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01187 Dresden, Germany

Professor Dr. Roberto Merlin
Department of Physics, 5000 East University, University of Michigan
Ann Arbor, MI 48109-1120, USA

Professor Dr. Horst Störmer
Dept. Phys. and Dept. Appl. Physics, Columbia University, New York, NY 10027 and
Bell Labs., Lucent Technologies, Murray Hill, NJ 07974, USA

ISSN 0171-1873

ISBN 978-3-540-73561-8 2nd Edition Springer Berlin Heidelberg New York
ISBN 3-540-61602-0 1st Edition Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specif ically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microf ilm or in any other way, and storage in data banks. Duplication of this publication or
parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in
its current version, and permission for use must always be obtained from Springer. Violations are liable to
prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media.

© Springer-Verlag Berlin Heidelberg 1997, 2008

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specif ic statement, that such names are exempt from the relevant protective laws and
regulations and therefore free for general use.

Typesetting: Data prepared by SPI Kolam using a Springer LATEX macro package
Cover: eStudio Calamar Steinen

Printed on acid-free paper SPIN: 12081660 57/3180/SPI - 5 4 3 2 1 0

 Library of Congress Control Number: 2007931202



To our families



Preface

During the 11 years since the first edition was published the field of quantum
kinetics has experienced a great expansion, and the methods described in
the first edition are now widely used in a large number of different subfields.
Literally thousands of papers have been published in this area and an attempt
to give an exhaustive review is clearly beyond the present scope. In this revised
edition we have attempted to include some examples of modern topics, essen-
tially from the research areas we have been active in. We are fully aware of the
fact that this approach will leave many important topics untouched, and our
hope is that the leading researchers in those areas write their own books! 1

More specifically, in our revision we have left the first nine chapters essentially
unchanged, only supplying a few updated references, and correcting misprints.
On the other hand, the last nine chapters have been substantially revised, re-
organized, and expanded. In the sections describing transport phenomena we
have included a number of new topics, such as transport in a superlattice,
molecular electronics (and inelastic interactions), and noise calculations. We
have added a new chapter, describing the dynamical Franz–Keldysh effect,
which follows directly from the field-dependent Green functions, originally in-
troduced to describe high-field transport in semiconductors. In the sections
dealing with optical properties we emphasize that the concepts of quantum
kinetics have proved to be extremely fruitful for the analysis of new exper-
iments in ultrafast semiconductor spectroscopy. Some highlights included in
the new edition are: The femtosecond build-up of screening and of polaron
correlations, four-wave mixing studies of the plasma-density dependent de-
phasing, the femtosecond formation of phonon–plasmon mixed modes, detec-
tion of light-induced band gaps, and non-Markovian relaxation in the short
femtosecond regime. None of these fascinating new observations can be under-
stood in the framework of a semiclassical Markovian Boltzmann kinetics, but
require for their description the theory of quantum kinetics as demonstrated

1 Recent progress in research using nonequilibrium Green functions is reviewed in
a very useful series of edited volumes due to M. Bonitz and co-workers [55–57].
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in the new edition. Even with these new topics we have attempted to keep the
total page number essentially unchanged, which naturally has led to omission
of some material which we no longer felt was necessary. Our hope is that the
readers, new and old, will find the revised book useful in their research work.

We have worked with many colleagues on the new topics included here.
We would particularly like to mention Mads Brandbyge, Thomas Frederiksen,
Paul Gartner, Alfred Leitenstorfer, Bernhard Mieck, Tomáš Novotný, Gloria
Platero, Arne Schmenkel, Oli Schmidt, Fabricio Souza, Alexandra Stein, and
Tuyen Vu. Also, the many students who have found mistakes and misprints,
and suggested improvements, deserve our sincere thanks.

Frankfurt and Copenhagen, Hartmut Haug
July 2007 Antti-Pekka Jauho



Preface to the First Edition

New textbooks on various aspects of theoretical physics seem to overflow the
market. A prospective author must be able to provide convincing answers to
at least the following questions (posed by the publisher, colleagues, and last
but not least, by him/herself and the associated family members). (1) Why
bother writing the book? (2) Is there a sufficient audience for the text? (3) Is
not the topic already covered by a number of books, and is not the author’s
best hope just to add a new wrinkle to the existing lore (and perhaps enhance
his/her own publication record)? (4) Is there any practical need for the book?
(5) Are there any important open problems that the book will contribute to
finding solutions to (or, at least, be able to identify points where the present
understanding is insufficient).

We have thought carefully about the above questions, and have become
convinced (at least between ourselves), that indeed there is a purpose in writ-
ing the book that you are holding in your hands.

In what follows we will try to outline reasons why we feel that this book
might be useful and define its scope and ultimate goals. First of all, this is a
book on a technique. More precisely, this is a book on nonequilibrium Green
functions (NEGF). Narrowing the definition down even more precisely, this
is a book about how NEGF are applied in semiconductor science. To identify
the final qualifier, we are mostly interested in systems where extremely short
length scales (� 1 nm) and extremely fast time scales (� 1 fs) play a crucial
role. In these short length and timescales the electrons exhibit their quantum
mechanical wave nature: the quantum coherence of the electronic excitations
becomes important. To properly describe phenomena of this kind, one needs
a quantum theory of nonequilibrium phenomena and the NEGF provide such
a technique. One of the purposes of this book is to show how deeply the
quantum coherence modifies the physics in short time and length scales: the
relaxation and dephasing dynamics differ radically from their semiclassical
counterparts, and the collision terms of the quantum kinetic equations have
a non-Markovian memory structure.
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Equilibrium Green functions (EGF) have been one of the central items
in the toolbox of a theoretical physicist for many years, and the interested
student can find many excellent treatises on the topic (a brief bibliography
is given in Chap. 3). Many of these books are written by the very people
who invented the formalism, and obviously our ambitions must be set on a
lower level. Nonequilibrium Green functions, on the other hand, are much less
frequently mentioned in the canonical textbooks. An exception is, of course,
the classic work by Kadanoff and Baym [191], where the whole topic was
introduced, but this work is now more than 30 years old, and obviously should
be followed by a more modern treatise.

One may wonder why the beautiful techniques developed by Kadanoff and
Baym [191] (and, independently, by Keldysh [198]), have so far not acquired
the same popularity as equilibrium Green functions. For some reason there
seems to be a rather widespread prejudice to the effect that the nonequilib-
rium techniques are accessible to only a very small select group of experts.
We strongly disagree with this standpoint; in fact one of the main goals of
our work is to emphasize that NEGF are conceptually no more difficult (or
easy) than normal Green functions are. In our opinion there are several fac-
tors that have contributed to this misconception. The first is that the physics
of degenerate Fermi systems has defined the central topic of interest for the
majority of many-body theorists. For this particular class of problems an ex-
tremely powerful formalism exists: quasi-classical Green functions, which take
advantage of the fact that the electronic momenta are confined to the neigh-
borhood of the Fermi surface, and thus allow the development of an essentially
linear (in terms of the external driving field) theory. Consequently, the full
potential power of the Kadanoff–Baym–Keldysh theory has not been called
for. The second reason is that once the Fermi energy does not provide the
overall largest energy scale, the all-important (in sense of the Landau school
of theoretical physics) “small parameter” is not so easy to define. Thus apply-
ing rigorous many-body techniques to semiconductors under nonequilibrium
conditions is, by definition, a topic that purists would be hesitant to touch.
To quote a remark attributed to W. Pauli: “One should not work on semi-
conductors, that is a filthy mess; who knows whether they really exist,” and
this remark was made long before highly nonequilibrium semiconductors were
even considered. We are fully aware that some of the theories described in
this book suffer from this lack of rigor; nevertheless we have taken the risks
of writing down expressions that later developments may require to be modi-
fied. Our philosophy has consistently been that we try to expose our topic as
it stands today, and not have any false pretense in that what we are saying
would be the final truth. (Parenthetically, if everything was well-known and
understood, would there be real challenge in writing the book?!)

Perhaps another reason for the not-so-widespread use of nonequilibrium
Green functions is that there are relatively few texts available that offer a
systematic treatment. In book form we, of course, have the classic work of
Kadanoff and Baym [191], but in addition to that, it has been necessary to look
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for journals. A few review articles exist; we have particularly benefitted from
those by Langreth [231], Chou et al. [80], and Rammer and Smith [287], but
these works are written for an experienced scientist and not for a (graduate)
student. It is interesting to note that during the last few years several books
addressing many-body physics in general have added sections on NEGF, (see,
e.g., books by Datta [93], Enz [105], Ferry [109], or Mahan [254]), but always
as a kind of side remark. Many authors still feel that it is necessary to add
an appendix or two in their research papers explaining the basic notions of
NEGF whenever they are needed in their research. If our book contributes
towards a weakening of this feeling, one of our main goals has been achieved.

Semiconductor microscience has developed dramatically throughout the
1980s and 1990s. Many laboratories have access to samples and instruments
that probe new and exciting effects in parameter ranges where standard theo-
ries, such as the Boltzmann equation or the Kubo formula, are not applicable.
Hence there is a strong experimental motivation to search for theories that
can applied in these new situations. We feel that nonequilibrium Green func-
tions are a good candidate for such a theoretical framework. It was already
mentioned that this is a book on a technique, and not on a topic. A highly
respected approach among the theoretical community is to attack a problem
and then use whatever technique is necessary to sort out the problem. This
is at the same time the distinction between a monograph and a textbook (in
our definition): we do not attempt to cover a single topic in all its variations;
what we do attempt to do is to take a given technique (NEGF in our case)
and use it in a number of carefully chosen topics. The textbook approach has
dictated rather stringently the choice of topics: throughout the book we have
chosen a level of presentation where a diligent student can follow all steps
with a finite amount of pencils and paper. This may have occasionally led to
rather trivial algebraic steps, at least for some of our sophisticated colleagues,
but we have deliberately chosen this route. Our justification is based on the
experience that students learn more from a text, and feel more secure about
its essential contents, if they know that all the materials are carefully chosen
so that no essential steps are hidden behind elusive statements like “it can
be shown,” etc. Thus we are essentially providing an engineering approach:
take our book, make sure that you can reproduce every single equation in it,
and we will guarantee that you have acquired the weaponry to attack many
as of yet unresolved issues in contemporary physics! Or, more modestly, after
studying our book you should not be intimidated by a reference to NEGF,
and will be prepared to continue the conversation on whatever physics that
was discussed.

The pedagogical approach chosen in this book has necessarily had its price.
We do not show many experimental curves and their best theoretical fits.
Rather, we focus on different theoretical approaches, and compare their inter-
relations. In particular this means that our “semiconductor” seldom has a real
band structure with several (anisotropic) conduction and/or valence bands,
or that we do not dwell in detail on various aspects of the self-consistent
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calculations (where the dynamical quantities determine the effective parame-
ters that define the structures under investigation), nor do we dwell in detail
on the many possible different scattering mechanisms that take place in a
real semiconductor (thus we consider only “impurities,” not worrying about
their charge or internal degrees of freedom, and most of our “phonons” are
of the dispersionless optical variety). We hope that this somewhat weakened
connection to real materials is compensated for by the ability to carry out
the calculations analytically, as far as it is possible, and that whenever the
practical need arises, the general structure of the theory, as it is outlined here,
can be applied to the real materials one is interested in.

We also need to comment about the prerequisites for the students app-
roaching our text. A solid command of statistical physics and quantum
mechanics is necessary. Some familiarity with second quantization would
certainly be helpful, even though we give a brief summary on the topic.
The hardest issue concerns the required background knowledge on equilibrium
Green functions. This topic is viewed as a rather advanced issue in standard
curricula, and we have no way of approaching the topics that lie at the core
of our book without assuming some prior knowledge of EGF. However, we do
provide a summary of EGF in Chap. 3, and since one of our most important
messages is that NEGF are conceptually no more difficult than EGF, our
hope is that even a reader with a slightly rusty command of EGF will not
shun away from our book; rather our hope is that this reader will learn more
about EGF’s as a by-product of studying our book!

There is yet another philosophical point that has contributed to the birth
of this book. We are strong believers that different disciplines in science can
learn and benefit from a forced contact with each other. In this day and age
of ever increasing specialization, different physics communities find it ever
more difficult to communicate with each other, even though the mathemati-
cal principles underlying their respective research topics can be (once stripped
of the everyday jargon) actually quite similar. To make a point in case, one
of the standard books in Green function theory, Fetter and Walecka [110],
nicely talks about common themes in solid-state physics and nuclear physics.
We have tried to follow the same route, but with a much more restrictive
definition: we emphasize throughout our book that the optical and trans-
port communities in semiconductor physics are actually tackling very similar
problems. Thus we conceive as one of our main tasks the abolishment of any
artificial barriers between these two groups of scientists.

The structure of this book is clear-cut: the text is divided into four parts,
the first of which serves as a summary of some the concepts needed later, and
also gives some Boltzmann-level results relevant to our topic; Part II develops
the general theoretical framework; Part III applies it to transport in semicon-
ductor microstructures, and, finally, Part IV discusses optical applications.
Parts III and IV are independent of each other, but our belief is that a serious
student will greatly benefit by comparing the similar theoretical structures
arising from superficially different physical starting points.
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Last, but not least, it is our great pleasure to thank the many colleagues
we have worked together with, and without whose expertise and (at times)
friendly criticism we would not have been able to complete the book. (Nat-
urally, the responsibility for all errors and inaccuracies lies with us.) Our
special thanks go to Laci Bányai, Rita Bertoncinı, John Davies, Claudia
Ell, Karim El Sayed, David Ferry, Karsten Flensberg, Klaus Henneberger,
Ben Hu, Kristinn Johnsen, Leonid Keldysh, Stephan Koch, Tillman Kuhn,
David Langreth, Pavel Lipavský, Gerry Mahan, Yigal Meir, Jørgen Rammer,
Lino Reggiani, Ernst Reitsamer, Christian Remling, Wilfried Schäfer, Stefan
Schuster, Henrik Smith, Bao Tran Thoai, Bedřich Velický, Andreas Wacker,
Martin Wegener, John Wilkins, Ned Wingreen, and Roland Zimmermann.

Frankfurt and Copenhagen, Hartmut Haug
August 1996 Antti-Pekka Jauho
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1

Boltzmann Equation

Summary. We review some of the general properties of the semiclassical Boltzmann
equation - not necessarily restricting ourselves to the dilute electron gas - paying
special attention to its irreversible properties.

1.1 Heuristic Derivation
of the Semiclassical Boltzmann Equation

The kinetic theory of Boltzmann which connects the regime of dynamics
with that of thermodynamics has been a milestone in the development of
theoretical physics. In order to describe the kinetics of, e.g., an atomic gas,
Boltzmann [51] introduced, with great intuition, more than half a century
before the rise of quantum mechanics, a probabilistic description for the evo-
lution of a single-particle distribution which anticipated atomistic scattering
concepts. Boltzmann introduced a single-particle probability distribution in
the phase space of the canonical variables r and p. This Boltzmann distri-
bution function is usually denoted as f(r,p, t). Obviously, this object is clas-
sical, because in quantum mechanics r and p are noncommuting operators
so that they cannot be simultaneously measured with arbitrary precision. We
will analyze in the following chapter how this conceptual difficulty affects
the limits of validity of the Boltzmann equation. Here we will first present
a heuristic derivation of the semiclassical Boltzmann equation. Later in this
book we will pay special attention to the more detailed quantum mechanical
justifications of the Boltzmann kinetics, present discussions of the limits of
this semiclassical theory, and, most importantly, derive and study the quan-
tum kinetics which has to be used instead of the Boltzmann kinetics on small
length and/or short timescales. In the framework of the classical Hamilton
theory the total change in time of this distribution function is



4 1 Boltzmann Equation

df(r,p, t)
dt

=
∂f

∂t
+

dr

dt
· ∇rf +

dp

dt
· ∇pf

=
∂f

∂t
+

p

m
· ∇rf − [∇rV (r)] · ∇pf =

∂f

∂t

∣∣∣
coll
, (1.1)

where V (r) is a single-particle potential. The left-hand side of (1.1) describes
the dynamics of a single particle. The influence of the other particles will give
rise to a further change of the distribution function ∂f/∂t|coll which describes
the effect of the collisions in the gas. We will not proceed historically, but
include directly the proper quantum statistics for quantum gases, so that
we are not limited to nondegenerate gases. This extension is necessary for
the application of the Boltzmann kinetics to electron gases in semiconductors
which are often degenerate, whether they are produced by doping, injection, or
optical excitation. Fermi’s golden rule gives us the transition probability per
unit time and thus the wanted change of f due to collisions. For an interacting
Fermi gas we calculate this change by considering approximately free-particle
collisions in which the particle is scattered from a momentum state p to a
momentum state p′ and simultaneously another particle is scattered from
state p1 to p′

1, as well as the inverse process

∂f(p)
∂t

∣∣∣
coll

= −
∑

p′,p1,p′
1

w(p,p1; p′,p′
1)
{
f(p)f(p1)[1 − f(p′)][1 − f(p′

1)]

− [1 − f(p)][1 − f(p1)]f(p′)f(p′
1)
}
, (1.2)

where the intrinsic transition probalility per unit time is given by

w(p,p1; p′,p′
1) = 1

2 |Wp,p1;p′,p′
1
−Wp,p1;p′

1,p′ |2

× δp+p1,p′+p′
1

2π
h̄
δ(εp + εp1 − εp′ − εp′

1
) . (1.3)

Here

Wp,p1;p′,p′
1

= 〈pp1|W |p′p′
1〉 (1.4)

is the interaction matrix element and εp is the energy of the particle. The
second matrix element in (1.3) is the exchange term in which p′

1 and p′ are
interchanged. This form of the intrinsic transition probability is called the first
Born approximation. The population factors take care that the initial states in
the scattering event are populated and that the final states are empty in accor-
dance with the Pauli principle. The scattering p+p1 → p′ +p′

1 is a loss term
which reduces f(p), while the inverse process p′ + p′

1 → p + p1 increases the
distribution function. For shortness of notation, the parametric dependencies
on the spatial coordinate r and time t are not shown in the collision integral.
The form of the collision integral leads to five conservation laws for: (a) the
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number of particles, (b) the vector of the total momentum, and (c) the to-
tal energy. In a dilute, nondegenerate gas the final state population can be
neglected, so that (1.2) can be simplified by the approximation 1− f(p) � 1.

A second important scattering rate for an electron gas in a perfect crystal
is the scattering by emission or absorption of a phonon. Its form is

∂f(p)
∂t

∣∣∣
coll

= −
∑
p′,q

w(p,p′;±q) ×
{
f(p)[1 − f(p′)]

[
1
2 + n(q) ± 1

2

]
−
[
1 − f(p)

]
f(p′)

[
1
2 + n(q) ∓ 1

2

]}
, (1.5)

where the intrinsic transition probabilty per unit time is given by

w(p,p′;±q) = |Mq|2δp,p′±q
2π
h̄
δ
(
εp′ ± h̄ωq − εp

)
. (1.6)

Here,Mq is the electron–phonon interaction matrix element, and n(q) and ωq

are the phonon distribution and frequency, respectively. Consider the upper
sign first, then the first term in (1.5) describes a scattering of an electron from
p into the state p′ accompanied with an emission of a phonon. The final state
boson population factor [1+n(q)] shows that the emission can be spontaneous
or stimulated. The energy conservation also shows that the energy εp of the
initially populated state is shared between the particle in the final state and
the phonon. The contribution of the lower sign in (1.5) describes a scattering
from p to p′ via absorption of a phonon with an occupation factor n(q).
The form of (1.5) shows that for the electron–phonon scattering rate only
the electron particle number is conserved, but no longer the total momentum
and the total energy of the electron gas which both can be transferred to the
phonon system. The phonon distribution in turn is also governed by a similar
Boltzmann equation which we will not give explicitly here.

Obviously the semiclassical Boltzmann equation cannot be used on very
short timescales because the assumption that the energy is conserved in an
isolated collision (1.2), (1.5) breaks down. In a short time interval δt the energy
remains undetermined due to the uncertainty relation δtδE ≥ h̄. Therefore
the strict energy conservation in an individual collision is not an inherent
property of the quantum kinetic description.

The mathematical properties of the Boltzmann kinetics contained in
(1.1), (1.2), and (1.5) have been thoroughly investigated. Its full theory is
a wide subject in its own; we will discuss only a few properties here. For a
much more complete treatment and for studies of its applications we have to
refer to such excellent books as Ziman [380], Cercignani [76], and Smith and
Jensen [327].

1.2 Approach to Equilibrium: H-Theorem

It is easy to convince oneself that the semiclassical Boltzmann equation (1.2)
describes indeed an evolution toward the thermal equilibrium in the absence
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of external fields. We introduce first an arbitrary function F (p, fp) which
depends on the momentum and the distribution f(r,p, t). Its local density is

〈F (r, t)〉 =
∑

p

F (p, fp)fp . (1.7)

The change of this function due to the collisions is [here we consider explicitly
the collision operator (1.2)]

∂〈F (r, t)〉
∂t

∣∣∣
coll

=
∑

p

[
∂F (p)
∂f(p)

+ F (p)
]
∂f(p)
∂t

∣∣∣
coll

= −
∑

pp′,p1,p′
1

w(p,p1; p′p′
1)
∂[F (p)f(p)]
∂f(p)

×
{
f(p)f(p1)[1 − f(p′)][1 − f(p′

1)]

− [1 − f(p)][1 − f(p′)]f(p1)f(p′
1)
}
. (1.8)

Exploiting the symmetry of the intrinsic transition probability w(p,p1; p′
1p

′)
with respect to the exchange of particle coordinates

w(p,p1; p′,p′
1) = w(p1,p; p′

1,p
′)

= w(p′,p′
1; p,p1) = w(p′

1,p
′; p1,p) , (1.9)

one finds that

∂〈F (r, t)〉
∂t

∣∣∣
coll

= −1
4

∑
pp′,p1,p′

1

w(p,p1; p′,p′
1)

×
[
∂(Ff)
∂f

+
∂(Ff)
∂f1

− ∂(Ff)
∂f ′

− ∂(Ff)
∂f ′1

]
×
[
ff1(1 − f ′)(1 − f ′1) − (1 − f)(1 − f1)f ′f ′1

]
. (1.10)

In (1.10) we have introduced a shorthand notation, for example in ∂(Ff)/∂f
all involved functions are evaluated at the argument p. Now consider the
following choice for F :

f(p)F (p, fp) = f(p) ln f(p) + [1 − f(p)] ln[1 − f(p)] . (1.11)

The partial derivative with repect to f yields

∂(Ff)
∂f(p)

= ln
f(p)

1 − f(p)
. (1.12)
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Equation (1.10) becomes

∂

∂t

∣∣∣
coll

∑
p

f(p) ln f(p) + [1 − f(p)] ln[1 − f(p)] =
∂

∂t
H(r, t)

∣∣∣
coll

= −1
4

∑
pp′,p1,p′

1

w(p,p1; p′,p′
1) ln

[
ff1(1 − f ′)(1 − f ′1)
(1 − f)(1 − f1)f ′f ′1

]
×
[
ff1(1 − f ′)(1 − f ′1) − (1 − f)(1 − f1)f ′f ′1

]
. (1.13)

The integrand is of the form (x− y) ln(x/y), and hence nonnegative, because
x − y and ln(x/y) have the same sign. Thus the H-function (called
“eta”-function, the capital greek eta looks like a latin H) always decreases
in the approach to equilibrium. This is the content of Boltzmann’s famous
eta-theorem, generalized to a Fermi gas.

The eta-theorem shows that the entropy density, which for a Fermi gas is
given by [226]

s(r, t) = −kBH(r, t)

= −kB
∑

p

{
f(p) ln f(p) + [1−f(p)] ln[1−f(p)]

}
, (1.14)

reaches a maximum in the equilibrium. Here, kB is Boltzmann’s constant.
Finally, we will show that the Boltzmann equation (1.2) describes indeed

an approach to the well-known Fermi equilibrium function. For this purpose
we formalize the already mentioned conservation laws. We define the functions
Fi(p) with i = 1, . . . , 5 as

F1 = 1, Fi = pi, i = 2, 3, 4, F5 = εp , (1.15)

we see immediately from (1.10) that the corresponding 〈Fi〉 are not changed
by the collisions. In equilibrium the term in curly brackets in (1.2) has to
vanish: [

f0f0
1 (1 − f0′)(1 − f0

1
′
) − (1 − f0)(1 − f0

1 )f0′f0
1
′]

= 0 . (1.16)

From this relation one sees that

ln
f0

(1 − f0)
+ ln

f0
1

(1 − f0
1 )

= ln
f0′

(1 − f0′)
+ ln

f0
1
′

(1 − f0
1
′)
. (1.17)

In other words, ln[f0/(1 − f0)] is also a conserved quantity. Because we have
only five basic conservation laws, this quantity can be expressed as a linear
combination of 1,p, and εp:

ln
f0

(1 − f0)
= A+ B · p + Cεp (1.18)
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with
A = βµ, B = βu, C = −β , (1.19)

where β = 1/(kBT ), µ is the chemical potential and u is the drift velocity. All
the expressions in (1.19) can still be – slowly varying – functions of r and t.
Such a situation is called a local equilibrium. Equation (1.18) has the solution

f0(p) =
1

eβ(εp−p·u−µ) + 1
, (1.20)

which is the Fermi distribution function. A similar derivation for the
Boltzmann equation with electron–phonon scattering results in an equilib-
rium phonon distribution function of the form

n0(p) =
1

eβ(h̄ωp−p·u) − 1
, (1.21)

because the chemical potential of bosons, whose total number is not conserved,
is identical to zero.

1.3 Linearization: Eigenfunction Expansion

Close to thermal equilibrium the nonlinear Boltzmann equation, e.g., (1.2),
can be linearized with respect to the deviation δf ≡ f − f0 from the thermal
equilibrium solution (1.20). For simplicity we consider here a spatially homo-
geneous electron gas without drift. It turns out that it is advantageous to use
a normalized deviation φ(p, t) which is introduced by writing

f(p, t) =
1

eβ(εp−µ)−φ(p,t) + 1
. (1.22)

Expanding this function with respect to φ(p, t) yields

δf(p, t) = f0(p)[1 − f0(p)]φ(p, t) . (1.23)

The linearized Boltzmann equation yields the following net scattering rate for
the state p:

∂φ(p, t)
∂t

= − 2
f0(p)[1 − f0(p)]

∑
p1,p′,p′

1

w(p,p1; p′,p′
1)

×
{
φ(p, t)

[
f0(1 − f0)f0

1 (1 − f0′)(1 − f0
1
′
)

+ f0(1 − f0)(1 − f0
1 )f0′f0

1
′]

+ · · ·
}
. (1.24)

The dots indicate terms of similar structure proportional to φ(p1, t), φ(p′, t),
and φ(p′

1, t). In equilibrium
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f0f0
1 (1 − f0′)(1 − f0

1
′
) = (1 − f0)(1 − f0

1 )f0′f0
1
′
. (1.25)

Using relation (1.25), the linearized Boltzmann equation (1.24) reduces to

∂φ(p, t)
∂t

= − 2
f0(p)[1 − f0(p)]

∑
p1,p′,p′

1

W(p,p1; p′,p′
1) (1.26)

×
[
φ(p, t) + φ(p1, t) − φ(p′, t) − φ(p′

1, t)
]

= −L φ(p, t), (1.27)

with

W(p,p1; p′,p′
1) = w(p,p1; p′,p′

1)f
0f0

1 (1 − f0′)(1 − f0
1
′
) . (1.28)

The transition matrix W of the linearized Boltzmann equation has the
following symmetry properties:

W(p,p1; p′,p′
1) = W(p1,p; p′,p′

1)

= W(p′,p′
1; p,p1) = W(p,p1; p′

1,p
′) . (1.29)

The linearized Boltzmann equation also conserves the total particle number,
the total momentum, and the total energy. If one chooses a φ(p, t) which is
proportional to either 1,p, or εp, the r.h.s of the Boltzmann equation (1.26)
vanishes. Thus, these particular forms of φ(p) are eigenfunctions to the col-
lision operator L with a vanishing eigenvalue. The collision operator is an
integral operator

Lφ(p) =
∑
p′

L(p,p′)φ(p′) . (1.30)

In general the eigenfunctions φλ(p) are solutions of the stationary equation

Lφλ(p) = λφλ(p) . (1.31)

One can define a scalar product 〈σ|φ〉 and a norm |φ| by

〈σ|φ〉 =
∑

p

f0(p)[1 − f0(p)]σ∗(p)φ(p) , |φ|2 = 〈φ|φ〉 , (1.32)

and span a Hilbert space by the eigenfunctions of L. Using the symmetry
relations of W , one shows that L is a hermitian, real, and positive semidefinite
operator in this Hilbert space, i.e.,

〈σ|Lφ〉 = 〈Lσ|φ〉; 〈φ|Lφ〉 ≥ 0 . (1.33)

The equality sign holds, if φ is one of the five collision invariants. With these
definitions the solution of the time-dependent linearized Boltzmann equation
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with a given initial deviation φ(t = 0) = φ0 can be found by expanding φ0

in terms of the set of eigenfunctions φλ of L. The solution is then of the
form

φ(p, t) =
∑

λ

Aλe−λtφλ(p) . (1.34)

The eigenvalues λ are true relaxation frequencies for deviations φλ. However,
it is obvious from (1.34) that, in general, a description of the Boltzmann rel-
axation kinetics with only one relaxation time is not possible. Therefore the
most frequently used linear approximation to the collision rate, the so-called
relaxation-time approximation,

∂f(p)
∂t

∣∣∣
coll

� −δf(p)
τ

(1.35)

is only a very crude description of the relaxation kinetics toward equilibrium.
The effective relaxation time τ in the resulting exponential decay of a devia-
tion from the thermal equilibrium distribution has, in general, no well-defined
meaning, and is known not to describe adequately the experimentally observed
transport properties (e.g., viscosities and thermal conductivity of simple
mono- and diatomic gases) [327]. Since the linearized collision operator com-
mutes with the operator for the angular momentum in p-space, the normalized
deviation φ(p) can be factorized into a radial function and an angular part.
Unfortunately, the eigenfunctions have to be evaluated numerically. Only for
a nondegenerate system of Maxwell molecules with a repulsive interaction
potential ∝ r−4 analytical eigenfunctions have been found. In the case of deg-
enerate Fermi systems, where all momenta are confined to the neighborhood
of pF, the eigenfunction expansions have provided rapidly converging series
for various transport coefficients [60, 190].

We will illustrate in Chap. 2 the use of the eigenfunction expansion for
the numerical evaluation of the relaxation kinetics due to Coulomb scattering
in a quasi-two-dimensional (2D) electron gas. Such a 2D electron gas can be,
for example, realized in a semiconductor quantum well structure. This exam-
ple simultaneously addresses an important relaxation process of hot electrons
in semiconductors, because in a dense electron gas in semiconductors the
Coulomb scattering provides the fastest relaxation process.



2

Numerical Solutions
of the Boltzmann Equation

Summary. Various concepts for the numerical solution of the semiclassical
Boltzmann equation are discussed, including an illustration of the use of a linearized
Boltzmann equation and its eigenfunction expansion for a 2D electron gas. The nu-
merical results for the linearized Boltzmann equation are compared with those of
an ensemble Monte Carlo simulation of the Master equation. Finally the Boltzmann
equation together with the Poisson equation is solved self-consistently for a spatially
inhomogeneous electron gas in the relaxation time approximation.

2.1 Introduction

In general, the solution of the Boltzmann equation requires numerical methods.
One possibility, which has been applied to the study of the Boltzmann kinet-
ics for electron systems in semiconductors, is the direct numerical integra-
tion [85,317,329]. Several examples of such direct numerical integrations will
be discussed in Part IV of this book as limiting cases of the treatment of the
more general quantum kinetics, and we postpone the further discussion of this
method up to that point.

If one studies only the relaxation of a small deviation from an equilib-
rium distribution, one can linearize the Boltzmann equation as discussed in
Chap. 1. Powerful mathematical solution methods are available for linear int-
egral equations. We will illustrate the use of the eigenfunction expansion by
treating the relaxation kinetics due to Coulomb collisions in a dense electron
gas in a quasi-two-dimensional quantum well structure in Sect. 2.2. If one can
make, in addition to the linearization, an expansion in the small momentum
change in the collision, the Boltzmann integral equation can be approximated
by the Fokker–Planck equation [241, 295] which is a second-order differential
equation and describes the relaxation in terms of a drift and a diffusion of
the distribution in momentum space. The Fokker–Planck approximation is
particularly useful for electron–phonon scattering, while the additional mom-
entum and energy conservation laws of the Coulomb scattering lead to a more
complicated integro-differential equation [144].
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Finally, the collision kinetics can be simulated by stochastic methods,
called Monte Carlo simulation [42]. Many simulations make use of the semi-
classical concept of the population of small phase space volume elements
∆3x∆3p [109,126,168,169,188,213,277,334]. These methods allow one to treat
very naturally spatially inhomogeneous systems and they are very important
in the simulation of actual semiconductor devices. Due to the semiclassi-
cal nature of the method, the treatment of degenerate electron gases is less
accurate. In this respect the ensemble Monte Carlo simulations for homoge-
neous systems in k-space [102] are more accurate because they simulate the
underlying Master equation rather than the Boltzmann equation. For spatially
homogeneous systems, one studies directly the stochastic time development
of the occupation of momentum states, and obtains Boltzmann distribution
probabilities from averaging over many microscopic realizations. The algo-
rithm for the ensemble Monte Carlo simulation can be derived rather explic-
itly from the corresponding Master equation, and we will describe this method
in Sect. 2.3, and demonstrate its use again in Sect. 2.4 in the case of Coulomb
relaxation kinetics of a dense electron gas in a semiconductor quantum well
structure.

2.2 Linearized Coulomb Boltzmann Kinetics
of a 2D Electron Gas

The Boltzmann relaxation kinetics of an electron gas in semiconductors can be
studied experimentally by time-resolved pump and probe spectroscopy. There-
fore we will illustrate the eigenfunction expansion technique for the example
of an electron gas in a quantum well structure following [102]. We assume that
the quantum well is so narrow, that we can consider only the two-dimensional
motion of the electrons in the lowest subband [31,146]. The 2D electron mo-
mentum is p = h̄k, where k is the wavevector, the effective electron mass is
m. The field lines of the Coulomb forces also enter the barrier material which
often has very similar dielectric properties as the well material. Therefore, the
Coulomb potential retains its three-dimensional 1/r form in these mesoscopic
microstructures in real space. Its 2D Fourier transform is [146]

Vq =
2πe2

ε0L2q
, (2.1)

where q is the wavenumber, L2 the 2D volume, and ε0 is the background
dielectric constant. In Coulomb systems the bare Coulomb potential in the
collision integral has to be replaced by its screened counterpart [191, 380].
In the simplest approximation the statically screened 2D Coulomb potential
Vs,q is [146]

Vs,q =
2πe2

ε0L2(q + κ)
, (2.2)
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where κ is the screening wavenumber [102],

κ =
2mL2

h̄2
e2fk=0 . (2.3)

Because, in general, the distribution of the lowest k-state changes in time
during the relaxation process, the screening wavenumber will depend para-
metrically on the time. However, in the linearized Boltzmann equation this
time dependence does not contribute because f0(t) → f0

0 .
In the following only isotropic distributions fk(t) will be considered, thus

only the eigenfunctions with angular momentum l = 0 are needed. With this
restriction only the particle number and the energy remain as collision
invariants with eigenvalues λ = 0. For isotropic deviations an angular int-
egration allows us to write the action of the collision operator (1.26) as that
of a matrix with continuous wavenumber indices k:

Lφk =
∑
k′

Lk,k′φk′ , (2.4)

where the integral kernel follows from (1.3), (1.26), and (1.28) as

Lk,k′ =
me4

πh̄3ε20

∫
d2p

∫
d2q
δ[(p − k)·q−q2]

(q + κ)2
f0

p (1−f0
|k+q|)(1−f0

|p−q|)

(1 − f0
k )

×
[
δ(k′ − k) + δ(k′ − p) − δ(k′−|k + q|) − δ(k′−|p − q|)

]
. (2.5)

Here the exchange term of (1.3) has been disregarded for simplicity. In order to
determine the eigenfunctions numerically, the integral has to be approximated
by a discrete sum on an equidistant grid ki = i∆k with i = 0, 1, . . . , N .
Thus a cutoff wavenumber kN > kF is introduced, which certainly has to be
larger than the Fermi wavenumber, defined as h̄2k2F/2m = µ. The diagonal
elements of the collision operator are usually called the collision frequencies
νk. A further simplification of the calculation can be achieved by symmetrizing
L via a similarity transformation,

L̃ = g−1Lg , φ̃ = g−1φ with L̃φ̃λ = λφ̃λ , (2.6)

where g is a diagonal matrix with the elements

gk,k′ = δk,k′
1√

kf0
k (1 − f0

k )
. (2.7)

As a first step, the matrix elements Lk,k′ are computed for k, k′ ≤ kN. Next
the eigenfunctions and eigenvalues λ of the symmetric matrix L̃ are evalu-
ated. The eigenfunctions are finally transformed back by multiplication with
the matrix g to get the desired eigenfunctions φλ. The step width for all
calculations is taken to be ∆k = kF/50. A further reduction of the step width



14 2 Numerical Solutions of the Boltzmann Equation

does not change the results essentially. The dependence of the results on the
cutoff wavenumber kN will be discussed below.

The collision frequency νk is sometimes used [249] to get an estimate for
the relaxation times due to inelastic carrier–carrier scattering. In Fig. 2.1 the
collision frequency νk is shown for four different carrier densities. The mate-
rial parameters are those of the conduction band of GaAs, i.e., m = 0.0665m0

and ε0 = 13.71. The collision frequency decreases with increasing density.
This effect is caused by the Pauli-blocking of the final scattering states and
the enhanced screening of the Coulomb potential. For increasing degeneracy
a pronounced dip appears in the vicinity of the Fermi energy. This dip can be
understood, if one recalls that νk is the sum of the equilibrium scattering rates
in and out of the state with energy εk. These rates are related by detailed
balance, i.e.,

νk = Γ in
k + Γ out

k ; Γ out
k =

1 − f0
k

f0
k

Γ in
k . (2.8)

At low temperatures these rates around kF are very small. Consider, e.g.,
a state k, above but close to kF; its rate out is small because of the small
number of empty final states between k and kF . For k → ∞ the collision
frequency tends to 0. Generally one finds a dense spectrum of eigenvalues λn,
n = 1, 2, . . . , N , therefore we define a density of eigenstates

�(λn) =
2∆k

λn+1 − λn−1
, (2.9)

which becomes independent of the step width for small ∆k. The density of
eigenstates �(λn) is shown in Fig. 2.2 as a function of λ for two carrier densities

Fig. 2.1. Collision frequency νk vs. k/kF for various 2D plasma densities in units
of 1012 cm−2: (Full line) n = 0.64; (dashed line) n = 1.28; (dashed-dotted line)
n = 2.56; (dotted line) n = 5.12 according to [102]
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Fig. 2.2. Density of eigenstates �(λ) of the collision eigenfrequencies for two plasma
densities n and various values of the cutoff. (a) Top part: For n = 1.28 · 1012 cm−2

and kN = 2kF (dotted line); kN = 4kF (dashed line); kN = 6kF (full line).
(b) Bottom part: For n = 0.64 × 1012 cm−2 and kN = 2kF (dotted line); kN = 4kF

(dashed line); kN = 7kF (full line) according to [102]. The insets are double loga-
rithmic plots

and three values of the cutoff wavenumber, respectively. The spectrum con-
sists of two eigenvalues numerically close to zero (belonging to the collision
invariants) and a continuous band. The upper bound of the spectrum is app-
roximately given by the highest collision frequency. The peak in �(λn) at
the higher density of Fig. 2.2 is correlated with the structure in the colli-
sion frequency νk around kF , and is therefore absent in the low-density case
of Fig. 2.2b. The only effect of increasing the cutoff wavenumber is to add
states below a kN -dependent frequency, as the three curves for the various
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cutoff values illustrate. Above this frequency, �(λn) remains unchanged if kN
is increased further. These unchanged parts of the curves are the thick line
segments in Fig. 2.2.a, b. It is not clear whether a gap exists between the two
zero-eigenvalues of the collision invariants and the continuous spectrum. The
double-logarithmic insets in Fig. 2.2.a, b suggest that the density of eigen-
states can be extrapolated to smaller λ-values by a power law �(λn) ∝ λ−1.8

for both carrier densities (thick dotted parts of the curves). If this power law
holds also for larger kN , no gap exists in the complete spectrum for kN → ∞.
For nondegenerate distributions, together with three-dimensional rigid spheres
and power-law potentials, it has been shown with a scattering angular cutoff
that the continuous spectrum of L extends over the whole range of the col-
lision frequencies [249]. It seems that degenerate 2D electron systems with a
screened Coulomb potential have the same property.

The fundamental properties of the eigenfunctions φλ are the same for all
densities, thus only the high-density case is discussed. In Fig. 2.3 the two first
numerically obtained eigenfunctions φ0,1 and φ0,2 are compared with the exact
orthonormalized collision invariants corresponding to 1 and εk,

φ0,1 = α1 and φ0,2 = α2k
2 − α3 , (2.10)

where the constants are determined by the orthonormalization conditions.
The deviations on the high-energy side are caused by the cutoff.

Two typical eigenfunctions φ̃λ,k of the continuous spectrum of the hermi-
tian matrix are shown in Fig. 2.4, together with the corresponding distribution
deviations δfλ,k for λ = 0.8 × 10−13 and 1.6 × 10−13 s−1, respectively. The
eigenfunctions increase in amplitude and frequency with k until they reach
their maxima at k = kλ for which the collision frequency νk equals the eigen-
frequency λ, and vanish rapidly for still higher k values. Figure 2.4 shows

Fig. 2.3. The two eigenfunctions of the collision invariants φ0,1(k) and φ0,2(k)
vs. k/kF according to [102]. Dots numerical values, lines exact orthogonal
eigenfunctions
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Fig. 2.4. Two eigenfunctions of the continuous spectrum φ̃λ(k) vs. k/kF for λ =
0.8 × 10−13 s−1 (thick line) λ = 1.6 · 10−13 s−1 (thin line) according to [102]. Above
the corresponding distribution deviations δfλ,k

that the eigenfunctions extend over the whole k-range below kλ. The small
wavenumber components of the distribution deviations δfλ,k are enhanced
by the normalization factors as shown in the upper part of Fig. 2.4. Due to
the extension of the distribution deviations δfλ,k it is not possible to define
k-dependent relaxation times because, in general, many eigenfunctions are
needed to represent a given narrow deviation from equilibrium.

The curves for the largest cutoff wavenumbers in Fig. 2.2a, b show that
a peak in the density of eigenstates appears at low relaxation frequencies λ.
This peak is due to one unique eigenfunction which extends over a wide range
in k-space and, like the eigenfunctions belonging to higher eigenvalues, λ does
not vanish at k = 0. The eigenfunctions which belong to the density of eigen-
states below this peak are of different type and vanish rapidly for wavenum-
bers k ≤ 3kF. Thus for deviations below or up to the Fermi wavenumber, the
eigenvalue of the unique eigenfunction determines the long-time relaxation
behavior. However, due to the numerical incompleteness of the spectrum, no
final conclusions can be made. Note that the maximum cutoff wavenumber
is 6kF, which corresponds to an energy which is already 36 times the Fermi
energy. Thus for a more detailed description of the long-time behavior, the
detailed band structure has to be taken into account.

Next we study the relaxation kinetics with given initial deviations from
the equilibrium distribution. The following form of the initial nonequilibrium
distribution is considered

fk(t = 0) = f0,i
k + C exp

[
−
(
εk − ε0
σ

)2
]

= f0,f
k + δfk(t = 0) . (2.11)
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Here f0,i and f0,f are the initial background and the final equilibrium
distributions, respectively. We have added a Gaussian nonequilibrium dis-
tribution to the initial background equilibrium distribution. The deviation
δfk(t) from the final equilibrium distribution tends to zero for t→ ∞. Within
the expansion method, the time development of the corresponding normal-
ized deviation φk(t) is evaluated by an expansion in terms of the full set of
eigenfunctions φλn

φk(t) =
N∑

n=1

Anφλn,ke−λnt . (2.12)

The expansion coefficients An are evaluated with the discrete approximation
of the scalar product:

An = 〈φ(t = 0)|φλn〉 = 2π
∑

k

f0,f
k (1 − f0,f

k )φk(t = 0)φλn,k . (2.13)

Since we linearize around the final equilibrium distribution, the first two
coefficients A1 and A2 vanish. The weight function α(λ) of an eigenvalue
λ in the relaxation process given by

α(λn) = �(λn)A2
n (2.14)

is shown in Fig. 2.5a–d for a carrier density n = 1.28 × 1012 cm−2 with a
temperature T = 250K and a chemical potential µ = 43.6meV of the final

Fig. 2.5. Weight function αλ of (2.4) vs. λ for four values of the peak width σ. The
density of states is shown by the dotted curves for comparison according to [102]
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equilibrium density. The central position of the initial deviation is ε0 = 0.8µ
and four different values of its width σ are used. For comparison the density of
eigenstates is also shown. The first curve for σ = 0 is obtained for a deviation
of the form δfi ∝ δi,j and has actually still a finite width given by the finite
step width ∆k. The spectral weight peaks at the collision frequency which
belongs to the position of this delta-function-like deviation (Fig. 2.1). How-
ever, slower components do not vanish, explaining why the initially fast decay
slows down. With increasing width σ, the slow components become more and
more important, whereas the contribution of eigenvalues in the vicinity of the
peak in the first curve vanishes. The eigenfunction which belongs to this peak
oscillates very rapidly at the position of the perturbation. As a consequence,
the scalar product vanishes if the perturbation is broad. On the other hand
the eigenfunctions with lower eigenvalues oscillate more slowly in the vicinity
of the deviation and gain spectral weight as the deviation becomes broader.

The relaxation kinetics will be characterized by the decay of the positive
definite norm of the deviation from the final distribution determined by

|φ(t)|2 =
N∑

n=3

A2
ne−2λnt . (2.15)

Within the expansion method, a time-dependent relaxation rate γ(t) is intro-
duced by

|φ(t)| = |φ(0)|e−g(t) with
dg
dt

= γ . (2.16)

The relaxation rate dg(t)/dt is shown in Fig. 2.6 for the parameters of Fig. 2.5.
The relaxation rate decreases about 10% in one relaxation time. The dot-
ted line, e.g., of Fig. 2.6 for a peak width σ = 0.1µ, again shows that even
a relatively narrow deviation decays appreciably slower than expected from

Fig. 2.6. Relaxation rate γ(t) vs. t for the initial distributions with ε0 = 0.8µ and
various width values σ: σ = 0 (full line); σ = 0.1µ (dotted line); σ = 0.2µ (dashed
line); σ = 0.3µ (dashed-dotted line) according to [102]
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Fig. 2.7. Relaxation of a deviation from the final equilibrium distribution calculated
by the eigenfunction expansion method according to [102]

the approximation in which the collision frequency νk is used for the relax-
ation rate.

Finally, the resulting relaxation kinetics of the expansion method is pre-
sented in Fig. 2.7. The temporal evolution of the deviation from the final dis-
tribution δfk(t) = fk(t)− f0,f

k is shown for an initial Gaussian deviation which
is centered at ε0 = µ and has a width σ = 0.4µ, where the parameters of the fi-
nal distribution are again µ = 43.6 meV, T = 250 K and n = 1.28×1012 cm−2.
Because δfk(t) is the deviation from the final equilibrium distribution, δfk(0)
in Fig. 2.7 differs at t = 0 from a simple Gaussian; it contains negative over-
shoots on both sides of the central peak. We observe that at these den-
sities the relaxation process is completed in a few hundred femtoseconds.
In this short timescale one may wonder whether the semiclassical Boltz-
mann equation with the statically screened Coulomb potential may be used.
A detailed analysis of these concepts as well as their quantum kinetic exten-
sions will be given in Part IV of this book.

2.3 Ensemble Monte Carlo Simulation

2.3.1 General Theory

In this chapter we want to discuss an important stochastic method for the
solution of kinetic equations. We simulate concrete realizations of a system
and have to average the result of the calculation over many ensembles. We
consider a configuration or state α of the system. The probability for the state
α is Pα ≥ 0 and

∑
α Pα = 1. The Master equation for time evolution of Pα is

dPα

dt
= −

∑
α′ �=α

[
PαWα,α′ − Pα′Wα′,α

]
, (2.17)

whereWα,α′ is the transition probability per unit time from state α into state
α′. It is given by Fermi’s golden rule
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Wα,α′ =
2π
h̄
|Vα,α′ |2δ(εα − εα′) , (2.18)

where Vα,α′ are the matrix elements of a perturbation potential V . We notice
that we could include an arbitrary diagonal transition probabilityWα,α to the
Master equation without changing it. We do not consider here the interesting
problem of how such an irreversible Master equation can be derived from the
quantum mechanical Liouville equation of the statistical operator, see, for
example, [132, 272, 296, 385].

If one describes a configuration in terms of the occupation numbers
n = {nk1 , nk2 , nk3 , . . .} of the various single-particle states ki, one gets the
connection with the mean Boltzmann distribution functions fk by

fk(t) = 〈nk(t)〉 =
∑

n

Pn(t)nk . (2.19)

For fermions nk = 0, 1 and for bosons nk = 0, 1, 2, . . . . A further assumption
is that correlations are not important, so that, e.g.,

〈nk(t)nk′〉 � fk(t)fk′ . (2.20)

As an example, for electrons scattering against impurities, one gets from the
averaged Master equation (2.17) the Boltzmann equation

dfk
dt

= −
∑
k′

[
fkWk,k′ − fk′Wk′,k

]
, (2.21)

with
Wk,k′ =

2π
h̄
ni|Vk,k′ |2δ(εk − εk′) , (2.22)

where ni is the number of impurities and εk the kinetic energy of an electron
with momentum k.

An even simpler problem is the random walk of a single particle on a one-
dimensional chain, on which only nearest-neighbor transitions with a transi-
tion probability W are allowed,

dPn

dt
=W

[
Pn−1(t) + Pn+1(t) − 2Pn(t)

]
, (2.23)

where n denotes the site on the chain. This problem can be solved exactly.
Nevertheless, we consider here an approximate method which will later be used
in Monte Carlo simulations of more complicated problems. One approximates
the differential equation by a difference equation with the discrete time steps
tm = m∆t with ∆t = 1/2W . With

dPn(t)
dt

� Pn(m+ 1) − Pn(m)
∆t

= 2W
[
Pn(m+ 1) − Pn(m)

]
, (2.24)
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we find
2Pn(m+ 1) = Pn−1(m) + Pn+1(m) . (2.25)

This equation can be solved analytically for a given initial condition Pn(0).
One gets by iteration

Pn(m) =
1

2m

m∑
l=0

(
m

l

)
Pn−m+2l(0) , (2.26)

with the binomial coefficients(
m

l

)
=

m!
(m− l)!l! .

Suppose that initially only one lattice point is occupied, i.e., Pn(0) = δn,0.
After m time steps the distribution has spread from n = −m to +m, show-
ing the diffusion of the probability by the random walk process on the chain.
A comparison with the exact solution shows that the results of the discrete
version rapidly approach the results of the differential equation for increasing
time.

After this simple illustration we will treat the general Master equation us-
ing a similar discretization in time by choosing (∆t)−1 = τ−1

α =
∑

α′ �=αWα,α′

which yields

Pα(t+ ∆t) =
∑

α′ �=α

Pα′Πα′,α with Πα,α′ =
Wα,α′∑

α′ �=αWα,α′
. (2.27)

Πα,α′ is obviously a probability with the properties 0 ≤ Πα,α′ ≤ 1 and∑
α′ �=αΠα,α′ = 1. The disadvantage in this formulation is that ∆t = τα

depends on the actual configuration α and would thus have to be computed
in each time step. To overcome this extremely time-consuming procedure,
the concept of self-scattering is used by introducing a transition probability
Wα,α which, as noted below (2.18), does not change the Master equation. We
choose the transition probability Wα,α = Wα for self-scattering in such a
way that ∆t = τs becomes a rather short, but α-independent self-scattering
time:

Pα(t+ ∆t) − Pα(t) = −∆t
∑
α′

(
PαWα,α′ − Pα′Wα′,α

)
(2.28)

with
1

∆t
=
∑
α′
Wα,α′ where ∆t = τs < infατα , (2.29)

so that
Pα(t+ τs) =

∑
α′
Pα′(t)Πα′,α(t) . (2.30)

If Pα′(t) is known, one can calculate Pα(t + ∆t) with statistical meth-
ods. Suppose the probability Πα,α′ = p with 0 ≤ p ≤ 1. Next, one se-
lects with a random number generator a random number ζ. If ζ ≤ p,
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the transition from α′ to α takes place, while it is not allowed if ζ > p.
With this rule one obtains the correct probability with many attempts, be-
cause

number of cases with ζ ≤ p
total number of attempts

→ p .

Numerical number generators use the simple map

yn+1 = ayn + b mod m and ζn+1 =
yn+1

m
. (2.31)

The seed y0 and the numbers a, b, m are large natural numbers, but their se-
lection is crucial and has to be checked carefully, so that no cycles and obvious
correlations exist in the numbers ζn.

2.3.2 Simulation of the Relaxation Kinetics
of a 2D Electron Gas

In order to illustrate the use of the ensemble Monte Carlo simulation tech-
nique, we study again the relaxation of a 2D electron gas as in Sect. 2.2,
with the important difference that we do not use a linear approximation.
The general transition probability Wα,α′ in the Master equation is for the
electron–electron interaction according to [102] given by [compare also with
(1.3), (2.17), and (2.18)]

Wα,α′ =
∑

k,k1,k′,k′
1

wk,k1;k′,k′
1
nknk1(1 − nk′)(1 − nk′

1
)Dα;α′

k,k1;k′,k′
1
, (2.32)

where

wk,k1;k′,k′
1

=
2π
h̄
V 2

s,|k−k′|δk+k1−k′−k′
1
δ(εk + εk1 − εk′ − εk′

1
) , (2.33)

where Vs is the 2D screened Coulomb potential (2.2). The population nk of
the microscopic Fermi state k is either 0 or 1. The microscopic populations are
connected with the Boltzmann distribution via the ensemble average (2.19).
The term Dα;α′

k,k1;k′,k′
1

contains all the δ-functions that connect the two config-
urations α and α′ with the corresponding microscopic populations nk and n′k

Dα;α′

k,k1;k′,k′
1

= δnk′ ,nk−1δnk′
1
,nk1−1δnk′ ,nk+1δnk′

1
,nk′

1
+1 , (2.34)

because for transitions from the configuration α to α′ the corresponding pop-
ulation of the k state, e.g., has to be nk = 1, while after the transition the
same state is empty: nk′ = 0. Summing over α′ implies just that the factor
Dα;α′

k,k1;k′,k′
1

drops out:

1
τα

=
∑
α′
Wα,α′ =

∑
k,k1,k′,k′

1

wk,k1;k′,k′
1
nknk1(1 − nk′)(1 − nk′

1
)

≤
∑

k,k1,k′,k′
1

wk,k1;k′,k′
1
nknk1 . (2.35)
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Using the definitions

γk,k1 =
∑
k′,k′

1

wk,k1;k′,k′
1
nknk1 , and γ = supk,k1

γk,k1 , (2.36)

the right-hand side of (2.35) can be maximized further,

1
τα

≤ γ
∑
k,k1

nknk1 = γN(N − 1) =
1
τs
, (2.37)

whereN is the number of electrons in the ensemble. By introducing πk,k1;k′,k′
1
,

which is the normalized transition probability corresponding to wk,k1;k′,k′
1

πk,k1;k′,k′
1

=
wk,k1;k′,k′

1

γk,k1

with
∑
k′,k′

1

πk,k1;k′,k′
1

= 1 , (2.38)

Wα can be written as

Wα =
∑

k,k1,k′,k′
1

πk,k1;k′,k′
1
nknk1

[
γ − γk,k1(1 − nk′)(1 − nk′

1
)
]
. (2.39)

The probability factors Πα,α′ of (2.27) become

Πα,α′ =
∑

k,k1,k′,k′
1

πk,k1;k′,k′
1

nk

N

nk1

N − 1

×
{
Dα;α′

k,k1;k′,k′
1

γk,k1

γ
(1 − nk′)(1 − nk′

1
)

+ δα,α′
[
1 − γk,k1

γ
(1 − nk′)(1 − nk′

1
)
]}
. (2.40)

As discussed above, the probability to find at time t+ τs a system in state α
which was in the state α0 at time t is given by Πα0,α.

Consider a specific state α1 that differs from α0 only in the occupation of
the four momentum states k,k1 and k′,k′

1. Then Πα0,α1 and Πα0,α0 are

Πα0,α1 = πk,k1;k′,k′
1

nk

N

nk1

N − 1
γk,k1

γ
(1 − nk′)(1 − nk′

1
) , (2.41)

Πα0,α0 = πk,k1;k′,k′
1

nk

N

nk1

N − 1

[
1 − γk,k1

γ
(1 − nk′)(1 − nk′

1
)
]
. (2.42)

This result shows thatΠα0,αi with i = 0, 1 is the product of three probabilities
P (1), P (2), and P (3), where

P (1)(k,k1) =
nk

N

nk1

N − 1
with

∑
k,k1

P (1)(k,k1) = 1 (2.43)
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is the probability for the electrons with momentum k and k1 to be the
scatterers;

P
(2)
k,k1

(k′,k′
1) = πk,k1;k′,k′

1
with

∑
k′,k′

1

P
(2)
k,k1

(k′,k′
1) = 1 (2.44)

is the probability that these electrons are scattered into the states k and k1,
and, finally

P
(3)
k,k1;k′,k′

1
(αi) =

{
γk,k1

γ (1 − nk′)(1 − nk′
1
) if i = 1

1 − γk,k1
γ (1 − nk′)(1 − nk′

1
) if i = 0

, (2.45)

with ∑
i=0,1

P
(3)
k,k1,k′,k′

1
(αi) = 1 , (2.46)

is the probability that the four selected momentum states lead to a real or a
self-scattering event: the factor (1−nk′)(1−nk′

1
) ensures that a real scattering

can occur only if the final states are empty. (Remember that this factor has
been dropped in the definition (2.37) of the self-scattering time τs.)
γk,k1/γ can be understood as a correction factor. Using P (1)(k,k1) to sel-

ect the scatterers, all electron pairs have equal probability. But this is wrong,
because the scattering cross section varies for different momentum states. For
a large cross section γk,k1 � γ (i.e., P (3) � 1, if the final states are empty)
the selection of k and k1 is likely to produce a real scattering event. In the
opposite case a self-scattering event is most probable. (Remember that γk,k1

has been replaced by γ for τs.)
We conclude this section by showing some results for the relaxation kinetics

of a 2D electron gas [102]. Such a 2D electron gas can be realized in optically
excited quantum-well semiconductor structures. At the initial time t = 0 we
assume that a Gaussian nonequilibrium distribution has been created. The
initial distribution is centered at the energy ε0 = 60 meV above the band
edge and has a spread σ = 60 meV,

fk(t = 0) = C(n) exp

[
−
(
εk − ε0
σ

)2
]
. (2.47)

In contrast to the initial condition (2.11) no background equilibrium distribu-
tion is assumed in (2.47). By varying the amplitude C(n) between 0.22 and
1.0, one varies the density between 0.6× 1012 and 2.7× 1012 cm−2. We study
the relaxation of the normalized distribution deviation (1.23) from equilib-
rium φk(t). The equilibrium distribution f0

k has the same particle and energy
densities as the nonequilibrium distribution fk(t). The relaxation of the norm
|φk(t)| is again expressed in terms of a time-dependent relaxation rate γ(t) as
in (2.31)

|φk(t)| = |φk(0)|e−γ(t)t . (2.48)
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With Monte Carlo results a differentiation is not possible. One finds that the
resulting γ(t) varies up to 50% during the first 100 fs: an initially fast relax-
ation slows down. These results show that a unique relaxation time cannot
be defined properly, because the nonexponential behavior shows up on the
same timescale as the relaxation time itself. On the other hand, the density-
dependence of the initial relaxation time can still be well defined. Averaging
γ(t) over the first 50 fs, the resulting relaxation times (i.e., 1/γ) are shown
in Fig. 2.8 for two different approximations of the screening. The statically
screened potential depends, according to (2.2), in 2D on the distribution
fk=0(t). If the actual distribution is used, one speaks about time-dependent
static screening, if fk=0(t) is replaced by f0

k=0 one speaks about equilibrium
screening. The solid line in Fig. 2.8 is a power-law fit for Monte Carlo data
obtained with time-dependent screening (solid squares) and the dashed line
for those with equilibrium screening (open squares). The labels give the tem-
perature of the final Fermi distribution f0, which cannot be fixed by the initial
condition. The best fits are

τ =

{
185 fs

(
n

1011cm−2

)−0.30 for time-dependent screening ,
242 fs

(
n

1011cm−2

)−0.22 for equilibrium screening .
(2.49)

The two different screening concepts yield nearly the same density depen-
dence, but different absolute values. Time-dependent static screening leads to
shorter relaxation times, because for the given initial condition the screening
is less effective at the beginning. In a high-density system the distribution is

Fig. 2.8. Relaxation rate γ(t) for two different screening models according to [102]
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relaxed when the number of scattering events is comparable to the number
of electrons. For a low-density system more scattering events are necessary,
because in each collision less momentum and energy is transferred due to the
smaller screening momentum. Becker et al. [34] measured for the density dep-
endence of the polarization dephasing in bulk GaAs an exponent of −0.3, but
the agreement with our result is certainly fortuitous, as will be discussed in
detail with the corresponding quantum kinetic treatment in Part IV.

If one adjusts the peak position, the width and the amplitude of the initial
Gaussian distribution in order to keep the temperature of the final equilibrium
distribution constant, the same density dependence but with different absolute
values are found.

Figure 2.9 shows the evolution of an initial Gaussian distribution cen-
tered at ε0 = 30meV with a width σ = 20meV and an amplitude of 1. The
temperature of the final Fermi distribution is 236K, the chemical potential is
30meV and the density is 0.96×1012 cm−2. The relaxation time is about 50 fs.

Fig. 2.9. Monte Carlo generated electron distribution in the 2D k-space after four
times (t=0, 25, 50, 200 fs) according to [102]
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In Fig. 2.9 an ensemble of about 5000 electrons is shown in the 2D k -space at
four different times, as obtained from the screen of a personal computer. Each
point corresponds to an electron. The initial distribution corresponds to an
initial Gauss distribution centered at ε0 = 30meV above the band edge with a
width of σ = 20meV. In Fig. 2.10 the corresponding distribution functions are
given averaged over five runs. It is seen that the relaxation consists in a small
drift and a pronounced diffusion in k -space [144]. After 200 fs, i.e., four relax-
ation times, the deviation of the electron distribution from the equilibrium
distribution reaches the noise level. The simulation shows that the relaxation
is more or less completed if the number of collisions equals the number of
electrons in the system. Thus one collision per particle is sufficient to relax
the system.

Finally, we will use the Monte Carlo simulation to calculate also the
decay of an initially given deviation from an equilibrium distribution. In
order to make a quantitative comparison with the results of the eigenfunction
expansion (shown in Fig. 2.7), we use the same conditions. The equilibrium
screening which is inherent to the expansion method was also used in the
simulations.

Figure 2.11 again shows the temporal evolution of the deviation from the
final distribution δfk(t) = fk(t)− f0,f

k for an initial Gaussian deviation which

Fig. 2.10. Boltzmann distributions corresponding to the four snapshots of Fig. 2.9
after four times (t=0, 25, 50, 200 fs) obtained by averaging over five Monte Carlo
simulations according to [102]
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Fig. 2.11. Monte Carlo relaxation kinetics. Plotted is the deviation from the final
equilibrium distribution as in Fig. 2.7 for identical parameters according to [102]

is centered at ε0 = µ with a width σ = 0.4µ. The Monte Carlo data were
averaged over five runs. For the Monte Carlo method it is necessary to def-
ine an initial equilibrium background to ensure that the initial distribution,
i.e., the Gaussian deviation plus background, has the same density and energy
as the final one. While the results of the linearization method do not depend on
the amplitude of the deviation, for the Monte Carlo simulation the amplitude
has to be chosen (here C = 0.8 has been used) to be as small as possible, but
big enough to give a good signal-to-noise ratio. The deviation has to fulfill
the following constraints: (a) It must be possible to find a initial equilibrium
background, so that the distribution relaxes to the final one given by the
parameters of the linearization. (b) The distribution has to be a probability
0 ≤ fk(t) ≤ 1. For Figs. 2.7 and 2.11 the parameters of the initial equilibrium
background distribution are T i = 235K, µi = 12.5meV.

Except for the noise in the Monte Carlo results of Fig. 2.11, the agreement
with the results of the eigenfunction expansion method of Fig. 2.7 is extremely
good, in spite of the fact we treated a relatively large deviation from equilib-
rium for which the validity of the linearization may be questioned.

2.4 N+N−N+ Structure: Boltzmann Equation Analysis

We conclude our review on Boltzmann-level studies relevant to semiconduc-
tor microstructures by presenting results obtained by [25] for a N+N−N+-
structure, i.e., a structure where a thin (“mesoscopic”) weakly doped region
is sandwiched between two heavily doped metallic contacts. The key issue is
the spatial inhomogeneity of the structure, which requires a self-consistent
determination of the electric field. For simplicity, we shall consider a one-
dimensional system. Thus, the task is to calculate the distribution function
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(from which charge densities and current then follow) with the Boltzmann
equation,[

v
∂

∂x
+

(−e)E(x)
m

∂

∂v

]
f(x, v) = −1

τ
[f(x, v) − f l.e.(x, v)] . (2.50)

For simplicity, the collision term is evaluated in a relaxation-time approxima-
tion. The important feature of (2.50) is that the nonequilibrium distribution
function f(x, v) relaxes toward a local nondegenerate equilibrium distribution
function, discussed generally in connection with (1.20),

f l.e.(x, v) = n(x)
√

m

2πkBT0
exp

[
− mv

2

2kBT0

]
. (2.51)

Here T0 is the lattice temperature, and the local density is determined from the
nonequilibrium distribution function, n(x) =

∫
dvf(x, v). The choice (2.51)

guarantees that the current continuity equation is satisfied. To see this, inte-
grate (2.50) over v:∫

dv
[
v
∂f

∂x
+

(−e)E(x)
m

∂f

∂v

]
= −1
τ

∫
dv[f(x, v) − f l.e.(x, v)] . (2.52)

The right-hand side of (2.52) vanishes and so does the second term on the
left-hand side. In the first term we can commute the velocity integration and
the spatial differentiation, and find ∂/∂x

∫
dvvf(x, v) = dJ(x)/dx = 0, i.e.,

the steady-state continuity equation. One should note that the collision term
in (2.50) is not energy conserving: It represents inelastic collisions which al-
low the energy fed in by the electric field to be dissipated to the lattice at
temperature T0.

Finally, the electric field E(x) is determined from the Poisson equation,

dE(x)
dx

=
4πe
ε

[ND(x) − n(x)] , (2.53)

where ND(x) is the doping density,

ND(x) =
{
N+ x ∈ contacts
N− x ∈ central region . (2.54)

The experimental boundary condition is provided by the applied voltage:
Vapp = V (xmax)−V (xmin), where xmax,min are suitably chosen points deep in
the contact regions, where the electrical field is screened to zero. The potential
V (x) is linked to the electric field via V (x) = −

∫ x dx′E(x′). The task is thus
to solve the coupled equations (2.50) and (2.53). We observe that the problem
is nonlinear, because the electric field E(x) appearing in (2.50) involves the
distribution function f(x, v). Before discussing the general solution of (2.50)
and (2.53), it is useful to consider some simple special cases.
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In the case of zero applied voltage, Vapp = 0, the distribution function
reduces to the local equilibrium distribution function (2.51), and the collision
term in the Boltzmann equation vanishes identically. We can derive an equa-
tion for the equilibrium charge density n0(x) by multiplying (2.50) by v and
integrating over v. This results in

kBT0

m

dn0(x)
dx

+
(−e)E(x)
m

n0(x) = 0 , (2.55)

which can be integrated to

n0(x) = N+ exp
[
e

kBT0

∫ x

xmin

dx′E(x′)
]
. (2.56)

This relation combined with the Poisson equation (2.53) yields a closed equa-
tion for the electric field, and hence the other quantities of interest as well.
The equilibrium results are displayed as a dotted line in Fig. 2.12.

Consider next spatially uniform electric fields. The results obtained for
this case should approximate the inhomogeneous case quite accurately for
geometries where the N− region is long compared to other length scales
(Debye screening length λD =

√
εkBT0/(4πe2N−) or thermal mean free path

λth = τvth, vth =
√
kBT0/m). The Boltzmann equation can now be solved

exactly [16]:

fhom(v) =
1
2
n

vd
exp

[
− v
vd

+
1
2

(
vth
vd

)2
]

erfc
[

1√
2

(
− v
vth

+
vth
vd

)]
, (2.57)

where erfc stands for the complement of the error function, and we introduced
the drift velocity vd = −eEτ/m (note that the electric field has a negative

Fig. 2.12. Potential energy U(x) = e
∫ x

dx′E(x′) and electron velocity v(x) =∫
dvvf(x, v) for the N+N−N+-structure according to Baranger et al. [25]
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Fig. 2.13. Normalized electron velocity distribution function for a uniform field
(pluses) compared to a drifted-Maxwellian distribution at the same average velocity
and temperature (dotted line) and the distribution far away from the contacts for a
N+N−N+ structure

Fig. 2.14. Electron velocity distributions at the points x = x1, x2, x3 defined in
Fig. 2.12

numerical value so that the current flows from left to right). Solution (2.57)
differs markedly from the drifted Maxwellian, which is an often used model
for nonequilibrium distribution functions (Fig. 2.13), but agrees well with a
distribution obtained from the full self-consistent solution. The results of
Fig. 2.13 cast serious doubts on the applicability of drifted-Maxwellian (or
drifted-Fermi) distributions to modeling of mesoscopic structures. For nonzero
applied voltages the self-consistent equations (2.50) and (2.53) must be solved
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numerically. It is advantageous to change variables in the Boltzmann equation
from (x, v) to (x,w), where w = mv2/2 + U(x) is the total energy:

v(w, x)
df(x,w)

dx
= −1
τ

[
f(x,w) − f l.e.(x,w)

]
. (2.58)

w enters this equation simply as a parameter. A detailed description of the
required (rather extensive) numerical work is given by Baranger [25], and
we concentrate here on some representative examples. Figure 2.12 shows the
calculated potential energy profile, and the local velocity, in equilibrium and
at a finite applied voltage. The effect of the applied voltage is to lower and shift
the effective potential energy barrier, which keeps the carriers in the highly
doped contacts. Electrons with sufficiently high right moving velocities can
be injected ballistically to the central region, and examples of the resulting
highly non-Maxwellian distribution functions are shown in Fig. 2.14. These
results once again underline the profound effects of the spatial inhomogeneity:
Any attempt to model these nonequilibrium distribution functions with some
effective temperatures is necessarily very crude.
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Equilibrium Green Function Theory

Summary. The second quantization for many-body systems is introduced. Within
this formalism an elementary derivation of a non-Markovian quantum kinetic equa-
tion is given for the reduced density matrix. Next we review the equilibrium Green
functions, including the dissipation-fluctuation theorem, the self-energy concept, and
the perturbation expansion.

3.1 Second Quantization

Equilibrium many-body theory and Green functions use a formalism called
second quantization. In this formalism particles are represented by the field
operators ψ(x):

ψ(x) =
∑

k

uk(x)ck , ψ†(x) =
∑

k

u∗k(x)c†k . (3.1)

The operator ck annihilates a particle in state k, and the operator c†k creates
a particle in state k, respectively. The field operators ψ and ψ† operate in
the abstract occupation-number Hilbert space, since they are expressed in
terms of ck and c†k, respectively. The system dimensionality has not yet been
fixed, and for the moment we suppress the vector notation. In what follows
we also suppress the spin labels; it is relatively straightforward to include
them afterward [110]. The wavefunctions uk(x) form a complete set of single-
particle eigenfunctions with quantum labels k. Consider now the action of the
creation operator c†k in the Fock space formed by the Hilbert spaces for all
particle numbers 0, 1, 2, . . .. For fermions the states with several particles have
to be antisymmetric, and for bosons symmetric. We will limit ourselves here
to Fermi systems:

c†k = |k〉〈0| +
∑
k1

|k, k1〉A 〈k1|

+
1
2!

∑
k1,k2

|k, k1, k2〉A A〈k1, k2| + · · · . (3.2)



36 3 Equilibrium Green Function Theory

|0〉 denotes the vacuum state with no particles. The antisymmetrical two-
particle fermion state is

|k, k′〉A =
1√
2!

(
|1, k〉|2, k′〉 − |2, k〉|1, k′〉

)
, (3.3)

where in the first term particle 1 is in state |k〉 and particle 2 is in state |k′〉.
In general, an antisymmetric many-particle state is obtained by the following
sum over all N ! permutations:

|k1, k2, · · · , kN 〉A =
N !∑

ν=1

(−1)ν

√
N !
Pν |1, k1〉|2, k2〉 · · · |N, kN 〉 , (3.4)

where Pν is the permutation operator, which generates ν successive permu-
tations of two particles. The first term of (3.2) projects out of a given state
the vacuum and replaces it by a one-particle state which occupies state k.
Similarly, the second term looks for all one-particle states and replaces them
by a two-particle state with the proper symmetry.

The annihilation operator ck is the Hermitian conjugate of (3.2):

ck = |0〉〈k| +
∑
k1

|k1〉 A〈k, k1|

+
1
2!

∑
k1,k2

|k1, k2〉A A〈k, k1, k2| + · · · . (3.5)

Combining (3.2) and (3.5) one gets the following product

ckc
†
k′ = |0〉〈k|k′〉〈0| +

∑
k1,k2

|k1〉 A〈k, k1|k′, k2〉A 〈k2| + · · ·

= δkk′ |0〉〈0| +
∑
k1,k2

(
δk,k′δk1,k2 − δk,k2δk1,k′

)
|k1〉〈k2| + · · · , (3.6)

where we took into account that states with different particle numbers are
orthogonal. Evaluating the sums yields

ckc
†
k′ = δk,k′

(
|0〉〈0| +

∑
k1

|k1〉〈k1| + · · ·
)

− |k〉〈k′| − · · ·

= δk,k′ − |k′〉〈k| − · · · . (3.7)

Here we used the completeness relation in Fock space

1 = |0〉〈0| +
∑
k1

|k1〉〈k1| +
1
2!

∑
k1,k2

|k1, k2〉A A〈k1, k2| + · · · . (3.8)
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For the opposite order of the two operators we find

c†k′ck = |k′〉〈0|0〉〈k| +
∑
k1,k2

|k′, k1〉A 〈k1|k2〉 A〈k, k2| + · · ·

= |k′〉〈k| +
∑
k1

|k′, k1〉A A〈k, k1| + · · · . (3.9)

The sum of (3.7) and (3.9) yields

ckc
†
k′ + c†k′ck = [ck, c

†
k′ ]+ = δk,k′ . (3.10)

This is the fermion anticommutator rule, which can also be written in the
form [a, b]+ = {a, b}. Similar analysis can be used to derive the corresponding
commutator rule for bosons. Here one has to work with symmetrical many-
particle states, and has to allow a multiple population of a given single particle
state. We list here all resulting anticommutator and commutator relations for
fermions and bosons: [

ck, c
†
k′
]
± = δk,k′ ,[

ck, ck′
]
± =

[
c†k, c

†
k′
]
± = 0 , (3.11)

and with (3.1) we get[
ψ(x), ψ†(x′)

]
± = δ(x− x′) ,[

ψ(x), ψ(x′)
]
± =

[
ψ†(x), ψ(x′)

]
± = 0 . (3.12)

The following Hamiltonians are of interest: The single-particle Hamiltonian

H0 =
∫

d3xψ†(x)T (x)ψ(x)

=
∑

k

εkc
†
kck , (3.13)

where T (x) is any one-body operator, e.g., the kinetic energy: T (x) →
−(h̄2/2m)∇2, and εk is its matrix element in the basis |k〉 (in the case of
plane waves, we have εk = h̄2k2/2m). An interaction Hamiltonian for a two-
particle interaction is of the form

Hint = 1
2

∫
d3x

∫
d3x′ψ†(x)ψ†(x′)V (x, x′)ψ(x′)ψ(x) . (3.14)

Here, V (x, x′) is the interaction potential between particles. An important
example is Coulomb interaction, for which V (x−x′) = e2/|x− x′|. We urge the
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Fig. 3.1. Electron–phonon interaction. Left : A phonon (wavy line) is absorbed,
while an electron (solid line) is scattered from state k to state k + q. Right : phonon
emission

reader to work out (3.14) in the basis |k〉. Finally, electron–phonon interaction
Hamiltonian is given by

Hel–ph =
∑
q,k

Mqc
†
k+qck

(
aq + a†−q

)
, (3.15)

where Mq is the interaction matrix element. Here, ck, c
†
k are the fermion

operators of the electrons, aq, a†q are the boson operators of the phonons,
which have the free Hamiltonian H0

ph =
∑

q ωqa
†
qaq. Graphically the electron–

phonon interaction is represented by a vertex (see Fig. 3.1).

3.2 Density Matrix Equations:
An Elementary Derivation
of a Non-Markovian Quantum Kinetic Equation

We present the derivation as a four-step procedure.

(a) As a first application of the second quantization formalism we want to
present a simple derivation of a quantum kinetic equation with a memory
structure. We will use the hierarchy of density matrix equations of motion.
This technique can be elaborated further and is an alternative [54,214] to
the nonequilibrium Green function technique which will be used in this
book. The single-particle electron density matrix of a spatially homoge-
neous system is defined by

ρk(t) = 〈c†k(t)ck(t)〉 = fk(t) , (3.16)

which is nothing but the time-dependent single-particle distribution func-
tion fk(t) in momentum space. The temporal evolution of the occu-
pation probability is determined by the commutator of the interaction
Hamiltonian Hel−ph (3.15) with c†kck (note that H0 commutes with c†kck):

dfk
dt

=
i
h̄

〈[
Hel–ph(t), c†k(t)ck(t)

]〉
=

i
h̄

∑
q,l

Mq

〈[(
c†l+q(t)cl(t)aq(t) + h.c.

)
, c†k(t)ck(t)

]〉
. (3.17)
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Working out the commutators leads to

dfk
dt

= − i
h̄

∑
q

Mq

〈(
c†k(t)ck−q(t)aq(t) − c†k+q(t)ck(t)aq(t)

+ a†q(t)c†k(t)ck+q(t) − a†q(t)c†k−q(t)ck(t)
)〉
. (3.18)

(b) As a next step, one has to evaluate the equations of motion of the ex-
pectation values of the four operator expressions in (3.18), also called
the electron–phonon amplitudes, each of which consists of a product of
three operators. Because these operators do not commute with the free
Hamiltonian H0 for the electrons and phonons, also this part of H has to
be used. Consider, e.g., the first term on the right-hand side of (3.18):

d
dt

〈c†k(t)ck−q(t)aq(t)〉 = i
(
εk − ε|k−q| − ωq

)
〈c†k(t)ck−q(t)aq(t)〉

− i
h̄

∑
p,l

Mp

〈[
c†k(t)ck−q(t)aq(t), a†p(t)c†l (t)cl+p(t)

]〉
, (3.19)

where εk/h̄ and ωq are the frequencies of the free electrons and phonons,
respectively. As a rather simple approximation, we break the hierarchy
at this level by factorizing the expectation values of the products of six
operators into three single-particle density matrices of the electrons and
phonons. Thus, a typical term is treated as

〈c†k(t)ck−q(t)aq(t)a†p(t)c†l (t)cl+p〉
� 〈aq(t)a†p(t)〉〈c†k(t)ck−q(t)c†l (t)cl+p〉
� δq,p(1 + gq(t))δk,l+pfk(t)δk−q,l(1 − fk−q(t)) . (3.20)

Here gq(t) = 〈a†q(t)aq(t)〉 is the phonon distribution function which obeys
its own kinetic equation. Note that only one of the two possible pairings in
the electronic part leads to a nonzero contribution. For simplicity we as-
sume here that the phonons can be treated as a thermal bath. Treating the
other term in (3.19) similarly and performing a formal integration yields

〈c†k(t)ck−q(t)aq(t)〉 =
i
h̄
Mq

∫ t

0

dt′ei(εk−ε|k−q|−ωq)(t−t′)

×
[
fk(t′)(1−fk−q(t′))(1 + gq(t′))

− (1−fk(t′))fk−q(t′)gq(t′)
]
. (3.21)

Inserting the result (3.21), and the corresponding expressions for the three
other three-particle correlation functions in (3.18) yields

dfk
dt

= − 2
h̄2

∑
q

∫ t

0

dt′M2
q

{
cos
(
(εk − ε|k−q| − ωq)(t− t′)

)
×
[(
fk(t′)(1 − fk−q(t′))(1 + gq(t′))

− (1 − fk(t′))fk−q(t′)gq(t′)
)]}

−
{
k → k + q

}
. (3.22)
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We have used the fact that in the first and the fourth term in (3.18) the cre-
ation and annihilation operators are exchanged, so that the initial and final
states in the scattering process are also exchanged: gq(t′) ↔ (1 + gq(t′))
and fk(t) ↔ (1 − fk(t′)). The same relationship exists between the terms
two and three. Finally, one gets the second term from the first one, if one
replaces the vector k by k + q.

(c) The result (3.22) is the quantum kinetic equation for the scattering of
electrons through the interaction with phonons. The main difference in
comparison with the semiclassical Boltzmann equation is that (3.22)
contains no longer the energy conservation for the individual scatter-
ing processes, which cannot hold for short times due to the energy–time
uncertainty relation. Thus the quantum kinetic equation extends the valid-
ity of the theory to the ultrashort time regime with time intervals shorter
or comparable to characteristic inverse frequencies of the system. In com-
parison with the Boltzmann equation (1.5) one recognizes easily again the
same population factors for the initial and final states of the scattering
processes. However, in contrast to the Boltzmann equation all occupa-
tion function in the scattering integrals of (3.22) enter at the earlier time
t′. Thus the quantum kinetic equation (3.22) contains in contrast to the
semiclassical Boltzmann equation memory effects. One has to integrate
over the past of the system. Instead of the energy conservation for the
individual collisions, one gets the energy difference between the states be-
fore and after the collision as frequencies in the cosine function. These
oscillating functions which depend on the time difference of the present
time t and the remote time t′ determine the integral kernel of the con-
volution integral and thus memory depth. The semiclassical Boltzmann
equation is local in time, such equations are called Markov equations. The
quantum kinetic equation (3.22) is a non-Markovian equation. The oscil-
lating terms in (3.22) stem from the quantum mechanical wave nature of
the particles. The coherence of the quantum mechanical waves decays due
to the various interaction mechanisms, thus one can expect in a higher
approximation next to the oscillating term a damping term of the form
exp[−(γk + γk−q)(t − t′)]. This intuitive result can indeed be obtained
in a simple approximation for the nonequilibrium Green functions. The
damping constant γk – called collision damping – is also caused by the
considered collisions. A more detailed discussion of a consistent descrip-
tion of the coherence decay will be discussed in several later chapters.

(d) Finally we will discuss the connection between the quantum kinetic equa-
tion (3.22) and the semiclassical Boltzmann equation in the long-time
limit. For a sufficiently short memory depth one can pull out of the inte-
gral the distribution functions at their value on the upper boundary, i.e.,
at time t. The remaining integral has the structure

2
∫ t

0

dt′ cos(∆ω(t− t′))e−Γ (t−t′) =
1 − e(i∆ω−Γ )t

−i∆ω + Γ
+

1 − e(−i∆ω−Γ )t

i∆ω + Γ
.

(3.23)
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For Γt� 1

2
∫ t

0

dt′ cos(∆ω(t− t′))e−Γ (t−t′) =
2Γ

(∆ω)2 + Γ 2

→ 2πδ(∆ω), (3.24)

i.e., instead of an exact energy conservation one gets in the long-time limit
of an exponentially decaying memory kernel a Lorentzian resonance curve
which reduces only in the limit Γ → 0 to the delta function. A broadened
resonance however does not result in a stable long-time kinetics in which
the particles would reach their thermal equilibrium value. This shows that
a simple exponential damping does not result in a correct kinetics. In the
long-term limit the damping should not be in conflict with the energy
conservation [214].
On the other hand also for the case Γ = 0 formula (3.23) yields asymp-
totically a delta function:

1 − ei∆ωt

i∆ω
− 1 − e−i∆ωt

i∆ω
=

2 sin(∆ωt)
∆ω

→ 2πδ(∆ω) . (3.25)

In this case however, the justification to pull the distribution functions out
of the integral is missing. This discussion shows that it is not an easy task
to connect the short-time quantum kinetics with the long-time Boltzmann
kinetics.

3.3 Green Functions

In classical physics Green functions are used as a powerful method for solv-
ing inhomogeneous differential equations. There, the Green functions obey the
differential equation with a singular inhomogeneity, i.e., a delta function in the
variable(s). Similarly, one can introduce in many-body physics Green functions
which, because of their construction, obey a wave equation with a singular
inhomogeneity. These Green functions turn out to provide a very powerful
technique for evaluating properties of many-body systems in both thermal
equilibrium and nonequilibrium situations, which are the central topic of this
book. As an introduction, we describe first the equilibrium Green functions.
Our introduction has the nature of a summary, and the reader may find it use-
ful to supplement it with a look at any of the standard textbooks on the topic
(there are many excellent treatises available such as [2,96,105,110,251,254]).

In equilibrium one needs in principle only one Green function, but even
here it is advantageous to introduce various Green functions, which, however,
can be expressed in terms of each other. We start by defining a time-ordered
(also called causal) zero-temperature single-particle Green function

G(x, t;x′, t′) =
−i
h̄

〈Ψ0|T {ψH(x, t)ψ†
H(x′, t′)}|Ψ0〉

〈Ψ0|Ψ0〉
. (3.26)
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Here, H |Ψ0〉 = E0|Ψ0〉 is the ground state of the interacting system, T {· · · } is
the time-ordering operator: It always moves the operator with the earlier time
argument to the right (or, equivalently, the mnemonic rule: late goes to left):

T {A(t)B(t′)} = θ(t− t′)A(t)B(t′) ∓ θ(t′ − t)B(t′)A(t) , (3.27)

where the upper sign refers again to fermions. This negative sign occurs
because in the second term the two fermion operators have been inter-
changed by the time-ordering operator. The operators ψH(x, t) are time de-
pendent, i.e., they are in the Heisenberg picture, and evolve according to
ψH(t) = eiHt/h̄ψ(t = 0)e−iHt/h̄.

