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Preface

Gaussian Scale-Space Theory in Copenhagen, in spring 1996. After this, Bart
ter Haar Romeny arranged the First International Conference on Scale-Space
Theory in Computer Vision (Utrecht, July 2-4, 1997). Indeed the title was ap-
propriate since this was the first scale-space conference in a series of so far two
conferences. We feel very confident that the series will be much longer. We hope
that the scheduling next to ICCV 99 will attract more delegates furthering the
integration of scale-space theories into computer vision.

Since the first scale-space conference we have had an increase of more than
50% in the number of contributions. Of 66 high-quality submissions, we could,
due to the time limitation of the conference, only select 24 papers for oral presen-
tations. They form Part I of this volume. Many papers were of such high quality,
that they would otherwise have qualified for oral presentation. It was decided
to include 12 of the remaining papers in full length in the proceedings, creating
the category of “Long Posters”. They form Part 2 of this volume. Finally, 18
papers were accepted for poster presentations, constituting Part 3. Invited talks
were given by Prof. Riidiger von der Heydt, Department of Neuroscience, Johns
Hopkins University School of Medicine and Prof. David L. Donoho, Statistics
Department, Stanford University.

We would like to thank everyone who contributed to the success of this
2nd conference on scale-space theories in computer vision; first of all the many
authors for their excellent and timely contributions, the referees that in a very
short period reviewed the many papers (each paper was reviewed by 3 referees),
members of the conference board, program board, and program committee, Ole
F Olsen and Erik B Dam for their administration and the work of collecting the

July 1999 Mads Nielsen
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Blur and Disorder

Jan J. Koenderink and Andrea J. van Doorn

Department of Physics and Astronomy,
PO Box 80 000, 3508TA Utrecht,
The Netherlands

Abstract. Blurring is not the only way to selectively remove fine spa-
tial detail from an image. An alternative is to scramble pixels locally
over areas defined by the desired blur circle. We refer to such scram-
bled images as “locally disorderly”. Such images have many potentially
interesting applications. In this contribution we discuss a formal frame-
work for such locally disorderly images. It boils down to a number of
intricately intertwined scale spaces, one of which is the ordinary linear
scale space for the image. The formalism is constructed on the basis of
an operational definition of local histograms of arbitrary bin width and
arbitrary support.

1 Introduction

Standing in front of a tree you may believe that you clearly see the leaves.
You also see “foliage” (which is a kind of texture), the general shape of the
treetop, and so forth[3,10]. You will be hard put to keep a given leaf in mind
(say) and retrieve it the next day, or even a minute later. You fail any idea
of the total number of leaves. If you glance away and we would remove a few
leaves you would hardly notice. Indeed, it seems likely that you wouldn’t notice
quite serious changes in the foliage at all: One branch tends to look much like
any other. This is what John Ruskin[13,14] called “mystery”. Yet you would
notice when the treetop were replaced with a balloon of the same shape and
identical average color. The foliage texture is important (it makes the foliage
look like what it is) even though the actual spatial structure is largely ineffective
in human vision.

Something quite similar occurs with images. Given an image we may scram-
ble its pixels or replace all pixels with the average taken over all pixels. Both
operations clearly destroy all spatial information. Yet the scrambled picture con-
tains more information than the blurred one. When the blurring or scrambling
is done locally at many places in a large image, one obtains something like a
blurred photograph in one case, like a “painterly rendering” in the other case.
Although the painterly rendering does not reveal more spatial detail than the
blurred one, it tells you more about the rendered scene. We call such images
“locally disorderly”. We became interested because human vision is locally dis-
ordered in the peripheral visual field. In pathological cases it may even dominate
focal vision[4,6]. For instance, in cases of (always unilateral) “scrambled vision”

M. Nielsen et al. (Eds.): Scale-Space’39, LNCS 1682, pp. 1-9, 1999.
(© Springer-Verlag Berlin Heidelberg 1999



2 J.J. Koenderink and A.J. van Doorn

the visual field is useless for reading newspapers (even the headlines) say. Yet
such patients can discriminate even the highest spatial frequencies from a uni-
form field: In that respect the scrambled eye is at par with the good one. There is
nothing wrong with the optics of such eyes, nor with the sampling. The patients
simply don’t know where the pixels are, it is a mental deficiency, not an optical
or neurophysiological disorder.

Apart from the natural urge to understand such locally disorderly images
formally, they may have many applications in computer graphics (why compute
all leaves on a tree when a painter can do without?), image compression (why
encode what the human observer doesn’t notice?), and so forth. However, our
interest is mainly fundamental.

?

2 Local histograms

For an image showing an extensive scene the histogram of the full image makes
little sense because it is a hodge—podge of mutually unrelated entities. Far more
informative are histograms of selected regions of interest that show certain uni-
form regions (where the precise concept of “uniformity” may vary). Such a region
may be part of a treetop for instance. A pixel histogram still might show quite
different structure according to the size of the leaf images with respect to the
pixel size. In order to understand the structure of the histogram one has to spec-
ify both the region of interest and the spatial resolution. Finally, the result will
depend upon the resolution in the intensity domain: The histogram for a binary
image, an eight bit or a thirty two bit image will all look different. We will refer
to this as the bin width. Thus one needs at least the following parameters to
specify a local histogram: The location and size of the region of interest (the
support), the spatial resolution, and the bin width (that is the resolution in the
intensity domain). We will regard the histogram as a function of position, thus
one obtains a histogram valued image.

In order to construct histogram valued images one has to measure how much
“stuff” should go in a certain bin for a certain region of interest, at a certain res-
olution. The spatial distribution of this “stuff” is what makes up the histogram
valued image for a certain region size, resolution, bin width and intensity value.
For each intensity value (keeping the other parameters constant) one has such a
stuff distribution image.

Here is how one might construct a stuff distribution image: First one con-
structs the image at the specified level of resolution. Formally[7,9,1] this can be
written as a convolution (here “®” denotes the convolution operator)

I(r;o) = S(r) ® Go(r; o) (1)

of the “scene” (S(r); at infinite resolution!) with a Gaussian kernel

- a2
Go(r;o) = -

2no?’



Blur and Disorder 3

where ¢ denotes the resolution. Of course this is to be understood as merely
formal: In reality one observes the image, the scene is implicit it cannot be
observed other than via images. It is like the horizon that can never be reached.

Next one applies the following nonlinear transformation to the intensity of

each pixel:
_ (—ig)?

Flisio, ) = 7, (3)
here iy denotes the fiducial intensity value and 3 denotes the bin width. Notice
that the resulting image has pixel values in the range zero to one. These values
can be regarded as the value of the membership function of a given pixel to the
specified bin. Finally one blurs the result, taking the size of the region of interest
as internal scale. The kernel to be used is

_ (r—rg)-(r—rg)

Alr;ro,a) =¢ 242 : (4)

The function A is the “aperture function” which defines the (soft) region of in-
terest. It is not normalized, thus the total amount of stuff that gets into a bin will
be proportional with the area of the aperture. This distributes the membership
over the region of interest. Thus the local histograms are defined as

1 I (me)—)?
Hiiro,0,6,0) = 2 [ Awvo)e 57 dr (5)
mage

Here we have normalized with respect to the area of the region of interest. The
resulting image will have an overall level zero with a certain diffuse ribbon (or
curve like) object that may reveal values up to one. This ribbon is intuitively a
representation of a “soft isophote”. It is in many respects a more useful object
than a true “isophote”. For instance, in regions where the intensity is roughly
constant the “true” isophotes are ill defined and often take on a fractal character.
The smallest perturbation may change their nature completely. In such regions
the ribbon spreads out and fills the roughly uniform region with a nonzero but
low value: The membership is divided over the pixels in the uniform region.
For a linear gradient, the steeper the gradient, the narrower the isophote. (See
figures 1, 2 and 3.)

Notice that we deal with a number of closely intertwined scale spaces here.
First there is the regular scale space of the image at several levels of resolution.
Here the extentional parameter is r and the scale parameter o. Then there is the
scale space of histograms. Here the “extentional” parameter is the intensity ¢
whereas the “resolution” parameter is the bin width. It is indeed (by construc-
tion) a neat linear scale space. One may think of it as the histogram at maximum
resolution, blurred with a Gaussian kernel at the bin width. Thus each pixel in
the image may be thought of as contributing a delta pulse at its intensity, these
are then blurred to obtain the histogram: This is formally identical to the Parzen
estimator[12] of the histogram. Finally, there is the scale space of stuff images
with the size of the region of interest as inner scale. The extentional parameter
is ro and the scale parameter o.
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Fig.1. An image and three distributions of “histogram stuff”. The bin width is 8,
fiducial levels are 107, 127 and 147 (intensity ranges from 0 to 255). Notice the shift
of the isophote with level. In this respect the soft isophotes behave exactly like regular
isophotes (figure 3).

£ a :_“1; .‘?
&_l " “k_"
\\. u
J k\,"J j ,‘\‘L
Loeglan ERA AN

Fig. 2. Four distributions of “histogram stuff”. The image is shown in figure 1 on
the lefi. Fiducial level is 127, bin widths are 8, 16, 32 and 64. Notice that though
the location of the soft isophote is constant, its width increases as the bin width is
increased. The soft isophotes can be quite broad ‘ribbons”, in fact there is no limit,
they may fill the whole image.

*

PR e |

Fig. 3. Three regular isophotes of the image shown in figure 1 on the left. Notice that
the isophotes are not smooth curves but have a fractal character. Compare with the
soft isophotes in figure 2.
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3 Locally disorderly images

Consider an image and its histogram (in the classical sense, no scale space).
When we do arbitrary permutations on the pixels we obtain images that look
quite distinct (the spatial structure can differ in arbitrary ways), yet they all
have the same histogram. Thus the histogram can be regarded as the image
modulo its spatial structure. That it why we refer to such images as “disor-
derly” in the first place. Histograms are zeroth order summary descriptions of
images, the conceptually simplest type of “texture”. A histogram valued image
is likewise to be considered “locally disorderly”. Notice that a disorderly image is
not completely lacking in spatial discrimination. For instance, consider an image
that consists of vertical stripes at the maximum frequency, say pixels with even
horizontal index white, with odd index black. When this image is scrambled it
can still be discriminated from a uniform image that is uniformly fifty percent
gray. On the other hand, this discrimination fails when we completely blur the
image, that is say, replace every pixel value with the average over all pixels. Yet
the rudimentary spatial discrimination is not perfect, for instance one cannot
discriminate between vertical and horizontal stripes.

Quite apart from spatial discrimination, locally disorderly images retain much
information that exists at a scale that is not resolved and would be lost in a to-
tally blurred image[11,2]. The type of information that is retained often lets
you recognize material properties that would be lost by total blurring. Locally
disorderly images are very similar to “painterly” renderings. In an impressionist
painting there is often no spatial information on the scale of the brush strokes
(touches). At this scale one has structure that reveals the facture, often a signa-
ture of the artist. Yet the strokes contribute much to the realistic rendering. The
artist doesn’t paint leaves when he/she paints a treetop, he/she “does foliage”.
Although no leaves are ever painted you can often recognize the genus by the
way the foliage is handled. Pointillists were quite explicit about such things. For
instance, Seurat[5] lists the colors of touches that go in a rendering of grass. He
never paints leaves of grass, yet the grass is not uniformly green: There are blues
(shadow areas), yellows (translucency) and oranges (glints of sunlight). These
touches appear in a locally disorderly pattern.

Locally disorderly images can be rendered (see figure 4) by using the his-
tograms as densities for a random generator. Every instance will be different,
their totality is the locally disorderly image. Although all instances are different,
they look the same. Indeed, they are the same on the scale where disorder gives
way to order, and on finer scales the histograms are identical. Such renderings
are not unlike “dithered”representations[15,16].

4 Generalizations

In this paper we have considered histograms of pixel values. It is of course an
obvious generalization to include local histograms of derivatives or (better) dif-
ferential invariants. Then one essentially considers local histograms of the local
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Fig. 4. Left: Original image; Middle: Blurred image; Left: Locally disorderly image.
The blur and local disorder destroy roughly the same spatial detail. Notice that the
locally disordered image looks “better” than the blurred one and mdeed retains more
information, for instance the bright pixels of the specularity on the nose.

jets up to some order[8], or perhaps the jets modulo some transformation, say
a rotation or a left/right symmetry. Such higher order locally disorderly images
specify the distribution of textural qualities. Such structures have indeed be
used (albeit in an ad hoc fashion) to create instances of textures given a single
prototypical example. The local disorder is to be considered “zeroth order tex-
ture”: The local image structure is suummarized via the intensity values (zeroth
order) alone. Adding gradient information (histograms of the first order “edge
detectors”) would yield “first order texture”, and so forth.

The formal deseription of such structures appears straightforward and would
indeed yield a very attractive and (most likely) useful desceription of image strue-
ture.

5 Disorderly images and segmentation

When the boundary between two uniform regions is blurred the pixels appear
to lose their origin. For instance, blurring the boundary between a uniformly
red and a uniformly green field yields a ribbon of yellow pixels that appear to
belong to neither side. This has been a major incentive for the construction of
nonlinear blurring methods: The idea was to blur areas, but not over edges. With
locally disorderly images this dilemmma is automatically solved in an unexpected
way. Although the boundary indeed becomes spatially less and less defined,
the individual pixels hold on to their origin. In the example given above no
vellow pixels are ever generated. One doesn’t know where the red area ends
and the green begins because there are red pixels to be found in the green area
and wice versa. Bul the pixels themselves don't change their hue. In terms of
segmentation the red and green areas may be said to overlap in the boundary
area.

In figures 5 and 6 we show a segmentation of a face on the basis of major
modes in the local histograms. The light and dark halves of the face are seg-
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Fig. 5. The histogram of a patch straddling the bodyshadow edge is bimodal.

Fig. 6. Segments belonging to the major modes of the histogram shown in figure 5.
These are the illuminated and the shadow side of the face. The segments overlap over
the ridge of the nose.
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mented. There is some minor overlap on the bridge of the nose. In figure 7 we
show a more extreme case: Here the segments belonging to two major modes
are extensively overlapping. This example illustrates that the locally disorderly
images can be thought of as entertaining multiple intensity levels at any given
location in the image[11,2]. For instance, one may take the major modes in the
local histograms as intensity values. When there exists only a single major mode
the representation is much like the conventional one (one intensity per pixel).
But if there are two or more major modes the advantage of the locally disor-
derly representation becomes clear. In figure 7 the person apparently wears a
dress that is light and dark at the same time! Of course this occurs only when
the stripes of the dress have been lost in the disorder. In such cases the dif-
ference between the blurred and locally scrambled versions of an image are of
course dramatic (figure 8).

Fig. 7. An example of “transparent segments”. On the left the original image. In
the middle the segment belonging to the light stripes of the dress, on the right that
belonging to the dark stripes. Note that in the latter case the dark hair is included in
the segment, in the former case the light interstice between the arm and the leg. In
the body part the dress is (at this resolution) “simultaneously light and dark”: In the
disorderly representation the locations of the stripes are lost.

Fig. 8. Blurred and locally scrambled versions of the striped dress image.
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6 Conclusion

Locally disorderly images admit of a neat formal description in terms of a num-
ber of intimately interlocked scale spaces. They can easily be rendered and can
thus be used in image compression. They have distinct advantages over blurred
images when one is interested in image segmentation. This is often desirable, for
instance, one may treat the blue sky as continuous even where it is partly oc-
cluded by numerous twigs when seen through a tree top. Thus locally disorderly
images may well find applications in image processing and interpretation.
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Applications of Locally Orderless Images

Bram van Ginneken and Bart M. ter Haar Romeny

Image Sciences Institute, Utrecht University, The Netherlands.
E-mail: bram@isi.uu.nl, URL: http://www.isi.uu.nl/

Abstract. In a recent work [1], Koenderink and van Doorn consider
a family of three intertwined scale-spaces coined the locally orderless
image (LOI). The LOI represents the image, observed at inner scale o,
as a local histogram with bin-width 3, at each location, with a Gaussian-
shaped region of interest of extent «. LOIs form a natural and elegant
extension of scale-space theory, show causal consistency and enable the
smooth transition between pixels, histograms and isophotes. The aim of
this work is to demonstrate the wide applicability and versatility of LOIs.
We consider a range of image processing tasks, including variations of
adaptive histogram equalization, several methods for noise and scratch
removal, texture rendering, classification and segmentation.

1 Introduction

Histograms are ubiquitous in image processing. They embody the notion that
for many tasks, it is not the spatial order but the intensity distribution within
a region of interest that contains the required information. One can argue that
even at a single location the intensity has an uncertainty, and should therefore
be described by a probability distribution: physical plausibility requires non-zero
imprecision. This led Griffin [2] to propose a scale-imprecision space with spatial
scale parameter ¢ and an intensity, or tonal scale 3, which can be identified with
the familiar bin-width of histograms.

Koenderink and Van Doorn [1] extended this concept to locally orderless im-
ages (LOIls), an image representation with three scale parameters in which there
is no local but only a global topology defined. LOIs are local histograms, con-
structed according to scale-space principles, viz. without violating the causality
principle. As such, one can apply to LOIs the whole machinery of techniques
that has been developed in the context of scale-space research.

In this paper, we aim to demonstrate that LOIs are a versatile and flexi-
ble framework for image processing applications. The reader may conceive this
article as a broad feasibility study. Due to space limitations, we cannot give thor-
ough evaluations for each application presented. Obviously, local histograms are
in common use, and the notion to consider histograms at different scales (soft
binning) isn’t new either. Yet we believe that the use of a consistent mathe-
matical framework in which all scale parameters are made explicit can aid the
design of effective algorithms by reusing existing scale-space concepts. Additional
insight may be gained by taking into account the behavior of LOIs over scale.

M. Nielsen et al. (Eds.): Scale-Space’99, LNCS 1682, pp. 10-21, 1999.
(© Springer-Verlag Berlin Heidelberg 1999
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2 Locally orderless images

We first briefly review locally orderless images [1] by considering the scale pa-
rameters involved in the calculation of a histogram:

— the inner scale ¢ with which the image is observed;

— the outer scale, or extent, or scope o that parameterizes the size of the field
of view over which the histogram is calculated;

— the scale at which the histogram is observed, tonal scale, or bin-width 3.

The locally orderless images H(xg,4; 0, a,3) are defined as the family of
histograms, i.e. a function of the intensity 4, with bin-width 3 of the image
observed at scale o calculated over a field of view centered around xq with extent
a. The unique way to decrease resolution without creating spurious resolution
is by convolution with Gaussian kernels [3] [4]. Therefore Gaussian kernels are
used for o, o and 3. We summarize this with a recipe for calculating LOlIs:

1. Choose an inner scale ¢ and blur the image L(z;0) using the diffusion

OL(x; o)

A(X)L(X; U) = aﬁ
2

(1)

2. Choose a number of (equally spaced) bins of intensity levels i and calculate
the “soft isophote images”, representing the “stuff” in each bin through the
Gaussian gray-scale transformation

X 0) —i)?
e o)

3. Choose a scope o for a Gaussian aperture, normalized to unit amplitude

R(x,i;0,0) = exp(—

—(x —x0)(x — x0)

A(x; X0, @) = exp (3)
202
and compute the locally orderless image through convolution
A .
H(xo,i10,0,8) = 252590, pis o, 5). ()
2 a?

Note that H(xo,i; o, 3, a), is a stack of isophote images, and therefore has a
dimensionality 1 higher than that of the input image.

The term locally orderless image refers to the fact that we have at each
location the probability distribution at our disposal, which is a mere orderless
set; the spatial structure within the field of view « centered at x has been
obliterated. This is the key point: instead of a (scalar) intensity, we associate
a probability distribution with each spatial location, parameterized by o,«,53.
Since a distribution contains more information then the intensity alone, we may
hope to be able to use this information in various image processing tasks.

The LOI contains several conventional concepts. The original image and its
scale-space L(x; o) that can be recovered by integrating iH (xo, i; o, a, 3) over i.
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The “conventional” histogram is obtained by letting e« — oo, The construction
also includes families of isophote images, which for 5 > 0 are named soft isophote
images by Koenderink. And maybe even more important, by tuning the scale
parameters the LOI can fill intermediate stages between the image, its histogram
and its isophotes. This can be useful in practice. The framework generalizes
trivially to nI) images or color images, if a color metric is selected.

3 Median and maximum mode evolution

Il we replace the histogram at each location with its mean, we obtain the input
image L(x;o) blurred with a kernel with width ¢. This holds independently of
S, since blurring a histogram does not alter its mean. If, however, we replace
the histogram with its median or its maximum mode (intensity with highest
probability), we obtain a diffusion with scale parameter « that is reminiscent of
some non-linear diffusion schemes. The tonal scale 5 works as a tuning parameter
that determines the amount of non-linearity. For 3 — oo, the median and the
maximum mode are equal to the mean, so the diffusion is linear. Griffin [2] has
studied the evolution of the median, and the stable mode (defined as the mode
surviving as 3 increases), which is usually equal to the maximum mode. He
always sets ¢ = «. This ensures that for «« — oc the image altains its mean
everywhere, as in linear diffusion. With only a few soft isophote level images in
the LOI, maximum mode diffusion also performs some sort of quantizing, and one
obtains piecewise homogenous patches with user-selectable values. This can be
useful, e.g. in coding for data-compression and knowledge driven enhancements.

4 Switching modes in bi-modal histograms

Instead of replacing each pixel with a feature of its local histogram, such as the
median or the maximum mode, we can perform more sophisticated processing if
we take the structure of the local histograms into account. If this histogram is
bi-modal, this indicates the presence of multiple “objects” in the neighborhood
of that location. Noest and Koenderink [5] have suggested to deal with partial

occlusion in this way.
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Fig. 1. Left: Text hidden in a sinusoidal background, dimensions 230 x 111, intensities
in the range [0, 1]. Middle: bi-modal locations in an LOl of o = 0, § = 0.15 and « = 1.5.
Right: bi-modal locations have been replaced with the high mode. Text is removed and
the background restored.
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Consider locations with bi-modal histograms. We let locations “switch mode”,
i.e. if they are in the high mode (that is, their original value is on the right of
the minimum mode in between the two modes), we replace their value with the
low mode (or vice versa, depending on the desired effect). The idea is to re-
place a bright/dark object with the most likely value that the darker/brighter
object that surrounds it has, namely the low/high maximum mode. Note that
this a two-step process: the detection of bi-modal locations is a segmentation
step, and replacing pixels fills in a value from its surroundings, using statistical
information from only those pixels that belong to the object to be filled in.

This scheme allows for a scale-selection procedure. For fixed o, 8, o, there may
be locations with more than two modes in their local distribution. This indicates
that it is worthwhile to decrease a, focusing on a smaller neighborhood, until just
two modes remain. Thus we use a locally adaptive «, ensuring that the replaced
pixel value comes from information from locations “as close as possible” to the
pixel to be replaced.

We have applied this scheme sucecessfully for the removal of text on a compli-
cated background (Figure 1), the detection of dense objects in chest radiographs,
and noise removal. Figure 2 shows how shol noise can be detected and replaced
with a probable value, obtained from the local histogram. The restoration is
near perfect. Iigure 3 shows three consecutive frames from an old movie with
severe deteriorations. To avoid to find bi-modal locations due to movement be-
tween frames, we considered two LOIls, one in which the frame to be restored
was the first and one in which it was the last image. Only locations that were
bi-modal in both cases were taken in consideration. Although most artifact are
removed, there is ample room for improvements. One can verify from the middle

Fig.2. (top-left) Original image, 249 x 188 pixels, intensities scaled to [0, 1]; (top-
middle) Original image with shot noise. This is the input image for the restoration
procedure; (top-right) Locations in (top-middle) with bi-modal histograms and pixels
in the lowest mode using ¢ = 0,0 = 0.04,« = 0.5. (bottom-left) Restoration using
mode-switching for bi-modal locations gives excellent results; (bottom-right) Restora-
tion using using 5x5 median filter. This removes most shot noise, but blurs the image.
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Fig.3. The top row shows three consecutive frames (337 x 271 pixels, intensities
scaled to |0,1]) from a movie with severe local degradations, especially in the first
frame shown. LOIs were calculated with ¢ = 0, § = 0.1, and @ = 2.0. The second
row shows the detected artifact locations for each frame. The bottom row shows the
restored frames, using histogram mode switching.

column in Fig. 3 that the hand which makes a rapid movement has been partly
removed. Distinguishing such movements from deteriorations is in general a very
complicated task, that would probably require a detailed analysis of the optic
Aow between frames.

5 Histogram transformations

Any generic histogram can be transformed into any other histogram by a non-
linear, monotonic gray-level transformation. To see this, consider an input his-
togram hy() and its cumulative histogram [*__ hy(i')di’ = H, (i) and the desired
output histogram hy(é) and Hy(i). 1f we replace every ¢ with the i for which
Hy(i) = Hy(2") we have transformed the cumulative histogram H; into Hy and
thus also by into hg. Since cumulative histograms are monotonically increasing,
the mapping is monotonically increasing as well.

An example is histogram equalization. When displaying an image with a
uniform histogram (within a certain range), all available gray levels or colors will
be used in equal amounts and thus “perceptual contrast” is maximal. The idea to
use local histograms (that is, selecting a proper a for the LOI) for equalization,
to obtain optimal contrast over each region in the image stems from the 1970s
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Fig. 4. A normal PA chest radiograph of 512 by 512 pixels with intensities in the range
[0,1]. (a) Original image, in which details in lung regions and mediastinum are not
well visible due to the large dynamic range of gray levels. (b)-(d) Adaptive histogram
equalization (AHE) based on the LOI with ¢ = (0 and 3 combinations of « and (.

|6] and is called adaptive histogram equalization (AHE). However, it was noted
that these operations blow up noise in homogeneous regions. Pizer et al. [7]
proposed to clép histograms, viz. for each bin with more pixels than a certain
threshold, truncate the number of pixels and redistribute these uniformly over
all other bins. It can be seen that this ad hoe technique amounts to the same

Fig.5. Top-left is an image (332 by 259 pixels) of rough concrete viewed frontally,
lluminated from 22°. Top-right: the same material illuminated from 45°. Bottom-left
shows the top-left image with its histogram mapped to the top-right image to approxi-
mate the change in texture. Bottom-right shows the result of local histogram transfor-
mation, with e« = 2. The approximation is especially improved in areas that show up
white in the images on the left. These areas are often partly shadowed with illumination
from 45°, and using a local histogram may correctly “predict” such transitions.
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Fig.6. (a) A texture from the Brodatz set [11], resolution 256°, intensities in the range
[0,1]. (b) Blurred Gaussian noise, scaled to range from [0,1]. (¢} Multiplication of (a)
and (b). (d) Reconstruction of (a) from (c¢) from the LOI with 0 = 0,8 = 0.1, a0 = 2
and computing for each point a mapping to the local histogram at the randomly chosen
location (80,80).

effect as increasing 7 in the LOI; notably, for 7 — oo, AHE has no effect. Thus
we see that the two scale parameters o and 5 determine the size of structures
that are enhanced and the amount of enhancement, respectively. Figure 4 shows
a practical example of such a continuously tuned AHE for a medical modality
(thorax X-ray) with a wide latitude of intensities.

An alternative to histogram equalization is to increase the standard deviation
of the histogram by a constant factor, which can be done by a linear gray level
transformation, or variations on such schemes [8]. Again, the LOI provides us
with an elegant framework in which the scale parameters that determine the
results of such operations are made explicit.

Another application of histogram transformation is to approximate changes
in texture due to different viewing and illumination directions [9]. In general, the
textural appearance of many common real-world materials is a complex function
of the light field and viewing position. In computer graphics it is common prac-
tice, however, to simply apply a projective transformation to a texture patch
in order to account for a change in viewing direction and to adjust the mean
brightness using a bi-directional reflection distribution function (BRDF), often
assumed to be simply Lambertian. In [9] it is shown that this gives poor results
for many materials, and that histogram transformations often produce far more
realistic results. A logical next step is to consider local histogram transforma-
tions. An example is shown in Figure 5, using a texture of rough conerete taken
from the CURET database [10]. Instead of using one mapping function for all
pixel intensities, the mapping is now based on the pixel intensity and the inten-
sities in its surroundings. Physical considerations make clear that this approach
does make sense: bright pixels which have dark pixels due to shadowing in their
neighborhood are more likely to become shadowed for more oblique illiimination
than those that are in the center of a bright region.

Finally, histogram transformations can be applied to restore images that have
been corrupted by some noise process, but for which the local histogram prop-
erties are known or can be estimated from the corrupted image. Such cases are
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encountered frequently in practice. Many image acquisition systems contain arti-
facts that are hard to correct with calibration schemes. One example in medical
image processing is the inhomogeneity of the magnetic field of an MR scanner
or of the sensitivity of MR surface coils, leading to low frequency gradients over
the image. A generated example is shown in Figure 6 where we multiplied a tex-
ture image with Gaussian noise. By randomly choosing a point in the corrupted
image and computing the mapping that transforms each local histogram to the
local histogram at that particular location we obtain the restored image in Fig-
ure 6(d). Apart from it being low frequency, the LOI method does not make any
assumption about the noise process and works for multiplicative, additive, and
other kinds of noise processes.

6 Texture classification and discrimination

LOIs can be used to set up a framework for texture classification. The histogram
is one of the simplest texture descriptions; the spatial structure has been com-
pletely disregarded and only the probability distribution remains. This implies
that any feature derived from LOIs is rotationally invariant. There are several
ways possible to extend LOlIs:

Locally orderless derivatives

Instead of using L(x; o) as input for the calculation of LOIs, we can use LY (x; o),
which denotes the nth order spatial derivative of the image at scale ¢ in the di-
rection €. These images can be calculated for any 6 from a fixed set of basis
filters in several ways, for a discussion see [12], [13]. For n = 0, these locally
orderless derivatives (LODs) reduce to the LOIs. Alternatively, one could choose
another family of filters instead of directional derivatives of Gaussians, such as
differences of offset Gaussians [14], [15], or Gabor filters [16].

Directional locally orderless images

Another way to introduce orientation sensitivity in LOIs is to use anisotropic
Gaussians as local regions of interest. This would extend the construction with
an orientation 0 < # < 7, and an anisotropy factor.

Cooccurrence matrices

Haralick [17],[18] introduced cooccurrence matrices, which are joint probability
densities for locations at a prescribed distance and orientation. Texture features
can be computed from these matrices. It is straightforward to modify the LOIs
into a construction equivalent to cooccurrence matrices. It leads to joint proba-
bility functions as a function of location.

Results from psychophysics suggest that if two textures are to be pre-attentive
discriminable by human observers, they must have different spatial average
[ [, R(z,y) and [ [, R(z,y) of some locally computed neural response R [14].
We use this as a starting point and compute features derived from LODs, av-
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eraged over texture patches. Averaging will give identical results for any e if
we use linear operations on LODs to compute local features. Thus we include
non-linear operations on the local histograms as well. An obvious choice is to
use higher-order moments.

Which combinations of scales o, 3 are interesting to select? First of all,
we should have o < «, otherwise local histograms are peaked distributions and
higher order moments of these distributions are fully predictable. Furthermore,
in practice o and (3 will often be mutually exclusive. Haralick [18] defined texture
as a collection of typical elements, called tonal primitives or textons, put together
according to placement rules. As the scope e is much larger than the spatial size
of the textons, the local histograms will not change much anymore. Therefore
it does not make sense to consider more than one LOI with & much larger
than the texton size. Using @ — oo is the obvious choice for this large scope
histogram. Secondly, if we vary ¢ at values below the texton size, we study the
spatial structure of the textons. For ¢ much larger than the texton size, we are
investigating the characteristics of the placement rules.

We performed an experiment using texture patches from 16 large texture
images [rom the USC-SIPI database available al http://sipi.usc.edu, 11 of
which originated from the Brodatz collection [11]. From each texture, 16 nonover-
lapping regions were cropped and subsampled to a resolution of 128 x 128. In-
tensity values of each patch were normalized to zero mean and unit variance.
Figure 7 shows one patch for each texture class.

We classified with the nearest-neigbor rule and the leave-one-out method. A
small set of 9 [eatures was already able to classify 255 out of all 256 textures
correctly. This set consisted of 3 input images, Lo(x;o = 0) (used in feature 1-
3), LY (x;0 = 1) (used in feature 4-6), and L (x;0 = 1) (used in feature 7-9)
for which we calculated the averaged second moment (viz. the local standard
deviation) for 8= 0.1 and @ = 1,2, 00.

To gain more insight into the discriminative power of each of the calculated
features separately, we performed the classification for any possible combination
ol 1, 2 or 3 out of the 9 features. The best and worst results are given in Table
1. It is interesting to see that there is no common feature in the best single set,
the best 2 features and the 3 best ones, which indicates that all features contain
discriminant power. Since we use only 2nd moments, features are invariant to
gray-level inversion. This can be solved by adding higher moments, which was
apparently unnecessary for the test set we considered.

Fig. 7. The 16 different textures used in a texture classification experiment.
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features set |best single|worst single|best 2|worst 2|best 3|worst 3|full set
features used 7 3 4.9 23 [1,58] 3,89 all
result 47.6% 12.9%  [91.4%| 41.0% [99.2%| 71.5% | 99.6%

Table 1. Classification results for various combinations of features.

7 Texture segmentation based on local histograms

Many “general” (semi-)automatic segmentation schemes are based on the notion
that points in spatial proximity with similar intensity values are likely to belong
to the same object. Such methods have problems with textured areas, because
the intensity values may show wild local variations. A solution is to locally com-
pute texture features and replace pixel values with these features, assuming that
pixels that belong to the same texture region will now have a similar value. The
framework of LOIs is ideally suited to be used for the computation of such local
features. One could use LODs, or another extension of LOIs put forward in the
previous section. Shi and Malik [15] have applied their normalized cut segmen-
tation scheme to texture segmentation in this way, using local histograms and
the correlation between them as a metric.

Here we present an adapted version of a seeded region growing (SRG), that
is popular in medical image processing. For e« — 0, our adaptation reduces to
a scheme very similar to the original SRG. This is directly due to the fact that
LOIls contain the original image.

SRG segments an image starting from seed regions. A list is maintained of
pixels connected to one of the regions, sorted according to some metric. This
metric is originally defined as the squared difference between the pxiel intensity
and the mean intensity of the region. The pixel at the top of the list is added to

Fig.B8. Top row, from left to right: A 256 x 128 test image composed of two ho-
mogenous regions with intensity 0 and 1 and Gaussian noise with zero mean and unit
variance. An LOI with o = 0 and # = 0.2 and e« = 0, 1,4, respectively is used for seeded
region growing from the two seeds shown in white. Since the mean of the two region is
different, regular seeded region growing (a = 0) works well. Bottom row: same proce-
dure for a partly textured image; the left half was filled with sin(z/3) + sin(y/3), the
right half was set to zero, and Gaussian noise with zero mean and o = 0.5 was added.
Regular seeded region growing now fails, but if ¢ is large encugh, the segmentation is
correct.
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Fig. 9. Left: A test image composed of 6 texture patches of pixel size 128 x 128 each.
Intensity values in each patch are normalized to zero mean and unit variance. Right:
The result of segmentation with seeded region growing based on a LOI with ¢ = 0,
G =0.2 and &= 8. The circles are the seeds.

the region it is connected to, and the neighbors of the added pixel are added to
the list. This procedure is repeated until all pixels are assigned to a region.

We propose to compute a metric based on the local histograms of a pixel and
a region. We subtract the histograms and take the sum of the absolute values
of what is left in the bins. For a — 0 this reduces to a scheme similar to the
original scheme, except that one considers for the region the global mode instead
of the mean (most likely pixel value instead of the mean pixel value). Figures 8
to 10 illustrate the use of seeded region growing based on local histograms.

Fig.10. Top row, left: Wildlife scene with leopard, size 329 x 253 pixels, intensities
scaled between [0, 1]; Bottom row, left: A locally (¢ = 8) normalized version of the
input image; Middle and right: Segmentation by SRG based upon LOI with ¢ = 0,
£ = 0.05 and & = 0,4, respectively. Note how well the textured area is segmented in
the lower right image.
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8 Concluding remarks

In the applications presented, we have used many aspects of LOIs. They are a
natural extension of techniques that usually use pixels, e.g. seeded region grow-
ing. They extend techniques that use “conventional” histograms with an extra
degree of freedom, e.g. histogram transformation techniques. Other applications
exploit the behavior of LOIs over scale to obtain non-linear diffusions, for scale
selection in noise removal, and to derive texture features. We conclude that LOIs
are image representations of great practical value.
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Abstract. Indexing large archives of historical manuscripts, like the pa-
pers of George Washington, is required to allow rapid perusal by scholars
and researchers who wish to consult the original manuscripts. Presently,
such large archives are indexed manually. Since optical character recog-
nition (OCR) works poorly with handwriting, a scheme based on match-
ing word images called word spotting has been suggested previously for
indexing such documents. The important steps in this scheme are seg-
mentation of a document page into words and creation of lists containing
instances of the same word by word image matching.

We have developed a novel methodology for segmenting handwritten
document images by analyzing the extent of “blobs” in a scale space
representationof the image. We believe this is the first application of
scale space to this problem. The algorithm has been applied to around 30
grey level images randomly picked from different sections of the George
Washington corpus of 6,400 handwritten document images. An accuracy
of 77 — 96 percent was observed with an average accuracy of around
87 percent. The algorithm works well in the presence of noise, shine
through and other artifacts which may arise due aging and degradation
of the page over a couple of centuries or through the man made processes
of photocopying and scanning.

1 Introduction

There are many single author historical handwritten manuscripts which would
be useful to index and search. Examples of these large archives are the papers

* This material is based on work supported in part by the National Science Founda-
tion, Library of Congress and Department of Commerce under cooperative agree-
ment number EEC-9209623, in part by the United States Patent and Trademark
Office and Defense Advanced Research Projects Agency/ITO under ARPA order
number D468, issued by ESC/AXS contract number F19628-95-C-0235, in part by
the National Science Foundation under grant number IRI-9619117, in part by NSF
Multimedia CDA-9502639 and in part by the Air Force Office of Scientific Research
under grant number F49620-99-1-0138. Any opinions, findings and conclusions or
recommendations expressed in this material are the authors and do not necessarily
reflect those of the sponsors.
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(© Springer-Verlag Berlin Heidelberg 1999
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of George Washington, Margaret Sanger and W. E. B Dubois. Currently, much
of this work is done manually. For example, 50,000 pages of Margaret Sanger’s
work were recently indexed and placed on a CDROM. A page by page index
was created manually. It would be useful to automatically create an index for an
historical archive similar to the index at the back of a printed book. To achieve
this objective a semi-automatic scheme for indexing such documents have been
proposed in [8]. In this scheme known as Word Spotting the document page is
segmented into words. Lists of words containing multiple instances of the same
word are then created by matching word images against each other. A user then
provides the ASCII equivalent to a representative word image from each list
and the links to the original documents are automatically generated. The earlier
work in [8] concentrated on the matching strategies and did not address full page
segmentation issues in handwritten documents. In this paper, we propose a new
algorithm for word segmentation in document images by considering the scale
space behavior of blobs in line images.

Most existing document analysis systems have been developed for machine
printed text. There has been little work on word segmentation for handwritten
documents. Most of this work has been applied to special kinds of pages - for
example, addresses or “clean” pages which have been written specifically for
testing the document analysis systems. Historical manuscripts suffer from many
problems including noise, shine through and other artifacts due to aging and
degradation. No good techniques exist to segment words from such handwrit-
ten manuscripts. Further, scale space techniques have not been applied to this
problem before. ' We outline the various steps in the segmentation algorithm
below.

The input to the system is a grey level document image. The image is pro-
cessed to remove horizontal and vertical line segments likely to interfere with
later operations. The page is then dissected into lines using projection analysis
techniques modified for gray scale image. The projection function is smoothed
with a Gaussian filter (low pass filtering) to eliminate false alarms and the po-
sitions of the local maxima (i.e. white space between the lines) is detected. Line
segmentation, though not essential is useful in breaking up connected ascenders
and descenders and also in deriving an automatic scale selection mechanism.
The line images are smoothed and then convolved with second order anisotropic
Gaussian derivative filters to create a scale space and the blob like features which
arise from this representation give us the focus of attention regions (i.e. words in
the original document image). The problem of automatic scale selection for filter-
ing the document is also addressed. We have come up with an efficient heuristic
for scale selection whereby the correct scale for blob extraction is obtained by
finding the scale maxima of the blob extent. A connected component analysis of
the blob image followed by a reverse mapping of the bounding boxes allows us to
extract the words. The box is then extended vertically to include the ascenders
and descenders. Our approach to word segmentation is novel as it is the first

L Tt is interesting to note that the first scale space paper by T. lijima was written in
the context of optical character recognition in 1962 (see [12]). However, scale space
techniges are rarely used in document analysis today and as far as we are aware it
has not been applied to the problem of character and word segmentation.
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algorithm which utilizes the inherent scale space behavior of words in grey level
document images. This paper gives a brief description of the techniques used.
More details may be found in [11].

1.1 Related Work

Character segmentation schemes proposed in the literature have mostly been
developed for machine printed characters and work poorly when extended to
handwritten text. An excellent survey of the various schemes has been presented
in [3]. Very few papers have dealt exclusively with the issue of word segmenta-
tion in handwritten documents and most of these have focussed on identifying
gaps using geometric distance metrics between connected components. Seni and
Cohen [9] evaluate eight different distance measures between pairs of connected
component for word segmentation in handwritten text. In [7] the distance be-
tween the convex hulls is used. Srihari et all [10] present techniques for line
separation and then word segmentation using a neural network. However, exist-
ing word segmentation strategies have certain limitations.

1. Almost all the above methods require binary images. Also, they have been
tried only on clean white self-written pages and not manuscripts.

2. Most of the techniques have been developed for machine printed characters
and not handwritten words. The difficulty faced in word segmentation is in
combining discrete characters into words.

3. Most researchers focus only on word recognition algorithms and considered
a database of clean images with well segmented words (see for example [1]).
Only a few [10] have performed full, handwritten page segmentation. How-
ever, we feel that schemes such as [10] are not applicable for page segmen-
tation in manuscript images for the reasons mentioned below.

4. Efficient image binarization is difficult on manuscript images containing noise

and shine through.

Connected ascenders and descenders have to be separated.

6. Prior character segmentation was required to perform word segmentation
and accurate character segmentation in cursive writing is a difficult problem.
Also the examples shown are contrived (self written) and do not handle
problems in naturally written documents.

o

2  Word Segmentation

Modeling the human cognitive processes to derive a computational methodology
for handwritten word segmentation with performance close to the human visual
system is quite complex due to the following characteristics of handwritten text.

1. The handwriting style may be cursive or discrete. In case of discrete hand-
writing characters have to be combined to form words.

2. Unlike machine printed text, handwritten text is not uniformly spaced.

3. Scale problem. For example, the size of characters in a header is generally
larger than the average size of the characters in the body of the document.
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4. Ascenders and descenders are frequently connceted and words may be present
at different orientations.

5. Noise, artifacts, aging and other degradation of the document. Another prob-
lem is the presence of background handwriting or shine through.

We now present a brief background to scale space and how we have applied it
to document analysis.

2.1 Scale Space and Document Analysis

Scale space theory deals with the importance of scale in any physical observation
i.e. objects and features are relevant only at particular scales. In scale space,
starting from an original image, successively smoothed images are generated
along the scale dimension. It has been shown by several researchers [4,6] that
the Gaussian uniquely generates the linear scale space of the image when certain
conditions are imposed.

We feel that scale space also provides an ideal framework for document anal-
ysis. We may regard a document to be formed of features at multiple scales.
Intuitively, at a finer scale we have characters and at larger scales we have
words, phrases, lines and other structures. Hence, we may also say that there
exists a scale at which we may derive words from a document image. We would,
therefore, like to have an image representation which makes the features at that
scale (words in this case) explicit. The linear scale space representation of a con-
tinuous signal with arbitrary dimensions consists of building a one parameter
family of signals derived from the original one in which the details are progres-
sively removed. Let f: R? — R represent any given signal. Then, the scale space
representation [ : B2 x R, — R is defined by (see [6]) letting the scale space
representation at zero scale be equal to the original signal I(-; 0) = f and for

t >0,
I(5t) = G(5 )~ f, (1)

where ¢ € R is the scale parameter, and G is the Gaussian kernel which in two
dimensions (z,y € R) is written as

1 —(=2+y?)
Gla.4;0) — gmge 7 )

where 0 = v/2t. We now describe the various stages in our algorithm.

2.2 Preprocessing

These handwritten manuscripts have been subjected to degradation such as fad-
ing and introduction of artifacts. The images provided to us are scanned versions
of the photocopies of the original manuscripts. In the process of photocopying,
horizontal and vertical black line segments/margins were introduced. Horizontal
lines are also present within the text. The purpose of the preprocessing step is to
remove some of these margins and lines so that they will not interfere with the
blob analysis stage. Due to lack of space, this step is not described here. More
details may be found in [11].
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2.3 Line Segmentation

Line segmentation allows the ascenders and descenders of consecutive lines to be
separated. In the manuscripts it is observed that the lines consist of a series of
horizontal components from left to right. Projection profile techniques have been
widely used in line and word segmentation for machine printed documents [5].
In this technique a 1D function of the pixel values is obtained by projecting the
binary image onto the horizontal or vertical axis. We use a modified version of the
same algorithm extended to gray scale images. Let f(z,y) be the intensity value
of a pixel (z,y) in a gray scale image. Then, we define the vertical projection

profile as
w

Ply)=>_ [f(z,y) (3)

xz=0

where W is the width of the image. Fig. 1 shows a section of an image in (a) and
its projection profile in (b). The distinct local peaks in the profile corresponds to
the white space between the lines and distinct local minima corresponds to the
text (black ink). Line segmentation, therefore, involves detecting the position of
the local maxima. However, the projection profile has a number of false local
maxima and minima. The projection function P(y) is therefore, smoothed with
a Gaussian (low pass) filter to eliminate false alarms and reduce sensitivity to
noise. A smoothed profile is shown in (c). The local maxima is then obtained
from the first derivative of the projection function by solving for y such that :

P'(y) = Ply)xGy =0 (4)

The line segmentation technique is robust to variations in the size of the lines
and has been tested on a wide range of handwritten pages. The next step after
line segmentation is to create a scale space of the line images for blob analysis.

2.4 Blob Analysis

Now we examine each line image individually to extract the words. A word image
is composed of discrete characters, connected characters or a combination of the
two. We would like to merge these sub-units into a single meaningful entity
which is a word. This may be achieved by forming a blob-like representation of
the image. A blob can be regarded as a connected region in space. The traditional
way of forming a blob is to use a Laplacian of a Gaussian (LOG) [6], as the LOG
is a popular operator and frequently used in blob detection and a variety of multi-
scale image analysis tasks [2,6]. We have used a differential expression similar to
a LOG for creating a multi-scale representation for blob detection. However, our
differential expression differs in that we combine second order partial Gaussian
derivatives along the two orientations at different scales. In the next section we
present the motivation for using an anisotropic derivative operator.

Non Uniform Gaussian Filters. In this section some properties which char-
acterize writing are used to formulate an approach to filtering words. In [6]
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Fig.1: (a) A section of an image, (b) projection profile, (¢) smoothed projection
profile (d) line segmented image

Lindeberg observes that maxima in scale-space occur at a scale proportional to
the spatial dimensions of the blob. If we observe a word we may see that the
spatial extent of the word is determined by the following :

1. The individual characters determine the height (y dimension) of the word
and
2. The length (= dimension) is determined by the number of characters in it.

A word generally contains more than one character and has an aspect ratio
greater than one. As the @ dimension of the word is larger than the y dimen-
sion, the spatial fltering frequency should also be higher in the y dimension
as compared to the @ dimension. This domain specific knowledge allows us to
move from isotropic (same scale in both directions) to anisotropic operators. We
choose the x dimension scale to be larger than the y dimension to correspond to
the spatial structure of the word. We define the anisotropic Gaussian filter as

2 2
1 ('—('2%3‘1'722{;3')

2oL oy

(5)

G((‘T: U0, Uy) =
We may also define the multiplication factor i by n = 2=,
E)
In the scale selection section we will show that the average aspect ratio or
the multiplication factor 7 lies between three and five for most of the handwrit-

ten documents available to us. Also the response of the anisotropic Gaussian
filter (measured as the spatial extent of the blobs formed) is maximum in this
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range. For the above Gaussian, the second order anisotropic Gaussian differential
operator L(x,y; 0y, 0y) is defined as

L(R?}@ﬁ"u:soy) (-_":a::c(-"'-’s?,fi"'maﬂy) | ny(“’s?ﬁ”:u"’y} (6)

A scale space representation of the line images is constructed by convolving the
image with 6. Consider a two dimensional image f(x, ), then the corresponding
output image is

1,93 00, 0y) = L4300, 0) £ (2,9) (7)

The main features which arise from a scale space representation are blob-like
(i.e. connected regions either brighter or darker than the background). The sign
of I may then be used to make a classification of the 3-D intensity surface into
foreground and background. For example consider the line image in Fig. 2(a).
The figures show the blob images I(x, y;0.,0,) at increasing scale values. Fig.
2(b) shows that at a lower scale the blob image consists of character blobs. As
we increase the scale, character blobs give rise to word blobs (Fig. 2(¢) and
Iig. 2(d)). This is indicative of the phenomenon of merging in blobs. It is seen
that for certain scale values the blobs and hence the words are correctly delin-
eated (Fig. 2(d)). A further increase in the scale value may not necessarily cause
word blobs to merge together and other phenomenon such as splitting is also
observed. These figures show that there exists a scale al which it is possible to
delineate most words. In the next section we present an approach to automatic
scale selection for blob extraction.

oers ratirs .......u(,wm;;:h;

(a) A line image

(b) Blob image at scale oy, =

Sales's 113 oo Mo a0 s A

(¢) Blob image at scale o, =
2307: =4

(e) Blob image at scale o, =
6,0, = 36

(d) Blob image at scale oy =
4,0, = 16

Fig. 2: A line image and the output at different scales
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2.5 Choice of Scale

Scale space analysis does not address the problem of scale selection. The solution
to this problem depends on the particular application and requires the use of
prior information to guide the scale selection procedure. Some of our work in
scale selection draws motivation from Lindeberg’s observation [6] that the max-
imum response in both scale and space is obtained at a scale proportional to the
dimension of the object. A document image consists of structures such as char-
acters, words and lines at different scales. However, as compared to other types
of images, document images have the unique property that a large variation in
scale is not required to extract a particular type of structure. For example, all
the words are essentially close together in terms of their scale and can, therefore,
be extracted without a large variation in the scale parameter. Hence, there ex-
ists a scale where each of the individual word forms a distinct blob. The output
(blob) is then maximum at this value of the scale parameter. We will show that
this scale is a function of the vertical dimension of the word if the aspect ratio
is fixed.

Now, we highlight, the important differences in Lindeberg’s approach to blob
analysis and our work. In [6] Lindeberg determines interesting scale levels from
the maxima over scale levels of a blob measure. He defines his blob measure to
consist of the spatial extent, contrast and lifetime. A scale space blob tree is
then constructed to track individual blobs across scales. In our analysis tracking
individual blobs across scales is not the relevant issue nor is it computation-
ally advisable because of the presence of a large number of blobs representing
characters and words. Also it is impossible to determine whether an extrema
corresponds to a character blob or a word blob and as mentioned earlier the
variation of the best scale for a word is not large. What is important, however, is
that we would like to merge character blobs and yet be able to delimit the word
blobs. Therefore, we consider a blob as a connected region in space and measure
its spatial extent but do not give it any volumetric significance. Spatial extent
as a blob characteristic is computationally available to us and we observe that
it shifts with scale giving a maximum as character blobs merge to form word
blobs. This is in agreement with the intuitive reasoning that the response of the
word at the correct scale of observation should be maximum as every blob has
only a range of scales (lifetime) to manifest itself.

Our algorithm requires selecting o, and the multiplication factor n for blob
extraction. We present an analysis which helped us arrive at a simple scale
selection method based on the observation that the maximum of the spatial
extent of the blobs corresponds to the best scale for filtering. To measure the
variation in spatial extent of the blobs over scale we define (; to represent the
extent of a blob . Then the total extent of the blobs A, for a line is given by

A= Z?:1 Cz

Selecting 7. The parameters o, and o, try to capture the spatial dimensions
of a word. An important characteristic of a word is its aspect ratio. A manual
analysis of several images was carried out and it was shown that the average
aspect ratio of a word in a document image is approximately 3.0 — 5.0. We had
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earlier defined the multiplication factor # as 9 = o./oy,. An analysis of several
images reveals that for constant ¢,, the maxima in extent was obtained for #
lying in the range between 3 — 5. A line image and the corresponding plot is
shown in Fig. 3. In this Fig. the maximum is obtained in the region between
3.5 — 4. This analysis along with the observation that the average aspect ratic

Ry = -~ .
= ]
N \ _
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i
|
» . 1
R e et S S L
1 T & ErA 4 & € ?
(a) A line image {b) Plot of extent vs 5, g, = 2 for
above image, a maxinum is obtained
at 7= 3.8

Fig. 3: Variation of bleb extent vs 5 with constant o,

of the word is between 3 — 5 allows us teo choese a value of 4 in the range 3 — 5.
Specifically, for further analysis we cheose 5 = 4.

Selecting o,. Fig. 4 shows the line images and corresponding plots of extent
versus ¢, for constant 7. As seen in the figures the total extent exhibits a peak
which depends on ¢,. The figures also show how the peak shifts with the change
in the size (height) of the characters. Experimentally it was found that o, (y
scale) is a function of the height of the words {which is related te the height of
the line). An estimate of o, is obtained by using the line hejght i.e.

o, = k x Line height (8)

where 0 < & < 1. The nearby scales are then examined tc determine the max-
imum over scales. For our specific implementation we have used &£ — 0.1 and
sampled o, at intervals of 0.3. The two values were determined experimentally
and worked well over a wide range of images.

2.6 Blob Extraction and Post Processing

The blobs are then mapped back to the coriginal image to locate the words.
A widely used procedure is to enclose the blob in a bounding box which can
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be obtained through connected component analysis. In a blob representation of
the word, localization is not maintained. Also parts of the words, especially the
ascenders and descenders, are lost due to the earlier operations of line segmenta-
tion and smoothing (blurring). Therefore, the above bounding box is extended
in the vertical direction to include these ascenders and descenders. At this stage
an area/ratio filter is used to remove small structures due to noise.

3 Results

The technique was tried on 30 randomly picked images from different sections of
the George Washington corpus of 6, 400 images and a few images from the archive
of papers of Erasmus Hudson. To reduce the run-time, the images have been
smoothed and sub-sampled to a quarter of their original size. The algorithm takes
120 seconds to segment a document page of size 800 x 600 pixels on a PC with a
200 MHz pentium processor running LINUX. A segmentation accuracy ranging
from 77— 96 percent with an average accuracy around 87.6 percent was observed.
Fig. 5 shows part of a segmented page image with bounding boxes drawn on the
extracted words. The method worked well even on faded, noisy images and Table
4 shows the results averaged over a set of 30 images. The first column indicates
the average no. of distinct words in a page as seen by a human observer. The
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Fig.5: Segmentation result on part of image 1670165.(if from the George Wash-
ington collection

second column indicates the % of words detected by the algorithm i.e, words
with a bounding box around them, this includes words correctly segmented,
fragmented and combined together. The next column indicate the % of words
fragmented. Word fragmentation occurs if a character or characters in a word
have separate bounding boxes or if 50 percent or greater of a character in a word
is not detected. Line fragmentation occurs due to the dissection of the image
into lines. A word is line fragmented if 50 percent or greater of a character lies
outside the top or bottom edges of the bounding box. The sixth column indicates
the words which are combined together. These are multiple words in the same
bounding box. The last column gives the percentage of correctly segmented
words.

4 Conclusion

We have presented a novel technique for word segmentation in handwritten doc-
uments. Our algorithm is robust and efficient for the following reasons:

1. We uge grey level images and, therefore, image binarization is not required.
Image binarization requires careful pre-selection of the threshold and gen-
erally results in a loss of information. The threshold parameter has to be
selected locally and is very sensitive to noise, fading and other phenomenon.

2. Since the images are heavily smoothed, insignificant blobs can easily be elim-
inated. Therefore, the technique is comparatively unaffected by the presence
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of speckles which otherwise would have greatly affected techniques requiring
binarization as the first step.

. One of the major advantages of our approach is that the scheme is largely un-

affected by shine through. This is because the algorithm is based on blurring
and the information is extracted in the form of blobs.

The algorithm makes minimal assumptions about the nature of handwriting
and fonts and may be extended to word segmentation in other language
documents where words are delineated by spaces. Also, the method does not
require prior training.

documents|words per image|detected| words + line |combined correctly

No. of | Average no. of |% words|% fragmented| % words |% words correctly

30 220 99.12 | 1.75 4 0.86 8.9 87.6

Table 1. Table of segmentation results
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Abstract. We use an unconditionally stable numerical scheme to im-
plement a fast version of the geodesic active contour model. The proposed
scheme is useful for object segmentation in images, like tracking moving
objects in a sequence of images. The method is based on the Weickert-
Romeney-Viergever [33] AOS scheme. It is applied at small regions, mo-
tivated by Adalsteinsson-Sethian [1] level set narrow band approach, and
uses Sethian’s fast marching method [26] for re-initialization. Experimen-
tal results demonstrate the power of the new method for tracking in color
movies.

1 Introduction

An important problem in image analysis is object segmentation. It involves the
isolation of a single object from the rest of the image that may include other
objects and a background. Here, we focus on boundary detection of one or several
objects by a dynamic model known as the ‘geodesic active contour’ introduced
in [4,5,6,7], see also [18,28].

Geodesic active contours were introduced as a geometric alternative for ‘snakes’
[30,17]. Snakes are deformable models that are based on minimizing an energy
along a curve. The curve, or snake, deforms its shape so as to minimize an
‘internal’ and ‘external’ energies along its boundary. The internal part causes
the boundary curve to become smooth, while the external part leads the curve
towards the edges of the object in the image.

In [2,21], a geometric alternative for the snake model was introduced, in which
an evolving curve was formulated by the Osher-Sethian level set method [22]. The
method works on a fixed grid, usually the image pixels grid, and automatically
handles changes in the topology of the evolving contour.

The geodesic active contour model was born latter. It is both a geometric
model as well as energy functional minimization. In [4,5], it was shown that the
geodesic active contour model is related to the classical snake model. Actually, a
simplified snake model yields the same result as that of a geodesic active contour
model, up to an arbitrary constant that depends on the initial parameterization.
Unknown constants are an undesirable property in most automated models.

Although the geodesic active contour model has many advantages over the
snake, its main drawback is its non-linearity that results in inefficient imple-
mentations. For example, explicit Euler schemes for the geodesic active contour

M. Nielsen et al. (Eds.): Scale-Space’99, LNCS 1682, pp. 34-45, 1999.
(© Springer-Verlag Berlin Heidelberg 1999
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limit the numerical step for stability. In order to overcome these limitations, a
multi-resolution approach was used in [32], and coupled with some additional
heuristic steps, as in [23], like computationally preferring areas of high energy.

In this paper we introduce a new method that maintains the numerical con-
sistency and makes the geodesic active contour model computationally efficient.
The efficiency is achieved by canceling the limitation on the time step in the
numerical scheme, by limiting the computations to a narrow band around the
the active contour, and by applying an efficient re-initialization technique.

2 From snakes to geodesic active contours

Snakes were introduced in [17,30] as an active contour model for boundary seg-
mentation. The model is derived by a variational principle from a non-geometric
measure. The model starts from an energy functional that includes ‘internal’ and
‘external’ terms that are integrated along a curve.

Let the curve C(p) = {z(p), y(p)}, where p € [0, 1] is an arbitrary parameter-
ization. The snake model is defined by the energy functional

1
sie) - / (G 1 alCp? 1 284(C)) derdy,

whete Cp, = {0,z(p), Opy(p)}, and « and § are positive constants.

The last term represents an external energy, where g() is a positive edge
indicator function that depends on the image, it gets small values along the edges
and higher values elsewhere. Taking the variational derivative with respect to
the curve, dS[C]/dC, we obtain the Euler Lagrange equations

Cpp — &Cpppp — BVg = 0.

One may start with a curve that is close to a significant local minimum of S[C],
and use the Euler Lagrange equations as a gradient descent process that leads
the curve to its proper position. Formally, we add a time variable ¢, and write
the gradient descent process as 9,C = dS[C]/dC, or explicitly

dc
a Cpp — &Cpppp — BV g.

The snake model is a linear model, and thus an efficient and powerful tool for
object segmentation and edge integration, especially when there is a rough ap-
proximation of the boundary location. There is however an undesirable property
that characterizes this model. It depends on the parameterization. The model is
not geometric.

Motivated by the theory of curve evolution, Caselles et al. [2] and Malladi
et al. [21] introduced a geometric flow that includes an internal and external
geometric measures. Given an initial curve Cy, the geometric flow is given by the
planar curve evolution equation C; = g(C)(k —v)A/, where, A is the normal to
the curve, kA is the curvature vector, v is an arbitrary constant, and g(), as
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before, is an edge indication scalar function. This is a geometric flow, that is, free
of the parameterization. Yet, as long as g does not vanish along the boundary, the
curve continues its propagation and may skip its desired location. One remedy,
proposed in [21], is a control procedure that monitors the propagation and sets
g to zero as the curve gets closer to the edge.

The geodesic active contour model was introduced in [4,5,6,7], see also [18,28],
as a geometric alternative for the snakes. The model is derived from a geomet-
ric functional, where the arbitrary parameter p is replaced with a Euclidean
arclength ds = |Cp|dp. The functional reads

1
sic] = / (o + 3(C)) Cyldp.

It may be shown to be equivalent to the arclength parameterized functional

L)
siel= [ ateyds + aLic),

where L(C) is the total Euclidean length of the curve. One may equivalently
define g(z,y) = g(z,y) + «, in which case

L)
sie)= [ ateras

i.e. minimization of the modulated arclength g(C)ds. The Euler Lagrange equa-
tions as a gradient descent process is

dc

= 6Ok — (Vg NN

Again, internal and external forces are coupled together, yet this time in a way
that leads towards a meaningful minimum, which is the minimum of the func-
tional. One may add an additional force that comes from an area minimization
term, and known as the balloon force [10]. This way, the contour may be directed
to propagate outwards by minimization of the exterior. The functional with the
additional area term reads

stel = | " s 1 a [ da

where da is an area element, for example, fc da = OL(C)N x Cds. The Euler

Lagrange as steepest descent is

= (9(C)r ~ (Va. ) — @) .

We can use our freedom of parameterization in the gradient descent flow and
multiply the right hand side again by an edge indicator, e.g. g. The geodesic
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active contour model with area as a balloon force modulated by an edge indicator
is

dac

-~ WCr = (Vg,N) —a)g(C)N.

The connection between classical snakes, and the geodesic active contour
model was established in [5] via Maupertuis’ Principle of least action [12]. By
Fermat’s Principle, the final geodesic active contours are geodesics in an isotropic
non-homogeneous medium.

Recent applications of the geodesic active contours include 3D shape from
multiple views, also known as shape from stereo [13], segmentation in 3D movies
[19], tracking in 2D movies [23], and refinement of efficient segmentation in 3D
medical images [20]. The curve propagation equation is just part of the whole
model. Subsequently, the geometric evolution is implemented by the Osher-
Sethian level set method [22].

2.1 Level set method

The Osher-Sethian [22] level set method considers evolving fronts in an implicit
form. It is a numerical method that works on a fixed coordinate system and
takes care of topological changes of the evolving interface.

Consider the general geometric planar curve evolution

dc
- = =VN,

where V is any intrinsic quantity, i.e., V' does not depend on a specific choice of
parameterization. Now, let ¢(x,y) : IR? = IR be an implicit representation of C,
such that C = {(z,y) : ¢(z,y) = 0}. One example is a distance function from C
defined over the coordinate plane, with negative sign in the interior and positive
in the exterior of the closed curve.

The evolution for ¢ such that its zero set tracks the evolving contour is given

by
do
dt
This relation is easily proven by applying the chain rule, and using the fact that
the normal of any level set, ¢ = constant, is given by the gradient of ¢,

d¢
dt

= VIVl

— (V0. = (Vo VA =V (Vo )~ VIVel.
Vel

This formulation enable us to implement curve evolution on the x,y fixed
coordinate system. It automatically handles topological changes of the evolving
curve. The zero level set may split from a single simple connected curve, into
two separate curves.

Specifically, the corresponding geodesic active contour model written in its
level set formulation is given by

do Vo
i mv(( NV¢J'V@
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Including an area minimization term that yields a constant velocity, modulated
by the edge indication function (by the freedom of parameterization of the gra-
dient descent), we have

% = g(z,y) (a + div (g(x,y)%)) Vol

We have yet to determine a numerical scheme and an appropriate edge in-
dication function g. An explicit Euler scheme with forward time derivative, in-
troduces a numerical limitation on the time step needed for stability. Moreover,
the whole domain needs to be updated each step, which is a time consuming
operation for a sequential computer. The narrow band approach overcomes the
last difficulty by limiting the computations to a narrow strip around the zero
set. First suggested by Chopp [9], in the context of the level set method, and
later developed in [1], the narrow band idea limits the computation to a tight
strip of few grid points around the zero set. The rest of the domain serves only
as a sign holder. As the curve evolves, the narrow band changes its shape and
serves as a dynamic numerical support around the location of the zero level set.

2.2 The AOS scheme

Additive operator splitting (AOS) schemes were introduced by Weickert et al.
[33] as an unconditionally stable numerical scheme for non-linear diffusion in
image processing. Let us briefly review its main ingredients and adapt it to our
model.

The original AOS model deals with the Perona-Malik [24], non-linear image
evolution equation of the form d;u = div (g(|Vu|)Vu), given initial condition
as the image u(0) = ug. Let us re-write explicitly the right hand side of the
evolution equation

3

div (g(|Vu|)Vu) :Z g(|Vu|)d,,u),

where [ is an index running over the m dimensions of the problem, e.g., for a 2D
image m = 2,x1 — x, and z9 = ¥.
As a first step towards discretization consider the operator

Al(uk) = az g(|Vuk|)azl,

whete the superscript & indicates the iteration number, e.g., u® = wo. We can
write the explicit scheme

m
I+ ZA;(U’“)} u®,

=1
where, 7 is the numerical time step. It requires an upper limit for 7 if one desires
to establish convergence to a stable steady state. Next, the semi-implicit scheme

m —1
uftl = [I—TZAl(uk)
1=1

u,
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is unconditionally stable, yet inverting the large bandwidth matrix is a compu-
tationally expensive operation.
Finally, the consistent, first order, semi-implicit, additive operator splitting
scheme
1 & 1
ubtt = — Z [T —m7Ai(u®)] b,

m
=1

may be applied to efficiently solve the non-linear diffusion.
The AOS semi-implicit scheme in 2D is then given by a linear tridiagonal
system of equations

[Sv]

Py - % Z[I _ 27_14[(uk)]71uk7

=1

where A;(u*) is a matrix corresponding to derivatives along the (-th coordinate
axis. It can be efficiently solved for «**! by Thomas algorithm, see [33].
In our case, the geodesic active contour model is given by

Du— div( (Vo)) 22 ) [V,

|V¢|)

where wp is the image, and ¢ is the implicit representation of the curve. Since
our interest is only at the zero level set of ¢, we can reset ¢ to be a distance
function every numerical iteration. One nice property of distance maps is it unit
gradient magnitude almost everywhere. Thereby, the short term evolution for
the geodesic active contour given by a distance map, with |V¢| =1, is

Or¢ = div (g(|Vuo|)Ve) .

Note, that now A;(¢F) = A;(uo), which means that the matrices [I —27A;(ug)] ~*
can be computed once for the whole image. Yet, we need to keep the ¢ function as
a distance map. This is done through re-initialization by Sethian’s fast marching
method every iteration.

It is simple to introduce a ‘balloon’ force to the scheme. The resulting AOS
scheme with the ‘balloon’ then reads

2
Pttt = Z I =27g(uo)Ai(uo)] " (¢" + Tag(uo)),

N)l’—‘

where o is the area/balloon coefficient.

In order to reduce the computational cost we use a multi-scale approach
[16]. We construct a Gaussian pyramid of the original image. The algorithm is
first applied at the lower resolution. Next, the zero set is embedded at a higher
resolution and the ¢ distance function is computed. Moreover, the computations
are performed only within a limited narrow band around the zero set. The narrow
band automatically modifies its shape as we re-initiate the distance map.
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2.3 Re-initialization by the fast marching method

In order to maintain sub-grid accuracy, we detect the zero level set curve with
sub-pixel accuracy. We apply a linear interpolation in the four pixel cells in which
¢ changes its sign. The grid points with the exact distance to the zero level set
are then used to initialize the fast marching method.

Sethian’s fast marching method [27,26], is a computationally optimal numer-
ical method for distance computation on rectangular grids. The method keeps
a front of updated points sorted in a heap structure, and constructs a numer-
ical solution iteratively, by fixing the smallest element at the top of the heap
and expanding the solution to its neighboring grid points. This method enjoys a
computational complexity bound of O(N log N), where N is the number of grid
points in the narrow band. See also [8,31], where consistent O(N log N) schemes
are used to compute distance maps on rectangular grids.

3 [Edge indicator functions for color and movies

Paragios and Deriche [23], introduced a probability based edge indicator function
for movies. In this paper we have chosen the geometric philosophy to extract an
edge indicator. What is a proper edge indicator for color images? Several gener-
alizations for the gradient magnitude of gray level images were proposed, see e.g.
[11,25,29]. Here we consider a measure suggested by the Beltrami framework in
[29], to construct an edge indicator function.

3.1 Edges in Color

According to the Beltrami framework, a color image is considered as a two
dimensional surface in the five dimensional spatial-spectral space. The metric
tensor is used to measure distances on the image manifold. The magnitude of
this tensor is an area element of the color image surface, which can be consid-
ered as a generalization of the gradient magnitude. Formally, the metric tensor
of the 2D image given by the 2D surface {z,y, R(z,v), G(z,y), B(x,y)} in the
{z,y, R, G, B} space, is given by

(g7) — 1+ R2+ G2+ B2 R.R,+G.G,+ B.B,
94) =\ RyRy + G,Gy + B,B, 1+R2+G2+B2 )°

where R, = 0,R. The edge indicator function is given by ¢ = det(g;;). It is
simple to show that

N | =

3 3
¢=1+ [Vu']’+ ZZ (Vi x Vud)?

where u! = R, 4?> = G, v® = B. Then, the edge indicator function g is given by
a decreasing function of ¢, e.g., g = ¢~ .
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3.2 Tracking objects in movies

Let us explore two possibilities to track objects in movies. The first, considers the
whole movie volume as a Riemannian space, as done in [7]. In this case the active
contour becomes an active surface. The AOS scheme in the spatial-temporal 3D
hybrid space is

= 2SI 3 A ),

!

where A;(ug) is a matrix corresponding to derivatives along the [-th coordinate
axis, where now [ € [z,y, T].

The edge indicator function is again derived from the Beltrami framework,
where for color movies we pull-back the metric

L+ R, + G2+ By  ReRy+G.Gy+ BBy RoR7+ Go.G7 + BoBr
(9;;) = | ReRy+GoGy+ B.By, 1+R,+G,+B, RyRy+G,Gr+ByBr
R.Ry + GGy + B.Br RyRr + G,G71 + ByBr 1+ R*> 1G>+ B%

Which is the metric for a 3D volume in the 6D {z,y,7,R,G, B} spatial-
temporal-spectral space. Again, setting ¢ = det(gs;), we have |/gdxdydT as
a volume element of the image. Intuitively, the larger ¢ gets, the smaller spatial-
temporal steps one should apply in order to cover the same volume. That is,
q integrates the changes with respect to the xz,y, and T coordinates, and can,
thereby, be considered as an edge indicator.

A different approach uses the contour location in frame n as an initial condi-
tion for the 2D solution in frame n + 1, see e.g. [3,23]. The above edge indicator
is still valid in this case. Note, that the aspect ratios between the time, the image
space, and the intensity, should be determined according to the application.

The first approach was found to yield accurate results in off line tracking
analysis. While the second approach gives up some accuracy, that is achieved by
temporal smoothing in the first approach, for efficiency in real time tracking.

4 Experimental Results

As a simple example, the proposed method can be used as a consistent, un-
conditionally stable, and computationally efficient, numerical approximation for
the curvature flow. The curvature flow, also known as curve shortening flow or
geometric heat equation, is a well studied equation in the theory of curve evolu-
tion. It is proven to bring every simple closed curve into a circular point in finite
time [14,15]. Figure 1 shows an application of the proposed method for a curve
evolving by its curvature and vanishes at a point. One can see how the number
of iterations needed for the curve to converge to a point decreases as the time
step is increased.

We tested several implementations for the curvature flow. Figure 2 shows the
CPU time it takes the explicit and implicit schemes to evolve a contour into a
circular point. For the explicit scheme we tested both the narrow band and the
naive approach in which every grid point is updated every iteration. The tests
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Fig. 3. Tracking a cat in a color movie by the proposed scheme. Top: Segmentation of
the cat in a single frame. Bottom: Tracking the walking cat in the 50 frames sequence.

over the boundary. The time step should thus be of similar order as the numerical
support of the edges. One way to overcome this limit is to use a coarse to fine
scales of boundary smoothing, with an appropriate time step for each scale.

It is possible to compute the inverse matrices of the AOS once for the whole
image, or to invert small sub-matrices as new points enter or exit the narrow
band. There is obviously a trade-off between the two approaches. For initial-
ization, we have chosen the [irst approach, since the initial curve starts at the
frame of the image and has to travel over most of the image until it captures
the moving objects. While for tracking ol moving objects in a movie, we use the
local approach, since now the curve has only to adjust itself to local changes.

5 Concluding Remarks

It was shown that an integration of advanced numerical techniques yield a com-
putationally efficient algorithm that solves a geometric segmentation model. The
numerical algorithm is consistent with the underlying continuous model. The
proposed ‘fast geodesic active contour’ scheme was applied successfully for im-
age segmentation and tracking in movie sequences and color images. It combines
the narrow band level set method, with adaptive operator splitting, and the fast
marching method.
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Fig. 4. Tracking two people in a color movie, Top: curve evolution in a single frame.
Bottom: tracking two walking people in a 60 frame movie.
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Abstract. A method for deforming curves in a given image to a desired
position in a second image is introduced in this paper. The algorithm is
based on deforming the first image toward the second one via a partial
differential equation, while tracking the deformation of the curves of in-
terest in the first image with an additional, coupled, partial differential
equation. The tracking is performed by projecting the velocities of the
first equation into the second one. In contrast with previous PDE based
approaches, both the images and the curves on the frames/slices of inter-
est are used for tracking. The technique can be applied to object tracking
and sequential segmentation. The topology of the deforming curve can
change, without any special topology handling procedures added to the
scheme. This permits for example the automatic tracking of scenes where,
due to occlusions, the topology of the objects of interest changes from
frame to frame. In addition, this work introduces the concept of project-
ing velocities to obtain systems of coupled partial differential equations
for image analysis applications. We show examples for object tracking
and segmentation of electronic microscopy. We also briefly discuss pos-
sible uses of this framework iifor three dimensional morphing.

Key words: Partial differential equations, curve evolution, morphing, segmen-
tation, tracking, topology.

1 Introduction

In a large number of applications, we can use information from one or more
images to perform some operation on an additional image. Examples of this are
given in Figure 1. On the top row we have two consecutive slices of a 3D image
obtained from electronic microscopy. The image on the left has, superimposed,
the contour of an object (a slice of a neuron). We can use this information to
drive the segmentation of the next slice, the image on the right. On the bottom
row we see two consecutive frames of a video sequence. The image on the left
shows a marked object that we want to track. Once again, we can use the image

M. Nielsen et al. (Eds.): Scale-Space’99, LNCS 1682, pp. 46-53, 1999.
(© Springer-Verlag Berlin Heidelberg 1999
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on the left to perform the tracking operation in the image on the right. These
are the type of problems we address in this paper.

Our approach is based on deforming the contours of interest from the first
image toward the desired place in the second one. More specifically, we use a
system of coupled Partial Differential Equations (PDE’s) to achieve this (coupled
PDE’s have already been used in the past to address other image processing
tasks, see [15,16] and references therein). The first partial differential equation
deforms the first image, or features of it, toward the second one. The additional
PDE is driven by the deformation velocity of the first one, and it deforms the
curves of interest in the first image toward the desired position in the second
one. This last deformation is implemented using the level-sets numerical scheme
developed in [11], allowing for changes in the topology of the deforming curve.
That is, if the objects of interest split or merge from the first image to the
second one, these topology changes are automatically handled by the algorithm.
This means that we will be able to track scenes with dynamic occlusions and to
segment 3D medical data where the slices contain cuts with different topologies.

2 Basic curve evolution

Let C(p,t) : IR x [0,7) — IR? be a set of closed planar curves. Assume these
curves deform “in time” according to

9C(pt)

DD N, (1)
where (3 is a given velocity and A the inner unit normal to C(p,¢). We should
note that a tangential velocity can be added to the flow, although it will not
affect the geometry of the deformation, just the internal parametrization of the
curve C. Therefore, (1) gives the most general form of geometric deformations
for planar curves.

Let’s now assume that C(p,t) is the level-set of a given function u : IR? x
[0,7) = IR. Then, in order to represent the evolution of C by that of «, « must

satisfy
ou
— 2
3| Vul, @)

where (3 is computed at the level-sets of w. This is the formulation introduced
by Osher and Sethian [11] to implement curve evolution flows of the type of
(1). This implementation has several advantages over a direct discretization of
(1). Probably the main advantage is that changes in the topology of C(p,t) are
automatically handled when evolving u, that is, there is no need for any spe-
cial tracking of the topology of the level-sets; see [11] for details and [6,7] for
theoretical analysis of this flow. The discretization of (2) is performed with an
Eulerian approach (fixed coordinate system), as opposed to a Lagrangian ap-
proach classically used to discretized (1), where marker particles are used. This
gives a numerically stable digital-grid implementation. These reasons have mo-
tivated the use of this formulation for a large number of applications, including
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shape from shading, segmentation, mathematical morphology, stereo, and reg-
ularization. Extensions of the level-sets algorithm to higher dimensions are of
course straightforward.

3 Morphing active contours

Let Z;(z,y,0) : IR? — IR be the current frame (or slice), where we have al-
ready segmented the object of interest. The boundary of this object is given
by Cr,(p,0) : IR — IR?. Let Ty(z,y) : IR> — IR be the image of the next
frame, where we have to detect the new position of the object originally given
by Cz,(p,0) in Z1(z,y,0). Let us define a continuous and Lipschitz function
u(z,y,0) : IR? — IR, such that its zero level-set is the curve Cz, (p,0). This
function can be for example the signed distance function from Cz, (p,0). Finally,
let’s also define Fi(z,y,0) : IR?> = IR and Fy(z,y) : IR?> — IR to be images
representing features of Z;(x, y,0) and Zo(z, y) respectively (e.g., F; =TI;, or F;
equals the edge maps of Z;, ¢ = 1,2). With these functions as initial conditions,
we define the following system of coupled evolution equations (¢ stands for the
marching variable):

af1($7y,t)

N = B(:E,y,t) || Vfl(x7y7t) || (3)
DB 1) | Ve 0.0) |

where the velocity B(x, y,1) is given by

: _ VI (z,y,t)  Vu(z,yt)
By ) = By O Gy 0T TVt 00

(4)

The first equation of this system is the morphing equation, where 3(x,y,t) :
IR? x [0,7) — IR is a function measuring the ‘discrepancy’ between the se-
lected features Fi(z,y,t) and Fa(z,y). This equation is morphing Fi(z,y,t)
into Fy(x,y,1), so that 8(z,y,00) = 0.

The second equation of this system is the tracking equation. The velocity in
the second equation, B, is just the velocity of the first one projected into the
normal direction of the level-sets of u. Since tangential velocities do not affect
the geometry of the evolution, both the level-sets of F; and u are following
exactly the same geometric flow. In other words, being A7, and A, the inner
normals of the level-sets of F; and u respectively,’ these level-sets are moving
with velocities BN 7, and BN respectively. Since BN is just the projection
of BN 7, into N, both level sets follow the same geometric deformation. In
particular, the zero level-set of u is following the deformation of Cz,, the curves
of interest (detected boundaries in 7; (z,y,0)). It is important to note that since

! Recall that the normal to the level-sets is parallel to the gradient.
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Cz, is not necessarily a level-set of 71 (x,y,0) or Fi(x,y,0), v is needed to track
the deformation of this curve.

Since the curves of interest in F; and the zero level-set of u have the same
initial conditions and they move with the same geometric velocity, they will
then deform in the same way. Therefore, when the morphing of #7 into F5 has
been completed, the zero level-set of u should be the curves of interest in the
subsequent frame Ty (x, ).

One could argue that the steady state of (3) is not necessarily given by the
condition 8 = 0, since it can also be achieved with || VFi(z,y,t) ||= 0. This
is correct, but it should not affect our tracking since we are assuming that the
boundaries to track are not placed over regions where there is no information and
then the gradient is flat. Therefore, for a certain band around our boundaries the
evolution will only stop when 3 = 0, thus allowing for the tracking operation.

4 Examples

For the examples in this paper, we have opted for a very simple selection of the
functions in the tracking system, namely

Fi=L(T), i=1,2, (5)

and
/B(x,y,t):fg(x,y))—fl(x,y,t), (6)

where L£(-) indicates a band around Cz, . That is, for the evolving curve C7, we
have an evolving band B of width w around it, and L(f(z,y,t)) = f(z,y,t) if
(z,y) is in B, and it is zero otherwise. This particular morphing term is a local
measure of the difference between 7, (¢) and Z,. It works increasing the grey
value of Zy(xq, yo,t) if it is smaller than 7o (o, yo), and decreasing it otherwise.
Therefore, the steady state is obtained when both values are equal Vo, yo in
B, with |VZy]| # 0. Note that this is a local measure, and that no hypothesis
concerning the shape of the object to be tracked has been made. Having no
model of the boundaries to track, the algorithm becomes very flexible. Being
so simple, the main drawback of this particular selection is that it requires an
important degree of similarity among the images for the algorithm to track the
curves of interest and not to detect spurious objects. If the set of curves Cr,
isolates an almost uniform interior from an almost uniform exterior as in Figure
3, then there is no need for a high similarity among consecutive images. On the
other hand, when working with images such as those in Figure 2, if C, (0) is too
far away from the expected limit {im;—ooC7, (¢), then the abovementioned errors
in the tracking procedure may occur. This similarity requirement concerns not
only the shapes of the objects depicted in the image but especially their grey
levels, since this § function measures grey-level differences. Therefore, histogram
equalization is always performed as a pre-processing operation.

We should also note that this particular selection of 3 involves information of
the two present images. Better results are expected if information from additional
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images in the sequence are taken into account to perform the morphing among
these two.

The first example of our tracking algorithm is presented in Figure 2. This
figure shows nine consecutive slices of neural tissue obtained via electronic mi-
croscopy (EM). The goal of the biologist is to obtain a three dimensional recon-
struction of this neuron. As we observe from these examples, the EM images are
very noisy, and the boundaries of the neuron are not easy to identify or to tell
apart from other similar objects. Segmenting the neuron is then a difficult task.
Before processing for segmentation, the images are regularized using anisotropic
diffusion [1,2,14]. Active contours techniques as those in [5,8,9,10] will normally
fail with this type of images. Since the variation between consecutive slices is not
too large, we can use the segmentation obtained for the first slice (segmentation
obtained either manually or with the technique described in [17]), to drive the
segmentation of the next one, and then automatically proceed to find the seg-
mentation in the following images. In this figure, the top left image shows the
manual or semi-automatic segmentation superimposed, while the following ones
show the boundaries found by our algorithm.? Due to our particular choice of
the 3 function, dissimilarities among the images cause the algorithm to mark as
part of the boundary small objects which are too close to our object of interest.
These can be removed by simple morphological operations. Cumulative errors
might cause the algorithm to lose track of the boundaries after several slices,
and re-initialization would be required.

One could argue that we could also use the segmentation of the first frame
to initialize the active contours techniques mentioned above for the next frame.
We still encounter a number of difficulties with this approach: 1- The deforming
curve gets attracted to local minima, and often fails to detect the neuron; 2-
Those algorithms normally deform either inwards or outwards (mainly due to the
presence of balloon-type forces), while the boundary curve corresponding to the
first image is in general neither inside nor outside the object in the second image.
To solve this, more elaborated techniques, e.g., [13], have to be used. Therefore,
even if the image is not noisy, special techniques need to be developed and
implemented to direct different points of the curve toward different directions.

Figure 3 shows an example of object tracking. The top left image has, su-
perimposed, the contours of the objects to track. The following images show the
contours found by our algorithm. For sake of space, only one every three frames is
shown. Notice how topological changes are handled automatically. A pioneering
topology independent algorithm for tracking in video sequences, based on the
general geodesic framework introduced in [5,9] can be found in [12] (an extension
to this, with a number of key novel features, was recently reported in [13]). In
contrast with our approach, that scheme is based on a unique PDE (no morphing
flow), deforming the curve toward a (local) geodesic curve, and it is very sensible
to spatial and temporal noisy gradients. We should also not that although the
authors of [12] propose a fast technique to implement their flow, this technique

2 A preliminary version of this algorithm has been compared with the segmentation
component of [4] and found to produce better results.
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is not actually implementing their proposed algorithm. Therefore, to fully im-
plement their scheme, other much slower techniques need to be applied. Due to
the similarity between frames, our algorithm converges very fast. Both [12,13]
use much more elaborated models to track, and testing on some of the same
sequences (e.g., the highway and two-man-walking sequences), we found that a
much simpler algorithm as the one here proposed already achieves satisfactory
results. The elaborated models in their work might be needed for more difficult
scenes than the ones reported in this paper. The CONDENSATION algorithm
described in [3] can also achieve, in theory, topology-free tracking, though to
the best of our knowledge real examples showing this capability have not been
vet reported. In addition, this algorithm requires having a model of the object
to track and a model of the possible deformations, even for simple and useful
examples as the ones shown in this paper (note that the algorithm here proposed
requires no previous or learned information). On the other hand, the outstand-
ing tracking capabilities for cluttered scenes shown with the CONDENSATION
scheme can not be obtained with the simple selections for F; and [ used for the
examples in this paper, and more advanced selections must be investigated.
Additional tracking examples are given in the next three figures.

5 Concluding remarks

In this paper we have presented a system of coupled PDE’s developed for image
segmentation and tracking. We are also investigating the use of this technique
for 3D, topology independent, morphing, and Figure 7 shows a toy example
to illustrate this. There are a number of additional directions to continue the
framework described in this paper, we discuss some of them now.

It is of course of great importance to develop more robust selections of the
feature map F; and the discrepancy function 3. One possible direction is to use
recent image metrics based on steerable (wavelets) decompositions. This is the
subject of current research.

The use of singular value decomposition and principal components analysis
became very popular in computer vision and image processing in the past years.
The basic idea is to represent a given event as a linear combination of principal
components from learned events. We can see the technique here described as
a first step toward the deformation of principal components. That is, we can
look at the curve obtained from the current slice as a principal component. We
are currently investigating the extension of this technique to the deformation
of a number of principal components, thereby representing a given event as a
combination of deformed learned principal components. The deformations will
be obtained as a system of coupled PDE’s.

The equations introduced in this paper are basically “short in memory,” that
is, only the present frame is used to segment the next one. We can incorporate
past information to these equations, in the form of optical flow or Kalman filter-
ing (or the techniques in the novel scheme developed in [3]), in order to improve
the detection results. Some modeling of the object of interest could be intro-
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duced in the morphing function 3 as well. This will be the subject of further
study.

We are also studying the extension of previous theoretical results for the
system of coupled PDE’s presented in this paper. The equations introduced in
this paper are one example of systems of coupled PDE’s where the velocity in
the second equation is obtained by projecting the corresponding velocity in the
first flow. It turns out that this technique has applications in other areas like
denoising of vector-valued images and surface mapping.
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Fig. 1. Ezamples of the problems addressed in this paper. See teat.

Fig.2. Nine consecutive slices of neural tissue. The first image has been segmented
manually. The segmentation cver the sequence has been performed using the algovithm
described in this paper.
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333

Fig. 3. Nine frames of a movie. The first image has been segmented manually. The
segmentation over the sequence has been performed using the agorithm described in
this paper. Notice the automatic handling of topology changes.

Fig. 4. Tracking example on the “Walking swedes” movie,
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Fig. 5. Tracking example on the “Highway” mouvie.

Fig. 6. Tracking example on the “Heart” mowvie.
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Fig. 7. Eight steps of 3D morphing, from a given volume (top left) to eight given cubes
(bottom right). This toy example uses the algorithin described in the text.
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Abstract. Level set methods provide a robust way to implement ge-
ometric flows, but they suffer from two problems which are relevant
when using smoothing flows to unfold the cortex: the lack of point-
correspondence between scales and the inability to implement tangential
velocities. In this paper, we suggest to solve these problems by driving
the nodes of a mesh with an ordinary differential equation. We state that
this approach does not suffer from the known problems of Lagrangian
methods since all geometrical properties are computed on the fixed (Eu-
lerian) grid. Additionally, tangential velocities can be given to the nodes,
allowing the mesh to follow general evolution equations, which could be
crucial to achieving the final goal of minimizing local metric distortions.
To experiment with this approach, we derive area and volume preserv-
ing mean curvature flows and use them to unfold surfaces extracted from
MRI data of the human brain.

1 Introduction

Neural activity in high-level tasks of the brain takes place mainly in the cortex,
which in humans is a highly folded surface with more than half of its area hid-
den inside sulci [22,28,29]. Regions of neural activity which are close together
in three-dimensional space may therefore be far apart when following the short-
est path connecting them on the cortical surface. This suggests that a surface
representation is better suited than a volumetric one for the task of functional
analysis [8,12,28].

Once such a representation is available, it may be necessary to “unfold” the
surface in order to improve visualization and analysis of the neural activity.
Presently, this is done by representing the surface as a triangulated mesh which
is forced to move depending on the gradient of a discrete energy measure [8,28].

This is a geometric Lagrangian formulation which can be exchanged for an
Eulerian one, viewing the problem as a front propagation driven by a PDE
which is solved on a fixed grid. This so-called “level set formulation” was initially
proposed by Osher and Sethian in [23] and has been extensively applied to plane
curve evolutions [3,9,19,24] and, to a lesser extent, to the evolution of closed
surfaces [4,6,14,18].

M. Nielsen et al. (Eds.): Scale-Space’99, LNCS 1682, pp. 58-69, 1999.
(© Springer-Verlag Berlin Heidelberg 1999
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Replacing the discrete-energy minimization approach by a surface evolution
is interesting since formal results concerning existence, uniqueness, stability and
correctness of the evolution may be established using results in the theory of
PDE’s. When implementing the evolution, the Eulerian approach provides two
primary advantages. First, it is more numerically stable since the computations
are performed on a fixed grid, unlike the Lagrangian approach, in which heuristic
regriding procedures are necessary to avoid numerical explosions [23]. The fixed-
grid approach has also been shown to regularize originally ill-posed problems
n [17]. The second advantage is the ability to handle topological changes. This
is useful even when the topology of the initial and final curve/surface are the
same, since this ability may be required at an early stage in the evolution to
escape blocking configurations (see for example the discussion on min-max flow
in [27]).

On the other hand, at least three questions which are relevant to our goal
arise when migrating to a level set approach and here we suggest an answer to
the second and third of these questions. The first one is that when unfolding
the cortex, topological changes are not desirable. This brings up the problem
of finding a surface evolution which is topology-preserving. For planar curves,
such an evolution is given by the curvature flow, but unfortunately this is not the
case for surfaces. Much research has been devoted to this problem, but it remains
an open one [21]. The second question is that of achieving point correspondence
between surfaces at different scales. In the level set approach this correspondence
is lacking since the surface is only implicitly defined. This gives rise also to the
third problem which is that with the level set approach, only flows that do not
contain tangential velocities can be implemented. Tangential velocities do not
affect the geometry of the surface, but they may be important in our application
since they do affect extrinsic functions defined on the surface.

Although very closely related, the last two problems are not exactly the same.
In [1] the authors propose a solution to the correspondence problem by tracking
region boundaries. Their solution however, does not allow tangential terms to
be implemented.

We suggest to solve this problems by mapping the function of interest on
the nodes of a mesh and subsequently tracking these nodes by means of their
corresponding differential equation. The tracking of the mesh solves the corre-
spondence problem and, at the same time, tangential velocities are applicable to
the mesh nodes. Although it may seem that this approach brings back the prob-
lems of Lagrangian formulations, this is not the case since the mesh is passively
driven, all the geometric quantities relevant to the evolution being computed
on the fixed (Eulerian) grid. The proposed approach is described in detail in
Section 4.

In Section 2, we derive area and volume preserving mean curvature flows,
which are the three-dimensional extensions of the Euclidean flows presented
in [26]. Although the obtained flows are not Euclidean invariant and may develop
topological changes, they allow to evaluate the tracking approach by smoothing
the surface without shrinkage and have yielded reasonable results in practice.
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Section 5 provides experimental results on their use to unfold the human cortex
while tracking the initial triangulated representation. Conclusions and future
research directions are discussed in Section 6.

2 Normalized 3D Mean Curvature Flows

In this section we present the evolution equations for mean curvature flows with
constant total area or enclosed volume. These are direct three-dimensional ex-
tensions of the Euclidean flows described by Sapiro and Tannenbaum [26] for
planar curves, and have also been studied in [2,11,25]. In the following discus-
sion, bold letters will represent 3D vector quantities, the integral symbol will
always denote a closed surface integral over the surface and the scalar and cross
product between two vectors v1 and v2 will be denoted vl - v2 and vl x v2
respectively. Subscripts will denote partial differentiation with respect to the
subscripted parameter.

We consider the family of orientable surfaces in R® denoted S(u,v,t), where
u and v parameterize each surface and ¢ parameterizes time (scale), which is
obtained by the time evolution of an initial surface S,(u,v) = S(u, v, 0) governed
by the following PDE:

S, = HN (1)

where H(w,v) is the mean curvature and N(w,v) is the unit inward normal
vector. This evolution is known as the mean curvature flow and its properties
have been extensively studied in the past [5,7,15,16,20].

The key idea to obtain a normalized flow is to apply a scaling to the space at
each instant during the evolution. The scaling factor will be denoted (¢). Let
S be the image of S under this scaling:

S(t) = ¥(1)S(1) (2)
Initially, #(t) = 1 and the two surfaces coincide. As time evolves, S describes
another family of surfaces which adopts the same shapes as S, since scaling is a
similarity transformation. For the same reason, all the geometric properties of S
can be inferred from those of S. The function ¢(t) can be chosen such that the
volume of S remains constant:

V=9V =V (3)
or such that the total area is preserved:
A=yp?A= A (4)

By performing a change of temporal variable, from ¢ to 7(¢) such that % =
¢7~27 and taking into account the relations H = ¢H and N = N, the evolution
of S may be written as:

_ dt - s
S, = 7 S, = HN -+

T

dip

%Qﬁfgg (5)
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The value of the second term of equation (5) will depend on which quantity
we wish to preserve. From (4) we obtain the area preserving value,

dyp o 1 dA

%iﬁ RSy e (6)
and from (3) the volume preserving one:

dy 4 P dV

il - 7

dt 4 3V dt @

We see that in order to achieve constant area or volume, we need to determine
the evolutions of these quantities under the flow. For a surface evolving as

S: = AN (8)

the volume variation (see e.g. [2,11]) is given by the closed integral of the speed:

av
o (9)

To compute the evolution of the area, we show in the appendix that the
evolution of the vector S,, x S, can be written as

(Su X Sv)t - | S, x 8, | (2/BHN - V/B) (10)

where V3 is the vector on the tangent plane representing the gradient of the
function 3. Using the definition of the area element,

do =[S, x Sy| du dv (11)

the evolution of the area can be obtained from (10):

dA
— :2/51{ do (12)

Interestingly, equation (10) can be used to prove the following proposition.

Proposition Let 3 : S — R be a differentiable function defined on a closed
reqular surface S C R3. Then the following equality holds:

/ﬁdaz%/(ﬁ—S~Vﬁ+2ﬁH(S~N))da

Proof The volume enclosed by the surface is given by!

V:%/S~Nda (13)

! The divergence theorem relates the volume integral of the divergence of a vector A
to a surface integral over the surface bounding the volume as

/V~Adv:/A~NdU
v s

The fact that V - S = 3 implies relation (13).
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Using the definition of the normal vector N = ( 8, xS, )/|S. x S,|, its evolution

can be obtained from (10): N, = —V3. The volume variation is given by the
time-derivative of (13):

av 1

E:§/</B—S~Vﬁ+25H(S~N))d¢T (14)

which completes the proof by identifying with (9). O

Taking into account the relations H = wﬁ and do = Qb*2d~a7 the area and
volume variations under mean curvature flow may be computed on S, allowing
us to write the corresponding area and volume preserving flows by substitution

in (5) of (6) and (7) respectively:
SN [~ -\ -
/ H? daj N (15)
Ao

ST(EI—

ST<H— o /Hda)N (16)

Note that the flows are geometrically intrinsic to S. Also note that we have taken
only the normal component of the second term in the equations since only this
term affects the geometry of the surface [26]. It is also interesting to note that,
unlike the 2D case, the volume preserving flow is not local.

3 Level Set Formulation

We proceed to describe the computed flows under the level-set approach. A more
formal analysis may be found in [13,23]. The surface is represented in an implicit
form, as the zero level-set of a function (X, ¢):

S, (u,v) = {X € B : u(X, 0) = 0} (17)
If the surface is evolving according to
S
Eri OGN (18)
then
S(u,v,t) = {X eR* (X, t) =0} Wt (19)
provided that the function u(X,?) : R* x R — R evolves according to
ou
BVl (20)

Intrinsic geometric properties of the surface have implicit expressions on «. For
example the unit inward normal vector and the mean curvature are given by

VU and H = div2L (21)

N-__““
|Vl |Vl
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Actually the above values give the normal vector and mean curvature of the
iso-level of u at X.

Finally, since the evolution equations are not local, the integrals must be
approximated by extracting the corresponding integrands with a marching cubes
technique.

4 Maintaining point correspondences at different scales

In this section we describe the tracking of the initial mesh of the surface, which
contains information that is to be kept during the evolution. Formally, let

f(X):S—>R (22)
be a function on the surface, sampled at a finite number of points
{XieS: f(Xy) = fi} (23)

Since the surface is evolving as S; = SN, each of the points moves according to
the following differential equation:

P YO

Its trajectory can be followed by updating its position as

[Vl
at each step of the PDE. Note that all computations are performed on the
function » and therefore no harm is done by the nodes getting too close or too
far from each other. Small systematic errors due to the approximation may be
corrected at every iteration by projecting the points on the zero level set of u:

u  Vu

(X;(t+ At))) (26)

This projection can also be used when given tangential velocities to the nodes,
in order to force them to stay on the zero level set.

Topological changes may be handled automatically by re-sampling the func-
tion on the new triangulation extracted from the level set at each step. This can
be done in the following way. Let

Y ={Y, € S:u(Y;)=0} (27)

be the set of nodes of the new mesh, which is extracted from « by a marching
cubes technique. The function f can be remapped on Y by assigning to each Y
the linear interpolation of fx, f; and f,,, where the three nodes X, X; and X,,,
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are such that Y is inside the triangle of the tangent plane defined by the three
points:
P, =X; —uVu / |Vu (Xy)
P, =X, —uVu / |Vu]? (X)) (28)
Py =X,, —uVu / |Vu]? (X)

To find such a triangle, a search is necessary among the closest triangles to Y
and therefore this procedure is computationally expensive. For this reason, and
to make more obvious where undesirable topological changes occur, we do not
perform this step in the experiments.

5 Results

Here we describe the results obtained by applying the normalized mean curvature
flows together with the tracking framework described in the previous section, to
unfold surfaces extracted from pre-segmented MRI data of the human brain.
The tracked function in the examples is the sign of the mean curvature, light
regions indicating concave folds.

Fig. 1 shows a first example starting with a reduced and slightly smoothed
version of the cortex. This surface was obtained by applying a scaling flow:

S, = —(S-N)N (29)

to the surface in order to reduce its size, followed by a few steps of Mean Cur-
vature Flow (MCF). The columns correspond to three different views. The first
row shows the initial surface. It can be observed that the relative areas of light
and dark regions are approximately the same. This qualitative evaluation may
already be useful in discarding flows that obviously change this balance. This is
the case for the area-preserving flow, whose results are shown in the second row
of Fig. 1. It is clear that the dark regions become too wide while the light regions
grow too thin. The balance between light and dark regions is not preserved at
all. This is undesirable since the goal of the unfolding is to improve visibility
in the light regions, i.e. the sulci. The third row is the result obtained with the
volume-preserving flow. Here the proportion of dark and light regions is better
preserved. The fourth row is the result obtained by applying MCEF alone. The
proportions are again qualitatively well preserved. Quantitative measures are
required to evaluate more precisely these results.

The second example (Fig. 2) shows results with the original cortical surface
extracted from the MRI data (i.e. no preprocessing was applied as in the previ-
ous example). In this case, only mean curvature flow and its volume-preserving
version were tested. The first row shows the initial geometry of the cortex, while
the second row presents the geometry as obtained by applying volume-preserving
MCF. In the third row, the sign-of-curvature function has been mapped on this
same surface. The last row shows the result of applying MCEF alone. In this ex-
ample, the results are very similar with respect to the distribution of the tracked
regions.
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Fig. 1. Results of cortex unfolding using the normalized fows. The columns represent
three different views of the corresponding surface. From top to bottom: Original surface,
area-preserving MCF, volume-preserving MCF, MCF alone. Note that due to the time
normalization, the same number of steps corresponds to different stages of the shape
evolution. Scale is the same in all three cases to make the amount of shrinkage evident.
The starting surface is a reduced and smoothed version of the actual cortex.
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@ P

Fig. 2. Unfolding the cortex as segmented from the MRI image. The first two rows show
the geometry of the initial and final surfaces, without mapping the sign-of-curvature
function. In the third row, the function is mapped using volume-preserving MCIF, while
the fourth row shows the result of applying MCF alone. In this last row the zoom is
larger in order to better visualize the sign-of-curvature function.
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6 Conclusion

We have presented normalized mean curvature flows together with a tracking
framework that allows to maintain the knowledge of an extrinsic function de-
fined on the surface. These flows were used as first attempts to solve the problem
of unfolding the cortex using level set techniques, and have indeed yielded en-
couraging results. Nevertheless, further research is needed in order to obtain
a front propagation model that takes into account the physical constraints of
the problem, i.e. minimum variation of geodesic distances and no topological
changes. By allowing tangential movements of the tracked nodes, our approach
makes general propagation models (i.e. containing normal as well as tangential
terms) applicable to those nodes.

Appendix
Here we show how to obtain equation (10), which gives the evolution of S, x S,.

Direct differentiation with respect to time gives:

(Sux8y)t = (BuN+ BN,) X S, + 8, x (8,N + N,) (30)
N T

— (ﬁ(Nu X Sy + Sy x Nv)) — (/Busv x N+ 3,N x Su) (31)

The first term is normal since N,, N,, S, and S, are all four tangential.
Moreover, using the fact ([10]) that N, and N, are decomposed in the tangent
plane as:

N, = a118, + a8,

N, = a21S, + 228, (32)
with
a1 + a9 =2H (33)
We have
N =S, xS,|28HN (34)

The second term is obviously tangential and actually gives the gradient of
3 in the tangent plane. To see this, we will show that its scalar product with
an arbitrary vector v of the tangent plane is proportional to the directional
derivative of § in the direction of v, which is the definition of a gradient operator.
Let v be expressed as

v =01 S, +asS, (35)

We have
T v= al/Bu Su - (Sv X N) + a2/8v Sy - (N X Sv) (36)
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but
Su (S xN)=8, - (Nx8,) =[S, xS,| (37)
so that )
T = 2 5 38
|Su><SU|T v =010y + f3 (38)

The right-hand side of equation (38) is the directional derivative of 3 in the
direction of v. We therefore may write

Combining equations (31), (34) and (39) gives equation (10):

(Su X Sv)t - | S, x 8, | (2/8HN - V/B) (40)
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Abstract. This paper is concerned with the simulation of the Par-
tial Differential Equation (PDE) driven evolution of a closed surface
by means of an implicit representation. In most applications, the natu-
ral choice for the implicit representation is the signed distance function
to the closed surface. Osher and Sethian propose to evolve the distance
function with a Hamilton-Jacobi equation. Unfortunately the solution to
this equation is not a distance function. As a consequence, the practi-
cal application of the level set method is plagued with such questions
as when do we have to "reinitialize” the distance function? How do we
"reinitialize” the distance function? Etc... which reveal a disagreement
between the theory and its implementation. This paper proposes an al-
ternative to the use of Hamilton-Jacobi equations which eliminates this
contradiction: in our method the implicit representation always remains
a distance function by construction, and the implementation does not
differ from the theory anymore. This is achieved through the introduc-
tion of a new equation. Besides its theoretical advantages, the proposed
method also has several practical advantages which we demonstrate in
two applications: (i) the segmentation of the human cortex surfaces from
MRI images using two coupled surfaces [26], (ii) the construction of a
hierarchy of Euclidean skeletons of a 3D surface.

