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0. Introduction

In this lecture notes I try to give an introduction to the fundamentals of differential
geometry (manifolds, flows, Lie groups, differential forms, bundles and connections)
which stresses naturality and functoriality from the beginning and is as coordinate
free as possible. The material presented in the beginning is standard - but some
parts are not so easily found in text books: we treat initial submanifolds and the
Frobenius theorem for distributions of non constant rank, and we give a quick proof
in two pages of the Campbell - Baker - Hausdorff formula for Lie groups. We also
prove that closed subgroups of Lie groups are Lie subgroups.

Then the deviation from the standard presentations becomes larger. In the section
on vector bundles I treat the Lie derivative for natural vector bundles, i.e. functors
which associate vector bundles to manifolds and vector bundle homomorphisms
to local diffeomorphisms. I give a formula for the Lie derivative of the form of a
commutator, but it involves the tangent bundle of the vector bundle involved. So I
also give a careful treatment to this situation. It follows a standard presentation of
differential forms and a thorough treatment of the Frolicher-Nijenhuis bracket via
the study of all graded derivations of the algebra of differential forms. This bracket
is a natural extension of the Lie bracket from vector fields to tangent bundle valued
differential forms. I believe that this bracket is one of the basic structures of dif-
ferential geometry, and later I will base nearly all treatment of curvature and the
Bianchi identities on it. This allows me to present the concept of a connection first
on general fiber bundles (without structure group), with curvature, parallel trans-
port and Bianchi identity, and only then add G-equivariance as a further property
for principal fiber bundles. I think, that in this way the underlying geometric ideas
are more easily understood by the novice than in the traditional approach, where
too much structure at the same time is rather confusing.

We begin our treatment of connections in the general setting of fiber bundles (with-
out structure group). A connection on a fiber bundle is just a projection onto the
vertical bundle. Curvature and the Bianchi identity is expressed with the help of
the Frolicher-Nijenhuis bracket. The parallel transport for such a general connec-
tion is not defined along the whole of the curve in the base in general - if this is the
case, the connection is called complete. We show that every fiber bundle admits
complete connections. For complete connections we treat holonomy groups and the
holonomy Lie algebra, a subalgebra of the Lie algebra of all vector fields on the
standard fiber.

Then we present principal bundles and associated bundles in detail together with
the most important examples. Finally we investigate principal connections by re-
quiring equivariance under the structure group. It is remarkable how fast the
usual structure equations can be derived from the basic properties of the Frolicher-
Nijenhuis bracket. Induced connections are investigated thoroughly - we describe
tools to recognize induced connections among general ones.

If the holonomy Lie algebra of a connection on a fiber bundle with compact standard
fiber turns out to be finite dimensional, we are able to show, that in fact the fiber
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2 Introduction

bundle is associated to a principal bundle and the connection is an induced one.

We think that the treatment of connections presented here offers some didactical
advantages besides presenting new results: the geometric content of a connection
is treated first, and the additional requirement of equivariance under a structure
group is seen to be additional and can be dealt with later - so the student is not
required to grasp all the structures at the same time. Besides that it gives new
results and new insights. This treatment is taken from [Michor, 87].
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CHAPTER 1
Manifolds and Vector Fields

1. Differentiable Manifolds

1.1. Manifolds. A topological manifold is a separable metrizable space M which
is locally homeomorphic to R™. So for any z € M there is some homeomorphism
u:U — u(U) € R"”, where U is an open neighborhood of z in M and u(U) is an
open subset in R™. The pair (U, u) is called a chart on M.

From algebraic topology it follows that the number n is locally constant on M; if
n is constant, M is sometimes called a pure manifold. We will only consider pure
manifolds and consequently we will omit the prefix pure.

A family (Uy, uq)aca of charts on M such that the U, form a cover of M is called
an atlas. The mappings uag 1= uq ugl tug(Uag) — ua(Uyp) are called the chart
changings for the atlas (U, ), where Uyp := U, N Ug.

An atlas (Uy, U )aca for a manifold M is said to be a C*-atlas, if all chart changings
Uap : Us(Ung) — ua(Uyp) are differentiable of class C*. Two Ck-atlases are called
C* -equivalent, if their union is again a C'*-atlas for M. An equivalence class of C*-
atlases is called a C*-structure on M. From differential topology we know that if M
has a C'l-structure, then it also has a C'-equivalent C*°-structure and even a C'*-
equivalent C“-structure, where C* is shorthand for real analytic, see [Hirsch, 1976].
By a C*-manifold M we mean a topological manifold together with a C*-structure
and a chart on M will be a chart belonging to some atlas of the C'*-structure.

But there are topological manifolds which do not admit differentiable structures.
For example, every 4-dimensional manifold is smooth off some point, but there are
such which are not smooth, see [Quinn, 1982], [Freedman, 1982]. There are also
topological manifolds which admit several inequivalent smooth structures. The
spheres from dimension 7 on have finitely many, see [Milnor, 1956]. But the most
surprising result is that on R?* there are uncountably many pairwise inequivalent
(exotic) differentiable structures. This follows from the results of [Donaldson, 1983]
and [Freedman, 1982], see [Gompf, 1983] for an overview.

Note that for a Hausdorff C'**-manifold in a more general sense the following prop-
erties are equivalent:

(1) It is paracompact.
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4 Chapter I. Manifolds and Vector Fields 1.3

(2) It is metrizable.
(3) It admits a Riemannian metric.
(4) Each connected component is separable.

In this book a manifold will usually mean a C'°°-manifold, and smooth is used
synonymously for C*°, it will be Hausdorff, separable, finite dimensional, to state
it precisely.

Note finally that any manifold M admits a finite atlas consisting of dim M + 1 (not
connected) charts. This is a consequence of topological dimension theory [Nagata,
1965], a proof for manifolds may be found in [Greub-Halperin-Vanstone, Vol. I].

1.2. Example: Spheres. We consider the space R"T!, equipped with the stan-
dard inner product (z,y) = >_ x'y’. The n-sphere S™ is then the subset {z € R"! :
(x,z) = 1}. Since f(z) = (z,z), f : R*"! — R, satisfies df (x)y = 2(x,y), it is of
rank 1 off 0 and by (1.12) the sphere S™ is a submanifold of R™*1.

In order to get some feeling for the sphere we will describe an explicit atlas for S™,
the stereographic atlas. Choose a € S™ (‘south pole’). Let

Usi=5"\{a),  up:Up—fa)t,  ug(e) = 2o
U= 5"\ {-a}, u_:U-—{a}', u_(a)= 2500

From an obvious drawing in the 2-plane through 0, x, and a it is easily seen that
uy is the usual stereographic projection.

-a
X
1
0 z=u_(x)
y=u, () X-<x,a>a
a
We also get
-1 -1 1
Uy (y) = Iz|‘2+1a + |y|22+1?/ for y € {a}~ \ {0}

and (u_oul')(y) = ﬁ The latter equation can directly be seen from the drawing

using ‘Strahlensatz’.

1.3. Smooth mappings. A mapping f : M — N between manifolds is said to be
C* if for each € M and one (equivalently: any) chart (V,v) on N with f(z) € V
there is a chart (U,u) on M with z € U, f(U) CV,and vo fou~!is C*¥. We will
denote by C*(M, N) the space of all C*-mappings from M to N.
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1.5 1. Differentiable Manifolds 5

A C*-mapping f : M — N is called a C*-diffeomorphismif f =1 : N — M exists and
is also C*. Two manifolds are called diffeomorphic if there exists a diffeomorphism
between them. From differential topology (see [Hirsch, 1976]) we know that if there
is a O''-diffeomorphism between M and N, then there is also a C'°°-diffeomorphism.

There are manifolds which are homeomorphic but not diffeomorphic: on R* there
are uncountably many pairwise non-diffeomorphic differentiable structures; on ev-
ery other R" the differentiable structure is unique. There are finitely many different
differentiable structures on the spheres S™ for n > 7.

A mapping f : M — N between manifolds of the same dimension is called a local
diffeomorphism, if each x € M has an open neighborhood U such that f|U : U —
f(U) C N is a diffecomorphism. Note that a local diffeomorphism need not be
surjective.

1.4. Smooth functions. The set of smooth real valued functions on a manifold
M will be denoted by C°°(M), in order to distinguish it clearly from spaces of
sections which will appear later. C*°(M) is a real commutative algebra.

The support of a smooth function f is the closure of the set, where it does not
vanish, supp(f) = {z € M : f(x) # 0}. The zero set of f is the set where f vanishes,

Z(f) = {x € M : f(z) = 0}.

1.5. Theorem. Any (separable, metrizable, smooth) manifold admits smooth par-
titions of unity: Let (Uy)aca be an open cover of M.

Then there is a family (po)aca of smooth functions on M, such that:

(1) pal(z) >0 for allz € M and all o € A.

(2) supp(pa) C Uy for all a € A.

(3) (supp(¢a))aca is a locally finite family (so each x € M has an open neigh-
borhood which meets only finitely many supp(ea) ).

(4) >, ¢a =1 (locally this is a finite sum,).

Proof. Any (separable metrizable) manifold is a ‘Lindeldf space’, i. e. each open
cover admits a countable subcover. This can be seen as follows:

Let U be an open cover of M. Since M is separable there is a countable dense
subset S in M. Choose a metric on M. For each U € U and each x € U there is an
y € S and n € N such that the ball By, (y) with respect to that metric with center
y and radius % contains = and is contained in U. But there are only countably
many of these balls; for each of them we choose an open set U € U containing it.
This is then a countable subcover of U.

Now let (Uy)aca be the given cover. Let us fix first o and « € U,. We choose a
chart (U,u) centered at z (i. e. u(z) = 0) and € > 0 such that eD” C uw(U NU,),
where D" = {y € R" : |y| < 1} is the closed unit ball. Let

Ut fort >0
h(t) := { ° o ’
0 for t <0,
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6 Chapter I. Manifolds and Vector Fields 1.7

a smooth function on R. Then

h(g? —Ju(2)|?) for z €U,

faal2) = { 0 for 2 ¢ U

is a non negative smooth function on M with support in U, which is positive at x.

We choose such a function f,, for each a and = € U,. The interiors of the
supports of these smooth functions form an open cover of M which refines (U,,), so
by the argument at the beginning of the proof there is a countable subcover with
corresponding functions fi, fa,.... Let

W, ={ze€M: f,(z) >0and fi(z) <+ forl<i<n},

and denote by W, the closure. Then (W,,), is an open cover. We claim that (W),
is locally finite: Let € M. Then there is a smallest n such that x € W,,. Let
Vi={yeM: f(y) > 1fu(x)}. If y € VN W} then we have f,(y) > 3 fy(x) and
fi(y) < ¢ for i <k, which is possible for finitely many k only.

Consider the non negative smooth function g,,(z) = h(fn(z))h(: = fi(z)).. . h(: -
fn—1(z)) for each n. Then obviously supp(g,) = W,. So g := 3, g, is smooth,
since it is locally only a finite sum, and everywhere positive, thus (g, /g)nen is a
smooth partition of unity on M. Since supp(g,) = W, is contained in some Ua(n)
we may put @, = Y. (n:a(n)=a} 97” to get the required partition of unity which is

subordinated to (Uy)acAa-

1.6. Germs. Let M and N be manifolds and x € M. We consider all smooth
mappings f : Us — N, where Uy is some open neighborhood of = in M, and we
put f ~ g if there is some open neighborhood V of = with f|V = g|V. This is an

equivalence relation on the set of mappings considered. The equivalence class of a
mapping f is called the germ of f at x, sometimes denoted by germ, f. The set of
all these germs is denoted by C2°(M, N).

Note that for a germs at = of a smooth mapping only the value at x is defined. We
may also consider composition of germs: germ(,y g o germ, f := germ, (g o f).

If N = R, we may add and multiply germs of smooth functions, so we get the
real commutative algebra C°(M,R) of germs of smooth functions at x. This
construction works also for other types of functions like real analytic or holomorphic
ones, if M has a real analytic or complex structure.

Using smooth partitions of unity ((1.4)) it is easily seen that each germ of a smooth
function has a representative which is defined on the whole of M. For germs of real
analytic or holomorphic functions this is not true. So C9°(M,R) is the quotient of
the algebra C'°°(M) by the ideal of all smooth functions f : M — R which vanish
on some neighborhood (depending on f) of z.

1.7. The tangent space of R". Let a € R". A tangent vector with foot point a
is simply a pair (a, X) with X € R"”, also denoted by X,. It induces a derivation
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1.8 1. Differentiable Manifolds 7

Xy : C®(R™) — R by X,(f) =df(a)(X,). The value depends only on the germ of
f at a and we have X,(f-g) = Xo(f) -g(a)+ f(a)- Xa(g) (the derivation property).

If conversely D : C*>°(R™) — R is linear and satisfies D(f - g) = D(f) - g(a) + f(a) -
D(g) (a derivation at a), then D is given by the action of a tangent vector with
foot point a. This can be seen as follows. For f € C*°(R") we have

f(x) = fa) + / 4 flat bz - a))dt

—l—Z/ 2L (a+t(z — a))dt (2 — a’)

= f(a) + th(.r)(ac —a").

D(1)=D(1-1) =2D(1), so D(constant) = 0. Thus

where ¢ is the i-th coordinate function on R™. So we have

D(f):ZD(xl)aZz’a(f)a D:ZD(xi)aiila'

Thus D is induced by the tangent vector (a, Y ., D(z%)e;), where (e;) is the stan-
dard basis of R".

1.8. The tangent space of a manifold. Let M be a manifold and let z € M
and dim M = n. Let T, M be the vector space of all derivations at x of C°(M,R),
the algebra of germs of smooth functions on M at z. (Using (1.5) it may easily be
seen that a derivation of C°°(M) at x factors to a derivation of C2°(M,R).)

So T, M consists of all linear mappings X, : C*°(M) — R with the property
X (f-9)=X:(f) g(x)+ f(x)  X:(g). The space T, M is called the tangent space
of M at x.

If (U,u) is a chart on M with z € U, then v* : f — fowu induces an isomorphism of
algebras C (m)( R) =2 C°(M,R), and thus also an isomorphism T,u : T, M —
Ty)R™, given by (Tyu.Xz)(f) = Xu(f ou). So T, M is an n-dimensional vector
space.

We will use the following notation: u = (u!,...,u™), so u’ denotes the i-th coordi-

nate function on U, and

0 o — 0
aotle = (Tow) ™ (52

u(x)) = (Tmu)il(u(l'% 61').
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8 Chapter I. Manifolds and Vector Fields 1.10

» € T M is the derivation given by

= A  y),

o
SOW

2]

ou’

From (1.7) we have now

TouXo = ) (Tou.Xo)(#") g lute) = ) Xa(2' 0 ) gl ute)

=1 1=1

1.9. The tangent bundle. For a manifold M of dimension n we put TM :=
||, s T M, the disjoint union of all tangent spaces. This is a family of vector spaces
parameterized by M, with projection mp; : TM — M given by mp (T, M) = .

For any chart (Uy,us) of M consider the chart (73 (Us), Tus) on TM, where
Tua : 7y (Ua) = ua(Ua) x R™ is given by Tua.X = (ua(mar (X)), Ty (x)ta-X).
Then the chart changings look as follows:

Tug o (Tua) " : Tua () (Uag)) = ta(Uag) x R™ —
— up(Uap) X R" = Tug(my; (Uap)),
(Tug o (Tua) ™)y, Y))(f) = (Tua) ™ (4, Y))(f 0 up)
= (4, Y)(fougouy') =d(fougoug)(y).Y
= df (ug o uy ' (y))-d(ug o ug*)(y).Y
= (ug o ug ' (y), d(ug o uz)(y).Y)(f).

So the chart changings are smooth. We choose the topology on T'M in such a
way that all Tu, become homeomorphisms. This is a Hausdorff topology, since X,
Y € T'M may be separated in M if 7(X) # (YY), and in one chart if 7(X) = 7 (Y).
So T'M is again a smooth manifold in a canonical way; the triple (T'M, 7y, M) is
called the tangent bundle of M.

1.10. Kinematic definition of the tangent space. Let C§°(R, M) denote the
space of germs at 0 of smooth curves R — M. We put the following equivalence
relation on C§°(R, M): the germ of ¢ is equivalent to the germ of e if and only if
¢(0) = €(0) and in one (equivalently each) chart (U, ) with ¢(0) = e(0) € U we
have |o(uoc)(t) = <L|o(uoe)(t). The equivalence classes are also called velocity
vectors of curves in M. We have the following mappings

C(R, M)/ ~ «— C° (R, M)

|

T™ — M,
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1.13 1. Differentiable Manifolds 9

where a(c)(germ, o) f) = Lof(c(t)) and B : TM — C§(R,M) is given by:
B((Tu)"(y,Y)) is the germ at 0 of t — w™!(y +tY). So TM is canonically
identified with the set of all possible velocity vectors of curves in M.

1.11. Tangent mappings. Let f : M — N be a smooth mapping between
manifolds. Then f induces a linear mapping T f : T, M — TN for each z € M
by (T f-Xz)(h) = Xa(ho f) for h € CF,)(N,R). This mapping is well defined
and linear since f* : €77, (N,R) — C2°(M,R), given by h — ho f, is linear and
an algebra homomorphism, and T, f is its adjoint, restricted to the subspace of
derivations.

If (U,u) is a chart around x and (V,v) is one around f(x), then

(Tof g2z ) (V) = 52210 (07 0 f) = 2 (v7 o fou™")(u(x)),

A(viofou~t
=2 Olrefen ) (u(@)) g5 |y (o) -

So the matrix of T, f : To,M — Ty N in the bases (% «) and (%U(:ﬁ)) is just
the Jacobi matrix d(v o f o u™!)(u(z)) of the mapping v o f ou™! at u(z), so
TiwyvoTpfo(Tyu) ™t =dwo fout)(u(x)).

Let us denote by T'f : TM — TN the total mapping, given by T'f|T, M =T, f.
Then the composition Tv o T'f o (Tu)™! : u(U) x R™ — v(V) x R" is given by
(y,Y) = ((vo fou™t)(y),d(vo fou t)(y)Y), and thus Tf : TM — TN is again
smooth.

If f: M — Nandg: N — P aresmooth mappings, then we have T'(gof) = T'goT'f.

This is a direct consequence of (go f)* = f* o g*, and it is the global version of the
chain rule. Furthermore we have T'(Idy;) = Idryy.

If fe C®(M), then Tf: TM — TR = R x R. We then define the differential
of fbydf :=prooTf:TM — R. Let t denote the identity function on R, then
(Tf.Xa)(t) = Xo(to f) = Xo(f), so we have df (Xo) = Xo(f).

1.12. Submanifolds. A subset N of a manifold M is called a submanifold, if for
each z € N there is a chart (U,u) of M such that w(U N N) = u(U) N (R* x 0),
where RF x 0 < RF x R®™* = R™. Then clearly N is itself a manifold with
(UN N,u|(UNN)) as charts, where (U, u) runs through all submanifold charts as
above.

1.13. Let f: R™ — RY be smooth. A point x € R? is called a reqular value of f
if the rank of f (more exactly: the rank of its derivative) is ¢ at each point y of
f~Y(z). In this case, f~!(z) is a submanifold of R™ of dimension n — ¢ (or empty).
This is an immediate consequence of the implicit function theorem, as follows: Let

r = 0 € R%. Permute the coordinates (z',...,2") on R"™ such that the Jacobi
matrix 1<i< 1<i<
afz S1>4 8]” 1>
df (y) = ( -(y)> ( ()
07 ") 1<jca| N0 giagicn
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10 Chapter I. Manifolds and Vector Fields 1.13

has the left hand part invertible. Then u := (f,pr,_,) : R® — R? x R"7% has
invertible differential at y, so (U,u) is a chart at any y € f~1(0), and we have
fou t(zt...,2") = (2%...,29), so u(f~1(0)) = u(U) N (0 x R*9) as required.

Constant rank theorem. [Dieudonné, I, 10.3.1] Let f : W — RY be a smooth
mapping, where W is an open subset of R™. If the derivative df (x) has constant
rank k for each x € W, then for each a € W there are charts (U,u) of W centered
at a and (V,v) of R? centered at f(a) such that vo fou™! :u(U) — v(V) has the
following form:

(x1,...,xn) — (21,...,2k,0,...,0).

So f=1(b) is a submanifold of W of dimension n — k for each b € f(W).
Proof. We will use the inverse function theorem several times. df(a) has rank

k < n,q, without loss we may assume that the upper left k x k submatrix of df(a)
is invertible. Moreover, let @ = 0 and f(a) = 0.

We consider v : W — R™, u(z?!,...,2") = (fY(x),..., f¥(x), ¥, ... 2"). Then
Of \1<i<k  (9f'\1<i<k
du = (@)1@51@ (W)k-ugjgn
O Ian—k

is invertible, so u is a diffeomorphism U; — U, for suitable open neighborhoods of
0 in R”. Consider g = fou~! : Uy — RY9. Then we have

9215 2n) = (21,5 2k, Ge1(2), - -, 9(2)),

Tdgs 0
dg(z) = ( 9g' \k+1<i<q ) :
* (azj>k+1§j§n

rank(dg(z)) = rank(d(f o u™1)(z)) = rank(df (u™!(2).du™"(2))
= rank(df (z)) = k.

Therefore,

gzt . ) =gl .., 25,0,...,0) fork4+1<i<q.

Let v : Uz — RY, where Us = {y € RY: (y',...,4%,0,...,0) € Uy C R"}, be given
by

yt y!
1 . .
y k yk
v . = = _ s
- yPrt — gFtl(yt L yk,0,...,0) yhtt — gFt(y)
Y
yq_gq(ylru’yk’o’-..,o) yq_gq<g)
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1.15 1. Differentiable Manifolds 11
where §j = (y!,...,y9,0,...,0) € R* if ¢ < n, and § = (y*,...,y") if ¢ > n. We

have v(0) = 0, and
 (Idge 0
dv = ( * Idqu)

is invertible, thus v : V' — RY is a chart for a suitable neighborhood of 0. Now let
U:=f Y V)UU;. Thenvo fout =vog:R" Du(U)— v(V) C R? looks as
follows:

x! x! !
1 : : :
l: g .Tk v ij .’Ek -
: — — =
3 ¢+ () g (2) — g+ (@) 0
T
9%(x) 9%(x) — g%(x) 0

Corollary. Let f: M — N be C* with T, f of constant rank k for all x € M.

Then for each b € f(M) the set f~1(b) C M is a submanifold of M of dimension
dmM — k. O

1.14. Products. Let M and N be smooth manifolds described by smooth atlases
(Uasua)aca and (Vg,v3)sen, respectively. Then the family (U, X Vg, uq X vg :
Ua X Vg — R™ X R") (4. 8)cax B is a smooth atlas for the cartesian product M x N.

Clearly the projections
MEE M x NN

are also smooth. The product (M x N, pry, pro) has the following universal property:

For any smooth manifold P and smooth mappings f: P — M and g : P — N
the mapping (f,g) : P — M x N, (f,9)(z) = (f(x), g(x)), is the unique smooth
mapping with pry o (f,g9) = f, prao (f,9) = g.

From the construction of the tangent bundle in (1.9) it is immediately clear that

T(pr1) T (pr2)
— e

TM T(M x N) TN

is again a product, so that T(M x N) =TM x TN in a canonical way.

Clearly we can form products of finitely many manifolds.

1.15. Theorem. Let M be a connected manifold and suppose that f : M — M s
smooth with fo f = f. Then the image f(M) of f is a submanifold of M.

This result can also be expressed as: ‘smooth retracts’ of manifolds are manifolds.
If we do not suppose that M is connected, then f(M) will not be a pure manifold
in general, it will have different dimension in different connected components.

Proof. We claim that there is an open neighborhood U of f(M) in M such that
the rank of T), f is constant for y € U. Then by theorem (1.13) the result follows.
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12 Chapter I. Manifolds and Vector Fields 1.16a

For x € f(M) we have T, foT, f = T, f, thusim T, f = ker(Id—T, f) and rank T, f +
rank(/d — T, f) = dim M. Since rank T, f and rank(Id — T, f) cannot fall locally,
rank T}, f is locally constant for x € f(M), and since f(M) is connected, rank T, f =
r for all z € f(M).

But then for each z € f(M) there is an open neighborhood U, in M with rank T}, f >
r for all y € U,. On the other hand rank T, f = rank T, (f o f) = rank T,y fo T, f <
rank T,y f = r since f(y) € f(M). So the neighborhood we need is given by

1.16. Corollary. 1. The (separable) connected smooth manifolds are exactly the
smooth retracts of connected open subsets of R™’s.

2. f: M — N is an embedding of a submanifold if and only if there is an open
neighborhood U of f(M) in N and a smooth mapping r : U — M withro f = Idy;.

Proof. Any manifold M may be embedded into some R™, see (1.17) below. Then
there exists a tubular neighborhood of M in R™ (see later or [Hirsch, 1976, pp.
109-118]), and M is clearly a retract of such a tubular neighborhood. The converse
follows from (1.15).

For the second assertion repeat the argument for NV instead of R™. [

1.16a. Sets of Lebesque measure 0 in manifolds. An m-cube of width w > 0
in R™ is a set of the form C = [z1,21 + w] X ... X [Ty, Ty + w]. The measure
w(C) is then p(C) = w™. A subset S C R™ is called a set of (Lebesque) measure 0
if for each ¢ > 0 these are at most countably many m-cubes C; with S C |J;2, C;
and Y2, u(C;) < . Obviously, a countable union of sets of Lebesque measure 0
is again of measure 0.

Lemma. Let U C R™ be open and let f : U — R™ be C1. If S C U is of measure
0 then also f(S) C R™ is of measure 0.

Proof. Every point of S belongs to an open ball B C U such that the operator
norm ||df (z)|| < Kp for all z € B. Then |f(x) — f(y)| < Kglz —y| for all z,y € B.
So if C' C B is an m-cube of width w then f(C) is contained in an m-cube C’ of
width \/mK pw and measure p(C") < m™/2K7u(C). Now let S = U;x;l S; where
each S; is a compact subset of a ball B; as above. It suffices to show that each
f(S;) is of measure 0.

For each ¢ > 0 there are m-cubes C; in B; with S; C |J, C; and >, u(C;) < e. As
we saw above then f(X;) C J, C] with > . u(C}) < mm/2KfB”j€. O

Let M be a smooth (separable) manifold. A subset S C M is is called a set of
(Lebesque) measure 0 if for each chart (U,u) of M the set u(S NU) is of measure
0 in R™. By the lemma it suffices that there is some atlas whose charts have this
property. Obviously, a countable union of sets of measure 0 in a manifold is again
of measure 0.

A m-cube is not of measure 0. Thus a subset of R™ of measure 0 does not contain
any m-cube; hence its interior is empty. Thus a closed set of measure 0 in a
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10.12 1. Differentiable Manifolds 13

manifold is nowhere dense. More generally, let S be a subset of a manifold which
is of measure 0 and o-compact, i.e., a countable union of compact subsets. Then
each of the latter is nowhere dense, so S is nowhere dense by the Baire category
theorem. The complement of S is residual, i.e., it contains the intersection of a
countable family of open dense subsets. The Baire theorem says that a residual
subset of a complete metric space is dense.

10.12. Regular values. Let f : M — N be a smooth mapping between mani-
folds.

(1) x € M is called a singular point of f if T, f is not surjective, and is called
a reqular point of f if T, f is surjective.

(2) y € N is called a regqular value of f if T, f is surjective for all z € f~1(y).
If not y is called a singular value. Note that any y € N \ f(M) is a regular
value.

Theorem. [Morse, 1939], [Sard, 1942] The set of all singular values of a C* map-
ping f : M — N is of Lebesque measure 0 in N, if k > max{0,dim(M) —dim(N)}.

So any smooth mapping has regular values.

Proof. We proof this only for smooth mappings. It is sufficient to prove this
locally. Thus we consider a smooth mapping f : U — R"™ where U C R™ is
open. If n > m then the result follows from lemma (1.16a) above (consider the set
U x0CR™xR"™™ of measure 0). Thus let m > n.

Let X(f) C U denote the set of singular points of f. Let f = (f!,..., f™), and let
E(f) = 21 U 22 U 23 Where:
Y1 is the set of singular points x such that Pf(x) = 0 for all linear differential
operators P of order < 7*.
Y5 is the set of singular points x such that Pf(x) # 0 for some differential
operator P of order > 2. _
aft

xJ

Y3 is the set of singular points z such that (x) = 0 for some 1, j.

We first show that f(¥;) has measure 0. Let v = [™* + 1] be the smallest integer
> m/n. Then each point of ¥; has an open neigborhood W C U such that
|f(z) — fly) < K|lx —y|” for all z € ¥; N W and y € W and for some K > 0, by
Taylor expansion. We take W to be a cube, of width w. It suffices to prove that
f(X1NW) has measure 0. We divide W in p™ cubes of width %; those which meet
Siy1 will be denoted by Ci,...,C, for ¢ < p™. Each C}, is contained in a ball of
radius %\/ﬁ centered at a point of 31 N W. The set f(C}) is contained in a cube

C}, C R of width 2K (3/m)”. Then
S ey < pm(QK)n(%m)m = p™ V(2K )™ — 0 for p — oo,
k

since m — vn < 0.

Note that £(f) = X7 if n = m = 1. So the theorem is proved in this case. We
proceed by induction on m. So let m > 1 and assume that the theorem is true for
each smooth map P — @ where dim(P) < m.
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14 Chapter I. Manifolds and Vector Fields 1.18

We prove that f(Xs \ X3) has measure 0. For each z € 35 \ X3 there is a linear
differential operator P such that Pf(z) = 0 and gi; (z) # 0 for some 4,j. Let W
be the set of all such points, for fixed P,i,j. It suffices to show that f(W) has
measure 0. By assumption, 0 € R is a regular value for the function Pf*: W — R.
Therefore W is a smooth submanifold of dimension m —1 in R™. Clearly, ¥(f)NW
is contained in the set of all singular points of f|WW : W — R™, and by induction

we get that f((X2\ 23) N W) C f(E(f)NW) C f(E(f|W)) has measure 0.

It remains to prove that f(X3) has measure 0. Every point of ¥3 has an open

neighborhood W C U on which gi J # 0 for some i, 7. By shrinking W if necessary

and applying diffeomorphisms we may assume that
R™ 1 xRO Wy x Wo =W LRI xR, (y,1) = (g(y.1).1).

Clearly, (y,t) is a critical point for f iff y is a critical point for g( ,t¢). Thus
S(H)NW = Upew, (E(g( 1)) x {t}). Since dim(W;) = m — 1, by induction we
get that "~ (g(X(g( ,t),t))) =0, where u"~! is the Lebesque measure in R™~ !,
By Fubini’s theorem we get

i (U (Sta ) x o) = [

W*Mﬂﬂ,ﬂﬁﬂﬁz/ 0dt=0. O
teWs W2

Wy

1.17. Embeddings into R™’s. Let M be a smooth manifold of dimension m.
Then M can be embedded into R”, if

(1) n=2m + 1 (this is due to [Whitney, 1944], see also [Hirsch, 1976, p 55] or
[Brocker-Jénich, 1973, p 73]).

(2) n =2m (see [Whitney, 1944]).

(3) Conjecture (still unproved): The minimal n is n = 2m — a(m) + 1, where
a(m) is the number of 1’s in the dyadic expansion of m.

There exists an immersion (see section 2) M — R”, if

(4) n = 2m (see [Hirsch, 1976]),

(5) n=2m — 1 (see [Whitney, 1944)).

(6) Conjecture: The minimal n is n = 2m — a(m). [Cohen, 1982]) claims to
have proven this, but there are doubts.

Examples and Exercises

1.18. Discuss the following submanifolds of R™, in particular make drawings of
them:

The unit sphere S"~! = {z € R" :< z,z >= 1} C R™.
The ellipsoid {x € R™ : f(z):=>"_, 2—2 = 1}, a; # 0 with principal axis a1, ..., ay.

The hyperboloid {z € R" : f(x) =Y i, 512—2 =1}, ¢; = £1, a; # 0 with principal

axis a; and index = ) ¢;.
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1.25 1. Differentiable Manifolds 15

The saddle {x € R : 23 = z122}.
The torus: the rotation surface generated by rotation of (y — R)% + 22 =72, 0 <

r < R with center the z—axis, i.e. {(x,9,2): (v/22 + 92 — R)? + 22 = r?}.

1.19. A compact surface of genus g. Let f(x) :=x(x—1)?(z—2)?...(z—(9—
1))?(z — g). For small r > 0 the set {(z,v,2) : (y®> + f(x))? + 22 = r?} describes a
surface of genus g (topologically a sphere with g handles) in R®. Visualize this.

1.20. The Moebius strip.

It is not the set of zeros of a regular function on an open neighborhood of R"™. Why
not? But it may be represented by the following parametrization:

cos p(R + rcos(p/2))
flryp) = | sinp(R+rcos(v/2)) |, (r,p) € (—1,1) x [0, 27),
rsin(e/2)

where R is quite big.

1.21. Describe an atlas for the real projective plane which consists of three charts
(homogeneous coordinates) and compute the chart changings.

Then describe an atlas for the n-dimensional real projective space P™(R) and com-
pute the chart changes.

1.22. Let f : L(R",R") — L(R™,R") be given by f(A) := A'A. Where is f of
constant rank? What is f~1(Id)?

1.23. Let f: L(R",R™) — L(R",R"), n < m be given by f(A) := A'A. Where is
f of constant rank? What is f~!(Idgn)?

1.24. Let S be a symmetric matrix, i.e., S(x,y) := 'Sy is a symmetric bilinear
form on R". Let f: L(R™,R™) — L(R™,R") be given by f(A) := A'SA. Where is
f of constant rank? What is f~1(S)?

1.25. Describe T'S? C RS.
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16 Chapter I. Manifolds and Vector Fields 2.6

2. Submersions and Immersions

2.1. Definition. A mapping f : M — N between manifolds is called a submersion
at v € M, if the rank of T, f : T, M — Ty(,)N equals dim N. Since the rank cannot
fall locally (the determinant of a submatrix of the Jacobi matrix is not 0), f is
then a submersion in a whole neighborhood of x. The mapping f is said to be a
submersion, if it is a submersion at each x € M.

2.2. Lemma. If f: M — N is a submersion at x € M, then for any chart (V,v)
centered at f(x) on N there is chart (U,u) centered at x on M such that vo fou™"
looks as follows:

Proof. Use the inverse function theorem once: Apply the argument from the be-
ginning of (1.13) to v o f ou ' for some chart (Uy,u;) centered at z. [

2.3. Corollary. Any submersion f : M — N is open: for each open U C M the
set f(U) is open in N. O

2.4. Definition. A triple (M,p, N), where p: M — N is a surjective submersion,
is called a fibered manifold. M is called the total space, N is called the base.

A fibered manifold admits local sections: For each x € M there is an open neigh-
borhood U of p(z) in N and a smooth mapping s : U — M with po s = Idy and
s(p(z)) = .

The existence of local sections in turn implies the following universal property:

M

(N

f

N——P

If (M,p, N) is a fibered manifold and f : N — P is a mapping into some further
manifold, such that fop: M — P is smooth, then f is smooth.

2.5. Definition. A smooth mapping f : M — N is called an immersion at x € M
if the rank of T, f : T,M — Tj) N equals dim M. Since the rank is maximal at x
and cannot fall locally, f is an immersion on a whole neighborhood of x. f is called
an immersion if it is so at every z € M.

2.6. Lemma. If f: M — N is an immersion, then for any chart (U,u) centered
at x € M there is a chart (V,v) centered at f(x) on N such that vo fou™! has the
form:

Proof. Use the inverse function theorem. [
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2.12 2. Submersions and Immersions 17

2.7. Corollary. If f : M — N is an immersion, then for any x € M there
is an open neighborhood U of x € M such that f(U) is a submanifold of N and
fIU U — f(U) is a diffeomorphism. O

2.8. Corollary. If an injective immersion © : M — N is a homeomorphism onto
its image, then i(M) is a submanifold of N.

Proof. Use (2.7). O

2.9. Definition. If i : M — N is an injective immersion, then (M, 1) is called an
immersed submanifold of N.

A submanifold is an immersed submanifold, but the converse is wrong in gen-
eral. The structure of an immersed submanifold (M,7) is in general not deter-
mined by the subset i(M) C N. All this is illustrated by the following example.
Consider the curve y(t) = (sin®¢,sint. cost) in R?. Then ((—m,x),v|(—=,7)) and
((0,27),7](0,27)) are two different immersed submanifolds, but the image of the
embedding is in both cases just the figure eight.

2.10. Let M be a submanifold of N. Then the embedding i : M — N is an
injective immersion with the following property:

(1) For any manifold Z a mapping f : Z — M is smooth if and only ifio f :
Z — N is smooth.

The example in (2.9) shows that there are injective immersions without property
(1).

We want to determine all injective immersions i : M — N with property (1). To
require that ¢ is a homeomorphism onto its image is too strong as (2.11) below
shows. To look for all smooth mappings i : M — N with property (2.10.1) (initial
mappings in categorical terms) is too difficult as remark (2.12) below shows.

2.11. Example. We consider the 2-dimensional torus T? = R?/Z?. Then the
quotient mapping 7 : R? — T2 is a covering map, so locally a diffeomorphism. Let
us also consider the mapping f : R — R?, f(t) = (¢, a.t), where « is irrational.
Then mo f : R — T? is an injective immersion with dense image, and it is obviously
not a homeomorphism onto its image. But 7o f has property (2.10.1), which follows
from the fact that 7 is a covering map.

2.12. Remark. If f : R — R is a function such that f? and f? are smooth for
some p, ¢ which are relatively prime in N, then f itself turns out to be smooth, see
[Joris, 1982]. So the mapping i : ¢ — (i:), R — R2, has property (2.10.1), but i is
not an immersion at 0.

In [Joris, Preissmann, 1987] all germs of mappings at 0 with property (2.10.1)
are characterized as follows: Let g : (R,0) — (R™,0) be a germ of a C'*°-curve,
g(t) = (g1(t), ..., gn(t)). Without loss we may suppose that g is not infinitely flat
at 0, so that ¢g1(t) = t" for r € N after a suitable change of coordinates. Then g
has property (2.10.1) near 0 if and only if the Taylor series of g is not contained in
any R™[[t*]] for s > 2.
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18 Chapter I. Manifolds and Vector Fields 2.14

2.13. Definition. For an arbitrary subset A of a manifold N and xzy € A let
Cy,(A) denote the set of all z € A which can be joined to xy by a smooth curve in
M lying in A.

A subset M in a manifold N is called initial submanifold of dimension m, if the
following property is true:

(1) For each x € M there exists a chart (U,u) centered at x on N such that
w(Cx(UNM)) =u(lU)N(R™ x0).

The following three lemmas explain the name initial submanifold.

2.14. Lemma. Let f : M — N be an injective immersion between manifolds with
the universal property (2.10.1). Then f(M) is an initial submanifold of N.

Proof. Let x € M. By (2.6) we may choose a chart (V,v) centered at f(z) on N
and another chart (W, w) centered at  on M such that (vo fow™1)(y!,... ,y™) =
(yt,...,y™,0,...,0). Let r > 0 be so small that {y € R™ : |y| < 2r} C w(W) and
{zeR":|z| <2r} Cco(V). Put

U:=v '({z€R":|z| <7r}) CN,
Wy:=w({yeR™: |yl <r}) C M.

We claim that (U, u = v|U) satisfies the condition of 2.14.1.

w M uwU)NR™ x0) =u ' {(y',...,y™,0...,0): |yl <r}) =
=fow to(uo fow H'{(y,...,y™0...,0): |yl <7r}) =
=fow ({y e R™ : [y| <r}) = f(W1) C Cy()(UN f(M)),

since f(W1) CUN f(M) and f(W;) is C*-contractible.

Now let conversely z € C,(U N f(M)). Then by definition there is a smooth
curve ¢ : [0,1] — N with ¢(0) = f(z), ¢(1) = 2z, and ¢([0,1]) C U N f(M). By
property 2.9.1 the unique curve ¢ : [0,1] — M with f o ¢ = ¢, is smooth.

We claim that ¢([0,1]) € W;i. If not then there is some ¢t € [0,1] with ¢(t) €
w({y € R™ :r <|y| < 2r}) since ¢ is smooth and thus continuous. But then we
have

(vo f)E(t) € (vo fow ™ )({y eR™ v <y <2r}) =
={(y,0) eR" x0:r<|y|<2r} C{zeR":r < |z| <2r}.

This means (vo fo¢)(t) = (voc)(t) € {z € R" : r < |z] < 2r}, so c(t) ¢ U, a
contradiction.

So ¢([0,1]) € Wy, thus ¢(1) = f~1(2) € Wi and z € f(W;). Consequently we have
Ci)(UN f(M)) = f(W1) and finally f(W;) =u~ ! (u(U) N (R™ x 0)) by the first
part of the proof. [
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2.16 2. Submersions and Immersions 19

2.15. Lemma. Let M be an initial submanifold of a manifold N. Then there is
a unique C'°°-manifold structure on M such that the injection ¢ : M — N is an
injective immersion with property (2.10.1):
(1) For any manifold Z a mapping f : Z — M is smooth if and only if io f :
Z — N is smooth.

The connected components of M are separable (but there may be uncountably many
of them).

Proof. We use the sets C, (U, N M) as charts for M, where x € M and (U, u,) is
a chart for NV centered at x with the property required in (2.13.1). Then the chart
changings are smooth since they are just restrictions of the chart changings on N.
But the sets C,. (U, N M) are not open in the induced topology on M in general. So
the identification topology with respect to the charts (C, (U, N M), uy)zecnr yields a
topology on M which is finer than the induced topology, so it is Hausdorff. Clearly
i : M — N is then an injective immersion. Uniqueness of the smooth structure
follows from the universal property (1) which we prove now: For z € Z we choose a
chart (U,u) on N, centered at f(z), such that u(Cy\(UNM)) = u(U)N(R™ x0).
Then f~1(U) is open in Z and contains a chart (V,v) centered at z on Z with v(V)
a ball. Then f(V) is C*°-contractible in U N M, so f(V) C Cyy(U N M), and
(u|Cry(UNM))o fov™t =uo fov™! is smooth.

Finally note that N admits a Riemannian metric (see (13.1)) which can be induced
on M, so each connected component of M is separable, by (1.1.4). O

2.16. Transversal mappings. Let M;, M>, and N be manifolds and let f; :
M; — N be smooth mappings for ¢ = 1,2. We say that f; and f5 are transversal
at y € N, if

im7T,, fi +im7T,, fo =T,N whenever fi(x1)= fa(z2)=1y.

Note that they are transversal at any y which is not in f;(M;) or not in fo(Ma).
The mappings f; and fo are simply said to be transversal, if they are transversal
at every y € N.

If P is an initial submanifold of N with embedding i : P — N, then f: M — N is
said to be transversal to P, if ¢ and f are transversal.

Lemma. In this case f~1(P) is an initial submanifold of M with the same codi-
mension in M as P has in N, or the empty set. If P is a submanifold, then also
f~Y(P) is a submanifold.

Proof. Letz € f~1(P) and let (U, u) be an initial submanifold chart for P centered
at f(z) on N, ie. u(Cy)(UNP))=ulU)N(RP x0). Then the mapping

M2 f(U) LU L u(U) CRE < RMP 2 R

is a submersion at x since f is transversal to P. So by lemma (2.2) there is a chart
(V,v) on M centered at = such that we have

(przouofovfl)(yl,... LYty = (yl,... Lyt TP,
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20 Chapter I. Manifolds and Vector Fields C.1
But then z € C.(f~1(P) N V) if and only if v(z) € v(V) N (0 x R™~"+P) so
W(Co(f~Y(P) N V) = (V) N (0 x R™7Hp). [

2.17. Corollary. If f1 : My — N and fo : My — N are smooth and transversal,
then the topological pullback

M, X My = My xn My = {(1‘1,1‘2) € My x M, Ifl(l'l) :fg(fli‘g)}
(f17N7.f2)

18 a submanifold of My x My, and it has the following universal property:
For any smooth mappings g1 : P — My and go : P — My with fiog1 =
f2 092 there is a unique smooth mapping (g1,92) : P — My X ny Ma with
prio(g1,92) = g1 and pra o (g1,92) = ga-

p g2
wgg)
T
g1 M1 XN Mg L MQ
[pﬁ f2
M N N.

This is also called the pullback property in the category M f of smooth manifolds
and smooth mappings. So one may say, that transversal pullbacks exist in the
category M f. But there also exist pullbacks which are not transversal.

Proof. M) xx My = (f1 x fo)"Y(A), where fi x fo : My x My — N x N and
where A is the diagonal of N x N, and f; X f3 is transversal to A if and only if f;
and fo are transversal. [

C. Covering spaces and fundamental groups

In this section we present the rudiments of covering space theory and fundamental
groups which is most relevant for the following. By a space we shall mean a Haus-
dorff topological space in this section, and all mappings will be continuous. The
reader may well visualize only manifolds and smooth mapping, if he wishes. We
will comment on the changes for for smooth mappings.

C.1. Covering spaces. Consider a mapping p : X — Y between path-connected
spaces. We say that X is a covering space of Y, that p is a covering mapping, or
simply a covering, if the following holds:
p is surjective and for each y € Y there exist an open neighborhood U of y
in Y such that p~!(U) is a disjoint union p~*(U) = ||, U; of open sets U;
in X such that p|U; : U; — U is a homeomorphism for each i.
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C4 2. Submersions and Immersions 21

Note that then p~!(U) is homeomorphic to U x S for a discrete space S such that
p corresponds to pry : U x S — U. Such a neighborhood U is called a trivializing
set for the covering and each U; is called a branch over U.

Note that each open subset of U is again trivializing.

C.2. Lemma. Let p : X — M be a covering where M 1is a smooth manifold.
Then there exists a unique smooth manifold structure on X such that p becomes a
surjective local diffeomorphism.

Proof. We choose a smooth atlas (Uy, tq)aca for the manifold M where the charts
U, are so small that they are all trivializing for the convering p. Then by (C.1)
we have disjoint unions p~!(U,) = ||, U, where each p : U, — U, is a homeomor-
phism. Consider the charts (U’, u!, = u, o p|U?) of X. The chart changes look as
follows: If UL N U% # 0 then U, NUps # 0 and

Ue © (p|U¢i) © (p|Ué)_l o ugl = Ua © UEI cug(Ua NUB) — uq(Ua NUR).

These are smooth. We shall see later that X is then also separable. [J

C.3 Homotopy. Let X,Y be spaces and f,g: X — Y.

A homotopy between and f and ¢ is a mapping h : [0,1] x X — Y with A(0, )=
f and h(1, ) = g. Then f and g are called are called homotopic, in symbols
f ~ g. This is an equivalence relation. If we consider smooth homotopies we may
reparameterize each homotopy in such a way that that is is constantly f or g near
the ends {0} x X or {1} x X; then we can piece it together smoothly to see that
we have again an equivalence relation.

Suppose that f|A = g|A for a subset A C X. We say that f and g are homotopic
relative A if there exists a homotopy h : [0,1] x X — Y between them with h(t,z) =
f(z) = g(z) for all x € A.

Two spaces X and Y are called homotopy equivalent if there exists mappings f :
X —Y and g:Y — X such that go f ~Idx and fog ~ Idy.

A space X is called contractible if it is homotopy equivalent to a point.

C.4. Lifting. Let p: X — Y be a covering.

_ X Let Z be a path connected space and [ : Z —
(1) L tp Y. A mapping f : Z — X is called a lift of f
S f ifpof=Ff.

4 ———7Y

A lift, if it exists, is uniquely determined by its value f(z0) at a single zg € Z:
Suppose that f and f are two lifts with f(zo) = f(20). Then the set A= {z € Z:
fz)=1Ff (z)} is nonempty, closed, and also open since p is a local homeomorphism.
Thus A = Z since Z is connected.
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22 Chapter I. Manifolds and Vector Fields C.5

f

Z x {0} M Suppose that h : [0,1] x Z — Y is a
_ s
. h.” D homotopy between f,g : Z — Y and
(2) Id leso 7 that f admaits a lift f. Then there exists
Z % [0,1] h % a unique lift h of the homotopy h.

Namely, for each z € Z there exists an open neighborhood V. of z in Z and
0 =1t§ <tf <--- < tf = 1such that h([tf,t7,,] x V) C U.; for an open
trivializing set U,; C Y. Let Ug?o be the branch over U,; with f(z) € Ug?o.
Then £[([0,#5] x V2) = (p|U2%) ™" o h|([0,#5] x V%) is a local lift. Let then U7}
be the branch over U, ; with h(t?,2) € Ug’ll and consider the continuation lift
h|([t7, 5] x Vo) = (p|U?)~ Y o h|([t3,t3] x V), and so on. These lifts coincide on the
overlaps of their domains of definition and furnish a global lift h of the homotopy.
(3) Let ¢: [0,1] — Y be a curve. Then for each xo € p~1(c(0)) there exists a unique
lift lift,, (c) : [0,1] — X with lift,, (c)(0) = x¢ and p o lift,,(c) = c¢. This is the
special case of (2) where Z is a point.

C.5. Theorem and Definition. Let X be a space with fixed base point xo € X.
Let us denote by w1 (X, xq) the set of all homotopy classes [c] relative {0, 1} of curves
c:[0,1] — X with ¢(0) = ¢(1) = xo. We define a multiplication in 7 (X, xo) by
piecing together curves. This makes m1(X,xzg) into a group which is called the
fundamental group of X centered at x.

iplication is i c(2t for 0 <t
The multiplication is given ce(t) = { (2t) S

1
2
by [c].[e] = [ce], where ~le@—-1) for 1<t<1

<
<
Proof. The multiplication is well defined in (X, zq):

crp, ¢ rel {0,1}, e~y € rel {0,1} = ce ~p, €’ el {0,1}

c e
he(s, 2t foro0<t<?i
Zo Zo h(s,t) = { o : 1 .
he he he(s, 2t —1) for 5 <t <1
d e
[c]7! = [¢71] where ¢71(t) = ¢(1 —t) for t € [0,1] since cc™! is homotopic to zg
relative {0, 1}:
C !
h(s.t) { c(2st) for 0 <2t <1
s,t) =
o0 o (21 -5 2t —-1) forl<t<1
o
[c].[z0] = [¢] where the identity in 7 (X, x¢) is given by the constant path x:
c
c(list) for0<t<i+3%
o xo h(S,t) = 1 s
i) for 5 + b) S t S 1
& Io
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C.7 2. Submersions and Immersions 23

Associativity: ([c1].[ca]).[es] = [e1].([e2].[e3]) by using the homotopy
c c c
1 2 3 C(ljl_st)7 OStS 11’8
o zo| h(s,t) =4 c(d(t—1E2)), s <y 2ds
(35— 2), <<l
C1 C2 C3

This suffices to see that 71 (X, z) is a group. O
C.6. Properties of the fundamental group.
If e is a path from zg to 77 on X then [¢] = [ece™!] is an isomorphism 7 (X, x¢) —

m1(X,x1). Thus for pathconnected X the isomorphism class of 71 (X, zy) does not
depend on xo; we write sometimes 71 (X).

A space X is called simply connected if X is pathwise connected with trivial fun-
damental group: m1(X) = {1}. A contractible space is simply connected, by the
following argument: A closed curve ¢ through zy in X is homotopic to xg, but not
necessarily relative {0,1}. But this can be remedied by composing the following

homotopies:
To Lo To
ty) a a a a Zo
01 c a
So [a71].[c].[a] = [z0] and thus [¢] = [zo] in m1 (X, x0).

Any mapping f : X — Y induces a group homomorphism f, : 7 (X, x9) —
m1(Y, f(zo)) via fu([c]) = [f o ¢]; f« depends only on the homotopy class rela-
tive {xo} of f. We consider thus the category of spaces (X, %) with base points and
base point preserving homotopy classes of mappings. Then m; is a functor from
this category into the category of groups and their homomorphisms.

C.7. Lifting II. Letp: (X,z0) — (Y,y0) be a covering where X is connected and
locally path connected.

(X, zo) Let f:(Z,20) — (Y,y0) where Z s path con-
f.- » nected. Then we have: A lift f : (Z,z0) —
el (X, xo) of f exists if and only if f.m1(Z, z9) C

(Z,20) —L— (Vi) PmXo0).

Proof. If a lift f exists then f.m1(Z,20) = p*f*m(Z, 20) € pe1 (X, o).

Conversely, for z € Z choose a path ¢ from zg to z. Then f o c is a path from
Yo to f(z). We put f(z) = lift,,(f oc)(1). Then p(f(z)) = p(lift,,(f o c)(1)) =

f(e(1)) = f(2). We claim that f(z) does not depend on the the choice of of c.
So let e be another path from zy to z. Then ce! is a closed path through zg so
[ce™!] € m1(Z, 20) and fi[ce™] = [fo(ce™")] = [(foc)(foe)™'] € p.m(X, 2o) which
means that lift,, ((foc)(foe)™!) is a closed path, or lift,, (foc)(1) = lift,, (foe)(1).

To see that f is continuous ...777 [
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24 Chapter I. Manifolds and Vector Fields 3.4

3. Vector Fields and Flows

3.1. Definition. A wvector field X on a manifold M is a smooth section of the
tangent bundle; so X : M — TM is smooth and wy; o X = Idp;. A local vector
field is a smooth section, which is defined on an open subset only. We denote the
set of all vector fields by X(M). With point wise addition and scalar multiplication
X(M) becomes a vector space.

Example. Let (U,u) be a chart on M. Then the % U - TM|U, x —
described in (1.8), are local vector fields defined on U.

X

_9_
ou’

Lemma. If X is a vector field on M and (U,u) is a chart on M and x € U, then

we have X (z) = 70 X (2)(u') 525 |o. We write X|U =370 X (u?) 2. O

3.2. The vector fields (52 ), on U, where (U, u) is a chart on M, form a holonomic
frame field. By a frame field on some open set V' C M we mean m = dim M vector

fields s; € X(U) such that s1(z),. .., sm(z) is a linear basis of T,, M for each z € V.

A frame field is said to be holonomic, if s; = a?;i for some chart (V,v). If no such

chart may be found locally, the frame field is called anholonomic.

With the help of partitions of unity and holonomic frame fields one may construct
‘many’ vector fields on M. In particular the values of a vector field can be arbitrarily
preassigned on a discrete set {x;} C M.

3.3. Lemma. The space X(M) of vector fields on M coincides canonically with
the space of all derivations of the algebra C°°(M) of smooth functions, i.e. those
R-linear operators D : C*°(M) — C>(M) with D(fg) = D(f)g + fD(g).

Proof. Clearly each vector field X € X(M) defines a derivation (again called X,

later sometimes called Lx) of the algebra C°°(M) by the prescription X (f)(x) :=
X(2)(f) = df (X (2)).

If conversely a derivation D of C°°(M) is given, for any x € M we consider D, :
C>*(M) — R, D,(f) = D(f)(x). Then D, is a derivation at z of C*°(M) in the
sense of (1.7), so D, = X, for some X, € T, M. In this way we get a section X :
M — TM. If (U,u) is a chart on M, we have D, = > 1", X(m)(ui)% « by (1.7).
Choose V openin M,V C V C U, and ¢ € C*(M,R) such that supp(¢) C U and
|V =1. Then ¢-u* € C>®°(M) and (pu)|V = u*|V. So D(pu’)(z) = X (z)(pu’) =

X(z)(u') and X|V =37 D(pu®)|V - 52:|V is smooth. [

3.4. The Lie bracket. By lemma (3.3) we can identify X(M) with the vec-
tor space of all derivations of the algebra C'°>°(M), which we will do without any
notational change in the following.

If X, Y are two vector fields on M, then the mapping f — X(Y(f)) — Y/(X(f))
is again a derivation of C'*°(M), as a simple computation shows. Thus there is a
unique vector field [X,Y] € X(M) such that [X,Y](f) = X(Y(f)) —Y(X(f)) holds
for all f € C°(M).
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3.6 3. Vector Fields and Flows 25

In a local chart (U,u) on M one immediately verifies that for X|U = Y~ X'
YU =Y Y2 we have

,Xj))

[ZXiaZinYj%} =D (XY Y50
i i

i7j

oud

since second partial derivatives commute. The R-bilinear mapping
[, |:X(M)xX(M)— X(M)

is called the Lie bracket. Note also that X(M) is a module over the algebra C'*>°(M)
by pointwise multiplication (f, X) — fX.

Theorem. The Lie bracket [ , | : X(M) x X(M) — X(M) has the following
properties:

(X, Y] = —[Y, X],

(X, Y, Z)| =[[X,Y],Z] + Y, [ X, Z]], the Jacobi identity,

fX, Y] = fIX, Y] = (Y /)X

(X, fY] = fIX, Y]+ (X[ )

The form of the Jacobi identity we have chosen says that ad(X) = [X, | is a
derivation for the Lie algebra (X(M),[ , ]). The pair (X(M),[ , ) is the
prototype of a Lie algebra. The concept of a Lie algebra is one of the most important
notions of modern mathematics.

Proof. All these properties are checked easily for the commutator [X,Y] = X o
Y — Y o X in the space of derivations of the algebra C*°(M). O

3.5. Integral curves. Let ¢c:J — M be a smooth curve in a manifold M defined
on an interval J. We will use the following notations: ¢’(t) = ¢(t) = L¢(t) := Tyc.1.
Clearly ¢ : J — TM is smooth. We call ¢ a vector field along ¢ since we have
myoc =c.

TM

T

J——a— M

A smooth curve ¢ : J — M will be called an integral curve or flow line of a vector
field X € X(M) if ¢/(t) = X(c(t)) holds for all t € J.

3.6. Lemma. Let X be a vector field on M. Then for any x € M there is an open
interval J, containing 0 and an integral curve ¢, : J, — M for X (i.e. ¢, = Xoc,)
with ¢, (0) = x. If J, is mazimal, then c, is unique.

Proof. In a chart (U,u) on M with x € U the equation ¢’(t) = X (c(t)) is a system
ordinary differential equations with initial condition ¢(0) = x. Since X is smooth
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26 Chapter I. Manifolds and Vector Fields 3.7

there is a unique local solution which even depends smoothly on the initial values,
by the theorem of Picard-Lindeldf, [Dieudonné I, 1969, 10.7.4]. So on M there
are always local integral curves. If J, = (a,b) and lim; ., c,(t) =: c,(b) exists
in M, there is a unique local solution ¢; defined in an open interval containing b
with ¢1(b) = ¢,(b). By uniqueness of the solution on the intersection of the two
intervals, ¢ prolongs ¢, to a larger interval. This may be repeated (also on the left
hand side of J,) as long as the limit exists. So if we suppose J, to be maximal, J,
either equals R or the integral curve leaves the manifold in finite (parameter-) time
in the past or future or both. [

3.7. The flow of a vector field. Let X € X(M) be a vector field. Let us write
FI* (z) = FI* (t, x) := ¢, (t), where ¢, : J, — M is the maximally defined integral
curve of X with ¢,(0) = x, constructed in lemma (3.6).

Theorem. For each vector field X on M, the mapping F1°* : D(X) - M is
smooth, where D(X) = (J,cp Jo X {2} is an open neighborhood of 0 x M in R x M.
We have

FI* (t + s,2) = FI*(t, F1* (s, 2))

in the following sense. If the right hand side exists, then the left hand side exists
and we have equality. If both t, s > 0 or both are < 0, and if the left hand side
exists, then also the right hand side exists and we have equality.

Proof. As mentioned in the proof of (3.6), F1* (¢, z) is smooth in (¢,z) for small
t, and if it is defined for (¢,z), then it is also defined for (s,y) nearby. These are
local properties which follow from the theory of ordinary differential equations.

Now let us treat the equation FI*(t + s, z) = FI* (¢, FI* (s, 2)). If the right hand
side exists, then we consider the equation

LF1X(t + s,2) = L FIX (u, 2)[uzigs = X (FIX(t + s, 2)),
FI¥ (t + 5, 2)|4—0 = FI¥ (s, 2).

But the unique solution of this is F1* (¢, F1¥ (s, z)). So the left hand side exists and
equals the right hand side.

If the left hand side exists, let us suppose that ¢,s > 0. We put

Caltl) = X X .
FI* (u — 5, F1” (s,2)) ifu > s.
Lo () 4 F1X (0, 2) = X(FIX (0, 7)) foru < s
L e (u) = _
du %le(u— S,FIX(S,:I;» — X(FIX(U—S,F]X(qu;)))

= X(cp(u)) for0<u<t+s.

Also ¢,(0) = x and on the overlap both definitions coincide by the first part of
the proof, thus we conclude that ¢, (u) = F1* (u, z) for 0 < u < ¢t + s and we have
FI* (¢, F1% (s, 2)) = co(t + s) = FI* (t + s, ).
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3.9 3. Vector Fields and Flows 27

Now we show that D(X) is open and FI¥ is smooth on D(X). We know already
that D(X) is a neighborhood of 0 x M in R x M and that FI* is smooth near
0x M.

For z € M let J. be the set of all ¢ € R such that FI* is defined and smooth
on an open neighborhood of [0,¢] x {z} (respectively on [t,0] x {z} for t < 0) in
R x M. We claim that J/ = J,, which finishes the proof. It suffices to show that
J!. is not empty, open and closed in J,. It is open by construction, and not empty,
since 0 € J.. If J! is not closed in J,, let to € J, N (J. \ J.) and suppose that
to > 0, say. By the local existence and smoothness F1¥ exists and is smooth near
[—e, ] x {y := F1*(to, )} in R x M for some £ > 0, and by construction FI* exists
and is smooth near [0, tg—&] x {x}. Since F1* (—¢,y) = FI*(to—¢, 2) we conclude for
t near [0, to—e], ' near z, and ' near [—¢, ¢], that FI* (t+t', ') = FI* (¢/, FI% (¢, 2'))
exists and is smooth. So ty € J., a contradiction. [

3.8. Let X € X(M) be a vector field. Its flow F1* is called global or complete, if
its domain of definition D(X) equals R x M. Then the vector field X itself will be
called a “complete vector field”. In this case Flf( is also sometimes called expt.X;
it is a diffeomorphism of M.

The support supp(X) of a vector field X is the closure of the set {x € M : X(zx) #

0}.
Lemma. A wvector field with compact support on M is complete.

Proof. Let K = supp(X) be compact. Then the compact set 0 x K has positive
distance to the disjoint closed set (Rx M)\D(X) (if it is not empty), so [—&,e] x K C
D(X) for some ¢ > 0. If z ¢ K then X(z) = 0, so FI*(t,z) = =z for all ¢
and R x {z} € D(X). So we have [—¢,e] x M C D(X). Since FI*(t +¢,2) =
F1* (¢, F1¥ (¢, x)) exists for [t| < € by theorem (3.7), we have [—2¢, 2¢] x M C D(X)
and by repeating this argument we get R x M = D(X). O

So on a compact manifold M each vector field is complete. If M is not compact and
of dimension > 2, then in general the set of complete vector fields on M is neither
a vector space nor is it closed under the Lie bracket, as the following example on
R? shows: X = ya% and Y = %a% are complete, but neither X + Y nor [X,Y]
is complete. In general one may embed R? as a closed submanifold into M and

extend the vector fields X and Y.

3.9. f-related vector fields. If f : M — M is a diffeomorphism, then for any
vector field X € X(M) the mapping Tf ! o X o f is also a vector field, which we
will denote by f*X. Analogously we put f,X :==Tfo X o f~1 = (f~1)*X.

But if f : M — N is a smooth mapping and Y € X(N) is a vector field there may or
may not exist a vector field X € X(M) such that the following diagram commutes:

v LN

(1) X[ [y

f

M —— N.
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28 Chapter I. Manifolds and Vector Fields 3.12

Definition. Let f: M — N be a smooth mapping. Two vector fields X € X(M)
and Y € X(N) are called f-related, if Tf o X =Y o f holds, i.e. if diagram (1)
commutes.

Example. If X € X(M) and Y € X(N) and X xY € X(M x N) is given (X x
Y)(z,y) = (X(x),Y(y)), then we have:

(2) X xY and X are pri-related.

(3) X xY and Y are pro-related.

(4) X and X xY are ins(y)-related if and only if Y (y) = 0, where the mapping
ins(y) : M — M x N is given by ins(y)(z) = (z,y).

3.10. Lemma. Consider vector fields X; € X(M) and Y; € X(N) fori = 1,2,
and a smooth mapping f : M — N. If X; and Y; are f-related for i = 1,2, then
also M X1+ A2 Xo and \1Y1 + A\oYs are f-related, and also [ X1, Xs] and [Y1,Ys] are
f-related.

Proof. The first assertion is immediate. To prove the second we choose h €
C®°(N). Then by assumption we have T'f o X; =Y, o f, thus:

(Xi(ho ))(x) = Xi(z)(ho f) = (T f Xi(x))(h) =
= (T'f o Xi)()(h) = (Yi o f)(2)(h) = Yi(f(2))(h) = (Yi(h))(f(2)),

so X;(ho f) = (Yi(h)) o f, and we may continue:

= X1(Yz2(h) o f) = Xo(Yi(h) o f) =
=Y1(Ya(h)) o f = Ya(Y1(h)) o f = [V1,Y2](h) o f.

But this means T'f o [X1, Xo| = [Y1,Y2]o f. O

3.11. Corollary. If f : M — N is a local diffeomorphism (so (T, f)~' makes
sense for each x € M), then for Y € X(N) a vector field f*Y € X(M) is defined
by (f*Y)(z) = (T f)"L.Y(f(x)). The linear mapping f* : X(N) — X(M) is then
a Lie algebra homomorphism, i.e. f*[Y1,Ys] = [f*Y1, f*Ya].

3.12. The Lie derivative of functions. For a vector field X € X(M) and
f € C®(M) we define Lx f € C(M) by

Lxf(z) =L f(F1*(t,2)) or
Lxf = FoF) f=Llo(foFLY).

Since F1¥ (t,x) is defined for small ¢, for any x € M, the expressions above make
sense.

Lemma. %(FltX)*f = (FIX)* X (f) = X((FLX)*f), in particular for t = 0 we have
Lxf=X(f)=df(X).
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3.13 3. Vector Fields and Flows 29
Proof. We have

#(FI2) () = df (& FI™ (t,2)) = df (X (FY (t,2))) = (FI; )" (X f) ().
From this we get Lx f = X(f) = df(X) and then in turn

LFL)* f = L|o(FIY oFI)* f = Lo (FI)*(FIN)* f = X ((FLN)*f). O

3.13. The Lie derivative for vector fields. For X,Y € X(M) we define LxY €
X(M) by
LxY = L1o(FI)Y = L]o(T(F1¥,) oY o FL}"),

and call it the Lie derivative of Y along X.
Lemma. We have

LxY =[X,Y],
L(FI)*Y = (FIY)* LxY = (FL)*[X,Y] = Lx (FI)'Y = [X, (FI)"Y].

Proof. Let f € C°(M) and consider the mapping a(t, s) := Y (FI* (¢, 2))(foF1X),
which is locally defined near 0. It satisfies

a(t,0) = Y (FI¥ (t,2))(f),

a(0,8) =Y (z)(f o FIY),
5:0(0,0) = G|, Y(FI (t,2)(f) = §l, Y ))FF (t,2)) = X(2)(Y]),
Fa(0,0) = - |oY (2)(f o FIY) = Y (2) & o(f o FIYY) = Y (2)(X f).

But on the other hand we have

guloa(u, —u) = LY (FI (u,2))(f o FIX, )
= 20 (TR, 0¥ o FIY) (/) = (LxY)a(f),

x

so the first assertion follows. For the second claim we compute as follows:

2(FIX)Y = 2], (T(Fl)_ft) o T(FIX) oY 0 FIX o Flf()

v

FI%,) 0 21 (T(FP_( )oY o Flf) o FIX
F1¥,) o [X, Y] o FI* = (FIX)*[X,Y].

Z(FL)Y = Z1o(FL)*(FLY)'Y = Lx(FIY)*Y. O
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3.14. Lemma. Let X € X(M) and Y € X(N) be f-related vector fields for a
smooth mapping f : M — N. Then we have f o FI;X = Flf of, whenever both sides
are defined. In particular, if f is a diffeomorphism, we have Fl{ Y = ft OFIE/ of.

Proof. We have 4(f o FI)) = Tfo ZFLY = Tfo X oFI¥ = Yo foFI¥
and f(F1*(0,2)) = f(z). Sot — f(FI*(t,z)) is an integral curve of the vector
field Y on N with initial value f(z), so we have f(F1*(t,z)) = F1¥ (¢, f(x)) or
foFL* =F1) of. O

3.15. Corollary. Let X,Y € X(M). Then the following assertions are equivalent
(1) LxY =[X,Y]=0.
(2) (FLX)*Y =Y, wherever defined.
(3) FLX oF1¥ = F1¥ o FL,X, wherever defined.

Proof. (1) < (2) is immediate from lemma (3.13). To see (2) < (3) we note that
FIX 0 F1Y = FIY o FIX if and only if FIY = FI%, o FIY o FIX = FIF'Y)™Y by lemma
(3.14); and this in turn is equivalent to ¥ = (FIX)*Y. O

3.16. Theorem. Let M be a manifold, let ¢* : R x M D Uy,i — M be smooth
mappings for i = 1,...,k where each Uy is an open neighborhood of {0} x M
in R x M, such that each ¢! is a diffeomorphism on its domain, @b = Idys, and

2|, 0t =X; € X(M). We put [¢%, 07], = [p}, 1] 1= (¢]) Lo (¢}) T o] opi. Then
for each formal bracket expression P of length k we have
4
0:%|0P(¢%,...,¢f) for1 </{<k,
k
P(X1,..., Xp) = g wloP ey 0r) € X(M)

in the sense explained in step 2 of the proof. In particular we have for vector fields
X, Y e X(M)

= 2|, (F1Y, oF1%, o FI} o FI}Y),

[X,Y] = L2 |o(F1Y, o FI¥, o FI 0 FI.Y).

Proof. Step 1. Let ¢ : R — M be a smooth curve. If ¢(0) = z € M, ¢/(0) =
0,...,c*=1(0) = 0, then ¢*)(0) is a well defined tangent vector in T, M which is
given by the derivation f — (f o c)*)(0) at z.

For we have

since all other summands vanish: (fo¢)@)(0) =0 for 1 < j < k.
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Step 2. Let ¢ : Rx M D> U, — M be a smooth mapping where U, is an open
neighborhood of {0} x M in R x M, such that each ¢; is a diffeomorphism on its
domain and ¢g = Idy;. We say that ¢; is a curve of local diffeomorphisms though
Idy;.

From step 1 we see that if %bgpt =0foralll<j <k, then X := %%bgpt
is a well defined vector field on M. We say that X is the first non-vanishing
derivative at 0 of the curve ; of local diffeomorphisms. We may paraphrase this

as (OF o) f =K\ Lx f.

Claim 3. Let ¢, ¥ be curves of local diffeomorphisms through Idj; and let
f € C>®(M). Then we have

k
OFlo(e o)™ f = Oflo(¥7 o 0})f =Y (5) (@ lowi)(0F 7 lowi)
7=0
Also the multinomial version of this formula holds:

Aloleto. 00D = 3 o (@ lolel)"). . (@ oo}

!
iitetge=k 1 Je

We only show the binomial version. For a function h(t, s) of two variables we have

k
= (5)0]0En(t, 5] 5=,

3=0

since for h(t,s) = f(t)g(s) this is just a consequence of the Leibnitz rule, and linear
combinations of such decomposable tensors are dense in the space of all functions
of two variables in the compact C°°-topology, so that by continuity the formula
holds for all functions. In the following form it implies the claim:

=

OFlof (p(t,0(t,2))) =Y (5) 0] 05 F((t, 9 (s, 2)))|1=s=0-

Jj=0

Claim 4. Let ¢, be a curve of local diffeomorphisms through Idjy; with first non-
vanishing derivative k!X = 9F|op;. Then the inverse curve of local diffeomorphisms
@; ! has first non-vanishing derivative —k!X = 0F|op; !

For we have got_l ows = Id, so by claim 3 we get for 1 < j <k

J
0= lolpr o) f = ()Oilow)) (@ (i ))f =
1=0
= lo¢i (o )" f + 0 lo(er ) f,
ie. & oprf =—00(p; H)*f as required.
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Claim 5. Let ¢; be a curve of local diffeomorphisms through Idj; with first non-
vanishing derivative m!X = 0;"|p¢¢, and let 1, be a curve of local diffeomorphisms
through Idy; with first non-vanishing derivative n!Y = 907|ot:.

Then the curve of local diffeomorphisms [, ;] = ;' o ;! 01y o ¢, has first
non-vanishing derivative

(m+n)X, Y] = aZnJrn’O[SOt,wt]-

From this claim the theorem follows.

By the multinomial version of claim 3 we have

ANT =0 oWy opr oo pn)*f
N
= 2 AFAT] g Oilowd) (0 ow) (97 o (01 ) ) (O o)) -

i+j+k+l=N

Let us suppose that 1 < n < m, the case m < n is similar. If NV < n all summands
are 0. If N = n we have by claim 4

AN = (07 109}) f + (07 lowi)f + OFloler 1)) + (07 lo(wy 1)) f = 0.

If n < N < m we have, using again claim 4:

N .
Axf= D =@l @owi ")) + 3% (0 lowi)f + (0 lolei))F)

jHe=N """

= O oy o)) f +0=0.

Now we come to the difficult case m,n < N < m + n.

ANT = oWt oy o)  f 4+ (D) (0ol ) OF T oWt oot o)) f
(1) + (07 o}

by claim 3, since all other terms vanish, see (3) below. By claim 3 again we get:

N!

O o o o) f = Y I —— (0 o7 ) (OF o (07 ")) (O o (v 1)) f
jthrt=N"7
(2) = > (@ o)) @l ) f+ () (O™ o) (O ol 1)) f

JH=N
+ () @7 o(er O™ oW ) + 0N ol 1) f
=0+ ()@ "o ymLx |+ () mL_x (0 ™ o(vy 1)) f
+ 0 ol )" f
=60 o (m+n)(LxLy — Ly Lx)f+ 0 |o(er ) f
—5n]\1f+n(m+n)!£[X,Y]f+8t lo(ey )* f
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From the second expression in (2) one can also read off that

(3) ON ™o (W oyt o) f =N T oler )" S

If we put (2) and (3) into (1) we get, using claims 3 and 4 again, the final result
which proves claim 3 and the theorem:

Anf =8N (m+n)Lixy1f + 0N oler ) f
+ (M0 0e}) (3 ™oy ) f + (O |owi) f
= 0N m )Ly f + 0N o(pr tow)*f

3.17. Theorem. Let Xq,...,X,, be vector fields on M defined in a neighborhood
of a point x € M such that X1(z),..., Xn(x) are a basis for T, M and [X;, X;] =0
for all 1, 7.

Then there is a chart (U,u) of M centered at x such that X;|U = %.
Proof. For small t = (t1,... ,t™) € R™ we put
f oot = (Flﬁl o---0 Flgfnm)(x)

By (3.15) we may interchange the order of the flows arbitrarily. Therefore

D f(tt .t = & (FLY oFLY o- -+ )(2) = Xi((F1f o+ )(2)).
So Ty f is invertible, f is a local diffeomorphism, and its inverse gives a chart with
the desired properties. [

3.18. The theorem of Frobenius. The next three subsections will be devoted to
the theorem of Frobenius for distributions of constant rank. We will give a powerfull
generalization for distributions of nonconstant rank below ((3.21) — (3.28)).

Let M be a manifold. By a wvector subbundle E of T'M of fiber dimension k we
mean a subset ¥ C T'M such that each E, := FENT,M is a linear subspace of
dimension k, and such that for each zim M there are k vector fields defined on an
open neighborhood of M with values in E and spanning F, called a local frame for
E. Such an F is also called a smooth distribution of constant rank k. See section

(6) for a thorough discussion of the notion of vector bundles. The space of all vector
fields with values in E will be called I'(E).

The vector subbundle E of T'M is called integrable or involutive, if for all X,Y €
['(E) we have [X,Y] € I'(E).
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Local version of Frobenius’ theorem. Let E C T M be an integrable vector
subbundle of fiber dimension k of T'M.

Then for each x € M there exists a chart (U,u) of M centered at x with uw(U) =
V x W C RF x R, such that T(u=2(V x {y})) = E|(u=(V x {y})) for each
yeW.

Proof. Let z € M. We choose a chart (U,u) of M centered at x such that there
exist k vector ﬁelds X1,..., X € I'(F) which form a frame of E|U. Then we have
X; =Yt fl g% for fﬂ € C°(U). Then f = (f/) is a (k x m)-matrix valued
smooth functlon on U which has rank k£ on U. So some (k x k)-submatrix, say
the top one, is invertible at x and thus we may take U so small that this top
(k x k)-submatrix is invertible everywhere on U. Let g = (g7) be the inverse of this
submatrix, so that f.g = (%) We put

0 0
(1) Y, —ZgiX ZZ% = Y W

j=11=1 p>k+1

We claim that [Y;,Y;] = 0 for all 1 < 4,5 < k. Since E is integrable we have
Y:,Y;] = Zf , ¢;Y;. But from ( ) we conclude (using the coordinate formula in
(3.4)) that [Y;,Y;] =3 5, 0P aup Again by (1) this implies that céj = 0 for all
[, and the claim follows.

Now we consider an (m—k)-dimensional linear subspace W7 in R which is transver-
sal to the k vectors T,u.Y;(z) € ToR™ spanning R¥, and we define f : V x W — U
by

F(tL, . 5 y) = (Flff oFI? o...oFlZf) (u=L(y)),

where t = (t!,...,t*) € V, a small neighborhood of 0 in R¥, and where y € W,
a small neighborhood of 0 in W;. By (3.15) we may interchange the order of the
flows in the definition of f arbitrarily. Thus

0 0

Sty = = (FLToFRE o ) (u™!(3) = YilF(t9):
?

d 1
a—ykf((),y) = a—yk(u* ) (),

and so T f is invertible and the inverse of f on a suitable neighborhood of x gives
us the required chart. [

3.19. Remark. Any charts (U,u : U — V x W C RF x R™7%) as constructed
in theorem (3.18) with V and W open balls is called a distinguished chart for
E. The submanifolds u=!(V x {y}) are called plaques. Two plaques of different
distinguished charts intersect in open subsets in both plaques or not at all: this
follows immediately by flowing a point in the intersection into both plaques with the
same construction as in in the proof of (3.18). Thus an atlas of distinguished charts
on M has chart change mappings which respect the submersion R x R™~% — Rm—k
(the plaque structure on M). Such an atlas (or the equivalence class of such atlases)
is called the foliation corresponding to the integrable vector subbundle E C T'M.
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3.21 3. Vector Fields and Flows 35

3.20. Global Version of Frobenius’ theorem. Let E C T'M be an integrable
vector subbundle of TM. Then, using the restrictions of distinguished charts to
plaques as charts we get a new structure of a smooth manifold on M, which we
denote by Mg. If E # TM the topology of Mg is finer than that of M, Mg has
uncountably many connected components called the leaves of the foliation, and the
identity induces a bijective immersion Mg — M. Each leaf L is a second countable
wmiatial submanifold of M, and it is a mazximal integrable submanifold of M for E
i the sense that T, L = E, for each x € L.

Proof. Let (Uy,uq : Uy — Vo x Wy € RF X R™7F) be an atlas of distuished charts
corresponding to the integrable vector subbundle F C T M, as given by theorem
(3.18). Let us now use for each plaque the homeomorphisms pry ouy|(u;(V, x
{y}) : uz'(Vy x {y}) — Vo, € R™* as charts, then we describe on M a new
smooth manifold structure Mg with finer topology which however has uncountably
many connected components, and the identity on M induces a bijective immersion
Mg — M. The connected components of Mg are called the leaves of the foliation.

In order to check the rest of the assertions made in the theorem let us construct
the unique leaf L through an arbitrary point € M: choose a plaque containing
x and take the union with any plaque meeting the first one, and keep going. Now
choose y € L and a curve ¢ : [0,1] — L with ¢(0) = = and ¢(1) = y. Then there
are finitely many distinguished charts (Uy,u1), ..., (U,,uy,) and a1, ..., a, € R™F
such that z € u; (Vi x {a1}), v € u;'(Vy, x {a,}) and such that for each i

(1) ui ' (Vi x {ai}) Nuih (Viga x {ai}) # 0.

Given u;, u;+1 and a; there are only countably many points a; 1 such that (1) holds:
if not then we get a cover of the the separable submanifold u; ' (V; x {a;}) N U1
by uncountably many pairwise disjoint open sets of the form given in (1), which
contradicts separability.

Finally, since (each component of) M is a Lindel6f space, any distinguished atlas
contains a countable subatlas. So each leaf is the union of at most countably many
plaques. The rest is clear. [

3.21. Singular distributions. Let M be a manifold. Suppose that for each x €
M we are given a sub vector space E, of T, M. The disjoint union £ = | | _,, E
is called a (singular) distribution on M. We do not suppose, that the dimension of
FE. is locally constant in z.

Let Xj,.(M) denote the set of all locally defined smooth vector fields on M, i.e.
Xioe(M) = JX(U), where U runs through all open sets in M. Furthermore let X g
denote the set of all local vector fields X € X;,.(M) with X (x) € E, whenever de-
fined. We say that a subset V C X spans F, if for each x € M the vector space E,
is the linear hull of the set { X (z) : X € V}. We say that F is a smooth distribution
if Xp spans E. Note that every subset W C X;,.(M) spans a distribution denoted
by E(W), which is obviously smooth (the linear span of the empty set is the vector
space 0). From now on we will consider only smooth distributions.

Draft from September 15, 2004 Peter W. Michor,



36 Chapter I. Manifolds and Vector Fields 3.22

An integral manifold of a smooth distribution E is a connected immersed subman-
ifold (INV,4) (see (2.9)) such that T,i(T,N) = Ej) for all z € N. We will see in
theorem (3.25) below that any integral manifold is in fact an initial submanifold of
M (see (2.13)), so that we need not specify the injective immersion 7. An integral
manifold of E is called mazimal, if it is not contained in any strictly larger integral
manifold of E.

3.22. Lemma. Let E be a smooth distribution on M. Then we have:

(1) If(N,i) is an integral manifold of E and X € Xg, then i* X makes sense and
is an element of Xioc(N), which is i|i~1(Ux)-related to X, where Ux C M
is the open domain of X.

(2) If (N;,i;) are integral manifolds of E for j = 1,2, then iy ' (i1(N1)Niz(No))
and iy (i1 (N1) Nia(Ny)) are open subsets in Ny and Ny, respectively; fur-
thermore iy oy is a diffeomorphism between them.

(3) Ifz € M is contained in some integral submanifold of E, then it is contained
m a unique maximal one.

Proof. (1) Let Ux be the open domain of X € Xp. If i(x) € Ux for x € N, we
have X (i(z)) € Ejz) = Toi(TyN), so i* X (x) := ((Tpi)~' o X oi)(z) makes sense.
It is clearly defined on an open subset of N and is smooth in x.
(2) Let X € Xp. Then i} X € Xjoc(IN;) and is ij-related to X. So by lemma (3.14)
for j = 1,2 we have

i; o FIY ™ = FIX o4,
Now choose z; € N; such that i1 (1) = i2(x2) = 9 € M and choose vector fields
X1,...,X, € Xg such that (X1(xo),...,Xn(z0)) is a basis of E,,. Then

it X 5 Xn
fit oY) == (FLi "o o FLA ") (y)

is a smooth mapping defined near zero R" — N;. Since obviously %\0 fi =
i; Xk (z;) for j = 1,2, we see that f; is a diffeomorphism near 0. Finally we have

(22_1 Oil Ofl)(tl,... ,tn>

(i3 0y o FI™ 0.t o FIA ™) ()
(i3 o FIY o- - o FIN" o) (1)
— (F12% 0. o FIZ™" 0iy Lo iy) (21)

= foth, ..., t").

S0 iy L 541 is a diffeomorphism, as required.

(3) Let N be the union of all integral manifolds containing x. Choose the union of
all the atlases of these integral manifolds as atlas for /N, which is a smooth atlas
for N by 2. Note that a connected immersed submanifold of a separable manifold
is automatically separable (since it carries a Riemannian metric). [0
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3.23. Integrable singular distributions and singular foliations. A smooth
(singular) distribution F on a manifold M is called integrable, if each point of M is
contained in some integral manifold of E. By (3.22.3) each point is then contained
in a unique maximal integral manifold, so the maximal integral manifolds form a
partition of M. This partition is called the (singular) foliation of M induced by the
integrable (singular) distribution E, and each maximal integral manifold is called
a leaf of this foliation. If X € Xp then by (3.22.1) the integral curve t — F1¥ (¢, z)
of X through x € M stays in the leaf through x.

Let us now consider an arbitrary subset V C X;,.(M). We say that V is stable if
for all X,Y € V and for all ¢ for which it is defined the local vector field (F1,¥)*Y
is again an element of V.

If W C Xjpe(M) is an arbitrary subset, we call S(W) the set of all local vector
fields of the form (Flffl 0--:0 Flfi’“)*Y for X;,Y € W. By lemma (3.14) the flow
of this vector field is

FI(FIX 0o+ o FIXK)*Y,t) = FIX 0.+ 0 FIX} oF1) oFI} ' 0. 0 FI%,

so S(W) is the minimal stable set of local vector fields which contains W.

Now let F' be an arbitrary distribution. A local vector field X € X;,.(M) is called
an infinitesimal automorphism of F, if Ty(FLX)(F,) C Fyyx (t.z) Whenever defined.
We denote by aut(F’) the set of all infinitesimal automorphisms of F'. By arguments
given just above, aut(F) is stable.

3.24. Lemma. Let E be a smooth distribution on a manifold M. Then the fol-
lowing conditions are equivalent:

(1) E is integrable.

(2) Xg is stable.

(3) There exists a subset W C Xjoc(M) such that SOV) spans E.
(4) aut(E) N Xg spans E.

Proof. (1) = (2). Let X € Xg and let L be the leaf through x € M, with
i : L — M the inclusion. Then Fl)_(t oL =10 FIZ_*I;X by lemma (3.14), so we have
T, (F1*)(E,) = T(F1X,). Tyi. T, L = T(F1Y, 0i).T, L
= T4 T,(F1"X). T, L
- Ti‘TFli*X(—t,ZB)L — EFlX(—t,m)-
This implies that (F,X)*Y € Xp for any Y € Xp.
(2) = (4). In fact (2) says that Xp C aut(F).

(4) = (3). We can choose W = aut(E) N Xg: for X,Y € W we have (FL)*Y e
Xg;so W C S(W) C Xg and E is spanned by W.

(3) = (1). We have to show that each point x € M is contained in some integral
submanifold for the distribution E. Since S(W) spans E and is stable we have

(5) T(FI).Ey = Epx (1 )
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for each X € S(W). Let dim E, = n. There are Xq,...,X,, € S(W) such that
X1(z),...,Xn(x) is a basis of E,, since E is smooth. As in the proof of (3.22.2)
we consider the mapping

flt, . .o t") = (Flﬁ1 o--- o FIXm) (),

defined and smooth near 0 in R™. Since the rank of f at 0 is n, the image under f
of a small open neighborhood of 0 is a submanifold N of M. We claim that N is
an integral manifold of E. The tangent space Ty, )N is linearly generated by

L2 (FIX 0.+ o FIX")(z) = T(FIX 0 0 FILA ) X3 (FLXF o - - 0 FIN ) ()
= (P37 (P2 X0) (F(E o t™).
Since S(W) is stable, these vectors lie in E«;). From the form of f and from (5)

we see that dim Fy;) = dim E,, so these vectors even span FEjy;) and we have
TyyN = Ey ) as required.  [J

3.25. Theorem (local structure of singular foliations). Let E be an inte-
grable (singular) distribution of a manifold M. Then for each x € M there exists
a chart (U,u) with u(U) = {y € R™ : |y'| < e for all i} for some ¢ > 0, and a
countable subset A C R™™" such that for the leaf L through r we have

w(UNL)={ycul): (", ... y") € A}

FEach leaf is an initial submanifold.

If furthermore the distribution E has locally constant rank, this property holds for
each leaf meeting U with the same n.

This chart (U, u) is called a distinguished chart for the (singular) distribution or
the (singular) foliation. A connected component of U N L is called a plaque.

Proof. Let L be the leaf through x, dimL = n. Let X1,...,X,, € Xg be local
vector fields such that X;(x),..., X, (x) is a basis of E,. We choose a chart (V,v)
centered at x on M such that the vectors

Xl(z),...,Xn(ﬁU),WaH_|w,...,%

form a basis of T, M. Then

xT

i t™) = (FL o o I ) (0710, ..., 0,8 L t™))

is a diffeomorphism from a neighborhood of 0 in R™ onto a neighborhood of z in
M. Let (U,u) be the chart given by f~!, suitably restricted. We have

y€ L+ (FLi'o---oFLi")(y) € L
for all y and all t!,...,¢" for which both expressions make sense. So we have
f(tr, ... t™ € L <= f(0,...,0,t"" ... t™) e L,
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and consequently L N U is the disjoint union of connected sets of the form {y € U :
("t (y),...,u™(y)) = constant}. Since L is a connected immersive submanifold
of M, it is second countable and only a countable set of constants can appear in
the description of w(L NU) given above. From this description it is clear that L is
an initial submanifold ((2.13)) since u(C,(LNU)) = w(U) N (R™ x 0).

The argument given above is valid for any leaf of dimension n meeting U, so also
the assertion for an integrable distribution of constant rank follows. [J

3.26. Involutive singular distributions. A subset V C X;,.(M) is called invo-
lutive if [X,Y] € V for all X, Y € V. Here [X,Y] is defined on the intersection of
the domains of X and Y.

A smooth distribution £ on M is called involutive if there exists an involutive
subset V C Xj,.(M) spanning E.

For an arbitrary subset W C Xjo.(M) let L(W) be the set consisting of all local
vector fields on M which can be written as finite expressions using Lie brackets

and starting from elements of WW. Clearly £(W) is the smallest involutive subset of
Xioc(M) which contains W.

3.27. Lemma. For each subset W C Xjoc(M) we have
EW) C E(L(W)) C E(S(W)).
In particular we have E(S(W)) = E(L(S(W))).

Proof. We will show that for X,Y € W we have [X,Y] € Xgsv)), for then by
induction we get LIW) C Xgsow)) and E(L(W)) C E(S(W)).

Let € M; since by (3.24) E(S(WV)) is integrable, we can choose the leaf L through
x, with the inclusion ¢. Then *X is i-related to X, ¢*Y is i-related to Y, thus
by (3.10) the local vector field [i*X,i*Y] € Xjoc(L) is i-related to [X,Y], and
(X, Y](x) € E(SOW))s, as required. O

3.28. Theorem. LetV C Xjoc(M) be an involutive subset. Then the distribution
E(V) spanned by V is integrable under each of the following conditions.

(1) M is real analytic and V consists of real analytic vector fields.
(2) The dimension of E(V) is constant along all flow lines of vector fields in V.

Proof. (1). For X,Y € V we have %(Flf{)*Y — (FLY)*LxY, consequently
Cg; (FIX)*Y = (FL)*(Lx)*Y, and since everything is real analytic we get for

xr € M and small ¢

F) Y (@) = 3 L) v @) = 3 o).

k>0 k>0

Since V is involutive, all (£Lx)*Y € V. Therefore we get (F1X)*Y (z) € E(V), for
small t. By the flow property of FI* the set of all ¢ satisfying (FLX)*Y (z) € E(V),
is open and closed, so it follows that (3.24.2) is satisfied and thus E(V) is integrable.
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(2). We choose Xi,...,X, € V such that X;(x),...,X,(x) is a basis of E(V),.
For any X € V, by hypothesis, E(V)gx( ;) has also dimension n and admits the
vectors X1 (F1¥(t,2)),..., X, (FI*(t,x)) as basis, for small . So there are smooth
functions f;;(t) such that

(X, X;]|(FI¥ (t, x) me S(F15 (¢, ).

4T(F1Y,). X, (FI* (7)) T(Fl)_(t).[X, X (F1X (¢, 2)) =

n

= fi; OT(FLY,).X;(FI* (¢, 2)).
j=1

So the T, M-valued functions g;(t) = T(F1%,).X;(FI* (t,z)) satisfy the linear or-
dinary differential equation £g;(t) = Z;L:l fij(t)g;(t) and have initial values in
the linear subspace E(V),, so they have values in it for all small ¢. Therefore
T(FIX)E(V)px (te) C E(V)y for small t. Using compact time intervals and the
flow property one sees that condition (3.24.2) is satisfied and E (V) is integrable. [

3.29. Examples. (1) The singular distribution spanned by W C X;,.(R?) is
involutive, but not integrable, Where W consists of all global vector fields with
support in R? \ {0} and the field ;2r; the leaf through 0 should have dimension 1

at 0 and dimension 2 elsewhere.

(2) The singular distribution on R? spanned by the vector fields X (z!,2%) = 52

and Y (z!,22) = f(2!)52 where f : R — R is a smooth function with f(z') = 0
for 1 < 0 and f(x!) > 0 for ' > 0, is involutive, but not integrable. Any leaf
should pass (0,22) tangentially to 8%1’ should have dimension 1 for 2! < 0 and
should have dimension 2 for z! > 0.

3.30. By a time dependent vector field on a manifold M we mean a smooth mapping
X :Jx M — TM with mp; o X = pry, where J is an open interval. An integral
curve of X is a smooth curve ¢ : I — M with ¢é(t) = X(¢,¢(t)) for all ¢ € I, where
I is a subinterval of J.

There is an associated vector field X € X(J x M), given by X (¢,z) = (2, X (t,2)) €
TiR < T, M.

By the evolution operator of X we mean the mapping ®* : J x Jx M — M, defined
in a maximal open neighborhood of A; x M (where A is the diagonal of J) and
satisfying the differential equation

LoX(t,5,2) = X(t, ¥ (t,5,2))
dX(s,8,1) = .

It is easily seen that (¢, ®%X(¢,s,7)) = FIX (t — s,(s,x)), so the maximally defined
evolution operator exists and is unique, and it satisfies

DX =D 00,
whenever one side makes sense (with the restrictions of (3.7)), where &% (z) =

O(t, s, x).
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Examples and Exercises

3.31. Compute the flow of the vector field &y(x,y) := —ya% + xa% in R2. Draw
the flow lines. Is this a global flow?

3.32. Compute the flow of the vector field & (z,y) := y-2 in R%. Is it a global flow?

Answer the same questions for £a(x,y) 1= x—;(%. Now compute [£1, 2] and investi-

gate its flow. This time it is not global! In fact, Fll[fl’&] (x,y) = (ﬁﬁst, 2(tr + 2)2).

Investigate the flow of & + &. It is not global either! Thus the set of complete
vector fields on R? is neither a vector space nor closed under the Lie bracket.

3.33. Driving a car. The phase space consists of all (z,9,0,p) € R? x St x
(—m/4,m/4), where

(x,y) ...position of the midpoint of the rear axle,
0 ...direction of the car axle,

¢ . ..steering angle of the front wheels.

There are two ‘control’ vector fields:

steer = a%
drive = cos(6) 2 + Sin(ﬁ)a% + tan(¢)7 2 (why?)
Compute [steer,drive] =: park (why?) and [drive, park], and interpret the results.

Is it not convenient that the two control vector fields do not span an integrable
distribution?

3.34. Describe the Lie algebra of all vectorfields on S! in terms of Fourier expan-
sion. This is nearly (up to a central extension) the Virasoro algebra of theoretical
physics.
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CHAPTER 11
Lie Groups

4. Lie Groups I

4.1. Definition. A Lie group G is a smooth manifold and a group such that the
multiplication p : G X G — G is smooth. We shall see in a moment, that then also
the inversion v : G — G turns out to be smooth.

We shall use the following notation:

u: G x G — G, multiplication, u(z,y) = x.y.
ta : G — G, left translation, p,(z) = a.z.

p? : G — G, right translation, p%(x) = z.a.
v:G — G, inversion, v(z) = 27 %

e € (G, the unit element.

Then we have 1 0 j1y = fia., 1% 0 p¥ = p%, gt = g1, (u®) "' = p® ", p® oy =
ppop®. If ¢ : G — H is a smooth homomorphism between Lie groups, then we also
have @ o g = flypa) 0P, PO p® = 1@ o . thus also Tp. T, = T'pip(a)-T'p, etc. So
T. is injective (surjective) if and only if T, is injective (surjective) for all a € G.

4.2. Lemma. T, pp: T,G x TyG — TG is given by

T(a’b)“‘<Xav V) = Ta(l‘b>-Xa + Ty (pta)- Yo

Proof. Let i, : G — G X G, 1is(z) = (a,x) be the right insertion and let i} :
G — G x G, liyg(z) = (z,b) be the left insertion. Then we have

T(a,b)ﬂ-(Xau Y;)) = T(a,b)H'(Ta(lib>'Xa + Tb(ria)-}/b) =
= To(poliy). X, + Tp(poria).Yy = Tu(pb). Xa + Ty(1ta).Ys. O

4.3. Corollary. The inversion v : G — G s smooth and

—1 —1

Tov = =Te(p® ) Ta(pa-1) = =Te(pta-1)-Ta(pn” ).

Proof. The equation u(z,v(x)) = e determines v implicitly. Since T.(u(e, )) =
T.(pe) = Id, the mapping v is smooth in a neighborhood of e by the implicit
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1 ,—1 a”?t

function theorem. From (v o p,)(z) = 27 .a™' = (u* o v)(z) we may conclude
that v is everywhere smooth. Now we differentiate the equation u(a,v(a)) = e; this
gives in turn

-1
Oc = Ta,0- 1y (Xa, Tav. Xa) = Ta(u® )Xo+ Ty-1(pa) Tav.-Xa,

1

— a a !
Tov.Xe = —To(pta) " Ta(1® )Xo = —To(ptg-1)Ta(n* ).Xq. O

4.4. Example. The general linear group GL(n,R) is the group of all invertible
real n X n-matrices. It is an open subset of L(R™,R™), given by det # 0 and a Lie
group.

Similarly GL(n,C), the group of invertible complex n x n-matrices, is a Lie group;
also GL(n,H), the group of all invertible quaternionic n x m-matrices, is a Lie
group, since it is open in the real Banach algebra Ly(H",H") as a glance at the
von Neumann series shows; but the quaternionic determinant is a more subtle
instrument here.

4.5. Example. The orthogonal group O(n,R) is the group of all linear isometries
of (R™,( , )), where ( , ) is the standard positive definite inner product on
R™. The special orthogonal group SO(n,R) := {A € O(n,R) : det A = 1} is open
in O(n,R), since we have the disjoint union

O(n,R) = SO(n,R) U (_01 Hno 1) SO(n,R),

where I, is short for the identity matrix Idgr. We claim that O(n,R) and SO(n,R)
are submanifolds of L(R™ R™). For that we consider the mapping f : L(R", R") —
L(R™,R™), given by f(A) = A.A!. Then O(n,R) = f~1(I,); so O(n,R) is closed.
Since it is also bounded, O(n,R) is compact. We have df(A4).X = X. A" + A.X?,
so kerdf(I,) = {X : X + X' = 0} is the space o(n,R) of all skew symmetric
n x n-matrices. Note that dimo(n,R) = 2(n — 1)n. If A is invertible, we get
kerdf(A) = {Y : Y.A* + AY! =0} = {Y : Y.A" € o(n,R)} = o(n,R).(4A71)".
The mapping f takes values in Ly, (R™,R"™), the space of all symmetric n x n-
matrices, and dimker df (4) + dim Ly, (R",R™) = 3(n — 1)n + 3n(n+ 1) = n? =
dim L(R",R"), so f : GL(n,R) — Lgym(R",R™) is a submersion. Since obviously
f~4(1,) ¢ GL(n,R), we conclude from (1.12) that O(n,R) is a submanifold of
GL(n,R). Tt is also a Lie group, since the group operations are smooth as the
restrictions of the ones from GL(n,R).

4.6. Example. The special linear group SL(n,R) is the group of all n x n-matrices
of determinant 1. The function det : L(R™,R™) — R is smooth and ddet(A)X =
trace(C(A).X), where C(A)%, the cofactor of AJis the determinant of the matrix,
which results from putting 1 instead of A‘Z into A and 0 in the rest of the j-th row
and the i-th column of A. We recall Cramers rule C(A).A = A.C(A) = det(A).L,,.
So if C'(A) # 0 (i.e. rank(A) > n — 1) then the linear functional df(A) is non zero.
So det : GL(n,R) — R is a submersion and SL(n,R) = (det) (1) is a manifold and
a Lie group of dimension n? — 1. Note finally that 7}, SL(n,R) = ker ddet(l,,) =
{X :trace(X) = 0}. This space of traceless matrices is usually called sl(n,R).
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4.7. Example. The symplectic group Sp(n,R) is the group of all 2n x 2n-matrices
A such that w(Ax, Ay) = w(z,y) for all x,y € R*", where w is a (the standard) non
degenerate skew symmetric bilinear form on R?".

Such a form exists on a vector space if and only if the dimension is even, and on
R™ x (R™)* the form w((z,z*), (y,y*)) = (x,y*) — (y, ™) (where we use the duality
pairing), in coordinates w((z');%, (y7)32)) = Y1 (z'y" ™ — 2™ *'y"), is such a
form. Any symplectic form on R2" looks like that after choosing a suitable basis.
Let (e;)2"; be the standard basis in R?". Then we have

e = (5 )=

and the matrix J satisfies Jt = —J, J? = —Iy,, J(z) = (Y) in R™ x R", and

w(x,y) = (z,Jy) in terms of the standard inner product on R?".

For A € L(R?>",R?*") we have w(Ax, Ay) = (Ax, JAy) = (x, A'JAy). Thus A €
Sp(n,R) if and only if A'JA = J.

We consider now the mapping f : L(R*" R?") — L(R?",R?") given by f(A) =
A'JA. Then f(A)! = (A'"JA) = —A'JA = —f(A), so f takes values in the space
0(2n,R) of skew symmetric matrices. We have df(A)X = X'JA + A'JX, and
therefore

ker df (Io,,) = {X € L(R*,R*") : X'J + JX = 0}
={X : JX is symmetric} =: sp(n,R).

We see that dimsp(n,R) = % = (**"). Furthermore kerdf(4) = {X :
Xt'JA+ A'JX = 0} and the mapping X — A'JX is an isomorphism ker df (A) —
Lgym (R?",R*™), if A is invertible. Thus dimkerdf(4) = (2";1) for all A €
GL(2n,R). If f(A) = J, then A'JA = J, so A has rank 2n and is invertible, and we
have dimker df(A) + dimo(2n,R) = (2n2+1) + % = 4n? = dim L(R?*",R?").
So f: GL(2n,R) — 0(2n,R) is a submersion and f~1(J) = Sp(n,R) is a manifold
and a Lie group. It is the symmetry group of ‘classical mechanics’.