If one differentiates the Green function (3.26) with respect to the time t
one finds using (3.27), and recalling ∂θ(t−t′)/∂t = δ(t−t′) and ∂θ(t′−t)/∂t =
−δ(t− t′) the following equation of motion

ih̄
∂G(x, t;x′, t′)

∂t
= δ(t− t′) 〈Ψ0|[ψH(x, t), ψ†H(x′, t)]±|Ψ0〉

〈Ψ0|Ψ0〉

− i
h̄

〈Ψ0|T {ih̄∂ψH(x,t)
∂t ψ†H(x′, t′)}|Ψ0〉
〈Ψ0|Ψ0〉

. (3.28)

Recalling (3.12) the first term in (3.28) is just a delta function in the spa-
tial coordinates, i.e., we rediscover the singular inhomogeneous term in the
differential equation which is generic for any Green function.

As an example consider free particles, for which the Heisenberg equation
of motion is [H = −h̄2/(2m)

∫
dxψ†(x)∇2ψ(x)]:

ih̄
∂ψH(x, t)
∂t

= [ψH(x, t), H ] = − h̄
2∇2

x

2m
ψH(x, t) . (3.29)

so that the differential equation for the free-particle Green function G0

becomes the inhomogeneous Schrödinger equation:(
ih̄
∂

∂t
+
h̄2∇2

x

2m

)
G0(x, t;x′, t′) = h̄δ(t− t′)δ(x − x′) . (3.30)

The definition of the Green function can be generalized to describe an
equilibrium system at a finite temperature:

G(x, t;x′, t′) =
−i
h̄

Tr
{
�TψH(x, t)ψ†

H(x′, t′)
}
. (3.31)

Here � is the density matrix operator and the trace Tr is the sum over all
diagonal elements of a complete set. One can also define in an analogous
fashion two- and many-particle Green functions.

With all these abstract definitions, we must be prepared for a question
from the student.

“What are the physical reasons for studying such an object?” There are
(at least) two answers to this question:
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– Experimentally relevant quantities can be extracted from the knowledge
of the Green function.

– The definition (3.26) allows the construction of a systematic perturbation
theory.

We elaborate upon these answers next.

3.3.1 Examples of Measurable Quantities

The particle density is given by 〈n(x)〉 = 〈ψ†(x)ψ(x)〉. But this object is
directly related to the Green function

〈n(x)〉 = −ih̄G(x, t;x, t+) , (3.32)

where t+ = limε→0(t + ε) is infinitesimally larger than t, in order to get the
correct time ordering. Consider next the expectation values for the kinetic
energy and the total energy, respectively, which can be written as [110]

〈T 〉 = −ih̄
∫

d3x lim
x′→x

−h̄2∇2
x

2m
G(x, t;x′, t+) , (3.33)

E = 〈H〉 = − i
2 h̄

∫
d3x lim

t′→t+
lim

x′→x

(
ih̄
∂

∂t
− h̄

2∇2

2m

)
G(x, t;x′, t′)

= − i
2 h̄V

∫
d3k

(2π)3

∫
dω
2π

eiωε

(
h̄2k2

2m
+ h̄ω

)
G(k, ω) . (3.34)

Note that in equilibrium, and for uniform systems Green functions depend
only on differences of variables, G(x, t;x′, t′) = G(x − x′, t − t′), and it is
advantageous to work in Fourier space

G(k, ω) =
∫

d3x

∫
dteiω(t−t′)e−ik·(x−x′)G(x− x′, t− t′) . (3.35)

From this on, we drop the ± sign for Fermi or Bose particles, and work
exclusively with fermions. For the fermion anticommutator we use the notation
[a, b]+ = {a, b}. Furthermore, to lighten the notation we set h̄ = 1. Naturally,
in the final physical results one has to reintroduce Planck’s constant, and we
shall occasionally do so in chapters to follow.

For future use we also define retarded, advanced, and the “lesser than” (or
just “lesser”) and “greater than” (or just “greater”) Green functions:

Gr(x, t;x′, t′) = −iθ(t− t′)〈{ψ(x, t), ψ†(x′, t′)}〉, (3.36a)
Ga(x, t;x′, t′) = iθ(t′ − t)〈{ψ(x, t), ψ†(x′, t′)}〉, (3.36b)
G<(x, t;x′, t′) = i〈ψ†(x′, t′)ψ(x, t)〉, (3.36c)
G>(x, t;x′, t′) = −i〈ψ(x, t)ψ†(x′, t′)〉 . (3.36d)
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The retarded Green function Gr differs from zero only for times t ≥ t′, thus
this function can be used to calculate the response at time t to an earlier
perturbation of the system at time t′. The advanced Green function Ga is only
finite for t ≤ t′. Due to the (anti)commutator structure, these two functions
again obey an inhomogeneous differential equation as the originally defined
time-ordered Green function. The “lesser than” Green function is also called
the particle propagator, while the “greater than” Green function, in which the
order of the creation and annihilation operators are reversed, is called the hole
propagator. Importantly, their differential equations do not have the singular
inhomogeneous terms. This observation is the precursor of a more fundamental
difference between the lesser/greater and retarded/advanced functions; this
difference will be accentuated under nonequilibrium conditions. These various
functions are not independent: they obey

Gr −Ga = G> −G< . (3.37)

In (3.36a)–(3.36d) we have also simplified the notation: We dropped nor-
malization factor 〈Ψ0|Ψ0〉,1 and do not explicitly specify the Heisenberg rep-
resentation. In equilibrium all four Green functions (3.36a)–(3.36d) can be
expressed, e.g., in terms of the time-ordered Green function (Sect. 3.3). How-
ever, in nonequilibrium situations all functions become very important. We
note that the time-ordered, the retarded, and the advanced Green functions
can be expressed in terms of G> and G<:

G(x, t;x′, t′) = θ(t− t′)G>(x, t;x′, t′) + θ(t′ − t′)G<(x, t;x′, t′),
Gr,a(x, t;x′, t′) = ±θ(±t∓ t′)

[
G>(x, t;x′, t′) −G<(x, t;x′, t′)

]
. (3.38)

The observables can also be expressed in terms of G>,<; for example

〈n(x)〉 = −iG<(x, t, x, t) . (3.39)

Since all Green functions can be expressed in terms of each other, one may
wonder, why does one take the trouble to introduce all these different Green
functions? The answer is that each one of them has its own advantages:

– G(x, t;x′, t′) has a systematic perturbation theory.
– Gr,a(x, t;x′, t′) have a nice analytic structure (poles in one half-plane) and

are well suited for calculating a physical response. Information about spec-
tral properties, densities of states, and scattering rates is contained in
Gr,a(x, t;x′, t′).

– G<,>(x, t;x′, t′) are directly linked to observables and kinetic properties,
such as particle densities or currents.

One of the most important properties of equilibrium theory is that all four
functions G,Gr,a, G>,< are linked via the fluctuation–dissipation theorem.
We will prove this theorem next.
1 Strictly speaking, this is justified only in Sect. 3.5, where we discuss the interaction

picture and the perturbation expansion for the Green function.
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3.4 Fluctuation–Dissipation Theorem

In many applications one needs the spectral function, defined as

A(k, ω) = i
[
Gr(k, ω) −Ga(k, ω)

]
= i
[
G>(k, ω) −G<(k, ω)

]
. (3.40)

This function has the property∫ +∞

−∞

dω
2π
A(k, ω) =

∫
d3(x− x′)e−ik(x−x′)〈{ψ(x, t), ψ†(x′, t)}〉

= 1 , (3.41)

because of the equal-time anticommutation rule. Furthermore, the density of
states is conveniently computed with the spectral function A(k, ω):

�(ω) =
1
2π

∫
d3k

(2π)3
A(k, ω) . (3.42)

The version of fluctuation–dissipation theorem that we need links the spec-
tral function A(k, ω) to the particle propagator G<(k, ω) (and hence also to
G(k, ω) and G>(k, ω)). The proof is a direct calculation using the complete
eigenstates of H and N . Of course these states are not explicitly known for
an interacting many-body system, and hence we can use them only in formal
derivations, but not in concrete calculations. In the following manipulations
the wavevector argument k is not important and we suppress it. Inserting the
set of complete states allows one to write

G<(ω) = i
∫ +∞

−∞
dt eiωt〈ψ†(0)ψ(t)〉

= i
∫

dt eiωt
∑
n,m

〈n|�ψ†(0)|m〉〈m|eiHtψ(0)e−iHt|n〉 . (3.43)

We work here at a finite temperature T , because no extra effort is required.
We use the density matrix for a grand-canonical ensemble

� = e−β(H−µN)/Z (3.44)

with the partition function

Z = Tr e−β(H−µN) = e−βΩ , (3.45)

where β = (kBT )−1, µ is the chemical potential, N is the number operator,
and Ω is the grand-canonical thermodynamic potential. Since the states |m〉
are eigenstates of both H and N , we can proceed as

G<(ω)

=
i
Z

∫
dt eiωt

∑
n,m

e−β(En−µNn)ei(Em−En)t〈n|ψ†(0)|m〉〈m|ψ(0)|n〉

=
i
Z

∑
n,m

2πδ(ω + Em − En)e−β(En−µNn)〈n|ψ†(0)|m〉〈m|ψ(0)|n〉. (3.46)
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Note that state |n〉 contains one more particle than state |m〉, i.e.,Nn−Nm = 1.
Similarly,

G>(ω) = −i
∫

dt eiωt〈ψ(t)ψ†(0)〉

= − i
Z

∫
dt eiωt

∑
n,m

〈n|�eiHtψ(0)e−iHt|m〉〈m|ψ†(0)|n〉

= − i
Z

∑
n,m

2πδ(ω+En−Em)e−β(En−µNn)〈n|ψ(0)|m〉〈m|ψ†(0)|n〉.

(3.47)

Comparing these two expressions for G< and G> we see that interchanging n
andm in the summation brings them into close agreement. The only difference
is in the thermal weight factor: G< has exp[−β(En − µNn)], while G> has
exp[−β(Em−µNm)]. The delta-function allows us to substitute Em = En−ω,
and we already know that Nm = Nn − 1. We thus obtain

G>(ω) = −eβ(ω−µ)G<(ω) . (3.48)

With (3.40) we can express the spectral density as

A(k, ω) = −i(eβ(ω−µ) + 1)G<(k, ω) (3.49)

or
G<(k, ω) = if(ω)A(k, ω) , (3.50)

where
f(ω) =

1
eβ(ω−µ) + 1

. (3.51)

Equation (3.50) is an extremely useful relation, which will be used several
times later on. Its form also explains the name “fluctuation–dissipation” the-
orem: (3.50) tells us that the correlation function G< (which also carries
information about fluctuations) is proportional to the dissipative part A;2 the
proportionality factor is the Fermi function.

If the spectral function is a sharply peaked function, which is the case, for
example, for noninteracting systems, A(k, ω) = 2πδ(εk − ω), one can replace
the energy argument in the Fermi function by the single-particle energy εk.
Even in the case of a weakly interacting system the spectral function may
be peaked3 and progress can be made by the substitution ω → ek. This
replacement amounts to what is known as the “quasi-particle approximation.”
Equation (3.50) has a companion relation:
2 A is essentially the imaginary part of the retarded Green function, and it deter-

mines the decay in time domain, and, hence, also the dissipation.
3 The maximum of A may be shifted due to interactions, εk → ek, where ek is the

“renormalized energy,” and the peak may not carry the same weight as in the
noninteracting case (“wavefunction renormalization”).
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G>(k, ω) = −i
[
1 − f(ω)

]
A(k, ω) . (3.52)

The hole propagator is proportional to the probability of finding a hole, i.e.,
an unoccupied state times the spectral function.

The fluctuation–dissipation theorem is often expressed in an alternative
form as a relation between the causal Green function and the spectral function.
Using the integral representation of the Heaviside step function,

θ(t) =
∫

dω
2πi

eiωt

ω − iη
,

we get

G(ω) =
∫

dt eiωt
[
θ(t)G>(t) + θ(−t)G<(t)

]
=
∫

dω1

2π

∫
dω2

2πi

∫
dt eiωt

[
G>(ω1)

e−i(ω1−ω2)t

ω2 − iη
+G<(ω1)

e−i(ω1+ω2)t

ω2 − iη

]
=
∫

dω1

2πi

[
G>(ω1)
ω1 − ω − iη

+
G<(ω1)
ω − ω1 − iη

]
=
∫

dω1

2π
A(k, ω1)

[
f(ω1)

ω − ω1 − iη
− 1 − f(ω1)
ω1 − ω − iη

]
, (3.53)

from which we identify

ReG(k, ω) = −P
∫

dω1

2π
A(k, ω1)
ω1 − ω

,

ImG(k, ω) = −1
2

tanh
[
β(ω − µ)

2

]
A(k, ω)

= tanh
[
β(ω − µ)

2

]
ImGr(k, ω) . (3.54)

Here P stands for the principal part. Similar relations can be derived for
bosonic functions, and the reader is urged to carry out this calculation as an
exercise.

3.5 Perturbation Expansion of the Green Function

Let us start by recalling the various representation pictures of quantum me-
chanics:

– Schrödinger picture. The wavefunctions are time-dependent: i ∂
∂tψ(t) =

Hψ(t); the operators are constant.
– Heisenberg picture. The wavefunctions are constant; the operators are

time-dependent O(t) = eiHtO(0)e−iHt.
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– Interaction picture .The wavefunctions develop under the influence of the
“difficult” interaction part of the Hamiltonian H = H0 + V : ψ̂(t) =
eiH0te−iHtψ(0). The operators develop under the influence of the “easy”
noninteracting Hamiltonian H0 only: Ô(t) = eiH0tÔ(0)e−iH0t.4

The time development of the interaction picture is often expressed in terms
of a U operator (or matrix):

ψ̂(t) = U(t)ψ(0), U(t) = eiH0te−iHt . (3.55)

We next introduce the S-matrix, which changes the wavefunction from ψ̂(t′)
to ψ̂(t):

ψ̂(t) = S(t, t′)ψ̂(t′) . (3.56)

Thus,
S(t, t′) = U(t)U †(t′) . (3.57)

The S-matrix obeys the group property S(t, t′) = S(t, t′′)S(t′′, t′). Further-
more, the S-matrix can be expressed as a time-ordered product (for a deriva-
tion based on the equation of motion for S), see [251, 254]:

S(t, t′) = T exp
{
−i
∫ t

t′
dt1V̂ (t1)

}
. (3.58)

Our definition for the Green function contains a problem: It involves the
exact ground state of the system. But this is one of the things we want to
compute with the Green function! To make any progress, we must express
the exact ground state |Ψ0〉 in terms of quantities we know, for example the
noninteracting ground state |Φ0〉. This connection is formed by the Gell-Mann
and Low theorem:

|Ψ0〉 = S(0,−∞)|Φ0〉 , (3.59)

The proof for this relation is rather subtle (see [110], pp. 61–64) and we do
not reproduce it here. In analogy with (3.59), we have

〈Ψ0| = 〈Φ0|S(∞, 0) . (3.60)

The object 〈Φ0|S(∞, 0)S(0,−∞)|Φ0〉 may have an ill-defined phase, this is,
however, canceled by a similar phase factor arising from the numerator of the
definition of the time-ordered Green function:

G(x, t;x′, t′) = −i
〈Φ0|T {S(∞,−∞)ψ̂(x, t)ψ̂†(x′, t′)}|Φ0〉

〈Φ0|S(∞,−∞)|Φ0〉
. (3.61)

This important result generates the systematic perturbation scheme for the
Green function. The calculation proceeds by expanding the S-matrix (both
in the numerator and in the denominator) in V̂ (t):
4 In what follows we distinguish wavefunctions and operators in the interaction

picture with a caret.
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S(∞,−∞) =
∞∑

n=0

(−i)n+1

n!

∫ +∞

−∞
dt1 · · · dtnT {V̂ (t1) · · · V̂ (tn)} , (3.62)

Since each V̂ contains three or four field operators (3.14) and (3.5), we need
a device for evaluating expectation values such as

〈Φ0|T {ψ̂(t)ψ̂†(t′)ψ̂†(t1)ψ̂†(t2)ψ̂(t2)ψ̂(t1)}|Φ0〉 (3.63)

and higher order similar terms. These expressions are evaluated with Wick’s
theorem, which states that the result of (3.63) is the sum of all pairwise
contractions. Thus (3.63) gives rise to six terms: for example, ψ̂(t) can be
paired with ψ̂†(t′), and the remaining four operators can be paired in two
different ways. Thus one gets 3 × 2 = 6 terms. These terms are most easily
expressed in terms of Feynman diagrams. The six diagrams resulting from
(3.63) are shown in Fig. 3.2.

The six diagrams have quite distinct properties. (a) and (b) are discon-
nected diagrams. These are exactly canceled by the denominator in (3.63).
This is good because disconnected diagrams often diverge! Terms (c) and (e)
are equal, likewise (d) and (f). After some combinatorics, one finds that

G(x, t;x′, t′) = −i
∞∑

n=0

(−i)n

∫ +∞

−∞
dt1 · · · dtn

×〈Φ0|T ψ̂(x, t)ψ̂†(x′, t′)V̂ (t1) · · · V̂ (tn)|Φ0〉conn , (3.64)

where the summation only includes topologically different connected dia-
grams. Equation (3.64) is the desired perturbation expansion for the Green
function, and it forms the starting point for many calculations.

Fig. 3.2. The diagrams generated by (3.63)
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3.6 Examples of Simple Solvable Models

We will give two examples of important exactly solvable models.

3.6.1 Free-Particle Green Function

Now we have H0 =
∑

p εpa
†
pap, and we call the free Green function as

G0: G0(p, t) = −i〈T {ap(t)a†p(t′)}〉. We can work out the time dependence
explicitly:

iȧp = [ap, H0] =
∑
p′
εp′ [ap, a

†
p′ap′ ]

=
∑
p′
εp′
(
apa

†
p′ap′ − a†p′ap′ap

)
=
∑
p′
εp′
(
apa

†
p′ap′ + a†p′apap′

)
=
∑
p′
εp′
[(
apa

†
p′ + (δp′,p − apa†p′)

)
ap′
]

= εp ap , (3.65)

which can be integrated to

ap(t) = e−iεptap(0) . (3.66)

We thus obtain

G0(p, t) = e−iεp(t−t′)(−i)
[
θ(t− t′)〈apa†p〉 − θ(t′ − t)〈a†pap〉

]
, (3.67)

or, in Fourier space,

G0(p, ω) = −i
∫ ∞

0

dτei(ω−εp+iη)τ (1 − fp) −
∫ 0

−∞
dτei(ω−εp−iη)τfp

=
1 − fp

ω − εp + iη
+

fp
ω − εp − iη

. (3.68)

The free Green function is the basic building block for the perturbation series,
and it will make frequent appearances in the subsequent development.

3.6.2 Resonant-Level Model

Consider the following Hamiltonian:

H =
∑

p

εpa
†
pap + ε0b†b +

∑
p

Vp

(
a†pb + b

†ap
)
. (3.69)

This Hamiltonian describes a continuum of states (the a-operators) interacing
with a discrete state (the b-operator). Physical realizations of this Hamiltonian
include an impurity state interacting with conduction electrons, or a tunnel-
ing system, where electrons from a “contact” region are coupled to a state
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in a quantum well. It is also closely related to the Fano model [108] which
describes the line shape of an optical absorption spectrum in the presence of
two interfering transition mechanisms. The evaluation of the Green function
proceeds with the equation-of-motion technique. Just for fun, let us analyze
the retarded Green function, Gr(p, p′, t) ≡ −iθ(t− 0)〈{ap(t), a†p′(0)}〉:

i
∂

∂t
Gr(p, p′, t) = δ(t− 0)δp,p′ − iθ(t− 0)〈{[ap, H ](t), a†p′(0)}〉 . (3.70)

The commutator in the second term is

[ap, H ] = εpap + Vpb . (3.71)

The equation of motion thus involves a new Green function:

i
∂

∂t
Gr(p, p′, t) = δ(t)δp,p′ + εpGr(p, p′, t) + VpΓ (p′, t) , (3.72)

where
Γ (p′, t) = −iθ(t− 0)〈{b(t), a†p′(0)}〉 . (3.73)

This function obeys

i
∂

∂t
Γ (p′, t) = ε0Γ (p′, t) +

∑
p′′
Vp′′Gr(p′′, p′, t) . (3.74)

It is useful to introduce the resonant-level free Green function g0(t), which
obeys (i ∂

∂t − ε0)g0(t) = δ(t). In terms of g0(t) (3.74) reads

Γ (p′, t) =
∫

dt1g0(t− t1)
∑
p′′
Vp′′Gr(p′′, p′, t1) . (3.75)

In ω-space the coupled equations for Gr and Γ are

Gr(p, p′, ω) = δp,p′Gr
0(p, ω) +Gr

0(p, ω)VpΓ (p′, ω) ,

Γ (p′, ω) = gr0(ω)
∑
p′′
Vp′′Gr(p′′, p′, ω) , (3.76)

where the free Green functions are given by Gr
0(p, ω) = [ω − εp + iη]−1 and

gr0(ω) = [ω − ε0 + iη]−1, respectively. Multiplying the first equation with Vp

and summing over p gives∑
p

VpG
r(p, p′, ω) =

Γ (p′, ω)
gr0(ω)

= Vp′Gr
0(p

′, ω) +
∑

p

V 2
p G

r
0(p, ω)Γ (p′, ω) (3.77)
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or

Γ (p′, ω) =
Vp′Gr

0(p
′, ω)

gr0(ω)−1 −
∑

p V
2
p G0(p, ω)

(3.78)

and, finally,

Gr(p, p′, ω) = Gr
0(p, ω)δp,p′

+ Gr
0(p, ω)

VpVp′

gr0(ω)−1 −∑p V
2
p G

r
0(p, ω)

Gr
0(p

′, ω)

= Gr
0(p, ω)δp,p′ +Gr

0(p, ω)Tp,p′Gr
0(p

′, ω) . (3.79)

Here we have identified the retarded T -matrix,

Tp,p′ =
VpVp′

ω − ε0 −
∑

p

V 2
p

ω−εp+iη

. (3.80)

Chapter 10, which analyzes high-field transport, will make extensive use of
the resonant-level model as a “testing ground” for quantum kinetics.

3.7 Self-Energy

One often needs to sum the perturbation expansion up to infinite order. This
is done by identifying the most important subset of diagrams and includ-
ing them in a self-energy. A warning is in place: the correct identification
of the most important diagrams can be very tricky, even in the presence of
a small parameter. The reason is that some high-order diagrams, which are
not included in a particular model, even though formally smaller, may occur
in such large numbers that they yield a contribution that must be included.
Any perturbation theory may be just an asymptotic series and not converg-
ing in the strict mathematical sense. Finally, it is by no means clear that
a “good” self-energy always even exists. Strongly interacting systems of this
kind need a nonperturbative approach and are not addressed further in this
book. Examples of these fascinating problems include the Kondo phenomenon,
the fractional quantum Hall effect, Luttinger liquids in one-dimensional Fermi
systems, and possibly even high temperature superconductors.

3.7.1 Electron–Phonon Interaction

In the case of electron–phonon interaction, the perturbation expansion gener-
ates the type of diagrams shown in Fig. 3.3. The self-energy can be evaluated
in various levels of approximation. The simplest one is Born approximation:

ΣB(k, ω) = i
∑

q

∫
dω′

2π
M2

qG0(k − q, ω − ω′)D0(q, ω′) . (3.81)
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Fig. 3.3. Perturbation expansion for the electron Green function in an electron–
phonon system. Legend : Free Green function: thin line; Full electron Green function:
thick line; phonon-Green function: wavy line

Fig. 3.4. Born approximation for electron–phonon interaction

The Feynman rules are straightforward [2, 110,251,254]: one just has to con-
serve energy and momentum at each vertex, and multiply with the interaction
matrix elementMq. All internal momenta and frequencies are integrated over.
Finally, an extra factor im is added, wherem is the number of four-dimensional
momentum-frequency integrals. In our example m = 1. For each closed Fermi
loop one has to multiply with an extra factor −1. With the Born approxima-
tion (3.81) the Dyson equation reads

G(k, ω) = G0(k, ω) +G0(k, ω)ΣB(k, ω)G(k, ω) (3.82)

or
G(k, ω) =

1
ω − εk −ΣB(k, ω)

. (3.83)

The diagrams included in the (bare) Born approximation are shown in
Fig. 3.4. The next level of approximation is the self-consistent Born approxi-
mation:

ΣSCB(k, ω) = i
∑

q

∫
dω′

2π
M2

qG(k − q, ω − ω′)D0(q, ω′) , (3.84)

which corresponds to the diagram shown in Fig. 3.5. One may need to
evaluate a two-particle Green function in the analysis of, say, electrical
conductivity. Some typical diagrams are shown in Fig. 3.6. In the case of
electron–phonon interactions in metals, it is possible to prove a theorem
named according to Migdal [267] (for a detailed discussion, see [110], pp. 406–
410), which states that vertex corrections (an example of a diagram which
contains vertex corrections is Fig. 3.6b) are of the order of

√
m/M � 10−2
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Fig. 3.5. Self-consistent Born approximation for electron–phonon interaction

Fig. 3.6. Diagrams contributing to two-particle Green function. Diagram b contains
vertex corrections in its left vertex

(here m is electron mass and M is ion mass) and hence can be neglected in
many applications. It is an open question whether a similar theorem holds for
semiconductors under highly nonequilibrium conditions.

3.7.2 Elastic Impurity System: Impurity Averaging

Consider an electron moving in a sample with impurities at random positions
{Rα}. These give rise to a real-space potential u(x) =

∑
{Rα} v(x−Rα).5 In

second quantization the Hamiltonian becomes

H =
∑

p

εpa
†
pap +

∑
p,q,{Rα}

vq
Ω

e−iq·Rαa†p+qap , (3.85)

where vq is Fourier transform of v(x), and Ω is the system volume. In bulk
samples we do not expect that the sample’s macroscopic properties, such
as electrical conductivity, depend on the actual locations of the impurities.
However, since (3.85) does depend on these locations, we must device a method
which allows us to compute physical observables so that only the average prop-
erties of the impurity distribution matter. This technique is called impurity
averaging [2], and it is based on the following construction. We suppose that
the sample consists of many identical blocks, each one containing the same
number of impurities, but at different positions. Each block is assumed to con-
sist of many impurities. Let us assume that we can compute the object under
consideration (Green function, density of states, etc.) for each individual block
with a fixed impurity configuration, and denote the result of this calculation
by A({Rα}). The physical object corresponding to the whole sample, denoted
by Ā, is then computed as an ensemble average

5 For simplicity we assume that all impurities are alike, i.e., the impurity potential
v(x) does not depend on the impurity site α.
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Ā = 〈A({Rα})〉imp =
∏
α

∫
dRα

Ω
A({Rα}) . (3.86)

Before applying (3.86) to the elastic impurity problem a few comments are in
place. First, (3.86) clearly assumes uncorrelated impurities, since the integral
is extended over all space in an unrestricted manner. In principle it would be
possible to allow for impurity correlations by including in (3.86) some appro-
priate impurity–impurity correlation function, which would have to be cal-
culated separately. Second, one may inquire whether the impurity-averaging
method works for arbitrarily small samples. The answer is clearly “no”: the
above construction assumes that the sample can be constructed from an inco-
herent superposition of “blocks.” If the sample is so small that some coherence
is maintained throughout it, one enters a “mesoscopic” regime, which will be
a topic of many later sections. One of the striking properties of mesoscopic
samples is that measured properties may depend on the individual impurity
distributions. Summarizing, when we apply impurity averaging technique we
are tacitly assuming the inequality sequence limp � lφ � L, where limp is the
impurity mean free path, lφ is the phase-coherence length (or phase-braking
length), and L is the sample size.

We now outline how one computes the impurity-averaged retarded Green
function 〈Gr(p,p′, ω)〉imp. Note that before impurity averaging two momen-
tum labels are needed, because the impurities have broken the translational
invariance. The equation-of-motion method can be applied just like in case of
the resonant-level model of Sect. 3.6.2. The details are left as an exercise, and
one finds

Gr(p,p′, ω) = δpp′Gr
0(p, ω)

+Gr
0(p, ω)

1
Ω

∑
q,{Rα}

vqe−iq·RαGr(p − q,p′, ω) . (3.87)

The strategy is clear-cut: One iterates (3.87), averages term-by-term using
(3.86), and finally tries to identify repeating structures which perhaps can be
summed up to infinite order. The zeroth-order term in the impurity potential
is naturally unaffected by impurity averaging, and the first-order term reads

Gr(1)(p,p′, ω) = Gr
0(p, ω)

1
Ω

∑
{Rα}

e−i(p−p′)·Rαvp−p′Gr
0(p

′, ω) . (3.88)

Applying (3.86) we evaluate the impurity average as[∫
dR1

Ω

∫
dR2

Ω
· · ·
∫

dRα

Ω
· · ·
∫

dRN

Ω

]
×
[
e−i(p−p′)·R1 + e−i(p−p′)·R2 + · · ·

+ e−i(p−p′)·Rα + · · · + e−i(p−p′)·RN

]
= N

∫
dR

Ω
e−i(p−p′)·R = δp,p′N , (3.89)
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where N is the number of impurities. Combining (3.89) with (3.88) and
introducing the impurity concentration c, we have

Ḡr(1)(p,p′, ω) = δp,p′Gr
0(p, ω)cv(q = 0)Gr

0(p, ω) . (3.90)

We observe that impurity averaging has reintroduced translational invariance,
i.e., diagonality in the momentum labels. Let us next consider the second-order
term, which is obtained by substituting (3.88) on right-hand side of (3.87).
Instead of (3.89) we must now evaluate∏

{Rγ}

∫
dRγ

Ω

∑
{Rβ}

e−iq·Rβ

∑
{Rα}

e−i(p−q−p′)·Rα

= N(N − 1)δq,0δp,p′ +Nδp,p′ , (3.91)

which leads to the following expression for Ḡr(2):

Ḡr(2)(p,p′, ω) = δp,p′
[
Gr

0(p, ω)cv(q = 0)Gr
0(p, ω)cv(q = 0)Gr

0(p, ω)

+Gr
0(p, ω)c

∑
q

|v(q)|2Gr
0(p − q, ω)Gr

0(p, ω)
]
. (3.92)

Figure. 3.7 shows the Feynman diagrams corresponding to (3.90) and (3.92),
and some higher order diagrams. One often absorbs the structureless term
cv(q = 0) in the single particle energy, and thus the free-standing impurity
lines are not shown in many standard treatises. Just as in the phonon case,
we can use Fig. 3.7 as a guideline in selecting an appropriate self-energy func-
tional. An often used choice is the self-consistent Born approximation,

Fig. 3.7. Beginning of the diagrammatic expansion for the impurity-averaged Green
function. Momentum is conserved at each vertex. Thick line: impurity averaged
Green function; thin line: free Green function, dotted line: impurity potential. Only
a few representative diagrams of third or fourth order in the impurity potential are
shown on the third and fourth line, respectively
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Σr
SCBA(p, ω) = c

∑
q

|v(p − q)|2Ḡr(q, ω) . (3.93)

This equation, and the Dyson equation Ḡr = {ω − εp − Σr
SCBA[Ḡr]}−1,

define a self-consistent problem for the impurity-averaged Green function Ḡr.
The solution for this self-consistent problem is easy to find if one considers
s-wave scatterers, i.e., suppresses the momentum dependence of the scattering
potential. We make an Ansatz for the retarded self-energy, Σr = −i/2τ , and
determine the parameter τ . With this assumption we evaluate (3.93) as

− i
2τ

= cv2
∑

q

1
ω − εq + i/2τ

= cv2
∫

dεqN(εq)
1

ω − εq + i/2τ

� cv2N(0)
∫

dεq
−i/2τ

(ω − εq)2 + (1/2τ)2

= −icv2N(0)π . (3.94)

Equation (3.94) allows us to identify the impurity-limited life-time, 1/τ =
cv2N(0)2π. It is worth commenting the main approximations used in the cal-
culation leading to (3.94). First, we assume that the relevant energies are in
the neighborhood of the Fermi energy, which allows us to replace the slowly
varying density-of-states N(ε) by its value at the Fermi surface. This ap-
proximation is good for degenerate Fermi systems, but it would require a
modification for lightly doped semiconductors, where impurity scattering can
have a significant energy dependence. Second, we ignored the real part of
the self-energy. This quantity can be absorbed in the single-particle energies,
just as we did with the Hartree-like term cv(0) resulting from forward scat-
tering from impurities. The retarded (advanced) Green function for impurity
systems, Gr(a) = [ω − εp ± i/2τ ]−1 will be used in many of the subsequent
sections.

We finally wish to comment on the choice of diagrams contributing to the
retarded Green function determined above. The self-consistent Born approxi-
mation does not include any crossed diagrams (an example is the last diagram
on the fourth line of Fig. 3.7), even though other diagrams which are formally
of the same order in the scattering potential (e.g., the two first diagrams on
the last line of Fig. 3.7) are included. The justification for this procedure is
as follows [2]. Using momentum conservation at vertices, one finds that the
last two diagrams of Fig. 3.7 lead to self-energy contributions

Σrb(p, ω) = (cv2)2
∑
k1k2

G(k1, ω)G(k2, ω)G(k1, ω), (3.95a)

Σcr(p, ω) = (cv2)2
∑
k1k2

G(k1, ω)G(k2, ω)G(p − k1 + k2, ω) , (3.95b)
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where the subscripts have their conventional meaning, rb = rain-bow, and
cr = crossed. Following the arguments given above, all momenta and energies
are confined to the neighborhood of the Fermi surface, and thus any differ-
ence in magnitude for diagrams of same order in perturbation theory must
result from angular integrations. In evaluating Σrb no restrictions are placed
for the angular variables in the two internal momentum integrations. Setting
ω � εF and εk � εF, each of the three Green functions yields a contribution
of the order of [1/τ ]−1, and hence the total contribution can be estimated as
∝ (cv2)2[1/τ ]−3. The situation is different for Σcr: only two Green functions
can be estimated as [1/τ ]−1, while the third one after angular integration
gives a contribution of the order of ε−1

F . Thus the ratio Σcr/Σrb is of the
order of 1/τεF ∝ 1/kFl � 1 (here l = vFτ is the mean free path), and the
self-consistent Born approximation appears to include the most important di-
agrams. This is, however, not always the case: a more detailed analysis, which
is sketched in Part III, shows that for two-particle Green function (which
determines, among other things, the electrical conductivity) in two spatial
dimensions corrections of the order of 1/kFl must be included. In fact, it is
possible to develop a systematic perturbation theory based on the smallness
of this parameter, and the resulting theoretical predictions are in excellent
agreement with experimental results (“weak localization”).

3.8 Finite Temperatures

We conclude by reviewing very briefly some of the considerations that enter
the formulation of a finite temperature theory. The reader without prior famil-
iarity with these ideas will probably find it useful to consult any of the texts
quoted in Sect. 3.2. At finite temperatures the expectation value appearing in
the definition of the Green function must include a thermal weighting factor,
as already indicated in (3.31), (3.44), and (3.45). But now the interaction sits
in two places: (1) in the thermal factors exp[−β(H−µN)], and in the S-matrix
due to the Heisenberg picture time dependence of the operators cp(t), c†p(t′).
This makes a straightforward expansion (which now becomes a double expan-
sion) quite difficult. A way around this problem is the Matsubara technique,
where one introduces a complex time τ = it. Then the Green function, with
the grand-canonical density matrix (3.44) and (3.45), becomes

G( p , τ − τ ′) = −〈Tτcp(τ)c†p(τ
′)〉 (3.96)

= −Tr{e−β(H−µN−Ω)Tτeτ(H−µN)cpe−(τ−τ ′)(H−µN)c†pe
−τ ′(H−µN)} ,

where also for the time development the “grand-canonical” Hamiltonian
H − µN has been used. A function defined in this way obeys the boundary
condition for −β < τ < 0:

G(p, τ) = −G(p, τ + β) . (3.97)
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This property suggests a Fourier series expansion in the strip [0, β]:

G(p, iωn) =
∫ β

0

dτG(p, τ)eiτωn

G(p, τ) =
1
β

∑
n

e−iωnτG(p, iωn) . (3.98)

The discrete frequencies are given by

ωn =
2π(2n+ 1)

β
. (3.99)

For bosons the Green function is periodic, i.e., (3.97) has a plus sign on the
right-hand side, and the discrete frequencies involve even integers.

One can derive a similar Feynman diagram technique for the finite tem-
perature Green functions, as was done earlier for normal time-ordered Green
functions. The S-matrix expansion, Wick’s theorem, etc., are essentially un-
changed. For further details we refer to Mahan [251,254] who gives a thorough
account of these techniques. The final thing to note is that once the finite tem-
perature function is known, the retarded and advanced functions follow with
an analytic continuation:

G(p, ε+ iδ) = Gr(p, ε) , (3.100)

G(p, ε− iδ) = Ga(p, ε) . (3.101)

In Part II a couple of examples are given which illustrate the interrelationship
between the finite temperature formalism and the nonequilibrium formalism.
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Contour-Ordered Green Functions

Summary. We introduce the concept of nonequilibrium Green functions which are
ordered on a time contour - also called Keldysh contour - running from the remote
past where the system was in equilibrium to the highest relevant time and back to
the remote past. The resulting four Green functions are shown to be interrelated, but
two of them, e.g., a spectral Green function and a kinetic Green function contain in
nonequilibrium separate information in sharp contrast to the equilibrium situation.
Using analytic continuation useful relations for products of Green functions are
derived.

4.1 General Remarks

We recall from Sect. 3.5 that the central quantity in constructing the perturba-
tion theory for Green functions is the S-matrix S(∞,−∞). In nonequilibrium
there is no guarantee that the system returns to its initial state for asymp-
totically large times. In fact, often it does not. Consider, for example, an
important problem in surface physics, where atoms or molecules impinging
on a surface exchange charge with the surface, and hence the initial state at
t = −∞ is very different from the final state at t = +∞. Thus, one should
avoid any reference to the asymptotically large times in the nonequilibrium
theory. The general formulation of the theory is slightly more complicated
than in the equilibrium case. As we shall see, however, the abstract structure
of the theory bears a close resemblance to the equilibrium theory.

The nonequilibrium problem is formulated as follows. We consider a system
evolving under the Hamiltonian

H = h+H ′(t) . (4.1)

Here the time-independent part of the Hamiltonian h is split in two parts:
h = H0 +Hi, where H0 is “simple” (in the sense that it can be diagonalized,
and hence Wick’s theorem applies) and Hi is “complicated” (in the sense
that it contains the many-body aspects of the problem, and hence requires a
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special treatment). It is further assumed that the nonequilibrium part vanishes
for times t < t0. The nonequilibrium part could be, e.g., an electric field, a
light excitation pulse, or a coupling to contacts at differing (electro) chemical
potentials. All these cases will be treated in later chapters.

One often lets t0 → −∞ at a suitable point. This procedure simplifies
the treatment, and in order to display the structure of the nonequilibrium
theory as concisely as possible, we will initially take this limit. However, in
doing so the discussion of transient phenomena is excluded, and since transient
phenomena are one of the central topics we wish to address, we shall return
to this point below.

Before the perturbation is turned on, the system is described by the ther-
mal equilibrium density matrix

�(h) =
exp(−βh)

Tr[exp(−βh)] . (4.2)

The task is to calculate the expectation value of a given observable, to which
one associates a quantum mechanical operator O, for times t ≥ t0:

〈O(t)〉 = Tr[�(h)OH(t)] . (4.3)

The subscript H indicates that the time dependence is governed by the full
Hamiltonian, i.e., O is written in the Heisenberg picture. Definition 4.3 can be
generalized to two-time (or n-time) quantities (Green functions, correlation
functions) in an obvious fashion.

One should note that we use an equilibrium density matrix �(h) in (4.3),
and not some time dependent �. Physically this means that the thermo-
dynamic degrees of freedom, contained in h, do not follow instantaneously
the rapid variations contained in H ′(t). Other choices may be possible, but
we make this choice here because of the difficulties related to other choices
(for example, see the discussion on pp. 214–216 in [254]). An alternative
and potentially very promising approach consists of replacing the equilib-
rium density-matrix in the expectation value by some suitable generaliza-
tion, such as suggested by Hershfield [153], and more recently elaborated
in [50, 83, 97, 133]. We shall also address the possible limitations of this
approach in Chap. 13, where we discuss time-dependent transport in semi-
conductor microstructures.

4.2 Two Transformations

The general plan of attack is similar to the equilibrium case. We transform the
“hopelessly complicated” time dependence of OH to a simpler form, namely
to that of OH0 . Since there are two operators to be eliminated, i.e., the
time-dependent external perturbation H ′(t) and the “complicated” interac-
tion term Hi, we expect to meet more complicated transformations than in
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t0 t

Fig. 4.1. Contour Ct

the equilibrium case. However, with suitable generalizations, it can be shown
that the nonequilibrium and equilibrium formalisms can be made structurally
equivalent.

The first step is to change the time dependence of OH to that of Oh. This
is achieved by the relation

OH(t) = v†h(t, t0)Oh(t)vh(t, t0), (4.4)

where

vh(t, t0) = T
{

exp
[
−i
∫ t

t0

dt′′h(t′)
]}

(4.5)

and H ′
h(t) is the interaction representation of H ′(t):

H ′
h(t) = exp[ih(t− t0)]H ′(t) exp[−ih(t− t0)] , (4.6)

and T is the time-ordering operator which arranges the latest times to left.
We now introduce contour-ordered quantities. Expression (4.4) can be

written in another, but equivalent, form:

OH(t) = TCt

{
exp

[
−i
∫

Ct

dτH ′
h(τ)

]
Oh(t)

}
, (4.7)

where the contour Ct is depicted in Fig. 4.1. Where possible, we shall employ
the convention that time variables defined on a complex contour are denoted
by greek letters, while roman letters are used for real time variables. The
contour runs on the real axis (or slightly above it; if H ′(t) can be analytically
continued no problems can arise) from t0 to t, and back again. The meaning of
the contour-ordering operator TCt is the following: The operators with time
labels that occur later on the contour have to stand left to operators with
earlier time labels. The next calculation illustrates some of the properties of
functions defined on a contour.

Demonstration of Equivalence of (4.4) and (4.7)

In order to get some acquaintance with the functions defined on a contour we now
explicitly demonstrate the equivalence of (4.4) and (4.7) [285]. We have

TCt

{
exp

[
−i

∫
Ct

dτH ′
h(τ )

]
Oh(t)

}
=

∞∑
n=0

(−i)n

n!

∫
Ct

dτ1 · · ·
∫

Ct

dτn TCt [H
′
h(τ1) · · ·H ′

h(τn)Oh(t)] . (4.8)
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Now divide the contour into two branches:∫
Ct

=

∫
→

+

∫
←

, (4.9)

where
∫
→ goes from t0 to t, and

∫
← from t back to t0. Thus the nth order term in

(4.8) generates 2n terms. Let us consider one of them∫
→

dτ1

∫
→

dτ2

∫
←

dτ3 · · ·
∫
←

dτnTCt [H
′
h(τ1) · · ·H ′

h(τn)Oh(t)]

=

∫
←

dτ3 · · ·
∫
←

dτnT← [H ′
h(τ3) · · ·H ′

h(τn)]Oh(t)

×
∫
→

dτ1

∫
→

dτ2T→ [H ′
h(τ1)H

′
h(τ2)] . (4.10)

We must do now some combinatorics. Out of the 2n terms we have generated, there
are n!/[m!(n − m)!] terms with m integrals from t0 to t (m = 0, . . . , n and in the
above example m = 2). All these terms give the same contribution. Thus we can
write ∫

Ct

dτ1 · · ·
∫

Ct

dτnTCt [H
′
h(τ1) · · ·H ′

h(τn)Oh(t)]

=
n∑

m=0

n!

m!(n − m)!

∫
←

dτm+1 · · ·
∫
←

dτnT← [H ′
h(τm+1) · · ·H ′

h(τn)]Oh(t)

×
∫
→

dτ1 · · ·
∫
→

dτmT→ [H ′
h(τ1) · · ·H ′

h(τm)] . (4.11)

Now introduce a new variable k = n − m; we can sum both k and m from 0 to ∞
as long as their sum equals n, and this is achieved by inserting a Kronecker delta.
Equation (4.11) yields

→
∞∑

m,k=0

n!

m!k!
δn,k+m

{∫
←

dτ1 · · ·
∫
←

dτkT←
[
H ′

h(τ1) · · ·H ′
h(τk)

]}
Oh(t)

×
{∫

→
dτ1 · · ·

∫
→

dτmT→
[
H ′

h(τ1) · · ·H ′
h(τm)

]}
. (4.12)

We can now go back to (4.8). The n-sum is simple (due to the factor δn,k+m), and
we obtain

TCt

{
exp

[
−i

∫
Ct

dτH ′
h(τ )

]
O(t)

}
=

∞∑
k=0

(−i)k

k!

∫
←

dτ1 · · ·
∫
←

dτkT← [H ′
h(τ1) · · ·H ′

h(τk)]O(t)

×
∞∑

m=0

(−i)m

m!

∫
→

dτ1 · · ·
∫
→

dτmT→ [H ′
h(τ1) · · ·H ′

h(τm)] . (4.13)

But, comparing the factors multiplying O(t) from left and right we can identify

v†(t, t0) and v(t, t0), respectively. We have thus demonstrated the equivalence of

(4.4) and (4.7).
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t1

t0 t’1

Fig. 4.2. Contour C

The contour-ordering operator is a strong formal tool which will allow us
to develop the nonequilibrium theory along lines parallel to the equilibrium
theory.

We now define the contour-ordered Green function:

G(1, 1′) ≡ −i〈TC [ψH(1)ψ†H(1′)]〉 , (4.14)

where the contour C starts and ends at t0; it runs along the real axis and
passes through t1 and t′1 once and just once (Fig. 4.2). Here, as in Part I,
ψH and ψ†H are the fermion field operators in the Heisenberg picture. Finally,
we employ the shorthand notation (1) ≡ (x1, t1) (or (1) ≡ (x1, τ1), when
appropriate).

The contour-ordered Green function plays an analogous role in nonequi-
librium theory as the causal Green function plays in equilibrium theory: as we
shall see below, it possesses a perturbation expansion based on Wick’s theo-
rem. However, since the time labels lie on the contour with two branches, one
must keep track of which branch is in question. With two time labels, which
can be located on either of the two branches of the contour of Fig. 4.2, there
are four distinct possibilities. Thus (4.14) contains four different functions:

G(1, 1′) =

⎧⎪⎪⎨⎪⎪⎩
Gc(1, 1′) t1, t1′ ∈ C1

G>(1, 1′) t1 ∈ C2, t1′ ∈ C1

G<(1, 1′) t1 ∈ C1, t1′ ∈ C2

Gc̃(1, 1′) t1, t1′ ∈ C2

. (4.15)

Here we have introduced the causal, or time-ordered Green function Gc,

Gc(1, 1′) = −i〈T [ψH(1)ψ†H(1′)]〉
= −iθ(t1 − t1′)〈ψH(1)ψ†H(1′)〉 + iθ(t1′ − t1)〈ψ†H(1′)ψH(1)〉 ,

(4.16)

the “greater” function G>,

G>(1, 1′) = −i〈ψH(1)ψ†H(1′)〉 , (4.17)

the “lesser” function G<,

G<(1, 1′) = +i〈ψ†H(1′)ψH (1)〉 , (4.18)

and the antitime-ordered Green function Gc̃,

Gc̃(1, 1′) = −i〈T̃ [ψH(1)ψ†H(1′)]〉
= −iθ(t1′ − t1)〈ψH(1)ψ†H(1′)〉 + iθ(t1 − t1′)〈ψ†H(1′)ψH(1)〉 .

(4.19)
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Since Gc+Gc̃ = G<+G>, there are only three linearly independent functions.
This freedom of choice reflects itself in the literature, where a number of dif-
ferent conventions can be found. For our purposes the most suitable functions
are the functions G>,< (which are often also denoted by a common name,
“correlation function”), and the advanced and retarded functions defined as

Ga(1, 1′) = iθ(t1′ − t1)〈{ψH(1), ψ†H(1′)}〉
= θ(t1′ − t1)[G<(1, 1′) −G>(1, 1′)] , (4.20)

and

Gr(1, 1′) = −iθ(t1 − t1′)〈{ψH(1), ψ†H(1′)}〉
= θ(t1 − t1′)[G>(1, 1′) −G<(1, 1′)] . (4.21)

Here curly brackets denote an anticommutator. We observe that Gr − Ga =
G>−G<. In later chapters we will discuss at length the physical interpretation
of the functions G<,> and Gr,a.

After these definitions, we can return to the main task of this section:
the transformation of the contour-ordered Green function (4.14) into a form,
where Wick’s theorem can be applied. The first step is to repeat the analysis
leading to (4.7), i.e., transformation from H-dependence to h-dependence.
The result is

G(1, 1′) = −i〈TC [SH
C ψh(1)ψ†h(1′)]〉 , (4.22)

where

SH
C = exp

[
−i
∫

C

dτH ′
h(τ)

]
. (4.23)

We still need one more transformation to show the existence of a diagrammatic
perturbation theory. Recall that the operator h contains two terms, h = H0 +
Hi, and that Wick’s theorem only works for H0 (i.e., quadratic Hamiltonians).
Thus we must be able to replace the h-dependence by H0–dependence. Note
also that the density matrix implicit in (4.22) also contains h, and h thus
occurs in four different places in (4.22): �(h), SH

C , and the field operators
ψh(1), and ψ†h(1′), respectively.

The details of the transformations are somewhat tedious, but straightfor-
ward [287] and it is sufficient to state the final result:

G(1, 1′) = −i
Tr
{
�0 TCv

[
Si

Cv
S′CψH0(1)ψ†H0

(1′)
]}

Tr[�0TCv(Si
Cv
S′C)]

, (4.24)

where the density matrix �0 is given by

�0 =
exp(−βH0)

Tr [exp(−βH0)]
, (4.25)
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t’1

t0

t0-iβ

t1

Fig. 4.3. Contour Cv

and

S′C = exp
[
−i
∫

C

dτH ′
H0

(τ)
]
,

Si
Cv

= exp
[
−i
∫

Cv

dτHi
H0

(τ)
]
, (4.26)

where the time-dependence of the Hamiltonians is defined in analogy with
(4.6). Further, the contour C was defined in Fig. 4.2 while the contour Cv is
shown in Fig. 4.3.

Equation (4.24) is an important result. Despite its complicated appear-
ance it has a number of attractive features. Firstly, it is exact. Next, all time
dependence is governed by the “solvable” H0. In particular, the quadratic
density matrix ∼ exp(−βH0) allows one to use Wick’s theorem. Thus, the
Feynman diagrams can be constructed for the nonequilibrium problem. Just
as in the equilibrium case, the denominator cancels the contribution arising
from the disconnected diagrams.

We can summarize the main results of this section as follows. The equilib-
rium and nonequilibrium theories are structurally equivalent. The only differ-
ence is the replacement of real axis integrals by contour integrals.

4.3 Analytic Continuation

While the result (4.24) is a strong formal statement, it is rather impractical
in calculations unless one can replace the contour integrals by real time inte-
grals. This procedure is called the analytic continuation, and many different
formulations exist in the literature. Here we analyze in some detail the gen-
eralization of the method of Kadanoff and Baym [191] due to Langreth [231].

As shown in Sect. 4.3, the contour-ordered Green function has the same
perturbation expansion as the corresponding equilibrium time-ordered Green
function. Consequently, given that a self-energy functional can be defined,1

1 In many problems one generates, either by the equation-of-motion technique or
by functional differentiation, higher-order Green functions (or other objects with
more than two time labels). While the formal theory can also be developed for
these objects, we restrict ourselves presently to cases where a well-defined self-
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the contour-ordered Green function has the same Dyson equation as the equi-
librium function:

G(1, 1′) = G0(1, 1′) +
∫

d3x2

∫
Cv

dτ2G0(1, 2)U(2)G(2, 1′)

+
∫

d3x2

∫
d3x3

∫
Cv

dτ2
∫

Cv

dτ3G0(1, 2)Σ(2, 3)G(3, 1′) , (4.27)

where we assume that the nonequilibrium term in the Hamiltonian can be
represented by a one-body external potential U . The interactions are con-
tained in the (irreducible) self-energy Σ[G].

As mentioned in Sect. 4.1, a simplification occurs if we can set t0 →
−∞. If the interactions are coupled adiabatically, the contribution from the
[t0, t0 − iβ] piece vanishes. The information lost by this procedure is related
to initial correlations. In many physical situations, for example, in steady
state transport, it appears plausible that the initial correlations have been
washed out by the interactions when one reaches the steady state. On the
contrary, if one studies transient response, the role of initial correlations can
be important. This represents an interesting problem, which so far has received
only limited attention [215,363]. Also, more recently, important developments
have appeared, which include the complex part of the contour in numerical
implementations [89–91,235]. – Here we consider the t0 → −∞ limit. In this
limit the contours C and Cv coincide, and we can consider only C.

Langreth Theorem. In considering the Dyson equation (4.27) we encounter
terms with the structure C = AB, or, explicitly,

C(t1, t1′) =
∫

C

dτA(t1, τ)B(τ, t1′ ) , (4.28)

and their generalizations involving products of three (or more) terms. Since we
are presently only concerned with temporal variables, we suppress all other
variables (spatial, spin, etc.), which have an obvious matrix structure. To
evaluate (4.28) let us assume for definiteness that t1 is on the first half of
C, and that t1′ is on the latter half (Fig. 4.2). In view of our discussion in
connection with (4.16)–(4.21), we are thus analyzing a “lesser” function.

The next step is to deform the contour as indicated in Fig. 4.4. Thus (4.28)
becomes

C<(t1, t1′) =
∫

C1

dτA(t1, τ)B<(τ, t1′)

+
∫

C′
1

dτA<(t1, τ)B(τ, t1′ ) . (4.29)

energy, expressed as a function of the one-particle Green function, exists. Further,
for functions of more than two external variables, the intuitive notation (“lesser,”
retarded, etc.) would have to be generalized.
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Fig. 4.4. Deformation of contour C

Here, in appending the sign < to the function B in the first term, we made use
of the fact that as long as the integration variable τ is confined on the contour
C1 it is less than (in the contour sense) t1′ . A similar argument applies to the
second term. Now consider the first term in (4.29) and split the integration
into two parts:∫

C1

dτA(t1, τ)B<(τ, t1′) =
∫ t1

−∞
dt A>(t1, t)B<(t, t1′)

+
∫ −∞

t1

dt A<(t1, t)B<(t, t1′)

≡
∫ ∞

−∞
dt Ar(t1, t)B<(t, t1′) , (4.30)

where we used the definition of the retarded function (4.21). A similar analysis
can be applied to the second term involving contour C′

1; this time the advanced
function is generated. Putting the two terms together, we have the first of
Langreth’s results:

C<(t1, t1′) =
∫ ∞

−∞
dt[Ar(t1, t)B<(t, t1′) +A<(t1, t)Ba(t, t1′)] . (4.31)

The same result applies for the “greater” function: one just replaces all <′s
by >′s.

It is easy to generalize the result (4.31) for a (matrix) product of three
functions: If D = ABC on the contour, then, on the real axis, one has

D< = ArBrC< +ArB<Ca +A<BaCa . (4.32)

Once again a similar equation holds for the “greater” functions.
One often needs the retarded (or advanced) component of a product of

functions defined on the contour. The required expression is derived by re-
peated use of the definitions (4.16)–(4.21), and the result (4.31):

Cr(t1, t1′) = θ(t1 − t1′)[C>(t1, t1′) − C<(t1, t1′)]

= θ(t1 − t1′)
∫ ∞

−∞
dt[Ar(B> − B<) + (A> − A<)Ba]
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= θ(t1 − t1′)
[∫ t1

−∞
dt(A> −A<)(B> −B<)

+
∫ t1′

−∞
dt(A> −A<)(B< −B>)

]
=
∫ t1

t1′
dtAr(t1, t)Br(t, t1′) . (4.33)

In our compact notation this relation is expressed as Cr = ArBr.
When considering the various terms in the diagrammatic perturbation

series one may also encounter terms where two Green function lines run
(anti)parallel (this is the case, for example, of a polarization or electron–
phonon self-energy (parallel fermion and boson Green functions). In this case
one needs the “lesser” and/or retarded/advanced components of structures
like

C(τ, τ ′) = A(τ, τ ′)B(τ, τ ′) ,
D(τ, τ ′) = A(τ, τ ′)B(τ ′, τ) , (4.34)

where τ and τ ′ are contour variables. The derivation of the required formulae
is similar to the analysis presented above, and is left for an exercise. One finds

C<(t, t′) = A<(t, t′)B<(t, t′) ,
D<(t, t′) = A<(t, t′)B>(t′, t) , (4.35)

and

Cr(t, t′) = A<(t, t′)Br(t, t′) +Ar(t, t′)B<(t, t′) +Ar(t, t′)Br(t, t′) ,
Dr(t, t′) = Ar(t, t′)B<(t′, t) +A<(t, t′)Ba(t′, t)

= A<(t, t′)Ba(t′, t) +Ar(t, t′)B<(t′, t) . (4.36)

As earlier, the relations (4.35) can immediately be generalized to “greater”
functions. For a quick reference, we have collected the rules provided by the
Langreth theorem in Table 4.1.

Equilibrium Electron–Phonon Self-Energy

The retarded electron–phonon self-energy Σr
ph is a central object in the analysis of

many physical properties of metals and semiconductors. At finite temperatures one
conventionally uses the Matsubara technique to perform the analytic continuation
(for an extended discussion, see [254]). The Langreth theorem can be used to give
a very compact derivation of Σr

ph. In lowest order in the electron–phonon matrix
element Mq we have

Σph(k, τ, τ ′) = i
∑

q

|Mq |2G(k − q, τ, τ ′)D(q, τ, τ ′) . (4.37)
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Table 4.1. Rules for analytic continuation

Contour Real axis

C =
∫

C
AB C< =

∫
t
[ArB< + A<Ba]

Cr =
∫

t
ArBr

D =
∫

C
ABC D< =

∫
t
[ArBrC< + ArB<Ca + A<BaCa]

Dr =
∫

t
ArBrCr

C(τ, τ ′) = A(τ, τ ′)B(τ, τ ′) C<(t, t′) = A<(t, t′)B<(t, t′)

Cr(t, t′) = A<(t, t′)Br(t, t′) + Ar(t, t′)B<(t, t′)

+ Ar(t, t′)Br(t, t′)

D(τ, τ ′) = A(τ, τ ′)B(τ ′, τ ) D<(t, t′) = A<(t, t′)B>(t′, t)

Dr(t, t′) = A<(t, t′)Ba(t′, t) + Ar(t, t′)B<(t′, t)

Here G is the free-electron Green function while D is the free-phonon Green func-
tion. Equation (4.37) is in a form where we can apply (4.36). In equilibrium all
quantities depend on time only through the difference of the two time labels, and it
is advantageous to work in frequency space. Performing the Fourier transform gives

Σr
ph(k, ω) = i

∫
dε

2π

∑
q

|Mq |2[G<(k − q, ω − ε)Dr(q, ε)

+Gr(k − q, ω − ε)D<(q, ε) + Gr(k − q, ω − ε)Dr(q, ε)] . (4.38)

The expressions for the free equilibrium Green functions are (the reader is urged to
verify these relations!)

D<(q, ω) = −2πi[(Nq + 1)δ(ω + ωq) + Nqδ(ω − ωq)] ,

Dr(q, ω) =
1

ω − ωq + iη
− 1

ω + ωq + iη
,

G<(k, ω) = 2πinF(ω)δ(ω − εk) ,

Gr(k, ω) =
1

ω − εk + iη
. (4.39)

Substituting these expressions in (4.38), one finds after some straightforward algebra

Σr
ph(k, ω) =

∑
q

|Mq |2
[

Nq − nF(εk−q) + 1

ω − ωq − εk−q + iη
+

Nq + nF(εk−q)

ω + ωq − εk−q + iη

]
. (4.40)

The shortness of this derivation, as compared with the standard one, nicely illustrates
the formal power embedded in the Langreth theorem.
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Basic Quantum Kinetic Equations

Summary. The basic quantum kinetic equation which describes the time evolution
of the particle propagator (or, the lesser Green function) G< is discussed in the
formulations due to Kadanoff-Baym and due to Keldysh.

5.1 Introductory Remarks

The task of this chapter is to introduce the equations-of-motion (in real time)
for the nonequilibrium Green functions (NEGF). These equations will form
the basis of all subsequent developments. There are two different, but equiv-
alent, formulations: The Kadanoff–Baym method, and the Keldysh method,
and the final results are given by (5.7) and (5.11), respectively. Both of these
approaches are treated in Sects. 5.1 and 5.2 separately. We have chosen not to
retrace the original derivations but rather use the analytic continuation rules
developed in the previous section, since this approach allows a concise and
systematic derivation.

5.2 The Kadanoff–Baym Formulation

The starting point of the derivation is the differential form of the Dyson
equation (4.27):{

i
∂

∂τ1
−
[
−1

2
∇2

x1
+ U(x1, τ1)

]}
G(x1, τ1,x1′ , τ1′)

= δ(1 − 1′) +
∫

C

dσ
∫

d3yΣ(x1, τ1,y, σ)G(y, σ,x1′ , τ1′) ,{
−i
∂

∂τ1′
−
[
−1

2
∇2

x1′ + U(x1′ , τ1′)
]}
G(x1, τ1,x1′ , τ1′)

= δ(1 − 1′) +
∫

C

dσ
∫

d3yG(x1, τ1,y, σ)Σ(y, σ,x1′ , τ1′) . (5.1)
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In what follows, it is more convenient to use a notation where a product of
two terms is interpreted as a matrix product in the internal variables (space,
time, spin, etc.). Quantities depending on only one variable (examples of such
objects are G0 and U) are diagonal in this representation. Hence, we write
(5.1) as

(G−1
0 − U)G = 1 +ΣG ,

G(G−1
0 − U) = 1 +GΣ . (5.2)

Our aim is to obtain an equation for the correlation functions G<,>. Thus,
applying the rule (4.31) we find

(G−1
0 − U)G< = ΣrG< +Σ<Ga ,

G<(G−1
0 − U) = GrΣ< +G<Σa . (5.3)

One should note that the delta-function term in (5.2) vanishes identically,
because the time-labels required in the construction of G< are, by definition,
on different branches of the contour.

We next subtract these equations from each other:

[G−1
0 − U,G<] = ΣrG< +Σ<Ga −GrΣ< −G<Σa . (5.4)

We use the identities

Ar ≡ 1
2 (Ar +Aa) + 1

2 (Ar −Aa) ,
Aa ≡ 1

2 (Aa +Ar) + 1
2 (Aa −Ar) (5.5)

to symmetrize the terms involving the retarded or advanced functions on the
right-hand side of (5.4). After some rearrangement of the various terms, we
arrive at

[G−1
0 − U,G<] − [Σ,G<] − [Σ<, G]

= 1
2{Σr −Σa, G<} − 1

2{Gr −Ga, Σ<} . (5.6)

Here we defined Σ ≡ 1
2 (Σr+Σa) andG ≡ 1

2 (Gr+Ga), and the curly brackets
indicate an anticommutator. The right-hand side of (5.6) is not yet quite in the
form we want to write it in. In equilibrium theory we have encountered the
spectral function a = −2Imgr = i(gr − ga), and the imaginary part of the self-
energy, γ = −2Imσr = i(σr−σa). These objects can be generalized to nonequi-
librium theory:A ≡ i(Gr−Ga), and Γ ≡ i(Σr−Σa). Using this notation we get

[G−1
0 − U,G<] − [Σ,G<] − [Σ<, G] = 1

2i{Γ,G
<} − 1

2i{A,Σ
<}

= 1
2{Σ

>, G<} − 1
2{G

>, Σ<} . (5.7)

In the second line we used the relation Gr−Ga = G>−G<, and an analogous
relation for the self-energy. Equation (5.7) is the (generalized) Kadanoff–Baym
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equation (GKB), and it will form the basis of much of our subsequent dis-
cussion. One can also derive a GKB equation for the “greater” function G>;
it differs from (5.7) only on the left-hand side, where all <’s should be re-
placed with >s, while the right-hand side coincides with the second line of
(5.7). By subtracting the equations for G<,> one obtains an equation for the
nonequilibrium spectral function A:

[G−1
0 − U −Σ,A] − [Γ,G] = 0 . (5.8)

This relation finds occasional use as a consistency check.
Before turning to specific applications, let us make a few comments of more

a general nature. First, to have a closed set of equations, GKB must be supple-
mented with Dyson equations for Gr,a. The nonequilibrium Dyson equations
are formally identical to the equilibrium Dyson equations; this follows from the
analytical continuation rules of the previous chapter. Quite often the calcula-
tion splits into two stages; one first solves (or attempts to solve!) the Dyson
equations for Gr,a, and uses the results as inputs for the GKB equation. There
is a catch, however. One may encounter situations where the Dyson equations
for Gr,a also involve G<,>; an example is the retarded electron–phonon self-
energy, which, in addition to retarded functions, also involves the correlation
function [e.g., (4.36)]. This leads to extreme complications, because in this case
the Dyson equation and the GKB equation must be solved simultaneously.

The structure of the GKB is that of a transport equation, albeit in a
somewhat disguised form. The correlation function G< corresponds in a sense
to a generalized distribution function, even though one should avoid a literal
interpretation; we elaborate this point further below. As we shall see, the
first commutator on the left-hand side gives rise to a (generalized) driving
term. The next two terms are renormalization terms. Finally, the terms on
the right-hand side lead to a quantum collision term. As a side remark we may
mention that the GKB equation is still exact and reversible. The irreversible
behavior predicted by the Boltzmann equation is only introduced after certain
approximations are made on the GKB.

In deriving the GKB equation we formed the difference of the two equa-
tions (5.1). One may wonder whether any information was lost in this process.
The answer is positive: the GKB equation, as a transport equation, can deter-
mine the time evolution of a (generalized) distribution function, but it does
not tell what are the consistent initial values for this distribution function.
This information is contained in the original Dyson equations (5.1), and was
lost in the derivation. Thus, in principle, the GKB equation should be sup-
plemented with another equation, for example, the sum of the two equations
(5.1). Below we shall see examples of how this works in practice.

5.3 Keldysh Formulation

For certain applications it is advantageous to write the Boltzmann equa-
tion as an integral equation, rather than an integro-differential equation (an
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application is discussed in Chaps. 10 and 12). An analogous situation holds
in quantum kinetics: instead of working with the GKB equation (5.7), it may
be useful to consider its integral form. Historically, Keldysh [198] derived this
alternative form almost simultaneously, and independently of Kadanoff and
Baym. (Of course, both Kadanoff–Baym and Keldysh techniques have their
roots in pioneering work of the Schwinger school, see [17, 18, 316].)

Keldysh and Kadanoff–Baym methods are equivalent, and for the sake of
completeness we now derive the Keldysh integral equation. Rather than fol-
lowing Keldysh’s original treatment we apply the analytic continuation rules
(Table 4.1) on the complex time Dyson equation, and after some rearrange-
ment end up with a variation of the Keldysh equation. Thus, applying the
rule (4.32) on (4.27)1 yields

G< = G<
0 +Gr

0Σ
rG< +Gr

0Σ
<Ga +G<

0 Σ
aGa . (5.9)

We proceed by iteration with respect to G<. Iterating once, and regrouping
the terms we obtain

G< = (1 +Gr
0Σ

r)G<
0 (1 +ΣaGa) + (Gr

0 +Gr
0Σ

rGr
0)Σ

<Ga

+Gr
0Σ

rGr
0Σ

rG< . (5.10)

The form of (5.10) is very suggestive, and it easy to convince oneself that the
infinite order iterate is

G< = (1 +GrΣr)G<
0 (1 +ΣaGa) +GrΣ<Ga . (5.11)

Equation (5.11) is equivalent to Keldysh’s result. In the original work, how-
ever, it was written for another function, GK ≡ G< +G>. This difference is
only of minor significance.

The relation between the Keldysh equation and the GKB equation is analo-
gous to the relation between an ordinary differential equation plus a boundary
condition and the corresponding integral equation. It seems to be a matter of
convenience which starting point one should choose.

1 For simplicity we suppress the single-body potential: it can, with a suitable re-
definition, be absorbed in the free Green function. The reader is urged to check
how this works out in practice.
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Boltzmann Limit

Summary. We demonstrate how one recovers the Boltzmann equation from the
quantum kinetic equation by a gradient expansion which holds if the variation of
the center-of-mass coordinates is slow compared to that of the relative coordinates.
Furthermore, it is necessary for this recovery that the spectral functions are suffi-
ciently sharp.

6.1 Gradient Expansion

The Boltzmann equation is expected to be valid for slow spatial and temporal
variations. We thus need a device for separating the “fast” quantum variations
from “slow” macroscopic variations. This separation is achieved by two steps:
we first introduce so-called Wigner coordinates and then perform a systematic
gradient expansion. The lowest order gradient approximation combined with
the quasiparticle approximation, to be discussed below, leads then to the
Boltzmann equation.

The natural question one faces in connection with all expansions is the
query about the convergence, or domain of validity of such an expansion. In
metal physics one can identify [287] small parameters, such as q/kF (here
q is the characteristic wavelength of the external potential, and kF is the
Fermi wavevector) and ω/εF (ω is the external frequency while εF is Fermi
energy). A systematic theory, the so-called quasiclassical theory, based on
these small parameters has been constructed and it has reached a high level
of sophistication.

In the physics of semiconductor microstructures the situation is less clear.
There is no “big” energy, such as the Fermi energy, because of the lower
charge density. If one considers excitations from valence band to conduc-
tion band, the energy of the exciting photon is at least as big as the en-
ergy gap. One often considers room temperature situations, which implies
that kBT � 30meV, which is of the same order as typical Fermi energies.
Thus all four (εF, h̄ω, kBT, andEg) easily identified energies are of the same
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order of magnitude, and there is no obvious small energy parameter. A sim-
ilar situation holds for spatial scales: If one considers tunneling structures,
the characteristic length scale of the heterostructure potential is of the same
order as the de Broglie wavelength of the charge carriers, and no small length
parameter exists. In later chapters we shall discuss the conditions for the va-
lidity of the derived expressions, but here we adopt the philosophy that the
physics is such that the first nonvanishing order in the gradient expansion is
sufficient. This order of approximation is sufficient for a formal derivation of
the Boltzmann equation, but it is important to keep in mind that the validity
of the Boltzmann equation for semiconductor systems, despite its enormous
success in the interpretation of experimental data, is not at all an obvious
fact, as the analysis presented in [331, 332] reveals.

The transformation to Wigner coordinates proceeds as follows. First one
transforms to center-of-mass and difference variables:

r = x1 − x1′ , R = 1
2 (x1 + x1′),

t = t1 − t1′ , T = 1
2 (t1 + t1′) .

(6.1)

The variables r and t vary on a fast, microscopic scale, and must be treated
exactly (after Fourier transforms, r ↔ p, t↔ ω) , while R and T are macro-
scopic, slow variables with small gradients, and hence are treated approxi-
mately.

The systematic derivation of the gradient approximation is somewhat
tedious, and is discussed as an example below. However, the final result can
be summarized compactly. The various terms in the GKB have the following
structure:

C(x1, t1,x1′ , t1′) =
∫

dxdsA(x1, t1,x, s)B(x, s,x1′ , t1′) . (6.2)

Expressed in terms of the new variables (p, ω,R, T ), this becomes

C(p, ω,R, T ) = A(p, ω,R, T )G(p, ω,R, T )B(p, ω,R, T ) , (6.3)

where the gradient operator G is defined as

G(p, ω,R, T ) ≡ exp
(

1
2i

[
∂A

T ∂
B
ω − ∂A

ω ∂
B
T − ∂A

R · ∂B
p + ∂A

p · ∂B
R

])
. (6.4)

The superscripts (A,B) indicate which term in the product AGB is to be
differentiated.

In the lowest nonvanishing order we get the following prescription for eval-
uating commutators and anticommutators:

[A,B]p,ω,R,T = −i
(
∂A

∂T

∂B

∂ω
− ∂A
∂ω

∂B

∂T
− ∂A
∂R

· ∂B
∂p

+
∂A

∂p
· ∂B
∂R

)
,

{A,B}p,ω,R,T = 2A(p, ω,R, T )B(p, ω,R, T ) . (6.5)

Equations (6.5) constitute the gradient expansion.
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Derivation of the Gradient Expansion

For simplicity we consider here only the temporal variables; the spatial variables can
be treated identically. We need to evaluate the Fourier transform of

C(t, T ) =

∫
dsA

(
t1 − s, T + 1

2
[s − t1′ ]

)
B
(
s − t1′ , T + 1

2
[s − t1]

)
. (6.6)

To do this we expand A and B in the (small) gradients of the center-of-mass variable:

A
(
t1 − s, T + 1

2
[s − t1′ ]

)
=

∞∑
n=0

1

n!

[
1
2
(s − t1′)

]n
A(n)(t1 − s, T ) ,

B
(
s − t1′ , T + 1

2
[s − t1]

)
=

∞∑
m=0

1

m!

[
1
2
(s − t1)

]m
B(m)(s − t1′ , T ) , (6.7)

where A(n) stands for the nth derivative with respect to the center-of-mass variable.
The Fourier transform is defined by

C(ω, T ) =

∫
d(t1 − t1′)e

iω(t1−t1′ )
∫

dsAB , (6.8)

where the variable structure of
∫

dsAB is the same as in (6.6). The integrand has
a convolution structure, and hence its Fourier transform factorizes. By using (6.7),
one can evaluate (6.6) term by term. The zeroth order term (no gradients) is simply
C0(ω, T ) = A(ω,T )B(ω,T ), and the first order term is

C1(ω, T ) =
1

2i

(
∂A(ω,T )

∂T

∂B(ω, T )

∂ω
− ∂A(ω,T )

∂ω

∂B(ω,T )

∂T

)
. (6.9)

This result is easily generalized to nth order, and formally resummed to generate

the gradient operator G defined in the main text.

6.2 Quasiparticle Approximation

In Sect. 6.1 we considered the effects of a slowly varying (space and time)
external perturbation. Here we make a further approximation: the interac-
tions are assumed to be weak. As specific examples we may consider a weak
electron–phonon coupling, or, as is done below, electrons scattering off a dilute
concentration of impurities. From the smallness of the interaction it follows
immediately that the second and third commutator on the left-hand side of
Kadanoff–Baym equation (5.7) can be discarded: they are of second order in
small quantities, because they involve a small gradient and a small interaction.
Let us next evaluate the spectral function in the present level of approxima-
tion. From the Dyson equation for the retarded and advanced Green func-
tion, it follows, within the gradient approximation, that the spectral function
A = i(Gr −Ga) is given by

A(p, ω,R, T ) = −2Im
[

1
ω − ε(p) − U(R, T ) −Σr(p, ω,R, T )

]
. (6.10)
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In the lowest order we must take Σr → −iη, and thus

A0(p, ω,R, T ) = 2πδ[ω − ε(p) − U(R, T )] . (6.11)

We refer to this relation as the quasiparticle approximation. A more refined
treatment based on (6.10) would lead to renormalized transport coefficients.
Finally, it is instructive to note that the approximate solution (6.10) satisfies
the exact consistency relation (5.8).

6.3 Recovery of the Boltzmann Equation

We now apply the gradient approximation (6.5) and the lowest order spectral
function (6.11) to the GKB equation. To obtain explicit results, we must
specify the scattering mechanism, and we choose electron-dilute impurity
scattering. The interaction is treated on the level of a self-consistent Born
approximation, which implies the following self-energy functional (Sect. 3.6.2)

Σ<,>(p, ω,R, T ) = c
∑

q

|V (p − q)|2G<,>(q, ω,R, T ) . (6.12)

Instead of considering G<,> it is advantageous to introduce a new function
F (p, ω,R, T ) defined via

G<(p, ω,R, T ) = iA(p, ω,R, T )F (p, ω,R, T ) ,
G>(p, ω,R, T ) = −iA(p, ω,R, T )[1 − F (p, ω,R, T )] . (6.13)

This relation is entirely general: it satisfies the exact relation G< −G> = iA,
and it merely replaces one unknown function by another. However, within the
quasiparticle approximation (6.11) it would be redundant to consider func-
tions F (p, ω,R, T ) that depend on both ω and p, and it is sufficient to consider
a three-variable function, f(p,R, T ), which will play the role of a distribution
function.1 We thus write

G<(p, ω,R, T ) = iA0(p, ω,R, T )f(p,R, T )
= 2πiδ[ω − ε(p) − U(R, T )]f(p,R, T ) , (6.14)

and analogously for G>. With these ingredients the GKB equation reduces to
(we use [G−1

0 − U,A0] = 0)

i(A0[G−1
0 − U, f ])p,ω,R,T = −c

∑
q

A0(p, ω,R, T )A0(q, ω,R, T )

× |V (p − q)|2[f(q,R, T ) − f(p,R, T )] . (6.15)
1 Technically, at this stage, the function f is a mere mathematical object, however,

as we shall discuss in later chapters, it can be interpreted as a (generalized)
distribution function.
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It still remains to evaluate the commutator on the left-hand side of (6.15).
We recall that

(G−1
0 − U)p,ω,R,T = ω − ε(p) − U(R, T ) . (6.16)

Using (6.5), and integrating over ω, we finally arrive at

∂f

∂T
+
∂ε

∂p
· ∂f
∂R

+
(
−∂U(R, T )

∂R

)
· ∂f
∂p

= c
∑

q

2π|V (p − q)|2δ[ε(q) − ε(p)][f(q,R, T )− f(p,R, T )] , (6.17)

which we recognize as the standard impurity Boltzmann equation. Quantum
mechanical corrections to the Boltzmann equation can be evaluated by relax-
ing some of the approximations made in this section, and this will be the task
of many chapters to follow.
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Gauge Invariance

Summary. A formulation of the quantum kinetic equation is given which is inde-
pendent of the particular choice of the electrodynamic scalar and vector potentials.
Because the evaluation of the collision term also requires the knowledge of the spec-
tral Green functions, the gauge invariant equation for the retarded Green function
is given as well.

7.1 Choice of Variables

Since the lowest nonvanishing order gradient approximation to the GKB
equation results in the Boltzmann equation, a natural approach to look for
corrections to the Boltzmann equation would be to proceed to the next or-
der. Performing gradient approximations on GKB, however, involves some
pitfalls. For example, the external electric field can be introduced in a va-
riety of ways (scalar potential, vector potential, or a combination thereof)
and a direct application of the gradient approximation rules (6.5) leads to
different transport equations for different choices of the potentials. This is
clearly unacceptable, and one must find a way which avoids these prob-
lems. This is achieved by formulating the theory in a gauge invariant man-
ner. The gauge invariant functions (denoted by a tilde) are constructed
with1

g̃(k, ω,R, T ) =
∫

d3r

∫
dτ exp

[
iw(ω, τ, T,k, r,R)

]
g(r, τ,R, T ) , (7.1)

1 The rule (7.1) can be written in a covariant form, thus making its gauge invariance
rather obvious. Thus, defining p ≡ (ω,k), x ≡ (τ, r), X ≡ (T,R), and A ≡ (φ,A),
and using the Einstein summation convention aµbµ = a0b0 − a · b, we can rewrite

(7.1) as g̃(p,X) =
∫

d4x exp{ixµ[pµ +
∫ 1/2

−1/2
dλqAµ(X + λx)]}g(x,X).
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where

w(ω, τ, T,k, r,R) =
∫ 1

2

− 1
2

dλ
{
τ
[
ω + qφ(R + λ r, T + λτ)

]
−r ·

[
k + qA(R + λ r, T + λτ)

]}
. (7.2)

Here q is the charge of the particles, and g(r, τ,R, T ) ∝ 〈ψ(R + r/2, T +
τ/2)ψ†(R − r/2, T − τ/2)〉 is any of the one-particle Green functions dis-
cussed in previous sections. Further, we use the center-of-mass and difference
variables introduced in (6.1). Further, φ(R, T ) and A(R, T ) are the scalar
and vector potentials, respectively, and the electric and magnetic fields are
computed according to (we set the velocity of light equal to unity, c = 1)

E(R, T ) = −∇φ(R, T ) − ∂A(R, T )
∂T

,

B(R, T ) = ∇ × A(R, T ) , (7.3)

as usual.
We shall now prove that functions transformed according to (7.1) and (7.2)

are gauge invariant, i.e., they remain unchanged under the transformation

A(x, t) → A′(x, t) = A(x, t) + ∇χ(x, t) ,
φ(x, t) → φ′(x, t) = φ(x, t) − ∂χ(x, t)

∂t
, (7.4)

where χ(x, t) is an arbitrary scalar function. This transformation leaves the
physical fields E(R, T ) and B(R, T ) unchanged, and is hence called a gauge
transformation. From elementary quantum mechanics (see Sect. 12.4 in [225])
we recall that the wavefunction ψ′(x, t) in the new gauge is related to the
wavefunction in the original gauge by

ψ′(x, t) = exp[iqχ(x, t)]ψ(x, t) ,

where q is the charge of the particles. The same transformation rule holds for
the second quantized field operators in the definition of the Green functions.
The rule (7.1) then becomes:

g̃′(k, ω,R, T ) =
∫

d3r

∫
dτ exp[iw′(ω, τ, T,k, r,R)]g′(r, τ,R, T )

=
∫

d3r

∫
dτ exp

[
i(w + ∆w)

]
g(r, τ,R, T )

× exp
{
iq
[
χ(R + r/2, T + τ/2) − χ(R − r/2, T − τ/2)

]}
, (7.5)
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where ∆w is given by

∆w(r, τ,R, T ) = −q
∫ 1/2

−1/2

dλ
[
τ
∂χ
(
R + λr, T + λτ

)
∂τ

+ r · ∇χ(R + λr, T + λτ
)]
. (7.6)

In order to maintain gauge invariance g̃′ must equal g̃, and hence ∆w must
cancel the exponential factor in the third line of (7.5). This is indeed the case,
because ∆w can be expressed as a total derivative:

∆w = −q
∫ 1/2

−1/2

dλ
dχ
(
x(λ), t(λ)

)
dλ

= −q
[
χ(R + r/2, T + τ/2) − χ(R − r/2, T − τ/2)

]
, (7.7)

and we see that the cancellation occurs.

7.2 Gauge Invariant Quantum Kinetic Equation

We shall next apply the transformation (7.1) to the Kadanoff–Baym transport
equation. For simplicity, here we consider explicitly a static and spatially uni-
form electric field. In later sections we shall address time-varying and/or spa-
tially inhomogeneous driving fields. One can choose to perform the calculation
either in the scalar potential gauge, φ(R, T ) = −R ·E, or in the vector poten-
tial gauge with A(R, T ) = −TE. For these potentials the general rule (7.1)
reduces to

g̃(k, ω,R, T ) =
∫

dτdr exp[i(ω − qE · R)τ − ik · r]gφ(r, τ,R, T ) (7.8)

and

g̃(k, ω,R, T ) =
∫

dτdr exp[iωτ − i(k − qET ) · r]gA(r, τ,R, T ) . (7.9)

Here gφ(A) is the Green function computed in the scalar (vector potential)
gauge.

