (16.72)
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which gives finally (exercise),

T = 2
[(
D2

P −D2)1/2 +
(
D2

E −D2)1/2]
+ 4m ln

{[(
D2

P −D2)1/2 +DP

] [(
D2

E −D2)1/2 +DE

]
/D2

}
+ 2m

[(
DP −D
DP +D

)1/2

+
(
DE −D
DE +D

)1/2
]
, (16.73)

whereD is the closest approach to the Sun,DP is the planet’s orbit radius,
andDE is the Earth’s orbit radius (see Fig. 16.15). The first term in square
brackets in (16.73) represents the flat space result (as should be clear from
the figure and also by setting m = 0). The actual experiment consists of
sending a pulse from the Earth to the planet and back again. The biggest
effect is when D is close to the solar radius DS. In this case, the excess
delay ∆T compared to the special relativistic result is given to a good
approximation by (exercise)

∆T ' 4m
[
ln
(

4DPDE

D2
S

)
+ 1
]
, (16.74)

or in non-relativistic units

∆T ' 4GM
c3

[
ln
(

4DPDE

D2
S

)
+ 1
]
. (16.75)

The experimental verification of the delay consists in sending pulsed
radar signals from the Earth to Venus and Mercury and timing the echoes
as the positions of the Earth and the planet change relative to the Sun.
For Venus, the measured delay is about 200 μs, which gives an agreement
with the theoretical prediction of better than 5%. A more accurate mea-
surement of∆T was carried out with the Viking mission to Mars in 1976,
which verified the general relativistic prediction with an accuracy of better
than 1%.

16.9 The PPN parameters
The purpose of the original classical tests was to compare the predictions
of general relativity with those of Newtonian gravity. However, the results
of the 1919 eclipse measurement of the bending of light were not immedi-
ately accepted by other scientists. In his analysis of the 1922 solar eclipse,
Eddington replaced the Schwarzschild solution by a more general spheri-
cal symmetric metric with a parameter γ which is related to the deflection
of light (see equation (16.81)) whose value is 1 for general relativity. This
enabled him to give a more quantitative analysis of the results of the 1922
eclipse measurements, which led to them being more generally accepted.
This approach was later refined by Robertson and Schiff, who introduced
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a second parameter β that, in a certain sense, measures the non-linearity
of the theory. The parametrized-post-Newtonian (PPN) that we de-
scribe below generalizes the work of Eddington, Robertson, and Schiff
and provides a systematic way of comparing the predictions of general
relativity with a wide class of alternative gravitational theories.

As discussed earlier, general relativity cannot be considered a com-
pletely Machian theory and, in an attempt to produce a relativistic theory
of gravitation which better incorporated Mach’s principle, Brans and
Dicke proposed an alternative theory in 1961. We shall not discuss the
details of it here except to say that it is motivated in part by the idea of
treating the Newtonian constant G as a function of epoch (time), rather
than a constant as in general relativity. The resulting theory has an ad-
justable parameter in it called ω and, if, for suitable boundary conditions,
we allow ω → ∞, then the theory corresponds to general relativity. In-
deed, over the years, a number of alternative relativistic tensorial theories
of gravity have been proposed. In discussing how the predictions of these
alternative theories compare with general relativity, it is useful to have
a framework in which the corrections to Newtonian theory provided by
these theories can be compared.

As we have seen, there is considerable experimental evidence support-
ing the Einstein equivalence principle. Mathematically, this supports the
conclusion that the only viable theories of gravity are metric theories, or
possibly theories that are metric, apart from very weak or short-range
non-metric couplings (as in string theory).Wewill therefore restrict atten-
tion to metric theories of gravity. For such theories, the PPN framework
provides a useful way of describing the corrections to Newtonian grav-
ity as measured by the experimental tests. There are a total of ten PPN
parameters, which are related to the ten independent components of the
metric gab. However, four of these are related to violations of conservation
of momentum, while another four are related to the existence of preferred
frames or locations, and none of these eight parameters are relevant to the
‘classical’ experimental tests of general relativity. There are also other ex-
periments which show that all of these eight parameters are extremely
small. We will therefore concentrate on two parameters, γ and β, which
we describe below and which do influence the results of the classical tests
(Will 1993, 2014).

It follows from (15.37) that the most general static spherically sym-
metric metric can be put into the form

ds2 = A(r)dt2 − B(r)dt2 − r2(dθ2 + sin2 θdϕ2). (16.76)

However, if we work in non-relativistic units, we must replace dt by cdt,
and r by a dimensionless quantity. Assuming that the only physical pa-
rameter that determines the geometry of the gravitational field of the star
is the massM, then the only dimensionless quantity that we can construct
from r using M, G, and c is

r̃ =
c2r
GM

. (16.77)
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So, in non-relativistic units, (16.76) becomes

ds2 = A(̃r)c2dt2 − B(̃r)dr2 − r2(dθ2 + sin2 θdϕ2). (16.78)

We know from the weak-field limit that to have agreement withNewtonian
theory we must have

A(̃r) ' 1− 2
r̃
= 1− 2GM

c2r
.

We get the post-Newtonian correction by expanding A(̃r) in further
inverse powers of r̃.

A(̃r) = 1− 2
r̃
+
A2

r̃2
+O(̃r−3).

Similarly, in order to obtain the Newtonian limit of Euclidean space when
c → ∞, we must have B(̃r) → 1 as c → ∞, or equivalently as 1/r̃ → 0.
The post-Newtonian term for B is obtained by expanding it in powers of
1/r̃. This gives

B(̃r) = 1 +
B1

r̃
+O(̃r−2)

for some constant B1. The constants A2 and B1 are related to the PPN
parameters β and γ by (exercise)

A2 = 2(β − γ), B1 = 2γ

where the PPN parameters β and γ are defined by (16.79) and come from
a similar expansion of the isotropic form of the spherically symmetric
metric. The leading order terms given by

ds2 =

(
1− 2GM

c2ρ
+ 2β

(
GM
c2ρ

)2
)

−
(
1− 2γ

GM
c2ρ

)[
dρ2 + ρ2(dθ2 + sin2 θdϕ2)

]
. (16.79)

The parameter β in some sense measures the ‘non-linearity of gravity’
while the parameter γ measures the ‘space-time curvature produced, per
unit rest mass’ (Will, 2014)

Using the same perturbation methods as described earlier in the
chapter, one can now calculate (exercise) the values of the classical tests
using the metric (16.78) and one finds the following:

1. The precession ∆ϕP of a planet per orbit is

∆ϕP ' 1
3
(2 + 2γ − β)

6πGM
c2a(1− e2)

. (16.80)
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2. The angle of deflection ∆ϕL of a light ray is

∆ϕL '
(

1 + γ
2

)(
4GM
c2D

)
. (16.81)

3. The excess time delay in the Shapiro test is

∆T '
(

1 + γ
2

)
4GM
c3

[
ln
(

4DEDP

DS

)
+ 1
]
. (16.82)

This enables one to use the experimental tests to measure the values of β
and γ and compare these with the general relativistic values.

The most accurate value of γ comes from measuring the time delay
and gives

γ = 1.000± 0.002 .

Using this value of γ in (16.80), the most accurately measured values of
the advance of the perihelion of Mercury give a value of

β = 1.000± 0.003 .

Note, however, that, in making these calculations, we have assumed that
the Sun is spherical. However, this is not quite true, since the rotation of
the Sun results in it being oblate so that it is shorter along the axis of
revolution compared to the equatorial radius, due to centrifugal effects.
However, accurate measurements of this by Brown et al. (1989) show that
these distortions are too small to influence the bounds on β given above.

In conclusion, we see that the solar system tests described in this
chapter confirm the predictions of general relativity with an accuracy of
only a few tenths of a per cent.

16.10 A chronology of experimental
and observational events

We end our considerations of experimental relativity with a brief chronol-
ogy of the more important experimental and observational events which
relate to general relativity.

1919 Eclipse expedition

1922 Eötvös torsion balance experiments
1922 Eclipse expedition

1929 Eclipse expedition

1936 Eclipse expedition

1947 Eclipse expedition

1953 Eclipse expedition

1954 Measurement of red-shift in spectrum of a white dwarf
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1960 Hughs–Drever mass-anisotropy experiments
Pound–Rebka gravitational red-shift experiment

1962 Princeton Eötvös experiments

1965 Discovery of 3 K cosmic microwave background radiation

1966 Reported detection of solar oblateness

1967 Discovery of pulsars

1968 Planetary radar measurements of time delay
First radio deflection measurements

1970 Cygnus X1: first black hole candidate
Mariners 6 and 7 time-delay measurements

1971 Measurement of Shaprio time delay

1972 Moscow Eötvös experiments

1973 Eclipse expedition

1974 Discovery of binary pulsar

1976 Rocket gravitational red-shift experiment
Mariner 9 and Viking time-delay results

1978 Measurement of orbit-period decrease in the Hulse—Taylor binary
pulsar

1979 Scout rocket maser clock red-shift measurements

1980 Discovery of gravitational lens

2003 Measurement of orbit-period decrease in double pulsar

2004 Frame-dragging measured by Gravity Probe B

2016 Observation of gravitational waves by advanced LIGO

2018 Accurate measurement of gravitational lensing by Hubble Space
Telescope

2019 Observation of black hole by Event Horizon Telescope

Marble

Box

Taut
rubber
sheetTrack of marble

Fig. 16.16 Simulation of straight-line
geodesic motion in special relativity.

16.11 Rubber-sheet geometry
We end our considerations of general relativity with the description of a
simple model which may help in understanding the theory. Although it is
not in any sense a quantitativemodel, it has some features in commonwith
general relativity and, in particular, it illustrates the way that curvature of
space-time can lead to the bending of light. Themodel consists of an open
box with a sheet of rubber stretched tightly over it. If a marble is then pro-
jected across the sheet, then it will move (approximately) in a straight-line
with constant velocity. This simulates flat space or special relativity, with
the marble’s path corresponding to the straight line geodesic motion of
special relativity (Fig. 16.16). Next, a weight is placed on the centre of
the sheet, causing the rubber to become curved. If the marble is now pro-
jected correctly, it will be seen to orbit the central weight. This simulates
general relativity, where a central mass curves up space-time in its vicin-
ity in such a way that a particle with suitable initial conditions will orbit
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the mass. The orbiting marble is performing the ‘straightest’ motion pos-
sible on the curved rubber sheet, or, more precisely, it is travelling on a
geodesic of the sheet. Moreover, if the marble is projected carefully, it
can be seen to be travelling on an elliptically shaped orbit which, owing
to frictional effects between the marble and the rubber sheet, precesses
about the central weight in analogy to a planetary orbit (Fig. 16.17).

We can relate this model better to the full theory if we consider an
embedding diagram of the Schwarzschild solution in a slice t = constant
and in the equatorial plane θ = π/2. The line element then reduces to

ds2 = (1− 2m/r )−1dr2 + r2 dϕ2. (16.83)

Track of
marble

Central
weight

Fig. 16.17 Simulation of precessing
elliptical motion in general relativity. The curved geometry of this two-dimensional surface is best understood

if it is embedded in the flat geometry of a three-dimensional Euclidean
manifold. This is depicted in Fig. 16.18, where the distance between two
neighbouring points (r,ϕ) and (r + dr,ϕ + dϕ) defined by (16.83) is cor-
rectly represented. However, distances measured off the curved surface
have no direct physical meaning, nor do points off the curved surface;
only the curved 2-surface has meaning. If we fill in the interior of the
Schwarzschild solution for r ⩽ r0 (r0 > 2m), then this represents the grav-
itational field due to a spherical star, and the embedding diagram looks
like Fig. 16.19. The surface depicted in Fig. 16.19 is similar in nature
to the curved surface of the rubber sheet in Fig. 16.17. This embedding
diagram also helps us to understand the phenomenon of light bending
(Fig. 16.20).

Although these diagrams are helpful in providing some insight into
the idea of a curved space-time, they need to be used with caution. For
example, the actual deflection of light is twice that suggested by Fig. 16.20
because the light travel takes place in space-time rather than space.
What they do show, however, is how mass curves up space (actually,
space-time) in its vicinity and how free particles and photons travel in the
straightest lines possible, namely, on the geodesics of the curved space.
As Wheeler puts it so succinctly, ‘Space-time tells matter how to move;

x

y

z

Fig. 16.18 Schwarzschild solution (t = constant, θ = π/2) embedded in
Euclidean 3-space.
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r = r0

r = 2m

Star interior

Fig. 16.19 Embedded geometry exterior and interior to a spherical star.

Actual position of starApparent position of star

Fig. 16.20 Depiction of light bending in the gravitational field of a star.

matter tells space-time how to curve’. Themodel also explains how the in-
fluence of the central mass is communicated to free particles and photons.
This is very different from the action-at-a-distance theory of Newtonian
gravitation, where a central mass communicates its influence on a distant
particle in a rather mysterious or at least unexplained way. Moreover, if
the central mass changes in any way in Newtonian theory, then its influ-
ence is altered at all distant points instantaneously. In general relativity,
any change in the mass of the central source will spread out like a ripple in
the rubber-sheet geometry, travelling with the speed of light. This leads to
the beginnings of understanding how gravitational waves are generated,
which we shall consider further in Part E.

Exercises

16.1 (§16.2) Show that (16.5) leads to (16.8) in the weak-field limit.
Deduce (16.9) for the Schwarzschild solution.

16.2 (§16.5) Show that (16.16) and (16.17) lead immediately to (16.19)
if h 6= 0. What is the motion if h = 0?

16.3 (§16.5) Establish the result (16.22), Binet’s equation (16.23), and
its solution (16.24) and (16.25).
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16.4 (§16.5)Establish Kepler’s laws of planetarymotion for the one-body
problem, namely,
K1: Each planet moves about the Sun in an ellipse, with the Sun at one
focus.
K2: The radius vector from the Sun to the planet sweeps out equal areas
in equal intervals of time.
K3: The squares of the periods τ of any two planets are proportional to the
cubes of the semi-major axes a of their respective orbits, that is, τ ∝ a3/2.

16.5 (§16.5) Show that the total energy E for the one-body problem can
be written in terms of (R,ϕ) as

E = 1
2m(Ṙ

2 + R2ϕ̇2)−mμ/R.

Express this in terms of (u,ϕ) and use (16.25) to identify the parame-
ters as

ℓ = h2/μ, e = (1 + 2Eh2/mμ2)1/2.

16.6 (§16.5)Establish (16.27) subject to (16.28) and (16.29) for the two-
body problem.

16.7 (§16.5) Define the centre of mass R by

R =
m1r1 +m2r2
m1 +m2

,

for the two-body problem and deduce that it moves with constant velocity.
Transform to an inertial frame S′ in which the centre of mass is at rest and
situated at the originO′ of the frame S′. Define position vectors r1 and r2
of m1 and m2 relative to O′, and hence describe the motion of m1 and m2

relative toO′. How are Kepler’s laws modified in the case of the two-body
problem? Show that, in particular,

τ ' 2πa3/2(Gmsun)
−1/2.

16.8 (§16.6) Establish the Euler–Lagrange equations (16.31)–(16.33).
Write down the equation corresponding to a = 1 and confirm that
(16.31)–(16.33) are the three simplest Euler-Lagrange equations.

16.9 (§16.6) Derive (16.37) and deduce (16.38) from it. What do the
equations become in special relativity?

16.10 (§16.6) Show that (16.44) subject to (16.45) is a particular solution
of (16.43). Hence establish (16.47).

16.11 (§16.6) Establish the result (16.50). [Hint: replace t by ct in (15.52)
and use (15.55) and Exercise 16.7.]
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16.12 (§16.6)
(i) Show that the equation for a test particle orbiting in the equatorial
plane of the Schwarzschild solution can be written

1
2 ṙ

2 + V(r) = k2/2,

where

V(r) = 1
2 (1− 2m/r)(1 + h2/r2),

h is given by (16.34), and k is given by (16.35).
(ii) Show that V(r) has turning points at

r± =
h2

2m

[
1±

√
1− 12

(m
h

)2
]
,

and that r− is a maxima and r+ is a minima.
(iii) Take the time derivative of the first equation in (i) to obtain an
equation for r̈ and show that r = r0 = constant implies that V ′(r0) = 0. By
considering the value of V ′(r) near r+ and r−, deduce that stable circular
orbits are only possible when r = r+. Hence show that the innermost
stable circular orbit (ISCO) occurs when h2 = 12m2 and at a radius of
r = 6m.

16.13 (§16.7) Use the method of §16.6 to show that, for a light ray,

k2(1− 2m/r)−1 − (1− 2m/r)−1ṙ2 − r2ϕ̇2 = 0.

Hence derive equation(16.51).

16.14 (§16.7) Show that (16.53) is the general solution of (16.52) and in-
terpret (16.53) geometrically. Hence establish (16.58) as the approximate
solution of (16.51).

16.15 (§16.7) Show that, in the Schwarzschild metric, it is possible for a
photon to travel in a circular orbit of radius r = 3m (which is called the
photon sphere). [Hint: It is enough to consider the case of orbits in the
equatorial plane θ = π/2.]

16.16 (§16.8)
(i) Establish (16.65).
(ii) Establish (16.67) and deduce (16.69) to order m2.
(iii) Integrate the three terms in the integrand of (16.70) to establish
(16.71) and deduce (16.73). [Hint: use the substitution r = D cosh u to
integrate the first two terms.]

16.17 (§16.8)
(i) Show that (16.73) leads to (16.74).
(ii) Use a dimensional argument to establish (16.75).
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16.18 (§16.9) Assuming a power series expansion of r in terms of ρ of
the form

r = ρ + d +O(ρ−1).

where d is a constant then, by comparing coefficients in the spherical
symmetric solution (16.76) and the isotropic form (16.79), show that

A2 = 2(β − γ), B1 = 2γ.

16.19 (§16.9) Show that for the metric (16.76) the formula for the
bending of light is given by (16.81).

Further reading

Agood discussion of the experimental tests of general relativity is included
in the textbook by Hartle (2003), which also discusses gravitational lens-
ing in more detail than we do. A complete but more advanced treatment
of the experimental tests is contained in the book and the Living Reviews
in Relativity article by Will (2014). There is also a comprehensive Liv-
ing Reviews in Relativity article on gravitational lensing by Perlick (2004).
The quote ‘Space-time tells matter how to move; matter tells space-time
how to curve’ comes from Wheeler’s autobiography Geons, Black Holes
and Quantum Foam (Wheeler and Ford, 2000), and a shorter version of it
is on page 5 of the classic text by Misner, Thorne, and Wheeler (1973).

Hartle J. B. (2003)Gravity: An Introduction to Einstein’s General Relativity.
Addison Wesley, San Francisco, CA.

Misner, C. W., Thorne, K. S., and Wheeler, J. A. (1973). Gravitation.
Freeman, San Francisco, CA.

Perlick, V. (2004). Gravitational lensing from a spacetime perspective.
Living Reviews in Relativity, 7, 9.

Wheeler, J. A., and Ford, K. (2000). Geons, Black Holes, and Quantum
Foam: A Life in Physics. W. W. Norton & Co., New York, NY.

Will, C. M. (1993). Theory and Experiment in Gravitational Physics
(revised edn). Cambridge University Press, Cambridge.

Will, C. M. (2014). The confrontation between general relativity and
experiment. Living Reviews in Relativity, 17, 4.
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17Non-rotating black holes

17.1 Characterization of coordinates
In this chapter, we are going to make an effort to understand the
Schwarzschild vacuum solution. The solution (15.52) is exhibited in a
particular coordinate system. In general, if we wish to write down a so-
lution of the field equations, then we need to do so in some particular
coordinate system. But what, if any, is the significance of any particu-
lar coordinate system? For example, take the Schwarzschild solution and
apply as complicated a coordinate transformation as you can imagine, la-
belling the new coordinates x′a. Now suppose you had been given this
solution and were asked to interpret the solution and identify the co-
ordinates x′a. The solution will, of course, still satisfy the vacuum field
equations, but there is likely to be little or no geometrical significance at-
tached to the coordinates x′a. For example, one cannot just set x′0 = t,
say, and interpret t as a ‘time’ parameter. As a trivial illustration of this,
consider the transformation

x′0 = θ, x′1 = r, x′2 = t, x′3 = ϕ.

One thing we can do, however, is establish whether the coordinate
hypersurface

x(a) = constant, (17.1)

(where the parentheses enclosing the label a mean that it is to be regarded
as fixed) is timelike, null, or spacelike at a point. The normal co-vector
field to (17.1) is given by

nb =
∂x(a)

∂xb
= δ

(a)
b .

So that the normal vector is

nc = gcbnb = gcbδ(a)b = gc(a),

which has magnitude squared given by

n2 = ncnc = gc(a)δ(a)c = g(a)(a) (not summed).

Introducing Einstein’s Relativity. Second Edition. Ray d’Inverno and James Vickers, Oxford University Press.
© Ray d’Inverno and James Vickers (2022). DOI: 10.1093/oso/9780198862024.003.0017
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Hence the hypersurface (17.1) at P is timelike, null, or spacelike, de-
pending on whether g(a)(a) is > 0, = 0, or < 0. At any point where the
coordinate system is regular, the coordinate hypersurfaces may have any
character, but the four normal vector fields nb(a) must be linearly indepen-
dent. Thus, for example, the hypersurfaces could all be null, timelike, or
spacelike, or any combination of these.We shall be meeting the three most
common situations where the four coordinates consist of:

1 timelike, 3 spacelike;
1 null, 3 spacelike;
2 null, 2 spacelike.
Although a metric may be displayed in any coordinate system, if it pos-

sesses symmetries, then there will exist preferred coordinates adapted to
the symmetries. We have already seen in Chapter 15 that, if a solution
possesses a Killing vector field, then the coordinates may be adapted to
the Killing vector field. If a solution possesses more than one Killing vec-
tor field, then the coordinates can be adapted to each of them as long
as the Killing vector fields commute, that is, their Lie brackets vanish.
If they do not commute, then the story is more complicated, but none
the less the symmetries can be used to tie down the possible coordinate
systems.

With these ideas in mind, let us look at the Schwarzschild solution in
the form (15.52) to see if we can characterize the coordinates (t, r, θ,ϕ).
First of all, since

g00 =
(
1− 2m

r

)−1

, g11 = −
(
1− 2m

r

)
, g 22 = − 1

r2
,

g33 =− 1

r2 sin2 θ
, (17.2)

it follows that x0 = t is timelike and x1 = r is spacelike, as long as
r > 2m and both x2 = θ and x3 = ϕ are spacelike. Next, since the metric
is independent of t and there are no cross terms in dt, it follows that the
solution is static and t is the invariantly defined world time of §15.3. The
coordinate r is a radial parameter which has the property that the 2-sphere
t = constant, r = constant, has the standard line element

ds2 = −r2(dθ2 + sin2 θdϕ2),

from which it follows that the surface area of the 2-sphere is 4πr2. This
would fail to be the case if we had chosen a different radial parameter,
such as the isotropic coordinate ρ in (15.63). Then, finally, θ and ϕ are
the usual spherical polar angular coordinates on the 2-spheres, which are
invariantly defined by the spherical symmetry and are unique up to ro-
tations. In short, the Schwarzschild coordinates (t, r, θ,ϕ) are canonical
coordinates defined invariantly by the symmetries present.
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17.2 Singularities
We now turn to another problem associated with coordinates, that is, the
fact that, in general, a coordinate system only covers a portion of the man-
ifold. Thus, for example, the Schwarzschild coordinates do not cover the
axis θ = 0, θ = π, because the line element becomes degenerate there and
the metric ceases to be of rank 4. This degeneracy could be removed by
introducing Cartesian coordinates (x, y, z), where, as usual,

x = r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ.

Such points are called coordinate singularities because they reflect
deficiencies in the coordinate system used and are therefore removable.
There are two other values of the coordinates for which the Schwarzschild
solution is degenerate, namely, r = 2m and r = 0. The value r = 2m is
known as the Schwarzschild radius. The hypersurface r = 2m again
turns out to be a removable coordinate singularity. This is indicated by
the fact that the Riemann tensor scalar invariant

RabcdRabcd = 48m2r−6,

is finite at r = 2m. Since it is a scalar, its value remains the same in all co-
ordinate systems. By the same token, this invariant blows up at the origin
r = 0. The singularity at the origin is indeed irremovable and is variously
called an intrinsic, curvature, physical, essential, or real singularity.
Notice also by (16.4) that, since g00 vanishes at the Schwarzschild radius,
the surface r = 2m is a surface of infinite redshift. We shall pursue this
later.

The normal interpretation of the Schwarzschild solution is as a vacuum
solution exterior to some spherical body of radius a > 2m (Fig. 17.1).
A different metric would describe the body itself for r < a, and
would then correspond to some distribution of matter resulting in a
non-zero energy-momentum tensor. As we saw in §15.8, Schwarzschild
obtained a spherically symmetric static perfect fluid solution known as the
interior Schwarzschild solution. Our programme in this chapter will be
to investigate the Schwarzschild vacuum solution abstracted away from
any source for all values of r. In such a case, it should be clear from (17.2)
that r = 2m is a null hypersurface dividing the manifold into two discon-
nected components:

I. 2m < r < ∞,
II. 0 < r < 2m.

Inside the region II the coordinates t and r reverse their character, with t
now being spacelike and r timelike. However, as regions I and II, as given
above, are disconnected, we cannot regard them as a single space-time
but need to treat them for the moment as separate.

a

2m

a

2m
Schwarzschild
radius

vacuum

Schwarzschild

Fig. 17.1 Standard interpretation of the
Schwarzschild exterior solution.



324 Non-rotating black holes

17.3 Spatial and space-time diagrams
The main technique we shall use to help interpret the solution is to inves-
tigate its local future light cone structure. A local light cone at the point
P is defined to be the set of null directions at P and so the future light
cone spans the set of possible directions of light rays emerging from P.
Light rays are null geodesics along which

ds2 = gabdxadxb = 0,

so that light rays are tangent to the light cone at every point on the ray.
The light cone structure puts constraints on the possible histories of an
observer, since an observer moves on a timelike world-line whose direc-
tion at any point must lie within the future light cone at the point. Various
diagrams will help us in trying to understand the nature of the solution.

y

x

z

Fig. 17.2 Spatial diagram of
Minkowski space-time.

x

y

Fig. 17.3 Spatial diagram of
Minkowski space time (one spatial
dimension suppressed).

In a purely spatial diagram, we shall be interested in what happens
at various points in the manifold at two successive intervals of time, t1
and t2, say. At time t1, a light flash is emitted from each point of interest
and the spatial diagram indicates where the wave fronts of these flashes
have reached at time t2. This is illustrated in Fig. 17.2 for Minkowski
space-time. In this figure, the light from each point will form a spherical
wave front centred on the point. If there are symmetries present, it may be
sufficient to consider what happens if we suppress one spatial dimension.
For example, Fig. 17.2 becomes Fig. 17.3 in the plane z = 0, say, and the
spheres now become circles.

In a space-time diagram, we are interested in the history of these
light flashes. Suppose we take successive ‘snapshots’ of the wave fronts
emanating from some point P at instants t1, t2, t3, and so on (Fig. 17.4).
The idea in a space-time diagram is to stack these pictures up in time.
Since this would involve a four-dimensional picture – and there are
enough problems in drawing three-dimensional pictures in two dimen-
sions – we suppress one spatial dimension and, as in Chapter 2, we draw
the time axis vertically. To be specific, let us restrict attention to the plane
z = 0 and then the wave fronts will become circles (which will appear as
ellipses in the diagram to take some account of perspective) lying on the
future light cone through P (Fig. 17.5). In the same way, we can include
the past light cone, which can be thought of as an imploding wave front.
Again, it will often be sufficient to consider a space-time diagramwith two
spatial dimensions suppressed (Fig. 17.6). In a curved space-time, the

y

P

x t1 t2 > t1

z

y

P

x

z

t3 > t2

y

P

x

z

Fig. 17.4 Light flash from a point at three successive times.



Space-time diagram in Schwarzschild coordinates 325

curvature manifests itself in space-time diagrams through the light cones
being squashed or opened out and tipped or tilted in various ways, as we
shall see below.

t1

t2

t3

y

P

x

t

Fig. 17.5 Space-time diagram of light
flash (one spatial dimension suppressed).

t1

t2

t3

x

P

t

Fig. 17.6 Space-time diagram of
light flash (two spatial dimensions
suppressed).

17.4 Space-time diagram in Schwarzschild
coordinates

We first consider the class of radial null geodesics defined by requiring

ds2 = θ̇ = ϕ̇ = 0. (17.3)

Then, using our variational principle approach, we have

2K = (1− 2m/r)ṫ2 − (1− 2m/r)−1ṙ2 = 0, (17.4)

where a dot denotes differentiation with respect to an affine param-
eter u along the null geodesic. The Euler-Lagrange equation (7.47)
corresponding to x0 is

d
du

[(1− 2m/r)ṫ] = 0,

which integrates to give

(1− 2m/r)ṫ = k, (17.5)

where k is a constant. Substituting in (17.4) we find

ṙ2 = k2, (17.6)

or

ṙ = ±k, (17.7)

from which it follows that r is an affine parameter (exercise). Rather than
find the parametric equation of these curves, let us look directly for their
equation in the form t = t(r). Then

dt
dr

=
dt/du
dr/du

=
ṫ
ṙ
, (17.8)

which can be found from (17.5) and (17.7). Taking the positive sign in
(17.7), we get

dt
dr

=
r

r− 2m
, (17.9)

which can be integrated, to give (exercise)

t = r + 2m ln |r− 2m| + constant. (17.10)
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r = 2mr = 0

t

Singularity

Outgoing null
congruence

Ingoing null congruence

III

Fig. 17.7 Schwarzschild solution in Schwarzschild coordinates (two dimensions suppressed).

In the region I, by (17.9),

r > 2m ⇒ dr
dt

> 0,

so that r increases as t increases. We therefore define the curves (17.10) to
be a congruence of outgoing radial null geodesics. Similarly, the negative
sign gives the congruence of ingoing radial null geodesics

t = −(r + 2m ln |r− 2m| + constant). (17.11)

Notice that, under the transformation t → −t, ingoing and outgoing
geodesics get interchanged, as we would expect.

We can now use these congruences to draw a space-time diagram
(Fig. 17.7) of the Schwarzschild solution in Schwarzschild coordinates
with two dimensions suppressed (exercise). The space-time diagram is
drawn for some fixed θ and ϕ. Since the diagram will be the same for all
θ and ϕ, we should think of each point (t, r) in the diagram as represent-
ing a 2-sphere of area 4πr2. Notice that, as r → ∞, the null geodesics
make angles of 45◦ with the coordinate axes as in flat space in relativis-
tic units, which we should expect since the solution is asymptotically flat.
The local light cones tip over in region II, because the coordinates t and
r reverse their character. For example, the line t = constant is a timelike
line in region II and so must lie within the local light cone. An observer
in region II cannot stay at rest, that is, at a constant value of r, but is
forced to move in towards the intrinsic singularity at r = 0. This diagram
seems to suggest that an observer in region I moving in towards the origin
would take an infinite amount of time to reach the Schwarzschild radius
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r = 2m. Equally, the diagram suggests that the same is true for an in-
going light ray. However, we need to remember that regions I and II are
really distinct space-times and it turns out that this space-time diagram is
misleading, as we shall see.

17.5 A radially infalling particle
Let us consider the path of a radially infalling free particle. It will move
on a timelike geodesic given by the equations (exercise)

(1− 2m/r)ṫ = k, (17.12)

(1− 2m/r)ṫ2 − (1− 2m/r)−1ṙ2 = 1, (17.13)

where a dot now denotes differentiation with respect to τ , the proper time
along the world-line of the particle. Different choices of the constant k cor-
respond to different initial conditions. Let usmake the choice k = 1, which
corresponds to dropping in a particle from infinity with zero initial veloc-
ity (exercise), so that, for large r, we have ṫ ' 1, that is, asymptotically
t ' τ . Then (17.12) and (17.13) give(

dτ
dr

)2

=
r

2m
. (17.14)

Taking the negative square root (why?) and integrating, we find (exercise)

τ − τ0 =
2

3(2m)1/2
(r3/20 − r3/2), (17.15)

where the particle is at r0 at proper time τ0. This is, perhaps rather
surprisingly, precisely the same as the classical Newtonian result. No sin-
gular behaviour occurs at the Schwarzschild radius, and the body falls
continuously to r = 0 in a finite proper time.

If, instead, we describe the motion in terms of the Schwarzschild
coordinate time t, then

dt
dr

=
ṫ
ṙ
= −

( r
2m

)1/2
(
1− 2m

r

)−1

. (17.16)

Integrating, we obtain (exercise)

t− t0 = − 2

3(2m)1/2
(r3/2 − r03/2 + 6mr1/2 − 6mr1/20 )

+ 2m ln
[r1/2 + (2m)1/2][r1/20 − (2m)1/2]

[r1/20 + (2m)1/2][r1/2 − (2m)1/2]
. (17.17)

For situations where r0 and r are much larger than 2m, the results (17.15)
and (17.17) are approximately the same, as we should expect. If, however,
r is very near to 2m, then we find (exercise)
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r− 2m = (r0 − 2m)e−(t−t0)/2m, (17.18)

from which it is clear that

t→ ∞ ⇒ r− 2m→ 0,

so that r = 2m is approached but never passed. The two situations are
illustrated in Fig. 17.8.

r = 2mr = 0 r = r0

t

r

Coordinate
time t

Proper time τ

Fig. 17.8 Radially infalling particle in
times τ and t.

The coordinate t is useful and physically meaningful asymptotically at
large r since it corresponds to the proper time measured by an observer
at rest far away from the origin. From the point of view of such an ob-
server, it takes an infinite amount of time for a test body to reach r = 2m.
However, as we have seen, from the point of view of the test body itself,
it reaches both r = 2m and r = 0 in finite proper time. Clearly, then, the
Schwarzschild time coordinate t is inappropriate for describing this mo-
tion. Moreover, the coordinate system goes wrong at r = 2m, as is evident
from the behaviour of the line element there. In the next section, we shall
introduce a new time coordinate which is adapted to radial infall, and in
the process we shall remove the coordinate singularity at r = 2m.

17.6 Eddington-Finkelstein coordinates
The idea is very simple: we change to a new time coordinate in region I
in which the ingoing radial null geodesics become straight lines. It follows
immediately from (17.10) that, for r > 2m, the appropriate change is
given by

t→ t̄ = t + 2m ln(r− 2m), (17.19)

because, in the new (̄t, r, θ,ϕ) coordinate system, (17.11) becomes

t̄ = −r + constant, (17.20)

which is a straight line making an angle of −45◦ with the r-axis. Differ-
entiating (17.19), we get

d̄t = dt +
2m

r− 2m
dr, (17.21)

and, substituting for dt in the Schwarzschild line element (15.52), we find
the Eddington-Finkelstein form (exercise)

ds2 =
(
1− 2m

r

)
d̄t2− 4m

r
d̄tdr−

(
1 +

2m
r

)
dr2− r2(dθ2 +sin2θdϕ2).

(17.22)

This solution is now regular and invertible at r = 2m (exercise); indeed, it
is regular for the whole range 0 < r < 2m so that we can use this form of
the metric to extend the coordinate range from 2m < r < ∞ to 0 < r < ∞
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I IIII III

Fig. 17.9 Analytic extension of the Schwarzschild solution.

and obtain a bigger vacuum solution. The process is rather reminiscent
of analytically continuing a function in complex analysis and, because of
this, (17.22) is called an analytic extension of (15.52) (see Fig. 17.9).

One could object that the coordinate transformation (17.19) cannot
be used at r = 2m because it becomes singular. However, (17.19) is
just a convenient device to get us from (15.52) to (17.22). Our start-
ing point is really the two line elements (15.52) and (17.22). Given these
solutions, we then ask the question, What is the largest range of the co-
ordinates for which each solution is regular? The answer is the patch
2m < r < ∞ (together with, of course, −∞ < t < ∞, 0 ⩽ θ ⩽ π,
and −π < ϕ ⩽ π, apart from the usual problem with the coordinates
on the axis θ = 0, π) for (15.52) and the patch 0 < r < ∞ for (17.22). In
the overlap region (2m < r < ∞), the two solutions are related by using
(17.19) in this region, and hence they must represent the same solution
in this region. Put another way, the region 2m < r < ∞ of (17.22) is iso-
metric to region I of (15.52). It also turns out that the region 0 < r < 2m
of (17.22) is isometric to region II of (15.52) but we cannot apply (17.19)
in the whole region 0 < r < ∞ since this transformation is not defined for
r ⩽ 2m. Instead, in the region r < 2m, we need to use the transformation
t̄ = t + 2m ln(2m− r), which is well defined.

In summary we have started with the Schwarzschild metric (15.52)
given in Schwarzschild coordinates for the region r < 2m < ∞ (region I)
and introduced new Eddington-Finkelstein coordinates given by (17.19)
to write it in the form (17.22) in order to remove the coordinate singularity
at r = 2m. Looking at the metric in these coordinates, we are able to
extend the metric (17.19) to a vacuum solution of Einstein’s equation
defined on a larger connected manifold with 0 < r < ∞. The r > 2m part
of the larger solution is isometric to the exterior Schwarzschild solution
using (17.19), and the part 0 < r < 2m is isometric to region II of (15.52)
but using a different transformation.

In making the extension using (17.19), we note that the solution in
Eddington-Finkelstein coordinates is no longer time symmetric. We can
obtain a time-reversed solution by introducing a different time coordinate,
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t→ t⋆ = t− 2m ln(r− 2m),

which straightens out outgoing radial null geodesics and results in a
different extension.

We canwrite (17.22) in a simpler form by introducing a null coordinate

v = t̄ + r, (17.23)

which, for historical reasons, is called an advanced time parameter.
The resulting line element is (exercise)

ds2 = (1− 2m/r)dv2 − 2dvdr− r2(dθ2 + sin 2θdϕ2). (17.24)

It is then easy to show that the congruence of ingoing radial null
geodesics is given by v=constant, which should be evident from (17.20).
The space-time diagram for the Schwarzschild solution in Eddington-
Finkelstein coordinates is given in Fig. 17.10. As before, the light cones
open out to 45◦ cones as r → ∞. The left-hand edge of the light cones
are all at −45◦ to the r-axis. The right-hand edge starts at 45◦ to the
r-axis at infinity and tips up as r decreases, becoming vertical at r = 2m,
and tipping inwards for r < 2m. Notice that, at r = 2m, radially outgoing
photons ‘stay where they are’. We can get a three-dimensional picture (in

r = 2m
r

r = 0

t

Singularity Radially infalling
particle

v = constant

II I

Fig. 17.10 Schwarzschild solution in advanced Eddington-Finkelstein coordinates.
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Fig. 17.11 Spatial diagram of the Schwarzschild solution in advanced
Eddington-Finkelstein coordinates.

the equatorial plane θ = 0, say) by rotating Fig. 17.10 about the t̄-axis.
Figure 17.10 now illustrates correctly what happens to a radially infalling
particle.

17.7 Event horizons
Figure 17.10 suppresses the angular information in the Schwarzschild
solution. This can best be depicted in the equatorial plane in a spatial
diagram, as shown in Fig. 17.11. A long way from the origin, the spatial
picture is similar to the special relativity picture (Fig. 17.3). As we move
close to the origin, the spherical wave fronts are attracted inwards, so that
the points from which they emanate are no longer at the centre. This
becomes more marked until, on the surface r = 2m, only radial outgoing
photons stay where they are, whereas all the rest are dragged inwards. In
region II, all photons, even radially ‘outgoing’ ones, are dragged inwards
towards the singularity.

It is clear from this picture that the surface r = 2m acts as a one-
way membrane, letting future-directed timelike and null curves cross
only from the outside (region I) to the inside (region II). Moreover, no
future-directed null or timelike curve can escape from region II to region
I. The surface r = 2m is called an event horizon because it represents
the boundary of all events which can be observed in principle by an ex-
ternal inertial observer. The situation is reminiscent of the event horizons
of hyperbolic motions in §3.8. However, they were observer dependent.
The Schwarzschild event horizon is absolute, since it seals off all internal
events from every external observer.

If, instead, we use the null coordinate

w = t⋆ − r, (17.25)

called a retarded time parameter, then the line element becomes

ds2 = (1− 2m/r)dw2 + 2dwdr− r2(dθ2 + sin 2θdϕ2). (17.26)
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r = 2m
r

r = 0

t*

II I

Fig. 17.12 The Schwarzschild solution in retarded Eddington-Finkelstein coor-
dinates.

This solution is again regular for 0 < r < ∞ and corresponds to the
time reversal of the advanced Eddington-Finkelstein solution (17.22)
(Fig. 17.12) and for this reason is sometimes called a white hole. For
r > 2m, this again is just the exterior Schwarzschild solution but, for
0 < r < 2m, this is a different extension to that given by (17.24). The
surface r = 2m is again a null surface which acts as a one-way mem-
brane. However, this time it acts in the other direction of time, letting
only past-directed timelike or null curves cross from the outside to the
inside.

17.8 Black holes
The theory of stellar evolution tells us that stars whose masses are of the
order of the Sun’s mass can reach a final equilibrium state as a white
dwarf or a neutron star. But, for much larger masses, no such equilib-
rium is possible, and in such a case the star will contract to such an
extent that the gravitational effects will overcome the internal pressure
and stresses which will not be able to halt further contraction. General rel-
ativity predicts that a spherically symmetric star will necessarily contract
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Fig. 17.13 Gravitational collapse (two spatial dimensions suppressed).

until all matter contained in the star arrives at a singularity at the centre
of symmetry.

We imagine a situation in which the collapse of a spherically symmet-
ric non-rotating star takes place and continues until the surface of the
star approaches its Schwarzschild radius. To get an idea of the magni-
tude of the Schwarzschild radius, we note that the Schwarzschild radius
for the Earth is about 1 cm and that of the Sun is 3 km. As long as the
star remains spherically symmetric, its external field remains that given
by the Schwarzschild vacuum solution. Figure 17.13 is a two-dimensional
space-time diagram of the gravitational collapse, where the Schwarzschild
vacuum solution is taken to be in Eddington-Finkelstein coordinates. As is
clear from the diagram, an observer can follow a collapsing star through its
Schwarzschild radius. If signals are sent out from an observer on the sur-
face of the star at regular intervals according to that observer’s clock, then
as the surface of the star reaches the Schwarzschild radius, a distant ob-
server will receive these signals with an ever-increasing time gap between
them. The signal at r = 2m will never escape from r = 2m, and all succes-
sive signals will ultimately be dragged back to the singularity at the centre.
In fact, no matter how long the distant observer waits, it will only be pos-
sible to see the surface of the star as it was just before it plunged through
the Schwarzschild radius. In practice, however, the distant observer would
soon see nothing of the star’s surface, since the observed intensity would
die off very fast owing to the infinite redshift at the Schwarzschild radius.
The star would quickly fade from view, leaving behind a ‘black hole’ in
space, waiting to gobble up anything which ventured too close.

For completeness, we conclude this section with a three-dimensional
space-time diagram of gravitational collapse (Fig. 17.14), which is ob-
tained essentially by rotating Fig. 17.13 about the t̄-axis.
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Fig. 17.14 Gravitational collapse (one spatial dimension suppressed).

17.9 A Newtonian argument
The idea of a black hole, in the restricted sense of the gravitational field of
a star being so strong that light cannot escape to distant regions, is in fact a
consequence of Newtonian theory, if we adopt a particle theory of light.
Consider a particle of mass m moving away radially from a spherically
symmetric distribution of matter of radius R, uniform density ρ, and total
mass M (Fig. 17.15). If the particle possesses a velocity v at a distance r
from the centre, then conservation of energy E gives

E = kinetic energy + potential energy

= 1
2mv

2 −GMm/r . (17.27)

m

v

r

0 R0 R

Fig. 17.15 Escape velocity inNewtonian
gravitation.

We define the escape velocity v0 to be the velocity at the surface of the
distribution of matter which enables the particle to escape to infinity with
zero velocity. This requires v → 0 as r → ∞, which by (17.27) results in
E = 0. Solving for v, we find v2 = 2GM/r, and hence the escape velocity is

v20 = 2GM/R. (17.28)

Then, if a particle has a radial velocity less than v0 at the surface, it will
eventually be pulled back by the gravitational attraction of the distribution.
If light has velocity c, then it will just escape to infinity if it is related to the
mass and radius of the distribution by

c2 = 2GM/R . (17.29)

Thus, if the mass M were increased (keeping the radius constant) or,
equivalently, the radius R decreased (keeping the mass constant), then it
follows that light could no longer escape. This was recognized by Laplace
in 1798 who pointed out that a body of about the same density as the Sun
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but 250 times its radius would prevent light from escaping. Note that the
limiting condition (17.29) in terms of the radius R is

R = 2GM/c2 , (17.30)

or R = 2m in relativistic units, which is the Schwarzschild radius.

17.10 Tidal forces in a black hole
Consider a distribution of non-interacting particles falling freely towards
the Earth in Newtonian theory, where initially the distribution is spheri-
cal (see Exercise 9.6). Each particle moves on a straight line through the
centre of the Earth, but those nearer the Earth fall faster because the grav-
itational attraction is stronger. The sphere no longer remains a sphere but
is distorted into an ellipsoid with the same volume (Fig. 17.16). Thus, the
gravitation produces a tidal force in the sphere of particles. The tidal ef-
fect results in an elongation of the distribution in the direction of motion
and a compression of the distribution in transverse directions. The same
effect occurs in a body falling towards a spherical object in general rela-
tivity but, if the object is a black hole, the effect becomes infinite as the
singularity is reached. We can gain some idea of this by considering the
equation of geodesic deviation (see (10.38) and (10.39)) in the form

D2ηα

Dτ2 + Rabcd eαae0beβced0η
β = 0, (17.31)

for the spacelike components of the orthogonal connecting vector ηα con-
necting two neighbouring particles in freefall. Let the frame eia be defined
in Schwarzschild coordinates as

e0a
∗
=(1− 2m/r)−

1
2 (1, 0, 0, 0), (17.32)

e1a
∗
=(1− 2m/r)

1
2 (0, 1, 0, 0), (17.33)

e2a
∗
=r−1(0, 0, 1, 0), (17.34)

e3a
∗
=(r sin θ)−1

(0, 0, 0, 1), (17.35)

Earth

(a) (b)

Ellipsoid
of particles

Sphere of
particles

Fig. 17.16 Newtonian tidal force: (a) before; (b) after.
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and let us denote the components of ηα by

ηα = (η1, η2, η3) = (ηr, ηθ, ηϕ). (17.36)

Then (17.31) reduces in Schwarzschild space-time in the above frame to
the equations (exercise)

D2ηr

Dτ2 = +
2m
r3
ηr, (17.37)

D2ηθ

Dτ2 = −m
r3
ηθ, (17.38)

D2ηϕ

Dτ2 = −m
r3
ηϕ. (17.39)

The positive sign in (17.37) indicates a tension or stretching in the radial
direction, and the negative signs in (17.38) and (17.39) indicate a pres-
sure or compression in the transverse directions (seeMisner, Thorne, and
Wheeler 1973 for further details). Moreover, the equations reveal that the
effect becomes infinite at the singularity r = 0.

Consider an intrepid astronaut falling feet first into a black hole
(Fig. 17.17). The astronaut’s feet are attracted to the centre by an
infinitely mounting gravitational force, while the astronaut’s head is ac-
celerated downward by a smaller though ever-rising force. The difference
between the two forces becomes greater and greater as the astronaut
reaches the centre, where the difference becomes infinite. At the same
time as the head-foot stretching, the astronaut is pulled by the gravita-
tional field into regions with ever-decreasing circumference and so the
astronaut is squashed on all sides. Again the squashing becomes infinite at
the centre. Indeed, not only do the tidal effects tear the astronaut to pieces,
but the very atoms of which the astronaut is composed must ultimately
share the same fate!

Fig. 17.17 Successive times in the astronaut’s fall.
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17.11 Observational evidence for black
holes

Observing a black hole directly is impossible, unless one were lucky
enough to see a star disappear. However, it is certainly possible to infer
the existence of a black hole through its gravitational effects on its sur-
roundings. There is now a wealth of such evidence for the existence of
black holes that we briefly describe below. For more details, see Cardoso
and Pani (2019).

The first such evidence comes from X-ray binaries; these are double
stars with one standard star and a second, compact, invisible component.
By studying the motion of the standard star, one can deduce the mass
of the invisible partner and, if it is much larger than the maximum mass
a star can have without collapsing, then it cannot be a neutron star and
is a black hole candidate. The black hole will suck matter from its visible
partner, forming an accretion disc, and the hot inner regions will produce
intense bursts of X-rays formed by synchrotron radiation shortly before
the spiralling matter disappears down the hole (Fig. 17.18). It was the
discovery in 1971 of the rapid variations of the X-ray source Cygnus X1
by telescopes aboard the Uhuru satellite that provided the first evidence of
the likely existence of black holes. The visible component is a supergiant
star, and detailed study of the X-rays led to the conclusion that the unseen
body is a compact object with a mass in excess of nine solar masses. Since
the maximum masses of white dwarfs and neutron stars are believed to
be approximately 1.4 and 4 solar masses, respectively, then the simplest
conclusion is that the object is a black hole. Since 1971, a number of other
black hole candidates have been found in X-ray binaries.

A more direct confirmation of the existence of black holes comes from
the observation of gravitational radiation. In September 2015, LIGO

Fig. 17.18 A binary star with one visible and one black hole component.
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measured gravitational waves consistent with the theoretical predictions
for the radiation produced by the merger of two black holes of about 36
and 29 solar masses, respectively. Since then, many more gravitational
wave events have been observed which are completely in line with the
predictions of general relativity and the existence of black holes. We will
say more about this in Chapter 21.

Although black holes were originally thought of as coming from the
collapse of individual stars, there is now considerable evidence that many
galaxies have supermassive black holes at their centre. Astronomers use
the term ‘active galaxy’ to describe galaxies with unusual characteristics,
such as unusual spectral line emission and very strong radio emission.
Theoretical and observational studies have shown that the activity in these
active galactic nuclei (AGNs) may be explained by the presence of su-
permassive black holes, which can be millions of times more massive than
stellar ones. The models of these AGNs consist of a central black hole
that may be millions or billions of times more massive than the Sun. In
particular, by observing the proper motions of stars near the centre of our
own Milky Way, one can deduce that there lies at the centre an object with
a mass of about 2.6 million solar masses and a radius of at most 210 km.
Although the upper limit of the radius is larger than the Schwarzschild
radius, this is strongly indicative of the existence of a black hole, as there
are no other plausible scenarios for confining so much invisible mass to
such a small volume.

Further direct evidence for the existence of supermassive black holes
at the centre of galaxies comes from the Event Horizon Telescope. This is
a large optical telescope array sufficient to observe objects the size of the
event horizon of a supermassive black hole. The idea is to look at the image
of the accretion disc of an AGN and compare this with the substantially
distorted image due to the extreme gravitation lensing of the black hole as
predicted by general relativity. Following observation of a potential black
hole in the center of Messier 87 in 2017, the Event Horizon Telescope
project spent two years analysing the data and in 2019 released an image
that agreed very well with the predictions of general relativity.

17.12 Theoretical status of black holes
When considering black holes at the theoretical level, there is the objec-
tion that the solution is too special in being spherically symmetric. For
example, no account has been taken of charge or rotation. In Chapters
18 and 19, we shall consider the Reissner-Nordström and Kerr solu-
tions, which deal with charged and rotating black holes, respectively. We
shall see that, although the story changes in detail, the chief characteris-
tics of a black hole, namely, the existence of absolute event horizons and
singularities, persist. The next objection is that asymmetries have been
excluded. It is not surprising, it can be argued, that, if all the matter is
moving in radially towards the centre, then it will ultimately result in a sin-
gularity there. However, perturbations of the Schwarzschild solution have
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been considered and appear to suggest that all asymmetries are eventually
radiated away and that, asymptotically in time, the system settles down to
a Schwarzschild black hole (Fig. 17.19).

Asymmetry

(a) (b)

Fig. 17.19 Asymmetry radiated away:
(a) before; (b) eventually.

Another objection relates to the particular set of field equations used,
namely, those of general relativity. However, Penrose and Hawking have
managed to prove some remarkable theorems, the so-called singular-
ity theorems, which suggest that many of the qualitative features of this
collapse picture remain in a more general situation. Their results do not
depend on having spherical symmetry or the particular field equations of
general relativity, but on much weaker assumptions such as a metric the-
ory of gravity and the consequent curvature of space-time (as implied by
the Einstein equivalence principle), relativistic causality, and energy con-
ditions (see §20.13 for more details). The theorems prove that, with these
very reasonable assumptions, as a result of the gravitational collapse of a
star, there exist geodesics which come to an end, that is to say, that cannot
be extended any further. This is usually taken tomean that they are ending
on a singularity. Quite where the singularities are located and what their
structure is like are issues which these theorems do not directly address.
Of course, even these very weak assumptions may not apply in extremely
strong gravitational fields. It could be possible, for example, that such
fields result in violations of the energy conditions or failures of causality.
The general belief, however, is that the theorems provide strong evidence
that singularities are, in fact, generic features of relativistic theories of
gravitation.

There is another problem which has not yet been resolved. In order to
discuss in detail the stability of a collapse situation, we need to understand
what is going on inside the star. That is, we need realistic interior solu-
tions which can be matched on to the known exterior solutions. However,
all attempts at finding a realistic interior Kerr solution, and there have
been many of them, appear to have failed. This is somewhat disturbing,
because the attempts seem to suggest that the matching cannot be done.
Were we to have an interior solution, it is conceivable that the motion
might be unstable, leading finally to fragmentation rather than collapse.
Finally, we point out that gravitational collapse deals with situations of
high densities and that these are really the province of quantum theory.
It seems likely that a classical theory like general relativity might be mod-
ified profoundly by quantum effects. Indeed, some theories of quantum
gravity suggest that the collapse is halted before a singularity is reached
and a bounce takes place. However, Penrose has pointed out that we do
not need high densities to create event horizons. Since the radius R of the
event horizon is proportional to the mass m, and the volume is propor-
tional to R3, and hence m3, we see that the average density of a black hole
is proportional to 1/m2. Hence, perhaps counter intuitively, the larger the
black hole the smaller the density. In particular, the average density of
the supermassive black hole that is thought to exist at the centre of our
galaxy is of the order of 10% of the density of water. Furthermore, the
gravitational field at the event horizon for such a supermassive black hole
produces a tidal force comparable to that on the surface of the Earth so
this does not involve any extreme physics either.
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Exercises

17.1 (§17.1) Interpret the solution

ds2 =
(
1− 2m

ϕ

)
dθ2 −

(
1− 2m

ϕ

)−1

dϕ2 − ϕ2dt2 − ϕ2 sin2 tdr2.

17.2 (§17.1) Apply the transformations

t = t̄2r̄, r = r̄ cos θ̄ + 2m,

θ = sin−1(̄rθ̄), ϕ = cos(ϕ̄̄t)

to the Schwarzschild line element (15.52) and find the coefficient of d̄t2.

17.3 (§17.1) What is the character of the coordinates of
(i) (t, ρ, z,ϕ) in

ds2 = ρ−2mdt2 − ρ−2m[ρ2m
2
(dρ2 + dz2) + ρ2dϕ2];

(ii) (u, r, x, y) in

ds2 = x2du2 − 2dudr + 4rx−1dudx− r2dx2 − x2dy2.

17.4 (§17.1) Dingle’s metric is the most general diagonal metric

ds2 = Adt2 − Bdx2 −Cdy2 −Ddz2,

where A, B,C, andD are functions of all four coordinates. What does this
solution become if ∂/∂x, ∂/∂y, and ∂/∂z are commuting vector fields and
the solution is adapted to these Killing vector fields?

17.5 (§17.2)Write the Schwarzschild line element (14.47) in coordinates
(t, x, y, z) where x, y, and z are defined by

x = r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ.

17.6 (§17.3) Draw a two-dimensional space-time diagram of null
geodesics in special relativity. Draw the world-line of an observer moving
into the origin and out again.

17.7 (§17.4) Integrate (17.6). Deduce that r is an affine parameter.
Integrate (17.9) to obtain (17.10).

17.8 (§17.4) Confirm Fig. 17.7 by first drawing the graphs of
(i) y = ln x (x > 0),
(ii) y = ln |x|,
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(iii) y = 2m ln |x|,
(iv) y = x + 2m ln |x|,
in turn, translating the y-axis to x = 2m, and then drawing the graphs of
(v) y = x− 2m + 2m ln |x− 2m| (x > 0),
(vi) y = x + 2m ln |x− 2m| + c (x > 0),
for different values of the constant c. What is the slope of the radial null
geodesics at r = 0?

17.9 (§17.5) Establish (17.12) and (17.13) for the equations of a radially
infalling particle. Show that the choice k = 1 corresponds to the particle
having zero velocity at spatial infinity (r = ∞).

17.10 (§17.5) Integrate (17.14) to obtain (17.15). Show that this is the
same result as that for a particle falling radially from r0 to r in Newtonian
theory under the influence of a point particle situated at the origin of mass
M, where the particle has zero velocity at infinity.

17.11 (§17.5) Integrate (17.16) to obtain (17.17).

17.12 (§17.5) If r is near 2m, set ε = 1−r/2m and show that the dominant
term in (17.16) is 1/ε. Hence deduce (17.18).

17.13 (§17.6) Show that (17.19) transforms the Schwarzschild line ele-
ment (15.52) into the form (17.22). Use (17.23) to express the resulting
line element in the form (17.24).

17.14 (§17.6) Calculate the contravariant form gab of the Eddington-
Finkelstein metric (17.22).

17.15 (§17.6) Draw the Schwarzschild solution in advanced Eddington–
Finkelstein coordinates with one spatial dimension suppressed in the
equatorial plane θ = π/2. (Hint: rotate Fig. 17.10 about the t̄-axis.)

17.16 (§17.7) Show that (17.25) leads to the form (17.26). Find the
equations for radial null geodesics and establish Fig. 17.12.

17.17 (§17.8) Draw the white hole analogue of Fig. 17.13 and describe
its appearance to an external observer.

17.18 (§17.10) Show that (17.32)–(17.35) defines an orthonormal frame
in Schwarzschild space-time. Show that the spatial part of the equation of
geodesic deviation leads to (17.37)–(17.39). [Hint: Use the results of Ex-
ercise 15.13.] Give a qualitative argument which reveals that ηr increases
without bound as r→ 0.
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Further reading

The main reference for black holes is the book by Hawking and Ellis
(1973). A summary of the observational evidence for black holes is sur-
veyed in the Living Reviews in Relativity article by Cardoso and Pani
(2019). We also give a link to the results of the Event Horizon Telescope.

Cardoso, V., and Pani, P. (2019). Testing the nature of dark compact
objects: A status report. Living Reviews in Relativity, 22, 4.

Hawking, S. W., and Ellis, G. F. R. (1973). The Large Scale Structure of
Space-Time. Cambridge University Press, Cambridge.

The Event Horizon Telescope Collaboration, Akiyama, K., Alberdi, A.,
et al. (2019). First M87 event horizon telescope results. I. The shadow of
the supermassive black hole. Astrophysical Journal Letters, 875, 1.



18Maximal extension and
conformal compactification

18.1 Maximal analytic extensions
We saw in the last chapter that the Schwarzschild solution for 2m < r < ∞
can be extended either into the advanced Eddington-Finkelstein solution
(17.24) or the retarded Eddington-Finkelstein solution (17.26), where
0 < r < ∞. That this is possible is indicated by the fact that a radial
timelike geodesic can be extended through r = 2m down to r = 0. The
question naturally arises, Is it possible to extend these solutions further?

We need to make this question more precise, which we do by introduc-
ing a couple of definitions. A manifold endowed with an affine or metric
geometry is said to be maximal if every geodesic emanating from an ar-
bitrary point of the manifold either can be extended to infinite values of
the affine parameter along the geodesic in both directions or terminates
at an intrinsic singularity (see §17.2). If, in particular, all geodesics em-
anating from any point can be extended to infinite values of the affine
parameters in both directions, the manifold is said to be geodesically
complete. Clearly, a geodesically complete manifold is maximal, but the
converse is not true in general. Minkowski space-time provides a trivial
example of a geodesically complete manifold. Neither the Schwarzschild
nor the Eddington-Finkelstein advanced or retarded extensions is in fact
maximal. However, Kruskal has found the maximal analytic extension of
the Schwarzschild solution and, moreover, this extension is unique. The
Kruskal solution, although maximal, is again not complete because of the
existence of intrinsic singularities. The Kruskal solution can be obtained
by simultaneously straightening out both incoming and outgoing radial
null geodesics. We shall sketch the original procedure of Kruskal in the
next section.

18.2 The Kruskal solution
We start by introducing both an advanced null coordinate v and a re-
tarded null coordinate w, in which case, in the coordinates (v,w, θ,ϕ), the
Schwarzschild line element becomes (exercise)

ds2 = (1− 2m/r)dvdw− r2
(
dθ2 + sin2θ dϕ2) , (18.1)

Introducing Einstein’s Relativity. Second Edition. Ray d’Inverno and James Vickers, Oxford University Press.
© Ray d’Inverno and James Vickers (2022). DOI: 10.1093/oso/9780198862024.003.0018
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where r(v,w) is a function of the coordinates v and w and is determined
implicitly by

1
2 (v− w) = r + 2m ln (r− 2m) . (18.2)

Note that, using (17.23) and (17.25), we may write v and w more
symmetrically as

v = t + r*, w = t− r*, (18.3)

where r* is defined for r > 2m by

r* = r + 2m ln(r− 2m), (18.4)

and is called the tortoise radial coordinate by some authors.
The 2-space θ = constant, ϕ = constant, has metric

ds2 = (1− 2m/r) dvdw, (18.5)

and hence by the second theorem in §6.13 must be conformally flat. To
make this evident, we define

t̃ = 1
2 (v + w), x̃ = 1

2 (v− w),

and then (18.5) becomes

ds2 = (1− 2m/r) (d̃t2 − dx̃2).

The most general coordinate transformation which leaves the 2-space
(18.5) expressed in such conformally flat double null coordinates is

v→ v′ = v′(v), w→ w′ = w′(w),

where v′ and w′ are arbitrary functions, which leads to

ds2 = (1− 2m/r)
dv
dv′

dw
dw′ dv

′dw′.

Introducing

t′ = 1
2 (v

′ + w′), x′ = 1
2 (v

′ − w′),

we can write (18.5) in the general form

ds2 = F2(t′, x′)(dt′2 − dx′2).

A particular choice of v′ and w′ will then determine the precise form of
the line element.
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The choice which Kruskal made was

v′ = exp (v/4m) , (18.6)

w′ = − exp (−w/4m) . (18.7)

The radial coordinate r is to be considered a function of t′ and x′

determined implicitly by the equation

t′2 − x′2 = − (r− 2m) exp (r/2m) , (18.8)

and F is given by

F2 =
16m2

r
exp(−r/2m).

Then the line element becomes

ds2 =
16m2

r
exp

(
− r

2m

)
dt′2 − 16m2

r
exp

(
− r

2m

)
dx′2

− r2
(
dθ2 + sin2θdϕ2) , (18.9)

where r(x′, t′) is given by (18.8).
A two-dimensional space-time diagram of the Kruskal solution is

shown in Fig. 18.1. As we indicated, all the light cones are now 45◦

cones and the incoming and outgoing radial null geodesics are straight
lines. Figure 18.1 shows a radial timelike geodesic which starts from
(r = 4m, t′ = 0) and falls into the event horizon r = 2m, ending up on
the future singularity at r = 0. The figure includes some of the signals
sent out from this geodesic and illustrates the trapped nature of the sig-
nals sent inside the event horizon. Notice from (18.8), which is quadratic
in t′ and x′, that one value of r determines two hypersurfaces. In two di-
mensions, the space-time is bounded by two hyperbolae representing the
intrinsic singularity at r = 0. They are termed the past singularity and
the future singularity, respectively. The future singularity is spacelike
and hence unavoidable in region II. The asymptotes of the hyperbolae
represent the event horizons corresponding to r = 2m. These asymptotes
divide the space-time into four regions labelled I, II, I′, and II′. Regions
I and II correspond to the advanced Eddington-Finkelstein solution (see
Fig. 17.10), with region I corresponding to the Schwarzschild solution
for r > 2m, and region II corresponding to the black hole solution. re-
gions I and II′ correspond to the retarded Eddington-Finkelstein solution
(see Fig. 17.12), with region II′ corresponding to the white hole solution.
What is surprising is that there is a new region called I′ which is geomet-
rically identical to the asymptotically flat exterior Schwarzschild solution
region I. The topology connecting I and I′ is rather complicated and we
consider it next.
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Fig. 18.1 Space-time diagram of the Kruskal solution.

