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Introduction 

Consider the following expression: 

f (x) - f(x0)  
- 

As x approaches SO,  the limit, if it exists, gives the familiar definition of the 
derivative of a function f(x) at x =  X. However, if we take x = qxo or 
x = xo+ h, where q is a fixed number different from 1, and h a fixed number 
different from 0, and do not take the limit, we enter the fascinating world 
of quantum calculus: The corresponding expressions are the definitions of 
the g-derivative and the h-derivative of f(x).  Beginning with these two 
definitions, we develop in this book two types of quantum calculus, the 
q-calculus and the h-calculus. 

In the course of developing quantum calculus along the traditional lines 
of ordinary calculus we discover many important notions and results in 
combinatorics, number theory, and other fields of mathematics. 

For example, the g-derivative of xn is [n1sn-1 , where 

[n] = gn 
q 1 :

1  

is the g-analogue of n (in the sense that n is the limit of [n] as q -* 1) . 
Next, in the search of the g-analogue of the binomial, that is a function, 

arq  that "behaves" with respect to the g-derivative in the same way 
as (x a)'  "behaves" with respect to the ordinary derivative, we discover 
the function 

- a)qn = (x a)(x - qa) - x  qn - 1 a  ) 
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The quantity (1 — a)ng  plays in combinatorics the most fundamental role, 
and we find it unfortunate that the commonly used notation (a; q)„ for this 
quantity is so nonsuggestive. 

Having the q-binomial, we go on to establish a q-analogue of Taylor's 
formula. Remarkably, the q-Taylor formula encompasses many results of 
eighteenth and nineteenth century mathematics: Euler's identities for q-
exponential functions, Gauss's q-binomial formula, and Heine's formula for 
a q-hypergeometric function. 

Of course, Gauss's formula 

n 

(s ±  a) 	E qi(i 1)/2 [1 ajxn-j - 

J=0 

is the source of the all important q-binomial coefficients 

	

rn-i 	[r ] !  
pi — [i]l/n  _ ill ,  where [Id! = [1][2] • • •  [k].  

We study these coefficients in some detail; in particular, we interpret them 
in terms of geometry over finite fields. 

Euler's identities lead to the celebrated Jacobi triple-product identity, 
and Heine's formula leads to the remarkable Ramanujan product formula. 

Having established all these formulas, we go on to harvest the whole array 
of applications, rediscovering some of the famous results of eighteenth and 
nineteenth century mathematics: Euler's recurrent formula for the classical 
partition function, Gauss's formula for the number of sums of two squares, 
Jacobi's formula for the number of sums of four squares, etc. The special 
cases of the last two results are, of course, Fermat's theorem that an odd 
prime p can be represented as a sum of two squares of integers if and only 
if p — 1 is divisible by 4, and Lagrange's theorem that any positive integer 
is a sum of four squares of integers. 

Returning to q-calculus, as in the ordinary calculus, after studying the 
properties of the q-derivative we go on to study the q-antiderivative and 
the definite q-integral. The latter was introduced by F.H. Jackson in the 
beginning of the twentieth century: He was the first to develop q-calculus 
in a systematic way. 

We conclude our treatment of q-calculus with a study of q-analogues of 
classical Euler's gamma and beta functions. 

In spite of its apparent similarity to q-calculus, the h-calculus is rather 
different. It is really the calculus of finite differences, but a more systematic 
analogy with classical calculus makes it more transparent. For example, the 
h-Taylor formula is nothing else but Newton's interpolation formula, and 
h-integration by parts is simply the Abel transform. The definite h-integral 
is a Riemann sum, so that the fundamental theorem of h-calculus allows 
one to evaluate finite sums. 
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We do this for sums of nth powers, using the (h = *integral of  aft. This 
leads us naturally to Bernoulli numbers and Bernoulli polynomials. Closely 
related is the Euler—Maclaurin formula, discussed at the end of the book. 

The book assumes only some knowledge of first-year calculus and linear 
algebra and is addressed mainly to undergraduate students (the second 
author was an undergraduate during the preparation of the book). 

This book is based on lectures and seminars given by the first author at 
MIT: A part of the lecture course on quantum groups in the fall of 1993, a 
seminar in analysis for majors in the fall of 1996, and the freshman seminar 
on quantum calculus in the spring of 2000, in which the second author was 
the most active participant. We are grateful to the Undergraduate Research 
Opportunities Program at MIT for their support. We are also grateful to 
Dan Stroock for very useful suggestions. 

In our presentation of the Euler—Maclaurin formula we used unpublished 
lecture notes by Haynes Miller. We wish to thank him for giving us these 
notes. Other sources that have been used are quoted at the end of the book. 
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q-Derivative and h-Derivative 

As has been mentioned in the introduction, we shall develop two types of 
quantum calculus, the q-calculus and the h-calculus. We begin with the 
notion of a quantum differential. 

Definition. Consider an arbitrary function f(x). Its q-differential is 

dq f (x) --,-- f (qx) — f (x), 	 (1.1) 

and its h- differential is 

dh f (x) = f (x + h) —  f(). 	 (1.2) 

Note that in particular, dq x =-- (q — 1)x and dhx = h. An interesting 
difference of the quantum differentials from the ordinary ones is the lack 
of symmetry in the differential of the product of two functions. Since 

dq  (f (x)g(x)) --, f (gx)g(qx) — f (x)g(x) 

= f (qx)g(gx) — f (qx)g(x) + f (qx)g(x) — f(x)2(x), 

we have 

dg (f (x)g(x)) = f (qx)d qg(x) + g(x)d q  f (x), 	 (1.3) 

and similarly, 

dh(f(x)9(s)) = f (x + h)dhs(x) ± g(x)dh f (x). 	(1.4) 

With the two quantum differentials we can then define the corresponding 
quantum derivatives. 



Definition. The following two expressions, 

f (x)
dq f (x) f (qx) — f(z)  

(1.5) 

	

dqx 	(g — 1)x ' 

Dh f (x) 	
dh f (x)  _ f (x + h) — f(s) 

(1.6) 

	

dhx 	 h 

are called the g- derivative and h- derivative, respectively, of the function 
f (x). 

Note that 

lim Elq  f (x) = lim Dh f (x) = 
df (x)  

if  f(s) is differentiable. The Leibniz notation dir  , a ratio of two "infinites-
imals," is rather confusing, since the notion of the differential df (x) requires 
an elaborate explanation. In contrast, the notions of g- and h-differentials 
are obvious, and the g- and h-derivatives are plain ratios. 

It is clear that as with the ordinary derivative, the action of taking the 
g- or h-derivative of a function is a linear operator. In other words, D q  and 
Dh have the property that for any constants a and b, 

	

D9  f (x) + bg(x)) 
	

aDq  f (x) + bDqg(x) , 

	

Dh (cif (x) + bg(x)) 
	

aDh f (x) 	hg(x). 

Example. Compute the q-derivative and h-derivative of f(x) = xn, where 
n is a positive integer. By definition, 

	

t qx )n stx 	1 n-1 AS   	x 

	

n  = 
(g — 1)x 	q -1 

 

and 

PhXn  
 (x + hr — 	
= nxn-1 ± 

n(n — 1)
X

n_2
h + • • • + 10' 1 . (1.8) 

 xn  
h 	 2 

Since the fraction (qn — 1)/(q — I) appears quite frequently, let us 
introduce the following notation, 

[n] qn 7 1 n-1 	 (1.9) 

	

g — 1 — q 	+ 1  

for any positive integer n. This is called the q- analogue of n. Then (1.7) 
becomes 

	

Dqxn 	fn1xn --1 , 	 (1.10) 

which resembles the ordinary derivative.of xn. As g 	1, we have [n] = 
qn-1  + • • ..-F 1 -4 1 -I- 1 + - • - + I = n. As we shall see time and again, [n] 
plays the same role in q-calculus as the integer n does in ordinary calculus. 

On the other hand, the expression of Dhxn is more complicated. It is 
fair to say that Sn  is a good function in q-calculus but a bad one in h- 



calculus. For the time being, we will focus on q-calculus. The h-calculus 
will be discussed in the last chapters of the book. 

Let us compute the q-derivative of the product and the quotient of f (x) 
and g(x). From (1.3) we have 

dq  (f (x)g(x)) 	f (gx)d qg (x) g(x)d qf (x)  
Da( x)g (x)) = 

(g — 1)x 	 (g — 1)x 

and hence, 

Dq (f (z)g(x)) = f (gx)De(x) + g(x)D g  f (x). 	 (1.11) 

By symmetry, we can interchange f and g,  and obtain 

Dq (f (x)g(x)) = f (x)D gg(x) g(gx)D I  f (x), 	 (1.12) 

which is equivalent to (1.11). 
If we apply (1.11) to differentiate 

g(x)
(x) 

= 
g(x) 

we obtain 

g(qv)D9  (0) + 	Dqg(x) = Dq  f (x), 

and thus, 

f (x)) g(x)D g  f (x) — f(x)De(x) 
D

q g(x) 	 g(x)g(gx) 	
(1.13) 

However, if we use (1.12), we get 

( f (x' 	f (gx)  
g(x)D 	 De(x) = Dq  f (x), 

g(x) 	g(gx) 

and thus, 

D  (f (x)'\ 	g(gx)Dg  f (x) f (gx)D gg(x) 
(1.14) 

g(x) 	 g(x)g(gx) 

The formulas (1.13) and (1.14) are both valid, but one may be more useful 
than the other under particular circumstances. 

After deriving the product rule and quotient rule of q-differentiation, 
one may then wonder about a quantum version of the chain rule. However, 
there doesn't exist a general chain rule for g-derivatives. An exception is 

the differentiation of a function of the form f (u(x)), where u = u(x) = oix° 
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with a, /3 being constants. To see how chain rule applies, consider 

Dg  {f (n(x))] = DI  [f (x)]
= f (aexg) — f (ax 0)  

and hence, 

Dg  f (u( x)) = (Dqp f)(u(x)) . D gu(x). 	 (1.15) 

On the other hand, if for instance u(x) = x + X2  or u(x) = sin x, the 
quantity u(qx) cannot be expressed in terms of u in a simple manner, and 
thus it is impossible to have a general chain rule. 

We end this section with a discussion of why the letters h and q are used 
as the parameters. The letter q has several meanings: 

• the first letter of "quantum," 

• the letter commonly used to denote the number of elements in a finite 
field, 

• the indeterminate of power series expansions. 

The letter h is used as a reminder of Planck's constant, which is the most 
important fundamental physical constant in quantum mechanics (physics 
of the microscopic world). One gets the "classical" limit as q —> 1. or h —+ 0, 
and the two quantum parameters are usually related by q = eh. 

qx — x 

f (aqt3  x 0) — f (ax°) aq 0  g — as° 
= 

aq0  xf1  — axg 	qx — x 

f (q 3 n) — f (u) n(qx) — u(x) 

eu — u 	qx — x ' 



2 
Generalized Taylor's Formula for 
Polynomials 

In the ordinary calculus, a function, f (x) that possesses derivatives of all 
orders is analytic at x = a if it can be expressed as a power series about 

= a. Taylor's theorem tells us the power series is 

f  (x) 	f(n)  (a) (x
n.

a)  . 	 (2.1) 
n=0 

The Taylor expansion of an analytic function often allows us to extend 
the definition of the function to a larger and more interesting domain. For 
example, we can use the Taylor expansion of e to define the exponentials 
of complex numbers and square matrices. We would also like to formulate 
a q-analogue of Taylor's formula. But before doing so, let us first consider 
a more general situation. 

Theorem 2.1. Let a be a number, D be a linear operator on the space 
of polynomials, and  {Po (x), Pi (x), P2 (X), .1 be a sequence of polynomials 
satisfying three conditions: 

(a) Po(a) = 1 and Pfl,(a) = 0 for any n 1; 
(b) deg Pr, = n; 
(c) DP(x) = P_1 (x) for any n 1, and D(1) = O. 

Then, for any polynomial f (x) of degree N, one has the following generalized 
Taylor formula: 

f(z) = 	(Lin f) (a) 13 (x) . 	 (2.2) 
n=0 



6 	2. Generalized Taylor's Formula for Polynomials 

Proof. Let V be the space of polynomials of degree not larger than N, 
so that dim V = N + 1. The polynomials {Po(x), Pi (X), ... ,PN (x)}  are 
linearly independent because, by condition (13), their degrees are strictly 
increasing. Hence they constitute a basis for V; i.e., any polynomial f (x) E 
V may be expressed as 

f(s) = Eckpk(x) 	 (2.3) 
k=0 

for some unique constants ck. Putting x = a and using condition (a), one 
gets co  = f (a). Then, apply the linear operator D n times to both sides of 
the above equation, where 1 < n < N.  Using (b) and (c), we get 

(Dn  f) (X) = E ekDnpk (x) = Ls-N ck pk ,(x). 
k=n 	 k=n 

Again, putting x = a and using (a), we get 

an, = (Dn  f) (a), O < n < N, 

and (2.3) becomes (2.2). El 

Example. If 

d 	 (x — a)n 
D = 	P (x = 	 

dx' 	r6 	n! 
then all the three conditions are satisfied, and the theorem gives the Taylor 
expansion about a of a polynomial. 

It is easy to see that given D,  the sequence of polynomials satisfying con-
ditions (a), (b), and (e) of Theorem 2.1, if it exists, is uniquely determined. 
Moreover, if D is a linear operator that maps the space of polynomials of 
degree n onto the space of polynomials of degree n — 1, such a sequence 
always exists. 



3 
q-Analogue of (x — ar, n an Integer, 
and q-Derivatives of Binomials 

As remarked in Chapter 1, Dg  is a linear operator on the space of polyno-
mials. We shall try to apply Theorem 2.1 to D Dg . We shall need for 
that the following q-analogue of n!: 

[n}! = { 1 	 if n = 0, 
(3.1) [n] x [n — 11 x • - • x [1] if n = 1, 2, .... 

Now let us construct the sequence of polynomials {Po(x), Pi  (s), P2 (z), • • } 
satisfying the three conditions of Theorem 2.1 with respect to D a: Dg . If 
a = 0, we can choose 

Sn  
P(x) == [np , 	 (3.2) 

because (a) Po(0) = 1, P(0) = 0 for n 	(b) deg1) = n, and (c) using 
(1.10), for n > 1, 

Dqxn [n]x1 = 
DqPn(X) = 	

[7/ ]1 

Xn-1 
Pn-i(x). [n — 1]! 

If a 0, P(x) is not simply (x — 	I [111! ; for example, Dg (x a) 2  1[21! 
— a) . Let us find the first few  Pa(s) and try to deduce a general formula. 

We have 

Po(x) = 1. 

In order that Dq Pi (x) =. 1 and Pi(a) = 0, we must have 

Pi (X)  = X — a. 
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In order that DqP2(x) =  z  - a and P2 (a) = 0, we must have 

	

x2a2 	2 (x - a)(x  qa) 
P2(x) =

[2] 
- ax - — + a = 

	

[2] 	 [21 

Similarly, 

(x - a)(x qa)(x - q2  a) 
P3(X) = 

and so on. A logical guess would be 

(x - a)(x  -  qa) • • - (x - qn-la)  
Pn (x) = 	 (3.3) 

[ni! 

which agrees with (3.2) when a = O. Before verifying the validity of 
condition (c) for Theorem 2.1, let us introduce some notation. 