1 Introduction and previous work

We consider a family of hypersurfaces S(p,t) in R®, where p parameterizes the
surface and t is the time, that evolve according to the following PDE:
% o 1)
with initial conditions S(¢ = 0) = Sy, where A is the inward unit normal
vector of §, 3 is a velocity function and Sp is some initial closed surface.

Methods of curves evolution for segmentation, tracking and registration were
introduced in computer vision by Kass, Witkin and Terzopoulos [15]. These evo-
lutions were reformulated by Caselles, Kimmel and Sapiro [7] and by Kichenas-
samy et al. [16] in the context of PDE-driven curves and surfaces. There is an
extensive literature that addresses the theoretical aspects of these PDE’s and
offers geometrical interpretations as well as results of uniqueness and existence
[13,14,9].

Level set methods were first introduced by Osher and Sethian in [21] in the
context of fluid mechanics and provide both a nice theoretical framework and
efficient practical tools for solving such PDE’s. In those methods, the evolution
(1) is achieved by means of an implicit representation of the surface S.

The key idea in Osher and Sethian’s approach is to introduce a function
u:R? x R — R such that

M. Nielsen et al. (Eds.): Scale-Space’99, LNCS 1682, pp. 70-81, 1999.
(© Springer-Verlag Berlin Heidelberg 1999
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u(S,t) =0 vt 2)
By differentiation (and along with A" = — % and (1)), we obtain the Hamilton-
Jacobi ! equation:
ou
% Bivul 3)

with initial conditions u(-,0) = ug(.), where uq is some initial function R® —
R such that up(Sp) = 0. It has been proved that for a large class of functions u
and up, the zero level set at time ¢ of the solution of (3) is the solution at time
t of (1).

Regarding the function ug, it is most often chosen to be the signed distance
function to the closed surface Sy. This particular implicit function can be char-
acterized by the two equations:

{r e R} uo(z) =0} =8o and |Vuo| =1

Indeed, the magnitude of the gradient of ug is equal to the magnitude of the
derivative of the distance function from Sy in the direction normal to Sy, i.e., it
is equal to 1.

It is known from [5] that the solution w of (3) is not the signed distance
function to the solution S of (1). This causes several problems which are analyzed
in the following section.

It is also important to notice that 3 in (3) is defined in R® whereas in (1) it
is defined on the surface S. The extension of 3 from S to the whole domain R?
is a crucial point for the analysis and implementation of (3). There are mainly
two ways of doing this.

(i) Most of the time this extension is natural. For example, if 8 = Hg, the
mean curvature of S in (1), one can choose 8 = H,,, the mean curvature of the
level set of u passing though z in (3).

(ii) In some cases [24,20,2], this extension is not possible. Then one may
assign to G(z) in (3) the value of B(y) in (1) where y is the closest point to x
belonging to &. The problem with this extension is that it hides an important
dependence of 3 in (3) with respect to v and we show in section 4 that in this
case (3) is not a Hamilton-Jacobi equation.

The thrust of this paper is a reformulation of the level set methods introduced
by Osher and Sethian in [21] to eliminate some of the problems that are attached
to it, e.g. the need to reinitialize periodically the distance function or the need
to “invent” a velocity field away from the evolving front or zero level set. The
implications of our work are both theoretical and practical.

2  Why Hamilton-Jacobi equation (3) does not preserve
distance functions.

In this section, we suppose that 3 is extended as explained in (i). The fact that
the solutions to Hamilton-Jacobi equations of the form (3) are not distance func-
tions has been proved formally in [5]. A convincing geometrical interpretation of
this fact is now given through two short examples.

! The difference between a Hamilton-Jacobi equation and a general first order PDE
is that the unknown function (here u) does not appear explicitly in the equation.
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2.1 First example

Let us consider the problem of segmenting a known object (an ellipse) in an
image by minimizing the energy of a curve [8]. Let us force the initial curve to
be exactly the solution (the known ellipse) and initialize uq to the signed distance
function to this ellipse, then evolve u with the Hamilton-Jacobi equation (3).
It is obvious that the zero level set of u (let us call Sy this ellipse) will not
evolve, since it is the solution to (1) and B(z € Sy) = 0.
Notice however that replacing 0 by ¢ € R in (2) implies by differentiation the
same equation (3), which means that the ¢ level set of u (let us call this S,
curve) also evolves according to 98 — BN In consequence, Bz e S.) # 0 and

ot
Se evolves toward Sy in order to minimize its energy (cf. fig. (1)).

time £t =0 time £ > 0

=0 B>0

Fig. 1. All the level sets of u (shown as single curves) move towards the ellipse Sp in
order to minimize their own energy with the effect that the distance function is not
preserved.

This shows that the shock wave equation (3) requires that all the level sets of
u should converge to the ellipse Sy and therefore that |Vu| increases dangerously.

2.2 Second example

A point M with coordinate z € R and energy E(z) = %2 is moving along the

real line in order to minimize its energy. We force the point M to be at zg £ 0
at t = 0. The level set version of this problem is to define wg on the real lineaas
U U

ug(z) = z — xg and to evolve v with the Hamilton-Jacobi equation % = x gt
¢

The solution is u(z,t) = e’z — zo. The figure (2) shows u at 3 time instants

(0 =19 <ty < t2). The zero level set of u is indeed traveling to the origin O but

the slope of u is % = ¢’ and increases exponentially in time.

The second example is a rephrasing of what happens in the normal direction
to the evolving curve in the first example. It is now obvious why driving all
the level sets of u with (3) cannot conserve distance functions and in addition
leads to unbounded values of |Vu|. In practical applications, one is compelled to
“reinitialize” the implicit function u to be a distance function which is obviously a
contradiction and which shows a gap between the theory and its real application.

In the next section, we convince the reader that maintaining u as a distance
function (i.e. such that |Vu| = 1) during all the time of the evolution is definitely
desirable, sometimes crucial.
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Fig.2. The point M moves on the horizontal line in order to minimize its energy
2
E(x) = £-. The function v, initially of slope 1, becomes more and more vertical.

3 Why we should preserve the distance function.

There are at least two reasons for preserving the signed distance function to the
evolving surface, a theoretical one and a practical one.

(i) From the theoretical viewpoint, the implicit description of S (seen as a
subset of R?) and its signed distance function u are equivalent descriptions.
Indeed, given any surface S, its signed distance function is uniquely defined.
Conversely, any implicit function u satisfying |Vu| = 1 is the signed distance
function to a surface plus a constant (this last constant is taken equal to 0
on the surface) [4]. Since these descriptions are equivalent, one can transpose
immediately properties of the first one into properties of the second one and vice
versa. For example, u has converged if and only if S has converged (which
is not true with Hamilton-Jacobi equation (3) according to the last section).

Moreover, one can deduce interesting intrinsic properties of & by a local
knowledge of w. In [3], it is proved that the second fundamental form of S can
be computed using the derivatives of the squared distance function. In addition,
some applications in medical image analysis such as the segmentation of the
cortex using two coupled surfaces [26] assume that the distance between the
surfaces is known at any time. As a last example, the computation of the skeleton
of a surface requires the detection of the singularities of its distance function [18].

(ii) From the practical viewpoint, the numerical approximation of the deriva-
tives of u by finite differences requires the choice of a spatial step dz. One chooses
a small dz if the slope (the gradient) of the function is large and a larger dz if
the function has small variations. Since level sets are most often implemented
on regular grids, it is more efficient to use the same step dx = 1 for each grid
point. It is obvious that this approximation is more accurate if the norm of the
gradient of u is known which is the case with distance functions since |Vu| = 1.
Keeping |Vu| bounded assures that the derivatives of u are always computable
without the need to “reinitialize” w.

We now describe a new approach that preserves the signed distance function
and therefore meets these two requirements.
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4 How to preserve the signed distance function.

In this section, we suppose that ug = «(.,0) is initialized at ¢ = 0 as the signed
distance function to the initial surface &j.

The basic idea is to change equation (3) in such a way that at each time
instant u is the signed distance function to the solution S of (1). In order to
achieve this goal, we look for a function B : R® x RT — R such that % =B
and which satisfies the two constrains: (i) © — u(z,.) is a distance function, (ii)
the zero level set of u evolves according to (1).

We express these constrains with the system of equations:

B\u:O - /8 (4)
ou

i B (5)

|Vu| =1 (6)

where B|,_o denotes the restriction of B to the zero level set of v. By differ-
entiating (5) and (6), we obtain:

ou Vu 0OVu
: . : IVu du .
using the Schwartz equality %5+ = V (T)v we get:
Vu-VB =0 (8)

which, together with (4) and (5) determines the function B. Relation (8) states
that the function B does not vary along the characteristics of u (the character-
istics of u are the integral curves of Vu). It also means that the characteristics
of w and B are orthogonal.

In order to go one step further in the resolution of the system, we must recall
an important property [4]: the characteristics of distance functions are
straight lines (cf. fig. (3)).

u =20
u = cst
"""""""" B = cst

Fig. 3. Characteristic curves of the field Vu.

This implies that B is constant along straight lines. These lines (or rays)
intersect the zero level set of u at a point where B is known according to (4).

Given any point z € R?, an equation of the characteristic of u passing through
x is A = = — AVu. Since the distance of = to the zero level is u(z) and |Vu(z)| =
1, the point y = z — uVu is on the zero level set of u. Notice that y is the
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closest point to z such that u(y) = 0. According to the last reasoning, we have

B(z) = B(y) = B(x — uVu). Therefore, the solution to the initial system is:
Ju
% Bla—uVu) (9)

with initial condition u(.,0) = ug(.). This equation? is the main result of the
paper. Note that equation (9) is not a Hamilton-Jacobi equation since u appears
in the right-hand side and plays a major role. An interpretation of (9) is the
following: the zero level set of w is driven by 88—1; = [ as proposed by Osher
and Sethian. The evolution of this particular surface geometrically defines (by
propagation) the evolution of all other level sets.

Remark: a posteriori, one guesses that the integral version of equation (9)
is the equation u(S + AN) = X V¢, A. This can be proved by differentiation
with respect to ¢ and A. It states that the surface parallel to S at distance A
from S should be the A level set of w. This is to be compared to the constrain
u(S,t) =0 Vt introduced by Osher and Sethian.

The uniqueness of the closest point y to = such that «(y) = 0 is only guar-
anteed if Vu(z) exists. The set of points of R® where Vu is not defined is called
the skeleton of S (cf. fig. (4)).

u =0

B = cst
Skeleton
Vau

Skeleton

Fig. 4. The skeleton of the zero level set is determined by the points where Vu is not
defined.

Skeletons are very important in computer vision [6,17,22]. Since it turns out
that they are a byproduct of our new proposed evolution, we describe in the
next section an implementation of equation (9) in which special care is taken of
the computation of the skeleton.

2 Equation (9) looks simple but is not. Consider for example the case of mean cur-
vature flow: (9) writes &%(z,t) = div(Vu(z — u(z,t)Vu(z,t),t)), which is not a
PDE (Indeed, two different points in R™ X R are considered, namely (z,t) and
(x — uVu,t)). However, notice that u(z — uVu) = 0, Vu(z — uVu) = Vu(z), and
according to [3], the second fundamental form at © — uVu can be computed using
the derivatives of u(x,t) up to the third order. This shows that for a large class of
velocity functions (in particular for mean-curvature flow), (9) is indeed a PDE.
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5 Implementation

In this section, we propose a straightforward implementation of the previous
theory. u is initialized as the signed distance function to the initial surface. We
fix v at a particular instant ¢ and compute the real field B(z,t) = 8(x—uVu) on a
narrow band [10,19,1] of S. Once B is known, u can be updated by w(z,t+dt) =
u(z,t) + B(z,t)dt. The computation of B is done in two steps corresponding
respectively to equations (4) and (8). The difficulty is that we work on a discrete
grid and this can have dramatic consequences if proper care is not taken of the
sampling effects.

In order to deal with those effects, we introduce some notations. Points of R®
such that none of their coordinates is an integer will be denoted by lower case
letters, e.g. x, and called real points. Points of N®, where N is the set of integers,
will be denoted by upper case letters, e.g. X, and called voxels. We can think of
z as a point falling in a cube formed by eight voxels. We note V (x) this set of
eight voxels.

If f is a function defined on R?, and x is a real point such that the values
of f are known at all voxels of V(z), we note f;(z) the value of the trilinear
interpolation at z. In detail, if x = (x1,29,23) = (n1 + €1, n9 + €2, 13 + €3),
where n; € N and 0 < ¢; < 1, then we have by a simple linear interpolation
filz1, 22, 23) = (1 —€1) f(n1, 2, x3) t€1f(n1+1, 29, 23). By applying recursively
this rule to f(ni,z9,x3) and f(ny + 1,29, 23), one expresses f;(z) as a linear
combination of the samples of f at the voxels of V(z), the weights being third
order polynomials of the coordinates (eq, €, €3).

Let A(X) be the 26-neighborhood of the voxel X. Since generically the zero
level set of u is composed of real points, we need to determine when a voxel X is
adjacent to this zero level set. Consider the function C, defined on the voxels of
the grid such that C,(X) =0 if »(X)>0and C,(X)=1 if «(X)<0.A
voxel X is said to be adjacent to the zero level set of v if Y € A(X), C (Y) #
Cu(X). We call Z the set of voxels adjacent to the zero level set of u. We are
now in position to describe the two steps of our computation.

5.1 First step: computation of 3 on 2

The first step is the computation of 3 on Z. These values are stored in a tem-
porary buffer called BZ. There are two ways to do this. If 3 is defined on
R3, then one can assign BZ(X) = 8(X) VX e Z.If 3 is only defined on
the nodes of a mesh describing the zero level set of w, then one can assign
B?(X) = pB(r;) ¥X e Z, where v; is the closest node of the mesh to the voxel
X . In both cases, the final value of B(X) is not the value of BZ(X), as explained
in the second step.

Notice that the definition of Z ensures that if w;(z) = 0 then V(z) C Z and
in consequence Bf (z) can be computed.

5.2 Second step: computation of B on the narrow band
The purpose is to propagate the values of B from Z to the whole narrow band.

This is done by B(X,t) = Bf (y,t) where u;(y) = 0 and y lies on the same
characteristic of v than X. Computing directly y = X —uVwu is not robust since
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small errors in Vu may introduce larger errors (proportional to u) in y. Instead,
we follow the characteristic passing through X by unit steps:

Yo =X

it =y _{@f ui(yn) <O then  maz(ui(yn), sign(ui(yn))) Vi (yn)
et " if wyn) >0 then men(ui(yn),sign(ui(yn)))Viulyn)

u(yn) =0

until

This marching is done for each voxel in the narrow band, even those of
Z. The computation of the march direction V;u(y,) requires the evaluation of
Vu at voxels of the grid. The choice of the numerical scheme for Vu(X) is
crucial since it may introduce unrecoverable errors if X lies on the skeleton of
S. Our choice is based on the schemes used in the resolution of Hamilton-Jacobi
equations where shocks occur [25,23]. These schemes use switch functions which
turn on or off whenever a shock is detected. We explicit here our choice. Let
Diu=w(i+1,7,k)—ul(i,j, k) and D u = u(i,j, k) —u(i — 1, 4, k), with similar
expressions for D, and D,. We form the eight estimators D*, i = 1,...,8 of
Vu, namely D'u = (D;u, D;u,Dju>, D%y = (D;U,DJU,D;’LL), con, DRy =
(D;u, D;u7 D;u).

In our current implementation we use Vu(X) = ArgMax; (|D*u(X)]). Indeed,
apart from points on the skeleton of S where Vu is undefined, |Vu(X)| which
should be equal to 1 since u is a distance function is found to be in practice less
than or equal to 1 depending on which of the operators D we use. Hence the
direction of maximum slope at X is the direction of the closest point to X of
the zero level set of u. The fact that the skeleton can be detected by comparing
the vectors D'u, D?u, ..., D®u is discussed in section 6.2.

6 Applications

We now describe two applications where our new method is shown to work
significantly better than previous ones.

6.1 Cortex segmentation using coupled surfaces.

We have implemented the segmentation of the cortical gray matter (a volumet-
ric layer of variable thickness (=~ 3mm)) from MRI volumetric data using two
coupled surfaces proposed in [26] by Zeng et al. The idea put forward in [26] is
to evolve simultaneously two surfaces with equations of the form (1). An inner
surface S, captures the boundary between the white and the gray matter and
an outer surface S,,: captures the exterior boundary of the gray matter. The
segmented cortical gray matter is the volume between these two surfaces. The
velocities of the two surfaces are:

/B’i’n - f(I - Izn) + C(uout + 6) (10)
/Baut - f(I - Iaut) + C(uzn - 6) (11)
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£ /@) where [ is the local gray in-
tensity of the MRI image, I;, and
; 1wt are two thresholds (15, for the
R T white matter and [,,; for the gray
o7 B matter), € is the desired thickness

and C and f have the shape of fig-

Fig. 5. ure (5).

-1 1 4 o

Let us interpret equation (10).
The first term f(I — 1;,,) forces the
gray level values to be close to I, on S;,: it is the data attachment velocity
term. The second term C(u,y: +€) models the interaction between S, and Syy,:
it is the coupling term. According to the shape of C, see figure (5), if locally the
two surfaces are at a distance ¢ = 3mm, then the coupling term has no effect
(C =0) and S;,, evolves in order to satisfy its data attachment term. If the local
distance between S;,, and S,,; is too small (< €) then C' > 0 and S;,, slows down
in order to get further from S,,;. If the local distance between S;,, and S, is
too large (> €) then C < 0 and S, speeds up in order to move closer to S,y A
similar interpretation can be done for (11).

If these evolutions are implemented with the Hamilton-Jacobi equation (3),
then the following occurs: the magnitudes of the gradients of u,,: and wu;y, in-
crease with time (| Vuoys [> 1 and | Vu,y, |> 1). As a consequence, the estima-
tion of the distance between S;,, and S,,; which is taken as u;, (z) for x on Syt
and wu,y(x) for z on S, is overestimated. Since the coupling term is negative
in (10) and positive in (11), both S,,; and S;,, evolve in order to become closer
and closer from each other (until the inevitable reinitialization of the distance
functions is performed). In other words, with the standard implementation of
the level sets, the incorrect evaluation of the distance functions prevents the cou-
pling term to act correctly and, consequently, also prevents the data attachment
terms to play their roles.

On the other hand, if these evolutions are implemented with our new PDE,
then a much better interaction between the two terms is achieved since the data
attachment term can fully play its role as soon as the distance between the two
surfaces is correct (cf. fig.(6)).

These results are demonstrated in the figure (6) which we now comment.
Each row corresponds to a different 32 x 32 sub-slice of an MRI image. The first
column shows the original data and some regions of interest (concavities) are
labeled A, B and C. The second column shows a simple thresholding at I;,, and
I,y+. The third column shows the cross-sections of S;,, and S,,,+ through the slices
if the coupling terms are not taken into account. This is why these curves have
the same shape as in the second column. One observes that the segmented gray
matter has not the wanted regular thickness. In the fourth column, the coupling
terms are taken into account and the evolutions (10) and (11) are implemented
with Hamilton-Jacobi equation (3). One observes (in particular at the concavities
indicated in the first column) that the distance constraint is well satisfied but
the data attachment term was neglected. This is due to the fact that with (3)
the distance between the two surfaces is overevaluated. In the fifth column, this
same evolution is implemented with the new PDE introduced in this paper (9).
One can observe a much better result at concavities. This is due to the fact
that the coupling terms stop having any effect as soon as the distance between
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Fig. 6. Results of the segmentation of the gray matter using different algorithms, see
Lext.

the surfaces is correct allowing the data term to drive correctly the surfaces
according to the gray level values.

6.2 Extraction of the skeleton of an evolving surface.

Skeletons are widely used in computer vision to describe global properties of
objects. This representation is useful in tasks such as object recognition and
registration because of its compactness [6,17,22].

One of the advantages of our new level set technique is that it provides,
almost for free, at each time instant a description of the skeleton of the evolving
surface or zero level set.

We show an example of this on one of the results of the segmentation de-
scribed in the previous section. We take the outside surface of the cortex and

simplify it using mean-curvature flow, i.e. the evolution i‘f— — HN where H is
the mean curvature. This evolution is shown in the first (:oﬂlmn of figure 7. Since

the distance function w to the zero level set is preserved al every step, it is quite
simple to extract from it the skeleton by using the fact that it is the set of points
where Vu is not defined [6]. This is shown in the right column of figure 7. Each
surface is rescaled in order to occupy the whole image.

The skeletons are computed using the distance function to the evolving sur-
face as follows. We look for the voxels where the eight estimators D*u of Vau
defined in section 5 differ a lot and threshold the simple criterion:

Z ( Dé'ﬂ. m )2
D% D

i
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where (.,.) denotes the dot product of two vectors and Du = £ 3, Diu.

This can be interpreted as a measure of the variations of the direction of Va
(which are large in the neighborhood of the skeleton).

The results for the left column of figure (7) are shown in the right column
of the same figure where we clearly see how the simplification of the shape of
the cortex (left column) goes together with the the simplification of its skeleton
(right column).

Note that because it preserves the distance function, our framework allows
the use of more sophisticated criteria for determining the skeleton [18] based on
this distance function.

7 Conclusion

We have proposed a new scheme for solving the
problem of evolving through the technique of
level sets a surface S(t) satisfying a PDE such as
(1). This scheme introduces a new PDE, (9),that
must be satisfied by the auxiliary function «(t)
whose zero level set is the surface S(t). The
prominent feature of the new scheme is that the
solution to this PDE is the distance function
to S(t) at each time instant ¢{. Our approach
has many theoretical and practical advantages
that were discussed and demonstrated on two
applications. Since the distance function to the
evolving surface is in most applications the pre-
ferred function, we believe that the PDE that
was presented here is an interesting alternative
to Hamilton-Jacobi equations which do not pre-
serve this function.
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Abstract. Properties of points in images are often measured using con-
volution integrals with each convolution kernel associated to a particular
scale and perhaps to other parameters, such as an orientation, as well.
Assigning to each point the parameter values that yield the maximum
value of the convolution integral gives a map from points in the image
to the space of parameters by which the given property is measured.
The range of this map is the optimal parameter surface. In this paper,
we argue that ridge points for the measured quantity are best computed
via the pullback metric from the optimal parameter surface. A relatively
simple kernel used to measure the property of medialness is explored
in detail. For this example, we discuss connectivity of the optimal pa-
rameter surface and the possibility of more than one critical scale for
medialness at a given point. We demonstrate that medial loci computed
as ridges of medialness are in general agreement with the Blum medial
axis.

1 Introduction

In the article “Scale in Perspective,” [1], Koenderink illustrates the importance
of scale in measuring how cloudlike a point in the atmosphere is. The property
of “cloudlikeness” is discussed in terms of the density of condensed water vapor,
and Koenderink, citing Mason [2], eventually settles on what amounts to the
following definition: the cloudlikeness at a point in the atmosphere is the average
density of condensed water vapor in a ball of volume 1 m® centered at the
point. The size of the ball used in this measurement is crucial, and Koenderink
reminds us that all physical measures of density should be thought of as part of
a one-parameter family of density measures, with the level of resolution of the
Mmeasuring instrument as the parameter.

Thresholding the value of cloudlikeness (at 0.4 gm™—3) gives a way to de-
termine the boundary of a particular cloud; but there are other ways that the
scalar field of cloudlikeness measures might be used. For example, a more de-
tailed understanding of the cloud might be obtained by examining height ridges
[3], generalized maxima of condensed water vapor density, within the cloud. To
finish with this introductory example, consider whether we can be truly confi-
dent that the single scale represented by balls of volume 1 m? is exactly correct

* This work supported by NSF Grant BIR-951-0228

M. Nielsen et al. (Eds.): Scale-Space’d9, LNCS 1682, pp. 82-103, 1999.
(© Springer-Verlag Berlin Heidelberg 1999
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in all situations. A more prudent strategy would be to measure the cloudlike-
ness at a point over a range of scales, say from balls of size 0.5 m> to balls of
size 2 m>3. We could then agree to define the cloudlikeness at a point to be the
maximum, over the agreed upon range of scales, of these measured densities.
This gives another bit of information; not only do we have the cloudlikeness at
a point, but the scale at which the maximum density occurs, and perhaps this
extra bit will reveal a deeper level of structure within the cloud.

In their papers on “Zoom-invariant Figural Shape”, [5][6], Pizer and Morse,
et. al., employ the principles outlined above to define and measure a property
they call “medialness” at a point within an image. For an object with clearly
defined boundary in a 2-dimensional image, the medial axis transform, first de-
scribed by Blum [7], is the locus of centers of disks that are maximally inscribed
in the object, together with the radii of those disks. This information provides a
simple description of the size, shape, and location of the object, and is complete
in the sense that the original object can be reconstructed exactly from its medial
axis transform. In the presence of image disturbances, the exact nature of the
reconstruction can be a liability rather than a feature, since the disturbances
are also reconstructed from the transform. To overcome this liability, Pizer and
his colleagues [5] take a multiscale approach to the extraction of medial loci di-
rectly from image intensities (with no pre-processing segmentation of image into
objects required). The idea is to measure the medialness of points via a convo-
lution integral whose kernel involves both a scale and an orientation; then to
extract ridges from these measurements. In [6] they provide strong experimen-
tal evidence that these ridges of medialness are insensitive to small scale image
disturbances. They use the term “cores” for such ridges. Having achieved the
objective of overcoming small disturbances, they go on to describe applications
of cores to problems of segmentation, registration, object recognition, and shape
analysis [8], [5]. Indeed, by placing a disk with radius proportional to the optimal
scale at each point, a useful Blum-like description of the boundary at the scale
of the core (BASOC) is produced.

In this paper we propose that the extraction of height ridges for properties
like medialness is best performed using a pullback metric from the parameter
space. There are two advantages to using a pullback metric. First, ridges are com-
puted directly in the image instead of being computed in the higher-dimensional
product space formed from the image and the measurement parameters. Second,
the calculation of ridges is metric dependent and the pullback metric assigns the
proper distance between points of the image, based on the optimal parameters
for the measurement in question. An outline of the contents of the paper follows.
In section 2, we review definitions of medialness at a point in an image and of the
optimal scale surface for medialness. In section 3, we describe the mathematics
of pullback metrics and make subsequent computations of gradients, hessians,
and convexity ridges. In section 4 we apply the pullback metric from the opti-
mal scale surface to the problem of extracting medial loci, illustrating results
for rectangles. In principle, any image property measured pointwise at various
scales (and with various auxiliary parameters) is amenable to this treatment.
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The optimal scale surface for the measurement inherits a metric from the metric
on the parameter space; this metric may be pulled back to the original image
and provides what we believe to be the correct metric in which to compute ridges
for the measured quantity. The approach presented here supplements the recent
work of Furst [9] in which a marching cubes like algorithm for tracking ridges is
developed.

2 Medialness and the Optimal Scale Surface

We adopt the following definition of medialness at a point in a 2-dimensional
image from the paper of Pizer, Eberly, Morse, and Fritsch [5]. In that paper
several different medialness kernels are proposed; the kernel below is sufficient
for our purposes although other kernels may produce medial loci more closely
associated to Blum’s medial axis.

Definition 1. Let  be a point in R, let u be a unit vector in R? and let o be
a positive scalar. Let G,(z) = o 2exp(—|z|?/20?) be the standard 2D gaussian
with scale o, denote the matrix of second partials of G, at x by hess(Gy )|, and
set K(z,0,u) = —02ul.hess(G,)|.u. Let I(x) be a 2D image intensity, i.e., a
bounded nonnegative function on R? having compact support.

Then, the parameter-dependent medialness atl the point x, relative lo the in-
tensity function I, measured at scale o and with orientation u is

m(l,z,o,u) = /IR2 1(z)K(z —z,0,u)dz.

The medialness at the point x, denoted M (x), is the mazimum, over scales o
and orientations u, of m(I, z,0,u). The values of 0 and w at which the mazimum
value of m(1,x,0,u) occurs are the optimal parameters.

Lemma 1. The optimal orientation at a point x is completely determined by
the optimal scale.

Proof. The medialness function m(I, z, o, ) may be re-written in the form u®Au,
where A is a symmetric matrix whose entries are integrals with values depending
on scale. From this form, we see that the optimal orientation at a given scale is
the eigendirection for A corresponding to its largest eigenvalue.

For a given image, denote the support set for the intensity function by 2. We
may “zoom” the image by a constant factor of A > 0 by defining a new intensity
function Ix(z) = I{z/A). Clearly the support set for the new intensity is the set
AS2. We record the fundamental property of medialness, “zoom-invariance,” in
the following proposition.

Proposition 1. The parameter-dependent medialness funclion is invariant to
zoom, meaning that for any positive real number A,

m(Ix, Az, Ao, u) = m(l,z,0,u).
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Proof. The proof that

/ Dy(w)K(w — Az, do,u) dw = / 1(z)K(z —z,0,u)d=.

A0 2

is accomplished by means of the change of variables formula for multiple inte-
grals. This property accounts for the factor of o2 in the definition of the medi-
alness kernel.

The graph of the medialness kernel K is centered over the point at which the
measurement is made, has the shape of a Gaussian in the direction orthogonal to
u, and has the shape of a Gaussian second derivative in the direction of . This
shape makes this kernel particularly effective for locating medial axes of objects
having parallel sides and uniform interior intensity: orienting the kernel so that
u is perpendicular to the parallel sides will maximize the value of medialness.
It is interesting to note that for rectangular objects with aspect ratio less than
1/5, the scale that maximizes medialness at the center of the rectangle is equal
to half the distance between the parallel sides. The other simple plane figure
is the disk of radius R: here symmetry dictates that the parameter-dependent
medialness measure at the center of the disk is independent of v and the optimal
scale is R/ V2.

By the term scale space, we mean the Cartesian product R? x Rt = §
consisting of points x in the image plane and scales o at which medialness mea-
surements are made. Associating to each point its optimal scale for medialness
gives a map o, from the image plane into scale space given by z — (z, 0,(x)).

Definition 2. The set of points in scale space of the form (x,0,(x)) is the op-
timal scale surface for medialness.

The nature of the map o, is not completely understood: in [5] it is claimed
that o, is continuous; in [3], the optimal scale surface is redefined in terms of
the smallest scale at which a local maximum for medialness occurs and further
assumptions of continuity and differentiability are made; while in [9] reference
is made to the possibility of folds in the optimal scale surface and the need
to use more general coordinate charts. As we shall illustrate in section 4, the
optimal scale surface need not be connected. Nevertheless, we shall continue our
development by assuming that there are open sets bounded by Jordan curves in
the image plane such that the restriction of ¢, to any one of these open sets is
twice differentiable. In what follows we shall restrict attention to a single such
open set, continuing to refer to the graph of o, over that open set as the optimal
scale surface.

Under the assumption of differentiability, we proceed to define the tangent
map.

Definition 3. The tangent map 0,, maps vectors in the image plane to veclors
in scale space. Let v be a wvector in the image plane at the point x. Then the
vector 04, (v) is the vector based at the point o(x) that is defined by taking any
parametrized curve c(t) in the image plane whose initial position is x and whose
initial velocity is v and setting o,,(v) to be the initial velocity of the curve o(c(t)).
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The vector o,,(v) is well-defined independent of the curve ¢(t) by which it is
computed. Moreover, the map o, is a linear map between the (linear) tangent
spaces at  and at o(z). The important vectors at a point (z,y) in the image
plane are the coordinate vectors d, = (1,0) and 8, = (0,1). Using the same
notation to denote the coordinate vector fields in scale space, we see that the
set of vectors {0y, 0y, 0, } forms a basis for the vectors in scale space. In terms
of these coordinate bases, we have the familiar formulas

UO*(aZ) - (170700z) and UO*(ay) - (07 lvaOy)'

3 The Scale Space Metric, the Induced Metric, the
Pullback Metric; Differential Operators and Ridges

Our notation for the coordinate vector fields in the image plane, {95, 9, }, belies
the fact that we consider these vector fields primarily via their action on func-
tions: applying @, to the function f yields the partial derivative f,, a new func-
tion on the image plane. One may extend this action on functions to an action on
vector fields and tensors of higher order by defining covariant differentiation. In
the presence of a metric, Lemma 2 below indicates that a unique preferred notion
of covariant differentiation (via the Levi-Civita connection). The development of
a suitable metric on the image plane for the extraction of medial loci will take
some time; we emphasize that the role of the metric is to define the differential
operators by which ridges of medialness are to be computed. Standard references
for the ideas and coordinate free notation of differential geometry presented in
this section include [10] and [11].

A Riemannian metric on a differentiable manifold is is a means for computing
dot products of tangent vectors. This amounts to the assignment of a nondegen-
erate, symmetric bilinear form A on each tangent plane of the manifold. Once
such a metric is assigned, arclengths, and subsequently distances between points,
may be computed by integrating lengths of velocity vectors along differentiable
curves. By the term scale space, we mean the product manifold R? x [0, sigma],
where, for a particular 2-dimensional image, the inner scale og is the smallest
scale consistent with the image production process and where the outer scale oy
is the largest scale consistent with the image size, [5],[12]. We make the following
choice for a metric on scale space.

Definition 4. Let v and w be vectors in scale space al the point (z,y,0) and let
[v] and [w] be the coordinate vectors of v and w relative to the basis {0z, 0y, 05 }.
Then h| sy .oy (v, w) = [v]'[h][w], where [R] is the matriz

L oo
[Bl=]0 %0
00 %

This metric is often expressed less formally by writing

9 dz?® + dy® + do?
S —

ds
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The resulting geometry is hyperbolic, having constant sectional curvature —1.
The rationale for this choice of metric is as follows: if the spatial distance between
points p and ¢ in R? is L when measured at scale o, then the distance between
those points when measured at scale Z is 2L. Similarly, reported scale differences
exhibit the same dependence on the scales at which they are measured. This gives

ds? = m%. and for convenience we may assume that the conversion
factor p between the units of spatial distance and the units of scale difference is
1.

The metric A induces a metric h, on the optimal scale surface, simply by
restricting A to the tangent planes to that surface. Re-expressing the restriction
in terms of the coordinate basis for the tangent plane to the optimal scale surface

at the point o,(x,y) given by {0,.(0), 00.(0y)} vields the 2-by-2 matrix

1400,2 G000y

2 2

[ho] = ( UOZOUOy 1+‘(7700x2j =[oo" hol = [g]. (1)
Tozloy ioa

o Uo

To explain the notation on the right hand side of (1), we may consider the
induced metric h, as a metric on the original image plane, the so-called pullback
metric, denoted by g = 0,%(h) and defined for vectors v and w in the plane of
the original image by g(v,w) = hy(0,,(v),0,.(w)). In particular, we have that
the matrix [g] relative to the coordinate basis {8;, d,} is identical to the matrix
for [h,] as indicated in (1). It is this metric g, expressed by the matrix [g] in (1),
that we will use to study the medialness function M.

Our next task is to define the gradient and hessian of M relative to our metric
g. We rely on covariant differentiation (which gives a way to differentiate tensor
fields) in order to accomplish this task. That the task can be accomplished in
only one way once a metric is prescribed is a consequence of the following lemma
[11] (in the statement of the lemma g is used to denote an arbitrary metric).

Lemma 2 (Fundamental Lemma of Riemannian Geometry). On a dif-
ferentiable manifold N with metric g there is a unique way to define covariant
differentiation that is compatible with both the manifold structure of N and with
the metric g in the sense that the covariant derivative of g satisfies Dg = 0.

As indicated in the beginning paragraph of this section, covariant differen-
tiation of functions along vector fields amounts to directional derivatives. For
a vector field v and a function f, we write D, f to indicate this derivative. In
terms of the coordinate vector fields {0, 9y}, we may write v = v19;+v20,, and
the expression for the directional derivative becomes D, f = v1f, + vafy. The
gradient grad f of the function f is defined by means of the metric g by setting
grad f to be the unique vector field satisfying D, f = g(grad f,v) for every vector
field v.

Next we consider the covariant derivative of a vector field w along the vector
field ». Denoted by D,w, this new vector field may again be computed in terms
of the metric via the Koszul formula for g(D,w, «). In this formula, given below,
w is an arbitrary vector field and terms of the form [v, w] involve the Lie bracket
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of of two vector fields (the Lie bracket is a non-metric derivative of one vector
field along another; compatibility of D) with the manifold structure of N means
precisely that [v, w] = Dyw — D,v).

29(Dvw7 u) — Dvg(wvu) + DwQ(“v 1)) - Dug(ﬂv w)
—g(?), [’UJ, u]) + g(w, [u,v]) + g(“v [7}7 w])

We shall have little use for Lie brackets below, as we will revert to express-
ing the tensors of interest to us in terms of coordinate vector fields and the Lie
bracket of coordinate vector fields is zero. We note in passing that the Koszul for-
mula, when applied to coordinate vector fields, yields expressions for the classical
Christoffel symbols.

The metric-dependent hessian (a symmetric tensor of type (2,0)), defined for
any twice differentiable function f, may now be written concisely as

hess¢(v, w) = g(Dygrad f, w).

When N has dimension 2, we may choose a basis for the tangent space at each
point and compute a 2-by-2 matrix [hesss|. The trace of this matrix is a new
function on N, the metric-dependent Laplacian of f. Note further that the matrix
[hessy] is symmetric and hence diagonalizable over the reals. This leads directly
to the consideration of convexity ridges for f.

Definition 5. Let f be a twice differentiable function on a 2-dimensional mani-
fold N with metric g. On the open subset of N where the eigenvalues AL > A_ of
hess are distinct, with corresponding eigenvectors et and e, the mazimum con-
vezily ridge for f is the sel of points where A < 0 and where g(grad f,e~) = 0.

As mentioned in the introduction, convexity ridges [3], [4] are generalized
maxima for f; at each ridge point, f has a local maximum in the direction of e~
which is transverse to the ridge. It is also worth noting that the current ridge-
tracking algorithms of [5] and [9] involve computing the hessian of the medialness
function m in 3-dimensional scale space, then considering the restriction of the
hessian of m to a 2-dimensional subspace in scale space. The restriction of the 3D
hessian to the optimal scale surface in scale space is not the same as the hessian
obtained by first restricting the function m to obtain M on the optimal scale
surface then computing in the metric intrinsic to the surface; the restricted 3D
hessian involves a second term resulting from the (generally nonzero) curvature
of the optimal scale surface in scale space.

With these generalities as foundation, we return to the image plane furnished
with its metric g, the pullback of the restriction of the hyperbolic scale space
metric to the optimal scale surface. The matrix for this metric, in terms of
the coordinate vector fields {0,,d,}, is given by formula (1). The medialness
function M = M (z,y) is a function on the image plane, and relative to the basis
of coordinate vector fields we have
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e Mee — g( Do, 0., grad M) M,,, — 9(Da, Oy, grad M) )
VOSSMET\ My — g(Do, 8y, grad M) My, — g(Da, &y, grad M) ) °

The maxinum convexity ridge for M relative to the metric g constitutes the
medial locus for the image. To compute the matrix [hessy,| in practice requires
knowledge of the second partial derivatives ol M and, because the Koszul for-
mula for covariant derivalives of coordinate vector fields involves derivatives of
the metric g, knowledge of the second partial derivatives of the [unction o,. We
emphasize that no higher order derivatives are required and that by using the
pullback metric, ridges of dimension 1 are computed directly in the 2-dimensional
image plane rather than being computed in, then projected from a higher di-
mensional parameter space.

4 Medial Loci for Rectangles

In this section, we compute medial loci for binary images of rectangles, using
the eigenvalues and eigenvectors of [hessys|. Computations are performed using
a grid of 1600 equally spaced points on the square |—1,1] x [—1,1]. At each
point in the grid, approximate values of the optimal scale function o, and of
the medialness function M are computed by sampling scales o with 0.05 <
o < 1. These values are then used to generate two-variable quadratic Taylor
polynomials for o, and M centered at each point in the grid using a least squares
fit to the sampled data. Coeflicients of these Taylor expansions are then used as
approximate values for the derivatives of o, and M in the formula for |hessyy|.
Determination of eigenvalues, eigenvectors, and ridges points lollows.

Fig. 1. The optimal scale surface and the medial locus for a square.
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In Figure 1, we show the optimal scale surface and medial locus for a square
as determined by our algorithm. The original intensity function is 1 at each point
in the square. The plot at left shows optimal scales for medialness at each point
in the square, with lighter shading indicating larger scale. Approximately 1400
of the 1600 grid points have optimal scales larger than 0.75 with a maximum
of 0.90, while the remaining points, those nearest the edges and corners of the
square, have optimal scales smaller than 0.45, the optimal scale being 0.05 at
points along the square’s boundary. At right, the maximum convexity ridge
for the medialness function M, computed using the pullback metric, is shown.
The ridge is overlaid on a plot of medialness values, again with lighter shading
indicating a higher value. Points on the ridges shown here lie within the set of
points where o, > 0.75 and satisfy |g(grad M, e~ )| < 0.01. Near the midpoints
of the edges of the square, it can be seen that extremely small scales increase
medialness values.

In Figure 2, we consider the function m(I, (x, z), o, (—1,1)/v/2) at the points
(.625,.625), (.65,.65), (.675,.675). Note the two local maxima for medialness
at (.65,.65). From the information in this figure we may conclude that the
optimal scale surface for the square is either disconnected or has a fold. The
global picture of Figure 1 allows us to see that it is not possible to go from
(0.65,0.65, smaller critical scale) to (0.65,0.65,larger critical scale) along a
path that remains on the optimal scale surface; the option of a fold is not pos-
sible and we conclude that the optimal scale surface is disconnected.

scale

Fig. 2. Graphs of medialness as a function of scale along the diagonal of the square.
The center graph shows two critical scales at the point (.65,.65).

Plots of medialness as a function of scale at other points in the figure exhibit
similar behavior. As one moves along the horizontal axis of symmetry for the
square away from its center, the optimal scale increases (with corresponding
optimal orientation occurring with « perpendicular to this symmetry axis) as
shown in Figure 1. Meanwhile, a second critical scale, smaller than the optimal
scale, develops (starting at about z = 0.60). As one approaches the midpoint
of an edge of the square, the two critical scales persist until finally the value
of medialness at the smaller critical scale becomes maximal and the optimal
orientation of the medialness kernel rotates through 90 degrees.

In Figure 3, the extracted medial loci for rectangles with aspect ratios 0.85
and 0.70 are illustrated. Solid lines indicate the Blum medial axis for each rect-
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angle. As in Figure 2, the medial loci are overlaid upon plots of values for the
medialness function M and ridges are computed over an open subset wherein o,
is large and the optimal scale surface is connected. Our computations indicate
that convexity ridges for medialness computed from pullback metrics branch in
much the same way as does the Blum medial axis. Our [ailure to detect branches
of the medial axis for smaller aspect ratios is due to the nature of the kernel
employed for these computations, a kernel that over-emphasizes long parallel
sides in object boundaries and under-emphasizes corners.

Fig. 3. The medial axes and ridges of medialness for rectangles having aspect ratio
0.85 and 0.70.
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The Maximal Scale Ridge

Incorporating scale into the ridge definition
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Abstract. The maximal convexity ridge is not well suited for the anal-
ysis of medial functions or, it can be argued, for the analysis of any func-
tion that is created via convolution with a kernel based on the Gaussian.
In its place one should use the maximal scale ridge, which takes scale’s
distinguished role into account. We present the local geometric structure
of the maximal scale ridge of smooth and Gaussian blurred functions, a
result that complements recent work on scale selection. We also discuss
the subdimensional maxima property as it relates to the maximal scale
ridge, and we prove that a generalized maximal parameter ridge has the

subdimensional maxima property as well.

1 Introduction

One of the central tasks in the field of computer vision is the analysis of greyscale
images with a view toward extracting geometric loci that are intrinsic to the
scene. Such analysis includes, for example, edge detection [1], skeleton extraction
(e.g., via cores [5]), and ridge extraction [11]| [4]. In [7], we, along with Pizer and
Keller, take the position that one can think of the geometric loci in an image
as the height ridges of some function. This function is derived from an image’s

pixel intensity function by means of convolution with kernels that may involve,

M. Nielsen et al. (Eds.): Scale-Space’d9, LNCS 1682, pp. 93-104, 1999.
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in addition to the image’s spatial variables, orientation and scale parameters. In
[7] we also reported preliminary results [10] [13] on the local generic structure
of maximal convexity ridges of pixel intensity functions [2] on R*, and their
related relative critical sets. Though those results appeared unrelated to the
material that preceeded them insofar as the maximal convexity ridge can not
distinguish scale or orientation from any other function variable, those results
are important to computer vision. They provide the standard against which
the success of (maximal convexity) ridge extraction methods can be judged. It
is in this same spirit that we present structure results for the maximal scale
ridge, a ridge that takes scale’s distinguished role into account [4], [5]. We report
its generic local geometric structure for both the case of smooth functions and
functions derived from a pixel intensity function I : R? — R via convolution
with a particular medial kernel. We conclude the paper with a discussion of the
subdimensional maxima property as it relates to ridge definitions that involve

multiple parameters.

Recall that the (one dimensional) maximal convexity ridge of a C2-function
f defined on an open subset U C R® is defined as follows. Let A;(x) < Ay(x) <
A3(x) be the eigenvalues of the 3 x 3 Hessian matrix H(f)(x), and let vq(x)
and va(x) be unit eigenvectors associated to the first two eigenvalues. The point
x € U lies on the ridge if and only if Vf -v; =0 for ¢ = 1, 2 and Ay < 0 at x.
These conditions are not enough to guarantee that f(x) is a locally maximum
value of f, but they are enough to guarantee that f(x) is locally a maximum
value of f|W, the restriction of f to the plane W(x) = span (v1(x), va(x)) [7],
[13], [3]. As discussed in [7], this geometric property characterizes what it means
for x to be an abstract ridge point of f. We will follow Kalitzin [9] and call this

the subdimensional maximum property.

As was noted in [7], the height ridge as defined in [7] need not have the
subdimensional maxima property. Therefore, when we use this definition as a
basis for the creation of a specialized ridge definition we must be careful to
verify that the newly defined ridge has the subdimensional property. We will
do so for the maximal scale ridge and, at the end of the paper, we show that
under certain conditions multiparameter ridges have the subdimensional maxima
property.

To motivate interest in a ridge definition that treats scale as a distinguished

parameter, consider how one uses ridge theory to identify the shape skeleton
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of objects in a greyscale image. Let I : R? — R represent the pixel intensity
function of a greyscale image, and let K(x,o) = —02AG(x,0) where G(x,0)
is Lhe standard Gaussian kernel with standard deviation o, which we call scale.
The convolution I # K is a C® function called a medial function because the
value [ K(x, o) reflects how well the point x is in the center of a figure of width

o in the original image.

By means of example, see that in Fig. 1 we chose a point x in the center of a
vertical bar. OF the three circles centered at x, the middle circle seems to be the
largest circle centered at x that sits within the bar. lts radius determines a scale
o at which medialness at x will be locally maximal. Once we know the scale
value at which medialness at x is locally maximal, we can analyze the spatial
directions to determine the skeleton’s tangent and normal directions at x. In
this example, the scale parameter and the spatial variables play vitally distinct
roles. This compels us to develop a ridge definition in which the scale and spatial
components are treated separately. More generally, insofar as scale-space based
analysis uses filters built on the Gaussian, and scale parameterizes the blurring
away of detail, any geometric image analysis in scale space ought to treat spatial

and scale variables differently. In what follows, we define a variant of the maximal

Fig. 1. The three circles represent scales at which medialness is measured. Medialness
is highest at the scale represented by the middle circle because, of the three concentric

circles, it fits most snugly into the bar.
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convexity ridge called the maximal scale ridge that does just that. This ridge
will be defined for a function of three variables, two spatial and one scale. The
definition is closely related to the criteria Lindeberg uses for his method of
automatic scale selection [11]. (This ridge definition can be used in any setting
involving two spatial variables and one distinguished parameter. Moreover, it
can be easily adapted to contexts where one is interested in minimal parameters
values. For these reasons, one might choose to call the ridge under discussion the
optimal parameter ridge.) We will observe that (1) the the maximal scale ridge is
defined in terms of a maximal convexity ridge, and (2) this relationship does not
imply that the two varieties of ridge have the same local generic structure. We
shall observe that the ridge-valley-connector curves of these two are remarkably
different. Reasons for the difference are explained by classical catastrophe theory.
Finally, we shall prove that this new definition indeed gives us a ridge; every point

in the locus is a subdimensional maxima in a well defined sense.

2 The Definition

Let f(x,0) be a smooth differentiable function on U an open subset of R? x R, ,
scale space. The demand that ridge points (x,0) be local maxima in scale gives

the following necessary condition

of o
at (X,U),%—Oandm<0. (1)
Because the set
2 of
X={x0)eR XR++|%(X7U):O}~ (2)

is generically smooth, (1) defines a smooth surface X3y C R? x Ry | called the
mazimal scale surface. Consequently, all maximal scale ridge points must lie in
the surface Xy.

One of the computational advantages of defining a critical scale surface is the
dimensional reduction it offers. We break the problem of defining a ridge in a
three dimensional space broken into two steps: finding a surface in R? x R, , and
then finding a ridge on the surface. The two problems together are simpler than
the original problem. We know of three approaches that exploit this reduction

in dimension to calculate ridges on Xy,;.
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1. Calculate height ridges of f| X

2. Calculate height ridges using approximate derivatives calculated by selec-
tively ignoring the change in scale on X

3. Calculate height ridges of f on coordinate patches mapping R? x {0} C
R? xR, to Xy

Eberly demonstrates how height ridges of f|Xs can be computed using the
intrinsic geometry of Xps [4]; however, even for the case of a surface in R?,
this approach is computationally expensive and has never been implemented.
Kalitzin [9] implements (2) using a maximal orientation surface (rather than
a maximal scale surface) and reports good results for a single test case. This
approach, however, disregards effects the geometry of Xjs has on the deriva-
tive calculations. Fritsch uses approach (3) because it is both computationally
tractable and it incorporates the geometry of X,; into the computation. The
rest of this paper is devoted to examining the mathematics of (3) and what it
tells us about the local geometric structure of the maximal convexity ridge.
Eberly described a mathematical approach one could use to extract the max-
imal scale ridges from an image. He showed that that maximal scale ridge can be
computed using a parameterization of X3s from the spatial subspace R? x {0}
[4]. To be more precise, he used a coordinate patch ¢ : R? — Xy to define
g(x) = f o #(x) and he claimed that R C R? is the ridge set of g(x) = f|Xu.
Consequently, ¢(R) C Xjy is the maximal scale ridge of f. Fritsch used Eberly’s
mathematics to find the cores! of figures in portal images [5] and he did so with
notable success, but some of what he saw bothered him. His extraction method
relied on a ridge tracking algorithm, which works best when the ridge is a set of
long unbroken curve segments. Given the figures in his images, he expected the
cores to be exactly that. Contrary to his expectations, the maximal scale cores
he extracted had a tendency to end abruptly (at points he certainly expected a
shape skeleton to pass through smoothly). Moreover, after searching the vicinity
of the core’s endpoint he would find the endpoint of another core. If one ignored
the gap between the core segments, this new core segment essentially picked up
where the previous segment left off. Fritsch knew of the structure classification
for maximal convexity ridges and cores in R? and R? [3],[13], and found noth-
ing in that context that could explain this consistent aberrant structure. Going

! In general, cores are ridges of functions created by filtering greyscale images for

medialness. Fritsch’s cores were maximal scale ridges of medialness. See [5].
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back to [4] one sees that Eberly does not address the issue of the existence of
the parameterizations he needs to establish his theory. This observation led us
to an explanation of the “gap” phenomena Fritsch observed.

At each point (x,0) on the maximal scale ridge, V f is necessarily orthogonal
to a subspace of the tangent space T(x -y X on which f has a local maxima at
(x,0). Eberly showed that this subspace can be identified using a local parame-
terization ¢ : U — R? x R, where U is an open subset of the spatial subspace
R? x {0}. But such a parameterization is not guaranteed to exist.

Points at which such a local parameterization exists are characterized as those
points at which the projection 7 : X — R? is a submersion. An elementary result
from Thom’s catastrophe theory implies that the surface X contains a subset of
codimesion 1 on which 7 fails to be a submersion. This curve on X, is called the
fold curve, and the maximal scale ridge abruptly ends when the two intersect.
(See Figure 2.) We must note three things at this point. First, at points away
from the fold, Eberly’s results hold and the maximal scale ridge in R? x R, is
diffeomorphic to the maximal convexity ridge in R? (see Theorem 5, properties
1-3).

Theorem 1 (Eberly). Suppose at (x,0) € X there is a local para-metrization
¢:U—-R2xR,. of X withx € U CR? The point (x,0) is a mazimal scale
ridge point of f if and only if the point x is a maximal convexity ridge point of

ngb:U—)R++.

Second, the fold is characterized as the set of point (x,0) at which % vanishes
[12]. This is exactly the boundary of Xas, on which the maximal scale ridge is
undefined. Third, although Damon showed how maximal convexity ridges when
viewed as relative critical sets can be continued as connector curves, this fold
singularity means we cannot call on these results to continue the maximal scale

ridge.

Note 2. 1t is a straightforward exercise to verify that those points (x, o) that are
maximal scale ridge points according to Theorem 1 are subdimensional maxima
with respect to the plane span(%7 do(v)), Where v is an vector for the most
negative eigenvector of H(fo¢). In the last section of the paper we will establish
the subdimensional maxima property for an analogously defined multiparameter

ridge.
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Fig.2. Notice the geometry at the fold curve of the critical scale surface pictured in
the Fig.2a. If there were a maximal scale ridge on X, it can be expected to intersect the
fold curve and come to an end. This is the behavior Fritsch observed which tracking
the ridge. Fig 2b. shows how the ridge can be continued using a connector curve (see
Definition 6) which may lead to a nearby ridge segment. This illustrates why Fritsch

saw small gaps in his maximal scale ridges.

To explain the phenomena Fritsch observed, and to show how the ridge can be
continued as a connector curve, the first author used mathematical machinery
Eberly employed to prove Theorem 1 and techniques used to establish properties

of relative critical sets in [13].

One of Eberly’s innovations in the proof of Theorem 1 was his use of a 3 x 3

generalized eigensystem.

Definition 3. The generalized eigensystem of 3 x 3 matrices M and N consists
of vectors v.€ R®\ {0} and scalars v € R that satisfy the matriz equation
Mv =~Nv.

Eberly used M = H(f) and N = P, the matrix representation of 7. Let ;1 < 9
be the two generalized eigenvalues of H(f) [13] and let vy and vy be corre-
sponding unit generalized eigenvectors. With this data we can give an alternate

definition for the maximal scale ridge.
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Definition 4 (Maximal Scale Ridge). Let U C R? x Ry, be open. A point
(x,0) € U is a marimal scale ridge point of f : U — R if and only if at (x,0),

1. %:O and%<0, and

2. Vf-vi=0and vViH(f)vi =" <0.

Adopting this definition has the advantage of allowing us to compute the maxi-
mal scale ridge without explicitly using ¢. The fold curve still causes problems
in this new setting because one of the generalized eigenvalues is unbounded in
a neighborhood of the fold [13]. At this point we employ Catastrophe Theory
and its theory of unfoldings [12] which tells us the form the derivatives of f
may take near the fold curve. Using this derivative information, the first author
determined the asymptotic behavior of the unbounded generalized eigenvalue
and used that to define preridge maps [3] and relative critical surfaces that al-
lowed us to complete Eberly’s geometric description of the maximal scale ridge
in R? x R, [13].

By using the generalized eigensystem and techniques used to establish the
generic structure of relative critical sets , the first author proved that the generic
structure of the maximal scale ridge in R? xR, , differs from that of the maximal
convexity ridge in R? only insofar as the maximal scale ridge comes to an end

at the singularities of | X.

3 The Properties

By using elements of Eberly’s proof of Theorem 1, methods used in the analysis of
relative critical sets, and Catastrophe Theory, we proved the following structure

theorem for the maximal scale ridge of smooth functions on U C R? x R, . [13].

Theorem 5. For U C R, there is a residual set of f € C*(U) whose mazimal

scale ridges have the following properties:

1. The ridge is a finite collection of smooth, embedded one dimensional sub-
mamnifolds which may have boundary. In particular, they neither cross nor
branch.

2. The ridge passes smoothly through critical points of f, but such critical points
are Morse critical points of f with Hessian having distinct, nonzero eigen-

values.
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3. Components of the ridge have a boundary point where v1 =0 or y1 = 72.
4. In addition, components of the ridge can have a boundary point at fold sin-

gularities of w|X.

If C C U is compact, the set of f € C(U) that exhibit these properties on C is

open and dense.

Properties (1) through (3) are analogous to those of the maximal scale ridge
in R?, and property (4) is caused by the fold curve. It should be noted that
these results continue to hold for maximal scale ridges of medial functions on
R? x R, . generated as the convolution of a greyscale pixel intensity function
I :R? — R with the medial kernel —a2AG(x,0) [13].

Furthermore, the techniques used to Theorem 5 lead to a natural definition of
relative critical sets in R? x R, that distinguish the role of scale. In particular,
we obtain a ridge-valley-connector set that facilitates the use of ridge tracking

methods for extracting cores from two dimensional greyscale images.

Definition 6. Let (x,0) € X and let v1 < 79 be the generalized eigenvalues of

H(f), and vy and vy their generalized eigenvectors. Then (x,0) is a

1. r-connector point of f if at (x,0) Vf - vy =0 and v, >0
2. walley point of [ if, at (x,0), Vf vy =0, g—;ﬁ >0 and v9 >0,
3. wv-connector point of f if at (x,0) Vf vy =0 and y5 <0,

Notice that when the maximal scale ridge hits the fold curve it is continued
by a r-connector curve (see Fig. 2). This curve can be followed (possibly through
some transitions to other connector curves) to an intersection with another fold

curve at which point the curve becomes a maximal scale ridge curve again.

4 Generalized Optimal Parameter Ridges

The previous sections of this paper have dealt with the maximal scale surface
in great detail. However, there are instances in which we may want to deal with
other parameters. Kalitzin has already experimented with optimal orientation,
as did Canny in his definition of edges. We motivated distinguishing scale in
the case of medialness measurements and, more generally, Gaussian derivative
measurements. However, Gaussian filters of two or more dimensions may have

more than one scale component. Further, the second author [6] has described
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medialness measurements that use both scale and orientation. In all cases de-
scribed, the distinguished role of orientation and scale leads naturally to optimal
parameter ridges. To define optimal parameter ridges in arbitrary spaces, let R™
be a Euclidean space (typically the domain of a greyscale image) and let R? be
the domain of the parameters.

Let V C R™ x RP be open and let f : V — R be smooth. Define X,; to be
the set of (x,0) € V where

o 2
/ =0 and o/ is negative definite
an anan 1<i,4<p

By the Generalized Maximal Rank theorem ([8], Theorem 4.4) and results in
[13] X s is generically (with respect to the space of all smooth functions on V')

a smooth manifold called the maximal parameter manifold.

Definition 7. Suppose at (x,0) there is a local parameterization ¢ : U — R™ x
RP of Xps with U C R™ x {0}. The point (x,0) is a maximal parameter ridge
point of f if and only if the point X is a maximal converity ridge point of f o ¢.

A special case of this definition is the maximal scale ridge, which enjoys the
subdimensional maxima property. It is not clear, however, that the maximal pa-
rameter ridge has this property. Moreover, there are instances (see [7]) where
maximal parameter values determine geometrically important spatial subspaces
that are not necessarily eigenspaces of the Hessian of f o ¢. When this is the
case, the ridge that is natural in that context is not compatible with Defini-
tion 7. However we choose to define this new class of ridge, the definition must
imply that the ridge has the subdimensional maxima property. What follows is
a definition that allows for such distinguished spatial subspaces and a proof that
the ridges so definition do in fact enjoy the subdimensional maxima property.

Let U’ C R™ be open, U = U’ x RP, and f : U — R be smooth. Define X,
the maximal parameter manifold as above. Let (x,0) € Xjs at which a local
parameterization ¢ of X, from U’ exists. Finally, our idea for ridge definition
must specify a subspace W(x) C R™ (e.g.,in the case of the maximal scale ridge

W (x) was a one dimensional eigenspace of H(f o ¢)).

Definition 8. The point (x,0) is a generalized mazimal parameter ridge point
of f with respect to W(x) if and only if f o ¢ is has the subdimensional mazima
property on W(x).
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For (x,0) to be a true ridge point, f must have the subdimensional maxima
property on W(x) x RP. It is not immediately clear from Definition & that this

is the case. We conclude this paper with its proof.

Theorem 9. Fvery point on the generalized maximal parameter ridge of f as
defined above is a subdimensional maxima of f with respect to the subspace

W(x) x R?.

Proof. Let H(f|(W x RP)) be defined as follows:

P f

S R

Because V( f|R?) vanishes on X s, and because V((fo¢)|W) is defined to vanish
on optimal parameter ridge points, V(f|(W x RP)) also vanishes on optimal
parameter ridge points.

Let w be defined as au + pv, v € W and v € RP. Then

w H(f|(W xR™"))w = cu'H,ou + ou' DBv + fv' Dou + pv' HyBo
And because H((f o ¢)|W) is negative definite,

w H(F[(W x R")w < au'(H, — H((f 0 $)|W))ou +
au'Dpv + fvt Do + /thHp,Bv

The definition of H((f o ¢)|W) allows the following substitution:

w H(f|(W x R"))w < cu'DH,Doau +
au'Dpv + fvt Do + /thHp,Bv

Finally, the introduction of H,- 1Hp and an algebraic rearrangement of terms

yields
w' H(f|(W x R"))w < (cu'D + Bv'H,) H, ' (cu' D + fv' Hy)

and, since H, 1 is negative definite everywhere on Xy, H(f|(W x RP)) is also
negative definite. Therefore, f|(W x R™) is locally maximal at (x, o). This com-

pletes the proof.
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Abstract. In this paper we investigate scale space based structural
grouping in images. Our strategy is to detect (relative) critical point
sets in scale space, which we consider as an extended image representa-
tion. In this way the multi-scale behavior of the original image structures
is taken into account and automatic scale space grouping and scale se-
lection is possible. We review a constructive and efficient topologically
based method to detect the (relative) critical points. The method is pre-
sented for arbitrary dimensions. Relative critical point sets in a Hessian
vector frame provide us with a generalization of height ridges. Auto-
matic scale selection is accomplished by a proper reparameterization of
the scale axis. As the relative critical sets are in general connected sub-
manifolds, it provides a robust method for perceptual grouping with only
local measurements.

Key words: deep structure, feature detection, scale selection, perceptual
grouping.

1 Introduction

The goal in this paper is to perform scale space based structural grouping in
images. We accomplish this by detection of the maximal response in scale space
of the desired image structures. Our strategy is to detect (relative) critical point
sets in scale space. Rather than to investigate the evolution of the critical sets
of the original [-dimensional image across scale, we consider the scale space
as an extended image representation and detect the critical sets in this D + 1-
dimensional image. In this way the multi-scale behavior of the original image
structures is taken into account and automatic scale space grouping and scale
selection is possible.

Critical points and relative critical point sets play an essential role in uncom-
mitted image analysis as described in [11,12,13]. These topological structures
are studied in the context of multi-scale image analysis in [6,15,16]. They form
a topological “back-bone” on which the image structures are mounted.

We introduce a non-perturbative method for detecting critical and relative
critical points. The method is based on computing a surface integral of a func-
tional of the gradient vector on the border of a closed neighborhood around

M. Nielsen et al. (Eds.): Scale-Space’99, LNCS 1682, pp. 105-116, 1999.
(© Springer-Verlag Berlin Heidelberg 1999
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every image point [8,9]. This integral evaluates to zero for regular image points
and to an integer number for critical points. The value and sign of this number
discriminates between the different critical points.

The main advantage of our method for localizing critical points lies in its
explicit and constructive nature. To illustrate this, note that in finding the zero
crossings of a real function, the only sensible task would be to find the intervals
where the function changes sign. The size of these intervals is the precision with
which we are searching for the zero crossings. Our topological construction is in
many aspects analogous to this generic example. The size of the neighborhood
(the closed surface) around the test image point is the spatial precision with
which we want to localize the critical point. Therefore our method is a natural
generalization of interval mathematics to higher dimensional signals.

Another advantage of the method is its non-perturbative nature. To compute
the integrals, we do not need to know the values of the gradient or higher order
derivatives in the point, but only around the given image location as opposed
to [3,6,5,2,13,16].

In the paper we first give a review on the detection of critical points and
relative critical point sets as introduced by [10]. The method is based on the
computation of homotopy class numbers. We show that detecting relative critical
point sets in a Hessian frame provides us with a generalization of height ridges.
We turn to the detection of critical point sets in scale space in Sect. 3. Because
the properties of Gaussian scale spaces prohibit automatic scale selection, we
deform the scale space with a form factor. We apply the method in Sect. 4
for the grouping and detection of elongated structures at a scale of maximum
response in some synthetical examples and in a medical fundus reflection image
of the eye. In the last section we discuss some practical and conceptual issues
concerning our approach.

2 Critical Points and Relative Critical Points

Critical points are those points in an image at which the gradient vanishes,
i.e. extrema and (generalized) saddle points. We define a relative critical point
as a critical point in a subdimensional neighborhood around an image pixel.
The neighborhood can be defined in intrinsically or extrinsically subdimensional
vector frames. In this section we show how to detect critical points in arbitrary
dimensions. The detection of the relative critical points is then straightforward,
because they are critical points themselves in a subdimensional vector frame.

For the detection of the critical points we use the topological homotopy class
numbers as introduced by [7,10]. This number reflects the behavior of the image
gradient vector in a close neighborhood of an image point. For regular points it
equals zero, whereas for critical points it has an integer value. In the simplest,
one-dimensional, case it is defined as half the difference of the sign of the signal’s
derivative taken from the right side and the left side of the point. For regular
points the topological number equals zero, for local maxima —1 and for local
minima +1.
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Extension to higher dimensions can be done (borrowing from homotopy the-
ory) by computing an D — 1-dimensional form on a D — 1-dimensional hypersur-
face [10]. We will only give the main outline without elaborating on the theory
of homotopy classes, see [14] for a detailed discussion on homotopy classes. For
the introduction of homotopy class numbers in image analysis we refer to [10].

2.1 Review on Critical Point Detection

The main construction lies in the definition of a topological quantity v which de-
scribes the behavior of the image gradient vector around a point P of the image.
Suppose Vp is a D-dimensional neighborhood around P which does not contain
any critical points except possibly P and let 8Vp be the D —1-dimensional closed
oriented hypersurface which is the boundary of Vp. Because there are no critical
points at the boundary of Vp, we can define the normalized gradient vector field
of the image L at dVp

L.
L 1=1

g’i: PRI
V4L,

L, =0,L .

D (1)

Throughout the paper a sum over all repeated indices is assumed. Now we give
the operational definition of the topological quantity v. The quantity v is a
surface integral of a D — 1 form over dVp. The form & is defined as, see [10],

b =&, d&, Ao Adg eI (2)
where £%1*0 is the Levi-Civita tensor of order D
Eil‘“ik‘“il“‘iD _ {—Ehu,izl,,ik,,,ip for any l 7& k
0 forl =k ’
glzb—q (4)
The topological integer number v is now given as the natural integral of the form
@ over 0Vp
1

v=—
AD QeoVp

2(Q) . (5)

The factor Ap is the area of a D-dimensional hypersphere of radius 1. The
form (2) has the important property that it is a closed form [10], i.e. the total
differential vanishes

d® =0 . (6)

This property is essential for the applications of the topological quantity (5). If
W is a region where the image has no singularities, then the form & is defined
for the entire region and we can apply the generalized Stokes theorem [1,4]

]{W@:/wd@:o’ (7)
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because of (6). This has the important implication that the number v of (5) is
zero at those points where L is regular. Furthermore, v is invariant under smooth
deformations of the oriented hypersurface 0W as long as no singularities are
crossing the boundary. This property justifies the term “topological” assigned
to v, since it depends on the properties of the image at the point P and not on
the surface W around P. The number v depends only on the number and type
of singularities surrounded by OW. Therefore (5) defines the topological number
v for the image point P, as long as the singularities are isolated. The last is
always true for generic images [10]. We can compute (5) for every location in the
image, obtaining an integer scalar density field v(zy, ...,z p) that represents the
distribution of the critical points of the image L.

2.2 Detecting Critical Points in 1, 2 and 3 Dimensions

As we discussed above, in the one-dimensional case the number v reduces to

1 1
v(z) = 5 (&, (b) — &u(a)) = 3 (sign(L,)p —sign(Ly)a), fora<z<b, (8)
showing that v is —1 for maxima, +1 for minima and 0 for regular points.

In two dimensions, the form ¢ becomes

P = gzdgy - gydfz 3 (9)

which is just the angle between the normalized gradients in two neighboring
points. Equation (5) becomes a closed contour integral which integrates this an-
gle and we find the winding number associated with this contour. Therefore,
v(z,y) equals +1 in maxima and minima, —1 in non-degenerate saddle points,
and O in regular points. For degenerate saddle points, or so-called monkey sad-
dles, v is —n + 1 where n is the number of ridges or valleys converging to the
point.
In three dimensions the form becomes

P = &d&; A d&eTt = 0180 &eda’ A da T (10)

where we used d¢; = 9;¢dz?. In the appendix we give the form in Cartesian
coordinates for a surface at which z is constant. It is possible to give a geometrical
interpretation in three dimensions as in one and two dimensions. The form in (10)
is the solid angle determined by normalized gradients in three neighboring points.
Integrating this solid angle over a closed surface around an image points defines
the number v. It is 1 for minima and one type of saddle points, —1 for maxima
and another type of saddle points and 0 for regular points. The discussion on
the saddle points is deferred to Sect. 2.4.

2.3 Detecting Relative Critical Points

For detecting relative critical points we project the image gradient vector to a
local subdimensional vector frame. Let A%, (z) be a local subdimensional vector
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frame of dimension Dep < D. Roman indices run from 1 to D, Greek indices
from 1 to Dep. The gradient in this frame is the projection of L; to it

Lo(z) = b (2)Li(z), i=1,....,D a=1,...,Dcp . (11)

For the detection of the relative critical points we use (5) and (2) but with
the projected — normalized — gradient vector &,, Dcp replacing D and Greek
indices replacing Roman ones.

Omne can show that relative critical points, detected in a frame of subdi-
mension Dcp, belong to a set which is locally isomorphic to a linear space of
dimension Cop = D — Dep. A proof can be found in [8,9]. Note that Cp is the
codimension of the dimension in which the relative critical point is detected.

If, e.g. in three dimensions, Dcp = 1 the local vector frame is of dimension
1 and detection of the critical points reduces to (8), taking half the difference of
sign of the gradient in the direction of h%. The critical points form a manifold of
dimension 2, i.e. a surface. For Dcp = 2, we compute the winding number (9)
in the plane spanned by A} and h%. These winding numbers form manifolds of
dimension 1, which are strings. For Dcp = 3 we obtain (10), i.e. (5) in a full
D-dimensional neighborhood of the test point. In this case the manifold reduces
to a point.

2.4 Detecting Relative Critical Sets in a Hessian Frame

So far we have made no choice for the vector frame in which to detect the
relative critical sets. In this section we take frames formed by eigenvectors h’(z)
of the local Hessian field H;;(z) = 8;0;L(x). The eigenvectors of the Hessian are
aligned with the principal directions in the image and the eigenvalues A\; measure
the local curvature'. From now on we assume that the eigenvectors are labeled
in decreasing order of the magnitude of the curvature, i.e. |A1| > -+ > [Ap|. We
take as subdimensional frames the first Dgop eigenvectors of the Hessian field.
With this choice we can interpret the relative critical sets as a generalization of
height ridges. In fact, if there are m_ positive and m_ negative eigenvalues, we
define a topological ridge set R™+ ™~ (L) of codimension Cep = m+ + m_ as
a relative critical set associated with the first Dcp eigenvectors corresponding
to the largest absolute eigenvalues of the Hessian field. We exclude the points
at which the Hessian is degenerate. The obtained ridge set contains only those
points at which there are exactly m, positive and m_ negative eigenvalues. Note
that there is a close relationship between our ridge set definition and the one by
Damon [2]. In [2] the eigenvalues are ordered by their signed value and the sets
R™+" and R"™- coincide for both definitions. For mixed signatures the two
definitions will delineate different topological sets.

The number and signs of the eigenvalues put a natural label on the ridge
sets. If all Dcp eigenvalues are negative we obtain a height ridge whereas for
all eigenvalues positive we get a valley. In the general case where both m, # 0

! These curvatures are to be distinguished from the isophote curvature.
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and m_ £ 0 we can speak of “saddle” ridges. The definition extends to the case
Decp = D when the ridge is of dimension zero. If all D) eigenvalues are negative
we are dealing with a maximum and if they are all positive with a minimum.
For mixed numbers of signs we get saddle points of different signature.

In the three-dimensional case, as discussed at the end of Sect. 2.2, we have
four different critical points, which using (10) and (5) can only be divided in two
groups. With the use of the ridge sets R™+"™~ we can differentiate between all
four signatures. This shows clearly that the choice of the Hessian field allows in
the form of the ridge sets R™+ ™~ for a richer description of the relative critical
sets than (5) does. In Table 1 we give an overview of all relative critical sets
which can be detected in three dimensions using the Hessian frame.

The topological ridge sets have a few other properties we like to discuss. First,
as a direct consequence of their definition we can infer the following inclusion
relation

R™+™— C R™™- for any my > mly and m_ >m’ . (12)

This relation shows that ridge sets can contain lower dimensional ridges as sub-
sets. For example, a maximum can be included in a positive string or a positive
surface. In Sect. 4 this property will show to be important in the detection of
elongated structures at a scale of maximum response while establishing a link
to the finest scale simultaneously.

As a second property, we like to remark that one can prove that topological
ridge sets are locally orthogonal to the Hessian vector frame hi (z), see [8].

Table 1. Classification of the relative critical sets that can be detected in three di-
mensions using a Hessian frame. The value of m, + m_ determines the codimension
of the detected set. The cases in which m; +m_ > D are marked with a ‘—’. There
are two types of saddle points which can be found.

my 0 1 2 3
m_
0 regular negative surface negative string minimum
1 positive surface saddle string saddle point (1) -
2 positive string saddle point (2) — —
3 maximum - - -

3 Relative Critical Sets in Scale Space

In Sect. 2 we have shown how to detect relative critical sets for images of arbitrary
dimensions. Our aim here is to detect objects and structures in scale space at
a scale of maximum response. In this section we will focus on the detection of
relative critical sets in linear Gaussian scale spaces of two-dimensional images.
Note that, like [16], we look for the critical sets in scale space and not for the
evolution across scale of the critical sets of the image itself [13]. Therefore we will
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regard the scale space of a two-dimensional image L(z,y) as a three-dimensional
entity, i.e. an image which depends on the three coordinates (x,y, o)

27302 // L{a',y') exp (— (o) +ly= y/)2>dx/dy/ . (13)

L(z,y,0) = 5,2

In doing so, we must take into account that in its present form (13) Gaussian scale
space is not suited for the grouping of image structures by detecting critical sets.
For the detection of an elongated structure at its scale of maximum response,
e.g., the strings of Table 1 seem the obvious choice. However, the sets that can be
found are restricted by the properties of the Gaussian filters. For example, it is
well known that there are no local extrema, in scale space. Indeed, if L, = L, =0
and if H,, and Hy, are of the same sign, which is required for an extremum, we
always have for non-umbilic points that 0, L = 0(Hyze + Hyy) # 0.

Extremal points can still be detected in scale space if we modify the Gaussian
kernels by multiplying them with a monotonically increasing form factor ¢(o)
to obtain a deformed scale space of the image

L{x,0) = ¢(o)L(x,0) = L{z,0) . (14)

The factor ¢ carries the essential information of the desired model structures
we want to localize in the scale space. Note that the locations of the critical
points (L; =0, i € {z,y}) and therefore the locations of the catastrophes do not
change. For appropriate choices of the form factor ¢ it will be possible to make
L. equal to zero and to find extrema in the deformed image.

As an example, let us take in a D-dimensional image a Ccp-dimensional
Gaussian ridge which is aligned with the first Dop = D — C'ep coordinate axes

~Der Tox®
L(x,0) = (\/27‘(0%) exp (— ;2 ) a=1,...,Dcp . (15)
99

The scale space representation of (15) reads,

L{z,0) = ( 2m(02 +ag)) o exp (_2(%—”5&) . (16)

o? 4 oF)

If we take the form factor ¢(o) = ¢, similar to [13], the derivatives L,_ and L,

are zero for
- - Y
z2o=0 and o=,/ ——o0¢, (17)
V Dop — v

which defines a Cop-dimensional surface in scale space. Note that D refers here to
the image dimensions. The scale space has a dimension of D 4 1. Equation (17)
shows that only for + in the range 0 < v < Dgp an extremum in the scale
direction can be generated. For v | 0 the extremum in the scale direction goes
to zero whereas for v 1 Dcp the extremum moves to infinity.

In general, the valid range for v > 0 will be determined by the profile of the
ridge and a choice of v which is close to zero seems reasonable.
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4 Examples

In this section we give several examples of the constructions made in the previ-
ous sections. Our main focus is on detection of elongated structures at a scale
of maximum response with respect to a form factor ¢. But we first show the
difference between the non-deformed (13) and a deformed (14) scale space of
an anisotropic Gaussian, L(z,y) = (2r0,0,) " exp(—(2/v20,)? — (y/V20,)?),
which we regard as a two-dimensional elongated, ridge like, structure. For both
scale spaces we detect all detectable sets. Figure 1 shows in the left frame the
image, with ¢, = 2.0 and o, = 30.0 pixels, in the middle frame the detected
sets of the non-deformed scale space and in the right frame the detected sets of
the deformed scale space. At the bottom of the boxes we have shown the left
frame again. The light grey surface in the middle and left frame is the ridge
set R%! ie. m, = 0 and m_ = 1. The dark grey string in the middle frame
is the ridge set R%? and represents the scale evolution of the maximum of the
anisotropic Gaussian. The string is a subset of the surface which is in corre-
spondence with (12). In the right frame we have detected more R"? strings and
a maximum that is depicted in white. Some straightforward calculation shows
that the maximum is found at

(v= D03 +03) + /(v = 1)*(03 = 03)* + 400}
o= : (18)
2(2=7)
The ~y value used was 0.5. The scale at which the maximum is found is ¢ = 1.98,
which is in agreement with (18).

The inclusion relation (12) between the relative critical point sets can be used
to establish a link from the detected scale space structure at its optimal scale
and the location of this structure at the original scale. In the example above the
connection is provided by the vertical string in the right frame of Fig. 1.

For the examples in the rest of this paper we consider only deformed scale
spaces.

The horizontal string of the right frame of Fig. 1 can be used to detect
elongated structures in an image at their scale of maximum response with respect
to the form factor ¢(c). We can optimize the intrinsically defined Hessian vector
frame to reduce the response of the vertical strings, which represent the evolution
of extrema in scale space. Since the elongated structures are one-dimensional
structures in the original image and we want them to be detected at a scale
of maximum response in scale space, we define the vector frame as follows: one
vector is always pointing in the direction of increasing scale whereas the other is
the eigenvector belonging to the largest curvature of the two-dimensional Hessian
H;; = Lij(z,y,0), {i,j} € {z,y}. We can use the signs of the eigenvalues to
discriminate between saddle strings, maxima strings and minima strings if we
take the value of the second derivative in the scale direction as the eigenvalue
belonging to the vector (0,0, 1).

In the next example we apply the above defined vector frame for the detec-
tion of two perpendicular Gaussian ridges with scales o1 = 2.0 and o9 = 5.0
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respectively. Figure 2 depicts in the left frame the image and in the right frame
the strings with respect to the modified Hessian frame. We will refer to these
strings as scale space strings. The 4 value used here is 0.5 and the maximum
responses are found at ¢ = 2.0 and ¢ = 5.0 in correspondence with (17). The
strings are broken in the middle, which is due to interference of the two ridges.
In this region there is no well defined ridge, except at scale o = 3.8 where we
find a string of small length.

Now we consider the image in the top left frame of Fig. 3, which consists of
a sequence of identical horizontal bars equally spaced along the vertical axis. In
the top right frame we show the strings and observe that the bars give maxi-
mal response at two distinet scales. At the fine scales the bars are detected as
elongated structures separately, but at larger scales they have grouped together
to one elongated structure in the perpendicular direction. The objects group
themselves to different structures at different scales. In the bottom left [rame
the ridges change their orientation in a continuous way. We included a magnifi-
cation of the ridges in the bottom right frame. In accordance with (12) we see
that the strings always lie on a higher dimensional ridge (vertical surface) which
provides the connection to the original scale.

As a final example we detect the vessel structure of a retina in a two-
dimensional fundus reflection image [rom a scanning laser ophthalmoscope, see
the left frame of Fig. 4. In this example we used the form factor ¢(o) =
(e/(o + 00))". The positive strings are depicted in the right frame.

All these examples lead us to the observation that the deformed scale spaces
can serve as a grouping mechanism.

Fig.1. Example 1: The left frame shows an image of an anisotropic Gaussian blob
with o, = 2.0 and o, = 30.0 pixels. Middle and right frames show the detected ridge
sets for a non-deformed and a deformed scale space respectively. The scale runs from
1.0 pixel from the bottom of the box to 4.0 pixels at the top. Light grey corresponds
to the sets R™', dark grey to R™? and white to R"*.
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Fig. 2. Example 2: Scale space strings of two Gaussian ridges.

Fig. 3. Example 3: Scale space grouping of bars. The top left frame shows the original
image. In the top right frame the scale space strings are depicted. In the bottom left
frame we show the ridge sets R™'. The bottom right frame is a magnification of the
bottom left frame. We used v = 0.25.

Fig. 4. Example 4: In the left frame a fundus reflection image of the eye is depicted.
The interlacing artefacts are due to the method of the acquisition. The right frame
shows the detected scale space strings. We used ¢(o) = (o/(0 + 00))7, 00 = 1, 7 = 0.5.
Scale runs exponentially from 1.0 pixel to 4.0 pixels in 32 steps.
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5 Discussion

In the present paper we reviewed a constructive definition of relative critical sets
in images of any number of spatial dimensions. The definition is very flexible
because it associates critical sets to an arbitrarily chosen local vector frame
field. Depending on the visual task, different model structures can be identified
with the relative critical sets. As a consequence our construction can be purely
intrinsic (defined only by the image structures), or it can involve externally
specified frames. We demonstrated that the intrinsic Hessian frame leads to the
detection of ridge sets. As an externally specified frame we defined a modified
Hessian frame for the detection of elongated structures at their scale of maximum
response with respect to a multiplication form factor. This factor together with
a selected vector frame contains the model information we want to incorporate
in our detection strategy.

The relative critical sets are in general connected sub-manifolds. Therefore,
our technique provides indeed a method for perceptual grouping achieved with
only local measurements. In a sense such a technique can be viewed as a partic-
ular generalization of the threshold techniques where the connected entities are
the level surfaces (or lines in 2D).

All examples showed the grouping properties of the system of ridges for op-
timal scale selection of multi-scale connected objects. The method also provides
a linkage from the scale space structure down to the original image space. We
observe that scale space performs a grouping mechanism in itself. We refer to
those applications as to topological deep structure analysis.

A Appendix

Here we give an expression in Cartesian coordinates for the form (2) in three
dimensions. As shown in (10), in three dimensions (2) reads

P = £,0,£;0mEpda’ A dameF (19)
Performing the contraction on [ and m gives
P = TR ((0,€;0,6k — 8y€;0.&k)dz A dy
+ (0y§0:8k — 0:€;0,&,)dy A dz (20)
+ (0280288 — 02€;0.8,)dz Adx) .
On a surface z is constant (20) reduces to
D= Eijkgi(azgjaygk - ayfjazgk)dx Ndy . (21)
Performing the contraction on ¢, j and k gives

Similar relations hold for the other surfaces.



116

J. Staal et al.

Acknowledgments

This work is carried out in the framework of the NWoO research project STw/4496.

References

1.

2.

10.

11.
12.

13.

14.

15.

16.

W. M. Boothby. An introduction to differential geometry and Riemannian geome-
try. Academic Press, New York, San Francisco, London, 1975.

J. Damon. Generic structure of two-dimensional images under Gaussian blurring.
SIAM Journal on Applied Mathematics, 59(1):97-138, 1998.

D. Eberly, R. Gardner, B. Morse, S. Pizer, and C. Scharlach. Ridges for image
analysis. Journal of Mathematical Imaging and Vision, 4(4):351-371, 1994.

T. BEguchi, P. Gilkey, and J. Hanson. Gravitation, gauge theories and differential
geometry. Physics Reports, 66(2):213-393, 1980.

L. Griffin. Critical point events in affine scale space, in Gausstan Scale Space The-
ory, J. Sporring and M. Nielsen and L. Florack and P. Johansen, eds., pages 165—
180. Kluwer Academic Publishers, Dordrecht, 1997.

. P. Johansen. On the classification of toppoints in scale space. Journal of Mathe-

matical Imaging and Vision, 4(1):57-68, 1994.

S. N. Kalitzin. Topological numbers and singularities in scalar images, in Gaussian
scale space theory, J. Sporring and M. Nielsen and L. Florack and P. Johansen, eds.,
pages 181-189. Kluwer Academic Publishers, Dordrecht, Boston, London, 1997.
S. N. Kalitzin, J. J. Staal, B. M. ter Haar Romeny, and M. A. Viergever. Compu-
tational topology in multi-scale image analysis. Submitted to IEEE Transactions
on Pattern Analysis and Machine Intelligence.

. S. N. Kalitzin, J. J. Staal, B. M. ter Haar Romeny, and M. A. Viergever. Frame-

relative critical point sets in image analysis. Accepted for the 8th International
Conference on Computer Analysis of Images and Patterns, Ljubljana, Slovenia,
September 1-3, 1999.

S. N. Kalitzin, B. M. ter Haar Romeny, A. H. Salden, P. F. M. Nacken, and
M. A. Viergever. Topological numbers and singularities in scalar images: scale space
evolution properties. Journal of Mathematical Imaging and Vision, 9(3):253-269,
1998.

J. J. Koenderink. The structure of images. Biological Cybernetics, 50:363-370, 1984.
T. Lindeberg. Scale space behavior of local extrema and blobs. Journal of Mathe-
matical Imaging and Vision, 1(1):65-99, 1992.

T. Lindeberg. Edge detection and ridge detection with automatic scale selection.
Int. Journal of Computer Vision, 30(2):117-154, 1998.

M. Nakahara. Geometry, topology and physics. Adam Hilger, Bristol, New York,
1989.

O. F. Olsen. Multi-scale watershed segmentation, in Gaussian Scale Space Theory,
J. Sporring and M. Nielsen and L. Florack and P. Johansen, eds., pages 191-200.
Kluwer Academic Publishers, Dordrecht, 1997.

S. M. Pizer, D. Eberly, D. S. Fritsch, and B. S. Morse. Zoom-invariant vision of fig-
ural shape: the mathematics of cores. Computer Vision and Image Understanding,
69(1):55-71, 1998.



Qualitative Multi-scale Feature Hierarchies for
Object Tracking

Lars Bretzner and Tony Lindeberg

Computational Vision and Active Perception Laboratory (CVAP)
Dept. of Numerical Analysis and Computing Science
KTH, S-100 44 Stockholm, Sweden

Abstract. This paper shows how the performance of feature trackers
can be improved by building a view-based object representation consist-
ing of qualitative relations between image structures at different scales.
The idea is to track all image features individually, and to use the qual-
itative feature relations for resolving ambiguous matches and for intro-
ducing feature hypotheses whenever image features are mismatched or
lost. Compared to more traditional work on view-based object tracking,
this methodology has the ability to handle semi-rigid objects and par-
tial occlusions. Compared to trackers based on three-dimensional object
models, this approach is much simpler and of a more generic nature. A
hands-on example is presented showing how an integrated application
system can be constructed from conceptually very simple operations.

1 Introduction

To maintain a stable representation of a dynamic world, it is necessary to relate
image data from different time moments. When analysing image sequences frame
by frame, as is commonly done in computer vision applications, it is therefore
useful to include an explicit tracking mechanisms into the vision system.

When constructing such a tracking mechanism, there is a large freedom in
design, concerning how much a priori information should be included into and
be used by the tracker. If the goal is to track a single object of known shape,
then it may be natural to build a three-dimensional object model, and to re-
late computed views of this internal model to the image data that occur. An
alternative approach is store a large number of actual views in a database, and
subsequently match these to the image sequence.

Depending on what type of object representation we choose, we can expect
different trade-offs between the complexity of constructing the object representa-
tion and the complexity in matching the object representation to image data. In
particular, different design strategies will imply different amounts of additional
work when the database is extended with new objects.

The subject of this article is to advocate the use of qualitative multi-scale
object models in this context, as opposed to more detailed models. The idea is
to represent only dominant image features of the object, and relations between
those that are reasonably stable under view variations. In this way, a new ob-
ject model can be constructed with only minor additional work, and it will be
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demonstrated that such a weaker approach to object representation is powerful
enough to give a significant improvement in the robustness of feature trackers.
Specifically, we will show how an integrated non-trivial application to human-
computer interaction can be constructed in a straightforward and conceptually
very simple way, by combination with a set of elementary scale-space operations.

2 Choice of Image Representation for Feature Tracking

The framework we consider is one in which image features are detected at
multiple scales. Each feature is associated with a region in space as well as a
range of scales, and relations between features at different scales impose hi-
erarchical links across scales. Specifically, we assume that the image features
are detected with a mechanism for automatic scale selection. In earlier work
(Bretzner & Lindeberg 1998a), we have demonstrated how such a scale selection
mechanism is essential to obtain a robust behaviour of the feature tracker if the
image features undergo large size variations in the image domain.

The rationale for using a hierarchical multi-scale image representation for fea-
ture tracking originates from the well-known fact that real-world objects consist
of different types of structures at different scales. An internal object representa-
tion should reflect this fact. One aspect of this, which we shall make particular
use of, is that certain hierarchical relations over scales tend to remain reasonably
stable when the viewing conditions are varied. Thus, even if some features are
lost during tracking (e.g. due to occlusions, illumination variations, or spurious
errors by the feature detector or the feature matching algorithm), it is rather
likely that a sufficient number of image features remain to support the tracking of
the other features. Thereby, the feature tracker will have higher robustness with
respect to occlusions, viewing variations and spurious errors in the lower-level
modules. As we shall see, the qualitative nature of these feature relations will
also make it possible to handle semi-rigid objects within the same framework.

In this way, the approach we will propose is closely related to the notion
of object representation. Compared to the more traditional problem of object
recognition, however, the requirements are different, since the primary goal is to
maintain a stable image representation over time, and we do not need to support
indexing and recognition functionalities into large databases. For these reasons,
a qualitative image representation can be sufficient in many cases, and offer a
higher flexibility by being more generic than detailed object models.

Related works. This topic of this paper touches on both the subjects of fea-
ture tracking and object representation. The literature on tracking is large and
impossible to review here. Hence, we focus on the most closely related works.
Image representations involving linking across scales have been presented by
several authors. (Crowley & Parker 1984, Crowley & Sanderson 1987) detected
peaks and ridges in a pyramid representation. In retrospect, a main reason why
stability problems were encountered is that the pyramids involved a rather coarse
sampling in the scale direction. (Koenderink 1984) defined links across scales us-
ing iso-intensity paths in scale-space, and this idea was made operational for med-
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ical image segmentation by (Lifshitz & Pizer 1990) and (Vincken et al. 1997).
(Lindeberg 1993) constructed a scale-space primal sketch, in which a morpho-
logical support region was associated with each extremum point and paths of
critical points over scales were computed delimited by bifurcations. (Olsen 1997)
applied a similar approach to watershed minima in the gradient magnitude.
(Griffin et al. 1992) developed a closely related approach based on maximum
gradient paths, however, at a single scale. In the scale-space primal sketch, scale
selection was performed, by maximizing measures of blob strength over scales,
and significance was measured by the volumes that image structures occupy in
scale-space, involving the stability over scales as a major component. A gener-
alization of this scale selection idea to more general classes of image structures
was presented in (Lindeberg 1994, Lindeberg 19985, Lindeberg 1998a), by de-
tecting scale-space maxima, i.e. points in scale-space at which normalized differ-
ential measures of feature strength assume local maxima with respect to scale.
(Pizer et al. 1994) and his co-workers have proposed closely related descriptors,
focusing on multi-scale ridge representations for medical image analysis. Psy-
chophysical results by (Burbeck & Pizer 1995) support the belief that such hi-
erarchical multi-scale representations are relevant for object representation.

With respect to the problem of object recognition, (Shokoufandeh et al. 1998)
detect extrema in a wavelet transform in a way closely related to the detection of
scale-space maxima, and define a graph structure from these image features. This
graph structure is then matched to corresponding descriptors for other objects,
based on topological and geometric similarity. In relation to the large number of
works on model based tracking, there are similar aims between our approach and
the following works: (Koller et al. 1993) used car models to support the track-
ing of vehicles in long sequences with occlusions and illumination variations.
(Smith & Brady 1995) defined clusters of coherently moving corner features as
to support the tracking of cars in a qualitative manner. (Black & Jepson 1998b)
constructed a view-based object representation using an eigenimage approach
to compactly represent and support the tracking of an object seen from a
large number of different views. The recently developed condensation algorithm
(Isard & Blake 1998, Black & Jepson 1998a) is of particular interest, by ex-
plicitly constructing statistical distributions to capture relations between im-
age features. Concerning the specific application to qualitative hand tracking
that will be addressed in this paper, more detailed hand models have been pre-
sented by (Kuch & Huang 1995, Heap & Hogg 1996, Yasumuro et al. 1999). Re-
lated graph-like representations for hand tracking and face tracking have been
presented by (Triesch & von der Malsburg 1996, Mauerer & von der Malsburg
1996).

3 Image Features and Qualitative Feature Relations

We are interested in representing objects which can give rise to a rich variety of
image features of different types and at different scales. Generically, these image
features can be (i) zero-dimensional (junctions), (ii) one-dimensional (edges and
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ridges), or (iii) two-dimensional (blobs), and we assume that each image feature
is associated with a region in space as well as a range of scales.

3.1 Computation of Image Features

When computing a hierarchical view-based object representation, one may at
first desire to compute a detailed representation of the multi-scale image struc-
ture, as done by the scale-space primal sketch or some of the closely related
representations reviewed in section 2. Since we are interested in processing tem-
poral image data, however, and the construction of such a representation from
image data requires a rather large amount of computations, we shall here follow
a computationally more efficient approach.

We focus on image features expressed in terms of scale-space mazima, i.e.
points in scale-space at which differential geometric entities assume local maxima
with respect to space and scale. Formally, such points are defined by

(V (DnormL(z; 8)) =0) A (95 (DnormL(z; s)) = 0) (1)

where L(-; s) denotes the scale-space representation of the image f constructed
by convolution with a Gaussian kernel g(-; s) with scale parameter (variance) s
and D,,orm is a differential invariant normalized by the replacement of all spatial
derivatives 8, by y-normalized derivatives 9, = s7/20,,.

Two examples of such differential descriptors, which we shall make particular
use of here, include the normalized Laplacian (with ~ = 1) for blob detection

v?wrmL =S5 (Lzz + Lyy) (2)

and the square difference between the eigenvalues L, and L4, of the Hessian
matrix (with v = 3/4) for ridge detection

ALy norm = 8% | Lpp — Lyg|* = 8% (Law — Lyy)* + 4Liy) (3)

see (Lindeberg 19985, Lindeberg 1998a) for a more general description. A com-
putationally very attractive property of this construction is that the scale-space
maxima can be computed by architecturally very simple and computationally
highly efficient operations involving: (i) scale-space smoothing, (ii) pointwise
computation of differential invariants, and (iii) detection of local maxima.

Furthermore, to simplify the geometric analysis of image features, we shall
reduce the spatial representation of image descriptors to ellipses, by evaluating
a second moment matrix

12 L.L
24 :/ R2 <L Ly L2y> 9(77; Sint)dn (4)
ne x Y

at integration scale s;,; proportional to the detection scale of the scale-space
maximum (equation (1)). Thereby, each image feature will we represented by
a point (z; s) in scale-space and a covariance matrix Y describing the shape,
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graphically illustrated by an ellipse. For one-dimensional features, the corre-
sponding ellipses will be highly elongated, while for zero-dimensional and two-
dimensional features, the ellipse descriptors of the second moment matrices will
be rather circular. Attributes derived from the covariance matrix include its
anisotropy derived from the ratio Ajaz/Amin between its eigenvalues, and its
orientation defined as the orientation of its main eigenvector.

Figure 3 shows an example of such image descriptors computed from a grey-
level image, after ranking on a significance measure defined as the magnitude of
the response of the differential operator at the scale-space maximum. A trivial
but nevertheless very useful effect of this ranking is that it substantially reduces
the number of image features for further processing, thus improving the com-
putational efficiency. In a more detailed representation of the multi-scale deep
structure of a real-world image, it will often be the case that a large number of
the image features and their hierarchical relations correspond to image structures
that will be regarded as insignificant by later processing stages.

3.2 Qualitative Feature Relations

Between the abovementioned features, various types of relations can be defined
in the image plane. Here, we consider the following types of qualitative relations:

Spatial coincidence (inclusion): We say that a region A at position z 4 and scale
s4 is in spatial coincidence relation to a region B at position zp and at a
(coarser) scale sp > s4 if

(IA—IB)TZ]El(IA—IB)E [D1, Ds] (5)

where D and D, are distance thresholds. By using a Mahalanobis distance
measure, we introduce a directional preference which is highly useful for
expressing spatial relations between elongated image features. While the
special case D1 = 0 corresponds to an inclusion relation, there are also cases
where one may want to explicitly represent distant features, using Dy > 0

Stability of scale relations: For two image feature at times ¢; and 75/, we assume
that the ratio between their scales should be approximately the same. This
is motivated by the requirement of scale invariance under zooming

salte) _ salty)
SB(tk) - SB(tk/).

To accept small variations due to changes in view direction and spurious vari-
ations from the scale selection mechanism of the feature tracker, we measure
relative distances in the scale direction and implement the “~” operation by
g~ q <= |log §| < logT, where T' > 1 is a threshold in the scale direction.

(6)

Directional relation (bearing): For a feature A related to a one-dimensional fea-
ture B, the angle is measured between the main eigenvector of g and the
vector 4 — zp from the center xp of B to the center x4 of A.
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Trivially, these relations are invariant to translations and rotations in the image
plane. The scale invariance of these relations follows from corresponding scale
invariance properties of image descriptors computed from scale-space maxima
— if the size of an image structure is scaled by a factor ¢ in the image domain,
then the corresponding scale levels are transformed by a factor ¢?.

3.3 Qualitative Multi-Scale Feature Hierarchy

Let us now consider a specific example with images of a hand. From our knowl-
edge that a hand consists of five fingers, we construct a model consisting of: (i)
the palm, (ii) the five fingers, (iii) a finger tip for each finger, (see figure 1).

Each finger is in a spatial coincidence relation to the palm, as well as a
directional relation. Moreover, each fingertip is in a spatial relationship to its
finger, and satisfies a directional relation to this feature. In a similar manner,
each finger is in a scale stability relation with respect to the palm, and each
fingertip is in a corresponding scale stability relation relative to its finger.

Such a representation will be referred to as a qualitative multi-scale feature
hierarchy. Figure 2 shows the relations this representation is built from, using
UML notation. An attractive property of this view-based object representation
is that it only focuses on qualitative object features. There is no assumption of
rigidity, only that the qualitative shape is preserved.

The idea behind this construction is of course that the palm and the fingertips
should give rise to blob responses (equation (2)) and that the fingers give rise
to ridge responses (equation (3)). Figure 3 shows an example of how this model
can be initialized and matched to image data with associated image descriptors.

To exclude responses from the background, we have here required that all
image features should correspond to bright blobs or bright ridges. Alternatively,
one could define spatial inclusion relations with respect to other segmentation
cues relative to the background, e.g. chromaticity or depth.

Here, we have constructed the graph with feature relations manually, using
qualitative knowledge about the shape of the object and its primitives. In a
more general setting, however, one can also consider the learning of stable fea-
ture relations in an actual setting, based on a (possibly richer) vocabulary of
qualitative feature relations. The list of feature relations in section 3.2 should
by no means be regarded as exhaustive. Additional feature relations can be in-
troduced whenever motivated by their effectiveness in specific applications. For
example, in several cases it is natural to introduce a richer set of inter-feature
relations between the primitives that are the ancestors of a coarser scale features.

4 Feature Tracking with Hierarchical Support

One idea that we are going to make explicit use of in this paper is to let features at
different scales support each other during feature tracking. If fine-scale features
are lost, then the coarse scale features combined with the other fine-scale features
should provide sufficient information so as to generate hypotheses for recapturing



Qualitative Multi-scale Feature Hierarchies for Object Tracking 123

O

\§

Fig. 1. A qualitative multi-scale feature hierarchy constructed for a hand model.

top-tand:Relation |—| handconstrainl:Consrin |

Innd:{)lul’mm I

l Taand-Nnger:Felation |—| Finge recnstmind:Constrind |

| finger I FCbifeature | | finger] 7 Obfeature | ......
I
| finger-tip{1 [Relation | | fwﬂ“;ﬂ"‘“"“J ......
~— . o= = T
| tipccnstrmint:Coostrmin W
| |1 Chfesture | | tipf2)Otifenture |

Fig. 2. Instance diagram for the feature hierarchy of a hand (figure 1).

20 strongest blobs and ridges  Initialized hand model — All hand features captured

Fig. 3. llustration of the initialization stage of the object tracker. Once the coarse-
scale feature is found (here the palm of the hand), the qualitative feature hierarchy
guides the top-down search for the remaining features of the representation. (The left
image shows the 20 most significant blob responses (in red) and ridge responses (in
blue).)
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the lost feature. Similarly, if a coarse scale feature is lost, e.g. due to occlusion
or a too large three-dimensional rotation, then the fine-scale features should
support the model based tracking. While this behaviour can be easily achieved
with a three-dimensional object model, we are here interested in generic feature
trackers which operate without detailed quantitative geometric information.

Figure 4 gives an overview of the composed object tracking scheme. The fea-
ture tracking module underlying this scheme is described in (Bretzner & Lindeberg
1998a), and consists of the evaluation of a multi-cue similarity measure involving
patch correlation, and stability of scale descriptors and significance measures for
image features detected according to section 3.1.

Scheme for object tracking using qualitative feature hierarchies:

Initialization:
Find and match top-level feature using initial position and top-level parent-
children constraints.
Tracking:
For each frame:
For each feature in the hierarchy (top-down):
Track image features (see separate description)
If a feature is lost (or not found)
If parent matched
Find feature using parent position and parent-feature relation
constraints
else if child(ren) matched
Find feature using child(ren) position and feature-children re-
lation constraints.
Parse feature hierarchy, verify relations and reject mismatches.

Fig. 4. Overview of the scheme for object tracking with hierarchical support.

4.1 Sample Application I — The 3-D Hand Mouse

From the trajectories of image features, we can compute the motion of the
hand, assuming that the hand is kept rigid. An application that we are par-
ticularly interested in is to use such hand gestures for controlling other com-
puterized equipment. Examples of applications include (i) interaction with vi-
sualization systems and virtual environments, (ii) control of mechanical sys-
tems and (iii) immaterial remote control functionality for consumer electronics
(Lindeberg & Bretzner 1998). The mathematical foundation for this “3-D hand
mouse” was presented in (Bretzner & Lindeberg 1998b). Our previous experi-
mental work, however, was done with image sequences where an individual fea-
ture tracker with automatic scale selection (Bretzner & Lindeberg 1998a) was
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Steady-state model One feature disappears Feature recaptured

Fig. 5. The proposed qualitative representation makes it possible to maintain tracking
even if parts of the object are occluded. Later in the sequence, the occluded part (in
this case the finger), can be captured again using the feature hierarchy. (Here, all image
features are illustrated by red, while the feature trajectories are green.)

Steady-state maodel

Fine scale features occluded — All features captured

Fig. 6. [llustration of how the qualitative feature hierarchy makes it possible to main-
tain object tracking under view variations. The images show how most finger features
are lost due to occlusion when the hand turns, and how the qualitative feature hierarchy
guides the search to find these features again.

The behaviour of the qudlitative feature hievarchy tracker under semi-rigid motion

Fig. 7. Due to the qualitative nature of the feature relations, the proposed framework
allows objects to be tracked under semi-rigid motion.
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sufficient to obtain the extended feature trajectories needed for structure and
motion computations.

The qualitative feature hierarchy provides a useful tool for extending this
functionality, by making the system less sensitive to spurious errors of individual
feature tracking. FFigures 5-6 show two examples of how the qualitative feature
hierarchy support the recapturing of lost image features. Figure 7 demonstrates
the ability of this view-based image representation to handle non-rigid motions.

While the image representation underlying these computations is a view-
based representation, it should be remarked that the step is not far to a three-
dimensional object model. If the hand is kept rigid over a sufficiently large
three-dimensional rotation, we can use the motion information in the feature
trajectories of the fingers and the finger tips for computing the structure and
the motion of the object (see (Bretzner & Lindeberg 19985) for details).

4.2 Sample Application IT — View-Based Face Maodel

Figure 8 shows an example of how a qualitative feature hierarchy can support
the tracking of blob features and ridge features extracted from images of a face.
Again a main purpose is to recapture lost features after occlusions.

Stewdy-state model Features recaptured

Occlusion by rotation

Fig. 8. Results of building a qualitative feature hierarchy for a face model consisting
of blob features and ridge features at multiple scales and applying this representation
to the tracking of facial features over time.