18.3 The Einstein-Rosen bridge
Remember that each point in the diagram represents a 2-sphere. We can
gain some intuitive idea of the overall four-dimensional structure if we
consider first the submanifold t′ = 0. Then, from (18.9), the line element
induced on this hypersurface is given by

ds2 = −F2 dx′2 − r2
(
dθ2 + sin2 θ dϕ2) . (18.10)

Setting t′ = 0 in (18.8), we see that, as we move along the x′-axis from
+∞ to −∞, the value of r decreases to a minimum 2m at x′ = 0 and then
increases again as x′ goes to −∞. We can draw a cross-section of this
manifold corresponding to the equatorial plane θ = π/2, in which case
(18.10) reduces further to

ds2 = −
(
F2 dx′2 + r2 dϕ2

)
. (18.11)

φ = constant x´ = constant

Fig. 18.2 The Einstein-Rosen
bridge.

To interpret this, we consider a two-dimensional surface possessing this
line element embedded in a flat three-dimensional space. The surface
appears as in Fig. 18.2. Thus, at t′ = 0, the Kruskal manifold can be
thought of as being formed by two distinct but identical asymptotically flat
Schwarzschild manifolds joined at the ‘throat’ r = 2m. As t′ increases, the
same qualitative picture holds but the throat narrows down, the universes
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t´ < –1 t´ = –1 t´ = 0 t´ = 1 t´ > 1–1 < t´ < 0 0 < t´ < 1

Fig. 18.3 Time evolution of the Einstein-Rosen bridge.

Fig. 18.4 A Schwarzschild wormhole.

joining at a value of r < 2m. At t′ = 1, the throat pinches off completely
and the two universes touch at the singularity r = 0. For larger values of
t′, the two universes, each containing a singularity at r = 0, are completely
separate. The Kruskal solution is time-symmetric with respect to t′, and
so the same thing happens if we run time backwards from t′ = 0. The full
time evolution is shown schematically in Fig. 18.3, where each diagram
should be rotated about the central vertical axis to get the two-dimensional
picture analogous to that shown in Fig. 18.2.

The intriguing question of whether or not the mathematical procedure
for extending the solution which results in the ‘new universe’ I′ has any
physical significance is still an open one. Although Einstein’s equations fix
the local geometry of space-time, they do not fix its global geometry or
its topology. In Fig. 18.4, we see an embedding of the slice t′ = constant
which is geometrically identical but topologically different. This embed-
ding leads to a Schwarzschild ‘wormhole’ which connects two distant
regions of a single asymptotically flat universe. We shall not pursue the
idea further.

Although Fig. 18.1 is very informative, it does not indicate what hap-
pens to points at ‘infinity’. We shall see that the process of conformal
compactification allows us to investigate the structure of these points and
leads to another picture called a Penrose diagram.

18.4 Penrose diagram for Minkowski
space-time

We shall introduce the idea of a Penrose diagram by first of all considering
the procedure for Minkowski space-time. This will provide a prototype
for other solutions. The essential idea is to start off with ametric gab, which
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Fig. 18.5 The function tan−1(x) maps (−∞,∞) onto (−π/2, π/2).

we call the physical metric, and introduce another metric ḡab, called the
unphysical metric, which is conformally related to gab, that is,

ḡab = Ω2 gab, (18.12)

where Ω is the conformal factor. Then, by a suitable choice of Ω2, it
may be possible to ‘bring in’ the points at infinity to a finite position
and hence study the causal structure of infinity. As we found in Exercise
6.29, the null geodesics of conformally related metrics are the same. The
null geodesics determine the light cones, which in turn define the causal
structure. The essential idea for bringing in the points at infinity is to
use coordinate transformations involving functions like tan−1(x), which,
for example, maps the infinite interval (−∞,∞) onto the finite interval
(−π/2, π/2) (Fig. 18.5).

We introduce double null coordinates defined by

v = t + r, (18.13)

w = t− r, (18.14)

in which case the line element of Minkowski space-time becomes
(exercise)

ds2 = dvdw− 1
4 (v− w)2

(
dθ2 + sin2 θdϕ2) . (18.15)

From (18.13) and (18.14), it follows that r = 1
2 (v − w), and so the co-

ordinate range (−∞ < t < ∞, 0 ⩽ r < ∞) becomes (−∞ < v < ∞,
−∞ < w < ∞), with the requirement

r ⩾ 0 ⇒ v− w ⩾ 0 ⇒ v ⩾ w. (18.16)
v = constant

w = constant
t

r

Fig. 18.6 Space-time diagram of
Minkowski space-time.

The space-time diagram for Minkowski space-time is shown in Fig. 18.6.
We next define new coordinates p and q by
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p = tan−1v, (18.17)

q = tan−1w, (18.18)

with the coordinate ranges − 1
2π < p < 1

2π and − 1
2π < q < 1

2π, and where
by (18.16)

p ⩾ q. (18.19)

Then (18.15) becomes (exercise)

ds2= 1
4 sec

2psec2q
[
4dpdq− sin2 (p− q)

(
dθ2 + sin2 θ dϕ2)], (18.20)

and the line element of the unphysical metric is

ds̄2 = ḡab dx̄a dx̄b = 4dpdq− sin2 (p− q)
(
dθ2 + sin2 θ dϕ2) , (18.21)

with the conformal factor

Ω−2 = 1
4 sec2 p sec2 q.

Finally, we introduce the coordinates

t′ = p + q, (18.22)

r ′ = p− q, (18.23)

where the coordinate range is

−π < t′ + r ′ < π, (18.24)

−π < t′ − r ′ < π, (18.25)

r ′ ⩾ 0, (18.26)

the last condition resulting from (18.19). The unphysical line element is
now

ds̄2 = dt′2 − dr′2 − sin2r′
(
dθ2 + sin2 θ dϕ2) (18.27)

subject to the coordinate range (18.24)–(18.26).
The line element (18.27) is that of the Einstein static universe,

which we introduced in §13.3 and which we shall meet in more detail
in Part F. The topology of this solution is cylindrical, with the time co-
ordinate running along the generators of the cylinder. A cross-section of
the cylinder, t′ = constant, has the topology of a 3-sphere S3. Then the
coordinate range of the manifold is

−∞ < t′ < ∞, 0 ⩽ r ′ ⩽ π, 0 ⩽ θ ⩽ π, −π < ϕ ⩽ π, (18.28)
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where r ′ = 0, π and θ = 0, π are coordinate singularities. We shall discuss
this further in Part F, but for the moment it is sufficient to think of an S3 as
a three-dimensional generalization of a 2-sphere S2. In fact, the Einstein
static universe can be embedded as the cylinder

x2 + y2 + z2 + w2 = 1

in a five-dimensional flat space of signature −3 with line element

ds2 = dt2 − dx2 − dy2 − dz2 − dw2.

(Suppressing two dimensions, this is the more familiar equation of a
cylinder, namely, x2 + y2 = 1, in a three-dimensional space, but with a
Minkowski-type geometry ds2 = −dt2 + dx2 + dy2.) The Einstein static
universe then has line element (18.27) and coordinate range (18.28). We
have shown that Minkowski space-time is conformal to that part of the
Einstein static universe defined by the coordinate range (18.24)–(18.26).
This is depicted in Fig. 18.7. The coordinate range (18.24)–(18.26) de-
fines the diamond-shape region of the cylinder indicated. Thus, the whole
of Minkowski space-time has been shrunk or compacted into this finite
region. The process is called conformal compactification and the re-
gion is called compactified Minkowski space-time. The boundary of
this region represents the conformal structure of infinity for Minkowski
space-time. In terms of the coordinates p and q, it consists of the
following:

a null surface p = 1
2π called I +,

a null surface q = − 1
2π called I −,

a point (p = 1
2π , q = 1

2π) called i+,
a point (p = 1

2π , q = − 1
2π) called i0,

a point (p = − 1
2π , q = − 1

2π) called i−,
where I is pronounced ‘scri’ – short for script i. Then it can be shown
that all timelike geodesics originate at i− and terminate at i+. Similarly, null
geodesics originate at points of I − and end at points of I +, while space-
like geodesics both originate and end at i0 (but these rules are not satisfied
by non-geodesic curves). Thus, one may regard i+ and i− as representing
future and past timelike infinity, I + and I − as representing future
and past null infinity, and i0 as representing spacelike infinity. This
is illustrated in Fig. 18.8.

t´= 0

r´= 0

t´= �

t´= –�

r´= �

I –

I +

i 0

i +

i –

Fig. 18.7 Compactified Minkowski
space-time (two dimensions
suppressed).

A Penrose diagram is a space-time diagram of a conformally com-
pactified space-time. The Penrose diagram for Minkowski space-time is
shown in Fig. 18.9. The diagram shows the curves r = constant which
correspond to the histories of 2-spheres r = constant, and the curves
t = constant which correspond to timelike slices. Ingoing and outgoing
radial null geodesics are represented by the straight lines p = constant and
q = constant, making angles −45◦ and 45◦, respectively. A large class of
asymptotically flat space-times, which Penrose calls simple space-times,
can be analysed in a similar manner.
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r = 0

I +

I –

i 0 (regarded as one point)

p = constant

q = constant

Null geodesic

Timelike
geodesic

Spacelike
geodesic

i +

i –

Fig. 18.8 Origin and termination of geodesics in compactifiedMinkowski space-
time (one dimension suppressed).

r = 0

r = constant

t = constant

I –

I +

i 0

i –

i +

Fig. 18.9 Penrose diagram of
Minkowski space-time (two dimensions
suppressed).

18.5 Penrose diagram for the Kruskal
solution

The conformal compactification of the Kruskal solution may be obtained
by defining new advanced and retarded null coordinates in terms of the
null coordinates v′ and w′ of §18.2

v′′ = tan−1
[
v′/(2m)

1
2

]
, w′′ = tan−1

[
w′/(2m)

1
2

]
,

for the coordinate range

− 1
2π < v′′ < 1

2π,

− 1
2π < w′′ < 1

2π,

−π < v′′ + w′′ < π.

We omit the calculational details and simply present the Penrose diagram
in Fig. 18.10. Again, null geodesics and light cones have angles ±45◦

in the figure. Both regions I and I′ have their own future, past, and null
infinities. For any point outside r = 2m, an outward radial null geodesic
ends up at I + but an inward radial null geodesic ends up at the future
singularity. For any point lying inside r = 2m, both outward and inward
radial null geodesics end up on the future singularity.

We now take into account the fact that each point in the diagram rep-
resents a 2-sphere. Consider a 2-sphere S0 situated in region I which is
illuminated at some time. Then the photons at each point of S0 move
out in a 2-sphere and the envelope of these 2-spheres is again the two
2-spheres S1 and S2 as shown in Fig. 18.11. The area of S2 will be greater
than S0, which in turn will have a greater area than S1. However, if S0 lies
in region II, both wave fronts are imploding and the areas of S1 and S2
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Future singularity r = 0

Past singularity r = 0

II´

I´ I

II

I –

I –

i –i –

I +
I +

i 0i 0

i +i +

Fig. 18.10 Penrose diagram of the Kruskal solution.

will both be less than S0. Such a closed two-surface in which the light
rays converge in both directions is called a trapped surface. Simi-
larly, each point in region II′ represents a time-reversed trapped surface.
It turns out that it is precisely the existence of trapped surfaces which
lead in the singularity theorems to the existence of singularities. Note that
Hawking and Ellis call such a surface a “closed trapped surface” but we
prefer to use Penrose’s original terminology as there is not really such a
thing as an “open trapped surface”, since the convergence condition on
its own does not lead to trapping. For example the surface formed by
the intersection of two past null cones in Minkowski space satisfies the
convergence condition but is certainly not trapped.

In Fig. 18.12, we show the Penrose diagram for a collapsing spherical
star (compare with Figs. 17.13 and 17.14).

S1 S0 S2

Fig. 18.11 Spherical wave fronts
of an illuminated 2-sphere S0.

Polar
origin
r = 0

Event horizon
r = 2m

Empty space

Singularity r = 0
Trapped surface

I –

I +

Star
interior

Star
interior

Fig. 18.12 Penrose diagram of
spherically symmetric gravitational
collapse.

Exercises

18.1 (§18.2) Show that Schwarzschild space-time can be written in the
form (18.1) subject to (18.2) in double null coordinates. [Hint: use
(17.23) and (17.25)].

18.2 (§18.2) Show that (18.6) and (18.7) lead to the form (18.9) subject
to (18.8).

18.3 (§18.2) Show that radial null geodesics make angles of ±45◦ with
the x′-axis in the Kruskal space-time diagram.

18.4 (§18.2) Where can observers from Universes I and I′ meet in the
Kruskal solution? What is their ultimate fate?
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18.5 (§18.4) Show that Minkowski space-time takes the form (18.15) in
double null coordinates.

18.6 (§18.4) Show that Minkowski space-time takes the form (18.20)
under the coordinate transformations (18.17) and (18.18).

18.7 (§18.4) Draw a diagram of the region in the (t′, r ′)-plane described
by the inequalities (18.24) and (18.25). What subregion satisfies (18.26)
as well?

18.8 (§18.4) Write down the transformation from the usual Minkowski
coordinates (t, r) to (t′, r ′) given in (18.22) and (18.23). Find the
equations for the curves t = constant and r = constant in terms of t′

and r ′ and draw them in the Penrose diagram of Minkowski space-time.

18.9 (§18.5)Draw the analogue of Fig. 18.11 for a trapped surface. Draw
the corresponding figure for a 2-sphere in region II′.

18.10 (§18.5)Consider the transition fromFig. 18.10 to Fig. 18.12.What
has happened to regions I′ and II′ ?

Further reading

Again, the main source for this chapter is the book by Hawking and Ellis
(1973).

Hawking, S. W., and Ellis, G. F. R. (1973). The Large Scale Structure of
Space-Time. Cambridge University Press, Cambridge.
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19.1 The field of a charged mass point
In this chapter, we shall obtain and investigate the Reissner-Nordström
solution for a charged mass point. The importance of this solution is
that its structure is in many ways similar to that of the more complicated
Kerr solution describing rotating black holes, which we shall meet in the
next chapter. The approach we adopt is to look for a static, asymptot-
ically flat. spherically symmetric solution of the Einstein-Maxwell field
equations. The Einstein-Maxwell equations are

Gab = 8πTab, (19.1)

where Tab is the Maxwell energy-momentum tensor, which in source-free
regions is given by (12.57). In Exercise 13.3, we saw that this tensor is
trace-free, which, by (19.1), implies that the Ricci scalar vanishes (exer-
cise). We can therefore also work with the equivalent equations to (19.1),
namely,

Rab = 8πTab. (19.2)

In addition, the Maxwell tensor Fab must satisfy Maxwell’s equations in
source-free regions

∇bFab = 0, (19.3)

∂[aFbc] = 0. (19.4)

The assumption of spherical symmetrymeans that we can introduce coor-
dinates (t, r, θ,ϕ) in which the line element reduces to the canonical form
(15.37), namely,

ds2 = eνdt2 − eλdr2 − r2(dθ2 + sin2θdϕ2), (19.5)

where ν and λ are functions of t and r. If we next impose the condition
that the solution is static, then this requires that ν and λ are functions of
r only, namely,

ν = ν(r), λ = λ(r). (19.6)

The assumption that the field is due to a charged particle, which we take to
be situated at the origin of coordinates, means that the line element and the

Introducing Einstein’s Relativity. Second Edition. Ray d’Inverno and James Vickers, Oxford University Press.
© Ray d’Inverno and James Vickers (2022). DOI: 10.1093/oso/9780198862024.003.0019
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Maxwell tensor will become singular there. Moreover, the charged parti-
cle will give rise to an electrostatic field which is purely radial (Fig. 19.1).
This means that the Maxwell tensor must take on the form (exercise)

Fab = E(r)


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 . (19.7)

O

Fig. 19.1 Radial electrostatic field of a
charged point particle.

Plugging the assumptions (19.5)–(19.7) in (19.3) and (19.4), we find
(exercise) that (19.4) is satisfied automatically and (19.3) reduces to one
equation, namely,

(e−
1
2 (ν+λ)r2E)′ = 0, (19.8)

where the prime indicates differentiation with respect to r. This integrates
to give

E = e
1
2 (ν+λ)ε/r2, (19.9)

where ε is a constant of integration. Our assumption that the solution is
asymptotically flat requires

ν,λ→ 0 as r→ ∞, (19.10)

and so E ∼ ε/r2 asymptotically. This latter result is exactly the same as the
classical result for the electric field of a point particle of charge ε situated
at the origin. We therefore interpret ε as the charge of the particle.

We now use (19.5) to (19.9) together with (12.57) to compute the
Maxwell energy momentum tensor Tab. Plugging this into the field
equations (19.2), we find that the 00 and 11 equations lead to

λ′ + ν′ = 0, (19.11)

which by (19.10) results in λ = −ν. The 22 equation is the one remaining
independent equation and it leads to

(reν)′ = 1− ε2/r2 , (19.12)

which integrates immediately to give

eν = 1− 2m/r + ε2/r2 , (19.13)

where m is a constant of integration. We have finally obtained the
Reissner-Nordström solution
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ds2 =
(
1− 2m

r
+
ε2

r2

)
dt2−

(
1− 2m

r
+
ε2

r2

)−1

dr2−r2(dθ2+sin2 θdϕ2).

(19.14)

When ε = 0, this reduces to the Schwarzschild line element (15.52), and
so we again identify m as the geometric mass. In deriving this solu-
tion, we have, in addition to assuming spherical symmetry, also assumed
the solution is static and asymptotically flat. In fact, as in the case of the
Schwarzschild solution, it is not necessary to adopt these last two as-
sumptions: they are forced on you. The full calculation is similar to the
Schwarzschild case but rather longer, which is why we have omitted it.
There is therefore an analogue to Birkhoff ’s theorem.

Theorem: A spherically symmetric exterior solution of the Einstein-
Maxwell field equations is necessarily static.

19.2 Intrinsic and coordinate singularities
Consider the coefficients

g00 = −(g11)−1 = 1− 2m/r + ε2/r2 = Q(r)/r2,

where

Q(r) = r2 − 2mr + ε2. (19.15)

The discriminant of the quadratic Q is

∆ = m2 − ε2,

and, if this is negative, i.e. ε2 > m2, the quadratic has no real roots and is
positive for all values of r. Hence, it follows that the line element (19.14)
is non-singular for all values of r except at the origin r = 0. The solution
possesses an intrinsic singularity at r = 0 – as can be shown by calculating
the Riemann invariant RabcdRabcd – which is not surprising, since this is
where the point charge producing the field is located. The more interest-
ing case occurs when, ε2 ⩽ m2, for then the metric has singularities when
Q vanishes, namely, at r = r+ and r = r−, where

r± = m± (m2 − ε2)
1
2 . (19.16)

In Fig. 19.2, we plot g00 in the case ε2 < m2 and compare it with the
Schwarzschild coefficient Sg00 = 1− 2m/r.

The line element (19.14) is regular in the regions:
I. r+ < r < ∞,
II. r− < r < r+,
III. 0 < r < r−.
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r
r_ r+

r = 0

1

g00

Sg00

2m

Fig. 19.2 Graphs of g00 for Reissner-Nordström and Schwarzschild solutions.

If ε2 = m2, then only the regions I and III exist. The regions are sepa-
rated by the null hypersurfaces r = r+ and r = r−. The situation at r = r+
is rather similar to the Schwarzschild case at r = 2m. The coordinates
t and r are timelike and spacelike, respectively, in the regions I and III,
but interchange their character in region II. Thus, regions I and III are
static, but region II is not. As in the case of the Schwarzschild solution,
these coordinates suggest that the regions I, II, and III appear totally dis-
connected because the light cones have totally different orientations on
either side of the null hypersurfaces r = r±. We will not pursue the struc-
ture of the solution in these coordinates further, but rather proceed as
we did with the Schwarzschild solution and look for the analogue of the
Eddington-Finkelstein coordinates.

19.3 Space-time diagram of the
Reissner-Nordström solution

In the next two sections, we restrict our attention to the important case
ε2 < m2. We first find the equation for the congruence of ingoing ra-
dial null geodesics (exercise). Then, defining for r > r+ the new time
coordinate

t̄ = t +
r2+

r+ − r−
ln(r− r+)−

r2−
r+ − r−

ln(r− r−), (19.17)

the line element takes on the form (exercise)

ds2 = (1− f)d̄t2 − 2fd̄tdr− (1 + f)dr2 − r2(dθ2 + sin2 θdϕ2), (19.18)

where, for convenience, we define
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f = 1− g00 = 2m/r− ε2/r
2
. (19.19)

This form of the metric is regular for all positive values of r and again has
an intrinsic singularity at r = 0. The conditions for radial null geodesics
are

θ̇ = ϕ̇ = ds2 = 0. (19.20)

These lead to (exercise) the ingoing family of null geodesics

t̄ + r = constant, (19.21)

and the outgoing family whose differential equation is

d̄t
dr

=
1 + f
1− f

. (19.22)

We do not, in fact, need to solve this equation exactly since our aim is
to draw a space-time diagram, in which case it is sufficient to use the
equation to obtain qualitative information about the slope for different
values of r. The graphs of 1+f and 1−f are shown in Fig. 19.3. At infinity, f
vanishes and so the slope is 45◦, as we would expect for an asymptotically
flat solution. As we come in from infinity, 1+f increases and 1−f decreases
and so the slope increases until, at r = r+, 1 − f vanishes and the slope
becomes infinite. In region II, the slope increases from −∞ at r = r+ to
some maximum negative value at r = ε2/m, and then decreases again
to −∞ as r approaches r−. In region III, the slope decreases from +∞ to
1, where the graphs cross, and continues decreasing to zero, where the
graph 1 + f crosses the r-axis. The slope then decreases through negative
values until it reaches −1 at the origin. With this information, we can
draw the space-time diagram in Fig. 19.4. It is clear from the light cones
at r = r+ that no light signal can escape from region II to region I. Thus,
the surface r = r+ is an event horizon. In region II, the light cones are
inclined towards the singularity r = 0, and hence any particle entering
region II will move necessarily towards the centre until it either crosses
r = r− or reaches it asymptotically. In the region III, the light cones are no

1

1 –  f

1 + f

r+r–
r

Fig. 19.3 Graphs of the functions 1 + f and 1− f.
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r

III

Singularity
r = 0

II
I

r = r+

r = r–

t

Fig. 19.4 Reissner-Nordström solution (ε2 < m2) in advanced Eddington-
Finkelstein-type coordinates.

longer inclined towards the centre and consequently particles need not fall
into the singularity. In fact, the opposite occurs in that neutral particles
cannot reach the singularity, as we shall next show.

19.4 Neutral particles in
Reissner-Nordström space-time

To consider the motion of a neutral test particle , we shall investigate a
radial timelike geodesic, the conditions for which are

θ̇ = ϕ̇ = 0, ṡ2 = 1, (19.23)

where dot denotes differentiation with respect to the proper time τ . Defin-
ing the covariant 4-velocity ua = gabdxb/dτ , we find that the geodesic
equations lead to a first integral of the motion (exercise)

u0 = constant, (19.24)

and a remaining equation which can be written in the form

ṙ 2 = A, (19.25)

where

A = u20 − g00. (19.26)
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r_ r+ r
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Fig. 19.5 Bounded and unbounded motion of a neutral particle.

We can investigate what qualitative forms of motion are possible by
plotting the curve of g00 against r and drawing in lines parallel to the r-axis
a distance u20 from it, for various values of u20 (Fig. 19.5). Consider first the
case when u20 < 1. Then the line intersects the graph of g00 at two points
P and Q in regions I and III, respectively. At these points, A vanishes by
(19.26), and (19.25) then shows that ṙ = 0. Moreover, from (19.25),
the left-hand side of the equation is positive, from which it follows that
A must be positive. Therefore, by (19.26), motion is only possible when
u20 ⩾ g00. It follows that the motion is bounded between the two values
r = rP and r = rQ. Similar arguments show that, if u20 > 1, then unbounded
motion is possible, but there is a minimum distance of approach r = rR
in region III. Thus, the point charge at the origin produces a potential
barrier, which means that a neutral free particle can only approach within
a certain distance before being repelled.

According to Fig. 19.4, once a particle is in region III, it cannot cross
r = r− but can only reach it asymptotically. However, it can be shown that
if a particle reaches r = r− then it does so in finite proper time. The dia-
gram is misleading in exactly the same way as the Schwarzschild diagram
in Schwarzschild coordinates (Fig. 17.7) is misleading in describing what
happens to a radially infalling free particle in region I. Thus, the manifold
described by the line element (19.18) is not maximal and needs extending
in analogy with the Kruskal case.

19.5 Penrose diagrams of the maximal
analytic extensions

In this section, we again restrict attention to the physically important case
in which ε2 < m2. Then, following the example of the Kruskal extension
of Schwarzschild described in §18.2, we start by introducing double null
coordinates in the exterior region r > r+ given by

v = t + r∗, w = t− r∗, (19.27)

where

r∗ = r +
r2+

r+ − r−
ln(r− r+)−

r2−
r+ − r−

ln(r− r−). (19.28)
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Then we find the line element (19.18) takes on the double null form
(exercise)

ds2 =
(
1− 2m

r
+
ε2

r2

)
dυ dw− r2(dθ2 + sin2θdϕ2), (19.29)

where r(v,w) is defined implicitly using 1
2 (v− w) = r∗ and (19.28).

We now define new coordinates

v′ = exp
(
r+ − r−

2r2+
v
)

, w′ = − exp
(
r− − r+

2r2+
w
)

, (19.30)

which transforms the line element into the form

ds2 =
4r4+(r− r−)

1+r2−/r
2
+

r2(r+ − r−)
2 exp

(
r− − r+
r2+

r
)

dυ′dw′

− r2(dθ2 + sin2 θdϕ2), (19.31)

where r(v′,w′) is now defined implicitly by

v′w′ = − exp
(
r+ − r−

2r2+
r
)
(r− r+)1/2(r− r−)

−r2−/2r
2
+ . (19.32)

This line element is the analogue of the Kruskal solution and represents
the maximal analytic extension of the Reissner-Nordström solution for
ε2 < m2.

The Penrose diagram for this maximal extension is obtained by setting

v′′ = arctan v′, w′′ = arctanw′ (19.33)

and is shown in Fig. 19.6.
This time, the maximal extension gives rise to an infinity of ‘new

universes’. There are an infinite number of asymptotically flat regions
I where r > r+. These are connected by intermediate regions II and III
where r− < r < r+ and 0 < r < r−, respectively. Region III possesses an
intrinsic singularity at r = 0 but, unlike the Kruskal solution, it is timelike
and so can be avoided by a future-directed timelike curve from region I
which crosses r = r+. A timelike curve is drawn in Fig. 19.6 which starts in
a particular region I, passes through regions II, III, and II and re-emerges
into another asymptotically flat region I. This gives rise to the highly spec-
ulative possibility that it may be possible to travel to other universes by
passing through the ‘wormholes’ produced by charges. Unfortunately, it
would seem as though it would not be possible to return. However, there
is the possibility of identifying regions I (giving rise to a more compli-
cated topology), so that a particle could then re-emerge from the black
hole through the horizon r = r+. Whether or not the particle emerges
into the same part or a different part of the universe will depend on how
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Fig. 19.6 Penrose diagram for maximal analytic extension (ε2 < m2).

the identification is made. A particle crossing the event horizon r = r+
would appear to suffer an infinite red shift to an observer who remains
in region I. In region II, each point represents a trapped surface. The
extended solution possesses a very bizarre property in that any observer
crossing the surface r = r− would see the whole of the remaining history
of the asymptotically flat region I in a finite time! Objects crossing into this
region would therefore be infinitely blue-shifted, which suggests that the
surface r = r− would be unstable to small perturbations. This is a topic of
current research. The line element (19.31) has a coordinate singularity at
r = r−. It is therefore necessary to introduce new null coordinates (in fact,
an infinity of such coordinates) in order to ‘patch’ the manifold together.
We shall not pursue this further.

The case ε2 = m2 can be extended similarly and the Penrose diagram
is shown in Fig. 19.7. The remaining case ε2 > m2 is inextendible and the
Penrose diagram is shown in Fig. 19.8.
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Fig. 19.7 Penrose diagram for the case ε2 = m2.
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Fig. 19.8 Penrose diagram for the
case ε2 > m2.

Exercises

19.1 (§19.1) Show that the Einstein–Maxwell equations can be written
in the equivalent form (19.2) in source-free regions.

19.2 (§19.1) Given the definition (12.28) of the Maxwell tensor in
Minkowski coordinates (t, x, y, z), find its components in spherical polar
coordinates (t, r, θ,ϕ). Hence confirm the ansatz (19.7).

19.3 (§19.1) Show that the assumptions (19.5)–(19.7) lead to the result
that (19.4) is satisfied automatically and (19.3) reduces to (19.8). [Hint:
You may need to use equation (7.10)]

19.4 (§19.1) Use (19.5)–(19.8) and (12.57) to compute the energy-
momentum tensor Tab, in terms of ν, λ and ε. Show that the two
independent Einstein-Maxwell field equations are (19.11) and (19.12).
Hence obtain the Reissner-Nordström solution.

19.5 (§19.2) Establish Fig. 19.2.

19.6 (§19.2) Establish the character of the coordinates t and r in (19.14)
for ε2 < m2 in the regions I, II, and III. Find the surfaces of infinite red
shift.

19.7 (§19.2) Draw a retarded Eddington-Finkelstein space-time diagram
for the Reissner–Nordström solution.
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19.8 (§19.3) Find the equation for the congruence of ingoing radial null
geodesics for the line element (19.14) in the case ε2 < m2.

19.9 (§19.3) Draw a space-time diagram for the Reissner–Nordström
solution in the coordinates of (19.14) for ε2 < m2. What happens to the
diagram when ε2 = m2?

19.10 (§19.3) Show that (19.17) transforms (19.14) into the form
(19.18). Show that the two families of radial null geodesics are given by
(19.21) and (19.22).

19.11 (§19.3) Show that the transformations

t̄ = t +
r2+

r+ − r−
ln(r+ − r)−

r2−
r+ − r−

ln(r− r−)

for r− < r < r+,

t̄ = t +
r2+

r+ − r−
ln(r+ − r)−

r2−
r+ − r−

ln(r− − r)

for 0 < r < r−, transform (19.14) for ε2 < m2 into the form (19.18).

19.12 (§19.3) Show that the transformations

t̄ = t +m ln(r−m)2 − m2

r−m
, if ε2 = m2,

t̄ = t +m ln(r2 − 2mr− ε2) +
2m2 − ε2

(ε2 −m2)1/2
tan−1 r−m

(ε2 −m2)1/2
,

if ε2 > m2.

transform (19.14) into the form (19.18).

19.13 (§19.3) Find the advanced Eddington–Finkelstein form of the
Reissner-Nordström solution.

19.14 (§19.3) Consider the graphs of 1+ f and 1− f in Fig. 19.3. Where is
the slope d̄t/dr a maximum in region II? Where is the slope zero in region
III? What is the slope at the origin?

19.15 (§19.4) Show that the equation for a radial timelike geodesic for
the solution (19.14) in the case ε2 < m2 leads to (19.24) and (19.25).

19.16 (§19.5) Show that the transformation (19.27) transforms the line
element (19.18) into the form (19.29). Show that the transformation
(19.30) transforms (19.29) into the form (19.31) subject to (19.32).

19.17 (§19.5) Consider the world-line of the observer in Fig. 19.6 em-
anating from the point P, and the histories of all timelike geodesics in
the region I containing P. Hence show that the observer will see all the
remaining history of these geodesics as the horizon r = r− is crossed.
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Further reading

As before, the main source for this chapter is Hawking and Ellis (1973).

Hawking, S. W., and Ellis, G. F. R. (1973). The Large Scale Structure of
Space-Time. Cambridge University Press, Cambridge.
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20.1 Null tetrads
In this chapter, we shall investigate the Kerr solution, which describes
rotating black holes. It turns out to be a rather long process to solve Ein-
stein’s vacuum equations directly for the Kerr solution. We shall, instead,
describe a ‘trick’ of Newman and Janis for obtaining the Kerr solution
from the Schwarzschild solution. This same trick can then be applied to
the Reissner-Nordström solution to obtain the Kerr–Newman solution,
the most general solution for a charged rotating black hole. In order to
discuss this approach, we start by introducing the very important idea of
a null tetrad.

In §10.5, we met the idea of a tetrad eia of one timelike and three space-
like vectors. In fact, these tetrads, or frames, possess a formalism of their
own called the frame formalism, which has proved extremely useful in
many applications in general relativity. One of the most important cases
is when the tetrad vectors are taken to be null vectors. The systematic
use of null tetrads is the basis of the ‘Newman–Penrose’ formalism, or
NP formalism for short, which has been used extensively in the study of
gravitational radiation, among other topics. In this section, we shall restrict
our attention to the definition of a null tetrad.

We start with four linearly independent vector fields eia, where i serves
to label the vectors. Then, working at a point, we define a matrix of scalars
gij called the frame metric, by

gij = gab eiaejb. (20.1)

Since eia are linearly independent and gab is non-singular, it follows that
the matrix gij is non-singular and hence invertible. We therefore define its
inverse gij, the contravariant frame metric, by the relation

gij gjk = δki . (20.2)

We then use the frame metric to raise and lower frame indices in the same
way that we use the metric tensor to raise and lower tensor indices. It is
then easy to verify that the inverse relationship to (20.1) is

gab = gij eiaejb. (20.3)

Introducing Einstein’s Relativity. Second Edition. Ray d’Inverno and James Vickers, Oxford University Press.
© Ray d’Inverno and James Vickers (2022). DOI: 10.1093/oso/9780198862024.003.0020
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In §10.5, we took the tetrad to consist of one timelike vector Ta and
three spacelike vectors Xa, Ya and Za, say, in which case the orthonor-
mality relations lead to

gij = ηij = diag(1,−1,−1,−1),

where the frame metric is the Minkowski metric ηij. We now take

e0a = ℓa =
1√
2
(Ta +Xa) , (20.4)

e1a = na =
1√
2
(Ta −Xa) , (20.5)

in which case ℓa and na are null vectors (Fig. 20.1), that is,

ℓaℓa = nana = 0, (20.6)

and satisfy the normalization condition

ℓana = 1. (20.7)

ℓa

Ta

na

ia

Fig. 20.1 The null vectors na and ℓa.

Then, if we take e2a = Y a and e3a = Z a, the orthonormality relations
(20.1) lead to the frame metric

gij =


0 1 0 0
1 0 0 0
0 0 −1 0
0 0 0 −1

 . (20.8)

Finally, it is advantageous to introduce a complex null vector defined by

ma =
1√
2
(Ya + iZa) , (20.9)

together with its complex conjugate

m̄a =
1√
2
(Ya − iZa) . (20.10)

It is then easy to verify (exercise) that the vectors are null,

mama = m̄am̄a = 0, (20.11)

and satisfy the normalizing condition

mam̄a = −1. (20.12)
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If we choose

(e0a, e1a, e2a, e3a) = (ℓa, na,ma, m̄a) , (20.13)

then this defines a null tetrad with frame metric

gij =


0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

 . (20.14)

Thus, writing out (20.3) explicitly, we have decomposed gab into products
of the null tetrad vectors according to

gab = ℓanb + ℓbna −mam̄b −mbm̄a. (20.15)

The contravariant form of this equation is

gab = ℓanb + ℓbna −mam̄b −mbm̄a. (20.16)

20.2 The Kerr solution from a complex
transformation

The Schwarzschild solution in advanced Eddington-Finkelstein coordi-
nates is given by (17.24). The non-zero components of the contravariant
metric gab are found to be (exercise)

g01 = −1, g11 = −
(
1− 2m

r

)
, g22 = − 1

r2
, g33 = − 1

r2 sin2 θ
.

(20.17)

It is straightforward to check, using (20.16), that the contravariant metric
may be written in terms of the following null tetrad:

ℓa = (0, 1, 0, 0) = δa1,

na =
(
−1, − 1

2 (1− 2m/r) , 0, 0
)
= −δa0 − 1

2 (1− 2m/r)δa1,

ma =
1√
2 r

(
0, 0, 1,

i
sin θ

)
=

1√
2 r

(
δa2 +

i
sin θ

δa3

)
.


(20.18)

The ‘trick’ starts by allowing the coordinate r to take on complex values
and the tetrad is rewritten in the form

ℓa = δa1,

na = −δa0 − 1
2

[
1−m

(
r−1 + r̄−1)]δa1,

ma =
1√
2 r̄

(
δa2 +

i
sin θ

δa3

)
,

 (20.19)
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where throughout this procedure we keep ℓa and na real and ma and m̄a

complex conjugate to each other. We next formally perform the complex
coordinate transformations

v→ v′ = v + ia cos θ, r→ r′ = r + ia cos θ, θ → θ′, ϕ→ ϕ′,
(20.20)

on the null tetrad. Then, if we require that v′ and r′ are real, we obtain the
following tetrad (exercise):

ℓ′
a = δa1,

n′a = −δa0 −
1
2

(
1− 2mr′

r′2 + a2cos2θ

)
δa1,

m′a =
1√

2 (r′ + ia cos θ)

(
− ia sin θ (δa0 + δa1) + δ

a
2 +

i
sin θ

δa3

)
.


(20.21)

These are the components of the null tetrad for the promised Kerr solu-
tion and the contravariant components of the metric can then be read off
using (20.16).

20.3 The three main forms of the Kerr
solution

The procedure of the last section gives rise to the following line element
(dropping the prime on r)

ds2 =
(
1− 2mr

ρ2

)
dυ2 − 2 dυ dr +

2mr
ρ2

(
2asin2 θ

)
dυ dϕ̄ + 2a sin2 θ drdϕ̄

− ρ2 dθ2 −
((
r2 + a2

)
sin2 θ +

2mr
ρ2

(
a2 sin4 θ

))
dϕ̄2, (20.22)

where

ρ2 = r2 + a2 cos2 θ, (20.23)

and, for later convenience, we have replaced ϕ by ϕ̄. This is ob-
tained by complexifying the advanced Eddington-Finkelstein form of
the Schwarzschild solution, and so we shall term (20.22) the advanced
Eddington-Finkelstein form of the Kerr solution. To obtain the
analogue of the Schwarzschild form, we carry out the coordinate trans-
formation (to be explained later) from the old coordinates (v, r, θ, ϕ̄) to
new coordinates (t, r, θ,ϕ). It turns out to be easier to work with the coor-
dinate differentials rather than the coordinates themselves, in which case
the transformation is given by

dv = dt + dr = dt +
2mr +∆

∆
dr, (20.24)

dϕ̄ = dϕ +
a
∆

dr, (20.25)
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where

∆ = r2 − 2mr + a2, (20.26)

and r and θ remain unchanged. This leads to the form of Kerr’s solution
called the Boyer–Lindquist form, namely,

ds2 =
∆

ρ2
(
dt− a sin2 θ dϕ

)2 − sin2 θ

ρ2
[(
r2 + a2

)
dϕ− adt

]2
− ρ2

∆
dr2 − ρ2 dθ2. (20.27)

In fact, neither (20.22) nor (20.27) was the form in which Kerr originally
discovered the solution. He used Cartesian-type coordinates (t̄, x, y, z) to
obtain the Kerr form

ds2 = d̄t2 − dx2 − dy2 − dz2

− 2mr3

r4 + a2z2

(
dt̄ +

r
a2 + r2

(xdx + ydy)

+
a

a2 + r2
(ydx− xdy) +

z
r
dz
)2

, (20.28)

where

t̄ = v− r,

x = r sin θ cosϕ + a sin θ sinϕ,

y = r sin θ sinϕ− a sin θ cosϕ,

z = r cos θ.

 (20.29)

This line element has the general form

ds2 = ηab dxa dxb − λℓa ℓb dxa dxb, (20.30)

where the vector ℓa is null with respect to theMinkowski metric ηab, that is,

ηab ℓ
a ℓb = 0. (20.31)

In the particular case of the Kerr form (20.28), we have

λ =
2mr3

r4 + a2 z2
, (20.32)

and

ℓa =
(
1,
rx + ay
a2 + y2

,
ry− ax
a2 + y2

,
z
r

)
. (20.33)
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In the special case of the Schwarzschild solution, this reduces to

λ = 2m/r, (20.34)

and

ℓa = (1, x/r, y/r, z/r) . (20.35)

Indeed, it was precisely by considering metrics of the form (20.30) sub-
ject to (20.31) that Kerr originally found the solution; see Adler et al.
(1975) for the details. We shall now attempt to gain some physical insight
into the Kerr solution, and in so doing we shall make use of all three
forms, namely, the Eddington-Finkelstein, Boyer–Lindquist, and Kerr
versions of the solution, which is why we have collected them together
in this section.

20.4 Basic properties of the Kerr solution
The Boyer–Lindquist form is the most useful one for investigating the el-
ementary properties of the Kerr solution. First of all, it is clear that the
solution depends on the two parameters m and a. If we set a = 0, we re-
gain the Schwarzschild solution in Schwarzschild coordinates and so m
is identified as the geometric mass. The metric coefficients in (20.27)
are independent of both ϕ and t, and hence the solution is both axially
symmetric with Killing vector field ∂/∂ϕ, and stationary, at least in
the exterior region r > rS+ where ∂/∂t is a timelike Killing vector – see
equation (20.46). To say that a solution is axially symmetric means that
there exists an invariantly defined axis (which in coordinate terms we take
to be the z-axis or θ = 0) such that the solution is invariant under rotation
about this axis. Equivalently, the orbits of the Killing vector field ∂/∂ϕ,
namely, the curves t = constant, r = constant, θ = constant, are circles.
These are the only continuous symmetries. As for discrete symmetries,
the solution is not symmetric separately under time reflection or ϕ reflec-
tion (reflection in the xz-plane), but it is invariant under the simultaneous
inversion of t and ϕ, that is, under the transformation

t→ −t, ϕ→ −ϕ. (20.36)

This suggests that the Kerr field may arise from a spinning source, since
running time backwards with a negative spin direction is equivalent to
running time forwards with a positive spin direction. Again, the line
element is invariant under

t→ −t, a→ −a,

which suggests that a specifies a spin direction.
A third property which lends support to the spinning source interpre-

tation is the presence in these canonical (t,ϕ)-coordinates of a cross-term
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involving dtdϕ (the only cross-term present). Let us consider in New-
tonian theory two frames Oxyz and Ox′y′z′ whose origins and z-axes
coincide, in which the primed frame is rotating relative to the unprimed
frame with constant angular velocity ak (Fig. 20.2). Then a point P has
cylindrical coordinates (r,ϕ, z) and (r′,ϕ′, z′) relative to the two frames,
where

r′ = r, ϕ′ = ϕ− at, z′ = z. (20.37)

If we take Oxyz to be inertial, then this represents a transformation to
a rotating frame. Now write flat space in cylindrical polar coordinates
(t, r,ϕ, z), namely,

ds2 = dt2 −
(
dr2 + r2 dϕ2 + dz2

)
, (20.38)

and carry out the coordinate transformation (20.37) to a ‘rotating frame’
(leaving t unchanged). The line element (20.38) becomes (exercise)

ds2 =
(
1− a2 r2

)
dt2 − 2ar2 dϕ′ dt−

(
dr2 + r2 dϕ′2 + dz2

)
, (20.39)

φ′

φ

φ = a

O

x

z

r

z z′

P

x′

y′

y

Fig. 20.2 Primed frame rotating
about the z-axis of unprimed frame.

which, as we see, also possesses a cross-term in dϕ′dt. This is somewhat
imprecise since we have not discussed rigid rotation in special relativity
(nor shall we). The argument presented is merely suggestive of rotation.
Nor have we said anything precise yet about the coordinates r and θ in
(20.27). Indeed, r is not the usual spherical polar radial coordinate except
asymptotically (althoughwe shall retain r to agree with standard notation).
For, if we take (x, y, z) in (20.28) to be the usual Cartesian coordinates,
then the standard spherical polar coordinate R is defined by

R2 = x2 + y2 + z2, (20.40)

and hence, from (20.29),

R2 = r2 + a2 sin2 θ. (20.41)

However, for r� a (exercise)

R = r +
a2 sin2 θ

2r
+ · · · , (20.42)

which shows that R and r coincide asymptotically. They also coincide in
the Schwarzschild limit a → 0. Further, it follows from the Kerr form
(20.28) that

gab → ηab as R→ ∞,

so that the Kerr solution is asymptotically flat.
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If we return to the idea that the Kerr solution represents a vacuum
field exterior to a spinning source, then there are a number of indepen-
dent arguments to suggest that a is related to the angular velocity and
ma to the angular momentum (as measured at infinity). One argument
involves comparing the Kerr solution with a solution due to Lense and
Thirring for the gravitational field exterior to a spinning sphere of con-
stant density in the weak-field limit. Another argument is based on the
definition of the multipole moments of an isolated source. There are dif-
ficulties associated with this latter work because a number of different
definitions have been proposed (indeed, an infinitude of them); however,
they all lead to the angular momentum being proportional to ma for the
Kerr metric. We have already seen that, in the weak-field limit, the 1/R
term in g00 determines the total mass of the field. It is also possible to
show that, in certain circumstances, the 1/R terms in g0α (α = 1, 2, 3) de-
termine the components of the angular momentum. Expanding the Kerr
solution (20.28) in powers of 1/R, we find

ds2 =
(
1− 2m

R
+ · · ·

)
dt2 − 4ma

R3 (xdy− ydz)dt + · · · , (20.43)

which again suggests that the total angular momentum is proportional
to ma.

20.5 Singularities and horizons
Calculation of the Riemann invariant RabcdRabcd reveals that this diverges
as ρ→ 0, indicating that ρ = 0 is an intrinsic singularity. Since

ρ2 = r2 + a2 cos2 θ = 0,

this is when r = 0 and cos θ = 0. It then follows from (20.29), (20.40),
and (20.41), that this occurs when

x2 + y2 = a2, z = 0. (20.44)

This singularity is, rather surprisingly, a ring of radius a lying in the
equatorial plane z = 0.We have only considered how to calculate the grav-
itational red shift in a static space-time, but it can be shown that the
surfaces of infinite red shift in the Kerr solution are again given by the
vanishing of the coefficient g00. From (20.27), we find

g00 =
(
r2 − 2mr + a2 cos2 θ

)
/ρ2, (20.45)

and so the surfaces of infinite red shift are

r = rS± = m±
(
m2 − a2 cos2 θ

) 1
2 . (20.46)
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In the Schwarzschild limit, a→ 0, the surface S+ reduces to r = 2m, and
S− to r = 0. The surfaces are axially symmetric, with S+ possessing a
radius 2m at the equator and (assuming a2 < m2) a radius m+ (m2 − a2) 1

2

at the poles, and the surface S− being completely contained inside S+.
We shall primarily be concerned with the physically more interesting case
a2 < m2, when the spin is small compared with the mass.

The existence of these infinite red-shift surfaces imply the existence of
a null event horizon as follows. The Killing vector field

X a = (1, 0, 0, 0),

has magnitude

X 2 = XaX a = gabX aX b = g00.

It follows from (20.45) and (20.46) that Xa is timelike outside S+ and
inside S−, null on S+ and S−, and spacelike between S+ and S−. In anal-
ogy with the Schwarzschild solution, we search for the event horizon by
looking for the hypersurfaces where r = constant becomes null, that is,
where g11 vanishes. From the Boyer–Lindquist form (20.27), we find
(exercise)

g11 = −∆

ρ2
= − r

2 − 2mr + a2

r2 + a2 cos2 θ
,

and hence g11 vanishes when

∆ = r2 − 2mr + a2 = 0,

which results in two null event horizons (assuming a2 < m2).

r = r± = m±
(
m2 − a2

) 1
2 . (20.47)

Then, in a similar way in which the Reissner-Nordström solution is reg-
ular in three regions, the Kerr solution is regular in the three regions:

I. r+ < r < ∞,
II. r− < r < r+,
III. 0 < r < r−.

In the Schwarzschild limit, a → 0, and the two event horizons reduce to
r = 2m and r = 0, from which it follows that, in the Schwarzschild solu-
tion, the surfaces of infinite red shift and the event horizons coincide. The
event horizon r = r+ lies entirely within S+, giving rise to a region between
the two called the ergosphere, the properties of which we shall discuss
in §20.11. The various surfaces and the ring singularity are illustrated in
Fig. 20.3.
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Fig. 20.3 The event horizons, stationary limit surface, and ring singularity of
the Kerr solution.

We end this section by summarizing the properties we have met so far.
The Kerr vacuum solution:

1. is stationary in the exterior region;

2. is axisymmetric;

3. is invariant under the discrete transformations

t→ −t, ϕ→ −ϕ, and t→ −t, a→ −a;

4. has geometric mass m;

5. represents the field exterior to a spinning source where the spin of
the field is related to a and the angular momentum to ma;

6. is asymptotically flat;

7. has a ring singularity at

x2 + y2 = a2, z = 0;

8. has two surfaces of infinite red shift S+ and S− given by

r = m± (m2 − a2 cos2 θ)
1
2 ;

9. in the case a2 < m2, has two event horizons at r+ and r− given by

r± = m± (m2 − a2)
1
2 .
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20.6 The principal null congruences
The Kerr solution is no longer spherically symmetric and so we no longer
expect that there are any curves corresponding to radial null geodesics.
This is because, in a loose sense, we expect a rotating source to ‘drag’
space around with it and consequently drag the geodesics with it. The sit-
uation is very different from what happens in Newtonian theory, where,
if one was investigating a source rotating about the z-axis, say, one could
transfer to a frame rotating with the source and so reduce it to rest.
However, one cannot do this in general relativity because it is not pos-
sible to find a coordinate system which reduces the Kerr solution to the
Schwarzschild solution. Put another way, the nonlinear field equations
couple the source to the exterior field.

Since the metric is axially symmetric, we might expect to obtain null
geodesics which lie in the hypersurface θ = constant. We therefore search
for null geodesics for which

θ̇ = ds2 = 0, (20.48)

where the dot denotes differentiation with respect to an affine parameter
and where, throughout, θ is kept constant. We use the Boyer–Lindquist
form (20.27), and then the fact that the metric coefficients are indepen-
dent of t and ϕmeans that the Euler-Lagrange equations immediately lead
to first integrals of the motion. These are

∆

ρ2

(
ṫ− a sin2 θ ϕ̇

)
+
a sin2 θ

ρ2

[(
r2 + a2

)
ϕ̇− aṫ

]
= L,

(20.49)

a∆ sin2 θ

ρ2

(
ṫ− a sin2 θ ϕ̇

)
+

(
r2 + a2

)
sin2 θ

ρ2

[(
r2 + a2

)
ϕ̇− aṫ

]
= N,

(20.50)

where L andN are constants of integration. We have another first integral
from the condition ds2 = 0, namely,

∆

ρ2

(
ṫ− a sin2 θ ϕ̇

)2
− sin2 θ

ρ2

[(
r2 + a2

)
ϕ̇− aṫ

]2
− ρ2 ṙ2

∆
= 0. (20.51)

Finally, we have the Euler-Lagrange equation corresponding to x2 = θ
and, using the fact that θ̈ = 0 from (20.48), this becomes

a2∆
ρ4

(
ṫ− a sin2 θ ϕ̇

)2
− 2a∆ϕ̇

ρ2

(
ṫ− a sin2 θ ϕ̇

)
− r2 + a2

ρ4

[(
r2 + a2

)
ϕ̇− aṫ

]2
+
a2ṙ2

∆
= 0. (20.52)

Since (20.49), (20.50), (20.51), and (20.52) represent four equations
in the three unknowns ṫ, ṙ, and ϕ̇, it follows that there must exist some
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constraint between L and N. Some algebra reveals that the constraint is
(exercise)

(
N + aL sin2 θ

) (
N− aL sin2 θ

)
= 0, (20.53)

where θ is constant. Restricting attention to the condition

N− aL sin2 θ = 0, (20.54)

the system of equations can be solved for ṫ, ṙ, and ϕ̇ to give

ṫ =
(
r2 + a2

)
L/∆, (20.55)

ṙ = ±L, (20.56)

ϕ̇ = aL/∆. (20.57)

We have therefore found two null congruences corresponding to the two
signs in (20.56). Moreover, (20.56) shows that r is an affine parameter
along each congruence. Choosing ṙ = +L, we get

dt
dr

=
ṫ
ṙ
=
r2 + a2

∆
, (20.58)

and

dϕ
dr

=
ϕ̇

ṙ
=
a
∆

. (20.59)

If we restrict our attention to the case a2 < m2, these equations can be
immediately integrated to give (exercise)

t = r +

m +
m2

(m2 − a2)
1
2

 ln |r− r+|

+

m− m2

(m2 − a2)
1
2

 ln |r− r−| + constant, (20.60)

and

ϕ =
a

2(m2 − a2)
1
2

ln
∣∣∣∣ r− r+
r− r−

∣∣∣∣ + constant. (20.61)

Using the fact that∆ > 0 in regions I and III, and∆ < 0 in region II, then
it follows from (20.58) that dr/dt > 0 in region I, and so this congruence
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is called the principal congruence of outgoing null geodesics. The
solution corresponding to ṙ = −L is again given by (20.60) and (20.61)
if we simply replace t by −t and ϕ by −ϕ, and so is called the principal
congruence of ingoing null geodesics. The solutions reduce to the
Schwarzschild congruences (17.10) and (17.11), respectively, in the limit
a→ 0, as we should expect.

These two congruences play the same role as the null radial congru-
ences do in the Schwarzschild solution. They give information about the
radial variation of the light cone structure in that the most outgoing and
most ingoing null lines – those for which |dr/dt| is a maximum at any
point – are members of the principal null congruences. We can draw a
space-time diagram of the light cones using these equations and we find
in region I a diagram analogous to Fig. 17.7 with the light cones narrow-
ing down as r→ r+. On r = r+, both t and ϕ become infinite, suggesting,
as in the Schwarzschild solution, that r = r+ is a coordinate singularity.
We therefore proceed as we did in the Schwarzschild solution and look
for the analogue of the Eddington-Finkelstein coordinate system.

20.7 Eddington-Finkelstein coordinates
We use the principal null congruences to obtain a coordinate transforma-
tion which extends the solution through r = r+. We could work explicitly
with the equations of the congruence (20.60) and (20.61), but it turns
out to be simpler to work with them in the differential form (20.58) and
(20.59), that is,

dt = − r
2 + a2

∆
dr, (20.62)

dϕ = − a
∆

dr, (20.63)

for the ingoing congruence. In the Schwarzschild case, we looked for a
transformation to new coordinates (t̄, r, θ,ϕ) in which the equations for
the ingoing radial null congruence take on the simpler differential form

dt̄ = −dr, dθ = dϕ = 0. (20.64)

Proceeding similarly in the Kerr case, we search for a transformation
to new coordinates (t̄, r, θ, ϕ̄) in which the principal ingoing congruence
reduces to

dt̄ = −dr, dθ = dϕ̄ = 0. (20.65)

Using (20.58) and (20.59), the requisite transformations are (exercise)
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Fig. 20.4 Kerr solution (a2 < m2) in advanced Eddington–Finkelstein type coordinates.

t→ t̄ where d̄t = dt +
2mr
∆

dr, (20.66)

ϕ→ ϕ̄ where dϕ̄ = dϕ +
a
∆

dr. (20.67)

If we define an advanced time coordinate

v = t̄ + r, (20.68)

where t̄ is obtained by integrating (20.66), then the Boyer–Lindquist line
element is transformed into (20.22), the advanced Eddington-Finkelstein
form of the Kerr solution. We will look at how to extend this in §20.9.
The two-dimensional space-time diagram for this solution is given in
Fig. 20.4 (compare this with the Reissner-Nordström space-time dia-
gram, Fig. 19.4).
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20.8 The stationary limit
Consider the set of null curves in the region I given by

dr = dθ = ds2 = 0. (20.69)

Then the Boyer–Lindquist line element reduces to

∆

ρ2
(
dt− a sin2 θdϕ

)2 − sin2 θ

ρ2
[
(r2 + a2)dϕ− adt

]2
= 0,

and solving for dϕ/dt produces

dϕ
dt

=
a sin θ ±∆

1
2

(r2 + a2) sin θ ± a∆
1
2 sin2 θ

. (20.70)

These curves are not geodesics, but are tangent to world-lines of photons
initially constrained to orbit the source with fixed r and θ. The positive
sign in (20.70) leads to dϕ/dt > 0, that is, the photon orbits the source in
the same direction as the rotation of the source. We now investigate when
it is possible for dϕ/dt ⩽ 0, in which case we must restrict attention to the
negative sign in (20.70). In region I,

r > r+ ⇐⇒ (r2 + a2) sin2 θ − a∆
1
2 sin2 θ > 0,

so that the denominator of (20.70) is positive. Hence (exercise),

dϕ
dt

⩽ 0 ⇐⇒ a sin θ −∆
1
2 ⩽ 0 ⇐⇒ r ⩾ rS+ . (20.71)

Thus, on S+, the derivative dϕ/dt is zero, and hence any particle on this
hypersurface attempting to orbit the source against its direction of rota-
tion must travel with the local speed of light just to remain stationary (that
is, to be precise, stationary relative to a stationary observer at infinity). In
the ergosphere, the light cones tip over in the direction of ϕ increasing to
such an extent that photons and particles are forced to orbit the source in
the direction of its rotation. It is because of this that the infinite red-shift
surface S+ is also termed the stationary limit surface. The stationary
limit surface is a timelike surface except at the two points on its axis, where
it is null and where it coincides with the event horizon r = r+. Where the
surface is timelike, the light cone structure reveals that it can be crossed
by particles in either the ingoing or the outgoing direction. These prop-
erties are most clearly revealed in a spatial diagram of the Kerr solution
(a2 < m2) in the equatorial plane (Fig. 20.5).



382 Rotating black holes

Ergosphere

Ring singularity

Event horizon r = r–

Stationary limit
surface S+

Event horizon
r = r+

Fig. 20.5 Spatial diagram of the Kerr solution (a2 < m2) in the equatorial plane.

20.9 Maximal extension for the case a2<m2

The Kerr metric can be extended by using advanced and retarded
Eddington-Finkelstein coordinates

du± = dt± r2 + a2

∆
dr, dϕ± = dϕ± a

∆
dr

in a manner analogous to the Reissner-Nordström case, where the maxi-
mal extension is built up by a combination of these extensions. The global
structure is very similar to that of the Reissner-Nordström solution except
that now one can continue through the ring singularity to negative values
of r. Figure 20.6 shows the conformal structure of the solution along the
symmetry axis (θ = 0) for the case a2 < m2. Note that, on the sym-
metry axis, the event horizons and surfaces of infinite redshift coincide.
The regions I (r+ < r < ∞) are stationary asymptotically flat regions
exterior to the outer event horizon. The regions II (r− < r < r+) are non-
stationary and each point in one is a trapped surface (see §18.5). The
regions III (−∞ < r < r−) contain the ring singularity, which is timelike
and hence avoidable. This region also contains closed timelike curves.
Such curves violate causality and would seem highly unphysical since, if
they represent world-lines of observers, then these observers would travel
back and meet themselves in the past! There is no causality violation in
the regions I and II. In the limiting case a2 = m2, the event horizons r+
and r− coincide and there are no regions II. The maximal extension is
similar to that of the Reissner-Nordström solution when ε2 = m2 and its
conformal structure along the symmetry axis is shown in Fig. 20.7.
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20.10 Maximal extension for the case
a2>m2

In the case a2 > m2, we find that ∆ > 0 and the Boyer–Lindquist form
of the Kerr solution (20.27) is regular everywhere except at r = 0, where
there is a ring singularity. The coordinate r, by (20.29), can be determined
in terms of x, y and z from

r4 − (x2 + y2 + z2 − a2)r2 − a2z2 = 0.

For r 6= 0, the surfaces r = constant are confocal ellipsoids in a slice
t = constant which degenerate to the disc x2 + y2 ⩽ a2, z = 0 when r = 0.
The ring singularity is the boundary of this disc. The function r can be an-
alytically continued frompositive to negative values through the interior of
the disc to obtain a maximal analytic extension of the solution. To do this,
one attaches another surface with coordinates (x′, y′, z′), where a point on
the top side of the disc is identified with a point with the same x- and
y- coordinates on the bottom side of the corresponding disc in the
(x′, y′, z′)-surface, and similarly for points on the bottom of the disc (see
Fig. 20.8). The line element (20.27) then extends to this larger manifold
and has the same form on the (x′, y′, z′)-region, but r is now negative.
Then on circling twice round the ring singularity, for example, one passes
from the (x, y, z)-region, where r is positive, to the (x′, y′, z′)-region,
where r is negative, and back to the (x, y, z)-region. At large negative val-
ues of r, the space is again asymptotically flat, but this time it has negative
mass.

For a small value of r near the singularity, the vector ∂/∂ϕ is time-
like so the circles t = constant, r = constant, θ = constant are timelike
curves. These closed timelike curves can be deformed to pass through
any point of the extended space, so that the solution badly violates causal-
ity. The solution is geodesically incomplete at the ring singularity, but the
only timelike and null geodesics which reach this singularity are those in
the equatorial plane on the positive-r side. This leads to another bizarre
property of the solution. The event horizons have now disappeared, but
an intrinsic space-time singularity still exists at the ring and now it is pos-
sible for information to escape from the singularity to the outside world,
provided it spirals around sufficiently (Fig. 20.9). In short, the singularity
is visible, in all its nakedness, to the outside world. Such a singularity is
called a naked singularity. If naked singularities exist, then they open up
a whole new realm for wild speculation, so much so that Penrose has sug-
gested the existence of the cosmic censorship hypothesis, whichwould
forbid the existence of naked singularities but would only allow singulari-
ties to be hidden behind event horizons. There exist various mathematical
formulations of this hypothesis and attempts to establish under what con-
ditions, if any, the various cosmic censorship hypotheses hold have been,
and remain, an area of active research (Christodoulou 2008).
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Fig. 20.9 The Kerr solution
(a2 > m2) as a naked singularity.

20.11 Rotating black holes
We consider the ideal case of a rotating star whose exterior field is given by
the Kerr solution for 0 < a2 < m2. Intuitively, we may think of the source
as a rotating sphere or ellipsoid of matter, but as we have indicated before
there is as yet, despite considerable efforts, no known physically realistic
interior Kerr solution. (Perhaps the existence of a ring singularity suggests
that we might be able to fill in the Kerr solution with a toroidal rather
than a spherical source.) Nonetheless, we envisage this source collapsing
through the event horizon r = r+ to give rise to a black hole. As before,
any observer following the collapse through r = r+ will be unable to return
to their original region I. The collapse will necessarily continue through
r = r− and any observer in region II must follow the collapse through
to region III. A difference arises in the rotating case, as compared with
the non-rotating case, in that the collapse may now halt. The maximal
extension then suggests that an observer in region III is able to escape
into a new asymptotically flat region I. We shall return to the question of
a more physically realistic collapse situation later.

In order to obtain the most general black hole solution, we apply
the Newman–Janis trick of §20.2 to the Reissner-Nordström solution
in advanced Eddington-Finkelstein coordinates (see Exercise 19.13),
namely,

ds2 =
(
1− 2m

r
+
ε2

r2

)
dr2 − 2dvdr− r2(dθ2 + sin2 θdϕ2).

We find the result (exercise)
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ds2 =
(
1− 2mr

ρ2
+
ε2

ρ2

)
dυ2 − 2dυdr +

2a
ρ2
(
2mr− ε2

)
sin2 θ dυdϕ̄

+ 2a sin2 θdrdϕ̄− ρ2 dθ2

−
[(
r2 + a2

)2 − (r2 − 2mr + a2 + ε2
)
a2 sin2 θ

] sin2 θ

ρ2
dϕ̄2, (20.72)

which is theKerr–Newman solution in advanced Eddington-Finkelstein
coordinates. The solution clearly depends on the three parameters m, a,
ε, defining the mass, spin, and charge, respectively. It is stationary and
axisymmetric, and possesses a stationary limit surface

r = m +
(
m2 − ε2 − a2 cos2 θ

) 1
2 , (20.73)

and, provided that a2 + ε2 ⩽ m2, an outer event horizon

r = m +
(
m2 − ε2 − a2

) 1
2 . (20.74)

Fig. 20.10 A black hole has no hair.

It has properties analogous to theKerr solution, but we shall not pursue
the details further.

If we consider a realistic collapse of a charged rotating black hole, then
the Kerr–Newman solution will not represent the true geometry exterior
to the star at early times. This is because, if the star has not gone far
down the road to collapse, it will not possess the symmetries of station-
arity and axisymmetry. Gravitational moments will arise from mountains
and other asymmetries. However, if an event horizon develops, then these
asymmetries will be radiated away. In fact, a remarkable theorem has been
proved which states that, if an event horizon develops in an asymptoti-
cally flat space-time, then the solution exterior to this horizon necessarily
approaches a Kerr–Newman solution asymptotically in time. Thus, we
have remarkably complete information as to the asymptotic state of affairs
resulting from a gravitational collapse.