Definition. The q-analogue of (x - a)n is the polynomial 

(x - a) 7:, = 

	

(ix - a)(x - qa) 	_ 	a) if n > 1. 	
(3.4) 

Proposition 3.1. For n > 1, 

Dq (x -  a) 	[n](x - 	 (3.5) 

Proof. The formula is obviously true when n = 1. Let us assume 
Dq (x a)kg  =[k}(x a)kg -1  for some integer k. According to the definition, 
(x  _ 44+1= (z  _ a) :(x  _ qk  a). Using the product rule (1.12), 

	

Dq (z - a):±' = (x - 	+ (qx - qk  a)Dq (x - 

	

(x - 	+ q(x - qk-1  a) - [Id(x - 

= (1 + q[k])(x - a)1  = [k +11(x - 

Hence, the proposition is proved by induction on k. 

Thus, DqPn  = Pn_i is an immediate result of the above proposition. 
Now let us explore some other properties of the polynomial (x - a) q . 

In general, (x - a) qm±n  74  (x - a) qm(x - a)ng . Instead, 

(x - a) q +n = (x - a) (x - qa) - • • (x - qm -1  a) (x - qm a)(x qm+ 1  a) 

x - • • (x - em -En- la)  

((x - a)(x - qa) - • • (x - qm -1  a)) 

x ((x - qm a)(x - q(qm a)) - • - (x - 

which gives 

(x — a)m-Fn 	a)qm (x — qm a)qn . 	 (3.6) 

[2][3] 

qn-1(qma))) 
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Substituting m by -n, we can thus extend the definition in (3.4) to all 
integers by defining 

(x - a) n = (x uncon ,  
)q 

(3.7) 

for any positive integer n. The following two propositions show that this 
indeed gives a good extension. 

Proposition 3.2. For any two integers m and n, (.9.6) is true. 

Proof. The case where m > 0 and n > 0 has already been proved, 
and the case where one of m and n is zero is easy. Let us first consider 
m = -m'  < O  and n > O. Then, 

(x - a)m(x - qm a) 

by (3.7) 

by (3.6) 

by (3.7) 

(x - a) / (x 	a); 

(x - 

(x - 	a)r 

(x qm (Cm.  a)jnq 	n > m' 
n < nil 

(r-qn(q-m'a))ri  

(x - 	= (x - a)t:±m 

If > 0 and n = -n` < 0, then 

(x - 	(x - qm a) - (x - 	(x - qm a) q-n' 

(x - (t)ig  
(x - qm -n' a);  

(x-a)rni (z-q"a);' 
(x-qrn - n' a)zi 

( x_qm-n i 	(x _vv.  -m( qm-nl a)) 1: 

(x - a)m-n' 	m > n 
	  m < n 

= 	- an,4-111  = (z a)rn+n  9 	• 

by (3.7) 

by (3.6) 

m > n 

m < n 
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Lastly, if  in  = -m' <0  and n = -n'  <0, 

(x - ayqn (x - qma): = (x - a) i n'l  (x - q -"I' 

1 

(x - q -m' a);', 1 ' (x - q -ni -rn ' a)i' 
1 

(x - q -n'-m' a)n' (x - qn' (q-nl' -ni  a)) mi  q 	 q 
1 

(x - q -nl -m' a),7"+"2' 

= (s — a) m' -n' = (s — ar+n 
q 	 q 	- 

Therefore, (3.6) is true for any integers m and n. CI 

We would like to see that Proposition 3.1 is true for any integer n as well. 

But before proving this, we have to extend our definition of [n] in (1.9). 

Definition. For any number a, 

I. - q' 

[a]  = 1 - q • 

Proposition 3.3. For any integer n, 

Dq (x - a) qn = [n1(x -  a)_ 1 .  

Proof. Note that [0] = 0, so (3.8) is true for n = 0. If n = -n' < 0, 
using (1.13) and (3.7) we have 

Dq (x - a) in = Dq  ( 
1 

(s - q' a)' ) 

Dq (x - q' a)'  

(x - g -n.' a) ' (qx - q' a)'  

[nl(x - q-n' 
(pi (s  _ q-n ' a)4. 1  (x. _ q ' 1 a) '  q 

I — qn# q -n' 

q - 1 (s - q-la)(x  _ q-ni-l a) ,  
q 

q-n i  - 1 	1 

q - 1 (s  _ q-n,  -1 a)'+i 

qn - 1
a)ng-1, 

q - 1 

as desired. D 

Proposition 3.3 cannot be directly applied to find the q-derivatives of 

1 	 1 

(x - an 
, (a xn, 	 

(a - x)'4,1 

= 

= 

= 

(3.8) 

= 

= 

= 

= 

= 

, 
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because, for example, (a - x) qn 0 (-1)' (x  - a). Instead, for n>  1, 

= (a - x)(a - qx)(a - q2 a)- • - (a - qn-lx) 

= (a - x) - q(q- 1  a - x) . q 2  (q-2  - x) . . . qn-1(q -n-1-1 a - x) 
....., (_ 1) n qn(n-i) / 2 (x  _ q- n + 3. a)  . • . (x - q -2  a) (x - q-l a)(x - a), 

or 

(a  _. xr = (_ irqn(n--1)12 (x  _ q-n+i,„•I n 
q 	 '4 -  

Obviously, (3.9) is true for n = 0, and it is straightforward to verify that 
it is true for n  <O. 

Let us end this chapter by finding the q-derivatives of the three functions 
above. By (3.7), we have 

1 	 1 
	=D 	 n  -z--  D(x - qnaV. Dg 
(x - a)r, 	(x - q -n (qn a)) 	

g 
 q 

Using (3.9) twice, we have 

Dg  (a - x) q" = (_1)n qn(n-1)/2 . [r ] (x  _ q -n+1,An-1 
4)9' 

= _[n] qn-1 . H1)n-l iin-1)(n-2)/2 (x  ___ 17 -n+2 ( 17-10) n -1  
/) q 

= _ [n] qn-i (r i a  _ x)qn-1 = -[n] (a - qx) qn-1  . 

Finally, we use the quotient rule (1.13) and get 

1 
 D q 	 = 

-[n1(a - qx)':- 
	  = 

1 	[n]  
(a - x)n q. 	(a - x) (a - qx) qn 	(a - x) (a - q'+' x) 

To conclude, for any integer n, 

1 
D 

we 

= 

= 

= 
'1  (a - x)  

have 

[ — n] (x - 	nq a) i  n-1 ,  

- [n] (a - qx) qn - 1 , 
[n] 

(3.10) 

(3.11) 

(3.12) 

n 

.2  (x - a)  

D q (a - x) qn 

1 
D ff 

(3.9) 



q-Taylor's Formula for Polynomials 

As has been shown in the previous chapter,  P(x) = (x — a)nq  /[n]! satisfies 
the three requirements of Theorem 2.1 with respect to the linear operator 
Dq . Therefore, we now obtain the q-version of Taylor's formula. 

Theorem 4.1. For any polynomial f(x) of degree N and any number c, 
we have the following q- Taylor  expansion: 

.4 
f(x) = 1\.(Dg 	

(x — c) 

	

a f)(c)  	 (4.1) 

Example. Consider f (x) = xn and c = 1, where n is a positive integer. 
For j < n, we have 

(Dqjf)(x) — [n]x' — [n][n — 1}xn -2  = • • 

= [n][n — 1]-- [n — j + 	 (4.2) 

and hence, 

	

(Dqj f)(1) = [n][n — 1] • • • [n — j + 1] . 	 (4.3) 

The q-Taylor formula for xn about x = 1 then gives 

Ê 
 

[ n 	 r n 1 

	

x  _ Ê [n] ' • • [nit  j + 1] (x — 1) 	E ig  = 	i i 	(x — 1)•ig , 	(4.4) 
i=o 	 3=o 

where 

[ u n 	
= 

[n][n — 1] • • [n — j 11 	[n] !  
(4 

	

LiP[n 	
.5) 
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are called q-binomial coefficients. We will give a nice combinatorial 
interpretation of equation (4.4) in Chapter 7. 

Note that as q 	1, the q-binomial coefficients reduce to the ordinary 
binomial coefficients and (4.4) becomes a result of the ordinary binomial 
formula. The properties of the g-binomial coefficients will be examined in 
the next two chapters. 



5 
, 

Gauss's Binomial Formula and a 
Noncommutative Binomial Formula 

In this chapter we will encounter two binomial formulas involving q-
binomial coefficients. Let us first consider an example similar to the one 
given in the previous chapter. 

Example. Let n be a nonnegative integer and a be a number. Let us 
expand 1(x) = (x + a) qn about x = 0 using g-Taylor's formula. As in (4.2), 
for j  <n we have 

(Di/ f) (x) = [n][n - 1] . . - [n - j + 1] (x + an-3 . 	(5.1) 

Recall that 

(x  -i-  a)mq  = (x + a)(x + qa) - • • (x + qm - 1  a), 

so, with x = 0, the right-hand side gives (a)(qa) - • - (qm-1  a) = qin(in-1)/2 arn . 

Apply this to (5.1) to get for j < n, 

(Dqa f)(0) = [n][n — 1]  • - • [n - j + 1]q(1)12an-i  • 	(5.2) 

Thus, the q-Taylor formula gives 

(x + a)": - E [ . ] q 
3 =o 

n 
n 	(n-j)(n-j-1)/2 an-3 xj .  

i 
	 (5.3) 

We can improve the expression a little bit if we replace j by n - j. From 
the definition of g-binomial coefficients (4.5), we have, similar to the usual 
binomial coefficients, 

(5.4) .1
_ 	[n] ! 	_ 

- iiiqn - M! - 
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Therefore, (5.3) is equivalent to 

  

] (5.5) 

 

Formula (5.5) is called Gauss's binomial  formula.  It will be useful in the 
subsequent chapters. 

Now we turn to another (though related) topic. As we all know, the mul-
tiplication of real numbers is commutative, i.e., xy = yx. However, when 
more general multiplication is concerned, such as matrix multiplication or 
composition of operators, commutativity may no longer be true. Consider 
the following example. 

Example. Let 	and 114 be the linear operators on the space of 
polynomials whose actions on a polynomial f(x) are 

"Xff (x)] = x f (x) , A;I g [f (x)] = f (qx) . 	 (5.6) 

Then for any f (x) we have 

114qi[f (x)] = lag [x f (x)I = qx f (qx) = A-1 q [f (x)] 

SO 

Iq1 = 	 (5.7) 

Theorem 5.1 below introduces a noncommutative binomial formula 
involving two elements satisfying a special commutation relation like (5.7). 

Theorem 5.1. If yx = qxy, where q is a number commuting with both x 
and y, then 

(x +11)n E 
j=0 

(5.8) 

 

Proof. Our proof is by induction on n. Equation (5.8) is obviously true 
for n = 1. Noting that ykx = qyk - lzy — q2jjk-2n2  = 	= qknk , we 



X j
y 
 n-j+1 

E n xiyn_i+i 

 i=o 
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compute 

(x  y
)

+1 
(x 	(x 	— 	[ 	syn -i) (x  + y) 

n+1 E 	[ ]xiyn—j+1  + E 
i=0 

xiyn_i+ 1 

j=0 

= vn+1 	n-j+1 [ 

j=1  

[ 	)syn—j+i xn+i 

n+1 E 
3 

+. 1 
7 

where we have used the q-Pascal rule (6.3), to be discussed in the next 
chapter. The theorem has thus been proved. 

j=0 



6 
Properties of q-Binomial Coefficients 

Let us examine some properties of the q-binomial coefficients, defined by 
(4.5), with n and j being nonnegative integers and n > j. Because we will 
recover the ordinary binomial coefficients if we take q 1, we expect their 
q-analogues to have similar properties. Firstly, as already remarked in (5.4), 

r  n 1 _ 	[n]! 	F n 1 (6.1) L i i 	Lip [n — j
]

! 	[ n — i i 

follows exactly the classical result. However, the correspondence is more 
subtle for another identity of binomial coefficients, the Pascal rule: 

ni 	ni  : 11  ( 	 + n ; 1 , 
1 < j -_ n — 1. 

For example, 

r 21 =1+2= r i i+r i l  
Lij 	L o i 	1. 1 .1 

Proposition 6.1. There are two q-Pascal rules, namely, 

[ ;1 	
,- [n - 	1 1 , qi  r n — 1 1 

j-1j 7- 	IL 	j 	j 

and 

(6. 2) 

= q  n -j [ n — 1 1 
j — 1 ± [ 

, 
(6.3) 

where 1 < j < n — 1. 
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Proof Because for any 1 < j < n - 1, 

[n] 

= (1+q+•••+qi-1 )+qi (l+q+---+qn-i-1 ) 

= 

we have 

[ n 	[n]! 	[n - 11![n]  i   

[i]![n - - LiP[n• ..1]! 
[n - 1]!([j] + q[n - j]) 

UNn - ..71! 
[n, - 11! 	 [n  -11!  

[j - 1]! [n - j]! 	[j]![n - j - 1il 

rn-11 + jr n-11 

1  j 	j 

which is (6.2). The symmetric property of the coefficients (6.1) gives us the 
other identity, because 

[ ni  

(6.4) 

- 
] 	n- 	-1 = [ n ; 1 ] +qn-i [

n1  
Ln  - i  

Corollary 6.1. Each q-binomial coefficient is a polynomial in q of degree 
j(n j), with 1 as the leading coefficient. 

Proof. For any nonnegative integer n, 

[ 	= [ 	= 1  O 

which is of course a polynomial. Using Proposition 6.1 and induction on n, 

for any 1 < j < n - 1, ".'1 is the sum of two polynomials, thus is itself a 

polynomial. 
By definitions (4.5) and (1.9), the explicit expression of a q-binomial 

coefficient is 

[ n 1 (qn - 1)(e-1-1)..•(qn-i-Ei _1) 

L 	(qi - 1)(qi - 1) - (q - 1) 

Since both the numerator and denominator of (6.4) are polynomials in q 

with leading coefficient 1, so is their quotient. Finally, the degree of [7] 

in q is the difference of the degrees of the numerator and denominator, 
which is [n + (n 1) + - + (n - j + 1)] - +(j- 1) + • • + 1] = 
(n - j) + (n j) + • - • + (n - j) = j(n j). 



6. Properties of q-Binomial Coefficients 	19 

Another fact can be deduced from the explicit expression (6.4) of the q-
binomial coefficient. Knowing that it is a polynomial in q of degree j (n- j), 
we let 

ao + aiq + • • • + 	 + 
(qn _ 1 )(qn--1 _ 1 ) 	_ 1 ) 

	

(qi 1)(0-1  - 1 ) 	(4 - 1 ) 	• 

If we replace q by 1/g and multiply both sides by gi(n-i), it is easy to check 
that the right-hand side will be unchanged, while the left-hand side, 

aoqi(n-i) + aiq 	+ • • • + 	+ 

has the sequence of coefficients ai  reversed in order. By comparing coeffi-

cients, we observe that the coefficients in the polynomial expression of [3] 
are symmetric, i.e., ai = ai(n-j)-i. 

Like the ordinary binomial coefficients, the q-binomial coefficients also 
have combinatorial interpretations. Here is one of them, and another one 
will be given in the next chapter. 