7.2.1 Driving Term

We first consider the calculation in the scalar potential gauge. The driving
term [G−1

0 − U,G<] in terms of the (x, t,x′, t′) variables is

[G−1
0 − U,G<](x, t,x′, t′) =

{
i
∂

∂t
+ i
∂

∂t′
−
[
−1

2
(∇2 −∇′2)

+
(
U(x) − U(x′)

)]}
G<(x, t,x′, t′) . (7.10)
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According to (7.1), we need to transform into the center-of-mass and relative
variables (r, τ,R, T ). The external potential corresponding to a steady and
uniform electric field is U(x) = qφ(x) = −qx · E, and the driving term (≡
DTφ) becomes

DTφ = [G−1
0 − U,G<

φ ](r, τ,R, T )

=
[
i
∂

∂T
+
∂

∂R
· ∂
∂r

+ qr · E
]
G<

φ (r, τ,R, T ) . (7.11)

The rest of the derivation is a direct calculation where, with the help of
several partial integrations, one moves the various differentiations outside the
integrals. Consider, for example, the term∫

dτdr exp[i(ω − qE · R)τ − ik · r]
[
∂

∂R
· ∂
∂r

]
G<

φ (r, τ,R, T )

=
∫

dτdr

[
− ∂
∂r

exp[i(ω − qE · R)τ − ik · r]
]
· ∂
∂R
G<

φ (r, τ,R, T )

= ik · ∂
∂R
G̃<(k, ω,R, T )

−
∫

dτdr

{[
ik · ∂
∂R

]
exp

[
i(ω − qE · R)τ − ik · r

]}
G<

φ (r, τ,R, T )

= i
[
k · ∂
∂R

+ qE · k ∂
∂ω

]
G̃<(k, ω,R, T ) . (7.12)

The other terms in (7.11) are treated similarly, and the final result for the
gauge invariant driving term (≡DT) is

DT = i
[
∂

∂T
+ k · ∂

∂R
+ qE ·

(
∂

∂k
+ k

∂

∂ω

)]
G̃<(k, ω,R, T ) . (7.13)

It is also very instructive to consider the same calculation in the vector
potential gauge. The driving term is now

DTA =
[
i
∂

∂T
+
∂

∂r
· ∂
∂R

+ iqE ·
(
τ
∂

∂r
+ T

∂

∂R

)
− q2TτE2

]
G<

A(r, τ,R, T ) . (7.14)

The required calculations are similar to the ones leading to (7.12), and we
leave it to the reader to verify that (7.14) indeed leads to the gauge invariant
driving term (7.13). The calculations presented above can be generalized to
nonuniform and time-dependent electromagnetic fields [101,237]. The details
of the analysis in the general case are rather cumbersome and will not be



7.2 Gauge Invariant Quantum Kinetic Equation 89

reproduced here. As an example, we give the result for a harmonically varying
electric field E(T ) = E exp[−iΩ0T ], and uniform magnetic field B:

DT = i
(
∂

∂T
+ k · ∇R

)
G̃<(k, ω,R, T )

+ iqE(T ) · ∂
∂k

∫ 1/2

−1/2

dsG̃<(k, ω − sΩ0,R, T )

+ qE(T ) · ∇R
∂

∂ω

∫ 1/2

−1/2

dssG̃<(k, ω − sΩ0,R, T )

+ i
qE(T ) · k
Ω0

[
G̃<(k, ω +Ω0/2,R, T )− G̃<(k, ω −Ω0/2,R, T )

]
+ i (k × qB) · ∂

∂k
G̃<(k, ω,R, T )

+
q2E(T )2

Ω0

∂

∂ω

∫ 1/2

−1/2

dss
[
G̃<(k, ω −Ω0(s− 1/2),R, T )

− G̃<(k, ω −Ω0(s+ 1/2),R, T )
]

+ q2E(T ) ·
(

B × ∂

∂k

)
∂

∂ω

∫ 1/2

−1/2

dssG̃<(k, ω − sΩ0,R, T ) . (7.15)

This rather formidable expression contains a number of interesting features.
In the first line we recognize two standard terms, which we have already ob-
tained when deriving (7.13). The second line reduces in the dc-limit to the
normal Boltzmann electric field driving term; the present, more complicated
form reflects the nonlocal form of quantum driving terms. The nonlocality is
an essential feature of any nonuniform or time-dependent external potential.
In Chap. 8 we shall see that the frequency integral of G̃< gives the Wigner
distribution function. Thus, none of the terms in (7.15) that involve the op-
erator ∂/∂ω will contribute to the quantum kinetic equation for the Wigner
function (which is obtained from (7.15) by integrating over ω). Since the
Wigner distribution function in a sense represents the quantum mechanical
generalization of the Boltzmann nonequilibrium distribution function, we in-
fer that the terms with ∂/∂ω are of quantum mechanical origin, and have
no counterpart in the semiclassical Boltzmann language. The terms on the
third, sixth, and the last line of (7.15) belong to this category. The term on
the fourth line reduces in the dc-limit to the last term in (7.13). Finally, the
term on the fifth line is the familiar driving term arising from the Lorentz
force. Equation (7.15) should form the starting point for calculations of, say,
high-frequency magneto-optical properties, and it would be very interesting
to analyze the effect of the nonstandard terms of (7.13). To our knowledge,
no such comparisons have yet been performed.
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7.2.2 Collision Term

The collision integral for spatially inhomogeneous and time-dependent driving
fields in its general form is very complicated. In order to gain some insight
we continue to study the spatially homogeneous and time-independent case.
We work in the vector potential gauge, and the reader is urged to repeat our
analysis in the scalar potential gauge. All the terms in the collision integral
(see, for example (5.4), or (5.7)) have the structure given in (6.2), which
reduces in the spatially uniform case to

C(x1 − x1′ , t1, t1′) =
∫

dxdsA(x1 − x, t1, s)B(x − x1′ , s, t1′) . (7.16)

We analyze first the spatial variables and return to the temporal variables
later. We also need the inverse of the transformation (7.9):

gA(r, τ, T ) =
∫

dk

(2π)3
exp[i(k − qET ) · r]g̃(k, τ, T ) . (7.17)

Substituting this in (7.16) leads to

C (x1 − x1′ , t1, t1′) =
∫

dsdk1

(2π)3
ei[k1−(q/2)E(t1+s)]·(x1−x1′ )

× Ã
(

k1, t1 − s,
t1 + s

2

)
B̃

(
k1 −

q

2
E(t1 − t1′), s− t1′ ,

s+ t1′

2

)
. (7.18)

The final step consists of applying the transformation (7.9), and we find

C̃(k, ω, T ) =
∫

dτdτ ′Ã
[
k +
q

2
E
(
τ ′ +

τ

2

)
,
τ

2
− τ ′, T +

1
2

(
τ ′ +

τ

2

)]
× B̃

[
k +
q

2
E
(
τ ′ − τ

2

)
,
τ

2
+ τ ′, T +

1
2

(
τ ′ − τ

2

)]
eiωτ . (7.19)

The intertwined momentum and time variables in (7.19) make its mathe-
matical structure so complicated that it is difficult to make progress without
some approximations. One can, for example, restrict the analysis to linear re-
sponse [136,254], when a gradient expansion of (7.19) can be developed, and
in Chap. 9 we elaborate further on linear response. Another case where further
simplification can be achieved is the analysis of a steady state system, when
all dependence on the macroscopic time variable T can be ignored,2 and all
functions depend only on (k, τ) (or, equivalently, on (k, ω)). Here we give the

2 One should note that even for time-independent fields the T -dependence may be
important. This is the case, for example, if one studies the time-dependence of
an initial nonequilibrium state under the influence of an external field.
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gauge invariant transport equation for time-independent fields, but allowing
the correlation functions to be time dependent:

i
{
∂

∂T
+ qE ·

[
∂

∂k
+ iτk

]}
G̃<(k, τ, T )

=
∫

dτ ′Ã(k1, τ1, T1)B̃(k2, τ2, T2) , (7.20)

where the shorthand ÃB̃ is defined by (see also (5.4))

ÃB̃ = Σ̃rG̃< + Σ̃<G̃a − G̃rΣ̃< − G̃<Σ̃a , (7.21)

with k1,2 ≡ k + q
2E(τ ′ ± τ

2 ), τ1,2 ≡ τ
2 ∓ τ ′, and T1,2 ≡ T ± τ2,1. Equation

(7.20) is our first encounter with a quantum kinetic equation. Special attention
should be paid toward the complicated time dependence of the non-Markovian
collision integral. This equation (and its subsequent generalizations) will play
a central role in the rest of this book.

7.3 Retarded Green Function

The quantum kinetic equation must be supplemented with the nonequilibrium
Dyson equation for the retarded Green function:{

i
∂

∂t
−
[
−1

2
∇2 + U(x, t)

]}
Gr(x, t,x′, t′) = δ(t− t′)δ(x − x′)

+
∫

dx1dt1Σr(x, t,x1, t1)Gr(x1, t1,x
′, t′) (7.22){

−i
∂

∂t′
−
[
−1

2
∇′2 + U(x′, t′)

]}
Gr(x, t,x′, t′) = δ(t− t′)δ(x − x′)

+
∫

dx1dt1Gr(x, t,x1, t1)Σr(x1, t1,x
′, t′) . (7.23)

Instead of subtracting these equations from each other, as was done for the cor-
relation function, it is now best to add them. The reason is that in the case of
the retarded function it is important to keep the inhomogeneous term, i.e. the
δ-function piece, because otherwise the necessary boundary condition cannot
be properly accounted for. The boundary condition is provided by the equal-
time anticommutation rule of the field operators,Gr(x, t,x′, t′) → −iδ(x−x′)
as t→ t′+. In order to construct the gauge-invariant retarded Green function
we follow the same procedure as the various driving terms are written in terms
of the sum and difference variables, after which one applies the transforma-
tion (7.1). We leave the intermediate steps for an exercise, and give here the
result for uniform and time-independent fields:[
ω+
q2

8
E2 ∂

2

∂ω2
− k

2

2

]
G̃r(k, ω) = 1 +

∫
dτdτ ′eiωτ D̃(k1, τ1)Ẽ(k2, τ2) , (7.24)
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where
D̃Ẽ =

1
2
(Σ̃rG̃r + G̃rΣ̃r) , (7.25)

and, just as in the case of the quantum kinetic equation, k1,2 = k+ q
2E(τ ′± τ

2 ),
and τ1,2 = τ

2 ∓τ ′. From (7.24) it follows that the free retarded field-dependent
Green function (≡G̃r

E) depends quadratically on the external field. To see this,
consider (7.24) when interactions are turned off, Σr → 0. Then the solution
can be written as

G̃r
E(k, ω) =

∫
dτeiωτ G̃r

E(k, τ) , (7.26)

where
G̃r

E(k, τ) = −iθ(τ) exp[−i(k2τ/2 + q2E2τ3/24)] . (7.27)

In Chap. 10, where we discuss high-field transport, we analyze further the
consequences of (7.22)–(7.26).
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Quantum Distribution Functions

Summary. The quantum kinetic equation is in the slowly-varying center-of-mass
coordinate approximation expressed in terms of the Wigner function. The collision
integral is simplified by means of the generalized Kadanoff–Baym ansatz formulated
in a gauge invariant way which respects causality.

8.1 Relation to Observables, and the Wigner Function

The purpose of any useful formalism is to derive calculational methods for
objects that can be related to measurable quantities. We will now establish a
connection between the current density and the nonequilibrium Green func-
tions. Similar derivations can be given to the observables encountered in later
chapters. From elementary quantum mechanics we recall that the current den-
sity is calculated from Schrödinger wavefunctions ψ(x, t) with the prescription

j(x, t) = 1
2i lim

x′→x
(∇−∇′)ψ∗(x′, t)ψ(x, t) . (8.1)

In second quantization this relation becomes

j(x, t) = 1
2i lim

x′→x
(∇−∇′)〈ψ†(x′, t)ψ(x, t)〉

= 1
2 lim

x′→x
(∇′ −∇)G<(x, t,x′, t) . (8.2)

Thus the evaluation of the current requires the knowledge of the nonequi-
librium lesser function G<. In order to make a connection to the quantum
kinetic equation derived in Chap. 7 we transform (8.2) in the center-of-mass
and difference variables:

j(R, T ) = − lim
r→0

∂

∂r
G<(r, τ = 0,R, T )

=
∫

dk

(2π)3

∫
dω
2πi

kG̃<(k, ω,R, T ) . (8.3)
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A similar analysis gives the relation between the number density n(R, T ) and
the lesser function:

n(R, T ) =
∫

dk

(2π)3

∫
dω
2πi
G̃<(k, ω,R, T ) . (8.4)

Examining (8.3) and (8.4) shows that they both relate an experimentally
relevant object to the τ = 0 component of G̃<(k, τ,R, T ). We note that

G̃<(k, τ = 0,R, T ) =
∫

dω
2π
G̃<(k, ω,R, T )

= i
∫

dre−ik·r
〈
ψ†
(
R − r

2
, T
)
ψ
(
R +

r

2
, T
)〉

≡ ifW(k,R, T ) , (8.5)

where fW(k,R, T ) is the Wigner distribution function. A question then arises:
Is it possible to develop a closed theory for the Wigner distribution alone? This
would obviously be beneficial, since the fW depends on one variable less than
the lesser function G<, and one might be able to avoid some complications.
We can immediately find an equation for fW by setting τ = 0 in the quantum
kinetic equation (7.20):[ ∂
∂T

+ qE · ∂
∂k

]
fW(k, T )

= −
∫

dτ ′Ã
(
k +
q

2
Eτ ′,−τ ′, T + τ ′

)
B̃
(
k +
q

2
Eτ ′, τ ′, T + τ ′

)
, (8.6)

where

Ã(k1, τ1, T1)B̃(k2, τ2, T2)
=
[
Σ̃rG̃< + Σ̃<G̃a − G̃rΣ̃< − G̃<Σ̃a

]
(k1, τ1, T1)(k2, τ2, T2) , (8.7)

and the variables (k1,2, τ1,2, T1,2) can be identified from (8.6). Thus the colli-
sion integral depends on the full G̃<(τ, T ), and it is not possible to obtain a
closed equation for fW, unless one finds a way of “short-circuiting” the theory.
This will be the task of Sect. 8.2.

8.2 Generalized Kadanoff–Baym Ansatz

The most obvious way to establish a link between the Wigner function and
the correlation function would be to assume a relation between G< and fW

which has the same structure as (6.14), G< = iAfW, but where the spectral
function is replaced by its nonequilibrium counterpart. This approach was
used in early attempts to develop a nonequilibrium Green function theory for
high electric field transport [178], where a field-dependent spectral function
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was substituted in (6.14). While this approach may be useful to obtain some
qualitative information, it was soon realized [170, 180] that there are some
fundamental problems with it: when applied to problems which can be ana-
lyzed with other theoretical tools, such as linear response, it turned out that
the results obtained with different methods did not always agree. A typical
case was the linear electrical conductivity of electron–phonon systems: for this
case extensive Kubo formula calculations had been performed by [157], and
the nonequilibrium Green function formulae differed from the well-established
Holstein formulae by certain factors of two. Likewise, the high-field transport
equations obtained with density-matrix methods [238] and Green functions
contained similar differences. Yet, the potential power of Green function for-
mulations provided motivation for further research, and a few years later Li-
pavský et al. [246] found an expansion, whose first term removed the discrep-
ancies between the different formulations. The first term in the expansion,
which is called the Generalized Kadanoff–Baym ansatz (GKBA), has proven
to be a fruitful starting point for further developments, and will be employed
frequently in later chapters. It should be noted, however, that the precise
range of validity of the GKBA, and its further improvements, are an active
area of research (see, for example, [331,332]).

We shall now derive the GKBA. Recall that the Wigner function is the
time-diagonal part of the Green function: fW(T ) = −iG<(τ = 0, T ) =
−iG<(t = T, t′ = T ). The spatial variables do not play any role, and can
be inserted after the analysis is completed. Thus the idea of the derivation is
to isolate the time-diagonal part, and treat the rest as a perturbation. There
is no small parameter at the outset, and one must address this issue after the
completion of the derivation.

To begin with, we define the following auxiliary functions G(r,a)(<,>):

Gr(<,>)(t1, t2) = θ(t1 − t2)G<,>(t1, t2) ,
Ga(<,>)(t1, t2) = θ(t2 − t1)G<,>(t1, t2) . (8.8)

Operate now by (Gr)−1 from left on the first of equations (8.8):

(Gr)−1Gr< =
∫

dt̄
{[

i
∂

∂t1
− ε(p)

]
δ(t1 − t̄) −Σr(t1, t̄)

}
Gr<(t̄, t2)

= iδ(t1 − t2)G<(t1, t2)

+ θ(t1 − t2)
{[

i
∂

∂t1
− ε(p)

]
G<(t1, t2)

−
∫ t1

t2

dt̄Σr(t1, t̄)G<(t̄, t2)
}
. (8.9)

The first term on the right-hand side will lead to the Wigner function, since
iδ(t1 − t2)G<(t1, t2) = −δ(t1 − t2)fW(t2). The term in curly brackets still
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requires some work. Note first that it follows from the Keldysh equation (5.11)
that (Gr)−1G< = Σ<Ga, which reads explicitly[

i
∂

∂t1
− ε(p)

]
G<(t1, t2) −

∫ t1

−∞
dt̄Σr(t1, t̄)G<(t̄, t2)

=
∫ t2

−∞
dt̄Σ<(t1, t̄ )Ga(t̄, t2) . (8.10)

We use this equation to eliminate the G−1
0 G

< term from (8.9), and obtain

[(Gr)−1Gr<](t1, t2) = iδ(t1 − t2)G<(t2, t2) + θ(t1 − t2)

×
∫ t2

−∞
dt̄
[
Σr(t1, t̄ )G<(t̄, t2) +Σ<(t1, t̄ )Ga(t̄, t2)

]
. (8.11)

Finally, operating with Gr from the left, we arrive at

Gr<(t1, t2) = iGr(t1, t2)G<(t2, t2)

+
∫ t1

t2

dt̄
∫ t2

−∞
dt̄′Gr(t1, t̄ )

[
Σr(t̄, t̄′ )G<(t̄′, t2)

+Σ<(t̄, t̄′ )Ga(t̄′, t2)
]
. (8.12)

The same analysis can be repeated for (Ga)< with the result

Ga<(t1, t2) = −iG<(t1, t1)Ga(t1, t2)

+
∫ t2

t1

dt̄
∫ t1

−∞
dt̄′
[
G<(t1, t̄′)Σa(t̄′, t̄)

+Gr(t1, t̄′)Σ<(t̄′, t̄)
]
Ga(t̄, t2) . (8.13)

Since G< ≡ Gr< + Ga<, these two equations allow, at least in principle, an
iterative construction of G<(t1, t2) from its time-diagonal component, i.e.,
the Wigner function fW. The first term gives the generalized Kadanoff–Baym
ansatz, while the iterative corrections represent an expansion in terms of the
various relaxation times in the system. For a further discussion of these mat-
ters we refer to [246]; here we concentrate on the first term. The two terms
originating from (8.12) and (8.13) can be combined (we restrict ourselves to
uniform fields, when it is convenient to work in the vector potential gauge,
and insert the momentum label):

G<(p, t1, t2) = iGr(p, t1, t2)G<(p, t2, t2)
− iG<(p, t1, t1)Ga(p, t1, t2) . (8.14)

This equation is in a form which is suitable for further developments. For
example, in Part III we analyze high-field transport using it, and in Part IV
we generalize it to a two-band model. It is sometimes useful to express (8.14)
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in terms of the gauge invariant variables discussed earlier in this section. The
generalization of (7.9) to time-dependent fields, which follows immediately
from the rule (7.1) and (7.2) says that

g̃(k, τ, T ) = gA
(
p = k +

∫ 1/2

−1/2

dλqA[T + λτ ], τ, T
)
. (8.15)

The retarded and advanced functions in (8.14) are readily transformed ac-
cording to (8.15), but the correlation functions, which have equal time labels
require some care. Writing the time labels explicitly, we proceed as follows
[consider, for example, the first term in (8.14)]:

G<
A(p, t2, t2) = G<

A

(
k +

∫
dλqA

(
t2 + λ(t2 − t2)

)
, t2 − t2, t2

)
= G<

A

(
k + qA(T − τ/2), τ = 0, T − τ/2

)
= ifW

(
k + qA(T − τ/2) −

∫
dλqA(T + τλ), T − τ/2

)
= ifW

(
k(τ, T ), T − τ/2

)
, (8.16)

where we defined

k(τ, T ) ≡ k +
∫ 1/2

−1/2

dλ
∫ T+λτ

T−τ/2

dtE(t) . (8.17)

The G<(t1, t1) piece is treated analogously with the result

G<
A(p, t1, t1) = ifW

(
k(−τ, T ), T + τ/2

)
, (8.18)

and combining (8.16) and (8.18) we finally get the GKB ansatz in gauge
invariant form as

G̃<(k, τ, T ) = iA(k, τ, T )fW
(
k(|τ |, T ), T − |τ |/2) . (8.19)

Here we recalled that A(k, τ <> 0, T ) = ±iGr,a(k, τ, T ). For time-independent
fields, when T -dependence becomes irrelevant, (8.19) reduces to

G̃<(k, τ) = iA(k, τ)fW(k + qE|τ |/2) . (8.20)

We observe that the Wigner distribution function occurs with a retarded
time argument, and that the momentum and the time variables have become
entangled; these properties of the GKBA will have far reaching consequences
in many of the later developments.

8.3 Summary of the Main Formal Results

In Part II of this book we have developed the formal theory for nonequilibrium
Green functions, and here we summarize the main results of our analysis.
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1. Wick’s theorem can be proven for nonequilibrium Green functions at the
price of moving from the real-time-axis to complex contours. The diagram-
matic structure of the perturbation theory is topologically equivalent to
the equilibrium theory. Analytic continuation rules specify how Green
functions defined on a complex-time contour can be expressed in terms of
real-time quantities.

2. Complex-time Dyson equation leads to two (generally coupled) equations:
(a) A quantum kinetic equation for the correlation function G< (Keldysh
or Kadanoff–Baym equation) and (b) a nonequilibrium Dyson equation
for the retarded Green function. The full analysis of the nonequilibrium
problem requires that both of these equations are solved.

3. Both the quantum kinetic equation and the nonequilibrium Dyson equa-
tion should be expressed in a gauge invariant form before resorting to
approximations.

4. Full correlation functions are often too complicated objects to be amenable
for explicit analysis. On the other hand, it is not possible to close
the equation-of-motion for the Wigner function, because for nontrivial
interaction mechanisms it still involves the full correlation function. To
close the gap an Ansatz is introduced, which allows significant simplifi-
cation. The Ansatz (8.14) emerges as the leading order term in an in-
tegral equation, but the exact limits of its validity are still under active
study [258,315,331,332].
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Linear Transport

Summary. The quantum transport equation in the linear limit is derived. For the
particularly transparent case of electron-elastic impurity scattering contact is made
with the Kubo formalism. Finally the weak localization corrections to the electrical
conductivity are derived from the linearized quantum transport equation.

9.1 Quantum Boltzmann Equation

Description of linear transport theory in Fermi systems has reached a very high
level of sophistication, and a number of theoretical methods are available. The
Kubo formula, which relates transport coefficients to current–current corre-
lation functions, or, equivalently, to a two-particle Green function, is one of
the cornerstones of the theoretical treatment. In the present chapter we shall
work out the linear-response limit of the quantum kinetic equation derived
in Chap. 7, and show that it leads to the same results as the Kubo formula.
This is an important consistency check, since the basic formulation of the
two theories appears to be quite different. In quantum kinetic theory one
obtains an equation-of-motion for the lesser function G<, which is formally
a one-body object (it involves two field operators), while the Kubo formu-
lation, as mentioned above, usually involves a two-particle Green function.1

The choice of a number-conserving approximation is often quite obvious in
a kinetic theory formulation: once a self-energy functional has been decided
upon, the rest follows quite naturally. This will be illuminated later in con-
nection with a calculation of linear conductivity for an electron-elastic im-
purity system. Finally, in many problems a quantum kinetic equation is a
more convenient starting point for the calculation than the two-particle Green
function.

1 Of course the self-energies appearing in the kinetic equation may involve two-
particle Green functions.
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The theory underlying the quantum Boltzmann equation (QBE), which we
now will derive, is due to Mahan and co-workers [136,254], and our derivation,
though different in detail, leads to the same final result.

The starting point is the kinetic equation (7.20), and the task is to lin-
earize it with respect to the external electric field E. For simplicity, we shall
restrict ourselves to uniform and steady fields, when all reference to the vari-
ables R and T can be ignored. We observe first that the left-hand side is
already proportional to E; hence all that is required in linear theory is to re-
place the nonequilibrium Green function G̃< by its equilibrium counter part
g<(k, τ). We recall from Part I that the fluctuation-dissipation theorem, valid
for equilibrium Green functions, allows us to write g<(k, ω) = inF(ω)a(k, ω),
where a is the full interacting spectral function and nF is the Fermi function.
Thus it is advantageous to Fourier-transform the kinetic equation, τ → ω,
which we shall also do after a few further steps. Now consider the collision
integral, where the object ÃB̃ ≡ ΣrG< +Σ<Ga−GrΣ<−G<Σa is linearized
as follows:

Ã
[
k +
q

2
E(τ ′ +

τ

2
),
τ

2
− τ ′

]
B̃
[
k +
q

2
E(τ ′ − τ

2
),
τ

2
+ τ ′

]
→ Aeq

(
k,
τ

2
− τ ′

)
Beq

(
k,
τ

2
+ τ ′

)
+
q

2
E ·

{[
τ ′ − τ

2

]
Aeq

(
k,
τ

2
− τ ′

)[ ∂
∂k
Beq

(
k,
τ

2
+ τ ′

)]
+
[
∂

∂k
Aeq

(
k,
τ

2
− τ ′

)] [τ
2

+ τ ′
]
Beq

(
k,
τ

2
+ τ ′

)}
+A1

(
k,
τ

2
− τ

)
Beq

(
k,
τ

2
+ τ ′

)
+Aeq

(
k,
τ

2
− τ ′

)
B1

(
k,
τ

2
+ τ ′

)
. (9.1)

One should note the different origin of the various terms in (9.1). The first
term, which is zeroth order in the external fields, yields a vanishing contri-
bution, because the collision integral must vanish in equilibrium. This can be
verified for each scattering mechanism separately, and the reader is urged to
check this, say, for the electron–phonon scattering term when (4.37)–(4.39) can
be applied. The next two terms arise from expanding the momentum argument
of the ÃB̃-terms. The last term, indicated by AeqB1 +A1Beq, is genuinely of
a nonequilibrium nature in the sense that it involves nonequilibrium Green
functions and self-energies (but only first-order in the field). They must be
evaluated with field-independent momentum arguments to be consistent with
the linear approximation. These terms are, in general, unknown, and must
be found through a solution of the quantum kinetic equation. This procedure
usually requires the solution of an integral equation, as we shall demonstrate
later. We next Fourier-transform the kinetic equation [we repeatedly use the
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identity
∫

dτ exp(iωτ)τf(τ) = −i∂f(ω)/∂ω], and using (9.1) for the collision
integral results in

iqE ·
[
∂

∂k
+ k

∂

∂ω

]
g<(k, ω)

− i
q

2
E ·

{
Aeq(k, ω)

[
∂A

∂ω

∂B

∂k
− ∂

A

∂k

∂B

∂ω

]
Beq(k, ω)

}
= Aeq(k, ω)B1(k, ω) +A1(k, ω)Beq(k, ω) . (9.2)

where the superscripts A and B indicate the direction of the differentiation,
and we moved the terms originating from the expansion of the momentum
arguments to the left-hand side; these terms give rise to a re-normalization of
the driving term. Explicitly, one finds

Aeq(k, ω)
[
∂A

∂ω

∂B

∂k
− ∂

A

∂k

∂B

∂ω

]
Beq(k, ω)

=
∂σr

∂ω

∂g<

∂k
− ∂σ

r

∂k

∂g<

∂ω
+
∂σ<

∂ω

∂ga

∂k
− ∂σ

<

∂k

∂ga

∂ω

− ∂g
r

∂ω

∂σ<

∂k
+
∂gr

∂k

∂σ<

∂ω
− ∂g

<

∂ω

∂σa

∂k
+
∂g<

∂k

∂σa

∂ω
. (9.3)

Recalling the definitions σ = 1
2 (σr + σa) = Reσr and g = 1

2 (gr + ga) = Regr,
we write (9.2) as

iqE·
{[

1 − ∂σ
∂ω

]
∂g<

∂k
+
[
k +
∂σ

∂k

]
∂g<

∂ω
+
∂g

∂ω

∂σ<

∂k
− ∂g
∂k

∂σ<

∂ω

}
=
{
−Σ>(k, ω)G<(k, ω) +G>(k, ω)Σ<(k, ω)

}
1
, (9.4)

where the subscript “1“ indicates that the quantity in curly brackets should
be evaluated up to linear order in the electric field. The left-hand side
allows considerable simplification. Let us recall the equilibrium relations
g< = inFa = inF(−2Imgr) and σ< = inFγ = inF(−2Imσr), and introduce
the notation ∆ = ω − εk − σ. Then

a =
γ

∆2 + (γ/2)2
; g =

∆

∆2 + (γ/2)2
. (9.5)

With this notation we can write the expression in curly brackets in the left-
hand side of (9.4) as

∂∆

∂ω

∂g<

∂k
− ∂∆
∂k

∂g<

∂ω
+
∂g

∂ω

∂σ<

∂k
− ∂g
∂k

∂σ<

∂ω
.
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The differentiations result in two kinds of terms: terms proportional to nF,
and terms proportional to ∂nF/∂ω.Straightforward manipulations using (9.5)
show that the term involving nF vanishes, and that the other term can be
simplified to yield the following kinetic equation [136]:

−1
2
a2(k, ω)

∂nF(ω)
∂ω

qE ·
[
γ
∂∆

∂k
−∆∂γ
∂k

]
=
{
−Σ>(k, ω)G<(k, ω) +G>(k, ω)Σ<(k, ω)

}
1

= i
{
Γ (k, ω)G<(k, ω) −A(k, ω)Σ<(k, ω)

}
1
. (9.6)

This equation is still exact, and it has served as a starting point for many
transport calculations [252, 253].

At this point it is interesting to examine the relation between the Boltz-
mann equation and the quantum Boltzmann equation (9.6). We recall from
Sect. 6.3 that one of the steps required to obtain the Boltzmann equation from
the full kinetic equation was to let the spectral function approach a δ-function
[qualitatively one should let γ → 0 in (9.5)]; this procedure now appears to be
ill-defined because of the square of the spectral function in (9.6). The limiting
process can be regularized, however, by making the replacement:

lim
γ→0
a2γ = lim

γ→0

γ3

[∆2 + (γ/2)2]2
= 4πδ(ω − εk) . (9.7)

The prefactor of the δ-function in (9.7) was determined by evaluating the
integral

∫
dωa2γ = 4π. When (9.7) is used on the left-hand side of (9.6), and

the ω-integral is performed, the singular behavior is removed, and one recovers
the familiar (linearized) Boltzmann equation driving term, E ·k∂nF(εk)/∂εk.

9.2 Linear Conductivity
of Electron-Elastic Impurity Systems

Electrical conductivity of electrons in a (weakly) disordered system is a
standard illustration of the use of many-body techniques in calculation of
transport properties, and most textbooks have chapter(s) devoted to this
problem [2, 96, 105, 254]. Most of these treatments are based on the Kubo
formula, with the exception of [254], who also discusses the kinetic equation
approach. In what follows, we shall outline the steps required in the Kubo
formalism, and then discuss the kinetic equation method in detail. Our main
emphasis will be on the differences of the two methods, and the reader should
consult the above-mentioned references for additional technical details.
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9.2.1 Kubo Formula

In the Kubo formalism the ac electrical conductivity is calculated from2

σαβ(q, ω) =
i
ω

[
Πr

αβ(q, ω) +
ne2

m
δαβ

]
, (9.8)

where the retarded current–current correlation function Πr is given by

Πr
αβ(q, ω) = −i

∫ ∞

−∞
d(t− t′)θ(t− t′)eiω(t−t′)〈[jα(q, t), jβ(−q, t′)]〉 . (9.9)

The angular brackets in (9.9) indicate a ground state average for T = 0,
or an average over a suitable thermal ensemble for finite temperatures.
The greek indices (α, β) denote cartesian components. In the case of a
random impurity system, one must also average over the impurity configu-
rations, and impurity-averaged quantities will be indicated henceforth with
an overbar. The two current operators in (9.9) give rise to four creation
or annihilation operators (recall that each current operator is of the form
j(q) = (e/m)

∑
p(p + 1

2q)a†p+q,ap) and hence, in general, the evaluation of
(9.8) and (9.9) requires the knowledge of a two-particle Green function. In
the present case, which consists of noninteracting electrons scattering off from
impurities, the two-particle Green function can be exactly factorized into a
product of two one-particle Green functions. This follows from the fact that
for a fixed configuration of impurities the problem is diagonalizable (i.e., it
is described by a bilinear Hamiltonian), and hence Wick’s theorem can be
applied directly. But Wick’s theorem applies only to time-ordered quantities,
and hence one must consider the time-ordered counterpart of (9.9):

Πc
αβ(q, ω) = −i

∫ ∞

−∞
d(t− t′)eiω(t−t′)〈T {jα(q, t)jβ(−q, t′)}〉

= −i
e2

m2

∫ ∞

−∞
d(t− t′)eiω(t−t′)

∑
pp′

(p +
1
2
q)α(p′ − 1

2
q)β

× 〈T {a†p+q(t)ap(t)a†p′−q(t′)ap′(t′)}〉 . (9.10)

Applying Wick’s theorem to the four-operator expectation value yields

〈T {a†p+q( t )ap(t)a†p′−q(t′)ap′(t′)}〉
= gc(p,p′ − q, t− t′)gc(p′,p + q, t′ − t) , (9.11)

where the one-particle causal Green function has its conventional definition,
gc(p,p′−q, t−t′) = −i〈T {ap(t)a†p′−q(t′)}〉. We note that the time-ordered cor-
relation function is a product of two anti-parallel Green functions, and hence
2 Note that in this section we set the charge of the particles equal to e in order to

avoid confusion with the wavevector q.
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the retarded correlation function can be constructed with a direct application
of the results of Chap. 4 [in particular (4.36)].

The impurity averaging, however, must be done carefully, and it is essential
to calculate the impurity average of the product of two Green functions gg,
which, in general, does not factorize into a product of two impurity-averaged
one-particle Green functions, gg �= g g. The study of gg leads to the study of
vertex functions, and these must be chosen consistently with the self-energies
used in the computation of g. We have seen in Part I that the simplest, self-
consistent approximation to the g function leads to the (self-consistent) Born
approximation to the self-energy, σB(k, ω) = c

∫
dq/(2π)3|V (k − q)|2g(q, ω).

A detailed analysis shows that the vertex function corresponding to σB con-
sists of so-called ladder diagrams; this can be verified by studying Ward identi-
ties [2,254], which are abstract statements of current conservation. Figure 9.1
gives a pictorial representation of the ladder diagrams. This step is by-passed
in a quantum kinetic formulation: given a self-energy functional, the structure
of the equations is such that conservation laws are guaranteed.3 This advan-
tage becomes even larger in cases where the basic self-energy is more compli-
cated, such as in the phenomenon called weak localization (for a review, see,
for example, [5, 233], and Sect. 9.3).

The calculation of the conductivity proceeds by rewriting Π
c

as [96]

Π
c

αβ(q, ω) = −i
e2

m2

∑
p

∫
dε
2π

(p +
1
2
q)αg

(2)
β (p, q, ε, ω) , (9.12)

where the impurity-averaged causal two-particle vector Green function is
defined by

g(2)(p, q, ε, ω) =
∑
p′

(p′ − 1
2
q)gc(p′,p + q, ε)gc(p,p′ − q, ω + ε) . (9.13)

Fig. 9.1. Schematic representation of the integral equation satisfied by the vertex
function in the ladder approximation. Shaded box : the vertex function; dotted line:
the impurity potential; solid line: Green function; short dashed line: places where
Green functions can be attached

3 One should note, however, that if approximations have been made on the quantum
kinetic equation, the conservation laws must be checked separately [284,287].
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In Sect. 6.2 we showed that gc(p,p′, ω) satisfies the Dyson equation:

gc(p,p′, ω) = δpp′gc0(p, ω) + gc0(p, ω)
∑

q

v(p − q)gc(q,p′, ω) . (9.14)

Here, v(q) =
∑

i exp[−iq ·Ri]V (q), and the sum runs over the random impu-
rity locations {Ri}. The impurity averaging in (9.13) is performed with the
method described in Part I: one substitutes the infinite series (9.14) in (9.13),
and averages term-by-term. This procedure obviously results in a large num-
ber of terms. As explained above, one must choose an appropriate subset of
these terms. Presently this consists of the above-mentioned ladder diagrams,
in which case g(2) satisfies the following integral equation:

g(2)(p, q, ε, ω) = gc(p, ε+ ω)gc(p + q, ε)

×

⎡⎣p +
1
2
q + c

∑
p′

|V (p − p′)|2g(2)(p′, q, ε, ω)

⎤⎦ , (9.15)

where gc is the impurity-averaged one-particle Green function,4 and c denotes
the impurity concentration.

We also wish to point out another slight technical complication in working
with (9.8): The “diamagnetic“ term ine2/ωm diverges in the dc limit. Thus, in
order to obtain a finite dc conductivity, the correlation function must contain
a piece that cancels the diverging term. This is indeed the case, as we shall now
proceed to show. In what follows we shall restrict ourselves to uniform sys-
tems, and hence work in the q → 0 limit. To isolate the terms that cancel the
diamagnetic term, we must express the causal response functionΠ

c
in terms of

retarded and advanced Green functions. To do this, we apply the second rule
(4.36) toΠ

c
. This gives rise toΠ

r
(ω) ∝

∫
dε[gr(ε)g<(ε+ ω)+g<(ε)ga(ε+ ω)],

and expressing the lesser functions in terms of retarded and advanced func-
tions,5 leads to four terms. The grga-terms give a finite contribution to the
conductivity and read explicitly:

σ(ω) =
2e2

3m2

∫
dε
2π

∑
pp′

p · p′nF(ε) − nF(ε+ ω)
ω

× ga(p,p′, ε+ ω)gr(p′,p, ε) . (9.16)

4 Note that it is not necessary to use an overbar to indicate an impurity-averaged
single-particle Green function, because the distinction is clear from the num-
ber of the momentum variables: unaveraged functions have two (9.14), while the
averaged functions have one.

5 We recall that in equilibrium g<(ε) = −nF(ε)[gr(ε) − ga(ε)].
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In writing (9.16) we assume that the system is isotropic, i.e., σαβ(ω) =
σ(ω)δαβ , and thus made the replacement pαp′

α = 1
3p · p′. The factor two

accounts for the spin degeneracy.
To evaluate the contribution arising from the terms proportional to grgr

and gaga, it is sufficient to use the lowest order approximation for g(2), which
follows directly from (9.15):

g(2)
rr (p, q = 0, ε, ω → 0) � pgr(p, ε)gr(p, ε) (9.17)

and similarly for g(2)
aa . The contribution to σ(q = 0, ω = 0) due to these terms

can be calculated as

−i
2e2

3m2

∑
p

∫
dε
2π
p2nF(ε)

{
[ga(p, ε)]2 − [gr(p, ε)]2

}

= −i
2e2

3m2

∑
p

∫
dε
2π
p2
∂nF

∂ε
[ga(p, ε) − gr(p, ε)]

= − 2e2

3m2
p2FN(εF) = −ne

2

m
. (9.18)

In obtaining (9.18) we used the following observations: (1) −∂nF/∂ε�δ(ε−εF);
(2) we integrated by parts to obtain the second line; (3) the difference of re-
tarded and advanced Green functions is strongly peaked at ε = ε(p), and
since ε � εF, we can replace p2 by p2F, and move it out of the integral; (4)
the density of states at Fermi level is N(εF) = 2

∑
p δ(εF − εp) = mkF/π2h̄2;

and, finally, (5) n = k3F/3π
2. Thus, this term exactly cancels the diamagnetic

term in (9.8).
The origin of the formal divergence is the use of the vector potential to

describe the electric field; the gauge-invariant variables discussed in Chap.7
lead to a description which involves only the physical E-field, and thus the
quantum kinetic equations do not suffer from this slight difficulty.

We conclude this section by outlining the calculation needed for the dc
conductivity for the impurity system. In the dc limit the conductivity (9.16)
becomes

σdc =
2e2

3m2

∫
dε
2π

(
−∂nF

∂ε

)∑
p

p · g(2)
ra (p, q = 0, ε, ω = 0) . (9.19)

The vertex equation that needs to be solved is

γ(p, ε)pλ(p, ε) = a(p, ε)

[
p + c

∑
p′

|V (p − p′)|2p′λ(p′, ε)

]
, (9.20)

where we introduce a new function λ via g(2)(p, ε) = pλ(p, ε). In writing (9.20)
we suppressed all q and ω-dependence, since these variables do not play a role
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in the solution. We also used the identity grga ≡ (gr − ga)/(1/ga − 1/gr) =
a/γ. We postpone the solution of (9.20) until Sect. 9.2.2, where we derive an
analogous result with the quantum kinetic formulation.

9.2.2 Quantum Kinetic Formulation

We now apply the linearized quantum kinetic equation (9.6) to the electron-
impurity problem [254]. We do not consider contributions arising from high
concentrations of impurities (this assumption was also used in the derivation
of the self-energy functional), and hence the expression in brackets on the
left-hand side of (9.6) can be simplified:[

γ
∂∆

∂k
−∆∂γ
∂k

]
= −γ

(
k +
∂σ

∂k

)
− (ε− εk − σ)∂γ

∂k
→ −γk , (9.21)

where we discarded all terms which are of the order c2. In evaluating the
right-hand side of (9.6) we make the replacement Gr → gr; this procedure
is justified by recalling from Sect. 7.3 that the free field-dependent retarded
Green function depends quadratically on the electric field, Gr

E = gr0 +O(E2),
and that the field-dependent corrections due to scattering (these can be cal-
culated by expanding the right-hand side of (7.22) in powers of E) are small,
because they involve momentum derivatives of equilibrium self-energies, which
are small for impurity problems. Consequently, the same property can be used
for A and Γ as well: A→ a and Γ → γ. Combining all these results we find:

1
2a

2(k, ε)γ(k, ε)
∂nF

∂ε
E · k = i

[
γ(k, ε)G<

1 (k, ε) − a(k, ε)Σ<
1 (k, ε)

]
. (9.22)

It is next convenient to define a new function Λ(k, ε) in terms of the (as of
yet unknown) nonequilibrium Green function:

G<
1 (k, ε) = −ia(k, ε)

∂nF

∂ε
E · kΛ(k, ε) . (9.23)

We can also express Σ<
1 in terms of Λ(k, ε):

Σ<
1 (k, ε) = c

∑
q

|V (k − q)|2G<
1 (q, ε)

= c
∑

q

|V (k − q)|2(−i)a(q, ε)
∂nF

∂ε
E · qΛ(q, ε) . (9.24)

Further, using (9.23) in the expression for the current (8.3), we can identify
the electrical conductivity:

σdc =
2e2

3m2

∫
dk

(2π)3

∫
dε
2π
k2
(
−∂nF

∂ε

)
a(k, ε)Λ(k, ε) . (9.25)
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Thus it remains to solve for Λ(k, ε). By substituting (9.23),(9.24) in the kinetic
equation, we find after some rearrangement:

kΛ(k, ε) = 1
2ka(k, ε) +

c

γ(k, ε)

∑
q

|V (k − q)|2qa(q, ε)Λ(q, ε) . (9.26)

This equation can be brought to a close agreement with the Kubo formula
result (9.23) by introducing a new function, λ̂(k, ε) ≡ a(k, ε)Λ(k, ε):

γ(k, ε)kλ̂(k, ε) = a(k, ε)

[
1
2ka(k, ε)γ(k, ε)

+ c
∑
k′

|V (k − k′)|2k′λ̂(k′, ε)

]
. (9.27)

The only difference between the two vertex equations is in the inhomoge-
neous term: the Kubo approach has a, while the quantum kinetic equation
leads to (1/2)γa2. But this difference is immaterial: we have already shown
in (9.7) that in the dilute limit these two expressions are completely equiva-
lent, if they occur within an energy-integral, as they do in the conductivity
formulae.

The solution for the vertex equation (9.20) [or (9.27)] can be found by
multiplying both sides of the equation by p/p2 (the technical details can be
found, e.g., in [251]). The resulting algebraic equation has the solution

λ(ε) =
a(p, ε)
γtr(p, ε)

, (9.28)

where the “transport damping” γtr is given by

γtr(p, ε) = τ−1
tr = 2πc

∫
dΩ
4π

|V (θ)|2(1 − cos θ) . (9.29)

The above derivation used the fact that all momenta have magnitudes close
to pF. This can be verified by studying the iterative solution of the vertex
equations: the strongly peaked nature of the spectral functions force ε and εp
to be nearly equal, and the derivative of the Fermi function in (9.19) confines
ε in the neighborhood of εF. When (9.29) is substituted in (9.19) [or (9.25)],
we find the familiar dc conductivity

σdc =
ne2τtr
m

. (9.30)

It may appear that much effort has been spent in recovering a Boltzmann
equation result. This is, of course, true, but the real strength of the formalism
is in problems, which are inherently beyond a Boltzmann description.
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9.3 Weak Localization Corrections
to Electrical Conductivity

In this section we demonstrate the use of the linearized quantum kinetic equa-
tion in a problem that cannot be addressed with Boltzmann formalism: an
electron-impurity system where one considers the coherent back-scattering of
electrons. This phenomenon, known as weak localization (WL), has received
enormous attention during the last two decades, and the reader is referred to
the literature for a full discussion [suitable review articles are [5,233,287]; here
we use WL as an example of how to use the techniques developed above [323].

In order to simplify the forthcoming discussion, we will assume that the
impurity potential is localized in space, and thus its Fourier component is
momentum-independent; we also introduce the notation cV 2 = u2. As a result,
there is no distinction between the transport lifetime τtr and the scattering
lifetime τ . We shall only evaluate the correction due to weak localization
to normal impurity conductivity σ = ne2τ/m, and will therefore look for a
perturbative solution.

As shown in Part I, any diagram which contains crossed impurity lines, is
smaller by a factor (lkF)−1 than a diagram of the same order in the impurity
potential, but without crossed impurity lines. (Here l = vFτ is the impurity
mean free path, and vF is the Fermi velocity). However, all maximally crossed
diagrams give a contribution which is of the same order of magnitude. Thus, in
constructing the self-energy functional for the kinetic equation, it is necessary
to sum over all these maximally crossed diagrams. Figure 9.2 shows the lowest
order contribution to the weak localization self-energy ΣWL. When inserting
the momentum labels in the diagram of Fig. 9.2 we used the Feynman rules
of Part I, which stipulate that momentum is conserved at each vertex. The
mathematical expression for the nonequilibrium self-energy Σ(1)

WL is

Σ
(1)
WL(p, t, t′) = u4

∑
q,q1

∫
dτ1dτ1′

×G(p − q1, t, τ1)G(q, τ1, τ1′)G(q + q1, τ1′ , t′) . (9.31)

Fig. 9.2. Lowest order contribution to the weak localization self-energy Σ
(1)
WL
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Similar structure prevails for the higher order maximally crossed diagrams,
and the nth term in the series can be expressed as

Σ
(n)
WL(p, t, t′) = u2(n+1)

∫
dτ1dτ1′ · · · dτndτn′

∑
q1···qnq

G(q, τn, τn′)

×
n∏

j=1

G

(
p −

j∑
i=1

qi, τj−1, τj

)

×
n′∏

j′=1

G

⎛⎝q +
j′∑

i′=1

qi′ , τn′−(j′−1), τn′−j′

⎞⎠ . (9.32)

In writing (9.32) we used the notation τ0 ≡ t (and τ0′ ≡ t′). Σ(n)
WL is in

a form for which the analytic continuation rule (4.27) can be applied (the
generalization to a product of 2n+ 1 terms is obvious). This process leads to
a sum of (2n+ 1) terms, and the self-energy has the structure

Σ
(n)<
WL ∝ G<Ga · · ·Ga︸ ︷︷ ︸

2n terms

+ · · · + Gr · · ·Gr︸ ︷︷ ︸
n terms

G<Ga · · ·Ga︸ ︷︷ ︸
n terms

+ · · · +Gr · · ·Gr︸ ︷︷ ︸
2n terms

G< . (9.33)

Let us next examine the variable structure of the momentum integrals in
(9.33). Using (9.31) as a guideline, one can relabel the dummy integration
variables, and rearrange the momentum integrations into pairs of the same
type as the q1-integration in (9.31). As argued above, we can replace the
retarded and advanced Green functions by their equilibrium expressions. Fur-
ther, integrals which involve two gr’s (or two ga’s) can be neglected in com-
parison to those which are of the form grga. Thus, only the term in (9.33)
which has n gr’s and ga’s needs to be considered. All the n integrals involving
the pairs grga in Σ(n)<

WL give the same result, and it is sufficient to consider
the contribution arising from Σ(1)<

WL :

Σ
(1)<
WL (p, ω) = u2

∑
q

[
u2
∑
q1

gr(q1, ω)ga(p + q − q1, ω)

]
G<(q, ω)

≡ u2
∑

q

ζ(p + q, ω)G<(q, ω) . (9.34)

We evaluate the function ζ(q, ω) under the assumption q � kF, and the
calculation proceeds as follows:
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ζ(q, ω) = u2
∫

d3k

(2π)3
1

ω − ε(k + q/2) + i/2τ
1

ω − ε(k − q/2)− i/2τ

= u2N(0)
∫

dΩ
4π

∫
dεk

1
εk + kFq cos θ/2m− ω − i/2τ

× 1
εk − kFq cos θ/2m− ω + i/2τ

= u2N(0)πi
∫ 1

−1

dx
−kFqx/m+ i/τ

=
i

2ql
log
lq + i
−lq + i

. (9.35)

Here, we recalled the definition of the relaxation time 1/τ = 2πu2N(0) = γ,
where N(0) is the density of states at the Fermi level, and introduced the
mean free path l = vFτ . We note that ω-dependence drops out from ζ. If
one considers the ac conductance, the analysis presented above is essentially
unchanged, and the final result for ζ is obtained from (9.35) by replacing the
imaginary unit i in the log function by i → i + ω0τ , where ω0 is the external
frequency. In what follows, we shall use this finite-frequency expression. In
the limit ql � 1, ω0τ � 1 one finds ζ � 1+ iω0τ −Dτq2, where D = (1/3)v2Fτ
is the diffusion constant.

Summing up the series for the weak localization self-energy gives:

Σ<
WL(p, ω) =

∑
n

Σ
(n)<
WL (p, ω)

= u2
∑
p′

ζ(p + p′, ω)
1 − ζ(p + p′, ω)

G<(p′, ω)

� u
2

τ

∑
p′

1
−iω0 +D(p + p′)2

G<(p′, ω)

� u
2

τ
G<(−p, ω)F (ω0) , (9.36)

where
F (ω0) =

∑
q

1
−iω0 +D(q)2

. (9.37)

In obtaining the last line in (9.36) we used the fact that the integrand is stron-
gly peaked at p′ = −p, which allows one to move G< outside the integral.

We now return to the kinetic equation (9.22), and solve it with the weak
localization self-energy (9.36) added to the normal Born approximation self-
energy (9.24). Since we are looking for a perturbative solution, we write G< =
G<

1 + δG<, where G<
1 is the solution obtained for the “normal“ impurity

problem, G<
1 = −i(∂nF/∂ω)(p · E)τa. Thus, we write (9.22) as

1
2
a2γ
∂nF

∂ω
(E · k) = i[γ(G<

1 + δG<) − a(Σ<
1 +Σ<

WL)] . (9.38)

Since G<
1 is the solution to the kinetic equation without weak localization

effects, we can immediately identify δG<:
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δG<(p, ω) =
a(p, ω)
γ(p, ω)

Σ<
WL(p, ω)

= a(p, ω)u2G<
1 (−p, ω)F (ω0) , (9.39)

where we used γτ = 1. We recall that G<
1 has a factor a in it, and hence

combine some of the prefactors in (9.39) as a2u2 = a2γ/[2πN(0)] = a/[πN(0)],
and substituting this back into the expression for δG< we finally obtain:

δG<(p, ω) =
1

πN(0)
F (ω0)G<

1 (−p, ω)

= − i
πN(0)

F (ω0)
∂nF

∂ω
(−p · E)aτ . (9.40)

We see that the correction to the conductivity, which is obtained from (9.40)
by multiplying by p and summing over p, is proportional to the unperturbed
conductivity, and, importantly, it is negative (weak localization!) because of
the momentum argument in G<

1 :

δσ(ω0) = − 1
πN(0)

F (ω0)σ , (9.41)

where σ = ne2τ/m is the Drude dc conductivity. It remains to evaluate the
integral in (9.37). Since we work all the time in the limit ql� 1, we must cutoff
the upper limit at q = 1/l. In three dimensions one obtains a nonsingular
contribution, while in two dimensions one finds a logarithmically singular
result:

F (ω0) = N(0)
∫ h̄2/(l22m)

0

dεq
−iω0 + (2mD/h̄2)εq

� N(0)h̄2

2mD
log(ω0τ) , (9.42)

where we omit nonsingular terms. Combining all the prefactors, we arrive at
the first quantum correction to the conductivity [127]:

δσ/σ = (1/πkFl) logω0τ . (9.43)

This logarithmic frequency-dependence has been verified experimentally. It
would go beyond the scope of this presentation to push the analysis further.
However, we would like to point out the importance of magnetic fields: it
turns out that the weak localization correction is intimately linked to time-
reversal symmetry, and hence sensitive to magnetic fields. In general, theory
and experiment are in good agreement, and weak localization has become an
important tool in extracting material parameters, such as different scattering
times. We refer the reader to the review articles mentioned in the beginning
of this section for further details.



10

Field-Dependent Green Functions

Summary. As the device size shrinks, and the operating voltage is necessarily
bounded from below, the electric fields inside the device must grow. In this chapter,
we will address high-field transport phenomena in a systematic manner, and as a first
step we study the general properties of free field-dependent Green functions which
form the basic building blocks of the subsequent theory. In order to gain insight
of how the general approach works, we next study a specific model of dynamical
disorder, for which an analytic and exact theory can be developed. Finally, we give an
extensive treatment of high-field transport in semiconductors, focusing in particular
to the modifications one must make to the semiclassical Boltzmann equation.

10.1 Free Green Functions and Spectral Functions
in an Electric Field

In order to address quantum phenomena occurring at strong electric fields,
one should develop a quantum kinetic theory which is nonperturbative in
the electric field. One way of achieving this goal is to use field-dependent
free Green functions as the basic building block of the theory, and then de-
velop a diagrammatic analysis, where the field-dependent Green functions
replace the free Green functions of the equilibrium theory. We have actually
already seen an example of a such a field-dependent Green function (7.26)
in Chap. 7 and here we elaborate further these concepts. In this section we
focus on retarded/advanced Green functions Gr/a (and spectral densities
A = i(Gr −Ga)); the correlation functions G< will be analyzed below in a
discussion of quantum high-field kinetic equations.

The analysis can be carried out directly in terms of the gauge-invariant
Green functions. However, sometimes additional insight can be obtained by
working in a specific gauge, and in this section we first consider the scalar
potential gauge. Thus we set φ(x, t) = −x·E, where E is the time-independent
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uniform electric field. We will address time-dependent electric fields later in
this chapter. The equation of motion for the retarded function is thus[

i
∂

∂t
−
(
−1

2
∇2 − qx · E

)]
Gr

φ(x, t,x′, t′) = δ(x − x′)δ(t− t′) . (10.1)

The Fourier transform of (10.1) is[
i
∂

∂t
−
(

1
2
k2‖ +

1
2
k2⊥ − iqE

∂

∂k‖

)]
Gr

φ(k, t,k′, t′) = δ(k− k′)δ(t− t′) . (10.2)

In writing (10.2) we used a coordinate system where the field defines a paral-
lel direction and the other spatial directions are referred to as perpendicular
directions. Since the translational invariance is still preserved in the perpen-
dicular direction, it is sufficient to use just one perpendicular momentum to
label the Green functions, and we write (k⊥ ≡ |k⊥|):[
i
∂

∂t
−
(

1
2
k2‖ +

1
2
k2⊥ − iqE

∂

∂k‖

)]
Gr

φ(k‖, k′‖, k⊥, t− t′) = δ(k‖ − k′‖)δ(t− t′) .

(10.3)
By defining a set of new variables,

u = t− 1
qE
k‖ , v =

1
2

(
t+

1
qE
k‖

)
,

we can cast (10.3) in the form[
α(x) +

d
dx

]
f(x) = g(x) ,

whose (particular) solution is

f(x) =
∫ x

c

dx′′ exp

[∫ x′′

x

dx′α(x′)

]
g(x′′) ,

where c is an integration constant. Making the appropriate identifications,
choosing c to correspond to a retarded function, and returning to the original
variables, we find Gr

φ:

Gr
φ(k‖, k′‖, k⊥, t− t′) = −iδ

[
k‖ − k′‖ − qE(t− t′)

]
θ(t− t′)

× exp

⎧⎨⎩i
(qE)2

6

⎡⎣( k′‖
qE

)3

−
(
k‖
qE

)3
⎤⎦− i

2
k2⊥(t− t′)

⎫⎬⎭ . (10.4)
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The argument in the exponential of (10.4) can be rearranged in a number
of ways by making use of the δ-function. An instructive way is to write
(10.4) as

Gr
φ(k‖, k′‖, k⊥, t− t′) = −iδ

[
k‖ − k′‖ − qE(t− t′)

]
θ(t− t′)

× exp

[
−i
∫ t−t′

0

dτεk(τ)

]
, (10.5)

where
εk(τ) =

1
2
[
(k‖ − qEτ)2 + k2⊥

]
(10.6)

is the time-dependent kinetic energy. We may understand (10.5) as a natural
modification in an electric field of the zero-field Green function

Gr
0(k,k

′, t− t′) = −iδ(k − k′)θ(t− t′) exp[−iεk(t− t′)] . (10.7)

The two changes are (a) the shift in the k‖-momentum conservation law to
account for the acceleration due to the electric field, and (b) the time evolu-
tion of the kinetic energy (10.6). For completeness, we also give the Fourier
transform of (10.4):

Gr
φ(k‖, k′‖, k⊥, ω) = − i

qE
θ(k‖ − k′‖)

× exp

[
i
qE

[
k3‖ − k′3‖

6
− (k‖ − k′‖)

(
k2⊥
2

− ω
)]]

. (10.8)

This expression is formally singular in the F → 0 limit, and it does not
appear obvious how the zero-field limit is contained in it. Of course, one could
go back to the time representation (10.4), where the zero-field limit is easy to
work out. However, in many calculations the frequency representation is more
convenient, and it is necessary to be able to verify in the various stages of
calculation, that a correct zero-field limit can be recovered. The next example
shows that, if one interprets (10.8) in the distribution sense, a consistent
limiting procedure can be constructed.

Zero-Field Limit of Field-Dependent Green Functions

We demonstrate now how the correct zero-field limit can be obtained if the Green
functions are interpreted in the distribution sense. To this effect, consider a gener-
alized function D(x) defined as

D(x) = lim
F→0

{
θ(x)

1

F
exp[−η(x/F )] exp[i(x/F )g(x)]

}
, (10.9)
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where η is a positive infinitesimal. Identifying x = k‖ − k′
‖, we see that (10.8) is a

special case of the function D(x). We want to show that

D(x) = i
δ(x)

g(x = 0) + iη
. (10.10)

Consider now the effect of D(x) on a suitable test function f(x),

d ≡
∫ ∞

−∞
dxD(x)f(x) . (10.11)

If we can show that

d = i
f(0)

g(0) + iη
, (10.12)

the proof is complete. The proof proceeds by a direct calculation:

d = lim
F→0

∫ ∞

0

dx
1

F
exp[−η(x/F )] exp[i(x/F )g(x)]f(x)

= lim
F→0

{[
exp[−ηt + itg(Ft)]f(Ft)

−η + ig(Ft) + itFg′(Ft)

]∞
0

−
∫ ∞

0

dt exp[−ηt + itg(Ft)]
∂

∂t

[
f(Ft)

−η + ig(Ft) + itFg′(Ft)

]}
. (10.13)

On arriving at the second line of (10.13) we changed the variables via x/F = t, and

integrated by parts. The first term in (10.13) leads to the desired final result (10.12)

and the second term vanishes, which can be seen by the following reasoning: Consider

the derivative of the term in the square brackets. The differentiation produces a

multiplicative factor of F which can be moved outside the integral. The remaining

integral is convergent [note the importance of the convergence factor exp(−ηt)], and

hence a zero net result is obtained as the external field tends to zero. This completes

the proof of (10.10).

We next show that the gauge-invariant form of (10.4) coincides with the
result (7.26) found earlier. Following the prescription from Chap. 7 (see also
[94]), we first transform Gr

φ in the difference and center-of-mass variables
(we suppress the unessential k⊥-dependence, and hence use one-dimensional
variables r and R):

Gr
φ(r,R, τ) = −iθ(τ)

∑
k‖,k′

‖

exp[ik‖(R+ r/2) − ik′‖(R − r/2)]

×δ(k‖ − k′‖ − qEτ) exp
{

i(qE)3

6

[
k′3‖ − k3‖

]}
, (10.14)

and proceed with the help of the rule (7.8):

G̃r(k, τ) =
∫

dr exp[−iqERτ − ikr]Gr
φ(r,R, τ) .
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We can immediately do the k‖-sum with the help of the δ-function, the
r-integral results in another δ-function, and the final k′‖-sum is then also sim-
ple to do with the final result:

G̃r,a(k, τ) = ∓iθ(±τ) exp[−i(εkτ + (qE)2τ3/24)] , (10.15a)

G̃r,a(k, ω) =
∞∑

n=0

(−1)n

n!

(
(qE)2

24

)n(
∂

∂εk

)3n 1
ω − εk ± iη

. (10.15b)

Here, the first equation coincides with (7.26) and we have also given the result
for the advanced Green function; tracing back the analysis, the only difference
is in the choice of the integration constant c. The Fourier representation,
given in the second equation, can be obtained with a term-by-term expansion
from the first equation. In spite of its highly singular character, it can be
used if one needs to calculate power series expansions in the electric field.
In addition, it explicitly displays the expected analytic structure of a retarded
(advanced) Green function: the singularities in the complex ω-plane are in the
lower (upper) half-plane.

We could have equally well started by considering the free field-dependent
retarded Green function Gr

A(p, t, t′) in the vector potential gauge, which sat-
isfies the equation-of-motion:{

i
∂

∂t
− ε
[
p − qA(t)

]}
Gr

A(p, t, t′) = δ(t− t′) . (10.16)

This equation can be immediately integrated:

Gr
A(p, t, t′) = −iθ(t− t′) exp

{
−i
∫ t

t′
dt1ε [p − qA(t1)]

}
(10.17)

with the associated field-dependent spectral function,

AA(p, t, t′) = exp
{
−i
∫ t

t′
dt1ε [p − qA(t1)]

}
. (10.18)

It is readily verified that in the dc-limit [A = −Et], and after a transformation
to the gauge invariant variables (10.17) coincides with the result (10.15a). We
also quote the ω-representation of the gauge invariant spectral function Ã:

Ã(k, ω) = 2
∫ ∞

0

dτ cos[ωτ − (εkτ + (qE)2τ3/24)]

=
2π
α

Ai
(
εk − ω
α

)
, (10.19)

where Ai(x) is the Airy function, and we introduced the field parameter α =
(h̄2q2E2/8m)1/3. For a typical semiconductor, say GaAs with conduction band
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effective mass meff = 0.067me, one can write α = 0.446 eV ×E (MV m−1).
It is important to notice that the spectral function satisfies the sum rule∫

dω/(2π)Ã(k, ω) = 1, as it should. The field-dependent spectral function is
plotted as a function of ω − εk in Fig. 10.1 for three different field strengths.
The most important feature of Fig. 10.1 is that the nonequilibrium spectral
function does not have to be positive. This property prohibits a straightfor-
ward interpretation of Ã(k, ω) as some sort of “density,” as is customary in
equilibrium theory. There the spectral function often has the structure:

a(k, ω) = Z(k)δ[ω − ε∗(k)] + background . (10.20)

Comparing to the free spectral function a0(k, ω) = 2πδ[ω − ε(k)], one calls
ε∗(k) the “quasiparticle” dispersion, and Z(k) is called the quasiparticle
weight, or wavefunction renormalization. In view of the complicated structure
displayed in Fig. 10.1, which clearly cannot be interpreted in terms of quasi-
particles, the immediate conclusion is that the quasiparticle concept must be
carefully reconsidered in nonequilibrium. However, one should bear in mind
that Fig. 10.1 represents free particles in an electric field, and no interaction
effects have been included. As later examples will reveal, interactions may
smoothen, or effectively average A, and hence the rapid oscillations tend to
be suppressed. Finally, it is clear from Fig.10.1 that A does not approach its
zero-field limit in any smooth fashion; this is another reflection of the singular
character of the perturbing electric field.

-4 -2 2 4 6 8 10

-4

-2

2

4
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Fig. 10.1. The spectral function Ã(k, ω) as a function of (ω − εk) for the field
parameter α = 0.5, 1.0, and 3.0 eV (continuous line, dash-dotted line, and dashed
line, respectively), and effective mass m = 0.067me. The smaller the external field
is, the more weight is located at ω − εk = 0
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10.2 A Model for Dynamical Disorder:
The Gaussian White Noise Model

10.2.1 Introduction

In this section we apply the quantum kinetic equations to an exactly solvable
model system: the Gaussian white noise model (GWN). Exactly solvable, but
yet nontrivial, models are rare, and even though the GWN model has certain
problems, to be discussed below, it provides an excellent “testing laboratory
of the theory,” where we can analyze explicitly and analytically the quan-
tum kinetic equations, which are very complicated for any realistic scattering
mechanism. In particular, we shall evaluate the transient dynamics for the
GWN model, following the work of [136,172,173].

The basic problem with the GWN model is that it possesses an inherent
thermal instability: it does not maintain thermal equilibrium. The question
is then: can one calculate the response of GWN to an external perturbation
using a kinetic equation which contains this thermal instability, or does one
have to modify the kinetic equation? We shall follow both of these lines, and
contrast the different results obtained by each method. In our calculations we
follow the general two-step strategy outlined in Chap. 5: one first determines
the retarded Green function, and then uses this result as an input to the
quantum kinetic equation.

10.2.2 Determination of the Retarded Green Function

Before turning to the kinetic equation, we must solve the dynamics, i.e.,
determine the disorder-averaged retarded Green function in an external field.
We choose the following form of the Hamiltonian [124,183]:

H =
∫

dxψ†(x)
[
−1

2
∇2 + V (x, t)

]
ψ(x) . (10.21)

Here the ψ’s are anti-commuting fermion operators, {ψ(x), ψ†(x′)}=δ(x−x′),
and the parametric time-dependence of the impurity potential reflects the
random thermal fluctuations of the environment. Further, we set h̄ = m = 1.
The average over disorder is performed with the prescription

〈V (x, t)〉 = 0 ,
〈V (x, tx)V (y, ty)〉 = γ(x − y)δ(tx − ty) . (10.22)

All odd higher averages vanish, and higher even averages are given as a sum
of all pair-wise averages. Just like in the elastic impurity problem discussed
in Chap. 9, we use the self-consistent Born approximation for the self-energy:

Σ(x,y, t, t′) = γ(x − y)G(x − y, t, t′)δ(t− t′) , (10.23)

where G is the impurity-averaged Green function.
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Adding the external field does not change the diagrammatic structure of
the theory. The only difference is that the free propagation between scattering
events now takes place under the influence of the external field. Thus, one ends
up with the following Dyson equation for the retarded Green function:

Gr(p, t, t′) = Gr
A(p, t, t′) +

∫
dt1Gr

A(p, t, t1)

×
∑

q

γ(p − q)Gr(q, t1, t1)Gr(p, t1, t′) , (10.24)

whereGr
A(p, t, t′) is given by (10.17). In (10.24) we also introduced γ(p), which

is the Fourier transform of γ(x). Equation (10.24) is formally a nonlinear
integral equation for Gr. However, it can be readily solved by using the equal-
time anti-commutation rule for the field operators appearing in the definition
of Gr.1 Thus, we may write∑

q

γ(p − q)Gr(q, t1, t1) = − i
2

∑
q

γ(p − q) ≡ − i
2
γ0 . (10.25)

With (10.25) in (10.24), and converting the Dyson equation to a differential
equation by multiplying with G−1

A , one finds the solution:

Gr(p, t, t′) = −iθ(t− t′) exp
{
−i
∫ t

t′
dt1ε [p − qA(t1)] −

γ0
2

(t− t′)
}
. (10.26)

The gauge-invariant retarded (advanced) Green function is calculated with
the techniques developed in Chap. 7. Explicitly, we have (here we consider
static electric fields)

G̃r,a(k, τ, T ) =
∫

dre−i(k−qET )·rGr,a
A (r, τ, T )

=
∫

dre−i(k−qET )·r
∫

dp

(2π)3
eip·rGr,a

A

(
p, T +

τ

2
, T − τ

2

)
= ∓iθ(±τ) exp

[
−i
∫ τ/2

−τ/2

dt′ε(k + qEt′) ∓ γ0
2
τ

]
. (10.27)

The result (10.27) is our first encounter with a field-dependent Green function
with scattering, and we shall see several others in later sections. It is interesting
to note that all T -dependence drops out from (10.27). This is what one expects
on physical grounds: for time-independent external perturbations retarded
Green functions should also be time-independent. This completes the first
step of the calculation, and we now turn to the construction of the kinetic
equation.
1 It is necessary to assign a definite value to the somewhat ill-defined object

θ(t → t′+). By considering the integral representation of the step-function, one
sees that the proper choice corresponds to θ(t → t′+) = 1/2.
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10.2.3 Kinetic Equation for the GWN

There are two main methods for setting up the kinetic equation. One can
use either the Keldysh formulation, which leads to an integral equation for
the correlation function G<, or the Kadanoff–Baym method, which leads to a
differential equation for G<. Here we give the details of the Kadanoff–Baym
approach, and leave the details of the Keldysh method as an exercise.

Since many physical properties [density N(R, T ), current density J(R, T ),
etc.] are determined by the Wigner function fW, which is a less complex object
than the full correlation function G<, it is often advantageous to inquire as
to whether one can obtain a closed equation for fW. In Chap. 8 we derived
a kinetic equation for the Wigner function, and we reproduce it here for
convenience:[

∂

∂T
+ qE · ∂

∂k

]
fW(k, T ) = −

∫
dτ ′Ã

(
k +
q

2
Eτ ′,−τ ′, T + τ ′

)
×B̃

(
k +
q

2
Eτ ′, τ ′, T + τ ′

)
, (10.28)

where

Ã(k1, τ1, T1)B̃(k2, τ2, T2) =
[
Σ̃rG̃< + Σ̃<G̃a − G̃rΣ̃< − G̃<Σ̃a

]
× (k1, τ1, T1)(k2, τ2, T1). (10.29)

Note that, in general, it is not possible to obtain a closed equation for the
Wigner function, because the right-hand side of (10.28) involves the full cor-
relation function. However, in the present case, the one-point nature of the
GWN interaction [as evinced by the δ-function in time in (10.23)] allows one
to obtain a closed equation for fW.

In order to make further progress we must specify the various self-energies.
The retarded and advanced self-energies we know already from the previous
section:

Σr(τ) = − i
2
γ0δ(τ) = −Σa(τ) . (10.30)

There are two plausible choices for Σ<. Following [136], one can choose:

Σ<(t, t′) = iγ0
∫

dε
2π
nF(ε) exp[−iε(t− t′)] ,

Σ>(t, t′) = −iγ0
∫

dε
2π

[1 − nF(ε)] exp[−iε(t− t′)] . (10.31)

The first thing to note is that this choice satisfies the consistency check
Σr − Σa = Σ> − Σ<. The physics behind this choice is that now GWN is
“anchored” to thermal equilibrium: the scattering terms increasing the popu-
lation of a given k-state act as if the particles were emerging from an under-
lying thermal equilibrium state. In this way the thermal instability hidden in
GWN (which will be made explicit below) is thus removed, and one can expect
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to find a meaningful result in the long-time limit, which we plan to calculate.
Using these expressions, and the retarded and advanced Green functions from
(10.27), we can evaluate the collision term in (10.28):

Σ̃rG̃< − G̃<Σ̃a →
∫

dτ ′
[−i

2
γ0δ(−τ ′)G̃<

(
k +
q

2
Eτ ′, τ ′, T + τ ′

)
−G̃<

(
k +
q

2
Eτ ′,−τ ′, T + τ ′

) i
2
γ0δ(τ ′)

]
= γ0fW(k, T )

and

Σ̃<G̃a − G̃rΣ̃<

→ −γ0
∫

dε
2π
nF(ε)

∫ 0

−∞
dτ ′

×
{

eiετ ′
exp

[
−i
∫ τ ′/2

−τ ′/2

dt′ε
(

k + qE
[
t′ +
τ ′

2

])
+
γ0
2
τ ′
]

+ exp

[
−i
∫ −τ ′/2

τ ′/2

dt′ε
(

k + qE
[
t′ +
τ ′

2

])
+
γ0
2
τ ′
]

e−iετ ′
}

≡ −γ0g(k) ,

where

g(k) =
∫

dε
2π
nF(ε)

∫ ∞

0

dτ2 cos
[
ετ −

∫ τ

0

dτ ′ε(k − qEτ ′)
]

e−γ0τ/2 , (10.32)

and the kinetic equation is thus:[
∂

∂T
+ qE · ∂

∂k

]
fW(k, T ) = −γ0

[
fW(k, T )− g(k)

]
. (10.33)

This equation has a relaxation-time form, where the nonequilibrium distribu-
tion function relaxes to the field-dependent function g. We observe that before
the field is turned on, the equilibrium momentum distribution,

f eq(k) ≡
∫

dε
2πi
g<(k, ε) =

∫
dε
2π
nF(ε)a(k, ε) , (10.34)

where the equilibrium spectral function is given by

a(k, ε) =
γ0

[ε− ε(k)]2 + [γ0/2]2
, (10.35)

satisfies (10.33) identically. This property confirms the statement made above
that the self-energies (10.31) reintroduce thermal equilibrium in the problem.
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We can now proceed to calculate the steady-state current, and we can set
∂fW/∂T = 0 in (10.33). We perform the calculation in two steps. First, sum
over k on both sides of (10.33). This gives, observing

∑
k E ·[∂/∂k]fW(k) = 0,

0 = −γ0
{∑

k

fW(k) −
∑

k

∫
dε
2π
nF(ε)

×
∫ ∞

0

dτ2 cos[ετ −
∫ τ

0

dτ ′ε(k − qEτ ′)]e−γ0τ/2

}
. (10.36)

Since
∑

k f
W(k) = N , we observe that the particle number depends on the

applied field. Thus the assumed underlying thermal background acts as a
source (or sink) of particles. This particle conservation violation can be viewed
as being the price for introducing thermal equilibrium by hand.

The next step in the calculation consists of multiplying (10.33) by qk,
and summing over k. Integrating the left-hand side by parts gives −q2EN ,
and using (10.36) we obtain the following explicit result for the current
[J =

∑
k qkf

W(k)]:

J =
∑

k

[
q

(
q

γ0
E + k

)]∫
dε
2π
nF(ε)

×
∫ ∞

0

dτ2 cos
[
ετ −

∫ τ

0

dτ ′ε(k − qEτ ′)e−γ0τ/2

]
. (10.37)

Equation (10.37) gives the full nonlinear current-field relationship for the
GWN, in the special case of self-energies (10.31). It is interesting to explore
the linear response limit of (10.37). To make the calculations as simple as
possible, it is convenient to define a new integration variable in (10.37),
k → k′ = q

γ0
E + k. Performing the linearization the linear current J (1) is

calculated as [we use shorthand notation ∆ ≡ ε− ε(k)]

J (1) = q2
∑

k

k(k · E)
∫

dε
2π

∫ ∞

0

dτnF(ε)

×(−2 sin∆τ)
(
τ2

2
+
τ

γ0

)
e−γ0τ/2

= q2
∑

k

k(k · E)
∫

dε
2π

[−n′F(ε)]
(

1
γ0

− ∂

∂γ0

)
×
∫ ∞

0

dτ2 cos∆τe−γ0τ/2 ,

where we integrated by parts with respect to ε. Finally, performing the
τ -integration, we get

J (1) = q2
∑

k

k(k · E)
∫

dε
2π

[−n′F(ε)]12a
2(k, ε) , (10.38)
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where a is the equilibrium spectral function (10.35). It is instructive to verify
that this result can also be obtained with the linear quantum Boltzmann
approach developed in Chap. 9; in particular, summing (9.22) over k leads
directly to (10.38).

We now turn to the other plausible choice for the self-energies Σ<,> [172,
173]. Here we use the form (10.23), which suggests using the following gauge-
invariant self-energy:

Σ̃<(k, τ, T ) =
∑
k′
δ(τ)γ(k − k′)G̃<(k′, τ, T )

= δ(τ)
∑
k′
γ(k − k′)ifW(k′, T ) . (10.39)

With this choice the kinetic equation becomes[
∂

∂T
+ qE · ∂

∂k

]
fW(k, T )

= −
[
γ0f

W(k, T ) −
∑
k′
γ(k − k′)fW(k′, T )

]
. (10.40)

Ovchinnikov and Erikhman [279] have given the lattice version of this equa-
tion, and its zero-field form appears also in [136,183]. We observe that (10.39)
is identical to the semiclassical Boltzmann equation which one would write for
the GWN. It also resembles the conventional impurity Boltzmann equation.
However, the normal energy-conserving δ-function is missing. This difference
is crucial: the physics of GWN is quite different from normal elastic impurity
systems. It is important to notice that (10.40) is actually more general than
the Boltzmann equation: it was obtained with an exact sequence of trans-
formations starting from the quantum kinetic equation for the correlation
function G<. As we showed in Chap. 6, the lowest-order gradient approxima-
tion to the quantum kinetic equation leads to the Boltzmann equation (we
studied explicitly only the elastic impurity problem, but the same holds true
for many other scattering mechanisms); the GWN is a special interaction in
the sense that the quantum kinetic equation coincides with the Boltzmann
equation. This property is a consequence of the one-point character of the
GWN. It is also of interest to note that GWN does not display any intracol-
lisional field-effect: i.e., the collision term in (10.40) does not depend on the
applied field. In later sections, we shall see several other examples of scattering
mechanisms, for which quantum kinetic considerations yield a field-dependent
collision term.

We next evaluate the current using (10.40) as the starting point. As a
preliminary, we sum both sides over k, and find:

∂

∂T
N = −γ0N +

∑
k,k′
γ(k − k′)fW(k′, T ) = 0 , (10.41)
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where the second equality follows from the definition of γ0. Thus N =
constant, and the continuity equation is identically satisfied. Here the two
different self-energy models depart: we saw above that (10.31) leads to a field-
dependent particle number. The next step in the evaluation of the current
consists of multiplying (10.40) by qk, and summing over k, which leads to

∂

∂T
J − q2EN = −γ0J +

∑
k,k′

kγ(k − k′)fW(k′, T ) . (10.42)

If we consider crystals with inversion symmetry, we must have
∑

k kγ(k) = 0.
Thus, making the replacement k = (k − k′) + k′ on the right-hand side of
(10.42), and performing the k-summation, one finds that the right-hand side
of (10.42) vanishes. Using the initial condition J(T = 0) = 0, we obtain

J = q2ENT . (10.43)

This is an interesting result: the interaction with the GWN potential has
entirely dropped out from the current response! Thus, both of the considered
models have somewhat peculiar properties: the first one, where thermal equi-
librium was introduced by hand, does not conserve the particle number, while
the second one is unable to relax momentum. We shall next examine other
transport properties in the context of the second model.

10.2.4 Other Transport Properties

In Sect. 10.2.3, we found that the self-energy model (10.39) did not relax
momentum in the conventional sense. From this it follows that its diffusion
and energy relaxation properties are also unusual. Let us first consider energy
relaxation by calculating the time-dependence of the average kinetic energy
ε(T ) ≡

∑
k

1
2k

2fW(k, T ). Multiply now (10.40) by 1
2k

2, and sum over k:

∂ε(T )
∂T

+
∑

k

1
2
k2qE · ∂

∂k
fW(k, T )

= −γ0ε(T ) +
∑
k,k′

1
2
k2γ(k − k′)fW(k′, T ) . (10.44)

The second term on the left-hand side can be integrated by parts to yield
−E ·J = −q2E2NT , while the last term on the right-hand side is manipulated
as follows:∑

k,k′

1
2
k2γ(k − k′)fW(k′, T )

=
∑
k,k′

1
2
(k − k′ + k′)2 γ(k − k′)fW(k′, T )
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=
∑
k,k′

[
1
2
(k − k′)2 + (k − k′) · k′ +

1
2
k′2
]
γ(k − k′)fW(k′, T )

= γ2N + 0 + γ0ε(T ) .

The second term on the second line vanished upon k-summation due to the
assumed inversion symmetry, and we defined

γ2 =
∑

k

1
2
k2γ(k) . (10.45)

Collecting the terms, and integrating, we thus find:

ε(T ) = ε(T = 0) + γ2NT +
1
2
Nq2E2T 2 . (10.46)

The physical interpretation of this result is as follows. The last term corre-
sponds to free particles accelerating under the influence of a uniform elec-
tric field. This is consistent with our previous results on lack of momentum
relaxation. The second term describes heating due to the GWN interaction;
it is a manifestation of the “self-heating” property of the GWN. As we shall
see below, the second moment γ2 of the interaction also affects the diffusion
properties of the system.

We next wish to evaluate the diffusion constant of the GWN model with a
zero applied field. There are a number of plausible definitions, and we choose
to study the long-time behavior of test particle placed at the origin,

〈x2(T )〉 =
∫

dRR2
∑

k

fW(k,R, T ) . (10.47)

If the system displays normal diffusion, one would expect that the long-time
behavior of 〈x2(T )〉 is linear in T , and the constant of proportionality could
be identified as the diffusion constant.

In Chap. 7 we remarked that even in a system which is only influenced
by uniform forces, spatial inhomogeneity must be considered, if the system
starts its time-evolvement from a spatially inhomogeneous initial state. In the
present case this means that we must add an extra term to the left-hand
side of the kinetic equation: k · ∂/∂R. An equation-of-motion for 〈x2(T )〉
can be obtained by multiplying the kinetic equation (10.40) by R2, and
integrating:

∂

∂T
〈x2(T )〉 +

∑
k

∫
dRR2k · ∂

∂R
fW(k,R, T ) = 0 , (10.48)

where the collision term can be shown to vanish by using similar manipulations
as when deriving (10.46). The left-hand side involves an average of a new
combination of variables. By integrating by parts, we see that this term can
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be expressed as
∑

k

∫
dR R·kfW(k,R, T ) ≡ 〈xk(T )〉. An equation-of-motion

for 〈xk(T )〉 is obtained with the same method:

∂

∂T
〈xk(T )〉 − 〈k2(T )〉 = 0 , (10.49)

where we defined 〈k2(T )〉 ≡ ∑
k

∫
dR k2fW(k,R, T ). Finally, the equation-

of-motion for 〈k2(T )〉 is

∂

∂T
〈k2(T )〉 = 2γ2N , (10.50)

where we used (10.46). We can now combine (10.48)–(10.50) to get a closed
equation for 〈x2(T )〉; this equation is immediately integrated with the result:

〈x2(T )〉 = 1
3γ2NT

3 . (10.51)

In writing (10.51) we made use of the initial conditions [∂2〈x2(T )〉/∂T 2]T=0 =
[∂〈x2(T )〉/∂T ]T=0 = 0. If one chooses a Gaussian matrix element, γ(k) =
V 2

0 exp(−α2k2/2), one can verify that (10.51) coincides with the result of
[183], which was obtained with a different method. The T 3-asymptotics further
underline the nonstandard features of the GWN.

Summarizing this section, we have analyzed an explicitly solvable model
for dynamical disorder. While the model has some pathological properties, it
is nevertheless useful in illustrating the practical use of the quantum kinetic
equations, because all calculations can be carried out explicitly and analyt-
ically. We shall next turn our attention to more realistic systems, where,
however, approximations must be made in order to obtain explicit results.

10.3 Introduction to High-Field Transport
in Semiconductors

Theoretical studies of high electric field transport in semiconductors is an old
field, with a history dating back to 1930s (for a review of the early work,
see [322]). In addition to the general theoretical interest in nonlinear nonequi-
librium phenomena, there was also clear practical interest, such as devel-
oping an understanding of dielectric breakdown. The modern semiconductor
industry has pushed the device size well below the 1 µm size, and high electric
fields are commonplace in these devices. While a complete theoretical anal-
ysis of current–voltage characteristics in these devices requires a treatment
of spatial inhomogeneities, the much simpler problem, transport in a uniform
but arbitrarily strong electric field, remains as a topic of central importance.
During the years a large variety of different theoretical analyses have been
proposed to treat the problem. By far the most popular framework is based
on the Boltzmann equation. The solution of the Boltzmann equation with
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realistic scattering mechanisms is a difficult task, and a number of different
methods have been proposed. The early analytical methods are described by
Conwell [88], while several detailed accounts of the numerical Monte Carlo
methods are available, such as [168, 290], or [169]. Despite of the obvious
success of Boltzmann equation methods there remains a question: since the
Boltzmann theory is semiclassical, is one perhaps overlooking some quantum
mechanical effects? For example, the matrix elements required for the scat-
tering terms in the collision integral are usually evaluated with plane waves
(or Bloch waves), and not with some electric field-dependent wavefunctions.
What then is the proper approach to take this field dependence into account?
Answering this problem (and other related questions, such as what happens
when the scattering rates are high, and the perturbative Boltzmann approach
presumably breaks down) defines the topic of the remainder of this chapter:
quantum high-field transport in uniform electric fields.

A large number of theoretical approaches for quantum high-field transport
has emerged during the years. It would be impossible to give a detailed account
for all these methods, and we will only briefly indicate a few central references,
from which more information can be extracted. The methods can be divided
in the following groups:

(1) Projection operator techniques. This method was originally developed by
Zwanzig [385], and applied to quantum transport in semiconductors by
Barker [26, 27]; a review is available in [28].

(2) Feynman path integral methods. The general formalism is described in
[112], and its analytic applications to quantum transport are reviewed by
Thornber [342–344]. A numerical approach was developed in [257].

(3) Density matrix methods. A large body of literature is available, ranging
from mainly analytical methods [319] to direct numerical integration of
the Liouville equation, [63]. Many applications to semiconductor quantum
transport can be found in [286], as well as in [165].

(4) Balance equation approach. This method is also based on Green functions,
but instead of setting up a quantum kinetic equation for the nonequilib-
rium distribution function, one parametrizes it with drift velocities, ef-
fective temperatures, etc., and derives equations for these quantities. The
method is reviewed in [345].

(5) Nonequilibrium Green function techniques. This is the topic of the present
chapter, and it will be developed in detail. References to older literature
can be found in reviews [35, 174–176]. One should also mention the very
thorough work by Schoeller [315].

It seems reasonable to summarize all the above-mentioned methods by noting
that convergence of opinion has not yet been reached: while occasionally,
reasonable agreement with experiment can be obtained, the conclusions have
not yet been so clear that a clearly preferred theoretical method has emerged.
This “theoretical nonequilibrium” serves as a driving force for further research.
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10.4 Resonant-Level Model in High Electric Fields

10.4.1 Introduction

We now apply the field-dependent Green functions of Sect. 10.3 to study the
high electric field properties of a system consisting of electrons interacting with
a dilute concentration of impurities. The main objectives are: (a) derivation
of a (field-dependent) self-energy functional, (b) construction of the retarded
Green function, which can be used in (c) setting up the quantum kinetic equa-
tion. When choosing the model interaction between electrons and impurities,
we have kept the following considerations in mind. The main emphasis of this
section is to illustrate the general structure of the nonlinear theory; however,
we want to apply the techniques developed previously to a model, for which
explicit and, if possible, analytic results can be obtained. We already encoun-
tered one such model earlier in this chapter: the Gaussian white noise model.
We could solve it exactly, but this happened at high cost: the model contains
a thermal instability. The next model one could consider would be the stan-
dard elastic impurity model, and we have discussed it in connection with the
linearized quantum kinetic equations of Chap. 9. This model, however, has the
slight complication that the single-site T -matrix satisfies an equation which
is not analytically solvable (at least if one allows for a momentum-dependent
scattering potential). The resonant-level model (RLM), which was studied
in Sect. 3.6.2 as an example of an exactly solvable model, turns out to be a
convenient yet rich model to study for nonequilibrium effects.