Detailed considerations of gravitational collapse suggest the following
picture. A body, or collection of bodies, collapses down to a size compara-
ble to its Schwarzschild radius, after which a trapped surface can be found
in the region surrounding the matter. Some way outside the trapped sur-
face there is another surface which will ultimately form the event horizon.
But at present this surface is still expanding somewhat. Its exact location
is a complicated affair and it depends on how much more matter or radi-
ation falls in. We assume only a finite amount falls in. Then the expansion
of the absolute event horizon gradually slows down to stationarity. Thus,
when a black hole is created by gravitational collapse, it rapidly settles
down to a stationary state that is characterized by the three parameters
m, ε, and a. Apart from these three properties, the black hole preserves
no other details of the object that collapsed. Wheeler has termed this the
theorem that ‘a black hole has no hair’. If you’ve seen one, you’ve seen
them all! Wheeler depicts this rather humorously by a picture in which
a vase of flowers and a television set fall into a black hole (Fig. 20.10).
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Once the system has settled down, the only quantities which may have
altered are m, ε, and a. All details of the objects swallowed up are oblit-
erated. Considering the time reversal of this situation, we see that, if you
happen to be an astronaut travelling in space and you suddenly see a vase
of flowers and a television set pop out of nowhere, then you know you are
in the vicinity of a white hole – a rather ‘hairy’ prospect!

Penrose has suggested that it might be possible to extract energy from a
rotating black hole as follows. A particle is fired into the ergosphere, where
it decays into two products, one falling into the black hole and the other
escaping outside the stationary limit. Calculations reveal that the escap-
ing component can contain more mass-energy than the original particle.
This is possible because the angular momentum of the black hole is re-
duced in the process, which corresponds to a transfer of energy to the
matter that escapes. The reduction in energy due to the loss of angular
momentum of the rotating black hole is converted into the energy ex-
tracted by the particle that escapes. This leads to a fanciful suggestion that
an advanced civilization could live near a rotating black hole and develop
some mechanism for extracting their energy requirements from the black
hole’s rotation (Fig. 20.11). The way in which energy can be extracted
from a spinning black hole is similar to the quantum mechanical effect of
superradiance of electromagnetic radiation from a spinning metal sphere,
and in 1971 Zel’dovich suggested that a Kerr solution should produce
similar quantum effects and ought to radiate in a similar way. However,

Particle
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Energy
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unit

Framework
surrounding
black hole
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event
horizon

Matter
in

Energized
matter
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Fig. 20.11 Living off a rotating black hole.
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as we will see in §20.14, Hawking showed that rotation is not necessary
to produce this effect and that all black holes radiate if one takes such
quantum effects into account.

20.12 The definition of mass in general
relativity

In the previous section, we described the ‘no-hair’ theorem which says
that the most general black hole solution is described in terms of just three
quantities, the mass, the angular momentum, and the charge. We looked
at these quantities for some special black hole solutions but did not say
how to define them for a general space-time. In Newtonian theory, one
can compute the mass of an object simply by integrating the mass den-
sity ρ. However, as we explain in the next chapter in §21.8, there is no
corresponding definition of the mass-energy density in general relativity.
However it turns out that it is possible to write down the total mass of an
asymptotically flat space-time. Before considering the definition of mass,
we consider the simpler concept of charge in electromagnetism in order
to motivate the construction.

In the presence of charges and currents, we need to modify the first of
Maxwell’s equations (19.3) to include a source term. This gives

∇bF ab = j a. (20.75)

The term ja encodes the sources of the electromagnetic field and, for an
observer with 4-velocity na, then jana is a measure of the charge density.
Now suppose we have a spacelike hypersurface Σ extending to infinity
and consider a topological two sphere U enclosing a region V on Σ (see
Fig 20.12). Then we can compute the total charge Q by integrating the
charge density jana over V

Q =
∫
V
j ana

√
γd3x. (20.76)

Here γ is the determinant of the positive definite 3-metric induced on Σ
(see Chapter 14) and na is the unit normal to Σ, so that j ana measures the
charge density as measured by Eulerian observers. Using (20.75) and the

V
U = ∂V

Fig. 20.12 Charge given by an integral of the charge density over the volume V.
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divergence theorem, we have

Q =
∫
V
∇bF abna

√
γd3x (20.77)

=
∫
U
F abnamb

√
σd2x, (20.78)

where mb is a unit normal to U and σ is the determinant of the 2-metric
induced on the surface U. If we now consider the limit as U goes out to
infinity, we obtain an expression for the total charge that depends on the
asymptotic behaviour of F ab

Qtotal =
∫
S
F abnamb

√
σd2x, (20.79)

where S is now a sphere at infinity. Because the space-time is asymptoti-
cally flat, the metric tends to that of Minkowski space, which, in spherical
polar coordinates, is just

ds2 = dt2 − dr2 − r2(dθ2 + sin2 θdϕ2). (20.80)

This enables us to write (exercise)

Qtotal =
∫ π

θ=0

∫ 2π

ϕ=0
F trr2 sin θdθdϕ. (20.81)

We now show that the above expression gives us the expected result for
a point charge q located at the origin in Minkowski space. The solution
of Maxwell’s equation for a point charge is (exercise) F tr = q/4πr2 (in
Lorentz–Heaviside units) so we have

Qtotal =
∫ π

θ=0

∫ 2π

ϕ=0

q
4πr2

r2 sin θdθdϕ = q, (20.82)

as we wanted.
We now describe a similar method for calculating the total mass of a

space-time due toKomar.We first suppose that the space-time is station-
ary with timelike Killing vector Ka. If we make an analogy between the
electromagnetic field and the gravitational field and consider the object

J a := RabKb, (20.83)

one can construct a mass–energy

Etotal =
1
4π

∫
Σ

J ana
√
γd3x, (20.84)

where we have included the normalization factor of 1/4π, for reasons that
will be clear later. However, as we showed in Exercise 7.14 any Killing
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vector satisfies the identity

∇a(∇bKa) = RabKa. (20.85)

Hence J a = RabKb = ∇b(∇aKb). Thus,

Etotal =
1
4π

∫
Σ

J ana
√
γd3x

=
1
4π

∫
Σ

∇b(∇aKb)na
√
γd3x

=
1
4π

∫
S
(∇aKb)namb

√
σd2x, (20.86)

again by the divergence theorem. We now show that, in the case of
the Schwarzschild solution, (20.86) gives the mass m. To see this, we
note that, for the Schwarzschild solution (in Schwarzschild coordinates),
Ka = (1, 0, 0, 0). The normal na only has a time component n0 but satisfies
gabnanb = 1 so

1 = g00n0n0 = (1− 2m/r)(n0)2.

Similarly, ma only has a radial component and satisfies gabmamb = −1 so
that

1 = −g11m1m1 = (1− 2m/r)−1(m0)2.

Hence,

na = (1− 2m/r)−1/2δa0, (20.87)

ma = (1− 2m/r)1/2δa1. (20.88)

Thus, (∇aKb)namb = namb∇aKb = ∇0K1. However,

∇0K1 = ∂0K1 − Γa01Ka = −Γ0
01K0 = −g00Γ0

01. (20.89)

For the Schwarzschild solution, the last term is simply m/r2 so that
substituting into (20.86) we get

Etotal =
1
4π

∫ π

θ=0

∫ 2π

ϕ=0

m
r2
r2 sin θdθdϕ = m, (20.90)

which justifies the factor 1/4π in the definition (20.84). Thus, the Ko-
mar integral gives us the correct expression for the total mass of the
Schwarzschild solution. One can also show that it produces the Newto-
nian expression in the weak-field limit. This gives confidence that it is the
correct expression for the mass of a stationary space-time.

The construction of the Komar integral as given above involved the
existence of a timelike Killing vectorKa. However, we used the divergence
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theorem to convert the volume integral into a surface integral at spacelike
infinity. We may therefore apply the Komar integral to define the mass
of an asymptotically flat space-time where K is now only an asymptotic
Killing vector (i.e. a Killing vector of Minkowski space). This enables us
to define the Komar mass-energy of an asymptotically flat space-time
as being given by

EKomar =
1
4π

∫
S
(∇aKb)namb

√
σd2x, (20.91)

where Ka is a timelike asymptotic Killing vector and S is a 2-surface
at infinity.

An alternative expression which comes from looking at the ADM
Hamiltonian (see §14.11) is the ADMmass-energy. For an asymptotically
flat space-time where gab → ηab as r → ∞, we may write gab = ηab + hab,
where hab → 0 as r → ∞. The ADM mass-energy can also be written
in the form of a boundary integral at infinity as (Arnowitt, Deser, and
Misner 1959)

EADM =
1

16π

∫
S

(
∂jhji − ∂ihjj

)
mi√σd2x, where i, j = 1, · · · , 3.

(20.92)

Provided hij is time-independent, then this agrees with the Komar re-
sult. An important result, first established by Schoen and Yau, is the
positive energy theorem, which says that, as long as the dominant en-
ergy condition holds, any asymptotically flat space-time has non-negative
ADM mass-energy and that the only space-time with zero ADM mass is
Minkowski space.

20.13 The singularity theorems
Although the Schwarzschild solution was known as early as 1916, it was
regarded as describing the exterior region of a star, so neither the coor-
dinate singularity at r = 2m nor the curvature singularity at r = 0 were
taken seriously. In fact, it was only in 1958 with the work of Finkelstein
that the modern interpretation of the Schwarzschild solution as a black
hole with a curvature singularity at r = 0 was accepted. However, al-
though it was realized that there existed various solutions of the Einstein
field equations which had singular behaviour of various kinds, the prevail-
ing view was that these singularities were the result of the high degree of
symmetry or were unphysical in some way. This position changed con-
siderably with the work of Penrose, who showed in his 1965 paper that
deviations from spherical symmetry could not prevent gravitational col-
lapse. This paper not only introduced the concept of trapped surface, but
introduced the notion of geodesic incompleteness to characterize a singu-
lar space-time. Thus, a space-time is singular if there exists the world-line
of a freely falling particle or photon (i.e. a timelike or null geodesic) which
comes to an end after a finite time (or affine parameter for a photon) and
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cannot be extended. So the space-time comes to an end and cannot be ex-
tended for such an observer. Shortly afterwards, Hawking realized that,
by considering a trapped surface to the past, one could show that an ap-
proximately homogeneous and isotropic cosmological solution must have
an initial singularity. There quickly followed a series of papers by Hawk-
ing, Penrose, Ellis, Geroch, and others which led to the development of
the modern singularity theorems, one of the greatest achievements within
modern general relativity. (See the review paper by Senovilla (2012) for
details.) The resulting theorems all had the same general framework de-
scribed by Senovilla as a ‘pattern singularity theorem’ which showed that
a space-time satisfying

• an appropriate initial and/or boundary condition,

• a condition on the curvature,

• a causality condition

contains endless but incomplete causal geodesics and is therefore singular.
To give some flavour of these conditions, we describe them below for

the Hawking–Penrose singularity theorem of 1970. The boundary condi-
tion is the existence of a trapped surface, that is a closed surface where the
gravitational field is so strong that even light rays emitted in an outward
direction from the surface are dragged inwards by the gravitational field.
The causality condition is that there are no closed timelike curves in the
space-time (i.e. curves that would allow travel into ones past). Finally, the
curvature condition is the convergence condition that

RabV aV b ⩾ 0 for every non-spacelike vector Va. (20.93)

The significance of this condition lies in the effect discovered by Ray-
chaudhuri (see equation (23.44)), which states that, provided this con-
dition is satisfied, whenever a system of timelike geodesics normal to a
spacelike hypersurface starts converging, then this convergence inevitably
increases along the geodesics until finally the geodesics focus (assum-
ing the geodesics are complete). However, this form of the curvature
condition does not have a clear physical interpretation so that one uses
the Einstein equations to replace this by the strong energy condition

TabV aV b ⩾ 1
2TgabV

aV b for every non-spacelike vector V a. (20.94)

If the energy-momentum tensor has energy density μ and principal
stresses pα (α = 1, 2, 3), then, for standard matter, the strong energy
condition can be expressed equivalently as

μ + pα ⩾ 0, μ +
3∑
1

pα ⩾ 0, (20.95)

which, for standard matter, is only violated if there are negative densities
or large negative pressures. There is a corresponding focusing effect in the



The singularity theorems 393

case of null geodesics (as used in Penrose’s 1965 theorem). This depends
on the null convergence condition (i.e. equation (20.93) but for null
vectors) which is implied by the weak energy condition which can be
expressed in the form

T abVaVb ⩾ 0 for every non-spacelike vector V a. (20.96)

For standard matter, this can be expressed equivalently as

μ ⩾ 0, μ + pα ⩾ 0, (20.97)

which is again only violated if there are negative densities or strong nega-
tive pressures. There is a sound physical basis for believing both (20.95)
and (20.97) and all standard matter satisfies them, but the justification is
not quite as compelling as it is for the dominant energy condition (12.64).

In addition, some of the theorems (such as the Hawking-Penrose
theorem) require a genericity condition, namely,

v[aRb]cd[evf]v
cvd 6= 0

somewhere along every timelike or null geodesic, where va is the tangent
vector. It is only in very special cases that we might expect this condition
to be violated.

The main significance of the theorems is that they show that the pres-
ence of space-time singularities in exact models is not just a feature of
their high symmetry, but can be expected in generically perturbedmodels.
This is not to say that all solutions are singular; in fact, many exact solu-
tions are known which are complete, that is, maximal and singularity-free.
But those which closely resemble the Kerr–Newman collapse models,
or the Friedmann cosmological models containing a big bang or big
crunch, or colliding plane gravitational waves, must be expected to be
singular. The theorems do not, however, say that the singularities need
look like those of Kerr–Newman, Friedmann, or colliding plane gravita-
tional waves; in fact, there is some evidence that generic singularities may
have a much more complicated structure, but little is known about this.
Note, however, that none of the theorems leads directly to the existence
of curvature singularities. Instead, one obtains the result that space-time
is not geodesically complete in timelike or null directions and, further-
more, cannot be extended to a geodesically complete space-time. The
most reasonable explanation would seem to be that space-time is con-
fronted with infinite curvature at its boundary. But the theorems do
not quite say this and other types of space-time singularities may be
possible.
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20.14 Black hole thermodynamics
and Hawking radiation

This book is concerned with classical relativity theory, and quantum con-
siderations are beyond its brief. However, we shall make an exception
and finish our treatment of black holes by describing in simple terms a
quantum effect which suggests that black holes are not the permanent
structures that the classical theory suggests. The surface area of the event
horizon of a black hole has the remarkable property that it always increases
when additional matter or radiation falls into the hole. Moreover, if two
black holes collide and merge to form a single hole, the area of the new
horizon is greater than the sum of the areas of the colliding holes. These
properties suggest there is a resemblance between the area of the event
horizon of a black hole and the concept of entropy in thermodynamics.
(Entropy can be regarded simply as a measure of the disorder of a system
or, equivalently, as a lack of knowledge of its precise state. The second
law of thermodynamics states that entropy always increases with time.)
Indeed, Hawking and collaborators discovered that the laws of thermo-
dynamics have exact analogues in the properties of black holes. The first
law relates the change in mass of a black hole to a change in area of the
event horizon. The factor of proportionality involved is a quantity called
the surface gravity, which is a measure of the strength of the gravitational
field at the event horizon. This suggests that surface gravity is analogous
to temperature and, indeed, it is a constant at all points on the event hori-
zon, just as the temperature is the same everywhere in a body at thermal
equilibrium.

How, more precisely, can the area of a black hole be related to the con-
cept of entropy? Well, the no-hair theorem implies that a large amount
of information is lost in a gravitational collapse. A black hole of given
mass, angular momentum, and charge could have been formed by the col-
lapse of any one of a large number of different configurations of matter.
If one now takes into account quantum effects, the uncertainty principle
requires that the number of configurations, although very large, must be
finite. The logarithm of this number is the measure of the entropy of the
hole and thus measures the information that was irretrievably lost during
the collapse through the event horizon when the black hole was created.
It follows that, if this number is finite, then the black hole must have a
finite temperature (proportional to its surface gravity), and so it could be
in thermal equilibrium with thermal radiation at some temperature other
than zero. Yet, according to classical concepts, no such equilibrium is pos-
sible, since the black hole would absorb any thermal radiation that fell on
it, but by definition would not be able to emit anything in return. This
paradox was eventually resolved by Hawking, who discovered that black
holes seem to emit particles at a steady rate: this is what is called ‘Hawking
radiation’. Hawking showed that a black hole would produce black-body
radiation with a temperature inversely proportional to the mass of the
black hole. In SI units, the radiation from a Schwarzschild black hole of
mass M is black-body radiation produced by an object with temperature

T =
ℏ c3

8πGkBM
, (20.98)
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Fig. 20.13 Hawking radiation.

where ℏ is the reduced Planck constant and kB is the Boltzmann constant
(see Chapter 26 for a discussion of black-body radiation). For a black
hole ofM solar masses, this works out as a temperature of about (M/M⊙)
× 6× 10−8 K.

Quantum mechanics implies that the whole of space is filled with pairs
of ‘virtual’ particles and antiparticles that are constantly materializing in
pairs, separating, and then coming together again and annihilating each
other. These particles are called virtual because they cannot be observed
directly with a particle detector (although they can be measured indirectly
by the ‘Lamb shift’ in the spectrum of hydrogen). Now, in the presence of
a black hole, the gravitational attraction will cause one member of a pair to
fall into the hole, leaving the other member without a partner with which
to undergo annihilation. This particle may also fall into the hole, but it
may also escape to infinity, where it appears to be radiation emitted by the
black hole. Equivalently, one may regard the member which falls into the
hole (the antiparticle, say) as being really a particle travelling backwards in
time. Then the motion of the antiparticle can be interpreted as a particle
coming out of the hole (travelling backwards in time) and, when it reaches
the point at which the particle–antiparticle pair originally materialized, it
is scattered by the gravitational field, so that it travels forward in time.
Thus, quantum mechanics does allow, in this interpretation, an escape of
particles from the hole – a form of quantum-mechanical ‘tunnelling’ (see
Fig. 20.13).
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This is a bit like the superradiance due to the Penrose process in which
energy is extracted from the black hole and emitted in the form of radia-
tion. However, crucially, it does not require the black hole to be rotating.
As a black hole emits particles, its mass and size steadily decrease. This
makes it easier for particles to tunnel out, and so the emission will continue
at an ever-increasing rate until eventually the black hole radiates itself out
of existence. In the long run, every black hole in the universe will evapo-
rate in this way. For large black holes, it will take a very long time indeed
(about 1067 years for a black hole the mass of the Sun). On the other
hand, a primordial black hole formed in the early universe should have
almost completely evaporated in the 10 billion years that have elapsed
since the big bang. Thus, mini-black holes may be exploding now and
may be the source of highly energetic gamma rays. Attempts have been
made to quantify this rate of production and to compare the predictions
with terrestrial observations of incident gamma radiation, but the results
are inconclusive.

Exercises

20.1 (§20.1) Show that the definitions (20.4) and (20.5) lead to (20.6),
(20.7), and (20.8). Show also that the definitions (20.9) and (20.10) lead
to (20.11), (20.12), (20.14), and (20.15) (see Exercise 8.3).

20.2 (§20.2) Find the covariant metric gab and contravariant metric
gab for the Schwarzschild line element (16.24) in advanced Eddington-
Finkelstein coordinates. Hence confirm (20.17) and (20.18).

20.3 (§20.2) Show that the transformations (20.20) applied to (20.19)
lead to (20.21) (keeping v′ and r′ real). Deduce the line element (20.22)
subject to (20.23).

20.4 (§20.3) Apply the transformations (20.24) and (20.25), subject to
(20.26) to the line element (20.22) to obtain the form (20.27).

20.5 (§20.3) Apply the transformations (20.29) and (20.24) to the dt̄2

terms in (20.28) (the Cartesian form of Kerr) to confirm they produce
the dt2 term (dropping bars) in (20.27) (the Boyer-Lindquist form of
Kerr).

20.6 (§20.3) Show that (20.28) can be written in the form (20.30), sub-
ject to (20.31), where λ and ℓa are defined by (20.32) and (20.33). Show
that, in the Schwarzschild limit, λ and ℓa become (20.34) and (20.35).
[Hint: ℓaℓbdxadxb = (ℓadxa)2.]

20.7 (§20.4) Show that the transformations (20.37) together with t′ = t
convert (20.38) into (20.39).

20.8 (§20.4) Show that the definition (20.40) leads to (20.41) and
(20.42). Deduce that the Kerr solution is asymptotically flat.
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20.9 (§20.5) Confirm Fig. 20.3.

20.10 (§20.5) Show that the stationary limit surface is timelike every-
where except at its poles.

20.11 (§20.5) Find g11 for the Boyer–Lindquist form of the Kerr solution
(20.27).

20.12 (§20.6) Confirm equations (20.49)–(20.52). Show that they lead
to (20.53). Why is it sufficient to consider the condition (20.54)? Check
the deductions (20.55), (20.56), and (20.57), and show that r is an affine
parameter. Obtain the geodesic equations (20.60) and (20.61).

20.13 (§20.7) Check that the transformations (20.66) and (20.67) map
the congruences (20.62) and (20.63) onto (20.65). [Hint: follow the same
procedure as in the Schwarzschild case.]

20.14 (§20.7) Confirm Fig. 20.4 and draw the retarded time version of
it.

20.15 (§20.8) Show that (20.69) leads to (20.70), and hence deduce
(20.71). [Hint: take second term in line element over to the right-hand
side and take square roots.]

20.16 (§20.11) Use the Newman–Janis trick to obtain the Kerr–Newman
solution (20.72) from the Reissner-Nordström solution. Investigate the
surfaces of infinite red shift and the event horizons (where present). [Hint:
use (20.16) to obtain g ab and then confirm that gabgbc = δca.]

20.17 (§20.12)
(i) Calculate na andma for Minkowski space and hence show that (20.79)
leads to (20.81).
(ii) Show that the solution of Maxwell’s equation for a point charge q at
the origin is F tr = q/4πr2. [Hint: see Exercise 19.2.]
(iii) Deduce that (20.81) leads to (20.82) and hence verify thatQtotal = q.

20.18 (§20.12) Use (20.92) to calculate the ADM mass for the
Schwarzschild solution. Hence show that EKomar = EADM = m for the
Schwarzschild solution.

Further reading

Again, the main source for this chapter is the book by Hawking and
Ellis (1973). The book by Chandrasekhar (1983) gives a comprehen-
sive discussion of the Kerr solution. The books by Carroll (2004) and
Wald (1984) discuss the concept of mass in more detail than other text-
books, and the book by Taylor and Wheeler (2000) gives a nice account
of the Penrose process. The book by Christodoulou (2010) gives a de-
tailed mathematical treatment of black holes and cosmic censorship, and
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the review paper by Senovilla (2011) is an excellent review of the singu-
larity theorems. The article by Wald (2001) gives full details of black hole
thermodynamics. See the article by Arnowitt, Deser, and Misner (1959)
for details of the ADM mass.
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Gravitational Waves





21Linearized gravitational
waves and their detection

21.1 The linearized field equations
Our consideration of gravitational radiation or gravitational waves (grav-
ity waves for short) starts from the pioneering work of Einstein and is
based on the linearized form of the field equations. In this approx-
imation, we shall see that plane wave solutions lead to the result that
gravitational waves are transverse and possess two polarization states.
Put another way, the gravitational field has two radiation degrees of
freedom. In the linearized approximation of the field equations, general
relativity is recast as a Lorentz-covariant theory. Considerable caution has
to be exercised in doing this because there are associated with it a num-
ber of limitations related to the definition of gravitational energy (the full
details of which are beyond the brief of this book), but nonetheless it does
throw some important light on the general theory.

We begin by assuming that the metric differs only slightly from the
Minkowski metric in Minkowski coordinates, that is,

gab = ηab + εhab, (21.1)

where ε is a small dimensionless parameter and, throughout, we shall
neglect terms of second order or higher in ε. In addition, we adopt
the boundary conditions that space-time is asymptotically flat, that is, if r
denotes a radial parameter, then

lim
r→∞

hab = 0. (21.2)

Defining

hab := ηacηbdhcd, (21.3)

then

(ηab + εhab)(ηbc − εhbc) = δca, (21.4)

from which we get

gab = ηab − εhab. (21.5)

Introducing Einstein’s Relativity. Second Edition. Ray d’Inverno and James Vickers, Oxford University Press.
© Ray d’Inverno and James Vickers (2022). DOI: 10.1093/oso/9780198862024.003.0021
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Since ηab is constant, we also have (exercise)

Γabc =
1
2g

ad(gdc,b + gdb,c − gbc,d)

= 1
2εη

ad(hdc,b + hdb,c − hbc,d)

= 1
2ε(h

a
c,b + hab,c − hbc,

a), (21.6)

where we make use of the result that, since this term is of order ε, we
can, using (21.1) and (21.5), raise and lower indices with the Minkowski
metric. The Riemann tensor then becomes

Rabcd = 1
2ε(had,bc + hbc,ad − hac,bd − hbd,ac). (21.7)

The Bianchi identities

Rab[cd;e] ≡ 0, (21.8)

are

Rab[cd,e] ≡ 0, (21.9)

and are identically satisfied by (21.7).
The Ricci tensor is (exercise)

Rab = ηcdRcadb = 1
2ε(h

c
a,bc + hcb,ac −□hab − h,ab), (21.10)

where

h := ηcdhcd = hcc, (21.11)

and □ is the d’Alembertian operator

□ := ηab∂a∂b

=
∂2

∂t2
−∇2

=
∂2

∂t2
−
(
∂2

∂x2
+
∂2

∂y2
+
∂2

∂z2

)
,

defined previously in (12.40). The Ricci scalar is

R = ε(hcd,cd −□h), (21.12)

and, finally, the Einstein tensor is

Gab = 1
2ε(h

c
a,bc + hcb,ac −□hab − h,ab − ηabhcd,cd + ηab□h). (21.13)
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In fact, the Einstein tensor can be found directly from the Lagrangian

L(hab,c) = 1
2ε(h

ab
,bhcc,a − hab,chcb,a + 1

2h
cd,ahcd,a − 1

2h
c
c,ahdd,a), (21.14)

using (exercise)

Gab =
δL
δhab

=
∂L
∂hab

−
(

∂L
∂hab,c

)
,c

= −
(

∂L
∂hab,c

)
,c
. (21.15)

21.2 Gauge transformations
Let us consider what happens to the linearized equations under a coordi-
nate transformation of the form

xa → x′a = xa + εξa. (21.16)

Then

∂x′a

∂xb
= δab + εξ

a
,b, (21.17)

and, applying this to the transformation formula for gab, (7.5), we find the
consequent transformation of hab (see exercise 11.1), namely,

hab → h′ab = hab − 2ξ(a,b). (21.18)

By analogy with electromagnetic theory (see (12.38)), this is called a
gauge transformation of hab. It is easy to establish (exercise) that
both the linearized curvature tensor (21.7) and its contractions are
gauge-invariant quantities, that is, unchanged to first order in ε by
transformations of the form (21.18).

Just as in electrodynamics, we may impose further conditions to fix the
gauge. Going back to the field equations, we observe that if new variables
ϕab are defined by

ϕab := hab − 1
2ηabh, (21.19)

then (21.10) becomes

Rab = 1
2ε(ϕ

c
a,bc + ϕ

c
b,ac −□hab), (21.20)
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and consequently

R = 1
2ε(2ϕ

cd
,cd −□h), (21.21)

and

Gab = 1
2ε(ϕ

c
a,bc + ϕ

c
b,ac −□ϕab − ηabϕ

cd
,cd). (21.22)

This suggests that our field equations will reduce to wave equations if
we impose the condition

ϕab,a = 0, (21.23)

or, in terms of hab,

hab,a − 1
2h,b = 0, (21.24)

which is called the Lorentz gauge (and is also known as the de Don-
der or harmonic gauge). A straightforward calculation (exercise) reveals
that, under the gauge transformation (21.16),

ϕab → ϕ′ab = ϕab − ξa,b − ξb,a + ηabξc,c, (21.25)

from which we find

ϕ′
a
b,a = ϕab,a −□ξb. (21.26)

It follows from (21.26) that the gauge transformation (21.16) will trans-
form the equations into the Lorentz gauge, that is,

ϕ′
a
b,a = 0,

if we choose ξa to satisfy

□ξa = ϕba,b. (21.27)

In other words, if we treat the ξa as unknowns, then the problem involves
solving wave equations with a source term. Then, by (21.22), Einstein’s
full field equations reduce to (dropping primes)

1
2ε□ϕab = −κTab. (21.28)

The gauge is not completely fixed by (21.27) because we can always carry
out additional transformations with

□ξa = 0, (21.29)

which leaves ϕab,a unaltered.
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The vacuum field equations in the Lorentz gauge reduce to

□ϕab = 0, (21.30)

and, taking the trace,

ηab□ϕab = □(ηabϕab) = □(h− 2h) = −□h = 0, (21.31)

by (21.19). Combining this result with (21.30) and (21.19), we find that
hab must also satisfy

□hab = 0, (21.32)

in the Lorentz gauge (21.24), which, in terms of hab, is

hab,a − 1
2h,b = 0. (21.33)

21.3 Linearized plane gravitational waves
Before we attempt to solve the linearized field equations, let us consider
what theoretical motivation there might be which suggests that gravita-
tional waves exist.We have seen that the linearized vacuum field equations
reduce to the wave equations

□hab = 0, (21.34)

in the Lorentz gauge, from which we might be tempted to conclude
that gravitational effects propagate as waves with the velocity of light.
However, this is open to the objection that the perturbation hab is linked
to an arbitrary coordinate system and therefore the existence of a non-
zero hab is not an invariant indication of the existence of a gravitational
field. A better argument is based on the fact that if (21.34) holds then,
by (21.7),

□Rabcd = 0, (21.35)

which is a wave equation for the gauge-invariant quantity Rabcd. Thus,
the Riemann tensor, which gives an absolute criterion for the existence
of a gravitational field, itself obeys the wave equation. It follows that, in
the linearized theory, gravitational effects propagate with the velocity of
light. This does not of itself, however, prove whether or not gravitational
radiation exists, since radiation involves energy transfer. We return to this
question later in the chapter and also in Chapter 23.

We now look for a special solution of the linearized vacuum field
equations which represents an infinite plane wave propagating in the
x-direction. We start by introducing the coordinates

(x0, x1, x2, x3) = (t, x, y, z)
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and adopt the ansatz

hab = hab(t, x), (21.36)

which requires

hab,2 = hab,3 = 0. (21.37)

This assumptionmeans that the Riemann tensor is highly degenerate and,
from (21.7), we find that the twenty independent components fall into the
following three groups of terms (exercise):

R0123 = R0223 = R0323 = R1223 = R1323 = R2323 = 0, (21.38)

R0101 = 1
2ε(2h01,01 − h00,11 − h11,00),

R0102 = 1
2ε(h02,01 − h12,00),

R0103 = 1
2ε(h03,01 − h13,00),

R0112 = 1
2ε(h02,11 − h12,01),

R0113 = 1
2ε(h03,11 − h13,01),


(21.39)

R0202 = − 1
2εh22,00,

R0203 = − 1
2εh23,00,

R0212 = − 1
2εh22,01,

R0213 = − 1
2εh23,01,

R0303 = − 1
2εh33,00,

R0313 = − 1
2εh33,01,

R1212 = − 1
2εh22,11,

R1213 = − 1
2εh23,11,

R1313 = − 1
2εh33,11.



(21.40)

We now impose the linearized vacuum field equations in the formRab = 0.
Then, for example,

R13 = Ra1a3 = R0103 = 0, (21.41)

so that one of the independent components of (21.39) vanishes. In fact,
the vacuum field equations result in all the group (21.39) vanishing (exer-
cise). Thus, only the components in the group (21.40) are non-zero and
these only involve the components h22, h23, and h33. This means that we
can decompose hab into two parts:

hab = h(1)ab + h(2)ab , (21.42)
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where

h(1)ab =


0 0 0 0
0 0 0 0
0 0 h22 h23
0 0 h23 h33

 , (21.43)

and

h(2)ab =


h00 h01 h02 h03
h01 h11 h12 h13
h02 h12 0 0
h03 h13 0 0

 . (21.44)

The vacuum field equations then lead to the result that the curvature
tensor of h(2)ab is identically zero. This suggests that there may exist a co-
ordinate system in which hab has only h22, h23, and h33 components; that
is, hab is a pure h(1)ab -type solution. We shall show that we can exploit the
gauge freedom to achieve this in the case of a plane wave.

We sharpen our ansatz (21.36) by requiring

hab = hab(t− x), (21.45)

so that it clearly represents a solution propagating in the x-direction with
the speed of light (see Fig. 21.1).

The Lorentz gauge conditions (21.33) then become

h00,0 − h01,1 − 1
2h,0 = 0,

h01,0 − h11,1 − 1
2h,1 = 0,

h02,0 − h12,1 = 0,

h03,0 − h13,1 = 0,

 (21.46)

z

y

x

Speed = 1

Fig. 21.1 The ansatz (21.45).
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or, letting a prime denote differentiation with respect to the argument t−x,
these can be written

h′00 + h′01 − 1
2h

′ = 0,

h′01 + h′11 + 1
2h

′ = 0,

h′02 + h′12 = 0,

h′03 + h′13 = 0,

These integrate to give

h00 + h01 − 1
2h = f1,

h01 + h11 + 1
2h = f2,

h02 + h12 = f3,

h03 + h13 = f4,

 (21.47)

where the f’s are all functions of y and z only. However, since the hab all
vanish at spatial infinity by (21.2), it follows that

f1 = f2 = f3 = f4 = 0.

Then (21.47) gives

h12 = −h02, h13 = −h03, h01 = − 1
2 (h00 + h11), h33 = −h22,

that is,

hab =


h00 − 1

2 (h00 + h11) h02 h03
− 1

2 (h00 + h11) h11 −h02 −h03
h02 −h02 h22 h23
h03 −h03 h23 −h22

 . (21.48)

We still have the remaining gauge freedom (21.18), where ξa satisfies
(21.29). Let us try and choose this so that

h′00 = h′02 = h′03 = h′11 = 0. (21.49)

Then, by (21.18), this requires

h00 − 2ξ0,0 = 0,

h02 − ξ0,2 − ξ2,0 = 0,

h03 − ξ0,3 − ξ3,0 = 0,

h11 − 2ξ1,1 = 0.

 (21.50)
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If we assume that

ξa = ξa(t− x), (21.51)

then (21.29) is automatically satisfied. We choose

(ξ0, ξ1, ξ2, ξ3) = (F0(t− x),F1(t− x),F2(t− x),F3(t− x)), (21.52)

where, setting u = t − x, we see that the functions F0, F1, F2, and F3

are all functions of u only and are determined by the ordinary differential
equations

dF0

du
= 1

2h00(u),
dF1

du
= − 1

2h11(u),
dF2

du
= h02(u),

dF3

du
= h03(u).

(21.53)
This choice satisfies (21.51) and (21.50), and, moreover, it leaves h11,
h22, and h33 unchanged. Hence, dropping primes, we have shown that
hab may be transformed into the canonical form

hab =


0 0 0 0
0 0 0 0
0 0 h22 h23
0 0 h23 −h22

 . (21.54)

Clearly, hab only depends on two independent functions, namely,

h22(t− x), and h23(t− x).

We consider the physical significance of these two functions in the next
section.

21.4 Polarization states of plane waves
We first consider the case h23 = 0, for which the line element is given by

ds2 = dt2 − dx2 − [1− εh22(t− x)]dy2 − [1+ εh22(t− x)]dz2. (21.55)

We shall call this an ‘h22-wave’. Let us suppose that h22 is some oscilla-
tory function of u so that there are values when h22 > 0 and values when
h22 < 0. Let us investigate what happens when an h22-wave is incident
on a distribution of test particles. First of all, consider two neighbour-
ing particles in the yz-plane which initially have coordinates (y0, z0) and
(y0 + dy, z0) in the plane. Then, using (21.55), the proper distance
between them is given by

dσ2 = −ds2 = (1− εh22)dy2. (21.56)

The proper distance is a coordinate-independent quantity, and hence, if
initially h22 changes from zero to h22 > 0, the particles move closer to-
gether and, conversely, if h22 changes from zero to h22 < 0, the particles
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move further apart. The opposite happens if we consider free particles
with coordinates (y0, z0) and (y0, z0 + dz) and in the plane since now

dσ2 = −ds2 = (1 + εh22)dz2. (21.57)

Thus, if an oscillatory plane gravitational wave propagating in the
x-direction is incident on a ring of dust particles situated in the yz-plane,
then the ring is distorted into a pulsating ellipse whose major axis is, in
turn, parallel to the y- and z-axes (see Fig. 21.2). Furthermore, if one
considers two neighbouring particles with the same y and z coordinates
but separated in the x direction by dx, then the proper distance dσ2 = dx2

remains constant so that the particles remain in the x = constant plane.
The transverse character of an h22-wave is clear from this. We refer to
this state as a wave with + polarization.

Let us turn attention to an ‘h23-wave’, that is, the case when h22 = 0,
and the line element becomes

ds2 = dt2 − dx2 − dy2 + 2εh23(t− x)dydz− dz2. (21.58)

Let us perform a rotation through 45◦ in the yz-plane given by

y→ ȳ =
1√
2
(y + z), z→ z̄ =

1√
2
(−y + z), (21.59)

so that the line element becomes (exercise)

ds2 = dt2 − dx2 − [1− εh23(t− x)]dȳ2 − [1 + εh23(t− x)]dz̄2. (21.60)

Comparing this with (21.55), we see that an h23-wave produces exactly
the same effect as an h22-wave but with the axes rotated through 45◦ (see
Fig. 21.3). The transverse character of an h23-wave is again clear and we
refer to the state as a wave with × polarization.

Clearly, a general wave is a superposition of these two polarization
states. The fact that the two polarization states are at 45◦ to each other
contrasts with the two polarization states of an electromagnetic wave,
which are at 90◦ to each other. (This can be shown to stem from the
fact that gravity is represented by the second-rank symmetric tensor hab,
whereas electromagnetism is represented by the vector potential Aa.)

Fig. 21.2 Time sequence showing the transverse effect of an oscillatory linear
plane gravitational wave with + polarization.
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Fig. 21.3 Time sequence showing the transverse effect of an oscillatory linear
plane gravitational wave with × polarization.

21.5 Solving the wave equation
We have shown in equation (21.28) that linearized gravitational waves
satisfy the equation

□Φab = −2κTab, (21.61)

where, for convenience, we have incorporated ϵ into the definition of ϕab
by defining

Φab := ϵ(hab − 1
2ηabh).

We now show how to solve (21.61).
Since we are working in Minkowski space, we may also work in

Minkowski coordinates, in which case each component ϕ (say) of Φab

satisfies an equation of the form

∂2ϕ

∂t2
−∇2ϕ = f, (21.62)

where f is the corresponding component of −2κTab. This is just the stan-
dard wave equation in 3-dimensional space for the function ϕ(t,x) with
a source term given by f (t,x).

To solve (21.62), we start by considering the case where f (t,x) rep-
resents a delta function point source at the origin, so that we want to
solve

∂2ϕ

∂t2
−∇2ϕ = q(t)δ(3)(x), (21.63)

where q(t) measures how the strength of the source varies with time.
Here the Dirac delta function δ(3)(x) can be loosely thought of as a

function on R3 which is zero everywhere except at the origin, where it is
infinite, and has the property that∫

R3
δ(3)(x)dV = 1,
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so that, given any function g(x) on R3, we have∫
R3
δ(3)(x)g(x)dV = g(0). (21.64)

Since both sides of equation (21.63) are spherically symmetric, we look
for a spherically symmetric solution ϕ(t, r) where r = |x|. Now, for a
purely radial function,

∇2ϕ =
1
r
∂2

∂r2
(rϕ),

and, away from the origin, the right-hand side of (21.63) is zero so that
ϕ(t, r) satisfies

1
r
∂2

∂r2
(rϕ)− ∂2ϕ

∂t2
=0, r 6= 0

⇒ ∂2

∂r2
(rϕ)− ∂2

∂t2
(rϕ) =0, r 6= 0

So, away from the origin, the function ψ := rϕ satisfies the 1-dimensional
wave equation

∂2ψ

∂r2
− ∂2ψ

∂t2
= 0. (21.65)

Using d’Alembert’s solution to the 1-dimensional wave equation (exer-
cise), we may write

ψ(t, r) = u(t− r) + v(t + r), (21.66)

and hence

ϕ(t, r) =
1
r
u(t− r) +

1
r
v(t + r). (21.67)

The first term represents an outgoing spherical wave, while the second
represents an ingoing wave. In our case, we are interested in the outgo-
ing wave, which represents the so-called causal solution in which the
gravitational wave is the result of the motion of the source. We therefore
take v ≡ 0, giving us the solution

ϕ(t, r) =
1
r
u(t− r). (21.68)

It remains to find the function u(t− r) in terms of the function q(t). To
do this, we integrate equation (21.63) over a ball B of radius a and centre
the origin. This gives∫

B

(
∂2ϕ

∂t2
−∇2ϕ

)
dV =

∫
B
q(t)δ(3)(x)dV = q(t), (21.69)
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using (21.64). Note that, although ϕ diverges like 1/r, the volume ele-
ment is O(r2) so that the integral is well defined. Now, by the divergence
theorem, ∫

B
∇2ϕdV =

∫
S
∇ϕ.dS

=
∫
S

∂ϕ

∂r
dA

= 4πa2
∂

∂r

(
u(t− r)

r

) ∣∣∣∣
r=a

= −4πu(t− a)− 4πau′(t− a),

where S is a sphere of radius a.
On the other hand∫

B

∂2ϕ

∂t2
dV =

∫ a

r=0

∫ π

θ=0

∫ 2π

ϕ=0

u′′(t− r)
r

r2 sin θdrdθdϕ

= 4π
∫ a

r=0
u′′(t− r)rdr

= 4π[−u′(t− r)r]a0 + 4π
∫ a

0
u′(t− r)dr

= 4π[−u′(t− r)r− u(t− r)]a0

= −4π[au′(t− a) + u(t− a)− u(t)].

Substituting from the above two equations into (21.69), we obtain

4πu(t) = q(t), (21.70)

so that ϕ = q(t− r)/4πr is the required solution to (21.63). In particular,
if we now take q(t) = δ(t), we have that

ϕ =
1

4π|x|
δ(t− |x|), (21.71)

is a fundamental solution of

∂2ϕ

∂t2
−∇2ϕ = δ(t)δ(3)(x). (21.72)

The reason for the term ‘fundamental solution’ is that we may use it to
construct the solution for any source f(t,x), as we now show.

We first move the location of the delta function point source from the
origin to an arbitrary point (s, y) in Minkowski space-time, giving us
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ϕ(t,x) =
1

4π|x− y|
δ(t− s− |x− y|), (21.73)

as the fundamental solution of

∂2ϕ

∂t2
−∇2ϕ = δ(t− s)δ(3)(x− y). (21.74)

We now use (21.64) to write a general source term f(t,x) in the form

f(t,x) =
∫
s∈R

∫
y∈R3

δ(t− s)δ(3)(x− y)f(s, y)dsd3y. (21.75)

Since the wave equation is linear, we may use the principle of superposi-
tion to add together all the fundamental solutions for the delta functions
located at (s, y) to obtain the required solution. This shows that the causal
solution to (21.62) for a general source is given by

ϕ(t,x) =
1
4π

∫
s∈R

∫
y∈R3

1
|x− y|

δ(t− s− |x− v|)f(s, y)dsd3y. (21.76)

Performing the integration with respect to s, we see that the delta function
has the effect of replacing s by the retarded time t− |x− y| in f(s, y) so
that our required solution is given by

ϕ(t,x) =
1
4π

∫
y∈R3

f(t− |x− y|, y)
|x− y|

d3y. (21.77)

This is nothing but the standard (retarded) solution given by the method
of Green’s functions from the theory of partial differential equations.

A case of particular interest is when the source f(t,x) oscillates with
angular frequency ω so that, without loss of generality, we have

f(t,x) = sin(ωt)g(x), (21.78)

in which case, (21.77) reduces to

ϕ(t,x) =
1
4π

∫
y∈R3

sin(ωt− ω|x− y|)
|x− y|

g(y)d3y. (21.79)

We now assume that the source is compact and is therefore confined
within some region of radius R0, which we may assume is centred on
the origin. Then, if we are a long distance from the source compared to
the size of the source, that is, r := |x| satisfies

r� R0, (21.80)
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then, since |y| < R0 in the above integral, we may write

1
|x− y|

' 1
|x|

=
1
r
. (21.81)

We now further suppose that the wavelength of the oscillation λ = 2π/ω
is also large compared to R0, i.e. that

λ� R0. (21.82)

This is called the long-wavelength approximation. Then, for this
approximation,

ω|x− y| = 2π
λ
|x− y| ' 2π

λ
|x| = ωr, (21.83)

and hence, in (21.79), we may write

ω|x− y| ' ωr. (21.84)

Substituting for the above in (21.79) using (21.81) and (21.84) gives

ϕ(t,x) ' 1
4πr

∫
y∈R3

sin(ω(t− r))g(y)d3y

=
1

4πr

∫
y∈R3

f(t− r, y)d3y. (21.85)

In deriving the above result, we assumed that f(t,x) varied sinusoidally in
time with angular frequency ω. However, the only mathematical require-
ment was that the source was spatially compact, we were far from the
source, and the wavelength was long compared to the size of the source.
So, in this approximation, the solution of the wave equation is given by

ϕ(t,x) =
1

4πr

∫
y∈R3

f(t− r, y)d3y. (21.86)

We now apply this analysis to the components of (21.61) for a compact
source in the ‘long wavelength’ approximation and far from the source.
This gives the following formula for the (low frequency) gravitational
waves:

Φab(t,x) = − 2κ
4πr

∫
y∈R3

Tab(t− r, y)d3y. (21.87)

Working in geometric units (where G = c = 1), we have κ = 8π so that
the above becomes

Φab(t,x) = −4
r

∫
y∈R3

Tab(t− r, y)d3y. (21.88)
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21.6 The quadrupole formula
In this section, we show how to more directly relate the linearized
gravitational wave Φab to the motion of a spatially compact source.

It follows from Einstein’s equations that the divergence of the energy-
momentum tensor vanishes so that

∇aT ab = 0, (21.89)

which, in the linear approximation, reduces to

∂aT ab = 0. (21.90)

In particular, taking b = 0, we get ∂aTa0 = 0 or, more explicitly,

∂T 00

∂t
= −∂T

j0

∂xj
, (21.91)

where indices i, j, k etc. are summed over 1, …, 3. Differentiating the
above equation with respect to t gives

∂2T 00

∂t 2
= −∂

2T j0

∂t∂x j
= − ∂

∂x j

(
∂T j0

∂t

)
=

∂

∂x j

(
∂T jk

∂x k

)
=

∂2T jk

∂x j∂x k
, (21.92)

where in the penultimate equality we have used ∂aT aj = 0. Multiplying
both sides by xℓxm and integrating by parts over all space, we obtain∫

x∈R3
xℓxm

∂2T 00

∂t 2
d3x =

∫
x∈R3

xℓxm
∂2T jk

∂x j∂xk
d3x

= −
∫
x∈R3

∂

∂x j
(
xℓxm

) ∂T jk

∂x k
d3x

= −
∫
x∈R3

(
δℓj x

m + δmj x
ℓ
) ∂T jk

∂x k
d3x

=
∫
x∈R3

∂

∂x k
(
δℓj x

m + δmj x
ℓ
)
T jkd3x

=
∫
x∈R3

(
δℓj δ

m
k + δmj δ

ℓ
k

)
T jkd3x

=
∫
x∈R3

2T ℓmd3x.

Note that there are no boundary terms when integrating by parts since the
source is spatially compact so T ij and its derivatives all vanish at infinity.
Changing the integration variable to y the above calculation shows that∫

y∈R3
T ijd3y =

1
2

∫
y∈R3

yiy j
∂2T 00

∂t 2
d3y. (21.93)
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Using (21.93) in the solution (21.87) to the wave equation, we thus obtain
the following formula for the gravitational perturbation:

Φij(t,x) = −2
r
d2

dt2

∫
y∈R3

y iy jT 00(t− r, y)d3y, (21.94)

where Φij = δikδjℓΦkℓ. If we now write the T00 component of the energy-
momentum tensor (which represents the mass/energy density) as μ and
define the second mass-moment Iij by

Iij(t) :=
∫
y∈R3

yiyjμ(t, y)d3y, (21.95)

then we may rewrite (21.94) as

Φij = −2
r
Ïij(t− r), (21.96)

(where we use δij to lower indices). This is called the quadrupole for-
mula and gives an expression for the linearized gravitational perturbation
Φij in the long-wavelength approximation far from a compact source in
terms of the motion of the source.

21.7 The quadrupole generated by a binary
star system

Consider two stars of mass m1 and m2 in orbit about each other in the
xy-plane under their mutual Newtonian gravitational attraction. (Note:
as shown in §16.5, the orbits lie in a plane because the total angular mo-
mentum is conserved) . If the stars are located at r1 and r2, respectively,
the Lagrangian for the system is

L = 1
2m1|ṙ1|2 + 1

2m2|ṙ2|2 +
Gm1m2

|r1 − r2|
. (21.97)

Rather than using r1 and r2 as coordinates, it is more convenient to work
with the centre of mass

r̃ :=
m1r1 +m2r2
m1 +m2

, (21.98)

and the relative position

r := r1 − r2. (21.99)

In terms of these, the Lagrangian becomes (exercise)

L =
1
2
(m1 +m2)| ˙̃r|2 +

1
2

(
m1m2

m1 +m2

)
|ṙ|2 +

Gm1m2

|r|
. (21.100)
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We see from this that the motion of the centre of mass is just that of a
free particle of mass m1 +m2 moving with constant velocity. Without loss
of generality, we may take this to be the origin of our inertial Newtonian
coordinate system in which case the Lagrangian reduces to

L =
1
2

(
m1m2

m1 +m2

)
|ṙ|2 +

Gm1m2

|r|
, (21.101)

or in terms of polar coordinates

L =
1
2

(
m1m2

m1 +m2

)
(ṙ2 + r2ϕ̇2) +

Gm1m2

r
. (21.102)

This is just the Lagrangian of a point particle moving under an inverse
square law. Standard Newtonian theory (see also §16.5) then gives the
motion as lying on an ellipse and satisfying Kepler’s laws. For simplicity,
we will take the masses m1 = m2 = m to be equal and the orbit to be a
circle radius a in the xy-plane. Then conservation of angular momentum
gives

ϕ̇ = Ω = constant. (21.103)

Substituting in the radial Euler-Lagrange equation for (21.102) then gives

Ω2 =
2mG
a3

. (21.104)

In terms of the binary system, this solution corresponds to the two masses
lying on opposite sides of the origin and both orbiting in the same circle
of radius R say about their common centre of mass (see Fig. 21.4). Hence
the relative displacement is a = 2R, so that

Ω = ϕ̇ =
(
mG
4R3

)1/2

. (21.105)

Thus, working in units where G = 1, we have

R =
(

m

4Ω2

)1/3

. (21.106)

m
m

v

v

r r

x3

x2

x1

Fig. 21.4 Binary system orbiting about the common centre of mass.
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In terms of Cartesian coordinates, we may write the solution for the two
stars on opposite sides of the circle as

x1 = R cos(Ωt),

x2 = −R cos(Ωt),

y1 = R sin(Ωt),

y2 = −R sin(Ωt).

Given that we model the stars as point masses, this gives a mass distribu-
tion for the system as

μ(t, x, y, z) = mδ(z) [δ(x− R cos(Ωt))δ(y− R sin(Ωt))

+ δ(x + R cos(Ωt))δ(y + R sin(Ωt))] .
(21.107)

Inserting this into the formula for the second-mass moment (21.95) gives
(exercise)

Ixx = 2mR2 cos2(Ωt) = mR2(1 + cos(2Ωt)),

Iyy = 2mR2 sin2(Ωt) = mR2(1− cos(2Ωt)),

Ixy = 2mR2 cos(Ωt) sin(Ωt) = mR2 sin(2Ωt),

Iij = 0 otherwise,

since the motion is in the plane z = 0. Using the quadrupole formula
(21.96) this gives us the required formula for the gravitational radiation
emitted by a binary system as

Φij(t,x) =
8m
r

Ω2R2

cos(2Ω(t− r)) sin(2Ω(t− r)) 0
sin(2Ω(t− r)) − cos(2Ω(t− r)) 0

0 0 0

 .

(21.108)

Note that the frequency ω of the gravitational wave is exactly twice the
orbital frequency so that

ω = 2Ω, (21.109)

and the amplitude is given by

A =
8Ω2mR2

r
. (21.110)

In obtaining (21.108), we have applied the various approximations
used in deriving (21.96). In particular, we have assumed that ∂aTab = 0.
However, strictly speaking, for a self-gravitating system such as a binary
star, ∂aTab = 0 does not apply and it is more appropriate to use the gen-
eral relativistic formula ∇aTab = 0. Nevertheless, although one should
use ∇aTab = 0 in the near-zone to derive the motion of the stars, a care-
ful analysis (see e.g. Misner, Thorne, and Wheeler 1959) shows that, in
this situation, it is sufficient to use Newtonian theory to determine the
motion of the sources and then apply the quadrupole formula (21.96)
far from the binary system to determine the gravitational radiation that is
emitted.
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21.8 Gravitational energy
Having calculated a formula for the gravitational radiation emitted by a
source, it is natural to try and calculate the energy of the gravitational
waves. However, it turns out that the notion of the energy associated to
gravitational waves is rather problematic. There are two main reasons
for this. The first reason is the principle of equivalence which from a
mathematical perspective tells us that, at any given point P, one can in-
troduce geodesic coordinates (see §6.6) such that the metric is that of
Minkowski space and the partial derivatives of the metric vanishes. Based
on the analogy with both Newtonian gravity and electromagnetism, one
would expect the energy density to be quadratic in the derivatives of the
potentials. However, in general relativity, the role of the gravitational po-
tential is played by the metric and, by the above observation, at any point
the derivatives gab,c vanish in geodesic coordinates. Hence, one cannot
construct a tensorial pointwise energy density for the gravitational field
using the derivatives of themetric. Thus, any truemeasure of gravitational
energy has to be defined globally rather than from integrating a local
energy density. Thus, one can define the total mass of a black hole globally
by looking at the asymptotic symmetries of the solution. We will return to
this point in Chapter 23.

The other reason why the notion of an energy density is problem-
atic is the relationship between symmetries and conserved quantities. For
example, if a mechanical system has a Lagrangian that is preserved un-
der rotations, then the associated angular momentum is conserved and,
if the Lagrangian is invariant under time translations, then the energy is
conserved. A similar result remains true for field theories such as electro-
magnetism. The conserved energy and momentum of the Maxwell field
as described in §12.5 are a result of the symmetries of Minkowski space.
However, in the case of general relativity, there is no fixed space-time ge-
ometry on which one considers gravitational perturbations. Any split of a
general space-time into a fixed background and a perturbation describing
gravitational waves is, to some extent, arbitrary.

However, in this chapter, we are looking at a special situation which
makes things simpler. We are considering the weak-field approximation
on a background Minkowski space (which can be invariantly defined by
the vanishing of the Riemann tensor). In such a situation, we can define an
approximate energy density by averaging over a space-time volume of sev-
eral wavelengths. We start by considering a simple example to show how
this works. Consider a cross-polarized wave of frequency ω and amplitude
A× propagating in the z-direction. Then, putting h22 = 0 and h23(t − z)
= A× sin(ω(t− z)) in (21.54), we see that, in the transverse-traceless
gauge, we have

hab = A×

0 0 0
0 0 sin(ω(t− z))
0 sin(ω(t− z)) 0

 . (21.111)
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It therefore follows that the non-zero partial derivatives of hab are given
by terms of the form A×ω cos((t − z)). From equation (21.14) we see
that the Lagrangian, and hence also the Hamiltonian, of the linearized
wave is quadratic in the derivatives of hab. Since the Hamiltonian is
closely related to the energy-density, it is not surprising that the energy-
density (and hence the energy-flux in the z-direction) is proportional to
A2

×ω
2 cos2(t−z). Averaging the energy-flux over several wavelengths, we

find that the average flux is proportional toA2
×ω

2 (since the average of the
cos2(t− z) term is just 1/2). As we show below, a more careful argument
shows that the numerical factor is 1/32π, so that the time-averaged
energy flux f× of such a wave is given by

f× =
A2

×ω
2

32π
. (21.112)

A similar argument applies to the plus-polarization. So, for a monochro-
matic gravitational wave of angular frequency ω, the time-average energy-
flux in the z-direction is given by

f =
(A2

× +A2
+)ω

2

32π
, (21.113)

where A× and A+ are the amplitudes of the respective polarizations of
the wave as measured in the TT-gauge.

In calculating the energy of a gravitational wave, the approach we take
is to consider a metric of the form

gab(ε) = ηab + εh
(1)
ab + ε2h(2)ab ,

write out the vacuum Einstein equations up to O(ε2) and equate coeffi-
cients. As Rab(0) ≡ 0 since ηab is flat, the first non-zero term is at O(ε).
This is simply (21.10) with hab replaced by h(1)ab , which says that the lin-
earized metric satisfies the linearized Einstein equations. At second order
in ε, there are two types of term in Rab(ε). The first is simply (21.10) with
hab replaced by h(2)ab , which we denote R(1)

ab (h
(2)) (to denote the linear part

of the Ricci tensor as given by (21.10) but now calculated using h(2)). The
second involves terms quadratic in the derivatives of h(1)ab , which we denote

R(2)
ab (h

(1)) (to denote the quadratic part of the Ricci tensor of ηab + h
(1)
ab )

which is given by (exercise)

R(2)
ab (h) := 1

2η
ceηdf

(
hefhcd,ab − hefhbd,ca − hefhad,cb + hefhab,cd + 1

2hcd,ahef,b

+hbc,dhae,f − hbc,dhaf,e + hef,dhab,c − hcd,ehaf,b − hcd,ehbf,a)

+ 1
4η

cdh,c (had,b + hbd,a − hab,d) . (21.114)

Since the O(ε2) terms in Rab(ε) = 0 vanish, we must have

R(1)
ab (h

(2)) + R(2)
ab (h

(1)) = 0. (21.115)
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If we now take h(1)ab to be a solution of the linearized vacuum Einstein
equation (21.10), then the only term inRab(ϵ) = 0 up toO(ε2) is that given
by (21.115). We now write this equation in the equivalent but suggestive
form

R(1)
ab (h

(2))− 1
2η

cdR(1)
cd (h(2))ηab = 8πtab, (21.116)

where we have defined tab by

tab := − 1
8π

[
R(2)
ab (h

(1))− 1
2η

cdR(2)
cd (h(1))ηab

]
. (21.117)

We now regard the term tab on the right-hand side of (21.116) as the
energy-momentum tensor of the gravitational field, as it represents the
way in which the linear perturbations provide a source for higher-order
perturbations.

The above calculation shows how to associate an energy-momentum
tensor with a gravitational wave given by a perturbation hab. However,
there are a number of problems with this. The first is that the above analy-
sis involves separating the space-time metric into two parts; a background
and a perturbation hab. However, in general, it is not obvious how to do
this – what is the background space-time and what is the perturbation?
Fortunately, in the case of perturbations about flat space, this is not a
problem, since Minkowski space is invariantly defined by the vanishing
of its curvature. The second problem is that the energy-momentum ten-
sor that one obtains from this procedure is not gauge invariant. So that,
if we make the coordinate change

xa 7→ xa + ϵξa, (21.118)

then tab changes by adding terms involving derivatives of ξa. As indicated
above, the way round this is to replace the pointwise definition of tab
by a space-time average of tab over a region of space-time of several
wavelengths, which is denoted <tab>. In modern terminology, <tab> is a
quasi-local quantity. It turns out that <tab> also has the property of be-
ing gauge invariant so that this approach avoids the problems of gauge
invariance.

If the background space-time is Minkowski space, we simply define

< tab(p)>=
1

Vol(V(p))

∫
V(p)

tab(x)d
4x, (21.119)

where V(p) is a region of several wavelengths centred on the point p. i.e.
< tab(p)> is amoving average of tab(x) over a region centred on the point p.
It follows from the divergence theorem that, under the averaging brackets,
divergences vanish, and as a result one may ‘integrate by parts’ so that,
for example,

<hhab,c>= − <h,chab>. (21.120)
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A straightforward calculation (exercise) shows that, using the above
equation, one may write the space-time average of (21.117) as

< tab>=
1

32π
<hcd,ahcd,b −

1
2
h,ah,b − hcd,chad,b − hcd,chbd,a>, (21.121)

where we have used (21.120). We now address the issue of gauge
invariance of (21.121).We have seen that under the change of coordinates

xa 7→ x′a := xa + εξa,

hab 7→ h′ab := hab − 2ξ(a,b),

and hence

hab,c 7→ h′ab,c := hab,c − ξa,bc − ξb,ac. (21.122)

Inserting the above in (21.121) and then employing a long but straight-
forward calculation in which we use the rule (21.120) for integration by
parts, gives

<t′ab>=<tab>, (21.123)

so that (21.121) is indeed gauge invariant. We therefore define the gauge
invariant tensor

T̃ab :=< tab>=
1

32π
<hcd,ahcd,b −

1
2
h,ah,b − hcd,chad,b − hcd,chbd,a> .

(21.124)
This is called the Isaacson energy-momentum tensor of the gravita-
tional field. Although it is a gauge-invariant quantity, it is often useful to
work in the transverse-traceless gauge (i.e. one in which hij;j = 0, h = 0,
and, in addition, h0μ = 0, μ = 1, 2, 3). If we apply the field equations,
which in this gauge are simply □hij = 0, then all but one of the terms in
(21.121) vanish and we get

T̃ab =
1

32π
<hcd,ahcd,b> . (21.125)

We now consider a monochromatic plane wave in Minkowski space
in the transverse-traceless gauge and where, without loss of generality,
we may choose our coordinates so that the wave propagates along the z-
axis. For the case of a cross-polarized wave of amplitude h× and angular
frequency ω,

hij = Cij sin(ω(t− z)), (21.126)

where

Cij =

0 0 0
0 0 h×
0 h× 0

 . (21.127)
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The T̃ij term in the Isaacson energy-momentum tensor (21.125) is

T̃ij =
1

32π
CkℓCkℓ < ∂i(sin(ω(t− z))∂j sin(ω(t− z)) >

=
1

16π
h2× <∂i(sin(ω(t− z))∂j sin(ω(t− z))> .

It then follows that the energy-density is given by

T̃00 =
1

16π
h2×ω

2 <cos2(ω(t− z))>=
h2×ω

2

32π
, (21.128)

since averaging the cos2(ω(t− z) terms over several wavelengths is 1/2.
We get a similar result for a plus-polarized monochromatic wave of

amplitude h+ and frequency ω

T̃00 =
h2+ω

2

32π
. (21.129)

So, for a wave containing both polarizations, we obtain

T̃00 =
(h2× + h2+)ω

2

32π
. (21.130)

An almost identical calculation (exercise) shows that the radiation flux in
the z-direction is given by

T̃0z =
(h2× + h2+)ω

2

32π
, (21.131)

in agreement with (21.113).

21.9 Gravitational energy-flux from
a binary system

We now apply (21.113) to (21.108) to calculate the gravitational flux in
the z-direction. We note that (21.108) is already in the TT-gauge with
respect to the z-direction so that the gravitational wave luminosity dL
radiated into a solid angle dS about the z-axis is dL = fr2dS and hence

dL
dS

=
r2ω2A2

32π
, for each polarization state. (21.132)

Noting that (21.108) has frequency ω = 2Ω and contains two polar-
ization states, each with amplitude A = 8Ω2mR2/r, we get, for the total
luminosity per solid angle in the z-direction

dLz
dS

= 2
(

8Ω2mR2

r

)2
(2Ω)2

32π
r2 =

16
π

(
Ω3mR2)2 . (21.133)
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We now wish to calculate the energy-flux per solid angle in an arbitrary
direction. We can then integrate this over a sphere to calculate the total
gravitational radiation from the binary system. Since the time-averaged
energy flux is axisymmetric about the z-axis, we need only consider the
angle θ that the direction makes with the z-axis. Our method will be to
transform the gravitational perturbation Φab to a new basis eâ so that the
direction we want to consider is the new ẑ-axis. We will then transform to
the TT-gauge and use the above formula to calculate the total luminosity
per solid angle in the ẑ-direction.

In the êi basis, the gravitational perturbation is given by

Φî ĵ = ΦijMi
îM

j
ĵ, (21.134)

where

Mi
î =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 . (21.135)

This gives from (21.108)

Φî̂j =
8mΩ2R2

r
Ŝîj,

where Ŝîj is given by

 cos2 θ cos(2Ω(t− r)) cos θ sin(2Ω(t− r)) cos θ sin θ cos((2Ω(t− r))
cos θ sin((2Ω(t− r)) − cos(2Ω(t− r)) sin θ sin(2Ω(t− r))

cos θ sin θ cos((2Ω(t− r)) sin θ sin(2Ω(t− r)) sin2 θ cos(2Ω(t− r))

.

To calculate the flux in the ẑ-direction, wemust write the above expression
in the TT-gauge. This simply consists of first projecting in the transverse
direction and then subtracting half the trace from the diagonal elements.
This gives

ΦTT
î̂j

=
4(cos2 θ + 1)mΩ2R2

r

cos(2Ω(t− r)) 0 0
0 − cos(2Ω(t− r)) 0
0 0 0


+

8 cos θmΩ2R2

r

 0 sin(2Ω(t− r)) 0
sin(2Ω(t− r)) 0 0

0 0 0

 .