Theorem 6.1. Let A n  = { i,  2,... , n} and let And  be the collection of all 
subsets of A n  with j elements, 0 < j < n. Then 

[ni 	E  q 
SEA" 

where w(S) = E s 	(6.5) 
sEs 

Proof. We will prove the theorem by induction on n. First, consider 
n 1, j = 0, 1. For j = 0, A1,0 = {0} and w(0) = O. Thus, the right-hand 
side of (6.5) equals unity, agreeing with the left-hand side. For j = 1, the 
only element of A1,1 is A1 = {1}, and w({ll) . 1. Again, the right-hand 
side equals unity and agrees with the left-hand side. 

Assume that (6.5) holds for 1 < n <  in  - 1, where 711> 2, and consider 
n = m. The case j =  0 is similar to that for n 1 described above. 
For j 1, write Amd = B U  B',  where B = IS E An,j1M S} and 
B' = E Airn E Sl. The sets in B are all the j-element subsets of 
Am_i, i.e., B = An-id. The sets in B' each with the element "m" removed 
are all the (j - 1)-element subsets of Am_i. Hence, the right-hand side of 
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(6.5) becomes 

E 	E  qw(S)-j(j+1)12 

SEB 	 8E13' 

E  qw(S)-j(j+1)/2 

SE.Am-1, 3  
g (to(S)-Fin)-i(j+1)/2 

E qw(S) - - -7(i+1 )1 2  

+ 	E 	qw(S)-j(j-1)/2 

[711 - 1 1 + 7771 _3  [771 - 1 1 .  in 
j-1  

The last line follows from one of the g-Pascal rules (6.3). By induction on 
j, (6.5) is true for 0 < j < in. Finally, induction on n completes the proof. 
D 

For future use, note that the definition of the g-binomial coefficient can 
be generalized in a way similar to its ordinary counterpart, using (3.8): 

[ a 1 	[a][a  — 	• • [a — j  + 11  
3 	 [i]! 	

(6.6) 

where a is any number and j is a nonnegative integer. 



q-Binomial Coefficients and Linear 
Algebra over Finite Fields 

In this chapter we explain an important combinatorial meaning of the q-
binomial coefficients. 

Theorem 7.1. If q is the order of a finite field Fq  (hence, q is a prime 
power), then 

number of j-dimensional subspaces in the 
n-dimensional vector space F. 	 (7.1) 

Before proving the theorem, let us very briefly review some basic con-
cepts of linear algebra. A collection of vectors in a vector space V over 
a field F is a subspace if it contains the zero vector and it is closed 
under vector addition and scalar multiplication. The dimension of a sub-
space, if finite, is given by the number of vectors in a basis for the 
subspace, which is a collection of linearly independent vectors that span 
the whole subspace. The only zero-dimensional subspace is {0} . A one-
dimensional subspace is spanned by one nonzero vector, fa* 0, a E F1, 
a two-dimensional subspace is spanned by two linearly independent vec-
tors, {avi+bv2 Ivi , 7.)2 linearly independent, a, b E F}, and so on. The vector 
space IF; consists of all n-tuples, or n-component vectors, 

a2,• • • ,an), 

where each ai is an element of the finite field Fq . Since IFq l = q, there are 
qn such n-tuples, or In! = qn. 

Proof of Theorem 7.1. Let V = Fqn . For j = 0, [3] = 1 and there is 
only one zero-dimensional subspace of V,  so this case is proved. 

[ni  
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For j > 1, to obtain a j-dimensional subspace, we choose j linearly 
independent vectors in V to form a basis. The first one,  y1, can be any one 
of the qn — 1 nonzero vectors. The second one, y2 , can be any vector not 
in the subspace spanned by y1 . Since a one-dimensional subspace of V has 
q elements, there are qn — q different choices for the second basis vector. 
Then, the number of choices for the third one, y3, is qn — q2 , because it can 
be any vector not in the two-dimensional subspace spanned by y1 and y2 , 
which has q 2  elements. In general, after the ith basis vector is picked, the 
number of vectors in the subspace spanned by the first i basis vectors is qi , 
and we are left with q' qi choices for the (i + 1)th one. Thus, we have 

(qn 	1) (qn 	q) (q' 	q2) 	(qt'  

different ways to choose j linearly independent vectors in  F.  
However, many of these j-tuples span the same subspace. We have to 

divide the expression in (7.2) by the number of different possible choices of 
basis of a particular j-dimensional subspace. But it is essentially the same 
number in (7.2), with n replaced by j. Therefore, the number of different 
j-dimensional subspaces is 

(qn _ 1)(qn _ q) (qn q2 ) 	(qn qi - 1) 

	

1) 	(0 	q) (qi 	q2) . . .  (qj 	qj-1) 

	

q2 ... qj-1 (qn 	i)(qn-1 	1) 	(qn-j+1 	1) 
- q q2 	qj-1 (qj 	1)(0-1 	1) , (q 1) 

according to (6.4). El 

Like the Pascal rule, many identities involving binomial coefficients have 
their q-analogues. Imagine that we have  in  n balls, and they are placed 
into two groups, one with 772 and one with n of them. Each way of choosing 
k balls from all m n of them corresponds in a one-to-one manner to a 
way of choosing j balls from the group with in balls and choosing k — j 
balls from the group of n balls, with j running from 0 to k. Hence, we have 
the following identity of binomial coefficients: 

rt) 	(my n 

k 
(7.3) 

Example. Obtain a q-analogue of the identity (7.3) using the combinato-
rial interpretation of q-binomial coefficients as stated in Theorem 7.1. 

Let V -,- Fin()  +n and let V„ c V be a fixed subspace with dim V, -,- m. We 
would like to obtain an identity by counting the number of k-dimensional 
subspaces in V in two ways. First, by Theorem 7.1, we know that this 
number is [ min . 

(7.2) 



T.  q-Binomial Coefficients and Linear Algebra over Finite Fields 	23 

On the other hand, let W be a k-dimensional subspace of V. As the 
intersection of two subspaces, W n 1/, is also a subspace, of dimension j, 
which is between 0 and k. We may then regard each W as being extended 
from a j-dimensional subspace of V„. Suppose such a subspace W' C V„, 
dim W' = j, has been chosen. We now append k j linearly independent 
vectors (vi, Y2, , vk_i) to W' to form W: vi can be chosen from the 
qrn+n  -qm vectors not in V„, y2 can be chosen from the qm+n-qm+1  vectors 
not in the subspace spanned by V, and v1 , etc. By the same argument as 
in the proof of Theorem 7.1, there are 

(qm+n, _ qm) ( grn-Fn qm+1) 	( grn-i-n qm+k—j-1) 

different ways to append k - j linearly independent vectors to W'. 
Again, we have to count the number of different ways of extending W' 

to a single W. Since dim W = k and dim W' = j, the number is 

( qk _ qi ) (qk _ 	(q k _ 	 (7.5) 

according to similar arguments. Therefore, the number of different W 
obtained by extending from a given W' is 

(qm-Fn _ qm)(qm±n _ qm+i)... (qm+n 

( qk _ (li)(e 	_ qi+1).,.(qk _ qk-i) 

qm qm-1-1 	qm+k—j —1 ( gn 1) (qn-1 1) 	(qn—k±i±1 1) 

qj 	 qk-1 . ( qk—j 	1)(q h— j —1 	1) 	( 17 	1) 

= k q ( - 	:7) [ n 
k - 1 • 

Because there are [7] different choices for W' and any two of them 

generate distinct W, we obtain the identity 

[ m + n  
q k 

3 =o 

which is a q-analogue of (7.3). 

k - ji ' [ m  ][ n   
(7.6) 

Example. Recall from (4.4) the q-Taylor expansion of f(x) = xn about 
= 1: 

X n  = E 
J.. 

[ ni  (x -1) 3q . 

As promised earlier, we will now prove this expansion again using com- 
binatorial arguments. Our strategy is to show that the identity holds if 

= gm, where m is any positive integer. Since both sides of the identity 
are polynomials, equality at infinitely many points ensures equality at all 
Points. (If f,  g are polynomials and  f(s) = g(x) for infinitely many values 

(7.4) 
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of x, the polynomial h(x) = f (x) g(x) has infinitely many zeros, which 
is possible only if h is identically zero.) 

Let n, m be positive integers and S be the set of all linear transformations 
from A = Fqn to B FT. Suppose  {e 1 ,.  • . , en ) is a basis of A. Since, given 
any T G S,T(e k ) can be any of the en vectors in B, for each 1 < k < 
and together they uniquely determine T, the number of elements 181 of S 
is thus (e )', which is the left-hand side of (4.4) when x =qtm. On the 
other hand, we can write 

1 8 1   = E(number  of elements in S of rank j). 
i=o 

We desire to show that the jth summand is [1 (en — 1)4. Note that 
3 

the rank of T cannot be larger than m, which agrees with the fact that 
(qm — 1)14  = 0 when j > m. Thus, we consider only j < m. 

Here we use some facts about linear transformations. That T has rank 
j means that W = T(A) c B is a j-dimensional subspace, and A can be 
decomposed as a direct sum of two subspaces, A = V eK, where dim V = j 
and dim K = n — j, such that T maps V onto W in a one-to-one fashion 
and K = Iv C A 1 T(v) = 01. In other words, any vector in A may be 
represented as a sum of two vectors in a unique way, so that one is in V 
and the other in  K.  (To see why such a decomposition is possible, choose 
ui, , ui in A such that their images form a basis for W. The linear 
independence of their images implies their own linear independence. Let V 
be the space spanned by N. For any v G A, T(v) C W. Since  T(u) is a 
basis of W, T(v) = E aiT(ui ) for some ai . Let y' = E aiui . Then, I,' C V 
and T(v — v') = 0; thus v — y' G  K.  That K is a subspace is easy to show. 
Since T (V) = W and both V and W contain qi vectors, T is one-to-one 
on V, and thus t/ is the only vector in V such that T(v) = T(v'), implying 
the uniqueness of the decomposition.) 

From another perspective, we may specify T by choosing the subspaces 
V c A and W C B and the way V is mapped into W. By Theorem 7.1, 
the number of choices for V and W is [n..] [1. Now, suppose V and W 

3 	3 
are given, and let fui , , ui l be a basis of V. Keeping in mind that T is 
one-to-one, we know that T(ui) can be any of the qi —1 nonzero vectors in 
W, T(u2) can be any of the qi — q vectors in W not in the span of T(ui), 
T(u3 ) can be any of the qi — (412  vectors in W not in the span of T(ui) and 
T(u2 ), and so on. Hence, there are (qi — 1)(qi — q) (qi — qi -1 ) ways to 
map V into W bijectively. Therefore, the number of elements in S of rank 



[ 	m (q - 1)4, qt) 

— q') 
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j is 

j-1 [ in [ ni 

]
0 

:7 	i= 

as desired. 

Theorem 7.1 also tells us that the total number of subspaces of the vector 
space F is given by 

(7.7) 

which is called the nth Galois number. If the q-binomial coefficients are 
replaced by ordinary ones, the sum is exactly 2. However, the q-calculus 
case is not as easy to calculate explicitly. Instead, the Galois numbers may 
be computed recursively, as was shown by Goldman and Rota. 

Proposition 7.1. The Galois numbers satisfy the following recursive 
relation: 

= 2 11Gyi 	(qn 	1)G1,  

with Go = 1 and G 1  = 2. 

Proof. Let P„ (x) = (x - 1 ). The trick we are going to use is to define 
a linear function L on the space of polynomials such that 

L{Pn (x)} = 1 	 (7.9) 

for any nonnegative integer n. Such a linear function exists because the 
polynomials (x - a)q" are linearly independent (for different n). If we apply 
L to both sides of (4.4), we have 

To exploit the linear property of L, note that Pn+ 1 (x 
xPn (x) q"Pn (x), hence 

L{xPn (x)} = L{Pn+I (r)} + q"L{P„(x)} = 1 + q". 

On the other hand, from Dq Pn (s) = kilPn_1(x), we have 

1 + q" = 2L{Pn (s)} + (q - 1)L{13 9 Pn (x)}. 

Equating (7.11) and (7.12), we obtain 

L{rPn(x)} = 2L{Pn(x)} + (q - 1)L{D Q Pn (x)}, 

Lfel } = En [ 

n 1 
L{Pi(s)} 

(7.12) 

(7.13) 



and 
2m+1 

E (-1)3 (7.15) 2m±1  
=0,  L 
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which is true for any n > O. Since any polynomial can be expressed as a lin-
ear combination of Pn (x), we can replace  P(x) in (7.13) by any polynomial. 
In particular, if we replace it by xn, we get 

L{xn+ 1 } = 2L{e} (q — 1).Lfinlxn -1 1 
= 2L{xn} + (qn — 1)Lle -1 1. 

According to (7.10), this proves (7.8). 

Furthermore, if we choose another linear function such that  L' {P} = 
t, 	may obtain the following recursive formula in a similar manner: 

L'Ixn+ 1 1 = (t 1).L' { e} t(qn — 1)L' {x'}. 

And if we define the sequence 

fn (t) = 	[ 
j=0 

of polynomials in t, we have fn (t) = {x}, and thus 

f +i (t) = + 1)f(t) + (qn — 1)tfn _1 (t), 	n 1. 

Note that Gn  = fn  (1) and putting t = 1 above recovers Proposition 7.1. 
When t = —1, the recursive relation is particularly simple: 

fni-i (-1) = (1 — qn)fn _ 1 (- 1), 	n > 1. 

Since fo (-1) = 1 and h.  (-1) = 0, we have 

2m 

E(-1Y 
j=0 

ern-1)( 1  q2m-3) 

I- 

 (1 — q), 	(7.14) 

for any m > 0. These two identities were first discovered by Gauss. The 
present proof is due to Goldman and Rota. 



8 
q-Taylor's Formula for Formal Power 
Series and Heine's Binomial Formula 

We now begin to apply what we have learned so fax, particularly g-Taylor's 
formula (4.1), to study identities involving infinite sums and products. In 
order to do this, we first have to remark that the generalized Taylor formula 
(2.2) about a = 0, and hence the g-Taylor formula (4.1) about c = 0, apply 
not only to polynomials, but also to formal power series. A formal power 
series, of the form 

00 
f (x) = E CkX k , 

k=0 

may be thought of as a polynomial of infinite degree. It is "formal" because 
often we do not worry about whether the series converges or not, and we 
can operate on (for example, differentiate) the series formally. We have to 
assume a and c to be zero in order to avoid divergence problems. Of course, 
1(0) = co  by definition. 

The g-derivative of the formal power series 1(x)  is, of course, D q  f (x) = 
EZL o [k]c k xk-1 . Hence we have 

[1c]!ck = (DI: f (x)) (0) . 

It follows, in particular, that if two formal power series converge in some 
neighborhood of 0 to the same function, then they are equal 

Theorem 8.1. Suppose D is a linear operator on the space of formal power 
series and  {Po (x), P1  (x), P2 (x), . . .1 is a sequence of polynomials such that 
the three  conditions in Theorem  2.1 are satisfied for a = 0. Then, any 
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formal power series f(x) can be expressed as a generalized Taylor's series 
(2..2) about x = O. 

Corollary 8.1. Any formal power series f(x) can be expressed as a q-
Taylor series (4.1) about x = O. 