4.8. Example. The complex general linear group GL(n,C) of all invertible com-
plex n X n-matrices is open in Lc(C™, C™), so it is a real Lie group of real dimension
2n2; it is also a complex Lie group of complex dimension n?. The complex special
linear group SL(n,C) of all matrices of determinant 1 is a submanifold of GL(n,C)
of complex codimension 1 (or real codimension 2).

The complex orthogonal group O(n,C) is the set
{A e L(C",C") : g(Az, Aw) = g(z,w) for all z, w},

where g(z,w) = Y., z'w’. This is a complex Lie group of complex dimension
7(71*21)71’ and it is not compact. Since O(n,C) = {A : A'A = I}, we have 1 =
detc(l,) = detc(AA) = detc(A)?, so detc(A) = £1. Thus SO(n,C) := {4 €

O(n,C) : detc(A) = 1} is an open subgroup of index 2 in O(n, C).
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The group Sp(n,C) = {A € Lc(C?*,C?") : A'JA = J} is also a complex Lie group
of complex dimension n(2n + 1).

The groups treated here are the classical complex Lie groups. The groups SL(n,C)
forn > 2, SO(n,C) for n > 3, Sp(n,C) for n > 4, and five more exceptional groups
exhaust all simple complex Lie groups up to coverings.

4.9. Example. Let C" be equipped with the standard hermitian inner product

(z,w) =Y, Z'w'. The unitary group U(n) consists of all complex n X n-matrices

A such that (Az, Aw) = (z,w) for all z, w holds, or equivalently U(n) = {A :
¢

A*A =1,}, where A* = A",

We consider the mapping f : Lc(C",C") — L¢(C™,C"), given by f(A) = A*A.
Then f is smooth but not holomorphic. Its derivative is df (A)X = X*A + A*X,
so kerdf(I,) = {X : X*+ X = 0} =: u(n), the space of all skew hermitian
matrices. We have dimg u(n) = n?. As above we may check that f : GL(n,C) —
Lierm(C™,C") is a submersion, so U(n) = f~1(I,) is a compact real Lie group of

dimension n?2.

The special unitary group is SU(n) = U(n) N SL(n,C). For A € U(n) we have
|detc(A)| = 1, thus dimg SU(n) = n? — 1.

4.10. Example. The group Sp(n). Let H be the division algebra of quaternions.
We will use the following description of quaternions: Let (R3,( , ) A) be the
oriented Euclidean space of dimension 3, where A is a determinant function with
value 1 on a positive oriented orthonormal basis. The vector product on R? is then
given by (X xY,Z) = A(X,Y,Z). Now we let H := R3 x R, equipped with the
following product:

(X,s)(Y,t) := (X xY 4+ sY +tX,st — (X,Y)).

Now we take a positively oriented orthonormal basis of R3, call it (4,4, k), and
indentify (0,1) with 1. Then the last formula implies visibly the usual product
rules for the basis (1,1, j, k) of the quaternions.

The group Sp(1) := S3 € H =2 R* is then the group of unit quaternions, obviously
a Lie group.

Now let V' be a right vector space over H. Since H is not commutative, we have
to distinguish between left and right vector spaces and we choose right ones as
basic, so that matrices can multiply from the left. By choosing a basis we get
V =R"@rH=H". For u= (u'), v=(v) € H" we put (u,v) := > u'v’. Then
( , ) is R-bilinear and (ua,vb) = a{u,v)b for a,b € H.

An R linear mapping A : V — V is called H-linear or quaternionically linear
if A(ua) = A(u)a holds. The space of all such mappings shall be denoted by
Ly (V, V). It is real isomorphic to the space of all quaternionic n x n-matrices with
the usual multiplication, since for the standard basis (e;)"; in V = H" we have
Alu) = A, eiut) = >, Ale)u’ = > ejAJul. Note that Ly (V,V) is only a real

Draft from September 15, 2004 Peter W. Michor,



4.11 4. Lie Groups I 47

vector space, if V' is a right quaternionic vector space - any further structure must
come from a second (left) quaternionic vector space structure on V.

GL(n,H), the group of invertible H-linear mappings of H", is a Lie group, because
it is GL(4n,R) N Ly(H", H"), open in Ly (H"™, H").

A quaternionically linear mapping A is called isometric or quaternionically unitary,
if (A(u), A(v)) = (u,v) for all u,v € H". We denote by Sp(n) the group of all
quaternionic isometries of H", the quaternionic unitary group. The reason for its
name is that Sp(n) = Sp(n,C) N U(2n), since we can decompose the quaternionic
hermitian form ( , ) into a complex hermitian one and a complex symplectic
one. Also we have Sp(n) C O(4n,R), since the real part of ( , ) is a positive
definite real inner product. For A € Ly(H", H") we put A* := A°. Then we have
(u, A(v)) = (A*(u),v), so (A(u), A(v)) = (A*A(u),v). Thus A € Sp(n) if and only
if A*A = Id.

Again f: Ly(H",H") — Lp perm (H",H") = {A : A* = A}, given by f(A) = A*A,
is a smooth mapping with df(A4)X = X*A 4+ A*X. So we have kerdf(Id) = {X :
X* = =X} =: sp(n), the space of quaternionic skew hermitian matrices. The
usual proof shows that f has maximal rank on GL(n,H), so Sp(n) = f~1(Id) is a
compact real Lie group of dimension 2n(n — 1) + 3n.

The groups SO(n,R) for n > 3, SU(n) for n > 2, Sp(n) for n > 2 and the real
forms of the five exceptional complex Lie groups exhaust all simple compact Lie
groups up to coverings.

4.11. Invariant vector fields and Lie algebras. Let G be a (real) Lie group.
A vector field £ on G is called left invariant, it pr¢ = & for all a € G, where
wié =T (pg—1)0&o0u, as in section 3. Since by (3.11) we have p[€,n] = [ui&, pin,
the space X1(G) of all left invariant vector fields on G is closed under the Lie
bracket, so it is a sub Lie algebra of X(G). Any left invariant vector field £ is
uniquely determined by £(e) € T.G, since &(a) = Te(uq)-£(€). Thus the Lie algebra
X1 (G) of left invariant vector fields is linearly isomorphic to T.G, and on T.G
the Lie bracket on X (G) induces a Lie algebra structure, whose bracket is again
denoted by [ , ]. This Lie algebra will be denoted as usual by g, sometimes by
Lie(G).

We will also give a name to the isomorphism with the space of left invariant vec-
tor fields: L : g — X.(G), X — Lx, where Lx(a) = Tep,.X. Thus [X,Y] =
[Lx, Ly] (6)

A vector field n on G is called right invariant, if (u®)*n =n for all a € G. If £ is left
invariant, then v*¢ is right invariant, since vou® = p,-1 ov implies that (u®)*v*¢ =
(vou*)¢ = (tg—1 ov)*¢ = v*(e-1)*¢ = v*¢. The right invariant vector fields
form a sub Lie algebra Xg(G) of X(G), which is again linearly isomorphic to T.G
and induces also a Lie algebra structure on T.G. Since v* : X (G) — Xg(G) is an
isomorphism of Lie algebras by (3.11), T.v = —Id : T.G — T.G is an isomorphism
between the two Lie algebra structures. We will denote by R: g = T.G — Xr(G)
the isomorphism discussed, which is given by Rx(a) = T.(u*).X.
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4.12. Lemma. If Lx is a left invariant vector field and Ry is a right invariant
one, then [Lx, Ry| = 0. Thus the flows of Lx and Ry commute.

Proof. We consider the vector field 0 x Lx € X(G x G), given by (0 x Lx)(a,b) =
(0a, Lx (b)). Then T(q pyp.(0a, Lx (b)) = Tapb.04 +Typa.Lx (b) = Lx (ab), so 0x Lx
is p-related to Lx. Likewise Ry x 0 is p-related to Ry . But then 0 = [0x Lx, Ry x0]
is p-related to [Lx, Ry| by (3.10). Since u is surjective, [Lx, Ry] = 0 follows. [

4.13. Lemma. Let ¢ : G — H be a smooth homomorphism of Lie groups.
Then @' :=Tep:9=T.G —b=T.H is a Lie algebra homomorphism.

Later, in (4.21), we shall see that any continuous homomorphism between Lie groups
is automatically smooth.

Proof. For X € g and x € G we have

Top.Lx(x) =Trp.Topip. X =Te(popg). X
= Te(,ulcp(m) © SD)X = Te(utp(m))'Te(P'X = L@’(X)((P(x))

So Ly is @-related to Ly (xy. By (3.10) the field [Lx, Ly] = Lix,y] is ¢-related to

[ch/(X),L(p/(y)] = L[ap’(X),ap’(Y)]' So we have T(p o L[X7y] = L[(p’(X),go’(Y)] o Q. If we
evaluate this at e the result follows. [

Now we will determine the Lie algebras of all the examples given above.

4.14. For the Lie group GL(n,R) we have T.GL(n,R) = L(R",R") =: gl(n,R)
and T'GL(n,R) = GL(n,R) x L(R™,R™) by the affine structure of the surrounding
vector space. For A € GL(n,R) we have pua(B) = A.B, so ua extends to a linear
isomorphism of L(R™,R™), and for (B, X) € T GL(n,R) we get Tp(ua).(B,X) =
(A.B,A.X). So the left invariant vector field Lx € X.(GL(n,R)) is given by
Lx(4) = T.(ua). X = (A, A.X).

Let f : GL(n,R) — R be the restriction of a linear functional on L(R™,R™). Then
we have Lx (f)(A) =df(A)(Lx(A)) =df(A)(A.X) = f(A.X), which we may write
as Lx(f) = f( .X). Therefore

Lixy)(f) = [Lx, Ly](f) = Lx(Ly(f)) — Ly (Lx(f))
=Lx(f( .Y)-Ly(f( X)=f( XY)-f( YX)
=f( (XY -YX))=Lxyv_vx(f).

So the Lie bracket on gl(n,R) = L(R™,R") is given by [X,Y] = XY — Y X, the
usual commutator.

4.15. Example. Let V be a vector space. Then (V,+) is a Lie group, 7oV =V
is its Lie algebra, TV =V x V, left translation is p,(w) = v+ w, Ty (ty).(w, X) =
(v+w,X). So Lx(v) = (v,X), a constant vector field. Thus the Lie bracket is 0.
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4.16. Example. The special linear group is SL(n,R) = det '(1) and its Lie al-
gebra is given by T.SL(n,R) = kerddet(I) = {X € L(R",R") : trace X = 0} =
sl(n,R) by (4.6). The injection i : SL(n,R) — GL(n,R) is a smooth homomor-
phism of Lie groups, so Tei =i : sl(n,R) — gl(n,R) is an injective homomorphism
of Lie algebras. Thus the Lie bracket is given by [X,Y] = XY — Y X.

The same argument gives the commutator as the Lie bracket in all other examples
we have treated. We have already determined the Lie algebras as T.G.

4.17. One parameter subgroups. Let G be a Lie group with Lie algebra g. A
one parameter subgroup of G is a Lie group homomorphism a : (R, +) — G, i.e. a
smooth curve « in G with a(s +t) = «a(s).a(t), and hence a(0) = e.

Lemma. Let o : R — G be a smooth curve with a(0) = e. Let X € g. Then the
following assertions are equivalent.

1) « is a one parameter subgroup with X = 2| a(t
atlo
2) a(t) = F1¥*(t,e) for all t.
3) a(t) = F1%*(t,e) for all t.
z.o(t) = FIEX (¢, 2) , or FIEX = 42O for all ¢ .
t
RX RX P
) - Ma(t)» .
) a(t).x =FI"*(t,x) , or FLy Pa(t), for all t

Proof. (1) = (4). We have Lz.a(t) = Ljpz.alt +s) = Ljgz.alt).a(s) =

%‘Oux.a(t)a(s) = Te(,um.a(t))'%‘oa(s) = Te(ﬂm.a(t))'X = LX(:EOé(t)) By unique'
ness of solutions we get z.a(t) = F1¥* (¢, z).

(4) = (2). This is clear.
(2) = (1). We have

ma®)als) = & (nama(s) = T(kaw) f50(s)
= T(jtagey) Lx (0(5)) = Lx (0(t)a(s))
and a(t)a(0) = a(t). So we get a(t)a(s) = FIXX(s,a(t)) = FIZX FIFX (e) =
FI*X (t +s,e) = a(t + s).
(4) <= (5). We have F1 ¢ = v~ o FI5 ov by (3.14). Therefore we have by (4.11)

(FIR (271)) 71 = (v o FIFX ov)(z) = FI 7% (2)
= F1%¥ (2) = z.a(—1).
So F1I*¥ (z=1) = a(t).z ™', and FI** (y) = a(t).y.
(5) = (3) = (1) can be shown in a similar way. O

An immediate consequence of the foregoing lemma is that left invariant and right
invariant vector fields on a Lie group are always complete, so they have global flows,
because a locally defined one parameter group can always be extended to a globally
defined one by multiplying it up.
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4.18. Definition. The exponential mapping exp : g — G of a Lie group is defined
by
exp X = F1¥X(1,e) = FI®X (1,¢) = ax(1),

where ax is the one parameter subgroup of G with ax(0) = X.

Theorem.

(1) exp: g — G is smooth.

2) exp(tX) = F1¥*(t,e).

FIXX (t,2) = z. exp(tX).

F17% (t,2) = exp(tX).x.

exp(0) = e and Toexp = Id : Tog = g — T.G = g, thus exp is a diffeomor-
phism from a neighborhood of 0 in g onto a neighborhood of e in G.

~ A~~~
= W
o — — —

Proof. (1) Let 0 x L € X(g x G) be given by (0 x L)(X,z) = (0x,Lx(x)). Then
pro F1I°%E(t, (X, e)) = ax(t) is smooth in (¢, X).

(2) exp(tX) = FI"1% (1, e) = FI¥X (¢, e) = ax (t).

(3) and (4) follow from lemma (4.17).

(5) Toexp.X = L|gexp(0+t.X) = L|,FI**(t,e) = X. O

4.19. Remark. If G is connected and U C g is open with 0 € U, then the group
generated by exp(U) equals G.

For this group is a subgroup of GG containing some open neighborhood of e, so it
is open. The complement in G is also open (as union of the other cosets), so this
subgroup is open and closed. Since G is connected, it coincides with G.

If G is not connected, then the subgroup generated by exp(U) is the connected
component of e in G.

4.20. Remark. Let ¢ : G — H be a smooth homomorphism of Lie groups. Then

the diagram ,

¥

g——b

eXth tepo
G v H

commutes, since ¢ — (exp®(tX)) is a one parameter subgroup of H which satisfies
%|0g0(expG tX) = ¢'(X), so p(exp® tX) = exp™ (to'(X)).

If G is connected and ¢,1 : G — H are homomorphisms of Lie groups with
¢ =1 : g — b, then ¢ = 1. For ¢ = 1 on the subgroup generated by exp® g
which equals G by (4.19).

4.21. Theorem. A continuous homomorphism ¢ : G — H between Lie groups
18 smooth. In particular a topological group can carry at most one compatible Lie
group structure.
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Proof. Let first ¢ = a : (R,+) — G be a continuous one parameter subgroup.
Then a(—¢,e) C exp(U), where U is an absolutely convex (i.e., t1x1 + toxg € U
for all |¢t;| < 1 and z; € U) open neighborhood of 0 in g such that exp [ 2U is a
diffeomorphism, for some € > 0. Put 3 := (exp [ 2U) ' oa : (—¢,¢) — g. Then for
|t| < £ we have exp(26(t)) = exp(8(t))* = a(t)?* = a(2t) = exp(B(2t)), so 26(t) =
B(2t); thus B(5) = £8(s) for |s| < e. So we have a(%) = exp(B(%)) = exp(505(s))
for all |s| < € and by recursion we get a(%) = exp(5=3(s)) for n € N and in turn
a(£s) = a()F = exp(58(s))* = exp(£3(s)) for k € Z. Since the £ for k € Z
and n € N are dense in R and since « is continuous we get a(ts) = exp(t3(s)) for
all t € R. So « is smooth.

Now let ¢ : G — H be a continuous homomorphism. Let Xi,...,X,, be a linear
basis of g. We define ¢ : R® — G by (t',... ,t") = exp(t'Xy)---exp(t"X,,).
Then Tyt is invertible, so 9 is a diffeomorphism near 0. Sometimes 1) ~! is called
a coordinate system of the second kind. t — ¢(exp®tX;) is a continuous one
parameter subgroup of H, so it is smooth by the first part of the proof.

We have (po)(t,... ,t") = (pexp(t' X1)) -+ (pexp(t"X,)), so ¢ o) is smooth.
Thus ¢ is smooth near e € G and consequently everywhere on G. [J

4.22. Theorem. Let G and H be Lie groups (G separable is essential here), and let
@ : G — H be a continuous bijective homomorphism. Then ¢ is a diffeomorphism.

Proof. Our first aim is to show that ¢ is a homeomorphism. Let V' be an open
e-neighborhood in G, and let K be a compact e-neighborhood in G such that
K.K=! C V. Since G is separable there is a sequence (a;);en in G such that
G = U?; a;.K. Since H is locally compact, it is a Baire space (i.e., V; open
and dense for i € N implies [ V; dense). The set ¢(a;)p(K) is compact, thus
closed. Since H = J; p(ai).¢(K), there is some ¢ such that ¢(a;)¢(K) has non
empty interior, so ¢(K) has non empty interior. Choose b € G such that ¢(b)
is an interior point of ¢(K) in H. Then ey = p(b)p(b~!) is an interior point of
O(K)p(K~™1) C (V). Soif U is open in G and a € U, then ey is an interior point
of p(a™1U), so p(a) is in the interior of p(U). Thus ¢(U) is open in H, and ¢ is a
homeomorphism.

Now by (4.21) ¢ and ¢~ ! are smooth. [

4.23. Examples. We first describe the exponential mapping of the general linear
group GL(n,R). Let X € gl(n,R) = L(R™,R™), then the left invariant vector field
is given by Lx(A) = (A, A.X) € GL(n,R) x gl(n,R) and the one parameter group
ax (t) = FI¥*(¢,1) is given by the differential equation Lax(t) = Lx(ax(t)) =
ax (t).X, with initial condition a.x (0) = I. But the unique solution of this equation
is ax(t) =X =37, %Xk. So

expt B (X) =X =370 X

If n = 1 we get the usual exponential mapping of one real variable. For all Lie
subgroups of GL(n,R), the exponential mapping is given by the same formula
exp(X) = eX; this follows from (4.20).
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4.24. The adjoint representation. A representation of a Lie group G on a
finite dimensional vector space V (real or complex) is a homomorphism p : G —
GL(V) of Lie groups. Then by (4.13) p’' : g — gl(V) = L(V,V) is a Lie algebra
homomorphism.

For a € G we define conj, : G — G by conj, (z) = aza™!. It is called the conjugation
or the inner automorphism by a € G. We have conj,(zy) = conj,(z)conj,(y),
conj,, = conj, oconj,, and conj is smooth in all variables.

Next we define for a € G the mapping Ad(a) = (conj,) = T.(conj,) : g —
g. By (4.13) Ad(a) is a Lie algebra homomorphism, so we have Ad(a)[X,Y] =
[Ad(a)X,Ad(a)Y]. Furthermore Ad : G — GL(g) is a representation, called the
adjoint representation of G, since

Ad(ab) = Te(conjy,) = Te(conj, o conj, )
= Te(conj,) o Te(conj,) = Ad(a) o Ad(b).

—1 —1

The relations Ad(a) = Te(conj,) = To(® ). Te(pa) = Ty-1(pta) Te(pn® ) will be

used later.
Finally we define the (lower case) adjoint representation of the Lie algebra g, ad :
g — gl(g) = L(g,9), by ad := Ad’ = Tt Ad.

Lemma.

(1) Lx(a) = Raqa)x(a) for X €ganda € G.
(2) ad(X)Y = [X,Y] for X,Y € g.

Proof. (1) Lx(a)=Te(pa)-X = TE(Ua)'TE(Ma_l o fa)-X = Raq(a)x (a).
(2) Let Xi,...,X, be a linear basis of g and fix X € g. Then Ad(z)X =
Yo fi(z).X; for f; € C°°(G,R) and we have in turn

Ad(Y)X =T.(Ad( )X)Y =d(Ad( )X)|.Y =d(> fiXy)|Y
=Y dfile(Y)X; = > Ly (fi)(e)-Xi.
Lx(z) = Raa)x () = R(X fi()Xi)(x) = 3 fi(x).Rx, (z) by (1).
[Ly,Lx| = [Ly,)_ fi-Rx,) =0+ >_ Ly(f;).Rx, by (3.4) and (4.12).
[Y,X] = [Ly,Lx](e) =Y. Ly(fi)(e).Rx,(e) = Ad (V)X = ad(Y)X. O

4.25. Corollary. From (4.20) and (4.23) we have

Adoexp® = exp®®) o ad
Ad(ezp®X)Y =) i (ad X)*Y = Xy
k=0

=Y + [X,Y]+ X, [ X, Y]]+ £[X, [X, [ X, Y]] + -

so that also ad(X) = %‘OAd(exp(tX)).
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4.26. The right logarithmic derivative. Let M be a manifold and let f :
M — G be a smooth mapping into a Lie group G with Lie algebra g. We define
the mapping 0f : TM — g by the formula §f(&,) = Tf(x)(uf(x)fl).Tmf.gw. Then
§f is a g-valued 1-form on M, §f € QY(M,g), as we will write later. We call § f
the right logarithmic derivative of f, since for f : R — (R*,-) we have §f(x).1 =

L&) — (logof) (x).

Lemma. Let f,g: M — G be smooth. Then we have

0(f.9)(x) = 6f(x) + Ad(f(x)).6g(x).

Proof.

T f(2), 9 -To f: Trg)

(T ) Lo f +Tppo)) Tog)
z). O

3(f.9)(x) = T(uo@ " H @) T, (f.g)
(@) T (@7,
(@)1 (@7,

5f(x) + Ad(f(x)).0g

T
T

Remark. The left logarithmic derivative 5% f € Q'(M, g) of a smooth mapping
f M — G is given by 6" f.&, = Ty (tipw)-1)-Tef&s. The corresponding
Leibnitz rule for it is uglier that that for the right logarithmic derivative:

3 (fg)(x) = " g(x) + Ad(g(z)~1)d*" f(x).
The form §'°%(Idg) € QY(G,g) is also called the Maurer-Cartan form of the Lie
group G.

e —1
we have

4.27. Lemma. Forexp:g— G and for g(z) :=

3(exp)(X) = T(u™P). Tx exp = Y iy (ad X)? = g(ad X).

p=0

Proof. We put M(X) = d(exp)(X) : g — g. Then

(s+t)M((s+t)X) = (s+t)d(exp)((s +t)X)
=d(exp((s+t) ))X by the chain rule,
=d(exp(s ).exp(t )).X

=d(exp(s )).X + Ad(exp(sX)).6(exp(t )).X by 4.26,
= 5.0(exp)(sX) + Ad(exp(sX)).t.d(exp)(tX)

s.M(sX)+ Ad(exp(sX)).t.M(tX).

exp(s
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Next we put N(t) := t.M(tX) € L(g,g), then we obtain N(s +t) = N(s) +
Ad(exp(sX)).N(t). We fix ¢, apply “|o, and get N'(t) = N’(0) + ad(X).N(¢),
where N'(0) = M(0) + 0 = d(exp)(0) = Idg. So we have the differential equation
N'(t) = Idg + ad(X).N(t) in L(g, g) with initial condition N(0) = 0. The unique
solution is

N(s) = Z ﬁ ad(X)P.sPT1 and so
p=0

§(exp)(X) = M(X) = N(1) = Y 57 ad(X)P. O

4.28. Corollary. Tx exp is bijective if and only if no eigenvalue of ad(X): g — g
is of the form /—12kmn for k € Z\ {0}.

Proof. The zeros of g(z) = “=L are exactly z = 2kmy/—1 for k € Z\ {0}. The
linear mapping T'x exp is bijective if and only if no eigenvalue of g(ad(X)) =
T(u>P(=X)).Tx exp is 0. But the eigenvalues of g(ad(X)) are the images under
g of the eigenvalues of ad(X). O

4.29. Theorem. The Baker-Campbell-Hausdorff formula.
Let G be a Lie group with Lie algebra g. For complex z mear 1 we consider the

function f(z) := % = ano (;_'1_)1" (z—1)".

Then for X, Y near 0 in g we have exp X.expY = exp C(X,Y), where

1
C(X,Y)= Y+/ f(et-2dX ead¥y X gt
0

:X+Y+Z%/O (Z ki—z!(adX)k(adY)g)nth

k,£>0
k+£>1

(=)™ Z (ad X)*1(adY)* ... (ad X))k~ (ad Y )t

—X4Y X
+ +§1 ntl, e kit DRkl ]
- 0050
ki+e;>1

= X Y + XY+ (X Y] - Y Y. XD+
Proof. Let C(X,Y) :=exp !(exp X.expY) for X, Y near 0 in g, and let C(t) :=
C(tX,Y). Then by (4.27) we have

T(/ﬁ"p(_c(t)))% (exp C(t)) = 6(exp oC)(t).1 = 6 exp(C(t)).C(t)
= iz gy (ad C(E)FC(t) = g(ad O(1)).C (1),
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where g(z) = £ = > k>0 (k+1), We have expC(t) = exp(tX)expY and

z

exp(—C(t)) = exp(C(t)) ! = exp(—Y) exp(—tX), therefore

T(u™PCONL (exp C(t)) = T(u™P Y)Y L (exp(tX) exp V)

d
= TP (YT (Y ) 4 exp(tX)
= T(p* ")) Ry (exp(tX)) = X, by (4.18.4) and (4.11).
X = g(ad C(1)).C(t).
e €M) — Ad(exp C(t)) by (4.25)
= Ad(exp(tX)expY) = Ad(exp(tX)). Ad(expY)
_ o2d(tX) Lad Y _ tad X ad Y

~—

If X, Y, and t are small enough we get ad C(t) = log(e! 24 X ead )

ZnZl (_17)1n+1 (z — 1)", thus we have

, where log(z) =

X = g(ad C(t)).C(t) = g(log(e* 21 X 24 YY) .C(1).

For z near 1 we put f(z) := lozgf(i) =2 n>0 (n}r)l (z—1)™, satisfying g(log(z)).f(z) =
1. So we have

Passing to the definite integral we get the desired formula
1 .
C(X,Y)=C(1) =C(0) +/ C(t)dt
0
1
=Y + / flel*d X e ) X dt
0
=X+Y+) (=1)" /1 > L (ad X)*(ad V)" "Xai
n+1 J, k0!

(—1)" Z (ad X)*1(ad Y)? ... (ad X)*» (ad Y)%n

! 14,1 !
= +1 oS0 (k14 4+ kn+ Dkl k100!
l1,..£,>0
ki+£;>1
=X+Y+1 [XY]+ (XX Y - Y, X))+ O

Remark. If G is a Lie group of differentiability class C?, then we may define TG
and the Lie bracket of vector fields. The proof above then makes sense and the
theorem shows, that in the chart given by exp~! the multiplication i : G x G — G
is C'“ near e, hence everywhere. So in this case G is a real analytic Lie group. See
also remark (5.6) below.
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4.30. Example. The group SO(3,R). From (4.5) and (4.16) we know that the
Lie algebra o(3,R) of SO(3,R) is the space Lgkew(R3,R3) of all linear mappings
which are skew symmetric with respect to the inner product, with the commutator
as Lie bracket.

The group Sp(1) = S? of unit quaternions has as Lie algebra T} 5% = 1+, the space
of imaginary quaternions, with the commutator of the quaternion multiplications
as bracket. From (4.10) we see that this is [X,Y] =2X x Y.

Then we observe that the mapping

a:sp(1) — 0(3,R) = Lgkew (R, R?), a(X)Y =2X x Y,
is a linear isomorphism between two 3-dimesional vector spaces, and is also an
isomorphism of Lie algebras because [a(X),a(Y)]Z =4(X x (Y x Z) -Y x (X x
Z) =4 X x (Y XZ2)+Y x (Zx X)) =—-4Zx (Y xX))=22XxY)x Z =
a([X,Y])Z. Since S? is simply connected we may conclude from (5.4) below that
Sp(1) is the universal cover of SO(3).

We can also see this directly as follows: Consider the mapping 7 : S ¢ H —
SO(3,R) which is given by 7(P)X = PXP, where X € R3 x {0} € H is an
imaginary quaternion. It is clearly a homomorphism 7 : S — GL(3,R), and since
|7(P)X| = |PXP| =|X|and S3 is connected it has values in SO(3,R). The tangent
mapping of 7 is computed as (T17.X)Y = XY14+1Y(—X) =2(X xY) = a(X)Y,
which we already an injective linear mapping between two 3-dimensional vector
spaces, an isomorphism. Thus 7 is a local diffeomorphism, the image of 7 is an
open and compact (since S® is compact) subgroup of SO(3,R), so 7 is surjective
since SO(3,R) is connected. The kernel of 7 is the set of all P € S3 with PXP = X
for all X € R?, that is the intersection of the center of H with S, the set {1, —1}.
So 7 is a two sheeted covering mapping.

So the universal cover of SO(3,R) is the group S® = Sp(1) = SU(2) = Spin(3).
Here Spin(n) is just a name for the universal cover of SO(n), and the isomorphism
Sp(1) = SU(2) is just given by the fact that the quaternions can also be described
as the set of all complex matrices

a b .
(—b Ez) ~ al + bj.

The fundamental group 71 (SO(3,R)) = Zy = Z/27.

4.31. Example. The group SO(4,R). We consider the smooth homomorphism
p: 8% x 8% — SO4,R) given by p(P,Q)Z := PZQ in terms of multiplications
of quaternions. The derived mapping is p'(X,Y)Z = (T(11)p.(X,Y))Z = XZ1 +
1Z(-Y)=XZ — ZY, and its kernel consists of all pairs of imaginary quaternions
(X,Y) with XZ = ZY for all Z € H. If we put Z =1 we get X =Y, then X is in
the center of H which intersects sp(1) in 0 only. So p’ is a Lie algebra isomorphism
since the dimensions are equal, and p is a local diffeomorphism. Its image is open
and closed in SO(4,R), so p is surjective, a covering mapping. The kernel of p is
easily seen to be {(1,1),(—1,—1)} C 83 x S3. So the universal cover of SO(4,R) is
S3 x 83 = Sp(1) x Sp(1) = Spin(4), and the fundamental group m1(SO(4,R)) = Zy
again.
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Examples and Exercises

4.32. Let A € L(R™,R™) be an (n x n) matrix. Let C(A) be the matrix of the
signed algebraic complements of A, i.e.

AL AL, 0 AL, L. AL

. AN AT 0 AL L A
C(A)i=det| 0 ... 0 1 0 ... 0
j+1 j+1 i+1 i

AP AT 0 AL L Al

Ap L AM, 0 AT, .. AR

Prove that C(A)A = AC(A) = det(A) - Z (Cramer’s rule)! This can be done by
remembering the the expansion formula for the determinant during multiplying it
out.

Prove that d(det)(A)X = Trace(C(A)X)! There are two ways to do this. The
first one is to check that the standard inner product on L(R™ R™) is given by
(A, X) = Trace(AT X), and by computing the gradient of det at A.

The second way uses (12.19):
det(A +tId) = t™ +t"~! Trace(A) +t" 2y (A) + -+t (A) + det(A).
Assume that A is invertible. Then:
det(A+tX) =t"det(t 'A+ X) = t"det(A(A™'X 4+t~ 11d))
= t"det(A) det(A71X +¢t711d)
= t"det(A)(t™" + t' 7" Trace(A ' X) + -« + det(A™1 X))
= det(A)(1 + t Trace(A~1X) + O(t?)),
ddet(A)X = F| det(A+tX) = 5| det(A)(1+t Trace(A™' X) + O(t?))
= det(A) Trace(A™' X) = Trace(det(A)A™1 X)
= Trace(C(A4)X).
Since invertible matrices are dense, the formula follows by continuity.

What about detc¢ : Le(C™,C™) — C?

4.33. For a matrix A € L(R",R") let e? := k>0 L AR Prove that e? con-
verges everywhere, that det(e4) = eT2°(4) and thus e* € GL(n,R) for all
A e L(R™,R"™).
4.34. We can insert matrices into real analytic functions in one variable:
f(A) = f(0)-Id + Z WA”, if the norm |A| < p,
n>0

where p is the radius of convergence of f at 0. Develop some theory about that

(attention with constants): (f-9)(4) = /(A)-g(A), (fog)(A) = f(g(A)), df (A)X =
f(A)X if [A, X] = 0. What about df(A)X in the general case?
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4.35. Quaternions. Let ( , ) denote standard inner product on oriented R*.
Put 1 := (0,0,0,1) € R* and R?® = R3 x {0} = 1+ C R*. The vector product
on R? is then given by (x x y,2) := det(z,y,z). We define a multiplication on
R* by (X,s)(Y,t) := (X xY + sY +tX,st — (X,Y)). Prove that we get the
skew field of quaternions H, and derive all properties: Associativity, |p.q| = |p|-|q|,
pp = [pl*.1, p~t
r =29l + 217 + 27 + x3k can we find? Show that H is isomorphic to the algebra
of all complex (2 x 2)-matrices of the form

u v
(—6 ﬂ)’ u,v € C.

5. Lie Groups 1I. Lie Subgroups and Homogeneous Spaces

= |p|~2.p, p.¢ = @.p. How many representation of the form

5.1. Definition. Let G be a Lie group. A subgroup H of G is called a Lie
subgroup, if H is itself a Lie group (so it is separable) and the inclusion i : H — G
is smooth.

In this case the inclusion is even an immersion. For that it suffices to check that 7.1
is injective: If X € b is in the kernel of T,i, then ioexp™ (tX) = exp® (t.T.i.X) = e.
Since 7 is injective, X = 0.

From the next result it follows that H C G is then an initial submanifold in the
sense of (2.13): If Hy is the connected component of H, then i(Hj) is the Lie
subgroup of G generated by i/(h) C g, which is an initial submanifold, and this is
true for all components of H.

5.2. Theorem. Let G be a Lie group with Lie algebra g. If h C g is a Lie
subalgebra, then there is a unique connected Lie subgroup H of G with Lie algebra
h. H is an initial submanifold.

Proof. Put B, := {Tc(pz). X : X € b} CTG. Then E :=| | . E, is a distribu-
tion of constant rank on G. So by theorem (3.20) the distribution FE is integrable
and the leaf H through e is an initial submanifold. It is even a subgroup, since for
x € H the initial submanifold p, H is again a leaf (since F is left invariant) and
intersects H (in x), so pu,(H) = H. Thus H.H = H and consequently H~! = H.
The multiplication p : H x H — G is smooth by restriction, and smooth as a
mapping H x H — H, since H is an initial submanifold, by lemma (2.15). O

5.3. Theorem. Let g be a finite dimensional real Lie algebra. Then there exists
a connected Lie group G whose Lie algebra is g.

Sketch of Proof. By the theorem of Ado (see [Jacobson, 1962, p??] or [Vara-
darajan, 1974, p 237]) g has a faithful (i.e. injective) representation on a finite
dimensional vector space V', i.e. g can be viewed as a Lie subalgebra of gl(V) =
L(V,V). By theorem (5.2) above there is a Lie subgroup G of GL(V') with g as its
Lie algebra. [
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This is a rather involved proof, since the theorem of Ado needs the structure theory
of Lie algebras for its proof. There are simpler proofs available, starting from
a neighborhood of e in G (a neighborhood of 0 in g with the Baker-Campbell-
Hausdorft formula (4.29) as multiplication) and extending it.

5.4. Theorem. Let G and H be Lie groups with Lie algebras g and b, respectively.
Let f : g — b be a homomorphism of Lie algebras. Then there is a Lie group
homomorphism @, locally defined near e, from G to H, such that o' = Tep = f. If
G 1is simply connected, then there is a globally defined homomorphism of Lie groups
¢ : G — H with this property.

Proof. Let £ := graph(f) C g x h. Then £ is a Lie subalgebra of g x b, since f is
a homomorphism of Lie algebras. g x § is the Lie algebra of G x H, so by theorem
(5.2) there is a connected Lie subgroup K C G x H with algebra £. We consider
the homomorphism ¢ := pri oincl : K — G x H — G, whose tangent mapping
satisfies Teg(X, f(X)) = T(¢,e)pr1-Teincl.(X, f(X)) = X, so is invertible. Thus g is
a local diffeomorphism, so g : K — G is a covering of the connected component
Gp of e in G. If GG is simply connected, g is an isomorphism. Now we consider the
homomorphism ¢ := prooincl : K — G x H — H, whose tangent mapping satisfies
T..(X, f(X)) = f(X). We see that ¢ :=1o (g | U)~t: G DU — H solves the
problem, where U is an e-neighborhood in K such that g | U is a diffeomorphism.

If G is simply connected, ¢ = 1 o g~ ! is the global solution. [

5.5. Theorem. Let H be a closed subgroup of a Lie group G. Then H is a Lie
subgroup and a submanifold of G.

Proof. Let g be the Lie algebra of G. We consider the subset h := {¢’(0) : ¢ €
C*(R,G),c(R) C H,c(0) = e}.

Claim 1. b is a linear subspace.

If ¢4(0) € h and t; € R, we define ¢(t) := c1(t1.t).ca(t2.t). Then we have ¢/(0) =
Tie,eyt-(t1.¢1(0),t2.c5(0)) = t1.¢1(0) 4 t2.c5(0) € b.

Claim 2. h = {X € g:exp(tX) € H for all t € R}.

Clearly we have ‘O’. To check the other inclusion, let X = ¢/(0) € h and consider
v(t) = (exp®)~le(t) for small t. Then we have X = ¢/(0) = L|pexp(v(t)) =
v'(0) = limy, .o n.v(L). We put ¢, :== 1 and X,, := n.v(2), so that exp(t,.X,) =
exp(v(+)) = ¢(+) € H. By claim 3 below we then get exp(tX) € H for all ¢.
Claim 3. Let X, — X ing, 0 < ¢, — 0 in R with exp(¢,X,) € H. Then
exp(tX) € H for all t € R.

Let t € R and take m,, € (i -1, i] N Z. Then t,,.m, — t and m,.t,.X, — tX,

and since H is closed we may conclude that

exp(tX) = limexp(my,.t,.X,) = limexp(t,.X,,)"" € H.

Claim 4. Let £ be a complementary linear subspace for f in g. Then there is an
open 0-neighborhood W in ¢ such that exp(W) N H = {e}.
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If not there are 0 # Y}, € € with Y, — 0 such that exp(Y%) € H. Choose a norm | |
on g and let X,, =Y,,/|Y,|. Passing to a subsequence we may assume that X,, — X
in ¢ then | X| = 1. But exp(|Y,,|.X,,) = exp(Y},) € H and 0 < |Y},| — 0, so by claim
3 we have exp(tX) € H for all t € R. So by claim 2 X € b, a contradiction.

Claim 5. Put ¢ : h xt — G, p(X,Y) = expX.expY. Then there are 0-
neighborhoods V in h, W in ¢, and an e-neighborhood U in G such that ¢ :
V x W — U is a diffeomorphism and U N H = exp(V).

Choose V', W, and U so small that ¢ becomes a diffeomorphism. By claim 4 the
set W may be chosen so small that exp(W) N H = {e}. By claim 2 we have
exp(V) C HNU. Let z € HNU. Since z € U we have z = exp X.exp Y for unique
(X,Y) € VxW. Then = and expX € H, so expY € H Nexp(W) = {e}, thus
Y =0. Soxz=expX € exp(V).

Claim 6. H is a submanifold and a Lie subgroup.

(U,(¢ | V. x W)~ =: u) is a submanifold chart for H centered at e by claim 5.
For z € H the pair (u,(U),u o pu,-1) is a submanifold chart for H centered at x.
So H is a closed submanifold of GG, and the multiplication is smooth since it is a
restriction. [J

5.6. Remark. The following stronger results on subgroups and the relation be-
tween topological groups and Lie groups in general are available.

Any arc wise connected subgroup of a Lie group is a connected Lie subgroup,
[Yamabe, 1950].

Let G be a separable locally compact topological group. If it has an e-neighborhood
which does not contain a proper subgroup, then G is a Lie group. This is the solution
of the 5-th problem of Hilbert, see the book [Montgomery-Zippin, 1955, p. 107].

Any subgroup H of a Lie group G has a coarsest Lie group structure, but it might
be non separable. To indicate a proof of this statement, consider all continuous
curves ¢ : R — G with ¢(R) C H, and equip H with the final topology with
respect to them. Then the component of the identity satisfies the conditions of the
Gleason-Yamabe theorem cited above.

5.7. Let g be a Lie algebra. An ideal £ in g is a linear subspace £ such that [¢, g] C £.
Then the quotient space g/t carries a unique Lie algebra structure such that g — g/
is a Lie algebra homomorphism.

Lemma. A connected Lie subgroup H of a connected Lie group G is a mormal
subgroup if and only if its Lie algebra by is an ideal in g.

Proof. H normal in G means xtHx ! = conj (H) C H for all x € G. By remark
(4.20) this is equivalent to T¢(conj,)(h) C b, i.e. Ad(z)h C b, for all z € G. But
this in turn is equivalent to ad(X)h C b for all X € g, so to the fact that b is an
ideal in g. O

5.8. Let G be a connected Lie group. If A C G is an arbitrary subset, the central-
izer of A in G is the closed subgroup Zg(A) :={z € G : za = ax for all a € A}.
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The Lie algebra 34(A) of Zg(A) consists of all X € g such that a.exp(tX).a™! =
exp(tX) for all a € A, ie. 33(A) ={X € g:Ad(a)X = X for all a € A}.

If A is itself a connected Lie subgroup of G with Lie algebra a, then 34(A) =
{X €eg:adlY)X =0forallY € a}. This set is also called the centralizer of
ain g. If A= G is connected then Zg = Zg(G) is called the center of G and
36(G) =3 ={X €g:[X,)Y] =0foralY € g} is then the center of the Lie
algebra g.

5.9. The normalizer of a subset A of a connected Lie group G is the subgroup
Ng(A)={x € G: py(A) = p*(A)} = {xr € G : conj,(A) = A}. If A is closed then
N¢g(A) is also closed.

If A is a connected Lie subgroup of G then Ng(A) = {z € G : Ad(z)a C a} and
its Lie algebra is ng(A) = {X € g: ad(X)a C a} = ny(a) is then the normalizer or
tdealizer of a in g.

5.10. Group actions. A left action of a Lie group G on a manifold M is a
smooth mapping ¢ : G x M — M such that £, 0 {;, = {,4, and {. = Idy;, where
ly(z) = L(g, 2).

A right action of a Lie group G on a manifold M is a smooth mapping r : M x G —
M such that 79 o 7" = r"9 and r¢ = Idy;, where 19(2) = r(2, g).

A G-space is a manifold M together with a right or left action of G on M.

We will describe the following notions only for a left action of G on M. They make
sense also for right actions.

The orbit through z € M is the set G.z = ¢(G,z) C M. The action is called
transitive, if M is one orbit, i.e. for all z,w € M there is some g € G with g.z = w.
The action is called free, if g1.2 = go2.z for some z € M implies already g1 = go.
The action is called effective, if ¢, = ¢}, implies g = h, i.e. if £ : G — Diff (M) is
injective, where Diff (M) denotes the group of all diffeomorphisms of M.

More generally, a continuous transformation group of a topological space M is a
pair (G, M) where G is a topological group and where to each element g € G
there is given a homeomorphism ¢, of M such that £: G x M — M is continuous,
and £y o fy, = Lgy. The continuity is an obvious geometrical requirement, but in
accordance with the general observation that group properties often force more
regularity than explicitly postulated (cf. (5.6)), differentiability follows in many
situations. So, if G is locally compact, M is a smooth or real analytic manifold,
all £, are smooth or real analytic homeomorphisms and the action is effective, then
G is a Lie group and ¢ is smooth or real analytic, respectively, see [Montgomery,
Zippin, 55, p. 212].

5.11. Homogeneous spaces. Let G be a Lie group and let H C G be a closed
subgroup. By theorem (5.5) H is a Lie subgroup of G. We denote by G/H the
space of all right cosets of G, i.e. G/H = {gH : g € G}. Let p: G — G/H be the
projection. We equip G/H with the quotient topology, i.e. U C G/H is open if
and only if p~1(U) is open in G. Since H is closed, G/H is a Hausdorff space.
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G/H is called a homogeneous space of G. We have a left action of G on G/H, which
is induced by the left translation and is given by fiy(g1 H) = gg1 H.

Theorem. If H is a closed subgroup of G, then there exists a unique structure
of a smooth manifold on G/H such that p : G — G/H is a submersion. Thus
dimG/H = dim G — dim H.

Proof. Surjective submersions have the universal property (2.4), thus the manifold
structure on G/H is unique, if it exists. Let b be the Lie algebra of the Lie subgroup
H. We choose a complementary linear subspace £ such that g =h & &.

Claim 1. We consider the mapping f : ¢ Xx H — G, given by f(X,h) := exp X.h.
Then there is an open 0-neighborhood W in £ and an open e-neighborhood U in G
such that f: W x H — U is a diffeomorphism.

By claim 5 in the proof of theorem (5.5) there are open 0-neighborhoods V in b,
W’ in €, and an open e-neighborhood U’ in G such that ¢ : W/ xV — U’ is a
diffeomorphism, where p(X,Y) = exp X.expY, and such that U' N H = exp V.
Now we choose W in W’ C € so small that exp(W)™!.exp(W) C U’. We will check
that this W satisfies claim 1.

Claim 2. f | W x H is injective.

f(X1,h1) = f(X2,hs) means exp Xi.h; = exp Xa.hy, thus we have h2h1_1 =
(exp Xo) texp X € exp(W) Lexp(W)NH C U'NH = exp V. So there is a unique
Y € V with hghfl = expY. But then ¢(X;,0) = expX; = eprg.hg.hfl =
exp Xs.expY = ¢(X5,Y). Since ¢ is injective, X; = Xo and Y =0, so hy = ha.
Clatm 3. f | W x H is a local diffeomorphism.

The diagram

W v 192XSP

/ [

commutes, and Idy x exp and ¢ are diffcomorphisms. So f | W x (U' N H)
is a diffeomorphism. Since f(X,h) = f(X,e).h we conclude that f [ W x H is
everywhere a local diffeomorphism. So finally claim 1 follows, where U = f(W x H).

Now we put g :=po(exp | W) : ¢ D W — G/H. Then the following diagram

commutes: f
WxH ——U

| lp

w—2 . G/H.

Claim 4. g is a homeomorphism onto p(U) =: U C G/H.

Clearly g is continuous, and ¢ is open, since p is open. If g(X;) = g(X32) then
exp X1 = exp Xo.h for some h € H, so f(X1,e) = f(X3,h). By claim 1 we get
X1 = X, so g is injective. Finally g(W) = U, so claim 4 follows.
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For a € G we consider U, = jio(U) = a.U and the mapping u, := g~ o fig-1 :
U, — W CE&.

Claim 5. (Ug,uq = gt 0 jig—1 : Uy, — W)aeq is a smooth atlas for G/H.
Let a, b € G such that U, N Uy # 0. Then

Ug O ub_l =g lofig-1ofpog:uy(Us NU,) — ue(Uy N Ty)
=g o figpopo(exp | W)
=g lopopg-1p0 (exp [ W)

=priof top,-1p0(exp | W) issmooth. O

5.12. Let £ : G x M — M be a left action. Then we have partial mappings
ly: M — M and ¢* : G — M, given by {,(z) = ¢*(a) = l(a,z) = a.x, where a € G
and z € M.

For any X € g we define the fundamental vector field (x = (¥ € X(M) by (x(x) =
T (7). X = Tie,o)l.(X,0z).
Lemma. In this situation the following assertions hold:

(1) (:g— X(M) is a linear mapping.

(2) Tu(la)-Cx (%) = Cad(a)x (a.z).
(3) Rx x 0pr € X(G x M) is L-related to (x € X(M).
(4)

4) [Cx,¢v] = —(xy)-

Proof. (1) is clear.
(2) We have £,0*(b) = abx = aba™ ax = £°® conj,(b), so

To(lo).Cx (@) = Ty (€2). To(07). X = To(ly 0 6%).X
=T (£**). Ad(a). X = Cad(a)x (az).

(3) We have £ o (Id x £,) = Lo (u* x Id) : G x M — M, so

CX(K(av I)) = T(e,a:c)€~(Xv Oam) = TE(Id X T(Ea))'(Xa O.T)
— T0(T(u%) x 1d).(X,0,) = TC.(Rx % Oxr)(a, ).

(4) [RX X Opr, Ry X OM] = [Rx,Ry] X 0y = —R[ij] x 0p7 is f-related to [C:)(,Cy]
by (3) and by (3.10). On the other hand —R|x y] x Ops is f-related to —(jx,y] by
(3) again. Since £ is surjective we get [(x,(y] = —(x,y;- O

5.13. Let r : M x G — M be a right action, so 7 : G — Diff(M) is a group anti
homomorphism. We will use the following notation: »*: M — M and r, : G — M,
given by r,(a) = r%(z) = r(z,a) = z.a.

For any X € g we define the fundamental vector field (x = (¥ € X(M) by (x(x) =
Te(Tm).X = T(w,e)r.(()m, X)
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Lemma. In this situation the following assertions hold:
(1) ¢:g— X(M) is a linear mapping.
(2) To(r).Cx (%) = Cad(a—1)x (7).
(3) Op X Lx € X(M x G) is r-related to (x € X(M).
(4) Cx,¢v]l=(x,y)- O

5.14. Theorem. Let ¢ : G x M — M be a smooth left action. For x € M let
G, = {a € G : ax = zx} be the isotropy subgroup or firpoint group of = in G, a
closed subgroup of G. Then {* : G — M factors over p: G — G/G, to an injective
immersion i* : G/G, — M, which is G-equivariant, i.e. £, 0 i* = i* o i, for all
a € G. The image of i* is the orbit through x.

The fundamental vector fields span an integrable distribution on M in the sense of
(3.23). Its leaves are the connected components of the orbits, and each orbit is an
wniatial submanifold.

Proof. Clearly ¢* factors over p to an injective mapping i* : G/G, — M; by the
universal property of surjective submersions ¢* is smooth, and obviously it is equi-
variant. Thus Tp(a)(ix).Tp(e) (ﬂa) = Tp(e) (’L"17 o ,L_La) = p(e) (f o1 ) T, (Ea)-Tp(e) (Zx)
for all @ € G and it suffices to show that T}, (i") is injective.

Let X € g and consider its fundamental vector field (x € X(M). By (3.14) and
(5.12.3) we have

Uexp(tX), ) = L(FIRXX0M (¢ 2)) = FISX (U(e, 2)) = FI8 ().

So exp(tX) € G,, ie. X € g,, if and only if (x(z) = 0,. In other words,
0r = (x () = Te(£%). X = Tpye)(17).Tep. X if and only if Tep. X = Opey. Thus i@ is
an immersion.

Since the connected components of the orbits are integral manifolds, the funda-
mental vector fields span an integrable distribution in the sense of (3.23); but also
the condition (3.28.2) is satisfied. So by theorem (3.25) each orbit is an initial
submanifold in the sense of (2.13). O

5.15. Theorem. [Palais, 1957] Let M be a smooth manifold and let ¢ : g — X (M)
be a homomorphism from a finite dimensional Lie algebra g into the Lie algebra of
vector fields on M such that each element (x in the image of ( is a complete vector
field. Let G be a simply connected Lie group with Lie algebra g.

Then there exists a left action | : G x M — M of the Lie group G on the manifold
M whose fundamental vector field mapping equals —(.

Proof. On the product manifold G x M we consider the sub vector bundle F =
{(Lx(9),¢x(z): (9,2) € Gx M, X € g} C TG x TM with global frame Lx, X (x,,
where the X; form a basis of g, and where Lx € X(G) is the left invariant vector field
generated by X € g. Then F is an integrable subbundle since [Lx x (x, Ly X (y| =
[LX, Ly] X [Cx, Cy] = L[X,Y] X C[X,Y}- Thus by theorem (320) (OI‘ (328)) the bundle
E induces a foliation on G x M. Note that by (4.18.3) for the flow we have

(1) FI X% (g,x) = (g. exp(tX), FI§* (x)).
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Claim. For any leaf L. C G x M, the restriction pry |L : L — G is a covering map.

For (g,z) € L we have T{4 .)(pry)(Lx(g),C(x(z)) = Lx(g), thus pry |L is locally
a diffeomorphism. For any ¢g; € G we can find a piecewise smooth curve ¢ in G
connecting g with g; consisting of pieces of the form ¢ — g;.exp(tX;). Starting
X6 to
obtain a curve ¢ in L with pr; o¢ = ¢ which connects (g, x) with (g1,21) € L for
some x1 € M. Thus pr; : L — G is surjective. Next we consider some absolutely

convex ball B C g such that exp: g D B — U C G is a diffeomorphism onto an

from (g,x) € L we can fit together corresponding pieces of the form Flfx

open neighborhood U of e in G. We consider the inverse image (pr, |L)"!(g.U) C L
and decompose it into its connected components, (pry |L)"*(g.U) =||V; C L. Any
point in g.U is of the form g.exp(X) for a unique X € B, and we may lift the curve
t — g.exp(tX) in G to the curve Flfx X6x (9,x;) in V;. So each V; is diffeomorphic
to ¢g.U via pry |V, and the claim follows.

Since G is simply connected we conclude that for each leaf L the mapping pr, |L :
L — @ is a diffeomorphism. We now define the action as follows: For g € G and
x € M consider the leaf L(e,x) through (e, z) and put

(2) I(g,2) = g.x = pry((pry | L(e,2)) "' (g)) € M.

From the considerations in the proof of the claim and from (1) it follows that for
X € g we also have

(3) l(exp(X),z) = exp(X).z = FI$¥ () € M.

By (2) the mapping [ : G x M — M is well defined, and by (3) it is an action and
smooth near {e} x M, thus everywhere. [

5.16. Semidirect products of Lie groups. Let H and K be two Lie groups and
let /: Hx K — K be a smooth left action of H in K such that each ¢}, : K — K
is a group automorphism. So the associated mapping ¢ : H — Aut(K) is a smooth
homomorphism into the automorphism group of K. Then we can introduce the
following multiplication on K x H

(1) (k, h) (K, 1) := (ken(K), hI).

It is easy to see that this defines a Lie group G = K X, H called the semidirect
product of H and K with respect to £. If the action /¢ is clear from the context we
write G = K x H only. The second projection pro : K x H — H is a surjective
smooth homomorphism with kernel K x {e}, and the insertion ins, : H — K x H,
ins.(h) = (e, h) is a smooth group homomorphism with prs o ins, = Idy.

Conversely we consider an exact sequence of Lie groups and homomorphisms
(2) (e} 5K LG22 H- {e)

So j is injective, p is surjective, and the kernel of p equals the image of j. We suppose
furthermore that the sequence splits, so that there is a smooth homomorphism
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s : H — G with pos = Idyg. Then the rule ¢, (k) = s(h)ks(h™!) (where we
suppress j) defines a left action of H on K by automorphisms. It is easily seen
that the mapping K xy H — G given by (k, h) — k.s(h) is an isomorphism of Lie
groups. So we see that semidirect products of Lie groups correspond exactly to
splitting short exact sequences.

5.17. The tangent group of a Lie group. Let G be a Lie group with Lie algebra
g. We will use the notation from (4.1). First note that TG is also a Lie group
with multiplication 7'y and inversion Tw, given by (see (4.2)) T(qp)it-( asm) =

T (1b)-£0 + Ty (pa)-mp and Tov.€q = —To(pa—1) Ta(p® ) .La.

Lemma. Via the isomomorphism given by the right trivialization g x G — TG,
(X,9) — T.(u9).X, the group structure on TG looks as follows: (X,a).(Y,b) =
(X 4+ Ad(a)Y,a.b) and (X,a)™ = (= Ad(a~1)X,a™1). So TG is isomorphic to the
semidirect product g X G.

Proof. T(qpyp.(Tp* X, TptY) =Tu’ Tp* X 4+ Tpe Tpb.Y =
=Tu X + T,ub.T,ua.T,qu1 Tpa.Y = Tp(X + Ad(a)Y).
T Tp® X = —Tp®  Tpy—.Tp* X = —Tp® . Ad(a=V)X. O

Remark. In the left trivialisation TA : G x g — TG, TA.(g,X) = Te(py).X, the
semidirect product structure looks awkward: (a, X).(b,Y) = (ab,Ad(b~1)X +Y)
and (a, X)™! = (a7, — Ad(a)X).
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CHAPTER III
Differential Forms and De Rham Cohomology

6. Vector Bundles

6.1. Vector bundles. Let p: E — M be a smooth mapping between manifolds.
By a wvector bundle chart on (E,p, M) we mean a pair (U, ), where U is an open
subset in M and where 1 is a fiber respecting diffeomorphism as in the following

Y

)
\ o

U

Here V is a fixed finite dimensional vector space, called the standard fiber or the

diagram:

UxV

typical fiber, real for the moment.

Two vector bundle charts (Uy,;) and (Us, ) are called compatible, if 11 015 ' is
a fiber linear isomorphism, i.e. (5 05 1) (x,v) = (2,91.2(z)v) for some mapping
Y12 : Uy g := Uy NUz — GL(V). The mapping 11 2 is then unique and smooth,
and it is called the transition function between the two vector bundle charts.

A wector bundle atlas (Uy,a)aca for (E,p, M) is a set of pairwise compatible
vector bundle charts (U,, %) such that (U,)aca is an open cover of M. Two
vector bundle atlases are called equivalent, if their union is again a vector bundle
atlas.

A wvector bundle (E,p, M) consists of manifolds E (the total space), M (the base),
and a smooth mapping p : E — M (the projection) together with an equivalence
class of vector bundle atlases: So we must know at least one vector bundle atlas. p
turns out to be a surjective submersion.

6.2. Let us fix a vector bundle (E,p, M) for the moment. On each fiber E, =
p~1(z) (for x € M) there is a unique structure of a real vector space, induced from
any vector bundle chart (U, ¥,) with = € U,. So 0, € E, is a special element and
0: M — E, 0(x) = 0,, is a smooth mapping, the zero section.

A section u of (E,p, M) is a smooth mapping v : M — E with powu = Idy;.
The support of the section wu is the closure of the set {x € M : u(z) # 0,} in M.
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The space of all smooth sections of the bundle (E,p, M) will be denoted by either
NE) =T(E,p,M) = T'(E — M). Clearly it is a vector space with fiber wise
addition and scalar multiplication.

If (Uy,%a)aca is a vector bundle atlas for (E,p, M), then any smooth mapping
fo : Uy — V (the standard fiber) defines a local section x — 1 (x, fo(z)) on U,.
If (ga)aca is a partition of unity subordinated to (U,), then a global section can
be formed by z — Y ga(z) 95 (2, fo(z)). So a smooth vector bundle has ‘many’
smooth sections.

6.3. We will now give a formal description of the amount of vector bundles with
fixed base M and fixed standard fiber V.

Let us first fix an open cover (Uy)aeca of M. If (E,p, M) is a vector bundle which
admits a vector bundle atlas (U,,1,) with the given open cover, then we have
Ye © @[Jﬁ_l(x,v) = (x,9Yqp(z)v) for transition functions 9ag : Usg = Uy NUg —
GL(V), which are smooth. This family of transition functions satisfies

W Yap(z) - Ypy(x) = Poy(x) for each z € Uygy = Uy, NUgNU,
VYaa(T) =€ for all z € U,

Condition (1) is called a cocycle condition and thus we call the family (1,3) the
cocycle of transition functions for the vector bundle atlas (Uq, ¥y ).

Let us suppose now that the same vector bundle (E,p, M) is described by an
equivalent vector bundle atlas (U,, ¢o) with the same open cover (U,). Then the
vector bundle charts (U, %) and (U, ¢a) are compatible for each «, so ¢, ©
Yz, v) = (2, 7o (x)v) for some 7, : Uy, — GL(V). But then we have

(, Ta (2)Yap (2)0) = (Pa 0 Vg ) (2, Yap()0)
= (906! °© ¢;1 0 Pq Owgl)(xﬂj) = (9004 Owg_l)(ajvv)
= (pa o9y 0pg oty )(2,0) = (2, Pap(x)Ts(x)V).

So we get

(2) To () Yap(x) = pap(x)mp(x) for all z € Uyp.

We say that the two cocycles (¢o3) and (p,3) of transition functions over the cover
(Ua) are cohomologous. The cohomology classes of cocycles (1,3) over the open
cover (U,) (where we identify cohomologous ones) form a set H'((U,), GL(V))
the first Cech cohomology set of the open cover (U,) with values in the sheaf
C>( ,GL(V)) =:GL(V).

Now let (W;)icr be an open cover of M that refines (U,) with W; C Uc(;), where
e : I — A is some refinement mapping, then for any cocycle (¢3) over (U,) we
define the cocycle €*(Ya5) =: (@i;) by the prescription ¢;; := ¥.(5)(j) | Wij. The
mapping €* respects the cohomology relations and induces therefore a mapping
et - H'((U,),GL(V)) — HY((W;),GL(V)). One can show that the mapping £*
depends on the choice of the refinement mapping € only up to cohomology (use

Ti = Ye@)m@) | Wi if € and n are two refinement mappings), so we may form
the inductive limit lim H*(U,GL(V)) =: H*(M,GL(V)) over all open covers of M
directed by refinement.
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Theorem. There is a bijective correspondence between H'(M,GL(V)) and the set
of all isomorphism classes of vector bundles over M with typical fiber V.

Proof. Let (¢a3) be a cocycle of transition functions as : Usg — GL(V') over
some open cover (Uy) of M. We consider the disjoint union | | . {a} X Uy X V
and the following relation on it: («a,z,v) ~ (B,y,w) if and only if z = y and
Ypa(2)o = w,

By the cocycle property (1) of (o) this is an equivalence relation. The space of all
equivalence classes is denoted by E = V B(1,3) and it is equipped with the quotient
topology. We put p : E — M, p[(a,z,v)] = z, and we define the vector bundle
charts (Uy, ¥a) by ¥o[(a, z,v)] = (2,0), Y : p7H(Uy) =: E | Uy — Uy x V. Then
the mapping v, o ¢§1($7U) = Ya[(B,2,v)] = Yalla, 2, Yap(®)v)] = (T, Yas(z)v)
is smooth, so E' becomes a smooth manifold. F is Hausdorff: let u # v in Fj; if
p(u) # p(v) we can separate them in M and take the inverse image under p; if
p(u) = p(v), we can separate them in one chart. So (E,p, M) is a vector bundle.

Now suppose that we have two cocycles (¢o3) over (U,), and (g;;) over (V;).
Then there is a common refinement (W,) for the two covers (U,) and (V;). The
construction described a moment ago gives isomorphic vector bundles if we restrict
the cocycle to a finer open cover. So we may assume that (,3) and (pag) are
cocycles over the same open cover (U,). If the two cocycles are cohomologous,
SO To - Yap = Pap - T3 01 Uap, then a fiber linear diffeomorphism 7 : VB(¢a3) —
VB(pap) is given by o, 7[(a, z,v)] = (2,74 (x)v). By relation (2) this is well defined,
so the vector bundles V B(1o3) and V B(p.p) are isomorphic.

Most of the converse direction was already shown in the discussion before the
theorem, and the argument can be easily refined to show also that isomorphic
bundles give cohomologous cocycles. [

6.4. Remark. If GL(V) is an abelian group (only if V is of real or complex
dimension 1), then H*(M,GL(V)) is a usual cohomology group with coefficients in
the sheaf GL(V') and it can be computed with the methods of algebraic topology.
We will treat the two situation in a moment. If GL(V) is not abelian, then the
situation is rather mysterious: there is no clear definition for H?(M,GL(V)) for
example. So H'(M,GL(V)) is more a notation than a mathematical concept.

A coarser relation on vector bundles (stable isomorphism) leads to the concept of
topological K-theory, which can be handled much better, but is only a quotient of
the real situation.

Example: Real line bundles. As an example we want to determine here the set
of all real line bundles on a smooth manifold M. Let us first consider the following
exact sequence of abelian Lie groups:

0— (R,+) =% GL(1,R) = (R\0,-) & Zy — 0. = 0
where Zo := 7Z /27 is the two element group. This gives rise to an exact sequence
of sheafs with values in abelian groups:

0—C®( ,R) =225 0%°( ,GL(1,R)) 25 Zy — 0
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where in the end we find the constant sheaf. This induces the following long exact
sequence in cohomology (the Bockstein sequence):

- 0=H"(M,C>®( ,R)) =25 AY(M,C>( ,GL(1,R)) 25
P HY (M, Zo) % H2(M,C°( ,R)=0— ...

Here the sheaf C*°( ,R) has 0 cohomology in dimensions > 1 since this is a fine
sheaf, i.e. it admits partitions of unity. Thus p, : H'(M,C®( ,GL(1,R)) —
HY(M,Zs) is an isomorphism, and by the theorem above a real line bundle E over
M is uniquely determined by a certain cohomology class in H! (M, Z,), namely the
first Stiefel-Whitney class w1 (E) of this line bundle.

Example: Complex line bundles. As another example we want to determine
here the set of all smooth complex line bundles on a smooth manifold M. Again
we first consider the following exact sequence of abelian Lie groups:

02 2Y"L (C,+) 22 GL(1,C) = (C\0,-) — 0.

This gives rise to the following exact sequence of sheafs with values in abelian
groups:

0—-Z—-C> ,C)—=C>( ,GL(1,C))—0

where in the beginning we find the constant sheaf. This induces the following long
exact sequence in cohomology (the Bockstein sequence):

0= HYM,Cc®( ,C)) 22 Y M, C=( ,GL(1,C)) >

S (M7 2L g

H*(M,C>®( ,C)=0—...
Again the sheaf C*°( ,R) has 0 cohomology in dimensions > 1 since it is a fine
sheaf. Thus 6 : H*(M,C>( ,GL(1,C)) — H?(M,Z) is an isomorphism, and by
the theorem above a complex smooth line bundle E over M is uniquely determined
by a certain cohomology class in H?(M,Z), namely the first Chern class c1(E) of
this line bundle.

6.5. Let (Uy, %) be a vector bundle atlas for a vector bundle (E, p, M). Let (e )J 1
be a basis of the standard fiber V. We consider the section s;(z) := ¢, '(z,e;) for
x € Uy. Then the s; : U, — E are local sections of E such that (sj(x))é?:l is a

basis of F, for each z € U,: we say that s = (s1,...,sx) is a local frame field for
FE over U,,.

Now let conversely U C M be an open set and let s; : U — E be local sections of
E such that s = (s1,...,sk) is a local frame field of E over U. Then s determines a
unique vector bundle chart (U, 1) of E such that s;(z) = ¢~ (z,e;), in the following
way. We define f : U x R* — E | U by f(z,vl,... ,0%) = Zf L v/ sj(z). Then f
is smooth, invertible, and a fiber linear isomorphism, so (U, = f~1) is the vector

bundle chart promised above.

Draft from September 15, 2004 Peter W. Michor,



6.8 6. Vector Bundles 71

6.6. Let (E,p, M) and (F,q, N) be vector bundles. A vector bundle homomorphism
@ : E — Fis a fiber respecting, fiber linear smooth mapping

¥

E——F

p[ [q

So we require that ¢, : E; — Fy(,) is linear. We say that ¢ covers . If ¢ is

invertible, it is called a vector bundle isomorphism.

6.7. A wvector subbundle (F,p, M) of a vector bundle (E,p, M) is a vector bundle
and a vector bundle homomorphism 7 : ' — FE, which covers Id,;, such that
7. : Fp, — FE, is a linear embedding for each x € M.

Lemma. Let ¢ : (E,p,M) — (E’,q,N) be a vector bundle homomorphism such
that rank(p, : E, — E:O(w)) 15 locally constant in x € M. Then ker ¢, given by

(ker ), = ker(p,), is a vector subbundle of (E,p, M).

Proof. This is a local question, so we may assume that both bundles are trivial:
let E = M x RP and let FF = N x R, then ¢(z,v) = (¢(z),p(x).v), where P :
M — L(RP,R%). The matrix 7(z) has rank k, so by the elimination procedure we
can find p — k linearly independent solutions v;(z) of the equation @(x).v = 0. The
elimination procedure (with the same lines) gives solutions v;(y) for y near x which
are smooth in y, so near z we get a local frame field v = (v1,... ,v,_k) for ker p.
By (6.5) ker ¢ is then a vector subbundle. [

6.8. Constructions with vector bundles. Let F be a covariant functor from
the category of finite dimensional vector spaces and linear mappings into itself,
such that F : L(V,W) — L(F(V),F(W)) is smooth. Then F will be called a
smooth functor for shortness sake. Well known examples of smooth functors are
F(V) = A*(V) (the k-th exterior power), or F(V) = ®" V', and the like.

If (E,p, M) is a vector bundle, described by a vector bundle atlas with cocycle of
transition functions ¢, : Uag — GL(V), where (U, ) is an open cover of M, then we
may consider the smooth functions F(pag) : * — F(pas(z)), Usp — GL(F(V)).
Since F is a covariant functor, F(¢.g) satisfies again the cocycle condition (6.3.1),
and cohomology of cocycles (6.3.2) is respected, so there exists a unique vector
bundle (F(F) := VB(F(vas)),p, M), the value at the vector bundle (E,p, M) of
the canonical extension of the functor F to the category of vector bundles and their
homomorphisms.

If F is a contravariant smooth functor like duality functor F(V) = V*, then we
have to consider the new cocycle F (gogé) instead of F(¢ag)-

If F is a contra-covariant smooth bifunctor like L(V, W), then the construction
F(VB(Yag), VB(pag)) = VB(}"(@D;&, ©ap)) describes the induced canonical vec-

tor bundle construction, and similarly in other constructions.
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So for vector bundles (E,p, M) and (F,q, M) we have the following vector bundles
with base M: A*E, E® F, E*, AE = @,-,A"E, E® F, L(E,F) = E*® F, and
SO on.

6.9. Pullbacks of vector bundles. Let (E,p, M) be a vector bundle and let
f : N — M be smooth. Then the pullback vector bundle (f*E, f*p, N) with the
same typical fiber and a vector bundle homomorphism

PR p*f
f*pl lp
f

N———M

is defined as follows. Let E be described by a cocycle (¢,3) of transition functions
over an open cover (U,) of M, E = VB(¢43). Then (¢os o f) is a cocycle of
transition functions over the open cover (f~1(U,)) of N and the bundle is given
by f*E :=VB(apo f). As a manifold we have f*E =N x FE in the sense of

(f,M,p)
(2.17).

The vector bundle f*E has the following universal property: For any vector bundle
(F,q, P), vector bundle homomorphism ¢ : ' — E and smooth g : P — N such
that fog = ¢, there is a unique vector bundle homomorphism ¢ : F' — f*FE with

Y =gand p*forh=o.

I 9
R
q o
lf*p p

6.10. Theorem. Any vector bundle admits a finite vector bundle atlas.

Proof. Let (E,p, M) be the vector bundle in question, where dim M = m. Let
(Uas¥a)aca be a vector bundle atlas. By topological dimension theory, since
M is separable, there exists a refinement of the open cover (U,)qca of the form
(Vij)i=1,....m+1;jen, such that V;; NV, = 0 for j # k, see the remarks at the end of
(1.1). We define the set W; := | |;cy Vi; (a disjoint union) and ¢; [ Vij = ta(i ),
where o : {1,...,m + 1} x N — A is a refining map. Then (W;,1;)i=1,... m+1 is a
finite vector bundle atlas of . [

6.11. Theorem. For any vector bundle (E,p, M) there is a second vector bundle
(F,p, M) such that (E ® F,p, M) is a trivial vector bundle, i.e. isomorphic to
M x RN for some N € N.
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Proof. Let (U;,v;)_; be a finite vector bundle atlas for (E,p, M). Let (g;) be
a smooth partition of unity subordinated to the open cover (U;). Let ¢; : RF —
(R¥)" = R x - - - x R¥ be the embedding on the i-th factor, where R* is the typical
fiber of E. Let us define ¥ : E — M x R™ by

( Zgz ) (€ 0 pra o P)(u )>,

then v is smooth, fiber linear, and an embedding on each fiber, so E is a vector
subbundle of M x R™ via 1. Now we define F, = Ei in {z} x R"® with respect
to the standard inner product on R™. Then F — M is a vector bundle and
EoF=MxR* O

6.12. The tangent bundle of a vector bundle. Let (E,p, M) be a vector
bundle with fiber addition +g : E X3y E — FE and fiber scalar multiplication
mP : E — E. Then (TE,ng, E), the tangent bundle of the manifold E, is itself
a vector bundle, with fiber addition denoted by +7g and scalar multiplication
denoted by m!~.

If (Up,Va: E [ Uy — Uy xV)aea is a vector bundle atlas for E, such that (Uy, ue)
is also a manifold atlas for M, then (E | Uy, v)aca is an atlas for the manifold
E, where

w/ :(uaxldv)owaE[UaHUaXV—)ua(UOC)XVCRmXV

«

Hence the family (T(E [ Uy), T¥., : T(E | Uy) — T(ua(Us) X V) = ua(Uy,) X
V X R™ x V)aeca is the atlas describing the canonical vector bundle structure of
(TE,ng, E). The transition functions are in turn:

(Yo 095" )(2,v) = (¢, %ap(2)v)  for z € Uag
(ta 0z )(y) = uap(y) fory € ug(Uap)
(e 0 (V) ™) (Y, v) = (uap(y), Yas(ug ' (¥)v)
(T4 0 T(W) ")y, vi6 w) = (tap(y), Yap(ug (¥)vs d(uap) (Y)E,
(d(Wap o ug ") B + Yas(ug” (y))w).
So we see that for fixed (y,v) the transition functions are linear in ({,w) € R™ x V.
This describes the vector bundle structure of the tangent bundle (TE,7g, F).

For fixed (y,§) the transition functions of T'E are also linear in (v,w) € V x V.
This gives a vector bundle structure on (T'E,Tp,TM). Its fiber addition will be
denoted by T(+g) : T(E xp E) = TE X7y TE — TE, since it is the tangent
mapping of +p. Likewise its scalar multiplication will be denoted by T(mZF). One
may say that the second vector bundle structure on T'F, that one over T'M, is the
derivative of the original one on E.

The space {£ € TE : Tp.2 = 0in TM} = (T’p)~1(0) is denoted by VE and is
called the vertical bundle over E. The local form of a vertical vector Z is T.,.Z =
(y,v;0,w), so the transition function looks like

(T o T(W) ™)y, 13 0,0) = (uap(y), Yap(uz ' (1))v;0,Yas(uz’ (y))w).

Draft from September 15, 2004 Peter W. Michor,



74 Chapter III. Differential Forms and De Rham Cohomology 6.14

They are linear in (v,w) € V x V for fixed y, so VE is a vector bundle over M. It
coincides with 0},(TE,Tp, T M), the pullback of the bundle TE — TM over the
zero section. We have a canonical isomorphism vlg : F X E — V E, called the
vertical lift, given by vlg(uz, vy) := 4 |o(u,+1tv,), which is fiber linear over M. The
local representation of the vertical lift is (T%/, o vig o(¢, x ¥/)) ™Y ((y, u), (y,v)) =
(¥, u; 0, v).

If (and only if) ¢ : (E,p, M) — (F,q,N) is a vector bundle homomorphism, then
we have vlpo(p Xpr ¢) = Tpovlg : Exy E— VEF C TF. So vl is a natural
transformation between certain functors on the category of vector bundles and their
homomorphisms.

The mapping vpry := prg o VlEl : VE — FE is called the wvertical projection. Note
also the relation prq o Vl;—vl =7ng | VE.

6.13. The second tangent bundle of a manifold. All of (6.12) is valid for the
second tangent bundle T?M = TTM of a manifold, but here we have one more

natural structure at our disposal. The canonical flip or involution ky; : T?°M —
T?M is defined locally by

(T*uwo kpr o T?u™) (@, &1, ¢) = (2,1m;€,C),

where (U, u) is a chart on M. Clearly this definition is invariant under changes of
charts.

The flip k) has the following properties:
) ky oT?f =T?f ok for each f € C®°(M,N).
( ) OKRM = TTM-

2)
) T™TM O RpM = T(ﬂ'M)
)
)

w

4
)

KR Ml = KM-
K is a linear isomorphism from the bundle (TT'M, T (7 ), T M) to the bun-
dle (TTM, 7y, TM), so it interchanges the two vector bundle structures
on TTM.
(6) It is the unique smooth mapping TTM — TT M which satisfies the equation

2.9 c(t,s) = kL £c(t,s) for each ¢ : R? — M.

All this follows from the local formula given above.

(1
(
(
(
(

6.14. Lemma. For vector fields X, Y € X(M) we have

(X,Y] =vpryp0o(TY o X —kpyoTX oY),
TY o X —kppoTX oY =vlpy (Y, [X,Y]).

We will give global proofs of this result later on: the first one is (6.19).

Proof. We prove this locally, so we may assume that M is open in R™, X (z) =
(z, X (x)), and Y(2) = (z,Y (z)). Then by (3.4) we have

[(X,Y](z) = (z,dY (z).X (z) — dX (z).Y (x)),
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and thus

(TY oX —kpyoTX oY) (z) =TY.(x, X () — kar o TX.(2,Y (x)) =
= (2,Y(2); X (2),dY (2). X (2)) -
= (z,Y(2);0,dY (z).X (z) — dX (z).Y (x
vprpp o(TY o X —kppoTX oY) (2)

—~ Z X

6.15. Natural vector bundles or vector bundle functors. Let Mf,, denote
the category of all m-dimensional smooth manifolds and local diffeomorphisms (i.e.
immersions) between them. A wvector bundle functor or natural vector bundle is a
functor F' which associates a vector bundle (F(M),pas, M) to each m-manifold M
and a vector bundle homomorphism

F(M) MF(N)
pM[ MPN
f

M ——N

toeach f: M — N in M f,,, which covers f and is fiberwise a linear isomorphism.
We also require that for smooth f : R x M — N the mapping (¢, z) — F(f:)(x) is
also smooth R x F(M) — F(N). We will say that F' maps smoothly parametrized
families to smoothly parametrized families.

Examples. 1. TM, the tangent bundle. This is even a functor on the category
Mf of all manifolds and all smooth mappings, not only local diffeomorphisms.

2. T*M, the cotangent bundle, where by (6.8) the action on morphisms is given by

(T*f)w = ((Tuf)~")* : TyM — T§(,)N. This functor is defined on M f,, only.

3. AFT*M, AT*M = @kzo AFT* M.

4. ®kT*M®®£TM =T"M®- - QQT"M TM ® ---®TM, where the action
on morphisms involves T'f~! in the T*M-parts and T'f in the T'M-parts.

5. F(TM), where F is any smooth functor on the category of finite dimensional
vector spaces and linear mappings, as in (6.8).

6. All examples discussed till now are of the following form: For a manifold of
dimesion m, consider the linear frame bundle GL(R™,TM) = invJ}(R™, M) (see
(21.11) and (24.6)) and a representation of the structure group p : GL(m,R) —
GL(V') on some vector space V. Then the associated bundle GL(R™,TM )X qr,(m,r)
V is a natural bundle. This can be generalized to frame bundles of higher order,
which is described in (24.6).

6.16. Lie derivative. Let F' be a vector bundle functor on M f,, as described in
(6.15). Let M be a manifold and let X € X(M) be a vector field on M. Then the

Draft from September 15, 2004 Peter W. Michor,



76 Chapter III. Differential Forms and De Rham Cohomology 6.17

flow Flf( , for fixed t, is a diffeomorphism defined on an open subset of M, which
we do not specify. The mapping

F(M) @ F(M)
th lpM
FL*

M M

is then a vector bundle isomorphism, defined over an open subset of M.

We consider a section s € I'(F(M)) of the vector bundle (F(M),par, M) and we
define for t € R
(FLX)*s := F(FI*,) o s o FI*,

a local section of the bundle F(M). For each z € M the value ((F1X)*s)(z) €
F(M), is defined, if ¢ is small enough (depending on z). So in the vector space
F(M), the expression %M(Flf{)*s)(a}) makes sense and therefore the section

Lxs:= %|O(Flf)*s

is globally defined and is an element of I'(F(M)). It is called the Lie derivative of
s along X.

Lemma. In this situation we have

(1) (FIY)*(FLY)*s = (F1,X.,.)*s, wherever defined.
(2) %(Fl?)*s = (FIX)*Lxs = Lx (FIX)*s, so

[Lx, (FL)*] := Lx o (FLX)* — (FLX)* o Lx = 0, whenever defined.
(3) (FIX)*s = s for all relevant t if and only if Lxs = 0.

Proof. (1) is clear. (2) is seen by the following computations.

E(FI)*s = o (FLY)*(FI7)*s = Lx (FI7)*s.
L(FL) ) (2) = L ]o((FL)*(F1)*s)(x)
= Lo F(FIX,) (F(F1
= F(F1%,) & |o(F(FI
= ((FI{)*Lxs)(z),

%) 05 o FIT)(FI ()

) 05 o FIT)(FI ()

since F(FI7¥,) F(M)p1x (o) — F(M), is linear.

(3) follows from (2). O

6.17. Let Fy, Fy be two vector bundle functors on M f,,. Then the (fiberwise)
tensor product (F; ® Fy)(M) := F1(M) ® F5(M) is again a vector bundle functor

and for s; € I'(F;(M)) there is a section 1 ® sy € I'((F} ® Fy)(M)), given by the
pointwise tensor product.
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Lemma. In this situation, for X € X(M) we have
Ex(sl (%9 82) =Lx81 ® 89+ 81 Q@ LxSa.

In particular, for f € C*°(M) we have Lx(fs) =df(X)s+ f Lxs.

Proof. Using the bilinearity of the tensor product we have

|

o(FLX)* (51 ® s9)

o((FI)"s1 @ (FI7¥)"s2)
Lo(FIY)*s1 ® 52 + 51 ® 4o (FIY)*s2
x81 ® 82+ 81 @ Lxse. [

Lx(s1®82) = %

t

I
[

6.18. Let ¢ : F1 — F; be a linear natural transformation between vector bundle
functors on M f,,. So for each M € M f,, we have a vector bundle homomorphism
op 2 Fi(M) — Fy(M) covering the identity on M, such that Fa(f) o oy =
on o Fi(f) holds for any f: M — N in Mf,,.

Example. A tensor field of type (g ) is a smooth section of the natural bundle
QRIT*M @ @ TM. For such tensor fields, by (6.16) the Lie derivative along any
vector field is defined, by (6.17) it is a derivation with respect to the tensor product.
For functions and vector fields the Lie derivative was already defined in section 3.
This natural bundle admits many natural transformations: Any ‘contraction’ like
the trace T*M @ TM = L(TM,TM) — M x R, but applied just to one specified
factor T*M and another one of type T'M, is a natural transformation. And any
‘permutation of the same kind of factors’ is a natural tranformation.

Lemma. In this situation we have Lx (pprs) = om(Lxs), for s € T(Fy(M)) and
X e X(M).

Proof. Since @), is fiber linear and natural we can compute as follows.

Lx(pu s)(@) = Flo(F) (oar 8))(2) = flo(F(FLE,) 0 par 0 5 0 FIY ) ()
= pur © frlo(FL(FLL,) 0 s 0 FIY ) (2) = (o Lxs)(2). O

Thus the Lie derivative on tensor fields commutes with any kind of ‘contraction’ or
‘permutation of the indices’.

6.19. Let F' be a vector bundle functor on M f,, and let X € X(M) be a vec-
tor field. We consider the local vector bundle homomorphism F(FL;*) on F(M).
Since F(F1\) o F(F1)') = F(F1},) and F(F1y') = Idp ) we have L F(FIX) =
L1,F(FIX) o F(FIY) = XF o F(FIY), so we get F(FIX) = FIX | where X =
%\OF(F@() € X(F(M)) is a vector field on F(M), which is called the flow prolon-
gation or the natural lift of X to F(M).
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Lemma.

(1) XT =kpoTX.

(2) [X,V]" = [XF, V7.

(3) XF : (F(M),pyp, M) — (TF(M),T(prn), TM) is a vector bundle homo-
morphism for the T (+)-structure.

(4) For s e I'(F(M)) and X € X(M) we have
Lxs=vprpmn o (T'soX — XFos).

(5) Lxs is linear in X and s.

Proof. (1) is an easy computation. F(FL;*) is fiber linear and this implies (3). (4)
is seen as follows:

(Lxs)(x) = glo(F(FIZ,) 0 s o FIY )(2) in F(M),
= Uer(M)(%‘O(F(Fl)—(t) 0S80 Flf()(x) in VF(M))
= oprp(ny (X" 0 s o Fly () + T(F(Fly ) o T's 0 X ()
= vprpan(Tso X — XF o s)(x).
(5) Lxs is homogeneous of degree 1 in X by formula (4), and it is smooth as a

mapping X(M) — I'(F(M)), so it is linear. See [Frolicher, Kriegl, 88] or [Kriegl,
Michor, 97] for the convenient calculus in infinite dimensions.

(2) Note first that F' induces a smooth mapping between appropriate spaces of local
diffeomorphisms which are infinite dimensional manifolds (see [Kriegl, Michor, 91]).
By (3.16) we have

0= %|0 (F1¥, o FIX, o F1IY o FL¥),

[X,Y] = 222 |,(F1Y, o F1¥, o F1Y o FIX)

2 ot2
_ 9 [X,Y]

Applying F' to these curves (of local diffeomorphisms) we get

[XF,YF] =

XY
= 2| FEL) =[x, Y)F. O

6.20. Theorem. For any vector bundle functor F' on M f,, and X,Y € X(M) we
have

[Lx,Ly]:=LxoLy —LyoLx =Lixy):T(F(M))— I'(F(M)).
So L:X(M)— EndI'(F(M)) is a Lie algebra homomorphism.
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REWORK

Proof. We need some preparations. The first one is:
(1) XFo VPT (M) = %IOF(Flf) O VDT R (1)
= %|0UPT’F(M) © TF(Fli() [ VF(M)
= T(vprran) © L[0T F(FIY) | VF(M)
= T(vprp(amy) © Kp(m) OT(dt|oF( 1)) I VE(M)
= T(vprp(r)) © krony o T(XT) | VE(M).

(2) Sublemma. For any vector bundle (E,p, M) we have
vprg o T(vprg) o kg = vprg o T(vprg) =vprgovprrg : VIENTVE — E,
and this is linear for all three vector bundle structures on TTE.

The assertion of this sublemma is local over M, so one may assume that (E,p, M)
is trivial. Then one may carefully write out the action of the three mappings on a
typical element (z,v;0,w;;0,0;0,w’") € VITENTVE and get the result.

Now we can start the actual proof.
Lixy)s =vprpan(Tso [X,Y] - [X, Y]¥ os) by (6.19)
= UPrp(M) © (TsovprTM o(TY oX —kpyoTXoY)—
— UPTTR(M) o (TYF o X¥ — Kp(M) oTXFoYF)os)
= UPrE (M) © VPTTE(M) © (T25 oTY o X — Kp(m) 0T?s0TX oY —
—TY o X  os—kpanoTX oY os).
LxLys = Lx(vprp © (TsoY —YFo5s))
= UPTrp(M) © (T(ver(M)) o (T?soTY T(—=) T(Y¥)0Ts)o X—
—XFover(M)o(TsoY—YFos))
= vprpar) © T(vprp) © (T?s0TY o X T(=) T(YF) 0 T's 0 X)—
—vprpon © T(vpre) © Kr(ar oT(XF)o(TsoY —YF 05s)
= VPT (M) © UDTTR(M) © (T?s0TY 0o X — T(YF)oTso X~
—f@F(M)OT(XF)oTsoY—f—mF(M)oT(XF)oYFos).
Finally we have
[Lx,Lyls=LxLys— LyLxs
= UPTp(M) © VPTTE(M) © (Tzs oTY o X — T(YF) oTsoX—
— KF(M) oT(XT) oTsoY + kp(m) oT(XF)oYF os)
— UPTR(M) © VDTTF(M) © KF(M) © (T23 oTY o XT(-)T(Y)oTso X
T(—) Kp(a) oT(XF)oTsoY T(+) KE(M) oT(XF)oY?F 0 s)
=Lixys. U
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7. Differential Forms

7.1. The cotangent bundle of a manifold M is the vector bundle T*M := (T M)*,
the (real) dual of the tangent bundle.

If (U, u) is a chart on M, then (52,..., 52=) is the associated frame field over U
of TM. Since 2|, (u!) = du?(52|.) = 67 we see that (du,... ,du™) is the dual

frame field on T*M over U. It is also called a holonomous frame field. A section
of T*M is also called a 1-form.

7.2. According to (6.18) a tensor field of type (g) on a manifold M is a smooth
section of the vector bundle

p times q times

— —
®TM®®T*M TM® - @TMQT*M®---®T*M.

The position of p (up) and ¢ (down) can be explained as follows: If (U, u) is a chart
on M, we have the holonomous frame field

0 ] .. J
(aui1 ® Ou'2 ® ® du q)ie{l,,..,m}P,je{l,...,m}q

over U of this tensor bundle, and for any ( ) tensor field A we have

AU = ZA“ 7 ® Lo @du ® - © duds.

J1---Jq Bull ou'p

The coefficients have p indices up and ¢ indices down, they are smooth functions
on U.

From a categorical point of view one should look, where the indices of the frame
field are, but this convention here has a long tradition.

7.3. Lemma. Let ® : X(M) x --- x X(M) = X(M)* — T'(®R' TM) be a mapping
which is k-linear over C*° (M) then ® is given by the action of a (,i) -tensor field.

Proof. For simplicity’s sake we put k =1, £ =0, so ® : X(M) — C>*(M) is a
C°(M)-linear mapping: ®(f.X) = f.®(X). In the general case we subject each
entry to the treatment described below.

Cramv 1. If X | U = 0 for some open subset U C M, then we have ®(X) | U = 0.
Let z € U. We choose f € C*(M) with f(z) =0and f | M\ U = 1. Then
fX=X,5®X)(z)=2(fX)(z) = f(z).2(X)(z) =0.

CrAaM 2. If X (x) = 0 then also ®(X)(x) = 0.

Let (U,u) be a chart centered at =, let V be open with x € V. C V C U. Then
X | U= X2 and X'(z) = 0. We choose g € C®°(M) with g | V =1 and
suppg C U. Then (¢2.X) |V = X | V and by claim 1 ®(X) | V depends only on
X |V and ¢2.X = Zi(g.Xi)(g.aii) is a decomposition which is globally defined
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) () =

on M. Therefore we have ®(X)(z) = ®(¢%.X)(z) = @ (3,(9.X")(9-5%
(g X)(2).0(g. ) () = 0.

So we see that for a general vector field X the value ®(X)(z) depends only on
the value X(z), for each z € M. So there is a linear map ¢, : T,M — R for
each z € M with ®(X)(z) = ¢.(X(x)). Then ¢ : M — T*M is smooth since
¢ |V =3,®(g9.5%)du’ in the setting of claim 2. [

7.4. Definition. A differential form of degree k or a k-form for short is a section
of the (natural) vector bundle A*T* M. The space of all k-forms will be denoted by
QF(M). Tt may also be viewed as the space of all skew symmetric (2)—tensor fields,
i. e. (by (7.3)) the space of all mappings

©:X(M) x - x X(M) = X(M)* — C>(M),

which are k-linear over C*°(M) and are skew symmetric:
O(Xo1y.oo y Xok) =signo - o(Xq,..., X)

for each permutation o € Sy.

We put Q°(M) := C°°(M). Then the space

dim M
QM) = 9~
k=0

is an algebra with the following product, called wedge product. For ¢ € Q¥(M) and
Y € QM) and for X; in X(M) (or in T, M) we put

(AN X1, .o, Xiyr) =
=a Y signo-o(Xo1,. o Xok) W Xo(ur1) -+ Xo(hre))-

0ESK4e
This product is defined fiber wise, i. e. (¢ A¥), = v A1, for each x € M. It
is also associative, i.e (¢ AY) AT = @ A (p A7), and graded commutative, i. e.
@AY = (=1)*p Ap. There are differing conventions for the factor in the definition
of the wedge product: in [Penrose, Rindler, 77] the factor m is used. But then
the insertion operator of (7.7) is no longer a graded derivation. These properties
are proved in multilinear algebra. REVISE: APPENDIX

7.5. If f : N — M is a smooth mapping and ¢ € QF(M), then the pullback
f*¢ € QF(N) is defined for X; € T, N by

(1) (f*SO)x(Xla e ,Xk) = ng(x)(Txf.Xl, e ,Tfok;)

Then we have f*(¢ AY) = f*o A f*1, so the linear mapping f* : Q(M) — Q(N)
is an algebra homomorphism. Moreover we have (go f)* = f*og* : Q(P) — Q(N)
ifg M — P, and (IdM)* = IdQ(M)

So M — Q(M) =T(AT*M) is a contravariant functor from the category M f of all
manifolds and all smooth mappings into the category of real graded commutative
algebras, whereas M — AT*M is a covariant vector bundle functor defined only
on M f,,, the category of m-dimensional manifolds and local diffeomorphisms, for
each m separately.
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7.6. The Lie derivative of differential forms. Since M — A¥T*M is a vector
bundle functor on M f,,, by (6.16) for X € X(M) the Lie derivative of a k-form ¢
along X is defined by

Lxp=2L,(FL ).

Lemma. The Lie derivative has the following properties.

(1) Lx(eAY)=Lxe AN+ oA Lx, so Lx is a derivation.
(2) ForY; € X(M) we have

(Lxp) (Y1, Vi) = X(p(Y1,..., V%) = Y _o(Y1,...,[X,Yi],....Yk).

(3) [£x,Lylp = Lix y)p-
(4) G (FL)* e = (FI})" Lxp = Lx((FI7)*p).

Proof. (1) The mapping Alt : @" T*M — A*T*M, given by

(AILA)(Y1,..., Vi) == 35 > _sign(0) A(Yor, ..., Yon),

is a linear natural transformation in the sense of (6.18) and induces an algebra
homomorphism from P, I(®" T*M) onto Q(M). So (1) follows from (6.17)
and (6.18).

Second, direct proof, using the definition and (7.5):

Lxlp ) = Eo(FIX) (0 A w) = o ((FIX)"e A (FIF)")
= L1o(FI) 0 A (FI)" 0 + (FIX)"o A 10(FIF) "y
=LxpANY+oALx.

(2) Again by (6.17) and (6.18) we may compute as follows, where Trace is the full
evaluation of the form on all vector fields:

X(o(Y1,...,Y3)) = Lx oTrace(p @Y1 @ --- @ Y3)
= TraceoLx(p @Y1 ® - @ Y})
:ﬁace(ﬁxw®(Y1®"'®Yk)

+eR (Y10 QLxY; @ ®Y})).

Now we use LxY; = [X,Y;] from (3.13).

Second, independent proof:

X(p(Y1,..., Vi) = L1o(FL) (911, ..., Yk))
= Lo((F1;")* ) ((FI7)* Y1, ..., (FI7)*Yz)

k
=(Lxe)(Y1,.. . Vi) + > (M1, LxY;,. ., V).
1=1
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(3) is a special case of (6.20). See (7.9.7) below for another proof.

(4) ZEL) e = o (ATEY,) 0 TRIY,)" 0 p o FIY o FIY )
= APT(FIX,)" 0 2 (A’“T(Fl)_( )* o<poF1§> o FIX
= AFT (FlXt)*oﬁwoFlX (FL)* Lxp
SEF)Y = Zo(FIS)*(FI)'Y = Lx (FIY)*p. O

7.7. The insertion operator. For a vector field X € X(M) we define the inser-
tion operator ix = i(X) : QF¥(M) — QF~1(M) by

(’LXgO)(Yl, ;Yk—l) = gD(X,Yl,... 7Yk—1)-

Lemma.

(1) ix is a graded derivation of degree —1 of the graded algebra Q(M), so we
have ix (o Ah) =ixp A+ (=1)" 98Py Ajxp.

(2) ix oty + 1y otx = 0.

(3) [,Cx,iy] = »CX @) iy - iy @) ,CX = i[X,Y]-

Proof. (1) For ¢ € QF(M) and v € QY(M) we have

(ix, (P AP (Xay oo, Xie) = (0 AN X, oo Xippe)
= ﬁ Z sign(o) @(Xala s 7X0'k)¢(Xg'(k+l), ce 7X0'(k—|—€))-

(ZX1S0 A ¢ + (_1)k90 A Z.qub)(XQa v 7Xk:—|—€)
= = D sien(0) (X1, Xoa, -, Xok) (Ko (ka1)s -+ Xo(kin)

—1)k _
+ ﬁ ZSlgH(U) O(Xo2s - s Xy 1)V (X1, Xo g2y, - -+ )-

Using the skew symmetry of ¢ and ¢ we may distribute X; to each position by

adding an appropriate sign. These are k£ + ¢ summands. Since (k:—ll)! a1t (£1_1)! =

k+¢
ket

follows.

and since we can generate each permutation in Ski, in this way, the result

(2) (’ix’iygo)(zl,...,zk_g):@(Y,X,Zl,...,zn) =
= —QO(X,)/, Zl, ce 7Zn) = —(iyix(p)(zl, ey Zk_g).
(3) By (6.17) and (6.18) we have:

Lxiye = Lx Trace; (Y ® ¢) = Trace; Lx (Y ® ¢)
= Tracel(LXY Qp+Y® ﬁxgo) = i[X7y]g0 + 1y Lx .

See (7.9.6) below for another proof. [
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7.8. The exterior differential. We want to construct a differential operator
OF(M) — QF*1(M) which is natural. We will show that the simplest choice will
work and (later) that it is essentially unique.

Let U be open in R”, let ¢ € Q¥(U) = C>(U, L*,,(R",R)). We consider the
derivative Dy € C(U, L(R", L, (R",R))), and we take its canonical image in
C>(U, LFFH(R™, R)). Here we write D for the derivative in order to distinguish
it from the exterior differential, which we define as dy := (k + 1) Alt Dy, more

explicitly as

(1) (do)e(Xo, ..., Xi) = 1 Z sign(o) Do(2)(Xe0)( X1y -+ s Xok)
k
= (1) Dep(@)(X:)(Xo, -, Xi, - .., Xp),
1=0

where the hat over a symbol means that this is to be omitted, and where X; € R™.

Now we pass to an arbitrary manifold M. For a k-form ¢ € Q¥(M) and vector fields
X; € X(M) we try to replace Dy (z)(X;)(Xo,...) in formula (1) by Lie derivatives.
We differentiate

Xi(o(2)(Xo,...)) = Dp(@)(X) (X0, )+ Y @(@)(Xo,.... DX;(2)X,,...)
0<5<k,j#t

and insert this expression into formula (1) in order to get (cf. (3.4)) our working
definition

k

(2) dp(Xo,..., Xk) =Y (-1)'Xi(¢(Xo,..., Xi,..., Xp))+

1=0
+ Y ()M o([Xs, X, Xoy -, Xy, Xy Xa).

1<j

dp, given by this formula, is (k + 1)-linear over C'°°(M), as a short computation
involving 3.4 shows. It is obviously skew symmetric, so dy is a (k + 1)-form by
(7.3), and the operator d : Q¥ (M) — QFFL(M) is called the exterior derivative.

If (U,u) is a chart on M, then we have

pIU= Z Diyoindu™ Ao A du',

i< <,
where @i, i, = go(auiil, Cee 81%). An easy computation shows that (2) leads to
(3) dp [ U= > dpj, i, ANdu'™ A Adu'*

i< <,

so that formulas (1) and (2) really define the same operator.
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7.9. Theorem. The exterior derivative d : Q¥ (M) — QFT1(M) has the following
properties:
(1) d(e AY) =dp Ap+ (=1)48%Yp A dip, so d is a graded derivation of degree
1.
(2) Lx =ix od+doix for any vector field X.
(3) d>=dod=0.
(4) f*fod=do f* for any smooth f : N — M.
(5) Lx od=do Lx for any vector field X.
( ) [,Cx,iy] = ,CX @) iy — iy 9) ,CX = Z.[X,y]. See also (773)
(7) [£x,Ly] = Lix,y] for any two vector fields X, Y.

Remark. In terms of the graded commutator
[Dl, DQ] = Dl @) DQ — (—l)deg(Dl) deg(DQ)DQ o D1

for graded homomorphisms and graded derivations (see (19.1)) the assertions of
this theorem take the following form:

()CX—[vad]
(3) 3[d,d] =o0.
(4) [ ,d] = 0.
()[Ex,d]=0-

This point of view will be developed in section (19) below. The equation (7) is a
special case of (6.20).

Proof. (2) For ¢ € Q*(M) and X; € X(M) we have

(Lx,0)(Xq,... Xk) = Xo(e(Xq,..., X%))+

+ Z D" o([Xo, Xj], X1, -, Xjy ..., X3) by (7.6.2),

k
= _Z(_l)zX(QO(XO;Xla7XZ77Xk)) -
= 3 ()(Xi, X, Xo, Xy, Xy X, X

1<i<y
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By summing up the result follows.
(1) Let ¢ € QP(M) and ) € Q4(M). We prove the result by induction on p + q.

p+q=0:d(f-g)=df-g+f-dg.
Suppose that (1) is true for p + ¢ < k. Then for X € X(M) we have by part (2)
and (7.6), (7.7) and by induction

ixd(pNY) =Lx(pANY) —dix(p A1)
=Lxp NP+ ALxy—dlixp AN+ (=1)Pp ANix1))
=ixdp ANV +dixp NP+ pNixd)+pANdixy —dixp A
— (=D lixp Ady — (=1)Pdp Nixyp — o Adixy
= ix(dp N+ (=1)P¢ A dy).

Since X is arbitrary, (1) follows.

(3) By (1) d is a graded derivation of degree 1, so d* = §[d, d] is a graded derivation
of degree 2 (see (19.1)), and is obviously local: d?(¢ A ) = d?(¢) A + o A d(¥).
Since (M) is locally generated as an algebra by C*°(M) and {df : f € C>(M)},
it suffices to show that d?f = 0 for each f € C>®(M) (d®f = 0 is a consequence).
But this is easy:

Pf(X,Y)=Xdf(Y) - Ydf(X)—df([X,Y]) = XY[f-YX[f—[X,Y]f=0.