There are many physical situations, which can be modeled with the RLM.
RLM can be viewed as describing a localized (in energy space) state in a
continuum: the conduction electrons make transitions between the localized
level and the continuum band, thus forming a scattering resonance. By vary-
ing the parameters of the model, one can adjust the position of the scat-
tering resonance with respect to the Fermi level, thus displaying a variety
of physical phenomena. Alternatively, we can view RLM as representing a
tunneling process: electrons tunnel from one continuum (“source contact”)
to the localized state, and then further to another continuum (“drain con-
tact”). Physically, a system like this can be realized with semiconductor het-
erostructures, and we shall discuss them extensively in Chaps. 12 and 13. Here
we treat RLM as a model, which leads to energy-dependent scattering with
particularly convenient mathematics related to it. In particular, the energy
dependence allows us to study the interplay of collisions and the driving field
(the “intra-collisional field-effect”).

10.4.2 Retarded Green Function: Single Impurity Problem

We now generalize the RLM Hamiltonian (3.69) to include the electric field:
HRLM → HRLM − iF · ∇k. The equation-of-motion analysis for the retarded
Green function leading to (3.76) can be repeated, essentially unchanged,
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with the result:

Gr(k,k′, ω) = Gr
φ(k,k′, ω)

+
∑

q1,q2

Gr
φ(k, q1, ω)T φ

q1,q2
(ω)Gr

φ(q2,k
′, ω) , (10.52)

where the field-dependent Green function is given by (10.8), and the field-
dependent T -matrix is given by

T φ
q1,q2

(ω) =
V (q1)V ∗(q2)
ω − ε0 −Mφ(ω)

(10.53)

with
Mφ(ω) =

∑
p1,p2

V ∗(p1)Gr
φ(p1,p2, ω)V (p2) . (10.54)

To proceed further, we need an explicit form for V (p). We choose V (p) =
V0 exp(−λ2p2/2), where the parameter λ describes the range of the inter-
action. With this choice we can calculate the field-dependent level width
Γφ(ω) ≡ ImMφ(ω) as follows:

Γφ(ω) = Im

{
−i
∫ ∞

0

dteiωt
∑

p

V

(
p − 1

2
tF

)
V (p +

1
2
tF )

× exp
[
−i
(
εpt+

F 2t3

24

)]}
= −1

2
V 2

0 �

∫ ∞

−∞
dt
∫ ∞

0

dεpe−i(εp−ω)t

× exp
[
−i
F 2t3

24
− λ

2F 2t2

4
− λ2p2

]
= Γ (ω) exp

(
2
3
λ6F 2

)∫ α(F )

−∞
dxAi(−x) . (10.55)

In the calculation leading to (10.55) several steps were taken. We converted the
momentum integral to an energy integration with a constant weight factor�.
This implies that we are either considering a two-dimensional system, or that
the energetics of the three-dimensional system are such that we can focus in
the neighborhood of the Fermi surface, and thus replace the slowly varying
square-root density of states by a constant. We have also introduced Γ (ω) =
−π�V 2

0 exp(−2λ2ω), which is the negative of the zero-field level width. Finally,
α(F ) = 2ω/F 2/3−λ4F 4/3 = (mh̄/q)1/3[2ω/E2/3−q2mλ4E4/3], where we have
reintroduced all physical parameters into the latter expression. A numerical
evaluation of (10.55) yields the results shown in Fig. 10.2. One can distinguish
three regions: (a) low-field regime where the level width retains approximately
its zero-field value, (b) transitional regime where the level width is a decreasing
function of the electric field, and (c) high-field regime where the level width
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Fig. 10.2. Level width for a Gaussian model interaction for λ = 20Å and ω =
0.02 eV. The two vertical lines mark the transitions between low-field, transitional,
and high-field regimes discussed in the text

is very small, thus indicating decoupling of the conduction electrons from the
resonant level. A detailed examination shows [180,181] that Γφ(ω) approaches
its zero-field value for increasing energies. We will make use of these properties
of Γφ(ω) in Sect. 10.4.3, where we construct a field-dependent Green function
including the effects of a finite concentration of impurities.

10.4.3 Retarded Green Function:
Dilute Concentration of Impurities

We have discussed in Part I impurity averaging under equilibrium conditions.
Now we must carry out the same procedure in the presence of an electric field.
The basic approach is unchanged: the Dyson equation for a fixed configuration
of impurities is iterated and averaged term-by-term, and, finally, a partial
infinite resummation is carried out to construct a self-energy functional.
Specifically, consider the Dyson equation:

G{Rα}(k,k′, ω) = Gφ(k,k′, ω) +
∑

q1,q2,{Rα}
Gφ(k, q1, ω) exp[−i(q1 − q2) · Rα]

×V (q1, q2;ω)G{Rα}(q2,k
′, ω) , (10.56)

where we explicitly indicate that the Green function depends on the particular
impurity configuration. In (10.53) we have introduced a generalized scattering
vertex V (q1, q2, ω) because this allows us to treat both the RLM and the
elastic impurity problem on equal footing: for RLM we have

V RLM(q1, q2;ω) = V (q1)g0(ω)V (q2) , (10.57)
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where g0(ω) = [ω − ε0 + iη]−1 is the free localized state Green function. For
the elastic impurity case we have

V imp(q1, q2;ω) = V (q1 − q2) . (10.58)

Just as in the equilibrium case, we ignore impurity–impurity correlations, and
calculate the average nonequilibrium Green function Ḡ with the prescription

Ḡ = 〈G({R})〉imp =
∏
α

∫
dRα

Ω
G({Rα}) , (10.59)

where Ω is the volume of the system.
The next step is to sum all scattering events at a given site Rα. This

procedure replaces the matrix element V in (10.56) by the single-site T -matrix

G{Rα}(k,k′, ω) = Gφ(k,k′, ω) +
∑′

q1,q2,{Rα}
Gφ(k, q1, ω)

×TRα(q1, q2;ω)G{Rα}(q2,k
′, ω) , (10.60)

The prime in the summation indicates that a given Rα label is not allowed to
be the same twice in succession when (10.60) is iterated because, by definition,
the T -matrix contains all scattering events at a given site. The site-dependent
T -matrix in (10.60) satisfies

TRα(q1, q2;ω) = e−i(q1−q2)·RαV (q1, q2, ω) +
∑

p1,p2

V (q1,p1, ω)

× e−i(q1−p1)·RαGφ(p1,p2, ω)TRα(p2, q2;ω) . (10.61)

Note that the T -matrix defined according to (10.61) is a functional of the free
field-dependent Green function, TRα = TRα [Gφ].

We now iterate (10.60) and calculate the average term-by-term with
(10.59). One obtains terms such as

Ḡ = · · · + 〈GφT
Rα [Gφ]GφT

Rβ [Gφ]GφT
Rα [Gφ]Gφ〉imp

+ · · ·+ 〈GφT
Rα [Gφ]GφT

Rβ [Gφ]GφT
Rγ [Gφ]GφT

Rα [Gφ]Gφ〉imp

+ · · · . (10.62)

When carrying out the impurity averaging, one can commute the Ri integrals
in such a way that the innermost integrals are always done first. For example,
in (10.62) the Rβ (in the first term) and Rβ and Rγ (in the second term)
integrals are done first. The effect of this procedure is to build in parts of the
impurity-averaged Green function as an internal line. It is easy to convince
oneself that this part of the analysis is entirely equivalent to the standard one
for vanishing external fields. The net result is that terms such as the ones
in (10.62) can all be collected together by choosing a self-energy functional
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which equals the single-site T-matrix averaged over its site label:

Σ[Ḡ] = c
∫

dR

Ω
TR[Ḡ] , (10.63)

where c is the impurity concentration. Note that the argument of the T -matrix
is the full impurity-averaged Green function.

The choice (10.63) does not generate all the terms obtained by iterating
(10.60): the crossed diagrams, discussed in Sect. 3.7.2 are left out. The equi-
librium calculation of Part I, which showed that the crossed diagrams are
smaller by (lkF)−1 � 1 than noncrossed diagrams, is not necessarily valid in
the nonequilibrium system. However, the crossed diagrams will always lead
to a contribution to the self-energy which is of second or higher order in the
concentration, and we use this as a formal justification for omitting them in
subsequent calculations.

Our result (10.63) holds both for elastic impurity scattering and for the
RLM. However, only in the RLM case is the T -matrix equation (10.61) ex-
plicitly solvable, and we find, following the analysis of Chap. 3,

ΣRLM[Ḡ] = c
∫

dR

Ω

e−i(q1−q2)·RV (q1)V (q2)
ω − ε0 − M̄R(ω)

, (10.64)

where

M̄R(ω) =
∑

p1,p2

e−i(p1−p2)·RV (p1)Ḡ(p1,p2;ω)V (p2) . (10.65)

Let us now make a connection to the equilibrium case. For vanishing external
fields the impurity-averaged Green function is diagonal in momentum labels,
Ḡ(p1,p2) → δp1,p2 ḡ(p1), and the R integration in (10.64) is trivial with the
result:

σRLM[ḡ] =
c|V (q)|2

ω − ε0 − m̄(ω)
, (10.66)

where
m̄(ω) =

∑
k

|V (k)|2ḡ(k, ω) . (10.67)

The equilibrium results (10.66), (10.67), together with the Dyson equation,
ḡ = (ω−εk−σRLM[ḡ])−1, contain some interesting physics in their own right;
this is discussed in the following example.

Equilibrium Density of States for the RLM

The standard technique for calculating electronic properties of disorder systems
is the coherent potential approximation (CPA) [for a review, see [104]]. The self-
consistent equations (10.66), (10.67) are closely related to the CPA self-energy func-
tional (they lead to double counting of certain high order processes, which, however,
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do not play a significant role in the present dilute impurity limit), and we shall
use them now to determine the density of states for a system with a square-root
free density of states, for example, a semiconductor close to a band edge. Defining
a(ω) = m̄(ω)/ε0, we can cast the self-consistent problem in a dimensionless form:

a(ω′) = − 2

π

√
γ

∫ ∞

0

dy
y1/2v2(ε0y)

y − (ω′ + 1) + δ v2(ε0y)
ω′−a(ω′)

, (10.68)

where the two parameters defining the system are given by γ = [πN(ε0)V
2
0 / (2ε0)]

2

and δ = cV 2
0 /ε2

0, respectively. Further, we introduced ω′ = ω/ε0 − 1, and wrote
the interaction as V (k) = V0v(εk), so that V0 gives the strength of the interaction
and v(εk) gives its range. Once this equation is solved, we know the self-energy via
σ(ω′) = δ/[ω′−a(ω′)], and hence the Green function ḡ, and the density of states can
be computed from � = −(1/π)Imḡ. One can proceed either with a direct numerical
solution of (10.68) with a suitable model interaction (for example, the Gaussian-
model discussed above), or proceed with an approximate analytical calculation.
Some numerical work is described in [170]; here we apply an analytical technique due
to Pankratov [280]. The analytic calculation is made possible by assuming that the
interaction is essentially constant, except for providing a high-energy cutoff. Thus, we
replace v2(ε0y) in (10.68) by a constant, and treat the now formally divergent inte-
gral as convergent. The y-integral can now be evaluated as a contour integral. Define

IC =

∫
C

dz
z1/2

z − A(ω′)
= IR + I− + Iε + I+ , (10.69)

where the contour C is shown in Fig. 10.3. In (10.68) we need I+; since IR and Iε

vanish and I− equals I+, we get

I+ = πi
√

A(ω′) (10.70)

Fig. 10.3. Contour C in (10.69). Contribution from the large circle vanishes due to
the implicit cutoff in the scattering interaction and the contribution from the small
circle vanishes as ε → 0. Hence IC = I+ + I− = 2I+ = 2πi×(sum of residues). The
branch cut in (10.66) is placed on the positive x-axis. Pole at z = ReA(ω′)+iImA(ω′)
is placed in the lower half-plane because we are dealing with the retarded function
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or, going back to (10.68),

a(ω′) = −2i
√

γ
[
ω′ + 1 − δ

ω′ − a(ω′)

]1/2

. (10.71)

We can rearrange this equation into a cubic polynominal in a(ω′), the solutions of
which are easy to write down explicitly. Rather than giving the rather complicated
expressions, we now turn to the evaluation of the density of states. The momentum
summation required for � is again performed using the contour of Fig. 10.3, and the
result is [170]

�(ω′) =
1√
2

(
ω′ + 1 − Reσ(ω′)

+
{
[ω′ + 1 − Reσ(ω′)]2 + [Imσ(ω′)]2

}1/2
)1/2

. (10.72)

Similar techniques can be used to calculate the density of states for the localized elec-

trons, and results are shown in Fig. 10.4. Also shown are results for a full numerical

Fig. 10.4. Dashed line: (a) Conduction-electron density of states, and (b) the
localized level density of states for parameters δ = 1/16 and γ = 1/256, which
corresponds to weak coupling. Solid lines give the results for a numerical calcula-
tion with energy cutoff D = 5ε0, while dotted lines correspond to another related
model [280]
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solution of (10.68); even though only an approximate agreement is seen, the explicit

analytic solution is useful because it can be used for a qualitative analysis, for ex-

ample, the existence or nonexistence of separate impurity bands [179].

We now return to the nonequilibrium case, defined by (10.64), (10.65). The
explicit R-dependence in the denominator of (10.64) complicates the math-
ematical structure considerably, and we can only provide an approximate,
but physically motivated, solution to the self-consistent problem defined by
the Dyson equation and the self-energy (10.64). We use the results obtained
for equilibrium (Sect. 39.2 in [2]) in constructing an approximate solution for
the impurity-averaged field-dependent Green function. In equilibrium, and
with the constant density of states approximation, which will be adopted
heretofore, it is found that the self-consistent solution of (10.66), (10.67) is
m̄(ω) = −iγ, where γ = π�V 2. The crucial observation is that the same
solution would have emerged even with the free Green function in (10.66); in
other words the Born approximation and the self-consistent Born approxima-
tion yield identical results in the determination of the retarded Green function.
We use this information in making the first approximation: It is assumed that
M̄R in (10.65) can be evaluated with the field-dependent free Green func-
tion Gφ. The calculation is similar to the one performed in the evaluation of
(10.55), and the result is:

M̄R(ω) = iΓφ(ω + F · R) , (10.73)

where Γ φ(ω) is defined in (10.55) and we suppress the real part. Using (10.73)
in the expression for the self-energy (10.64), we get the following equation for
the Green function:

Ḡ(k‖, k′‖,k⊥, ω) = Gφ(k‖, k′‖,k⊥, ω) +
∫ L

0

dR‖
L

∑
q
‖
1 ,q

‖
2

Gφ(k‖, q
‖
1 ,k⊥, ω)

× ce
−i(q

‖
1−q

‖
2 )R‖V (q‖1 ,k⊥)V (q‖2 ,k⊥)

ω − ε0 − iΓφ(ω + FR‖)

× Ḡ(q‖2 , k
′
‖,k⊥, ω) . (10.74)

The physical interpretation of (10.74) is the following. We imagine the charge
carrier entering from a field-free region to a region of space 0 ≤ R‖ ≤ L where
there is a uniform electric field. Ḡ(k‖, k′‖,k⊥, ω) then describes the propaga-
tion of a charge carrier from a state (k‖,k⊥, ω) to a state (k′‖,k⊥, ω) under
the influence of a constant electric field and the resonant interaction with im-
purities. Alternatively, in real space the Fourier transform of Ḡ(k‖, k′‖,k⊥, ω)
gives the propagation amplitude from one spatial point to another.

This interpretation implies that a second approximation has been made. In
the calculation of Gφ it was not taken into account that the electric field ex-
tends over a finite region in space. Allowing this would complicate the analysis
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significantly, and analytic progress would hardly be possible.2 Thus, (10.74)
assumes that the boundary effects do not play an important role and that the
physics is run by the “bulk” properties. An experimentally realizable system
could be a heterostructure, where charge carriers are injected into a region of
space with a strong uniform electric field.

As it stands, (10.74) still seems impossible to solve analytically. However,
a numerical solution may well be possible: one can evaluate the R‖ integral
once and for all, and then proceed by some suitable iterative technique. In-
stead of pursuing this line further in the present context, we make a third
approximation: motivated by our numerical study of the field-dependent level
width [(10.55), also Fig.10.2] we replace the level width by its zero-field value.
This is reasonable, since we found that for increasing energies Γφ approaches
Γ ; for example, taking F = 106 Vm−1 and R‖ = 100 Å, which can be viewed
as representative numbers, the level width has essentially its zero-field value.
Thus, only the first few scatterings have a width which significantly differs
from the zero-field value. Since we are neglecting boundary effects anyway,
we can safely assume that the important contribution to the integral (10.74)
comes from the region where the level width has relaxed to its zero-field value.
Setting Γφ(ω+FR‖) � Γ (ω) results in a major simplification: the R‖-integral
is trivial to perform, and we obtain

Ḡ(k‖, k′‖,k⊥, ω) = Gφ(k‖, k′‖,k⊥, ω) +
∑
q‖

Gφ(k‖, q‖,k⊥, ω)

× cV (q‖,k⊥)2

ω − ε0 − iΓ (ω)
Ḡ(q‖, k′‖,k⊥, ω) . (10.75)

This equation can be solved by iteration; the solution is made possible by the
separability of the interaction. The result is:

Ḡ(k‖, k′‖,k⊥, ω) = Gφ(k‖, k′‖,k⊥, ω)

× exp

[
−i
F

∫ k‖

k′
‖

dq‖
cV (q‖,k⊥)2

ω − ε0 − iΓ (ω)

]
. (10.76)

This is an interesting result: it is an explicit solution to a field-dependent
Dyson equation with an energy-dependent scattering mechanism. Further, we
will need (10.76) as an input to the quantum kinetic equation constructed in
the next section.

There are three important checks we must perform to ascertain that
(10.76) is an acceptable solution. First of all, we must verify that it reduces
to the correct zero-field Green function. This can be accomplished by a direct

2 However, using the actual wavefunctions of the system as a basis set, certain
progress can be made, at least on a formal level, and we shall illustrate this in
Sect.10.7.
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application of the method explained in the example in Sect. 10.1, and one
finds that

lim
F→0
Ḡ(k‖, k′‖,k⊥, ω) =

δ(k − k′)
ω − εk − cV (k)2/(ω − ε0 − iΓ )

. (10.77)

The second check concerns the frequency-sum rule,
∫

dω/(2π)[−2ImḠ] = 1.
An explicit calculation of the ω integral in (10.76) [or, actually, also for the
equilibrium result (10.77)] is difficult. However, we may resort to the general
analytic properties of the Green functions and self-energies: the free Green
function (both with and without the field) exhausts the sum rule, while all
higher order terms, obtained by expanding either (10.76) or (10.77), yield zero
contribution when integrated over ω, because their poles always lie in either
the upper or lower half-plane, and hence the contour can be closed in the
opposite half-plane.

The final check concerns whether the found solution satisfies the self-
consistency condition: Given the self-energy functional

Σ(q, ω) =
cV (q)2

ω − ε0 − M̄R=0(ω)
, (10.78)

where
M̄R=0(ω) =

∑
p1,p2

V (p1)Ḡ(p1,p2, ω)V (p2) (10.79)

and Ḡ is given by (10.76), we must show that

M̄R=0(ω) = iΓ (ω) . (10.80)

The proof is a direct calculation [180], and we urge the reader to check this.3

This concludes our discussion of the dynamics (single-particle properties) of
the RLM in an external field; in the next section we discuss kinetic equations
derived with the aid of the main results of this section.

10.4.4 Analytic Continuation

In the quantum kinetic equation one needs the analytic continuations Σ>< of
the self-energy functional (10.64) (with M̄R=0). This is achieved by repeated
applications of the analytic continuation rules given in Table 4.1. In order to
make the analysis as transparent as possible, we suppress all factors that do
not affect the analytic continuation, and write the self-energy functional as
Σ = [g−1

0 −G]−1, and consider its series expansion:

Σ = g0 + g0Gg0 + g0Gg0Gg0 + · · · . (10.81)

3 It is expedient to assume that the momentum-dependence of the matrix element
V (q) is so weak, that it can be neglected, V (q) � V0.
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Term-by-term analytic continuation results in

Σ< = g<0 + gr0G
rg<0 + gr0G

<ga0 + g<0 G
aga0

+ gr0G
rgr0G

rg<0 + gr0G
rgr0G

<ga0 + gr0G
rg<0 G

aga0

+ gr0G
<ga0G

aga0 + g<0 G
aga0G

aga0 · · · . (10.82)

These terms can be regrouped

Σ< = (1 + gr0G
r)g<0 (1 +Gaga0)

+ (gr0 + gr0G
rgr0)G

<(ga0 + ga0G
aga0) · · · . (10.83)

Continuing the process one finds that the final result is

Σ< =
1

1 − gr0Gr
g<0

1
1 − ga0Ga

+
1

g−1
0 −Gr

G< 1
g−1
0 −Ga

. (10.84)

The first term in (10.84) vanishes because g−1
0 (ω)g<0 (ω) ≡ 0. Reintroducing

the momentum variables, we identify TR[Ḡr,a] in (10.84), and have therefore
obtained

Σ<(q1, q2, ω) = c
∑

p1,p2

∫
dR

Ω
TR

q1,p1
[Ḡr]Ḡ<(p1,p2, ω)TR

p2,q2
[Ḡa] (10.85)

This is an important result: Among other things it can be used to derive a
Boltzmann equation with the full T -matrix rather than the Born approxi-
mation for the scattering probability, which is what the standard derivations
usually lead to. We also note that the above derivation is valid for cases where
the T -matrix is not explicitly solvable (for example, for the elastic impurity
case) and that it can be extended to the case where the Green functions de-
pend separately on two time-labels, i.e., to the case of time-dependent external
fields.

10.4.5 Quantum Kinetic Equation

We can now state the quantum kinetic equation for the RLM. Substituting
the results of the previous section in the GKB equation (5.7), we obtain[

G−1
φ − c

2

∫
dR

Ω

(
TR[Ḡr] + TR[Ḡa]

)
, G<

]
−
[
c

∫
dR

Ω

(
TR[Ḡr]G<TR[Ḡa]

)
,
1
2
(
Ḡa + Ḡr

)]
= − c

2

∫
dR

Ω

{
TR[Ḡr]G<TR[Ḡa], G>

}
+
c

2

∫
dR

Ω

{
TR[Ḡr]G>TR[Ḡa], G<

}
. (10.86)
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In this equation, we have suppressed the intermediate position and time in-
tegrations. The extremely nonlinear character of these equations has been
stressed by explicitly indicating how the various self-energy terms depend on
the retarded and advanced Green functions. From (10.86) we also clearly see
the two-step structure inherent in many nonequilibrium calculations: The ex-
pressions for the retarded and advanced Green functions Ḡr/a are needed as
an input to the kinetic equation.

At this point it is useful to reiterate the different approximations that have
been made so far. The choice of the self-energy functional picks a subset of
all the different diagrams that are generated by the impurity averaging; in
particular, crossed diagrams are not included in (10.86). The form of (10.86)
implies no other approximations, however, the actual expressions found for
Ḡr/a do involve additional approximations. In principle then, supposing one
had the exact expressions for Ḡr/a, (10.83) would give an exact prescription for
determining the transport properties of a system consisting of noninteracting
electrons coupled to a dilute concentration of resonant scatterers under the
influence of an arbitrarily strong static electric field.

One should note, however, that in the electron-impurity system there is
no mechanism to dissipate the energy fed in by the electric field. Thus if one
were to use (10.86) to determine the nonlinear current, singularities may arise
due to Joule heating. One should add terms to (10.86) which would allow the
dissipation of the Joule heat. This could be done, for example, by coupling
the system to a phonon bath. In later sections we will discuss the quantum
kinetic equations for electron–phonon systems. The most important feature
of (10.86) is that it allows an explicit study of how the conventional impurity
Boltzmann equation is modified by an arbitrarily strong electric field.

To proceed with the analysis we use the approximate expressions for Ḡr/a

found in Sect. 10.4.3. Explicitly, we have, using (10.84-10.85),

TR
q1,q2

[Ḡr] =
V (q1)V (q2) exp[−i(q1 − q2) · R]

ω − ε0 + iΓ0
. (10.87)

TR[Ḡa] is obtained from (10.87) by setting iΓ0 → −iΓ0. Use of these expres-
sions in the self-energy part of the collision integral results in

Σ<(k,k′, ω) = c
∑

q1,q2

∫
dR

Ω

exp[−i(k − q1 + q2 − k′) · R]
(ω − εo)2 + Γ 2

0

×V (k)V (q1)V (q2)V (k′)G<(q1, q2, ω) . (10.88)

We recognize in (10.88) the resonant prefactor which is reminiscent of the
energy-dependent relaxation time used in the Boltzmann equation for the
RLM [328]. The energy-dependent prefactor will give rise to interesting ad-
ditional structure even in the Boltzmann limit, which we shall study next.
In order to apply the results of Chap.6, where we developed tools to extract
the Boltzmann limit from quantum kinetic equations, we must transform the
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self-energy (10.88) into sum and difference variables, and perform a Fourier
transformation for the difference variables. The temporal variables are actu-
ally in the desired form already, and we only need to consider the spatial
coordinates. The transformation rules we need are:

Σ(p,R) =
∑

k

Σ(p − k,p + k)e−2ik·R ,

G(q1, q2) =
∫

dR′e−iR′·(q1−q2)G

[
1
2
(q1 + q2),R′

]
(10.89)

and after some simplification one finds

Σ<(p,R, ω) =
c

(ω − ε0)2 + Γ 2
0

∫
dR′∑

q,p′
exp[iq · (R − R′)]V (p + q/2)

×V (p′ + q/2)G<(p′,R′, ω)V (p′ − q/2)V (p − q/2) . (10.90)

In the Boltzmann limit we can use the lowest order gradient approximation,
which is summarized in (6.5), and one finds that the collision integral IRLM[G]
is given by

IRLM[G] =
−c

(ω − ε0)2 + Γ 2
0

∫
dR′∑

q,p′
V (p + q/2)V (p′ + q/2)

×V (p′ − q/2)V (p − q/2)
[
G<(p′,R′, ω)G>(p,R, ω)

− G>(p′,R′, ω)G<(p,R, ω)
]
. (10.91)

In the Boltzmann limit we use the ansatz (6.14) to relate the particle propa-
gator G< and the Wigner distribution function. Collecting all the terms and
specializing to the Gaussian-model interaction used in previous sections, we
obtain the final result:

[∇pεp · ∇R + F · ∇p]f(p,R) = − c

(εp − F · R)2 + Γ 2
0

×
∑

p

∫
dR′ exp[−(R − R′)2/2λ2]

(2πλ2)3/2

×V 2(p)V 2(p′)δ[εp − εp′ − F · (R − R′)]

×[f(p,R) − f(p′,R′)] . (10.92)

We want to emphasize the following central features of this result. (a) It
is nonlocal in space. This is due to the finite range of the model interac-
tion. (b) Field-dependence of the collision integral. This is a consequence of
the energy-dependent prefactor characteristic of the RLM. For elastic im-
purity scattering no such field-dependence would occur. The field-dependent
energy shifts in (10.92) are easily understood if one recalls that the potential
energy is position dependent as a result of the applied field. (c) This trans-
port equation cannot be reduced to a relaxation–time form, contrary to the
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ordinary impurity Boltzmann equation. (d) The transport equation is consis-
tent with the continuity equation only when coarse-grained over a distance
several times the range of the Gaussian-model interaction. In the limit of a
short-range interaction, we can simplify (10.92) to a “local” relaxation-time
form: {

∇pεp · ∇R + F
[
cos θ

∂

∂p
− 1
p

sin θ
∂

∂θ

]}
f(p, θ,R)

= − 1
τ(εp − F · R)

[f(p, θ,R) − f̄(p,R)] , (10.93)

where f̄ is the angular average of f ,

f̄(p,R) =
∫

dΩ
4π
f(p, θ,R) , (10.94)

and
1
τ(ε)

=
c�V 4

0

(ε− ε0)2 + Γ 2
0

. (10.95)

In obtaining these results we have used the constant density of states approx-
imation, and employed polar coordinates for momenta, p → (p ≡ |p|, θ). We
have remarked earlier about the lack of dissipation, which is common to all
impurity models, and (10.93) makes this very explicit: while angular varia-
tions in f tend to be smoothened by scattering, there is nothing to prevent
the angular average from heating due to the energy fed in by the electric field.
Thus (10.93) is unsuitable for evaluation of the nonlinear current unless it is
supplemented by some inelastic scattering mechanism. The main source for
such inelasticity in semiconductors is due to phonons, and in Sect. 10.5 we
develop the theory for electron–phonon quantum kinetics.

10.5 Quantum Kinetic Equation
for Electron–Phonon Systems

The full quantum kinetic equation obeyed by the nonequilibrium Green func-
tion was derived in Part II [e.g. (7.20)–(7.25)]. In all their generality these
equations appear prohibitively complicated, and for any realistic scattering
mechanism, several approximations must be made if one wants to end up
with equations that are amenable for an explicit evaluation. In this sec-
tion we shall construct a quantum kinetic equation for a model electron–
phonon system. The self-energy is treated in the self-consistent Born approx-
imation given by the nonequilibrium generalization of (3.84), Σ(k, t, t′) =
i
∑

qM
2
qG(k − q, t, t′)D(q, t, t′). We will further assume that the phonon sys-

tem will stay in equilibrium, and that phonon-life time effects are negligible,
D → d → d0. Further, we shall not attempt to analyze the full correlation
function G<, but rather concentrate on the Wigner function fW. Finally, we
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shall restrict ourselves to steady fields, even though a generalization to finite
frequencies would be quite straightforward.

We have derived in Chap. 8 the quantum kinetic equation for the Wigner
function, and we repeat it here for convenience:[

∂

∂T
+ qE · ∂

∂k

]
fW(k, T )

= −
∫

dτ ′Ã(k +
q

2
Eτ ′,−τ ′, T + τ ′)B̃(k +

q

2
Eτ ′, τ ′, T + τ ′) , (10.96)

where

Ã(k1, τ1, T1)B̃(k2, τ2, T2)

=
[
Σ̃rG̃< + Σ̃<G̃a − G̃rΣ̃< − G̃<Σ̃a

]
(k1, τ1, T1)(k2, τ2, T2) .

In steady-state transport the third variable of Ã and B̃ on the right-hand
side of (10.96) can be ignored. Since the right-hand side still involves the
full correlation function, we must supply additional information in order to
get a closed set of equations. This is provided by the dc form of the GKB
ansatz (8.19):

G̃<(k, τ) = −G̃r(k, τ)fW(k + qEτ/2) + fW(k − qEτ/2)G̃a(k, τ)
= iA(k, τ)fW(k + qE|τ |/2) ,

G̃>(k, τ) = −iA(k, τ)[1 − fW(k + qE|τ |/2)] . (10.97)

The analytic continuation for the self-energy is

Σ̃<(k, τ) = i
∑

q

M2
qd

<
0 (q, τ)G̃<(k − q, τ) ,

Σ̃>(k, τ) = i
∑

q

M2
qd

>
0 (q, τ)G̃>(k − q, τ) , (10.98)

where

d<0 (q, τ) = −i
∑
±
N±

q e±iωqτ ; d>0 (q, τ) = −i
∑
±
N±

q e∓iωqτ , (10.99)

with N±
q = Nq + 1

2 ± 1
2 , and Nq is the equilibrium Bose function. We now

have all the ingredients needed for the construction of the kinetic equation.
Recalling Gr = θ(τ)(G> −G<), the collision integral becomes(

∂fW

∂T

)
coll

= i

∫ 0

−∞
dτ
∑

q

M2
q

×
{
−G̃>

(
k +

τ

2
E − q,−τ

)
d>
0 (q,−τ )G̃<

(
k +

τ

2
E, τ

)
− G̃<

(
k +

τ

2
E,−τ

)
d>
0 (q, τ )G̃>

(
k +

τ

2
E − q, τ

)
+ G̃>

(
k +

τ

2
E,−τ

)
d<
0 (q, τ )G̃<

(
k +

τ

2
E − q, τ

)
+ G̃<

(
k +

τ

2
E − q,−τ

)
d<
0 (q,−τ )G̃>

(
k +

τ

2
E, τ

)}
. (10.100)



146 10 Field-Dependent Green Functions

Using (10.98), (10.99) in the above equation brings us to the desired quantum
kinetic equation for fW:

E · ∂
∂k
fW(k) =

∑
q

M2
q

∫ 0

−∞
dτ
{
−2Re

[
A
(
k +
τ

2
E − q,−τ

)
×A

(
k +
τ

2
E, τ

)
(N+

q eiωqτ +N−
q e−iωqτ )

]
×[1 − fW(k + τE − q)]fW(k + Eτ)

+ 2Re
[
A
(
k +
τ

2
E,−τ

)
A
(
k +
τ

2
E − q, τ

)
×(N+

q eiωqτ +N−
q e−iωqτ )

]
[1 − fW(k + τE)]

× fW(k + Eτ − q)
}
. (10.101)

This equation is central to studies of high-field quantum transport in semi-
conductors, and several comments are in order. Comparing to the semiclas-
sical Boltzmann equation for electron–phonon systems, we observe the fol-
lowing differences. (a) The collision term is field-dependent: the arguments
of the distribution function include field-dependent shifts, and the spectral
functions may contain the electric field. This field-dependence leads to an
effective broadening of the energy-conserving delta-functions. (b) The colli-
sion integral is non-Markovian: the time-integration introduces memory ef-
fects. (c) The Boltzmann equation is recovered, if the electric field is set
to zero in the collision term, and if free spectral functions are used. Then
the time-integration just reproduces the energy conserving delta-functions.
(d) If all scattering is excluded from the spectral functions, i.e., one sets
A(k, τ) = exp[−i(εkτ+τ3F 2/24)], one recovers the quantum kinetic equation
obtained by Levinson [238], and by Barker [27], who used density matrix tech-
niques (see also Sect. 3.2, which gives an introduction to the density matrix
method):

E · ∂
∂k
fW(k) = −2

∑
q

M2
q

∑
η=±
Nη

q

∫ 0

−∞
dτ

×
{
cos

[
(εk+ τ

2 E−q − εk+ τ
2 E + ηωq)τ)

]
×[1 − fW(k + τE − q)]fW(k + Eτ)

− cos
[
(εk+ τ

2 E−q − εk+ τ
2 E − ηωq)τ)

]
×[1 − fW(k + τE)]fW(k + Eτ − q)

}
. (10.102)

This equation is also sometimes called the Barker–Ferry equation [29]. We
can gain some qualitative information about the mathematical structure
of (10.102) by analyzing the cos-prefactors alone, i.e., neglecting the field-
dependence of the arguments (and hence τ -dependence) of the distribution
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functions. The τ -integral then has the structure

I = 2
∫ 0

−∞
dτ cos[τ(Aτ + 2B)] , (10.103)

where the coefficients A and B are given by

A = E · q/2m
B = [k · q/m+ q2/2m± ωq]/2 , (10.104)

respectively. For vanishing electric fields (or if the phonon wavevector is per-
pendicular to the electric field) one finds limE→0 I → 2πδ(B), and we have
thus recovered the familiar energy-conserving δ-function due to the Fermi
Golden rule used in the Boltzmann theory. For A �= 0 one can express I in
terms of Fresnel integrals C(x) and S(x) [1], Sect.7.3, and [292]:

I =
√

2π/A
{
cos(B2/A)

[
1
2 − C (D)

]
+ sin(B2/A)

[
1
2 − S (D)

]}
, (10.105)

where D =
√

2/(π|A|3)AB. A numerical example is shown in Fig. 10.5. Since
I can be negative, it is not obvious how a standard Monte-Carlo simulation
code could be applied to the numerical solution of (10.102), even within in
an approximation where the semiclassical δ-functions are replaced with I.
A scheme, which is designed to overcome these difficulties, is presented in
Sect. 10.6

It is important to remind ourselves of the approximations that have been
employed in deriving (10.102): (a) the electron–phonon interaction is treated
to lowest order, and (b) the GKB ansatz was used to relate the nonequi-
librium Green function and the Wigner function. Since the GKB ansatz is
known to have certain restrictions [331], these problems are inherently present
in (10.101) as well. Nevertheless, it is interesting that (10.102) coincides
exactly with the density matrix result, if free but field-dependent spectral

-4 -3 -2 -1 1 2

-4

-2

2

4

Fig. 10.5. The integral I defined in (10.103) for A = 0.5, 1.0, and 2.0 (solid, dashed,
dot-dashed lines, respectively), as a function of B i.e., the energy transfer in a
electron–phonon collision. The semiclassical limit corresponds to a δ-function at
B = 0
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functions are used. If one uses spectral functions which are computed from
the nonequilibrium Dyson equation including collisions, an additional broad-
ening is introduced; this broadening may lead to significant effects in high-field
properties of materials with high scattering rates. Clearly our understanding
has not yet reached a satisfactory stage, and results of future investigations
may require some modifications in the quantum kinetic equation (10.101).
We shall employ it in the following sections, because it offers a useful model
quantum kinetic equation, which can be used to illustrate several intriguing
effects.

10.6 An Application:
Collision Broadening for a Model Semiconductor

10.6.1 Analytical Considerations

Here we describe how the quantum kinetic equation (10.101) can be trans-
formed into a form that makes it amenable to a Monte Carlo solution. Ex-
plicitly, we shall consider nondegenerate electrons and dispersionless optical
phonons, even though the generalization to more complicated scattering mech-
anisms is relatively straightforward. We write (10.101) as [199,291]

E · ∂
∂k
fW(k) = −

∑
k′

∫ ∞

0

dτ [P (k′ − τE,k − τE, τ)fW(k − Eτ)

−P (k − τE,k′ − τE, τ)fW(k′ − Eτ)] , (10.106)

where

P (k,k′, τ) = M2
q 2Re

[
A
(
k +
τ

2
E, τ

)
A
(
k′ +

τ

2
E,−τ

)
×(N+

q e−iωqτ +N−
q eiωqτ )

]
(10.107)

with q = |k − k′|. P (k,k′, τ) represents in a certain sense a time-dependent
quantum mechanical generalization of the transition probability used in the
Boltzmann theory; the spectral functions account for the intra-collisional field-
effect, and for the collision broadening. To make this analogue more quanti-
tative, we next transform (10.106) into its integral form:

fW(k) =
∑
k′

∫ ∞

0

dt
∫ ∞

0

dτ {P [k − E(t+ τ),k′ − E(t+ τ), τ ]

×fW [k′ − E(t+ τ)] − PfW
}

=
∑
k′

∫ ∞

0

dt1
[
W̃ (k − Et1,k

′ − Et1, t1)

×fW(k − Et1) − W̃fW
]
, (10.108)
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where the notation PfW (and W̃fW) means a term identical with the
preceding term but with momentum labels interchanged, k⇀↽ k′, and

W̃ (K,K′, t1) =
∫ t1

0

dt2P (K,K′, t2) . (10.109)

It is very instructive to compare (10.108) with the corresponding integral form
of the Boltzmann equation:

f(k) =
∑
k′

∫ ∞

0

dt1 [W (k − Et1,k
′ − Et1)f(k′ − Et1) −Wf ] , (10.110)

where W is the Boltzmann scattering probability,

W (k,k′) = 2πM2
q

∑
η

δ(εk − εk′ + ηωq)Nη
q . (10.111)

The only apparent mathematical difference between (10.108) and (10.110)
is that the quantum transport equation has the time-dependent object W̃
instead of the static W probability found in semiclassical theory. The full
analysis of (10.108) is still a matter of active research (see, for example, [243–
245]) and it would go beyond the scope of the present analysis to enter this
discussion. Instead, we proceed with two additional approximations, which
allow further analytic progress.

First, we note that allowing the upper limit of the time-integration in
(10.109) to approach infinity removes the mathematical differences between
the quantum and Boltzmann theories. This is analogous to what is done in
the derivation of the Fermi Golden Rule: there the energy conserving delta-
functions emerge only in the infinite-time limit. The infinite-time limit is
known as “completed collisions limit,” and it is usually expected to be valid
for low collision rates [98]. This limit has an important implication for prac-
tical calculations: The mathematical equivalence4 allows one to draw from
the vast number of techniques developed for the numerical solution of the
Boltzmann equation, such as the Monte Carlo simulation techniques (see, for
example, [168], or [169]).

The two quantum mechanical effects, intra-collisional field-effect and col-
lisional broadening, which are contained in the quantum kinetic equation, are
intertwined in a complicated way: the field shifts the momentum arguments
of the spectral functions, which should be determined in the presence of both
scattering and the electric field. The solution of the field-dependent Dyson
equation for the retarded Green function, which yields the spectral function,
represents itself a formidable task, and realistic analytic solutions, satisfy-
ing the necessary sum rules, scarcely exist. In what follows we shall focus on

4 One must still be cautious with the positive definiteness of W̃ ; for the model
discussed in this section this turns out to be the case. We are not aware of general
proofs of this important caveat.
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collision broadening alone, since this will make further progress possible. This
means that we can neglect the field-dependent shifts in the momenta, and
consider only

WQM(K,K′) ≡ lim
t→∞ W̃ (K,K ′, t)

=
∑

η

M2
qN

η
qKη(K,K′) , (10.112)

where the joint spectral function is defined via the convolution integral

K(K,K′) =
∫ ∞

−∞

dω
2π
A(K, ω + ηωq)A(K ′, ω) . (10.113)

As we shall see later, (10.112) can be readily used in a numerical scheme.
(10.112) has an immediate physical interpretation: it states that collision
broadening affects both the initial state K, and the final state K ′. For exam-
ple, if one uses a Lorentzian model for the spectral function, the joint spectral
density has a width which equals the sum of the widths of the initial and the
final state.

10.6.2 A Simple Model: Optical Phonon Emission at T = 0

We next consider a simple model, which allows one to work out the spectral
function explicitly. The model uses a spherical and parabolic band, and only
nonpolar optical processes at zero temperature are considered. In spite of its
simplicity, this model has several interesting features. Within the standard
semiclassical theory its properties are well understood [290]: (a) at interme-
diate field strengths it gives rise to the streaming-motion regime, and (b) at
asymptotically high fields, it produces the quasielastic regime. Thus, the model
provides a well-defined testing ground for contrasting the quantum kinetic and
the semiclassical results.

In this model the line-width, or, equivalently, the imaginary part of the
self-energy, is given by

Γ (ω) = −2Im[Σr(ω)] = 2γ(ω − ω0)1/2θ(ω − ω0) , (10.114)

where ω0 is the optical-phonon energy, and γ is the coupling strength [168].
With (10.114) the retarded Green function isGr(k, ω) = [ω−εk+iη+iΓ (ω)]−1,
and the spectral density becomes

A(xk, x) =
2
γ2

[
(x− x0)1/2θ(xk − x0)θ(x − x0)

(x− xk)2 + (x− x0)

+ πδ(x− xk)θ(x0 − xk)θ(x0 − x)
]
, (10.115)

where we introduced dimensionless energies x = ω/γ2, xk = εk/γ2, and x0 =
ω0/γ

2. As always, it is important to verify the frequency sum-rule; presently
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it reads (γ2/2π)
∫∞
−∞Adx = 1, and using the contour integration techniques

of Sect.10.4.3 one can verify that this is indeed the case. The joint spectral
function corresponding to (10.115) can also be worked out explicitly [291,292]

K(xk, xk′) =
2
πγ2

[
π

√
xk′θ(xk − x0)θ(x0 − xk′ )θ(xk′ )

(x0 + xk′ − xk)2 + xk′

+
∫ ∞

2x0

dx

√
(x− x0)(x− 2x0)θ(x− x0)θ(xf − x0)

[(x− xk)2 + x− x0][(x − x0 − xk′ )2 + x− 2x0]

+ π2δ(x0 + xk′ − xk)θ(x0 − xk)θ(x0 − xk′ )
]
. (10.116)

An important property of K(xk, xk′ ) is that it is possible to develop explicit
analytical approximations to it, which is of crucial importance in Monte Carlo
simulations. As compared to semiclassical simulations, where the final energy
state is uniquely determined, in the quantum case one must use one additional
random number generation:K(xk, xk′ ) is viewed as a probability distribution,
which determines the final energy. A necessary prerequisite for this interpre-
tation is that K obeys the sum rules

γ2

2π

∫ ∞

−∞
dxkK(xk, xk′ ) =

γ2

2π

∫ ∞

−∞
dxk′K(xk, xk′) = 1 , (10.117)

which generalize the analogous relations found in the Boltzmann case∫ ∞

−∞
dxkδ(xk − xk′ ± x0) =

∫ ∞

−∞
dxk′δ(xk − xk′ ± x0) = 1 . (10.118)

A numerical evaluation of (10.117) with (10.116) confirms this consistency
check. An unavoidable consequence of the probability distribution interpre-
tation is an increase of the time needed for a convergent simulation, and
the details of how this can be achieved in practice are described in [293].
Fig. 10.6 presents a numerical example; also a simulation corresponding to
the intra-collisional field effect alone [for this case the joint spectral density is
essentially given by (10.105)] is depicted. The important qualitative difference
between the quantum mechanical and semiclassical results is the enhancement
of charge carriers at high energies. This may lead to significant implications
to phenomena such as field assisted run-away; however, the models employed
in the simulations of Fig. 10.6 are still so oversimplified, that it is difficult
to assess their practical implications. Clearly simulations with more realistic
scattering mechanisms and band-structures would be desirable.

10.7 Spatially Inhomogeneous Systems

So far we have discussed only uniform external fields. However, all microde-
vices are, almost by definition, extremely inhomogeneous, and it is important
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Fig. 10.6. Distribution function of the carrier kinetic energy at E = 500 keV cm−1.
Dashed curve refers to the semiclassical (SC) simulation, continuous curve to a
simulation which includes collisional broadening (CB) only, and dot-dashed curve to
a simulation which includes intra-collisional field-effects (ICFE) only

to ask how much of the above can be generalized to spatially inhomogeneous
systems. This is a very difficult task and only few results have been reported.
To illustrate the difficulties we consider the Wigner function driving term for a
general potential U(x) (for simplicity we consider a one-dimensional system).
The driving term is [U(x) − U(x′)]fW(x, x′), which after transformation to
Wigner coordinates (6.1), gives rise to[

∂

∂T
+
p

m

∂

∂X

]
fW(p,X, T )

−
∫

dp′

2πi
M(p− p′, X)fW(p′, X, T ) =

(
∂fW

∂T

)
coll

, (10.119)

where

M(q,X) =
∫

dxe−iqx[U(X + x/2) − U(X − x/2)] . (10.120)

The spatial inhomogeneity has translated into nonlocality in momentum
space, which implies considerable difficulties in numerical implementations.
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A few applications to the resonant tunneling diode (which will be analyzed
in some detail in Chap. 12 with a slightly different approach) have been
reported [118, 205]; in these calculations the collision term has been treated
in the relaxation-time approximation.

Driving Term for Harmonic Driving Forces

Harmonic forces play a central role in quantum mechanics. Thus, it is illustrative to
consider the Wigner function transport equation if the external potential is of the
form U(x) = 1

2
kx2. The driving kernel M(q, x) is then

M(q, X) =

∫
dxe−iqx 1

2
k[(X + x/2)2 − (X − x/2)2]

=

∫
dxe−iqxkXx = ikXδ′(q) , (10.121)

where δ′ is the derivative of the Dirac delta-function. This form of M leads to a

driving term (−kX)(∂/∂p)fW(p,X, T ). Since −kX is just the classical force acting

on a particle in a harmonic potential, the Wigner function driving term is identical

to the classical driving term! One may wonder what has happened to quantum me-

chanics: shouldn’t the harmonic oscillator eigenstates reflect themselves somewhere?

The answer to this paradox has actually been mentioned earlier (Sect. 5.2): There

it was pointed out that the transport equation alone (which is obtained as a dif-

ference of two equations) does not contain the full description of the system, and

that it must be supplied with other information which tells what states are “to be

transported.”

Instead of attempting to solve the nonlocal transport equation, one may
choose another strategy: one changes to a new basis defined by the eigenfunc-
tions of the potential U(x). The eigenfunctions are defined by[

−1
2

d2

dx2
+ U(x) +

1
2
k2⊥

]
φn(x) = εn(k⊥)φn(x) , (10.122)

where we assumed translational invariance in the perpendicular direction.
A physical realization could be the position dependent conduction band edge
found in heterostructures. The transformed Green functions are defined by
(the self-energies have analogous definitions)

G(k⊥, x, x′, ω) =
∑
n,n′
φn(x)Gnn′ (k⊥, ω)φ∗n′(x′) , (10.123)

and the transformed Dyson equation for the retarded Green function reads
(the kinetic equation has a similar structure)

Gr
mm′(k⊥, ω) = δmm′grm(k⊥, ω)

+
∑

n

grm(k⊥, ω)Σr
mn(k⊥, ω)Gr

nm′(k⊥, ω) (10.124)
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with
grm(k⊥, ω) =

1
ω − εm(k⊥) + iη

. (10.125)

In the above equations the quantum numbers m,m′ can also be continuous;
in this case the sums must be replaced by integrations. The motivation be-
hind these transformations is that the inhomogeneous potential has essentially
been eliminated. If the self-energy is dominated by its diagonal components,
Σmm′ ≈ δmm′Σm, the Dyson equation is trivially solved, and one may expect
analogous simplifications to take place in the kinetic equation.

This program has been carried through by Bertoncini and co-workers
[35–39] for the uniform field case, when the eigenfunctions are Airy functions.
The technical details of these papers are quite involved and would be beyond
the scope of our present goals. The end result, however, is both compact and
intriguing, and we will discuss it at some length. The only approximation
needed is that the self-energy can be approximated by an essentially diagonal
quantity, and, as explained in the above references there are good reasons to
believe that this is not a serious approximation. Given this, the fully nonlinear
(in the external field) conductivity σ(E) can be written as

σ(E) =
1
2

∫
d2k⊥
(2π)2

∫
dΩ

{[
1 − ∂ReΣr

∂Ω

]
+ [Ω − ε(k⊥) − ReΣr]

[
∂ log ImΣr

∂Ω

]}
A2(k⊥, Ω)f(Ω) , (10.126)

where Σr is the electron–phonon self-energy, which is assumed to be mo-
mentum independent (see Sect. 10.6), and A(k⊥, Ω) is the spectral function
obtained from the Dyson equation. The “distribution function” f(Ω) obeys a
one-dimensional homogeneous integral equation,

f(Ω) =
∫

dΩ′F (Ω,Ω′)f(Ω′) , (10.127)

where the kernel F is a rather complicated function, but which can be ex-
pressed in terms of known functions [38, 39]. Finally, the homogeneous equa-
tion (10.127) requires a normalization condition; this is provided by

n = −i
∫

dΩ�⊥(Ω)f(Ω) , (10.128)

where n is the density and �⊥ is the density of states for the motion in
the plane perpendicular to the electric field. The set of equations (10.126)
– (10.128) is well suited for a numerical evaluation, and an example will be
given below. First, however, it is useful to comment some of the qualitative
features of (10.126).

The result for the nonlinear conductivity bears formal similarities with the
linear quantum kinetic theory of Mahan and co-workers, which was exposed in
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Fig. 10.7. The local density of particles as a function of the electron energy.
Parameters applicable to Si are used

10

Fig. 10.8. The drift velocity vs. electric field. S.C. refers to a semiclassical simulation
[The semiclassical result is courtesy of K. Kometer (1991)]
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Chap. 9. For example, some of the mass-renormalization factors have the same
structure (but recall that here they are nonequilibrium quantities), and one
also finds the square of the spectral density. It stays open whether a linearized
version of (10.126) – (10.128) leads to the same conductivity as the quantum
Boltzmann equation of Chap. 9, however, it is not difficult to demonstrate this
equivalence in the quasiparticle limit [37].

We conclude by showing some numerical results: Figs. 10.7 and 10.8 dis-
play the nonequilibrium densities and drift velocities, respectively. We note
that the nonequilibrium density has a significant high-energy tail; this is con-
sistent with the results obtained in Sect. 10.6. As a consequence, the quantum
drift velocity is significantly enhanced as compared to the semiclassical result,
obtained with a standard Monte Carlo simulation. It remains to be seen how
much of the above analysis can be carried over to less restrictive models of
electron–phonon interaction and/or experimentally more interesting geome-
tries, such as the biased resonant-tunneling diode.
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Optical Absorption in Intense THz Fields

Summary. The optical absorption of intense THz radiation in a two-band semicon-
ductor is calculated. For this end the two-time interband susceptibility is expressed
in terms of nonequilibrium Green functions. A number of special cases are calcu-
lated explicitly. The approach is generalized to include excitonic effects. Finally the
theoretical predictions are compared to measured spectra.

11.1 Introductory Remarks

Light absorption can be described in terms of a process where a polarization is
induced in the medium. To linear order in the electric field component of the
traversing light, E , the induced polarizability, P, can be expressed in terms
of the dielectric susceptibility χ as

P(t) =
∫ t

−∞
dt′ χ(t, t′)E(t′). (11.1)

If the absorbing medium is in a stationary state, the susceptibility tensor de-
pends only on the difference of its time arguments, i.e., χ(t, t′) = χ(t − t′).
Under these conditions Maxwell’s equation for E is an algebraic equation
in frequency space and one finds that the absorption is proportional to the
imaginary part of χ(ω). However, under nonequilibrium conditions, on which
the present chapter focuses, the susceptibility is a two-time function, and
Maxwell’s equation remains an integral equation even in the frequency do-
main. Here we develop methods to calculate the nonequilibrium susceptibility
function. Specifically, we consider an undoped semiconductor placed in an
intense THz field; we assume that the THz field is not able to induce polar-
ization, i.e., no carriers are excited in the conduction band. Properties of such
systems have been investigated experimentally using the free electron laser
(FEL) as a source for intense THz fields [77]; many interesting properties
have been discovered, and others predicted, such as photon-assisted tunnel-
ing [130], dynamical localization and absolute negative conductivity [195],
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ac Stark effect [158], and dynamical Franz–Keldysh effect and formation of
sidebands [46, 177, 209, 288, 376]. Another situation where two-time suscepti-
bilities are needed concerns ultra-fast transients, where the build-up of screen-
ing due to other carriers plays an important role; this situation is examined
extensively in Chapters 17 and 18.

Thus, here we consider light absorption in mesoscopic systems subject to
intense THz [or, equivalently, far infrared (FIR)] fields. Typical band-gaps are
of the order of an electron volt, and hence frequency ωl of the probe field E is in
the near infrared (NIR) part of the spectrum. This physical situation is conve-
niently treated with nonequilibrium Green function techniques. In particular,
this NEGF method allows us to treat the intense FIR field nonperturbatively,
and defines a framework in which screening can be treated systematically.
Our analysis consists of the following steps. Starting from a two-band Hamil-
tonian we derive a formal expression for the interband susceptibility in terms
of nonequilibrium Green functions. We use the general expression to derive
the NIR absorption spectrum for noninteracting particles. We give explicit
results for a number of special cases, and discuss the physical implications.
Finally, we generalize our approach to include excitonic effects, and compare
the theoretical predictions to experimentally measured spectra.

11.2 Optical Absorption as a Response Function

We shall now derive an expression for the dielectric interband susceptibility
using nonequilibrium Green functions. The microscopic operator describing
interband polarization is

P (t) =
∑

k

dk

[
a†k(t)bk(t) + b†k(t)ak(t)

]
. (11.2)

Here dk is the dipole matrix-element, a†k(t) [ak(t)] are the conduction band
electron creation [annihilation] operators and b†k(t) [bk(t)] are the valence band
creation [annihilation] operators. The linearized Hamiltonian associated with
a polarization P (t) induced by the external field E(t) is HP(t) = −P (t) ·E(t).
Linear response theory (see, e.g., [254], or Sect. 9.2) yields the cartesian l-
component of the induced interband polarization due to the probe field E :

Pl(t) = −i
∫ ∞

−∞
dt′ θ(t− t′)〈[P (t′), Pl(t)]〉 · E(t′). (11.3)

The retarded susceptibility tensor can be identified from (11.3)

χr
lm(t, t′) = −iθ(t− t′)〈[Pm(t′), Pl(t)]〉. (11.4)
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Following the familiar line of attack in nonequilibrium theory, we first consider
the contour-ordered response function:

χc
lm(τ, τ ′) = −i〈TC [Pm(τ ′)Pl(τ)]〉 (11.5)

and use (11.2) to write the susceptibility as

χc
lm(τ, τ ′) = −i

∑
q k

dl(k)dm(q)[〈TC [a†q(τ ′)bq(τ ′)a†k(τ)bk(τ)]〉

+ 〈TC [a†q(τ ′)bq(τ ′)b†k(τ)ak(τ)]〉
+ 〈TC [b†q(τ ′)aq(τ ′)a†k(τ)bk(τ)]〉
+ 〈TC [b†q(τ ′)aq(τ ′)b†k(τ)ak(τ)]〉] . (11.6)

In equilibrium, a detailed theory for the two-particle correlation functions
occurring in (11.6) has been developed in terms of the Bethe–Salpeter equa-
tion [142], which takes Coulomb interactions into account. A generalization
of this approach to the nonequilibirium case will be discussed later, but we
begin by considering a situation where interactions between the conduction
and valence band can be neglected. This approach is motivated by the fol-
lowing considerations. The noninteracting limit will allow significant analytic
progress, and the results form the basis for an interacting theory, to be dis-
cussed subsequently. Second, the noninteracting theory will provide some key
elements towards the interpretation of the experimental findings of absorption
in quantum wells subject to intense FIR [276].

For noninteracting particles we can use Wick’s theorem to factorize the
two-particle correlation functions, and the nonequilibrium susceptibility can
be expressed in terms of single-particle Green functions. A factorization of
(11.6) leads to the following Green functions:

gc(k, τ ; q, τ ′) = −i〈TC [ak(τ)a†q(τ ′)]〉 (11.7)

gv(k, τ ; q, τ ′) = −i〈TC [bk(τ)b†q(τ ′)]〉 (11.8)

gab(k, τ ; q, τ ′) = −i〈TC [ak(τ)b†q(τ ′)]〉 (11.9)

gba(k, τ ; q, τ ′) = −i〈TC [bk(τ)a†q(τ ′)]〉. (11.10)

We assume that the frequency Ω of the FIR field is such that h̄Ω � εg.
In typical experiments on III–V systems εg is of the order of eV, while h̄Ω is
a few meV, so this condition is satisfied. Consequently, interband transitions
due to the FIR field can be ignored, and the Green functions related to Zener-
effect, i.e., gab(k, τ ; q, τ ′) and gba(k, τ ; q, τ ′), are neglected from this on. The
first order nonequilibrium susceptibility reads thus (assuming constant dipole
matrix-elements, and suppressing the cartesian coordinate indices)

χc(τ, τ ′) = −id2
∑
q k

[gc(k, τ ; q, τ ′)gv(q, τ ′; k, τ)

+ gv(k, τ ; q, τ ′)gc(q, τ ′; k, τ)]. (11.11)
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The analytic continuation to real times is performed using the rules given in
Table 4.1, and we find

χr(t, t′) = −id2
∑

k

[g<c (k, t, t′)gav(k, t′, t) + grc(k, t, t
′)g<v (k, t′, t)

+ g<v (k, t, t′)gac (k, t′, t) + grv(k, t, t
′)g<c (k, t′, t)]. (11.12)

The Fourier transform of the retarded susceptibility expressed in center-of-
mass coordinates is

χr(T, ωl) = −id2
∑

k

∫ ∞

−∞

dω
2π
{
g<c (k, T, ω)

× [gav(k, T, ω − ωl) + grv(k, T, ω + ωl)] + g<v (k, T, ω)
× [gac (k, T, ω − ωl) + grc(k, T, ω + ωl)]} . (11.13)

As shown later, the relevant quantity for continuous wave measurements at
frequency ωl is

Imχr(T, ωl) = Im
{∫ ∞

−∞
dτ eiωlτχr

lm(T, τ)
}

(11.14)

to first-order in Ω/ωl. Since χr(T, τ) is real, the imaginary part of its Fourier
transform is

Imχr(T, ωl) =
1
2i

[χr(T, ωl) − χr(T,−ωl)].

Introducing the spectral functions

Ac(k, T, ω) = i[grc(k, T, ω) − gac (k, T, ω)]

and
Av(k, T, ω) = i[grv(k, T, ω)− gav(k, T, ω)],

we find

Imχr(T, ωl) =
i
2

∑
k

∫ ∞

−∞

dω
2π
{
g<c (k, T, ω)

×[Av(k, T, ω − ωl) −Av(k, T, ω + ωl)] + g<v (k, T, ω)
×[Ac(k, T, ω − ωl) −Ac(k, T, ω + ωl)]} . (11.15)

The lesser functions can be expressed in the form

g<a (k, T, ω) = ifa(k, T, ω)Aa(k, T, ω)

where fa(k, T, ω) is a generalized particle distribution for particles of species
a, and Aa(k, T, ω) is the corresponding spectral function. In accordance with
our assumption about no FIR field induced interband transitions, we can set
fc(k, T, ω) = 0 (zero occupation of conduction band), and fv(k, T, ω) = 1
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(all valence states are occupied). In the general case, e.g., when considering
nonlinear effects in the probing light field, one would have to find fa(k, T, ω)
via a direct integration of the quantum kinetic equations for g<a (k, T, ω),
as discussed in later chapters. With these assumptions the susceptibility
reduces to

Imχr
lm(T, ωl) = −d

2

2

∑
k

∫ ∞

−∞

dω
2π
Av(k, T, ω)

×{Ac(k, T, ω − ωl) −Ac(k, T, ω + ωl)}

=
d2

2

∑
k

∫ ∞

−∞

dω
2π
Av(k, T, ω)Ac(k, T, ω + ωl)

≡ d
2

2

∑
k

Ajoint(k, T, ωl) = d2π�joint(ωl). (11.16)

Here we assumed momentum independent dipole matrix elements. The second
equality comes about because we do not consider overlapping bands. Equa-
tion (11.16), which is the central result of this section, expresses the fact that
the nonequilibrium interband susceptibility function can be calculated from
a joint spectral function, which is a convolution of the individual band spec-
tral functions. We also introduced another central concept: the joint density
of states, defined in analog with (3.42). A similar result was found in our
discussion of high-field quantum transport theory [see (10.113)]: there the
field-dependent scattering rate is expressed as a joint spectral function for the
initial and final states. We also emphasize that the spectral functions entering
(11.16) may contain arbitrary intra-band interactions. Finally, as an additional
illustration, let us consider the equilibrium limit of (11.16) for noninteracting
particles. The conduction and valence band dispersion relations are

εc(k) =
h̄2k2

2me
, εv(k) = − h̄

2k2

2mh
− εg, (11.17)

and using the free equilibrium spectral functions a0c,v(ω,k) = 2πδ(ω− εc,v(k))
yields

�0joint(ω) =
∑

k

δ(εc(k) − εv(k) − ω)

=
∑

k

δ(
h̄2k2

2meff
+ εg − ω). (11.18)

Here meff = memh/(me +mh). This is a familiar result discussed extensively
in text-books, see, e.g. Chap. 5 in [146]. As we shall see below, a similar result
holds also in nonequilibrium.
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11.3 Absorption Coefficient in Terms
of the Time-Dependent Dielectric Susceptibility

The wave equation for the light field in the absorbing medium is

∇2E(t) − 1
c2
∂2D(t)
∂t2

= 0 (11.19)

where D(t) = E(t)+4πP(t), and P is given by (11.2). The absorption coeffi-
cient α(ω) is defined as the inverse of the length which light has to traverse in
the medium at frequency ω in order for the intensity of the light to decrease
by a factor of 1/e. In equilibrium D(ω) = [1 + 4πχ(ω)]E(ω) = ε(ω)E(ω) and
the absorption coefficient becomes [146]

α(ω) = 4πω
Imχ(ω)
cn(ω)

. (11.20)

Here n2(ω) = 1
2 [Reε(ω) + |ε(ω)|] is the refraction coefficient which usually

depends only weakly on ω. In nonequilibrium this analysis must be generalized
slightly [185], and we proceed as follows. The probe field is

E(r, t) = E0 exp[i(r · k − ωlt)]. (11.21)

and the polarization can therefore be expressed as

P(t) = E(r, t)
∫ ∞

−∞
dt′eiωl(t−t′)χr(t, t′) . (11.22)

This form explains why it is advantageous to express χr in terms of the center-
of-mass and difference coordinates, as we did in Sect. 11.1 The characteristic
time-scale for the center-of-mass time is set by the “slow” frequency Ω, while
the difference-time varies on the scale of the “fast” frequency ωl. Performing
a gradient expansion as in Sect. 6.1 then yields

P(r, t) = E(r, t) exp
[

i
2
∂2

∂t∂ωl

]
χ̃r(t, ωl) . (11.23)

Equation (11.23) can now be used in Maxwell’s equation; note however that
upon Fourier-transforming the dominant frequency comes from E(t) and we
can keep t in χ̃r(t, ωl) fixed. The slow time-variation will from this on be
indicated by T . Proceeding as in deriving the static result (11.20), we identify
the time-dependent absorption coefficient

αT (ω) = 4πω
Imχ̃r(T, ω)
cnT (ω)

+ O(Ω/ω). (11.24)

If the driving force is periodic in T (the harmonic time-dependence due to a
free-electron laser is an important special case), then the average absorption
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coefficient is

ᾱ(ω) =
1

Tperiod

∫
period

dT αT (ω)

=
1

Tperiod

∫
period

dT 4πω
Imχ̃r(T, ω)
cnT (ω)

(11.25)

to all orders in Ω/ω. We stress that here χ̃r(T, ω) is Fourier transformed
with respect to the difference variable τ . Below we shall represent numerical
examples for the generalized absorption coefficient.

11.4 Static Electric Field

As a first illustration of the developed formalism we rederive the classic results
of Franz [117] and Keldysh [197], who pointed out that static electric fields
modify the linear optical properties of bulk semiconductors near the optical
absorption edge: the absorption coefficient becomes finite (though small) for
photon energies below the band gap, and the absorption coefficient shows
oscillations for energies above the band gap. In terms of the joint density of
states the absorption coefficient is

α(ωl) =
4π2ωl|d|2
cn

�joint(ωl), (11.26)

where joint density of states must be now evaluated with the field-dependent
spectral functions (10.19). A short calculation yields (it is convenient to use
the time-representation of the field-dependent spectral functions)

�joint(ωl) =
1
2π

∑
k

Ãeff(k, ωl) , (11.27)

where Ãeff is again given by (10.19) but now with the effective mass. In three
spatial dimensions the momentum summation in (11.27) is converted to an
energy integral via

∑
k →

∫
dε�3D

0 ε
1/2, which yields

�joint(ω)
�3D
0

=
∫ ∞

−ω/α

dt[αt+ ω]1/2Ai(t)

=
1√
π

[
Ai′2

(
−ω
Θ

)
+
ω

Θ
Ai2

(
−ω
Θ

)]
, (11.28)

where we used various results for integrals involving Airy functions derived by
Aspnes [10], and introduced Θ = (e2E2/2meff h̄)1/3 = 41/3α/h̄. This result has
been discussed in the literature several times, see, for example [196]. In two
spatial dimensions we find

�joint(ω)
�2D
0

= 1/3 +
∫ 0

−ω/α

dtAi(t) . (11.29)
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Fig. 11.1. Field dependent density of states for static electric fields (The Franz–
Keldysh effect). Left : 3-dimensions; right : 2-dimensions. Field strengths are as in
Fig. 10.1

The integral involving the Airy function cannot be expressed in terms of
known functions, but it is easy to evaluate numerically.

The effective field-dependent density of states is shown in Fig. 11.1. We
observe that the nonpositive semidefinite spectral functions always give rise
to a positive density of states. The joint densities of states (11.28) and (11.29)
can be used in (11.26) to compute the optical absorption coefficient, and
subsequently compared to experiment. While the general trends are clearly
confirmed, the experimental absorption spectra often display additional fea-
tures attributed to excitons; these effects are discussed at length in several
subsequent sections.

11.5 Harmonically Varying External Electric Fields

Using the results obtained earlier in this chapter we can go directly to the
gauge-invariant spectral function:

Ã(k, ω, T ) =
∫

drdτ exp(iw)AA(r, τ,R, T ) , (11.30)

where AA(r, τ,R, T ) is (10.18) expressed in the center-of-mass and difference
variables, and

w = τω − r · k −
∫ T+τ/2

T−τ/2

dt1
τ

r · A(t1) . (11.31)

After some calculation one finds

Ã(k, ω, T ) =
∫

dτ exp(iωτ)

× exp

{
−i
∫ T+τ/2

T−τ/2

dt1ε

[
k +

∫ T+τ/2

T−τ/2

dt2
τ

A(t2) − A(t1)

]}
=
∫

dτ exp(iωτ − iεkτ)

× exp

⎧⎨⎩− i
2

⎡⎣∫ T+τ/2

T−τ/2

dt1A2(t1) −
1
τ

(∫ T+τ/2

T−τ/2

dt1A(t1)

)2
⎤⎦⎫⎬⎭ ,

(11.32)
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where the second equality is valid for parabolic dispersion. We represent the
harmonically varying electric field via

A(t) = −F

Ω
sin(Ωt) , (11.33)

corresponding to E(t) = F cos(Ωt). This particular choice for A is use-
ful, because throughout the calculation we can check that the correct zero-
frequency limit is recovered. Substitution of (11.33) in (11.32) yields [177]

Ã(k, ω, T ) =
∫

dτ cos [(ω − εk − ωF)τ +X(τ) + 2Y (τ)] , (11.34)

where we introduced the notation

X(τ) =
ωF

Ω
sinΩτ cos 2ΩT (11.35)

Y (τ) =
ωF

Ω

4 sin2(Ωτ/2) sin2ΩT

Ωτ
, (11.36)

and defined the field parameter ωF = e2F 2/(4mh̄Ω2). This parameter (which
has been identified in the literature long time ago, see [288,376]) has a simple
physical interpretation: h̄ωF is the time-averaged kinetic energy of a free par-
ticle with charge e and mass m in a harmonic electric field of frequency Ω.
h̄ωF ≡ εf is called the ponderomotive energy in plasma physics. An explicit
analytic evaluation of the integral in (11.34) is not possible, nor is a straight-
forward numerical calculation feasible, since it contains singularities, which
must be isolated before attempting numerics. We proceed as follows. Use of
the trigonometric identity cos(x + y) = cosx − 2 sin(x + y/2) sin(y/2) allows
us to write (11.34) as a sum of two terms, Ã = Ã1 + Ã2, where

Ã1(k, ω, T ) =
∫

dτ cos [(ω − εk − ωF)τ +X(τ)] ,

Ã2(k, ω, T ) = −2
∫

dτ sin [(ω − εk − ωF)τ

+X(τ) + Y (τ)] sinY (τ) . (11.37)

A numerical evaluation of Ã2 is now straightforward, while analytic progress
can be made with Ã1. Recalling the identity∫ ∞

−∞
dx cos(ax− b sinx) = 2π

∞∑
n=−∞

Jn(b)δ(n− a) ,

where Jn is the nth-order Bessel function, yields

Ã1(k, ω, T ) = 2π
∞∑

n=−∞
Jn

[
−ωF

Ω
cos(2ΩT )

]
δ(ω − εk − nΩ − ωF) . (11.38)
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Fig. 11.2. The function Ã1 as a function of the variable ω∗ = (ω−εk)/Ω. The field
strength is given by ωF/Ω = 1. The δ-function singularities have been broadened
for illustrative purposes

Fig. 11.3. The function Ã2 as a function of the variable ω∗

These two components of the spectral function have quite distinct properties.
The frequency sum rule is exhausted by Ã1 alone,1 i.e.,

∫
dω/2πÃ1(ω, T ) = 1,

while
∫

dω/2πÃ2(ω, T ) = 0. Further, the delta-function singularities of Ã1

are reminiscent of photonic side-bands, however these features are shifted by
the field- and frequency-dependent parameter ωF. In the zero-field limit Ã1

reduces to the field-free result a0(k, ω) = 2πδ(ω − εk), while Ã2 vanishes.
Note also that the spectral function depends quadratically on the electric field.
This is confirmed by physical intuition: Since there is no preferred direction,
it should not matter if the field is reversed, F → −F , and thus we expect to
find a spectral function that is even in the applied field. The functions Ã1 and
Ã2 are displayed in Figs. 11.2 and 11.3, respectively.

1 The proof is based on the properties of Bessel functions: (1) J−n(z) = (−1)nJn(z),
and (2) 1 = J0(z) + 2J2(z) + 2J4(z) + . . .
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The absorption coefficient is again evaluated with an integral analogous
to (11.16) encountered earlier, but now using spectral functions for the time-
dependent electric field. Rather than using the auxiliary functions Ã1 and
Ã2 discussed above, it is advantageous to proceed slightly differently. The
time-dependent density of states for a system of n spatial dimensions is

�nD
joint(T, ε) =

∫ ∞

−∞
dτeiετ/h̄�nD

joint(T, τ), (11.39)

where

�nD
joint(T, τ) =

∫
dnk

(2π)n
exp

{
− i
h̄

∫ T+τ/2

T−τ/2

dsε[k + eA(s)]

}

=
∫

dnk

(2π)n
exp

{
− i
[
(εk + εf )τ

+ 2
eh̄k · F
meffΩ2

sin(ΩT ) sin
(
Ωτ

2

)
− ωf

Ω
cos(2ΩT ) sin(Ωτ)

]}
.

(11.40)

In order to perform the Fourier-transform (11.39) we utilize the identity

exp(ix sin θ) =
∑

n

Jn(x) exp(inθ); (11.41)

we shall henceforth write
∑

n ≡ ∑∞
n=−∞ to simplify the notation. The joint

density of states becomes

�nD
joint(T, ε) =

∑
l,j

∫
dnk

(2π)n−1
δ(ε− εk − εf + lh̄Ω)

×J2j

[
2
ek · F
meffΩ2

sin(ΩT )
]
Jl+j

[ωF

Ω
cos(2ΩT )

]
. (11.42)

The dimensionality is entirely contained in the remaining momentum integra-
tion

∫
dnk/(2π)n−1. We note that (11.42) implies a shift of the absorption

edge by εf . The term lh̄Ω in the Dirac-delta function gives rise to photonic
side bands. Since J2l(x) is an even function, the density of states is invariant
under the transformation F → −F , as expected. In the following we give re-
sults for the 2D and 3D systems separately and show how the density of states
smoothly evolves from a low field intensity regime into a high field intensity
regime making the nonlinear effects of the THz-field apparent.

11.5.1 Joint Density of States, 2D

Several authors have considered fields perpendicular to the quantum well, see,
e.g., [164,366]; here we focus on the situation where the electric field is in the



168 11 Optical Absorption in Intense THz Fields

plane of the two-dimensional electron gas. In such a system with no external
field the density of states is constant

ρ2D0 (ε) =
m

πh̄2
θ(ε). (11.43)

We thus arrive at

�2D
joint(T, ε) =

∑
l,j

∫ ∞

0

dk k
∫ 2π

0

dθ
2π
δ(ε− εk − εf + lh̄Ω)

×J2j

[√
32εfεk
h̄Ω

cos θ sin(ΩT )

]
Jl+j

[ εf
h̄Ω

cos(2ΩT )
]
.

(11.44)

The integrals in (11.44) are performed using∫ 2π

0

dθJ2l(a cos θ) = 2πJ2
l (a) (11.45)

and writing the result in the side-band picture we obtain

�2D
joint(T, ε) =

∑
l

r2D
l (T, ε− εf + lh̄Ω)ρ2D

0 (ε− εf + lh̄Ω) (11.46)

where the side-band weights are

r2Dl (T, ε) =
∑

j

J2
j

[√
32εfε
h̄Ω

sin(ΩT )

]
Jl+j

[ εf
h̄Ω

cos(2ΩT )
]
. (11.47)

A numerical example is given in Fig. 11.4.

Fig. 11.4. Time-dependent joint density of states for free two-dimensional electrons
in a harmonically varying electric field. The parameters are as in Fig. 11.2
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Fig. 11.5. The time averaged joint density of states for a 2D-system for a range
of FIR-intensities, ωF/Ω = (0.0, 0.2, 0.8, 1.4, 2.0). At low intensities one observes a
Stark-like blue-shift of the band edge as well as finite absorption within the band
gap. With increasing intensity side bands emerge at ε = εg + εf ± 2h̄Ω

Many experiments are done under continuous illumination and subse-
quently time-averaged. Numerical results for the time averaged joint density
of states

ρ2Dave(ε) ≡
Ω

2π

∫ 2π/Ω

0

dT �2Djoint(T, ε) (11.48)

are reported in Fig. 11.5. The figure clearly displays the characteristics of the
Dynamical Franz–Keldysh effect [177]: (a) the Stark-like blueshift of the main
absorption edge by εf , (b) the formation of sidebands at εg + εf ± nh̄Ω, and
(c) finite absorption within the band gap.

11.5.2 Joint Density of States, 3D

Absorption in bulk semiconductors subject to THz radiation was consid-
ered already long time ago by Yacoby [376] and later by Rebane [288].
These papers study transition rates between bands by investigating approx-
imate solutions to the corresponding time-dependent Schrödinger equation.
Yacoby [376] concluded that transitions occur in the gap and noted reduced
rates above the gap, in agreement with the present work, while [288] pointed
out that the absorption edge would be shifted, likewise in agreement with our
work. The 3D field-free density of states is

ρ3D0 (ε) =
1

2π2

(
2m
h̄

)3/2

θ(ε)ε1/2.

With the external field the density of states becomes

�3Djoint(T, ε) =
∑

l

r3Dl (T, ε− εf + lh̄Ω)ρ3D0 (ε− εf + lh̄Ω) (11.49)
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with the side-band weights

r3Dl (T, ε) =
∑

j

Jl+j

[ εf
h̄Ω

cos(2ΩT )
]

×
∫ 1

0

duJ2j

[√
32εfε
h̄Ω

sin(ΩT )u

]
. (11.50)

In Figs. 11.6 and 11.7 we illustrate the time-dependent joint density of states
and its time average, respectively. Comparing the results for two and three
dimensions, respectively, we observe that the quantum mechanical modifica-
tions are much more pronounced in two dimensions; this is a general trend
seen in many physical situations, and also in later chapters. Many further ap-
plications of these techniques to other nanostructures can be found in [185].

Fig. 11.6. Time-dependent joint density of states for free bulk electrons in a
harmonically varying electric field. The parameters are as in Fig. 11.2

Fig. 11.7. The time averaged joint density of states for a 3D-system. The parameters
are as in Fig. 11.5



11.6 Dynamical Franz–Keldysh Effect: Excitonic Effects 171

11.6 Dynamical Franz–Keldysh Effect: Excitonic Effects

So far we have neglected Coulomb correlations, which is a drastic and often
totally inadequate approximation. An electron excited in the conduction band
by the probe field interacts strongly with the hole left behind in the valence
band, forming an exciton. The presence of an exciton manifests itself as a
strong enhancement of absorption (or reduced transmission) below the band
edge, thus the features shown in Figs. 11.4–11.7 may be masked by the exci-
tonic line(s). An example of a two-color2 transmission measurement performed
on a multi-quantum well sample using the USCB free-electron laser is shown
in Fig. 11.8. One observes that the sharp band edge, characteristic for two-
dimensional systems (see Fig. 11.5), is dominated by a strong resonance due
to the exciton formed between the lowest electronic and hole sub-bands (e1h1
exciton). Excitons, being bound pairs of electrons and holes, have hydrogen-
like quantized energy levels. If the energy difference of a pair of levels is close
to the energy of the FEL photon, one expects a strong coupling between the
exciton and the FEL photon [209], due to the ac Stark effect. The data in
Fig. 11.8 shows how the exciton line both shifts in energy and changes its
width as the intensity of the FEL is varied; the variation in the spectrum is
qualitatively different depending on whether the FEL photon energy is larger
or smaller than the energy-level splitting of the exciton. The energy shift can
be quantified by computing the “center-of-mass” of the exciton resonance; this
is indicated by arrows in Fig. 11.8. We will next construct a “minimal” theory
for the energy shift, deferring the full theory of exciton quantum kinetics to
later chapters.

We argue along the line familiar from many earlier chapters. Since the
nonequilibrium theory is diagrammatically equivalent to the equilibrium the-
ory, we can directly generalize any diagrammatic result obtained in equi-
librium to nonequilibrium by replacing the equilibrium Green function lines
by their nonequilibrium counterparts, and performing the appropriate an-
alytic continuations by the rules summarized in Table 4.1. Specifically, we
can include the Coulomb interaction in the ladder approximation of the
Bethe–Salpeter equation [142] also in nonequilibrium simply by replacing the
static susceptibility by its nonequilibrium counterpart. We thus know that
the nonequilibrium susceptibility obeys (we consider here two-dimensional
systems, relevant to the interpretation of the experimental data)

χr(k; t, t′) = χ̃r(k; t, t′)

−
∫

d2k′

(2π)2

∫ ∞

−∞
dt′′ χ̃r(k; t, t′′)V (|k − k′|)χr(k′; t′′, t′),

(11.51)

2 Two-colors: strong far infrared light (due to the FEL) and weak near infrared
light (due to Ti-sapphire laser)
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Fig. 11.8. Experimental transmission of multi-quantum well sample near e1h1
exciton with (a) h̄Ω = 2.5 meV at (relative) field intensities I = 0, 1, 2, 4, 12.
(b) h̄Ω = 14 meV at I = 0, 1, 2, 4, 7. Arrows connect calculated centers of experi-
mental peaks, and point in the direction of increasing intensity

where V (|k − k′|) is the Coulomb interaction, and χ̃r(k; t, t′) is the noninter-
acting nonequilibrium susceptibility discussed in Sect. 11.4:

χ̃(k, t, t′) = id2θ(t− t′) exp
{
−i
∫ t

t′

dt̄

h̄

[h̄k + eA(t̄)]2

2meff

}
. (11.52)

We next describe two different methods of solving (11.51).

11.6.1 Matrix Truncation

We first observe that the susceptibility is a periodic function when written
in the Wigner coordinates, χ̃r(k, τ, T ) = χ̃r(k, τ, T + 2π/Ω), and that it is
therefore advantageous to introduce a Fourier expansion,

χ̃r(k; τ, T ) =
∑

n

χ̃r
n(k, τ)e−inΩT

=
∑

n

∫
dω
2π
χ̃r

n(k, ω)e−iωτ−inΩT . (11.53)
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Using (11.53), the integral equation (11.51) becomes a matrix equation,

χr
n(k, ω) = χ̃r

n(k, ω) −
∑
n′
χ̃r

n−n′ [k, ω + n′Ω/2]

×
∫

d2q

(2π)2
V (|q|)χr

n′(k + q, ω + (n′ − n)Ω/2). (11.54)

For many practical purposes a truncation of n to small values (n � 2 · · · 4)
is sufficient. The angular integral appearing in (11.54) is treated by intro-
ducing angular expansions for the Coulomb interaction, and the n-resolved
susceptibility:

V (|k − k′|) =
∞∑

l=−∞
vl(k, k′)eilθ, (11.55)

and

χr
n(k, ω) =

∞∑
l=−∞

χ(l)
n (k, ω)eilθ, (11.56)

respectively. Numerically, we solve the matrix equation including both s-wave
and p-wave scattering; both are important, since, as mentioned above, the
THz field will couple the s and p states of the exciton and influence the
observed resonance, i.e. the ac Stark Effect. We solve the resulting equation
by discretizing the integrals to yield a set of linear equations which we solve
by standard methods [146]. Finally, the physically measurable quantities are
obtained by expressing the macroscopic polarization as

P(t) = E0

∑
n

χ̃n(ω)ei(nΩ−ω)t, (11.57)

where χ̃n(ω) =
∑

k χ
r
n(k, ω) = χr

n(r = 0, ω). The linear absorption is thus
proportional to Imχ̃0(ω). The terms with n �= 0 describe the nonlinear mixing
of the NIR and THz field, resulting in optical sideband generation. The rich
structure displayed by these side-bands is discussed in the next subsection.

Figure 11.9 presents results for calculated absorption spectra using the
experimental parameters relevant for experiments shown in Fig. 11.8. If the
energy difference between the 1s and 2p levels of the exciton is called h̄ω12,
two separate regimes can be distinguished. For Ω < ω12, the numerics lead to
a red-shift of the exciton absorption peak at low THz intensities. With increas-
ing THz intensity, the shift saturates and then reverses, eventually becoming a
net blue-shift. Theory also predicts a blue-shift for Ω > ω12, which monoton-
ically increases with THz intensity for experimentally accessible intensities.
In both cases, the exciton peak is suppressed and inhomogeneously broad-
ened with increasing intensity. Using the same method as for the measured
spectra, we compute the center-of-mass of the calculated exciton lines. We
plot the shift of the theoretical “center-of-mass” in Fig. 11.10 along with the
experimental results. The theoretical and experimental peak shifts show iden-
tical qualitative behavior. We can understand the behavior seen in Fig. 11.10
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as resulting from a competition between the ac Stark and DFKE shifts. The
ac Stark effect results in a shift of the exciton level

∆ ∝ (Ω − ω12)E2

(Ω − ω12)2 + Γ 2
, (11.58)

where Γ is the width of the 1s → 2p transition line [15]. The magnitude of
∆ is dominated by broadening, and we expect little resonant enhancement of
|∆| for Ω ∼ ω12. It is also well known that ∆ will saturate as E increases,
going from quadratic to linear dependence on E [15]. The DFKE, however,
always provides a blue-shift proportional to E2, given by ωF.

Thus, for Ω < ω12, one expects a red shift which saturates and reverses
with increasing intensity, showing a roughly linear dependence on THz in-
tensity at high fields (Fig. 11.10a). At low fields, ∆ dominates, resulting in
a net red shift. As ∆ saturates with increasing field, ωF begins to dominate,
eventually overwhelming the red shift entirely and resulting in a net blue
shift. For Ω > ω12, we observe only an increasing blue-shift with increasing
E (Fig. 11.10b). Here, ∆ and ωF cooperate to create a blue-shift. At low
THz intensities, ∆ and ωF are both proportional to E2. At higher intensities,
∆ saturates, which is suggested by the change in slope shown in the data.