5 Summary and Discussion

We have presented a view-based image representation, called the qualitative
multi-scale feature hierarchy, and shown how this representation can be used for
improving the performance of a feature tracker, by defining search regions in
which lost features can be detected again.

Besides making explicit use of the hierarchical relations that are induced by
different features in a multi-scale representation, the philosophy behind this ap-
proach is to build an internal representation that supports the processing of those
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image descriptors we can expect to extract from image data. This knowledge is
represented in a qualitative manner, without need for constructing geometrically
detailed object models.

In relation to other graph-like object representations, the discriminative power
of the qualitative feature hierarchy may of course be lower than for geometri-
cally more accurate three-dimensional object models or more detailed view-based
representations involving quantitative information. Therefore the qualitative fea-
ture hierarchies may be less suitable for object recognition, but still enough for
pre-segmentation of complex scenes, or as a complement to filling in missing
information given partial information from other modules (here the individual
feature trackers). Notably, the application of this concept does not suffer from
similar complexity problems as approaches involving explicit graph matching.

It should be pointed out that we do not claim that the proposed framework
should be regarded as excluding more traditional object representations, such as
three-dimensional object models or view-based representations. Rather different
types of representations could be used in a complementary manner, exploiting
their respective advantages. For example, in certain applications it is natural to
complement the qualitative feature hierarchy with a view-based representation
at the feature level, in order to enable more reliable verification of the image
features. Moreover, regarding our application to the 3-D hand mouse, it is worth
pointing out that the qualitative feature hierarchy is used as a major tool in a
system for computing three-dimensional structure and motion, thus at the end
deriving a quantitative three-dimensional object model from image data.

The main advantages of the proposed approach are that it is very simple
to implement in practice, and that it allows us to handle semi-rigid objects,
occlusions, as well as variations in view direction and illumination conditions.
Specifically, with respect to the topic of scale-space theory, we have demonstrated
how an integrated computer vision application with non-trivial functionally can
be constructed essentially just from the following components: (i) basic scale-
space operations (see section 3.1), (ii) a straightforward graph representation,
and (iii) a generic framework for multi-view geometry (described elsewhere).
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Abstract. The method of curve evolution is a popular method for recovering
shape boundaries. However isotropic metrics have always been used to induce
the flow of the curve and potential steady states tend to be difficult to determine
numerically, especially in noisy or low-contrast situations. Initial curves shrink
past the steady state and soon vanish. In this paper, anisotropic metrics are
considered which remedy the situation by taking the orientation of the feature
gradient into account. The problem of shape recovery or segmentation is
formulated as the problem of finding minimum cuts of a Riemannian manifold.
Approximate methods, namely anisotropic geodesic flows and solution of an
eigenvalue problem are discussed.

1 Introduction

In recent years, there has been extensive development of methods for shape
recovery by curve evolution. These methods are gaining in popularity due to their
potential for very fast implementation. A parametric form of it was developed by
Katz, Witkin and Terzoupolous [6]. A geometrically intrinsic formulation of active
contours was introduced by Caselles, Catte, Coll and Dibos in [2] and developed
over the years by several authors [3,7,8,14]. A formulation based on curve evolution
introduced by Sethian [13] is also in use where the flow velocity consists of a constant
component and a component proportional to the curvature (see for example, [18]).
The evolving curve in this case is stopped near the shape boundary or at least slowed
by means of a stopping term. From a geometric perspective, the image domain may
be viewed as a Riemannian manifold endowed with a metric defined by the image
features. An initial curve flows towards a geodesic with normal velocity proportional
to its geodesic curvature. Several techniques for fast implemetation of geodesic flows
have been developed. The speed of the method is due to two essential factors. First,
noise suppression and edge detection are done in a hierarchical fashion: the image is
smoothed first and then the geodesic flow is calculated. This is in contrast to the flows
defined by segmentation functionals in which noise suppression and edge detection are
done simultaneously. The second reason for the speed-up is that the object boundaries
are found by tracking one closed curve at a time and thus the computational effort
can be focused on a small neighborhood of the evolving curve.

Throughout the development of this approach, the metric used has always been an
isotropic metric. In this paper, fully general anisotropic metrics are considered. One
reason for developing such a generalization is that in noisy or low contrast situations,

'This work was partially supported by PHS Grant 2-R01-NS34189-04 from NINDS, NCI and
NIMH, and NSF Grant DMS-9531293.

M. Nielsen et al. (Eds.): Scale-Space’99, LNCS 1682, pp. 129-140, 1999
© Springer-Verlag Berlin Heidelberg 1999



130 J. Shah

the steady states for the isotropic flows are not robust and one has to resort to devices
such as a stopping term. For instance, when the image gradient is large everywhere
due to noise, curves with the same Euclidean length will have their Riemannian
length approximately equal if the metric is isotropic, indicating reduced sensitivity
of the method. In practice, the curves tend to continuously shrink and vanish. A
way to improve this situation is to take into account the orientation of the gradient
by considering anisotropic metrics. Another reason to consider anisotropic metrics
comes from the impressive results obtained by Shi and Malik [17] who formulate the
problem of shape recovery in natural scenes as a problem of finding the minimum cut
in a weighted graph. An ingredient essential for their method to work is the implied
anisotropic metric. Finally, use of anisotropic metrics is implied in boundary detection
by means of segmentation functionals. This connection is briefly reviewed in Section
2. However its implementation is computationally expensive and it is worthwhile to
formulate anisotripic curve evolution directly.

2 Segmentation Functionals and Curve Evolution
Consider the segmentation functional [11]

(1) E(u,C):/ / ||Vu||2dx1da:2+,u2//|u—I|2da:1dx2+1/|C|
D

D\C

where D is the image domain, / is the image intensity, ' is the segmenting
curve, |C] its length and w is a piecewise smooth approximation of 7. Let e =
p2(u— 1%+ ||Vul|? denote the energy density. Then with u fixed, the gradient flow
for C is given by the equation
(2) d{_(,: [(6+—6_)—I//{]N

ot

where C' now denotes the position vector of the segmenting curve, superscripts +, —
denote the values on the two sides of €', N is the normal to (' pointing towards the
side of €' marked + and « denotes the curvature. To see anisotropicity, look at the
limiting case as p — oo. Then ' minimizes the limiting functional

Il e

The metric is an anisotropic (non-Riemannian) Finsler metric. It is singular and non-
definite, exhibiting space-like and time-like behaviors [11]. Existence of space-like
geodesics is an open question.

At the other extreme, as ¢ — 0 the behavior is governed by the isotropic Fuclidean
metric. The curve minimizes

) Eo(C) = ZD/ (1-1)" + ZiC
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where D;’s are the segments of D and I; is the average value of T in D;. The curve
evolution is given by the equation

(5) — —

The equation is similar to the one used in [18] where the first term is replaced by
a constant. The advantage of using the segmentation functional is that it avoids the
problem of choosing this constant.

Another segmentation functional that leads to isotropic curve evolution is formu-
lated using L'-norms [15]:

., . . o
(6) E(u) (j) — / / ||VU||dl‘1dl‘2 + %/ / |u — I|dl‘1dl‘2 + / mdS
D C

D\C

where  is the jump in across , that is, . In order to implement
the functional by gradient descent, curve  is replaced by a continuous function ,
the edge-strength function:

. . 2
(7) f%wwwz//!m1—wﬂvw+vw—ﬂ+§mmW+§ZMmMu
D

The gradient descent equations for « and v are:

Ou [ 9 , Vu viu—1T)
— = (1 —-v) curviu)—2(1 —v)Vu - - = Vu
I T e e U IR i v A
v _ gz, X 2
™ =V b—pz + P (1 —)||Vul|

where curv(u) is the curvature of the level curves of u:

2 2
Up Up o) — 2ul‘1u@'2u1711‘2 + Ugp, Ugors

3
V|

9) curv(u) =

The term in the brackets in the first equation prescribes the three components of
the velocity with which the level curves of v move. The first term is the usual
Euclidean curvature term except for the factor of (1 — v)?, the second term is the
advection induced by the edge-strength function v and the last term prescribes the
constant component of the velocity. The sign is automatically chosen such that this
component of velocity pushes the level curve towards the corresponding level curve
of 7. The implied metric is isotropic.
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3 Anisotropic Geodesic Flows

It is helpful to start with a slightly more general framework to derive the equation
of anisotropic geodesic flow. Let M denote the image domain D when it is endowed
with a Riemannian metric, ¢ = {g;; }. Let C be a curve dividing M into two disjoint
submanifolds, M; and M,. Following Cheeger [4], define

, : L(C)
(10) h(C) = ijnA(Mi)
where L(C') is the length of (' and A(M;) is the area of M;, both being measured
with respect to the metric on M. Then the problem of shape recovery may be viewed
as the problem of finding the minimum cut of M by minimizing h(C'). (Note the
dependence of the minimum cut on the size and shape of the image domain due to
the term in the denominator.) The gradient flow obtained by calculating the first
variation of h(C') is given by the equation

(11) da—(; = [k, £ R(C)]N,

where &, is now the geodesic curvature and N, is the normal defined by the metric;
plus sign is to be used if the area bounded by the curve is smaller than its complement,
minus otherwise. In the isotropic case with the metric equal to a scalar function ¢
times the identity metric, the relation between the geodesic curvature x, and the
Euclidean curvature « is given by the equation

1

(12) Kjg = 5|:K?+

Ve N
0

Thus the geodesic curvature includes the advection term. The term A(C) is the
component of the velocity which is constant along the curve and varies in magnitude
as the curve moves. To implement the flow, the initial curve is embedded as a level
curve of a function u and the evolution equation for w is derived such that its level
curves move with velocity proportional to their geodesic curvature augmented by
the component 3, constant along each level curve. If only the motion of the original
curve (' is of interest, we may assume that all the level curves have the same constant
component 5 equal to h(C'), updated continuously as €' evolves. However, if motion
of all the level curves is of interest, then the value of h for each level curve must
be calculated, making the implementation considerably more difficult. In this paper,
purely anisotropic geodesic flow is studied by setting 5 = 0.

The functional for « may be derived using the coarea formula, taking care to define
all the quantities involved in terms of the metric g. Let g~ = {¢%} be the metric
dual to ¢ given by the inverse of the matrix {g;;}. Let

1 = iAi; Y5
(13) <XY >=)  XiAyY;

i7j
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be the binary form defined by a given matrix A and let

(14 ¥l = <X X3

Then the functional for « may be obtained by the coarea formula and has the form

15) Jl1vulo 0] = [ (190l + 0] VeiCa)

M D

where [ is assumed to constant. Here, Vu is the Euclidean gradient vector {u,,}.
(In fact, g~ Vu is the gradient vector V,u defined by the metric g and ||V ul|, =
[|Vull|y-1.) The evolution equation for « has the form

Ou . g 1Vu
1 —=d - | —
(16) or (||Vu||g_1) o
where
(17) divg(X) =" L (Xiv/det(y))
— Vdet(g)

is the divergence operator defined with respect to g. The equations (16) and (17) are
valid in arbitrary dimension. The first term in Equation (16) is the mean geodesic
curvature of the level hypersurfaces of u.

In dimension 2, the evolution equation (16) for v assumes a fairly simple form and
is not much more difficult to implement than in the isotropic case. In dimension 2,
after multiplying the right hand side of Equation (16) by a positive function, we get

2 2 3 -
HVullze = 3lIVully = Bl Vullg /det(K)
IVl det(K)

ou
1 — =
(18) ™ curv(uw)||Vul| +

where as before, curv(u) is the Euclidean curvature of the level curves of u, Vu is
the Euclidean gradient of w, ||Vu]|| is its Fuclidean norm, and

K = det(g)g™*
(19) 7 =2 0 05u

i7j

QZ’]' =< Vu,VEKy; i

Comparison with the corresponding equation for the isotropic flow shows that
anisotropy does not affect the second order curvature term, but the advection term
is more finely tuned. To have the effect of anisotropy on the second order term in
dimension 2, more general Finsler metrics must be considered [1].
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4 Approximation: Riemannian Drums

As in the isotropic case, Equation (18) is hyperbolic in the direction normal to the
level curves so that its solution is capable of developing shocks. A shock-capturing
numerical method [12] must be used to implement the equation. An alternative is to
convert the minimum-cut problem into an eigenvalue problem as suggested by the
Cheeger inequality

(20) 2> i(mcln h(c)) ’

where A is the second smallest eigenvalue of the Laplace—Beltrami operator. There-
fore, instead of minimizing A(C'), consider minimizing the Rayleigh quotient

g' IV ully-1/det(g)

guzx/det(g)

which is equivalent to solving the eigenvalue problem

(21)

(22) Agu+ du = 0, Neumann boundary conditions
where

1 .
23 Aju = —— O; | g¥ v/ det(9)I;u
(23) g \/m; (g (g) J )

is the Laplace—Beltrami operator. When g is the Euclidean metric, the operator reduces
to the ordinary Laplacian and the eigenvalue problem describes the modes of vibration
of an elastic membrane. When discretized, the eigenvalue problem takes the form

(24) Hu= AMu

where « is now a vector, H is the “stiffness” matrix and M is the mass matrix.
An important point to note is that Equation (22) does not involve 3, its approximate
value is determined automatically by the Cheeger inequality. Another important point
to note is that for the approximation to work, an anisotropic metric is essential. In
dimension 2, if the metric is isotropic, the numerator in the Rayleigh quotient is
independent of ¢ and since we expect ¢ to deviate substantially from the FEuclidean
metric only near the shape boundary, the denominator is insensitive to g as well. As
a result, the eigenvalue problem reduces to essentially the Fuclidean case.

The eigenvalue problem (22) is an analytic version of the formulation proposed
by Shi and Malik in the framework of graph theory, motivated by the principles of
gestalt psychology. They regard the image as a weighted graph by viewing the pixels
as vertices and assigning weights to the edges in proportion to the proximity of the
corresponding vertices and similarity between the feature values at these vertices. The
minimum cut of the graph is defined in some normalized way. There is a standard way
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to define the Laplacian of a graph from its adjacency matrix [9,10] and approximate the
minimum cut problem as the problem of determining the eigenvector corresponding
to the second smallest eigenvalue of this Laplacian. Since this eigenvalue is zero if
the graph is disconnected, it is called the algebraic connectivity of the graph. For a
more detailed comparison between the graph-theoretic formulation and the formulation
presented here, see [16]. Note that here too, anisotropicity is essential. Isotropicity
would mean that all the edges have the same weight and hence the graph cannot carry
any information about the image.

The eigenvalue problem may be approximately solved by one of the special
methods for large sparse matrices such as the Lanczos method [5]. Care must
be taken to ensure that the matrix H is symmetric so that the Lanczos method
is applicable. One of the ways to ensure this is to derive Equation (24) by
discretizing the Rayleigh quotient (21) instead of Equation (22). Details of the
Lanczos method may be found in [16]. The method is an efficient procedure
to find the vector which minimizes the Rayleigh quotient over the vector space
Ko ={uo, M~ Hug, (M~ H)?*uo, - - -, (M~ H)™ug}. Here, uo is a user-supplied
initial vector and m is chosen so that satisfactory numerical convergence is obtained.
In principle, the only requirement for the method to work is that the initial vector
must have a component along the true eigenvector. However, the greater the number
of higher eigenvectors significantly present in wg, the larger the value of m needed
for the method to converge to the second eigenvector. Moreover, as m increases, it
becomes harder and harder to orthogonalize the vector space K, as required by the
Lanczos method. Therefore, the choice of the initial vector is a non-trivial problem.

5. Anisotropic Metrics
In dimension 2, the obvious starting point for intensity images is the matrix

7 o |O1I70W 17 017017
25) VITONTT =1y 199,17 9,17 9,1°

where 17 denotes the smoothing of the image by a Gaussian filter. There are two
problems with the metric defined in this way. First of all, the metric is degenerate
since the determinant is zero. This may be remedied by adding a small multiple
of the identity matrix to the above matrix. (Shi and Malik solve this problem by
exponentiating the metric.) The second objection is that the length of each level
curve of 17 1s just a constant multiple of its Euclidean length. Since we expect the
object boundaries to coincide more or less with the level cutves, evolving curves will
shrink and vanish. A solution to this problem is to divide the augmented matrix by
its determinant. The final result is the metric given by the matrix

|71—|—0481IUO1IU ad11°0,1° -|

14+ o VIU
(26) a@ﬂl ]H 1—|—a5|l‘7821‘7 J
I4a||VI?|? 14a||VI7|?
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where « is a constant. Finally, just as in the isotropic case [14], the metric may be

raised to some power p. The effect of p is to sharpen the maxima and the minima of the
smaller eigenvalue of the metric over the image domain, resulting in sharper edges and
corners. In the gradient direction, the infinitestimal length is the Euclidean arclength
ds, independent of the gradient. Along the level curves of 17, the infinitestimal length
is ds/(14 «||VI?||*)P/?. Thus the metric provides a generalization compatible with
the isotropic case as it is usually formulated [14]. Its generalization to vector valued
images, for instance to the case where we have a set of transforms {I(*)} of the image
by a bank of filters, is straightforward. In matrix (26), simply replace 8;1°9;1° by
Yra®9; 1%)9; T¥). Generalizaton to arbitrary dimension n is obtained by letting
the indices ¢, run from 1 to n and normalizing the metric by dividing it by the
(n — 1) root of its determinant. Of course, determining the weights {«(*)} is a
difficult problem.

6. Experiments

In the first experiment, different methods considered here are compared from the
point of view of smoothing intensity images. In the second experiment, in addition
to smoothing an MR image, anisotropic flow is applied to smoothing of the zero-
crossings of the Laplacian of the image presmoothed by a Gaussian.

In these experiments, the constant 7 was set equal to zero and « was chosen so
that the smallest value achieved by the smaller eigenvalue of the matrices {g;; } over
the image domain was equal to a small constant ¢, less than 1. The closer the value
of ¢ isto 1, the closer the metric is to the Fuclidean metric. (The Euclidean geodesic
flow is a purely curvature-driven flow without advection. The image is eventually
smoothed out to uniform intensity.) In the case of the eigenvalue problem, the closer
the value of ¢ is to 1, the more the behavior is like a Euclidean drum and the second
eigenvector is dominated by the fundamental mode of Euclidean vibration.

In order to clearly bring out the differences among the different methods, the first
experiment is that of a synthetic image with greatly exaggerated noise. The image
is shown in Figure 1a (top-left) and was created by adding noise to a white ellipse
on a black background. The top-right frame shows a horizontal and a vertical cross-
section through the middle of the image. The metric was calculated from the the
filtered image 77 obtained by filtering the original image by a Gaussian with standard
deviation equal to v/2. I? was also used as the initial vector for the geodesic flow as
well as for the Lanczos iteration. (Uniformly sampled random noise was also tried as
initial u for solving the eigenvalue problem, but the convergence was unacceptably
slow.)

Under the isotropic flow, with ¢ = 1/(1 + «||VI?||*)? in Equation (12), all the
significant level curves shrank and vanished in a few thousand iterations. The bottom
frames of Figure 1a show the results of anisotropic geodesic flow. The numerically
steady state shown in the figure remained stable even after a few hundred thousand
iterations. Sharpening of the edges can be clearly seen in the graph of the cross-
sections.
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Fig. 1a. Top Right: A synthetic image . Top Left: Horizontal and
vertical sections through the middle. Bottom Right: Smoothing
by anisotropic geodesic flow. Bottom Left: The two sections.

The solution to the eigenvalue problem is shown in the top-row of Figure 1b. The
figure shows that the method is not as effective as the method of geodesic flow for
denoising or deblurring. In fact, the solution is very close to the initial vector 17.

The best results were obtained using Equations (8) corresponding to the segmen-
tation functional (6) as shown in the bottom row of Figure 1b. The advantage of the
segmentation functional over the curve evolution formulation is that denoising and
edge detection are done simultancously. The formulation makes it possible for the
smoothed intensity « and the edge-strength function v to interact and reinforce each
other. In the example shown, « is in fact almost piecewise conslant.

Figures 2a and 2b portray the results for an MR image. This is a more difficult
image to deal with since the intensity gradient and the curvature vary widely along
the object boundaries, resulting in varying degrees of smoothing. This is especially
true of the thin protrusions and indentations. The top row in Figure 2a shows the
original image togetherwith graphs of two horizontal cross-sections. The top graph is
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Fig. 1b. Top Right: Result of solving the eigenvalue problem. Top Left: The two
sections. Bottom Right: Result by L1 functional. Bottom Left: The two sections.

a section near the top of the image while the bottom graph is through the two ventricles
in the middle. The bottom row shows the effect of smoothing under anisotropic flow
using the original image as the initial u as well as for calculating the metric. Figure
2b shows the results of smoothing the zero-crossings of V#I7. The case ¢ = 1/2
is shown in the top row, the left frame being the initial zero-crossings. The case
o = 3/+/2 is shown in the bottom row. The anisotropic metric was computed from
the original (unsmoothed) image. Stability of the significant boundaries is indicated
by the close similarity between the curves in the two figures.
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Abstract. In this paper, we propose a new model for active contours to
detect objects in a given image, based on techniques of curve evolution,
Mumford-Shah functional for segmentation and level sets. Our model
can detect objects whose boundaries are not necessarily defined by gra-
dient. The model is a combination between more classical active contour
models using mean curvature motion techniques, and the Mumford-Shah
model for segmentation. We minimize an energy which can be seen as a
particular case of the so-called minimal partition problem. In the level set
formulation, the problem becomes a “mean-curvature flow”-like evolving
the active contour, which will stop on the desired boundary. However,
the stopping term does not depend on the gradient of the image, as in
the classical active contour models, but is instead related to a particular
segmentation of the image. Finally, we will present various experimental
results and in particular some examples for which the classical snakes
methods based on the gradient are not applicable.

1 Introduction

The basic idea in active contour models or snakes is to evolve a curve, subject
to constraints from a given image wp, in order to detect objects in that image.
For instance, starting with a curve around the object to be detected, the curve
moves toward its interior normal under some constraints from the image, and
has to stop on the boundary of the object.

Let £2 be a bounded and open subset of IR?, with 82 its boundary. Let ug be
a given image, as a bounded function defined on 2 and with real values. Usually,
12 is a rectangle in the plane and wo takes values between 0 and 255. Denote by
C(s):[0,1] = R* a piecewise C'' parameterized curve.

In all the classical snakes and active contour models (see for instance [7], [3],
[9], [4]), an edge detector is used to stop the evolving curve on the boundaries of
the desired object. Usually, this is a positive and regular edge-function g(|Vup|),
decreasing such that lim;_, ., g(t) = 0. For instance,

1
9(|Vuo|) = TI NG, raal

where G, * g is the convolution of the image ug with the Gaussian G, (z,y) =
o012 exp(—|z? +y?|/40) (a smoother version of ug). The function g(|Vuol|) will

M. Nielsen et al. (Eds.): Scale-Space’99, LNCS 1682, pp. 141-151, 1999.
(© Springer-Verlag Berlin Heidelberg 1999
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be strictly positive in homogeneous regions, and near zero on the edges. The
evolving curve moves by a variant of the mean curvature motion [14] with the
edge-function g(|Vug|) as an extra factor in the velocity.

All these classical snakes or active contour models rely on this edge-function
g, depending on the gradient |Vug| of the image, to stop the curve evolution.
Therefore, these models can detect only objects with edges defined by gradient.
Also, in practice, the discrete gradients are bounded and then the stopping func-
tion g is never zero on the edges, and the curve may pass through the boundary.
On the other hand, if the image wg is noisy, then the isotropic smoothing Gaus-
sian has to be strong, which will smooth the edges too. In this paper, we propose
a different active contour model, without a stopping edge-function, i.e. a model
which is not based on the gradient of the image ug for the stopping process.
The stopping term is based on Mumford-Shah segmentation techniques [13]. In
this way, we obtain a model which can detect contours both with or without
gradient, for instance objects with very smooth boundaries or even with discon-
tinuous boundaries. For a discussion on different types of contours, we refer the
reader to [6].

The outline of the paper is as follows. In the next section we introduce our
model as an energy minimization and discuss the relationship with the Mumford-
Shah functional for segmentation. In Section 3, we formulate the model in terms
of level set functions, compute the associated Euler-Lagrange equations, and
discuss the algorithm. We end the paper validating our model by numerical
results. We show in particular how we can detect contours without gradient or
cognitive contours [6], for which the classical models are not applicable, and also
how we can automatically detect interior contours.

Before describing our proposed model, we would like to refer the reader to
the works [10] and [11] for shape recovery using level sets and edge-function, and
to more recent and related works by [19], [17], and [8].

Finally, we would also like to mention [21] and [12] on shape reconstruction
from unorganized points, and to the recent works [15] and [16], where a proba-
bility based geodesic active region model combined with classical gradient based
active contour techniques is proposed.

2 Description of the model

Let C be the evolving curve. We denote by ¢; and ¢y two constants, representing
the averages of ug “inside” and “outside” the curve C.

Our model is the minimization of an energy based-segmentation. Let us first
explain the basic idea of the model in a simple case. Assume that the image
ug is formed by two regions of approximatively piecewise-constant intensities,
of distinct values v} and u§. Assume further that the object to be detected is
represented by the region with the value v and let denote his boundary by C.
Then we have up ~ u} inside the object (inside C) and ug =~ u§ outside the
object (outside C). Now let us consider the following “fitting energy”, formed by
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two terms:

Fi(C)+ F(C) = j lug — ey |*dedy + / [ug — co|*daedy,
wnstde( ) J outsude(C)
where C is any other variable curve. We say that the boundary of the object C
is the minimizer of the fitting energy:

inf {}7‘1 (€)+ Fg(c_r)} ~ 0~ Fy(C) + F2(C).

This can be seen easily. For instance, if the curve €' is outside the object, then
Fi(C) > 0 and F5(C) =~ 0. If the curve (' is inside the object, then Fy(C) =~ 0
but F5(C) > 0. Finally, the fitting energy will be minimized if the C' = C, i.e. if
the curve C is on the boundary of the object. These remarks are illustrated in
Fig. 1.

Fi(C) >0 F(C)>0 Fi(C) =0 Fy(C) =0
Fy(C) =0 F5(C) > 0 F5(C) >0 Fy(C) =0

Q@ & G §

Fig. 1. Consider all possible cases in the position of the curve. The “fitting energy” is
minimized only for the case when the curve is on the boundary of the object.

Therefore, in our active contour model we will minimize this fitting energy
and we can add some regularizing terms, like the length of C' and/or the area
inside C'. We introduce the energy F(C, ¢y, c¢9) by:

F(C,e1,¢3) = po-length(C') + v - area(insideC)

+ )\] j I'ﬁ.u ==y igdﬂ.'dy - A"g / l'i-‘.(} =3 (.'glgdfiffijl;’,
inside(C) Joutside(C)

where ¢; and ¢y are constant unknowns, and g > 0, v > 0, Ay, Ag > 0 are fixed
parameters.

In almost all our computations, we take » = 0 and Ay = Ay, Of-course that
one of these parameters can be “eliminated”, by fixing it to be 1. In almost all
our computations, we take = 0 and Ay = Xy. The area term in the energy can
be used for instance when we may need to force the curve to move only inside.

In order to balance the terms and their dimensions in the energy, if d is the
unit distance in the 2—plane, then p has to be measured in units of (size of wg)?-
d, and v has to be measured in units of (size of up)?.
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Finally, we consider the minimization problem:

inf P’(C‘7 01702). (1)

Che1,e2

2.1 Relation with the Mumford-Shah functional for
segmentation

The Mumford-Shah functional for segmentation is [13]:

FM%mcy:/ (| Vul|® + Blu — uo|*)dady + length(C), (2)
o\C
where «, § are positive parameters. The solution image « obtained by minimiz-
ing this functional is formed by smooth regions R; and with sharp boundaries,
denoted here by C.

A reduced form of this problem, as it was pointed out by D. Mumford and
J. Shah in [13], is simply the restriction of F**“ to piecewise constant functions
u, i.e. w = ¢; with ¢; a constant, on each connected component R; of 2\ C.
Therefore, the constants c; are in fact the averages of ug on each R;. The reduced
case is called the minimal partition problem.

Our active contour model is a particular case of the minimal partition prob-
lem, in which we look for the best approximation u of ug, as a function taking
only two values, namely:

| average(ug) inside C
]| average(uo) outside C,

and with one edge C, represented by the snake or the active contour.
This particular case of the minimal partition problem can be formulated and
solved using the level set method [14]. This is presented in the next section.

2.2 The level set formulation of the model

In the level set method [14], an evolving curve C' is represented by the zero level
set of a Lipschitz continuous function ¢ : 2 — IR. So, C = {(z,y) € £2: ¢(z,y) =
0}, and we choose ¢ to be positive inside C' and negative outside C. For the level
set formulation of our variational active contour model we essentially follow [20)].
Therefore, we replace the unknown variable C' by the unknown variable ¢ and
the new energy, still denoted by F(¢, c1, ¢a), becomes:

F(o,c1,c9) = p - length{¢ = 0} + v - area{¢ > 0}
+ /\1/ |ug — cl|2dxdy + /\2/ lwg — 02|2dxdy.
$=>0 ¢<0

Using the Heaviside function H defined by

1,ifz >0
HW){Qﬁx<o
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and the one-dimensional Dirac measure § concentrated at 0 and defined by

d
d(x) = %H(x) (in the sense of distributions),

we express the terms in the energy F' in the following way:

{lengthW =0} = [, IVH(¢)| = [, 8(8)IV4l,
area{p >0} = [, H(¢)dzdy,

and
{ Jyo luo —c1Pdady = [ |uo — c1|* H(¢)dzdy

f¢<o o — ca|*dwdy = fQ |ug — e2|*(1 — H(¢))dwdy.

Then the energy F'(¢,c1,co) can be written as:

F(¢,e1,c0) — u /Q 5Vl + v /Q H()dady
1 [ fun = eaP H(@)dody +a [ un = ea"(1 = H(¢))dod.
2 2

Keeping ¢ fixed and minimizing the energy F(¢,cy,co) with respect to the
constants ¢y and ¢, it is easy to express these constants function of ¢ by:

e1(d) = fQ ugH (¢)dxdy
1) =
Jo H(¢(z,y))dzdy
Jyuoll — H($))dady
Jo(1 = H(¢(z,y)))ddy
Keeping ¢1 and ¢y fixed, and formally minimizing the energy with respect

to ¢, we obtain the Euler-Lagrange equation for ¢ (parameterizing the descent
direction by an artificial time):

(the average of wy in {¢ > 0}), (3)

ca( ) (the average of ug in {¢ < 0}). (4)

%(f_ - 6(¢) {MdiV (%) -V — /\1(%0 — 01)2 + /\g(uO — 02)2 in £2,

5(¢) 99 _
W% =0 on 042.

In practice, we have to consider slightly regularized versions of the functions
H and ¢, denoted here by H. and é., such that é.(z) = H.(x).

A first possible regularization by C? and respectively C! functions, as pro-
posed for instance in [20], is:

life>e
Hl,s(x) - ?lij—zfl ) o )
5 1+;+;sm(?)} if |z| <e
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and
0if |z] >¢

O1-(z) = Hi (z) = { 2_15 {1 + cos (1—1")], if |z] <e.

In our calculations, we use instead the following C'*° regularized versions of
H and ¢, defined by:

1 €

1 2 T
H275($) = —(1 —+ ; aI‘ctan(g)), 5275(,’17) = Hé76($) = ; . m

2

As £ — 0, both approximations converge to H and ¢é. The first approxima-
tions Hi . and &1 . are C? and respectively C' functions, with 01, with small
compact support, arround the zero-level set. The second approximations Hs .
and d2 . are both C'°° functions, with é; . different of zero everywhere.

We want to formally explain here why we need to introduce the second ap-
proximations, instead of the first approximations, which have been used in pre-
vious papers (for instance in [20]). Because our energy is non-convex (allowing
therefore many local minima), and because 1 . has a very small compact sup-
port, the interval [—¢, ], the iterative algorithm may depend on the initial curve,
and will not necessarily compute a global minimizer. In some of our tests using
the first approximation, we obtained only a local minimizer of the energy. Using
the second approximations, the algorithm has the tendency to compute a global
minimizer. One of the reasons is that, the Euler-Lagrange equation acts only
locally, on a few level curves arround ¢ = 0 using the first approximation, while
by the second approximation, the equation acts on all level curves, of course
stronger on the zero level curve, but not only locally. In this way, in practice, we
can obtain a global minimizer, independently of the position of the initial curve.
Moreover, interior contours are automatically detected. We could also extend
the motion to all level sets of ¢ replacing 6(¢) in the equation by |V¢| (this
method is for instance used in [20]).

To discretize the equation in ¢, we use a finite differences implicit scheme
(we refer the reader to [1], for details).

We also need at each step to reinitialize ¢ to be the signed distance function to
its zero-level curve. This procedure is standard (see [18] and [20]), and prevences
the level set function to become too flat, or it can be seen as a L™ stability for
¢ and a rescaling.

This reinitialization procedure is made by the following evolution equation
[18]:

{ = sign(6())(1 — Vy)) -
¢(07 ) - gb(tv ')7
where (¢, -) is our solution ¢ at time ¢. Then the new ¢(¢, -) will be 4, such that
1 is obtained at the steady state of (5).

3 Experimental results

We present here numerical results using our model. For the examples in Fig-
ures 2-5, we show the image and the evolving contour (top), together with the
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piecewise-constant approximations given by the averages ¢; and ¢ (bottom).
In all cases, we start with a single initial closed curve. We choose the level set
function ¢ to be positive “inside” the initial curve, and negative “outside” the
initial curve, but in our model this choice is not important. We could consider
the opposite signs, and the curve would still be attracted by the object. Also,
the position of the initial curve is not important.

In Fig. 2 we show how our model can detect contours without gradient or
cognitive contours (see [6]) and an interior contour automatically, starting with
only one initial curve. This is obtained using our second approximations for H
and 4. In Fig. 3 we consider a very noisy image. Again the interior contour of
the torus is automatically detected.

In Fig. 4 we validate our model on a very different problem: to detect features
in spatial point processes in the presence ol substantial cluster. One example is
the detection of minefields using reconnaissance aircralt images that identify
many objects that are not mines. These problems are for instance solved using
statistical methods (see for instance |5] and |2]). By this application, we show
again that our model can be used to detect objects or features with contours
without gradient. This is not possible using classical snakes or active contours
based on the gradient.

We end the paper with results on two real images (Fig. 5 and 6.), illustrating
all the properties of our model: detecting smooth boundaries, scaling role of the
length term in the size of the detected objects, and automatic change of topology.
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Fig. 2. Detection of different objects in a synthetic image, with various convexities and
with an interior contour, which is automatically detected. Here we illustrate the fact
that our model can detect edges without gradient. Top: «p and the contour. Bottom:
the piece-wise constant approximation of ug.
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Fig. 5. Detection of a galaxy with very smooth boundaries.

Fig. 6. Detection of the contours of a palaxy.

4 Concluding remarks

In this paper we proposed an active contour model based on Muniford-Shah segmen-
tation techniques and level set methods. Our model is not based on an edge-function,
like in the classical active contour models, to stop the evolving curve on the desired
boundary. We do not need to smooth the initial image, even if it is very noisy and in
this way, the locations of boundaries are very well detected. Also, we can detect objects
whose boundaries are not necessarily defined by gradient or with very smooth bound-
aries. The model automatically detects interior contours, starting with only one initial
curve. The initial curve does not necessarily start around the objects to be detected.
Finally, we validated our model by various numerical results.
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Abstract. Multiscale segmentation respectful of the visual perception
is an important issue of Computer Vision. We present an image model
derived from the level sets representation which offers most of the prop-
erties sought to a good segmentation : the borders are located at the per-
ceptual edges; they are invariant by affine map and by contrast change;
they are sorted according to their perceptual significance using a scale
parameter. At last, a compact version of this model has been developed
to be used in a progressive, and artifact-free, image compression scheme.

1 Introduction

One of the basic problem of image analysis is to define a mathematical repre-
sentation that offers suitable properties upon which subsequent computer vision
algorithms would operate.

The edge detection theory of Hildreth and Marr [19] [26] was one of the
first attempts to solve this problem using a multiscale analysis. The raw primal
sketch of D.Marr is based on the detection of the intensity changes in the image,
by recording the zero-crossing location of the image filtered by the Laplacian
of the Gaussian at a given scale. The edges are then defined as discontinuity
lines, and the scale parameter allows to discriminate the important atoms. This
approach has been successfully developed in the past, since it meets almost all
the requirements of a “good primal sketch” (see e.g. [10] for an optimal edge de-
tector). These last years have seen interesting reformalizations of this multiscale
edges representation, in a wavelet [18] and in a variational [21] framework.

However, this approach still suffers of some drawbacks that do not make it
always suitable for some processes : the representation is not invariant under
contrast changes. This means that the edge locations of an image on which a
contrast change has been applied differ from the original edge locations. It is
well known since M.Wertheimer [25] that the visual perception of edges does
not depend of the light level. Therefore, edges should not be computed using a
discrete derivative. This deviation is a major inconvenience for pattern recogni-
tion processes, but it does not really apply to compression problem. This last

M. Nielsen et al. (Eds.): Scale-Space’99, LNCS 1682, pp. 152-163, 1999.
(© Springer-Verlag Berlin Heidelberg 1999
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domain is concerned by the completeness of the representation. Although the
classical linear multiscale edges representation is mathematically not complete,
algorithms which allow to reconstruct an image close to the original have been
described [14] [18]. But when the representation is altered by a compression
process, visual artifacts (e.g. Gibbs phenomena) appear on the reconstructed
image.

More recently, it has been proved in [2] that, under fairly conditions (includ-
ing invariance under change of contrast, under change of scale and under affine
map), there exists only one regular multiscale analysis, the so-called AMSS (for
Affine Morphological Scale Space). An image is decomposed into this scale-space
using a parabolic evolution equation, for which viscosity solutions [9] exist. Be-
cause of the morphological invariance, the evolution of the image along the scales
is equivalent to the evolution of its level curves, which are defined as the border
of the level sets. A level set is a set of pixels with gray levels below (or above) a
given threshold.

The representation of an image by its level sets has been proposed by the
Mathematical Morphology school [22] as a geometrical decomposition which of-
fers the contrast invariance. This representation can be viewed as another raw
primal sketch, for which all good properties are met but the compactness. Re-
cently, such a decomposition based on the connected components of the level
lines has been described [20], together with a fast algorithm. This representation
is well adapted to number of image analysis problems (as pattern matching) but
it still suffers of a relatively large amount of data. Using AMSS, a simplifica-
tion of the image can be performed to reduce the amount of data. However, the
structure of the image is then considerably weakened and the filtered image does
not sound natural.

In this paper, we introduce another model based on the level sets that can
be coded using a very small amount of data. We propose in Section 2 a new
definition of morphological edges, based on the selection of the most perceptive
level sets. We use the conjecture expressed in [6] about the atoms of the visual
perception, made by pieces of level lines joining junctions. The regions formed by
these level sets compose a segmentation at a given scale. Section 3 describes our
image model : using an elliptic PDE [7], the image is approximated by smooth
and non-oscillating functions on each regions given by the segmentation. This
defines a sketch image which carries the most important structures, up to the
scale of the less perceptive edges. According to the quantity of pixel’s values
retained in the border’s regions, the image model may be used as a compact
image representation. A straightforward application of this compact model is
the design of a compression scheme that respects the human visual system. We
illustrate this capacity in Section 4.

2 Morphological edges and multiscale segmentation

This section addresses the problem of computing a multiscale and morphological
segmentation P = {P;/i = 1,...,n} such that the borders of the most impor-
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tant structures match the borders of the regions P;. A classical answer would be
to try to extract the edges, in the sense of the discontinuity lines in the image.
However, the use of classical edge detectors is not consistent with the morpho-
logical approach, as it is well explained in [6], essentially because such edges are
not contrast invariant. In this paper, V.Caselles, B.Coll and J.M.Morel argue
that the atoms of the perception, that is, the basic elements on which further
representations may be built, are not edges but “pieces of level lines joining
Jjunctions”.

Let us first recall what level lines are. Let {2 be an open bounded subset
of R?. The total variation of an image u : 2 — IR can be simply defined, if
u e CH), as

:/ |Vu(z)| dz. )
7

If the gradient of u, Vu, does not exist or is not continuous but if v € L*(£2), (1)
is generalized into

—Sup{/ )(dive)(z) de / ¢ € CL(£2,R?*) and || <1}.  (2)

We say that « is of bounded variation (v € BV($2)) if TV(u) < +oo. A set

P C 2 has finite perimeter if per(P) = TV(llp) < +oo. In that case 9* P, the

essential boundary of P, is an union of a countable set of Jordan curves [8].
Let Ly be the lower level set A and M, the upper level set u of u:

Ly ={z e 2/u(z) <A}, M, = {z € 2/u(z) > pn}. (3)

We shall call level set any lower or upper level set. The family (L) or (M,),
is a complete representation, since one can reconstruct the image by

u(x) = ir/{f{x € Ly} = sip{x eM,}. (4)

If v is BV, then all level sets are of finite perimeter and their essential bound-
aries constitute the level lines of u. If we map the level lines of an image for a
given set of levels {A1 < Ay ... < A, = +oo}, we get a segmentation of the image
with sets of type {x € £2/X;_1 < w(z) < A}, also called topographic map [6] (see
first line of Figure 3). More generally, one can consider a segmentation achieved
using only some connected components of lower levet sets (L) and upper level
sets (M, ),. Notice that pieces of some (but not all} level lines are located at the
perceptive edges and that conversely, all perceptive edges correspond to pieces
of some level lines. A topographic map has also interesting invariance proper-
ties : the map commutes with any affine transformation performed on the image
(translation, rotation, and zoom) and it does not change when the contrast of the
image is modified (the so-called morphological property). Thus, a topographic
map achieves a morphological segmentation with suitable properties to build an
image model based on perceptual edges. The question is now : how should we
select the level sets so that the level lines match as well as possible the visual
perception of edges 7



A Compact and Multiscale Image Model Based on Level Sets 155

We shall emphasize that the physical generation process of an image implies
some events (as occlusions and transparencies) which cause singularities on the
topographic map : level lines joining some other level lines with a shape (more or
less) like a T in case of an occlusion. The T-junction singularity is one of the most
significant principles of the visual reconstruction, which allows a geometrical
constitution of the visual objects. It is in the heart of the Gestaltist’s theory, and
in particular of the Kanizsa’s work [15] [16]. Each time a T-junction is detected,
our perception reconstructs the occlusion of an object by another one, and the
border of the occluded object is mentally extended behind the horizontal bar of
the T. In the left drawing of Figure 1, the observer reconstructs black disks from
quarters of disks only. This phenomenological description, originally formulated
by G.Kanizsa in the case of drawings, can be easily adapted to digital images
using level lines [1]. The main difference lies in the fact that on drawings, T-
junctions occur where the line of the pen meets a previous line only, that is, at
places where an object begins to come in front of another. On digital images
of natural world, the objects are never uniformly shined, and therefore even
unvaried colored surfaces present lot of level lines. At the borders of an object,
these level lines meet the level lines of the background and generate multiple
T-junctions : occlusions occur along all the borders. The shapes of the objects is
then essentially characterised by the T-junctions on them, and by the pieces of
the level lines joining these junctions. In this way, one may give a morphological
definition of edges : we call morphological edge a piece of level line joining any
number of T-junctions. The more a morphological edge contains T-junctions,
the more it is perceptually significant : the number of T-junctions contained in
a morphological edge behaves as an inverse scale parameter.

A
N

(a) (b)

Fig.1. The visual power of T-junctions. The human visual system reconstructs the
black objects of the drawing (a) as disks partially covered by boxes. This reconstruction
is due to the T-junctions, which are abvious on the topographic map (b). One of the
Kanizsa’s principle says that the border of the occluded object has to be extended so
that to preserve its curvature.

To detect the significant T-junctions on natural images, we use an algorithm
adapted from [6] which ensures the existence of three connected components with
non-negligible size, one belonging to the occulting object, one belonging to the
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occulted object and one part of the background. The geometry of every recorded
T-junction is characterized by only two of these three connected components.
For our image model, we consider the one wich is a lower level set Ly and the
one which is an upper level set M,, (see Figure 2). In this way, morphological
edges are composed by borders of connected components denoted Lf\' and M, [j
Notice that in the discrete case §2 C 722, the border of a region lies in the shifted
grid (72 +1/2)%. If we note &P the internal border of a region P (which lies in
the 7ZZ? grid), at every T-junction & € (Z+1/2)? can be associated the neighbor
pixels 2§ € L and yf € IM}.

connected component of {x/10 <u(x) <30}

T-jynction x

k
M
30

Fig. 2. The T-junction detection algorithm ensures the existence of three significant
connected components, one being part of a lower level set Ly and one being part of an
upper level set M, (in this example, A = 10 and g = 30). The T-junction point = does
not belong to the pixel’s grid, but the points 2% and yﬁ do.

Since each morphological edge belongs to a border of a set L% or M [j, the
issue is to choice, from all possible connected components of the level sets family
(Lx)x and (M, ),, the ones that contain the greatest numbers of T-junctions :

Multiscale segmentation algorithm -

Parameter : s € [0,1] is the scale of the segmentation.

Step 1 : decompose the image u into its level sets (La)x and (M,),.

Step 2 : compute the sequences of T-junctions Ty, = (x5)ak, T = (yZ)u,k
and the associated connected components Lf\' and M[j Let N be the number of
T-junctions : N = |T1,| = |Tn|.

Step 3 : sort the sequences L% and M[j in the order given by the number of
T-junctions : L% is before L, if [T, nALY| > [T NALE| and M} is before M[j,/
if [T MOME| > [Tar oM.

Step 4 : the multiscale segmentation P is made by the first N(1—s) connected
components of the sequences L5 and M[j

When this algorithm ends, the topographic map defined by the level sets in
P is a morphological segmentation of v so that each 0F; is made by pieces of
morphological edges : P = {P;}; = {L5}x U {M}}1 .. The resolution of the
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segmentation that is, the visual significance of the less perceptive edge, is given
by the scale parameter s : when s tends to 0 almost all level sets are mapped (even
those which are not perceptually significant), and when s tends to 1 only level
sets with borders matching the most important perceptual edges are considered.
Example of a segmentation at two different scales is shown Figure 3, at the first
column of the second and third lines.

Remark

— The scale is not directly related to the size of the regions. Although level
sets of big size are likely to contain more T-junctions than level sets of
smaller size, the level lines corresponding to a border of a small object may
be recorded at a coarse scale, while the level lines corresponding to the
gradation of the light inside a large surface may not.

— The algorithm works for natural images (i.e. photographs of the real world)
only. For synthetic images, one would like to replace the T-junction crite-
rion by something related to the contrast of the level lines. With natural
images, we should not use the contrast, since the segmentation would not be
morphological.

3 Compact and multiscale image model

The compact image model is based on the multiscale segmentation and on pixel’s
values needed to reconstruct an approximation of the original image.

We use a piecewise-smooth and non-oscillating approximation v, of the image
u in each region defined by the multiscale segmentation. In this way, we remove
the upper part of the total variation of . In [13], we show how the total variation
can be related to perceptual microtextures : microtextures correspond to fast
oscillating parts at every scales, and therefore are associated to high variations.
On the other hand, edges surrounding flat regions generate little variations. The
coarea formula [11] allows to link the total variation of w with the total length
of its level lines :

TV(u) = /]R per(Ly) dA. (5)

Therefore, our morphological approach leads us to split the information between
edges and microtextures. More precisely, the compact image model tends to
remove the microtextures when the scale s increases, whereas borders of the main
structures are kept. For this reason, the approximation v, is a sketch of u at the
scale s of the segmentation. One may also want to conserve the microtexture and
to code them apart. This can be done by computing the error image w_, = u—v;,
and by removing some residual sketch information in wq_,. This problem is
developed in [13] and will not be addressed here.

Our model contains two types of data : geometrical data record pixel locations
on the grid, and numerical data are related to the gray level values at these
locations. The numerical data are used to compute the sketch s on u defined
on each region P; of the segmentation. The multiscale segmentation algorithm
ensures that no important edge can be located inside P; : this explains why
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the image may be well approximated by a piecewise-smooth function v,. In
addition, the approximating function is chosen non-oscillating so that it catches
the sketch and not the textures. How should be chosen the data to allow a
good approximation 7 Since the border of P; is made by morphological edges,
the knowledge of w in the internal and external side of each edge is the basic
information. In order to get a compact model, we propose to retain only two
samples of u for each level line (one for the internal side and one for the external).
Since the external side corresponds to the internal side of the adjacent level line
(remember that both lower and upper level sets are recorded), it is actually
enough to retain one value per level line.

A pixel z of P; may be associated to several morphological edges (it may
belong to different level sets). In that case, vs(z) is set to be the closest value
to w(z). This operation corresponds to chose the smallest level set, and it is
implemented by means of an “inf” (lower level sets) or a “sup” (upper level
sets) on all level lines containing z. In the internal side of a level line 9P;, we
have to chose how to represent a sequence of gray level values by only one. The
values may be chosen to lower the variation of vs between two neighbouring
regions of a T-junction. This not only helps to get a non-oscillating function,
but also prevents the appearance of visual artefacts near the edges by keeping a
low contrast. In that case, the value is the “sup” of the gray levels (lower level
sets) or the “inf” (upper level sets). Another possibility is to try to preserve the
average gray level of the border by computing the median or the mean value.

These remarks lead the following algorithm which computes the values ¢; ()
of v, on each OP; :

Algorithm to get samples of the approximating function -

Step 1 : Compute v, on internal boundary associated to lower level sets, as
follows. VP, € P,Yx € OF;, if Ik, \Jx € OLY, and if ;(z) has not been already
defined, define

gi(z)= inf  sup uly). (6)
A k/zcdLk ycoLk

Step 2 : Compute vy on internal borders associated to upper level sets, as
follows. VP, € PNz € 0P, if Ak, u/x € aM[j, and if ¢;(x) has not been already
defined, define

¢i(z) = sup inf u(y). (7)
pokjmeoMy yEOME

To summarize our discussion, the compact image model contains the follow-
ing data :

— the segmentation map (9F;);;
— the sequence of samples (¢;(2))izeop,.

Example of such data is shown Figure 3, at the second column of the second and
third lines.

The issue of computing an approximating function vs from the samples
(¢:(2))i:ncop, belongs to the class of interpolation problems. Different approaches
using image interpolation techniques have been described in the literature (see
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for example [17],[4],[12]), some of them including the same motives than ours of
catching the image sketch in a compact way. Recently, a morphological interpo-
lation technique for image coding has been proposed by J.Casas in [5]. In our
knowledge, our work is the first one to use a segmentation map not based on a
classical (and non morphological) edge detector, but on a selection of the level
sets that carry the atoms of the perception.

We shall retain the work of V.Caselles, B.Coll and J.M.Morel in [7], where
they extend the Casas’ morphological interpolation technique, and where they
prove that any interpolation operator (satisfying fairly conditions, such as mor-
phological, invariance and regularity properties) comes down to let evolve the
interpolating function r; on each P; with the following equation :

ow 9 ( Dw Duw )
—_— = —\ —— |Vt >0, Yz € P
ot |Dw|’ |Dw| (8)
w(0,z) = wo(x) Yz e P;

w(t,z) =wo(x) = ¢;(x) Vi >0, Vo edP,.

We have written by Dw the gradient of w along the spatial coordinates, and by
D?w the Hessian of w, that is, the matrix of the second derivatives of w.

Under some reasonable conditions [3], there exists a unique continuous vis-
cosity solution w(t, z) of (8) such that w(¢, .) is a Lipshitz function for all ¢ > 0 on
each P;, with uniformly bounded Lipschitz norm. When ¢ — +o0, w(t,.) — r;
with r;9p, = ¢;. The function r; is an absolutely minimizing Lipschitz inter-
polant of ¢; inside P;, or AMLE for short. The evolution equation (8) can be
solved using an implicit Euler scheme, so that to transform the evolution prob-
lem to a sequence of non linear elliptic problems, which leads in a discrete case
to an implicit difference scheme. The sketch v is defined by v; = r; on each
region P; of the multiscale segmentation P.

Figures 3 and 4 give examples of a sketch image at different scales.

4 Application to image compression

In order to show how the multiscale image model is compact, the geometrical and
numerical data have been error-free compressed using adapted coding techniques.
We do not claim that our compression scheme gives better results than well
established compression standards, further developments are needed before we
could present a fair comparison. We just wish to mention the main advantage
of a model based on level sets : the segmentation is not only invariant by affine
map and by contrast change, but it permits to code very precisely the perceptual
edges. On the contrary, compression schemes based on a space-frequency or on
a linear scale-space representation cannot respect the perceptual edges when
the compression ratio is to high : blocking artifact called Gibbs phenomena
appears in the neighborhood of the edges, due to the quantization of the Fourier
coefficients which have a bad decay at discontinuities. The same phenomena
occurs with wavelet coefficients, althought their space-localization reduces the
artifacts.
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Fig. 8. This plate illustrates the multiscale image model. First line, from left to right:
Original Lenna 256 x 256 image; a topographic map which gives the borders of the lower
level sets Ly for A = 8n,n = 0,...,32; reconstruction using the lower level sets of the
previous image only. Second line, from left to right: segmentation at scale s = 0.65;
samples ¢;(x) used to compute the sketch; sketch at scale s = 0.65. Third line, from
left to right: segmentation at scale s = 0.90; samples ¢; () used to compute the sketch;
sketch at scale s = 0.90.

Figure 5 illustrates this problem. We have compressed the “House” (a simple
image with strong edges) at a high compression ratio of 38. Both JPEG [24] (the
standard for Fourier-based compression) and the Shapiro’s EZW [23] (Embedded
Zerotrees Wavelet, one of the best wavelet-based compression scheme) algorithms
give very poor results. Our compact image model allows to code the “House”
at the same compression ratio without distortion of the edges. OI course, only
the most important structures are preserved. To keep some texture, we propose
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Fig. 4. Multiscale analysis of a view from a satellite. (a): original 266 x 256 image. (b):
sketch at scale s = 0.90. (¢): sketch at scale s = 0.96. (d): sketch at scale s = 0.99.
Only 1% of all lower level sets and 1% of all upper level sets are used to reconstruct
Lhis image.

in [13] to compute the error image and to compress it using a linear scale-space
representation : since the error image does not have to code edges, we do not
introduce blocking artifact.

5 Conclusion

The level sets decomposition is a well-known tool to get an invariant and mor-
phological image representation. But it is perceived as a redundant structure
generating an huge quantity of data. In this paper, we propose a method to
select the most representative level sets. From these level sets, a sketch image
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Fig. 5.
Comparison with linear scale-space and space-frequency compression schemes. (a): orig-
inal "House” image. Size 256 x 256, 8 bpp (bit per pixel). (b): Compact image model
of (a) at a scale that leads a bit rate of 0.21 bpp. This bit rate corresponds to a com-
pression ratio of 38. (¢): Image (a) compressed at the same ratio using a biorthonormal
wavelet scheme (EZW). (d): Image (a) compressed at the same ratio using a windowed
Fourier scheme (JPEG).

can be reconstructed. It contains the borders of the most important structure,
up to a scale parameter. This requires a new definition of edges, as level lines
containing a great number of topological singularities (the T-junctions). This
approach allows to build a non-linear scale-space image model respectful of the
human visual system, and with a compactness that makes it suitable to perform
image compression at low bit rate.
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Abstract. It is well known that a conveniently rescaled iterated convo-
lution of a linear positive kernel converges to a Gaussian. Therefore, all
iterative linear smoothing methods of a signal or an image boils down
to the application to the signal of the Heat Equation. In this survey,
we explain how a similar analysis can be performed for image iterative
smoothing by contrast invariant monotone operators. In particular, we
prove that all iterated affine and contrast invariant monotone opera-
tors are equivalent to the unique affine invariant curvature motion. We
also prove that under very broad conditions, weighted median filters are
equivalent to the Mean Curvature Motion Equation.

Introduction

The goal of this paper is to precise rigorously the link between the morphological
Scale Space Theory and the Mathematical Morphology Theory. The equations
we will consider are the affine morphological scale space of Alvarez, Guichard,
Lions and Morel [1] and the Motion by Mean Curvature (see for example [12],
[9]) . The reason why these equations are so relevant is that they are invariant
with respect to some large classes of geometric transformations and contrast
change. We will introduce approximation schemes which shall have a theoretical
interest in the affine invariant case, and both theoretical and practical interest
for the Mean Curvature Motion. The plan is the following: in the first section,
we recall some of the main results of Mathematical Morphology and particu-
larly the characterization of operator commuting with continuous nondecreasing
functions (contrast change). In section 2, we prove that, under very smooth as-
sumptions, any rescaled affine and contrast invariant operator is asymptotically
equivalent to the only affine and contrast invariant differential operator. This
consistency results will provide the convergence result is section 3, in which we
prove that if the scale is adequately chosen, then the iterated operator converges
to the affine and contrast invariant nonlinear semi-group. Section 4 will be de-
voted to the proof of the convergence of an algorithm previously introduced by
Bence,Merriman and Osher in [5]. The results we prove are a generalization of
the results proved by Guichard and Morel in [14] and Catté in [7] for the affine
case, and generalize or revisit the results in [5], [8], [10], [11], [15].

M. Nielsen et al. (Eds.): Scale-Space’99, LNCS 1682, pp. 164-174, 1999,
(© Springer-Verlag Berlin Heidelberg 1999
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1 Mathematical Morphology

1.1 Basic Results

It is well known that in image analysis, one of the most basic tasks is to smooth
an image wo(z) for noise removal and shape simplification. Such a smoothing
should preserve as much as possible the essential features of an image. This
requirement is most easily formalized in terms of invariance. Two invariance
requirements are basic in this context : given a smoothing operator T, it should
commute with contrast changes, that is, increasing functions. Indeed, for physical
and technological reasons, most digital images are known up to a contrast change.
The second obvious requirement is geometric invariance : since the position of
the camera is in general arbitrary or unknown, the operator 1" should commute
with translations, rotations, and, when possible, with affine and even projective
transforms of the image plane. The School of Mathematical Morphology [18]
[21] was one of the first to rigorously study and characterize operators acting on
sets. We shall see that this theory is intimately linked with contrast invariant
operators acting on images. As an image in known up to a contrast change,
it is better suited to consider the equivalence classes of functions that can be
obtained from one another wvia a contrast change. An obvious consequence of
this, is that an image is completely determined by the geometry of its level sets:
if u: IRY — IR is a grey level image and A € IR, we call level set of w at the
value A the subset of IRY x,(u) = {z € RY, u(z) > A}. Tt is obvious that two
elements of the same equivalent class will have the same level sets. We also note
that the family x,(u) satisfies the following properties :

A< p = xulu) Cxa(u), (1)

) = [ Xaulw): (2)

<<

Conversely, we can prove that if (X,)acr is any family of subsets satisfying
equations (1) and (2), then it determines an equivalence class of images. More
precisely, if we set u(z) = sup{A s.t. z € X,}, we see that the level sets of u
are the X,’s. It is true (though not trivial) that any function with the same
level sets is obtained from u» by applying a contrast change. For this reason, the
first object of Mathematical Morphology was to study operators acting on sets
respecting the usual ordering given by inclusion. Since no point is a priori a
privileged reference, translation invariant operators are particularly interesting
and we shall always make this assumption.

Definition 1. Let T be an operator acting on a subsets of RY. We say that T
is morphological if it is nondecreasing for the inclusion ordering and commutes
with translations.

Matheron proved the following



166 F. Cao

Theorem 1 (Matheronl). If T is a morphological operator acting on sets,
then there is a family B of subsets of RY called structuring elements, such that

VXcRY, TX =[] X -y
BecByecB

The family B is not unique but we can take B = {X C RY,0e TX}.

We saw that the knowledge of families of sets satisfying equations (1) and (2) is
the same as the knowledge of a function up to a contrast change. We would like
to transpose Definition 1 and Theorem 1 to functions. We are led to

Definition 2. Let F be a set of functions on RY containing continuous func-
tions and characteristics functions of level sets of elements of F. We say that
T . F — F is morphological if and only if T is monotone (that is u < v
in RY implies Tu < Tv in RY ), commutes with translations and continuous
nondecreasing functions (contrast changes).

Matheron then proved the expected result

Theorem 2 (Matheron2). Let T' be an operator defined on a set of functions
F as in Definition 2. Then T is morphological if and only if there exists a family
B of subsets of IRY called structuring elements, such that

Tu(x) = ]sgu 1nf u(x+y). (3)

In the same way there exists an other family B’ such that

Tu(x) = ér)IfB/ supu(x +y). (4)

1.2 Scale Space and Mathematical Morphology

In a completely different setting, the concept of Scale Space was introduced
n [16] [17] [22]. To fix notations, it consists in a family of operators (T3):>0
over real valued functions (grey level images) in R (N > 2). Let u, = Tyug: it
corresponds to smoothed versions of the image depending upon a scale parameter
t. A complete axiomatization was presented in [1] [2] and all scale spaces were
classified with respect to their geometrical invariance properties. It is then proved
that w; is solution of a second order parabolic PDE. Among the relevant PDEs,
we find the Mean Curvature Motion (MCM)

2
ou  Au (D*uDu, Du). (5)

ot | Dul?
Another important result is that there exists a single Affine Morphological
Scale Space (AMSS), i.e. commuting with nondecreasing functions, invariant
by translation, grey level shift and affine mapping of IRY. Moreover, this scale
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space is not projective invariant. Thus, in the frame of scale space theory, projec-
tive invariance and contrast invariance are incompatible. The affine and contrast
invariant PDE in IRY is

1

au 1 N1 M
=7 (% 1) = [Dult ™ (H )\i) H(A, - An-1), (6)
i=1

where A; is the i** principal curvature of the level surface of w(-,¢) at x and H
is equal to 1 if and only if the \; are all strictly positive, to -1 if they are strictly
negative and 0 otherwise. The principal curvatures of v are the eigenvalues of the
second derivative D?u restricted to the hyperplane orthogonal to Du, divided by
| Du|. Of course, these curvatures are only defined when the gradient is different
from 0. Note that from Matheron Theorem, if the considered scale space is
morphological the operator T; can be written in an “inf-sup” form with a family
of structuring elements B; depending on the scale t. When ¢ tends to 0, the
operator T; — Id is approximately the infinitesimal generator of the nonlinear
semigroup of the equation. The basic idea, is to retrieve the solution of the PDE
by constructing an operator that is tangent to the infinitesimal generator. In [8],
Catté, Dibos and Koepfler already established a link between both point of views
(Matheron’s Mathematical Morphology and geometrical PDEs) by proving that
if the family of structuring elements B is an isotropic family of segments centered
at the origin with equal length, then adequately rescaled iterated Matheron filters
converge to the viscosity solution of the Mean Curvature Equation. A more
general result was presented in [20], where structuring elements were exhibited
to approximate equations of the type

ou

Fri | Du|( curv w)”

in the plane, for all v > 0.

2 Approximation scheme for the Affine Scale Space

In this section, we prove (under some basic assumptions that are not restrictive
at all) that if we adequately scale any Matheron morphological affine invariant
operators, then the iterated associated operators converge to the semi-group of
the affine invariant, geometrical evolution PDE of the classification established
in [1]. Let us precise that we say that an operator is affine invariant if it commutes
with affine transformation with determinant equal to 1. In [13], it is proved that
it must be covariant with respect to any affine transformation, but a scale factor
simply depending on the determinant of the transformation must be introduced.
We recall that our schemes in the affine invariant case cannot be used to numer-
ically approximate the Affine Scale Space. This has been tested but the results
were not much satisfying, since because for numerical reasons, affine invariance
is only approximated. In the case of inf-sup schemes, this approximation is very
poor if the family of structuring elements is the family of ellipses with area 1.0n
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the contrary, a very fast morphological and affine invariant algorithm is pre-
sented by Moisan in [19] to compute the solution of the AMSS Equation in the
two-dimensional case. By Matheron Theorem, this scheme can also be reformu-
lated in terms of inf-sup, but the family is less simple. The extension of Guichard
and Morel’s result to any dimension is interesting because three-dimensional im-
ages and even movies of three dimensional images are already available in the
medical domain. These last ones can be considered as four-dimensional images,
whereas two-dimensional movies can also be seen as three-dimensional images.
From Matheron’s Theorem 1, we can also assume that T' is affine invariant if
and only if the family B is also affine invariant. Let B be a family of structuring
elements. Let us introduce a scale parameter s and consider the family of struc-
turing elements B, obtained from B by a simple dilation: B, = s'/VB (N being
the space dimension). The real s is thus a scale parameter linked to the size of
the structuring elements. Let us now introduce the operator

ISsu(x) = inf supu(x+y) (7)
BeB. ycB
and the dual operator
STu(x) = sup inf u(x+y). (8)
Bek, ¥EB

Proposition 1. Let B an affine invariant closed (with respect to the Hausdorff
distance) family of structuring elements which are closed, convex, symmelric
with respect to 0, with measure 1 and let u : RY 5 R be a C® function. Then,
there exists a posilive constant cg only depending on B such that

o ISu(x) —u(x

ti 5O e )
s—0 SN+FI

where p = |Du(x)| and A1, ..., An_1 are the principal curvatures of the level

surface going through x (in the formula above, the “+” exponent is the positive
part of a number, that is to say AT = max(),0)).

We have a similar resull by replacing IS by SIs (oblained by swapping inf and
sup) and the \; by A\, .

We shall also need consistency results on the alternate operator SI1;1Ss. To this
end, we prove that except at critical points, consistency is uniform. We then
establish the link between consistency and convergence. Let b = s2/(V+1 and
Ty = SI1S;.

Theorem 3. Let ug € BUC(IRY) (bounded and uniformly continuous). The
approvimate solutions up, defined by

Vn e N, ¥t € [(n — 1)h,nh], up(x,t) = Tiluo(x) (10)
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converge towards the unique solution in BUC(IR™) of

u N-1 N+1
= e| Dul (H )\i) H(M, - An—1). (11)
i=1

with initial data wy. Here H(A\y, -+, An_1) = —1 if the N\; are all negative, 1 if
they are all positive and 0 otherwise. Convergence is uniform on every compact
set of RY x IR, .

We sever the proof of consistency in a serie of lemmas. We do not enter into
details since the proofs are a bit long a technical. A complete version is given
in [6]. To simplify the notations, we denote by IS(pz + az? + Zf\;l biy? +
Zf\;l e;ixy;), the value of the operator I.S; applied to the polynomial function

and taken at the origin. Let s = rV 12,

Lemma 1. Set
cp = ISi(x+yi+ - +yk1)-

If the structuring elements are closed, conver, symmetric with respect to the
origin and with measure 1, then cg > 0.

Lemma 2. Assume thatp > 0. Ifby,...,by_1 > 0 then

1

ISo(pz + b1y} + -+ byo1yd 1) = caps T (A Ay_) T (12)

where \; = 2b;/p is the i'" principal curvature. If one of the b; is nonpositive,
then

ISs(pz +biy? + -+ by_1y¥ 1) = o(s¥/N T (13)

Moreover, in both cases, the Inf-Sup s attained for structuring element included
in a ball with radius which is o(r).

Lemma 3. There exists a function G(p, (b;),(c;)) bounded on every compact
subset of IR} x RY 1 x RV L such that

N—1 N-1 N-—1
2 2 1
ISs(pz + az® + E biy? + E ciTY;) :CIBPN+13N“(H b )m

All these lemmas are based on estimates of the size in any directions on structur-
ing elements attaining values near the infimum in the IS5 operator. The proof of
these lemmas, though not very complicated and using only basic mathematical
tools, are heavy and can be find in [6]. Theorem 1 is a simple consequence of
this bench of lemmas, since it suffices to use translation and rotation invariance
to write Taylor expansion of any regular function in the form used in Lemma 3.
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We did insist in Lemma 2 on the fact that the structuring elements attaining the
right value of the inf-sup operator were included in a ball with radius r = s'/N+2,
This technical detail is in fact crucial since it allows to assert that I5; is basically
a local operator (which it is a priori not, since the family of structuring element
is not bounded). More precisely, we can bound IS, from below and from above
by two operators that are really local. Define

Liu(x)=inf  sup u(x+y), (14)
BEB yepnB(0r)
and
Sesu(x) = inf supu(x+y). (15)
BeB yeB
BCB(0,r)

Then, it is clear that Iyu < ISsu < Syu (for I; we take the supremum on smaller
sets, and for Sy, we take the infimum on a subfamily of structuring elements).
Now, the fact that, in Lemma 2 above, the structuring elements for quadratic
forms are included in the ball B(0,r) implies that I, Ss and IS, are nearly equal
since by only taking points in B(0,r), no information vanished. By construction,
1su(0) and Ssu(0) are local (they only depend on values of » in the ball B(0,r).
Thus, to compute IS,u(0) for a C* function, we can only consider the values
of w in B(0,7) by using Taylor expansion. The rest in this expansion is O(r®)
and the definition of r is precisely chosen to make this rest negligible in front
of the asymptotic term we give in Lemmas 2 and 3. In addition, we can prove
that this argument also implies that the error term appearing in the consistency
results is uniformly bounded in a ball with fixed radius near a point where the
gradient and the curvature are not zero. A consequence is that consistency is
uniform near those points. Uniform consistency in a sufficient condition to prove
convergence. Another consequence is that we also get consistency results for the
alternate operator SI;IS;.

Proposition 2. Let B a family of structuring elements invariant by SL(IRN)
with elements that are closed, convexr symmetric with respect to the origin and
with Lebesque measure equal to 1. There exists cp > 0 such that for any C°
Junction w, such that Du(x) #£ 0

o SLISu(x) —u(x o
lim (2) ( ):cB|Du(x)|(/\1~~~/\N,1)N1+1H(/\1,...,/\N,1) (16)
s—0 SN+1

where the (A\;) are the principal curvatures of the level surface passing through x,
H =1 if all the curvatures are positive, H = —1 if they are negative and H = 0
elsewhere.

The gain here is that this operator is consistent with the true generator of the
Affine Morphological Scale Space (contrary to the IS5 operator, see Proposi-
tion 1). The convergence of the scheme is then nearly guaranteed. Nevertheless,
we saw that problems may occur at points where the gradient is equal to zero.
To rigorously prove convergence, we first need the following lemma that allows
to control the growth of T} at critical points.
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Lemma 4. Let a(x) = |x|>. Then,

Tha(x) — a(x)

=0 17
(x,h)lin(o,o) h (17)

The main point here is that the limit is taken for x — 0 and h — 0 independently.
The Ty, operator can either be ISy, SI, or SILISh.
A direct consequence of this lemma is the following.

Lemma 5. Letu be a C® bounded function such that Du(x) = 0. Let X}, tending
tox as h tends to 0. Then

lim Thu(xh) — u(xh)

=0.
h—0 h

In [4], Barles and Souganidis proved the convergence of any monotone, stable
and consistent scheme. Proposition 2 and Lemma 5 are sufficient conditions to
satisfy the hypotheses they gave. This directly ensures Theorem 3.

3 Mean Curvature Motion and Median Filters

This last section is devoted to a new proof that all properly rescaled and iterated
weighted median filters, a class of isotropic morphological operators widely used
in image processing, converge to Mean Curvature Motion. This result has already
been proved by Ishii (see [15]), generalizing the proof by Barles and Georgelin
([3]) and Evans ([11]) and answering a conjecture of Bence, Merriman and Osher
([5], but the tools we use here are different and perhaps better adapted to the
mathematical morphology theory. Precisely, let k a continuous radial probability
density that decreases fast enough at infinity (this will be precised below) and
define B = {B C IRY ,meas; B > 1}. Let also define the weighted median filter
associated with the density £ by

mediu(x) = }31% sup u(x +y).
P yeB

Scale k in ky, by kn(x) = h~Vk(h™!x), let T}, = medy, . We prove the following
Theorem 4. Define
up (%, ) = Tlug(x) if nh? <t < (n+ 1)h?.

Then (up to a linear rescaling of time), up, converge uniformly on every compact
set towards the solution of the Mean Curvature Motion defined by

ou (D?>uDu, Du)\
i - (e ) -0

and with initial condition vy € BUC(IRM).
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The result has been proved by Guichard and Morel in [14] if & is compactly sup-
ported. In this case, the median filter is really local and standard approximation
arguments give the result. The other references above give a convergence result
without this assumption. In this paper, we show that the formalism used by
Guichard and Morel can also be adapted to this more general situation. Except
n [15], the main part of the proof of the convergence relies on consistency argu-
ments. We also adopt this technique as in the affine invariance case. As soon as k
is not compactly supported, this is not clear that the median filter only depends
on the local features of the image. In [3] [5] [11], k is a normalized Gaussian.
As the decay is very fast in this case, we can expect that the associated median
filter is local. Here we shall give weaker conditions of decay and prove the same
result. The lack of space prevents us from giving the detailed proofs that the
reader may find in [6].

As k is radial we can a define a function f by f({|x|) = k(x). Assume that f is
continuous, and that it is decreasing outside a bounded interval. The speed of
decay is given by the condition

/t”*N’lf(t) dt < +o0
where v is any number such that v > 3. Set also
/ tNF(t) dt
(N -1
/ tN2F() dt
0

We introduce another scale parameter » = h® where % < a < 1 is determined
in the analysis. We now define two local operators Ij and S}

ru(x) = inf sup  u(x+y) (18)
BEBr yeBnD(0,7)
and
Stu(x) = inf supu(x+y). (19)
BeBy, yEB
BCD(0,r)

They obviously satisfy I} < T}, < S7. It suffices to prove that I} and S} are
consistent with the same differential operator to obtain the same results for 75,
It is even sufficient to prove some inequalities in this case. Precisely, we prove

Lemma 6. Letp > 0.

N—1 N—1
IT(pz + az® + Z biy? + Z cizy;) > e(k)kh? + o(h?) (20)
i=1 i=1

where Kk is the mean curvature at the origin.
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Lemma 7.
N—1 N—1
ST (px + ax® + Z biy? + Z cizy;) < e(k)rh? + o(h?). (21)
i=1 i=1

These lemmas provide consistency for C® functions since it suffices to use trans-
lation invariance and rotation invariance (which is true since & is radial) and
apply the results to the Taylor expansion of the function to analyze. We also
get an error term of the form o(h?) which is uniform around a point where the
gradient is not equal to zero. Gathering both previous lemmas, we get

Proposition 3. Let u be a C® function. Assume that Du(x) # 0. Then

Thu(x) —u(x
- ( 22 (x) = c(k)k + o(1),
the term o(1) being uniform in a neighborhood of x.

Near critical points, we have to describe more precisely the behaviour of Tj,.

Lemma 8. Let ¢ a C3 function. Let xo € RY such that

{ D(p(Xo) =0
D?*p(x0) = 0

and let Xy, — xg when h — 0. Then

o Toplxn) = plxa)

To conclude, we apply the convergence results in [4] to prove Theorem 4.

Acknowledgments. The author would like to thank Jean-Michel Morel and
Vicent Caselles for informing him of this subject and all the conversations they
had.
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Abstract. We decompose images into “shapes”, based on connected
components of level sets, which can be put in a tree structure. This tree
contains the purely geometric information present in the image, sepa-
rated from the contrast information. This structure allows to suppress
easily some shapes without affecting the others, which yields a peculiar
kind of scale-space, where the information present at each scale is already
present in the original image.

1 Introduction

Depending on the problem at hand, different representations of images must be
used. For deblurring, restoration and denoising purposes, representations based
on Fourier transform are well adapted because they rely on the generation pro-
cess of the image (Shannon theory for the sampling step) and frequency models
of degradations, for example concerning additive noise. Achieving a localization
of the frequencies, wavelets decompositions [1,2] are known to be very efficient
for compression of images. These representations are said to be additive in the
sense that they decompose the image on a given a priori basis of elementary im-
ages and it is represented as the weighted sum of the basis images, the weights
being the coefficients of the decomposition. From the image analysis point of
view, these representations are not necessarily as well adapted because wavelets
are not translation invariant, the Fourier transform is not local and both yield
quantized scales of observation.

Scale-space and edge detection theories represent the images by “significant
edges”, the image being smoothed (linearly or not [3,4]) and then convolved with
an edge detector filter. This was first proposed by Marr [5] and then generalized
by [6], whereas many developments where proposed for edge detection [7].

Extraction of “edges” was shown to be generally the output of a variational
formulation [8,9]. The image is approximated by a function from a class for which
the definition of edge becomes clear. The balance between the precision of the

M. Nielsen et al. (Eds.): Scale-Space’99, LNCS 1682, pp. 175-186, 1999.
(© Springer-Verlag Berlin Heidelberg 1999
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approximation and its complexity (which can be measured for example by the
length of the edges) yields a multi-scale representation of the image. Despite its
generality, this approach suffers from the absence of an universal model.

Scale-space representations based on edges are however incomplete (they do
not allow to reconstruct the image) and the images at different scales are redun-
dant [10,11,2].

Furthermore most of them do not take into account the fact that con-
trast may strongly change without affecting much our perception of images,
a problem underlined and considered as central by the mathematical morphol-
ogy school[12,13]. It proposes a parameter free, complete and contrast insensitive
representation of an image by its level sets. A recent variant [14] proposed to
take as basic elements the boundaries of the level sets (called level lines), a
representation named the “topographic map”.

Our work [15] decomposes the image into connected components of level lines
structured in a tree representing their geometrical inclusion.

This tree allows to compute easily the effect of a multi-scale operator intro-
duced in section 3 which is special because it proceeds by eliminating some level
lines while keeping the others without smoothing them. The advantage is that
important structures of the image are not damaged throughout the scale-space
derived from this operator.

The pyramidal decomposition of the image given by the tree can also be
seen as a region growing decomposition (see [9] and references therein), where
two regions corresponding to interiors of nested level lines are merged when the
smaller enclosed region is too small. But here, no edge is moved and no spurious
edge is created. The operator proceeds by removing level lines, and the contrast
between two adjacent regions cannot increase, so no new gray level is introduced.

The paper is organized as follow: Section 2 is devoted to the decomposition
of images by connected components of their level sets into an inclusion tree-like
structure. Section 3 describes the natural multi-scale operator to simplify this
tree, which yields a “scale-space” representation of the image. At last, in section
4 some experiments are shown.

2 Level Sets and Connected Components

2.1 Contrast Insensitive Representations

Here an image w is defined as a function from a rectangle 2 = [O, W] x [0, H] to
R being constant on each “pixel” (4, 74 1) x (4, 4+1). The value attributed to each
edgel {i} x(4,7+1) and (4,i+1) x {4} is the max of the values at the two adjacent
pixels and at each point {i} x {7}, the max value of u at the 4 adjacent pixels.
It is convenient to extend the image on the plane R? by setting « = ug outside
{2 where ug is an arbitrary fixed real value. This gives a continuously defined
representation of a discrete array of pixels. Notice that with these conventions,
u is upper semi-continuous.
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Given an image w, upper (noted Xy) and lower (X#) level sets are defined as
Xy={xecR? ulx)>A} Xt={xecR? ulx)<pu} (1)

u# can be rebuilt from the data of any of the families of upper and lower level
sets [12,16,17]:

w(x)=sup {A/xe X} =inf {p/ xec A¥}. (2)

The interest of these representations is their insensitivity to contrast change,
that is to say g(u) and w have the same families of level sets whenever g is a real
strictly increasing function, representing a global contrast change.

A fundamental property of the level sets is their monotonicity:

YA < p, Xy DA, AN CAan (3)

As in [14], to alleviate the global aspect of these basic elements, only con-
nected components (cc)' will be used (which are invariant to a local contrast
change):

i=Nx i=N#
Xy = U ce(Xy) XH= U cc, (XH)
i=1 i=1

Relation (3) translates to cc’s into:
VA< XN, i€ [l,Ny], 3l €[1,Na] s.t. ce;(Xn) C ecj(Xy) (4)

Indeed, cc;(Xy) C Xy C Xy and since it is connected, it is included in some cc;
of X, with j unique. Equation (4) vields a tree structure for the cc’s of upper
level sets (the same can be said of the cc’s of lower level sets).

Actually, suppose the image takes its values in the discrete set {0,... U}
(typically, U = 255) and consider the graph where the nodes represent all cc’s
of all level sets Xy, ..., Xy. Let us write Ni the node corresponding to cc;(Xy).
Since a cc of upper level set may be extracted from several upper level sets
(when it is sufficiently contrasted w.r.t. its neighborhood), suppose to avoid
redundancy that only the one with greatest A is kept. Then put a link between
Ni and N{ | whenever cc;(Xy) C cc;j(Xa_1). This graph is in fact a tree Ty, of
root N} corresponding to ceq(Xp) = R2. Equation (4) ensures that the graph is
connected and without circuit, which are the two properties defining a tree. For
each pixel P,

m CCi(XA)

Ais.t. PEee;(Xa)

is not empty (since P € cc}) and is an intersection of non disjoint cc’s of upper
level sets, so that by (4), it is itself a cc of upper level set; call its associated

! Notice that with the conventions above, connectedness corresponds to 8-connected-
ness for upper level sets and 4-connectedness for lower level sets in the discretely
defined image.
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node N (P) and let Gray(N,(P)) the corresponding gray level A from which it
is extracted. Then we get

u(P) = max{\: P e Xy}
= max{A : 3 € |1, Ny| s.t. P € cci(An)}
= Gray(N,(P)) (5)

In other words, reconstructing the image from the tree is made by attributing
to each pixel the gray level value of the smallest cc of upper level set that contains
it. Thus the data of « is equivalent to the data of 7, and of N, (P) for all pixels
P. Notice that nothing obliges us to store the values Gray(N) when N is a node
of T,. If we do not want to store them, but still have a reconstruction formula
as (5), we attribute to each node N a pray level which is strictly decreasing when
we follow up the (unique) path from N to the root in 7, (e.g. the depth of the
node in 7,). Then we can easily verify that the image reconstructed from it is
« modulo a local contrast change. Reciprocally, if # is « modulo a local contrast
change, the trees of w and « are the same.

Fig. 1. Up: origingal image and associated trees 7, (left) and 7; (right)(arrows are
directed from child to parent). Middle: cc’s of upper level sets. Down: ¢c's of lower
level sets.

All the above results can be stated with the appropriate changes for lower
level sets to construct another tree 7y, and for each pixel P the node associated
to the smallest containing cc of upper level set, Ni(P). An example of such a
decomposition is given in fig. 1. This is what is done by [18].

2.2 The Inclusion Tree

Each one of the trees T, and 7; satisfy our requirements stated in the introduc-
tion, nevertheless they make an a priori choice of the “objects” in the image: 7,
is adapted to clear objects on a darker background. We would like to deal simul-
taneously with clear objects and with dark objects. It is not satisfactory to keep
both trees, because they are redundant, each one individually being sufficient to
represent the image. Thus, we have to eliminate some cc from the trees. Two
hypotheses will guide us:
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A property similar to (4) can be proved for shapes, namely that if two shapes
are not disjoint, one of them is included in the other. This relies on the fact that
level lines do not cross: a level line cannot meet altogether the interior and
the exterior of another level line. The proof of this is not trivial, and involves
hypotheses on the function (semi-continuity is a sufficient condition), see [21].
Our definition of image ensures such sufficient conditions.

The following operations are done for constructing the inclusion tree: Asso-
ciate a node to each shape. Consider the entire plane (which is not a shape,
because not bounded), as the root node. Put a link between two nodes whenever
one of the shapes is included in the other and no third shape can be inserted
between both. The resulting graph is a tree 7, constructed from bounded cc’s
of both upper and lower level sets [15]. The “interesting objects” are now rep-
resented in one single tree (see fig. 3). For a pixel P, we associate also the node
N(P) in T associated to the smallest shape containing P.

A reconstruction formula similar to (5) holds: w(P) = Gray (N(P)).

2.3 Summary

We consider functions made of closed upper level sets whose topological bound-
aries are a finite number of “level lines”. Such class of functions contains discrete
images (pixel-wise defined), or functions having a minimal regularity.

— We call shape the interior of a level line.

— Level lines are closed curves that do not cross.

— Thus two shapes are either disjoint, so that they are contained in a third
shape, or nested, in which case one is a descendent of the other. This yields
a tree structure for the set of shapes, where the relation child-parent means
the topological inclusion.

3 Scale-Space Representation

3.1 A Multi-Scale Operator

For a set B, we denote by |B| its area, i.e. Lebesgue measure, or any other
measure which is increasing with respect to the inclusion of the sets (if B C C
then |B| < |C]). For a connected set B, we call its filled interior ¢(B) the union
of B and its holes and its filled area the area of its filled interior. In other words,
¢(B) is the smallest simply connected set containing B. Let B; be the family of
closed connected sets B whose filled interior contains the origin O, |¢(B)| > ¢t
and such that if O is in a hole H of B, then |¢(H)| < ¢.

Let us introduce our multi-scale operator:

Tiu(x) = Sup i u(y). (6)
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The operator T; applied to the image w is equivalent to removing all the
shapes of area strictly less than ¢ from the inclusion tree of « and constructing
back the image. This yields another formulation of the operator T3

Tju(x) = jnf JSup u(y). (7)

This operator is at the same time a morphological opening and closing [13]!

It is close to a filter proposed independently by several authors [22,18,23,24] but

in their case the applied filter was equivalent to remove only nodes from the tree

of cc’s of superior level sets or from the tree of inferior level sets, so that they

get two different operators which do not commute (the opening and the closing
version ). The operator presented here is the grain filter studied in [19].

3.2 Properties

Let us consider the properties of this multi-scale operator. Some of the properties
suppose that the image is at least continuous, which is impossible with the
continuously defined versions of discretely defined images we considered (except
for trivial cases). Nevertheless, whereas the notion of the inclusion tree is not
clear in such a case, the operator 1} can be defined as in equation (6).

[Causality] The scale-space is causal, meaning that each scale can be de-
duced from any anterior scale by a transition operator.

Vs, t, s <t, T, s sothat Ty =T, , o T (8)

The transition operator is the operator itself: T} ; = Tj.
[Monotonicity] This scale-space is monotonous:

u<v=Vt,Tiu<Tw (9)

[Contrast covariance] If g is a contrast change (an increasing real valued
function), then

vVt go 1y =1T, 0 g (10)

[Negative covariance] Some other interesting feature of the operator is
its negative covariance, that is that it commutes with taking a negative of the
: 4
image:

vt Ti(—u) = —Tu (11)

Notice that this is not the case with the operator defined in [18], where regional
maxima and regional minima do not play symmetrical roles.

3 7 = T if one switches the connectedness for upper and lower level sets. We conjec-
ture that they are also equal when acting on continuous functions.

4 However, —u is lower semi-continuous, so that appropriate changes of connectedness
must be applied: lower (resp. upper) level sets of —u must be considered in 8- (resp.
4-) connectedness.



182 P. Monasse and F. Guichard

[Local extrema conservation]| A local regional extremum in the image «
remains either a local regional extremum at scale ¢, or is included in a bigger
local regional extremum or disappears. In other words, regional extrema can
grow, but they are never split during the scale-space and the operator proceeds
by growing local regional extrema. Moreover, at scale t each regional extremum of
Tiu contains a regional extremum of «. This implies that the number of regional
extrema is a decreasing function of the scale. Notice that this property is not
true with the linear scale-space (convolution by a gaussian) in two dimensions.

[Idempotent] The operator has the property to be idempotent.

Vt, Tt o] Tt :Tt (12)

[No asymptotic evolution] If « is C2, there is no asymptotic evolution of
the image. We have the two behaviors:

vx, Vu(x) #£ 0= 3t > 0 so that Vh < ¢, (Thu —u)(x) =0 (13)

vx, if Jr > 0 so that Vy € B(x,r), Vu(y) = 0 then

3t > 0 so that Vh < t, (Thu —u)(x) =0 (14)
[Conservation of T-junctions] Since the level lines at Ty are level lines
of w, the T-junctions involving sufficient areas in « remain the same without
alteration. Notice that this is not the case with all other usual scale-spaces: it
is clearly false for the linear scale-space, for the median filter (mean curvature
motion), but also for the affine invariant morphological scale-space, as shown
in [25].
[Conservation of some regularity] If « is Lipschitz, so is Ty« with an
inferior or equal Lipschitz norm. Indeed,

Vx,z,u(z) — kx| < u(z —x) < u(z) + k|x|
so that

¥x,y, inf wu(z) —k|x| < inf w(z-—x)< inf wu(z)+Ek|x
y, inf u(z)~ kx| < _inf u(@-x) < _inf a(z) + kx|

vx,y, sup inf w(z) — kx| < sup inf w(z —x| < sup inf w(z)+ k|x],

BeB, 2Ey+B BcRB, 2E€y+B BeR, ZEY+B
meaning
uly) = Klel < inf u(z—x) = _inf_a(2) = T +y) < Tu(y) + Kl

A similar demonstration shows that an uniformly continuous v remains uniformly
continuous throughout the scale-space. We conjecture that if « is continuous, so
is Tiu for all ¢ (a demonstration for the case of area opening and closing is shown
in [26], we think our operator would behave similarly). Nevertheless, we cannot
say more about regularization: it is not true that if v is C! so would be Tyw. This
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scale-space is peculiar because it does not allow to estimate more reliably the
results of differential operators!

[Affine covariance] The operator commutes with all affine transforms of
determinant 1:

Vi, VA € AG(R?), Ty(uo A) = (Ty/| aer aw) 0 A (15)

Notice that equations (8), (9), (10) and (15) are properties that our scale-
space shares only with the affine morphological scale-space. Nevertheless, the
latter has an infinitesimal evolution law, whereas the former has not.

Remark: the geometrical covariance of the operator is linked to the geomet-
rical invariance of the measure, here the area under any affine transformation
of determinant 1. With a different measure invariant under another group of
transformations preserving the connectedness (so probably continuous transfor-
mations would be welcome) and non decreasing with respect to inclusion, our
operator would commute with these transformations.

4 Experiments

Fig. 4 illustrates the fact that this scale-space is different from the one deduced
by iterating area opening and closing (see [18]) with increasing area.

Different scales of the scale-space based on the inclusion tree are shown in
fig. 5. Another example showing also the level lines is shown in fig. 6. Notice how
the important structures of the image (in particular T-junctions) are preserved.

The inclusion tree can also be used to remove impulsional noise: supposing
that speckle noise creates only small shapes, we represent the image at a suffi-
ciently large scale (see fig. 7). This suppresses most of noise, without attempting
to restore the image, so a subsequent treatment should follow [19].

Other uses of the inclusion tree are proposed in [15].

Fig.4. Left: an image. Up: Successive removals of the cc’s of upper, then lower level
sets with increasing area threshold. The black ring disappears before the white circle.
Down: The image across the scales of the inclusion tree: the circles disappear according
to their interior size,
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Fig.5. Up-left: original image 650 x 429, Up-right: image at scale 50 (all shapes of
area less than 50 pixels are removed), Down: image at scale 500, and 5000.

5 Summary and Conclusions

The inclusion tree is a complete and non-redundant representation of image,
insensitive to local changes of contrast. The basic elements are the interiors of
connected components of level lines, called “shapes”. The structure of tree rep-
resents the geometrical inclusion, allowing to easily manipulate it, like remov-
ing some shapes, which is the fundamental operation. This yields a scale-space
representation of the image which, on the contrary to most other scale-space
representations, does not smooth the image, but rather selects the information
to keep at each scale. As a consequence, its application field will be different
from the classical scale-space.

These shapes, appearing as natural geometrical contrast insensitive informa-
tion, can also be used for various image analysis tasks, like image simplification,
image comparison and registration [15,20].
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Abstract. A morphological scale-space representation is presented based
on a morphological strong filter, the levelings. The scale-properties are
analysed and illustrated. From one scale to the next, details vanish, but
the contours of the remaining objects are preserved sharp and perfectly
localised. This paper is followed by a companion paper on pde formula-
tions of levelings.

1 Introduction

In many circumstances, the objects of interest which have to be measured, seg-
mented or recognised in an image belong to a scale, and all remaining objects,
to be discarded, to another scale. In some cases, however, such a threshold in
the scales is not possible, and the information of interest is present at several
scales: it has to be extracted from various scales. For such situations, multi-
scale approaches have been developed, where a series of coarser and coarser
representations of the same image are derived. The recognition of the objects or
segmentation will use the complete set of representations at various scales and
not only the initial image.

A multiscale representation will be completely specified, if one has defined
the transformations from a finer scale to a coarser scale. In order to reduce the
freedom of choice, some properties of these transformations may be specified.
Invariance properties are the most general:

— spatial invariance = invariance by translation

— isotropy = invariance by rotation

— invariance under a change of illumination: the transformation should com-
mute with an increasing anamorphosis of the luminance

One may add some requirements on the effect of the transformation itself:

— The transformation should really be a simplification of the image. As such
it will not be reversible: some information has to be lost from one scale to
the next.

M. Nielsen et al. (Eds.): Scale-Space’99, LNCS 1682, pp. 187-198, 1999.
(© Springer-Verlag Berlin Heidelberg 1999
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— A particular form of simplification is expressed by the maximum principle:
at any scale change, the maximal luminance at the coarser scale is always
lower than the maximum intensity at the finer scale, the minimum always
larger. [1]

— Causality: coarser scales can only be caused by what happened at finer scales
2

— It should not create new structures at coarser scales ; the most frequent

requirement is that it should not create new regional extrema.[3][4]

Furthermore, if the goal is image segmentation, one may require that the
contours remain sharp and not displaced. Finally, one has to care for the relations
between the various scales. Many scale-space representations in the literature
verify a semi-group property: if gy is the representation at scale A of image g, then
the representation at scale u of gy should be the same as the representation at
scale A+ of g1 gayp = (ga), - We will present another structure by introducing
an order relation among scales.

Since one rarely adds images, there is no particular reason, except mathe-
matical tractability, to ask for linear transforms. If one however choses linearity,
then various groups of the constraints listed above lead to the same solution: lin-
ear scale space theory. The evolution of images with the scale follows the physics
of luminance diffusion: the decrease of luminance with scale is equal to the di-
vergence of the luminance gradient [2]. The discrete operator for changing scale
is a convolution by a Gaussian kernel. Its major utility is to regularize the im-
ages, permitting to compute derivatives: the spatial derivatives of the Gaussian
are solutions of the diffusion equation too, and together with the zeroth order
Gaussian, they form a complete family of differential operators. Besides this ad-
vantage, linear scale space cumulates the disadvantages. After convolution with
a Gaussian kernerl, the images are uniformly blurred, also the regions of par-
ticular interest like the edges. Furthermore, the localisation of the structures of
interest becomes extremely imprecise ; if an object is found at one scale, one has
to refine its contours along all finer scales. At very large scales, the objects are
not recognisable at all, for excess of blurring, but also due to the apparition of
spurious extrema in 2 dimensins. Various solutions have been proposed to reduce
this problem. Perona and Malik were the first to propose a diffusion inhibited
by high gradient values[5]. Weickert introduced a tensor dependent diffusion [6].
Such approaches reduce the problems but do not eliminate them completely:
spurious extrema may still appear.

Other non linear scale-spaces consider the evolution of curves and surfaces as
a function of their geometry. Among them we find the morphological approaches
producing dilations of increasing size for representing the successive scales [7].
These approaches have also the disadvantage to displace the boundaries. The first
morphological scale-space approaches have been the granulometries associated
to a family of openings or of closings ; openings operate only on the peaks
and the closings only on the valleys [8],[9]. They obey a semi-group relation:
Imax(ru) = (9x)u- Using morphological openings also displaces the contours,
however openings and closings do not create spurious extrema. If one desires to
preserve the contours, one uses openings and closings by reconstruction. If one
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desires a symmetric treatment of peaks and valleys, one uses alternate sequential
filters, which are extremely costly in terms of computation, specially if one uses
openings and closings by reconstruction [10][11].

In this paper we present a new and extremely general non linear scale-space
representation with many extremely interesting features. The most interesting of
them is the preservation of contours. Furthermore, no spurious extrema appear.
As a matter of fact, the transformation from one scale to the next, called leveling,
respects all the criteria listed abovve, except that it is not linear. From one scale
to the next, the structures of the image progressively vanish, becoming flat or
?quasi-flat” zone ; however, as long they are visible, they keep exactly the same
localisation as in the initial image. Levelings have been introduced by F.Meyer.
They have been studied by G.Matheron [12], F.Meyer [13], [14], and J.Serra [15].

In the first section, we present a characterisation and the scale-space prop-
erties of the simplest levelings. In a second section we show how to transform
any function g into a leveling of a function f. We also present extensions of lev-
elings. The analysis of the algorithm for constructing levelings leads to a PDE
formulation, presented in a second paper.In a last section we illustrate the result.

2 Multiscale representation of images through levelings

2.1 Flat and quasi-flat zones.

We are working here on grey-tone functions defined on a digital grid. We call
Ng (p) the set of neighbors of a pixel p. The maximal (resp. minimal) value of
a function g within Ng (p) represents the elementary dilation dg (resp; erosion
£g) of the function f at pixel p.

A path P of cardinal n between two pixels p and ¢ on the grid G is an n-tuple
of pixels (p1, pa, ..., pn) such that p; = p and p,, = ¢, and for all i, (p;, p;11) are
neighbors.

We will see that simple levelings are a subclass of connected operators [16],
that means they extend flat zones and do not create new contours. More general
levelings will extend quasi-flat zones, defined as follows.

Definition 1. Two pizels z,y belong to the same R-flat-zone of a function f
if and only if there exists a n-tuple of pixels (p1,p2,...,pn) such thal p1 = x
and p, =y, and for all i, (p;,pir1) are neighbours and verify the symmetrical
relation: fp, R fp,+1.

The simplest symmetrical relation R is equality: f,, = fp,+1 for which the
quasi-flat zones are flat. As an example of a more complex relation R, let us define
for two neighbouring pixels p and ¢, fp = f; by |fp — fql < A. This relation is
symmetrical and defines quasi-flat-zones with a maximal slope equal to A.

2.2 Characterisation of levelings

We will define a non linear scale-space representation of images based on level-
ings. An image g will be a representation of an image f at a coarser scale, if g
is a leveling of f, characterised by the following definition.
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Definition 2. An image g is a a leveling of the image f iff ¥V (p, q) neighbors:
gp > 4q = fngp andqufq

Remark 1. 1f the function g is constant, no couple of neighboring pixels (p, q)
may be found for which g, > g4. Hence the implication {g, > g; = fp > gp} is
always true, showing that a flat function is a leveling of any other function.

The relation {gis a leveling of f}will be written g < f. The characterisation
using neighboring points, defining the levelings is illustrated by fig.1b. In [14]
we have shown that adopting a different order relation, giving a new meaning
to gp > gq leads to larger classes of levelings.

2.3 Properties of levelings

Algebraic properties If two functions g1 and go both are levelings of the same
function f then g1V go and g1 A go are both levelings of f. This property permits
to associate new levelings to family of levelings. In particular if (g;) is a family
of levelings of f, the morphological centre (f V A g;) AV g; of this family also is
a leveling of f.

Invariance properties In the introduction, we have listed a number of de-
sirable properties of transformations on which to build a scale-space. They are
obviously satisfied by levelings:

— Invariance by spatial translation

— isotropy: invariance by rotation

— invariance to a change of illumination: g being a leveling of f, if g and f are
submitted to a same increasing anamorphosis, then the transformed function
g’ will still be a leveling of the transformed function f'.

Relation between 2 scales Levelings really will construct a scale-space, when
a true simplification of the image occurs between two scales. Let us now charac-
terize the type of simplifications implied by levelings.

In this section we always suppose that g is a leveling of f. As shown by the
definition, if there is a transition for the function g between two neighboring
pixels g, > g4, then there exists an even greater transition between f, and
fq a8 fo 2 gp > g4 = fq. In other words to any contour of the function g
corresponds a stronger contour of the function f at the very same location,
and the localisation of this contour is exactly the same. This bracketing of each
transition of the function ¢ by a transition of the function f also shows that
the ”causality principle” is verified: coarser scales can only be caused by what
happened at finer scale.

Furthermore, if we exclude the case where g is a completely flat function,
then the "maximum principle” also is satisfied: at any scale change, the maximal
luminance at the coarser scale is always lower than the maximum intensity at
the finer scale, the minimum is always larger.
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Let us now analyse what happens on the zones where the leveling g departs
from the function f. Let us consider two neighboring points (p,q) for which
fp > gp and fy > g4. For such a couple of pixels, the second half of the definition:
fp 2 gp and g4 > f, is wrong, showing that the first half must also be wrong:
gp < gq. By reason of symmetry we also have g, > g4, and hence g, = gq4.
This means that if g is a leveling of f, the connected components of the anti-
extensivity zones {f > g} are necessarily flat. By duality, the same holds for the
extensivity zones {f < g}.

The last criterion "no new extrema at larger scales” also is satisfied as shown
by the following section.

Life and death of the regional minima and maxima Levelings are a
particular case of monotone planings:

Definition 3. An émage g is a a monotone planing of the image f iff V(p,q)
neighbors:

Gp > dq = Ip > 1y

Theorem 1. A monotone planing does not create regional minima or mazima.
In other words, if g is a monotone planing of f, and if g has a regional minimum
(resp. mazimum) X, then [ possesses a regional minimum (resp. maximum)

Z CX.

Hint of the proof: If X is a regional minimum of gall its neighbors have a
higher altitude. To these increasing transitions correspond increasing transitions
of f. It is then easy to show that the lowest pixel for f within X belongs to a
regional minimum Z for fincluded in X.

Relations between multiple scales: preorder relation We have now to
consider the relations between multiple scales. Until now, we have presented
how levelings simplify images. For speaking about scales, we need some structure
among scales. This structure is a lattice structure. To be a leveling is in fact an
order relation as shown by the following two lemmas.

Lemma: The relation {gis a leveling of f}is symmetric and transitive: it is a
preorder relations.

Lemma:The family of levelings, from which we exclude the trivial constant
functions, verify the anti-symmetry relation: if f is a non constant function and
a leveling of g, and simultaneously g is a leveling of f, then f = g.

Being an anti-symmetric preorder relation, the relation {gis a leveling of f}is
an order relation, except for functions which are constant everywhere. With the
help of this order relation, we are now able to construct a multiscale representa-
tion of an image in the form of a series of levelings (g0 = f, g1, ....gn) Where gy
is a leveling of gx_1 and as a consequence of the transitivity, g also is a leveling
of each function g; for I < k.
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3 Construction of the levelings

3.1 A criterion characterizing levelings

It will be fruitful to consider the levelings as the intersection of two larger classes:
the lower levelings and the upper levelings, defined as follows.

Definition 4. A function g is a lower-leveling of a function f if and only if for
any couple of neighbouring pizels (p,q): gp > g4 = 99 > f4

Definition 5. A function g is an upper-leveling of a function f if and only if
for any couple of neighbouring pizels (p,q): gp > gq = gp < fp

The name “upper-leveling” comes from the fact that all connected com-
ponents where g > f are flat: for any couple of neighbouring pixels (p, q):
oo | =
Similarly if g is a lower leveling of f, then all connected components where g < f
are flat.

Obviously, a function g is a leveling of a function f if and only if it is both an
upper and a lower leveling of the function f. Let us now propose an equivalent
formulation for the lower levelings:

Criterion: A function g is a lower-leveling of a function f if and only if for each
pixel g with a neighbour p verifying g, > g, the relation g, > f, is satisfied.

But the pixels with this property are those for which the dilation ¢ will
increase the value: g, < é49. This leads to a new criterion
Criterion:A function g is a lower-leveling of a function f if and only if: g, <
5qg = gq > fq

Recalling that the logical meaning of [A = B] is [notA or B] we may in-
terpret [gq < 0,9 = gq > f4] 88 [gq > 649 OF gq > f4] or in a equivalent manner
l94 > fq A dqg]. This gives the following criterion
Criterion:A function g is a lower-leveling of a function f if and only if: ¢ > fAdg

In a similar way we derive a criterion for upper levelings:

Criterion Up:A function g is an upper-leveling of a function f if and only
iffg< fveg

Putting everything together yields a criterion for levelings
Criterion A function g is a leveling of a function f if and only if: f Adg < g <
fVeg (see [12]).

3.2 Openings and closings by reconstruction

We recall that a function ¢ is an opening (resp. closing) by reconstruction of a
function f iff g = f Adg (resp. g = f Veg). As it verifies the criterion Low (resp.
Up), such a function g is then a lower (resp. upper) leveling of f. The reciprocal
is also true. Hence:
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Proposition 1. g is an opening (resp. closing) by reconstruction of a function
I if and only if g is a lower (resp. upper) leveling of f wverifying g < f (resp.
921)

Using this characterisation, we may particularize the initial definition of lower
levelings in the case where f > g :

Proposition 2. g is an opening by reconstruction of a function f if and only if
g < f and for any couple of neighbouring pizels (p,q): gp > gq = 94 = f4.

Proposition 3. g is a closing by reconstruction of a function f if and only if
g > f and for any couple of neighbouring pizels (p,q): gp > 94 = gp = fp-

Remark 2. 1f g is a (lower) leveling of f then gA f is a lower leveling of f verifying
gN f < f,ie. an opening by reconstruction. Similarly if g is an upper leveling
of f then gV f is a closing by reconstruction.