So, it consists of two polarized waves, one + and one×, both of frequency
2Ω, and with amplitudes

A+ =
4(cos2 θ + 1)mΩ2R2

r
,

A× =
8 cos θmΩ2R2

r
,
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respectively. Using formula (21.113), this gives the total luminosity per
solid angle in the ẑ-direction to as

dLẑ
dS

=
(2mΩ3R2)2

2π
(cos4 θ + 6 cos2 θ + 1). (21.136)

To calculate the total radiated power, we integrate dLẑ/dS over the whole
sphere. This gives

L =
(2mΩ3R2)2

2π

∫ π

θ=0

∫ 2π

ϕ=0
(cos4 θ + 6 cos2 θ + 1) sin θdθdϕ

= (2mΩ3R2)2
∫ π

θ=0
(cos4 θ sin θ + 6 cos2 θ sin θ + sin θ)dθ

= 4(mΩ3R2)2
[
−1

5
cos5 θ − 2 cos3 θ − cos θ

]π
0

= 8(mΩ3R2)2[+
1
5

+ 2 + 1]

=
128
5

(mΩ3R2)2.

Hence the total power radiated is

dE
dt

=
128
5
m2R4Ω6. (21.137)

It is convenient to write this in terms of the period T so that, on using
(21.106) and Ω = 2π/T, we find the rate at which gravitational energy is
radiated is given by

dE
dt

=
128
5

41/3
(πm
T

)10/3
. (21.138)

Note that a more general calculation (see exercises) shows that the energy
radiated is given by the so-called quadrupole formula

dE
dt

=
1
5

<
...
-I ij

...
-I ij >, (21.139)

where

-Iij = Iij −
1
3
δijI kk (21.140)

is the reduced quadrupole tensor and the angled brackets in (21.139)
indicates the need to take a space-time average over several wave-
lengths.
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Using the formula for the second-mass moment of the binary system,
we find the reduced quadrupole for the binary system is given by

-Iij = mR2

cos(2Ωt) + 1
3 sin(2Ωt) 0

sin(2Ωt) − cos(2Ωt) + 1
3 0

0 0 − 2
3

 . (21.141)

Hence

...
-I ij = 8mR2Ω3

 sin(2Ωt) − cos(2Ωt) 0
− cos(2Ωt) − sin(2Ωt) 0

0 0 0

 , (21.142)

which gives

...
-I ij

...
-I
ij
= 64m2R4Ω6(2 sin2(2Ωt)+2 cos2(2ωt)) = 128m2R4Ω6. (21.143)

Hence

dE
dt

=
1
5
〈
...
-I ij

...
-I
ij〉 =

128
5
m2R4Ω6, (21.144)

in agreement with (21.137), from which we get, finally,

dE
dt

=
128
5

41/3
(πm
T

)10/3
. (21.145)

21.10 Effects of gravitational radiation
on the orbit of a binary system

The total energy of the binary system in the Newtonian description is

E = 2
(
1
2mv

2)− m2

2R

= mR2Ω2 − m2

2R

= −m
4

(
4mπ
T

)2/3

.

Note: The total energy is negative since the gravitational potential energy
is negative.

Due to the emission of gravitational energy, the total energy of the
system must decrease. This means that the radius R decreases or, equiv-
alently, the period T increases. Differentiating the above expression
gives
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dE
dt

=
2m2π
3T2

(
4πm
T

)−1/3 dT
dt

. (21.146)

Equating the rate of change of the Newtonian energy of the binary system
with the rate at which gravitational radiation is emitted, using (21.137)
and (21.146), with a minus sign since the energy is decreasing, we obtain

2m2π
3T2

(
4πm
T

)−1/3 dT
dt

= −128
5

41/3
(πm
T

)10/3
,

from which we get

dT
dt

= 22/3
(

96π
5

)(
2mπ
T

)5/3

. (21.147)

Hence, according to our formula for the gravitational radiation for a
binary system, dT/dt ∝ T−5/3. This may be verified if one is able
to accurately record the period of a binary system of a long period of
time.

In 1974 Russell Hulse and Joseph Taylor used the Arecibo 305 m radio
antenna to observe a pulsar (a rapidly rotating, highly magnetized neu-
tron star). The pulsar rotates on its axis about seventeen times per second
so that the pulse period is 59 milliseconds. After timing the radio pulses
for some time, they noticed that there was a systematic variation in the
arrival time of the pulses and this could be explained if the pulsar was in a
binary systemwith another star (subsequently shown to be another neu-
tron star), both orbiting about their common centre of mass. The pulses
from the pulsar arrive 3 seconds earlier at some times relative to others,
showing that the pulsar’s orbit is 3 light-seconds across, approximately
two-thirds of the diameter of the Sun. The period of the orbital motion
is 7.75 hours and, since this is a binary system, the masses of the two
neutron stars can be determined, and they are each around 1.4 times the
mass of the Sun.

After observing the binary system for a period of several years, they re-
alized that the size of the orbit was contracting and the period of the orbital
motion was slowly decaying. This is in agreement with the predictions of
general relativity, where we have seen that the emission of gravitational ra-
diation results in a loss of energy from the binary system and a decay of the
orbit. For the Hulse-Taylor binary pulsar PSR B1913+16, one can com-
pare the observational results with those predicted by general relativity as
given by equation (21.147). The results are shown in Fig. 21.5.

In 2003 a second neutron star binary system, PSR J0737-3029, this
time consisting of two pulsars, was discovered. The graph for this is
shown in Fig. 21.6. As can be seen from the graphs, this gives excellent
agreement with the predictions of general relativity.
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21.11 Measuring gravitational wave
displacements

All gravitational wave detectors work by measuring the effect of the wave
on the motion of test masses, which we model as particles moving along
the geodesics of the curved wave space-time, but whose masses are suffi-
ciently small that we can ignore any influence they have on the space-time
curvature. We therefore start by looking at the motion of test masses in
more detail.

Consider a situation where a particle is initially at rest in a flat space-
time and a gravitational wave is then incident upon it. We will suppose
that the gravitational wave is propagating in the x-direction and has the
transverse-traceless form given by (21.54). The motion of the particle is
then given by solving the geodesic equation

dV a

dτ
+ Γ a

bcV
bV c = 0, (21.148)

where V a = dxa/dτ is the 4-velocity.
Now the effect of the gravitational wave will be to change the 4-velocity

from its flat space value V a
0 = (1, 0, 0, 0) (since the particle is at rest in

flat-space) to a perturbed value

V a = V a
0 + εU a.

On the other hand, from (21.6), we know that Γ a
bc is of order ε. So, to first

order in ε, the geodesic equation becomes

dV a

dτ
= −Γ a

bcV
b
0V

c
0 = −Γ a

00. (21.149)

But, for the metric given by (21.54),

Γ a
00 = 1

2εη
ab(hb0,0 + h0b,0 − h00,b) = 0. (21.150)

Hence dV a/dτ = 0 and thus

d2xa

dτ2 = 0. (21.151)

Since the particle is initially at rest dxi/dτ = 0, so that

xi(τ) = xi(0), i = 1, 2, 3. (21.152)

Therefore, in coordinates in which the gravitational wave takes the
transverse-traceless form, the coordinate position of the particle re-
mains constant as the wave passes through. Thus, the TT-gauge is
co-moving with the particles and, since g00 = 1 and g0a = 0, the TT
coordinate time is the proper time, as measured by the freely falling test
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particle. This is one reason why using the transverse-traceless condition
makes gravitational wave calculations easier.

Although the coordinate distance between two test particles remains
constant, this does not mean that the proper distance remains unchanged
as a result of the gravitational wave. We illustrate this by looking at the
effect of an h22 wave on two test particles lying in a plane orthogonal to
the direction of propagation. Without loss of generality, we may take the
wave to be travelling in the x-direction and be given by (21.55), and we
may take one of the particles to be at (0, 0, 0) and the other at (0,L, 0).
Then the proper distance ℓ(t) between the two masses is given by

ℓ(t) =
∫ L

0
[1− εh22(t)]

1/2 dy '
(
1− 1

2εh22(t)
)
L. (21.153)

So, as h22(t) changes, so does the proper separation ℓ(t).
An alternative method for investigating these results is to consider the

equation of geodesic deviation (10.21). If we introduce a local coordinate
system adapted to the tetrad so that

eia
∗
=δai ,

then, by (10.37), the equation becomes

D2ηα

Dτ2 + Rα
0β0η

β = 0. (21.154)

This contains the same information as the metric calculation above but
has the advantage that the Riemann tensor is a gauge-invariant quantity
in the linearized theory. To show that (21.154) gives the same result as
(21.153), we let the connecting vector have tetrad components given by

ηα = (X,Y,Z),

and using (21.38), (21.39), and (21.40), we get

D2X
Dτ2 = 0,

D2Y
Dτ2 + 1

2ε(h22,00Y + h23,00Z) = 0,

D2Z
Dτ2 + 1

2ε(h23,00Y− h22,00Z) = 0.


(21.155)

Then, for example, an h22-wave leads to

D2Y
Dτ2 = − 1

2εh
′′
22Y,

D2Z
Dτ2 = 1

2εh
′′
22Z.
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For slowly moving particles, we have τ = t to lowest order, and the
connection terms are O(ε) so that the above becomes

d2Y
dt2

= − 1
2εh

′′
22Y,

d2Z
dt2

= 1
2εh

′′
22Z. (21.156)

To linear order in ε, this has solution

Y(t) =
(
1− 1

2εh22
)
Y(0), Z(t) =

(
1 + 1

2εh22
)
Z(0). (21.157)

Note that Y and Z are the components of the connecting vector in an
orthonormal tetrad so measure the proper distance in agreement with the
above and the calculation in §17.10.

We turn now to how one can go about the detection of gravitational
waves. As we saw in Chapter 10, one can detect the presence of space-
time curvature, and hence gravitational waves, through the equation of
geodesic deviation. In practical terms, this involves measuring the rela-
tive motion of freely-falling test masses. Although this might, in principle,
seem quite straightforward, the extremely small size of any gravitational
wave reaching the Earth (see §21.14 for details) makes this an extremely
difficult task in practice. The first practical attempt to measure gravita-
tional waves was undertaken by Weber in the 1960s, using a resonant
bar detector. The idea here was to choose the resonant frequency of the
bar to be that of the gravitational waves in order to enhance the signal.
Considerable controversy surrounded his claims to be detecting radiation
emanating from the centre of the galaxy, since the sensitivity of the bar was
considered to be too low to detect radiation at the energy which might be
expected. Such signals would probably be swamped by the noise emanat-
ing from people, vehicles, aircraft, and so on, passing near the equipment.
Moreover, there was also disquiet over the way the results were analysed,
and the consensus is that the equipment was probably not detecting grav-
ity waves. However, Weber has played an important part in alerting the
instrumentalists to the need to undertake this work, and work on advanced
resonant bar detectors still continues.

A simple model of a resonant detector consists of two point particles,
each of mass m connected by a spring of natural length L lying on the
y-axis. Then, if ξ is the extension of the spring, one can show that, in the
absence of a gravitational wave, the motion is that of a damped oscillator
with equation (exercise)

ξ̈ + 2γξ̇ + ω2
0ξ = 0, (21.158)

where ω0 is the natural frequency and γ is a damping term. The effect
of an h22-gravitational wave is to replace the coordinate distance for the
extension of the spring by the proper distance for the extension, where the
relevant factor in transverse-traceless coordinates is given by (21.153).
This adds a source term depending on the gravitational wave to the right-
hand side of (21.158) so the equation of motion now reads (exercise)
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ξ̈ + 2γξ̇ + ω2
0ξ = 1

2Lḧ22. (21.159)

If h22 is given, for example, by A sin(ωt), the source term becomes
− 1

2Aω
2L sin(ωt) and the steady-state solution of (21.159) is given by an

oscillation with amplitude

a =
ALω2

2[(ω2
0 − ω2)2 + γ2ω2]1/2

. (21.160)

If the frequency of the gravitational wave ω is close to the resonant fre-
quency ω0 of the bar, then this results in a significant amplification of the
signal and, for the case where the frequencies are exactly equal, ω0 = ω,
we obtain

amax =
ALω0

2γ
. (21.161)

So, if the damping γ is very small, there is a significant amplification of
the signal.

Amore recent (and successful) approach is to attempt tomeasure small
relative displacements of the test masses using the principle of theMichel-
son interferometer. A number of such laser interferometers have been
constructed and, by using advanced engineering and optoelectronics, can
now be made extremely sensitive. The basic idea is to use three test
masses, a beam splitter and twomirrors in an L-shaped configuration (see
Fig. 21.7), and to use laser interferometry to measure the phase change
as one arm contracts and the other expands in response to the gravita-
tional wave. The light from the laser passes through a beam splitter (S)
that is suspended from a wire and is free to move horizontally. The split-
ter divides the light into two beams running along the perpendicular arms
of the interferometer and the light is reflected back from the mirrors at-
tached to the other two test masses, which are also suspended from wires
and are free to move horizontally. The reflected light from the two beams
is then recombined at (S) and the intensity measured at a photodetector
(D). Small differences in the relative lengths of the arms are detected as
changes in the amount of interference and hence the intensity of the signal
measured by the detector.

For simplicity, assume that the gravitational wave is an h22 wave prop-
agating in the z-direction where εh22(t) = A sin(ωt). Let both arms have
length L (in the absence of the wave) and let the proper length of the
arms in the presence of the wave be L(x)(t) and L(y)(t), respectively. Then,
according to (21.153), we have

L(x)(t) =
(
1− 1

2A sin(ωt)
)
L, and L(y)(t) =

(
1 + 1

2A sin(ωt)
)
L.

(21.162)
So that the difference in the proper length of the arms is

∆L = L(y) − L(x) = AL sin(ωt). (21.163)
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Let the wavelength of the laser be λ; then, if we measure ∆L in units of
λ, so that

∆L = αλ. (21.164)

Then taking into account that the waves travel twice the length of the
arms, when 2α = n, for n an integer, we have constructive interference,
whereas, if 2α = (n+ 1

2 ), we have destructive interference. In general, the
intensity of the two combined beams is given by A(1 + cos(πα)), where

α =
AL
λ

sin(ωt), (21.165)

so that the size of the phase shift is proportional to the length of the arms
L. As discussed below, the strongest sources are expected to have a value
of A < 10−21 so, even if the length of the arms is 1 km, ∆L ∼ 10−18 m.
A typical infrared laser has a wavelength of 1,000 nm (i.e. 10−6 m), which
gives a fringe shift of only ∆L/λ ∼ 10−12. For this reason, it is not possi-
ble to detect gravitational waves with a simple Michelson interferometer;
instead, a much more sophisticated device using more than one cavity
and multiple reflections of the beam to increase the effective length of the
beams by many factors is needed. Such a device is shown schematically
in Fig. 21.7

In the above calculation, the spatial difference between the test masses
was calculated using (21.153), which measures the proper distance be-
tween them. However, for an interferometer, it would be more correct
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Fig. 21.7 Gravitational wave interferometer: a basic Michelson interferometer
with 4 km Fabry Perot cavities.
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to calculate the separations on the path of a light ray. In flat space, the
light rays are just straight lines so that it makes no difference whether one
measures along light rays or uses proper distance. However, in the grav-
itational wave space-time, this is no longer true and one needs to make a
correction to the coordinates of the geodesic from those of a straight line.
However, since the straight line is an extremal for the flat spacemetric, any
first-order variation in the path only produces a second-order change in
the length (using the flat space metric) so that the only first-order change
in length comes from measuring the length of a straight line using the
curved metric. This gives the same answer as the proper length as long as
the size of the arms of the interferometer are small compared to the gravi-
tational wavelength. This is true for the ground based detectors described
above but is not true for the proposed space based detector LISA or for
a measurement using a pulsar timing array. We therefore describe below
a method of measuring the space-time geometry directly using light rays.

21.12 A direct interferometric measurement
In Chapter 2, we introduced the k-calculus and described how to use light
rays and the constancy of the speed of light to measure distance in flat
Minkowski space. However, one can use a similar procedure in a curved
space-time to measure distance and use this to deduce the curvature of
space-time. Let a freely falling observer O emit a pulse of light which
reaches a distant point P and is then reflected back to the observer O at a
time T later. Since observer O is freely falling, they are in a local inertial
frame, and the time measured by their clock is the proper time between
the pulse being emitted and received back at O. Because of the assumed
constancy of the velocity of light, even in curved space-time, we may take
half the propagation time as a measure of the distance to P. If we make
sufficiently many such measurements, we can reconstruct the geometry
of the space-time. (This process is called ‘differential chronometry’ by
Synge 1960). We illustrate this by using light to calculate the distance, as
measured by T, between two freely falling bodies that are initially at rest
in a gravitational wave space-time. The value of T is coordinate invariant
but it is convenient to calculate it in the transverse-traceless gauge since,
as we have seen, freely falling bodies remain at fixed coordinates in this
gauge, and the proper time measured by a freely falling clock is just the
coordinate time t.

Consider an h22-wave space-time with metric

ds2 = dt2 − [1− εh22(t− z)]dx2 − [1 + εh22(t− z)]dy2 + dz2. (21.166)

We want to measure the return time as measured by an observer at the
origin O for a photon to emitted at O to reach a point P at a coordinate
distance L on the x-axis and then to be reflected back toO (see Fig. 21.8).

x

t

P(t, x)

t1

t2

Fig. 21.8 Space-time diagram
of a photon emitted from O and
reflected back from P.

We first find the equation of a null geodesic pointing in the x-direction.
We have dy = 0, dz = 0, and ds2 = 0 on the geodesic so that inserting this
in (21.166) and using z = 0 gives
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dt
dx

)2

= 1− h22(t). (21.167)

To find the equation of the geodesic, we use the coordinate distance x as a
parameter along the geodesic (since we know the location of the particles
in terms of x) and solve

dt
dx

= (1− h22)
1/2 , (21.168)

to find t(x). If the photon is emitted from O at time t0, then it reaches L
at coordinate time

tL = t0 +
∫ L

0
(1− εh22(t(x)))

1/2 dx. (21.169)

Since we are working to first order in ε, this is just

tL = t0 +
∫ L

0

(
1− 1

2εh22(t(x))
)
dx

= t0 + L− 1
2ε

∫ L

0
h22(t(x))dx. (21.170)

Furthermore, we may write t(x) as the flat space result (a straight line)
together with an O(ε) perturbation so that

t(x) = t0 + x +O(ε), (21.171)

and then expanding h22(x(t)) in a Taylor series and working to first order
in ε we have

tL = t0 + L− 1
2ε

∫ L

0
h22(t0 + x)dx. (21.172)

Having arrived at P, the photon is reflected back and reaches the origin at
time T. A similar argument to the above shows that, working to first order
in ε, the time T is given by

T = tL + L− 1
2ε

∫ 0

L
h22(tL + L− x)dx

= tL + L− 1
2ε

∫ 0

L
h22(t0 + 2L− x)dx

= tL + L− 1
2ε

∫ L

0
h22(t0 + L + x̃)dx̃,

where we have used (21.172) in the second equality (working to first order
in ε and, in the last line, x̃ = L−x. Dropping the tilde and substituting for
tL from (21.172), we find the return time T as measured by O is given by
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T = t0+2L− 1
2ε

∫ L

0
h22(t0+x)dx− 1

2ε

∫ L

0
h22(t0+L+x)dx. (21.173)

If the size of the detector is small compared to the wavelength of the gravi-
tational wave, then wemay approximate both integrands by h22(t0), which
gives a change∆T in the time of arrival compared to the flat space result of

∆T = −εLh22(t0). (21.174)

Taking into account the fact that the light goes there and back, and
to this order of accuracy, we may regard the light ray as moving in
Minkowski space, we find that this is in agreement with (21.153) in this
approximation.

However, for space based detectors, this approximation is not valid, so
that one must use (21.173) rather than (21.163) to calculate the phase
shift. Actually, in practice, rather than measure T, one uses the laser as an
atomic clock and measures the changes in the time T of the return as a
function of the time t when it was emitted. Differentiating (21.173) with
respect to t0 (which we now just call t), we get

dT
dt

= 1− 1
2ε

∫ L

0
h′22(t + x)dx− 1

2ε

∫ L

0
h′22(t + L + x)dx

= 1− 1
2ε [h22(t + x)]

L
0 −

1
2ε [h22(t + L + x)]L0

= 1− 1
2ε (h22(t + 2L)− h22(t)) . (21.175)

If we again use an approximation in which the size L of the detector is
small compared to the wavelength of the gravitational wave, then we may
expand h22(t + 2L) in a Taylor series to give

h22(t + 2L) ' h22(t) + 2Lḣ22(t). (21.176)

So, in this approximation,

dT
dt

= 1− εLḣ22(t). (21.177)

We also see that, differentiating (21.177) again, we get

d2T
dt2

= −εLḧ22(t), (21.178)

which, taking into account the fact that the light travels a distance 2L, is
in agreement with the equation of geodesic deviation (21.156).

21.13 The detection of gravitational waves
In this section, we briefly review the various methods suggested for de-
tecting gravitational waves before discussing the successful observation
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of gravitational waves by the LIGO interferometers in the next section.
There have been four sorts of detectors proposed so far: resonant mass
detectors, laser interferometers, Doppler tracking, and pulsar timing
arrays.

The original resonant mass detectors used by Weber consisted of
massive metal bars tuned to a particular resonant frequency and, as a
result, these are limited to detecting waves in a narrow frequency band.
Modern bar detectors consist of solid bars weighing a few tons, suspended
in vacuum, and cooled down to temperatures of only a fewmillikelvin and
have achieved sensitivities of around h ' 10−20. Although a number of
such devices have operated for periods of ten or more years, they have
not produced reliable evidence of the detection of gravitational waves.
A new generation of such detectors but using spheres rather than cylin-
ders has been proposed. These would offer greater sensitivity and im-
proved bandwidth compared to the bar detectors. Although they might
potentially be able to measure a supernova in our galaxy, they operate at
the wrong frequency to detect many of the most promising sources such
as colliding neutron stars or black holes.

As described above, an interferometer essentially measures the dif-
ference in the return times along two different arms. Ground based
interferometers operate at a frequency in the range 20Hz to 2 kHz and are
therefore small enough to use the formula (21.174) that we derived above.
As of 2020, there are a number of such detectors in operation, including
the two LIGO sites in the USA (Hanford, Washington, and Livingston,
Louisiana), the VIRGO detector near Pisa, Italy, and the GEO600 de-
tector near Hannover, Germany. The best such detectors achieve a strain
sensitivity of 10−23 Hz−1/2 (see details below). At frequencies below a
few Hertz, it is not possible to shield detectors on the Earth from noise.
One strategy to avoid ground based noise is therefore to use a detector
in space. In 2017, the Laser Interferometer Space Antanae (LISA) was
selected by the European Space Agency (ESA) a launch slot and, since
then, an international collaboration has been working towards a launch in
2034. It will consist of three freely flying spacecraft arranged in a trian-
gular formation, each containing two test masses and two telescopes and
two lasers arranged to point at the other two spacecraft. It will thus form
three Michelson-Morely-type interferometers, each centred on one of the
spacecraft, with the test masses defining the ends of the arms. The entire
arrangement, which is ten times larger than the orbit of the Moon, will
be placed in solar orbit at the same distance from the Sun as the Earth,
but trailing the Earth by 20◦ (see Fig. 21.9). The sensitivity of LISA will
be similar to that of LIGO but at a frequency 105 times lower. Since the
size of the interferometers used in LISA would be larger than a wave-
length of gravitational waves for frequencies above 10 mHz, one cannot
use (21.174) to measure the phase shift, but instead one needs a general-
ization of (21.175) for a gravitational wave making an angle θ to the z-axis
which gives (exercise)
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Sun

Earth

60°

Fig. 21.9 Schematic of LISA’s motion about the Sun. The three spacecraft form
an equilateral triangle of side length 2.5×106 km. The triangle’s center follows a
circular path about the Sun with radius 1 AU, trailing Earth by 5× 107 km. The
plane of the triangle is tilted by 60◦ from the plane of Earth’s orbit.

dT
dt

= 1 + 1
2 {(1− sin θ)h22(t + 2L)− (1 + sin θ)h22(t)

+2 sin θh22(t + L(1− sin θ))} . (21.179)

Both NASA and ESA use Doppler tracking to monitor the position
of interplanetery spacecraft in order to look for the effect of gravitational
waves. Typically, they monitor the return time of communications to the
spacecraft which, for missions to Jupiter and Saturn, for example, are
of order 2− 4× 103 s. Any gravitational wave event shorter than this will
appear three times in the time delay: once when the wave passes the Earth-
based transmitter, once when it passes the spacecraft, and once when it
passes the Earth-based receiver. Searches use a form of data analysis us-
ing pattern matching. Using two transmission frequencies and very stable
atomic clocks, it is possible to achieve sensitivities for h of order 10−13,
and even 10−15 may soon be reached. This is effectively using a formula
like (21.173) to measure the time delay so it is limited by clock accuracies.

Millisecond pulsars are natural examples of extraordinarily regular
clocks, with irregularities too small for the best atomic clocks to measure.
If one assumes that they emit pulses perfectly regularly, then one can use
observations of timing irregularities of single pulsars to set upper limits
on the background gravitational wave field by comparing the arrival time
with that given by (21.172). The delay is a combination of the effects of
waves at the pulsar when the signal was emitted and waves at the Earth
when it is received. If one simultaneously observes two or more pulsars,
the Earth-based part of the delay is correlated, and this offers a method of
actually detecting long-period gravitational waves. However, to take ac-
count of the random fluctuations in the pulsar signal, one needs to observe
the signal for several years in order to achieve stability of the pulse arrival
times. Therefore, such detectors can only be used for looking for strong
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gravitational waves with periods of several years. Observations are un-
derway at a number of observatories including the Parkes Pulsar Timing
Array, the European Pulsar Timing Array, and the American Nanograv
collaboration.

21.14 Sources of gravitational radiation
and the observation of gravitational
waves

Let us discuss briefly the possible sources of gravitational radiation.
Thorne distinguishes between three sorts of radiation, namely, bursts,
periodic, and stochastic. Known sources of bursts are collisions be-
tween binary black holes, and between black holes and neutron stars, or
pairs of neutron stars. Examples of all of these bursts have been observed
by LIGO. Other possible sources are white dwarf binaries, and extreme-
mass-ratio inspirals (EMRI), which is when a compact stellar remnant
(white dwarf, neutron star, or stellar mass black hole) is captured and
swallowed up by a supermassive black hole. It is hoped that both these
will be observed by LISA. It is also believed that occasionally two super-
massive black holes will merge. Although such mergers would be rare
(one per year is an optimistic estimate), the strength of the signal is such
that the signal should be observable by LIGO for any merger in the ob-
servable universe. Possible sources of periodic waves include binary star
systems, rotating neutron stars, and pulsations of white dwarfs following
nova outbursts. Stochastic sources include the relic background signal
from the big bang, and a binary background coming from thousands of
binary systems emitting gravitational waves continuously in overlapping
frequency bands so that the individual signals cannot be resolved.

It is extremely difficult to obtain estimates of the energy output from
the various sources, because they often depend on the details of the model
which in many cases is uncertain. Furthermore, even if the details are
known the equations are very complicated so that they need to be solved
using numerical methods. For some of the physically simpler systems,
significant advances have been made using numerical relativity. For
example, numerical codes exist which suggest that a collapsing star may
emit up to 1 or 2% of its mass in the form of gravitational waves.

Figure 21.10 illustrates the typical amplitude and wavelengths λ of the
various sources as well as the sensitivity of the various detectors. The
vertical axis is not the raw ‘instantaneous’ strain h discussed earlier, but
a ‘characteristic’ strain that one obtains by accumulating the signal over
some observational timescale.

In 2005 the two LIGO detectors at Livingston and Hanford reached
the target sensitivity for the initial design and, in the sixth science run from
July 2009 to October 2010, they managed to take over a years worth of
data. Although this did not result in the observation of any gravitational
waves, it resulted in some useful upper limits on potential sources of grav-
itational radiation. The detectors were then shut down for a period in
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Fig. 21.10 Estimates of the strength of gravity waves reaching the Earth.

order to upgrade the technology to what is called ‘Advanced LIGO’. This
resulted in considerably enhanced sensitivity, as shown in Fig. 21.11.

In February 2015, the two advanced detectors were brought back on
stream in ‘engineering mode’ in order to fine tune and test the detec-
tors prior to the first scientific observations starting in September. This
resulted in the first detection of a gravitational wave on 14th Septem-
ber 2015, which is called GW150914 to indicate the date of detection.
The signal was in the frequency range 35 Hz to 250 Hz, lasted about 0.2
seconds and had the distinctive ‘chirp’ feature expected from numerical
simulations of two black holes colliding to form a single rotating black
hole. One can see by eye (Fig. 21.12) the similarity of the signals received
at Hanford and Livingston (with the 7 millisecond offset of the timing
of the signals consistent with the light travel time between the two sites).
This figure is also shown on the back cover of the book.

A detailed statistical analysis of the signal confirmed GW150914 as
a genuine observation of a gravitational wave, with an estimated signifi-
cance of at least 5.1σ or a confidence level of 99.99994%. Extracting the
astrophysical signal of a gravitational wave from the noise in order to
confirm an observation is a difficult task and is undertaken using the
technique of matched filtering. This involves constructing a a database
of templates which describe the gravitational waves produced by the
merger of two compact objects (either neutron stars or black holes) with
a range of different masses and angular momenta. The aim of matched
filtering is to see if the observed data contains any signals similar to a
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Fig. 21.11 Sensitivity of enhanced LIGO. (Reproduced from Moore et al.
(2015), Creative Commons Attribution 3.0 License).

template bank member. Since the templates describe the gravitational
waveforms from a wide range of different merging systems, a true signal
should also cause a more or less simultaneous ‘match’ in both detectors.
Since we know gravitational waves travel at the speed of light, the match
must occur within 15 milliseconds or less, depending on the direction on
the sky from which the gravitational wave signal emanates. The particular
template for which there is a match also enables one to determine the as-
trophysical features of the signal. In the case of GW150914, this analysis
showed that the event happened at a distance of 1.4 ± 0.6 billion light
years (determined by the amplitude of the signal) and was produced by
the merger of two black holes with masses of about 35 times and 30 times
the mass of the Sun, resulting in a post-merger Kerr black hole of about
62 solar masses and a spin parameter a of about 0.68. The mass–energy
of the missing three solar masses was radiated away in the form of gravi-
tational waves with the power of the radiation peaking at about 3.6×1049

watts, or 50 times greater than the combined power of all light radiated by
stars in the observable universe. The orbital frequency of 75 Hz (half the
gravitational wave frequency) means that the objects were orbiting each
other at a distance of only 350 km by the time they merged. The phase
changes to the signal’s polarization allowed calculation of the objects’ or-
bital frequency and, taken together with the amplitude and pattern of the
signal, allowed calculation of their masses and therefore their extreme fi-
nal velocities and orbital separation when they merged. In constructing
the gravitational wave templates, the early phases of the merger can be
well described by post-Newtonian calculations (Blanchet 2014) but
the strong gravitational field merger stage can only be solved in full gen-
erality by large-scale numerical relativity simulations. The final ringdown
phase of the post-merger object can be calculated using the so-called
quasi-normal modes of the Kerr solution (Kokkotas and Schmidt 1999).
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Fig. 21.12 First detection of a gravitational wave signal. (Reproduced from Abbott et al. (2016), Creative Commons
Attribution 3.0 License).

Unlike optical telescopes, which only have a small field of view, inter-
ferometric detectors have good coverage of a large portion of the sky. The
downside of this is that a single detector has only a very limited ability to
locate the source of the gravitational wave and that one really needs a net-
work of detectors in order to locate the source through triangulation based
on the different times of arrival of the signal. For the case of GW150914,
the signal was only observed by the two LIGO detectors, and, as a result,
the location could only be restricted to an arc of the sky. Since 2015, as
well as the two LIGO detectors, the VIRGO detector outside Pisa and
the GEO600 detector near Hannover have come on stream. As well as
enhancing the ability to detect gravitational waves, this has enabled the
network of detectors to have much better ability to locate the source of
gravitational waves, as shown by Fig. 21.12 which gives the 90% proba-
bility localizations for GW170814. Plans are currently in place to extend
the network through building a fourth detector (called KAGRA) in Japan
and a fifth LIGO detector in India. There are also plans to improve the
strain sensitivity of the detectors by a factor of 10, which would increase
the volume by a factor of 1,000.

The LIGO and VIRGO collaborations have in 2020 confidently de-
tected gravitational waves from a total of ten stellar-mass binary black
hole mergers and one merger of neutron stars in the first two observing
runs. The event GW170729, detected in the second observing run on 29
July 2017, is the most massive and distant gravitational-wave source ever
observed. In this coalescence, which happened roughly 5 billion years
ago, an equivalent energy of almost five solar masses was converted into
gravitational radiation. GW170814 was the first binary black hole merger
measured by the all three of the global network formed by the LIGO and
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Fig. 21.13 The 90% probability localizations for GW170814. (Reproduced
from Abbott et al. (2017), Creative Commons Attribution 4.0 License).

Virgo observatories and allowed for the first tests of gravitational-wave po-
larization (analogous to light polarization), while GW170818, which was
again detected by all three detectors and was very precisely pinpointed
in the sky. The position of the binary black holes, located 2.5 billion
light-years from the Earth, was identified in the sky with a precision of
39 square degrees. That makes it the next best localized gravitational-
wave source after the GW170817 neutron star merger, which was the
first time that gravitational waves were ever observed from the merger of
a binary neutron star system. Furthermore, this collision was also seen op-
tically, marking an exciting new chapter in multi-messenger astronomy,
in which cosmic objects are observed simultaneously in different forms
of radiation. Details of these and subsequent detections can be found at
the website of the LIGO Scientific Collaboration (LSC), www.ligo.org.

Exercises

21.1 (§21.1) Show that, if we work to order ε2, then (21.1) implies (21.4),
(21.5), (21.6), (21.7), and (21.10) (subject to (21.11)), (21.12), and
(21.13).

21.2 (§21.1) Show that the Bianchi identities (21.8) can be written
in the form (21.9) to order ε2, and that these equations are satisfied
automatically by (21.1).

21.3 (§21.1) Show that the quadratic Lagrangian (21.14) leads to the
field equations (21.13). [Hint: the field equations must be symmetric in
a and b.]
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21.4 (§21.2) Show that hab transforms according to (21.18) to order
ε2 under the coordinate transformation (21.16). Show also that ϕab
transforms according to (21.25) under this transformation.

21.5 (§21.2) Show that in the slow-motion approximation for a distribu-
tion of dust of proper density ρ0 that (21.28) reduces to

ε∇2ϕ00 = 16πρ0.

Compare this with Poisson’s equation in relativistic units to deduce that

εϕ00 = 4ϕ,

with all other components vanishing. Use (21.19) to deduce that

εh00 = εh11 = εh22 = εh33 = 2ϕ,

and hence that, in this approximation, the metric is

ds2 = (1 + 2ϕ)dt2 − (1− 2ϕ)(dx2 + dy2 + dz2).

Show that this is consistent with the Schwarzschild solution (in isotropic
coordinates) in the weak-field limit.

21.6 (§21.2) Confirm equations (21.20), (21.21), and (21.22), and de-
duce (21.28), (21.30), and (21.32) in the Lorentz gauge. Show that there
is an additional gauge freedom (21.18) subject to (21.29).

21.7 (§21.3) Show that the ansatz (21.36) leads to a Riemann tensor
satisfying (21.38), (21.39), and (21.40). [Hint: use the identity (6.79)
to eliminate R0312.] Show that the linearized vacuum field equations lead
to the vanishing of the group of equations (21.39). [Hint: consider R02

= R03 = R12 = R13 = R00 − R11 + R22 + R33 = 0, and remember to raise
and lower indices with ηab.]

21.8 (§21.3)Fill in the details of the argument which shows that the ansatz
(21.45) leads to the canonical form (21.54). [Hint: be careful about signs.]

21.9 (§21.4) Show that the transformation (21.59) transforms (21.58) to
(21.60).

21.10 (§21.5)Complete the details of the argument that an outgoing wave
solution of

1
r
∂2

∂r2
(rϕ)− ∂2ϕ

∂t2
= 0,

is given by ϕ = u(t− r)/r, where u is an arbitrary function.

21.11 (§21.7) Show that the Lagrangian L for the Newtonian two-body
problem is given by (21.100).

21.12 (§21.7) Verify the expression for the second-mass moment of the
mass distribution of the two stars as given by (21.107).
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21.13 (§21.8)
(i) Show that, if we assume

gab(ε) = ηab + εh
(1)
ab + ε2h(2)ab ,

then, to calculate the Einstein equations to O(ε2), we need only take gab

to O(ε), where

gab = ηab − εh(1)ab.

[Hint: check first with this definition that gabgbc = δca to O(ε) and then
use the fact that Γabc involves derivatives of gab which are of O(ε), so that
any term of O(ε 2) in g ab would lead to O(ε3) terms which we neglect.]

(ii) Show that (ignoring terms of O(ε3))

Γabc =
1
2εη

ad(h(1)dc,b + h
(1)
bd,c − h(1)bc,d)

+ 1
2ε

2[ηad(h(2)dc,b + h
(2)
bd,c − h(2)bc,d)− h(1)ad(h(1)dc,b + h

(1)
bd,c − h(1)bc,d)].

(iii) Compute Rab to O(ε2) and show that the O(ε2) terms are given by

R(1)
ab (h

(2)) + R(2)
ab (h

(1)),

where the first term R(1)
ab is given by (21.10), with h replaced by h(2),

and the second term R(2)
ab is given by (21.114), with h replaced by h(1).

[Hint: this is a long but straightforward calculation and it may be helpful
to split up the calculation into three sets of terms: second derivatives of
h(2)ab , second derivatives of h(1)ab , and the remaining first derivative terms.]

21.14 (§21.8)
(i) Show that in the TT-gauge (namely, ηabhac,b = haa = 0),

R(2)
ab (h) = 1

2η
ceηdf (hefhcd,ab − hefhbd,ca − hefhad,cb + hefhab,cd

+ 1
2hcd,ahef,b + hbc,dhae,f − hbc,dhaf,e

)
.

(ii) Use the fact that one can integrate by parts under the angled brackets
to show that

〈R(2)
ab (h)〉 = 1

4 〈hcd,ah
cd

,b〉.

[Hint: you will need the fact that, in the TT-gauge □hab = 0.]
(iii) Starting from the definition (21.117) use part (ii) to establish
(21.125) in the TT-gauge.
(iv) Deduce from the gauge invariance of (21.121), and the fact that
it gives the correct expression in the TT-gauge, that it gives the correct
expression for the Isaacson energy–momentum tensor in any gauge.

21.15 (§21.8) Show that T̃0z is given by (21.131).
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21.16 (§21.10) Let ni be a unit vector in R3 with the Euclidean metric δij
and let

Pij = δji − ninj

be the projection orthogonal to ni. IfXij is a symmetric tensor, defineXTT
ij

by

X(n)TT
ij =

(
PikPjℓ − 1

2PijP
kℓ)Xkℓ.

Show that the projection PikPjℓ− 1
2PijP

kℓ gives the transverse-traceless
part of a symmetric tensor Xij in the ni direction by
(i) showing thatX(n)TT

ij ni = 0 andX(n)TT
ij nj = 0, so thatX(n)TT

ij is trans-
verse to n;
(ii) showing that δijX(n)TT

ij = 0, so that X(n)TT
ij is traceless.

21.17 (§21.9)

(i) If Xij is a general symmetric tensor then show that

XTT
ij Xij

TT = XijXij − 2Xi
jXiknjnk + 1

2X
ijXkℓninjnknℓ − 1

2X
2 +XXijninj.

where X = δijXij is the trace of Xij.

(ii) The reduced quadrupole moment -I is defined by

-I = Iij − 1
3δijδ

kℓIkℓ.

Show that δij-Iij = 0.

(iii) Deduce that

-ITT
ij -II ij

TT
= -Iij-I ij − 2-Iij-I iknjnk + 1

2
-I ij-Ikℓninjnknℓ.

21.18 (§21.9) Using the same argument as in §21.9 it follows from
(21.125) that the luminosity in the ni direction is given by

L(n) =
1

32π
< ḣ(n)TT

ij ḣ(n)ijTT > .

(i) Use the fact that hTT
ij = ΦTT

ij and (21.96) to show that

L(n) =
1

8πr2
<

...
I (n)TT

ij

...
I (n)ijTT > .

(ii) The total luminosity L is obtained by integrating over a sphere of
radius r so that

L =
∫
S2
L(n)r2dΩ,
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where ni = xi/r and S2 is the unit sphere. Use the identities∫
S2

dΩ = 4π,∫
S2
ninjdΩ =

4π
3
δij,∫

S2
ninjnknℓdΩ =

4π
15

(δijδkℓ + δikδjℓ + δiℓδjk) ,

and the result of Exercise 21.16(iii) to show that

L =
1
5

<
...
-I ij

...
-I ij> .

Hence show the total energy radiated is given by the quadrupole formula

dE
dt

=
1
5

<
...
-I ij

...
-I ij>

21.19 (§21.11) Show that the equation of geodesic deviation can be writ-
ten in the form (21.155). Investigate the equation for an h22-wave and an
h23-wave.

21.20 (§21.11)
(i) Let two particles of unit mass that are connected by a spring of nat-
ural length L have positions y1 and y2 respectively, along the y-axis. The
extension of the spring is then given by ξ = y2 − y1 − L. If the masses
experience a Hooke force from the spring of −kξ and a damping of −γξ̇
then show that Newton’s law for the particle at y1 is

d2y1
dt2

= k(y2 − y1 − L) + γ
d
dt
(y2 − y1 − L).

(ii) Write down Newton’s law for the second particle and deduce that the
extension ξ satisfies the equation for a damped harmonic oscillator

ξ̈ + 2γξ̇ + ω2
0ξ = 0,

where ω0 =
√
2k is the natural frequency.

(iii) Show that, if one replaces the coordinate distance in the expression
for F by the proper distance (given by (21.153)), then the equation for
the first particle in inertial coordinates (which to this order of accuracy
agree with the TT-coordinates) is given by

d2y1
dt2

= k(L(t)− L) + γ
d
dt
(L(t)− L),

where

L(t) =
∫ y2(t)

y1(t)
[1− h22(t)]

1/2 dt.
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Calculate the corresponding equation for the second particle and deduce
that (if one ignores terms of O(h2))

ξ̈ + 2γξ̇ + ω2
0ξ = 1

2Lḧ22.

21.21 (§21.13) Show that an h22 wave with metric (21.166) when rotated
through an angle −θ in the xz-plane i.e.

x→ x cos θ − z sin θ,

z→ x sin θ − z cos θ,

has metric

ds2 = dt2 − (1− ε sin2 θh22)dx2 + 2ε cos θ sin θh22dxdz

− (1− εh22)dy2 − (1− ε sin2 θh22)dz2,

where

h22 = h22(t− z cos θ − x sin θ).

Use the method in §21.12 by considering a null geodesic along the x-axis
to show that the analogue of equation (21.173) is

T = t0+2L− 1
2ε

∫ L

0
h22(t0+x(1+sin θ))dx− 1

2ε

∫ L

0
h22(t0+x(1+sin θ))dx

Differentiate with respect to t0 and set t0 = t to obtain equation (21.179).

Further reading

Textbooks that deal with gravitational radiation at the level of this book
include those by Carroll (2004), Hartle (2003), and Schutz (1985). The
classic text by Misner, Thorne and Wheeler (1973) goes into most de-
tail and includes linearized solutions about a general metric (rather than
just about Minkowski space). The book by our Southampton colleague
Andersson (2020) deals with gravitational wave astronomy. The book by
Synge (1960) describes the process of differential chronometry and how
to construct a ‘five-point curvature detector’ to measure the curvature of
space-time using light signals.

Abbott, B. P. et al. (2016). Observation of Gravitational Waves from a
Binary Black Hole Merger. Physical Review Letters, 116, 061102.
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22.1 Gravitational waves and symmetries
In this chapter, rather than looking at solutions of the linearized Einstein
equations, we will look at exact solutions of the full vacuum Einstein
equations that represent gravitational waves. In looking for exact solu-
tions, it is useful to assume that the metric has a high degree of symmetry.
The simplest case is to assume that the space-time is spherically sym-
metric. However, it follows from Birkhoff ’s theorem that a spherically
symmetric vacuum solution in the exterior region is necessarily static, so it
cannot produce gravitational waves. Spherically symmetric metrics have
three independent spacelike Killing vectors that generate rotations and
have an invariant 2-space. The next simplest assumption is that there exist
two independent spacelike Killing vectors V andW which have an invari-
ant 2-space. Since the orbits of the Killing vectors are surface forming,
this means that they commute (see equation (10.15)), so that

[V,W ] = 0. (22.1)

This gives rise to two important examples of exact solutions describ-
ing gravitational radiation, which depend on the topology of the integral
curves. If the integral curves of V andW have topology S1 and R, respec-
tively, then the space-time has cylindrically symmetric gravitational
waves, which we discuss in §22.2, whereas, if the integral curves of both
Killing vectors have the topology of the real line, then we have plane
symmetric gravitational waves, which we discuss in §22.3.

22.2 Einstein-Rosen waves
In this section, we consider a cylindrically symmetric vacuum space-time
with two commuting spacelike Killing vectors V and W, as described
above. Since the integral curves of V have topology S1, we may associate
V with a 2π-periodic coordinate ϕ and write V

∗
= ∂/∂ϕ so that it generates

a rotation. Similarly, the integral curves of W are R so we may introduce
coordinates so that it generates a translation along the z-axis and write
W

∗
= ∂/∂z. Finally, we introduce coordinates t and ρ such that the invari-

ant 2-space is given by t = constant and ρ = constant. In this way, we
introduce cylindrically symmetric coordinates (x0, x1, x2, x3)= (t, ρ,ϕ, z),
adapted to the Killing vectors such that, in these coordinates, the met-
ric coefficients only depend on t and ρ, so gab = gab(t, ρ), and ∂/∂ϕ and
∂/∂z are theKilling vectors.We nowmake the further assumption that the

Introducing Einstein’s Relativity. Second Edition. Ray d’Inverno and James Vickers, Oxford University Press.
© Ray d’Inverno and James Vickers (2022). DOI: 10.1093/oso/9780198862024.003.0022
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metric is invariant under z→ −z and also invariant under ϕ→ −ϕ, which
is called by some authors ‘whole cylinder symmetry’ (e.g. Thorne 1965).
This amounts to the condition that, in adapted coordinates, there are no
dϕdxa cross-terms and no dzdxa cross-terms. In other words, the metric
takes the form

ds2 = gAB(t, ρ)dxAdxB −C(t, ρ)dϕ2 −D(t, ρ)dz2, where A,B = 0, 1,

and C(t, ρ) and D(t, ρ) are positive functions. We now introduce new
coordinates t̃, ρ̃ such that

t̃ = t,

ρ̃ = C(t, ρ)1/2D(t, ρ)1/2,

and define

ψ(̃t, ρ̃) = 1
2 lnD(̃t, ρ(ρ̃, t̃)).

Then, in these coordinates, the metric takes the form

ds2 = g̃ABdx̃Adx̃B − ρ̃2e−2ψdϕ2 − e2ψdz2, (22.2)

where g̃AB = g̃AB(̃t, ρ̃) and ψ = ψ(̃t, ρ̃). We now look at the metric dσ2 of
the invariant 2-surfaces given by t̃ = constant and ρ̃ = constant,

dσ2 = g̃00d̃t2 + 2g̃01d̃tdρ̃ + g̃11dρ̃2. (22.3)

Since this is a 2-dimensional metric, by the second theorem in §6.13, it is
conformally flat and we can introduce new coordinates (t′, ρ′) such that

dσ2 = E(t′, ρ′)(dt′2 − dρ′2).

Writing E(t′, ρ′) in the form

E(t′, ρ′) = e2γ−2ψ,

and (for convenience) dropping the primes, we see that we may write the
general cylindrically symmetric metric in the form

ds2 = e2γ−2ψ(dt2 − dρ2)− ρ2e−2ψdϕ2 − e2ψdz2, (22.4)

where ψ = ψ(t, ρ) and γ = γ(t, ρ). This is called the Einstein-Rosen
metric.
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If one now calculates the vacuum Einstein equations for this metric,
one finds that these are simply given by

∂2ψ

∂t2
− 1
ρ

∂

∂ρ

(
ρ
∂ψ

∂ρ

)
= 0, (22.5)

∂γ

∂ρ
= ρ

[(
∂ψ

∂ρ

)2

+
(
∂ψ

∂t

)2
]
, (22.6)

∂γ

∂t
= 2ρ

∂ψ

∂ρ

∂ψ

∂t
. (22.7)

Equation (22.5) is nothing but the standard wave equation in cylindri-
cal symmetry. The method of solution is therefore to solve (22.5) for ψ
and then use (22.6) and (22.7) to determine γ. Such solutions are called
Einstein-Rosen waves. These solutions were found by Einstein and
Rosen in 1937 and were the first exact solutions describing the prop-
agation of gravitational waves. Note that one requires the integrability
condition γ,ρt = γ,tρ in order to solve (22.6) and (22.7) for γ (exercise).
However, this is automatically satisfied since differentiating the RHS of
(22.6) with respect to t is the same as differentiating the RHS of (22.7)
with respect to ρ by virtue of (22.5).

Using the method of separation of variables, solutions of the cylindrical
wave equation can be given by a superposition of solutions of the form

ψ = AJ0(ωρ) cos(ωt) + BN0(ωρ) sin(ωt), (22.8)

where J0 and N0 are Bessel functions of the first and second kind. Since
the Bessel function of the second kind diverges at the origin, we take
B = 0, and (22.6) and (22.7) can then be integrated to give γ. How-
ever, despite finding such solutions, Einstein and Rosen did not believe
that they were physical, due to the presence of (what turned out to be
coordinate) singularities.

A more interesting solution due to Webber and Wheeler (1957) is to
superpose such solutions to create a wave with the profile of a pulse:

ψ = 2C
∫ ∞

0
eaωJ0(ωρ) cos(ωt)dω

= C
[
(a− it)2 + ρ2

]−1/2
+C

[
(a + it)2 + ρ2

]−1/2
, (22.9)

where the final expression is real since the second term is just the complex
conjugate of the first. Integrating (22.9) gives

γ = 1
2C

2
{
a−2 − ρ2

[
(a− it)2 + ρ2

]−2 − ρ2
[
(a + it)2 + ρ2

]−2

−a−2(t2 + a2 − ρ2)
[
t4 + 2t2(a2 − ρ2) + (a2 + ρ2)

]−1/2
}
.

In analysing this solution, Webber and Wheeler showed that the solution
was regular and carried energy, contrary to the initial views of Einstein
and Rosen.



454 Exact gravitational waves

22.3 Exact plane wave solutions
In this section, we consider plane symmetric gravitational waves possess-
ing two spacelike Killing vectors whose integral curves are the real line.
These can be thought of as translations along the y- and z-axes so that
V

∗
= ∂/∂y andW

∗
= ∂/∂z. Our starting point is the linearized solution given

by an h22 wave. If we introduce double null coordinates defined by

u = t− x, v = t + x,

then an h22-wave, given by (21.55), has a line element of the form

ds2 = dudv− f 2(u)dy2 − g2(u)dz2, (22.10)

where

f 2(u) = 1− εh22(u), g2(u) = 1 + εh22(u). (22.11)

The functions are squared to ensure the correct signature (which is jus-
tified in the linearized approximation by assuming that ε is small in
(22.11)).

Let us now choose (22.10) as an ansatz and plug this line element into
the full vacuum field equations to see if we can solve them. We find that
the non-vanishing components of the connection are (exercise)

Γ1
22 = 2ff ′, Γ1

33 = 2gg ′, Γ2
02 = f ′/f, Γ3

03 = g ′/g, (22.12)

where a prime denotes differentiation with respect to u. The Riemann
tensor has two independent components,

R0202 = ff ′′, R0303 = gg ′′

and there is only one vacuum field equation, namely,

f ′′/f + g ′′/g = 0. (22.13)

Let us denote the first term by the function h(u), i.e.

f ′′/f = h. (22.14)

Then the field equation will be satisfied if g is chosen so that

g ′′/g = −h. (22.15)

These last two equations determine f and g in terms of h(u) up to constants
of integration. Hence any choice of the arbitrary function h(u) gives rise
to a vacuum solution. Such exact solutions are called linearly polarized
plane gravitational waves. They represent plane-fronted gravitational
waves, abstracted away from any sources, propagating in the x-direction.
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The form of the line element (22.10) is essentially that due originally
to Rosen. If we carry out the coordinate transformation

U = u, V = υ + y2ff ′ + z2gg ′, Y = fy, Z = gz, (22.16)

then the line element is transformed into theBrinkmann form (exercise)

ds2 = h(U)(Z2 − Y2)dU2 + dUdV− dY2 − dZ2, (22.17)

which shows the explicit dependence on the freely specifiable function h.
This function can be shown to represent the amplitude of the polarized
wave.

Although such solutions are highly unphysical, being infinite in extent,
it may be hoped that they represent some of the properties of real waves
from bounded sources in some far-zone limit. In particular, they allow us
to investigate the question of the scattering of gravitational waves. For,
unlike electromagnetic theory, where the linearity of the theory means
that electromagnetic waves pass through each other unaltered, there is, in
general, no superposition principle in general relativity. Indeed, we may
expect the non-linearity of the theory to reveal itself in the interaction of
two gravitational waves. However, (22.17) does reveal a limited superpo-
sition principle in that two plane waves moving in the same direction can
be superposed simply by adding their corresponding h functions. Thus,
when moving in the same direction, two such gravitational waves do not
scatter one another. To exhibit scattering, we need two waves moving in
different directions. If we consider two linearly polarized waves colliding
at an angle, we can always find a class of observers who consider the colli-
sion to be head on (see e.g. Exercise 4.10). Hence, it is sufficient to work
in a coordinate system in which the waves appear to collide head on. We
shall consider this question in the limited case of impulsive gravitational
waves, which we discuss next.

22.4 Impulsive plane gravitational waves
We start with amathematical digression. TheHeaviside step function θ(u)
is defined by

θ(u) =

{
0 if u ⩽ 0,
1 if u > 0.

(22.18)

It is closely related to the Dirac delta function δ(u). Strictly speaking, δ is
not a function but rather a distribution and lives under an integral sign. It
will be sufficient for our purposes to define δ by the requirements

δ(u) = 0, if u 6= 0, (22.19)

∫ ∞

−∞
f(u)δ(u)du = f(0), (22.20)
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for any suitably defined function f(u). Then, with these definitions, we
can establish the results (exercise)

θ ′(u) = δ(u), (22.21)

uδ(u) = 0, (22.22)

uθ ′(u) = 0. (22.23)

We now consider a line element in the Rosen form defined by

f(u) = 1 + uθ(u), g(u) = 1− uθ(u). (22.24)

Then we find, using the above results, that (exercise)

f ′ = −g ′ = θ(u), f ′′ = −g ′′ = δ(u), f ′′/f = −g ′′/g = δ(u), (22.25)

which means, from (22.13), that (22.24) gives rise to a plane wave.
Hence, the Ricci and Einstein tensors vanish, but the Riemann tensor
(or, since the solution is vacuum, equivalently the Weyl tensor) does not
vanish, having non-vanishing components

R0202 = −R0303 = δ(u). (22.26)

The solution has delta functions in the curvature and hence it is non-flat
only when u = 0. This can be seen more clearly in the Brinkmann form
of the solution, which, from (22.14), is obtained by setting

h(U) = δ(U). (22.27)

Hence, for u = U 6= 0, the line element reduces to

ds2 = dUdV− dY2 − dZ2, (22.28)

which isMinkowski space-time in double null coordinates. The hypersur-
face u = 0, where the field is concentrated, thus separates two flat regions.
It represents a plane wave similar to that of Fig. 22.1, except that now there
is just one wave front (Fig. 22.1). Such a solution is called a shock wave
or impulsive plane gravitational wave. Figure 22.2 is a space-time
picture (with two dimensions suppressed) of such a solution.

Speed = 1

FlatFlat

x

z

y

Fig. 22.1 Spatial picture of an
impulsive plane gravitational wave.

FlatFlat

u = 0

Rabcd ~ d

t

x

Fig. 22.2 Space-time picture
(two dimensions suppressed) of an
impulsive plane gravitational wave.

Wedefine a sandwichwave to be a non-flat vacuum solution bounded
by plane hypersurfaces outside of which the solution is flat (Fig. 22.3). An
observer moving on a geodesic will ‘feel’ the wave passing for a finite pe-
riod when moving from region I through region II and out into region III.
Neighbouring test particles will be accelerated transversely to the direc-
tion of propagation of the wave. Then an impulsive gravitational wave can
be viewed as a thin sandwich wave in a suitable limit as the thickness goes
to zero. Although impulsive waves are yet another idealization, they do
prove easier to work with than more general waves at first.

Flat

Flat

III

II

I

Non-flat

Rabcd  ¹ 0

x

Rabcd = Rab = 0

Rabcd  = Rab = 0

t

Rab = 0

Fig. 22.3 A space-time picture of
a sandwich wave.
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22.5 Colliding impulsive plane gravitational
waves

In the next two sections, we shall outline the pioneering work of Penrose,
Khan, and Szekeres on the important problem of colliding plane gravi-
tational waves. We start by generalizing the Rosen form (22.10) to the
form

ds2 = ℓdudv− f 2dy2 − g2dz2, (22.29)

where ℓ, f, and g are now functions of both u and v. This form then allows
us to incorporate waves moving in both directions. The explicit vacuum
solution of Penrose and Khan is then given by

ℓ =
m3

rw(pq + rw)2
, f 2 = m2

(
r + q
r− q

)(
w + p
w− p

)
, g 2 = m2

(
r− q
r + q

)(
w− p
w + p

)
,

where

p = uθ(u), q = vθ(v), r = (1−p2) 1
2 , w = (1−q2) 1

2 , m = (1−p2−q2) 1
2 .

The space-time diagram is shown in Fig. 22.4.
The solution is only valid in the four regions:

I. u < 0, v < 0,

II. 0 < u < 1, v < 0,

III. u < 0, 0 < v < 1,

IV. u > 0, v > 0, u2 + v2 < 1.

Singularity

Caustic
2-surface

Flat (Rabcd = 0)

Im
pulsi

ve
 w

av
e u

 =
 0 Impulsive wave v = 0

Flat (Rabcd = 0)

Flat (Rabcd = 0)

Rabcd ~ d Rabcd ~ d

u = 1 v = 1

Caustic
2-surface

Curved

x

t

IV

IIIII

I

u2 + v2 = 1

Fig. 22.4 Penrose and Khan space-time picture of two colliding impulsive plane
waves.
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Regions I, II, and III are flat, and region IV is curved. Region I is sep-
arated from region II by an incoming impulsive wave and from region
III by another impulsive wave travelling in the opposite direction. They
collide at the origin in the figure, and then region IV represents the inter-
action region between them. If we consider the world-line of the observer
x = 0, then the two waves collide at t = 0, scatter each other, and leave a
curved region between them, which, in finite proper time according to the
observer, develops a curvature singularity. (This is an intrinsic singu-
larity in the usual sense that scalar-invariants in the curvature tensor blow
up.) There is also a coordinate singularity in region II at u = 1, v < 0,
and an analogous one in region III at v = 1, u < 0. These singularities
are, in fact, topological singularities, sometimes called fold singularities,
and are in this case caustic 2-surfaces caused by each wave focusing
the other, i.e. they are surfaces where the null geodesics cross. They are
not intrinsic curvature singularities. The space-time diagram (Fig. 22.4)
is a bit misleading at first sight, since you might think it possible for an
observer in region II to cross u = 1 and escape. However, the caustic
surface is just a ‘seam’ in the hypersurface v = 0, and so the chances of
hitting it are remote, and, anyway, any observer getting close will be swept
up into region III and end up on the singularity. There is a finite jump
in the curvature tensor at u = 0, 0 < v < 1, and at v = 0, 0 < u < 1
(sometimes called a step wave), in addition to the delta function there.
Furthermore, inspection of the solution reveals that the waves no longer
have planar symmetry after impact.

To summarize, two impulsive plane gravitational waves approach-
ing each other from different directions scatter each other and cease
to be plane waves. Eventually, the focusing effect of each wave on the
other results in the formation of a spacelike curvature singularity and,
whereas timelike singularities are avoidable, spacelike singularities are not.

22.6 Colliding gravitational waves

Initial data
prescribed

IV

IIIII

u

u =
 0 v = 0

v

I

Fig. 22.5 The characteristic initial
value problem for colliding waves.

The fact that two colliding impulsive waves give rise to a singularity is per-
haps something of a surprise. At first (recall the situation in black holes
with the Schwarzschild solution), it was thought that this may be due
to the high symmetry of the solution and that a more realistic solution
would remain regular. However, Szekeres provided a general framework
for investigating colliding gravitational waves and discovered some ex-
act solutions which again result in singularities. The framework consists
essentially of formulating the problem as a characteristic initial value
problem (see §23.5), which, in double null coordinates (u, v), consists of
prescribing initial data on a pair of null hypersurfaces u = 0, v = 0, inter-
secting in a spacelike 2-surface (Fig. 22.5). Region I is taken to be flat, and
regions II and III contain two waves which are approaching from opposite
directions. Region IV is then the interaction region of the two waves. The
problem is well posed in that it can be shown that any given initial data
gives rise to a unique solution in region IV. It is convenient to assume that
two commuting spacelike Killing vectors ∂/∂y and ∂/∂z exist throughout
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the whole space-time. Szekeres shows that coordinates of the Rosen type
exist in which the metric takes on the form

ds2 = e−Mdudv− e−U(eV coshWdy2 − 2 sinhWdydz + e−V coshWdz2),

whereM,U,V, andW are functions of u and v in general. However, in re-
gion II, the functionsM,U,V, andW depend on u only; in region III, they
depend on v only. If the waves have constant and parallel polarizations,
then it can be shown that one can putW = 0 globally, and the solution to
the initial value problem reduces to a one-dimensional integral for V and
two quadratures for M.

Szekeres considered the more realistic case of sandwich waves in re-
gions II and III and again found that they give rise to singularities in
region IV. Since the early 1970s, when this work was first reported,
there have been a large number of exact solutions found for colliding
gravitational waves, including plane gravitational waves and waves cou-
pled with electromagnetic waves, perfect fluids, and null dust (i.e. an
energy-momentum tensor of the form (12.1) but where the 4-vector ua

is null). Indeed, there has been considerable controversy over what hap-
pens when two planar impulsive gravitational waves, each followed by a
distribution of null dust, collide. Do the two distributions pass through
each other or do they mix magically to produce a perfect fluid with
a ‘stiff ’ equation of state p = ρ? These ambiguities make it clear that
these sorts of problems, which are a mixture of initial value and bound-
ary value problems, need careful handling and that particular attention
needs to be paid to the physical interpretation of the resulting solutions.

Exercises

22.1 (§22.2) Verify that if γ satisfies (22.6) and (22.7) then γ,ρt = γ,tρ by
virtue of (22.5).

22.2 (§22.2) Verify that

ψ =
[
ρ2 − (t + ia)2

]−1/2
,

is a complex solution of the wave equation (22.5). Deduce that (22.9) is
a real solution of the wave equation in cylindrical coordinates.

22.3 (§22.3) Show that the line element (22.10) leads to (22.12) and
(22.13).

22.4 (§22.3) Show that (22.16) transforms vacuum solutions in the
Rosen form into the Brinkmann form (22.17). What is the inverse form
of (22.16)?



460 Exact gravitational waves

22.5 (§22.3) Some authors write the Rosen line element with a 2 in front
of the first term, i.e.

ds2 = ḡabdx̄ adx̄ b = 2dūdv̄− f̄ 2(ū)dȳ 2 − ḡ 2(v̄)dz̄ 2.

(i) Show that if

ū = (1/
√
2)u, v̄ = (1/

√
2)v, ȳ = y, z̄ = z,

then the line element reduces to the Rosen form (22.10).
(ii) Show that if

ū = u, v̄ = v, ȳ =
√
2y, z̄ =

√
2z,

then ḡab = 2gab, where gab is the Rosen metric (22.10), and deduce that
ḡab gives rise to the same connection, Ricci, and Einstein tensors as gab
does.

22.6 (§22.4) Show that the definitions (22.19) and (22.20) lead to the
results (22.21), (22.22), and (22.23). [Hint: use integration by parts to
establish (22.21).] Deduce that uδ′(u) = −δ(u).

22.7 (§22.4) Show that (22.24) leads to (22.25), (22.26), and (22.27).

Further reading

For a general reference on exact solutions, see the book by Kramer et al.
(2009). The paper by Thorne (1965) gives a good discussion of Einstein–
Rosen waves, and the book by Griffiths (1991) gives a detailed discussion
of both these and plane wave solutions.

Griffiths, J. (1991). Colliding Waves in General Relativity. Oxford Univer-
sity Press, Oxford.