11.6.2 Floquet Space Formulation

The method presented in Sect. 11.6.1 may suffer from numerical instabilities
if one wants to study nonlinear mixing or generation of side-bands, i.e., one
needs higher values of the index n. We present here an alternative approach,
based on a Floquet space formulation, which avoids these difficulties [186]. We
first convert the integral equation (11.51) into a real-space form. Specifically,
Eq.(11.51) is equivalent to{

ih̄
∂

∂t
− [−ih̄∇r + eA(t)]2

2meff
+
e2

4πκr

}
χr(r, t, t′) = δ(r)δ(t− t′), (11.59)

where κ is the dielectric constant of the semiconductor. To prove (11.59), note
that the noninteracting susceptibility obeys (here we drop the dipole matrix
element d, and reintroduce it later in the induced polarization){

ih̄
∂

∂t
− [−ih̄∇r + eA(t)]2

2meff

}
χ̃r(r, t, t′) = δ(r)δ(t− t′) (11.60)

and use the inverse of this expression to write (11.51) as χ̃−1χr = δ − V χr,
from which (11.59) follows. Consider now the homogeneous part of (11.59):{

− [−ih̄∇r + eA(t)]2

2meff
+
e2

4πκr

}
Ψ(r, t) = ih̄

∂Ψ(r, t)
∂t

. (11.61)
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This equation generalizes the Wannier equation (see, e.g., Chap. 10 of [146])
to ac-fields. A convenient method to solve this equation is to use the Floquet
theory, which is a temporal analogue of the Bloch theory for spatially periodic
systems.

Reminder of Floquet Theory

Here we briefly introduce the main concepts behind the Floquet theory; an extensive
discussion with many applications can be found, e.g., in [208,283]. Consider a system
described by a time-periodic Hamiltonian H(t) = H(t + T ). The Floquet states are
“steady states” of the system in the sense that if the system is prepared in a Floquet
state, it stays there. Consider the time-evolution operator U(t, t0), which describes
the time evolution of the states, i.e., ψ(t) = U(t, t0)ψ(t0). It is unitary and has the
properties U(t, t) = 1 and U(t, t′)U(t′, t0) = U(t, t0), and obeys the Schrödinger
equation,

ih̄
∂U(t, t0)

∂t
= H(t)U(t, t0). (11.62)

As seen in Chaps. 3 and 4, the formal solution of (11.62) is

U(t, t0) = T exp

[
−i

∫ t

t0

ds

h̄
H(s)

]
, (11.63)

where T is the time-ordering operator. The time-periodic Floquet states φα(r, t) are
the eigenstates of the operator evolving the system one period forward in time, and
they obey

U(t + T, t)φα(r, t) = e−iε̃αT/h̄φα(r, t). (11.64)

Here ε̃α is the quasienergy associated with the Floquet state φα(r, t). The Floquet
states satisfy a closure relation∑

α

φ∗
α(r, t)φα(r′, t) = δ(r − r′). (11.65)

The eigenvalue equation (11.64) is degenerate and determines the quasienergies only
modulo 2h̄π/T . The Floquet states obey, in analogy with the Bloch theorem,[

H(t) − ih̄
∂

∂t

]
φα(r, t) = ε̃αφα(r, t). (11.66)

This equation separates the quasienergies into bands and allows for a selection of a
complete set of states with quasienergies corresponding to a one-time Brillouin zone
(TBZ). The first TBZ is [−h̄π/T, h̄π/T ]. The central result of the Floquet theory is
that any solution of the time-dependent Schrödinger equation

H(t)Ψ(r, t) = ih̄
∂

∂t
Ψ(r, t) (11.67)

can be expressed in terms of Floquet states from one TBZ as

Ψ(r, t) =
∑

α∈TBZ

cαe−iε̃αtφα(r, t), (11.68)

where the coefficients cα are time-independent c-numbers.
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The susceptibility has a compact form when expressed in terms of the
Floquet states:

χr(r, t, t′) = (i/h̄)θ(t − t′)
∑

α

eiε̃αt/h̄φ∗α(0, t)φα(r, t′). (11.69)

The proof of (11.69) is a direct calculation: by working out its time-derivative,
and using the closure relation (11.65) one immediately recovers (11.59).
Introducing the expansion

φα(r, t) =
∑

n

φα,n(r)e−inΩt, (11.70)

and reintroducing the dipole matrix element leads to the final expression for
the optical susceptibility:

χr
n(ωl) = −e2d2

∑
n′

φ∗α,n+n′(0)φα,n(0)
h̄ωl − ε̃α − n′h̄Ω + i0+

. (11.71)

Let as next examine what kind of experimental parameters are needed in order
to reach a regime where interesting physics is expected to take place. The

0

20

40

60

80

100

-6 -4 -2 0 2

QW
detector

FIR

Imχ0 no FIR

ea0EFIR = 1Ry

hΩ = 2.55Ry

p||- replica

ω – Egap (Ry)

Im
χ 0 –

I ±
2 

(a
rb

. 
un

it
s)

2s, 2p|| ...

NIR

Imχ0

I2

I–2

2hΩ

hΩ

h

Fig. 11.11. Summary of effects due to intense FIR radiation, collinear with a weak
NIR field. The linear optical absorption Imχ0 obtains: (a) an ac-Stark redshift of
the 1s resonance, (b) Dynamical Franz–Keldysh blueshift of the 2s resonance, (c) a
suppression of the oscillator strength, and (d) an emergence of a photon replica of
the p‖ state. Nonlinear mixing I±2 leads to sideband emission at ω±nΩ. The insert
illustrates the experimental geometry (Reproduced from [186].)



178 11 Optical Absorption in Intense THz Fields

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

-5 -4 -3 -2 -1 0

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1.0

1.5

2.0

2.5

Im
χ 0

 (
ar

b.
 u

ni
ts

)
I 2

 (
ar

b.
 u

ni
ts

)
I 4

 (
ar

b.
 u

ni
ts

)
hΩ

 (R
y)

hΩ
 (R

y)
hΩ

 (R
y)

hω − Egap (Ry)

2nd

3rd

1st

2nd

3rd

1st

3rd

4th

2nd

Fig. 11.12. The effect of the THz frequency at fixed field strength. From below; the
absorption coefficient (proportional to Imχ0), two-, and four-photon sideband gener-
ation. Several avoided crossings in the quasienergy spectra can be distinguished, as
splittings in the absorption and as resonant enhancement in the sideband generation
(Reproduced from [186].)

strength of the FIR electric field should be such that the characteristic energy
scale, ea0EFIR, should be comparable to the effective Rydberg energy of the
medium, ERy = h̄2/(2meffa

2
0), where a0 = h̄2κ/(e2meff) is the Bohr radius

of the exciton. For InGaAs, for example, ERy � 2 − 3 meV and a0 � 200 Å,
which leads to EFIR � 105 Vm−1, well within reach of free electron lasers.
A two-dimensional exciton in equilibrium has the bound state spectrum En =
Egap−ERy/(n−0.5)2. The n = 1 state is a nondegenerate s state, while n �= 1
are degenerate containing also p states, etc. [146] Since the FIR is linearly
polarized, the doubly degenerate states can be decomposed into p⊥ and p‖,
and only p‖ couples to the field. The Floquet states and the corresponding
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quasienergies can be found numerically by solving for the eigenstates of U(t+
2π/Ω, t).

Figure 11.11 shows characteristic numerical results for a fixed h̄Ω = 2.55
ERy as a function of the NIR frequency. The THz frequency is below the
1s → 2p‖ equilibrium transition frequency, h̄ω0

12 � 3.56ERy. As discussed
above, the redshift of the 1s resonance is due to the ac-Stark effect. The 2s
resonance, as well as the band-edge are blue-shifted due to the DFK effect.
An interesting feature is the single photon replica of the dark p‖ state which
under irradiation becomes optically active. Several other features of Fig. 11.11
are analyzed in [186].

Figure 11.12 shows results for a frequency sweep h̄Ω = (0.5 · · · 5)ERy. In
Imχ0 one observes how the photon replicas form a fan as the THz frequency
is increased; the fan blades are tagged with the order of the THz frequency
involved. In view of (11.71), when the replicas reach the main resonance a
strongly avoided crossing in the quasienergy spectrum results, which is clearly
visible in the computed spectra. For the first-order process a splitting results
(this effect is known as the Autler–Townes splitting). Also the side-bands,
depicted in the upper panels, show clear evidence of the fan shape. In this
case, however, the unerlying avoided crossing in the quasienergy spectrum
results in resonantly enhanced sideband generation. As discussed in [186],
many other experimental predictions can be drawn from the theory discussed
above.
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Transport in Mesoscopic
Semiconductor Structures

Summary. Stationary transport properties of tunneling structures such as double-
barrier semiconductor heterostructures, superlattices, metallic nanowires, and
Coulomb blockade structures are treated as examples for quantum transport through
mesoscopic systems

12.1 Introduction

Study of mesoscopic phenomena is one of the most active areas of today’s solid
state physics. One can observe signatures of mesoscopics in a large number of
different physical systems, and it would be impossible in the present context to
cover all the possible variations of the mesoscopic theme. We restrict ourselves
exclusively to the particular subclass which can be studied in semiconductors.
Further, we do not consider quantizing magnetic fields; this enormously rich
topic cannot be treated adequately in a book whose main goal is to illustrate
in terms of a few simple examples how nonequilibrium Green functions can be
applied to mesoscopic transport. Thus the generic system we have in mind is
a semiconductor heterostructure where charge carriers are introduced either
by modulation doping, or they flow in and out of the system through heavily
doped (metallic) contacts. Transport physics in these systems can roughly be
divided into two categories: perpendicular transport and parallel transport,
according to whether the charge carriers’ motion is perpendicular or paral-
lel to the layers that form the heterostructures. A representative example of
perpendicular transport is the resonant-tunneling diode (RTD), which con-
sists of alternate layers of semiconductor materials with different band gaps;
a schematic conduction band diagram is shown in Fig. 12.1. Charge carriers
entering from left may, at a certain bias voltage, be tuned to the quasibound
state in the quantum well, which results in a large enhancement of the trans-
mitted current. At off-resonance conditions only a small current can flow, be-
cause transmission through the classically inaccessible regions is exponentially
suppressed. This leads to a nonmonotic current–voltage characteristic, and a
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ε0

Vbias

Fig. 12.1. Double-barrier semiconductor heterostructure biased close to resonance,
where charge carriers emerging from the source contact are matched to the energy
of the quasibound state ε0 in the quantum well. Occupied contact states are shown
as hatched, and the band bending is due to charge accumulation or depletion

Vg QPC2QPC1

Fig. 12.2. Coulomb island, which consists of two tunable quantum point contacts
QPC1 and QPC2, and a side gate which allows one to vary the chemical potential,
and hence the charge density in the central region. The two-dimensional electron
gas underlying the gate structure is depleted outside the hatched regions

number of device applications have been proposed, whose operating principles
are based on this property. Below we shall discuss in some more detail the
modeling of these structures. We note that the generic energy-level diagram
shown in Fig. 12.1 also applies to the emerging field of molecular electronics:
there the discrete level(s) in the central region correspond to molecular levels,
the “barriers” could be the vacuum gap, and the “doped contacts” could be
the metallic electrodes between which the molecule is placed. An introduction
to this topic will also be given later.

In the case of parallel transport much attention has been devoted to quan-
tum point contacts (QPC), see Fig. 12.2 for a typical experimental configura-
tion, and other structures based on similar ideas. Here the key ingredient is
metallic gates that are deposited on the heterostructure; by adjusting the gate
potentials it is possible to deplete the underlying two-dimensional electron
gas, and thus introduce spatial modulations of the two-dimensional charge
density. Quantum point contacts are based on a split gate geometry: here,
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at sufficiently high negative gate voltages, the effective connection between
the two unmodulated electron gases (“source” and “drain”) is so narrow that
perpendicular mode quantization becomes observable, and the measured con-
ductance is an integer multiple of the quantum unit of conductance, e2/h.
In later sections, we describe simple models pertaining to structures like the
one shown in Fig. 12.2.

The hallmark of mesoscopic phenomena is the phase coherence of the
charge carriers, which is maintained over a significant part of the transport
process. The interference effects resulting from this phase coherence are re-
flected in a number of experimentally measurable properties. We have already
encountered weak localization in Chap. 9. Weak localization can be under-
stood as an increased return probability (and hence increased resistance) due
to coherent backscattering of charge carriers. Another example where phase
coherence is central is the Aharonov–Bohm effect, where interference of two
different transport paths in a ring geometry results in an oscillatory magne-
toresistance. Yet another example is universal conductance fluctuations, where
the conductance of a sample displays rapid changes on the scale of e2/h (hence
the “universality”) when an external control parameter is changed. The ex-
ternal parameter could be magnetic field, or thermal cycling, and the fluc-
tuations reflect changes in the conducting channels either due to different
impurity configurations (thermal cycling), or differences in the way the con-
duction channels are located in the sample (magnetic field). Extensive reviews
of these phenomena can be found in [5, 210, 233]. Many of these phenomena
can be observed in bulk samples; however, in what follows we shall concen-
trate on systems where the interesting physics takes place in a small region
(either the tunneling region in an RTD, or the Coulomb island between the
two QPC’s of Fig. 12.2).

It is natural to divide mesoscopic transport into stationary and time-
dependent phenomena, and we shall take this route by first treating stationary
transport and then later turn our attention to time-dependent phenomena.
A central issue will be the treatment of interactions in the mesoscopic region,
and, as we shall see, nonequilibrium Green function techniques are well suited
for this purpose. First analyses of tunneling problems in nonequilibrium sys-
tems were performed already in the 1970s by Caroli and co-workers [73–75,86].
In the beginning of 1990’s a number of authors studied the steady-state situa-
tion, including Refs. [6,92,95,128,154,223,240,260,262,275,339,364,365]. The
modern reformulation of these ideas, due to Meir and Wingreen [260] has led
to a veritable explosion in the number of papers addressing these issues (there
are more than a thousand articles since 1992 which use the Keldysh approach
to interacting mesoscopic transport). A full account of all of this work is ob-
viously impossible, instead we will concentrate on a few central results. A key
issue is that under certain conditions (to be discussed later) a Landauer-type
conductance formula [228,229] can be derived. The Landauer formula relates
the conductance g of a mesoscopic sample [which is connected via “ideal”
leads to two (or more) reservoirs] to its transmission properties, g = (e2/h)T ,
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where T is the quantum mechanical transmission coefficient of the sample.
Conductance formulae have played an important role in the analysis of many
mesoscopic transport phenomena, and it is therefore of interest to investi-
gate whether interactions and/or time-dependence can be treated in a similar
fashion.

12.2 Nonequilibrium Techniques
in Mesoscopic Tunneling Structures

Let us now examine how the techniques of Part II can be used to derive a
perturbation scheme for mesoscopic systems far from equilibrium. We recall
that the basic difference between construction of equilibrium and nonequilib-
rium perturbation schemes is that in nonequilibrium one cannot assume that
the system returns to its ground state (or a thermodynamic equilibrium state
at finite temperatures) as t → +∞. Irreversible effects break the symmetry
between t = −∞ and t = +∞, and this symmetry was heavily exploited in
the derivation of the equilibrium perturbation expansion. In nonequilibrium
situations one can circumvent this problem by allowing the system to evolve
from −∞ to the moment of interest (for definiteness, let us call this instant
t0), and then continues the time evolvement from t = t0 back to t = −∞. The
advantage of this procedure is that all expectation values are defined with re-
spect to a well-defined state, i.e., the state in which the system was prepared
in the remote past. The price is that one must treat the two time branches
on an equal footing.

In the context of tunneling problems one can invoke the nonequilibrium
formalism as follows. In the remote past the contacts (i.e., the left and right
lead) and the central region are decoupled, and each region is in thermal
equilibrium. The equilibrium distribution functions for the three regions are
characterized by their respective chemical potentials; these do not have to
coincide nor are the differences between the chemical potentials necessarily
small. The couplings between the different regions are then established and
treated as perturbations via the standard techniques of perturbation theory,
albeit on the two-branch time contour. It is important to notice that the
couplings do not have to be small, e.g., with respect level to spacings or kBT ,
and typically must be treated to all orders.

While the above formulation is popular, and has worked in many situations
exceedingly well, one should be aware of the fact that it is by no means unique.
For example, Stefanucci and Almbladh [336] have presented a partition-free
formulation: here the entire system (i.e., the leads and the central region) is in
a spatially uniform thermodynamical equilibrium state before the nonequilib-
rium perturbation (e.g., the bias voltage) is switched on, and one then follows
the temporal evolution of the system. In certain special cases it has been
shown that the two approaches lead to the same asymptotic steady-state cur-
rent, while the dynamic properties may well differ. The detailed relationship
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of the two approaches is a topic of active current study. – A second point of
concern is that dividing the system into an interacting central region and non-
interacting leads is actually quite subtle: it is not necessarily obvious where
the partition should take place, and in Sect. 12.10 we touch upon this issue.

12.3 Model Hamiltonian

We split the total Hamiltonian in three pieces: H = Hc +HT +Hcen, where
Hc describes the contacts, HT is the tunneling coupling between contacts
and the interacting region, and Hcen models the interacting central region,
respectively. Below we discuss each of these terms.

Guided by the typical experimental geometry in which the leads rapidly
broaden into metallic contacts, we view electrons in the leads as nonin-
teracting except for an overall self-consistent potential. Thus, the contact
Hamiltonian is

Hc =
∑

k,α∈L,R

εkαc†kαckα , (12.1)

and the Green functions in the leads for the uncoupled system are:

g<kα(t− t′) = i〈c†kα(t′)ckα(t)〉
= if(ε0kα) exp

[
− iεkα(t− t′)

]
, (12.2)

gr,akα(t− t′) = ∓iθ(±t∓ t′)〈{ckα(t), c†kα(t′)}〉
= ∓iθ(±t∓ t′) exp

[
− iεkα(t− t′)

]
. (12.3)

Here f(εkα) = [exp[(εkα − µα)/kBT ] + 1]−1 is the equilibrium distribution in
a given lead.

The coupling constants between the leads and the central (interacting)
region depend, in principle, on the actual charge densities (accumulation and
depletion regions, charge build-up in the central region, etc.), and they should
be determined via a self-consistent calculation. This program has been com-
pleted by combining the density functional theory (DFT) with the nonequi-
librium Green function theory (see, e.g., [58]), and will be briefly addressed
later. Here, however, we assume these parameters as known, and write

HT =
∑

k,α∈L,R
n

[Vkα,nc†kαdn + h.c.] . (12.4)

Here, {d†
n} and {dn} are the single-electron creation and annihilation opera-

tors for the complete and orthonormal set of the states |n〉 in the interacting
region.

The form chosen for the central region Hamiltonian Hcen depends on ge-
ometry and on the physical behavior being investigated. We will discuss three
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particular examples in detail. In the first, the central region is taken to consist
of noninteracting levels,

Hcen =
∑
m

εmd†
mdm . (12.5)

Here, d†
m (dm) creates (destroys) an electron in state m. The choice (12.5)

represents a simple model for resonant tunneling. Below we shall present gen-
eral results for an arbitrary number of levels, and analyze the case of a single
level, which is exactly solvable in detail.

The second example we will discuss is a situation where the states in the
central region couple to phonons:

Hel-ph
cen = ε0d†d + d†d

∑
q

Mq[a†
q + a−q] . (12.6)

Here, the first term represents a single electronic state, while the second term
represents interaction of an electron in that level with phonons: a†

q(aq) creates
(destroys) a phonon in mode q, andMq is the interaction matrix element. The
full Hamiltonian of the system must also include the free-phonon contribution
Hph =

∑
q h̄ωqa†

qaq. This example, while not exactly solvable, is helpful to
show how interactions influence the current.

The final example consists of an Anderson-type model [7] for electron–
electron interactions in the central region:

Hcen =
∑

σ

ε0d†
σdσ + Un↑n↓ . (12.7)

Here σ is a spin-label, nσ is the occupation number operator of spin-state σ,
and U describes the on-site Coulombic repulsion. This model has been the
topic of intense study because of the very rich (and complicated) physics that
it describes. For example, in the low temperature limit it exhibits Kondo be-
havior. In the high temperature limit the equation-of-motion technique allows
a relatively simple analysis, which we will discuss in some detail.

12.4 General Expression for the Current

The current from the left contact through left barrier to the central region
can be calculated from the time evolution of the occupation number operator
of the left contact:

JL = −e〈ṄL〉 = − ie
h̄
〈[H,NL]〉 , (12.8)

where NL =
∑

k,α∈L c†kαckα and H = Hc + HT + Hcen. Since Hc and Hcen

commute with NL, one readily finds:
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JL =
ie
h̄

∑
k,α∈L

n

[Vkα,n〈c†kαdn〉 − V ∗
kα,n〈d†

nckα〉] . (12.9)

Now define two new Green functions (we set h̄ = 1, and reintroduce it in the
final expression for the current):

G<
n,kα(t− t′) ≡ i〈c†kα(t′)dn(t)〉 ,
G<

kα,n(t− t′) ≡ i〈d†
n(t′)ckα(t)〉 . (12.10)

We see that the current is given by the time-diagonal components of the Green
functions defined in (12.10). These functions have the property G<

kα,n(t, t) =
−
[
G<

n,kα(t, t)
]∗, and inserting the time-labels, the current can be expressed as

JL =
2e
h̄

Re
[ ∑

k,α∈L
n

Vkα,nG
<
n,kα(t, t)

]
. (12.11)

Next, one needs an expression for G<
n,kα(t − t′). For the present case, with

noninteracting leads, a general relation for the contour-ordered Green func-
tion Gn,kα(τ, τ ′) can be derived rather easily with the equation-of-motion
technique. Since the nonequilibrium theory is structurally equivalent to equi-
librium theory, it is sufficient to consider the T = 0 equation-of-motion for
the time-ordered Green function Gt

n,kα:

−i
∂

∂t′
Gt

n,kα(t− t′) = εkαG
t
n,kα(t− t′) +

∑
m

Gt
nm(t− t′)V ∗

kα,m , (12.12)

where we defined the central region time-ordered Green function function
Gt

nm(t − t′) = −i〈T {dn(t)d†
m(t′)}〉. Note that it is crucial that the leads

be noninteracting; had we allowed interactions in the leads, the equation-
of-motion technique would have generated higher order Green functions in
(12.12), and we would not have a closed set of equations.

We can interpret the factor (−i∂t′ − εkα) multiplying Gt
n,kα(t − t′) as

the inverse of the contact Green function operator (working from right-hand
side), and introduce a short-hand notation: Gt

n,kαg
−1
kα =

∑
mG

t
nmV

∗
kα,m. By

operating with gtkα from right, we arrive at

Gt
n,kα(t− t′) =

∑
m

∫
dt1Gt

nm(t− t1)V ∗
kα,mg

t
kα(t1 − t′) . (12.13)

According to Part II, this equation has in nonequilibrium precisely the same
form, except that the intermediate time integration runs on the complex con-
tour:

Gn,kα(τ, τ ′) =
∑
m

∫
dτ1Gnm(τ, τ1)V ∗

kα,mgkα(τ1, τ ′) . (12.14)

Here Gnm(τ, τ1) is the contour-ordered Green function for the central region.
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An Alternative Derivation of (12.14)

The result (12.14) can be derived using the S-matrix expansion and interaction pic-
ture. The derivation is technically more complicated, but it gives a useful illustration
of a general technique which can be applied systematically in more complex situa-
tions where the “by-hand” derivation given above becomes unwieldy. We write the
contour-ordered Green function as

Gn,kα(τ, τ ′) = −i〈TCSd̃n(τ )c̃†kα(τ ′)〉, (12.15)

where

S =
∞∑

j=0

(−i)j

j!

∫
C

dτ1 · · ·
∫

C

dτj〈TCH̃T(τ1) · · · H̃T(τj)〉, (12.16)

where H̃(τ ) is the interaction representation of the tunneling Hamiltonian (12.4).
The crux of the derivation is that in the interaction representation the coupling
between the c- and d-operators is explicitly encoded in S: the Hamiltonian occurring
in the thermal average contains no such coupling, and hence can be factorized in
lead-averages and central region averages. Next one uses the fact that the leads are
noninteracting, which allows one to use Wick’s Theorem for the c-operators. We
manipulate the matrix element in the jth order term of the S-matrix expansion as
follows:

〈TC d̃n(τ )c̃†kα(τ ′)[V ∗
k1α1,m1 d̃†

m1(τ1)c̃k1α1(τ1) + h.c.]

· · · × [V ∗
kjαj ,mj

d̃†
mj

(τj)c̃kjαj (τj) + h.c.]〉
= 〈TC c̃k1α1(τ1)c̃

†
kα(τ ′)〉

×V ∗
k1α1,m1〈TC d̃n(τ )d̃†

m1(τ1)[V
∗

k2α2,m2 d̃†
m2(τ2)c̃k2α2(τ2) + h.c.] × · · ·

+ 〈TC c̃k2α2(τ2)c̃
†
kα(τ ′)〉

×V ∗
k2α2,m2〈TC d̃n(τ )d̃†

m2(τ2)[V
∗

k1α1,m1 d̃†
m1(τ1)c̃k1α1(τ1) + h.c.] × · · ·

+ · · · (remaining j − 2 terms) (12.17)

That is, by Wick’s Theorem, we construct all the pairwise contractions of the c, c†

pairs. Similar factorization cannot be applied to the d-operators, because their gov-
erning Hamiltonian may be nonquadratic. By relabelling dummy indices all the j
terms in the above sum can be shown to be equal. The extra factor j can then
be canceled against the factorial term j! in (12.16), leaving just (j − 1)!. This
allows a reconstruction of the S-matrix, and identifying the lead Green function
gkα(τ, τ ′) = −i〈TCckα(τ )c†kα(τ ′)〉 [note that c̃(τ ) = c(τ )] we have thus obtained

Gn,kα(τ, τ ′) =
∑
m

∫
C

dτ1Gnm(τ, τ1)V
∗

kα,mgkα(τ1, τ
′), (12.18)

in agreement with (12.14).
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The analytic continuation rules of Table 4.1 can be applied to (12.14), and
we find

G<
n,kα(t− t′) =

∑
m

∫
dt1V ∗

kα,m[Gr
nm(t− t1)g<kα(t1 − t′)

+G<
nm(t− t1)gakα(t1 − t′)] , (12.19)

where the Green functions g<,a for the leads are defined in (12.2) and (12.3).
The Fourier transform of (12.19) is

G<
n,kα(ε) =

∑
m

V ∗
kα,m[Gr

nm(ε)g<kα(ε) +G<
nm(ε)gakα(ε)] , (12.20)

whereby the current (12.11) becomes

JL =
2e
h̄

∫
dε
2π

Re
{ ∑

k,α∈L
n,m

Vkα,nV
∗
kα,m

[
Gr

nm(ε)g<kα(ε) +G<
nm(ε)gakα(ε)

]}
.

(12.21)

At this juncture, it is useful to convert the momentum summations to energy
integration and define a level-width function:[

ΓL(εk)
]
mn

= 2π
∑
α∈L

�α(εk)Vα,n(εk)V ∗
α,m(εk) , (12.22)

where �α(ε) is the density of states. There are two terms in the current ex-
pression (12.21). Consider, for example, the piece involving Gr

mn, which we
evaluate as1

2e
h̄

∫
dε
2π

∫
dεkΓL(εk)Re [Gr(ε)iδ(ε− εk)fL(ε)]

=
2e
h̄

∫
dε
2π
fL(ε)ΓL(ε)Re [iGr(ε)]

= −2e
h̄

∫
dε
2π
fL(ε)ΓL(ε)Im [Gr(ε)]

=
ie
h̄

∫
dε
2π
ΓL(ε)fL(ε)[Gr(ε) −Ga(ε)] . (12.23)

Similar manipulations can be applied to the other term, and the current from
left (right) contact to central region becomes

JL(R) =
ie
h̄

∫
dε
2π

Tr
(
ΓL(R)(ε)

{
G<(ε) + fL(R)(ε) [Gr(ε) − Ga(ε)]

})
.

(12.24)
1 In the calculation leading to (12.23) we treat Γmn(ε) as real and suppressed the

indices mn. The above result, however, carries over to the general case, and the
reader is urged to check this.
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Here, the boldface notation indicates that the level-width function Γ and the
central-region Green functions G<,r are matrices in the central-region indices
m,n. In steady state, the current will be uniform, so that J = JL = −JR,
and one can symmetrize the current: J = (JL + JL)/2 = (JL − JR)/2. Using
(12.24) leads to the general expression for the dc-current [260]:

J =
ie
2h̄

∫
dε
2π

Tr
{[

ΓL(ε) − ΓR(ε)
]
G<(ε)

+
[
fL(ε)ΓL(ε) − fR(ε)ΓR(ε)

]
[Gr(ε) − Ga(ε)]

}
. (12.25)

Often the energy-dependence of the level-width function is not very important,
and further simplification can be achieved by making assumptions on this
energy-dependence. In particular, if the left and right line-width functions are
proportional to each other, i.e., ΓL(ε) = λΓR(ε), a very simple final result
can be be achieved. We observe that the current can be written as J ≡ xJL

− (1 − x)JR, which gives, using (12.25):

J =
ie
h̄

∫
dε
2π

Tr
(
ΓR(ε)

{[
λx− (1 − x)

]
G<(ε)

+ [λxfL − (1 − x)fR] [Gr(ε) − Ga(ε)]}) . (12.26)

The arbitrary parameter x is now fixed so that the first term vanishes, i.e.,
x = 1/(1 + λ), which results in

J =
ie
h̄

∫
dε
2π

[fL(ε) − fR(ε)]T (ε) ,

T (ε) = Tr
{

ΓL(ε)ΓR(ε)
ΓL(ε) + ΓR(ε)

[Gr(ε) − Ga(ε)]
}
. (12.27)

The ratio is well-defined because the Γ-matrices are proportional. The dif-
ference between the retarded and advanced Green functions is essentially the
density of states. Despite the apparent similarity of (12.27) to the Landauer
formula, it is important to bear in mind that, in general, there is no imme-
diate connection between the quantity T (ε) and the transmission coefficient
T (ε). In particular, when inelastic scattering is present, there is no such con-
nection. In later sections, where we analyze a noninteracting central region,
a connection with the transmission coefficient can be established. Further, we
shall see later how an analogous result can be derived for the average of the
time-dependent current.

The results for the current derived in this section [(12.25) or (12.27)] form a
starting point for many calculations. As such, they are powerful formal results,
however, one must bear in mind that they involve both the full correlation
function and the retarded Green functions in the presence of tunneling, and
it is by no means obvious that these Green functions are easily calculable.
The usefulness of (12.25), (12.27) depends on whether one is able to devise
suitable calculation schemes for the Green functions. Below we shall see some
examples of how this is done in practice.



12.5 Current Conservation 191

12.5 Current Conservation

Any meaningful theory of transport must respect current conservation. Here
we examine what implications this necessary requirement has on the derived
expressions for the current flowing between the contacts and the central region.
To this end, it is convenient to rewrite the current expressions (12.24), (12.25)
in a slightly different form. Using the general relationship Gr − Ga = G> −
G<, valid for both contact and central region Green functions, we re-express
(12.21) as [113]

JL =
e

h̄

∫
dε
2π

∑
k,α∈L

n,m

Vkα,nV
∗
kα,m

[
G>

nm(ε)g<kα(ε) −G<
nm(ε)g>kα(ε)

]
=
e

h̄

∫
dε
2π

∑
α∈L
n,m

[
G>

nm(ε)Σ<
α,mn(ε) −G<

nm(ε)Σ>
α,mn(ε)

]
=
e

h̄

∫
dε
2π

Tr
{
G>Σ<

L − G<Σ>
L

}
, (12.28)

where we have defined the tunneling self-energy Σ =
∑
V ∗gV with the com-

ponents

Σr,a
α,mn(ε) =

∑
k

V ∗
kα,mg

r,a
kα(ε)Vkα,n = Λα

mn(ε) ∓ i
2
Γα

mn(ε)

Σ<
α,mn(ε) =

∑
k

V ∗
kα,mg

<
kα(ε)Vkα,n = iΓα

mn(ε)fα(ε)

Σ>
α,mn(ε) =

∑
k

V ∗
kα,mg

>
kα(ε)Vkα,n = −iΓα

mn(ε)[1 − fα(ε)]. (12.29)

The current formula (12.28) has an obvious physical interpretation: the cur-
rent flowing out of the left contact (first term) is proportional to Σ<

L , which
gives the out-tunneling rate of the occupied states in the left contact, and to
G>, which gives the number of available states in the central region. The sec-
ond term, with opposite sign, gives then the current flowing from the central
region to the left contact. We next define the total self-energy, which is the
sum of tunneling contributions, and the interactions residing in the central
region:

Σtot = Σint + ΣL + ΣR. (12.30)

The condition for current conservation is JL +JR = 0, and we shall now show
that this condition imposes a sum-rule for the interacting self-energy. To do
this, we first note that the Keldysh equations for the lesser and greater Green
functions, G<,> = GrΣ<,>

tot Ga, can be combined to yield

(Gr)−1 − (Ga)−1 = Σ<
tot − Σ>

tot, (12.31)
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which allows us to do the following manipulation:

Tr{Σ<
totG

> − Σ>
totG

<} = Tr{Σ<
totG

rΣ>
totG

a − Σ>
totG

rΣ<
totG

a}
= Tr{Σ<

totG
r[Σ<

tot − (Gr)−1 + (Ga)−1]Ga

−[Σ<
tot − (Gr)−1 + (Ga)−1]GrΣ<

totG
a}

= 0, (12.32)

where we repeatedly used the cyclic property of Trace. The condition for
current conservation thus becomes

JL + JR =
e

h̄

∫
dω
2π

Tr
{
(Σ<

tot − Σint)G> − (Σ>
tot − Σ>

int)G
<
}

= 0 (12.33)

which, using (12.32), implies a necessary condition that any model self-energy
Σint must satisfy: ∫

dω
2π

Tr
{
Σ<

intG
> − Σ>

intG
<
}

= 0. (12.34)

The self-consistent Born approximation (both for impurity scattering or
electron–phonon interaction) is an example of a conserving approximation.

12.6 Noninteracting Resonant-Level Model

In the noninteracting case (or mean-field models), the Hamiltonian is H =
Hc + HT + Hcen, where Hcen =

∑
n εnd†

ndn. The Dyson and the Keldysh
equations are now

Gr(ε) = gr(ε) + gr(ε)Σr(ε)Gr(ε)
G<(ε) = Gr(ε)Σ<(ε)Ga(ε) , (12.35)

where the self-energy is given by (12.29), Σ = ΣL + ΣR. Upon substituting
(12.35) in the expression for the tunneling current (12.28), one finds a very
compact result:

JL =
e

h̄

∫
dε
2π
T (ε) [fL(ε) − fR(ε)] , (12.36)

where the transmission probability T (ε) is given by

T (ε) = Tr
{
ΓL(ε)Gr(ε)ΓR(ε)Ga(ε)

}
. (12.37)

This equation has found many applications, but it should be recalled that
it is valid only in the case when interactions can be modelled by one-body
potentials, i.e., the interaction self-energies must be one-point functions with
vanishing lesser and greater components.
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In general, the solution of Eqs. (12.35) require matrix inversions. In the
case of a single level, the scalar equations can be readily solved. Using the
identity

GrGa =
Gr −Ga

Ga−1 −Gr−1 =
A(ε)
Γ (ε)

, (12.38)

where A(ε) = i[Gr(ε)−Ga(ε)] is the spectral function, one can write G< in a
“pseudoequilibrium” form:

G<(ε) = iA(ε)f̄ (ε) , (12.39)

where

f̄(ε) =
ΓL(ε)fL(ε) + ΓR(ε)fR(ε)

Γ (ε)
,

A(ε) =
Γ (ε)

[ε− ε0 − Λ(ε)]2 + [Γ (ε)/2]2
. (12.40)

The current (12.28) becomes now

J =
e

h̄

∫
dε
2π

ΓL(ε)ΓR(ε)
[ε− ε0 − Λ(ε)]2 + [Γ (ε)/2]2

[fL(ε) − fR(ε)] . (12.41)

Note that this derivation made no assumptions about proportionate coupling
to the leads. The factor multiplying the difference of the Fermi functions is
the familiar expression for elastic transmission coefficient T (ε) through a reso-
nant level. It is important to understand the difference between this result and
the result obtained in Sect. 12.4 (despite the similarity of appearance): There,
(12.27) gives the current for a fully interacting system, and the evaluation of
the retarded and advanced Green functions requires a consideration of inter-
actions (e.g., electron–electron, electron–phonon, and spin-flip) in addition to
tunneling back and forth to the contacts. To further emphasize the difference,
let us now suppose that the Green function for the interacting central region
can be solved: Gr,a(ε) = [ε− ε0 − λ(ε) ± iγ(ε)/2]−1, where λ and γ/2 are the
real and imaginary parts of the self-energy (including interactions and tunnel-
ing). Then the interacting result for proportionate coupling (12.27) becomes

J =
e

h̄

∫
dε
2π

[fL(ε)−fR(ε)]
ΓL(ε)ΓR(ε)
ΓL(ε) + ΓR(ε)

× γ(ε)
[ε− ε0 − λ(ε)]2 + [γ(ε)/2]2

. (12.42)

This result coincides with the noninteracting current expression (12.41) if
λ(ε) → Λ(ε) and γ(ε) → Γ (ε) = ΓR(ε) + ΓL(ε). In a phenomenological
model, where the total level-width is expressed as a sum of elastic and inelas-
tic widths, γ = γe +γi, one recovers the results of Jonson and Grincwajg [187],
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and Weil and Vinter [369]. If the level-width and level-shift functions Γ and
Λ are energy-independent, it is easy to evaluate the integral in (12.41), and
get the current–voltage characteristic. However, the model still lacks two es-
sential ingredients before the nonmonotonic IV-curve characteristic to RTD-
devices can be obtained. The first missing item concerns the band-widths of
the contacts: so far the band-width is essentially infinite. This failure can be
remedied by considering a model where the contacts have a finite, occupied
band-width; we introduce a low energy cutoff DL/R, in addition to the upper
cutoff provided by the electrochemical potential. Further, we must specify how
the central-region energy ε0 depends on the applied voltage µL − µR = eV .
As we have remarked above, and as will be discussed in Sect. 12.7, in general
this requires a self-consistent calculation. However, for present purposes it is
sufficient to simply assume that the left chemical potential µL defines the
zero-point for energy, and that the other two field-dependencies are given by
µR(V ) = µR−eV , and ε0(V ) = ε0−eV/2, respectively. The zero-temperature
IV-characteristic is then (Fig. 12.3)

Jdc(V ) =
e

h

2ΓLΓR

Γ

[
tan−1 µL − ε0(V )

Γ/2
− tan−1 µL −DL − ε0(V )

Γ/2

− tan−1 µR(V ) − ε0(V )
Γ/2

+ tan−1 µR(V ) −DR − ε0(V )
Γ/2

]
.

(12.43)

We note that the strong increase in current, which is observed in experimental
systems at very high voltages, is not present in our model: this is because we
have ignored the bias-dependence of the barrier heights as well as any higher
lying resonances. The present simple model, however, will be useful in later
sections where we consider ac-response of a biased resonant tunneling diode.

Fig. 12.3. IV-characteristic for a model resonant tunneling device. The system is
defined by parameters ε0(V = 0) = 2, µL = µR(V = 0) = 0, and DL = DR = 2.
The energy parameters are in units of Γ , and the current is shown in units of eΓ/h̄
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12.7 Density Functional Theory
and Modeling of Molecular Electronics

In this section we give a brief introduction to the computational schemes
that combine some ab initio electron structure theory and a nonequilibrium
transport theory. In the rapidly growing literature one can find several imple-
mentations; here we use the code developed in [58] as an illustrative example.
The present subsection assumes that the reader has some familiarity with the
basic notions of the density functional theory (DFT) .

Most electronic structure calculations are restricted in the sense that the
geometry must be finite, or periodic, and that the electronic system is in equi-
librium. The present situation is very different: now a small subsystem lacking
translational invariance couples to semi-infinite leads and the electronic sub-
system can be far from equilibrium. Ideally one should describe the whole
system (the central region and electrodes) on equal footing. As is well known,
the density functional theory gives the exact electronic density and total en-
ergy, if the exact exchange-correlation functional was known. Since this is not
the case, one must resort to approximate forms of the functional, such as the
local-density approximation (LDA), or the generalized gradient approximation
(GGA), or something else. There is no theory to say which (approximate) func-
tional is the best, rather the choice is made based on painstaking tests, and
comparisons in some limits where alternative methods, or experiments, can
give benchmarks. In an attempt to extend DFT to nonequilibrium situations
one must go one step further: the Kohn–Sham single-particle wave-functions
ψKS(x) are used when calculating the current. This implies a leap of faith:
as is well-known, the ψKS are useful mathematical objects used in the con-
struction for the ground-state density, but which have no immediate physical
interpretation. Nonperturbative many-particle effects, such as the Kondo ef-
fect, are excluded from the treatment. On the other hand, inelastic effects can
be included, as discussed in Sect. 12.10. A further development of the present
approach could conceivably be reached by the current-density formalism [354],
or time-dependent density-functional formalism [298].

At the core of the DFT-NEGF implementation described in [58] is the
SIESTA code [302] for calculating the electronic properties for large numbers
of atoms. This approach has been tested in a large number of applications
with excellent results, and it has many technical advantages because of the
employed finite range orbitals for the valence electrons: not only do the numer-
ics get faster but also the system partitioning into leads and the central region
becomes unambiguous. The SIESTA approach can be extended to nonequi-
librium by using a nonequilibrium electron density as an input; as we recall
the density readily follows from the lesser Green function,

n(x) = −iG<(x = x′, t = t′) =
∫
dε

2πi
G<(x = x′, ε). (12.44)
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G< follows directly from the Keldysh equation, because the self-energy is a
known function for mean-field theories, Σ< = i(ΓLfL + ΓRfR). Hence, all
that one needs are the retarded and advanced Green functions, and these are
obtained by evaluating

Gr,a(E) = [EI± iη − H]−1
, (12.45)

where

H =

⎛⎝HL + ΣL VL 0
V†

L HC VR

0 V†
R HR + ΣR

⎞⎠ (12.46)

with an obvious nomenclature. The semi-infinite left and right leads are ac-
counted for by the self-energies ΣL/R, see, e.g., the book by Datta [93]. Im-
portantly, to determine VR, VL, or HC one does not need to evaluate the
density matrix outside the L–C–R region, if the L–C–R region is defined so
large that all screening takes place inside it.

Summarizing, and somewhat simplifying, the iterative loop consists of the
steps

initialn(x) ⇒ SIESTA ⇒ ψKS(x) ⇒ NEGF ⇒ new n(x) (12.47)

and the iteration is repeated until convergence is achieved for the desired
quantity, such as the current for a given voltage difference. For a detailed
description of many of the technical details suppressed here we refer to the
paper by Brandbyge [58]. The scheme outlined above has been applied by a
large group of researchers to many specific physical systems. Occasionally the
agreement with experiments reaches a quantitative level, which is indeed very
satisfying, while sometimes the predicted current can be orders of magnitude
too large. At present, there is no consensus of whether the discrepancies are
due to poorly controlled experiments, bad implementations of the DFT-NEGF
scheme, or due to an inadequacy of the entire concept. A possible cause for
the discrepancy has very recently been identified by Toher et al. [351], who
suggest that self-interaction corrections (which are not included in the GGA-
LDA underlying most theoretical work) could remedy some of the problems.
Nevertheless, a lot of research remains to be done.

12.8 Resonant Tunneling
with Electron–Phonon Interactions

In addition to the main maximum in the IV-characteristic (see Fig. 12.3),
resonant tunneling diodes occasionally show satellite peaks. A typical exper-
iment is shown in Fig. 12.4. The secondary structure is due to interactions
between the tunneling electrons and optical phonons.2 The physical picture
2 Some controversy remains whether one should consider optical phonons related

to the barrier material, or whether phonons belonging to the quantum well are
more appropriate. In our qualitative discussion these details are not relevant.
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Fig. 12.4. Experimental IV-curve showing optical phonon-related additional
structure [125]

is straightforward: an electron, which approaches the double-barrier structure
with a nonresonant energy, can be tuned in the energy of the quasibound state
in the quantum well by emitting (or absorbing) an optical phonon, and thus
become resonant with an enhanced transmission probability, and increased
current. The central-region Hamiltonian (12.6) is a mathematical formulation
for this physical picture. For simplicity, we consider only energy-independent
level-widths ΓL and ΓR, when the current (12.27) becomes

J =
e

h̄

ΓLΓR

ΓL + ΓR

∫
dε
2π

[fL(ε) − fR(ε)]
∫ ∞

−∞
dteiεtA(t) , (12.48)

where A(t) = i[Gr(t) −Ga(t)] is the interacting spectral function. In general,
an exact evaluation of A(t) is not possible, however, if one ignores the Fermi
sea, Gr(t) [and hence A(t)] can be calculated exactly (pp. 285–324 in [254];
for recent work relaxing this approximation, see, e.g., [116]):

Gr(t) = −iθ(t) exp[−it(ε0 −∆) − Φ(t) − Γt/2] , (12.49)

where

∆ =
∑
q

M2
q

ωq
,

Φ(t) =
∑
q

M2
q

ω2
q

[Nq(1 − eiωqt) + (Nq + 1)(1 − e−iωqt)] , (12.50)

and the electron–phonon interaction is given by (12.6). When substituted in
the expression for current, one recovers the result of [370,371], which originally
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Fig. 12.5. Current as a function of the resonant-level energy (or, equivalently,
voltage), as calculated in [372] . The dashed curve is for no electron–phonon coupling
while the solid curve is for a coupling g = 0.03. The shoulder in the computed IV
curve is quite similar to the one seen in experiments (inset), [125]

was derived by analyzing the much more complex two-particle Green function
G(τ, s, t) = θ(s)θ(t)〈d(τ − s)d†(τ)d(t)d†(0)〉. The advantage of the method
presented here is that one only needs the single-particle Green function to
use the interacting current formula (12.27). Other systematic approaches to
the single-particle Green function can therefore be directly applied to the
current (e.g., perturbation theory in the tunneling Hamiltonian; [6, 163]; for
further refinements needed in the description of vibrational effects in molecular
electronics, see [59] or [268]). A numerical example is presented in Fig. 12.5.
It is also interesting to note that the model considered in this section can
be applied to other electron–boson interactions: the theoretical analysis in
connection with plasmon-assisted resonant tunneling is essentially identical
to the one presented above [379].

12.9 Transport in a Semiconductor Superlattice

In 1970 Esaki and Tsu [106] suggested that semiconductor superlattices,
man-made structures which consist of alternating layers of different semi-
conductor materials, would have physical properties that could be used for
a number of device applications. Very shortly, the periodic spatial varia-
tions in the band-gaps will lead to a spatially periodic conduction band edge,
which in its turn gives rise to minibands, often modeled by a tight-binding
expression
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ε(k) = ε0 −∆− 2t cos(kd), (12.51)

where ε0 is the energy of a bound state in an isolated quantum-well, ∆ is
a shift due to overlap with the neighboring wells, t is the overlap integral
which governs the width of the miniband, and d is the superlattice period.
Minibands display very interesting transport properties, such as Bloch oscil-
lations, or negative differential resistance. A well-known result, which can be
easily derived by considering the Boltzmann equation in the relaxation-time
approximation, and using the miniband dispersion (12.51) to compute the
band velocity, is the Esaki–Tsu IV-characteristic,

I(V ) = 2ImaxV0
V

V 2 + V 2
0

, (12.52)

where Imax and V0 depend on the physical parameters of the system, such
as the superlattice period, scattering rate, and temperature. To derive ex-
pressions like this, three main approaches have been used in the literature:
(1) Miniband transport [106], (2) Wannier–Stark hopping [353], and (3) se-
quential tunneling [270]. The three different approaches have different domains
of validity, and are all likely to fail if the three basic energy scales, i.e. scat-
tering induced broadening, miniband width, and potential drop per period
all have comparable values. The basic features of these three approaches are
summarized in Fig. 12.6.

In order to map out the boundaries of the various domains of validity, and
to access the region where the approaches (1)–(3) fail, a higher level theory is
required. We shall next describe how nonequilibrium Green functions can be
used for this task [360,361].3 Here we can give only a qualitative discussion of
the developed formalism; the reader is referred to recent review articles where
a much fuller account can be found [52, 362].

One should note that the quantum theory has not yet been fully developed
to the case when the electric field is inhomogeneous (domain formation), nor
is it available for the time-dependent case (photo-assisted transport; progress
is, however, being made see, e.g., Appendix C in the review by Wacker [362]).
For these important situations one has to apply one of the simpler approaches
discussed above. As far as scattering is concerned, impurity scattering and
phonon scattering have been discussed, but carrier–carrier interaction is still
a future task.

As so many times before, the task is now to solve the coupled Keldysh and
Dyson equations. We adopt the tight-binding representation of the single-
particle Hamiltonian:

Hn,m = (δn,m−1 + δn,m+1)t+ δn,m(Ek − neEd), (12.53)

3 There are other theoretical methods capable of including (some) quantum effects,
such as the density-matrix method [64, 212], or the balance equation approach.
[236]



200 12 Transport in Mesoscopic Semiconductor Structures
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Fig. 12.6. The three standard approaches to miniband transport, and the physical
picture underlying them (Courtesy of A. Wacker)

where t is the nearest neighbor coupling, Ek = h̄2k2/(2m) the kinetic en-
ergy perpendicular to the growth direction, E the applied field, and d the
superlattice period. In this basis the Keldysh and Dyson equations read [360]

G<
mn(ω) =

∑
m1

Gr
mm1

(
ω + eEd

m1 − n
2

)
Σ<

m1

[
ω + eEd

(
m1 −

m+ n
2

)]
×Ga

m1n

(
ω + eEd

m1 −m
2

)
(12.54)

Gr
mn(ω) = grm

(
ω + eEd

m− n
2

)[
δmn +

∑
l

Σr
ml

(
ω + eEd

l− n
2

)
×Gr

ln

(
ω + eEd

l −m
2

)]
. (12.55)

Next one needs to specify the self-energies. Computations have been performed
for impurity scattering, optical phonon scattering, and acoustic phonon scat-
tering (by approximating acoustic phonons by very low-energy optical pho-
nons), all in the self-consistent Born approximation [360, 361]. Note that the
retarded self-energy is nondiagonal in the site indices, while the lesser self-
energy is diagonal. This follows from the fact that we assume that the many-
particle interactions (which determine Σ<) are diagonal in the site index.
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By numerically solving these coupled equations, computing the current, and
comparing to the corresponding IV-curves found by the simpler approaches
(1)–(3), one can construct a “phase-diagram” (see Fig. 12.7), which indi-
cates where the simpler approaches hold, and where a quantum approach
is necessary.

It is also of interest to compare the quantum mechanical drift–velocity
vs. field relation to the results obtained with a semiclassical Monte Carlo
simulation. This places a stringent bench-mark on the numerical calculations
because the two methods are totally different, and both require computation-
ally rather intensive calculations. Typical results are shown in Fig. 12.8. For
the parameters considered here, the Monte Carlo simulation gives very good
results, except that it misses the weak phonon replica seen in the quantum
calculation.

The approach sketched here has been used in a number of practical de-
vice models. These include quantum cascade lasers [107], where the current
injection occurs through a “funnel”: the superlattice is designed so that the
miniband width varies with distance. Another recent calculation concerns the
evaluation of gain in such structures [234].

0
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Fig. 12.7. The range of validity of various approaches to superlattice transport, in
the parameter space spanned by the nearest-neighbor coupling T1, and the potential
energy drop edF per period, in units of the scattering width Γ

∆=20.3 meV T=77 K 

eFd [eV]

10-4 10-3 10-2 10-1

v d
ri
ft
 [
cm

/s
]

105

106

NGF with phonons
MC-simulation of BTE

Fig. 12.8. Drift velocity vs. applied field



202 12 Transport in Mesoscopic Semiconductor Structures

12.10 Transport in Atomic Gold Wires:
Signature of Coupling to Vibrational Modes

The issue of vibrational effects in molecular electronics has recently drawn
a lot of interest because inelastic scattering and energy dissipation inside
atomic-scale conductors are of paramount importance for device characteris-
tics, working conditions, and their stability [116,216,326,367]. Inelastic effects
are important, not only because of their potentially detrimental influence on
device functioning, but also because they can open up new possibilities and
operating modes. Vibrational effects are often visible in the measured conduc-
tances of nanoscopic objects; here we focus on recent experimental studies on
free standing atomic gold wires [3]. Agräıt and co-workers used a cryogenic
STM tip to first create an atomic-scale gold wire (lengths up to seven gold
atoms have been achieved), and then measured its conductance as a func-
tion of the displacement of tip, and the applied voltage. The data showed
clear drops of conductance at a certain voltage, and the interpretation was
that an excitation of an inelastic mode was taking place, leading to enhanced
back-scattering, and hence drop in the conductance. It should be pointed out
that opening a new vibrational mode in the atomic scale conductor does not
necessarily lead to a decrease in conductance (one can envisage various as-
sisted processes), and a proper theory should be able to predict conductance
enhancement as well, whenever the physics dictates so.

Here we will briefly describe how the DFT-based computational techniques
can be generalized to include inelastic effects in the kind of wires studied by
Agräıt et al. [3]. We will also address the issue of phonon heating, which turns
out to play a crucial role. Further details can be found in [115].

The calculational method consists of three steps. (a) The mechanical nor-
mal modes and frequencies of the gold chain are evaluated. (b) The electronic
structure and electron-vibration coupling elements are evaluated in a localized
atomic-orbital basis set. (c) The inelastic transport is evaluated using nonequi-
librium Green functions, with a self-consistent Born approximation self-energy
in the Dyson and Keldysh equations for the respective Green functions. The
electrical current and the power transfer are then evaluated with4

IL =
e

h

∫
dε tL, (ε) (12.56)

PL =
∫

dε
2πh̄
εtL(ε), (12.57)

tL(ε) = Tr
{
Σ<

L (ε)G>(ε) − Σ>
L (ε)G<(ε)

}
, (12.58)

4 The derivation of the expression for the power transfer is parallel to the one given
for the electric current in Sect. 12.4; instead of considering the time-derivative of
the lead occupation, one computes the time-derivative of the lead Hamiltonian.
[113]
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where the Hartree and Fock parts of self-energy components are

ΣH,r = i
∑

λ

2
Ωλ

∫
dε′

2π
MλTr[G<(ε′)Mλ], (12.59)

ΣH,< = 0, (12.60)

ΣF,r(ε) = i
∑

λ

∫
dε′

2π
Mλ[Dr

0(ε− ε′)G<(ε′)

+Dr
0(ε− ε′)Gr(ε′) +D<

0 (ε− ε′)Gr(ε′)]Mλ (12.61)

ΣF,<(ε) = i
∑

λ

∫
dε′

2π
MλD<

0 (ω − ω′)G<(ε′)Mλ. (12.62)

Here the vibrational modes are labeled by λ, and Ωλ is the corresponding
eigenfrequency. It is worth noting that the lack of translational invariance
makes the retarded Hartree term nonzero, and potentially important. Also,
at this stage the phonon propagators are undamped – an approximation that
merits further investigation. The coupled equations are iterated until conver-
gence is achieved, and in the following we give some representative results. Let
us consider a linear four-atom gold wire under two different states of strain, as
shown in Fig. 12.9. We calculate the phonon signal in the nonlinear differential
conductance vs. bias voltage for two extremal cases: the energy transferred

Fig. 12.9. Geometry of a four-atom gold wire under two different states of stress.
The dominating alternating bond-length modes, which cause the inelastic scattering,
are shown schematically with arrows. For the shorter wire only one mode is active,
while the elongated wire has two active modes. (Reproduced from [114])
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from the electrons to the vibrations is either (1) instantaneously absorbed
into an external heat bath, or (2) accumulated and only allowed to leak via
electron–hole pair excitations. These limits are referred to as the externally
damped and externally undamped cases, respectively. Figures 12.10 and 12.11
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Fig. 12.10. Differential conductance and its derivative for the four-atom gold wire
at two different tensions in the case where the oscillators are externally damped.
Reproduced from [114]
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important mode is included in this calculation. (b) Mode occupation vs. bias voltage.
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show the corresponding results. Since a typical experiment is done at low
temperatures, the mode occupation in the externally damped case vanishes,
Nλ ≈ 0. In the externally undamped case the mode occupation Nλ is an
unknown parameter entering the electron–phonon self-energy, and additional
physical input is necessary to determine this parameter. We argue as follows.
Since the system is in a steady state, the net power transferred from the elec-
trons to the device must vanish, i.e., PL + PR = 0. Using (12.57) one then
obtains the required constraint on Nλ. This procedure works in a straightfor-
ward way if there is only a single active mode, but if several modes are present,
a more detailed theory of how the phonon modes equilibriate would be needed.
The bottom panel of Fig. 12.11 shows how the occupation of the leading
phonon mode, or, equivalently, the effective temperature, changes as a function
of bias. When comparing to the experiments of Agräıt et al. [3], one sees that
the externally undamped model is in near quantitative agreement with the
data: the conductance drop at the onset of inelastic scattering, and the slope
after the drop are very well reproduced. We view this as strong evidence of
the presence of heating in the experiment, but at the same time recognize the
need for a detailed microscopic theory including phonon–phonon interactions.

12.11 Transport Through a Coulomb Island

As a final example, we analyze transport through a Coulomb island, i.e.,
the Hamiltonian is given by (12.7), and a typical experimental geometry is
sketched in Fig. 12.2. We note first that without coupling to the contacts the
Green function of the central region can be solved exactly. This is quite analo-
gous to the electron–phonon case studied in Sect. 12.8. The analysis proceeds
with the equation-of-motion technique. Thus, one obtains (we assume again
that there is only one level in the central region, i.e.,Gmn → G11 → G, and the
equilibrium counterpart of G is denoted by gσσ(t− t′) = −i〈T {dσ(t)d†σ(t′)}〉):

i
∂

∂t
gσσ(t− t′) = δ(t− t′) + εσgσσ(t− t′) + Ug(2)(t− t′) ,

(ω − εσ)gσσ(ω) = 1 + Ug(2)(ω) , (12.63)

where we used iḋσ = εσdσ + Udσnσ̄, and defined σ̄ = −σ. The second term
in the equation of motion for dσ, which is due to the on-site interactions,
generated the higher order Green function g(2):

g(2)(t− t′) ≡ −i〈T {dσ(t)nσ̄(t)d†σ(t′)}〉 . (12.64)

The next step is to consider the equation-of-motion for g(2). Since [nσ̄, H ] = 0,
one only has to consider the time-derivative of dσ in (12.64). The result is

i
∂

∂t
g(2)(t− t′) = δ(t− t′)〈nσ̄〉 + εσg(2)(t− t′) + Ug(2)(t− t′) ,

(ω − εσ − U)g(2)(ω) = 〈nσ̄〉 . (12.65)
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Equation (12.65) can now be substituted in (12.63), and we have thus found
an expression for gσσ in terms of 〈nσ̄〉:

gσσ(ω) =
ω − εσ − (1 − 〈nσ̄〉)U
(ω − εσ − U)(ω − εσ)

=
〈nσ̄〉

ω − εσ − U +
1 − 〈nσ̄〉
ω − εσ

, (12.66)

where the second line shows that the Green function has two resonances, at
ω = εσ + U and ω = εσ, with weights 〈nσ̄〉 and (1 − 〈nσ̄〉), respectively.

Equation (12.66) can be used to determine 〈nσ̄〉 [and hence gσσ(ω)] self-
consistently. In equilibrium we can use the fluctuation-dissipation theorem:

〈nσ̄〉 =
∫

dω
2πi
gσσ,<(ω) =

∫
dω
2π

[−2Imgσσ,r(ω)]nF (ω) , (12.67)

where the retarded function is obtained from (12.66) with the replacement
ω → ω+iη, where η is an infinitesimal. This is as much as we can get from the
equilibrium analysis, and next, the coupling to the leads must be considered.5

In a phenomenological approach one can model the coupling to the leads by
replacing the infinitesimal η by a finite self-energy [129]: G−1 = g−1 − Σ.
A suitable model for the self-energy could be the noninteracting tunneling
self-energy (12.29):

Σ0(ω) =
∑
kα

|Vkα|2gkα(ω) , (12.68)

and the retarded Green function becomes

Gσσ,r(ω) =
gσσ(ω)

1 − gσσ(ω)Σr(ω)

=
ω − εσ − (1 − 〈nσ̄〉)U

(ω − εσ − U)(ω − εσ) −Σr
0(ω)[ω − εσ − (1 − 〈nσ̄〉)U ]

� 1 − 〈nσ̄〉
ω − εσ −Σr

0

+
〈nσ̄〉

ω − εσ − U −Σr
0

, (12.69)

where the final line shows how the tunneling broadens the isolated site-levels
εσ. Since the self-energy is given explicitly, we can use the Keldysh equation
(which is now an explicit relation, and not an integral equation for G<), and
immediately write down the correlation function:

Gσσ,<(ω) = Gσσ,r(ω)Σ<
0 (ω)Gσσ,a(ω) , (12.70)

where
Σ<

0 (ω) =
∑
kα

|Vkα|2g<kα(ω) (12.71)

5 Recall that the current formula requires the central-region Green function in the
presence of the contacts.
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and the noninteracting contact Green functions are given by (12.2). These
equations have precisely the same structure as was found in Sect. 12.6, where
we treated the noninteracting resonant-level model. In particular, the corre-
lation function G< again has the “pseudoequilibrium form” (12.39). The only
difference is that (12.70) needs to be integrated over energy to find the self-
consistent solution for 〈nσ̄〉. Once this is done, the current again follows from
(12.27).

Unfortunately, this appealingly simple approach actually misses a lot of
interesting physics: Kondo-like correlations, which are caused by multiple
transitions from contacts to the central site require a much more careful treat-
ment [154,155,261,262]. The analysis gets quite complicated because the most
natural approach, which is to do perturbation theory in the coupling to the
leads, is not applicable. The reason is that the unperturbed Hamiltonian is
nonquadratic in the field operators, and hence does not possess Wick’s the-
orem, and consequently, no standard perturbation expansion. Special tech-
niques have been developed to tackle this situation (for example, the slave-
boson technique due to [81, 82]), but a detailed exposition of these methods
would be beyond our present purposes. However, at temperatures much higher
than the Kondo temperature one can develop a perturbation scheme [222], and
we shall next illustrate how the calculation proceeds.

When we consider coupling to the leads, we must also take into account
the terms generated by the tunneling Hamiltonian (12.4):

HT =
∑
kασ

[Vkαc
†
kασdσ + h.c.] , (12.72)

where we now must also include the spin index (but we assume that the cou-
pling matrix element is independent of spin). This innocent looking extra term
changes the physics entirely, and we must proceed with caution. In addition
to the operator dσ, we also need the time-evolution for a number of other
operators, and we list them here for later use:

iḋσ = εσdσ + Udσnσ̄ +
∑
qβ

V ∗
qβcqβσ , (12.73a)

iḋ†σ̄ = −εσ̄d†σ̄ − Unσd
†
σ̄ −

∑
qβ

Vqβc
†
qβ,σ̄ , (12.73b)

iċkασ = εkαckασ + Vkαdσ , (12.73c)

iċ†kα,σ̄ = −εkαc
†
kα,σ̄ − V ∗

kαd
†
σ̄ , (12.73d)

iṅσ̄ =
∑
qβ

[−Vqβc
†
qβ,σ̄dσ̄ + V ∗

qβd
†
σ̄cqβ,σ̄] . (12.73e)
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Using (12.73a) we find that Gσσ satisfies (we also carry out the Fourier
transform)

(ω − εσ)Gσσ(ω) = 1 + UG(2)(ω) +
∑
qβ

V ∗
qβΓ

σσ
qβ (ω) , (12.74)

where Γ σσ
qβ (ω) is the Fourier transform of

Γ σσ
qβ (t− t′) = −i〈T {cqβσ(t)d†σ(t′)}〉 , (12.75)

and G(2)(ω) is the nonequilibrium generalization of (12.64). The equation-of-
motion for Γ σσ

qβ is readily written down with the aid of (12.73c)

(ω − εqβ)Γ σσ
qβ = VqβG

σσ(ω) , (12.76)

and (12.74) becomes

[ω − εσ −Σ0(ω)]Gσσ(ω) = 1 + UG(2)(ω) . (12.77)

The equation-of-motion for G(2) can be constructed using (12.73a) – (12.73e),
and we write it as

(ω − εσ − U)G(2)(ω)

= 〈nσ̄〉 +
∑
qβ

[V ∗
qβΓ

(2)
1,qβ(ω) + VqβΓ

(2)
2,qβ(ω) − V ∗

qβΓ
(2)
3,qβ(ω)] , (12.78)

where the new correlation functions are defined as

Γ
(2)
1,qβ(t− t′) = −i〈T {cqβσ(t)nσ̄(t)d†σ(t′)}〉 ,

Γ
(2)
2,qβ(t− t′) = −i〈T {c†qβ,σ̄(t)dσ(t)dσ̄(t)d†σ(t′)}〉 ,

Γ
(2)
3,qβ(t− t′) = −i〈T {cqβ,σ̄(t)d†σ̄(t)dσ(t)d†σ(t′)}〉 . (12.79)

These expressions allow us to quantify the phenomenological approach leading
to (12.69). Specifically, let us make the Hartree–Fock approximation, i.e.,

Γ
(2)
1,qβ(ω) � 〈nσ̄〉Γ σσ

qβ (ω) , (12.80)

and set Γ2 = Γ3 = 0. Substituting these approximations in (12.77) we then
find:

(ω − εσ − U)G(2)(ω) = 〈nσ̄〉[1 +Σ0(ω)Gσσ(ω)] . (12.81)

Equations (12.77) and (12.81) can now be solved to yield

Gσσ(ω) =
ω − εσ − U(1 − 〈nσ̄〉)

(ω − εσ)(ω − εσ − U) −Σ0(ω)[ω − εσ − U(1 − 〈nσ̄)]
(12.82)

which is identical to the earlier result (12.69). We have thus shown that
“adding-by-hand” of the noninteracting self-energy corresponds to making
a Hartree–Fock approximation to the higher order correlation function [222].
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The intricate spin-structure of (12.79) serves as a hint of the complicated
spin-flip correlations generated by the tunneling term. The analysis proceeds
by considering the equations-of-motion for the Γi’s. By repeated application
of the relations (12.73a)–(12.73e) one finds

(ω − εqβ)Γ (2)
1,qβ(ω)

= VqβG
(2)(ω) +

∑
kα

[−VkαΓ
(3)
1,kαqβ(ω) + V ∗

kαΓ
(3)
2,kαqβ(ω) ,

(ω + εqβ − εσ − εσ̄ − U)Γ (2)
2,qβ(ω)

= V ∗
qβG

(2)(ω) +
∑
kα

V ∗
kα[Γ (3)

3,kαqβ(ω) + Γ (3)
4,kαqβ(ω)] ,

(ω − εqβ + εσ̄ − εσ)Γ (2)
3,qβ(ω)

= Vqβ [Gσσ(ω) −G(2)(ω)] +
∑
kα

[−VqβΓ
(3)
5,kαqβ(ω)

+V ∗
qβΓ

(3)
6,kαqβ(ω)] , (12.83)

where the third-order correlation functions Γ (3)
i are defined by

Γ
(3)
1,qβkα(t− t′) = −i〈T {cqβσ(t)c†kασ̄(t)dσ̄(t)d†σ(t′)}〉

Γ
(3)
2,qβkα(t− t′) = −i〈T {cqβσ(t)d†σ(t)ckασ̄(t)d†σ(t′)}〉

Γ
(3)
3,qβkα(t− t′) = −i〈T {c†qβσ̄(t)ckασ(t)dσ̄(t)d†σ(t′)}〉 (12.84)

Γ
(3)
4,qβkα(t− t′) = −i〈T {c†qβσ̄(t)dσ(t)ckασ̄(t)d†σ(t′)}〉

Γ
(3)
5,qβkα(t− t′) = −i〈T {cqβσ̄(t)c†kασ̄(t)dσ(t)d†σ(t′)}〉

Γ
(3)
6,qβkα(t− t′) = −i〈T {cqβσ̄(t)d†σ̄(t)ckασ(t)d†σ(t′)}〉 .

One can proceed by considering the equations-of-motion of these functions,
but it is clear that the analysis gets quite complicated. Instead, we resort to
physical approximations. We shall assume that higher-order spin-correlations
in the leads can be neglected. In practice this means that in (12.84) we
set correlation functions that involve unlike lead spin-indices equal to zero
(i.e., we approximate Γ (3)

1 = Γ (3)
2 = Γ (3)

3 = Γ (3)
6 = 0), and factorize the

correlation functions with like spin:

Γ
(3)
4,qβkα(ω) ≈ −δkα,qβf(εkα)Gσσ(ω) ,

Γ
(3)
5,qβkα(ω) ≈ δkα,qβ [1 − f(εkα)]Gσσ(ω) , (12.85)

where f(εkα) is the equilibrium occupation of lead α. These approxima-
tions imply that we restrict the analysis to the high-temperature regime,
T � TK [here TK �

√
UΓ exp(−π|µ − εσ|/Γ ) is the Kondo temperature
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with Γ ∝ ImΣ0]. If T < TK , the correlation functions of the type 〈c†kσcqσ〉
develop logarithmic singularities, and the above approximation scheme breaks
down [222].

With (12.85) the second-order correlation functions Γ (2)
i , i = 1, 2, 3,

become

Γ
(2)
1,qβ(ω) =

Vqβ

ω − εqβ
,

Γ
(2)
2,qβ(ω) =

V ∗
qβ

ω + εqβ − εσ̄ − εσ̄ − U [G(2)(ω) − f(εqβ)Gσσ(ω)] ,

Γ
(2)
3,qβ(ω) =

−Vqβ

ω − εqβ + εσ̄ − εσ
[G(2)(ω) − f(εqβ)Gσσ(ω)] . (12.86)

The self-consistent equations for Gσσ and G(2) are now

Σ1(ω)Gσσ(ω) + [ω − εσ − U −Σ0(ω) −Σ3(ω)]G(2)(ω) = 〈nσ̄〉 ,
[ω − εσ −Σ0(ω)]G(σσ)(ω) = 1 + UG(2)(ω) , (12.87)

where Σ0 is given by (12.42), and we defined, following [259], two new self-
energies Σ1,3:

Σi(ω) =
∑
qβ

A
(i)
kα|Vkα|2

[
1

ω + εqβ − εσ̄ − εσ − U +
1

ω − εqβ + εσ̄ − εσ

]
,

(12.88)

where A(1)
kα = f(εkα) and A(3)

kα = 1, respectively. Finally, the solution for Gσσ

is:

Gσσ(ω) =
ω − εσ − U(1 − 〈nσ̄〉) −Σ0(ω) −Σ3(ω)

[ω − εσ −Σ0(ω)][ω − εσ − U −Σ0(ω) −Σ3(ω)] + UΣ1(ω)

=
1 − 〈nσ̄〉

ω − εσ −Σ0(ω) + UΣ1(ω)[ω − εσ − U −Σ0(ω) −Σ3(ω)]−1

+
〈nσ̄〉

ω − εσ − U −Σ0(ω) − UΣ2(ω)[ω − εσ −Σ0(ω) −Σ3(ω)]−1

(12.89)

where Σ2 is defined with (12.88), but with A(2)
kα = 1− f(εkα). It is interesting

to compare (12.89) to the Green function obtained for the isolated site, given
by (12.66). Again, there are two resonances, located in the vicinity of ω = εσ
and ω = εσ +U , respectively, with corresponding weights (1−〈nσ̄〉) and 〈nσ̄〉.
However, the tunneling processes back and forth to the contacts have modified
the widths and caused shifts; these are determined by the self-energies Σi, i =
1, 2, 3. (12.89) also shows that the modification of the isolated site resonances
is much more complicated than caused by the noninteracting tunneling self-
energy Σ0 alone.
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The retarded Green function can be extracted from (12.89) by setting
ω → ω + i0+. If one is interested in zero-bias conductance, which is an equi-
librium quantity, it is permissible to use the fluctuation dissipation theorem,
G< = inF(−2ImGr), to obtain a closed equation for the occupation 〈nσ̄〉, and
hence determine the retarded Green function. Then, finally, the current can
be computed with (12.27). At finite bias, however, the situation is more com-
plicated, and one should consider the analytic continuation of (12.77), (12.78).
We are not aware of any works where this has been carried out in detail, and
hence leave it as an exercise, which may lead to publishable results!

In order to model experiments, such as those of [263], one should general-
ize (12.89) to include several levels in the central region. This has been done
in [259], and we conclude this section by a brief introduction to this work. The
different levels may have different couplings to the leads, and it is reasonable
to assume that the higher the energy of a given level is, the more strongly it
couples to the leads. The experimentally measured conductance shows peri-
odic peaks as a function of gate voltage Vg (see Figs. 12.2, 12.13) which moves
the energy levels of the central region with respect to the lead energy levels,
or, equivalently, moves the chemical potential of the leads. The periodicity
of the conductance oscillations is explained quite readily with the charging
energy U of the central region; however, more interesting is the experimental
observation that the individual conductance peaks show a complicated tem-
perature dependence. Another important observation is that the conductance
peaks remain resolved in temperatures much higher than the bare-energy-level
spacing ∆ε, which is of the order of 0.05meV in the samples studied in [263].
This clearly shows that interaction effects are important (because in the non-
interacting case all resonance features would be washed out if kBT > ∆ε); one
may estimate that the charging energy U is of the order of 0.5 meV. Thus, in
the temperature range∆ε < kBT < U an anomalous temperature dependence
can be expected.

Figure 12.12 [259] shows the conductance, in units of e2/h̄, for a two-level
system, as a function of the chemical potential. The energy difference between
the single-particle levels is ∆ε = ε↓ − ε↑ = 0.1U , and the respective tunneling
couplings are Γ↓ = 10Γ↑ = 0.01U . The following features of Fig.12.12 are
noteworthy: (a) Only two peaks in the conductance are seen, even though
the interacting density-of-states, following from (12.89), in principle contains
four resonances. The suppression of peaks is caused by the dependence of
the density-of-states of a given level on the occupancy of the other level,
e.g., the weight of the resonance at ω = εσ is given by (1 − 〈nσ̄〉). Thus,
when the chemical potential passes the lower energy level ε↑, the occupancy
of this level approaches unity, and (12.89) implies that all the weight of the
down-spin level is moved to ω = ε↓ + U . (b) The temperature dependence
of the two conductance resonances is quite different. While the resonance
at higher chemical potential shows typical noninteracting behavior (height
∝ 1/T , width ∝ T ), the lower resonance actually shows a nonmonotonic
temperature dependence. This is caused by the contribution originating from



212 12 Transport in Mesoscopic Semiconductor Structures

the upper level ε↓, which becomes significant at temperatures approaching
the bare-level splitting.

Figure 12.13 compares experimentally measured and theoretical curves.
The simulations are performed for ten nondegenerate levels. As in the exam-
ple of Fig. 12.12, the coupling to leads increases with increasing single-particle
energy; however, one of the couplings is further increased to simulate impu-
rity effects. Again, the complicated temperature dependence is due to several
contributing levels. It can be concluded that the phenomenology of the exper-
iment is reproduced very well with the theoretical model.

Fig. 12.12. Conductance vs. chemical potential (in units of U), for three tem-
peratures, following from (12.89) and (12.27). Inset: Schematic band-edge diagram
corresponding to the conductance valley at µ � (U + ε↓)/2

Fig. 12.13. (a) Experimental conductance [263] of a device of the type shown
in Fig.12.2, as a function of gate voltage. (b) Theoretical conductance [259], as a
function of chemical potential
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Time-Dependent Phenomena

Summary. The theory of time-dependent transport phenomena in mesoscopic
structures is formulated. Results are presented for a periodically modulated and
a fluctuating resonant level model. A theory of noise is also developed.

13.1 Introduction

We have learnt from previous chapters that the phase of the wavefunction of
charge carriers lies at the heart of many mesoscopic phenomena. In stationary
transport this phase can be affected by, e.g., magnetic fields or temperature.
In this chapter we focus on an alternative way of affecting the phase coher-
ence: external time-dependent perturbations. The interplay of external time
dependence and phase coherence can be phenomenologically understood as
follows. If the single-particle energies acquire a time dependence, then the
wavefunctions have an extra phase factor, ψ ∼ exp[−i

∫ t dt′ε(t′)]. For a uni-
form system such an overall phase factor is of no consequence. However, if the
external time dependence is different in different parts of the system and if
the particles can move between these regions (without being “dephased” by
inelastic collisions), the phase difference becomes important.

The interest in time-dependent mesoscopic phenomena stems from recent
progress in several experimental techniques (descriptions of recent experimen-
tal advances can be found in [202], or [184]). Time dependence is a central
ingredient in many different experiments, of which we mention the following:

1. Single-electron pumps and turnstiles. Here, time-modified gate signals
move electrons one by one through a quantum dot, leading to a cur-
rent which is proportional to the frequency of the external signal. These
structures have considerable importance as current standards. The Coulo-
mbic repulsion of the carriers in the central region is crucial to the oper-
ational principle of these devices, and underlines the fact that extra care
must be paid to interactions when considering time-dependent transport
in mesoscopic systems.
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2. AC response and transients in resonant-tunneling devices. Resonant tun-
neling devices (RTD) have a number of applications as high-frequency am-
plifiers or detectors. For the device engineer, a natural approach would be
to model these circuit elements with resistors, capacitors, and inductors.
The question then arises as to what, if any, are the appropriate “quantum”
capacitances and inductances one should ascribe to these devices. Answer-
ing this question requires the use of time-dependent quantum-transport
theory.

The literature on time-dependent nonequilibrium transport treated with
Green functions is much more restricted than in the stationary case. We are
aware of an early paper in surface physics [48], but only in the beginning of
the 90s groups working in mesoscopic physics began to address these issues,
for example in [62, 78, 156, 162, 166, 167, 182, 232, 247, 274, 281, 299, 300, 333,
373]. The field is presently experiencing rapid growth, and good reviews have
recently become available [208,283].

Below we shall derive an expression for the time-dependent current flowing
from noninteracting leads to the central (interacting) region. This result will
bear a close analogue to the stationary result analyzed in the previous section.
The time dependence enters through the self-consistent parameters defining
the model. We will show that under certain restrictions, to be specified below,
a Landauer-like formula can be obtained for the time-averaged current. We
will also present a number of explicit results, both analytical and numerical,
for several model systems.

13.2 Applicability to Experiments

A central question one must address is: Under which conditions are the
nonequilibrium techniques transferable to time-dependent situations, such as
the experiments mentioned above?

The time-dependent problem has to be formulated carefully, particularly
with respect to the leads. It is essential to a Landauer-type of approach that
the electrons in the leads be noninteracting. In practice, however, the elec-
trons in the leads near the mesoscopic region contribute to the self-consistent
potential. We approach this problem by dividing the transport physics into
two steps [68, 230]: (1) the self-consistent determination of charge pileup and
depletion in the contacts, the resulting barrier heights, and single-particle en-
ergies in the interacting region and (2) transport in a system defined by these
self-consistent parameters. Step (1) requires a capacitance calculation for each
specific geometry (pioneering work in this area can be found in [65,68,69]) and
we do not address it in the present context. Instead, we assume the results of
(1) as time-dependent input parameters and give a full treatment of the trans-
port through the mesoscopic region (2). In practice, the interactions in the
leads are absorbed into a time-dependent potential and from then on the elec-
trons in the leads are treated as noninteracting. This means that when relating



13.3 Mathematical Formulation 215

our results to actual experiments some care must be exercised. Specifically, we
calculate only the current flowing into the mesoscopic region, while the total
time-dependent current measured in the contacts includes contributions from
charge flowing in and out of accumulation and depletion regions in the leads.
In the time-averaged (DC) current, however, these capacitive contributions
vanish and the corresponding time-averaged theoretical formulae are directly
relevant to experiment. It should be noted, though, that these capacitive cur-
rents may influence the effective time-dependent parameters in step (1).

Let us next estimate the frequency limits that restrict the validity of our
approach. Two criteria must be satisfied. First, the driving frequency must
be sufficiently slow so that the applied bias is dropped entirely across the
tunneling structure. When a bias is applied to a sample, the electric field
in the leads can only be screened if the driving frequency is smaller than
the plasma frequency, which is tens of THz in typical doped semiconductor
samples. For signals slower than this, the bias is established entirely across the
tunneling structure by accumulation and depletion of charge near the barriers.
The unscreened Coulomb interaction between net excess charge is quite strong,
and hence the bias across a tunneling structure is caused by a relatively small
excess of charge in accumulation and depletion layers. The formation of these
layers then causes a rigid shift of the bottom of the conduction band deeper in
the leads, which is the origin of the rigid shift of energy levels in our treatment
of a time-dependent bias.

The second frequency limit on our approach is that the buildup of elec-
trons required for the formation of the accumulation and depletion layers must
not significantly disrupt the coherent transport of electrons incident from the
leads. One way to quantify this is to ask: What is the probability that an elec-
tron incident from the leads participates in the buildup of charge associated
with a time-dependent bias? This probability will be the ratio of the net cur-
rent density flowing into the accumulation region to the total incident flux of
electrons. For a three-dimensional double-barrier resonant tunneling structure,
the AC-current charging the accumulation layer is Irms

acc = 2πνCV rms/A, where
ν is the driving frequency, C is the capacitance, V rms is the applied bias, and
A is the area. In comparison, the total incident flux is Iinc = 3/8 envF. Using
the parameters appropriate for a typical experiment (we use that of [61]),
we find that up to 10THz the probability of an electron participating in the
charge buildup is only 1%. Summarizing, these estimates indicate that our
approach should be accurate up to frequencies of tens of THz, which are large
by present experimental standards, and consequently, the analysis presented
in what follows should be valid for most experimental situations.

13.3 Mathematical Formulation

We now reexamine the formulation of the stationary situation to see what
difference is caused by the external time dependence. Before the couplings
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between the various regions are turned on, the single-particle energies ac-
quire rigid time-dependent shifts, which – in the case of the noninteracting
contacts – translate into extra phase factors for the propagators (but not
in changes in occupations). The perturbation theory with respect to the
couplings has the same diagrammatic structure as in the stationary case.
The calculations, of course, become more complicated because of the broken
time translational invariance. Physically, applying a time-dependent bias
(electrostatic potential difference) between the source and drain contacts
means that the single-particle energies become time dependent: ε0kα →
εkα(t) = ε0kα + ∆α(t) . The occupation of each state kα, however, remains
unchanged. The occupation, for each contact, is determined by an equilib-
rium distribution function established in the distant past, before the time
dependence or tunneling matrix elements are turned on.

The contact Green functions are now given by:

g<kα(t, t′) ≡ i〈c†kα(t′)ckα(t)〉

= if(ε0kα) exp
[
− i
∫ t

t′
dt1εkα(t1)

]
, (13.1)

gr,akα(t, t′) ≡ ∓iθ(±t∓ t′)〈{ckα(t), c†kα(t′)}〉

= ∓iθ(±t∓ t′) exp
[
− i
∫ t

t′
dt1εkα(t1)

]
. (13.2)

In order to derive an expression for the time-dependent current through
the left barrier, we can follow essentially unchanged the analysis given in
Sect. 12.4. The expression for current given in (12.11) is still valid, and the
Green function G<

n,kα is given by an expression like (12.19), with the exception
that all functions now depend on the two time labels separately, and not only
on their difference, (t − t′) → (t, t′). Thus there is no advantage in Fourier
transforms, and we must stay in the time domain. Instead of (12.21) we now
get

JL = −2e
h̄

Im
{ ∑

k,α∈L
n,m

Vkα,n

∫ t

−∞
dt1e

i
∫

t
t1

dt2εkα(t2)V ∗
kα,m(t1)

×
[
Gr

nm(t, t1)fL(εkα) +G<
nm(t, t1)

]}
. (13.3)

The expression for the level-width function must be generalized and we find[
ΓL(ε, t1, t)

]
mn

= 2π
∑
α∈L

�α(ε)Vα,n(ε, t)V ∗
α,m(ε, t1)

× exp
[
i
∫ t

t1

dt2∆α(ε, t2)
]
. (13.4)

In terms of this generalized level-width function (13.4), the general expression
for the current is
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JL(t) = − 2e
h̄

∫ t

−∞
dt1

∫
dε
2π

ImTr
{
e−iε(t1−t)Γ L(ε, t1, t)

× [G<(t, t1) + fL(ε)Gr(t, t1)]
}
. (13.5)

An analogous formula applies for JR(t), the current flowing into the central
region through the right barrier. One should note, that due to the time de-
pendence, the left and right currents do not have to be equal.

Result (13.5) is the central formal result of this section, and in what follows
we evaluate in several different special cases. Before turning to the applica-
tions a few remarks of a more general nature are in order. Just as in the
stationary case, the time-dependent current is expressed in terms of local
quantities: Green functions of the central region. The first term in (13.5),
which is proportional to the lesser function G<, suggests an interpretation
as the out-tunneling rate (recalling ImG<(t, t) = N(t)). Likewise, the sec-
ond term, which is proportional to the occupation in the leads and to the
density of states in the central region, can be associated to the in-tunneling
rate. However, one should bear in mind that all Green functions in (13.5) are
to be calculated in the presence of tunneling. Thus, G< may depend on the
occupation in the leads. Furthermore, in the presence of interactions, Gr may
depend on the central-region occupation. Consequently, the current can be a
nonlinear function of the occupation factors [224]. Finally, it is a useful exer-
cise to verify that the time-dependent current (13.5) reduces to the stationary
result (12.24), if the time dependence is turned off, ∆α → 0.

13.4 Average Current

In analogy with the stationary case, where we found a compact expression
for the current for the case of proportionate coupling, the time-dependent
case allows further simplification, if assumptions are made on the line-width
functions. In this case, we assume a generalized proportionality condition:

Γ L(ε, t1, t) = λΓ R(ε, t1, t) . (13.6)

One should note that, in general, this condition can be satisfied only if∆L
α(t) =

∆R
α (t) = ∆(t). However, in the wide-band limit (WBL), to be considered in

detail below, the time variations of the energies in the leads do not have to
be equal.