3.3 An algorithm for constructing levelings

We finally adopt the following general criterion of levelings
Criterion: A function g is a leveling of a function f if and only if: f A ag <
g < fV Bg, where « is an extensive operator ag > ¢ and [ an anti-extensive
operator Bg < g

With the help of this criterion, we may turn each function g into the leveling
of a function f. We will call the function f reference function and the function
g marker function. Given two functions g and f, we want to transform ¢ into a
leveling of f. If g is not a leveling of f, then the criterion [f A ag < g < f V Gg¢]
is false for at least a pixel p. The criterion is not verified in two cases:

— gp < fp AN apg . Hence the smallest modification of g, for which the criterion
becomes true is g, = f, A apg. We remark that g, < g, < f

— gp > [pV Bpg . Hence the smallest modification of g, for which the criterion
becomes true is g, = f, V B,9. We remark that g, > g, > f,

We remark that for {g, = f,} the criterion is always satisfied. Hence another
formulation of the algorithm:

—lev:On{g < f}dog=fAag.
—levt:On {g> f}dog=fV 3y

It is easy to check that this algorithm amounts to replace everywhere g by
the new value g = (f Aag) vV Bg = (f V Bg) A\ ag

We repeat the algorithm until the criterion is satisfied everywhere. We are
sure that the algorithm will converge, since the modifications of g are pointwise
monotonous: the successive values of g get closer and closer to f until conver-
gence.
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In order to optimize the speed of the algorithm, we use a unique parallel
step of the algorithm g = (f A «g) V Bg After this first step both algorithms
|lew—] and [levT| have no effect on each other and may be used in any order.
In particular one may use them as sequential algorithms in which the new value
of any pixel is used for computing the valies of their neighboring pixels. This
may be done during alternating raster scans, a direct scan from top to bottom
and left to right being followed by an inverse scan from bottom to top and right
to left. Or hierarchical queues may be used, allowing to process the pixels in
decreasing order on {g < [} and on increasing order on {g > f}.

Let us illustrate in fig.1a how a a marker function b is transformed until
it becomes a function ¢ which is a leveling of f. This leveling uses for « the
dilation & and for 3 the erosion £. On {h < f}, the leveling increases h as little
as possible until a fat zone is created or the fimction ¢ hits the function f: hence
on {g < f}, the function g is flat. On {h > [}, the leveling decreases h as little
as possible until a flat zone is created or the function ¢ hits the function f: hence
on {g > [}, the function g also is flat. For more general levelings, quasi-flat zones
are created.

Fig. 1. a) f = reference function ; h = marker function ; g = associated leveling ; b)
characterisation of levelings on the transition zones.

If g is not modified, while applying this complete algorithm to a couple of
functions (f, g), then g is a leveling of f. If on the other hand ¢ is modified, one
repeats the same algorithm until convergence as explained above.

3.4 Robustness of levelings

In this section, we will see that levelings are particularly robust: they are strong
morphological Flters. We recall that an operator ¢ is called morphological filter
if it is:

— increasing: ¢ > h = ¢g > ¢h. This implies that ¢(h A k) < ¢h A Pk and
d(hVv k) > dhV ok

— idempotent: ¢ — ¢. This means that the operator is stable: it is sufficient to
apply it once in order to get the result (for instance, the median filter, which
is not a morphological filter is not stable, it may oscillate when iterated)
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It is strong, if furthermore ¢ (IdV ¢) = ¢ (Id A ¢) = ¢, where Id represents
the identity operator. This property defines that functions within a given range
will yield the same result, for any function h verifying f A ¢f < h < fV ¢f, we
have ¢ f = ¢h.

In our case, we define an operator v, (f) which constructs the leveling of
the marker g with reference function f. For a fixed function ¢ and varying f,
this operator is a strong morphological filter. If we call v (f) the opening by

g
reconstruction and Vg+ (f)) the closing by reconstruction of f based on the marker

g it can be shown that : v, (f) = v, (Vg+ (f) = vy (1/; (f)), an opening followed
by a closing and simultaneously a closing followed by an opening, a sufficient
condition for a leveling to be a strong morphological filter. We use this property
for showing that yet another scale space dimension exists, based on levelings.
We use here a family of leveling operators, based on a family (e;) of extensive
dilations and the family of adjunct erosions (/3;), verifying for i > j : a; < ¢
and 3; > ;. We call A; the leveling built with o; and ;. Then using the same
marker g and the same reference function f, we obtain a family of increasing

levelings: for i > j the leveling A;(f;g) is a leveling of A;(f;g).

4 Illustration

Levelings depend upon several parameters. First of all the type of leveling has to
be chosen, this depends upon the choice of the operators o and 3. Fig.2 presents
three different levelings, applied to the same reference and marker image. The
operators « and (8 used for producing them are, from the left to the right, the
following:1) o =0 ; 8=¢;2)a=1dV(6—1); B=TdA(e+1);3) a =TdV~é
; B = IdAwe, where v and ¢ are respectively an opening and a closing. In Fig.3 a
flat leveling based on 4 and ¢ is applied to the same reference image (in the centre
of the figure), using different markers produced by an alternate sequential filter
applied to the reference image : "marker 1”7 using disks as structuring elements,
and "marker 2”7 using line segments.

The last series of illustrations presents how levelings may be used in order
to derive a multiscale representation of an image. We use as markers alternate
sequential filters with disks: mg = original image ; m; = @;v;m;—1. The levelings
are produced in the following manner: [y is the original image and /; is the leveling
obtained if one takes as reference the image [;_1 and as marker the image m;.
The resulting levelings inherit in this case the semi-group property of the markers

my original [q
[17]. The illustrations are disposed as follows: mg original I3
ms original ls

5 Conclusion

A morphological scale space representation has been presented, with all desirable
features of a scale space. It has been applied with success in order to reduce
the bitstream of an MPEG-4 encoder, when the simplified sequence replaces
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Reference
image

B

leveling 1 leveling 2 leveling 3

Fig. 2. Three different levelings, applied to the same reference and marker image.

Marker 1 Marker 2

Reference image

Leveling Leveling

Fig. 8. A same leveling applied to the same reference image with distinet marker images
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Fig. 4. Hlustration of a multiscale representation
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the original sequence. In this case, a sliding temporal window is processed and
treated as a 3D volume, with 2 spatial dimensions and one temporal dimension:
3D markers and 3D levelings are then used. Another important application is
the simplification of the images prior to segmentation. Since the levelings enlarge
flat zones, these flat zones may be used as seeds for a segmentation algorithm.

References

1. R.A. Hummel and B.C. Gidas. Zero crossings and the heat equation. Technical
report, New York Univ., Courant Institute of Math. Sciences, Computer Science
Division, 1984.

2. J.J Koenderink. The structure of images. Biol. Cybern., 50:363-370, 1984.

3. T. Lindeberg. On scale selection for differential operators. In B. Braathen K. Heia,
K.A. Hogdra, editor, Proc. 8th Scandinavian Conf. Image Analysis, Trgmso, Nor-
way, 1993. Norwegian Society for Image Processing and Pattern Recognition.

4. M. Baudin J. Babaud, A.P. Witkin and R.O. Duda. Uniqueness of the gaussian
kernel for scale-space filtering. IEEE Trans. Pattern Analysis and Machine Intel-
ligence, 8(1):26-33, 1986.

5. P. Perona and J. Malik. Scale space and edge detection using anisotropic diffusion.
IEEE Trans. Pattern Anal. Machine Intell., pages 629-639, July 1989.

6. J. Weickert. Theoretical Foundations of Anisotropic Diffusion in Image Processing,
volume 11 of Computing Supplement, pages 221-246. Springer, 1996.

7. P.T. Jackway and M. Deriche. Scale-space properties of multiscale morpholog-
ical dilation-erosion. IEEE Trans. Pattern Analysis and Machine Intelligence,
18(1):38-51, 1996.

8. G. Matheron. Random Sets and Integral Geometry. New York: Wiley, 1975.

9. P. Maragos. Pattern spectrum and multiscale shape representation. IEEE Trans.
Pattern Analysis and Machine Intelligence, 11:701-716, 1989.

10. J. Serra. Mathematical Morphology: Vol. I, chapter Alternating Sequential Filters.
London: Academic Press, 1988.

11. L. Vincent. Morphological grayscale reconstruction in image analysis: Applications
and efficient algorithms. IEEFE Trans. in Image Procesing, 1993.

12. G. Matheron. Les nivellements. Technical report, Centre de Morphologie
Mathématique, 1997.

13. F. Meyer. From connected operators to levelings. In H. Heijmans and J. Roerdink,
editors, Mathematical Morphology and its Applications to Image and Signal Pro-
cessing, pages 191-199. Kluwer, 1998.

14. F. Meyer. The levelings. In H. Heijmans and J. Roerdink, editors, Mathematical
Morphology and Its Applications to Image Processing, pages 199-207. Kluwer, 1998.

15. J. Serra. Quelques propriétés des nivellements. Technical Report 30/98/MM,
CMM, 1998.

16. P. Salembier and J. Serra. Flat zone filtering, connected operators and filters by
reconstruction. IEEE Trans. Image Processing, 4:1153-1160, Aug. 1995.

17. J. Serra. Set connectons and discrete filtering. In M. Couprie G. Bertrand and
L. Perroton, editors, Discrete Geometry for Computer Imagery, Lecture Notes in
Computer Science 1568, pages 191-207. Springer, 1999.



Numerical Solution Schemes
for Continuous-Scale Morphology

Rein van den Boomgaard

University of Amsterdam, The Netherlands,
rein@wins.uva.nl

Abstract. The partial differential equations describing the propagation
of (wave) fronts in space are closely connected with the morphological
erosion and dilation. Strangely enough this connection has not been ex-
plored in the derivation of numerical schemes to solve the differential
equations. In this paper the morphological facet model is introduced in
which an analytical function is locally fitted to the data. This function is
then dilated analytically with an infinitesimal small structuring element.
These sub-pixel dilationsform the core of the numerical solution schemes
presented in this paper. One of the simpler morphological facet models
leads to a numerical scheme that is identical with a well known classical
upwind finite difference scheme. Experiments show that the morpholog-
ical facet model provides stable numerical solution schemes for these
partial differential equations.

1 Introduction

The partial differential equations describing the propagation of fronts in space
are known to be closely connected with the morphological erosion and dilation.
These morphological partial differential equations (henceforth abbreviated as
PDE’s) known from the work of Alvarez [1], Maragos[2], Matiolli [3] and van
den Boomgaard [4], have gained considerable interest in the past as canoni-
cal descriptions of evolutionary shape deformation (see Osher and Sethian [5],
Sapiro [6] and Kimia [7]). Strangely enough the realization that these PDE’s are
solved with morphological operations has not been explored in the development
of numerical schemes to solve these differential equations. This paper is a more
detailed paper building on a previous paper [8] in which we have shortly intro-
duced the morphological facet model as a tool to construct numerical schemes to
solve these PDE’s. This paper deals with the subject in more detail.

In the morphological facet model an analytical function is locally fitted to the
data. This function is then dilated analytically with an infinitesimal small struc-
turing element. These sub-pizel dilations form the core of the numerical solution
schemes. One of the simpler morphological facet models leads to a numerical
scheme that is identical with a well known classical upwind finite difference
scheme.

Consider the parameterized shape contour C(p,¢) as function of the path
parameter p and “time” parameter ¢. The generic evolution of shape as a function

M. Nielsen et al. (Eds.): Scale-Space’99, LNCS 1682, pp. 199-210, 1999.
(© Springer-Verlag Berlin Heidelberg 1999
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Fig. 1. Contour versus function evolution.

of time is given by:

oc _

- = T())N

where I is a function of the curvature x and N is the inwards pointing normal
to the curve. The choice of I' = —1 is equivalent with the dilation of the shape
with a disk of radius £. A pure local description of the dilation (as in the above
PDE) leads to self-intersecting curves. Dorst and van den Boomgaard [9] used
this local geometrical description as their definition of the tangential dilation.
The classical morphological dilation corresponds with the entropy solution of
the PDE (i.e. the solution without sell-intersections).

A robust way of obtaining entropy solutions is to embed the curve as a level
set in a function and solve the associated PDE that describes the evolution of the
function in time. Let I be a function of space (parameter ) and time (parameter
t) and let some level set of F' at time { = 0 correspond with the original curve C.
It can be easily shown that the evolution of the function I such that the level
set behaves in time as if the ‘curve PDI’ is solved, is given by:

or

o = ~T () IVE].

Note that the embedding of the curve is chosen in such a way that the shape
is characterized with high function values. In that case the gradient vector is
indeed the inwards pointing normal. For I' = —1 we recognize the PDE that
is solved by dilating the initial condition (the function F at time £ = 0) with
a flat disk shaped structuring element of radius ¢. For arbitrary, but positive,
I', the PDE can be interpreted as geometry controlled dilation. It should be
noted that such a spatially variant dilations is completely within the scope of
the morphological (complete lattice) framework (see Heijmans [10]).

When a 2D curve is embedded in a 2D function a remarkable thing happens.
The geometry of the curve is not measured in the spatial domain alone, but the
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smoothness of the embedding function is used to measure the geometry of the
curve through its function derivatives. Whereas in the curve representation the
points on the curve are moved to a new position in the same (horizontal) plane,
in the embedding function the points are moved in vertical direction (i.e. the
function value is changed). This is only allowed in case the required smoothness
of the embedding function (which is a mathematical construct) is guaranteed
through out the evolution process.

In this contribution we will not look at the numerous applications of these
types of morphological PDE’s in the computer vision context. Instead we will
concentrate on numerical schemes to find solutions. In the mathematical litera-
ture, the derivation of robust and stable numerical schemes is complex and relies
on the analysis of the conservation law properties of the PDE.

In [4] it was shown that the morphological dilation, out of all possible solu-
tions (note that these type of PDE’s do not have a unique solution), selects the
entropy solution (which is unique). With this observation in mind, this paper
introduces the morphological facet model as an elegant method to derive robust
and stable numerical schemes to solve these PDE’s. To allow for small time steps
in the solution, corresponding with small radii of the dilation disk, the morpho-
logical facet model facilitates sub-pizel dilations. In section 2 a short introduction
to morphological PDE’s is given. In section 3.1 two classical numerical schemes
for solving these PDE’s are given for reference and comparison. In section 3.2 the
morphological facet model is introduced. One of the morphological facet models
leads to a numerical scheme that is equivalent to a classical scheme. In section
3.3. some numerical experiments are presented.

2 Morphological PDE’s

In this section a short introduction to the morphological PDE’s is given, a more
detailed description can be found in [4]. Consider the one-parameter family of
images I’ obtained by dilating a function f with structuring function g* for
varying ¢:

F(z,t) = (f & g")(2)

with g a concave function and g' the umbral scaling of g defined as ¢'(z) =
tg(z/t). In umbral scaling not only the spatial dimensions are scaled with a
factor ¢t but also the grey value dimension is scaled. Essentially the graph of the
function, interpreted as a geometrical object, is scaled.

In this section it will be shown what happens if we change the scale from ¢
to t + dt. Because umbral scaling of any concave function forms a semi group
under dilation (i.e. g* © g* = g*#) we can write:

Fz,t +dt) = (f ® g'T4)(z)
=((fog)®g™)(z)
= (F(,t)® g")(x)
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Salte 1
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Fig. 2. Dilating a planar function. The vertical shift when dilating a planar function
is given by the slope transform of the structuring function.

As we are interested in the case that dt is infinitesimal small, meaning that g%
becomes very sharply pointed and indeed looks like the morphological pulse, we
may approximate the function F'(+, t) locally around the point «, with its tangent
line.

Planar functions are the eigenfunctions of mathematical morphology. Dilat-
ing (eroding) a planar function with any structuring function g results in a
planar function with the same slope, it is only shifted in space. The vertical shift
is equal to the intercept with the function axis (this is illustrated in figure 2)
of the tangent plane in the point on the structuring function where the slope
equals the slope of the plane to be dilated. This geometrical construction (for all
tangent planes to the function g) gives the Legendre transform of the (concave)
function g. The generalization of the Legendre transform to arbitrary finctions
is called the slope transform|9].

The dilation of a planar function e,(x) = w -z + ¢ is therefore equal to
e, @ g = e, + Slg|(w), where S|g| is the slope transform of ¢. In the case of the
tangent plane to the function I in the point x, we obtain:

Fla,t+ dt) = F(z,t) + Slg™|(VF(, 1))

(note that VF'(a,1) is the ‘slope’ of the tangent plane). In [9] it is proven that
umbral scaling in the spatial domain amounts to grey value scaling (i.e. multi-
plication with a constant) in the slope domain. Thus we have;

Fe,t +dt) = Fa,t) + dtS|g|(VF(x,t)).
Rearranging terms and in the limit df — 0:

ar .
() = Slgl(VF (2, 1)),

This analysis shows that the family of images generated by dilation with the
umbral scaling of a concave structuring function is causal in the scale-parameter.
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I.e. the change in grey value going from scale ¢ to scale t + dt is determined by
the (first order) differential structure of the image at scale ¢.

In summary, the entropy solution of the PDE 0F/dt = G(VF) with initial
condition F'(z,0) = f(z)is given by the dilation F(z,t) = (f ® g")(z), where G
is the slope transform of g.

As an example consider the PDE 88—1; = ||VF||. The inverse slope transform
of G(w) = ||w|| is the ‘indicator’ function wp:

o) {2 1S

—0o0 : elsewhere °

Note that the slope transform can be applied to non-differentiable functions like
pp (for details see [9]). The PDE 0F/0t = ||VF|| is thus solved with a dilation
of f using a disk shaped flat structuring element of radius ¢. This PDE is often
encountered not only in morphological image processing where the disk shaped
structuring element has radius greater than the pixel size, but also in non-linear
curvature controlled deformation of shape boundaries. Here the radius of dilation
is controlled by the curvature of the boundary. The dilation to get from F'(-,¢) to
F(-,t+dt) uses a disk with infinitely small radius controlled by the local (position
dependent) geometry. This observation already hints at numerical schemes to
solve the PDE: dilations with disk smaller than the pixel distance (sub-pixel
morphological operators). Another example of the use of sub-pixel dilations is
in its use in geometrical measurements where the difference of a shape and a
dilated version is proportional to certain geometrical properties of the shape[11].

As a second example, consider the PDE % = ||VF||27 with initial condition
F(z,0) = f(z). The inverse slope transform of G(w) = ||w||* is the quadratic
structuring function g(z) = —||z||> /4, i.e. the PDE is solved with dilations
using a quadratic structuring element of scale ¢t. This PDE is the morphological
equivalent of the linear diffusion equation [4].

3 Numerical solutions

In this section we look at numerical schemes to solve the PDE

oF

— = ||VF 1

T vr) 0
with initial condition F'(z,0) = f(z). Only forward Euler schemes will be consid-
ered. Let F; ;. = F(iAz, j Ay, rAt), then the forward Euler numerical difference

scheme is given by:

Fijr1=Fj,+ At\/(vajerf + (Diy,j,rF)Q
where DY

i ;L' 1s the finite difference approximation to Fo(iAz, j Ay, r At). The
choice of these finite difference operators proves to be the crucial step. Simple
central differences like

T (FZ{Ll,j,r _Fzrfl,j,'r)
Dy, F = A (2)
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do not work. Even in case very small time steps At are used, stability is not
guaranteed.

3.1 Upwind finite difference schemes

Based on the analysis of the PDE (especially the fact that it expresses a con-
servation law and the fact that we are looking for an entropy solution) several
upwind finite difference schemes are presented in the literature. The simplest
one is given by Osher and Sethian|[5]:

Fijri1=Fijr +At\/ DWF) +(D;/¥ F) (D; Y F) + (DY F) (3)

i,4,r i,4,r i,4,r
where:

F 1, —F;, F 1., —F,
—x o Fi-lgr s +o il VEs

Di,j,rF = o VO, D”TF = Aa V0.

Here we use the morphological convention to denote the supremum (maximum)
operator with V. Equivalent expressions are used for the directed differences in
y-direction. A second finite difference scheme to solve the same PDE is due to
Rouy and Tourin (as cited in [12]):

E7j77+1:Fi777'f‘+At\/ ngrFVD;sz'rF> (ngy'rF\/D;Lgy'rF> (4)
It is not within the scope of this paper to give the derivation of these upwind
difference schemes. Instead in the following section it will be shown that the
upwind schemes are in complete accordance with the schemes that implement
the sub-pixel morphological operations.

3.2 The Morphological Facet Model

From a morphological point of view it is not surprising that the classical finite
difference schemes needed to solve ‘morphological PDE’s’ contain max and min
functions. In this section it will be shown that finite difference schemes that are
identical to the schemes cited in the previous section, can be easily derived start-
ing from the fact that the PDE is actually solved by a morphological dilation®.

In the previous section it was already stated that the operation to derive
F(z,t+ At) given F(z,t) is to dilate the function F'(-,¢) with a disk of radius ¢. In
this section we consider the dilation of a function with a disk shaped structuring
element of radius ¢ < 1. For these small values of the radius a sampled version
of the disk is of no use as only the origin is a grid point. To be able to dilate the
sampled function we therefore propose the morphological facet model:

! The use of a morphological dilation to solve these type of differential equations is
certainly not new. Burgers [13] himself presented a geometrical construction to solve
‘his’ PDE, which would nowadays be immediately recognized as a morphological
dilation (using a parabolic structuring function).
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Fig. 3. Morphological facet models. a: 4-beam, b: 8-beam, ¢: 4-plane and d: 8-
plane.

— approximate the discrete data in a small neighborhood with a function, then
— dilate this function analytically and, finally,
— sample the dilated function to give the final result.

We use the term morphological facet model because of its resemblance to the
facet model which is used to approximate the derivatives of a sampled function
(see Haralick[14]). Any facet model is characterized by:

— the analytical function that is fitted to the data, and
— the size and shape of the neighborhood from which the data is considered in
the fitting.

The function used in the local approximation ol the function data has to be
chosen in such a way that the desired operation (calculating the derivatives
in the classical [acet model and dilation in the morphological facet model re-
spectively) can be calculated analytically. Whereas in the classical (linear) facet
model the fumction needs to be differentiable (its sole purpose is to calculate the
derivatives), in the morphological facet model a crucial requirement is that the
local range of fimction values is preserved. If this would not be the case then
the dilation of the approximated function could result in function values that
cannot be “explained” by function values in the sampled data. This is exactly
the main problem when ‘solving’ the morphological PDE’s with a simple linear
finite difference scheme that is based on a facet model that does not obey the
range requirement. Differentiability of the function is not a primary concern;
dilations tend to result in non differentiable functions anyway. Even continuity
of the function is not of primary concern in the morphological facet model.
The first morphological facet model considered is a degenerated facet model.
Instead of fitting a surface to the data points , just the “beams” between the cen-
tral data point and the neighboring points are considered. Two beam models are
distinguished. The 4-beam model considers only the beams to the 4-connected
neighbors, The 8-beam model also considers the beams to the 8 connected neigh-
bors. Both beam models are illustrated in figure 3. In dilating the facet model, we
are only interested in the dilation value in the central pixel. Evidently the final
dilation result is the maximum of the dilations of the individual beams. Consider
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the first beam connecting the central grid point with value F; ;, with the first
neighbor with value I ;,. In case Fi11;, < F;;, the dilation result in the
central pixel is F; ; », i.e. the disk hits the beam in its highest point (the origin).
In case the other end of the beam is the highest point (ie. Fi11,, > Fi;,)
the dilation value equals I 1,14y = F jr + At(Fyp1 5, — F ;). The selec-
tion according to the ordering of F; ;, and Fjy; ;, can elegantly be casted in a
maximum operator:

Fittgrvar = Figr + AL OV (Figp150 — i jr)) -

An equivalent analysis can be done for all 4-connected neighbors, leading to the
following morphological finite dilation scheme:

Fijrjorar = Fige + A\ (Fryngrer — Figr)- (5)
(k,£)EN,

The beam model is easily extended to take all 8 neighbors into consideration.
For the diagonal neighbors a distance correction is needed then. This leads to:

Fiptgosar = Figo+ A\ w(k, 0) (Frinjrer — Fijr), (6)
(k,€)ENg

where w(k, £) = 1/4/2 for the diagonal neighbors and 1 for the other points in the
8-connected neighborhood. Note that it is essential that in the above maximum
also the central pixel itself (i.e. (k,¢) = (0,0)) is considered as it provides the
necessary positivity of the dilation offset.

More complex morphological facet models are obtained when interpolating
planar surfaces are used as shown in figure 3 ¢ and d. The 4 plane model inter-
polates the data points with 4 planar function patches, each of them defined in
one of the four octants. Dilation of the facet model is then equivalent with the
maximum of the 4 dilations of the individual triangular facets. In section 2 it
was indicated that dilating a plane with a disk is equal to the addition of the
gradient norm. Because in the planar facet model only a small triangular patch
of the plane is dilated, we have to make sure that the ‘point-of-contact’ is indeed
within that patch. Let pil’j be the planar function in the first quadrant:

(Fit14r —Figr)az+ (Fijpir —Fijr)y:2>20,y>0,z +y <1
—00 . elsewhere ’

e =

The dilation result of this patch with a disk of radius ¢, in the central point is
given by:

Fooopaed Ve = Figr)? + (Figp, — Fige)? ox
w OV (Fitigr = Figr) V (Figiir — Fijr) o elsewhere ”

where * indicates the condition that I ;, —F; ;, > 0and I ;41 , —F; ;, > 0.

Thus, in case that the point-of-contact is within the first quadrant, the dilation
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adds the gradient norm to the function value. When the gradient vector points
outside the first quadrant, the disk will hit the triangular planar patch at one of
the two ‘beams’. The above expression can be simplified to:

2 2
Fijri1r=Figr + At(\/<Fi+1,j,r —Fijr 0) + (Fi,jﬂ,r —Figr 0) :

The dilation of the entire 4-plane facet model is equal to the maximum of the 4
individual dilations:

Figrr = Fijr + AU

\/<E+1,j,r - E,j,r
\/<E7j+1,r - Fi,j,'r'
\/(El,j,r - F;-\/O

2 2
\/(Fz‘,jl,r — Fijy 0) + (Fz‘+1,j,r — Fijr 0) )-

Careful analysis? of the above equation reveals that it is equivalent with the
Rouy and Tourin scheme (equation 4):

2

0) v

+ \Fijrir — Fijr

Vo Vo)
0)2 + (Fi,l,j,r — Fijr \/O)2 v
Vo Vo)

2

0) v

F\ Fijo1y — Fijr

Fojrir=Fijr+ At ((OV Fypyjr = Fijo V140 — Fi )+
1
o
OV Fiji1r = FijrVFija,—Fij)?)”.

The extension of the 4-plane model to the 8-plane model is straightforward.. In
this case the 8 planar patches are defined within an octant, making the check to
see Whether the point-of-contact is within the region of definition more complex.

3.3 Numerical Experiments

The experiments presented in this section are meant to illustrate the concepts
developed in previous sections. The morphological numerical schemes are com-
pared with the classical Rouy and Tourin scheme. More detailed experiments
concerning stability and accuracy are the subject of future research.

In figure 4 the experiment is shown in which a pulse (in a 64 x 64 image)
is the initial condition to the PDE given in equation (1). As explained in the
previous section, the Rouy and Tourin (abbreviated as the R&T) upwind scheme
is equivalent to the morphological 4-plane facet model. From the figures it is clear
that the morphological beam models suffer from severe anisotropy and therefore
are of little practical use.

2 To prove the equivalence remember that \/aVvb = v/a V b, and that (a+b)V (atc) =
a+ (b V ¢) for positive a,b and ¢. Using these equalities the proof is completely
straightforward.
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Fig. 4. Sub-pixel dilation of a pulse. In a(A) the original 64 x 64 initial condition
of the PDE is shown. The PDE is solved with 5 numerical schemes. In b(B) the R&T
scheme is depicted. Tn ¢(C) the 4-beam facet model, in d(D) the 8-beam model, in e(I)

the 4-plane model and in f(F) the 8-plane model.

Comparison of the morphological 4-plane and 8-plane models, learns that
whereas the & plane model is the most isotropic solution, it is so at the cost of
being more dissipative (i.e. more ‘smoothing’ is introduced). An advantage of the
8-plane model is that the scale step Afcan be chosen significantly larger than
for the 4-plane model. For the &plane model we have At/ Az < cosw /8 = 0.92
compared with At/Az < cosw/4 =~ 0.71 for the 4-plane model. These bounds
follow from the observation that stability requires that the disk really hits one
of the planes as defined in the small considered neighbourhood (and not the
analytical continuation). The &plane model therefore can be used with larger
time steps, leading to more efficient solutions schemes as fewer iterations are
needed.

Figure 5 depicts the second experiment in the same layout, only the initial
condition was changed. This time a smooth function (the function ‘peaks’ from
matlab: a weighted addition of several Gaussian functions) is used as initial con-
dition. Again we observe that the morphological beam models perform poorly,
whereas any differences between the 4-plane and 8-plane model are hardly no-
ticeable.

Figure 6 finally shows the experiment where noise has been added to the
smooth function that has been used in the previous experiment. This experiment
shows that smoothness of the functions is not of any influence to the stability of
the numerical solution schemes.

4 Conclusions

In this paper we have introduced the morphological facet model as a method to
implement sub-pixel morphological dilations (and of course also erosions) and
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Fig.5. Sub-pixel dilation of a continuous and smooth function. In a(A) the
original 64 x 64 initial condition of the PDE is shown. The PDE is solved with 5
numerical schemes. In b(B) the R&T scheme is depicted. In ¢(C) the 4-beam facet
model, in d(D) the 8-beam model, in e(E) the 4-plane model and in f(F) the 8-plane

model.
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Fig. 6. Sub-pixel dilation of a function with a substantial amount of noise
added. In a(A) the original 64 x 64 initial condition of the PDE is shown. The PDE
is solved with 5 numerical schemes. [n b(B) the RET scheme is depicted. In ¢(C) Lhe
4-beam facet model, in d(D) the &beam model, in e(E) the 4-plane model and in f(I)
the 8&-plane model.
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thus to provide a stable numerical scheme to solve the class of morphological
PDE’s. The morphological numerical scheme based on 4-plane facet model proves
to be equivalent with the classical upwind numerical scheme of Rouy and Tourin.

Future research will look at the PDE’s where the dilation/erosion is locally
controlled by the observed geometry of the shape (i.e. its curvature). The sim-
plest way to use the morphological schemes described in this paper is to use
a classical facet model (e.g. bicubic) to observe the local differential geometry
(or use Gaussian (fuzzy) derivatives) and calculate the curvature and then to
use a morphological facet model to perform the sub-pixel erosion/dilation. A
more unified approach is to look for facet models that allow both analytical
morphological operations as well as differentiation.
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Abstract. We show that regularization methods can be regarded as
scale-spaces where the regularization parameter serves as scale. In analogy
to nonlinear diffusion filtering we establish continuity with respect to
scale, causality in terms of a maximum-minimum principle, simplifica-
tion properties by means of Lyapunov functionals and convergence to a
constant steady-state. We identify nonlinear regularization with a single
implicit time step of a diffusion process. This implies that iterated regu-
larization with small regularization parameters is a numerical realization
of a diffusion filter. Numerical experiments in two and three space dimen-
sions illustrate the scale-space behaviour of regularization methods.

1 Introduction

There has often been a fruitful interaction between linear scale-space techniques
and regularization methods. Torre and Poggio [28] emphasized that differentia-
tion is ill-posed in the sense of Hadamard, and applying suitable regularization
strategies approximates linear diffusion filtering or — equivalently — Gaussian
convolution. Much of the linear scale-space literature is based on the regu-
larization properties of convolutions with Gaussians. In particular, differential
geometric image analysis is performed by replacing derivatives by Gaussian-
smoothed derivatives; see e.g. [8,14,25] and the references therein. In a very
nice work, Nielsen et al. [15] derived linear diffusion filtering axiomatically from
Tikhonov regularization, where the stabilizer consists of a sum of squared deriva-
tives up to infinite order.

Nonlinear diffusion filtering can be regarded both as a restoration method
and a scale-space technique [10,19,29]. When considering the restoration prop-
erties, natural relations between biased diffusion and regularization theory exist
via the Euler equation for the regularization functional. This Euler equation can
be regarded as the steady-state of a suitable nonlinear diffusion process with

M. Nielsen et al. (Eds.): Scale-Space’99, LNCS 1682, pp. 211-222, 1999.
(© Springer-Verlag Berlin Heidelberg 1999
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a bias term [5,18,24]. A popular specific energy functional arises from uncon-
strained total variation denoising [1,3,4]. Constrained total variation also leads to
a nonlinear diffusion process with a bias term using a time-dependent Lagrange
multiplier [21].

When regarding nonlinear diffusion as a scale-space method we have to ensure
that architectural, invariance and simplification properties exist [2]. A typical
architectural property is continuity with respect to the scale parameter, a charac-
teristic invariance property is the average grey level invariance, and simplification
qualities can be stated in terms of a maximum-minimum principle, Lyapunov
functionals and convergence to a constant steady-state [29].

Strong and Chan [27] proposed to regard the regularization parameter of
total variation denoising as a scale parameter. However, a corresponding scale-
space interpretation of regularization methods, which is in analogy to results
for nonlinear diffusion scale-spaces, has been missing so far. This topic will be
discussed in the present paper. We show that there exists a scale-space theory for
regularization methods which resembles very much the one for nonlinear diffu-
sion filtering. Following [12,22,27] we interpret the regularization parameter as
a diffusion time by considering regularization as time-discrete diffusion filtering
with a single implicit time step. Consequently, iteration of regularization with
small regularization parameters can be regarded as an approximation to diffusion
filtering.

Our paper is organized as follows: In Section 2 we survey scale-space proper-
ties of diffusion filtering. In Sections 3 and 4 an analogous theory for noniterated
and iterated regularization techniques is established. Due to the lack of space we
can survey only the main results. Proofs and full details can be found in technical
reports [23,20]. In Section 5 we present some experiments with 2D MR images
and 3D ultrasound data, and compare the restoration properties of noniterated
and iterated regularization.

2 Diffusion Filtering

In this section we review essential scale-space properties of nonlinear diffusion
filtering. The presented results can also be extended to a broader class of methods
including regularized filters with nonmonotone flux functions and anisotropic
filters with a diffusion tensor. More details and proofs can be found in [29].

We consider a diffusion process of the form

dyu(z,t) = V. (g(|Vu|?)Vu) (z,t) on £2x [0,00]
Opu(z,t) =0 on I x [0, 00| (1)
u(z,0) = f(x) on §2.

?

The image domain 2 C R is assumed to be bounded with piecewise Lip-
schitzian boundary I" with unit normal vector n, and f € L®(42) is a degraded
original image with a := essinfy, f and b := esssupy, f.

The diffusivity g satisfies the following properties:
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1. g € C*([0, o))
2. The flux g(s?)s is monotonically increasing in s.
3. g(s) >0 forall s >0.

Under these assumptions there exists a unique solution w(z,t) of (1), such that
lu(.,t)|| L2y is continuous for ¢ > 0. This continuity property is necessary for
relating structures over scales and for retrieving the original image for ¢ —
0. It is one of the fundamental architectural ingredients of scale-space theory.
Furthermore, it is possible to show that w(x,t) € C*(§2 x (0, c0)).

Morcover, the average grey level is conserved:

1
m/ w(z,t)de=Mf forallt>0,
2

1
Mf =— d
f= 1 /Q f(z) da

A constant average grey level is essential for scale-space segmentation algorithms
such as the hyperstack [16]. It is also a desirable quality in medical imaging
where grey values measure physical quantities of the depicted object, for instance
proton densities in MR images.

The unique solution of (1) fulfills the extremum principle

a <wulz,t) <bon £2x(0,7]. (2)

with

The extremum principle is an equivalent formulation of Koenderink’s causality
requirement [11]. Together with the continuity it ensures that level sets can be
traced back in scale.

Another important simplification property can be expressed in terms of
Lyapunov functionals. For all » € C?[a, b] with +” > 0 on [a, b, the function

V(t) = ¢(u(t)) = /Qr(u(xj))dx (3)

is a Lyapunov functional since it satisfies

1. o(u(t)) > ¢(Mf) forallt >0
2. a) Ve C0,00)NCH0O,00)
b) V/(t) <0 for all ¢t > 0.

Lyapunov functionals show that diffusion filters create simplifying transforma-

tions: the special choices r(s) = |s|P, r(s) == (s — M f)>" and r(s) = sln(s),
respectively, imply that all LP norms with p > 2 aIe decleasintT all even central
moments are decreasing, and the entropy S[u == f,u culz t)Inu(z,t)dr, a

measure of uncertainty and missing 1nf01mat10n is increasing Wlth respect to
t. Lyapunov functionals have been used for scale—selection and texture anal-
ysis [26], for the synchronisation of different diffusion scale-spaces [16], and for
the automatic determination of stopping times [31]. Moreover, they allow to
prove that the filtered image converges to a constant image as ¢ tends to oo:
lim; o0 |w(t) = Mf|gpeoy = 0 for p € [1,00). For d = 1 we have even uniform
convergence.
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3 Regularization

An interesting relation between nonlinear diffusion filtering and regularization
methods becomes evident when considering an implicit time discretization
[12,22,27]. The first step of an implicit scheme with step-size h in ¢—direction
reads as follows.

U 8D 7 (g(|Vul?) V) (2, h)
R ()

In the following we assume the existence of a differentiable function § on [0, 00)
which satisfies ¢’ = ¢g. Then the minimizer of the functional

T(w) = lfu— f2a( + b /Q §(|Vul?) da (5)

satisfies (4). This can be seen by calculating the formal Gateaux derivative of T
in direction v, i.e.

(T'(u). o) — lim Lt o) =T :/92(u—f)vdx+h/g 29(|Vul?)Vu Vo dz.

t—0+ t

Since a minimizer of (5) satisfies (7"(u),v) = 0 for all v, we can conclude that
the minimizer satisfies the differential equation (4). If the functional T is convex,
then a minimizer of 7" is uniquely characterized by the solution of equation (4).

T(u) is a typical regularization functional consisting of the approximation
functional ||u—f||2L2(Q) and the stabilizing functional [, §(|Vu|?) dz. The weight
h is called regularization parameter. An extensive discussion of regularization
methods can be found in [7].

Now we present a scale-space theory for a broad class of regularization
methods. For proofs and full details we refer to [23]. Let ¢ satisfy:

g(.) is continuous for any compact K C [0, c0).
g(0) = min {g(z) : x € [0,00)} > 0.

§(].]?) is convex from R? to R .

There exists a constant ¢ > 0 such that g(s) > cs.
¢ is monotone in [0, 00).

Gt o =

These assumptions guarantee existence and uniqueness of a minimizer uj, for the
regularization functional (5) in the Sobolev space H'(2).
They are satisfied for the following regularization techniques:

1. Tikhonov regularization:
a(lsl?) = Is* -

2. The modified total variation regularization of Ito and Kunisch [13]:

a(|s|?) = V/s]? + a|s]?, with a >0 .
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3. The modified total variation regularization of Nashed and Scherzer [17]:

9(lsP*) = Vs> + 62 + alsP.

4. The regularization of Geman and Yang [9] and Chambolle and Lions [3]:

= |s/? ls| <e
9(|sl*) = |s| — £ e<|s| <L
sl +3 (2 —¢) |s| > £

5. Schnérr’s [24] convex nonquadratic regularization:

Ahlsl? 5] <ep

alsP?) =
NJs + (2 =D, (2lsl =) sl > e,

The assumption 4. on ¢ is violated for the total variation regularization in its
original formulation by Rudin et al. [21]. In this case our mathematical frame-
work cannot guarantee existence of a minimizer of (5) in H'(£2), and in turn we
have no existence theory for the partial differential equation (4). However, this
does not mean that it is impossible to establish similar results by using other
mathematical tools in the proofs.

The functional [Jup||r2¢m) can also be shown to be continuous in A > 0.
Regarding spatial smoothness, the solution belongs to H?(£2). This result is
weaker than for the diffusion case.

In analogy to diffusion filtering, the average grey level invariance

/uhdx:/fdx forall h>0
n n

and the extremum principle
a<up<b forall h>0

can be established.
Moreover, Lyapunov functionals for regularization methods can be constructed
in a similar way. For all » € C?[a, b] with +” > 0, the function

V(h) = ¢(up) ::/ r(up(z)) do (6)

02

is a Lyapunov functional:

1. ¢(up) > (M) for all b > 0.

2. a) Ve Cl0,00),
b) DV (h) = [,r'(up)(up —up) <0, for all h > 0.
¢) V(h)—V(0) <0 forall h>0.
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Here, a difference between Lyapunov functionals for diffusion processes and
regularization methods becomes evident. For Lyapunov functionals in diffusion
processes we have V/(t) < 0, and in regularization processes we have DV (h) <0.
DV (h) is obtained from V’(¢) by making a time discrete ansatz at time 0. We
note that this is exactly the way we compared diffusion filtering and regular-
ization techniques. It is therefore natural that the role of the time derivative in
diffusion filtering is replaced by the time discrete approximation around 0.

Again, these Lyapunov functionals allow to prove convergence of the filtered
images to a constant image as h — oo. For d = 3, however, the convergence
result is slightly weaker than in the diffusion case.

d=1: wuy converges uniformly to M f for h — o

d=2: hlim lun — Mf|lLe(oy =0 for any 1 <p < co
—00

d=3: lim |fup — Mf|lprpy =0 forany 1 <p <6
h—r00

4 TIterated Regularization

Regularization can be applied iteratively where the regularized solution of the
previous step serves as initial image for the next iteration. For small regulariza-
tion parameters, iterated regularization becomes therefore a good approximation
to a nonlinear diffusion filter.

Let us consider an iterative regularization process with positive regularization
parameters hy, k =1, ..., 00, such that the corresponding “diffusion time” ¢,, :=
>or_1 by tends to oo for n — oo. The n-th iteration reads as follows:

w(z,t) —uw(x, ty_1)

= V. (g(|Vu|))Vu) (z,1) t€ (th_1,tn], €

b —tn_1
Onpu(z,t) =0 zel
u(z,0) = f(x) x €S

(7)

where now ¢t—t,, 1 serves as the regularization parameter in the interval (¢,,_1,¢,].

It is now possible to prove a similar scale-space theory as for noniterated
regularization [20]. The main results are given below.

Under the same assumptions as for the noniterated case there exists a unique
minimizer (-, ). Moreover, the functional |lu(-,¢)||12(x) is continuous for ¢ > 0.
However, the spatial smoothness becomes better in each iteration step: after
n iterations the solution w(.,t) is in the Sobolev space H?"(§2) for fixed ¢t €
(tn_1,tn] (provided the diffusivity g is sufficiently smooth). This suggests that,
if one uses the regularized solution for calculating derivatives of order 2n, one
should perform at least n iterations.

As for noniterated regularization, the average grey level invariance and the
extremum principle hold.
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Even at the risk of boring the reader we introduce for the sake of completeness
Lyapunov functionals for iterated regularization: for all + € C?|a, b] with " > 0,
the function

V() = ¢(u(., 1)) = /Qr(u(xj))dx (8)
is a Lyapunov functional:
1. o(u(.,t)) > d(MJf) for all ¢ > 0.

2. a) Ve Cl0,0),

b) DV (t) = fQ v (u(z,t)) (w(z, t) —ulz, by, 1)) de <0,
for all t € (t,_1,1,],

¢) V(t) = V(tn_1) <O0forallt € (t, 1,

In contrast to noniterated regularization, Lyapunov functionals for iterated
regularization methods are based on the time discrete ansatz at ¢t = ¢,,. Never-
theless, the convergence results from Section 3 carry over literally.

5 Experiments

The numerical experiments are performed using the software package DIFFPACK
from the University of Oslo / Numerical Objects [6]. We have implemented the
diffusion equation with §(|Vu|?) = /[Vu|? + 32 + o|Vu|? which is a modified
total variation regularization. For this diffusion filtering our theoretical results
are applicable. The term «|Vu|? is only of theoretical interest; in numerical
realizations, the discretized version of the gradient is bounded, and there is no
visible difference between using very small values of « (in which the theoretical
results are applicable) and « = 0 (where our theoretical results do not hold).

Our experiments were carried out for different sequences of time-steps and
various smoothing parameters 3. The influence of the parameter settings is as
follows.

The impact of 8 on the numerical reconstruction is hardly viewable in the
range from 3 = 102 to 10~*. Even the convergence rate is, although slower for
smaller 3, hardly affected.

For small values of regularization parameters b (up to approximately 5.0),
there is no visible difference between iterated and noniterated regularization.
The effect can only be seen for larger values of A. This is illustrated in Figure 2.
It shows the result of noniterated and iterated regularization applied to the 2D
MR image from Figure 1(a). The results are depicted at times ¢ = 10, 30, and
100, respectively. For noniterated regularization this is achieved in one step, and
for iterated regularization the regularization parameter o = 1 was chosen and
10, 30, or 100 iterations were performed. We observe that differences between
the two methods are very small. They only become evident when subtracting
one image from the other. This also indicates that even the semigroup property
of regularization methods is well approximated in practice. It should be noted
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Fig. 1. Test images. (a) Left: MR image with additive Gaussian noise
(SNR =1). (b) Right: Rendering of a three-dimensional ultrasound data
set of a human fetus.

that the semigroup property is an ideal continuous concept which can only be
approximated in time-discrete algorithms for partial differential equations.

As can be seen from the previous sections, the scale-space framework for
noniterated and iterated regularization methods carries over to higher space
dimensions. In the next figure we present results from a three-dimensional ultra-
sound data set of a fetus with 80 x 80 x 80 voxels. Also in this case the differences
between noniterated and iterated regularization are very small and iterated regu-
larization appears to give slightly smoother results. This is in complete accor-
dance with the theory derived in the previous sections.

6 Conclusions

Traditionally, scale-space techniques have been linked to parabolic or hyperbolic
partial differential equations |2]. The novelty of our paper consists of estab-
lishing a parameter dependent elliptic boundary value problem (noniterated
regularization) and a sequence of elliptic problems (iterated regularization) as
scale-space techniques. They satisfy the same scale-space properties as nonlinear
diffusion filtering. The key ingredient for understanding this relation is the inter-
pretation of regularization methods as time-implicit approximations to diffusion
processes. In this sense, the scale-space theory of regularization methods is also
a novel semi-discrete theory to diffusion filtering. This time-discrete framework
completes the theory of diffusion scale-spaces where up to now only results for
the continuous, the space-discrete and the fully discrete setting have been formu-
lated |29].

The synthesis of regularization techniques and diffusion methods may lead to
a deeper understanding of both fields, and it is likely that many more results can
be transferred from one of these areas to the other. It would e.g. be interesting
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difference

difference

one iteration, t=100 100 iterations, t=100 difference

Fig.2. Results for the MR image from Figure 1(a) with noniterated and iterated
regularization (F = 0.001). The left column shows the results for noniterated, the
middle column for iterated regularization. The images in the right column depict the
modulus of the differences between the results for the iterated and noniterated method.
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1 iteration, t=8 4 iterations, t==§

1 iteration, t=20 10 iterations, t=20

Fig. 3. Results for the three-dimensional ultrasound data from Figure 1(b) with g =
0.001. The left column shows the renderings for noniterated, the right column for

iterated regularization. The regularization parameter for iterated regularization was
B=2:
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to study how results for optimal parameter selection in regularization methods
can be used for diffusion filtering. It is also promising to analyse and juxtapose
efficient numerical techniques developed in both frameworks. First steps in this
direction are reported in [30].
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Abstract. Nonlinear diffusion methods have proved to be powerful
methods in the processing of 2D and 3D images. They allow a denoising
and smoothing of image intensities while retaining and enhancing edges.
On the other hand, compression is an important topic in image process-
ing as well. Here a method is presented which combines the two aspects
in an efficient way. It is based on a semi—implicit Finite Element im-
plementation of nonlinear diffusion. Error indicators guide a successive
coarsening process. This leads to locally coarse grids in areas of resulting
smooth image intensity, while enhanced edges are still resolved on fine
grid levels. Special emphasis has been put on algorithmical aspects such
as storage requirements and efficiency. Furthermore, a new nonlinear
anisotropic diffusion method for vector field visualization is presented.

1 Introduction

Nonlinear diffusion methods in image processing have been known for a long
time. In 1987 Perona and Malik [17] introduced a continuous diffusion model
which allows the denoising of images together with the enhancing of edges. The
diffusion driven evolution is started on an initial image intensity. In general, it
is either noisy because of unavoidable measurement errors, or it carries partially
hidden patterns which have to be intensified and outlined [9,23]. Such an image
smoothing and feature restoration process can be understood as a successive
coarsening while certain structures are retained on a fine scale — an approach
which is closely related to the major techniques in image compression.

Finite Element methods are widespread to discretize and appropriately imple-
ment the diffusion based models. Their general convergence properties were stud-
ied for instance by Ka¢ur and Mikula [13]. Furthermore, Schnérr applied Finite
Elements in a variational approach to image processing [19]. In various areas of
scientific computing adaptive Finite Element methods [6,4] have been incorpo-
rated to substantially reduce the required degrees of freedom while conserving
the approximation quality of the numerical solution. Thereby locally defined re-
liable error estimators or some error indicators steer the local grid refinement,
respectively coarsening [22,5]. The image intensities resulting from the nonlinear
parabolic evolution are obviously well-suited to be resolved on adaptive grids.
As time evolves, a successive coarsening in areas of smooth image intensity is

M. Nielsen et al. (Eds.): Scale-Space’99, LNCS 1682, pp. 223-234, 1999.
(© Springer-Verlag Berlin Heidelberg 1999
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near at hand. For instance in case of an d—dimensional image, where the image
intensity is constant on piecewise smoothly bounded regions, we obtain the same
image quality on a O(N?!log(N)) complex adaptive grid as on a O(N?) regu-
lar grid. The cost of the numerical algorithm, the storage requirements, and the
transmission time on computer networks scale with this complexity in terms of
actual degrees of freedom.

These efficiency perspectives have first been studied by Bansch and Mikula [3],
who presented an adaptive Finite Element method. This method is based on
simplicial grids generated by bisection and then again successively coarsened in
the diffusion process. The major shortcoming of their approach is the enormous
memory requirement for the data structures describing the adaptive grid and
the sparse matrices used in the linear solver in each implicit time. Therefore,
large 3D images — as they are widespread in medical images — are difficult to
manage on moderately sized workstations.

Here we present an adaptive multilevel Finite Element method which avoids
these shortcomings and comes along with minimal storage requirements. The
specific ingredients of our method are:

— adaptive quad— and octrees, with accompanying piecewise bilinear, respec-
tively trilinear Finite Element spaces are procedurally handled only,

— error indicators on grid nodes and a suitable threshold value implicitly de-
scribe the adaptive grid (no explicit adaptive grid structure is required),

— invoking a certain saturation condition for the nodal indicators, we ensure
robustness and one level transitions only on the resulting adaptive grid,

— the adaptive Finite Element space is defined as an implicitly constrained
discrete space on the full grid,

— the grid is completely handled procedurally,

— and instead of dealing with explicitly stored sparse matrices, the hierarchi-
cally preconditioned linear solver in each timestep uses ”on-the-fly” matrix
multiplication based on efficient grid traversals.

Let us mention that this approach benefits from general and efficient multilevel
data post processing methodology [16,18] and is related to the multilevel methods
discussed in [1,24].

Finally, as a — to our knowledge — new area of application we will present a scale
space method in vector field visualization. Flow visualization is an important
task in scientific visualization. Simply drawing vector plots at nodes of some
overlayed regular grid in general produces visual clutter. The central goal is to
come up with inituitive methods with more comprehensible results. They should
provide an overall as well as detailed view on the flow patterns. Several tech-
niques generating such textures based on discrete models have been presented
[8,15,20,21]. We ask for a continuous model which leads to stretched streamline
type patterns, which are aligned to the vector field. Furthermore, the possibil-
ity to successively coarsen this pattern is obviously a desirable property. For
the generation of such field aligned flow patterns we apply anisotropic nonlin-
ear diffusion. A matrix valued diffusion coefficient controls the anisotropy as in
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Weickart’s method [25] to restore and enhance lower dimensional structures in
images.

2 FE-Discretization of Nonlinear Diffusion

Let us look at the modified Perona-Malik [17] model proposed by Catté, Lions,
Morel, and Coll [9]. Without any restriction we consider the domain §2 := [0,1]¢,
d = 2,3 and ask for solution of the following nonlinear parabolic, boundary and
initial value problem: Find p : RT x £2 — R™ such that

%p_ div (A(va)vp) - f(p)7 in R x '-(27
,0(07):,00 s Ol’l._(27
Zp=0 , onRt xan.

where in the basic model A = g for a non negative monotone decreasing function
g : Ry — R+ satisfying lim, ;o g(s) = 0, e. g. g(s) = (1 +s?)7!, and p, is a
mollification of p with some smoothing kernel. We interpret the solution p for
increasing t € RT to be a successively filtered version of py. With respect to
the shape of g, the diffusion is of regularized backward type [14] in regions of
high image gradients, while noisy regions of pg will be smoothed by dominant
diffusion.

We solve this problem numerically by applying a bilinear, respectively trilinear
conforming Finite Element discretization on an adaptive quadrilateral, respec-
tively hexahedral grid. In time a semi-implicit second order Euler scheme is
used. As it has become standard the scheme is semi-implicit with respect to the
evaluation of the nonlinear diffusion coefficient ¢ and the right hand side. The
computation of the mollified intensity pe is based on a single short timestep of
the corresponding heat equation (linear diffusion) with given data p [13]. In the
ith timestep we have to solve the linear system (M + 7L(p))p" = Mp~! + F,
where g is the corresponding solution vector consisting of the nodal values, 7
the current timestep, M is the lumped mass matrix, L{p.) the weighted stiffness
matrix and I the vector representation of the right hand side. The growth of F'
in the application is moderate compared to chemical reaction diffusion equations.
Therefore we have not recognized any instabilities with this source term. The
stiffness matrix and the right hand side are computed by applying the midpoint
quadrature rule.

The above linear system as well as the linear system resulting from the mollifica-
tion by the heat equation kernel is solved by a preconditioned conjugate gradient
method. We use the Bramble-Pasciak-Xu preconditioning [7], thus making ap-
propriate use of the given grid hierarchy.

As already mentioned above, a peculiarity of our scheme is that no matrices
are stored explicitly. Instead, the multiplication of the mass, respectively the
stiffness matrix with a coefficient vector consisting of nodal values is done pro-
cedurally. Therefore, in each step the hierarchical and adaptive grid is traversed
and element wise local contributions are evaluated and successively assembled
on the resulting coefficient vector. Thus we avoid storing the matrices explicitly.
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Fig.1. On the left element types in two and three dimensions and their refinements
are shown and on the right a grid configuration with hanging nodes is depicted.

Otherwise we would have been unable to manage typical 3D applications with
more than 10 million nodes. Furthermore, this procedural access carries strong
provisions for code optimization with respect to a cache optimal numbering of
the nodes.

3 Grid Adaptivity and Error Indicators

In this section we will discuss an adaptive approach to the problem of nonlin-
ear diffusion. We will especially focus on the choice and the handling of error
indicator values on the grid nodes which steer the adaptive algorithm. It will
be outlined that saturation plays an essential role in the robustness and imple-
mentability of the proposed algorithm. In fact, solely referring to saturated errvor
indicator information and not to some explicit grid hierarchy enables us to define
and handle appropriate adaptive meshes for the nonlinear diffusion algorithm.
Let us assume the dimension of our image to be (2t=== | 1) in each direction for
some I, € N, The degrees of freedom are interpretated as nodal values of a
regular grid with 2t=+x¢ elements for d = 2, 3. Above this fine grid level we define
a quadtree, respectively octree hierarchy of elements with [, .« + 1 grid levels,
In each local refinement step an element F is subdivided into a set C(E) of 2¢
child elements (cf. Fig. 1).  Vice versa we denote by P(F) the ancestor of an el-
ement E. In each refinement step new grid nodes z appear. They are expressed
by weighted sums over their parent nodes xp € P(x) from the set of coarser
erid level nodes: @ = prg,p(&_)w(m, xp)ap. The weights w(x,zp) € {3, %, %
depend on the type of the new node, which might be the center of a 1D edge, a
2D face, or a 3D hexahedron. Let us denote by Ne(F) the set of new nodes on
an element F.

We suppose the grid to be adaptive. [. e. depending on data the recursive refine-
ment is stopped locally on elements of different grid levels. Thereby a sequence
of nested successively refined grids {M‘}gg;g is generated. On this sequence
we define discrete function spaces {V'}o<j<y ., consisting of continuous piece-
wise bilinear, respectively trilinear fimctions, which are ordered by set inclusion:
Vicvic...cVic V!l ... € V= | Let {¢l}; denote the basis of V!
consisting of hat-functions, i.e. if {1, ..., 2 n} denotes the set of non constrained
vertices of M!, we have ¢(27) = 85, 4 = 1,...,N. Thereby a vertex is called
constrained, or a hanging node, il it is not generated by refinement on every
adjacent element (cf. Fig. 1). On adaptive quadtrees, respectively octrees such
hanging nodes are unavoidable. The handling of the corresponding nodal values

max
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is crucial for the efficiency of the resulting adaptive numerical algorithm. We
choose an efficient implicit processing which will be described below.

Usually, for timedependent problems a grid modification consisting of the re-
finement and coarsening of elements is necessary at certain time steps. In our
setting we start on the initial fine grid M'=>x and it suffices to coarsen elements,
since there is in general no spatial movement of the image edges and complete
information of the image is coded on the initial grid.This coarsening is obtained
by prescribing a data dependent, boolean valued stopping criterion S(FE) on el-
ements, which implies local stopping in a recursive depth first traversal of the
hierarchical grid. It turned out to be suitable to let this element stopping crite-
rion depend on a corresponding criterion S(x) on the nodes, respectively basis
functions, i. e. we define S(E)::/\%NC(E) S(x). S(-) distinguishes which de-
grees of freedom are actually important, respectively which nodal values can be
generated by interpolation of some coarse grid function. If n(x) is some error
indicator on the nodes x and ¢ is a prescribed threshold value, we obtain such an
interpolation criterion by S(z):=(n(x) < ¢). Given an image intensity p € V'max
an intuitive choice for an error indicator is n(z):=|Vp(z)|, because the gradient
of an image p acts like an edge indicator. Hence in regions with nearly constant
intensity the grid will be coarsened substantially, whereas in the vicinity of high
gradients, indicating preservable edges, the grid size is kept fine.

The stopping criterion on elements is motivated by the fact that in the next
refinement step only interpolated nodal values would appear. To ensure every
descendent nodal value on such an element - also those on finer grid levels —
to be interpolated we require the following natural saturation condition on the
error indicator

(Saturation Condition) An error indicator value n(z) for z € N(F)
is always greater than every error indicator n(xz¢) for zc € Ne(F).

In general the saturation condition is not fulfilled, but we can modify the er-
ror indicator in a preprocessing step. Typically, this turns out to be necessary
only on coarse grid levels. A simple update algorithm for an error indicator 7
and thereby the corresponding projection criterion S is the following bottom-up
traversal of the grid hierarchy, starting on the second finest level and ending on
the macro grid.

for 1= lmax-1 to 0 step -1 do
for each element E of M’ do

*

NS mAX, it n(z);
for all z € N(E) do if(n(x) < n") n(z) = n*;

Let us emphasize that a depth first traversal of the hierarchy in the adjustment
procedure would not be sufficient. This saturation process “transports” fine grid
error information up to coarse grid level and prevents us from overlooking im-
portant fine grid details [16]. Furthermore, the saturation condition comes along
with another desirable property. The corresponding element stopping criterion
implies only one level grid transitions at element faces of the actual adaptive
grid (cf. Fig. 1). Thus, the possible hanging node configurations confine to the
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Fig. 2. From left to right several timesteps of Lhe selective image smoothing on adaptive
grids are shown.

basic one level cases. 1. e. any open face and any edge of an element F contains
at most one hanging node (cf. [11] for a general treatment of hanging nodes).
Finally, this has straightforward implications on the assurance of continuity of
discrete Finite Element functions and the corresponding matrix assembly in the
implementation of our nonlinear diffusion algorithm. In general on regular grids
the continuity is guaranteed by identifying each local degree of freedom (dof)
with the global dof in the assembly of the global stifiness matrices and the right
hand side of the corresponding discrete linear problem. However, hanging nodes
of the adaptive grid do not represent dofs, due to their dependence upon other
dofs. Therefore, when assembling the global stiffness matrices, we have to dis-
tribute the contribution of the hanging nodes onto the constraining dofs. This
is nothing else but procedurally respecting the appropriate interpolation condi-
tions. For future use let us introduce the following notation:

— NDEP(z) = Number of constraints of the node with local index ¢ of an element.
We define NDEP(:):=1 if the node is not constrained.

— CCOEF(¢,7) = List of constrained coefficients. In our case we always have
CCOEF(i,7) = 1/NDEP(4) for j = 1,...,NDEP(4).

— CDOFM(s, j) = List of global dofs that constrain the node ¢, 7 = 1, ... NDEP(z).
For non-hanging nodes CDOFM(z, 1) coincides with the global dof of node 7.

The CCOEF-values are identical to the weights in the above node generation rule.
Figure 2 shows the application ol the resulting adaptive algorithm to selectively
smoothen some noisy image. In Figure 3 and 4 we have applied the algorithm
to a 3D data set |12]. Figure 5 shows results obtained by the application of non-
linear diffusion to image segmentation. The approach is based on a continuous
multilevel analogue of the watershed algorithm.
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Fig. 3. Nonlinear diffusion has been applied to a 3d medical data set. Several slices
through the adaptive grid are depicted showing the corresponding image intensity as
well as the intersection lines with element faces.

4 Procedural Grid Handling and Matrix Multiplication

As already mentioned in Section 2 the hierarchical grid is handled solely pro-
cedurally and necessary matrix multiplications in the linear system solver are
performed on—the-fly traversing the adaptive grid recursively. Let us describe
this now in more detail.

Traversing the grid, information that is needed to identify an element £ will be
generated recursively. I this recursive traversal routine reaches a leafl element of
the adaptive grid, i. e. an element for which S(I) is true, a callback-method will
perform some action on that element. For instance it calculates the local right
hand side. An element F is identified by the index vector of its lower left corner,
its grid level and its refinement-type. Every other information like the element’s
size, the mapping of local dofs to global dofs, and the constrained dofs will be
stored in lookup tables as already mentioned in Section 3. In 2D the hierarchical
traversal can be formulated in pseudo code as follows:

sub traverse(i, j, lev, refType, callback, params)

if (lev # lnax) and —S(element) do
offset = 2lmax—lev1i.
traverse(i, j, lev+i, 0, callback, params);
traverse(i + offset, j, lev+l, 1, callback, params);
traverse(i + offset, j + offset, lev+l, 2, callback, params);
traverse(i, j + offset, lev+l, callback, params);

else callback(i, j, lev, refType, params);

We can also forrmulate the “on-the-fly” matrix-vector multiplication using this
callback traversal. Multiplying a given vector « with the matrix M + 7L{p.)
and assembling the result in a vector w requires the following local callback
procedure:
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Fig. 4. A transparent isosurface visualization of the brain data set, smoothed by non-
linear diffusion (cf. Fig. 3).

Fig. 5. Brain segmentation on slices of a MRT-image by nonlinear diffusion. Consecu-
tive timesteps of the corresponding evolution are depicted.

sub matrixProduct(i, j, lev, refType, (u,w))
for each pair 1,k of local dofs
for 1c=0 to NDEP(1), kc=0 to NDEP(k)
w(CDOFM(ke)) += localMatrix(CDOFM(1c), CDOFM(kc)) *
CCOEFF(1c) * CCOEFF(kc) * u(CDOFM(1lc));

Similarily the adaptive BPX preconditioning can be implemented.

5 Application to Flow Visualization

As already sketched in the introduction we will now apply nonlinear anisotropic
diffusion to vector field visualization. Thereby we consider diffusive smoothing
along streamlines and edge enhancing in the orthogonal directions. Applying this
to some initial random noise image we generate a scale of successively coarser
patterns which represent the flow field.

For a given smooth vector field » : 2 — R™ we define a family of con-
tinuous orthogonal mappings B(v) : B® — SO(n) such that B(v)e = eq,
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Fig.6. A single timestep is depicted from the nonlinear diffusion method applied to
the vector field describing the flow around an obstacle at a fixed time. A discrete white
noise is considered as initial data. We run the evolution on the left for a small and on
the right for a large constant diffusion coefficient .

Fig. 7. Several timesteps are depicted from the nonlinear anisotropic evolution applied
to a convective flow field in a 2D box.

where {€;};—¢,..,,—1 is the standard base in R”. We consider a diffusion ma-
trix A = A(v, Vp.) and define

o = B (n(l(l}v") g(ﬂd)) B(o)

where « : Rt — Rt controls the linear diffusion in vector field direction, i. e.
along streamlines, and the above introduced edge enhancing diffusion coefficient
g(+) acts in the orthogonal directions. We may either choose a linear function « or
in case of a velocity feld, which spatially varies over several orders ol magnitude,
we select a monotone function o with (0) > 0 and limg o @(8) = @max -

Different to the problems studied by Weickart in [25] in our case no canonical
initial data is given. To avoid aliasing artifacts we thus choose some random
noise pp of an appropriate frequency range. This can for instance be generated
running a linear isotropic diffusion simulation on a discrete white noise for a
short time. During the evolution the random pattern will grow upstream and
downstream, whereas the edges tangential to these patterns are successively
enhanced. Still there is some diffusion perpendicular to the field which supplies
us for evolving time with a scale of progressively coarser representation of the flow
field. Running the evolution for vanishing right hand side f the image contrast
will unfortunately decrease successively, Thus the asymptotic limit would turn
out to be an averaged grey value. Therefore, we select an appropriate contrast
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Fig. 8. Convective patterns in a 2D flow field are displayed and emphasized by the
method of anisotropic nonlinear diffusion. The images show the velocity field of the Aow
at different timesteps. Thereby the resulting alignment is with respect to streamlines
of this timedependent flow.

enhancing right hand side f : [0,1] — R with f(0) = f(1) =0, f > 0 on
(0.5,1), and f < 0 on (0,0.5) (cf. reaction diffusion problems in image analysis
studied in [2,10]). Finally we end up with the method of nonlinear anisotropic
diffusion to visnalize complex vector fields.

We expect an almost everywhere convergence to p(co,-) € {0,1} due to the
choice of the contrast enhancing function f(-). The set of asymptotic limits
significantly influences the richness of the developing pattern. One way to enrich
this set significantly is to consider a vector valued p : 2 — [0,1]? for some
m > 1 and a corresponding system of parabolic equations. Now, the nonlinear
diffusion coefficient g(-) is assumed to depend on the norm [|[Vp| of the Jacobian
of the vector valued density Vp and as right hand we define f(p) = h(|lpl)p-
Here h(s) = f(s)/s for s #£ 0, where f is the old right hand side from the
scalar case, and h(0) = 0. Finally the random initial density is assumed to
have values in B;(0) N [0,1]%. Obviously the contrast enhancement leads to
asymptotic values which are either 0 or lie on the sphere sector S' [0, 1]?
in R?. This method is capable to nicely depict the global structure of flow fields,
including saddle points, vortices, and stagnation points on the boundary. This is
indicated by Figure 7 and 8. Here the anisotropic diffusion method is applied to
an incompressible Bénard convection problem in a rectangular box with heating
from below and cooling from above. The formation of convection rolls leads to
an exchange of temperature.

The anisotropic nonlinear diffusion problem has already been formulated in Sec-
tion 2 for arbitrary space dimension. Differing from 2D in 3D we have somehow
to break up the volume and open up the view to inner regions. Here a further
benefit of the vector valued diffusion comes into play. The asymptotic limits -
which differ from 0 - are in mean equally distributed on S' 1 [0,1]*. Hence,
we reduce the informational content and focus on a ball shaped neighbourhood
Bs(w) of a certain point w € S'1]0,1]? (cf. Fig. 9).
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Fig.9. The incompressible low in a water basin with two interior walls and an inlet
(on the left) and an outlet (on the right) is visualized by anisotropic nonlinear diffusion.
[sosurfaces show the preimage of 8Bs(w) (for different values of §) under the vector
valued mapping p for some point w on §'. Color is indicating the velocity.

6 Conclusions

We have discussed an adaptive Finite Element method for the discretization of
nonlinear diffusion methods in large scale image processing. Especially, we have
introduced a new method to process adaptive grids and corresponding mass-
and stiffness matrices procedurally with out storing any matrix or any graph
structure for the hierarchical tree of elements. Thus the method enables the
handling of large images (257 dofs and more) on moderately sized workstations.
Furthermore a new method for 2D and 3D fow visualization has been presented.
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Abstract. This paper presents an interpretation of a classic optical flow
method by Nagel and Enkelmann as a tensor-driven anisotropic diffusion
approach in digital image analysis. We introduce an improvement into
the model formulation, and we establish well-posedness results for the
resulting system of parabolic partial differential equations. Our method
avoids linearizations in the optical flow constraint, and it can recover
displacement fields which are far beyond the typical one-pixel limits that
are characteristic for many differential methods for optical flow recovery.
A robust numerical scheme is presented in detail. We avoid convergence
to irrelevant local minima by embedding our method into a linear scale-
space framework and using a focusing strategy from coarse to fine scales.
The high accuracy of the proposed method is demonstrated by means of
a synthetic and a real-world image sequence.

1 Introduction

Optical flow computation consists of finding the apparent motion of objects in
a sequence of images. It is a key problem in artificial vision and much research
has been devoted to this field; for a survey see e.g. [23].

In the present paper we shall consider two images /1 (z, y) and Is(z,y) (defined
on R? to simplify the discussion) which represent two consecutive views in a
sequence of images. Under the assumption that corresponding pixels have equal
grey values, the determination of the optical flow from I; to Is comes down to
finding a function h(z,y) = (u(z,y),v(z,y)) such that

Il(x7y) - IQ($+U(:E,y),y+Q}(:L',y)), V(:E,y) € RQ' (1)

To compute h(z,y) the preceding equality is usually linearized yielding the
so-called optical flow constraint

§L(Z) - I(Z) = (VI2(T), h(T)) vz e R?,

M. Nielsen et al. (Eds.): Scale-Space’99, LNCS 1682, pp. 235-246, 1999.
(© Springer-Verlag Berlin Heidelberg 1999
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where T := (z,y). The linearized optical flow constraint assumes that the object
displacements h(Z) are small or that the image is slowly varying in space. In
other cases, this linearization is no longer valid.

Frequently, instead of equation (1), researchers use the alternative equality

Il(x _u(x7y)7y —W(:E,y)) - IQ(LE,y), V(:E,y) € RQ' (2)

In this case the displacement h(z,y) is centered in the image I5(z,y).

The determination of optical flow is a classic ill-posed problem in computer
vision [7], and it requires to be supplemented with additional regularizing assump-
tions. The regularization by Horn and Schunck [16] assumes that the optical
flow field is smooth. However, since many natural image sequences are better
described in terms of piecewise smooth flow fields separated by discontinuities,
much research has been done to modify the Horn and Schunck approach in order
to permit such discontinuous flow fields; see e.g. [8,10,11,21,24,25,27,32] and the
references therein.

An important improvement in this direction has been achieved by Nagel and
Enkelmann [24] in 1986. They consider the following minimization problem:

Byp(h) = [, (hle —u(e.0)y = vle.0) = b))’ ds @

n C/R2 trace ((Vh)T D(VIy) (Vh)) dx

where C is a positive constant and D (Vi) is a regularized projection matrix in
the direction perpendicular of VIy:

[ — Y y 2
D (V1) = NEESTE o) | o +A%1d

In this formulation, I d denotes the identity matrix. The advantage of this method
is that it inhibits blurring of the flow across boundaries of 1 where |VIi| >> A.
This model, however, uses an optical flow constraint which is centered in I,
while the projection matrix D in the smoothness term depends on I;. This
inconsistency may lead to erroneous results for large displacement fields. In order
to avoid this problem, we consider a modified energy functional where both the
optical flow constraint and the smoothness constraint are related to [;:

B = [ (1iw9) = Bl + ula, g}y + o) do (4)

1 /R trace ((Vh)TD (V1)) (Vh)) dz.
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The associated Euler-Lagrange equations are given by the PDE system

. _ _ w9 _

Cdiv (D (V1) Vu) + (I1(T) — (T + h(T))) %(x + h(T)) =0, (5)
. al

Cdiv (D (V1) Vo) + (I () — L(Z + h(zT))) a—;(z +h(z)=0.  (6)
In this paper, we are interested in solutions of the equations (5)-(6) in the case
of large displacement fields and images that are not necessarily slowly varying
in space. Therefore, we do not introduce any linearization in the above system.

We obtain the solutions by calculating the asymptotic state (¢ — oo) of the
parabolic system

88_1; = Cdiv(D (V1) Vu) + (I1(Z) — L(T + h(T))) %(7+ R(T)), (7)
dv 812

i Cdiv(D (V1) Vo) + (I1(T) — I(Z + h(Z))) a—y(i+ h(z)).  (8)

Interestingly, this coupled system of diffusion-reaction equations reveals a
diffusion tensor which resembles the one used for edge-enhancing anisotropic
diffusion filtering. Indeed, D(VIi) has the eigenvectors vy = VIi and vy :=
VIi-. The corresponding eigenvalues are given by

/\2
M(IVL|) = NLE T2 (9)
|V11|2 + A2
A (VL) = VI 2+ 222 (10)

We observe, that Ay + A2 = 1 holds independently of VI;. In the interior
of objects we have |VIj| — 0, and therefore A\; — 1/2 and Ay — 1/2. At
ideal edges where |VIi| — o0, we obtain Ay — 0 and Ay — 1. Thus, we
have isotropic behaviour within regions, and at image boundaries the process
smoothes anisotropically along the edge. This behaviour is very similar to edge-
enhancing anisotropic diffusion filtering [30], and it is also close in spirit to the
modified mean-curvature motion considered in [3]. In this sense, one may regard
the Nagel-Enkelmann method as an early predecessor of modern PDE techniques
for image restoration. For a detailed treatment of anisotropic diffusion filtering
we refer to [31], and an axiomatic classification of mean-curvature motion and
related morphological PDEs for image analysis is presented in [2].

Without any linearization, the optical flow constraint may cause a nonconvex
energy functional (4). In this case we cannot expect the uniqueness of solutions
of the elliptic system (5)-(6), and the asymptotic state of the above parabolic
system depends on the initial data for the flow « and v. In order to encourage
convergence to the physically correct solution in case of large displacement
flow, we will design a linear scale-space focusing procedure for the optical flow
constraint. Using a scale-space approach enables us also to perform a finer and
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more reliable scale focusing as it would be the case for related pyramid [4] or
multigrid approaches [12].

The paper is organized as follows: In Section 2 we sketch existence and
uniqueness results for the nonlinear parabolic system (7)-(8). In Section 3 we
apply a linear scale-space focusing which enables us to achieve convergence to
realistic solutions for large displacement vectors. Section 4 describes a numerical
discretization of the parabolic system (7)-(8) based on an explicit finite differ-
ence scheme. In Section 5 we present experimental results on a synthetic and a
real-world image sequence. Finally, in Section 6 we conclude with a summary.

Related work. Proesmans et al. [25] studied a related approach that also
dispenses with a linearization of the optical flow constraint in order to allow
for larger displacements. Their method, however, requires six coupled partial
differential equations and its nonlinear diffusion process uses a scalar-valued
diffusivity instead of a diffusion tensor. Their discontinuity-preserving smoothing
is flow-driven while ours is image-driven. Another PDE technique that is similar
in vein to the work of Proesmans et al. is a stereo method due to Shah [28]. With
respect to embeddings into a linear scale-space framework our method can be
related to the optical flow approach of Florack et al. [14]. Their method differs
from ours in that it is purely linear, applies scale selection mechanisms and
does not use discontinuity-preserving nonlinear smoothness terms. Our focusing
strategy for avoiding to end up in irrelevant local minima also resembles the
graduated non-convexity (GNC) algorithms of Blake and Zisserman [9].

2 Existence and Uniqueness of the Parabolic System

Next we investigate the parabolic system of nonlinear partial differential equa-
tions (7)-(8). In [1], the authors develop a theoretical framework to study the
existence and uniqueness of solutions of a similar parabolic system, but with a
different regularization term. The main techniques used in [1] can be applied
in order to obtain the existence and uniqueness of the solutions of the system
(7)-(8). This leads to the following result.

Theorem 1. Let I € C*(R?) and I, € CY(R?). Then the parabolic system (7)—
(8) has a unique generalized solution h(.,t) € C ([0, 00); L*(R?) x LQ(RQD for
all initial flows hy € L*(R?) x L*(R?).

3 A Linear Scale-Space Approach to Recover Large
Displacements

In general, the Euler-Lagrange equations (5)-(6) will have multiple solutions. As
a consequence, the asymptotic state of the parabolic system (7)-(8), which we use
for approximating the optical flow, will depend on the initial data. Typically, the
convergence is the better, the closer the initial data is to the asymptotic state.
When we expect small displacements in the scene, the natural choice is to take
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u = v = 0 as initialization of the flow. For large displacement fields, however,
this may not work, and we need better initial data. To this end, we embed our
method into a linear scale-space framework [17,33]. Considering the problem at
a coarse scale avoids that the algorithm gets trapped in physically irrelevant
local minima. The coarse-scale solution serves then as initial data for solving the
problem at a finer scale. Scale focusing has a long tradition in linear scale-space
theory (see e.g. Bergholm [6] for an early approach), and in spite of the fact
that several theoretical problems exist, it has not lost its popularity due to its
favourable practical behaviour. Detailed descriptions of linear scale-space theory
can be found in [13,15,18,19,22,29].

We proceed as follows. First, we introduce a linear scale factor in the parabolic
PDE system in order to end up with

a;‘t" = Cdiv(D(VGy + I1) Vug) +

(G @~ Con b h @) 2 B @),
a;t(, = Cdiv(D(VG, + I}) Vo) +

+ (G0 @ = Go s @ o@) L @ @),

where G, x I represents the convolution of I with a Gaussian of standard devi-
ation o.

The convolution with a Gaussian blends the information in the images and
allows us to recover a connection between the objects in Iy and I,. We start with
a large initial scale 0. Then we compute the optical flow (w,,,v,,) at scale o
as the asymptotic state of the solution of the above PDE system using as initial
data v = v = 0. Next, we choose a number of scales ¢,, < 7,1 < .... < g9, and
for each scale o; we compute the optical flow (u,,,v,,) as the asymptotic state
of the above PDE system with initial data (u,, ,,vs, ,). The final computed
flow corresponds to the smallest scale o,,. In accordance with the logarithmic
sampling strategy in linear scale-space theory [20], we choose o; := n‘oy with
some decay rate 7 € (0,1).

4 Numerical Scheme

We discretize the parabolic system (11)—(12) by finite differences. All spatial
derivatives are approximated by central differences, and for the discretization
in ¢t direction we use an explicit (Euler forward) scheme. Gaussian convolution
was performed in the spatial domain with renormalized Gaussians, which where

truncated at 5 times their standard deviation. Let D(VG, x [1) = (‘g g) Then
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our explicit scheme has the structure

k41 k k k k k
Yig TUg o f Qg g Yty — Yy Qi1 taig Mg Yy
T 2 h% 2 h%
k k k k
| Gt t i Wigr1 — Ui | Gt tCij Yig—1 Uiy n
2 h3 2 h3
k k k k
bivi i1 +biy Wis1 41— %y n bicig—1+bij Wiy Wiy
2 2h1hg 2 2h1hg
k k k k
Cbiprga by Wi on Ty b Fhig Bagin T W
2 2h1hg 2 2h1hg
—k _ —k _ —k
+ (11,0@ij) = Lo(@ij+ by, i) 12,00(Tig+ by, ), (13)
k+1 k E E k k
Vig Y o Qg b g Vg g oty F GG Yty — Vg
T 2 h% 2 h%
k k k k
| Gl Tt Cig Vg1 T Vi | G-l tCig Yig—1 =Yy n
2 h3 2 h3
bip1ge1 by Vi e =08 | biiigo by vig— vl _
2 2h1hg 2 2h1hg
_ i+1,7—1 + i, Yi+1,7—1 b i—1,7+1 + i, Yi—1,7+1 i,7 +
2 2h1h2 2 2h1h2
—k _ —k _ —k
+ Il,o(xi,j) - IZ,o(xi,j + hg,i,j) IQ,y,o(wi,j + ha,i,j)' (14)

The notations are almost selfexplaining: for instance, 7 is the time step size, hq
and hs denote the pixel size in x and y direction, respectively, uf ; approximates

a9l

Uy in some grid point Z; ; at time k7, and Iy , » is an approximation to G, * 5.

—k
We calculate values of type s »(Z; ; + by i j) by linear interpolation, and we use
the time step size
0.5

T

= . 15
1T (o ) o )T 1

This step size can be motivated from a stability analysis in the maximum norm
applied to a simplification of (13)—(14) where a scalar-valued diffusivity and a
linearized optical flow constraint is used.

5 Experimental Results

The complete algorithm for computing the optical flow depends on a number of
parameters which have an intuitive meaning:
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— The regularization parameter C' specifies the balance between the smoothing
term and the optical flow constraint. Larger values lead to smoother flow
fields by filling in information from image edges where flow measurements
with higher reliability are available. Recent results show that there is also a
close relationship between the parameter C of a regularization method and
the scale parameter of a diffusion scale-space [26].

— The constant A in the smoothing term serves as a contrast parameter: loca-
tions where the image gradient magnitude is larger than A are regarded as
edges. The diffusion process smoothes anisotropically along these edges. In
our experiments we used A := 1. The results were not very sensitive to
underestimations of A.

— The scale o9 denotes the standard deviation of the largest Gaussian. In
general, g is chosen according to the maximum displacement expected. In
our case we used oq = 10.

— The decay rate i € (0, 1) for the computation of the scales o, == n™0op. We
may expect a good focusing if 7 is close to 1. We have chosen 7 := 0.95.

— The smallest scale is given by o,,. It should be close to the inner scale of the
image in order to achieve optimal flow localization.

— The stopping time 7' for solving the system (11)-(12) at each scale o,,.
When good initializations from coarser scales are available, we observed that
T := 20 gives results which are sufficiently close to the asymptotic state.

Figure 1 shows our first experiment. We use a synthetic image composed
of four black squares on a white background. Each square moves in a different
direction and with a different displacement magnitude: under the assumption
that the x axis is oriented from left to right and the y axis from top to bottom,
the left square on the top moves with (u,v) = (10, 5), the right square on the
top is displaced with (u,v) = (—10,0), the left square on the bottom is shifted
by (u,v) = (0, —5), and the right square on the bottom undergoes a translation
by (—10,—10). In order to visualize the flow field (u,v) we use two grey level
images (ugi,vg) defined by ug = 128 + 8u and vy = 128 4 8v. We use the
regularization parameter C' = 15000. The depicted optical flow was obtained
without scale-space focusing, i.e. with o9 = 0. As can be expected, the algorithm
gets trapped in a physically irrelevant local minimum.

Figure 2 shows that the proposed scale-space focusing leads to significantly
improved results. We start with initial scale g = 10 and show the results for
focusing to the scales o190 = 5.99, g9 = 3.58, 030 = 2.15, 040 = 1.29, 050 = 0.77,
ogo = 0.46, and 079 = 0.28, respectively. The other parameters are identical with
those in Figure 1. We notice that the computed flow is a good approximation of
the expected flow. In fact, not only the orientation of the flow is correct, but also
the flow magnitude is surprisingly accurate: the maximum of the computed optic
flow magnitude is 14.13, which is a very good approximation of the ground truth
maximum 10v/2 & 14.14. Tt results from the square which moves in (—10, —10)
direction. This indicates that — under specific circumstances — our method may
even lead to optical flow results with subpixel accuracy.

This observation is confirmed in the quantitative evaluations carried out in
Figure 3. The left plot shows the average angular errors in the four squares of the
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Fig.1. Optic flow obtained without scale-space
focusing (1" = 800).

first frame. The angels between the correct flow (u.,v,.) and the estimated flow
(te, ) have been calculated in the same way as in [5]. The right plot depicts
the Euclidean error y/(ue — 1.)? + (ve — vo)? averaged over all pixels within the
four squares of the first [rame. In both cases we observe that the error is reduced
dramatically by focusing down in scale-space until it reaches a very small value
when the Gaussian width ¢ approaches the inner scale of the image. [urther
reductions of ¢ leads to slightly higher errors. It appears that this is caused by
discretization effects.

In the fourth experiment, we use the classical taxi sequence, but instead of
taking two consecutive frames - as is usually done — we consider the frames 15
and 19. The dark car at the left creates a largest displacement magnitude of
approximately 12 pixels. In Figure 4 we present the computed How using the
regularization parameter € — 500 and focusing from og = 10 to o7y — 0.28.
The computed maximal flow magnitude is 11.68, which is a good approximation
of the actual displacement of the dark car. Figure 5 shows a vector plot of the
computed Aow field.

6 Conclusions

Usually, when computer vision researchers deal with variational methods for
optical How calculations, they linearize the optical flow constraint. Except for
those cases where the images a sufficiently slowly varying in space, linearization,
however, does only work for small displacements. In this paper we investigate
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Fig.2. From top to bottom and from left to right: the original pair
of images I and Iz, and the flow components (t,,%,) resulting from
focusing to the scales o1g = 5.99, owe = 3.58, 030 = 2.15, 04g = 1.29,
osp = 0.77, os0 = 0.46, and o7g = 0.28, respectively.
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Fig. 3. Left: Average angular error of the optic flow calculations for the squares in
the first frame of Figure 2. Right: Corresponding average Euclidean error.
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Fig. 4. Optic flow computation of the taxi sequence using frames 15 and 19.
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Fig.5. Vector plot of the optic low between the frames 15 and 19 of
the taxi sequence.
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an improved formulation of a classical method by Nagel and Enkelmann where
no linearization is used. We identify this method with two coupled anisotropic
diffusion filters with a nonlinear reaction term. We showed that this parabolic
system is well-posed from a mathematical viewpoint, and we presented a finite
difference scheme for its numerical solution. In order to avoid that the algorithms
converges to physically irrelevant local minima, we embedded it into a linear
scale-space approach for focusing the solution from a coarse to a fine scale.
The numerical results that we have presented for a synthetic and a real-world
sequence are very encouraging: it was possible to recover displacements of more
than 10 pixels with high accuracy. It is our hope that this successful blend
of nonlinear anisotropic PDEs and linear scale-space techniques may serve as
a motivation to study other combinations of linear and nonlinear scale-space
approaches in the future.

Acknowledgements. This work has been supported by the European TMR
network Viscosity Solutions and their Applications.
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Abstract. This paper introduces a new method for analyzing scaling
phenomena in natural images, and draws some consequences as to whether
natural images belong to the space of functions with bounded variation.

1 Introduction

A digital, gray level image may be seen as the realization of a random vector of
size H x L taking values in a discrete set V = 1,...,G. For typical values like
H = L = G = 256, the number of possible realizations, G¥ = 2524288 ig huge.
Obviously, “natural images”, i.e. digital photographs of natural scenes, only form
a small subset of all possible realizations. Looking at random realizations of
such vectors is enough to be convinced of this fact. Natural images are highly
improbable events. It is therefore interesting to look for statistical characteristics
of such images: what are the relationships between gray level values at distant
pixels? Is it possible to define a probability law for natural images? Moreover,
statistics of texture images may be useful for synthesis purposes (see [9], [24],
23).

Most, of the statistical studies of natural images are concerned with first
or second order statistics (through the power spectrum, the covariances, the
cooccurrences) or with additive decompositions of images. The power spectrum
P(w,v) is known to be well approximated by a power function %ﬂ)m where ~y
is an image dependant number usually close to 2 (see [5], [7]). The histogram of
natural images has been found to have a peculiar, non-Gaussian shape (see [20],
[10]). Nearest neighbors coocurences functions also exhibit non-Gaussian distri-
butions (see [10]). Principal and independant component analysis on databases
of such images yield localized and oriented images bases (see [17], [2]). We have
a different approach, working in the image domain on items that can have a
straightforward visual interpretation, and involve (relatively) long and high or-
der interactions between pixels. We shall show that in natural images, there is
a constant form for the size distribution of such items. The definitions of sizes
we consider are of two types: area and boundary length. An experimental pro-
gram which we performed on many photographs of very diverse natural scenes

M. Nielsen et al. (Eds.): Scale-Space’99, LNCS 1682, pp. 247-258, 1999.
(© Springer-Verlag Berlin Heidelberg 1999
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indicates that the size distribution of homogeneous parts in images obeys a law

Card{Homogeneous regions with size s} = =
where K is an image dependent constant. When the size s denotes the area, in
most photographs, « is close to 2. We will define in Section 2 what we mean by
homogeneous parts, the connected components of image domains where contrast
does not exceed a certain threshold. Let us mention that power laws have been
previously observed, e.g. for points statistics (see [18], [19]) or density of extrema
in scale space (see [11]).

As a consequence of the size power law, some information can be obtained
about the “natural” function space for images, as will be shown in Section 3: we
focus our attention on the space BV of functions with bounded variation. We
are in a position to tell when a given image is not in this space, provided the
observed size distribution model remains true at smaller (not observable) scales
as well.

2 Sizes of sections in natural images

2.1 The distribution of areas

We’ll now make clearer what we mean by homogeneous region of an image.
We begin by equalizing the image histogram, and uniformly quantify it in the
following way. We consider a digital image I of size H x L, with G integer gray
levels, and write I(4, 5) for the gray level at pixel (4, 7). Let k be an integer less
than G. Let Ny be the first integer such that more than % pixels have a gray
level less than Ni, then N, the first integer such that more than 2% have a
gray level less than Ns, then Ns, ..., Ny = G defined the same way, this sequence
being possibly constant at some point. For [ varying from 1 to k, let I; be the
binary image with [;(4,7) = 1 if I(4,5) € [Ni—1, N;) and [;(i,7) = 0 otherwise.
We call those images k-bilevels of I. Each bilevel image represents a quantization
level of the equalized image.

Next, we look at the area histogram of the connected components of the
bilevels. For s an integer varying from 0 to HL, let f(s) be the number of
connected components with area s of the set of 1’s pixels, in any of the k-
bilevels of I. We will both consider 4-connectivity (each pixel has 4 neighbors:
up, down, right, left) and 8-connectivity (we add the diagonal neighbors, so that
each pixel has 8 neighbors).

We computed the function f on many digital photographs. We did not at-
tempt to use a single source of images; the digitized images either are scanned
photographs or from a digital camera, with diverse optical systems and expo-
sures. Those functions are of the form f(s) = S%, with C a constant and « a real
number close to two, for values of s in a certain range and reasonable values of &
(basically between 4 and 30). The observed fit is excellent, as can be seen from
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Figure 2, which actually corresponds to one of the worst cases we observed. For
fixed k, we consider the set of points

S = {(log(s),log(f(s)),0 < s < Thax},

where Ti,, 4.+ 1 is the smallest value of s such that f(s) = 0. We perform a linear
regression on this set S so as to find the straight line (in the log-log coordinates)
g(log(i)) = A — alog(i) the closest to 8 in the least squares sense, and write F
for the least squares error.

2.2 The distribution of areas in digital photographs

We present the results for two pictures having different scales and textures in
Table 1. The value of & appears to be related to the amount of texture in the
image; the more textured the image, the bigger the value of c. Typically, for
photographs of natural scenes, the value of alpha is between 1.5 and 3 (the
values close to 3 being reached for images as the baboon (Iigure 1), which
present textured areas), whereas for textures (e.g. from the Brodatz’s album), it
is typically between 2.5 and 3.5.

Fig. 1. baboon (512 x 512) and city (612 x 792) images

image| k| o | E [The.| A image | k| o | E [Thae| A
city |20(2.03|.32| 184 |11.7 baboon|20{2.55(.30] 70 |11.7
city |16/1.94|.30| 165 |11.3 baboon|16{2.38(.33| 82 [11.3
city |12|1.91).42| 202 |11.1 baboon|12]2.42[.47| 78 |11.4
city | & |1.80/.44| 181 |10.3 baboon| 8 [2.36[.41| 76 [11.2

Table 1. different values of the quantization number k for the city and baboon images,
8-connectivity. Area distribution is f(s) = As™, Trax is the maximal considered area
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number of ¢ ¢

sizeolco

Fig.2. function f (area distribution) for the city image (Figure 1), k = 12, 8-
connectivity, Thaz = 202

We also performed the linear regression on sets of points
STmin - {(log(3)710g(.f(3))7Tmin <s< Tmaz}

for various values of T,y to show that the fit of S to the power law was not
forced by small areas only, and moreover that if the contribution of E mainly
comes from the large areas, the value of a computed with those large areas was
close to the initial value. The results for the image of the city are shown in Table
2. Those results about the stability of the slope of the regression across scales
are of great importance in view of the hypothesis to be made in Section 3.

image|Tmin| o | E| A
city 5 [1.97].30|11.6
city | 10 |1.98].30|11.6
city | 20 |1.96].31|11.5
city | 40 |1.91].36|11.3

Table 2. different values of T},:, for the city image, k = 16, 8-connectivity

2.3 The distribution of boundary lengths in digital photographs

We performed exactly the same analysis on the boundary lengths of connected
components of bilevels as we did before on areas of those components. As a
discrete definition of the length of a discrete connected set S (8-connectivity),
we chose to count the pixels not belonging to S that are neighbors of some pixel
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of S in the 4-connectivity sense. There are many other ways to define discrete
boundary length. We tried several other methods that gave basically the same
results as the one we detail here. The notations k, E, A, T,:n and Ty, refer
to the same quantities as before; J now stands for the exponent of the power
law whose fit to the boundary length distribution is the best in the least square
sense. We chose T,,,;, = 10, because some small values for the boundary lengths
are attained only for regions touching the border of the image. The fit to the
power law is again very good, and the exponent [ is usually between 2 and 3.
We present the results for the images of the city and the baboon in Table 3 . We
note that 3 ~ 2a —1 accounts for connected components of bilevel sets satisfying

1
on the average a decent isoperimetric ratio, ¢ < ——2<22__ < (. This is not
=4 ’ boundary length

the case in general, except for some images of textures.

image| k| B8 | E |Tmaz| A image | k| 8 | E |Tmaz| A
city |20(2.42|.32| 184 (13.7 baboon|20]3.02].28( 82 [14.2
city |16(2.41|.35| 184 (13.7 baboon|16(2.91].35( 81 |13.9
city |12]2.28|.33| 187 (13.0 baboon|12(2.93].41| 100 |{14.0
city | 812.23|.48| 192 (12.4 baboon| 8 [2.89].33] 96 |13.8

Table 3. boundary lengths for the city and baboon images, with different values of
the quantization number &

Let us mention that the length distribution of intersections of the homoge-
neous part of the image with lines (the so-called intercepts) also follows a power
law. In a forecoming paper (see [1]), we use a morphological model, the dead-
leaves model of G. Matheron (see [14]), as an object-based model for images.
An image is defined as a sequential superposition of random objects. If we in-
terpret the homogeneous parts as being the visible parts of objects after the
occlusion process, it is possible to deduce the form of the length distribution of
the intercepts from a power law distribution of the size of objects. This result
is closely related to the ones of [19], where objects are defined in the image by
visual segmentation, and where a power law is observed for the covariances.

2.4 Other types of images

In order to see whether the power law is in some sense characterizing digital
photographs, we computed histograms of areas of bilevels for other types of
images. We looked at noises images, white or correlated and text images.

White noise images, that is to say images in which the gray level values
at distinct pixels are independent random variables, present an histogram of
the form f(s) = exp(—Cs), with C a constant. We observed this fact on two
different kinds of white noises: uniform and Gaussian. Text images produced by
text editor do lead, as one would guess, to an histogram consisting of isolated
peaks, whose height is not directly related to the value of s.
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Then we looked at correlated noise. We performed convolutions between
white noises and a Gaussian exp(—55 (z?+4?)), where o is a variable parameter.
This was done by multiplication in the frequency domain. Such a convolution
can be seen as a crude approximation of the effect of an optical lens. The results
we obtain for those images were similar to the ones for digital photographs of
textures. We present the results obtained in the case of the uniform white noise
in Table 4. We also tested the effect of the convolution with Bessel functions
(Fourier transform of disks) and the results were very similar.

image convolved with a Gaussian| ¢ | o | E |Thae| A

noise convolved with a Gaussian [0.71(3.88(0.60( 26 [13.3
noise convolved with a Gaussian [0.85(3.57(0.50( 30 (13.1
noise convolved with a Gaussian [1.12(3.27(0.55[ 39 [13.0

Table 4. Uniform white noise image, after convolution with a Gaussian of parameter
o, k=12, 8-connectivity

Those "non-natural images” lead to two remarks about the ﬁ law. First,
this law does not characterize natural images, even though a correlated noise
looks similar to a natural texture. Secondly, the size law could be related to the
way the optical photographic device captures the image, as suggested by the
behavior of noises convolved with a Gaussian. More precisely, we observed that
the convolution with a Gaussian increases the value of o for images where the
initial « is small (such as text and synthetic images) whereas it tends to decrease
its value when it is initially bigger than 2 (noises).

Another, and more satisfactory explanation of this power law is scale in-
variance. The assumption that natural images are scale invariant, so that all
observed statistics should be scale (zoom) invariant, has been confirmed by the
shape of the power spectrum mentioned in the introduction (see [7]), and also
by the fact that some statistics are preserved when shrinking the image (see
[20], [16]). Our experiments also confirm this assumption, since scale invariance
yields the M;Q law. Indeed, if we suppose that the total area occupied by re-
gions having an area between A and A’ is the same as the total area occupied
by regions with area between tA and tA’, for all ¢, A, A’, then the power law

with exponent 2 is the only acceptable size distribution.

3 Size of sections and the BV norm of natural images

The aim of this section is to give a computational tool to decide whether an
image can belong to the space BV of functions with bounded variations. The
BV assumption for natural images is far ranging, from image restoration ([21],
[22]) to image compression.

The space BV is the space of functions for which the sum of the perimeters of
the level sets is finite. The space BV is of great importance in image modeling,
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since such a simple image as a white disk on a black background is not in any
Sobolev space, but belongs to BV. However, if the disk is replaced by an object
whose boundary has an infinite length, such as a bidimensional Cantor set, then
the corresponding function is no longer in BV. There is also another way for a
function not to be in BV. Each of its level sets may be of finite perimeter, while
the sum of those perimeters tends towards infinity. According to our analysis,
this is the case with natural images, for which, in a sense, small objects are too
numerous for the function to be in BV.

3.1 A lower bound for the BV norm

We consider I € BV(§2) a bounded image belonging to the space of functions
with bounded variation ([25], [6]) on a domain (e.g. rectangular) £2 C IR?. For
A € IR, define the level set of I with level A by

xad = {z,1(z) > A}.

Recall that a function is of bounded variation if, for almost every A € IR,
xx! is a set with finite perimeter and, denoting by per(x,/) this perimeter (for
a precise definition of the perimeter and the essential boundary we refer to [6]),

||y = /IR per(ad)dA. (1)

(By the coarea formula, see [6], we also have ||I||gy = [, |DI|)

In addition, by the classical isoperimetric inequality, we have for every set O
with finite perimeter,

per(0) > 2751(0)?, (2)

where v(O) denotes the Lebesgue measure of O. In the following, we shall
consider sections of the image. We always assume that the image I satisfies
0 < I(z) < C. We first fix two parameters v, A, with 0 < A <~. For any n € IN,
we consider the bilevel sets of T

{z, A+ (n = 1)y < I(@) <A+ 0y} = Xag -1y d \ Xasnad

We call (v, A)-section of I any set which is a connected component of a bilevel
set Xay(n—1)yd \ Xa+nyd for some n. We denote each one of them by S, 5 ; for
i € J(v, A), aset of indices. Notice that the (v, A)-sections are disjoint and their
union is the image domain {2,

U SVM* : (3)

i€J(y,A)

There are several ways to define the connected components of a set with finite
perimeter, since such a set is defined up to a set with zero Lebesgue measure. We
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denote by H' the one-dimensional Hausdorff measure, that is to say the length.
In the following, we call Jordan curve a simple closed curve of IR?, i.e. the range
of a continuous map ¢ : [0,1] — IR?, such that c(s) # c(t) for all 0 < s <t < 1,
and ¢(0) = ¢(1). A Jordan curve defines two and only two connected components
(in the usual sense) of IR*\ ¢([0, 1]), one bounded and one unbounded. We shall
say that a Jordan curve separates two points x and y if they do not belong to
the same connected component of IR\ ¢([0,1]). One can prove ([8], [3]) that a
definition of connected components for a set with finite perimeter permits the
following statements :

Theorem 1 (and definition)

Let O be a set with finite perimeter.

(i) The essential boundary of O consists, up to a set of zero H'-measure, of a
countable set of noncrossing simple rectifiable closed curves c; with finite length
such that per(O) = >, H(cy)

(i) Two points are in the same connected component of O if and only if for
any representation of the essential boundary by a family of Jordan curves of the
preceding kind, c;, they are not separated by one of the c;.

(#i) With this definition, the perimeler of a set with finite perimeter is the sum
of the perimeters of its connected components.

We denote by J(n) C J(v, A) the set of indices of sections which are connected
components of Xxy(n—1)y] \ XatnyI. As an obvious consequence of Proposition
1, we have

Corollary 1

peT(XAJr(nfl)'yI\XAan'yI) = Z peT(SA,'y,i)~

icJ(n)
When A is a set with finite perimeter, we have ([6])

per(A) = [[14][py-

Lemma 1 If B C A are two sets with finite perimeter, then
per(A\ B) < per(A) + per(B).
Proof Indeed, by the subadditivity of the BV norm, we deduce from
Top=1Ta—-1p
that
per(A\ B) < per(A) + per(B). O

In the following theorem, we analyze the statistics of sizes of sections as
follows. We fix ~, that is, the overall contrast of considered sections and for each
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0 <X < v, we count all sections S,  ; which have an area between s and s+ ds.
In other terms we consider the integer

Card{i, s < [S, x| < s+ ds}.

We average this number over all X’s in [0,~], and assume that this average
number has a density f(v, s) with respect to s. In other terms,

1 17
—/ Card{i, s < |S, x;| < s+ds}dh = f(v,s)ds (4)
T Jo

Theorem 2 Assume that there exists some v > 0 such that ({) holds, i.e. the
average number of sections with area s, for 0 < A < ~, has a densily f(~,s).
Then there is a constant ¢, not depending on I, such that

)
ey 2 C/ 82 f(v, s)ds. (5)
0
Proof Applying Corollary 1 and Lemma, 1
l|sv = / per{z, I(x) > A}d\
R
1
= _(/ per{z, I(z) > /\}d/\+/ per{z, I(z) > X —~v}d\
2R "

1
> / per(xa—~d \ xal)dA

(n+1)
E / per(xa—~I \ xal)dA
nczZ ¥ Y

/ ZpeI XA+(n 1) I\qutn’y )

2
1
2
1
2

nezZ
1

=3 Z per(Sy ai)dA.

O iea(va)
By isoperimetric inequality (2), we therefore obtain
PR 1
I[||pv > 72 > 1S ailTdx
i€ J(v,A)

Applying Fubini-Tonelli Theorem, some slicing and the assumption (4), we
get

o

¥ v(2
sy > w%/ d/\/ Card{i € J(7,A), s < |Syrsl < s+ds}s?

wl»—A

v(§2)
/ / dACard{i € J(v,A), s < |Syri| < s+ ds}s?

1 V(Q) 1
NIz / $2 f(y, s)ds. O
0
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We can repeat the preceding analysis by assuming now that

1 ,
> / Card{i,p < per(S,x:) < p+dp}dr = g(v, p)dp. (6)
0

Then we have the analog of Theorem 2 for the perimeters of sections:

Theorem 3 Assume that there exists some v > 0 such that (6) holds, i.e. the
average number of sections with perimeter s, for 0 < A < ~, has a density g(, p).
Then

1 [t
I1||pv > 5/0 pg(~y, p)dp. (7)

Proof The proof is essentially the same as for Theorem 2.

3.2 Application to natural images

In this section, we draw the consequences of Theorems 2 and 3 for the images
analyzed in Section 2. According to the results of this section, we can assume
that the considered images satisfy

Fos) = = ©
C
9(v.p) = 75 (9)

for some constants « > 0, 3 > 0. This law has been experimentally checked for
several values of v = 2'—26, k ranging from 8 to 20. We also checked that the value
of o was almost not modified when the bilevels were not defined from gray level
0, but from some gray level less that % (that is to say, in the continuous model,

for different values of A). By Theorem 2 we have

V(Q)C L 3
||1||szc/ 82d3:+ooifa>§
0

Sa

and in the same way,
+o0 C
||I||BVZC/ p—gdp:+ooif/8>2.
0 j

thus if we admit that (8) and (9) indeed hold for natural images when s — 0,
as is indicated by the experiments of section 3.1, we obtain that the considered
images are not in BV if a > %, or § > 2. This strong assumption about the
small scales behavior is motivated by the goodness of the fit at every scales and
by the stability of the fit with respect to T),:,, see Section 2, Table 2. Notice,
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however, that « > 2, which happens for several of the considered images, is not
compatible with a finite image area, since then [ % = +00. As suggested to
us by Vicent Caselles and Stéphane Mallat, this raises the question of whether
the area is correctly measured by covering pixels. In fact, if a region is very
ragged, the cardinality of covering pixels may be related to its perimeter as well,
in which case the estimate of g(~, s) is more reliable. This cardinality could also
be related to a fractional Hausdorff measure.