(4) f*: QM) — Q(N) is an algebra homomorphism by (7.6), so f* od and do f*
are both graded derivations over f* of degree 1. So if f* od and do f* agree on ¢
and on 1, then also on ¢ A 1. By the same argument as in the proof of (3) above
it suffices to show that they agree on g and dg for all g € C*°(M). We have

(f*dg)y(Y) = (dg) s, (Ty £.Y) = (Ty £.Y)(9) = Y(go f)(y) = (df*g),(Y),

thus also df*dg = ddf*g = 0, and f*ddg = 0.
(5) dLx =dix d+ddix = dixd+ixdd = Lxd.

(6) We use the graded commutator alluded to in the remarks. Both £x and iy are
graded derivations, thus graded commutator [Lx,iy] is also a graded derivation as
is i;x,y]. Thus it suffices to show that they agree on 0-forms g € C*°(M) and on
exact 1-forms dg. We have

[Lx,iv]g = Lxiyg—iyLxg = Lx0—iy(dg(X)) =0 =ix y]9,
[ﬁx,iy]dg = EXiydg — iyﬁxdg = ﬁxﬁyg — iydﬁXg = (XY — YX)g = [X, Y]g
= i[X,Y]dg.

(7) By the (graded) Jacobi identity and by (6) (or lemma (7.7.3)) we have

[Lx,Ly] = [Lx,[iv,d]] = [[Lx,iy],d] + iy, [Lx,d]] = [iix,y,d| + 0= Lix y). O
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7.10. A differential form w € QF(M) is called closed if dw = 0, and it is called
ezact if w = dy for some ¢ € Q¥~1(M). Since d> = 0, any exact form is closed.
The quotient space
. Ok k+1

HE(M) = l?er(d.Q (M) — QFFH(M))

im(d : QF=1(M) — QF(M))
is called the k-th De Rham cohomology space of M. As a preparation for our
treatment of cohomology we finish with the

Lemma of Poincaré. A closed differential form of degree k > 1 is locally exact.
More precisely: let w € QF(M) with dw = 0. Then for any x € M there is an open
neighborhood U of x in M and a ¢ € Q¥~Y(U) with dp = w | U.

Proof. Let (U,u) be chart on M centered at x such that u(U) = R™. So we may
just assume that M = R™.

We consider o : R x R™ — R™, given by a(t,z) = ay(x) = tx. Let I € X(R™) be
the vector field I(z) = x, then af(e,z) = FI (z). So for t > 0 we have

I I
%a;ﬁkw = %(Fllogt)*w = %(Fllogt)*ﬁfw
1

= oy (irdw + dijw) = %da,’fifw.
Note that T, (a;) = t.Id. Therefore
(%Oézi[w)x(Xg, N ,Xk) = %(i](ﬂ)tm(tXQ, e ,th)

= twi(tr, tXs, ... tXg) = wip(2,tXo, ..., tXk).

So if k > 1, the (k — 1)-form 1ajisw is defined and smooth in (¢,z) for all ¢ € R.
Clearly ajw = w and ajw = 0, thus

dt

1 1
= / d(1ajijw)dt = d (/ %afi;wdt) =dp. O
0 0

8. Integration on Manifolds

1
w=ajw— qjw = / 4 o*wdt
0

8.1. Let U C R™ be an open subset, let dz denote Lebesque-measure on R™ (which
depends on the Euclidean structure), let g : U — ¢(U) be a diffeomorphism onto
some other open subset in R™, and let f : g(U) — R be an integrable continuous
function. Then the transformation formula for multiple integrals reads

fy)dy = / f(g(z))| det dg(x)|dz.
g(U) U

This suggests that the suitable objects for integration on a manifold are sections
of 1-dimensional vector bundle whose cocycle of transition functions is given by
the absolute value of the Jacobi matrix of the chart changes. They will be called
densities below.
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8.2. The volume bundle. Let M be a manifold and let (Uy,,u,) be a smooth
atlas for it. The volume bundle (Vol(M ), mpr, M) of M is the one dimensional vector
bundle (line bundle) which is given by the following cocycle of transition functions,
see (6.3):

aB\T) = eduou_luax = 11 )
Yap(®) = [det d(ug o uy ) (ua(z))| [det d(ua o uy ) (us(x))

Lemma. Vol(M) is a trivial line bundle over M.
But there is no natural trivialization.

Proof. We choose a positive local section over each U, and we glue them with a
partition of unity. Since positivity is invariant under the transitions, the resulting
global section p is nowhere 0. By (6.5) p is a global frame field and trivializes
Vol(M). O

Definition. Sections of the line bundle Vol(M) are called densities.

8.3. Integral of a density. Let u € T'(Vol(M)) be a density with compact
support on the manifold M. We define the integral of the density u as follows:

Let (Uqy,uq) be an atlas on M, let f,, be a partition of unity with supp(fa.) C
U,. Then we put

/M n=3 /U =) / o a0 ) oz )

If 11 does not have compact support we require that » fU fo || < 00. The series
is then absolutely convergent.

Lemma. [, p is well defined.

Proof. Let (V3,v3) be another atlas on M, let (g3) be a partition of unity with
supp(gs) C Va. Let (Uq, o) be the vector bundle atlas of Vol(M) induced by the
atlas (Uy,uq), and let (V3, @) be the one induced by (V,vz). Then we have by
the transition formula for the diffeomorphisms wu,, ovﬁ_1 1 v3(UaNV3) = uq(UaNVp)

S =3[ Gaou e @)
= Z/ > (g5 0ug () (fa 0 ug ) W)va(i(ug (v)) dy

2(Ua) G

- Z/uaw . (95 0 uy ) (y)(fa 0 ug ) (W) va(p(ug ' (1)) dy
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) azﬁ /vﬁ(UamV,@)(gﬁ °Ug )(@)(fa o Vs )(@)

Yo (u(vy (2)))| det d(ua o v5")(z)] do

= Z/ WarV, )(9’8va;l)(‘r)(fo‘ovgl)(x)@g(u(vﬁ_l(a:)))dx
ap Y vsUanVp

_ O
;/Vﬁgﬁu

Remark. If ;o € I'(Vol(M)) is an arbitrary section and f € C2°(M) is a function
with compact support, then we may define the integral of f with respect to p by
1) o JHs since fpis a density with compact support. In this way u defines a Radon
measure on M.

For the converse we note first that (C! suffices) diffeomorphisms between open
subsets on R™ map sets of Lebesque measure zero to sets of Lebesque measure zero.
Thus on a manifold we have a well defined notion of sets of Lebesque measure zero
— but no measure. If v is a Radon measure on M which is absolutely continuous,
i. e. the |v|-measure of a set of Lebesque measure zero is zero, then is given by a
uniquely determined measurable section of the line bundle Vol. Here a section is
called measurable if in any line bundle chart it is given by a measurable function.

8.4. p-densities. For 0 < p < 1 let Vol?(M) be the line bundle defined by the
cocycle of transition functions

Yap : Uap — R\{0}
o3 (®) = |det d(uq o ugl)(u/g(x))]_p.

This is also a trivial line bundle. Its sections are called p-densities. 1-densities are
just densities, 0-densities are functions. If y is a p-density and v is a g-density with
p+q < 1then p.v := pu®v is a p+¢-density, i. e. Vol?(M)® Vol?(M) = Vol?T9(M).
Thus the product of two %—densities with compact support can be integrated, so
I'.(Vol*/2(M)) is a pre Hilbert space in a natural way.

Distributions on M (in the sense of generalized functions) are elements of the dual

space of the space T'.(Vol(M)) of densities with compact support equipped with
the inductive limit topology — so they contain functions.

8.5. Example. The density of a Riemann metric. Let g be a Riemann metric
on a manifold M, see section (13) below. So g is a symmetric (g) tensor field such
that g, is a positive definite inner product on T, M for each z € M. If (U, u) is a
chart on M then we have

glU = Z gi; du' ® du’

1,7=1
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where the functions gU = g( ?ﬂ, 8u]) form a positive definite symmetric matrix.

So det(gw) det((g (8uz, 8u])) = 1) > 0. We put

= fdet((325 )k.1)2 det((9( 2, 525))e)
= |detd(vou 1)’ VOl(g) ,

so these local representatives determine a section vol(g) € I'(Vol(M)), which is
called the density or volume of the Riemann metric g. If M is compact then
[y vol(g) is called the volume of the Riemann manifold (M, g).

8.6. The orientation bundle. For a manifold M with dimM = m and an
atlas (Uy, uq) for M the line bundle A"™T™*M is given by the cocycle of transition
functions

pap(@) = detd(ug o ug ") (ua(r)) = A" d(ug 0 ug ") (ua(w)).

We consider the line bundle Or(M) which is given by the cocycle of transition
functions

Top () = sign @ap(x) = signdet d(ug o uy ') (ua(z)).
Since Tap(2)@as(x) = Yap(z), the cocycle of the volume bundle of (8.2), we have

Vol(M) = Or(M) @ A™T* M
A™T*M = Or(M) & Vol(M)

8.7. Definition. A manifold M is called orientable if the orientation bundle
Or(M) is trivial. Obviously this is the case if and only if there exists an atlas
(Uq, uq ) for the smooth structure of M such that det d(u,, ougl)(ug(a})) > 0 for all
T € Ua/g.

Since the transition functions of Or(M) take only the values +1 and —1 there is
a well defined notion of a fiberwise absolute value on Or(M), given by |s(z)| :=
pra To(s(x)), where (Uy, 7,) is a vector bundle chart of Or(M) induced by an at-
las for M. If M is orientable there are two distinguished global frames for the
orientation bundle Or(M), namely those with absolute value |s(z)| = 1.

The two normed frames s; and so of Or(M) will be called the two possible orien-
tations of the orientable manifold M. M is called an oriented manifold if one of
these two normed frames of Or(M) is specified: it is denoted by 0y;.
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If M is oriented then Or(M) = M x R with the help of the orientation, so we have
also
A™T* M = Or(M) @ Vol(M) = (M x R) @ Vol(M) = Vol(M).

So an orientation gives us a canonical identification of m-forms and densities. Thus
for any m-form w € Q™ (M) the integral [,, w is defined by the isomorphism above
as the integral of the associated density, see (8.3). If (U,,us) is an oriented atlas
(i. e. in each induced vector bundle chart (U, 7, ) for Or(M) we have 7,(057) = 1)
then the integral of the m-form w is given by

- = «@ 1 m
‘/Mw_za:/lfafaw._za:/ljafa.w du” N\---Ndu
::Z/ w )f“(ugl(y))-w“(ucil(y))dyl/\---/\dym,

where the last integral has to be interpreted as an oriented integral on an open
subset in R™.

8.8. Manifolds with boundary. A manifold with boundary M is a second count-
able metrizable topological space together with an equivalence class of smooth at-
lases (Ugy, o) which consist of charts with boundary: So ue : Uy — ua(Uy) is a
homeomorphism from U, onto an open subset of a half space (—o0,0] x R™™1 =
{(xz1,...,zm) : 1 <0}, and all chart changes ung : ug(Us N Up) — ua(Us N Up)
are smooth in the sense that they are restrictions of smooth mappings defined on
open (in R™) neighborhoods of the respective domains. There is a more intrinsic
treatment of this notion of smoothness by means of Whitney jets, [Whitney, 1934],
[Tougeron, 1972], and for the case of half-spaces and quadrants like here, [Seeley,
1964].

We have uas(ug(Ua NUZ)N (0 x R™ 1)) = u, (U, NUg) N (0 x R™ 1) since interiour
points (with respect to R™) are mapped to interior points by the inverse function
theorem.

Thus the boundary of M, denoted by M, is uniquely given as the set of all points
x € M such that u(z) € 0 x R™~! for one (equivalently any) chart (Uy,us) of M.
Obviously the boundary 0M is itself a smooth manifold of dimension m — 1.

A simple example: the closed unit ball B™ = {x € R™ : |z| < 1} is a manifold with
boundary, its boundary is OB™ = S™~1,

The notions of smooth functions, smooth mappings, tangent bundle (use the ap-
proach (1.9) without any change in notation) are analogous to the usual ones. If
x € OM we may distinguish in T,M tangent vectors pointing into the interior,
pointing into the exterior, and those in T, (OM).

8.9. Lemma. Let M be a manifold with boundary of dimension m. Then M is a
submanifold with boundary of an m-dimensional manifold M without boundary.

Proof. Using partitions of unity we construct a vector field X on M which points
strictly into the interior of M. We may multiply X by a strictly positive function so

Draft from September 15, 2004 Peter W. Michor,



92 Chapter III. Differential Forms and De Rham Cohomology 8.11

that the flow FIX exists for all 0 < ¢ < 2e for some £ > 0. Then FI* : M — M\ oM
is a diffeomorphism onto its image which embeds M as a submanifold with boundary
of M\ oM. O

8.10. Lemma. Let M be an oriented manifold with boundary. Then there is a
canonical induced orientation on the boundary OM .

Proof. Let (U,,uqs) be an oriented atlas for M. Then usg : ug(Uag N OM) —
Ua (UagNOM), thus for x € ug(UasNOM) we have dugg(z) : 0xR™™1 — 0 x R™ ™1

tuoate) = (20 0),

where A > 0 since duyg(z)(—e1) is again pointing downwards. So
det dung(z) = Adet(duas(z)|0 x R™™ 1) > 0,

consequently det(duqs(z)[0 x R™~1) > 0 and the restriction of the atlas (U, uq)
is an oriented atlas for OM. [

8.11. Theorem of Stokes. Let M be an m-dimensional oriented manifold with
boundary OM . Then for any (m — 1)-form w € Q™~Y(M) with compact support on

M we have
/ dw:/ i*w:/ w,
M M M

where i : OM — M is the embedding.

Proof. Clearly dw has again compact support. Let (Uy, us) be an oriented smooth
atlas for M and let (f,) be a smooth partition of unity with supp(f,) C U,. Then
we have -, fow =wand }°, d(faw) = dw. Consequently [, dw=73"_ [, d(fow)
and [y, w =, [y faw. It suffices to show that for each v we have [;; d(faw) =
J oU. faw. For simplicity’s sake we now omit the index o. The form fw has compact
support in U and we have in turn

fszwkdul/\---/\Ju\k---/\dum

%d Adul A AduF - A du™
k=1
= Z(—l)k_l%dul Ao Adu™.

B
I

1
Since i*du! = 0 we have fw|OU = i*(fw) = widu® A--- A du™, where i : OU — U
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is the embedding. Finally we get

= 10w m
/Ud(fw) = UZ(—l)’f 16—u:du1/\---/\du
k=1
i _ (%);C
_ —1k1/ ——d1A~-Adm
Sup [ Skt n
= Z(—l)k_l/ a—m;da:l A ANdx™
t uw) 9
0
3}
= ( 6—;ﬁdx1) de? ... dz™
Rm—1 —0o0
= _ > Owy, —
+) (=1)* 1/ ( —dmk> daet...dzk ... dz™
];2 (—o0,0] xRm—2 —00 dxk

:/ (w1(0,22,...,2™) — 0)dx? ... dz™
Rm—1

= / (w1]0U)du? . .. du™ = fw.
oUu oU

We used the fundamental theorem of calculus twice,

0 )
80)1 m &uk
. %diﬁl :wl((),azz,...,x )—O, . ﬁdajk:O,

which holds since fw has compact support in U. [

9. De Rham cohomology

9.1. De Rham cohomology. Let M be a smooth manifold which may have
boundary. We consider the graded algebra Q(M) = 2:})]\4 QF(M) of all dif-
ferential forms on M. The space Z(M) = {w € Q(M) : dw = 0} of closed
forms is a graded subalgebra of ), i. e. it is a subalgebra and satisfies Z(M) =

Mk (MYNZ(M)) = @M ZF(M). The space B(M) := {dp : ¢ € Q(M)}
of ezxact forms is a graded ideal in Z(M): B(M) A Z(M) C B(M). This follows
directly from the derivation property d(o A ) = dp A 4 (—1)98%p A dip of the
exterior derivative.

Definition. The algebra

Z(M) {weQM):dw =0}
B(M)  {dp:peQM)}

H*(M) :=

is called the De Rham cohomology algebra of the manifold M. It is graded by

dim M dim M

ker(d : QF(M) — QFHL(M
H*(M) = @ H* (M) = D im(d:szk&(z)wwﬂ'ﬂEMi)'
k=0

k=0
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If f: M — N is a smooth mapping between manifolds then f*: Q(N) — Q(M) is
a homomorphism of graded algebras by (7.5) which satisfies do f* = f*od by (7.9).

Thus f* induces an algebra homomorphism which we call again f* : H*(N) —

9.2. Remark. Since Q*(M) = 0 for k > dim M =: m we have
_ (M)

 A{dp e Qmt(M)}

HY(M) =0 for k > m.

[f € Q0(M) = (M) : df = 0}

0
= the space of locally constant functions on M

— RbO(M),

H™(M)

HO(M) =

where by(M) is the number of arcwise connected components of M. We put
bp(M) := dimg H¥(M) and call it the k-th Betti number of M. If by(M) < oo
for all k£ we put

fM(t) = Z bk(M)tk
k=0

and call it the Poincaré polynomial of M. The number
Xur =) be(M)(=1)F = far(—=1)
k=0

is called the Euler Poincaré characteristic of M, see also (11.7) below.

9.3. Examples. We have H°(R™) = R since it has only one connected component.
We have H*(R™) = 0 for k > 0 by the proof of the lemma of Poincaré (7.10).

For the one dimensional sphere we have H°(S') = R since it is connected, and
clearly H*(S') = 0 for k > 1 by reasons of dimension. And we have
HI(SY) = {we QS) 1 dw =0}
{dp - o € QO(S1)}

_ Ql(Sl)

C{df: feC=(sh)}
QS ={fdo: feC(S")}

~ {fe C®R): f is periodic with period 27},

where dfl denotes the global coframe of T*S!. If f € C*°(R) is periodic with period
2m then fdt is exact if and only if [ fdt is also 27 periodic, i. e. f027r f(t)dt = 0.
So we have

{f € C*®(R) : f is periodic with period 27}
{f € C=(R) : f is periodic with period 2, OQW fdt =0}
— R,

HY(S') =

where f +— fozw f dt factors to the isomorphism.
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9.4. Lemma. Let f, g: M — N be smooth mappings between manifolds which are
C°-homotopic: there exists h € C*°(R x M, N) with h(0,z) = f(z) and h(1,z) =
9(x).

Then f and g induce the same mapping in cohomology: f* =g*: H(N) — H(M).

Remark. f, g € C°°(M,N) are called homotopic if there exists a continuous
mapping h : [0,1] x M — N with with h(0,z) = f(x) and h(1,z) = g(x). This
seemingly looser relation in fact coincides with the relation of C'*°-homotopy. We
sketch a proof of this statement: let ¢ : R — [0,1] be a smooth function with
o((—00,1/4]) = 0, ¢([3/4,00)) = 1, and ¢ monotone in between. Then consider
h:Rx M — N, given by h(t,z) = h(¢(t),z). Now we may approximate h by
smooth functions i : R x M — N whithout changing it on (—oc0,1/8) x M where
it equals f, and on (7/8,00) x M where it equals g. This is done chartwise by
convolution with a smooth function with small support on R™. See [Brocker-Jénich,
1973] for a careful presentation of the approximation.

So we will use the equivalent concept of homotopic mappings below.

Proof. For w € QF(M) we have h*w € QF(R x M). We consider the insertion
operator ins; : M — R x M, given by ins;(z) = (t,z). For ¢ € Q¥R x M) we
then have a smooth curve t + ins; ¢ in Q*(M) (this can be made precise with the
help of the calculus in infinite dimensions of [Frolicher-Kriegl, 1988]). We define
the integral operator I : QF(R x M) — QF(M) by It(p) := fol ins; pdt. Let
T := % € X(R x M) be the unit vector field in direction R.

We have ins;, s = FltT oinsg for s, t € R, so
2 ingt = %‘0 (FIF oins,)*p = %‘0 ins? (F17 )*
= ins} %|0 (F11)*p = (ins,)* Ly by (7.6).

We have used that (ins,)* : Q¥(R x M) — QF(M) is linear and continuous and so
one may differentiate through it by the chain rule. Then we have in turn

1 1
dI&gpzd/ ins,’fgpdt:/ d insy o dt
0 0
1
:/ insy dodt = I} d by (7.9.4).
0

1 1
(ins] —insy)p = / % insy o dt = / insy Lrpdt
0 0
=1} Lro =1} (dir +ipd)p by (7.9).

Now we define the homotopy operator h := I3 oigp o h* : Q¥(N) — QF~1(M). Then
we get

9" — f*=(hoins;)" — (hoinsy)* = (ins] —ins()) o h*
=(doljoir+1Iyoirod)oh*=doh—hod,

which implies the desired result since for w € QF(M) with dw = 0 we have g*w —
f*w = hdw + dhw = dhw. O
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9.5. Lemma. If a manifold is decomposed into a disjoint union M = ||, M, of
open submanifolds, then H*(M) =[], H*(M,) for all k.

Proof. QF(M) is isomorphic to [], Q2% (M,) via ¢ +— (p|My)a. This isomorphism
commutes with exterior differential d and induces the result. [

9.6. The setting for the Mayer-Vietoris Sequence. Let M be a smooth
manifold, let U, V' C M be open subsets such that M = U U V. We consider the

following embeddings:
VU N Vw
U V
M.
Lemma. In this situation the sequence

0— QM) % QU)e V) L oUunV)—0

is exact, where a(w) = (ijw,iyw) and B(p,v) = jie — juv. We also have
(ddd)oa=aodanddof=Fo(dDd).

Proof. We have to show that « is injective, ker 8 = im «, and that ( is surjective.
The first two assertions are obvious and for the last one we we let {fy, fi'} be a
partition of unity with supp fy C U and supp fy C V. For ¢ € QU NV) we
consider fyp € Q(U NV), note that supp(fy ) is closed in the set U NV which is
open in U, so we may extend fy ¢ by 0 to oy € Q(U). Likewise we extend — fy¢
by 0 to py € Q(V). Then we have 8(ou, pv) = (fu + fv)p =p. O

Now we are in the situation where we may apply the main theorem of homological
algebra, (9.8). So we deviate now to develop the basics of homological algebra.

9.7. The essentials of homological algebra. A graded differential space (GDS)
K = (K, d) is a sequence

n—1 n
.._>Kn—1d—>K’)’Ld_>KTL+1_>_..

of abelian groups K™ and group homomorphisms d" : K® — K"*! such that
d"t!t o d® = 0. In our case these are the vector spaces K" = Q"(M) and the
exterior derivative. The group

ker(d" : K™ — K™t1)
im(dn—1: Kn—1 — Kn)

H"(K) :=

is called the n-th cohomology group of the GDS K. We consider also the direct sum

o0

H*(K):= @ H"(K)

n=—oo
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as a graded group. A homomorphism f : K — L of graded differential spaces
is a sequence of homomorphisms f" : K — L™ such that d® o f* = f"*+! o d".
It induces a homomorphism f, = H*(f) : H*(K) — H*(L) and H* has clearly
the properties of a functor from the category of graded differential spaces into the
category of graded group: H*(Idx) = Idg~xy and H*(f o g) = H*(f) o H*(g).

A graded differential space (K, d) is called a graded differential algebra if @, K"
is an associative algebra which is graded (so K™.K™ C K™*t™), such that the
differential d is a graded derivation: d(z.y) = dz.y+(—1)4°8*z.dy. The cohomology
group H*(K,d) of a graded differential algebra is a graded algebra, see (9.1).

By a short exact sequence of graded differential spaces we mean a sequence
0>KSLEM—0

of homomorphism of graded differential spaces which is degreewise exact: For each
n the sequence 0 — K™ — L™ — M"™ — 0 is exact.

9.8. Theorem. Let '
0-KSL2M-0

be an exact sequence of graded differential spaces. Then there exists a graded ho-
momorphism 6 = (6™ : H"(M) — H""Y(K))nez called the "connecting homomor-
phism” such that the following is an exact sequence of abelian groups:

e HYY M) S HY(K) s BHY(L) 2 B (M) S HYPYEK) — -

It is called the "long exact sequence in cohomology”. § is a natural transformation
in the following sense: Let

0— K’ L M —0

!/ /

be a commutative diagram of homomorphisms of graded differential spaces with
exact lines. Then also the following diagram is commutative.

D M) S B (R — s B (L) P (M) — -

| g | |

The long exact sequence in cohomology can also be written in the following way:

Uy
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Definition of §. The connecting homomorphism is defined by ‘d =i ' odop™V’

or §[pf] = [i~1df]. This is meant as follows.

n—1
Ln—l b Mn—l 0
dn—l dn—l
0 r— Py 0
dar dar dn
0, ggntl 177 pntl p—>Mn+l .0

The following argument is called a diagram chase. Let [m] € H™(M). Then
m € M"™ with dm = 0. Since p is surjective there is ¢ € L™ with p/ = m. We
consider d¢ € L™ for which we have pdf = dpl = dm = 0, so dl € kerp = imi,
thus there is an element k € K™™' with ik = df. We have idk = dik = ddl = 0.
Since i is injective we have dk = 0, so [k] € H"T}(K).

Now we put §[m] := [k] or 6[pl] = [i~1d].

This method of diagram chasing can be used for the whole proof of the theorem.
The reader is advised to do it at least once in his life with fingers on the diagram
above. For the naturality imagine two copies of the diagram lying above each other
with homomorphisms going up.

9.9. Five-Lemma. Let

a1 (D) Qa3 Qg

Ay Ao As Ay As
901[ 902[ 903[ 904[ @5[
B, B By B2 By B3 B, Ba B.

be a commutative diagram of abelian groups with exact lines. If p1, v2, w4, and @5
are isomorphisms then also the middle 3 is an isomorphism.

Proof. Diagram chasing in this diagram leads to the result. The chase becomes
simpler if one first replaces the diagram by the following equivalent one with exact

lines: o o
0— Ay/imay 2 5 A4 3 skeray ——0
90’2[% 903[ soi;l%
/ /8/
0———By/imfy —2—+Bs — 2 skerf ———0. O
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9.10. Theorem. Mayer-Vietoris sequence. Let U and V be open subsets in a
manifold M such that M = U UV. Then there is an exact sequence

o HE (M) 2 gY@ HY (V) 2 BHR U V) S B M) - -

It is natural in the triple (M,U, V') in the sense explained in (9.8). The homomor-
phisms o, and (B, are algebra homomorphisms, but & is not.

Proof. This follows from (9.6) and theorem (9.8). O

Since we shall need it later we will give now a detailed description of the connecting
homomorphism §. Let {fy, fy} be a partition of unity with supp fy C U and
supp fy C V. Let w € Q¥(U N V) with dw = 0 so that [w] € H*(U NV). Then
(fvw,—fow) € QXU) @ QF(V) is mapped to w by 3 and so we have by the
prescrition in (9.8)

Slw] = [a~ M d(fv.w, —fo.w)] = [o (dfy Aw, —dfy Aw)]
= [dfv ANw] = —[dfu Aw)],

where we have used the following fact: fiy + fiy = 1 implies that on U NV we have
dfy = —dfy thus dfy A w = —dfy Aw and off U NV both are 0.

9.11. Axioms for cohomology. The De Rham cohomology is uniquely deter-
mined by the following properties which we have already verified:

(1) H*( ) is a contravariant functor from the category of smooth manifolds
and smooth mappings into the category of Z-graded groups and graded
homomorphisms.

(2) H*(point) =R for k = 0 and = 0 for k # 0.

(3) If f and g are C'°°-homotopic then H*(f) = H*(g).

(4) If M =], M, is a disjoint union of open subsets then
H*(M) =11, H* (M,).

(5) If U and V are open in M then there exists a connecting homomorphism
§: HY(UNV) — H*Y(U U V) which is natural in the triple (U UV, U, V)
such that the following sequence is exact:

S HRNUUV) - HYU) o HY(V) - HHUNV) S B U UV) — -

There are lots of other cohomology theories for topological spaces like singular coho-
mology, Cech-cohomology, simplicial cohomology, Alexander-Spanier cohomology
etc which satisfy the above axioms for manifolds when defined with real coeffi-
cients, so they all coincide with the De Rham cohomology on manifolds. See books
on algebraic topology or sheaf theory for all this.

9.12. Example. If M is contractible (which is equivalent to the seemingly stronger
concept of C*°-contractibility, see the remark in (9.4)) then H°(M) = R since
M is connected, and H¥(M) = 0 for k # 0, because the constant mapping c :
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M — point — M onto some fixed point of M is homotopic to Idys, so H*(c) =
H*(Idy) = Idg- () by (9.4). But we have

\/

pomt

More generally, two manifolds M and N are called to be smoothly homotopy equiv-
alent if there exist smooth mappings f : M — N and g : N — M such that
g o f is homotopic to Idy; and f o g is homotopic to Idy. If this is the case
both H*(f) and H*(g) are isomorphisms, since H*(g) o H*(f) = Idg-(nr) and
H*(f)o H*(g) = Idg~(n)-

As an example consider a vector bundle (F,p, M) with zero section O : M — E.
Then p o 0p = Idy whereas Og o p is homotopic to Idg via (t,u) — t.u. Thus
H*(E) is isomorphic to H*(M).

9.13. Example. The cohomology of spheres. Forn > 1 we have

R fork=0

Hk(S"): 0 for1<k<n-—1 Hk(SO)z{RQ fork=0
R fork=n 0 fork >0
0 fork>n

We may say: The cohomology of S™ has two generators as graded vector space,
one in dimension 0 and one in dimension n. The Poincaré polynomial is given by

fon(t) =1+1t".

Proof. The assertion for SY is obvious, and for S! it was proved in (9.3) so let
n > 2. Then H°(S™) = R since it is connected, so let & > 0. Now fix a north pole
a€c€S" 0<e<1, and let

={z e R"" : |z)? = (z,2) = 1},
U={zxeS8":(x,a) > —¢},
V={zreS":(z,a) <ce},

so U and V are overlapping northern and southern hemispheres, respectively, which
are diffeomorphic to an open ball and thus smoothly contractible. Their cohomology
is thus described in (9.12). Clearly UUV = 8™ and UNV 2 S"~1 x (—¢,¢) which
is obviously (smoothly) homotopy equvalent to S™~1. By theorem (9.10) we have
the following part of the Mayer-Vietoris sequence

H*(U) & HY(V) — H*(U N V) —%— H*Y(57) — B (U) @ HF(V)

| | |
0

Hk(Sn—l) 07
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where the vertical isomorphisms are from (9.12). Thus H*(S"~1) = H¥*+1(S™) for
k> 0and n > 2.

Next we look at the initial segment of the Mayer-Vietoris sequence:

0 HO(S™) — HOU U V) — s BT A V) 9 HY(S™) — HY(U UV

I I { |
0 R & R? R 0
From exactness we have: in the lower line « is injective, so dim(ker ) = 1, so 3 is

surjective and thus 6 = 0. This implies that H!(S™) = 0 for n > 2. Starting from
H¥(SY) for k > 0 the result now follows by induction on n.

By looking more closely on on the initial segment of the Mayer-Vietoris sequence
for n = 1 and taking into account the form of § : H°(S%) — H'(S') we could even
derive the result for S! without using (9.3). The reader is advised to try this. [

9.14. Example. The Poincaré polynomial of the Stiefel manifold V(k,n;R) of
oriented orthonormal k-frames in R™ (see (21.5)) is given by:

For: Jvien) =
l .
n=2m, k=21+1,1>0: 1+ ) J[a+em*
=1

l
n=2m+1, k=21>1: @+ 4*)
=1
-1
n=2m, k=2, m>1>1: 1+ )@+ [+
=1

n=2m+1,k=2+1, =1 .
' (1 +t2m—2l) H(l +t4m—4z+3)
m>1>0: Pl

Since V(n — 1,n;R) = SO(n; R) we get

m—1
fSO(Qm;]R)( ) 1+t2m 1 H 1+t4l 1
=1

m

fso@mirm () = [ +4).

i=1
So the cohomology can be quite complicated. For a proof of these formulas using
the Gysin sequence for sphere bundles see [Greub-Halperin-Vanstone II, 1973].

9.15. Relative De Rham cohomology. Let N C M be a closed submanifold
and let
QF (M, N) :={w € QF(M) : i*w = 0},

where i : N — M is the embedding. Since i* od = doi* we get a graded differential
subalgebra (Q* (M, N),d) of (2*(M),d). Its cohomology, denoted by H* (M, N), is
called the relative De Rham cohomology of the manifold pair (M, N).
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9.16. Lemma. In the setting of (9.15),
0— Q*(M,N) — Q" (M) 5 Q*(N) = 0

is an exact sequence of differential graded algebras. Thus by (9.8) we have the
following long exact sequence in cohmology

. — H*(M,N) — H*(M) — H*(N) > H*Y(M,N) —

which is natural in the manifold pair (M, N). It is called the long exact cohomology
sequence of the pair (M, N).

Proof. We only have to show that i* : Q*(M) — Q*(N) is surjective. So we have
to extend each w € Q*(N) to the whole of M. We cover N by submanifold charts of
M with respect to N. These and M\ N cover M. On each of the submanifold charts
one can easily extend the restriction of w and one can glue all these extensions by
a partition of unity which is subordinated to the cover of M. [J

10. Cohomology with compact
supports and Poincaré duality

10.1. Cohomology with compact supports. Let Q%(M) denote the space of
all k-forms with compact support on the manifold M. Since supp(dw) C supp(w),
supp(Lxw) C supp(X)Nsupp(w), and supp(i xw) C supp(X)Nsupp(w), all formulas
of section (7) are also valid in Q (M) = @M QF(M). So (M) is an ideal and
a differential graded subalgebra of Q*(M). The cohomology of Q2 (M)

ker(d : QF(M) — QFHL(M))

imd : Q8 (M) — QF(M)
dim M

= P HIM
k=0

is called the De Rham cohomology algebra with compact supports of the manifold
M. Tt has no unit if M is not compact.

HE(M) - =

Y

10.2. Mappings. If f: M — N is a smooth mapping between manifolds and if
w € QF(N) is a form with compact support, then f*w is a k-form on M, in general
with noncompact support. So (2} is not a functor on the category of all smooth
manifolds and all smooth mappings. But if we restrict the morphisms suitably,
then 27 becomes a functor. There are two ways to do this:

(1) QF is a contravariant functor on the category of all smooth manifolds and
proper smooth mappings (f is called proper if f~1( compact set ) is a com-
pact set) by the usual pullback operation.

(2) QF is a covariant functor on the category of all smooth manifolds and em-
beddings of open submanifolds: for i : U < M and w € QF(U) just extend
w by 0 off U to get i.w € QF(M). Clearly i, od = d o i,.
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10.3. Remark. 1. If a manifold M is a disjoint union, M = | |, M., then we
have obviously H*(M) = @, HE(M,,).

2. H?(M) is a direct sum of copies of R, one for each compact connected component
of M.

3. If M is compact, then H*(M) = H*(M).
10.4. The Mayer-Vietoris sequence with compact supports. Let M be a

smooth manifold, let U, V' C M be open subsets such that M = UUV. We consider
the following embeddings:

‘ unv _
BTN
U Vv
1y A/ZV
M.

Theorem. The following sequence of graded differential algebras is exact:

0— QUNV) 25 QF(U) @ Q: (V) 2% QF (M) — 0,

&

where Be(w) == ((Ju)sw, (Jv)sw) and ac(p,¥) = (iv)«p — (iv)«. So by (9.8) we

have the following long exact sequence
— HFY(M) 25 HEUNV) — HEU) @ HE(V) — HE(M) 25 HF YU NV) —

which is natural in the triple (M,U, V). It is called the Mayer Vietoris sequence
with compact supports.

The connecting homomorphism 6. : H¥(M) — HXL (U NV) is given by

Scli] = (B dag ()] = (B d(fue, = fre)]
=[dfu A TUNV]=—[dfv Ao [UNV].

Proof. The only part that is not completely obvious is that «. is surjective. Let
{fu, fv} be a partition of unity with supp(fy) C U and supp(fy) C V, and let
o € QF(M). Then fyp € QF(U) and —fyro € QF(V) satisfy a.(fue, —fre) =
(fu+ f)e=9. 0O

10.5. Proper homotopies. A smooth mapping h: Rx M — N is called a proper
homotopy if h=1( compact set ) N ([0, 1] x M) is compact. A continuous homotopy
h:[0,1] x M — N is a proper homotopy if and only if it is a proper mapping.
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* .

Lemma. Let f,g : M — N be proper and proper homotopic, then f* = g
HE(N) — HF(M) for all k.

Proof. Recall the proof of lemma (9.4).

Claim. In the proof of (9.4) we have furthermore h : QF(N) — QF=1(M).

Let w € QF(N) and let K, := supp(w), a compact set in N. Then Ky := h~1(K{)N
([0,1] x M) is compact in R x M, and finally K3 := pro(Ks) is compact in M. If
x ¢ K3 then we have

1
(hw)y = ((I3 0 ip 0 h*)w), = /0 (ins; (irh*w)), dt) = 0.

The rest of the proof is then again as in (9.4). O

10.6. Lemma.
R fork=n

0 else.

i) - {

Proof. We embed R" into its one point compactification R™ U{oo} which is diffeo-
morphic to S™, see (1.2). The embedding induces the exact sequence of complexes

0— Q(R") = Q(S™) = Q(S") oo — 0,

where (S™)o denotes the space of germs at the point co € S™. For germs at
a point the lemma of Poincaré (7.10) is valid, so we have H°(2(5")) = R and
HF(Q(S™)s) = 0 for k& > 0. By theorem (9.8) there is a long exact sequence in
cohomology whose beginning is:

HO(R") — HO(S™) — HO(Q(S™)o0) —0 HY(R™) — H(S™) — HY(Q(S")c0)
I I I I
0 R R 0

From this we see that § = 0 and consequently H!(R™) = H!(S™). Another part of
this sequence for k£ > 2 is:

HY QS 00) =2 HE(R™) — HF(S™) — HF(Q(S™)a0)
[ [
0 0

It implies H®(R™) = H*(S™) for all k. O

10.7. Fiber integration. Let M be a manifold, pry : M x R — M. We define
an operator called fiber integration

/ QF(M x R) — QF (M)
fiber

as follows. Let t be the coordinate function on R. A differential form with compact
support on M x R is a finite linear combination of two types of forms:

(1) prie.f(x,t), shorter ¢.f.
(2) prie A f(z,t)dt, shorter p A fdt.
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where ¢ € Q(M) and f € C°(M x R,R). We then put

1) fﬁberpri(gof = 0.
2) [aper PTiP A fdt = [Zf( ,t)dt

This is well defined since the only relation which we have to satisfy is pri(pg) A
[z, t)dt = pri pg(z) A f(z,t)dt.

Lemma. We have dofﬁber = fﬁber od. Thus fﬁber induces a mapping in cohomology

([ ) smtrsm - man,

which however is not an algebra homomorphism.

Proof. In case (1) we have

o.¢]
= (—1)k<,0/ %—{dt =0 since f has compact support

— 00

= d/ o.f.
fiber

In case (2) we get

/ d(gp/\fdt):/ dgp/\fdt+(—1)k/ O Ndy f Ndt
fiber fiber fiber
—dp [t (0% [ dur(C o

—d(/ £( dt):d/ﬁbercpAfdt. 0

In order to find a mapping in the converse direction we let e = e(t)dt be a compactly
supported 1-form on R with [*_e(t)dt = 1. We define e, : QF (M) — QF1(M xR)
by e.(v) = ¢ Ae. Then de.(p ) = d(gp/\e) =dp ANe+ 0= e.(dyp), so we have an
induced mapping in cohomology e, : H¥(M) — HE (M x R).

We have [q,  oe. = Idgk(arp, since

[r0= [ onet =g [ =

Next we define K : Q’j(M x R) — QF1(M x R) by

(1) K(p.f) ==
(2) K(pA fdt gpf fdt — . A(t) [T fdt, where A(t) := fioo e(t)dt.
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Lemma. Then we have

(3) IdQ’g(MXR) — €Ey O/ = (—1)k_1(d0 K — Kod)
fiber

Proof. We have to check the two cases. In case (1) we have

(td-c.o [ YoH)=p.f -0
fiber
(doK — Kod)(p.f) =0—K(dp.f + (—D)*o Adif + (—1)Fp A GLdt)
= —(=1)F <<p/t O dt — . A(t) /OO g_{dt)
= (=" p.f+0.

In case (2) we get
(Id—e*O/ )(go/\fdt):go/\fdt—gp/ fdt Ae,
fiber —00

(doK—Kod)(gp/\fdt):d(go/_toofdt—go.A(t)/oo fdt)

— 00

— K(dp A fdt + (=D Lo Adyf A dt)

:(—1)k_1(g0Afdt—ga/\e/ fdt) O

— 00

o0

Corollary. The induced mappings (fﬁber)* and e, are inverse to each other, and
thus isomorphism between H¥(M x R) and HE=1(M).

Proof. This is clear from the chain homotopy (3). O
10.8. Second Proof of (10.6). For k < n we have
HERY) = HEUR ) 2 HORH)

0 for k<n
HYR%) =R for k =n.

Note that the isomorphism HJ(R™) = R is given by integrating the differential
form with compact support with respect to the standard orientation. This is well
defined since by Stokes’ theorem (8.11) we have [, dw = f(i) w = 0, so the integral
induces a mapping [, : H?(R") — R. O

10.9. Example. We consider the open Mébius strip M in R3, see (1.20). Open
means without boundary. Then M is contractible onto S*, in fact M is the total
space of a real line bundle over S'. So from (9.12) we see that H*(M) = H*(S') =
R for K =0,1 and = 0 for k£ > 1.
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Now we claim that H¥(M) = 0 for all k. For that we cut the Mobius strip in two
pieces which are glued at the end with one turn,

| s
d )

so that M = UUV where U 2 R?, V =2 R?, and U NV = R? UR?, the disjoint
union. We also know that H)(M) = 0 since M is not compact and connected.
Then the Mayer-Vietoris sequence (see (10.4)) is given by

HNU) @ HA (V) — HY (M) -5 2 nv) Lo,

I Il
0 RoR

a

Be iy @ H2(V) — H2(M) — H¥U V)
1 Il
R R 0

We shall show that the linear mapping 3. has rank 2. So we read from the sequence
that H!(M) =0 and H2(M) = 0. By dimension reasons H*(M) = 0 for k > 2.

Let o, v € Q2(U NV) be two forms, supported in the two connected components,
respectively, with integral 1 in the orientation induced from one on U. Then fU Y=
1, [;% =1, but for some orientation on V' we have [, ¢ =1 and [, = —1. So

the matrix of the mapping 3. in these bases is (} _11 ), which has rank 2.

10.10. Mapping degree for proper mappings. Let f: R™ — R" be a smooth
proper mapping, then f* : QF(R") — QF(R") is defined and is an algebra homo-
morphism. So also the induced mapping in cohomology with compact supports

makes sense and by .
HI'(R") ——— H(R")

a linear mapping R — R, i. e. multiplication by a real number, is defined. This
number deg f is called the "mapping degree” of f.

10.11. Lemma. The mapping degree of proper mappings has the following prop-
erties:
(1) If f, g : R™ — R™ are proper, then deg(f o g) = deg(f).deg(g).
(2) If f and g : R™ — R™ are proper homotopic (see (10.5)) then deg(f) =
deg(g)-
(3) deg(Idgn) = 1.
(4) If f : R™ — R™ is proper and not surjective then deg(f) = 0.
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Proof. Only statement (4) needs a proof. Since f is proper, f(R") is closed in
R™: for K compact in R" the inverse image K; = f~1(K) is compact, so f(K1) =
f(R™) N K is compact, thus closed. By local compactness f(R"™) is closed.
Suppose that there exists x € R™ \ f(R"), then there is an open neighborhood
U c R"\ f(R™). We choose a bump n-form « on R"™ with support in U and
[ a=1. Then f*a =0, so deg(f) = 0 since [a] is a generator of H*(R™). O

10.13. Lemma. For a proper smooth mapping f : R™ — R™ the mapping degree
18 an integer, in fact for any reqular value y of f we have

deg(f) = Z sign(det(df (x))) € Z.

zef~1(y)

Proof. By the Morse-Sard theorem, see (10.12), there exists a regular value y of
f. If f71(y) = 0 then f is not surjective, so deg(f) = 0 by (10.11.4) and the
formula holds. If f~1(y) # 0, then for all x € f~1(y) the tangent mapping T f
is surjective, thus an isomorphism. By the inverse mapping theorem f is locally a
diffeomorphism from an open neighborhood of x onto a neighborhood of y. Thus
f~1(y) is a discrete and compact set, say f~1(y) = {z1,...,21} C R™

Now we choose pairwise disjoint open neighborhoods U; of x; and an open neigh-
borhood V' of y such that f : U; — V is a diffeomorphism for each i. We choose
an n-form « on R™ with support in V and [a = 1. So f*a = >, (f|U;)*a and
moreover

/ (f1U:)* o = sign(det(df (1)) / o = sign(det(df (z:))
U;

\%4

k
deelf) = [ Fa=3 /U (0= Y sign(det(df (@) € 2. D

10.14. Example. The last result for a proper smooth mapping f : R — R can be
interpreted as follows: think of f as parametrizing the path of a car on an (infinite)
street. A regular value of f is then a position on the street where the car never
stops. Wait there and count the directions of the passes of the car: the sum is the
mapping degree, the number of journeys from —oo to co. In dimension 1 it can be
only —1, 0, or +1 (why?).

10.15. Poincaré duality. Let M be an oriented smooth manifold of dimension
m without boundary. By Stokes’ theorem the integral [ : Q7*(M) — R vanishes
on exact forms and induces the “cohomological integral”

(1) / H(M) — R.

It is surjective (use a bump m-form with small support). The ‘Poincaré product’is
the bilinear form

(2) Py« HY(M) < H'™"(M) — R,

Pt (o). 1) = [[a) 18] = /Maw.

*
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It is well defined since for 5 closed dy A B = d(y A (), etc. If j : U — M is an
orientation preserving embedding of an open submanifold then for [o] € H*(M)
and for [3] € H™*(U) we may compute as follows:

3) PE (i), 18]) = / (*[a]) A 18] = /U Ffans

*

Z/UJ (A jsfB) = /j(U)Oé/\J*ﬁ
= | ani.s = Pli(ial.i.ls).
Now we define the Poincaré duality operator
(4) Dk + HE(M) — (HI5(M))",
(8], Disla]) = Pl(lal, [8).

For example we have DR, (1) = ([p.)« € (HZ(R™))*.
Let M = U UV with U, V open in M, then we have the two Mayer Vietoris

sequences from (9.10) and from (10.4)
. — H¥(M) 2= HEYU) @ HF(V) RN H*(UNV) 2, HY (M) — -
— HPM(M) — HI'MU) @ HH(V) — HP R U nv) &= Hr=tD ()

We take dual spaces and dual mappings in the second sequence and we replace § in
the first sequence by (—1)*~1§ and get the following diagram which is commutative
as we will see in a moment.

(=1)*26 o
I (01) P 1
(it i) (i), (iv).)*
W) & B (V) 2UEPV k) g k(v
(5) it~ it ((o)s = Giv))*
H*(UNV) Dunv HM M UnV)*
(1)1 5
e any — DA e
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10.16. Lemma. The diagram (5) in (10.15) commutes.

Proof. The first and the second square from the top commute by (10.15.3). So
we have to check that the bottom one commutes. Let [a] € H*(U N V) and
(8] € Hcm_(kJrl)(M), and let (fu, fi) be a partition of unity which is subordinated
to the open cover (U, V) of M. Then we have

(8], Dy (=1)*15[a]) = Py (1) 8al, [8])
= PETH((=1) " dfy Aal,[8]) by (9.10)

= (=1)*! /M dfy Na A B.

([8],6: Dy lal) = (8c[8], Diavlal) = Phay ([, 6.5])
= Pjny(lal, [dfu A B] = —[dfv AB]) Dby (10.4)

:—/ aAdvaﬁz—(—l)k/ dfy NaAp. O
unv

M

10.17. Theorem. Poincaré Duality. If M is an oriented manifold of dimension
m without boundary then the Poincaré duality mapping

Dk HF(M) — H™ % (M)*
is a linear isomomorphism for each k.

Proof. Step 1. Let O be an i-base for the open sets of M, i. e. O is a basis
containing all finite intersections of sets in 0. Let O; be the the set of all open
sets in M which are finite unions of sets in O. Let Oy be the set of all open sets
in M which are at most countable disjoint unions of sets in O. Then obviously O
and Oy are again i-bases.

Step 2. Let O be an i-base for M. If Do : H(O) — H.(O)* is an isomorphism for
all O € O, then also for all O € Oy.

Let U € O, U =0,U---UOy for O; € O. We consider O and V = Oy U---UOy.
Then O; NV = (01 NO2) U---U (01 NOg) is again a union of elements of O
since it is an i-base. Now we prove the claim by induction on k. The case k =1
is trivial. By induction Dg,, Dy, and Do,ny are isomorphisms, so Dy is also an
isomorphism by the five-lemma (9.9) applied to the diagram (10.15.5).

Step 3. If O is a basis of open sets in M such that D¢ is an isomorphism for all
O € O, then also for all O € O.

IfU € Oy wehave U =0, U0, U... = ]2, O; for O; € O. But then the diagram
H(U) H H(0;)
i=1

Dy lHDOz
H(U) = (D H0)) = ] He(0)"
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commutes and implies that Dy is an isomorphism.

Step 4. If Do is an isomorphism for each O € O where O is an i-base for the open
sets of M then Dy is an isomorphism for each open set U C M.

For ((Of)s)s contains all open sets of M. This is a consequence of the proof that
each manifold admits a finite atlas. Then the result follows from steps 2 and 3.

Step 5. Dgm : H(R™) — H.(R™)* is an isomorphism.
We have

R fork=m
0 fork#m

R fork=0

HYR™) = { 0 fork>0 He (R™) = {

The class [1] is a generator for HY(R™), and [a] is a generator for H™(R™) where
o is any m-form with compact support and [;, @ = 1. But then Pg..([1], [o]) =

me l.a=1.
Step 6. For each open subset U C R™ the mapping Dy is an isomorphism.

The set {{r € R™ : a® < 2' < b’ for all i} : a® < b’} is an i-base of R™. Each
element O in it is diffeomorphic (with orientation preserved) to R™, so Do is an
isomorphism by step 5. From step 4 the result follows.

Step 7. D), is an isomorphism for each oriented manifold M.

Let O be the the set of all open subsets of M which are diffeomorphic to an open
subset of R™, i. e. all charts of a maximal atlas. Then O is an i-base for M, and
Do is an isomorphism for each O € O. By step 4 Dy is an isomorphism for each
open U in M, thus also Dy. [

10.18. Corollary. For each oriented manifold M without boundary the bilinear
PAITINGS

Py : HY (M) x HY (M) — R,
PY, HY(M) x H™*(M) — R

are not degenerate.

10.19. Corollary. Let j:U — M be the embedding of an open submanifold of an
oriented manifold M of dimension m without boundary. Then of the following two
mappings one is an isomorphism if and only if the other one is:

7 HNU) — HY (M),
Ju t HYHU) — HZ'~H(M).

Proof. Use (10.15.3), PE(5*[al, [8]) = Py ([a],5.[8]). O
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10.20. Theorem. Let M be an oriented connected manifold of dimension m
without boundary. Then the integral

/*:H?(M)—JR

is an isomorphism. So ker [,, = d(Q~1(M)) C Q7 (M).
Proof. Considering m-forms with small support shows that the integral is surjec-

tive. By Poincaré duality (10.17) dimg H™(M)* = dimg H°(M) = 1 since M is
connected. [

Definition. The uniquely defined cohomology class wy, € H(M) with integral
fM wpr = 1 is called the orientation class of the manifold M.

10.21. Relative cohomology with compact supports. Let M be a smooth
manifold and let N be a closed submanifold. Then the injection ¢ : N — M is a
proper smooth mapping. We consider the spaces

QF(M,N) 1= {w e Q¥(M) : w|N = i*w =0}

whose direct sum is a graded differential subalgebra (Q} (M, N),d) of (QX(M),d).
Its cohomology, denoted by H} (M, N), is called the relative De Rham cohomology
with compact supports of the manifold pair (M, N).

0 — QF(M,N) — QF (M) = Q*(N) =0

is an exact sequence of differential graded algebras. This is seen by the same proof
as of (9.16) with some obvious changes. Thus by (9.8) we have the following long
exact sequence in cohomology

. — HF(M,N) — H¥(M) — H¥(N) & HMY (M, N) — ...

which is natural in the manifold pair (M, N). It is called the long exact cohomology
sequence with compact supports of the pair (M, N).

10.22. Now let M be an oriented smooth manifold of dimension m with boundary
OM. Then OM is a closed submanifold of M. Since for w € Q™= 1(M,dM) we have
Japdw =[50, w0 = [55,0 =0, the integral of m-forms factors as follows

QMM 0M) — Q" (M) ———

T
l f* /,/””/

——

H™(M, M)
to the cohomological integral [, : HI*(M,0M) — R.
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Example. Let I = [a,b] be a compact intervall, then 0I = {a,b}. We have
HY(I) = 0 since fdt =d f; f(s)ds. The long exact sequence in cohomology of the
pair (I,01) is

0 — HO(1,81) — H(I) — HO(O1) % H(1,81) — H (1) —> H' (1)
| Il |

H | |
0 R R? R 0 0

The connecting homomorphism § : HY(9I) — H'(I,dI) is given by the following
procedure: Let (f(a), f(b)) € H°(OI), where f € C>°(I). Then

b b
5(f(a),f(b))=[df]=/[df]=/ df=/ ft)dt = f(b) — f(a).

So the fundamental theorem of calculus can be interpreted as the connecting ho-
momorphism for the long exact sequence of the relative cohomology for the pair

(1,81).

The general situation. Let M be an oriented smooth manifold with boundary
OM . We consider the following piece of the long exact sequence in cohomology with
compact supports of the pair (M, 0M):

H™ (M) —— H™ (M) —0— H™(M,dM) —— H™(M) ———0

o "

R R

The connecting homomorphism is given by

(5[(4}‘8M] = [dw]Hén(M,[»)M), w € an_l(M),

so commutation of the diagram above is equivalent to the validity of Stokes’ theo-
rem.

11. De Rham cohomology of compact manifolds

11.1. The oriented double cover. Let M be a manifold. We consider the
orientation bundle Or(M) of M which we dicussed in (8.6), and we consider the
subset or(M) := {v € Or(M) : |v| = 1}, see (8.7) for the modulus. We shall see
shortly that it is a submanifold of the total space Or(M), that it is orientable, and
that mps : or(M) — M is a double cover of M. The manifold or(M) is called the
orientable double cover of M.

We first check that the total space Or(M) of the orientation bundle is orientable.
Let (U, uq) be an atlas for M. Then the orientation bundle is given by the cocycle
of transition functions

Tap(T) = sigh @ag(z) = signdet d(ug o uy ) (ua(x)).
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Let (U, 7o) be the induced vector bundle atlas for Or(M), see (6.3). We consider
the mappings

(M)|U, Ta U, x R
Ua

and we use them as charts for Or(M). The chart changes ug(Ung) XR — 14 (Uag) X
R are then given by

Uy X Id
_—

Or Ua(Us) X R C R™t1

(y,8) = (ua 0 ug ' (y), Tap(uz' (y))t)
= (uq © Ug (y),signdet d(ug o ut) ((ug 0 ugl)(y))t)
)

1
= (Uq © ugl(y ,signdet d(ug, o uEl)(y)t)

The Jacobi matrix of this mapping is

(d(ua ouz")(y) * )

0 sign det d(uq © ugl)(y)
which has positive determinant.

Now we let Z := {v € Or(M) : |v| < 1} which is a submanifold with boundary in
Or(M) of the same dimension and thus orientable. Its boundary 0Z coincides with
or(M), which is thus orientable.

Next we consider the diffeomorphism ¢ : or(M) — or(M) which is induced by the
multiplication with —1 in Or(M). We have g o ¢ = Id and 73 (z) = {2,(2)} for
z € or(M) and mp(2) = .

Suppose that the manifold M is connected. Then the oriented double cover or(M)
has at most two connected components, since 7, is a two sheeted convering map.
If or(M) has two components, then ¢ restricts to a diffeomorphism between them.
The projection 7wy, if restricted to one of the components, becomes invertible, so
Or(M) admits a section which vanishes nowhere, thus M is orientable. So we see
that or(M) is connected if and only if M is not orientable.

The pullback mapping ¢* : Q(or(M)) — Q(or(M)) also satisfies p* o p* = Id. We
put

Qi (or(M)) : ={w € Qor(M)) : ¢*w = w},
Q_(or(M)) : ={w e Qor(M)) : *w = —w}.

For each w € Q(or(M)) we have w = 3 (w + ¢*w) + 3(w — p*w) € Q(or(M)) @
Q_(or(M)), so Q(or(M)) = Q4 (or(M)) ® Q_(or(M)). Since d o p* = ¢* o d these

two subspaces are invariant under d, thus we conclude that
1) H(or(M)) = H (2. (or(M))) & HH(Q- (or(M))).

Since 73, : Q(M) — Q(or(M)) is an embedding with image Q4 (or(M)) we see that
the induced mapping 73, : H*(M) — H"(or(M)) is also an embedding with image
HA Q. (or(M))).
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11.2. Theorem. For a compact manifold M we have dimg H*(M) < co.

Proof. Step 1. If M is orientable we have by Poincaré duality (10.17)

H ) 2 (R )y = (R )y L2

m—Kk\x
O™ mF (),

so H*(M) is finite dimensional since otherwise dim(H"*(M))* > dim H*(M).

Step 2. Let M be not orientable. Then from (11.1) we see that the oriented double
cover or(M) of M is compact, oriented, and connected, and we have dim H* (M) =
dim H*(Q (or(M))) < dim H*(or(M)) < co. O

11.3. Theorem. Let M be a connected manifold of dimension m. Then

R of M is compact and orientable,
H™(M) = { / b

0 else.

Proof. If M is compact and orientable by (10.20) we the integral [, : H™(M) — R
is an isomorphism.

Next let M be compact but not orientable. Then the oriented double cover or(M)
is connected, compact and oriented. Let w € Q™ (or(M)) be an m-form which
vanishes nowhere. Then also ¢*w is nowhere zero where ¢ : or(M) — or(M) is the
covering transformation from (11.1). So ¢*w = fw for a function f € C*°(or(M))
which vanishes nowhere. So f > 0or f < 0. If f > 0then a:=w+¢*w = (1+ f)w
is again nowhere 0 and p*a = «, so a = 7}, for an m-form 3 on M without zeros.
So M is orientable, a contradiction. Thus f < 0 and ¢ changes the orientation.

The m-form v := w—p*w = (1— f)w has no zeros, so for(M) v > 0 if we orient or(M)
using w, thus the cohomology class [y] € H™(or(M)) is not zero. But p*y = —y
so v € Q_(or(M)), thus H™(Q2_(or(M))) # 0. By the first part of the proof we
have H™(or(M)) = R and from (11.1) we get H™(or(M)) = H™(Q_(or(M))), so
H™(M) = H"(Q4(or(M))) = 0.

Finally let us suppose that M is not compact. If M is orientable we have by
Poincaré duality (10.17) and by (10.3.1) that H™ (M) = HO(M)* = 0.

If M is not orientable then or(M) is connected by (11.1) and not compact, so
H™(M)=H™(Q4(or(M))) C H™(or(M))=0. O

11.4. Corollary. Let M be a connected manifold which is not orientable. Then
or(M) is orientable and the Poincaré duality pairing of or(M) satisfies
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Proof. From (11.1) we know that or(M) is connected and orientable. So R =
HOor(M)) = H™(or(M))*.

Now we orient or(M) and choose a positive bump m-form w with compact support
on or(M) so that for(M) w > 0. From the proof of (11.3) we know that the covering
transformation ¢ : or(M) — or(M) changes the orientation, so p*w is negatively
oriented, for(M) ¢*w < 0. Then w — p*w € Q™(or(M)) and fr(M) — ¢*w) > 0,
o (H")-(or(M)) = R and (H;") (or(M)) = 0.

Since ¢* is an algebra homomorphism we have

From (H}")4(or(M)) = 0 the first two results follows. The last two assertions then
follow from this and H*(or(M)) = HE (or(M)) & H* (or(M)) and the analogous
decomposition of HF(or(M)). O

11.5. Theorem. For the real projective spaces we have

H°(RP™) =R
HY(RP") =0 for1 <k <n,
R for odd n,
"(RP™) =
for even n.

Proof. The projection 7 : S™ — RP" is a smooth covering mapping with 2 sheets,
the covering transformation is the antipodal mapping A : S — S™, x — —x. We
put Q4 (S") ={w € Q") : A*w = w} and Q_(5") = {w € Q") : A*'w = —w}.
The pullback 7* : Q(RP™) — (S™) is an embedding onto Q4 (S™).

Let A be the determinant function on the oriented Euclidean space R™"*!. We
identify T,,S™ with {z}* in R**! and we consider the n-form wg» € Q"(S™) which
is given by (wgn ). (X1,...,X,) = A(z, X1,...,X,). Then we have

(A*wsn)$<X1, ce ,Xn) = (WS")A(Q:) (TmAXl, e ,TmAXn)
= (wgn)—a(—X1,...,—X,)
Z, —Xl, P _Xn>

:A(
= (="M Az, X1, ..., X,)
= (—1)""Hwsn)w(X1, ..., Xn)

Since wgn is invariant under the action of the group SO(n + 1,R) it must be the
Riemannian volume form, so

ﬂ_k
n (n+1)7TnT+1 ﬁ for n = 9%k — 1
oo N =R T et
2 1-3-5...(2k—3) or n = 2k —
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Thus [wsn] € H™(S™) is a generator for the cohomology. We have A*wgn =
(—1)""wsn, so
O (™) for odd n,
e € n(S") for odd n
Qr(S™)  for even n.

Thus H"(RP™) = H™(24.(S™)) equals H™(S™) = R for odd n and equals 0 for even
n.

Since RP™ is connected we have H°(RP") = R. For 1 < k < n we have H*(RP") =
HF(Q,(S™) c H*(S™) =0. O

11.6. Corollary. Let M be a compact manifold. Then for all Betti numbers we
have by, (M) := dimg H*(M) < oo. If M is compact and orientable of dimension m
we have by (M) = by—r(M).

Proof. This follows from (11.2) and from Poincaré duality (10.17). O

11.7. Euler-Poincaré characteristic. If M is compact then all Betti numbers
are finite, so the Euler Poincaré characteristic (see also (9.2))

dim M
X = Y (=)*b(M) = far(-1)
k=0
is defined.

Theorem. Let M be a compact and orientable manifold of dimension m. Then
we have:

(1) If m is odd then xp = 0.

(2) If m = 2n for odd n then xn = by (M) =0 mod (2).

(3) If m = 4k then xar = bog (M) = signature(P2F) mod (2).

Proof. From (11.6) we have by(M) = by,—q(M). Thus the Euler Poincaré char-
acteristic is given by xa = ZZL:O(—l)qbq = Z;n:o(—l)qu_q = (—1)"xn which
implies (1).

If m = 2n we have y = Zzio(—l)qbq = ZZZ;S(—I)qbq + (=1)"by, 50 Xar = by
mod 2). In general we have for a compact oriented manifold

Phal ) = [ ans= (10 | gra = (100 (e o)),

For odd n and m = 2n we see that Py} is a skew symmetric non degenerate bilinear
form on H™(M), so b,, must be even (see (4.7) or (25.4) below) which implies (2).

(3). If m = 4k then PZF is a non degenerate symmetric bilinear form on H2*(M), an
inner product. By the signature of a non degenerate symmetric inner product one
means the number of positive eigenvalues minus the number of negative eigenvalues,
so the number dim H?*(M), — dim H?*(M)_ =: a; — a_, but since H?*(M), @
H?¢(M)_ = H?*(M) we have a, + a_ = boy, 50 ay — a_ = by — 2a_ = boy(
mod 2). O
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11.8. The mapping degree. Let M and N be smooth compact oriented mani-
folds, both of the same dimension m. Then for any smooth mapping f: M — N
there is a real number deg f, called the degree of f, which is given in the bottom

row of the diagram
H’ITL

I

R

where the vertical arrows are isomorphisms by (10.20), and where deg f is the linear

H™(N)

12
o
<—
12

deg f R

mapping given by multiplication with that number. So we also have the defining
relation

/f*w:degf/w for all w € Q™ (N).
M N

11.9. Lemma. The mapping degree deg has the following properties:

(1) deg(fog)=degf-degg, deg(Idy) = 1.

(2) If f, g: M — N are (smoothly) homotopic then deg f = degg.

(3) If deg f # 0 then f is surjective.

(4) If f : M — M is a diffeomorphism then deg f = 1 if f respects the orienta-
tion and deg f = —1 if f reverses the orientation.

Proof. (1) and (2) are clear. (3) If f(M) # N we choose a bump m-form w on N
with support in the open set N\ f(M). Then f*w = 0 so we have 0 = [, f*'w =

deg f [ w. Since [ w # 0 we get deg f = 0.

(4) follows either directly from the definition of the integral (8.7) of from (11.11)
below. [

11.10. Examples on spheres. Let f € O(n + 1,R) and restrict it to a mapping
f:8™ — 8" Then deg f = det f. This follows from the description of the volume
form on S™ given in the proof of (11.5).

Let f, g: S™ — S™ be smooth mappings. If f(z) # —g(x) for all z € S™ then the
mappings f and g are smoothly homotopic: The homotopy moves f(x) along the
shorter arc of the geodesic (big circle) to g(x). So deg f = degg.

If f(x) # —x for all x € S™ then f is homotopic to Idgn, so deg f = 1.
If f(z) # x for all z € S™ then f is homotopic to —Idgn, so deg f = (—1)"T1.

The hairy ball theorem says that on S™ for even n each vector field vanishes some-
where. This can be seen as follows. The tangent bundle of the sphere is

TS" = {(x,y) € R"™ x R"" : |2|? = 1, (x,y) = 0},

so a vector field without zeros is a mapping = — (x,g(z)) with g(x)Lx; then
f(z) := g(x)/|g(x)| defines a smooth mapping f : S™ — S™ with f(z)Lx for all x.
So f(x) # x for all o, thus deg f = (—1)"*! = —1. But also f(z) # —= for all x,

so deg f = 1, a contradiction.
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Finally we consider the unit circle S - C = R2. Its volume form is given by
w:=1i"(xdy —ydxr) = i*%; obviously we have [g, zdy — ydz = 27. Now let

f:S* — St be smooth, f(t) = (z(t),y(t)) for 0 <t < 27. Then

1 *
deg f = 2—/ [ (xdy — ydz)
™ Jg1
is the winding number about 0 from compex analysis.

11.11. The mapping degree is an integer. Let f : M — N be a smooth
mapping between compact oriented manifolds of dimension m. Let b € N be a
regular value for f which exists by Sard’s theorem, see (10.12). Then for each
x € f~1(b) the tangent mapping T}, f mapping is invertible, so f is diffeomorphism
near x. Thus f~1(b) is a finite set, since M is compact. We define the mapping
e: M —{-1,0,1} by
0 if T}, f is not invertible
e(x) =<1 if T, f is invertible and respects orientations

—1 if T f is invertible and changes orientations.

11.12. Theorem. In the setting of (11.11), if b € N is a regular value for f, then
deg f = Z e(z).
zef~1(b)
In particular deg f is always an integer.

Proof. The proof is the same as for lemma (10.13) with obvious changes. [

12. Lie groups III. Analysis on Lie groups

Invariant integration on Lie groups

12.1. Invariant differential forms on Lie groups. Let G be a real Lie group
of dimension n with Lie algebra g. Then the tangent bundle of G is a trivial
vector bundle, see (5.17), so G is orientable. Recall from section (4) the notation:
i G x G — G is the multiplication, u, : G — G is left translation by z, and
wY : G — G is right translation. v : G — G is the inversion.

A differential form w € Q"(G) is called left invariant if piw = w for all z € G. Then
w is uniquely determined by its value w, € A"T*G = A"g*. For each determinant
function A on g there is a unique left invariant n-form LA on G which is given by

(1) (LA)z( X1,y Xn) = AT (prp—1)- X1, oo, T(pip—1).X0),
(La)e = To(pe—1)"A.

Likewise there is a unique right invariant n-form R which is given by
1

(2) (Ra)a(X1,. ., Xn) = A(To(p® ). X1, To(p® ). Xn):

Draft from September 15, 2004 Peter W. Michor,



120 Chapter III. Differential Forms and De Rham Cohomology 124

12.2. Lemma. We have for all a € G

(1) (1) La = det(Ad(a™"))La,
(2) (1a)"Ra = det(Ad(a))Ra,
(3) (RA)a = det(Ad(a))(LA)a.

Proof. We compute as follows:

(") La)e(X1, s Xn) = (La)za(Te(p) X1, - Tu (1) X0)
= A( xa(ﬂ(ma) 1) T (p®). X1, - .. 7Txa(ﬂ(ma)*1)-Tm(Na)-Xn)
= A(Ta(pra—1) Troa(pre—) T (p®)- X1, ..o, Ta(pta—1)-Tua (o) Te (). Xn)
= A(Tu(pta—1)Te(p®).To(pz-1)- X1, o s Talpra—1) Te(u®). To(pz-1)-X0)
= A(Ad(a™ ). Ty (g-1). X1, ..., Ad(a™ ). Ty (pp-1).X0)
= det(Ad(a™ ) A(Te(pa-1)- X1, Te(po-1).-Xn)
= det(Ad(a 1)) (La)e(X1,. .., X0).
((Ha) " BA)e(X1, - s Xn) = (RA)az (T (pta) - X1, -, T (p1a)-Xn)
= AT (1" ). Ty (p10). X1, o+ Toa (1) T (110). X))

1

= AT (™ ) Toe (1) To(ta) X1, oo Tt ) Taa (0 ) T (110)-X0)
= A(Tu(p® ) Topta) Te (B )Xoy Ta(p® ) To(pa) T (). Xn)
= A(Ad(a) To (1" ). X1, ..., Ad(a).Ts (1" ). Xn)
= det(Ad(a))A(Te(u” ). X1, ..., To(u™ ). Xn)
= det(Ad(a))(Ra)e (X1, ..., Xn).
det(Ad(a))(La)a(X1, ..., X)
= det(Ad(a)) A(Ta(pg-1). X1, -, Tu(pta-1).-Xn)
= A(Ad(a).Ta(pta-1)-X1, ... , Ad(a).Tu(ptg-1).Xn)

1

= A(To(1® ).To(pt0) To (pta=1)-X1, - - - Talp® ). Tolpta)-Tapta—1)-Xn)
= A(To(p® ).X1, .. Ta(p® ).Xn) = (Ra)a(X1,...,X,). O

12.3. Corollary and Definition. The Lie group G admits a bi-invariant (i.e.
left and right invariant) n-form if and only if det(Ad(a)) =1 for all a € G.

The Lie group G is called unimodular if |det(Ad(a))| =1 for all a € G.
Note that det(Ad(a)) > 0 if G is connected.
Proof. This is obvious from lemma (12.2). O

12.4. Haar measure. We orient the Lie group G by a left invariant n-form La.
If f € C°(G,R) is a smooth function with compact support on G then the integral
Jo fLA is defined and we have

Jwinra = [ uitrra) = [ sra,
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because p, : G — G is an orientation preserving diffeomorphism of G. Thus f —
Jo fLa is a left invariant integration on G, which is also denoted by [, f(z)drx,
and which gives rise to a left invariant measure on G, the so called Haar measure.
It is unique up to a multiplicative constant, since dim(A"g*) = 1. In the other
notation the left invariance looks like

/ flaz)dpz = / f(x)dpx for all f € C°(G,R),a € G.
G G
From lemma (12.2.1) we have
[ @y s = det(ad@) [ () (£Ls)
G G
— | det(Ad(a))] /G fLa,

since the mapping u® is orientation preserving if and only if det(Ad(a)) > 0. So
a left Haar measure is also a right invariant one if and only if the Lie group G is
unimodular.

12.5. Lemma. FEach compact Lie group is unimodular.

Proof. The mapping detoAd : G — GL(1,R) is a homomorphism of Lie groups,
so its image is a compact subgroup of GL(1,R). Thus det(Ad(G)) equals {1} or
{1,—1}. In both cases we have | det(Ad(a))| =1 for all a € G. O

Analysis for mappings between Lie groups

12.6. Definition. Let G and H be Lie groups with Lie algebras g and b, respec-
tively, and let f : G — H be a smooth mapping. Then we define the mapping
Df:G — L(g,b) by

Df(.T) = Tf(x)((:uf(m))_l)Tmee(/J’x) = (5f(.T)T€(,u,x),
and we call it the right trivialized derivative of f.

12.7. Lemma. The chain rule: For smooth g: K — G and f : G — H we have
D(f og)(z) = Df(g(x)) o Dg(x).
The product rule: For f,h € C*°(G, H) we have

D(fh)(x) = Df(x) + Ad(f(z))Dh(z).
Proof. We compute as follows:

D(f o g)(w) = T(u/ 9 )T, (f 0 9).Te (1)
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= T(p! 9D ) Ty 0y () Te(u )T (). T g) Te (1)
Df(g(x)).Dg(x).
D(fh)(x) = T(pd M) T (o (f, ). Te (")
= T(u @) T (")) Ty () oy oo (T £ Te (1), Toh Te (1))
= T(uI ) TN (T D) T f T (1) + T ) T T )
= T(uV )T £ T (07) + T ) T g T (M) T b T ()
= Df(z) + Ad(f(x)).Dh(z). O

'ﬂ

12.8. Inverse function theorem. Let f : G — H be smooth and for some
x € G let Df(x): g — b be invertible. Then f is a diffeomorphism from a suitable
neighborhood of x in G onto a neighborhood of f(x) in H, and for the derivative

we have D(f~1)(f(x)) = (D f(z))~!
Proof. This follows from the usual inverse function theorem. [

12.9. Lemma. Let f € C®(G,G) and let A € AY™ G g* be a determinant function
on g. Then we have for all x € G,

(f"Ra)e = det(Df(2))(Ra)e-

Proof. Let dim G = n. We compute as follows

(f*Ra)e(X1,. s X0) = (Ra) pa) (Tu f- X1, -, T f-X0)
AT T f.X,,..0)

= AT/ @ )T f T (") T ). X, ...)
ADf (). T ). X1,...)

12.10. Theorem. Transformation formula for multiple integrals. Let f :
G — G be a diffeomorphism, let A € AM™Cg* Then for any g € C°(G,R) we
have

| tr@)ldes(Df@)ldnz = [ gl)dny.
G G

where drx is the right Haar measure, given by Ra.

Proof. We consider the locally constant function e(z) = signdet(D f(z)) which is
1 on those connected components where f respects the orientation and is —1 on the
other components. Then the integral is the sum of all integrals over the connected
components and we may investigate each one separately, so let us restrict attention
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to the component G of the identity. By a right translation (which does not change
the integrals) we may assume that f(Gy) = Gp. So finally let us assume without
loss of generality that G is connected, so that € is constant. Then by lemma (12.9)

we have
/G:QRA=€/C:f*(9RA):€/Gf*(9)f (Ra)
— [ (9o pedet(DNRs = [ (g0 )ldet(DIR. O
e e

12.11. Theorem. Let G be a compact and connected Lie group, let f € C*(G, Q)
and A € A CGg* . Then we have for g € C(Q),

degf/ gRA:/(gOf)det(Df)RA, or
des s [ owidny = | o(f(@) det(Df(@)dn

Here deg f, the mapping degree of f, see (11.8), is an integer.

Proof. From lemma (12.9) we have f*Ra = det(Df)Ra. Using this and the
defining relation from (11.8) for deg f we may compute as follows:

degf/gRA—/f (gRa) /f

- / (g0 f)det(Df)Ra. O
G

12.12. Examples. Let G be a compact connected Lie group.

1. If f =p*: G — G then D(pu*)(x) = Idy. From theorem (12.11) we get
fG gRA = |, (g0 u*)Ra, the right invariance of the right Haar measure.

2. If f = pig : G — G then D(pg)(x) = T(u ") Ty (1a). To(u”) = Ad(a). So the
last two results give [, gRA = [5(g © pta)| det Ad(a)|Ra which we already know
from (12.4).

3. If f(x) = 2% = p(z,x) we have
Df (@) = Tox (") Tpa e (Te(”), Tu(s")

= To(1® )T (u® ) (T () T (%) + T (). Te (%))
= Ad(z) + Id,.

Let us now suppose that |[ o Ba =1, then we get
deg(( )?) = deg(( )2)/ Ra = / det(Idg + Ad(z))drx
G G
/ g(22) det(Idy + Ad(x))dra = / det(Id, + Ad(x))dna / g(@)dnz.
G G G

Draft from September 15, 2004 Peter W. Michor,



124 Chapter III. Differential Forms and De Rham Cohomology 12.13

4. Let f(z) = a* for k € N, [, drz = 1. Then we claim that

k—1
D(( ")) =) Ad(z").
i=0
This follows from induction, starting from example 3 above, since

D(( )*)(«) =D(Ide( )*')(@)
= D(Idg)(x) + Ad(z).D(( )*"")(x) by (12.7)

k—2 k—1
= Idg + Ad(z)()_ Ad(z')) = Ad(").
i=0 i=0
We conclude that -
deg( )F :/ det (Z Ad(xi)) drx.
¢ i=0

If G is abelian we have deg( )* = k since then Ad(x) = Id,.

5. Let f(z) = v(z) = z~'. Then we have Dv(z) = Tp’@ ' TowT.u® =
—Ad(x~1). Using this we see that the result in 4. holds also for negative k, if
the summation is interpreted in the right way:

DI Y M@= Y Ada’) = -3 Ada).
i=— k41 i=0

Cohomology of compact connected Lie groups

12.13. Let G be a connected Lie group with Lie algebra g. The De Rham coho-
mology of G is the cohomology of the graded differential algebra (2(G),d). We
will investigate now what is contributed by the subcomplex of the left invariant
differential forms.

Definition. A differential form w € Q(G) is called left invariant if p)w = w for all
a € G. We denote by Q1 (G) the subspace of all left invariant forms. Clearly the

mapping
L: Ag* - QL(G)a
(Lw)x(Xl, ce ,Xk) = w(T(,ux—l).Xl, ce ,T(/,Lz—l).Xk),

is a linear isomorphism. Since p’ od = d o ¥ the space (21(G),d) is a graded
differential subalgebra of (2(G),d).

We shall also need the representation Ad : G — GL(Ag*) which is given by ZZZ(CL) =
A(Ad(a=1)*) or

(Ad(a)w) (X1, ..., X) = w(Ad(a™). X1, ..., Ad(a™").Xp).
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12.14. Lemma.

(1) Via the isomorphism L : Ag* — Qp(G) the exterior differential d has the
following form on Ag*:

~

do(Xo,...,.Xp) = > (=) (X;, X;], Xo,..., Xi,. .. X, ..., Xp),
0<i<j<k

where w € A¥g* and X; € g.
(2) For X € g we have i(Lx)Qn(G) C Q(G) and L1, Qp(G) C Qp(G). Thus

we have induced mappings

7:X Akzg* —>Ak_1 *,
(ixw)(Xl,... 7Xk—1) :w(X,Xl,... 7Xk—1);
Lx : AFg* — AFg*,
k . o~
(Lxw) (X1, Xi) =Y (—D'w((X, X], X1,..., X;, ... Xp).

=1

(3) These mappings satisfy all the properties from section (7), in particular

Lx =ixod+doix, see(7.9.2),
Lxod=doLx, see (7.9.5),
[Lx,Ly] = Lix v, see (7.6.3).
[Lx,iy] = ix,v]s see (7.7.3)

(4) The representation Ad: G — GL(Ag*) has derivative T.Ad.X = Lx.

Proof. For w € A*g* and X; € g the function

(Leo)a(Lxo (2), -5 Ly () = w(T(pg—1)-Lx, (), )
W(T (1) T (poe)- X1, - .- )
w(Xl, “eey Xk)

is constant in . This implies already that i(Lx)Q.(G) C Qr(G) and the form of
ix in 2. Then by (7.8.2) we have

(dw)(Xo, ..., Xz) = (dLo)(Lxy,--.,Lx,)(e)
k
= Z(—niin (e)(w(Xo, ... X;,... Xz))

+ Z (—1)i+jw([Xi,Xj],X0,...,)?,-,...,)A(j,...Xk),

0<i<j<k

from which assertion (1) follows since the first summand is 0. Similarly we have

(EXw)(Xl, e ,Xk) = (LLXLLU)(LX17 . ,ka)(e)

k
= Lx(e)(w(X1,.... Xi) + Y _(-D)'w(X, X;], X1,..., Xi, ... Xp).
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Again the first summand is 0 and the second result of (2) follows.
(3) This is obvious.
(4) For X and X; € g and for w € A*g* we have
(T Ad.X)w)(X1, ..., X) = 2|, (Ad(exp(tX))w)(X1,. .., X)
= % ‘0 w(Ad(exp(—tX)).X1,...,Ad(exp(—tX)).Xk)

I
B

w(X1,. ., Xio1, —ad(X) Xy, Xig1, ... X)

.
[y

E|

(=) 'w([X, Xi], X1,..., X4, ... Xp)

Il
—_

Eﬁxw)(Xl, N ,Xk) O

12.15. Lemma of Maschke. Let G be a compact Lie group, let
0=V 5V, LV —0

be an exact sequence of G-modules and homomorphisms such that each V; is a
complete locally convex vector space and the representation of G on each V; consists
of continuous linear mappings with g — g.v continuous G — V; for each v € V;.
Then also the sequence

. G
(0 —’)Vla - VzG = V3G —0
is exact, where VE = {v € V; : gv =0 for all g € G}.

Proof. We prove first that p© is surjective. Let vz € V& C V3. Since p: Vo — V3
is surjective there is an vy € Vo with p(ve) = v3. We consider the element v :=
f . T-v2dpx; the integral makes sense since x — z.v3 is a continuous mapping G —
Vs, G is compact, and Riemann sums converge in the locally convex topology of V5.
We assume that [, dpz = 1. Then we have a.02 = a. [, z.v2drz = [, (ax).vedpx =
fG x.wedpx = U9 by the left invariance of the integral, see (12.4), where one uses
continuous linear functionals to reduce to the scalar valued case. So ¥y € V& and
since p is a G-homomorphism we get

p%(02) = p(¥2) = p(/G T.02d 1 T)

:/Gp(x.vg)de:/x.p(vz)de

G

:/x.vgde: / v3drT = V3.
G

Now we prove that the sequence is exact at V. Clearly p© 0i% = (po)|V¥ = 0.
Suppose conversely that vy, € V& with p(vs) = p(ve) = 0. Then there is an
vy € Vi with i(v1) = vg. Consider 97 := fGac.vldL:r. As above we see that ©; € V&
and that lG(@l) = V3. O

So p% is surjective.
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12.16. Theorem (Chevalley, Eilenberg). Let G be a compact connected Lie
group with Lie algebra g. Then we have:
(1) H*(G) = H*(Ag",d) := H"(g).
(2) H*(g) = H*(Ag*,d) = (Ag")? = {w € Ag* : Lxw =0 for all X € g}, the
space of all g-invariant forms on g.

The algebra H*(g) = H(Ag*,d) is called the Chevalley cohomology of the Lie alge-
bra g.

Proof. (Following [Pitie, 1976].)

(1) Let Z*(GQ) = ker(d : Q%(G) — Q*TH(@)), and let us consider the following exact
sequence of vector spaces:

(3) OF1(G) L ZMG) — HYG) — 0

The group G acts on Q(G) by a +— p_,, this action commutes with d and induces
thus an action of G of Z*(G) and also on H*(G). On the space Q(G) we may
consider the compact C'*°-topology (uniform convergence on the compact G, in all
derivatives separately, in a fixed set of charts). In this topology d is continuous,
Z* (@) is closed, and the action of G is pointwise continuous. So the assumptions
of the lemma of Maschke (12.15) are satisfied and we conclude that the following
sequence is also exact:

(4) o @) 4

ZF @)Y - HY(@)Y -0

Since G is connected, for each a € G we may find a smooth curve ¢ : [0,1] — G
with ¢(0) = e and ¢(1) = a. Then (t,z) — pem-1(x) = ¢(t) 'z is a smooth
homotopy between Idg and p,-1, so by (9.4) the two mappings induce the same
mapping in homology; we have p*_, = Id: H*(G) — H*(G) for each a € G. Thus
H*(G)¢ = H*(G). Furthermore Z*(G)% = ker(d : Q% (G) — Q5TH(@)), so from
the exact sequence (4) we may conclude that

_ ker(d : QF (G) — Q5TH(@))

k G = k G G
H™(G) = H™(G) im(d:Q]’i_l(G)Hﬂlz(G))

= H*(Ag*,d).

(2) From (12.14.3) we have Lx od = d o Lx, so by (12.14.4) we conclude that

Ad(a)od = do Ad(a) : Ag* — Ag* since G is connected. Thus the the sequence
(5) AF1ge 5 ZR(g") — H*(Ag*,d) — 0,

is an exact sequence of G-modules and G-homomorphisms, where Z*(g*) = ker(d :
AFg* — AFtlg®). All spaces are finite dimensional, so the lemma of Maschke
(12.15) is applicable and we may conclude that also the following sequence is exact:

d

(6) (A*1g")C = ZF(g")9 — H*(Ag", d)¢ — 0,
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The space H*(Ag*,d)® consist of all cohomology classes o with Zlvd(a)a = « for all
a € G. Since G is connected, by (12.14.4) these are exactly the o with Lxa =0
for all X € g. For w € Ag* with dw = 0 we have by (12.14.3) that Lxw =
ixdw + dixw = dixw, so that Lxa = 0 for all a € H¥(Ag*,d). Thus we get
HF(Ag*,d) = H*(Ag*,d)¢. Also we have (Ag*)® = (Ag*)? so that the exact
sequence (6) tranlates to

(7) H"(g) = H"(Ag", d) = H*((Ag")?, d).

Now let w € (A*g*)® = {p : Lxp = 0 for all X € g} and consider the inversion
v: G — G. Then we have for w € A¥g* and X; € g:

(V' L)a(Te(pa) X1, -y Te(pa) -Xi) =
= (L)1 (TovTe(pa)- X1, -, TavTe(pa) - Xk)

= (
(LYot (=T )T (1) Te(p1a)- X1, )
(Lw)amt (—Te(p® )X, .o, ~Te(n® ). Xa)
= (—D*w(Tpe T Xy, ... Tpa . Tu® X
= (=1)*w(Ad(a). X1, . .., Ad(a).X})
= (=1)*(Ad(a Yw)(X1,..., Xk
= (=D w(X1,..., X) since w € (A*g*)®
= (—D)"(Lw)a(Te(pta) X1, - -, Te(pta)-Xr)-

So for w € (A¥g*)® we have v*L,, = (—1)¥L,, and thus also (—1)**1Ly, = v*dL, =
dv*L, = (=1)*dL, = (—=1)* L4, which implies dw = 0. Hence we have d|(Ag*)® =
0.

From (7) we now get H*(g) = H*((Ag*)?,0) = (A*g*)? as required. [

12.17. Corollary. Let G be a compact connected Lie group. Then its Poincaré
polynomial is given by

Jalt) = /G det(Ad(x) + t1dg)dy .

Proof. Let dim G = n. By definition (9.2) and by Poincaré duality (11.6) we have

= bGP =) (@) h ZdlmR H*(G)t"*.
k=0 k=0
On the other hand we hand we have

/ det(Ad(x) + tldy)dpx = / det(Ad(z~1)* + tIdg-)dr
G

/ZTrace (A Ad(z=Y)*)t"*dpxz by (12.19) below
& k=0

= Z/ Trace(;{vd(m)mkg*)de k.
k=0"C
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If p: G - GL(V) is a finite dimensional representation of G then the operator
fG p(z)drx : V — V is just a projection onto V&, the space of fixed points of
the representation, see the proof of the lemma of Maschke (12.14). The trace of a
projection is the dimension of the image. So

/G Trace(Ad(a)|A*g*)d,x = Trace ( /G (ZZz(a)mkg*)de)

= dim(A*g*)¢ = dim H*(G). O

12.18. Let T" = (S1)" be the n-dimensional torus, let t" be its Lie algebra. The
bracket is zero since the torus is an abelian group. From theorem (12.16) we
have then that H*(T™) = (A(t")*)!" = A(t")*, so the Poincaré Polynomial is
12.19. Lemma. Let V be an n-dimensional vector space and let A:V — V be a

linear mapping. Then we have

det(A + tIdy) =Y t" " Trace(A* A).
k=0

Proof. By AFA: A*V — AFV we mean the mapping viA- - -Avy — AviA---AAuvy,.
Let e1,...,e, be a basis of V. By the definition of the determinant we have

det(A+tldy)(er A---Nep) = (Aer +ter) A--- A (Aey, + tey)

n
=D " > er A Adey, Ao AAei, A Aey.
k=0

11 <<l

The multivectors (e;, A--- Ae;, )i <...<i, are a basis of A¥V and we can thus write

(A*A)(ei, Av--Aeiy) = Aei, Ao NAey, = Y Al Tle; A Ney,

J1<-<Jk

where (Agll.'.'_'j *) is the matrix of A¥A in this basis. We see that

ik
er A ANAey A NAei A Ney = AR A Ay,
Consequently we have
n
det(A+tldy)es A+ Ney = Zt”_k Z Aﬁ::j’;el A---Nep
k=0 1< <ilp

n
= Ztn_k Trace(A*A)e; A--- Aey,
k=0

which implies the result. [

Draft from September 15, 2004 Peter W. Michor,



130

Draft from September 15, 2004 Peter W. Michor,



131

CHAPTER IV

Riemannian Geometry

13. Pseudo Riemann metrics and
the Levi Civita covariant derivative

13.1. Riemann metrics. Let M be a smooth manifold of dimension m. A
Riemann metric g on M is a symmetric (g) tensor field such that g, : T, M X
T, M — R is a positively defined inner product for each x € M. A pseudo Riemann
metric g on M is a symmetric (g) tensor field such that g, is non degenerate, i.e.
Gu : TxM — T} M is bijective for each x € M. If (U,u) is a chart on M then we
have

glU =" g5, 3) dv’ @ du? =) gijdu’ @ du.
i,j=0 %,J

Here (g;;(x)) is a symmetric invertible (m x m)-matrix for each x € M, positively
defined in the case of a Riemann metric, thus (g;;) : U — Matgym(m x m). In the
case of a pseudo Riemann metric, the matrix (g;;) has p positive eigenvalues and ¢
negative ones; (p,q) is called the signature of the metric; it is locally constant on
M and we shall always assume that it is constant on M.

Lemma. One each manifold M there exist many Riemann metrics. But there need
not exist a pseudo Riemann metric of any given signature.

Proof. Let (U,,uq) be an atlas on M with a subordinated partition of unity (fo).
Choose smooth mappings (gf}) from U, to the convex cone of all positively defined
symmetric (m x m)-matrices for each a and put g = _, fo D_;; 955 dug ® d,.

For example, on any even dimensional sphere S?" there does not exist a pseudo
Riemann metric g of signature (1,2n — 1): Otherwise there would exist a line sub-
bundle L C T'S? with g(v,v) > 0 for 0 # v € L. But since the Euler characteristic
x(S52™) = 2 such a line subbundle of the tangent bundle cannot exist, see 7??. [

13.2. Length and energy of a curve. Let c: [a,b] — M be a smooth curve. In
the Riemann case the length of the curve c is then given by

L) = [ g0t = [ je o),
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In both cases the energy of the curve c is given by

b
BN = [ ale(e).c0)i.

For piecewise smooth curves the length and the energy are defined by taking it for
the smooth pieces and then by summing up over all the pieces. In the pseudo Rie-
mann case for the length one has to distinguish different classes of curves according
to to the sign of g(c¢/(t),(t)) (the sign then should be assumed constant), and by
taking an appropriate sign before taking the root. These leads to the concept of
‘time-like’ curves (with speed less than the speed of light) and ‘space-like’ curves.

The length is invariant under reparameterizations of the curve:

L(co f) = / g(co 1) (1), (co £) (1) 2dt
— / o' (O (), F/(0) (F(1) 2t
- / a( (F(1), ¢ (FO) Y| ()| dt = / g(c (1), &/ (1)) /2dt = L2 (c).

The energy is not invariant under reparametrizations.

13.3. Theorem. (First variational formula) Let g be a pseudo Riemann metric
on an open subset U C R™. Let v : [a,b] X (—&,&) — U be a smooth variation of
the curve ¢ =~y( ,0) : [a,b] — U. Let r(t) = %Wy(t, s) = T,07-(0,1) € To(y M
be the variational vector field along c.

Then we have:

b
SI(ELOC 50) = [ (=gl (®).r(®) - dg(el) (& )0 r(0)+

Proof. We have the Taylor expansion (¢, s) = v(£,0) + svs(¢,0) + O(s?) = c(t) +
sr(t) + O(s?) where the remainder O(s?) = s%R(s,t) is smooth and uniformly
bounded in t. We plug this into the energy and take also the Taylor expansion of
g as follows

B 9) =4 [ alalts) (. s)utt. o) de
=3 / gle(t) + sr(t) + O(s?)) (c’(t) + 57/ (1) + O(s2), & (t) + s (t) + 0(32)) dt

=3 / b(g(c(t)) + 59/ (D) r(B) +O() (. ) d
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N

/ (g(C(t))(C'(t), c(1)) + 2sg(c(t)) (¢ (1), (1)) +
+ 59" (c(t)) (r(1))(<' (1), C’(O)) dt + O(s?)

b

b
=B+ [ ge)E @) de+ bs [ g o) O) 0. 1) di+O(s2).
Thus for the derivative we get, using partial integration:

Z10EL(( s) = lm L(EL( 9) = EA(v( ,0))
b b
=1 [ SO @O+ [ gl @) d
b
=1 [ SO @ O) dt+ gle®) 0. )=~
b
= [ (OO @ 0) + gle) @), (0)) de

= / (—g(C(t))(C”(t),r(t))—g’(C(t))(C’(t))(C’(t),T(t))+

+ 39 () (r(1) (¢ (1), c’(t))) di+
+ g(c(0))(c (b), (b)) — glc(a))(c'(a),r(a)) O

13.4. Christoffel symbols and geodesics. On a pseudo Riemann manifold
(M, g), by theorem (13.3), we have Z|oEL(y( ,s)) = 0 for all variations v of the
curve ¢ with fixed end points (r(a) = r(b) = 0) in a chart (U, u), if and only if
the integral in theorem (13.3) vanishes. This is the case if and only if we have in
uw(U) C R™:

g'(c(®))( (), c(t))

g () (@) ®), )

g () (@) (@)

For x € w(U) and X,Y,Z € R™ we consider the polarized version of the last
equation:

(1) g(=)(To(X,Y), Z) = 34" (2)(Z)(X,Y) = 54" (2)(X)(Y, Z) — 34" (2)(Y)(Z, X)
which is a well defined smooth mapping

I:uU) — L2 (R™;R™).

sym

gle®)("(t), ) =3

Back on U € M we have in coordinates

) = (X T ) = O () v

ij
Zr” )XYT =y T () XY 52
1,9,k
where the Ffj : U — R are smooth functions, which are called the Christoffel
symbols in the chart (U, u). Attention: Most of the literature uses the negative of
the Christoffel symbols.
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Lemma. If g|U = 3, . gijdu® ® du? and if (9;;)"" = (9%) denotes the inverse
matriz then we have

o L k(909 Ogi;  Oga
2) % = 2;‘9 <3ul o ut 3uj)‘

Proof. We have

>0 = 3 Lol oin) = 9(3 Lol ) = 90l ). i)

Let ¢ : [a,b] — M be a smooth curve in the pseudo Riemann manifold (M, g). The
curve c is called a geodesic on M if in each chart (U, u) for the Christoffel symbols
of this chart we have

(3) C//(t) = Fc(t) (C,(t), Cl(t>).

The reason for this name is: If the energy E® of (each piece of) the curve is minimal
under all variations with fixed end points, then by (13.3) the integral

/ Gy (" (t) = Ty (¢ (1), € (), m(t)) dt =0

for each vector field r along ¢ with r(a) = r(b) = 0. This implies (3). Thus (local)
infima of the energy functional E° are geodesics, and we call geodesic any curve
on which the energy functional E° has vanishing derivative (with repect to local
variations with constant ends).

Finally we should compute how the Christoffel symbols react to a chart change.
Since this is easily done, and since we will see soon that the Christoffel symbols
indeed are coordinate expressions of an entity which belongs into the second tangent
bundle TT'M, we leave this exercise to the interested reader.

13.5. Covariant derivatives. Let (M, g) be a pseudo Riemann manifold. A
covariant derivative on M is a mapping V : X(M) x X(M) — X(M), denoted by
(X,Y) — VxY, which satisfies the following conditions:
(1) VxY is C°(N)-linear in X € X(M), ie. Vix,4mx,Y = fiVx,Y +
f2Vx,Y. So for a tangent vector X, € T, M the mapping Vx,_ : X(M) —
T, M makes sense and we have (Vxs)(z) = Vx(y)s.
(2) VxY is R-linear in Y € X(M).
(3) Vx(f.Y)=df(X).Y + f.VxY for f € C°°(M), the derivation property of
Vx.
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The covariant derivative V is called symmetric or torsion free if moreover the fol-
lowing holds:

(4) VxY - VyX =[XY].
The covariant derivative V is called compatible with the pseudo Riemann metric if
we have:

(5) X(9(Y,2)=9(VxY,Z)+g(Y,.VxZ) for all X|Y,Z € X(M).
Compare with (22.12) where we treat the covariant derivative on vector bundles.
Theorem. On each pseudo Riemann manifold (M, g) there exists a unique torsion

free covariant deriwative V. = V9 which is compatible with the pseudo Riemann
metric g. In a chart (U,u) we have

©) V.o o=~ 3 Thn,
ut L

where the Ffj are the Christoffel symbols from (13.4).
This unique covariant derivative is called Levi Civita covariant derivative.

Proof. We write the cyclic permutations of property (5) equipped with the signs

+, +, =
X9V, 2))=9(VxY,Z)+g(Y,VxZ)
Y(9(Z,X))=9(VyZ,X)+9(Z,VyX)

We add these three equations and use the torsion free property (4) to get

X(Q(Y? Z)) +Y(g(Z,X)) - Z(Q(Xv Y)) =
= g(VXY + VyX, Z) +g(VXZ — VzX, Y) +Q<VYZ — V2Y,X)
= g(QVXY - [Xv Y],Z) —g([Z, X]vY) —I—g([Y, Z]’X)a

which we rewrite as implicit defining equation for Vx Y

(7) 29(VxY,Z) = X(9(Y, 2)) + Y (9(2, X)) = Z(9(X,Y))
This by (7) uniquely determined bilinear mapping (X,Y) — VxY indeed satisfies

(1)—(5), which is tedious but easy to check. The final assertion of the theorem
follows by using (7) once more:

20V o_5e5s ) = e (9507 50r)) + 57 (95 7r) — 7 (9058 517)
uz
= —2ZFfjgkl, by (13.4.2). O
k
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13.6. Geodesic structures and sprays. By (13.5.6) and (13.4.3) we see that
a smooth curve ¢ : (a,b) — (M, g) is a geodesic in a pseudo Riemann manifold
if Vo, = 0, in a sense which we will make precise later in (13.9.6) when we
discuss how we can apply V to vector fields which are only defined along curves or
mappings. In each chart (U, u) this is an ordinary differential equation

C”<t) = Fc(t) (C/(t)7 Cl(t))’
d—c%) = Th(c(t) ici(t) icj(t), c=(c,...,cm)

)

which is of second order, linear in the second derivative, quadratic in the first de-
rivative, and in general completely non-linear in ¢(t) itself. By the theorem of
Picard-Lindel6f for ordinary differential eqations there exists a unique solution for
each given initial condition ¢(tp),c (tg), depending smoothly on the initial condi-
tions. Thus we may piece together the local solutions and get a geodesic structure
in the following sense:

A geodesic structure on a manifold M is a smooth mapping geo : TM xR D U — M,
where U is an open neighborhood of TM x {0} in TM x R, which satisfies:

(1) geo(X,)(0) =z and 2 ‘Ogeo (X)) = X,.
(2) geo(t.Xy)(s) = geO(X )(t.5).

(3) geo(geo(Xz)'(s))(t) = geo(X,)(t + 5).
(4) UN (X, xR) ={X,} x intervall .

One could also require that U is maximal with respect to all this properties. But

we shall not elaborate on this since we will reduce everything to the geodesic vector
field shortly.

If we are given a geodesic structure geo : U — M as above, then the mapping
(X,t) — geo(X)'(t) = %geo(X)( ) € TM is the flow for the vector field S €
X(TM) which is given by S(X) = &| & geo(X)(t) € T?M, since
a1 51 8e0(X) () = 5 lo 35 geo(X)(t + ) = F:loF; geo(F; geo(X)(t))(s) by (3)
= S(F; geo(X)(1))
geo(X)'(0) = X.
The smooth vector field S € X(T'M) is called the geodesic spray of the geodesic
structure.
Recall now the chart structure on the second tangent bundle 72 M and the canonical
flip mapping kys : T>°M — T?M from (6.12) and (6.13). Let (U,u) be a chart on
M and let ¢, ) (t) = u(geo(Tu™"(x,y))(t)) € U. Then we have
Tu(geo(Tu™ " (2,4))'(£)) = (Cay) (t), gy (1)
T?u(geo(Tu™" (2, )" (1)) = (¢ () ay) (1) gy (1) gy (1)
(5) T?u.S(Tu™ (z,y)) = T?u(geo(Tu™" (x,y))"(0))
= () (0); (4 1) (0); €4 (0), €l (0)
= (z,y;9,5(2,y))
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Property (2) of the geodesic structure implies in turn

C(a:,ty) (S) = C(I,y) (t8> C/(m,ty) (S) = t‘cl(:c,y) (tS)
oty (0) = 2., ) (0)  S(z,ty) = £2S(x,y)

so that S(x, ):R™ — R™ is homogenous of degree 2. By polarizing or taking
the second derivative with respect to y we get

S(x,y) =Ta(y,y), for T:u(U)— LI, (R™;R™),
T.(y,2) = %(g(x,y+ 2) — S(z,y) — S(x,2)).

If the geodesic structure is induced by a pseudo Riemann metric on M, then we
have seen that c’('x’y)(t) = FC(z,y)(t)(C/(x,y)(t)aC/(x,y)(t)) for the Christoffel symbols
in the chart (U,u). Thus the geodesic spray is given in terms of the Christoffel
symbols by

(6) T*u(S(Tu™ (2,9))) = (2,49, Ta(y, y)).