Kramer, D., Stephani, H., Herlt, E., and MacCallum, M. A. H. (2009).
Exact Solutions of Einstein’s Field Equations (2nd edn). Cambridge Uni-
versity Press, Cambridge.

Thorne, K. S. (1965). Energy of infinitely long, cylindrically symmetric
systems in general relativity. Physical Review, 138, B251.



23Radiation from an isolated
source

23.1 Radiating isolated sources
The extent to which the results of the linearized theory can be trusted is
not clear. The non-linearity of the gravitational field is one of its most
characteristic properties, and it is likely that at least some of the cru-
cial properties of the field should show themselves through the non-linear
terms. Indeed, we have met exact solutions of the Einstein vacuum field
equations corresponding to plane gravitational waves and we have seen
that superposition of them leads to the creation of intrinsic singulari-
ties. This result is certainly absent in the linear case, so clearly there are
differences. However, even these solutions are global vacuum solutions
abstracted away from sources and, as such, are physically unrealistic, even
if they may give us important information about how waves behave in
asymptotic regions. What we would really like to do is to be able to in-
vestigate gravitational waves from bounded isolated sources, since then
we would be in a position to discuss energy transfer and it is this which
determines whether or not gravitational waves behave in the same way
as other forms of radiation. Such a model system consists of an isolated
bounded source which has been quiescent for a semi-infinite period, then
radiates for a finite time, and afterwards becomes quiescent again. If the
resulting waves are real physical waves, in that they carry energy, then
we might expect the source to lose mass (and possibly other multipole
moments may change) in the process.

As discussed in the previous chapter the simplest field due to a
bounded isolated source is spherically symmetric but such solutions can-
not emit waves. In the previous chapter, we looked at solutions with two
commuting spacelike Killing vectors which gave rise to cylindrically sym-
metric and plane gravitational waves. The next simplest assumption is to
consider a system admitting just one spacelike Killing vector field together
possibly with discrete reflection symmetries. This, indeed, was the start-
ing point of Bondi in his pioneering work on gravitational radiation in the
early 1960s in which he considered a source which is axially symmetric
and non-rotating. The symmetry assumptions are that the solution has a
hypersurface orthogonal rotational Killing vector ∂/∂ϕ so that the metric
is invariant under

ϕ→ ϕ′ = ϕ + constant, (23.1)

ϕ→ ϕ′ = −ϕ, (23.2)

where the reflection symmetry (23.2) prohibits the solution from rotat-
ing (why?). Although these assumptions simplify things somewhat, the

Introducing Einstein’s Relativity. Second Edition. Ray d’Inverno and James Vickers, Oxford University Press.
© Ray d’Inverno and James Vickers (2022). DOI: 10.1093/oso/9780198862024.003.0023
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mathematics is still quite difficult and ultimately recourse has to be made
to asymptotic approximation methods to discuss the radiation. It is also
possible to employ the additional reflection symmetry in the equatorial
plane, namely,

θ → θ′ = π − θ, (23.3)

but this does not lead to any great simplification and so we shall omit it.
We shall return to the definition of the other coordinates in §23.3.

We therefore consider an axially symmetric non-rotating bounded
isolated source which is initially static, radiates for a finite period (for
example by pulsating axially symmetrically), and subsequently returns to
a static configuration (Fig. 23.1). This model assumes that, once a sys-
tem has radiated, it is possible subsequently for it to become quiescent
again. One might expect the non-linearity to cause the waves to interfere,
backscatter, and so excite the source, causing it to radiate indefinitely.
This is a delicate problem, which is outside the scope of this book, and
so, following Bondi, we shall assume a quiescent model is possible and re-
strict ourselves to outlining the proof of the mass-loss result in this case.
We start by considering the surfaces which act as wave fronts in the theory.

Null hypersurface

Null hypersurface

Source

Time

Rad
iat

ion
Radiation

m1

m2

Fig. 23.1 Bondi mass loss: m2 < m1.

23.2 Characteristic hypersurfaces of
Einstein’s equations

The field equations of general relativity form a system of hyperbolic
partial differential equations. This is most easily seen in the linearized
approximation, where, in an appropriate gauge, the equations are sim-
ply wave equations. As Bondi has pointed out, hyperbolic equations are
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very different in character to elliptic or parabolic equations since they al-
low for ‘time-bomb’ solutions, that is, solutions which are initially static
but then suddenly become dynamic. Such solutions propagate their ef-
fects along privileged curves called the bicharacteristics of the theory.
Moreover, these bicharacteristics lie on privileged surfaces called char-
acteristic hypersurfaces, which play the role of wave fronts in the
propagation of these effects. Along characteristic hypersurfaces, different
solutions can meet continuously and, as a consequence, they are defined
as those singular hypersurfaces for which the usual Cauchy initial value
problem cannot be solved.

To find the characteristic hypersurfaces for the vacuum field equations,
recall that, in considering the Cauchy problem, we obtained the evolution
equations in the form (13.23), namely,

g00gαβ,00 = 2Mαβ .

Thus, we would be unable to solve for gαβ,00 if and only if g00 = 0. As we
have seen in §17.1, this is the condition for the hypersurface x0 = constant
to be a null hypersurface. The normal vector to such a hypersurface
is null and, consequently, it is also tangent to the hypersurface. Thus, a
null hypersurface is a hypersurface that is locally tangent to the light cone
(Fig. 23.2). Not only are null hypersurfaces characteristic surfaces, but
they are ruled by null geodesics which turn out to be the bicharacter-
istics of the theory (see §23.3). This makes clearer the idea we met in
the linearized theory, namely, that gravitational disturbances are propa-
gated along null geodesics with the speed of light. It is clear from these
considerations that null hypersurfaces play an important role in the study
of gravitational radiation.

Null
hypersurface

Null
geodesic (rays)

la
Tangent and
normal vector
Surface everywhere
tangent to local
light cone

Fig. 23.2 A null hypersurface.

23.3 Radiation coordinates
The discussion of the last section suggests that, in order to investigate
radiation, we should introduce the coordinate hypersurfaces

x0 = u = constant, (23.4)
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as a family of non-intersecting null hypersurfaces. The normal covariant
vector field to these surfaces is therefore

ℓa = ∂au = (1, 0, 0, 0) = δ0a , (23.5)

and, since it is null,

ℓaℓ
a = gab∂au∂bu = 0, (23.6)

and the vector field is both tangent and normal to the null hypersurfaces.
The bicharacteristics are the integral curves of the contravariant vector
field ℓa, that is, they have equation

xa = xa(ρ) (23.7)

for some parameter ρ, where

dxa

dρ
= la = gab∂bu. (23.8)

Then, taking the absolute derivative of (23.8), we get

D
Dρ

(
dxa

dρ

)
=

D
Dρ

(gab∂bu)

=
dxc

dρ
∇c(gab∂bu)

= gab
dxc

dρ
(∇c∂bu)

= gab
dxc

dρ
(∇b∂cu)

= gabgcd∂du(∇b∂cu)

= 1
2g

ab∇b(gcd∂cu∂du)

= 0, (23.9)

using the symmetry of the connection in the fourth equality, and (23.6)
in the last. Hence, the bicharacteristics are null geodesics and ρ is an
affine parameter . These null geodesics are often called null rays.

We choose as a second coordinate

x1 = r, (23.10)

where r is some radial parameter along the null rays, and we then use
the remaining coordinates x2 and x3 to label the null rays. Assuming that
space-time is asymptotically flat, that is,

lim
r→∞

gab = ηab, (23.11)
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r
radial
parameter
along
null rays

Null hypersurface
u = constant

I+ I+

Rays focus and
cross in general

θ, φ
defined on S2

label rays

Fig. 23.3 Bondi’s radiation coordinates (u, r, θ,ϕ).

we can then take x2 and x3 to be the usual spherical polar angles

x2 = θ, x3 = ϕ, (23.12)

defined on each 2-sphere (u = constant, r = ∞) at future null infinity I +.
These coordinates are calledBondi or radiation coordinates. They are
really only defined in a neighbourhood of I + because, if we follow the
null rays back into the interior, the gravitational field will cause them to
focus and cross in general (Fig. 23.3). However, we shall ultimately be
working asymptotically and so the coordinate system will be adequate for
our needs.

23.4 Bondi’s radiating metric
A null ray is one of the coordinate curves

u = u0, θ = θ0,ϕ = ϕ0,

where u0, θ0, and ϕ0 are constants, and r is varying. The tangent vector
to this curve is

dxa

dr
= (0, 1, 0, 0) = δa1,

and so it must be parallel to ℓa, that is, ℓa = λδa1 for some proportionality
factor λ. But, by (23.8) and (23.5),

ℓa = gab∂bu = gabδ0b = g0a,

from which we get

g00 = g02 = g03 = 0. (23.13)
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These conditions on the contravariant metric are equivalent to the condi-
tions on the covariant metric (exercise)

g11 = g12 = g13 = 0. (23.14)

Newman and Penrose, in work on gravitational radiation subsequent to
Bondi, took x1 to be an affine parameter, in which case (exercise) λ = 1
and

g01 = g01 = 1. (23.15)

However, Bondi chose x1 = r to be a luminosity distance parameter
defined by requiring ∣∣∣∣ g22 g23

g23 g33

∣∣∣∣ = r4 sin2 θ. (23.16)

The significance of this choice is that the 2-surfaces, u = constant,
r = constant, have the usual surface area of a 2-sphere, namely, 4πr2.

We next impose the symmetry assumptions of axial symmetry
(23.1), which results in (exercise)

∂gab
∂ϕ

= 0, (23.17)

and azimuth reflection invariance (23.2), which results in (exercise)

g03 = g13 = g23 = 0, (23.18)

or, equivalently,

g03 = g13 = g23 = 0. (23.19)

Putting all these assumptions together, we can write the metric in the
particular form of Bondi’s radiating metric (exercise)

ds2 =
(
V
r
e2β −U2r2e2γ

)
du2 + 2e2βdudr + 2Ur2e2γdudθ

− r2(e2γdθ2 + e−2γ sin2 θdϕ2), (23.20)

where V, U, β, and γ are four arbitrary functions of the three coordinates
u, r, and θ by (23.17), that is,

V = V(u, r, θ), U = U(u, r, θ), β = β(u, r, θ), γ = γ(u, r, θ). (23.21)

Bondi’s metric is an example of the 2+2 formalismwe discussed in §14.13.
We have a family of two surface Su,r on which the metric is that given by
dσ2 = r2(e2γdθ2 + e−2γ sin2 θdϕ2). The level surfaces of the u coordinate
are the u = constant null hypersurfaces, while the r = constant surfaces
are timelike (as depicted in Fig. 14.9). The functions U and β encode the
shifts, and V encodes the lapse.
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23.5 The characteristic initial value problem
We now consider the initial value problem for Bondi’s radiating met-
ric. The situation is different from the Cauchy problem because,
this time, the initial data is set on a characteristic or null hypersur-
face rather than on a spacelike hypersurface. As a consequence, it
is called the characteristic initial value problem. Bondi showed
that the ten vacuum field equations break up into four groups:

(1) three symmetry conditions

R03 = R13 = R23 ≡ 0; (23.22)

(2) four main equations

R11 = R12 = R22 = R33 = 0; (23.23)

(3) one trivial equation

R01 = 0; (23.24)

(4) two supplementary conditions

R00 = R02 = 0. (23.25)

The three components R03, R13, and R23 vanish identically as a conse-
quence of the symmetry assumptions. Recall that, in the Cauchy problem,
we proved a result which states that, if the dynamical equations hold ev-
erywhere and the constraint equations hold on an initial hypersurface,
then the contracted Bianchi identities ensure that the constraint equations
hold everywhere. There is an analogous result for the characteristic initial
value problem, except that, in this case, the ‘constraint equations’ consist
of the trivial equation and the supplementary conditions, and the trivial
equation is automatically satisfied as an algebraic consequence.

Lemma: If the main equations hold everywhere, then the contracted
Bianchi identities ensure that

(a) the trivial equation holds as an algebraic consequence,

(b) the supplementary conditions hold everywhere if they hold on a
hypersurface r = constant.

Hence, the initial value problem reduces to solving the main equations
and satisfying the supplementary conditions for one value of r. The main
equations break up further into the following:
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(2a) one dynamical equation

R33 = 0; (23.26)

(2b) three hypersurface equations

R11 = R12 = g22R22 + g33R33 = 0. (23.27)

The dynamical equation is the only main equation which involves a term
differentiated with respect to u and hence propagating into the future (that
is, from one null hypersurface to the next). The hypersurface equations
only involve differentiation within the hypersurface u = constant.

If we assume that the solution is analytic everywhere, then a detailed
analysis of the main equations leads to the following schema for integra-
tion. We first prescribe γ on u = u0, that is, on some initial hypersurface
N0, say. The three hypersurface equations then determine β, U, and V on
N0. The dynamical equation serves to determine γ,0 on N0, which means
that γ is determined on the ‘next neighbouring’ null hypersurface, N1,
say. We then go through the whole cycle again on N1 (Fig. 23.4). Pro-
ceeding in this way, we can generate a solution of the field equations in
some region to the future of N0. However, we have neglected functions
of integration in the schema and it turns out that one of them, called the
‘news’ function, plays a key role in the analysis.

Prescribe
γ

on N0

Main
equations
determine

γ on N1

N0:u = u0 N1:u = u1(= u0 + du)

Fig. 23.4 An integration schema for Bondi’s solution.

23.6 News and mass loss
In order to proceed further, we need to expand everything in inverse
powers of the radial parameter r and carry out an asymptotic analysis.
We shall outline the procedure. We start by strengthening the condition
(23.11), and a detailed analysis reveals that the asymptotic behaviour of
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the metric is given by

g00 = 1 +O(r−1),

g01 = 1 +O(r−1),

g02 = O(1),

g22 = −r2 +O(r),

g33 = −r2sin2θ +O(r).

(23.28)

We mention briefly that the coordinate transformations which preserve
the form of the metric (23.20) together with the above asymptotic condi-
tions form a group called the Bondi–Metzner–Sachs, or BMS group.
The BMS group is important because it plays the same role asymptoti-
cally for an isolated radiative system as the Poincaré group does in special
relativity. Bondi adopts a final assumption, namely,

lim
r→∞

[
∂(r2γ)
∂r

]
u=const

= 0, (23.29)

in an attempt to prevent radiation coming in from past null infinity and af-
fecting the source. He chose this condition in analogy to the Sommerfield
condition in electromagnetic theory, which prevents incoming radiation,
but it turns out that (23.29) is not strong enough to prevent the occurrence
of sufficiently weak incoming radiation.

We now have sufficient starting assumptions to expand everything in
inverse powers of r. It is only necessary to work to a certain limited order in
inverse powers to obtain the mass-loss result. For example, to the required
order, we get (changing the original notation slightly)

γ =
n
r
+
q
r3

+O(r−4), (23.30)

where n = n(u, θ) and q = q(u, θ) are arbitrary functions at this stage. The
hypersurface conditions lead to

β = −n2/(4r2) +O(r−3),

U = −(n,2 + 2n cot θ)/r2 + (2d + 3n n,2 + 4n2 cot θ)/r3 +O(r−4),

V = r− 2M +O(r−1),
(23.31)

where d = d(u, θ) and M = M(u, θ) are also arbitrary. The dynamical
equation produces

4q,0 = 2Mn− d,2 + d cot θ.
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The supplementary conditions lead to

M,0 = −n2,0 + 1
2 (n,22 + 3n,2 cot θ − 2n),0, (23.32)

−3d,0 = M,2 + 3n n,02 + 4n n,0 cot θ + n,0n,2, (23.33)

where these last two equations are exact results by the lemma, since this
is the part of the equations which holds on r = constant.

A detailed investigation reveals that, as before, our initial data involves
prescribing one function of three variables, namely,

γ = γ(u, r, θ), (23.34)

on N0. However, in addition, we must prescribe one function of two
variables, namely, the u derivative of n.

n,0 = n,0(u, θ), (23.35)

for any value of r. Since we are working asymptotically, we shall pre-
scribe n,0 on I +. Finally, wemust prescribe two functions of one variable,
namely,

M = M(u0, θ), d = d(u0, θ), (23.36)

n,0

M d
N0

I +

i+

Source

i–

I –

i 0

γ

Fig. 23.5 Penrose diagram
indicating initial data.

which we prescribe on the intersection ofN0 and I + (see Fig. 23.5).With
this initial data, all other quantities are determined. Clearly, it is the data
n,0 which determines the evolution of the solution and, as a consequence,
it is termed the news function. If the solution is static, then the news func-
tion vanishes. If we restrict our attention to the periods when the source is
static, then it is possible to find a coordinate transformation which relates
the quantitiesM, d, and q to known physical parameters. It turns out that
M is intimately connected to the mass and is termed the mass aspect. In
fact, the quantity

m(u) = 1
2

∫ π

0
M(u, θ) sin θdθ, (23.37)

determines the mass of the system at I + and is called the Bondi mass.
It is not obvious that (23.37) determines the mass but it agrees with the
ADM and Komar mass for a stationary space-time (see §20.12) and with
the Newtonian result in the weak field limit. The term d is termed the
dipole aspect, and q the quadrupole aspect, and these also agree with
the Newtonian result in the weak-field limit.
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Multiplying (23.32) by sin θ, integrating with respect to θ from 0 to
π, and using (23.37) together with some regularity conditions on the
symmetry axis, we find (exercise)

m,0 = − 1
2

∫ π

0
n2,0 sin θdθ. (23.38)

The non-positive nature of the right-hand side leads to the promised
result.

Theorem: There is mass-loss if and only if there is news.

Thus, if a system remains quiescent, then there is no news and hence
the Bondi mass remains constant. If, however, the system radiates, then
there is news and the minus sign in (23.38) means there is a consequent
mass loss. By conservation of energy, the rate of change of mass given
by (23.38) corresponds to the rate of change of gravitational radiation
emitted by the source dE/dt which, unlike the formula derived in §21.9,
does not require the gravitational field to be weak. Furthermore, n,0 is
related to the leading order part of the Weyl tensor as given by the peel-
ing theorem (see §23.8) so that the integrand is essentially ΨabcdΨ

abcd and
(23.38) is a manifestly coordinate independent quantity defined in terms
of the curvature tensor. If a radiating system is initially quiescent, then ra-
diates for a period, and then can become quiescent again, this establishes
the content of Fig. 23.1. The power of this result is that we have obtained
it without having to assume that the gravitational field is weak everywhere
and no linearization of the field is needed. In §21.9 we mentioned that the
ADM mass is positive. Because of the mass-loss formula, it is not obvi-
ous that the same remains true for the Bondi mass. In fact, the positivity
of the Bondi mass for an asymptotically flat space-time that satisfies the
dominant energy was established by Ludvigsen and Vickers (1981).

We mention that, shortly after Bondi published his results, Sachs
dropped the symmetry assumptions and obtained essentially the same
result. The calculations are obviously longer, and, in general, it turns out
that there are two news functions, corresponding to the two gravitational
degrees of freedom, but otherwise the argument proceeds along similar
lines.

23.7 The Petrov classification
The gravitational field is governed by the Riemann tensor. We can gain
considerable insight into the possible types of gravitational field by consid-
ering the algebraic structure of the Riemann tensor.We restrict ourselves
to the vacuum case, where the Riemann tensor coincides with the Weyl
tensor, because, in four dimensions, by (6.88),

Cabcd = Rabcd − ga[cRd]b + gb[cRd]a − 1
3ga[dgc]bR, (23.39)

and, in the vacuum case, Rab = R = 0.
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The Weyl tensor has the same symmetries as the Riemann tensor and,
in addition, possesses the trace-free property

Ca
bac ≡ 0. (23.40)

Since Cabcd is skew symmetric on each pair of indices and also symmetric
under their interchange, we can start by thinking of it as a 6× 6 symmet-
ric matrix (exercise). We can then classify theWeyl tensor algebraically by
classifying this 6 × 6 matrix in terms of its eigenvalues and eigenvectors.
So, at first sight, we would expect this to involve classifying the possible
roots of a sixth-order or sextic equation. However, the procedure is com-
plicated by the additional symmetries (23.40) andCa[bcd] = 0.We shall not
pursue the details further, but it turns out that these symmetries reduce
the problem to classifying the roots of a quartic equation. The resulting
classification due to Petrov – and hence called the Petrov classification –
itemizes the various possibilities of distinct eigenvalues and eigenvectors
of the Weyl tensor at a point and gives them a name or type as shown in
Table 23.1. If we add to this the completely degenerate case of confor-
mally flat space-times in which Cabcd vanishes (called type O), then there
are six possibilities which can be conveniently arranged in a triangular
hierarchy (Fig. 23.6), as suggested by Penrose. In the diagram, the ar-
rows point in the direction of increasing specialization. The Petrov type
of a given vacuum space-time is then defined as the type at those points
which are highest up the hierarchy. Thus, a solution may be the same type
everywhere, or may reduce to lower types at some points or region, but
by definition the type cannot move up the hierarchy. A generic solution
will be type I, which is called algebraically general, whereas all other
types are called algebraically special.

I

D

N 0III

II

Fig. 23.6 The hierarchy of
Petrov types.

Table 23.1

Petrov type: I II D III N

Quartic all one two one one
roots: distinct double double triple four-fold

Distinct
eigenvectors: 4 3 2 2 1

A different but equivalent method, due to Debever, consists in classi-
fying certain null vectors, called principal null directions, which have
a special relationship to the Riemann tensor. The result rests on the
following theorem.

Theorem: Every vacuum space-time admits at least one and at most
four null directions ℓa 6= 0, ℓaℓa = 0, which satisfy

ℓ[aRb]ef[cℓd]ℓ
eℓf = 0.
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There is a corresponding result for non-vacuum space-times if we replace
Rabcd byCabcd. The Petrov type then relates to the coincidence of these null
directions, as shown in Table 23.2.

Table 23.2

Petrov type: I II D III N

Coincidence: [1 1 1 1] [2 1 1] [2 2] [3 1] [4]

The coincidence also agrees with the coincidence of roots in the Petrov
quartic equation.

The particular vacuum solutions of Schwarzschild, Reissner–
Nordström, and Kerr are all algebraically special type D. Plane
gravitational waves are type N, and hence the gravitational field from
an isolated radiating source is expected to be asymptotically type N.
However, any solution which is sufficiently complex to model a realistic
solution will be type I. Bondi’s radiating vacuum solution, namely
(23.20), subject to (23.30) and (23.31), is type I, but asymptotically type
N with

Rabcd ∼ n,00/r +O(r−2)

when n,00 6= 0. We add that, in a non-vacuum space-time, the Petrov clas-
sification of the Weyl tensor is augmented by an analogous classification
of the Ricci tensor called the Plebanski type. Moreover, the complete
classification of the Weyl tensor and its covariant derivatives (in a canon-
ically defined frame) leads to the Karlhede classification mentioned in
§13.9.

23.8 The peeling theorem
In the last section, we defined the possible algebraic types of the Riemann
tensor in a vacuum space-time. In this section, we consider the physical
significance of this classification. Sachs investigated the case of a retarded
wave solution emanating from an isolated source in the linearized the-
ory and was able to expand the Riemann tensor in terms of an affine
parameter r along each outward null ray (null geodesic) producing the
result

R =
N0

r
+

III0
r2

+
II0
r3

+
I0
r4

+
I′0
r5

+O(r−6), (23.41)

where, for convenience, we have suppressed the indices. Thus, asymp-
totically, the leading order of the Riemann tensor is type N, then type
III, type II, and type I, respectively, at the subsequent orders. In the
equation, the 0 denotes a vanishing absolute derivative in the ray direction
ℓa. Unlike the other coefficients in (23.41), I′0 does not have a special
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relationship with ℓa since its one principal null direction is not tangent
to a null geodesic. Sachs also considered algebraically special fields and
found that they do not have an expansion as general as (23.41), but, in
generalizing the work of Bondi, he was able to show that the Riemann
tensor for an asymptotically flat isolated radiative system has precisely
the same form as (23.41). Indeed, starting in the wave zone, where the
Riemann tensor is type N with a fourfold repeated ray direction ℓa, the
other principal null directions peel off as we move in towards the source,
where terms of a less special nature predominate (Fig. 23.6). This is
known as the peeling-off theorem or just peeling theorem, for short.

N r –1 III r –2 II r–3 I r –4

Fig. 23.7 The peeling-off theorem.

e2
a

e1
a

e3
a

Fig. 23.8 The effects of a type N
field on a ring of test particles.

Szekeres has investigated the properties of type N, III, and D fields by
considering their effect on a cloud of test particles. An observer sets up
an orthonormal triad {e1a, e2a, e3a} of spacelike vectors adapted to the field
in each case. For type N fields, the forces on the ring of particles results in
the distortion shown in Fig. 23.8 (compare with Fig. 21.2). This clearly
indicates the transverse character of such fields, since e1a points in the
direction of propagation of the field. Szekeres terms this a pure trans-
verse gravitational wave. For type III fields, the effect on the particles is
still planar, but in this case the plane contains the wave direction e1a, and
the axis is tilted through 45◦ to the wave direction (Fig. 23.9). Szekeres
terms this a longitudinal wave component. For type D fields, the ef-
fect ceases to be planar. In this case, a sphere of particles is distorted into
an ellipsoid with the major axis lying in the wave direction (Fig. 23.10).
This is precisely the tidal force we discussed before in §17.10 for a ra-
dially infalling observer in the Schwarzschild field. Szekeres terms this a
Coulomb-type field in analogy with electromagnetism. For type I and
type II fields, nothing simple emerges.

e3
a

e2
a

e1
a

Fig. 23.9 The effects of a type III
field on a ring of test particles.

e1
a

Fig. 23.10 The effects of a type
D field on a sphere of test particles.

23.9 The optical scalars
Consider a congruence of null geodesics with tangent vector field ℓa. By
a change of scale, it is always possible to obtain the geodesic equation in
the simple form (exercise)

ℓa;bℓ
b = 0.

We assume this has been done and define three quantities called optical
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scalars determined by the congruence ℓa as follows:

expansion (divergence): θ = 1
2ℓ

a
;a,

twist (rotation): ω =
{

1
2ℓ[a;b]ℓ

a;b} 1
2,

shear (distortion): |σ| =
{

1
2ℓ(a;b)ℓ

a;b − θ2
} 1

2.

Their physical interpretation is embodied in the following result of Sachs.
If a small object in a null geodesic congruence casts a shadow on a screen,
then all portions hit it simultaneously. The shape, size, and orientation of
the shadow depend only on the location of the screen and not on its ve-
locity. If the screen is an infinitesimal distance dr from the object, then
the shadow is expanded by θdr, rotated by ωdr, and sheared by |σ|dr
(Fig. 23.11). The quantity shear turns out to be the most important
physically, as is evident from the following theorem.

Goldberg–Sachs theorem: A vacuum solution is algebraically spe-
cial if and only if it contains a shear-free null geodesic congruence.

In an isolated radiative system, the news function is also intimately
connected to the shear.

The Petrov classification, optical scalars, and Killing vectors are three
very important tools for classifying vacuum solutions in a coordinate-
independent way. In particular, they have been used to find particular
exact solutions of the field equations. Indeed, there are known vacuum
solutions for each of the four classes of algebraically special Petrov type,
determined by the vanishing or otherwise of the expansion and twist. In
some of these cases, all possible solutions are known. For example, all
vacuum type D solutions have been found. There are also a large number
of vacuum type I or algebraically general solutions known. However, few
of these solutions are fully understood in the sense that we are able to un-
derstand their causal structure, geodesic structure, global structure, and
singularity structure. Thus, there are relatively few solutions for which we
can draw space-time, spatial, and Penrose diagrams. Moreover, there is
evidence to suggest that many of them have a strange singularity struc-
ture and, as such, are pathological in nature and unlikely to approximate
to any physically realistic solution.

Finally, we mention that, by using the Riemann identity on ℓa,

ℓa;bc − ℓa;cb = Radcbℓd, (23.42)

and the definitions of optical scalars, it is a straightforwardmatter to derive
propagation equations for the optical scalars. For example, setting

z = −θ + iω, (23.43)

we can deduce

Dz
Dr

= z2 + |σ|2 + 1
2Rabℓ

aℓb. (23.44)
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1 1
1 + θdr

ωdr
1 + (2θ  + ½σ½)dr

1 + (2θ  – ½σ½)dr

(a) (b) (c)

Fig. 23.11 The optical scalars: (a) expansion; (b) twist; (c) shear

This is a null version of the Raychaudhuri equation, and equations such
as these play a central role in the proof of the singularity theorems.

Exercises

23.1 (§23.1) Define cylindrical symmetry. What conditions does
this impose on the metric coefficients in adapted coordinates
(xa) = (x0, x1,ϕ, z)? Write down the metric of the 2-space (ϕ = constant,
z = constant). Use the result of Exercise 6.31 to deduce that there
exist coordinates in which the line element can be written in the form

ds2 = e2α(dt2 − dρ2),

where α is a function of t and ρ only. What are the conditions for the
(t, ρ)-plane to be orthogonal to the (ϕ, z)-plane? Assuming these condi-
tions, show that a cylindrically symmetric line element can be written in
the canonical form

ds2 = e2γ−2ψ(dt2 − dρ2)− ρ2e−2ψdϕ2 − e2ψ+2μ(dz + χdϕ)2,

where γ, ψ, μ, and χ are all functions of t and ρ only.

23.2 (§23.1) What is the condition for a cylindrically symmetric solu-
tion to be non-rotating? What effect does this have on the line element of
Exercise 23.1?

23.3 (§23.4) Show that if a null ray is given by

u = u0, θ = θ0,ϕ = ϕ0,

then it leads to the conditions (23.13). Show that (23.13) is equivalent to
(23.14). [Hint: consider inverting a general symmetric 4× 4 matrix with
zeros in the positions defined by (23.13).] Show that, if x1 is an affine pa-
rameter, it lead to the conditions (23.15). Show that axial symmetry and
azimuth reflection invariance lead to the conditions (23.18) or (23.19).
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Let x1 = r be a luminosity parameter defined by (23.16) and deduce
Bondi’s radiating metric (23.20) subject to (23.21). [Hint: show first that
the conditions lead to a metric in which g00, g01, g02, and g22 are four ar-
bitrary functions of u, r, and θ; then the actual forms of these coefficients
are chosen to preserve the signature and for later convenience.]

23.4 (§23.4) Show that the surface area of the 2-surface (u = u0, r = r0)
is 4πr20.

23.5 (§23.4) Find the non-zero components of the metric connection of
Bondi’s radiating metric. [Hint: use the variational principle approach of
§7.6.]

23.6 (§23.5) Use the results of Exercise 23.5 to establish the lemma of
§23.5. [Hint: write out the contracted Bianchi identities in terms of Γabc and
Rab; do not insert the metric expressions for Γabc and Rab in the identities,
but merely consider which quantities are zero and which are not.]

23.7 (§23.5) Evaluate the components of the Ricci tensor which define
the four main equations. [Hint: this is a long but straightforward cal-
culation.] Use the results to confirm the integration schema for Bondi’s
solution.

23.8 (§23.6) The requirement that the Bondi metric remains regular on
the symmetry axis θ = 0, π leads to a number of conditions including
n(u, 0) = n(u, π) = 0. Use these conditions together with (23.32) and
(23.37) to deduce the mass-loss result.

23.9 (§23.7) Show that the symmetries

Cabcd = −Cabdc = −Cbacd = Ccdab,

mean that we can treat Cabcd at a point as a symmetric 6× 6 matrix.

23.10 (§23.9) Consider a congruence of null geodesics with tangent vec-
tor ℓa. Write down the geodesic equation that ℓa satisfies in general. Show
that, if we rescale ℓa so that

ℓa → ℓ̄a = Aℓa,

then we can choose A so that the geodesic equation reduces to

ℓ̄b∇bℓ̄
a = 0.

23.11 (§23.9) Compute an expression for the expansion for Bondi’s
radiating line element (23.20), using ℓa

∗
=e−2βδa1.
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Further reading

The book by Wald (1984) and the book by Stewart (2008) are fairly ad-
vanced, and both deal with the Bondi metric. The 1962 paper by Bondi
et al. is also quite readable. See the book by Ludvigsen (1999) for more
on the optical scalars and null congruences.

Bondi, H., van der Burg, M. G. J., and Metzner, A. W. K. (1962).
Gravitational waves in general relativity, VII. Waves from axi-symmetric
isolated system. Proceedings of the Royal Society of London. Series A.
Mathematical and Physical Sciences, 269(1336), 21–52.

Ludvigsen, M. (1999). General Relativity: A Geometric Approach. Cam-
bridge University Press, Cambridge.

Stewart, J. (2008). Advanced General Relativity. Cambridge Monographs
on Mathematical Physics. Cambridge University Press, Cambridge.

Wald, R. M. (1984). General Relativity. University of Chicago Press,
Chicago, IL.
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24Relativistic cosmology

24.1 Preview
Cosmology is the study of the dynamical structure of the universe as a
whole. As in most modelling exercises, we shall start by trying to find a
very simple model of the universe. This is done by smoothing out all the
irregularities in space and in time and concentrating simply on the gross
features of the universe. So, to start with, we ignore all details such as
the solar system, our own galaxy (the Milky Way), the local cluster of
galaxies, and so on; the consideration of these details can then hopefully
be introduced at a later stage to yield a more complete or better theory.
We shall be concerning ourselves only with the very basics of cosmology,
that is, the overall dynamics of the system. We shall see in this chapter
that, if one makes some symmetry assumptions, then this is governed by
a first-order ordinary differential equation called Friedmann’s equation.
The resulting solutions are the standard solutions of relativistic cosmology
and are called theFriedmannmodels.We shall investigate some of these
in the next chapter.

Cosmology as a separate scientific study really only came into existence
with the advent of general relativity. It is possible to consider cosmology
in a Newtonian framework, but this had not been seriously attempted
prior to general relativity, largely because, in as far as there was a gen-
erally accepted model of the universe in existence, it was considered
devoid of dynamics; that is, the universe was considered static. Perhaps
surprisingly, it is possible to construct a ‘Newtonian cosmology’ based
on Newtonian theory together with a number of ad hoc assumptions
which also results in Friedmann’s equation. (However, the interpretation
of some of the terms in the equation is different.) But it is important
to realize that this Newtonian approach only came into existence after
general relativity had first tackled the problem. We shall look at a dis-
crete Newtonian model in §24.3. The starting point for both Newtonian
and relativistic cosmology is a simplicity principle called the cosmolog-
ical principle , which states, essentially, that the universe is unchanging
in space from point to point. This leads to the requirement that space
is homogeneous and isotropic (the same in every direction) about each
point.

Introducing Einstein’s Relativity. Second Edition. Ray d’Inverno and James Vickers, Oxford University Press.
© Ray d’Inverno and James Vickers (2022). DOI: 10.1093/oso/9780198862024.003.0024
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In the early decades of cosmology, there were very few reliable observa-
tional results and, not surprisingly, different Friedmann models enjoyed
periods of fashion, that is, periods when they were considered the best
available model for our own universe. However, there was one school
of thought that argued vociferously for a simple non-Friedmann model
called the steady-state solution, based on the perfect cosmological prin-
ciple that the universe is unchanging in space and time. The steady-state
solution is no longer regarded as a good description of the universe but
the perfect cosmological principle leads to the de Sitter solution, which
is of considerable theoretical importance and provides an alternative to
Minkowski space for the asymptotic structure of space-time (see §25.6
for more details). Although the classical Friedmann solutions have been
replaced by more sophisticated models, they are still basic to much of
cosmological thinking. We therefore investigate the ‘classical’ Friedmann
models in Chapter 25 before looking at a more modern approach to
cosmological models in Chapter 25.

Since the 1960s, one model has emerged as the best available, at least
as far as the origins of the universe are concerned, and that is the hot big
bang. In this model, it is assumed that there occurred a cataclysmic event
(some 1010 years ago), called the big bang, when the universe sprang into
existence and expanded away from a singularity. In the earliest phases,
the universe consisted of radiation at incredibly high temperatures and
densities. As the universe expanded, the temperature and density fell and
protons, electrons, and neutrons emerged from the radiation bath. As the
system cooled further, the simple atoms such as hydrogen and helium
emerged first, followed later by the heavier elements. This phase can be
treatedmathematically and one of the great successes of this approach has
been the agreement of the theoretical prediction of the abundancies of the
heavy elements with the observed abundancies. As the system expands
and cools yet further, then conditions become favourable for formation
of the stars and galaxies, from the primeval matter. The model then en-
compasses the dynamics of the interstellar medium including the galaxies
and stars up to the present epoch.

The development of the hot big bang model brings out an important
point; namely, in modelling the universe in the large, we have made use
of our understanding of local physical laws. The justification for this is
that we are more or less forced to do so – otherwise we would hardly
be able to start – and yet it has proved extremely successful, to date, in
providing insight into the structure of the universe. However, we can-
not rule out the possibility that there exist additional interactions which
only reveal themselves on a cosmological scale. One example of this is the
cosmological term (Λgab) which Einstein incorporated into general rela-
tivity. Another important point relates to the fact that, in most branches
of physics, it is possible to investigate phenomena by repeatedly carrying
out experiments in the laboratory in controlled conditions where all but
a small number of parameters are held fixed. No such possibility occurs
in cosmology. Indeed, cosmology is unlike any other branch of physics in
that the system we are studying is unique. Given this constraint, it is per-
haps surprising that we are able to construct such apparently successful
models. This success is so marked that, in some cosmological circles, the
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claim is that the universe is well understood after the first 10−43 seconds,
from its birth, which is when the physics can be described by general
relativity andGrandUnified Theories (GUTs) in which the strong, weak,
and electromagnetic forces are unified. More modestly after about 10−10

seconds, it is belived that the universe is well described by general relativity
and the standard model of particle physics.

24.2 Olbers’ paradox
The fact that, prior to general relativity, the universe was considered static
is perhaps even more surprising when one is confronted by a paradox put
forward by Olbers in 1826 which stems from the observation that the sky
is dark at night. (In fact, others had considered similar ideas before, but
Olbers gave a more precise statement of the paradox.) He assumed that
space is Euclidean and infinite and that the average number of stars per
unit volume and the average luminosity of each star is constant throughout
space and time, provided these averages are taken over sufficiently large
regions. He also assumed that the universe has been in existence for an
infinite time and that, on the large scale, it is static. Now consider a shell
of radius r and thickness dr, and let ℓ denote the product of the average
number of stars per unit volume and the average luminosity per star. The
intensity at the centre of the shell will be given by the total luminosity
produced by the shell divided by its area, that is, approximately

(4πr2dr)ℓ
4πr2

= ℓdr. (24.1)

If we surround any point P by an infinite succession of shells, each of
thickness dr, then clearly the intensity at Pwill be

∫∞
0 ℓdr, which is infinite!

However, we have omitted to account for the possibility that light from a
star may be intercepted on its way by another star (Fig. 24.1).When this is
taken into account, it can be shown that the result is no longer infinite but
equal to the average luminosity at the surface of a star. Since P is arbitrary,
the result must hold everywhere. This leads to a paradox, because the sky
is observed to be dark at night. The same conclusion may be reached by
thermodynamic arguments. For, if the system is static and of infinite age,
then it must have reached thermodynamic equilibrium, which means that
each star must be absorbing as much radiation as it emits, and the result
follows. Yet another argument is that, if one looks in any direction in an
infinite universe in which the average number of stars per unit volume is
finite, then the line of sight will eventually end on a star. Since the system
is static, the light received from the star is not degraded, and the result
again follows.

P

Fig. 24.1 Light intercepted by another
star.

It is interesting to note that the bulk of this enormous amount of radi-
ation arrives from very distant parts, half, in fact, from regions so distant
that the light has only a 50% chance of arriving without being absorbed
by other stars. An estimate from observations in our own neighbourhood
suggests that half of this radiation should be due to stars more than 1020

light years distant.
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Olbers tried to resolve this paradox by postulating the existence of
a tenuous gas which would absorb the radiation in transit over long
distances. This argument will not work, though, because the gas would
be heated until it reaches a temperature at which it radiates as much as
it receives, and hence it will not reduce the average density of radiation.
The same paradox arises even if the assumption that the universe is Eu-
clidean is dropped (exercise). Nor does it make any difference whether
the universe is infinite (open) or bounded (closed).

As we look further out into space, we are looking further back in time.
One resolution of the paradox rests on assuming that ℓ is a function of
time which is sufficiently small in the distant past that the distant regions
do not contribute significantly to the radiation density. If it is assumed that
the universe is static and that the stars do not start radiating until some
finite period in the past, then it is possible to arrange for this period to be
short enough to lead to the radiation density we observe today. However,
some estimates would then suggest that the universe is younger than the
age of the oldest stars. The accepted resolution rests on assuming that the
universe is not static but rather undergoing large-scale expansion. Then,
because of the Doppler shift, light received from receding stars will be
shifted to the red and, if the recessional velocity is large enough, the loss
of energy will be sufficient to reduce the radiation density to the observed
level.

In summary, assuming that a dark night sky is not just a phenomenon of
our current epoch, then Olbers’ paradox requires that either the universe
is young or it is expanding. In the latter case, the question may be asked
as to what happens to the ‘lost’ energy resulting from the Doppler shift.
In fact, it is precisely this energy which is doing the work involved in the
expansion of the universe.

24.3 Newtonian cosmology
In this section, we shall introduce Newtonian cosmology by investigating
a simple discrete model in which it is assumed that the universe consists of
a finite number of galaxies. Let the i-th galaxy have mass mi and position
ri(t) as measured from a fixed originO. We now impose the cosmological
principle (see §24.4) in the form that the motion aboutOmust be spheri-
cally symmetric, in which case the motion of the galaxies is purely radial,
i.e.

ri(t) = ri(t)r̂. (24.2)

The kinetic energy T of the system is then

T = 1
2

n∑
i=1

miṙ2i .

The gravitational potential energy between a pair of galaxies mi and mj

is given by −Gmimj/|ri − rj|, and so the total potential energy V of the
system is
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V = −G
n∑

i,j=1
(i<j)

mimj

|ri − rj|
, (24.3)

where the inequality in the double sum means that each pair of particles
is only counted once. We also assume that there is a cosmological force
acting on the i-th galaxy of the form

Fi = 1
3Λmiri, (24.4)

where Λ is a constant called the cosmological constant. This yields an
additional potential energy, called the cosmological potential energy Vc of
the system, given by

Vc = − 1
6Λ

n∑
i=1

mir2i . (24.5)

The total energy E of the system is therefore

E = 1
2

n∑
i=1

miṙ2i −G
n∑

i,j=1
(i<j)

mimj

|ri − rj|
− 1

6Λ
n∑
i=1

mir2i . (24.6)

Let us assume that the distribution and motion of the system is known at
some fixed epoch t0. Then the radial motion required by the cosmological
principle implies that, at any time t,

ri(t) = S(t)ri(t0), (24.7)

where S(t) is a universal function of time which is the same for all particles
and is called the scale factor. This means that the only motions compat-
ible with homogeneity and isotropy are those of uniform expansion or
contraction, that is, a simple scaling up or down by a time-dependent
scale factor.

The radial velocity of the i-th galaxy is then

ṙi(t) = Ṡ(t)ri(t0) =
Ṡ(t)
S(t)

ri(t), (24.8)

by (24.7). We define a quantity called the Hubble parameter H(t) by

H(t) = Ṡ(t)/S(t), (24.9)

which has dimensions 1/(time). Equation (24.8) can then be written as

ṙi(t) = H(t)ri(t), (24.10)

which is called Hubble’s law. This states that, in an expanding universe,
at any one epoch, the radial velocity of recession of a galaxy from a given
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point is proportional to the distance of the galaxy from the point. The
value of the Hubble parameter at our epoch is known as the Hubble
constant.

If we substitute (24.7) and (24.8) into (24.6), we find (exercise)

E = A[Ṡ(t)]
2
− B
S(t)

−D[S(t)]2, (24.11)

where the coefficients are positive constants defined by

A = 1
2

n∑
i=1

mi[ri(t0)]
2, (24.12)

B = G
n∑

i,j=1
(i<j)

mimj

|ri(t0)− rj(t0)|
, (24.13)

D = 1
6Λ

n∑
i=1

mi[ri(t0)
2
] = 1

3ΛA. (24.14)

This is one form of the cosmological differential equation for the
scale factor S(t). It has a simple interpretation. First of all, consider what
happens when Λ vanishes, in which case we can neglect the last term. If
the universe is expanding, then the second term on the right-hand side
decreases and, since the total energy remains constant, it follows that the
first termmust decrease as well. Therefore the expansionmust slow down.
If Λ is positive, then all galaxies experience a cosmic repulsion, pushing
them away from the origin out to infinity. In this case, the cosmological
term contributes positively to the expansion. If Λ is negative, then the
opposite happens and all galaxies experience a cosmic attraction towards
the origin. In a later section, we shall go on to consider what solutions of
the differential equation are possible for different values of the parameters
occurring in them. In particular, we shall investigate whether it is possible
for the expansion to slow down, stop, and reverse so that eventually the
universe will collapse – the so-called ‘big crunch’.

We finish this section by rewriting the differential equation in a form
closer to the general relativistic equation. Solving (24.11) for Ṡ2, we find

Ṡ2 =
(
B
A

)
1
S

+
D
A
S2 +

E
A

=
(
B
A

)
1
S

+ 1
3ΛS

2 +
E
A
, (24.15)

by (24.14). We now rescale the scale factor S(t) to obtain a new scale
factor R(t), where

R(t) = μS(t). (24.16)
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Then, multiplying (24.15) by μ2, we can write it in the form

Ṙ2 =
C
R

+ 1
3ΛR

2 − k, (24.17)

where the constants C and k are defined by

C = Bμ3/A, k = −μ2E/A.

If E = 0, we choose μ arbitrarily but, if E 6= 0, we choose it so that

μ2 = A/|E|. (24.18)

This choice of rescaling means that k can only have the values +1, 0,
or –1. In this case, (24.17) has exactly the same form as the Friedmann
differential equation of relativistic cosmology. In a similar manner, it is
possible to construct a finite continuum Newtonian model. Although
this model may be taken to be arbitrarily large, it does not apply to an
infinite universe.

24.4 The cosmological principle
Cosmology is based on a principle of simplicity, namely, the cosmological
principle. It is, in essence, a generalization of the Copernican principle
that the Earth is not at the centre of the solar system. In the same spirit,
we would not expect the Earth, or the solar system, or our galaxy, or our
local group of galaxies to occupy any specially favoured position in the
universe. We state the principle in the following form.

The cosmological principle: At each epoch, the universe presents
the same aspect from every point, except for local irregularities.

Isometry mapping
one point to another

t = t3

t = t2

t = t1

Fig. 24.2 Manifold sliced up into
homogeneous 3-spaces.

We need to make this statement mathematically precise. We assume that
there is a cosmic time t and formulate the principle in each of the space-
like slices t = constant. The statement that each slice has no privileged
points means that it is homogeneous. Technically, a spacelike hyper-
surface is homogeneous if it admits a group of isometries which maps
any point into any other point (Fig. 24.2). The principle requires that
not only should a slice have no privileged points but it should have no
privileged directions about any point either. A manifold which has no
privileged directions about a point is called isotropic and is therefore
spherically symmetric about that point. A manifold is globally isotropic
if it is isotropic about every point. It can be shown that, if a manifold is
globally isotropic, then it is necessarily homogeneous (see §24.7 for more
details). Thus, the cosmological principle requires that space-time can be
sliced up or ‘foliated’ into spacelike hypersurfaces which are spherically
symmetric about any point in them. The homogeneity of the universe has
to be understood in the same sense as the homogeneity of a gas: it does not
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apply to the universe in detail, but only to a ‘smeared-out’ universe aver-
aged over cells of diameter over 109 light years, which are large enough to
include many clusters of galaxies, and are bigger than the largest known
structures in the universe, which are superclusters with a length scale of
around 3× 108 light years.

Thus, the cosmological principle is a simplicity principle which leads
to the requirement that the universe is both isotropic and homogeneous.
What observational evidence is there for each? Observations based on
surveys of visible galaxies tend to cover only parts of the sky and, as a
result, are somewhat limited. However, observations of radio galaxies,
cosmic X-ray sources and quasars are all consistent with isotropy at a
level of better than 15%. Associated measurements of the Hubble con-
stant using Type Ia supernovae gives a similar bound. But the greatest
support for isotropy came in 1965 with the discovery of the cosmic
microwave background (CMB) by Penzias and Wilson. They discov-
ered that the universe is currently pervaded by a bath of thermal radiation
with a temperature of 2.7 K and, moreover, more recent measurements
using the Planck satellite show that this radiation is isotropic to about one
part in 100,000. The generally accepted explanation is that this radia-
tion is a thermal remnant of the hot big bang. Spatial homogeneity is also
supported by the counts of galaxies and the linearity of the Hubble law.

Despite the high degree of isotropy and homogeneity which we observe
now, some cosmologists have considered anisotropic and inhomogeneous
models. There are basically three reasons for this. First of all, calculations
of statistical fluctuations in Friedmann models suggest that they cannot
collapse fast enough to form the observed galaxies. Secondly, although
there are strong reasons to support a big bang, there is less reason to
suppose that the original singularity has the simple spherically symmetric
pointlike structure of a Friedmann singularity. Indeed, calculations by Be-
linski, Khalatnikov, and Lifschitz – the so-called BKL approach – suggest
that a general cosmological singularity would have a quite different struc-
ture. Finally, there is the idea that the universe may have been anisotropic
and inhomogeneous in the past, but that there is somemechanism such as
inflation (see Chapter 25) by which these characteristics would be washed
out in the subsequent evolution, regardless of the initial conditions.

Considerable work has been done on the theoretical side in investigat-
ing anisotropic and inhomogeneous solutions. One of the biggest group
of such solutions is that of the Bianchi models, which are spatially ho-
mogeneous anisotropic models (technically, they admit a 3-dimensional
group of transformations which map any point in a hypersurface of ho-
mogeneity into any other point). These are subdivided into classes and
labelled I, II, III, IV, V, VI, VII, VIII, and IX. The field equations then
reduce to ordinary differential equations with time as the independent
variable. These equations can then be studied by either qualitative or
numerical methods. These models, in general, have singularities. For
example, the vacuum Bianchi I models are described by the Kasner
solution

ds2 = dt2 − t2p1dx2 − t2p2dy2 − t2p3dz2,
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where p1, p2, and p3 are constants satisfying

p1 + p2 + p3 = p21 + p22 + p23 = 1,

which means that there is only one freely specifiable constant. In gen-
eral, these solutions have a ‘cigar’-like singularity when t = 0, that is, a
small spatial region which is spherical at some time becomes infinitely
long and thin as t → 0. There is also a special case when the initial
singularity is apparently of a ‘pancake’ type where the spherical region
becomes an infinitely thin disc. Indeed, if we now include matter, it turns
out that most of the Bianchi solutions have physical singularities, in the
sense that the density becomes infinite, of these cigar or pancake types.
Some special solutions give rise to weaker singularities called ‘whimper’
singularities, which have the property that the Ricci components in an
orthonormal frame parallely propagated along a curve hitting the singu-
larity are unbounded, whereas the components in some other frame are
bounded. However, the physical singularities are the generic ones. There
is a fair amount known about the qualitative nature of the evolution of
these models, but we will not consider them further.

A more radical notion is that there is no ‘smeared-out’ universe at all,
but only clusters of galaxies, and clusters of clusters, and clusters of clus-
ters of clusters, and so on, as in the hierarchical model proposed in 1908
by C. V. I. Charlier. There is, in fact, some observational evidence for
superclustering centred on the Virgo cluster, but the hierarchy appears
to stop at clusters of clusters of galaxies, and shows little evidence of
inhomogeneities on a larger scale.

We shall, from now on, adopt the cosmological principle. The real rea-
son for this is not that it is definitely correct, but rather that it allows
us to make use of the limited data provided to cosmology by observa-
tional astronomy. Any weaker assumptions, as in the anisotropic models
or hierarchical models, would lead to metrics for which there would
be insufficient data to determine the unknown functions occurring in
them. By making such simplifying assumptions, we have a real chance
of confronting theory with observation.

24.5 Weyl’s postulate
In 1923, H. Weyl addressed the problem of how a theory like general rel-
ativity, based on general covariance, can be applied to a unique system
like the universe. From one viewpoint, general relativity was specifically
designed to deal with the equivalence of the observations of relatively ac-
celerated observers. The universe consists of a single system which looks
different to observers in different states of motion. Weyl argued that, in
attempting to understand the distant, we must base ourselves, as far as
possible, on the theories verified in our neighbourhood. General relativ-
ity offers the best available summary of local macroscopic physics and
is, accordingly, a suitable theory. Other assumptions are needed such as
the cosmological principle. Weyl also added to this the assumption that
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there is a privileged class of observers in the universe, namely, those as-
sociated with the smeared-out motion of the galaxies. The fact that one
can work with this smeared-out motion follows from the observation that
the relative velocities of matter in each astronomical neighbourhood –
each group of galaxies – are small. He then posits the introduction of
a ‘substratum’ or fluid pervading space in which the galaxies move like
‘fundamental particles’ in the fluid, and assumes a special motion for these
particles. This is contained in the following postulate in a formulation due
to Robertson.

Weyl’s postulate: The particles of the substratum lie in space-time
on a congruence of timelike geodesics diverging from a point in the
finite or infinite past.

The postulate requires that the geodesics do not intersect except at a sin-
gular point in the past and possibly a similar singular point in the future.
There is, therefore, one and only one geodesic passing through each point
of space-time, and, consequently, the matter at any point possesses a
unique velocity. This means that the substratum may be taken to be a
perfect fluid and this is the essence of Weyl’s postulate. Although the
galaxies do not follow this motion exactly, the deviations from the general
motion appear to be random and less than one-thousandth of the velocity
of light. This is to be compared with the relative velocities of the galaxies
due to the general motion, which is comparable with the velocity of light.
Accordingly, the random motion may be neglected in the first instance.
Combined with the observation that the general motion is one of expan-
sion, Weyl’s postulate is seen to closely reflect the actual situation in the
universe. Note, however, it is possible to construct cosmological models
in which the matter is not modeled by a perfect fluid. Thus, the postu-
late is far from an absolute requirement but is a useful starting point for
building cosmological models.

24.6 Standard models of relativistic
cosmology

The standard models of relativistic cosmology are based on three as-
sumptions, namely:
(1) the cosmological principle,
(2) Weyl’s postulate,
(3) general relativity.

Weyl’s postulate together with the cosmological principle requires that the
geodesics of the substratum are orthogonal to a family of spacelike hy-
persurfaces since, otherwise, the tangent vectors would give a preferred
direction, contradicting the assumption of isotropy. We introduce co-
ordinates (t, x1, x2, x3) such that these spacelike hypersurfaces are given
by t = constant and the coordinates (x1, x2, x3) are constant along the
geodesics. This means that the spacelike coordinates of each particle
are constant along its geodesic and, as a consequence, such coordinates
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Substratum
geodesics

t = t2

x a = x a2

x a = x a1

t = t1

Fig. 24.3 Cosmic time surfaces and substratum geodesics.

are called co-moving. This, together with the orthogonality condition,
means that t can be chosen so that the line element is of the form

ds2 = dt2 − gαβdxαdxβ ,

where, as usual, Greek indices run from 1 to 3 and

gαβ = gαβ(t, x).

The coordinate t then plays the role of a cosmic time or world time.
The world time defines a concept of simultaneity. A world map is

then the distribution of events on the surfaces of simultaneity (Fig. 24.3).
The world picture is the aspect of the universe presented to an observer
at any instant of world time, that is, it comprises the events seen looking
along the observers past light cone (Fig. 24.4). Clearly, events from dis-
tant parts of the universe occur at earlier values of the world time than
those nearby.

Consider a small triangle formed of three particles at some time t and
also the triangle formed by these particles some time later. The second
triangle will, in general, differ from the first in many respects. But, when
we use the fact that the cosmological principle requires that the 3-spaces
are isotropic and homogeneous, so that no point and no direction in the
hypersurfaces may be preferential, then it follows that the second triangle
must be geometrically similar to the first. Moreover, the magnification
factormust be independent of the position of the triangle in the 3-space by
similar arguments. It follows then that the time can enter gαβ only through
a common factor in order that the ratios of the distances corresponding
to the small displacements may be the same at all times. Hence, the time
may only enter gαβ in the form

gαβ =
[
S2(t)

]
hαβ(xα). (24.19)
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Past light
cone through P P´s world picture

P´s world mapP

Fig. 24.4 The world map and world picture of an observer.

The ratio of the two values of S(t) at two different times is the magni-
fication factor and because of this it is called the scale factor. The scale
factor S(t) must be real, for otherwise the lapse of time could change
a spacelike into a timelike interval. Next, we have to impose the condi-
tion that each slice is homogeneous and isotropic and also independent
of time. We show below that this requires that the curvature of hαβ at any
point must be a constant, for otherwise all points would not be geomet-
rically identical. Such a space is called a space of constant curvature,
which we discuss next.

24.7 Spaces of constant curvature
Mathematically, a space of constant curvature is characterized by the
equation

Rabcd = K(gacgbd − gadgbc), (24.20)

where K is a constant called the curvature. We now show how, for a
3-dimensional metric, the above equation follows from the assumption
of isotropy about every point. The starting point is to consider the Ein-
stein tensor of a general n-dimensional metric gab (of any signature) in the
mixed form Ga

b. At any point, this defines a linear map from vectors to
vectors. If the space is isotropic, there must be no special directions for
the eigenvectors. This is only possible ifGa

b is proportional to the identity
matrix δab for which every vector is an eigenvector. Thus,

Ga
b = −Kδab,



Spaces of constant curvature 493

(where we have introduced the minus sign for later convenience) or,
lowering the index, we get

Gab = −Kgab, (24.21)

where it follows from the contracted Bianchi identities (exercise) that K
is a constant. Taking the trace of (24.21) shows that R = 2nK/(n − 2),
and substituting back in (24.21) gives

Rab =
2K
n− 2

gab. (24.22)

In the mathematical literature, spaces that satisfy

Rab = λgab, where λ is a constant,

are called (somewhat confusingly) Einstein spaces. We have therefore
shown the following.

Any space (or space-time) which is isotropic about every point is an
Einstein space.

We now show that a 3-dimensional Einstein space is necessarily a space
of constant curvature, that is, the 3-metric hαβ satisfies

Rαβγδ = K(hαγhβδ − hαδhβγ), (24.23)

in accordance with (24.20). We stated in §6.13 that, in three dimensions
the Weyl tensor vanishes and then using (6.88) the curvature may be
written in terms of the 3-dimensional Ricci curvature Rαβ and scalar
curvature R as

Rαβγδ = hαγRβδ + hβδRαγ − hαδRβγ − hβγRαδ

+ 1
2 (hαδhβγ − hαγhβδ)R. (24.24)

Substituting in the above, and using the fact that, in three–dimensions
(24.22) implies that Rαβ = 2Khαβ and R = 6K, then gives (24.23)
(exercise). We have therefore shown the following

In three dimensions, a space that is isotropic about every point is a
space of constant curvature i.e. Rαβγδ = K(hαγhβδ − hαδhβγ), where
K is a constant.

As we shall see from solving (24.22), the geometries of these spaces are
qualitatively different, depending on whether the curvature is positive,
negative, or zero. Now, since the 3-space is isotropic about every point,
it must be spherically symmetric about every point. It follows that the
line element will have the form (compare with (15.37))

dσ2 = hαβdxαdxβ = eλdr2 + r2(dθ2 + sin2 θdϕ2), (24.25)
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where λ = λ(r). The non-vanishing components of the Ricci tensor are

(3)

R11 = λ′/r,
(3)

R22 = cosec2 θ,
(3)

R33 = 1 + 1
2 re

−λλ′ − e−λ, (24.26)

and, using (24.22), these reduce to the two equations

λ′/r = 2Keλ, 1 + 1
2 re

−λλ′ − e−λ = 2Kr2. (24.27)

The solution of these equations is

e−λ = 1−Kr2. (24.28)

We have shown that the metric for a 3-space of constant curvature is

dσ2 =
dr2

1−Kr2
+ r2(dθ2 + sin2 θdϕ2), (24.29)

where K is positive, negative, or zero. We can introduce a new radial
parameter r̄ related to r by

r = r̄/(1 + 1
4Kr̄

2), (24.30)

in which case the metric takes on the conformally flat form (exercise)

dσ2 = (1 + 1
4Kr̄

2)
−2

[dr̄2 + r̄2(dθ2 + sin2 θdϕ2)]. (24.31)

Combining this with the results of the last section, we obtain the line
element for relativistic cosmology, namely,

ds2 = dt2 − [S(t)]2
(

dr2

1−Kr2
+ r2(dθ2 + sin2 θdϕ2)

)
, (24.32)

or, in terms of the barred radial coordinate,

ds2 = dt2 − [S(t)]2
dr̄2 + r̄2(dθ2 + sin2 θdϕ2)

(1 + 1
4Kr̄

2)
2 . (24.33)

We prefer to write these line elements in an alternative form where the
arbitrariness in the magnitude of K is absorbed into the radial coordinate
and the scale factor. Assuming K 6= 0, we define k by K = |K|k, so that k
is +1 or –1, depending on whether K is positive or negative, respectively.
If we introduce a rescaled radial coordinate

r* = |K|
1
2 r, (24.34)

then (24.32) becomes (exercise)

ds2 = dt2 − [S(t)]2

|K|

(
dr*2

1− kr*2
+ r*2(dθ2 + sin2 θdϕ2)

)
. (24.35)
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Finally, we define a rescaled scale function R(t) by (see (24.16))

R(t) = S(t)/|K| 1
2 , if K 6= 0,

R(t) = S(t), if K = 0.

Then, dropping the stars on the radial coordinate, we have shown that
the line element of relativistic cosmology can be written in the alternative
form

ds2 = dt2 − [R(t)]2
(

dr2

1− kr2
+ r2(dθ2 + sin2 θdϕ2)

)
, (24.36)

or, in terms of the barred radial coordinate,

ds2 = dt2 − [R(t)]2
[dr̄2 + r̄2(dθ2 + sin2 θdϕ2)]

[1 + 1
4kr̄

2]
2 , (24.37)

where k is now either +1, –1, or 0. This second form is called the
Robertson–Walker line element after the first investigators to obtain it.
At any epoch t = t0, the geometry of the slice is given by

dσ2 = R2
0

(
dr2

1− kr2
+ r2(dθ2 + sin2 θdϕ2)

)
, (24.38)

where the constant R0 is given by R0 = R(t0). In the next section, we shall
investigate further the geometry of these 3-spaces of constant curvature
for the three cases k = +1, 0, and −1.

24.8 The geometry of 3-spaces of constant
curvature

Case 1: k = +1

Notice that, in this case, the coefficient of dr2 becomes singular as r→ 1.
We therefore introduce a new coordinate χ where

r = sinχ, (24.39)

so that

dr = cosχdχ = (1− r2)
1
2 dχ,

and (24.38) becomes

dσ2 = R2
0[dχ

2 + sin2 χ(dθ2 + sin2 θdϕ2)]. (24.40)
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We can now embed this 3-surface in a 4-dimensional Euclidean space
with coordinates (w, x, y, z), where

w = R0 cosχ,

x = R0 sinχ sin θ cosϕ,

y = R0 sinχ sin θ sinϕ,

z = R0 sinχ cos θ.

(24.41)

The embedding is possible because (exercise)

dσ2 = dw2 + dx2 + dy2 + dz2 = R2
0

[
dχ2 + sin2 χ(dθ2 + sin2 θdϕ2)

]
,

in agreement with (24.40). Also, from (24.41), we get (exercise)

w2 + x2 + y2 + z2 = R2
0, (24.42)

which shows that the surface can be regarded as a 3-dimensional sphere in
4-dimensional Euclidean space. This is depicted in Fig. 24.5, where one
dimension (y = 0 or ϕ = 0) is suppressed. The hypersurface is defined
by the coordinate range

0 ⩽ χ ⩽ π, 0 ⩽ θ ⩽ π, 0 ⩽ ϕ < 2π.

The 2-surfaces χ = constant, which appear as circles in the pictures, are
2-spheres of surface area (exercise)

Aχ =
∫ π

θ=0

∫ 2π

ϕ=0
(R0 sinχdθ)(R0 sinχ sin θdϕ) = 4πR2

0 sin
2 χ,

and (θ,ϕ) are the standard spherical polar coordinates of these 2-spheres.
Thus, the area of these 2-spheres is zero at the North Pole, increases to a
maximum at the equator, and decreases again to zero at the South Pole.
The surface has 3-volume given by (exercise)

V =
∫ π

χ=0

∫ π

θ=0

∫ 2π

ϕ=0
(R0dχ)(R0 sinχdθ)(R0 sinχ sin θdϕ)

= 2π2R3
0 = 2π2R3(t0), (24.43)

which is why R(t0) is often referred to as the ‘radius of the universe’.
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w

S2 (χ = constant)

a
x

χ

θ

z

Fig. 24.5 A surface of constant positive curvature embedded in a 4-dimensional
Euclidean space (ϕ = 0).