We point out here that wavelet coefficients (see [15], [13] for an introduction
to wavelet decompositions) also give a way to decide whether or not an image
belongs to the space BV. Let (cx) be the wavelets coefficients of the image
I, ordered in a nonincreasing sequence. Let us suppose that the wavelets have
compact supports. We say that the cz’s are in {1 if > |ex| < 400, and that they
are in weak-{! if there exists a constant C such that ¢, < % Obviously ' is
included in weak-{'. It is quite easy to prove that if the ¢; are in {!, then I is
in BV. In the other direction, Cohen and al., [4], recently proved that if [ is
in BV, then the ¢;’s are in weak-{'. Thus it is possible to decide whether an
image belongs or not to BV by looking at its wavelet coefficients decay, except
if they decrease like %, which happens to be often the case ([12]). Moreover,
it is worth noticing that the wavelet coefficients produced by the characteristic
function of a simple shape already decay like % We do not present here a precise
comparison between the two criteria. Let us just mention that in the case of the
baboon image (Figure 1), both methods agree: this image is not in BV. For
the well-known image of Lena, our approach gives an « of 1.9 (for £ = 16),
which suggests Lena being out of BV, whereas from the wavelet approach, the
image is in BV. In fact, according to our analysis, natural images are not in the
space BV. Of course, one may objects the presence of an inner scale cut off, but
our results indicate that the BV norm of continuous representations of natural
images blows up as we consider smaller and smaller scales.

4 Conclusions

We realized experimentally that the size distribution of homogeneous parts in
digital natural images follows a power law. This power law confirms the scale
invariance of natural images. Moreover, this enables us to show that, provided
this power law is valid for small, non-observable scales, most natural images are
not in the space BV of functions with bounded variations.
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Abstract. Edges are viewed as statistical outliers with respect to local
image gradient magnitudes. Within local image regions we compute a
robust statistical measure of the gradient variation and use this in an
anisotropic diffusion framework to determine a spatially varying “edge-
stopping” parameter 0. We show how to determine this parameter for
two edge-stopping functions described in the literature (Perona-Malik
and the Tukey biweight). Smoothing of the image is related the local
texture and in regions of low texture, small gradient values may be
treated as edges whereas in regions of high texture, large gradient magni-
tudes are necessary before an edge is preserved. Intuitively these results
have similarities with human perceptual phenomena such as masking and
“popout”. Results are shown on a variety of standard images.

1 Introduction

Anisotropic diffusion has been widely used for “edge-preserving” smoothing of
images. Little attention, however, has been paid to defining exactly what is
meant by an “edge.” In the traditional formulation of Perona and Malik [8],
edges are related to pixels with large gradient magnitudes and an anisotropic
smoothing function is one that inhibits smoothing across such boundaries. The
effect of this smoothing is determined by some parameter, o, which implicitly
defines what is meant by an edge. This paper addresses how the ¢ parameter
can be determined automatically from the image data in such a way that edges
correspond to statistical outliers with respect to local image gradients. With this
method, o varies across the image and hence, what is considered to be an edge
is dependent on local statistical properties of the image.

Consider for example the image in Figure 1. Regions A and B illustrate areas
where there is little gradient variation and the fairly small gradient magnitudes
of the features are locally significant. Intuitively, we would say that the eyebrow
and the shoulder crease are significant image structures. In contrast, region C is
highly textured and there is a great deal of variation in the gradient magnitudes.
Intuitively, in this region, the gradient magnitudes of features like those in regions

M. Nielsen et al. (Eds.): Scale-Space’99, LNCS 1682, pp. 2590-270, 1999,
(© Springer-Verlag Berlin Heidelberg 1999
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A "B C

Fig. 1. Consider the image regions (A, B, C) in the upper left image. The middle row
shows each image region in detail while the bottom row shows the gradient magnitude
for each region. The faint imapge structures in regions A and B are statistically sig-
nificant with respect the variation of intensity within the regions. The same variation
in the highly textured region C would not be statistically significant due to the much
larger image variation.

A and B might be considered insignificant. To be considered an edge in region
C we would like the gradient magnitude to be much larger.

Here we adopt the robust statistical interpretation of anisotropic diffusion
elaborated in [1]. Anisotropic diffusion is viewed as a robust statistical proce-
dure that estimates a piecewise smooth image from noisy input data. This work
formalized the relationship between the “edge-stopping” function in the aniso-
tropic diffusion equation and the error norm and influence function in a robust
estimation framework. This robust statistical interpretation provides a principled
means for defining and detecting the boundaries (edges) between the piecewise
smooth regions in an image that has been smoothed with anisotropic diffusion.
Edges are considered statistical outliers in this framework.

The robust statistical approach also provides a framework to locally define
edges and stopping [unctions, as demonstrated in this paper (see [11] for a dif-
ferent approach to spatially adaptive anisotropic diffusion). In particular, the
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o parameter in the edge stopping function has also a statistical interpretation.
This statistical interpretation gives, among other properties, a completely auto-
matic diffusion algorithm, since all the parameters are computed from the image.
Our approach is to compute a statistically robust local measure of the brightness
variation within image regions. From this we obtain a local definition of edges
and a space-variant edge stopping function.

2 Review

We briefly review the traditional anisotropic diffusion formulation as presented
by Perona and Malik [g].

2.1 Anisotropic diffusion: Perona-Malik formulation

Diffusion algorithms smooth images via a partial differential equation (PDE). For
example, consider applying the isotropic diffusion equation (the heat equation)
given by % = div(V1I), using the original (degraded/noisy) image I(z,y,0)
as the initial condition, where I(z, y,0) : IR? — IR" is an image in the continuous
domain, (z,y) specifies spatial position, ¢ is an artificial time parameter, and
where V1 is the image gradient. Modifying the image according to this isotropic
diffusion equation is equivalent to filtering the image with a Gaussian filter.
Perona and Malik [8] replace the classical isotropic diffusion equation with

Ol(z,y,t)

o

where || VI || is the gradient magnitude, and g(|| VI ||) is an “edge-stopping”

function and o is a scale parameter. This function is chosen to satisfy g(z, o) — 0
when z — o0 so that the diffusion is “stopped” across edges.

div(g(|| VI [, 0)VI), (1)

2.2 Perona-Malik discrete formulation

Perona and Malik discretized their anisotropic diffusion equation as follows:
Z Lip:0)V s, (2)

where I¢ is a discretely-sampled image, s denotes the pixel position in a discrete,
two-dimensional grid, and ¢ now denotes discrete time steps (iterations). The
constant A € IRT is a scalar that determines the rate of diffusion, 7, represents
the spatial neighborhood of pixel s, and |74 is the number of neighbors (usually
4, except at the image boundaries). Perona and Malik linearly approximated the
image gradient in a particular direction as

VI,=1I1,—1I., pens. (3)

It+1 _ It

s 2

Qualitatively, the effect of anisotropic diffusion is to smooth the original
image while preserving brightness discontinuities. The choice of g(z, o) and the
value of ¢ can greatly affect the extent to which discontinuities are preserved.
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2.3 Related Work

In related work, a number of authors have explored the estimation of the scale
at which to estimate edges in images [2,5]. These methods find the optimal local
scale for detecting edges with Gaussian filters; they do not explicitly use local
image statistics. The approach described here might be augmented using these
ideas to determine the size of the local area within which to compute image
statistics.

Marimont and Rubner [6] computed local statistics of zero-crossings and used
these to define the probability of a pixel belonging to an edge. Liang and Wang
[4] also used the statistics of zero-crossings to set a local noise measure in an
anisotropic diffusion formulation.

In contrast, the work here provides a robust statistical view which allows a
principled choice of both the g-function and the scale parameter. Related to this
is work on human perception that models feature saliency using a statistical test
for outliers [9].

3 Robust Statistical View

For the majority of pixels in Figure 1 A, the image gradient values can be ap-
proximately modeled as being constant (zero) with random Gaussian noise. The
large gradient values due to the image feature however are statistical “outliers”
[3] with respect to the Gaussian distribution; the distribution of these outliers is
unknown. We seek a function g(x, o) and a scale parameter ¢ that will appropri-
ately smooth the image when the variation in the gradient is roughly Gaussian
and will inhibit smoothing when the gradient can be viewed as an outlier.

First we need to relate the form of the g-functions used for anisotropic dif-
fusion to the tools used in robust statistics (see [1] for details). From a robust
statistical perspective the goal of anisotropic smoothing is to iteratively find an
image I that satisfies the following optimization criterion:

mIinZ Z py — I, 0) (4)

scl peEns

where p(-) is a robust error function and o is a “scale” parameter.

In this formulation large image differences |I,, — I,| are assumed to be outliers
which should not have a large effect on the solution. To analyze the behavior of
a given p-function with respect to outliers, we consider its derivative (denoted
1), which is proportional to its influence function [3]. This function characterizes
the bias that a particular measurement has on the solution and by analyzing the
shape of this function we can infer the behavior of a particular robust p-function
with respect to outliers.

In [1] (see also [12] for a related approach) it was shown that

g(:l,’,d):l} - w(x,a) - p/(:l,’,d). (5)
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o(w,0) oz, 0)z = P(z,0)  p0)

Fig. 2. Lorentzian error norm and the Perona-Malik g stopping function.

g(CIS,U)LIS - IZ)(%U)

Fig. 3. Tukey’s biweight.

This relationship means that we can analyze the behavior of a particular aniso-
tropic edge-stopping function g in terms of its outlier rejection properties by
examining the influence function 4.
For example, consider the edge-stopping function proposed by Perona and
Malik [8]
2x

:@:W%U% (6)

glz,0)x

where ¢(x,0) = p'(x,0). We can compute p by integrating g(x, o)z with respect

to z to derive
9 1 /z?
glz,0)x de =0c"log | 1+ s5l2) )= plx, o). (7)

This function p(z, o) is proportional to the Lorentzian error norm use in robust
statistics and g(z)xz = p/'(z) = ¢(x) is proportional to the influence function
(Figure 2).

The function g(z,c) acts as a “weight” and from the plot in Figure 2 we
can see that small values of z (i.e. small gradient magnitudes) will receive high
weight. As we move out to the tails of this function it flattens out and the weight
assigned to some large x will be roughly the same as the weight assigned to some
nearby x+e¢. This behavior is visible in the shape of the i-function which reaches
a peak and then begins to descend. Outlying values of « beyond a point receive
roughly equivalent weights and hence there is little preference for one outlying
value over another. In this sense outliers have little “influence” on the solution.
In the anisotropic diffusion context, g(x, o)z will be relatively small for outliers
and, hence, each iteration in (2) will produce only a small change in the image.
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In [1] a more robust edge stopping function was derived from Tukey’s biweight
p-error:

2 4 6
[G-Eighlklso .
plz, o) {% otherwise, (8)
_ [al=(z/0)*) || <o,
¥z, 0) = {O otherwise, (9)
1 232
_ s =(=/0)")" 2| <o,
9(z, ) = {O otherwise. (10)

The functions g(z, o), ¥(z,0) and p(x,0) are plotted in Figure 3: The influ-
ence of outliers drops off more rapidly than with the Lorentzian function and
the influence goes to zero after a fixed value (a hard redescending function).
These properties result in sharper boundaries than obtained with the Perona-
Malik/Lorentzian function [1].

4 Local Measure of Edges

Both functions defined in the previous section reduce the influence of large gra-
dient magnitudes on the smoothed image. The point at which gradient values
begin to be treated as outliers is dependent on the parameter o. In this section
we consider how to globally and locally compute an estimate of o directly from
the image gradients. The main idea is that ¢ should characterize the variance
of the majority of the data within a region. So, for example in Figure 1 A, o
should characterize the amount of variation in the gradients at all locations ex-
cept where the feature is located. Outliers will then be determined relative to
this background variation.

In deriving ¢ we appeal to tools from robust statistics to automatically esti-
mate the “robust scale,” o., of the image as [10]

0. = 1.4826 MAD(VI)
— 1.4826 median(|| VI — median; (|| VI |} ||) (11)

where “MAD” denotes the median absolute deviation and the constant is de-
rived from the fact that the MAD of a zero-mean normal distribution with unit
variance is 0.6745 = 1/1.4826. We consider o, to be the gradient magnitude at
which outliers begin to be downweighted.

We choose values for the scale parameters ¢ to dilate each of the influence
functions so that they begin rejecting outliers at the same value: o.. The point
where the influence of outliers first begins to decrease occurs when the derivative
of the -function is zero. For the Lorentzian p-function this occurs at o, = V2¢
and for the Tukey function it occurs at o, = o/ V/5. Defining o with respect to o,
in this way we plot the influence functions for a range of values of x in Figure 4a.
Note how each function begins reducing the influence of measurements at the
same point.
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a b

Fig. 4. Lorentzian and Tukey ¥-functions. (a) values of o chosen as a function of o
so that ontlier “rejection” begins at the same value for each function; (b) the functions
alipned and scaled.

We also scale the influence functions so that they return values in the same
range. To do this we take A in (2) to be one over the value of ¢(o.,o). The
scaled 4)-functions are plotted in Figure 4b.

Now we can directly compare the results of anisotropic smoothing with the
different edge-stopping [unctions. The Tukey function gives zero weight to out-
liers whose magnitude is above a certain value while the Lorentzian (or Perona-
Malik) downweights outliers but still gives them some weight.

4.1 Spatially Varying o

In previous work we took the region for computing o, to be the entire image. This
approach works well when edges are distributed homogeneously across the image
but this is rarely the case. Here we explore the computation of this measure in
image patches. In particular we consider computing a local scale o)(x, ), which
is a function of spatial position, in » x n pixel patches at every location in the
image. We take this value to be the larger of the o, estimated for the entire
image and the value in the local patch. Then oz, v) is defined as

oi(x,y) = max(oe, 1.4826 MAD 5 <; j<s (Vietigis))- (12)

In practice o, provides a reasonable lower bound on the overall spatial image
variation and the setting of ¢; to be the maximum of the global and local varia-
tion prevents the amplification of noise in relatively homogeneous image regions.
Figure 5 shows the results of estimating oy in 15 x 15 pixel patches. Bright
areas have higher values of o; and correspond to more textured image regions.
To see the effects of the spatially varying o; consider the results in Figure 6.
The images show the results of applying diffusion using the g(x, ¢) corresponding
to the Tukey biweight function. The top row uses a fixed value ol o, estimated
over the entire image while the bottom row shows the results with a spatially
varying o;. We can detect edges in the smoothed images very simply by detecting
those points that are treated as outliers by the given p-function. Figure 6 shows
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Fig. 5. Local estimate of scale, oy (x, ). Bright areas in (b) correspond to larger values
of o 1)

the outliers (edge points) in each of the images, where outliers are given by those
points having [V, ,| > 0. (global, first row) or |VI, ,| > o;(x,y) (local, second
row).

In areas containing little texture the results are identical since in these areas
the sigma estimated locally is likely to be less than o, and hence, oy is set to
0. The differences become apparent in the textured regions of the image. A
detail is shown for a region of hair. With a fixed global o, discontinuities are
detected densely in the hair region as the large gradients are considered outliers
with respect to the rest of the image which has relatively few large gradients.
With the spatially varying oy, these regions are smoothed more heavily and only
the statistically significant discontinuities remain.

5 Experimental Results

In this section we test the spatially varying smoothing method with both the
Lorentzian and Tukey g-functions. Figure 7 compares the results for the Tukey
function at 500 iterations and the Lorentzian at 50 iterations. The Lorentzian
must be stopped sooner as, unlike the Tukey function, outliers have a finite influ-
ence and hence the image will eventually become oversmoothed; for a discussion
of the edge-stopping properties of the Tukey biweight function see [1]. In both
cases note that the edges detected in the highly textured regions have a spatial
density similar to that of other regions of image structure.

Figure 8 shows a more textured image. Note that the highest scale values
correspond to the steps in the lower middle portion of the image. The disconti-
nuities here are smoothed while the boundaries of the people against a relatively
uniform background are preserved. One can also see in this image the difference
between the Lorentzian and Tukey functions in that the Tukey g-function results
in sharper brightness discontinuities.

The Magnetic Resonance image in Figure 9 is challenging because there are
areas of high contrast as well as detailed brain structures of very low contrast.
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Image Outliers (Edges) Detail Outliers (Edges)

Fig. 6. Anisotropic smoothing with the Tukey function (500 iterations). Top row shows
smoothing with a fixed value of 7.. Bottom row shows a spatially varying o;.

No single scale term will suffice for an image such as this. The results with the
Tukey function preserve much of the fine detail and the detected edges reveal
structure in both the high and low contrast regions.

6 Conclusions

One of the crucial steps in anisotropic diffusion is to define an edge, and from this
definition, an edge stopping function. Several attempts have been reported in the
literature, mainly dealing with global definitions. In this paper we have addressed
the search for a local definition of edges. We have described a simple method
for determining a spatially varying scale function based on robust statistical
techniques. From this, we have provided a local definition of edges and a space-
varying edge stopping function.

A number of topics remain open. First, the only parameter left in the pro-
posed anisotropic diffusion algorithm is the size of the window within which oy
is computed. This also should be space-variant, and needs to be automatically
determined from the image itself. This is an area ol ongoing research.

We are interested in comparing the output of our simple local edge detector
with others as for example those proposed by Perona [7] or Elder and Zucker [2].
They use much more sophisticated techniques that might not be computationally
efficient if the goal is to compute stopping functions for anisotropic diffusion.
On the other hand, a more accurate computation of edges might be crucial for
anisotropic diffusion applications such as the enhancement of medical images.

Finally, it would be interesting to explore the relationship to human percep-
tion of image features which can be effected by the local image statistics [9].
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o1 50 iterations 500 iterations

Fig. 7. Results for both the Perona-Malik (Lorentzian) function and the Tukey func-
tion.

Pk

=
-

T

Fig. 8. Results for both the Perona-Malik (Lorentzian) function and the Tukey func-
tiomn.
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oy 50 iterations 500 iterations

Fig. 9. Magnelic Resonance Image. Resulls for both the Perona-Malik (Lorentzian)
function and the Tukey function.

Such an exploration may lead to a new statistical model more closely aligned
with human perception of edges.
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The Hausdorff Dimension and Scale-Space
Normalisation of Natural Images
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Abstract. Fractal Brownian motions have been introduced as a statis-
tical description of natural images. We analyze the Gaussian scale-space
scaling of derivatives of fractal images. On the basis of this analysis we
propose a method for estimation of the fractal dimension of images and
scale-space normalisation used in conjunction with automatic scale se-
lection assuming either constant energy over scale or self similar energy
scaling.

Keywords: Fractal dimension, natural images, self-similarity, Gaussian
scale-space, image derivatives, scale-selection, feature detection.

1 Introduction

In the literature [1,2,3,4,5,6,7,8] one finds several investigations into the fractal
nature of natural images and in this article we will look at some scale-space
properties of images of natural scenes. Here we use the term natural tmage to
denote any image of a real world scene, which may be assumed to have a fractal
intensity surface (or volume). A fractal function is self-similar, which means
that if one looks at the function as a random function then its distribution is
independent of the scale. To characterize a fractal function one uses the fractal
dimension.

The fractal dimension of an image intuitively describes the roughness of the
image intensity graph and the fractal dimension of the intensity surface of 2D
images must a priori lie between 2 and 3. There has for some time been a general
consent that 2D images of natural scenes have a fractal dimension (Hausdorff
dimension!) Dy = 2.5, which is the same dimension as the classical 2D Brownian
motion. But resent studies by Bialek et al. [6] has shown that 2D images of
natural scenes® not necessarily have to come from a Gaussian process and that
the fractal dimension can vary in the interval between 2 and 3.

Fractal Brownian motions (fBm) can be used as a model for images of natural
scenes. By using this model we have the freedom to model images of any fractal
dimension. The classical Brownian motion is a special case of the fBm. The fBms
are in general continuous, but not differentiable. In the limit Dy — 2, the 2D

L In this article we will use the Hausdorff dimension as the definition of the fractal
dimension. See [9] for a mathematical definition of the Hausdorff dimension.
2 The studies by Bialek et al. is based on a series of images in a forest.

M. Nielsen et al. (Eds.): Scale-Space’99, LNCS 1682, pp. 271-282, 1999.
(© Springer-Verlag Berlin Heidelberg 1999
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fBms generically become smooth (C°°). Whereas in the limit Dy — 3, the 2D
fBms become spatially uncorrelated.

The estimation of the fractal dimension of regions of interest in images has
different interesting prospects. It has been proposed [7,8] that the fractal di-
mension of x-ray images of trabecular bone can give an indication of the micro
structure of the bone and thereby also the biomechanical strength of the bone.
This can be a helpful tool for the research of osteoporosis and other bone diseases.
Other uses of the fractal dimension could be as a quality measure of surfaces
produced in different kinds of industries, e.g. metal plates, wood etc.

Linear scale-space [10,11,12] is a mathematical formalization of the concept of
scale (or aperture) in physical measurements. By Gaussian convolution, images
at higher inner scales than the measurement scale can be simulated, enabling us
to create an artificial scale-space of an image. By using this type of scale-space we
bypass the problem of differentiability of digital images, because differentiation
of the image in scale-space may be obtained by differentiation of the Gauss
function prior to the convolution.

By the use of a non-linear combination of image derivatives, called measures
of feature strength, it is possible to detect features in images [13]. In order to get
dimensionless derivatives Florack et al. [14] has proposed normalisation of image
derivatives where the derivatives are multiplied by the scale o, (8/0%)norm =
0d/0z. Lindeberg [15,16,17] operates with scale-normalized derivatives in order
to detect the most significant scale for the features. He uses a normalisation which
is defined through a scaling exponent ~. In application to feature detection,
this normalisation exponent ~ depend on the feature in question. Lindeberg
determines this parameter on the basis of analysis of feature models. In this
analysis the parameter varies in the interval [%7 1]. Our intuition® is that this
parameter must reflect the local complexity of the image, and may be modelled
through the fractal dimension of the local image. In this paper we reveal a simple
relation between the topological dimension of a feature and the fractal dimension
of the local image for determining the scale-normalisation.

We will in this paper assume, that the fBms constitute a model of images
of natural scenes. Using this model we establish a method of scale-space nor-
malisation of derivatives, changing the analytical expression of Lindeberg’s ~-
normalisation. This expression includes the fractal dimension of the image in a
neighbourhood of the feature we want to detect. We can furthermore use this
normalisation method for estimation of the fractal dimension of images.

2 Fractal Brownian Motions and Natural Images

The 1D fBm was first defined by Mandelbrot and van Ness [18] in an integral
form, which later on was restated in terms of self similarity of a distribution
function. In this form it is straightforward to state the fBm defined over an N-D
space [5]. A function fy(z): IRY — IR is called a N-D fBm if for all positions

% Developed during discussions with Lindeberg.
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z € IRY and all displacements X € IR

fulx+A) — fulx) B
P( BE <y) =F),

where F'(y) is a cumulative distribution function and P the probability. The
scaling exponent H €]0; 1] determines the fractal dimension of the fBm. This
definition implies that any 1D straight line through the image is a 1D fBm of
same scaling exponent H.

One can find experimental data to support the assertion that images of nat-
ural scenes may satisfy the definition of the fBm [1,3,4,6], but F(y) is not in
general a cumulated Gaussian distribution [6] as commonly presumed [1,3].

The power spectrum of the N-D fBm fy(x) is given by

| Fr(@)]” o o] (1)

where fi(w) is the Fourier transform of the fBm and o = 2H + 1, [5,18,19]
which is independent of the dimensionality N. Voss and Pentland [5,19] note the
relation, Dy = N + (1 — H), between the Hausdorff dimension* Dg of a N-D
fBm fy(«) and the scaling exponent H. The estimation of « in (1) is, together
with the relation between Dy and H, a well known method for estimation of
the fractal dimension of images, [8].

Lindeberg [15,20] argues that in the case of N-dimensional natural images
the assumption of a uniform energy distribution at all scales leads to a power
spectrum proportional to |w| ™. With reference to Field [1], Lindeberg utilizes
the assertion that the power spectrum has equal energy at all scale-invariant
frequency intervals. We find that this only coincides with H = 1/2 for 2D im-
ages, which is the case where the images can be modelled by classical Brownian
motions. For Lindeberg’s proportionality to hold for other values of H the value
of H must be H = % which only makes sense for N < 3, because of the
constraint 0 < H < 1. So in general we cannot assume that |fz(w)[? o< |w|=N
under the assumption that N-D natural images can be modelled as fBms.

3 Scale-Space Scaling of Derivatives of Fractal Images

In this section we will first give a short introduction to the Gaussian scale-space
and its normalized derivatives. Then we will state our proposal for an extension
of Lindeberg’s normalisation method based on the fractal dimension.

3.1 Scale-Space and Normalisation

Linear scale-space of images was independently introduced by lijima [10], Witkin
[11] and Koenderink [12]. The linear Gaussian scale-space of an image L(zx) :

4 The Hausdorff dimension can intuitively be viewed as a scaling exponent of the space
filling of the graph in question.
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IRY — IR can be defined as a solution to the diffusion equation, which is given
by

L(z;t) = G(x;t) %4 L(x)
where ¢ is the scaling parameter and the notation %, denotes convolution over
x. G(z;t) : RN x IR — IR is the Gauss function

: 1 )13
Gz t) = otz exp (— 52

where t = 02. The nth order partial derivative of an image in scale-space can be
found as

5o (G(ai0) 12 L)) - rom

’L

¥ L)

where x; denotes the ith element of x. In this paper we will in general use tensor
notation and Einstein’s summation convention when using image derivatives.

Normalisation of image derivatives has been proposed by several authors
[15,21,14]. The standard normalisation of the nth image derivative in scale-space,
based on dimensional analysis [14], is

n/2
Li1~~~in,n0'r'm =t / Li1~~~in7

which for the 1st order of derivation is the same as (9/0%)norm = 00/0z. Linde-
berg proposes [15,16,17] another method of normalisation of image derivatives.
He proposes that the nth order derivatives could be normalised as

Li1~~~in,’yn7n0'rm S t’Y"Lil...in
where v, = nv/2 and v is a free normalisation parameter. In conjunction with
feature detection Lindeberg has determined ~ by an analysis of model patterns
reflecting the features under consideration.

3.2 Scale-Space Normalisation Using the Fractal Dimension

We propose that ~, can be stated as a relation of « (i.e. H), the topological
dimension N of the image, and the order n of derivation. This is based on an
assumption that images of natural scenes may be modelled as fBms and that
normalised derivatives must have equal energy at all scales.

We will investigate quadratic differential image invariants on the form

I = Ly Liyo

We say that this kind of invariants are of the nth order of derivation. In the
following we examine the L{-norm of such invariants. This corresponds to looking
at the Lo-norm of image derivatives. That is, we examine scaling of energy of
image derivatives. Note furthermore that || 1*)||; also equals the L;-norm of any
other invariant quadratic in L of total order of derivation 2n (see [22]).
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Theorem 1. If fy(x) : RN — IR is a N-D fBm and L(z;t) : IRY xR — IR is
the scale-space of fr(x), then the nth order invariants 1™ (x;t) in this scale-
space can be normalised to equal energy on all scales by the following relation

L) (s 8) = 47 10 (a5 4)

where v, = —a/2 +n + N/2.

Proof. The proof is inspired by a similar analysis of the power spectrum of
images of natural scenes by Lindeberg [15,20]. By usage of Parseval’s identity
we find

1) — / G2, (w5 ) Fiy(@)dew
welRY

Mw| e 19 2 ()] du

_ / ef\wﬁt|W|7oz+2nd('u7
welRN

where 12 = —1, and f,(w) and G;,..;, (w;t) respectively are the Fourier trans-
formed image and the nth order differentiated Gaussian. Using

P o —aa? . L (m+1)/2)
/o e c7fgcf—2a(m+1)/2 ,

and introducing N-D spherical coordinates, we find

/ pra AN iy - dipy g =
pE[0,00[51,.. o N —1€[0,27]

r—$+n+% .
(QW)N%(?—"NQ) — K5 Kt
2A-3tnts

where K is an arbitrary constant, and hereby we arrive at v, = —a/2+n+ N/2.
]

The normalisation relation of Theorem 1 gives us a special case when handling
the Oth order of derivation, meaning the case of the undifferentiated scale-space.
That is, we scale-normalise the scale-space by an exponent introduced by the
fractal dimension of the original image. After doing so, the normalisation of the
nth order derivation is just the normalisation based on dimensional analysis.
This special case of the Oth order of derivation comes from the fact that the fBm
is the fractional derivative or integral of the Brownian motion.

A benefit of the proposed normalisation method is that the normalisation
relation can be used as a method for estimation of the fractal dimension of im-
ages. This can be done by calculating the Li-norm of a collection of differentiated
scale-space images and then fit the logarithmic norm values to a straight line.
We use this method in Sec. 4 to estimate the fractal dimension of synthetic and
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Table 1. This table shows the measure of feature strength used by Lindeberg for
feature detection with automatic scale selection using his y-normalisation. We have
calculated the corresponding values of H and Dy using our definition of . This table
is a reproduction of a table from [17] with an extension of the columns for H, Dy and
topological dimension 7' of the features. Note that a simple relation exists between the
fractal dimension Dy and the topological dimension T'. The relation between v and T’
is not as straight forward.

Feature type|Normalized strength measure| v | H |Dg|T
Edge 72 L, 172012 1
Ridge PV (Lpp — Lgg)? /41 ] 21
Corner L2 Lo 1 |1/2[2.5|0
Blob V7L 1 [1/2]2.5]0

real images. We will not conduct a comparative study of this method and other
methods for estimation of the fractal dimension of images (see [8] for a study of
other methods), but merely point out the existence of the method.

In conjunction with feature detection, we must use the fractal dimension of
the image in a neighbourhood of the feature of interest. This suggests a simple
relation between the topological dimension of the feature and a suitable choice of
fractal dimension. In Table 1 we have listed Lindeberg’s [17] suggested normal-
ized measures of feature strength. For each feature we have calculated the H and
Dy values that correspond to his suggested ~ values. It is interesting to notice
that corners and blobs have a fractal dimension of 2.5 and edges and ridges only
have a fractal dimension of 2. The topological dimension of corners and blobs is
0, while edges and ridges have a topological dimension of 1. Round a corner or
a blob, we would expect the void hypothesis of H = % This is not expected to
be true in a neighbourhood of 1D features owned to the spatial extend and we
see that Lindeberg’s choice of v leads us to the hypothesis of H = 1 for both 1D
features.

4 Experiments

We have conducted several experiments on synthetic and real 2D images in or-
der to study the normalisation of digitized images. We can as stated earlier use
the normalisation method to find the fractal dimension of images by calculat-
ing unnormalized derivatives of the scale-space of the considered image. From
this unnormalized scale-space we can estimate the value of v and calculate the
Hausdorff dimension Dy. In the same manner one can get estimates of the local
fractal dimension at a point in the original image. The fractal dimension of a
point could be viewed as a contradiction in terms, but it is never the less possible
to assign some meaning to this concept due to the intrinsic property of scale-
space: A point in scale-space correspond to a neighbourhood in the underlying
image.
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Table 2. These tables show our estimated ~ values for synthetic images. The synthetic
images used, and the corresponding graphs of the Li-norm of L;L; and L;;L;;, are
depicted in Fig. 1. The top table show the values for a 2-D image differentiated n =1
times (L;L;) and the bottom table show the values for a 2-D image differentiated
n = 2 times (L;;L;;). In each of the tables there are 4 synthetic images with different
o values. The v values are estimated by first constructing the synthetic image with
the specified o parameter and then calculating a series of 10 differentiated scale-space
images of ascending scales. For each of these 10 images we have calculated the Li-norm,
which can be seen in the graphs of Fig. 1. These graphs reveal an inaccuracy of the
estimated Li-norms at high scales, which is why we chose to use only the Li-norms of
the first 5 images of the scale-space (o € [2.0;6.7[) for our estimation of . The v value
is estimated by calculating the logarithmic slope of the Li-norms of the scale-space
images. The slope is the estimated + value. The reason why the estimated values of
the synthetic images are not exact is because the images we used where small. That
is, the span from the inner scale to the outer scale of the images are not sufficient to
establish v as a single global average over all scales. Note that, o = 2 corresponds to
a classical Brownian motion.

o [Estimated v values|Actual v values|Relative error
1 -1.57 -1.5 -4.46 %
2 -1.15 -1 -15.0 %
2.5 -0.96 -0.75 -28.0 %
3 -0.78 -0.5 -56.0 %
o |Estimated v values|Actual v values|Relative error
1 -2.55 -2.5 -2.0%
2 -2.11 -2 -5.5 %
2.5 -1.89 -1.75 -8.0 %
3 -1.68 -1.5 -12.0 %

It is the authors opinion that in principal all theory of fractal measures may
be reformulated in the inherently well-posed framework of linear scale-space
theory, thereby easing operationalisation of fractal measures.

In Table 2 we show some results for small synthetic images (see the images
in Fig. 1). The synthetic images used for these experiments were constructed
in the frequency domain and were given a power spectrum proportional to |w|?
and a random phase. We have calculated the Li-norm of different images from
two scale spaces of L;L; and L;;L;; images. On this basis we have estimated the
~ values for the synthetic images and compared them to the theoretical values
from the continuous domain theory.

The method of finding the fractal dimension that we propose is fairly accurate
on synthetic images of known fractal dimensions. From Table 2 we see that our
method delivers an inaccurate result for increasing o values. The reason for this
inaccuracy is that when the « value is increased, the synthetic image will have
structure on an increasing scale and when the « value of the image becomes
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Fig.1. In this fipure we show the synthetic images with different « values and their
corresponding graphs of the Li-norm of L; L; and Li; L;; which we used for estimation of
the « values in Table 2. The synthetic images all have 256 <256 pixelsand o« = 1,2,2.5,3
from the top down. The Li-norm graphs were produced by calculating a scale space
for the two set of derivatives. This scale space has 10 different scales between o — 2
and o = 30 with exponential growing increments. On the graphs it can be seen that
high scales makes the estimate of the Lj-norm inaccurate, i.e. the estimate become too
small. The reason for this inaccuracy is discretisation effects introduced by the outer
scale of the image.
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Fig. 2. We have calculated the invariants L;L;, Ls; Lj; and L;j, Ly j; scale-space images
of the garden image from Fig. 3. These graphs show the Li-norm of [ (0t and
(I(”))l/” of these 3 scale-space invariants. The solid lines corresponds to L;L;, the
dashed lines to L;;L;; and the dotted lines to L;jx L. The estimated slopes are for
Ity = 1.13,1.10,1.12 (n = 1,2,3), and for (17" v = —0.87,-0.95,-0.96
(n=1,2,3).

large enough the outer scale of the large structures will exceed the outer scale of
the image thereby misleading our method. Furthermore our results are biased by
spectral leakage, because artificial periods is introduced into the images by the
Fourier Transform. It can also be seen from Table 2 that when we increase the
order of differentiation we also increases the accuracy of the method. The reason
for this is that when we derive our image we enhance the fine structure of the
image by effectively looking at a scale interval, which has been moved towards
smaller scales. In real examples, image noise from the capture device will exhibit
another structure than the random process of the scene. In general this is more
uncorrelated noise, and a scale interval of smaller scales will exhibit structure
merely from the capture device. That is, we must choose an appropriate scale if
we wish to measure scale characteristics.

We expect a logarithmic relation between the scale and ||[10")||;. From Table
2 and Fig. 1 we can see that our proposed method for normalisation is quite
reasonable for synthetic images. In order to examine our method on real images,
we have calculated the L{-norm of invariants of increasing order of differentiation
of the garden image from Fig. 3. We have normalised the calculated invariants by
I +1 which corresponds to our normalisation method, and (I ("))1/ ™. which
corresponds to the standard normalisation method, in order to examine the
scaling property of the image independently of the order of derivation. The
slope of the logarithmic plot corresponds to v and we would expect that this
slope should be approximately the same for all orders of derivation only for our
normalisation method [(¢"+1 The results can be viewed in Fig. 2. From this
figure it can be concluded that our normalisation method seems as a reasonable
choice, but we can also see that the ~ of the standard normalisation method
for this image is fairly independent of the order of derivation. This inconclusive
experiment therefore calls for a thorough evaluation of the scaling properties of
a large ensemble of images of natural scenes.
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Table 3. This table show our estimated ~v values and the corresponding H and Haus—
dorff dimension Dg. The values of H were calculated through H = n + 7 —v—-3
and the values of Dy were calculated through Dy = N + (1 — H). The dimension of
the images were N = 2 and they were differentiated by L;;L;; (n = 2). The v values
were estimated in the same fashion as in table 2 and the images used can be seen in
Fig. 3. The estimated values of Dy indicates the same results as Bialek [6] that the
Hausdorff dimension of images of natural scenes not necessarily are close to D = 2.5.
Unfortunately we have no way of determining the error on the results in this table.

Title Estimated v values| H | Dy
Garden -1.90 0.60|2.40
X-rayed bone -1.62 0.88(2.12
Water Lilly -1.53 0.97(2.03
Sea weed -1.98 0.52]2.48
Grains of sand -2.09 0.41]2.59
Satellite clouds -1.89 0.61]2.39
Landscape -1.75 0.75(2.25
Trees -1.82 0.68(2.32

We have also tried to estimate the Hausdorff dimension of some 2-D images
of natural scenes. The results can be viewed in table 3.

5 Conclusion

We have related Lindeberg’s [15,16,17] scale-space normalisation method to the
notion of fractal dimension, assuming that images of natural scenes can be mod-
elled by fractal Brownian motions and we propose that feature strength measures
are normalized using the Hausdorff dimension of the local image.

We have found a normalisation expression that has the Hausdorff dimension
as a parameter. Through this expression we have also found a relation between
the topological dimension and the fractal dimension of the local image round a
feature (see Table 1). We conjecture (for future experimental testing):

The topological dimension of the feature uniquely determines the scale-
space normalisation parameter.

We propose a further investigation into the relation between different fea-
tures and their Hausdorff dimension. It would be interesting to see whether it
is possible to generalize the results described in table 1 and further establish a
general relation between the topological dimension of features and the fractal
dimension locally in the image. Furthermore we suggest a thorough investigation
of the scaling properties of images of natural scenes using a large ensemble of
images.
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Fig. 3. Here we have shown the images for which we have estimated the fractal dimen-
sion (see table 3). All images are gray level images and the first six images all have
256 x 266 pixels and the last two have 512 x 512 pixels. We have called the images from
the top left corner going in the reading direction; Garden, X-rayed bone, Water Lilly,
Sea weed, Grains of sand, Satellite clouds, Landscape and Trees.
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Abstract. The lattice Boltzmann method has attracted more and more
attention as an alternative numerical scheme to traditional numerical
methods for solving partial differential equations and modeling physical
systems. The idea of the lattice Boltzmann method is to construct a
simplified discrete microscopic dynamics to simulate the macroscopic
model described by the partial differential equations. In this paper, we
present the lattice Boltzmann models for nonlinear diffusion filtering.
We show that image feature selective smoothing can be achieved by
making the relaxation parameter in the lattice Boltzmann equation be
image feature and direction dependent. The models naturally lead to the
numerical algorithms that are easy to implement. Experimental results
on both synthetic and real images are described.

1 Introduction

Broadly speaking, there are two ways to use computers to make progress in un-
derstanding physical phenomenon. The first approach is to use computers as a
tool to solve the partial differential equations (PDE’s) that describe the macro-
scopic model. In this approach, the computers are used to treat the mathematical
equations not directly the physical phenomenon. As the equstions become more
and more complicate, the task for solving these equations becomes more and
more diffficult. The second approach is to use computers as a kind of experimen-
tal laboratory, to simulate the phenomenon of interest. The idea is to design a
synthetic model in which the physical laws are expressed in terms of simple local
rules on a discrete space-time structure. Such models include so called lattice gas
automata (LGA) and the more recent lattice Boltzmann (LB) models in fluid
dynamics.

In lattice gas and lattice Boltzmann models, particles hop from site to site on
a lattice at each tick of a clock. When particles meet they collide, but they always
stay on the grid and appropriate physical quantities are always conserved. The
long time evolution of this discrete microscopic dynamics is able to reproduce
the complex physical phenomena investigated. The advantage of lattice gas and
lattice Boltzmann methods is that they provide insight into the microscopic

* The research of the authors was supported by ARO Grant DAA HO 49610326, ONR
Grant N00014-90-J1343, and DEPSCoR Grant N00014-97-10806.

M. Nielsen et al. (Eds.): Scale-Space’99, LNCS 1682, pp. 283-293, 1999.
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process and easily implemented highly parallel algorithms and that they have
the capability of handling complicated boundary and initial conditions.

The use of the lattice Boltzmann method has allowed the study of a broad
class of systems that would have been difficult by other means. An example is
flow through porous media [4]. In recent vears, the adoption of the Bhatnagar-
Gross-Krook (BGK) collision operator [10] in the lattice Boltzmann calculations
has made the lattice Boltzmann model computationally more efficient.

In this work we apply the lattice Boltzmann method to image processing,
especially to nonlinear anisotropic diffusion of images. Anisotropic diffusion has
been extensively used as an efficient nonlinear filtering technique in image pro-
cessing. A considerable amount of research has been done in this area during the
last decade [1,2,3,9,5,6,12]. For a complete list of references and an overview of
nonlinear diffusion filtering see [13].

In this paper, we report the lattice Boltzmann models presented in [7] for
nonlinear diffusion filtering. We also present a lattice Boltzmann model for image
smoothing by reaction-diffusion. We show that image feature selective smoothing
can be achieved by making the relaxation parameter in the lattice Boltzmann
equation be image feature (e.g., edge) and direction dependent.

The paper is organized as follows. In Section 2 we give a brief introduction
to the general lattice Boltzmann model. Section 3 describes the lattice Boltz-
mann model for nonlinear isotropic diffusion filtering. In Section 4, we discuss
the lattice Boltzmann model for anisotropic diffusion filtering. Next, in Section
5 we present the lattice Boltzmann model for reaction-diffusion filtering. Exper-
imental results are shown in Section 6. We conclude with a summary in Section
7.

2 The General Lattice Boltzmann Model

In general, lattice Boltzmann model is built with a lattice together with the
lattice vectors e, (@ = 0, 1, ---, b). On each node there are a set of particle
distribution functions {f,} (o = 0, 1, ---, b), with each f, corresponding to
the vector direction e,. e, can be considered as the particle velocity. Usually
ey denotes the rest particles. The microscopic dynamics consists of two steps:
translation from node to node along direction e, and redistribution of the parti-
cle density at each node during the collision step. These two steps are described
by the following lattice Boltzmann equation

?

fa(x+ea7t+1):fa(x7 t)+"(204(xv t)7 (a:07 17 "'7b)7 (1)

where §2,,(x, t) is the collision operator which depends on the distribution func-
tions fo,.

Usually, the only restrictions on the collision operator §2,(x, ¢) are that it
conserves mass,

b
> 02,(x, 1) =0, (2)

a=0
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and that it conserves momentum,

b
> ealla(x, 1) = 0. (3)
a=0

The mass m(x, ¢) (or other quantity for different problem of interest) at
position x and time ¢ is given by

b
mix, ) = 3 fulx, 1), (4)
a=0

By adopting the simple lattice-BGK model [10], the collision term {2, in
(1) can be replaced by the single-time-relaxation approximation, £2, = —(f, —
20 /7, and (1) becomes

fa(x +eqn, t+ 1) - fa(X7 t) o fa(X7 t) :-fzq()g t)v (a - 07 17 T b)7 (5)

where f2(x, t) denotes the appropriately chosen local equilibrium distribution
functions, and 7 is the relaxation time which controls the rate of approach to
equilibrium. 7 must be chosen greater than 1/2 to ensure numerical stability
[10].

On one hand, the lattice Boltzmann models can be used as PDE solvers.
By chosing appropriate collision operator or equilibrium distribution, the lattice
Boltzmann model is able to recover the PDE of interest. On the other hand,
the lattice Boltzmann models can be used as simulators. By specifying the mi-
croscopic collision rules, the lattice Boltzmann model can directly simulate the
under-investigated phenomena. The microscopic approach in the lattice Boltz-
mann model provides clear physical pictures, easy implementation of boundaries
and fully parallel algorithms.

3 LB Model for Nonlinear Isotropic Diffusion Filtering

For two-dimensional discrete image of size M x M, the image domain can be
naturally considered to be a square lattice. In this paper, we use the 9-velocity
model for square lattice with the velocity vectors,

(0, 0) a=0
e, = ¢ (cos[2m(c — 1)/8], sin[2n(a — 1)/8]) a=1357 (6)
V2(cos2n(a — 1)/8], sin[2m(er — 1)/8]) o =2, 4, 6, 8,

where eg corresponds to the rest particles which have speed 0. Here the quantity
that we are intersted in is the image intensity I(x, t) instead of the mass at
position x and time ¢. Parallel to the general LB model described in Section 2,
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we have at some time ¢ and position x the particle distribution functions 1, (x, t)

(e =0,1, -, 8), which can be imagined as the amount of the intensity moving
into the direction e,. Corresponding to (4), we have
8
I(X7 t) - ZIOL(X7 t) (7)
a=0

We will use the lattice-BGK model (5). In order to achieve the selective smooth-
ing of image, we make the relaxation parameter 7 to be space, time, and image
feature (edge) dependent, i.e.,

T(x, 1) = o(|VGo x 1)), (8)

where ¢ is some positive nonincreasing function, and

Galo) = enp (25 )

" 2n02 T 202

is the Gaussian kernel.
We choose the local equilibrium distribution functions I29(x, ¢) as follows:

Izq(X7 t) = COLI(X7 t)7 (10)
where the distribution factors ¢,’s are defined by

4 _
g a=20

a=13057 (11)

Ol

Co —

= a=24,6,8.

Note that ZZ:O o = 1.
The evolution of I, (« =0, 1, - --
Boltzmann equation

) is then governed by the following lattice

?

lo(x, 8) = I57(x, 1)

Ia(x+ ea7 t + 1) - Ia(x7 t) - ¢(|VG *I|) ?

(a=0,1,---,8). (12)

From Section 2 we know that the relaxation parameter 7 must be greater than
1/2 to ensure numerical stability. Therefore the nonincreasing function ¢ must
be chosen such that ¢(|VG, * I]) > 1/2. One possible choice of ¢(|VG, * I]) is

1 C

O(|VG, 1)) = 5+ TTVG. TP for some positive constant C. (13)

Using the so-called Chapman-Enskog expansion we showed in [7] that the
long time behavior of the LB model described above recovers the following type
of nonlinear isotropic diffusion equation

a1 = div(g(|[VG, x I|))VI). (14)
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Equation (14) was proposed in [2] as an improvement of the Perona-Malik model
[9]. In [2] and [9] the function g is chosen as some positive nonincreasing function
vanishing at infinite.

The relation between the diffusion coefficient g in the diffusion equation (14)
and the relaxation parameter ¢ in the LB equation (12) is

GV, 1) = 51V T]) — 3). (15)

Nl

4 LB Model for Anisotropic Diffusion Filtering

In order to achieve anisotropic diffusion, we need to make the relaxation param-
eter 7 also depend on the direction vectors e, (=0, 1, -+, 8)

T(x, t, &) = 9o (VG, x I). (16)
We can use the same equilibrium distribution functions as in Section 3,
Izq(X7 t) - Ca[(xv t)7 (17)

where the ¢,’s are the same as in Section 3. But if we still use the same LB
equation (12), the total mass (intensity in our case) will not be conserved. To fix
this problem, the natural approach is to choose different equilibrium distribution
functions; an alternative way is to simply add another term to the equation [8].
We will follow the approach in [8]. In this case the lattice Boltzmann equation
becomes

Ia(xv t) _ Izq(X7 t) )

1, ot 1) =1(x, ) — 2, 18
(x +ea, t +1) = La(x, 1) NG D (18)
where .
- Ig(x, t) —I5%(x, t
fo Z ,5( ) 3 ( )7 (19)
—  9s(VGsx1)
which is added in equation (18) for mass (intensity) conservation.
As in Section 3, we also have
8
I(x, 1) = > Ia(x, ). (20)
a=0
The relaxation parameter functions ¢o(VGs  I) (o = 0, 1, ---, 8) in (18)

are some nonincreasing functions of some kind of quantities of VG, % I. Again,
¢o(VG, x I) must be greater than 1/2 to ensure numerical stability. In order to
keep with the symmetry of the lattice (e, = e,14), we will require ¢, = ¢ 4.
One possible choice of ¢o(VG, * I) is

6a(VGy s 1) = ¢

5 + T e Ve, s P for some positive constant C'. (21)
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In [7] we showed that the long time evolution of I(x, t) = S3°_ I.(x, t)

a=0
according to the LB equation (18) recovers the following nonlinear anisotropic

diffusion equation

o1 = div(DVI), (22)
where D is the diffusion tensor with
8
1
Dij = ;}(gba(VG‘g * I) — §)Caeaieaj~ (23)

Nonlinear anisotropic diffusion filtering by equation (22) with different dif-
fusion tensors has been studied in [12] and [3]. Some applications have been
presented in [11].

Equation (21) only gives one possible choice of the relaxation parameter

0o (VG, x I). For different purpose of filtering, one can use different form of
0a(VG, x 1).

5 LB Model for Reaction-Diffusion Filtering

In this section we propose the lattice Boltzmann model for reaction-diffusion
filtering.

For diffusion based filtering, one can also use reaction-diffusion equation in-
stead of pure diffusion equation:

8,1 = div(g(|VGy % I)VI) + u(lo — I) (24)

where [j is the original image. The advantage of adding a reaction term is that it
provides a nontrivial steady state, therefore eliminates the problem of choosing
a stopping time in using pure diffusion equation. But the trade off is that one
has to determine p.

In this section we use the same notations as those in Section 3. To get the
LB model for the reaction-diffusion equation (24), we simply add another term
to equation (12) resulting in the following LB equation:

Lo(x, 1) - I3(x, 1)
P(|VGq + 1))
where ¢(|VG, # 1) is the same as in Section 3 and ~ is a parameter controlling

the reaction speed. As in Section 3 and 4, we use the LB equation (25) to update
Iy (@=0,1,---, 8) use

Ip(x+eq t+1)=1,(x,1)—

+eay(lo(x, 1) = 1(x, 1)) (25)

8
I(x,t) = Y In(x, t) (26)

to update I, and use
151(x, 1) = coI(x, 1) (27)
as the equilibrium distribution functions.
Using a similar procedure as in [7], one can derive the macroscopic equation
(24) from the lattice Boltzmann equation (25) and equation (26).
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6 Numerical Experiments

The implementations of our LB models are straightforward. Once an initial image
1(x, 0) is given, we use ¢, I(x, 0) (& =0, 1, ---, 8) as the initial values for the
LB equations, where ¢, ’s are given by (11). The relaxation parameters ¢(|VG,, *
1)) and ¢ (VG * I) are caleulated using the corresponding equations given in
Section 3 and 4 respectively. The equilibrium distribution fumctions I§9(x, )
are caleulated using equation (10). I, (o = 0, 1, ---, 8) are updated by the
LB equations (12), (18), and (25) for different models in Section 3, 4, and 5
respectively. After getting the updated I, I is updated by equation (7). Then
start the next iteration.

Figure 1 shows a synthetic image (256 x 256) with 35% of the pixels are de-
graded and its “cleaned” version by the LB model in Sction 3 with ¢(|V G x1|) =
0.5+ 50/(1 + |[VG, + 1|?) (¢ = 1) and 60 iterations. Figure 2 shows the same
synthetic image with 70% of the pixels are degraded and its “cleaned” version by
the LB model in Section 4 with ¢,(VG, # 1) =0.5+25/(1 + | {ea, VGs # I} [?)
(o = 1) and 90 iterations. Figure 3 shows an enlarged detail (256 x 256) of
an original infrared airborne radar image and its processed version by the LB
model in Section 3 with ¢(|[VGy # I]) = 0.5+ 25/(1 + |VGy # 1|?) (¢ = 1) and
12 iterations. Figure 4 shows a part of an original airborne Doppler radar im-
age (266 x 256) and its processed version by the LB model in Section 4 with
$a(VGo 5 1) = 0.56 + 10/(1 + |(ea, VGa x 1) |?) (o = 1) and 65 iterations.

Fig. 1. A synthetic image (256 x 256) with 35% of the pixels are degraded (left) and
its “cleaned” version by the LB model in Section 3 with 60 iterations (right).
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Fig. 2. A synthetic image (256 x 256) with 70% of the pixels are degraded (left) and
its “cleaned” version by the LB model in Sction 4 with 90 iterations (right).

Fig.3. An enlarged detail (256 x 256) of an original infrared airborne radar image
(left) and its processed version by the LB model in Section 3 with 12 iterations (right).
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Fig.4. A part of an original airborne Doppler radar image (256 x 256) (left) and
its processed version by the LB model in Section 4 with 65 iterations (renormalized)

(right).

Fig.5. An original image (256 x 256) with added Gaussian noise with o = 30 (left)
and its processed version by the LB model in Section & (renormalized) (right).
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Figure 5 shows an original image (256 x 256) with added Gaussian noise with
o = 30 and its processed version by the LB model in Section 5 with ¢(|VG,
I)) =05+ 30/(1 + VG, # I)?) (0 = 1) and v = 0.03.

7 Concluding Remarks

In this paper, we have described the lattice Boltzmann models for nonlinear
diffusion filtering. We have shown that image feature selective smoothing can be
achieved by making the relaxation parameter in the lattice Boltzmann equation
be image feature (e.g., edge) and direction dependent. The advantage of the
lattice Boltzmann model is that it provides insight into the microscopic process
and easily implemented highly parallel algorithms. We believe that the lattice
Boltzmann method is also very helpful in exploring new models. By choosing
different equilibrium distribution in the lattice BGK model or more generally
choosing different collision operator in the lattice Boltzmann model, one is able
not only to recover some PDE’s but also to give new image processing models.
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Abstract. We merge techniques developed in the Beltrami framework to
deal with multi-channel, i.e. color images, and the Mumford-Shah func-
tional for segmentation. The result is a color image enhancement and
segmentation algorithm. The generalization of the Mumford-Shah idea
includes a higher dimension and codimension and a novel smoothing mea-
sure for the color components and for the segmenting function which is
introduced wvia the I'-convergence approach. We use the I'-convergence
technique to derive, through the gradient descent method, a system of
coupled PDEs for the color coordinates and for the segmenting function.

1 Introduction

Segmentation is one of the important tasks of image analysis and much efforts
have been consecrated to solve it. One can roughly classify the segmentation
methods into two classes: 1) Global, i.e. histogram based techniques, and 2) Lo-
cal, i.e. edge based techniques. In the second class it was shown that a large
number of algorithms, including different region growing methods coupled with
edge detection based techniques, are closely related to the Mumford-Shah func-
tional minimization [11]. This functional involves an interplay between an image,
which is a two dimensional object, and the contours that surround the objects in
the image, which are one-dimensional curves. This functional was first suggested
and analyzed by Mumford and Shah for gray-level images in [12]. It was later
extensively studied, see e.g. [11] for an overview.

In particular, the I'-convergence framework [1,2,3,15] was invented to over-
come the problem of dealing with objects with different dimensionalities in the
same functional. In the I'-convergence framework, one replaces the functional
by a different, parameter dependent, functional. The parameter controls the de-
gree of approximation, such that the approximating functional is equal to the
Mumford-Shah functional in the limit, as the parameter goes to zero. In the
approximating functional, the edge contours are replaced by a two-dimensional
function which is close in shape to an edge indicator with certain smoothness

M. Nielsen et al. (Eds.): Scale-Space’99, LNCS 1682, pp. 294-305, 1999.
(© Springer-Verlag Berlin Heidelberg 1999
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around the edges. The degree of smoothness depends on the approximation pa-
rameter, and the function approaches a Dirac delta function for the edges, as
the approximation parameter approaches zero.

In this study we address the question of the generalization of this approach to
color images. Methods that disregard the coupling between the spectral channels
give up important information given by the correlation between the color chan-
nels. Moreover, there is an underlying assumption in the Mumford-Shah model
of the smoothness of the image in the non-boundary regions, which is formulated
through an Ly measure. It is known, though, that the L performs better as an
adaptive smoothing measure [17]. It is desirable, therefor, to incorporate the L
norm or another adaptive smoothing scheme in the Mumford-Shah formulation
for the segmentation problem. Recently, it was shown [19] that the Beltrami
framework provides a proper generalization of the L norm from gray-level to
color images.

In the Beltrami framework, an image is treated as a two-dimensional Rieman-
nian surface, restricted as a graph, embedded in a higher dimensional spatial-
feature space. A grey-level image is embedded in IR® whose coordinates are
(z,y,1I) and it is simply the graph of the intensity function I(z,y). Similarly,
a color image is embedded in a five-dimensional space whose coordinates are
(z,y, R, G, B). The induced metric of these surfaces is easily extracted and a
measure, known as the Polyakov action in high-energy physics, is used as a
generalization of the Ly norm to any dimension and codimension, and for any
geometry of the surface and of the embedding space. We and others have shown
that this “geometric Ls” norm interpolates via a scaling parameter between the
conventional, i.e. flat Ly and Ly norms for gray level images. It interpolates, for
color images, between the flat L and a different norm, which is interpreted as
the proper generalization of the Euclidean L; norm for color images [9,6].

Our current study merges the I'-convergence technique and the Beltrami
framework for color images to yield a color and smoothing generalization for the
Mumford-Shah segmentation functional.

The paper is organized as follows: In Section 2 we briefly review the I-
convergence and its application for the gray-level image segmentation. Section 3
reviews the Beltrami framework. We present, in Section 4, our color segmentation
functional and derive a non-linear coupled Partial Differential Equations (PDE)
as gradient descent equations for this functional. Results are presented in Section
5, and we summaries and conclude in Section 6.

2 I'-Convergence Formulation

The Mumford-Shah functional includes three terms: A fidelity term, a smoothing
term, and a penalty on the total length of the discontinuities. Let

FI,K] = /Q\K (oI — Io)? + BIVI|*) dady + H(K) (1)

where I is the observed image, I is the denoised image, {2 is the images domain,
and K is the set of discontinuities. The Hausdorff measure H(K), measures the
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total length of the discontinuity set. The implicit assumption that underlies
this functional is that an image is a piecewise smooth function. The first term
penalizes a function that differs from the observed one, the second term penalizes
large gradients, and the last term penalizes excessive use of segmentation curves.
The minimizer places the segmenting curves along the most significant gradients
and tries to smooth the function everywhere else without diverting too much
from the original image. The parameters & and 3 control the relative weight of
the three terms.

It is difficult to minimize this functional numerically because of the large
number of possibilities of placing the set of boundaries K inside 2. In order to
have a better control of the problem, both mathematically and numerically, it
is convenient to approximate the functional. In the I'-convergence framework, a
new functional is proposed [2] in the form

L E| /Q (oI = 1) + BEAVIP + c[VEP + po(E)) dady,  (2)

where, ideally the function F(z,y) is an edge indicator, such that F(zq,y0) =0
when an edge passes through (zg, yo) and E(z,y) = 1 otherwise. In this case, the
second term in the approximating functional is identical to the second term in
the Mumford-Shah functional. In fact, we demand that the segmenting function
FE is a smooth function and use the Ls norm to penalize discontinuities in F.
The last term is constructed in such a way that it forces E to behave as an
edge indicator, i.e. it pushes F to 1 far from an edge. In the vicinity of an edge,
the term E?|VI|? pushes E to zero. Explicitly, Ambrosio and Tortorelly have
chosen:

F.[I,E] = /{2 (a([ — 1) + BE?|\VI)? +¢|VE|]? + %) dedy.  (3)

One can show that in the limit as ¢ — 0, the functional F.[I, E] approaches
F[I, K] such that the minimizers of F, converge to the minimizer of F'.

Omne can naturally envisage using a different norm, i.e. L1 norm for the gra-
dients of the denoised image and the segmenting function. The question is how
to extend this idea for a color image.

3 The Polyakov action

Let us introduce a geometric viewpoint that enables us to generalize an adaptive
smoothing algorithm to a higher dimensional and codimensional images.
There is an extensive literature on functionals of the type

Pl = /dxdy,o(|V]|) - /dxdyp (,/Ig +12 ) (4)

where p(s) is a function which has a lower bound. We suggest to generalize it in
the following way:

FlI,ab,c| — / dedyf(a,b,c)p (\/alg +2bI, T, + cI? ) , (5)
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where a, b, ¢ and f are functions of x and y, and f is positive definite. The
interpretation of this generalization is geometric. Images are viewed as embed-
ding maps. Let us consider the important example X : X — IR®. Denote the
local coordinates on the two-dimensional manifold X by (o1, o2), these are anal-
ogous to arc-length for the one-dimensional manifold, i.e. a curve. The map X
is explicitly given by

(X1t o) = ot X2 (o}, 0%) = 0%, X3(a!, 0%) = I(a?, 0?)). (6)

Since the local coordinates ! are curvilinear, the squared distance is given by
a positive definite symmetric bilinear form called the metric whose components

are denoted by g, (0, 0?),

ds® — gupdotde” = gu(dal)2 + 2912d01d02 + ggg(d¢72)27 (7

where we used Einstein summation convention in the second equality; identical
indices that appear one up and one down are summed over, see [4,18] for a short
introduction to tensor calculus and covariance in the context of image analysis.
We denote the inverse of the metric by (g*¥), and its determinant by g.

The Polyakov action is a generalization of L. It depends on both the image
manifold and the embedding space. Denote by (X, (g..)) the image manifold
and its metric and by (M, (h;;)) the space-feature manifold and its metric. We
choose p(|s|) = s-s = s's7h;;, then the map X : ¥ — M has the following
weight [13]

FIX g ] = [ @0 /G0 (0,X°)(0, X7 iy (X, ®)
where m is the dimension of }J and the range of indices is p,v = 1,...,dim X,
and 4,7 =1,...,dim M. In the above expression d™o,/g is a volume element of

the image manifold. The rest, i.e. g*(9,X%)(8, X7 )h;;(X), is a generalization of
Ly. It is important to note that this expression, as well as the volume element,
do not depend on the local coordinates one chooses.

For our example in Eq. (6), we assume a diagonal form for the embedding
space, L.e. hij(z,y, 1) = fi(z,y,1)d;; (no summation over indices here). We get
the following functional

FlI, 9] = /dxdy\/ﬁ (0" f1+ 972 fo+ (" 12 + 29 L1y + g 12)f3)  (9)

which is reduced, up to terms independent of I, to the form of the functional in
Eq. (5) when the f;’s are constants.

The minimization of F' with respect to the metric can be solved analyticly,
for two-dimensional manifolds. The minimizing metric is the induced metric of
the isometric embedding. Explicitly, it is given in terms of the embedding map
and the metric of the embedding space,

(0", 0%) = hij(X) (0 X)(0,X7). (10)



298 R Kimmel and N.A. Sochen

Using standard methods in variation calculus, the Euler-Lagrange (EL) equa-
tions with respect to the embedding are (see [18] for derivation)

1 hilﬂ

2/ X

where the operator that is acting on X? in the first term is the natural gener-
alization of the Laplacian from flat spaces to manifolds and is called the second
order differential parameter of Beltrami [10], or in short Beltrami operator. It is
given in term of the metric as

= Ay X'+ T (3, X7)(8, X )g" (11)

A X — ——8,(/39" 3, X 7). 12
g \/E p,(\/_ ) ( )

In the second term of Eq. (11), the F;k are the Levi-Civita connection’s coeffi-
cients with respect to the metric h;; that describes the geometry of the embed-
ding space [23]

;k = §h”(ajhlk +akhjl — alhjk). (13)

This term is in particular important in color image analysis and processing since
some of the models of color perception assume non-Euclidean color space.
We view scale-space as the gradient descent,

i

T ot 2y OX!

9X L 0F (14)

Notice that we used our freedom to multiply the Euler-Lagrange equations by
a strictly positive function and a positive definite matrix. This factor is the
simplest one that does not change the minimization solution while giving a
reparameterization invariant expression. This choice guarantees that the flow is
geometric and does not depend on the parameterization.

Choosing the induced metric and minimizing the feature coordinates results
in a system of coupled partial differential equations that describe the flow of
the image surface inside the spatial-feature space. This flow has the effect of
smoothing more rapidly areas between edges than the edges themselves. This
effect is achieved by the projection of the mean curvature vector to the feature
space. Since normals to the surface at an edge lie almost entirely in the spatial
space, their projection to the feature space is small and does not change the
value or location of an edge.

This technique was used to denoise and enhance a variety of gray-level, color,
3D images, like movies, and volumetric medical images, and texture [7,19,18].
Next, we show that it is a useful measure in color image segmentation.

4 Color Segmentation Functional

According to the Beltrami framework [19], a color image is represented as an
embedding map of a two-dimensional Riemannian manifold in a five-dimensional
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spatial-color Riemannian manifold. The coordinates of the two-dimensional man-
ifold are (0!, 0?), and those of the five-dimensional one are
(X1, X2, X3, X3, X%, X5). The embedding map is

(X! =0l X? = 0% X® = R(o!,0?), X' = G(c%,0%),X° = B(a!,6H)}. (15)

We identify X! with z and X? with y and by abuse of notations we write
{z,y, R(z,y), G(z,y), B(z,y)}. We also use below the notation I’ for i =r,g,b to
denote the different color channels.

The metric of the embedding space is

ds® = da® + dy® + ds? (16)

color»

where the metric in the color space is model dependent, see [23] for a general
discussion and [20,21] for the analysis of different color models in the Beltrami
framework. We choose, for sake of simplicity, to adopt a Euclidean metric for
the color space, see [24] for a related effort.

Two different approaches are possible in the treatment of the segmenting
function. We can think of it as a function on the image manifold or as a function
on the spatial part of the embedding space. The two approaches lead to some-
what different equations even though the spatial part and the image manifold
coordinates are identified in the embedding map.

4.1 Segmenting function on the image manifold

The metric in the image manifold is given by the induced metric (see Eq.
(10)). We assume further that the segmenting function is defined over the two-
dimensional image manifold, see Figure 1. We use the Polyakov action as an
adaptive smoothing metric for both the color coordinates and the segmenting
function. The functional we propose reads

FIY 12 I FE| = / d*o\/g (E(Xi — XD hi (X)X = XD+
E 2
&)

¢ _1\2
§E(01, )2 g" (9, X (9, X7 ) hiy (X) + 59*“’(8”]3)(8,,}3) + %) (17)

We take the color metric to be the unit matrix h;; = &; from now on. We
minimize this functional by the gradient descent method. Formally, the equations
are

. or 1 6F
YT e gel
_OE  OF
Y= SR

The functional variations yield the following explicit partial differential equa-
tions

Il = BE? A (I + Bg"™ (9, E)(0,1") — o(I" = T})
E

E, = —/g(28E — % —cAy(E))
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where ¢ = [R, G, B], and
1
V9

is the Laplace-Beltrami operator on the image manifold. The factor 2 in the first
term of the equation for ¥ comes from the choice of the metric as the induced
one given in Eq. (10). We find that

" (8, 1) (0, I Yhiy(X) = g" g = Tr(Idg.0) = 2. (18)

Ay(X) = —=0u(Vg9" 8, X),

The first term in the equation for I smoothes the function when £ = 1 and is
ineffective around an edge when E approaches zero. The second term sharpens
gradients and create shocks. The last term pushes I towards Ig.

Fig. 1. Left is the edge indicator function E defined over the image plane {z, y}. Right:
the edge indicator function F defined on the image surface manifold {z,y, I(x,y)}.

4.2 Segmenting function on the embedding space

The metric is, as before, the induced metric but this time the Polyakov action
is used only for the feature coordinates. The segmenting function is defined over
the Euclidean spatial part of the embedding space and therefor it is smoothed
using the usual Ly norm. The functional, in this case, is

PP B = [ oy (FX - Xhy (KX - X+
gE(x,y)gg‘“’(auXi)(&,Xj)hij(X)) + /dxdy (§|VE|2 + %) (19)
The gradient descent equations are
I = BEPA (') + Bg" (0, E)(9,1") — o(I' — L)
By, = =28./gl5 + % + cA(E),

where i=[R,G,B], and A(FE) is the usual Laplacian. The first term in the equa-
tion for I/ decreases the values of I for large g. The second term of the equation
pushes the values of E toward 1, as ¢ approaches zero. The last term is a smooth-
ing term.
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5 Experimental results

Fig. 2, Upper row, left to right: The original noisy image, followed by the final edge
indicator function F, and the final image. At the bottom are zoom-in frames of a square
section cropped from the initial and final images.

We tested both cases, where the segmentation function I is defined on the
image manifold and then on the embedding space. The time derivatives are ap-
proximated by an explicit forward numerical approximation (Euler scheme). The
spatial derivatives were taken first by forward followed by backwards approxi-
mation, see [17]. This is a simple way to keep the numerical support tight and
centralized. The examples demonstrate color image enhancement for both noisy
and clean images. In all examples weset &« = 71072, =2-10"%,¢=10"% We
also decreased the value of ¢ along the iterations by setting ¢! = ¢"/1.002. as
proposed in [15].

In Figure 2 we use the segmentation function I on the image flat manifold.
The embedding space was taken Fuclidean in color space. Figure 3 tests the seg-
mentation [unction E on the embedding space. This example takes a clean bench-
mark image into a piecewise smooth one. Here the embedding space is based on
Helmholtz’s arclength in color ds?, = (dlog R)? + (dlog G)? + (dlog B)?, see
also [5,22,23,20]. In some cases the edges appear as ‘edge regions’ rather than
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Fig. 8. Upper row, left to right: The original image, followed by the final edge indicator
function E, and the final image. At the bottom are zoom-in frames of a square section
cropped from the initial and the final images.
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one dimensional curves as expected. The reason is our numerical approximation
for F. We use an edge image with the same resolution as that of the original im-
age, adding central difference approximation yield the edge regions. One possible
solution is to apply the refined numerical approximation to the edge map as in
[15]. Finally, in Figure 4 we apply the segmentation function F in the embedding
space, to a noisy image. The source of the noise comes from a digital camera
compression distortions, followed by a scanned version ol a printout picture.

Fig. 4. The original noisy image is on the left, followed by the edge indicator field F,
and the final result. Bottom line shows a zoom in on the original noisy on the left and
filtered image.

6 Summary and Conclusions

We presented a generalization of the Mumford-Shah enhancement and segmen-
tation method. The generalization is in two aspects: Multi-channel images, i.e.
color images are analyzed, and the Lo measure is replaced by the Polyakov ac-
tion. The generalization is a natural application of the Beltrami framework that
represent images as an embedding map of the image manifold in a spatial-feature
space.
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Abstract. We present a supervised classification model based on a vari-
ational approach. This model is devoted to find an optimal partition com-
pound of homogeneous classes with regular interfaces. We represent the
regions of the image defined by the classes and their interfaces by level
set functions, and we define a functional whose minimum is an optimal
partition. The coupled Partial Differential Equations (PDE) related to
the minimization of the functional are considered through a dynamical
scheme. Given an initial interface set (zero level set), the different terms
of the PDE’s are governing the motion of interfaces such that, at con-
vergence, we get an optimal partition as defined above. Each interface is
guided by internal forces (regularity of the interface), and external ones
(data term, no vacuum, no regions overlapping). Several experiments
were conducted on both synthetic an real images.

1 Introduction

Image classification, which consists of assigning a label to each pixel of an ob-
served image, is one of the basic problems in image processing. This concerns
many applications as, for instance, land use management in teledetection. The
classification problem is closely related to the segmentation one, in the sense
that we want to get a partition compound of homogeneous regions. Neverthe-
less, within the classification procedure, each partition represents a class, i.e. a
set of pixels with the same label. In the following, the feature criterion we are
interested in is the spatial distribution of intensity (or grey level). This work
takes place in the general framework of supervised classification which means
that the number and the parameters of the classes are known. The proposed
method could be extended to other discriminant features than grey-level such as
texture for instance. The unsupervised case, including a parameter estimation
capability, will be studied in the future.
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Many classification models have been developed with structural notions as region
growing methods for example [9], or by stochastic approach as in [1], but rarely
in the field of variational approach. In [11] we proposed a supervised variational
classification model based on Cahn-Hilliard models, such that the solution we get
is compound of homogeneous regions separated by regularized boundaries. The
classes are considered as phases separated by interfaces boundaries. The model
was developed through considerations of regularity on the phases by defining
a set of functionals whose expected minimum at convergence is an image with
expected properties of regularity.

Herein, the approach is different, mainly because the proposed model is based
on active contours, and the functional of interest is defined over the regions with
associated interfaces through a level set model. The resulting dynamical Partial
Differential Equations (PDE’s), governing the evolution of the set of interfaces,
consist of a moving front converging to a regularized partition. This model is
inspired by the work of Zhao et al. about multiphase evolution [13], and takes
place in the general framework of active contours [2,3,7] for region segmentation
[14]. We use a level set formulation [8] which is convenient to write functional de-
pending on regions and contours, and allows a change of topology of the evolving
fronts. Each active interface is coupled to the other ones through a term which
penalizes overlapping regions (i.e. pixels with two labels) and the formation of
vacuum (i.e. pixels without any label). The evolution of each interface is guided
by forces which impose the following constraints : the interface exhibits a min-
imal perimeter (internal force) and it encloses one and only one homogeneous
class (external force).

First, we state the problem of classification as a partitioning problem. We clearly
set the framework and define the properties we expect on the classification.
Second, we expose the classification statement through a level set formulation.
The Euler-Lagrange derivative of the proposed functional leads to a dynamical
scheme we propose to implement. We finally present some experimental results
on both synthetic and real images (see also [10] for more experiments).

2 Image classification as a partitioning problem

This section is devoted to present the properties we want the classification model
to satisfy. In the following, we consider a classification problem in which a parti-
tion of the observed data wp, with respect to the predefined classes, is searched.
This partition is compound of homogeneous regions, say the classes, separated by
regularized interfaces. Herein, we suppose that the classes have a Gaussian distri-
bution of intensity, therefore a class is characterized by its mean p; and its stan-
dard deviation ;. The number K of classes and the parameters (u;;0;)i—1.. K
are supposed to be given from a previous estimation. We choose to assign the
label value u; to each element of the it" class. All indexes i or j are going from 1
to K. The proposed method is not limited to images in which the intensity ho-
mogeneity is a good classifier. The same approach could be used to classify data
according to a texture parameter for example, or other discriminant attributes.
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Fig. 1. A partition of 2.

On can think of first computing the discriminant attributes on the observed
data, then determine the classes using an algorithm giving the number of classes
and their parameters. We can assume that the repartition inside each class is
Gaussian and apply the proposed algorithm in order to determine a regularized
classification.

Let £2 be an open domain subset of R? with smooth boundary, and let ug : 2 - R
represent the observed data function. Let {2; be the region defined as

2; = {z € 22/z belongs to the i’ class}. )

A partitioning of £2 consists of finding a set {§2;};—1. x such that (see Fig. 1)

K
2=|J% and 22 =0 (2)
i=1 i
We note I; = 3§2; N §2 the intersection of the boundary of §2; with the open
domain {2, and let the interface between §2; and {2; be

L=Tp=LNIN0, Vit (3)
We have
r=Jny. (4)
J#i

Let remark that in (3) and (4) we eventually have I;; = @. We note |I;| the
one-dimensional Hausdorff measure of I'; verifying

|1Ii| = |I;] and @] = 0. (5)
J#i
The classification model we consider for an image u, defined over §2, is a set
{§2;}; defined by (1) and satisfying :
Condition a : {{2;}; is a partition of {2 :

Q:U@am.mﬂ@:g
i i#]
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Condition b : The partition {£2;}; is a classification of the observed data u( and
takes into account the Gaussian distribution property of the classes (data term) :

S ug — p\2
m|n|m|ze2/ (M) with respect to §2;.
i 5% i

Condition c : The partition is regular in the sense that the sum of the length of
interfaces I5; is minimum :

minimizeZ&j|Bj| with respect to I}; (&, € R are fixed).
4,7
The solution of the classification model proposed in the next section have to
take into account the three conditions. This is done by associating a functional

to the set of interfaces such that minimizers will respect CONDITIONS A, B and
C.

3 Multiphase model : image classification in terms of
level set

The classification model developed further is based on coupled active interfaces,
and the approach we adopt is inspired from Zhao et al [13]. The evolution of
each interface is guided by forces constraining the solution to respect CONDITIONS
A, B and C exposed in the previous section. We use a level set formulation to
represent each interface and also each region §2; element of the partition {£2;},.

3.1 Preliminaries

Let @; : 2xR"T — R be a Lipschitz function associated to region §2; (we assume
the existence of such a ®;) such that

@;(x;t) <0 otherwise .

Thus, the region §2; is entirely described by the function &;. In the following, for
a sake of clarity, we will sometimes omit spatial parameter x and time parameter
tin &;(x;t).
Let define the approximations §, and H, of Dirac and Heaviside distributions
with o € RT

5a(s) — {% (1 +cos(%)) if [s| <a )

0 if [s] >
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%(IwL -+ %Sin(%)) if [s] < «

Huy(s) =<1 if s>« (8)
0 if s < —«x
and we have
S Dg) ) as o — 07
HQD(Q)H as a — 07T

where D' (£2) is the space of distributions defined over §2. From (6),(7) and (8)
we can write

{w €/ lim Ho(@ila;t) =1} = 2 (9)

{w€ 2/ lim da(Pila;t)) # 0} = L. (10)

3.2 Multiphase functional

Let @y : £2— R be the observed data (grey level for instance).

Thanks to the level set @;’s defined in (6) and by the use of (9) and (10), a
partition {§2;}; respecting CONDITIONS A, B and C stated in section 2 can be
found through the minimization of a global functional depending on the @;’s.
This functional contains three terms, each one being related to one of the three
conditions. In the following, we express each condition in term of functional min-
imization. Minimizers of the following functionals are supposed to exist.

e FUNCTIONAL RELATED TO CONDITION A (PARTITION CONDITION) :
Let define the following functional :

K
FA(®y, ..., D) = %/ (ZHQ(@) . 1)2dx with A\eR* . (11)
2 N=1

The minimization of F2, as o — 01, penalizes the formation of vacuum (pixels
with no label) and regions overlapping (pixels with more than one label).

¢ FUNCTIONAL RELATED TO CONDITION B (DATA TERM) :

Taking into account the observed data and the Gaussian distribution property
of the classes, we consider :

FB(®y, .., Dx Zel/ H( i)’ 2 " dr with e; € R, Vi. (12)

The family {®}; minimizing F? as o — 0T leads to a partition {§2;}; satisfying
CONDITION B.
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e FUNCTIONAL RELATED TO CONDITION C (LENGTH SHORTENING OF INTER-
FACE SET) :

The last functional we want to introduce is related to CONDITION C about the
minimization of the interfaces length. We would like to minimize

1
5 Z@j|l“ij| with &;; being real constants. (13)

The factor % expresses the symmetry Ij; = I; and will be introduced in the
weighting parameters &;;. We turn the minimization of interfaces length into the
minimization of boundaries length :

K
Z%|E| with +; being real constants. (14)
i=1

From (13) and (14) we obtain the constraint &; = +; ++; which permits to select
the weighting parameters ~y; in the problem of boundaries length minimization to
retrieve the interfaces length minimization one. According to the Lemma exposed
below, the minimization of (14) is operated by minimizing the functional (as
a—0h):

FE(@,, .., O Z% / &)V da. (15)

Lemma : According to the previous definitions, let define

La(®;) = /{2 8o (P ()| VP, (w; 1) de,

then we have

lim La(él) == / ds = |Fl|
a—0 &;—0

Proof : using the Coarea formula [4], we have

La(®;) — / |/ (o )ds] dp = Jaer) sl

By setting h(p fgp ds we obtain

La@) = [ saloblpido = 5o [ (11 costZE)) i)y

20 J_,

If we take 6 = £ we have

La(®;) = %/1 (1 +cos(7r0)) h(aB)do
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Thus, when o« — 0 we obtain

a—0

lim Lo (®,;) = %h(@) /11 (1 +Cos(7rc9)>dc9 — h(0) = /@:Ods — |1

¢ GLOBAL FUNCTIONAL :
The sum F2 + F2 + FYS leads to the global functional :

K
(uo — i
Fa(gbl,...,@K);ei/QHa(@) “ dx+2%/ ®,)|VP;|dx
K
+%/Q<;Ha(¢i)—1>2dx

(16)
As o — 01, the solution set {®;}; minimizing F, (@1, ..., Px), if it exists' and
according to (6), defines a classification compound of homogeneous classes (the

so-called §2; phases) separated by regularized interfaces.

3.3 Remark about length minimization

/ e ()

where {C(p;t)}: is a set of closed parametrized (p € [0;1]) curves over §2 such
.tfhat C(0;t) = C(1;t) and % = %. Then, L(t) is decreasing most rapidly
i

Consider the length functional :

9C(p; )

5 kN (18)

k being the local curvature of C'(p;t) and N the inward normal. Curve evolution
through PDE (18) is known as mean curvature motion (see [6] for instance).
Active contours guided by (18) tends to regular curves in the sense that the
length is minimized. PDE (18) can be written through a level set formulation
[8] which is more convenient to manage curves breaking and merging. Assume
that d : 2 x RT — R is a smooth continuous function such that, from the value
of d(z;t), we can determine if x is interior, exterior or belongs to C(p;t). Let
suppose that : C(p;t) = {x € £2/d(x;t) = a} (i.e. the contour is represented by
level set a of function d). PDE (18) formulated by the use of level set becomes

)IVdI (19)

LIf they exist, minimizers {®;}; should be found in the space {®; : 2 x Rt —
R/|V®i| € L' (£2)}
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with div( =L o ) being the local curvature of level set a. Equation (19) was studied
for instance in [5]. Evolution of level sets of function d (and so evolution of
contour C(p;t) through level set a) from (19) is the level set formulation of mean
curvature motion. The level set formulation allows breaking and merging fronts
which is not possible from formulation (18). Since contour C(p;t) is represented
by level set a, we only need to update PDE (19) in a narrow band around a.
In this case, the level set formulation (19) comes from a reformulation of (18)
to track the motion of contours C(p;t). In our case, we directly define a length
functional FS over contours [I;’s by the use of level set @;’s. The associated
Euler-Lagrange equations lead to K PDE’s of the form

) vV,
—di
ot ol

) () (20)

Compared to PDE (19), we get from (20) a ”natural” narrow band from the
Dirac operator 4, whose width depends on the value of o (for @;’s defined as
signed distance in (6)).

4 Multiphase evolution scheme

Using Neumann conditions (884:: (z;t) = 0,Vz € 012), the Euler Lagrange equa-
tions associated to F, give the K following coupled PDE’s (i = 1...K)

% — 5 (B3) e (wo ;;%)2 — ydiv (%) Jr/\(i Ho(®;) — 1)} =0, (21)
i i ¢ i=1

with div denoting the divergence operator, and dz’v( ) being the (mean)

VQS
curvature of level set @; at point z. We note that the tel‘m ds | (®;) in (21) delimits
a ”natural” band in which the i*" PDE is non zero valued (for @;’s being signed
distance functions) : BY, = {z € £2/|®;(z;t)| < o}.

We embed (21) into a dynamical scheme, and we get a system of K coupled
equations (¢ = 1...K), where dt is the step in time :

HTL— @l —dt <6a(q§i) [ei—(uo ;QW)Q - %div<|§§|) + A(i Ha(®:) = l)D
1 K =1
(22)

Let remark that we initially set the @;’s to signed distance functions which is
commonly used for level set schemes. But as for (19), PDE’s (20) and (22) do
not maintain the the constraint [V®;| = 1, and we regularly need to regularize
the level sets @; to be sure they remain signed distance functions. This can be
done for instance by the use of PDE defined in [12].

5 Experimental results

We present some results for synthetic and real images. More experiments were
conducted in [10], including noisy data.
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Synthetic data presented on Fig. 2 are provided by the Research Group GDR
ISIS. This image contains three classes of predefined parameters p; and o;. We
initialized three @;’s whose zero level sets (ZLS’s) are circular. We show the
evolution of the ZLS’s, and the resulting classification is given with false colors.
We choose a small value for the +;’s in order to retrieve the non smooth boundary
of the class 3 object on the right handside of the data. Black pixels of false color
image are pixels of vacuum (unclassified pixels).

The image treated on Fig. 3 is a SPOT satellite image provided by the French
Space Agency CNES. This image contains four classes whose parameters p;
and o; were estimated in [1]. We show the evolution of the ZLS’s and the final
classification (false color image). For these data, we use an automatic method
for the initialization of the @;’s that we call ”seed initialization”. This method
consists of cutting the data image of ug into N windows W, ;—;.n of predefined
size. We compute the average m; of ug on each window W;. We then select the
index & such that k£ = argmin,;(m; — uj)g. And we initialize the corresponding
circular signed distance function @; on each W,. Windows are not overlapping
and each of them is supporting one and only one function @, therefore we avoid
overlapping of initial @;’s. The size of the windows is related to the smallest
details we expect to detect. The major advantages of this simple initialization
method are : it is automatic (only the size of the windows has to be fixed), it
accelerates the speed of convergence (the smaller the windows, the faster the
convergence), and it is less sensitive to noise (in the sense that we compute the
average my; of ug over each window before selecting the function ¢; whose mean
g is the closest one to my).

6 Conclusion

We have presented a variational model based on level set formulation for image
classification. The level set formulation is a way to represent regions and set
of interfaces with a continuous function defined over the whole support of the
image. The minimization of the functional leads to a set of coupled PDE’s which
are considered through a dynamical scheme. Each PDE is guiding a level set
function according to internal forces (length minimization), and external ones
(data term, no vacuum and no region overlapping). Results on both synthetic and
satellite images are given. In [10] we proposed a way of introducing an additional
restoration term in the model through the minimization of the functional:

Golu, By, ..., D Z%/ 3,)|VD; |dx+ (ZH _1)2dx
+Zel/ H,( U ) ~— " dz

+A{/ (Ru — u,) +/\2/ ® |Vu|
2 2 (23)
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/“ _’ class 3 , N
class 1 \ | class 2

ariginal data initial Z1L.S

initialization

iteration 500 iteration 2120

classification

Fig.2. ZLS evolution and classification for synthetic data containing three classes
(t1 = 100.0, pp = 128.0 and pz = 160.0). Parameters are : A = 5.0, dt = 0.2, and for
all 2 we have v = 0.1 and e; = 0.01. Final figure is the classification result with false
colors.
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SPOT data

iteration 300 classification

Fig. 3. SPOT satellite image containing 4 classes with seed initialization (on windows
of size 9x9) : We show three steps of the ZLS evolution. Final figure is the classification
result with false colors.
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with ¢ being a regularizing function and R being the impulse response of the
physical system. We alternatively minimize G, with respect to u (restoration)
and with respect to the @;’s (classification). First results are promising, and
we will study more precisely this model in future work. Further work will also
be conducted to deal with the estimation of the class parameters (unsupervised
classification). We also envisage to extend this model to multispectral data (with
applications to multiband satellite data and applications to color imaging).
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Abstract. The behaviour of critical points of Gaussian scale-space im-
ages is mainly described by their creation and annihilation. In existing
literature these events are determined in so-called canonical coordinates.
A description in a user-defined Cartesian coordinate system is stated, as
well as the results of a straightforward implementation. The location of a
catastrophe can be predicted with subpixel accuracy. An example of an
annihilation is given. Also an upper bound is derived for the area where
critical points can be created. Experimental data of an MR, a CT, and
an artificial noise image satisfy this result.

1 Introduction

One way to understand the structure of an image is to embed it in a one-
parameter family. In this way the image can be endowed with a topology. If a
scale-parametrised Gaussian filter is applied, the parameter can be regarded as
the “scale” or the “resolution” at which the image is observed. The resulting
structure has become known as linear Gaussian scale-space. In view of ample
literature on the subject we will henceforth assume familiarity with the basics
of Gaussian scale-space theory [4,8,9,14,23,24,26,29,30].

In their original accounts both Koenderink as well as Witkin proposed to in-
vestigate the “deep structure” of an image, i.e. structure at all levels of resolution
simultaneously. Encouraged by the results in specific image analysis applications
an increasing interest has recently emerged trying to establish a generic under-
pinning of deep structure. Results from this could serve as a common basis for
a diversity of multiresolution schemes. Such bottom-up approaches often rely
on catastrophe theory [1,6,25,27,28], which is in the context of the scale-space
paradigm now fairly well-established.

The application of catastrophe theory in Gaussian scale space has been
studied e.g. by Damon [3]—probably the most comprehensive account on the
subject—as well as by others [7,10,11,12,13,15,16,17,18,19,20,21,22, 23]

Closely related to the present article is the work by Florack and Kuijper [5],
introducing new theoretical tools. We will summarise some results in section 2
and give an experimental verification of the theory on both real and artificial

M. Nielsen et al. (Eds.): Scale-Space’99, LNCS 1682, pp. 318-329, 1999.
(© Springer-Verlag Berlin Heidelberg 1999
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data sets in section 3. This verification includes visualisation of several theoreti-
cal aspects applied on an MR, a CT, and an artificial noise image. Furthermore
we show that the location in scale space of a catastrophe point can be predicted
with subpixel accuracy. Of special interest are creations. We will show experi-
mentally and theoretically that the regions in the image in which they can occur
is typically small.

2 Theory

The behaviour of critical points as the (scale) parameter changes is described by
catastrophe theory. As the parameter changes continuously, the critical points
move along critical curves. If the determinant of the Hessian does not become
zero, these critical points are called Morse critical points. In a typical image
these points are extrema (minima and maxima) and saddles. The Morse lemma
states that the neighbourhood of a Morse critical point can essentially be de-
scribed by a second order polynomial. At isolated points on a critical curve the
determinant of the Hessian may become zero. These points are called non-Morse
points. Neighbourhoods of such points need a third or higher order polynomial,
as described by Thom’s theorem. If an image is slightly perturbed, the Morse
critical points may undergo a small displacement, but nothing happens to them
qualitatively. A non-Morse point however will change. In general it will split into
a number of Morse critical points. This event is called morsification. Thom’s the-
orem provides a list of elementary catastrophes with canonical formulas® for the
catastrophe germs and the perturbations. The Thom splitting lemma states that
there exist canonical coordinates in which these events can be described. These
coordinates however do in general not coincide with the user-defined coordinates,
but are used for notational convenience. In Gaussian scale space the only generic
events are annihilations and creations of a pair of Morse points: an extremum
and a saddle in the 2D case. All other events can be split into a combination
of one of these events and one ‘in which nothing happens’. See Damon [3] for a
proof. Canonical descriptions of these events are given by the following formulae:

P yst) = 2+ 6at & (y + 20) (1)

FO(a,y;t) 2 — 6a(y? + ) £ (4 + 20). (2)

Note that Eq. (1) and Eq. (2), describing annihilation and creation respectively,

satisfy the diffusion equation
ou
— = Au. 3
5 — Au (3)
Here A denotes the Laplacean operator. The reader can easily verify that the the

form f*(x,y;t) corresponds to an annihilation via the critical path (/—2t, 0, ¢),

! Notation due to Gilmore [6]. Also the terminology normal forms is used in literature,
e.g. by Poston and Steward [25].
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t < 0 at the origin, whereas f°(z,y;t) corresponds to a creation at the origin
via the critical path (v/+2¢,0,¢) ¢ > 0.

In general the user-defined coordinates will not equal the canonical coordi-
nates. Therefore it would be helpful to have a so-called covariant formalism, in
which results are stated in an arbitrary coordinate system. Then the first order
approximation of a non-Morse point is given by the linear system

L) ladn] 8

in which the coefficients are determined by the first order derivatives of the
image’s gradient g and Hessian determinant det H, evaluated at the point of
expansion near the critical point of interest (xg, o), as follows:

H=Vg,w=0,g,z2=VdetH,c=09,detH. (5)

See Florack and Kuijper [5] for more details. In 2D images, where x = (z, y),
this becomes

Low L
H _ xx zy:| ; 6
|:Lzy Lyy ( )

AL,
- (3]

LyyyLaw + LyyLogy — 2Ly Liayy
and

¢ = LyywALyy — 2Ly ALy + Lyy ALy, , (9)

where Eq. (3) has been used. Apparently the first order scheme requires spatial
derivatives up to fourth order. These derivatives are obtained at any scale by
linear filtering:

(2, y:0) et et I"H(a —x,y —y;0
Wyn) = (=™ /u(ny/) (ax/m 5y )dx/dy/ ,

where u(z, y) is the input image and ¢(z,y; o) a normalised Gaussian of scale o.
It has been shown by Blom [2] that we can take derivatives up to fourth order
without problems with respect to the results, provided scale is somewhat larger
than pixelscale. It is important to note that Egs. (4-9) hold in any Cartesian
coordinate system. This property of form invariance is known as covariance.

At Morse critical points we must restrict ourselves to Hx + wt = —g, i.e.
the first row of Eq. 4. The solution is easily found to be
x = —H"™g — H"Vwt. (10)

If we define ¢ < det H7, Eq. (10) becomes x = —H"Vg — Hwr, where the
matrix H is the transposed cofactor matrix, defined by HH = det HI. In 2D H

reads
~ def | Ly, —L
H= vy zy} . 11)
|:_Lzy Lzz (
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Note that H exists even if H is singular. At critical points the scale-space velocity
is defined by

w ' _Hw. (12)
Thus instead of tracing the two branches of the critical curve with Lindeberg’s
drift velocity of critical points [22,23], v.= —H™w (if defined), it is now

parametrised by a continuous function that is non-degenerate at the catastrophe
point. Note that the scale-space velocity W has the direction of v at extrema, is
opposite at saddles, and remains well-defined even if v does not exist.

At non-Morse critical points the determinant of H becomes zero and we need
to invert the complete linear system, Eq. (4). If we define

def | H W
M|:ZTC:|7 (13)

the solution of Eq. (4) becomes

X| _ NAinv g

M =M {detH} : (14)
In general this inverse matrix exists even if the Hessian is singular. Florack
and Kuijper [5] have proven that at annihilations det M < 0 and at creations
det M > 0, where

det M = cdetH + z'w. (15)

In a full (2 + 1)D scale-space neighbourhood of a catastrophe the differential
invariant det M reads

detM =
(Laayy + Lyyyyl Low + [Lavoe + Loayyl Lyy — 2[Laswy + Layyyl Laoy) (Law Lyy — Lazcy) +
—{Lee[Lazy + Lyyyl[Lyyy Lo + LyyLawy — 2Lay Layy] +
+Lyy[Liozz + Layy][Loza Lyy + Loz Layy — 2LayLaay] +
—Lay([Loze + Loyyl[Lyyy Low 4 LyyLowy — 200y Layy] +
[Lowy + Lyyyl[Lowe Lyy + Lo Ly — 2Lay Laay]) }-

At catastrophes det H = 0, so Eq. (15) reduces to
det M = zw, (16)

which is the innerproduct between the spatial derivative of det H, Eq. (5), and
the scale-space velocity W, Eq. (12). It can be seen that only spatial derivatives
up to third order are required at the catastrophe points. In the next section we
will apply these results on several images.

3 Experimental results

In our experiments we used a 64 x 64 subimage of a 256 x 256 MR scan (Fig. 1a
and b), CT scan (Fig. 1c and d), and a 64 x 64 artificial image with Gaussian
noise of mean zero and standard deviation ¢ = 10, also denoted as N(0,10)
(Fig. le).
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Fig.1. a) Original 256 x 256 pixel MR image. b) 64 x 64 pixel subimage of a). c)
original 256 x 256 pixel CT image. d) 64 x 64 pixel subimage of ¢). €) 64 x 64 artificial
Gaussian N(0,10) noise image.

3.1 Visualisation of z7 and W

As an example of the vectors W (see Eq. (12) ) and 27 (see Eq. (5)) we selected
two critical points of the MR image (Fig. 1b) at scale o = 2.46. This image with
its critical points is shown in Fig. 2a. Extrema (saddle points) are visualised by
the white (black) dots. At the upper middle part of this image a critical isophote
generated by a saddle and enclosing two extrema is shown (see also Fig. 2b).
At a larger scale the saddle point will annihilate with the upper one of these
extrema. At these two points we have calculated the direction and magnitude of
the vectors W and z7. The vectors are shown on these points at two successive
scales o = 2.46 (Fig. 2¢) and o = 2.83 (Fig. 2d). Indeed the velocity (given by W)
of the extremum (dark arrow at the white dot) is in the direction of the saddle,
and thus in the direction of the peint of annihilation. The velocity vector at the
saddle has the same direction, as the result of the parametrisation by Eq. (12))

Furthermore since the point where the annihilation takes place (at det H = 0)
is between the two critical points, the vector zT, which is the normalvector
(recall IZq.(5)) Lo the zero-crossing of del H, directs from Lhe saddle Lowards Lhe
extremum both at the saddle and the extremum.

Finally it can be seen that the vectors of z7 and W at the critical points have
an angle of more than . Since det M is the innerproduct of these vectors at a
catastrophe (see FEq. (16)), this leads to a negative sign of det M, indicating that
the two critical points approach each other and disappear eventually.

3.2 Location of the catastrophe

Although the location of the critical points at the image can easily be caleulated
by using the zerocrossings of the derivatives, the subpixel position of the catas-
trophe point in scale space requires invertsion of the complete linear system,
Eq. (4), yielding Eq. (14). As an example we took the same two critical points
as in the previous section. The resulting vectors of 4 successive scales for the
MR subimage (Fig. 2¢) are shown in Fig. 3. At each pixel the projection of the
vector on the spatial plane is shown. A bright (dark) arrow denotes a positive
(negative) scale-coordinate. The approximate location of the catastrophe can be
found with subpixel precision by averaging the arrows as shown in Table 1. The
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Fig. 2. a) Critical points (extrema white, saddles black) of Fig. 1b at scale 0 — 2.46.
AL the field of interest the critical isophote through a saddle is shown; b) subimage of
a, showing the field of interest more clearly. The saddle is about to annihilate with the
upper extremuny, ¢) Subimage of the two annihilating eritical points and the vectors
of W (dark) and 27 (bright) at scale ¢ = 2.46; d) Same, at scale o = 2.83.

Fig.3. Visualisation of liq. (14) of the vector (x,y); a bright (dark) arrow signifies
a positive (negative) value of the t-component. The black dot is located at the mean
value of the inner 15 arrows, the ellipse shows the standard deviation (see Table 1).
First row: a: scale o — 2.34; b: scale 0 — 2.46; c¢: scale o — 2.59; d: scale o0 — 2.72.
Second row: e: scale 0 = 2.86; f: scale 0 = 3.00; g: scale o = 3.16, a catastrophe has
occurred; h: scale o — 3.32.
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|sca el x-coordinate y-coordinate t-coordinate estimated scale
2.34 10.481197 £ 1.27275 |—0.111758 £ 6.54458(0.630053 =+ 3.7568 2.59501 &= 1.4477
2.46 10.869898 + 0.401954(1.83346 =+ 1.26546 1.58998 + 0.663776 3.03808 £ 0.218489
2.59 10.893727 &£ 0.340422(1.72886 =+ 0.79602 1.3391 £+ 0.447622 3.06008 £ 0.146278
2.7210.92611 £ 0.286782 [1.73222 4= 0.580028 |1.10524 + 0.434127 3.09831 £ 0.140117
2.86 10.95843 £ 0.250132 [1.75858 == 0.429409 [0.824525 & 0.483923  [3.13293 &£ 0.154464
3.00 [0.991123 &£ 0.26873 |1.79548 £ 0.504445 |0.466264 £ 0.597825  [3.15556 &= 0.189451
3.16 [1.02368 £ 0.380863 |1.83618 % 0.921176 |-0.00573945 &+ 0.792309|3.15638 & 0.251019
3.32[1.05174 £ 0.603366 |1.86346 = 1.67306  |-0.642702 £ 1.1066 3.12054 £ 0.354618

Table 1. Estimation of the location of the catastrophe, as an average of the 15 arrows
in the rectangle spanned by the two critical points of Fig. 3a. The origin in the (z,y)-
plane is fixed for all figures at the middle of the saddle (black square) of Fig. 3a. The
average value of the ¢-direction is positive below catastrophe scale and negative above it.

black dot in Fig. 3 is located at the estimated position of the catastrophe, the
ellipse shows the standard deviation of the estimation.

Below the catastrophe-scale the location is accurate whereas at a scale above
it (at ¢ = 3.32, see Fig. 3h) the estimated location turns out to be more un-
certain. The estimation of the t-coordinate is positive below catastrophe-scale
and negative above, as expected. The standard deviation is largely influenced
by the cells that are distant from the critical curve, which also can be seen
in Fig 3h. Since the relation between scale ¢ and coordinate ¢ is given by
t = %02, we can easily calculate the estimated scale ooy = V02 + 2.4, With
error 00 = ataest Olegle = 5tcalc/aest~

By slightly increasing scales the catastrophe is experimentally found between
the scales 3.050 and 3.053, which is covered by all estimated scales in Table 1.
Since the estimation is a linear approximation of the top of a curve a small
overestimation (here: a tenth of a pixel) is expected and indeed found in this
case. In summary the location of the catastrophe point can be pinched down by
linear estimation with subpixel precision.

3.3 Fraction of the area where det M > 0

Since creations can only occur at det M > 0, we calculated the number of pixels
at the three different images (Figs. la, ¢ and e) where this invariant is positive.
If we for the moment assume that all elements of the matrix M are independent
of each other, the distribution of catastrophes is in some sense random in the
image, just as the distribution of extrema and saddle points, discriminated by
the areas det H > 0 and det H < 0, respectively. However, since annihilations are
supposed to occur more often and the derivatives up to third and fourth order
are not independent since they have to satisfy the heat equation, we expect the
area where det M > 0 to be small. In the following figures we show this fraction
as a percentage of the total area of the image.
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For the MR image we see a relative area of maximal 0.12 (Fig. 4, top-left).
Furthermore the number of critical points decreases logarithmically with scale
(Fig. 4, top-right). The slope is —1.76 4= .01. An a priori estimation value is -2,
see e.g. Ilorack’s monograph [4].

MR image MR image
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Fig. 4. Results of calculations; scales vary from /%0 to 690/50; First row: MR image;

Second row: CT image; Third row: artificial noise image. First column: Fraction of
detM > 0, ranging from 0.04 to 0.12 for the MR and CT image, and less for the
artificial noise image;  Second column: Logarithm of the number of critical points,
with slopes —1.76 .01, —1.74 & .02, and —1.84 &£ .01, respectively;

In Fig. 5 the image of the sign of det M of the MR-subimage (Fig. 1b) is
shown at four successive scales. It appears that the locations of the image where
det M is positive are relatively small isolated areas.

For the CT image we see more or less the same results (Fig. 4, second row):
the fraction where det M is positive is a bit higher at small scales (o < 2.22,
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Fig.5. In white the area where detIM > 0 a: at scale o = 1.57, corresponding to the
value 22.5 on the horizontal axis of Fig. 4 b at scale ¢ = 2.46, (value 45) c: at scale
o — 3.866, (value 67.5) d: at scale o — 6.05, {value 90)

the value 40 at the horizontal axis) and a bit smaller at high scales. The slope
of graph of the logarithm of the number of critical points at increasing scale is
found to be —1.744+ 0.02.

At the noise image the relative area where det M > 0 is significantly smaller
than at the MR and CT images. This might indicate that creations require some
global structure (like a ridge), that is absent in a noise image. The logarithm of
the number of extrema has a slope of —1.84 & .01 (Fig. 4, bottom-right), which
is closer to the expected value -2 than the slope at the MR and CT image. This
might also be caused by the lack of structure in the noise image.

3.4 Estimation of the area where det M > 0

In the previcus section the fraction of the area where detM > 0 was found to
be ranging from 0.04 to 0.12. A mathematical survey on the sign of det M might
show the expectation of creations. At non-Morse points this invariant can be
simplified considerably. If the Hessian becomes singular, the rows (or, equiva-
lently the cclumns) are dependent of each other, 4.e. (L, Lay) = A{Lay, Lyy)-
Therefore? F.,, — X2 L., and Ly, = AL, . Soin general, the Hessian at a catas-
trophe can be described by

A% = 1 =X
B [ i [ 42 )

The second order Taylor expansicn of the image now reads %/\2 Loy 224X Ly vyt
Ly »?2 which reduces to %Lyy {Ar+ y)g. The parameter A depends on the rota-
ticn between the axes of the real and the cancnical coordinates. If these coin-
cide we have A = 0, Le. both L., and L., are zero, see Eqgs.(1) and (2). With
Eqs.(7-8}, (12}, (16-17) the explicit form of det M at a catastrophe in 2D reduces
significantly to

det M = Lg,y(me—3/\me?’,+3/\2ny&,—)\3Lyyy)(—me+/\Lmy—Lmyy+)\L?yyg

18

? The choice of Ly as leading term is of minor importance, we could just as well have
chosen p{Lew , Lay) = (Luy , Loy ), leading to Ly = g2 Lo, and L., = ptl.., which
would be particularly prudent if L, is close to zero.
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Equation (18) shows that the sign of det M only depends on third order deriva-
tives and the orientation of the critical curve, as determined by A. If we assume
that all third order derivatives are independent, the zerocrossings of equation
(18) can be regarded as the union of two linear planes in the 4-dimensional
(Laaws Lawys Layy, Lyyy) space. The planes divide this space into 4 subspaces
where the determinant is either positive or negative, whereas any point on the
planes leads to detM = 0. The normal vectors to these planes are given by
n1 = (1, =3X,3)2, =X3) and ny = (=1, A, —1,A). The factor LZ:y does not change
the sign of the determinant. By definition we then have

ni -ng - 1+6)\2+)\4
7ol - [|7ell V(24 222)(1 + 92 + 9XT + XF)

cos¢p = (19)

This angle is invariant with respect to the transformations A - —X and A — %
Fig. 6a shows the cosine of the angle for different values of A.
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Fig.6. Left: Cosine of the angle of planes given by Eq. (19). Right: Fraction of the
AD (Laax, Laay, Layy, Lyyy)-space where det M is smaller than zero.