13.7. The geodesic exponential mapping. Let M be a smooth manifold and
let S € X(TM) be a vector field with the following properties:

(1) mpar 0 S =1Idpas; S is a vector field.

(2) T(mpr) oS = Idppy; S is a ‘differential equation of second order’.

(3) Let mM : TM — TM and mI™ : T2M — T?M be the scalar multiplica-
tions. Then S omM = T(mM).mI™.S

A vector field with these properties is called a spray.

Theorem. If S € X(T'M) is a spray on a manifold M, let us put geo(X)(t) :=
mar(F17(X)). Then this is a geodesic structure on M in the sense on (13.6).

If we put exp(X) = 7 (FI5 (X)) = geo(X)(1), then exp : TM DV — M is a
smooth mapping, defined on an open neighborhood V' of the zero section in TM,
which is called the exponential mapping of the spray S and which has the following
properties:

(4) To, (exp [T, M) = Idp,mr (via Ty, (T M) = T, M). Thus by the inverse
function theorem exp, = exp |T, M : V, — W, is a diffeomorphism from
an open neighborhood V,, of 0, in T M onto an open neighborhood W, of x
in M. The chart (W, exp, 1) is called a Riemann normal coordinate system
at x.

(5) geo(X)(t) = exp(t.X).

(6) (war,exp) : TM DV — M x M is a diffeomorphism from an open neigh-
boorhood V of the zero section in T'M onto an open neighboorhood of the
diagonal in M x M.

Proof. By properties (1) and (2) the local expression the spray S is given by

(z,y) — (z,y;y,5(x,y)), as in (13.6.5). By (3) we have (z,ty;ty, S(z,ty)) =
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138 Chapter IV. Riemannian Geometry 13.8
T(mM).mIM (x,y;y,S(x,y)) = (z,ty; ty, t2S(x,y)), so that S(z, ty) = t25(x,y) as
n (13.6).

(7) We have FIZ (s.X) = 5. F1J,(X) if one side exists, by uniqueness of solutions of

differential equations:

2.5, FIS,(X) = ZmMFIS,(X) = T(m™) & FI5,(X)
= T(mM).mI™M (IS, (X)) € (5. F15,(X))

5. F1Z (X)) = s.X, thus s.F1Z (X)) = FIY (s.X).

We check that geo = mp; o F1° is a geodesic structure, i.e., (13.6.1)-(13.6.4) holds:

g1l geo(X (0= Felo mar (FIF(X2)) = Tmar) G, P17 (X:)
=T(mm)S(Xz) = Xa
geo(s.X,)(t) = ma (FI7 (5. X,)) = mar(s. F12 (X)),  see above,
= geo(X,)(s:1).
geo( 5= geo(X)(9))(t) = mar (FIF (Frmar FIY (X,)))
= mar(FIF (T (mar) S(FIS (X)) = mar (FI (FI7(X,))) by (2)
= T (F17(X2)) = geo( X, ) (¢ + 9).
Let us investigate the exponential mapping. For € > 0 let X, be so small that
(1X,,¢€) is in the domain of definition of the flow F1°. Then
exp,(Xz) = mu (FI7 (X)) = mu (FI7 (2.2, X))
= (e FIS(LX,)) = my(FIS(L.X,), by (7).

We check the properties of the exponential mapping.

(4) To, (exp,). Xz = %‘0 exp, (0, +t.X,) = 51 ‘0 TN Fl1 (t.X2))
= | mu(t.FI)(X,)) = &| ma(FI7(X,)), by (7)
=T(mar) &y (FIF (X2)) = T(ma)(S(Xo)) = X

(5) exp, (t.X,) = mu (FIY (£.X,)) = mu (8. FI7 (X))
= ma (FIF (X2)) = geo(X,) (1)

(6) By (4) we have Ty, (7, exp) = (E O) thus (7, exp) is a local diffeomorphism.
Again by (4) the mapping (s, exp) is injective on a small neighborhood of the
zero section. [

13.8. Linear connections and connectors. Let M be a smooth manifold. A
smooth mapping C' : TM x y;TM — T?M is called a linear connection or horizontal
lift on M if it has the following properties:

(1) (T(mar), mrar) o C = Idrarx -
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13.8 13. Pseudo Riemann metrics and the Levi Civita covariant derivative 139

(2) C( ,X,) : T,M — Tx, (TM) is linear; this is the first vector bundle
structure on T?M treated in (6.13).

(3) C(Xy, ):TeM — T(mpr) 1 (X,) is linear; this is the second vector bundle
structure on T?M treated in (6.13).

The connection C' is called symmetric or torsion free if moreover the following
property holds:
(4) kpgoC =Coflip: TM Xy TM — T?M, where kpp : T?M — T?M is the
canonical flip mapping treated in (6.13).

From the properties (1)-(3) it follows that for a chart (Uy,us) on M the mapping
C is given by

(5)  T*(ua) o Co(T(ua)™" xar T(ua) ™) (2, 1), (2, 2)) = (z, 29,15 (y, 2)),

where the Christoffel symbolI'¢(y, z) € R™ (m = dim(M)) is smooth in x € uy(Uy,)
and is bilinear in (y,z) € R™ x R™. For the sake of completeness let us also note
the tranformation rule of the Christoffel symbols which follows now directly from
the chart change of the second tangent bundle in (6.12) and (6.13). For the chart
change w3 = uq © ugl cug(Ua NUB) — uq(Uy NUB) we have

(6)  T%. () (dluap)(@)y, d(uap)(x)2) = d(uap)(@)T5 (Y, 2) + d*(uap) () (y, 2).

We have seen in (13.6.6) that a spray S on a manifold determines symmetric
Christoffel symbols and thus a symmetric connection C'. If the spray S is in-
duced by a pseudo Riemann metric g on M then the Christoffel symbols are the
same as we found by determining the singular curves of the energy in (13.4). The
promised geometric description of the Christoffel symbols is (5) which also explains
their transformation behavior under chart changes: They belong into the vertical
part of the second tangent bundle.

Consider now a linear connection C' : TM xf TM — T?M. For £ € T?>M we
have £ — C(T(mar).&, mrar(€)) € V(T M) = T(mar)~(0), an element of the vertical

bundle, since T'(mar)(§ — C(T(wpr).£, o (§))) = T(mwar). — T(mar).£ = 0 by (1).
Thus we may define the connector K : T?>M — TM by

(7) K (&) = vorep (§ = C(T(mar)-& mrae(€))),  where € € T2M,

where the vertical projection vprp,, was defined in (6.12). In coordinates induced
by a chart on M we have

(8) K(x,y;a,b) = vpr(z,y;0,b — Ty (a,y)) = (x,b — Tx(a,y)).

Obviously the connector K has the following properties:
(9) Kovlpy =pry : TM Xy TM — TM, where the vertical lift vlpy (X, Y,) =
2 ‘0 (X, + tY,) was introduced in (6.12).
(10) K : TTM — TM is linear for the (first) myas vector bundle structure.
(11) K :TTM — TM is linear for the (second) T'(mwys) vector bundle structure.
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A connector, defined as a mapping satisfying (9)-(11), is equivalent to a connection,
since one can reconstruct it (which is most easily checked in a chart) by

C( ,X) = (T(my)|ker(K : Tx, (TM) — T, M))~*.

The connecter K is associated to a symmetric connetion if and only if Kok = K.
The connector treated here is a special case of of the one in (22.11).

13.9. Covariant derivatives, revisited. We describe here the passage from
a linear connection C : TM Xy TM — T?M and its associated connector K :
T?M — TM to the covariant derivative. In the more general setting of vector
bundles this is treated in (22.12). Namely, for any manifold N, a smooth mapping
s: N — TM (a vector field along f := mps o s) and a vector field X € X(IV) we
define

(1) Vxs:=KoTsoX:N—TN —T?M —TM

which is again a vector field along f.

T>M
b
TN TM
De Vxs M
N 2 M
N / M

If f: N — M is a fixed smooth mapping, let us denote by C¢°(N,TM) = T'(f*T'M)
the vector space of all smooth mappings s : N — TM with 7y, o s = f — vector
fields along f. Then the covariant derivative may be viewed as a bilinear mapping

2) V: X(N) x C(N,TM) — CF(N,TM).
In particular for f = Idy; we have V : X(M) x X(M) — X(M) as in (13.5).

Lemma. This covariant derivative has the following properties:

(3) Vxs is C°°(N)-linear in X € X(N). So for a tangent vector X, € T, N
the mapping Vx, : C3°(N,TM) — Ty M makes sense and we have
(Vxs)(z) = Vx()s.

(4) Vxs is R-linear in s € C3°(N,TM).

(5) Vx(h.s) = dh(X).s + h.Vxs for h € C>®°(N), the derivation property of
Vx.
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13.10 13. Pseudo Riemann metrics and the Levi Civita covariant derivative 141

(6) For any manifold Q and smooth mapping g : Q — N and Z, € T,Q we
have V4.2, =V z, (sog). If Z € X(Q) and X € X(N) are g-related, then
we have Vz(sog) = (Vxs)og.

T>M
T
(S o) 9) / ‘(K
Ts

TQ Ty TN ™

Z x| Ve T™
Q g N 5 MW M

Q g N / M

(7) In charts on N and M, for s(x) = (f(z),5(x)) and X ()

have (Vxs)(z) = (f(2),d5(2). X (2) = T (o) (5(x), df () X (2))).
(8) The connection is symmetric if and only if Vxs — VX = [X, s].

Proof. All these properties follow easily from the definition (1). O

Remark. Property (6) is not well understood in some differential geometric liter-
ature. It is the reason why in the beginning of (13.6) we wrote Vy,¢’ = 0 for the
geodesic equation and not V. ¢’ = 0 which one finds in the literature.

13.10. Torsion. Let V be a general covariant derivative on a manifold M. Then
the torsion is given by

(1) Tor(X,Y) :=VxY —Vy X — [X,Y]. X,Y € X(M)

It is skew symmetric and C'°°(M)-linear in X,Y € X(M) and is thus a 2-form with
values in TM: Tor € Q?(M;TM) =T'(A2T*M ® TM), since we have

Tor(f.X,Y) =V;xY — Vy(f.X) - [f.X,Y]
= fVxY =Y (f).X — fVy(X) - £IX, Y]+ Y(f).X
= f.Tor(X,Y).

Locally on a chart (U, u) we have

(2) Tor |U = ZTOI“( 5 a?u’) ® du’ ® du’

( Bul Oud

_Z Fk —|—Fk du'®duj®azk

——ZF du’ /\alu9®8 :—QZF du’ /\du]®8uk

1<J
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We may add an arbitrary form T' € Q2?(M;TM) to a given covariant derivative and
we get a new covariant derivative with the same spray and geodesic structure, since
the symmetrization of the Christoffel symbols stays the same.

Lemma. Let K : TTM — M be the connector of the covariant derivative V, let
X,Y € X(M). Then the torsion is given by

(3) Tor(X,Y)=(Koky —K)oTXoY.
If moreover f: N — M is smooth and U,V € X(N) then we get also

(4) Tor(Tf.U,Tf.V) = V(T f o V) = Vy(TfoU) —Tf o[U,V]
=(Koky —K)oTTfoTUoV.

Proof. By (13.9.1), (6.14) (or (6.19)), and (13.8.9) we have

Tor(X,Y)=VxY - VyX — [X,Y]
=KoTYoX —KoTXoY — KovlpyoY,[X,Y]),
Kovlpy oY [ X, Y]) =Ko (TYoX —kpoTX oY)
=KoTYoX -—KogkpyoTXoY.

Similarly we get

Kovlpyo(TfoV,Tfo[U,V])=KoTTfovlpyo(V,[U,V])
=KoTTfo(TVoU—kpoTUoV)
=KoTTfoTVoU—-KokyoTTfoTUoV
Vu(TfoV)=Vy(TfoU)-Tfo[X,Y]=
=KoTTfoTVoU—-KoTTfoTUoV —KovVlppyo(TfoV,Tfo[U,V])
=(Koky —K)oTTfoTUoV

The rest will be proved locally, so let us assume now that M is open in R™ and
U(zx) = (x,U(x)), etc. Then by (13.8.8) we have

(TTfoTUoV)(z) =TT f(z,U(x);V(x),dU(x)V(z))

= (f(2), df (2).U(x); df (2).V (), d* [ (2)(V(2),U(2)) + df (2).dU (z).V (2))

(Koky —K)oTTfoTUoV)(z)=

= (f(2),df(2)(V(2),U(2)) + df (2).dU (2).V (2) = T y() (df (2).U (@),

—(f(= ) d* f(2)(V(2),U()) + df (¢).dU (2).V () = T (o) (df (). V (2),
= (f(@), Ty (df (2).U(2), df (2).V (@) + T p0) (df ().V (2), df (2).U(2)))
= To (TfoUTfoV)( ). O
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13.11. The space of all covariant derivatives. If V? and V! are two covariant
derivatives on a manifold M then VY — V%Y turns out to be C°°(M)-linear in
X,Y € X(M) and is thus a (;)-tensor field on M, see (13.10). Conversely, one may
add an arbitrary (;)—tensor field A to a given covariant derivative and get a new
covariant derivative. Thus the space of all covariant derivatives is an affine space
with modelling vector space I'(T*M @ T*M @ TM).

13.12. The covariant derivative of tensor fields. Let V be covariant de-
rivative on on manifold M, and let X € X(M). Then the Vx can be extended
uniquely to an operator V x on the space of all tensor field on M with the following
properties:
(1) For f € C(M) we have Vx f = X(f) = df (X).
(2) Vx respects the spaces of (Z )-tenor fields.
(3) Vx(A® B) = (VxA)® B+ A® (VxB); a derivation with respect to the
tensor product
(4) Vx commutes with any kind of contraction C' (trace, see (6.18)): So for
we Q' (M) and Y € X(M) we have Vx (w(Y)) = (Vxw)(Y) + w(VxY).

The correct way to understand this is to use the concepts of section (22.9)-(22.12):
Recognize the linear connection as induced from a principal connection on the lin-
ear frame bundle GL(R™,TM) and induce it then to all vector bundles associated
to the representations of the sructure group GL(m,R) in all tensor spaces. Con-
tractions are then equivariant mappings and thus intertwine the induced covariant
derivartives, which is most clearly seen from (22.15).

Nevertheless, we discuss here the traditional proof, since it helps in actual compu-
tations. For w € Q'(M) and Y € X(M) and the total contraction C' we have

Vx(w())=Vx(ClwaY))
=C(Vxw®Y +w®VxY)
= (Vxw)(Y) +w(VxY),

(Vxw)(Y) = Vx(w(Y)) —w(VxY),

which is easily seen (as in (13.10)) to be C°°(M)-linear in Y. Thus V xw is again a
1-form. For a (Z)—tensor field A we choose X; € X(M) and w’ € QY(M), and arrive
similarly using again the total contraction) at

(VxA) (X1, .., Xgwh, oo wP) = X(A(Xq, ..., X0t wP))—
—A(VxXy,..., Xgwh wP) — AX1,Vx Xo, ..., Xgwh, o wP) — ...
—A(Xy,...,VxXgwh . wP) — A(Xy, ..., X, Vxw!, . wP)

= AX, L X w0t Y xwP).

This expression is again C°(M)-linear in each entry X; or w’ and defines thus
the (5 ) -tensor field Vx A. Obvioulsy Vx is a derivation with respect to the tensor
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product of fields, and commutes with all contractions. For the sake of completeness
we also list the local expression

v a_dzﬂ—Z(V

out

duj) (a‘zk

8u1

= ZFikdu

it =3 (5208 — dw (V_o_5%) ) du*
k

from which one can easily derive the expression for an arbitrary tensor field:

Voo A=32(V o A) (gl gl dul i)t e 50
dut o u’
B (8% (A<8;Li“”'7dujp>>_A(Vaaiaiilw--,duj”>—...
“_A<83i1""7v88idujp)>dui1®...®8u%

— (8,“114]17 7.7? +A]17 ,jp Fk AJI, 7jp Fk +

11,.,0q k,ia,. 1,01 i1,k,13,...,0q " 4,02

AJI? 7];7 1, kl“.]p )duzl ® . ® o

7777 Ouﬂq :

14. Riemann geometry of geodesics

14.1. Geodesics. On a pseudo Riemann manifold (M, g) we have a geodesic
structure which is described by the flow of the geodesic spray on T'M. The geodesic
with initial value X, € T, M is denoted by ¢ — exp(t.X,) in terms of the pseudo
Riemann exponential mapping exp and exp,, = exp |T,, M. We recall the properties
of the geodesics which we will use.

(1) exp, : TxM D U, — M is defined on a maximal ‘radial’ open zero neigh-
borhood U, in T,M. Here radial means, that for X, € V, we also have
[0,1].X, C V,. This follows from the flow properties since by (13.7) exp, =
mar (F1Y | T, M).

(2) To, (exp [Ty M) = Idr, pr, thus %loexpx(t.Xm) = X,. See (13.7.4).

(3) exp(s.(% exp(t.X))) = exp((t + s)X). See (13.6.3).

(4) t — g(% exp(t.X), % exp(t.X)) is constant in ¢, since for ¢(t) = exp(t.X)
we have 0;g(c,c) = 29(Vy,c/,c’) = 0. Thus in the Riemann case the
length |2 exp(t.X)|, = \/ (& exp(t.X), & exp(t.X)) is also constant.

If for a geodesic ¢ the (by (4)) constant |¢/(t)|, is 1 we say that c is parameterized
by arc-length.

14.2. Lemma. (Gauf) Let (M, g) be a Riemann manifold. Forxz € M lete > 0 be
so small that exp, : Dy(e) :={X € T, M : | X|, < e} — M is a diffeomorphism on
its image. Then in exp, (D, (g)) the geodesic rays starting from x are all orthogonal
to the ‘geodesic spheres’ {exp,(X) : |X|, = k} = exp,(k.S(TL M, g)) for k < e.
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14.3 14. Riemann geometry of geodesics 145

On pseudo Riemann manifolds this result holds too, with the following adaptation:
Since the unit spheres in (7, M, g,.) are hyperboloids they are not small and may
not lie in the domain of definition of the geodesic exponental mapping; the result
only holds in this domain.

Proof. exp,(k.S(T,M,g)) is a submanifold of M since exp, is a diffeomorphism
on D, (g). Let s — v(s) be a smooth curve in kS(T, M, g) C T, M, and let v(t, s) :=
exp,,(t.v(s)). Then ~ is a variation of the geodesic v(¢,0) = exp, (t.v(0)) =: ¢(t). In
the energy of the geodesic t — (¢, s) the integrand is constant by (14.1.4):

1
ENy( ,s) =1 / (2t s), 2t s)) dt
§g(a|o’y(ta 8)7 %‘0 7(157 S))dt
= 1p2
2

Comparing this with the first variational formula (13.3)

Bslo(Eq (v( ,s))):/o 0dt + g(c(1)(¢' (1), F5lov(1, 5)) — g(c(0))(c'(0),0).

we get 0 = g(c(1))(/(1), &]ov(1,s)), where Z]oy(1,s) is an arbitrary tangent
vector of exp, (kS(T,M,g)). O

14.3. Corollary. Let (M,g) be a Riemann manifold, x € M, and € > 0 be such
that exp, : Dy(e) == {X € T, M : |X|, < ¢} — M is a diffeomorphism on its
image. Let ¢ : [a,b] — exp,(Dy(¢)) \ {x} be a piecewise smooth curve, so that
c(t) = exp,(u(t).v(t)) where 0 < u(t) < e and |v(t)|y, = 1.

Then for the length we have L%(c) > |u(b) — u(a)| with equality if and only if u is
monotone and v 1s constant, so that c is a radial geodesic, reparameterized by wu.

On pseudo Riemann manifolds this results holds only for in the domain of definition
of the geodesic exponential mapping and only for curves with positive velocity vector
(timelike curves).

Proof. We may assume that ¢ is smooth by treating each smooth piece of ¢ sepa-
rately. Let a(u,t) := exp,(u.v(t)). Then

c(t) = a(u(t),t)
= 5u (t%t)U() 5% (u(t), 1),

De(t) = 92(u
192, = v < .

U2 = 9(c'. ) = g(32.0 + 33,32 0/ + 22
= /P18 + 15517 = I[* + 1512 > [u?

Draft from September 15, 2004 Peter W. Michor,



146 Chapter IV. Riemannian Geometry 14.6

with equality if and only if |42|, = 0, thus 2% = 0 and v(t) = constant. So finally:

/a ’ u'(t) dt

with equality if and only if u is monotone and v is constant. [J

Lo = [ ot [ ue)de> ~ lu®) - ulo)

14.4. Corollary. Let (M,g) be a Riemann manifold. Let ¢ : M — Rsg be a
continuous function such that for V.= {X, € T,M : |X,| < e(z) for all x € M}
the mapping (mm,exp) : TM DV — W C M x M is a diffeomorphism from the
open neighboorhood V of the zero section in TM onto an open neighboorhood W of
the diagonal in M x M, as shown in (13.7.6).

Then for each (x,y) € W there exists a unique geodesic ¢ in M which connects x
and y and has minimal length: For each piecewise smooth curve v from x to y we
have L(vy) > L(c) with equality if and only if v is a reparameterization of c.

Proof. The set V NT,M = D,(s(z)) satisfies the condition of corollary (14.3).
For X, = exp;'(y) = ((mar,exp)|V) " (z,y) the geodesic t — c(t) = exp, (t.X,)
leads from x to y. Let 6 > 0 be small. Then ¢ contains a segment which connects
the geodesic spheres exp,(6.5(T; M, g)) and exp, (| Xz|q,.S(TzM, g)). By corollary
(14.3) the length of this segment is > |X,|, — 6 with equality if and only if this
segment is radial, thus a reparameterization of ¢. Since this holds for all § > 0 the
result follows. [J

14.5. The geodesic distance. On a Riemann manifold (M, g) there is a natural
topological metric defined by

dist?(z,y) == inf {Lj(c) : ¢: [0,1] — M piecewise smooth, c¢(0) = z,c(1) =y},

which we call the geodesic distance (since ‘metric’ is heavily used). We either
assume that M is connected or we take the distance of points in different connected
components as oo.

Lemma. On a Riemann manifold (M, g) the geodesic distance is a topological met-
ric which generates the topology of M. For ¢, > 0 small enough the open ball
Bi(ex) = {y € M : dist?(z,y) < €5} has the property that any two points in it can
be connected by a geodesic of minimal length.

Proof. This follows by (14.3) and (14.4). The triangle inequality is easy to check
since we admit piecewise smooth curves. [

14.6. Theorem. (Hopf, Rinov) For a Riemann manifold (M, g) the following
assertions are equivalent:

(1) (M,dist?) is a complete metrical space (Cauchy sequences converge).

(2) Each closed subset of M which is bounded for the geodesic distance is com-

pact.
(3) Any geodesic is mazximally definable on the whole of R.
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(4) exp: TM — M is defined on the whole of TM.
(5) There exists a point x such that exp, : T, M — M is defined on the whole
of T, M, in each connected component of M.

If these equivalent conditions are satisfied, then (M, g) is called a complete Riemann
manifold. In this case we even have:

(6) On a complete connected Riemann manifold any two points can be connected
by a geodesic of minimal length.

Condition (6) does not imply the other conditions: Consider an open convex in R"™.

Proof. (2) = (1) is obvious.

(1) = (3) Let ¢ be a maximally defined geodesic, parametrized by arc-length. If ¢ is
defined on the interval (a,b) and if b < oo, say, then by the definition of the distance
(14.5) the sequence ¢(b— 1) is a Cauchy sequence, thus by (1) lim;,— c(b— +) =:
c(b) exists in M. For m,n large enough (c(b—21), c(b—-1)) € W where W is the open
neighborhood of the diagonal in M x M from (14.4), thus the segment of ¢ between
c(b— 1) and c¢(b— L) is of minimal length: dist?(c(b— 1),¢(b— 1)) =[L - L]
By continuity dist?(c(b — 1),¢(b)) = [1]. Now let us apply corollary (14.3) with
center c(b): In exp. ) (Dep)(€)) the curve ¢ — c(b+t) is a piecewise smooth curve
of minimal length, by (14.3) a radial geodesic. Thus lim;_,; ¢/(t) =: ¢/(b) exists and

t— exp. ) ((t — b)c'(b)) equals c(t) for t < b and prolongs the geodesic ¢ for ¢ > b.
(3) = (4) is obvious.
(4) = (b) is obvious.

(5) = (6) for special points, in each connected component separately. In detail:
Let x,y be in one connected component of M where x is the special point with
exp, : 1uM — M defined on the whole of T, M. We shall prove that z can be
connected to y by a geodesic of minimal length.

Let dist?(z,y) = r > 0. We consider the compact set S := exp,(0.5(TxM,g)) C
exp, (TxM) for 0 < § < r so small that exp, is a diffeomorphism on {X € T, M :
| X|y < 2d}. There exists a unit vector X, € S(T, M, g,) such that z = exp, (6 X,)
has the property that dist?(z,y) = min{dist?(s,y) : s € S}.

Claim (a) The curve c(t) = exp,(t.X,) satisfies the condition
(*) distY(e(t),y) =r —t

for all 0 <t < r. It will take some space to prove this claim.

Since any piecewise smooth curve from x to y hits S (its initial segment does so in
the diffeomorphic preimage in T, M) we have

r=dist?(x,y) = ing(distg(a:, s) + dist?(s,y)) = ing(é + dist?(s, y))
se s€
=0+ migl dist?(s,y) = 0 + dist?(z, y)
s€
dist?(z,y) =r —9, thus (*) holds for t = .
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Claim (b) If (*) holds for ¢ € [0, 7] then also for for all ¢’ with § < ¢ <, since
we have

dist?(c(t'),y) < dist?(c(t'), c(t)) + dist? (c(t),y) <t —t'+r—t=r — 1/,
r=dist?(z,y) < dist?(z, ¢(t')) + dist? (c(t), v),
dist?(c(t'),y) > r — dist?! (z,c(t')) > r —t/ = (b).
Now let to = sup{t € [0,7] : (*) holds for ¢t}. By continuity (*) is then also valid
for ty. Assume for contradiction that tg < r.

Let S’ be the geodesic sphere with (small) radius §’ centered at c(ty), and let 2’ € S’
be a point with minimal distance to y.

As above we see that

r—to < dist?(c(to),y) = ing (dist?(c(to), s") + dist?(s",y)) = &' + dist?(2', y)

s'eS’
(*%) dist?(2",y) = (r — to) — &'
dist?(z, 2’) = dist?(x,y) — dist? (2", y) =7 — (r —to) + & =to + 6.

We consider now the piecewise smooth curve ¢ which follows initially ¢ from x
to ¢(tp) and then the minimal geodesic from c(tg) to 2/, parameterized by arc-
length. We just checked that the curve ¢ has minimal length ¢y + ¢’. Thus each
piece of ¢ has also minimal length, in particular the piece between ¢(t1) and ¢(t2),
where t; < tyo < t3. Since we may choose these two points near to each other, ¢
is a minimal geodesic between them by (14.4). Thus ¢ equals ¢, 2’ = ¢(ty + 9),
dist? (e(to+0'),y) = dist? (2, y) = r — (8’ +1to) by (**), and (*) holds for ¢+ ¢’ also
which contradicts the maximality of ¢g for the validity of (*). Thus the assumption
to < r is wrong and claim (a) follows.
Finally, by claim (a) we have dist?(c(r),y) = r — r = 0, thus ¢(t) = exp,(t.X,) is
a geodesic from z to y of length r = dist?(x,y), thus of minimal length, so (6) for
the special points follows.

(4) = (6), by the foregoing proof, since then any point is special.

(5) = (2) Let A C M be closed and bounded for the geodesic distance. Suppose
that A has diameter » < oo. Then A is completely contained in one connected
component of M, by (14.5). Let x be the special point in this connected component
with exp, defined on the whole of T, M. Take y € A.

By (6) for the special point « (which follows from (5)), there exists a geodesic from z
to y of minimal length dist?(z,y) =: s < 00, and each point z of A can be connected
to « by a geodesic of minimal length dist?(x, z) < dist?(x,y) + dist?(y,2) < r + s.

Thus the compact set (as continuous image of a compact ball) exp {X, € T, M :
| Xz|g <7+ s} contains A. Since A is closed, it is compact too. O
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14.7. Conformal metrics. Two Riemann metrics g; and go on a manifold M
are called conformal if there exists a smooth nowhere vanishing function f with
g2 = f2.g1. Then g; and g have the same angles, but not the same lengths. A local
diffeomorphism ¢ : (M7, g1) — (Mas, g2) is called conformal if ¢*gs is conformal to
g1-

As an example, which also explains the name, we mention that any holomorphic
mapping with non-vanishing derivative between open domains in C is conformal for
the Euclidean inner product. This is clear from the polar decomposition ¢’(z) =
¢/ (2)|ei28(# (2)) of the derivative.

As another, not unrelated example we note that the stereographic projection from
(1.2) is a conformal mapping:

up (8" \{a},g%") = {a}t = R™( , ), up() =
To see this take X € T,S™ C T,R"*! so that (X,z) = 0. Then we get:
duy (2)X = U=l X=Coaj) (X o) o= (oo
= (1—<i,a>)2 <(1 —(z,0))X + (X, a)x — (%CLM),
(dus(2)X, duy (2)Y) = e (X Y) = geamayyz (9 N2 (X,Y).

14.8. Theorem. (Nomizu-Ozeki, Morrow) Let (M, g) be a connected Riemann
manifold. Then we have:

(1) There exist complete Riemann metrics on M which are conformal to g and
are equal to g on any given compact subset of M.

(2) There also exist Riemann metrics on M such that M has finite diameter,
which are conformal to g and are equal to g on any given compact subset of
M. If M is not compact then by (14.6.2) a Riemann metric for which M
has finite diameter is not complete.

Thus the sets of all complete Riemann metric and of all Riemann metric with
bounded diameter are both dense in the compact C'*°-topology on the space of all
Riemann metrics.

Proof. For z € M let
r(z) :=sup{r: By(r) ={y € M : dist(z,y) < r} is compact in M }.

If r(z) = oo for one x then ¢ is a complete metric by (14.6.2). Since exp, is a
diffeomorphism near 0,, r(z) > 0 for all . We assume that r(z) < oo for all z.

Claim. |r(z) — r(y)| < dist?(x,y), thus r : M — R is continuous, since: For
small € > 0 the set B,(r(z) — ¢) is compact, dist?(z,z) < dist?(z,y) + dist?(y, x)
implies that By (r(z) — e — dist?(x,y)) C Bg(r(x) — ¢) is compact, thus r(y) >
r(z) — dist! (z,y) — € and r(z) — r(y) < dist?(x,y). Now interchange x and y.
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By a partition of unity argument we construct a smooth function f € C*°(M,R<q)
with f(z) > ( R Consider the Riemann metric § = f2g.

Claim. By(%) :=={y € M : dist’(z,y) < 1} C B(37(z)), thus compact.
Suppose y ¢ By (3r(x)). For any piecewise smooth curve ¢ from z to y we have

M ()
—/ |c<t>|gdt>7,

1 (e
= [ FenI¢lydt = fietto)) [ 10l > 2

for some tg € [0, 1], by the mean value theorem of integral calculus. Moreover,

r(c(to)) — r(z)| < dist?(c(to), z) < LI(c) =: L
r(e(to)) <r(z)+ L
g L L B 1
L (C)zr(a:)—i—LZ3_L__’

so y ¢ By(1) either.

Claim. (M, g) is a complete Riemann manifold.

Let X € T, M with |X|; = 1. Then exp?(t.X) is defined for |t| < : < 1. But also
exp?(s. 2 |i—+1/5 exp?(t.X)) is defined for |s| < 3 which equals exp?((£2 + 5)X),
and so on. Thus exp?(¢.X) is defined for all ¢ € R, and by (14.6.4) the metric g is
complete.

Claim. We may choose f in such a way that f =1 on a neighborhood of any given
compact set K C M.

Let C = max{ﬁ :x € K} + 1. By a partition of unity argument we construct a
smooth function f with f =1 on a neighborhood of K and C'f(z) > ﬁ for all x.
By the arguments above, C? f2g is then a complete metric, thus also f2g.

Proof of (2). Let g be a complete Riemann metric on M. We choose x € M, a
smooth function h with h(y) > dist?(x,y), and we consider the Riemann metric
Gy = e_%(y)gy. By (14.6.6) for any y € M there exists a minimal g-geodesic ¢
from x to y, parameterized by arc-length. Then h(c(s)) > dist?(x, c(s)) = s for all
s < dist?(z,y) =: L. But then

L L oo
LI(c) = / e M) (s)], ds < / e *lds < / e °ds =1,
0 0 0

so that M has diameter 1 for the Riemann metric g. We main also obtain that
g = g on a compact set as above. []

14.9. Proposition. Let (M, g) be a complete Riemann manifold. Let X € X(M)
be a vector field which is bounded with respect to g, | X|, < C.

Then X is a complete vector field; it admits a global flow.
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Proof. The flow of X is given by the differential equation £ FI* (z) = X (FIX ()
with initial value FI (z) = . Suppose that ¢(t) = FLX () is defined on (a, b) and
that b < oo, say. Then

b—1/m

dist?(c(b — 1/n), ¢(b—1/m)) < L’;jj;”(c) = /b_l/n | (#)]g dt =

b—1/m b—1/m
:/ |X(c(t))|gdt§/ Cdt=C.(:-1)—0,
b—1/n b—1/n

so that ¢(b— 1/n) is a Cauchy sequence in the complete metrical space M and the

limit ¢(b) = lim,, o, ¢(b — 1/n) exists. But then we may continue the flow beyond
b by FIX(F1) (z)) = Flyy,. O

14.10. Problem. Unsolved till now (September 15, 2004), up to my knowledge.
Let X be a complete vector field on a manifold M. Does there exist a complete
Riemann metric g on M such that X is bounded with respect to g?

The only inroad towards this problem is the following:

Proposition. (Gliklikh) Let X be a complete vector field on a connected manifold
M.

Then there exists a complete Riemann metric g on the manifold M x R such that
the vector field X x 0y € X(M x R) is bounded with respect to g.

Proof. Since FI.X*% (z,s) = (FI;* (), s+t), the vector field X x 9, is also complete.
It is nowhere 0.

Choose a smooth proper function f; on M; for example, if a smooth function f;
satisfies fi(z) > dist?(zg,z) for a complete Riemann metric g on M, then f; is
proper by (14.6.2).

For a Riemann metric g on M we consider the Riemann metric g on M x R which
equals g, on T, M = T, M x 0; = T(5 4+ (M x {t}) and satisfies | X x 0; [; = 1 and
Gz,t) (X x0¢)(x,1), T(2,0) (M x{t})) = 0. We will also use the fiberwise g-orthogonal
projections pr; : T(M X R) — TM x 0 and pry : T(M x R) — R.(X x 0;) 2 R.

The smooth function fy(z,s) = f1(F1*,(x)) + s is still proper and satisfies
(Lxxo, f2)(x,5) = &, f(FIT 7 (2,9)) = &|, f2(FI (), 5 + 1) =
= Glo (AP @) + s +1) = &, AP @) +1 =1,

By a partition of unity argument we construct a smooth function f3: M x R — R
which satisfies

fa(z, s)* > max {|Y(f2)|2 Y €Ty 6(M x {s}),|Y|; = 1}
Finally we define a Riemann metric g on M x R by
Ity (Y Z) = f(@,1)? Gapy (Pra (V) Pra(2)) + prx(Y) - prx(2)
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for Y, Z € Ty (M x R), which satisfies | X x 0y |4 = 1.

Claim. g is a complete Riemann metric on M x R.

Let ¢ be a piecewise smooth curve which is parameterized by g-arc-length. Then
[dly =1, thusalso [pry(c)ly <1, [prx(c) <1

2 (c(t)) = dfa(c (1)) = @mA(DKm+pu@ﬁmh>
PTys er )

Gafalel ’—Mde U+ ey, V2
mM<m>

ﬁ@ﬁﬂmm((MJﬁ)

by the definition of g and the properties of f3 and f;. Thus

+ |Lxxa,f2| <2

fale(t)) - \</Wmh Dt < 2t
Since this holds for every such ¢ we conclude that

|[f2(x) = f2(y)] < 2dist?(z,y)

and thus each closed and dist?-bounded set is contained in some

{ye M xR:dist?(z,y) < R} C f5 ' ([fo(2) — §, f2(2) + §])

which is compact since fs is proper. So (M x R, g) is a complete Riemann manifold
by (14.6.2). O

15. Parallel transport and curvature

15.1. Parallel transport. Let (M, V) be a manifold with a covariant derivative,
as treated in (13.7). The pair (M, V) is also sometimes called an affine manifold.
A vector field Y : N — T'M along a smooth mapping f = mp;0Y : N — M is
called parallel if VxY = 0 for any vector field X € X(N).

IfY :R — TM is a vector field along a given curve ¢ = mpy oY : R — M, then
Vo, Y = KoTY o0y =0 takes the following form in a local chart, by (13.7.7)

KoTY 00, = K(c(t),Y(t);¢(t),Y'(t)) = ((t), Y'(t) — Loy (Y (£). €' (1))

This is a linear ordinary differential equation of first order for Y (since € is given).
Thus for every initial value Y (¢g) for ty € R the parallel vector field Y along c
is uniquely determined for the whole parameter space R. We formalize this by
defining the parallel transport along the curve ¢: R — M as

Pt(c,t) : TooyM — ToyM, Pt(c,t).Y(0) =Y (1),

where Y is any parallel vector field along ¢. Note that we treat this notion for
principal bundles in (22.6) and for general fiber bundles in (20.8). This here is a
special case.
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Theorem. On an affine manifold (M,V) the parallel transport has the following
properties.
(1) Pt(c,t) : TeoyM — ToyM is a linear isomorphism for each t € R and each
curve ¢ : R — M.
(2) For smooth f : R — R we have Pt(c, f(t)) = Pt(co f,t)Pt(c, f(0)); the
reparameterization invariance.
(3) Pt(c,t)~! =Pt(c( +t),—t).
(4) If the covariant derivative is compatible with a pseudo Riemann metric g on
M, then Pt(c,t) is isometric, i.e. ger)(Pt(c,t) X, Pt(c,t)Y) = go0)(X,Y).

Proof. (1) follows from the linearity of the differential equation.

(2) See also (20.8). Let X be parallel along ¢, Vg, X = 0 or X(t) = Pt(c,t)X(0).
Then we have by (13.7.6)

Vo,(Xof)=Vr0X=VwnsX=1F([t)VeX=0

thus X o f is also parallel along co f, with initial value X (f(0)) = Pt(c, £(0))X(0).
Thus

Pt(c, f(1))X(0) = X (f(t)) = Pt(co f,1) Pt(c, f(0)) X(0).

(3) follows from (2)

(4) Let X and Y be parallel vector fields along ¢, i.e. V5, X = 0 etc. Then

91 g(X(1),Y(t) = g(Ve, X(1),Y(t)) + g(X(¢), Ve, Y(t)) = 0, thus g(X(¢),Y(t))
is constant in t. [

15.2. Flows and parallel transports. Let X € X(M) be a vector field on an
affine manifold (M, V). Let C : TM x 3 TM — T?M be the linear connection for
the covariant derivative V, see (13.7). The horizontal lift of the vector field X is then
given by C'(X, )€ X(T'M) which is my-related to X: T(mpr)oC(X, )= Xomyy,.
A flow line FltC (X )(YI) is then a smooth curve in TM whose tangent vector is

everywhere horizontal, so the curve is parallel, and 7 M(Fltc (X, )(Yx)) = FL¥(z)
by (3.14). Thus

(1) Pt(F1X, ) = FICCS )

Proposition. For vector fields X, Y € X(M) we have:

(2) VY = 2| (FIEY Doy oFLY) = 2| P(FIY, —t) o Y o FI
X *
=: o], Pt(FI™,6)*Y.
(3) 2 P(FI¥, —t) oYoFltX = 2 Pt(F1¥,4)*Y = Pt(FI* )"V V

= Pt(F1*, —t) o VxY o FI.¥ = Vx (Pt(FI*,)*Y)

(4) The local vector bundle isomorphism Pt(F1,t) over FIX induces vector bundle
isomorphisms Pt®(F1% | t) on all tensor bundles @ TM @ @ T*M over FI;X. For
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each tensor field A we have

(2) VxA= 2| PtYF1X, —t) o AoFI = 2| Pt&(FI¥ )" A
(3) 2 PtP(FI,1)*A =Pt®(FI*,1)*Vx A = Pt(FI¥, —t) o Vx A o FI¥

= Vx (Pt®(F1¥,1)* A).

Proof. (2) We compute

FIZE V(R (2) =
= —C(X, FIg™ (v (FIf (2)) + TFIG ) 2] (v (P (@)
=—C(X(2),Y(z)+TY.X(x)
=TYX(x) — C(T(rp).TY. X (2), mr (TY. X ()))
= (Idgzps —horizontal Projection)TY. X (x)
=vl(Y(z), KTY. X (z)) = vI(Y(x),(VxY)(z)).

§|0

The vertical lift disappears if we identify the tangent space to the fiber T, M with
the fiber.

(3) We did this several times already, see (3.13), (6.16), and (7.6).

2 Py(FI )Y = £ <Pt(F1X, —t) o Pt(F1*, —s) o Y o FIY o Flf()

— Pt(FI¥, - )
2 Py(FIY,1)*Y = 2 o Pt(FI

Y) o FIX = Pt(F1¥,t)*VxY.

= Pt(FIX, —t) o 2| (Pt(Fl —s)oyomf)omf‘
(Vx
,8)* Pt(F1X,1)*Y = Vx (Pt(FI¥,1)"Y).

(4) For a tensor A with foot point FLX () let us define Pt®(FI¥,¢)* A with foot
point x by
(Pt®(FIX, 1) A) (X1, ..., Xq,wh, ... wP) =
= APt(FI*, 1) Xy, ..., Pt(FI*, 1) X, Pt(FI*, —1)*w?, ..., Pt(FI¥, —1)*wP).

Thus Pt® (F1*, ) is fiberwise an algebra homomorphism of the tensor algebra which
commutes with all contractions. Thus ; |0 Pt®(F1*,t)* becomes a derivation on
the algebra of all tensor fields which commutes with contractions and equals V x
on vector fields. Thus by (13.12) it coincides with Vx on all tensor fields. This
implies (27).

(3’) can be proved in the same way as (3). O

15.3. Curvature. Let (M, V) be an affine manifold. The curvature of the covari-
ant derivative V is given by

(1) R(X,Y)Z = VxVyZ — VyVxZ — Vixy Z
- ([VX7VY] - V[X,Y])Z7 for X7 Y7Z € X(M)
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A straightforward computation shows that R(X,Y)Z is C*°(M)-linear in each en-
try, thus R is a (é)—tensor field on M.

In a local chart (U, u) we have (where 9; = 52-):

Xlp=) _X'0i, Ylg=>Y0;, Zlu=> Z"0,
RX,Y)(2)|lv =) X'YIZ"R(9;,0,)(r)
_. (Z R, du' @ dul @ du* @ al) (XY, Z)
> Rl 00 = R(0i,0;)(0k) = Vo,Va,0k — Vo,Vo,0 — 0
= Vo, (= > _T750m) = Vo, (= > _T7% Om)
== 0T 0m—> TT Vo, 0m+ Y 05T 0m+ Y T4V, Om
==Y 0T, o+ > T o+ > 9T 9 = > T o

We can collect all local formulas here, also from (13.9.7) or (13.5.6), and (13.4.2)
in the case of a Levi Civita connection (where X = (x, X), etc.):

Vo, 0; ==Y T, TH=251> ¢"0igi; — 0: 915 — 95 9u1),
(2) Rl =—0iT,, +0; i+ > TPTL, =Y TIT
R(X,V)Z = —dT(2)(X)(Y, Z) + dT(2)(V)(X, Z)+
+To(X, TV, 2)) = Ta (Y, Tu(X, Z))

15.4. Theorem. Let V be a covariant derivative on a manifold M, with tor-

sion Tor, see (13.10). Then the curvature R has the following properties, where
XY, Z,U € X(M).

(1) R(X,Y)Z = —R(Y,X)Z
2 S RxXY)Z=Y ((VX Tor)(Y, Z) + Tor(Tor(X, Y),Z))

cyclic cyclic
Algebraic Bianchi identity.
(3)
Z ((VXR)(Y,Z) + R(Tor(X,Y), Z)) =0 Bianchi identity.

cyclic

If the connection V is torsionfree, we have

(27) Z R(X,Y)Z =0 Algebraic Bianchi identity.
cyclic
(3% Z (VxR)(Y,Z)=0 Bianchi identity.
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If V is the (torsionfree) Levi Civita connection of a pseudo Riemann metric g, then
we have moreover:

(4) 9(R(X,Y)Z,U) = g(R(Z,U)X,Y)
(5> Q(R(Xa Y)Za U) = —g(R(X, Y)Ua Z)

Proof. (2) The extension of Vx to tensor fields was treated in (13.12):
(6) (Vx Tor)(Y,Z) = Vx(Tor(Y, Z)) — Tor(VxY, Z) — Tor(Y,Vx Z).
From the definition (13.10.1) of the torsion:
Tor(Tor(X,Y), Z) = Tor(VxY — Vy X — [X,Y], Z)
= Tor(VxY,Z) + Tor(Z,Vy X) — Tor([X,Y], Z)
These combine to

Z Tor(Tor(X,Y), Z) = Z (VX(Tor(Y, 7)) — (Vx Tor)(Y, Z) — Tor([X, Y], Z)>

cyclic cyclic
and then
3 <(vX Tor)(Y, Z) +Tor(Tor(X,Y), Z)) =3 (VX (Tor(Y, Z)) —Tor([X, Y], Z))
eyclic cyclic
= (VXVyZ —VxV2Y — V[V, Z) - VixyZ + V2[X, Y] + [[X, Y], Z])
cyclic
= > (VxVyZ - VxV2Y = VxyZ) = Y RIX.Y)Z
cyclic cyclic
(3) We have
> R(Tor(X,Y),Z)= > R(VxY -VyX - [X,Y],2)
cyclic cyclic
=>> (R(VXY, Z)+ R(Z,VyX) — R(X.,Y], Z))
cyclic
and
Y (VxR)(Y,2) =) (vXR(Y, Z)— R(VxY,Z)— R(Y,VxZ)— R(Y, Z)VX>
cyclic eyclic

which combines to

Z <(VXR)(Y7 Z) + R(Tor(X, Y),Z)) —

cyclic
= (VXR(Y, Z) - R(Y, Z)Vx — R(X,Y], Z))
cyclic
= Z (VXVYVZ —VxVzVy = VxVyy 7
cyclic

—VyVzVx +VzVyVx + Vi 71Vx
—Vix,y]Vz + VzVixy] + V(x,v],z] > = 0.
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(5) It suffices to prove g(R(X,Y)Z,Z) = 0.

0=~Lo(9(Z,2)) = (XY =YX - [X,Y])g(Z, Z)
= 9Xg(VyZ,2) — 2V g(Vx 2, Z) — 29(V x v\ Z, Z)
=29(VxVyZ,2)+29(VyZ,VxZ)
—29(VyVxZ, Z) — 2g(Vx Z,Vy Z) — 29(V x v Z. Z)
=29((VxVy = VyVx = Vxy))Z,Z) =29(R(X,Y)Z, Z).

(4) is an algebraic consequence of (1), (2’), and (5). Take (2’) four times, cyclically
permuted, with different signs:

g(R(X,Y)Z,U) + g(R(Y, Z)X,U) + g(R(Z,X)Y,U) = 0
g(R(Y, 2)U, X) + g(R(Z, U)Y, X) + g(R(U,Y)Z, X) = 0
—9(R(Z,U)X,Y) = g(R(U, X)Z,Y) — g(R(X, Z)U,Y) = 0
—9(R(U, X)Y, Z) = g(R(X,Y)U, Z) — g(R(Y, U)X, Z) = 0

Add these:
29(R(X,Y)Z,U)—29(R(Z,U)X,Y)=0. O

15.5. Theorem. Let K : TE — E be the connector of the covariant derivative V
on M. If s: N — TM is a vector field along f :=pos: N — M then we have for
vector fields X, Y € X(N)

VvaS—VyVXS—V[va]S—
=(KoTKokpy —KoTK)oTTsoTX oY =
=Ro(TfoX,TfoY)s: N —TM,

where R € Q*(M; L(TM,TM)) is the curvature.

Proof. Recall from (13.9) that Vxs =K oTso X For A, B € T;(T'M) we have

vira (K(A), K(B)) = 0ilo(K(A) + K (B)) = Oifo K (A +B) =
=TKo 5’t|0(A + tB) =TKo Vl(TTM’ﬂ-TM7TM)(A,B).

We use then (13.8.9) and some obvious commutation relations

VxVys—=VyVxs—Vixys=
=KoT(KoTsoY)oX —KoT(KoTsoX)oY —KoTso[X,Y]
KoTso[X,)Y]=Kovlpyo(KoTsoY, KoTso[X,Y]) by (13.8.9)
= KoTKovlppryo(TsoY,Tso [X,Y])
=KoTKoTTsovlpyo(Y,[X,Y])
=KoTKoTTso(TYoX —kyoTXoY) by (6.14)
=KoTKoTTsoTY oX —KoTKoTTsoxnyoTXoY.
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Now we sum up and use T7Ts o ky = Krp © TTs to get the first result. If in
particular we choose f = Idj; so that X,Y,s are vector fields on M then we get
the curvature R.

To see that in the general case (K oTK okg — KoTK)oTTsoTX oY coincides
with R(Tf o X,Tf oY)s we have to write out (I'T'soTX oY)(x) € TTTM in
canonical charts induced from charts of N and M. There we have X (x) = (z, X (x)),

Y(z) = (z,Y(x)), and s(z) = (f(x),5(z)).
(TTsoTX oY)(z) =TTs(x, X (x);Y(x),dX ()Y (x)) =

(1) = (f(@), 5(2), df (@) X (), ds(x). X (x); df (2).
d*f(z)(Y (x), X (x)) + df (z).

Recall (13.8.7) which said K(z,y;a,b) = (x,b —';(a,y)). Differentiating this we
get
TK('fE? y? a7 b; 57 777 a? /3) =
= (b~ a9 € B — dT@)(E)(,y) ~ Tl y) ~ T m)

Thus
(KOTKOHTM —KOTK)<ZE’,y,6L,b;€,7’],a,/B) =

= (KOTK)(IE,y,f,T];CL,b,OZ,ﬁ) - (KOTK)(%%@, b;é-?naaaﬁ)

= K(x,n—T(&y);a,8 —dl(x)(a)(&,y) — Tale,y) — T(€, D))

- K(:E? b— Fx(a> y); 57 ﬁ - dF(x)(é)(a, y) - Fx(a7 y) - Fw(av 77))
(2) = (z,—d0(x)(a) (&, y) + dL(z)(€)(a,y) + Lala, a(8, 1)) — Ta(€ Tala,y))) -

Now we insert (1) into (2) and get

(KoTKokpy —KoTK)oTTsoTX oY =Ro(TfoX,TfoY)s. O

15.6. Curvature and integrability of the horizontal bundle. What is it that
the curvature is measuring? We give several answers, one of them is the following,
which is intimately related to (19.13), (20.4), (22.2).

Let C : TM x5 TM — T?M be the linear connection corresponding to a covariant
derivative V. For X € X(M) we denoted by C(X, )& X(T'M) the horizontal lift
of the vector field X.

Lemma. [In this situation we have for X, Y € X(M) and Z € TM
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Proof. We compute locally, in charts induced by a chart (U,u) on M. A global
proof can be found in (20.4) for general fiber bundles, and in (22.2) for principal
fiber bundles, see also (22.16). Writing X (z) = (z, X()), Y(z) = (2, Y (x)), and
Z = (z,7), we have

The horizontal lift C'(X, ) is a section of the horizontal bundle C(TM, ) C
T(TM), and any section is of that form. If the curvature vanishes, then by the
theorem of Frobenius (3.20) the horizontal bundle is integrable and we get the
leaves of the horizontal foliation.

Lemma. Let M be a manifold and let V be a flat covariant derivative on M (with
vanishing curvature). Let H C TM be a leaf of the horizontal foliation. Then
wrmleg: H— M is a covering map.

Proof. Since T'(my|g) = T(mp)|C(T'M, ) is fiberwise a linear isomorphism,
wa o H — M is a local diffeomorphism. Let x € M, let (U,u: U — u(U) = R™)
be a chart of M centered at x and let X € (mps|g) ' (z). Consider s : U — H
given by s(u=!(2)) = Pt(u=!(t — t.2),1).X. Then 75 0 s = Idy and s(U) C H is
diffeomorphic to U, the branch of H through X over U. Since X € (wu|m) ! (2)
was arbitrary, the set (mar|g) ™1 (U) is the disjoint union of open subsets which are
all diffeomorphic via my; to U. Thus 7p; : H — M is a covering map. [J

15.7. Theorem. Let (M,g) be a pseudo Riemann manifold with vanishing cur-
vature. Then M 1is locally isometric to R™ with the standard inner product of the
same signature: For each x € M there exists a chart (U,u) centered at x such that
glU=u*( , ).
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Proof. Choose an orthonormal basis Xi(z),..., X,,(z) of (T, M, g,); this means
92(Xi(x), X;(x)) = nidij, where n = diag(1,...,1,—1,...,—1) is the standard
inner product of signature (p,q). Since the curvature R vanishes we may consider
the horizontal foliation of (15.6). Let H; denote the horizontal leaf through X;(x)
and define X; : U — TM by X; = (7uplp,)"t : U — H; C TM, where U is a
suitable (simply connected) neighborhood of = in M. Since X; o ¢ is horizontal in
T'M for any curve ¢ in U, we have V x X; = 0 for any X € X(M) for the Levi-Civita
covariant derivative of g. Vector fields X; with this property are called Killing fields.
Moreover X(g(XZ,XJ)) == g(VXXi,Xj) + g(XZ',VXXj) = O, thus g(XZ,X]) =
constant = g(X;(x), X;(z)) = mi0;; and X;,..., X, is an orthonormal frame on

U. Since V has no torsion we have
0= TOI“(XZ‘,X]‘> == VXin - VXin - [XMXJ] == [XZ,XJ]

By theorem (3.17) there exists a chart (U, u) on M centered at x such that X; = 52+,
ie. Tu.X;(x) = (u(z),e;) for the standard basis e; of R”™. Thus Tu maps an
orthonormal frame on U to an orthonormal frame on u(U) € R™, and u is an

isometry. [J

15.8. Sectional curvature. Let (M, g) be a Riemann manifold, let P, C T, M
be a 2-dimensional linear subspace of T, M, and let X, Y, be an orthonormal basis
of P,. Then the number

(1) k(Py) = —g(R(X4, Ys)Xa, Yz)

is called the sectional curvature of this subspace. That k(P,) does not depend on
the choice of the orthonormal basis is shown by the following lemma.

For pseudo Riemann manifolds one can define the sectional curvature only for those
subspaces P, on which g, is non-degenerate. This notion is rarely used in general
relativity.

Lemma.
(2) Let A = (A}) be a real (2 x 2)-matriz and X1, Xy € T, M. Then for X| =
Al X1+ A2 X5 we have g(R(X], X5) X}, X}) = det(A)? g(R(X1, X2) X1, X2).
(3) Let X')Y' be linearly independent in P, C T, M then
g(R(X",YNX', Y

k(Pﬂﬁ) = |X/|2|Y/|2 IR g(X/’Y/)Q'

Proof. (2) Since g(R(X;, X)Xy, X;) =0 for i = j or k =1 we have
9(R(X7, X35) X1, X3) = Z AL AL AY Abg(R(X;, X;) X, X))
= g(R(X1, X2)X1, X2)(A]AJ AT AG — AJATATA) — ATARATAG + ATA; AT A))
= g(R(X1,X2) X1, X2)(A1A] — 43A7)%. O

(3) Let X,Y be an orthonormal basis of P,, let X' = A} X + A?Y and V' =
AL X + A2Y. Then det(A)? equals the area? of the parallelogram spanned by X’
and Y’ which is | X'|?|Y’|? — g(X’,Y”")2. Now use (2). O
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15.9. Computing the sectional curvature. Let g : U — S?(R™) be a pseudo-
Riemannian metric in an open subset of R™. Then for X,Y € T,R™ we have:

2R.(X,Y, X,Y) =2¢,. (R, (X, Y)X,Y) =
= 2P g()(X, Y)Y, X) + dg(x)(X, X)(V,Y) + dg(x)(¥,V)(X, X)
- 29(F(Y7 X)? F(Xa Y)) + QQ(F(Xv X)a F(K Y))

Proof. The Christoffels I' : U x R™ x R™ — R™ are given by (13.4.1)
(1) 20.(T2(Y, 2),U) = dg(x)(U)(Y, Z) — dg(z)(Y)(Z,U) — dg(x)(Z)(U,Y).
and the curvature in terms of the Christoffels is (15.3.2)
R(X,Y)Z = (VxVy —VyVx = Vixy))Z
(2) =—dl'(X)(Y,2)+dI'(Y)(X,Z2)+ I'(X,I'(Y, 2)) - (Y, I'(X, 2)).
We differentiate (1) once more:
2dg(x)(X) (T2 (Y, Z),U) + 29, (dl(z)(X)(Y, Z),U) =
(3)  =+dg@)(X,U)(Y,2) — d°g(2)(X,Y)(Z,U) — d°g(2)(X, Z)(U,Y),
Let us compute the combination from (2), using (3):
= 29 (dl(2)(X)(Y, 2),U) + 29 (dl'(2)(Y)(X, Z),U)
= 2dg(z)(X)(T2(Y, 2),U) — 2dg(x)(Y) (T2 (X, Z),U)
— d*g(2)(X, U)(Y, Z) + d’g()(X,Y)(Z2,U) + d*g(x)(X, Z)(U,Y)
+d*g(2)(Y,U)(X, Z) — d*g()(Y, X)(2,U) — d*g(2)(Y, 2)(U, X)
= 2dg(x)(X)(T(Y; 2),U) = 2dg(z)(Y)(T'2(X, Z), U)
— d’g(2)(X, U)(Y, Z) + d*g(2)(X, Z)(U,Y)
+d%g(2)(Y.U)(X, Z) — d*g(x) (Y, Z)(U, X)
Thus we have
2R, (X,Y, Z,U) i= 2g2(Ro(X,Y)Z,U)
- 2g(—dF(X)(Y, Z) +dD(Y)(X, Z) + D(X,D(Y, Z)) — D(Y,D(X, Z)), U)
= 2dg(2)(X)(T2(Y, 2),U) — 2dg(2)(Y) (T2 (X, Z),U)
— d*g(2)(X, U)(YZ)JFGZ2 (2)(X, 2)(U,Y)
+d%g(2)(Y,U)(X, Z) - d*g(x)(Y, Z)(U, X)
+29(INX,T(Y, 2)),U) — Qg(F(Y I'X,Z2)),U)
and for the sectional curvature we get
(4) 2R,(X,Y,X)Y)=2¢, (R, (X, Y)X,Y) =
= 2dg(2)(X)(T:(Y, X),Y) — 2dg(x)(Y) (T (X, X),Y)
= 2d%g(2)(X, Y)(Y, X) + d®g(2) (X, X) (YY) + d?g(2) (Y, Y )(X, X)
+29(D(X, I(Y, X)), Y) = 29(I'(Y, I'(X, X)), Y)
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Let us check how skew-symmetric the Christoffels are. From (1) we get
292(Ta(Y, 2),U) + 295(Z,To(Y,U)) =29, (T2(Y, 2),U) + 29, (I'a (Y, U), Z)
= +dg(z)(U)(Y, Z) — dg(z)(Y)(2,U) — dg(x)(2)(U,Y)
+dg(2)(2)(Y,U) = dg(2)(Y)(U, Z) — dg(x)(U)(Z,Y)
— —2dg(x)(Y)(Z,U).
Thus
2dg(x)(Y)(D(X, V), U) = =29(T(Y, T'(X, V)),U) = 29(T'(X, V), I(Y, U))
Using this in (4) we get finally
(5) 2R,(X,Y,X)Y)=2¢, (R, (X, Y)X,Y) =
= —29(D(X, (Y, X)), Y) = 29(T(Y, X), [(X,Y))
+29(T'(Y, I'(X, X)),Y) +2¢9(I'(X, X), I'(Y,Y))
—2d%9(2)(X,Y)(Y, X) + d°g(2)(X, X)(V,Y) + d*g(2) (Y, V)(X, X)
+29(D(X, I(Y, X)), Y) = 29(T'(Y, I'(X, X)), Y)
= —2d%g(2)(X,Y)(Y,X) + d’g(z)(X, X)(Y,Y) + d°g(z)(Y,Y)(X, X)
—29(I'(Y, X), I'(X,Y)) + 29(D(X, X),[(Y,Y)) O

16. Computing with adapted frames, and examples

16.1. Frames. We recall that a local frame or frame field s on an open subset
U of a pseudo Riemann manifold (M, g) of dimension m is an m-tuple s1,..., Sy,
of vector fields on U such that si(z),...,smn(x) is a basis of the tangent space
T,M for each x € U. Note that then s is a local section of the linear frame
bundle GL(R™,TM) — M, a principal fiber bundle, as we treat it in (21.11).
We view s(z) = (s1(z),...,8$m(x)) as a linear isomorphism s(z) : R™ — T, M.
The frame field s is called orthonormal frame if s1(z), ..., $m(x) is an orthonormal
basis of (T, M, g,) for each x € U. By this we mean that g, (X;(x), X;(x)) = 165,
where n = diag(1,...,1,—1,...,—1) is the standard inner product of signature
(p,g=m —p).

If (U,u) is a chart on M then 8;21, ceey % is a frame field on U. Out of this we
can easily build one which contains no isotropic vectors (i.e. ones with g(X, X) = 0)
and order them in such a way that get first the fields with g(X, X) > 0. Using the
Gram-Schmidt orthonormalization procedure we can change this frame field then
into an orthonormal one on a possibly smaller open set U. Thus there exist always
orthonormal frame fields.

If s=(s1,...,8m)and s’ = (s},...,s},) are two frame fields on U,V C M, respec-
tively, then on U NV we have

s'=sh, s;= >, sjhg, si(x) =3, Sj(ﬂf)hg(x)y
h=(h}):UNV — GL(m,R).
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16.2. Connection forms. If s is a local frame on an open subset U in a manifold
M, and if V is a covariant derivative on M we put

(1) Vxsi =3, sjwl(X), Vxs=sw(X), Vs=sw
w=(w)) € Q1(U,gl(m)), the connection form of V.

Proposition. We have:
(2) IfY = > su/ € X(U) then

VY =3 sk(X; whu! + duF) = s.w.u + s.du.

(3) Let s and s’ = s.h be two local frames on U then the connection forms
w,w’ € QYU, gl(m)), are related by

hw' =dh+ w.h

(4) If s is a local orthonormal frame for a Riemann metric g which is respected

by V then
w! = —wi,  w= (W) e QU,s0(m)).
If s is a local orthonormal frame for a pseudo Riemann metric g which

is respected by V and if n;; = g(si,s;) = diag(1,...,1,—1,...,—1) is the
standard inner product matrixz of the same signature (p,q), then

njwl = —nawt, w=(w!) € Q' (U,s0(p,q)).

Proof. (2)

VxY =Vx (3, su’) =3;(Vxsj)u! + 375X (u))
=22 sk 22y wi (X)uw? + 37 spduf (X).

Vs =s.w =s.ho

Vs =V(s.h) = (Vs).h + s.dh = s.w.h + s.dh.

(4) It suffices to prove the second assertion. We differentiate the constant 7,; =
9(si, s5)
0=X(9(s:,55)) = 9(VxS$i,85) + g(si, Vxs;)
= 932 skwi’(X), 55) + g(si, 3 skwy (X))
=22 9(sk, 8;)wi (X) + X2 g(si, s1)wy (X) = 507 (X) + miaw; (X). O
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16.3. Curvature forms. Let s be a local frame on U, and let V be a covariant

derivative with curvature R. We put R(X,Y)s = (R(X,Y)s1,...,R(X,Y)sm).

Then we have

(1) Rs; :Zsk.(dwé?—Fwa/\w;), Rs = s.(dw + w A w),

where w Aw = (3w A wf)z € Q2(U, gl(m)), since

R(X, Y)S = vays — VyVXS — V[X’Y]S
=Vx(sw)) - Vy(sw(X)) — sw(X,Y])
=sX(w))+swX)wl})—sY(wX)) —swY)wX)—sw(X,Y])
=5.(X(w()) - Y(wX)) —w(X,Y]) + w(X).wY) —w().w(X))
=s.(dw+wAw)(X,Y)

We thus get the curvature matriz

(2) Q=dw+wAwe DU, gl(m)),

and note its defining equation R.s = s.().

Proposition.

(3) If s and s = s.h are two local frames, then the curvature matrices are

related by
h.Q = Q.h.

(4) The second Bianchi identity becomes
A+ wAQ—-QANw=0.

(5) If s is a local orthonormal frame for a Riemann metric g which is respected
by V then

. . i )
Q] =05, Q=(Q]) € Q*(U,s0(m)).

If s is a local orthonormal frame for a pseudo Riemann metric g which
is respected by V and if n;; = g(si, s;) = diag(1,...,1,—-1,...,—1) is the
standard inner product matriz of the same signature (p,q), then

;A = -, Q= (Q]) € Q*(U,s0(p, q)).

Proof. (3) Since R is a tensor field, we have s.h.Q = ¢ = Rs' = Rs.h = s.Q0.h.
A second, direct proof goes as follows. By (16.2.3) we have h.w’ = w.h + dh, thus
h.Q = h.(dw + W' AW')
= h.d(h™t.w.h +h~tdh) + (w.h+dh) A (R~ w.h+h~1.dh)
= h.(=h t.dh.h) Aw.h +h.htdwh — h.h™twAdh
+ h.(=h~t.dh.h™Y) Adh + h.ht.ddh
+wAhh P wrwAhhT dh +dhh Awh + dhohT A dh
=dw.h+wAw.h=8Q.h.

Draft from September 15, 2004 Peter W. Michor,



16.4 16. Computing with adapted frames, and examples 165
(4) dQ =d(dw+wAw) =0+dwAw—wAdw = (dwv+wAw) Aw —wA (dw+w Aw).

(5) We prove only the second case.

Mis = 15dw] + Xy njw] Awl = —nadw; — 3 mw] Aw
= —midw + 32 nawk A wl = —nii(dwl Y, wi Awk) = =50 O

16.4. Coframes. For a local frame s = (s1,...,8,,) on U C M we consider the
dual coframe ,
o
o= ) ot € QYU),
a.m

which forms the dual basis of T M for each z € U. We have (0’,s;) = 0'(s;) = 6.
If s’ = s.h is another local frame, then its dual coframe is given by

1) o =, o= (e,
since (30, (h1)jo", s5) = 304 (R 1), (o, s1) B = 65

Let s be a local frame on U, let V be a covariant derivative. We define the torsion
form © by

(2) Tor = 5.0, Tor(X,Y)=:3,5,6/(X,Y), ©¢cQ*(UR™).

Proposition.

(3) If s and s" = s.h are two local frames, then the torsion forms of a covariant
derivative are related by

e =hnte.
(4) If s is a local frame with dual coframe o, then for a covariant derivative

with connection form w € QY(U, gl(m)) and torsion form © € Q*(U,R™)
we have

do=-wAo+0, do'=->,wiAdk+0O.

(5) The algebraic Bianchi identity for a covariant derivative takes the following
form:

dO+wAO=QAN0, dOF+Y wfABO =308 Aol

Proof. (3) Since Tor is a tensor field we have s.0 = Tor = 5’0" = s.h.0©’, thus
h.© =0 and © =h~1.0.
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(4) For X € X(U) we have X = Y. s,.0'(X), short X = s.0(X). Then

—~ =

oY)+ s X(0(Y)) —sw().o(X)—sY(c(X)) —s.o([X,Y])
=s.(w(X).oY)—w¥).o(X)+ X(o(Y)) = Y(co(X)) —o([X,Y]))
(

Direct proof of (3):
O =w Ao’ +do' =(htwh+h tdh) AhT o+ d(h o)
=htwAho+h tdhAh o —hThdh.h o+ R do
=h Y wAo+do)=h"t0.

(5) dO =dwNo+do)=dwNo—wAdo+0
=(dw+wAw)No—wA(wAo+do)=QNoc—-—wAO. O

16.5. Collection of formulas. Let (M,g) be a Riemann manifold, let s be an
orthonormal local frame on U with dual coframe o, and let V be the Levi-Civita
covariant derivative. Then we have:

(1) glv =20 @0, ‘

(2) Vs =sw, w) =-w], sow e Q(U,so(m)).

(3) do+wAo=0,dot+ Y, wi Aok =0.

(4) Rs =5.Q, Q =dw+wAw e Q*(U,s0(m)), QU = dw' + 3, wj, Awh,

(5) QAo =0, >, QL Aok =0, the first Bianchi identity.
(6) dY4+wAQ—QAw=dQ+ [w, Qs =0, the second Bianchi identity.
If (M, g) is a pseudo Riemann manifold, n;; = g(s;,s;) = diag(1,...,1,—1,...,—-1)
the standard inner product matrixz of the same signature (p, q), then we have instead:

(27) myjw] = —mawj, thus  w = (w]) € QX (U, 50(p, q))-

(1) 0359 = —nut¥, thus Q = (Q]) € Q*(U,s0(p, q)).-
16.6. Example: The Sphere S? C R?. We consider the parameterization (leav-
ing out one longitude):

f:(0,27) x (=m,7) — R3,

cos ¢ cosf

f(p,0) = | siny cosé
sin 6 X2

g = f*(metric) = f*(>°, da* @ dz*)

X3

3
= dff @df' = cos® dp @ dp + db @ db.

=1
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From this we can read off the orthonormal coframe and then the orthonormal frame:

0 1 0
1_ 2 _
o =df, o°=cosfdp, 51 = 55’ So cos0 00

We compute do' = 0 and do? = —sinf df A dp = —tanf o' A o%. For the

connection forms we have w{ = w3 = 0 by skew symmetry. The off-diagonal terms

we compute from (16.5.3): do +w Ao = 0.

—do' =0+ w3 Ao? =0, = wi = c(p,0)0?

—do* =w?No' +0=tanf o' Ao?, = wy; =tanh o =sinf dp
Y 0 sin 6 dy
~ \ —sinf dp 0

For the curvature forms we have again Q1 = Q3 = 0 by skew symmetry, and then
we may compute the curvature:

Q) = dwl + wi Awd 4+ wi Aw2 = d(sinf dp) = cosh df Adp = o' A o?

0 ol A o?
Q_(—01/\02 0 )

For the sectional curvature we get

k(S?) = —g(R(s1,52)51,82) = —g(> ), sk (s1, 52), 52)
= —g(sz(—a1 A 0'2)(81, S9),82) = 1.

16.7. Example: The Poincaré upper half-plane. This is the set H} =
{(x,y) € R? : y > 0} with metric ds® = y%(de + dy?) or

1 1 1 1
g=—dr® —dx+ —dy ® —dy),
Y Y Y Y
which is conformal with the standard inner product.

The curvature. The orthonormal coframe and frame are then, by (16.5.1):

1 1 0 0
1 2
= —d = —d == R = _—
o y z, O y Y 51 ya 7’ 52 yay
We have do! = d(%dm) = y%dm Ady = o A o? and do? = 0. The connection forms

we compute from (16.5.3): do +w Ao = 0.

—do' =0+ wy Ao? =~ Ao?,

—do* =wiNo'+0=0, =wy=—0" =—y ldx

w— 0 —o!
“\ot 0
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168 Chapter IV. Riemannian Geometry 16.7

For the curvature forms we get

Q3 = dwy +wi Awy +wy Awi =d(—y tdz) = —o' A o?

0— 0 —ol No?
4ol Ao? 0

For the sectional curvature we get

k(HY) = —g(R(s1,52)s1,52) = —g(>; 562 (51, 52), 52)
= —g(sa2(ct A o?)(s1,52),80) = —1.

The geodesics. For deriving the geodesic equation let:

o(t) = (m)), d(t) = (58) _ %y% 4 %y% _ %’sl 4 %’32 — (soc).

The geodesic equation is then

Vo, =V, ((soc)u) =sw(c)u+ s.du(dy)

)
(i ) )

Y
2’2 9 2 O 2y — 2y O My — 2
_20 ey 9 ay—ay 0 y'y—y? 0
y 0y y Ou y 0w y 9y

'y —22'y =0

2’2 + y//y - y/2 -0
To see the shape of the geodesics we first investigate x(¢) = constant. Then
y"y —y'? = 0 has a unique solution for each initial value y(0),y’(0), thus the

constant
y(t)
then the geodesic is already vertical. If /() # 0 we claim that the geodesics are

verticals ¢ — ( ) are geodesics. If 2/(t) = 0 for a single ¢ then for all ¢ since

upper half circles with center M (t) on the z-axis.

(o)
() y'(t) , )
C(t)) vt —tanoz(t):@7 :a:ﬂj
' (t) y(t) !
M) = 2+ vy _ 2z +y'y
! x’
x() M(®) M'(t) = (%W) =...=0,

Thus M (t) = M, a constant. Moreover,
(t MY |2 2 2 y'y g 2
frnd —M —= _—
(i)~ (0)] = mam = (52) oo
/
d | (z(t M2 ((vy\? . .\
o) - ()= () +) =m0
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16.7 16. Computing with adapted frames, and examples 169

Thus the geodesics are half circles as asserted. Note that this violates Euclids
parallel axiom: we have a non-Euclidean geometry.

Isometries and the Poincaré upper half plane as symmetric space. The
projective action of the Lie group SL(2,R) on CP!, viewed in the projective chart
C > z + [z : 1], preserves the upper half-plane: A matrix (Z 2) acts by [z : 1] —

[az+b:cz+d] = [% : 1]. Moreover for z = = + iy the expression
az+b  (az+0b)(cz2+d)  ac(z® +y?) + (ad + be)x + db L (ad — be)y
cz+d lcz + d|? B (cx + d)? (cx + d)?

has imaginary part > 0 if and only if y > 0.

We denote the action by m : SL(2,R) x H? — H?, so that m(z Z)(z) = %'
Transformations of this form are called a fractional linear transformations or Mobius

transformations.

(1) SL(2,R) acts transitively on H?, since m( vy x/\/g)(z) = x + iy. The isotropy

S VVPA
group fixing i is SO(2) C SL(2), since i = 28 — bHacti if and only if cd +ac = 0

and ¢® + d*> = 1. Thus H? = SL(2,R)/SO(2,R). Any Mobius transformation by
an element of SL(2) is an isometry:

A= (gg) e SL(2,R),

ma() —m (Z,)_az+b_az’+b_ B z—2
A AT rd o +d (cz+d)(cz' + d)
z—2 1

(ma) ) = I o T der+d) ~ @+ dp

ma(z) —ma(z') = \/(ma)'(2)y/(ma) (') (z = 2'),

for always the same branch of \/(m4)’(z). Expressing the metric in the complex
variable we then have

1
9= y—g(dﬂfg +dy?) =

1 _
Tm(2)? Re(dz.dz)

(a0 = )" (o el

! / 1=\ =
= () () Re((ma)'(z)dz.(ma)'(2)dz)

= Im((ma)(2)) 2|cz +d|~* Re(dz.d,?) =

T (2)2 Re(dz.dz), since

tn(ma) (2)) ez + d =
lcz + d|* = Im(2).

ma(z) — ma(2))|cz + d|?
1 z—Z
"~ 2 (cz + d)(cz + d)

(2) For further use we note the Mdbius transformations
1r
01

mgzm(\g_ﬂl/gﬁ) cz—rz, reRyy

mi=m(,"):z—z+r, reR

—1 -z —x + 1y
— 0—-1). —
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170 Chapter IV. Riemannian Geometry 16.7

We can now use these three isometries to determine again the form of all geodesics
in H2. For this note that: If the fized point set (H2)™ = {z € H2 : m(z) = z}
of an isometry is a connected I1-dimensional submanifold, then this is the image
of a geodesic, since for any vector X, € T. zH-% tangent to the fixed point set we
have m(exp(tX)) = exp(tT,m.X) = exp(tX). We first use the isometry ¥ (z,y) =
(—x,y) which is not a Mobius transformation since it reverses the orientation. Its
fixed point set is the vertical line {(0,y) : y > 0} which thus is a geodesic. The
image under m; is then the geodesic {(r,y) : y > 0}. The fixed point set of the
isometry 1 o mg is the upper half of the unit circle, which thus is a geodesic. By
applying m; and ms we may map it to any upper half circle with center in the real
axis.

(3) The group SL(2,R) acts isometrically doubly transitively on Hi . Any two pairs

of points with the same geodesic distance can be mapped to each other by a Mdbius
ab
cd

m; it double covers the unit circle in TZ-(Hi). Thus SL(2,R) acts transitively

transformation. For A = ( ) in the isotropy group SO(2) of i we have m/, (i) =

on the set of all unit tangent vectors in H i, and a shortest geodesic from z; to zo
can thus be mapped by a Mobius transformation to a shortest geodesic of the same
length from z] to zj.

(4) Hi is a complete Riemann manifold, and the geodesic distance is given by

Z1 — 22

dist(z1, z2) = 2artanh ~
Z1 — 22

The shortest curve from iy; to iys is obviously on the vertical line since for z(t) =
x(t) + iy(t) the length

' 1 / 2 / 2
L(c):/o VI

is minimal for 2’(¢) = 0, thus x(t) = constant. By the invariance under reparame-
terizations of the length we have

Y2 1
dist(iy1, iy2) = ‘/ 7 dt‘ = |logys — log yn| = |log(£2)]
Y1

From the formulas in (1) we see that 2222 is invariant under SL(2, R) since:

_ zmi—zp
‘mA(Zl) - mA(Zz) _ (cz1+d)(czo+d) _ 21 — 22
ma(z1) — ma(z2) % 21— 22

On the vertical geodesic we have

: ; yi_ log(y2) ARCHED] —5|log(42)]
Y1 — Y2 o 1 e Tl =1 e v2’l —e 2 v2
. . - Y1 - 1 Y1 1 Y1
Y1 + Y2 g—;—}—l elOg(E)—i—l ez 108(;)l +€—§|10g(5)|

= tanh(3 dist(iy1, iy2)).
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Since SL(2,R) acts isometrically doubly transitively by (3) and since both sides
are invariant, the result follows.

(5) The geodesic exponential mapping. We have exp,(ti) = e'.i since by (4) we have
dist (i, e'i) = log# = ¢. Now let X € T;(H?) with |X| = 1. In (3) we saw that
there exists ¢ with

cosp —sinp \/ N\ i % . .m arg(X)
m(singo cos ¢ ) (Z)Z— (iSiHQD+COSg0)2 =€ u‘o.l—)(7 Y= Z — 5 —|—7TZ,
t . .
_ cosp —singp t. _ COSQ.€".1 — Sy
eXPi(tX) - m(sincp cos ¢ )(6 Z) - . go.eti T cosg .

(6) Hyperbolic area of a geodesic polygon. By (8.5) the density of the Riemann
metric g = y%(d:/r:2 + dy?) is given by vol(g) = \/det g;jdz dy = y%d:z: dy.

B VolHi(P):/ dx/;dy :/d(d—x)
P Y P Yy

d
:/ ﬁ:_/ do,
or Y oP

( since each geodesic is part of a circle
z—a=re"?, aeR. Onitwehave
dr  d(rcosf+a) —rsinfdf 40
y rsin 0 ~ rsinf '

The integral is thus the total increase of the tangent angle. For a simply connected
polygon the total increase of the tangent angle is 27 if we also add the exterior

angles at the corners: faP df + %, 0; = >, a; +> .8 = 2m. We change to the
inner angles v; = 7 — (; and get:

HY _ - _ —(y— _ .
Vol +(P) /anQ 27T+ZL:@ (n—2)m zi:%.

This is a particular instance of the theorem of Gauf-Bonnet.

16.8. The 3-sphere S3. We use the following parametrization of S% C R,

cos ¢ cosf cosT

. 0<p<2rm

F(0,0,7) = sing cosf cosT o 209<£
O T) = sinf cost |’ 2 P 2
sin T T2 ST S

We write fi = 0, f! etc. Then the induced metric is given by:

gu = {1, fi) = fifi + 217+ [P + fifi = cos® O cos® 7,

g12 = (f1, f2) = 0, g13 =0, g22 = cos’ T, g23 =0 g33=1.
g =cos?f cos’ 7 dp @ dp + cos® T d ® df + dr ® dr.

ol = cosf cosT dp, 0% = cosT db, o =dr.

do! = —sin® cos7 df A dp — cosf sint dr A de,

do? = —sint dr A d#, do® = 0.
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172 Chapter IV. Riemannian Geometry 16.8

Now we use the first structure equation do +w A o = 0:

dot = —0—wi No? —wiNo® =sinf cost dp Adf + cosh sinT dp A dr,
do? = —w? Aol —0 — w2 Ao® =sinT df A dr,

do® = —wd Aol —wiAo? —0=0.

—wis AcosT df — w3 Adr =sinf cosT dp A df + cos sinT dp A dr,
—w? Acosf cosT dp —wi Adr =sinT df Adr,

— W Acosf cosT dp —ws AcosT df = 0.

w3 = —cosf sinT dp 0 —sinfdy —cosf sinT dy
w3 = —sinT df w= sin @ dp 0 —sinT db
wh = —sind do cosf sint dp sinT df 0

From this we can compute the curvature:

A =dwy + 040+ wi Awl = —cosf di A dp — cos sinT dp AsinT df
=cosf cos’T dp Adf = o' A o2
O =dwl + 04 wi Aws +0=sinf sinT df Adp — cosf cosT dr A dp+
+sinf dp Asint df = cosf cosT dp Adr = o' Ao?
Q3 =dwi +wiAws +0+0=—cosTdr Adf +0

=cosTdONdT = 0% No?

0 ol ANo? ol A3 ol
Q= -l A0o? 0 a?Nod | = | o | Aot 0%, 0%)
—odlANo? —2N03 0 o3

Another representation of the 3-sphere with radius 1/ Vk. The induced
metric is given by

1
g= E(COS29 COSQngo@ng—l—COSQTd9®d0+d7‘®d7),

where 0 < ¢ < 27, =5 < 0 < 5, and —5 < 7 < 5. Now we introduce the
coordinate function r by cos? 7 = k72, more precisely by
1 _z
B 75 CoST 5 <717<0 0 )
r=93 . 0cren <|r|<ﬁ.
5 COST T <3

Then signT costT = Vkr thus —signT sint dr = Vkdr, and since sin?7 =
1 —cos?1 =1—kr? we finally get (1 — kr?)dr @ dr =sin® 7 dr @ dr = kdr @ dr.
Furthermore we replace 6 by 6 + 5. Then the metric becomes:

1 k
g=—(sin®?0krido@dp+kr?d) ®d) + ———dr @ dr
k 1—Fkr?

(1) =7 k2dr®dr—|—r2d0®d0—i—r2sin20d¢®d<p, where
— RT

1
0 << 2m, 0<é<m, 0<|rl < —.

vk
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16.9. The Robertson-Walker metric in general relativity. Thisis the metric
of signature (+ — ——) of the form

gzdt@dt—R(t)Q( dr @ dr +r*df @ df + r* sin 9dg0®dg0>

1— kr?
for 0 < p <2 0<6< 0<|rl< !
or , T, r —
7 NG
=p"@p’ —pep —p?ep-p*ep’
R
¥ =dt, pt = —dr, where w:=+1—kr2,
w

p® = Rrd#, p® = Rr sinf dp.
The differential of the coframe is:

dp® =0,
dplzﬁdt/\drzﬁpﬂ/\pl,
w R

. R
dp?> = Rrdt ANdf + Rdr Adb,= —
P T + r , fi) R

dp® = Rr sinf d0 A dp + R sin@ dr A dy + Rr cos0 df A dy

PPN PP+ == pt AP

R P IR +c:01:ar10 2 5 3
RP p* R ptAp Rr p-Ap
Nowweusedp%—w/\sz,cuéz—wfforlgi,jg?),w;?:(),andw?:wé:

dp® = —w A pt —wWI A p? —wi A pP =0,

R
dp' = —wy NP —wy N p? —wz A p® = 0" A
2 2 0 2 1 2 3 R
dp” = —wy Ap” —wWiAp —wzAp” = Rp Ap-%R pl A p?

a’p3:—cug/\po—u):f/\pl—w%/\p2

R, cotanf ,
=00 AP+ o “Rmr ? Ap
r

Ap® +
=7 pt A p°

R
This is a linear system of equations with a unique solution for the w; We solve
this by trying. Guided by (16.8) we assume that w{ is a multiple of p!, etc. and
we get the solutions

R R R :
wé:}—zplzadr wgzﬁpQZerH
3 R 3_ P 2 _ W o
wozﬁp = Rr sinfdy wi= 5P =wdf
tan 6
w} = };Up = w sin 6 dyp w%zCORan 0> =cosfdyp
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174 Chapter IV. Riemannian Geometry 16.9

From these we can compute the curvature 2-forms, using ) = dw + w A w:

Qéz—ﬁpl/\po QZZ_EpZ/\IOO
R k+ R?

Q= -0 N p" O = =" Ap!
—k+ R? k+R

A = ——F5—0"Np! Q= 5P Np°
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17.2 17. Riemann immersions and submersion 175

17. Riemann immersions and submersions

17.1. Riemann submanifolds and isometric immersions. Let (M,g) be a

Riemann manifold of dimension m + p, and let M — M be a manifold of dimen-
sion m with an immersion 7. Let g := ¢*g be the induced Riemann metric on
M. Let V be the Levi-Civita covariant derivative on M, and let V be the Levi-
Civita covariant derivative on M. We denote by Ti+ = TM~* := {X € T,M,x €
M,g(X,Ti(T,M)) = 0} the normal bundle (over M) of the immersion i or the
immersed submanifold M.

Let X,Y € X(M). We may regard TioY as vector field with values in TM defined
along i and thus consider Vx (TioY): M — TM|M.

Lemma. Gauf}’ formula. If X,Y € X(M) then Vx(TioY) —TioVxY =:
S(X,Y) is normal to M, and S : TM Xy TM — TM* is a symmetric tensor
field, which is called the second fundamental form or the shape operator of M.

Proof. For X,Y,Z € X(M) and a suitable open set U C M we may choose an
open subset U C M with U = i~*(U) such that i : U — U is an embedding, and
then extensions X,Y,Z € X(U) with X oi = Tio X|y, etc. By (13.5.7) we have

)
20(VxY,2)=X(g(Y,2)) +Y(3(Z,X)) — Z(3(X,Y))
+9(X.Y],2) +9(Z,X],Y) - 9([Y, 2], X).
Composing this formula with ¢ we get
20(Vx(TioY),Z) = X(g(Y, Z)) + Y (9(Z, X)) — Z(9(X,Y))
+9(X, Y], 2) +9([2, X].Y) — g([Y, 2], X) = 29(VxY),
again by (13.5.7). Since this holds for all Z € X(U), the orthonormal projection of

VxY to TM is just VxY. Thus S(X,Y) :=Vx(TioY) —Tio VY is a section
of TM+*, and it is symmetric in X,Y since

S(X,)Y)=Vx(TioY)—TioVxY =(VgY)oi—-TioVxY
= (Vg X +[X,Y])oi—Tio(VyX + [X,Y]) = S(Y, X).
For f € C°>°(M) we have
S(fX,Y)=V;x(TioY)—TioVsxy = fVx(TioY) — fTioVxY = fS(X,Y),
and S(X, fY) = fS(X,Y) follows by symmetry. [
17.2. Corollary. Let c: [a,b] — M be a smooth curve. Then we have Vy,(Ti o
d)=Vp,(ioc) =TioVy,c + S(c, ). Consequently c is a geodesic in M if and

only if Vo, (ioc) = S(c/,c') € TM>, i.e., the acceleration of ioc in M is orthogonal
to M.

Let i : M — M be an isometric immersion. Then the following conditions are
equivalent:

(1) Any geodesic in M which starts ini(M) in a direction tangent to i(M) stays
in i(M); we call i : M — M a totally geodesic immersion.
(2) The second fundamental form S of i : M — M wvanishes. [
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17.3. In the setting of (17.1) we now investigate Vx& where X € X(M) and where
¢ € T(TM%) is a normal field. We split it into tangential and normal components:

(1) Vxé=-TioL¢(X)+Vxé€ X(M)@T(TM*) (Weingarten formula).

Proposition.
(2) The mapping (&, X) — L¢(X) is C°(M)-bilinear, thus L : TM*+ x ,y TM —
TM 1is a tensor field, called the Weingarten mapping and we have:

9(Le(X),Y) = g(S(X,Y),§), €eD(TM™), XY € X(M).

By the symmetry of S, L¢ : TM — T'M is a symmetric endomorphism with
respect to g, i.e. g(Le(X),Y) = g(X, Le(Y)).

(3) The mapping (X, &) — V%€ is a covamant derivative in the normal bundle
TM~+ — M which respects the metric g~ = g|TM=* xpy TM*; i.e.:

VL X(M) xT(TM*Y) = T(TM*)  is R-bilinear,
Vix€=fVxE  Vx(f.€) =df(X)E+ VxE,
X(g(&m) =g (Vx&m) + 97 (5, Vxn).

Note that there does not exist torsion for V-+.

Proof. The mapping (£, X) — L¢(X) is obviously R-bilinear. Moreover,

—TioLe(fX)+ Vixé=Vyx{=fVx&=—f(TioLe(X))+ f.Vxé
= Le(fX) = fLe(X), Vixé=fVxE
—TioLye(X)+ Vx(f.€) = Vx(f.£) = df(X).£+ f.VxE =
= —f.(Tio Le(X)) + (df (X).€ + .V xE)
= Lpe(X) = fLg(X), Vx(f& =df(X).£+ fVxE.

For the rest we enlarge X,Y € X(M) and &,m € I'(TM~) locally to vector fields
X,Y &, 7 on M. Then we have:

X (g™ (&m) ’(‘(5 7)) oi=(3(V&n) + 3§, Vi) oi
9(Vx&n) +3(& Vxn)

=g(- zoLg< )+ Vx&n) + g€, —Tio Ly(X) + Vxn)
g (Vx&m) + 97 (6, Vxn)

€ (VeY, ) +g(Y, V). Pull this back to M :
0=X(g(Y.§) =g(Vx(TioY),&) + g(¥,Vx§)
=g(TioVxY +S(X,Y),&) +g(Y,~Tio Le(X) + Vx£)
g (S(X,Y), &) +g(Y,~Tio L¢(X)). O

Draft from September 15, 2004 Peter W. Michor,



17.4 17. Riemann immersions and submersion 177

17.4. Theorem. Let (M,g) N (M, g) be an isometric immersion of Riemann
manifolds with Riemann curvatures R and R respectively. Then we have:

(1) For X; € X(M) or T,,M we have (Gauf8’ equation, ‘theorema egregium’):

G(R(Tio X1,Tio X5)(Tio X3),Tio X4) = g(R(X1, X2) X3, X4)+
+ g (S(X1, X3), S(X2, X4)) — g7 (S(X2, X3), S(X1, X4)).

(2) Let us consider the (é) tensor field B € Q?(M; L(TM,TM)) which is given
by:

g(B(leXQ)Xg,X4) =
= g7 (S(X1, X3),8(X2, X4)) — g7 (S(Xa, X3),S(X1, X4))

then (1) takes the following form: the tangential part of R(X1,X2)X3 is
given by:

(R(Tio X1, TioXs)(TioX3))" = R(X1, X2) X5+ B(X1, X2)X3.

(3) The normal part of R(X1, X2)X3 is then given by (Codazzi-Mainardi equa-
tion):

(R(Tio Xy,TioXy)(TioXs3))"t =

L * * €L * *
— (VIMRTMET M G) (X, X) - (VEMETMET M) (x, x,).

(4) The tangential and the normal parts of R(Tio X1, Tio X3)&s (where &; are
normal fields along i) are given by:

G(R(X1, X2)€3, X4) = g (Vx, &3, (X2, X4)) — 97 (Vx, &3, 5(X1, X4))
+ g(<szL§3)(X1) - (VX1L§3>(X2)7X4)

G(R(X1, X2)&s,&4) = QL(RVL (X1, X2)E3,&4)
- 9(X17 L§4L§3 (X2)) + g(Xg, L€4L€3 (Xl))

Proof. Every z € M has an open neighborhood U such that i : U — M is
an embedding. Since the assertions are local, we may thus assume that ¢ is an

embedding, and we may suppress ¢ in the following proof. For the proof we need
vector fields X; € X(M). We start from the GauBl formula (17.1).

le (?XQX?)) = le (VX2X3 + S<X2> X3))
= Vx,Vx, X35+ S(X1,Vx,X3) + Vx, S(X2, X3)
Vx,(Vx, X3) = Vx,Vx, X3+ 5(Xz, Vx, X3) + Vx,5(X1, X3)

Vix,,x,X3 = Vix, x5 X3 + S([X1, X2], X3)
= Vix,,x, X3+ S(Vx, X2, X3) — S(Vx, X1, X3)
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Inserting this we get:

G(R(X1,X2)X3,X4) = 3(Vx,Vx, X3 — Vx,Vx, X3 — Vix, x,1 X3, X4)
=9(Vx,Vx, X3 — Vx,Vx, X3 — Vix, x,] X3, X4)+
+9(S(X1,Vx,X3) — S(X2,Vx, X3) — S([X1, Xs], X3), X4) this term =0
+ §(Vx,5(X2, X3) — Vx,9(X1, X3), X4)
= g(R(X1, X2)X3, X4) + 5(Vx,S(X2, X3) — Vx,S(X1, X3), X4).

The indicated term vanishes since S has values in TM . Finally we have

0= X1(9(5(X2, X3), X4)) = §(Vx,5(X2, X3), X4) + (S (X2, X3), Vx, X4)
3(Vx,S(Xa, X3), X4) + g(S(X2, X3), Vx, X4 + S(X1, Xy))
3(Vx,5(Xa, X3), X4) + g (S(X2, X3), S(X1, X4)),

_|_
_l_

from which (1) follows. Equation (2) is obvious. For equation (3) we have to
compute the normal components of the + — — sum of the first three equations in
this proof:

(R(X1, X2)X3)" = 04 S(X1, Va, X3) + (Vx, 5(X2, X3))" — 0 — S(X3, Vi, Xs)
— (Vx,5(X1, X3)) " =0 — S(Vx, X2, X3) + 5(Vx, X1, X3)
= (Vx,5(X2,X3) — S(Vx, X2, X3) — S(X2, Vx, X3))
— (Vx,8(X1,X3) — S(Vx, X1, X3) — S(X1,Vx,X3))
= (Vi OTMETIMS) (X, X5) — (VR ETMET M) (X, Xy).
For the proof of (4) we start from the Weingarten formula (17.3.1) and use (17.1):
Vx, (Vx,€3) = Vi, (Vx, 83 — Le, (X2))
— VT~ Lo o (o
Vx,(Vx,83) = VX, V.8 — Loy ¢ (X2

Vix,, x2)83 = v[lxl’XﬂSS — Le, ([X1, X2])
= Vix, x2168 — Les (Vx, X2) + Le, (Vx, X1)

) = Vx, (Lgy (X2)) — S(X1, L, (X2))
) - Lfs

Vix, (Ley (X1)) — S(X2, Le,; (X1))

Inserting this we get for the tangential part:

g(R(X1,X2)&s, X4) = 9(Vx,Vx,&3 — Vx, Vi, & — Vix, x,)63, Xa)
= 9(Lyy & (X2) = Loy ¢ (X1), Xa)
+ 9(Vx, (Ley (X1)) — Ley (Vi X1) — Vix, (Ley (X2)) + Ley (Vx, X2), X4)
= g7 (Vx,&,8(X2, X4)) — 9 (Vx, &, S(X1, X4))
+9((Vx, Le, ) (X1) = (Vx, Ley ) (X2), Xa)
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For the normal part we get:

9(R(X1,X2)€s,81) = 9(Vx, Vx,& — Vx,Vx, 8 — Vix, x,163, &)
- gJ_(S(Xb Lﬁs (XQ))7 54) + gJ_(S(X27 Lﬁs (Xl))7 54)

= g (R (X1, X0)&5, 64)
—9(X1, Le, L, (X2)) + g(Xa, Le, Le, (X1)). O

17.5. Hypersurfaces. Let i : (M,g) — (M,g) be an isometrically embedded

hypersurface, so that dim(M) = dim(M) + 1. Let v be a local unit normal field
along M, i.e., v € T(TM*|U) with |v|; = 1. There are two choices for v.

Theorem. In this situation we have:

(1) Vxv € TM for all X € TM.
(2) For X,Y € X(M) we have (Weingarten equation):

g(vau Y) = —g(y, va) = _gL(Vv S(X7Y))

(3) g(ﬁXya Y) = g(?yy,X).
(4) If we put s(X,Y) = gt (v,S(X,Y)) then s is called the classical second
fundamental form and the Weingarten equation (2) takes the following form:

d(Vxv,Y)=—s(X,Y).

(5) For hypersurfaces the Codazzi Mainardi equation takes the following form:

g(R(X1, X2)X3,v) = (Vx, s)(X2, X3) — (Vx, ) (X1, X3).

Proof. (1) Since 1 = g(v,v) we get 0 = X(g(v,v)) = 2§(Vxv,v), thus Vxv is
tangent to M.

(2) Since 0 = g(v,Y) we get 0 = X (3(v,Y)) = g(Vxv,Y) + g(v,VxY) and thus
g(Vxv,Y)=—-g(r,VxY)=—-g(v,VxY + S(X,Y)) = —g(v,S(X,Y)).

(3) follows from (2) and symmetry of S(X,Y). (4) is a reformulation.

(5) We put ourselves back into the proof of (17.4.3) and use S(X,Y) = s(X,Y).v
and the fact that s € I'(S2T*M|U) is a (g) tensorfield so that V x s makes sense. We
have le (S_(XQ,X3)> = le (S(XQ,Xg).V) = Xl(S(XQ,Xg).V + S(XQ,Xg).vXIV,
and by (1) Vx,v is tangential to M. Thus the normal part is:

= 1
(VXl (S(XQ,XS))) = Xl(S(XQ,Xg)).I/
= (VXIS)(XQ, Xg).V + <S(V)('1)(27 X3).V + S(XQ, leXg).V.
Now we put this into the formula of the proof of (17.4.3):
(R(X1, X2)X3)" = S(X1,Vx,X3) + (Vx, (S(X2, X3))) " — S(Xa, Vx, Xs)

— (Vx, (S(X1, X3))) " — S(Vx, X2, X3) + 5(Vx, X1, X3)
= ((Vx,5)(X2,X3) — (Vx,8) (X1, X3))v. O
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17.6. Remark. (Theorema egregium proper) Let M be a surface in R3, then R = 0
and by (17.4.1) we have for X, Y € T, M:

0= (R(X,Y)X,Y) = (R(X,Y)X,Y) + (X, X).s(Y,Y) — s(Y, X).5(X, Y).
Let us now choose a local coordinate system (U, (x,y)) on M and put

g=1"( , )=Fdr®dr+ Fdx®dy+ Fdy®dr+ Gdy® dy,

s=:ldr®dr+mdr®dy+mdy®dr+ndy dy, then
K = Gaufy’ curvature = sectional curvature =
. (R(0g, 81/) O, ay) o (0, ax)-s(azﬁ ay) — 5(0x, ay)z
|00 [2] 0y [* = (0, 0y)? EG - F?
In —m?
" EG-F?

which is Gauf}’ formula for his curvature in his notation.

17.7. Adapted frames for isometric immersions. Let e : (M, g) — (M, g) be
an isometric embedding of Riemann manifolds, let dim(M) = m+p and dim(M) =
m. An adapted orthonormal frame § = (51,...,8m,+p) is orthonormal frame for M
over U C M such that for U = UN M C M the fields s1 = 51|y, ..., 8m = 8m|v
are tangent to M. Thus s = (s1,...,8,,) is an orthonormal frame for M over U.
The orthonormal coframe

5.1

o= =(a,...,0
gm+p

for M over U dual to 5 is then given by o7(5;) = 0%, We recall from (16.5):

1) g=xded
Vi=350, @i=-wl, soweQ (U,s0(m+p))
Ao+ NG =0, d&'+ Y Pal Agh=0
R5=50Q, Q=do+aonocQ*U,so(m+p)),
05 = daf + S7H7 o} 1 o}
QAG =0, S7PQT AGF =0, first Bianchi identity.

AU+ o ANQ— QA =dQ+ 0,0, =0, second Bianchi identity.
Likewise we have the orthonormal coframe o = (o1,...,0™)T for M over U dual
to s is then given by o*(s;) = d7. Recall again from (16.5):

(2) g=> " 0" ®c"

Vs = s.w, wj- = —w!, sowe QYU so(m)).

do+wAo=0, do'+> >, wiAck=0.

Rs=35.9, Q=dw+wAweQ*U,so(m)),

Q= dw) + >0 wh Awk
QAo =0, >, Q0 Aok =0, first Bianchi identity.
AU+ wAQ—=QAw=dQ+ [w,Q, =0, second Bianchi identity.
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Obviously we have 5%y = o, more precisely e*5? = o, fori = 1,...,m, and e*5’ =
0forz=m+1,...,m+p. We want to compute e*@. From do"’ +Zm+p”/\o =0
we get
(3) — TP er Jﬂi/\e*&’;:—zzlzl e*wi Aok fori=1,...,m.

0=-— ZH_lp *wp Ne* ok = =S efwi Aok form+1 <.
Since also e*@} = —e*@g, the forms e*@;» for 1 < 1,7 < m satisfy the defining

equations for w}; thus we have:

(4) w} = e*@é, for 1 <i,5 <m.

Since §(Vxsi,sj) = P(X) = Wl (X) = 9(Vxsi,s;) for X € X(M), equation (4)

also expresses the fact that the tangential part (Vys;)| = Vxs;.

Next we want to investigate the forms e*cD;i = —e wj forl<i<mand m+1<
7 < m—+ p. We shall need the following result.
(5) Lemma. (E. Cartan) For U open in M™TP et XL,... . X™ € QY(U) be every-

) such that
T) satisfying

where linearly independent, and consider 1-forms pi,...,pm € QY
S i AN = 0. Then there exist unique smooth functions f;; € C>(

i = Y50 fiyN and fij = fji.