We next consider the occupation of the central region N(t) =
∑

m

〈d†
m(t)dm(t)〉 and apply the continuity equation:

e
dN(t)

dt
= JR(t) + JL(t) , (13.7)
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which allows one to write for arbitrary x :

JL(t) = xJL(t) + (1 − x)
[
e
dN(t)

dt
− JR(t)

]
. (13.8)

Choosing x ≡ 1/(1 + λ) leads to

JL(t) =
(
λ

1 + λ

)[
e
dN
dt

− 2e
h̄

ImTr
{∫ t

−∞
dt1

∫
dε
2π

× e−iε(t1−t)Γ R(ε, t1, t)Gr(t, t1)
[
fL(ε) − fR(ε)]

}]
. (13.9)

The time average of a time-dependent object F (t) is defined by

〈
F (t)

〉
= lim

T→∞
1
T

∫ T/2

−T/2

dtF (t) . (13.10)

If F (t) is a periodic function of time, it is sufficient to average over the period.
Upon time averaging, the first term in (13.9) vanishes,

〈
dN/dt

〉
→ 0, because

the occupation N(t) is finite for all T . The expression for the time-averaged
current further simplifies if one can factorize the energy and time dependence
of the tunneling coupling, Vkα,n(t) ≡ u(t)Vα,n(εk). We then obtain〈

JL(t)
〉

= −2e
h̄

∫
dε
2π

[fL(ε) − fR(ε)]

× ImTr

{
Γ L(ε)Γ R(ε)

Γ L(ε) + Γ R(ε)

〈
u(t)A(ε, t)

〉}
, (13.11)

where

A(ε, t) =
∫

dt1u(t1)Gr(t, t1) exp[iε(t− t1) + i
∫ t

t1

dt2∆(t2)] . (13.12)

Due to (13.6) we do not have to distinguish between L/R in the definition of
A(ε, t); below we shall encounter situations where this distinction is necessary.

The expression (13.11) is of the Landauer-type: It expresses the current
as an integral over a weighted density of states, times the difference of the
two contact occupation factors. It is valid for arbitrary interactions in the
central region, but it was derived with the somewhat restrictive assumption
of proportional couplings to the leads.

13.5 Time-Dependent Resonant-Level Model

The analysis from Sect. 12.5 carries over again without essential changes, and
we can just state the final results. The Dyson equation for the retarded Green
function is
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Gr(t, t′) = gr(t, t′) +
∫

dt1
∫

dt2gr(t, t1)Σr(t1, t2)Gr(t2, t′) , (13.13)

where

Σr
nn′(t1, t2) =

∑
kα∈L,R

V ∗
kα,n(t1)grkα(t1, t2)Vkα,n′ (t2) , (13.14)

and grkα is given by (13.2). The correlation function G< is given by the Keldysh
equation:

G<(t, t′) =
∫

dt1
∫

dt2Gr(t, t1)Σ<(t1, t2)Ga(t2, t′) , (13.15)

where

Σ<(t1, t2) = i
∑
L,R

∫
dε
2π

e−iε(t1−t2)fL/R(ε)Γ L/R(ε, t1, t2) . (13.16)

For simplicity, we continue to consider only a single level in the central re-
gion. As in the previous section, we assume that one can factorize the momen-
tum and time dependence of the tunneling coupling, but allow for different
time dependence for each barrier: Vkα(t) ≡ uL/R(t)Vα,n(εk). Referring to
(12.29), the wide-band limit (WBL) consists of (1) neglecting the level shift
Λ(ε), (2) assuming that the line widths are energy independent constants,∑

α∈L,R Γα = ΓL/R, and (3) allowing a single time dependence, ∆L/R(t), for
the energies in each lead. The retarded self-energy in (13.13) thus becomes:

Σr(t1, t2) =
∑

α∈L,R

u∗α(t1)uα(t2)e−i
∫ t1

t2
dt3∆α(t3)

×
∫

dε
2π

e−iε(t1−t2)θ(t1 − t2)[−iΓα]

= − i
2
[ΓL(t1) + ΓR(t1)]δ(t1 − t2) . (13.17)

(Here we have introduced the notation ΓL/R(t1) ≡ ΓL/R(t1, t1) = ΓL/R

|uL/R(t1)|2.) With this self-energy, the retarded (advanced) Green function
becomes

Gr,a(t, t′) = gr,a(t, t′) exp
{
∓
∫ t

t′
dt1

1
2
[
ΓL(t1) + ΓR(t1)

]}
(13.18)

with

gr,a(t, t′) = ∓iθ(±t∓ t′) exp
[
−i
∫ t

t′
dt1ε0(t1)

]
. (13.19)

This solution can now be used to evaluate the lesser function (13.15), and
further in (13.5), to obtain the time-dependent current. In the WBL the
ε- and t1-integrals in the term involving G< are readily evaluated, and we
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write the current as (using Im{G<(t, t)} = N(t), where N(t) is the occupa-
tion of the resonant-level)

JL(t) = − e
h̄

[
ΓL(t)N(t) +

∫
dε
π
fL(ε)

×
∫ t

−∞
dt1ΓL(t1, t)Im{e−iε(t1−t)Gr(t, t1)}

]
. (13.20)

For a compact notation we introduce

AL/R(ε, t) =
∫

dt1uL/R(t1)Gr(t, t1)

× exp
[
iε(t− t1) − i

∫ t1

t

dt2∆L/R(t2)
]
. (13.21)

Obviously, in the time-independent case A(ε) is just the Fourier transform of
the retarded Green function Gr(ε). In terms of A(ε, t) the occupation N(t)
(using (13.15) for G<) is given by

N(t) =
∑
L,R

ΓL/R

∫
dε
2π
fL/R(ε)|AL/R(ε, t)|2 . (13.22)

We write the current as a sum of currents flowing out from the central region
into the left (right) contact, and currents flowing into the central region from
the left (right) contact, JL/R(t) = Jout

L/R(t) + J in
L/R(t) 1:

Jout
L/R(t) = − e

h̄
ΓL/R(t)N(t) ,

J in
L/R(t) = − e

h̄
ΓL/RuL/R(t)

∫
dε
π
fL/R(ε)Im{AL/R(ε, t)} . (13.23)

It is readily verified that these expressions coincide with earlier steady state
results if all time-dependent quantities are replaced by constants.

Employing the same approach as in Sect. 13.4 and provided that uL(t) =
uR(t) = u(t), we find that the time-averaged current in the WBL is given by

〈J〉 = − 2e
h̄

ΓLΓR

ΓL + ΓR

∫
dε
2π

Im{fL(ε)〈u(t)AL(ε, t)〉

− fR(ε)〈u(t)AR(ε, t)〉} . (13.24)

Unlike the general case of (13.11), there is no restriction in the WBL that
the energy dependence be the same in the two leads. The expression (13.24)
can therefore be used for the case of a time-dependent bias, where ∆L(t) and
1 The reader may worry about the direction of the in and out currents, because

both terms in (13.23) apparently have the same sign. However, one can prove that
〈ImA〉 < 0, and the in and out currents flow in opposite directions, as expected.
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∆R(t) will be different. It is interesting to note that the function of energy
appearing in the time-averaged current is positive definite. In particular, it
can be shown [182] that

−〈Im{uL/R(t)AL/R(ε, t)}〉 =
Γ

2
〈|AL/R(ε, t)|2〉 . (13.25)

One consequence of (13.25) is that if only the level is time dependent, the
average current cannot flow against the bias.

We shall next consider two specific examples for the time variation, which
are relevant for experimental situations.

13.5.1 Response to Harmonic Modulation

Harmonic time modulation is probably the most commonly encountered
example of time dependence. Here, we treat the case when the contact and
site energy levels vary as

∆L/R,0(t) = ∆L/R,0 cos(ωt). (13.26)

It is easy to generalize the treatment to situations where the modulation fre-
quencies and/or phases are different in different parts of the device. Assuming
that the barrier heights do not depend on time (uL/R = 1), and substituting
(13.26) in the expression (13.21) for A(ε, t), one finds

AL/R(ε, t) = exp
[
−i
∆0 −∆L/R

ω
sin(ωt)

]
×

∞∑
k=−∞

Jk

(
∆0 −∆L/R

ω

)
eikωt

ε− ε0 − kω + iΓ/2
, (13.27)

where J−k(x) = (−1)kJk(x) is the kth order Bessel function.
Figures 13.1 and 13.2 show |A(ε, t)|2 and ImA(ε, t) as a function of time,

respectively. We recall from (13.23) that the current at a given time is deter-
mined by integrating |A(ε, t)|2 and ImA(ε, t) over energy, and thus an exami-
nation of Fig. 13.1 helps one to understand the complicated time dependence
discussed below.2 The physical parameters used to generate these plots are
given in the figure caption. The three-dimensional plot (top part of figure) is
projected down on a plane to yield a contour plot in order to help to visu-
alize the time dependence. As expected, the time variation is periodic with
period T = 2π/ω. The time dependence is strikingly complex. The most easily
recognized features are the maxima in the plot for |A|2; these are related to
photonic side bands occurring at ε = ε0 ± kω (also (13.28) below) [66, 67].

The current is computed using the methods described in [182], and is
shown in Fig. 13.3. We also display the drive voltage as a broken line. Bearing
2 We show only AL; similar results hold for AR.



222 13 Time-Dependent Phenomena

Fig. 13.1. |A(ε, t)|2 as a function of time for harmonic modulation for a symmetric
structure, ΓL = ΓR = Γ/2. The unit for the time axis is h̄/Γ , and all energies are
measured in units of Γ , with the values µL = 10, µR = 0, ε0 = 5, ∆ = 5, ∆L = 10,
and ∆R = 0. The modulation frequency is ω = 2Γ/h̄

Fig. 13.2. The time dependence of ImA(ε, t) for the case shown in Fig. 13.1

in mind the complex time dependence of |A|2 and ImA, which determine the
out and in currents, respectively, it is not surprising that the current displays
a nonadiabatic time dependence. The basic physical mechanism underlying
the secondary maxima and minima in the current is the lineup of a photon-
assisted resonant tunneling peak with the contact chemical potentials. The
rapid time variations are due to J in (or, equivalently, due to ImA): the out
current Jout is determined by the occupation N(t), and hence varies only on
a timescale Γ/h̄, which is the time scale for charge density changes.
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Fig. 13.3. The time-dependent current J(t) for harmonic modulation corresponding
to the parameters of Figs. 13.1 and 13.2. The DC bias is defined via µL = 10 and
µR = 0, respectively. The dotted line shows (not drawn to scale) the time dependence
of the drive signal. The temperature is kBT = 0.1Γ

Fig. 13.4. Time-averaged current JDC as function of the AC oscillation period
2π/ω. The DC amplitudes are the same as those in Fig. 13.3

We next consider the time average of the current. For the case of harmonic
time dependence, we find3

〈
ImAL/R(ε, t)

〉
= −Γ

2

∞∑
k=−∞

J2
k

[
(∆0 −∆L/R)/ω

]
(ε− ε0 − kω)2 + (Γ/2)2

. (13.28)

Figure 13.4 shows the resulting time-averaged current JDC. A consequence
of the complex harmonic structure of the time-dependent current is that for
temperatures kBT < h̄ω, the average current oscillates as a function of period

3 It is useful to recall the identity exp[iα sin(ωt)] =
∑k=∞

k=−∞ eiωtkJk(α), where Jk

is the kth order Bessel function.
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2π/ω. The oscillation can be understood by examining the general expression
for average current (13.11) together with (13.28): whenever a photon-assisted
peak in the effective density of states, occurring at ε = ε0 ± kω in the time-
averaged density of states 〈ImAL/R〉, moves in or out of the allowed energy
range, determined by the difference of the contact occupation factors, a max-
imum (or minimum) in the average current results.

13.5.2 Response to Step-Like Modulation

We give results for the case when the central site level changes abruptly at t =
t0: ε0 → ε0+∆. If the contacts also change at the same time, the corresponding
results are obtained by letting ∆→ ∆−∆L/R. Thus, simultaneous and equal
shifts in the central region and the contacts have no effect. Assuming that the
barrier heights do not depend on time (uL/R ≡ 1), one finds for t > t0 (from
(13.21)

A(ε, t) =
1

ε− ε0 + iΓ/2

×
{

1 +∆
[1 − exp [i(ε− (ε0 +∆) + iΓ/2)(t− t0)]

ε− (ε0 +∆) + iΓ/2

}
. (13.29)

This result is easily generalized [373] to a pulse of duration s, and numerical
results are discussed below.

It is instructive to study analytically the long- and short-time behavior of
A(ε, t). It is easily verified that A(ε, t) has the expected limiting behavior:

A(ε, t→ ∞) = [ε− (ε0 +∆) + iΓ/2]−1 . (13.30)

Thus, when the transients have died away, A(ε, t) settles to its new steady-
state value.

Consider next the change in current at short times after the pulse, t− t0 ≡
δt� h̄/Γ, h̄/ε. Note that the second inequality provides an effective cutoff for
the energy integration required for the current. In this limit we may write

A(ε, t) � 1 − i∆δt
ε− ε0 + iΓ/2

. (13.31)

Since δJout(t) ∝ |A(ε, t)|2 ∝ (δt)2, the leading contribution comes from J in(t).
For low temperatures we find

δJL/R(t) � eΓ
L/R

πh̄

∫ µL/R

−h̄/δt

dε Im δA(ε, t)

� eΓ
L/R

πh̄
∆δt log δt . (13.32)

We next discuss the numerical results for a step-like modulation. Just like
in the case of harmonic modulation, it is instructive to study the time depen-
dence of |A|2 and ImA; these are shown in Figs. 13.5 and 13.6, respectively.
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Fig. 13.5. |A(ε, t)|2 as a function of time for step-like modulation. At t = 0 the
resonant-level energy ε0 suddenly decreases by 5Γ

Fig. 13.6. The time dependence of ImA(ε, t) for the case shown in Fig.13.5

The observed time dependence is less complex than in the harmonic case.
Nevertheless, the resulting current, which we have computed for a pulse of
duration s and displayed in Fig. 13.7, shows an interesting ringing behavior.
The ringing is again due to the movement of the side bands of ImAL/R through
the contact Fermi energies.

Due to the experimental caveats discussed in Sect. 13.2, the ringing showed
in Fig. 13.7 may be masked by capacitive effects not included in the present
work. However, the ringing should be observable in the time-averaged current
by applying a series of pulses such as that of Fig. 13.6, and then varying
the pulse duration. In Fig. 13.8 the derivative of the DC-current with respect
to pulse length is plotted, normalized by the repeat time τ between pulses.
For pulse lengths s of the order of the resonance lifetime h̄/Γ , the derivative of
the DC-current closely mimics the time-dependent current following the pulse
and, likewise, asymptotes to the steady-state current at the new voltage.

The examples discussed in this section are all for noninteracting electrons.
In Chap. 12 we developed methods and approximation schemes for including
the Coulomb interaction for stationary transport phenomena. These approx-
imations can be generalized to the time-dependent case, usually, however,
the expressions become so complicated that progress can only be made with
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Fig. 13.7. Time-dependent current J(t) through a symmetric double-barrier tun-
neling structure in response to a rectangular bias pulse. Initially, the chemical poten-
tials µL and µR and the resonant-level energy ε0 are all zero. At t = 0, a bias pulse
(dashed curve) suddenly increases energies in the left lead by ∆L = 10 and increases
the resonant-level energy by ∆ = 5. At t = 3, before the current has settled to a new
steady value, the pulse ends and the current decays back to zero. The temperature
is kBT = 0.1Γ

Fig. 13.8. Derivative of the integrated DC-current JDC with respect to pulse dura-
tion s, normalized by the interval between pulses τ . For pulse durations much longer
than the resonance lifetime h̄/Γ , the derivative is just the steady state current at
the bias voltage, but for shorter pulses the ringing response of the current is evident

numerical methods. We do not pursue this approach further, and refer the
interested reader to the literature, e.g., [248, 340, 378]. Another recent devel-
opment is to relax the wide-band limit, and perform the analysis directly in
the two-time domain, see [256].
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13.6 Linear-Response

For circuit modeling purposes it would often be desirable to replace the meso-
scopic device with a conventional circuit element, with an associated complex
impedance Z(ω), or admittance Y (ω). Our results for the nonlinear time-
dependent current form a very practical starting point for such a calculation.
For the noninteracting case, the current is determined by A(ε, t), and all one
has to do is linearize A (13.21) with respect to the amplitude of the drive
signal, i.e., ∆ −∆L/R. It is important to note that we do not linearize with
respect to the chemical potential difference: the results given below apply to
an arbitrary static bias voltage.

Performing the linearization, one finds

|A(1)
L/R(ε, t)|2 =

∆−∆L/R

ω
Re
{ 1
ε− ε0 + iΓ/2

×
[ e−iωt

ε− ε0 − ω − iΓ/2
− eiωt

ε− ε0 + ω − iΓ/2

]}
(13.33)

and

ImA(1)
L/R(ε, t) =

∆−∆L/R

2ω
Im
{ eiωt

ε− ε0 − ω + iΓ/2

− e−iωt

ε− ε0 + ω + iΓ/2
+

e−iωt − eiωt

ε− ε0 + iΓ/2

}
. (13.34)

At finite temperature the energy integration must be done numerically [182],
while at T = 0 they can be done analytically. In the latter case, all the integrals
can be cast into the form∫ µ

−∞

dε
(ε− ε1 + iΓ1/2)(ε− ε2 + iΓ2/2)

=
1

ε1 − ε2 + i(Γ2 − Γ1)/2
log
µ− ε1 + iΓ1/2
µ− ε2 + iΓ2/2

. (13.35)

Using log(x + iy) = 1/2 log(x2 + y2) + i tan−1(y/x) yields

J
(1),in
L/R =

e

h̄
ΓL/R∆−∆L/R

2πω
[
cos(ωt)FL/R(ω) + sin(ωt)GL/R(ω)

]
(13.36)

and

J
(1),out
L/R =

e

h̄
ΓL/R

∑
L,R

ΓL/R∆−∆L/R

2πω

×
{
cos(ωt)

[ ω

ω2 + Γ 2
GL/R(ω) − Γ

ω2 + Γ 2
FL/R(ω)

]
− sin(ωt)

[ Γ

ω2 + Γ 2
GL/R(ω) +

ω

ω2 + Γ 2
FL/R(ω)

]}
, (13.37)
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where we defined

GL/R(ω) = log
|µL/R − ε0 + iΓ/2|2

|(µL/R − ε0 + iΓ/2)2 − ω2| (13.38)

and

FL/R(ω) = tan−1

[
µL/R − ε0 − ω

Γ/2

]
− tan−1

[
µL/R − ε0 + ω

Γ/2

]
. (13.39)

These expressions give the linear AC-current for an arbitrarily biased double-
barrier structure, where both contacts and the central-region energies are
allowed to vary harmonically.

Considerable simplification occurs, if one considers a symmetric structure
at zero bias: ΓL = ΓR = Γ/2, and µL = µR ≡ µ, respectively. The net
current from left to right is J (1) = 1/2[J (1),in

L + J (1),out
R − J (1),out

L − J (1),in
R ].

Using (13.36) and (13.37), one finds that the “out” contributions cancel, and
that the “in” currents combine to give the net current:

J (1)(t) = − e
h̄

Γ

4
∆L −∆R

2πω
[cos(ωt)F (ω) + sin(ωt)G(ω)] . (13.40)

Here, the functions F (ω) and G(ω) are given by (13.38) and (13.39), but using
µ and Γ/2 as parameters. It is possible to obtain this result directly from a
linear-response formalism [119] (Fig. 13.9).

We now wish to apply the formal results derived in this section to an ex-
perimentally relevant system. The key feature of a resonant tunneling diode

Fig. 13.9. In-phase and out-of-phase components of the linear-response current (in
units of eΓ/h and normalized with the amplitude of the drive signal ∆L to yield
admittance) for two bias points, eV = 5 (continuous line) and eV = 10 (dashed
line). Other parameters are as in Fig.12.3. The out-of-phase components always
tend to zero for vanishing frequency, while the in-phase component can have either
a positive or negative zero-frequency limit depending on the dc bias
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is its ability to show negative differential resistance (NDR). In Sect. 12.5 we
introduced a simple model which has this property (Fig. 12.3). We need to
generalize the F and G functions to take into account the finite bandwidth;
this is, however, easy to do with the replacements Fµ → F̃ = Fµ −Fµ−D, and
analogously for Gµ. We show in Fig. 13.6 the resulting linear-response admit-
tance Y (ω) for a symmetric structure (ΓL = ΓR). Several points are worth
noting. For DC bias eV = 5 (energies are given in units of Γ ) the calculated
admittance resembles qualitatively zero external bias results [119]. More in-
terestingly, for DC bias in the NDR regime, the real part is negative for small
frequencies. This simply reflects the fact that the device is operating under
NDR bias conditions. At higher frequencies the real part becomes positive,
thus indicating that further modeling along the lines sketched here may lead to
important implications on the high-frequency response of resonant tunneling
structures.

13.7 Fluctuating Energy Levels

As a final example, we analyze how the techniques developed in the previ-
ous sections can be used in connection with a fluctuating time dependence.
In particular, we wish to evaluate the average current using (13.11). We con-
sider a very simple model, where the central-region energy level ε0(t) is a
Gaussian random variable [297]. The time average is defined by specifying the
correlators

〈ε0(t)〉 = 0 ,
〈ε0(t1)ε0(t2)〉 = f(t1 − t2) . (13.41)

All higher odd correlators vanish, while all even correlators are given as a sum
of products of all pairwise correlators. In the calculation of

〈
ImAL/R(ε, t)

〉
in

(13.11) for 〈J〉 we need
〈
exp[−i

∫ t

t−τ
dt1ε0(t1)

〉
; this is evaluated by expanding

the exponential functions and averaging term by term using (13.41). Consider,
for example,〈

exp
[
− i
∫ t

t−τ

dt1ε0(t1)
]〉

= 1 − i
∫ t

t−τ

dt1
〈
ε0(t1)

〉
+

1
2
(−i)2

∫ t

t−τ

dt1
∫ t

t−τ

dt2
〈
ε0(t1)ε0(t2)

〉
+ · · ·

= 1 − 1
2

∫
dω
2π
f(ω)

∣∣∣∫ t

t−τ

dt1e−iωt1
∣∣∣2 + · · ·

= 1 − 1
2

∫
dω
2π
f(ω)
ω2

sin2
(ωτ

2

)
+ · · · , (13.42)

where f(ω) is the Fourier transform of f(t− t′). By using some simple combi-
natorics it is easy to convince oneself that the higher order averages generate
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the 1/n! factors that occur in the series expansion of the exponential function.
Thus the series can be resummed with the result〈

ImAL/R(ε, t)
〉

=
1
2

∫ ∞

−∞
dτ eiετ−Γ |τ |/2

× exp
[
−1

2

∫
dω
2π
f(ω)
ω2

4 sin2
(ωτ

2

)]
. (13.43)

A particularly simple result emerges if one assumes a white-noise spectrum:
f(ω) = F ; then the only effect of the fluctuations is to enhance the line
width: Γ/2 → Γ/2 + F . This is consistent with the phenomenological model
used in [187] and [369] in connection with inelastic scattering mechanisms in
resonant tunneling: There the resonance width of the transmission coefficient
is given an extra contribution due to inelastic processes. A more complicated
spectrum would change the Lorentzian line shape to some other functional
form.

13.8 Noise

In Sect. 13.7 we considered a very simple example of the effect of the fluctua-
tions on the transmission properties of a mesoscopic system. Here we develop
a more systematic approach to the calculation of noise. Studies of noise have
in recent years become a very important subfield in nanoscience. There are
several reasons for this trend. The noise spectrum gives additional and comple-
mentary information to the current–voltage characteristic. In particular, noise
reflects the interactions in a subtle way. Noise, as we shall see below, is the
second moment of the current operator, but one may also wish to study higher
correlation functions. Here the theory has been advanced quite significantly,
and many beautiful results have been obtained for the full counting statistics
(FCS) (see, e.g., [239,273], or [282]). Measurement of FCS is a very challeng-
ing task, and the first results are just beginning to emerge (see, e.g., [289]
or [70]). Finally, many promising research areas, such as nanoelectromechani-
cal systems (NEMS), spintronics, or quantum information processing involve
noise in a fundamental way, underlying the importance of a solid theory for
noise.

A very thorough review of noise calculations, focusing on the scattering
matrix approach, has been given by Blanter and Büttiker [47]. Here we illus-
trate how the noise calculation can be performed with the nonequilibrium
Green function approach. Several authors have used this approach, start-
ing from the early work of Khlus on microcontacts between metallic struc-
tures [200], and the work on noninteracting resonant tunneling diodes by Chen
and Ting [79]; here we follow the notation used by Souza and co-workers [330]
in their work on spin-dependent noise. We recall from Chap. 12 the expression
for the current operator (through the left barrier)



13.8 Noise 231

IL =
ei
h̄

∑
k

[tkc
†
kd− t∗kd†ck], (13.44)

where we simplify the notation somewhat by suppressing indices which are
not relevant to the structure of the theory. We define δIL(t) = IL(t) − 〈IL〉,
and plan to evaluate the correlation function

S(t, t′) = 〈{δIL(t), δIL(t′)}〉 = 〈{IL(t), IL(t′)}〉 − 2〈IL〉2

=
(

ie
h̄

)2∑
k,k′

[
tktk′〈c†k(t)d(t)c†k′ (t′)d(t′)〉 − tkt∗k′ 〈c†k(t)d(t)d†(t′)ck′ (t′)〉

− t∗ktk′〈d†(t)ck(t)c†k′ (t′)d(t′)〉 + t∗kt
∗
k′〈d†(t)ck(t)d†(t′)ck′ (t′)〉

]
+ h.c.− 2〈IL〉2. (13.45)

The Fourier transform of S is called the noise spectrum; in what follows we
shall be particularly concerned with its zero-frequency component, S(0) =∫

d(t − t′)S(t − t′). In order to evaluate the (nonequilibrium) expectation
values occurring in (13.45) in a systematic way, we first define the following
causal two-particle Green functions

gcd
1 (t, t′) = i2〈Tc†k(t)d(t)c†k′ (t′)d(t′)〉,
gcd
2 (t, t′) = i2〈Tc†k(t)d(t)d†(t′)ck′(t′)〉,
gcd
3 (t, t′) = i2〈Td†(t)ck(t)c†k′ (t′)d(t′)〉,
gcd
4 (t, t′) = i2〈Td†(t)ck(t)d†(t′)ck′ (t′)〉. (13.46)

The nonequilibrium noise correlator is then given by

S(t, t′) =
( e
h̄

)2∑
k,k′

[
tktk′Gcd,>

1 (t, t′) − tkt∗k′G
cd,>
2 (t, t′)

− t∗ktk′Gcd,>
3 (t, t′) + t∗kt

∗
k′G

cd,>
4 (t, t′)

]
+ h.c.− 2〈IL〉2, (13.47)

where Gcd,>
i (t, t′) are the greater than components of the contour-ordered

counterpartsGcd
i (τ, τ ′) of the two-particle Green functions of (13.46). Since we

are now dealing with two-particle Green functions, the analytic continuation
rules of Chap. 4 are not immediately applicable, and a certain amount of
formal work is needed before we have explicit expressions from which physical
consequences can be extracted.

As the first step we express the Green functions (13.46) in terms of two-
particle Green functions which only involve the central region operators. This
step is fully analogous with our derivation of the current formula in Chap. 12:
there we eliminated the c-operators from the hybrid function G<

n,kα(t− t′) =
i〈ckα(t′)dn(t)〉, and thereby expressed it in terms of the central region Green
function Gnm and the lead Green function gkα (see (12.14)). Now there are
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two c-operators in Gcd
i to be eliminated; therefore the algebra is slightly more

complex. Both methods for eliminating the c-operators discussed in Chap. 12
can be used, and here we use the S-matrix expansion because it appears more
systematic. Consider then, as an example, the nonequilibrium counter part of
gcd
2 , which we treat as follows (the other components are similar, or simpler

than the chosen example)

Gcd
2 (τ, τ ′) = i2〈TCc

†
k(τ)d(τ)d†(τ ′)ck′(τ ′)〉

= i2〈TC c̃
†
k(τ)d̃(τ)d̃†(τ ′)c̃k′(τ ′)S〉, (13.48)

where tildes denote interaction picture with respect to the tunneling coupling,
and the S-matrix is

S =
∞∑

j=0

(−i)j

j!

∫
C

dτ1 · · ·
∫

C

dτj〈TCH̃T (τ1) · · · H̃T (τj)〉, (13.49)

with the tunneling Hamiltonian

HT =
∑

k

[tkc
†
kd+ t∗kd

†ck]. (13.50)

Up to second order in HT the Green function becomes

Gcd
2 (τ, τ ′) = i2〈TC c̃

†
k(τ)d̃(τ)d̃†(τ ′)c̃(τ ′)k′ 〉

+ i2
(−i)2

2!

〈
TC c̃

†
k(τ)d̃(τ)d̃†(τ ′)c̃k′ (τ ′)

×
∫

dτ1
∫

dτ2
∑
k1,k2

[tk1 c̃
†
k1

(τ1)d̃(τ1) + t∗k1
d̃†(τ1)c̃(τ1)k1 ]

× [tk2 c̃
†
k2

(τ2)d̃(τ2) + t∗k2
d̃†(τ2)c̃k2(τ2)]

〉
+ · · · , (13.51)

where the dots represent higher order terms. The expectation values in (13.51)
can now be factorized, because in the interaction picture the c̃ and d̃ operators
are independent. We find (by a change of dummy variables, we see that (13.51)
gives rise to two identical terms, thereby canceling the factor 1/2)4

Gcd
2 (τ, τ ′) = −δkk′g0k(τ ′, τ)G0(τ, τ ′) −

∫
dτ1

∫
dτ2

∑
k1k2

tk1t
∗
k2

×〈TC c̃
†
k(τ)c̃k′ (τ ′)c̃†k1

(τ1)c̃k2(τ2)〉i2〈TC d̃(τ)d̃†(τ ′)d̃(τ1)d̃†(τ2)〉.
(13.52)

4 The overall sign of the second term in (13.52) is determined as follows. One
requires an even number of permutations (in fact, eight) to bring all c̃′s and d̃′s
adjacent to each other. The minus sign comes from the (−i)2 of the second-order
expansion.
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We must next consider the expectation values involving four c̃′s and four
d̃′s. Since the central region may contain interactions, the d̃-terms cannot be
simplified, while the noninteracting nature of the contacts allows a further
factorization:

〈TC c̃
†
k(τ)c̃k′ (τ ′)c̃†k1

(τ1)c̃k2(τ2)〉 = 〈TC c̃
†
k(τ)c̃k′ (τ ′)〉〈TC c̃

†
k1

(τ1)c̃k2(τ2)〉
+ 〈TC c̃

†
k(τ)c̃k2 (τ2)〉〈TC c̃k′(τ ′)c̃†k1

(τ1)〉
= −δkk′δk1k2g

0
k(τ ′, τ)g0k1

(τ2, τ1)

+ δkk2δk′k1g
0
k(τ2, τ)gk′ (τ ′, τ1). (13.53)

The first term of (13.52) and the first line of (13.53) can be combined:

−δkk′g0k(τ ′, τ)
[
G0(τ, τ ′) +

∑
k1

∫
dτ1

∫
dτ2|tk1 |2g0k1

(τ2, τ1)

× i2〈TC d̃(τ)d̃†(τ ′)d̃(τ1)d̃†(τ2)〉
]
. (13.54)

The quantity in square brackets is recognized as the beginning of the series
expansion of the full central region Green function,G(τ, τ ′)=−i〈TCd(τ)d†(τ ′)〉
= −i〈TC d̃(τ)d̃†(τ ′)S〉. It is straightforward to see that the higher order terms
in HT which have g0k(τ ′, τ) as a common factor term by term reproduce the
series expansion for G(τ, τ ′).5 We thus conclude that all these terms sum up
to −δkk′g0k(τ, τ ′)G(τ, τ ′). A similar analysis can be applied to the second line
in (13.53). Qualitatively, the term obtained thus far can be written as (sup-
pressing all variables) tt∗(g0)2〈d̃d̃†d̃d̃†〉, which is nothing but the zeroth order
term of the series expansion of an interacting two-particle Green function for
the central region. Higher order terms in the S-matrix expansion generate the
full series for the interacting two-particle Green function, in full analogy of
what was found in (13.54) (though with slightly more involved combinatorics).
Combining the results we have thus obtained

Gcd
2 (τ, τ ′) = −δkk′g0k(τ ′τ)G(τ, τ ′) −

∫
dτ1

∫
dτ2t∗ktk′

× g0k(τ2, τ)g0k′ (τ ′, τ1)Gdd
2 (τ, τ ′, τ1, τ2), (13.55)

where
Gdd

2 (τ, τ ′, τ1, τ2) = i2〈TCd(τ)d†(τ ′)d(τ1)d†(τ2)〉. (13.56)

Similar calculations for the remaining Green functions yield

Gcd
1 (τ, τ ′) = −t∗kt∗k′

∫
dτ1

∫
dτ2g0k(τ1, τ)g0k′ (τ2, τ ′)Gdd

1 (τ, τ ′, τ1, τ2), (13.57)

5 It is left as an exercise to check that the combinatorial factors combine correctly.
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Gcd
3 (τ, τ ′) = −δkk′g0k(τ, τ ′)G(τ ′, τ) − tkt∗k′

∫
dτ1

∫
dτ2

× g0k(τ, τ1)gk′ (τ2, τ ′)Gdd
3 (τ, τ ′, τ1, τ2), (13.58)

Gcd
4 (τ, τ ′) = −tktk′

∫
dτ1

∫
dτ2g0k(τ, τ1)g0k′(τ ′, τ2)Gdd

4 (τ, τ ′, τ1, τ2), (13.59)

where

Gdd
1 (τ, τ ′, τ1, τ2) = i2〈TCd(τ)d(τ ′)d†(τ1)d†(τ2)〉, (13.60)

Gdd
3 (τ, τ ′, τ1, τ2) = i2〈TCd

†(τ)d(τ ′)d(τ1)d†(τ2)〉, (13.61)

Gdd
4 (τ, τ ′, τ1, τ2) = i2〈TCd

†(τ)d†(τ ′)d(τ1)d(τ2)〉, (13.62)

respectively. We have thus far obtained

S(τ, τ ′) =
( e
h̄

)2 {∑
k

|tk|2[g0k(τ ′, τ)G(τ, τ ′) + g0k(τ, τ ′)G(τ ′, τ)]

+
∑
kk′

|tk|2|tk′ |2
∫

dτ1
∫

dτ2

× [−g0k(τ1, τ)g0k′ (τ2, τ ′)Gdd
1 (τ, τ ′, τ1, τ2)

+ g0k(τ2, τ)g
0
k′ (τ ′, τ1)Gdd

2 (τ, τ ′, τ1, τ2)

− g0k(τ, τ1)g0k′(τ2, τ ′)Gdd
3 (τ, τ ′, τ1, τ2)

− g0k(τ, τ1)g0k′(τ ′, τ2)Gdd
4 (τ, τ ′, τ1, τ2)]

}
+ h.c.− 2〈IL〉2. (13.63)

No approximations have been employed in arriving at (13.63), and it forms
an entirely general starting point for noise calculations for a large variety of
systems.

The next task in the general program is to extract the τ > τ ′ part from
(13.63). This is straightforward for the first line, but appears complicated for
the remaining terms because of the two-particle Green functions. We have
not discussed in this book how the analytic continuation rules for two-time
functions can be generalized to objects involving four time labels, as is the
case with (13.63). We do not embark on this ambitious project here. Instead,
we make a Hartree–Fock level approximation to the two-particle Green func-
tions in a fashion quite analogous to our discussion of transport through the
Coulomb Island in Chap. 12. Specifically, we approximate

Gdd
1 (τ, τ ′, τ1, τ2) ≈ G(τ, τ2)G(τ ′, τ1) −G(τ, τ1)G(τ ′, τ2),

Gdd
2 (τ, τ ′, τ1, τ2) ≈ G(τ, τ ′)G(τ1, τ2) −G(τ, τ2)G(τ1, τ ′),

Gdd
3 (τ, τ ′, τ1, τ2) ≈ G(τ1, τ)G(τ ′, τ2) −G(τ ′, τ)G(τ1, τ2),

Gdd
4 (τ, τ ′, τ1, τ2) ≈ G(τ2, τ)G(τ1, τ ′) −G(τ1, τ)G(τ2, τ ′). (13.64)
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When substituting these expressions to (13.63), we observe that the two
kinds of terms are generated: terms where the τ1- and τ2-integrals can be
done separately, and terms where the two integrals are intertwined. We be-
gin by considering the terms of the first kind, which we call “disconnected”
terms.

13.8.1 The Disconnected Terms

The disconnected part of the noise is

Sdis(τ, τ ′) =
( e
h̄

)2 {∑
kk′

|tk|2|tk′ |2
∫

dτ1
∫

dτ2

× [g0k(τ1, τ)g0k′ (τ2, τ ′)G(τ, τ1)G(τ ′, τ2)

− g0k(τ2, τ)g0k′(τ ′, τ1)G(τ, τ2)G(τ1, τ ′)

− g0k(τ, τ1)g0k′(τ2, τ ′)G(τ1, τ)G(τ ′, τ2)

+ g0k(τ, τ1)g0k′(τ ′, τ2)G(τ1, τ)G(τ2, τ ′)]
}

+ h.c. (13.65)

Since the τi-integrals are factorized, we can consider them one at a time. Let
us examine, say, the first τ1-integral in (13.65):

∫
dτ1g0k(τ1, τ)G(τ, τ1). But

at first sight the analytic continuation of this term seems ambiguous: there
is just one time label, and a lesser/greater part does not seem to have any
meaning. However, going back to the origin of this term, the first line in
(13.46), we see that that the time τ in g0k must be greater than the time τ in
G (because otherwise c†(τ) would not be left of d(τ)), and therefore what we
really need is ∫

dτ1g0k(τ1, τ+)t∗kG(τ, τ1), (13.66)

i.e., the lesser component of
∫

dτ1G(τ, τ1)g0k(τ1, τ), which is (we reintroduce
the central region quantum number n)[∫

dτ1Gn(τ, τ1)t∗kg
0
k(τ1, τ)

]<

=
∫

dt1[Gr(t, t1)t∗kg
0,<
k (t1, t)

+G<(t, t1)t∗kg
0,a
k (t1, t)]

≡ G<
nk(t, t), (13.67)

i.e., the very same hybrid Green function (12.10) we encountered in Chap. 12
when deriving the expression for current. On the second line of (13.65) we
encounter a term with a reverse order of the time labels, which is evalu-
ated as [∫

dτ1g0k′(τ ′, τ1)tk′Gn(τ1, τ ′)
]<

= G<
k′n(t′, t′). (13.68)
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The remaining terms in (13.65) can be treated similarly, and we end
up with

Sdis(t, t′) =
( e
h̄

)2∑
kk′

[tktk′G<
nk(t, t)G<

nk′ (t′, t′) − tkt∗k′G<
nk(t, t)G<

k′n(t′, t′)

− t∗ktk′G<
kn(t, t)G<

nk′ (t′, t′) + t∗kt
∗
k′G<

kn(t, t)G<
k′n(t′, t′)] + h.c.

= 2
( e
h̄

)2∑
kk′

[tkG<
nk(t, t) − t∗kG<

kn(t, t)]

× [tk′G<
nk′(t′, t′) − t∗k′G<

k′n(t′, t′)] ≡ 2〈IL〉2, (13.69)

thereby exactly canceling the −2〈IL〉2 term appearing in (13.45). This can-
cellation was desirable, because otherwise the zero-frequency component
S(ω = 0) would acquire an anomalous zero-frequency delta-peak. We also
note that an analogous cancellation occurred in the calculation of electrical
conductivity (Chap. 9), where the disconnected part of the current–current
correlation function canceled the diamagnetic term which diverges at zero
frequency, see (9.18).

13.8.2 The Connected Terms

The remaining terms, which give the noise spectrum within Hartree–Fock
approximation (or in any other mean-field approximation), read

S(τ, τ ′) =
( e
h̄

)2 {∑
k

|tk|2[g0k(τ ′, τ)G(τ, τ ′) + g0k(τ, τ ′)G(τ ′, τ)]

+
∑
kk′

|tk|2|tk′ |2
∫

dτ1
∫

dτ2

× [−g0k(τ1, τ)g0k′ (τ2, τ ′)G(τ, τ2)G(τ ′, τ1)
+ g0k(τ2, τ)g0k′ (τ ′, τ1)G(τ, τ ′)G(τ1, τ2)
+ g0k(τ, τ1)g0k′ (τ2, τ ′)G(τ ′, τ)G(τ1, τ2)

− g0k(τ, τ1)g0k′ (τ ′, τ2)G(τ2, τ)G(τ1, τ ′)]
}

+ h.c. (13.70)

The various terms in (13.70) can be expressed in terms of ring diagrams (see,
e.g., [301], or [49]), which also may be used to find ways of going beyond the
present level of approximation. We do not pursue this line here, and consider
next the analytic continuation of (13.70) and its τ > τ ′ component. For the
first two terms the result is obtained readily:[

g0k(τ ′, τ)G(τ, τ ′) + g0k(τ, τ ′)G(τ ′, τ)
]
τ>τ ′

= g0,<
k (t′, t)G>(t, t′) + g0,>

k (t, t′)G<(t′, t). (13.71)

The terms with the double integrations come in two different types. The first
one is, which we rearrange slightly,
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dτ1G(τ ′, τ1)g0k(τ1, τ)

∫
dτ2G(τ, τ2)g0k′(τ2, τ ′)

]
τ>τ ′

=
∫

dt1[Gr(t′, t1)g
0,r
k (t1, t) +G<(t′, t1)g

0,a
k (t1, t)]

×
∫

dt2[Gr(t, t2)g
0,>
k′ (t2, t′) +G>(t, t2)g

0,a
k′ (t2, t′)]. (13.72)

Analogously, the second type of term is written as[
G(τ, τ ′)

∫
dτ1g0k′(τ ′, τ1)G(τ1, τ2)g0k(τ2, τ)

]
τ>τ ′

= G>(t, t′)
∫

dt1
∫

dt2[g
0,r
k′ (t′, t1)Gr(t1, t2)g

0,<
k (t2, t)

+ g0,r
k′ (t′, t1)G<(t1, t2)g

0,a
k (t2, t)

+ g0,<
k′ (t′, t1)Ga(t1, t2)g

0,a
k (t2, t)]. (13.73)

The remaining terms in (13.70) are treated in the same way. The resulting
expression contains thirty terms, and there is no need to present it here,
because its structure is obvious from the terms discussed above. We note
that the results obtained so far would allow a discussion of noise also in a
situation where the external fields are time dependent, as has been the case
in most examples discussed in this chapter. Alternatively, we could analyze
the full frequency dependence of the noise. We do not wish to enter these
interesting but rather complicated issues here, and simply consider the zero-
frequency component of the noise under stationary conditions. Then, all the
time integrals are convolutions, and the zero-frequency noise is simply the
frequency integral: S(0) =

∫
d(t − t′)S(t − t′) =

∫
dε/(2π)[S1(ε) + S2(ε)] ≡

S1 + S2, where S1,2 are the expressions arising from the g0G and g0g0GG
terms, respectively. Explicitly, let us consider S1:

S1 = 2
( e
h̄

)2
∫

dε
2π

∑
k

|tk|2[g0,<
k (ε)G>(ε) + g0,>

k (ε)G<(ε)]

= 2
( e
h̄

)2
∫

dε
2π

[iΓL(ε)nL(ε)(Gr(ε) −Ga(ε))

+ iΓL(ε)(2nL(ε) − 1)G<(ε)], (13.74)

where we recalled the definition of the level-width function,

ΓL(ε) = 2π
∑

k

|tk|2δ(ε− εk), (13.75)

and eliminated G> using the relation G> − G< = Gr − Ga. The factor two
comes from the hermitean conjugate. The 28 terms constituting S2 are treated
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in the same way, and we just state the final result:

S = 2
( e
h̄

)2
∫

dε
2π

{
inL(ε)ΓL(ε)[Gr(ε) −Ga(ε)]

+ i[2nL(ε) − 1]ΓL(ε)G<(ε)

+ [Gr(ε) −Ga(ε)]nL(ε)ΓL(ε)[Gr(ε) −Ga(ε)]ΓL(ε)
+ [Gr(ε) −Ga(ε)][2nL(ε) − 1]ΓL(ε)G<(ε)ΓL(ε)
−nL(ε)[1 − nL(ε)][Ga(ε)ΓL(ε)Ga(ε)ΓL(ε) +Gr(ε)ΓL(ε)Gr(ε)ΓL(ε)]
+G<(ε)ΓL(ε)[Gr(ε) −Ga(ε)]ΓL(ε)

+G<(ε)ΓL(ε)G<(ε)ΓL(ε)
}
. (13.76)

We next make use of the relations derived in Chap. 12:

G<(ε) = iGr(ε)[nL(ε)ΓL(ε) + nR(ε)ΓR(ε)]Ga(ε),
Gr(ε) −Ga(ε) = −iGr(ε)[ΓL(ε) + ΓR(ε)]Ga(ε),

Ga(ε)ΓL(ε)Ga(ε)ΓL(ε) + Gr(ε)ΓL(ε)Gr(ε)ΓL(ε)
= [Ga(ε) −Gr(ε)]ΓL(ε)[Ga(ε) −Gr(ε)]ΓL(ε)

+2Gr(ε)ΓL(ε)Ga(ε)ΓL(ε),
T (ε) = ΓL(ε)Ga(ε)ΓR(ε)Gr(ε). (13.77)

A substitution of these in (13.76) leads to a rather formidable expression:

S = 2
( e
h̄

)2
∫

dε
2π

{
nL(ε)ΓL(ε)Gr(ε)[ΓL(ε) + ΓR(ε)]Ga(ε)

− [2nL(ε) − 1]ΓL(ε)Gr(ε)[nL(ε)ΓL(ε) + nR(ε)ΓR(ε)]Ga(ε)
−Gr(ε)[ΓL(ε) + ΓR(ε)]Ga(ε)nL(ε)ΓL(ε)Gr(ε)[ΓL(ε) + ΓR(ε)]
×Ga(ε)ΓL(ε) +Gr(ε)[ΓL(ε) + ΓR(ε)]Ga(ε)[2nL(ε) − 1]ΓL(ε)Gr(ε)
× [nL(ε)ΓL(ε) + nR(ε)ΓR(ε)]Ga(ε)ΓL(ε)
−nL(ε)[1 − nL(ε)]{−Gr(ε)[ΓL(ε) + ΓR(ε)]Ga(ε)
×ΓL(ε)Gr(ε)[ΓL(ε) + ΓR(ε)]Ga(ε)ΓL(ε) + 2Gr(ε)ΓL(ε)Ga(ε)ΓL(ε)}
+Gr(ε)[nL(ε)ΓL(ε) + nR(ε)ΓR(ε)]Ga(ε)ΓL(ε)Gr(ε)[ΓL(ε) + ΓR(ε)]
×Ga(ε)ΓL(ε) −Gr(ε)[nL(ε)ΓL(ε) + nR(ε)ΓR(ε)]Ga(ε)

×ΓL(ε)Gr(ε)[nL(ε)ΓL(ε) + nR(ε)ΓR(ε)]Ga(ε)ΓL(ε)
}
. (13.78)

Since we expect the final result to be symmetric with respect to ΓL(ε) and
ΓR(ε), we know that the coefficients of ΓL(ε)4, ΓL(ε)3ΓR(ε), and ΓL(ε)2

ΓR(ε)0 must vanish. Let us check this:

ΓL(ε)4ΓR(ε)0 :
−nL(ε) + nL(ε)[2nL(ε) − 1] + nL(ε)[1 − nL(ε)] + nL(ε) − nL(ε)2 = 0
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ΓL(ε)3ΓR(ε) :
−2nL(ε) + [2nL(ε) − 1][nL(ε) + nR(ε)]

+ 2nL(ε)[1 − nL(ε)] + nL(ε) + nR(ε) − 2nL(ε)nR(ε) = 0
ΓL(ε)2ΓR(ε)0 :
nL(ε) − [2nL(ε) − 1]nL(ε) − 2nL(ε)[1 − nL(ε)] = 0

Thus everything is indeed homogeneous with respect to L/R, and it is easy
to identify the transmission coefficient (or its square), and we find

S = 2
( e
h̄

)2
∫

dε
2π

{
nL(ε)T (ε) − [2nL(ε) − 1]nR(ε)T (ε) − nL(ε)T (ε)2

+ [2nL(ε) − 1]nR(ε)T (ε)2 + nL(ε)[1 − nL(ε)]T (ε)2

+nR(ε)T (ε)2 − nR(ε)2T (ε)2
}

= 2
( e
h̄

)2
∫

dε
2π

{
{nL(ε)[1 − nL(ε)] + nR(ε)[1 − nR(ε)]}T (ε)

+ [nL(ε) − nR(ε)]2T (ε)[1 − T (ε)]
}
. (13.79)

Equation (13.79) is a well-known, and important result. The first term ac-
counts for thermal noise (i.e., it vanishes at zero temperature), while the sec-
ond term is a nonequilibrium term, which vanishes at zero bias. We refer to
the review of Blanter and Büttiker [47] for an extended analysis of the various
physical consequences; our motivation for presenting its detailed derivation
with the nonequilibrium Green function technique is methodological: the ex-
pressions presented here can be applied in many situations, for example in
connection with ab initio calculations of noise in molecular electronics. Fur-
ther, with the general approach outlined here, one can use systematic methods
to derive noise formulas which apply beyond the effective mean field theories,
such as the Hartree–Fock factorization used here.



14

Optical Free-Carrier Interband Kinetics
in Semiconductors

Summary. The kinetics of the interband transitions in optically excited semicon-
ductors is discussed and a brief historic review of this field is given. As an intro-
ductory example the free-carrier kinetics is formulated in terms of nonequilibrium
Green functions, resulting in the semiconductor optical Bloch equations.

14.1 Interband Transitions
in Direct-Gap Semiconductors

In Part IV of this book, we want to extend the quantum kinetic theory to
the treatment of optical interband kinetics in laser-excited semiconductors.
Such a quantum kinetic treatment is particularly relevant for the understand-
ing of the ultrafast time-resolved spectroscopy with semiconductors which
has been developed in the last two decades [321]. Laser pulses with a dura-
tion of only a few femtoseconds are available, so that one can study experi-
mentally the kinetics of the excited carriers on a femtosecond or picosecond
timescale. On these timescales the excited carriers behave, at least to some
extent, like coherent quantum-mechanical waves. Another important recent
progress in semiconductor physics, namely the development of microstructures
with quantum confinement for the carriers on nanometer length scales, further
enhances the need for a quantum kinetic description. In these low-dimensional
structures, the phase space for phase destroying scattering processes is con-
siderably reduced, so that the coherent behavior of the electronic excitations
is more long lived than in bulk materials. For the description of the par-
tially coherent behavior of the optically excited carriers, quantum kinetics is
required.

14.1.1 Reduced Density Matrices

For the treatment of the interband quantum kinetics, two methods exist. The
first method uses reduced density matrices which depend only on one time.
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Starting with an equation of motion for the single-particle density matrix,
one gets a whole hierarchy of equations of higher and higher density matrices.
This hierarchy is truncated on a certain level by factorizing higher-order
density matrices into lower ones [335]. Taking a formal integration of the
highest considered equation and inserting the resulting density matrix on
the next lower level, one gets necessarily integrals over the past of the sys-
tem. Thus the kinetics becomes non-Markovian with memory integrals. Early
applications of this method to ultrafast semiconductor spectroscopy are due
to Zimmermann [382, 383], Mukamel [269, 271], Stahl et al. [311], and Kuhn
et al. [211,213,308,309]. For the low-excitation regime, a dynamics-controlled
truncation scheme for the hierarchy of the density matrix equations has been
developed by Axt and Stahl [12]. This method allows to include systematically
all contributions up to a certain order in the laser light fields. In recent years,
the number of publications in which the density matrix method has been used
has increased so strongly that we can quote only some representative investi-
gations which treated the following problems: quantum kinetics of the coupled
carrier–phonon system [310], quantum kinetics of dephasing in an exactly solv-
able two-level model with diagonal electron–phonon interaction [151], coher-
ent control with phase-locked double pulses [13,148,151,338], heavy hole–light
hole quantum beats [189, 214], quantum kinetics in spatially inhomogeneous
situations [152], quantum kinetics of excitons including exciton–molecule cor-
relations [30,306,324], and quantum kinetics for pump–probe as well as hyper-
Raman experiments [134,135].

Only recently Kuhn et al. [374] have pointed out the possibility to treat
the screening of the Coulomb interactions also with the density matrix theory.
For this end the four-point correlation functions have to be taken into account.
This fact was known in plasma physics already as early as 1963 [375]. The
advantage of this method is that also screened Coulomb exchange interactions
can be included. However the method is so involved that it has not been used
for the analysis of femtosecond experiments. The only application has been
the study of carrier relaxation in a one-dimensional quantum wire with only
one band [374]. The equation of motion technique for the density matrices has
recently been used also for interacting bosonic excitons coupled to a cold ther-
mal bath of acoustic phonons [313]. For a sufficiently low bath temperature
and a sufficiently high exciton density, the system undergoes a Bose–Einstein
condensation. Because the particle spectrum changes from a quadratic one
in the normal phase to a phonon-like spectrum in the condensed phase, it
is important to use a quantum kinetic description. Only quantum kinetics
allows to incorporate the actual particle energies in the scattering integrals
self-consistently. Starting with an uncondensed system, the quantum kinet-
ics for the uncondensed and the condensed particles describe the kinetics
of condensation. The solutions approach the self-consistent thermal equilib-
rium Hartree–Fock–Bogoliubov solutions with a finite condensate amplitude
asymptotically.
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14.1.2 Nonequilibrium Green Functions

Nonequilibrium Green functions – which will be mainly used here – provide
an alternative method, as recognized in the eighties, e.g., by Schäfer and
Treusch [304]. For femtosecond spectroscopy, a separation in fast and slow
temporal variables is no longer possible.

14.1.3 Calculations
of the Two-Time-Dependent Nonequilibrium Green Function

Without further approximations particle propagators which depend on two-
time arguments have to be calculated directly from their quantum kinetic
equations. Already very early such an ambitious approach has been fol-
lowed up by Hartmann and Schäfer [137] for a one-pulse excitation and
scattering of the excited carriers by longitudinal optical (LO) phonons. In
this work [137] G<(t, t′) and G>(t, t′) were calculated as the two inde-
pendent Green functions (GF), starting with an equilibrium free-particle
G0, >

< (t − t′) long before the optical pulse arrived. It is hoped that the
error introduced by the approximate initial conditions is cured by inte-
gration from a sufficiently remote initial time. Because such a numerical
approach is very time consuming, neither a systematic variation of par-
ameters nor an analysis of actual two-pulse experiments was performed at
that time. Only later with faster computers, this direct numerical solution
of the Kadanoff–Baym equations for the phonon scattering has been picked
up again [341] and applied to calculate the four-wave mixing (FWM) sig-
nal [305]. The calculations of optical properties of semiconductor with the
nonequilibrium Green function theory is described in a textbook by Schäfer
and Wegener [307].

Gartner et al. [121, 122] used a different method by calculating G<(t, t′)
and Gr(t, t′). Because the retarded electron and hole polaron Green functions
depend in equilibrium – long before the optical pulses arrived – again only
on the time difference, while the particle propagators are zero, i.e., G<

ee = 0
and G<

hh = 0, it is easy to calculate Gr(t − t′) from the Dyson equation
for the retarded Green function. These functions serve as initial condition
for the calculation of the nonequilibrium Green functions. This initial condi-
tion is at least in principle exact. In particular it has been shown that the
generalized Kadanoff–Baym ansatz (GKBA) (see Sect. 8.2, and also below)
is fulfilled quite well for small polaron coupling constants, while for larger
Fröhlich coupling constants O(α) = 1 deviations occur. Recent time-resolved
differential transmission experiments on CdTe with α = 0.31 have therefore
been analyzed successfully by directly computing the two-time nonequilib-
rium Green functions as described above [40]. Meden et al. [258] studied a
one-dimensional electron–phonon model, in which, after linearization of the
spectrum, the electrons can be described as bosons. This model allows to solve
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the electron–phonon quantum kinetics exactly. This model has been incorpo-
rated by Zimmermann in the quantum kinetic calculations of a differential
transmission spectrum [120]. The above-mentioned dynamic-controlled trun-
cation has also been formulated [221] for the nonequilibrium GF formalism.

Considerable work also went into the direct solution of the Kadanoff–Baym
equation for electron–electron scattering [45, 53, 218–220], however only with
the use of an equilibrium random-phase approximation (RPA) screening which
has even been taken in the static approximation. At least in the femtosecond
regime such an approach is not consistent, because as it has been shown by
early work of El Sayed et al. [99] and more rigorously by Bányai et al. [22], that
the buildup of screening after the pulse needs some time which is of the order
of an inverse plasma frequency in the system of excited carriers. In Bányai
et al. [22], the two-time-dependent RPA-screened Coulomb interaction poten-
tial has been calculated self-consistently together with the quantum kinetics
of the carriers which have been treated by one-time density matrices as will
be discussed below in more detail.

A complete calculation within two-time electron Green functions and two-
time screened interaction potentials is still missing. Because RPA is not a
conserving approximation [32, 33], one obtains in the full two-time quan-
tum kinetics a q → 0 divergence in the RPA intraband-polarization loop.
Gartner et al. [123] showed that this divergence can be eliminated by a vertex
correction in the polarization loop. The vertex has to be calculated from a
Bethe–Salpeter equation in the screened ladder approximation. Because of the
complexity of these equations, numerical solutions have not yet been obtained.

A different attempt to solve the quantum kinetic equation without the use
of the GKBA (see Sect. 14.1.4) is due to Kalvová and Velický [192–194], at
least for a simple semiconductor model with impurity scattering only.

14.1.4 Replacement of Two-Time Propagators
by a One-Time Density Matrix and a Two-Time Spectral Function

The majority of calculations for actual two-beam femtosecond experiments
used a different approach. They treated only the quantum kinetic equation
for the equal-time particle propagator G<(t, t) which is up to a factor i the
single-particle density matrix. However, the self-energy of this Kadanoff–Baym
equation introduces a coupling to off-diagonal Green functions in the time
arguments. In a pioneering paper, Lipavsky et al. [246] have generalized the
Kadanoff–Baym ansatz for Green functions from frequency space to its real-
time representation in nonequilibrium: According to this GKBA, the two-time
particle propagator is given approximately by the density matrix at the ear-
lier time (say t′) times a retarded Green function Gr(t, t′), which describes the
correlation between different times. The idea of this approach is that at least
in the weak-coupling case, one can then use relatively simple approximations
for the retarded Green functions after the causality is built in correctly. Later
the GKBA has been proven by explicit calculations [121] to hold very well for
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small electron-LO-phonon coupling constants αe. Thus for the model semi-
conductor, GaAs with αe = 0.06, on which most of the femtosecond pulse
spectroscopy experiments have been performed, the GKBA is a very good
approximation [121]. With the use of the GKBA one gets a closed quantum
kinetic equation for the single-particle density matrix which contains scat-
tering integrals, showing that quantum kinetics on short timescales is non-
Markovian. This one-time approach for the Green function quantum kinetics
has first been used for the cases in which the interaction with LO-phonons
dominates the relaxation and dephasing kinetics [20,140,217]. Successively the
Coulomb Hartree–Fock interaction has been taken into account [346]. In these
early theories, the retarded (and advanced) Green functions have been taken
in a free-particle Wigner–Weisskopf approximation, i.e., using a free-particle
equilibrium GF with an additional exponential damping. Successively, it has
been recognized that much better results can be obtained if the retarded
Green function is calculated from its Dyson equation under the influence of
the mean-field interactions, i.e., the Coulomb Hartree–Fock interaction and
the self-consistent interaction with the coherent optical light pulses [347,349].

This self-consistent theory has been applied to the calculation of FWM
experiments on GaAs with 15 fs pulses [21,294,337,368]. Due to the partially
coherent dynamics in the scattering integrals, the theory predicts oscillations
on top of the decaying time-integrated FWM signal due to the interference
of interband-polarization components which are coupled by the exchange of a
LO-phonon in the conduction band. The observation of these oscillations [21]
was the first direct evidence of the real-time quantum kinetics, a striking effect
which cannot be understood using the semiclassical Boltzmann-type scatter-
ing rates. The exponential Wigner–Weisskopf damping of the retarded Green
functions has also been recognized to be an oversimplification. The retarda-
tions typical for quantum kinetics on timescales smaller than the period of
a lattice oscillation imply that the damping starts in a Gaussian form which
only at later times approaches an exponential decay. As an analytical approx-
imation a hyperbolic secant law has been shown to reproduce this scenario
rather well [147], justifications have been obtained by numerical calculations of
the polaron-retarded Green function [23, 121]. Differential transmission spec-
troscopy (DTS) with the time-resolved buildup of phonon cascades of Leit-
enstorfer et al. [120] have been analyzed in Schmenkel et al. [312]. It has
been shown that the experiment can only be explained by the retarded quan-
tum kinetical scattering integrals and not by the instantaneous Boltzmann
scattering rates. Furthermore, coherence effects between the pump and probe
beam – both taken from a two-color laser – had to be taken into account in a
quantitative analysis.

The quantum kinetics in the high-density regime is governed by electron–
electron scattering. Because many-body effects such as screening can be
treated best in the Green function formalism, this approach has been used
intensively to describe the high-density resonant femtosecond experiments.
A review by Binder and Koch [44] emphasizes the use of the second Born
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approximation so far applied mainly in the Markovian limit of the electron
quantum kinetics. The general quantum kinetics with a two-time-dependent
screened Coulomb potential and one-time density matrices has been formu-
lated in Haug and Ell [145]. These studies of the ultrashort-time regime of
the Coulomb quantum kinetics have all been done in the so-called GW-
approximation for the scattering self-energies, because of the complexity of
the momentum integrations of the vertex contribution. Early attempts to
calculate, e.g., the time-integrated FWM signal treated only the initial time
interval by using a bare Coulomb potential, assuming that the considered
times were too short to have already a substantial screening [99]. In fact
the predictions of that model, particularly a polarization decay according to
exp(−(t/t0)3), coincided well with the semiclassical treatment of the dephas-
ing of an electron–hole pair function in a random potential [131]. However,
this law has never been observed experimentally indicating that the regime of
a bare Coulomb interaction is not accessible by experiments even with pulses
as short as 10 fs, because with short intensive femtosecond pulses the buildup
times for screening get very short, too. Only for relatively low densities and
short delay times, the bare Coulomb potential quantum kinetics resulted for
DTS experiments [72] in a qualitatively good description of the experiment.

As mentioned above, the buildup kinetics of a screened Coulomb potential
was calculated by El Sayed et al. [100] using mean-field semiconductor Bloch
equations to determine the density and distribution of the excited carri-
ers which cause the screening. It has been shown that a plasmon pole is
formed in the effective screened potential in roughly an inverse plasma fre-
quency. However this building up of the screening is a rather continuous
process. Bányai et al. [22] finally calculated both the two-time-dependent
screened Coulomb potential and the resulting quantum kinetics of electron
relaxation and interband-polarization dephasing self-consistently. Applica-
tions of this theory to femtosecond DTS experiments for larger density and
delay regimes [355] resulted in a generally good agreement, applications to
the 11 fs FWM experiments of Wegener et al. in bulk GaAs [159] and quan-
tum well GaAs [266] yielded an excellent agreement with the time-resolved
FWM signals. They changed from a photon echo at earlier delay times to an
induced polarization decay at longer delay times. This change of the time-
resolved FWM signals is a direct manifestation of the buildup of a collective
plasma from a gas of individual, uncorrelated carriers. The time-integrated
signal both in three-dimensional and two-dimensional decayed according to
theory and experiment with an inverse dephasing time which varies as n1/3.
Recently Vu et al. [356] applied the time-dependent screening to both the
LO-phonon mediated interaction and to the Coulomb interaction and calcu-
lated self-consistently a two-time-dependent potential which shows two res-
onances corresponding to mixed phonon–plasmon modes. Applying coherent
control to the resonant 11 fs FWM experiment, Wegener et al. have been able
to observe these predicted oscillations superimposed on the decay of the time-
integrated FWM signal [357]. The observed oscillation frequency follows for
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varying excitation density the upper branch of the mixed phonon–plasmon
mode, for which the calculated effective potential is strongest.

Femtosecond experiments with an optical pump and a delayed THz probe
beam [160] in GaAs have confirmed this screening scenario by measuring dir-
ectly the spectrum of the inverse dielectric function as a function of the delay
time. The plasmon resonance is seen indeed to build up in the order of 100 fs.
This experiment can be seen also as a direct observation of the buildup of a
correlated plasma or of the dressing of particles with a polarization cloud [141].
Recent optical pump and THz probe experiments in InP [161] and their quan-
tum kinetical analysis showed the evolution of the whole phonon–plasmon
mixed-mode spectrum in time. In particular the observed vanishing of the
optical phonon resonance at the LO frequency as the plasma resonance is
formed and the reappearance at later delay times at the TO frequency is well
reproduced by improved quantum kinetical calculations in which polaron eff-
ects are incorporated and in which the numerical accuracy of the time and
frequency-dependent retarded interaction potential is increased by calculating
it directly and not via the scattering components V < and V >.

Recently, several applications of quantum kinetics to the transient optical
properties of quantum dots embedded in a two-dimensional wetting layer or
quantum well have been published. For the coupling of the quantum dot car-
riers to optical phonons, the detailed phonon side mode spectra have been
calculated by Jahnke et al. [318], while the trapping and dephasing kinet-
ics by phonon-assisted processes and by Auger processes with a two-time-
dependent Coulomb potential has been studied for neutral quantum dots by
Vu et al. [359]. In the scattering kinetics between continuum states and local-
ized dot states, one has to orthogonalize the involved states [24].

With this short and certainly not complete historical review over the rather
active field of quantum kinetics for ultrafast semiconductor spectroscopy, we
conclude this introductory section. This review shows that the field, although
not much more than one decade old, has already reached a certain level of
maturity and is able to provide a good understanding of most of the presently
performed ultrafast spectroscopic studies on semiconductors. Particularly, as
far as the calculations of the two-time electron quantum kinetics are con-
cerned, the field is still waiting for further progress.

In the following we will limit ourselves, for simplicity, to a classical des-
cription of the laser light field, but the photon kinetics can, in principle, also
be included in a full quantum kinetic theory of the photons and the electrons
in a semiconductor (see, e.g., the work of Henneberger and Koch [150]). The
quantization of the light field is needed in all situations where spontaneous
emission of photons has to be considered, e.g., in the theory of semicon-
ductor luminescence in the form developed by Kira and Koch [201]. The
basic interaction of the electric field E(t) of laser light with the valence
electrons of a semiconductor is a dipole interaction. The spatial variation
of the light field can often be neglected because the wavelength is usually
much larger than other relevant length scales, e.g., the crystal cell. In second
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quantization for the electrons, the dipole interaction with a classical light field
is given by

HI =
∫

d3xψ†(x)ex · E(t)ψ(x), (14.1)

where ψ(x) is the electron field operator. This operator is expanded into
the single-particle eigenfunctions of the electrons (introductory text books
are [9, 203,250]). For bulk material one has

ψ(x) =
1√
L3

∑
µ,k

aµ,keik·xuµ,k(x), (14.2)

where eik·x is the slowly varying envelope plane wave of a freely propagat-
ing electron, and uµ,k(x) is the lattice periodic Bloch function of the band µ
and the crystal momentum k. In a mesoscopic semiconductor microstructure,
the plane wave factor is replaced by the eigenfunctions of the electrons in
the confinement potential, while the Bloch function remains essentially un-
changed [31, 146]. For a quantum well layer perpendicular to the z-direction,
e.g., the electron field operator is therefore

ψ(x) =
1√
L2

∑
nµ,k‖

anµ,k‖φnµ(z)eik‖xuµ,k(x), (14.3)

where φnµ(z) is the nth envelope function of an electron belonging to band µ
in the well potential. The momentum vector is given by k = k‖ +knez, where
kn is the expectation value of the z-component of the momentum in state n.
If all electrons are within one subband, say with n = 1, one speaks about
a quasi-two-dimensional system. In the element semiconductor of group IV,
and the isoelectronic compound semiconductors of the groups III–V, II–VI,
and I–VII, the valence electrons are described by the sp3 orbitals. Close to
the center of the Brillouin zone, the conduction band is built from s-states,
while the p-states form the top of three valence bands. Between these states
the optical transitions are dipole allowed. As far as optics is concerned the
direct-gap semiconductors, in which the extrema of the empty conduction
band and of the filled valence bands are both at the Γ point, are of particular
interest. These materials are in zeroth approximation transparent for light
with a frequency smaller than the fundamental gap Eg of the semiconductor,
but strongly absorbing for light with a frequency above the gap. For simplicity,
here we treat only a two-band model of a semiconductor with a conduction
band c and only one valence band v. We refer to the literature [9, 71, 203] for
all problems connected with the presence of three valence bands, which are
partly degenerated at the Γ point.

The interaction with the electric field E(t) of a light pulse introduces
optical transitions between the valence band v and the conduction band c. The
time-dependent dipole interaction Hamiltonian, e.g., in a bulk semiconductor,
is in this simple situation:
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HI(t) = −
∑

k

E(t)
(
dka

†
c,kav,k + h.c.

)
. (14.4)

Here, h.c. denotes the hermitian conjugate of the preceding term and dk is
the projection of the dipole matrix element in the field direction eE between
the Bloch states:

dk = e
∫

d3xu∗c,keE · xuv,k � d. (14.5)

As indicated, one can disregard the k-dependence of the dipole matrix element
in the vicinity of the Γ point. In order to simplify the notation we will suppress
the vector notation, wherever not absolutely necessary. For the laser light field
we will assume the form

E(t) = E0(t) cos(ωt), (14.6)

where ω is the central frequency of the pulse. The time-dependent amplitude
E0(t) describes a laser pulse with a width δt and a peak amplitude E0. Typi-
cally the pulses have the form of a Gaussian or of a hyperbolic secant

E0(t) = E0e−((t−t0)/δt)2 or E0(t) =
E0

cosh((t− t0)/δt)
. (14.7)

Often we take into account only the resonant terms of the interaction,
namely

HI(t) � −1
2

∑
k

E0(t)
(
dka

†
c,kav,ke−iωt + h.c.

)
. (14.8)

This is the so-called rotating-wave approximation. Sometimes the interaction
Hamiltonian is used without the factor 1/2, so that the effective field ampli-
tudes differ by this factor in the two conventions.

The energies of the electrons can, in the vicinity of the Γ point, be
described by the effective mass me of the electrons in the conduction band
and mh of the holes in the valence band:

ec,k =
Eg

2
+
k2

2me
=
Eg

2
+ εe,k (14.9)

and

ev,k = −Eg

2
− k2

2mh
=
Eg

2
− εh,k. (14.10)

14.2 Free-Carrier Kinetics Under Laser-Pulse Excitation

As an introductory example we will disregard all interactions of the excited
electrons and holes and treat the free-carrier interband kinetics of a two-band
direct-gap semiconductor. This simple model will be shown to lead to the
optical Bloch equations of a semiconductor which will serve as an important
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paradigm in the whole field of the ultrafast kinetics of laser-pulse excited
semiconductors. The relevant nonequilibrium electron Green functions in a
spatially homogeneous crystal are now 2 × 2 matrices in the band index

Gµν,k(t1, t2) = −i
〈
TC

{
aµ,k(t1)a

†
ν,k(t2)

}〉
, (14.11)

with {µ, ν} = {c, v}. The time arguments and the time-ordering operator TC

are defined on the contour C. The self-energy of this nonequilibrium electron
Green function can be written as

Σµν,k(t1, t2) = Σδ
µν,k(t1, t2) + θ(t1 − t2)Σ>

µν,k(t1, t2)

+ θ(t2 − t1)Σ<
µν,k(t1, t2). (14.12)

The singular part of the self-energy Σδ has to be treated separately, as dis-
cussed, e.g., by Danielewicz [90]. It is given by

Σδ
µν,k(t1, t2) = Σs

µν,k(t1)δ(t1 − t2). (14.13)

With the self-energy (14.12), the two Dyson equations for the particle propa-
gator become according to (5.3), where the potential U plays the role of the
singular self-energy,

G−1
0 G

< = ΣδG< +ΣrG< +Σ<Ga (14.14)

and
G<G−1

0 = G<Σδ +GrΣ< +G<Σa. (14.15)

Subtracting the two equations of motion and putting t1 = t2 = t yields (5.4):

[G−1
0 , G

<]t1=t2=t = [Σδ, G<] +ΣrG< −G<Σa

+Σ<Ga −GrΣ<. (14.16)

As an introductory example we treat free carriers only. Naturally many-
body techniques are not required for such a simple case, elementary equation
of motion techniques are sufficient. In order to get some practice with the
many-body techniques in the multiband situation, we also treat this case with
the nonequilibrium Green function method. The only remaining interaction
in this problem is that of the electrons with the light pulse. It gives rise to a
singular self-energy in the form

Σs
µν,k(t) = −dE(t)σx

µν , (14.17)

with the Pauli matrix σx =
(

0 1
1 0

)
, while the nonsingular parts of Σ are zero.

Here, E(t) is the real electric light field (14.4). With (14.17) the equation of
motion for G<

µν,k(t, t) becomes explicitly(
i
∂

∂t
− (eµ,k − eν,k)

)
G<

µν,k(t, t)
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= −dE(t)
∑

�

(σx
µ�G

<
�ν,k(t, t) −G<

µ�,k(t, t)σx
�ν ). (14.18)

First, we see that in this simple case a closed equation for the reduced den-
sity matrices G<

µν,k(t, t) results. The diagonal elements of the density matrix
simply define the electron distribution for µ, k

G<
µµ,k(t, t) = i

〈
a†µ,k(t)aµ,k(t)

〉
= i�µµ,k(t) = inµ,k(t), (14.19)

where �µµ,k is the diagonal element of the density matrix:

�µν,k(t) =
〈
a†ν,k(t)aµ,k(t)

〉
. (14.20)

Electron distributions can be measured optically, e.g., with linear gain and
absorption spectroscopy or with luminescence spectroscopy. However, in order
to obtain the electron distributions from such spectra, one always needs some
theoretical analysis in terms of a line shape theory. The off-diagonal elements
(µ �= ν)

G<
µν,k(t, t) = i

〈
a†ν,k(t)aµ,k(t)

〉
= i�µν,k(t) (14.21)

are the interband-polarization components. �cv,k, e.g., describes the annihila-
tion of a conduction band electron and the creation of a valence band electron.
The relation

�νµ,k(t) =
〈
a†µ,k(t)aν,k(t)

〉
= �∗µν,k(t) (14.22)

holds. The physical polarization of the medium by a light beam can be ob-
tained from (14.1) and (14.2). One gets in the two-band model for a real dipole
moment dk:

P (t) =
∑

k

dk[�vc,k(t) + �cv,k(t)]. (14.23)

The measurement of the coherent polarization requires techniques of nonlinear
optical spectroscopy, e.g., time-resolved FWM. In such an experiment the in-
coming beams create a laser-induced lattice. The light which is diffracted from
this lattice is determined by a certain component of the polarization. There-
fore, transient FWM experiments provide relatively direct means to observe
the time development of the polarization.

In terms of the polarization and the densities, we get the optical interband
kinetic equations:(

∂

∂t
+ i(ec,k − ev,k)

)
�cv,k(t) = −i dE(t)(�cc,k(t) − �vv,k(t)), (14.24a)

∂

∂t
�cc,k(t) = − ∂

∂t
�vv,k(t) = −i dE(t)(�cv,k(t) − �vc,k(t)). (14.24b)

The complex conjugate of (14.24a) yields the equation for �vc,k. According
to (14.6), the light field is of the form E = (1/2)E0(t)[exp(iωt) + exp(−iωt)].
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Note that often the field is defined without the factor 1/2 in front, then the
resulting field-dependent terms in the Bloch equations also differ by such a
factor. Introducing the electron–hole pair energy

ec,k − ev,k = ek (14.25)

with

ek = Eg + εk and εk = εe,k + εh,k =
k2

2µ
;

1
µ

=
1
me

+
1
mh
, (14.26)

where µ is the reduced electron–hole mass, and taking only the resonant terms
into account (rotating-wave approximation) we get, e.g.,

eiωt

(
∂

∂t
+ iek

)
�cv,k(t) =

(
∂

∂t
− i(ω − ek)

)
�cv,k(t)eiωt

= − i
2ωR(t)(�cc,k(t) − �vv,k(t)). (14.27)

Introducing the slowly varying interband-polarization component Pk, the de-
tuning δk, and the Rabi frequency ωR by

Pk(t) = �cv,k(t)eiωt, δk = ek − ω, ωR(t) = dE0(t), (14.28)

the equations of motion with additional phenomenological damping terms
become for the interband-polarization component and for the electron distri-
bution

∂

∂t
Pk =

∂Pk

∂t

∣∣∣∣
coh

− Pk

T2
, (14.29a)

∂

∂t
�cc,k(t) =

∂ρcc,k
∂t

∣∣∣∣
coh

− �cc,k(t)
T1

. (14.29b)

The coherent unitary time evolution under the action of the coherent light
pulse is according to (14.24a), (14.24b), and (14.27) given by

∂Pk

∂t

∣∣∣∣
coh

= −iδωkPk − i
2ωR(t) (�cc,k(t) − �vv,k(t)) , (14.30a)

∂ρcc,k
∂t

∣∣∣∣
coh

= ωR(t)ImPk(t). (14.30b)

In order to get a first understanding of the influence of relaxation processes,
we included the relaxation times T1 for the densities and T2 for the polariza-
tion simply by hand. T1 and T2 are called the longitudinal and transversal
relaxation times, respectively. The relaxation term for the electron density of
the valence band is −(�vv,k − 1)/T1 , because this density relaxes toward the
full valence band. Naturally, it will be the major task of quantum kinetics to
replace these simple phenomenological relaxation terms by a more appropriate
description of the relaxation processes.
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14.3 The Optical Free-Carrier Bloch Equations

Now one can introduce the three real components of the Bloch vector Uk

U1k = 2RePk(t), U2k = 2ImPk(t), U3k = �cc,k(t) − �vv,k(t). (14.31)

The first two components refer to the real and imaginary part of the interband-
polarization components. The third component is the inversion.

One gets the following equations of motion:

∂U1k

∂t
= −Γ11U1k + δkU2k, (14.32a)

∂U2k

∂t
= −Γ22U2k − δkU1k − ωR(t)U3k, (14.32b)

∂U3k

∂t
= −Γ33(U3k + 1) + ωR(t)U2k, (14.32c)

with the phenomenological damping constants:

Γ11 = Γ22 =
1
T2
, Γ33 =

1
T1
. (14.33)

These equations are the optical Bloch equations, which have been used in-
tensively in the optics of two-level atoms [4,265,325]. Note that the inversion
relaxes to the full valence band, i.e., U3k → −1. The Bloch equations can be
put into a simple vector equation

∂Uk

∂t
= −Γ · (Uk + e3) + Ω × Uk, (14.34)

where the vector of the rotation frequency is

Ω = ωR(t)e1 − δke3 (14.35)

and the diagonal damping matrix is

Γij = Γiiδij . (14.36)

From classical mechanics we know that

∂r

∂t
= Ω × r (14.37)

describes the rotation of the vector r around the vector of the angular velocity
Ω. Disregarding damping for a moment, the rotation alone does not change
the length of the Bloch vector. In the ground state the Bloch vector is Uk =
−e3, i.e., its length is 1. The light field and the detuning cause a rotation of
this unit vector. The field-induced rotations around the e1-axis are called Rabi
flops. A rectangular pulse of width ωR∆t = π/2, e.g., turns the Bloch vector
from the ground state to an angle of π/2 around the e1-axis to Uk = e2.
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A π/2 pulse thus generates from the ground state a maximum polarization.
For a finite detuning δk, the polarization will then start to rotate around the
−e3-axis. The dispersion of the electron energies in the bands automatically
introduces a spread of energies. In atomic systems the spread in energies is due
to an inhomogeneous broadening. The facts that a finite pulse can turn the
Bloch vector through a certain angle and that the detuning causes a further
rotation are the basic ideas for photon echo experiments. Suppose a π/2 pulse
has induced an initial polarization U1k(0) = 0, U2k(0) = 1. How does it decay
after the pulse? Assuming for simplicity that T2 � T1, the equations with
ωR = 0 which describe this free induction decay are

∂

∂t
U2k = −δkU1k − U2k

T2
,
∂

∂t
U1k = +δkU2k − U1k

T2
(14.38)

with the solutions(
U1k(t)
U2k(t)

)
=
(

cos δkt sin δkt
− sin δkt cos δkt

)(
U1k(0)
U2k(0)

)
e−t/T2 . (14.39)

Figure 14.1 shows schematically how the polarization spirals for a finite de-
tuning δk according to (14.39) around the z-axis after the excitation with a
π/2 pulse. Because of the dispersion in detuning, δk = ek−ω, the polarization
of electron–hole pairs with different k-values will rotate with different rotation
frequencies. If we apply after the time t1 a light pulse which causes a rotation
of the Bloch vector around the e1-axis through an angle π, we keep the Bloch
vector in the x − y plane. A polarization component which rotated in the
time t1 through the angle α will find itself after the π pulse at the angle −α.
As all polarization components continue to rotate around −e3 with δk, they
will all return to the origin after the time 2t1. The coherent superposition of
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Fig. 14.1. Schematic plot of the rotation of the Bloch vector under a rectangular
π/2 pulse and a finite detuning for T2 � T1
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all polarization components will cause the emission of a light pulse, the so-
called photon echo. Naturally, the intensity of the photon echo will decrease
with time as [exp(−2t1/T2)]2 = exp(−4t1/T2). By varying the time delay t1
between the two pulses, one can measure the transverse relaxation time T2

with a photon echo experiment.



15

Interband Quantum Kinetics
with LO-Phonon Scattering

Summary. The interband quantum kinetics is formulated for the scattering of the
excited electrons and holes by a thermal bath of optical phonons. A series of ap-
proximations is developed for the required retarded functions, including a discussion
of the band splitting introduced by a resonant intense laser beam. It is shown that
the damping by LO-phonons can be described well with a hyperbolic secant. Finally
strategies for the numerical solutions of the quantum kinetic equations are discussed.

15.1 Derivation of the
Interband Quantum Kinetic Equations

We extend the treatment of the interband kinetics of Chap. 14 by taking
additionally into account the scattering of the carriers by longitudinal optical
(LO) phonons following Haug [140]. In polar semiconductors this interaction
is responsible for the first rapid stage of the cooling of hot carriers on a subpi-
cosecond timescale. The final stage of the cooling process due to the scattering
with acoustic phonons occurs on a nanosecond timescale. The influence of the
LO-phonon scattering on the line shape of emission and absorption spectra of
polar semiconductors is correspondingly large. We assume that the density of
the carriers which are excited by the light pulse is low enough so that carrier–
carrier scattering as well as the screening of the electron–phonon interaction
can be neglected. Because even in the low-density limit Coulomb interac-
tions modify the band edge spectra of semiconductors strongly, we take the
Coulomb mean-field interactions in form of the Hartree–Fock (HF) self-energy
into account. This self-energy describes excitonic effects and the leading part of
the density-dependent band gap renormalization. The bare Coulomb potential
is an instantaneous interaction of the form Vq(t, t′) = Vqδ(t−t′) = 4πe2

ε0q2 δ(t−t′),
where ε0 is the background dielectric constant of the unexcited crystal. Note
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that we are using cgs units. The contribution of the bare Coulomb potential
to the singular HF self-energy Σs

k(t) introduced in Chap. 14 is

ΣHF
µν,k(t) = −

∑
q

Vq(ρµν,k−q − δµ,νδµ,v). (15.1)

This is the exchange or Fock interaction energy which can be obtained most
directly from the Hamiltonian of the Coulomb interaction

HC =
1
2

∑
µν,k,k′,q

Vqa
†
µ,k+qa

†
ν,k′−qaν,k′aµ,k (15.2)

by taking all finite expectation values for pairs of operators. In a spatially
homogeneous situation, the direct Coulomb terms (Hartree self-energy) with
q = 0 do not contribute because of charge neutrality, i.e., Ne =

∑
k ne,k =∑

k nh,k = Nh. Thus one gets from (15.2)

HC,HF = −
∑

µν,k,q

Vq(ρµν,k−q − δµ,vδν,v)a†ν,kaµ,k. (15.3)

The exchange contributions give just the Fock self-energy (15.1), where ad-
ditionally the exchange interaction with the full valence band is subtracted,
because it has already been taken into account in the band structure calcu-
lation. The diagonal parts of the HF self-energy are for the conduction band
the electron exchange energy ΣHF

cc,k(t) = −∑q Vqρcc,k−q(t) and for the valence
band the hole exchange energy ΣHF

vv,k(t) = +
∑

q Vqρhh,k−q(t), with the hole
distribution function ρhh,k(t) = 1− ρvv,k(t). The off-diagonal parts of the HF
self-energy ΣHF

cv,k(t) = −
∑

q Vqρcv,k−q(t) describe the attractive electron–hole
interaction. This term in the interband-polarization equation introduces the
exciton resonances in the spectrum.