Lemma 1. The fraction of the space (of third order derivalives) o where cre-
ations can occur is bounded by %arccos(%\/g) <p< %.

Proof. The fraction of the space where annihilations can occur is given by the
fraction of the image where det Ml < 0 and det H = 0. Since Eq. (19) is negative
definite and ¢ € [0, «], the fraction % gives the fraction of the space where
annihilations can occur. This fraction varies from % at both A=0and A — oo, to
%arccos(—%\/g) ~~ 0.852... at A = 1, which follow directly from differentiation,
see also Fig. 6b. Equivalently, creations can occur in at most % of all possible
tuples (Layga, Laay, L L

Yy ?J?J?J)

The usual generic events, e.g. discussed by Damon [3] and others [10] correspond
to the case A = 0. In the canonical coordinates the equations (1) and (2) are
found. Then Eq. (18) reduces to det M = _L.Zy Loaw (Daax + Layy) and it can
easily be seen that the fraction of the space is 3

. . 1 . ol
. . 1> %-€. in only 7 of the possible
values of L., and L.y, a creation can occur.
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4 Conclusion and Discussion

We have used an operational scheme to characterise critical points in scale-space.
The characteristic local property of a critical point is determined by its Hessian
signature (saddle or extremum). Pairs of critical points with opposite signature
can be annihilated or created. Close to such catastrophes, empirically observed
properties of the critical points are consistent with the presented theory. The
location of catastrophes in scale space can be found with subpixel accuracy.
The approximate location of an annihilation and the idea of scale space velocity
have been visualised. In general, more annihilations than creations are observed,
probably because creations need a special structure of the neighbourhood. This
is also indicated by the results of the noise image. We have shown that the area
where creations can occur, determined by the third order derivatives, is at most
%. In our experiments this fraction is even smaller than approximately 0.125.. ..
It remains to be investigated whether the relative volumes of det M > 0 and
det M < 0 is indicative of a similar ratio between creations and annihilations. In
future work we will therefore examine the correlation between the distributions
of the various derivatives in the definition of det M. Blom [2] has given a general
framework, which might give a more precise explanation of the small number of
creations.
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Abstract. Since the work by Osher and Sethian on level-sets algorithms
for numerical shape evolutions, this technique has been used for a large
number of applications in numerous fields. In medical imaging, this nu-
merical technique has been successfully used for example in segmentation
and cortex unfolding algorithms. The migration from a Lagrangian im-
plementation to an Eulerian one via implicit representations or level-sets
brought some of the main advantages of the technique, mainly, topology
independence and stability. This migration means also that the evolution
is parametrization free, and therefore we do not know exactly how each
part of the shape is deforming, and the point-wise correspondence is lost.
In this note we present a technique to numerically track regions on sur-
faces that are being deformed using the level-sets method. The basic idea
is to represent the region of interest as the intersection of two implicit
surfaces, and then track its deformation from the deformation of these
surfaces. This technique then solves one of the main shortcomings of the
very useful level-sets approach. Applications include lesion localization
in medical images, region tracking in functional MRI visualization, and
geometric surface mapping.

Key words: Level-sets, region tracking and correspondence, medical imag-
ing, segmentation, visualization, shape deformation.

1 Introduction

The use of level-sets for the numerical implementations of n-dimensional® shape
deformations became extremely popular following the seminal work of Osher and
Sethian [17] (see for example [14,18] for some of the applications of this tech-
nique and a long list of references). In medical imaging, the technique has been
successfully used for example for 2D and 3D segmentation [5,10,12,15,20,21].

* A journal version of this paper appears in the May 1999 issue of IEEE Trans. Medical
Imaging.
! Tn this note we consider 1 > 3.

M. Nielsen et al. (Eds.): Scale-Space’99, LNCS 1682, pp. 330-338, 1999.
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The basic idea is to represent the deformation of an n-dimensional closed sur-
face S as the deformation of an n 4+ 1-dimensional function ¢. The surface is
represented in an implicit form in @, for example, via its zero level-set. For-
mally, let’s represent the initial surface S(0) as the zero level-set of @, ie.,
S(0)={X e R : #(X,0) = 0}. If the surface is deforming according to

oS(t)
—— = (N5, 1
5 BN s (1)
where ANs is the unit normal to the surface, then this deformation is represented

as the zero level-set of &(X,t) : IR" x [0,7) — IR deforming according to

AB(X, 1)

S = B0 || V(X1 |, (2)

where 8(X,t) is computed on the level-sets of &(X,¢). The formal analysis of
this algorithm can be found for example in [6,7].

The basic idea behind this technique is that we migrate from a Lagrangian
implementation (particles on the surface) to an Eulerian one, i.e., a fix Cartesian
coordinate system. This allows for example to automatically follow changes in
the topology of the deforming surface S, since the topology of the function @ is
fixed. See the mentioned references for more details on the level-sets technique.

In a number of applications, it is important not just to know how the whole
surface deforms, but also how some of its regions do. Since the parametrization
is missing, this is not possible in a straightforward level-sets approach. This
problem is related to the aperture problem in optical flow computation, and it is
also the reason why the level-sets approach can only deal with parametrization
independent flows that do not contain tangential velocities. Although tangential
velocities do not affect the geometry of the deforming shape, they do affect the
‘point correspondence’ in the deformation. For example, with a straight level-
sets approach, it is not possible to determine where a given point Xy € S(0)
is at certain time ¢. One way to solve this problem is to track isolated points
with a set of ODE’s, and this was done for example in grid generation and
surface flattening; see [9,18]. This is a possible solution if we are just interested
in tracking a number of isolated points. If we want to track regions for example,
then using ‘particles’ brings us back to a ‘Lagrangian formulation’ and some of
the problems that actually motivated the level-sets approach. For example, what
happens if the region splits during the deformation? What happens if the region
of interest is represented by particles that start to come too close together in
some parts of the region and too far from each other in others?

In this note we propose an alternative solution to the problem of region
tracking on surface deformations implemented via level-sets.? The basic idea is
to represent the boundary of the region of interest R € S as the intersection

2 A different level-set approach for intrinsic motions of generic 3D curves, together
with very deep and elegant theoretical results, is introduced in [1]. This approach
is difficult to implement numerically, and in some cases not fully appropriate for
numerical 3D curve evolution [16]. A variation of this technique, with very good
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of the given surface S and an auxiliary surface S, both of them given as zero
level-sets of n + 1-dimensional functions @ and & Iespectlvely3 The tracking of
the region R is given by tracking the intersection of these two surfaces, that is,
by the intersection of the level-sets of @ and @. In the rest of this note we give
details on the technique and present examples.

Note that although we use the proposed technique to track regions of interest
on deforming surfaces, with the region deformation dictated by the surface defor-
mation, the same general approach here presented of simultaneously deforming
n hypersurfaces (n > 2) and looking at the intersection of their level-sets can
be used for the numerical implementation of generic geometric deformations of
curves and surfaces of high co-dimension.*

2 The algorithm

Assume the deformation of the surface S, given by (1), is implemented using
the level-sets algorithm, i.e., Equation (2). Let R € S be a region we want
to track during this deformation, and 0R its boundary. Define a new function
$(X,0) : IR — IR (a distance function for example), such that the intersection
of its zero level-set S with S defines R and then R. In other words,

IR(0) :=S(0)NS(0) = {X € R" : &(X,0) = d(X,0) = 0}.

The tracking of R is done by simultaneously deforming ¢ and &. The auxiliary
function ¢ deforms according to

XD x| VHK. 0], Q

and then S deforms according to

aS NS 1)

We have then to find the velocity B as a function of 3. In order to track the
region of interest, 9 must have exactly the same geometric velocity both in
(2) and (3). The velocity in (2) (or (1)) is given by the problem in hand, and is

experimental results, is introduced in [11]. The Ambrosio-Soner approach and its
variations deal with intrinsic curve-velocities and do not address the surface-velocity
projection needed for the tracking in this paper.

The use of multiple level-set functions was used in the past for problems like motion
of junctions [13]. Both the problem and its solution are different from the ones in
this paper.

After this paper was accepted for publication, we became aware of recent work by
Osher and colleagues using this general approach mainly to deform curves in 3D and
curves on surfaces [4]. This work also does not deal with the projection of velocities
as needed for our application.
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BN's. Therefore, the velocity in (4) will be the projection of this velocity into
the normal direction A/ ¢ (recall that the tangential component of the velocity
does not affect the geometry of the flow). That is, for (at least) IR,

B=p0Ns-Ng.

Outside of the region corresponding to R, the velocity B can be any function
that connects smoothly with the values in AR5

This technique, for the moment, requires to find the intersection of the zero-
level sets of & and @ at every time step, in order to compute B To avoid this,
we choose a particular extension of B outside of IR, and simple define B as the
projection of BN s for all the values of X in the domain of ¢ and P.5 Therefore,
the auxiliary level-sets flow is given by

E(th)(B(XJ) Ve(X. 1) Vo(X,t) )

VX, ) [ || Vé(X,1) |
| VO(X,1) |,

and the region of interest R(t) is given by the portion of the zero level-sets that
belongs to &(X,t) N&(X,1):

OR(t) ={X e R": d(X,t) = (X, t) = 0}. (5)

For a number of velocities 3, short term existence of the solutions to the level-
sets flow for @ (in the viscosity framework) can be obtained from the results of
Evans and Spruck [8].

This formulation gives the basic region tracking algorithm. In the next sec-
tion, we present some examples.

3 Examples and comments

We now present examples of the proposed technique. We should note that: (a)
The numerical implementation of both the flows for @ and & follow the ordinary
level-sets implementations developed by Osher and Sethian [17]; (b) Recently in-
troduced fast techniques like narrow bands, fast-marching [18], or local methods
[14], can also be used with the technique here proposed to evolve each one of the
surfaces; (c) In the examples below, we compute a zero-order type of intersection
between the implicit surfaces, meaning that we consider part of the intersection
the full vortex where both surfaces go through (giving a jagged boundary). More

5 To avoid the creation of spurious intersections during the deformation of ¢ and
Qﬁ, these functions can be re-initialized every few steps, as frequently done in the
level-sets approach.

% Note that although S and S do not occupy the same regions in the n dimensional
space, their corresponding embedding functions ¢ and & do have the same domain,
making this velocity extension straightforward.
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accurate intersections can be easily computed using sub-divisions as in march-
ing cubes. Recapping, the same numerical implementations used for the classical
level-sets approaches are used to implement the deformation of QB, and finding
the intersection is straightforward from algorithms like marching cubes.

Four examples are given in Figure 1 and Figure 2, one per column. In each
example, the first figure on the top shows the original surface with the marked
regions to be tracked (brighter regions), followed by three different time steps of
the geometric deformation and region tracking.

Figure 1 shows two toy examples. We track the painted regions on the sur-
faces while they are deforming with a morphing type velocity [2,3]. (3(X,¢) is
simply the difference between the current surface ©(X,¢) and a desired goal sur-
face ¢(X, 0), two separate surfaces and two merged balls respectively, thereby
morphing the initial surface toward the desired one [3].) Note how the region
of interest changes topology (splits on the left example and merges on the next
one).

Next, Figure 2 presents one of the main applications of this technique. Both
these examples first show, on the top, a portion of the human cortex (white-
matter /gray-matter boundary), obtained from MRI and segmented with the
technique described in [19]. In order to visualize brain activities recorder via
functional MRI in one of the non-visible folds (sulci), it is necessary to ‘un-
fold’ the surface, while tracking the color-coded regions (surface unfolding or
flattening has a number of applications in 3D medical imaging beyond fMRI
visualization; see also [9]). In the first of these two examples (left column), the
different gray values simply indicate sign of Gaussian curvature on the original
surface (roughly indicating the sulci), while two arbitrary regions are marked in
the last example (one of them with a big portion hidden inside the fold). We

track each one of the colored regions with the technique described in this note.

In the first column, B(X,t) = Wminﬂmh |k2]), where 1 and ko

are the principal curvatures. In the second column, we use a morphing type ve-
locity like before [2,3] (in this case, the desired destination shape is a convex
surface). See [9] for additional possible unfolding velocities, including volume
and area preserving ones. The colors on the deforming surfaces then indicate,
respectively, the sign of the Gaussian curvature and the two marked regions in
the original surfaces. Note how the surface is unfolded, hidden regions are made
visible, and the tracking of the colored coded regions allow to find the matching
places in the original 3D surface representing the cortex. This also allows for
example to quantify, per each single tracked region, possible area/length dis-
tortions introduced by the flattening process. In order to track all the marked
regions simultaneously in these two examples, we select the zero level-set of P
to intersect the zero level-set of @ at all these regions. If we have regions with
more than two color codes to track, as will frequently happen in fMRI, we just
use one auxiliary function P per color (region).

The same technique can be applied to visualize lesions that occur on the
‘hidden’ parts of the cortex. After unfolding, the regions become visible, and the
region tracking allows to find their position in the original surface. When using
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Fig. 1. Two stmple evamples, one per colummn, of the algorithm introduced in this note
(brighter regions are the ones being tracked), demonstrating possible topological changes
on the tracked region.
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Fig.2. Unfolding the cortex, and tracking the marked vegions, with a curvature based
flow and a 3D morphing one, left and right columns respectively.
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level-sets techniques to deform two given shapes, one toward the other (a 3D
cortex to a canonical cortex for example), this technique can be used to find
the region-to-region correspondence. This technique then solves one of the basic
shortcomings of the very useful level-sets approach.
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Abstract. We explain how a discrete grey level image can be numer-
ically translated into a completely pixel independent geometric struc-
ture made of oriented curves with grey levels attached to them. For
that purpose, we prove that the Affine Morphological Scale Space of
an image can be geometrically computed using a level set decomposi-
tion/reconstruction and a well adapted curve evolution scheme. Such an
algorithm appears to be much more accurate than classical pixel-based
ones, and allows continuous deformations of the original image.

1 Introduction

If a mathematician had to examine recent evolutions of image analysis, he would
certainly notice a growing interest for geometric techniques, relying on the com-
putation of differential operators like orientation, curvature, ... or on the analysis
of more global objects like level curves. Of course Fourier or wavelet analysis are
still very efficient for image compression for example, but in order to analyze
larger scales geometric approaches seem to be more relevant. At large scales
a real-world image can hardly be considered —like a sound signal- as a super-
imposition of waves (or wavelets), since the main formation process relies on
occlusion, which is highly nonlinear. This is not without some mathematical
consequences : in this context, images are more likely to be represented in a
geometrical space like BV(R?), the space of functions on R? with bounded vari-
ation, than in the more classical L?(R?) space. From a practical point of view,
the question of the numerical geometric representation of an image certainly
deserves to be investigated, since images have been described so far by arrays of
numbers (or wavelet/DCT coefficients for compressed images). It is likely that
in the future alternative geometric descriptions will be commonly used, relying
on some level-set/texture decomposition like the one proposed in [8].

In this paper, we show how it is possible to compute numerically a completely

geometric and multiscale representation of an image, for which the notion of pixel

M. Nielsen et al. (Eds.): Scale-Space’99, LNCS 1682, pp. 339-350, 1999.
(© Springer-Verlag Berlin Heidelberg 1999
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disappears (though it can be recovered). Our algorithm is a fully geometrical im-
plementation of the so-called Affine Morphological Scale Space (AMSS, see [1]),
described in Sect. 2. Due to its contrast invariance, this scale space is equivalent
to the affine curve shortening process described in [15], for which a fully geomet-
rical algorithm has been recently proposed in [11]. A simplified version of this
scheme, described in Sect. 3, allows to process all level curves of an image with a
high precision in a couple of minutes. In association with level set decomposition
and reconstruction algorithms, described in Sect. 4, we thus compute the AMSS
of an image with much more accuracy than classical scalar schemes, as is shown
in Sect. 5. Another interest of this method is that it yields a contrast-invariant
multiscale geometric representation of the image that provides a framework for
geometry based analyses and processing. We illustrate this in Sect. 6 by applying
our algorithm to image deformation.

2 The Affine Morphological Scale Space

A natural way of extracting the geometry of an image consists in the level set de-
composition inherited from Mathematical Morphology. Given an image w viewed
as an intensity map from R? to R, one can define the (upper) level sets of u by

xalw) = {x € R u(x) > A}.

This collection of planar sets is equivalent to the function w itself since one has
the reconstruction formula

u(x) = supfA; x € xa}.

The main interest of this representation is its invariance under contrast changes :
if g is an increasing map from R to R (i.e. a contrast change), then one has

Xg(n (9(w)) = xa(w).

Hence, the collection of all level sets of an image does not depend a priori on
the global illumination conditions of this image, and is thus an interesting geo-
metrical representation.

Now, because an image generally contains details of different sizes, the notion
of scale-space has been introduced. It consists in representing an original image
uo(-) by a collection of images (u(-,t))s>0 which are simplified versions of ug
such that w(-,0) = wug(-) and, with increasing scale ¢, the w(.,t)’s represent
more and more coarser versions of wg. There are plenty of possibilities for such
representations, but it is possible to reduce them by demanding strong invariance
properties from the operator T} which transforms wg(-) into w(-,¢). In particular,
it is possible to enforce the level set decomposition evoked above to be compatible
with the scale-space representation, in the sense that the A-level set of u(-,¢) only
depends on the A-level set of ug. If one asks, in addition, for other properties
like regularity, semi-group structure, and Euclidean Invariance (i.e. translation
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and rotation invariance), then according to [1] one reduces the possibilities to
the choice of a nondecreasing continuous function I’ governing the scale space
given by

ou

Du
— = |Du| F | di 1
o — 1Dl P (i), 0
where Du represents the spatial gradient of «. In this paper we have chosen the
particular case of the Affine Morphological Scale Space, given by F(s) = si/3,
for mainly two reasons :

First it yields an interesting additional invariance property called Affine In-
variance :

Ti(ugo ¢) = (Thuo) o p for any ¢(x) = Ax +b, AeSLR?), beR?. (2)

This property allows to perform affine-invariant shape recognition under occlu-
sions (see [6]) and to compute local affine-invariant features like affine curvature
for example.

Second, there exists a fully consistent geometric scheme (see [11]) for solving
the level curve evolution induced by the AMSS,

o

5 k3N, (3)

Here C is any point of a level curve, s the local curvature and N the normal
vector at this point. In particular, this scheme guarantees that the inclusion of
any two sets is preserved by the evolution (inclusion principle). In the simplified
version described in Sect. 3, it is fast (linear complexity) and robust, as only
areas and middle points are computed.

3 A Fast Geometric Scheme

The numerical implementation of the affine scale space of a curve given by (3) can
be realized in several ways. For our purpose, an ideal algorithm should satisfy,
up to a given computer precision, the following properties :

P1: preserve inclusion, which is necessary for level set reconstruction;

P2: be affine invariant, since the scale-space is;

P3: have linear complexity, so that all level curves of an image can be processed
with a high precision in a reasonable time.

Of course, algorithms based on scalar formulations (see [16]) are not relevant
here, since our goal is precisely to get rid of pixel based representations. In any
case, such algorithms satisfy neither P1 nor P2, and are not computationally
efficient (in terms of time and memory) if an accurate precision is needed (e.g.
100 points per original pixel). The purpose of this paper is to present a scheme



A4 i oonepalar pamd L. Blosdsan

Fig. 1. oonlline srosbon (- - -] o poconves. o clossl caeae {—)

oppesile b Sothian’s fonmulstion!, since we want o Bolve a sealar {eontrast-
fvirinnl | evedistbon equaticn with o geomede algorithn We oamimd either ise
local point evohition sdwines (paive oses or more refimed ones like o 10)] sinee
they dee net oeaaritesn {i‘n‘::uuu-r they el omon besl estimation of tha oo
vabure Lhat is nod direotty commected with w global proporty like inelision |, wml
for the same peseson P2 wonld be uneestain {and might depend on the discretizs
tien], This is b resson why we starled from the goomistrie sohenw deseribod i
[11], for it sntiafies ') and P2 This schomo s bised ona simple opeeator enlied
affire eroeden, which sa dofineg nos

Caongidor & {non peeessanily closed ) conves paramoborized gnve O 5 a, b —
B2 pnal on ares prrsimeder o Dellne o oo mel of © as Lie region wit)) area o
{hal i enclosed by & segioesl [ s 10 sy )] anel U conospaonding piece of enrve
Ctleg#el) Then, the e-slfing eroseon of €, wrilben EL{C7), can be defined e the
segronibaide boundary of Uhae gmion of Lhese e-eliotd selg (see Figs |) Withaut
going ko debails [wlielh moghd b fovd i (D] aead [82]D, we beiely peeall (o
piiain resnilis alsal Ui plfie cosion

First, the ovoked boomadary b= cssentinfly oblained by Che middle points ol
Ul segramaenste |00 W0 (ws )| elilining Wi o-chowd seds (it s =g hisls paris”
ihat do et e in geneesl, aod plies e endbsegments 1D Che ourve b pol
rhosed )

Seeownd, the bnfliitesimnal itoraticn of sisch an apeador asynipdedically vields
the stfine sesle space ol the mitial urve €5 (with hxed ondpointe il € & ned
o), one Dies

R P eayt g
. L%l { el I.I:-,f}} us i b, o —s 0 pndl E(:ﬂ) i — 0

where €', £) s defied from € by (3]

Tl geliwsre preseated in (1] celies onw miwe geesral definition of W stfine
eroson) hal slso applies to poo-coives ourves, Compriie] Go e oogives ose,
Pl bbb mie g comples B Dhisnpi bt of eorve iilarsectiong
ey b psehead, which v caelil plogranming ad cavses o coinpdesiiy

" e nidn interesl of sesbar Formulations ie that Uy naturally bodl wplogicil
chimriges of e bl solbe |00 s Depwevii e pivasal an |2 dlisib foosoeh s
isermr bor i e mEltipe senle spoe,



Geometric Multiscale Representation of Numerical Images 343

of the algorithm to become quadratic in the number of vertices of the polygonal
curve to be processed. This is the reason why, as suggested in [11], we have
chosen an alternative scheme based on the separate treatment of each convex
part. Given a possibly non-convex and non-necessarily closed polygonal curve,
we iterate the following three-step process :

1. Break the curve into convex components (by “cutting” inflection segments
at their middle point), and compute the minimum value ,,;, of the area of
any non-closed component.

2. Define oyeqi = min(o.,n,0) and apply a discrete affine erosion of area o,.q;
to each convex component.

3. Concatenate the obtained pieces of curves in order to obtain a new (possibly
NON-CONVeX) curve.

This approach yields a good approximation of the exact affine-erosion of C. The
main reason is that near an inflection point of C the curve is locally flat, thus, for
reasonable values of o, the tangents at the inflection point do not evolve much
during step 2. This ensures that the convex pieces nicely fit together at step 3
and that the whole three-step process described above is not very sensitive to the
precise location at which the curve is cut. These are unformal observations rather
than theoretical statements, indeed for reasonable values of ¢ both evolutions
give the same result (see [12]). The main advantage of this simplified algorithm
is that it is fast (it has linear complexity) and it is robust, since each evolution is
obtained by middle points of segments whose endpoints lie on the original curve
and whose selection only relies on an area computation.

4 The Complete Algorithm

Our geometric multiscale representation algorithm for numerical images is made
out of the following 5 steps.

Step 1: decomposition.

The level set extraction is done currently in a straightforward way. Using 4-
connectedness, we extract, for each grey value which appears in the image, the
corresponding level sets (upper or lower) and keep the oriented border such that
the level set lies on the left of the curve. We thus obtain a set of curves which
are either closed or start and end on the image border. For each curve we keep
the associated grey level, so that we have a representation that is completely
equivalent to the initial image. It is important to notice that no interpolation is
made to extract these level curves : the pixels are simply considered as adjacent
squares.

Step 2: symmetrization.

Then, in order to get Neumann boundary conditions for the affine scale space,
we have the possibility to symmetrize the level lines which start and end on the
border, which guarantees that the curve will remain orthogonal to the image bor-
der during the evolution. Curves with end points on the same side are reflected
once, curves with end points on adjacent sides are reflected twice, thus yielding
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closed curves. Finally curves with end points on opposite sides are reflected once
at each side (they should, theoretically, be reflected infinitely many times, but
in practice once is enough). Without this symmetrization the endpoints of the
non-closed level curves would remain fixed.

Step 3 : AMSS.

At this stage, we process all level curves with the geometric implementation
of the affine scale space described in Sect. 3. This involves two parameters :
the scale of evolution ¢ and the precision ¢ at which curves are computed. We
normalize ¢ such that 1/ corresponds to the number of points that will be used
to describe a one-pixel-length curve.

Step 4: geometric transformation and/or computation.

Once achieved steps 1 to 3, we have a smooth geometric description of the image
that allows to perform any geometric transformation and/or computation. We
shall give an example of image deformation in section 6, but there are many other
possibilities of geometric processing. For example, one can simply remove level
sets that are too small, or too oscillatory (see [13]), or satisfying any geometric
criterion that can be estimated on a smooth curve.

Step 5: rasterization and reconstruction.

After transforming the level lines of the initial image, we need to reconstruct the
corresponding image. This is done by filling in the level sets and using the grey
level information associated with each level line. This step is more complex than
the extraction of level lines, since now the level curves are made of points with
non-integer coordinates, and thus we have to decide whether a pixel is inside
the set or not. We first rasterize the curves using an adaptation of Bresenham’s
algorithm? that satisfies the inclusion principle. In this algorithm a pixel belongs
to the side of the curve where more than half of its area is (see Fig. 2) and a
special treatment for very near points (sub-pixel) is added.

Fig. 2. Example of rasterization of a floating-point curve (—) into a pixel separating
integer curve (- - -).

2 Bresenham’s algorithm is a well known algorithm from computer graphics which
allows to join two points which have floating-point coordinates and are distant by
more than a couple of pixels (see [3]).
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Our implementation allows a good approximation of the real curves : only
some very small, sub-pixel, details of the eroded curve might be lost during the
rasterization, such as curves enclosing an area smaller than one pixel.

Complexity of the Algorithm

The complexity of the different steps of the algorithm depends on the following
parameters : N, the number of pixels contained in the original image (typically
108) ; G, the number of grey-levels contained in the original image (typically
256) ; €, the precision (number of points per pixel) at which the level curves need
to be computed (typically from 1/100 to 1/2) ; ¢, the scale at which the level
curves are smoothed, and N', the number of pixels contained in the reconstructed
image. Table 1 gives upper bounds of time and memory complexity for the steps
described above.

‘ ||Computation time| memory |

decomposition N Xx G Nx G
affine scale space|| N X G xt/e |N xG/e
rasterization N x GJe N x GJe
reconstruction N'x G N' x G

Table 1. Complexity of the proposed algorithm

Notice that the upper bound of N x GG points to describe all level lines of G is
very rough. For the classical Lena image (see Fig 5, one has N = 2562, (¢ = 238,
and the decomposition yields in 10 seconds about 48000 curves and 1.1 million
points. Then the affine scale space computation for ¢ = 1/2 takes 2.5 minutes
and yields 13000 curves and 0.78 million points. The final rasterization and
reconstruction takes 10 seconds.

5 Comparison with Scalar Schemes

The purpose of this section is to compare the geometric algorithm we proposed
with explicit scalar schemes based on the iteration of a process like

Dum \ /3
u" T = u™ 4 | Du| (diV|DZ"|) ,

Du™
Dum
neighborhood of th‘e cu‘rrent pixel (see [7]) or by using a non local estimation
of the image derivatives, as obtained by a Gaussian convolution (see [14]). Such
a scheme is strongly limited by the grid : the localization of the level curves is
known up to a precision of the order of the pixel size (even when interpolation
is used), and affine-invariance could only be achieved at large scales (but even
rotation-invariance is difficult to ensure at all scales, as noticed in [14]). Another

where Du™ and div are computed either by using finite differences on a 3x3
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striking side effect of such scalar schemes is that they need to produce artificial
diffusion in the gradient direction. In other terms, a scalar scheme cannot be
contrast invariant, and in practice new grey levels (and consequently new level
curves) are created. The reason is the following : for a purely contrast-invariant
algorithm defined on a fixed grid, a point of a level curve either does not move
or moves by at least one pixel. This constraint causes small (i.e. large scale)
curvatures to be treated as zero, and is for that reason incompatible with a
curvature-driven evolution like AMSS.

These effects are illustrated on Fig. 3. We have chosen an image of size 100 x70
which has been magnified 10 times and subsampled to only 10 20-spaced grey
levels (see the first row). The left column presents the image, the right column
the level lines. In the second row we show the result of our algorithm : no level
sets (i.e. grey levels) are created and the level lines are smoothed. The last
row presents the result of a classical scalar algorithm. As expected, this scheme
produces artificial scalar diffusion and creates new grey levels, thus causes a
multiplication of the level lines. This can be seen in the left half of the level
lines image where 5-spaced level lines are represented; in the right part, 20-
spaced level lines are represented which should be the only present. One can
also remark some anisotropy in that side effect diffusion : it is more attenuated
along the directions aligned with the grid (i.e. horizontal or vertical directions),
which enforces the visual perception of this grid.

6 Applications

6.1 Visualization of Level Curves

The level sets of an image are generally so irregular that only a few of them
can be visualized at the same time. Extracting and processing independently
each level curve of an image produces an interesting tool to visualize clearly
the level lines of a given image, as illustrated in Fig. 5. In that image we can
see all 4-spaced level lines of the Lena image thanks to the smooth geomet-
ric representation provided by the geometric Affine Morphological Scale Space.
Such a superimposition shows interesting shape information about the geometric
structure of the image.

6.2 Image Deformation

In this part, we show how our algorithm can be used to apply a geometric trans-
form to an image. In the experiments that follow, projective or affine transforms
are used, but more complex geometric transform will work as well. Let w(é, 7) be
a given, discrete image, how can one define an approximation (or interpolation)
% of w that allows to build the transformed image

. ~(az’+bj+c fz'+gj+h)
v(i,j) =10 )

ditejt1 ditejrtl
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where a,b,c,d, e, f,g,h are given coefficients (that may vary) 7 One can dis-
tinguish between two kinds of methods. The first are continuous (and explicit)
methods, for which a continuous model for @ is explicitly given and computed
from w once and for all. The second are discrete (and implicit) methods, for
which « is implicitly defined and must be estimated for each discrete grid.

For example, zero order interpolation defined by a(i, j) = w([i + 1/2], [
1/2]), where [z] represent the integer part of x, or bilinear interpolation and
higher order generalizations are explicit methods. On the opposite, image in-
terpolation/approximation algorithms based on the minimization of a certain
error between discrete images (like the Total Variation used in [9]) are implicit
methods. In fact, this distinction is rather formal if the practical criterion is not
“how is % defined 7”7, but “how much time does it take to compute @« 7”. For
example, Fourier representation is an explicit method, but for non-Euclidean
transformations it is computationally expensive. Indeed if N is the number of
pixels of the original image u, it requires N operations to compute the value
of @ at a given point. From that point of view, our representation is a compro-
mise between computation time (once the level lines have been extracted and
smoothed, the deformation and the reconstruction processes are fast) and accu-
racy (the geometry of the level sets is precisely known). We do not affirm that
the Affine Morphological Scale Space yields the best image approximation : it
is geometrically better than bilinear interpolation (for which pixelization effects
remain), but less accurate than sophisticated image interpolation algorithms like
[9]. However, we proved that it can be precisely computed in a reasonable time
and then allowing any kind of geometric deformation.

We compared deformations yielded by our method, zero and bilinear inter-
polation on two images :

On a simple binary image (left in Fig. 4), we applied an affine deformation
using three different methods : 1. a bilinear interpolation (left part of middle
image); 2. a zero-order interpolation (right part of middle image); 3. the ge-
ometric representation described in this paper (right hand image). In order to
gain space we have put zero-order and bilinear interpolation in the same picture.
Contrary to classical methods, a geometric curve shortening quickly provides a
good compromise between pixelization effects, accuracy and diffusion effects.

In Fig. 6 we present a satellite image from which we have simulated a pro-
jective view (from right to left as indicated by the black trapezoid). Fig. 7 left
shows the results with zero-order interpolation (left part) and bilinear interpo-
lation (right part). Our algorithm, using the geometric implementation of the
affine morphological scale space gives the result shown in Fig. 7, right hand
image.

7 Conclusion

In this paper, we described how the Affine Morphological Scale Space of an
image can be implemented in a geometric manner. Compared to classical scalar
schemes, the main advantages are a much higher accuracy both in terms of
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Fig. 3. AMSS of givaffe, original top left, level lines on the right.

@\ \
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an ellipse W W

Fig. 4. Alfine transform of an ellipse image.
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Fig. 6. Original satellite image.

Fig. 7. Projective view of satellite image.
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image definition and in terms of fidelity to the scale space properties (contrast-
invariance and affine-invariance). The algorithm needs a large amount of memory
but is still rather fast, and the representation it induces also allows very fast
geometric image deformations and contrast changes.

Our method relies on a level set decomposition /reconstruction and on a par-
ticular geometric algorithm for affine curve shortening, but it could be gen-
eralized to other curve evolutions, as similar geometric algorithms for general
curvature driven curve evolutions begin to appear (see [4]). Another generaliza-
tion could be made by using some image interpolation for the extraction of the
level sets : however, in this case the representation will generally no be contrast-
invariant any more. A more geometric extension of the algorithm relying on the
interpolation of new level lines using the Absolute Minimizing Lipschitz Exten-
sion (see [5]) could also be investigated for visualization tasks.
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Abstract. The classical morphological segmentation paradigm is based
on the watershed transform, constructed by flooding the gradient im-
age seen as a topographic surface. For flooding a topographic surface,
a topographic distance is defined from which a minimum distance algo-
rithm is derived for the watershed. In a continuous formulation, this is
modeled via the eikonal PDE, which can be solved using curve evolution
algorithms. Various ultrametric distances between the catchment basins
may then be associated to the flooding itself. To each ultrametric dis-
tance is associated a multiscale segmentation; each scale being the closed
balls of the ultrametric distance.

1 Introduction

Segmentation is one of the most challenging tasks in image processing, as it
requires to some extent a semantic understanding of the image. The morpholog-
ical segmentation paradigm, based on the watershed transform and markers, has
been extremely successful, both for interactive as for automatic segmentation.
Its principle is simple: a) a gradient image of the scene is constructed; b) for each
object of interest, an inside particle is detected, either in an automatic manner
or in an interactive manner; ¢) construction of the watershed associated to the
markers. Its avantage is the robustness: the result is independent of the shape
or the placement of the markers in the zones of interest. The result is obtained
by a global minimization implying both the topography of the surface and the
complete set of markers.

This paradigm has met its limits with the emergence of new segmentation
tasks in the area of communications and multimedia industry. The development
of games, teleworking, teleshopping, television on demand, videoconferences etc.
has multiplied situations where images and sequences have not only to be trans-
mitted but also manipulated, selected, assembled in new ways. This evolution
is most challenging for segmentation techniques: one has to segment complex
sequences of color images in real time, be automatic but also able to deal with
user interaction.

Object oriented coding represents an even greater challenge for segmentation
techniques. Such encoders segment the scene into homogeneous zones for which

M. Nielsen et al. (Eds.): Scale-Space’99, LNCS 1682, pp. 351-362, 1999.
(© Springer-Verlag Berlin Heidelberg 1999
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contours, motion and texture have to be transmitted. Depending upon the tar-
geted bitstream and the complexity of the scene, a variable number of regions
has to be transmitted. Hence an automatic segmentation with a variable number
of regions is required for sequences for which the content or even content type is
not known a priori. Hence, there is no possibility to devise a strategy for finding
markers, and as a consequence the traditional morphological segmentation based
on watershed and markers fails.

This situation has triggered the development of new techniques of multiscale
segmentation, where no markers are required. In such cases it is of interest to
construct a sequence of nested partitions going from coarse to fine; each boundary
of a coarse segmentation also being a boundary of all finer segmentations. We
will call such a series of nested partitions a multiscale cube (we do not call it
pyramid, as the resolution of the images is not reduced when going from fine to
coarse). Such a multiscale cube may be used in various ways:

— chose in the cube a slice with the appropriate number of regions

— compose a segmentation by extracting regions from different slices of the
cube. This may be done in an interactive way. It may also result by mini-
mizing some global criterion (for instance, if a texture model is adopted for
each region, it is possible to measure the distance between the model and
the original image in each region. It is then possible to minimize a weighted
sum of the length of the contours and of the global distortion of the image).

— use the pyramid for defining new dissimilarity measures between the adja-
cent catchment basins, which may be used for segmenting with markers and
yield better results as the traditional segmentation with markers, using the
altitude of the gradient.

In absence of any knowledge of the image content, it is important to find
good psychovisual criteria for constructing the cube.

In this paper, we first discuss the monoscale watershed segmentation by flood-
ing both from a discrete formulation of the shortest topographic distance as well
as from a continuous viewpoint of the eikonal PDE and curve evolution. Fur-
ther, for multiscale segmentation, we use ultrametric distances to generalize the
flooding and improve the segmentation.

2 The classical morphological segmentation paradigm

2.1 Flooding a topographic surface

The classical morphological tool for segmentation is the watershed transform.
For segmenting an image f, first its edges are enhanced by computing its gradient
magnitude ||V f]|. This is approximated by the discrete morphological gradient
3(f) —e(f), where 6(f) = f @ B is the flat dilation of f by a small disk B and
e(f) = f © B is the flat erosion of f by B. After the edge enhancement, the
segmentation process starts with creating flooding waves that emanate from a
set of markers (feature points inside desired regions) and flood the topographic
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surface ||V f||. The points where these flooding waves meet each other form the
segmentation boundaries. The simplest markers are the regional minima of the
gradient image. Very often, the minima are extremely numerous, leading to an
oversegmentation. For this reason, in many practical cases, the watershed will
take as sources of the flooding a smaller set of markers, which have been identified
by a preliminary analysis step as inside germs of the desired segmentation.

2.2 Modifying a topographic surface: Swamping

In the case where the sources for the flooding are not all minima of the topo-
graphic surface, two solutions are possible. Either use the markers as sources. In
this case, catchement basins without sources are flooded from already flooded
neighbouring region. Such a flooding algorithm, using hierarchical queues has
been described in [1].

The second solution consists in modifying the topographic surface as slightly
as possible, in such a way that the markers become its only regional minima.
This operation is called swamping. If mq, mo,...m; are the binary markers we
construct a marker function g defined as follows : ¢ = W hite outside the markers
and g = Black inside the markers. On the other hand, the topographic surface
f is modified by assigning the value Black to all regional minima. We then per-
form a closing by reconstruction of f from the marker function g. This can be
accomplished by an iterative algorithm which at each iteration forms a condi-
tional erosion, i.e., a supremum (V) of the erosion of the previous iterate and
the original function:

9k :E(gkfl)vf s k= 172737"'

In the limit as & — oo we obtain the function g., which is the result of the closing
by reconstruction. This new function is as similar as possible to the function f,
except that its only regional minima are the family {m;}. Hence, its catchment
basins will give the desired segmentation.

3 Watershed Segmentation: Discrete and Continuous

3.1 Discrete Watershed and Topographic Distance

We consider first images in a digital framework. Images are represented on reg-
ular graphs where the nodes represent the pixels and the edges the neighbor-
hood relations. A connected component of uniform grey tone is called plateau.
A plateau without lower (resp. higher) neighbors is a regional minimum (resp.
maximum).

Let us now consider a drop of water falling on a topographic surface f for
which the regional minima are the only plateaus. If it falls outside a plateau,
it will glide along a path of steepest descent. If the altitude of a pixel x is
f(x), the altitude of its lowest neighbor defines the erosion (f)(x) of size 1
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will be re-interpreted as one possible discrete approximation to the solution of
the continuous problem.

3.2 Continuous Watershed and Eikonal PDE

The watershed transforms an image f(z,y) to the crest lines separating adjacent
catchment basins that surround regional minima or other ‘marker’ sets of feature
points. In a continuous formulation, the topographic distance of f along a path
becomes the line integral of ||V f|| along this path. Viewing the domain of f as
a 2D optical medium with a refractive index field n(x,y) = ||V f||, makes the
continuous topographic distance function equivalent to the optical path length
which is proportional to the time required for light to travel this path. This leads
to the eikonal PDE

IVU (@, )|l = nlz,y), n(z,y) = |IVI(z, vl (2)

whose solution for any field n(z,y) is a weighted distance function [11,2]. In
the continuous domain and assuming that the image is smooth and has isolated
critical points, the continuous watershed is equivalent to finding a skeleton by
influence zones with respect to a weighted distance function that uses points in
the regional minima of the image as sources and n = ||V f|| as the field of indices
[9,7]. If other markers different than the minima are to be used as sources, then
the homotopy of the function must be modified via morphological reconstruction
to impose these markers as the only minima.

Modeling the watershed via the eikonal has the advantage of a more isotropic
flooding but also poses some challenges for its implementation. This problem can
be approached by viewing the solution of the eikonal PDE as a gray-weighted dis-
tance transform (GWDT) whose values at each pixel give the minimum distance
from the light sources weighted by the gray values of the refractive index field.
Next we outline two ways of solving the eikonal PDE as applied to segmentation.

3.3 GWDT based on Chamfer Metrics

Let n[i, 7] be a sampled nonnegative gray-level image and let us view it as a
discrete refractive index field. Also let S be a set of reference points or the
‘sources’ of some wave or the location of the wavefront at time ¢ = 0. As discussed
earlier, the GWDT finds at each pixel p = [i, 7] the smallest sum of values of 5
over all possible paths connecting p to the sources S.

This discrete GWDT can be computed by running a 2D min-sum difference
equation like the one implementing the chamfer distance transform of binary
images but with spatially-varying coefficients proportional to the gray image
values [13]:

Ugls, ] = min{Ux v — 1, 5] + anli, 5, Ui, 5 — 1] + anli, 1],

Uk[Z - 173 - 1] + 577[@73]7 Uk[Z - 173 + 1] + 577[@73]7 kal[zmy]} (3)
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where Uy is the 0/co indicator function of the source set S. Starting from Up, a
sequence of functions Uy is iteratively computed by running (3) over the image
domain in a forward scan for even k, whereas for odd % an equation as in (3)
but with a reflected coefficient mask is run in a backward scan. In the limit
k — oo the final GWDT U, is obtained. In practice, this limit is reached after
a finite number of passes. The above implementation can also be viewed as a
procedure of finding paths of minimal ‘cost’ among nodes of a weighted graph
or as discrete dynamic programming. As such it is actually known as Dijkstra’s
algorithm. There are also other faster implementations using queues [13,6]. The
above GWDT based on discrete chamfer metrics is shown in [13] and [4] to be a
discrete approximate solution of the eikonal PDE ||VU|| = 7.

The constants a and b are the distance steps by which the planar chamfer
distances are propagated within a 3 x 3 neighborhood. To improve the GWDT
approximation to the eikonal’s solution, one can optimize (a, b) to minimize the
error between the chamfer and Euclidean distances and/or use larger neighbor-
hoods (at the cost of a slower implementation). However, using a neighborhood
larger than 5 x 5 may give erroneous results since the large masks can bridge over
a thin line that separates two segmentation regions. Overall, this chamfer metric
approach to GWDT is fast and easy to implement, but due to the required small
neighborhoods is not isotropic and cannot achieve high accuracy.

3.4 GWDT based on Curve Evolution

In the standard digital watershed algorithm [8,14], the flooding at each level
is achieved by a planar distance propagation that uses the chess-board metric.
This kind of distance propagation is non-isotropic and could give wrong results,
particularly for images with large plateaus, as we found experimentally. Eikonal
segmentation using GWDTs based on chamfer metrics improves this situation
a little but not entirely. In contrast, for images with large plateaus/regions,
segmentation via the eikonal PDE and curve evolution GWDT gives results
close to ideal.

In the PDE-based watershed approach [5], at time ¢ = 0 the boundary of each
source is modeled as a curve v(0) which is then propagated with normal speed
clz,y) = co/nlz,y) = co/||Vf(x,y)||, where o is the largest constant speed
(e.g., the speed of light in vacuum). The propagating curve ~(t) is embedded as
the zero-level curve of a function F(z,y,t), where F(z,y,0) = Fo(z,y) is the
signed (positive in the curve interior) distance from ~(0). The function F' evolves
according to the PDE

oF

ot
As analyzed in [10,12], this PDE implies that all the level curves of I' propagate
with a position-dependent normal speed ¢(z,y) > 0. This is a time-dependent
formulation of the eikonal PDE and can be solved via the entropy condition
satisfying numerical algorithm of [10]. The value of the resulting GWDT at any
pixel (z,y) of the image is the time it takes for the evolving curve to reach this

= c(z, y)||[VF] (4)
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pixel, i.e. the smallest ¢ such that F(z,y,t) > 0. The wateshed is then found
along the lines where wavefronts emanating from different markers collide and
extinguish themselves.

To reduce the computational complexity of solving general eikonal PDE prob-
lems via curve evolution a ‘fast marching’ algorithm was developed in [12,3] that
tracks only a narrow band of pixels at the boundary of the propagating wave-
front. For the eikonal PDE segmentation problem, a queue-based algorithm has
been developed in [5] that combines features from the fast marching method to
computing GWDTs and can deal with the case of multiple sources where triple
points develop at the collision of several wavefronts.

As Fig. 2 shows, compared on a test image that is difficult (because ex-
panding wavefronts meet watershed lines at many angles ranging from being
perpendicular to almost parallel), the continuous segmentation approach based
on the eikonal PDE and curve evolution outperforms the discrete segmentation
results (using either the digital watershed flooding algorithm or chamfer metric
GWDTs). However, some real images may not contain many plateaus or only
large regions, in which cases the digital watershed flooding algorithm may give
comparable results than the eikonal PDE approach.

4 Ultrametric distances associated to flooding

4.1 Ultrametric distance and multiscale partitions

The first part of the paper has described the tools for producing the finest
partition, from which a multiscale representation may be derived. Let Py =
(Po1, Poa, ... Por) be the list of regions forming the finest partition. We are inter-
ested in constructing a series of nested partitions Py = (Pk1, Pk2, ... Pgn ), where
each region Py; is the union of a number of regions of finer partitions P, for
I <k.

It is classical to associate to the series of nested partitions (Py) an ultrametric
distance :
d(Poi, Poj) = min(l | 3Py, € P, for which Po; C Py, and Po; C Pp). In other
words, the ultrametric distance is the smallest index of a partition P, of which
one of the sets Py, contains both regions Po; and Py;.

It is an ultrametric distance as it verifies the following axioms :

* reflexivity : d(Po;, Po;) =0

* symmetry: d(Po;, Poj) = d(Poj, Poi)

* ultrametric inequality : for all 4, 7, k:
d(POi, Poj) < max{d(Po¢, POk)7 d(POk, Poj)}

The first two axioms are obviously verified. The last one may be interpreted
as follows : the smallest index [ of a region Py containing both regions Py; and
Py; is necessarily smaller or equal than the smallest index u of a region P,,
containing all three regions Py;, Fo; and Py

An ultrametric distance is a distance, as the ultrametric inequality is stronger
than the triangular inequality. A closed ball for the ultrametric distance with
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(c) (d)

Fig. 2. Performance of various segmentation algorithms on a TEST image (250 x 400
pixels). This image is the minimum of two potential functions. Its contour plot (thin
bright curves) is superimposed on all segmentation results. Markers are the two source
points of the potential functions. Segmentation results based on: (a) Digital watershed
flooding algorithm. (b) GDWT based on optimal 3 x 3 chamfer metric. (¢) GDWT
based on optimal 5 x & chamfer metric. (d) GDWT based on curve evolution. (The
thick bright curve shows the correct segmentation.)

centre Py, and radius n is the set of all regions Py; for which d(Fy;, Po;) < n.
The balls associated to an ultrametric distance have two unique features, which
will be useful in segmentation. The radius of a ball is equal to its diameter, i.e.
to the largest distance between two elements in the ball. Each element of a ball
is the centre of this ball. It is easy to check that the union of all closed balls of
radius n precisely constitute the partition F,.

Inversely we will associate a series of nested partitions to each ultrametric
distance, by taking for partition of rank », the set of closed balls of radius n. We
will now define several ultrametric distances, naturally associated to the fooding
of a topographic surface. Each of them will yield a different partition cube.



Multiscale Morphological Segmentations 359

4.2 Flooding Tree

A finer analysis of the flooding will show the apparition of a tree in which
the nodes are the catchment basins and the edges represent relations between
neighboring nodes. Let us observe the creation and successive fusions of lakes
during the flooding. The level of the flood is uniform over the topographic surface
and increases with constant speed : new lakes appear as the flood reaches the
various regional minima. At the time of apparition, each lake is isolated. As the
level increases and reaches the lowest passpoint separating the corresponding
CB from a neighboring CB, two lakes will merge. Two types of passpoints are
to be distinguished. When the level of the flood reaches the first type, two lakes
previously completely disconnected merge ; we will call these passpoints first
meeting passes. When the flood reaches the second type, two branches of a
unique lake meet and form a closed loop around an island. Representing each
first meeting pass as an edge of a graph and the adjacent catchment basins as
the nodes linked by this edge will create a graph. It is easy to see that this graph
is a tree, spanning all nodes. It is in fact the minimum spanning tree (MST) of
the neighborhood graph obtained by linking all neighboring catchment basins
by an edge weighted by the altitude of the passpoint between them.

4.3 Flooding via Ultrametric Distances

Each edge of the spanning tree represents a passpoint where two disconnected
lakes meet. We will assign to this edge a weight derived by measuring some geo-
metric features on each of the adjacent lakes. We consider four different measures.
The simplest is the altitude of the passpoint itself. The others are measured on
each lake separately : they are respectively the depth, the area and the volume
of the lakes For each of these four types a weight is derived as follows. Let
us consider for instance the volume : the volumes of both lakes are compared
and the smallest value is chosen as volumic weight of the edge. Depth and area
measures are treated similarly leading respectively to weight distributions called
dynamics for the depth and surfacic weight distributions. If the height is chosen,
we get the usual weight distribution of the watershed.

We will now define an ultrametric distance associated to each weight dis-
tribution on the MST : the distance d(z,y) is defined as the highest weight
encountered on the unique path going from x to y along the spanning tree. This
relation obviously is reflexive and symmetrical. The ultrametric inequality also
is verified : for all z,y, 2, d(z,y) < max{d(z, 2), d(z,y)}; since the highest weight
on the unique path going from x to y along the spanning tree is smaller or equal
to the highest way on the unique path which goes first from z to z and then
from z to y along the spanning tree.

The closed balls of the ultrametric distance precisely correspond to the seg-
mentation tree induced by the minimum spanning tree. The balls of radius 0
are the individual nodes, corresponding to the catchment basins. Each ball of
radius n is the union of all nodes belonging to one of the subtrees of the MST
obtained by cutting all edges with a valuation higher than n. A closed ball of
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radius R and centre C is the set of nodes which belong to the same subtree of
the MST, obtained by cutting the edges at altitude higher than or equal to R
and containing C'. Obviously replacing the centre C' by any other node of the
subtree yields the same subtree.

Cutting the (k — 1) highest edges of the minimum spanning tree creates a
forest of £ trees. This is the forest of k trees of minimal weight contained in
the neighborhood graph. Depending on the criterion on which the ultrametric
distance is based, the nested segmentations will be more or less useful. The ultra-
metric distance based on altitude is the less useful. The segmentation based on
depth are useful for ranking the particles according to their contrast. The area
ultrametric distance will focus on the size of the particles. The volumic ultra-
metric distance has particularly good psychovisual properties [15]: the resulting
segmentation trees offer a good balance between size and contrast. as illustrated
in the following figures. The topographical surface to be flooded is a color gradi-
ent of the initial image (maximum of the morphological gradients computed in
each of the R, G and B color channels). The volumic ultrametric distance has
been used, and 3 levels of fusions have been represented, corresponding respec-
tively to 15, 35 and 60 regions.

Initial 15 regions 35 regions

Fig. 3. Multiscale segmentation example.

5 Applications

5.1 Interactive segmentation with nested segmentations

A toolbox for interactive editing is currently constructed at the CMM [16], based
on nested segmentations. A mouse position is defined by its x-y coordinates and
its depth in the segmentation tree. If the mouse is active, the whole tile containing
the cursor is activated. Moving the mouse in the x-y plane permits to select or
deselect regions at the current level of segmentation. Going up will produce a
coarser Tegion, going down a smaller region. This technique permits to ”paint”
the segmentation with a kind of brush, whose shape adapts itself to the contours
and whose size may be interactively changed by the user.
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6 The watershed from markers

In many situations one has a seed for the objects to segment. It may be the
segmentation produced in the preceding frame when one has to track an object
in a sequence. It may also be some markers produced by hand, in interactive
segmentation scenarios. As a resull, some nodes of the minimum spanning tree
may be identified as markers. The resulling segmentalion associated to these
markers will then still be a minimum spanning forest, but constrained in that
each tree is rooted in a marker. The algorithm for constructing the minimum
spanning forest is closely related to the classical algorithms for constructing the
MST itself (see ref|17]. for more details). Each marker gets a different label and
constitutes the initial part of a tree. The edges are ranked and processed in
increasing order. The smallest unprocessed edge linking one of the tree T' to an
outside node is considered ; if this node does not already belong to another tree,
it is assigned to the tree T'. If it belongs to another tree, the edge is discarded
and the next edge is processed.

Segmenting with markers constitutes the classical morphological method for
segmentation. For optimal results, it is important to correctly chose the underly-
ing ultrametric distance. We have presented 3 new distances giving often better
results than the classically used flooding distance (where the weights are the
altitude of the passpoints) This is illustrated by the following figures, where
the same set of markers has been used alternatively with the flooding distance
and with the volumic distance. The superiority of the volumic distance clearly
appears here : it correctly detects the [ace, whereas the flooding distance follows
the boundary of a shadow and cuts the face in two.

markers

Fig. 4. Segmentations with different ultrametric Aoodings.

7 Conclusion

A multiscale segmentation scheme has been presented, embedded in the flooding
mechanism of the watershed itsell. It opens many new possibilities for segmen-
tation, either in supervised or unsupervised mode.
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Abstract. Inthis paper we develop partial differential equations (PDEs)
that model the generation of a large class of morphological filters, the
levelings and the openings/closings by reconstruction. These types of
filters are very useful in numerous image analysis and vision tasks rang-
ing from enhancement, to geometric feature detection, to segmentation.
The developed PDEs are nonlinear functions of the first spatial deriva-
tives and model these nonlinear filters as the limit of a controlled growth
starting from an initial seed signal. This growth is of the multiscale di-
lation or erosion type and the controlling mechanism is a switch that
reverses the growth when the difference between the current evolution
and a reference signal switches signs. We discuss theoretical aspects of
these PDESs, propose discrete algorithms for their numerical solution and
corresponding filter implementation, and provide insights via several ex-
periments. Finally, we outline the use of these PDEs for improving the
Gaussian scale-space by using the latter as initial seed to generate mul-
tiscale levelings that have a superior preservation of image edges and
boundaries.

1 Introduction

For several tasks in computer vision, especially the ones related to scale-space
image analysis, there have been proposed continuous models based on partial dif-
ferential equations (PDEs). Motivations for using PDEs include better and more
intuitive mathematical modeling, connections with physics, and better approxi-
mation to the Euclidean geometry of the problem. While many such continuous
approaches have been linear (the most notable example being the isotropic heat
diffusion PDE for modeling the Gaussian scale-space), many among the most
useful ones are nonlinear. This is partly due to a general understanding about
the limitations or inability of linear systems to successfully model several impor-
tant vision problems.

Arecas where there is a need to develop nonlinear approaches include the
class of problems related to scale-space analysis and multiscale image smooth-
ing. In contrast to the shifting and blurring of image edges caused by linear
smoothers, there is a large variety of nonlinear smoothers that either suffer less

M. Nielsen et al. (Eds.): Scale-Space’99, LNCS 1682, pp. 363-374, 1999.
(© Springer-Verlag Berlin Heidelberg 1999
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from or completely avoid these shortcomings. Simple examples are the classic
morphological openings and closings (cascades of erosions and dilations) as well
as the median filters. The openings suppress signals peaks, the closings elimi-
nate valleys, whereas the medians have a more symmetric behavior. All three
filter types preserve well vertical image edges but may shift and blur horizontal
edges/boundaries. A much more powerful class of filters are the reconstruction
openings and closings which, starting from a reference signal f consisting of
several parts and a marker (initial seed) ¢ inside some of these parts, can re-
construct whole objects with exact preservation of their boundaries and edges.
In this reconstruction process they simplify the original image by completely
eliminating smaller objects inside which the marker cannot fit. The reconstruc-
tion filters enlarge the flat zones of the image [15]. One of their disadvantages is
that they treat asymmetrically the image foreground and background. A recent
solution to this asymmetry problem came from the development of a more gen-
eral powerful class of morphological filters, the levelings [10,11], which include
as special cases the reconstruction openings and closings. They are transfor-
mations ¥(f, g) that depend on two signals, the reference f and the marker g.
Reconstruction filters and levelings have found numerous applications in a large
variety of problems involving image enhancement and simplification, geometric
feature detection, and segmentation. They also possess many useful algebraic
and scale-space properties, discussed in a companion paper [12].

In this paper we develop PDEs that can model and generate levelings. These
PDEs work by growing a marker (initial seed) signal g in a way that the growth
extent is controlled by a reference signal f and its type (expansion or shrink-
ing growth) is switched by the sign of the difference between f and the current
evolution. This growth is modeled by PDEs that can generate multiscale dila-
tions or erosions. Therefore, we start first with a background section on dilation
PDEs. Afterwards, we introduce a PDE for levelings of 1D signals and a PDE
for levelings of 2D images, propose discrete numerical algorithms for their imple-
mentation, and provide insights via experiments. We also discuss how to obtain
reconstruction openings and closings from the general leveling PDE. Further, we
develop alternative PDEs for modeling generalized levelings that create quasi-
flat zones. Finally, we outline the use of these PDEs for improving the Gaussian
scale-space by using the latter as initial seed to generate multiscale levelings that
have a superior preservation of image edges and boundaries.

2 Dilation/Erosion PDEs

All multiscale morphological operations, at their most basic level, are generated
by multiscale dilations and erosions, which are obtained by replacing in the
standard dilations/erosions the unit-scale kernel (structuring element) K(z,y)
with a multiscale version K (z,y) = tK(x/t,y/t),t > 0. The multiscale dilation
of a 2D signal f(z,y) by K® is the space-scale function

8z, y,t) = (JOKD)(@,y) = sup{f(z — a,y — b) + tK(a/t,b/t)}, t >0
(a,b)
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where §(z,y,0) = f(z,y). Similarly, the multiscale erosion of f is defined as
S(ay,t) = (FEKO)(@,y) = inf {f(@+a,y+b) —tK(a/t,b/t)}

Until recently the vast majority of implementations of multiscale morphological
filtering had been discrete. In 1992, three teams of researchers independently
published nonlinear PDEs that model the continuous multiscale morphological
scale-space. In [1] PDEs were obtained for multiscale flat dilation and erosion
by compact convex sets as part of a general work on developing PDE-based
models for multiscale image processing that satisfy certain axiomatic principles.
In [4] PDEs were developed that model multiscale dilation, erosion, opening
and closing by compact-support convex sets or concave functions which may
have non-smooth boundaries or graphs, respectively. This work was based on
the semigroup structure of the multiscale dilation and erosion operators and the
use of sup/inf derivatives to deal with the development of shocks. In [18] PDEs
were obtained by studying the propagation of boundaries of 2D sets or signal
graphs under multiscale dilation and erosion, provided that these boundaries
contain no linear segments, are smooth and possess a unique normal at each
point. Refinements of the above three works for PDEs modeling multiscale mor-
phology followed in [2,5,6,8,9,19]. The basic dilation PDE was applied in [3,16]
for modeling continuous-scale morphology, where its superior performance over
discrete morphology was noted in terms of isotropy and subpixel accuracy. Next
we provide a few examples.!

For 1D signals f(z), and if K(z) is the 0/ — oo indicator function of the
interval [—1, 1], then the PDEs generating the multiscale flat dilation é(z, t) and
erosion e(z,t) of f are:

o= 10a| , €= —leal (1)

with initial values é(z,0) = e(z,0) = f(x).

For 2D signals f(z,y), and if K(z,y) is the 0/ — oo indicator function of the
unit disk, then the PDEs generating the multiscale flat dilation 6(z,y,¢) and
erosion e(z,y,t) of f are:

0 = |IVOll = 4/ (32)* +(6,)% . er = —[|Vell (2)

with initial values d(z,y,0) = e(z,y,0) = f(z,y).

These simple but nonlinear PDEs are satisfied at points where the data
are smooth, i.e., the partial derivatives exist. However, even if the initial im-
age/signal f is smooth, at finite scales ¢ > 0 the above multiscale dilation evolu-
tion may create discontinuities in the derivatives of d, called shocks, which then
continue propagating in scale-space. Thus, the multiscale dilations are weak so-
lutions of the corresponding PDEs.

The above PDEs for dilations of graylevel images by flat structuring elements
directly apply to binary images, because flat dilations commute with threshold-
ing and hence, when the graylevel image is dilated, each one of its thresholded

! Notation: For u = u(w, y,t), ur = Ou/dt, uy = Ou/dr, uy = du/dy, Vu = (s, uy).
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versions representing a binary image is simultaneously dilated by the same ele-
ment and at the same scale. However, this is not the case with graylevel structur-

ing functions. For example, if K(z,y) = —a(x?+y?), a > 0, is an infinite-support
parabolic function, the dilation PDE becomes
8 = [|VO]]* /4a = [(8,)* + (8,)°] /4a (3)

3 PDE for 1D Leveling

Consider a 1D signal f(z) and a marker signal g(x) from which a leveling ¥(f, g)
will be produced.

If ¢ < f everywhere and we start iteratively growing ¢ via incremental flat
dilations with an infinitesimally small element [—At, At] but without ever grow-
ing the result above the graph of f, then in the limit we shall have produced the
opening by reconstruction of f (with respect to the marker g), which is a special
leveling. The infinitesimal generator of this signal evolution can be modeled via
a dilation PDE that has a mechanism to stop the growth whenever the interme-
diate result attempts to create a function larger than f. Specifically, let w(x, )
represent the evolutions of f with initial value wo(z) = u(x,0) = g(z). Then, u
is a weak solution of the following initial-value PDE system

. Ug |, U <
w =sion(f e = { b S L a

u(z,0) = g(z) < f() (5)

where sign(r) is equal to +1if r > 0, —1if r < 0 and 0 if r = 0. This PDE models
a conditional dilation that grows the intermediate result as long as it does not
exceed f. In the limit we obtain the final result u.,(z) = lim;_ o u(z,t). The
mapping wg — U 18 the opening by reconstruction filter.

If in the above paradigm we reverse the order between f and g, i.e., assume
that g(z) > f(z) Vz, and replace the positive growth (dilation) of g with negative
growth via erosion that stops when the intermediate result attempts to become
smaller than f, then we obtain the closing by reconstruction of f with respect
to the marker g. This is another special case of a leveling, whose generation can
be modeled by the following PDE:

. —lugl, v > f
= s fladd = { THP 0L @

u(z,0) = g(z) = f(z) (7)

What happens if we use any of the above two PDEs when there is no specific
order between f and g? The signal evolutions are stored in a function wu(zx,t)
that is a weak solution of the initial-value PDE system

ui(z, 1) = Jug (2, t)|signf(z) — u(z, )]

w(z,0) = g(z) (8)
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This PDE has a varying coefficient sign(f —u) with spatio-temporal dependence
which controls the instantaneous growth and stops it whenever f = u. (Of course,
there is no growth also at extrema where u, = 0.) The control mechanism is of a
switching type: For each ¢, at points  where w(z,t) < f(z) it acts as a dilation
PDE and hence shifts parts of the graph of u(z,t) with positive (negative) slope
to the left (right) but does not move the extrema points. Wherever u(z,t) > f(z)
the PDE acts as an erosion PDE and reverses the direction of propagation. The
final result weo(x) = limy_, oo w(z, t) is a general leveling of f with respect to g.
We call (8) a switched dilation PDE. The switching action of this PDE model
occurs at zero crossings of f —u where shocks are developed. Obviously, the PDEs
generating the opening and closing by reconstruction are special cases where
g < f and g > f, respectively. However, the PDEs generating the reconstruction
filters do not involve switching of growth.

The switching between a dilation- or erosion-type PDE also occurs in a class
of nonlinear time-dependent PDEs which was proposed in [13] to deblur images
and/or enhance their contrast by generating shocks and hence sharpening edges.
For 1D images a special case of such a PDE is

wp = —|ug|sign(u,,) (9)

A major conceptual difference between the above edge-sharpening PDE and our
PDE generating levelings is that in the former the switching is determined by
the edges, i.e., the inflection points of u itself whereas in the latter the switching
is controlled by comparing « against the reference signal f. Note also that, if at
some point there is an edge in the leveling output, then there must exist an edge
of equal or bigger size in the initial (reference) image.

3.1 Discretization, Algorithm, Experiments

To produce a shock-capturing and entropy-satisfying numerical method for solv-
ing the general leveling PDE (8), we use ideas from the technology of solving
PDEs corresponding to hyperbolic conservation laws [7] and Hamilton-Jacobi
formulations [14]. Thus, we propose the following discretization sheme, which is
an adaptation of a scheme proposed in [13] for solving (9).

Let U" be the approximation of u(x,t) on a grid (iAz, nAt)). Consider the
forward and backward difference operators:
u(x + Az, t) —u(gcj)7 D= w(z,t) — u(z — Az, t) (10)
Az Az

x J—
D+u:

(Similarly we define the difference operators Di and DY along the y direction.)
Then we approximate the leveling PDE (8) by the following nonlinear difference
equation:

urtt=ur - At [(S

+\/ Dz Un ((DiUin);P

(52 TDT ORI T (0707 T | ()
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where S = sign(f(1Az) — U"), r* = max(0,r), and r— = min(0, ). For sta-
bility, (At/Azx) < 0.5 is required. Further, at each iteration we enforce the sign
consistency
sign(U™ — f) = sign(g — f) (12)
We have not proved theoretically that the above iterated scheme converges
when n — oo, but through many experiments we have observed that it converges
in a finite number of steps. Examples are shown in Fig. 1.

4 PDE for 2D Leveling

A straighforward extension of the leveling PDE from 1D to 2D signals is to
replace the 1D dilation PDE with the PDE generating multiscale dilations by a
disk. Then the 2D leveling PDE becomes:

u(z,y,t) = ||Vu(z, y, t)|[sign(f (z,y) — u(z, y, )]
(13)
u(z,y,0) = g(z,y)
Of course, we could select any other PDE modeling dilations by shapes other
than the disk, but the disk has the advantage of creating an isotropic growth.
For dlsCIetlzatlon let U}"; be the approximation of u(z,y,t) on a computa-
tional grid (i Az, jAy7 nAt). Then we approximate the leveling PDE (13) by the
following 2D nonlinear difference equation:
Uz = Ug, - 2t
(Sij)+\/((DfUij)+)2 +((DTUR) ) + (DLU7) )2 + (DLUR;)7)?
+(Slfj)’\/((DiUij) )2+ (D2UR) =)+ (DU 1) + (DLUR)7)? ]

=45 —4d

(14)

where S}, = sign(f(iAz, jAy) — U}';). For stability, (At/Az + At/Ay) < 0.5 is
required. Also, the sign consistency (12) is enforced at each iteration.

Three examples of the action of the above 2D algorithm are shown in Fig. 2.

5 Discussion and Extensions

5.1 PDEs for Levelings with Quasi-Flat Zones

So far all the previous leveling PDEs produce filtering outputs that consist of
portions of the original (reference) signal and of flat zones (plateaus). Actually
they enlarge the flat zones of the reference signal. Is it possible to generate
via PDEs generalized levelings that have quasi-flat zones? For example, zones
with constant linear slope or zones with parabolic surface? The answer is yes.
We illustrate it via the parabolic example. If we replace the flat dilation PDE
generator in (8) with the PDE generator for multiscale dilations by a 1D unit-
scale parabola K(z) = —az? we obtain the PDE for 1D parabolic levelings:

w2, ) = 2y, £)Psignlf (z) — u(z, 1)
ul(z,0) = g(z) (15)

To obtain the PDE for 2D parabolic levelings we replace |u| with ||[Vu|]|.
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<

LEVELING PDE EVOLUTIONS
REFERENCE, MARKER, & LEVELING

REC.OPEN. PDE EVOLUTIONS
REFERENCE, MARKER, & REC.OPENING

REC.CLOS. PDE EVOLUTIONS
REFERENCE, MARKER, & REC.CLOSING

Fig. 1. Evolutions of 1D leveling PDE for 3 different markers. For each row, the right
column shows the reference signal f (dash line), the marker (thin solid line), and the
leveling (thick solid line). The left column shows the marker and 5 of its evolutions at
times t = n20At, n = 1,2,3,4,5. In row (a,b) we see the general leveling evolutions for
an arbitrary marker. In row (c¢,d) the marker was an erosion of f minus a constant, and
hence the leveling is a reconstruction opening. In row (e,f) the marker was a dilation
of f plus a constant, and hence the leveling is a reconstruction closing. (Ax = 0.001,
At = 0.0005.)
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Fig. 2. Evolutions of the 2D leveling PDE on the reference top image (a) using 3
markers. Each column shows evolutions from the same marker. On second row the
markers (¢t = 0) are shown, on third and fourth rows two evolutions at t = 10At and
t = 20At, and on fifth row the final levelings (after convergence). For left column (b-e),
the marker (b) was obtained from a 2D convolution of f with a Gaussian of o = 4. For
middle column (i), the marker (f) was a simple opening by a square of 9 x 9 pixels
and hence the corresponding leveling (i) is a reconstruction opening. For right column
(j-m), the marker (j) was a simple closing by a square of 9 x 9 pixels and hence the
corresponding leveling (m) is a reconstruction closing. (Ax = Ay =1, At = 0.25.)
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SIGNAL & 3 MARKERS
SIGNAL, MARK1, & LEVELING1

LEV1, MARK2, & LEVELING2
LEV2, MARK3, & LEVELING3

Fig. 3. 1D Multiscale levelings. (a) Original (reference) signal f (dash line) and 3 mark-
ers g; obtained by convolving f with Gaussians of standard deviations o; — 30, 40, 50.
(b)-(d) show reference signals g; (dash line), markers g;+1 (dotted line), and levelings
U(gi, giv1) (solid line) for ¢ = 0,1, 2, where go = f. (Ax = 0.001, At = 0.0005.)
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Marker 1 Leveling 1

Marker 2 Leveling 2

Marker 3 Leveling 3

Fig. 4. Multiscale image levelings. The markers were obtained by convolving reference
image with 2D Gaussians of standard deviations o = 3,5, 7. (Azx = Ay =1, At = 0.25.)
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5.2 Why Use PDEs For Levelings?

In addition to the well-known advantages of the PDE approach (such as more in-
sightful mathematical modeling, more connections with physics, better isotropy,
better approximation of Euclidean geometry, and subpixel accuracy), during con-
struction of levelings or reconstruction filters it is possible in some applications
to need to stop the marker growth before convergence. In such cases, the isotropy
of the partially grown marker offered by the PDE is an advantage. Further, there
are no simple digital algorithms for constructing levelings with quasi-flat zones,
whereas for the PDE approach only a simple change of the generator is needed.

5.3 From Gaussian Scale-Space to Multiscale Levelings

Consider a reference signal f and a leveling ¥. If we can produce various markers
gi, © = 1,2,3,..., that are related to some increasing scale parameter i and
produce the levelings of f with respect to these markers, then we can generate
multiscale levelings in some approximate sense. This scenario will be endowed
with an important property if we slightly change it to the following hierarchy:

h1 =¥ (f,g1), ha =¥ (h1,92), b3 =W¥(ha,g3), ... (16)

The above sequence of steps insures that h; is a leveling of h; for j > 4.

The sequence of markers g; may be obtained from f in any meaningful way.
In this paper we consider the case where the g; are multiscale convolutions of f
with Gaussians of increasing standard deviations ¢;. Examples of constructing
multiscale levelings from Gaussian convolution markers according to (16) are
shown in Fig. 3 for a 1D signal and in Fig. 4 for an image f. The sequence of
the multiscale markers can be viewed as a scale-sampled Gaussian scale-space.
As shown in the experiments, the image edges and boundaries which have been
blurred and shifted by the Gaussian scale-space are better preserved across scales
by the multiscale levelings that use the Gaussian convolutions as markers.
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Abstract. We present an extension of the scale space idea to surfaces,
with the aim of extending ideas like Gaussian derivatives to function
on curved spaces. This is done by using the fact, also valid for normal
images, that among the continuous range of scales at which one can
look at an image, or surface, there is a infinite discrete subset which
has a natural geometric interpretation. We call them “proper scales”, as
they are defined by eigenvalues of an elliptic partial differential operator
associated with the image, or shape. The computations are performed
using the Finite Element technique.

1 Introduction

Scale space theory studies the dependence of image structure on the level of
resolution [8]. Most of the time, an observer is interested in the object imaged
and not purely the complete image. Such an object generically has features at
very different scales.

On the other hand, not all possible values of scale show interesting features,
for example scale lengths smaller than the resolution, and at the other extreme,
lengths greater than the “window” of the image. This also depends on the shape
of the window, if it is square or cubic, circular, etc...

The imaging process has an influence on the extracted object, which is only
an approximation of the imaged one, and thus measurements on the object are
also approximations. The degree of approximation is dependent on the scale, in
a broad sense, at which the measurement is made.

These reasons show a need for the definition of the “right scales” [8] associated
with an object. Such a scale space theory for objects should show properties
similar to the ones of the image scale space. The luminance function defining an
image is a measurement of a given part of the physical world, and it is embedded
in a family of derived images. In the same way, a measurement on a shape should
have a corresponding family of derived measurements at a specified resolution.

* We would like to thank the referees for the useful suggestions

M. Nielsen et al. (Eds.): Scale-Space’99, LNCS 1682, pp. 375-385, 1999.
(© Springer-Verlag Berlin Heidelberg 1999
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Our claim is that there is a list of “proper” scales, where by proper we mean
that they are specific to the shape.

We present the necessary theory for calculating a scale space on curved man-
ifolds, analogous to the use of Gaussians on standard images. We then describe
how to implement this theory on discrete data using Finite Element methods.
Finally, we give example results from simple geometrical shapes.

2 Theory

We start by stating some notations and definitions. An image I is a mapping
I: 02— IR", where 2 C IR™. In concrete cases, m is 2 or 3, n = 1, §2 is an open
bounded set with piecewise smooth (C'*) boundary, e.g. a square or a cube. For
discrete images, one should take the intersection of such a domain with a lattice.
To be very precise, we should also specify to which class of functions I belongs,
for the moment we will just call H(§2) the set of possible images on f2.

The image [ is extended to a family of images parametrised by S, ie. Is :
£2x8 — R" Ig(,t) = I4(-), and the central point is that I is defined by
convolution with a parameter dependent kernel

K2 0xNx8S—=1R
(z,v,t) »—)]CZQ(x,y) .

We write I, = I * K2,
The choice of the kernel is central to this theory. Normally, § = IR and the
Gaussian kernel is chosen:

—l=—w)|?
Kf(wy) = Gile—9) = e T )
There are many approaches which lead to this choice, for an historical account,
see e.g. [10]. The mathematical foundations for the following can be found in [6]
or for a more introductory text [9].

We are interested in shapes, usually extracted from an image by segmenta-
tion. We will denote a shape with the letter X, and define it as being a 2D-
surface, or if one wants other dimensions, an m dimensional manifold.

Examples would be a sphere, or more interestingly, the cortical surface of a
brain extracted by segmentation.

Scale Space on Shapes. The main difference with the case described above is
that X has usually no linear structure: one can’t add z € X to y € X. The
Gaussian kernel is meaningless in this case, as well as the axioms based on
linearity. Nevertheless, there is one approach which can be used straightforwardly
here: lijima’s axiomatic of 1971 ([10]). Given an image I : X — IR, let I; be the
scale space of X which we want to define. I’ is the corresponding image flow, i.e.
it is a vector field on the manifold X which gives the strength and direction of
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the “intensity” change at time ¢t. The first principle is the Conservation principle,
ie.

0 .
Sl diviF =0. (2)

The second condition is what is called Principle of maximum loss of figure im-
pression, which is translated by saying that the flux direction should be the

direction of maximal image gradient, i.e. ' = —V~I,. Using this in equation 2,
we have:
O, — AXI, on X (3)
TR t
L=1I (4)
The corresponding kernel is the special solution such that:
7]
alczx(xﬁ%t) - AX}CZX(IM'UJ&) on X
im [ KX (z,9,0)1(y) - I(x)

t—=0 Jx

For a standard image, the kernel KX is a Gaussian, and the Laplacian takes its
usual form.

Deriving the Form of the Scale Space Kernel and the Laplacian for a Manifold.
First, the degree of differentiability of the manifolds X have not been specified.
The most general assumptions do not require it to be differentiable, and indeed
fractal domains are a current area of research in mathematics for the existence
of solution to such heat equations. Here, it is simply assumed that X is at least
a C? manifold. They can have a boundary, with finitely many corners out of
which the boundary is also smooth. At none of these points should there be a
zero angle. Another very important concrete assumption is that X is compact,
i.e. in particular bounded. The space H(X) of possible “images” should be such
that the partial differential equation above can be defined within that space, so
one is first tempted to take C?(X) or even C°°(X), but this choice often turns
out to be too restrictive, and not well adapted to the numerical computations.
The idea is to complete C? by limits of sequences of €' functions, where the limit
is taken in the sense of the function norm: |[I[|3.. = [ I? + [ [V*I[?, and
to use partial integration to interpret the diffusion equation above in the weak
form. The space is called the Sobolev space H'(X ), where the index refers to the
fact that we only use one degree of differentiability, as the differential equations
are taken in the weak sense. H'(X) contains non differentiable functions, for
example Lipschitz continuous functions belong to it.

We are interested in X which is a curved space, or Riemannian manifold
and this allows us to define the differential operators diVX7 V& to be defined
on differentiable vector fields and functions over X*. From these, one can define
the Laplace Beltrami operator AX := div* VX over 2.

! See [9] for expression in local coordinates
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We can use these operators to construct a nonlinear scale space on a manifold
X. Interestingly a special example of shape can be the graph surface defined by
the points (z,y, I(x,y)) for z,y € £2. This approach appears in [7], see also [4],
which contains an introduction to Riemannian geometry adapted to this field.
Note that it is different to considering {2 as a flat surface with boundary, e.g. a
rectangular window which corresponds to the classical scale space. There is still
a need to construct the kernel explicitly. We will describe such a construction by
introducing the main object of this work: the spectrum of the Laplace Beltrami
operator, which will define the set of “natural scales” of the shape.

It can be shown that the Laplace Beltrami operator can be extended to the
complete space H(X) as defined above. It is a linear operator, and thus one can
study the eigenvalues of such an operator. Note that a discrete spectrum is by no
means guaranteed for a partial differential operator, but here we can state that
there is a sequence of infinitely many eigenvalues, all of the same sign (which by
convention is positive). Every eigenvalue has finite multiplicity, i.e. there exist
only finitely many linearly independent eigenfunctions. These eigenfunctions are
differentiable, and generate the L? functions. The two messages of this work are
thus:

1. There is an infinite but discrete set of natural scales (sy, )nen associated with
a shape. These scales are defined by the eigenvalues (A, ),cn. Explicitly:
6, — L.

2. The heat kernel associated to this shape can be constructed from the eigen-

functions. Explicitly, if u,, is a normalised eigenfunction associated to A,,

I Ut Zun un y At (5)

FEzample 1. On a flat square with either free boundary condition (Neumann
problem), or fixed boundary condition (Dirichlet problem), the eigenfunctions
are the usual trigonometric functions, and the expansion of a function according
to the eigenfunctions is just the Fourier series of the function.

FEzample 2. On a sphere (radius 1), the metric tensor in polar coordinates is

1 0
0 sin’ 0

thus the Laplace Beltrami operator is

1 , 1,
ASphere = w (ag(sm 089) —+ E@J

the eigenvalue equation is separable, the equation in # transforms into a Legendre
equation with the change variable ¢ := cos? 8. The equation in ¢ becomes a simple
harmonic equation. the eigenfunctions are the spherical harmonics Y, »(6, ¢)
with associated eigenvalues A\, = n(n + 1). This means in particular that A,, has
high multiplicity 2n + 1, a sign of the high symmetry of the sphere, cf. [1,2,3].



Proper Scales of Shapes 379

Interpretation. The eigenvalues of the Laplace Beltrami operator have units
1/m?, and can be interpreted as wavelengths for small variation of the shape.
Intuitively, a large scale corresponds to information on global aspect of the shape,
whereas on a small scale, the assumption of the shapes being locally like Eu-
clidean space means that the behaviour should be the same as the one expected
on flat surface patches. This is indeed the case, as stated by Weyl’s asymptotic
formula ([1,2,3,6,9]):

n dem (X
Ap ~ | ——— up to a multiplicative constant
" (Area(X )) p o pricative &

The theory of spectral geometry is exposed among others in [1,2,3,6,9]. One has
the following development for any scale space:

i —t/sn (1, wp )un ()

Now, the first eigenvalue (written Ag) is zero, so the scale space “image” can
be interpreted as a sum of weighted “proper” scale images, where the weights are
exponential in the corresponding scale. This explains the asymptotic behaviour:
as t becomes large, only the “proper” mode ug, corresponding to infinite scale
sp — oo remains: this gives a constant eigenfunction: I, — I the mean value
of I. All the “grey values” are spread over the complete domain. At the other
limit, (¢ — 0), one gets the initial condition.

Use of the Finite Element Method to Compute Figenvalues, Figenfunctions and
the Scale Space Kernel. Up to now, we have supposed that everything was con-
tinuous. Now, our typical application is a surface extracted from an image by
segmentation. The image itself, instead of being a differentiable function on a
domain becomes a function on a lattice. After segmentation-reconstruction, one
typically gets a discrete version of the surface. As standard reconstruction tech-
niques usually give triangular facets, we will use triangulated surfaces in the
examples. The Laplace Beltrami operator is an elliptic partial differential opera-
tor, and thus the Finite Element method is perfectly adapted to the computation
of eigenvalues and eigenfunctions. For this, the eigenvalue equation is written in
weak form:

(Vu, Vo) = A, v)

theoretically for all v in the solution space. Here, we choose a Finite Ele-
ment space Sx (1) generated by piecewise linear functions N;, where i runs
over the vertices of a triangulation T of X, N; € C°(X), the global condition,
Ni(vertex;) = d;;. We seek approximate solutions in Sx(T"): ur =, UiN;. The

equation has thus to be valid for all v = N,

5, le.

> UV, Vag) = A U (ug, uy).
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Writing K;; = (VN;,VN;)s, we get the global stiffness matriz and M;; =
(u;, u;)s gives the global mass matriz, so the problem becomes the one of finding
the generalised eigenvalues of the matrices K and M:

KU =XMU.

These are assembled from their values on individual facets,

Kiy=>" / (VN;l|z,, VN;|1,, ) dA
r Tk
and

My =3 [ Vil Nyl a4
Tk

Each triangle T} is the affine image of a standard fixed triangle T} (isopara-
metric FE). Let us call this affine map Fy : £ — «. Dropping the index &, and

using % = &B 85, dA(x) = ‘8"" dA(€), we need to compute for every facet the

integrals:
/ (VN;(z), VN;(x)) dA(x) =
F(To)
/T (J (&) VN (F(8),J 1 (F(€) VN, (F(§))) |J(€)] dA()

where we have written J(&) = g—’g(f). For the simple choice of linear elements
that we have made here, there is a big simplification: the derivative of an affine
map is just the linear part of this map, and thus is constant, and the Jaco-
bian determinant is the ratio of areas of the triangles. This allows high speed
computations for the matrix assembly.

3 Example

Figure 3 shows the computation of the 50 first eigenvalues on a sphere (*), plotted
alongside the 50 first for a discrete sphere (4) and a “voxelised” reconstructed
sphere (o)(shown below). This sphere was constructed by filling voxels at a given
distance from a centre, which allows to artificially specify the resolution, then
using standard reconstruction algorithm (here Nuages, [5]) to get a triangulated
shape, the other one has been directly constructed in a more classical manner
by using a triangulation of the parameter domain. Values have been scaled by
area to make them comparable.

This example was designed to illustrate a typical problem from surface re-
construction: if the surfaces look similar from far, the reconstructed sphere has
a very different small scale structure.
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Fig. 1. a-azis: index n of the eigenvalue, y-azis: value of A, in 1/m?. The area is
normalised to approximately 4. dark *; real sphere

Fig. 2. Left, the shape on the left looks like a sphere on a “large” scale (radius 1), but
at a scale of the size of a voxel, it is very different, see also 3
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/

Fig. 3. At an other scale: zooming on a detail shows the difference between the ohjects

Their corresponding spectra reflect this fact: the one for the voxelised sphere
is shifted upwards, which we interpret as showing that the small scale structure
of the sphere has a strong influence. The reconstruction was done with the help
of the Nuages software. This can be shown by computing local measures, for
example curvatures, see Fig. 5 for a simulated example.

The next figure (I'ig. 2) shows the “diffusion” on such a sphere: on the left
the initial situation. A random function I has been defined on the set of vertices,
with value 0 or 1. IT the value at vertex i is larger than 0.5, the facets which
contain vertex ¢ are coloured red, it it is between 0.1 and 0.5, they are coloured
light red. We compute the eigenvalues and eigenfunctions for this sphere, and
then I, = z::r:(,e"‘“*(f , Uy )iy, and apply the same colouring rule. Even for
this rough example, one can see how most of the gaps were filled.

A more concrete example is given in Fig. 5. The first torus on the left has
450 facets, and its Gauss curvature is displayed. The settings are such that
the curvature range is approximately -0.13 to 0.15. The second torus shows this
curvature which has been perturbed by addition of a random value (generated by
Matlab) within the range 0 to 0.1. The last one shows this perturbed curvature
after diffusion, at time ¢ = 0.1. The aim is to illustrate the blurring property of
this technique, similarly to the usual Gauss kernel: the dark blue and dark red
have already disappeared 2.

? The figures and some supplementary material will be made available at
http: //carmen.umds.ac. uk /p.batchelor
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Fig. 4. top: the dark red facets simulate some initial data, bottom: this initial data
has been diffused, resulting in a blurred, more homogeneous pattern
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Fig. 5. Left : the Gauss curvature, right: the initial scalar on the surface is the Gauss
curvature randomly perturbed, below finally the diffused value (t = 0.1 ¢f text), flat
shading was chosen in order to avoid any confusion

4 Discusssion

The main contribution of this work is the extension of the scale space idea to
curved spaces. It is concretely done by using techniques of elliptic partial dif-
ferential equations, solved with the Finite Element technique. These techniques
are well understood and commonly applied in a variety of domains ranging from
Auid mechanics to elasticity theory. This extension of the concept of scale space
will allow a wider variety of real world problems to be addressed within a math-
emaltically rigorous, yet computationally viable, framework.

Applications may include the smoothing of surface shape measures made on
discretised surfaces, for example in the brain mapping problem. They also permit
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a natural, observer independent, definition of the scale of objects of interest in
such problems, for example sulci and gyri.

FPuture work Work in progress include the application of these techniques to a
variety of other geometrical shapes. Future work will include the characterisation
of brain surface features from both normal and abnormal human brains within
a multi scale paradigm.
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Abstract. Electron tomography is a powerful tool for investigating the three-
dimensional (3D) structure of biological objects at a resolution in the nanometer
range. However, visualization and interpretation of the resulting volumetric
data is a very difficult task due to the extremely low signal to noise ratio
(<0dB). In this paper, an approach for noise reduction in volumetric data is
presented, based on nonlinear anisotropic diffusion, using a hybrid of the edge
enhancing and the coherence enhancing techniques. When applied to both,
artificial or real data sets, the method turns out to be superior to conventional
filters. In order to assess noise reduction and structure preservation
experimentally, resolution tests commonly used in structure analysis are applied
to the data in the frequency domain.

1 Introduction

Transmission electron microscopy is used to investigate the structural organization
of biological objects (e.g. macromolecular assemblies or cellular organelles) at a
resolution in the nanometer range. In good approximation, the obtained two-
dimensional (2D) images are parallel projections of the three-dimensional (3D)
density distribution of the object. By means of techniques similar to medical computer
tomography, it is possible to reconstruct the 3D density of the specimen and to reveal
the 3D structure of the biological object [4]. Although electron microscopes are able
to image biological objects with a resolution down to 0.3nm, the structural
information is not directly accessible since most of the signal is buried in noise
(SNR<0dB). The standard method in the field is correlation averaging, where many
thousand identical particles are averaged in order to reveal structural information with
a resolution down to 0.8nm. In the case of unique objects (e.g. cells) averaging is not
possible and denoising exigently necessary. Particularly with regard to the three-
dimensionality of the observed objects, denoising plays an essential role, since the
human eye is not able to extract the same amount of information (by interpolation,
lowpass filtering, classification, etc.) as in the 2D case. An interpretation of the
volumes using surface and volume rendering techniques is difficult due to the noise
sensitivity of rendering algorithms. A denoising algorithm suitable for such

M. Nielsen et al. (Eds.): Scale-Space’99, LNCS 1682, pp. 386-397, 1999
© Springer-Verlag Berlin Heidelberg 1999
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applications must be able to preserve as much signal as possible while reducing the
noise to a sufficiently low level. Nonlinear anisotropic diffusion appears to be a good
basis for such an algorithm, as demonstrated by test calculations and applications
presented below.

2 3D electron tomographic reconstruction

The 3D electron tomographic reconstruction is a method similar to the well known
tomographic reconstruction in medical imaging (X-ray tomography, etc.). All these
methods are based theoretically on the “central section theorem”, stating: The Fourier
transform of the 2D-projection image corresponds to the central section through the
3D Fourier transform of the object, which is perpendicular to the projection direction
[8]. This theorem can be used to perform a 3D reconstruction: The 2D Fourier
transforms of the projections are derived and placed in the 3D Fourier domain,
according to the corresponding angle. After interpolation and 3D inverse Fourier
transformation, the reconstructed object appears in real space. In practice, a different
algorithm, namely filtered backprojection is mainly used for reconstruction in electron
tomography due to its simple and general applicability [3]

The typical experimental approach in electron tomography is to tilt the specimen in
the microscope about an axis perpendicular to the electron beam and to record an
image for each tilt view. Unfortunately, the specimen cannot be tilted over the full
angular range from —90 to +90 degrees, because the specimen holder masks the object
at high tilt angles. Additionally, the total electron dose has to be kept below a critical
limit in order to avoid excessive radiation damage. Therefore the number of
projection views has to be limited and the images suffer from an extremely low
signal-to-noise ratio. Image shifts resulting from mechanical inaccuracies of the tilt
stage and from specimen drift require an alignment of the projection images with
respect to a common origin, a process also prone to errors. As a consequence of all
these effects, the interpretation of volumetric data obtained by electron tomography is
severely aggravated by artifacts and a noisy appearance. Of all the artifacts, those
arising from the limited tilt range are easy to understand in the Fourier domain
{(“missing wedge”) [4] and, in real space, may be described by a point spread function
expressing an anisotropic resolution. Any approach for noise reduction must not
amplify artifacts.

3  Anisotropic diffusion

The idea introduced in the pioneering work of Perona and Malik [7] is to prefer
intraregional smoothing and, consequently, to preserve semantically important
features as edges. Many methods have been proposed how to control diffusion in
order to achieve the best signal preservation. In the implementation described below
different nonlinear anisotropic diffusion methods have been combined, realized in 3D,
and accommodated to the filtering of electron tomographic reconstructions [2].
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The nonlinear anisotropic diffusion procedure applied to a 2D image or 3D volume
I can be described in a general form by the following equation:

%: div(g(VD)-VI), ()

where t denotes the evolution time and VI the local gradient. In the following we
concentrate on the 3D case. The diffusivity g is either a scalar or a matrix function.
The crucial question is how the diffusivity has to be designed in order to achieve
maximum noise reduction and optimum signal preservation. Following the setup
proposed by Weickert [15], the diffusivity is advantageously derived from the
structure tensor J, averaged by convolution with the Gaussian K, :

J,(VI)=K,*J, with J,=VI-VI", 2

Local structural features of 7 within a neighborhood of size O(p )ae characterized by
the local eigenvectors and eigenvalues of the matrix J, .Generally, the eigenvalues
describe the variance of the volume data in the direction of the corresponding
eigenvectors. In the presence of noise and for p | all eigenvalues p; are positive
since the matrix is positive semidefinite.

2y > g1y >0 3)

The first eigenvector is parallel to the average gradient orientation and the
corresponding eigenvalue g, reflects the strength of the local gradient. u, provides
further information about structural features, e.g. the existence of a surface or a line
and p, canbe used as a measure for the noise level.

For 2D applications, Weickert has proposed to use two different realizations of the
diffusion tensor depending on what structural features should be emphasized [13, 14,
15]. The first one - called edge enhancing diffusion (EED) - is basically a correctly
discretized Perona-Malik model and shows a good performance at a low signal-to-
noise ratio. Edges are evenly enhanced and piecewise constant subvolumes are
produced in between. The second method is called coherence enhancing diffusion
(CED). It averages the gradient over a rather large field of the volume and calculates
the mean orientation. It is capable of connecting lines interrupted by noise.

In order to cover the larger variety of structural features in 3D as well as the high
noise level, one can take advantage of both methods by combining them according to
the following strategy. The difference-value between the first and third eigenvalue
reflects the local relation of structure and noise, therefore it can be used as a switch:
EED is applied when this value is smaller than a suitably chosen threshold parameter
and CED otherwise. A useful threshold parameter can be derived ad hoc from the
variance, calculated over a subvolume of 7 that only contains noise. It is possible to
verify the appropriate choice of the subvolume by lowpass filtering or even by visual
control of the backprojected images.

It is obvious that during the first iterations EED highlights the edges while,
subsequently, CED connects the lines and enhances flow-like structures. Both
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processes take place simultaneously within one iteration step, depending on the local
threshold parameter. If the build-up of a specific edge takes more iterations, the other
edges are going to be preserved and enhanced, so that no signal degradation takes
place.

For the discretization of the model central differences are utilized. The additive
operator splitting (AOS) [12] schemes definitely showed a superior performance to
the standard iterative methods, but in order to switch between the different diffusion
types, the simulations were performed with the simple explicit Euler method. In order
to preserve small structures, with a size of only a few pixels, the gradient
approximation, proposed by Sethian [10] is used. It shows a better performance than
the standard central-difference gradient approximation.

4  Applications

In this chapter two impressive examples for the applicability of the hybrid model
for 3D visualization in the field of electron microscopy are given. In the first example
the object under scruting is a vesicle with actin filaments [1]. The size of the object is
100nm in diameter and the resolution is ca. 7nm. The position, connectivity and
strength of the filaments, pictured as dark lines in Fig. 1, or as thin white fibers
running parallel to the direction of the cylinder in Fig. 2, are the features of interest.
The quality of representation of these features can also be used as a criterion for the
judgement of the performance of the respective method. For this volume a
comparison with standard techniques in image processing is presented. The second
example is one of the first 3D reconstructions of a mitochondrion in vitrified ice [5].
Strength and connectivity of the white fibers are here again the criterion for the
judgement.

The vesicle is filtered with a simple lowpass and a median filter. In the case of low
pass filtering the noise and the signal are simultaneously degraded. Though producing
a satisfactory smooth background, the filaments are thickened and interrupted. The
isosurface representation appears corrupted due to a lack of most of the information.
Median filtering results in a good edge preservation, but the noise reduction is not
satisfactory. Fig.1 and Fig. 2 show the results of different types of filtering for the
vesicle with actin filaments in tomographic and isosurface representation. The results
after application of either EED or CED confirm the properties described in the
previous section. EED produces the typical staircase effects and imposes an artificial
appearance in the volumes. The connectivity of the filaments is not improved or even
preserved. It shows basically a behavior opposite to CED. At last the result of the
hybrid model is presented. It combines an excellent noise reduction of the background
with a clear representation of the filaments
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Fig. 1. Comparison of different [iltration types of a x-y slice from an electron tomographic
reconstructed volume of a wvesicle with actin filaments. (a) slice from the original
reconstruction, (b) Gaussian [, (¢) median f., (d) EED £, (e} CED £. and (f) hybrid EED/CED
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Fig. 2. lsosurface representation of a vesicle with actin filaments (Volume 256*256%128
Voxels). The diameter of the cylinder is about 100nm and the thickness of the white fibers
7nm. The order of the representation is the same as in Fig.1.
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The 3D reconstruction of a mitochondrion also gives an impressive example of the
applicability of the method (Fig. 3). The goal of this reconstruction was to investigate
the 3D structure of the mitochondrion. The structures as obtained by electron
tomography, cannot be visualized satisfactorily without filtering. The 3D diffusion
filtering using the hybrid EED/CED approach drastically improves the connectivity
and thus provides a clear picture of the complicated internal network of the object.

original data. At the right side the result of denoising with the hybrid model.

5 Assessment of signal preservation

5.1 Correlation averaging

In electron microscopy, efficient noise reduction of macromolecules is normally
achieved by correlation averaging. Before averaging, the signals are brought into
register using cross-correlation functions. The method combines the information
contained in the images of many individual, however structurally identical molecules.
Each volume is considered to be a single realization of a statistical process. It
provides a signal corresponding to the structure of the object, e.g. a projection view or
4 density map, degraded by noise. Adding up equivalent signals of n volumes
increases the signal-to-noise ratio by a factor -J; , thereby assuming additive, signal-
independent noise. In the context of this approach it is possible to estimate the
resolution of the averaged volume by comparing the averages of two statistically
independent, equal-sized subsets of the corresponding ensemble. The comparison
occurs by subdividing the TFourier domain into shells and calculating cross-correlation
coefficients between the subsets for each of these shells. The resulting radial
correlation function (RCF) is a frequency-dependent measure of similarity between
the two subsets, and therefore can be used to estimate the resolution [9].
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Fig. 4. Results of correlation averaging of two ensembles represented by slices through the
volumetric data. On the left side the average of the original particles (noisy ensemble). On the
right side the average of the particles denoised by EED (denoised ensemble).

Averaging is conceptually free from signal degradation, while all other denoising
methods smooth the noise and more or less also the signal. In order to study how the
signal is affected by nonlinear anisotropic diffusion, a sct of real volumes of a
biological macromolecule was subjected to denoising and averaging. The results were
assessed in the frequency domain by means of the RCF. For this purpose, 500 copies
were produced from the known 3D density map of the Thermosome molecule [6] and
degraded by additive colored noise. Using EED, a denoised version was created from
each individual copy. Finally, averaged volumes were calculated from both, the
original “noisy” volumes (noisy ensemble) and the denoised versions (denoised
ensemble). The results are presented in Fig. 4. The average of the denoised ensemble
appears smoother and significant details are suppressed. Obviously, the signal is
degraded by the diffusion process.

In contrast to the apparent signal degradation, the cross-correlation coefficients of
the denoised ensemble are higher than those of the noisy ensemble, indicating a
higher resolution. This surprising result does not reflect a contradiction, because
nonlinear anisotropic diffusion enhances the SNR and simultaneously reduces the
magnitude of the Fourier coefficients. The statement may become clearer when linear
diffusion is considered. In this case, the average volume is also blurred but the RCF is
not changed at all. Since linear diffusion is equivalent to a linear filtration using a
gaussian kernel, the data in the Fourier domain are damped by a factor which is
constant within shells, and the cross-correlation coefficients used for the RCF remain
unchanged. Obviously, the RCF-curves in Fig. 5 reflect the gain in the SNR when
linear diffusion is replaced by the edge-enhancing approach.
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Fig. 5. Fourier shell correlation function of the denoised and original particles.

5.2 Frequency equalization

Edge enhancing diffusion is a nonlinear process and cannot be described by a
linear time invariant theory. Nevertheless, the improvement of the SNR described
above gives some justification to improve the visual appearance of the average
volume by a linear frequcncy enhancement. The global energy in the volume
decreases with increasing evolution time when diffusion is applied (Lyapunov
functional [13]). Due to Parseval’s theorem, the energy in the Fourier domain
decreases correspondingly. The amount of this decrease can be determined as a
function of frequency by investigating volume ensembles. As above, original and
denoised volume data representing the Thermosome molecule are used to calculate the
root mean square amplitudes on each shell in the Fourier domain. The curve in Fig. 6
shows the ratio of mean amplitudes of the original and the denoised data and reveals a

“bandstop™ characteristic of edge-enhancing diffusion.
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Fig. 6. Ratio of the root mean square amplitudes in the Fourier domain.

This function can be used for equalization in conventional manner. The result
when equalizing the average of the denoised particle is shown in Fig.7. The edges are



Nonlinear Anisotropic Diffusion in Three-Dimensional Electron Microscopy 395

more distinct and the output looks similar to the average of the original particles.
Furthermore, the noise enhancement is minimal.

Fig. 7. Equalization of the nonlinear diffusion process

The idea arising from this observation is to determine a global “transfer function”
and to equalize the data in the Fourier domain after the diffusion process. It is an open
question whether or not such a function can be applied to all objects. We expect that
the answer will be no, considering the non-linearity of the diffusion procedure and the
diversity of objects studied by electron tomography. It is perhaps possible to define
transfer functions for distinct classes of objects. In any case, further investigations are
needed to clarify this point.

6 Discussion

An EED/CED hybrid model of nonlinear anisotropic diffusion techniques has been
realized in 3D and adapted to the field of electron tomography. The examples
presented in Figs 1-3 demonstrate a satisfactory performance especially in the case of
very “noisy” data (SNR<-1dB). The smooth background indicates that an efficient
noise reduction is achieved while the signal is well preserved. The diffusion approach
turns out to be clearly superior to conventional methods of noise filtration, e.g. low-
pass filtering or median filtering. Most important for electron tomography, the
visualization of very complex volume data by isosurface representations or volume
rendering is considerably improved, and the interpretation of the results from the
biological point of view is facilitated. It is worth to note that the approach takes
advantage from both, FED and CED, by avoiding artifacts arising from each of these
methods. Connectivity and flow-like structures are preserved, while noise reduction
and edge enhancement produce a significant SNR improvement.

The design of the diffusion flux is more complicated in 3D than in 2D. An
optimum setup should use the full structural information specified locally by all three
eigenvalues of the averaged structure tensor. For instance, the second eigenvalue g,
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can be used to switch between 2D and 1D flux. However, tests based on this approach
gave unsatisfactory results because g, is very sensitive to noise. When a 2D flux is

applied erroneously to a 1D structure, artifacts may occur; e.g., a line may be
degraded to a sword-like structure due to the Gaussian elongation in the additional
direction. Further investigations are necessary to optimize the procedure. This is also
true for another drawback of the method, namely the discretization stencil. In the
present implementation, central differences are used for the model discretization and
consequently, signals belonging to frequencies near the Nyquist frequency are totally
eliminated. This may be improved in a straightforward way by better gradient
approximating methods.

One might also ask, whether a 2D denoising of the projection images could replace
the more complicated and time-consuming 3D denoising of the final tomographic
reconstruction. However, the tomographic reconstruction process relies on a linear
relationship between the projection images and the density values. Nonlinear
diffusion would destroy this relationship, possibly causing severe artifacts. According
to previous experiences with another nonlinear denoising technique, the so-called
wavelet denoising [11], such an approach cannot be recommended.

A fascinating idea is to use the wavelet transformation in conjunction with
nonlinear anisotropic diffusion. Obviously, the transformation could be applied in
order to obtain more reliable information on local structures. Recently we have used
the wavelet coefficients for estimating the diffusivity parameter. Preliminary results
are very encouraging, apart from a slowing down of the process. An extended use of
the wavelet transformation requires more detailed investigation. Unfortunately there
is a lack of motivation to develop such an approach because higher dimensional
applications of the wavelet transformation suffer from artifacts while more
sophisticated translation- and rotation-invariant realizations require an intolerable
effort in computer power. For electron tomography, the present setup of nonlinear
anisotropic diffusion appears to be the most favorable approach regarding the
efficiency of noise reduction, signal preservation and computing effort.
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Abstract. We propose a simple approach to evolution of polygonal
curves that is specially designed to fit discrete nature of curves in digi-
tal images. It leads to simplification of shape complexity with no blur-
ring (i.e., shape rounding) effects and no dislocation of relevant features.
Moreover, in our approach the problem to determine the size of discrete
steps for numerical implementations does not occur, since our evolution
method leads in a natural way to a finite number of discrete evolution
steps which are just the iterations of a basic procedure of vertex deletion.

Keywords: discrete curve evolution, shape simplification, shape recognition

1 Introduction

We assume that a closed polygon P is given (that does not need to be simple). In
particular, any boundary curve in a digital image can be regarded as a polygon
without loss of information, with possibly a large number of vertices.

The main motivation for the presented discrete curve evolution is the fact that
the boundary of a segmented object in a digital image contains misinformation
but misses no information. Clearly, there is digitization and segmentation noise
on the boundary of a segmented object, that results in displacement of the
boundary points. However, as long as it is possible to recognize the overall shape
of the object, the shape information is contained in the given contour.

Most of the standard approaches in computer vision try to compute the
original position of the displaced boundary points. This is only possible if the
class of shapes to which the analyzed shape belongs is explicitly known and is
sufficiently restrictive, e.g., fitting ellipses.