This 3-space is clearly the generalization of an S2, or 2-sphere, to a
3-dimensional entity and is called an S3, or 3-sphere. The physical space
should not really be thought of as embedded in anything else, since it is
the totality of everything that exists at any one epoch. Thus, there are no
physical points outside it nor does it have a boundary. It may be helpful
to think of it as follows. If we introduce yet another radial-type coordinate
r′, where r′ = R0χ, then (24.40) becomes

dσ2 = dr′2 + R2
0 sin

2 (r′/R0) (dθ2 + sin2 θdϕ2),

and the surface area of the 2-spheres χ = constant is given by

Aχ = 4πR2
0 sin

2 (r′/R0) .

Notice that, for small r′, sin r′ ∼ r′ and so Aχ ∼ 4πr′2. Now choose any
point P and consider the surface area of a series of 2-surfaces centred on
P of increasing radius r′, all at one epoch t0. For small values of the radius
r′ (compared with R(t0)), the area is close to the Euclidean value 4πr′2. As
r′ increases, the area increases but becomes increasingly less than 4πr′2.
The surface area reaches a maximum value when r′ = 1

2π and decreases
from then on until it again becomes zero when r′ = πR0. In this space,
any radial geodesic returns to its starting point. The topology of this space
is variously called closed, bounded, or compact. The topology of the
whole space-time is called cylindrical, since it is the productR×S3, where
R represents the 1-dimensional cosmic time (Fig. 24.6).

Cosmic time t

Spatial slice S3

(the epoch t = t0)

Fig. 24.6 The cylindrical topology R ×
S3 of space-time when k = +1.

Case 2: k = 0

If we set

x = R0r sin θ cosϕ,

y = R0r sin θ sinϕ,

x = R0r cos θ,
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then (24.38) becomes

dσ2 = dx2 + dy2 + dz2,

which is clearly 3-dimensional Euclidean space. The 3-space is covered
by the usual coordinate range

0 ⩽ r < ∞, 0 ⩽ θ ⩽ π, 0 ⩽ ϕ < 2π.

The topology of the space-time is the same as that of 4-dimensional
Euclidean space, namely R4, and is called open.

Case 3: k = −1

If we introduce a new coordinate χ, where

r = sinhχ, (24.44)

then

dr = coshχdχ = (1 + r2)
1
2 dχ,

and (24.38) becomes

dσ2 = R2
0[dχ

2 + sinh2 χ(dθ2 + sin2 θdϕ2)]. (24.45)

We can no longer embed this 3-surface in a 4-dimensional Euclidean
space, but it can be embedded in a flat Minkowski space with signature
+2 (exercise),

dσ2 = −dw2 + dx2 + dy2 + dz2, (24.46)

where

w = R0 coshχ,

x = R0 sinhχ sin θ cosϕ,

y = R0 sinhχ sin θ sinϕ,

z = R0 sinhχ cos θ.

 (24.47)

These equations imply that (exercise)

w2 − x2 − y2 − z2 = R2
0, (24.48)

w

S2

(c = constant)

R0

z

x

Fig. 24.7 Surface of constant negative
curvature embedded in a 4-dimensional
Minkowski space (ϕ = 0).

so that the 3-surface is a 3-dimensional hyperboloid in 4-dimensional
Minkowski space. This is depicted in Fig. 24.7, where one dimension
(y = 0 or ϕ = 0) is suppressed. The hypersurface is defined by the
coordinate range

0 ⩽ χ ⩽ ∞, 0 ⩽ θ ⩽ π, 0 ⩽ ϕ < 2π.
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The 2-surfaces χ = constant, which appear as circles in the pictures, are
2-spheres of surface area

Aχ = 4πR2
0 sinh

2 χ,

and (θ,ϕ) are the standard spherical polar coordinates of these 2-spheres.
As χ ranges from 0 to ∞, the area of the successive 2-spheres increases
from zero to infinity. For large χ, the surface area increases far more
rapidly than it would if the hypersurface were flat. The 3-volume of the
surface is infinite. The topology is again R4 and open. In each of the three
cases, we have only specified the simplest topology possible; in fact, other
topologies are possible by identifying points or regions, but we will not
consider the issue further.

24.9 Friedmann’s equation
Our three ingredients of relativistic cosmology are as follows.

(1) The cosmological principle, which as we have shown leads to the
Robertson-Walker line element, namely,

ds2 = dt2 − [R(t)]2
[dr̄2 + r̄2(dθ2 + sin2 θdϕ2)]

[1 + 1
4kr̄

2]
2 ; (24.49)

(2) Weyl’s postulate, which requires that the substratum is a perfect fluid,
namely,

Tab = (ρ + p)uaub − pgab; (24.50)

(3) General relativity, with the cosmological term, namely,

Gab − Λgab = 8πTab. (24.51)

Then using the fact that, in our preferred coordinate system,

ua
∗
= (1, 0, 0, 0),

the field equations (24.51) lead to two independent equations (exercise)

3
Ṙ2 + k
R2 − Λ = 8πρ, (24.52)

2RR̈ + Ṙ2 + k
R2 − Λ = −8πp, (24.53)

where we have used relativistic units and a dot denotes differentiation
with respect to time. By homogeneity and isotropy, the density and pres-
sure can only be functions of time t. Together with these equations, we



500 Relativistic cosmology

have the requirements that the fluid is physically realistic, as expressed in
the dominant energy conditions (12.64). Using our Newtonian analogue,
(24.53) involves a second time-derivative of R and so may be thought
of as an equation of motion, whereas (24.52) only involves a first time
derivative of R and so may be considered an integral of the motion, that
is, an energy equation. If we differentiate (24.52) with respect to t, mul-
tiply through by 1/8π, and add the result to (24.53) multiplied through
by −3Ṙ/8πR, we get

ρ̇ + 3p
Ṙ
R

= − 3
8π

Ṙ
R

(
3Ṙ2

R2 +
3k
R2 − Λ

)
= −3ρ

Ṙ
R
,

again using (24.52). Multiplying through by R3, we can rewrite this in the
form

d
dt

(
ρR3) + p d

dt

(
R3) = 0. (24.54)

Consider a set of particles in the substratum enclosing a volume V. Then,
clearly, owing to the motion of the substratum, V ∼ R3(t). If we now call
the total mass-energy in the volume E = ρV, then equation (24.54) can
be written in the form

dE + pdV = 0. (24.55)

This is the first law of thermodynamics, or conservation of energy, and
shows that the pressure does work in the expansion. This is exactly the
same equation as results from the conservation equations (exercise)

Tab;b = 0. (24.56)

Thus, the field equations of the theory contain in them the equation for
the conservation of energy. We have met this before in §13.4, and it arises
from the fact that the field equations (24.51) satisfy the contracted Bianchi
identities (

Gab − Λgab
)
;b = 0,

which, in turn, leads to the conservation equations (24.56).
It is sometimes useful to eliminate Ṙ from (24.52) and (24.53). If one

multiplies (24.52) by 3 and subtracts (24.53), this gives

R̈
R

= −4π
3

(
ρ + 3p− Λ

4π

)
.

If ρ + 3p > Λ/4π, then the right-hand side is negative so that R̈ < 0. This
means that the graph of R(t) lies below the tangent at any point. Current
observations show that the universe is currently expanding so that the
tangent has positive slope and must have crossed the R axis at some finite
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point in the past. It therefore follows that the graph of R(t) must also
have been zero at some finite time in the past (see Fig. 24.8) i.e. there
must have been a big bang. For the case where Λ = 0, then the required
condition is just ρ + 3p > 0, which is just the strong energy condition.
This is sometimes called the FRW singularity theorem.

If Λ = 0 and ρ+3p > 0, then Ṙ(t0) > 0 implies that there was an initial
big bang singularity at some finite time in the past.

R(t)

t1 t0
t

Fig. 24.8 Graph of R(t) when ρ + 3p >
Λ/4π.

The pressure p includes all types of pressure, such as that due to the
random motion of the stars and galaxies, that due to heat motion of
molecules, radiation pressure, and so forth. However, observation reveals
that, at the present epoch, the pressure is far smaller than the energy den-
sity ρ, due to matter. The ratio of the two quantities is about 10−5 or 10−6.
Accordingly, as long as only states of the universe differing not too widely
from the present one are considered, we may take

p = 0, (24.57)

and so we may model the matter in the universe as if it is comprised of
dust. Then (24.53) integrates immediately to give

R(Ṙ2 + k)− 1
3ΛR

3 = C, (24.58)

where C is a constant of integration, and, using (24.52), we find

C = 8
3πR

3ρ. (24.59)

Apart from a numerical factor, this is the energy content E of a volume
V of the substratum and is constant immediately by (24.55), which be-
comes a conservation of mass equation when p vanishes. The value can
be remembered as twice the mass of a spherical volume of a Euclidean
universe of radius R and density ρ. If we now use (24.59) to eliminate ρ
in (24.52), the result can be written in the form

Ṙ2 =
C
R

+ 1
3ΛR

2 − k. (24.60)

This is Friedmann’s equation for the time variation of the scale factor
in the absence of pressure. Note that it is identical with the Newtonian
analogue (24.17). We shall consider the solutions of this equation – the
Friedmann models – in the next chapter. Some authors refer to these
as the FRW models, short for Friedmann–Robertson–Walker models.
Recall that, in obtaining the Newtonian analogue (24.17), we imposed the
assumption (24.7), which is essentially equivalent to Hubble’s law (24.10)
(see Exercise 24.4). In the rest of this chapter, we shall consider light
propagation and distance in relativistic cosmology in order to deduce
Hubble’s law from the premises of the theory.
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24.10 Propagation of light
We assume that light propagates in relativistic cosmology in the same way
as it does in general relativity. Let us consider how an observer O re-
ceives light from a receding galaxy. We use the unbarred form of the
Robertson–Walker line element (24.36). Since we assume that the time
slices are homogeneous 3-spaces, we can, without loss of generality, take
O to be at the origin of coordinates r = 0. Inserting the conditions for a
radial null geodesic, namely,

ds2 = dθ = dϕ = 0,

into (24.36), we find

dt
R(t)

= ± dr

(1− kr2)
1
2

, (24.61)

where the + sign corresponds to a receding light ray and the minus sign
to an approaching light ray. Consider a light ray emanating from a galaxy
P with world-line r = r1 at coordinate time t1, and received by O at
coordinate time t0 (Fig. 24.9). Using (24.61), we get (exercise)

(t1, r1)

(t0, 0)

O ¢s
world-line

P ¢s
world-line

Fig. 24.9 Light ray from galaxy P to
observer O.

∫ t0

t1

dt
R(t)

= −
∫ 0

r1

dr

(1− kr2)
1
2

= f(r1), (24.62)

where

f(r1) =


sin−1 r1 if k = +1,

r1 if k = 0,
sinh−1 r1 if k = −1.

(24.63)

Next, consider two successive light rays emanating from P at times t1 and
t1+dt1, respectively, and received byO at times t0 and t0+dt0, respectively
(Fig. 24.10). Then, from (24.62),

t0 + dt

O P

t1 + dt1

t0

t1

Fig. 24.10 Successive light rays from
galaxy P to observer O.

∫ t0+dt0

t1+dt1

dt
R(t)

=
∫ t0

t1

dt
R(t)

,

since each side is equal to the same function f(r1). Therefore (check),

∫ t0+dt0

t1+dt1

dt
R(t)

−
∫ t0

t1

dt
R(t)

=
∫ t0+dt0

t0

dt
R(t)

−
∫ t1+dt1

t1

dt
R(t)

= 0,
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and, assuming that R(t) does not vary greatly over the intervals dt1 and
dt0, we can take it outside the integral in the last equation and deduce that

dt0
R(t0)

=
dt1
R(t1)

. (24.64)

All fundamental particles (galaxies) of the substratum have world-lines on
which the coordinates r, θ, and ϕ are constant and hence, from (24.36),
ds2 = dt2. It follows that t measures the proper time along the substra-
tum world-lines. The intervals dt1 and dt2 are the proper time intervals
between the rays as measured at the source and observer, respectively.
Hence, from (24.64), the interval, as measured byO, is R(t0)/R(t1) times
the interval measured by P. Thus if a signal is emitted with frequency
ν1 at time t1 by P and observed with frequency ν0 at time t0 by O
(see Fig. 24.10), then

ν1/ν0 = R(t0)/R(t1). (24.65)

It follows that, in an expanding universe,

t0 > t1 ⟹ R(t0) > R(t1),

the observer O will experience a redshift z defined as

z :=
ν1 − ν0
ν0

,

which is given by

1 + z = ν1/ν0 = R(t0)/R(t1). (24.66)

This redshift is sometimes called a Doppler shift, but is not to be con-
fused with the special relativistic Doppler shift. Clearly, in a contracting
universe, O will detect a corresponding blue shift.

If, roughly speaking, P is ‘near’ toO, then the cosmic times of emission
and reception differ only by a small amount, dt, say, that is, t0 = t1 + dt,
and so (24.66) produces

1 + z =
R(t0)

R(t0 − dt)
' R(t0)

R(t0)− Ṙ(t0)dt
' 1 +

Ṙ(t0)
R(t0)

dt, (24.67)
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to first order in dt. In addition,∫ t0

t1

dt
R(t)

=
∫ t1+dt

t1

dt
R(t)

' dt
R(t1)

=
dt

R(t0 − dt)
' dt
R(t0)

.

But for small r, using (24.63),∫ t0

t1

dt
R(t)

= f(r1) ' r1.

Combining this with (24.67), we get the result

z ' Ṙ(t0)r1. (24.68)

Thus, at any one epoch, for small distances, the redshift z is
proportional to the distance r1. Interpreting the redshift z as if it
were caused by a velocity of recession, we have obtained a velocity–
distance relation similar to Hubble’s law. To make this more precise, we
need to consider how distance is measured, as least theoretically, on a
cosmologically interesting scale.

24.11 A cosmological definition of distance
Because we have a world time, it is mathematically easy to define an
absolute distance between fundamental particles by considering them
at the same value of world time and then measuring the geodesic distance
between them in the slice (Fig. 24.11). If we set dt = dθ = dϕ = 0 in
(24.36), then the absolute distance dA between O and P at time t is

dA = R(t)
∫ r1

0

dr

(1− kr2)
1
2

. (24.69)

dA

t

PO

Fig. 24.11 An absolute distance between
fundamental particles.

This is of no practical use and so we try another tack. If we know the actual
size of a distant object, then we can define an observational distance by

dO = α/β, (24.70)

where α is the actual diameter of the object and β is the observed
angular diameter. Such a definition would be satisfactory if some means
of determining α were known. Since this is not known, we instead use a
definition based on the apparent luminosity of what we observe. Let
E be the energy radiated per unit time by the distant object and let I
be the intensity of the radiation received per unit area per unit time.
Then, assuming the energy is distributed uniformly on a sphere in a Eu-
clidean space and neglecting the redshift, the distance can be defined as
(E/4πI)1/2. But, in an expanding universe, the interval of time during
which a certain amount of energy is received is longer than the interval
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of emission by virtue of the Doppler shift, and hence the number of pho-
tons received per unit time is reduced by the factor 1 + z. In addition, the
energy of each photon of light is reduced by the same factor (because en-
ergy is the time component of a 4-vector and so the transformation from
one observer to another introduces the factor 1+z). These considerations
lead to the definition of a luminosity distance dL, where

d2L =
E

4πI(1 + z)2
. (24.71)

The luminosity distance is in essence the distance used by astronomers.
However, the detailed way in which astronomical distances are measured
is quite complicated and beyond the scope of this book (for further de-
tails, see Weinberg 1972), although we mention, without being precise,
that one unit of measurement is called the apparent magnitude, m. It
is related to the energy received, ER, by the relation

m = constant− 0.4 log10 ER.

Moreover, there is a problem with the definition (24.71), because it
involves E, the absolute luminosity of the source, which is not observa-
tionally measurable. This definition thus appears to suffer from the same
defects as (24.70). However, the distances to nearby galaxies may be de-
termined by other means and hence their absolute luminosities may be
calculated, and it appears that all galaxies have roughly the same abso-
lute luminosity. So a first approximation is to take all galaxies as having
the same absolute luminosity. This assumption is almost certainly wrong,
though, because, if we live in an evolutionary universe, then the mean
age of the more distant galaxies is much less than the mean age of nearby
galaxies and so there is no reason to believe that they will have the same
mean luminosity. Certain sources are believed to have luminosities that
show little variation in space and time and are referred to as standard
candles. Examples of these are Cepheid variable stars and Type Ia super-
novae. However, even if one accepts that these are standard candles, there
still exists the problem of calibration which enables one to convert rela-
tive distances to absolute distances. We will not pursue the matter further
here, but simply employ (24.71).

24.12 Hubble’s law in relativistic cosmology
We start by finding an expression for the luminosity distance in terms of
the coordinates of the Robertson–Walker line element in the unbarred
form (24.36). Consider light emanating from galaxy P at time t1 and
observed by us ‘now’ at O at a time t = t0 (t1 < t0) (Fig. 24.12). The
light will have spread out over the surface of a sphere with centre at the
event P0 (t = t0, r = r1) and passing through the event O0 (t = t0, r = 0).
The surface area of this sphere is the same as that of the sphere centred
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O0

O1 P1

P0

O P

r = r1
r = r0

t = t0

t = t1

Fig. 24.12 Light from P1 spreading out on a sphere passing through O0.

onO0 passing through P0 (dotted line in Fig. 24.12), owing to the homo-
geneity of the 3-sphere. The line element for this sphere (t = t0, r = r1)
is, from (24.36),

ds2 = − [R(t0)r1]
2
(dθ2 + sin2 θdϕ2).

This is the usual line element for a sphere of radius R(t0)r1 and so
the sphere has surface area 4πR2(t0)r21. Hence, the observed intensity is
given by

I =
E

4πR(t0)2r21(1 + z)2
,

taking into account the double Doppler shift factor. Comparing this with
(24.71), we obtain an expression for the luminosity distance in terms of
the scale factor, namely,

dL = r1R(t0). (24.72)

If we define the Hubble parameter by (see (24.9))

H(t) = Ṙ(t)/R(t), (24.73)

then (24.68) and (24.72) give

z ' H(t0)dL, (24.74)

where H(t0) is the value of the Hubble parameter at the current epoch
and is calledHubble’s constant. This is the famousHubble law in rela-
tivistic cosmology. It states that, for ‘nearby’ galaxies, the radial velocity of
recession as measured by the redshift z is proportional to its distance. The
dimension of H(t) is that of inverse time and so, if we define T = 1/H(t),
then T has the dimension of time. Current observations give the value

T0 ≈ 1010years, (24.75)
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which is believed correct to within a factor of 2.Note that, if ρ+3p > Λ/4π,
so the conditions that guarantee a big bang hold, then it is clear from
Fig. 24.8 that the age of the universe must be less than the Hubble time
T0 of approximately 1010 years.

We stress that Hubble’s law is an approximate one in relativistic cos-
mology and consider a more exact formula in Chapter 25. We now define
a dimensionless quantity q called the deceleration parameter by

q(t) = −RR̈/Ṙ2. (24.76)

Then, since R > 0 and Ṙ2 > 0, it follows that

R̈ < 0 ⇒ q > 0,

and so a positive qmeasures the rate at which the expansion of the universe
is slowing down. The value of the deceleration parameter q0 is uncertain,
but most current measurements make it negative (so the rate of expansion
is increasing) with a typical range

q0 = −0.6± 0.3. (24.77)

We will look at this and the other observational parameters in more detail
in Chapter 25. Taking the second-order term into account in the Taylor
expansion giving (24.67), we find the relationship (exercise)

dL = zT0[1− 1
2 (1 + q0)z + · · · ]. (24.78)

For objects too close to the observer, the random motions which we have
excluded from our model do, in fact, obscure the general motion. But
there is a good range of nebulae satisfying the velocity–distance law (out
to about the 18th magnitude) from which a good determination of T can
be made. For more distant observations, the relationship (24.78) must be
used, which is crucially dependent on the value of q0. In Fig. 24.13, we
present some data given in a 1970 review by Sandage and give further
details on more recent measurements in Chapter 25. It is remarkable to
note Hubble first proposed his law in 1929 on the basis of observations
of only eighteen nearby galaxies, and this data corresponds to a tiny part
of the graph in Fig. 24.13.

Differentiating Friedmann’s equation (24.60), we get

2ṘR̈ = − C
R2 Ṙ + 2

3ΛRṘ,

and multiplying by −R/2Ṙ3 gives

−RR̈
Ṙ2

=
C

2RṘ2
− 1

3Λ
R2

Ṙ2
.

Then, using (24.76), (24.59), and (24.73), we can write this in the form

q = ( 4
3πρ−

1
3Λ)/H

2. (24.79)
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z

1.00

0.1

0.01

mcorr

q0 = 0

q0 = 1q0 = 2

Fig. 24.13 Redshift versus corrected apparent magnitudes (Sandage 1970).

This shows that there is an intimate connection between the deceleration
parameter q, the Hubble parameter H, and ρ, the mean density of the
universe.

Exercises

24.1 (§24.2) Show that Olbers’ paradox remains if we assume space is
non-Euclidean but still homogeneous by the cosmological principle.

24.2 (§24.3) Write down an expression for the cosmological potential
energy Vci of the ith particle such that Fi = −grad Vci .

24.3 (§24.3) Substitute (24.7) into (24.6) and establish (24.11)–(24.14).
Identify A physically. Show that, if E 6= 0, the choice (24.18) of μ in
(24.16) allows (24.11) to be written in the standard form (24.17) with
k = ±1.

24.4 (§24.3) Integrate Hubble’s law (24.10) and deduce the scale factor
law (24.7), identifying the function S(t) in terms of H(t).

24.5 (§24.7) Show that, in three dimensions, (24.22) and (24.24) result
in the fact that

Rαβγδ = K(hαγhβδ − hαδhβγ).
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24.6 (§24.7) Show, by using the contracted Bianchi identities, that if
Gab = −Kgab then K is a constant.

24.7 (§24.7) Work out the non-vanishing components (24.26) of the
Ricci tensor for the line element (24.25). [Hint: use the results of Ex-
ercise 6.32(iv).] Confirm that, if this line element is a space of constant
curvature, then λ is given by (24.28).

24.8 (§24.7) Confirm the results of the following transformations:
(i) (24.30) transforms (24.29) into (24.31);
(ii) (24.34) transforms (24.32) into (24.35).

24.9 (§24.8) Confirm the results of the following transformations:
(i) (24.39) transforms (24.38) with k = +1 into (24.40);
(ii) (24.44) transforms (24.38) with k = −1 into (24.45).

24.10 (§24.8)
(i) Show that (24.41) is a parametric form of the surface (24.42) in Eu-
clidean 4-space. Confirm that its line element reduces to (24.40).
(ii) Show that (24.47) is a parametric form of the surface (24.48) in
Minkowski space with line element (24.46). Confirm that its line element
reduces to (24.45).

24.11 (§24.8) Write down the line elements for the 2-spheres χ
= constant in the cases k = 1 and k = −1. By comparing them with
the standard line element for a sphere of radius a, namely,

ds2 = a2(dθ2 + sin2 θdϕ2),

confirm the formula for the surface areaAχ in each case. Confirm (24.43)
and show that the volume of the 3-surface in the case k = −1 is infinite.

24.12 (§24.9) Establish the field equations of relativistic cosmology
(24.52) and (24.53). [Hint: this involves working out the Ricci and
Einstein tensors for the line element (24.49).]

24.13 (§24.9) Use (24.52) and (24.53) to establish the result (24.55).
Confirm that the same equation results from the conservation law (24.56)
(i) by direct computation
(ii) without utilizing expressions for the connection. [Hint: take the co-
variant derivative of every term in (24.50) and use the results that ua is a
tangent to a geodesic, ua

∗
= δa0 and ua;a = 1

2 (d/dt)(ln g) – why?]

24.14 (§24.9) Use (24.52) and (24.53) to obtain (24.60) subject to
(24.59) in the case (24.57).

24.15 (§24.10) Confirm the result (24.62) subject to (24.63). Deduce
(24.64) and (24.68).

24.16 (§24.12) Confirm Hubble’s law in the form (24.74) to first order.
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24.17 (§24.12)
(i) Calculate 1+z = R(t0)/R(t0−δt) to second order accuracy and hence
show that to this order

z =
Ṙ(t0)
r(t0)

δt +

(
Ṙ2(t0)
R2(t0)

− R̈(t0)
2R(t0)

)
(δt)2.

(ii) Use the fact that to second order (dt)2 = (R2(t0)/Ṙ2(t0))z2 together
with the result of part (i) to show that to second order in z

δt = T0z(1− (1 + 1
2q0)z).

(iii) Use the trapezium rule∫ t0

t0−δt

dt
R(t)

=
1
2

(
1

R(t0)
+

1
R(t0 − δt)

)
δ(t),

to show that to second order

dL = R(t0)

[
δt

R(t0)
+

Ṙ(t0)
2R2(t0)

(δt)2
]
.

(iv) Deduce the second order version of Hubble’s law (24.78).

Further reading

The main source for this chapter is the classic text by Bondi (1961).
Our brief look at Newtonian cosmology can be pursued in the book by
Landsberg and Evans (1977). Peter Landsberg was for many years a col-
league of ours at Southampton. The book by Weinberg (1972) goes into
more detail on many aspects of cosmology and includes a comprehensive
discussion of distance in cosmology.

Bondi, H. (1961). Cosmology, Cambridge University Press, Cambridge.

Landsberg, P. and Evans, D. A. (1977). Mathematical cosmology: An
Introduction, Clarendon Press, Oxford.

Weinberg, S. (1972). Gravitation and cosmology,Wiley, New York, NY



25The classical cosmological
models

25.1 The flat space models
In this chapter, we will mostly discuss the mathematical features of the
classical cosmological models that one obtains by solving Friedmann’s
equation. We will look at how these relate to the observational evidence as
well as considering some more sophisticated models in the next chapter.

Our considerations of the last chapter led to Friedmann’s equation

Ṙ2 =
C
R

+ 1
3ΛṘ− k (25.1)

governing the dynamics of the scale factor in a universe in which the mat-
ter is modelled by presureless dust. The task in this chapter is to solve this
non-linear first-order ordinary differential equation for different values of
the parameters occurring in it. Recall that the values of these parameters
are governed by the requirements

C > 0, −∞ < Λ < ∞, k = −1, 0, +1. (25.2)

There are a number of ways of proceeding. The equation can be solved,
in general, by using elliptic functions, or resort can be made to computer
plots of numerically generated solutions. However, many of the sub-cases
can be integrated directly using elementary functions or, failing that, el-
ementary functions can be used to investigate their qualitative features.
We shall not give an exhaustive account of this approach here (but see
Landsberg and Evans (1977) for details). Instead, we shall restrict our
attention in this section to the important cases of flat space (k = 0) and
vanishing cosmological constant (Λ = 0). The techniques employed may
be applied to the other cases.

In the flat space case, k = 0, (25.1) reduces to

Ṙ2 = C/R + 1
3ΛR

2. (25.3)

We first assume Λ > 0 and introduce a new variable

u =
2Λ
3C

R3.

Introducing Einstein’s Relativity. Second Edition. Ray d’Inverno and James Vickers, Oxford University Press.
© Ray d’Inverno and James Vickers (2022). DOI: 10.1093/oso/9780198862024.003.0025
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Differentiating, we get

u̇ =
2Λ
C
R2Ṙ,

and, substituting in (25.3), we find

u̇2 =
4Λ2

C2 R
4
(
C
R

+ 1
3ΛR

2
)

=
4Λ2

C
R3 +

4Λ3

3C2R
6

= 6Λu + 3Λu2

= 3Λ(2u + u2). (25.4)

Taking the positive square root, we have

u̇ = (3Λ)
1
2 (2u + u2)

1
2 ,

which can be integrated by parts. If we assume a big bang model, namely,
R = 0 when t = 0, then u = 0 initially, and so integrating gives∫ u

0

du

(2u + u2)
1
2

=
∫ t

0
(3Λ)

1
2 dt = (3Λ)

1
2 t.

If we complete the square in the u-integral and set v = u+1 and coshw = v
then we get∫ u

0

du

[(u + 1)2 − 1]
1
2

=
∫ v

1

dv

(v2 − 1)
1
2

=
∫ w

0

sinhwdw

(cosh2 w− 1)
1
2

=
∫ w

0
dw = w.

In terms of R, the solution becomes

R3 =
3C
2Λ

[cosh (3Λ)
1
2 t− 1]. (25.5)

If Λ < 0, we introduce a new variable

u = −2Λ
3C

R3, (25.6)

and then, proceeding as before, we obtain the solution (exercise)

R3 =
3C

2(−Λ)
{1− cos [3(−Λ)]

1
2 t}. (25.7)

For the case Λ = 0 equation (25.3) becomes Ṙ2 = C/R. Taking square
roots, the equation is immediately separable, producing

R
1
2 dR = C

1
2 dt.
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Integrating, using R = 0 when t = 0, we get

2
3R

3
2 = C

1
2 t,

so that

R = ( 9
4Ct

2)
1
3 . (25.8)

This is called the Einstein–de Sitter model. The Hubble parameter
H(t) and the deceleration parameter q(t) can be easily computed from
(25.5), (25.7), or (25.8). For example, in the Einstein–de Sitter case
(exercise),

H(t) = Ṙ/R = 2/(3t), (25.9)

and

q(t) = −RR̈/Ṙ2 = 1
2 . (25.10)

Rather than solving (25.1) exactly, we can look at the qualitative be-
haviour. In the initial stages of a big bang universe, R is small and so the
term C/R dominates over 1

3ΛR
2 in (25.1). Hence, for small t,

Ṙ2 ∼ C/R , (25.11)

and, integrating, we obtain, as in (25.8),

R ∼ ( 9
4Ct

2)
1
3 . (25.12)

So, in the early stages, all big bang models behave like the Einstein–de
Sitter model, namely, they expand at the rate t2/3. If we write (25.3) in
the form

Ṙ2 = F(R), (25.13)

where

F(R) = C/R + 1
3ΛR

2, (25.14)

then much of the qualitative behaviour of R can be inferred from the
behaviour of F(R). For example,

Λ < 0 ⇒ F(R) = 0 when R = Rm = [3C/(−Λ)]
1
3 ,

so that Ṙ vanishes at R = Rm, which is a local minimum (exercise). Con-
versely, if Λ ⩾ 0, the solution grows without bound. In the case when
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Λ > 0, then, for large t, the second term on the right dominates in (25.3),
and so

Ṙ2 ∼ 1
3ΛR

2, (25.15)

and, integrating, we find (exercise)

R ∼ exp[( 1
3Λ)

1
2 t]. (25.16)

We nowhave enough information to sketch the graphs of the threemodels.
We postpone this to §25.3.

25.2 Models with vanishing cosmological
constant

In this section, we consider the case when Λ vanishes. Friedmann’s
equation then becomes

Ṙ2 = C/R− k. (25.17)

To solve this, we need to consider separately the cases k = +1 and k = −1.
In the former case, (25.17) becomes Ṙ = C/R−1. This time we start with
a change of variable given by

u2 = R/C . (25.18)

Then 2uu̇ = Ṙ/C, and, substituting in (25.17), we find

u̇2 =
Ṙ2

4C2u2
=

1
4C2u2

(
C
R

− 1
)

=
1

4C2u2

(
1
u2

− 1
)

.

Taking positive square roots, the equation is separable, and, integrating
with big bang initial conditions, we get
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2
∫ u

0

u2

(1− u2)
1
2

du =
1
C

∫ t

0
dt =

t
C

.

To evaluate the u-integral, we set u = sin θ. Then

2
∫ u

0

u2

(1− u2)
1
2

du = 2
∫ θ

0

sin2 θ cos θdθ

(1− sin2 θ)
1
2

= 2
∫ θ

0
sin2 θdθ

=
∫ θ

0
(1− cos 2θ)dθ

= θ − 1
2 sin 2θ

= θ − sin θ cos θ

= sin−1 u− u(1− u2)
1
2 .

Writing the solution in terms of R, we obtain the result

C[sin−1(R/C)
1
2 − (R/C)

1
2 (1− R/C)

1
2 ] = t. (25.19)

Similarly, in the case Λ = 0, k = −1, the solution becomes (exercise)

C[(R/C)
1
2 (1 + R/C)

1
2 − sinh−1(R/C)

1
2 ] = t. (25.20)

The case Λ = 0, k = 0, is the Einstein–de Sitter model and has already
been dealt with in §25.1. Again, the Hubble parameter and decelera-
tion parameter can be computed directly from (25.19) or (25.20). For
example, when k = +1,

H = C−1(R/C)−
3
2 (1− R/C)

1
2 , (25.21)

and

q = 1
2 (1− R/C)−1, (25.22)

with R determined implicitly in terms of t by (25.19).
As in the last section, if we write (25.17) in the form

Ṙ2 = G(R), (25.23)

where

G(R) = C/R− k, (25.24)
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then we find that the model for which k = +1 has a local minimum,
whereas the other two models grow without bound. When k = −1, for
large t, we have Ṙ2 ∼ 1, and so R ∼ t. We again have enough information
to sketch the graphs of the models.

25.3 Classification of Friedmann models
In Fig. 25.1, we collect together the graphs of all the various possibilities.
They are divided up into three major cases, namely, k= −1, 0, or +1, and
subdivided into three, three, and eight sub-cases, respectively, depending
on the sign or value of Λ. We describe the sub-cases briefly.

Case I: k = −1

All of these models have open topology.

(i)Λ > 0. This is an indefinitely expanding model, but it possesses a ‘kink’
in it where the rate of expansion slows down for a period before picking

up again, and asymptotically it approaches exp[( 1
3Λ)

1
2 t]. Initially, like all

big bang models, the rate of expansion goes like that of the Einstein–de

Sitter model, namely, like t
2
3 .

(ii) Λ = 0. An indefinitely expanding model without a kink and which
goes like t asymptotically.

(iii) Λ < 0. In this case, the cosmological force is attractive and eventu-
ally halts the expansion and forces the model to collapse, ending in an
apocalyptic event called the big crunch. It is usually referred to as an
oscillating model. There is also the possibility that the model is indefi-
nitely oscillating with each cycle followed by another, as in Fig. 25.2. All
models for which Λ < 0 are oscillating models.

Case II: k = 0

All of these models have open topology.

(i) Λ > 0. This is identical in character to the sub-case I(i) above, again

possessing a kink and asymptotically approaching exp[( 1
3Λ)

1
2 t].

(ii) Λ = 0. The Einstein–de Sitter model, where R ∼ t
2
3 .

(iii) Λ < 0. An oscillating model.
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Fig. 25.1 Classification of Friedmann models.
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Fig. 25.2 An indefinitely oscillating model.
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Case III: k = +1

All of these models have closed topology.

In this case, there are more possibilities since there is a positive critical
value of the cosmological constant Λc given by

Λc = 4/(9C2), (25.25)

and an associated critical value of the scale factor Rc given by

Rc = 3
2C. (25.26)

(i) Λ > Λc This is called Lemaître’s model and is again similar to the
indefinitely expanding models I(i) and II(i). However, the closerΛ is toΛc
the more pronounced the kink is and the closer the expansion is brought
to a halt in this period.

(ii) Λ = Λc. There are three possibilities in this sub-case, which depend
on the value of a constant of integration.

(a) This is the Einstein static model (see below) in which the gravita-
tional attraction is exactly counterbalanced by the cosmic repulsion. The
scale factor then has the constant value Rc.

(b)This is a big bangmodel which asymptotically approaches the Einstein
static model.

(c) This is the Eddington–Lemaître model, in which, if time is run
backwards, it asymptotically approaches the Einstein static model. In for-
ward time, it is an ever-expanding model, asymptotically approaching

exp[( 1
3Λ)

1
2 t].

(iii) Λc > Λ > 0. There are, again, two possibilities, depending on a
constant of integration.

(a) An oscillating model.

(b) This is a model which has a contracting phase followed by an expand-
ing phase in which the scale factor always remains positive. It is symmetric

about its point of minimum radius with R ∼ exp[( 1
3Λ)

1
2 t] as t → ∞ and

R ∼ exp[( 1
3Λ)

1
2 (−t)] as t→ −∞.

(iv) Λ = 0. An oscillating model.

(v) Λ < 0. An oscillating model.
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25.4 The Einstein static model and the
de Sitter model

In this section, we consider two solutions which were influential in the
early days of cosmology and, although they are no longer considered to
be realistic cosmological models, they have some mathematical features
that make them still important in studying cosmology.

As explained earlier when Einstein first formulated his theory of gen-
eral relativity in 1916 the prevailing assumption was that the universe was
both static and homogeneous. If one considers the Einstein equations for
a Robertson–Walker metric (24.52) and (24.53) and then sets Λ = 0 and
R(t) = a = constant, one obtains

8πρ =
3k
a2

, 8πp = − k
a2

. (25.27)

The density ρ should be non-negative, and the case k = 0 just gives
Minkowski space. Thus, in order to have a non-trivial static solution with-
out a cosmological constant, k = 1 and the pressure has to be negative
– which is not a feature of standard matter. This was the reason that Ein-
stein introduced the cosmological constant. If one now allows a non-zero
cosmological constant, then the above becomes

8πρ =
3k
a2

− Λ, 8πp = Λ− k
a2

. (25.28)

One can obtain a solution with positive energy density and zero pressure
by choosing k = 1 and Λ = 1/a2. This gives a closed, static, homoge-
neous universe filled with dust of density ρ = 1/(4πa2), which is called
the Einstein static universe.

Observations of distant galaxies by Slipher, Hubble, and others in
the early part of the 20th century showed that the galaxies are moving
away from us, indicating that the universe is expanding. As a result of
this, Einstein abandoned the cosmological constant and accepted expand-
ing models of the Universe. However, as we show in Chapter 25, the
cosmological constant has returned as an important feature of modern
cosmology (in the form of ‘dark energy’) so we will continue to include it
in our discussion of cosmological models below. Furthermore, although
the Einstein static universe is no longer used as a cosmologicalmodel, it re-
mains important to theorists, as it is used to construct conformal Penrose
diagrams of realistic models (see §25.10).

The earliest cosmological model that was expanding is the de Sitter
model, which was discovered as early as 1917. It is not amodel of relativis-
tic cosmology because it is devoid of conventional matter. It is obtained
by setting p = ρ = k = 0 in (24.52) and (24.53). Then (24.52) gives

3Ṙ2/R2 − Λ = 0,
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or

Ṙ/R = ( 1
3Λ)

1
2 , (25.29)

which, on integration, becomes

R = A exp
[
( 1
3Λ)

1
2 t
]
,

where A is a constant of integration. Since the origin of this curve is arbi-
trary, let us choose R = 1 when t = 0, in which case A = 1. Alternatively,
we can rescale r and absorb the factor A into it. This leads to the de Sitter
model, for which

R = exp[( 1
3Λ)

1
2 t]. (25.30)

The graph of the scale factor is shown in Fig. 25.3. This solution is the
common limiting case to which all the models I(i), II(i), III (i), III(iic),
and III(iiib) tend as t → ∞, so it describes the late time behaviour of a
wide range of cosmological models.

R

t

Fig. 25.3 The de Sitter model.

From (24.36), (25.30), and the requirement that k vanishes, the line
element becomes

ds2 = dt2 − [exp 2( 1
3Λ)

1
2 t][dr2 + r2(dθ2 + sin2 θdϕ2)],

or, in Cartesian coordinates, the standard form

ds2 = dt2 − [exp 2t/α][dx2 + dy2 + dz2], (25.31)

where

α = (3/Λ)
1
2 . (25.32)

This line element is invariant under a shift in t and a simultaneous change
of scale in the space coordinates (exercise). Note that the metric is com-
pletely specified by α. The coordinate range of t is from −∞ to +∞, with
the zero of t being conventional. This is because the exponential curve
is ‘self-similar’, that is, one cannot tell where one is along it by intrinsic
measurements; it has no natural origin. If we introduce new coordinates
(̄t, x̄, ȳ, z̄), where

t̄ = t− 1
2α ln[1− α−2(x2 + y2 + z2) exp(2t/α)],

x̄ = x exp(t/α),

ȳ = y exp(t/α),

z̄ = z exp(t/α),

(25.33)



Early epochs of the universe 521

then (25.31) becomes, dropping bars, (exercise)

ds2 = [1− α−2(x2 + y2 + z2)]dt2 − dx2 − dy2 − dz2

− α−2(xdx + ydy + zdz)2

1− α−2(x2 + y2 + z2)
, (25.34)

which is manifestly stationary (why?). So that the dynamic behaviour
of the metric when written in the form (25.31) is rather misleading and
is really a coordinate effect. We shall return to this solution in §25.11.

25.5 Early epochs of the universe
In constructing the simplest possible model of the universe, we have ne-
glected pressure. However, in the early epochs of the universe, one would
expect the radiation to dominate completely over matter as a source of
gravitation. Let us look briefly at a simple model which includes pressure
at the extreme relativistic condition

3p = ρ, (25.35)

which is the equation of state for radiation. Then, taking Λ = 0 in
(24.52) and (24.53), the condition (25.35) requires that (exercise)

R̈
R

+
Ṙ2

R2 +
k
R2 = 0. (25.36)

In the earliest phases, the first two terms will dominate, and so, neglecting
the last term in (25.36), we find that, for small t (exercise), R ∼ t1/2.
Comparing this with the small-time behaviour we had previously, namely,
R ∼ t2/3, we see that this corresponds to a more rapid expansion. The
effect of the pressure of radiation is that it exerts its own gravitational
field, thereby increasing the amount of gravity acting. This increases the
rate of expansion, as is clear if we reverse the sense of time and consider
the resulting rate of collapse.

Another difference between dust and radiation comes from looking at
the thermodynamic equation (24.54). For dust we have p = 0 and this
immediately gives ρR3 = constant so that for dust ρ ∝ 1/R3. However, if
one puts p = 3ρ in (24.54), then a little algebra shows that

d
dt

(
ρR4) = 0, ⟹ ρR4 = C = constant. (25.37)

Hence, for the case of radiation, we find instead that ρ ∝ 1/R4. If, for
convenience, we set C = 8

3πD and substitute for ρ in (24.52), we obtain
the Friedmann equation for radiation

Ṙ2 =
D
R2 + 1

3ΛR
2 − k, (25.38)
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where D is a constant of integration given by

D = 8
3πR

4ρ. (25.39)

Again, one sees that, for small R(t), the first term dominates so in the
early stages of expansionR(t) ∼ t1/2. One can systematically look at all the
various cases for this, as we did for the case of dust but will not do so here.

25.6 The steady-state theory
In 1948, Bondi, Gold, and, independently in the same year, Hoyle pro-
duced a cosmological theory which was, in many ways, radically different
from the previousmodels of relativistic cosmology. It is a theory of charm-
ing simplicity, but, unfortunately, one which involves amodification of the
law of conservation of energy – a law close to the hearts of many physi-
cists. The theory provides definite answers to cosmological questions and
so is more amenable to direct tests. Put another way, since it makes unique
predictions, it is easier to disprove. Unfortunately, the theory seems to be
at variance with much of present-day observations, and hence many con-
sider it to be of historic interest only. Nonetheless, it leads to a solution
that is of interest and of mathematical importance. We shall summarize
the original formulation below.

The fundamental assumption of the theory as derived by Bondi and
Gold is the following principle.

Perfect cosmological principle: The universe presents an un-
changing aspect on the large scale.

As we have seen in the last chapter, the ordinary cosmological princi-
ple (which is implied by the perfect cosmological principle), leads to the
Robertson–Walker line element. We next use the requirement of station-
arity, which also follows directly from the perfect cosmological principle
to deduce the line element for the steady-state universe. Since the universe
is expanding, R(t) must be an increasing function of time. But the curva-
ture of a 3-space of constant curvature in a Robertson–Walker space-time
goes like kR−2 (exercise), and this is an observable quantity (affecting,
for example, the rate of increase of the number of galaxies with distance).
The fact that it is observable means that it must be constant and, since R
varies with time, we must conclude that k = 0. The function R(t) is not
directly observable, but the Hubble parameter Ṙ(t)/R(t) is, and so again
must remain constant. Thus, Ṙ/R = 1/T0, where T0 is a constant and,
proceeding as in (25.29), we get

R(t) = exp(t/T0), (25.40)

and the line element becomes

ds2 = dt2 − exp(2t/T0)[dr2 + r2(dθ2 + sin2 θ)dϕ2]. (25.41)
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This is the same as the line element of the de Sitter model, which we
considered in relativistic cosmology but discarded because it led to an
empty universe. Note that (25.41) is completely specified by the scale
factor T0. We leave the question of coordinate range until §25.11.

We can consider light propagation in the same way as we did in §24.10.
Then (24.61) becomes, in this case,

dt
exp(t/T0)

= ±dr. (25.42)

For an incoming ray reaching r = 0 at t = t0, we get

r = T0(e−t/T0 − e−t0/T0). (25.43)

The luminosity distance dL is given by (24.72), which, in this case,
becomes

dL = r1et0/T0 , (25.44)

so that the coordinate r is proportional to the luminosity distance. Then,
using (24.66), we have

1 + z = R(t0)/R(t1) = e(t0−t1)/T0 = 1 + r1et0/T0/T0 (25.45)

by (25.43). Combining this result with (25.44), we find (exercise)

dL = zT0. (25.46)

Thus, in the steady-state theory, Hubble’s law is exact. It follows from
(25.40) that (exercise)

q = −1, (25.47)

that is the universe is expanding at an ever increasing rate.

25.7 The event horizon of the de Sitter
universe

As we have seen in (25.43), the equation of the past light cone through
the point r = 0, t = t0, has the equation

r = T0(e−t0/T0 − e−t0/T0). (25.48)

At any particular time, information can be received only from events in-
side an observer’s past light cone. If we take the limit in (25.48) as t0 → ∞,
then it follows that an observer whose world-line is r = 0 cannever receive
any information from events occurring outside the hypersurface

r = T0e−t/T0 . (25.49)
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In other words, this hypersurface is an event horizon for O and has a
similar character to the event horizon of black holes. Let us consider what
an observer would see while observing a particle of the substratum P with
world-line r = r1 (Fig. 25.4). If we set r = r1 in (25.49), then P crosses
O’s event horizon at the event P1 at time

t1 = T0 ln(T0/r1). (25.50)

Observer O can only receive signals from P at events of P’s world-line for
which t < t1. These signals travel on null geodesics (the dotted line in
Fig. 25.4), which reach O at time (exercise)

τ = −T0 ln(e−t/T0 − e−t1/T0). (25.51)

So, by (24.72), O ascribes to P the luminosity distance

dL = r1eτ/T0 = r1(e−t/T0 − e−t1/T0)
−1

, (25.52)

and a red shift, by (25.46), of

z = dL/T0. (25.53)

Therefore, as t → t1 it follows that τ → ∞ and the light takes longer
and longer to reach O from P. In addition, both dL → ∞ and z → ∞
as P disappears over O’s horizon and this happens in a finite proper time
as measured by P. At time t, the geodesic distance l from O to P is, by
(24.69) with k = 0, R(t) = et/T0

l = r1et/T0 , (25.54)

Signal from
P to O

Particle P
r = r1

Observer O
r = 0

Event
horizon

of O

(t , r1)

P1(t1 , r1)

(τ , 0)

Fig. 25.4 The event horizon of an observer in the de Sitter universe.
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which is still finite at the event P1. The velocity of recession is

dl
dt

=
r1
T0

et/T0 = e(t−t1)T0 , (25.55)

by (25.50), and this tends to 1 as t→ t1. Thus, the geodesically measured
velocity of recession tends to the velocity of light as the particle approaches
the event horizon. So far, we have only considered an observer at r = 0,
but, by homogeneity of the de Sitter solution, the above conclusions apply
to any observer moving with the substratum.

The event horizon is rather like a curtain behind which one can see
nothing. However, the curtain can be drawn, but at a price. Consider
the world-line of an explorer E who is sent out into space by O and is
asked to send back reports on all that E sees (Fig. 25.5). The explorer
E will be able to see past O’s horizon, but not until passing the event E1

on this horizon, after which E can never return home to O nor send any
information back to O. So we see that O can never receive information
about events beyond O’s horizon. However, their existence cannot be ne-
glected, since, by travelling around,O’s horizon can be changed and some
of the forbidden knowledge can be found out – but no return home is
then possible. We have met similar event horizons in Minkowski space-
time (Chapter 3, Fig. 3.8). In suitably chosen coordinates, the world-line
of a uniformly accelerated observer travelling in the x-direction has the
equation x2 − t2 = constant, y = z = 0. It is clear from Fig. 25.6 that light
emitted from events in the shaded region will never reach the observer P,
who, therefore, has an event horizon. No such horizon exists for inertial
observers, of course.

Event E1Event E1

Event horizon
of O

World-line
of O

World-line
of E

Fig. 25.5 Explorer E draws the curtain.

World-line of
uniformly
accelerated observer P

Past light
cone of event P0

P0

P ´s event
horizon

t

x

Fig. 25.6 Event horizons in Minkowski space-time.
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25.8 Particle and event horizons
We can, in fact, distinguish between different sorts of horizons. Consider
the world-line of an observer Omoving on a timelike geodesic in a space-
time in which I − is spacelike (Fig. 25.7). Then, at any point P on O’s
world-line, the past light cone at P is the set of events in space-time which
can be observed by O at that time. The division of particles into those
seen by O at P and those not seen by O at P gives rise to the particle
horizon of O at P. It represents the history of those particles lying at the
limits ofO’s vision. Of course, if I − is null (for example, as inMinkowski
space-time), then all particles are seen by O at P (Fig. 25.8). Now con-
sider a space-time in which both I − and I + are spacelike (Fig. 25.9).
If we consider the whole history of the observer O, then the past light
cone of O at P on I + is called the future event horizon of O. Events
outside this horizon will never be seen by O. Next, consider the case
when I + is null (Minkowski space-time, for example). If O moves on
a timelike geodesic, then O does not possess an event horizon. However,
if observer Ō moves with uniform acceleration, then, asymptotically, the
speed of the observer approaches the speed of light – whichmeans that the
world-line ends up on I + – and then Ō possesses a future event horizon
(Fig. 25.10). Notice that these event horizons are observer dependent.
This is to be contrasted with the event horizons of black holes which
are more accurately termed absolute event horizons, because they are
observer independent.

Particle
world-lines

O´s
world-line

Particle
horizon
for O at P

Particles not
yet observed
by O at P

Past light cone
of O at P

I –

P

Fig. 25.7 Particle horizons of an observer (I − spacelike).
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world-
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–
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world-
line

Fig. 25.8 The case when I − is
null.

O´s
world-
line

O’s future
event horizon

I
+

I
–

Event which
will never be
seen by O

Fig. 25.9 The case when I − and I + are spacelike.
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O´s geodesic
world-line

i+

I+
O´s non-geodesic
world-line

O´s future
event horizon

Fig. 25.10 The case when I + is null.

25.9 Lorentzian constant curvature
space-times

Although, as discussed earlier, the de Sitter model is no longer regarded as
a realistic one for the universe as a whole, it is important in describing the
final epochs of an ever expanding universe. Since the density of matter
scales like R−3 and that of radiation like that of R−4, then, if Λ is non-
zero, it will tend to be the dominant term in the Friedmann equation for
expanding solutions at late times. It is therefore of interest to investigate
vacuum solutions with a non-zero cosmological constant such as the de
Sitter solution.

In the derivation of the de Sitter solution in §25.6, we used the per-
fect cosmological principle. Geometrically, this corresponds to it being
isotropic in space-time about every point. As we have seen, such a space
is automatically an Einstein space, a condition which, in turn, is guaran-
teed by the space being a space of constant curvature. We have already
looked at the 3-dimensional Riemannian spaces of constant curvature
in §24.8. In this section, we look at 4-dimensional Lorentzian spaces of
constant curvature. As discussed in §24.7, a space-time is said to have
constant curvature if

Rabcd = K(gacgbd − gadgbc), (25.56)

where K is a constant. Note that taking the double trace shows that, in
4-dimensions (exercise),

K = R/12, (25.57)

where R is the (constant) scalar curvature. Furthermore, it also follows
from (25.56) that (exercise)

Gab = −3Kgab, (25.58)

So that a constant curvature space-time is a solution of the vacuum Ein-
stein equations with cosmological constant Λ = −3K, which is isotropic
in space-time about every point.
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In looking at such solutions, we consider three cases: K = 0, K > 0,
and K < 0.

Case I: K = 0

Substituting K = 0 in (25.56) shows that the curvature tensor Rabcd
vanishes, so that the case K = 0 is nothing but Minkowski space.

Case II: K > 0

The constant curvature space with positive curvature is called de Sitter
space. This space-time is most easily visualized as the hyperboloid

−v̂2 + ŵ2 + x̂2 + ŷ2 + ẑ2 = T2
0, (25.59)

with topology R × S3 embedded in flat five-dimensional Euclidean
space with a Minkowski-type line element

ds2 = dv̂2 − dŵ2 − dx̂2 − dŷ2 − dẑ2. (25.60)

One can introduce coordinates (̂t,χ, θ,ϕ) on the hyperboloid by the
relations

v̂ = T0 sinh(̂t/T0),

ŵ = T0 cosh(̂t/T0) cosχ,

x̂ = T0 cosh(̂t/T0) sinχcos θ,

ŷ = T0 cosh(̂t/T0) sinχ sin θ cosϕ,

ẑ = T0 cosh(̂t/T0) sinχ sin θ sinϕ,


(25.61)

in which case the line element has the form

ds2 = d̂t2 − T2
0cosh

2(̂t/T0)[dχ2 + sin2χ(dθ2 + sin2 θdϕ2)]. (25.62)

Apart from coordinate singularities at χ = 0, π, and θ = 0, π, the
hyperboloid is covered by the coordinate range

−∞ < t̂ < +∞,

0 ⩽ χ ⩽ π,

0 ⩽ θ ⩽ π,

0 ⩽ ϕ < 2π.

c = pχ = 0

Surfaces t
ù 
 = constant:

constant positive
curvature S3

Geodesic
normals

t
ù 
 = 0

Fig. 25.11 de Sitter space-time
embedded in five-dimensional
Minkowski space-time.

The surfaces t̂ = constant are 3-spheres of constant positive curvature,
the particles of the substratum travel on timelike geodesics normal to these
surfaces, and the overall topology is cylindrical, beingR×S3 (Fig. 25.11).
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If we then introduce coordinates

t = T0 ln[(ŵ + υ̂)/T0],

x = T0 x̂/(ŵ + υ̂),

y = T0 ŷ/(ŵ + υ̂),

z = T0 ẑ/(ŵ + υ̂),

 (25.63)

then the line element (25.60) reduces to the form (25.31) in Cartesian
co-ordinates with α = T0, or (25.41) in the corresponding spherical po-
lar co-ordinates on the hyperboloid. However, the coordinates (t, x, y, z)
only cover half the hyperboloid, since t is not defined for ŵ + v̂ ⩽ 0
(Fig. 25.12). In these coordinates, the surfaces t = constant are flat
3-spaces, and the particles of the substratum are geodesics normal to these
3-spaces diverging from a point in the infinite past. Thus, only the por-
tion given by ŵ + v̂ > 0 in the full de Sitter space (25.68) corresponds to
the steady-state model.

Surface of 
constant
time t

Geodesic
normals

Null surface
t  
ù 
= –¥

Fig. 25.12 de Sitter space-time in
(t, x, y, z) coordinates.

Case III: K < 0

The constant curvature space with negative curvature is called anti-
de Sitter space. This space-time is again most easily visualized as the
hyperboloid

− û− v̂2 + x̂2 + ŷ2 + ẑ2 = −T2
0 (25.64)

embedded in a flat five-dimensional Euclidean space with line element

ds2 = dû2 + dv̂2 − dx̂2 − dŷ2 − dẑ2. (25.65)

Note the sign changes in (25.64) and (25.65) compared with Case II. In
this case, one can introduce coordinates (̂t, ρ, θ,ϕ) on the hyperboloid by
the relations

û = T0 sin(̂t/T0) cosh ρ,

v̂ = T0 cos(̂t/T0) cosh ρ,

x̂ = T0 sinh ρ cos θ,

ŷ = T0 sinh ρ sin θ cosϕ,

ẑ = T0 sinh ρ sin θ sinϕ,


(25.66)

in which case the line element has the form

nds2 = T2
0

[
cosh2 ρd(̂t/T0)

2 − dρ2 − sinh2 ρ(dθ2 + sin2 θdϕ2)
]
.

(25.67)
According to (25.66), the coordinate t̂ is 2π-periodic. However, one can
view this simply as an artefact of how we derived the metric (25.67). Hav-
ing obtained it, we are free to regard t̂ as ranging over the whole of R, and
the resulting space has topology R4.
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25.10 Conformal structure of
Robertson-Walker space-times

We proceed as we did in §24.8 and introduce a new radial coordinate χ
so that the Robertson-Walker line element takes the form

ds2 = dt2 − [R(t)]2[dχ2 + f2(χ)(dθ2 + sin2 θdϕ2)], (25.68)

where

for k = 0, r = χ = f(χ),

for k = +1, r = sinχ = f(χ)

and for k = −1, r = sinhχ = f(χ).

(25.69)

The coordinate χ runs from 0 to ∞ when k = 0 or −1, and from 0 to 2π
when k = +1. Next, we introduce a new time coordinate τ defined by

dτ = R−1(t)dt,

so that (25.68) becomes

ds2 = R2(τ)ds̄2, (25.70)

where

ds̄2 = dτ2 − dχ2 − f2(χ)(dθ2 + sin2 θdϕ2). (25.71)

Let us restrict our attention to the standard models Λ = 0, in which case
R(τ) has one of the forms (25.8), (25.19), or (25.20). When k = +1,
the unphysical line element (25.71) is precisely the Einstein static space
(18.27). Indeed, all three models can be mapped on to different portions
of the Einstein static space depending on the values taken by τ . In the case
k = 0, the procedure is exactly the same as that employed in obtaining the
conformal structure of Minkowski space-time (§18.4) except that now
0 < τ < ∞. The solution is therefore conformal to the half t′ > 0 in
Fig. 18.7. When k = +1, τ lies in the range 0 < τ < π. When k = −1, it
can be shown that the space is conformal to the region

− 1
2π ⩽ t′ + r′ ⩽ 1

2π,

− 1
2π ⩽ t′ − r′ ⩽ 1

2π,

t′ ⩾ 0.

The various regions of the Einstein static cylinder for each case are
depicted in Fig. 25.13.

These conformal diagrams are somewhat different from the others we
have met so far, in that part of the boundary is not ‘infinity’ in the sense
it was previously, but represents the initial singularity when R = 0. In
fact, this makes little difference to the conformal diagrams. The Penrose
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diagram for the ever-expanding cases k = 0 and -1 is given in Fig. 25.14
(two dimensions suppressed). The initial singularity – the big bang – is a
spacelike surface. The Penrose diagram for the oscillating universe k = +1
is given in Fig. 25.15 (two dimensions suppressed). In this case, both the
initial and the final singularity – the big crunch – are spacelike surfaces. It
can be shown that matter-filled Robertson-Walker universes are, in fact,
inextendible.

c =  p

c = 0

c = p

t' = p

t' = 0

k = 0 k = –1k = +1

1
2

c =  p12

Fig. 25.13 Conformal Robertson-
Walker space-times (Λ = 0).

World-lines of
fundamental
particles

I
–
(t = 0)Big bang

i
+

I
+

Surfaces
t = constant

χ = 0

Fig. 25.14 Penrose diagram for k = 0
and −1 (Λ = 0).

Surfaces
t = constant

World-lines of
fundamental particles

I +(t = p) Big crunch

I –(t = 0) Big bang

χ = 0 c = p

Fig. 25.15 Penrose diagram for
k = +1 (Λ = 0).

25.11 Conformal structure of de Sitter and
anti-de Sitter space-time

We can obtain the conformal structure of de Sitter space-time by defining
a new time coordinate

t′ = 2 tan−1[exp(̂t/T0)]− 1
2π,

which implies that (exercise)



532 The classical cosmological models

cosh (̂t/T0) =
1

cos t′
,

where

− 1
2π < t′ < 1

2π.

Then substituting into (25.68) gives

ds2 = T2
0 cosh

2(t′/T0)ds̄2 =
T2

0

cos2 t′
ds̄2, (25.72)

r´ = 0 r´ = π I
+(t´ = 1 p)

2

I
–(t́  = – 1 p)2

t´ = constant

t´ = 0

Fig. 25.16 Conformal de
Sitter space-time.

where

ds̄2 = dt′2 − dχ2 − sin2 χ(dθ2 + sin2 θdϕ2),

is the Einstein static line element (18.27) on identifying r′ = χ. The region
to which de Sitter space is conformal is shown in Fig. 25.16.
The Penrose diagrams of de Sitter space-time and the steady-state uni-
verse are shown in Fig. 25.17. It is clear that the steady-state theory
suffers, at least aesthetically, from being geodesically incomplete in the
past.

To derive the conformal structure of anti-de Sitter space-time, we
define a new radial coordinate χ by

χ = 2 tan−1(exp ρ)− 1
2π,

which implies

cosh ρ =
1

cosχ
, (25.73)

where

0 ⩽ χ ⩽ 1
2π.

Then substituting into (25.68) gives

ds2 = T2
0 cosh

2 ρds̄2 =
T2

0

cos2 χ
ds̄2, (25.74)
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χ = 0 χ = 0

χ = p χ = p

Time
lines

(a) (b)

Time
lines

I
+ I

+

I
–

I
–

i 0

i –

Surface
t
ù 

= constant
Surface
t
ù 

= constant

Fig. 25.17 Penrose diagram of (a) de Sitter space-time and (b) the steady-state model.

where ds̄2 is again the Einstein static line element (18.27). Since
0 ⩽ χ ⩽ π/2, anti-de Sitter space is conformally related to half of the Ein-
stein static cylinder, as shown in Fig. 25.18 using polar coordinates. Since
χ only reaches π/2, rather than π a spacelike slice of anti-de Sitter has
topology of the interior of a hemisphere which is R3 and thus the space-
time has the topology R4, as stated earlier. Infinity in this picture is given
by χ = π/2, which we see is a timelike hypersurface.

z = +∞

z = +∞

z > 0

z 
=

 0

t < 0

z > 0

t > 0

t = +∞

t = –∞

Fig. 25.18 Conformal anti-de Sitter space-time.
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Although anti-de Sitter space is not usually considered as a realistic
cosmological model, the timelike nature of infinity makes it of great im-
portance in string theory as a result of something called the ‘AdS/CFT
correspondence’. This is beyond the scope of this book, but it is a re-
markable result because it shows that, in an appropriate limit, there is
a correspondence between a quantum gravity theory in the interior (the
anti-de Sitter space-time) and a conformally invariant field theory (CFT)
on the boundary at infinity. We will not go any further into these issues
here except to say that it is a very active area of research.

25.12 Our model of the universe
In this chapter, we have examined various spatially isotropic and homoge-
neous cosmological models. As with all models, they have their own range
of validity so we end by summarizing these. As we explained at the start of
Chapter 24, there is considerable evidence that, on suitable length scales,
the universe is homogeneous and isotropic. However, it is clear that, even
on the length scale of galaxies, this is not true so that, although the as-
sumption that the universe is modeled by the Robertson-Walker metric is
reasonable, one must remember that it is not exactly true and there may
have been earlier epochs where inhomogeneities were important. In the
early universe, we expect that the universe is radiation dominated so
that we model the matter as a perfect fluid with equation of state p = 3ρ,
and the scale factor R(t) evolves according to (25.38). For the early uni-
verse, Ṙ ∼ D/R2 and this gives R(t) ∼ t1/2, and the corresponding energy
density ρ is proportional to R(t)−4.

As the universe expands and cools down (see details in Chapter 25),
then the universe becomes matter dominated. In this phase, we model
the matter as a perfect fluid with p = 0 (i.e. dust) and the scale fac-
tor evolves according to (25.1). These were examined in detail in §25.3
but the key point to note is that, for small R, we have Ṙ ∼ C/R so that
R(t) ∼ t2/3. It also follows from the conservation of energy that, for dust,
the density is proportional to R−3. We see from this that, the density of
radiation decays faster than that of matter so that whatever the initial den-
sities of matter and radiation, there comes a time where the matter starts
to dominate the radiation.

In models where the expansion continues (which we believe to be the
case in our universe), we see from (25.1) that, eventually, the cosmo-
logical term in the Friedmann equation dominates, however small it is.
Although this is beyond the scope of this book, we mention in passing that
one potential source of a small cosmological constant that can be consid-
ered is something called the quantum mechanical zero-point energy of
the vacuum. It turns out that this can be modelled as a perfect fluid with
equation of state ρ = −p, which corresponds to an energy-momentum
tensor of the form Tab = Λgab. This is what one obtains from Einstein’s
equations if one has no conventional matter but puts the cosmological
term on the right-hand side of the equations and interprets it as energy–
momentum. For this reason, we describe solutions where the Λ term in
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the Friedmann equation is dominating as vacuum dominated. Since
the radiation density falls off like R−4 and the matter density like R−3, it is
inevitable that, in an expanding universe Λ, however small, will eventually
dominate the other two terms. For a vacuum-dominated solution, we get
from (24.52) that Ṙ ∼ αR, where α = (Λ/3)1/2, so that R(t) ∼ eαt and
we have exponential growth.