The generalized Kadanoff–Baym equation (14.16) for the two-band particle
propagator G<

µν,k(t, t′) = i〈a†ν,k(t′)aµ,k(t)〉 is in the equal-time limit given by(
i
∂

∂t
− eµ,k + eν,k

)
G<

µν,k(t, t)

= −dE(t)
∑

�

(
σx

µ�G
<
�ν,k(t, t) −G<

µ�,k(t, t)σx
�ν

)
+
∑

ρ

(
ΣHF

µ�,k(t)G<
�ν,k(t, t) −G<

µ�,k(t, t)ΣHF
�ν,k(t)

)
+
∑

�

∫ t

−∞
dt′
(
Σ>

µ�,k(t, t′)G<
�ν,k(t′, t) −Σ<

µ�,k(t, t′)G>
�ν,k(t′, t)

− G>
µ�,k(t, t′)Σ<

�ν,k(t′, t) +G<
µ�,k(t, t′)Σ>

�ν,k(t′, t)
)
, (15.4)

where we used the relations (4.20) and (4.21) to express the advanced and
retarded Green functions in terms of the particle propagators. Splitting the
time development again in a coherent part and in a scattering part
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∂

∂t
=
∂

∂t

∣∣∣∣
coh

+
∂

∂t

∣∣∣∣
scatt

, (15.5)

we find the coherent evolution of the density matrix from the first three lines
of (15.4) as

∂ρµν,k

∂t

∣∣∣∣
coh

= −i (εµ,k − εν,k) ρσν,k (15.6)

−i
∑

σ

(
σx

µσ

(
dkE(t) −ΣHF

µσ,k

)
ρσν,k

−ρµσ,k

(
dkE(t) −ΣHF

σν,k

)
σx

σν

)
,

where we used the decomposition of the unit matrix 1µν = δµν +σx
µν in order

to separate the terms which are renormalizing the energy

εµ,k = eµ,k +ΣHF
µµ,k (15.7)

from those which renormalize the Rabi frequency

ΩR,k = dkE0(t) −ΣHF
µσ �=µ,k. (15.8)

For the electron distribution and the slowly varying interband-polarization
component Pk(t) = ρcv,k(t)eiωt, the coherent mean-field equation can be put
into the form for free carrier with renormalized energies εµ,k and a renormal-
ized Rabi frequency ΩR(t)

∂ρcc,k
∂t

∣∣∣∣
coh

= +Im(Ω∗
R,k(t)Pk(t)), (15.9a)

∂Pk

∂t

∣∣∣∣
coh

= −iδωk(t)Pk − i
2ΩR,k(t) (�cc,k(t) − �vv,k(t)) , (15.9b)

where the HF energies are explicitly given by

εc,k(t) = ec,k −
∑

q

Vqρcc,k(t),

εv,k(t) = ev,k −
∑

q

Vq(ρvv,k(t) − 1), (15.10)

which results in the time-dependent detuning

δωk(t) = εc,k(t) − εv,k(t) − ω. (15.11)

The Rabi frequency is modified by the inner field due to the attractive
electron–hole interaction, which for low excitation causes the exciton reso-
nances

ΩR,k(t) = dkE0(t) + 2
∑

q

VqPk−q(t). (15.12)
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Equations (15.9a) and (15.9b) are also called the semiconductor Bloch
equations. The last two lines of (15.4) describe the influence of scattering
processes. The only new feature of the scattering terms in (15.4) compared to
those of Part III is that now both G

>
< and Σ

>
< are matrices with respect to

the band index. For the scattering self-energies, we will take into account only
the self-consistent, time-dependent Hartree–Fock contribution due to carrier
scattering with a thermal bath of LO-phonons. Under these simplifications
the scattering with the LO-phonons is a particularly simple model, mainly
because the LO frequency ωq � ω0 can be taken to be constant. By con-
sidering the phonons as a given thermal bath, we neglect the changes of the
population, the dispersion and the interaction matrix element of the phonons.
If these effects – which are known to be important in the relaxation of hot
carriers [320] – have to be included, an equation for the kinetics of the phonons
has to be added, and the self-energies have to be calculated more accurately.
In the self-consistent generalized Hartree–Fock approximation, the scattering
self-energy matrix is given by the left diagram of Fig. 15.1. The vertex correc-
tions, shown in the right diagram of Fig. 15.1, are not included in the theory
for the following reasons: The semiconductor GaAs for which most of the
femtosecond experiments and calculations have been performed is a material
with weak electron–phonon coupling. The dimensionless polaron interaction
constant is small, i.e., α � 1. Thus their contribution of the order O(α2) is
small. In general, however, vertex corrections can become important for larger
coupling constants. The scattering self-energy therefore is

Σ
<
>

µ�,k(t1, t2) = i
∑

q

g2qD
<
>
q (t1, t2)G

<
>

µ�,k−q(t1, t2), (15.13)

where only the unperturbed phonon propagators are considered

D0<
q (t1, t2) = −i

∑
±
N±

q e±iω0(t1−t2), D0>
q (t1, t2) = −D0<

q (t1, t2)∗, (15.14)

with N±
q = N + 1

2 ± 1
2 =

(
N + 1
N

)
. N = 1/(eω0/kBT − 1) is the thermal

phonon distribution and gq is the Fröhlich interaction matrix element which
is given by

g2q =
ω0Vq

2

(
1
ε∞

− 1
ε0

)
, (15.15)

t t’ t t’t1 t2

Fig. 15.1. (a) Self-consistent Hartree–Fock diagram. (b) Leading vertex correction.
Full lines: electron propagators, dashed lines: phonon propagators
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where Vq = 4πe2/q2V is the Coulomb potential. It is convenient to express the
interaction matrix element in terms of the dimensionless polaron constant α

g2q = α
4π(ω0)3/2

(2µ)1/2q2V
, α = e2

(
µ

2ω0

)1/2 ( 1
ε∞

− 1
ε0

)
. (15.16)

Here µ is, again, the reduced electron–hole mass. Inserting these expressions
into the two-band quantum kinetic equation (15.4), we find with i�µν,k(t) =
G<

µν,k(t, t) the scattering rate:

∂�µν,k

∂t

∣∣∣∣
scatt

= −
∑
q,�,±

g2qN
±
q

∫ t

−∞
dt′ (15.17)

×
(
e∓iω0(t−t′)

(
G>

µ�,k−q(t, t
′)G<

�ν,k(t′, t) −G>
µ�,k(t, t′)G<

�ν,k−q(t
′, t)
)

− e±iω0(t−t′)
(
G<

µ�,k−q(t, t
′)G>

�ν,k(t′, t) −G<
µ�,k(t, t′)G>

�ν,k−q(t
′, t)
))
.

We see that the last scattering terms in the second and third line are obtained
from the preceding terms by interchanging k ↔ k− q, so that (15.17) can be
written more concisely as

∂�µν,k

∂t

∣∣∣∣
scatt

= −
∑
q,�,±

g2qN
±
q

∫ t

−∞
dt′
[(

e∓iω0(t−t′)

×G>
µ�,k−q(t, t

′)G<
�ν,k(t′, t)

−e±iω0(t−t′)G<
µ�,k−q(t, t

′)G>
�ν,k(t′, t)

)
− (k ↔ k − q)

]
. (15.18)

In order to reduce the two-time propagators on the RHS of (15.18), we use
the GKBA (8.13) of Lipavský et al. [246] which reads in its multiband exten-
sion [140]:

− iG
<
>

µν,k(t1, t2)

=
∑

σ

(
Gr

µσ,k(t1, t2)G
<
>

σν,k(t2, t2) −G
<
>

µσ,k(t1, t1)Ga
σν,k(t1, t2)

)
= ±i

∑
σ

(
Gr

µσ,k(t1, t2)�
<
>

σν,k(t2) − �
<
>

µσ,k(t1)Ga
σν,k(t1, t2)

)
, (15.19)

where �
<
> are given by

�<µν,k(t) =
〈
a†ν,k(t)aµ,k(t)

〉
= �µν,k(t),
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�>µν,k(t) =
〈
aµ,k(t)a†ν,k(t)

〉
= δµν − �µν,k(t). (15.20)

The retarded (advanced) functions Gr(a) are given by

Gr
µν,k(t, t′) = −iθ(t− t′)

〈{
aµ,k(t), a†ν,k(t′)

}〉
,

Ga
µν,k(t, t′) = iθ(t′ − t)

〈{
aµ,k(t), a†ν,k(t′)

}〉
, (15.21)

and obey the relation

Ga
µν,k(t, t′) =

(
Gr

νµ,k(t′, t)
)∗
. (15.22)

The connection between the two-point particle propagators and the reduced
density matrix, therefore, is according to (15.19)

G<
µν,k(t1, t2) = −

∑
σ

(
Gr

µσ,k(t1, t2)�σν,k(t2) − �µσ,k(t1)Ga
σν,k(t1, t2)

)
(15.23)

and

G>
µν,k(t1, t2) =

∑
σ

(
Gr

µσ,k(t1, t2) (δσν − �σν,k(t2))

− (δµσ − �µσ,k(t1))Ga
σν,k(t1, t2)

)
. (15.24)

In contrast to the usual Kadanoff–Baym ansatz, the relations (15.23) and
(15.24) take the causality correctly into account in the sense that the two-time
particle propagator develops from its equal-time limit at the earlier time, ac-
cording to the appropriate Green function. For t1 > t2 the time development
is given by the retarded Green function Gr(t1, t2), while for t2 > t1 it is
governed by the advanced function Ga(t1, t2). These relations are exact for
noninteracting particles. In fact GKBA (15.19) is also exact for systems which
are described by a mean-field Hamiltonian. The self-energy of such systems
is singular (i.e., proportional to δ(t− t′)); their scattering, or, equivalently, in
the Keldysh index off-diagonal, self-energies vanish. As Lipavský et al. [246]
have shown, the correction term to (15.19) is proportional to the scattering
self-energies, therefore (15.19) is also exact for the mean-field part of any
Hamiltonian which does not produce any scattering. Note that, in the equal-
time limit, the off-diagonal (in band index) Green functions Gr(t1, t2) and
Ga(t1, t2) vanish, because the equal-time anticommutators vanish for these
functions. Therefore, the equal-time limit of the GKBA also remains exact in
the matrix extension.

The validity of the GKBA has been checked by comparing the numerical
results for the two-time-dependent nonequilibrium Green functions with and
without this approximation [121]. It has been found that the GKBA holds
excellently for weak polar coupling, but becomes increasingly inaccurate as
the polar coupling constant α increases to the intermediate coupling regime
with values of α � 1.
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Naturally, this ansatz still contains the two-time retarded and advanced
Green functions. The philosophy of the further development is that, after the
causality has been built in properly, one can now use relatively simple app-
roximations for the two-time retarded/advanced Green functions. Using the
generalized GKBA in the form (15.23) and (15.24), one can cast the resulting
scattering integrals in the following form:

∂�µν,k

∂t

∣∣∣∣
scatt

= −
∑

q,�στ,±
g2q

∫ t

−∞
dt′
({
Gr

µσ,k−q(t, t
′)Ga

τν,k(t′, t)e±iω0(t−t′)

×
(
N∓

q (δσ� − �σ�,k−q(t′)) ��τ,k(t′)

−N±
q �σ�,k−q(t′) (δ�τ − ��τ,k(t′)))

}
− {k ↔ k − q}

)
(15.25)

= −
∑

q,στ,±
g2q

∫ t

−∞
dt′
({
Gr

µσ,k−q(t, t
′)Ga

τν,k(t′, t)e±iω0(t−t′)

×
(
N∓

q �στ,k(t′) −N±
q �στ,k−q(t′) ±

∑
�

�σ�,k−q(t′)��τ,k(t′)

)}

−{k ↔ k − q}
)
. (15.26)

In (15.26) the non-Markovian structure of the quantum kinetic collision terms
becomes clear. The memory kernel of these equations is given by

Gr
µσ,k−q(t, t

′)Ga
τν,k(t′, t)e±iω0(t−t′), (15.27)

all density matrices enter only at the earlier time t′. The quantum mechanical
correlations and the quantum coherence contained in the spectral functions
are the origin of the memory of the system.

The non-Markovian nature of these equations is important not only in
ultrashort pulse spectroscopy but also in stationary spectroscopy, provided
the short-time correlations are involved. One example is the theory of the
linear absorption tail – the so-called Urbach tail – below the band gap of a
semiconductor. In linear spectroscopy, the densities may be approximated by
�cc,k = 0 and �vv,k = 1 so that one is left with the equation for the polar-
ization. The nearly universally observed exponential decay of the absorption
below the exciton with decreasing light frequency cannot be explained using a
Markovian damping for the polarization �cv,k, because it gives rise to a power
law ∝ ω−2 in the low-energy wing of the exciton resonance. The description
of the exponential Urbach tail needs (even in a phenomenological theory) a
non-Markovian damping term of the form∫ t

−∞
dt′
∑
k′
γk,k′ (t− t′)�cv,k′(t′), (15.28)
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as has been noted by Bányai et al. [19] and Haug et al. [143] in connection
with the nonresonant optical Stark effect in the Urbach tail region. The quan-
tum kinetics of the polarization (15.26) provides the formal derivation of such
damping terms with memory structure which result in an exponential absorp-
tion tail due to phonon-assisted transitions, as will be demonstrated later.
Because the exponential Urbach tail extends over a broad frequency range, it
tests the short-time correlations and explains why quantum kinetics is even
necessary in this classical problem of stationary, linear spectroscopy! The char-
acteristic reaction time of the phonon system is given by the inverse phonon
frequency tph = 2π/ω0. For times shorter than the phonon reaction time tph,
the dissipation due to phonons becomes very small. This rapid decrease of the
damping is taken into account in the delayed quantum kinetic description.

In order to proceed further, we have to evaluate the Green functions
Gr

µσ,k−q(t, t
′) and Ga

τν,k(t′, t) at least approximately.

15.2 The Spectral Green Functions Gr
µν and Ga

µν

The retarded and advanced Green functions defined in (15.21) obey the
relation (15.22), therefore only one of the two spectral functions has to be
calculated. The retarded Green function, e.g., obeys a nonequilibrium Dyson
equation. With G0,−1

µ,k (t) = i ∂
∂t − eµ,k, the differential form of the Dyson

equation for the retarded Green function is (we use the times t1, t2, and
t12 = t1 − t2)

G0,−1
µ,k (t1)Gr

µν,k(t1, t2) = δµ,νδ(t12) − dE(t1)
∑

σ

σx
µσG

r
σν,k(t1, t2)

+
∑

σ

ΣHF
µσ,k(t1)Gr

σν,k(t1, t2)

+
∑

σ

∫ t1

t2

dt3Σr
µσ,k(t1, t3)Gr

σν,k(t3, t2), (15.29)

with the initial condition Gr
µν,k(t2, t2) = δµ,ν . In the following we will dis-

cuss some increasingly sophisticated approximations for the retarded Green
function.

15.2.1 Free-Particle Retarded Green Function

Neglecting the field term, the Hartree–Fock term, and the retarded electron–
phonon self-energy in (15.29), we find the free-particle solution

Gr
µν,k(t1, t2) = −iδµ,νθ(t12)e−ieµ,kt12 . (15.30)

This approximation is diagonal in the band index, oscillates with the free
electron energies, and does not contain any dissipative decay.
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In the quantum kinetics for femtosecond pulse spectroscopy, this free-
particle approximation is often insufficient. The coherent laser pulse will mix
the valence and conduction band states and induce off-diagonal elements inGr.
This coupling will renormalize further the particle spectra by light-intensity-
dependent optical Stark shifts. The Coulomb interaction between the excited
carriers will result in electron-density-dependent shifts of the single-particle
energies and will introduce excitonic effects. Furthermore, often one has to
include the dephasing of the coherence by the considered collisions, as will be
discussed further below.

15.2.2 Time-Dependent Retarded GF
in Mean-Field Approximation

In order to include the time-dependent band mixing due to the coherent laser
pulse, i.e., the optical Stark effect, and the mean-field Coulomb effects (15.1),
we neglect the scattering processes and treat only the mean-field Hamiltonian

H =
∑
µν,k

Hµν,ka
†
µ,kaν,k, (15.31)

with
Hµν,k = eµ,kδµν − dE(t)σx

µν +ΣHF
µν,k(t), (15.32)

or in the rotating-wave approximation

Hµν,k = εµ,k(t)δµν − 1
2
σ+

µν

(
ΩR(t)e−iωt + h.c.

)
, (15.33)

with the HF-renormalized energies εµ,k(t) of (15.10) and Rabi frequencyΩR(t)
of (15.12). Here we use the Pauli matrices

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, (15.34)

and σ+ = 1
2 (σx + iσy) =

(
0 1
0 0

)
. The Heisenberg equation for the operator

aµ,k(t) yields
ȧµ,k = −i

∑
ρ

Hµρ,k(t)aρ,k(t). (15.35)

We eliminate the rapid oscillations with the transformation

aµ,k(t) = e−i∆µ,k(t)ãµ,k(t), (15.36)

where the transformation phase function ∆µ,k(t) has still to be determined.
The transformed equations are

˙̃aµ,k = −i
∑

ν

[(
εν,k − ∆̇ν,k

)
δµν
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Fig. 15.2. Under coherent resonant excitation, the HF-renormalized valence band
plus one photon energy ω (dashed line) is resonant with the HF-renormalized con-
duction band. From the dashed-dotted reference line the transformed conduction
and valence band electrons have the symmetrical energies ± 1

2
δk, where δk is the

detuning (15.39) for a given k value

+
1
2

(
ΩRσ

+
µνei(∆µ,k−∆ν,k−ωt) + h.c.

)]
ãν,k. (15.37)

We require that the oscillations of the field term in (15.37) vanish:

∆c,k(t) −∆v,k(t) − ωt = 0. (15.38)

Furthermore we demand that, after the transformation, the renormalized con-
duction and valence band energies in (15.37) are symmetrically given by one
half of the detuning δk(t) (see Fig. 15.2)

δk(t) = (εc,k(t) − εv,k(t) − ω), (15.39)

i.e.,

εc,k − ∆̇c,k =
1
2
δωk, εv,k − ∆̇v,k = −1

2
δωk. (15.40)

From (15.38) to (15.40), one gets the phase functions as

∆c,k(t) =
1
2

(∫ t

−∞
dt′(εc,k(t′) + εv,k(t′)) − ωt

)
, (15.41a)

∆v,k(t) =
1
2

(∫ t

−∞
dt′(εc,k(t′) + εv,k(t′)) + ωt

)
. (15.41b)

The transformed unitary equation of motion is

˙̃aµ,k = − i
2

∑
ν

(
σz

µνδωk(t) − (ΩR(t)σ+
µν + h.c.)

)
ãν,k(t). (15.42)

We solve the linear equation (15.42) with the unitary time-development matrix
Uµν,k(t, t0)

ãµ,k(t) =
∑

ν

Uµν,k(t, t0)ãν,k(t0), (15.43)
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where t0 → −∞ is a remote initial time before the crystal is excited by the
light pulse. Thus Uµν,k(t0, t0) = δµν . The unitary matrix obeys the orthogo-
nality relations ∑

ρ

Uµρ,k(t, t′)U∗
νρ,k(t, t′) = δµν . (15.44)

The matrix Uk(t) obeys the equation–of–motion

U̇µν,k(t, t0) = − i
2

∑
ρ

(
σz

µρδωk(t) −
(
ΩR(t)σ+

µρ + h.c.
))
Uρν,k(t, t0). (15.45)

The orthogonality relation can be fulfilled with the following coherence
coefficients

Ucc,k(t) = uk(t), Uvv,k(t) = u∗k(t),
Ucv,k(t) = vk(t), Uvc,k(t) = v∗k(t), (15.46)

where we dropped for simplicity the time t0 → −∞. The coefficients obey the
Fermion relation

|uk(t)|2 + |vk(t)|2 = 1. (15.47)

For t → t0 → −∞, the normal coefficients uk → 1 and the anomalous coef-
ficients vk → 0. The coefficients uk(t) and vk(t) which result from the inte-
gration of (15.45) still contain rapid oscillations. One can get slowly varying
variables by introducing the angles φ, ψ, and α:

uk(t) = eiφk(t) cos(αk(t)), vk(t) = eiψk(t) sin(αk(t)). (15.48)

The retarded Green function is finally given in terms of the unitary matrix
Uk(t, t0) by the relation

Gr
µν,k(t1, t2) = −iΘ(t12)

∑
ρ

Uµρ,k(t1, t0)U∗
νρ,k(t2, t0)e−i∆µ,kt10+i∆ν,kt20 .

(15.49)

The result (15.49) contains the time-dependent optical Stark effect, band
gap renormalizations, and excitonic correlations [347]. An explicit numerical
solution can only be obtained from a simultaneous self-consistent solution of
the mean-field Dyson equation for the retarded GFs and the quantum kinetic
equation for the density matrix.

15.2.3 Spectra of Retarded Gfs
for Stationary Resonant Excitation:
Light-Induced Gaps, Two-Band Mollow Triplet

Before we proceed to analyze the time dependence of the retarded GFs, we will
calculate their spectra under intense stationary light fields, because the knowl-
edge of these spectra is important to guide our intuition even for ultrashort
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pulse spectroscopy. Furthermore, for this problem the two-time retarded Green
function can be calculated analytically. We start with the left- and right-hand
version of the Dyson equation for the retarded Green function of Sect. 7.3.
Adding these two equations yields (we drop the momentum index k because
it is not altered under the considered light–matter interaction)(

i
∂

∂t1
− eµ

)
Gr

µ,ν(t1, t2) +
(
−i
∂

∂t2
− eν

)
Gr

µ,ν(t1, t2) (15.50)

= 2δmu,νδ(t1 − t2) +Σr
µ,ρ(t1)G

r
ρ,ν(t1, t2) +Gr

µ,ρ(t1, t2)Σ
r
ρ,ν(t2). (15.51)

The singular self-energy due to the interaction with the stationary light field
E(t) = E0 cos(ω0t) is

Σr
µ,ν(t) = −dµ,νE(t)σx

µ,ν . (15.52)

Introducing relative and center-of-mass coordinates σ = t1 − t2 and τ =
(t1 + t2)/2 with t1,2 = τ ± σ

2 and ∂
∂t1,2

= 1
2

∂
∂τ ± ∂

∂σ , we find(
i
∂

∂σ
− eµ

)
Gr

µ,ν(σ, τ) +
(

i
∂

∂σ
− eν

)
Gr

µ,ν(σ, τ) (15.53)

= 2δmu,νδ(σ) +Σr
µ,ρ

(
τ +
σ

2

)
Gr

ρ,ν(σ, τ) +Gr
µ,ρ(σ, τ)Σ

r
ρ,ν

(
τ − σ

2

)
.

(15.54)

One can easily select the terms which are resonant with ω0 = ec−ev. Next we
take the Fourier transform with respect to the relative coordinate Gr(τ, ω) =∫ 0

−∞ dσe eiωσGr(τ, σ) and find

(ω − eµ)Gr
µ,ν(ω, τ) + (ω − eν)Gr

µ,ν(ω, τ)

= 2δmu,ν − 1
2
dµ,ρE0

(
Gr

ρ,ν

(
ω +
ω0

2
, τ
)

eiω0τ +Gr
ρ,ν

(
ω − ω0

2
, τ
)

e−iω0τ
)

−
(
Gr

µ,ρ

(
ω − ω0

2
, τ
)

eiω0τ +Gr
µ,ρ

(
ω +
ω0

2
, τ
)

e−iω0τ
) 1

2
dρ,νE0. (15.55)

We pick out only the resonant terms and get

2(ω − ec)Gr
cc(ω, τ) = 2 − 1

2
dcvE0G

r
vc

(
ω − ω0

2
, τ
)

e−iω0τ

−Gr
cv

(
ω − ω0

2
, τ
)

eiω0τ 1
2
dvcE0, (15.56)

(ω − ec)Gr
cv(ω, τ) + (ω − ev)Gr

cv(ω, τ) = −1
2
dcvE0G

r
vv

(
ω − ω0

2
, τ
)

e−iω0τ

−Gr
cc

(
ω +
ω0

2
, τ
)

e−iω0τ 1
2
dvcE0,

(15.57)

and
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2(ω − ev)Gr
vv(ω, τ) = 2 − 1

2
dvcE0G

r
vc

(
ω +
ω0

2
, τ
)

eiω0τ

−Gr
vc

(
ω +
ω0

2
, τ
)

e−iω0τ 1
2
dvcE0. (15.58)

We see that the only remaining time dependence is connected with the inter-
band elements Gr

cv and Gr
vc. They are driven by the coherent light field, so

that the expressions

grcv(ω) = Gr
cv(ω, τ)e

iω0τ , grvc(ω) = Gr
vc(ω, τ)e

−iω0τ (15.59)

are independent of time. One can get a closed system of equations if one
shifts the conduction band down by the amount ω0

2 and the valence band up
by the same amount. The resulting equations are (with dcv = dvc = d and
G−1

ρ (ω) = ω − eρ)

G−1
c

(
ω +
ω0

2

)
Gr

cc,k

(
ω +

ω0

2

)
+

dE0

4
(gcv(ω) + gvc(ω)) = 1, (15.60)

G−1
v

(
ω − ω0

2

)
Gr

vv,k

(
ω − ω0

2

)
+

dE0

4
(gcv(ω) + gvc(ω)) = 1, (15.61)(

G−1
c

(
ω +
ω0

2

)
+G−1

v

(
ω − ω0

2

))
grcv,k(ω)

+
dE0

4

(
Gvv

(
ω − ω0

2

)
+Gr

cc

(
ω +
ω0

2

))
= 0, (15.62)(

G−1
c

(
ω +
ω0

2

)
+G−1

v

(
ω − ω0

2

))
grcv,k(ω)

+
dE0

4

(
Gvv

(
ω − ω0

2

)
+Gr

cc

(
ω +
ω0

2

))
= 0. (15.63)

The solutions of this inhomogeneous system of equations can be put into the
form (see also [139])

Gr
cc,k

(
ω + ω0

2

)
=

G−1
v,k(ω−ω0

2 )
Zk(ω) , Gr

vv,k

(
ω + ω0

2

)
=

G−1
c,k(ω−ω0

2 )
Zk(ω) ,

grcv,k(ω) = grvc,k(ω) = dE0
2

1
Zk(ω) , (15.64)

with

Zk(ω) = G−1
c,k

(
ω +
ω0

2

)
G−1

v,k

(
ω − ω0

2

)
−
(

dE0

4

)2

. (15.65)

The two eigenvalues are given by the zeros of the denominator Zk(ω).
Expressed in terms of the shifted energies

εc,k = ec,k − ω0

2
and εv,k = ev,k +

ω0

2
, (15.66)

they are

ω1,2,k =
1
2

⎛⎝εc,k + εv,k ±

√
(εc,k − εv,k)2 + 4

(
dE0

2

)2
⎞⎠ . (15.67)
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This is the standard result of perturbation theory for degenerate levels, show-
ing that a gap is formed where the two shifted unperturbed bands become
degenerate. The gap which is formed due to avoided level crossing is deter-
mined by the Rabi frequency dE0. This light-induced gap has been predicted
first by Elesin [103] and rederived including Coulomb effects in the frame of a
pair formalism by Comte and Mahler [87], and in the framework of nonequi-
librium Green functions [139, 314]. By spectral decomposition, the diagonal
elements with the original frequency ω can be written as (with ρ = c, v and
ν �= ρ)

Gr
ρρ,k(ω) =

u2ρ,k

ω − σz
ρρ

ω0
2 − ω1,k

+
v2ρ,k

ω − σz
ρρ

ω0
2 − ω2,k

, (15.68)

Gr
cv,k(ω, τ) =

dE0e−iω0τ

2(ω1,k − ω2,k)

(
1

ω − ω1,k
− 1
ω − ω2,k

)
= uc,kvc,ke−iω0τ

(
1

ω − ω1,k
− 1
ω − ω2,k

)
. (15.69)

The Hopfield coefficients are also expressed in terms of the shifted energies

u2c,k = v2v,k = u2k =
ω1,k − εv,k

ω1,k − ω2,k

=
1
2

⎛⎝1 +
εc,k − εv,k√

(εc,k − εv,k)2 + 4
(

dE0
2

)2
⎞⎠ (15.70)

and
u2ρ,k + v2ρ,k = u2k + v2k = 1. (15.71)

The expression ukvk can be written as

ukvk =
1
2

dE0√
(εc,k − εv,k)2 + 4

(
dE0
2

)2 . (15.72)

The difference of the two eigenfrequencies which define the light-induced gap is

ω1,k − ω2,k =

√
(εc,k − εv,k)2 + 4

(
dE0

2

)2

. (15.73)

The square of the Hopfield coefficient u2c,k describes to which extend the upper
branch of the split conduction band is built by conduction band states. v2ρ,k

gives the probability for conduction band states in the lower conduction band
branch. In Fig. 15.3, we see the split band structure. The discussed probabil-
ities are encoded in a gray scale, in the dark parts the original band states
dominate. In the lower branch of the conduction band, e.g., one sees that
the intermixing of conduction band states is lost as one departs far from the
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Fig. 15.3. Schematic band structure for a resonantly excited semiconductor shows
the energy vs. the momentum components kx and ky . The probability that the states
of the split bands are due to the original band is encoded in a gray scale

resonance region. Optical transitions in this split band structure will form a
triplet of transition bands due to transitions between, e.g., the lower valence
band and the upper conduction band, (l, v) to (u, c) and (u, v) to (l, c),
and a third band due to the degenerate transitions, (l, v) to (l, c) and (u,
v) to (u, c). This triplet of bands is the band version of the well-known Mol-
low triplet observed in atomic two-level systems under coherent excitation.
Naturally the light intensity has to be so high that the induced gap is larger
than the broadening of the states. On the other hand, the broadening due
to carrier–carrier scattering increases as n1/3 with the density of the excited
electrons, as will be discussed later. Therefore this basic effect could not be
observed in semiconductors until recently when it has been detected with an
excitation of ultrashort laser pulses of a width of 5 femtosecond [359]. In the
emitted spectrum around the third harmonics of the exciting laser frequency
ω0, the two-band Mollow triplet has been seen and confirmed by fully dynam-
ical calculations in the framework of semiconductor Bloch equations. Only on
such a short timescale the coherent band mixing in semiconductors becomes
observable.
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15.2.4 Dephasing of Retarded Green Functions

As a next step we will incorporate the dissipative effects due to the scat-
tering processes [147]. For this purpose we neglect in (15.29) the laser field
and the Coulomb effects and treat only the self-energy correction. We will
consider two asymptotic regimes: (A) a long-time regime in which one gets
the weak-coupling equilibrium result, which leads to an exponential Wigner–
Weisskopf damping, and (B) a short-time regime where one finds a Gaussian
damping which corresponds to the strong-coupling result of the equilibrium
theory. By means of an interpolation, we get a damping law in form of a
hyperbolic secant which connects smoothly both asymptotic regimes [147].
Finally we will show that the hyperbolic secant is in qualitative agreement
with the decay of the retarded Green function which one gets from di-
rect numerical time integration of the corresponding Dyson equation [23].

Wigner–Weisskopf Damping for Retarded GFs

The collision processes cause a dissipative decay of the coherence described by
the retarded Green function. Without field term the retarded Green function
has only diagonal elements. For electrons, e.g., the Dyson equation (15.29) is(

i
∂

∂t1
− ek

)
Gr

k(t1, t2) = δ(t12) +
∫ t1

t2

dt3Σr
k(t1, t3)Gr

k(t3, t2). (15.74)

We concentrate in the following only on the dissipative part of the self-energy
(polaron energy corrections due the real part of the self-energy are assumed
to be absorbed in the free-particle energy ek). With the ansatz

Gr
k(t1, t2) = −iθ(t12)e−iekt12gk(t1, t2), (15.75)

(15.74) becomes

∂

∂t1
gk(t1, t2) = −i

∫ t1

t2

dt3Σr
k(t1, t3)eiekt13gk(t3, t2). (15.76)

If the time interval t12 is much larger than the correlation time, the function
g(t1, t2) can be pulled out of the integral on the right-hand side of (15.76),
and one gets asymptotically

−i
∫ t1

t2

dt3Σr
k(t1, t3)eiekt13gk(t3, t2) � ImΣr

k(ω = ek)gk(t1, t2)

� −αω0gk(t1, t2), (15.77)

where α and ω0 are the Fröhlich coupling constant (15.16) and the LO-phonon
frequency. Equation (15.77) results in an exponential Wigner–Weisskopf damp-
ing of the retarded Green function
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Gr
k(t1, t2) = −iθ(t12)e(−iek−γk)t12 , (15.78)

with γk � αω0.
A full evaluation of the imaginary part of the polaron self-energy for zero

temperature yields

γk = αω0
θ(ek − ω0)√
ekω0

ln

∣∣∣∣∣∣
√

ek

ω0
− 1 +

√
ek

ω0√
ek

ω0
− 1 −

√
ek

ω0

∣∣∣∣∣∣ . (15.79)

It can be easily seen that the polaron damping (15.79) at T = 0 vanishes
below the threshold for LO-phonon emission and remains approximately con-
stant above that threshold γk � 1.2αω0 in a wide range of energies. The
approximation of a constant damping thus is reasonable for pumping above
the LO-threshold during the early stages of the population evolution and at
elevated temperatures where the thresholds are smeared out due to the pres-
ence of LO-phonon emission and absorption processes. One should contrast
the situation to the low-temperature regime, considered in connection with
high-field transport in Sect. 11.6.2, where the approximation γ(ε) ∝ √

ε− ω0

was used.
The exponentially damped retarded Green function leads to a Lorentzian

line shape with the linewidth γ � αω0. This weak-coupling line shape can
be obtained under stationary conditions if the mean kinetic energy is much
larger than the interaction energy αω0 [352].

Damping of Retarded GFs in the Initial Time Regime

If the time interval t12 is much shorter than the characteristic response time of
the phonons ω−1

0 , the integral becomes proportional to the time interval t12.
This can be seen by considering the simple perturbation form of the self-
energy explicitly. For a single electron one can write the retarded self-energy
as (the vector notation is not given explicitly)

Σr
k(t1, t3) = i

∑
q

g2qD
<
q (t1, t3)Gr

k−q(t1, t3), (15.80)

where g2q ∝ αω2
0 and varies with the phonon momentum q as 1/q2. The phonon

particle propagatorD<
q (t1, t3) is given by (15.14). The retarded electron Green

function is in zeroth order Gr
k−q(t1, t3) = −iθ(t13)e−iek−qt13 . For the initial

time interval all variations due to the exponential terms can be neglected and
one finds asymptotically

−i
∫ t1

t2

dt3Σr
k(t1, t3)eiekt13gk(t3, t2) = −

qD∑
q,±
g2qN

±
q t12 � −Cαω2

0t12, (15.81)

where C is a dimensionless constant. Note that the momentum sum has to
be truncated by a cutoff wavenumber qD. The result (15.81) shows how the
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damping builds up linearly in the initial time regime. Alternatively one can
express the result (15.81) in the form

−Cαω2
0t12gk(t1, t2), (15.82)

because the retarded function g(t) is in this time interval still approximately
equal to its initial value 1. From (15.82) together with (15.76), one gets for
the initial time regime a Gaussian damping

Gr
k(t1, t2) = −iθ(t12)e−iekt12e−

(√
(1/2)Cαω0t12

)2
. (15.83)

From this retarded Green function with Gaussian damping, one gets by a
Fourier transform a Gaussian line shape with a half-width of

√
αω0. This

result is well known, e.g., in the exciton line shape theory as the strong-
coupling limes. Toyozawa [352] has shown that one obtains in the equilibrium
theory this nonperturbational result under the condition that the kinetic
energy of the exciton can be neglected in comparison with the LO-phonon
energy. In exciton physics, it is known that one can make a smooth tran-
sition from the strong-coupling case to the weak-coupling case by motional
narrowing. This transition has been observed recently on Si oligomers by in-
creasing the chain length and thus increasing the mean kinetic energy of the
exciton [204].

Hyperbolic Secant Damping for the Retarded GFs

A simple appropriate interpolation formula, which connects the short-time
asymptote (15.82) and long-time asymptote (15.77), is

−i
∫ t1

t2

dt3Σr
k(t1, t3)eiekt13gk(t3, t2) = −αω0 tanh(ω0t12)gk(t1, t2) (15.84)

as illustrated in Fig. 15.4.

ω0t  

αω0

0
0 1 2 3

Fig. 15.4. Interpolation by αω0 tanh(ω0t) between the short-time damping αω2
0t

and the constant long-time damping αω0
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Inserting this time-dependent interpolation formula (15.84) into the Dyson
equation (15.76) yields

∂gk(t1, t2)
∂t1

= −αω0 tanh(ω0t12)gk(t1, t2), (15.85)

with the solution
gk(t1, t2) =

1
coshα(ω0t12)

, (15.86)

so that the retarded Green function is finally

Gr
k(t1, t2) = −iθ(t12)e−iekt12

1
coshα(ω0t12)

. (15.87)

A mechanical analog may be helpful. The Newton equation for the velocity
of a particle with a time-dependent Stokes damping is

v̇ = −γ(t)v(t). (15.88)

For constant damping γ one gets an exponential decrease of the velocity. For
a time-dependent damping γ(t) = γ tanh(at/γ), one finds

v(t) =
v0

coshγ2/a(at/γ)
. (15.89)

The hyperbolic secant envelope form (i.e., the inverse hyperbolic cosine func-
tion) is well known in soliton physics. The decay starts in the form of a Gaus-
sian curve due to the inherent delay on small timescales, while it becomes
exponential for long times as illustrated in Fig. 15.5.

While the pure exponential decay leads in the long-time limit of the quan-
tum kinetics to a Markovian kinetics in which the energy conserving delta-
function is replaced by a Lorentzian resonance line, the retarded hyperbolic
secant decay law leads automatically to a broadening, which decreases in the

1/cosh(x)

exp(−x)
exp(−x2/2)

x

0

0.5

1

0 1 2 3 4 5

Fig. 15.5. Comparison of the exponential, the Gaussian, and the hyperbolic secant
damping



278 15 Interband Quantum Kinetics with LO-Phonon Scattering

wings faster than any inverse power of the energy. The slowly decreasing
wings of a Lorentzian broadening of the energy conservation cause a heating
in the resulting asymptotic distributions. This effect is particularly strong for
carrier–carrier scattering where the Lorentzian broadening causes a runaway
effect of the resulting carrier distributions [23]. This defect is not completely
cured by the hyperbolic secant broadening (at least for α = 1 the Fourier
transform of a hyperbolic secant is again a hyperbolic secant) but the devi-
ations of the resulting distributions from thermal ones occur at much later
times [23].

Retarded Polaron Green Functions

In Fig. 15.6, we show the retarded Green function which has been calculated
directly from solving the Dyson equation (15.76) numerically [23] at room
temperature and for a coupling strength α = 1. The value α = 1 was chosen for
better visibility of the functional form of the decay, although this intermediate
coupling with α = 1 is – strictly speaking – already out of the validity of the
generalized Kadanoff–Baym ansatz. The slower decay at low energies is a
remainder of the one-LO-phonon threshold at T = 0. On the high-energy side
one sees clearly a decay which can be described qualitatively with a hyperbolic
secant law. In a later chapter we will present full numerical calculations of
the quantum kinetic Green functions G<

µν,k(t, t′) and Gr
µν,k(t, t′) under the

influence of a light pulse and with LO-phonon scattering according to [121].
These results will show that the polaron decay of the retarded Green function
is rather robust and is changed only little by the light field. This provides a
further justification for using a fixed polaron decay for the retarded Green
function in the framework of the quantum kinetics for the particle propagator
G<

µν,k(t, t′). The light-induced off-diagonal elements of the retarded Green
function, e.g., Gr

cv,k(t, t′), decay similarly.
For weak coupling it is therefore a very good approximation to use

for the unitary time evolution the mean-field Green function Gr
µν,k(t, t′)
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Fig. 15.6. Absolute value of the calculated retarded Green function for room tem-
perature and a coupling strength of α = 1 according to [23] vs. energy and time
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according to (15.49), multiplied with a hyperbolic secant damping factor
(15.86). A much simpler – but less accurate – approximation consists in the
use of the free-particle retarded Green function with a Wigner–Weisskopf
damping (15.78).

15.3 Intraband Relaxation

With the knowledge of the spectral functions Gr
µν,k(t, t′) and Ga

µν,k(t′, t), we
can now evaluate how the electrons, e.g., in the conduction band relax toward
a quasiequilibrium due to LO-phonon scattering.

In order to get a truly irreversible behavior, it is important that one in-
tegrates over at least one continuous spectrum which is obtained only in the
limit of an infinitely large volume. Strictly speaking in any finite volume the
energy spectra are discrete. In such a situation true irreversibility is not pos-
sible and recurrency occurs, even if the recurrency times may be extremely
large for real systems.

The relaxation due to the coupling to LO-phonons will last several 100 fs.
On this timescale the recombination of the electrons and holes can still be
neglected. For ν = µ = c the scattering integral (15.26) becomes

− ∂�cc,k
∂t

∣∣∣∣
scatt

= −
∑

q,στ,±
g2q

∫ t

−∞
dt′
({
Gr

cσ,k−q(t, t
′)Ga

τc,k(t′, t)e±iω0(t−t′)

×
(
N∓

q �στ,k(t′) −N±
q �στ,k−q(t′) ±

∑
ρ

�σρ,k−q(t′)�ρτ,k(t′)
)}

−{k ↔ k − q}
)
. (15.90)

Diagonal Contributions

Let us first consider only the diagonal elements of the density matrix and of
the spectral functions, because all off-diagonal elements are induced by the
coherent light pulses

− ∂�cc,k
∂t

∣∣∣∣d
scatt

= −
∑
q,±
g2q

∫ t

−∞
dt′
({
Gr

cc,k−q(t, t
′)Ga

cc,k(t′, t)e±iω0(t−t′)

×
(
N∓

q �cc,k(t′) −N±
q �cc,k−q(t′) ± �cc,k−q(t′)�cc,k(t′)

)}
−{k ↔ k − q}

)
. (15.91)
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Using the relation Gr
cc,k(t, t′) = Ga

cc,k(t′, t)∗, one finds the following struc-
ture

− ∂�cc,k
∂t

∣∣∣∣d
scatt

= −
∑
q,±
g2q

∫ t

−∞
dt′
{
K+

cc,k,q(t, t
′) (15.92)

× [nq�cc,k(t′)(1 − �cc,k−q(t′))

− (nq + 1)(1 − �cc,k(t′))�cc,k−q(t′)] +K−
cc,k,q(t, t

′)

× [(nq + 1)�cc,k(t′)(1 − �cc,k−q(t′))

− nq(1 − �cc,k(t′))�cc,k−q(t′)]
}
. (15.93)

The integral kernel becomes real and is

K±
cc,k,q(t, t

′) = 2Gr
cc,k−q(t, t

′)Ga
cc,k(t′, t)e±iω0(t−t′) + c.c. (15.94)

The population factors in the square brackets of (15.92) are easily recogniz-
able as those for a transition from state k to state k − q under absorption
of a phonon (first term in the first square bracket) and under emission
of a phonon (first term in the second square bracket) minus the factors
for the inverse processes. Note that the terms with three population fac-
tors cancel, so that only the bilinear terms of (15.91) remain. All these
population factors are taken at the earlier time t′, exactly as we found
it already in the introductory Chap. 3 by equation of motion techniques.
Remember in our thermal phonon bath model, the population factors nq do
not depend on time. In the free-particle approximations the integral kernel is
simply

K±
cc,k,q(t, t

′) = 4 cos ((ec,k−q − ec,k ∓ ω0)(t− t′)) , (15.95)

again in complete agreement with the equation of motion technique of
Chap. 3. Without repeating the still open subtle points of the transition
to the Markov limit, we recognize that in the long-time limit these oscil-
lations lead to the energy conservation for the individual scattering pro-
cesses. The intraband scattering quantum kinetics thus reduces in the absence
of a light pulse to the non-Markovian extension of the usual Boltzmann
kinetics.

Off-Diagonal Contributions

Next we consider the contributions of the off-diagonal elements of the density
matrix, still considering only diagonal spectral functions, i.e., σ = τ = c in
(15.90). The sum over the index ρ yields the additional terms
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− ∂�cc,k
∂t

∣∣∣∣od

scatt

= −
∑
q,±
g2q

∫ t

−∞
dt′

×
{
Gr

cc,k−q(t, t
′)Ga

cc,k(t′, t)eiω0(t−t′)Pk−q(t′)P ∗
k (t′) + c.c.

− Gr
cc,k(t, t′)Ga

cc,k−q(t
′, t)eiω0(t−t′)Pk(t′)P ∗

k−q(t
′) + c.c.

}
.

(15.96)

These so-called P 2 terms can be understood as follows: The light-induced
interband polarization is the probability amplitude for finding a coherent
admixture of conduction and valence band states. If an exchange of a phonon
links the polarization components at momentum k and k − q (pair scatter-
ing), the incoherent density at momentum k can change. Consider, e.g., the
term Pk−qP

∗
k = 〈a†v,k−qac,k−q〉〈a†c,kav,k〉 which appears in (15.96). In detail

an electron in state c, k − q is coherently de-excited into the state v, k − q,
coupled by the exchange of a phonon, simultaneously an electron of state v, k
is coherently excited into state c, k. This process can result in a change of the
electron density in state c, k. We will see later in the discussion of two-pulse
experiments that the coupling of two-polarization components by a resonant
phonon exchange leads to experimentally observable interference oscillations
in the four-wave mixing signal.

In general also the off-diagonal elements of the spectral functions Gr
µν and

Ga
µν according to (15.90) have to be taken into account, although the explicitly

discussed terms are the leading terms in the lowest powers of the light field.
The presented full theory with light-field-dependent spectral functions and
the full quantum kinetic equation for the density matrix is, however, not a
consistent expansion in powers of the light field. The expansion parameter in
this theory is the polaron coupling constant α. An alternative construction of
the theory in which up to a given order in the field all terms are contained
has been developed in the so-called controlled truncation method [12].

15.4 Interband-Polarization Dephasing

Next we will examine the quantum kinetic scattering integral for the interband
polarization Pk(t) = �cv,keiωt. From (15.26) we find

− ∂�cv,k

∂t

∣∣∣∣
scatt

= −
∑

q,στ,±
g2q

∫ t

−∞
dt′
({
Gr

cσ,k−q(t, t
′)Ga

τv,k(t′, t)e±iω0(t−t′)

×
(
N∓

q �στ,k(t′) −N±
q �στ,k−q(t′) ±

∑
�

�σ�,k−q(t′)��τ,k(t′)

)}
− {k ↔ k − q}) . (15.97)
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We start again by taking only diagonal spectral functions σ = c and τ = v

− ∂Pk

∂t

∣∣∣∣
scatt

= −
∑
q,±
g2q

∫ t

−∞
dt′
({
Gr

cc,k−q(t, t
′)Ga

vv,k(t′, t)ei(ω±ω0)(t−t′)

×
(
(N∓

q ± �cc,k−q(t′))Pk(t′) − (N±
q ∓ �vv,k(t′))Pk−q(t′)

)}
−{k ↔ k − q}

)
. (15.98)

From the exponents we see directly that the quantum kinetic dephasing in-
tegral contains also the phonon sidebands. In the free-particle approxima-
tion for the spectral functions, one finds contributions which are resonant at
ω = ec,k−q − ev,k ∓ ω0. These terms describe the phonon-assisted interband
transitions from the state v, k to the state c, k − q under the absorption of a
photon accompanied by the absorption or emission of a phonon.

The damping terms of the polarization Pk, e.g., are determined by the
sum of scattering rates of two processes. The first one is the scattering out
of the occupied state c, k with �cc,k = 1 accompanied by the absorption of
a phonon. The corresponding probability is ∝ N(1 − �cc,k−q). The second
damping process is the scattering into the empty state �cc,k = 0 accompanied
by the emission of a phonon with the probability ∝ (N + 1)(�cc,k−q). The
sum is

Nq(1 − �cc,k−q) + (Nq + 1)(�cc,k−q) = (Nq + �cc,k−q). (15.99)

Adding also the processes where emission and absorption are interchanged,
one obtains the term (

N∓
q ± �cc,k−q

)
, (15.100)

which is just the total scattering rate in the first term of (15.98). In the hole
picture ρhh,k = 1− ρvv,k, the next term has the same structure for scattering
processes in and out of the state v, k − q.

In general again the full scattering rate (15.97) has to be used together
with the off-diagonal spectral functions.

The coupled equations for the density matrix elements ρcc,k, ρvv,k, and
ρcv,k with both the coherent mean-field part and the scattering integrals can
now be solved numerically for a given light pulse. For a femtosecond pulse the
results show a relaxation of the excited carriers. If the carriers are excited suf-
ficiently high above the band gap, one obtains a relaxation scenario in which
one sees a cascade of phonon emission processes. In general the dispersion-less
LO-phonons alone do not lead to a completely smooth Fermi distribution,
because some areas in energy space cannot relax by phonon emission. The
interband polarization is seen to decay smoothly in several hundred femtosec-
onds due to the phonon dephasing. Because the resulting density matrices
after a single pulse excitation do not give results which are directly measurable,
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we will present numerical results only for various two-pulse excitations. The
first femtosecond pulse, often called pump pulse, excites carriers and induces
a coherent interband polarization. With a delayed second pulse one can test
the particle distributions and their relaxation, the coherent interband polar-
ization, and its dephasing.

15.5 Numerical Strategies

For the numerical evaluation of the above-derived quantum kinetic equations,
it is often convenient to change from the conduction–valence band picture to
the electron–hole picture with parabolic one-particle energies measured from
the edge of their bands (1.26):

εj,k =
k2

2mj
=
µ

mj
εk with j = e, h. (15.101)

The electron–hole pairs are resonantly excited by a strong coherent light field
which can be described in the classical approximation. We are assuming that
the excitation is isotropic, i.e., the induced polarization and the generated
electron and hole densities depend only on k = |k|. For shortness we denote
often

�cc,k(t) = fe,k(t) and 1 − �vv,k(t) = fh,k(t). (15.102)

For the assumed isotropic excitation, one can use instead of the momentum q
the energy εk′ = (k− q)2/(2µ) as an integration variable. Because this transi-
tion in the integration variable is an important simplification in all isotropic
kinetic problems, we describe this “trick” briefly in a form in which it can also
be applied, e.g., to Coulomb scattering.

Change of Integration Variable from Momentum to Energy

With g2
q ∝ 1/q2, the scattering integrals have the structure

∑
q

1

q2
F [εk, εk−q] =

∫
dεk′

∫
d3q

(2π)3
1

q2
δ(εk′ − εk−q)F [εk, εk′ ] , (15.103)

where F [εk, εk′ ] is some functional of the two energies. Now the q-integration can
be evaluated:∫ ∞

0

dεk′F [εk, εk′ ]

∫ ∞

0

dq

(2π)2

∫ +1

−1

d cos θδ

(
εk′ − εk − q2

2µ
+

kq

µ
cos θ

)
. (15.104)
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The integration over cos θ results in

µ

k(2π)2

∫ ∞

0

dεk′F [εk, εk′ ]

∫ √
εk′+√

εk

√
εk′−√

εk

d

(
q√
2µ

) √
2µ

q
(15.105)

=
µ

k(2π)2

∫ ∞

0

dεk′F [εk, εk′ ] ln

∣∣∣∣√εk′ +
√

εk√
εk′ −√

εk

∣∣∣∣. (15.106)

With this transformation the quantum kinetic scattering integrals can be
simplified. If one uses, e.g., a free-particle Wigner–Weisskopf retarded and
advanced Green function, the memory kernel K(t − t′) can be written as a
sum of factorized kernels.

Factorizing Integral Kernel

The exponential form of our integral kernels allows to write them in the form

K(t − t′) =
∑

i

κi(t)κ
′
i(t

′). (15.107)

The set of differential equations symbolically has the structure

df

dt
=

∫ t

−∞
dt′
∑

i

κi(t)κ
′
i(t

′)F (t′) =
∑

i

κi(t)Gi(t) (15.108)

with the supplementary variables

Gi(t) =

∫ t

−∞
dt′κ′

i(t
′)F (t′), (15.109)

for which one gets a set of local differential equations

dGi(t)

dt
= κ′

i(t)F (t). (15.110)

This reformulation transforms the original set of integrodifferential
equations into a larger set of local differential equations which can be solved,
e.g., by a fourth-order Runge–Kutta integration procedure very efficiently.
More generally this reduction is not possible, and one has to solve the inte-
grodifferential equations on a time grid whose discretization time has to be
adjusted and checked carefully to obtain the desired accuracy. In this situation
an Adams–Bashforth–Moulton (ABM) procedure is used [11], which requires
the functional values only on the time grid.

Because most of our calculations will be given for the semiconductor GaAs,
we will list its material parameters: me = 0.069m0,mh = 0.5m0, where m0 is
the free electron mass, Eg(T = 0) = 1.517 eV, Eg(T = 300 K) = 1.425 meV,
ε0 = 12.9, ε∞ = 10.9, α = 0.069, E0 = 4.2meV, ω0 = 36meV.
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So far we have considered only one excitation pulse. However, much more
information can be obtained by ultrafast spectroscopy with two pulses. The
variation of delay time which separates the 2 femtosecond pulses allows to
obtain valuable information on the dynamics of the excited electrons. Before
we present any numerical results, we will formulate the semiconductor Bloch
equations for the most important two versions of the two-pulse excitation,
namely for pump and probe spectroscopy, which allows to study carrier re-
laxation, and for four-wave mixing, which allows to analyze the dephasing
of the interband polarization. The numerical results for the semiconductor
Bloch equations with two pulses and quantum kinetic scattering terms can
be compared directly to a wealth of corresponding femtosecond experimental
results.



16

Two-Pulse Spectroscopy

Summary. The full wealth of quantum kinetics can be tested by time-resolved
femtosecond two-pulse spectroscopy either in the form of pump-probe spectroscopy
or in the form of four-wave mixing. It is shown that pump-probe spectroscopy is
amenable to follow the temporal evolution of the particle distributions. This is illus-
trated by calculations and experiments on the buildup of phonon cascades and on
non-Markovian relaxation scenarios. Four-wave mixing, on the other hand, is shown
to be well-suited for the study of quantum coherence and its dephasing illustrated
by LO-phonon quantum beats.

16.1 Introductory Remarks

Time-resolved information about the relaxation of excited carriers, about the
decay of the optically induced quantum coherence, but also about the buildup
of correlations can be obtained from experiments with two pulses. The basic
configuration for two-pulse experiments is shown schematically in Fig. 16.1.

In the pump–probe configuration one measures the transmission spectrum
of the probe pulse after the sample has been excited by a pump pulse as a
function of the delay time τ between the two pulses. To enhance the sensitivity
of the pump–probe measurement one measures often the difference of the
transmitted probe beam intensity with and without a preceding pump pulse,
respectively. This differential transmission spectroscopy (DTS) is best suited
to get time-resolved information about the relaxation of the distribution of
carriers excited by the pump pulse, because the absorption of a light beam
is mainly determined by the number of carriers which interact with the laser
photons.

The four-wave mixing (FWM) signal has the big advantage to be
background-free. One measures the beam diffracted from the optical lattice
formed by the optical polarization fields induced by the two pulsed coherent
beams. Because the optical lattice lasts only as long as the coherent optically
induced polarizations still exist, this method is ideally suited to detect the
dynamics and the dephasing of the optical polarization.
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pump-probe

four-wave mixing

sample
probe pulse

pump pulse

delay τ

k1

k

2k2  -k1

2

Fig. 16.1. Schematics of two-pulse experiments: Two successive pulses called pump
and probe (or test) pulse with a delay time τ propagate in the directions k1 and k2

through the sample. In the pump and probe configuration the signal is measured in
the direction k2 of the test pulse, in the four-wave mixing configuration the signal
is measured in the direction 2k1–k2 of the beam diffracted from the lattice induced
by the two pulses

The name four-wave mixing originates from the fact that one generally has
to consider a total of four different E-fields, three incident, and one diffracted
field. Here, we discuss only the so-called degenerate case where one of the
incident fields helps to form the optical lattice and will be diffracted at the
same time from the lattice. Hence, this beam counts twice whereas the other
incident beam and the diffracted beam count only once.

So far the semiconductor Bloch equations with their quantum kinetic scat-
tering terms have been formulated for a spatially homogeneous system. In gen-
eral one cannot consider an optically excited system as spatially homogeneous,
because the light fields will be absorbed most strongly at the crystal surface
where the beams enter and the two beams will in general propagate in different
directions. The induced polarization will act as a spatially inhomogeneous
source term in the Maxwell equations governing the propagation of the fields.
Thus in general one has to determine a two-point density matrix of the form

ρij(r1, r2, t) =
〈
ψ†j (r2, t)ψi(r1, t)

〉
. (16.1)

Introducing the center-of-mass coordinate R = (mir1 +mjr2)/(mi +mj), the
relative coordinate r = r1 − r2 and a Fourier transformation with respect to
the relative coordinate r one gets the Wigner distribution

ρij(R,k, t) =
1
V

∫
dd3reik·rρij(R, r, t) . (16.2)

With these distributions one can calculate, e.g., the optically induced polar-
ization as a function of space and time

P (R, t) =
∑
k

dvcρcv(R,k, t) + c.c. (16.3)
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This polarization enters into the Maxwell equations describing the dynamics
of the light field as it propagates through the sample. Obviously the deter-
mination of the Wigner functions and the resulting electromagnetic fields
is considerably more involved in comparison with calculations of the den-
sity matrices in spatially homogeneous situations. As an alternative to the
Wigner functions, one can use also density matrices which depend on two
momenta [152]

ρij(k1,k2, t) =
〈
a†j,k2

(t)ai,k1(t)
〉

(16.4)

from which the information about the spatial variation can be obtained. In a
single band, e.g., the distribution function at the spatial coordinate R is

ρ(R,k, t) =
∑
K

ρ

(
1
2
K + k,−1

2
K + k, t

)
eiR·K , (16.5)

which has again the form of (16.2). The advantage is that it is much easier
to formulate the equations of motion in momentum space than in real space.
So far these off-diagonal density matrices in K-space have been used success-
fully mainly for quantum wires, where the complications due to the angles
between the two momenta do not exist.

In thin samples, however, where propagation effects and spatial inhomo-
geneities are of minor importance, one can calculate the resulting electromag-
netic field which propagates in a certain direction by adiabatic approximations
from the calculations for spatially homogeneous fields.

16.2 Thin Samples

In order to understand why the transmitted light in thin samples is propor-
tional to the polarization field we consider Maxwell’s wave equation for the
electric field E :

∂2E
∂t2

− c
2

n2
0

∆E = −4π
∂2P

∂t2
� 4πω2P , (16.6)

where n0 is the refractive index of the unexcited crystal. The polarization is
formally an inhomogeneous term. The field E can be calculated by a solu-
tion of the homogeneous equation plus an integral over the Green function of
the homogeneous field equation folded with the inhomogeneous polarization
term. As for the calculations of the retarded Liénard–Wiechert potentials in
electrodynamics, this term reduces to the retarded polarization integral, in
which the actual time is replaced by the retarded time t − Rn/c, where R
is the distance between the coordinate of the polarization and that of the
resulting field. In thin samples these retardation effects are very small, the in-
tegral reduces to a weighted spatial average of the polarization term over the
sample. In other words, the field caused by the polarization in the medium is
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in very thin samples proportional to the spatially homogeneous polarization.
For optically thin samples we generalize the considered two-pulse laser light
field which excites the sample by introducing the two propagation directions
by means of two wave vectors k1 and k2. A spatial variation of the amplitudes
is not considered. This way, we can write

E(t) = E1(t)e−i(ω1t−k1·r) + E2(t− τ)e−i(ω2(t−τ)−k2·r)

= eik1·r
(
E1(t)e−iω1t + E2(t− τ)e−iω2(t−τ)eiφ

)
, (16.7)

where we introduced the directional phase φ = (k2 − k1) · r. With such
an exciting field the calculated induced polarization will also depend on the
directional phase

P (t, τ, φ) =
∑
k

dvcρcv,k(φ) + c.c. ∝ Etransm. (16.8)

The polarizations induced by the two delayed parts of the field (16.7) form a
transient lattice with the lattice vector k1 − k2. The field will be diffracted
from this lattice into multiple orders determined by the factor eik1·reinφ. For
n = 1 one gets the propagation vector k2, that is the direction of the delayed
test pulse (see Fig. 16.1). For n = 2 one gets the propagation vector 2k2 −k1,
etc. This is the direction of the first diffracted order in a degenerate FWM
configuration.

We numerically evaluate the resulting polarization for various values of the
directional phase. In actual calculations the polarization has to be obtained
for only a few phase values. Because of the periodicity in φ, we extract from
this knowledge the nth-order Fourier transform of the polarization

Pn(t, τ) =
∫ 2π

0

dφ
2π
P (t, τ, φ)einφ . (16.9)

This evaluation of the polarization in various directions without treating the
spatial inhomogeneity explicitly is called an adiabatic approximation. Alter-
natively, one can expand the density matrix ρ =

∑
n ρneiφn and calculate the

equations of motion for the various components successively [207]. To discuss
pump–probe experiments we have to calculate P1(t, τ). The spectrum of the
transmitted light is given by |P1(ω, τ)|2. Because the transmitted field in the
test pulse direction k1 is not background-free, one often measures a differential
signal by subtracting the spectrum for the test field alone |P 0

1 (ω)|2.

16.3 Low-Intensity Two-Beam Experiments

In the following section we will limit us to the analysis of low-intensity mea-
surements, where the relaxation and dephasing kinetics in polar semiconduc-
tors such as GaAs or CdS is determined by the interaction with LO-phonons.
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We remind the reader that compound semiconductors of the groups III–V
possess only a weak polar interaction with a small dimensionless polaron cou-
pling constant (11.26) α � 1, while the more polar semiconductors of the
groups II–VI can approach the intermediate coupling range wit α � 1. The
latter case requires to go beyond the lowest order perturbation approxima-
tion in the carrier phonon coupling as discussed already for the retarded GF
in Chap. 15

16.3.1 LO-Phonon Relaxation Cascades

We discuss first a case where the modifications of the interband continuum
due to excited carriers and their relaxation are studied [312]. Specifically, we
discuss the results of a low-intensity experiment due to Leitenstorfer et al.
on GaAs [120] with a two color titanium sapphire laser. The pump pulse was
tuned to 150meV above the band edge and had a duration of 120 fs. The pump
pulse had a rather low intensity and excited only 8 × 1014 cm−3 electron–
hole pairs. For these low carrier concentrations the relaxation kinetics was
dominated by LO-phonon scattering as treated in the preceding chapter. The
delayed probe pulse with a duration of 25 fs was tuned 120meV above the gap.
The intensity of the probe pulse was five times smaller than that of the pump
pulse. In the scattering terms we used therefore a simple damped free-particle
approximation for the spectral carrier Green functions. From the calculated
interband polarization in the direction of the probe pulse, we calculated the
absorption coefficient

α(ω) ∝ � P (ω)
Et(ω)

. (16.10)

In Fig. 16.2 we show in the top figure the measured DTS according to Fürst
et al. [120] for various delay times. One sees at negative time delays (in the
two curves with the lowest peak heights) an increased transition probability
around the spectral position of the pump pulse due to Pauli blocking. Due
to excitonic enhancement above the populated states and to a minor degree
due to bandgap shrinkage, an induced absorption (negative signal) is observed
above the spectral position of the pump pulse. A remarkably sharp feature
is present in the region of induced absorption around 1.675meV in the ear-
liest probe spectrum which seems to contradict the time–energy uncertainty
relation. Above a delay of 100 fs the buildup of the first LO-phonon cascade
structure is seen clearly, followed by a structure due to two successive phonon
emission processes at still later times.

In the three lower figures the calculated DTS are shown for various levels
of the theory: In the first calculated spectrum (a) (second figure from the top)
we present the results which have been calculated in the Markovian limit of
the LO-phonon relaxation kinetics by inserting the population distributions
calculated for the pump pulse into the Bloch equations for the test pulse.
That means the spectra (a) have not been calculated by the discussed coher-
ent projection technique, but from linearized semiconductor Bloch equations.
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In comparison with the experimental spectra we see first that the phonon
cascade structure due to LO-phonon emission builds up too fast with the
instantaneous Boltzmann scattering rates. Furthermore, we see that the inco-
herent analysis fails to explain the sharp spectral features at the high energy
cross-over from reduced to induced absorption at early time delays.

If one replaces the incoherent analysis by a coherent one, i.e., one treats
only one set of Bloch equations for the two pulses together and determines at
the end the polarization in the k1 direction, one sees that the sharp spectral
features at the cross-over point and at earliest delays are now present as in
the experimental spectra (see Fig. 16.2b, third figure from the top).

If one uses finally the delayed non-Markovian quantum kinetics of the
phonon scattering (see Fig. 16.2c, lowest figure), the timescale of the buildup
of the phonon peaks agrees now also with the experiment. Thus the analysis
of this experiment shows clearly the need for the coherent determination of
the test beam polarization and for the non-Markovian quantum relaxation
kinetics.

16.3.2 LO-Phonon Quantum Beats in FWM

Next we discuss the femtosecond FWM experiment of Wegener et al. [21] on
GaAs in which for the first time the LO-phonon quantum beats have been seen
superimposed on the exponentially decaying time-integrated FWM signal. The
time-integrated FWM signal is theoretically determined by

∫ +∞
−∞ dt|P2(t, τ)|2.

There is also the possibility to measure instead the time-resolved signal
|P2(t, τ)|2, both as a function of the real time t and the delay time τ , or the
frequency-resolved signal |P2(ω, τ)|2. Examples for all three types of FWM
measurements will be given in the following chapters.

In order to eliminate surface effects the GaAs bulk layer had a width of
only 0.6 µm and was sandwiched in an Al0.3Ga0.7As heterostructure. The sam-
ple was glued on a sapphire substrate and the top surface was antireflection
coated. The lattice temperature was kept at 77K. The excited carrier density
was in the range of several 1016 cm−3. The spectral carrier Green functions
have been calculated in the time-dependent mean-field approximation com-
bined with a Wigner–Weisskopf damping.

The quantum beats which are clearly seen in the experimental and theo-
retical time-integrated FWM signals of Fig. 16.3 are due to the phonon oscil-
lations in the integral kernel of the non-Markovian scattering integrals. The
two pulses had a duration of 14 fs and had the form of a hyperbolic secant

E0(t) = E0
1

cosh(t/∆t)
. (16.11)

Because a residual Coulomb scattering was also present under the experimen-
tal conditions we use in addition to the dephasing by phonon scattering an
excitation induced phenomenological damping in the form γ = γ0 + γ1n(t),
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Quantum kinetics

Experiment

τ =-80,-40,0,40,80,120 fs

τ= -80, -40, 0, 40, 80, 120, 160 fs

τ =-100,-40,0,40,80,120,160 fs

Boltzmann kinetics
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nonlinear, coherent analysis
Boltzmann kinetics

Linear, incoherent analysis

nonlinear, coherent analysis

1.71.56 1.58 1.6 1.64 1.68

Energy (eV)

1.661.62

Fig. 16.2. Measured (top) [120] and calculated DTS spectra [312] in various ap-
proximations for delay times ranging from −100 to 160 fs. Generally speaking, the
amplitudes of the curves increase with increasing delay time. (a) Incoherent analysis
with Markovian scattering kinetics, (b) Coherent analysis with Markovian scattering
kinetics, (c) Coherent analysis with non-Markovian quantum kinetics
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Fig. 16.3. Measured (solid lines) and calculated (dashed lines) time-integrated
FWM signals for three excitation densities (from top to bottom n = 1.2, 1.9,
6.3 × 1016 cm−3) according to Bányai et al. [21]. The curves are displaced vertically
for clarity

where n(t) is the number of carriers at time t. The carrier frequency of the
two pulses was degenerate and was tuned to the exciton resonance.

As Fig. 16.3 shows one gets a nearly perfect agreement between the experi-
ment and the quantum kinetic calculations. Naturally the oscillations are only
present in a non-Markovian version of the dephasing kinetics. The oscillations
superimposed on the exponential decay of the time-integrated FWM signals
have a frequency of (1 +me/mh)ω0, which can be understood as the beating
frequency of two interband polarization components coupled by the coher-
ent exchange of an LO-phonon between conduction band states: Suppose the
light frequency is resonant at momentum k with ek,e + ek,h +Eg = ω (again h̄
is put to equal one). The electron state k′ reached by picking up one phonon
is: ek′,e = ek,e +ω0 or k′2 = k2 + 2meω0. Thus the resulting beat frequency is
(ek′,e + ek′,h + Eg) − (ee,k + ek,h + Eg) = (1 +me/mh)ω0. For a flat valence
band (i.e., mh → ∞) the energy difference between the beating polarization
components would be exactly ω0. But due to the negative curvature of the va-
lence band this energy is increased to (1+me/mh)ω0. These observed phonon
beats are a clear manifestation of the delayed quantum kinetics.

16.3.3 Two-Time Electron–LO-Phonon Quantum Kinetics:
Formation of the Polaron

Finally we want to discuss a DTS experiment and its analysis [40] in the polar
semiconductor CdTe where the Fröhlich coupling constant particularly for the
heavy holes αh =

√
mh/µα = 0.96 � 1 is relatively large. Here µ is again the

reduced e–h mass. In this experiment [40] the detuning of the pump pulse was
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chosen such that the excess energy of the excited heavy holes was less than the
energy of an optical phonon. While in such a situation the relaxation of the
holes by LO-phonon emission is suppressed in a weak coupling semiconductor
(e.g. GaAs), in the intermediate coupling material of CdTe surprisingly a
heavy-hole relaxation has been observed. The result of our quantum kinetic
analysis is that this seeming violation of the energy conservation is connected
with the formation of polaron states for the holes.

In the intermediate polaron coupling range perturbative approaches should
not be used. In particular we do not want to use the generalized Kadanoff–
Baym ansatz (GKBA) which relates the two-time particle propagator to the
one-time density matrix, because this relation can only be justified for weak
coupling. Therefore the original Dyson equation for the two-time Green func-
tions G<(t1, t2) and Gr(t1, t2) has to be calculated directly following the
approach of Gartner et al. [121]. We choose the kinetic GFG< and the spectral
function Gr rather than the pair G<, G> chosen, e.g., by Schäfer et al. [137].
The reason is that one can formulate the initial values of the pair G<, Gr of
two-time functions exactly for times long before the pulses arrive in terms of
the equilibrium polaron GF Gr(t1 − t2) which depends only on the relative
time coordinate. Note that the kinetic equations for the nonequilibrium GF
are integro-differential equations which need a whole function of the time ar-
gument and not constants as initial values. In the optical excitation problem
the initial value can be chosen rather naturally at times long before the first
pulse arrives, where the system still was in thermal equilibrium.

It is convenient to use [137] instead of the time arguments t1, t2 the argu-
ments t = t1 and the relative time τ = t1− t2. The time derivatives transform
as ∂

∂t1
= ∂

∂t + ∂
∂τ and ∂

∂t2
= − ∂

∂τ . The calculations can be limited to the
regime t2 ≤ t1 or τ ≥ 0 because the following symmetries

G<
µν,k(t1, t2)∗ = −G<

νµ,k(t2, t1) and Gr
µν,k(t1, t2)∗ = Ga

νµ,k(t2.t1) (16.12)

allow to get the two-time functions also in the region above the t2 = t1
diagonal in the t1, t2 plane. From the original Kadanoff–Baym equation (5.4)
in general matrix notation

[G−1
0 − U,G<] = ΣrG< +Σ<Ga −GrΣ< −G<Σa , (16.13)

we get with the form

i
∂G<

∂t
= i
∂G<

∂t

∣∣∣∣
coh

+ i
∂G<

∂t

∣∣∣∣
coll

(16.14)

the collision term written with explicit time integrations

i
∂G<(t, t− τ)

∂t

∣∣∣∣
coll

=
∫ t−τ

−∞
dt′
(
−Σr(t, t′)G<(t− τ, t′)+

+Σ<(t, t′)Gr(t− τ, t′)++Gr(t, t′)Σ<(t− τ, t′)+−G<(t, t′)Σr(t− τ, t′)+
)
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+
∫ t

t−τ

dt′
(
Σr(t, t′)G<(t′, t− τ) −Gr(t, t′)Σ<(t′, t− τ)

)
. (16.15)

Here the crosses denote the hermetian conjugate with respect to the band
indices and they arise when the symmetry properties (16.12) are used to bring
the t1 < t2 quantities into the t1 ≥ t2 half plane.

The corresponding scattering terms for the retarded GF have a much sim-
pler structure and are given by

i
∂Gr(t, t−τ)

∂t

∣∣∣∣
coll

=
∫ t

t−τ

dt′ (Σr(t, t′)Gr(t′, t−τ) −Gr(t, t′)Σr(t′, t−τ)) .

(16.16)

As before the scattering self-energy is taken with free propagators for the
thermal phonon bath Dq(t− t′) and with the full carrier propagators. Vertex
corrections have not been included because of their complexity. At least in
equilibrium we checked by explicit calculation that the vertex correction still
can be neglected for intermediate coupling.

The scattering self-energies are in matrix notation for the band index

Σr
k(t, t− τ) = i

∑
q

g2q

(
D>

q (τ)Gr
k−q(t, t− τ) +Dr

q(τ)G
<
k−q(t, t− τ)

)
(16.17)

and
Σ<

k (t, t− τ) = i
∑

q

g2qD
<
q (τ)G<

k−q(t, t− τ) . (16.18)

The phonon propagators are

D
<
>
q (τ) =

1
i

∑
ζ=±1

Nζe∓iζω0τ , Dr
q(τ) =

1
i

∑
ζ=±1

ζe−iζω0τ , (16.19)

where N−1 = N is the Bose function, and N+1 = N + 1. The coherent time
development is the same for both types of nonequilibrium GFs and is

i
∂Gr,<(t, t− τ)

∂t

∣∣∣∣
coh

= Σδ(t)Gr,<(t, t− τ) −Gr,<(t, t− τ)Σδ(t− τ) , (16.20)

where Σδ(t) is the singular mean field self-energy due to the interaction with
the coherent laser pulse and due to the Coulomb exchange interaction.

Concerning the initial conditions the knowledge of the equilibrium retarded
GF is indeed sufficient, since G<

cc,k vanishes because the conduction band is
empty and G<

vv,k = −Gr
vv,k for the full valence band. In equilibrium the

equation for the retarded GF can be written, e.g., for the conduction band
with

Gr
k(τ) =

1
i
Gk(τ)e−iekτ (16.21)
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Fig. 16.4. Strategy for the solution of the Kadanoff–Baym equation for G< and
Gr [121]. The time t0 marks an initial time well before the first light pulse arrives.
Before t0 the system is in thermal equilibrium where the retarded GF is obtained
from a τ = t1 − t2 integration with fixed t = t1

i
∂Gk(τ)
∂τ

=
∫ τ

0

dt′σr
k(τ − τ ′)Gk(τ ′)eiek(τ−τ ′) (16.22)

with the initial condition Gk(0) = 1. As always, the self-energies have the
same symmetry properties (16.12) as the GFs. The interaction representation
of the retarded self-energy is

σr
k(τ) =

1
i

∑
q,ζ

g2qNζGk−q(τ)e−i(ek−q+ζω0)τ . (16.23)

The solution of this equilibrium retarded GF is the polaron GF. Note that
this function cannot be obtained from the Kadanoff–Baym equation for Gr

with its derivative with respect to t. If the τ -dependence is not introduced in
the kinetics as an initial condition, it will be missing for the whole kinetics.

Now the two-time GF can be calculated numerically by energy and time
discretization. In Fig. 16.4 the discretized (t, t′) plane is shown. The equilib-
rium polaron retarded GF can first be calculated for times before t0 where
the action of the light pulses is not yet felt. One integrates with fixed time
t = t1 by integrating over τ starting with the initial value Gr(τ = 0) = 1 on
the diagonal of the t1, t2 plane. At t0, t0 this function of τ is taken to give
the initial value for the integration of the Kadanoff–Baym equations over t as
shown in Fig. 16.4. We choose as in the experiment the material parameters
of CdTe: The low-temperature bandgap Eg = 160 eV from which one gets the
bare bandgap by subtracting the equilibrium polaron shift. The LO-phonon



298 16 Two-Pulse Spectroscopy

-1

0

1

tD = 0 fs

probe photon energy (eV)

tr
an

sm
is

si
on

 c
ha

ng
e 

∆T
/T

 x
 1

04
-1

0

1

-1

0

1

tD = 60 fs

1.62 1.66 1.70 1.74
-1

0

1

hωLO

tD = 120 fs

tD = 200 fs

1.62 1.66 1.70 1.74 1.62 1.66 1.70 1.74

experiment
quantum kinetic

model
Bloch-Boltzmann

simulation

k

E(k)

hωLO

pump

cb

hh

probe

hh

(b)(a) (d)(c)

tD = 0 fs tD = 0 fs

tD = 60 fs tD = 60 fs

tD = 120 fs tD = 120 fs

tD = 200 fs tD = 200 fs

Fig. 16.5. DTS experiment in CdTe [40]: (a) Schematics of the excitation, (b) mea-
sured DTS for various delay times tD, (c) calculated DTS with a two-time quan-
tum kinetics of the LO-phonon scattering, (d) calculated DTS with a semi-classical
Markovian Boltzmann kinetics

energy h̄ω0 = 36 meV, the effective masses me = 0.09 m0 and mhh = 10 me,
the polaron coupling constants αe = 0.33 and αhh � 1. The light pulses have
a Gaussian shape. The test pulse had a duration of 15 fs and a bandwidth of
100 meV. The pump pulse had a peak photon energy of h̄ωp = 1.72 eV and
a duration of 100 fs corresponding to a bandwidth of 13 meV. The excited
carrier density n = 1.3 × 1015 cm−3 was kept low in order to avoid Coulomb
scattering. The excess energy of the excited electrons was 107 meV while for
the heavy holes it was only 13 meV, so that a one-phonon emission process
for the holes was forbidden. The optically induced polarization is calculated
by P (t) = d

∑
kG

<
cv,k(t, t) and the test pulse polarization by the projection

technique described above. Finally the absorption coefficient of the weak test
pulse is calculated from α(ω) = 4πωt

c Im Pt(ω)
Et(ω) . The resulting DTS spectra for

CdTe are shown in Fig. 16.5 as well as the schematics of the chosen excitation
(a). The DTS spectra for various delay times are: (b) as measured, (c) as cal-
culated by the described two-time quantum kinetics, and (d) for comparison
as calculated with the semiconductor Bloch equations and the semi-classical
scattering kinetics of the Boltzmann type.

We see both in experiment and in the calculated spectra at the delay time 0
the increased transition due to the Pauli blocking of the excited carriers. The
reduced transmission above the filled states is caused mainly by excitonic
enhancement and to a minor degree by bandgap reduction. While in the semi-
classical Boltzmann kinetics which conserves the free-particle energies the hole
contribution to the increased transmission does not relax (the maximum stays
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Fig. 16.6. Comparison of the relaxation of the heavy holes which have not suf-
ficient energies to emit a LO-phonon in the weak coupling material GaAs and in
the intermediate coupling material CdTe [40]. The full lines represent the results
of the two-time quantum kinetics, the thin lines for comparison the results of the
semiclassical Boltzmann kinetics

around 1.70 eV), the experiment and the two-time quantum kinetics show that
both the electrons and the heavy holes relax at the latest delay times towards
the band edge, resulting in an increasing transmission towards the band edge
as indicated by the arrows. At the large delay times of 200 fs this is not
due to the energy–time uncertainty which is encoded in the quantum kinetic
scattering integrals, but due to the fact that not the free-carrier energies but
their renormalized carrier energies enter into the quantum kinetic scattering
terms. The experiment can thus be understood as a direct observation of the
temporal buildup of the polaron correlation here in particular for the heavy
holes. It can be shown that in a corresponding pump–probe experiment [40]
on the weak coupling material GaAs (see Fig. 16.6) the corresponding hole
relaxation does not take place, again demonstrating that it is the intermediate
polaron correlation of the heavy holes which causes this rather surprising
result. Figure 16.6 further shows that this effect is absent in the semiclassical
kinetics in which the free-carrier energies together with the phonon energy
enter in the energy conservation. In contrast the quantum kinetic scattering
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integrals are in the long-time limit determined by the energies of the dressed
particles, i.e., the polarons. Both the polaron shift and the broadening inherent
in the polaron GF (see e.g., Fig. 15.6) open this surprising new relaxation
channel.

At higher excitation intensities the density of optically excited carriers
becomes so large that the interaction between the carriers determines the
femtosecond relaxation and dephasing kinetics. In a dense e–h plasma the
screening of the Coulomb interaction between two carriers by other optically
excited carriers has to be included. On a femtosecond time scale screening is
not instantaneous because it takes a certain time of the order of an inverse
plasmon frequency until the carriers arrange themselves in order to provide
full screening. We will see that with a related optical pump – THz probe
experiment, one can follow the buildup of plasma correlations in the gas of
excited carriers and the buildup of the resulting collective plasmon mode and
of screening. Because of the time-dependent screening process the interaction
potential becomes a function of two times. This two-time-dependent effec-
tive interaction has to be calculated self-consistently with the evolving carrier
Coulomb quantum kinetics for the analysis of ultrafast high-intensity two-
beam experiments. These problems will be dealt with in Chaps. 17 and 18.



17

Coulomb Quantum Kinetics
in a Dense Electron–Hole Plasma

Summary. The quantum kinetics for Coulomb interactions is derived. It is shown
that the screened scattering potential depends on two time arguments, because
screening is built up only after the carriers have been excited and begin to rear-
range. The nonequilibrium screened Coulomb potential obeys an integral equation
with a polarization due to carrier-carrier scattering. By a generalization of the equi-
librium theory, a time-dependent plasmon-pole approximation is derived in order to
illustrate the physical content of the complex formalism.

17.1 Introduction

In a dense electron–hole plasma which has been excited by resonant optical
pumping, the scattering between the charged carriers provides the fastest
relaxation process. This Coulomb scattering is due to two-particle collisions,
the corresponding scattering rates therefore increase roughly with the square
of the plasma density, while the LO-phonon scattering increases only linearly,
disregarding at the moment Pauli blocking effects. In comparison with the
phonon scattering which has been studied so far, the Coulomb scattering has
several new features. Coulomb scattering conserves the total momentum and
energy of the plasma. Therefore it yields a fast relaxation of the originally
excited nonequilibrium plasma into a thermal one, whose temperature is de-
termined by the total energy of the plasma. The relaxation of the plasma
temperature to that of the lattice will then take place due to the scatter-
ing of electrons with phonons, in polar semiconductors predominantly op-
tical phonons. Furthermore, if we calculate as for the phonon scattering the
Boltzmann transition rates by first-order perturbation theory – called the first
Born approximation – one gets for the long-range bare Coulomb interaction
a divergent result:

∂nk1

∂t

∣∣∣∣
scatt

= −2π
h̄

∑
k2,q

δ(ek1 + ek2 − ek1+q − ek2+q)|Wq|2 (17.1)

× (nk1nk2(1 − nk1+q)(1 − nk2−q) − nk1+qnk2−q(1 − nk1)(1 − nk2)) .
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Here and in the following the vector notation for the momenta has been
suppressed in order to slim the formulae. For the bare Coulomb potential
Wq → Vq = 4πe2

ε0q2 , the q-integral results in
∫∞
0

q2dq
q4 δ(ek1 + ek2 − ek1+q − ek2+q)

which diverges at the lower boundary.
In the equilibrium many-body theory, one overcomes this difficulty by us-

ing a partial summation of higher-order diagrams for the effective two-particle
Coulomb interaction. In this way the screening of the Coulomb potential by
the surrounding carriers is taken into account. The bare Coulomb potential
Vq is then replaced by the screened one: Wq(ω) = Vq

ε(q,ω) , where ε(q, ω) is the
retarded dielectric function, which depends on momentum and frequency. In
the static limit ω = 0, the dielectric function would replace in the potential
the singular q−2 by the analytical (q2 + k2TF)−2, where kTF is the Thomas–
Fermi screening wave number. Thus at least in the static limit, one can use the
screened Coulomb potential in the Boltzmann equation. Note that already the
use of a frequency-dependent screened Coulomb potential requires a rederiva-
tion of the generalized Boltzmann equation starting from quantum kinetics
(see, e.g., the textbook of Kadanoff and Baym [191]).

17.2 Screening in the Nonequilibrium GF Theory

In an equilibrium high-density plasma, the random phase approximation
(RPA) which will be described below yields a relatively good description of
the screening of the Coulomb potential although it does not conserve the total
charge. The momentum- and frequency-dependent dielectric function ε(q, ω)
in the equilibrium theory originates from the dependences of the screened po-
tential on the differences of the space and time coordinates, r1 − r2, t1 − t2,
between the two interacting particles. However, in nonequilibrium many-body
theory the screened Coulomb potential depends as any other Green func-
tion separately on all coordinates r1, r2, t1, t2 of the two interacting particles.
Screening between two newly created carriers, e.g., builds up as the surround-
ing particles rearrange themselves by scattering, a process which is not in-
stantaneous but needs some time. The description of this buildup of screening
on a femtosecond timescale needs a screened potential Wq(t1, t2) which de-
pends on two times and the momentum if we consider for simplicity only
spatially homogeneous systems. Because the buildup of screening takes place
on a timescale given by the inverse plasmon frequency ωpl =

√
4πe2n
ε0m , where

n is the plasma density and m an effective carrier mass, this two-time depen-
dence of the screened potential is important for the analysis of femtosecond
experiments with pulses shorter than or equal to the inverse plasma frequency
of the excited plasma. For GaAs, e.g., a plasma density of 1018 cm−3 corre-
sponds to a plasma frequency of about 30meV. The corresponding plasma os-
cillation period is around 100 fs. Under these conditions the screened Coulomb
potential Wq has to be treated as a two-time-dependent function Wq(t1, t2)
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= +
t t’ tt t’ t2 t’

Wq(t,t’)

t1
Lq (t1,t2)

Vq δ(t,t’) Vq δ(t,t1) Wq (t2,t’)

Fig. 17.1. Equation for the screened two-time Coulomb potential W given by a
bold dashed line. The thin dashed line is the bare Coulomb potential V , L is the
polarization function

for time intervals shorter than or comparable to 100 fs. The nonequilibrium
Dyson equation for the effective potential Wq(t1, t2) – which can be seen also
as the plasmon GF – is

Wq(t1, t2) = Vq + VqLq(t1, t3)Wq(t3, t2), (17.2)

where again the times are defined on the Keldysh contour and a matrix nota-
tion is implied, i.e., repeated time arguments have to be integrated. Lq(t1, t2)
is the intraband polarization function. The diagrammatic representation is
given in Fig. 17.1.

So far practically all numerical work applied to the analysis of femtosecond
spectroscopy is limited to RPA. In RPA the polarization function is simply
given by a loop of two self-consistent particle Green functions

Lq(t1, t2) = −2i
∑

k,λ,λ′
Gk+q,λ,λ′ (t1, t2)Gk,λ′,λ(t2, t1). (17.3)

Vertex corrections are neglected in RPA. As analyzed by Gartner et al. [123],
the general two-time kinetics with this RPA polarization function does not
eliminate the q → 0 divergency from the Coulomb quantum kinetics. Only
if one includes a vertex function which has to be determined at least in the
screened ladder approximation, the long-wavelength divergence is eliminated
in the full two-time nonequilibrium GF theory. However, the complexity of this
approach has so far prevented its implementation in numerical evaluations of
the femtosecond semiconductor quantum kinetics.