On the other hand, it is not necessary to recover the original position of the
boundary points in order to recognize the shape. A pointwise interpretation of
this fact is that there exists a subset A of the set of the boundary points B
that is sufficient to represent the shape of the object. The other pointsin B\ A
either are redundant for the shape or had been influenced by noise. Clearly, the
points in the set A may also be displaced due to noise, but nevertheless they
are sufficient to recognize the shape, if the amount of displacement is such that
people can still recognize the shape. For example, this is the case for the contour

M. Nielsen et al. (Eds.): Scale-Space’99, LNCS 1682, pp. 398-409, 1999.
(© Springer-Verlag Berlin Heidelberg 1999
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of the building obtained from an aerial image in Figure 1 (cf. Brunn et al. [3],

Fig. 4), where it is still possible to recognize the overall shape, although the
amount of displacement of boundary points is relatively large.

-

SR

s

Fig. 1. It is possible to recognize the overall shape of the building, although the amount
of displacement of boundary points is relatively large.

The presented discrete curve evolution allows us for a given object bound-
ary to find a subset A of the set of the boundary points B that is sufficient to
represent the shape of the object, i.e., points important for the object shape
remain after the application of the discrete curve evolution. For example, com-
pare the contour (a) with (¢) in Figure 2, where the contours (b) and (c) are
obtained from (a) by our discrete curve evolution. Observe also an enormous
data reduction: contour (c) in Figure 2 contains only 3% of points of contour
(a).

The fact that the discrete curve evolution allows us to find a subset A of
the set of the boundary points B that is sufficient to represent the shape of the
object is not only justified by experimental results, some of which we present in
this paper, but also by the continuity theorem in [7]. This theorem states that
if polygon B is sufficiently close to a polygon A, then the evolved version of
polygon B will remain close to polygon A.

In scale-space theory a curve (or surface) I' is embedded into a continuous
family {I} : ¢ > 0} of gradually simplified versions. The main idea of scale-
spaces is that the original curve (or surface) I' = Iy should get more and more
simplified and noise and small structures should vanish as parameter ¢ increases.
Thus, due to different scales (values of t), it is possible to separate small details
from relevant shape properties. The ordered sequence {I} : t > 0} is referred
to as ewvolution of I'. Scale-spaces find wide application in computer vision, in
particular, due to smoothing (= noise influence is reduced) and elimination of
small details (= relevant shape features remain). Some of the main applications
are quality enhancement of images, noise removal, and shape description and
recognition (e.g., see Sethian [12]).
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Fig. 2. (a) — (b): noise elimination. (b) — (¢): extraction of relevant line segments.

The scale-space evolition is mostly based on parabolic partial differential
equations. The oldest and best-studied are scale-spaces based on a linear diffu-
sion equation (also called geometric heat equation), e.g., see Weickert [15]. The
solutions of diffusion equations can be obtained by convolution of the original
curve (or surface) with a Gaussian function with parameter ¢ (Kimia and Siddiqi
[5]). Hence the solutions correspond to Gaussian smoothing of the original curve
(or surfaces) with support size £. This leads to a multiseale, curvature-based
shape representation.

Along with the advantages of evolution based on the linear diffusion equation,
there are also some serious problems (Weickert [15], p. 6):

(a) “Gaussian smoothing does not only reduce noise, but also blurs mportant
features such as edges and, thus, makes them harder to identify. Since Gaus-
sian scale-space is designed to be completely uncommitted, it cannol take
wnto account any a-priori information on structures which are worth being
preserved (or even enhanced).

(b) Diffusion dislocates features when moving from finer to coarser scales. So
features identified at a coarse scale do not give the right location and have
to be traced back to the original émage [16]. In practice, relating dislocated
information obtained at different scales is difficull and bifurcations may give
rise to instabilities. These coarse-lo-fine tracking difficulties are generally
denoted as the correspondence problem.”

To reduce these problems, many anisotropic and nonlinear diffusion processes
have been proposed for scale-spaces (for an overview see, Weickert [15]). Also
reaction-diffusion equations, which lead to reaction-diffusion scale spaces, have
been considered (Kimia, et al [6]).

We propose a different approach to scale-space evolution in which both prob-
lems simply do not oceur. Our departing point is a discrete nature of curves and
surfaces in digital images. In opposite to standard approaches in scale-spaces,
our evolution is guided neither by differential equations nor Gaussian smoothing,
and it is not a discrete version ol an evolution by differential equations, as it is
the case in Bruckstein, et al. [2|. The main properties of the proposed evolution
are (see Iigure 3):
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e Although it leads to noise elimination, it does not introduce any blurring
effects.
e Although irrelevant features vanish during our evolution, there is no dislo-

cation of relevant features.
Fig.3. A few stages of our curve evolution. The first contour is a distorted version of

the contour on www-site [17].

In comparison to scale-space methods, the main differences are

[y

. By numerical implementations of diffusion equations, every vertex of the
polygon is translated at a single evolution step, whereas in our approach the
remaining vertices do not change their positions.

. The translation vector of each point in a diffusion process is locally deter-
mined, whereas our polygonal evolution is guided by a relevance measure
that is not a local property with respect to the original polygon.

. The process of the polygonal evolution is parameter-free.

N

w

Although there exist diffusion process that are parameter-free in the sense
that constant values for parameters are known that apply to large classes of
curves, for most numerical implementations of parabolic differential equations
several parameters are necessary and it is theoretically unknown how to relate
and determine the parameters. This is due to

(c) problems with stability and computation time of discrete, numeric realiza-
tions of diffusion processes.

An example problem is to specify the discrete time steps ¢ necessary for a stable
numeric computation. Since the scale-space theories are continuous theories, i.e.,
scale (or time) parameter { varies over positive real numbers, the determination
of discrete steps is a non-trivial problem; if the steps are too large, it can happen
that too many relevant features vanish, and on the other hand, too small discrete
steps lead to an inefficient computation. Additionally, a given digital curve (or
surface) has some fixed grid resolution that cannot be made infinitely small,
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and this resolution not always satisfies the requirements for stabile numerical
solutions of partial differential equations. A different but related problem is the
following:

(d) “Diffusion filters with a constant steady-state require to specify a stopping
time if one wants to get nontrivial results.” (Weickert [15], p.19)

Clearly, if the stopping time (i.e., stopping parameter t) is too large, it can
happen that all relevant features do not any more exist at scale t.

The proposed evolution method leads in a natural way to a finite number
of discrete evolution steps which are just the iterations of a basic procedure of
vertex removal. Thus, the problem to determine the size of discrete steps does
not, occur. This also drastically simplifies the problem of stopping time.

2 Discrete Curve Evolution

Let P be a closed polygon (that does not need to be simple). We will denote
the vertices of P with Vertices(P). A discrete curve evolution produces a se-
quence of polygons P = P° ..., P™ such that |Vertices(P™)| < 3, where | . |
is the cardinality function. Each vertex v in P? is assigned a relevance mea-
sure K (v, P*) € IR>g. The relevance measure K (v, P?) that we used for our
experiments is defined below. The process of the discrete curve evolution is very
simple:

For every evolution step ¢ = 0,...,m — 1, a polygon P! is obtained after the
vertices whose relevance measure is minimal have been deleted from P?.

In order to give a precise definition of the discrete curve evolution, we first
define

Definition: K,,;,(P?) to be the smallest value of the relevance measures for
vertices of P

Kpin(PY) = min{K (u, P") : u € Vertices(P")}
and the set me(Pi) to contain the vertices whose relevance measure is minimal
in P
Vinin(PY) = {u € Vertices(P?) : K(u, P") = Kppin(P%)}
fort=0,...,m—1.

Definition: For a given polygon P and a relevance measure K, we call a
discrete curve evolution a process that produces a sequence of polygons
P =PY ..., P™ such that

Vertices(P™1) = Vertices(P*) \ Viyin (P,

where |Vertices(P™)| < 3.
The process of the discrete curve evolution is guaranteed to terminate, since
in every evolution step, the number of vertices decreases by at least one. It is also
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obvious that this evolution converges to a convex polygon, since the evolution
will reach a state where there are exactly three, two, one, or no vertices in
P™. Clearly, the only polygon with three vertices is a triangle. Of course, for
many curves, a convex polygon with more then three vertices can be obtained
in an earlier stage of the evolution. The only polygon with two vertices is a line
segment. A polygon with one vertex is also trivially convex. Only when the set
Vertices(P™) is empty, we obtain a degenerated polygon equal to the empty
set, which is trivially convex. Thus, we obtain for every relevance measure

Proposition 1. The discrete curve evolution converges to a conver polygon,
i.e., there exists 0 < ¢ < m such that P is convex, and if 0 < ¢ < m, all
polygons P, .. P™ are conver. [ |

This proposition demonstrates mathematical simplicity of the relation be-
tween our evolution approach and the geometric properties of the evolved poly-
gons. Observe that this proposition also holds for polygons that are not sim-
ple (i.e., have self-intersections). An analog theorem for evolution of continuous
planar curves by diffusion equations is a deep and highly non-trivial result of
differential geometry. It holds only for simple closed smooth curves evolved by
the heat equation:

Theorem (Grayson [4]) An embedded planar curve converges to a simple
convex curve when evolving according to:

O(0) = Cofe), M

2
{ aC(s,t) _ @ gs(s,t) — w5, )N (s, )
where C' : S' x [0,7) — IR? is a family of smooth simple curves, s is the
Euclidean arc-length, s the Euclidean curvature, and IN the inward unit normal.
The diffusion equation (1) is called a geometric heat equation for a curve. The
flow given by (1) is called the Fuclidean shortening flow.

Polygonal analogs of the evolution by diffusion equations are presented in
Bruckstein, et al. [2]. The experiments in [2] indicate that an arbitrary initial
polygon converges to a convex polygon (polygonal circle). However, the proof of
this fact in the Euclidean case is an open question. In [2] as well as in evolu-
tions by numerical solutions of differential equations, each vertex of the polygon
with nonzero curvature is displaced at a single evolution step, whereas in our
approach some vertices are removed and the remaining vertices do not change
their positions. This is an important difference which leads to several proper-
ties of our approach (described in the next section) that are favorable for many
applications.

The convexity result (and some other properties of the discrete curve evo-
lution) holds for any relevance measure. However, there are some important
properties like continuity that depend on the choice of the relevance measure
(see Section 3).

The key property of the evolution we used for our experiments is the order
of the deletion determined by the relevance measure. Our relevance measure
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K (v, P*) depends on vertex v and its two neighbor vertices u,w in P?, i.e.,
K(v, P*) = K(v,u,w). It is given by the formula

~ plly

K(v,u,w) = K(3,11,13) = T

(2)

where 3 is the turn angle at vertex v in P?, I is the length of 7@, and I is the
length of 7w. (Both lengths are normalized with respect to the total length of
polygon P*.) Intuitively it reflects the shape contribution of vertex v in P*. The
main property is the following

o The higher the value of K (v, u, w), the larger is the contribution of arc vaUrw
to the shape of polygon P?.

Observe that this relevance measure is not a local property with respect to
the polygon P, although its computation is local in P? for every vertex v. A
motivation for this measure and its properties are discussed in [§].

An algorithmic definition of the discrete curve evolution is given in [8] and
live examples can be found our www-site [9]. The curve evolution in [8] differs
from the one defined here if two or more vertices in P? have the same relevance
measure. The evolution in [8] removes in a single step only one vertex. If in the
course of the evolution no two vertices in P? have the same relevance measure,
then the algorithmic definition in [8] and the above definitions are equivalent.

3 Properties of the Discrete Curve Evolution

We will show in this section that our discrete curve evolution has the following
properties that do not depend on the choice of the relevance measure:

(Py) It leads to a simplification of shape complexity.
(Py) Tt does not introduce any blurring (i.e., shape rounding) effects and
(P3) there is no dislocation of relevant features,

due to the fact that the remaining vertices do not change their positions. Two
more important properties of our curve evolution are based on the relevance
measure defined in Section 2:

(Py) Tt is stable with respect to noisy deformations and noise elimination takes
place in early stages of the evolution.

(P5) It allows to find line segments in noisy images, due to the relevance order
of the repeated process of linearization (e.g., Figure 2).

We begin with some examples to illustrate these properties. A few stages of
the proposed curve evolution in Figure 3 illustrate the shape complexity reduc-
tion. Observe that our curve evolution does not introduce any blurring effects,
which result in shape rounding for curves. (for a comparison see the curve evo-
lution on www-site [17], based on [10]). There is no dislocation of the remaining
relevant shape features, since the planar position of the remaining points of the
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L >

Fig. 4. Discrete curve evolution is stable with respect to distortions. The same planar
position of the points marked with the same symbols demonstrates that there is no
displacement of the remaining feature points.

digital polygon is unchanged. This is demonstrated by marking the correspond-
ing points with the same symbols in Figure 4. Observe also the stability of feature
points with respect to noise deformations shown in the second row in Figure 4.

By comparison of the curves (a) and (b) in Figure 2, it can be seen that our
evolution method allows us first to eliminate noise influence without changing
the shape of objects (Py). If we continue to evolve the curve (b), the deletion
of vertices guided by our relevance measure results in a process of repeated lin-
earization. This way the original line segments can be recovered in noisy images,
see Figure 2(c) (cf. Brunn et al. [3], Fig. 4).

Now we give a more formal justification of the above properties. The reduc-
tion of shape complexity of a polygonal curve during the evolution process (1)
is justified by Proposition 1. Additionally, the shape complexity of a polygonal
curve can be measured by the sum of the absolute values of the turn angles.
Let C be a closed polygonal curve with vertices v, ...,v,_1. Then the shape
complexity of C' is given by

n—1

SC(C) Z [turn(v;)|,

i=0

where turn(v;) is the turn angle at vertex v; in C. Clearly, the shape complexity
of any closed convex curve is 27 and the shape complexity of a closed non-convex
curve is greater than 2.

Proposition 2. The shape complezity SC(C) of a closed polygonal curve C is
monotonically decreasing in the course of the discrete evolution, i.e., if C =
CO,...,C™ with |C™| < 3 is a sequence of simplified curves obtained by the
evolution of C, then SC(C*) > SC(C*H1) for0 <k <m —1.

Proof: The curves C* and C**1 differ by at least one vertex, say vg € CH\CF1,
Let w41 and w441 denote the neighbor vertices of v4 in C*, and let A be the
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polygonal subarc of C* composed of the four digital line segments whose end-
points are vertices vg_1,v4,v4_1. If A is a convex arc, then SC(C*) = SC(C*+1)
(e.g, see Figure 5(a)). If A is not a convex arc, then SC(CF) > SC(C**1) (e.g,
see cases (b), (¢), and (d) in Figure 5). [ |

(b)

Fig. 5. The shape complexity remains the same (a) or decreases (b), (¢), and (d) after
a single vertex has been deleted.

The following proposition is a direct consequence of the definition of the
evolution procedure:

Proposition 3. Let C = C°,...,C™ with |C™| < 3 be a sequence of simplified
curves obtained by the discrete evolution. For every vertex v of digital polygonal
curve C that also belongs to C*, the position of v on the plane as vertex of C is
the same as the position of v as a vertex of C*. O

From Proposition 3, it clearly follows that there is no dislocation of the
remaining features during the curve evolution. Thus, in our approach the corre-
spondence problem of coarse-to-fine tracking difficulties does not occur. In con-
trary, in the course of curve evolution guided by diffusion equations, all points
with non-zero curvature change their positions during the evolution. Proposition
3 also explains why our curve evolution does not introduce any blurring (i.e.,
rounding) effects: In a single evolution step, all vertices remain at their Euclidean
positions with exception of the removed vertices. The two neighbor vertices of
a removed vertex are joined by a new line segment, which does not lead to any
rounding effects.

We proved that the discrete curve evolution with the relevance measure
K(v,u,w) is continuous (Theorem 1 in [7]): if polygon @ is close to polygon
P, then the polygons obtained by their evolution are close. Continuity guaran-
tees us the stability of the discrete curve evolution with respect to noise (Py),
which we observed in numerous experimental results.

The fact that noise elimination takes place in early stages of the evolution
is justified by the relative small values of the relevance measure for vertices
resulting by noise:

Mostly, if two adjacent line segments result from noise distortions, then when-
ever their turn angle is relatively large, their length is very small, and whenever
their length is relatively large, their turn angle is very small. This implies that
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if arc 7@ U 7w results from noise distortions, the value K(v,w,w) of the rele-
vance Mmeasure at vertex v will be relatively low with high probability. Hence
noise elimination will take place in early stages of the evolution. This fact also
contributes to the stability of our curve evolution with respect to distortions
introduced by noise.

The justification of property (FPs) is based on the fact that the evolution
of polygon @ corresponds to the evolution of polygon P if @ approximates P
(Theorem 2 in [7]): If polygon @ is close to polygon P, then first all vertices of @
are deleted that are not close to any vertex of P, and then, whenever a vertex of
P is deleted, then a vertex of @ that is close to it is deleted in the corresponding
evolution step of ). Therefore, the linear parts of the original polygon will be
recovered during the discrete curve evolution.

4 Topology-Preserving Discrete Evolutions

Our discrete curve evolution yields results consistent with our visual perception
even if the original polygonal curve P have self-intersections. However, it may
introduce self-intersections even if the original curve were simple (e.g., see Figure
6). Now we present a simple modification that does not introduce any self-
intersections for a simple polygon P.

We say that a vertex v; € Vertices(P?) is blocked in P if triangle v; 1v;v; 11
contains a vertex of P? different from v;_1,v;, v;41. We will denote the set of all
blocked vertices in P* by Blocked(P?).

Definition: For a given polygon P and a relevance measure K, the process of
the discrete curve evolution in which
Kpnin(PY) = min{ K (u, P*) : u € Vertices(P?) \ Blocked(P")}
and
Viin(PY) = {u € Vertices(P?) \ Blocked(P") : K(u, P") = K, (P}

will be called a topology-preserving discrete curve evolution (e.g., see
Figure 6).

The question is whether this modified curve evolution will not prematurely

terminate. This would be the case if Vertices(P?) = Blocked(P"). Tt can be
shown that this is not the case, i.e., it holds for i =0,...,m — 1

Vertices(P') \ Blocked(P") # 0.

5 Conclusions and Future Work

We presented a discrete approach to curve evolution that is based on the obser-
vation that in digital image processing and analysis, we deal only with digital
curves that can be interpreted as polygonal curves without loss of information.

The main properties of the proposed discrete evolution approach are the
following:
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Fig. 6. The discrete curve evolution may introduce self-intersections, but after a small
modification it is guaranteed to be topology-preserving.

(P1) Analog to evolutions guided by diffusion equations, it leads to shape sim-
plification but

no blurring (i.e., shape rounding) effects occur and

there is no dislocation of feature points.

It is stable with respect to noisy deformations.

It allows to find line segments in noisy images.

EEES

)
)
)
)

These properties are not only justified by theoretical considerations but also by
numerous experimental results. Additionally, the mathematical simplicity of the
proposed evolution process makes various modifications very simple, e.g., by a
simple modification, a set of chosen points can be kept fixed during the evolution.

Our evolution method can be also interpreted as hierarchical approximation
of the original curve by a polygonal curve whose vertices lie on the original curve.
Our approximation is fine-to-coarse and it does not require any error parameters,
in opposite to many standard approximations, where starting with some initial
coarse approximation to a curve, whereupon line segments that do not satisfy an
error criterion are split (e.g., Ramer [11]). A newer and more sophisticated split-
and-merge method for polygon approximation is presented in Bengtsson and
Eklundh [1], where multiscale contour approximation is obtained by varying an
error parameter ¢, which defines a scale in a similar manner as it is the case
for diffusion scale-spaces. This implies similar problems as for scale-spaces, e.g.,
How to determine the step size for the parameter ¢t7 Additionally, the scale-space
property of shape complexity simplification does not result automatically from
the approach in [1], but is enforced ([1], p. 87): “New breakpoints, not appearing
at finer scales, can occur but are then inserted also at finer levels.”

There are numerous application possibilities of our method for curve evo-
lution in which scale-space representations play an important role, e.g., noise
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elimination and quality enhancement, shape decomposition into visual parts,
salience measure of visual parts, and detection of critical or dominant points
(Teh and Chin [13], Ueda and Suzuki [14]). The specific properties of our curve
evolution yield additional application possibilities like detection of straight line
segments in noisy images, which can be used for model-based shape recovery
(Brunn, et al. [3]), and polygonal approximation (cf. [1]).

A paper on a discrete surface evolution that is analog to the presented polyg-

onal evolution is in preparation.
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Abstract. Multiresolution techniques are often used to shorten the ex-
ecution times of dynamic programming based deformable contour op-
timization methods by decreasing the image resolution. However, the
speedup comes at the expense of contour optimality due to the loss of
details and insufficient usage of the external energy in decreased res-
olutions. In this paper, we present a new scale-space based technique
for deformable contour optimization, which achieves faster optimization
times and performs better than the current multiresolution methods. The
technique employs a multiscale representation of the underlying images
to analyze the behavior of the external energy of the deformable contour
with respect to the change in the scale dimension. The result of this anal-
ysis, which involves information theoretic comparisons between scales, is
used in segmentation of the original images. Later, an exhaustive search
on these segments is carried out by dynamic programming to optimize
the contour energy. A novel gradient descent algorithm is employed to
find optimal internal energy for large image segments, where the external
energy remains constant due to segmentation.

We present the results of our contour tracking experiments performed on
medical images. We also demonstrate the efficiency and the performance
of our system by quantitatively comparing the results with the multires-
olution methods, which confirm the effectiveness and the accuracy of our
method.

1 Introduction

A deformable contour[8] is an energy minimizing model which is popularly used
for automatic extraction and tracking of image contours. One of the main rea-
sons of the popularity of deformable contours is their ability to integrate image
level bottom up information, task dependent top down knowledge information

* This work is supported by Grant No. R01 DC01758 from NIH and Grant No. IRI
961924 from NSF.

M. Nielsen et al. (Eds.): Scale-Space’99, LNCS 1682, pp. 410-421, 1999.
(© Springer-Verlag Berlin Heidelberg 1999
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and the desirable contour properties into a single optimization process. A de-
formable contour model has two types of energies associated with it: an internal
energy, which characterizes the desirable attributes of the contour, and an ex-
ternal energy, which ties the contour with the underlying image. The framework
is based on minimizing the sum of these energies. Formally, a discretized version
of a deformable contour is an ordered set of points V' = [v1, v9, ..., v,]. Given an
image I, the energy associated with a deformable contour, V, can be generally
written as

n
Esnake(V) =3 aBini(v;) + BEeyi (i, 1) (1)
i=1
where F;,; is the internal and F.,; is the external energy of the contour element
v;, and « and [ are the weighting parameters.

Although for the majority of the applications, the main framework for the
formulation stayed more or less the same, there have been numerous proposals
for minimization techniques. Original proposal[8] and many others used varia-
tions of gradient descent algorithms for the minimization of Equation(1). While
the internal energy definitions are suitable for optimizations based on gradient
descent, external energies usually include large amounts of noise, which makes
gradient descent methods sensitive to convergence to local minima instead of
global minima, numerical instability and inaccuracy problems.

Application of dynamic programming (DP) to deformable contour minimiza-
tion [3][5] addresses these problems. As we will explain in section 2.1, DP solves
the optimality, numerical stability and incorporating hard constraints problems.
However, although the time complexity is polynomial, DP suffers from long
execution times. In order to shorten execution times for practical applications,
researchers commonly suggested[5] using a multiresolution framework. The main
idea of using multiresolution techniques for DP is to decrease the number of
degrees of freedom for each contour element. Since the underlying images are
smaller at the lower resolutions, there are less number of image positions that a
contour element can take, resulting in faster exhaustive enumeration times. The
details of current multiresolution techniques are explained in section 2.2.

There are some problems with the above multiresolution techniques. First,
during the construction of lower resolution levels, these techniques utilize the
external energy of the deformable contour minimally. This is a serious prob-
lem because only the external energy ties the deformable contour to the new
resolution image. Another problem with the current multiresolution methods is
that, while the image size is decreased, the fact that the new resolution image
will be used in an exhaustive enumeration, which is a very costly process, is
completely neglected. Neighboring image locations that will produce the same
energies should be unified to one location. We describe the details of these prob-
lems and a few others in Section 2.2.

This paper addresses the above problems by employing a multiscale repre-
sentation instead of a multiresolution representation. The method segments the
underlying images by analyzing their structures with respect to the external
energy in the scale-space. The segments are formed in a way that, in the fi-
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nal segmentation the external energy related information is kept closer to the
maximum by measuring the change of this information with respect to the scale
change through an information theoretic approach. A special dynamic program-
ming technique[l] is then applied to optimize the energy of Equation(1) by using
the centroids of these segments as the degrees of freedom. This paper extends
our previous work[l] by employing a different segmentation technique that uses
information and scale-space theory.

2 Snakes, DP, and Problems with Multiresolution
Methods

In this section we define the deformable contour energies, the details of DP
methods and multiresolution methods. We will also describe the problems that
we address in detail.

2.1 Snakes and DP

Equation(1) describes the general form of the snake energy. The internal en-
ergy of the snake serve to impose smoothness and continuity of the contour. As
mentioned earlier, the external energy, on the other hand, ties the contour to
the underlying image by pushing the snake toward application dependent image
features like edges. One of the biggest advantages of using snakes is that spe-
cific applications can change the internal and external energy definitions without
affecting the general framework.
We define the internal energy as follows:

—
V;_1Y; . ;U5
Eint(vi) = [ 1 = _l)—j + v = vig1]| = d] (2)

|%‘71%‘| |Wﬂh‘+1|

where v is the weighting parameter and d is the distance needed between the

contour elements. The first part of this energy formulation, which is the dot

product of two vectors(Figure 1), is for imposing smoothness of the contour.
Given an image I, one possible definition for the external energy is

Eepi(vi, I) = — |VI{(v;)] (3)

which is the negative of the image gradient VI at v;. Given the above formula-
tions and an image I, we can extract and track object boundaries by defining a
search window around each contour element and selecting the candidates from
these search windows that minimizes the snake energy (Figure 1). The desired
contour, V' = [vy,v9, ..., v,], can be obtained by

n
V =arg rrgnz aFy(v;) + BE e (v, I) (4)

i=1
Assuming there are m different positions that the contour element v; can take
in a search window W;, the cost of iteratively testing each possible element con-
figuration is O(m™), which grows exponentially. Fortunately, the optimization
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Fig. 1. Each contour element v; has a search window W, defined around it.

of the snake energy can be done in polynomial time using dynamic program-
ming. Amini et. al.[3] and Geiger et. al.[5] proposed DP methods for deformable
contour optimization. In this paper, we will use Amini et. al. formulation. Our
system can easily be ported to the system of Geiger et. al.

The main idea under the DP method is that each contour element, v;, can
take only one possible position from the search window W,. We also observe
that the energy formula of Equation(1) can be written in terms of separate
energy terms of Fy, Fs, .., F,,_o, such that each energy term FE,;_; depends only
Ol U;_1,Vi,Vi41.

Fsnake(v1,v9, ...;vn) = Ey(vy,v9,03) + Fay(vg, vg,va) + ...+ Epy_o(vp_9,05_1,0y)

where
Ei 1(vi—1,05,0i41) = Bt (v;) + Eear(v;). (5)

Next we write a set of optimal value functions that hold the best energy config-
urations up to the current contour element.

s1(va,v3) = min Ei(v1,v2,03)
1

82(1}3,1}4) = ngin EQ(Q}Q, U3, 1}4) + 81(1}2, 1}3)
2

3n72(7}n717 2}n) - 1I]H1H En72 (”n727 Un—1, 2}n) + sn—3 (”n727 2}nfl)
n—2

Finally, we can write

minESnake = min Sn,Q(Q}n,l,l}n).
Un—1,Un
Since each optimal value function is calculated by iterating on three contour
elements and there are n — 2 of them, the time complexity of DP algorithm
is polynomial and it is O(nm?). The resulting contour produced by the DP
algorithm is optimal since it checks every possible alternative.

Although the time complexity of DP algorithm is polynomial, it is still too
slow for some practical applications. Application of DP in combination with
multiresolution methods addresses this problem, which is explained in the next
section.



414 Y.S8. Akgul and C. Kambhamettu

Fig. 2. A multiresolution representation of an echocardiographic image: The leftmost
image is the original 240x240 image. The rightmost image is the 15x15 top level image.
Fach pixel in this 15x15 image represents a square shaped 16x16 segment marked on
the original image.

2.2 DP with Multiresolution Methods and Problem Details

We will use the Gaussian pyramid as the basic multiresolution method|4] in ex-
plaining the general structure and describing the problems. Ceiger et. al.|5] uses
a different multiresolution schemel6], which preserves discontinuity between the
image resolutions. However, most of the problems with the existing techniques
are also present in their method.

A Gaussian pyramid for an image | is a sequence of copies of I, where each
successive copy has half the resolution and sample rate. The levels of a Gaussian
pyramid for given image I is calculated as

G1(ij0) = 1(ij)
Gi(ijk) = Z w(mn)Gp(2 — m,25 —n,k—1) (6)

L, 91

where k is the pyramid level. The motivation in using a multiresolution method
for the snake optimization is that lower the image resolution, smaller the search
windows, which means lower number of candidate positions in each search win-
dow. Decreasing the resolution in a multiresolution representation may be viewed
as segmenting the original image into equal sized square segments and represent-
ing each segment with a single pixel whose gray-level value is usually given by
the average of the area around the segment(Figure 2). Deformable contour opti-
mization algorithms are applied to the highest level of the pyramid. The obtained
contour is an approximation of the final contour and it is used as the initial snake
position for the next lower level. Using a smaller window size, the optimization
is performed at the current level, and the process continues until the contour is
optimized at the lowest level, which is the original image level. As expected, a
multiresolution based DP does not necessarily produce optimal contours.

We mentioned before that only the external energy ties the deformable con-
tour to the underlying image. However, during resolution decreasing steps, Equa-
tion (6) utilizes external energy minimally, which increases the loss of external
energy related information. We argue that, unlike in I"igure 2, the pixels in the
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lowest-resolution image should represent different sized segments in the original
image. This will give us a possibility of choosing a smaller segment size on areas
where external energy shows greater variations, resulting in better representation
of external energy and less loss of external energy related information.

Another problem with the above multiresolution method is efficiency related.
We know that the purpose of using a multiresolution method is to reduce the
number of candidates in a search window so that the enumeration process gets
faster. Therefore, during the construction of the newer resolutions, neighboring
elements of search windows that will produce about the same energy should be
unified into a single element. This modification can also be done by employing
different sized segments — We choose a larger segment for areas where external
energy remains relatively constant on the original image. This will increase the
system efficiency without decreasing the performance because at the upper levels
of the pyramid, we are not looking for the final version of the contour but only
an approximation.

3 A New Scale-Space Based Approach for Deformable
Contour Optimization

In the previous section, discussions on the problems of DP multiresolution meth-
ods suggested that in order to utilize external energy properly, each pixel in the
lowest resolution pyramid image should represent a variable sized segment in the
original image. However, achieving this is very difficult with the multiresolution
techniques because of their inherent nature — A pixel in a multiresolution pyra-
mid level can only represent a fixed sized segment in the lower pyramid level.
Therefore our new method does not use the multiresolution approach.

Our solution is based on scale-space techniques, which have received a con-
siderable amount of attention in the computer vision field[10]. The main idea
of producing a multiscale representation is to simplify the underlying image by
removing the fine scale details while continuously increasing the scale. This kind
of approach gives us the possibility of analyzing the image structure with respect
to scale. In other words, we can analyze the change of the image structure while
the image undergoes a simplification transformation. There are major differences
between a multiresolution representation and a multiscale representation. Lin-
deberg has a thorough discussion about the differences in [10] and we use the
terminology used by him. As its name implies, a multiresolution representation
decreases the image resolution while forming the pyramid levels. On the other
hand, a multiscale representation keeps the spatial sampling constant while the
scale changes.

Our new method for deformable contour optimization forms a separate scale-
space for the search window of each contour element v; of a snake V. Using an
information theoretic approach, we then analyze the behavior of the external
energy under the scale change to come up with a set of different sized square
shaped segments of the search windows. We apply a special dynamic program-
ming optimization[l] using the centroids of these segments as the possible po-
sitions for optimized contour elements »;. The resulting contour is used as the
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initial contour position for the same kind of optimization with a smaller scale-
space representation and smaller search window sizes. The process continues
until the segments of the search windows correspond to an original image pixel,
after which no segmentation is meaningful.

3.1 Analyzing the Underlying Images and the Segmentation

The scale-space for a search window is constructed by a repeated convolution
of the search window with a Gaussian kernel of increasing standard deviation o
sampled at discrete intervals. Given a search window W, we construct the scale
space L;(z,y;0) by

Li(z,y;0) = g(z,y;0)xWi(z,y) :/Q/

5 2102

o?4p2

¢ 53 Wi(a—a,y—B)dads (7)

where L;(x,y;0) = W;(z,y) and g(z,y; o) is the Gaussian kernel with standard
deviation o. Each sample of o is called a level of the scale-space. Levels are
numbered starting from 0, which is the original image level. The scale of the
level [ is represented by o;.

We first form all scale-spaces L;, ¢ = 1..n, where n is the number of contour
elements. Then, we segment each search window W, by analyzing the behavior
of the external energy with respect to change in o. In other words, we like to
know how the external energy changes in various areas of the search window
if the underlying image is simplified by increasing ¢ in the scale-space. If the
external energy starts to behave differently, we conclude that the corresponding
segment of that area should be chosen smaller in order to be able to reflect the
behavioral change better in the final segmentation. On the other hand, if the
external energy behaves the same between the scale changes, we conclude that
a larger segment for the corresponding area should not decrease the external
energy related information in the final segmentation. We prefer larger segments
in terms of efficiency because larger segments means less number of segments in
a search window. This segmentation process addresses all the problems of the
segmentation that we mentioned before.

In order to measure the behavioral change of the extemal energy with respect
to scale o, we use an information theoretic approach. Let s¥ ; be the 7" segment
of the search window W, defined on image L;(z,y; o), Wthh is the k" level
of the scale-space L;. We can measure the amount of external energy related
information, H (sﬁj)7 by the Shannon entropy.

ZZ zg ZL’ Y )ln(p(sij(x,y))) (8)

where
EEzt( lj(x y))

k
p(si;(@,y)) = ~
" 2w 2w Erar(s z‘,j(uv”))
Similar types of information theoretic approaches were used in many scale-space
studies by a number of researchers including Niessen et. al.[11] and Jagersand|7].
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(a)

Fig. 3. Segmentation of the search window using different external energies. Please see
the text for details.

We can measure the Shannon entropy of the same segment on the immediate
upper level k + 1 by H(q“l) Finally, we get the normalized measure of the
behavioral change of the external energy with respect to change in o by

H(siH) — H(sf;
H(s55

D(si;) (9

Larger the value of D(sf_é), smaller the size of the segment should be.

The details of our segmentation is as follows. For a given m by m search
window W;, we form the scale-space L; up to level [. The elements of the image
at level k of this scale-space can be reached directly by L;(z,y;03). We then
form a set of segments 5; with four initial segments at the scale-space level { —1.

S =181 55 1% y5ea (10)
Each of these segments are m/2 by m/2 and they are not allowed to overlap.
In other words, we segment lhe scale- epa(e level [ — 1 into four equal sized
squares. We then choose the v segment s _,_ in S; that gives the largest value
for Equation (9). This means we are choosing the segment that has the highest
behavioral change with respect to change in scale. -"::.,rl is removed from the set
S; and we add four new segments to S; that are all m/4 by m/4 and are defined
on scale-space level [ — 2 al the position of af;’ without any overlapping. The
process continues by removing the segment producing the largest behavioral
change value and adding four new square segments defined on the immediate
lower scale level. This process continues until the number of segments in S;
reaches a user determined value.

Figure 3-a shows a midsagital ultrasound image of the tongue with the ini-
tial contour points superimposed. Figure 3-b shows the search window of the
marked contour element segmented using an image intensity based external en-
ergy. Figure 3-¢ shows the same window segmented using the external energy
defined by Equation (3). Figure 3-d shows the same search window segmented
using an external energy that is sensitive to image gradient magnitude and the
tangent angle of the contour at the marked contour element. Each segment is
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v Number of Segments| 64 32 16 8 4 2
Multiscale 8.1924(6.7940(5.3886(4.0486|2.6926(1.3669
Multiresolution 8.1924(6.8194|5.4500(4.0863|2.7301|1.3669
Constant Image 8.3178(6.9315(5.5452(4.1589|2.7726(1.3863

Table 1. Average Shannon entropy values for the segmentations by multiscale and
multiresolution methods.

shaded with a random gray-level for visualization purposes. As the figures show,
the final segmentations are different for different types of energy, which should
be reflected in the DP optimization process by producing better contours.

Using the information theory, we can measure the information carried by a
set of segments 5; by

H(S:) = —r(sign(r(si;) (11)

J

where 7(s; ;) = Epat(5i7)/ 22, Epat(3i0), si; is the 4t element of the segment
set S; and 5;; is the average gray-level value of the segment s; ;. In order to
demonstrate that our scheme produces sets of segments that have more exter-
nal energy related information, we performed experiments on medical images by
measuring the information of the produced segment sets using Equation (11).
We then measured the information produced by the equal sized square shaped
segmentation(Figure 2) of the usual multiresolution methods using the same for-
mulation. We also measured the information produced by segmenting a constant
gray level image, which has the least possible information. Notice that, the type
of segmentation does not matter for the constant image because the resulting
information produced by Equation (11) would be the same. Experiments were
performed on the ultrasound image shown in Figure 3-a, by taking 64 by 64
search windows of each contour element and by segmenting each search window
using our multiscale method and using the multiresolution method. Finally, for
each segment set, we measured the information produced and took the average.
Table 1 shows these average information values for our multiscale method and
for the multiresolution method. As the table shows our method carries more
information than the multiresolution methods because the difference between
multiscale values and the constant image values are greater than the difference
between multiresolution values and the constant image values. Figure 4 shows
this visually where we normalized the average information values by dividing it
with the constant image information value. As expected, both methods produce
the same information amount where the number of segments is 642. This is be-
cause each segment corresponds to an original image pixel and both methods
produce the same segmentation. Similarly, both methods produce the same in-
formation value where the number of segments is 22. It is because our multiscale
method initializes the segment set S; with equal sized segments as in Equation
(10). Figure 4 also shows that our method carries much more external energy
related information where the number of segments is around 162, which is the
most widely used case.

?
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Fig. 4. Normalized average Shannon entropy values for Table 1.

Although there are major differences, our segmentation method shows resem-
blance to quad-tree type segmentation methods[9]. Our method uses scale-space
techniques to analyze the behavior of the external energy with respect to change
in the scale to decide which segment to divide. Quad-trees on the other hand do
not pay attention to scale changes. They simply use the variance in the image
to decide which segment to divide.

4 Experiments

We tested our system by performing experiments on medical images, which are
known to be very problematic for contour analysis. In order to show the perfor-
mance of our system we compared the contours of the multiresolution methods
with our multiscale method at the highest level of the pyramid. This is because
we know that final results are corrected by the contour optimizations at the
lowest levels, which are the same for our method and for the multiresolution
methods. This paper presents two of the test sets that we used.

The first test set is a sequence of midsagital ultrasound images of the tongue
during speech. In addition to the usual ultrasound imaging problems, open con-
tours and application specific problems makes contour analysis of these sequences
very difficult[2]. Figure 5-(a) shows the tracked contours for four frames by our
system. Figure 5-(b) shows the tracked contours produced by the multiresolution
method. Our method spends about 28 seconds of CPU time for each contour. The
multiresolution method spends about 43 seconds. We compared these contours
against the ground truth obtained by a non-multiresolution dynamic program-
ming system, which guarantees to give optimal results. The comparison is done
by measuring the distances between the corresponding contour element positions
of the two contours. Our system produced an average of 6.12 pixel difference.
The other method produced an average of 12.91 pixel difference.

The experiments on ultrasound images confirmed the accuracy of our sys-
tem. Next, we like to see if we can achieve the same performance using a smaller
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(a) (b) (c)

Fig. 5. Tracking results from (a) Multiscale method (b) Multiresolution method. (c)
Results of our system applied to an MR] heart image sequence.

number of segments, which would result in faster execution times. For this ex-
periment we used a sequence of four frames of a right anterior oblique (RAQO)
view contrast ventriculogram (CV) images from a normal human subject. Since
they are less noisy and the contours are closed, MRI images are easier to analyze,
Manually detected contours were used for verification of our results. First we run
the multiresolution method on the sequence using the first frame’s manually de-
tected contour as the initial contour positions for all the frames in the sequence.
We used 64 points for each 32 by 32 search window. Each contour extraction
took an average of 26.78 CPU seconds. The average contour element difference
with the manually detected contours was 2.88 pixels. We then did the same ex-
periment using our multiscale method. We used only 25 points(segments) for
each search window to speedup the optimization process. The average contour
element difference with the manually detected contours was 2.87, which is almost
the same with the multiresolution method. However, we saw a big difference in
the time taken for each contour optimization: it took only an average of 7.42
CPU seconds for each contour extraction process with our method. Figure 5-(c¢)
shows the tracking results from our system.
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5 Conclusions

We presented a new multiscale approach for dynamic programming based de-
formable contour minimization. The system introduces a number of novel ideas
that would be valuable for discovering new uses of scale-spaces in model based
analysis of 2D and 3D images and image sequences. We confirmed through the
experiments that the new method can achieve faster optimization times and per-
forms better than the current dynamic programming optimization methods that
are based on multiresolution techniques.

Our method reduces the number of possible locations that a contour ele-
ment can take, dramatically shortening the execution time of the optimization.
Although multiresolution methods use the same idea, our multiscale approach
uses a scale-space approach to come up with a better set of candidate positions
that makes the optimization process faster and increases the performance. Us-
ing information theory, the system analyzes the behavior of the external energy
with respect to the scale change. This analysis gives us information on how to
segment the underlying images so that reduced number of candidate positions
carries more external energy related information. A previously developed dy-
namic programming method[1] is used to optimize the contour energy on these
points to produce the final contours. The system can be generalized to different
deformable contour and deformable model applications by changing the internal
and external energies and the segmentation algorithm to fit the specific needs of
the application.
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Abstract. A simple derivation of properties of a normal white noise
random field in linear scale-space is presented. The central observation
is that the random field has a scaling invariance property. From this
invariance it is easy to derive the scaling behaviour of measurements
made on normal white noise random fields.

1 Introduction

Properties of normal white noise in scale-space have been studied previously for a
number of reasons. Images may be corrupted by noise and scale-space smoothing
may improve the signal to noise ratio. Noise has served as a model to study the
behaviour across scales of properties such as the number of local extrema or the
volume of grey-level blobs [4]. Deviations from the scaling behaviour of properties
of white noise or ensembles of natural images [5] may provide useful information
to a visual system. Apart from the covariance of normal white noise in scale-
space [1] results have been achieved mostly by simulation. The purpose of this
paper is to illustrate that some useful results are available analytically.

2 An invariance of noise in scale-space

It is well known [3] that the only functions that are form invariant under linear
scale-space filtering are the derivative of Gaussian functions

XTX
n . — A "N e %
G™(x;t) = 07" .0y CIDLE

Filtering these functions with a Gaussian kernel G is equivalent to a rescaling
as expressed by the invariance x — sx, t — s%t, G® — s " VG® or GP(x;t) =
s NGP(sx; s?t). N denotes the dimension of space, z € RV, n = (nq,...,ny)
specifies the derivative operator , and n = >, n; its order. The squareroot of
the second argument 0 < ¢ € R is the “scale” of G™.

There is also a family of random fileds that is invariant under scale-space
filtering with a kernel GY in the sense that a filtering of the random field is
equivalent to a rescaling of the joint distribution function.

M. Nielsen et al. (Eds.): Scale-Space’99, LNCS 1682, pp. 423-428, 1999.
(© Springer-Verlag Berlin Heidelberg 1999
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Members £"(x;t) of this family are generated (and defined) by filtering a nor-
mal white noise £°(x;0) of zero mean and standard deviation o with a derivative
of Gaussian filter kernel G™:

£ (x;t) = (G™ (1) *£° (5 0))(x)

These normal random fields are completely determined by their autocovariance
function

A x —x ) = o (=) G (x —x';t + 1)

that describes the covariance of £(x;t) and £*(x’;t). It follows immediately
that the form invariance of G™ is inherited by the random fields:

PHx =Xt ) = s Ny (s(x —x), 2 (t + 1)) (1)

The (joint distribution function of the) random field €™ is inwariant under the
rescaling

X = sX
t— st (1)
o— s s N2

Figure (1) displays a one-dimensional realization of £°(z, 8%), the same real-
ization filtered to £€°(x, 32?), and lastly a rescaled display of the first graph.

noize & scale 8 rnoise & scale 32 window of noize & scale 8
06 T T T 06 T T T T 1 F T T
0.4 0.4 - -
0.2 02 - 05 - 7
0 o el o ML
-02 -0.2 - 05 K _
-04 -04 - 1
08 1 1 1 1 086 1 1 1 1 - E 1 T
0 250 500 750 1000 0 250 500 750 1000 0 125 250

Fig.1. Normal noise at scale vt = 8, filtered to scale 32, and a rescaled display of the
noise at scale 8 showing only 0 < = < 256.

Obviously the particular function that we have realized is not scaling in-
variant. Filtering the function in the first graph results in the second which is
apparently different from the third graph that shows the appropriately rescaled
version of the first. However, the similarity of these graphs serves to illustrate
the fact that they are generated by identical random mechanisms, i.e. that the
random field is scaling invariant.

The invariance of normal noise under the scaling transformation (1) allows to
derive the scaling behaviour of any observations made on a random field £ (x;¢).

Some examples follow.
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3 Density of local extrema

The number of local extrema of normal white noise in scale-space has been
studied as a model for the scale dependence of the number of features in a signal
[1]. Computation of the expected value of the number of local extrema at a
fized scale is extremely difficult [4]. However, the scale invariance property (1)
of normal white noise directly gives a relationship between the distributions of
the numbers of local extrema at different scales.

From (1) we find that the distribution of the number N°* of local extrema
in a volume V of space at ¢ is identical to the distribution of the number of local
extrema in a volume s™V at ¢’¢. More specifically:

— the probability FP,(N*') of observing less than N** local extrema in a unit
volume (f,,dx = 1) of filtered white noise £"(x;t) at scale v/% is related to
Poo, (N*Y) at scale $v/ by

PN = 6™ Py (NO) (2)

— the expected number E(N"*") of local extrema cver space per unit volume
of space behaves as

E(NTY) o g2 (3)

Note that (2) and (3) hold for any derivative n in £=(x;t).
Similar relations hold for the distribution and expectation of the number
NEeSP of local extrema over scale and space per unit volume of scale and space:

E(NSCSp) x t—}\"/Q—] (4)

The scale-dependence (4) of the number of local extrema over scale and space
is validated by simulation experiments. Figure {2} shows a plot of log N5¢5p
against logt for one-dimensional and two-dimensional white noise.

log E{NScSp)
=

Fig. 2. Log-Log plot of the number of local extrema against scale for a one-diniensional
(top curve) and a two-dimensicnal ncrmal white noise. The theoretical curves are
depicted as lines.
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4 Edge lengths

The distribution of edge lengths [ in normal noise £ (x;t) at scale v/t is identical
to the distribution of scaled edge lengths sl at scale sv/t. Again this scaling
invariance results directly from the invariance of the distribution of normal white
noise under the scaling transformation (1) without the need to actually compute
the distribution of edge lengths. It should be noted that for this scaling behaviour
to hold it is essential that edges are computed by an algorithm that commutes
with the scaling transformation, e.g. zero crossings of differential invariants.

Let us denote by P,(!) the relative frequency of edges of lengths less than [
occurring in the set of all edges at scale 1/£ in a normal noise image £*(x;t). P,(l)
is identical to the probability P,z;(sl) of edges of lengths less than sl occuring
in a filtered image £"(x; s%t)

Py(l) = Pgzy(sl)

so that the expected edge lengths grow linearly in scale 1/t

E(l) <Vt (5)
as shown on the left of figure (3).
100 T T T T T T T 60 T T T T T T T
80 al
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o
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Fig.3. Mean length of edges E(l) as a function of scale Vt. left: without boarder
effects. right: with boarder effects. Theoretical relations are shown as lines.

4.1 Edge lengths with boarder effects

In contrast to dimensionless features the distribution of edge lengths is certainly
affected by the image boarder cutting some edges short. We therefore attempt
to describe the effect of this on the distribution of edge lengths.

Consider a two-step procedure to arrive at the measured edge lengths. First
edges are computed from a hypothetical boarderless image. Then this is cropped
to the observed image size. Thereby some edges are cut into two. One piece of
each of these cut edges is kept. With probability one half it will be the long and
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with equal probability the short piece, so that the expected length after cutting
is one half that before. If we denote by p§(l) the probability density of lengths
of edges cut by the image boarder, we have

pi (1) = 2p:(21)

where p;(l) is the density of lengths [, i.e. P,(l) = fol du  pi(u). BEach edge has
a certain probability p® to be on the boarder of the image. This probability p®
depends on the length [ of the edge. If we assume that p® is linear in { — which
should be a good assumption as long as the edge length is smaller than the
length of the image — it will scale like

p() = s~ 'p°(sl)
The density of observed lengths at scale v/t

(1= p°(D)pe (1) + p°(1)p5 (1)

then scales to
(1= s~ 'p°(sl))spaze(sl) + 2p° (sl)pa2s(2sl)
Thus the mean length depends on ¢ as
E(l) ot —at

with a constant a that depends inversely on the length of the image boarder and
on the edge detection and linking algorithm used. Figure (3) shows a fit of the
scale dependence of edge lengths in 512 by 512 pixel white noise images in scale-
space. As edge-detection and linking algorithm we used Canny’s non-maximum
suppression and hysteresis thresholding [2] (for thresholding see below).

5 Blob volumes

Volumes of so called grey-level blobs have been used to construct a systematic
approach for the extraction of important structures in images [4]. Their signif-
icance was assessed from a comparison to the expected blob volume in normal
noise.

For the analysis of their scale dependence in normal noise it suffices to know
that grey-level blob volumes are integrals of the (smoothed) intensity function
over regions of the image domain, and that the regions are defined by geomet-
ric properties of the intensity [4]. Irrespective of whether each region grows or
shrinks with increasing scale, the number of regions decreases like ¢~%V/2 and
thus there average area A increases like

E(A) = N2
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More generally, the distribution of areas of the regions of integration shows the
invariance P;(A) = Py2,(s™V A).

The values of the intensity function depend on scale as t~~/4 so that the
integrals over the above areas depend on scale like ¢V/2~N/4

E(blob volume) o ¢tV/* (6)

as reported in simulation studies by Lindeberg [4].

6 Scale dependent thresholds

The described scale dependencies hold only when the measurements commute
with the scaling transformation. The introduction, for example, of a threshold
in Canny’s edge detection and hysteresis algorithm would destroy the scale de-
pendence shown in figure (3).

Thresholds may however be modified to depend on scale such that their rela-
tive position within the distribution of values they are applied to is independent
of scale. Or, conversely, the distribution of values to be thresholded may be
rescaled. In the edge detection a threshold on the absolute value of the gradient
should be be proportional to ¢! (for a two-dimensional image). Alternatively,
as in figure (3) a fixed threshold was used and ’standardized’ gradients

XTX
—*
(/2N g ©
" (2mt)N/2
were computed. The use of standardized derivatives is superior to a scale-depen-
dent threshold in that it may be numerically checked by setting the power of the

filter kernel equal to 1.

7 Summary

Scale dependencies of distributions of properties of white noise in scale-space
were derived from a scaling invariance of normal random fields. The method
is usually much simpler than a direct computation of the distribution at fixed
scales and subsequent derivation of the scale dependence.
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Abstract. In this paper we summarize the main features of a new time
dependent model to approximate the solution to the nonlinear total vari-
ation optimization problem for deblurring and noise removal introduced
by Rudin, Osher and Fatemi. Our model is based on level set motion
whose steady state is quickly reached by means of an explicit procedure
based on an ENO Hamilton-Jacobi version of Roe’s scheme. We show
numerical evidence of the speed, resolution and stability of this simple
explicit procedure in two representative 1D and 2D numerical examples.

1 Introduction

The Total Variation (TV) deblurring and denoising models are based on a vari-
ational problem with constraints using the total variation norm as a nonlinear
nondifferentiable functional. The formulation of these models was first given by
Rudin, Osher and Fatemi in ([10]) for the denoising model and Rudin and Os-
her in ([|9]) for the denoising and deblurring case. The main advantage is that
their solutions preserve edges very well, avoiding ringing, but there are com-
putational difficulties. Indeed, in spite of the fact that the variational problem
is convex, the Euler-Lagrange equations are nonlinear and ill-conditioned. Lin-
ear semi-implicit fixed-point procedures devised by Vogel and Oman, (see [11]),
and interior-point primal-dual implicit quadratic methods by Chan, Golub and
Mulet, (see [3]), were introduced to solve the models. Those methods give good
results when treating pure denoising problems, but the methods become highly
ill-conditioned for the deblurring and denoising case where the computational
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cost is very high and parameter dependent. Furthermore, those methods also suf-
fer from the undesirable staircase effect, namely the transformation of smooth
regions (ramps) into piecewise constant regions (stairs).

In ([5]), a very simple time dependent model was constructed by evolving the
Euler-Lagrange equation of the Rudin-Osher optimization problem, multiplied
by the magnitude of the gradient of the solution. The two main analytic features
of this formulation were the following: 1) the level contours of the image move
quickly to the steady solution and 2) the presence of the gradient numerically
regularizes the mean curvature term in a way that preserves and enhances edges
and kills noise through the nonlinear diffusion acting on small scales. To ap-
proximate the solution we used a higher order accurate ENO version of Roe’s
scheme, for the convective term, and central differencing for the regularized mean
curvature diffusion term. This explicit procedure is very simple, stable and com-
putationally fast compared with other semi-implicit or implicit procedures. We
show numerical evidence of the power of resolution and stability of this explicit
procedure in two representative 1D and 2D numerical examples, consisting of a
noisy and blurred signal and a noisy image, (we have used Gaussian white noise
and Gausssian blur). We have observed in our experiments that our algorithm
shows a substantially reduced staircase effect; we give an explanation for this in
next section.

2 Deblurring and Denoising

Let us denote by ug the observed image and « the real image. A model of blurring
comes from the degradation of u through some kind of averaging. The model of
degradation we assume is

7% u+n=ug, (1)

where n is Gaussian white noise, i.e., the values n; of n at the pixels ¢ are
independent random variables, each with a Gaussian distribution of zero mean
and variance o2 and j(z,y), is a kernel, where the blurring is defined through
the convolution:

(j*u)(x,y)z/gu(s,r)j(x—s,y—r)dsdr (2)

For the sake of simplicity, we suppose that the blurring is coming from a con-
volution, through a kernel function 7 such that j x u is a selfadjoint compact
integral operator. For any « > 0 the so-called heat kernel, defined as

1

](x7y): T ¢

_ z2 2 o
Y (z®+y)/4 (3)

is an important example that we will use in our numerical experiments.

Our objective is to estimate w from statistics of the noise, blur and some «a
priori knowledge of the image (smoothness, existence of edges). This knowledge
is incorporated into the formulation by using a regularization functional R that
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measures the quality of the image u, in the sense that smaller values of R(u)
correspond to better images. The process, in other words, consists in the choice
of the best quality image among those matching the constraints imposed by the
statistics of the noise together with the blur induced by j.

In [10], the Total Variation norm or T'V-norm is proposed as a regularization
functional for the image restoration problem:

TV(u):/Q|Vu|dx:/9,/u%+u§dx. (4)

The TV norm does not penalize discontinuities in %, and thus allows us to recover
the edges of the original image. There are other functionals with similar proper-
ties introduced in the literature for different purposes, (see for instance, [4,2]).
The restoration problem can be thus written as the following constrained opti-
mization problem:

min/ |Vu| dx (5)
v

subject to
1(/(j*u_uo)2dx_|rz|02):o (6)
2 Q ’

and its Euler-Lagrange equation, with homogeneous Neumann boundary condi-
tions for u is:

0= — (%)Jm\(j*(j*u—w)) (7)

There are known techniques for solving the constrained optimization problem

(5) by exploiting solvers for the corresponding unconstrained problem, whose
Euler-Lagrange equation is (7) for A fixed.

3 The time dependent model

Vogel and Oman and Chan, Golub and Mulet devised direct methods to approx-
imate the solution to the Euler-Lagrange equation (7) with an a priori estimate
of the Lagrange multiplier and homogeneous Neumann boundary conditions.
Those methods work well for denoising problems but the removal of blur be-
comes very ill-conditioned with user-dependent choice of parameters. However,
stable explicit schemes are preferable when the steady state is quickly reached
because the choice of parameters is almost user-independent.Moreover, the pro-
gramming for our algorithm is quite simple compared to the implicit inversions
needed in the above mentioned methods.

Usually, time dependent approximations to the ill-conditioned Euler-Lagrange
equation (7) are inefficient because the steady state is reached with a very small
time step, when an explicit scheme is used. This is the case with the following
formulation due to Rudin, Osher and Fatemi (see [10]) and Rudin and Osher
(see [9]):

.y Vu
ut—/\j*(j*u—uo)+V~<W>. (8)
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with w(z,y,0) given as initial data, (we have used as initial guess the original
blurry and noisy image ug) and homogeneous Neumann boundary conditions,
ie., % = 0 on the boundary of the domain.

This solution procedure is a parabolic equation with time as an evolution
parameter and resembles the gradient-projection method as used in [9] and [10].
In this formulation we assume an a priori estimate of the Lagrange multiplier,
in contrast with the dynamically changing A used in [9] and [10].

However, this evolution procedure is slow to reach steady state and is also
stiff since the parabolic term is quite singular for small gradients. In fact, an ad
hoc rule of thumb would indicate that the timestep At and the space stepsize

Az need to be related by
At

vl < c¢|Aul, 9)
for fixed ¢ > 0, for stability. This CFL restriction is what we shall relax to
At
R < (10)

for ¢ around 0.5. In order to avoid these difficulties, we propose a new time
dependent model that accelerates the movement of level curves of w and regular-
izes the parabolic term in a nonlinear way. In order to regularize the parabolic
term we multiply the whole Euler-Lagrange equation (7) by the magnitude of
the gradient and our time evolution model reads as follows:
ut—|Vu|/\j*(j*u—uo)+|Vu|V~(&). (11)
[Vl
We use as initial guess the original blurry and noisy image up and homoge-
neous Neumann boundary conditions as above, with an a priori estimate of the
Lagrange multiplier.

From the analytical point of view this solution procedure approaches the
same steady state as the solution of (7) whenever u has nonzero gradient. The
effect of this reformulation, (i.e. preconditioning) is positive in various aspects.
The numerical scheme is simple to program, satisfies a maximum principle, it
is at least an order of magnitude faster than standard TV implicit procedures.
The resulting time evolution problem involves the motion of level sets and has
a morphological flavor.

A very simple way to extend the Roe scheme to get high order accuracy is
described in [8]. For more detail involving the numerical method see [5]. We note
that the staircasing is minimized because our unconventional numerical method
gives numerical steady states, based on nonoscillatory ideas. These numerical
steady states will generally be different from those obtained by from those ob-
tained by [10], [9], [11], [2] and [3] which used standard central differencing.

4 Numerical Experiments

We have used 1D signals with values in the range [0, 255]. The signal of (1, left)
represents the original signal versus the blurred and noisy signal with ¢ = 5,
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Fig. 1. Left,original vs. noisy and blurred 1D signal ; right, original vs. recovered 11D
signal

and SNR = 5. The signal of (1, right) represents the original signal versus the
recovered signal after 80 iterations with first order scheme with CFL 0.25. The
estimated A = 0.25 was computed as the maximum value allowed for stability,
using explicit Euler time stepping.

Fig. 2. Left: original image, right: noisy image, SNR== 3.

Our 2D numerical experiments were performed on the original image (Fig
2, left) with 256 x 256 pixels and dynamic range in [0,255|. The third order
scheme we used in our 2I) experiments was based on a third order accurate
ENO Hamilton-Jacobi version of Roe’s scheme described in [8], (see details in
[5]). Our 2D experiment was made on the noisy image, (2, right), with a SNR
which is approximately 3. Details of the approximate solutions using the Chan-
Golub-Mulet primal-dual method and our time dependent model using the third
order Roe’s scheme, (described above), are shown in Fig. 3. We used A = 0.0713
and we perform 50 iterations with CI'L number 0.1.
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Fig. 3. Left: imape obtained by the Chan-Golub-Mulet primal-dual method, right:
image obtained by our time evolution model,with B0 timesteps and CF1L-0.1
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Abstract. The maxima of Curvature Scale Space (CSS) image have
already been used to represent 2-D shapes under affine transforms. Since
the CSS image employs the arc length parametrisation which is not affine
invariant, we expect some deviation in the maxima of the CSS image
under general affine transforms.

In this paper we examine the advantage of using affine length rather than
arc length to parametrise the curve prior to computing its CSS image.
The parametrisation has been proven to be invariant under affine trans-
formation and has been used in many affine invariant shape recognition
methods.

The CSS representation with affine length parametrisation has been used
to find similar shapes from a large prototype database.

Keywords: Curvature scale space, Affine transformation, Image databases,
Shape similarity retrieval, Affine length

1 Introduction

The CSS representation finds its roots in curvature deformation and heat equa-
tion. In fact, the resampled curvature scale space [6] implements curvature defor-
mation [4]. This is carried out by convolving each coordinate of a closed planar
curve, with a Gaussian function at different levels of scale. At each stage and
before being convolved by a larger width Gaussian, the curve is represented in
terms of arc length parameter. In regular curvature scale space [6] the resampling
is not applied. As a result, the evolution is not a curvature deformation anymore.
However, the implementation is carried out much faster and the representation
has shown a good performance in shape similarity retrieval [1][5] under similarity
transforms.

Both regular and resampled CSS image employ the arc length parametrisa-
tion which is not affine invariant. As a result, we expect some deviation in the
maxima of the CSS image under general affine transformation. It has been shown

M. Nielsen et al. (Eds.): Scale-Space’99, LNCS 1682, pp. 435-440, 1999.
(© Springer-Verlag Berlin Heidelberg 1999
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Fig. 1. a)Curve evolution, from left: ¢ = 1,4,7,10,12,14. (b)The regular CSS image
of the shape. (¢) The resampled CSS image.

that affine invariance can only be achieved by an affine invariant parametrisation
and affine length has been used by a number of authors [2][3]. In this paper we
examine the utility of using affine length rather than arc length to parametrise
the curve prior to computing its CSS image.

We have a database of 1100 images of marine creatures. The contours in this
database demonstrate a great range of shape variation. A database of 5000 con-
tours has been constructed using 500 real object boundaries and 4500 contours
which are the affine transformed versions of real objects. Both regular and re-
sampled CSS representations are constructed with affine length parametrisation
and then used to find similar shapes from this prototype database.

2 The CSS image

This section describes the process of CSS construction for both regular and
resampled CSS image. The use of affine length instead of arc length and finally
the CSS matching are also briefly explained.

Construction of the regular CSS image; In order to use arc length, the
curve is resampled and represented by 200 equally distant points. Considering
the resampled curve as I'y(s) = (za(s), yo(s)), we smooth the curve by Gaussian
function:

X(s,t) = zo(s) * g(s,t) Y(s,t) = yol(s) * g(s, t).

The smoothed curve is called I',, where ¢ denotes the width of the Gaussian
kernel. It is then possible to find the locations of curvature zero crossings on I,
[5]. The process starts with o = 1, and at each level, ¢ is inereased by Ao, chosen
as 0.1 in our experiments. As o increases, I', shrinks and becomes smoother, and
the number of curvature zero crossing points on it decreases. Finally, when o is
sufficiently high, I, will be a convex curve with no curvature zero crossings (see
Figure 1(a)). The process of creating ordered sequences of curves is referred to
as the evolution of I.

If we determine the locations of eurvature zero crossings of every I, during
evolution, we can display the resulting points in (w,o) plane, where u is an
approximation of the normalised arc length and o is the width of the Gaussian
kernel. The result of this process can be represented as a binary image called the
reqular CSS image of the curve (see Figure 1(b)).
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Construction of the resampled CSS image; The process of constructing
the resampled CSS image is slightly different. It starts with convolving each
coordinate of the initial curve I'o(s) with a small width Gaussian filter. The
resulting curve is re-parametrised by the normalised arc length and convolved
again with the same filter. This process is repeated until the curve becomes
convex and no longer has a curvature zero crossing. The curvature zero crossings
of each curve are marked in the resampled CSS image.

Affine length; In order to achieve an affine invariant parametrisation, arc
length, s, is usually replaced by affine length, 7, with the following definitions.

S
ol

o (@ 7
o (@ + g?)

The main disadvantage of the affine length is that its computation requires
higher order derivatives. However, by using the method described in [5] , we can
parametrise the curve using this formula.

Both regular and resampled CSS images can be reconstructed using affine
length instead of arc length. In regular CSS image, only the initial representation
is affine length and re-parametrisation is not applied. In resampled CSS image,
however, after each iteration the resulting curve is re-parametrised using affine
length parametrisation.

Iy (& — ig)

T - )

s =

=
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Curvature Scale Space Matching; We assume that the user enters his query
by pointing to an image. The same preprocessing is done to find the maxima of
the CSS contours of the input shape and compare them with the same descriptors
of the database objects. The algorithm used for comparing two sets of maxima,
one from the input and the other from one of the models, has been described in
[5]. The algorithm first finds any possible changes in orientation which may have
been occurred in one of the two shapes. A circular shift then is applied to one of
the two sets to compensate the effects of change in orientation. The summation
of the Euclidean distances between the relevant pairs of maxima is then defined
to be the matching value between the two CSS images.

3 Experiments and results

In this paper, we examine the performance of the CSS representation under a
combination of rotation and shear transform represented by the following ma-

trices.
cosl —sinb 1k
Arotatian — (SZTLO 0030 > Ashear - (O 1)

The measure of shape deformation depends on the parameter k, shear ratio, in
the matrix A peq,. In the present form of the matrix Agpeqr, = axis is called
shear axis, as the shape is pulled toward this direction.
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Fig. 2. The deformation of shapes is considerable even with £ = 1 in shear transform.
The original shape is presented in top left. Others represent transformation with £ =1
and 9 = 20°,40°,...,160°,180°.

Figure 2 shows the effects of affine transformation on shape deformation. In
this Figure, shear ratio is selected as £ = 1. In order to achieve different shear
axes, we have changed the orientation of the original shape prior to applying
the pure shear transformation. The values of 6 range from 20° to 180°, with 20°
intervals. As this Figure shows, the deformation is severe for k = 1. For larger
values of &, e.g. 1.5 and 2, the deformation is much more severe.

In order to create three different databases, we chose three different values for
shear ratio, 1.0, 2.0 and 3.0. We then applied the transformation on a database
of 500 original object contours. From every original objects, we obtained 9 trans-
formed shapes with different values of 8. Therefore, each database consisted of
500 original and 4500 transformed shapes.

In order to evaluate the performance of the method, every original shape was
selected as the input query and the first » outputs of the system were observed
to see if the transformed versions of the query are retrieved by the system. The
results indicated that the performance of regular CSS is much better than the
resampled CSS and using affine length parametrisation instead of arc length
improves the performance of both representations.

Considering each original, ie not affine transformed, shape as an input query,
we observed the first n outputs of the system and determined m, the number
of outputs which are the affine transformed versions of the input. The success
rate for a particular input is calculated as mmax; where m,,,,, is the maximum
possible value of m. Note that m,,., is equal to n if n < 10; if not, My, is
equal to 10. The success rate of the system for the whole database will be the
average of the success rates for each input query.

We chose different values for n, ranging from 2 to 40, and in each case found
the average success rate of the system for all 500 original shapes. The same
experiment was carried out on four different CSS representations, including reg-
ular and resampled CSS image with arc or affine length parametrisation. The
results are presented in Figure 3(a) to 3(d). Each Figure includes three curves
associated with three values of £, the shear ratio. Each curve shows the average
success rate for the particular type of the CSS representation and for different
values of n, the number of observed outputs.
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Fig. 3. Identifying transformed versions of the input guery. k is the shear ratio and
represents the measure of deformation. (see section 3)

Starting from 3(a), we observe that the conventional regular CSS image shows
good results. For example, with £ = 1 and in spite of severe deformation, more
than 93% of outputs are always the affine transformed versions of the input
query. This figure drops to 80% as k increases but it is still reasonably large.

The resampled CSS image with arc length parametrisation is quite vulnerable
against affine transforms. In most cases, none of the transformed versions of the
input query appear as the first few outputs of the system.

With affine length parameterisation, both regular and resampled CSS image
show much better results. Almost all affine transformed versions of an input
query appear among the first outputs of the system (see Figure 3(¢) and (d)).
The results are also robust with respect to k, the shear ratio.

In conclusion we observe the followings.

— Regular CSS image is almost robust with respect to affine transforms.

— Resampled CSS image with arc length parameterisation is not and with affine
length parameterisation is robust with respect to affine transforms.

— Since the transformation is applied mathematically, the effects of pre-process-
ing noise has not been considered. In real world applications, when the object
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boundaries must be extracted from images taken from different camera view-
points, noise changes the object boundaries dramatically. However, we expect
that using affine length instead of arc length improves the performance of both
regular and resampled CSS image even in presence of such noise.

4 Conclusion

The maxima of Curvature Scale Space (CSS) image have been used to represent
closed planar curve in shape similarity retrieval under affine transforms. Two
types of representations, namely regular and resampled were examined. The
curve evolution in resampled CSS image is an implementation of curvature de-
formation. In regular CSS, however, it is only an approximation of the curvature
deformation.

In conventional forms, arc length parametrisation is used in both types. In
this paper we examined the utility of using affine length instead of arc length
to parametrise the curve prior to computing its CSS image. In different sections
of this paper, we reviewed the background of the representations as well as
parametrisations. We then carried out a number of experiments to compare the
performance of our shape similarity system using different approaches.

We observed that the performance of regular CSS representation in shape
similarity retrieval under affine transforms is much better than the performance
of resampled CSS representation. We also observed that both representations
improved by using affine length parametrisation.
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Abstract. The notion of a stochastic scale space has been introduced
through a stochastic approximation to the Perona-Malik equation. The
approximate solution has been shown to preserve scale-space causality
and is well-posed in an expected sense. The algorithm also converges to
a (unique) constant image.

Keywords : stochastic scale space, discrete scale space, stochastic ap-
proximation

1 Introduction

Images can be represented at a variety of scales through a multiscale charac-
terization [4]. Among the several methods used to obtain a multiscale charac-
terization, it has been shown [1,7] that the PDE approach is the most generic
and most other approaches can be re-cast in the framework of PDEs. Interest
in scale-space theories has increased after Perona and Malik [5] proposed a non-
linear scale-space based on a nonlinear diffusion PDE which smooths different
regions of the image at different rates, thereby accentuating edges.

Although the Perona-Malik equation had impressive results, several modifi-
cations have been suggested to avoid its theoretical and numerical difficulties.
This paper proposes a stochastic approximation to the discretized Perona-Malik
equation using a system of particles distributed on the pixel array and evolving
according to probabilistic rules. For a fixed pixel array, the stochastic algorithm
is theoretically well-posed (has a unique stationary distribution and the expec-
tation of the one-step evolution matrix is Lipschitz continuous). As the pixel
distance goes to zero, the solution of the stochastic algorithm converges weakly
[2] to a unique solution. If the Perona-Malik equation has a solution, at least in
a weak sense, the stochastic algorithm converges to this solution. If however, the
Perona-Malik equation has no solution[3], the algorithm is merely a stochastic
aproximation which converges to a unique solution.

The motivation in using a particle system is that the state of the system
(characterized by the number of particles at each site) directly corresponds to
a set of gray-level values. Since digital images are invariably quantized, any
non-integral solution, as obtained by classical numerical methods for example,

M. Nielsen et al. (Eds.): Scale-Space’99, LNCS 1682, pp. 441-446, 1999.
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has to be scaled and quantized, resulting in some loss of information and small
inaccuracies. Further, the image at any particular scale is a quantization of
the solution at a particular instant of time rather than the solution itself. The
semigroup property (that an image at scale t1 + 2 may be obtained by observing
at scale {5 an image already approximated at scale ¢1) then does not strictly
hold for the quantized image since the intermediate image is different from the
intermediate (real-valued) solution and hence, corresponds to a different initial
value for further approximation. The particle system described in this paper has
the advantage of maintaining a valid image as the solution at every instant.

2 A stochastic scale space

In this section, we first consider a discretization of the Perona-Malik equation.
A stochastic algorithm is then formulated in such a manner that it is “locally
consistent” with the discretized equation. By this we mean that the stochastic
algorithm evolves for each iteration, in an expected sense, in the same way as
the deterministic equation.

The Perona-Malik equation is given by

af

50 = div (DOV) (1)

where f : Sx Rt — R represents the evolution with time of the image defined
on a compact set S. D(-) is a decreasing function of the gradient computed from
the solution f(-,¢) at every instant of time.

9
D(x) =exp {— (%) } (2)

Using a standard second-order discretization, a discretized version of (1) can
be obtained as

FGE) = 6 A Y {D“‘ (”’)(#"() f(">(i))} (3)

JeN@)

where n denotes the discrete time instants and ¢ the pixel coordinate. A/ (¢) is
the 4-neighbourhood of 4.

We now formulate a stochastic algorithm with the same kind of behaviour
as (3) in an expected sense.

2.1 Stochastic algorithm

To formulate a stochastic algorithm which represents (3) in an expected sense,
we treat the image as a system of particles with the gray level at any pixel
corresponding to the number of particles.
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Let S denote the pixel array on which the image is defined and A(:) the
symmetric 4-neighbourhood. X;(n) denotes the number of particles at pixel 4 at
time instant n.

At each instant of time ‘n’, each X;(-) evolves according to the following
probabilistic rule:

1. Each pixel ¢ chooses one of its neighbours 7 € A(2) according to a uniform

selection probability. o

2. The neighbour j is “accepted” with probability D) (%) , 147

where ¢+ 7 denotes the coordinate-wise addition of ¢ and 5. The total prob-

ability of a transition from ¢ to 7 is then given by

. 1 ] .,
Pr(i,j) = D(")( > 14 ] 4)
SO (
Pr(i,i) =1 - Pr(i,j) (5)
i4g
3. If the neighbour is “accepted”, X;(n) and X j (n) are both updated according
to the rule

X;(n+1) = X;(n) + int {/\ (Xj(n) . Xi(n))}

X;(n+1) = X;j(n) —int [A (Xj (n) — Xi(n))} (6)

An additional particle is transferred (to the neighbour with lesser number of
particles) with probability A ‘Xj (n) — X,L(n)‘ —int [/\ ‘Xj (n) — X,L(n)H

Each X;(n+1) is thus a convex combination of its neighboring values and this
effects a smoothing at ¢. Of course, this smoothing takes place with a probability
inversely proportional to the strength of the edge, so that stronger edges are less
likely to be smoothed while weaker edges are more likely to be smoothed.

The stochastic system evolves, in the expected sense, for one time step in the
same way as (3).

Since the evolution algorithm is stochastic, the variance of the algorithm
plays an important part. The variance should be small, if the same ‘features’
are to be preserved in every run of the algorithm. We show that the variance,
particularly at the edges, is bounded by a “small” quantity.

For the specific form of D(-) that we choose, the variance of the increment
X4 (3) — X((4) at edge points (where |Xj (n) = X;(n)|> K) is given by

Xj(n) = X3(m)\* "
. J 2
Var (X;(n+1) — X;(n)) < K Z‘ (T (7)
JEN(2)
where n is any positive integer.
Thus the algorithm preserves the same features in different runs although
each run produces a slightly different result.
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3 Properties of the stochastic algorithm

In this section, we state some properties of the stochastic algorithm which justify
its application for a multiscale representation. Proofs are omitted here and may
be found in [6].

— Property 1: (Mazimum principle) No local mazimum is increased and no
local minimum is decreased.

— Property 2 The algorithm is well-posed in an expected sense.
Weickert[7] has shown that Lipschitz-continuity of the evolution matrix is
sufficient for well-posedness. This can be proven in the Ly norm

1A=

1.3

Note 1. Well-posedness fails for the nonlinear diffusion equation proposed
by Perona and Malik because if the gradient value exceeds the threshold K,
the equation behaves as an inverse diffusion equation. However, in the semi-
discrete case, we use a finite difference rather than the gradient value and
preserve Lipschitz continuity in the discrete norm. This is also the reason
why some authors [7] note that a discretization on a finite lattice provides
sufficient regularization for the Perona-Malik equation.

— Property 3 The Markov chain X(-) has a unique stationary distribution
It can be shown [6] that every state for which max; X;(-) — min; X;(-) > 1
is a transient state. The unique absorbing state of the system is the constant
image which has the same number of particles at all pixels. The constant
image is obtained if and only if the sum of gray values in the image is an
exact multiple of the number of pixels. If such a state is not possible, the
algorithm converges to an “almost constant” image where the maximum

difference between the gray level at any two pixels is 1.

4 Results and Discussion

The stochastic algorithm has been tested on several real images. It has been
found that the algorithm is able to preserve the sharpness of boundaries while
smoothing region interiors effectively. Results on the cheetah image (Figure 1)
show that the algorithm correctly identifies the spots of the cheetah as part of the
region interiors and smooths them in preference to inter-region smoothing. This
is in spite of the fact that no textural features have been used. The stochastic
solution also gives almost segmented regions.

The images at multiple resolutions are obtained, as in other PDE formalisms,
by stopping the evolution at various times. The difference is that the scale space
generated by this algorithm is stochastic in nature, meaning thereby that the
image approximated at any scale is obtained through a stochastic evolution.
Hence, different runs of the algorithm could presumably result in slightly dif-
ferent images. However, experimentally, there was no perceivable difference in
different runs.
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After 100 iterations After 200 iterations

Fig. 1. Results on cheetah image
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Original lmage

After 20 iterations After 100 iterations
After 500 iterations After 1000 iterations

Fig. 2. Results on telephone booth image
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Abstract. In this paper we address two important problems in motion
analysis: the detection of moving objects and their localization. Statis-
tical and level set approaches are adopted in order to formulate these
problems. For the change detection problem, the inter-frame difference
is modeled by a mixture of two zero-mean Laplacian distributions. At
first, statistical tests using criteria with negligible error probability are
used for labeling as many as possible sites as changed or unchanged. All
the connected components of the labeled sites are seed regions, which
give the initial level sets, for which velocity fields for label propagation
are provided. We introduce a new multi-label fast marching algorithm for
expanding competitive regions. The solution of the localization problem
is based on the map of changed pixels previously extracted. The bound-
ary of the moving object is determined by a level set algorithm, which is
initialized by two curves evolving in converging opposite directions. The
sites of curve contact determine the position of the object boundary. For
illustrating the efficiency of the proposed approach, experimental results
are presented using real video sequences.

1 Introduction

Detection and localization of moving objects in an image sequence is a crucial
issue of moving video [11], as well as for a variety of applications of Computer
Vision, including object tracking, fixation and 2-D/3-D motion estimation. This
paper deals with these two problems for the case of a static scene.

Spatial Markov Random Fields (MRFs), through Gibbs distribution have
been widely used for modeling the change detection problem [1], [7] and [9].
On the other hand approaches based on contour evolution [5] [2], or on partial
differential equations are also proposed in the literature. In [3] a three step
algorithm is proposed including a contour detection, an estimation of the velocity
field along the detected contours and finally the moving contours are determined.
In [8], the contours to be detected and tracked are modeled as geodesic active
contours.

In this paper we propose a new method based on level set approaches. An
innovative idea here is that the propagation speed is label dependent. Thus for

M. Nielsen et al. (Eds.): Scale-Space’99, LNCS 1682, pp. 447-452, 1999.
(© Springer-Verlag Berlin Heidelberg 1999
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the problem of change detection, where two labels are characterizing image sites,
an initial statistical test gives seeds for performing the contour propagation. The
propagation of the labels is implemented using an extension of the fast marching
algorithm, named multi-label fast marching algorithm. The change detection
maps are used for initializing another level set algorithm, based on the spatial
gradient, for tracking the moving object boundary. For more accurate results
and for having an automatic stopping criterion, two fronts are propagated in
converging opposite directions, and they are designed for contact on the object
boundary, where the spatial gradient is maximum.

The remainder of this paper is organized as follows. In Section 2 we consider
the motion detection problem and we propose a method for initially labeling sites
with high confidence. In Section 3 a new algorithm based on level set approach is
introduced for propagating the initial labels. In Section 4, we present the moving
object localization problem, as well as a fast marching algorithm for locating
the object’s boundary. In order to check the efficiency and the robustness of the
proposed method, experimental results are presented on real image sequences.

2 Detection of moving objects

Let D = {d(z,y) = I{z,y,t + 1) — I(z,y,1),(x,y) € S} denote the gray level
difference image. The change detection problem consists of a “binary” label
O(z,y) for each pixel on the image grid. We associate the random field ©(z, y)
with two possible events, ©(xz,y) = static (or unchanged pizel), and O(x,y) =
mobile (or changed pizel). Let ppjsiapic(d]static) and ppjmopre(d|mobile) be the
probability density functions of the observed inter-frame difference under the two
hypotheses. These probability density functions are assumed to be homogeneous,
i.e. independent of the pixel location, and usually they are under Laplacian
or Gaussian law. We use here a zero-mean Laplacian distribution function to
describe the statistical behavior of the pixels for both hypotheses. Thus the
probability density function is a mixture of Laplacians, for which the principle
of Maximum Likelihood is used to obtain an estimate of its parameters ([4], [6]).

An initial map of labeled sites is obtained using statistical tests. The first
test detects changed sites with high confidence, that is with small probability of
false alarm. Then a series of tests are used for finding unchanged sites with high
confidence, xpthat is with small probability of non-detection.

A multi-label fast marching level set algorithm, which is presented in the next
section, is then applied for all sets of points initially labeled. This algorithm is an
extension of the well-known fast marching algorithm [10]. The contour of each
region propagates according to a motion field which depends on the label and
on the absolute inter-frame difference. The exact propagation velocity for the
“unchanged” label is vo(z,y) = 1/(1 4 ePod@y)[=nC=00)) and for the “changed”
label vy(z,y) = 1/(1 + A Or=ld@yI=0+a)0y where n is the number of the
neighbouring pixels already labeled with the same candidate label, and « takes
a positive value, if the pixel at the same site of the previous label map is an
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interior point of a “changed” region, else it takes a zero value. The parameters
Bo, B1, 800,01 and ¢ are adapted to the data.

3 Multi-label fast marching algorithm

The fast marching level-set algorithm introduced by Sethian [10] computes a
constructive solution to the stationary level set equation |V1'(z,y)| = 1/v(z,y),
where v(z,y) corresponds to the velocity of the moving front, while T'(z,y) is a
map of crossing times. The curves are advanced monotonically according to the
propagation speed field.

The proposed multi-label version of the fast marching algorithm solves the
same problem for the case of any number of independent contours propagating
with possibly different velocities, which are supposed to “freeze”, when they cross
over each other. In this approach two properties of each pixel are calculated: the
arrival time and the region or contour that first reached the specific pixel.

Our algorithm takes advantage of the fact that the fast marching algorithm
sweep the pixels in a time-advancing fashion in order to limit redundant recal-
culations only to the pixels of contact between contours. For each pixel a list of
label candidacies is maintained. A candidacy can only be introduced by a neigh-
boring pixel being fixated to a certain label. It follows that no more than four
candidacies may coexist per pixel. Additionally, multiple candidacies can occur
in pixels belonging to the border between two labels only, which illustrates the
fact that multiple recalculations of arrival times are rather scarce. Finally, the
label carrying the smallest arrival time is selected for every pixel.

We now present the new multi-label fast marching level set algorithm.

Initialize
For each pixel p in decision map
If decision exists for p
Set arrival time to zero for p
For each neighboring pixel ¢ lacking a decision
- add label of pixel p to list of label candidacies for g,
- mark it as trial,
- give an initial estimate of the arrival time
Else
Set arrival time to infinity for p
Propagate
While trial non alive label candidacies exist
Select trial candidate ¢ with smallest arrival time
Mark ¢ as an alive label candidacy
If no decision exists for pixel p owning ¢
Decide for p the label and arrival time of ¢
For each undecided neighboring pixel ¢ lacking a candidacy
for the label of p
- add label of pixel p to list of label candidacies for g,
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- mark it as trial
For each neighboring pixel ¢ containing a trial candidacy d
for the label of ¢

Recalculate arrival time of d

For the efficient location of the candidacy with the smallest arrival time a
priority queue is utilized. Pixel candidacies themselves, being up to four, are
keeped in a linked list for ease of implementation. The above facts indicate
an execution cost of order Nlog N over the uninitialized pixels. Moreover, in
practice it is expected to run in no more than twice the time of the traditional
fast marching algorithms regardless of the actual number of labels used.

4 Moving Object Localization

The change detection stage could be used for initialization of the moving object
tracker. The objective now is to localize the boundary of the moving object. The
ideal change area is the union of sites which are occupied by the object in two
successive time instants. It can easily be shown that

Clt,t +1)NCt,t —1) = {04, 3,0)} U ({O(z, 5, + D)} N {O(4, 5, — 1)})

This means that the intersection of two successive change maps is a better initial-
ization for moving object localization, than each of them. In addition sometimes
itis {O(i,7,8)} = C(t,t+ 1) N C(t, ¢ —1). In Fig. 1 we give the initial position
of the moving contours for the Trevor White sequence.

Fig. 1. Detection of Moving Objects: Trevor White

Knowing that there exist some errors in change detection and that sometimes
under some assumptions the intersection of the two change maps gives the object
location, we propose to initialize a level set contour search algorithm by this map.
This search will be performed in two stages: fivst, an area containing the object’s
boundary is extracted, and second, the boundary is detected.
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The first objective is to determine the area which contains the object’s bound-
ary with extremely high confidence. Because of errors resulting from the change
detection stage, and also because of the fact that the initial boundary is, in
principle, placed outside the object, it is needed to find an area large enough to
contain the object’s boundary. The task is simplified, if some knowledge about
the background is acquired. In absence of knowledge concerning the background,
the initial boundary could be relaxed in both directions, inside and outside, with
a constant speed, which may be different for the two directions. In this area will
then the photometric boundary be searched.

For cases where the background could be easily described, a level set approach
extracts the zone of object’s boundary. Let us suppose that the image intensity
on the backround could be described by a Gaussian random variable with mean
value, p, and variance, 2. This model could be locally adapted. For the White
Trevor sequence used here for illustrating results, a global backgound distribution
is assumed.

The speed of uncertain area propagation is dependent on the label given
by the initialization, and defined for the inner border as v, = ¢, + dof(I),

7 2

where f(I) = 1/(1 + e(I_;g)_flL I being the mean value of the intensity in a
3 x 3 window centered at the examined point. For the outer border the speed
is defined as v, = dp(1 — f(I)). Thus for a point on the inner border, if its
intensity is very different from that of the background, it is advancing with only
the constant speed ¢,. In contrast, the propagation of a point on the outer border
is decelerated, if its intensity is similar to that of the background. The width of
the uncertain zone depends on the size of the detected objects.

The last stage involves determining the boundary of the object based on
the image gradient. The two extracted boundaries are propagated in opposite
directions, the inner outside and the outer inside. The boundary is determined
as the place of contact of the two borders. The propagation speed for both is
v =1/(1+ e UVII=9)) The parameters v and 6 are adapted to the data. Thus
the two borders are propagating rapidly in the “smooth” area, and they are
stopped on the boundaries of the object. In Fig. 2 are given the same frames as
in Fig. 1 with the final result of localization.

5 Conclusions

In this article we propose at first a very interesting extension of the fast marching
algorithm, in order to be able to consider multiple labels for the propagating
contours. This allows to have purely automatic boundary search methods, and to
obtain more robust results, as multiple labels are in competition. We have tested
the new algorithm into the two stage problem of change detection and moving
object localization. Of course, it is possible, and sometimes sufficient, to limit
the algorithm into only one of these stages. This is the case for telesurveillance
applications, where change detection with a reference frame gives the location
of the moving object. In the case of a motion tracking application, the stage of
localization could be used for refining the tracking result. In any case, in this
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(b)

Fig. 2. Location of Moving Objects: Trevor White

article we show that it is possible to locate a moving object without motion

esti

mation, which, il it is added, it could improve further the already sufficiently

accurate results.
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Abstract. In this paper we present and briefly describe a Windows user-
friendly system designed to assist with the analysis of images in general,
and biomedical images in particular. The system, which is being made
publicly available to the research community, implements basic 2D image
analysis operations based on partial differential equations (PDE’s). The
system is under continuous development, and already includes a large
number of image enhancement and segmentation routines that have been
tested for several applications.

1 Introduction

Partial differential equations (PDE’s) are being used for image processing in
general, and biomedical image processing in particular, with great success. The
goal of this paper is to present a user friendly system developed under Windows
NT/95/98 that implements and extends some of the most popular and useful
algorithms based on this technique. The software package is in the process of
being made publicly available to the research community.

Some of the algorithms included in the system are: (a) Anisotropic diffu-
sion [3,13]; (b) Curvature-based diffusion [1]; (c¢) Coherence enhancement [20];
(d) Vector-valued PDE’s [6,20]; (e) Geodesic active contours [5,10,14]; (f) Edge
tracing [7,19]; (g) Fast numerics [15]. Both the original algorithms and new im-
provements have been implemented.

As a form of example, we will describe two groups of operations implemented
in the system, image enhancement and image segmentation, and during the
conference we will demonstrate the system with a number of examples from
different imaging modalities.

* This work was supported by a grant from the Office of Naval Research ONR-N00014-
97-1-0509, the Office of Naval Research Young Investigator Award, the Presidential
Early Career Awards for Scientists and Engineers (PECASE), the National Science
Foundation CAREER Award, and the National Science Foundation Learning and
Intelligent Systems Program (LIS).
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The whole system is designed with two goals in mind: First, to assist re-
searchers in the analysis of their data, and second, to allow its constant ex-
pansion and the introduction of new algorithms. Only a subgroup of the basic
algorithms implemented in the system are here described, while it is understood
that the package includes a large number of user friendly options that will be
demonstrated at the conference. Details on the algorithms can be found in the
mentioned references.

2 Image enhancement

Both for analysis and visualization, it is imperative to enhance images. This is
of particular importance in biomedical images. Our software package includes a
large number of PDE’s based image enhancement procedures, both for scalar and
vectorial (e.g., color) data. We have included directional diffusion, anisotropic
diffusion, color anisotropic diffusion, coherence enhancement, and vectorial diffu-
sion. We proceed to describe two of the algorithms implemented in the package.

2.1 Directional (curvature-based) diffusion

The algorithm in this section follows [1].

Let I(z,y,0) : IR?> — IR be the original image that we want to enhance.
The basic idea behind image enhancement via directional diffusion is to define
a family of images I(z,y,t) : IR? x [0, 7) — IR satisfying

oI 21
a0 —9UVIDGe

ot

where g(r) =, o 0 is an edge stopping function, and £ is a unit vector perpen-
dicular to VI. This flow is equivalent to

ol

— = VI |k | VI

= ol VI s | VI,
where k is the curvature of the level-sets of I. The flow is processing the image
in the direction of its edges, hereby preserving the basic edge information.

2.2 Robust anisotropic diffusion

The algorithm in this section follows [3,13].

One of the most popular PDE’s based algorithms for image enhancement is
the anisotropic diffusion scheme pioneered by Perona and Malik. Our system
includes these equations and the later improvements developed by Black et al.
Letting I({x,y,t) : IR? x [0,7) — IR be the deforming image, with the original
image as initial condition, the image enhancement flow is obtained from the
gradient descent of

/ ol VI [)de2,
2
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which is given by

ar ./ VI
o= (VI o)

where p is, for example, the Lorentzian or Tukey’s biweight robust function.

3 Segmentation

One of the most commonly used approaches to segment objects, particularly in
medical images, are active contours or snakes [8,17]. This technique is based on
deforming a curve toward the minimization of a given energy. This energy is
mainly composed by two terms, one attracting the curve to the objects bound-
aries, and the other one addressing regularization properties of the deforming
curve. In [4,5], it was shown that a re-interpretation of the classical snakes model
leads to the formulation of the segmentation problem as the minimization of a
weighted length given by

/C (ol V(1) [))ds, )

where C : IR — IR’ is the deforming curve, I : IR? — IR the image, ds stands
for the curve arc-length (|| 9C/ds ||= 1), V(-) stands for the gradient, and
g(-) is such that g(r) — 0 while r — oo (the “edge detector”). This model
means that finding the object boundaries is equivalent to computing a path of
minimal weighted distance, a geodesic curve, with weight given by g(-) (see also
[10,16,21]). This model not only improves classical snakes, but also provides a
formal mathematical framework that connects between previous models (e.g.,
between [8] and [11]); see [5] for details.

There are two main techniques to find the geodesic curve, that is, the min-
imizer of (1). Both are part of the system we have developed, and are briefly
described now.

3.1 Curve evolution approach

The algorithm in this section follows [5,10,14].

This technique is based on computing the gradient descent of (1), and starting
from a closed curve either inside or outside the object, deform it toward the
(possibly local) minima, finding a geodesic curve. This approach gives a curve
evolution flow of the form

B RN — (Vg AN, e
where k and A are the Euclidean curvature and Fuclidean unit norm respectively
(additional velocities can be added as well and they are part of our implementa-
tion). This was the approach followed in [5,10], inspired by [11], where the model
was first introduced. The implementation is based on the numerical technique
developed by Osher and Sethian [12]. This model gives a completely automatic
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segmentation procedure (modulo initialization). This approach works very well
for images that are not extremely noisy. For extremely noisy images, like the
neuron data presented in the examples section, spurious objects are detected,
and is left to the user to manually eliminate them. In addition, since the bound-
ary might be very weak, this is not always detected. An initialization very close
to the goal might then be required. This motivates the next approach.

3.2 Geodesic edge tracing

The algorithm in this section follows [7,19].

This technique of solving (1) is based on connecting between a few points
marked by the user on the neuron’s boundary, while keeping the weighted length
(1) to a minimum. This was developed in [7]. In contrast with the technique
described above, this approach always needs user intervention to mark the initial
points. On the other hand, for very noisy images, it permits a better handling
of the noise.

We now describe the algorithm used to compute the minimal weighted path
between points on the objects boundary. That is, given a set of boundary points
{P}N11, and following (1), we have to find the N curves that minimize (Py 1 =

P1)
Pir1
AP, I(Pr)) = / (o(]| VI |})ds. 3)

The algorithm is composed of three main steps: 1- Image regularization,
2- Computation of equal distance contours, 3- Back propagation. We briefly
describe each one of these steps now.

Image regularization As in the curve evolution approach, the image is first
enhanced (noise removal and edge enhancement), using the PDE’s based algo-
rithms described before. The result of this step is the image [ (working on the
subsampled data, following [19], is part of the software package as well).

Equal distance contours computation After the image I is computed, we
have to compute, for every point P;, the weighted distance map, according to
the weighted distance d. That is, we have to compute the function

or in words, the weighted distance between the pair of image points P; and (z,y).
There are basically two ways of making this computation, computing equal
distance contours, or directly computing D,;. We briefly describe each one of
these now.
Equal distance contours C; are curves such that all the points on the contour
have the same distance d to P;. That is, the curves C; are the level-sets or
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isophotes of D;. It is easy to see, [7], that following the definition of d, these
contours are obtained as the solution of the curve evolution flow

ot gl VI Iy

?

where A is in this case the outer unit normal to C;(z,y,t). This type of flow
should be implemented using the standard level-sets method [12].

A different approach is based on the fact that the distance function D; holds
the following Hamilton-Jacobi equation [9,15,18]:

1

gl VL)

Optimal numerical techniques have been proposed to solve this static Hamil-
ton-Jacobi equation [9,15,18]. Due to this optimality, this is the approach we
follow in our software package. At the end of this step, we have D; for each point
P;. We should note that we do not need to compute D; for all the image plane. It
is actually enough to stop the computations when the value at P; 1 is obtained.

Back propagation After the distance functions D; are computed, we have to
trace the actual minimal path between P; and P; 11 that minimizes d. Once again
it is easy to show (see for example [9,15]), that this path should be perpendicular
to the level-curves C; of D;, and therefore tangent to VD,. The path is then
computed backing from P; 4, in the gradient direction, until we return to the
point P;. This back propagation is of course guaranteed to converge to the point
P;, and then gives the path of minimal weighted distance. We have implemented
both a full back propagation scheme and a discrete one that just looks at the
neighboring pixels.

4 Concluding remarks

In this paper we introduced a system for image analysis via PDE’s. Some of
the algorithms implemented in our package have been shown to outperform
commercially available packages that perform similar operations. For example,
we have shown, [19], that the edge tracing algorithm normally outperforms the
one in PicturelT, Microsoft’s image processing package. As mentioned in the
introduction, the system will be available to the research community. The system
is under constant development, and additional features, like an improvement of
the tracking scheme introduced in [2], are expected to be available soon.

?
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Abstract. Segmentation based on color, instead of intensity only, pro-
vides an easier distinction between materials, on the condition that ro-
bustness against irrelevant parameters is achieved, such as illumination
source, shadows, geometry and camera sensitivities. Modeling the phys-
ical process of the image formation provides insight into the effect of
different parameters on object color.

In this paper, a color differential geometry approach is used to detect
material edges, invariant with respect to illumination color and imaging
conditions. The performance of the color invariants is demonstrated by
some real-world examples, showing the invariants to be successful in
discounting shadow edges and illumination color.

1 Introduction

Color is a powerful clue in the distinction between objects. Segmentation based
on color, instead of intensity only, provides an easier discrimination between col-
ored regions. It is well known that values obtained by a color camera are affected
by the specific imaging conditions, such as illumination color, shadow and ge-
ometry, and sensor sensitivity. Therefore, object properties independent of the
imaging conditions should be derived from the measured color values. Modeling
the physical process of the image formation provides insight into the effect of
different parameters on object color [4,5,10,12]. We consider the determination
of material changes, independent of the illumination color and intensity, camera
sensitivities, and geometric parameters as shadow, orientation and scale.

When considering the estimation of material properties on the basis of local
measurements, differential equations constitute a natural framework to describe
the physical process of image formation. A well known technique from scale-space
theory is the convolution of a signal with a derivative of the Gaussian kernel to
obtain the derivative of the signal [8]. The introduction of wavelength in the scale-
space paradigm leads to a spatio-spectral family of Gaussian aperture functions,
introduced in [2] as the Gaussian color model. As a result, measurements from
color images of analytically derived differential expressions may be obtained by
applying the Gaussian color model. Thus, the model defines how to measure
material properties as derived from the photometric model.

M. Nielsen et al. (Eds.): Scale-Space’99, LNCS 1682, pp. 459-464, 1999.
(© Springer-Verlag Berlin Heidelberg 1999
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In this paper, the problem of determining material changes independent of
the illumination color and intensity is addressed. Additionally, robustness against
changes in the imaging conditions is considered, such as camera viewpoint, illu-
mination direction and sensor sensitivities and gains. The problem is approached
by considering a Lambertian reflectance model, leading to differential expressions
which are robust to a change in imaging conditions. The performance of these
color invariants is demonstrated on a real-world scene of colored objects, and on
transmission microscopic preparations.

2 Determination of Object Borders

Any method for finding invariant color properties relies on a photometric model
and on assumptions about the physical variables involved. For example, hue and
saturation are well known object properties for matte, dull surfaces, illuminated
by white light [5]. Normalized rgb is known to be insensitive to surface orien-
tation, illumination direction and intensity, under a white illumination. When
the illumination color varies or is not white, other object properties which are
related to constant physical parameters should be measured. In this section,
expressions for determining material changes in images will be derived, under
the assumption that the scene is uniformly illuminated by a colored source, and
taking into account the Lambertian photometric model.

Consider a homogeneously colored material patch illuminated by incident
light with spectral distribution e(A). When assuming Lambertian reflectance, the
reflected spectrum by the material in the viewing direction v, ignoring secondary
scattering after internal boundary reflection, is given by [7,13]

E() = e(A) (1 = pi(n, 5,v))° Reo(N) (1)

where n is the surface patch normal and s the direction of the illumination
source, and p; the Fresnel front surface reflectance coefficient in the viewing
direction, and R., denotes the body reflectance.

Because of projection of the energy distribution on the image plane vectors
n, s and v will depend on the position at the imaging plane. The energy of the
incoming spectrum at a point « on the image plane is then related to

E(\x) = e\, @) (1 - pi(2))” Roo(A @) (2)

where the spectral distribution at each point x is generated off a specific material
patch.

Consider the photometric reflection model (2) and an illumination with lo-
cally constant color. Hence, the illumination may be decomposed into a spectral
component e(A) representing the illumination color, and a spatial component
i(x) denoting the illumination intensity, resulting in

E(\x) = e(Ni(2) (1 - (@) Re(A) - (3)
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The aim is to derive expressions describing material changes independent of the
illumination. Without loss of generality, we restrict ourselves to the one dimen-
sional case; two dimensional expressions will be derived later. The procedure of
deriving material properties can be formulated as finding expressions depending
on the material parameters in the given physical model only.

Differentiation of (3) with respect to A results in

oE 9 de , 5 OR
Fx = (@)L = pe(@)) Reo(A @) 55 +e(Nil@)(1 — (@)= - (4)
Dividing (4) by (3) gives the relative differential,
10F 1 de 1 OR
oy = - + . (5)
EOX N ox  Ro(nz) O

The result consists of two terms, the former depending on the illumination color
only and the latter depending on the body reflectance. Since the illumination
depends on A only, differentiation to x yields a reflectance property.

Lemma 1. Assuming matte, dull surfaces and an illumination with locally con-

stant color,
0 [10F
P {Eﬁ} ©)

determines material changes independent of the viewpoint, surface orientation,
illumination direction, illumination intensity and illumination color.

Proof. See (4)—(5). Further, the reflectivity R and its derivative with re-
spect to A depend on the material characteristics only, that is on the material
absorption- and scattering coefficient. Hence, the spatial derivative of their prod-
uct is determined by material transitions. O

Note that Lemma 1 holds whenever Fresnel (mirror) reflectance is neglectable,
thus in the absence of interreflections and specularities. The expression given by
(6) is the fundamental lowest order illumination invariant. Any spatio-spectral
derivative of (6) inherently depends on the body reflectance only. According to
[11], a complete and irreducible set of differential invariants is obtained by taking
all higher order derivatives of the fundamental invariant.

Proposition 2. Assuming matte, dull surfaces and an illumination with locally
constant color, N is a complete set of irreducible invariants, independent of the
viewpoint, surface orientation, illumination direction, illumination intensity and

illumination color,
grrm 1 0K
N= gxnaem {Eﬁ} ™
form>1,n2>0.

These invariants may be interpreted as the spatial derivatives of the normalized
slope (Ny) and curvature (Nyy) of the reflectance function R..
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3 Measurement of Spatio-Spectral Energy

So far, we have established invariant expressions describing material changes
under different illuminations. These are formal expressions, assumed to be mea-
surable at an infinitesimal small spatial resolution and spectral bandwidth. The
physical measurement of electro-magnetic energy inherently implies integration
over a certain spatial extent and spectral bandwidth. In this section, physically
realizable measurement of spatio-spectral energy distributions is described. We
emphasize that no essentially new color model is proposed here, but rather a
theory of color measurement. The specific choice of color representation, often
referred to as color coordinates or color model, is irrelevant for our purpose.

Let E(A) be the energy distribution of the incident light, and let G(Ap;0,) be
the Gaussian at spectral scale o, positioned at Ag. Measurement of the spectral
energy distribution with a Gaussian aperture yields a weighted integration over
the spectrum. The observed energy in the Gaussian color model, at infinitely
small spatial resolution, approaches in second order to [2,9]

B (A) = BMor | AR %/\QEig"’* b (8)
EPoox — /E(/\)G(/\; Ao, o )dA (9)
o7 = /E(/\)G,\(/\;/\O,a,\)d/\ (10)
B :/E(/\)G,\/\(/\; Ag; 03 )dA (11)

were G5 (.) and G, (.) denote derivatives of the Gaussian with respect to A.

Definition 3. The Gaussian color model measures, up to the ond order, the
coefficients A0 E:\\O’U* and Ej\\f\’“ of the Taylor expansion of the Gaussian
weighted spectral energy distribution at Ao [9].

Introduction of spatial extent in the Gaussian color model yields a local
Taylor expansion at wavelength Ay and position xg [2]. Each measurement of a
spatio-spectral energy distribution has a spatial as well as spectral resolution.
The measurement is obtained by probing an energy density volume in a three-
dimensional spatio-spectral space, where the size of the probe is determined by
the observation scale o and o,

o=+ () [l 5 () [kl () o0

where

Eooihx)=E\x)xGuni( A\ x0,) . (13)
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Here, G:5; (A, x; 0,) are the spatio-spectral probes, or color receptive fields. The
coefficients of the Taylor expansion of E(/\7 x) represents the local image struc-
ture completely. Truncation of the Taylor expansions results in an approximate
representation, which is best possible in the least squares sense [8].

For human vision, the Taylor expansion is spectrally truncated at second
order [6]. Hence, higher order derivatives do not affect color as observed by the
human visual system. The Gaussian color model approximates the Hering basis
for human color vision when taking the parameters A\p ~ 515 nm and o ~ 55 nm
[2]. Again, this approximation is optimal in least square sense.