Proof. Near each point we may find A™*! ..., A™*P such that \',..., \™ TP are
everywhere linearly independent, thus they form a coframe. Then there exist unique
fij such that p; = Zm+p fizN. But we have

m m m-+p
0= mAN=D > frA AN
i=1 i=1 k=1
m  m+p B
= ) =L)X AN DY Y fr A AN
1<k<i<m =1 k=m+1

Since the A¥ A N for k < 7 are linearly independent we conclude that f;x = fi; for
1<ik<mand fir =0for 1<i<m<k<m+p O

By (3) we have 0 = >_}"  e*®t Ao for 7 =m +1...m + p. By lemma (5) thus
there exist unique functions sj; € C*°(U) for 1 < j,k <mand7=m+1,...,m+p
with:

m
*—7 T ] T o
(6) e*w;, = E k07 Skj = Sjk-

This is equivalent to the Weingarten formula (17.3.1).
Since §(Vs,s5,5:) = @} (sr) = (€*0})(sr) = %), we have by (17.1)

m+p ) m+p _
(7) S(sivs) = Y S (s:) = D (SlU)sh
k=m+1 k=m-+1
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Let us now investigate the second structure equation Q} = dw
We look first at indices 1 < 1,7 < m and restrict it to M:

m m-+p B
e" Q% = de*w; + Z ey N e*@f + Z e wp A e*u_);“
k=1 kE=m+1
m m-+p B
= dwj + E wy, A w;-“ + g e"wp A e*@f
k=1 k=m+1
m—+p B m—+p m o
*O) _ Ot * — 4 * k _ Ot _ k _k l n
(8) e = + E e'wr Netw;i = E E Si1Sin O NCO
k=m4+1 k=m+11,n=1

This is equivalent to the GauBl equation (17.4.1).

Then we look at the indices 1 < 7 < m <7 < m+p and restrict the second structure
equation to M:

m m—+p B
e* Q) = de* &} + Z e*ol A e*@f + Z e*p A e*@f
k=1 k=m+1
m m+p B
(9) =de’d} + ) o AWl + Y o AetDl,
k=1 k=m+1

which is equivalent to the Codazzi Mainardi equation. In the case of a hypersurface
this takes the simpler form:

e*Q;nH = d@*@;?”l + Z e*cD,T+1 A w;-“
k=1

17.8. Resumee of computing with adapted frames. Let e : (M,g) — (M,g)
be an isometric embedding between Riemann manifolds. Let § = (51,..., Sm4p)
be an orthonormal local frame on M over U C M with connection 1-form @ =
(@1) € Q' (U,s0(m + p)) and curvature 2-form Q = () € Q*(U,s0(m + p)), such
that the s; := §;|U form a local orthonormal frame s = (s1,...,58,,) of TM over
U = UNM, with connection 1-form w = (w}) € Q' (U, so(m)) and curvature 2-form
Q= () € Q*(U,s0(m)). Let

o ol

0= : , o= :
a.m—i—p o™
be the dual coframes. Using the ranges of indices 1 < 4,7, k, ]l < m and m + 1 <
7,7,k < m + p we then have:

e'gt =o', e*at =0,

*—1 __ 1 * -7 7 k T ot

e*w; = wj, e'w; = Zkgm 85k0", ik = Sk

*Ai _ Ot ki x—k _ i _ \°m+p m kEk 1 n

eV =0+ g€ N Of = Q= > D e SitSin 0 N
m m-+p B

* () * —7 * —7 k * =7 * —k

er—dewj—I—E ey ANw; + E ey NeTw;.
k=1 k=m+1
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17.9. Definitions. Let p: F — B be a submersion of smooth manifolds, that is
Tp:TE — TB surjective. Then

V =V(p) = V(E) := ker(Tp)

is called the vertical subbundle of E. If E is a Riemannian manifold with metric g,
then we can go on to define the horizontal subbundle of E.

Hor = Hor(p) = Hor(E) = Hor(E, g) := V(p)*

If both (E,gg) and (B, gp) are Riemannian manifolds, then we will call p a Rie-
mannian submersion, if
Typ : Hor(p)y — Ty B

is an isometric isomorphism for all x € E.

Examples: For any two Riemannian manifolds M, N, the projection pri : M x N —
M is a Riemannian submersion. Here the Riemann metric on the product M x N
is given by: gyxn(Xnr + Xn, Yar + Yn) = gu(Xar, Yur) + gn(Xn, Yv) using
T(M x N) 2 TM @ TN. In particular, R™*" — R™ with the usual metric, or
pro 1 S™ x RT — R are Riemannian submersions.

17.10. Definition. Let p: E — B be a Riemannian submersion. A vector field:
€ € X(E) is called vertical, if £(x) € V,(p) for all x (i.e., if Tp&(z) = 0).

€ € X(E) is called horizontal, if £(z) € Hor,(p) for all z (i.e., if £(x) L Vi (p)).

€ € X(E) is called projectable, if there is an n € X(B), such that Tp.§ = no p.

¢ € X(E) is called basic, if it is horizontal and projectable.

The orthogonal projection ® : TE — V(E) with respect to the Riemann metric is
a (generalized) connection on the bundle (F,p) in the sense of section (20) below
and defines a local parallel transport over each curve in B (denoted by Pt%(c,.))
as well as the horizontal lift:

C:TBxE —TE: (Xp,e)— Y., whereY, € Hor.(p) with T.p.Y. = X,
B

This map also gives us an isomorphism C : X(B) — Xpasic(F) between the vector
fields on B and the basic vector fields.

17.11. Lemma. Consider a Riemannian submersion p : (E,gg) — (B,gp) with
connection ® : TE — V(p), and ¢ : [0,1] — B, a geodesic. Then we have:
(1) The length Li(c) = LEPt®(c, ., u), where u € E. () is the starting point of
the parallel transport. For the energy Ef(c) = Et(Pt®(c, ., u)).
(2) Pt®(c,.,u) L E for all t.
(3) If ¢ is a geodesic of minimal length in B, then we have L§(Pt®(c,.,u)) =
dist (EC(O), Ec(l)) .
(4) t — Pt®(c,t,u) is a geodesic in E (again for any geodesic ¢ in B).
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Proof. (1) Since 9, Pt®(c, s,u) is a horizontal vector and by the property of p as
Riemannian submersion, we have

t 1
Lf)(Ptq}(C, ,U)) - /0 gE (as Pt(b(c757u)7as Ptq)<c7 S'U’))§ ds

:/o g5(d (), (s))?ds = Ly(c),

t
EL(Pt®(c, ., u)) = % /0 9E (05 Pt®(c,s,u), 95 Pt¥(c, s.u)) ds = Ej(c).

(2) This is due to our choice of ® as orthogonal projection onto the vertical bundle
in terms of the given metric on E. By this choice, the parallel transport is the
unique horizontal curve covering c, so it is orthogonal to each fiber E. () it meets.

(3) Consider a (piecewise) smooth curve e : [0,1] — E from E.q) to E,), then
poeis a (piecewise) smooth curve from ¢(0) to ¢(1). Since ¢ is a minimal geodesic,
we have Lj(c) < L}(poe). Furthermore, we can decompose the vectors tangent to
e into horizontal and vertical components and use the fact that T'p is an isometry
on horizontal vectors to show that Li(e) > Li(poe):

1
Lie) = [ 10" + ¢/ @)yt
0
1 1
> [ it = [ o) Wyt = Lo o)
0 0
Now with (1) we can conclude:
Li(e) = Li(po ) = Lh(c) = LY (PL®(c, ., )

for all (piecewise) smooth curves e from E ) to E.1y. Therefore, L(l)(Pt(I> (c,.,u)) =
dist (Ec(0), Ee(1))-

(4) This is a consequence of (3) and the observation from (13.4) that every curve
which minimizes length or energy locally is a geodesic. [

17.12. Corollary. Consider a Riemannian submersion p : E — B, and let
c:[0,1] — E be a geodesic in E with the property c'(to) L Epc,)) for some tg.
Then c'(t) L Epey) for allt € [0,1] and p o c is a geodesic in B.

Proof. Consider the curve f : t +— expf(c(to))(tTc(tO)p.c’(to)). It is a geodesic

in B and therefore lifts to a geodesic e(t) = Pt®(f,t — to,c(to)) in E by (17.11.4).
Furthermore e(to) = c(to) and €’(to) = C(Tyz)p-c'(to), c(to)) = ¢'(to) since ¢'(tg) L
Ly
and starting vector. Therefore e = ¢, thus e is orthogonal to each fiber it meets by

(17.11.2) and it projects onto the geodesic f in B. [

(c(to)) 18 horizontal. But geodesics are uniquely determined by their starting point
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17.13. Corollary. Let p : E — B be a Riemannian submersion. If Hor(E) is
integrable then:

(1) Ewvery leaf is totally geodesic in the sense of (17.2).
(2) For each leaf L the restriction p: L — B is a local isometry.

Proof. (1) follows from corollary (17.12), while (2) is just a direct consequence of
the definitions. [

17.14. Remark. If p : £ — B is a Riemannian submersion, then Hor(E)|g, =
Nor(Ep) for all b € B and p defines a global parallelism as follows. A section
0 € C°(Nor(Ey)) is called p-parallel, if T.p.v(e) = v € T B is the same point for
all e € Ejp. There is also a second parallelism. It is given by the induced covariant
derivative: A section & € C°(Nor(Ep)) is called parallel if VN = 0. The p-
parallelism is always flat and with trivial holonomy which is not generally true for
VNor Yet we will see later on that if Hor(FE) is integrable then the two parallelisms
coincide.

17.15. Definition. A Riemannian submersion p : E — B s called integrable, if
Hor(E) = (ker Tp)* is an integrable distribution.

17.16. Local Theory of Riemannian Submersions. Letp: (E,gr) — (B, gB)
be a Riemannian submersion. Choose for an open neighborhood U in E an or-

thonormal frame field s = (sq,...,8m4x) € D(TE|U)™* in such a way that
S1y-..,8m are vertical and Sp,41,...,Smir are basic (horizontal and projectable).
That way, if we project Sp+1,...,Sm+r onto TB|p(U) we get another orthonor-
mal frame field, 5 = (5,41, ..,8mir) € C(TB|p(U))¥, since p, as Riemannian

submersion, is isometric on horizontal vectors. The indices will always run in the
domain indicated:

1<i,jk<m, m+1<abée<m+k, 1<ABC<m+k.

The orthonormal coframe dual to s is given by

0.1

oc(sg) = o4, o= c QY U)™T*,

O.m+k

Analogously, we have the orthonormal coframe % € Q! (p(U)) on p(U) C B, with
o%(5p) = 07 It is related to 0% by p*¢® = ¢®. By (16.5) we have on (U C E, gg)
gelv =Y 0% @ ol
VEPs=5w where wp=-wh so weQ (Uso(n+k)).
do+wNho=0, ie., dO’A—FZCWé/\UC:O.
Rs =50 where Q=dw+wAweQ*U, so(n+k)),
or Qf = dwig + S o wh AW,
QNoc=0 or Y Q3A0°=0, the first Bianchi identity.
dQ+wAQ—=QAw=dQ+ [w,Qn =0, the second Bianchi identity.
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and similarly on (p(U) C B, g?) with bars on all forms.

For the following it will be faster to rederive results as compiling some of them from
(17.7) and (17.8). We start by pulling back the structure equation do +w A =0
from B to E via p*:

0=p" (do® + & A0%) = dp"a™ + S (p ) A (p°0%) = do® + S (p ) Ao

The a-part of the structure equation on FE, do® + ) wi A o + S wi Aot =0,
combines with this to

(1) S e Aot =T wl Aok + T wi Aot

The left hand side of this equation contains no o’ A 0% or o® A o/-terms. Let us

write out wg and w¢ in this basis.

wf = —w 2 DY qlot+ Y bo ' wf:—wg::Za%al_’+erj0j.
This gives us for the righthand side of (1)

quEUEAJB+ZbgiO-i /\O’E +ECL?BO'E/\O'i +Zr%’0—j Aot —
=3¢2 0 Aot + (b8 —a%)ot Aot + 33 (rE — 1907 Ao
So we have found a?l—) = bgi and r?j = 7“?’1- or, in other words, wl(s;) = wg(si) and

wi(s5) = wf(si). That is: wi(sa) = w%(si), and this just means that the horizontal
part of [sa,s;] is 0, or [s4a,s;] is always vertical:

(2)  0=3sawi(sa) — X sawh(si) = (Vausi — Vi 54)" = [5a, 51"

Now we will consider the second fundamental form S : TE}, x g, TE), — Hor(E)
of the submanifold Ej, := p~1(b) in E. By (17.1) SE¥ is given as:
SEb (Xver,Yver) — ng(veryver vaeryver — v?(veryver . (vaer Yver)ver
( Xveryver)hor — (vaeerer
hor

(vaer (X sio' (YY)

( Xver Sz (Yver> + Z Sid(di (Yver))‘Xver
; hor = ;

(Z S AW (Xver) Z(YVGI‘)) +0= Z Sawlq(Xver)o.z(Yver)

= Zrij (Sd R0l ® ai) (Xver’ Yver)

) hor

) hor

So
> sa0(8F) =31l sa @ 07 @ o'
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Note that r,f‘j = r?i from above corresponds to symmetry of S. The covariant deriv-
ative on the normal bundle Nor(E}) = Hor(E)|g, — Ej is given by the Weingarten
formula (17.3) as the corresponding projection:

Vo X(Ey) x T'(Nor(Ey)) — I'(Nor(Ey))

hor

VALY = (VR VPt = (VEo (S spo? (V1)) =

_ hor _
= (S(VEuwrsp)o (V1)) 4 5 sy (10r) X =
— Z Sawg(Xver>O.l_)(Yhor> + Z Sgda.l_)(yhor)‘Xver —
— Zbgﬁd ® O'i ® O.E(Xver7 Yhor) 4 Z S5 ® do.a<yhor)(Xver)
vNoryhor — Z (b%io.l_)(yhor)o.i + do.a<yhor)> ® Sg.
Yet in the decomposition

V)E( (vaer+Xh0r (Yver + Yhor)) ver + hor

we can find two more tensor fields (besides ), the so called O’Neill-tensor fields.
(see [O’Neill, 1966])

X, Y e X(E)
(3) T(X’ Y) = (ngeryver)hor + (Vﬁvethor)ver
A(X, Y) (thothor)Ver (thoerer)hor

Each of of these four terms making up A and T is a tensor field by itself - the first
one restricting to S on E,. Why they are combined to two tensors in just this way
we will see once we have expressed them in our local frame. At the same time, we
will see that they really are tensor fields.

AX,Y) = (Ve (2 5a07(Y)™ + (Vi (D 507 (V)" =
=3 5wk (XN o (V) + 0 + Y sawd (XN ot (V) + 0 =
= ¥ si(~afy)o"(X)o" (V) + ¥ saafso” (X)o' (V) =
:Zail—)(a R0 ®s; — 0’ ®0%®s5;)(X,Y)

Analogously:
T=3r4c @0 ®@sz—0! @0 ®s;)

If Hor(F) is integrable, then every leaf L is totally geodesic by (17.13.1), and the
sa|; are a local orthonormal frame field on L. The leaf L is totally geodesic if and
only if its second fundamental form vanishes which is given by

SL (Xhor, Yhor) . (VXhor Yhor)ver
So it is a necessary condition for the integrability of Hor(E) that S* = 0, that is
0= 5"(sa,85) = (Vou5)"" = L siwi(sa) = 3 si(—ale)o(sa) = — 3, sial,
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This is equivalent to the condition af = 0 for all & or to A = 0.

Let us now prove the converse: If A vanishes, then the horizontal distribution on
E is integrable. In this case, we have 0 = A(sg, s3) = (VE 53)V" 4 0, as well as
0 = A(sp,55) = (VSEBsa)V” + 0. Therefore, [sz, s3] = VE 55 — Vfgsa is horizontal,

and the horizontal distribution is integrable.

17.17. Theorem. Letp: E — B be a Riemannian submersion, then the following
conditions are equivalent.

(1) p is integrable (that is Hor(p) is integrable).
(2) Ewvery p-parallel normal field along Ey, is VN -parallel.
(3) The O’Neill tensor A is zero.

Proof. We already saw (1) <= (3) above.

(3) = (2) Take sz for a p-parallel normal field X along E,. A = 0 implies
A(sa,si) = 0+ (Vs,s;)°" = 0. Recall that, as we showed in (17.16.1) above, [s;, s4]
is vertical. Therefore,

VSNiorsa = (VSEisa)hor = ([s4, sa] + Visi)hor =0

Since for any e € Ey, T€p|Norb( g, 18 an isometric isomorphism, a p-parallel normal
field X along Ej is determined completely by the equation X (e) = > X%(e)ss(e).
Therefore it is always a linear combination of the sz with constant coefficients and
we are done.

(2) = (3) By (2) Vi"sz = (VEs5)h°r = 0. Therefore, as above, we have that
([ss, 8a] + VSEasi)hor =0+ (Visi)hor = A(sg, s;) = 0. Thus O’BA(Sa, 8;) = agi =0,
so A vanishes completely. [J
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18. Jacobi fields

18.1. Jacobi fields. Let (M, V) be a manifold with covariant derivative V, with
curvature R and torsion Tor. Let us consider a smooth mapping v : (—¢,¢) %[0, 1] —
M such that ¢t — (s, t) is a geodesic for each s € (—¢,¢); we call this a I-parameter
variation through geodesics. Let us write 05~y =: 7' and 9; v =: ¥ in the following.
Our aim is to investigate the variation vector field 0o v(s, ) =17'(0, ).

We first note that by (13.10.4) we have

Vo.¥=Vo,(T7.0¢) =Vo,(T7.0s) + Tv.[0s,0t] + Tor(T7y.0s,T7. )
(1) = Va7 + Tor(v',4)

We have Vjy,¥ = Vp,(0:y) = 0 since (s, ) is a geodesic for each s. Thus by
using (15.5) we get

0="Vo,Vo, 5= R(T7.0s,T7.0:)%+ Vo,Vo, ¥+ Via, 0,7
(2) = R(Y,9)7 + Va,Va,7 + Vo, Tor(v',4).

Inserting s = 0, along the geodesic ¢ = (0, ) we get the Jacobi differential
equation for the variation vector field Y = 05|y =+/(0, ):

(3) 0= R(Y,é)é+ Vo, Vo,Y + Vo, Tor(Y, é)

This is a linear differential equation of second order for vector fields Y along the
fixed geodesic ¢ : [0,1] — M. Thus for any ¢ty € [0,1] and any initial values
(Y(t0),(Va,)(t0)) € Te(ro)M x Ty (1,) M there exists a unique global solution Y of (3)
along c. These solutions are called Jacob: fields along c; they form a 2m-dimensional
vector space.

18.2. The Jacobi flow. Consider a linear connector K : TT'M — M on the
tangent bundle with its horizontal lift mapping C' : TM X TM — TTM, see
(13.8) its spray S : TM — TTM given by S(X) := C(X,X), see (13.7) and its
covariant derivative VxY = K oTY o X, see (13.9).

Theorem. [Michor, 1996] Let S : TM — TTM be a spray on a manifold M. Then
krp o TS : TTM — TTTM is a vector field. Consider a flow line

J(t) = FIFm°T5(1(0))

of this field. Then we have:

c:=mpy ompp ©J is a geodesic on M

¢ =m0 J s the velocity field of ¢

Y :=T(mp) o J is a Jacobi field along ¢

Y = ks o J is the velocity field of Y

Vs, Y = K okproJ is the covariant derivative of Y
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The Jacobi equation is given by:

0=Vy,VaY + R(Y,é)¢+ Vp, Tor(Y,é)
=KoTKoTSolJ.

This implies that in a canonical chart induced from a chart on M the curve J(t) is
given by
(c(t), ¢(t); Y (£), Y (1))

Proof. Consider a curve s — X(s) in TM. Then each t — m(FI7(X(s))) is a
geodesic in M, and in the variable s it is a variation through geodesics. Thus Y (t) :=
88|07TM(F1;?(X(3))) is a Jacobi field along the geodesic ¢(t) := ma(FI7 (X (0))) b
(18.1), and each Jacobi field is of this form, for a suitable curve X(s), see (18.5.4)
below. We consider now the curve J(t) := 9|0 F1?(X(s)) in TTM. Then by
(6.13.6) we have

By J (1) = 8,040 FI5 (X (5)) = rrards|ods FIS (X (5)) = rrards|oS(FIS (X (5)))
= (krar 0 TS)(slo F17 (X (5))) = (krar 0 TS)(J (1)),

so that J(t) is a flow line of the vector field kpp 0TS : TTM — TTTM. Moreover
using the properties of x from (6.13) and of S from (13.7) we get

Trpr.J(t) = Trpr.0s)0 FI2 (X (s)) = slomar (FI2 (X (5))) = Y (1),
T J(t) = c(t), the geodesic,
AY (t) = 0, Tmps.05)0 FI7 (X () = 8,8|omar (F17 (X (s))),
= ks |00emar (F12 (X (5))) = knr0s|o0ymar (FI7 (X (s)))
= Ky Os|oTmar .0 Flf(X(s)) = Ky Oslo(Tmpr 0 5) Flf(X(s))
= k0s|o F12 (X (s)) = kar J (1),
VoY =KodY =Kokpol

Finally let us express the Jacobi equation (18.1.3). Put (s, t) := ma(FI¥ (X (s)))
for shortness’ sake.

Vo, VoY + R(Y,¢)é¢+ Vy, Tor(Y, ¢) =
=V, Vo, T7.0s + R(Tv.0s, T7y.0t)Tv.0; + Vo, Tor(T7.05,T7.0;)
= K.T(K.T(T.95).0,).0,
+ (K.TK.kpy — KTK).TT(T7.8,).T05.9;
+ KT(K.kp — K).TT~.T05.0¢).0;

Note that for example for the term in the second summand we have
TTT"}/TTatTaSat = T(T(@t’y)ﬁs)&g = atasat"}/ = 8,5./-@]\/1.3,5.857 = TK/M.at.at.as’)/
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which at s = 0 equals Tk,;Y. Using this we get for the Jacobi equation at s = 0:

Vo, VoY + R(Y, é)é + Vo, TOI‘(Y, é)
= (KTK+ KTK.kry Thy — KTKTry + KTK.Tky — KTK).0:0:Y
= KTK.krp Thy. 000 = KTK.kpp.0yJ = KTK.TS.J,

where we used 0,0;Y = 0i(kp.J) = Thy0iJ = Thyrkrpy.TS.J. Finally the
validity of the Jacobi equation 0 = K. T'K.T'S.J follows trivially from K o S =
Orp. O

Note that the system of Jacobi fields depends only on the geodesic structure, thus
on the spray induced by the given covariant derivative. So we may assume that the
covariant derivative is torsionfree without loss; we do this from now on.

18.3. Fermi charts. Let (M, g) be a Riemann manifold. Let ¢ : (—2¢,142¢) — M
be a geodesic (for € > 0). We will define the Fermi chart along ¢ as follows.

Since ¢([—¢e, 1+ €]) is compact in M there exists p > 0 such that

By (p) = {X € Typyc:={Y € T,y M : g(Y,(0)) = 0}, X[, < p}
(1) expoPt(c, ):(—e,14¢)x BF(0)(p) = M
(t, X) — exp.q (Pt(c, 1) X)

is everywhere defined. Since its tangent mapping along (—&,1+ ) x {0},

Tio(expoPt(c, )):Rx TCJ(_O)C — T, (t)M = T,4)(c([0,1])) x TCJ(‘t)c
(5,Y) — s.c/(t) + Pt(c, )Y
is a linear isomorphism we may assume (by choosing p smaller if necessary using

(13.7.6)) that the mapping expoPt(c, )in (1) is a diffeomorphism onto its image.
Its inverse,

(2) Uce,p -= (exp OPt(C, ))71 : UC-P - (_57 1+ 5) x szo) (p>
Unp = (expoPt(e, ))((—,1+2) x By (0))

is called the Fermi chart along c. Its importance is due to the following result.

18.4. Lemma. Let X be a vector field along the geodesic c. For the Fermi chart
along ¢ put Tepy (ue,p) 1. X (t) =: (¢, X (t)). Then we have

Tooyite p-(Vo, X)(t) = (£, X'(1).

So in the Fermi chart the covariant derivative Vp, along c is just the ordinary
derivative. More is true: The Christoffel symbol in the Fermi chart vanishes along
(—e,1+4¢) x {0}.
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The last statement is a generalization of the property of Riemann normal coordi-
nates exp, ' that the Christoffel symbol vanishes at 0, see (13.7).

Proof. In terms of the Chritoffel symbol of the Fermi chart the geodesic equa-
tion is given by ¢”(t) = T'z4)(¢'(t),c(t)), see (13.4). But in the Fermi chart
the geodesic ¢ is given by wu.,(c(t)) = (¢,0), so the geodesic equation becomes
0 = I'z)((1,0),(1,0)) = Tsw)(¢'(t), € (t)). For Yy € TCJ(‘O)C the parallel vector field
Y(t) = Pt(c,t)Yy is represented by (t,0;0,Y)) in the Fermi chart; thus we get
0 = Tg)(¢'(t),Yo). The geodesic s — exp,)(s. Pt(c,t).Y) for Y € Tcl(o)c is rep-
resented by s — (¢,5.Y) in the Fermi chart. The corresponding geodesic equation
is 0 = 88—;(15,5.1/) = Lsv)(Y,Y). By symmetry of I'(; ¢y these facts imply that
L0y = 0. Finally, Tu, ,.(Va,X)(t) = X'(t) = T(1,0)(¢'(t), X(t)) = X'(¢). O

18.5. Let (M™,g) be a Riemann manifold, and let ¢ : [0,1] — M be a geodesic
which might be constant. Let us denote by 7. the 2m-dimensional real vector space
of all Jacobi fields along c, i.e., all vector fields Y along c satisfying V5,Vs,Y +
R(Y,¢)e=0.

Theorem.

(1) The vector space J. is canonically isomorphic to the vector space T,uyM X
ToyM via J.3Y — (Y (t),(Vo,Y)(t)), for each t € [0, 1].

(2) The vector space J. carries a canonical symplectic structure (see (23.4)):
we(Y,Z) = g(Y(t),(Va,Z)(t)) — g(Z(t),(Vy,Y)(t)) = constant in t

(3) Now let ¢’ # 0. Then J, splits naturally into the direct sum J. = J, ® Jt.
Here J," is the 2-dimensional w.-non-degenerate subspace of all Jacobi fields which
are tangent to c. All these are of the form t v (a + tb)c'(t) for (a,b) € R%. Also,
T is the (2m — 2)-dimensional w.-non-degenerate subspace consisting of all Jacobi
fields Y satisfying g(Y (t),c'(t)) = 0 for all t. Moreover, w.(J.", ) = 0.

(4) Each Jacobi field Y € J. is the variation vector field of a 1-parameter variation
of ¢ through geodesics, and conversely.

(5) Let J? be the m-dimensional vector space consisting of all Jacobifields Y with
Y (0) = 0. Then w.(J2,TJ°) =0, so J? is a Lagrangian subspace (see (23.4)).

Proof. Let first ¢/(t) = 0 so ¢(t) = ¢(0). Then Y (t) € T, M for all t. The Jacobi
equation becomes V;V;Y =Y" so Y (t) = A+1tB for A,B € T, M. Then (1),
(2), and (5) holds.

Let us now assume that ¢’ # 0. (1) follows from (18.1).

(2) For Y, Z € J. consider:

we(Y, Z)(t) = g(Y (1), (Vo,2)(t)) — 9(Z(t), (Va,Y)(1))

Orwe(Y,Z) =9(Vo,Y, Vo, Z) + 9(Y,V,Vo,2) —g(V5,Z,NV5,Y) — 9(Z,V5,V5,Y)
=—g(Y,R(Z,))+ g(Z, R(Y,c)c)
=—g(R(Z,),Y)+ g(R(Y,d), Z)
=g(R(Z,)Y,d)—g(R(Y,d)Z,) =0 by (15.4.5) and (15.4.4)
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Thus w.(Y, Z)(t) is constant in t. Also it is the standard symplectic structure (see
(23.5)) on Ty M x Ty M induced by g.«) via (1).
(3) We have ¢ # 0. In the Fermi chart (U, uc,,) along ¢ we have ¢’ = ey, the first
unit vector, and the Jacobi equation becomes
(6) YeJ. < Y'(t)+ R(Y,e1)e; =0.
Consider first a Jacobi field Y (t) = f(t).c/(t) which is tangential to ¢’. From (6) we
get

0=Y"(t) + R(Y(t),er)er = f"(t).ex + f(t).R(e1,e1)er = f"(t).ex
so that f(t) = a + tb for a,b € R. Let g(t) = a’ + tb’. We use the symplectic
structure at t = 0 to get w.(f.c/,g.c') = g(a.c’,b.c’) — g(a’.c',b.c') = (ab' — a'b)|c|?,
a multiple of the canonical symplectic structure on R?.
For an arbitrary Y € J. we can then write Y = Y7 + Y5 uniquely where Y; € ch
is tangent to ¢ and where Y5 is in the w.-orthogonal complement to jCT in J,:

0=w.(c,Y2) =g(c,Vy,Ya) — g(Vo,d, Y2) = g(c', Vs, Y2) = Vp, Yol
0=w.(t.c,Ys) = g(t.d,Vs,Ys) —g(c, Y2) = —g(c', Y2) = Yol(
Conversely, Yo 19¢ implies 0 = 0; g(c/,Ya) = g(c/,Vp,Y2) so that Yo € J and

J:- equals the w.-orthogonal complement of 7. . By symplectic linear algebra the
latter space is w.-non-degenerate.

(4) for ¢ # 0 and ¢ = 0. Let Y € J. be a Jacobi field. Consider b(s) :=
exp.(p)(5.Y(0)). We look for a vector field X along b such that (Vo X)(0) =
Va,Y(0). We try

X(s) : = Pt(e,5)(¢(0) + 5.(Va,Y)(0))
X'(0) = 0slo (Pt(b, 5)(¢(0) + 5.(Va,Y)(0)))
= 0slo (Pt(b, 5)(¢(0)) + T(Pt(b,0)) dslo (¢(0) + 5.(Va,Y)(0))

= C(1'(0),¢(0)) + vlrar(¢(0), (Vs,Y)(0))  using (15.2).
Now we put
Y(s,t) + = expys) (t.X(s)),  then
7(0,1) = exp,(g) (t.X(0)) = exp,(g) (£.¢(0)) = ¢(?).

Obviously, v is a 1-parameter variation of ¢ through geodesics, thus the variation
vector field Z(t) = 0s|oy(s,t) is a Jacobi vector field. We have

Z(0) = 9slov(s,0) = 5|0 expys)(Op(s)) = Islo b(s) =Y (0),
(V9,2)(0) = Vo, (T%.0, o010
= Vo.(T7.0¢)|s=04=0 by (13.10.4) or (18.1.1)
= Vo, (0t]o expys) (t-X(5)))s=0 = Vo, X |s=0
= K(9s]o X(s)) = K (C(1'(0), ¢(0)) + ¥1(é(0), (V,Y)(0)))
=0+ (V5,Y)(0).
Thus Z =Y by (1).
(5) follows from (1) and symplectic linear algebra, see (23.5). O
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18.6. Lemma. Let ¢ be a geodesic with ¢’ # 0 in a Riemann manifold (M, g) and
let Y € J2 be a Jacobi field along ¢ with Y (0) = 0. Then we have

Y (t) = Ty.o00) (€xDeoy) VI(£-¢(0),1.(V5,Y)(0)).
Proof. Let us step back into the proof of (18.5.4). There we had
b(s) = exp (g (.Y (0)) = c(0).
X(s) = Pt(c,5)(¢(0) + 5.(Vo,Y)(0)) = ¢
Y (t) = 0slov(s,t) = Oslo expy(s)(£- X (5)) = T.c(0) (€xP(0)) Dslo me X (s)
= Ti.¢(0) (exPe(o))- (mt) slo (¢(0) +5.(Va,Y)(0))
= Ty.c0) (exPe(0))- T(me). v1(¢(0), (Vo,Y)(0))
= Tt_é(o)(expc(o) vl(t c( ),t.(Vo,Y)(0 )) O

/—\

0) +5.(Va,Y)(0),

—}-\_/

18.7. Corollary. On a Riemann manifold (M,g) consider exp, : T,M — M.
Then for X € T M the kernel of Tx (exp,,) : Tx (ToM) — Toxp_(x)M is isomorphic
to the linear space consisting of all Jacobi fields Y € J° for c(t) = exp |, (tX) which
satisfy Y (0) =0 and Y (1) = 0.

Proof. By (18.6), Y (t) = Tix(exp,).vl(tX,t(V5,Y)(0)) is a Jacobi field with
Y (0) = 0. But then

0=Y(1) = Tx(exp,) vI(X, (V,Y)(0)) <= (V5,Y)(0) € ker(Tx (exp,)). O

18.8. Let (M,g) and (M,§) be two Riemann manifolds of the same dimension.
Let ¢ : [0,1] — M and ¢ : [0,1] — M be two geodesics of the same length. We
choose a linear isometry Io : (Tt(0)M, ge(0)) — (Tz0)M, Je(o)) and define the linear

isometries:
I == Pt(&,t) o Ig o Pt(c,t) ™ : Ty M — Try M.

Lemma. IfY is a vector field along ¢, thent — (1.Y)(t) = [, Y (t) is a vector field
along ¢ and we have Vy, (1Y) = 1,(V,Y) so that Vg, o I, = I, 0 Vy,.

Proof. We use Fermi charts (with the minimum of the two p;s)
M > U, — (=g, 14¢) x By (p)
1d XI()J linear

By construction of the Fermi charts we have (1.Y)(t) = T(u Lo(Id x Ip)oue ). Y (t).
Thus

Vo, (LY)(t) = Vo, (T (uz o (Id xIy) 0 uc,,).Y)(t)
= T(uz,p) " 0 ((Id xIp) 0 T(uc,,).Y (t)) by (18.4)
= T(uz,p)” ! (Id x1o). 0¢ T'(uc,p).Y (1)
= T(uz,p) " (1d x1o).T(uc,p)-(Va,Y)(t) by (18.4)
= I, (VafY)( ). O
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18.9. Jacobi operators. On a Riemann manifold (M,g) with curvature R
we consider for each vector field X € X(M) the corresponding Jacobi operator
Rx : TM — TM which is given by Rx(Y) = R(Y, X)X. It turns out that each
Rx is a selfadjoint endomorphism, g(Rx (Y, %)) = g(Y,Rx(Z)), since we have
g RY, X)X, Z) = g(R(X,2)Y,X) = g(R(Z,X)X,Y) by (15.4.4) and (15.4.5).
One can reconstruct the curvature R from the family of Jacobi operators Rx by
polarization and the properties from (15.4).

18.10 Theorem. (E. Cartan) Let (M, g) and (M, §) be Riemann manifolds of the
same dimension. Let x € M, & € M, and € > 0 be such that exp, : By, () — M
and exp; : Bo,(e) — M are both diffeomorphisms onto their images. Let I, :
(TuM, g.) — (T M, §z) be a linear isometry. Then the following holds:

The mapping ® = exp; ol,0(exp, | Bo, (¢)) " : By(e) — B, (€) — Bo,(€) — Bs(e)
s a diffeomorphism which maps radial geodesics to radial geodesics. The tangent
mapping TP maps Jacobi fields Y along radial geodesics with Y (0) = 0 to Jacobi

fields Y along radial geodesics with Y (0) = 0.

Suppose that moreover for all radial geodesics ¢ in By (g) and their images ¢ = ®oc
the property

(1) It e} Rc(t) — Ré(t) O [t

holds where Iy : T,yM — Tg(t)M is defined in (18.8). Then ® is an isometry.
Conversely, if ® is an isometry, then (1) holds.

Proof. It is clear that ® maps radial geodesics in B,(g) C M to radial geodesics
in Bz(e) € M. Any Jacobi field Y along a radial geodesic ¢ can be written as
variation vector field Y (t) = Os|oy(s,t) where v(s, ) is a radial geodesic for all
s and v(0,t) = ¢(t). Then T®.Y(t) = TP.4|ov(s,t) = Oslo (Py(s,t)), and any
$vy(s, ) isaradial geodesic in Bz (e). Thus T'®.Y is a Jacobi field along the radial
geodesic ® o ¢ with T®.Y (0) = 0. This proves the first assertion.

Now let Y be a Jacobi field along the radial geodesic ¢ with Y (0) = 0. Then the
Jacobi equation 0 = Vy,Vy,Y + R:(Y) holds. Consider (1.Y)(t) = I; Y (t). By
(18.8) and (1) we then have

Vo,Vo,(I.Y) + Ry(I.Y) = I.(V5,Vs,Y + R:Y) = 0.

Thus .Y is again a Jacobi field along the radial geodesic ¢ with (1,Y)(0) = 0.
Since also Vi, (I,Y)(0) = I.(Vs,Y)(0) = Iy (Vs,Y)(0) = T®.(Vs,Y)(0) we get
LY = T®.Y. Since the vectors Y (t) for Jacobi fields Y along ¢ with Y (0) = 0
span T,;)M by (18.6), we may conclude that T, ® = I; : TyyM — Tg(t)M is
an isometry. The converse statement is obvious since an isometry intertwines the
curvatures. [

18.11. Conjugate points. Let ¢ : [0,a] — M be a geodesic on a Riemann
manifold (M, ¢g) with ¢(0) = z. A parameter ¢y € [0,a] or its image c(tg) € ¢([0, a])
is called a conjugate point for x = ¢(0) on ¢([0, a]) if the tangent mapping

Tyoe0)(€xp,) : Tiye(o)(TeM) — Togy M
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is not an isomorphism. Then ty > 0. The multiplicity of the conjugate point is the
dimension of the kernel of T} (o) (exp,) which equals the dimension of the subspace
of all Jacobi fields Y along ¢ with Y (0) = 0 and Y (t9) = 0, by (18.7).

18.12. Example. Let M = p-S™ C RM*! the sphere of radius p > 0. Then any
geodesic ¢ with |¢| = 1 satisfies ¢(pm) = —¢(0), so —¢(0) is conjugate to ¢(0) along
¢ with multiplicity m — 1.

18.13. Lemma. Let c¢: [0,a] — M be a geodesic in a Riemann manifold (M, g).
Then the vector 0y(t.¢(0))|i=s, = v1(t0.¢(0),¢(0)) € Ty, e0)(TeoyM) is orthogonal to
the kernel ker(Ty,s(0)(exPe(oy)), for any to € [0, a].

Proof. If c(ty) is not a conjugate point to x = ¢(0) of ¢ this is clearly true. If it
is, let Y be the Jacobi field along ¢ with Y (0) = 0 and (V,Y)(0) = X # 0 where
vl(to.¢(0), X) € ker(Ty,¢0)(exp,)). Then we have Tj .0)(exp,) vl(to.c(0), X) =
Y(tg) = 0. Let é(t) = (t —to)¢(0) € J.', a tangential Jacobi field along c. By
(18.5.2) applied for t = 0 and for t — tg we get

we(6,Y) = g(¢(0), (V5,)Y (0)) = g(¥Y (0), (Va,Y)(0)) = g(t0-¢(0), X) — 0,
= 9(&(to), (Va,)Y (to)) — 9(Y (t0), (VoY )(t0)) = 0.

Thus t9.¢9(¢(0), X) = 0 and since ty > 0 we get X 1¢(0). O

We can extract more information about the Jacobi field Y from this proof. We
showed that then (Vy,Y)(0)L9¢(0). We use this in the following application of
(18.5.2) for t = 0: now

we(6,Y) = g(¢(0), (Va,Y)(0)) = 9(Y(0, (Va,¢)(0))) = 0

Together with w.(é,Y) = 0 from the proof this says that Y € J:, so by (18.5.3)
Y () L9¢(t) for all ¢.

Let us denote by J:-° = J:- N J2 the space of all Jacobi fields Y with Y(0) = 0
and Y (t) L9¢(t) for all ¢. Then the dimension of the kernel of T} (o) (exp,) equals
the dimension of the space of all Y € J:5° which satisfy Y (t5) = 0.

Thus, if ¢(0) and ¢(tp) are conjugate then there are l-parameter variations of ¢
through geodesics which all start at ¢(0) and end at c¢(t), at least infinitesimally
in the variation parameter. For this reason conjugate points are also called focal
points. We will strenghen this later on.

18.14. The Hessian of the energy, alias second variation formulas. Let
(M, g) be a Riemann manifold. Let ¢ : [0,a] — M be a geodesic with ¢(0) = x
and c(a) = y. A smooth wvariation of ¢ with fixed ends is a smooth mapping
F : (—e,e) x [0,a] — M with F(0,t) = ¢(t), F(s,0) = z, and F(s,a) = y. The
variation vector field for F' is the vector field X = 0s|o F(s, ) along ¢, with
X(0) =0 and X(a) =0.

The space C*°(([0,al,0,a),(M,z,y)) of all smooth curves v : [0,a] — M with
¢(0) = x and c¢(a) = y is an infinite dimensional smooth manifold modelled on
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18.14 18. Jacobi fields 197
Fréchet spaces. See [Kriegl, Michor, 1997] for a thorough account of this. ¢ is in
this inifinite dimensional manifold, and T.(C*°(([0,al,0,a), (M, z,y))) consists of

all variations vector fields along ¢ as above. We consider again the energy as a
smooth function

B C([0.0.0.0). (M) =R E0)=} [ O
Let now F' be a variation with fixed ends of the geodesic ¢. Then we have:
0s E(F(s, ))= %/Oa 0s g(0F, 0. F) dt = /Oag(Vas O+ F, 0 F) dt
= /Oag(Vat 8,F,0,F)dt, by (13.10.4) or (18.1.1).
Therefore,

dt

65 ‘OE(F(S, )) = /0 (g(VaSVat 0sF, 8tF) +9(Vo, 0sF, V., 3tF)> -

= / (g(VatVas OsF,0,F) + g(R(0,F,0,F) 0sF,0,F)
0

dt by (15.5) and (13.10.4)

+9(Vo, 0F, Vs, 0.F)) .

dt
s=0

— [ (9(V0,0.F. 5, 0.F) + o(RO.F.0,F) 0.F.0:F)
0

n / (g(VatV@S 85 F, 0, F)|s—o + 9(Va. DsF|seo, Vo, 8tF]s:0)) dt.
0 ~—_———

Vo, c=0
The last summand equals |, Oa 0+ 9(Vo, OsF, 0:F)|s=o dt which vanishes since we have

a variation with fixed ends and thus (Vg, 05F)(s,0) = 0 and (Vy, 0:F)(s,a) = 0.
Recall X = 0o F, a vector field along ¢ with X (0) =0 and X (a) = 0. Thus

PPE(c)(X,X) =0 |oE(F(s, ))= /Oa(g(VatX, Vo, X) + g(R(X,¢)X,¢)) dt.

If we polarize this we get the Hessian of the energy at a geodesic ¢ as follows (the
boundary terms vanish since X, Y vanish at the ends 0 and a):

dE(c)(X) = /Oag<VatX, ¢)dt = — /Oa g(X,Vy,é)dt =0
W) PEOEY) = [ (0%, T0Y) - g(Re(X). 1)) d
2) PE(c)(X,Y) = — /0 " 4(Vo, Vo, X + Re(X),Y) dt

We see that among all vector fields X along ¢ with X (0) = 0 and X (a) = 0 those
which satisfy d2E(c)(X,Y) = 0 for all Y are exactly the Jacobi fields.
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198 Chapter IV. Riemannian Geometry 18.15

We shall need a slight generalization. Let X, Y be continuous vector fields along
¢ which are smooth on [t;,t;41] for 0 = tg < t; < -+ < t = a, and which vanish
at 0 and a. These are tangent vectors at ¢ to the smooth manifold of all curves
from z to y which are piecewise smooth in the same manner. Then we take the
following as a definition, which can be motivated by the computations above (with
considerable care). We will just need that d? E(c) to be defined below is continuous
in the natural uniform C?-topology on the space of piecewise smooth vector fields
so that later we can approximate a broken vector field by a smooth one.

d*E(c)(X,Y) = / a( (Vo, X, VoY) + g(R(X,é)Y,¢)) dt
—Z/M (Vo,X,Va,Y) + g(R(X, )Y, ¢)) dt

B Z / - (01 9(V0,X,Y) = 9(V5,V0,X,Y) = g(R(X, )¢, V) ) dt
(3) - _/Oag(v&sV@tX + Re(X),Y) dt

+ Z( (Vo, X)(tig1—), Y (ti41))) — g((Va, X) (t:i+), Y(ti—l-l))))'

18.15. Theorem. Let (M,g) be a Riemann manifold and let ¢ : [0,a] — M be a
geodesic with ¢(0) = x and c(a) = y.

(1) If Tieoy(expy) = Tieoy(TeM) — ToyM is an isomorphism for all t € [0,a],
then for any smooth curve e from x to y which is near enough to c the length
L(e) > L(c) with equlity if and only if e is a reparameterization of c¢. Moreover,
d’E(c)(X,X) > 0 for each smooth vector field X along ¢ which vanishes at the
ends.

(2) If there are conjugate points ¢(0), c(t1) along ¢ with 0 < t; < a, then there
exists a smooth vector field X along ¢ with X(0) = 0 and X(a) = 0 such that
d?E(c)(X,X) < 0. Thus for any smooth variation F of ¢ with O,|oF(s, )= X
the curve F(s, ) from x to y is shorter than ¢ for all 0 < |s| < e.

Proof. (1) Since Tjc(0)(exp,) : Tic(0)(TeM) — TpyM is an isomorphism, for each
t € [0,a] there exist an open neighbourhood U (t.¢(0)) C T, M of t¢(0) such that
exp, |U(t.¢(0)) is a diffeomorphism onto its image. Since [0, a].¢(0) is compact in
T, M there exists an € > 0 such that U(t.¢(0)) D Byo)(e) for all t.

Now let e : [0,a] — M be a smooth curve with e¢(0) = = and e(a) = y which is

near c¢ in the sense that there exists a subdivision 0 = tg < t; < --- < t;, = a with
e([ti, tit1]) C exp,(Bt,e(0)(€)). We put:

e:0,a] - T, M (WQ"""A

&(t) := (expy | Br,eqoy (€))L (e(t)), t € [titini] AR KN
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18.15 18. Jacobi fields 199

Then é is smooth, €(0) = 0., é(a) = a.¢(0), and exp,(é(t)) = e(t). We consider the
polar representation é(t) = r(t).¢(t) in T, M where ¢(t) = EE;;' and r(t) = |é(t)|.

Let r = |é(a)| = a|¢(0)|. Then we put:

(s, t) = exp, (rt.p(s))

which implies

r : r r T
e(t) =t %) = exp,(r(t).p(t), €é(t) = 0:(t, %) + 0(t, ¥)—
Note that Vg, 9y = 0 since 7(s, ) is a geodesic. From

9t 9(0s7,0tv) = 9(Va, 057, 0¢7) + 9(057, Vo, 017)
= g(Va, 07, 0¢y) +0 by (13.10.1)
=10,9(07,07) = 2051 0v(s, )P =305 |p(s))> = 30s7* =0

we get that g(0s7(s,t), 0rv(s,t)) = g(957(s,0),0¢7(s,0)) = g(0,7.¢(s)) = 0. Thus
(3) Gry(s,t) (63’)/(8, t)a at’}/(S, t)) =0 for all s, 1.

By Pythagoras

|7 ()[?

E()]2 = |9y (t, ") 4 [ Dy (t, "12)|2

r2

, )2 .
= 0, (t, "2 + 202 PO > Jioy

with equality iff 0s7(¢, r(t )) =0, i.e., p(t) is constant in t. So

:/0 |é(t)|gdt2/0 |7'°(t)|dt2/0 P(t) dt = r(a) — r(0) = r = L(c)

with equality iff 7(¢) > 0 and ¢(t) is constant, i.e., e is a reparameterization of c.

Note that (3) and (4) generalize Gaufy’ lemma (14.2) and its corollary (14.3) to
more general assumptions.

Now consider a vector field X along ¢ with X(0) = 0 and X (a)
F : (—&,e) x [0,a] — M be a smooth variation of ¢ with F(s,0) = z,
and Js|o F' = X. We have
a a a 2
2B(F(s, )).a :/ |8tF|§dt-/ 12 dt > (/ |0, F),.1 dt>
0 0
5) (Flo. 2L by (0

/| pdt)” = |e(0) a—/| ()2 dt - a = 2E(c).a.

Moreover, ;|0 E(F(s, )) = 0 since c is a geodesic. Thus we get d?E(c)(X,X) =
0% lo B(F(s, ))=0.

= 0 and let
F( )_y7
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(2) Let ¢(0), ¢(t;) be conjugate points along ¢ with 0 < ¢; < a. By (18.11)
there exists a Jacobi field Y # 0 along ¢ with Y(0) = 0 and Y'(¢;) = 0. Choose
0 <ty < t1 <te <a and a vector field Z along ¢ with Z|[0,t9] = 0, Z|[t2,a] = 0,
and Z(t;) = —(Va,Y)(t1) # 0 (since Y # 0). Let Y be the continuous piecewise
smooth vector field along ¢ which is given by Y[0,¢1] = Y[[0,¢,] and Y|[t1,a] = 0.
Then Y +1Z is a continuous piecewise smooth vector field along ¢ which is broken
at t; and vanishes at 0 and at a. Then we have

PE()Y +nZ,Y +17Z) = d*E(c)(Y,Y) +n* d*E(c)(Z, Z) + 2nd*E(c)(Y, Z)

and by (13.12.3)

PE(c)(Y,Y) = —/0 1 9(Va, Vo, Y + R:(Y),Y) — /tag(vatvato + R:(0),0)
+9((Va,Y)(t1—),0) — 9((Va,Y)(0+),0)
+9((Va,Y)(a—),0) — g((Va,Y)(t1+4),0) =0,

PE()(Y,Z) = —/0 1 9(Va,Ve,Y + R:(Y), Z) — /ag(vatvato + R:(0), 2)

+9((Va,Y)(t1—), Z(t1)) — 9((Va,Y)(0+),0)
+9((Va,Y)(a—),0) = g((V5,0)(t1+), Z(t1))
=9((Va,Y)(t1), Z(t1)) = —9((Va,Y)(t1), (Va,Y)(t1))
= —|(Va,Y)(t1)|2 < 0.
PE)(Y +nZ)Y +nZ) =0 d°E(c)(Z,Z) = 2|(V,Y) (1)}

The last expression will be negative for 7 small enough. Since d?E(c) is continuous
in the C2%-topology for continuous piecewise smooth vector fields along ¢, we can
approximate Y + nZ by a smooth vector field X vanishing at the ends such that
still d2E(c)(X, X) < 0.

Finally, let F : (—¢,¢) x [0,a] — M be any smooth variation of ¢ with fixed ends
and Js|oF = X. Consider the Taylor expansion

E(F(s, ))=E(c)+sdB(e)(X)+ 5 d*E(c)(X, X) + s°h(s)

where h(s) = [} U59° 0 E(F(v, ))|ymus du. Since dE(c)(X) = 0 this implies
E(F(s, ))< E(c) for s # 0 small enough. Using the two halves of (5) this implies

L(F(s, ))??><2E(F(s, ))a<2E(c)a=L(c)*>. O

18.16. Theorem. Let (M,g) be a Riemann manifold with sectional curvature
k > ko > 0. Then for any geodesic ¢ in M the distance between two conjugate
points along ¢ is < ﬁ

Proof. Let ¢ : [0,a] — M be a geodesic with |¢| = 1 such that ¢(a) is the first
point which is conjugate to ¢(0) along c¢. We choose a parallel unit vector field Z
along ¢, Z(t) = Pt(c,t).Z(0), |Z(0)|g = 1, Z(t)L9¢(t), so that Vy,Z = 0. Consider
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f € C>=([0,a],R) with f(0) =0 and f(a) =0, and let 0 < b < a. By (18.15.1) we
have d?E§(c)(fZ, fZ) > 0. By (18.14.1) we have

b
) (12, 17) = /0 (9(Vo,(/2).Vo,(12)) - g(R([ Z.0). [ 2)) dt

b b
:/ (f’Q—ka:(Y/\c'))dtg/ (f'* = f2ko) dt
0 0

since Y, ¢ form an orthonormal basis. Now we choose f(t) = sin(wth) so that
Jop2dt = b and [ f7dt = T, Thus 0 < [J(f° — f2ko)dt = I — bky which

T

implies b < NS Since b was arbitrary < a we get a < ﬁ O
18.17. Corollary. (Myers, 1935) If M is a complete connected Riemann manifold
with sectional curvature k > ko > 0. Then the diameter of M is bounded:
T
Vko

Thus M is compact and each covering space of M is also compact, so the the
fundamental group 71 (M) is finite.

diam(M) := sup{dist(z,y) : z,y € M} <

Proof. By (14.6.6) any two points z,y € M can be connected by a geodesic ¢ of
minimal length. Assume for contradiction that dist(z,y) > ﬁ then by (18.16)
there exist an interior point z on the geodesic ¢ which is conjugate to x. By (18.15.2)
there exist smooth curves in M from x to y which are shorter than ¢, contrary to

the minimality of ¢ [J

18.18. Theorem. Let M be a connected complete Riemann manifold with sec-
tional curvature k < 0. Then exp, : T, M — M 1is a covering mapping for each
x € M. If M is also simply connected then exp, : T, M — M is a diffeomorphism.

This result is due to [Hadamard, 1898] for surfaces, and to E. Cartan 1928 in the
general case.

Proof. Let c: [0,00) — M be a geodesic with ¢(0) = z. If ¢(a) is a point conjugate
to ¢(0) along ¢ then by (18.11) and (18.7) there exists a Jacobi field Y # 0 along
¢ with Y(0) =0 and Y (a) = 0. By (18.13) we have Y (¢)L9¢(¢) for all t. Now use
(18.14.2) and (18.14.1) to get

d’E(c)(Y,Y) = — /Oag<VatVatY + Re(Y),Y)dt =0,
PEOWY) = [ (o(T0Y.50Y) — g(RY.06Y)) d
= [ (Y= kY A QY PIEP - a(Y. ) e >
a contradiction. Thus there are no conjugate points. Thus the surjective (by (14.6))
mapping exp, : T, M — M is a local diffeomorphism by (18.11). Lemma (18.20)

below then finishes the proof. [
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18.19. A smooth mapping f : (M,g) — (M,3) between Riemann manifolds is
called distance increasing if f*g > g; in detail, gz, (T2 f. X, T f. X) > g.(X, X) for
all X € T,M, all z € M.

Lemma. Let (M,g) be a connected complete Riemann manifold. If f : (M,g) —
(]\7[ ,g) 1is surjective and distance increasing then f is a covering mapping.

Proof. Obviously, f is locally injective thus T}, f is injective for all x and dim(M) <

dim(M). Since f is surjective, dim(M) > dim(M) by the theorem of Sard (10.12).
For each curve c: [0,1] — M we have L,(c) = fol ||y dt < fol || p+g dt = Lg+g(c)
thus dist,(z,y) < dist«5(z,y) for x,y € M. So (M, dist+5) is a complete metric
space and (M, f*g) is a complete Riemann manifold also. Without loss we may
thus assume that g = f*g, so that f is a local isometry. Then (M = f(M),g) is
also complete.

For fixed z € M let r > 0 such that exp; : By, (2r) — Bz(2r) C M is a diffeomor-
phism. Let f~1(Z) = {x1,z2,...}. All the following diagrams commute:

exp,.
Ty, M «— By, (2r) - B, (2r) — M

y |

Tz M +— By_(2r) xPe Bz(2r) — M

We claim (which finishes the proof):

(1) f: By, (2r) — Bz(2r) is a diffeomorphism for each i

(2) f7H(Ba(r)) = U; Ba,(r)

(3) Bu,(r) U By, (1) = 0 for i # .
(1) From the diagram we conclude that there exp,. is injective and f is surjective.
Since exp,, : Bo,, (1) — By, (r) is also surjective (by completeness), f : By, (r) —
Bz(r) is injective too and thus a diffeomorphism.

(2) From the diagram (with 2r replaced by r) we see that f~1(Bz(r)) D B, (r) for
all 4. If conversely y € f~1(Bz(r)) let ¢ : [0,5] — Bz(r) be the minimal geodesic
from f(y) to Z in M where s = distz(f(y),Z). Let ¢ be the geodesic in M which
starts at y and satisfies T, f.c/(0) = ¢ (0). Since f is an infinitesimal isometry,
foc=cand thus f(c(s)) =z. So c(s) = x; for some i. Since dist,(y,z;) <s <r
we have y € By, (7). Thus f~!(Bz(r)) € U, Ba, (7).

(3) If y € By, (r) U By, (r) then x; € By, (2r) and by (1) we get x; = x;. 0O

18.20. Lemma. [Kobayashi, 1961] If M is a connected complete Riemann mani-
fold without conjugate points, then exp, : T, M — M 1is a covering mapping.

Proof. Since (M, g) is complete and connected exp,, : T, M — M is surjective; and
it is also a local diffeomorphism by (18.11) since M has no conjugate points. We will
construct a complete Riemann metric g on 7, M such that exp, : (T, M, §) — (M, g)
is distance increasing. By (18.19) this finishes the proof.
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Define the continuous function h : T, M — R~ by

h(X) = sup{r: |TX(expx).§|§expx(X) > r|§]§w for all € € T, M}

= min{]TX(expm)-f‘gexpz(X) : ’5’91 = 1}

= 1/\/0perator norm(7T'x (exp,) ! : Texp (xyM — Ty M)

We use polar coordinates ¢ : Rug x S™~1 — T, M\ {0,} given by o(r,0) = r.6 and
express the metric by p*(g,) = dr?2+r2g° where g° is the metric on the sphere. Now
we choose an even smooth function f : R — R which satisfies 0 < f(r(X)) < h(X).
Consider the Riemann metric § = dr? +r2 f(r) on T,,M.

For every R > 0 we have

BY (R) = {X € T, M : dist;(X,0,) < R} C {X € T,M : r(X) < R}

x

which is compact, thus (7, M, §) is complete.

It remains to check that exp, : (T, M,§) — (M,g) is distance increasing. Let
€ e Tx(T,M). If X =0, then Tp,(exp,).£ = &, so exp, is distance increasing at
0, since f(0) < 1.

So let X # 0,. Then £ = & + & where dr(&) = 0, thus & tangent to the sphere
through X, and & L& (with respect to both g, and gx). Then

€5, = l&uls, + &0z, €5 = &3 +1&l5 [y, =€l = ldr(&)] = [dr(€)]-

By the generalized version of the Gaufl lemma in (18.15.3) the vector T'x (exp,,).£1 €
Toxp, (x)M is tangent to the geodesic ¢ — exp,(t.X) in (M, g) and Tx (exp,).&2 is
normal to it. Thus |T'x (exp,).§1ly = [€1]g = €15 and

| Tx (exp,.)-&l5 = |Tx (exp,)-£1l5 + [ Tx (exp,).L2lg = [61]5 + [Tx (exp,) Ll
[ Tx (exp,.).£[5 — []5 = |Tx (exp,) Lalg — €2[3

In order to show that that |T'x(exp,).£|y > |{|; we can thus assume that { = &
is normal to the ray ¢t — t.X. But for these £ we have [¢]2 = f(r(X))[|2 by
construction of g and

Tx (exp,)-£]2 > h(X) €2, > f(r(X)) €2, = €2

So exp, : (T.M, g) — (M, g) is distance increasing. [J
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CHAPTER V
Bundles and Connections

19. Derivations on the Algebra of Differential Forms
and the Frolicher-Nijenhuis Bracket

19.1. Derivations. In this section let M be a smooth manifold. We consider
the graded commutative algebra Q(M) = 231\4 QM (M) = P QF(M) of
differential forms on M, where we put QF(M) = 0 for K < 0 and k > dim M.
The denote by Dery (M) the space of all (graded) derivations of degree k, i.e. all
linear mappings D : Q(M) — Q(M) with D(Q*(M)) C Q¥(M) and D(p A1) =
D(p) Ap+ (=1)*p A D(9) for p € QY(M).

Lemma. Then the space Der Q(M) = &, Der, Q(M) is a graded Lie algebra with
the graded commutator [Dy, D3] := Dy o Dy — (—=1)***2Dy 0 Dy as bracket. This
means that the bracket is graded anticommutative, and satisfies the graded Jacobi
identity

[D1, D3] = —(—1)¥1%2[Dy, D1],
[D1,[Da, D3]] = [D1, Dy, D3] + (—1)¥1%2[ Dy, [Dy, D3]]

(so that ad(Dy) = [Dy, | is itself a derivation of degree k).
Proof. Plug in the definition of the graded commutator and compute. [J

In section (7) we have already met some graded derivations: for a vector field X on
M the derivation ix is of degree —1, Lx is of degree 0, and d is of degree 1. Note
also that the important formula £x = dix + ix d translates to Lx = [ix, d].

19.2. Algebraic derivations. A derivation D € Dery Q(M) is called algebraic
if D|Q%M) =0. Then D(fw) = f.D(w) for f € C*°(M), so D is of tensorial
character by (7.3). So D induces a derivation D, € Dery AT M for each x € M. It
is uniquely determined by its restriction to 1-forms D, |T;M : T M — A*F1T*M
which we may view as an element K, € A*"'T*M ® T,M depending smoothly
on z € M. To express this dependence we write D = ix = i(K), where K €
D(AMIT*M @ TM) =: QF+1(M; TM). Note the defining equation: ix(w) = wo K
for w € QY(M). We call Q(M,TM) = 2i:r%M QF (M, TM) the space of all vector
valued differential forms.
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Theorem. (1) For K € Q*Y(M,TM) the formula

(irw) (X1, .., Xite) =
= m Z Signa.w(K(Xgl,... 7Xa'(k+1))7X0'(k+2)7--')

U€$k+g

for w € QYM), X; € X(M) (or T,M) defines an algebraic graded derivation
irg € Dery Q(M) and any algebraic derivation is of this form.

(2) By i([K,L]") = [ix,ir] we get a bracket [ , 1" on Q**Y(M,TM) which
defines a graded Lie algebra structure with the grading as indicated, and for K €
QFY(M, TM), L € QY (M, TM) we have

K, L) =igL — (—1)Fi K
where ix(w® X) = ig(w) @ X.

[, ]V is called the algebraic bracket or the Nijenhuis-Richardson bracket, see
[Nijenhuis-Richardson, 1967].

Proof. Since AT M is the free graded commutative algebra generated by the vec-
tor space Ty M any K € QFFY(M,TM) extends to a graded derivation. By ap-
plying it to an exterior product of 1-forms one can derive the formula in (1). The
graded commutator of two algebraic derivations is again algebraic, so the injection
i QY M, TM) — Der,(Q(M)) induces a graded Lie bracket on Q*+1(M,TM)
whose form can be seen by applying it to a 1-form. [J

19.3. Lie derivations. The exterior derivative d is an element of Der; Q(M). In
view of the formula Lx = [ix,d] = ix d + dix for vector fields X, we define for
K € QF(M;TM) the Lie derivation Ly = L(K) € Dery Q(M) by L = [ig,d] =
ixd— (—1)F"1dig.

Then the mapping £ : Q(M,TM) — Der Q(M) is injective, since Lx f = ixdf =
df o K for f € C>(M).

Theorem. For any graded derivation D € Dery Q(M) there are unique K €
OF(M;TM) and L € Q¥ (M;TM) such that

D=Lk +1ir.
We have L =0 if and only if [D,d] = 0. D is algebraic if and only if K = 0.

Proof. Let X; € X(M) be vector fields. Then f +— (Df)(X1,...,Xk) is a deriva-
tion C*>°(M) — C°°(M), so there exists a vector field K (Xq,...,X;) € X(M) by
(3.3) such that

(DFYX1, ..., X)) = K(X1,..., X)) f =df (K(X1,..., Xz)).

Clearly K(Xy,...,Xx) is C°°(M)-linear in each X; and alternating, so K is tenso-
rial by (7.3), K € QF(M;TM).
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The defining equation for K is Df = df o K = igdf = Lk f for f € C>°(M).
Thus D — Lk is an algebraic derivation, so D — L = iy, by (19.2) for unique
L € QF(M; TM).

Since we have [d,d] = 2d®> = 0, by the graded Jacobi identity, we obtain 0 =
lir, [d,d]] = [[ix,d],d]+(=1)*"1[d, i, d]] = 2[Lx,d]. The mapping K + [ix,d] =
L is injective, so the last assertions follow. [

19.4. Applying i(Idras) on a k-fold exterior product of 1-forms we get i(Idpps)w =
kw for w € QF(M). Thus we have L(Idry)w = i(Idry)dw — di(Idry)w =
(k+1)dw — kdw = dw. Thus L(Idrp) = d.

19.5. Let K € QF(M;TM) and L € QY(M;TM). Then clearly [[Lx,Lz],d] = 0,
so we have

(LK), £(L)] = L([K, L])

for a uniquely defined [K,L] € Q*+¢(M;TM). This vector valued form [K, L] is
called the Frolicher-Nijenhuis bracket of K and L.

Theorem. The space Q(M;TM) = 2;“61\4 QF (M ; TM) with its usual grading is
a graded Lie algebra for the Frolicher-Nijenhuis bracket. So we have

(K, L] = —(-1)*[L, K]
(K1, [Ks, K3]] = [[K1, Ka)], K3 + (—1)"%2[Ky, [K1, K3]]

Idry € QY(M;TM) is in the center, i.e. [K, Idry] =0 for all K.

L:(QM;TM),[ , |)— DerQ(M) is an injective homomorphism of graded Lie
algebras. For vector fields the Frélicher-Nijenhuis bracket coincides with the Lie
bracket.

Proof. df o [X,Y]| = L([X,Y])f = [Lx,Ly]f. The rest is clear. O
19.6. Lemma. For K € QF(M;TM) and L € Q“*1(M;TM) we have

[Lr,ig] =i([K, L) — (~1D)*L(i,K), or
i, Lx] = L(iLK) — (—1)*i([L, K]).

This generalizes (7.7.3).

Proof. For f € C*°(M) we have [ip,Lx|f = ipixdf —0 = ig(df o K) = df o
(i, K)=L(>i,K)f. So [iy, Lk] — L(i, K) is an algebraic derivation.

HiLVCK]ad] = [iLa [[’Kad]] - (_1)146[[:[(7 [iLvd” =
=0~ (~)ML(K, L)) = (~DMi((L, K)), d].

Since [ ,d] kills the ‘L’s’ and is injective on the ‘i’s’, the algebraic part of [i, Lk]
is (~1)*i([L,K]). O
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19.7. Module structure. The space Der Q(M) is a graded module over the
graded algebra Q(M) with the action (w A D) = w A D(p), because Q(M) is
graded commutative.

Theorem. Let the degree of w be q, of p be k, and of 1) be £. Let the other degrees
be as indicated. Then we have:
(1) [wA Dy, Ds] = w A [Dy, Dy] — (—1)9FF0R2 Dy () A Dy
(2) i(lwAL)=wAi(L)
(3) WALk =L(wAK)+ (=1 Li(dw A K).
(4) [wA Ly, Lo = w A [Ly, Lo]" —
— (- 1)(q+€1 1)(l2—1),; i(Lo)w A Ly.

(5) [wA Ky, Ko =wA [Kq, Ky — (—1) 4Rk £(Ko)w A Ky
+ (—1)q+k1dw A Z(Kl)KQ
(6) [P X, p@Y]=pAp®[X,Y]

— (iydp Ay @ X — (-D)ixdp A Y)

— (dlive Ap) @ X — (=1)Md(ixp Ap) ®Y)
=pAYR[X, Y]+ o ANLxhp QY —Lyp AN @ X
+ (=DF(dpNixyp @Y +iyp Adp @ X).

Proof. For (1), (2), (3) write out the definitions. For (4) compute i([wA Ly, L2]").
For (5) compute L([w A K1, K3]). For (6) use (5) . O

19.8. Theorem. For K € QF(M;TM) and w € QY(M) the Lie derivative of w
along K is given by the following formula, where the X; are vector fields on M.

(EKw)(Xl, ce X}H_g) =
klgl ZSlgnJ ﬁ o'l; S ak))( (Xo(k+1); S 7X0'(k—|—£)))

+ e Zsigna W(K(Xo1,- s Xok)s Xohtn))s Xo(hia)s---)

GO ([Xo1, X, X X
+ (k— 1)1(( 1|2|ZSIgHUW ol 02]7 cr37"~)7 U(l{+2)7"')‘

Proof. It suffices to consider K = ¢ ® X. Then by (19.7.3) we have L(p ® X) =
oA Lx — (=1)*"tdp Nix. Now use the global formulas of section (7) to expand
this. [0

19.9. Theorem. For K € QF(M;TM) and L € QY(M;TM) we have for the
Frélicher-Nijenhuis bracket [K, L] the following formula, where the X; are vector
fields on M.

(K, L) (X1, .., Xpye) =
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= wt D _signo [K(Xo1, ., Xok), L(Xors)s - Xo(hrn)]
+'EW%LBTEE:Sﬁyld<L(U(()Q7h...,)(ak%;xg(k+1ﬂ,)gﬂk+2%...)
+ o 11;2. Z signo K([L(Xo1,.. » Xot), Xo@s1)], Xo(e2), -+ )
+(kgﬁé’;ul§:sgnaz; ((Xo1, Xo2l, Xos, - )s Xo(kr2)s---)

y(E=1)e
+ (k— 1; (f—1)r 2l ZSlgnO' K [X017X0'2] X0'37 oo )7Xcr(€—|—2)v s )

Proof. Tt suffices to consider K = p® X and L = ¢ ®Y, then for [p@ X, QY| we
may use (19.7.6) and evaluate that at (X1,...,Xk4¢). After some combinatorial
computation we get the right hand side of the above formula for K = ¢ ® X and
L=y®Y. O

There are more illuminating ways to prove this formula, see [Michor, 1987].

19.10. Local formulas. In a local chart (U,u) on the manifold M we put K |
lhﬁyﬂﬁ®%L|U:Z%W®@JMw]Uzz%dm@ma—ﬂ<
a; < ag < - <ap <dimM) is a form index, d* = du®* A ... A du®*, 0; = 8u7‘

and so on.

Plugging X; = 0;, into the global formulas (19.2), (19.8), and (19.9), we get the
following local formulas:

; E «
LKW ‘ U= al Ozkwiak+1-~~ak+l—1 d

A
K L | U Z( N ’I,Oék+1 Xt

k—1)({—1) 11 o
(D()()L K7 aHJd@@

o e Koy
Lrxw | U =3 (Kb 0y Oansrianss

+ (—=1)"(0a KL, ak+1)wiak+z--~ak+e>da
unm|U:§:@Q COLL s

— (=D)LL, ., 0K

aq...0p Qpy1.-- Oty

- kK(gél A — 1’L aakLlLOék+14..O¢k+z
k¢ % «
DRI Oa KD QM%)d ® 0;

19.11. Theorem. For K; € Q% (M;TM) and L; € Q¥+ (M;TM) we have

(1) [EKl + iL1,£K2 —|—iL2] =L ([Kl,Kg] +ir, Koy — (—1)k1k2iL2K1)
+i ([L1, Lo)" + [K1, Lo] — (—1)F*2 K>, Ly]) .
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Each summand of this formula looks like a semidirect product of graded Lie algebras,
but the mappings

i QM;TM) — End(Q(M; TM),[ , ])
ad : QM; TM) — End(QM; TM),[ , ")

do not take wvalues in the subspaces of graded derivations. We have instead for
K € QF(M;TM) and L € QY1 (M;TM) the following relations:

(2) in[Ky, Ko] = [in K1, Ko] + (—1)F[Ky, i Ko
= (P LK — (1) 081, L) K
(3) [K7 [le LQ]/\] = [[K7L1]7 LQ]/\ + <_1)kk1 [L17 [K7 LQ]]/\_

(D LK, L) — () EFR (L) K, L))

The algebraic meaning of the relations of this theorem and its consequences in
group theory have been investigated in [Michor, 1989]. The corresponding product
of groups is well known to algebraists under the name ‘Zappa-Szep’-product.

Proof. Equation (1) is an immediate consequence of (19.6). Equations (2) and (3)
follow from (1) by writing out the graded Jacobi identity, or as follows: Consider
L(ir[K1, K>3]) and use (19.6) repeatedly to obtain £ of the right hand side of (2).
Then consider i([K, [L1, L2]"]) and use again (19.6) several times to obtain 4 of the
right hand side of (3). O

19.12. Corollary (of 8.9). For K, L € QY(M;TM) we have

[K,L)(X,Y) = [KX,LY] - [KY, LX]
— L(KX,Y] - [KY, X])
— K([LX,Y] - [LY, X])
+ (LK + KL)[X,Y].

19.13. Curvature. Let P € Q(M;TM) be a fiber projection, i.e. Po P = P.
This is the most general case of a (first order) connection. We may call ker P the
horizontal space and im P the vertical space of the connection. If P is of constant
rank, then both are sub vector bundles of T'M. If im P is some primarily fixed sub
vector bundle or (tangent bundle of) a foliation, P can be called a connection for
it. Special cases of this will be treated extensively later on. The following result is
immediate from (19.12).

Lemma. We have
[P, P] = 2R + 2R,

where R, R € Q?*(M;TM) are given by R(X,Y) = P[(Id — P)X,(Id — P)Y] and

R(X,Y) = (Id - P)|PX, PY].
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If P has constant rank, then R is the obstruction against integrability of the hor-
izontal bundle ker P, and R is the obstruction against integrability of the vertical
bundle im P. Thus we call R the curvature and R the cocurvature of the connection
P. We will see later, that for a principal fiber bundle R is just the negative of the
usual curvature.

19.14. Lemma (Bianchi identity). If P € QY(M;TM) is a connection (fiber
projection) with curvature R and cocurvature R, then we have

[P,R+R|=0
[R, Pl =igR+igR.

Proof. We have [P, P] = 2R + 2R by (19.13) and [P, [P, P]] = 0 by the graded
Jacobi identity. So the first formula follows. We have 2R = P o [P, P| = i[p pP.
By (19.11.2) we get i[p p)[P, P] = 2[ijp,p| P, P| — 0 = 4[R, P]. Therefore [R, P] =
Tip,p) [P, P] =i(R+ R)(R+ R) = irR + iR since R has vertical values and kills
vertical vectors, so i R = 0; likewise for R. [

19.15. Naturality of the Frolicher-Nijenhuis bracket. Let f : M — N be
a smooth mapping between manifolds. Two vector valued forms K € QF(M;TM)
and K’ € QF(N;TN) are called f-related or f-dependent, if for all X; € T,M we
have

(1) Koy (Tof - X1, Tof - Xp) = Tof - Ko(X1, ..., Xp).

Theorem.

(2) If K and K' as above are f-related then ig o f* = f*oig : Q(N) — Q(M).

(3) Ifigof*| BY(N)= f*oix: | BLY(N), then K and K' are f-related, where
B! denotes the space of exact 1-forms.

(4) If K; and K are f-related for j = 1,2, then iy, K2 and ix: K3 are f-related,
and also [Ky, K| and K1, K5)" are f-related.

(5) If K and K' are f-related then L o f* = f*o Lk : Q(N) — Q(M).

(6) If Lk o f* | QUN) = f*o Lk | Q°N), then K and K' are f-related.

(7) If K; and K are f-related for j = 1,2, then their Frélicher-Nijenhuis
brackets [Ky, Ks] and [K', K] are also f-related.

Proof. (2) By (19.2) we have for w € Q9(N) and X; € T, M:

(ZKf*w)$(X1, .. ,Xq_|_k_1) =
= m ZSignU(f*w>x(Kx(Xo—l,.. . 7X0-k),Xa-(k+1), .. )

= = D Sien 0wy (Tof - Ko(Xor, -+ ), Tof - Xo(er)s- )
= 1 i K (T.f X T.f - X
—mZSlgnawﬂm)( f(;c)( wf  Xov,oo ), T f - a(k+1)7---)
= ([Migw)a(X1,. .. s Xgyr—1)
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(3) follows from this computation, since the df, f € C'°°(M) separate points.

(4) follows from the same computation for K9 instead of w, the result for the bracket
then follows from (19.2.2).

(5) The algebra homomorphism f* intertwines the operators ix and ix+ by (2), and
f* commutes with the exterior derivative d. Thus f* intertwines the commutators
[iK,d] = ,CK and [iK/,d] = EK/.

(6) For g € Q9(N) wehave L f*g=tixdf*g=rirx f*dgand f* Ly g= f*ir dg.
By (3) the result follows.

(7) The algebra homomorphism f* intertwines Lx,; and Lk, so also their graded

commutators which equal L([K7, K2]) and L([K7, K}]), reS];jectively. Now use (6)
U

19.16. Let f : M — N be a local diffeomorphism. Then we can consider the
pullback operator f*: Q(N;TN) — Q(M;TM), given by

(1) (f*K>m(Xlaan) = (Txf>_le(x)<Txf'Xla"'7Tmf'Xk)‘

Note that this is a special case of the pullback operator for sections of natural vector
bundles in (6.16). Clearly K and f*K are then f-related.

Theorem. In this situation we have:
(2) [ K Ll =[f"K, fL].
(3) ffigL=rip-gf*L.

(4) f7[K LM = [f*K, fr L]

(5) For a vector field X € X(M) and K € Q(M;TM) by (6.16) the Lie deriv-
ative Lx K = %{0 (FIX)*K is defined. Then we have LxK = [X, K], the
Frolicher-Nijenhuis-bracket.

We may say that the Frolicher-Nijenhuis bracket, [ , |", etc. are natural bilinear
mappings.

Proof. (2) — (4) are obvious from (19.15). (5) Obviously Lx is R-linear, so it
suffices to check this formula for K =9y @Y, ¢ € Q(M) and Y € X(M). But then

Lx(p@Y)=Lxyp®@Y +9@LxY by (6.17)
=Lxyp QY +1¢®[X,Y]
= [X, 9y ®Y] by (19.7.6). O

19.17. Remark. At last we mention the best known application of the Froli-
cher-Nijenhuis bracket, which also led to its discovery. A vector valued 1-form
J € QY(M;TM) with JoJ = —Id is called a almost complex structure; if it exists,
dim M is even and J can be viewed as a fiber multiplication with v/—1 on T'M. By
(19.12) we have

[J,J)(X,Y) =2([JX,JY] - [X,Y] - J[X,JY] — J[JX,Y)).
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The vector valued form %[J, J] is also called the Nijenhuis tensor of J. For it the
following result is true:

A manifold M with a almost complex structure J is a complex manifold (i.e.,
there exists an atlas for M with holomorphic chart-change mappings) if and only
if [J, J] = 0. See [Newlander-Nirenberg, 1957].

20. Fiber Bundles and Connections

20.1. Definition. A (fiber) bundle (E,p, M, S) consists of manifolds E, M, S, and
a smooth mapping p : E — M; furthermore each x € M has an open neighborhood
U such that E | U := p~}(U) is diffeomorphic to U x S via a fiber respecting

diffeomorphism: "
UxS
U

FE is called the total space, M is called the base space or basis, p is a surjective

E|U

submersion, called the projection, and S is called standard fiber. (U, ) as above is
called a fiber chart.

A collection of fiber charts (U,, ¥, ), such that (U,) is an open cover of M, is called
a "fiber bundle atlas”. If we fix such an atlas, then 1, 015~ ' (2,8) = (2,%as(z, 5)),
where 13 : (UoNUg) xS — S is smooth and 9 3(x, ) is a diffecomorphism of S for
each x € Uyp := U,yNUg. We may thus consider the mappings 13 : Usg — DIff(.5)
with values in the group Diff(.S) of all diffeomorphisms of S; their differentiability
is a subtle question, which will not be discussed in this book, but see [Michor,
1988]. In either form these mappings 1,3 are called the transition functions of the
bundle. They satisfy the cocycle condition: }ag(x) 0gy(x) = Yo (z) for x € Uyp,
and Yaq(x) = Idg for © € U,. Therefore the collection (13) is called a cocycle of
transition functions.

Given an open cover (U,) of a manifold M and a cocycle of transition functions
(1ap) we may construct a fiber bundle (E, p, M, S) similarly as in (6.3).

20.2. Lemma.
(1) Let p: N — M be a surjective submersion such that each fiber is compact.
Then p is proper.
(2) Let p: N — M be a surjective submersion (a fibered manifold) which is

proper, so that p~1(K) is compact in E for each compact K C M, and let
M be connected. Then (N,p, M) is a fiber bundle.

Proof. (1) We have to show that for compact K C M the inverse image p~(K) C
N is also compact.

Let (V,) be an open cover of p~1(K). For z € K the fiber N, = p~1(z) is compact,
thus are open sets Vyz1) O Va1,--+, Va@n,) 2 Ve, in N which cover N, and
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which are fiberwise diffeomorphic as follows: V,; = U, ; X f/“ where U, ; is an
open neighborhood of  in M. Then (%, U, ; =: U, is still an open neighborhood
of x in N, and these open sets cover the compact set K. Thus there is a finite
subcover Ug,,...,U,, . But then

Watas by i k=1,...,ng,,5=1,...,m}

is a finite subcover.

(2) We have to produce a fiber chart at each zg € M. So let (U,u) be a chart
centered at z¢p on M such that w(U) = R™. For each z € U let £, (y) =
(T,u)"'.u(x), then we have &, € X(U) which depends smoothly on = € U, such
that w(F15* u=1(2)) = z+t.u(z), thus each &, is a complete vector field on U. Since
p is a submersion, with the help of a partition of unity on p~!(U) we may construct
vector fields 1, € X(p~1(U)) which depend smoothly on x € U and are p-related
to &40 Tp.ny = & op. Thus po F17* = FI5 op by (3.14), so F1}* is fiber respecting,
and since p is proper and &, is complete, 7, has a global flow too. Denote p~!(z¢)
by S. Then ¢ : U x S — p~1(U), defined by ¢(z,y) = F17*(y), is a diffeomorphism
and is fiber respecting, so (U, o~ 1) is a fiber chart. Since M is connected, the fibers
p~Y(x) are all diffeomorphic.

20.3. Let (E,p, M,S) be a fiber bundle; we consider the fiber linear tangent map-
ping Tp : TE — TM and its kernel ker Tp =: V E which is called the wertical
bundle of E. The following is special case of (19.13).

Definition. A connection on the fiber bundle (E, p, M, S) is a vector valued 1-form
® € QY(E;VE) with values in the vertical bundle VE such that ® o ® = & and
Im® =V E; so ® is just a projection TE — V E.

Then ker @ is of constant rank, so by (6.7) ker ® is a sub vector bundle of T'E, it is
called the space of horizontal vectors or the horizontal bundle and it is denoted by
HE =%ker®. Clearly TE=HFE®VFE and T, F = H,E &V, F for u € E.

Now we consider the mapping (T'p,7g) : TE — TM xj; E. Then by definition
(Tp, )" (Opy,w) = VuE, so (Tp,7g) | HE : HE — TM x; E is fiber linear
over E and injective, so by reason of dimensions it is a fiber linear isomorphism:
Its inverse is denoted by

C:=(Tp,ng) | HE)™' : TM x)y E — HE — TE.

So C : TM x ) E — TE is fiber linear over E and is a right inverse for (T'p, 7g).
C is called the horizontal lift associated to the connection .

Note the formula ®(¢,) = £, — C(Tp.&y,u) for &, € T,E. So we can equally well
describe a connection ® by specifying C. Then we call ® the vertical projection (no
confusion with (6.12) will arise) and x := idpg — ® = C o (T'p,7g) will be called
the horizontal projection.
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20.4. Curvature. If & : TE — V' E is a connection on the bundle (E,p, M, S),
then as in (19.13) the curvature R of ® is given by

2R = [®,®] = [Id — ®,Id — ®] = [\, x] € Q*(E; VE)

(The cocurvature R vanishes since the vertical bundle V E is integrable). We have
R(X,Y) = %[@, D|(X,Y) = ®[xX, xY], so R is an obstruction against integrability
of the horizontal subbundle. Note that for vector fields &,n € X(M) and their
horizontal lifts C¢, Cn € X(E) we have R(C&,Cn) = [CE,Cn)—C([€,n]). Since the
vertical bundle V' E is integrable, by (19.14) we have the Bianchi identity [®, R] = 0.

20.5. Pullback. Let (E,p, M, S) be a fiber bundle and consider a smooth mapping
f: N — M. Since p is a submersion, f and p are transversal in the sense of (2.16)
and thus the pullback N X (s s,y E exists. It will be called the pullback of the fiber
bundle FE by f and we will denote it by f*E. The following diagram sets up some

further notation for it: . f
L)l g

.

f

N —— M.

Proposition. In the situation above we have:

(1) (f*E, f*p, N, S) is again a fiber bundle, and p*f is a fiber wise diffeomor-
phism.

(2) If ® € QYE;VE) C QYFE;TE) is a connection on the bundle E, then the
vector valued form f*®, given by (f*®),(X) := Vo (p*f)~L.®.T,(p* f).X for
X e T, E, is a connection on the bundle f*E. The forms f*® and ® are
p* f-related in the sense of (19.15).

(3) The curvatures of f*® and ® are also p* f-related.

Proof. (1). If (Uy, %4 ) is a fiber bundle atlas of (E, p, M, S) in the sense of (20.1),
then (f~Y(Uy), (f*p,praots op*f)) is a fiber bundle atlas for (f*E, f*p, N, S), by
the formal universal properties of a pullback (2.17). (2) is obvious. (3) follows from
(2) and (19.15.7). O

20.6. Let us suppose that a connection ® on the bundle (E,p, M,S) has zero
curvature. Then by (20.4) the horizontal bundle is integrable and gives rise to
the horizontal foliation by (3.28.2). Each point u € E lies on a unique leaf L(u)
such that T, L(u) = H,E for each v € L(u). The restriction p | L(u) is locally a
diffeomorphism, but in general it is neither surjective nor is it a covering onto its
image. This is seen by devising suitable horizontal foliations on the trivial bundle
pry : R x St — St or pry R x R — R, like L(0,t) = {(tan(s — ), s) : s € R}.

20.7. Local description. Let ® be a connection on (F,p, M,S). Let us fix a
fiber bundle atlas (U,) with transition functions (3), and let us consider the
connection ((14)"1)*® € QY (U, x S;U, x T'S), which may be written in the form

() 1) @) (&eymy) = —T%(&a,y) + 1y for & € ToUq and 1y € T,
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since it reproduces vertical vectors. The I'* are given by

(02, 7%z, 9)) = _T(l/}a)'q)'T<¢a)_1'<£x7 Oy)‘

We consider I'* as an element of the space Q!(Uy,; X(9)), a 1-form on U® with values
in the infinite dimensional Lie algebra X(S) of all vector fields on the standard
fiber. The I'* are called the Christoffel forms of the connection ® with respect to
the bundle atlas (Uq, ¥y ).

Lemma. The transformation law for the Christoffel forms is

Ty(d]aﬁ(x? ))Fﬁ<£m7y) = Fa(5m7¢aﬁ(x7y)) - Tw(¢aﬁ( 7?/))5&3

The curvature R of ® satisfies

(Yo ')* R = dT* + [, T x(s).-

Here dI'® is the exterior derivative of the 1-form T'* € Q' (U,; X(9)) with values in
the complete locally convex space X(5). We will later also use the Lie derivative
of it and the usual formulas apply: consult [Frolicher, Kriegl, 1988] for calculus in
infinite dimensional spaces.

The formula for the curvature is the Maurer-Cartan formula which in this general
setting appears only in the level of local description.

Proof. From (v, o (¢5) 1) (x,y) = (z,v%as(z,y)) we get that
T (Yoo (V)™ 1) .(Easny) = (o, Tiwy) (Vap)- (€2, 1y)) and thus:

T(h5") (02,77 (8x,y)) = —@(T(¥5") (£, 0y)) =
—O(T (V") T(ha 0 tbg") (62, 0y)) =
@(Tw;l)(sx,T(m,w(waﬁ)(sm, y)) =
—®(T (5" ) (&es Ops () — RT3 ) (02, Ty tpap(Eas 0y)) =
:Tw;l)( T(&e, ap(,9))) = T(¥0 ) (02, Te(tap( Y))-La)-

This implies the transformation law.

For the curvature R of ® we have by (20.4) and (20.5.3)

(o "V R((E 0, (€30%) =
= () @ [(Id — (Y1) @) (& nt), (Id — () @) (€2, n?)] =
= (") R[(E,TH(EN), (€2, T* (&) =
(w;1>*<1> (6", €7],€'T(€%) — €T (") + [T (£, T(¢%)]) =
—T([€h, &%) + £'T(E2) — &£T(EH) + [T(€1), T (&%) =
= dr*(¢! ,f )+ L€, T*(E)]x(s)- O

*
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20.8. Theorem (Parallel transport). Let ® be a connection on a bundle
(E,p,M,S) and let ¢ : (a,b) — M be a smooth curve with 0 € (a,b), ¢(0) = z.

Then there is a neighborhood U of E, x {0} in E, X (a,b) and a smooth mapping
Pt. : U — E such that:

(1) p(Pt(c,uy,t)) = c(t) if defined, and Pt(c,uy,0) = uy,.

(2) ®(L Pt(c,ug,t)) =0 if defined.

(3) Reparametrisation invariance: If f : (a’,b") — (a,b) is smooth with 0 €

(a’,b"), then Pt(c,uy, f(t)) = Pt(co f,Pt(c,uy, f(0)),t) if defined.
(4) U is mazimal for properties (1) and (2).
(5) In a certain sense Pt depends smoothly also on c.

First proof. In local bundle coordinates ® (4 Pt(c,u,,t)) = 0 is an ordinary dif-
ferential equation of first order, nonlinear, with initial condition Pt(c,us,0) = u,.
So there is a maximally defined local solution curve which is unique. All further
properties are consequences of uniqueness.

Second proof. Consider the pullback bundle (¢*E,c*p, (a,b),S) and the pull-
back connection ¢*® on it. It has zero curvature, since the horizontal bundle is
1-dimensional. By (20.6) the horizontal foliation exists and the parallel transport
just follows a leaf and we may map it back to E, in detail: Pt(c,u,,t) = p*c((c*p |

L(ug)) ' (1)).

Third proof. Consider a fiber bundle atlas (U,, %) as in (20.7). Then we have
Ya(Pt(c, 5t (2,y),1)) = (c(t),7(y,1)), where

0= ((Wz")*®) (Fc(t), Er(y,t)) = —T (L), vy, 1) + 7w, 1),

so v(y, t) is the integral curve (evolution line) through y € S of the time dependent
vector field I'* (%c(t)) on S. This vector field visibly depends smoothly on c.
Clearly local solutions exist and all properties follow, even (5). For more detailed
information on (5) we refer to [Michor, 1983] or [Kriegl, Michor, 1997]. O

20.9. A connection ® on (E,p, M, S) is called a complete connection, if the parallel
transport Pt. along any smooth curve ¢ : (a,b) — M is defined on the whole of
E) % (a,b). The third proof of theorem (20.8) shows that on a fiber bundle with
compact standard fiber any connection is complete.

The following is a sufficient condition for a connection ® to be complete:

There exists a fiber bundle atlas (U, 1) and complete Riemannian met-
rics g, on the standard fiber S such that each Christoffel form I'* €
QY (U,, X(9)) takes values in the linear subspace of g,-bounded vector fields
on S
For in the third proof of theorem (20.8) above the time dependent vector field
I'*(Lc(t)) on S is go-bounded for compact time intervals. By (14.9) this vector
field is complete. So by continuation the solution exists globally.

A complete connection is called an Ehresmann connection in [Greub - Halperin -
Vanstone I, p 314], where the following result is given as an exercise.
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Theorem. FEach fiber bundle admits complete connections.

Proof. Let dim M = m. Let (U,,%,) be a fiber bundle atlas as in (20.1). By
topological dimension theory [Nagata, 1965] the open cover (U,) of M admits a
refinement such that any m+2 members have empty intersection, see also (1.1). Let
(Uy) itself have this property. Choose a smooth partition of unity (f,) subordinated
to (Uy). Then the sets V,, :={z: fo(x) > m;m} C U, form still an open cover of
M since Y fo(z) = 1 and at most m+ 1 of the f,(x) can be nonzero. By renaming
assume that each V,, is connected. Then we choose an open cover (W) of M such

that W,, C V.

Now let g1 and g2 be complete Riemannian metrics on M and S, respectively
(see (14.8)). For not connected Riemannian manifolds complete means that each
connected component is complete. Then ¢1|U, X g2 is a Riemannian metric on
Uy x S and we consider the metric g := > fo9%(91|Us X g2) on E. Obviously
p: EF — M is a Riemannian submersion for the metrics g and ¢;: this means
that Tup : (Tu(Epu)) ™ 9u) — (TpyM, (91)p(w)) is an isometry for each u € E.
We choose now the connection ® : TTE — V E' as the orthonormal projection with
respect to the Riemannian metric g.

Claim. ¢ is a complete connection on FE.

Let ¢ : [0,1] — M be a smooth curve. We choose a partition 0 = tg < t; <
-+ < t, = 1 such that ¢([t;, ti+1]) C V,, for suitable «;. It suffices to show that
Pt(c(ti+ ), uc,),t) exists for all 0 <t < t;41 —t; and all u,), for all 7, since
then we may piece them together. So we may assume that ¢ : [0,1] — V,, for
some «. Let us now assume that for for x = ¢(0) and some y € S the paral-
lel transport Pt(c, v (x,y),t) is defined only for ¢t € [0,¢") for some 0 < t' < 1.
By the third proof of (20.8) we have Pt(c,v (z,y),t) = ;1 (c(t),v(t)), where
v : [0,t") — S is the maximally defined integral curve through y € S of the
time dependent vector field Fa(%c(t), ) on S. We put g, := (;1)*g, then
(9a) (z,y) = (gl)xX(ZB fo(x)pa(z, )*g2)y. Since pri: (VaxS,9a) — (Va, 91|Va)
is a Riemannian submersion and since the connection (;1)*® is also given by or-
thonormal projection onto the vertical bundle, we get

tl
0 > grlengthf (¢) = go-length(c,7) = [ 1(¢(0). 20y, dt =
0

= [ IO, + S Ia ) aslelt), ) g2) (0. (0) e =
t’ 1 t’
> [ VEED) Ol it > <= [ 0l

So go-length(~) is finite and since the Riemannian metric g, on S is complete,
lim;_,p y(t) =: y(t') exists in S and the integral curve v can be continued. [

20.10. Holonomy groups and Lie algebras. Let (E,p, M, S) be a fiber bundle
with a complete connection ®, and let us assume that M is connected. We choose
a fixed base point o € M and we identify F,, with the standard fiber S. For
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each closed piecewise smooth curve ¢ : [0,1] — M through z the parallel transport
Pt(e, ,1) =: Pt(c,1) (pieced together over the smooth parts of ¢) is a diffeomor-
phism of S. All these diffeomorphisms form together the group Hol(®,x(), the
holonomy group of ® at x(, a subgroup of the diffeomorphism group Diff(.5). If we
consider only those piecewise smooth curves which are homotopic to zero, we get a
subgroup Holy(®, xy), called the restricted holonomy group of the connection ® at
Zo.

Now let C': TM xp; E — TE be the horizontal lifting as in (20.3), and let R be
the curvature ((20.4)) of the connection ®. For any x € M and X, € T, M the
horizontal lift C(X,) := C(X,, ):E, — TE is a vector field along E,. For X,
and Y, € T, M we consider R(CX,,CY,) € X(E,). Now we choose any piecewise
smooth curve ¢ from xg to x and consider the diffeomorphism Pt(c,t) : S = E,, —
E, and the pullback Pt(c,1)*R(CX,,CY,) € X(S). Let us denote by hol(®,zg)
the closed linear subspace, generated by all these vector fields (for all z € M,
Xz, Yo € T, M and curves c¢ from xg to x) in X(5) with respect to the compact
C*°-topology, and let us call it the holonomy Lie algebra of ® at xg.

Lemma. hol(®,z) is a Lie subalgebra of X(S).

Proof. For X € ¥(M) we consider the local flow FIZ of the horizontal lift of X.
It restricts to parallel transport along any of the flow lines of X in M. Then for
vector fields on M the expression

L1o(FIS5)* (FIEY)*(FICN)* (FI?)*R(CU,CV) | Eq,
= (FI$X)*[CY, (FI)*(FIC?)* R(CU,CV)] | Ex,
= [(FI¢*)*CY, (FIS?)*R(CU,CV)| | E4,

is in hol(®, xq), since it is closed in the compact C'*°-topology and the derivative
can be written as a limit. Thus

[(FISX)*[CY1, CYa), (FIS4)*R(CU,CV)] | Ea, € hol(®, z()
by the Jacobi identity and
[(FISX)*CY1, Ya), (FIS?)*R(CU,CV)] | Eyy € hol(®, z0),
so also their difference
[(FIS%)* R(CY1, CY2), (FIS#)*R(CU,CV)] | Ey,
is in hol(®, xzg). O

20.11. The following theorem is a generalization of the theorem of Nijenhuis and
Ambrose-Singer on principal connections. The reader who does not know principal
connections is advised to read parts of sections (21) and (22) first. We include this
result here in order not to disturb the development in section (22) later.
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Theorem. Let ® be a complete connection on the fibre bundle (E,p, M, S) and let
M be connected. Suppose that for some (hence any) xo € M the holonomy Lie

algebra hol(®, xq) is finite dimensional and consists of complete vector fields on the
fiber E,

Then there is a principal bundle (P, p, M, G) with finite dimensional structure group
G, an connection w on it and a smooth action of G on S such that the Lie algebra
g of G equals the holonomy Lie algebra hol(®, z(), the fibre bundle E is isomorphic
to the associated bundle P[S], and ® is the connection induced by w. The struc-
ture group G equals the holonomy group Hol(®,xq). P and w are unique up to
isomorphism.

By a theorem of [Palais, 1957] a finite dimensional Lie subalgebra of X(FE,,) like
hol(®, z() consists of complete vector fields if and only if it is generated by complete
vector fields as a Lie algebra.

Proof. Let us again identify F,, and S. Then g := hol(®,z() is a finite dimen-
sional Lie subalgebra of X(S), and since each vector field in it is complete, there
is a finite dimensional connected Lie group G of diffeomorphisms of S with Lie
algebra g, by theorem (5.15).

Claim 1. Gj contains Holy(®, ), the restricted holonomy group.

Let f € Holg(®,xz0), then f = Pt(c,1) for a piecewise smooth closed curve ¢
through xy, which is nullhomotopic. Since the parallel transport is essentially
invariant under reparametrisation, (20.8), we can replace ¢ by ¢ o g, where g is
smooth and flat at each corner of ¢. So we may assume that c¢ itself is smooth.
Since ¢ is homotopic to zero, by approximation we may assume that there is a
smooth homotopy H : R? — M with H;|[0,1] = ¢ and Hy|[0,1] = x¢. Then
fr := Pt(Hy, 1) is a curve in Holy(®, o) which is smooth as a mapping R x .S — S
this can be seen by using the proof of claim 2 below or as in the proof of (22.7.4).
We will continue the proof of claim 1 below.

Claim 2. (£ f,)o f;' =: Z, isin g for all ¢.

To prove claim 2 we consider the pullback bundle H*E — R? with the induced

connection H*®. It is sufficient to prove claim 2 there. Let X = % and Y = %

be constant vector fields on R, so [X,Y] = 0. Then Pt(c, s) = FI* |S and so on.
We put
frs = FIYY o FI9Y o FISX 0 FICY . 5 — S,

so fi1 = fi. Then we have in the vector space X(S5)
(5 fes) © Ji = =(FIT)"CY + (FIT)" (P11 )" (FIZE)"CY,
(£ fe1) o ftjll = /01 4 ((Ldfs)o ftjsl) ds
_ /0 1 (-FCX) (X, Y]+ (FFY ) [OX, (R ) (19X CY ]
—(FIC%)*(FICY ) (FICX )*[OX, CY]) ds.
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Since [X,Y] = 0 we have [CX,CY] = ®[CX,CY] = R(CX,CY) and (FI;*)*Y =Y
thus

(FIFX) Yy = O ((F)Y) + @ (F7) cy)
:CYJr/t%(I)( 1) 0y dt = CY+/t<I>( 19 [CX,CY] dt
0 0

t t
= CY+/ O(FIY*)V'R(CX,CY) dt = CY+/ (FIC*Y*R(CX,CY) dt.
0 0

The flows (FIS%)* and its derivatives Lox = [CX, ] do not lead out of g, thus
all parts of the integrand above are in g and so (% fi1)o ftfll is in g for all ¢t and
claim 2 follows.

Now claim 1 can be shown as follows. There is a unique smooth curve g(t) in Gg
satisfying T, (u9")Z, = Zy.g(t) = $g(t) and g(0) = e; via the action of Gy on S
the curve g(t) is a curve of diffeomorphisms on S, generated by the time dependent
vector field Zy, so g(t) = f; and f = f1 is in Gp. So we get Holy(®, zp) C Go.

Claim 3. Holy(®, xg) equals Gj.

In the proof of claim 1 we have seen that Holy (P, ) is a smoothly arcwise connected
subgroup of Gy, so it is a connected Lie subgroup by the theorem of Yamabe (5.6).
It suffices thus to show that the Lie algebra g of GG is contained in the Lie algebra of
Holy(®, xg), and for that it is enough to show, that for each £ in a linearly spanning

subset of g there is a smooth mapping f : [—1,1] x S — S such that the associated
curve f lies in Holg(®, 29) with f/(0) = 0 and f”(0) = ¢.

By definition we may assume { = Pt(¢,1)*R(CX,,CY,) for X,, Y, € T, M and
a smooth curve ¢ in M from zg to x. We extend X, and Y, to vector fields X
and Y € X(M) with [X,Y] = 0 near xz. We may also suppose that Z € X(M) is
a vector field which extends ¢/(t) along c(t): if ¢ is simple we approximate it by
an embedding and can consequently extend ¢’(t) to such a vector field. If ¢ is not
simple we do this for each simple piece of ¢ and have then several vector fields Z
instead of one below. So we have

¢ = (FIY?)*R(CX,CY) = (FI?)*[CX,CY] since [X,Y](z) =0
= (FIZ) L4 o (FI€Y o FICX o FIZY o FIZY) by (3.16)
1
2

FI9% 6 FICY o FIZX o FICY 0 FICX 0 FI(%),

)2
of

d?
=

where the parallel transport in the last equation first follows ¢ from xzg to x, then
follows a small closed parallelogram near = in M (since [X, Y] = 0 near z) and then
follows ¢ back to xy. This curve is clearly nullhomotopic.