Proof of Theorem 8.1. It is easy to see by induction on n that in the 
case a 0 the three conditions of Theorem 2.1 imply that  P(x) = ak xk, 
where the ak are nonzero numbers. Hence for any formal power series f (x), 
we have 

00 

f(x) = Ecipi (x) 

for some constants ci. Applying D k times and putting x = 0 yields ck  = 
(Dk f)(0), which completes the proof. D 

Example. Consider the function f (x) = 1/(1 — x)3. Using long division, 
we can see that f(x) is a formal power series. Let us expand f(x) using 

q-Taylor's formula about x = O. From (3.12), we have 

1 [n] 
 Dgf(x)= Dg 	= 

(1 — 	(1— x) 1 ' 

and, by induction, 

Dgi  f (x ) = 
[n][n ± 1] • • [n j — 1] 

(1 — x ):+2  

Hence, (Dgi f)(0) = [n][n + 1] • - • in + j  — 1] for any j > 1, and therefore, 

1 
	= 1+ Ê 

Inlln + 	[n  —  

5.1 
	

LiP 
	 (8.1) 

which is the q-analogue of Taylor's expansion of f(x) = 1/(1 — x)n in 

ordinary calculus. Formula (8.1) is called Heine 's binomial formula. 



9 
Two Euler's Identities and Two 
q-Exponential Functions 

Now we have two binomial formulas, namely Gauss's binomial formula (5.5) 
(with x and a replaced by 1 and x respectively) 

n 
(1 + x): = E gi2 [ n 

j=0 	
i 

and Heine's binomial formula (8.1) 

1 	_ Q -.'', [n][n  + 11 • -: [n +  j — 11 .. 
X3  

(1 — X ): 	.i-(#) 	 [311 

What if we let n oc in both formulas? In the ordinary calculus, i.e., q = 1, 
the answer is not very interesting. It is either infinitely large or infinitely 

small, depending on the value of x. However, it is different in quantum 
calculus, because, for example, when lqi <1,  the infinite product (1+x)° = 
(1 + s)(1 + qx)(1 + q2 x)- • • converges to some finite limit. Moreover, if we 
assume NI < 1, we have 

and 

	

1 — el 	1 
lim [n] = lim . 	 

n-400 	n-->oo 1 - q 	1- q 
(9.1) 

iim  { n ] = rim  (1 — ,n )(1  _ el-1 ) ... (1 - gri-j+1 )  
n--)1,o j 	n-+oo 	(1 — q)(1.  — q2) ... (1 _ qj) 	' 
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Thus 

     

 

lim
+(x) [ n-  

 

1 

 

(9.2) 

  

(1 q)(1 — g 2 ) 	(1 — 0) .  

   

So, the q-analogues of integers and binomial coefficients behave in a very 
different way when n is large as compared to their ordinary counterparts. 

If we apply (9.1) and (9.2) to Gauss's and Heine's binomial formulas, we 
obtain, as n oo, the following two identities of formal power series in x 
(assuming that lqi < 1): 

00 Egi(,i)/2 	  
(1- q)(1 — q2 ) 	(1 — i=o 

00 

E 
Xi  

(1 _ q)(1 — q2 ) - • - (1— q3) .  i=o 

(9.3) 

(9.4) 

The two identities above relate infinite products to infinite sums. They 
have no classical analogues because each term in the sums has no meaning 
when q 1. Interestingly, the two identities were discovered by Euler, who 
lived before Gauss and Heine. We shall call (9.3) and (9.4) Euler's first and 
second identities, respectively, or E1 and E2. 

Let us study E2 more closely. Consider 

oo 	 oo 
Xi 	 (1 .-q) i  

E E (1_ 0(1 — q2) - • • (1 — q3) 
= 

j=o 	 i=o 

c0 
v  ( ) i  

= L-,e UP ' 	

(9.5) 
J=0 

which resembles Taylor's expansion of the classical exponential function: 

c°  Xi ex = E  

Definition. A q-analogue of the classical exponential function ex is 
00 

ex = 
E  IT• 

Then, from (9.4) and (9.5), we immediately have 

1 (,xf 1-q) = 	 
q 

(9.6) 

(9.7) 

(9.8) 

or 

1 ex = 	  
— (I — q)x): 

(9.9) 
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Analogously, we can define another q-exponential function using El. 

Definition. Another q-analogue of the classical exponential function is 

(9.10) 
3 =0 

Let us study some properties of the two g-exponential functions. The 
classical exponential function is unchanged under differentiation. Its two 
q-analogues have similar behavior. Since 

00 
xi 

Li] 	i=i 	 E up' 3 .0 
Dge'q  = 	r !it  = 	

Li - l]! 
 

and, 

DqE q 

we have 

... 
= ctqx,-,) 

j= 	

,Liix3 1  _ Eq.)(i_i.),2Dugix,J 	. 

	

0 	 up ,.i. 
... 	 o. 

. Ego-i,u_2),2 qi_, xi-i 	 i 

	

,, 	
L ii ,  .. Eeu-iv2qjx  

j 1 
 

3=0 
 

Dqe = ex and Dq  Ex = Eqx q 	q  (9.11) 

Note that the derivative of E; is not exactly itself. The results in (9.11) 
may also be obtained by letting n oo in 

1 	 (1 	q)[71,1 

q)x): 	(1 — (1 q)x) (in-" 

and 

Dq (1 +  (1—  q)x): ------  (1— 0[711(1 + q(1 — g)x) r: 1 . 

of the exponentials holds if x and y satisfy the commutation relation 

	

How about eqser In general, 404 	eqx+Y. But the additive property 

mentioned in Chapter 5, i.e., yx = qxy. To see this, consider 

k 	op 	j k 

ex ey 
g 

j=0 	k=0 	j=0k=0 

v■cc  +  Id! x3  yk  

	

[j]! [k]! 	[j + kl!' 
i=o k=0 

If we change variables from j and k to j and n = j +k, then for a particular 
value of n, j runs from 0 to n. Using Theorem 5.1, we have 

n 

ex 	(E ri 	 E 	. (x +  
[ni! 	[ni! n=0 j=0 	 n=0 

00 
E; = E gicio -l

m! 	
(1+ (1_ ox) goo. 
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Hence, we have 

q q = e+Y 
	

if yx = qxy. 	 (9.12) 

Due to their commutation relation,  z and y are not symmetric, and el‘exq  
eel/ 

• 

Also, the two q-exponential functions are closely related. From (9.9) and 
(9.10), we see that 

eE = 1, q q 

and, using (9.3) and (9.4) as well, we obtain 

(9.13) 

00 

exl/q = 

and thus 

(1 — 1/q) 3  x3  
E (1 — 1/q)(1 — 1/q2 ) • • (1 — 1/0) 
i=0 

oo E 	(1_  q)i xi  

(1 — q)(1 	q2 ) • • • (1 — qi)' 

/q = Ex  1 

j=0 

(9.14) 
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q-Trigonometric Functions 

The q-analogues of the sine and cosine functions can be defined in anal-

ogy with their well-known Euler expressions in terms of the exponential 

function. 

Definition. The q-trigonometric functions are 

	

, 	six _ 	 Eix - E -ix q  
sing  x = 	

2i 
L'q 	Sinqx = q 

2i 	
(10.1) , 	 , 

m  
xeis _L  , 

`'-

i 	 Eix ± E- ix 

	

q 	q 	 q 	 (10.2) cos q x = 	
2 	

COS X = 
a 
' q 	2 	

. 

From (9.14) we have Sinq x = sini / q  x and Cosqx = cos i / q  x. Also, using 

(9.13), we get 

e x E is e-ix E -ix + 2 
q 	q  cosq  xCosqx = q q  
4 

sing  xSinqx 	eq4xEqix +  eq-isEq-ix _ 2 

4 

Hence, we have 

	

cosg  xCosgx + sing  xSingx = 1, 	 (10.3) 

which is the q-analogue of the identity sin 2  x + cos2 x = 1. The reader is 
invited to try to find q-analogues of other trigonometric formulas. 
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To find the derivatives of the g-trigonometric functions, we apply the 
chain rule (1.15), where u(x) = ix, and use (9.11). Then, we obtain 

	

Dg  sing  X = cosg  X, 
	 DgSingx = Cosgqx , 	(10.4) 

	

Dg  cosg  x = — sing  x 
	

Dgeosgx = —Sinqgx. 	(10.5) 
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Jacobi's Triple Product Identity 

We recall that the two Euler identities, (9.3) and (9.4), relate infinite 
products and infinite sums. In this chapter, we will use them to prove 
an important identity first discovered by Jacobi. Several interesting appli-
cations of this identity in number theory will be explored in subsequent 
chapters. 

Theorem 11.1. If  II  <1, we have 
CO 	 00 E qn2,n_ 11(1 en )(1  en_l z)(i  ± en-1 

which is called Jacobi 's triple product identity. 

Proof (G.E. Andrews). We start with El: 
Co 	 oc  

n=0  

(11.2) 

If we replace q by q2 , and then x by zq, we obtain 
co 	 co 

q 2  z ii T t i  ,2n-i z) _ T

k

T (1 	_ E 
 (

1_ 
) 

2 ,f (1 	q23).  
" 	nij0 	 3=0  

The product in the denominator of each summand can be removed by 
multiplying both sides by 

z-1 ), 	(11.1) 

H (1 _ en) 
n=1 
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giving 
0. 	 00 	 0. 

qi2 zi  H (i  _ q2n+2.1+2) . (11.3) IT 0.  _ en) (1 + 472n-12) = E  
n=i 	 i=-00 	n=0 

Note that the summation on the right now starts from  —oc  instead of zero. 
The sum is unchanged because (1 — = 0 for some n > 0 if j is 
negative. On the other hand, we use (11.2) again, replacing the index j by 
k, q by q2 , and then x by --q2j+2 , to obtain 

00 	 00 	 (_,)y2+2ki+k 

H (1 _ q2.+21+2) E  (1  

n=0 	 k=0 
q2)(1 	... (1 	q2k ) - 

Putting this into (11.3) yields 
00 	 00 CO (-1 )k cii+k) 2 +kzi 
H(1_ q2n)(1 + q2n-iz) = E E 	 
n=1 	 k=0 q2 )(1 — q4 ) • • (1 — q2k) 

00 00 	 qi2zi(_nz-1)k 

q2)(1 	0'1) Ek=0  (1 	 (11.4) 

where the last line is obtained by shifting the index j to j k. Now we use 
E2 with q replaced by q2  and then x by —qz-1  to get 

00 	 00 

0. 	

00 

00 
1 	 (_qz-i)k  Il (1+ 	on_iz_i) 	

(1  — 

	

= E 	q2 )(1 — q4 ) ... (1  _ q2k ) - 
n=1 ' k=0 

Therefore, from (11.4) and (11.5), we have 

H (1 _ q2n )(i+q2„_1 z)  = 
E 

(qi2zi 
  	

n=1 	 j= -00 	n=1 

which is equivalent to (11.1). El 

± 

(11.5) 



12 
Classical Partition Function and 
Euler's Product Formula 

With various substitution of q and z, Jacobi's triple product identity gives 
many interesting results. For example, if we put q q3/2  and then z = 
—q -1/2  into (11.1), we get 

	

CO 	 00 

E( -1r 	 en) (1 en-2) (1 en-1) 11  (1  _ gn )  

nEZ 	 n=1 	 n=1 
(12A) 

which is called  Euler  's product formula. We proved that it holds when 

II  < 1. It follows that it also holds as an equality of formal power series in 
q (see Chapter 8). The formula may also be written using Euler's product 

n= 

as 

ço(q) = E(-1)ngen, 	 (12.2) 
nEZ 

where 

3n2  n 
2 

(12.3) 

are called pentagonal numbers. The reader is encouraged to multiply out 
the first few factors of Euler's product to discover the astonishing fact that 
indeed the e„th coefficient is (-1) 71  and all other coefficients are zero. 
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Definition. The classical partition function p(n) is defined on the set of 
integers by letting p(n) be the number of ways to partition n into a sum of 
positive integers (not counting the order of summands) if  n>  0, p(n) = 0 
if n  <O,  and p(0) = 1. 

For example, p(1) = 1 because the only way to write 1 as a sum is 1 = 1, 
p(2) = 2 because 2 = 2 = 1 + 1, p(3) = 3 because 3 = 3 =  2+1  = 1 + 1 + 1, 
p(4)=5because4=4=3+1=2+2=2+1+1=1+1+1+1, and 
so on. This slow growth of p(n) for small values of n is deceptive, since in 
fact, one knows that 

p(n)
4  

r%) 	e l* 	aS n oo 

Thus the time needed to enumerate all partitions on n grows exponentially 
with n. 

The following proposition shows how (p(q) is related to the partitions of 
integers. 

Proposition 12.1. One has the following equality of formal power series 
in q: 

1 	cc  

P(q) =V
N  p(n)qn 

(  
(12.4) 

Proof. This well-known argument will often be used in the subsequent 
Chapters. Assuming that II  < 1 and using the geometric series expansion, 
we have 

W(q) 	(1 	q)(1 	q2) (1 	(13) 
= (1 + 	q2 + (73 ± ...)(1 + (1 2 	 ) 

X (1 ± q3 	q6 	qg 	- - ) • • • . 

Note that the exponents of q in the nth factor are all the nonnegative integer 
multiples of n. If we expand the product on the right-hand side into a power 
series, each term will be of the form qfll q2Th2 q3fl3 ...  = 	+2n2+3n3-1- .• - 

where rti are all nonnegative integers. A qn term is obtained if n = 
2n2  + 3n3 + • • • , for some n , and each qn term corresponds to a way to 
express n as a sum of positive integers, i.e., the sum of n1  l's, n2  2's, n3  3's 
and so on. Also, a different way to partition n will contribute one new qn 
term. Therefore, the coefficient of qn, or the number of qn terms, is exactly 
the number of ways to partition n into a sum of positive integers. 

With the above interpretation of cp(q), we can apply Euler's product 
identity to obtain a relation among the numbers p(n). This relation is 
stated in the following theorem. 
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Theorem 12.1. For any positive integer n we have 

p(n) = p(n - e l ) + p(n - e_i) - p(n - e2) - p(n - e_2) 

+ p(n - ea) + p(n - e_3) + • • , 	 (12.5) 

where e n  are the pentagonal numbers defined by (12.3). 

Proof. Using (12.2) and (12.4), we have 

(E(-1)3 qej)(Ep(k)e). 	 (12.6) 
jEz 	 kEZ 

When we expand the product, we obtain a (-1)ip(k)qn term if n = ei  k 
for some integers j and k. Hence, for n> 0, we will obtain 

0 = p(n eo) -p(n - el)  - p(n - e_i) + p(n e2)+p(n - e-2) 

- p(n e3) - p(n - e_ 3) +•• 	 (12.7) 

when equating the coefficients on both sides. Since e 0  = 0, the proof is 
complete. El 

Formula (12.5) is a very convenient recursive formula for a rapid calcu-
lation of p(n). For example, p(5) = p(4) + p(3) - p(0) = 5 + 3 - 1 = 7, 
p(6) = p(5) +p(4) -p(1) = 11, etc. The time needed to evaluate p(n) using 
formula (12.5) grows slower than n, which is, of course, much less than that 
required to enumerate all partitions of n. 