It is also believed that we have exponential growth in the very early
universe due to inflation. This is due to a field ϕ called the inflaton,
which has dynamics given by a potential energy V(ϕ) and has an approx-
imate energy–momentum tensor of the form Tab ' V(ϕ)gab, so behaves
like a dynamical cosmological constant and again produces exponential
growth. The associated matter is sometimes called dark energy. We will
give a more detailed description of inflation in Chapter 25. We therefore
have the following basic model for the evolution of the universe. There
is an initial stage of inflationary exponential growth in the very early uni-
verse driven by the inflaton. As a result of the inflation, V(ϕ) decreases,
the early universe becomes radiation dominated, and the expansion in no
longer exponential but becomes a power law. Further expansion results in
it moving to the current matter dominated phase where R(t) ∼ t2/3. The
universe continues to expand and cool down until eventually the matter is
so dilute that the vacuum-energy dominates and the universe gets closer
and closer to the de Sitter solution. Of course, in reality, there is not such
a clean-cut division between the various phases and to go from the general
picture described above to a more detailed model requires a more care-
ful understanding of both the underlying physics and of the input from
observational cosmology, which will be the topic of the next chapter.

Exercises

25.1 (§25.1) Show that taking the negative square root in (25.4) leads to
the same result as in (25.5).

25.2 (§25.1) Use the substitution (25.6) to establish the solution (25.7)
in the case k = 0, Λ < 0.

25.3 (§25.1)
(i) Confirm (25.9) and (25.10) for the Einstein–de Sitter model.
(ii) Show that in the case k = 0, Λ < 0, Ṙ vanishes at
R = Rm = [3C/(−Λ)]

1
3 , which is a local minimum.

(iii) Show that (25.15) leads to (25.16).

25.4 (§25.2)Use the substitution (25.18) to establish the solution (25.20)
in the case Λ = 0, k = −1.

25.5 (§25.2) Confirm (25.21) and (25.22) for the model with solution
(25.19).
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25.6 (§25.3) Show that the general differential equation for R̈ and Ṙ can
be written in the form

R̈ = (2/9C)(−x−2 + λx),

Ṙ2 = 1
3 (2x

−1 + λx2 − 3k),

where Rc = 3C/2, Λc = 4/(9C2), x = R/Rc and, λ = Λ/Λc. [Hint: let
R = Rc, Λ = Λc when R̈ = Ṙ = 0]
(i) Deduce that, if R̈ = Ṙ = 0 at some time, then R = Rc, Λ = Λc, k = 1
and R̈ = Ṙ = 0 for all times.
(ii) Show that
(a) if Λ < 0, then all models are oscillating;
(b) if Λ > 0, then oscillating models require k = 1, and Λ < Λc.
[Hint: consider the equations for x and λ in turn when x is small and large,
and λ is positive and negative.]

25.7 (§25.3) A straight channel contains a fixed particle of massM at its
origin O, while another particle P of mass m moves under gravitational
attraction. Let OP be denoted by x, and take the time to be zero when
the particle starts off fromO in the positive x-direction. If the particle has
velocity v0 at x0, then show there exists a value of x, x = x1, say (positive,
negative, or infinite), at which the velocity vanishes and find it in terms of
x0 and v0. Show that the energy equation can be written in the form

ẋ2 = 2GM/x− 2GM/x1.

Compare this with Friedmann’s equation and hence interpret the types
of motion possible for various values of x1.

25.8 (§25.4) Show that the line element (25.31) is invariant under a shift
in t and a simultaneous change of scale in the space coordinates. Apply the
transformation (25.33) to the dt2 term in (25.31) to confirm they produce
the dt2 term (dropping bars) in (25.34).

25.9 (§25.5) Show that, if Λ = 0, then (24.52) and (24.53), subject to
(25.35), lead to (25.36). Neglecting the term involving k, deduce that
R ∼ t1/2 for small t.

25.10 (§25.6)Use the Robertson–Walker line element in the form (24.36)
to show that the three-dimensional Ricci scalar curvature of a 3-space
t = t0 is 6k[R(t0)]−2.

25.11 (§25.6) Confirm the results (25.46) and (25.47) for the
steady-state theory.

25.12 (§25.7) Confirm the results (25.51) and (25.54).

25.13 (§25.9) Show that, for a constant curvature space-time in
4-dimensions, K = R/12 and hence

Gab = −3Kgab.

25.14 (§25.11) Check that (25.61) satisfies (25.59). Show that the
line element (25.60) reduces to the forms (25.62) and (25.31) on the
hypersurface. [Hint: use (25.61) and (25.63), respectively.]
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25.15 (§25.11) Check that (25.66) satisfies (25.64). Show that the line
element (25.65) reduces to the form (25.67) on the hypersurface.

25.16 (§25.11) Show that the coordinate transformation

t′ = 2 tan−1[exp(̂t/T0)]− 1
2π,

brings the de Sitter solution into the form given by (25.72).

25.17 (§25.11) Show that the coordinate transformation

χ = 2 tan−1(exp ρ)− 1
2π,

brings the anti-de Sitter solution into the form given by (25.74).

Further reading

The main sources for this chapter are again the books by Bondi(1961)
and Weinberg (1972). We do not discuss anisotropic cosmologies in this
chapter so recommend the book by Hughston and Tod (1990), which has
a chapter on anisotropic cosmologies to give you a flavour of this subject.

Bondi, H. (1961). Cosmology. Cambridge University Press, Cambridge.

Hughston, L. P., and Tod, K. P. (1990). An Introduction to General
Relativity. Cambridge University Press, Cambridge.

Weinberg, S. (1972). Gravitation and Cosmology. Wiley, New York, NY.
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26.1 Multi-component models
In Chapter 25, we looked at the Friedmann equation in three regimes:
radiation dominated, matter dominated and vacuum dominated. We now
want to consider situations which allow for all three and relate the the-
oretical predictions to observational quantities. Before looking at the
general situation, we consider (24.52) for the case where the cosmological
constant vanishes. Recalling that H = Ṙ/R, this gives (exercise)

H2 =
8π
3
ρ− k

R2 . (26.1)

We see from this that, at any epoch, there is a special density required in
order that k vanishes, given by ρ = 3H2/8π. Note that this varies with
time, since H(t) does. In order to give it a definite value, we define the
critical density to be the current value given by

ρcrit =
3H2

0

8π
, (26.2)

where H0 := H(t0) is the current value of the Hubble parameter. If we let
ρ0 = ρ(t0) be the current density of the universe, then we see that

ρ0 > ρcrit ⇒ k = +1 (closed universe),

ρ0 = ρcrit ⇒ k = 0 (open flat universe),

ρ0 < ρcrit ⇒ k = −1 (open universe).

(26.3)

So that the value of ρ0 compared to ρcrit discriminates between the three
types of universe. Although there is some uncertainty in the value of H0,
it is of the order of 100 km/s per megaparsec (see §26.2) and substitut-
ing this into (26.2) gives a value of ρcrit of the order of 10−26 Kgm−3.
Although this seems small, there is a lot of empty space between galaxies
and, as a very rough estimate, the actual density of the universe is of a
similar order to the magnitude of the critical density. We will return to
this point in §26.4.

It is standard practice in cosmology to measure the present-day density
of the universe, relative to the critical density by setting

Ω :=
ρ(t0)
ρcrit

=
8πρ(t0)
3H2

0
. (26.4)

Introducing Einstein’s Relativity. Second Edition. Ray d’Inverno and James Vickers, Oxford University Press.
© Ray d’Inverno and James Vickers (2022). DOI: 10.1093/oso/9780198862024.003.0026
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So that Ω > 1 corresponds to positive spatial curvature (k = +1), Ω < 1
corresponds to negative spatial curvature (k = −1), and the flat models
have Ω = 1 exactly.

We now want to consider the Friedmann equation when we include
a cosmological constant. The starting point is to put the cosmological
term on the right-hand side of Einstein’s equations and regard Λgab as an
energy-momentum tensor. Looking at (24.52) and (24.53), we see that
this corresponds to a fluid with constant density given in geometrical units
by (exercise)

ρΛ =
Λ

8π
, (26.5)

and equation of state p = −ρ. If we now let ρm and ρr be the densities of
matter and radiation, respectively, then we may write (24.52) in the form
(exercise)

Ṙ2

R2 =
8π
3

(ρr + ρm + ρΛ)−
k
R2 . (26.6)

We want to look at the relative sizes of the various terms in (26.6), so
the first step is to write it in non-dimensional form. For the scale factor
R, we measure this compared to the current value and define the non-
dimensional quantity R̃ by

R̃(t) :=
R(t)
R(t0)

. (26.7)

For the time, we use the Hubble time tH := 1/H0 to set the scale, and
define a non-dimensional time by

t̃ :=
t
tH

= H0t. (26.8)

For the density terms, it is useful to measure these relative to the criti-
cal density ρcrit given by (26.2). We first look at how the current values
compare to the critical density and define

Ωr :=
ρr(t0)
ρcrit

, Ωm :=
ρm(t0)
ρcrit

, ΩΛ :=
ρΛ(t0)
ρcrit

. (26.9)

We know fromChapter 25 that conservation of energy for thematter gives
ρm ∝ 1/R3. We therefore have

ρm(t) = ρm(t0)
(
R(t0)
R(t)

)3

=
ρcritΩm

R̃3
. (26.10)

Similarly, for radiation, conservation of energy gives ρr ∝ 1/R4, so that

ρr(t) = ρr(t0)
(
R(t0)
R(t)

)4

=
ρcritΩr

R̃4
. (26.11)



Multi-component models 541

Finally, the density of the vacuum energy ρΛ is constant, so that

ρΛ(t) = ρΛ(t0) = ρcritΩΛ. (26.12)

We now write the general Friedmann equation (26.6) in terms of the non-
dimensional quantities and this gives (exercise)(

dR̃
d̃t

)2

=
(

Ωm

R̃
+

Ωr

R̃2
+ ΩΛR̃2

)
− k
H2

0R
2
0
, (26.13)

where R0 = R(t0). It is sometimes useful to introduce the quantity

Ωc = − k
H2

0R
2
0
, (26.14)

in which case it follows from evaluating the Friedmann equation (26.13)
at t = t0, where, by definition, R̃(t0) = 1, that (exercise)

Ωr + Ωm + ΩΛ + Ωc = 1. (26.15)

The value of this result is that we can write the final term in (26.13) in
terms of potentially measurable quantities as

Ωc = 1− (Ωr + Ωm + ΩΛ). (26.16)

In analysing the dynamics of (26.13), it is helpful to think of this as the
formula for conservation of energy for the motion of a particle of unit
mass, moving in 1-dimension, in an effective potential V(R̃):

1
2

(
dR̃
d̃t

)2

+ V(R̃) = E, (26.17)

where

V(R̃) = −1
2

(
Ωm

R̃
+

Ωr

R̃2
+ ΩΛR̃2

)
, (26.18)

and

2E = Ωc = 1− (Ωr + Ωm + ΩΛ). (26.19)

This now gives us a method to construct an FRW cosmological model if
we are given Ωr, Ωm, ΩΛ, and H0. Given Ωr, Ωm, and ΩΛ we first use
(26.19) to determine E. We may then (in principle) solve (26.17) by
writing it in the form of a separable ODE and integrating to obtain

t̃ =
∫

dR̃[
2(E− V(R̃))

]1/2 . (26.20)
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We can then solve this for R̃(̃t) which can, if desired, be converted back
into R(t) using equations (26.7) and (26.8), which give

R(t) = R0R̃(̃t/H0). (26.21)

In fact, one can show from (26.14) (exercise) that, as long as Ωc is not
exactly zero then

R(t) =
1

H0|1− (Ωr + Ωm + ΩΛ)|1/2
R̃(̃t/H0). (26.22)

We have therefore shown the following result:

A general FRW cosmology is determined by the four cosmological pa-
rameters

Ωr, Ωm, ΩΛ, H0.

We discuss in the next section how these parameters may be determined
through observation and/or theoretical grounds. However, before doing
this, we outline how these parameters may be used to indicate the general
behaviour of the solution without having to solve (26.20). The Hubble
parameter only provides an overall scaling factor, as shown by (26.22),
and since, to a good approximation, the value of Ωr in our universe is
small (current estimates give Ωr of the order 10−4), we can therefore,
for most purposes, assume that Ωr = 0 and explore the space of possible
universes by parameterizing them in terms of Ωm and ΩΛ. In this situation,
the non-dimensional Friedmann equation is still given by (26.17), where
now

V(R̃) = −1
2

(
Ωm

R̃
+ ΩΛR̃2

)
, (26.23)

and

2E = Ωc = 1− (Ωm + ΩΛ). (26.24)

We now consider the following issues concerning the type of universe:

1. Open or closed

Ωm + ΩΛ > 1 ⟹ Ωc < 0 Hence k = +1 and the universe is closed,

Ωm + ΩΛ = 1 ⟹ Ωc = 0 Hence k = 0 and the universe is flat

and open,

Ωm + ΩΛ < 1 ⟹ Ωc > 0 Hence k = −1 and the universe is open.

Thus, the dividing line between an open and closed universe is given by
the line ΩΛ = 1− Ωm.
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2. Accelerating or non-accelerating
We derived an expression in (24.79) for the deceleration parameter q. We
now evaluate this at the present time t0 and write this in terms of Ωm and
ΩΛ, using (26.2) and (26.9),

q =
4π
3H2

0
ρm(t0)−

Λ

3H2
0

=
1
2
ρm(t0)
ρcrit

− ρΛ(t0)
ρcrit

= 1
2Ωm − ΩΛ.

Thus the dividing line between accelerating and non-accelerating is given
by the line ΩΛ = 1

2Ωm.

3. Big bang or no big bang
If Ωm +ΩΛ ⩽ 1, then E ⩾ 0. Since V(R̃) is negative, then, by (26.17), we
see that Ṙ cannot vanish. So there are no turning points and the solution
started from R = 0. Thus, all the open models start with a big bang. If
Ωm + ΩΛ > 1, then E < 0. Then whether Ṙ vanishes depends on the
size of Vmax (the maximum value of V(R̃)) relative to E. If Vmax < E (see
Fig. 26.1), then there are no points where Ṙ = 0 and, again, we have a big
bang solution. On the other hand, if Vmax > E, then there are two points
where Ṙ = 0 (see Fig. 26.1). There are then two possibilities. In the first,
the universe expands from R = 0, reaches a turning point where Ṙ = 0,
and then contracts to a ‘big crunch’ final singularity. In the second, the
universe starts out with a large value ofR, contracts until it reaches a point
where Ṙ = 0, and the re-expands again in a ‘bounce’. These two cases are
those of k = 1, panels (iiia) and (iiib), which are shown in Fig. 25.1 of
§25.3.
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Fig. 26.1 Plots of the effective potential V(R̃) and its relation to E: Vmax < E ‘on
the’ left, and Vmax > E ‘on the’ right.
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The dividing line between the two cases is when Vmax = E. Differenti-
ating (26.23) gives

V ′(R̃) = −1
2

(
−Ωm

R̃2
+ 2R̃ΩΛ

)
, (26.25)

so that this vanishes when R̃3 = Ωm/2ΩΛ. Substituting for this value of R̃
in (26.23) gives

Vmax = −3
4

(
2Ω2

mΩΛ

)1/3
, (26.26)

so that E = Vmax when

1− (Ωm + ΩΛ) = −3
2

(
2Ω2

mΩΛ

)1/3
. (26.27)

If we cube the above equation (and, for simplicity of notation, write
Ωm = x and ΩΛ = y), we get, after a bit of algebra,

4y3 + (12x− 12)y2 + (−15x2 − 24x+ 12)y+ (4x3 − 12x2 + 12x− 4) = 0.
(26.28)

Solving this for y as a function of x gives y = f(x), or ΩΛ = f(Ωm). In
general, the cubic has three real roots which give rise to three different
curves. We see from (26.27) that, when Ωm = 0, then ΩΛ = 1, so that
one of the curves goes through the point (0, 1). This is the curve marked
‘no big bang’ in the top left corner of Fig. 26.2. We also see from (26.27)
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Fig. 26.2 Friedmann–Robertson–Walker models in the ((Ωm, ΩΛ))-plane.
(Reproduced from Liddle (2004), with permission from the publisher.)
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that, when ΩΛ = 0, then Ωm = 1, so that there is another curve that goes
through the point (1, 0). This is the curvemarked ‘expands forever’ in Fig.
26.2. The third curve is unphysical as it does not correspond to positive
values of Ωm. It is possible to write down exact formulae giving ΩΛ as
a function of Ωm for the dividing line between the various cases (Carroll
2001) but they are not very illuminating, so we will content ourselves with
drawing a graph.

Using all this information, we plot in the (Ωm, ΩΛ)-plane the various
regions showing the properties of the various FRW models. This is one
of the most important diagrams in modern cosmology as it describes the
properties of the universe in terms of physically measurable quantities.
In §26.4, we will attempt to use observational information to locate our
universe on this diagram.

We end this section by showing how to use (26.17) to calculate the age
of the universe. The current value of the non-dimensional time t̃ is the
value at which R̃ is one, so that it is the solution of R̃(̃t0) = 1. Then, by
(26.8), we have t0 = t̃0/H0. But, from (26.17),

dR̃
d̃t

=
[
ΩrR̃−2 + ΩmR̃−1 + ΩΛR̃2 + (1− Ωr − Ωm − ΩΛ)

]1/2
.

This is just a separable equation so that

H0t0 = t̃0 =
∫ 1

0

[
ΩrR̃−2 + ΩmR̃−1 + ΩΛR̃2 + (1− Ωr − Ωm − ΩΛ)

]−1/2

dR̃.

(26.29)

In special cases, this can be integrated. For example, for a matter-
dominated flat universe (Ωr = 0 and Ωc = 0), then, for the case Ωm < 1,
the above gives (exercise)

H0t0 =
2
3

1√
1− Ωm

sinh−1
[√

1− Ωm√
Ωm

]
. (26.30)

In the next section, we will discuss how to determine the four parame-
tersH0, Ωr, Ωm, and ΩΛ for our universe. It will turn out that determining
these is not as straightforward as one would hope but, despite these dif-
ficulties, there is consensus about a standard model for the universe.

26.2 Measuring the Hubble constant
The Hubble parameter is defined by H(t) = Ṙ/R, and the Hubble con-
stant H0 = H(t0) is the present value of this. The Hubble constant has
dimensions of 1/time and the current estimate is usually written as

H0 = 72± 8 (Km/s)/Mpc, (26.31)
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Table 26.1 Distance scales in cosmology.

Distance to the Sun 5× 10−6 pc 1.5× 10−5 light years

Distance to the nearest star 1 pc 3 light years

Distance to the galactic centre 104 pc 3× 104 light years

Distance to the local group of
galaxies

5× 105 pc 1.5× 106 light years

Distance to the nearest large
cluster

2× 107 pc 6× 107 light years

Distance scale of largest struc-
tures

108 pc 3× 108 light years

Distance to the edge of the
visible universe

1.4× 1010 pc 5× 1010 light years

to indicate how the velocity of recession changes with distance. Here the
measure of distance is the megaparsec (Mpc) which is the common one
used by astronomers to measure intergalactic distances. A parsec (pc)
is defined as the distance away for which the width of the orbit of the
Earth round the Sun subtends one arcsecond. To give you an idea of scale,
one parsec is 3.08× 1016 m or about 3.26 light years, and is roughly the
distance to the nearest star. A megaparsec (Mpc) is of the order of the
distance to galaxies in our local group, while the distance to the nearest
large cluster is of the order of 20 Mpc. To give an indication of the vast
range of distance scales in cosmology, see Table 26.1, where the numbers
given are very rough orders of magnitude.

From (24.74) we have the relation z ' H0d, so that, in principle, all
that is needed is to measure the redshifts and distances of a large number
of galaxies in order to measure H0. For nearby galaxies, it is just possible
to use parallax to measure the distance. However, the problem is that, as
well as the overall velocity of galaxies due to the expansion of the universe,
galaxies also have individual motions relative to the expansion, which are
called ‘peculiar’ velocities by astronomers. For nearby stars and galaxies,
these effects can be comparatively large so that the best way to estimate
H0 is to measure the redshift for distant objects where the velocity due
to expansion dominates the peculiar velocities. However, it is precisely
these sorts of distant object for which it is hard to estimate d, since they
are too far away to use parallax to measure distance. The answer is to use
luminosity to measure distance (as explained in §24.11). However, to do
this, one needs to know the energy E radiated by the source. The usual
method to do this is to use what is known as a standard candle, which
is a particular type of object that is assumed to have the same proper-
ties in all parts of the universe (and at all times, since looking at distant
objects involves looking at them as they were in the past). Examples of
such standard candles are: main sequence stars, Cepheid variable stars,
and Type Ia supernovae. A further problem is that not only do we need
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to know that all these standard candles have the same brightness but we
also need to know its value. This might be hard as there may be no such
objects near to us. This is called the ‘calibration problem’ and is solved
by astronomers using a variety of different standard candles and ways
of measuring distance to form ‘cosmic distance ladders’ to enable them
to measure extragalactic distances. As a result of improvements in cal-
ibration, the estimates for the Hubble constant have come under better
control, resulting in the estimate (26.31). However, given the uncertainty
in H0, the value is often written in the astronomical literature as

H0 = 100h (km/s)/Mpc, (26.32)

where h is a measure of the uncertainty in H0 (not to be confused with
Planck’s constant), which has a current estimate of 0.72 ± 0.08 with a
one-sigma error.

26.3 The cosmic microwave background
radiation

The cosmic microwave background (CMB) provides important ev-
idence for an initial hot big bang, the isotropy of the universe (which
justifies the use of the Robertson-Walker metric) and also gives a way of
estimating the cosmological parameter Ωr. We therefore discuss it in more
detail below. However, to go from the current temperature of the CMB
as given by (26.33) to an estimation of Ωr involves some knowledge of re-
sults from physics. Indeed, much of the remainder of the chapter involves
using physics that goes beyond general relativity, and as such, it is outside
the mathematical scope of this book. However, to give a more up-to-date
account of cosmology, we really need these ideas. We have indicated this
by making most of the remainder of the material in this chapter Level 2.
Even if you don’t have the background, we suggest you press on and take
the results on trust so you should at least get the flavour of the ideas
involved. It is the general results, such as the scaling laws (26.36) and
(26.38), rather than the precise details that are the important things and
at least some familiarity with the ideas should help if you consult other
contemporary books or articles on cosmology.

The CMB was first predicted theoretically in 1948 by Alpher and Her-
man (a prediction later rediscovered by Zel’dovich and also by Dicke in
the 1960s). Some of Dicke’s colleagues at Princeton started constructing
a device to measure it in 1964 but, before it became operational, the CMB
was detected by Penzias and Wilson using an antenna constructed for ex-
periments involving microwave communication with satellites. Since that
time, the CMB has been measured with increasing precision by experi-
ments made in space such as WMAP in 2001 and the Plank satellite in
2018. These measurements show that the Earth is bathed in a uniform
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Fig. 26.3 The energy distribution of black-body radiation as given by equation
(26.35).

electromagnetic radiation which can be very accurately described as that
from a black-body with a temperature of

T0 = 2.725± 0.001 K. (26.33)

Furthermore, the CMB is remarkably isotropic with the temperature (af-
ter correcting for local sources) varying by less than one part in 10,000.
As discussed earlier, this provides extremely strong evidence for the large-
scale isotropy of the universe. As we said at the start of this section, in
order to go from (26.33) to a calculation of Ωr, we need some more
physics.

The energy of an individual photon of frequency ν, is given by E = hν,
where h is Planck’s constant. On the other hand, for the purposes of sta-
tistical physics, the kinetic energy of a typical particle at temperature T
is given by kBT where kB is Boltzmann’s constant. For black-body radi-
ation (i.e. radiation emitted from an opaque body in equilibrium with its
environment), the energy radiated is given by

ϵrad =
∫ ∞

ν=0
f(ν)dν, (26.34)

where f(ν)measures the energy density in the frequency range ν to ν+dν
and is given by

f(ν) =
8πh
c3

ν3

(exp (hν/kBT)− 1)
, (26.35)

with graph shown in Fig. 26.3.
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Finding the turning points by setting f′(ν) = 0, we see that the energy
distribution of a black-body spectrum peaks when

3(exp(hν/kBT− 1) = hν/kBT,

which corresponds to a frequency of νmax ' 2.7kBT/h and an energy of
Emax ' 2.7kBT. As one might expect from the graph, this is also close
to the mean energy, which is given by Emean ' 3kBT. This value will be
important in modelling the origin of the CMB. It follows from (26.34)
and (26.35) that (exercise)

ϵrad = αT4. (26.36)

One can actually perform the integral (26.34) and this gives

α =
π2k4B
15ℏ3c3

= 7.565× 10−16 Jm−3 K−4,

where J denotes joules. Inserting the value of the temperature of the CMB
(26.33) into this gives a value of

ϵrad(t0) = 4.17× 10−14 Jm−3.

Converting this to a mass density and writing it as a fraction of the critical
density we find

ΩCMB ' 5× 10−5.

Actually, there are other forms of radiation, such as massless neutrinos
and possibly gravitons, that should really be included in the calculation,
but these make no substantial difference to the calculations, which give
an upper bound of

Ωr ⪅ 10−4. (26.37)

On the other hand, as we will see below, a rough estimate of the matter
in the universe gives a value of Ωm, which is several orders of magni-
tude larger, which justifies ignoring radiation in all but the early universe.
There is another important result which follows from (26.36). Since we
know that

ρr ∝
1
R4 ,

we must have

T ∝ 1
R
. (26.38)

This means that the universe cools as it expands. Although the current
temperature is only around 3K in the early universe, it would have been
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considerably hotter. For example, when the universe was one-thousandth
of its present size, the temperature would be 3,000K. There is one further
point to consider. Since the temperature changes with time, it is not im-
mediately obvious from the fact that it is currently observed as black-body
radiation that it was black-body radiation in the past. Although the tem-
peratureT scales like 1/R, the frequency ν also scales in the sameway, due
to the redshift factor. Hence the ratio ν/T in the exponential term remains
unchanged while the ν3 multiplicative term just scales with 1/volume, as it
should. Thus, a black-body spectrum in the past does indeed correspond
to one in the present, and vice versa.

We are now in a position to discuss the origin of the CMB. We will
consider a simple model of the early universe consisting of matter in the
form of hydrogen and radiation in the form of photons. Although this
is a somewhat simplified model, it will explain the essential features of
the origin of the microwave background. Since T ∝ 1/R, if we go back
to a sufficiently early time, then the universe will be hot enough to fully
ionize hydrogen. Then atoms would not exist and the universe would be
a sea of photons, free electrons, and nuclei forming an ionized plasma. As
the universe expands and cools, the photons lose energy and eventually
drop below the ionization energy of around 14 eV. Over a fairly short
period of time, the universe moves from a situation where the photons
interact with the ionized plasma and is opaque, to one where the matter
is in the form of atoms so that there is little interaction with the photons
and the universe is transparent. This process is known as decoupling.
A crude estimate for the decoupling temperature is given by equating the
ionization energy for hydrogen E = 14 eV to the mean energy of black-
body radiation given by E = 3kBT. Since kB = 8.62 × 10−5 eVK−1, this
gives

T ' 14eV
3kB

' 50,000K. (26.39)

Actually this answer is out by a factor of about 10. There are two rea-
sons for this. First, the mean energy is not really what we need to look at,
since we see from Fig. 26.3 that, although most of the energy comes from
around 3kBT, there are a significant number of higher energy photons
coming from the tail of the distribution with higher energy. The second
issue is that there are many more photons than hydrogen atoms, so that
the relevant calculation involves finding the temperature at which there
is roughly one ionizing photon per hydrogen atom. A more sophisticated
calculation along these lines gives a temperature for decoupling Tdec of

Tdec = 3,000K. (26.40)

Comparing this with the present temperature of the CMB, we conclude
that decoupling happened when the universe was around one-thousandth
of its present size. At that point, it was in thermal equilibrium and, as a
result, had a black-body spectrum which, as we have seen, is preserved by
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the evolution of the universe. This explains why the CMB is described so
accurately with a black-body spectrum. The hot big bang therefore gives
a simple explanation for this fact, in contrast to the steady-state theory,
which predicted a different distribution with much more energy in the
higher frequencies.

Since decoupling happened when the universe was only one thou-
sandth of its present size, and the CMB photons have been travelling
uninterrupted since then, theymust have set off at a much earlier time and
have therefore travelled a considerable distance. Indeed, they must have
originated on a very large sphere centred on us called the last scattering
surface. It is important to notice that there is nothing special about this
surface. Its position just depends on the location in space and time of who-
ever observes it. It is simply the distance away from us in light years of the
time from decoupling to our present epoch. Calculations show that, for
us, its radius is of the order of 6,000 Mpc, but photons were emitted from
every point at the time of decoupling, and observers at different points in
space and different epochs will see different surfaces. The other point to
note is that, at the time of decoupling, the radiation had a frequency of
about 1.6×1014 Hz, but this has been reduced by a factor of about 1,000,
due to the expansion of the universe, giving the current value of 160GHz,
which is in the microwave frequency.

26.4 How heavy is the universe?
In attempting to estimate Ωm, the first thing that one might think of do-
ing is to estimate the total mass of the stars. As long as this is done over
a sufficiently large region, this should give a reasonable estimate of the
average density of stars in the universe. This has been done by a number
of researchers and they come up with a figure of the order

Ωstars ' 0.01.

However, this is clearly an underestimate for Ωm since we know that there
is matter that has not been included in this calculation. For example, it is
known that there is matter in the form of gas within clusters of galaxies,
since, in certain situations, this becomes hot and can be observed in the
X-ray regime.

An alternative approach to estimating Ωm comes from looking at the
early stages of the universe when the first atomic nuclei formed in a pro-
cess called nucleosynthesis. Since nuclear binding energies are much
larger than those for ionization of electrons, this took place much earlier
than decoupling. During the process of nucleosynthesis, the lightest ele-
ments in the periodic table, hydrogen, helium, and lithium, were formed.
It turns out that the relative abundances of these elements are sensitive
to the number density of baryons (i.e. ordinary particles such as protons
and neutrons, which make up the vast bulk of atoms) and that, for this
to match the observed abundances, the fraction of the critical density in
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baryons must be around

Ωbaryon ' 0.04.

This shows that there is a substantial amount of baryonic matter that is
not in visible stars and it turns out that this fits well with observations of
the motions of galaxy clusters.

Although the above calculation gives a good estimate for the amount
of baryonic matter in the universe, it does not preclude a higher value
for Ωm, due to the presence of non-baryonic matter. The first clue to the
existence of such matter came from looking at the Newtonian dynamics
of objects moving in the gravitational field of a galaxy and using this to
estimate the mass. LetM(r) be the mass of the galaxy within a distance r
from the centre. Then an object of massm orbiting the galaxy at a distance
r experiences a gravitational force towards the centre of GmM(r)/r2. On
the other hand, for a circular orbit, the centripetal acceleration for an ob-
ject moving with angular velocity ω is a = rω2 towards the centre. Using
F = ma gives

GM(r)
r2

= rω2. (26.41)

Using the fact that v = ωr this shows that the orbital velocity v at a distance
r from the centre of the galaxy is given by

v =
√
GM(r)/r. (26.42)

By plotting a ‘rotation curve’ of v against r, one can deduce how the
mass varies with r. At large distances, one would expect thatM(r) would
be more or less constant so that v ∝ 1/

√
r. However, the actual rota-

tion curves are fairly flat at large distances, showing that there must be
non-luminous matter surrounding the galaxy in a halo. When one com-
putes the total amount of matter in such halos, it is just about possible
that this could be baryonic matter, but a common alternative is to sug-
gest that it is some new type of matter that essentially only intersects with
baryonic matter through gravitational effects. This is an example of cold
darkmatter, that is to say, non-luminous, non-baryonic matter that only
interacts gravitationally with the other matter in the universe.

The best evidence for both cold dark matter and a non-zero cosmo-
logical constant come from two other pieces of observational evidence.
The first is the ‘redshift-magnitude calculation’ for Type Ia supernovae.
In Chapter 24, we obtained Hubble’s law. The key result was (24.72),

dL = r1R(t0),

which was used together with (24.68) to obtain dL ' z/H0, which is valid
for small values of r1. However, (24.68) is not exact but involves various
approximations. These are not important for comparatively nearby stars
and galaxies, but, for more distant objects, such as Type Ia supernovae,
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this becomes more important. Rather than work with the approximation,
we can use (26.13) to give an exact relationship between dL and z which
is valid for all values of r1. It follows from (24.62) that

r1 =


sinχ if k = +1,
χ if k = 0,
sinhχ if k = −1,

(26.43)

where

χ :=
∫ t0

t1

dt
R(t)

. (26.44)

Then, changing variables and using (26.13), we have

χ =
∫ R(t0)

R(t1)

dR

Ṙ(r)R

=
1

R(t0)H0

∫ 1

R(t1)/R(t0)

dR̃

R̃(dR̃/d̃t)

=
1

R(t0)H0

∫ 1

(1+z)−1

dR̃

R̃
[
Ωc − 2V(R̃)

]1/2 ,
where V(R̃) is given by (26.23), and we have used (24.66) to write
R(t1)/R(t0) in terms of z in the last line. If we now define

g(z) :=
1
H0

∫ 1

(1+z)−1

dR̃

R̃
[
Ωc − 2V(R̃)

]1/2 , (26.45)

then

dL(z) =


R(t0) sin (g(z)/R(t0)) if k = +1,
g(z) if k = 0,
R(t0) sinh (g(z)/R(t0)) if k = −1.

(26.46)

Furthermore, for k 6= 0, by taking the modulus of (26.14), we have

R(t0) =
1

H0|Ωc|1/2
, where Ωc = 1− Ωm − ΩΛ.

This gives dL as a function of z parameterized by Ωm and ΩΛ. The re-
sulting redshift-magnitude relation that one obtains can be plotted on the
(Ωm, ΩΛ)-plane and compared with observation.

The second piece of evidence comes from the CMB anisotropies. The
CMB is remarkably isotropic but the very small angular variations in the
temperature contain considerable information. The CMB anisotropies
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Fig. 26.4 Multipole expansion of the correlation function for the cosmic mi-
crowave background, showing peaks corresponding to dark energy, baryonic
matter, and dark matter, respectively. (Reproduced from Ade et al. (2014), with
permission from Astronomy and Astrophysics.)

that we measure today reflect the temperature fluctuations in the last scat-
tering surface. How we see them depends not only on their physical size
at the time of last scattering, but also on the geometry of the universe
through which the photons have reached us. As a result, we can poten-
tially use information from this to determine the cosmological parameters
of the universe. The angular variation of temperature is encoded in the
correlation function C(θ) between the temperatures at a fixed angle θ
apart, which can then be broken down into a multipole expansion (which
is a three-dimensional generalization of a Fourier series). The results are
shown in Fig. 26.4.

The location of the various peaks is determined by the amount of bary-
onic matter, dark matter, and dark energy and can, again, be used to plot
the location of our universe in the (Ωm, Ωλ)-plane.

Neither the redshift-magnitude information nor the CMB information
individually gives a very precise location of our universe in the (Ωm, Ωλ)-
plane. Instead, they both give long thin regions for the location of our
universe (see Fig. 26.5). Fortunately, these strips intersect more or less at
right angles to give a fairly precise value, as shown in Fig. 26.5.

At the time of writing, the above observations give Ωm ' 0.3 and
ΩΛ ' 0.7, which are also consistent with other observations such as the
formation of structure and bulk motions of galaxies (which both seem to
require Ωm > 0.2). Taken together with the negligible value of Ωr, these
give Ωc ' 0, which corresponds to a spatially flat universe. This is called
the ΛCDM model, where Λ is the cosmological constant, and CDM
stands for cold dark matter. At the time of writing, this is the ‘standard
cosmological model’.
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Fig. 26.5 Observational constraints from luminosity red-shift data and data
from the cosmic microwave background, plotted in the (Ωm, ΩΛ)-plane. (Re-
produced from Liddle (2004), with permission from the publisher.)

26.5 The ΛCDM model of cosmology
In the previous section, we showed that the cosmological evidence favours
the ΛCDM model, which is a spatially flat model (k = 0) in which we
ignore radiation (except in the early universe) and we take Ωm + ΩΛ = 1.
The current best estimate is that Ωm ' 0.3 and ΩΛ ' 0.7. The virtue of
this model is that

• it fits the observed expansion of the universe,

• it fits the existence and structure of the CMB,

• it is consistent with the large-scale structure in the distribution of
galaxies,

• it is consistent with the observed abundances of hydrogen (including
deuterium), helium, and lithium.

Furthermore, it is one of the models for which we have an exact solu-
tion. This is given by (25.5), which we can write in the alternative form
(exercise) as
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R(t) = (Ωm/ΩΛ)
1/3 sinh2/3(t/tΛ), (26.47)

where tΛ := 2/(3H0
√
ΩΛ). This solution is valid once we reach an era

(slightly past decoupling) where the photons no longer interact with the
matter. According to the estimates we derive in the next section, this oc-
curs at about t = 1013 second (i.e about 106 years). The picture of the
evolution is shown in Fig. 25.1(i) for the case where k = 0, Λ > 0. In the
early stages, this universe initially expands at a rate of t2/3; the expansion
then slows down, then starts to speed up again, and finally tends to the de
Sitter solution at late times, expanding like eαt, where α = H0

√
ΩΛ. Tak-

ing Ωm = 0.7 in (26.30), we get an age of the universe for about fourteen
billion years, which is compatible with some of the lower estimates com-
ing from geological and astrophysical sources. Without the presence of a
cosmological constant, the age of the universe would be uncomfortably
close to these lower bounds.

However, although this result fits the cosmological data very well, it
raises a number of important questions. First, the value of Ωc is close to
zero. It seems unlikely that this has happened by chance. There are a num-
ber of theories to explain this, the most commonly accepted (although not
the only one) being cosmic inflation, which we discuss in §26.7. Second,
as we have seen, the baryonic matter has a value of at most Ωbaryon ' 0.04,
so the remainder of Ωm must be non-baryonic. Thus, there is nearly ten
times as much dark matter in the universe as there is conventional matter.
This raises the question, What is the nature of the dark matter? Further-
more, ΩΛ ' 0.7, so, that 70% of the content of the universe is in the even
more mysterious form of dark energy. So, despite its apparently good fit
with the data, this model relies on the theory of inflation to explain spatial
flatness, and two of its main ingredients, dark matter and dark energy, are
poorly understood. We describe briefly below what these might be.

The obvious place to start comes from considering known astrophys-
ical objects to see if they could be the source of dark matter. There are
two possible candidates here. The first is black holes. Although these do
not count as being baryonic, they must have been formed from either
baryons or dark matter crossing the event horizon. For this reason, the
upper bound from nucleosynthesis also applies to black holes formed
through, for example, stellar collapse. Thus, if black holes are to pro-
vide the source of the cold dark matter, they must have existed prior to
nucleosynthesis. A significant number of ‘primordial black holes’ could
potentially give the answer, but it is not clear how many of these should
exist and these do not look a promising source for providing all the re-
quired cold dark matter. We have already discussed halos in conjunction
with rotation curves. This provides a second possible source of cold dark
matter, in the form of massive compact halo objects (MACHOs) – large,
condensed objects such as neutron stars, white dwarfs, very faint stars, or
non-luminous objects like planets which are surrounded by non-baryonic
halos of some sort. The search for these objects consists of using grav-
itational lensing to detect the effects they have on background galaxies.
As a result, it is thought that MACHOs have been detected in the Large
Magellanic Cloud but most experts believe that these searches also rule
out MACHOs as a viable candidate for providing all the required cold
dark matter.
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The other potential source of dark matter comes from particle physics.
One possibility is that neutrinos, rather than being massless, have a small
mass. Since this would be in the form of radiation, this is described as ‘hot
dark matter’ but would still be non-baryonic. However, there are experi-
mental bounds on neutrino masses which make this an unlikely source of
the required darkmatter. Another possibility coming fromparticle physics
are ‘axions’, which are a conjectured very light particle with a specific
type of self-interaction that makes them a suitable candidate for cold dark
matter. Axions have the theoretical advantage that their existence solves
certain other problems in quantum chromodynamics, but axion particles
have only been theorized and never detected. The theory of supersym-
metry provides another potential source of dark matter. These are often
referred to as WIMPs – weakly interacting massive particles. The search
for WIMPs involves attempts at direct detection by highly sensitive detec-
tors, as well as attempts at production of WIMPs by particle accelerators.
Despite some claims, so far there have been no conclusive detections of
WIMPS. Of course, since there has been no definitive observation of dark
matter, it may be that none of the above suggestions are correct and that
something else entirely which has not yet been though of is required! For
a review of the current state of dark matter, see the article by Amendola
et al. (2018).

There are two distinct approaches to ‘dark energy’. The first is simply
to regard it as the cosmological constant Λ in Einstein’s equations, which
does not need an explanation any more (or any less) than the value of G.
The second is to put it on the right-hand side of Einstein’s equations and
think of Λgab as an additional energy momentum term. As we have seen,
this means that it corresponds to a perfect fluid with equation of state
p = −ρ. This is the form of matter that one would get from the quantum
mechanical zero-point energy of the vacuum. Unfortunately, the standard
model gives a figure that is more than one hundred orders of magnitude
too large. However, it may be that some supersymmetric theory (together
with some symmetry-breaking mechanism) or string theory will produce
a vacuum expectation of the right magnitude. Another possibility is that
the dark energy is not constant but is dynamic and related to a scalar field ϕ
driven by some potential V(ϕ), for example. Such theories are sometimes
called ‘quintessence’. Other more drastic explanations for the cosmolog-
ical constant involve modified theories of gravity. We will discuss this in
more detail when we look at the theory of inflation in §26.7. It is also
important to note that some cosmologists question the observational evi-
dence which results in the need for a cosmological constant. For example,
it may be that the assumption that the luminosity of Type Ia supernovae
does not vary with age is false. In that case, the luminosity-redshift results
used in part to determine ΩΛ would no longer be valid. A different ob-
jection is the use of the Robertson-Walker metric to describe the universe
(Ellis 2011). Although we know that, on the large-scale the matter is ho-
mogeneous and isotropic, this is not true until one goes to extragalactic
scales. Since Einstein’s equations are non-linear, it is not at all obvious
that the ‘average solution’ to Einstein’s equations is the same as solving
Einstein’s equations for an averaged source.
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26.6 The early Universe
In the previous section, we looked at the ΛCDM model of cosmol-
ogy, in which we neglected the radiation, since Ωr was so small. How-
ever, as we have previously noted ρr ∝ 1/R4 while ρm ∝ 1/R3, so
that

ρr(t)
ρr(t0)

=
R4(t0)
R4(t)

, and
ρm(t)
ρm(t0)

=
R3(t0)
R3(t)

. (26.48)

Thus,

ρr(t)
ρm(t)

=
ρr(t0)
ρm(t0)

R(t0)
R(t)

=
1

R̃

(
Ωr

Ωm

)
. (26.49)

Although the precise number is not important for the general argument,
we provide specific numbers in this section and take Ωr = 7 × 10−5 and
Ωm = 0.3 so that the current ratio is Ωr/Ωm ' 2 × 10−4. It therefore
follows from (26.49) that

ρm(t) = ρr(t) when R̃(t) = R̃eq ' 2× 10−4. (26.50)

This is known as the time of matter–radiation equality. At earlier
times, the universe is radiation dominated and afterwards it is matter dom-
inated. Note that this occurs well before the time of decoupling, which, as
we saw earlier, takes place at R̃ = 10−3. Rather than locate these epochs in
terms of size R̃, it is helpful to give them in terms of the time. In order to
locate the time of decoupling, we use the fact that the temperature scales
as 1/R̃ while, in the matter dominated regime, R ∼ t2/3, which applies
from the time of matter–radiation equality onwards. We could, of course,
use the more precise formula (26.29) but, since many of the parameters
have observational uncertainties, we will content ourselves in this section
with just giving order-of-magnitude estimates. Together, these two scaling
laws give

T(t)
T(t0)

=
R(t0)
R(t)

=
( t0
t

)2/3
. (26.51)

Since, for decoupling, the ratio on the left is approximately 1,000, and the
age of the universe is about 4 × 1017 seconds, substituting in the above
gives the age at decoupling as

tdec ' ×1013 seconds ' 350,000 years. (26.52)

We can continue to use (26.51) right down to matter radiation equality. In
this case, we have seen that the ratio on the left is approximately 5× 103,
so that substituting in the above gives
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teq ' 1012 seconds ' 35,000 years. (26.53)

We also see from (26.51) that Teq ' 104T0 ' 30,000K.
Earlier than teq (and hence at temperatures greater than Teq), the uni-

verse is radiation dominated so thatR ∝ t1/2, although, as we saw in §26.1,
we still have T ∝ 1/R. As a result, (26.51) becomes

T(t)
Teq

=
( teq
t

)1/2
, (26.54)

and, substituting in our values of Teq and teq, we obtain the relation

T(t) ' 1.5× 1010
√
t

, (26.55)

where the temperature T is measured in kelvin and the time t in seconds.
Thus, when the universe is about 1 second old, it has a temperature of
about 1.5 × 1010 K. If we use E = kBT, this corresponds to a character-
istic energy of around 1 MeV, which is comparable to nuclear binding
energies. So, earlier than one second, the universe would have been a sea
of interacting protons, neutrons and electrons. Of course, at even earlier
times, and therefore even higher energy scales, the protons and electrons
would have dissociated into their constituent quarks. This is called the
quark–hadron phase transition and is supposed to take place at energies
of a few hundredMeV corresponding to temperatures of around 2×1012.
This takes us back to a time of around 10−4 seconds. We summarize the
position in Table 26.2. This is also shown graphically in Fig. 26.6.

Table 26.2 Stages in the evolution of the universe (taking Ωm = 0.3 and
H0 = 72 (km/s)/Mpc).

Time Type of matter

10−10 s < t < 10−4 s Free quarks, neutrinos, photons, and electrons.
Everything strongly interacting.

10−4 s < t < 1 s Free electrons, protons, neutrons, photons, and neutrinos.
Quarks no longer free but otherwise strongly interacting.

1 s < t < 1012 s Free electrons, atomic nuclei, photons, and neutrinos.
Radiation dominated.

1012 s < t < 1013 s Free electrons, atomic nuclei, photons, and neutrinos.
Matter dominated.

1013 s < t < t0 Atoms have formed and photons no longer interacting.
Universe is transparent.

t0 = 4× 1017 s Current age of the universe.
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Fig. 26.6 The evolution of the Universe, from the big bang to the present.

26.7 Inflationary cosmology
Despite the success of the ΛCDM model of cosmology, there are various
features it fails to explain. The first issue is what is called the flatness
problem. The values of the parameters Ωm and ΩΛ are such that Ωm

+ΩΛ ' 1. So, currently, the total amount of matter in the universe is close
to the critical density. If it is exactly at the critical density, then k = 0 and
this is preserved by the Friedmann equation. However, what happens if
it is only close to the critical density – which is all that we can conclude
from our measurements? We know from (26.6) that

H2 =
8π
3
ρtotal −

k
R2 , (26.56)

where

ρtotal(t) = ρr(t) + ρm(t) + ρΛ(t).
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If, following (26.2), we define the critical density at time t to be
ρcrit(t) = 3H2(t)/8π, then we may write the above as

∣∣∣∣1− ρtotal
ρcrit(t)

∣∣∣∣ = |k|
H2(t)R2 . (26.57)

Now, in the matter-dominated period, R ∼ t2/3 and H(t) ∼ t−1, so that
H2(t)R2 ∼ t−2/3 and hence

|1− ρtotal(t)/ρcrit(t)| ∝ t2/3. (26.58)

Current measurements (at t0 ' 4×1017 seconds) tell us that, with a very
high degree of confidence, we are within 30% of the critical density. Then
(26.58) shows that, at the time of matter-radiation equality (at teq = 1012

seconds), we must have had |1−ρtotal(t)/ρcrit(t)| < 10−5, which is incred-
ibly close to the critical density. Going back to the quark–hadron phase
transition at 10−4 second shows that the universe must have been many
further orders of magnitude closer to the critical density. The ‘flatness
problem’ is to explain why the universe is flat or so finely tuned that it is
extremely close to flat.

The second problem is to explain why the universe is so isotropic
(and hence homogeneous). The usual mechanism to explain why some-
thing is homogeneous is the fact that the constituent parts have had a
period of interaction in which the various components mix, reach some
kind of equilibrium, and become fairly uniformly distributed. Think, for
example, of dropping some ink into a glass of water which, over time,
becomes uniformly distributed in the water to produce something ho-
mogeneous. The problem with this explanation for the homogeneity of
the universe is the existence of particle horizons similar to those dis-
cussed in §25.7. We calculate the size of the particle horizon for a spatially
flat Robertson-Walker metric. Consider a photon moving on a radial
trajectory; then

ds2 = dθ = dϕ = 0,

and so, from (24.38),

ds2 = dt2 − R2(t)dr2 = 0.

If it is emitted at time t1, then, at time t2, it will have travelled a coordinate
distance

∫ r2

r1
dr =

∫ t2

t1

dt
R(t)

. (26.59)
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Fig. 26.7 Picture of the horizon problem.

Using (24.38), we have dσ = R(t2)dr at time t2, so this corresponds to a
proper distance

∆r = R(t2)
∫ t2

t1

dt
R(t)

. (26.60)

If we take t1 = 0 and t2 = t, this gives the maximum proper distance a
photon could have travelled since the big bang. We call this the radius of
the particle horizon, since this is the largest proper distance any particle
could have travelled in that time. If one now assumes a radiation domi-
nated universe and takes R(t) ∝ t1/2, i.e. R(t) = At1/2 for some constant
A, then this gives

∆r(t) = At1/2
∫ t

u=0

du
Au1/2

= t1/2
[
2u1/2

]t
0
= 2t. (26.61)

Now consider a pair of photons from the CMB that have reached us from
opposite directions. They originated from points P and Q on opposite
sides of the last scattering surface S. However, if one looks at the causal
past of P and the causal past of Q all the way back to the big bang, then
these do not intersect. This means that there are no events that can influ-
ence both P and Q. This is lack of causal contact is called the horizon
problem (see Fig. 26.7). Indeed, one can show that CMB photons need
to have an angular separation of less then around 2◦ for them to have orig-
inated from points on the last scattering surface that had causal contact
(i.e their past light cones intersected).

Cosmic inflation provides a mechanism to get round both the flatness
and horizon problems. Suppose that, rather than the R ∼ t1/2 expansion
in the early universe of the FRW radiation dominated solution, one had
instead a period of exponential expansion so that R(t) ∝ eH̃t where H̃
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is inflated to be larger than our observable universe.

is a constant. Then (26.60) now gives

∆r(t) = eH̃t
∫ t

u=0
e−H̃udu = eH̃t

[
−eH̃u/H̃

]t
0
=
eH̃t − 1

H̃
, (26.62)

so that the horizon now grows exponentially with t rather than linearly
as it does in a radiation dominated universe. This enables a small patch
of the universe, small enough to become homogeneous through thermal-
ization, to grow exponentially in an inflationary phase and expand to a
size greater than our observable universe (see Fig. 26.8). Inflation also
stretches out the spatial size of any irregularities and dilutes them. To-
gether, these mechanisms can explain the high degree of isotropy that we
observe in the universe today.

We now return to the flatness problem. Since we now haveR(t) = AeH̃t,
then Ṙ = H̃R so that H(t) = H̃ (i.e. H̃ is just the Hubble constant for an
inflationary universe). Substituting into (26.57) gives

|1− ρtotal(t)/ρcrit(t)| ∝ |k|e−2H̃t. (26.63)

The right-hand side rapidly tends to zero as t gets larger, which means
that ρtotal quickly becomes extremely close to the critical density. This
solves the flatness problem. Thus, inflation provides a good explanation
as to why the universe is so homogeneous and isotropic and so close to
the borderline between being open and closed. We now turn to a possi-
ble source for inflation coming from a scalar field sometimes called the
‘inflaton’.

A possible mechanism for producing inflation is provided by the
energy-momentum tensor of a scalar field ϕmoving in a suitable potential
V(ϕ). The action for such a field is

I = −
∫
Ω

[
1
2g

ab∇aϕ∇bϕ− V(ϕ)
]√

−gd4x. (26.64)
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So the Lagrangian density is

L = (−g)1/2
[
− 1

2g
ab∇aϕ∇bϕ + V(ϕ)

]
. (26.65)

The field equations are obtained from δL/δϕ = 0, which gives (exercise)

□ϕ + V ′(ϕ) = 0.

For a spatially homogeneous field ϕ(t) in a Robertson-Walker metric, this
is (exercise)

ϕ̈ + 3H(t)ϕ̇ + V ′(ϕ) = 0. (26.66)

The energy-momentum tensor is obtained using

Tab = − 2√
−g

δL
δgab

, (26.67)

which gives (exercise)

Tab = ∇aϕ∇bϕ + gab
[
− 1

2g
cd∇cϕ∇dϕ + V(ϕ)

]
. (26.68)

For a Robertson-Walker metric, this becomes

Tab = δ0aδ
0
b ϕ̇

2 + gab
[
− 1

2 ϕ̇
2 + V(ϕ)

]
. (26.69)

If we think of (26.66) as describing the motion of a particle moving in
a potential V, then the Hϕ̇ term is just a damping term. So, if there is a
period where H is sufficiently large compared to V ′(ϕ) (as for example
in the ‘slow-roll’ potential shown in Fig. 26.9), then the motion of the
particle will be damped, ϕ̇ will be very small, and ϕ will be approximately
constant. As a result we will get

Tab ' V(ϕ*)gab, (26.70)

Slow-roll
inflation

End of inflation
® reheating

V (φ)

φ

Fig. 26.9 Potential energy V(ϕ) for a slowly rolling scalar field.
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where ϕ* is the approximately constant value of ϕ. Provided that V(ϕ*)
is sufficiently large that (26.70) dominates the other contributions to the
energy-momentum at that epoch, then, as we saw when looking at the de
Sitter solution, we get inflation with

R(t) ∝ eH̃t, where H̃ = (V(ϕ*)/3)1/2. (26.71)

However, the potential does not actually remain constant but slowly rolls
on to the steeper part of the potential, where V(ϕ) decays to something
small and the universe returns to a radiation-dominated phase. The slow-
roll picture of inflation we described here is not the only model available,
but is simply illustrative of a potential mechanism. Inflation remains an
active area of research and we will not go into further details of other in-
flationary models here, except to say that the mechanism to provide an
inflationary phase takes place at very high energies (and hence temper-
atures) corresponding to times as early as 10−34 seconds. See the article
by Deffayet et al. (2015) for a review of the current situation.

Although inflation was designed to explain the flatness and horizon
problems, it turns out that it also provides a potential explanation of the
anisotropies in the CMB and the large-scale structure of the galaxies we
see today. Without going into details (which are beyond the scope of this
book), the idea is that quantum fluctuations δϕ in the ‘inflaton’ field ϕ
lead to fluctuations in the density

δρ = V(ϕ* + δϕ)− V(ϕ*) ' V′(ϕ*)δϕ, (26.72)

which are inflated to provide the anisotropies in the CMB. This inflation
mechanism also applies to quantum fluctuations of other fields and leads
to predictions of the form of the power spectrum as shown in Fig. 26.4.
This provides a fairly direct confirmation of the inflationary mechanism
as well as putting constraints on the potential V.

26.8 The anthropic principle
The idea of cosmic inflation was developed in part to explain why the
universe was so homogeneous and isotropic (i.e. why the cosmological
principle is true). An alternative answer that is sometimes invoked is that,
if we are to exist, then it could hardly be otherwise. Put another way, a
non-smooth universe would not have allowed us humans to have devel-
oped. This is an example of the anthropic principle, which, in simple
terms, states the following.

The anthropic principle: we see the universe the way it is because
we exist.

The principle comes in two versions, the weak and the strong, which we
consider in turn.
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The weak anthropic principle: the conditions for the development
of life are only met in certain regions of the universe.

This form of the principle can be used to ‘explain’ why the big bang oc-
curred some ten thousand million years ago; namely, because it takes that
long for sentient beings to emerge. More precisely, this is the time needed
for all the intervening processes, such as the condensation of the galaxies
from the primeval matter, the subsequent formation of the heavy elements
(in supernovae), the eventual birth of our own galaxy, the formation of
the solar system, the cooling of Earth, and the slow process of evolution
up to the present day.

The earliest epochs of the universe really involve quantum ideas, and
this leads to the area of quantumcosmology. As is well known, quantum
theory involves deep problems of interpretation – see the book by Penrose
(1989) for an intriguing viewpoint on this issue and the book by Hawking
and Penrose (2015) for a discussion on the nature of a quantum theory
of gravity. One interpretation leads to the ‘many worlds’ of Everett and
Wheeler, in which the universe is bifurcating from one instant to the next
into many (indeed infinite) disjoint new universes (Fig. 26.10). Or again,
the universe may consist of many different regions, each with its own
initial configuration and perhaps with its own set of laws of science. If
we consider these disjoint regions as different universes, then the strong
version of the anthropic principle can be stated as follows.

Fig. 26.10 The ‘many-worlds’ interpre-
tation of Everett and Wheeler.

The strong anthropic principle: the conditions for the develop-
ment of life are only met in a few universes.

The laws of science involve a number of fundamental constants (such
as the charge on the electron) which, at present, cannot be predicted
from theoretical considerations, but can only be found by observation.
Moreover, their actual values seem to be very finely adjusted. The slight-
est alteration of these values would lead to very different universes, most
of which could not support life. One can interpret them in two ways: as
evidence of a divine purpose or Creator (the argument from design in
theology) and with it the choice of a particular set of laws of science, or
as support for the strong anthropic principle. Although it is not clear the
extent to which Einstein believed in a personal God, it is worth remarking
that Einstein believed profoundly in the argument of a divine purpose.
He considered that God could not have created the universe in any other
way.

There are a number of objections to the strong formulation of the prin-
ciple. If all these universes are really separate from us, in what sense can
they be said to exist? If what happens in another universe has no ob-
servable consequences on ours then, on simplicity grounds alone, we can
ignore them. If, on the other hand, they are different but accessible regions
of our universe, then they are just the result of different initial configu-
rations and so the strong anthropic principle would reduce to the weak
one. Another objection is that the principle runs counter to the way that
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ideas have developed throughout the history of science, which has con-
tinuously demoted the special importance of humankind in the scheme of
things. For example, the cosmological principle leads us to believe that we
live in a typical part of the universe, attached to a typical star, in a typical
galaxy, belonging to a typical cluster, and so on. Yet the strong form of
the anthropic principle turns this on its head and says that the whole giant
structure exists simply for our sake.

The attempt to find a model of the universe in which many different
initial configurations could have evolved into something like the present
universe led to the idea of inflation. So inflation, together with the weak
form of the anthropic principle, may be used to explain why the universe
looks the way it does now.

The anthropic principle can also be used to throw light on whether the
three arrows of time agree or not. These are the thermodynamic arrow
(as expressed in the idea that disorder or entropy is always increasing),
cosmological time (world time), and psychological time (as perceived by
humans). For further development of these ideas, see the book by Hawk-
ing (1988) (on which this account is based) and, for a more technical
account, see the book by Barrow and Tippler (1986). It seems appro-
priate to end with a reference to Hawking, given that one of the goals of
the book is to make contact with Hawking and Ellis (1973). It also seems
appropriate to finish with an amusing representation of the development
of life subsequent to the big bang in the universe (the big U) by Wheeler
(Fig. 26.11), because this is reminiscent of the surrealistic pictures by
Hugh Lieber in Lillian Lieber’s book – which is where we came in.

Fig. 26.11 Wheeler’s ‘big U’ from the
big bang (upper right) to the develop-
ment of the human eye.

26.9 Final questions
We have seen in this chapter that inflation, together with the ΛCDM
model of cosmology, provides a remarkably good model of the universe
that fits the current high-precision measurements of the cosmological
parameters. We have not discussed the formation of structure, but the
basic mechanism is that the inhomogeneities in the density lead to cluster-
ing through the mechanism of gravitational instabilities. This occurs
where a region has a slightly higher density, so that matter is attracted
to it, thus increasing the density, and where another region has a slightly
lower density, in which case matter moves away from it, thus lowering
the density. We will not go into further detail except to say that computer
simulations are now able to reproduce the observed clustering of galaxies
in our universe, but that dark matter is an essential ingredient to achieve
this. However, despite all this, success in matching the observations the
model brings with it a number of unanswered questions concerning the
underlying physics. Starting with inflation, there are the questionsWhat is
the scalar field ϕ? and, more importantly, Why should the potential V(ϕ)
have the correct properties to produce inflation? In one sense, we have just
replaced the questions about homogeneity and flatness by ones about the
physics of inflation. For the ΛCDM model, there are also the fundamen-
tal unanswered questions, What is the origin of dark matter? and Why
do we have a cosmological constant? or, alternatively, What is the origin
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of dark energy? Here again, we seem to have answered the cosmological
question but posed difficult questions about fundamental physics in the
process. Perhaps it will take new ideas from areas such as string theory,
alternatives to inflation such as Penrose’s ideas about conformal cyclic
cosmology, or maybe new observations from ultra-high energy particle
accelerators, or advanced gravitational detectors in space which observe
gravitational waves from both the early universe, black holes and neutron
stars to answer these questions.

The ΛCDM model starts with a big bang singularity, has a period of
inflation, and then expands as a flat Friedmann-Robertson-Walker model
with a positive cosmological constant – first in a radiation dominated
phase, then in a matter dominated phase, and finally in a Λ dominated
phase, where it slowly expands exponentially to a de Sitter solution. In
studying these cosmological solutions, we have seen the importance of
horizons and singularities: both phenomena we have met before in our
considerations of classical black holes in Part D. The big bang singularity
is a very drastic one, in which both the density and temperature increase
without bound as R → 0 and, indeed, space-time itself becomes singu-
lar at R = 0, where it is squeezed out of existence. However, the results
have been deduced from the assumptions of exact spatial homogeneity
and spherical symmetry. Although these assumptions may be reasonable
on the large scale, they certainly do not hold locally. One might expect
that, if one traced the evolution of the universe back in time, the local ir-
regularities would grow and could prevent the occurrence of a singularity
– causing the universe to ‘bounce’ instead. Yet, once again, the singularity
theorems of Hawking and Penrose reveal that the occurrence of singular-
ities is generic and, as a consequence, there is good evidence to believe
that the physical universe was singular in the past.

There is another difference about the initial singularity of cosmology,
compared with the black hole singularities, in that the big bang singular-
ity is, in principle, observable. And it is observation that is the linchpin
of cosmology. The past decades have brought about huge advances in
determining the cosmological parameters. The ability to make measure-
ments from space has brought significant advances in X-ray astronomy,
for example. With the detection of gravitational waves, we are now in the
era of multi-messenger astronomy, in which signals from gravitational
waves are combined with those in the radio, optical, and X-ray regimes to
survey the universe. The planned launch of LISA to detect gravitational
waves from space will provide a new window on the universe, enabling us
to detect gravitational signals going back to the very early universe, and
allowing us to put our cosmological theories more rigorously to the test.

It is a natural consequence of our inquisitive nature that we should wish
to understand our own origins and that of the universe we inhabit. The hot
big bang theory would appear to be a great stride forward in our search for
this understanding. Whether or not the universe had this singular origin
is perhaps the central question of cosmology. The mathematical basis of
this question and the attempt to answer it is the principal problem dealt
with in the book of Hawking and Ellis (1973). In turn, it has been one
of the main objectives in writing this book to make their book, or at least
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parts of it, more accessible and the hope is that some readers may make
this their next port of call.

And so, we end our considerations of cosmology and, with it, we end
the book. There are many topics in general relativity which have not been
mentioned, and even those that we havemet have been covered in a largely
introductory manner. None the less, we have acquainted ourselves with
the essential components of the precursor to the general theory, namely,
special relativity, we have looked carefully at the principles behind general
relativity, and we have investigated both the formulation of the theory and
its principal consequences. In particular, we have reached the three end
points we had promised ourselves, namely, classical black holes, gravita-
tional waves, and cosmology. In the process, it is hoped that some of the
richness and beauty of the theory and some of its absorbing and bizarre
consequences have been revealed. At the start of this book, we set out on
a long journey of discovery. It would seem that we have come a long way,
but the journey is really only just begun.

Exercises

26.1 (§26.1) Show that if Λ = 0 then

H2 =
8π
3
ρ− k

R2 .

[Hint: Use (24.52)]

26.2 (§26.1) Use the estimate 1/H0 ' 1010 years to obtain an estimate
for ρcrit in Kg/m3. [Hint: you need to convert years to seconds, put back
the factor ofG in (26.2), and use the valueG ' 6.7×10−11 m3 kg−1 s−2.]

26.3 (§26.1) Show that, if one takes Tab = Λgab, then this corresponds to
a fluid with constant density ρΛ = Λ/8π, and equation of state p = −ρ.
[Hint use (24.52) and (24.53).]