Step 4. Now we make Hol(®,z() into a Lie group which we call G, by taking
Holp(®,z9) = Gy as its connected component of the identity. Then the quotient
Hol(®, z¢)/ Holy (P, z¢) is a countable group, since the fundamental group 1 (M) is
countable (by Morse theory M is homotopy equivalent to a countable CW-complex).
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Step 5. Construction of a cocycle of transition functions with values in G. Let
(U, ug = Uy — R™) be alocally finite smooth atlas for M such that each u, : Uy, —
R™ is surjective. Put z, := u,'(0) and choose smooth curves ¢, : [0,1] — M
with ¢4 (0) = x9 and ¢4 (1) = z4. For each z € U, let ¢ : [0,1] — M be the
smooth curve t — wu_!(t.uy(z)), then ¢ connects x, and x and the mapping
(x,t) — cZ(t) is smooth U, x [0,1] — M. Now we define a fiber bundle atlas
(Ua, Vo 2 E|Uy — Uy x S) by 951 (x,5) = Pt(c%, 1) Pt(cq, 1) s. Then 1, is smooth
since Pt(cZ,1) = Fle”” for a local vector field X, depending smoothly on x. Let
us investigate the transition functions.

wawﬁ_l(a:, s) = (:I;, Pt(cq, 1)_1 Pt(c%, 1)_1 Pt(cg, 1) Pt(cs, 1) s)
= (:1:,Pt(cﬁ.cﬁ.(cﬁ)_l.(ca)_l,4) s)
=: (z,¢ap(x)s), where 13 : Usp — G.
Clearly ¥gq : Uga x S — S is smooth which implies that ¥g, : Uga — G is
also smooth. (1,g) is a cocycle of transition functions and we use it to glue a

principal bundle with structure group G over M which we call (P, p, M, G). From its
construction it is clear that the associated bundle P[S] = Px S equals (E, p, M, S).

Step 6. Lifting the connection ® to P.

For this we have to compute the Christoffel symbols of ® with respect to the atlas
of step 5. To do this directly is quite difficult since we have to differentiate the
parallel transport with respect to the curve. Fortunately there is another way. Let
c:10,1] — U, be a smooth curve. Then we have

Yo (Pt(c, )1y (¢(0),5)) =
- (c(t),Pt((ca)_l, 1) Pt((c©@) =L, 1) Pt(c, ) Pt(cS®, 1) Pt (ca, 1)5)
= (c(t),7(t)-s),

where v(t) is a smooth curve in the holonomy group G. Let I'* € QY(U,, X(9))
be the Christoffel symbol of the connection ® with respect to the chart (Uy, ¥q).
From the third proof of theorem (20.8) we have

Ya(Pt(c, )15 (c(0), 5)) = (c(1),7(t, 9)),

where ¥(t,s) is the integral curve through s of the time dependent vector field
I'(4c(t)) on S. But then we get

P(Fe) (it 5)) = FA(ts) = F(v(t).5) = (F(1)-s,
T (ge() = (Grt) ov(t) ' € g.

So I'* takes values in the Lie sub algebra of fundamental vector fields for the

action of G on S. By theorem (11.9) below the connection ® is thus induced by
a principal connection w on P. Since by (11.8) the principal connection w has the
‘same’ holonomy group as ® and since this is also the structure group of P, the
principal connection w is irreducible, see (11.7). O

Draft from September 15, 2004 Peter W. Michor,



21.2 21. Principal Fiber Bundles and G-Bundles 223

21. Principal Fiber Bundles and G-Bundles

21.1. Definition. Let G be a Lie group and let (E,p, M, S) be a fiber bundle as
in (20.1). A G-bundle structure on the fiber bundle consists of the following data:

(1) A left action £ : G x S — S of the Lie group on the standard fiber.

(2) A fiber bundle atlas (U,, 1) whose transition functions (¢ng) act on S
via the G-action: There is a family of smooth mappings (pag : Uag — G)
which satisfies the cocycle condition @ag()psy(T) = Yay(z) for @ € Uyp,
and @qq () = e, the unit in the group, such that ¥.z(z, s) = l(pas(z),s) =
©ap(T).s.

A fiber bundle with a G-bundle structure is called a G-bundle. A fiber bundle atlas
as in (2) is called a G-atlas and the family (¢q3) is also called a cocycle of transition
functions, but now for the G-bundle.

To be more precise, two G-atlases are said to be equivalent (to describe the same
G-bundle), if their union is also a G-atlas. This translates as follows to the two
cocycles of transition functions, where we assume that the two coverings of M are
the same (by passing to the common refinement, if necessary): (vap) and (¢7,5)
are called cohomologous if there is a family (7, : Uy — G) such that p.p(z) =
Ta(2) " .0l 5(x).75(x) holds for all & € Uag, compare with (6.3).

In (2) one should specify only an equivalence class of G-bundle structures or only
a cohomology class of cocycles of G-valued transition functions. The proof of (6.3)
now shows that from any open cover (U,) of M, some cocycle of transition functions
(pap @ Uap — G) for it, and a left G-action on a manifold S, we may construct
a G-bundle, which depends only on the cohomology class of the cocycle. By some
abuse of notation we write (E, p, M, S, G) for a fiber bundle with specified G-bundle
structure.

Examples. The tangent bundle of a manifold M is a fiber bundle with structure
group GL(m). More general a vector bundle (F,p, M,V) as in (6.1) is a fiber
bundle with standard fiber the vector space V' and with GL(V)-structure.

21.2. Definition. A principal (fiber) bundle (P, p, M,G) is a G-bundle with typi-
cal fiber a Lie group G, where the left action of G on G is just the left translation.

So by (21.1) we are given a bundle atlas (U,, 9o : PlUy — U, X G) such that
we have goagogl(x, a) = (z,pap(z).a) for the cocycle of transition functions (pag :
Uap — G). This is now called a principal bundle atlas. Clearly the principal bundle
is uniquely specified by the cohomology class of its cocycle of transition functions.

Each principal bundle admits a unique right action » : P x G — P, called the
principal Tight action, given by . (r(p5t(z,a),g)) = (x,ag). Since left and right
translation on G commute, this is well defined. As in (5.10) we write r(u,g) =
u.g when the meaning is clear. The principal right action is visibly free and for
any u, € P, the partial mapping r,, = r(u;, ):G — P, is a diffeomorphism
onto the fiber through u,, whose inverse is denoted by 7, : P, — G. These
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inverses together give a smooth mapping 7: P x; P — G, whose local expression
is (5w, a), o5 (x,b)) = a~1.b. This mapping is also uniquely determined by
the implicit equation 7(us,T(Uz,vs)) = vg, thus we also have 7(u,.g,u,.g’") =
g L7 (ug,ul).g" and 7(uy, uy) = e.

When considering principal bundles the reader should think of frame bundles as
the foremost examples for this book. They will be treated in (21.11) below.

21.3. Lemma. Letp: P — M be a surjective submersion (a fibered manifold),
and let G be a Lie group which acts freely on P such that the orbits of the action
are exactly the fibers p~t(x) of p. Then (P,p, M,G) is a principal fiber bundle.

Proof. Let the action be a right one by using the group inversion if necessary. Let
Sa : Uy — P be local sections (right inverses) for p : P — M such that (U,) is an
open cover of M. Let ¢t : U, x G — P|U, be given by ¢ (x,a) = s,(z).a, which
is obviously injective with invertible tangent mapping, so its inverse ¢, : P|U, —
U, X G is a fiber respecting diffeomorphism. So (U, ¢, ) is already a fiber bundle
atlas. Let 7 : P xj; P — G be given by the implicit equation r(ugz, 7(uz, ul)) = ul,
where r is the right G-action. 7 is smooth by the implicit function theorem and
clearly we have 7(uy,u’,.g) = 7(uyz,ul,).g and v, (uz) = (z, 7(so (), uy)). Thus we
have ¢3! (2,9) = Gals3(2)-9) = (2, 7(5a (@), 53(2).9)) = (@:7(50(2), 55(2))-9)
and (U,, @) is a principal bundle atlas. [

21.4. Remarks. In the proof of Lemma (21.3) we have seen, that a principal
bundle atlas of a principal fiber bundle (P,p, M,G) is already determined if we
specify a family of smooth sections of P, whose domains of definition cover the
base M.

Lemma (21.3) can serve as an equivalent definition for a principal bundle. But this
is true only if an implicit function theorem is available, so in topology or in infinite
dimensional differential geometry one should stick to our original definition.

From the Lemma itself it follows, that the pullback f*P over a smooth mapping
f: M’ — M is again a principal fiber bundle.

21.5. Homogeneous spaces. Let G be a Lie group with Lie algebra g. Let K
be a closed subgroup of G, then by theorem (5.5) K is a closed Lie subgroup whose
Lie algebra will be denoted by ¢. By theorem (5.11) there is a unique structure of a
smooth manifold on the quotient space G/ K such that the projectionp : G — G/K
is a submersion, so by the implicit function theorem p admits local sections.

Theorem. (G,p,G/K,K) is a principal fiber bundle.

Proof. The group multiplication of GG restricts to a free right action p : GX K — G,
whose orbits are exactly the fibers of p. By lemma (21.3) the result follows. [

For the convenience of the reader we discuss now the best known homogeneous
spaces.
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The group SO(n) acts transitively on S~ C R™. The isotropy group of the ‘north
pole’ (1,0,...,0) is the subgroup

<(1) 500(3—1))

which we identify with SO(n —1). So S"7! = SO(n)/SO(n — 1) and we get a
principal fiber bundle (SO(n),p, S~ !, SO(n — 1)). Likewise

(O(n),p, Sn_la O(n - 1))7

(SU(n)>p7 SQn_l? SU(Tl - 1))7

(U(n),p,S* 1, U(n—1)), and

(Sp(n), p, 84"~ Sp(n — 1)) are principal fiber bundles.

The Grassmann manifold G(k,n;R) is the space of all k-planes containing 0 in
R™. The group O(n) acts transitively on it and the isotropy group of the k-plane

R* x {0} is the subgroup
O(k) 0
0 Omn—k))’

therefore G(k,n;R) = O(n)/O(k) x O(n — k) is a compact manifold and we get the
principal fiber bundle (O(n),p, G(k,n;R), O(k) x O(n — k)). Likewise

(SO(TL),p, G(k7 n; R)v S(O(k) X O(TL - k)))?

(SO(n),p, G(k,n;R), SO(k) x SO(n — k)),

(U(n),p,G(k,n;C),U(k) x U(n — k)), and

(Sp(n),p, G(k,n;H), Sp(k) x Sp(n — k)) are principal fiber bundles.

The Stiefel manifold V(k,n;R) is the space of all orthonormal k-frames in R™.
Clearly the group O(n) acts transitively on V' (k,n;R) and the isotropy subgroup of
(e1,...,er)is Iy x O(n—k), so V(k,n;R) = O(n)/O(n — k) is a compact manifold,
and (O(n),p, V(k,n;R),O(n — k)) is a principal fiber bundle. But O(k) also acts
from the right on V(k,n;R), its orbits are exactly the fibers of the projection
p: V(k,n;R) — G(k,n;R). So by lemma (21.3) we get a principal fiber bundle
(V(k,n,R),p,G(k,n;R),O(k)). Indeed we have the following diagram where all
arrows are projections of principal fiber bundles, and where the respective structure
groups are written on the arrows:

om)—20 =8 v R
M 0<k>[ [O(k;)
Vin —k,n;R) W G(k,n;R),

V(k,n) is also diffeomorphic to the space { A € L(R*,R") : AL A = T}, ie.
the space of all linear isometries R¥ — R™. There are furthermore complex and
quaternionic versions of the Stiefel manifolds, and flag manifolds.

21.6. Homomorphisms. Let x : (P,p, M,G) — (P',p', M’ ,G) be a principal
fiber bundle homomorphism, i.e. a smooth G-equivariant mapping x : P — P’.
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Then obviously the diagram

1) p[ [p’
X

M ———M

commutes for a uniquely determined smooth mapping x : M — M’. For each
x € M the mapping x, = x|Pr : Pr — P)i((x) is G-equivariant and therefore a
diffeomorphism, so diagram (1) is a pullback diagram.

But the most general notion of a homomorphism of principal bundles is the fol-
lowing. Let ® : G — G’ be a homomorphism of Lie groups. x : (P,p, M,G) —
(P',p', M’ ,G") is called a homomorphism over ® of principal bundles, if x : P — P’
is smooth and x(u.g) = x(u).®(g) holds in general. Then x is fiber respecting, so
diagram (1) makes again sense, but it is no longer a pullback diagram in general.

If x covers the identity on the base, it is called a reduction of the structure group
G’ to G for the principal bundle (P’ p’, M’,G") — the name comes from the case,
when @ is the embedding of a subgroup.

By the universal property of the pullback any general homomorphism x of principal
fiber bundles over a group homomorphism can be written as the composition of a
reduction of structure groups and a pullback homomorphism as follows, where we
also indicate the structure groups:

(P7 G) - ()Z*P/7G/) - (P/7G/)

N

M—=s M.

21.7. Associated bundles. Let (P,p, M,G) be a principal bundle and let ¢ :
G x S — S be a left action of the structure group G on a manifold S. We consider
the right action R: (P x S) x G — P x S, given by R((u,s),g) = (u.g,g7*.s).

Theorem. In this situation we have:

(1) The space P xS of orbits of the action R carries a unique smooth manifold
structure such that the quotient map q: P X S — P X S is a submersion.

(2) (PxgS,p, M, S, Q) is a G-bundle in a canonical way, where p: PxgS — M
s given by

PXSL)PXGS

(a) lpm p[

p

P——— M.

In this diagram q, : {u} X S — (P xXg S)pw) 15 a diffeomorphism for each
u € P.
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(3) (P xS,q,P xgS,G) is a principal fiber bundle with principal action R.

(4) If (Ua,pa @ PlUy — Uy x G) is a principal bundle atlas with cocycle of
transition functions (pap @ Uag — G), then together with the left action
0:GxS — S this cocycle is also one for the G-bundle (P xg S,p, M, S, G).

Notation. (Px¢gS,p, M, S,G) is called the associated bundle for the action £ : G X
S — S. We will also denote it by P[S, ¢] or simply P[S] and we will write p for p if no
confusion is possible. We also define the smooth mapping 7 = 7° : Px 3, P[S,f] — S
by 7(ugz,vy) = q;}(vw). It satisfies 7(u,q(u,s)) = s, q(uz, 7(ug,v:)) = v, and
7(Uz.g,vz) = g~ L.7(ug,v;). In the special situation, where S = G and the action
is left translation, so that P[G] = P, this mapping coincides with 7 considered in
(21.2).

Proof. In the setting of diagram (a) in (2) the mapping p o pry is constant on
the R-orbits, so p exists as a mapping. Let (Uy,po @ PlUy — U,y X G) be a
principal bundle atlas with transition functions (p.g : Usg — G). We define
Yl iU xS — pH(Uy) C P xg S by ¢ (x,5) = q(o;(x,e),s), which is fiber
respecting. For each point in p~1(z) C P x¢g S there is exactly one s € S such
that the orbit corresponding to this point passes through (p;!(z,e€),s), namely
s = 7% ug, o5 (z,€))"L.s" if (ug,s’) is the orbit, since the principal right action is
free. Thus ¢, (2, ):S — p~!(z) is bijective. Furthermore

q(pg(
= q(p5 ' (2, pap(@).€), 5) = a(p5 " (2, €).pap(2), 5)

(5 (2, €), pap().5) = U3 (2, pap(2).5),
SO wawﬁ_l(x,s) = (z,90a8().s) So (Ua,a) is a G-atlas for P X S and makes it
into a smooth manifold and a G-bundle. The defining equation for ¢, shows that

q is smooth and a submersion and consequently the smooth structure on P xg S
is uniquely defined, and p is smooth by the universal properties of a submersion.

By the definition of 1, the diagram
p (UL x § L1 Ld Uy xG xS
(5) Ql lld X {

ﬁ_1<Ua) @Zja

commutes; since its lines are diffeomorphisms we conclude that ¢, : {u} x § —
p1(p(u)) is a diffeomorphism. So (1), (2), and (4) are checked.

(3) follows directly from lemma (21.3). We give below an explicit chart construction.
We rewrite the last diagram in the following form:

U, xS

p HUs) x S ———q *(Va) _ e, Vo, x G

(6) Ql lpﬁ

ﬁ_l(Ua) — Vo
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Here V,, := p~1(U,) C PxgS, and the diffeomorphism ), is given by the expression
A (W (2, 8),9) = (p5 ' (2,9), 97 ".s). Then we have

A (Wi (,8),9) = Mgt (W5 (2, 0pa().5), 9)
(9051(337 g)? 9_1'90/304(:[:)'8)
= (05 (@, Pap(2).9), g7 pap(®) " .5)

o (W (2,5), pap().9),

SO )\a)\gl(z/)gl(x, s),9) = (V1 (x,5), pas(x).g) and (P x S, q, P xS, G) is a princi-
pal bundle with structure group G and the same cocycle (¢o3) we started with. O

21.8. Corollary. Let (E,p,M,S,G) be a G-bundle, specified by a cocycle of tran-
sition functions (pa3) with values in G and a left action ¢ of G on S. Then from the
cocycle of transition functions we may glue a unique principal bundle (P,p, M,G)

such that E = P[S,¢]. O

This is the usual way a differential geometer thinks of an associated bundle. He
is given a bundle F, a principal bundle P, and the G-bundle structure then is
described with the help of the mappings 7 and gq.

21.9. Equivariant mappings and associated bundles.

(1) Let (P,p, M,G) be a principal fiber bundle and consider two left actions of G,
(:GxS — Sand V' : Gx S — §'. Let furthermore f : S — S’ be a G-equivariant
smooth mapping, so f(g.s) = g.f(s) or foly = £ of. Then Idpxf: PxS — PxJS’
is equivariant for the actions R : (PxS)xG — PxSand R : (PxS')xG — Px S’
and is thus a homomorphism of principal bundles, so there is an induced mapping

PXSMPXS’

) q[ [q'

PxGSMPxGS’,

which is fiber respecting over M, and a homomorphism of G-bundles in the sense
of the definition (21.10) below.

(3) Let x : (P,p, M,G) — (P',p', M, G) be a principal fiber bundle homomorphism
as in (21.6). Furthermore we consider a smooth left action ¢ : G x S — S. Then
x X Idg : P xS — P’ xS is G-equivariant and induces a mapping x xXg Ids :
P xgS — P’ xg S, which is fiber respecting over M, fiber wise a diffeomorphism,
and again a homomorphism of G-bundles in the sense of definition (21.10) below.

(4) Now we consider the situation of 1 and 2 at the same time. We have two
associated bundles P[S, /] and P'[S’,¢']. Let x : (P,p,M,G) — (P',p', M’,G) be
a principal fiber bundle homomorphism and let f : S — S’ be an G-equivariant
mapping. Then y x f: P xS — P’ x S’ is clearly G-equivariant and therefore
induces a mapping x xqg f : P[S,¢] — P’[S’,¢'] which again is a homomorphism of
G-bundles.
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(5) Let S be a point. Then P[S] = P x¢ S = M. Furthermore let y € S" be
a fixed point of the action ¢/ : G x S" — S’, then the inclusion i : {y} — S’ is
G-equivariant, thus Idp x i induces Idp x¢g i : M = P[{y}] — P[S’], which is a
global section of the associated bundle P[S’].

If the action of G on S is trivial, so g.s = s for all s € S, then the associated bundle
is trivial: P[S] = M x S. For a trivial principal fiber bundle any associated bundle
is trivial.

21.10. Definition. In the situation of (21.9), a smooth fiber respecting mapping
v : P[S,{] — P’[S’", V'] covering a smooth mapping 7 : M — M’ of the bases is called
a homomorphism of G-bundles, if the following conditions are satisfied: P is iso-
morphic to the pullback ¥*P’, and the local representations of v in pullback-related
fiber bundle atlases belonging to the two G-bundles are fiber wise G-equivariant.

Let us describe this in more detail now. Let (U.,1!) be a G-atlas for P’[S’,{']
with cocycle of transition functions (¢!, B>’ belonging to the principal fiber bundle
atlas (U., ") of (P',p', M’ ,G). Then the pullback-related principal fiber bundle
atlas (Uy, =5 Y(UL), pa) for P = 4*P’ as described in the proof of (20.5) has the
cocycle of transition functions (¢as = ;5 © 7); it induces the G-atlas (U, a)
for P[S,¢). Then (¢!, oyov ) (z,s) = (F(x),Va(x,s)) and vo(z, ):S — 9 is
required to be G-equivariant for all o and all x € U,.

Lemma. Let vy : P[S,{] — P'[S’, V'] be a homomorphism of G-bundles as defined
above. Then there is a homomorphism x : (P,p, M,G) — (P',p', M', G) of principal
bundles and a G-equivariant mapping f : S — S’ such that v = x xg f : P[S,{] —
P'[S" 0].

Proof. The homomorphism x : (P,p, M,G) — (P’,p’, M’ G) of principal fiber

/

bundles is already determined by the requirement that P = 4*P’, and we have

7 = X. The G-equivariant mapping f : S — S’ can be read off the following
diagram

P xu PlS] — T
(1) X XM ’Y[ lf
P’ xp P[] T S’
which by the assumptions is seen to be well defined in the right column. [J

So a homomorphism of G-bundles is described by the whole triple (x : P — P’, f :
S — 5’ (G-equivariant),y : P[S] — P’[S']), such that diagram (1) commutes.

21.11. Associated vector bundles. Let (P,p, M, G) be a principal fiber bundle,
and consider a representation p : G — GL(V') of G on a finite dimensional vector
space V. Then P[V,p| is an associated fiber bundle with structure group G, but
also with structure group GL(V'), for in the canonically associated fiber bundle
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atlas the transition functions have also values in GL(V'). So by section (6) P[V, p]
is a vector bundle.

Now let F be a covariant smooth functor from the category of finite dimensional
vector spaces and linear mappings into itself, as considered in section (6.8). Then
clearly Fop: G — GL(V) — GL(F(V)) is another representation of G and the
associated bundle P[F(V'), F o p| coincides with the vector bundle F(P[V, p|) con-
structed with the method of (6.8), but now it has an extra G-bundle structure.
For contravariant functors F we have to consider the representation F o p o v,
where v(g) = g~!. A similar choice works for bifunctors. In particular the bi-
functor L(V, W) may be applied to two different representations of two structure
groups of two principal bundles over the same base M to construct a vector bundle
L(P[V, p], P'IV", p']) = (P xp P)[L(V, V"), Lo ((pov) x p)].

If (E,p, M) is a vector bundle with n-dimensional fibers we may consider the open
subset GL(R™, E) C L(M x R™ E), a fiber bundle over the base M, whose fiber
over z € M is the space GL(R™, E,) of all invertible linear mappings. Composition
from the right by elements of GL(n) gives a free right action on GL(R™, E') whose
orbits are exactly the fibers, so by lemma (21.3) we have a principal fiber bundle
(GL(R™, E),p, M,GL(n)). The associated bundle GL(R", E)[R"] for the banal rep-
resentation of GL(n) on R™ is isomorphic to the vector bundle (E, p, M) we started
with, for the evaluation mapping ev : GL(R™, E) x R" — E is invariant under the
right action R of GL(n), and locally in the image there are smooth sections to it, so
it factors to a fiber linear diffeomorphism GL(R", E)[R"] = GL(R", E)X g1(n)R" —
E. The principal bundle GL(R", E) is called the linear frame bundle of E. Note
that local sections of GL(R™, E) are exactly the local frame fields of the vector
bundle E as discussed in (6.5).

To illustrate the notion of reduction of structure group, we consider now a vector
bundle (E,p, M,R™) equipped with a Riemannian metric g, that is a section g €
C>(S%E*) such that g, is a positive definite inner product on E, for each z € M.
Any vector bundle admits Riemannian metrics: local existence is clear and we may
glue with the help of a partition of unity on M, since the positive definite sec-
tions form an open convex subset. Now let s’ = (s/,...,s]) € C*°(GL(R", E)|U)
be a local frame field of the bundle F over U C M. Now we may apply the
Gram-Schmidt orthonormalization procedure to the basis (s1(x),... ,s,(x)) of E,
for each = € U. Since this procedure is smooth (even real analytic), we obtain a
frame field s = (s1,...,8,) of E over U which is orthonormal with respect to g.
We call it an orthonormal frame field. Now let (U,) be an open cover of M with
orthonormal frame fields s® = (s¢,...,s%), where s is defined on U,. We consider
the vector bundle charts (Uy, ¥ : E|U, — Uy X R™) given by the orthonormal
frame fields: ¢ (z,v!,... ,0") = 3 s¢(x).0! = s*(z).v. For z € U,z we have
sf(x) => s?(w).gga I () for C®°-functions gag? : Usys — R. Since s*(z) and s°(x)
are both orthonormal bases of E,, the matrix gog(z) = (gagg (x)) is an element
of O(n,R). We write s® = s”.gg, for short. Then we have ¢g1(x, v) = sP(x)v =
5(x).gap(x)v = ¥ (z,gap(x).v) and consequently @baz/}gl(x,v) = (x, gap(x).v).
So the (gag : Uap — O(n,R)) are the cocycle of transition functions for the vec-
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tor bundle atlas (Ua,%,). So we have constructed an O(n,R)-structure on FE.
The corresponding principal fiber bundle will be denoted by O(R™,(E,g)); it is
usually called the orthonormal frame bundle of E. It is derived from the linear
frame bundle GL(R", E') by reduction of the structure group from GL(n) to O(n).
The phenomenon discussed here plays a prominent role in the theory of classifying
spaces.

21.12. Sections of associated bundles. Let (P,p, M,G) be a principal fiber
bundle and £ : G x S — S a left action. Let C*°(P,S)“ denote the space of all

smooth mappings f : P — S which are G-equivariant in the sense that f(u.g) =
g~ 1. f(u) holds for g € G and u € P.

Theorem. The sections of the associated bundle P|[S,{] correspond exactly to the
G-equivariant mappings P — S; we have a bijection C>(P, S)¢ = T'(P[S]).

This result follows from (21.9) and (21.10). Since it is very important we include a
direct proof.

Proof. If f € C>(P,S)“ we construct s; € T'(P[S]) in the following way: The
mapping graph(f) = (Id, f) : P — P x S is G-equivariant, since (Id, f)(u.g) =
(u.g, f(u.g)) = (u.g,g7t.f(u)) = ((Id, f)(u)).g. So it induces a smooth section
sy € I'(P[S]) as seen from (21.9) and the diagram:

Px{Pt}%PMPxS

.

M1, ps)

If conversely s € T'(P[S]) we define f, € C®(P,S)¢ by fs := 7 o (Idp xu
s): P=Pxy M — P x) P[S] — S. This is G-equivariant since fs(u,.g) =
7 (ug.g,8(x)) = g 7% (Ug, 5(2)) = g7 . fo(ug) by (21.7). These constructions are
inverse to each other since we have fy(p)(u) = 7°(u, sy(p(u))) = 79 (u, q(u, f(uv))) =
f(u) and sp(5) (p(w)) = q(u, fo(u)) = q(u, 7°(u, s(p(u))) = S(P(u)) O

21.13. Induced representations. Let K be a closed subgroup of a Lie group G.
Let p : K — GL(V') be a representation in a vector space V', which we assume to be
finite dimensional for the beginning. Then we consider the principal fiber bundle
(G,p,G/K, K) and the associated vector bundle (G[V],p, G/K). The smooth (or
even continuous) sections of G[V] correspond exactly to the K-equivariant map-
pings f : G — V, those satisfying f(gk) = p(k~1)f(g), by lemma (21.12). Each
g € G acts as a principal bundle homomorphism by left translation
Fg

G——CG

pl |

a/k —t . q/k.
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So by (21.9) we have an induced isomorphism of vector bundles

Mg X Idy

GxV GxV
ql lq
o] — LXKV Gy
pl ) lp
G/K at G/K

~ G
which gives rise to the representation indp of G in the space I'(G[V]), defined by

(indyep) (9)(s) = (g 1 V) 050 ig1 = (g 1 V)i (s).

Now let us assume that the original representation p is unitary, p : K — U(V) for

1> = (v,v)

is an invariant symmetric homogeneuous polynomial V' — R of degree 2, so it is

a complex vector space V with inner product ( , )y. Then v — |v

equivariant where K acts trivial on R. By (21.9) again we get an induced mapping
G[V] — GIR] = G/K x R, which we can polarize to a smooth fiberwise hermitian
form ( , )gpv] on the vector bundle G[V]. We may also express this by

(Vz, We)gv) = (TV (g, ve), TV (g, we) )y = (7Y (ug, v2), K717V (Ug, we))y =

= <Tv(um.k,vm),TV(ux.k,wx))V

for some u, € G, using the mapping 7V : G Xq/m GIV] — V from (21.7); it
does not depend on the choice of u,. Still another way to describe the fiberwise
hermitian form is

(G xHy) Xg/k (G x Hy)

| \f

| L

G/K;

here f((g1,v1), (g2,v2)) := (v1, p(75 (g1, g2))v2)v where we use the mapping 75 :
G xg kG — K given by ™8 (g1, 92) = gl_lgg from (21.2). From this last description

it is also clear that each g € G acts as an isometric vector bundle homomorphism.
Now we consider the natural line bundle Vol'/?(G/K) of all s-densities on the
manifold G/K from (8.4). Then for i-densities y; € I'(Vol'/?(G/M)) and any
diffeomorphism f : G/K — G/K the push forward f,u; is defined and for those

with compact support we have fG/K(f*,ul.f*ug) = fG/K Fe(prpo) = fG/K 1o
The hermitian inner product on G[V] now defines a fiberwise hermitian mapping

)

(GIV]® Vol'?(G/K)) x gk (GIV] @ Vol'*(G/K)) ——L Vol (G/ L)
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and on the space C2°(G[V] ® Vol'’3(G/K)) of all smooth sections with compact
support we have the following hermitian inner product

(01,02) 12/ (o1,02) G-
G/K

For a decomposable section o; = s; ® a; (where s; € I'(G[V]) and where a; €
C>(Vol'/?(G/K))) we may consider (using (21.12)) the equivariants lifts f,.
G — V, their invariant inner product (fs,, fs,)v : G — C, and its factorisation to
(fs1> fsa)y : G/K — C. Then

(01, 09) = /G (Mo i 10

Obviously the resulting action of the group G on I'(G[V]® Vol'/?(G/K)) is unitary
with respect to the hermitian inner product, and it can be extended to the Hilbert
space completion of this space of sections. The resulting unitary representation is
called the induced representation and is denoted by ind?( p.

If the original unitary representation p : K — U(V) is in an infinite dimensional
Hilbert space V', one can first restrict the representation p to the subspace of smooth
vectors, on which it is differentiable, and repeat the above construction with some
modifications. See [Michor, 1990] for more details on this infinite dimensional
construction.

21.14. Theorem. Consider a principal fiber bundle (P,p, M,G) and a closed
subgroup K of G. Then the reductions of structure group from G to K correspond
bijectively to the global sections of the associated bundle P[G/K, )] in a canonical

way, where X : G x G/K — G/K is the left action on the homogeneous space from
(5.11).

Proof. By (21.12) the section s € I'(P[G/K]) corresponds to f, € C=(P,G/K)Y,
which is a surjective submersion since the action A : G x G/K — G/K is transitive.
Thus Ps := f;1(€) is a submanifold of P which is stable under the right action of K
on P. Furthermore the K-orbits are exactly the fibers of the mapping p : Py — M,
so by lemma (21.3) we get a principal fiber bundle (P, p, M, K). The embedding
P, — P is then a reduction of structure groups as required.

If conversely we have a principal fiber bundle (P’,p’, M, K) and a reduction of
structure groups y : P’ — P, then x is an embedding covering the identity of M
and is K-equivariant, so we may view P’ as a sub fiber bundle of P which is stable
under the right action of K. Now we consider the mapping 7: P Xy P — G from
(21.2) and restrict it to P x p; P’. Since we have 7(uy, v,.k) = 7(ug,v,).k for k € K
this restriction induces f : P — G/K by

P xy P T G

| i

P=PxyP/K—t a/K
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since P'/K = M; and from 7(usz.g,v,) = g~ 1.7(ug,v,) it follows that f is G-
equivariant as required. Finally f~1(e) = {u € P : 7(u, Ply) € K} =P, sothe
two constructions are inverse to each other. [J

21.15. The bundle of gauges. If (P,p, M,G) is a principal fiber bundle we
denote by Aut(P) the group of all G-equivariant diffeomorphisms x : P — P. Then
pox = Yop for a unique diffeomorphism  of M, so there is a group homomorphism
from Aut(P) into the group Diff(M) of all diffeomorphisms of M. The kernel of this
homomorphism is called Gau(P), the group of gauge transformations. So Gau(P)
is the space of all x : P — P which satisfy pox = p and x(u.g) = x(u).g. A vector
field ¢ € X(P) is an infinitesimal gauge transformation if its flow Flf consists of
gauge transformations, i.e., if £ is vertical and G-invariant, (r9)*¢ = &.

Theorem. The group Gau(P) of gauge transformations is equal to the space
Gau(P) = C*°(P, (G, conj))¢ = I'(P[G, conj)).

The Lie algebra Xyert(P)C of infinitesimal gauge transformations is equal to the
space
Xvert(P)9 = C™(P, (g,Ad)) = T(P[g, Ad)).

Proof. We use again the mapping 7 : P Xy P — G from (21.2). For x €
Gau(P) we define f,, € C°°(P, (G, conj))¢ by fy := 70 (Id,x). Then f,(u.g) =
7(u.g,x(u.g)) = g~ "7 (u, x(u)).g = conj,—1 fy(u), so fy is indeed G-equivariant.

If conversely f € C°°(P, (G, conj))¢ is given, we define x; : P — P by x(u) :=
u.f(u). It is easy to check that xy is indeed in Gau(P) and that the two construc-
tions are inverse to each other, namely

X1 (ug) = ugf(ug) = ugg™" f(u)g = xs(u)g,

Frop () = 7% (u, x g (w) = 7w, u f () = 76 (u,w) f (u) = f(u),

X1, () = ufy(u) = ur®(u, x(u) = x(u).
The isomorphism C*°(P, (G,conj))¢ = I'(P[G,conj]) is a special case of theorem
(21.12).

A vertical vector field £ € Xyt (P) = I'(VP) is given uniquely by a mapping
fe: P — gvia &(u) = Te(ry)-fe(u), and it is G-equivariant if and only if

To(ry).fe(u) = E(u) = ((r9)*€)(u) = T(r? " ).£(u.g)

= T(r9 ).Te(rug)-Je(u.g) = To(r?  oryy).fe(u.g)
= Te(ry o conjy). fe(u.g) = Te(ru). Adg . fe(u.g)

The isomorphism C* (P, (g, Ad))“ = I'(Plg, Ad]) is again a special case of theorem
(21.12). O

Draft from September 15, 2004 Peter W. Michor,



21.16 21. Principal Fiber Bundles and G-Bundles 235

21.16. The tangent bundles of homogeneous spaces. Let G be a Lie group
and K a closed subgroup, with Lie algebras g and £, respectively. We recall the
mapping Adg : G — Autri(g) from (4.24) and put Adg x = Adg |K : K —
Autrie(g). For X € tand k € K we have Adg x (k)X = Adg(k)X = Adk (k)X €€,
so £ is an invariant subspace for the representation Adg x of K in g, and we have
the factor representation Ad™ : K — GL(g/¢). Then

(1) 0—t—g—g/t—0

is short exact and K-equivariant.

Now we consider the principal fiber bundle (G, p, G/ K, K) and the associated vector
bundles G[g/¢, Ad*] and G[t, Adg].

Theorem. In these circumstances we have

T(G/K) = Glg/t,Ad"] = (G xx g/t p,G/K,g/?).
The left action g — T'(fig) of G onT(G/K) corresponds to the canonical left action
of G on G xx g/t. Furthermore G[g/t, Ad"] ® G[t, Adk] is a trivial vector bundle.

Proof. For p : G — G/K we consider the tangent mapping T.p : g — T:(G/K)
which is linear and surjective and induces a linear isomorphism T.p : g/t —

T:(G/K). For k € K we have p o conj, = po ui o uk_l = i o p and con-
sequently T.p o Adg x(k) = Tep o Te(conj,) = Tefir © Tep. Thus the isomor-
phism T.p : g/t — T:(G/K) is K-equivariant for the representations Ad® and
T:\ : k — Tesfig,, where, for the moment, we use the notation A : G x G/K — G/K
for the left action.

Let us now consider the associated vector bundle

GT:(G/K),TeN = (G xk T:(G/K),p, G/ K, T:(G/K)),
which is isomorphic to the vector bundle G[g/t, Ad"], since the representation
spaces are isomorphic. The mapping ToA : G x Te(G/K) — T(G/K) (where

T, is the second partial tangent functor) is K-invariant, since Th\((g, X)k) =
ToX(gk, Tejig-1.X) = Thgp. Tig-1.X = Th,.X. Therefore it induces a mapping

Y as in the following diagram:
T(G/K)
\ A

This mapping 1 is an isomorphism of vector bundles.

G x T:(G/K)

It remains to show the last assertion. The short exact sequence (1) induces a
sequence of vector bundles over G/K:
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G/K x 0 — G, Adg] — Glg, Adg k] — Glg/t, Ad"] — G/K x 0
This sequence splits fiber wise thus also locally over G/K, so we get G[g/t, Ad~] &
G[t,Adk] = Glg,Adg k). We have to show that G[g, Adg k]| is a trivial vector
bundle. Let ¢ : G x g — G x g be given by ¢(g,X) = (9,Adg(g9)X). Then for
k € K we have

0((9,X).k) = o(gk, Adg (k1) X)
= (gk, Ada(g.k-k~ ) X) = (gk, Adg(9)X).

So ¢ is K-equivariant for the ‘joint’” K-action to the ‘on the left’ K-action and
therefore induces a mapping ¢ as in the diagram:

Gxg d Gxg
] |
(3) G Xk g 2 G/K x g
X‘ pry
G/K

The map ¢ is a vector bundle isomorphism. [

21.17. Tangent bundles of Grassmann manifolds. From (21.5) we know that
(V(k,n) = O(n)/O(n — k),p,G(k,n),0(k)) is a principal fiber bundle. Using the
standard representation of O(k) we consider the associated vector bundle (E} :=
V(k,n)[R¥],p,G(k,n)). Tt is called the universal vector bundle over G(k,n) for
reasons we will discuss below in section (22). Recall from (21.5) the description of
V (k,n) as the space of all linear isometries R¥ — R™; we get from it the evaluation
mapping ev : V(k,n) x R¥ — R"™. The mapping (p,ev) in the diagram

V(k,n) x R¥
) o m)

Ep = V(k,n) xox) R T>G(k,n) x R™

is O(k)-invariant for the action R and factors therefore to an embedding of vector
bundles ¢ : Er, — G(k,n) x R™. So the fiber (Ex)w over the k-plane W in R™ is
just the linear subspace W. Note finally that the fiber wise orthogonal complement
Ejt of Ej in the trivial vector bundle G(k,n) x R™ with its standard Riemannian
metric is isomorphic to the universal vector bundle E,,_j over G(n — k,n), where
the isomorphism covers the diffeomorphism G(k,n) — G(n — k,n) given also by
the orthogonal complement mapping.

Corollary. The tangent bundle of the Grassmann manifold is
TG(k,n) = L(Ey, E,™b).
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Proof. We have G(k,n) = O(n)/(O(k) x O(n —k)), so by theorem (21.16) we get

TG(k,n) =0O(n) O(k)xé(n_k)(so(n)/(so(k) x s0(n —k))).

On the other hand we have V(k,n) = O(n)/O(n — k) and the right action of O(k)
commutes with the right action of O(n — k) on O(n), therefore

V(k,n)[R*] = (O(n)/O(n —k)) x R¥ =0(n) X R”,
O(k) O(k)xO(n—k)

where O(n — k) acts trivially on R¥. Finally

L(Ey, Ex") =L <O(n) X R* O(n) X R”—’f)
O(k)xO(n—k) O(k)xO(n—k)

= O(n) X L(R¥, R"F),
O(k)xO(n—Fk)
where O(k) x O(n — k) acts on L(R*,R"~*) by (A, B)(C) = B.C.A™!. Finally
we have an O(k) x O(n — k) - equivariant linear isomorphism L(R* R"~*) —
so(n)/(so(k) x so(n — k)), as follows:

so(n)/(so(k) x so(n —k)) =

(ske(vikeW)O ) N {(Sl _S‘T) : AeL(Rk,R”k)} O

0 skew

21.18. Tangent bundles and vertical bundles. Let (E,p, M,S) be a fiber
bundle. The sub vector bundle VE ={{ € TE: Tp.£ =0} of TE is called the
vertical bundle and is denoted by (VE, g, F).

Theorem. Let (P,p, M,G) be a principal fiber bundle with principal right action
r:PxG— P. Let { : G xS — S be a left action. Then the following assertions
hold:

(1) (TP, Tp, TM,TG) is again a principal fiber bundle with principal right ac-
tion Tr : TP x TG — TP, where the structure group T'G is the tangent
group of G, see (5.17).

(2) The vertical bundle (V P, 7, P,g) of the principal bundle is trivial as a vector
bundle over P: VP = P X g.

(3) The wvertical bundle of the principal bundle as bundle over M is again a
principal bundle: (VP,pon, M,TG).

(4) The tangent bundle of the associated bundle P[S,{] is given by
T(P[S,{]) =TP[TS,TY].

(5) The vertical bundle of the associated bundle P[S, /] is given by
V(P[S,l]) = P[TS, Tof) = P xgTS.
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Proof. Let (Uy, s : P|U, — U, xG) be a principal fiber bundle atlas with cocycle
of transition functions (pag : Usg — G). Since T is a functor which respects
products, (TUy, T, : TP|TU, — TU, x TG) is again a principal fiber bundle
atlas with cocycle of transition functions (T'wn3 : TUss — TG), describing the
principal fiber bundle (TP, Tp, TM,TG). The assertion about the principal action
is obvious. So (1) follows. For completeness sake we include here the transition
formula for this atlas in the right trivialization of T'G:

T(pa 095 ") (Eas Te(p?).X) = (€0, Te(u?2 ) 9).(8"pap(€2) + Ad(ap(2)) X)),

where §pag € Q1 (Uap; g) is the right logarithmic derivative of ¢,s, see (4.26).

(2) The mapping (u, X) +— Te(ry).X = T(y,e)7. (0, X) is a vector bundle isomor-
phism P x g — VP over P.

(3) Obviously Tr : TP x TG — TP is a free right action which acts transitively on
the fibers of Tp : TP — TM. Since VP = (Tp)~*(0ps), the bundle VP — M is
isomorphic to T'P|0y; and T'r restricts to a free right action, which is transitive on
the fibers, so by lemma (21.3) the result follows.

(4) The transition functions of the fiber bundle P[S, ¢] are given by the expression
lo(papxIdg):Uyp xS — GxS — S. Then the transition functions of T'(P[S, ])
are T(f o (gpaﬁ X Ids)) =1TYo (Tgoag X Ide) . TUaﬁ xTS —-TGxTS — TS,
from which the result follows.

(5) Vertical vectors in T'(P[S,¢]) have local representations (0,,7ns) € TUyg X
TS. Under the transition functions of T'(P[S,¢]) they transform as T'(¢ o (pap X

Ids)).(0z,ms) = TC.(0p, 5(2)sMs) = Ty 52))-Ns = Tol.(pap(x),ns) and this im-
plies the result [

22. Principal and Induced Connections

22.1. Principal connections. Let (P,p, M, G) be a principal fiber bundle. Recall
from (20.3) that a (general) connection on P is a fiber projection ® : TP —
VP, viewed as a 1-form in Q'(P,TP). Such a connection ® is called a principal
connection if it is G-equivariant for the principal right action » : P x G — P, so
that T'(r9).® = ®.T(r9) and P is rI-related to itself, or (r9)*® = & in the sense of
(19.16), for all g € G. By theorem (19.15.6) the curvature R = 3.[®, ®] is then also
r9-related to itself for all g € G.

Recall from (21.18.2) that the vertical bundle of P is trivialized as a vector bundle
over P by the principal action. So
(1) w(Xy) = To(ra) 7 2(Xu) € ¢

and in this way we get a g-valued 1-form w € Q'(P,g), which is called the (Lie
algebra valued) connection form of the connection ®. Recall from (5.13). the
fundamental vector field mapping ¢ : g — X(P) for the principal right action given
by (x(u) = Te(ry)X which satisfies T, (R?)(x (u) = Caa(g—1)x (u.g). The defining
equation for w can be written also as ®(X,) = (u(x,)(u).

Draft from September 15, 2004 Peter W. Michor,



22.2 22. Principal and Induced Connections 239

Lemma. If ® € QY (P,V P) is a principal connection on the principal fiber bundle
(P,p, M,G) then the connection form has the following two properties:

(2) w reproduces the generators of fundamental vector fields: w((x(u)) = X for
all X € g.

(3) w is G-equivariant, ((r9)*w)(X,) = w(Tu(r9).X,) = Ad(g7!).w(X,) for
all g € G and X,, € T, P. Consequently we have for the Lie derivative
Lepw=—ad(X).w.

Conversely a 1-form w € QY (P, g) satisfying (2) defines a connection ® on P by
O(X,) = Te(ry) w(Xy), which is a principal connection if and only if (3) is satis-
fied.

Proof. (2) T.(ry).w((x(u)) = ®((x(u)) = (x(u) = Te(ry).X. Since Te(ry) : g —
V., P is an isomorphism, the result follows.

(3) Both directions follow from

Te(rug) w(Tu(r?).-Xu) = Cu(r, (ro).x,) (ug) = ©(Tu(r?).Xu)

Te(rug)' Ad(g_l)w<Xu) = CAd(g*l).w(Xu)<ug) = TU(Tg)'Cw(Xu)<u)
_T,(9).(X,) O

22.2. Curvature. Let ® be a principal connection on the principal fiber bundle
(P,p, M,G) with connection form w € Q!(P,g). We already noted in (22.1) that
the curvature R = 1[®, @] is then also G-equivariant, (r9)*R = R for all g € G.
Since R has vertical values we may again define a g-valued 2-form Q € Q2(P,g)
by Q(X,,Y.) = —T.(r,) *.R(X,,Y,), which is called the (Lie algebra-valued)
curvature form of the connection. We also have R(Xy,Yy) = —Co(x, v,)(uw). We
take the negative sign here to get the usual curvature form as in [Kobayashi-Nomizu
I, 1963].

We equip the space Q(P,g) of all g-valued forms on P in a canonical way with the
structure of a graded Lie algebra by

[\IJ,@]/\(Xl, RPN aXp+q) -

1 .
= ol ZSlgHO’ W(Xo1,-- s Xop) O Xopi1)s - - » Xo(pra)) e

or equivalently by [ ® X,0 QY] := ¢ A0 [X,Y],. From the latter description it
is clear that d[¥, O], = [d¥, O]+ (—1)48 ¥ [T, dO],. In particular for w € Q' (P, g)
we have [w,w|A(X,Y) = 2[w(X),w(Y)],.

Theorem. The curvature form Q of a principal connection with connection form
w has the following properties:
(1) Q is horizontal, i.e. it kills vertical vectors.
(2) Q is G-equivariant in the following sense: (r9)*Q = Ad(g~').Q. Conse-
quently L, Q = —ad(X).0Q.
(3) The Maurer-Cartan formula holds: Q = dw + 3w, w]A.
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Proof. (1) is true for R by (20.4). For (2) we compute as follows:
Te(rug)-((r?) Q) ( Xy, Yu) = Te(rug) Q(Tu(r?). Xu, Tu(r?).Yy,) =
= —Ryg(Ty(r?). Xy, Ty (r?).Y,) = =T (r?).((r?)"R)(X,, Yu) =
= —Tu(r?).R(Xu, Yu) = Tu(r?) Co(x,.v.) (u) =
= Cad(g—1).2(X.,va) (U9) = Te(rug). Ad(g™").Q(X,, Y,), by (5.13).
(3) For X € g we have i¢, R =0 by (1), and using (22.1.2) we get

. . 1. 1 .
Lex (dw + i[waw]/\) = ZCde + i[ZCxwﬂ*d]/\ - E[WJCXW]/\ =
=Lexw+ [X,w]p = —ad(X)w + ad(X)w =0

So the formula holds for vertical vectors, and for horizontal vector fields &, 7 €
I'(H(P)) we have

R(&,m) = @[§ — @&, — O] = @€, 1] = Cu(len)

(doo + 3 0])(6,1) = Ew(n) = () — w((67]) +0 = —w(l&u)) O

22.3. Lemma. Any principal fiber bundle (P,p, M,G) (with paracompact basis)
admats principal connections.

Proof. Let (Uy,pq : P|Uy — U, X G), be a principal fiber bundle atlas. Let us
define vo (T,  (€xy Tepg- X)) := X for &, € T, U, and X € g. Using lemma (5.13)
we get

((Th)*'ya)(T‘Pgl(gzv TEMQ'X)) e (TThTSOEl(fx, TENQ'X)) =
= Va(T@gl(fwaTﬂh-Teﬂg-X)) =
= Yo (T@;1(5m Teugh- Ad(h_l)X)) = Ad(h_l).X,

so that v, € QY(P|U,, g) satisfies the requirements of lemma (22.1) and thus is a
principal connection on P|U,. Now let (f,) be a smooth partition of unity on M
which is subordinated to the open cover (U,), and let w := Y (fa 0 P)7Va. Since
both requirements of lemma (22.1) are invariant under convex linear combinations,
w is a principal connection on P. [

22.4. Local descriptions of principal connections. We consider a principal
fiber bundle (P, p, M, G) with some principal fiber bundle atlas (Uy, ¢q : PlUy —
Ua x G) and corresponding cocycle (¢ap : Uag — G) of transition functions. We
consider the sections s, € T'(P|U,) which are given by ¢, (so(z)) = (z,e) and
satisfy sq.¢ap = S, since we have in turn:

va(s5(2)) = vapy ' (2,€) = (2, Pap())
85(1‘) = 90;1(337 e@aﬁ(@)? = ngl(xa e)@aﬁ(x) = Sa(x)@aﬁ(x)'

(1) Let © € QY(G,g) be the left logarithmic derivative of the identity, i.e.
O(ng) := Ty(pg-1).ng. We will use the forms Onp5 := 0as*® € Q' (Uag, g).
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Let ® = (ow € QY(P,VP) be a principal connection with connection form w €
QY(P,g). We may associate the following local data to the connection:

(2) wa = sa*w € QY Uy, g), the physicists version or Cartan moving frame
version of the connection.

(3) The Christoffel forms I'* € QY (U,, X(G)) from (20.7), which are given by

(04, T%(€2, 9)) = _T((Pa)'(I)‘T(SDa)_l(gmaog)‘
(4) Yo = (p31)*w € QY (U, x G, g), the local expressions of w.

Lemma. These local data have the following properties and are related by the fol-
lowing formulas.

(5) The forms wy € QY (Uy, ) satisfy the transition formulas
Wo = Ad(gogi)wg + O34,

and any set of forms like that with this transition behavior determines a
unique principal connection.

(6) We have va(&s, Tg-X) = va(&s,04) + X = Ad(g™ " wa (&) + X
(7) We have I'* (&) = Ry, (¢,), @ right invariant vector field, since

Fa(gmag) = _Te(ﬂg)-’)’a(fmaog) =
= _Te(,ug)- Ad(g_1>wa(5m> =T )wa (&)

Proof. From the definition of the Christoffel forms we have

(02, 0%z, 9)) = =T(0a)-2.T(pa) ' (&2, 04)
= —T(pa) Te(r =1 (4.9) @ T(Pa) " (& 04) by (22.1.1)
= —Te(pa o T(,p;l(;(;,g)) T(e a)il(fa:aog)
= —(02, Te(p1g)w.T(pa) " (£, 0y))
= —(0z, Te(pg)Va(€s,0g)), by (4),

where we also used ga(r, -1 (o h) = Pal0n (@, 0)) = valpz! (@ gh)) = (2,gh).
This is the first part of (7). The second part follows from (6).

Yo (&u, Thg-X) = Ya (s 0g) + Yo (0z, Thyg-X)
:'Ya(fxaog)+w(( a)” (Ox:T/Lg'X))
= Ya (&, 0g) + w(Cx (05 (2, 9)))
:’Ya(fxaog)"‘X

So the first part of (6) holds. The second part is seen from

’Yoc(gmaog) = Ya(&z, Te(p?)0) = (wo T(‘Pa)_l oT(Idx x p19))(€z,0c) =
= (woT(r? oy ")) (&, 0c) = Ad(g™w(T (w3 ") (&, 0c))
= Ad(g7 ") (50" w)(&) = Ad(g™Hwa ()
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Via (7) the transition formulas for the w, are easily seen to be equivalent to the
transition formulas for the Christoffel forms in lemma (20.7). A direct proof goes
as follows: We have s, (z) = s5(2)pga(x) = r(ss(z), psa(x)) and thus

wa (&) = w(To(sa) &)
= (@0 Ty (@), 080 (@) ") (T285:82, Oppa (@) + (0 (2), Toppa-Ea))
= W(T(T%a(w))-Tw(Sﬁ)-gm) + w(Tipﬁa(LE)(TSB(JS))'TZC(SOﬁO‘)'fw)
= Ad(ppa(z) " w(Te(sp) £x)
+ (T pa (@) (Tsg(@))- T (g (2) © P (2)-1) T (98a) £2)
= Ad(ppa(z) ws(&e)
+ W(Te(Ts5(2)ppa @) Opa-e)
= Ad(ppa() ws(ée) + Opal&s). O

22.5. The covariant derivative. Let (P,p, M,G) be a principal fiber bundle
with principal connection ® = ( o w. We consider the horizontal projection y =
Idrp—® : TP — HP,cf. (20.3), which satisfies yox = x,imy = HP, ker x = V P,
and y o T'(r9) =T (r9) o x for all g € G.

If W is a finite dimensional vector space, we consider the mapping x* : Q(P, W) —
Q(P, W) which is given by

(X*w)u(Xla cee ,Xk) = @u(X(Xl)a s 7X(Xk:))'

The mapping x* is a projection onto the subspace of horizontal differential forms,
i.e. the space Qpor (P, W) :={¢p € Q(P,W) :ixy = 0 for X € VP}. The notion of
horizontal form is independent of the choice of a connection.

The projection x* has the following properties: x*(¢ A1) = x*p A x*¢ if one of
the two forms has values in R; x* o x* = x*; x* o (r9)* = (r9)* o x* for all g € G;
X*w =0;and x* o L((x) = L(Cx) o x*. They follow easily from the corresponding

properties of x, the last property uses that Flf (X) _ pexptX

We define the covariant exterior derivative d,, : QF(P,W) — QFt1(P,W) by the

prescription d, := x* o d.

Theorem. The covariant exterior derivative d,, has the following properties.

(1) dy(p AY) = dy () Ax* Y + (—1)%8x* o Ady,(¥) if ¢ or 1 is real valued.

(2) L(Cx)od, =d,oL((x) for each X € g.

(3) (r9)*od, =dy o (r9)* for each g € G.

(4) dyop* =dop*=p*od: QM,W)— Qpor(P,W).
(5) dyw = Q, the curvature form.

(6) d,Q =0, the Bianchi identity.

(7) d, ox* —dy, = x*0i(R), where R is the curvature.
(8)

8) dyod, =x"0i(R)od.
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(9)

(10)
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Let Quor (P, 9)¢ be the algebra of all horizontal G-equivariant g-valued forms,
i.e. (r9)* = Ad(g=1)y. Then for any ¥ € Quor(P,g)¢ we have d, =
dp + [w, Y]

The mapping ¢ — Gy, where Cu(X1,..., Xp)(w) = Cpixy,....x0)(w) (W), @5
an isomorphism between Quor (P, g)¢ and the algebra Quo,(P,VP)C of all
horizontal G-equivariant forms with values in the vertical bundle V P. Then

we have (g = —[P, Cy].

Proof. (1) through (4) follow from the properties of x*.
(5) We have

(dww)(&,n) = (X dw) (&, 1) = dw(xE, xn)
= (x§wxn) — (xmw(x§) — w([x&: xn])
= —w([x¢, xn]) and

—C(Q(&,n)) = R(&n) = PXE xN] = Cu((xe.xm)-

(6) Using (22.2) we have

du = dy,(dw + 1w, w]A)
= x"ddw + $x"d[w,w]A
= I ([dsln — [, dl ) = X [dwy ]
= [x"dw, x*w|, = 0, since x*w = 0.

(7) For ¢ € Q(P,W) we have

(dox*0)(Xo, -+, X) = (dx" @) (X(Xo), - - -, x(Xi)
= 3 DN X0, oo X (X)s -+ (X))
0<i<k
+Z 1™ (") (I (Xa), x(X;)], x(Xo), - - -
= 3 (CDAX) (K0, -+ XKy -+ X (X))
0<i<k
+Z D™ o([x(Xa), x(X;)] = @[x(X3), x(X;)], x(X0), - - -

(8) dod, =

—

(X XX )
= (dp)(X(X0) - - -» x(Xk)) + (irp) (X(X0), - - -, X(Xk))
= (do + X"ir)(¢) (X0, - - -, Xg).

x*dx*d = (x*ir + x*d)d = x*ird holds by (7).
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(9) If we insert one vertical vector field, say (x for X € g, into d, 1, we get 0 by
definition. For the right hand side we use i¢, ¢ =0 and L¢ ) = %!0 (FIX ) ) =
(rexXPIX) 5 qp = 5 ‘0 Ad(exp(—tX))y = —ad(X )y to get
i (dl/f + [w7 w]/\) = iCde + diCXw + [iCXwa ’(ﬂ] - [wa iCXw]
= Loy ¥+ [X, 4] = —ad(X)y + [X, 4] = 0.

Let now all vector fields &; be horizontal, then we get

(dot)(8os--- &) = (X dY)(Sos -, &k) = dip(&o, - - 5 &),
(dY + [w, ¥]A)(Cos -, &k) = d¥(&o, - -, Ek)-
So the first formula holds.
(10) We proceed in a similar manner. Let ¥ be in the space Qf_ (P, VP)Y of

all horizontal G-equivariant forms with vertical values. Then for each X € g we
have i, ¥ = 0; furthermore the G-equivariance (r9)*W¥ = ¥ implies that L., ¥ =
[Cx,¥] =0 by (19.16.5). Using formula (19.11.2) we have
o [, W] = [igy @, W] = [, iy W]+ i([@, Cx )W 44 ([P, Cx]) @
=[(x,¥]-0+0+0=0.

|
ot 10

Let now all vector fields §; again be horizontal, then from the huge formula (19.9)
for the Frolicher-Nijenhuis bracket only the following terms in the third and fifth
line survive:

[, W](&1, ..., &eg1) =
= 1)2 Zagna P([W(Eo1s--- 5 &00)s Eo(er)])

+ m ZSIgHO’ (I)( ([50’1760’2]750’37' .- 7§a(€+1))'

For f : P — g and horizontal  we have ®[¢, (¢] = (¢(p) = Caf(e): It is C°°(P)-linear
in &; or imagine it in local coordinates. So the last expression becomes

as required. [

22.6. Theorem. Let (P,p, M,G) be a principal fiber bundle with principal connec-
tion w. Then the parallel transport for the principal connection is globally defined
and G-equivariant.
In detail: For each smooth curve ¢ : R — M there is a smooth mapping Pt.
R x P,y — P such that the following holds:
(1) Pt(e,t,u) € Peyy, Pt(c,0) = Idp,,, and w(% Pt(c,t,u)) = 0.
(2) Pt(c,t) : Poyoy — Peogy is G-equivariant, i.e. Pt(c,t,u.g) = Pt(c,t,u).g holds
for all g € G and v € P. Moreover we have Pt(c,1)*(Cx|Per)) = Cx|Pe(o)
for all X € g.
(3) For any smooth function f: R — R we have
Pt(c, f(t),u) = Pt(co f,t,Pt(c, f(0),u)).
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Proof. By (22.4) the Christoffel forms I'® € Q(U,, X(G)) of the connection w with
respect to a principal fiber bundle atlas (Uy, @) are given by I'Y({,) = R, (¢,),
so they take values in the Lie subalgebra X z(G) of all right invariant vector fields
on G, which are bounded with respect to any right invariant Riemannian metric
on (G. Each right invariant metric on a Lie group is complete. So the connection is
complete by the remark in (14.9).

Properties (1) and (3) follow from theorem (20.8), and (2) is seen as follows:
w(L Pt(c,t,u).9) = Ad(g~)w(L Pt(c,t,u)) = 0 implies Pt(c, t,u).g = Pt(c, t, u.g).
For the second assertion we compute for u € P (q):

Pt(c, t)* (Cx |Pury) (w) = T Pt(c, t) ' (x (Pt(c, t, u))
=T Pt(c,t) " <L|o Pt(c, t, u). exp(sX)
=T Pt(c,t) "' Lo Pt(c, t, u. exp(sX))
= 413 Pt(c,t) "' Pt(c, t, u. exp(sX))
— lou.exp(sX) = (x(w). O

22.7. Holonomy groups. Let (P,p, M,G) be a principal fiber bundle with prin-
cipal connection ® = ( o w. We assume that M is connected and we fix xy € M.

In (20.10) we defined the holonomy group Hol(®,zy) C Diff(P,,) as the group
of all Pt(c,1) : P,, — P, for ¢ any piecewise smooth closed loop through z.
(Reparametrizing ¢ by a function which is flat at each corner of ¢ we may assume
that any c is smooth.) If we consider only those curves ¢ which are nullhomotopic,
we obtain the restricted holonomy group Holy(®, (), a normal subgroup.

Now let us fix ug € Py,. The elements 7(ug, Pt(c,t,up)) € G form a subgroup of
the structure group G which is isomorphic to Hol(®, x¢); we denote it by Hol(w, ug)
and we call it also the holonomy group of the connection. Considering only nullho-
motopic curves we get the restricted holonomy group Holg(w, up) a normal subgroup
of Hol(w, uy).

Theorem.

(1) We have an isomorphism Hol(w, ug) — Hol(®, xo) given by
g (ur fg(u) =up.9.7(ug,w)) with inverse gs := 7(uo, f(uo)) «— f.

(2) We have Hol(w, ug.g) = conj(g~1) Hol(w, ug) and
Holg(w, ug.g) = conj(g~—1) Holg(w, ug).

(3) For each curve ¢ with ¢(0) = z¢ we have Hol(w, Pt(c,t,up)) = Hol(w,uo)
and Holg(w, Pt(c, t,up)) = Holp(w, ugp).

(4) The holonomy group Holg(w,ug) is a connected Lie subgroup of G. The
quotient group Hol(w, ug)/ Holg(w, ug) is at most countable, so Hol(w, ug) is
also a Lie subgroup of G.

(5) The Lie algebra hol(w,ug) C g of Hol(w,up) is generated by {Q(X,,Y,) :
Xu,Y, € Tu,P} as a vector space. It is isomorphic to the Lie algebra
hol(®, o) we considered in (20.10).
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(6) For ug € Py, let P(w,ug) be the set of all Pt(c,t,ug) for ¢ any (piecewise)
smooth curve in M with ¢(0) = x¢ and for t € R. Then P(w,ug) is a sub
fiber bundle of P which is invariant under the right action of Hol(w,ug); so
it is itself a principal fiber bundle over M with structure group Hol(w,u)
and we have a reduction of structure group, cf. (21.6) and (21.14). The
pullback of w to P(w,ug) is then again a principal connection form i*w €
QY (P(w,up); hol(w, ug)).

(7) P is foliated by the leaves P(w,u), u € Py, .

(8) If the curvature Q = 0 then Holg(w, ug) = {e} and each P(w,u) is a covering
of M. They are all isomorphic and are associated to the universal covering
of M, which is a principal fiber bundle with structure group the fundamental
group w1 (M).

In view of assertion (6) a principal connection w is called irreducible *-principle
connection if Hol(w,up) equals the structure group G for some (equivalently any)
Ug € P:co-

Proof. (1) follows from the definiton of Hol(w, ug).

(2) This follows from the properties of the mapping 7 from (21.2) and from the
from the G-equivariance of the parallel transport:

T(uo.9, Pt(c, 1, u0.9)) = 7(ug, Pt(c, 1,up).g9) = g_l.T(uO, Pt(c, 1,up)).g.

So via the diffeomorphism 7(ug, ): Py, — G the action of the holonomy group
Hol(®, up) on P,, is conjugate to the left translation of Hol(w, ug) on G.

(3) By reparameterizing the curve ¢ we may assume that ¢ = 1, and we put
Pt(c,1,u0) =: uy. Then by definition for an element g € G we have g € Hol(w, u1)
if and only if g = 7(uy,Pt(e, 1,uq)) for some closed smooth loop e through z; :=

c(1) = p(uy), i. e.

Pt(c,1)(ug.9) = Pt(c, 1)(r9(ug)) = r?(Pt(c, 1)(ug)) = urg = Pt(e, 1)(Pt(c, 1)(ugp))
ug.g = Pt(c, 1)1 Pt(e, 1) Pt(c, 1)(uo) = Pt(c.e.c™, 3)(ug),

where c.e.c™! is the curve travelling along c(t) for 0 < ¢t < 1, along e(t — 1) for
1 <t <2, and along ¢(3 —t) for 2 < ¢ < 3. This is equivalent to g € Hol(w, ug).

1'is nullhomotopic, so we also

Furthermore e is nullhomotopic if and only if c.e.c™
have Holg(w, u1) = Holgp(w, ugp).
(4) Let ¢ : [0,1] — M be a nullhomotopic curve through zo and let h : R* — M
be a smooth homotopy with h1|[0,1] = ¢ and h(0,s) = h(t,0) = h(t,1) = zg. We
consider the pullback bundle

p*h

h*P ———

s b

RZ_ N
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Then for the parallel transport Pt® on P and for the parallel transport Pt""® of
the pulled back connection we have
Pt® (he, 1,u0) = (p*R) Pt 2((t, ),1,u0) = (p*R) FIC" "0 (¢, ug).

So t +— 7(ug, Pt® (hy,1,u0)) is a smooth curve in the Lie group G starting from e,
so Holp(w, up) is an arcwise connected subgroup of G. By the theorem of Yamabe
(which we mentioned without proof in (5.6)) the subgroup Holp(w,ug) is a Lie
subgroup of G. The quotient group Hol(w, uo)/ Holp(w,ug) is a countable group,
since by Morse theory M is homotopy equivalent to a countable CW-complex, so
the fundamental group (M) is countably generated, thus countable.

(5) Note first that for ¢ € G and X € X(M) we have for the horizontal lift
(r9)*CX = CX, since (r9)*® = & implies T3,(r?).H, P = H, 4P and thus

Tu(r9).C(X, u) = Ty (r?)(Tup| Hy P) (X (p(u)))
= (Tugp|HugP) (X (p(u)) = C(X, u.g).
Thus hol(w) is an ideal in the Lie algebra g, since
Ad(g7QC(X,u), C(Y,u)) = QT (r9).C(X,u), Ty(r?).C(Y, u))
=Q(C(X,u.9),C(Y,u.g)) € hol(w).
We consider now the mapping
€“ : hol(w) — X(Py,)

€% (W) = CAd(r(up,u)-1)x (W)
It turns out that £y° is related to the right invariant vector field Rx on G under
the diffeomorphism 7(ug, )= (ru,) ' : Py, — G, since we have

Tg (TUQ)‘RX (g) = Tg (Tuo).Te(,[Lg).X - TUO (rg)‘Te(Tuo)'X
= Touo (17)Cx (u0) = Cad(g—1)x (u0-9) = ¥ (uo-9)-
Thus £“0 is a Lie algebra anti homomorphism, and each vector field £° on P, is

complete. The dependence of £“° on ug is explained by

(1) = Cad(r(uog,u)-1)x (1) = Cad(r(uo,u)-1) Ad(g)x (1)

= gx(zj(g)x(u)'
Recall now that the holonomy Lie algebra hol(®, z¢) is the closed linear span of all
vector fields of the form Pt(c,1)*R(CX,CY), where X,Y € T, M and c is a curve
from xg to . Then we have for u = Pt(c, 1, uq)

R(C(X,u),C(Y,u)) = Carc(x,u),c(v,u) (@)
R(CX,CY)(ug) =T(r?)R(CX,CY)(u) = T(r?)Coc(x,u),c(vu)) ()

= CAd(g-1)(C(X,u),C(Y:u) (U9) = ES (o (X u).c (v o)) (49)
(Pt(c, )" R(CX,CY))(ug.g9) =

=T (Pt(c, 1) ") Cada(g-1)0(c(xu).cvu)) (Pt(c, 1, u0.9))
= (Pt(c, 1)"Cada(g—1)0(c(x,u),0(vu))) (U0-9)
= CAd(g~H)Q(C(X,u),C(Yw)) (U0-9) by (22.6.2)

= €S%C(X,u),C(Y,u)) (wo-9)-
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So €% : hol(w) — hol(®, z¢) is a Lie algebra anti isomorphism. Moreover hol(®, z¢)
consists of complete vector fields and we may apply theorem (20.11) (only claim 3)
which tells us that the Lie algebra of the Lie group Hol(®, z() is hol(®, zy). The
diffeomorphism 7(ug, ) : Py, — G intertwines the actions and the infinitesimal
actions in the right way.

(6) We define the sub vector bundle E C TP by E, := H,P+T,(r,). hol(w). From
the proof of 4 it follows that £}° are sections of E for each X € hol(w), thus E is a
vector bundle. Any vector field n € X(P) with values in F is a linear combination
with coefficients in C°°(P) of horizontal vector fields CX for X € X(M) and of (z
for Z € hol(w). Their Lie brackets are in turn

(CX,CY(u) = C[X,Y](u) + R(CX,CY)(u)
= C[X,Y](u) + Coc(x.u),c(v,u))(u) € T(E)
[€2,CX] = L, CX = F|o(FI)"CX =0,

since (r9)*CX = CX, see step (5) above. So E is an integrable subbundle and
induces a foliation by (3.28.2). Let L(ug) be the leaf of the foliation through wuyg.
Since for a curve ¢ in M the parallel transport Pt(c,t,ug) is tangent to the leaf,
we have P(w,up) € L(ug). By definition the holonomy group Hol(®,z() acts
transitively and freely on P(w,uo) N P,,, and by (5) the restricted holonomy group
Holy(®, z¢) acts transitively on each connected component of L(ug) N Py, , since the
vertical part of E is spanned by the generating vector fields of this action. This
is true for any fiber since we may conjugate the holonomy groups by a suitable
parallel transport to each fiber. Thus P(w,uo) = L(up) and by lemma (21.2) the
sub fiber bundle P(w, z¢) is a principal fiber bundle with structure group Hol(w, ug).
Since all horizontal spaces H, P with u € P(w,z() are tangential to P(w,xg), the
connection & restricts to a principal connection on P(w,zo) and we obtain the
looked for reduction of the structure group.

(7) This is obvious from the proof of (6).

(8) If the curvature € is everywhere 0, the holonomy Lie algebra is zero, so P(w,u)
is a principal fiber bundle with discrete structure group, p|P(w,u) : P(w,u) — M
is a local diffeomorphism, since T, P(w,u) = H, P and Tp is invertible on it. By
the right action of the structure group we may translate each local section of p
to any point of the fiber, so p is a covering map. Parallel transport defines a
group homomorphism ¢ : w1 (M, z¢) — Hol(®,ug) = Hol(w,ug) (see the proof of
(4)). Let M be the universal covering space of M, then from topology one knows
that M — M is a principal fiber bundle with discrete structure group (M, o).
Let 71 (M) act on Hol(w, ug) by left translation via ¢, then the mapping f : M x
Hol(w, ug) — P(w,ug) which is given by f([c],g) = Pt(c, 1,u0).g is w1 (M )-invariant
and thus factors to a mapping

M Xy () Hol(w, ug) = M [Hol(w, u)] — P(w,uq)

which is an isomorphism of Hol(w, ug)-bundles since the upper mapping admits
local sections by the curve lifting property of the universal cover. [
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22.8. Inducing principal connections on associated bundles.

Let (P,p, M,G) be a principal bundle with principal right action r : P x G — P
and let £ : G x S — S be a left action of the structure group G on some manifold
S. Then we consider the associated bundle P[S] = P[S,{] = P x¢ S, constructed
n (21.7). Recall from (21.18) that its tangent and vertical bundle are given by
T(P[S,{]) =TP[TS, T¢] =TP xpe TS and V(P][S,{]) = P[T'S,Txt] = P xc TS.

Let ® = (ow € QY P, TP) be a principal connection on the principal bundle P.
We construct the induced connection ® € Q(P[S], T(P[S])) by factorizing as in
the following diagram:

TP x TS 221 rpyTs = 7P x5)

Tq= q’l q’l Tq[
TP x76 TS —2 TP xpa TS — = T(P xg S).

Let us first check that the top mapping ® x Id is T'G-equivariant. For g € G and
X € g the inverse of T.(uy)X in the Lie group T'G is denoted by (Te(uy)X) ™!, see
lemma (5.17). Furthermore by (5.13) we have

Tr(&u, Te(pg)X) = Tu(r?)6u + Tr((0p x Lx)(u,g))
= Tu(r9)u + Ty(ru)(Te(png) X)
- Tu(rg)gu + CX (Ug)

We may compute

(@ > Id)(Tr(€u, Te(p1g) X), TU(Te(11g) X))
= (P(Tu(r?)éu + Cx (ug)), TU(Te(11g) X))
= (®(Tu(r?)€u) + (Cx (ug)), TU((Te(pg) X) ™", 115))
= ((Tu(r)®€u) + Cx (ug), TC(Te(1g) X))
= (Tr(®(&u), Teg) X), TU(Te(p1g) X) ™", 15))-
So the mapping ® x Id factors to ® as indicated in the diagram, and we have
®od = from (¢ x Id) o (P x Id) = ® x Id. The mapping & is fiberwise linear,
since ® x Id and ¢’ = Tq are. The image of ® is

(VP xTS)=q (ker(Tp: TP xTS — TM))

=ker(Tp: TP xpc TS — TM) =V(P[S,{]).

Thus ® is a connection on the associated bundle P[S]. We call it the induced

connection.

From the diagram it also follows, that the vector valued forms ® x Id € Q1 (P x
S, TP x TS) and ® € QY (P[S],T(P[9])) are (q : P x S — P[S])-related. So by
(19.15) we have for the curvatures

(@ x Id,® x Id] = $[®,®] x 0 = Rg x 0,

[, ],

Roxra =
Rg =

1
2
1
2
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that they are also g-related, i.e. Tgo (Re X 0) = Rg o (Tq X Tq).

By uniqueness of the solutions of the defining differential equation we also get that
Ptg(c,t, q(u, s)) = q(Pta(c, t,u), s).

22.9. Recognizing induced connections. We consider again a principal fiber
bundle (P,p, M,G) and a left action £ : G x S — S. Suppose that we have a
conection ¥ € QY(P[S],T(P[S])) on the associated bundle P[S] = P[S,¢]. Then
the following question arises: When is the connection ¥ induced from a principal
connection on P? If this is the case, we say that ¥ is compatible with the G-
structure on P[S]. The answer is given in the following

Theorem. Let ¥ be a (general) connection on the associated bundle P[S]. Let us
suppose that the action ¢ is infinitesimally effective, i.e. the fundamental vector
field mapping ¢ : g — X(S) is injective.

Then the connection V is induced from a principal connection w on P if and only
if the following condition is satisfied:

In some (equivalently any) fiber bundle atlas (Uy,a) of P[S] belonging
to the G-structure of the associated bundle the Christoffel forms I'* €
QY (Uq, X(S)) have values in the sub Lie algebra X puna(S) of fundamental
vector fields for the action /.

Proof. Let (U, ¢q : P|U, — U, X G) be a principal fiber bundle atlas for P. Then
by the proof of theorem (21.7) the induced fiber bundle atlas (U, ¥, : P[S]|Us —
U, x S) is given by

(1) w;l(ﬂ%s) = q(gz);l(x,e),s),
(2) (Y © q) (05" (2,9),8) = (2,9.5).

Let ® = ( ow be a principal connection on P and let ® be the induced connection
on the associated bundle P[S]. By (20.7) its Christoffel symbols are given by

(02,0 &y 8)) = —(T(vha) 0 @ o T (95 ")) (éx, 05)
~(T(¢a) o ®oTqo (T(pg") x Id))(&s,0c,05) by (1)
= —(T(¢a) 0 Tqo (® x Id))(T(p5")(&x,0c), 05) by (22.8)
—(T(

T(Ya) o Tq)(®(T ( )(51‘7 ))7 s)

= (T(¢a) © Ta)(T (05 ) (02, TG (&, €)), 0) by (22.4.3)
= —T(aoqo(pg" x Id))(0z,wa(&),05) by (22.4.7)
= —Te()wa(&e) by (2)

= —Cua(e.)(8)-

So the condition is necessary. Now let us conversely suppose that a connection ¥
on P[S] is given such that the Christoffel forms I'§ with respect to a fiber bundle
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atlas of the G-structure have values in Xjfy,q(S). Then unique g-valued forms
wa € Q1 (U,, g) are given by the equation

I (&) = C(wal&a)),

since the action is infinitesimally effective. From the transition formulas (20.7) for
the I'$ follow the transition formulas (22.4.5) for the w®, so that they give a unique
principal connection on P, which by the first part of the proof induces the given
connection ¥ on P[S]. O

22.10. Inducing principal connections on associated vector bundles.

Let (P,p, M,G) be a principal fiber bundle and let p : G — GL(W) be a repre-
sentation of the structure group G on a finite dimensional vector space W. We
consider the associated vector bundle (E := P[W, p|,p, M, W), which was treated
in some detail in (21.11).

Recall from (6.12) that T(E) = TP xp¢ TW has two vector bundle structures with
the projections

7p: T(E) =TP xr¢ TW — PxgW = E,
Tpopry :T(E)=TP xpg TW — TM.

Now let ® = ( ow € QY(P,TP) be a principal connection on P. We consider the
induced connection ® € Q' (E,T(E)) from (22.8). A look at the diagram below
shows that the induced connection is linear in both vector bundle structures. We
say that it is a linear connection on the associated bundle.

TP x TW ® x Id TPXTW — TPxW xW
T v
PxW
Tq lq Tq
PxgW=EFE
TP XTa T™W (i) TP XTa W TE
Tp Tp
TM

Recall now from (6.12) the vertical lift vlg : E Xy E — V E, which is an isomor-
phism, pri—mwg—fiberwise linear and also p—Tp—fiberwise linear.

Now we define the connector K of the linear connection ® by

K :=pryo(vlg) to®:TE -VE — Exy E — E.
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Lemma. The connector K : TE — FE is a vector bundle homomorphism for both
vector bundle structures on TE and satisfies K ovlg =pro: Exy E—-TE — F.

So K is mp—p—fiberwise linear and T p—p—fiberwise linear.

Proof. This follows from the fiberwise linearity of the composants of K and from
its definition. [J

22.11. Linear connections. If (E,p, M) is a vector bundle, a connection ¥ €
QYE,TE) such that ¥ : TE — VE — TE is also Tp-Tp-fiberwise linear is called
a linear connection. An easy check with (22.9) or a direct construction shows that
¥ is then induced from a unique principal connection on the linear frame bundle
GL(R™, E) of E (where n is the fiber dimension of E).

Equivalently a linear connection may be specified by a connector K : TE — E with
the three properties of lemma (22.10). For then HE := {{, : K(&u) = Op(u } is a
complement to V E in T E which is Tp-fiberwise linearly chosen.

22.12. Covariant derivative on vector bundles. Let (F,p, M) be a vector
bundle with a linear connection, given by a connector K : TEF — E with the
properties in lemma (22.10).

For any manifold N, smooth mapping s : N — E, and vector field X € X(IN) we
define the covariant derivative of s along X by

(1) Vxs:=KoTsoX:N—-TN —-TFE — E.

If f: N — M is a fixed smooth mapping, let us denote by C%°(N, E) the vector
space of all smooth mappings s : N — F with po s = f — they are called sections
of E along f. From the universal property of the pullback it follows that the vector
space C7°(N, E) is canonically linearly isomorphic to the space I'(f*E) of sections
of the pullback bundle. Then the covariant derivative may be viewed as a bilinear

mapping
(2) V:X(N)x CP(N,E) — C;°(N, E).
In particular for f = Idy; we have

V:X(M)xT(E) — [(E).

Lemma. This covariant derivative has the following properties:

(3) Vxs is C°(N)-linear in X € X(N). So for a tangent vector X, € TN the
mapping Vx, : CF (N, E) — Ey,) makes sense and we have (Vxs)(z) =
VX(m)S.

(4) Vxs is R-linear in s € C°(N, E).

(5) Vx(h.s) = dh(X).s + h.Vxs for h € C>*(N), the derivation property of
Vx.

(6) For any manifold Q and smooth mapping g : Q@ — N andY, € T,,Q we have
Vrgyv,s =Vy,(sog). IfY € X(Q) and X € X(N) are g-related, then we
have Vy(sog) =(Vxs)og.
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Proof. All these properties follow easily from the definition (1). O

Remark. Property (6) is not well understood in some differential geometric liter-
ature. See e.g. the clumsy and unclear treatment of it in [Eells-Lemaire, 1983].

For vector fields X, Y € X(M) and a section s € I'(E) an easy computation shows
that

RP(X,Y)s:=VxVys—VyVxs—Vixys
= ([Vx,Vy] = Vixy))s
is C°°(M)-linear in X, Y, and s. By the method of (7.3) it follows that RZ is a

2-form on M with values in the vector bundle L(E, E), i.e. R¥ € Q*(M,L(E, E)).
It is called the curvature of the covariant derivative.

For f: N — M, vector fields X, Y € X(N) and a section s € C3°(N, E) along f
one may prove that

VxVys—VyVxs—Vixys=(f*RE)X,Y)s:= RE(Tf.X,TfY)s.

22.13. Covariant exterior derivative. Let (E,p, M) be a vector bundle with a
linear connection, given by a connector K : TE — FE.

For a smooth mapping f: N — M let Q(N, f*E) be the vector space of all forms
on N with values in the vector bundle f*FE. We can also view them as forms on N
with values along f in E, but we do not introduce an extra notation for this.

The graded space Q(N, f*E) is a graded Q(N)-module via

(P ABYX1,. .. Xpiq) =
= 1) sign(0) 9(Xo1, -+ s Xop)@(Xo(pr1)s -+ Xo(pra)):

The graded module homomorphisms H : Q(N, f*E) — Q(N, f*E) (so that H (e A
®) = (—1)des H-deg v, A [(P)) are easily seen to coincide with the mappings pu(A)
for A€ QP(N, f*L(E, E)), which are given by
(L(A)P)(X1,... , Xpig) =
= 1) sign(o) A(Xo1, -, Xop)(P(Xo(pr1)s - » Xopia):

The covariant exterior derivative dy : QP (N, f*E) — QPTL(N, f*E) is defined by
(where the X; are vector fields on N)

p

(dv®)(Xo,...,X,) = Z(— VX, ®(Xo,. .. X;, ., X))

+ Z D) O([X5, X,], Xos oy Xy X5 X).

0<i<5<p
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Lemma. The covariant exterior derivative is well defined and has the following
properties.
(1) For s e T(f*E) = QYN, f*E) we have (dvys)(X) = Vxs.
(2) dv(pA®)=dp AD+ (—1)%89p A dy®.
(3) For smooth g: Q — N and ® € Q(N, f*E) we have dy(¢*®) = g*(dv ).
(4) dydy® = p(f*R")d.

Proof. It suffices to investigate decomposable forms ® = ¢ ® s for ¢ € QP(N) and
s € I'(f*E). Then from the definition we have dy (¢ ® s) = dp @ s+ (—1)Pp Adys.
Since by (22.12.3) dys € Q(N, f*E), the mapping dv is well defined. This formula
also implies (2) immediately. (3) follows from (22.12.6). (4) is checked as follows:

dvdy(p ® s) = dv(dp @ s+ (—1)Pp Adys) by (2)
=0+ (=1)*p Advdys
= o A p(f*RE)s by the definition of R
=u(f*R)(p®s). O

22.14. Let (P,p, M,G) be a principal fiber bundle and let p : G — GL(W) be a
representation of the structure group G on a finite dimensional vector space W.

Theorem. There is a canonical isomorphism from the space of P[W, p|-valued dif-
ferential forms on M onto the space of horizontal G-equivariant W -valued differ-
ential forms on P:

¢* - Q(M, PW, p]) = Quor (P, W) = {p € QP,W) 1 ixp =0
for all X € VP, (r9)*o = p(g~ ') o p for all g € G}.

In particular for W = R with trivial representation we see that
p* QM) — QhOT(P)G ={p € Qnor(P) : (r9) 0 = ¢}
1$ also an isomorphism. The isomorphism

¢ : QO(M, P[W]) =T(P[W]) — Q) (P,W)¢ = C>(P,W)“

hor

is a special case of the one from (21.12).

Proof. Recall the smooth mapping 7¢ : P x s P — G from (21.2), which satisfies
Uz, T (U, V2)) = Vg, T (Uz.g,ul.g") = g 178 (ug, u).g', and 7€ (ug, ug) = e.
Let ¢ € QF (P,W)Y Xi,...,X) € T,P, and X},..., X, € TP such that

hor

Tup-X; = Twp. X! for each i. Then we have for g = 7% (u, u’), so that ug = u’:

a(u, pu(X1, ..., Xi)) = a(ug, p(g™ ") pu(X1, ..., Xi))
= q(u', ((r")"P)u(X1, - ., Xi))
= q(u, pug(Tu(r?). X1, ..., Tu(r?). X))
=q(u, pu (X1,...,X})), since T, (r9)X; — X € Vi P.
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By this a vector bundle valued form ® € Q¥ (M, P[W]) is uniquely determined.
For the converse recall the smooth mapping 7V : P x; P[W, p] — W from (21.7),
which satisfies 7V (u, q(u,w)) = w, q(ug, ™V (Ug,vz)) = Ve, and TV (uzg,v,) =
P(g_l)TW(uman)-

For ® € QF(M, P[W]) we define ¢*® € QF(P,W) as follows. For X; € T, P we put
(@*®)u (X1, .., Xi) 1= 7" (1, @iy (Tup- X1, .., Tup- X))
Then ¢*® is smooth and horizontal. For ¢ € G we have

(r)* (")) u( X1, ..o, Xi) = (¢F®) g (Tu(r?). X1, ..., Tu(r9).Xy,)
=7 (ug, Py ug) (Tugp- Tu(r?). X1, ..., Tugp. Tu(r?).Xy))
= p(g~ )7 (u, Pp(uy(Tup-X1, ..., Tup. X))
= p(g7 ") (@"®)u(X1, ..., X).

Clearly the two constructions are inverse to each other. [J

22.15. Let (P,p,M,G) be a principal fiber bundle with a principal connection
® = (ow, and let p: G — GL(W) be a representation of the structure group G
on a finite dimensional vector space W. We consider the associated vector bundle
(E := P[W,p|,p, M,W), the induced connection ® on it and the corresponding
covariant derivative.

Theorem. The covariant exterior derivative d,, from (22.5) on P and the covariant
exterior derivative for P[W]-valued forms on M are connected by the mapping q*
from (22.14), as follows:

qtt ody =d, o qti : Q(M, PW]) — Qpor (P, W)G.

Proof. Let us consider first f € Q9 (P,W)% = C>®(P,W)%, then f = ¢*s for s €
[(P[W]) and we have f(u) = 7 (u, s(p(u))) and s(p(u)) = q(u, f(u)) by (22.14)
and (21.12). Therefore we have Ts.Tp. X, = Tq(X,,Tf.X,), where Tf.X, =
(f(u),df(Xy,)) € TW =W x W. If x : TP — HP is the horizontal projection as
n (22.5), we have T's.Tp. X, = Ts.Tp.x. Xy = Tq(x.Xu, Tf.x.-Xy). So we get

(qﬂdvs) X)) =7V (u, (dvs)(Tp.Xy,))

=7"(u, Vrp.x,5) by (22.13.1)
=7V (u, K.Ts.Tp.X.,) by (22.12.1)
=7V (u, KTq(X Xu, Tfx.Xu)) from above
=7V (u, pra.vl; Wl D.Tq(x-Xu, Tf.x-Xu)) by (22.10)
=7V (u, pra.vl, 1 w114 (® x Id)(x.Xu, Tf.x.X4))) by (22.8)

=7 (u, prs. vlp Wl Tq(0,,Tf.x-Xu))) since ®.x =0
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=7V (u, q.pravlpl - (0u, Tf.x-X0))) since ¢ is fiber linear
=7 (u, q(u, df x-Xu)) = (X" df)(Xu)
= (dwd*s)(Xu).

Now we turn to the general case. It suffices to check the formula for a decomposable
P[W]-valued form ¥ = ) ® s € QF(M, P[W]), where 1 € QF(M) and s € T'(P[W]).
Then we have

wqﬁ(w ®s) =dy,(p Y- qﬁs)
do(p*) - ¢*s + (—1)Fx*p* Adug's by (22.5.1)
= X*p*dy - ¢*s + (=1)"p Y A ¢*dys from above and (22.5.4)
=p'd - ¢fs + (~1)"p"¥ A didys
= ¢ (dY @ s + (—-1)* ¥ A dys)
=ddy(p®s). O

22.16. Corollary. In the situation of theorem (22.15), the Lie algebra valued
curvature form Q € Q2_ (P, g) and the curvature RPW1 € Q2 (M, L(P[W], P[W)))
are related by

hor

f PW] _
qrpiw,pw) It W= poq,

where p' = Tep : g — L(W, W) is the derivative of the representation p.

Proof. We use the notation of the proof of theorem (22.15). By this theorem we
have for X, Y € T, P

(Aol @opyy)5)u(X,Y) = (¢*dvdys)u(X,Y)
= (¢*R"Ms5),(X,Y)
W (u, RPN Tup X, Tup.Y ) s(p(w)))
= (@ e piyy BT (X V) () ().
On the other hand we have by theorem (22.5.8)

(dwdwq®s)u(X,Y) = (x*irdgbs).(X,Y)
= (dg*s)u(R(X,Y)) since R is horizontal

= (dg*s)(—Carx vy (1)) by (22.2)

= Gy () (FIZ (w)

= %‘0 W (. exp(—tQX,Y)), s(p(u. exp(—tQ(X,Y)))))
= %‘0 W (u. exp(—tQX,Y)), s(p(u)))

- %}0 )

(exptQUX, Y)W (u, s(p(u))) by (21.7)
= p' (X, Y))(¢s)(w). O
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23. Characteristic classes

23.1. Invariants of Lie algebras. Let G be a Lie group with Lie algebra g,
let @ g* be the tensor algebra over the dual space g*, the graded space of all
multilinear real (or complex) functionals on g. Let S(g*) be the symmetric algebra
over g* which corresponds to the algebra of polynomial functions on g. The adjoint
representation Ad : G — L(g, g) induces representations Ad" : G — L(Q) g*, Q) g*)
and also Ad* : G — L(S(g*),S(g*)), which are both given by Ad™(g)f = f o
(Ad(g7!) ® -+ ® Ad(g™1)). A tensor f € ®g* (or a polynomial f € S(g*)) is
called an invariant of the Lie algebra if Ad*(g)f = f for all g € G. If the Lie group
G is connected, f is an invariant if and only if Lx f = 0 for all X € g, where Lx
is the restriction of the Lie derivative to left invariant tensor fields on G, which
coincides with the unique extension of ad(X)* : g* — g* to a derivation on &) g* or
S(g*), respectively. Compare this with the proof of (12.16.2). Obviously the space
of all invariants is a graded subalgebra of @) g* or S(g*), respectively. The usual
notation for the algebra of invariant polynomials is
1(G) = P 1"(G) = S(g")7 = P 5*(g")°.
k>0 k>0

We will later determine the generating systems of the algebra of invariant polyno-
mials for the most important Lie algebras.

23.2. The Chern-Weil forms. Let (P,p, M, G) be a principal fiber bundle with
principal connection ® = ( o w and curvature R = { o Q2. For ¢; € QPi(P,g) and
f € S*(g*) ¢ ®"g* we have the differential forms

Y1 ®p - Op P € WPTTTTPE(P g R @ g),
fo(t1 ®n - ®n k) € QPrEteK (P).

The exterior derivative of the latter one is clearly given by

d(f o (Y1 @n - @atr)) = fod(ipr ®n -+ @n Pi)
=fo (Zfﬁ(—l)pﬁmﬂ“l% Qp - On d; Q-+ Qp W)

Let us now consider an invariant polynomial f € I*(G) and the curvature form
Qe Q2 . (P,g)Y Then the 2k-form f o (2 ®x -+ ®, ) is horizontal since by

hor

(22.2.2) Q is horizontal. It is also G-invariant since by (22.2.2) we have
(r9)*(f o (Q®n -+ @A Q) = fo ((r!) Q@A --- @4 (r9)*Q)
= fo(Ad(g7)Q®p - ®x Ad(g71)Q)
:fo(Q(g)/\...@/\Q)'
So by theorem (22.14) there is a uniquely defined 2k-form cw(f, P,w) € Q2*(M)
with p*cw(f, P,w) = fo (Q®n -+ ®x ), which we will call the Chern-Weil form
of f.
If h: N - M is a smooth mapping, then for the pullback bundle h* P the Chern-
Weil form is given by cw(f, h*P, h*w) = h*cw(f, P,w), which is easily seen by
applying p*.
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23.3. Theorem. The Chern-Weil homomorphism. In the setting of (23.2)
we have:

(1) For f € I*(G) the Chern Weil form cw(f, P,w) is closed: dcw(f, P,w) =
0. So there is a well defined cohomology class Cw(f, P) = [cw(f, P,w)| €
H?k(M), called the characteristic class of the invariant polynomial f.

(2) The characteristic class Cw(f, P) does not depend on the choice of the prin-
cipal connection w.

(3) The mapping Cwp : I*(G) — H?*(M) is a homomorphism of commutative
algebras, and it is called the Chern-Weil homomorphism.

(4) If h : N — M 1is a smooth mapping, then the Chern-Weil homomorphism
for the pullback bundle h* P is given by

CWh*p = h* OCWP : I*(G) — H2*(N)

Proof. (1) Since f € I*(G) is invariant we have for any X € g

0= o Ad(exp(tX0))" f(X1,. .., Xi) =
= 410 f(Ad(exp(tXo)) X1, . .., Ad(exp(tXo) X)) =
=S F(X [ Xe, Xl X)) =
= Zf:J([XO,Xz’],Xl, X , Xp).

This implies that

d(fo(Q®A---®AQ))=fo(Zf:19®A-~~®AdQ®A~-®AQ>
=kfo(d2@n - @A) +kfo(w,Yr@r- @2 Q)
=kfo(doQ®sQ®p---®@x0)=0, by (22.5.6).
p*dew(f, P,w) = dp* cw(f, P,w)
=d(fo(Q®p-- Q) =0,

and thus dcw(f, P,w) = 0 since p* is injective.

(2) Let wo, w1 € QY(P,g)¢ be two principal connections. Then we consider the
principal bundle (P x R,p x Id, M x R, G) and the principal connection @ = (1 —
t)wo + twr = (1 —t)(pr1)*wo + t(pr1)*wy on it, where ¢ is the coordinate function

on R. Let € be the curvature form of @. Let insg : P — P x R be the embedding
at level s, inss(u) = (u, s). Then we have in turn by (22.2.3) for s = 0,1

ws = (inss)*@

Qs = dws + 2 [ws, ws]a
= d(ins,)*® + 1[(ins,)*@, (inss) @]
= (ins,)*(dd + 3@, &]A)

= (ins,)* €.
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So we get for s = 0,1

p*(inss)* ew(f, P x R, @) = (inss)"(p x Idr)* cw(f, P x R, @)
(inss)*(f o (Q@p -~ @1 Q)
fo((insg)* Q@ - - @ (insg)*Q)
fo(s®n - ®n )

p*ew(f, P,ws).

o

Since p* is injective we get (insg)* cw(f, P x R,@) = cw(f, P,ws) for s = 0,1, and
since insy and ins; are smoothly homotopic, the cohomology classes coincide.

(3) and (4) are obvious. [

23.4. Local description of characteristic classes. Let (P, p, M,G) be a prin-
cipal fiber bundle with a principal connection w € Q!(P,g)%. Let s, € I'(P|U,) be
a collection of local smooth sections of the bundle such that (U,) is an open cover
of M. Recall (from the proof of (21.3) for example) that then p, = (p,7%(s4 ©
p, )):P|Uy — Uy x G is a principal fiber bundle atlas with transition functions
Pap(r) = 7%(sa(2), 55(2))-

Then we consider the physicists version from (22.4) of the connection w which
is descibed by the forms w, = s*w € Q'(U,,g). They transform according to
Wo = Ad(gogi)wg + O34, where Og, = gpgidgpa[g if G is a matrix group, see lemma
(22.4). This affine transformation law is due to the fact that w is not horizontal.
Let Q = dw + 3w, w]|\ € QF (P, g)“ be the curvature of w, then we consider again
the local forms of the curvature:

Qa = SZQ = s*(dw + %[w,w]A)
= d(stw) + 3lshw, shwla

- dwa + %[Wouwa]/\

Recall from theorem (22.14) that we have an isomorphism ¢* : Q(M, P[g, Ad]) —
Qo (P,g)%. Then Q, = s:Q is the local frame expression of (¢*)~1(Q) for the

induced chart P[g]|U, — U, x g, thus we have the the simple transformation
formula Q, = Ad(pas)s.

If now f € I*(G) is an invariant of G, for the Chern-Weil form cw(f, P,w) we have

cw(f, P,w)|Uq : = s5(p* ew(f, P,w)) = s5(f o (Q@n - @ Q)
=fo(siQ®n - Qp sEQ)
=f0(Qy - n Qa)s

where Qq @p - @p Qo € QP (Uy, g @ --- @ g).

23.5. Characteristic classes for vector bundles. For a real vector bundle
(E,p, M,R™) the characteristic classes are by definition the characteristic classes
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of the linear frame bundle (GL(R"™, E),p, M,GL(n,R)). We write Cw(f, E) :=
Cw(f,GL(R™, E)) for short. Likewise for complex vector bundles.

Let (P,p, M,G) be a principal bundle and let p : G — GL(V) be a representation
in a finite dimensional vector space. If w is a principal connection form on P with
curvature form (2, then for the induced covariant derivative V on the associated
vector bundle P[V] and its curvature RPV] we have ¢! RVl = p/ 0 Q by corollary
(22.16). So if the representation p is infinitesimally effective, i. e. if p’ : g — L(V, V)
is injective, then we see that actually RVl € Q%(M, P[g)). If f € I*(G) is an
invariant, then we have the induced mapping

k

® IdPXfoR

So the Chern-Weil form can also be written as
w(f, P,w) = P[f]o (RFV @, --- @, RFV]).

Sometimes we will make use of this expression.

All characteristic classes for a trivial vector bundle are zero, since the frame bundle
is then trivial and admits a principal connection with curvature 0.

We will determine the classical bases for the algebra of invariants for the matrix
groups GL(n,R), GL(n,C), O(n,R), SO(n,R), U(n), and discuss the resulting
characteristic classes for vector bundles.

23.6. The characteristic coefficients. . For a matrix A € gl(n,R) = L(R",R")
we consider the characteristic coefficients c}'(A) which are given by the implicit
equation

(1) det(A+tI) = cp(A).t"F,
k=0

From lemma (12.19) we have c'(A) = Trace(A¥A : A¥R™ — A¥R™). The charac-
teristic coefficient ¢} is a homogeneous invariant polynomial of degree k, since we

have det(Ad(g)A + tI) = det(gAg—! + tI) = det(g(A + tI)g~1) = det(A + tI).

Lemma. We have

(3 ) -Eoweo
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Proof. We have

det ((A y ) 4 t]ln+m) — det(A + 11,,) det (B + 1,

0 B
= (ick it k) Zc tm_l

k=0

n+m k
=Y D A (B) | R O
k=0 7=0

23.7. Pontryagin classes. Let (F,p, M) be a real vector bundle. Then the
Pontryagin classes are given by

2k
pi(E) := (%7__1) Cw(cimE By c H*™(M;R), po(E)=1¢c H°(M;R).

The factor \/1_1 makes this class to be an integer class (in H**(M,7Z)) and makes

several mtegral formulas (like the Gauss-Bonnet-Chern formula) more beautiful. In
principle one should always replace the curvature £ by —— \/_Q The inhomoge-

neous cohomology class

= pi(E) € H*(M,R)
k>0

is called the total Pontryagin class.

Theorem. For the Pontryagin classes we have:

(1) If Ey and Es are two real vector bundles over a manifold M, then for the
fiberwise direct sum we have

p(E1 ® Ez) = p(E1) A p(E») € HY (M, R).
(2) For the pullback of a vector bundle along f : N — M we have
p(f7E) = f"p(E).

(3) For a real vector bundle and an invariant f € I*(GL(n,R)) for odd k we
have Cw(f,E) = 0. Thus the Pontryagin classes exist only in dimension
0,4,8,12,....

Proof. (1) If w' € QYGL(R™, E;), gl(n;))“(") are principal connection forms

for the frame bundles of the two vector bundles, then for local frames of the two
bundles s¢, € ['(GL(R", E;|U,) the forms

wt 0
We 1= ( OO‘ wi) € Q' (Uq, gl(n1 + n2))
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are exactly the local expressions of the direct sum connection, and from lemma
(23.6) we see that py(E1 @ Ea) = 3.5 pj(E1)pr—;(E2) holds which implies the
desired result.

(2) This follows from (23.3.4).

(3) Choose a fiber Riemannian metric g on E, consider the corresponding orthonor-
mal frame bundle (O(R™, E), p, M,O(n,R)), and choose a principal connection w
for it. Then the local expression with respect to local orthonormal frame fields s,
are skew symmetric matrices of 1-forms. So the local curvature forms are also skew
symmetric. As we will show shortly, there exists a matrix C' € O(n,R) such that
CAC~!' = AT = —A for any real skew symmetrix matrix; thus CQ,C~' = —Q,,.
But then

F0 (9002092 On - On gaLags ')
fo((=Qa) ®n -+ @n (—24))
(_l)kf © (Qa YNERRRCON Qa)-

fo(Qa®@n-®n Q)=

This implies that Cw(f, E) = 0 if k is odd.

Claim. There exists a matriz C € O(n,R) such that CAC~! = AT for each real
matriz with 0’s on the main diagonal.

Note first that
0 1 a b 0 1\ (d b
1 0 c d 1 0/ \e¢ al”

Let Ej; be the matrix which has 1 in the position (4, 7) in the i-th row and j-th
column. Then the (ij)-transposition matrix P;; =1, — E;; — Ej; + E;; + Ej; acts
by conjugation on an arbitrary matrix A by exchanging the pair A;; and A;;, and
also the pair A;; and A;; on the main diagonal. So the product C = [[,_. P;; has
the required effect on a matrix with zeros on the main diagonal.