As hinted by its name, the pentagonal numbers en  have a geometrical 
meaning. This is described in the following picture: 

pentagons that are similar to each other can be drawn by joining the nth 
vertices on each ray. The numbers of vertices enclosed by the pentagons 
counting those on the edges) are the pentagonal numbers. For example, 
the first nontrivial pentagon encloses e2 = 5 vertices and the second one 
e3 .12 vertices. The general formula for en  under this interpretation can 
easilybe proved by induction to be (12.3). 

Now that we have pentagonal numbers, we can define m-gonai num-
bers for any m > 3 in a similar manner. The two most common types of 



nEZ 	n=1 

= 	- qn  
11  1 + qn  
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polygonal numbers are the triangular numbers, 

n(n +1) 

and, of course, the square numbers, 

on = n2 . 

In general, we may deduce geometrically the formula for the nth m-gonal 
number: 

n(mn - 2n - m + 4) 
mn  = (m 2)An-1 + n = 	  

2 

Identities for triangular and square numbers similar to Euler's product 
formula can also be derived from Jacobi's triple product identity. Both 
of the identities given below were discovered by Gauss (before Jacobi 
discovered his triple product identity). 

Proposition 12.2. 

00 	 00 1  E  en = 	 
1 - q21  n=0 	n=1 

(12.8) 

Proof. Substitute both q and z by q1/ 2  in (11.1). We obtain 

E en  = 1E1 qnx1 + qnxi + qn-1) 

nEZ 	n=1 
00 

2 11( 1 q2n) ( i + qn) 

Observe that A n, 	and the sum from n = 0 to oo is thus the same 
as from n = -1 back to -oo. Hence, we have 

00 	00 E  ein 	 q2n)(1 + qn) •  

n=0 	n=1 

Since 
00 	 oo 	 coo 

ll(i+ qn) H 	1 	_ qn = 
n=1 	 n=1 	 n=1 

the desired result is obtained. El 

1 
(12.10) 1 q2n-1 

Proposition 12.3. 

An = 2 

(12.9) 
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Proof. If we put z =-- -1 in (11.1), we have 

E  (-on2 	1-1(1 _ en) (1 en-1)(1 en-1) 

nEZ 	 n=1 

Ho__ 	) = 	
I qn 

1  I  1 + qn  

where we have used (12.10) in the last equality. 

Identities (12.8) and (12.11) will be useful later when we study the par-
tition of an integer as a sum of triangular numbers or of square numbers. 
Before going on, the combinatorial meaning of (12.10) deserves a remark. 
The product on the left in (12.10) is 

(1 + 0( 1 + q2 )(1+ q 3 ) • • . 

A qn term appears in the expansion if n = al a2 a3 + • • , where ai  
are distinct. Using the similar argument in the proof of Proposition 12.1, 
the coefficient of qn is the number of ways to write n as a sum of distinct 
positive integers. On the other hand, the product on the other side is 

+ 	q3 	)(1 q3 + 126 + (79 ± 	)(1 ± 175 + 	qi5 	) 

Each qn term corresponds to a way of expressing n as a sum of odd numbers. 
Therefore, (12.10) says that the number of ways to partition n into distinct 
positive numbers is the same as the number of ways to partition n into odd 
numbers. 

To conclude this chapter, we briefly interrupt our discussion of q-calculus 
by introducing an important function in number theory that shares with 
p(n) the same recursive relation (12.5). 

Theorem 12.2. For any nonzero integer n, define a function 

d(n
sum of positive divisors of n, n > 0, 

) 
0 	 n < O. 

Then, for n > 0 we have 

d(n) d(n e i ) + d(n - e_i) d(n - e2) d(n e-2) + • • • , (12.12) 

where we take d(0) = n if it enters the right-hand side. 

Proof. Define the generating function 

00 

D(q) = E d(n)q. 

n=1 	 n=--1 

11=1 



. —q E _d 
log(1 — qm) = —q cj- log 

dq 	 dq 

= 

CO _ qM) 

m=1 
—q4 riz.1( i _  qm)  

nz=, (1 - gm) I 
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Switching the order of summation, we have 

co 	 co 
D(q)  = E Erne = E E tim n 

n= 1  min 	m=1 min 

0. 

. 

m=1 min 

.0 

E E 
m=1 min 

mqm 

1 — qm. 

Or 

d „ 
13(q)(p(q) = —q 	 (q). 

Using (12.2), we have 

(00 

Ed(j)qi) (E(-1) k qek) . E(-1)+1  erne" t . 
3 =1 	kEZ 	 mEZ 

Comparing the coefficients of qn on both sides, we have 

E(--i)kd(n _ ek) . {(0-1)m+l em 

 kEz 

if n = em  for some rn E Z, 

otherwise, 

which is the same as (12.12), since j = n — ek > 1 and d(n) is defined to 
be zero for any negative n. CI 



13 
q-Hypergeometric Functions and 
Heine's Formula 

For further study of infinite sums and infinite products we would like to 
introduce the hypergeometric series. A classical hypergeometric series is 
defined as follows. 

Definition. F(x) is a hypergeometric series if 

co 
F(x) = Ecnxn, 

n=0 

where 

(13.1) 

en 

and R is a rational function whose denominator does not vanish at 
nonnegative integers. 

If R(t) is given, the coefficients c are immediately determined: 

= R(0)R(1) • • • R(n — 1). 

For example, if R(t) 	1, then cn, = 1 for all rt, and F(x) is a geometric 
series. Rescaling t if necessary, we may factorize R(t) into the following 
form, up to a constant factor: 

(t+ al*  a2 ) • (t ar)  
R(t) =  	 (13.3) 

(t + bi)(t + b2) • • • (t + b.)(t + 1)' 

where ai 	bj , and bi  are not nonpositive integers, for all 1 < i < r, 
1 	< 8. 

en+i R(n), 	co  = (13.2) 



44 	13. q-Hypergeometric Functions and Heine's Formula 

A notation introduced by Gauss summarizes the essential information of 
a general hypergeometric series If F(x) is as defined by (13.1) and (13.2), 
and R(t) has the form (13.3), one writes 

F(x) = 	al,  
. 

which, when expressed explicitly, is 

(13.4) 

00 {al  (al + 1)• • • (al + n  -  1)} • • • far  (ar  ± 1) • ••(ar  n - 1)1 xn 
1+ E 

n=1 fb„(b„ + 1) . (b, + n - 1)} • • {b s (bs  -I- 1) • • (b., 4- n - 1)} n! 

(13.5) 

For example, 
00 

xn 
oF0 [x] = I + 	—

n. 
es 

and 
0. iF0  [ a ;x] =  1  + E  a(a + 1) • (a  + n 1) xn 	1 

n! 	 (1 - X) a  n=1 

Thus, the hypergeometric series is a general type of series, for which many 
series, like geometric, binomial, and exponential series, are special cases. 

The q-analogue of hypergeometric series was first introduced by Heine. 

Definition. 1.(x) is a q-hypergeometric series if 

(13(x) E enxn, 	 (13.6) 
n=0 

where 
Cn+1  

	

= R(qn), co  = 1, 	 (13.7) en 
and R(t) is a rational function whose denominator does not vanish at t = 

q ,  q2 ,  

Similarly, we have, for n > 1, 

	

cn  = R(1)R(q) - - R (q n-1 ) 	 (13.8) 

By convention, the rational function R is considered in a slightly different 
form: 

(ai - t - ') • • • (ar  - t-1 ) 
R(t) =  	 (13.9) 

(b, - t -1 )- • • (b. - t -1 ) (q - t -1 ) 

Here,  a L  bi and each bi  is not one of 1, q -1 , q-2 , ... Then, since 

n-1 	 n-1 

II (a - q-j) = H 	qi a) = (-1)72 q-n (n-1)12 (1 - a)qn , (13.10) 
i=o 	 i=o 

n=1 



00 
r o 

14:101. 	q; 	E
(1 
	zn 

n.0 	Or: 

1 
	 = ex/(1—q) (13.14) 
(1 — 

1 
'she; q;  xi  = (1 — x)N .  

(13.16) 

13. q-Hypergeometric Functions and Heine's Formula 	45 

we have 

{(_i)mqn(rt-1)/218—r+1 (1 - ); • • • ( 1  ar)C, 	1  

	

J 	(1 — 1 1 ); • • • ( 1— 	(1 — q)1:• 
(13.11) 

The q-hypergeometric series also has a notation similar to (13.4): 

	

(I)(x ) = 	[ 	
,b8 
 ; q; 	 (13.12) 

For example, from (9.3), (9.4), (9.8), and (9.10) we have 

	

co f 	, 	n T. 1.-  j`l 

AO [ 	
; ti; xl = 	1.) 71 11 2 	 xr1 = i. 	 • co 	.-,x1(q-1) 0. — x) ---= r, 	(13.13) 

- 	J 	=o  (1 - 07: 	 q 	q 

and 

Let us now examine the next-simplest q-hypergeometric series, Le., 

	

i ch[a; q; =  1+ 	(1  — 	x n . 	 (13.15) 
ni-d=1 (1 63.  

Here we write 1 	
a

.1)0 [ 	; q; x] as 41 0 [a; q; x] for simplicity. If a  = qN , where 

N is a positive integer, we have 
OC  ( 	(IN) 	(1 ci N 

	

1 4:10te q; 	1+ E 	 Zn 
n=1 (1 -  q). • (1 — qn-1 ) 

OC  
[NJ  • • [N +  n  —11 sn  

[n]! n=1 

According to Heine's binomial formula (8.1), we have 

This result inspires us with the following theorem. 

Theorem 13.1. For any a, one has the following formula of Heine 's: 

(1— ax)c° 

(1 — x)3° 

Proof. Firstly, (13.17) is true if a = qN  , because 

(1 — qN  x) q3 	(1 — qN x)(1  — 	1 
(1 — x):2 — 	(1 — x)(1 — qx) • • • 	(1— x)i:' 

which is equal to 14:100[a.,-T, z] by (13.16). 

(13.17) 



46 	13. q-Hypergeometric Functions and Heine's Formula 

To complete the proof, we apply a very useful argument. Now, both sides 
in (13.17) can be expressed as infinite series with coefficients being rational 
functions of a, i.e., 

00 (1_ — a),34' 
'Do fa; q; xj = E ca x (a)n ,  

(1 — x3. 
n=0 	

4
n--=0 

We know from above that for each n, en  =  ein  at infinitely many different 
values of a, namely, a = qN , where N is a positive integer. In other words, 

e'n  is a rational function of a with infinitely many zeros. Such a rational 
function must be identically zero, because the number of zeros of a ratio-
nal function cannot exceed the degree of the polynomial in its numerator. 
Therefore, en  = en  for each n, and the proof is complete. 



14 
More on Heine's Formula and the 
General Binomial 

Inspired by (13.16) and (13.17), it is natural to generalize the notion of a 
q-binomial in the following way. 

Definition. For any number ce, define 

a 	(1 +  x)T 
(1 +x)q  = (1 qaxn. . 	 (14.1) 

Obviously, this definition coincides with the original one given by (3.4) 
when oc is a positive integer, and also with the one given by (3.7) when 
a is a negative integer. The fact that it is an appropriate generalization 
is justified by the following two propositions, which are generalizations of 
Proposition 3.2 and equation (3.11). 

Proposition 14.1. For any two numbers a and 13, we have 

(1 + x) q  (1 + q' 	(1 + x)r  . 
	 (14.2) 

Proof. The proposition follows directly from the definition, since 

(1 + x ) ° (1 + q"x) q° 	(1+ x)T  
(1 + frx);" (1 + qa+Ox)3° — (1 + qa-F0x)r .  

Proposition 14.2. For any number a, we have 

Dq (1-1- x); .[«1(1+ qx)rl . 	 (14.3) 



(  (1 + x) °  \ 
(1 + qax)°q° ) 

Dg  

= E 
°° ei-1)/ 2 [a][a - 1] • - - [a -  j  +  11xi  

DP 

a 1 qjC1-0/2xj ,  
i 

(14.4) 

Dg (

1  
(1 

(1 - ex) i° 

g 	(1 - x)cd° 

( (1  - qa+1x) q°° 

) 

-= 
(1 - qx);) 

= 
(1 - x)&'° 	(q - 1)x 

1 	qa —1 
. 	  

(1_x),21 +1 q - 1 ' 

(1 - qa+1  x) q° (1 - x) - (1 - qa x 

48 	14. More on Heine's Formula and the General Binomial 

Proof. By definition, we have 

= t (1 + qx)° 	(1 + x)q° ) 	1  
(1 + V+1. x)T (1 + qa x)° (q - 1)x 

= (1 + qx)° (1 + e x) - (1 + x) _. 	 
(1 + qa x),7) 	(q - 1)x 

= (1  ± qx) (1-1 	 

With the definition of [a] given by (3.8), the proof is complete. 0 

Proposition 14.2 allows us to compute the Taylor series of (1 +x). Using 
the chain rule (1.15), we obtain 

Dgi (1 + x)q  = Dgi -1  [a](1 + qx)crl  

= Dgi -2 [a] - q[a - 1](1 + q2  xr:-2 

= De -3 [a] • q[a - 1] • q2  [a - 2](1 + q3x)r3  

, 
: 

= [a] • q[a - I] • q2 [a - 2] - - - q3-1 [a - j + 1](1 + q-lx)r-7 , 

and thus Dgi ( 1  +  ')q  I s= o = qi  (j -1) / 2[ ][a - 1] • • [a  - j + 1]. Therefore, 
we have 

which generalizes Gauss's binomial formula (5.5). 

Proposition 14.3. For any number a, we have 

Dg  ( 	1 	
[a]  

(1 - x)r
1 

 

Proof. By the definition of q-derivative, we have 

(14.5) 
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as desired. LI  

Using this proposition and induction, one can easily see that 

D
g
i 

((1 - x)cq' x=o
=  ][a + 1] • - [a + j - 1]. 	(14.6) 

1 

Hence, we have the Taylor expansion 

1 	 ç [a][a + 1] • • • [a +j - l]x 

t°  (1 - e) (1. - qa+ 1 )• • • (1 - e+-1-1 )xi 
(1 - q)(1 - q 2 ) • • (1 - qi) 

By (13.15) and the recognition of qa as a, we recover Heine's formula 
(13.17). 

j=0 

(1 - 	X 3  

.7 d=0 (1  — q)& 



15 
Ramanujan Product Formula 

In this chapter, we apply Heine's formula to prove a remarkable iden-
tity discovered by the Indian mathematician Ramanujan. This identity 
relates a bilateral q-hypergeometric series to an infinite product, and it has 
many interesting applications in number theory, which will be discussed in 
subsequent chapters. 