For an RG B camera, principle component analysis of all triplets results in
a decomposition of the image independent of camera gains and dark-current.
The principle components may be interpreted as the intensity of the underlying
spectral distribution, and the first- and second-order derivative, describing the
largest and one but largest variation in the distribution. Hence, the principal
components of the RGB values denote the spectral derivatives as approximated
by the camera sensor sensitivities.

Concluding, measurement of spatio-spectral energy implies probing the en-
ergy distribution with Gaussian apertures at a given observation scale. The hu-
man visual system measures the intensity, slope and curvature of the spectral
energy distribution, at fixed Ao and fixed o). Hence, the spectral intensity and
its first and second order derivatives, combined in the spatial derivatives up to
a given order, describe the local structure of a color image.

4 Results

Geometrical invariants are obtained by combining the color invariants N, and
Ny in the polynomial expressions proposed by Florack et al. [3]. For example,
the first order spatial derivatives vields the edge detectors

Ny” +Ny,2 and Nan,? + Nay,” (14)

Figure 1a—c shows the result of applying the edge detector /N ,\zg + N, ,\y2 under
different illuminants.

Color edges can be detected by examination of the directional derivatives in
the color gradient direction [1], by solving for

NAyQNAyy + 2NAyNAzNAzy + NAzQNAzz
Nag? + N2

NAw -V NAzQ +Nky2 e

and similar for N,,. Salient edges are determined by the value of . An example
is shown in Fig. 1d.

Nkww: =0
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Fig. 1. lllumination invariant edges for epithelial tissue (a) visualized by transmission
light microscopy. Edges Ny, = ‘\r"l No %+ J‘\uy"e are shown for (b) a white illumination
(halogen 3400K), and (c¢) a reddish illumination (halogen 2450K). Despite the different
illuminants, edge strength is comparable. Figure d shows zero crossing detection in an
image of colored objects. In white the Ny, crossings (bluish-yellow edges), in black

the

Naxww crossings (reddish-green edges).
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Abstract. This paper introduces a new approach for computing a hi-
erarchical aspect graph of curved objects using multiple range images.
Characteristic deformations occur in the neighborhood of a cusp point
as viewpoint moves. We analyze the division types of viewpoint space in
scale space in order to generate aspect graphs from a limited number of
viewpoints. Moreover, the aspect graph can be automatically generated
using an algorithm of the minimization criteria.

1 Introduction

Koenderink and van Doorn introduced the notion of aspect graphs for repre-
senting an object shape [KD]. An aspect is defined as a qualitatively distinct
view of an object as seen from a set of connected viewpoints in the viewpoint
space. Every viewpoint in each set gives a qualitatively similar projection of the
object. In an aspect graph, nodes represent aspects and arcs denote visual events
connecting two aspects. It is possible to compute the aspect graph by deriving
the exact partition of viewpoint space from its geometric model for that of poly-
hedral objects|[GC]. Many researchers have shown an interest in visual events
and boundary viewpoints for piecewise-curved objects [RI|[PK].

A panel discussed the theme “Why Aspect Graphs Are Not (Yet) Practical
for Computer Vision” [FA]. One issue raised by the panel is that aspect graph
research has not included any notion of scale. As an object’s complexity increases,
the aspect number also increases. Therefore, this method can only be applied to
simple objects, such as solids of revolution. If an object is complex, the size of its
aspect graph is too big to match an object. By introducing the concept of scale,
it is hoped that this large set of theoretical aspects can be reduced to a smaller
set. From this viewpoint, Eggert has proposed the scale space aspect graph
for polyhedra [EB]. These approaches address the case of a camera having finite
resolution [SP][EB]. From the same viewpoint, we proposed a method to generate
a hierarchical aspect graph using silhouettes of curved objects [MK]. The strict
direction of the objects cannot be matched using only silhouettes, though objects
can be matched quickly. Thus we proposed a method for generating a hierarchical
aspect graph using multiple range data for curved objects.

2 Primitive techniques and overview of aspect analysis
The curvatures used here are defined as follows.

M. Nielsen et al. (Eds.): Scale-Space’99, LNCS 1682, pp. 465-471, 1999.
(© Springer-Verlag Berlin Heidelberg 1999
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Suppose a parametric form of a surface X (u,v) = (z(u,v), y(u,v), z(u,v)).
A tangential line at X (u,v) is denoted by t(u,v) = duX,(u,v) + de (w,v).

The curvature at X along (du, dv) is defined as A(du, dv) = gzggu gug
1 u,av
where 61(du, dv) = (du dv) (XvXu XUXU) (dv) and
st = (oo (30 ()
Xu - _7X'u = _,qu = _7X'uxu _ _7X'u»u _
Ou o Ou? Ovou Hv?2

With the directional vectors which maximize and minimize the curvature
at the point p as (u,v)=(¢1,m) and ({z,71), the maximum curvature 1, the
minimum curvature ko, the mean curvature H, and the Gaussian curvature H
are defined as:
k1= AC1,m)s k2 = AN, m2), H = MT”, and K = kK9, respectively.

Characteristic contours which satisfy H = ’”*T"Q =0, and K = k1ko = 0 are
called HO contours and KO contours, respectively.

Scale-space filtering is a useful method for analyzing a signal qualitatively by
managing the ambiguity of scale in an organized and natural way. In this section,
we extend the scale-space filtering for 2-D contour to 3-D surface analysis. The
Gaussian convolution to the surface ¢ is formulated by a diffusion equation:

Po ¢ 10

2 v t ot (1)
where ¢(u,v) = (x(u,v),y(u,v),z(u,v)) is a parametric representation of a
surface. This equation is approximated by the difference equation:

o(u — Au,v,t) — 2¢(u,v,t) + ¢(u + Au, v,t)
Au?

o(u,v,t + At) = ¢(u,v,t) + At

o(u, v — Av, t) — 2¢(u,v,t) + ¢(u,v + Av,t) (@)
Av?

Iterating (2), the curvature at each sample point converges to a constant.

Figure 1 shows the primitive causing the unique changes in the topologies
of the zero-crossing surface, when the shape is smooth. Diagrams la and 2a
in Figure 1 show the vertical section of the zero-crossing surface in which u
coordinate has the constant values ul and u2. and figure 1b and 2b of Figure
1 show the horizontal section of the zero-crossing surfaces in which scale t has
the constant values t1 and t2. Diagrams 1a and 1b in Figure 1 show the changes
occurring when a zero-crossing surface comes into contact with another surface.
Diagrams 2a and 2b show the changes occurring when a zero-crossing surface
comes into existence. Diagrams 1a and 1b in Figure 1 show the non-monotonous
causes of scale-space[YP]. As the scale t decreases, the surface first opens in the
top level, then closes in the next step, and later appears again.

We generate a hierarchical aspect graph from orthographic projections ob-
tained from a limited number of viewpoints. If the viewpoint space ([0, 360],

+ At
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Fig. 1. The primitive causes topology changes of zero-crossing surfaces.

A0,360]) is divided into pieces of size (%, %), then the number of sample

viewpoints is n/2 x n(n = 2,4,6,8,10...). The number of sample viewpoints is
36*18 (n=10) in this paper.

3 The Hierarchical Partition Method of a Viewpoint
Space

3.1 Aspect Analysis of Occluding Contour

If the observed image is the same, the classification of the orthographic image
does not change, as the differential geometric characters, which are the mean
curvature and Gaussian curvature, do not change.

The orthographic image deforms in the following two cases. In the first case,
a surface occluded by other surfaces appears. In the second case, a surface is
occluded by the other surfaces. In these two cases the differential geometrical
continuity isn’t satisfied and occluding contours come into existence.

We analyze aspect changes in the neighborhood of cusp points where oc-
cluding contours occur. This is important in the case of describing an aspect,
such as the contour topology which includes occluding contours. By convolving
the depth image of the orthographic projection Gaussian, a unique deformation
process occurs at this discontinuity point. The appearance of occluding contours
has three prototypes [TH]:lips, beaks and swallows. We partition the viewpoint
space using the unique events from the observation of limited viewpoints. The
partitioning of the viewpoint is reliable because it is restricted by the unique
events, where occluding contours occur.

3.2 Hierarchical events

Every viewpoint in a viewpoint space can be classified into two different types: a
stable viewpoint or an accidental viewpoint. For stable viewpoints, there exists
an open neighborhood of viewpoints that gives the same aspect of the object.
In partitioning viewpoint space into aspects, the boundary between two as-
pects is called an event. Each visual event type can be characterized by alter-
ations in the feature configurations. As the number of processes increase, an
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aspect is partitioned into finer aspects. The deformation processes in a deforma-
tion number differ in the boundary between two scales. The boundary between
two aspects and between two scales is called a hierarchical event. In order to
generate a hierarchical aspect graph automatically from depth maps of limited
observed viewpoints and scales, we must analyze the hierarchical and visual
events. The number of deformation processes is the applied number of event.

The number of different hierarchical events is finite, and they depend on the
difference in zero-crossing contour topology of scale-space images A hierarchical
event occurs when the following occurs in scale-space images.

Type 1. A zero-crossing surface comes into contact with another surface.

Type 2. The singularity of two zero-crossing surfaces is at the same height.

Type 3. A zero-crossing surface disappears.

Figure 2(a)(b) shows three types of hierarchical events. a0 represents a zero-
crossing surface. Lines of a0 illustrate the intersection of a zero-crossing surface,
where the u coordinate is constant and the dotted lines of a0 represent the
intersection of a zero-crossing surface, where the t coordinate is zero. al, a2 and
a3 are zero-crossing contours in the u, and v coordinates. The label al changes
a3, as scale t decreases.

Type 1-a and 1-b show the difference of singularity heights. A and C are two
stable views, and B is an accidental view. One zero-crossing surface is higher
than the other in A, but lower than the other zero-crossing surface in C, which
means A and C differ in the order of deformation. B deforms in two places at
once. A zero-crossing surface does not exist between the two surfaces in 1-a, but
does in 1-b.

Type 2-a and 2-b show a zero-crossing surface which comes into contact
with another contour in a scale-space image. Type 2-a shows two zero-crossing
surfaces which are inscribed, and type 2-b shows two zero-crossing surfaces which
are circumscribed. Since the topology of the zero-crossing surfaces are the same
in the first frame a0 of type 2-a, the viewpoint space belongs to an aspect.
However, in the next deformation process, a zero-crossing surface comes into
contact with another surface, and a difference occurs. A and C are two stable
views, and B is an accidental view. A zero-crossing surface contacts with another
zero-crossing surface accidentally. B is the boundary of the two aspects A and
C and the event.

Type 3-a and 3-b show a zero-crossing surface which disappears in a scale-
space image. If the outline is a circle, it will never deform. As the surface is
smooth, it does not deform without reaching the comparable process number.
C1 and C2 are two stable views and B is the accidental view. The zero-crossing
surface disappears in the viewpoint B.

Hierarchical events can be classified into these three events, depending on the
properties of scale-space. If the projection depth image changes smoothly, then
the zero-crossing surface also changes smoothly. These events are all considered
in this paper. This discussion is based on the Morse theory[TH] studying the
theoretical behavior of extrema and saddle points.
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3.3 The Partition Types of a Viewpoint Space.

The partition type and the changes of the partition type are limited by three
hierarchical events. It is important to analyze the points in which the boundary
lines of the viewpoint space intersect. Two hierarchical events occur in the inter-
section point at the same time. If Type 1-b and Type 2-a events in Figure 2(a)(b)
occurs at the same time, then the two boundary lines dividing the viewing space
intersect as in Figure 2(c) and Figure 3(a). If Type 1-a and Type 2-b events
occur at the same time, then the two boundary lines dividing the viewing space
intersect as in Figure 2(c) and Figure 3(a). a0 shows the zero-crossing surfaces
of the nine viewpoints, such as (B1, B2) and (C1, C2). The lines inside of nine
square frames of a0 are the intersections of zero-crossing surfaces, where the u
coordinate is constant. The dotted lines inside of nine square frames of a0 are
the intersections of zero-crossing surfaces, where the t coordinate is zero. The
label al is the coarse level and a3 is the fine level and they represent the value
of the scale t. The square frame of a0, al, a2, and a3 represents the viewpoint
space, which have nine viewpoints. The circle frame means that zero-crossing
contours occurred in u and v coordinates. In this case, Type2-a and Type 1-b
occurred, and the aspect of the viewpoint space is the same. In the scale al,
there is one viewpoint space. In the scale a2, the viewpoint space is divided into
three, and the events (B2, C1), (B1, C2) and (Al, B2) occur. In the scale a3,
the viewpoint space is divided into four, and the event (B2, B1) happens. The
number of the partitions primitive is limited to 15 because the combinations of
two events ,which we select from 6 hierarchical events. Each event is classified
in more detail depending on whether the combinations of the zero-crossing sur-
faces are KO or HO surfaces. The viewpoint space is partitioned using the stable
viewpoint and the neighboring viewpoints from the limited viewpoints.

Three hierarchical events happen in the intersection point at the same time.
However, we don’t use events where three types exist at one viewpoint and scale,
because they seldom actually occur. A combination of more than three events
is regarded as a sequential change of two hierarchical events. Thus, all visual
events are considered.

4 Generating an Algorithm of Hierarchical Aspect
Graphs

Our algorithm to generate an aspect graph can be outlined in the following steps,
as figure 4 shows the flow chart of the algorithm

1. We observe an object in 36*18 viewpoints and detect the depth map of
the orthographic projection using a laser range finder.

2. We filter in the limited resolutions for each depth map.

3. The depth map, after the filtering is divided into regions using the signs
of the mean curvature and Gaussian curvature.

4. By detecting the topology changes of the KO and HO contours on the
KH-image from the top level, the zero-crossing surfaces are inferred using KH-
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images of the limited resolution. Actually the changes of KH-images over scale
are registered as sets of the primitive operator.

5. The topology changes of the KO and HO contours is recorded over scale.
If the topology changes cannot be determined because of a limited number of
resolutions examined, all deformation processes capable of being obtained from
observed images are recorded.

6. The minimum process in the possible deformation processes without in-
consisentcy in the neighboring viewpoints is selected. The inconsistency is found
using the partition types of a viewpoint space.

The dividing map of viewpoint space observed using range sensor are showed
in Figure 4. y axis is latitude, which is n = 0° ~ 180°, and z axis is longitude,
which is ¢ = 0° ~ 360° ((A)t=20, (B)t=90, (C)t=270).

We analyzed the division types of viewpoint space in the neighborhood of a
cusp point in order to generate aspect graphs from a limited number of view-
points. The aspect graph can be automatically generated using an algorithm of
the minimization criteria.
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Fig.4. The dividing maps of viewpoint space observed using range sensor are
showed. y axis is latitude, which is 5 = 0° ~ 180%, and « axis is longitude, which
is ¢ = 0° ~ 360°. ((A)t=20, (B)t=90, (C)t=270)
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Abstract. This paper introduces a new approach for generating the hi-
erarchical description of a non-rigid density object. Scale-space is useful
for the hierarchical analysis. Process-grammar which describes the defor-
mation process between a circle and the shape is proposed. We use these
two approaches to track the deformation of a non-rigid density object.
We extend 2D process-grammar to 3D density process-grammar. We an-
alyze the event that the topology of zero-crossing surface of scale-space
changes, as a density object changes smoothly. The analysis is useful to
generate 3D density process-grammar from a limited number of obser-
vations. This method can be used for tracking a non-rigid object using
MRI data.

1 Introduction

Scale-space[Wil] is used to analyze signal sets and contours with several reso-
lutions. 3D medical data is analyzed using scale-space to obtain the surface of
the internal organs [VK]. On the other hand, many studies have been devoted
to the analysis of motion in magnetic resonance images. The most frequently
used method consists of reconstructing the motion by using a deformable model
[TW][CC][MT]. The purpose is mainly to find the surface of a non-rigid shape.

We propose the hierarchical description of the internal structure for a medical
non-rigid density object. We define a non-rigid density object as an object which
includes the density and changes in the internal structure of density over time. In
comparison with surface analysis using the deformable object and the statistical
segmentation using scale-space, our purpose is not to analyze a surface, but to
analyze the internal structure of a medical density object.

Koenderink and van Doorn introduced the notion of aspect graphs for rep-
resenting a shape [KV]. An aspect is defined as a qualitatively distinct view of
an object as seen from a set of connected viewpoints in the viewpoint space.
We extend the concept of aspect graph to the concept of a non-rigid density
object. In this paper, we define an aspect as a qualitatively distinct internal
structure as a non-rigid density object changes in density. We extend the 2D
process-grammar|[LE] to 3D density process-grammar, in order to generate the
description of a non-rigid density object. 2D process-grammar describes the de-
formation process of 2D contour between a circle and the shape. We define
3D density process-grammar as the deformation process between a flat density

M. Nielsen et al. (Eds.): Scale-Space’99, LNCS 1682, pp. 471-477, 1999.
(© Springer-Verlag Berlin Heidelberg 1999
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and the density. We use the scale-space filtering to generate 3D density process-
grammar automatically. We analyze the events that the topology of zero-crossing
surface changes as a density object changes smoothly. The analysis is useful to
generate 3D density process-grammar from a limited number of observations.

2 3D Density Scale-space Filtering

3D density scale-space filtering can be used to analyze a density non-rigid object
hierarchically.

Assuming that a mesh has a parametric form, then f(u,v,w) = h{z(u,v,w),
y(u, v, w), z(u,v,w)) for the density value for the image coordinate x(u,v,w),
y(u, v, w), z(u,v,w) on the mesh coordinate (u,v,w). A point on the derived
mesh is the result of the convolution ¢(u, v, w, o) = f(u,v,w)xg(u,v,w,0). The
mesh convolved Gaussian satisfies the following diffusion equation.

2 2 2
8_65 + 8_¢ + ﬁ — l@ (1)
du 2 " Ow?  t Ot

This equation can be approximated by the diffusion equation.

2.1 Hierarchical density analysis based on 3D density scale-space
filtering

A mesh ¢(u, v, w) is divided into elements using the positive and negative values
of the Gaussian curvature K and mean curvature H.

The curvature used here is defined as follows. Assuming that a mesh has a
parametric form, X (u,v,w) = ¢(u, v, w).

The curvature at X along (du, dv, dw) is defined as A(du, dv, dw) = %,

where
XuXu XuXo XuXw du
&1 (du, dv, dw) = (du dv dw) | XoXu XoXo XoXw | | dv
8o (du, dv, dw) = (du dv dw) | Xow Xoo Xow | | dv

X X 92X 92X 92X
Xu:m7Xv:mqu:W7Xv = Hu2 Xuv:—

With the directional vectors which maximize and minimize the curvature at
the points p being defined as (u,v,w) — (n1,¢1,v1) and (19, (2, ¥2), then the
maximum curvature %1, the minimum curvature x9, the mean curvature H, and
the Gaussian curvature H are defined as:

K1tK2

k1 = /\(7717 C17 71)7 kg = A(U% C27 72)7 H= 5 and K = R1kg, I'espectively.
Characteristic surfaces which satisfy H — % =0 and K = kikg = 0 are
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Fig. 1. The primitive causes topology changes of zero-crossing surfaces.

called HO surfaces and KO surfaces respectively. We divided the density into
elements using positive and negative values of the Gaussian curvature K and
the mean curvature H. This image is termed to a KH-image. Figure 1 shows
the primitive causing the unique changes in the topologies of the zero-crossing
surface, when a non-rigid density object changes smoothly. Figure 1(a) shows the
changes occurring when a zero-crossing surface disappear. Figure 1(b) shows the
changes occurring when a zero-crossing surface comes into contact with another
surface.

3 Hierarchical Event of 3D Density Object Space

3.1 Hierarchical events

We describe the changes of aspects on the density object space. In partitioning
the density object space into aspects, the boundary between two aspects is called
an event. As the scale increase, an aspect is partitioned into finer aspects. The
boundary between two aspects and between two scales is called a hierarchical
event.

The number of different hierarchical events is finite, and they depend on
the difference in zero-crossing surface topology of 3-D density scale-space. A
hierarchical event occurs when the following three types occurs in 3-D density
scale-space. In type 1, a zero-crossing surface comes into contact with another
surface. In type 2, the singularity of two zero-crossing surfaces is at the same
height. In type 3, a zero-crossing surface disappears. Figure 2 (a) (b) shows
three types of hierarchical events. a0 represents a zero-crossing surface. Lines of
a0 illustrate the intersection of a zero-crossing surface, where the u coordinate is
constant and the dotted lines of a0 represent the intersection of a zero-crossing
surface, where the t coordinate is zero. al, a2 and a3 are zero-crossing contours
in the u, and v coordinates. The label al changes a3, as scale t decreases.

Type 1-a and 1-b show the difference of singularity heights. A and C are two
stable density objects, and B is an accidental density object. One zero-crossing
surface is higher than the other in A, but lower than the other zero-crossing
surface in C, which means A and C differ in the order of deformation.

Type 2-a and 2-b show a zero-crossing surface which comes into contact
with another contour in a scale-space image. Type 2-a shows two zero-crossing
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Fig. 2. Hierarchical events.(a)KH-image changes as a density object changes. (b) Zero-
crossing surface changes as scale increases. (c)Partition changes of a density object
space.

surfaces which are inscribed, and type 2-b shows two zero-crossing surfaces which
are circumscribed.

Type 3-a and 3-b show a zero-crossing surface which disappears in a scale-
space image. If the outline is a circle, it will never deform. As the surface is
smooth, it does not deform without reaching the comparable process number.
The zero-crossing surface disappears in the density object B.

By studying the theoretical behavior of extrema and saddle points [TH], it
is possible to repropriate blob events in four basic types: annihiration, merge,
split, and creation[CB][LI]. These events are all considered in this paper.

3.2 The Partition Types of Density Object Space.

Two hierarchical events occur in the intersection point at the same time. If
Type 1-b and Type 2-a events in Figure 2(a)(b) occur at the same time, the two
boundary lines dividing the viewing space intersect as in Figure 2(c). If Type
1-a and Type 2-b events occur at the same time, then the two boundary lines
dividing the viewing space intersect as in Figure 4.

The number of partitions primitive is limited to 15 because of the combi-
nations of two events ,which we select from 6 hierarchical events. Each event
is classified in more detail depending on whether the combinations of the zero-
crossing surfaces are KO or HO surfaces. The density object space is partitioned
using the stable density object and the neighboring density objects from the
limited observations.

We don’t use events where three types exist at a voxel of one density object
and scale, because they seldom actually occur. A combination of more than three
events is regarded as a sequential change of two hierarchical events. Thus, all
events are considered.
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3.3 3D Density Process-grammar based on Scale-space Topological
Analysis

We extend the process-grammar to analyze a 3D density object. All densi-
ties are transformed from the a flat density in the same way as 2D contours
are transformed from the circle in 2D process-grammar. The four elements
M+, M —, m—, m+ of 2D process-grammar are defined as the primitive elements.
The primitive elements of 3D density process-grammar are defined using the four
elements G > 0H > 0,G > 0H < 0,G < 0H > 0,G < 0H < 0. All smoothed
densities are described using these primitive elements. Just as the relation be-
tween adjacent primitive elements is described by 2D process-grammar, so is the
relation between adjacent primitive elements described by 3D density process-
grammar. The process is described on 3D density process-grammar such as the
process that the density is transformed from a flat density.

We generate the deformation process based on the analysis of sections 3.1
and 3.2 We described the density in terms of the KO blobs only because the
appearance and disappearance of the HO surface depends on the appearance and
disappearance of the KO blob. We used 3D density scale-space filtering because
the density becomes a flat density as scale t increases. When two HO surfaces
come into contact, the number of surfaces does not decrease monotonously as
the scale t increases. The KO and HO surfaces contact without affecting the
multi-resolution when KO and HO blob are very close. For this reason we did not
use the contact of the KO blob as the deformation process in this paper. This
discussion is based on the morse theory[TH]. The KO surface of 3D scale-space
can be generated by linking the KO blobs as scale t increases. After that, the 3D
density process-grammar is generated by using 3D scale-space.

We then transformed the set of KO blob to {Mmy, Mma, -+, Mmgyp}. If the
order satisfies ¢; > ¢;, the order reflects the deformation process of 3D density
process-grammar. Mm; is represented as (g(4),t a;, d;). g(i) is the value (z;, y;, 2:)
on xyz coordinate. The positive and negative values of H are indicated by +1
and —1 using the last element d;. The deformation of Mm 1 occurs first, followed
by that of Mms, and subsequently that of Mmgs.

4 Matching using Geometric Invariance Features

An object can be matched to another object by using 3D density process-
grammar hierachically. To relate one feature to a second feature, we use geo-
metric invariance features. We consider the polyhedron that 3 surfaces contact
at a vertex. If we assume the coordinate value of the polyhedron n;, the invari-
ance [RF] of this polyhedron is defined as:

I detNsse1 - detNasao _detN3sp1 - det Naao _detNaspy - det Nss12
' detNsses - detNssiz' © detNssiz - detNsgss' © detNsses - det Nasa
where Nyjm = [ng, nj, ng, ny] and which is a 4 x 4 matrix. We use 6 KO blobs

generated when the scale is high at first. We generate the polyhedron which 3
surfaces contact at a vertex using 6 blobs. After that, we calculate the geometric



ATE 5. Morita

invariance obtained from the polyhedron. Thus, the KO blobs for one scale-space
corresponds to the KO blobs of the another scale-space in turn. Subsequently,
we evaluate the similarity of the objects by comparing two deformation process
using the geometric invariance.

5 Medical Data Analysis

‘We show the algorithm for the moving heart analysis using the following steps:

— 1. A 3D density scale-space is generated from a density object (2.).

— 2. We transform the 3D scale-space to the 3D density process-grammar using
topological analysis (3.).

— 3. We track the change in these points over time.

— 4. We repeat processes 1 through process 3.

— 5. We evaluate the similarity of the density objects hierachically using geo-
metric invariance features of 3D density process-grammar (4.).

We used the sequential images of a moving heart obtained via MRI. The
size of the image was 100*100%100. Figure 3(A)(B)(C) show KH-image (2=50),
(y=50) and (x=50). Figure 3(D)(E)(F) show the zero-crossing surfaces (z=50),
(y=50) and (x=50) that KO blob which is K > 0,H > 0 are stacked. Fig-
ure 3(G) shows KH-image which is K > 0H > 0, when the iteration num-
ber is &, 32, 128, and 496. KH-images on 4 sequential images of a heart are
shown when the iteration number t is 270. We obtain the deformation process
{ My, Moy, Mms, Mmg, Mg, Mg, My, Mg, Mmg} from the 4 hearts

»IREER EREE  EESS
\w\ “‘%ﬂ ‘-\"g!\
(D) (E) (F)
(©) ‘ * *®
2 2 2 2
Fig.3. (A)KH-images(z=50)(B)KH-image(y=>50)(C)KH-image(x=50), The zero-
crossing surfaces of K > 0,H > 0 (D)z = 50, (E)y — 50, (F)z = 50. (G)IKH-

images(K > OH > 0)t= 8, 32, 128, 496. (H)The sequence KH-images of a heart(K >
0H > 0)t=270
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sl, 82, 83, s4. First, we calculate a geometric invariance using 6 kO blobs rep-
resended by Mml — Mm6. After that, we calculate the geometric invariances
using the sets composed of 6 blobs in turn. The results are shown in Table 1.
Figure 3(H) show KO blobs, which is K > 0H > 0, obtained from 4 sequen-
tial images. The value of the geometric invariance of 4 sequential objects nearly
equal, though the value changes slightly over time.

We analyzed the hierachical event that the topology of zero-crossing surface of
scale-space changes, as a density object changes smoothly. The analysis is useful
to generate 3D density process-grammar from limited number of observations.
The tool is useful for analyzing a non-rigid density object hierachically.

I1 12 13 I1 12 13
s1 Mm1-Mmé6 1.060174 0.860518 2.143412 s1 Mm2-Mm?7 1.103340 0.927175 3.230862
s1 Mm3-Mm8 1.116745 0.948955 3.939625 s1 Mm4-Mm9 1.114275 0.985219 4.950984
s2 Mm1-Mmé6 1.060174 0.860518 2.143412 s2 Mm2-Mm?7 1.103340 0.927175 3.230862
s2 Mm3-Mm8 1.116745 0.948955 3.939625 s2 Mm4-Mm9 1.114275 0.985219 4.950984
s3 Mm1-Mmé6 1.062561 0.856981 2.143711 s3 Mm2-Mm?7 1.113535 0.915727 3.256538
s3 Mm3-Mm8 1.127873 0.934663 3.927846 s3 Mm4-Mm9 1.114944 0.985621 4.999187
s4 Mm1-Mmé6 1.062669 0.855323 2.136194 s4 Mm2-Mm?7 1.111324 0.903093 3.049251
s4 Mm3-Mm8 1.129468 0.933878 3.954875 s4 Mm4-Mm9 1.114350 0.993526 5.314854

Table 1. The geometric invariance obtained from 3D density scale-space is calculated
for 4 sequential images of a moving heart.
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Abstract. We propose a method for contour figure approximation which
does not assume the shape of primitives for contours. By smoothing out
only local details by curvature flow process, a given contour figure is ap-
proximated. The amount of smoothing is determined adaptively based
on the sizes of the local details. To detect local details and to determine
the amount of the local smoothing, the method uses the technique of
the scale space analysis. Experimental results show that this approxima-
tion method has preferable properties for contour figure recognition, e.g.
only finite number of approximations are obtained from a given contour
figure.

1 Introduction

Describing global shapes of a contour figure is essential for contour figure recog-
nition. To describe global shape of a given contour is to approximate a contour
figure. A contour can be approximated by replacing local details with simple
shape primitives. For example, a line segment approximation replaces small
shape details with line segments. Many approximation methods of a contour
figure have been proposed, and almost of which assume the shape of the replac-
ing primitives. As the result, those methods often fail to describe global shape of
a given contour. For example, a line segment approximation fails to approximate
a round circular contour.

We propose an approximation method which do not assume primitive shapes.
The method approximates a given contour by smoothing out only local details.
To detect local details and to determine the amount of the local smoothing
adaptively, we use a smoothing process which is known as curvature flow. The
curvature flow is one of the smoothing processes of a contour which has a scale
parameter. As the scale increases, the contour is more smoothed, and the curva-
ture of the contour becomes constant. We define a shape component on a given
contour with inflection points of the curvature. As the scale increases, shape
components on the given contour disappear next by next. The size of each shape
component is defined as the scale at which the shape component disappears.
Shape components of small sizes correspond to local details and large ones cor-
respond to global shapes[1].

M. Nielsen et al. (Eds.): Scale-Space’99, LNCS 1682, pp. 483-488, 1999.
(© Springer-Verlag Berlin Heidelberg 1999
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Our method, first, smoothes a given contour figure, and obtains a finger print
pattern of curvature inflection points in the scale space. Then, referring to the
finger print pattern, shape components smaller than a given scale are detected.
This scale is called the base scale in this paper. Finally, the given contour figure is
approximated by smoothing only smaller shape components. The amount of the
smoothing is determined adaptively based on the size of each shape component.
As shown in later, even if the base scale is changed continuously, this method
produces only a finite number of approximations from a given contour. It is also
shown that the approximations obtained from an approximated contour figure
are included in the approximations obtained from the original contour figure.

2 Smoothing of Contour Figure

In order to detect shape components on a given contour, we use a smoothing
process which is known as the curvature flow. Let us consider a contour repre-
sented as C(u) = (z(u),y(u)) where u is a position parameter along the contour.
From this contour C(u), smoothed contours F'(u,t) are obtained by solving next
equations.

F(u,0) = C(u),
{ OF(u, )/t — —kN, (1)

where  is the curvature, and IV is the unit outward normal vector of F/(u,t). The
parameter t(> 0) is called the scale parameter. We assume that C(u) is a simple,
closed, and piecewise CT plane curve. As ¢ increases, the contour becomes more
smoothed. This smoothing process has preferable properties for our purpose as
followings|[2].

— Increasing ¢ generates no new curvature inflection point.

— An inflection point disappears only when it meets with another inflection
point.

— Any contour converges to a round circle, then to a point, and disappears
when ¢ becomes A/27 where A is the area of the given original contour.

An example of a set of F(u,t) is shown in Fig.1(left). As ¢ increases, the shape
of the contour becomes close to a round circle.

To obtain smoothed contours F'(u,t), the level set method[3] or the Gaussian
filtering[4] is available. We employ the latter method because, in the proposed
method, every point on a given contour is traced through the smoothing process.

3 Adaptive Local Smoothing for Approximation

As described, any contour figure converges to a round circle in the smoothing
process. This means that as the scale ¢ increases, the curvature of the smoothed
contour becomes more even and constant. When we plot u-x graph at every
scale, the graph becomes even and flat as the scale increases.
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Fig. 1. Left: An example of smoothed contours. The total length of the given contour
is 540, and ¢t = 0, 100, 500, 900, and 1300 respectively from bottom to top. Right: An
example of a finger print pattern of inflection points.

We define a shape component of a contour figure with inflection points of the
curvature. An inflection point of the curvature is defined as a point between the
concave part and the convex part of the u-x graph of the contour figure. As the
scale t increases, the number of the inflection points decreases, and the u-x graph
becomes flat. Increasing ¢, no new inflection point is generated, and inflection
points disappear only when two or more inflection points meet together. We
define a shape component as a part of a given contour between two inflection
points which meet together when they disappear. We also define the size of
the shape component as the scale at which the two inflection points meet and
disappear.

In general, an original contour figure has many shape components of various
sizes. In the smoothing process, as the scale ¢ increases, shape components dis-
appear next by next, and finally, all shape components disappear to become a
round circle.

Our method approximates a given contour figure by smoothing out only
small shape components. The amount of smoothing for each shape component
is determined adaptively based on the size of the components. In order to detect
shape components and their sizes of a given contour, we use the technique of a
scale space analysis.

When we plot the inflection points in the scale space, we obtain so-called
finger print pattern. Figure 1 shows an example of the finger print pattern of
inflection points. Here, the scale space is a space of the original position » and
the scale t. Every curve of the finger print pattern closes upward as shown in
Fig.1. In the scale space, each area closed by each curve of the finger print
pattern corresponds to a shape component. Referring to the height of each area,
we detect the size of each shape component.
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(a)

tAAuro

Fig. 2. The proposed approximation method. (a)The finger print pattern of inflection
points. (b) Area B shows the area of the shape components whose scale is smaller than
to. (¢) At each scale, the area on the contour showed by Area B is smoothed.

—p U
To be smoothed

We approximate a given contour figure by smoothing out shape components
whose sizes are smaller than a given scale to. We call this scale o as base scale.
The amount of local smoothing is determined adaptively based on the size of
each shape component. Because the shape components larger than ¢g remain as
it is on the original figure, the results may still contain small notches belong to
larger shape components. The algorithm is as followings.

1. Obtain the finger print pattern of a given contour on a scale space with an
axis of original arc length w and the scale value t. See Fig.2(a).

2. Set the base scale 5, and draw a line ¢ = ¢; on the scale space.

3. Divide the scale space into areas A and B with the boundary of the inflection
points pattern, where the area A includes the line ¢ = tp, and the area B
does not. See Fig.2(b).

4. Smooth only shape components of the given contour which are smaller than
to, that is, obtain a contour H(s,tp) which satisfies (2). See Fig.2(c).

H(s,0) = C(s),
OH(s,t)/0t =0 (if (s,t) € area A), (2)
OH(s,t)/0t = kN (if (s,t) € area B).

It should be noted that, by changing the base scale t7 continuously, we have
only a finite number of approximations by this process. This is because the shape
of H(s,to) will change only when ¢y crosses over some closing point of inflection
pattern. We will show some preferable properties of this approximation method
with experimental results in the next section.

4 Experimental Results of Approximations

Figure 3(A) and (B) show approximations obtained from two contours of key
silhouettes, respectively. As just described in previous section, by changing the
base scale tg, we obtain only finite number of approximated contours from a
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Fig. 3. Results of proposed approximation method for key silhouette contours. In each
box, the left one is the original contour. All approximated results obtained from the
originals are shown in this figure. Contours in box(D) shows approximations obtained
from the approximated contour shown in box(A).

given contour. Fig.3 shows all approximated contours obtained from the original
ones. Two keys shown in Fig.3 are different only at local shapes of their head
parts. The approximations of the two keys with large base scales tg have similar
shapes because only head parts of them are smoothed adaptively.

Figure 3(C) shows another experimental result. From a given snow-flake type
contour, 6 approximations were obtained. Every approximation characterizes the
global shape of a given contour at their respective level. A series of approxima-
tions obtained from a given contour is a kind of hierarchical shape description
of the contour.

Figure 3(D) shows approximations of an approximated contour. The series
of approximations of an approximated contour in (A) is entirely included in the
series of approximations of the original contour figure. This property of inclusion
is important for discriminating the similarities of the shape of contour figures.

As shown in Fig.3, in the series of approximations of a given contour, some
parts change their shapes several times, but some parts do not. In order to
construct a hierarchical description for each part of a given contour, we split the
approximated contours at corner points.

A corner point on a contour figure is a point at which the absolute value of
the curvature is locally maximal. In the smoothing process, as the scale ¢ in-
creases, the number of corner points decreases, and no new corner point is gen-
erated. In order to split the approximated contours appropriately, we split the
approximated contours at corner points which do not disappear in the smooth-
ing process until the largest shape component disappears. We call such corner
points as dominant corner points[5]. By splitting the approximated contours at
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Fig. 4. Hierarchical descriptions of key silhouettes
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dominant corner points, we construct a hierarchical description for each part of
a given contour.

The obtained hierarchical descriptions of three key contours are shown in
Fig.4. Each contour was split into five parts at dominant corner points, and
hierarchical description of each part was constructed. This description shows
clearly that these three contours have similar shapes from a global point of
view, and that the shapes of hollow parts and the head parts are different.

5 Conclusion

In this paper, we propose a method of contour figure approximation, which
smoothes out only small shape components and remains large shape clearly. The
amount of smoothing for detail shape components are determined adaptively
based on the scale space analysis.

This method has following properties: First, only a finite number of approx-
imated contours which characterize the hierarchical structure of the original
contour are obtained. Next, a series of approximations of an approximated con-
tour is entirely included in the series of approximations of the original contour.
This property of inclusion is important for discriminating the similarities of the
shape of contour figures. These properties promise a step of preferable recogni-
tion method for contour figures.
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Abstract. A one-dimensional deconvolution problem is discretized and
certain multilevel preconditioned iterative methods are applied to solve
the resulting linear system. The numerical results suggest that multilevel
multiplicative preconditioners may have no advantage over two-level mul-
tiplicative preconditioners. In fact, in the numerical experiments they
perform worse than comparable two-level preconditioners.

1 Introduction

In image deblurring, the goal is to estimate the true image vy from noisy,
blurred date.—(a) — [ k@ —y) utrunly) dy + (o) 1)

Here 7 represents noise in the recorded data, and the convolution kernel func-
tion k, which is called the point spread function in this application, is known.
Since deconvolution is unstable with respect to perturbations in the data, reg-
ularization (i.e., stabilization which retains certain desired features of the true
solution) must be applied. To a discretized version of the model equation (1),
z = Kuyye + 1, we apply standard (zero order) Tikhonov regularization, i.e.,
we minimize T,(u) = ||Ku—z|]* + aju|? a>0. (2)

The « is the regularization parameter. The resulting minimizer u,, solves the
symmetric, positive definite (SPD) linear system

Au=b, A=FK'K+al, (3)

with b = K*z. The superscript “x” denotes matrix conjugate transpose.

The system (3) is often quite large. For example, n = 2562 = 65,536 un-
knowns arise from two-dimensional image data recorded on a 256 x 256 pixel
array. For real-time imaging applications, it is necessary to solve these systems
very quickly. Due to these size and time constraints, iterative methods are re-
quired. Since the coefficient matrix A in (3) is SPD, the conjugate gradient (CG)
method is appropriate. A tends to be highly ill-conditioned, so preconditioning
is needed to increase the convergence rate. (It should be noted that CG can
be applied to the unregularized system, and the iteration count becomes the
regularization parameter. See for example [4] for details. We will not take this
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approach here.) Convolution integral operators typically lead to matrices K with
Toeplitz structure (see [2]). Circulant preconditioners [7,2,3] have proven to be
highly effective for large Toeplitz systems. Standard multigrid methods have also
been implemented (see for example [1]), but their utility seems limited by the in-
ability to find a good “smoother”, i.e., an iterative scheme which quickly damps
high frequency components of solutions on fine grids.

It is well-known that wavelet multilevel decompositions tend to “sparsify” the
matrices which arise in the discretization of integral operators. The task which
remains is to efficiently solve the transformed system. Rieder [6] showed that
fairly standard block iterative schemes (e.g., Jacobi and Gauss-Seidel iterations)
are effective. (The correspondence between block index and grid level makes
these methods “multilevel”.) Hanke and Vogel [5,8] extended Rieder’s results to
two-level preconditioners. Their analysis showed that multiplicative (i.e., Gauss-
Seidel-like) preconditioners are generally far superior to additive (Jacobi-like)
preconditioners in terms of convergence properties. In particular, they obtained
the bounds on the condition numbers,

cond(C, LA) <bja? as a—0, (1)
cond(C, 1 A) <bhya~! as a—0, (5)

where C,qq and C),;: denote the additive and multiplicative preconditioning
matrices, respectively. They also presented numerical results indicating that
these bounds were sharp.

In addition to rapid convergence, these two-level schemes offer other advan-
tages. Toeplitz structure is not required for efficient implementation. Essentially
all that is needed is a means of computing matrix-vector products Av and a
means of computing coarse-grid projections of vectors. See [8] for details. A dis-
advantage in certain situations is the need to invert the “coarse-grid representa-
tion” of the matrix A, which is the A in equation (8) below. The constants b;
in (4)-(5) depend on how well the integral operator is represented on the coarse
grid. If « is relatively small, then the b;’s also must be relatively small to main-
tain rapid convergence. This typically means that A;; must be relatively large,
and hence, expensive to invert.

The cost of inverting relatively large coarse-grid representation matrices A1y
in the two-level case motivated our interest in multilevel schemes. We conducted
a preliminary numerical study which suggested that, at least with obvious im-
plementations, multilevel schemes offer no advantage over two-level schemes. In
the final section, we present the test problem used in this study. This is preceded
by a brief sketch of multilevel iterative methods.

2 Multilevel Decomposition and Iterative Schemes

Let the columns of V' comprise the discrete Haar wavelet basis for R, n = 2P,
normalized so that V*V = I. Note that the discrete Haar wavelet vectors are
orthogonal with respect to the usual Euclidean inner product, so orthonormal-
ity can be achieved simply by rescaling these vectors. The system (3) can be
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transformed to R R
Ax = b, (6)

where R R
A=V'AV, u=Vx, b=V"b. (7)

Partition the wavelet transformed matrix A into blocks Ay, 1 <5 <m,

Ay Ap o A
Azi Asg ... Asm

A= (8)

Aml AmQ s Amm

Multilevel iterative methods can be derived from a natural splitting of these
blocks, i.e., R
A=L+D+U, (9)

where U consists of the upper triangular blocks A;;,7 > ¢, D consists of the
diagonal blocks A;;, and L = U~*. For instance, to derive a multilevel additive
Jacobi iteration to solve (3), take an initial guess u, set x° = V*u', iterate

TP =D b (L+U)X"), v=0,1,...,

and then back-transform via (7) to obtain an approximate solution to the original
system (3). To derive the additive Schwarz iteration presented by Rieder in [6],
replace the A,,,, block in the block diagonal matrix D by «l, where [ is the
identity matrix of the appropriate size.

Similarly, one can derive multilevel Jacobi and additive Schwarz precondi-
tioners. To apply such a Jacobi preconditioner to a vector r € R™, one first
applies the Haar wavelet transform to this vector, obtaining ¥ = V*r. One then
computes X = DT, and then back-transforms via (7) to get

u=VD Wr=Crlr

The matrix Cy = VDV* is the multilevel Jacobi preconditioning matrix. To
derive a multilevel additive Schwarz preconditioner, one again replaces the A,,,,
block in D by al.

These Jacobi/additive Schwarz iterative methods neglect off-diagonal terms
in the block decomposition (8). Incorporating these off-diagonal terms leads
to multiplicative iterative methods. Perhaps the simplest example is multilevel
Gauss-Seidel iteration, which can be expressed as u” = Vx¥, where x” is ob-
tained from

X' = (L+ D) '(b-Ux"). (10)

A multilevel multiplicative Schwarz iteration is obtained by again replacing the
Apm block of D by al.

To obtain symmetric Gauss-Seidel /multiplicative Schwarz iterations, follow
(10) by
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X2 = (D+U)"Y(b— Lx"th). (11)

To obtain the action of a multilevel symmetric Gauss-Seidel preconditioner on a
vector r, replace b in (10)-(11) by 7 = V*r, set x” = 0, and then back-transform
via (7) to obtain

Cobst =V(D+U) (Ve — L(L+ D)"'V*r)
=V(D+U)'D(L+ D) *V*r. (12)

Consequently, the symmetric Gauss-Seidel preconditioning matrix is
Csas =V(L+D)D™Y (D +UV*. (13)

Once again replacing the A,,,, block in D by «l vields a corresponding multilevel
symmetric multiplicative Schwarz preconditioner (SMS) denoted Copss.

3 Numerical Results

A symmetric Toeplitz matrix K = h x toeplitz(k) was generated from a dis-
cretization k = (k(z1), ..., k(z,)) of the Gaussian kernel function

ex —ZEQ 0'2
k) = 2RI,

Here h = 1/n and a; = (i — 1)h, ¢ = 1,...,n. We selected the kernel width
parameter ¢ = 0.05 and the number of grid points n = 27 = 128. The n x n
matrix K is extremely ill-conditioned, having eigenvalues which decay to zero
like exp(—o?52) for large j. The matrix A = K*K + ol was computed with
regularization parameter o = 10~3. The distribution of the eigenvalues of A is
shown in the upper left subplot of Fig. 1. From this distribution, it can be seen
that the eigencomponents corresponding to roughly the smallest 110 eigenvalues
of K have been filtered out by the regularization. The value of the regularization
parameter is nearly optimal for error-contaminated data whose signal-to-noise
ratio is 100.

We computed several two- and three-level SMS preconditioners for the sys-
tem (3). The notation Csars(r) denotes the two-level (m = 2 in equation (8))
SMS preconditioner with the “coarse grid” block Ay of size r x r. To obtain
Csnmrs(r) the matrix A is transformed and partitioned into 2 x 2 blocks, cf. (8).
The (n — r) X (n — r) submatrix Ay is replaced by «l, _,, the splitting (9)
is applied, and the right-hand-side of (13) is computed. The eigenvalues of the
matrix products Csprs(r) =1 A were computed for coarse grid block sizes r = 16
and r = 32. The distributions of these eigenvalues are displayed in the upper
right and lower left subplots of Fig. 1. The reduced relative spread and clus-
tering of these eigenvalues ensures rapid CG convergence. Recall the eigenvalue
relative spread can be quantified by the condition number, which is the ratio
of the largest to the smallest eigenvalue. With course grid block size r = 16,

0<z<l, (14)
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the condition number of Csprs(r) 1A is 48.419, while for block size r = 32, the
corresponding condition number is 1.4244. As one might expect, doubling the
size of the coarse grid block A; substantially decreased the condition number.
In contrast, the condition number of the matrix A (without preconditioning) is

nearly 1000.

i -1
Eigenvalues of A Eigenvalues of Cg, (16) 'A
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Fig. 1. Eigenvalue distributions for various multilevel symmetric multiplicative Schwarz

preconditioned systems.

Let Csprs(r, s) denote the three-level multiplicative Schwarz preconditioner
whose coarse grid block A1 in (8) has size r x r and whose second diagonal block
Asg has size (s —r) X (s — ). The third diagonal block Aass is replaced by al,, 5.
With r = 16 and s = 32, the distribution of the eigenvalues of Csprs(r,s) ! A is
shown in the lower right subplot of Fig. 1. The corresponding condition number is
200.85. This is substantially worse than the result for the two-level preconditioner
with coarse grid block size 32 x 32. What is surprising is that this is worse
than the result for the two-level preconditioner with coarse grid block size 16 x
16. This comes in spite of the fact that much more work is required to apply
Csars(16,32)71 than to apply Csars(16)71.

The condition numbers for the various matrix products C~'A in the ex-
ample presented above are summarized in column 2 (Test Case 1) of the ta-
ble below. The I in column 1 indicates that no preconditioning is applied, i.e.,
the condition number of A appears across the corresponding row. In column 3
(Test Case 2), results are presented for the same kernel function, cf., equation
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(14), but the kernel width ¢ = .1 is increased, and the regularization param-
eter & = 107* is decreased. As in Case 1, the two-level preconditioners out-
perform comparable three-level preconditioners. The difference in performance
is even more pronounced with the broader kernel than with the narrower ker-
nel. In column 4 (Test Case 3), we present results for the sinc squared kernel,
k(z) = (sin(rz/0)/(rz/0))?, with kernel width o = .2, and regularization pa-
rameter o = 10~°. The results are comparable to those obtained in Case 2.

Preconditioner Test Case 1 Test Case 2 Test Case 3
C Condition No. of C~1A4|[Cond. No. C~1A|Cond. No. C— 1A

I 824 8777 3175
Csps(16) 48 2.2 1.5
Csprs(32) 14 1.1 1.1
Csprs(16,32) 201 254 86

Conclusions. For all three test problems, the 3-level SMS preconditioners yielded
larger condition numbers and less eigenvalue clustering than comparable 2-level
SMS preconditioners. While these test cases may be unrealistically simple, they
suggest that no advantage is to be gained by implementing multilevel precondi-
tioners for more realistic (and complicated) problems.
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Abstract. Using the registration of remote imagery as an example do-
main, this work describes an efficient approach to the structural matching
of multi-resolution representations where the scale difference, rotation
and translation are unknown. The matching process is posed within an
optimisation framework in which the parameter space is the probabil-
ity hyperspace of all possible matches. In this application, searching for
corresponding features at all scales generates a parameter space of enor-
mous dimensions - typically 1-10 million. In this work we use feature’s
hierarchical relationships to decompose the parameter space into a series
of smaller subspaces over which optimisation is computationally feasible.

Key Words: Multi-Scale Matching, Structural Matching, Optimisation

1 Introduction

Extracting extended image features and their relationships from images will
enable the application of structural matching techniques to image-to-image re-
mote sensing registration problems[7]. A multi-resolution contour representation
of the coastline is constructed in the next section for two reasons. First in dif-
ferent modalities, coastlines may be captured at different scales[5,6]. Second,
match results at higher levels within the hierarchy can be propagated down to
lower levels|3]. While we restrict ourselves to coastlines, the problem generalises
to any non-iconic multi-scale structural representation where both the number
of candidate matches is enormous and the proportion of correct matches is very
small. Ensuring the global convexity of our match functional or recovering an
initial probability estimate close to the global optimum is practically impossi-
ble. In section 3 we formulate the registration as an optimisation problem, and
introduce the decomposition principle which underpins our approach. The ex-
istance of hierarchical relationships between features at different scales enable
the optimisation functional defined over an enormous parameter space to be de-
composed into a recursive series of functionals defined over smaller subspaces
over which optimisation is computationally feasible. A Genetic Algorithm[1,4,2]
is employed to both facilitate escape from local optima, and to generate multiple
good hypotheses for the the recursive optimisation procedure.
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2 Multi-Resolution Segmentation of Coastline Contours

As images of a coastline may be captured by different types of sensor at arbitrary
heights, matching may have to be performed between a pair of images taken at
different resolutions. A pyramidal multi-resolution representation of each image
may be generated by repeated subsampling. By choosing a small level of subsam-
pling between levels in our image pyramid, we may ensure that the two images
are similar at some scale difference (see figure 1). Moreover, additional levels of
match constraint are available by demanding that the correct solution generates
a consistent set of corresepondences at all levels of the hierarchy.

Fig. 1. (a) Matching Multi-Resolution Representations (b) Segmented Codons

Extraction of the coastline contours in each image is achieved by first binarising
satellite images into land and sea regions, and then extracting edge chains using a
region boundary extraction algorithm. These contour chains are then segmented
into codons - significant contour segments|5]. Natural points at which to segment
the contours are curvature extrema and curvature zero-crossings. Examples of
extracted codons are shown in figure 1(b).

The multi-resolution segmentation technique outlined above produces a series
of hierarchically related image features. At the lowest level in this hierarchy
(highest resolution), are the original set of codons Ay and 2 generated from each
image respectively. At the next level, the feature sets Ay and 21 are generated by
subsampling the image of the previous layer. This is repeated until the feature
sets Ay 1 and £2;, 1 of the topmost layer are recovered. Where the scale rises
by a factor of /2 through the hierarchy, the number of features in each layer
reduces approximately by a factor of /2.

The hierarchical relationships between features from adjoining layers in the
multi-resolution pyramid may be captured by the sets 'HS\; Ae A1 << L
and H'; w e 2,1 <1 < L. Bach set H) contains the set of features from the
higher resolution /—1 layer which are contained in the lower resolution feature A,
(Since features in sets Ag and {2 are at the bottom-most level of the hierarchy,
hierarchical sets cannot be computed.)
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3 Posing Registration as an Optimisation Problem

A match v is constructed using one feature from each image such that v = { A, w}
where features A and w are drawn from feature sets A and {2 respectively. Let
p(~y) be the probability of the match ~. The matching process may now be defined
as a procedure for computing the set of match probabilities. The requirement to
enable matching between two contours of potentially different scales necessitates
allowing matches between any feature in one image with features in all scales
in the second image. The set of candidate matches I" from which ~ is drawn is
therefore defined as

I' = Ax (1)

Thus the size of the candidate match set is given by the outer product of the
full hierarchy of features. For typical satellite imagery enjoying image sizes of
2000 x 2000, at least 1000 codons may be generated at the highest resolution of
the feature hierarchy, resulting in potentially 10M matches.

Irrespective of whether it plays an inhibiting or supportive role, each match
can be considered as a source of contextual information about other matches
and may therefore aid their interpretation. Structural match constraint may be
defined as the degree to which pairs of matches are mutually compatible. Sources
of such constraint are usually derived from world knowledge such as unigqueness,
conlinuity, topology and hierarchy|3]. The degree of compatibility between any
pair of matches v and +’ is captured by the expression

—1<C(y,y) <1 (2)

Pairs of correct matches should ideally enjoy a strong level of mutual com-
patibility while pairs containing a false match should generate low levels of
compatibility. This suggests the following suitable optimisation functional. If
p = (p(71),...,p(var)) is the vector containing the probabilities of all M matches
in I', then a suitable functional F'(p) which measures the degree of mutual com-
patibility for a mapping p may be defined as

Fpp) =Y Clvvp()p(v) (3)

Yl v'er
v Ay

which may be maximised by eliminating matches (i.e. p(v) — 0) which increase
the degree of incompatibility. Fp(p) describes a functional defined over a M-
dimensional space P = p(v1) X p(v2) X -+ X p(va) where the correct mapping
is represented by that probability vector p which maximises equation 3 i.e.

b — argmax Fa(p)
peP

(4)
This optimisation functional may be rewritten in vector matrix form

Fp(p) = ;prT (5)

where the matrix () stores the symmetric compatibility terms.
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4 Hierarchical Subspace Decomposition

Where |A x £2| is very large, direct optimisation of equation 5 is impractical.
However, for the hierarchically organised features of this application, it is possible
to partition the probability space P into a series of smaller subspaces over which
the optimisation process may be performed independently.

Let P’ represent a subspace of the full probability space P. Let us assume
that the position of the global maximum p of a functional Fp defined over P
contains the position of the global maximum I;/ of a functional Fp/ defined over
the smaller subspace P’. This is true if the matches whose probabilities are
contained in P’ are hierarchical parents of the matches whose probabilities are
contained in P. In this case, the maximisation may be decomposed into two
independent problems each over a smaller probability space i.e. first maximise
Fp: before maximising the full functional Fp.

In fact we can partition P into an ordered series of N smaller subspaces
Po, P1, -+ Pn_1 such that the position of the maximum p,, of each functional
I'p_ defined over P, is contained within the position of maximum p of the func-
tional Fp defined over the full probability space P. Thus the global maximum
of the functional F'p is defined as the concatenation of each of the local maxima

IA) = argmax Fp(p) - (1307 IA)17 e 7IA)N*1) (6)
PP

Each of these local maxima (global maxima in their respective subspaces) is
defined as before ¢.e. that vector p,, € P, which maximises the functional Fp,

Pn = argmax Fp, (pn) (7)
PrnEPn

where I'p_ is defined in recursive form as

1 .
Fpn (pn) - ianan + pnhn + Fpn71 (pnfl)

hn - Hn(IA)O7~~~7IA)n71)T (8)
1 T
Fp,(po) = §poQopo

The minimisation of Fp_ depends on the position of earlier minima po, - - - Pn—1
implying that the functionals must be maximised in a particular order. Conse-
quently, equation 7 specifies an estimator which converges on the global maxi-
mum p over progressively larger proportions of the full parameter space P.

Features from higher up the feature hierarchy tend to capture the larger scale
structure in the image. Feature matches are ordered hierarchically allowing so-
lutions at higher levels to guide the match process further down the hierarchy.
Our hierarchical propagation strategy partitions this full ordered match prob-
ability space into a series of smaller subspaces. A genetic algorithm is used to
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recover a number of good yet disparate solutions in each partition. The union of
these solution is used in conjunction with the hierarchical relations H.;vy € I’
generated in section 2 to generate the next partition. Note also that as the pro-
cess progresses, the descendants of all matches not selected are pruned from the
search space. This has the effect of dramatically reducing the dimensionality of
the problem!

Generating the Initial Subspace Partition Depending on the scale differ-
ence between the two images, the correct mapping will map EITHER the highest
most feature set Ay _1 onto one of the feature sets {2y, ... 211 OR the highest
most set {271 onto one of the feature sets Ap, ... Ar_1. Thus the first partition
Iy should be restricted to locating the first correct mapping among this most
salient feature match set i.e.

Iy = U {{AL,1 X Ql} U {Al X QLfl}} (9)
I—=L—1,-,0

Any limits on the expected scale difference between the pair of images will sig-
nificantly reduce the size of Iy. There are typically 20-30 codon features at the
highest level of our hierarchy while the expected scale difference is no greater
two or three octave generating an initial partition |I5| < 6000. While still a very
large space, this is considerably smaller than I" whose size can be several million.
Since we are not employing the full match hierarchical match constraint
available, there is an increased likelihood that the best solution will not coincide
with the global solution. Consequently, we recover the best Ny solutions from
which the set Mg of matches for this most salient partition are recovered.

Propagating Match Information Having found the match solution M,,_
from a previous partition I, the hierarchical relations H may be used to
dramatically prune the set of as yet unprocessed matches I' — {I, 1 U---UTj}.
The next partition I, need only contain matches whose parent features belong
to a match in the previous match pool M,,_1. Thus if v represents a match
between two features A and w, then

L= |J HaxH, (10)

YEMn_1

On average each hierarchical set H has v/2 features. Consequently the size of
the next partition is given by |I',| &~ 2|M,,_1|. Unlike the first partition, this is
typically a few hundred matches which enables rapid optimisation.

The sets of multiple solutions from these repeated optimisations are ordered
to recover the best N,, solutions which in turn are propagated to the next par-
tition. The above procedure is merely repeated until all of the matches within
I" have been included within a partition and optimised. The solution of the first
partition effectively recovers the scale difference AS of the mapping between the
image pair. Thus the number of subsequent partitions is L — AS — 1 where L is
the multi-resolution number of levels in the codon pyramid.
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5 Conclusions

A graph matching framework for registering images has been proposed which
enjoys a number of advantages over traditional techniques relying on similarity
of tokens. First there is no requirement for both images to be captured at the
same scale or resolution. Second, as only local topological constraint is used, no
global transformation between the images is assumed. This is particularly useful
where the images may contain severe local geometric distortions. The graph
matching problem has been formulated within an optimisation framework. This
not only provides a principled manner of combining complex match constraint,
but enables us to explore a number of different optimisation techniques already
reported in the optimisation and computer vision literature.

The primary difficulties of the problem is the extremely high dimensionality
of the optimisation space, the very low levels of correct match density, and the
non-convexity of the match functional. Two strategies have been employed to
ameliorate this problem. First, exploiting the multi-scale representation already
built for each image, a multi-scale matching (or hierarchical propagation) strat-
egy delivers a considerable increase in speed by partitioning the match problem
into a number of decomposed steps. Matching is first performed at higher levels
in the hierarchy and the recovered mappings are then propagated down to lower
levels. To exploit this hierarchical decomposition, the optimisation functional
itself required decomposing to enable match probabilities computed for matches
higher up the hierarchy to contribute to the optimsation process. Second, as
direct descent optimisation tecchniques will not perform well where the match
density is low or the functional is highly non-convex, a search strategy based on
the genetic algorithm ensures a global optimum is recovered.
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Abstract. We introduce a 3D tracing method based on differential ge-
ometry in Gaussian blurred images. The line point detection part of the
tracing method starts with calculation of the line direction from the
eigenvectors of the Hessian matrix. The sub-voxel center line position is
estimated from a second order Taylor approximation of the 2D intensity
profile perpendicular to the line. The line diameter is obtained at a single
scale using the theoretical scale dependencies of the 0-th and 2nd order
Gaussian derivatives at the line center. Experiments on synthetic images
reveal that the localization of the centerline is mainly affected by line
curvature. The diameter measurement is accurate for diameters as low
as 4 voxels.

1 Introduction

Quantitative analysis of curvilinear structures in images is of interest in various
research fields. In medicine and biology researchers need estimates of length and
diameter of line-like structures like chromosomes [11] blood vessels or neuron
dendrites [1] for diagnostic or scientific purposes. In the technical sciences there
is an interest in center line positions of line structures in engineering drawings
[2] or automatic detection of roads in aerial images [3].

Any method for detection of the centerline of curvilinear structures needs a
criterion for a certain position in the image to be part of a center line. Methods
differ in the definition of such a criterion and in the way the criterion is evaluated.

In a first class of methods a line point is defined as a local grey value max-
imum relative to neighboring pixels or voxels [4] [5]. Since no reference is made
to properties of line structures in an image this class will generate many false
hypotheses of line points if noise is present.

A better criterion for a line point is to consider it to be part of a structure
which length is larger than its diameter [6]. This criterion can be materialized
within the framework of differential geometry [3], [6], [7], [8].

There are several computational approaches to computing the differential
structure in an image. In the facet model of Haralick [8] image derivatives in
a 2D image are calculated from a third order polynomial fit to the image data
in a 5x5 neighborhood. Along the line perpendicular to the direction of the line
structure the sub pixel position where the first derivative vanishes is estimated

M. Nielsen et al. (Eds.): Scale-Space’99, LNCS 1682, pp. 501-506, 1999.
(© Springer-Verlag Berlin Heidelberg 1999
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from the polynomial. A pixel is declared a line point if this position is within
the pixel boundaries. The main drawback of this method is that the differential
structure of the image is calculated at the fixed inner scale of the image which
may lead to erroneous line center positions in case of noise or bar shaped intensity
profiles.

An essentially different computational approach is to calculate image deriva-
tives at a scale adapted to the line diameter by convolution of the image with
Gaussian derivative kernels [9]. The properties of the Gaussian kernel reduce the
influence of noise and ensures meaningful first and second order derivatives even
in the case of plateau-like intensity profiles across the line [3] [10].

Few line detection or tracing methods provide an estimate of the line width [6]
[11]. In [11] the diameter is estimated from a fit of a function describing the line
profile. This method suffers from the same noise sensitivity as the facet model
[8]. This problem can be avoided by using the scale dependency of normalized
second derivatives to estimate line diameter [6]. However, in [6] no evaluation of
the method is presented and the diameter is found by iteration over scale which
is computational expensive.

In this paper we present a 3D line tracer which uses the line point detection
method as presented in [10] [3] and measures diameter at a single scale based on
the theorectical scale dependency of Gaussian derivatives in the image.

2 Tracing of 3D curvilinear structures

Our tracing procedure starts by selecting a discrete point Py at position (z,v, 2)
in the image close to a center line position. At this position we calculate the
Gaussian derivatives up to order two. The second order derivatives are used to
build up the Hessian matrix H from which we calculate the 3 eigenvalues A:, Ay,
Am and the corresponding eigenvectors ¢, n and m. The eigenvectors form an
orthonormal base for a local Cartesian coordinate system through the center of
the voxel. The vector t which is aligned to the line direction is the eigenvector
with the smallest eigenvalue in magnitude A, [6].

Locally around point Py the grey value distribution in the plane perpendicu-
lar to the line direction is approximated by the second order Taylor polynomial

1
1(5777)%1+p~VI+§pT~H~p (1)

where I and VI are the Gaussian blurred grey value and gradient vector at the
current discrete voxel position Py . In (1) pis a vector in the plane perpendicular
to the line direction defined by n and mi.e. p=£&n+nm.

The center line position p. relative to the voxel center is found by setting
the first derivatives of the local Taylor polynomial along £ and 7 to zero [10]
and solving 77 and £ from the resulting linear equation. The sub voxel center line
position Py is calculated by Ps = Py + p. . If P, is not within the boundaries
of the current voxel the line point estimation procedure is carried out again at
the discrete voxel position closest to Py . This procedure is repeated until Py
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is within the boundaries of the current voxel. The tracing proceeds by taking a
step from the estimated position P in the #-direction.

3 Diameter estimation

For diameter estimation it is necessary to take the shape of the 2D grey value
profile perpendicular to the line into account [6]. This grey value profile I(r) is
assumed to obey the following conditions:

Lf(r), (r <R)
I(r) = {O? (r > R). (2)

In (2), Iy is the grey value at the center line, r = /2 + n? is the distance from
the center line position and R the radius of the line structure. The first derivative
of f(r) is assumed to vanish at the centerline.

We use the scale dependencies of I(r) convolved with a Gaussian and the
second Gaussian derivatives of I(r) at r = 0 to estimate the line diameter. For
this purpose expressions are derived for the Gaussian blurred intensity I(R, o)
and the Laplacean ATI(R, o) restricted to the span of n and m:

2n prR
I(R,0) :IO/O ; f(r)g(r,o)rdrdd (3)

2n prR
ALI(R,0) = I / () gyy(r,0)rdrdd . (4)
0 0

In (3) and (4) g(r,0) and g,,(r,0) are the 2D Gaussian and its second deriva-
tive in 1-direction. The expressions for I(R,o) and the normalized Laplacean
UQ%ALI (R, o) are used to construct a non-linear filter which is rotation invari-
ant with respect to the line direction and independent of Ij:

I(R,0)

MR, o) = —?TATI(R, 0)

(5)
The filter output A(R, o) is dependent on the choice of f(r). For a parabolic
and a pillbox profile the integrals appearing in eqs. (3) and (4) can be evaluated
analytically and h(R, o) turns out to be only dependent on the dimensionless
parameter ¢ — % (R/ 0)2. Figure 1 hows that h(R, o) is a monotonically increas-
ing function of ¢ which makes it easy to estimate ¢ from a measured filter output
h.. Provided that h,, is measured and a priory knowledge concerning the shape
of the profile is available ¢y can be estimated by solving h(gs) — h,, = 0. The
corresponding R is found by applying R = 0/2¢o.

4 Experiments

The localization accuracy and robustness of the tracing and the diameter esti-
mation methods was evaluated using a set of synthetic test images which reflects
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3.5

—> h@
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Fig. 1. Line diameter filter output iz(g) for a pillbox profile {solid line) and a parabolic
profile (dashed line). (g = £ (R/0)* ).

possible properties of curvilinear structures. Properties which are considered are
the shape of the grey value profile perpendicular te the line, the curvature of the
center line of the structure and the noise level.

4.1 Bias in center line position

Images of straight rods with pillbox profiles and parabolic profiles were created
with K ranging between 2 and 15. In case the line center was set to the central
position in the voxel the estimated center line position turned cut to be bias
free. A sub voxel shift d, in the plane perpendicular to the line leads to an
experimentally observed bias AP, which increases with d, but never exceeds
0.08 (K — 2, o0 = 2). Experiments with larger R and larger kernel size o show a
smaller bias.

To investigate bias introduced in center line position due to line curvature we
estimated center line positions in a torus with a parabolic line profile. An analysis
of the mathematical expressions used to calculate the line center revealed that
the relative bias AF:/R in the center line position depends only on B¢/R and
ER/o. The experiments show that AP, /R decreases with B,/ R and R/o (Fig.2.).

4.2 Bias in diameter estimate

To test the performance of the line diameter estimation method images contain-
ing straight line segments with circular cross section were used. The diameter
estimate turned out to be independent of the setting of ¢ in the range where
0.2 < Rfo < 2. In images without noise the bias in the estimated diameter is
always below 5% (Fig.3.). In an additional experiment Gaussian noise in the
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Fig. 2. Relative bias in center line position (AP, /R) as function of R /R for settings
of Rfo of 0.62 (triangles) 1.0 (squares) and 1.67 (dots).

range between 0 and 30% was added to the image with a pillbox shaped inten-
sity profile and i = 20. The measurements show a bias of 5% in the diameter
estimation at a noise level of 10%. This bias increases to a level of 30% at a noise
level of 30%.

5 Discussion

In cur tracing method the Gaussian derivatives are calculated only at a limited
amount of points at one single scale in the neighborhood of the center line
position. Consequently, the method provides for sufficiently small response times
to allow interactive measurement of both center line location and diamerter.

One of the criteria for a point to be on the centerline of the curvilinear
structure (VI - p= 0) implies that the localization of the line center is only bias
free for a straight line with the centerline positioned in the center of the voxel.
A sub voxel shift of the center line introduces a small bias in the center line
position.

High curvature is a serious source of bias in the center line location. This can
be understood by realizing that at high curvature the position where VI-p=0
will be significantly shifted due to the spatial extend of the derivative kernels.

The diameter measurement based on the scale dependency of the O-th and
the second CGaussian derivatives performs well in the noiseless situation even for
F as small as 2 times the voxel size. In the diameter estimation procedure noise
added to the image introduces a bias in the line diameter estimate.
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Fig. 3. Relative bias in estimation of radius R of the line structure as a function of R
for a parabolic profile (squares) and a pillbox profile (dots)
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Abstract. We develop on estimation method, for the derivative field of
an image based on Bayesian approach which is formulated in a geometric
way. The Maximum probability configuration of the derivative field is
found by a gradient descent method which leads to a non-linear diffusion
type equation with added constraints. The derivatives are assumed to be
piecewise smoothe and the Beltrami framework is used in the development
of an adaptive smoothing process.

1 Introduction

It is widely accepted that gradients are of utmost importance in early vision anal-
ysis such as image enhancement and edge detection. Several numerical recipes
are known for derivatives estimation. All based on fixed square or rectangular
neighborhoods of different sizes. This type of estimation does not account for the
structure of images and bound to produce errors especially near edges where the
estimate on one side of the edge may wrongly influence the estimate on the other
side of it. In places where the image is relatively smooth, least square estimates
of derivatives computed over large area neighborhoods will give best results (e.g
the facet approach [2], see also [1]). But, in places where the underlying image
intensity surface is not smooth, and therefore can not be fitted by a small degree
bivariate polynomial, the neighborhood should be smaller and rectangular, with
the long axis of the rectangle aligned along the orientation of the directional
derivative.

From this viewpoint, it is natural to suggest a varying size and shape neigh-
borhood in order to increase both the robustness of the estimate to noise, and its
correctness. Calculating directly for each point of the image its optimal neighbor-
hood for gradient estimation is possible but cumbersome. We Therefore propose
an alternative approach, which uses a geometry driven diffusion [8] that produces
implicitly, and in a sub-pixel accuracy, the desirable effect. We are not concerned,
in this approach, with finding an optimal derivative filter but formulate directly
a Bayesian reasoning for the derivative functions themselves.

M. Nielsen et al. (Eds.): Scale-Space’99, LNCS 1682, pp. 507-512, 1999.
(© Springer-Verlag Berlin Heidelberg 1999
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The paper is organized as follows: In Section 2 we review the Beltrami frame-
work. A Bayesian formulation of the problem, in its linear form, is presented in
Section 3. We incorporate, in Section 4, The Beltrami framework in the Bayesian
paradigm, and derive partial differential equations (PDEs) by means of the gra-
dient descent method. Preliminary results are presented in Section 5.

2 A Geometric Measure on Embedded Maps

We represent an image as a two-dimensional Riemannian surface embedded in a
higher dimensional spatial-feature Riemannian manifold [11,10,3,4,5,13,12]. Let
o#,  p=1,2, be the local coordinates on the image surface and let X?, =
1,2,...,m, be the coordinates on the embedding space than the embedding map
is given by

(Xl(al,ag),XQ(al,ag),...,Xm(al,ag)). (1)

Riemannian manifolds are manifolds endowed with a bi-linear positive-definite
symmetric tensor which is called a metric. Denote by (X, (g,.)) the image man-
ifold and its metric and by (M, (h;;)) the space-feature manifold and its corre-
sponding metric. Then the map X : X' — M has the following weight [7]

EIX, g, hij) = / d*o /99" (0, X")(8, X7 hiy(X), (2)

where the range of indices is p,v = 1,2, and 4,7 = 1,...,m = dim M, and we
use the Einstein summation convention: identical indices that appear one up and
one down are summed over. We denote by g the determinant of (g,.,) and by
(") its inverse. In the above expression d?c /g is an area element of the image
manifold. The rest, i.e. g*/(8,X")(8,X7)h;;(X), is a generalization of Lq. It is
important to note that this expression (as well as the area element) does not
depend on the local coordinates one chooses.
The feature evolves in a geometric way via the gradient descent equations

ax? 1, 0E

i _

PT et 2 oxU 3)

Note that we used our freedom to multiply the Euler-Lagrange equations by
a strictly positive function and a positive definite matrix. This factor is the
simplest one that does not change the minimization solution while giving a
reparameterization invariant expression. This choice guarantees that the flow is
geometric and does not depend on the parameterization.

Given that the embedding space is Euclidean, The variational derivative of
FE with respect to the coordinate functions is given by
1 hllﬁ

25 o0X!

whete the operator that is acting on X? in the first term is the natural gener-
alization of the Laplacian from flat spaces to manifolds and is called the second
order differential parameter of Beltrami [6], or in short Beltrami operator.

. 1 .
— A X = —08,(/gg" 3, X", 4
9 7 (VI ) (4)
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3 Bayesian formulation for derivatives estimate

Denote by (z,,ys) the sampling points and by I, = I°(z,,y,) the grey-levels at
the sampling points.

From the datai.e. (x,,ys), I, We want to infer the underlying function I(z, y)
and its gradient vector field V(z,y). The analysis is easier in the continuum and
we refer from now on to I° as to a continuous function. In practice we can skip a
stage and find the derivatives without referring to the underlying function. The

inference is described by the posterior probability distribution

Pz, y) Xz, y), V(z, ) P(L(z,y), V(z, y))

P{(w,), Vi pl(2.9) = Ty

In the numerator the first term P(I°(x,4))|V(z,y)) is the probability of the
sampled grey-level values given the vector field V(z,y) and the second term is
the prior distribution on vector fields assumed by our model. The denominator
is independent of V and will be ignored from now on.

Assuming that P(A|B) is given by a Gibbsian form :

P(A|B) = Ce @BAB)

we get

—log P(V(z,9)|I°(z,y)) = «E1(I°(2,y), V(z,9)) + BE(V(2,y)).

If we use the Euclidean Ly norm we get

B(I°(,), V9)) = 5C1 [ dady ([V = VIP)

Ex(V(e,u) = 501 [ dedy (VVP) + B, Q

where the first term is a fidelity term that forces the vector field V to be close
enough to the gradient vector field of I(z,y). The second term intoduces reg-
ularization that guarantees certain smoothness properties of the solution. The
second term in Fs constraints the vector field to be a gradient of a function. Its
form is:

By(1(z,9), V(z,y) = 5C; / drdy(@* 0,1, = 5Cs / dedy(V1, — V2,)?,

where €#¥ is the antisymmetric tensor.

Alternatively we may adopt a more sophisticated regularization based on
geometric ideas. These are treated in the next section.

Maximization of the posterior probability amounts to the minimization of
the energy. We do that by means of the gradient descent method which leads
eventually to non-linear diffusion type equations.
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4 Derivatives Estimation: Geometric Method

In this section we incorporate the Beltrami framework into the Byesian paradigm.
We consider the intensity to be part of the feature space, and the fifth-dimensional
embedding map is

(X' =2,X? =9y, X? = I(z,y), X* = Vi(z,y), X° = Va(z,y)). (6)

Again we assume that these are Cartesian coordinates of IR® and therefore h;
;5. That implies the following induced metric:

7,‘77

1+724+vi124+ve: LI, +V1,V1,+V2,V2
(guv(2,y)) = v v T Y Y Y (7)
YA LI, +V1,V1,+V2,V2, 1+I1}4+V12+V2] ‘

The energy functionals have two more terms: The first is a fidelity term of the
denoised image with respect to the observed one, and the last is an adaptive
smoothing term. The functionals are

EulI{z,9),1°(e,9) = 500 [ dedy/3(1 - I°)
Ey(I°(z,y), V(z % /dxdy\/_ V- VI°P?)
Ey(V(x %Cg/dxdy\/_g‘“’ 0, X" (0,X%)
Es(V(x %Cg/dxdy\/_ (e8,V,)%, (8)

and since the Levi-Civita connection’s coefficients are zero, we get the following
gradient descent system of equations:

I, = Cy AT — Co(I - 1°)
V,, = CyAV, —Ci(V, — 9,1%) + %@(\/ﬁe‘“’&,m, 9)
g

with the initial conditions

I(:E,y,t:()) I ( )

where I9(x, y) is the given image.
It is important to understand that V; and V5 are estimates of Ip, and gy
and not of the denoised I, and I,,.

5 Results and discusssion

The solution of the PDE’s was obtained by using the explicit Euler scheme,
where the time derivative is forward and the spatial derivatives are central. The
stencil was taken as 3 x 3.



A Geometric Functional for Derivatives Approximation 511

Fig.1. Upper row, left: The original noisy x derivative. Upper row, right: The x
derivative estimation. Middle row, left: The original noisy y derivative. Middle row,
right: The y derivative estimation. Lower row, left: The original noisy image. Lower
row, right: The denoised image.
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We did not optimize any parameter, nor the size of the time steps. For the
Euclidean embedding algorithm we chose C; = 0.5, Cy, = 1, C3 = 8.5 and the
time step was At = 0.005. The results after 150 iterations are depicted in Fig.
(1).

This demonstrates that it is possible to merge Bayesian reasoning and the
geometric Beltrami framework in computation of derivative estimations. The
requirement that the obtained functions are the x and y derivatives of some un-
derlying function is formulated through a Lagrange multiplier. Close inspection
reveals that this requirement is fulfilled only approximately.

An analysis and comparison with statistical based method will appear else-
where [9].
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Abstract. Automatic segmentation is performed using watersheds of
the gradient magnitude and compression techniques. Linear Scale-Space
is used to discover the neighbourhood structure and catchment basins
are locally merged with Minimum Description Length. The algorithm
can form a basis for a large range of automatic segmentation algorithms
based on watersheds, scale-spaces, and compression.

1 Introduction

A semantically meaningful segmentation of an indoor scene would be piecewise
smooth regions corresponding to walls, floor, etc.. Such segmentation tasks are
often solved indirectly using some similarity measure, and this article will fo-
cus on the gradient magnitude, since discontinuities are most likely where the
gradient magnitude is high.

Generally, segmentation is an NP-complete problem [2] for two dimensional
images, however reasonable solutions may be found in polynomial time. Segmen-
tation algorithms may be divided into three broad categories: Intensity thresh-
olding [9], regional split and merge [9], variational and partial differential equa-
tion (PDE) based approaches [6,14], and mixes of the previous three [8,4,5].

The algorithm presented in this article uses a PDE based technique [8] for hi-
erarchical splitting regions based on a well-founded, thoroughly studied, and least
commilted scale analysis [3,8]. The regions are merged with consistent modelling
by Minimum Description Length (MDL) [10] to yield parametric descriptions of
segments.

2 Least Committed Splitting

Watersheds on the gradient magnitude partition an image into homogeneous
areas in a fast manner, and in contrast to the Mumford-Shah functional, the
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watersheds are not restricted to intersect in T-junctions at 120 degree angles. To
regularise the gradient operator several anthors have investigated the properties
of the watersheds of the gradient magnitude in various scale-spaces |3,8,4,14]. In
the linear scale-space |15, this has lead to the development of a semi-automatic
segmentation tool |7], henceforth called Olsen’s segmentation tool.

Olsen’s segmentation tool organises segments in a hierarchical data structure,
making it convenient to use as a splitting operation. At each scale the image
is partitioned by the watersheds of the gradient magnitude, and the catchment
basins are linked across scale exploiting the deep structure |8]. The linking graph
can be approximated with a tree, called the Scale-Space Tree. The tool can prag-
matically be extended to other similarity measures disregarding deep structure
merely with the use of area overlap between scales.

In Figure 1 are given examples of partitions for two similar images. The

Fig. 1. 'I'he Scale-Space 'Itee captures ellipses of varying size. 'I'he white lines are the
watersheds. Two ellipses are shown using three different integration scales.

original images consists of 3 intensity values (64, 128, 192) plus i.i.d. normal noise
with zero mean and standard deviation 5. The ellipses are one pixel further into
the light than the dark area. The segments at measurement scale zero are shown
for three different integration scales. We observe that the ellipses are captured at
low and high integration scale respectively, indicating that structure of varying
size is captured by the Scale-Space Tree at corresponding levels. Hence, the task
of the merge algorithm is to perform local scale-selection.

3 Specifying Semantics by Compression

For models where increasing the number of degrees of freedom monotonically
decreases the distance to the data, we need some criterion to balance model
complexity and model deviation. There are at present three competing model
selection methods: Akaike’s Information Criterion (AIC), Schwarz's Bayes Infor-
mation Criterion (BIC), and Rissanen’s Minimum Description Length (MDL) [1].
The original formulation by Akaike AIC is known to be inconsistent in the sense
that it will not always converge to the correct model with increasing samples. In
contrast, both BIC and MDL have been shown to be consistent and converge to
each other, but MDL is the only method that is derived from a principle outside
the problem of model selection. Thus in contrast to AIC and BIC, MDL gives
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a clear interpretation of the resulting model selection, as that which achieves
optimal compression. Therefore will MDL be used to merge segments created by
Olsen’s segmentation tool.

For the model selection criterion to be consistent, every investigated model,
must include everything that is needed to completely reproduce the data set.
Mixing models from deterministic and stochastic domains is quite natural, since
every physical signal contains a portion of randomness. A typical MDL functional
is the sum of the number of bits used to describe the model L(8) and the
deviation from the model L(x|0), where & and € denotes vectors of data and
model parameters [10]. Model selection performed by minimizing this sum,

0— argngnL(:c|0)+L(0) (1)
For compression it is quite natural to study a quantisation of the parameter
space with respect to the total code length. In broad terms, the needed precision
is in practice inversely proportional to the second order structure of the sum
in (1), which in turn is inversely proportional to the variance of the estimator.
For almost all estimators this variance is inversely proportional to the number
of data points. Except for the square root we are intuitively led to the classical
result of [10]:

lim L(x|0)+ L(8) = L(x|0) + L(8) + 101 logn + O(|8)) (2)

|| o0 2

where 8 denotes the truncated parameters, @ are the maximum likelihood esti-
mates, and || is the number of parameters. This limit has recently been sharp-
ened to be an o(1) estimate [1]. However, since the per data point improvement
is ignorable when |x| > |0|, (2) suffices for large segments.

A coding scheme for segmentation naturally divides into a code for the border
and the interior [5]. For many large segments there will be a natural tendency for
code length of the border to be diminished by the code length of the interior. It
is noted that there is a large group of shapes, where this is not the case, however
we do not expect these shapes to be typical. A simple chain code for the border
will therefore suffice. A better and model driven code for borders may be found
n [12]. For the interior, the choice of model class is much more interesting. In
the piecewise smooth case, low order polynomials are obviously suitable and can
be interpreted as the extension of the local structure. Harmonic representations
are definitely also possible, and cosine waves may be versatile enough to handle
both smooth regions and texture like regions. For simplicity however, we will use
the class of lower order polynomials plus i.i.d. normal noise with zero mean. We
will use the centroid of a segment as origin, and the parameters will be coded as
the universal prior of integers [10].

The least squares fitting procedure is well suited for the normal distributed
noise. However, it is ill suited in the case of outliers since just a single devi-
ating point can make the fit arbitrarily bad. Such outliers do occur for simple
image structure such as corners and T-junctions. In the spirit of Least Median
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of Squares [11], we have implemented a method that uses 1% of a segment’s
pixels as test-inliers (an elemental subset), refits the model on this subset, and
calculates the median of squared deviation of the inliers as a quality measure.
This process is iterated till sufficient confidence, and the parameters for the
subset that minimises the quality measure are used to dissect the segment into
inliers and outliers. In contrast to statistical models of outliers [11], we order
the outliers by their distance to the robust fit, and by coding the outliers by the
universal distribution of integers for outliers we may iteratively find the opti-
mal division between inliers and outliers. This has proven to be a very effective
outlier detector.
We finally derive the total MDL functional for a segment as,

Ly = E2| <log 2me + logz (z; — f(ﬂﬂuo))z)

. 0] +1
+3 tog' (o) + UL

J

log |z| + |0z| + log" (outlier) (3)

where the maximum likelihood estimate, 02 = >, (z; — (2, 6))? /||, has been
used, f is a function from the class, log® is minus the logarithm to the universal
distribution [10], and a 4-connected chain code of the boundary, oz, has been
used. We have divided the code length estimate for the chain code by two, since
almost all border points are used for exactly two segments. To code the outliers
the coordinate and value as integers must be supplied. The total code length
for the image is given by independence as, L = 3, Ly. The task of the merge
algorithm is thus to find a minimum for L over the number and placement of
segments. This is in general an intractable problem [2]. In the following section
will a reasonable, fast, but suboptimal algorithm be given.

3.1 A General Merge Algorithm

The goal of our merge algorithm is only to consider local neighbourhoods in a fine
to coarse manner. A single iteration of the algorithm is illustrated in Figure 2.
Leaves A, B, C, and D are all segments tracked to measurement scale. At bottom
level, we find the best local merge. In this case, segment A has no siblings to

A B C+D

A B C D A B C+D

Fig. 2. A single step of the merge algorithm. LEFT': the original tree, MIDDLE: Subtree
B,C, and D is merged into B and C+D. RIGHT: Children replace parents.
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merge with, while all possible merges of B, C, and D are examined. For the
example we assume that merging C and D is the optimal local solution. When
all sibling tuples have been optimally locally merged, the remaining siblings take
the place of their parent, and the algorithm is reiterated on the smaller tree.
Since there is no direct cross-talk between neighbouring sibling tuples, the
tree defines a hierarchical neighbourhood structure, and the final segmentation
result cannot be better than defined by the neighbourhood structure of the tree.
As all merge algorithms, this algorithm does not guarantee global optimum, but
the advantage of this algorithm is that the search space is restricted by the
geometrical structure of the image defined by the Scale-Space Tree.

4 Shapes in Data

Interpreting data has two basic steps: Firstly, a proper syntax must be found,
which can contain all data sets to be considered. Secondly a sentence must be
composed that describes a particular data set. This article has described an al-
gorithm that uses the Scale-Space Tree to define the neighbourhood structure of
regions and seeks the particular combination ol neighbourhoods that reduces the
description length according to a prespecified preference. In Figure 3 are shown
several examples of segmentations produced by the algorithm. On the simple im-

E = = y % =

E 2 8 ¥ = =
E F & & & =

e ow o® B oW [ R

Fig. 3. Segmentation of simple structures. Left images are as Figure 1, and right images
show light ellipses on a lighter background (values 112, 128 and standard deviation 5).

ages we observe that the algorithm correctly joins segments from various levels
of the Scale-Space Tree for a remarkable range of sizes and intensity differences.
On more complex images such as shown in Figure 4 the algorithm displays a
range of behaviours. It is difficult if not impossible to obtain the ‘correct’ seg-
mentation of such images, but we conclude that the algorithm does distinguish
a number of significant regions, and that the concept of lossless coding allows
for a consistent discussion of different segmentation algorithms.
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Abstract. In this paper binocular stereo in a linear scale-space setting
is studied. A theoretical extension of previous work involving the optic
flow constraint equation is obtained, which is embedded in a robust top-
down algorithm. The method is illustrated by some examples.

1 Introduction

Stereo and optic flow are closely related. One method to study motion and short
baseline stereo is by the optic flow equation [3]. Recently, it has been realized
that, because we are dealing with observed data, the equation consequently has
to be embedded in scale-space ("brought under the aperture”) [1]. This has been
successfully applied to optic flow and binocular stereo extraction, which is not
necessary short baseline stereo anymore because of the scale involved [8,7].

This paper extends the theory of [1] (and [7] for binocular stereo) by taking
time discrete, i.e., no filtering is performed in that direction. This is of course
the case in binocular stereo, where only two frames are present. We show that
in that case higher order polynomials in the disparity are obtained. Then the
disparity has to be expanded in a spatial series to obtain a solution, like in [1].

We incorporate this method in a top-down patch-based stereo algorithm.
During the descending over scale, consistency is enforced based on the scale
and the residual (i.e. the value of the function minimized using a least squares
process), like in [5].

2 Review of optic flow under the aperture

In this section a brief review of the optic flow equation under the aperture [1,7,8]
is given. The classical optic flow constraint equation for a spatio-temporal image
I in 2D+time is given by:

L +u*l, + 41, =0 (1)

where the subscript denotes partial differentiation and the superscript denotes
the component of the flow. In discrete images we can not take derivatives directly,
so we have to obtain an equation with regularized derivatives, i.e. Gaussian
derivatives at a certain scale.

* This work was supported by the NWO-Council Earth and Life Sciences (ALW),
which is subsidized by the Netherlands Organization for Scientific Research (NWO).
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In order now to get an optic flow equation involving regularized derivatives
we (formally) convolve both sides of eq. (1) with ~, the Gaussian kernel at a
certain scale (see also [1,7,8]):

L+ oL+ 0 ) xy=0 (2)

(Since the values ©* and «¥ depend on the position, the left-hand side of the
equation is generally not equal to L; +u” L, +uY L,.) To move the differentiation
operator from the image to the aperture we have to use partial integration. For
this reason we have to model the unknown velocity (or disparity) field «* and w¥
with a polynomial function to some order. For 4 we get a local, spatial series:

M m
u(2,y) = DD Uk oy (@0, y0) (& = 20)" (y — yo) " " (3)

m=0n=0

A similar equation is derived for «¥. Using the fact that derivatives of v are Her-
mite polynomials times the kernel v itself, partial integration gives an equation
in (M+2)*(M+1) unknowns (the UZ-s and U/-s), with the derivatives moved
from the image to the aperture. We clarify this by an example: take M = 1 in
the series expansions, then eq. (1) is replaced by:

Li+ U Ly + 0°Ul Low + 0°Uf Loy + UYLy + 0°UYLay + 0° UYLy, =0 (4)

where o is the scale of the Gaussian operator v. We can not solve for six un-
knowns from one equation. Therefore we have to use additional equations. In [1]
extra equations are obtained by taking partial derivatives of the equation up till
the order of the truncation. Due to the aperture problem additional knowledge
has to be included, e.g., that the flow is only horizontally. One gets a linear sys-
tem, which can easily be solved. In binocular stereo the temporal derivative is
replaced by the difference between the right and the left images. The additional
scale parameter can be used to select a proper scale for the computations [7,8,9].

3 Higher order Taylor expansion

The mathematical idea behind the approach discussed in the previous section is
to compute the infinitesimal velocity. However, although a theoretically sound
continuous interpretation can be given for the discretely sampled space-time, we
actually want the displacement between two adjacent slices in temporal direction
and not the infinitesimal displacement. In binocular stereo, the main focus of
our approach, it is not at all possible to perform a temporal smoothing.

Let I{z,y,t) be a spatio-temporal image. To obtain the displacements be-
tween two frames, one taken at ¢ = t9 and one taken at ¢t = t{, we have to
solve:

a;(z,y) af(z,y)

az(z,y) al(z,y)
5 YT

I(ZE— 2 Y — 2 7t0):1(x+

st1) (5)

a? and a are the presumed model for the flow (disparity). We use a* = a¥*(z,y)
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and a¥ = a¥(x,y) for clarity in the formulas below. Both I{z — w,y —

M,to) and I(z + ax(g’y),y + ay(g’y),tl) are expanded in a Taylor Series.
Then we truncate the series at some order K to obtain the displacement.

a”® a¥ a”® a¥
-z i) = [ — = gy — =—
7y+ 27 1) (:E 27y 27

0=1I(z+ 5
K k& a®) yh—t PL . ok

I t1) — (1) ————1 t 6

ZOIZ 2kl' k—l (axlaykl (:E,y, 1) ( ) axlayk,l (:E,y, O)) ( )

for certain K. So far we formally differentiated I(x,y,t), but now we put the
equation under the aperture. Following the lines of section 2 we obtain:

K k xyl k1 ok k___ok
> kzo Xizo(@®) (a¥) m(WI(%yytl)*(*l) WI(%%%))*’Y:O (7)

We have to move the derivative operator from the images to the aperture. Before
we are able to do so we have to expand ¢” and a? in a truncated series. Note
that it is not a truncated Taylor Series, and actually depending on o, since eq.
(7) has to be satisfied for the approximation.

1 n m—"n
Z Zan(m n) nl(m )1 Y (8)

m=0n=0

and similar for a¥. Using this expansion the derivatives can be moved from the
images to the aperture in eq. (7). This yields one equation involving regularized
derivatives.

We could obtain more equations by using in addition to ~ in eq. (7) certain
derivatives of -, just as is done in the method discussed in the previous section.
Adding physical constraints, necessary due to the aperture problem, leads to a
finite number of possible solutions, from which the proper one should be chosen.

In this paper we use a different approach to obtain a solution from eq. (7),
in combination with eq. (8) (and the similar one for a¥). The motion in a point
is given by the least squares solution to the equations in a neighborhood of that
point. We explain the developed algorithm in the next section. We finish with
an example of the above derived equation:

Ezample 1. K =2, M = 1, horizontal flow:

(L' — 1) JragOLalm;Lg JrangUnglm;Fng + a0’ Lalﬁy;rLgy
(ago)zL;z ngz + (a%)%0 20° Liwwe + Lo ;Ungmz Loy v
(agl)ga QLglgzyy + L., gangzyy L, I agoagfodg bas . — Liwa +
e s SN R S SR TS

4 4
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4 Over-constrained systems

Using the derivatives from one point, although computed using a filter of finite
width, can give rise to noisy results. Another severe problem which occurs in
practice is the difference in illumination between the left and right images.

Possible solutions for these problems are preprocessing the images with a
small Laplacian filter, or to use higher order derivatives of ~ instead of v as
initial aperture filter. These approaches will be studied in further work on this
subject, but in this paper we propose a least squares solution to eq. (7) over a
patch, where we add a new variable to account for the local greyvalue difference
between the images. It is a generalization of [6] (which is our case with K =1
and M = 0).

For this generalization we write eq. (7) with the additional greyvalue offset
¢ and with the expansion for a® and a¥ (eq. (8)) as follows:

f(aM7x7y7tO7t17I()+g:O (10)

where apg is the vector containing all coefficients of eq. (8) and the expansion of
a¥, and g is the greyvalue offset, that needs to be computed. Of course the least
squares solution is given by

Opt)T - argmin Z (f(aM7x7y7t07t17I() +g)2 (11)
(an,g) RV S

(am®™, g

The neighborhood §2 has to contain at least (M + 1)(M + 2) + 2 points to make
the system over-constrained.

In the case of M = 0 and only horizontal displacement (af, = 0) we find the
optimal parameter as follows:
In the minimum of f(ago, z,y,to, t1, K, g) == Z(z,y)gn(f(an z,y,to, t1, K)+g)?

both 8—?;!5— =0 and %f = 0. From %i = 0 it follows that in a singular point g can
00 g g B

be written as a polynomial in aj,. Inserting this polynomial in 8?1{2 = 0 yields
00

that we have to solve a polynomial equation of degree (2K — 1) in af, to find

the global minimum. In case we have to deal with both horizontal and vertical

displacement and K > 1, or if we have only horizontal displacements and M > 0

and K > 1, we have to use a minimization algorithm [10], which might yield

only a local minimum.

5 Top-down algorithm

The above described approach is implemented in a top-down algorithm, where
the solution on every scale level has to fulfill certain conditions, similar to some
ones used in [5], to be labeled as reliable.

The filter size used and the size of the correlation region, which we take
equal to the filter size (similar to [4, Ch. 14]), restrict the size of solution. If the
solution is much larger than the filter size it becomes more unreliable. Therefore
we should only allow solutions which are in order of magnitude equal to . So we
compute the disparity for a stack of scales and allow for every scale only those
» and v, which are both smaller than o.
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We put in another restriction, that is the size of the found minimum of the
function that has been minimized. If the value of that so-called residual ([5])
is larger than a certain threshold, the found displacement is regarded as wrong
(e.g., a local minimum instead of a global minimum, or an occluded point), and
therefore removed.

Using the points which fulfill both restrictions, a displacement field for the
whole image is obtained by interpolation. Going down in scale now we first
compensate for the obtained flow field and repeat the procedure. For M = 1,
|uz| < 2 and |uy| < 1 are taken (note that the restriction on w, is imposed by
the ordering constraint).

6 Results

We show some results of the methods on a synthetic random dot pair, of which
the 3-D scene is a paraboloid on a flat background, and Bill Hoff’s fruit pair [2].
On every level in the algorithm we first checked the size of results, after which
10 % of the remaining points were removed using the size of the residual.

In Fig 1 the input random dot pair is shown, together with the results for
K=1land M =0, K =3and M =0, and K = 2 and M = 1. The results
for all methods are quite similar. The method with K = 1 and M = 0 retains a
little more points than the method with K = 2 and M = 1, but the standard
deviation of the error (compared with the ground truth) is a little smaller for
the method with K =2 and M = 1.

On the fruit image we see some more differences. In the first row the results of
the same expansions as used in the random dot example are shown. The method
with K = 2 and M = 1, throws away more points than the other methods,
but also yields less points with the wrong disparity. In order to compare the
methods better we have varied the number of points that was thrown away
based on the residual, such that in every method 60 % of all points was retained
by the algorithm. The result using K = 2 and M = 1 still contains less outliers.

7 Discussion

Binocular stereo in scale-space has been studied. A theoretical, extension to the
optic flow work in [1], especially suited for stereo, has been described. This theory
has been embedded in a robust top-down algorithm. Some examples have been
given to illustrate the derived results, but more study has to be done. For in-
stance: what are the results if we replace the patch approach with a preprocessing
step on the images to overcome illumination differences? For the same purpose,
could we use different filters instead of -, especially higher order derivatives of v7
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Abstract. In this paper, classical nonlinear diffusion methods of ma-
chine vision are revisited in the light of recent results in nonlinear sta-
bility analysis. Global exponential convergence rates are quantified, and
suggest, specific choices of nonlinearities and image coupling terms. In
particular, global stability and exponential convergence can be guaran-
teed for nonlinear filtering of time-varying images.

1 Introduction

Nonlinear reaction-diffusion processes are pervasive in physics [7]. In [11,12], we
extended recent results on stability theory, referred to as contraction analysis
[10], to partial differential equations describing time-varying nonlinear reaction-
diffusion processes, and showed that analyzing global stability and determining
convergence rates is very simple indeed for such processes. In this paper, classical
nonlinear diffusion methods of machine vision [1,2,3,5,6,8,9,13,16,17,18,19,20] are
revisited in the light of these recent results.
Section 2 summarizes the contraction properties of nonlinear reaction-diffu-

sion-convection equations of the form

% _ givn T

2 —div B(Ve, ) + V(1) VoI [(6,%,1) (1)
and explicitly quantifies stability and convergence rates. In section 3, rhese re-
sults are then applied to classical nonlinear diffusion methods of machine vi-
sion, and suggest specific choices of nonlinearities and image coupling terms. In
particular, global stability and exponential convergence can be guaranteed for
nonlinear filtering of time-varying (video) images. Brief concluding remarks are
offered in section 4.

2 Contraction Analysis of Nonlinear Diffusion Processes

Differential approximation is the basis of all linearized stability analysis. What
is new in contraction analysis is that differential stability analysis can be made
exact, and in turn yield global exponential stability results [10].

M. Nielsen et al. (Eds.): Scale-Space’99, LNCS 1682, pp. 525-529, 1999.
(© Springer-Verlag Berlin Heidelberg 1999
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The theory can be applied simply to important classes of physical ditributed
processes. In particular, consider the system (1) on an bounded m-dimensional
continuum V', let Iy jmas be the diameter (maximum length) of V' along the kth
axis, and A 2 be a lower bound on the smallest eigenvalue of the symmetric

part of 88vh¢ > 0 on V . It can then be shown [11,12] that

Theorem 1. Consider the nonlinear reaction-diffusion-convection equation (1),
where

oh/oV (¢,t) > 0, and assume that

e,
/\diff “+ mazx (a—;;)

is uniformly negative, where

Ui &
Adiff = —A on > B (2)
k

for a (perhaps time-varying) Dirichlet condition (i.e., o(t) specified on the bound-
ary), and
Agifr =0 (3)

for a (perhaps time-varying) Neumann condition. Then, all system trajectories
conwerge exponentially to a single field 4(x,t), with minimal convergence rate
Aaig s+ maz(55)].

In the autonomous case (f = f(¢,%x),v constant, and with constant boundary
conditions) the system converges exponentially to a steady-state ®4(x), which is
the unique solution of the generalized Poisson equation

0 =div h(V¢y) + vl Vg + f(¢a,x)

The method of proof implies that all the results on contracting systems in [10]
can be extended to contracting reaction-diffusion processes, with boundary con-
ditions acting as additional inputs to the system. For instance, any autonomous
contracting reaction-diffusion process, when subjected to boundary conditions
periodic in time, will tend exponentially to a periodic solution of the same period.
Also, any autonomous contracting reaction-diffusion process will tend exponen-
tially to a unique steady-state. The convergence is robust to bounded or linearly
increasing disturbances. The stability guarantees also hold for any orthonormal
Cartesian discretization of the continuum. Finally, chains or hierarchies of con-
tracting processes are themselves contracting, and thus converge exponentially,
allowing multiple levels of stable preprocessing if desired.

3 Machine Vision

The above results can be used in particular in problems of function approxi-
mation and nonlinear filtering. One such application is machine vision, where
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they suggest a different perspective and systematic extensions (notably to time-
varying images) for the now classical results of scale-space analysis and anisotropic
diffusion (see [1,2,3,5,6,9,13,16,17,18,19,20]). Similar questions occur in models
of physiological vision and eye movement [4].

Consider the problem of computing a smooth estimate gg(x, t) of a noisy time-
varying image ¢(x,t), while preserving meaningful discontinuities such as edges
at given scales [20,14]. Define the filter

% = div h(Vé,t) + vIVé+ f(— ¢) (4)
o=06+¢

where v(t) accounts for camera motion. The system thus verifies the nonlinear
reaction-diffusion-convection equation
96 _ 09

S = 5 (1) = div h(V,1) 1 VIV 1 [(d = 6(1))

Thus the dynamics of CE contains %, although the actual computation is done
using equation (4) and hence % is not explicitly used.

According to Theorem 1, global exponential convergence to a unique time-
varying image can be guaranteed by choosing the nonlinear function f to be
strictly decreasing, and the field h to have a positive semi-definite Jacobian.

These can be used to shape the performance of the filter design. For instance,

— Choosing h in the usual form
h=g(|Vel) Vo

and letting r = ||Vg§||7 the corresponding Jacobian is symmetric and can be
written R o
dg(r) Vo V¢
ar Vel Vel
Since the largest eigenvalue of the last dyadic product is 1, the system is

globally contracting for ¢ > 0 and W > 0. One might e.g. choose

g = tanh(ar)/(ar) or g = sin (F sat(agrad $))/(ar) (with « a constant)
to filter small r and leave large r unfiltered. More generally one may choose
g = 0 for specific r ranges, leaving the corresponding part of the image
unfiltered.

— Outliers ¢ can be cut off e.g. with a sigmoidal f.

gl + r

Furthermore, chains or hierarchies of contracting processes are themselves
contracting, as mentioned earlier. This implies, for instance, that the velocity
v above, the input coupling f, or the time-dependence of h (e.g. the choice of
threshold) could themselves result from “higher” contracting processes. Simi-
larly, prefiltering in time or space of the signal can be straightforwardly incor-
porated.
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Finally, note that in the case that v is actually unknown, but constant or
slowly varying, it is straightforward to design versions of the above which are
adaptive in v.

4 Concluding Remarks

This paper exploits the contraction properties of nonlinear reaction-diffusion-
convection equations to suggest a different perspective on classical results on
nonlinear diffusion for machine vision. In particular, it explicitly quantifies global
exponential convergence rates, and extends systematically to stable nonlinear
diffusion of time-varying images. Relationships between noise models and spe-
cific choices of f and h or of higher contracting processes need to be studied
further. Additional flexibility may be also be obtained by shaping the system
metric while still preserving global exponential stability [10], and could parallel
recent developments [8]. Numerical implementation on actual video images will
be presented at the conference.

Acknowledgements: We would like to thank Martin Grepl for the numerical
simulations.
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Fig. 1. Applying the basic algorithm to the “pulsating square” illusion. Original and
filtered images at time ¢t = 1,2, 3, using a sampling rate of 1/20. Note that in such an
observer design, each new image is processed in only one iteration step.