1<jJ

By the way, Ad(C) acts on the main diagonal via the longest element in the per-
mutation group, with respect to canoniccal system of positive roots in 5%71):

1 2 ... n—1 n
(n n—1 ... 2 1)' -

23.8. Remarks. (1) If two vector bundles E and F are stably equivalent, i. e.
E@ (M xRP)= F& (M xR?), then p(E) = p(F'). This follows from (23.7.1) and
2.
k

———
(2) If for a vector bundle E for some k the bundle E @ - -- ® E ®(M x R?) is trivial,
then p(E) = 1 since p(E)* = 1.
(3) Let (E,p, M) be a vector bundle over a compact oriented manifold M. For
Ji € Ng we put

)\jlr'“:jr (E) = / p1<E’).71 . pT’(E)]T c R,
M
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where the integral is set to be 0 on each degree which is not equal to dim M.
Then these Pontryagin numbers are indeed integers, see [Milnor-Stasheff, 77]. For
example we have

Ny (T(CP™)) = (2n'+ 1) <2n‘+ 1>‘

J1 Jr
23.9. The trace coefficients. For a matrix A € gl(n,R) = L(R™,R") the trace
coefficients are given by
n k
try (A) := Trace(A") = Trace(A o ... 0 A).

Obviously try is an invariant polynomial, homogeneous of degree k. To a direct
sum of two matrices A € gl(n) and B € gl(m) it reacts clearly by

nim (A0 AF0 n m
trp (O B):Trace(o Bk):trk(A)—l—trk(B).

The tensor product (sometimes also called Kronecker product) of A and B is given
by A® B = (A;"Blk)(i,k),(j,l)Enxm in terms of the canonical bases. Since we have
Trace(A® B) =}, , AiBE = Trace(A) Trace(B), we also get

tr?™(A ® B) = Trace((A ® B)*) = Trace(A* ® B*) = Trace(A*) Trace(B")

= trp (A) tr(B).

Lemma. The trace coefficients and the characteristic coefficients are connected by
the following recursive equation:

k—

;_n

_% k —i-1 c( )trZ_j(A).

JZO

Proof. For a matrix A € gl(n) let us denote by C(A) the matrix of the signed
algebraic complements of A (also called the classical adjoint), i. e

(1) C(A); = (—1)"" det (A

without i-th column,
without j-th row

Then Cramer’s rule reads

(2) A.C(A) =C(A).A =det(A).I
and the derivative of the determinant is given by

(3) ddet(A)X = Trace(C(A)X).
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Note that C(A) is a homogeneous matrix valued polynomial of degree n — 1 in A.
We define now matrix valued polynomials ay(A) by

(4) C(A+1I) = Z Akt
k=0

We claim that for A € gl(n) and £ =0,1,...,n — 1 we have
k . .
(5) ar(A) =) (1) cp_;(A)A.
3=0
We prove this in the following way: from (2) we have
(A4t C(A +tT) = det(A + ¢I)I,

and we insert (4) and (23.6.1) to get in turn

n—1 n
(A+D)) ap(A" 1 =" (AT
k=0 7=0

n—1 n—1
> Aap(AF 4 Cag (A F Zc AT
k=0 k=0

We put a_1(A) := 0 =: a,,(A) and compare coefficients of t"~* in the last equation
to get the recursion formula

A.ag—1(A) + ar(A) = c (A)]

which immediately leads to to the desired formula (5), even for kK = 0,1,...,n. If
we start this computation with the two factors in (2) reversed we get A.ai(A) =
ai(A).A. Note that (5) for k = n is exactly the Caley-Hamilton equation

=> cr (A)A
j=0

We claim that
(6) Trace(ax(A)) = (n — k)ci(A).
We use (3) for the proof:

(det(A + tI)) = ddet(A + tI) (A 4 tI) = Trace(C(A + tD)I)

) Bilo (

n— n—1
= Trace ( ak( t"k1> = Z Trace(ay(A))t"F1.
=0 k=0

2|, (det(A +tI)) = a%( (A" k)
k=0

ol
§|0

= (n— k) (A" rL
k=0
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Comparing coefficients leads to the result (6).

Now we may prove the lemma itself by the following computation:

(n —k)ci (A) = Trace(ar(A)) by (6)

23.10. The trace classes. Let (E,p, M) be a real vector bundle. Then the trace
classes are given by

-1
2myv—1

Between the trace classes and the Pontryagin classes there are the following relations
for k>1

2k
(1) try(F) := < ) Cw(trgm ¥ E) ¢ H* (M, R).

) PlE) = 55 3 pi(E) A triy(E),

which follows directly from lemma (23.9) above.
The inhomogeneous cohomology class

oo

(3) tr(E) = Z (2;)! try(E) = Cw(Traceoexp, F)
k=0

is called the Pontryagin character of E. In the second expression we use the smooth
invariant function Traceoexp : gl(n) — R which is given by

AF 1
Trace(exp(A)) = Trace g ] = E 7 Trace(A").
k>0 k>0

Of course one should first take the Taylor series at 0 of it and then take the Chern-
WEeil class of each homogeneous part separately.
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Theorem. Let (E;,p, M) be vector bundles over the same base manifold M. Then
we have

(4) tI‘(El D EQ) r El) + tI‘(EQ).

(5) tr(E1 @ Ey) = tr(Eq) Atr(Es).

(6) tr(¢g*E) = g* tr(E) for any smooth mapping g : N — M.

t
t

Clearly stably equivalent vector bundles have equal Pontryagin characters. State-
ments (4) and (5) say that one may view the Pontryagin character as a ring homo-
morphism from the real K-theory into cohomology,

tr: Kgp(M) — H*(M;R).
Statement (6) says, that it is even a natural transformation.

Proof. (4) This can be proved in the same way as (23.7.1), but we indicate another
method which will be used also in the proof of (5) below. Covariant derivatives
for F; and Fs induce a covariant derivative on Ey @& E5 by V§1®E2(81,82) =
(V;E{sl, V)Ef ,82). For the curvature operators we clearly have

RE1®E: _ REy g pE2 _ (R(:Jl R%Q)

So the result follows from (23.9) with the help of (23.5).

(5) We have an induced covariant derivative on E; ® E given by Vi*®%s ®
S9 = (Vf(lsl) ® S92 + 51 ® (V%sz). Then for the curvatures we get obviously
REWCE2(XY) = REV(X,Y) ® Idg, + Idg, ® R¥2(X,Y). The two summands of
the last expression commute, so we get

k
k . .
(REl ®[dE2 —|—IdE1 ®RE2)OA,k — Z ( ) (RE1>O/\,_7 A (REQ)O/\,IC_‘]7

where the product involved is given as in
(RF on RP)(X1,...,Xy) = 55 _sign(0)R”(Xo1, Xo2) 0 R (Xo3, Xou),
which makes (Q(M, L(E, E)),04) into a graded associative algebra. The next com-

putation takes place in a commutative subalgebra of it:

tr(F, ® Fy) = [Traceexp(R®' ® Idg, + Idg, ® RE2)]H(M)
= [Trace(exp(REl) QA eXP(RE2))]H(M)
= [Trace(exp(RE")) A TraCG(GXP(RE2))]H(M)
= tI‘(El) VAN tI‘(EQ)

(6) This is a general fact. O

Draft from September 15, 2004 Peter W. Michor,



23.11 23. Characteristic classes 267

23.11. The Pfaffian coefficient. Let (V,g) be a real Euclidian vector space of
dimension n, with a positive definite inner product g. Then for each p we have an
induced inner product on APV which is given by

<961 N NTp,y1r Ao A yp>g = det(f](xiyyj)i,j)'

Moreover the inner product g, when viewed as a linear isomorphism g : V. — V™,
induces an isomorphism 3 : A2V — L, sew(V, V) which is given on decomposable
forms by B(x Ay)(2) = g(x, 2)y — g(y, z)x. We also have

BHA) =A0g € Ly (V*, V) ={B € L(V*,V) : B' = —B} = A*V, where
Bt.vs By 2y

Now we assume that V is of even dimension n and is oriented. Then there is a
unique element e € A"V which is positive and normed: (e, e), = 1. We define

n/2

e

Pf9(A) = %@,5—1@4) VAT 51(4)),,  A€so(nR).

This is a homogeneous polynomial of degree n/2 on so(n,R). Its polarisation is the
n/2-linear symmetric functional

PE Ay, o) = e 57 (A A A BT (Aya))y.

Lemma.
(1) If U € O(V,g) then PfI(U.AU™Y) = det(U)Pf?(A), so Pt? is invariant
under the adjoint action of SO(V,g).
(1) If X € Ly, skew(V, V) = 0(V, g) then we have

n/2
D PEI(Ar,. (X AL Ange) = 0.
=1

Proof. (1) We have U € O(V,g) if and only if g(Uz,Uy) = g(x,y). For g: V —
V* this means U*gU = g and U lg= 1 (U1)* = g1, so we get 3~H(UAU!) =
UAU g7t = UAg~1U* = A2(U)B71(A) and in turn:

PEI(UAUY) = %(e, A U)(BTHA) A== ABTHA)))g
_ % det(U)(A"(U)e, A (U) (B (A) A -+ A BH(A))),
_ % det(U){e, BH(A) A -~ A BL(A)),
_ det(U) PF9(A).

(2) This follows from (1) by differentiation, see the beginning of the proof of
(23.3). O
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23.12. The Pfaffian class. Let (E,p, M,V) be a vector bundle which is fiber
oriented and of even fiber dimension. If we choose a fiberwise Riemannian metric
on F, we in fact reduce the linear frame bundle of E to the oriented orthonormal
one SO(R™, E). On the Lie algebra o(n,R) of the structure group SO(n,R) the
Pfaffian form Pf of the standard inner product is an invariant, Pf € I"/2(SO(n,R)).
We define the Pfaffian class of the oriented bundle E by

Pf(E) := -1\ Cw(Pf, SO(R", E)) € H*(M
)= (5o ) gy OVIPL SO E) € H"(30)

It does not depend on the choice of the Riemannian metric on E, since for any two
fiberwise Riemannian metrics g; and g2 on E there is an isometric vector bundle
isomorphism f : (E, g1) — (F, g2) covering the identity of M, which pulls a SO(n)-
connection for (E,g2) to an SO(n)-connection for (E,g;). So the two Pfaffian
classes coincide since then Pf? o(f*Qo @ -+ ®n [ Qo) = Pf? 0(Qo @A -+ ®p Qa).

Theorem. The Pfaffian class of oriented even dimensional vector bundles has the
following properties:

(1) Pf(E)? = (—1)"/2p,,/»(E) where n is the fiber dimension of E.

(2) Pf(Ey @ E3) = Pf(Ey) A Pf(E>)

(3) Pf(g*)(F) = g* PI(E) for smooth g : N — M.

Proof. This is left as an exercise for the reader. O

23.13. Chern classes. Let (E,p, M) be a complex vector bundle over the smooth
manifold M. So the structure group is GL(n,C) where n is the fiber dimension.
Recall now the explanation of the characteristic coefficients ¢! in (23.6) and insert
complex numbers everywhere. Then we get the characteristic coefficients ¢} €
I*(GL(n,C)), which are just the extensions of the real ones to the complexification.

We define then the Chern classes by

0 x(E) = (%‘jj

The total Chern class is again the inhomogeneous cohomology class

k
> Cw(ci™¥ E) e H**(M;R).

dime E
(2) c(F):= Z cx(E) € H**(M;R).
k=0
It has the following properties:

(3) c(E) = (-1)1"e Pe(E)

(4) c(E1 & Es) = c(Fr) A c(Es)

(5) c(g"E) = g*c(F) for smooth g: N — M

One can show (see [Milnor-Stasheff, 1974]) that (2), (4), (5), and the following
normalisation determine the total Chern class already completely: The total Chern
class of the canonical complex line bundle over S? (the square root of the tangent

bundle with respect to the tensor product) is 1 + wg2, where wg2 is the canonical
volume form on S? with total volume 1.
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Lemma. Then Chern classes are real cohomology classes.

Proof. We choose a hermitian metric on the complex vector bundle E, i. e. we
reduce the structure group from GL(n,C) to U(n). Then the curvature Q2 of a U(n)-
principal connection has values in the Lie algebra u(n) of skew hermitian matrices

A with A* = —A. But then we have c¢'(—v—1A4) € R since detc(—v—14 + ) =
detc(—v—1A + tI) = detc(—vV/—1A+tI). O

23.14. The Chern character. The trace classes of a complex vector bundle are
given by

(1) try(E) := Cw(tri™ ¥ E) ¢ H**(M,R).

~1 \*
2my/—1
They are also real cohomology classes, and we have tro(E) = dimc¢ E, the fiber
dimension of F, and tri(F) = ¢1(E). In general we have the following recursive
relation between the Chern classes and the trace classes:

15

(2) cx(E) = % Z ¢;(E) A tre—; (E),

—

<

which follows directly from lemma (23.9). The inhomogeneous cohomology class

(3) ch(E) =" % try(E) € H*(M,R)
k>0

is called the Chern character of the complex vector bundle E. With the same
methods as for the Pontryagin character one can show that the Chern character
satisfies the following properties:

(4) Ch(El @D EQ) = Ch(El) + Ch(EQ)
(5) Ch(El X EQ) = Ch(El) VAN Ch(EQ)
(6) ch(g"E) = g* ch(E)

From these it clearly follows that the Chern character can be viewed as a ring
homomorphism from complex K-theory into even cohomology,

ch: K¢(M) — H**(M,R),

which is natural.

Finally we remark that the Pfaffian class of the underlying real vector bundle of
a complex vectorbundle E of complex fiber dimension n coincides with the Chern
class ¢, (F). But there is a new class, the Todd class, see below.
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23.15. The Todd class. On the vector space gl(n,C) of all complex (n x n)-
matrices we consider the smooth function

© Nk
(1) F(A) = det (;O (/(<: +1)1)!Ak> .

It is the unique smooth function which satisfies the functional equation

det(A).f(A) = det(I — exp(—A)).

Clearly f is invariant under Ad(GL(n,C)) and f(0) = 1, so we may consider the
invariant smooth function, defined near 0, Td : gl(n,C) D U — C, which is given
by Td(A) = 1/f(A). It is uniquely defined by the functional equation

det(A) = Td(A) det(I — exp(—A))

det(3 A) det(exp(5A)) = Td(A) det(sinh(3A)).

The Todd class of a complex vector bundle is then given by

(2) Td(E) = |GL(C", E)[Td] Z( -1 RE)QWC
’ k>0 21/ —1

H2*(M,R)
= Cw(Td, E).

The Todd class is a real cohomology class since for A € u(n) we have Td(—A) =
Td(A*) = Td(A). Since Td(0) = 1, the Todd class Td(FE) is an invertible element
of H?*(M,R).

23.16. The Atiyah-Singer index formula (roughly). Let F; be complex
vector bundles over a compact manifold M, and let D : I'(E;) — T'(E2) be
an elliptic pseudodifferential operator of order p. Then for appropriate Sobolev
completions D prolongs to a bounded Fredholm operator between Hilbert spaces
D : H¥*P(E)) — HYE,). Its index index(D) is defined as the dimension of the
kernel minus dimension of the cokernel, which does not depend on d if it is high
enough. The Atiyah-Singer index formula says that

index(D) = (—1)4mM ch(o(D)) Td(TM ® C),
T™
where o(D) is a virtual vector bundle (with compact support) on TM \ 0, a formal
difference of two vector bundles, the so called symbol bundle of D.

See [Boos, 1977] for a rather unprecise introduction, [Shanahan, 1978] for a very
short introduction, [Gilkey, 1984] for an analytical treatment using the heat kernel
method, [Lawson, Michelsohn, 1989] for a recent treatment and the papers by
Atiyah and Singer for the real thing.

Special cases are The Gauss-Bonnet-Chern formula, and the Riemann-Roch-Hirze-
bruch formula.
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24. Jets

Jet spaces or jet bundles consist of the invariant expressions of Taylor developments
up to a certain order of smooth mappings between manifolds. Their invention goes
back to Ehresmann [Ehresmann, 1951]. We could have treated them from the
beginning and could have mixed them into every chapter; but it is also fine to have
all results collected in one place.

24.1. Contact. Recall that smooth functions f, g : R — R are said to have contact
of order k at 0 if all their values and all derivatives up to order k coincide.

Lemma. Let f,g: M — N be smooth mappings between smooth manifolds and let
x € M. Then the following conditions are equivalent.

(1) For each smooth curve ¢ : R — M with ¢(0) = x and for each smooth
function h € C*°(M) the two functions ho f oc and h o goc have contact
of order k at 0.

(2) For each chart (U,u) of M centered at x and each chart (V,v) of N with
f(x) € V the two mappings vo fou™t and vogou™!, defined near 0 in
R™  with values in R™, have the same Taylor development up to order k at

0.
(3) For some charts (U,u) of M and (V,v) of N with x € U and f(x) € V we
have
olel olel
e I(Uof)— e x(vog)

for all multi indices « € N™ with 0 < |a| < k.
(1) TEf =Tkg, where T* is the k-th iterated tangent bundle functor.

Proof. This is an easy exercise in Analysis.

24.2. Definition. If the equivalent conditions of lemma (24.1) are satisfied, we
say that f and g have the same k-jet at x and we write j* f() or 5% f for the resulting
equivalence class and call it the k -jet at x of f; x is called the source of the k-jet,
f(x) is its target.

The space of all k-jets of smooth mappings from M to N is denoted by J*(M, N).
We have the source mapping o : J¥(M,N) — M and the target mapping 3 :
J¥(M,N) — N, given by a(j*f(z)) = = and B(j*f(z)) = f(x). We will also
write J¥(M,N) := a~(x), J*(M,N), := 8~ (y), and J¥(M,N), := JE(M,N) n
JF(M, N )y for the spaces of jets with source z, target y, and both, respectively.
For | < k we have a canonical surjective mapping 7¥ : J*(M,N) — J' (M, N),
given by ¥ (j*f(x)) := j!f(x). This mapping respects the fibers of a and 3 and
& = (a,3): JF(M,N) — M x N.
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24.3. Jets on vector spaces. Now we look at the case M = R™ and N = R".

Let f : R™ — R" be a smooth mapping. Then by (24.1.3) the k-jet j*f(z) of f
ant x has a canonical representative, namely the Taylor polynomial of order k of f
at x:

Fla+y) = @)+ df @)y + g F@ + -+ 2 f(w) g+ ollyl")
= f(@) + Tayk £ () + olyl*)

Here y* is short for (y,v, ... ,%), k-times. The ‘Taylor polynomial without constant’

Tayhf oy o Tavh(y) = df )y + g f()? + oo i ()

is an element of the linear space
k .
P*(m,n) == @ LI, (R™,R"),
j=1

where L7, (R™,R™) is the vector space of all j-linear symmetric mappings R x

-+ x R™ — R™, where we silently use the total polarization of polynomials. Con-
versely each polynomial p € P¥(m,n) defines a k-jet j¥(y +— 2z + p(x + y)) with

Y

arbitrary source z and target z. So we get canonical identifications JX(R™ R"), =
P¥(m,n) and
JE(R™ R™) 2 R™ x R™ x P*(m,n).

If U ¢ R™ and V' C R™ are open subsets then clearly J*(U,V) = U x V x P¥(m,n)
in the same canonical way.

For later uses we consider now the truncated composition
o : P*(m,n) x P*(p,m) — P*(p,n),

where p e ¢ is just the polynomial p o ¢ without all terms of order > k. Obviously
it is a polynomial, thus real analytic mapping. Now let U C R™, V C R", and
W C RP be open subsets and consider the fibered product

JHU, V) xg JFW,U) = { (o,7) € JFU, V) x J*(W,U) : a(o) = B(7) }
=U xV xW x P*(m,n) x P*(p,m).

Then the mapping

v MUV xg JFW,U) — JHW, V),
V(o,7) =v((alo), B(0),0), (a(T), B(7), 7)) = (a

is a real analytic mapping, called the fibered composition of jets.
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Let U, U € R™ and V C R"™ be open subsets and let ¢ : U’ — U be a
smooth diffeomorphism. We define a mapping J*(g,V) : J*(U,V) — J*U, V")
by J*(g,V)(5*f(z)) = 7%(f o g)(¢g~*(x)). Using the canonical representation of
jets from above we get J*(g,V)(0) = ~(o,7%9(g(x))) or J*(g,V)(x,y,5) =
(g (), y, &oTay’;_l(I)g). If g is a CP diffeomorphism then J*(g, V) is a CP~F dif-
feomorphism. If ¢’ : U” — U’ is another diffeomorphism, then clearly J*(g’,V) o
JF(g,V) = J*(gog',V)and J¥( ,V) is a contravariant functor acting on diffeo-
morphisms between open subsets of R™. Since the truncated composition  +— G e
Tay’gC 1 ()9 18 linear, the mapping JE(g,R") := Jk(g,R™)|JE(U,R") : J*(U,R™) —
J _1(w)(U’ R™) is also linear.

If more generally g : M’ — M is a diffeomorphism between manifolds the same
formula as above defines a bijective mapping J*(g, N) : J*¥(M,N) — J*(M',N)
and clearly J¥( | N) is a contravariant functor defined on the category of manifolds
and diffeomorphisms.

Now let U C R™, V C R", and W C RP be open subsets and let h : V —
W be a smooth mapping. Then we define J*(U,h) : J¥(U,V) — J¥(U, W) by
JF(U, h)(j* f(x)) = j*(h o f)(z) or equivalently by

JHU, ) (z,y,5) = (x, h(y), Tayyho 7).

If h is CP, then J*(U, h) is CP~F. Clearly J*(U, ) is a covariant functor acting on
smooth mappings between open subsets of finite dimensional vector spaces. The
mapping J (U, h), : JE(U, V), — J*(U, W)y is linear if and only if the mapping
a»—>Tay h e & is linear, so if A is affine or if £ = 1.

If h : N — N’ is a smooth mapping between manifolds we have by the same
prescription a mapping J*(M,h) : J¥(M,N) — J*(M,N’) and J*(M, ) turns
out to be a functor on the category of manifolds and smooth mappings.

24.4. The differential group GF,. The k-jets at 0 of diffeomorphisms of R™
which map 0 to 0 form a group under truncated composition, which will be denoted
by GL*(m,R) or G¥ for short, and will be called the differential group of order
k. Clearly an arbitrary O-respecting k-jet o € P¥(m,m) is in G¥, if and only if its
linear part is invertible, thus

GF = GL*(m,R) ) ® @Lsym R™ R™) =: GL(m) x P¥(m),

where we put PY(m) = @ o L, (R™,R™) for the space of all polynomial map-
pings without constant and linear term of degree < k. Since the truncated composi-
tion is a polynomial mapping, GF, is a Lie group, and the mapping 7F : Gk — Gl
is a homomorphism of Lie groups, so ker(rF) = @?Zl 1 L (R R™) = : PE (m)
is a normal subgroup for all [. The exact sequence of groups

{e} = Pli(m) — Gy, — G, — {e}
splits if and only if [ = 1; only then we have a semidirect product.
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24.5. Theorem. If M and N are smooth manifolds, the following results hold.

(1) J*(M, N) is a smooth manifold (it is of class C™=% if M and N are of class
C"); a canonical atlas is given by all charts (J*(U, V), J¥(u=1,v)), where
(U,u) is a chart on M and (V,v) is a chart on N.

(2) (J¥(M,N),(c, 3), M x N, P*(m,n),GE, x G¥) is a fiber bundle with struc-
ture group, where m = dimM, n = dimN, and where (y,x) € GE x G% acts
on o € P¥(m,n) by (v,x).0 =xeocey L.

(3) If f : M — N is a smooth mapping then j*f : M — J*(M,N) is also
smooth (it is C"% if f is C"), sometimes called the k-jet extension of f.
We have ao j* f = Idy and Bo j*f = f.

(4) If g : M" — M is a (C"-) diffeomorphism then also the induced mapping
J*(g,N) : J*(M,N) — J¥(M',N) is a (C"*-) diffeomorphism.

(5) If h: N — N’ is a (C"-) mapping then J¥(M,h) : J*(M,N) — J*(M,N")
is a (C"~F-) mapping. J*(M, ) is a covariant functor from the category of
smooth manifolds and smooth mappings into itself which maps each of the
following classes of mappings into itself: immersions, embeddings, closed
embeddings, submersions, surjective submersions, fiber bundle projections.
Furthermore J*( |, ) is a contra- covariant bifunctor.

(6) The projections wF : J*(M,N) — J' (M, N) are smooth and natural, i.e.
they commute with the mappings from (4) and (5).

(7) (J¥(M,N),n}, J(M,N),PE (m,n)) are fiber bundles for all I. The bun-
dle (JE(M,N), 7k, J*=1(M, N) LY (R™,R™)) is an affine bundle. The
first jet space JLY(M,N) is a vector bundle, it is isomorphic to the bundle
(L(TM,TN),(mpr,7n), M x N). Moreover we have JE(R,N) = TN and
JY(M,R)g = T*M.

Proof. We use (24.3) heavily Let (Uy,uy) be an atlas of M and let (V,v.) be
an atlas of N. Then J*(uj',vc) : (a, B)"H(Uy x Vo) — J¥(uy(Uy),v:(V2)) is a
bijective mapping and the Chart change looks like

T ) 0 M (gt )t = M (s 0wyt v 0w )

by the functorial properties of J*( , ). J¥(M,N) is Hausdorff in the identifi-
cation topology, since it is a fiber bundle and the usual argument for gluing fiber
bundles applies. So (1) follows.

Now we make this manifold atlas into a fiber bundle by using as charts

(Uy X Vo), 00y 2 JE(M,N)| Uy x Ve — Uy x Vo x PF(m,n),
w(’y,s)(a) = (OA(O') ﬂ( ) Ja(0)< ¥ 7U5)/3(‘7)
We then get as transition functions
w(’y,e)w(é,u) (SL’, Y, 6) = (ZL‘, Y, lej(g(m) (U5 © uw_lﬂ Ve © vy_l)(a-))
= (.fl?, Y, Taygu(y) (UE o Uy_l) °c e Tays,v(a:) (U(; © u';l))7
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and (2) follows.

(3), (4), and (6) are obvious from (24.3), mainly by the functorial properties of
JEC o, ).

(5). We will show later that these assertions hold in a much more general situation,
see the chapter on product preserving functors. It is clear from (24.3) that J*(M, h)
is a smooth mapping. The rest follows by looking at special chart representations
of h and the induced chart representations for J*(M, h).

It remains to show (7) and here we concentrate on the affine bundle. Let a; +a €
GL(n) x P¥(n,n), o + o € P*~Y(m,n) ® L¥ (R™ R"), and b; +b € GL(m) x

sym
PJ(m,m), then the only term of degree k containing oy in (a+ay)e(c+oy)e(b+by)
is aj o oy o bY, which depends linearly on o). To this the degree k-components of
compositions of the lower order terms of o with the higher order terms of a and b

are added, and these may be quite arbitrary. So an affine bundle results.

We have J'(M,N) = L(TM,TN) since both bundles have the same transition
functions. Finally we have Jj(R,N) = L(ToR,TN) = TN, and J!'(M,R)q =
L(TM,TyR) = T*M [

24.6. Frame bundles and natural bundles.. Let M be a manifold of dimension
m. We consider the jet bundle J}(R™, M) = L(ToR™,TM) and the open subset
invJ}(R™, M) of all invertible jets. This is visibly equal to the linear frame bundle
of TM as treated in (21.11).

Note that a mapping f : R™ — M is locally invertible near 0 if and only if j!f(0)
is invertible. A jet o will be called invertible if its order 1-part 7 (o) € J3(R™, M)
is invertible. Let us now consider the open subset invJ§(R™, M) C JH(R™, M) of
all invertible jets and let us denote it by P*M. Then by (21.2) we have a principal
fiber bundle (P*M, 7wy, M, GE ) which is called the k-th order frame bundle of the
manifold M. Its principal right action r can be described in several ways. By the
fiber composition of jets:

r = :invJE(R™ R™) x invJ¥(R™, M) = G* x P*M — P*M;
or by the functorial property of the jet bundle:
3" 9(0) — ian(lf(g, M)

for a local diffeomorphism ¢ : R™,0 — R™, 0.

If h : M — M’ is a local diffeomorphism, the induced mapping J&§(R™, h) maps
the open subset P¥M into P*M’. By the second description of the principal right
action this induced mapping is a homomorphism of principal fiber bundles which
we will denote by P*(h) : P*M — P*M’. Thus P* becomes a covariant functor
from the category M f,, of m-dimensional manifolds and local diffeomorphisms
into the category of all principal fiber bundles with structure group G¥, over m-
dimensional manifolds and homomorphisms of principal fiber bundles covering local
diffeomorphisms.
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If we are given any smooth left action ¢ : Gk x S — S on some manifold S,
the associated bundle construction from theorem (21.7) gives us a fiber bundle
PEM[S, 0] = P*M X gk S over M for each m-dimensional manifold M; by (21.9.3)
this describes a functor P¥( )[S, /] from the category Mf,, into the category of
all fiber bundles over m-dimensional manifolds with standard fiber S and G¥ -
structure, and homomorphisms of fiber bundles covering local diffeomorphisms.
These bundles are also called natural bundles or geometric objects.

It is one of the aims of this book to prove that under mild conditions all functors
between the mentioned categories are of the form described above. This will involve
some rather hard analytical results.

24.7. Theorem. If (E,p,M,S) is a fiber bundle, let us denote by J*(E) — M
the space of all k-jets of sections of E. Then we have:
(1) J*(E) is a closed submanifold of J*(M, E).
(2) The first jet bundle J*(E) — M x E is an affine subbundle of the vector bun-
dle JY(M,E) = L(TM,TE), in fact we have J'(E) = {0 € L(TM,TE) :
Tpoo = Idry}.
(3) (JF(E),nF_,, J*"Y(E)) is an affine bundle.
(4) If (E,p, M) is a vector bundle, then (J*(E), o, M) is also a vector bundle.
If ¢ : E — E’ is a homomorphism of vector bundles covering the identity,
then J*(y) is of the same kind.

Proof. (1). By (24.5.5) the mapping J*(M,p) is a submersion, thus J*(E) =

JF(M,p)~t(j*(Idyr)) is a submanifold. (2) is clear. (3) and (4) are seen by looking
at appropriate canonical charts. [
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CHAPTER VI
Symplectic Geometry and
Hamiltonian Mechanics

25. Symplectic Geometry and Classical Mechanics

25.1. Motivation. A particle with mass m > 0 moves in a potential V(q) along
a curve ¢(t) in R3 in such a way that Newton’s second law is satisfied: mg(t) =
—grad V(q(t)). Let us consider the the quantity p; := m - ¢* as an independent
variable. It is called the i-th momentum. Let us define the energy function (as the
sum of the kinetic and potential energy) by

1 m|q|?
E(q,p) := %IPIQH/((D: |2| + V(q).

Then md(t) = — grad V(q(t)) is equivalent to

i __ OF
qz_apzm
s oE A

pi__aqi7 2_1,2737

which are Hamilton’s equations of motion. In order to study this equation for a
general energy function F(q,p) we consider the matrix

(0 I
r=( 0. %)
Then the equation is equivalent to u(t) = J - grad E(u(t)), where u = (g, p) € RS.
In complex notation, where 2* = ' + /=1 p;, this is equivalent to 2* = —2/—12£.
Consider the Hamiltonian vector field Hp := J - grad E associated to the energy
function E, then we have u(t) = Hg(u(t)), so the orbit of the particle with initial
position and momentum (go, po) = uo is given by u(t) = F17Z (ug).

Let us now consider the symplectic structure

3

w(a,y) = (2'y**" - 2*Ty’) = (alJy) for z,y € RS,
1=1
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Then the Hamiltonian vector field Hg is given by

w(Hg(u),v) = (Hg|Jv) = (J grad E(u)|Jv) =
= (J" J grad E(u)|v) = (grad E(u)|v) = dE(u)v
The Hamiltonian vector field is therefore the ‘gradient of E with respect to the
symplectic structure w; we write Hg = grad® E.

How does this equation react to coordinate transformations? So let f : R x R? —
R3 <R3 be a (local) diffeomorphism. We consider the energy Fo f and put u = f(w).
Then

w(grad®(E o f)(w),v) = d(E o f)(w)v = dE(f(w)).df (w)v
= w(grad” E(f(w)), df (w)v) = w(df (w) df (w) ™" grad” E(f(w)), df (w)v)
= w(df (w) (f* grad” E)(w), df (w)v) = (f*w)((f* grad” E)(w),v).
So we see that f*grad” F = grad”(FE o f) if and only if f*w = w, ie. df(w) €
1

Sp(3,R) for all w. Such diffeomorphisms are called symplectomorphisms. By (3.14)
we have FIJ 8247 F — p=1 o ppgrad™ B o e in any case.

25.2. Lemma. (E. Cartan) Let V be a real finite dimensional vector space, and
let w € A2V* be a 2-form on V. Consider the linear mapping & : V — V* given by
(@), w) = (v, w).

If w # 0 then the rank of the linear mapping @ : V. — V* is 2p, and there exist
linearly independent 1*,... 1?P € V* which form a basis of ©(V) C V* such that

w=">>1_, Pk NI2*. Purthermore, I can be chosen arbitrarily in (V) \ 0.

Proof. Let vy,...,v, be a basis of V and let v!,...,v™ be the dual basis of V*.
Then w = Ziqw(vi,q)j)vi Aol = Dic Qi v AvJ. Since w # 0, not all a;; = 0.
Suppose that ai1o # 0. Put

1 1
"= —o0') = —i(v)w= —z (v1 (Zawv /\vj) =02+ _Zalﬂ ,

a2 a2 a2 a2
1<J

12 = O(vg) = i(v2)w = i(vy) <Z aij Vi A Uj> = —appvt + Zagj V7.

1<J 7j=3
So, [1,12,v3,...,v"™ is still a basis of V*. Put w; := w — [* Al2. Then

oW1 = Gy, w — Gy P A2+ 1 Ny 12 = apal' — 0 —appl! =0,
oW1 = Gy — Gy, P NP+ TN Ny, 2 =12 -124+0=0
So the 2-form w; belongs to the subalgebra of AV* generated by v3,v*,... 0" If

w; = 0 then w = ' A2, If w; # 0 we can repeat the procedure and get the form of
w.

Ifl =w(v) € w(V) C V* is arbitrary but # 0, there is some w € V with ([, w) =
w(v,w) # 0. Choose a basis v1,...,v, of V with v; = w and v = v. Then
P =i(v)w=ivw=1 O3
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25.3. Corollary. Let w € A2V* and let 2p = rank(w : V — V*).

Then p is the marimal number k such that w"* =w A - Aw # 0.
Proof. By (25.2) we have w"? = plI* AI2 A--- AI?P and WP+ =0, O

25.4. Symplectic vector spaces. A symplectic form on a vector space V is a
2-form w € A?V* such that @ : V — V* is an isomorphism. Then dim(V) = 2n
and there is a basis I',...,1*" of V* such that w = > | I A" by (25.2).

For a linear subspace W C V we define the symplectic orthogonal by W«+ =
Wt = {veV:ww,v) =0 for all w € W}; which coincides with the annihilator
(or polar) w(W)° ={v eV : (&(w),v) =0 for allw e W} in V.

Lemma. For linear subspaces W, W1, Wy C V' we have:

(1) wtt=w,

(2) dim(W) + dim(W+) = dim(V) = 2n.

(3) (W) =W° and o(W) = (W)° in V*.

(4) For two linear subspace Wi, Wo C V we have: Wy C Wy < Wi D Wi,
(WlﬂWQ) _Wl —|—W2 , and (Wl—l-Wg) _Wl OWZ .

(5) dim(Wy N W) — dim(Wi- N WiH) = dim Wy + dim W, — 2n.

Proof. (1) - (4) are obvious. (5) can be seen as follows. By (4) we have

dim(W, N Wa)* = dim(Wi- + Wih) = dim(Wi") 4+ dim(W5") — dim(Wi- 0 WiH),
dim (W, N Ws) = 2n — dim(W, N W)+ by (2)
= 2n — dim(W;h) — dim(W3h) 4+ dim(Wit n W)
= dim(Wy) + dim(Ws) — 2n 4+ dim(Wi- N W), O

A linear subspace W C V is called:

isotropic if wCcwt = dim(W) <n
coisotropic if wowt = dim(W) >n
Lagrangian if w=w = dim(W) =n
symplectic if Wnwt =0 = dim(W) = even

25.5. Example. Let W be a vector space with dual W*. Then (W x W*, w) is a
symplectic vector space where w((v, v*), (w, w*)) = (w*,v) —(v*,w). Choose a basis
Wi, ..., w, of W =W** and let w', ..., w" be the dual basis. Thenw = Y, w’ Aw;.
The two subspace W x 0 and 0 x W* are Lagrangian.

Consider now a symplectic vector space (V,w) and suppose that Wy, Wy C V are
two Lagrangian subspaces such that W73 N Wy = 0. Then w : W7 x Wy — R is a
duality pairing, so we may identify Wy with W} via w. Then (V,w) is isomorphic
to W1 x W3 with the symplectic structure described above.
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25.6. Let R?" = R™ x (R™)* with the standard symplectic structure w from (25.5).
Recall from (4.7) the Lie group Sp(n, R) of symplectic automorphisms of (R?*",w),

Sp(n,R) = {A € L(R*",R*): ATJA=J}, where J= ( }(1) . ]I%?’) :
—lg

Let (| ) be the standard inner product on R?* and let R?" = \/—1R" @& R?*" =
C"™, where the scalar multiplication by y/—1 is given by J (;) = (7Y). Then we

W ((0),0)) = o) — e = (O] (1) = (0] 7¢)-
J? = —I 2 implies J € Sp(n,R), and J' = —J = J~! inplies J € O(2n,R). We
consider now the hermitian inner product on C":
h(u,v) : = (ulv) + vV—1w(u,v) = (ulv) + vV—1(u|Jv)
h(v,u) = (v|u) +V=1(v]Ju) = (ulv) + V=1(J "v|u)
= (ulv) = V=1(u|Jv) = h(u,v)

h(Ju,v) = (Julv) + V—=1(Ju|Jv) = vV=1((u|J " Jv) — vV=1(ulJ "v))

= vV —1((u|v) + V—-1w(u,v)) = V—1h(u,v).

have:

Lemma. The subgroups Sp(n,R), O(2n,R), and U(n) of GL(2n,R) acting on
R2™ =2 C™ are related by

O(2n,R)NGL(n,C) = Sp(n,R) N GL(n,C) = Sp(n,R) N O(2n,R) = U(n).

Proof. For A € GL(2n,R) (and all u,v € R*") we have in turn

h(Au, Av) = h(u,v) & AeUn)
(Au|Av) = (ulv) (real part)
{w(Au, Av) = w(u,v) (imaginary part) } & A€O0(n,R)NSp(n,R)
{ (Aulaw) = (ufe) } & Ae0(2n,R)NGL(n,C)

JA=AJ

25.7. The Lagrange Grassmann manifold. Let L(R?*", w) = L(2n) denote the
space of all Lagrangian linear subspaces of R?"; we call it the Lagrange Grassmann
manifold. It is a subset of the Grassmannian G(n,2n;R), see (21.5).

In the situation of (25.6) we consider a linear subspace W C (R?",w) of dimension
n. Then we have:

W is a Lagrangian subspace
S wW=0 < ( |J( )HW=0
< J(W) is orthogonal to W with respect to ( | ) = Re(h)
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Thus the group O(2n,R) N GL(n,C) = U(n) acts transitively on the Lagrange
Grassmann manifold L(2n). The isotropy group of the Lagrangian subspace R™ x 0
is the subgroup O(n,R) C U(n) consisting of all unitary matrices with all entries
real. So by (5.11) we have L(2n) = U(n)/O(n,R) is a compact homogenous space
and a smooth manifold. For the dimension we have dim L(2n) = dimU(n) —
dim O(n, R) = (n + 271y _ nlezl) _ n(nbl)

Which choices did we make in this construction? If we start with a general sym-

plectic vector space (V,w), we first fix a Lagrangian subspace L (= R™ x 0), then
we identify V/L with L* via w. Then we chose a positive inner product on L,
transport it to L* via w and extend it to L x L* by putting L and L* orthogonal
to each other. All these possible choices are homotopic to each other.

Finally we consider detc = det : U(n) — S C C. Then det(O(n)) = {£1}. So
det® : U(n) — S* and det*(O(n)) = {1}. For U € U(n) and A € O(n,R) we have
det*(UA) = det*(U)det*(A) = det*(U), so this factors to a well defined smooth
mapping det® : U(n)/O(n) = L(2n) — S.

Claim. The group SU(n) acts (from the left) transitively on each fiber of det?
L(2n) =U(n)/O(n) — St.

Namely, for Uy, Us € U(n) with det®(U;) = det®(Us) we get det(U;) = =+ det(Us).
There exists A € O(n) such that det(U;) = det(Us.A), thus Uy (U2 A)~1 € SU(n)
and Uy (U, A)1U3AO(n) = U; O(n). The claim is proved.

Now SU(n) is simply connected and each fiber of det? : U(n)/O(n) — S is dif-
feomorphic to SU(n)/SO(n) which again simply connected by the exact homotopy
sequence of a fibration

-+ = (0=m1(SU(n))) — m(SU(n)/SO(n)) — (mo(SO(n)) =0) — ...
Using again the exact homotopy sequence
<= 0=m(SU(n)/SO(n)) — 71 (L(2n)) — 71(S*) — mo(SU(n)/SO(n)) =
we conclude that 7 (L(2n)) = m1(S*) = Z. Thus also (by the Hurewicz homomor-
phism) we have H'(L(2n),Z) = Z and thus H*(L(2n),R) = R.
Let = xdy ydw| € Q(SY) be a generator of H!(S',Z). Then the

dz
T Tlst =
pullback (det?)* 271'\/?1 = (det?)* xdy\/ﬂx € Q(L(2n)) is a generator of H(L(2n)).

Its cohomology class is called the Maslov-class.

25.8. Symplectic manifolds, and their submanifolds. A symplectic manifold
(M,w) is a manifold M together with a 2-form w € Q?(M) such that dw = 0 and
we € AT M is a symplectic structure on T, M for each x € M. So dim(M) is
even, dim(M) = 2n, say. Moreover, w" = w A --- Aw is a volume form on M
(nowhere zero), called the Liouville volume, which fixes also an orientation of M.

Among the submanifolds N of M we can single out those whose tangent spaces
T, N have special relations to the the symplectic structure w, on T, M as listed in
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(25.4): Thus submanifold N of M is called:

isotropic if T,N CT,N“" for each z € N = dim(N) <n
coisotropic  if TN D T, N“* for each z € N = dim(N) >n
Lagrangian  if T,N =T,N*?* for each x € N = dim(N) =n
symplectic  if T,NNT,N“t =0foreachz e N = dim(N) = even,

where for a linear subspace W C T, N the symplectic orthogonal is W«+ = {X €
T, M :w,(X,Y)=0forall Y € W}, as in (25.4).

25.9. The cotantent bundle. Consider the manifold M = T*(Q, where @ is a
manifold. Recall that for any smooth f : () — P which is locally a diffeomorphism
we get a homomorphism of vector bundles T*f : T9 — T*P covering f by T, f =

((Txf)_ ) TyQ—T f( )P
There is a canonical 1-form 0 = 6o € QY (T*Q), called the Liouville form which is
given by

0(X) = (mr-@(X), T(mq)(M)), X eT(T"Q),

where we used the projections (and their local forms):

WVT(T*Q)\T(WQ) 7TIZ*V(CMJ;E,U) T(ro)
“Q 7Q (¢,p) (¢,€)
7@\; «/Q m L/Q

Q q

For a chart ¢ = (¢%,...,¢") : U — R™ on Q, and the induced chart T*q : T*U —
R"™ x R, where Tq = (Tpq~1)*, we put p; := (e;,T*q( )) : T*U — R. Then
(¢ ..., q", p1y- ., pn) s T*U — R™x (R™)* are the canonically induced coordinates.
In these coordinates we have

n

o= <9Q(

=1

)dg' + 0o (5 dpz) szdq +0,

since 0@(8%1) - eR” (q7p7 62',0) = <p7 e’i> = Di-

Now we define the canonical symplectic structure wg = w € Q*(T*Q) by

wq = —dfg = locally = qui A dp;.

=1

Note that a’(a?]i) = dp; and d)(a?)
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Lemma. The I-form 0g € QY(T*M) has the following unversal property, and is
uniquely determined by it:

Any 1-form o € QY (M) is a smooth section ¢ : Q — T*Q and for the pullback we
have ©*0g = ¢ € QY(Q). Moreover, p*wg = —dyp € Q*(Q).

The 1-form 0¢q is natural in QQ € Mf,: For any local diffeomorphism f :Q — P
the local diffeomorphism T f : T*Q — T* P satisfies (T* f)*0p = 0¢, and a fortiori
(T*f)'wp = wgq-.

In this sense 0g is a universal 1-form, or a universal connection, and wgq is the
universal curvature, for R-principal bundles over Q. Compare with section (22).

Proof. For a 1-form ¢ € Q!(Q) we have

(0 00)(Xs) = (0Q) ¢, (Top-Xo) = pu(Ty, mq Top- Xaz)
= @2 (Te(mq 0 ). Xy) = pu(Xa).

Clearly this equation describes the form of 0g. For w we have p*wg = —¢p*dfg =
—dp* g = —dp.

For the local diffeomorphism f: Q — P, for « € T) M, and for X, € T,(T*M) we
compute as follows:

(1" ) 0p)a(Xa) = (0P) 1+ 1.0(Ta(T" f)-Xa) = (T* f.)(T(7p). T(T" f)-Xa)
= (a0 Tof ) (T(rpo T f).Xa) = aTof T T(f o mq)-Xa
= a(T(mq)Xa) = 0g(Xa). U

25.10. Lemma. Let ¢ : T*Q — T*P be a (globally defined) local diffeomorphism
such that ¢*0p = 0g. Then there exists a local diffeomorphism f : QQ — P such
that o =T f.

Proof. Let {g = —0 ' 0 fg € X(T*Q) be the so called Liouville vector field.

T(T"Q) — < TH(T*Q)

N
T*Q

Then locally g = Y 1| pime- a . Its flow is given by FlfQ () = et.av. Since p*0p = Og
we also have that the Llouvﬂle vector field £g and £p are ¢-dependent. Since

o = 0 exactly at the zero section we have p(0g) C Op, so there is a smooth
mapping f : Q — P with Opo f = po0g : Q@ — T*P. By (3.14) we have
po FlfQ = FlfP oy, so the image of ¢ of the closure of a flow line of £¢ is contained
in the closure of a flow line of {p. For o, € T () the closure of the flow line is
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0,00).a; and ¢(0;) = 0¢(4), thus ¢([0,00).a,,) C T, P, and ¢ is fiber respecting;:
f(=) f(z

)
mpop=foyw:T*Q — P. Finally, for X, € T,(T*Q) we have

O‘(TMTQ-X )= GQ(on) = (¢"0p)(Xa) = (GP)cp(a)< ap-Xa)
= (¢(a))(Tp(a)mp-Tatp-Xa) = (p(a))(Ta(mp o ). Xa)
= (P(@)(Ta(f o 1q)-Xa) = (p(a))(TfTamq.-Xa), thus
a = p(a) 0 Try(a)f
p(a) = a0 Ty f 7 = (Trgf ) (@) =T"f(a). O

(07

(0%

25.11. Time dependent vector fields. Let f; be curve of diffeomorphism on a
manifold M locally defined for each ¢, with fy = Idys, as in (3.6). We define two
time dependent vector fields

(@) = (Tofe) "5 fe@),  ml@) = (G f) (7 (2).
Then T'(f;).&: = %ft =1 0 fi, so & and n; are fi-related.

Lemma. In this situation, for w € QF(M) we have:

(1) i, ffw=[flipw
(2) %ft*w = filpw="L¢ f{fw

Proof. (1) is by computation:

(i, ff w)a(Xa, ..o, Xi) = (ff w)a(&e(@), Xay ..., Xpp) =
= Wi, (o) (Tu fe-&e(2), T fr- Xoy oo T fr. X)) =
:wft(a:)(nt(ft(w));Txft-X2,~ T fe Xi) = (ff Uy, W W) (Xay ..o, Xi).

(2) We put 7 € X(Rx M), 77(t,x) = (O, m:(x)). We recall from (3.30) the evolution
operator for n;:

P :RxRxM— M, L&) (z)=mn(®],(x)), ®I,(2)=uz,
which satisfies
<t7 (I)g,s(x)) = Fl?—s(sa x)a (I)ZS = (I)?,r © CI)Q’S(.T).

Since f; satisfies % ft = ne o fr and fo = Ids, we may conclude that f; = @ZO, or
(t, fi(x)) = F17(0,z), so f; = pryoF1] oinsg. Thus

2 fiw = 2 (pryoFl oinsg)*w = insf £ (FI])* pr w = insj (F17)* Ly prj w.
For u; € X(R) and X; € X(M) we have, using (7.6):

(Lyprow)(ur x Xi, ..., up X Xi)| o) = 7((prow)(ur x Xi,...))|@,2)—
— > iprsw)(ur x Xq, ..., [0, u; x Xi], ... up X Xk)‘(t,:v)
= (O, () (WX, X)) = D, w( Xy ooy 06, Xa], - o, Xk o
= (Ly,w)e(X1,..., Xk).
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This implies for X; € T, M

(%ft*w)m(Xl, o X)) = (insy(F1])* Ly pri w)e (X1, - - ., Xk)
(F17)* Ly pryw)(0.0)(0 x X1,...,0 x X)
= (L7 pr5w) (e, fi(2)) (0 X Ty fo. X1, ..., 00 X Tty Xy)
= (Ly,w) f, (o) T ft- X1,y o, Tty Xy)
(

ft*ﬁmw)m(Xl, Ce ,Xk),
which proves the first part of (2). The second part now follows by using (1):

2 fiw= fiLyw = f(diy, +ipdw=df igw+ f iydw
= digt ft*w —I—’igt ff dw = digt f:w —+ igt dft*w = ,Cgt ft* w. U

25.12. Surfaces. Let M be an orientable 2-dimensional manifold. Let w € Q2(M)
be a volume form on M. Then dw = 0, so (M,w) is a symplectic manifold. There
are not many different symplectic structures on M if M is compact, since we have:

25.13. Theorem. (J. Moser) Let M be a connected compact oriented manifold.
Let wo,w; € QUM (M) be two volume forms (both > 0).

If [,y wo = [y, w1 then there is a diffeomorphism f: M — M such that f*wi = wy.

Proof. Put w; := wg + t(w1 —wy) for t € [0, 1], then each w; is a volume form on
M since these form a convex set.

We look for a curve of diffeomorphisms t — f; with f;w; = wp; then %( fiw) =0.
Since [, (w1 —wo) = 0 we have [wy —wo] =0 € H™(M), so w; —wy = dip for some
¢ € QmH(M). Put g = (& f) o f; ', then by (25.11) we have:

0= Z(ffw) = ff Lywr+ f7 Fwr = 7 (Ly,wi + w1 — wo)
0=L,w+wi —wo = diy,w + i, dw + dp = diy,wi + dip

We can choose 1; uniquely by i,,w; = —1), since w; is non degenerate for all £. Then
the evolution operator f; = ® exists for ¢ € [0, 1] since M is compact, by (3.30).
We have, using (25.11.2),

gt (frwe) = [ (Lo,r + dvp) = f7 (din,wr + dip) = 0,
so ffw; = constant = wp. U

25.14. Coadjoint orbits of a Lie group. Let G be a Lie group with Lie algebra
g and dual space g*, and consider the adjoint representation Ad : G — GL(g).
The coadjoint representation Ad* : G — GL(g*) is then given by Ad*(g)a :=
aoAd(g7!) = Ad(g71)*(a). For a € g* we consider the coadjoint orbit G.a C g*
which is diffeomorphic to the homogenous space G/G, where G, is the isotropy
group {g € G : Ad*(g9)a = a} at a.
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As in (5.12), for X € g we consider the fundamental vector field (x = —ad(X)* €
X(g*) of the coadjoint action. For any Y € g we consider the linear function
evy : g — R. The Lie derivative of the fundamental vector field (x on the
function evy is then given by

(1)  L¢y evy = —devy oad(X)" = —evy oad(X)" = evyy x, X,Y eg,

Note that the tangent space to the orbit is given by T3(G.a)) = {(x(8) : X € g}.
Now we define the symplectic structure on the orbit O = G.« by

(2) (wO)Oé<CXaCY) :O‘([va]) = <a7 [X’YD? Ong*, X, Y €g.

wo(Cx,Cy) = evix, v

Theorem. (Kirillov, Kostant, Souriau) If G is a Lie group then any coadjoint
orbit O C g* carries a canonical symplectic structure wo which is invariant under
the coadjoint action of G.

Proof. First we claim that for X € g we have X € g, ={Z € g : (z(a) = 0} if
and only if a([X, ]) = (wo)a(Cx, )=0. Indeed, for Y € g we have

o[ X,Y]) d(exp(tX))Y) = %‘Oa(Ad(exp(tX))Y)

8
= a—\
= 5|, (Ad"(exp(—tX))a) (V) = —(¢x (@) (Y) = 0.

This shows that wo as defined in (2) is well defined, and also non-degenerate along
each orbit.

Now we show that dwo = 0, using (2):

(dwo)(Cx, ¢y, ¢z) = Y Cxwollr,¢z) = D wollix, ¢yl ¢z)

cyclic cyclic

= (xevyz— > woll (xy)Cz) now use (1)
cyclic cyclic

= E eviy,z),x] t+ E evi(x,y], by Jacobi.
cyclic cyclic

Finally we show that wp is G-invariant: For g € G we have

((Ad*(9)) wo)a(Cx (), Cy (@) = (wWo) ad+(g)a(T(Ad"(9)).Cx (), T(Ad"(g))-Cv (@)

)

= (Wo) ad*(g)a (Cad(g)x (Ad™ (g)), (aa(g)y (Ad*(g9)ar)), by (5.12.2),
= (Ad*(g9)a)([Ad(g9) X, Ad(g)Y])
= (

aoAd(g™"))(Ad(g)[X,Y]) = a([X,Y]) = (wo)a(lx, Cv)- O
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25.15. Theorem. (Darboux) Let (M,w) be a symplectic manifold of dimension
2n. Then for each x € M there exists a chart (U,u) of M centered at x such that
w|U =30 dut Adu™. So each symplectic manifold is locally symplectomorphic
to a cotangent bundle.

Proof. Take any chart (U,u : U — u(U) C R?") centered at . Choose linear
coordinates on R*" in such a way that w, = > ., du’ A du™**|, at = only. Then
wo = wlU and wy = Y. du’ A du™™* are thwo symplectic structures on the open
set U C M which agree at x. Put w; := wo + t(w1 — wp). By making U smaller if
necessary we may assume that w; is a symplectic structure for all ¢ € [0, 1].

We want to find a curve of diffeomorphisms f; near x with fy = Id such that
fi(x) = x and ffw; = wy. Then %ft*wt = %wo = 0. We may assume that U is
contractible, thus H2(U) = 0, so d(w; — wp) = 0 implies that w; — wg = d¢) for
some 1 € QY(U). By adding a constant form (in the chart on U) we may assume
that ¢, = 0. So we get for the time dependent vector field n; = % fro ft_l, using
(25.11.2),

0= 2 ffwr = f{(Ly, we+ Zwy) = fi(din, wi+in, dwp +wi —wo) = f; d(iy, wi+ )

We can now prescribe 7; uniquely by i,, w; = —1, since w; is non-degenerate on x.
Moreover n;(x) = 0 since ¥, = 0. On a small neighborhood of x the left evolution
operator f; of n; exists for all ¢ € [0, 1], and then clearly %( fiwe) =0, 80 ffwy = wp
for all ¢ € [0,1]. O

25.16. Relative Poincaré Lemma. Let M be a smooth manifold, let N C M
be a closed submanifold, and let k > 0. Let w be a closed (k + 1)-form on M
which vanishes when pulled back to N. Then there exists a k-form ¢ on an open
neighborhood U of N in M such that dp = w|U and ¢ = 0 along N. If moreover
w =0 along N (on N* TM|N ), then we may choose ¢ such that the first derivatives
of ¢ vanish on N.

Proof. By restricting to a tubular neighborhood of N in M, we may assume that
p: M =: E — N is a smooth vector bundle and that i : N — E is the zero section
of the bundle. We consider 1 : R x E — E, given by pu(t,x) = p¢(x) = tx, then
u1 =Idg and pg =iop: E — N — E. Let £ € X(F) be the vertical vector field
E(x) =vl(z,z) = %’0 (z + tx), then F15 = p.:. So locally for ¢ near (0,1] we have

logt

)*Lew by (25.11) or (6.16)

i = G (Fli, ) w = H(F
= 1uf (igdw + digw) = Tdpjicw.

For x € F and Xq,..., X, € T, EF we may compute

= twip(E(t), Tope- X1, .., Topie- X
= wi (VI(tx, @), Tppe.- X1, .o Tope- Xg).
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So if k > 0, the k-form 1pjicw is defined and smooth in (¢,z) for all ¢ near [0,1]
and describes a smooth curve in QF(F). Note that for + € N = 0g we have
(1pjicw)y = 0, and if w = 0 along N, then also all first derivatives of }ujicw
vanish along N. Since pgw = p*i*w = 0 and pjw = w, we have

1
w = piw — pow = / Ghrwdt
0

1 1
= / d(§pficw)dt = d (/ %,ufigwdt) =: de.
0 0

If x € N, we have ¢, = 0, and also the last claim is obvious from the explicit form
of p. [

25.17. Lemma. Let M be a smooth finite dimensional manifold, let N C M be a
submanifold, and let wy and wy be symplectic forms on M which are equal along N
(on N> TM|N ).

Then there exist a diffeomorphism f : U — V between two open neighborhoods
U and V of N in M which satisfies f|[N = Idy, Tf|(TM|N) = Idpy N, and
ffwi = wo.

Proof. Let w; = wp + t(w1 — wp) for ¢t € [0,1]. Since the restrictions of wy and w;
to A2TM|N are equal, there is an open neighborhood U; of N in M such that w;
is a symplectic form on Uy, for all t € [0,1]. If i : N — M is the inclusion, we also
have i*(w1 — wp) = 0, and by assumption d(w; — wp) = 0. Thus by lemma (25.16)
there is a smaller open neighborhood Us of N such that wq|Us — wo|Us = dy for
some ¢ € QY (Uy) with ¢, = 0 for x € N, such that also all first derivatives of ¢
vanish along N.

Let us now consider the time dependent vector field X; := —(w;¥)™! o ¢ given
by ix,w: = ¢, which vanishes together with all first derivatives along N. Let f;
be the curve of local diffeomorphisms with % ft = Xt o fi, then f;|N = Idy and
Tfi(TM|N) = Id. There is a smaller open neighborhood U of N such that f; is
defined on U for all ¢ € [0,1]. Then by (5.13) we have

%(ft*wt) = f{ Lx,ws + ff %Wt = fi (dix,ws + w1 — wo)
= fi(=dp + w1 — WO) =0,

so ffw; is constant in ¢, equals fiwo = wp, and finally f{wi = wp as required. 0

25.18. Lemma. (MOVE next 3 lemmas later after S.6) (Ehresmann) Let (V,w)
be a symplectic vector space of real dimension 2n, and let g be a nondegenerate
symmetric bilinear form on V. Let K :== g low : V — V* — V so that g(Kv,w) =
w(v,w).

Then K € GL(V') and the following properties are equivalent:

(1) K? = —1dy, so K is a complex structure.
(2) w(Kv, Kw) =w(v,w), so K € Sp(V,w).
(3) 9(Kv, Kw) = g(v,w), so K € O(V,g).
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If these conditions are satisfied we say that any pair of the triple w, g, J is compatible.

Proof. Starting from the definition we have in turn:

9(Kv,w) = <§1K( ), w) = (g5 0 (v),w) = (O(v), w) = w(v,w),
w(Kv, Kw) = g(K*v, Kw) = g(Kw, K*v) = w(w, K*v) = —w(K?v,w),
g(K*v,w) = w(Kv,w) = —w(w, Kv) = —g(Kw, Kv) = —g(Kv, Kw).

The second line shows that (1) < (2), and the third line shows that (1) < (3).

25.19. The exponential mapping for self adjoint operators. (MOVE later
to exercises for section 4).

Let V be an Euclidean vector space with positive definite inner product (| ) (or
a Hermitian vector space over C). Let S(V') be the vector space of all symmetric (or
self-adjoint) linear operatores on V. Let ST (V) be the open subset of all positive
definite symmetric operators A, so that (Av|v) > 0 for v # 0. Then the exponential
mapping exp : A — e =37 L A¥ maps S(V) into ST(V).

Lemma. exp: S(V) — ST(V) is a diffeomorphism.

Proof. We start with a complex Hermitian vector space V. Let C*T := {\ € C :
R(N\) > 0}, and let log : C* — C be given by log()\) = f[1 Al 2~ tdz, where [1, )]
denotes the line segment from 1 to A.

Let B € ST(V). Then all eigenvalues of B are real and positive. We chose a
(positively oriented) circle ¥ C C* such that all eigenvalues of B are contained in
the interior of v. We consider A — log(\)(A Idy —B)~! as a meromorphic function
in C* with values in the real vector space C ® S(F), and we define

log(B) := log(A)(A Idy —B)"'d\ B e ST(V).

27‘(’\/_

We shall see that this does not depend on the choice of 7. We may use the same
choice of the curve ~ for all B in an open neighborhood in ST (V), thus log(B) is
real analytic in B.

We claim that log = exp™!. If B € ST(V) then B has eigenvalues \; > 0 with
eigenvectors v; forming an orthonormal basis of V, so that Bv; = A;v;. Thus
(M dy —B)~tv; = /\%\ivi for A # \;, and

log /\

(log B)v; = = log(\;)v;

zm/_ /

by Cauchy’s integral formula. Thus log(B) does not depend on the choice of ~
and exp(log(B))v; = e°8Pi)y; = \;v; = Bu; for all i. Thus expolog = Idg+vy-
Similarly one sees that logoexp = Idg(v).

Now let V' be a real Euclidean vector space. Let V¢ = C ® V be the complexified
Hermitian vector space. If B : V — V is symmetric then j(B) := B¢ = Idc ®B :
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VC — VT is self adjoint. Thus we have an embedding of real vector spaces j :
S(V) — S(VE). The eigenvalues of j(B) are the same as the eigenvalues of B, thus
j restricts to an embedding j : ST(V) — ST(VC). By definition the left hand one
of the two following diagrams commutes and thus also the right hand one:

S(V) —2L sV S(v) —L . swe)
expl expcl dexp(B)l dexp(C(B)l
$HV) —L— 8§ (V) S(V) —L— (v

Thus dexp(B) : S(V) — S(V) is injective for each B, thus a linear isomorphism,
and by the inverse function theorem exp : S(V) — ST(V) is locally a diffeomor-
phism and is injective by the diagram. It is also surjective: for B € ST (V) we have
Buv; = \v; for an orthonormal basis v;, where A\; > 0. Let A € S(V) be given by
Av; = log(\;) v, then exp(A) = B. O

25.20. Lemma. (Polar decomposition) Let (V, g) be an Euclidean real vector space
(positive definite). Then we have a real analytic diffeomorphism

GL(V) = Ly (V) x O(V. g),

g—sym
thus each A € GL(V') decomposes uniquely and real analytically as A = B.U where
B is g — symmetric and g-positive definite and U € O(V, g).

Furthermore, let w be a symplectic structure on V, let A = g~ row € GL(V), and let
A = BJ be the polar decomposition. Then A is g-skew symmetric, J is a complex
structure, and the non-degenerate symmetric inner product gi (v, w) = w(v, Jw) is
positive definite.

Proof. The decomposition A = BU, if it exists, must satisfy AAT = BUUTB' =
B?. By (25.19) the exponential mapping X + e¥ is a real analytic diffeomorphism
exp : Ly_sym(V,V) — L, (V) from the real vector space of g-symmetric opera-
tors in V onto the submanifold of g-symmetric positive definite operators in GL(V),
with inverse B + log(B). The operator AAT is g-symmetric and positive definite.
Thus we may put B := VAAT = exp(3log(4A")) € L;ﬁsym(V). Moreover, B

commutes with AAT. Let U := B~'A. Then UU" = B~'AAT(B~1)" =1dy, so
UeOoV,g).

If we are also given a symplectic structure w we have g(Av,w) = w(v,w) =
—w(w,v) = —g(Aw,v) = —g(v, Aw), thus AT = —A. This implies that B =
exp(2 log(AAT)) = exp(3 log(—A?)) commutes with A, thus also J = B™'A4 com-
mutes with A and thus with B. Since B = Bwe get J~! = JT = (B71A)T =
AT(B™1)T = ~AB™! = —B7'A = —J, thus J is a complex structure. Moreover,
we have

w(Jv, Jw) = g(AJv, Jw) = g(JAv, Jw) = g(Av,w) = w(v,w),

thus by (25.18) the symplectic form w and the complex structure J are compatible,
and the symmetric (by (25.18)) bilinear form g; defined by g;(v,w) = w(v, Jw)
is positive definite: ¢1(v,v) = w(v, Jv) = g(Av, Jv) = g(BJv,Jv) > 0 since B is
positive definite. [
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25.21. Relative Darboux’ Theorem. (Weinstein) Let (M,w) be a symplectic
manifold, and let L C M be a Lagrangian submanifold.

Then there exists a tubular neighborhood U of L in M, an open neigborhood V of
the zero section Op, in T*L and a symplectomorphism

(T*L,w) D (V,wr) 2 (U,w|U) C (M,w)

such that poQp : L -V — M 1is the embedding L C M.

Moreover, suppose that for the Lagrangian subbundle T'L in the sympletic vector
bundle TM|L — L we are given a complementary Lagrangian subbundle E — L,
then the symplectomorphism ¢ may be chosen in such a way that Ty . Vo (T*L) =
E,,) forx € L

Proof. The tangent bundle T'L — L is a Lagrangian subbundle of the symplectic
vector bundle TM|L — L.

Clatm. There exists a Lagrangian complementary vector bundle E — L in the
symplectic vector bundle TM|L. Namely, we choose a fiberwise Riemannian metric
g in the vector bundle TM|L — L, consider the vector bundle homomorphism
A=§'0:TM|L — T*M|L — TM]|L and its polar decomposition A = B.J with
respect to g as explained in lemma (25.20). Then J is a fiberwise complex structure,
and ¢1(u,v) := w(u, Jv) defines again a positive definite fiberwise Riemannian
metric. Since ¢1(J , ) =w( , ) vanishes on T'L, the Lagrangian subbundle
E=JTL C TM|L is g;-orthogonal to T'L, thus a complement.

We may use either the constructed or the given Lagrangian complement to T'L in
what follows.

The symplectic structure w induces a duality pairing between the vector bundles
E and TL, thus we may identify (T'"M|L)/TL = E — L with the cotangent bundle
T*L by (X, w(Y,)) =w(X,,Y,) forze L, X, e T,Land Y, € E,.

Let v := exp9ow~! : T*L — M where exp? is any geodesic exponential mapping
on T'M restricted to E. Then v is a diffeomorphism from a neighborhood V' of
the zero section in T* L to a tubular neighborhood U of L in M, which equals the
embedding of L along the zero section.

Let us consider the pullback ¥ *w and compare it with w; on V. For 0, € 0; we
have Ty V =T, L ®T;L = T,L & E,. The linear subspace T, L is Lagrangian for
both wy, and 9*w since L is a Lagrange submanifold. The linear subspace 1)} L is
also Lagrangian for wy,, and for ¢*w since E was a Lagrangian bundle. Both (wy,)o,
and (*w)p, induce the same duality between T, L and T, L since the identification
E, =T;L was via w;. Thus wy, equals ¥*w along the zero section.

Finally, by lemma (25.17) the identity of the zero section extends to a diffeomor-
phism p on a neighborhood with p*y*w = wr. The diffeomorphism ¢ = 1 o p then
satisfies the theorem. [J
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25.22. The Poisson bracket. Let (M,w) be a symplectic manifold. For f €
C*°(M) the Hamiltonian vector field or symplectic gradient Hy = grad®(f) € X(M)
is defined by any of the following equivalent prescriptions:

(1) i(Hp)w=df, Hy=w'df, w(H; X)=X(f)for X € TM.
For two functions f,g € C°(M) we define their Poisson bracket {f, g} by

(2) {f,9}:= i(Hf)i(Hg)w = W<H97Hf)
= Hy(g) = Ly, 9 =dg(Hy) € C*(M).

Let us furthermore put
(3) X(M,w) ={X e€X(M): Lxw=0}

and call this the space of locally Hamiltonian vector fields or w-respecting vector
fields.

Theorem. Let (M,w) be a symplectic manifold.

Then (C°(M),{ , }) is a Lie algebra which also satisfies {f,gh} = {f,g}h +
g{f,h}, i.e. ady ={f, } is a derivation of (C*°(M),-).

Moreover, there is an exact sequence of Lie algebras and Lie algebra homomor-
phisms

H = grad®”

0 — H(M) — (M)
0 {0 ] 0

where the brackets are written under the spaces, where « is the embedding of the
space of all locally constant functions, and where v(X) := [ixw] € HY (M),

The whole situation behaves invariantly (resp. equivariantly) under the pullback by
symplectomorphisms ¢ : M — M : For example o*{f, g} = {o*f,¢* g}, ¢*(Hy) =
Hy+ ¢, and o*y(X) = v(¢*X). Consequently for X € X(M,w) we have Lx{f, g} =
{Lxf, 9t +{f, Lxg}, and v(LxY) = 0.

Proof. The operator H takes values in X(M,w) since
ﬁwa = in dw+dinw = 0—|—ddf =0.
H{f, g}) =[Hy, Hy| since by (7.9) and (7.7) we have

iH({f,g})w = d{f,g} = d[,Hfg = EHfdg —-0= EHfngw — ngﬁwa

= [»CHfa'ng]w = i[Hf,Hg]w-

The sequence is exact at H°(M) since the embedding « of the locally constant
functions is injective.
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The sequence is exact at C°°(M): For a locally constant function function ¢ we
have H, = &~ 'de = &7 'd0 = 0. If Hf = w~'df =0 for f € C°°(M) then df = 0,
so f is locally constant.

The sequence is exact at X(M,w): For X € X(M,w) we have dixw = ixw+ixdw =
Lxw =0, thus v(X) = [ixw] € HY(M) is well defined. For f € C°>°(M) we have
Y(Hy) = lig,w] = [df] =0 € H'(M). If X € X(M,w) with v(X) = [ixw] =0 €
H'(M) then ixw = df for some f € Q°(M) = C>(M), but then X = Hy.

The sequence is exact at H'(M): The mapping v is surjective since for ¢ € Q(M)
with dp = 0 we may consider X := 0~ 1y € X(M) which satisfies £Lxw = ixdw +
dixw=0+dp =0 and y(X) = [ixw] = [¢] € H'(M).
The Poisson bracket { , }is a Lie bracket and {f,gh} = {f,g}h + g{f, h}:
{f7g}:w(Hgva) (Hf7 )_{g7f}
{f7 {g7 h}} = ﬁHf‘Cth = [»CHf,EHg]h + ‘CHg'CHfh
= 'C[Hf,Hg]h + {ga {fa h}} = ﬁH{fyg}h + {ga {f7 h}}

={{f.9t:h} +{g.{f.h}}
{f,9h} = Lu,(gh) = Lu,(9)h+ gLu,(h) = {f,g}h + g{f, h}.

All mappings in the sequence are Lie algebra homomorphisms: For local constants
{c1,¢2} = H.yca = 0. For H we already checked. For X,Y € X(M,w) we have

i[ny]w = [,Cx,iy]w = ,Cxiyw - ’L'Y,Cxw = d’ixiyw + ixdiyw —0= dix’iyw,

thus y([X,Y]) = [ix,yiw] =0 € H'(M).

Let us now transform the situation by a symplectomorphism ¢ : M — M via

pullback. Then

Pw=w < (Tp)owoTp=w
= Hypep =0~ do" f =07 (@"df) = (T~ 0w~ o (T™")") o ((Tp)" 0 df 0 )
= (T~ ow ™" odf op) = ¢™(Hy)
¢ {f 97 = ¢ (dg(Hy)) = (¢*dg) (9" H) = d(¢"g)(Hery) = {#" f, 979}
The assertions about the Lie derivative follow by applying Lx = % |0 (FL)*. O

25.23. Basic example. In the situation of (25.1), where M = T*R" with w =
wrn = —dfgn =, dg" A dp;, we have

w:TR"™ — T*R", cD(@ i) =dp;, w(0yi) = dqz,
- - s )< (24 8)
dg

_ _ of 9
{fag}_Hfg_Zi<8_piaqg 8q Op;
{pi,pj}:(), {qi7qj}:07 {q 7pj}:_5;'
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25.24. Kepler’s laws: elementary approach. Here we give first an elementary
approach to the derivation of Kepler’s laws.

Let us choose the orthonormal coordinate system in the oriented Euclidean space
R3 with standard inner product ( | ) and vector product ¢ x ¢’ in such a way
that the sun with mass M is at 0 € R3. The planet now moves in a force field F
on an orbit ¢(¢) according to Newton’s law

(1) F(q(t)) = m(t)-

(2) If the force field is centripetal, F(q) = —f(q)q for f > 0, then the angular
momentum q(t) x ¢(t) = J is a constant vector, since

Q(gxd)=dxg+qgxi=0+2f(q)gxqg=0.

Thus the planet moves in the plane orthogonal to the angular momentum vector
J and we may choose coordinates such that this is the plane ¢® = 0. Let z =
q' +1ig® = re'¥ then

0 ql ql 0
7=(8) == (2) < (8) = (oot
j 0 0 a'q®*—q*q’
i=q¢"¢* — ¢ =Im(2.2) = Im(re " (7e'? + irge'?)) = Im(r + ir’p) = r2p.

(3) Thus in a centripetal force field area is swept out at a constant rate j = r2¢
(2nd law of Kepler, 1602, published 1606), since

p(t2)  priv) e(t2)
Area(ty,t2) = / rdrdp = / 57(p)2de
w(t1) Jo p(t1)

/ )
t1

Now we specify the force field. According to Newton’s law of gravity the sun acts
on a planet of mass m at the point 0 # g € R3 by the force

r(p(t)*o(t) dt = §(t2 — t1).

N

(4) F(q) = —G@q = —grad U(q), Ulg) = —G%,

gl
where G = 6,67-10~'1 Nm?2kg—2 is the gravitational constant and U is the gravita-
tional potential. We consider now the energy function (compare with (25.1)) along
the orbit as the sum of the kinetic and the potential energy

m, ., .\2 — a2 Mim
(5) B(t) = (O +Ua(e) = S0P ~ G

which is constant along the orbit, since

O E(t) = m(q(t)|q(t)) + (grad U(q(t))|4(t)) = 0.

Draft from September 15, 2004 Peter W. Michor,



25.24 25. Symplectic Geometry and Classical Mechanics 295
We have in the coordinates specified above for the velocity v = ||
v? = |4|* = Re(Z2) = Re((re™"? — irge™"?)(re'? + irge’?))
= Re((Fe™1% — irge9)(e'® + irgei)) = i + 2%,
We look now for a solution in the form r = r(¢). From (3) we have ¢ = j/r? so
that , 2
dr dr\? 2 42
2 .2 2.2 .2 2.9
VE=r"4+r = R +7r — - S 4L
v (dSO) 4 14 (dgp) ré 72

Plugging into the conservation of energy (5) we get

dr\? j2 52 1
(@) pry + 2 2GM@ =~ = constant.
1 (dr\° v 2GM 1 1
(6) ﬁ(@)‘?*?T%T75

Excluding the catastrophe of the planet falling into the sun we may assume that
always r # 0 and substitute

1 du 1 dr

u(p) = —, % = —T—Q@

into (6) to obtain

d 2 2 2 ) 2
au :.l+2G.Mu—u2:GM 1+ ) - U—_GM ;
d(p ]2 ]2 ]4 GQMQ ]2

du\® &2 1\? 2 ~ 52
(7) (@) :ﬁ_ (U_E) s Wherep:: G—M’ E = 1+W

are parameters suitable to describe conic sections.

If £ = 0 then (3—:;)2 = —(u— %)2 so that both sides have to be zero: u = 1/p or
r = p = constant and the planet moves on a circle.

If € > 0 then (7) becomes

du g2 1\2 du
=\ ) s
\/52 u 1

: . (Pw . fpu—1
= arcsin(z) = arcsin (—) = arcsin :
€
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This implies

—1 1 i C
sin(gp+C’):pu , " +esin(p + O)
€ p
_ L p
u l+esin(p+C)’
We choose the parameter C' such that the minimal distance ﬁ of the planet from

the sun (its perihel) is attained at ¢ = 0 so that sin(C') = 1 or C = 7/2; then
sin(p + 7/2) = cos(p) and the planetary orbit is described by the equation

p
8 =, >0, > 0.
(®) " 1+ecosep P £=

Equation (8) describes a conic section in polar coordinates with one focal point at
0. We have:

A circle for e = 0.

An ellipse for 0 <e < 1.

A parabola for e =1.

The left branch of a hyperbola for e > 1.

The ellipse with the right hand focal point at at 0:

2 2
(q1 +2€) n q% _ 1,
] a a b
p e=+va?— b2,
e S=0 (rcosp +e)?  r?sin®y
a a2 + b2 1

(b* — a®)r? cos® p+

+ 2b%rv/a? — b2 cos p+

+a?r? — bt =0.

Solving for cos ¢ we get

—2b%rva? — b2 + \/4b4r2(a2 —b2) +4(a? — b?)r2(a?r? — b?)

cos =

—2(a2 — b2)r2
—2b%re + 2r? b? b2
= r6227“ea:_ig’ thus —:(:osgpig
—2r<e re e e e
b2

e(cosp+2)  e2(£l+ Scosp) - +1+ £cosyp

Put p = b?/a and 0 < € = /1 —b%/a? = e/a < 1 and note that r > 0 to obtain
the desired equation (8) r =

p
l4ecosep”
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The parabola with focal point at 0:

P
g® = —2p(qr — ) = ~2ra + p?,

r2(1 — cos® @) = —2prcos p + p?,
r? cos® p — 2prcosp 4+ p* —r2 =0
2pr & \/4p?r? — 4r2(p2 — r2)

cos p =

2r2
+
== Py
r r
r= P > 0.
1+ cosep
The hyperbola with left hand focal point at 0:
(q1 —e)? ﬁ -1
2
e=+va?+ b2
rcosg —e)?  rZsin®op 1

a? b2
b2r? cos? o — 2b2r\/mcos p+

+ a?b? + b* — a®r?(1 — cos® p) = a*b?
(b% + a®)r? cos® p—

— 2b2T\/mCOSQD + b —a*r? =0

Solving again for cos ¢ we get
2621\ a2 + b2 £ \/4b*r2(a? + b2) — 4(a2 + b2)r2 (bt — a2r?)
2(a? 4 b?)r2

cos =

2b%re £ 2rlea
2r2e?
Put p = b*/a and € = \/1 +b2/a?2 = e/a > 1 and note that r > 0 to obtain the
desired equation (8) r = ﬁ.
(Kepler’s 3rd law) If T is the orbital periods of a planet on an elliptic orbits with
magor half axis a then:
7% (27m)?
a3 GM

18 a constant depending only on the mass of the sun and not on the planet.

Let a and b be the major and minor half axes of an elliptic planetary orbit with
period T'. The area of this ellipse is abw. But by (3) this area equals abr = jT/2.
In (7) we had p = j2/(GM), for an ellipse we have p = b?/a, thus we get
: : 3/2 T2 27)2
I _ _ 32,12 3/2 ) _ 2ma _(2m)
ST =abr=a T=a , T= , — = .
P VG JGM @ GM
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25.25. Kepler’s laws: The two body system as a completely integrable
system. Here we start to treat the 2-body system with methods like Poisson
bracket etc, as explained in (25.23). So the symplectic manifold (the phase space)
is T*(R®\ {0}) with symplectic form w = wgs = —dfgs = >.°_, dg’ A dp;. As in
(25.1) we use the canonical coordinates ¢* on R?® and p; := m - ¢* on the cotangent
fiber. The Hamiltonian function of the system is the energy from (25.24.5) written
in these coordinates:

1 1 Mm 1 Mm
1 E = |pl? = -G = — P ¢ e——
(1) Blgp) =5l +Ulg) = 5 —IpI" = G i 5> Pi—G S )

The Hamiltonian vector field is then given by

. /0E & OE 0 1 9 GMm,d
#e =3 (G aw ~ ow o) = 2P ag ~ JaF ¥ o)

=1

The flow lines of this vector field can be expressed in terms of elliptic functions.
Briefed by (25.24.2) we consider the 3 components of the vector product J(q,p) =
q X p and we may compute that

J'=¢*ps — ’pa, TP =—¢'ps +p1, TP =q'p2— ¢Ppu,
(B, J}=0, {J,J*}=0, forik=1,23.

Moreover the functions J*, J2, J? have linearly independent differentials on an open
dense subset. Thus the 2 body system is a completely integrable system. The
meaning of this will be explained later.

26. Completely integrable Hamiltonian systems

26.1. Introduction. The pioneers of analytical mechanics, Euler, Lagrange, Ja-
cobi, Kowalewska, ..., were deeply interested in completely integrable systems, of
which they discovered many examples: The motion of a rigid body with a fixed
point in the three classical cases (Euler-Lagrange, Euler-Poisot, and Kowalewska
cases), Kepler’s system, the motion of a massive point in the gravitational field
created by fixed attracting points, geodesics on an ellipsoid, etc. To analyze such
systems Jacobi developed a method which now bears his name, based on a search
for a complete integral of the first order partial differential equation associated with
the Hamitonian system under consideration, called the Hamilton-Jacobi equation.
Later it turned out, with many contributions by Poincaré, that complete integra-
bility is very exceptional: A small perturbation of the Hamiltonian function can
destroy it. Thus this topic fell in disrespect.

Later Kolmogorov, Arnold, and Moser showed that certain qualitative properties of
completely integrable systems persist after perturbation: certain invariant tori on
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26.2 26. Completely integrable Hamiltonian systems 299

which the quasiperiodic motion of the non-perturbed, completely integrable system
takes place survive the perturbation.

More recently it has been shown that certain nonlinear partial differential equations
such as the Korteveg-de Vries equation us + 3uzu+ aug,, = 0 or the Camassa-Holm
equation u; — Utzpr = Uppr U + 2Ugzy .Uy — 3Uz.u may be regarded as infinite dimen-
sional ordinary differential equations which have many properties of completely in-
tegrable Hamiltonian systems. This started new very active research in completely
integrable systems.

26.2. Completely integrable systems. Let (M,w) be a symplectic manifold
with dim(M) = 2n with a Hamiltonian function h € C'°°(M).

(1) The Hamiltonian system (M,w, h) is called completely integrable if there are n
functions f1,..., fn, € C°°(M) which

e are pairwise in involution: {f;, f;} = 0 for all 4, j.

e are first integrals of the system: {h, f;} = 0 for all i.

e are non degenerate: their differentials are linearly independent on a dense
open subset of M.

We shall keep this notation throughout this section.

(2) The n + 1 functions h, fi,..., f, € C°°(M) are pairwise in involution. At each
point € M the Hamiltonian fields Hy(z), Hy, (x),..., Hy, (x) span an isotropic
subset of T, M which has dimension < n; thus they are linearly dependent. On
the dense open subset U C M where the differentials df; are linearly independent,
dh(x) is a linear combination of df(z),...,df,(x). Thus each x € U has an open
neighborhood V-C U such that h|V = ho (f1,..., fa)|V for a smooth local function
on R"™. To see this note that the Hy, span an integrable distribution of constant
rank in U whose leaves are given by the connected components of the sets described
by the equations f; = ¢;, ¢; constant, for ¢ = 1,...,n of maximal rank. Since
{h, fi} = 0 the function h is constant along each leaf and thus factors locally over
the mapping f := (f1,...,fn) : U — f(U) C R™. The Hamiltonian vector field is
then a linear combination of the Hamiltonian fields Hy,,

n

fh"'?.fn) dfz) —Z 8f (fla"'afn) Hfi'

=1

Hp=w"'(d —V—l( 8f

whose coefficients g—é(f 1,-- - fn) depend only on the first integrals f1,..., f,. The
fi are constant along the flow lines of Hj, since {h, f;} = 0 implies (Flf "V fi = fi
This last argument also shows that a trajectory of Hy, intersecting U is completely
contained in U. Therefore these coefﬁ(:lents ( fi,..., fn) are constant along each
trajectory of Hy which is contained in U.

(3) The Hamiltonian vector fields Hy, , ..., Hy, span a smooth mtegmble distribution
on M according to (3.28), since [Hy,, Hy,| = Hyy, 5,3 = 0 and (Fl, f’) fi = fj, so
the dimension of the span is constant along each flow. So we have a foliation of
jumping dimension on M: Each point of M lies in an initial submanifold which is
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300 Chapter VI. Symplectic Geometry and Hamiltonian Mechanics 26.4

an integral manifold for the distribution spanned by the Hy,. Each trajectory of
Hj, or of any Hy, is completely contained in one of these leaves. The restriction
of this foliation to the open set U is a foliation of U by Lagrangian submanifolds,
whose leaves are defined by the equations f; = ¢;, ¢ = 1,...,n, where the ¢; are
constants.

26.3. Lemma. [Arnold, 1978] Let R*" = R" x R" be the standard symplectic
vector space with standard basis e; such that w =Y ' Ne" . Let W C R?" be
a Lagrangian subspace.

Then there is a partition {1,...,n} = I U J such that the Lagrangian subspace U
of R*" spanned by the e; for i € I and the e,; for j € J, is a complement to W
in R?",

Proof. Let k = dim(W N (R™ x 0)). If k = n we may take I = ). If k < n there
exist n — k elements e;,,...,e; _, of the basis ej,...,e, of R” x 0 which span a
complement U’ of W N (R™ x 0) in R™ x 0. Put I = {i1,...,i,—x} and let J be
the complement. Let U” be the span of the e,; for j € J, and let U = U’ @ U".
Then U is a Lagrangian subspace. We have

R x0=(WNRx0)®U, WNR"x0)CW, U =Un(R"x0)cCU.
Thus R" x 0 C W + U. Since R™ x 0, W, U are Lagrangian we have by (25.4.4)

WNU=WtnUtr=W+U)t cR"x0)* =R" x0 thus
WnNU=WnN(R"x0)NUNR"%x0)=WnN(R"x0)NU' =0,

and U is a complement of W. [

26.4. Lemma. Let (M,w) be a symplectic manifold of dimension 2n, let x € M.
Suppose that 2n smooth functions u', ..., u", fi,..., fn are given near x, that their
differentials are linearly independent, and that they satisfy the following properties:
o The submanifold defined by the equations u® = u'(x) fori = 1,...,n, is
Lagrangian.
o The functions fi,..., fn are pairwise in involution: {f;, f;} =0 for alli,j.
Then on an open neighborhood U of x in M we may determine n other smooth
functions g1, ..., g, such that

wlU = df; A dgi.
=1

The determination of g; uses exclusively the operations of integration, elimination
(use of the implicit function theorem), and partial differentiation.

Proof. Without loss we may assume that u;(x) = 0 for all i. There exists a con-
tractible open neighborhood U of x in M such that (u, f) := (u',...,u", f1,..., fn)
is a chart defined on U, and such that each diffeomorphism ¢ (u, f) := (tu, f) is
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defined on the whole of U for ¢ near [0, 1] and maps U into itself. Since 1o maps U
onto the Lagrange submanifold N := {y € U : u;(y) =0 for i = 1,...,n} we have
Yiw = 0. Using the homotopy invariance (9.4) we have
w|U = Yfw = Piw — dh(w) + h(dw) = 0 — dhw + 0,

where h(w) = fol
Since f1,..., fn are pairwise in involution and have linearly independent differen-
tials, w|U belongs to the ideal in Q*(U) generated by dfi,...,df, This is a point-
wise property. At y € U the tangent vectors Hy, (y),...,Hy, (y) span a La-
grangian vector subspace L of T,M with annihilator L° C T;M spanned by
dfi(y), ,dfn(y). Choose a complementary Lagrangian subspace W C T, M, see
the proof of (25.21). Let ai,...,an, € T, M be a basis of the annihilator W°.
Then wy, = Y i, wija; Adf;(y) since w vanishes on L, on W, and induces a duality
between L and W.

From the form of h(w) above we see that then also h(w) belongs to this ideal, since

insy ig,1*w dt is from the proof of (9.4).

vy fi = fi for all i. Consequently we may write
h(w) =Y gidfi
i=1

for smooth functions ¢g;. Finally we remark that the determination of the compo-
nents of w in the chart (u, f) uses partial differentiations and eliminations, whereas
the calculation of the components of h(w) uses integration. [J

26.5. Lemma. Let (M,w) be a symplectic manifold of dimension 2n. We assume
that the following data are known on an open subset U of M.

o A canonical system of local coordinates (q*,...,q", p1,...,pn) on U such
that the symplectic form is given by w|U = >_7_, dg" A dp;.
e Smooth functions f1,..., fn which are pairwise in involution, {f;, f;} =0

for all i, 7, and whose differentials are linearly independent.

Then each x € U admits an open neighborhood V- C U on which we can determine
other smooth functions g1,...,gn such that

n
wlU =" df; A dg;.
i=1
The determination of g; uses exclusively the operations of integration, elimination
(use of the implicit function theorem), and partial differentiation.

Proof. If the functions ¢',...,q", f1,..., f» have linearly independent differentials
at a point x € U the result follows from (26.4). In the general case we consider the
Lagrangian subspace L C T, M spanned by Hy, (z),...,Hy, (). By lemma (26.3)
there exists a partition {1,...,n} = I U J such that the Langrangian subspace
W C T, M spanned by Hg:(z) for i € I and H,, () for j € J, is complementary
to L. Now the result follows from lemma (26.4) by calling u*, k = 1,...,n the
functions ¢’ for i € I and p; for j € J. O
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26.6. Proposition. Let (M,w,h) be a Hamiltonian system on a symplectic man-
ifold of dimension 2n. We assume that the following data are known on an open
subset U of M.

o A canonical system of local coordinates (q*,...,q",p1,-..,pn) on U such
that the symplectic form is given by w|U = Y dg* A dp;.

o A family f = (f1,..., fn) of smooth first integrals for the Hamiltonian func-
tion h which are pairwise in involution, i.e. {h, f;} =0 and {f;, f;} =0 for
all i, 7, and whose differentials are linearly independent.

Then for each x € U the integral curve of Hy passing through x can be determined
locally by using exclusively the operations of integration, elimination (use of the
implicit function theorem), and partial differentiation.

Proof. By lemma (26.5) there exists an open neighborhood V of x in U and
functions g1,...,g, € C*°(V) such that w|V =" | df; A dg;. The determination
uses only integration, partial differentiation, and elimination. We may choose V' so
small that (f,g) := (f1,..-, fny91,---,9n) is a chart on V with values in a cube in
R2™,

We have already seen in (26.2.2) that h|V = ho (f,g) where h = ho (f,g) " is a
smooth function on the cube which does not depend on the g;. In fact & may be
determined by elimination since h is constant on the leaves of the foliation given
by fi = ¢;, ¢; constant.

The differential equation for the trajectories of Hy in V' is given by

oh . oh

e=2—=0 = k=1,...
fk agk ) 9k afkv ) » T,
thus the integral curve F17% (z) is given by
fe(FL™ (2)) = fi(2),
oh k=1,...,n. O

ge(FL™ (2)) = gu(x) — tﬁ—ﬁc(f(fﬂ)),

26.7. Proposition. Let (M,w,h) be a Hamiltonian system with dim(M) = 2n and
let f=(f1,...,fn) be a family first integrals of h which are pairwise in involution,
{h, fi} =0 and {fi, f;} =0 for all i,j. Suppose that all Hamiltonian vector fields
Hy, are complete. Then we have:

(1) The vector fields Hy, are the infinitesimal generators of a smooth action
:R™ x M — M whose orbits are the isotropic leaves of the foliation with
Jgumping dimension described in (26.2.3) and which can be described by

H
Citroiy(@) = (F1 " 0. o FI ) ().

Each orbit is invariant under the flow of Hy,.
(2) (Liouville’s theorem) If a € f(M) C R™ is a regular value of f and if N C
f~Y(a) is a connected component, then N is a Lagrangian submanifold and
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is an orbit of the action of R™ which acts transitively and locally freely on
N: For any point x € N the isotopy subgroup (R™), := {t € R™ : {;(x) = =}
18 a discrete subgroup of R™. Thus it is a lattice Zle 2nZv; generated by
k = rank(R™), linearly independent vectors 2mv; € R™. The orbit N is
diffeomorphic to the quotient group R™/(R™), = T* x R"~*  a product of
the k-dimensional torus by an (n — k)-dimensional vector space.

Moreover, there exist constants (w1, ..., wy,) € R™ such that the flow of the
Hamiltonian h on N is given by FltHh = Litw,,....tw,)- If we use coordinates
(by mod 2m,...,bxy mod 2w, bg41,...,b,) corresponding to the diffeomor-

phic description N =2 T* x R"™% the flow of h is given by

F17% (by mod 27, ..., by mod 27, byi1, ..., bp) =
= (by + tcy mod 2w, ... by + tcp, mod 27, byy1 + tcpi1, ..., by +tcy)

for constant ¢;. If N is compact so that k = n, this is called a quasiperiodic

flow.

Proof. The action ¢ is well defined since the complete vector fields H ¢, commute,
see the proof of (3.17). Or we conclude the action directly from theorem (5.15).
The rest of this theorem follows already from (26.2), or is obvious. The form of
discrete subgroups of R™ is proved in the next lemma. [

26.8. Lemma. Let G be a discrete subgroup of R™. Then G is the lattice Zle Ziv;
generated by 0 < k = rank(G) < n linearly independent vectors v; € R™.

Proof. We use the standard Euclidean structure of R™. If G # 0 thereis 0 # v € G.
Let v; be the point in Rv which is nearest to 0 but nonzero. Then G N Rv = Zwv;:
if there were w € G in one of the intervals (m,m + 1)v; then w —muv; € Rv; would
be nonzero and closer to 0 than v;.

If G # Zv; there exists v € G\ Rv;. We will show that there exists a point v
in G with minimal distance to the line Rvy but not in the line. Suppose that the
orthogonal projection prg, (v) of v onto Ruv; lies in the intervall P = [m,m + 1]v;
for m € Z, consider the cylinder C = {z € prﬂgjl (P) : dist(z, P) < dist(v, P)} and
choose a point vs in this cylinder nearest to P. Then vs has minimal distance to
Ry in G\ (Rovq) since any other point in G with smaller distance can be shifted
into the cylinder C' by adding some suitable muv;.

Then Zv, + Zvy forms a lattice in the plane Rwv; + Rwvy which is partitioned into
paralellograms @ = {ajv1 +agvs : m; < a; < m;+1} for m; € Z. If there is a point

w € G in one of these parallelograms ) then a suitable translate w — niv; — nove
would be nearer to Rv; than vo. Thus G N (Rvy + Ruy) = Zvy + Zos.

If there is a point of G outside this plane we may find as above a point v3 of G with
minimal distance to the plane, and by covering the 3-space Rv; + Rvs + Rug with
parallelepipeds we may show as above that GN(Rv; +Ruvs+Rug) = Zvy +Zve + Zvs,
and so on. [J
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27. Extensions of Lie algebras and Lie groups

In this section we describe first the theory of semidirect products and central ex-
tensions of Lie algebras, later the more involved theory of general extensions with
non-commutative kernels. For the latter we follow the presentation from [Alek-
seevsky, Michor, Ruppert, 2000], with special emphasis to connections with the (al-
gebraic) theory of covariant exterior derivatives, curvature and the Bianchi identity
in differential geometry (see section (27.3)). The results are due to [Hochschild,
1954], [Mori, 1953], [Shukla, 1966], and generalizations for Lie algebroids are in
[Mackenzie, 1987].

The analogous result for super Lie algebras are available in [Alekseevsky, Michor,
Ruppert, 2001].

The theory of group extensions and their interpretation in terms of cohomology
is well known, see [Eilenberg, MacLane, 1947|, [Hochschild, Serre, 1953], [Giraud,
1971], [Azcarraga, Izquierdo, 1995], e.g.

27.1. Extensions. An extension of a Lie algebra g with kernel h is an exact
sequence of homomorphisms of Lie algebras:

0—bh-2elg—o.

(1) This extension is called a semidirect product if we can find a section s : g — ¢
which is a Lie algebra homomorphism. Then we have a representation of the Lie
algebra o : g — L(h,h) which is given by ax(H) = [s(X), H] where we sup-
press the injection 4. It is a representation since aixyjH = [s([X,Y]), H] =
[s(X), s(Y)], H] = [s(X), [s(Y), H]] = [s(Y), [s(X, H)]] = (axay —ayax)H. This
representation takes values in the Lie algebra der(h) of derivations of b, so « :
g — der(h). From the data «, s we can reconstruct the extension ¢ since on h x g
we have [H + s(X),H + s(X')] = [H,H'] + [s(X),H'] — [s(X"),H] + [X, X'] =
[H,H'| + ax(H') — ax/(H) + [X, X'].

(2) The extension is called central extension if h or rather i(h) is in the center of e.

27.2. Describing extensions. Consider any exact sequence of homomorphisms
of Lie algebras:

0—bh KN e 2 g— 0.
Consider a linear mapping s : g — e with po s = Idy;. Then s induces mappings
(1) a:g—>der(f)), aX(H):[S(X)7H]7
2
(2) p:No—b  p(X,Y)=[s(X),s(Y)] - s([X,Y]),
which are easily seen to satisfy

(3) lax,ay] — apxy) = ad,(x,v)

(4) > (axe(¥,2) = plIX, Y], 2)). =0
cyclic{X,Y,Z}
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We can completely describe the Lie algebra structure on ¢ = h @ s(g) in terms of «
and p :

(5) [Hi+s(Xy),Ha+ s(X2)] =
= ([Hy, Ho] + ax, Hy — ax, Hy + p(X1, X2)) + s[X1, Xo]

and one can check that formula (5) gives a Lie algebra structure on h & s(g), if
a:g—der(h) and p: /\2g — b satisfy (3) and (4).

27.3. Motivation: Lie algebra extensions associated to a principal bun-
dle.

Let 7 : P — M = P/K be a principal bundle with structure group K, see section
(21); i.e. P is a manifold with a free right action of a Lie group K and = is the
projection on the orbit space M = P/K. Denote by g = X(M) the Lie algebra
of the vector fields on M, by ¢ = X(P)¥ the Lie algebra of K-invariant vector
fields on P and by h = Xyt (P)X the ideal of the K-invariant vertical vector
fields of e. Geometrically, e is the Lie algebra of infinitesimal automorphisms of the
principal bundle P and b is the ideal of infinitesimal automorphisms acting trivially
on M, i.e. the Lie algebra of infinitesimal gauge transformations. We have a natural
homomorphism m, : ¢ — g with the kernel b, i.e. ¢ is an extension of g by means b.

Note that we have an additional structure of C'°°(M )-module on g, b, e, such that
(X, fY] = fIX,Y] + (m.X)fY, where X, Y € e, f € C°°(M). In particular, b is a
Lie algebra over C*°(M). The extension

0—-Hh—e—g—0

is also an extension of C'*°(M)-modules.

Assume now that the section s : g — e is a homomorphism of C°°(M)-modules.
Then it can be considered as a connection in the principal bundle 7, see section
(22), and the h-valued 2-form p as its curvature. In this sense we interpret the
constructions from section (27.1) as follows in (27.4) below. The analogy with
differential geometry has also been noticed by [Lecomte, 1985] and [Lecomte, 1994].

27.4. Geometric interpretation. Note that (27.2.2) looks like the Maurer-
Cartan formula for the curvature on principal bundles of differential geometry

(22.2.3)
p=ds+ 1[s,s|n,

where for an arbitrary vector space V' the usual Chevalley differential, see (12.14.2),
is given by

d:LP . (V) — L2 (g; V)

skew

dp(Xo, ..., Xp) = > (1) o([Xi, X5, Xo, -, Xiy oo, XG0, X))

1<J

Draft from September 15, 2004 Peter W. Michor,



306 Chapter VI. Symplectic Geometry and Hamiltonian Mechanics 27.5

and where for a vector space W and a Lie algebra f the N-graded (super) Lie bracket
[, Jaon Li.,(W,§), see (22.2), is given by

[0, VA (X1s s Xprg) pHZagn (Xoty s Xop)s ¥ ( Xo(penys- -

Similarly formula (27.2.3) reads as
ad, = da + 5[, an.

Thus we view s as a connection in the sense of a horizontal lift of vector fields on
the base of a bundle, and « as an induced connection, see (22.8). Namely, for every
der(h)-module V' we put

an: LA (g V) — LEE (g;V)

skew
p

ane(Xo, .., Xp) =Y _(-1'ax,(e(Xo, .., X .., Xp)).
1=0

Then we have the covariant exterior differential (on the sections of an associated
vector bundle, see (22.12))

(1) ba t Lo (@ V) = LB (@ V), G = anp + dy,

for which formula (27.2.4) looks like the Bianchi identity, see (22.5.6), dop = 0.
Moreover one can prove by direct evaluation that another well known result from
differential geometry holds, namely (22.5.9)

(2) dadalp) = [p,0ln, @€ L . (g:h).

If we change the linear section s to s’ = s + b for linear b : g — b, then we get

(3) oy =ax + adz(x)
(1) PXY) = p(X,Y) +axb(Y) — ayb(X) — b([X, Y]) + [bX,bY]
=p(X,Y) 4 (6,0)(X,Y) + [bX, bY].
pl=p+8ab+ 5[b,b]A.

27.5. Theorem. Leth and g be Lie algebras.

Then isomorphism classes of extensions of g overl, i.e. short exact sequences of Lie
algebras 0 — h — ¢ — g — 0, modulo the equivalence described by the commutative
diagram of Lie algebra homomorphisms
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correspond bijectively to equivalence classes of data of the following form:

(1) A linear mapping « : g — der(h),

(2) a skew-symmetric bilinear mapping p: g x g — b

such that

(3) [ax, ay] — ax .y = ad,(x,y),

(4) Z (aXp(Y, Z) —p(|X,Y], Z)) =0 equivalently, 6,,p = 0.
cyclic

On the vector space ¢ :== h & g a Lie algebra structure is given by
(6) [H1+ X1, Hy + Xl = [Hy, Haly + ax, Hy — ax, Hi + p(X1, Xo) + [ X1, Xo]g,
the associated exact sequence is

OHbgh@g:e&g—ﬂ).