In order to prove Ramanujan's formula we shall need some elementary 
facts from the theory of complex analytic functions. A formal power series 
in z that converges in the open disk D, : izi < el on the complex 
plane for some e > 0 is called an analytic function (in D6 ). Of course, all 
polynomials in z with arbitrary complex coefficients are analytic functions 
(in Dc,c ). A less obvious example of an analytic function in D c„, is (1+ z),7" . 
This follows from (9.3) by applying the ratio test. It is easy to show that 
any linear combination and product of analytic functions is an analytic 
function; also, if /(z)  is analytic, then 1/f (z) is analytic, provided that 

(z) has no zero in D,. 
A series 	in (z) of analytic functions in D, converges to an an- 

alytic function in D, if for each n, 	(z)i < Ma  on D, for some Ma 
such that Er, ma  converges. In fact, the coefficients in the series expansion 
f(z)=..0  alunzm may be expressed as 

amn  = 1 	fa(z) 
 dz, 	n > 1, m 0, 

27rt 	.7.4+1 

where the integral is evaluated along a circle centered at the origin with 
radius r, 0 < r < e. (Those who have not encountered this formula may 
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easily prove it by expressing f (z) in its series form and making the substi-
tution z = reie , 0 < 0 < 271- .) One may easily deduce from the formula that 
lanm l < Mnr', or, since r can be arbitrarily close to E l  lanml <  M€-_m.  
For each m we define am  = En  anm , which is a convergent series because 

lam I < En I anm I < Me-ni where M = En  Mn. Then, the formal power 
series f (z) = EL0  am zm actually defines an analytic function in D,, since 

cx)1z1 m 
if(z)1 E 	lzrn m E ( ) — 

and the latter series converges for any 1z1 < c. The same estimate lam ' < 
Mc-m shows that f (z) = EZ_ IL  fr,(z) converges to f (z) in  D.  

Analytic functions have a property similar to that of polynomials: If 
an analytic function f(z) has an infinite number of roots in D,, say 
{z1, z2, ...}, such that  lim,0  z  = 0, then f (z) is identically zero. Indeed, 
in the contrary case we can write f(z) =Ei>aci zi , where en  0 O. Since 
f(z) =Ei>n cz= 0, dividing by zin, we obtain for any i > 1, 

C71 + en-1-1 Zi en-F2Zi 2 	" • = 0. 

Taking i 	oc, we obtain cn  = 0, a contradiction. (The requirement of 
zi = 0 is crucial, since there exist nonzero analytic functions pos-

sessing infinitely many roots, e.g., all roots of ez - 1 are 27rin, where n is 
any integer.) 

Let us now state Ramanujan's formula. 

Theorem 15.1. (Ramanujan product formula) In the domain 

1 

m=0 	 m= 0 

igi  <1, 	lai> 10, 	IN <1, 	and < 	< 1, 	(15.1) 

we have the following equality of functions in a, b,  q, x: 

to  (1 — 
	

xrt  

(1 — 

rir°°  (1 — 	) (1 — q n+ 1 )(1 — 	)(1 — aXq n ) a 	. (15.2) 
n.0 ( 1  bqn)( 1  —  

Proof (M.E.H. Ismail). The strategy is first to show that both sides 
of (15.2) are analytic functions in b (when a, q and x are fixed) in the 
nonempty domain specified by (15.1) (i.e.,  bi < min{1, laxI}), and then to 
prove the equality when b = qm  , qm  +1  , qm+2  , M being a sufficiently 
large integer. Hence, the difference of the two sides of (15.2) is an analytic 
function in b possessing an infinite sequence of roots that converges to zero, 
and must therefore vanish identically. 

Denote by fn(b) the nth term in the series in (15.2). To see that the series 
converges to an analytic function in b, it suffices as noted above, to show 

1411(a, b; q; x) : = 



(1— qm)m 	(1  - q); 

-, x i-m  ( 1  - a)lirm   1, 0 Eql. --m a; q; x], 
(1 - q ) 14— m  

= X
i-m  (1- a) -44- °° (1 - ql -man 

X
n 
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that  f(b) is analytic for any n E Z and that as n -÷ ±oo, 1 fn (b)i < MIcr 
for some 0 < c± <1 and positive constants M±. If n>  0, then (1 - b) is 
a polynomial in b that does not vanish in the domain, because ibl, fql  <1,  
thus showing the analyticity of fa(b). Since as n -> oo, 

f 1 (b)  
fn (b) 

= (1 - qna)x  
1 - qnb 

—,Hxf < 1 , 

   

    

we have I f„+1  (b)I < c+1 fa(b)1 for any c+  E (14 1) when n is large enough, 
which implies that Ifn (01 < M_,..c741 for some M±  and all n large enandli. 

Similarly, for n < 0 we have by (3.7) that 1/(1 - b) .(1 - qnb) igni  is a 
polynomial, and thus analytic. We have 

   

1 - q'lb 
(1 - q-n- la)x 

   

f-n-i(b) 
f_ii  (b) 

 

= b 
--+ _ 

ax 
< 1  

       

as n -- -oo, and the argument above may be applied again. 
For the product side, we note that the factors in the denominator never 

vanish in the specified domain and each factor is either independent of b or 
is of the form (1 + cb); ', where c is independent of b. As remarked before, 
f(z) . (1 + z); is analytic in Doo . Since products of analytic functions 
and reciprocals of nonvanishing analytic functions are also analytic, the 
fraction above is analytic in the specified domain. 

We may now perform the substitution b =-- qm, where M is so large that 
b lies within the specified domain. Noting that 

1 	 1 
(1— qm)qt = ( 1 _ qm) .;„, = (1 — qm —n) qte 

if n . -re < -M, we see the left-hand side (LHS) of (15.2) become 

x-■  (1 — a); sn  

L-1  (1 — qM )n 
 nEZ 	q 

xn 
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where we have applied (14.2) with a = 1 - M and (3 = n. By Heine's 
formula (13.17), we have 

(1 - ql -ma il-4 	(1 - x)&0 

where (3.7) is used in the last equality. To complete the proof, we begin 
comparing the two sides of (15.2). Putting b = qm  in the product side, we 
have 

(1 - qM a-1 );0 (1 - OT(1 - qa-lx-1 ) q"(1 - ax)c) 

(1 - qm)T(1 - qa --1 )T(1 - qma-lx-1 )T(1 - x)( 3  

(1 - q) qm-i  (1- qa-l x- )' -1 (1 -  ax) ° 

(1 - qa-1 ) /V 	(1 - x) cr 

Comparing (15.3) and (15.4), we see that what is left to show is 

1 _ m. (1 - ql-m ax)T 	(1 - qa- lx-1 ) qm-1 (1 - 
, 

or, equivalently, 

(1 - qa-l ) gm -1 

 (1 - ql-ma)m-1  q 

(1- qa-l x-1 ) 1-1 (1- ax) qc° 
sm

_ i  
= 	  (1 - e-max)° 

(1- qa-lx ) -1 M -1  
= 	 ' xm-1  

(1- ql -max) qm-1  

Observe that the left side is independent of x, and the two sides agree when 

X = 1. Therefore, we hope that the right-hand side is also independent of 

x. Expanding the right-hand side, we have 

(1 - qa- lx - 1)(1 _ tea-1 x-1.) ... (1 _ ef-l a-lx-1)xM-1 

(1 - q l-M  aX)(1 - q 2-fri  ax) • • • (1- q-lax) 

= 	 
1 _ qa-ix -i 1 _ q2 a-lx -1 	1 _ qM-la-1 

	  m 
1- q-lax 1- q-2ax 	1 - ql-max 

x 
x-1 ___ 

' 

if, ( 7 \ I/  q2 \ 	( 4,14-1),1 xm_i  

ax ) 	ax ) 	ax ) 
= 	

) 

which is independent of x, as desired. 0 

The Ramanujan product identity involves four variables, q, a, b, and 
x. One of the important special cases is a = y, b = qy. The domain of 
convergence becomes 

1471 < 1x1  <1  and 141 < iYi < lqi-1, 	 (15.5) 

(1 - a) i-m (1- q l-m ax)c° 
LHS = xi-Ai 	q 	 q  

(1- qm)V m  (1- xn° 
(1 - q) qm -1- 	(1- ql -max)c° q = xl- m.  , 

	 (15.3) 

RHS = 

= • 	 (15.4) 

x 
(1 - ql -ma) 4-1 	(1 - qa-1-) 1-1  



11= 0  (1 - yqn+ 1 )(1 - x-lqn+1 )(1 - y-lqn-1-1)(1 xqn)• 

Dividing both sides by 1 - y, we have 

(1 — qn+ 1  ) 2  - X-1 y- 	)(1 xygn) oo 

fi  _ 	_ z-2,e)(1_ z2 qn-i) 
(1 _ zga_ 92 (i  _ z_i gn ) 2 

n=1 

(15.7) 
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which is nonempty. The left-hand side of (15.2) becomes 

	

LHS = E  (1 Y)7n  E 	 x =  

x , 
nEz (1  gY)7(j' 	nEz 1  - qnY  

because (1 - y) 7:(1 - qny) (1 - y) 7:+ 1  = (1 - y)(1 - qy) qn for any integer 

n. If we restrict the domain of y to < IYI < 1, we have iqnyi < 1 if n > 0 

and igny-1- I < 1 if n > 1, and we can use a geometric series expansion to 

obtain 

(l —  s n 	° ( 1  y)Xn  

-I-4  1 gay 	Z-4 1 — qn y 
n-=0 	 n=-1 

• C‘2--.,C?  (1 - y)Xn 	(1 Y)X-neY-1  
Z-,/ 1 - -n- 	L01 -  n -= 0 	" n=1 

oo oo 	 oo oo 

(1 - E E xn(qny)m — E E X-n (qnY-1 )m) 
n=0 m=0 	 n=1 m=1 

On the other hand, the product side becomes 

LUS  

00 	 00 

E qmnxnym E mn -n -m q x y 
m,n=0 	 m,n=1 

oo 	
-  q1)2(1  - X-i y-1  qn)(1 - ,r,unn- 1 

II (1 _ 	xe9(1 _ 	 i qn) -  ( 15-6) 
n=-1 

Hence, in the  domain II < izi < 1 we have 

E  qmnzm±. _ E  ran -m-n q Z 

in,n=1 

if we put x =  y z. We can go further to pull the terms with m 0 or 

n = 0 out from the first summation. Since the sum of these terms is 

00 	00 1 + z E + 	_ = 
1— z  

n=0 	m=0 
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if we multiply both sides of (15.7) by 1—z-- (1-212  we have in the saine 1+z 	1--z 7  
domain 

00 

1+ 1+ z 	
q Z mn / in-i-n 

— Z -111-74 ) 

= 
11°° ( 1  _ q)2(1  _ z-2.771)(1 — z 2 qn) 

(1 — zqa) 2 (1 — z-1gn)2 	. 

m,n=1 

n=1 
(15.8) 

The results above are important in our discussion of number-theoretic 
applications in the next two chapters. 



16 
Explicit Formulas for Sums of Two 
and of Four Squares 

One of the oldest problems in number theory concerns the partition of an 
integer into a sum of squares. A famous result, first proved by Lagrange, is 
that any positive integer is a sum of four squares. In this chapter, we will 
not only prove this theorem, but also will find explicit formulas of Gauss 
and of Jacobi for the number of partitions of an integer into a sum of two 
and of four squares. 

First, let us denote the number of ways to express N as a sum of m 
integer squares, counting the order, by 0„,(N). For example, 02(5) = 8, 
because a total of eight ordered pairs, (±1,±2), (±2,±1), have their sum 
of squares eqUal to 5. If we define the formal power series 

then we have 

0(q) 	v-0, 17712 , 

n2A 
(16.1) 

07,-,(N) = coefficient of qN  in OM . 	 (16.2) 

To understand this, imagine that we expand the power series in (16.1): 

In the resulting series, each qN  term corresponds in a one-to-one manner 
to an m-tuple (al, ...  ,am ), with N = a?  +.-.  + ani2  . Thus, the number of 
qN  appearing is the number of ways to express N as a sum of squares of 
m integers. For m = 4, we have the following theorem. 
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Theorem 16.1. For any positive integer N we have 

04(N) =8  x (sum of positive divisors of N that are not multiples of 4) . 
(16.3) 

An immediate corollary of the theorem is that any positive integer is 
a sum of four squares, since 1 is a divisor of any integer and 1 is not a 
multiple of 4. For example, 6  = 22 + 1 2 + 1 2 + 02 , 97  = 82 + 52 + 22 + 22 .  

Proof of Theorem 16.1. Consider (15.8) and let z -- —1 on both sides. 
From (12.11), we have 

lim RHS 
( co ii  

n=1 
1 ± Qn  p(-04 . 

Writing the left-ha  rid  side as 

00 	 in-Fn 	--m-n 
Z 	- Z 

1 + (1 - z) E qmn( 	  
1+z 

m,n=1 

and applying L'Hospital's rule, we have 

co 
lim LHS ----- 1 + 4 E (+1)m-4-n-i(n+ n)en . 

--1 
m,n=1 

By symmetry, 

00 	 00 

E (_i)m+n_imen =  E (___4)m+n-l nenn , 

 m,n=1 	 m,n=1 

so we may rewrite the left-hand side as 

co 
LHS = 1 + 8 E (+1)---im(+e)n 

min-z--1 

1 + 8 Ê (-1)mmqm  = 1 + 8 
1 + qm 

m=1 

00 

m=1 

m(—q)m 

1 + qm . 

Combining the results for the two sides and replacing q by —q, we have 

0(q)4  = 1 + 8 
00 	

mqm 	
(16.4) 

171= 

Since 
00 
E rnqm 	- E mqm  E mqm 

 1+ (--om - 	1+ qm 4- 	i+ qm m=1 	 m>, 	m>, 
mc7(id 	m  even  



and 

2kq2k 
q2k E 2k(q2k _ q4k q6k q8k 

k=1 

E 	q2k E 	ek 9  
k=1 	 k=1 

_E4k(q4k q8k 	) 

k=1 
00

2kek 	4kek 

ci; 	q7)2(1 qn)2 	100 

1.1 (1 + 	 ifer — 	1 + RHS 
	) 2 

	

q2)2 .  

n=1 
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E 2k(q2k + 9.4k + q6k q8k 
± • • ) 

k=1 
00 

we have 

E rnqm 	711qm  E Ee.. 
1+ (- q)m E 1- qm m.1 	 m>i 	

rn

m>1 n=1 
41;1 	 4Fn 

Hence, 

00 

0(q) 4  = 1 + 8 E E qm  mn . 	 (16.5) 
m>1 n=1 
4F71  

Therefore, for any N > 1, the coefficient of qN  in 0(q)4  is given by 
8 E rn, where mn = N for some positive integer n and 4 does not divide 
m. In other words, 04(N) equals 8 times the sum of divisors of N not 
divisible by 4. El 

The result that any integer is a sum of four squares is the best possible, 
because not every integer is a sum of three squares, for example, 7. However, 
we can still say something about the number of ways an integer can be 
expressed as a sum of two squares, i.e., 02(N). 

Theorem 16.2. For any positive integer we have 

02(N) = 4 x (number of positive divisors of N congruent to 1 modulo 4) 
—4 x (number of positive divisors of N congruent to 3 modulo 4). 

(16.6) 

Proof. This time, we let z tend to i = 	in (15.8). For the right-hand 
side, we have 
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The left-hand side becomes 

LHS = 1 — i 

Since (—i) m+n  = im+n  if m + n is even, and (—i)m+n  = —im+n  if m + n is 
odd, i.e., m and n have different parities, we have 

- LHS =  1— 2i E E enim+n - 2i E Eqmn Im-f-n  . 
m>1 n>1 	 m>1 n>1 

in odd n  even 	 m iTlen n  odd  

The two sums are identical, since each of them is symmetric in m and n. 
Replacing q2  by —q on both sides, we obtain 

0(0 2  = 1 - 4 E E ( —q
)mn/2im-l-n-1-1 

rn>1 n>1 
m  odd  n  even  

= 1 — 4 E >( 
m>1 n>1 

m odd n  even  

Letting n = 2k, we get the following result: 

)(m-1-1)/2 qmn/2 .  