For the application of the Coulomb quantum kinetics, it was therefore
a lucky chance that the nonequilibrium RPA is free of divergencies if it is
evaluated in the framework of the one-time-dependent density matrices by
using the generalized Kadanoff–Baym ansatz

G
>
<

k,λ,λ′ (t, t′) = i
∑

µ

Gr
k,λ,µ(t, t′)G

>
<

k,µ,λ′ (t′, t′)

− i
∑

µ

G
>
<

k,λ,µ(t, t)Ga
k,µ,λ′ (t, t′). (17.4)

We will describe in the following the proof given by Gartner et al. [123].
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With the approximation (17.4) the retarded and advanced polarization
loops vanish for q → 0

Lr
0(t, t

′) = θ(t− t′)
(
L>

0 (t, t′) − L<
0 (t, t′)

)
(17.5)

= −2iθ(t− t′)
∑

k,λ,λ′

(
G>

k,λ,λ′ (t, t′)G<
k,λ′,λ(t′, t)

−G<
k,λ,λ′(t, t′)G>

k,λ′,λ(t′, t)
)

= −2iθ(t, t′)
∑

k,λ,λ′,µ

Gr
k,λ,µ(t, t′)

(
G>

k,µ,λ′ (t′, t′)G<
k,λ′,ν(t′, t′)

− G<
k,µ,λ′ (t′, t′)G>

k,λ′,ν(t′, t′)
)
Ga

k,ν,λ(t′, t) = 0,

because the equal-time commutator of G< and G< vanishes. A similar ar-
gument holds for La. The effective potential Wq has thus no higher sin-
gularity than the bare potential Vq ∝ 1

q2 . One sees that the difference
L>

q (t, t′) − L<
q (t, t′) is well behaved for q → 0, but not L>

q (t, t′) and L<
q (t, t′)

separately.
Next we have to consider the scattering self-energies Σ< and Σ> because

the long-wavelength divergence ofWq is still dangerous. Taking the scattering
self-energies in the so-called GW approximation (i.e., again neglecting vertex
corrections), we have

Σ
<
>

k,λ,λ′(t, t′) = −i
∑

q

G
<
>

k−q,λ,λ′ (t, t′)W
<
>

q (t, t′). (17.6)

At first sight this approximation looks insufficient, because the kinetics should
be governed by the square of the interaction matrix element. However, the
scattering interaction potentials can be reexpressed in terms of retarded and
advanced potentials as follows.

Relation Between W <
q (t1, t2) and L<

q (t1, t2)

The nonequilibrium screened Coulomb potential obeys the following equation

W = V + V LW, (17.7)

where L is the intraband polarization function and V is the bare, instantaneous
Coulomb potential. The “lesser” part of the screened Coulomb potential is obtained
from (17.7) by using the relation (4.31):

W < = V LrW < + V L<W a. (17.8)

The retarded potential obeys the Dyson-like equation

W r = V + V LrW r. (17.9)
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Multiplying (17.9) with the inverse potential V −1 from the left, this equation can
also be written as (W r)−1W r = 1, with (W r)−1 = V −1 − Lr. Similarly, (17.8) can
be written as

(W r)−1W < = L<W a. (17.10)

Multiplying (17.10) from the left with W r yields the final result:

W < = W rL<W a. (17.11)

The above analysis should appear familiar: it is quite analogous to our derivation of
the Keldysh equation in Sect. 5.3. The reader is urged to reflect on the similarities
and differences!

In extended notation the result (17.11) is

W
<
>

q (t, t′) =

∫ t

−∞
dτ

∫ t′

−∞
dτ ′W r

q (t,τ )L
<
>
q (τ, τ ′)W a

q (τ ′, t′). (17.12)

This result (see also [145]) means that the two-time particle-like potential can be
expressed exactly in terms of a convolution of the retarded potential, the particle-
like polarization L<

q , and the advanced potential. This result is a generalization of
the corresponding equilibrium result given by Kadanoff and Baym [191].

Next we want to convince ourselves that the RPA screened Coulomb po-
tential yields – in spite of the divergent self-energies – a well-defined one-time
quantum kinetics. We use the quantum kinetic scattering rate (15.4) for the
equal-time particle propagators

∂G<
k,λ,λ′ (t, t)
∂t

∣∣∣∣∣
scatt

= −i
∫ t

−∞
dt′
∑

µ

(17.13)

×
(
Σ>

k,λ,µ(t, t′)G<
k,µ,λ′ (t′, t) −Σ<

k,λ,µ(t, t′)G>
k,µ,λ′ (t′, t)

−G>
k,λ,µ(t, t′)Σ<

k,µ,λ′ (t′, t) +G<
k,λ,µ(t, t′)Σ>

k,µ,λ′(t′, t)

)

= −
∑
q,µ

∫ t

−∞
dt′
(
G>

k−q,λ,µ(t, t′)W>
q (t, t′)G<

k,µ,λ′ (t′, t)

− G<
k−q,λ,µ(t, t′)W<

q (t, t′)G>
k,µ,λ′ (t′, t)

− G>
k,λ,µ(t, t′)W<

q (t′, t)G<
k−q,µ,λ′ (t′, t)

+ G<
k,λ,µ(t, t′)W>

q (t′, t)G>
k−q,µ,λ′ (t′, t)

)
.

With the first of the symmetry relations

W<
q (t, t′) =W>

−q(t
′, t),

(
W

<
>

q (t, t′)
)∗

= −W
<
>

−q(t
′, t), (17.14)
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we see that in the limit q → 0 the first two terms are canceled by the last
two terms. Thus the equal-time scattering integral has no long-wavelength
divergence in the RPA in contrast to the two-time scattering integral, where
the discussed compensation does not take place.

Before we proceed with the derivation of the Coulomb scattering quantum
kinetics, we want to demonstrate that our form of the RPA nonequilibrium
intraband polarization function yields in equilibrium indeed the well-known
Lindhard formula.

Equilibrium Form of the Polarization Function

With the equilibrium free-particle Green functions for a single band

Gr
k+q(t1, t2) = −iθ(t1 − t2)e

−iek+q(t1−t2),

Ga
k(t2, t1) = iθ(t1 − t2)e

iek(t1−t2), (17.15)

and with t = t1 − t2 we get the polarization function

Lr
q(t1, t2) = −2iθ(t)

∑
k

ei(ek−ek+q)t[fk(t2) − fk+q(t2)]. (17.16)

In equilibrium where the distribution functions are time independent, a Fourier
transform with respect to t yields the Lindhard formula:

Lr
q(ω) = 2

∑
k

fk − fk+q

ω + iδ + ek − ek+q
. (17.17)

17.3 Coulomb Quantum Kinetics

Now we want to formulate the RPA Coulomb scattering integral for the one-
time quantum kinetics in detail. Inserting the RPA polarization (17.3) and
the relation (17.12) for the scattering potential, we find the one-time RPA
scattering integral:

∂G<
kλ,λ′ (t, t)
∂t

∣∣∣∣∣
scatt

= 2i
∑
q,µ

∫ t

−∞
dt′
∫ t

−∞
dτ
∫ t′

−∞
dτ ′ (17.18)

×
(
G>

k−q,λ,µ(t, t′)W r
q (t, τ)

∑
k′,ν,ν′

(
G>

k′+q,ν,ν′(τ, τ ′)G<
k′,ν′,ν(τ ′, τ)

)
×W a

q (τ ′, t′)G<
k,µ,λ′ (t′, t)

− G<
k−q,λ,µ(t, t′)W r

q (t, τ)
∑

k′,ν,ν′

(
G<

k′+q,ν,ν′(τ, τ ′)G>
k′,ν′,ν(τ ′, τ)

)
×W a

q (τ ′, t′)G>
k,µ,λ′ (t′, t)
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− G>
k,λ,µ(t, t′)W r

q (t′, τ ′)
∑

k′,ν,ν′

(
G<

k′+q,ν,ν′(τ ′, τ)G>
k′ ,ν′.ν(τ, τ ′)

)
×W a

q (τ, t)G<
k−q,µ,λ′ (t′, t)

+ G<
k,λ,µ(t, t′)W r

q (t′, τ ′)
∑

k′,ν,ν′

(
G>

k′+q,ν,ν′(τ ′, τ)G<
k′ ,ν′,ν(τ, τ ′)

)
×W a

q (τ, t)G>
k−q,µ,λ′ (t′, t)

)
.

The third and fourth scattering terms can be obtained from the first two terms
by the following interchange of arguments:

k ↔ k − q, k′ ↔ k′ + q, W
r
a

q ↔
(
W

r
a

q

)∗
. (17.19)

For the spectral functions of the potential, one has to take into account
that, e.g., (W r

q (t, t′))∗ = W a
q (t′, t). Before we can make use of the general-

ized Kadanoff–Baym ansatz to express the two-time propagators in terms of
density matrices and the spectral GFs, we have to establish a definite time
order between the two intermediate times τ and τ ′ by splitting the τ ′ as
follows: ∫ t

−∞
dτ
∫ t′

−∞
dτ ′ =

∫ t

−∞
dτ

(∫ τ

−∞
dτ ′ +

∫ t′

τ

dτ ′
)
. (17.20)

Now we know that τ ≤ t, τ ′ ≤ t′, and τ ′ ≤ τ in the first τ ′ integral, and τ ≤ τ ′
in the second integral. With (17.4) the final form of the Coulomb scattering
integrals becomes:

∂G<
kλ,λ′ (t, t)
∂t

∣∣∣∣∣
scatt

= 2i
∑

q,k′,µ,µ′,ν,ν′,ρ,ρ′,σ

∫ t

−∞
dt′
∫ t

−∞
dτ (17.21)

×
(
Gr

k−q,λ,µ′ (t, t′)G>
k−q,µ′,µ(t′, t′)W r

q (t, τ)

×
(∫ τ

−∞
dτ ′Gr

k′+q,ν,ρ(τ, τ
′)G>

k′+q,ρ,ν′(τ ′, τ ′)Ga
k′,ν′,ρ′(τ ′, τ)G<

k′,ρ′,ν(τ ′, τ)

+
∫ t′

τ

dτ ′G>
k′+q,ν,ρ(τ

′, τ ′)Ga
k′+q,ρ,ν′(τ, τ ′)Gr

k′,ν′,ρ′(τ ′, τ)G<
k′ ,ρ′,ν(τ, τ)

)
×W a

q (τ ′, t′)G<
k,µ,σ(t′, t′)Ga

k,σ,λ′(t′, t)

− Gr
k−q,λ,µ′ (t, t′)G<

k−q,µ′ ,λ(t′, t′)W r
q (t, τ)

×
(∫ τ

−∞
dτ ′Gr

k′+q,ν,ρ(τ, τ
′)G<

k′+q,ρ,ν′(τ ′, τ ′)G>
k′,ν′,ρ(τ

′, τ ′)Ga
k′,ρ,ν(τ ′, τ)

+
∫ t′

τ

dτ ′G<
k′+q,ν,ρ(τ, τ)G

a
k′+q,ρ,ν′(τ, τ ′)Gr

k′,ν′,ρ′(τ ′, τ)G>
k′ ,ρ′,ν(τ, τ)

)
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×W a
q (τ ′, t′)G>

k,µ,σ(t′, t)Ga
k,σ,λ′ (t′, t)

−
{
k ↔ k − q, k′ ↔ k′ + q,W

r
a

q ↔
(
W

r
a

q

)∗})
.

Again the last line accounts for the scattering terms 3 and 4 which are gen-
erated from the explicitly given terms 1 and 2 by applying the described
substitutions.

Now the structure of the Coulomb scattering integral is evident: The equal-
time particle propagatorsG

<
> (t′, t′), i.e., the density matrices, all appear at the

earlier time t′, τ , or τ ′ because of the memory structure of the quantum kinet-
ics. Due to the two-time-dependent effective Coulomb potential, the memory
structure of the density matrices of the two interacting particles before and
after the collision is considerably more involved than for the interaction with
LO-phonons at least as long as the screening for this interaction is neglected.
Later we will unify the treatment of both scattering processes by screening
both the Coulomb interaction and the particle interaction caused by the ex-
change of phonons.

As discussed already for the phonon scattering kinetics, the diagonal
elements of the factors G< give the probability that the initial states are
populated, while those of G> yield the probabilities that the final states are
unoccupied. In each of the four terms a product of a retarded and an adv-
anced potential function appears, displaying the second order of the scatter-
ing integrals in the screened interaction explicitly. The time integrals over
the particle spectral functions of the four involved states would give in the
free-particle Markov limit the energy conservation. In general they contain
important many-particle effects such as energy renormalization, excitonic and
coherent field effects, if they are calculated in the mean-field approximation.
Furthermore, also the damping of these functions may contain important
physics as discussed in Chap. 16 in connection with the polaron formation.

These Coulomb scattering rates determine the one-time Coulomb quantum
kinetics together with the self-consistently calculated retarded and advanced
Coulomb potential which obeys according to (17.2) the following integral
equation:

W r
q (t, t′) = Vqδ(t, t′) +

∫ t

t′
dt′′VqL

r
q(t, t

′′)W r
q (t′′, t′), (17.22)

where Lr
q(t, t′) is the RPA polarization which has been given already in (17.6)

for the special value q = 0. Its general form is

Lr
q(t, t

′) = θ(t− t′)
(
L>

q (t, t′) − L<
q (t, t′)

)
(17.23)

= −2iθ(t− t′)
∑

k,λ,λ′

(
G>

k−q,λ,λ′ (t, t′)G<
k,λ′,λ(t′, t)

−G<
k−q,λ,λ′ (t, t′)G>

k,λ′,λ(t′, t)
)
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= −2iθ(t, t′)
∑

k,λ,λ′,µ

Gr
k−q,λ,µ(t, t′)

(
G>

k−q,µ,λ′ (t′, t′)G<
k,λ′,ν(t′, t′)

−G<
k−q,µ,λ′ (t′, t′)G>

k,λ′,ν(t′, t′)
)
Ga

k,ν,λ(t′, t) = 0.

In this retarded formulation of the Coulomb quantum kinetics, we do not get a
divergent result even in the initial time interval, where the Coulomb potential
is still a bare one [72, 99] because in this interval there is also practically no
energy conservation due to the time–energy uncertainty.

The total time development of the one-time density matrix, ρk,λ,λ′ (t) =
−iG<

k,λ,λ′(t, t), decomposed into the coherent evolution (15.7) and the mainly
dissipative evolution due to the scattering integral (17.22), and the two-time
effective potentialW r

q (t, t′) according to (17.22) together with the RPA polar-
ization function (17.24) forms a closed system of equations, which be solved
for special two-pulse femtosecond excitations. We will actually discuss in
Chap. 18 first calculations for optical pump and THz probe experiments as
they have been performed by Leitenstorfer et al. [160,161] to measure directly
the buildup of a correlated e–h plasma and of screening. After the studies
of the two-time-dependent potential, we will apply the quantum kinetics of
phonon and Coulomb scattering for various femtosecond FWM experiments
carried out by Wegener et al. [159, 357]. Before we enter in the discussion
of these self-consistent calculations, we want to develop a plasmon-pole ap-
proximation for the two-time-dependent screened Coulomb potential. The
plasmon-pole approximation has been quite important in the development
of the quasiequilibrium many-body theory of photoexcited semiconductors
(see, e.g., Zimmermann [381] and Haug and Schmitt-Rink [142]).

17.4 Plasmon-Pole Approximation
for the Two-Time-Dependent Potential

Today the self-consistent numerical solution of the RPA equation (17.24) of
the screened Coulomb potential is not too complicated, but still it is worth-
while to get insight into this equation by developing with relatively simple
approximations the so-called plasmon-pole approximation, for simplicity again
for a single band.

For this purpose we take the spectral electron functions in the damped
free-particle approximation:

Gr
k(t, t′) = −iθ(t− t′)e(−iek−γk)(t−t′),

Ga
k(t, t′) = iθ(t′ − t)e(−iek+γk)(t−t′), (17.24)

where γk is some reasonable collision broadening. The polarization function
will be approximated by its long-wavelength limit [100] as it is done in the
quasiequilibrium theory [146].
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Long-Wavelength Limit of the Polarization Function

We start by considering the long-wavelength limit of

lim
q→0

VqL
r
q(t, t

′) = lim
q→0

8πe2

ε0q2
(−i)θ(t−t′)

×
∑

k

Gr
k−q(t, t

′)Ga
k(t, t′)[fk(t′) − fk+q(t

′)]. (17.25)

With (17.24) we get the expression

lim
q→0

8πe2

ε0q2
(−i)θ(t − t′)

∑
k

e[i(ek−ek+q)−2γ](t−t′)[fk(t′) − fk+q(t
′)]. (17.26)

Using ek − ek+q � −k · q/m and fk+q = fk + q · ∇fk, we find

lim
q→0

4πe2

ε0q2
iθ(t − t′)2

∑
k

e[−iq·k/m−2γ](t−t′)q · ∇fk(t′). (17.27)

A partial integration finally yields

lim
q→0

VqL
r
q(t, t

′) = −(t − t′)θ(t − t′)e−2γ(t−t′) 4πe2

ε0m
n(t′)

= −(t − t′)θ(t − t′)e−2γ(t−t′)ω2
pl(t

′). (17.28)

This result defines the plasma frequency ωpl(t) in terms of the total density n(t) =∑
k fk(t) of any nonequilibrium distribution.

Next we rewrite the Dyson equation (17.22) for the retarded screened
Coulomb potential by introducing a density–density correlation function
Sq(t, t′) in the form

W r
s,q(t, t

′) = Vq

(
δ(t− t′) + Sq(t, t′)e−2γ(t−t′)

)
. (17.29)

The trivial damping constants γ from the damped free-particle Green func-
tions are explicitly taken into account. For the screening described by the
density–density correlation function, only the Landau damping contributes.
A comparison of (17.22) and (17.29) yields

Sq(t, t′) = VqL
r
q(t, t

′) + Vq

∫ t

t′
dt′′Lr

q(t, t
′′)Sq(t3, t′). (17.30)

The polarization Lr
q(t, t3) has to be evaluated with γ = 0. For the long-

wavelength limit of (17.30), we find with (17.28) the following differential
equation

d2Sq=0(t, t′)
dt2

= −ω2
pl(t)Sq=0(t, t′), (17.31)
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which shows that the long-wavelength limit density–density correlation func-
tion oscillates with the actual plasma frequency which may change paramet-
rically with time t as the plasma density n(t) changes. Furthermore, one finds
the following initial conditions

Sq=0(t′, t′) = 0 and
dSq=0(t, t′)

dt

∣∣∣∣
t=t′

= −ω2
pl(t

′), (17.32)

where we used limt→t′+ θ(t− t′) = 1.

17.4.1 Parametric Plasma Oscillations

We solve (17.31) of a parametric oscillator with the ansatz

Sq=0(t, t′) = S̃0(t, t′) exp
{
−i
∫ t

t′
dt3ωpl(t3)

}
. (17.33)

S̃0(t, t′) = s(t) obeys the following equation-of-motion in t

s̈− iω̇pls− 2iωplṡ = 0. (17.34)

We assume that the parametric changes of ωpl(t) are sufficiently small in an
oscillation period, so that the second-order derivative of s can be neglected.
The remaining equation can be solved by separation of variables. We find

ds
s

= −1
2

dωpl

ωpl
, (17.35)

with the solution

s(t) = S̃0(t, t′) = S0ω
−1/2
pl (t)ω1/2

pl (t′). (17.36)

The first initial condition (17.32) yields

Sq=0(t, t′) = −iS0ω
−1/2
pl (t)ω1/2

pl (t′) sin
[∫ t

t′
dt3ωpl(t3)

]
. (17.37)

The second initial condition (17.34) at t = t′ determines S0. From

−iS0ωpl(t′) = −ω2
pl(t

′), (17.38)

one gets S0 = −iωpl(t′).
The resulting long-wavelength limit of the time-dependent density–density

correlation is in the plasmon-pole approximation [102]

Sq=0(t, t′) = −θ(t− t′)ω3/2
pl (t′)ω−1/2

pl (t) sin
[∫ t

t′
dt′′ωpl(t′′)

]
. (17.39)
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Before we can insert Sq(t, t′) into (17.29), we have to extend it to finite q val-
ues. This can be done by comparing the Fourier transform of the equilibrium
density–density correlation S0

q (ω) in the plasmon-pole approximation [142]
with respect to the relative time coordinate t− t′ with (17.39). In equilibrium
the time-dependent plasmon-pole approximation is [145]

S0
q (t− t′) =

∫ +∞

−∞

dω
2π

e−iω(t−t′) ω2
pl

(ω + iδ)2 − ω2
q

= −θ(t− t′)
ω2

pl

ωq
sin[ωq(t− t′)], (17.40)

with the dispersion of the effective plasmon pole:

ω2
q = ω2

pl

(
1 +
q2

κ2

)
+ Cq4. (17.41)

The inverse screening length κ can be expressed in a form which can also be
used for nonequilibrium distributions

κ2 =
4πe2

ε0

∫ ∞

0

dek
ek
�(ek)fk, (17.42)

assuming that the (nonequilibrium) distribution is isotropic, i.e., depends only
on the energy ek, �(ek) is the third parabolic density of states. C is a numerical
constant. The comparison between (17.39) and (17.40) shows that at finite q
values one has to use the following nonequilibrium density–density correlation:

Sq(t, t′) = −θ(t− t′)
ω2

pl(t
′)

ω
1/2
q (t)ω1/2

q (t′)
sin
(∫ t

t′
dt′′ωq(t′′)

)
. (17.43)

Naturally, the time-dependent frequencies ωpl(t) and ωq(t) have to be calcu-
lated from time-dependent n(t), κ(t), and fk(t). With this result the nonequi-
librium damped plasmon-pole approximation for the retarded screened
Coulomb potential [102] is obtained with (17.29) as

W r
s,q(t, t

′) = Vq

{
δ(t− t′) (17.44)

− θ(t− t′)
ω2

pl(t
′)

ω
1/2
q (t)ω1/2

q (t′)
sin
(∫ t

t′
dt′′ωq(t′′)

)
e−2γq(t−t′)

}
.

The results hold also in 2D if the following 2D expressions [146] are used

Vq =
2πe2

ε0L2q
and ω2

pl(t) =
2πe2n(t)q
mε0

(17.45)
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and

ω2
q(t) = ω2

pl(t)
(

1 +
q

κ(t)

)
+ Cq4, (17.46)

with

κ2(t) =
2e2m
ε0
f0(t). (17.47)

17.4.2 Instantaneous Static Potential Approximation

In order to make contact with the Boltzmann limit on a longer timescale
tωpl � 1, we may use approximately a statically screened instantaneous po-
tential [347]

W r
s,q(t, t

′) = Vs,q(t′)δ(t− t′), (17.48)

where Vs,q is in the simplest approximation:

Vs,q(t) = Vq
q2

q2 + κ(t)2
. (17.49)

Consider now with (17.48) the first term of the quantum kinetic scattering
integral again for one band only. Only the integral from t′ to t contributes.
With

∆ek,k′,q = ek +ek′ −ek−q −ek′+q, Γk,k′,q = γk +γk′ +γk−q +γk′+q, (17.50)

the first term reduces with (17.24) to

−2
∑
q,k′

∫ t

−∞
dt′Vs,q(t)Vs,q(t′)e−i∆ek,k′,q−Γk,k′,q(t−t′)

× fk(t′)fk′(t′)(1 − fk−q(t′))(1 − fk′+q(t′)). (17.51)

The second term of (17.22) yields with an opposite sign the same result, only
with the exchange of all occupied and empty states. Thus the sum of the first
two terms is

−2
∑
q,k′

∫ t

−∞
dt′Vs,q(t)Vs,q(t′)e−i∆ek,k′,q−Γk,k′,q(t−t′)

×
{
fk(t′)fk′ (t′)(1 − fk−q(t′))(1 − fk′+q(t′))

−(1 − fk(t′))(1 − fk′(t′))fk−q(t′)fk′+q(t′)
}
. (17.52)

In the final contribution to (17.22), we have to exchange all k and k− q vari-
ables as well as all k′ and k′ + q variables. With this exchange ∆ek,k′,q →
−∆ek,k′,q, while the population factors of the first and second terms are
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interchanged. The oscillating exponential terms add up to a cosine. The final
result is

∂fk(t)
∂t

= −4
∑
q,k′

∫ t

−∞
dt′Vs,q(t)Vs,q(t′) cos[∆ek,k′,q(t− t′)]e−Γk,k′,q(t−t′)

×
{
fk(t′)fk′(t′)(1 − fk−q(t′))(1 − fk′+q(t′))

−(1 − fk(t′))(1 − fk′(t′))fk−q(t′)fk′+q(t′)
}
. (17.53)

Now all four distribution functions enter the collision rate at the same retarded
time t′, while the statically screened potential enters at the times t and t′.
Because we used an instantaneous statically screened potential, we consider
consistently the limit of completed collisions, where all retardations of the
distribution and of the screened potential are ignored. In this limit one gets
the much simpler equation:

∂fk(t)
∂t

= −2
∑
q,k′
V 2

s,q(t)2πD(ek + ek′ − ek−q − ek′+q)

×
{
fk(t)fk′(t)(1 − fk−q(t))(1 − fk′+q(t))

−(1 − fk(t))(1 − fk′(t))fk−q(t)fk′+q(t)
}
, (17.54)

where D(ω) is a broadened delta-function

2πD(ω) =
2

ω2 + Γ 2

[
ω sin(ωt)e−Γt − Γ cos(ωt)e−Γt + Γ

]
. (17.55)

The factor 2 in front of the transition rates stems from the two spin states of
the second scattered electron. The only difference of the quantum kinetic equa-
tion in the completed-collision limit compared to a semiclassical Boltzmann
equation is that the energy-conserving delta-function is replaced by a broad-
ening function D, which takes into account the finite lifetime of a particle
state in a plasma and the finite evolution time of the system. In Sect. 11.5 we
showed, following the work of Reggiani et al. [291], that the quantum kinetic
equation in the completed-collision approximation can be treated again by an
extension of the Monte Carlo simulation method (at least for electron–phonon
scattering).

However, the transition of the quantum kinetic regime to the Markovian
Boltzmann regime is – particularly for Coulomb scattering – still not fully
understood. The Wigner–Weisskopf approximation for the advanced and re-
tarded Green functions and the introduction of the damping in the two-time-
dependent screened Coulomb potential do not, in their present form, result
in an asymptotic energy conservation. The Lorentzians, which replace the
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energy-conserving delta-functions of the Boltzmann equation in the Markov
limit of quantum kinetics, are spectrally too broad and cause the aforemen-
tioned problems. If one takes into account that the damping of the retarded
Green function is not instantaneous, but has to be first built up, one finds [147]
– instead of an exponential damping factor – a decay law which is inversely
proportional to the hyperbolic cosine:

exp[−γ(t− t′)] → 1
cosh[γ(t− t′)] . (17.56)

This delayed decay at early times gives rise to an exponential fall-off of the
resonance curve in frequency space. The resulting long-time limit of quantum
kinetics conserves the total energy of the system much better – albeit still
not exactly – in comparison with the Lorentzian spectral functions. For a sta-
tionary but frequency-dependent screened Coulomb potential, Mermin [264]
showed how the damping has to be introduced in an energy-conserving ap-
proximation. A corresponding asymptotically energy-conserving introduction
of the damping in the two-time-dependent screened Coulomb potential is
still missing. Furthermore, in the optically studied multiband case, the ex-
change and correlation Coulomb self-energies give rise to large plasma-density-
dependent band gap shrinkage. In II–VI compound semiconductors, this effect
can be as large as 30meV and is well studied in the nanosecond high exci-
tation spectroscopy [146, 381]. Therefore, energy renormalizations should be
included in a quantum kinetic description which will asymptotically result in a
correct quasiparticle Boltzmann equation. However, as discussed before in the
connection with phonon scattering, if one includes the real parts of the self-
energy into the spectral functions, one runs into the problem of double count-
ing. Thus, both the generalized Kadanoff–Baym ansatz, which introduces the
spectral functions, and the approximations for the spectral functions have to
be improved before one can successfully treat the transition from the delayed
quantum kinetics to the generalized Boltzmann kinetics. An early attempt to
describe this transition regime and to develop numerical solutions for it has
been reported in Tran Thoai and Haug [348]. Because of the still unsolved
problems, we will not describe this most difficult regime here in detail.

As far as the history of the ultrafast plasma kinetics is concerned, al-
ready in the 1980s high-intensity resonant femtosecond pump and probe
experiments [34, 206, 242, 278] have been performed in order to study the
fast relaxation kinetics in dense plasmas caused by carrier–carrier scatter-
ing. In earlier treatments of the carrier–carrier kinetics, semiclassical de-
scriptions on the level of the Boltzmann equation have been applied. Monte
Carlo simulations [14, 102, 126, 188, 277, 334] and direct numerical integra-
tions [8, 43, 84, 85, 303] of the semiclassical Boltzmann equation have been
used to describe the time development of the nonequilibrium electron distri-
butions. As discussed in Part III, closely related studies of the nonequilib-
rium electron kinetics are required to describe the transport in semiconductor
microstructures [109,168]. The large electric fields in these small devices cause
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large deviations from equilibrium distributions. All these earlier investigations
disregarded the discussed two-time dependence of the screened Coulomb po-
tential and are thus limited to timescales larger than an inverse plasma
frequency.

As mentioned before we will in Chap. 18 discuss the formation of screen-
ing and more generally of a correlated dense electron–hole plasma and in a
second part the action of screening on both the Coulomb interaction and the
interaction caused by the exchange of an LO-phonon.



18

The Buildup of Screening

Summary. The two-time screened Coulomb potential, as it results from a self-
consistent solution of the full Coulomb quantum kinetics after a femtosecond opti-
cal pulse, is described. The resulting potential is compared to femtosecond–resolved
optical pump and THz–probe measurements including also the screening of the
phonon-assisted carrier-carrier interaction. Excellent agreement between experiment
and theory is found. Finally, the predictions of the Coulomb quantum kinetics for
femtosecond four-wave mixing without and with coherent control are compared to
corresponding experiments resulting in a density-dependent dephasing time and
plasmon-phonon quantum beats.

18.1 Screening of the Coulomb Interaction

As discussed in the last chapter ultrafast carrier kinetics in femtosecond pulse
excited semiconductors requires the introduction of a two-time-dependent
effective interaction, because it takes a time of the order of an inverse plasma
frequency before a correlated plasma is formed. In this correlated plasma,
the charges are screened with a cloud of opposite charges so that the carrier–
carrier interaction is reduced. At the same time as a correlated plasma evolves,
a collective plasmon mode is formed. Fortunately these relatively new concepts
about the ultrafast buildup of a correlated plasma can be tested directly by op-
tical pump and THz probe spectroscopy, as shown by Leitenstorfer et al. [160].
The THz radiation can be generated by rectification of an optical femtosecond
pulse in a nonlinear GaSe crystal. Using an optical 10 fs pulse, one obtains
in this way a single-cycle THz pulse. This THz pulse has a broad spectrum
which covers the whole midinfrared region and is resonant with the frequency
of the collective oscillations in the e–h plasma which has been excited in GaAs
by the same resonant optical pulse before. The transmission spectrum of the
THz pulse as a function of the delay between pump and probe allows one
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to study the dressing of the carriers and of the connected screening of their
interactions.

Thus it is worthwhile to describe the calculation of the two-time-dependent
carrier interaction. In a first attempt the integral equation for the retarded
potential was solved together with semiconductor Bloch equations with the
optical pump pulse, but without scattering [100]. It has been recognized that
the resulting rapidly oscillating interactionW r

q (t, t′) can only be analyzed in a
meaningful way by taking an incomplete Fourier transformation with respect
to the relative time coordinate. The resulting time- and frequency-dependent
spectrum W r

q (ω, t) clearly shows how the plasmon resonance builds up as a
function of the time which has elapsed after the excitation by the pump pulse.

18.1.1 Calculations
of the Two-Time-Dependent Screened Potential

A first self-consistent calculation has been obtained by Bányai et al. [22].
In this work the integral equation of the two-time-dependent potential has
been solved together with the full semiconductor Bloch equation for the two-
band density matrix containing a coherent femtosecond pump pulse and the
self-consistent quantum kinetic scattering integrals. Because the scattering
integrals expressed in terms of retarded and advanced potential functions
contain a threefold time integration (17.22), it has been found to be time-
saving for the numerical calculations to express the scattering integral only in
terms of the kinetic components W>

q (t, t′) and W<
q (t, t′) (as in (17.13)) and

calculate the scattering component W<
q (t, t′) of the potential from the Dyson

equation (17.7) for Wq(t1, t2). From (17.8) we get explicitly

W<
q (t, t′) = Vq

∫ t

−∞
dt′′Lr

q(t, t
′′)W<

q (t′′, t′) + Vq

∫ t′

−∞
dt′′L>

q (t, t′′)W a
q (t′′, t′)

= Vq

∫ t

−∞
dt′′Lr

q(t, t
′′)W<

q (t′′, t′) + VqL
<(t, t′)Vq

+Vq

∫ t′

−∞
dt′′L>

q (t, t′′)
(
W<

q (t′′, t′) −W>
q (t′′, t′)

)
. (18.1)

Together with the symmetry relation (17.14), i.e., W<
q (t, t′) = W>

−q(t
′, t) =

W>
q (t′, t), one gets from (18.1) an integral equation for the scattering compo-

nentW<
q alone. The resulting retarded potential obtained from the calculated

W< and W> is as mentioned transformed into a frequency- and time-
dependent function by the following incomplete Fourier transformation

W r
q (ω, t) =

∫ t

−∞
dt′ei ω(t−t′)W r

q (t, t′) (18.2)

=
∫ ∞

0

dτei ωτW r
q (t, t− τ) =

Vq

εrq(ω, t)
,
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where εrq(ω, t) = εq(ω, t) is the complex retarded dielectric function. The real
and imaginary parts of the inverse dielectric function have been calculated in
the described self-consistent way for bulk GaAs excited by a Gaussian coherent
light pulse with a half-width of 15 fs and a field amplitude which corresponds to
a 0.25π pulse. The excess energy with respect to the unrenormalized band edge
was 50meV. For computational reasons we could not calculate the complete
long-wavelength limit of the dielectric function, which reflects the problems
with the weak long-wavelength singularity discussed in Chap. 17. In order to
get sufficient numerical accuracy we calculated εq(ω, t) for qa0 = 1, where a0
is the exciton Bohr radius.

Particularly from the imaginary part of the calculated inverse dielectric
function shown in Fig. 18.1, one sees how the plasmon resonance evolves. The
imaginary part of the inverse dielectric function is a measure of the energy
loss of a charged particle propagating in the plasma. Before the pulse the
imaginary part was 0, and the real part was 1. At 50 fs after the pulse a
broad absorption develops which shows that at this stage a wide range of
energies can be exchanged between the charged carriers. For successive times
the broad spectrum sharpens to the fully developed plasmon resonance at
about 250 fs. The period of the plasmon oscillation Tpl = 2π/ωpl � 100 fs is
of the same order of magnitude, showing that the plasmon period sets the
timescale for the buildup of screening. The real part of the inverse dielec-
tric function at least in the limit of a sharp plasmon resonance shows how
the interaction is renormalized as a function of time and frequency. Below the
plasmon resonance the interaction even changes sign due to the influence of

qImε-1(ω;t) Reε-1(ω;t)

hω(meV)

3

2

1

0

-1

-2

-3

-      fs
50 fs
150 fs
250 fs

t =

1000 20 40 60 80 0 20 40 60 80

Fig. 18.1. Spectra of the imaginary (left) and real (right) parts of the inverse
dielectric function calculated for a wavenumber qa0 = 1 and various times t after
the 15 fs pulse at t = 0. The plasma frequency of the excited carriers is about 31meV,
the corresponding plasma period is about 100 fs. According to Bányai et al. [22]
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the screening cloud, as is well known from the equilibrium theory. The oscil-
lations in the wings of the plasmon resonance are artifacts due to the limited
accuracy of the Fourier transform.

18.1.2 Femtosecond Optical Pump and THz Probe Spectroscopy

We mentioned already at the beginning of the chapter that Leitenstorfer
et al. [160] succeeded to measure the inverse dielectric function by a fem-
tosecond optical pump and THz probe spectroscopy. They excited a GaAs
crystal with a 10 fs pump pulse which had a central frequency of 1.55 eV. The
photo-induced pair density was estimated to be N = 2 × 1018 cm−3, which
results in a plasma frequency ωpl/2π � 15THz. The transverse THz field
probes the transverse dielectric function, which however is degenerate with
the longitudinal one in the long-wavelength limit. One can also argue that
the strongly focused infrared beam is no longer purely transversal, but con-
tains longitudinal components which are sensitive to the longitudinal plasma
oscillations. The central frequency of the infrared beam was 28THz, the half
width of the pulse was 27 fs. The time delay tD between the pump pulse and
the single-cycle THz pulse varied between tD = −25 fs and 175 fs. After the
highest delay time of 175 fs, the spectra did no longer change in an apprecia-
ble way. The fit of the resonance with a damped plasmon pole-approximation
(Drude formula) yielded a plasma frequency of ωpl/2π = 14.4THz in good
agreement with the frequency of 15THz expected from the excited density.
This experiment showed directly how long it takes until a bare charged par-
ticle obtains a cloud of opposite charges and forms a dressed quasiparticle, as
illustrated on the r.h.s. of Fig. 18.2.

If we identify the time t after the pump pulse of the calculated spectra with
the delay time tD between pump and THz probe pulse, the calculated spec-
tra of Fig. 18.1 are in a very good qualitative agreement with the measured
spectra of Fig. 18.2. Thus the experiment fully supports the above developed
concepts of the Coulomb quantum kinetics. The LO-phonon resonance is also
seen in the unexcited crystal at tD = −25 fs. The limited resolution of the
measured THz signal on the low-energy side however did not allow one to
study the coupled plasmon–phonon resonance in the excited GaAs crystal.
The study of the time-dependent interplay between the optical phonons and
the plasmons remained an interesting problem of its own, which we will discuss
in the next Sect. 18.2

18.2 Time-Dependent Screening of Phonon-Mediated
and Coulomb Interactions

The interaction with LO-phonons provides in polar semiconductors the fastest
mechanism for the cooling of the photoexcited e–h plasma toward the lattice
temperature. In order to include this process in addition to the fast Coulomb
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Fig. 18.2. Measured buildup of Coulomb screening and plasmon scattering accord-
ing to Leitenstorfer et al. [160]. On the l.h.s. the negative imaginary part of the
measured inverse dielectric function is shown for various delay times tD. On the
r.h.s. the corresponding dispersive spectra are shown. The curves at the longest
delay time tD = 175 fs have been fitted by a damped plasmon pole, i.e., by a Drude
formula. On the right side of the figure the dressing of negative and positive carriers
with an average screening cloud is illustrated

scattering it is important to treat both relaxation mechanisms on the same
footing, particularly at intermediate carrier densities [356]. As is known from
the RPA equilibrium theory of the simultaneous screening for the phonon-
mediated and the Coulomb carrier–carrier interactions for doped semicon-
ductors [255], on can generalize the RPA theory described in Sect. 18.1 by
including the phonon GF Dq(t1, t2) and the plasmon GF Wq(t1, t2) in par-
allel: While the phonon propagator and the bare Coulomb potential can be
included very easily in the frequency, momentum representation of the equilib-
rium theory, the two GFs have a rather different dependence in the two-time
presentation of the nonequilibrium theory: While the bare Coulomb potential
is instantaneous, i.e., Vq(t1, t2) = δ(t1 − t2)Vq , the free phonon GF exhibits
free oscillations. Another point which is worthwhile to state, is the fact that
the Coulomb potential Vq and the Fröhlich coupling g2q are both singular as
1/q2 in the long-wavelength limit. For the Keldysh contour-ordered GFs we
get from Fig. 18.3 the following equation

Wq(1, 2) = Vqδ(1, 2) + Dq(1, 2) + VqLq(1, 3)Wq(3, 2)
+Dq(1, 3)Lq(3, 4)Wq(4, 2) , (18.3)

where again the matrix convention for the contour times is assumed. Langreth
theorem (see Sect. 4.3) allows one to extract efficiently from contour time prod-
ucts their real time components. If C(1, 2) = A(1, 3)B(3, 2) on the contour,
one finds for real times C>(t, t′) = Ar(t, t2)B>(t2, t′) + A>(t, t2)Ba(t2, t′),
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Fig. 18.3. Screened interaction Wq(t1, t2) for the Coulomb interaction and the
interaction mediated by the exchange of LO-phonons. Dq(t1, t2) is the phonon prop-
agator, gq is the Fröhlich electron–LO phonon interaction matrix element, Vq is the
bare Coulomb potential, and Lq(t1, t2) is the intraband polarization function

where t2 has to be integrated from −∞ to +∞. Similarly if on the contour
D = ABC, one gets for real times D> = ArBrC> + ArB>Ca + A>BaCa,
where a matrix structure in the time arguments and integrations over repeated
times are assumed. With these relations one gets for the effective scattering
potential W>

q from (18.3) the following equation

W>
q = D>

q + Vq(Lr
qW

>
q + L>

q W
a
q ) + Dr

qL
r
qW

>
q

+Dr
qL

>
q W

a
q + D>

q L
a
qW

a
q . (18.4)

In this formula Vq is a constant in time. All other quantities depend on two
time arguments. The advanced potentials W a

q can be represented as

W a
q (t1, t2) = Vqδ(t1 − t2) + θ(t2 − t1)[W<

q (t1, t2) −W>
q (t1, t2)] . (18.5)

With the symmetry relations W
<
>

q (t1, t2)∗ = −W
<
>

q (t2, t1) and W>
q (t1, t2) =

W<
q (t2, t1), the equation for the effective scattering potential W>

q (t, t′)|t≥t′ =
w>

q (t, t′) becomes

w>
q (t, t′)

= D>
q (t, t′) + V 2

q L
>
q (t, t′) + Vq

(∫ t

−∞
dt1Lr

q(t, t1)W
>
q (t1, t′)

+ 2
∫ t′

−∞
dt1L>

q (t, t1)Re[W>
q (t′, t1)] +

∫ t

−∞
dt1Dr

q(t, t1)L
>
q (t1, t′)

+
∫ t′

−∞
dt1D>

q (t, t1)La
q(t1, t

′)
)

+
∫ t

−∞
dt1Dr

q(t, t1)
∫ t1

−∞
dt2Lr

q(t1, t2)W
>
q (t2, t′)

+ 2
∫ t

−∞
dt1Dr

q(t, t1)
∫ t′

−∞
dt2L>

q (t1, t2)Re[W>
q (t′, t2)]

+
∫ t′

−∞
dt1D>

q (t, t1)
∫ t′

t1

dt2La
q(t1, t2)Re[W>

q (t′, t2)] . (18.6)

After some rearrangement in order to get definite time order between the
times t, t′, t1 and t2, one finds the following closed integral equation for the
scattering potential
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w>
q (t, t′) = D>

q (t, t′)+V 2
q L

>
q (t, t′)+2

[
Vq

{∫ t′

−∞
dt1
{
L>

q (t, t1)Re[w>
q (t′, t1)]

− Re[L>
q (t, t1)]w>

q (t′, t1)∗
}

+
∫ t

t′
dt1Re[L>

q (t, t1)]w>
q (t1, t′)

+
∫ t

t′
dt1Re

[
D>

q (t, t1)]L>
q (t1, t′) +

∫ t′

−∞
dt1{D>

q (t, t1)Re[L>
q (t′, t1)

]
− Re[D>

q (t, t1)]L>
q (t′, t1)∗}

}
+
∫ t′

−∞
dt1Re[D>

q (t, t1)]

× {M1,q(t′, t1) +M5,q(t′, t1)} +
∫ t

t′
dt1Re[D>

q (t, t1)]

× {M3,q(t1, t′) +M2,q(t1, t′)} +
∫ t′

−∞
dt1D>

q (t, t1)M4,q(t′, t1)

]
(18.7)

with

M1,q(t′, t1)|t′≥t1
=
∫ t1

−∞
dt2
{
L>

q (t1, t2)Re [w>
q (t′, t2)] (18.8)

− Re[L>
q (t1, t2)]w>

q (t′, t2)∗
}
,

M2,q(t1, t′)|t1≥t′ =
∫ t′

−∞
dt2
{
L>

q (t1, t2)Re[w>
q (t′, t2)]

− Re[L>
q (t1, t2)]w>

q (t′, t2)∗
}
,

M3,q(t1, t′)|t1≥t′ =
∫ t1

t′
dt2Re[L>

q (t1, t2)]w>
q (t2, t′),

M4,q(t′, t1)|t′≥t1
=
∫ t′

t1

dt2Re[L>
q (t2, t1)]Re[w>

q (t′, t2)],

M5,q(t′, t1)|t′≥t1
=
∫ t′

t1

dt2L>
q (t2, t1)∗Re [w>

q (t′, t2)] . (18.9)

This integral equation for W>
q (t, t′), together with the polarization function

Lq(t, t′), the generalized Kadanoff–Baym ansatz, a mean-field equation for the
retarded electron GF Gr

q with an additional polaron damping, and the one-
time quantum kinetics for the reduced density matrix ρq(t) with a coherent
pump pulse and the scattering rates (17.13) form a closed set of equations
and can now be solved simultaneously and self-consistently [357]. The calcu-
lations have been performed for GaAs excited by a 11 fs pulse in the shape
of a hyperbolic secant E(t) = E0/(cosh(1.7627t/δt))e−iωt. The excess energy
of the laser excitation with respect to the unrenormalized band edge was
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h̄ω − Eg = 50meV. The propagators and spectral functions of the thermal
phonon bath have been described in detail in Chap. 15. The phonon bath
temperature has been assumed to be 300K. Finally, the resulting effective
interaction W r(t, t′) which can be obtained from the scattering components
W> and W< is

W r
q (t, t′) = Vqδ(t, t′) + θ(t− t′)

(
W>(t, t′) −W<

q (t, t′)
)
. (18.10)

This two-time potential is analyzed as above in terms of an incomplete Fourier
transform (18.3) resulting in an inverse longitudinal dielectric function. An ex-
ample of the evolving spectra is shown for GaAs with an excitation density of
N = 1.1 × 1018 cm−3 in Fig. 18.4. One sees the LO-phonon resonance which
was there, even before the crystal was excited. With increasing time a first
broad and then sharpening plasmon resonance builds up which at the cho-
sen excitation density was well above the phonon resonance. As the plasmon
resonance builds up, the phonon resonance loses oscillator strength. One sees
from the projection of the plasma peaks into the ω, q plane the quadratic dis-
persion of the plasmon in bulk material. We note critically that the numerical
accuracy of the described numerical evaluation was not high enough to show
clearly a shift of the phonon resonance as the plasmon peak forms.

Recently, similar calculations for low-dimensional systems [359] showed
that for larger wavenumbers one gets for the two-component nonequilibrium
e–h plasma not only a longitudinal optical plasmon mode, but also an acous-
tic plasmon mode. In 3D, however, the longitudinal plasmon mode has not
enough spectral weight to show up appreciably. In the longitudinal optical
plasmon mode the negative charges (e) oscillate against the positive charges
(h), while in the longitudinal acoustic mode the two components oscillate in
phase. In infrared absorption or transmission experiments, one only detects
long-wavelength plasmons. For the study of plasmons with larger q-values
scattering experiments have to be performed [377].

18.2.1 Buildup of the Phonon-Plasmon Mixed Modes

In GaAs the THz radiation with a central frequency of 28THz did not allow
to follow the optical phonon mode with a frequency of ωLO/2π = 8.8THz.
In InP, however, the situation is more favorable, because the LO-phonon fre-
quency ωLO/2π = 10.3THz is higher. Therefore we calculate the time- and
frequency-dependent inverse dielectric function again self-consistently with
the full LO-phonon–plasmon quantum kinetic scattering. In the process of
comparing theory and experiment, we noticed that a higher accuracy can be
obtained by calculating the retarded effective potential W r

q (t, t′) not from the
calculated scattering components W< and W>, but directly from its Dyson
equation

W r
q (t, t′) =W 0

q (t, t′)+
∫ t

t′
dt′′
∫ t′′

t′
dt′′′W 0

q (t, t′′)Lr
q(t

′′, t′′′)W r
q (t′′′, t′) (18.11)
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Fig. 18.4. Negative imaginary part of the inverse dielectric function vs. fre-
quency and wavenumber in units of the exciton Bohr radius aB for the times
t = 50, 100, 200, 400 fs after a 11 fs pulse which excites 1.1×1018 e–h pairs per cm3.
The projection of the plasmon resonance into the ω, q plane is indicated by symbols.
According to Vu and Haug [357]
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with
W 0

q (t, t′) = g2qD0
q(t, t′) + Vqδ(t− t′) (18.12)

and

Lr
q(t, t

′) = −2iθ(t− t′)
∑

k

(
G>

k−q(t, t
′)G<

k (t′, t) −G<
k−q(t, t

′)G>
k (t′, t)

)
.

(18.13)

A further improvement of the theory is to take the strong polaron correlation
for the spectral GF into account. Starting with an equilibrium polaron GF
Gr

k(t − t′), we put on top of it the mean-field dynamics by an approximate
Dyson equation [121] of the form

Gr
k(t, t′) = Gk(t− t′) +

∫ t

−∞
dt′′Gk(t− t′′)Σmf

k (t′′)Gr
k(t′′, t′) , (18.14)

where Σmf
k (t) is the self-energy (15.7) due to the mean-field Hamiltonian,

which contains the HF Coulomb interaction and the interaction with the co-
herent light pulse. For InP we used the following material parameters [161]:
The effective electron and hole masses of me = 0.079 m0 and mh = 0.6 m0,
and dielectric constants of ε0 = 12.56 and ε∞ = 9.6. The unrenormalized
bandgap is Eg = 1.34 eV. We take α = 0.113 for the Fröhlich coupling con-
stant expressed in terms of the reduced e–h mass. Room temperature is as-
sumed for the phonon bath (TL = 300 K). The frequency of the pump is
detuned only 50 meV above the bandgap in order to reduce the energy space
over which one has to integrate. In Fig. 18.5a, b the calculated spectra of the
imaginary part of the inverse dielectric function of InP are shown as a func-
tion of frequency for various delay times and for two excited carrier densities,
N = 1.25 and 0.62 × 1018 cm−3, respectively. The wave number times the
excitation Bohr radius is taken to be qaB = 0.5, because we cannot calcu-
late the spectra with sufficient accuracy for longer wavelengths. In order to
obtain a good Fourier transform we had to broaden the phonon resonance
with γ = 6 meV/h̄. The most striking feature of these spectra is that the
phonon resonance which is first at the LO frequency does not shift as the
plasma builds up, as one would expect näıvely from an adiabatic picture of
the avoided level crossing. Instead the phonon resonance vanishes at its origi-
nal position (see the spectrum at 60 fs after the pump pulse) and reappears at
lower frequencies. It approaches for larger times after the pulse the transverse
optical (TO) frequency.

For comparison, the measured spectra in terms of the imaginary (a) and
real (b) parts of the inverse dielectric function are shown in Fig. 18.6.

The calculated spectra of Fig. 18.5a qualitatively reproduce the key ex-
perimental findings: Starting from a bare phonon pole in the unexcited polar
lattice, two branches of the coupled resonances arise and narrow down within
approximately 160 fs. On the same timescale (the solid curves serve as guides



18.2 Time-Dependent Screening of Phonon-Mediated and Coulomb 327

− I
m

[ε
−1

q(
t D

,ω
)]

− I
m

[ε
−1

q(
t D

,ω
)]

(b)(a)

energy (meV)energy (meV)

frequency (THz)frequency (THz)

180 fs

80 fs

-20 fs

t
D
=

0 5 10 15 20 250 5 10 15 20 25

0 100806040200 10080604020

Fig. 18.5. Calculated spectra of the negative imaginary part of the inverse dielectric
function for InP for two excitation densities: (a) N = 1.25 × 1018 cm−3, (b) N =
0.62 × 1018 cm−3. The spectra are depicted for times −20 fs ≤ tD ≤ 200 fs with a
step width of 20 fs. The wavevector is set to q = 0.5 a−1

B . The gray regions indicate
the obtained Reststrahlen band between the TO and the LO frequency. According
to Huber et al. [161]

to the eye), the bare LO phonon pole vanishes. In agreement with the cal-
culations most of the oscillator strength is contained in the upper resonance.
Quantitative differences between the calculated spectra and the experimen-
tal results may be primarily explained by the finite wave vector used in the
simulation. The spectral positions of the two resonances at late delay times
almost coincide with the calculated findings, although the excitation density
of Fig. 18.5a is somewhat smaller than in Fig. 18.6. Both in theory and exper-
iment, no resonance is found in the Reststrahlen region at any delay time.

For a lower excitation density of N = 0.62×1018 cm−3 (see Fig. 18.5b), the
plasma frequency is almost degenerate with the bare LO frequency. Therefore,
mixing of the modes is particularly strong: The lower branch L− appears with
increased spectral weight. Its frequency (ω−/2π = 6.9 THz) is strongly re-
duced with respect to ωLO/2π, due to anticrossing with the upper branch L+.
The latter approaches the LO phonon frequency. Interestingly, the quasiequi-
librium spectra are obtained slightly later than in Fig. 18.5a (see, e.g., the
spectra corresponding to tD = 180 fs and tD = 200 fs), indicating that the for-
mation of phonon–plasmon coupling proceeds on the shortest characteristic
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Fig. 18.6. Experiment: (a) imaginary and (b) real part of the long-wavelength
limit of the inverse dielectric function of i-InP vs. frequency as extracted from the
THz transmission for various delay times −70 fs ≤ tD ≤ 255 fs with a step width
of 25 fs. The gray regions indicate the Reststrahlen band between ωTO/2π = 9THz
and ωLO/2π = 10.3 THz. According to Huber et al. [161]

Fig. 18.7. Density dependence of the buildup time of the phonon–plasmon mixed
modes. Open symbols: theory; filled symbols: experiment. The solid line is a multi-
ple of the oscillation time of the upper branch: 1.6 × 2π/ω+. The inset shows the
density dependence of the mixed modes L− and L+ measured after the buildup of
correlations
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timescale of the many-body system which is given by the inverse frequency of
the upper branch L+.

Figure 18.7 shows the calculated and measured buildup times of the mixed-
mode spectra. While the calculations are limited to the lower density range,
the experiment becomes more accurate for higher densities. Both the calcu-
lated and measured points lie on a curve given by a multiple of the oscillation
time of the upper branch, which is indeed the shortest characteristic timescale
of the system. Asymptotically the phonon–plasmon mixed mode spectrum,
well known from the equilibrium theory, is reached indeed as shown in the
inset of Fig. 18.7.



19

Femtosecond Four-Wave Mixing
with Dense Plasmas

Summary. The screened Coulomb-phonon quantum kinetics is applied to the two-
pulse excitation of femtosecond four-wave mixing (FWM). The time-resolved FWM
shows, both in theory and experiment, a characteristic photon echo structure. From
the analysis of the theoretical and experimental time-integrated signal, a dephas-
ing time is obtained which varies with the inverse cubic power of the plasma den-
sity. Finally, FWM with coherent control yields in theory and experiment coherent
plasmon-phonon mixed mode quantum beats.

19.1 Time-Resolved Four-Wave Mixing

The question whether collective plasmon oscillations quantum beats similar to
the LO-phonon quantum beats can be observed in high-density FWM exper-
iments was one of the main motivations for the development of the Coulomb
quantum kinetics. The delay in the buildup of the plasmon resonance, the plas-
mon dispersion, and density dependence made the task to observe these col-
lective oscillations of the pulse-excited e–h plasma considerably more difficult.
Before we present the results of ultrashort femtosecond FWM experiments,
we want to remember that time-resolved FWM can display a photon-echo
signal at the time which equals the time interval between the two pulses, i.e.,
the delay time. A necessary condition is that the system is inhomogeneously
broadened (see the elementary discussion of the photon echo at the end of
Sec. 14.2). According to the Bloch equations the polarization components in-
duced by the first pulse rotate with different angular velocities given by their
inhomogeneous detuning. The second pulse reverses the rotation after the de-
lay time τ = t21, so that all polarization components align constructively after
another time interval t21 and emit a photon echo. If however the system is
homogeneously broadened, the polarization cannot be revived but it simply
decays. A noninteracting e–h gas has a natural inhomogeneous broadening
or rather inhomogeneous detuning with respect to the carrier frequency of
the coherent pulses due to the dispersion of the pair energy with momentum.
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Fig. 19.1. Calculated time-resolved FWM signals for GaAs at 300 K for various
delay times τ = t21 and three excitation densities. The left and center line mark
the peaks of the two pulses, the right line is the ideal echo line according to Hügel
et al. [159]
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Fig. 19.2. Measured time-resolved FWM signals for GaAs at 300 K for various delay
times τ = t21 and an excitation density of n = 2 × 1017 cm−3. The left and center
line mark the peaks of the two pulses, the right line is the ideal echo line according
to Hügel et al. [159]

On the other hand, a strongly correlated plasmon reacts mostly collectively.
Thus if these correlations had time to build up, the photon-echo signal is
expected to decrease. The time-resolved FWM experiments have been per-
formed by Wegener et al. [159] on a 0.6 µm GaAs layer embedded in higher
bandgap layers of Al0.3Ga0.7As in order to avoid free surface effects. In the
experiments 11 fs sech2(t)- shaped pulses have been used, which excited reso-
nantly at about 1.43meV an e–h plasma with density n. The quoted densities
are always the sum of the densities which would be excited by the two pulses
individually, i.e., n = n(1)+n(2) with n(2)/n(1) = 5. For the calculations GaAs
parameters have been used. The pulses have been taken as in the experiment,
assuming a detuning of 50meV above the unrenormalized band edge. The
results for the calculated time-resolved FWM signals are shown in Fig. 19.1
for three densities ranging from n = 1.34−8.66 × 1017 cm−3. One sees that
the calculated signal follows at smaller delay times and lower densities pretty
well the positions t = t21 of the ideal photon signal due to the inhomogeneous
detuning of the free carriers. At later delay times and higher plasma densities
the FWM signal occurs at ealier times and approaches the properties of a
free induction decay due to the collective nature of the plasmon under these
conditions.



334 19 Femtosecond Four-Wave Mixing with Dense Plasmas

Results of the time-resolved FWM experiments [159] for a plasma density
of n = 2 × 1017 cm−3 are shown in Fig. 19.2. Again photon-echo-like signals
are seen for small delay times and even more pronounced than in theory a
transition to a free induction decay at larger delay times is observed. The ex-
cellent qualitative agreement between the experimental time-resolved FWM
signals and the signals calculated with the non-Markovian Coulomb quantum
kinetics again gave evidence to the transition of the initially coherently ex-
cited individual carriers to a correlated plasma with screening and a collective
plasmon mode. It is obvious that the observed time dependence of the FWM
signals could not be described by a phenomenological T2 time.

19.2 Time-Integrated Four-Wave Mixing

The time-integrated FWM signals as a function of the delay time have
been measured in the same experiments (see Fig. 19.3) and yielded a

Fig. 19.3. Time-integrated FWM signals vs. delay time for three different opti-
cally excited carrier densities n = 0.5, 1, and 2 × 1017 cm−3 according to Hügel
et al. [159]. Full triangles are the result of quantum kinetic calculations with
n = 0.57 × 1017 cm−3. The open circles are the time-integrated data of Fig. 19.2
shifted by 8 fs. The decay time constants τ correspond to the dashed straight lines.
The left (right) inset shows the vertically displaced and normalized FWM spectra
(linear scale) for t21 = 0 (t21 = 100 fs) and the laser spectrum (dashed). Bulk GaAs,
T = 300 K, excitation with 11 fs pulses centered 50meV above the band edge
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Fig. 19.4. Calculated (full triangles) and measured (open circles) dephasing
times as a function of the excitation density according to Hügel et al. [159].
The inset shows the computed spectra at t21 = 0 for the carrier densities n =
0.86, 1.34, 2.2, 4.2, 8.66, 13.9, 18.4× 1017 cm−3. The dashed line is the laser spectrum

density-dependent dephasing as shown in Fig. 19.4. The calculated and mea-
sured dephasing time could be fitted with

1
τ

= γ0 + an1/3 . (19.1)

The same power-law dependence has already been found in a pioneering
paper of Shank et al. [34]. Surprisingly we found that this law holds also
for quasi-two-dimensional quantum wells [266]. If one argues that the mean
distance between particles d ∝ n−1/3 in 3D and d ∝ n−1/2 in 2D determines
the dephasing, one would expect a square-root dependence of the dephasing
time, which earlier – but less accurate – experiments [41] suggested.

One sees from these results, shown in Fig. 19.4, that for high densities
the dephasing times can get shorter than 10 fs. If experiments with resonant
sub–ten femtosecond pulses are performed – the shortest optical pulses are
presently around 4 fs – one never reaches the coherent limit in which the pulse
duration is shorter than the dephasing time, because these short pulses are
usually very intensive (see, e.g., Vu et al. [358]).

19.3 Four-Wave Mixing with Coherent Control

The accuracy of FWM experiments can be enhanced by applying the method
of coherent control. Here the first pulse is split in a phase coherent doublet
with a temporal distance t1,1′ between them. It has been shown before that
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Fig. 19.5. Calculated FWM signal with coherent control for 11 fs pulses according
to Vu et al. [357]. (a) The spectra (individually normalized) of the phase-locked pulse
pair 11′ (shaded) and the photon echo signal at t21′ = 30 fs and (b) two selected
traces vs. delay time t21′ for t11′ = −20.8 fs and t11′ = −22.0 fs plotted on the same
scale. The symbols in (b) are the results of simple fits. For bulk GaAs at T = 300 K
excited by 11 fs pulses with a density n = 1 × 1018 cm−3. The oscillation period
under these conditions is 60 fs. The inset illustrates the geometry

by tuning the coherent control time t1,1′ the LO-phonon quantum beats can
be switched on and off, which can be explained by the resulting spectral
shape of the total first pulse. Therefore, Vu and Haug suggested and calcu-
lated the time-integrated signal of a resonant 11-fs FWM signal with coherent
control. The calculations indeed suggested that the detection of collective
plasmon beats, or rather mixed phonon–plasmon beats, should be possible
(see Fig. 19.5). Here and in the following experiment, all three pulses have
the same intensity and the density n is the sum of the excited densities by
the three pulses individually. Encouraged by these calculations, Wegener et
al. used 13-fs pulses with coherent control to look for the predicted phonon–
plasmon-mixed mode oscillations. The result of these rather involved experi-
ments is shown in Fig. 19.6 [357]. Except for the slightly longer pulse duration
of 13 fs, all parameters are those assumed in the calculations. The values be-
tween the two phase-locked pulses are measured absolutely with a so-called
“Pancharatnam screw” with attosecond accuracy. Besides some shift in the
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Fig. 19.6. Measured FWM signal with coherent control for 13 fs pulses according to
Vu et al. [357] presented in the same way as in Fig. 19.5. (a) t21′ = 0 fs, the symbols
in (b) are the result of simple fits. Bulk GaAs at T = 300 K excited by 13 fs pulses,
n = 5.3 × 1017 cm−3. The oscillation period under these conditions is 68 fs

Fig. 19.7. Decay time τ of the photon echo signal vs. time delay t11′ as determined
from fits to the data (Fig. 19.5(b) and Fig. 19.6(b)). (a) theory, neh = 1.0×1018 cm−3,
(b) experiment, neh = 1.0 × 1018 cm−3, (c) experiment, neh = 5.4 × 1017 cm−3.
According to Vu et al. [357]



338 19 Femtosecond Four-Wave Mixing with Dense Plasmas

Fig. 19.8. Observed (triangles and squares) and calculated (circles) LO-phonon–
plasmon oscillations in the resonant 11 fs FWM with coherent control (cc) according
to Vu et al. [357]. Also shown are earlier results of two pulse experiments (full
symbols). Triangles correspond to 77 K and squares to 300 K sample temperature.
The shaded area is a guide to the eye. The two dashed curves correspond to the
LO-phonon frequency and to the plasma frequency, while the full line represents
ωLO(1 + me/mh)

absolute position t21′ = 0, the agreement between theory and experiment is
good. Figure 19.7 shows the decay time τ , which is obtained from the fits to
data similar to those shown in Figs. 19.5 and 19.6. For those optical transitions,
for which t11′ corresponds to destructive interference, the carriers are excited
by pulse 1 and coherently reemitted by pulse 1′. This leads to a modulation
of the carrier density [149] vs. t11′ , which results in an obvious modulation of
the carrier–carrier scattering time.

From this alone, one would expect a symmetric modulation of τ = τ(t11′ )
and not the asymmetric saw-tooth shape shown in Fig. 19.7. This particular
line shape is due to the fact that not only the carrier density but also the
shape of the carrier distribution function is coherently modulated with time
delay t11′ . Note that, again, theory (Fig. 19.7a) and experiment (Figs. 19.7b
and c) agree quite well.

Figure 19.8 shows that the obtained beating oscillations belong to the
upper branch of the mixed phonon–plasmon modes. Note that the quantum
beats due to the exchange of a phonon or a plasmon in the conduction bands
show up as frequencies enlarged by the factor (1 +me/mh) because of the fi-
nite curvature in the valence band, as discussed in detail with the LO-phonon
quantum beats at low excitation intensities. Another factor which enlarges
the plasmon frequency is the finite momentum value q of the exchanged plas-
mon. Therefore, the observed mode of oscillation is indeed the upper branch of
the phonon–plasmon mixed mode. Historically, this was the first observation
of the mixed LO-phonon–plasmon modes [357] in femtosecond excited semi-
conductors, before these mixed modes and their temporal buildup have been
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observed rather directly with the optical pump and THz probe experiments
of Huber et al. [161], already discussed in Chap. 18.

The observation and analysis of the coherent collective plasma oscilla-
tions as a function of the delay time superimposed on the rapidly dephased
interband polarization caused by the same plasma was certainly among the
highlights in the joint experimental and theoretical study of quantum kinetics.
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47. Y. M. Blanter, M. Büttiker: Physics Reports 336, 2 (2000).
48. A. Blandin, A. Nourtier, D. W. Hone: J. de Physique 37, 369 (1976)
49. Ø. L. Bø and Y. Galperin: J. Phys. Condens. Matter 8, 3033 (1996)
50. P. Bokes, H. Mera, R. W. Godby: Phys. Rev. B 72 165425 (2005)
51. L. W. Boltzmann: Ber. Wien. Akad. 66, 275 (1872)
52. L. L. Bonilla: J. Phys.: Condens. Matt. 14, R341 (2002).
53. M. Bonitz, D. Kremp, D. C. Scott, R. Binder, W. D. Kräft, H. S. Köhler:
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164. J. Iñarrea, G. Platero: Europys. Lett. 34, 43 (1996)
165. R. C. Iotti, E. Ciancio, F. Rossi: Phys. Rev. B 72, 125347 (2005)
166. T. Ivanov: Phys. Rev. B 52, 2838 (1995)
167. T. Ivanov, D. Marvakov, V. Valtchinov, L. T. Wille: Phys. Rev. B 48, 4679

(1993)
168. C. Jacoboni, L. Reggiani: Rev. Mod. Phys. 55, 645 (1983)
169. C. Jacoboni, P. Lugli: The Monte Carlo Method for Semiconductor Device

Simulation. (Topics in Computational Microelectronics) (Springer, Vienna,
1989)

170. A. P. Jauho: J. Phys. F: Met. Phys. 13, L203 (1983)
171. A. P. Jauho: Phys. Rev. B 32, 2248 (1985)
172. A. P. Jauho: Physica B 134, 148 (1985)



346 References

173. A. P. Jauho: J. of Phys. A 20, 2895 (1987)
174. A. P. Jauho: Solid-State Electron. 32, 1265 (1989)
175. A. P. Jauho: in Quantum Transport in Semiconductors, ed. by D. K. Ferry,

C. Jacoboni (Plenum, New York, 1991)
176. A. P. Jauho: in Granular Nanoelectronics eds. D. K. Ferry, J. R. Barker,

C. Jacoboni, NATO ASI Series B: Physics 251 (Plenum, New York, 1991)
177. A. P. Jauho, K. Johnsen: Phys. Rev. Lett. 76, 4576 (1996)
178. A. P. Jauho, J. W. Wilkins: Phys. Rev. Lett. 49, 762 (1982)
179. A. P. Jauho, J. W. Wilkins: Phys. Rev. B 28, 4628 (1983)
180. A. P. Jauho, J. W. Wilkins: Phys. Rev. B 29, 1919 (1984)
181. A. P. Jauho, J. W. Wilkins, F. P. Esposito: J. Phys. Colloq. 42, C7-301 (1981)
182. A. P. Jauho, N. S. Wingreen, Y. Meir: Phys. Rev. B 50, 5528 (1994)
183. A. Jayannavar, N. Kumar: Phys. Rev. Lett. 48, 553 (1982)
184. P. Jiang, H.-Z. Zheng (eds.): Proceedings of the 21st International Conference

on the Physics of Semiconductors (World Scientific, Singapore, 1992)
185. K. Johnsen and A. P. Jauho: Phys. Rev. B 57, 8860 (1998)
186. K. Johnsen and A. P. Jauho: Phys. Rev. Lett. 83, 1207 (1999)
187. M. Jonson, A. Grincwajg: Appl. Phys. Lett. 51, 1729 (1987)
188. R. P. Joshi, R. O. Grondin, D. K. Ferry: Phys. Rev. B 42, 5685 (1990)
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(Chapmann and Hill, London, 1998) pp. 173 – 214

213. T. Kuhn, F. Rossi: Phys. Rev. Lett. 69, 977 (1992)
214. T. Kuhn, V. M. Axt, M. Herbst, E. Binder: in Coherent Control in Atoms,

Molecules, and Semiconductors, eds. W. Pötz and W. A. Schröder (Kluwer,
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Accumulation region, 185
Admittance

linear-response, 229
Aharonov–Bohm effect, 183
Analytic continuation, 59, 69, 97

weak localization self-energy, 112
Anticommutator rule, 37, 91

Balance equation approach, 130
Barker-Ferry equation, 146
Beam projection technique, 290
Bethe–Salpeter equation, 159, 172
Binomial coefficients, 22
Bloch equations

optical, 251, 255
Bloch oscillations, 199
Bloch vector Uk, 255
Boltzmann equation

applied to N+N−N+-structure, 29
derivation of, 3, 5
eigenfunction expansion of, 8, 10, 11
elastic impurities, 21, 83, 126
integral form, 149
linearization of, 8, 10, 11
Monte Carlo solution of, 12
numerical integration of, 11

Broadening
inhomogeneous, 256

Buildup of quasi-particle dressing, 320
Buildup time

phonon–plasmon mixed modes, 329

Calculation of noise, 230
Catch

related to two-step process, 77

Chemical potential, 194
Coherent back-scattering, 111

Coherent control, 335
Coherent potential approximation

(CPA), 135
Collision broadening, 148–151

Collision damping, 40
Collision frequencies, 13

Collision term
as an integral operator, 9

electron–phonon systems, 145
gauge-invariant, 90

Gaussian white noise model, 124

invariants of, 13
linearization of, 102

memory effects, 265
quantum, 77

non-Markovian nature, 265
resonant-level model, 143

Commutator rule, 37
Complex-time contour, 97

Conductivity
electrical

Boltzmann result, 110
Drude, 114

linear d.c., 108

linear for elastic impurities, 101,
104–110

nonlinear, 154

Conservation law
Boltzmann equation, 4

current, 191
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energy, 315
momentum, 117

Continuity equation
static, 30
time-dependent, 217

Contour
deformation of, 70

Correlation function
equation-of-motion, 76
retarded

current-current, 105
time-ordered

current-current, 105
Correlation function G<

approximate for Coulomb island, 207
Gaussian white noise model, 123
relation to observables, 93

Coulomb island, 205
Coulomb potential

screened, 12
static, 12

time-dependent screened, 318
two-dimensional Fourier transform,

12
Coulomb quantum kinetics, 301
Coupling

adiabatic, 70
Current

density, 93
interacting model, 193
resonant-level model, 193
time-averaged, 217–218

for resonant-level model, 220
time-dependent, 216

linear-response, 227–229
Current conservation, 106, 191
Current standard, 213
Current-voltage characteristic, 182

experimental, 196
resonant tunneling device, 194

Damping
Markovian, 265
non-Markovian, 265

Damping constants, 255
Density functional theory, 185, 195
Density matrix, 38

thermal equilibrium, 64
Density matrix methods, 130

Density of states
field-dependent

three dimensions, 163
two dimensions, 163

in terms of spectral function, 45
resonant-level model, 135

Dephasing rate
density-dependent, 335

Depletion region, 185
Detailed balance, 14
Detuning, 254
Diagrams

crossed, 57, 111
disconnected, 49, 69
Feynman, 49, 69
ladder, 106
maximally crossed, 111
rain-bow, 57

Diamagnetic term, 107
Dielectric breakdown, 129
Dielectric function

time and frequency dependent, 320
Dielectric susceptibility, 157
Differential transmission spectroscopy,

287
Diffusion

constant, 113
Gaussian white noise model, 127

Dipole matrix element, 251
Disorder averaging

Gaussian white noise model, 121
in external fields, 133

Distribution function
Bose, 8
drifted Maxwellian, 33
Fermi, 8
generalized, 77
local equilibrium, 30

Drift-velocity
quantum, 156

Driving term
gauge-invariant, 88

with magnetic field, 89
generalized, 77
re-normalization of, 77
scalar potential gauge, 88
vector potential gauge, 88

DTS, 287
Dynamical Franz–Keldysh effect, 168
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Dyson equation
complex time, 78, 97
eigenfunction representation of, 153
elastic impurities, 107
electron-phonon systems, 53
for contour-ordered Green function,

70
for inter-band Green function, 252,

266
Gaussian white noise model, 122
nonequilibrium, 91, 98
resonant-level model, 192

concentration of impurities, 133
time-dependent, 218

retarded Coulomb potential, 304, 310
tight-binding representation, 200

Eigenfunctions
for linearized collision term, 9, 16
norm, 9
scalar product, 9

Eigenvalues
density of, 14
spectrum of, 14

Einstein summation convention, 85
Electron–phonon interaction, 186
Electron-hole plasma, 301
Energy relaxation

Gaussian white noise model, 127
Energy renormalization, 46
Envelope function, 250
Equation-of-motion

for Bloch vector, 255
for nonequilibrium Green functions,

75
Equation-of-motion technique, 69, 187

Coulomb island, 205
elastic impurity problem, 55
for reduced density matrix, 244
resonant-level model, 51, 132

Fano model, 50, 51
Fermi’s golden rule, 4, 20
Feynman diagrams

electron-phonon system, 52
for elastic impurity problem, 56
two-particle Green function, 54

Feynman path integral method, 130
Field operator, 38

for quantum-well structure, 250
in terms of Bloch waves, 250

Floquet theory, 176
Fluctuating energy-levels, 229–230
Fluctuation-dissipation theorem, 102

derivation of, 45, 47
Fluctuation-disspation theorem, 206
Fock space, 35

completeness relation of, 36
Fokker-Planck equation, 11
Formation of polarons, 295
Four-wave mixing (FWM), 287

time-integrated, 334
time-resolved, 253, 333
with coherent control, 335

Fractional quantum Hall effect, 52
Fredholm iteration, 284
Free electron laser, 158
Free induction decay, 256
Functional differentiation, 69
FWM, 287

Γ -point, 250
Gauge

scalar potential, 87
vector potential, 87

Gauge invariance, 85–92, 98
transformation of functions, 85

Gauge transformation, 86
Gaussian white noise model, GWN, 121
Gell-Mann and Low theorem, 48
Generalized Kadanoff–Baym ansatz,

94–97, 145, 147, 245, 265, 295, 303
for multiple bands, 263
gauge invariant, 97

GKBA, 94, 95, 97, 245, 246, 263–265,
295, 303

Gradient expansion, 79–81, 85
derivation of, 80–81

Gradient operator, 80
Green function

advanced
definition of, 43, 68
elastic impurities, 57
for two bands, 264
non-interacting contacts, 216

antitime-ordered
definition of, 67

causal, 67, 105
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definition of, 41, 67
contour-ordered, 63, 187

definition of, 67
perturbation expansion for, 69

correlation function
definition of, 68

equilibrium theory of, 35, 59
finite temperature

definition of, 42
free-particle, 50

differential equation for, 42
gauge-invariant, 115, 119
greater

definition of, 43, 67
higher-order, 69
in scalar potential gauge, 87
in vector potential gauge, 87
inter-band

definition of, 252
lesser

definition of, 43, 67
non-interacting contacts, 216

perturbation expansion of, 47, 49
phonon

equilibrium, 73, 145
retarded

analytic structure, 119
approximate for Coulomb island,

206
definition of, 43, 68
disorder averaged for RLM, 133
elastic impurities, 57
field-dependent; scalar potential

gauge, 115–118
field-dependent; vector potential

gauge, 119
for two bands, 264
gauge-invariant, 91
Gaussian white noise model,

121–122
non-interacting contacts, 216
time-dependent resonant-level

model, 219
time-ordered

definition of, 41, 67
two-particle, 53, 101, 105

causal impurity-averaged, 106
factorization of, 105
integral equation for, 107

H-function, 7
H-theorem, 5, 8
Hartree–Fock approximation, 208
High temperature superconductors, 52
Hilbert space, 9, 35
History

quantum kinetics and fs-spectroscopy,
249

Impurity averaging, 54, 58, 105
nonequilibrium, 133
prescription for, 54, 134

Induced polarizability, 157
Initial correlations, 70
Interaction

carrier - classical light field, 250
electron - classical light field

in rotating-wave approximation, 251
electron-phonon

in second quantization, 38
Fröhlich, 262
one-body

in second quantization, 37
two-particle

in second quantization, 37
Interband polarization, 253
Interband-polarization component, 254
Intra-collisional field-effect, 131, 148,

149, 151
Intracollisional field-effect, 126
Inversion, 255
Irreversibility

Boltzmann equation, 77
quantum kinetic equation, 77

IV-curves, 199, 201

Joint density of states, 161, 163
Joint spectral function, 161
Joule heating, 142

Kadanoff–Baym ansatz, 143, 264
Kadanoff–Baym equation, 77, 87, 98,

123
derivation of, 75–77
for inter-band Green function, 260

Keldysh equation, 96, 98, 123, 192, 206
derivation of, 77–78
for resonant-level model, 219
tight-binding representation, 200
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Kinetic energy
in terms of a Green function, 43

Kinetic equations
numerical solution

stochastic, 20
Kinetics

free-carrier, 251
linearized Coulomb, 12, 20
optical inter-band, 253
quantum

interband, 243
Kondo phenomenon, 52, 186, 207
Kondo temperature, 210
Kubo formula, 101

Landau damping, 310
Landauer formula, 183, 190

for time-averaged current, 218
Langreth theorem, 70
Level-shift function, 194
Level-width

elastic, 194
inelastic, 194
total, 194

Level-width function, 189, 194
energy-dependence, 190
field-dependence, 132
generalized, 216

Light-induced gaps, 273, 274
Limit

Boltzmann, 79–83
completed collisions of, 149, 314
Markov, 284
wide-band (WBL), 217, 219
zero-field limit, 117

Lindhard formula, 306
Line shape

strong-coupling limit, 276
weak-coupling limit, 275

Liouville equation, 21
LO-phonon quantum beats, 292
Luttinger liquids, 52

Markov equations, 40
Mass-renormalization factor

nonequilibrium, 156
Master equation, 12, 20, 22, 23
Matsubara technique, 58
Maxwell’s equation, 157, 162

Mesoscopic phenomena, 55, 181
Mesoscopic transport, 183
Migdal theorem, 53
Miniband, 198
Miniband transport, 199
Mixed phonon-plasmon modes, 338
Modulation doping, 181
Molecular electronics, 182
Mollow triplet, two-band version, 274
Momentum distribution

Gaussian white noise model, 124
Monte Carlo simulations, 130, 148, 149,

151, 201
ensemble, 20, 29
random number generation, 23, 151

Negative differential resistance, 199, 229
NEGF, 75
Non-linear optical spectroscopy, 253
N+N−N+-structure, 29
Number density

relation to correlation function G<,
94

Numerical solutions
for two-time-dependent GFs, 296

Operator
annihilation, 35, 36
contour-ordering, 65, 67
creation, 35
fermion, 35, 67
permutation, 36
time-ordering, 42, 65

Optical absorption
strong fields, 157

Parallel transport, 181
Particle density

in terms of a Green function, 43
Pauli principle, 4
Perpendicular transport, 181
Phase-braking length, 55
Phonon reaction time, 266
Phonon relaxation cascades, 291
Phonon resonance

longitudinal, transversal, 326
Phonon scattering, 200
Phonon sidebands, 282
Phonon-plasmon quantum beats, 336
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Photon echo, 256, 257, 331
Photonic side-bands, 166, 221
Picture

Heisenberg, 47, 64, 67
definition of, 42

interaction, 44, 47
Schrödinger, 47

Plasma oscillations
parametric, 311

Plasmon-pole approximation
time-dependent, 309, 313

Poisson equation, 30
Polarization, 253

interband, 158
Polaron constant, 263
Polaron correlations

in quantum kinetic relaxation, 300
polaron GF, 278
Ponderomotive energy, 165
Projection operator techniques, 130
Propagator

hole, 44
particle, 44
phonon, 262

Quantum Boltzmann equation, 101–104
Quantum cascade lasers, 201
Quantum coherence, 265
Quantum kinetic equation

elastic impurities, 109
electron–phonon systems, 144–148
gauge-invariant, 87–89
Gaussian white noise model, 123–127
inhomogeneous systems, 151
interband, 259
linear, 154
resonant-level model, 141–144

Quantum kinetics
connection to Boltzmann equation,

83
Markov limit, 315

Quantum point contact, QPC, 182
Quantum transport theory

linear, 101
nonlinear, 115–156

Quantum unit of conductance, e2/h,
183

Quasibound state, 181
Quasiclassical theory, 79

Quasielastic regime, 150
Quasienergy, 177
Quasiparticle approximation, 81–82
Quasiparticle dispersion, 120
Quasiparticle weight, 120

Rabi flop, 256
Rabi frequency, 254
Random number generation, 23
Random phase approximation (RPA),

302
Random walk

one-dimensional chain, 21
Relaxation frequencies, 10
Relaxation kinetics

Boltzmann, 10
numerical studies, 23, 29

Boltzmann equation, 17
Relaxation time

longitudinal (T1), 254
transversal (T2), 254, 257

Relaxation-time approximation, 10, 30,
153

Representation
interaction, 65

Resonant tunneling, 186
Resonant-level model, 50, 52, 192

in high electric fields, 131–144
time-dependent, 218–226

Resonant-tunneling diode, RTD, 181
high-frequency response, 229
modeling of, 214

Retarded Green function
free-particle approximation, 266
Gaussian damping, 276
hyperbolic secant damping, 277
mean-field approximation, 269
Wigner-Weisskopf damping, 275

Rotating-wave approximation, 251, 254
Run-away

field assisted, 151

S-matrix, 48, 63
Scattering rate

elastic impurity, 21
electron-electron, 23

in Born approximation, 4
electron-phonon, 5

Screened Coulomb potential
two-time-dependent, 318
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Screening

Coulomb and phonon-exchange
mediated interaction, 323

equilibrium RPA, 306

in two-time GF formalism, 304

time-dependent RPA, 304

Screening length

Debye, 31
nonequilibrium, 312

Second quantization, 35, 38

Self-consistent Born approximation, 200

Self-energy, 52, 54

analytic continuation

resonant-level model, 140

Born approximation, 138, 145

electron-phonon systems, 52

equilibrium
imaginary part of, 76

greater

electron–phonon systems, 145

Hartree-Fock

time-dependent, 262

inter-band, 252

singular part of, 252

irreducible, 70

lesser

electron–phonon systems, 145
Gaussian white noise model, 123,

126

resonant-level model; impurity
averaged, 141

nonequilibrium

imaginary part of, 76

retarded

for time-dependent resonant-level
model, 219

Gaussian white noise model, 123

impurity-averaged for RLM, 135

self-consistent Born approximation,
138, 145

elastic impurities, 57, 82, 106

electron–phonon systems, 144

electron-phonon systems, 53
Gaussian white noise model, 121

tunneling, 191

weak localization, 111

nonequilibrium, 111

Self-scattering, 22

Semiconductor
direct gap, 250
heterostructure, 181
two-band model for, 250

Semiconductor Bloch equations, 262
Semiconductor superlattice, 198
Sequential tunneling, 199
Single-electron pumps, 213
Slave-boson technique, 207
S-matrix, 59
Spatial variation

adiabatic approximation, 289
Spectral function

definition of, 45
equilibrium, 76

Gaussian white noise model, 124
general structure, 120
interacting, 102

field-dependent, 119
free, 120
gauge-invariant

time-dependent fields, 164
in gradient approximation, 81
interacting

resonant-tunneling diode, 197
joint, 150, 151
nonequilibrium, 76

equation-of-motion, 77
resonant-level model, 193
sum rule, 45, 120, 140

Spectroscopy
optical pump and THz probe, 318
pump and probe, 12, 315
thin samples, 290

Split-gate geometry, 182
States

antisymmetric, 35
Streaming-motion regime, 150

Threshold
for one-LO-phonon emission, 278

THz spectroscopy, 318
Tight-binding representation, 199
Time-ordered Green function, 187
T -matrix

functional of Green function, 135
resonant-level model, 52

field-dependent, 132
single-site, 134
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Total energy
in terms of a Green function, 43

Transformation
similarity, 13

Transient dynamics
Gaussian white noise model, 121
resonant-level model, 218–226

Transitions
dipole-allowed, 250

Transmission coefficient, 184, 190
elastic, 193

Transport properties
Gaussian white noise model, 127–129
semiconductors

high electric fields, 129–156
Tunneling Hamiltonian, 185
Tunneling problems, 184
Two-branch time contour, 184
Two-dimensional electron gas, 12, 182
Two-pulse spectroscopy, 287
Two-time-dependent GFs, 296

Universal conductance fluctuations, 183
Urbach absorption tail, 265

Urbach tail, 265

Variables
center-of-mass, 80, 86, 88, 91
difference, 80, 86, 91

Vertex equation, 108
Vertex function, 106

Wannier–Stark hopping, 199
Ward identities, 106
Wave equation, 41
Wavefunction renormalization, 46, 120
Weak localization, 58, 106, 111–114, 183
White-noise spectrum, 230
Wick’s theorem, 49, 59, 63, 67, 68, 97,

105, 159, 207
Wigner coordinates, 79, 80
Wigner function, 93–94, 123

quantum kinetic equation, 89, 98, 123
electron–phonon systems, 146
nonlocal driving term, 152

Zener effect, 159
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