Two data (o, p) and (¢, p') are equivalent if there exists a linear mapping b:g — b
such that

(6) O/X =ax + adl?(X)’
(7) P(X,Y)=p(X,Y)+ axb(Y) — ayb(X) — b([X,Y]) + [b(X),b(Y)]
pl = p+3ab+ L[b,b]A,

the corresponding isomorphism being
e=hdg—hadg==¢, H+Xw—H-bX)+ X.

Moreover, a datum (c, p) corresponds to a split extension (a semidirect product)
if and only if (o, p) is equivalent to to a datum of the form (a’,0) (then o' is a
homomorphism). This is the case if and only if there exists a mapping b : g — b
such that

(8) p=—8ab— 3[b,b].

Proof. Straigthforward computations. [

27.6. Corollary. [Lecomte, Roger, 1986] Let g and b be Lie algebras such that
b has no center. Then isomorphism classes of extensions of g over b correspond
bijectively to Lie homomorphisms

&+ g — out(h) = der(h)/ ad(h).
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Proof. If («a,p) is a datum, then the map & : g — der(h)/ad(h) is a Lie algebra
homomorphism by (27.5.3). Conversely, let & be given. Choose a linear lift « :
g — der(h) of a. Since & is a Lie algebra homomorphism and h has no center,
there is a uniquely defined skew symmetric linear mapping p : g X g — b such that
lax,ay] — ajxy] = ad,(x,y). Condition (27.5.4) is then automatically satisfied.
For later use also, we record the simple proof:

> |axe(Yi2) = p(X,Y], 2).H
cyclicX,Y,Z

= > (axlp(v.2). H - [po(Y. 2),ax H] = [p(1X, Y], 2), H))

cyclicX,Y,Z

= Z (Oéx lay,az] — axapy,z) — [ay, azlax + apy,zjax

cyclicX,Y,Z
— logx,yy, z] + a[[X,Y]Z]>H
= > ([ax, lay, az]] = [ax, qy, 7)) — [ox v) az] + Q‘[[X,Y}Z]>H =0.
cyclicX,Y,Z

Thus (a, p) describes an extension by theorem (27.5). The rest is clear. O

27.7. Remarks. If h has no center and & : g — out(h) = der(h)/ad(h) is a
given homomorphism, the extension corresponding to & can be constructed in the
following easy way: It is given by the pullback diagram

0 b der(h) Xout(p) 9 2, g —— 0
H | |
0 h der(h) —"— out(h) —— 0

where der(h) Xout(p) 8 is the Lie subalgebra

der(B) X ou(n) 8 = {(D, X) € dex(h) x g : 7(D) = &(X)} C der(h) x g.

We owe this remark to E. Vinberg.

If b has no center and satisfies der(h) = b, and if b is normal in a Lie algebra e,

then ¢ 2 b @ ¢/h, since Out(h) = 0.

27.8. Theorem. Let g and b be Lie algebras and let

@ : g — out(h) = der(h)/ad(h)

be a Lie algebra homomorphism. Then the following are equivalent:
(1) For one (equivalently: any) linear lift o : g — der(h) of & choose p: N> g —
b satisfying ([ax, ay] — apx,y]) = ad,(x,y). Then the d5-cohomology class

of A= Ma,p) :=0ap: N g — Z(b) in H3(g; Z()) vanishes.
(2) There exists an extension 0 — h — ¢ — g — 0 inducing the homomorphism

Q.
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If this is the case then all extensions 0 — h — ¢ — g — 0 inducing the homomor-
phism & are parameterized by H?*(g,(Z(h),&)), the second Chevalley cohomology
space of g with values in the center Z(h), considered as g-module via a.

Proof. Using once more the computation in the proof of corollary (27.6) we see
that ad(A(X,Y, 7)) = ad(dap(X,Y,Z)) = 0 so that \M(X,Y,Z) € Z(h). The Lie
algebra out(h) = der(h)/ad(h) acts on the center Z(h), thus Z(h) is a g-module
via @&, and 04 is the differential of the Chevalley cohomology. Using (27.4.2) we see
that

a = 0adap = [p, pln = —(=1)**[p, plr =0,
so that [\] € H3(g; Z(h)).
Let us check next that the cohomology class [A] does not depend on the choices

we made. If we are given a pair (a, p) as above and we take another linear lift
o' : g — der(h) then oy = ax + ady(x) for some linear b : g — h. We consider

g Na—b PXY)=p(X,Y)+ ([0ab)(X.Y) + [B(X),b(Y)].

Easy computations show that

[a'y, ay] — afx,y] = ad, (x,v)
Ma, p) = dap = durp’ = A, p')
so that even the cochain did not change. So let us consider for fixed a two linear
mappings
2
p,p /\9 — b, [ax,ay] —oxy) =ad,xy) =ady(x,y)-
Then p—p' =: p: /\29 — Z(h) and clearly A« p) — M@, p') = dap — dap’ = dap.
If there exists an extension inducing & then for any lift & we may find p as in (27.5)
such that A(«, p) = 0. On the other hand, given a pair (a, p) as in (1) such that
e, p)] = 0 € H3(g, (Z(h),a)), there exists pu: A°g — Z(h) such that dzpu = A.
But then
ad(p—py(x,v) = adp(x,v):  dalp =) =0,

so that (a, p— ) satisfy the conditions of (27.5) and thus define an extension which
induces @.

Finally, suppose that (1) is satisfied, and let us determine how many extensions
there exist which induce a. By (27.5) we have to determine all equivalence classes
of data («, p) asin (27.5). We may fix the linear lift v and one mapping p : /\2 g—b
which satisfies (27.5.3) and (27.5.4), and we have to find all p’ with this property.
But then p— p' = pu: A\’ g — Z(h) and

daph = O0ap —0ap =0—-0=0

so that p is a 2-cocycle. Moreover we may still pass to equivalent data in the sense
of (27.5) using some b : g — h which does not change «, i.e. b: g — Z(h). The
corresponding p’ is, by (27.5.7), p' = p+ dab+ 3[b,b]n = p+ J5b. Thus only the
cohomology class of p matters. [
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27.9. Corollary. Let g and b be Lie algebras such that §y is abelian. Then iso-
morphism classes of extensions of g over by correspond bijectively to the set of all
pairs (a, [p]), where o : g — gl(h) = der(h) is a homomorphism of Lie algebras and
[p] € H?(g,b) is a Chevalley cohomology class with coefficients in the g-module b
given by a.

Isomorphism classes of central extensions correspond to elements [p] € H?(g,R)®b
(0 action of g on b).

Proof. This is obvious from theorem (27.8). O

27.10. An interpretation of the class \. Let hh and g be Lie algebras and let
a homomorphism & : g — der(h)/ad(h) be given. We consider the extension

0 — ad(h) — der(h) — der(h)/ ad(h) — 0

and the following diagram, where the bottom right hand square is a pullback (com-
pare with remark (27.7)):

0 0
l l
Z(b) Z(h)
0—fh - >; ———————————— rg—>0
d(h) €0

<«—

J A

0 — ad(h) ———— der(h) ————der(h)/ ad(h)

The left hand vertical column describes h as a central extension of ad(h) with
abelian kernel Z(h) which is moreover killed under the action of g via @; it is given
by a cohomology class [v] € H2(ad(h); Z(h))®. In order to get an extension e of g
with kernel h as in the third row we have to check that the cohomology class [v/]
is in the image of i* : H?(eo; Z(h)) — H?(ad(h); Z(h))?. It would be interesting
to express this in terms of of the Hochschild-Serre exact sequence, see [Hochschild,
Serre, 1953].

28. Poisson manifolds
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28.1. Poisson manifolds. A Poisson structure on a smooth manifold M is a
Lie bracket { , } on the space of the vector space of smooth functions C'°°(M)
satisfying also

(1) {f,gh} ={f, gth +g{f D}

This means that for each f € C*°(M) the mapping ady = {f, } is a derivation of
(C>°(M),-), so by (3.3) there exists a unique vector field H(f) = Hy € X(M) such
that {f,h} = Hy(h) = dh(Hy) holds for each h € C*°(M). We also have H(fg) =

fHy+gHj since Hpg(h) = {fg,h} = f{g,h} + g{f, h} = (f Hy + g Hy)(h). Thus
there exists a unique tensor field P € T'(A®> T'M) such that

(2) {f,97 = Hy(g) = P(df,dg) = (df Adg, P).

The choice of sign is motivated by the following. If w is a symplectic form on M
we consider, using (25.22):

w:TM — T*M, (@(X),Y) =w(X,Y)
P=o':T"M —TM, (¥, P(¢)) = P(p,9)
Hy = o (df) = P(df), ig,w=df
{f,9y = Hys(9) =in, dg = in,in,w = w(Hy, Hy)
= Hy(g) = (dg, Hy) = (dg, P(df)) = P(df,dg).

28.2. Proposition. Schouten-Nijenhuis bracket. Let M be a smooth mani-
fold. We consider the space I'(NT M) of multi vector fields on M. This space carries
a graded Lie bracket for the grading I‘(/\*_1 TM), called the Schouten-Nijenhuis
bracket, which is given by

(1) [XaA--AXp,YIA---AY ] =
_Z DXL Y AX A X AXpAYI ALY A Y,

@) I ]——(df) :

where 3(df) is the insertion operator N*TM — N""'TM, the adjoint of df A( ) :
NT*M — N0

This bracket has the following properties: Let U € T(A\“TM), V € T(N'TM),
W e T(N“TM), and f € C°(M,R). Then

(3) U, V] = —(-1)» DDy, U]

(4) U, [V,W]] = [[U V], W] + (=)~ DDy, [0, W]
(5) [U,VAW] = [UV]AW + (=1)“=DvV A [U, W]
(6) (X, U] = LxU,
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(7) Let P € T(N*TM). Then the skew-symmetric product {f, g} := (df Adg, P) on
C° (M) satisfies the Jacobi identity if and only if [P, P] =0

[Schouten, 1940] found an expression for (—1)“~1[U, V] in terms of covariant deriva-
tives which did not depend on the covariant derivative, [Nijenhuis, 1955] found that
it satisfied the graded Jacobi identity. In [Lichnerowicz, 1977] the relation of the
Schouten Nijenhuis-bracket to Poisson manifolds was spelled out. See also [Tulczy-
jew, 1974], [Michor, 1987] for the version presented here, and [Vaisman, 1994] for
more information.

Proof. The bilinear mapping A" 'T(TM) x A" 'T(TM) — A" 'D(TM) given

k—1 k—1 k=1 k—1 .
by (1) factors over A™ " I'(T'M) — Agoe (' (TM) = N\" " T(TM)\" "T'M) since
we may easily compute that

(Xa A AXp, VIA-AfY ;N AY = fIXIA- - ANXp, VI A AY ]+
+ (=D)Pdf ) (X A AX) AYI A N Y,.

So the bracket [ , | : T(A" 'TM) x D(AN"'TM) — D(A*T''TM) is a well
defined operation. Properties (3)—(6) have to be checked by direct computations.

Property (7) can be seen as follows: We have

(8) {f,9} = (df Ndg, P) = (dg,u(df ) P) = —(dg,[f, P]) = lg,[f, P]].

Now a straightforward computation involving the graded Jacobi identity and the
graded skew symmetry of the Schouten-Nijenhuis bracket gives

[0, (g, [f, [P, PIIT = =2({f {9, h}} + {9, {h, [}} + {h, {f, 93})-
Since [h, [g, [f, [P, P]]]] = (df A dg A dh, [P, P]) the result follows. O

28.3. Hamiltonian vector fields for Poisson structures. Let (M, P) be a
Poisson manifold. As usual we denote by P : T*M — TM the associated skew sym-
metric homomorphism of vector bundles. Let X(M, P) :={X € X(M) : LxP =0}
be the Lie algebra of infinitesimal automorphisms of the Poisson structure. For
f € C°(M) we define the Hamiltonian vector field by

(1) grad” (f) = Hy = P(df) = ~[f. P| = —[P, f] € X(M),

and we recall the relation between Poisson structure and Poisson bracket (28.1.2)
and (28.2.8)

{f,g} = Hs(g9) = P(df,dg) = (df Ndg, P) = |g,[f, P]].
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Lemma. The Hamiltonian vector field mapping takes values in X(M, P) and is a
Lie algebra homomorphism

H:gradP
_—

(COO(M)a{ ’ }P) %(M,P)

Proof. For f € C°>°(M) we have:

0= [f.[P,P| = [If. P}, P - [P.[f. P)) = 2[lf. P], P,
Li,P=[H;, P = ~[[f,P].P] =0.

For f,g € C>*(M) we get

[Hy, Ho] = [If, P], g, P]
= [97 [[f,P],P]] - [[97 [f?PH’P]
=9, —Lu, Pl -[{f, 9}, Pl =0+ H({f, g}) O

28.4. Theorem. Let (M, P) be a Poisson manifold. Then P(T*M) C TM is an
integrable smooth distribution (with jumping dimension) in the sense of (3.23). On
each leaf L (which is an initial submanifold of M by (3.25)) the Poisson structure
P induces the inverse of a symplectic structure L.

One says that the Poisson manifold M is stratified into symplectic leaves.

Proof. We use theorem (3.28). Consider the set V := {P(df) = H; = —[f, P] :
f e C®(M)} C X(P(T*M)) of sections of the distribution. The set V spans the
distribution since through each point in T*M we may find a form df. The set V is
involutive since [Hy, Hy| = H{ 4y. Finally we have to check that the dimension of

P(T*M) is constant along each flow line of vector fields in V, i.e. of vector fields
H¢. We have

P=FL")P=T(F"])o Po(TF")* since Ly, P =0
dim P(T} M) = dim T, M — dim(ker P,)

: - : H - Hy\x
dim(ker PFlff(x)) = dim(ker T'(F1]) o PFlff @ ° (T, F1,7)*) =

= dim(ker P,) = constant in ¢.

So all assumptions of theorem (3.28) are satisfied and thus the distribution P(T* M)
is integrable.

Now let L be a leaf of the distribution P(7*M), a maximal integral manifold. The
2-vector field P|L is tangent to L, since a local smooth function f on M is constant
along each leaf if and only if P(df) = —df o P : T*M — R vanishes. Therefore,
P|L : T*L — TL is a surjective homomorphism of vector bundles of the same
fiber dimension, and is thus an isomorphism. Then &y := (P|L)™' : TL — T*L
defines a 2-form w;, € Q%(L) which is non-degenerate. It remains to check that wy,
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is closed. For each x € L there exists an open neighborhood U C M and functions
f,g,h € C>=(U) such that the vector fields H; = P(df)|L, H,, and H}, on L take
arbitrary prescribed values in T, L at € L. Thus dwy = 0 € Q3(L) results from
the following computation:

wr(Hyp, Hy) = (ig,wr)(Hy) = or(Hy)(Hy) = df (Hy) = {g, f},
dwr(Hyf, Hg, Hy) = Hy(wr(Hg, Hp)) + Hg(wr(Hp, Hy)) + Hp(wr(Hy, Hy))—
—wr([Hy, Hyl, Hy) — wr([Hg, Hp), Hy) — wr([Hp, Hy], Hy)
={fi{hg}} + {9, {f, p}} + {h. {9, f}}
—{hAf 9t —{f {9 h}} —{g.{h, f}} =0. O

28.5. Proposition. Poisson morphisms. Let (My, Py) and (Msy, P3) be two
Poisson manifolds. A smooth mapping ¢ : M1 — My is called a Poisson morphism
if any of the following equivalent conditions is satisfied:

(1) For all f,g € C*(M2) we have *{f, gt2 = {¢* f, ¥ g}1.

(2) For all f € C*°(My3) the Hamiltonian vector fields Hy-y € X(My, Py) and

Hy € X(Ms, Py) are p-related.
(3) We have N°Tpo P, = Pyoy: M; — N> TMs,.
(4) For each x € My we have

Proof. For z € M; we have

{¢"f, ¢ gk (x) = (P1)z(d(f o @) (z),d(g o ¢)(z))
= (P1)2(df (p(2)) Tup, dg(p(2)). Tep)
= (P1)2-A*(Top) " (df (9(2)), dg(p(2)))
= N Top.(Pr)a-(df (p(2)), dg((2))),
e {f,9}2(x) = {f, 9}2(p(x)) = (P2) () (df (p(2)), dg(p(2))).

This shows that (1) and (3) are equivalent since df (y) meets each point of 7% Ms.
(3) and (4) are obviously equivalent.

(2) and (4) are equivalent since we have

TmSD'Hcp*f(x) = ngp(Pl)a:d(f o @)(x) = T:nQO(Pl)m(Ta:SD)*df(SO(x))
= (P2)p(a)-df (¢(x)) = Hy(p(x)). O

28.6. Proposition. Let (My, P1), (Ma, Py), and (Ms, P3) be Poisson manifolds
and let ¢ : My — My and v : My — Ms be smooth mappings.

(1) If ¢ and v are Poisson morphisms then also 1 o ¢ is a Poisson morphism.
(2) If ¢ and 1) o ¢ are Poisson morphisms and if ¢ is surjective, then also v is
a Poisson morphism. In particular, if ¢ is Poisson and a diffeomorphism,

—1

then also ¢~ is Poisson.
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Proof. (1) follows from (28.5.1), say. For (2) we use (28.5.3) as follows:
ATpoP, =Pyop and A?T(Ypop)oP,=Pyotpoy imply
ATy oPyop=NTyoATpo P = AT(Yop)oPy=Psodop,
which implies the result since ¢ is surjective. [J

28.7. Example. For a Lie algebra g there is a canonical Poisson structure P on
the dual g*, given by the dual of the Lie bracket:
[ 1A% -, P=-[, ]":ig" = A,
{f,91(a) = (o, [dg(a),df (a)])  for f,g€ C(g"), € ¢
The symplectic leaves are exactly the coadjoint orbits with their symplectic structures

from (25.14).

Proof. We check directly the properties (28.1) of a Poisson structure. Skew sym-
metry is clear. The derivation property (28.1.1) is:

{f, gh}(@) = (o, [M(@)dg(@) + g(a)dh(e), df (a)])
= {a, [dg(), df ()])h(e) + g(a){a, [dh(a), df (a)])
= ({f,9}h +g{f, h})(a).
For the Jacobi identity (28.1.1) we compute
d{g,h}(a)f =
= (B, [dh(a),dg()]) + (o, [d*h() (B, ), dg(@)]) + (o, [dh(e), d*g(e)(B, )])
= (8, [dh(a),dg()]) — {(adag() e, d*h(a) (B, )) + ((adan(a)) e, d*g(e)(8, )
= (8, [dh(e),dg(e)]) — d*h(e)(B, (adgg(a)) ") + d*g(@)(B, (adan(a)) " @)

and use this to obtain

{F g, h}} (@) = (a,[d{g, h} (), df ()]) =

= (o, [[dh(a), dg(e)], df (a)]) =
— (o, [d*h(a)( (adgg(a))a), df (@)]) + (e, [d*g(@)(, (addn(a)) @), df (@)])
= (o, [[dh(e), dg(e)], df (a)]) =

— d*h(a)((adgg(a)) @, (adag(ay) ") + d*g(@) ((adas(a)) " (adan(ay) @)
The cyclic sum over the last expression vanishes. Comparing with (25.14) and
(25.22.2) we see that the symplectic leaves are exactly the coadjoint orbits, since

(Hf(a),dg(a)) = Hp(9)la = {f, 9}(@) = (o, [dg(a), df (a)])
—((adg(a)) @, dg(c))
Hy(a) = —(adgr(a)) o
The symplectic structure on an orbit O = Ad(G)*« is the same as in (25.14)
which was given by wo(Cx,(y) = ev(x,y] where (x = —ad(X)* is the fundamental
vector field of the (left) adjoint action. But then devy ((x(a)) = —(ad(X)*a,Y) =
(o, [Y, X]) = wo(Cy, (x) so that on the orbit the Hamiltonian vector field is given by
Heoy = ¢y = —ad(Y)* = —ad(devy (a))*, as for the Poisson structure above. [
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28.8. Theorem. Poisson reduction. Let (M, P) be a Poisson manifold and
let v = M x G — M be the right action of a Lie group on M such that each
r9: M — M is a Poisson morphism. Let us suppose that the orbit space M /G is a
smooth manifold such that the projection p: M — M/G is a submersion.

Then there exists a unique Poisson structure P on M/G such that p : (M, P) —
(M/G, P) is a Poisson morphism.

The quotient M /G is a smooth manifold if all orbits of G are of the same type: all
isotropy groups G, are conjugated in G. See 777.

Proof. We work with Poisson brackets. A function f € C°°(M) is of the form
f = fopfor f € C>®(M/QG) if and only if f is G-invariant. Thus p* : C=°(M/G) —
C>(M) is an algebra isomorphism onto the subalgebra C°°(M)% of G-invariant
functions. If f,h € C°°(M) are G-invariant then so is {f,h} since (r9)*{f,h} =
{(r9), (r9)*h} = {f,h} by (28.5), for all g € G. So C>°(M)% is a subalgebra for
the Poisson bracket which we may regard as a Poisson bracket on C*°(M/G). O

28.9. Poisson cohomology. Let (M, P) be a Poisson manifold. We consider the

mapping
6p =[P, ]:T(A*'TM)—T(A*TM)

which satisfies 6p o 6p = 0 since [P, [P,U]] = [[P, P],U] + (=1)*1[P,[P,U]] by the
graded Jacobi identity. Thus we can define the Poisson cohomology by

_ ker(6p : D(AFTM) — T(AFT1TM))

HE o (M) = .
Poisson (M) 1= 5 (AT  D(ARTM))
dim(M)
(1) H;OiSSOD(M): @ Hllgoisson<M)
k=0

is a graded commutative algebra via U AV since im(dp) is an ideal in ker(dp) by
(28.2.5). The degree 0 part of Poisson cohomology is given by

(2) Hpgisson (M) = {f € C®(M) : Hy = {f, }=0},

i.e. the vector space of all functions which are constant along each symplectic leaf of
the Poisson structure, since [P, f] = [f, P] = —2(df)P = —P(df) = —H; = —{f, }
by (28.2.2), (28.2.8), and (28.1.2). The degree 1 part of Poisson cohomology is given
by

(X eX(M):[P,X]|=-LxP=0} X(M, P)
B {[P, f]: feC=(M)} C{Hp: feOx(M)}

Thus we get the following refinement of lemma (28.3). There exists an ezact se-

(3) H%’oisson (M)

quence of homomorphisms of Lie algebras:

. P
0 %Hgoisson(M) LCOO<M) M%(M, P) LH}%’oisson(M) —>07

0 {7 [ ] [ ]
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where the brackets are written under the spaces, where « is the embedding of the
space of all functions which are constant on all symplectic leaves, and where ~ is
the quotient mapping from (3). The bracket on Hp_. ... (M) is induced by the Lie
bracket on X(M, P) since {Hy : f € C>®°(M)} is an ideal: [Hy, X| = [-[f, P],X]| =
LR XT ~ [P X)) = 0+ [X(f). Pl = ~Hxp.

28.10. Lemma. [Gelfand, Dorfman, 1982|, [Magri, Morosi, 1984|, Let (M, P) be
a Poisson manifold.

Then there emists a Lie bracket { , }' : QY(M) x QY(M) — QY (M) which is
given by

(1) {0, 0} = Lpoy¥ — Lpgyp — d(P(p, 1))

= Lp)¥ ~ Lpw) P~ dip) Y-
It is the unique R-bilinear skew symmetric bracket satifying
(2) {df.dg}' = d{f,g} for f.g € C*(M)
(3) {o, fo} = Ho 0} + Lpy (o for .0 € Q(M).
Furthermore P, : QY (M) — X(M) is a homomorphism of Lie algebras:
(4) P({p,9}") = [P(9), P(¥)] for o,¢ € Q' (M).

The coboundary operator of Poisson cohomology has a similar form in terms of the
bracket { , }' as the exterior derivative has in terms of the usual Lie bracket.
Namely, for U € T(A*TM) and ¢y, ..., or € QY (M) we have

k
(5) (_1)k(5PU>(900’ S 7(1014) = Z(_l)l[’P(goz)(U(nga S 7(151'5 v 7(1016))_'_
1=0
+ Z(_l)Z—HU({(tOZv Soj}lv ©o, - - - 7932'7 R a@a v 730k)

1<J

Proof. (1) is skew symmetric R-bilinear and satisfies (2) and (3) since by (28.3)
we have

{df,dg}' = Lpapydg — Lpagydf — d(P(df,dg)) = dLu,g — dLp, f — d{f, g}
=d{f, g},
{0, JU} = Ly (1) = Lypiye — d(FP(p, 1))
= Lp(oy (1)U + fLp() () = [Lpwy e — e(P(1)) df —
— P(p, ) df — fd(P(e,v))
= [, 0} 4 Loy () ¢

So an R-bilinear and skew symmetric operation satisfying (2) and (3) exists. It is
uniquely determined since from (3) we see that is local in 1, i.e. if ¢|U = 0 for
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some open U then also {¢,}'|U = 0 by using a appropriate bump functions. By
skew symmetry it also local in . But locally each 1-form is a linear combination
of expressions f df’. Thus (2) and (3) determine the bracket { , }! uniquely. By
locality it suffices to check the condition (4) for 1-forms f df’ only:

P({fdf'.gdg'}') = P(fg{df',dg'}' + f Hy(g)dg' — g Hy < ) df')
= fgP({f',g'}) + f Hy (g) P(dg') — g Hy (f) P(df’)
= fgHpr gy + f Hp (g) P(dg') — gHgf(f) P(df")
= fglHp,Hyl+ fHyp(9)Hy —gHy(f) Hyr
= [fHyp,gHy] = [P(fdf'), P(gdg)].

Now we can check the Jacobi identity. Again it suffices to do this for 1-forms f df’.
We shall use:

{fdf',gdg'}" = fg{df’,dg'}" + f Hy (9)dg — g Hy (f) df’
= fod{f', g’y + f{f,9rdg’ —g{d'. f}df

in order to compute

{rdf',gdg'y' hdn'y' = {{fgd{f',g'} + f{f' 9} dg' — g{g', [} df', hdh'}}!
= {{fgd{f',g'}, hah'}' + {f{f'. g} dg',hdh'}" — {g{g', f}df’, hd'}
= fghd{{f".g'}, 1"} + fo{{f', '}, h} dh’ — h{}', fg} d{f".¢'}
+ A gthdlg W'Y+ S g Yy dh' — iR f{f', g}} dg'
—glg’, frha{f', 0’} — g{g’, FH S Wy db' + iKW g{g’, f}} df’
= fghd{{f" o'}, W'} + (fo{f'.A{g' h}}dh' — fg{g'{f', h}} dI')
+ (—gh{l, fYd{f' g} — fR{l', g} d{f'. ¢'})
+hf{f gt d{g’ h'} + f{f' 99 n} dl’
+ (=P{N FH S 9} dg' — hf{I'{f' g3} dg)
—hglg’, fYa{f' .0’} — g{g’, FH S b}l
+ (MW gy, fYdf" + gh{h' . {g', f}} df’).
The cyclic sum over these expression vanishes by once the Jacobi identity for the
Poisson bracket and many pairwise cancellations.

It remains to check formula (5) for the coboundary operator of Poisson cohomology.
we use induction on k. For £ = 0 we have

(Opf)dg) = Lu,f ={9,f} = —Lu,9 = —Hy(dg) = [P, f](dg).

For k =1 we have

(0pX)(df,dg) = L, (X(dg)) — L, (X(df)) — X({df,dg}")
=Ly, (X(dg)) — Lu,(X(df)) — X(d{f, g})
[P, X|(df,dg) = —(Lx P)(df, dg) —Lx (P(df,dg)) + P(Lxdf,dg) + P(df, Lxdg)
= —X(d{g, f}) + {9, X(df)} +{X(dg), f}
—(X(d{f,9}) — Lu,(X(df)) — Lu,(X(dg))) = —(p)(df,dg).
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Finally we note that the algebraic consequences of the definition of § p are the same
as for the exterior derivative d; in particular, we have 6p(U A V) = (6pU) ANV +
(—=1)*U A (0pV). So formula (5) now follows since both sides are graded derivations
and agree on the generators of I'(A*T'M ), namely on C*°(M) and on X(M). O

29. Hamiltonian group actions and momentum mappings

29.1. Symplectic group actions. Let us suppose that a Lie group G acts from
the right on a symplectic manifold (M,w) by r : M x G — M in a way which
respects w, so that each transformation 79 is a symplectomorphism. This is called
a symplectic group action. Let us list some immediate consequences:

(1) The space C>=(M)C of G-invariant smooth functions is a Lie subalgebra for the
Poisson bracket, since (r9)*{f,h} = {(r9)* f, (r9)*h} = {f, h} holds for each g € G
and f,h € C®(M)C.

(2) For x € M the pullback of w to the orbit x.G is a 2-form of constant rank
and s invariant under the action of G on the orbit. Note first that the orbit is an
initial submanifold by (5.14). If i : ©.G — M is the embedding of the orbit then
r9 o4 =qdord, sothat i*w = i*(r?)*w = (r9)*i*w holds for each g € G and thus
i*w is invariant. Since G acts transitively on the orbit, i*w has constant rank (as a
mapping T'(z.G) — T*(z.G)).

(3) By (5.13) the fundamental vector field mapping ¢ : g — X(M,w), given by
(x(z) =Te(r(x, ))X for X € g and x € M, is a homomorphism of Lie algebras,
where g is the Lie algebra of G. (For a left action we get an anti homomorphism
of Lie algebras, see (5.12)). Moreover, ¢ takes values in X(M,w). Let us consider
again the exact sequence of Lie algebra homomorphisms from (25.22):

0 — HO(M) —2 s o) —H s x(v,w) — L HY(M) —0

One can lift ¢ to a linear mapping j : g — C*°(M) if and only if v o ¢ = 0. In this
case the action of GG is called a Hamiltonian group action, and the linear mapping
j:g— C®(M) is called a generalized Hamiltonian function for the goup action.
It is unique up to addition of a mapping ao 7 for 7: g — H°(M).

(4) If HY (M) = 0 then any symplectic action on (M,w) is a Hamiltonian action.
But if v o ¢ # 0 we can replace g by its Lie subalgebra ker(y o () C g and condiser
the corresponding Lie subgroup G which then admits a Hamiltonian action.

(5) If the Lie algebra g is equal to its commutator subalgebra algebra [g,g|, the
linear span of all [X,Y] for X,Y € g, then any infinitesimal symplectic action
(:9— X(M,w) is a Hamiltonian action, since then any Z € g can be written as
Z =3Y,1X:,Y:] so that {z = > [Cx;, Cy;] € im(grad®) since v : X(M,w) — H'(M)

is a homomorphism into the zero Lie bracket.
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29.2. Lemma. Momentum mappings. For an infinitesimal symplectic action,
i.e. a homomorphism ¢ : g — X(M,w) of Lie algebras, we can find a linear lift
j:g— C°(M) if and only if there exists a mapping J : M — g* such that

H<J7X>:CX for all X € g.

Proof. Namely, for y € M we have

J:M—g", (J(y),X)=jiX)y) eR, j:g—-C7(M). O

The mapping J : M — g* is called the momentum mapping for the infinitesimal
action ¢ : g — X(M,w). This holds even for a Poisson manifold (M, P) (see section
(28)) and an infinitesimal action of a Lie algebra ¢ : g — X(M, P) by Poisson
morphisms. Let us note again the relations between the generalized Hamiltonian j
and the momentum mapping J:

JiM—g' jig— CF(M), (:g— X(M,P),
(1) <J7X>:j(X>ECOO(M)7 Hj(X):C<X)7 XEg,
where (, ) is the duality pairing.

29.3. Basic properties of the momentum mapping. Let r : M x G — M
be a Hamiltonian right action of a Lie group G on a symplectic manifold M, let
j:g— C°°(M) be a generalized Hamiltonian and let J : M — g* be the associated
momentum mapping.

(1) For x € M, the transposed mapping of the linear mapping dJ(x) : T, M — g* is
dJ(z)" 19— T:M, dJ(z)" =@, 0,
since for £ € T, M and X € g we have
(dJ(£), X) = (igdJ, X) = igd(J], X) = igicyw = (02(Cx (2)),§)-
(2) The image dJ (T, M) of dJ(x) : T,M — gx is the annihilator g5 of the isotropy
Lie algeba g, := {X € g: (x(x) = 0} in g*, since the annihilator of the image is

the kernel of the transposed mapping,

im(dJ(z))° = ker(d.J(z) " = ker(@, o ¢) = ker(ev, o) = g..

(3) The kernel of dJ(x) is the symplectic orthogonal (T, (x.G))* € T, M, since for
the annihilator of the kernel we have

ker(dJ(z))° = im(dJ(z) ") = im(w, 0 ¢) = {0 (Cx (7)) : X € g} = 0 (T (2.G)).
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(4) For each x € M the rank of dJ(x) : T,M — g* equals the dimension of the
orbit x.G, i.e. to the codimension in g of the isotropy Lie algebra g,. This follows
from (3) since

rank(dJ(z)) = codimp, ps (ker dJ(z)) = dim(ker(dJ(x))°) = dim(T, (z.G)).

(5) The momentum mapping J : M — g* is a submersion at x € M if and only if
the isotropy group G, is discrete.

(6) If G is connected, x € M is a fized point for the G-action if and only if x is a
critical point of J, i.e. dJ(z) = 0.

(7) Suppose that all orbits of the G-action on M have the same dimension. Then
J: M — g* is of constant rank. Moreover, the distribution F of all symplectic
orthogonals to the tangent spaces to all orbits is then an integrable distribution of
constant rank and its leaves are exactly the connected components of the fibers of
J. Namely, the rank of J is constant by (4). For each in x € M the subset
J~1(J(x)) is then a submanifold by (1.13), and by (1) J~*(J(z)) is a maximal
integral submanifold of F through =x.

A direct proof that the distribution F is integrable is as follows: it has constant
rank, and is involutive, since for £ € X(M) we have £ € X(F) if and only if
igicyw = —w(§,(x) =0 for all X € g. For {,n € X(F) and X € g we have

i[g’n]igxw = [ﬁg, Z'n]igxu) = Eginicxw - inﬁﬁiCxw =0- inigdigxw - indigigxu) = 0.

(8) (E. Noether’s theorem) Let h € C*°(M) be a Hamiltonian function which is
mvariant under the Hamiltonian G action. Then the momentum mapping J :
M — g* is constant on each trajectory of the Hamiltonian vector field Hy,. Namely,

4(JoFL™", X) = (dJ o L FII™" X)) = (dJ(H}, o FI™, X) = (ig, d(J, X)) o FI/™
= {h,(J, X)} o FIi"" = —{(J, X), h} o FIi"" = —(L¢,h) o FIf* = 0.

E. Noether’s theorem admits the following generalization.

29.4. Theorem. (Marsden and Weinstein) Let G1 and Gy be two Lie groups
which act by Hamiltonian actions r1 and ro on the symplectic manifold (M, w), with
momentum mappings J1 and Jo, respectively. We assume that Jo is G1-invariant,
1.e. Jo 1s constant along all G1-orbits, and that G is connected.

Then Ji is constant on the Go-orbits and the two actions commute.

Proof. Let ¢ : g; — X(M,w) be the two infinitesimal actions. Then for X; € gy
and X, € go we have

£C§(2 <J1,X1> = i(§2d<J1,X1> = i@%z’@(lw = {<J2,X2>, <J1,X1>}
= —{(J1,X1),(J2, X2) } = —ig§1d<J2,X2> = _['C;q (J2, X2) =0
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since Jy is constant along each Gi-orbit. Since G is assumed to be connected,
J1 is also constant along each Gs-orbit. We also saw that each Poisson bracket
{(J2, X2), (J1, X1) } vanishes; by H(j, x,) = C}( we conclude that [C}(l,C)Q(Q] =0 for
all X; € g; which implies the result if also Gy is connected. In the general case we
can argue as follows:

(r{*)*Cx, = (r{" ) His, x) = (r{")* (@1 d(J2, X2))
= (((r{" )y w)" ) d{(r{*) T2, X2) = (0™ d(J2, X2) = H{J, x5y = (X,
exp(tX2)

Thus r{' commutes with each 7 and thus with each rJ?, since Gy is con-
nected. [

29.5. Remark. The classical first integrals of mechanical systems can be derived
by Noether’s theorem, where the group G is the group of isometries of Euclidean
3-space R3, the semidirect product R3 x SO(3). Let (M,w,h) be a Hamiltonian
mechanical system consisting of several rigid bodies moving in physical 3-pace. This
system is said to be free if the Hamiltonian function A describing the movement of
the system is invariant under the group of isometries acting on R? and its induced
action on phase space M C T*(R3k). This action is Hamiltonian since for the
motion group G we have [g,g] = g, by (29.1.5). Thus there exists a momentum
mapping J = (Jj, J,) : M — (R® x 50(3))* = (R3)* x s0(3)*. Its component J; is
the momentum mapping for the action of the translation group and is called the
linear momentum, the component .J, is the momentum mapping for the action of
the rotation group and is called the angular momentum.

The momentum map is essentially due to Lie, [Lie, 1890], pp. 300-343. The
modern notion is due to [Kostant, 1966], [Souriau, 1966], and Kirillov [Kirillov,
1986]. [Marmo, Saletan, Simoni, 1985], [Libermann, Marle, 1987] and [Marsden,
Ratiu, 1999] are convenient references, [Marsden, Ratiu, 1999] has a large and
updated bibliography. The momentum map has a strong tendency to have conver
image, and is important for representation theory, see [Kirillov, 1986] and [Neeb,
1999]. Recently, there is also a proposal for a group-valued momentum mapping,
see [Alekseev, Malkin, Meinrenken, 1998].

29.6. Strongly Hamiltonian group actions. Suppose that we have a Hamil-
tonian action M x G — M on the symplectic manifold (M,w), and consider a
generalized Hamiltonian j : g — C°°(M), which is unique up to addition of o 7
for some 7 : g — H°(M). We want to investigate whether we can change j into a
homomorphism of Lie algebras.

(1) Themap g > X, Y — {jX,jY}—j([X,Y]) = J(X,Y) takes values in ker(H) =

im(«) since
H({7X,5Y}) = HG(X,Y])) = [Hjx, Hjy] = (x.v) = [Cx, O] = (v = 0.
Moreover, 7: A%2g — H?(M) is a cocycle for the Chevalley cohomology of the Lie
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algebra g, as explained in (12.14):
dj(Xv Y, Z) == Z j([Xv Y]7Z) - Z ({]([va])7.]Z} _j([[Xv Y]7Z]))

cyclic cyclic

== > {UX. Y}y -3(X.Y),jZ} — 0
cyclic

=— Y ({{iX.jY}iZ} - {5(X,Y),jZ}) =0,
cyclic

by the Jacobi identity and since 7(X,Y) € HY(M) which equals the center of the
Poisson algebra. Recall that the linear mapping j : g — C°°(M) was unique only
up to addition of a mapping avo 7 for 7: g — HY(M). But

JHTXY)={0+n)X,(G+7)Y} = +7)(X,Y])

={/ XY+ 0—-4(X,)Y]) = 7([X,Y]) = 7+ dr)(X,Y).

Thus, if v o ¢ = 0, there is a unique Chevalley cohomology class ¢ := 7] €
H2(g, HO(M)),
(2) The cohomology class ¢ = [7] is automatically zero if H?(g, H*(M)) = H?(g) ®

HO(M) = 0. This is the case for semisimple g, by the Whitehead lemmas, see
[Hilton, Stammbach, 1970], p. 249.

(3) The cohomology class ¢ = [7] is automatically zero if the symplectic structure
w on M is exact, w = —df for § € Q' (M), and L, 0 = 0 for each X € g: Then we
may use j(X) = icxe = H(QX), since i(Hjx)w = d(jX) = dicxe = ﬁgxe - igxdg =
0+ i¢ w implies Hjx = (x. For this choice of j we have

j(X7 Y) = {]Xa.]Y} - .]([Xa Y]) = EHjX(jY) - iC([X»Y])Q = ’CHinCYe - i[CX»CY]e

- EHin{YH - [EHjX’iCY]‘g = _iCYEHjXQ =0.

This is the case if M = T*(Q is a cotantent bundle and if ¢ : g — X(T*Q,wq) is
induced by o : g — X(Q). Namely, by (25.10) we have:

Lebq = Gy (FI7 ) 0g = &, (T*(FI7¥)) "6 = 0.

(4) An example, where the cohomology class { = [7] € H?(g, H°(M)) does not
vanish: Let g = (R?,[ , | = 0) with coordinates a,b. Let M = T*R with
coordinates ¢,p, and w = dq A dp. Let () = a0y + b0,. A lift is given by
j(a,b)(¢,p) = ap — bq. Then
J((a1,b1), (az,b2)) = {j(a1,b1),j(az,b2)} — j(0) = {a1p — b1g, azp — bag}
= —a1b2 —+ CLle.
(5) For a symplectic group action r : M x G — M of a Lie group G on a symplectic
manifold M, let us suppose that the cohomology class ¢ = [j] € H?(g, H'(M))
from (29.1.1) vanishes. Then there exists 7 € L(g, H(M)) with dr = 7, i.e.
dr(X,Y) = —7([X,Y]) = J(X,Y) = {j X, jY} — j([X,Y])

J—r(XY)={(-7)X,( —7)Y} - (- 7)(X.Y])
= {7X,3Y} +0—j([X,Y]) + 7([X,Y]) = 0,
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so that j — 7 : g — C°°(M) is a homomorphism of Lie algebras. Then the action
of GG is called a strongly Hamiltonian group action and the homomorphism j + 7 :
g — C°°(M) is called the associated infinitesimal strongly Hamiltonian action.

29.7. Proposition. The momentum mapping J : M — g* for an infinitesimal
strongly Hamiltonian action j : g — C°°(M) on a Poisson manifold (M, P™) has
the following properties:
(1) J is infinitesimally equivariant: For each X € g the Hamiltonian vector
fields Hj(xy = (x € X(M, P) and ad(X)* : g* — g* are J-related.
(2) J is a Poisson morphism J : (M, PM) — (g*, P%") into the canonical Pois-
son structure on g* from (28.7).
(3) The momentum mapping for a strongly Hamiltonian right action of a con-
nected Lie group G on a Poisson manifold is G-equivariant: J(g.x) =

Ad(g)*.J(x).

Proof. (1) By definition (29.2.1) we have (J(z), X) = j(X )( ); differentiating this
we get (dJ(x)(£,), X) = d(§(X))(&) or d{J, X) = dj(X) € QY(M). Then we have

)
(dJ(Cx),Y) = dj(Y)(Cx) = Hix)(§(Y)) = {3(X), j(Y)}(z) = j[X, Y],
(ad(X)" 0 J.Y) = (J,ad(X)Y) = (J, [X,Y]),
dJ.Cx = ad(X)* o J.

}.<

(2) We have to show that A2d.J(z).PM = P9 (J(x)), by (28.5.3).
(P9 0 J, X NY) = (J,[X,Y]) by (28.7)
=J[X, Y] = {j(X),i(Y)},
(A2dJ(x).PM X AY) = (PM A2dJ(z)* (X AY)) = (PM dJ(x)*X NdJ(x)*Y)
= (PM,d(J, X) Nd(J,Y))(z) = (PM,dj(X) A dj(Y)) ()
={i(X),J(Y)}(=).

(3) is an immediate consequence of (1). O

29.8. Equivariance of momentum mappings. Let J : M — g* be a momen-
tum mapping for a Hamiltonian right group action r : M x G — M on a symplectic
manifold (M,w). We do not assume here that the lift j : g — C°°(M) given by
J(X) = (J,X) is a Lie algebra homomorphism. Recall that for the fundamental
vector field mapping ¢ : g — X(M,w) we have (x = H;(x) = H(;x). We also
assume that M is connected; otherwise one has to treat each connected component
separately.

For X € g and g € G we have (compare with the proof of (29.4))
(r)"Cx = (r9) " Hiyxy = (r)* (@1 d(J, X)
= (((r) "))~ d((r9)" ], X) = (@7 'd(J 019, X) = H{jors,x),
(r9)*¢x =T(r9 ) olxord = Cad(g)X by (5.13.2)

= H(jaa(9)x) = H(ad(g) s, x)-
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So we conclude that (J o r9 — Ad(g)*J, X) € H°(M) is a constant function on M
(which we assumed to be connected) for every X € g and we get a smooth mapping

(1) J:G — g,

J(g) :=Jor? —Ad(g) o J = J(x.9g) — Ad(g)*J(z) € g* for each x € M,
which satifies for g1, 92 € G and each x € M

(2)  J(9192) ZJ(fL’-glgz) — Ad(g192)" J (z)
= J((z.91).92) — Ad(g2)" Ad(g1)" J (z)
= J((2.91)-92) — Ad(g2)" J (z.g1) + Ad(g2)"(J(z.g1) — Ad(g1)"J ()
= J(g2) +Ad(92)"J(91) = J(g2) + J(g1)- Ad(g2)

This equation says that J : G — g* is a smooth 1-cocycle with values in the right
G-module g* for the smooth group cohomomology which is given by the following
coboundary operator, which for completeness sake we write for a G-bimodule V,
i.e. a vector space V with a linear left action A : G x V' — V and a linear right
action p : V x G — V which commute:

(3) CHG,V):=C®(GF=Gx...xG, V), CUG V)=V, k>0
§:CHG, V) = CFY@G, V)

k

5@(907 A 7gk) = go'@(gl7 A 7.9]@) + Z(_l)lQ(go’ R 792—197/7 A 7gk')
i=1

+ (_1)k+1q)(907 cee ,gk—l)-gk-
It is easy to check that 6 o d = 0. The group cohomology is defined by

ker(8 : C*(G, V) — C**1(G. V)

HY(G:V) = im(3 : CF—1(G,V) — CR(G,V))

Since for v € V = C°(G, V) we have dv(gg) = go.v —v.go we have H°(G,V) = {v €
V:igwv=vg}=2Zy(G). A smooth mapping ® : G — V is a cocycle §® = 0 if and
only if ®(gog1) = 90-P(g1) + ®(g0)-91, i.e. P is a ‘derivation’.

In our case V = g* with trivial left G-action (each g € G acts by the identity)
and right action Ad( )*. Any other moment mapping J' : M — g* is of the form

J' = J+ « for constant « € g* since M is connected. The associated group cocycle
is then

J+a(g) =J(x.g)+a—Ad(g)*"(J(z) +a) = J(9) + « — a. Ad(g)

so that the group cohomology class 7 = [J| € HY (G, g*) of the Hamiltonian G-action
does not depend on the choice of the momentum mapping.

Draft from September 15, 2004 Peter W. Michor,



326 Chapter VI. Symplectic Geometry and Hamiltonian Mechanics 29.9
(5) The differential dJ(e) : g — g* at e € G of the group cocycle J : G — g* satifies
(dJ(e)X,Y) = j(X.Y),

where j is the Lie algebra cocycle from (29.6.1), given by j(X,Y) = {j(X),5(Y)} —
J([X,Y]), since

{5(X),5(Y)} () = Hjx) (V) (@) = i(H (s x)(2))d(],Y) = (dJ ((x (2)), V)
= Filo (J(z.exp(tX)),Y) = 5|, (Ad(exp(tX))"J(x) + J(exp(tX)),Y)
= (ad(X)"J(z) + dJ(e)(X),Y) = (J(2),ad(X)Y) + (dJ (e)(X),Y)
= J[X, Y]+ (dJ(e)(X),Y).

(6) If the group cohomology class T of the Hamiltonian group action vanishes then
there exists a G-equivariant momentum mapping J : M — g*, i.e

J(z.g) = Ad(g)"J ().

Namely, let the group cohomology class be given by 7 = [J] € H'(G, g*). Then
J = éo for some constant o € g*. Then J; = J — a is a G-equivariant momentum
mapping since Ji(r.g) = J(z.9) — a = Ad(g)*J(z) + J(g9) — a = Ad(g)*J(x) +
da(g) —a = Ad(g)*J(z) + Ad(g)"a = Ad(g)" J1(x).

For XY € g and g € G we have
(7) <j(g), [Xv Y]> = _j(Xv Y) +j(Ad(g)X7 Ad(g)Y)

Tu see this we use the cocycle property J(g192) = J(g2) + Ad(g2)*J(g1) from (2)
to get

dJ(g)(T(n)X) = 2|, J(exp(tX)g) = |, (J(9) + Ad(g)* J(exp(tX)))
= Ad(g)” dJ(e)X
(J(9),[X,Y]) = &, (J(g), Ad(exp(tX))Y) = £ | (Ad(exp(tX))*J(g),Y)
= 2|, (J(gexp(tX)) — J(exp(tX)),Y)
= (&, J(gexp(tX)g~'g) — Z|, J(exp(tX)),Y)
= (Ad(g)* dJ(e) Ad(g)X — dJ( )X, Y)
= 7(Ad(g)X, Ad(g)Y) — J(X,Y)

29.9. Theorem. Let J : M — g* be a momentum mapping for a Hamiltonian
right group action r: M x G — M on a connected symplectic manifold (M,w) with
group 1-cocycle J : G — g* and Lie algebra 2-cocycle 7: A%2g — R. Then we have:

(1) There is a unique affine right action a? = % : a — Ad(g)*a+ J(g) of G
on g* whose linear part is the coadjoint action such that J : M — G* is

G-equivariant.
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(2) There is a Poisson structure on g*, given by

{fh}3(a) = (a, [df (), dh(a)]g) + 3(df (), dh()),

which is invariant under the affine G-action a from (1) and has the property
that the momentum mapping J : (M,w) — (g*,{ , };) is a Poisson
morphism. The symplectic leaves of this Poisson structure are exvactly the
orbits under the connected component Gy of e for the affine action in (1)

Proof. (1) By (29.8.1) J is G-equivariant. It remains to check that we have a right
action:

a”a% (a) = a(Ad(g1) e+ J(g1)) = Ad(g2)" Ad(g1)"a + Ad(g2)* T (91)) + T (g2)
= Ad(g192)*a+ J(g192) = a9 %a, by (29.8.2).

(2) Let X1,...,X, be a basis of g with dual basis £!,...,£" of g*. Then we have
in terms of the structure constants of the Lie algebra g

(X, X;] ZC”Xk,

[, ]:izkcink@)(Ei/\fj)
ij
PU=—[, =Y e X)Ag
ijk
jz%z.ﬁjfi/\fj
PY =LYy k(o Xp)ng + 2Zgwgmgﬂ g — A%g*

7k

Let us now compute the Schouten bracket. We note that [P9", P9"] = 0 since this
is a Poisson structure, and [}, 7] = 0 since it is a constant 2-vector field on the vector
space g*.

[P Pf = [P¥ +3,PY 4] = [PY, P¥] +2[P¥ 7] +[7.0] = 0+ 2[P¥", 7] +0

=—3> J_lm([gi R Xi, EJAET AE™ — 61 @ X, €™ AET A€l
i7klm

€/, €A (€' ® Xi) AE™ +[€1,6™ A (€ ® Xi) AE)
= =3 > el am (0L € AE AE™ 4 € AE AE = 0+0)

ijklm
= > Jum €A A = —2d7 =0
ijkm

which is zero since 7 is a Lie algebra cocycle. Thus Pjg is a Poisson structure.
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The Poisson structure Pjg is invariant under the affine action since

{foa?;hoa?}s(e) = (o, [df (a?(a)). T (a?), dh(a? (). T (a?)])+

+3(df (o (). T(a?), dh(a®()).T(a?))

= (o, [df (a?(@))- Ad(g)", dh(a?(a)). Ad(g)"])+
+J(df (a? (). Ad(g)*, dh(a®(@)). Ad(g)")

= (o, Ad(g)[df (a*()), dh(a? ())]) + 7(Ad(g)df (a? (@), Ad(g)dh(a? (a)))

= (Ad(9)" e, [df (a?(a)), dh(a? ()]} + (S (9), [df (a?(a)), dh(a? (e))])+
+J(df (a?(a)), dh(a®())), by (29.8.7)

= (a?(e), [df (a?(a)), dh(a? ())]) + j(df (a? (@), dh(a?(@)))

= {/,9};(a?(@)).

To see that the momentum mapping J : (M,w) — (g%, Pjg*) is a Poisson morphism
we have to show that A%dJ(z).P*(x) = Pj—g*(J(x)) € A?g* for x € M, by (28.5.3).
Recall from the definition (29.2.1) that (J, X) = j(X), thus also (dJ(z),X) =
dj(X)(x) : T, M — R.

(A2dJ(x).P°(z), X NY) = (P¥(z),A*dJ(z)* (X AY))
= (P¥(z),dJ(x)* X NdJ(z)*Y) = (P“(z),d(J, X) Nd(J,Y))
= (P*(2), dj(X) Adj(Y)) = {5(X),5(Y)}u
= J(X,Y) +j([X, Y])(z) by (29.6.1)
= (J(2),[X,Y]) + J(X,Y) = (P (J(x)), X AY).

It remains to investigate the symplectic leaves of the Poisson structure Pj—g*. The
fundamental vector fields for the twisted right action a ; is given by

() =2 |0 (Ad(exp(tX))*a + J(exp(tX))) = ad(X)*a + dJ(e) X.

This fundamental vector field is also the Hamiltonian vector field for the function
evx : g" — R since

(3) H],  (f)(a) = {evx, f};(a) = (o, [X, df ()]} + J(X, df ()
= (ad(X)"a,df ()) + (dJ (€)X, df (a)) = (¥ (f) ().

Hamiltonian vector fields of linear functions suffice to span the integrable distri-
bution with jumping dimension which generates the symplectic leaves. Thus the
symplectic leaves are exactly the orbits of the Gyp-action ay. U

29.10. Corollary. (Kostant, Souriau) Let J : M — g* be a momentum mapping
for a transitive Hamiltonian right group action r : M x G — M on a connected
symplectic manifold (M,w) with group 1-cocycle J : G — g* and Lie algebra 2-
cocycle 7: A*g — R.
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Then the image J(M) of the momentum mapping is an orbit O of the affine action
aj of G on g* for which J is equivariant, the corestriction J : M — O s locally a
symplectomorphism and a covering mapping of O.

Proof. Since G acts transitively on M and J is G-equivariant, J(M) = O is an
orbit for the twisted action a; of G on g*. Since M is connected, O is connected and
is thus a symplectic leaf of the twisted Poisson structure Pjg* for which J : M — g*
is a Poisson mapping. But along O the Poisson structure is symplectic, and its
pullback via J equals w, thus T,J : T,M — Tj)O is invertible for each x € M
and J is a local diffeomorphism. Since .J is equivariant it is diffeomorphic to a
mapping M = G /G, — G/G j(,) and is thus a covering mapping. [

29.11. Let us suppose that for some symplectic infinitesimal action of a Lie algebra
¢ : g — X(M,w) the cohomology class ¢ = [J] € H?(g, H°(M)) does not vanish.
Then we replace the Lie algebra g by the central extension, see section (27),

0— HYM)—>g—g—0

which is defined by ¢ = [j] in the following way: § = H°(M) x g with bracket
[(a, X), (b,Y)] := (J(X,Y),[X,Y]). This satisfies the Jacobi identity since

[[(a, X), (6,Y)], (¢, 2)] = [(3(X, Y), [X,Y]), (¢, 2)] = (G([X, Y], 2), [[X, Y], Z])

and the cyclic sum of this expression vanishes. The mapping j; : ¢ — C°°(M),
given by ji(a, X) = j(X) + a, fits into the diagram

0— HO(M) —2— ¢ (M) —HE— 2(M,w) —L— H' (M) —0
| \4
0 — HO(M) g g 0

and is a homomorphism of Lie algebras since

jl([(aaX)a (ba Y)]) = ]1(.7(X7 Y)? [Xa Y]) = ]([X7 Y]) +.7(X7 Y)
= (X, Y]) + {iX,jY} = (X, Y]) = { X, jY}
={jX +a,jY +b} ={ji(a,X),j1(b,Y)}.

In this case we can consider the momentum mapping

Ji: M —§" = (H°(M) x g)*,
(Ji(z), (a, X)) = j1(a, X)(z) = j(X)(z) + a,
Hiwx)=Cx, z€M, Xe€g, acH (M)

which has all the properties of proposition (29.7).
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Let us describe this in more detail. Property (29.7.1) says that for all (a,X) €
H°(M) x g the vector fields Hj(x)4, = (x € X(M) and ad(a, X)* € X(g*) are
Ji-related. We have

(ad(a, X)"(a,€), (b,Y)) = (o €), [(a, X) (b, Y)]) = (o, §), (I(X,Y), [X,Y]))
=aJ(X,Y) 4+ (£ [X,Y]) = aj(X,Y) + (ad(X)"¢, Y)
= ((0,a7(X, ) +ad(X)%¢), (b,Y)),
ad(a, X)*(a, &) = (0,a3(X, )+ ad(X)*E).

This is related to formula (29.9.3) which describes the infinitesimal twisted right
action corresponding to the twisted group action of (29.9.1).

The Poisson bracket on g* = (H°(M) x g)* = H°(M)* x g* is given by

{f7 h}g* (Ot, 5) - <<Oé, 6)7 [(dlf(av 5)7 de(aa 5))’ (dlh(a> 5)7 th(aa 5))]>
= <(Oz,§), (j(de(Oé,f), th(O@g))? [de(aa 5)7 d2h<a7§)])>
= O‘j(de(avé)? d2h(a7€>> + <€7 [d2f<a7§)a d2h(a7§)]>

which for & = 1 and connected M is the twisted Poisson bracket in (29.9.2). We
may continue and derive all properties of (29.9) for a connected Lie group from
here, with some interpretation.

29.12. Symplectic reduction. Let J : M — g* be a momentum mapping for a
Hamiltonian right group action r : M xG — M on a connected symplectic manifold
(M,w) with group 1-cocycle J : G — g* and Lie algebra 2-cocycle 7: A2g — R.

(1) [Bott, 1954] A point o € J(M) C g* is called a weakly regular value for J if
J Y a) C M is a submanifold such that for each v € J~1(a) we have T,J () =
ker(7,.J). This is the case if « is a regular value for J, or if J is of constant rank in
a neighborhood of J (), by (1.13). Let us fix a weakly regular value o € g* of .J
for the following. The submanifold J~!(«) C M has then the following properties:

(2) For a weakly reqular value o of J, the submanifold J () is invariant under
the action of the isotropy group Go = {g € G : a’(a) = a}. The dimension of the
the isotropy group G, of x € J~(a) does not depend on x € J~1(a) and is given
by

dim(G,) = dim(G) — dim(M) + dim(J ~*(a)).

Namely, J : M — g* is equivariant for these actions by (29.9.1). Thus J 1(a)
is invariant under G, and G, C G,. For each z € J~1(a), by (29.3.4) we have
im(dJ(z)) = g5 C g*. Since T, (J () = ker(dJ(x)) we get

dim(T, M) = dim(T,J () + rank(dJ (x)),
dim(G,) = dim(G) — dim(z.G) = dim(G) — dim(g;) = dim(G) — rank(dJ(x))
= dim(G) — dim(M) + dim(J ! (a)).
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(3) At any x € J~(a) the kernel of the pullback w? (@) of the symplectic form w
equals T, (z.Gy) and its rank is constant and is given by by

rank(w’ (@) = 2dim(J " (a)) + dim(a$ (@) — dim(M).

Namely, T,J ~!(a) = ker(dJ(z)) implies

ker(w‘]_l(o‘)) =T, (J Ha)) NTH(J )t = T (J Y(a)) Nker(dJ (z))*
=T,.(J Y (a) NT,(2.G), by (29.3.3)
=T, (z.Gy),

rank(w? () = dim(J " (a)) — dim(2.Ga) = dim(J (@) — dim(Ga) + dim(G,)
= dim(J () — dim(G,) + dim(G) — dim(M) + dim(J ' (a)) by (2)
= 2dim(J () + dim(a?(a)) — dim(M).

(4) If « is a regular value of J : M — g* the action of G on M 1is locally free in a
neighborhood of every point x € J~ (), by (29.3.5), i.e. the isotropy group G, is
discrete, since codim s (J71(a)) = dim(g) — dim(G).

29.13. Theorem. Weakly regular symplectic reduction. Let J : M — g*
be a momentum mapping for a Hamiltonian right group action r: M X G — M on
a connected symplectic manifold (M,w) with group 1-cocycle J : G — g* and Lie
algebra 2-cocycle 7: A®’g — R. Let o € J(M) C g* be a weakly reqular value of J.

Then the pullback 2-form w’ @ ¢ O%2(J71(a)) of w is of constant rank, invariant
under the action of G, and the leaves of the foliation described by its kernel are
the orbits of the action of the connected component G of the isotropy group G, =
{9€G:a%)=a} inJ a).

If moreover the orbit space M, = J~1(a)/GY is a smooth manifold then there
exists a unique symplectic form w® on it such that for the canonical projection
m:J 1 a) = M, we have m*w* = w! (@),

Let h € C®(M)Y be a Hamiltonian function on M which is G-invariant, then
h|J~ () factors to h € C*°(M,) with how = h|J~(a). The Hamiltonian vector
field grad® (h) = Hj, is tangent to J~'(«) and the vector fields Hy|J 1 (a) and Hj,
are m-related. Thus their trajectories are mapped onto each other:

n(F™ () = F, "™ (r())

In this case we call (M, = J~Y(a)/Gq,w®) the reduced symplectic manifold.

Proof. By (29.12.3) the 2-form w’ (@) € Q2(J~!(a)) is of constant rank and the
foliation corresponding to its kernel is given by the orbits of the unit component
GY of the isotropy group G,. Let us now suppose thaut1 the orbit space M, =
J1(a)/GY is a smooth manifold. Since the 2-form w’  (®) is GY-invariant and
horizontal for the projection 7 : J 1 (a) — J 1 (a)/Gs = M,, it factors to a
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smooth 2-form w® € Q%(M,) which is closed and non degenerate since we just
factored out its kernel. Thus (M,,w®) is a symplectic manifold and 7*w® = w”’ @)
by construction.

Now let h € C*°(M) be a Hamiltonian function which is invariant under G. By
E. Noether’s theorem (29.3.8) the momentum mapping J is constant along each
trajectory of the Hamiltonian vector field Hj; thus Hy, is tangent to J~!(a) and
G s-invariant on J~1(a). Let h € C*°(M,,) be the factored function with how = h,
and consider H; € X(M,,w®). Then for x € J~!(a) we have

(Tom)* (it r 1y ()W) = g1, ()T W = dh(z) = (Tpm)* (dh(m())).

Since (Tpm)* : 17, Mo — To(J ' () is injective we see that ir, . m, @)w* =
dh(r(x)) and hence T,7.Hy(z) = Hy,(7(x)). Thus Hy|J~!(a) and Hj, are m-related
and the remaining assertions follow from (3.14) O

29.14. Proposition. Constant rank symplectic reduction. Let J: M — g*
be a momentum mapping for a Hamiltonian right group actionr : M x G — M on
a connected symplectic manifold (M,w) with group 1-cocycle J : G — g* and Lie
algebra 2-cocycle 7: A*’g — R. Let a € J(M) C g* be such that J has constant
rank in a neighborhood of J=1(a). We consider the orbit .G = a?(a) cg*.

Then J=Y(a.G) is an initial manifold in M, and there exists a natural diffeo-
morphism ¢ : J Y a) x a.G — J7Y(a).G which satisfies p(x,a.9) = x.9 and
w’ @) x oG = go*(wjil(o"G), where w? (@G) s the pullback of w, a 2-form of

constant rank which is invariant under the action of G.

Moreover, the orbit spaces J~1(a)/G2 and J~1(a.G)/G® are homeomorphic, and
diffeomorphic if one of the orbit spaces is a smooth manifold. Let us identify M, =

JHa)/G = T (a.G)/GO.

If M, is a manifold then w’ " (@@) factors to symplectic form wMe. Let h €
C>(M)% be a Hamiltonian function on M which is G-invariant, then h|J~!(a.G)
factors to h € C®(My,) with hom = h|J Y (a.G). The Hamiltonian vector field
grad“(f) = Hy, is tangent to J~*(a.G) and the vector fields H,|J ' (a.G) and Hj,
are m-related. Thus their trajectories are mapped onto each other:

n(Fl™ () = FI, "™ (r())

Proof. Let a € J(M) C g* be such that J is of constant rank on a neighborhood of
J~(a). Let .G = a5 (a) be the orbit though o under the twisted coadjoint action.
Then J ' (a.G) = J~!(a).G by the G-equivariance of J. Thus the dimension of
the isotropy group G, of a point € J~!(a.G) does not depend on z and is given
by (29.12.2). It remains to show that the inverse image J '(a.G) is an initial
submanifold which is invariant under G. If « is a regular value for J then J is
a submersion on an open neighborhood of J~!(a.G) and J~1(a.G) is an initial
submanifold by lemma (2.16). Under the weaker assumtion that J is of constant

rank on a neighborhood of J~1(a) we will construct an initial submanifold chart
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as in (2.13.1) centered at each z € J71(a.G). Using a suitable transformation in
G we may assume without loss that x € J~1(a). We shall use the method of the
proof of theorem (3.25).
Let m = dim(M), n = dim(g), r = rank(dJ(z)), p = m —r = dim(J " (a)) and
k = dim(a.G) <[l = dim(z.G). Using that g, C g., we choose a basis X1,..., X,
of g such that
. g?:l (), ... ,Cg(*k () is a basis of T, (a.G) and Xg41, ..., X, is a basis of g,,
o (¥ (2),...,¢¥ (x) is a basis of T(2.G) and X;11,..., X, is a basis of g,
By the constant rank theorem (1.13) there exists a chart (U,u) on M centered at
x and a chart (V,v) on g* centered at « such that vo Jowu™!: u(U) — v(V) has

the following form:
ko1 I—k
(..., 2™) — (2b,. . 2R M "R 0, 0),

and we may also assume that

ngl (),.. .,Cg(k(a), #\a, e auin’a is a basis of T, (g*),
(@), .., X (), %]a,..., 2|4 is a basis of T,,(M).

Then the mapping

g* Cg*
fh .y = (Flzfl o oFlyf‘“ ov™1)(0,...,0,9" 1 ... y")

is a diffeomorphism from a neighborhood of 0 in R™ onto a neighborhood of « in
g*. Let (V,0) be the chart f~1, suitably restricted. We have

g* g
Bea e (Fla o...oF1*)(B) € a.G
for all 3 and all y!,...,y* for which both expressions make sense. So we have
f(y17"'7yn) E a'G @ f(07"'70?yk+1?"'7yn) e a'G7

and consequently .G N V is the disjoint union of countably many connected sets of
the form {8 € V : (¢*+1(83),...,9"(B)) = constant}, since a.G is second countable.

Now let us consider the situation on M. Since J1(a) is G4-invariant exactly the

vectors C%Hl(x), ..., ¢¥ (2) are tangent to x.G C J~'(a). The mapping
1 m ¢x, Xy 1 k41 m
glx',...,2™) = (FL)i" o--- o FL3* ou™")(0,...,0,2"7, ... 2™)

is a diffeomorphisms from a neighborhood of 0 in R™ onto a neighborhood of x in
M. Let (U, @) be the chart g—1, suitably restricted. By G-invariance of .J we have

M
¥

M
(Jog)(z!,...,a™) = (JoFli)fl o---oFL; ou™1)(0,...,0,z" ... 2™)

*

CE* CB
= (Fl,7" oo F1 3" ov towoJou (0,...,0,z8 .. ™)

g*

g*
¢
= (Fli)fl O---OFI;,:’“ ov™1(0,...,0,28 . 2"k 0, 0)

Y

1 k I+1 -k
= f(zb, ... 2% 2 "R 0,...,0)
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and thus

glz',...,2™) € T Ha.G) <=
— (Jog)(z!,...,a™) = f(z, ..., aF ! . 2"k 0,...0) € a.G

<:> f(ORk,xl+1, ceey ZCT—H_k, ORnf'r) E afG

Consequently, (J~(a.G)) N U is the disjoint union of countably many connected
sets of the form {x € U : (@'*1(x),...,a"*~%*(x)) = constant}, since .G is second
countable. We have proved now that J~!(a.G) is an initial submanifold or M.

The mapping ¢ is defined by the following diagram which induces a bijective sub-
mersion, thus a diffeomorphism:

Ja) x a.G

Now we need the symplectic structure on the orbit .G = a%(). Recall from
(29.9.3) that the Hamiltonian vector field for the linear function evy : g* — R is
given by Hey, = (% = C;L(j . Thus the symplectic form is given by (we use again

(29.9.3))

(1) w5 9(C% &) = Wi (Hev s Hovy) = Hewy (evx)(8) = (B, Y, X]) + (Y. X).

We compute the pullback. Let &1 € T,.(J ! (a)) = ker(dJ(z)) = Tp(z.G)* (see
(29.3.3)), and let X,Y € g.

(7w D) s (6,65, (7,¢8) =
=Wy g(Ty(r?) + Ty(ry)Lx, Tu(r9)n + Ty(rs)Ly)
= W g(To(r)E + ¢ To(r)n + &)
( & T (r9)m) +weg(CX, ) by (29.3.3)

(&) +{i(Y),i(X)}(z.9)
([Y, X])(z.g) + 3(Y, X)
J(z.9), [Y, X]) + 3(Y, X)

B, Y, X]) + (Y, X)

|
&
8
Q
o3
~— ~ ~
ﬁ“)
O, M ~— ~— ~—

I

&

8
/N TN TN
M“mm
S IS 3
S~— N
+ + +
/~
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29.15. Example of a symplectic reduction: The space of Hermitian matri-
ces. Let G = SU(n) act on the space H(n) of complex Hermitian (n x n)-matrices
by conjugation, where the inner product is given by the (always real) trace Tr(AB).
We also consider the linear subspace ¥ C H(n) of all diagonal matrices; they have
real entries. For each hermitian matrix A there exists a unitary matrix g such that
gAg~*
(we will call it chamber) for the group action is here given by the quadrant C' C X
consisting of all real diagonal matrices with eigenvalues Ay > Ay > -+ > \,,. There
are no further identifications in the chamber, thus H(n)/SU(n) = C.

is diagonal with eigenvalues decreasing in size. Thus a fundamental domain

We are interested in the following problem: consider a straight line t — A 4tV of
Hermitian matrices. We want to describe the corresponding curve of eigenvalues
t— A(t) = (A1(t) > -+ > Au(t)) of the Hermitian matrix A + tV as precisely as
possible. In particular, we want to find an odinary differential equation describing
the evolution of eigenvalues. We follow here the development in [Alekseevsky, Losik,
Kriegl, Michor, 2001] which was inspired by [Kazhdan, Kostant, Sternberg, 1978].

(1) Hamiltonian description. Let us describe the curves of eigenvalues as trajecto-
ries of a Hamiltonian system on a reduced phase space. Let T*H (n) = H(n)x H(n)
be the cotangent bundle where we identified H(n) with its dual by the inner prod-
uct, so the duality is given by (a, A) = Tr(A«a). Then the canonical 1-form is given
by 0(A,a,A’,a') = Tr(aA’), the symplectic form is w(4,q)((4’, ), (A",a")) =
Tr(A'o" — A”a’), and the Hamiltonian function for the straight lines (A +ta, ) on
H(n) is h(A, a) = 3 Tr(a?). The action SU(n) > g — (A — gAg~') lifts to the ac-
tion SU(n) 3 g — ((A,a) — (gAg~',gag™1)) on T*H (n) with fundamental vector
fields (x(A, ) = (4,0, [X, 4],[X,q]) for X € su(n), and with generating func-
tions jx(A4,a) = 0((x (4, a)) = Tr(a[X, A]) = Tr([A,a]X). Thus the momentum
mapping J : T*H(n) — su(n)* is given by (X, J(4,a)) = jx(4,a) = Tr([4, o] X).
If we identify su(n) with its dual via the inner product Tr(XY'), the momentum
mapping is J(A,«) = [A,a]. Along the line ¢t — A + ta the momentum mapping
is constant: J(A + ta,a) = [A,a] = Y € su(n). Note that for X € su(n) the
evaluation on X of J(A + ta, a) € su(n)* equals the inner product:

(X, J(A+to, ) = Tr(%(A +ta), (x (A + ta)),

which is obviously constant in t; compare with the general result of Riemannian
transformation groups, e.g. [Michor, 1997], 8.1.

According to principles of symplectic reduction (29.12), 7?7 we have to consider for
a regular value Y (and later for an arbitrary value) of the momentum mapping
J the submanifold J=1(Y) C T*H(n). The null distribution of w|J~1(Y) is inte-
grable (with jumping dimensions) and its leaves (according to the Stefan-Sussmann
theory of integrable distributions) are exactly the orbits in J~1(Y) of the isotropy
group SU(n)y for the coadjoint action. So we have to consider the orbit space
J7YY)/SU(n)y. If Y is not a regular value of J, the inverse image J~1(Y) is a
subset which is described by polynomial equations since J is polynomial (in fact
quadratic), so J~1(Y) is stratified into submanifolds; symplectic reduction works
also for this case, see 77
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(2) The case of momentum Y = 0 gives billiard of straight lines in C. If Y = 0
then SU(n)y = SU(n) and J~1(0) = {(4,a) : [4,a] = 0}, so A and a com-
mute. If A is regular (i.e. all eigenvalues are distinct), using a uniquely deter-
mined transformation g € SU(n) we move the point A into the open chamber
C° C H(n), so A = diag(a; > az > --- > a,) and since a commutes with A
so it is also in diagonal form. The symplectic form w restricts to the canonical
symplectic form on C° x ¥ = C° x ¥* = T*(C?). Thus symplectic reduction gives
(J7HO)N (T*H(n))reg)/SU(n) = T*(C°) C T*H(n). By [Sjamaar, Lerman, 1991]
we also use symplectic reduction for non-regular A and we get (see in particular
[Lerman, Montgomery, Sjamaar, 1993], 3.4) J~(0)/SU(n) = T*C, the stratified
cotangent cone bundle of the chamber C' considered asstratified space. Namely, if
one root €;(A) = a; — a;4+1 vanishes on the diagonal matrix A then the isotropy
group SU(n) 4 contains a subgroup SU (2) corresponding to these coordinates. Any
matrix o with [A4, a] = 0 contains an arbitrary hermitian submatrix corresponding
to the coordinates ¢ and ¢ + 1, which may be brougth into diagonal form with the
help of this SU(2) so that ¢;(a) = a; — ;41 > 0. Thus the tangent vector a with
foot point in a wall is either tangent to the wall (if ai; = av; 1) or points into the inte-
rior of the chamber C. The Hamiltonian h restricts to C° x £ 3 (4, @) — £ 3. a2,
so the trajectories of the Hamiltonian system here are again straight lines which
are reflected at the walls.

(3) The case of general momentum Y. If Y # 0 € su(n) and if SU(n)y is the
isotropy group of Y for the adjoint representation, then it is well known (see ref-

erences in (1) 7??) that we may pass from Y to the coadjoint orbit O(Y) =
Ad*(SU(n))(Y) and get

J7HY)/SU(n)y = J7H(O(Y))/SU(n) = (J7'(Y) x O(=Y))/SU(n),

where all (stratified) diffeomorphisms are symplectic ones.

(4) The Calogero Moser system. As the simplest case we assume that Y/ € su(n)
is not zero but has maximal isotropy group, and we follow [Kazhdan, Kostant,
Sternberg, 1978]. So we assume that Y’ has complex rank 1 plus an imaginary
multiple of the identity, Y’ = v/—1(cl,, +v®v*) for 0 # v = (v*) a column vector in
C". The coadjoint orbit is then O(Y") = {v/=1(cl,, + w @ w*) : w € C", |w| = |v|},
isomorphic to $?"~1/81 = CP", of real dimension 2n — 2. Consider (A4’,a’) with
J(A',a') = Y’, choose g € SU(n) such that A = gA’g~! = diag(a; > as > -+ >
an), and let « = ga’g~!. Then the entry of the commutator is [A, a;; = a;;(a;i—a;).
So [A,a] =gY'g7! =Y = /—1(cl,, + gv ® (gv)*) = vV/—=1(cl,, + w ® w*) has zero
diagonal entries, thus 0 < wiw! = —c and w® = exp(y/—16;)v/—c for some 0; But
then all off-diagonal entries Y;; = v/—1w'@w! = —/—1c exp(v/=1(0; — 0;)) # 0,
and A has to be regular. We may use the remaining gauge freedom in the isotropy
group SU(n)a = S(U(1)") to put w* = exp(v/—10)/—c where § = > 0;. Then
Y;j = —cy/—1 for i # j.

So the reduced space (T*H(n))y is diffeomorphic to the submanifold of T*H (n)
consisting of all (A,«) € H(n) x H(n) where A = diag(a; > a2 > -+ > ay),
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and where a has arbitrary diagonal entries a; := «;; and off-diagonal entries
a;j = Yii/(a; —aj) = —c/=1/(a; — aj). We can thus use ai,...,an,01,...,q, as
coordinates. The invariant symplectic form pulls back to w(4,q)((A'a’), (A", a")) =
Tr(A'a” — A"d’) = > (aa) — a)al). The invariant Hamiltonian h restricts to the
Hamiltonian

h(A,a) =1Tr Za + = Z )

175]

This is the famous Hamiltonian function of the Calogero-Moser completely in-
tegrable system, see [Moser, 1975], [Olshanetskii, Perelomov, 1977], [Kazhdan,
Kostant, Sternberg, 1978], and [Perelomov, 1990], 3.1 and 3.3. The correspond-
ing Hamiltonian vector field and the differential equation for the eigenvalue curve
are then

0
Hh—Zaz +ZZZ (a; — a;)3 Oy’

( Jj;éz

,_QZ

J#z

(ai — a;) _227—22

kik£i kik£j

Note that the curve of eigenvalues avoids the walls of the Weyl chamber C'.

(5) Degenerate cases of non-zero momenta of minimal rank. Let us discuss now
the case of non-regular diagonal A. Namely, if one root, say €12(A) = a1 — as
vanishes on the diagonal matrix A then the isotropy group SU(n)4 contains a
subgroup SU(2) corresponding to these coordinates. Consider o with [A,a] = Y;
then 0 = aj2(a; — az) = Yi2. Thus « contains an arbitrary hermitian submatrix
corresponding to the first two coordinates, which may be brougth into diagonal
form with the help of this SU(2) C SU(n)a so that e12(ar) = aq — a2 > 0. Thus
the tangent vector o with foot point A in a wall is either tangent to the wall (if
a1 = ag) or points into the interior of the chamber C' (if oy > as). Note that then
Y11 =Yoo =Y12 =0.

Let us now assume that the momentum Y is of the form Y = /—1(cl,,_2 + v ®@v*)
for some vector 0 # v € C"~2. We can repeat the analysis of (4) in the subspace
C"~2, and get for the Hamiltonian (where I1 o = {(i,7) : i # j} \ {(1,2),(2,1)})

h(A a) ZO&ZQ—F— Z %,

(17]')611 2 (al CL])

= 0
Hy = Z +2 Z —aj35’ozl

t=1 (Zaj)ell 2

;=2 Z o

a;
{j:(4,5)€11,2}
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(6) The case of general momentum Y and reqular A. Starting again with some
regular A" consider (A’, /) with J(A’,a’) =Y’, choose g € SU(n) such that A =
gA'g™t = diag(a; > ay > -+ >ay,),and let a = ga’gt and Y = gY'g™ ! = [A, a.
Then the entry of the commutator is Y;; = [4,al;; = ay;(a; — a;) thus Y;; = 0.
We may pass to the coordinates a; and «; := «;; for 1 < i < n on the one hand,
corresponding to J ' (Y') in (3), and Y;; for i # j on the other hand, corresponding
to O(-Y) in (3), with the linear relation Y;; = —Y;; and with n — 1 non-zero
entries Y;; > 0 with ¢ > j (chosen in lexicographic order) by applying the remaining
isotropy group SU(n)a = S(U(1)") = {diag(eV~=101,... eV~1) : 30, € 27Z}.
We may use this canonical form as section

(J7HY) x O(=Y))/SU(n) — J 1Y) x O(=Y) C TH(n) x su(n)

to pull back the symplectic or Poisson structures and the Hamiltonian function

h(A,a) = Za ——Z%,

i#]
YiiYii 1 dY;;. Y 4+ Yi;.dY,
dh = i daoy Wit “ a; —da;) — = ij- i ij-@Xji
o z o33
}(LJY]Z ijz
(7) = E azdaz+2l§# “@"?#:Wd”j'

The invariant symplectic form on T'H(n) pulls back to w4 . ((4'a), (A", a")) =
Tr(A'a” — A"a’) = Y (ajaf — alaf) thus to ), da; A da;. The Poisson structure

on su(n) is given by

Ay(U V) =Te(Y[U,V]) = Y YonUnpVom — YinVapUpm)

m,n,p
Ay = Z AY z]:dYkl)aYij ® 6Ykl
1#£7,k#l
= Z Z(Ymnénzdjkélm - Ymnénkélidjm)alﬁj & aYkl
i, kAl mon
= > (Vb — Yjidi)dy,, ® dy,,
1#7,k#l

Since this Poisson 2-vector field is tangent to the orbit O(—Y) and is SU(n)-
invariant, we can push it down to the orbit space. There it maps dY;; to (remember
that va = O)

Ay (dYiy) = = (Yibjk — Yirdu) Oy, = — Y (Viidy,, — Yirly,,)-
k£l k

So by (3) the Hamiltonian vector field is

Hy = Zaz =2 aYZiY” i Y (al}_fij;ﬂg ;(YM Iy — Yk Ovi,)

Z#J i#j
YiiVin Y Vi
— 7,8 1.7 J'L oy — Jr=-J _ TRy Ov
2ot R T ;<<ai—aj>2 (05— a?)
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The differential equation thus becomes (remember that Y;; = 0):

a; =
=Y IROLNS < ]
;=
a; — a;)? ~ (a; — a;)?

j
. YiYik Yii Yy,
Vi, = — gitik —_ LijThkj _
’ Z( a; —a;)*  (a; _ak)z)

Consider the Matrix Z with Z;; = 0 and Z;; = Y;;/(a; —a;)?. Then the differential
equations become:

d._QZM Y—[Y* Z]
(. (a‘ - 9 .

This is the Calogero-Moser integrable system with spin, see [Babelon, Talon, 1997]
and [Babelon, Talon, 1999].

(8) The case of general momentum 'Y and singular A. Let us consider the situation
of (6), when A is not regular. Let us assume again that one root, say £12(A) =
a; — az vanishes on the diagonal matrix A. Consider o with [A,a] = Y. From
Yij = [A4,alij = a;j(a; — a;) we conclude that Y;; = 0 for all 4 and also Y12 = 0.
The isotropy group SU(n)4 contains a subgroup SU(2) corresponding to the first
two coordinates and we may use this to move « into the form that a1, = 0 and
g12(a) > 0. Thus the tangent vector o with foot point A in the wall {12 = 0} is
either tangent to the wall when a; = as or points into the interior of the chamber
C when a3 > as. We can then use the same analysis as in (6) where we use now
that Ylg =0.

In the general case, when some roots vanish, we get for the Hamiltonian function,
vector field, and differential equation:

1 1 Yy 2
h(A,Oz):%TI‘(()é2):§ZOZZ2+§ Z ﬁ,
i J

a;
{(2,5):ai(0)7#a; (0)}

Yi;)?
Hh:Zaﬁai—i—Q Z 7(6%—0,')3 8a1.—|—
i (,5):a;(0)#a; (0) J

DI D D DD B

(i) (0)#as (0) K\ (j.k):a;(0)#ax(0) 1
=2 _tul Y =[Y* Z
Q=2 ) (ai_%)g [Y*, 2]

j:a;(0)#a;(0)

where we use the same notation as above. It would be very interesting to investigate
the reflection behavior of this curve at the walls.

29.16. Example: symmetric matrices. We finally treat the action of SO(n) =
SO(n,R) on the space S(n) of symmetric matrices by conjugation. Following the
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method of (29.15.6) and (29.15.7) we get the following result. Let ¢t — A" + to/
be a straight line in S(n). Then the ordered set of eigenvalues aq(%),...,a,(t) of
A’ +ta’ is part of the integral curve of the following vector field:

Y2
Hy=) 00 +2 ), g at
i (6,00 (O an (@) (%~ O4)
Yii Yk YiiYik
D S S R SR o
(i.7):as (0)#ay (0) F (G.k):ay (0)#ar (0) 7

Y2 ) Y;;
0,1:2 E ﬁ, Y = [Y,Z], where ZZ]:_ﬁ7
.. (az aj) (al aj)
(2,5):a;(0)#a;(0)

where we also note that Y;; = Z;; = 0 whenever a;(0) = a;(0).

30. Lie Poisson groups

30.1. The Schouten Nijenhuis bracket on Lie groups. Let G be a Lie group
with Lie algebra g. For f € C*(G, g) we get a smooth vector field Ly € X(G) by
L¢(z) := Te(pt)-f(x). This describes an isomorphism L : C*(G,g) — X(G). If
h € C*(G,V) then we have Lh(x) = dh(Ls(z)) = dh.Te(pz).f(z) = dh(x).f(x),
for which we write shortly L¢h = dh.f.

For g € C“(G,/\kg*) we get a k-form L, € QF(G) by the prescription (L), =
g(x) o A"T (115-1). This gives an isomorphism L : C*°(G, Ag) — Q(G).

Result. [77]
(1) For f,g € C*(G,g) we have

[Lf, Lglxc) = L (f.9):

where K(f, g)(x) = [f(x),9(2)]g + dg(x).f(x) — 6f(x).g(x), or shorter
K(f,9) =1, ]g+5 J—9df.g.
(2) For g € C™(G, /\ *) and f; € C*(G,g) we have Ly(Ly,,..., Ly ) =
g-(f1y s fr)-
(3) For g € C®(G, N'g*) the exterior derivative is given by

d(Lg) = Lsrgroa0g;
where §"g : G — N g* is given by
k .
8" g(x)(Xo,.. ., Xe) = Y _(—1)"0g(x)(X:)(Xo, ..., Xi, ..., X),
i=0

and where 0% is the Chevalley differential on N\g*.
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(4) For g € C=(G, \"g*) and f € C>(G, g) the Lie derivative is given by
‘CLf Ly = Lﬁfcog+£fc9’

where

(Efcg)(a:)(Xl, ooy Xk) = Z(—l)ig(a:)([f(a:),Xi],Xl, cos Xiy oo, Xi)s

(L39)(@)(X1, -, Xx) = 6g(2)(f(2)) (X1, -, Xp)+
+ (D@0 F @) (Xe), X, Ko X,

For a Lie group G we have an isomorphism L : C*°(G, Ag) — I'(ATG) which is
given by L(u); = AT (1z).u(z), via left trivialization. For u € C*°(G, \"g) we have
du: G — L(g, \"g) = g*®@/\"g, and with respect to the one component in g* we can

consider the insertion operator 7(du(z)) : A"g — A"T“g. In more detail: if u = f.U
for f € C°(G,R) and U € \"g, then we put 2(6f(z).U)V = U A1(6f(x))(V).

The algebraic Schouten-Nijenhuis bracket [ , ]9 : APax A% — APT? 'g for the
Lie algebra g is given by formula (1), applied to this purely algebraic situation.

Proposition. For v € C*(G, \"g) and v € C*(G, \"g) the Schouten-Nijenhuis
bracket is given by

(2) [L(u), L(v)] = L([u, v]® = 2(8u)(v) + (=1)"“ V" Va(dv) (u)).

Proof. This follows from formula (1) applied to
[L(f X1 N---ANXp),L(gY1 AN--- NY)],

where f,g € C°(G,R) and X;,Y; € g, and then by applying (3.3).(1). O
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List of Symbols

(a,b) open interval or pair

[a, b] closed interval

a:J"(M,N)— M the source mapping of jets

B:J(M,N)— N the target mapping of jets

['(E), also I'(E — M)  the space of smooth sections of a fiber bundle

C field of complex numbers

C:TM xp TM — TTM connection or horizontal lift

C>(M,R) the space of smooth functions on M

d usually the exterior derivative

(E,p,M,S), also simply £ usually a fiber bundle with total space E, base M,
and standard fiber S

F1¥, also Fl(t, X)  the flow of a vector field X

H skew field of quaternions

I, short for the k& x k-identity matrix Idgs.

K : TTM — M the connector of a covariant derivative

Lx Lie derivative

G usually a general Lie group with multiplication p© : G x G — G, we use
gh = (g, h) = pg(h) = p"(g)

J"(E)  the bundle of r-jets of sections of a fiber bundle £ — M
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J"(M,N) the bundle of r-jets of smooth functions from M to N

Jj"f(x), also jI f  the r-jet of a mapping or function f

kpyr 2 TTM — TTM the canonical flip mapping

{:G xS — S usually a left action

M  usually a manifold

N natural numbers > 0

Ny nonnegative integers

V x, spoken ‘Nabla’, covariant derivative

p: P — M or (P,p, M,G) a principal bundle with structure group G

77+ J'(M,N)— J'(M,N) projections of jets

R field of real numbers

r: Px G — P usually a right action, in particular the principal right action of a
principal bundle

TM  the tangent bundle of a manifold M with projection wy; : TM — M

7 integers
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Index

Not yet final, the pagenumbers match.

1-form, 74
-parameter variation through geodesics, 181

A

adapted orthonormal frame, 172

adjoint representation, 46

adjoint representation, 46

affine manifold, 146

Algebraic Bianchi identity, 149

algebraic bracket, 198

algebraic derivation, 197

almost complex structure, 204

angular momentum, 314

angular momentum of a planetary movement,
286

anholonomic, 19

associated bundle, 219

atlas, 3

B

base of a fibered manifold, 14
base of a vector bundle, 61
base space, 205

basic vector field, 175

basis of a fiber bundle, 205
H-linear, 40

Betti number, 88

Bianchi identity, 149

Bianchi identity, 298

Bianchi identity on a fiber bundle, 207

C

Caley-Hamilton equation, 256

canonical flip, 68

canonical symplectic structure, 274

Cartan moving frame version of a connection,
233

Cech cohomology set, 62

center of a Lie algebra, 55

center of a Lie group, 55

central extension of a Lie algebra, 296

central extension of a Lie algebra, 321

centralizer in a Lie algebra, 55

centralizer in a Lie group, 54

characteristic class of the invariant
polynomial, 250

chart, 3

charts with boundary, 85

Chern character, 261

Chern classes, 260

Chern-Weil form, 249

Chern-Weil homomorphism, 250

Chevalley cohomology of the Lie algebra, 121

Christoffel forms, 208

Christoffel symbol, 133

Christoffel symbols, 127

Ck-atlas, 3

C*-equivalent atlases, 3

classical complex Lie groups, 40

classical second fundamental form, 171

classifying spaces, 223

closed form, 81

coadjoint representation, 277

cocurvature, 203

cocycle condition, 205

cocycle of transition functions, 205

cocycle of transition functions, 62

Codazzi-Mainardi equation, 170

Codazzi Mainardi equation, 171

Codazzi Mainardi equation, 174

cohomological integral, 107

cohomologous, 215

cohomologous, 62

cohomology classes, 62

cohomology group, 90

compatible, 61

compatible symplectic and complex structures,
281

complete connection, 209

complete, 22

completely integrable Hamiltonian system, 291

complete Riemann manifold, 140

complex line bundles, 64

conformal diffeomorphism, 142

conformal Riemann metrics, 142

conjugate point, 187

conjugation, 46

connection, 202

connection, 298

connection on a fiber bundle, 206

connector, 133

connector, 243

contact of order, 263

cotangent bundle, 74

covariant derivative, compatible with the

pseudo Riemann metric, 129

covariant derivative, 244

covariant derivative of tensor fields, 136

covariant derivative on a manifold, 128

covariant exterior derivative, 234

covariant exterior derivative, 245

covariant exterior differential, 298

curvature, 203

curvature, 245

curvature, 297

curvature matrix, 157

curvature of the covariant derivative, 148

curve of local diffeomorphisms, 25
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D

Darboux’ theorem, 279

degree of a mapping, 112

densities, 81

density or volume of the Riemann metric, 84

De Rham cohomology algebra, 87

De Rham cohomology algebra with compact
supports, 96

derivation, 6

diffeomorphic, 5

diffeomorphism, 5

differential, 9

differential form, 75

differential group of order, 265

distance increasing, 194

distinguished chart, 32

distinguished chart for a foliation, 29

distribution, 28

dual coframe, 158

E

effective, 55

Ehresmann connection, 209
ellipsoid, 12

energyof a curve, 126

equivalent vector bundle atlases, 61
Euler Poincaré characteristic, 88
evolution operator, 35

exact form, 81

exponential mapping, 44
exponential mapping of a spray, 131
extension of Lie algebras, 296
exterior derivative, 78

F

f-dependent, 203

Fermi chart, 183

Fermi chart, 183

(fiber) bundle, 205

fiber chart of a fiber bundle, 205

fibered composition of jets, 264

fibered manifold, 14

fiber, 61

first Chern class, 64

first non-vanishing derivative, 25

first Stiefel-Whitney class, 64

fixpoint group, 58

flow line, 20

flow prolongation, 71

focal points, 188

foliation corresponding to the integrable
vector subbundle £ C T'M, 29

Frolicher-Nijenhuis bracket, 199

fractional linear transformations, 162

frame field, 156

frame field, 19

frame field, 64

free action, 55

f-related, 203

f-related, 22

fundamental vector field, 57
fundamental vector field, 57

G

G-atlas, 215

gauge transformations, 226

Gauf}’ equation, 170

G-bundle, 215

G-bundle structure, 215

generalized Hamiltonian function, 311
general linear group, 38

geodesic distance, 140

geodesic, 128

geodesic spray, 130

geodesic structure on a manifold, 130
geometric objects, 268

germ of f at z, 6

global, 22

(graded) derivations, 197

graded differential space, 90
Grassmann manifold, 217

group cohomology, 317

H

Haar measure, 115

hairy ball theorem, 113

half space, 85

Hamiltonian group action, 311

Hamiltonian system, 291

Hamiltonian vector field, 269

Hamiltonian vector field, 284

Hamiltonian vector field for a Poisson
structure, 304

Hamilton’s equations, 269

holonomic, 19

holonomic frame field, 19

holonomous , 74

holonomy group, 211

holonomy group, 237

holonomy Lie algebra, 211

homogeneous space, 56

homomorphism of G-bundles, 221

homomorphism over ® of principal bundles,
218

homotopy operator, 89

Hopf, Rinov, 140

horizontal bundle of a fiber bundle, 206

horizontal differential forms, 234

horizontal foliation, 207

horizontal lift, 132

horizontal lift, 298

horizontal lift of the vector field, 147

horizontal lift on a fiber bundle, 206

horizontal projection, 206

horizontal space, 202
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horizontal subbundle, 175

horizontal vector field, 175

horizontal vectors of a fiber bundle, 206
hyperboloid, 12

I

ideal, 54

idealizer in a Lie algebra, 55

immersed submanifold, 15

immersion at, 14

index, 262

induced connection, 241

induced connection, 241

induced connection, 298

induced representation, 225

infinitesimal automorphism, 31

infinitesimal gauge transformation, 226
infinitesimal strongly Hamiltonian action, 316
initial submanifold, 16

inner automorphism, 46

insertion operator, 77

integrable, 31

integrable subbundle of a tangent bundle, 28
integral curve, 20

integral manifold, 30

integral of a differenatial form, 85

integral of the density, 82

invariant of the Lie algebra, 249

invertible, 267

involution, 68

involutive distribution, 33

involutive set of local vector fields, 33
involutive subbundle of a tangent bundle, 28
irreducible *-principle connection, 238
isotropy subgroup, 58

J

Jacobi differential equation, 181
Jacobi fields, 181

Jacobi operator, 187

jet at, 263

jet at, 263

K

k-form, 75

Killing fields, 153

k-th order frame bundle, 267

L

Lagrange Grassmann, 272

leaf, 31

leaves of the foliation, 29

left action of a Lie group, 55

left invariant differential form, 114
left invariant differential form, 119
left invariant, 41

left logarithmic derivative, 47
length of a curve, 125

Levi Civita covariant derivative, 129

Lie algebra, 20

Lie algebra of infinitesimal automorphisms of
the Poisson structure, 304

(Lie algebra valued) connection form, 230

(Lie algebra-valued) curvature form, 231

Lie bracket, 19

Lie derivation, 198

Lie derivative, 23

Lie derivative, 70

Lie derivative, 76

Lie group, 37

Lie subgroup, 52

linear connection, 132

linear connection, 243

linear connection, 244

linear frame bundle, 69

linear frame bundle of, 222

linear momentum, 314

Liouville form, 274

Liouville vector field, 275

Liouville volume, 273

local diffeomorphism, 5

local frame, 156

local frame, 28

locally Hamiltonian vector fields, 284

local vector field, 18

long exact cohomology sequence with compact
supports of the pair, 107

M

Moébius transformations, 162
manifold pair, 106

manifold pair, 95

manifold with boundary, 85
Maslov-class, 273
Maurer-Cartan, 208
Maurer-Cartan form, 47
maximal integral manifold, 30
momentum, 269

momentum mapping, 312
multiplicity, 188

multi vector fields, 303

N

natural bilinear concomitants, 204
natural bundles, 268

natural lift, 71

natural transformation, 71
natural vector bundle, 69
Nijenhuis-Richardson bracket, 198
Nijenhuis tensor, 205

normalizer in a Lie algebra, 55
normalizer in a Lie group, 55

O

w-respecting vector fields, 284
one parameter subgroup, 43
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orbit of a Lie group, 55 relative De Rham cohomology with compact
orientable double cover, 108 supports, 106
orientable manifold, 84 Relative Poincaré Lemma, 279
orientations of a manifold, 84 representation, 46
oriented manifold, 84 restricted holonomy group, 211
orthogonal group, 38 restricted holonomy group, 237
orthonormal frame bundle, 223 Riemannian metric, 222
orthonormal frame, 156 Riemannian submersion, 175
orthonormal frame field, 222 Riemann metric, 125

Riemann normal coordinate system, 131
P right action of a Lie group, 55
parallel transport, 146 right invariant, 41
parallel vector field, 146 right logarithmic derivative, 47
parameterized by arc-length, 138 right trivialized derivative, 116
perihel, 288
Pfaffian class, 260 S

saddle, 12

phase space, 290

physicists version of a connection, 233
planetary orbit, 288

plaque, 32

plaques, 29

Poincaré polynomial, 88

Poisson bracket, 284

Poisson cohomology, 308
Poisson morphism, 306

Poisson structure, 303
Pontryagin character, 257
Pontryagin classes, 253
Pontryagin numbers, 255
principal bundle atlas, 215
principal connection, 230
principal (fiber) bundle, 215
principal fiber bundle homomorphism, 217
principal right action, 215
product manifold, 11
projectable vector field, 175
projection of a fiber bundle, 205
projection of a vector bundle, 61
proper homotopy, 97

proper smooth mappings, 96
pseudo Riemann metric, 125

Schouten-Nijenhuis bracket, 303
second fundamental form, 168
sectional curvature, 154

section, 61

semidirect product, 59
semidirect product of Lie algebras, 296
shape operator, 168

short exact sequence, 91
signature, 112

signature of the metric, 125
signed algebraic complements, 51
(singular) distribution, 30
(singular) foliation, 31

singular value, 102

skew field, 52

smooth distribution, 30

smooth functor, 65

smooth partitions of unity, 5
source mapping, 263

source of a jet, 263

space of all covariant derivatives, 136
space of closed forms, 87

space of exact forms, 87
spanning subsets, 30

special linear group, 38

pullback of a fiber bundle, 207 special orthogonal group, 38
pullback vector bundle, 66 special unitary, 40
pure manifold, 3 sphere, 4
spray, 131
Q stable, 31
quasiperiodic flow, 295 stably equivalent, 254
quaternionically linear, 40 standard fiber, 205
quaternionically unitary, 41 standard fiber, 61
quaternionic unitary group, 41 stereographic atlas, 4
quaternions, 52 Stiefel manifold, 217
strongly Hamiltonian group action, 316
R structure, 3
real line bundles, 63 submanifold charts, 9
reduction of the structure group, 218 submanifold, 9
regular value, 9 submersion, 14

relative De Rham cohomology, 95 submersion, 14



support of a section, 61
support of a smooth function, 5
support of a vector field, 22
symmetric connection, 133
symmetric covariant derivative, 129
symplectic gradient, 284
symplectic group action, 311
symplectic group, 39
symplectic manifold, 273
symplectic orthogonal, 271
symplectic structure, 269
symplectomorphisms, 270

T

tangent bundle, 8

tangent space of M at x, 7

tangent vector, 6

target mapping, 263

target of a jet, 263

tensor field, 71

tensor field, 74

theorema egregium, 170

Theorema egregium proper, 172

time dependent vector field, 34

Todd class, 262

topological manifold, 3

torsion form, 158

torsion free connection, 133

torsion free covariant derivative, 129

torsion of a covariant derivative, 135

torus, 13

total Chern class, 260

totally geodesic immersion, 168

total Pontryagin class, 253

total space, 14

total space of a fiber bundle, 205

total space of a vector bundle, 61

trace classes of a complex vector bundle, 261

trace coefficients, 255

transformation formula for multiple integrals,
81

transgression homomorphism, 302

transition function, 61

transition functions, 205

transitive action, 55

transversal, 17

transversal, 17

truncated composition, 264

353

typical fiber, 61

U

unimodular Lie group, 115
unitary, 40

universal 1-form, 275
universal connection, 275
universal curvature, 275
universal vector bundle, 228

v
variational vector field, 126
variation, 126

variation, 188

vector bundle atlas, 61

vector bundle chart, 61

vector bundle, 61

vector bundle functor, 69

vector bundle homomorphism, 65
vector bundle isomorphism, 65
vector field, 18

vector product, 40

vector subbundle, 65

vector subbundle of a tangent bundle, 28
vector valued differential forms, 197
vertical bundle, 67

vertical bundle of a fiber bundle, 206
vertical bundle of a fiber bundle, 229
vertical lift, 68

vertical projection, 206

vertical projection, 68

vertical space, 202

vertical subbundle, 175

vertical vector field, 175

volume bundle, 82

volume, 84

\W%

weakly regular value, 322
wedge product, 75
Weingarten equation, 171
Weingarten equation, 171
Weingarten formula, 169
Weingarten mapping, 169

7

zero section of a vector bundle, 61
zero set, 5
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