00 
1:3(q) 2  --= 1 + 4 E E(_1)(m-1)/2 qmk. 	(16.7) 

m>1 k=1 
in odd  

Let us examine the right-ha/ad side of (16.7). For any N > 1, a 4qN term 
arises for each odd m that divides N and is congruent to 1 modulo 4, so 

that (7n; 1)  is even. Similarly, a (-4qN) term arises for each odd m that 

divides N and is congruent to 3 modulo 4, so that (m; 1)  is odd. Hence, 
the coefficient of qN is given by the right-hand side of (16.6), as desired. 0 

Corollary 16.1 (Fermat Theorem). An odd prime p can be represented 
as a sum of two squares if and only if p -7.-  1 mod 4, and the representation 
is essentially unique. 

Proof. A prime p has two divisors, 1 and p. If p a_-- 1 mod 4, they are 
both congruent to 1 modulo 4. By Theorem 16.2, 02 (p) = 8. Suppose p = 
a2 -i-b2 . Each of the eight ordered pairs (±a, ±b), (±b, ±a) has p as the sum 
of squares. Also, these eight pairs are distinct, because p being odd implies 
1(111 Ibl. Hence, they are all the possible cases, and the representation is 
unique up to the sign and the order. If p -a —1 mod 4, Theorem 16.2 tells 
118 that 02(p) = O. 0 

.. 
Eqmn (imi-n 

in,n=1 



17 
Explicit Formulas for Sums of Two 
and of Four Triangular Numbers 

Besides partitions into square numbers, the Ramanujan product formula 
can also be applied to the study of partitions into sums of two or four tri-
angular numbers. Let us recall the definition of the nth triangular number, 
introduced in Chapter 12: 

An = 
n(n

2
-i- 1) 

Since 	= An , the bilateral sequence {_An}neZ,  is symmetric, and 
we shall restrict our definition of "triangular numbers" to n > 0 only. As in 
the case of square numbers, we define the following, similar, power series: 

00 

A(q) E gAn 

n=0 

(Unlike (16.1), the summation is taken over nonnegative integers only.) 
Then, the number of ways to express N as a sum of m triangular numbers, 
counting the order of summands, is equal to the coefficient of qN in the 
power series A(q)m, and is denoted by A(N). The reason is similar to 
that for sums of square numbers. 

Theorem 17.1. For any positive integer N we have 

A2 (N) -= number of positive divisors of 4N +1 congruent to 1 modulo 4 

—number of positive divisors of 4N +1 congruent to 3 modulo 4. 

(17.1) 
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Proof. If we replace q by -q and z by -.‘,/(4  in (15.7), where 

0 < q < 1, we have, by (12.8), 

RHS 	
rra°  (1- (-1 ) qn) 2 (1- (-1)ne -1 )(1+(-1)ne) 

n=1 	(1- (-1)nqn -- 1) 2 (1+(-1)ne- 1) 2  

2 11 (1  - (-1)ne) 2 (1  +  (-1)nql 2  

n_ 1  (1 - (-1)nqn- i) 2 (1 (-1)nqn- 1) 2  

cc  (1 - q2n) 2  
2  II (1 _ en-l)2 = 16402,  

n=1 

and 

LHS E  Hirn+m+nqmn+m- - -LP E  (_i)mn-m-ne r„n 2  

m,n=0 	 m,n=1 

00 E 	 E (_ 1) mn-m qmn 
3 

m,n=1 	 m,n=1 

where we have replaced m by m - 1 and n by n - 1 in the first summation. 
When m+n is odd, the corresponding terms in the two summations cancel. 
Hence, we have 

LHS = 2 E (_i)mn-ienn 

m,n>1 
m+n even 

2qmn_ 
E 	r4±2-12 

— 2  E  mn 2 

m,n>1 
m,n odd 	 mm,rinar>ein 

and therefore, 

A(q) 2 _ Eqmfl 
"In 

rn,n>1 
m,n odd 

q
mn rra±n2 

m,n>1 
m„n 6T.ren 

(17.2) 

A +qN  term appears on the right if and only if N = mn 	, or 
4N + 1 = (2m - 1)(2n - 1), for some m > 0 and  n>  0 either both odd 
or both even. If they are both odd, 2m - 1 a-  1 mod 4, and, if they are 
both even, 2m-1  3 mod 4. Hence, each factor of 4N+ 1 congruent to 1 
modulo 4 contributes +1, and each factor of 4N +1 congruent to 3 modulo 
4 contributes -1, to the coefficient of qN  . This completes the proof. D 

In particular, when 4N + 1 is a prime number, we have the following 
corollary. 

Corollary 17.1. If N is a positive integer such that 4N+1 is a prime num-
ber, then N can be represented uniquely as a sum of two distinct triangular 
numbers, up to reordering the summands. 
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Proof. It is clear that if 4N + 1 is prime, all the divisors of 4N + 1 are 
1 and 4N 1, both congruent to 1 modulo 4, and Theorem 17.1 implies 

A2(N) = 2-0 = 2. Note that by virtue of its definition as the coe fficients of 
A (Om , Am  counts any reordering of distinct summands. Hence, JA2(N) = 2 
implies that all the possible ways to represent N as a sum of two triangular 
numbers are either 

N = 	= + 464, k 1, 

or, 

N = Ak Ak = ± Ai, k 0 I. 

The second case is obviously invalid since the sequence {AnIn>0 is strictly 
increasing. The proof is thus complete. An alternative way to reject the 
second case is to note that N = 2Ak implies 4N + 1 = (2k + 1) 2 , which is 
not prime. 0 

Examples of the corollary are 7 = 1 + 6, 13 = 3 + 10, and 43 = 15 + 28. 
Another theorem concerns partitions into four triangular numbers. 

Theorem 17.2. For any positive integer N we have 

A4(N) = sum of all divisors of 2N +1. 	 (17.3) 

Proof. If we divide both sides of (15.7) by 1 - qz -2  , replace q by 42 2 , 
and let z tend to q, we have 

RHS = H - en ) 2 ( 1  en)( 1  q2n )  = A(04 ,  
(i _ q2n-1)2(1 _ en-1)2 

by (12.8). Since the right-hand side is finite, so is the left-hand side. 
Therefore, we may apply L'Hospital's rule: 

inf ty 
1 

LHS 	lim 	 E  emnzm-l-n E  temnz-m-n 
z -N 1 - ez-2 

F 00 	 00  

E (m+ n) q2mn-Fm.-1-n-1 E (m+ n)q2mn-rn.-n-1 
2q-1  

m,n=0 	 Tri,n=1 

0 
00 	

. 
 

E
(m  + n - 2)q2m1'n  E cm + n)q 

ni,n=1 	 rn,n=1 

2mn-m-n 

00 

E (m n i)emn-m-n 

m,n=1 

Since the expression is symmetric in m and n, we may rewrite the left-hand 
side and obtain 

A(04  = 
	(2m  1) 472mn-m-7 

00 

n=1 

m,n=0 	 m,n=1 

m,n= 
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Letting k = 2m — 1 and t = 2n — 1, we get 

6, (04 = E  kg  2  

kt<1 
k,f odd  

A qN  term appears in the sum if and only if N = Y- 27-1-1 , or 2N + 1 = kt, 
for some odd numbers k and I. Since every divisor of 2N + 1 is odd, the 
coefficient of qN  is 

E k. 0 
kl2N+1 

(17.4) 



18 
q-Antiderivative 

After studying various applications, let us return to q-calculus. So far, 
we have talked about quantum differentiation only. What about quantum 
integration? Let us first consider the q-antiderivative. 

Definition. The function F(x) is a q-antiderivative of f (x) if Dg F(x) = 
f(x). It is denoted by 

f f (x)d q x . 	 (18.1) 

Note that we say "a" q-antiderivative instead of "the" q-antiderivative, 
because, as in ordinary calculus, an antiderivative is not unique. In ordinary 
calculus, the uniqueness is up to adding a constant, since the derivative of 
a function vanishes if and only if it is constant. The situation in quantum 
calculus is more subtle. Dq cp(x) = 0 if and only if (p(qx) = (p(x), which 
does not necessarily imply cif) a constant. Adding such a function v does 

not alter the q-derivative of a function. However, if we require cp to be a 
formal power series, the condition cp(qx) = jo(x) implies qn c„ = cn, for each 

n, where c„„ is the coefficient of xn. It is possible only when cr, = 0 for any 

n > 1, i.e., c,c, is constant. Therefore, if 

f (x) = 	axn 

n=0 
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is a formal power series, then among formal power series,  f(s) has a unique 
q-antiderivative up to a constant term, which is 

00 
anx n-1-1 + a  

f f (x)d qx = 	 (18.2) 
[n + 1] 

If f(x) is a general function, we can still enhance the uniqueness by 
imposing some restrictions on the q-antiderivative. Consider again the func-
tion cp (x) , which has a zero q-derivative. The condition cp(qx) =cp(x) is 
similar to that for a periodic function, but the period is smaller as x is 
closer to 0. To see this, suppose q = 0.1. Then, examples of periods are 
(.1,1], (.01, .1], (.001, .01], etc. If the graph of ço in (.1,1] is a straight but 
not horizontal line, in the periods closer to 0, the graph has the same 
shape, but it gets steeper and steeper, making cp discontinuous at x = 0. 
The general idea is contained in the next proposition. 

Proposition 18.1. Let 0 < q < 1. Then, up to adding a constant, any 
function  f(s) has at most one q-antiderivative that is continuous at x = 0. 

Proof. Suppose F1 and F2 are two q-antiderivatives of f that are con-
tinuous at 0. Let ço = F1  — F2. The function cp is also continuous at 0, and 
has the property cp(qx) = (p(x) for any s,  since D ep = 0. For some A > 0, 
let 

= inft,o(x)lqA < < AI, 

= supl(p(x)1qA x Al, 

which may be infinity if (p is unbounded above and/or below. 
Assuming in < M, at least one of ço(0)  L  in and c,o(0) 	M is true. 

Suppose (p(0) m. By continuity at x = 0, given e > 0 small enough, we 
can always find a (5 > 0 such that 

m e cp (0, 5). 

On the other hand, qN A <  5 for some sufficiently large  N.  Since cp(qx) = 
(x), we have 

m + e e 	M) c ;o[qA, A] = 	+1A, qN  A] c (0, 5), 

leading to a contradiction. Therefore, m = M and cp is constant in [qA, A], 
which means it is constant everywhere. 

The proposition tells us that the uniqueness of the q-antiderivative is 
substantially improved by requiring continuity at x = 0. The existence 
problem will be discussed in the next chapter. 

We conclude this chapter with the following formula for the change of 
variable u = u(x) = ax13  , where a and )3 are constants. Suppose that F(x) 
is a q-antiderivative of f (x). Then 

f (u)d qu =  
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We have for any q',  using (1.15), 

F(u(x)) = f D q, F (u(x))d q, x 

= f (No F)(u(x)) • De u(x) dq, x 

= f (Ns F)(u(x))  du().  

Choosing q' = q113 , we have De F = Dq F =  f,  and thus 

f f (u)d qu = f f (u(x))d qv s u(x). 	 (18.3) 

This formula means that f (u(x))D 0/ 0  u(x) is one of the q-antiderivatives 
of 1(u). 



19 
Jackson Integral 

Suppose  f(x) is an arbitrary function. To construct its q-antiderivative 
F(x), recall the operator Mq , defined by ICI q (F(x)) = F (qx) in Chapter 5. 
Then we have by the definition of a g-derivative: 

1 	- 
 (q — 1) 

	(Mg  1)F (x) = 
F (qx) — F 

 (x) = f (x). 	(19.1) 

Note that the order is important, because operators do not commute. We 
can then formally write the q-antiderivative as 

F(x ) . 1 _1 ja   ( ( 1 _ Oxf(x)) = (1 — q) 	la:, (x f (x)), 
i=o 

using the geometric series expansion, and thus we get 

00 

J f (x)d qx = (1 — q)x E q3  f (q2  x). 	 (19.2) 
i=o 

This series is called the Jackson integral of f(x). From this definition one 
easily derives a more general formula: 

co 
f f (x)D qg(x)dqx = (1 — q)x E q3  f(q 3 x)Dgg(q3 x) 

i =0 
co 

g(q-  I x) — g(qi + 1  x) .  (1— q)x E q3  f (q-7  x) 
1=0 	

(1 — q)qi x 	' 
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Or 

f f(x)dg(x) = 	f (q3  x)(g(q 3  x) 
j=0 

(19.3) 

We have merely derived (19.2) formally, and have yet to examine under 
what conditions it really converges to a q-antiderivative. The theorem below 
gives a sufficient condition for this. 

Theorem 19.1. Suppose  0<  q <1, If If(x)el is bounded on the interval 
(0, Al for some 0 < a < 1, then the Jackson integral defined by (1g.2) 
converges to a function F(x)  on (0, Ab which is a q-antiderivative of f(x). 
Moreover, F(x) is continuous at s = 0 with F(0) = O. 

Proof. Suppose If(x)el < M  on  (O, A]. For any 0 < x < A, j > 0, 

If(q7 x) < M(qix) -a. 

Thus, for any 0 < x < A, we have 

f (qi x)I < Mq (q- x) 	M x -  (q 1 ')i 	 (19.4) 

Since 1 - a > 0 and 0 < q < 1, we see that our series is majorized by a 
convergent geometric series. Hence, the right-hand side of (19.2) converges 
pointwise to some function  F(s). It follows directly from (19.2) that F(0) = 
O. The fact that F(x) is continuous at x = 0, i.e., F(x) tends to zero as 

0, is clear if we consider, using (19.4), 

00 

(1 - q)x 	f(q- x) 
j=0 

M(1 - q)x 1' 
1_ 0 < x < A. 

   

To verify that F(x) is a q-antiderivative, we q-differentiate it: 

1 	(
(1 - q)xEq 3  f(q3 x)- (1  - q)qx 	qi f(q2+1 DgF(x) = 

(1 — q)X 
j=0 	 j=0 

= 	x) E ei f(qi+i x)  

	

=0 	 j=0 
oo 

E f(qx) - E f (q x) f (x) . 

	

j -=0 	 j=.1 

Note that if x E (0, A] and 0 < q < 1, then qx E (0, A], and the q-
differentiation is valid. 	El 

By Proposition 18.1, if the assumption of Theorem 19.1 is satisfied, the 

Jackson integral gives the unique q-antiderivative that is continuous at 
= 0, up to adding a constant. On the other hand, if we know that F(x) 

is a q-antiderivative of  f(s) and F(x) is continuous at s = 0, F(x) must be 
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given, up to adding a constant, by Jackson's formula (19.2), since a partial 
sum of the Jackson integral is 

(1 —  q)x 	q3 f(q3 x) = (1—  q)sEqj Dg F(t)I t=q i x  

j-=o 	 i=o 

= (1 — 	(Fwx) - F(elx)) 

i=0 \ 	(1 - ovx 
E (F(q1 x) — F(q 3 +1 x)) = F(x) — F(q N +1 x), 
i=o 

which tends to F(x)— F(0) as N —} Do, by the continuity of F(x) at x = O. 
To see an example where the Jackson formula fails, consider  f(s) = 11x. 