26.4 (§26.1) Show that (24.52) may be written as

Ṙ2

R2 =
8π
3

(ρr + ρm + ρΛ)−
k
R2 .

which has non-dimensional form(
dR̃
d̃t

)2

=
(

Ωm

R̃
+

Ωr

R̃2
+ ΩΛR̃2

)
− k
H2

0R
2
0
.

26.5 (§26.1) Show, by evaluating the non-dimensional Friedmann
equation at t = t0, that

Ωr + Ωm + ΩΛ + Ωc = 1.
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26.6 (§26.1) Use the non-dimensional scalings of R and t and (26.14) to
show that, as long as Ωc is not exactly zero then

R(t) =
1

H0|1− (Ωr + Ωm + ΩΛ)|1/2
R̃(̃t/H0).

26.7 (§26.3) Show that, for a spatially flat, matter dominated, open
universe, the age is given by (26.30).

26.8 (§26.3) By making the substitution y = hν/kBT in (26.34), show
that

ϵrad = αT4,

where

α =
8πk4B
h3c3

∫ ∞

0

y3dy
ey − 1

.

26.9 (§26.3) In non-geometrical units, the above equation is

ρrc2 = αT4,

and the Friedmann equation for a flat, radiation dominated universe is

H2(t) =
8πG
3

ρr.

CalculateH(t) for a radiation-dominated universe, using the approximate
solution R(t) ∝ t1/2, and hence use the above equations to compute the
temperature of the universe when it was one second old. [Hint: you will
need to use the numerical values of α, G, and c.]

26.10 (§26.5) Show that the k = 0, Λ > 0 solution given by (25.5) can be
written in the alternative form

R(t) = (Ωm/ΩΛ)
1/3 sinh2/3(t/tΛ),

where tΛ := 2/(3H0
√
ΩΛ).

Hint: Verify that the above equation satisfies the Friedmann equation

Ṙ2

R2 = H2
0

(
Ωm

R3 + ΩΛ

)
.

26.11 (§26.6) Estimate ρr/ρm at the time of decoupling.

26.12 (§26.7)
(i) Show that, for a scalar field with Lagrangian densityL given by (26.65)
the field equations are □ϕ + V ′(ϕ) = 0.
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(ii) Show, for a spatially homogeneous field ϕ(t) in a Robertson-Walker
metric, this gives

ϕ̈ + 3H(t)ϕ̇ + V ′(ϕ) = 0.

(iii) Show that, for a spatially homogeneous scalar field in a Robertson-
Walker metric, the energy-momentum tensor is given by

Tab = δ0aδ
0
b ϕ̇

2 + gab
[
− 1

2 ϕ̇
2 + V(ϕ)

]
.

Further reading

The main source for this chapter is the book by Liddle (2004), which
contains more details of the underlying physics such as black–body ra-
diation discussed in §26.3. The books by Weinburg (1972) and Hartle
(2003) are also useful. The articles by Lahav and Suto (2004) and Jones
and Lasenby (1998) respectively describe the two main sources of mea-
suring the universe, redshift surveys and an analysis of the CMB, while
the review by Amendola et al. (2018) discusses both dark matter and dark
energy. The classic 1977 video ‘Powers of 10’ by Charles and Ray Eames
gives a nice insight into cosmological length scales and how these relate
to those on Earth. The books by Penrose (1989), Hawking (1988), Bar-
row and Tipler (1986), and Hawking and Penrose (2015) relate to the
discussion in the last two sections of the book.
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Answers to exercises

2.1
x = x′ + v1t′

y = y′

z = z′

t = t′

x′ = x− v1t
y′ = y
z′ = z
t′ = t

Interchange primes and unprimes and replace v1 by −v1.

x′′ = x′ + v2t′

y′′ = y′

z′′ = z′

t′′ = t′

x′′ = x + (v1 + v2)t
y′′ = y
z′′ = z
t′′ = t

2.2
(i) A B A B

T

v

1
k

TkT

v
T

(ii) A AB
B

T

kT

v v
T

1
k

T



574 Answers to exercises

2.3 Blue shift.

2.6
Draw circle centreO, radiusOG and two light rays entering and leaving
G which cut the circle at points P and Q, as shown.

L

Light cone

Q

M

G

P

O

Then POQ is the world-line of an inertial observer who considers O
and G to be simultaneous (since PO = OQ). Observers whose world-
lines through O intersect LQ consider that G occurs later than O,
and observers whose world-lines intersect QM consider that G occurs
before O.

2.7

A BC

Q

T
k

R

P

T

O

v

kT

2v
1 + v2

T
k2

T

According to B, the coordinates (t, x) of the three events are
O (0, 0)
R ( 1

2 (k
2 + 1)T, 1

2 (k
2 − 1)T)

Q ( 1
2 (k

2 + 1)(1 + 1/k2)T, 1
2 (k

2 − 1)(1 + 1/k2))
Thus, whereas A’s clock has elapsed by (k + 1/k)T between events O
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and Q, the time lapse of B’s clock is 1
2 (1 + k2)(1 + 1/k2)T (which for

k > 1 is greater than A’s time lapse).

2.9 v = ±T(x2 + T2)
− 1

2 .

2.10 s2 = −(x1 − x2)2 − (y1 − y2)2 − (z1 − z2)2 = −σ2

3.2 (2/3 )
1
2 .

3.6

Take the room to be in the frame S′ moving along the x-axis of the rest
frame of the pole with speed −v, as shown (not to scale):

Pole

(i)

(ii)

y

y'

v

X

Room (front and
back walls projected
on to x'-axis)

O

O' X'
x'

x

t

World-line of O'  

World-line of O

World-line of X

+ World-line of X ' (t = – x
v

5
v

)

Light signal (t = – x
c

)

F

E

x

Then in S’s frame
When O and O′ coincide, S will ‘see’ X at F, as a result of a light signal
from event E.

3.9
(a) 7.5× 10−5s.
(b) 17 min.
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3.10
3.4× 109 light years.
940 years.

t

X Y Z

A's world-line

x

�����yr

�����yr

�����yr

�����yr

3.11
ν = [(1− u/c)/(1 + u/c)]1/2ν0,
ν = [(1 + u/c)/(1− u/c)]1/2ν0.

3.12 0.32c.

4.1
One possibility is to define a unit of force F1 as that which results in
a standard mass ms undergoing an acceleration gL that is

F1 = mSgL, (1)
where gL is the acceleration due to gravity at a given latitude. We
can then use Newton’s second law to compare any other force F
by measuring the acceleration aFS this produces when applied to the
standard mass, that is

F
F1 =

mSaFS
mSgL

=
aFS
gL

, (2)

We could then define unit mass m1 as that mass which, when acted on
by a unit force F1, suffers a unit acceleration 1. Other masses could
then be defined by either (i) measuring the acceleration a that a mass
experiences under the influence of the unit force, that is

F 1

F 1 =
ma
m11

, (3)

or (ii) using (2) to measure a force F and then applying this force to a
mass m and measuring the resulting acceleration a, so that

m = F/a. (4)

4.2 The kinetic energy of the initial particle in motion.

4.3 (m̄2
0 + 2m0m̄0γ +m2

0)
1
2 where γ = (1− u2/c2)

− 1
2 .

4.8 P = 2Mp0/(m0 +M), p = (m0 −M)p0/(m0 +M).
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4.9

 Tachyons 

v / c
–1 1

1

Subluminal particles

E / m0c
2

 Tachyons 

4.10 −c cos θ.

4.11
chν/(hν +m0c2),
(m2

0 + 2hνm0/c2)1/2.

5.1 (i) (a) x = a cosϕ, y = a sinϕ, z = 0, (0 ⩽ ϕ ⩽ 2π).
(b) x2 + y2 − a2 = 0, z = 0.

(ii) (a) x = a sin θ cosϕ, y = a sin θ sinϕ, z = a cos θ,
0 ⩽ θ ⩽ π, 0 ⩽ ϕ ⩽ 2π.

(b) x2 + y2 + z2 − a2 = 0.

5.2
(xa) = (x1, x2, x3) = (x, y, z)
(x′a) = (x′1, x′2, x′3) = (r, θ,ϕ)
(xa) −→ (x′a):
r = (x2 + y2 + z2)1/2,
θ = tan−1[(x2 + y2)1/2/z].
ϕ = tan−1(y/x).
(x′a) −→ (xa):
x = r sin θ cosϕ,
y = r sin θ sinϕ,
z = r cos θ.

∂xa

∂x′b
=

sin θ cosϕ r cos θ cosϕ −r sin θ sinϕ
sin θ sinϕ r cos θ sinϕ r sin θ cosϕ

cos θ −r sin θ 0


∂x′a

∂xb
=

 sin θ cosϕ sin θ sinϕ cos θ
cos θ cosϕ/r cos θ sinϕ/r − sin θ/r

− sinϕ/(r cos θ) cosϕ/(r sin θ) 0


J′ → 0 when r→ ∞,
J′ → ∞ when r = 0 and θ = 0, π.
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5.6
(xa) −→ (x′a):
R = (x2 + y2)1/2,
ϕ = tan−1(y/x).

∂x′a

∂xb
=
(

cosϕ sinϕ
− sinϕ/R cosϕ/R

)
.

Xa =
dxa

dϕ
= (−a sinϕ, a cosϕ),

X′a = (0, 1).

5.7

X ′
c
ab =

∂x′a

∂xd
∂x′b

∂xe
∂xf

∂x′c
Xf

de.

5.15 δaa = δabδ
b
a = n.

5.17 (i) X′a = (cosϕ,− sinϕ/R).

(ii)
∂

∂x
= cosϕ

∂

∂R
− sinϕ

R
∂

∂ϕ
,

∂

∂y
= sinϕ

∂

∂R
+

cosϕ
R

∂

∂ϕ
.

∂

∂R
=

x
(x2 + y2)1/2

∂

∂x
+

y
(x2 + y2)1/2

∂

∂y
.

∂

∂ϕ
= −y ∂

∂x
+ x

∂

∂y
.

(iii) Xa∂a =
∂

∂x
.

X′a∂′a = cosϕ
∂

∂R
− sinϕ

R
∂

∂ϕ
.

(iv) Y ′a = (sinϕ, cosϕ/R),
Z′a = (0, 1),

Y =
∂

∂y
= sinϕ

∂

∂R
+

cosϕ
R

∂

∂ϕ
,

Z = −y ∂
∂x

+ x
∂

∂y
=

∂

∂ϕ
.

(v) The Lie brackets are given in the table below (the vector in the
column being the first entry):

X Y Z
X 0 0 Y
Y 0 0 -X
Z -Y X 0

6.2
LXZbc = Zbc,dX d + ZdcXd

,b + ZbdXd
,c

LX(YaZbc) = Xd(YaZbc),d − YdZbcXa
,d + YaZdcXd

,b + YaZbdXd
,c
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6.15
gab = diag(1, 1, 1), gab = diag(1, 1, 1), g = 1.
gab = diag(1,R2, 1), gab = diag(1,R−2, 1), g = R2.
gab = diag(1, r 2, r 2 sin2 θ), gab = diag(1, r−2, r−2(sin θ)−2),

g = r4 sin2 θ.

6.16
Tab = gacgbdT cd.

6.17

g′ab =
∂xc

∂x′a
∂xd

∂x′b
gcd.

6.18
d2R
du2

− R
(

dϕ
du

)2

= 0.

d2ϕ

du2
+

2
R

dR
du

dϕ
du

= 0.

d2z
du2

= 0.

6.22
(i) −2.

(ii) Yes.

(iii) Yes.

6.23
(i) (x1, x2, x3) = (r, θ,ϕ).

(ii) Yes.

6.32 (i) gab = diag(eν ,−eλ,−r 2,−r 2 sin2 θ),

g = −eν+λr4 sin2 θ,

gab = diag(e−ν ,−e−λ,−r−2,−r−2 sin−2 θ).

(ii) Non-zero independent components:

Γ0
00 = 1

2 ν̇, Γ
0
01 = 1

2ν
′, Γ0

11 = 1
2 e
λ−ν λ̇,

Γ1
00 = 1

2 e
λ−νν′, Γ1

01 = 1
2 λ̇, Γ

1
11 = 1

2λ
′,

Γ1
22 = −re−λ, Γ1

33 = −re−λ sin2 θ,
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Γ2
12 = r−1, Γ2

33 = − sin θ cos θ,

Γ3
13 = r−1, Γ3

33 = cot θ.

(iii) Non-zero independent components:

R0101 = − 1
2 e
νν′′ + 1

4 e
λλ̇2 − 1

4 e
λν̇λ̇ + 1

2 e
λλ̈− 1

4 e
νν′2 + 1

4 e
νν′λ′,

R0202 = − 1
2 re

ν−λν′,

R0212 = − 1
2 rλ̇,

R0303 = − 1
2 re

ν−λν′ sin2 θ,

R0313 = − 1
2 rλ̇ sin2 θ,

R1212 = − 1
2 rλ

′,

R1313 = − 1
2 rλ

′ sin2 θ,

R2323 = r2e−λ sin2 θ − r 2 sin2 θ.

(iv) Non-zero independent components:

R00 = 1
2 e
ν−λν′′ − 1

4 λ̇
2 + 1

4 ν̇λ̇−
1
2 λ̈+ 1

4 e
ν−λν′2− 1

4 e
ν−λν′λ′ + r−1eν−λν′,

R01 = r−1λ̇,

R11 = − 1
2ν

′′ + 1
4 e
λ−ν λ̇2 − 1

4 e
λ−ν ν̇λ̇ + 1

2 e
λ−ν λ̈− 1

4ν
′2 + 1

4ν
′λ′ + r−1λ′,

R22 = − 1
2 re

−λν′ + 1
2 re

−λλ′ − e−λ + 1,

R33 = sin2 θR22.

R = e−λν′′− 1
2 e

−ν λ̇2+ 1
2 e

−ν ν̇λ̇−e−ν λ̈+ 1
2 e

−λν′2− 1
2 e

−λν′λ′+2r−1e−λν′

− 2r−1e−λλ′ + 2r−2e−λ − 2r−2.

G00 = r−1eν−λλ′ − r−2eν−λ + r−2eν ,

G01 = r−1λ̇,

G11 = r−1ν′ − r−2eλ + r−2,

G22 = 1
2 re

−λν′− 1
2 re

−λλ′+ 1
2 r

2e−λν′′− 1
4 r

2e−ν λ̇2+ 1
4 r

2e−ν ν̇λ̇− 1
2 r

2e−ν λ̈
+ 1

4 r
2e−λν′2 − 1

4 r
2e−λν′λ′,

G33 = sin2 θG22.
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(v) Non-zero components:

G0
0 = r−1e−λλ′ − r−2e−λ + r−2,

G0
1 = r−1e−ν λ̇,

G1
0 = −r−1e−λλ̇,

G1
1 = −r−1e−λν′ − r−2e−λ + r−2,

G2
2 = 1

2 r
−1e−λλ′ − 1

2 r
−1e−λν′ − 1

2 e
−λν′′ + 1

4 e
−ν λ̇2 − 1

4 e
−ν ν̇λ̇ + 1

2 e
−ν λ̈

− 1
4 e

−λν′2 + 1
4 e

−λν′λ′,

G3
3 = G2

2.

7.1 Φ ; a = Φ , a − ΦΓbba.

7.6
(i) y′′ − y = 0.

(ii) 2y1y′′1 + y′21 − y′22 − 3xy21 − y2 = 0,
2y1y′′2 + 2y′1y

′
2 − y1 = 0.

7.9
∂

∂y
.

7.11

X 1 =
∂

∂x
, X2 =

∂

∂y
, X3 =

∂

∂z
,

X 4 = y
∂

∂z
− z

∂

∂y
, X5 = z

∂

∂x
− x

∂

∂z
, X6 = x

∂

∂y
− y

∂

∂x
.

X1 X2 X3 X4 X5 X6

X1 0 0 0 0 -X3 X2

X2 0 0 0 X3 0 -X1

X3 0 0 0 -X2 X1 0
X4 0 -X3 X2 0 -X6 X5

X5 X3 0 -X1 X6 0 -X4

X6 -X2 X1 0 -X5 X4 0

7.14 (∇c∇b −∇b∇c)Xa = RadcbXd.

8.5 (a) 1
2n(n− 1) ωab, n ta.

(b) 6ωab: 3 spatial rotations, 3 boosts.
4 ta: 3 translations, 1 time translation.
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8.8

ẍ =
(m1 −m2)

(m1 +m2)
g,

p = (m1 +m2)ẋ,

H(p, x) =
p2

2(m1 +m2)
−m1gx−m2g(ℓ− x).

8.10 Zeroth component gives the rate of work done by force F, viz.

dE
dt

= F.u,

8.11

(i) u′x =
ux − v
1− uxv

, u′y =
uy

β(1− uxv)
, u′z =

uz
β(1− uxv)

.

(ii) E′ = β(E− vpx), p′x = β(px − vE), p′y = py, p′z = pz.

(iii) F ′
x =

Fx − vF.u
1− uxv

, F ′
y =

Fy
β(1− uxv)

, F ′
z =

Fz
β(1− uxv)

. Yes
.

(iv) F′ = (F ′
x,F

′
y,F

′
z) = (F, 0, 0) = F.

9.1 (i) tan−1(a/g).

The inertial observer will see the mass accelerate in the direction of
motion due to a tension in the rod whose horizontal component pro-
duces the acceleration and whose vertical component counterbalances
the weight. A non-inertial observer in the car will consider that the
pendulum mass experiences two forces, the weight mg down and an
inertial force ma in the opposite direction to motion.

(ii) tan−1(a/g).

(iii) 0.

9.2 (ii) Four inertial forces, namely:-

(a) a linear accelerative force as discussed in Ex. 9.1

(b) a velocity-dependent Coriolis force

(c) a centrifugal force

(d) a non-uniform rotational force (analogous tangentially to (a)).
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9.5
(i) The released body undergoes uniform motion (due to Newton’s
first law) and the rocket accelerates with acceleration g, so the inertial
observer sees the floor of the rocket ship come up and hit the body
with relative acceleration g.

(ii) The rocket and the body have no forces acting on them and
therefore, by Newton’s first law, both undergo uniform motion i.e.
travel with the same constant velocity.

(iv) The body and the lift both fall under gravity with the same
acceleration.

9.6 Ellipsoid (see §17.10).

9.7

d2R
du2

− R
(

dϕ
du

)2

= 0,

d2ϕ

du2
+

2
R

dR
du

dϕ
du

= 0,

d2z
du2

= 0.

Inertial force (centrifugal and Coriolis components).

9.8 (i) Straight line.
(ii) Parabola (projectile motion).

9.9 One example:

∇bT ab + R a
mncR emn

d∇eT cd = 0.

9.10 ∇[aFbc] = 0.
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9.11

Special
relativity

(i)

(ii)

Newtonian theory
in the absence of
gravitation

c ���

c0 ��c c1 ��c0 c2 ��c1 c ���

In the limit, the null cones degenerate into planes of simultaneity.
That is, all observers, irrespective of their motion, agree that events
occurring in one of these planes do so simultaneously.

10.1

f(x + h) = f(x) +
(
h1

∂

∂x
+ h2

∂

∂y
+ h3

∂

∂z

)
f(x)

+
1
2

(
h21

∂2

∂x2
+ 2h1h2

∂2

∂x∂y
+ 2h1h3

∂2

∂x∂z
+

+h22
∂2

∂y2
+ 2h2h3

∂2

∂y∂z
+h23

∂2

∂z2

)
f(x)+ · · · .

10.11
(i) Principle of equivalence,
(ii) Principle of equivalence,
(iii) Correspondence principle,
(iv) Correspondence and covariance principles,
(v) Principle of equivalence,
(vi) Correspondence principle.

10.12
Principle of equivalence, principle of minimal gravitational coupling,
Mach’s principle (?) and correspondence principle.

11.7 (i) ∇a(
√
−gGab) = 0,

(ii) −∇a(
√
−gGab) = 0,

(iii) ∇a(
√
−gGab) = 0.

11.12
Luv =

√
−g
[
gudRabcdRabcv + gvdRabcdRabcu − 1

2guvR
abcdRabcd

]
.
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11.13
Tab = ∇aϕ∇bϕ− 1

2gabg
cd∇cϕ∇dϕ + gabV(ϕ).

12.5

E′
x = Ex,
E′
y = β(Ey − vBz),
E′
z = β(Ez + vBy),
B′
x = Bx,

B′
y = β(By + vEz),

B′
z = β(Bz − vEy),

ρ′ = β(ρ− vjx), j ′x = β(jx − vρ), j ′y = jy, j ′z = jz.

12.7 ϕ→ ϕ̄a = ϕa + ∂aψ,
where ψ must be a solution of □ψ = 0.

13.3 μ = − 1
4 .

Rab − 1
4gabR = 2(−FacF c

b + 1
4gabFcdF

cd).

15.1
One example: a particle falls in from infinity at time t = −∞ reaching
the origin at time t = 0 whereupon the motion is reversed.

15.7 (a) ds = adθ.
ds = a sin θdϕ.

15.12 [G] = M−1L3T−2.

15.13

R0101 = 2mr−3

R0202 = −
(
1− 2m

r

)
m
r

R0303 = −
(
1− 2m

r

)
m
r

sin2 θ

R1212 =
(
1− 2m

r

)−1 m
r

R1313 =
(
1− 2m

r

)−1 m
r

sin2 θ

R2323 = −2mr sin2 θ.

15.16 (1), (2), (3), (4), (5) and (6).

16.2 Motion in a straight line.
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16.7 The laws become modified to:

K1′: Each planet moves in an ellipse about the centre-of-mass as one
of the foci.

K2′: The radius vector from the centre-of-mass to the planet sweeps
out equal area in equal times.

K3′: τ =
2π

(G(mplanet +msun))1/2
a3/2.

16.8
(
1− 2m

r

)−1

r̈−
(
1− 2m

r

)−2m
r2
ṙ2 +

m
r2
ṫ2 − rθ̇2 − rsin2θϕ̇2 = 0.

16.9(
du
dϕ

)2

+ u2 =
k2 − 1
h2

,

du2

dϕ2 + u = 0.

16.16

± τ ' (r 2 −D2)1/2 + 2m cosh−1
( r
D

)
−m

(r2 −D2)1/2

r
+ constant

= (r2−D2)1/2+2m ln
(
r + (r2 −D2)1/2

D

)
−m (r2 −D2)1/2

r
+constant.

17.1 This is the Schwarzschild solution under the renaming of the
coordinates:

(θ,ϕ, t, r) −→ (t, r, θ,ϕ).

17.2
4̄t2r̄3 cos θ̄
r̄ cos θ̄ + 2m

− (̄r cos θ̄ + 2m)
2
r̄2θ̄2ϕ̄2sin2(ϕ̄̄t).

17.3 (i) t timelike; ρ, z, ϕ spacelike.
(ii) u null; x, y, z spacelike.

17.4 ds2 = A(t)dt2 − B(t)dx2 −C(t)dy2 −D(t)dz2.

17.5

ds2 =
(
1− 2m

r

)
dt2 −

[
1 +

2mx2

r2(r− 2m)

]
dx2 − 4mxy

r2(r− 2m)
dxdy

− 4mxz
r2(r− 2m)

dxdz−
[
1 +

2my2

r2(r− 2m)

]
dy2
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− 4myz
r2(r− 2m)

dydz−
[
1 +

2mz2

r2(r− 2m)

]
dz2,

where r = (x2 + y2 + z2)
1
2 .

17.6

World-line
of observer

r

t

17.7 r = ±ku + c, c constant.

17.8 −1.

17.15 (Roughly)

Singularity r = 0

Horizon (r = 2m)
t-

17.17
A non-rotating white hole consists of a visible singularity situated at the
origin of coordinates, which suddenly erupts into a star whose radius
increases inexorably through its Schwarzschild radius.
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Star
interior

r
r = 2m

Origin of polar
coordinates

Singularity

Signals sent
from visible
singularity

World-line of
distant observer

II

I

t

18.4 Region II.
They cannot escape from region II, but are ultimately crushed out of
existence by the singularity.

18.7

Subregion r ' ≥ 0

r '

t '

π

π

– π

– π

18.8

t′ = tan−1(t + r) + tan−1(t− r),

r′ = tan−1(t + r)− tan−1(t− r),

t = t0 ↔ tan 1
2 (t

′ + r′) + tan 1
2 (t

′ − r′) = 2t0,

r = r0 ↔ tan 1
2 (t

′ + r′)− tan 1
2 (t

′ − r′) = 2r0.
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r = constant

t = constant

r = 0

18.9

S0

(a)

(b)

S1

S2

S0

S1

S2

18.10
Figure 18.10 is the Penrose diagram of the Schwarzschild solution in
the absence of a source. The introduction of a source suppresses re-
gions I′ and II′.

19.4

Tab =
ε2

8π
diag

[
2e−λ − eν , eλ − 2e−ν , r2, r2 sin2 θ

]
.

19.6

I: t timelike, r spacelike.
II: t spacelike, r timelike.
III: t timelike, r spacelike.
r = r± = m± (m2 − ε2)1/2.
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19.7

rr+r–

t I II III

19.8

t + r +
r 2+

r+ + r−
ln (r− r+)−

r 2−
r+ − r−

ln (r− r−) = constant.

19.9

r

t I II III

r– r+

ε2 = m2 there is no region II.

19.13

ds2 =
(
1− 2m

r
+
ε2

r2

)
dυ2 − 2dυ dr− r2

(
dθ2 + sin2θ ϕ2).

19.14
r = ε2/m.

r = −m +
(
m2 + ε2

) 1
2 ,

− 1.



Answers to exercises 591

20.2

gab =


1− 2m/r −1 0 0

−1 0 0 0
0 0 −r2 0
0 0 0 −r2sin2θ

,

gab =


0 −1 0 0
−1 − (1− 2m/r ) 0 0
0 0 −r−2 0
0 0 0 −r−2sin−2θ

.

20.11

g11 = −
(
r2 − 2mr + a2

)
(r2 + a2cos2θ)

.

20.12The other condition is identical, expect that the sign of L is reversed
and both signs of L are considered in (20.56) and the sequel.

20.14

r+ rr–

t

20.17
Working in spherical polar coordinates na = (1, 0, 0, 0) and ma =
(0, 1, 0, 0) and

√
σ = r2 sin θ. Substituting these into (20.79) gives

(20.81).

22.4

u = U,

v = V− Y2f′/f − Z2g′/g,

y = Y/f,
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z = Z/g,

where f = f(U) and g = g(U).

23.1
A solution is cylindrically symmetric if it admits a symmetry axis and
is invariant under both rotations about the axis and translations parallel
to it.

23.2 Invariant under ϕ→ −ϕ.

No cross term in dϕdz, i.e. χ = 0.

23.5 Non-zero independent components are:

Γ0
00 = r2U2e2γ−2βγ,1 + r2Ue2γ−2βU,1 + rU2e2γ−2β + 2β,0

− r−1Vβ,1 − 1
2 r

−1V,1 + 1
2 r

−2V,

Γ0
02 = −r2Ue2γ−2βγ,1 − 1

2 r
2e2γ−2βU,1 − rUe2γ−2β + β,2,

Γ0
22 = r2e2γ−2βγ,1 + re2γ−2β ,

Γ0
33 = −r2e−(2γ+2β) sin2 θγ,1 + re−(2γ+2β) sin2 θ,

Γ1
00 = r2U3e2γ−2βγ,2 + r2U2e2γ−2βγ,0 + r2U2e2γ−2βU,2− rU2Ve2γ−2βγ,1

− rUVe2γ−2βU,1−U2Ve2γ−2β− r−1UVβ,2− 1
2 r

−1UV,2− r−1Vβ,0

+ 1
2 r

−1V,0 + r−2V2β,1 + 1
2 r

−2VV,1 − 1
2 r

−3V2,

Γ1
01 = − 1

2 r
2Ue2γ−2βU,1 −Uβ,2 + r−1Vβ,1 + 1

2 r
−1V,1 − 1

2 r
−2V,

Γ1
02 = −r2U2e2γ−2βγ,2 − r2Ue2γ−2βγ,0 − r2Ue2γ−2βU,2 + rUVe2γ−2βγ,1

+ 1
2 rVe

2γ−2βU,1 +UVe2γ−2β + 1
2 r

−1V,2,

Γ1
11 = 2β,1,

Γ1
12 = 1

2 r
2e2γ−2βU,1 + β,2,

Γ1
22 = r2Ue2γ−2βγ,2+r2e2γ−2βγ,0+r2e2γ−2βU,2−rVe2γ−2βγ,1−Ve2γ−2β ,

Γ1
33 = r2Ue−(2γ+2β) cos θ sin θ − r2Ue−(2γ+2β) sin2 θγ,2 − r2e−(2γ+2β) sin2 θγ,0

+rVe−(2γ+2β) sin2 θγ,1 − Ve−(2γ+2β) sin2 θ,

Γ2
00 = r2U3e2γ−2βγ,1 + r2U2e2γ−2βU,1 + rU3e2γ−2β −U2γ,2 + 2Uβ,0

− 2Uγ,0 −UU,2 −U,0 − r−1UVβ,1 − 1
2 r

−1UV,1 + 1
2 r

−2UV
+ r−3Ve2β−2γβ,2 + 1

2 r
−3e2β−2γV,2,

Γ2
01 = −Uγ,1 − 1

2U,1 − r−1U + r−2e2β−2γβ,2,
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Γ2
02 = −r2U2e2γ−2βγ,1 − 1

2 r
2Ue2γ−2βU,1 − rU2e2γ−2β +Uβ,2 + γ,0,

Γ2
12 = γ,1 + r−1,

Γ2
22 = r2Ue2γ−2βγ,1 + rUe2γ−2β + γ,2,

Γ2
33 = −r2Ue−(2γ+2β) sin2 θγ,1 + rUe−(2γ+2β) sin2 θ − e−4γ cos θ sin θ + e−4γ sin2 2 θγ,2,

Γ3
03 = −γ,0,

Γ3
13 = −γ,1 + r−1,

Γ2
23 = cot θ − γ,2.

23.7

R11 = −2(γ,1)2 + 4r−1β,1,

R12 = −r 2e2γ−2ββ, 1U, 1 + r 2e2γ−2βγ, 1U, 1

+ 1
2 r

2e2γ−2βU,11 + 2re2γ−2βU,1 + 2 cot θγ,1
− β,12 − 2γ,1γ,2 + γ,12 + 2r−1β,2,

R22 = − 1
2 r

4e4γ−4βU2
, 1 + r2Ue2γ−2β cot θγ, 1

+ 2r2Ue2γ−2βγ, 12 + r2 e2γ−2βγ,1U, 2

+ r2e2γ−2β γ, 2U, 1 + 2r2 e2γ−2β γ, 01
+ r2e2γ−2β U, 12 + rU e2γ−2β cot θ + 2rUe2γ−2βγ, 2
− rVe2γ−2β γ, 11 + 2re2γ−2β γ, 1
− re2γ−2β γ, 1 V, 1 + 3re2γ−2βU, 2 − Ve2γ−2β γ, 1
+ 3 cot θ γ, 2 − 2(β, 2)

2 + 2β, 2 γ, 2 − 2β, 22

− 2(γ,2)2+γ, 22 + 1− e2γ−2β V, 1,

R33 = − r2Ue−(2γ + 2β) cos θ sin θ γ, 1 − 2r2Ue− (2γ + 2β)sin2θ γ, 12
+ r2e− (2γ + 2β) cos θ sin θU, 1

− r2e− (2γ+2β)sin2θ γ, 1U, 2 − r2 e−(2γ + 2β)sin2θ γ, 2U, 1

− 2r2 e−(2γ+2β)sin2θ γ, 01
+ 3rU e−(2γ + 2β) cos θ sin θ − 2rU e−(2γ + 2β)sin2θ γ, 2
+ rVe− (2γ + 2β)sin2θ γ, 11
− 2re− (2γ + 2β)sin2θ γ,0 + re− (2γ+2β)sin2θ γ, 1 V, 1

+ r e− (2γ + 2β)sin2θU, 2

+ V e−(2γ + 2β)sin2θ γ,1 − 2e−4γ cos θ sin θβ, 2

+ 3e−4γ cos θ sin θγ, 2
+ 2e−4γsin2θβ, 2 γ, 2 − 2e−4γsin2θ (γ, 2)

2

+ e−4γsin2θ γ, 22 + e−4γsin2θ
− e− (2γ + 2β)sin2θV, 1.

23.10 ℓa;bℓb = λℓa.
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23.11 θ = e−2β/r.

24.2 VCi = −Λ

6
mi r2i .

24.3
A is a half of the sum of the moments of inertia of the system about a
set of orthogonal axes situated at the origin at epoch t0 (i.e. a half of
the trace of the inertia tensor).

24.10

(k = +1) dσ2 = R2
0 sin

2 χ(dθ2 + sin2 θdϕ2).

(k = −1) dσ2 = R2
0 sinh

2 χ(dθ2 + sinh2 2θdϕ2).

25.6 (ii) Oscillating model.

26.2 H2
0 ' 10−35s−2 and hence ρcrit ' 1.8× 10−26Kgm−3.

26.9
H(t) = 1/2t. So the two equations give T4 = 3c2/(32πGαt2). Sub-
stituting t = 1 and the numerical values for the constants gives T '
2× 1010kelvin.

26.11
ρr(tdec)/ρcrit ' 0.04 where tdec is the time of decoupling which we have
taken to be ∼ 1013s.
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A
absolute
quantity, 40
space, 155–157
time, 16, 23, 26, 135

acceleration
absolute, 40
in special relativity, 40, 148
uniform, 40, 164, 526
vector, 247, 251

action, 122, 124, 125, 144,
146, 148, 188, 196, 563

affine
flat, 96, 98
geodesic, 92, 93
length, 94
manifold, 91
parameter, 93, 103, 127,

141, 146, 303, 325,
343, 464

transformation, 93
age of the universe, 545
algebraically
general, 472
special, 472, 473, 475

algorithm, 232
alternative theories, 310
amplitude, 419–421, 423, 424,

433, 440, 455
analytic extension, 329
analytic extension
maximal, 343, 362, 382,

384, 385
analytic function, 224, 225,

228
angle, 101
angular
momentum, 260, 296, 307,

374, 387, 417, 418
momentum tensor, 149
velocity, 294, 373, 374, 552

anisotropic model, 83, 488,
489

ansatz, 209, 234, 276, 364,
406, 407, 454

anthropic principle, 565, 567
strong, 566
weak, 566

anti-de Sitter space, 529–534

antiparticle, 395
apparent magnitude, 505
asymptote, 304, 345
asymptotic analysis, 468, 473
asymptotically flat, 363, 391,

471
asymptotically flat, 220, 261,

280, 326, 345–347,
350, 355, 357, 362,
373, 376, 382, 385,
388, 401, 464, 474

atlas, 66
atomic system, 290, 291
axiomatic formulation of
general relativity, 184, 222
special relativity, 142

B
bar detector, 432
basis, 79, 177, 425
dual, 176
null, 367

Bessel functions, 453
Bianchi identities, 106, 222,

261, 402
contracted, 106, 184, 188,

192, 193, 218, 228,
277, 467, 500

Bianchi model, 488
bicharacteristics, 463, 464
big crunch, 486
big bang, 393, 396, 440, 482,

488, 501, 512–514,
516, 531, 551, 562,
567, 568

big crunch, 393, 531
binary
pulsar, 289, 303, 313, 428
system, 337, 417–419, 424,

425, 427, 428, 440, 443
Binet’s equation, 297, 300
Birkhoff ’s theorem, 279, 357,

451
BKL approach, 488
black hole, 234, 313, 321, 332,

333, 335, 337, 338,
345, 391, 420, 556

binary, 443, 444
charged, 355–362

colliding, 438, 440, 441
primordial, 556
rotating, 367–388
supermassive, 338, 440
thermodynamics, 394

blue shift, 503
body force, 205, 207
Bondi, 18, 29, 522
Bondi mass, 470, 471
Bondi metric, 465–468, 473
Bondi-Metzner-Sachs (BMS)

group, 469
boost, 25, 27, 33, 39, 139
boundary conditions, 220,

231, 274, 284, 310,
392, 401

Brans–Dicke theory, 158
Brinkmann metric, 455, 456

C
calculus of variations, 122–125
canonical form, 232, 275, 277,

355, 409, 476
Cauchy problem, 223–225,

228, 231, 257, 268
Cauchy surface, 247, 268
Cauchy–Kowalevskya

theorem, 257
Cauchy-Kowalevskya theorem,

225
causal solution, 412
causal structure, 348
causality, 22–23, 143, 339,

382, 384, 392
centre of mass, 417, 418, 428
centrifugal force, 582
characteristic equation, 214
characteristic initial value

problem, 262, 458,
467–468

characteristic surfaces,
462–463

charge, 208, 214, 355, 356,
361, 388, 389

density, 209, 388
Christoffel symbols, 242
first kind, 102
second kind, 102

classical tests, 289–290, 294,
309

clock, 14, 19, 435
atomic, 290, 292, 437
hypothesis, 36, 142
idea, 142
ideal, 15, 18, 36
paradox, 24, 42
synchronization, 16, 154
synchronized, 20

closed timelike curve, 382,
384, 392

Codazzi equation, 243, 246
collision, 55, 56
black hole, 440
inelastic, 53

commutator, 79, 94, 95, 97,
174

composition law for velocities,
21–22, 53

computer algebra, 232, 233
conformal
approach, 258, 261
compactification, 347,

350–352
factor, 258, 262, 348, 349
invariance, 108
metrics, 107, 281, 348
structure, 266, 382, 531,

532
tensor, 107

conformal structure, 530
conformally flat, 108, 344,

452, 472, 494
congruence
geodesic, 173, 174, 326,

330, 358, 474, 475, 490
principal null, 378, 379

congruence of curves, 86, 87,
92, 252, 265

conic section, 297, 301
conservation
of 4-momentum, 148
of angular momentum, 296,

299
of energy, 55, 205, 334,

471, 500, 534, 540
of energy-momentum, 184,

205, 208, 222
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conservation (Continued)
of mass, 53, 501
of momentum, 51–53

convection current, 209
coordinate
singularity, 323, 357, 391,

458
tortoise, 344

coordinate transformation, 68,
71–73, 76, 77, 232

active, 86, 128
continuous, 128
discrete, 128
passive, 68, 86
smooth, 69

coordinate-free, 65, 78–81
coordinates
adapted, 240, 242, 244,

252, 254, 256
Bondi, 466
canonical, 165
Cartesian, 15, 17, 51, 144,

172
co-moving, 491
cylindrical, 452
double null, 262
Eddington-Finkelstein,

328–331, 361, 370,
379–380, 382

geodesic, 95, 96, 106, 187
harmonic, 229
inertial, 418
isotropic, 281
local, 66
Minkowski, 26, 34, 135–

138, 140, 143, 146,
164, 184, 204, 207,
211, 401

normal, 257, 274
null, 343, 344, 348, 351,

361, 377, 454, 458
plane polar, 296
radiation, 463–465
regular, 322
Schwarzschild, 279, 299,

325, 335
spherical polar, 136, 275,

280, 496
Copernican principle, 487
Coriolis force, 155
cosmological
constant, 220, 485, 514,

518, 519, 527, 535,
540, 552, 555, 556

differential equation, 486
force, 485, 516
principle, 481, 484, 485,

487–490, 499, 522, 565

cosmology, 42, 220, 221, 234,
262, 306

cotangent space, 79
coupling constant, 184, 197,

203, 206–207
covariant formulation of
Maxwell’s equations, 211
relativistic mechanics,

148–149
current density, 208, 209
curvature
constant, 492–499, 527–530
scalar, 106
tensor, 105–106, 136, 181,

458, 471
curve, 67, 381
null, 140
timelike, 101, 140

Cygnus X1, 337

D
d’Alembertian, 210, 402
de Sitter, 221
de Sitter solution, 482,

519–520, 523–529,
535, 556, 568

de Sitter space, 531–534
deceleration parameter, 507,

508, 513, 515, 543
decoupling, 550
deflection angle, 303–306,

312, 314
degrees of freedom, 67
gravitational, 239, 261, 262,

471
delta function, 411, 455, 456
density, 205, 283, 334, 388,

424, 489, 519, 540, 549
critical, 539–540, 560, 561,

563
fluctuations, 565
matter, 534, 551
mean, 508
proper, 203, 206, 207
radiation, 484, 534, 548
vacuum energy, 540, 541

derivative
absolute, 92, 175, 464, 473
covariant, 92, 104
of scalar density, 121
of tensor, 90–91
of tensor density, 115–116

Lie, 86–89, 92, 129, 255
ordinary, 85
partial
of a tensor, 85

differential constraint,
188–190, 193, 261

dimensionless
equation, 300, 303
parameter, 179, 300, 304,

401, 507
variable, 300, 310

dipole aspect, 470
discriminant, 357
distance, 15, 18, 26, 39
absolute, 504
cosmological, 504–505
luminosity, 505

distortion, 312, 474, 475
distribution, 264, 455
divergence, 208, 416, 475
covariant, 115, 205
ordinary, 115
theorem, 120, 121, 189,

193, 389, 390, 422
Doppler shift, 484, 503, 505,

506
classical, 43
radial, 20, 44, 58
special relativistic, 44
transverse, 44

Doppler tracking, 439
dust (incoherent matter),

203–206, 215, 222,
501, 511, 519, 534

null, 459
dynamical variables, 124, 125,

191, 194, 195, 239, 254

E
eccentricity, 297, 302
eclipse, 305, 309
Eddington-Lemaître model,

518
eigenvalue, 100, 214, 472
eigenvector, 214, 472, 492
Einstein
tensor, 106

Einstein-de Sitter model, 513,
515, 516

Einstein-Rosen bridge,
346–347

Einstein-Rosen waves,
451–453

electric field, 208
electrodynamics, 213, 403
electromagnetic
field, 203, 208, 211, 213
field tensor, 209
forces, 35
radiation, 57, 210, 387, 388,

548
wave, 410, 455

electromagnetism, 14, 217,
388, 410, 474

electrostatic field, 356
ellipse, 297, 298, 302, 410,

418
elsewhere, 23, 140
embedding geometry, 261,

314, 347, 496
energy
density, 200, 204, 213, 214,

388, 392, 420, 501
kinetic, 54, 144, 484, 548
potential, 144, 484, 535
relativistic, 54–57

energy condition
dominant, 214–215, 217,

391, 393, 471, 500
strong, 392
weak, 393

entropy, 394, 567
Eötvös experiment, 293–294
epoch, 158, 482, 484, 485,

487, 497, 504, 521,
527, 534, 539, 551, 558

equation
of continuity, 205, 209, 215
of geodesic deviation,

173–175, 178, 182,
183, 431, 437

of Newtonian deviation,
172–173

of state, 208, 284, 521, 534,
540

equatorial plane, 275, 299,
314, 346, 374, 381

equivalence problem, 232
ergosphere, 375, 381, 387
escape velocity, 334
ether, 14
Euclidean space, 26, 66, 79,

103, 135, 496, 498, 504
Euler-Lagrange
derivative, 124, 188, 191
equations, 122–125,

144–146, 191, 195,
197, 299, 307, 325,
377, 418

Eulerian observer, 249
event, 15
diagram, 23
horizon, 42, 331–332, 338,

339, 345, 359, 363,
375, 384–386, 394,
524–526

exact solution, 219, 232–234,
393, 451, 454, 475

existence and uniqueness of
solutions, 87, 94, 225,
229, 230

expansion, 260, 475
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of the Universe, 221, 484,
486, 507, 521, 551,
555, 562

experiment
bucket, 155
Fizeau, 21
Hughes-Drever, 158
lift, 163–164, 171
Michelson-Morley, 14, 35,

295
Pound-Rebka, 292
thought, 13, 22, 155, 163,

290
extreme relativistic condition,

521
extrinsic curvature, 242

F
Faraday’s law, 208
fibration, 252
field
electromagnetic, 203, 208,

211, 213
field equations
constraints, 227
Einstein, 184
Einstein-Maxwell, 213
evolution, 227
hypersurface, 468
linearized, 401–403
Newtonian, 164
vacuum, 175–176, 182

Fitzgerald contraction, 35, 36
fixed stars, 156, 157
flat space, 135, 280, 350, 422,

511
flatness problem, 560, 561,

563
fluid
perfect, 207–208, see also

perfect fluid
fluid dynamics, 205, 209
focusing of geodesics, 94, 392
foliation, 247
force, 49, 51
electromagnetic, 35
gravitational, 164, 552
inertial, 155, 157, 163, 164,

182
four-acceleration, 148
four-force, 148
four-momentum, 148
four-potential, 210
four-velocity, 148, 177, 203,

207, 214, 282
frame, 176, 232, 335, 473
components, 177, 182, 214
dual, 176

formalism, 367–370
freely falling, 177, 178, 294
metric, 177
orthonormal, 489

frame of reference
inertial, 16, 25, 27, 56, 139,

154, 156, 163, 164,
176, 178, 293, 435

non-inertial, 154, 155, 164
rotating, 373

frequency, 47, 57, 291, 306
CMB, 551
gravitational wave, 419, 424,

440
gravitational wave , 433
resonant, 432
shift, 291, 503

Friedmann model, 482, 501,
516–518

Friedmann’s equation,
499–501, 511

FRW model, 501, 541, 542,
545

FRW singularity theorem, 501
functional, 122, 125, 188,

191, 195, 197
derivative, 124

fundamental solution, 413
future, 23, 140
causal, 23
event horizon, 526
light cone, 324
null infinity, 350, 465
timelike infinity, 350

future-pointing, 137

G
Galilean transformation,

16–17, 26
gamma ray, 292, 396
gauge
condition, 206, 210, 218,

260
de Donder, 404
Einstein, 405
freedom, 407
harmonic, 229, 404
Lorentz, 404, 405
transformation, 210,

403–405
gauge-invariant, 403, 405,

423, 431
Gauss equation, 243, 245–246
Gauss’s law, 208
Gauss’s theorem, 121
Gauss-Codazzi, 243–245
Gaussian normal coordinates,

226

generalized
coordinate, 144
force, 144
momenta, 144
velocity, 144

genericity condition, 393
geodesic
affine, 92–94
coordinates, 95–96
curvature, 247
metric, 101–103
motion, 181, 223
null, 103, 108, 127, 142,

143, 262, 324, 348,
377, 463, 464, 474, 524

radial null, 325, 326, 328,
330, 359, 502

radial timelike, 327, 343,
345, 360

structure, 222, 475
timelike, 141, 142, 173,

174, 179, 183, 298,
392, 526

geodesically complete, 343,
393

global positioning system
(GPS), 293

global structure, 65, 382, 475
globally hyperbolic, 247
grand unified theory (GUT),

483
gravitational
acceleration, 293
collapse, 333, 339, 352,

386–388, 391, 394
energy, 420–424
lens, 306, 313, 556
potential, 51, 158, 159, 164,

176, 180, 182, 484
radiation, 262, 337,

401, 419, 425, 427,
440–444, 451, 461

gravitational instabilities, 567
gravitational waves, 280, 313,

338, 401
Brinkmann form, 455
colliding, 457–459
cylindrical, 451–453
detection, 432–440
impulsive, 455–458
linearized, 405–409,

411–415
measuring, 430–432
Penrose-Khan form, 457
plane, 454–455
polarization, 409–410
Rosen form, 455
sources, 440

graviton, 21, 549
Green function, 414
group
BMS, 469
isometry, 274, 487
Lorentz, 34, 138–139
Poincaré, 139, 143
rotation, 274

H
Hamiltonian, 144, 145, 147,

239, 257, 391, 421
constraint, 257, 258

harmonic coordinates, 229
Hawking radiation, 394
Heaviside step function, 455
heavy elements, 482, 566
hierarchical model, 489
hole problem, 231
homogeneous space, 19, 481,

487, 488, 491, 502,
519, 534, 565

horizon, see event
horizon problem, 562, 565
Hubble constant, 486, 488,

545–547, 563
Hubble’s law, 485, 501,

505–508, 523
hyperbolic motion, 42, 331
hypersurface, 68, 73, 120,

239, 242, 253
characteristic, 463
constant time, 249
coordinate, 321
null, 323, 358, 375, 458,

463, 466, 467
spacelike, 223, 224, 226,

247, 487, 490
hypersurface-orthogonal,

270–273, 279

I
Icarus, 303
incoherent matter, see dust
index
bound, 70
dummy, 70
free, 70
repeated, 70

index-free, 78–81
induced
covariant derivative,

241–243
metric, 240–241

inertia, 49, 158, 159
inertial force, 155
infinity
null, 350, 465, 533
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infinity (Continued)
spacelike, 350, 391
spatial, 220, 274
timelike, 350

inflation, 488, 535, 560–565
inhomogeneous model, 488
initial data, 223, 225–228,

257, 261, 458
initial value problem, see

Cauchy problem
integrable, 263
interference, 433, 434
interior Schwarzschild

solution, 282–284
inverse square law, 296, 418
isolated
source, 219, 234, 374,

461–462, 473
system, 51, 52, 148, 262,

474
isometry, 129, 274, 487
group, 274
infinitesimal, 129

isotropic space, 19, 25, 157,
392, 481, 487, 488,
491–493, 527, 534,
548, 561, 563

J
Jacobi’s identity, 81
Jacobian, 69, 115, 130
Jupiter, 302, 439

K
k-calculus, 18, 20–22
k-factor, 19, 20
Karlhede classification, 232,

473
Kasner solution, 488
Kepler problem, 296–298
Kerr solution, 338, 355, 367
Boyer-Lindquist form, 371
Eddington-Finkelstein form,

370, 379–380
Kerr form, 371

Kerr-Newman solution, 234,
367, 386

Killing vector, 128–130, 269,
271, 273, 274, 279,
280, 282, 372, 389,
390, 451, 454

Kronecker delta, 70, 172
generalized, 116

Kruskal solution, 343–345,
347, 362

compactified, 351–352

L
Lagrangian, 122, 124, 125,

144, 147, 417
density, 188, 190
Einstein, 190–192
electromagnetic, 211
inflaton, 564
linearized gravity, 403
matter, 197
Palatini, 195

Lamb shift, 395
ΛCDM cosmology, 555–557
Laplacian, 51
lapse, 249–251, 260
laser interferometer, 433, 438
last scattering surface, 551,

554, 562
Leibniz rule, 89, 91, 192, 222
Lemaître, 518
length
affine, 94
contraction, 35–36
proper, 35
rest, 35
scales, 534, 571

Levi-Civita alternating symbol,
116

Lichnerowicz conditions, 219
Lie bracket, 79–81, 89, 263
Lie derivative, see derivative
light
bending, 303–306, 312, 314
cone, 23, 140, 324, 326,

330, 345, 351, 381,
491, 523, 526, see also
null cone

flash, 31, 58, 324
propagation, 502–504
ray, 23, 38, 42, 142,

303–305, 312, 324,
435, 502, see also null
ray

speed of, 18, 19
light signal, 18
LIGO, 289, 313, 337, 438
line element, 100, 136
anti-de Sitter, 530
Bondi, 466
de Sitter, 520
Euclidean, 172
Kerr, 370
Minkowski, 27, 135
Reissner-Nordström, 356
Robertson-Walker, 495
Schwarzschild, 279
spherically symmetric, 277
static, 273

linear momentum, 49, 51

linear operator, 89
linearized, 401
linearized approximation, 401
LISA, 438
long-wavelength ap-

proximation,
415

Lorentz contraction, see length
contraction

Lorentz group, 138–139
Lorentz transformation,

25–26, 149
full, 27
proper, 139
special, 25, see also boost

Lorentz-covariant theory, 401
luminosity, 483
apparent, 504
distance, 505
gravitational, 424
parameter, 466

M
Mach’s principle, 153–159
magnetic
induction, 208
monopole, 208

manifold, 66–70, 86
affine, 96
flat, 96
geodesically complete, 343
maximal, 343, 361, 382
Riemannian, 100

many worlds cosmology, 566
maple, 232
Mars, 309
mass, 49, 50
active gravitational, 159
aspect, 470
Bondi, 470
geometric, 280
inertial, 159
loss, 468–471
passive gravitational, 159
reduced, 298
relativistic, 52–54
rest, 53

matter field, 203
Maxwell energy-momentum

tensor, 211–213, 355
Maxwell tensor, 209, 355
Maxwell’s equations, 208–211
mechanics
classical, 144–145
Newtonian, 49–51
relativistic, 52–57, 146–149

Mercury, 289, 298, 309

metric, 100–101, see also line
element, 119

Bondi, 466
conformally flat, 108
conformally related, 107
contravariant, 101
determinant, 100, 117
diagonal, 105, 135, 277
Euclidean, 172
flat, 104–105
frame, 177, 367
indefinite, 100, 103
inverse, 101
Lorentzian, 100
Minkowski, 43, 135, 138,

176
null frame, 369
physical, 348
positive definite, 100
signature, 100, 104, 135,

142
unphysical, 348, 349

Minkowski
coordinates, see coordinates
line element, see line element
metric, see metric
space-time, see space-time

momentum density, 213
Mössbauer effect, 44, 292
multi-component models,

539–545
multipole
expansion, 554
moment, 374, 461

N
neutron star, 332, 337, 428,

440, 443, 568
Newman-Jannis trick, 367,

385
Newman-Penrose formalism,

367
news function, 470
Newton’s Law’s, 16, 49
Newtonian
approximation, 55, see also

limit
constant, 50, 310
cosmology, 481, 484–487
gravity, 50, 51
limit, 176, 178–182,

206–207, 280
theory, 49–52

no-hair theorem, 386
noise, 438, 441
non-inertial reference frame,

see frame of reference
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non-linearity, 218, 310, 311,
455, 461

normal form, 228
normalization condition, 368
nucleogenisis, 482
null
cone, 100, 137, 140, see also

light cone
ray, 464, see also light ray
tetrad, 367–370

numerical relativity, 249, 251,
257–261, 440, 442

O
observer, 15
co-moving, 16
inertial, 16, 17, 20, 25, 31,

38, 155, 164, 178, 295,
525

non-inertial, 154, 155, 164
Olbers’ paradox, 483–484
one-body problem, 297
operator, 78
optical scalars, 474–476
orbit, 289, 293, 296, 300, 301,

311, 381, 417
equation, 297, 300
relativistic, 302

orientation, 139, 358
orthonormal, 176, 368, 432,

474, 489
oscillating model, 516, 518
over-determination, 226

P
Palatini
approach, 195–197
equation, 187, 193

parallel propagation (trans-
port), 92, 96, 98, 177,
489

parametrized-post-Newtonian
(PPN) formalism,
309–312

particle
free, 142–144, 146, 314,

327, 361, 410
fundamental, 57
horizon, 526, 561, 562
luminal, 21
neutral, 360
radial infalling, 327–328,

331
subluminal, 21
superluminal, 21, see also

tachyons
test, 162–164, 171–173,

179, 222, 298, 300,

360, 431, see also free
particle

virtual, 395
past, 140
causal, 23

peeling theorem, 473–474
pendulum, 156
Penrose
process, 387, 396
singularity theorem, 393

Penrose diagram, 347, 471,
519

of anti-de Sitter, 532–534
of de Sitter, 531–532
of gravitational collapse, 352
of Kerr, 382
of Kruskal, 351–352
of Minkowski, 347–350
of Reissner-Nordström,

361–363
of Robertson-Walker,

530–531
of steady-state, 529

Penrose-Khan space-time, 457
perfect
cosmological principle, 482,

522
fluid, 205, 215, 282, 323,

490, 499, 534
perihelion, 297
advance, 298–303, 312

perpetuum mobile (perpetual
motion machine), 290

perturbation, 300–304, 311,
405, 417, 422, 436

Petrov classification, 471–473,
475

photoelectric effect, 57
photon, 21, 57–59, 142, 222,

314, 330, 351, 391,
435, 505, 548, 550, 551

Planck
satellite, 488

Planck’s
constant, 57, 395, 548
hypothesis, 57, 58

Plebanski type, 473
Poincaré
group, 139, see also group
transformation, 139

point
mass, 15, 280, 297, 419
transformation, 86

polarization, 401, 409–410,
421, 424, 442, 444, 459

Poynting vector, 213
pressure, 205, 207, 283, 332,

499, 500, 521

radiation, 521
primeval matter, 482, 566
principal
axis, 215
null congruences, see null

congruences
null directions, 472–474
stress, 215, 392

principle of
constancy of velocity of

light, 18–19
correspondence, 153, 166,

184, 207
covariance, 153, 165
equivalence, 153, 162–164
Einstein, 290, 294–295,
310, 339

strong, 162
weak, 162, 289

general relativity, 165
Mach, seeMach’s principle
minimal gravitational cou-

pling, 153, 165–166,
184, 211

restricted special relativity,
17

special relativity, 17–19, 31,
165

stationary action, 124, 125,
144, 196

projection operator, 240, 241,
262, 264

pulsar, 289, 295, 303, 313,
428, see also binary
pulsar

Q
quadrupole
aspect, 470
formula, 416–419, 426
tensor, 426

quantum
cosmology, 566
fluctuations, 565
gravity, 339, 534
mechanics, 18, 57, 339,

387, 394, 534, 557
quasar, 306, 488

R
radar measurement, 18–20,

25, 42, 307, 309, 313
radiation, see gravitational

radiation
black-body, 394

radius of the universe, 496
rapidity, 33, 39

Raychaudhuri equation, 392,
476

reaction, 49
red shift, 221, 289, 504
gravitational, 290–293, 323,

333, 363, 374
redshift, 503, 506
reduced Einstein equations,

230
Reissner-Nordström solution,

355–360
relative quantity, 40
relativistic cosmology,

490–492, 499–501
rest
energy, 55
frame, 35, 36
length, 35
mass, 53, see also mass

Ricci
equation, 248–249
scalar, 106
tensor, 106, 183, 233, 456,

473
tensor (linearized), 402

Riemann
tensor, 94–95, 99, 105, 136,

183, 232, 405, 473, see
also curvature tensor

scalar invariant, 323
tensor (linearized), 402

Riemann-Christoffel tensor,
see Riemann tensor

Robertson-Walker, 495, see
also line element;
space-time

rubber-sheet geometry,
313–315

S
scalar
density, 117
field, 72
potential, 210

scale factor, 485, 486, 492,
501, 511, 534

non-dimensional, 540
scattering, 455
Schwarzschild
radius, 323, 327, 333

Schwarzschild solution, 277
analytic extension, 343
interior, 282
isotropic form, 282

scri (I ), 350
second mass-moment, 417
semi-latus rectum, 297
shear, 475
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sheep, 232
shift, 252, 260
signature, 100, see also metric

signature
simultaneity, 14, 22, 36, 38,

491
singularity
big bang, 482, 501, 543,

568
big crunch, 531
BKL, 488
cigar, 489
coordinate, 323, 328, 357,

379
curvature (intrinsic, phys-

ical), 323, 326, 331,
335, 336, 343, 357,
359, 374, 458

fold, 458
FRW theorem, 501
future, 345, 351
naked, 384
pancake, 489
ring, 374, 375
spacelike, 345
theorems, 339, 391–393,

568
timelike, 362
whimper, 489

slow-motion approximation,
179, 181, 182, 206

Sommerfield condition, 469
source-free, 211, 355
space of constant curvature,

492, see also curvature
space-time, 19, 20, 23, 27, see

also line element; metric
asymptotically simple, 350
compactified Minkowski,

350
conformal Robertson-

Walker,
531

conformally flat, 108, 344,
452

Minkowski, 27
Robertson-Walker, 495
Schwarzschild, 279
spherically symmetric, 274
static, 273
stationary, 269

space-time diagram, 15, 19,
22, 38, 324–327, see
also Penrose diagram

compactified Minkowski,
350

compactified Reissner-
Nordström,
362

gravitational collapse, 333
Kerr in Eddington-

Finkelstein coordinates,
380

Kruskal, 345
Minkowski, 349
Penrose-Khan, 457
Schwarzschild, 326
Schwarzschild in Eddington-

Finkelstein coordinates,
330

spatial diagram, 324
Kerr, 381
Schwarzschild, 331

spectrum, 395
black-body, 549, 550
power, 565

spherical symmetry, see
symmetry

spin, 177, 234, 372, 375, 386,
442

stability, 231, 339
standard candles, 546
standard configuration, 16, 26,

31
standard model
of particle physics, 483, 557
of relativistic cosmology,

490, 545
static solution, 221, 272–274,

see also Einstein static
model

stationary solution, 269–270
steady-state solution, 482
Stokes’ theorem, 120
subspace, 67–68
substratum, 490
surface, 67
area, 322, 394, 466
gravity, 394
of infinite redshift, 323
stationary limit, 375

surface forming, 263
symmetry, 128, 219
axial, 466
axis, 382, 471
azimuthal reflection, 275,

372, 462, 466
cylindrical, 451–453
planar, 458
spherical, 260, 274–277
time reflection, 279, 372

synchrotron radiation, 337
Szekeres metric, 459

T
tachyon, 21
tangent
space, 79, 100, 137, 270
vector, 71, see also vector

Taylor’s theorem, 88, 90, 97,
123, 129, 173, 224,
225, 308, 436, 437, 507

temperature, 394, 482, 488,
558

absolute, 208
of CMB, 547–551, 554
of matter radiation equality,

559
tensor, 71–75, see also

conformal; Einstein;
Ricci; Riemann; Weyl,
77

anti-symmetric, 76
constant, 117
contraction, 77
contravariant, 71–72
covariant, 72–74
density, 115–117
energy-momentum, 184,

197, 214, 221, 392
dust, 203
electromagnetic, 213
inflaton, 564
Isaacson, 423
linearized gravitational
field, 422

of vacuum fluctuations,
534, 540

perfect fluid, 207
field, 75
smooth, 75

gothicized, 115
Kronecker delta, 70
mixed, 74–75
rank, 72
skew symmetric, see

anti-symmetric
symmetric, 76
torsion, 91
type, 74

tetrad, 176, see also frame
null, 367

thermal
equilibrium, 550
radiation, 394, 488

thermodynamics, 500
black hole, 394–396

thought-experiment, 13, 22,
155, 163, 290

tidal force, 335–336, 339, 474
time
absolute, 23

arrow of, 567
delay, 307–309
dilation, 36–37, 44, 293
proper, 36–37, 140–142
reflection, 279, 372
slice, 281, 502
translation invariant, 280

time function, 249
time-bomb solution, 463
time-symmetric, 279, 280, 347
topology, 66, 247, 345, 347,

362, 451
closed, 497, 518, 542
compact, 497
cylindrical, 349, 451, 498
open, 498, 499, 516, 542

torsion
balance, 293
free, 241, 242
tensor, 91

trace-free, 107, 173, 258, 355,
472

trajectory, 294, 300, 303, 561
transformation matrix, 69, 71
inverse, 73

translation, 128, 139, 451, 454
invariant, 279

transverse-traceless, 258, 420,
423, 425, 430, 431, 435

trapped surface, 352, 363,
382, 391

tunnelling, 395
twin paradox, 42–43
twist, 475
2 + 2 formalism, 262
two-body problem, 297, 302
two-sphere, 66, 274, 275, 322,

326, 346, 351, 465,
496, 499

two-surface, 173, 174, 239,
262, 314, 352, 391,
452, 466

U
uncertainty principle, 394
under-determination, 226
uniqueness, 87, 94, 225, 228,

230, 231
units
Heaviside-Lorentz, 208
non-relativistic, 31, 33, 141,

178, 184, 204, 206,
280, 292, 305, 309

relativistic, 19, 38, 146, 184,
207, 300, 335, 499

SI, 18, 50, 394
universe, 154
anisotropic, 488
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closed, 497, see also
topology, closed

early, 558–560
expanding, 485, 535
flat, 511–540
homogeneous, 487
isotropic, 487
open, 498, see also topology,

open
oscillating, 516
static, 518, 519

V
vacuum solution, 176, 221,

223, 280, 321, 376,
451, 461, see also
space-time; metric

valence, 74
variation, 123–125
variational

derivative, 124, see also
functional derivative

principle, 122, 144, 148,
185, 187

vector
complex null, 368
connecting, 172
contravariant, 71
covariant, 73
density, 115
future-pointing, 137
hypersurface-orthogonal,

270–272
lightlike, 137
null, 137
orthogonal connecting, 185
past-pointing, 137
potential, 210
rigging, 252
spacelike, 137
surface-forming, 174

tangent, 71
unit, 51

velocity
of light, see light
of recession, 485, 504, 507,

546
Venus, 19, 309
vierbein, 176, see also tetrad
volume element, 120, 204
Vulcan, 302

W
wave, see electromagnetic;

gravitational
equation, 412
front, 31, 324, 331, 351,

456
weak energy condition, 393
weak-field limit, 178–182,

206, 280, 291, 311,
420, 470

Weber bar, 432
Weyl tensor, 107–108, 471,

473, 493
Weyl’s postulate, 489–490
white dwarf, 312, 332, 337,

440, 556
white hole, 332, 345
world
map, 491
picture, 491
time, 274, 279, 290, 322,

491, 504
world-line, 15, 19, 20, 36,

177, 179, 203, 381, 503
timelike, 140

wormhole, 347, 362

X
X-ray, 295, 488, 551
astronomy, 568
binary, 337–338
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