Since 

we have 

log(qx) —  log(x) 	log q 1 
Dq  log x = 

(q —1)x 	q — 1 x' 
(19.5) 

q — 1 , f x
-
1 

d 	
g 

x — log s. (19.6) 
lo q 

However, the Jackson formula gives 

1 	
00 

—
x

dq x =  (1 — q) 1  = 00. 
i=o 

The formula fails because f (x)xc' is not bounded for any 0 < a < 1. Note 
that log x is not continuous at x = O. 

Now we apply the Jackson formula (19.2) to define the definite q-integral. 

Definition. Suppose 0 < a < b. The definite q-integral is defined as 

00 
fob  f (x)d qx (1 — q)b 	qi f (q3  b) 	 (19.7) 

i=o 

and 
a 

f (X)d q X = f f (X)d qX — f f (X)4X. 	 (19.8) 

As before (see 19.3), we derive from (19.7) a more general formula: 

co 

f (X)d qg(X) = E f(qb)(g(q ) b) — g(q 3 ±1 b)). 	 (199) 
i=o 

Note that this definition conforms to the fact that the Jackson integral 
vanishes at x = O. Geometrically, the integral in (19.7) corresponds to the 
area of the union of an infinite number of rectangles, as drawn below. 
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f(x) 

q3b 	q2b 	qb 

On [e, b], where € is a small positive number, the sum consists of finitely 
many terms, and is in fact a Riemann sum. Therefore, as q -+ 1, the width of 
the rectangles approaches zero, and the sum tends to the Riemann integral 
on [6, b]. Since € is arbitrary, we thus have, provided that f(x) is continuous 
in the interval [0, bb 

lim f f(x)d qx 	f (x)dx. 
q--0. 0 	 0 

(19.10) 

We cannot obtain a good definition of improper integral by simply letting 
b 	oc  in (19.7). Instead, since 

g  
f (x)d qx 	f (x)d qz - 	f (x)d qx o +1 	 o 	 fog  

( 1 (2) Eqjl-k f(ek )  ( 1 —  17) Eek±i f(ek,i ) , 

	

k=0 	 k=0 

and thus 

	

.1 	
f (x)d qx = (1 - q)q3  f (q 3  ), 

0+1 

it is natural to define the improper q-integral as follows. 

Definition. The improper q-integral of f (x) on [0,+oo) is defined to be 

f(x)d gx. E 
r, 

i=_004+2. 
f (x)d qx 	 (19.12) 
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if  0<  g <1, or 

00 	 00 	q
3+1 

f(X)dqX E f(x)d gx 

i=-00 fqj  

jfq > l. 

Proposition 19.1. The improper g-integral defined above converges if 
f(x) is bounded in a neighborhood of x =  0 with some a < 1 and for 

sufficiently large x with some c>  1. 

Proof. By (19.11), we have 

oo 	 oo 

f(x)d x —  1  — qJ  E gi f(q3 ). 
Jo 

Since the summation 

(19.13) 

E gif(e)=Eef(q3)+Eq -3f(q-3) 
1=0 	 j=1 

remains unchanged if we replace g by g-1 , it suffices to consider the case 
of g <1. The convergence of the first sum is proved by Theorem 19.1. For 
the second sum, suppose for large x we have Ix° f (x)I  < M  where c>  1 
and M > 0. Then, we have for sufficiently large j, 

f (q -  :7)1 	q)( 12-1 )1q-jOg f 	)1 < Mqi(Og -1) 

Therefore the second sum is also majorized by a convergent geometric 
aeries, and thus converges. 

Now let us discuss the change of variables u = u(x) = ax0  in definite in-
tegrals. If the Jackson integral of a function converges, the Jackson formula 
may be used to rederive (18.3). Indeed, consider its right-hand side: 

00 

RHS z...., f(u(gi/Ox))(u(eif ix) — 4.1-1-083)) 

i=o 

E f(ag3x )3)(cafxf3  — aq3 + 1 xS) 

00 	 00 

= f (qi  u)(qi u — el-1 u)  = (1 — OuE f (gi u) = LHS, 
i=o 	 i=o 

where we have used (19.3). Replacing x by a and b above, one readily 
obtains that 

u(b) 	 rb 
f(u)d

q 
 u = 	f(u(x))d qvou(x). La) 	a 

(19.14) 
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With the Newton—Leibniz formula (20.1) to be introduced in the next chap-
ter, (19.14) can be shown even more directly, since both of its sides equal 
F(u(b)) — F(u(a)), where F is a q-antiderivative of f continuous at x = O. 
Since (20.1) is true for improper integrals, we see that if a, /3 > 0, so that 
u(+oo) = -Foo, (19.14) is also true for b = -1-00 . In particular, we have for 
a > 0, 13 = 1, 

f (ax)dqx = r  f (x)clqx. 	 (19.15) 
o J; 

 

00 



20 
Fundamental Theorem of q-Calculus 
and Integration by Parts 

In ordinary calculus, a derivative is defined as the limit of a ratio, and a 
definite integral is defined as the limit of an infinite sum. Their subtle and 
surprising relation is given by the Newton-Leibniz formula, also called the 
fundamental theorem of calculus. In contrast, since the introduction of the 
definite q-integral has been motivated by an antiderivativ -e, the relation 
between the q-derivative and definite q-integral is more obvious. Analo-
gous to the ordinary case, we have the following fundamental theorem, or 
Newton-Leibniz formula, for q-calculus. 

Theorem 20.1. (Fundamental theorem of q-calculus) If F(x) is an 
antiderivative of f (x) and F(x) is continuous at x = 0, we have 

fab 
f (x)d qx = F (b) - F (a) , 	 (20.1) 

where 0 < a < b < oo. 

Proof. As noted in the previous chapter, since F(x) is continuous at 
x = 0, F(x) is given by the Jackson formula, up to adding a constant, i.e., 

00 

F(x) = (1- q)x 	ef(ex) + F(0). 
1.0 

Since by definition, 

fo 

a 	 oo 

f (x)d
q 
 - x (1 - q)a Eq.? f (qi a), 
- 	i=o 
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we have 
a 

f (x)ci lx = F (a) — F(0). 

Similarly, we have, for finite b, 

J f (x)d qx = F(b) — F(0), 

and thus 
jab 	 a 

	

f (x)d lx = f f (x)d q x 	f (x)d gx = F(b) — F (a). 
 Jo 

Putting a = qi+1  (or q1 ) and b = qi (or qi+ 1 ), where 0 < q < 1 (or q > 1), 
and considering the definition of improper q-integral (19.12), we see that 
(20.1) is true for b =  oc as well if F(x) exists. 0 

Corollary 20.1. If f' (x) exists in a neighborhood of x = 0 and is con-
tinuous at x = 0, where f (x) denotes the ordinary derivative of f (x), we 
have 

Dq  (x)d qx = f (b) — f (a). 	 (20.2) 

Proof. Using L'Hospital's rule, we get 

lim Dq  f (x) = urn
f (qx) — f (x) 

 = urn
q (qx) — f (x) 

 f' (0). 
x-+o 	x--Ko (q — 1)x 	x—g) 	q — 1 

Hence Dq  f (x) can be made continuous at x =  0 if we define (Dg f) (0) = 
f'(0), and (20.2) follows from the theorem. 

An important difference between the definite q-integral and its ordinary 
counterpart is that even if we are integrating a function on an interval like 
[1, 2], we have to care about its behavior at s = 0. This has to do with the 
definition of the definite q-integral and the condition for the convergence 
of the Jackson integral. 

Now suppose f (s) and g(x) are two functions whose ordinary derivatives 
exist in a neighborhood of x = 0 and are continuous at s  = 0. Using the 
product rule (1.12), we have 

Dq (f (x)g(x)) = f (x)(De(x)) + g(qx)(D g  f (x)). 

Since the product of differentiable functions is also differentiable in ordinary 
calculus, we can apply Corollary 20.1 to obtain 

f (b)g(b) — f (a)g(a) = 	f (x)(Da(x))d gx + 	g(qx) (D g  f (x))d qx, 

or 

f(s)da(s) = f (b)g(b)f(a)g(a) — f g(qx)d g  f (x), 	(20.3) 
a 
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which is the formula of q-integration by parts. Note that b = oo is allowed 
as well. 

The q-integration by parts can be applied to obtain the q-Taylor formula 
with the Cauchy remainder term. 

Theorem 20.2. Suppose Dqj f (x) is continuous at x = 0 for any j < n+1. 
Then, we have a q-analogue of Taylor's formula with the Cauchy remainder: 

n ) 	(b — ap_, 	1 	b 
f (b) = E (Dq 3  f (a)  Lip  ' + Ftr, Z pq n+if(x)(b — qx) 7:dq x. (20.4) 

3 =0 

Proof. Since Dg f(x) is continuous at x = 0, by Theorem 20.1 we have 

b 	 b 
f (b) —  1(a) = .1 a  Dg  f (x)d qx = — f DI, f (x)d q (b — x), 

which proves (20.4) in the case where n = 0. Assume that (20.4) holds for 
n — 1: 

n-1 

PO = E (Dgi f) (a) (b—Lil a1 )1;  ± In  1  111  jab  Dq n f (s)(b — qx)V 1  dq x. 

Using (3.11) and applying q-integration by parts (20.3), we obtain 

1 	b  
Dq n  f (x)(b — qx) 7:-1- dqx = — 7.4  Z Dqn  f(x)d q (b — x); 

= D
q  f (a) 	' 

[n]  

1 	b 
+ — f (b — qx) gri Dq n+1  f (x)d q x, 

[n] a  

and the proof is complete by induction. El 

j = 0 

f 

ab 



21 
g-Gamma and q-Beta Functions 

Being related to solutions of special types of differential equations, many 
important functions in analysis are defined in terms of definite integrals. 
The following two functions, introduced by Euler, 

r(t) = fo cc  xt-1  e' dx, t > 0, 	 (21.1) 

1 
B(t, s) 
	xt-1 (1 x) s-  

lax, 	t > 0, 	(21.2) 

and called the gamma and the beta functions respectively, are the most 
important examples. Some of their properties are listed below: 

F(t + 1) = tF(t), 	 (21.3) 
F(n) = (n 1)! if n is a positive integer, 	(21.4) 

F(t)F(s) 
 I3(t, s) 

_ 	 (21.5) 
r(t ± 8) .  

In particular, (21.4) tells us that the gamma function may be regarded as 

a generalization of factorials. In this chapter, we study the q-analogues of 

these two functions and their various properties, including the g-analogues 
of (21.3)-(21.5). We shall assume that 0 < q < 1. 

Definition. For any t>  0, 

Fq  (t) focc  x4-1 .Eq-qx dq  x (21.6) 

is called the q-gamma function. 
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First we note that by (9.10), E - 1, and by (9.7) and (9.13), E°'" = 
limx-N,0 1/eqx = O. Using (9.11) and q-integration by parts (20.3), we have 

00 

xtti  x d  x  
q 	q 

and hence, 

00 	 00 
x tdq 	[t] f xt-  E-qx d x q 	 q 

0 

F q (t + 1) = 	q (t), 	 (21.7) 

for any t > 0. Since 

Fq (1) = f Eq- qxdgx --= Eq°  Eq-" 

we have for any nonnegative integer n, 

rq (n + 1) = [n]! . 	 (21.8) 

To study the gamma function at t 	N, it is helpful to consider a 
seemingly more complicated function. 

Definition. For any t, s > 0, 

.13q (t, s) = f x t-i ( 1  _ qx ) q-i dqx 	 (21.9) 

is called the q-beta function. 

By the definitions of proper and improper integrals, (19.7) and (19.12), 
we have 

Bg (t, oo) = (1 - q) 	q3  (qi a)t_ i  (1 
=o 

00 
(1 -  

j=-00 

fow 
xt-i( i qx)goodqx,  

where we have used the fact that (1 - q3+ 1 )"q  = 0 for any negative integer 
j. The relation between  Fg (t) and Bg (t, s) is revealed by the formula .E2C = 
(1 + (1 - q)x)°q° . Thus, we have 

13 q (t , oo) = 	xt--1 Eq 	dqx,  
o 

and performing the change of variable x = (1 - q)y (19.15), we obtain 

13,2 (t, oo) = (1 - )17  t 	yt 1 EtTqYdqy,  

0 
Or 

00 	 qz 

q  (t ,  oo)  
q (t) = 

(1 -q) ' 
(21.10) 
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introducing another variable s may seem to be a backward movement at 
first glance. However, it actually increases our freedom to manipulate the 
functions and simplify the problem. 

Proposition 21.1. (a) If t>  0 and n is a positive integer, we have 

(1-  q)(1- q)V 1  
13,2 (t, n) =  	 (21.11) 

(1 - gt)Tq' 

(b) For any t, s > 0, we have 

(1 - q)(1 - q)T (1 - qt+ 8 );° 
14(t,$) =  	 (21.12) 

(1 - gt)T(1 -  ten° 	• 

Proof (a) We first derive two recurrence relations for Bg (t,$). Firstly, 
using (3.11) and q-integration by parts, we have, for any t>  1, s > 0, 

[t - 1]  fi 
xt-2 (1 - qx):dqx, Bg (t,$) = 	f x t-1d(1 - x) q s 

[81 0 	 g 	W 	0 
and hence 

Bg (t,$) = 
[t 

[81
1]   

/3q (t - 1,s + 1). 	 (21.13) 

On the other hand, we have 
1 

/3,2 (t, n 1) = 	st-1 (1  _ 40)- 4 _ qnx)dqx 

fo l 	 1 
xt-1(1 qx) q -ldgx qn f xt (1 qx) q -ldgx,  

0 
and thus 

13q (t,n +1) = Bq(t,n) qnB(t +1,n). 

Combining (21.13) and (21.14), we obtain 

Bg (t,n + 1) = Bg(t,n)
E 	

(t n +1), 
n] 

Or 
qn 

B g (t n 	
1

1

- 	
B 1) = 	 (t, n 

for any t > 0 and positive integer n. Since 

1 
.13q (t,1) = f xt-l dgx = 

0 

we have 

(21.14) 

(21. 15) 

Bg(t, n) (1 - n-  • •  •  (1 - 	(1 - o (1 - or'  
( 1 - gt+n-1 )- - • (1 - es-1 )N 	(1 _qt) 



I. 
1 xt - 1(1 _ 	 oo qx) g  

(1 — ax)°° 
	 d

q
x 

q 

as desired. 

(b) We will use an argument similar to the one used in the proof of 
Theorem 13.1. By part (a), since 

(1 — q);° 	 1 	(1— eng° 
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(1 _ qt ): 	(1 - e)) 3  
(21.12) is true for s = 1, 2, 3, ... . We may write the left-hand side of (21.12) 
as 

(1 — Ong  —1 = 
( 1 — .7 

and 

and its right-hand side as 

(1 — g)(1 —  q)°(1  — al/in° 

(1 — q ) ° (1 — a)r 	' 

where a =  q8 .  Then, both sides are formal power series in q. Their cor-
responding coefficients are equal for infinitely many values of a, namely, 
a = q,q2 ,q3 ,... . However, since all coefficients are polynomials in a and 
distinct polynomials may coincide at only finitely many points, the two 
series have identical coefficients, and equality is established. 0 

Part (a) of the proposition gives us an explicit expression for the g-gamma 
function. Using (21.10) and letting n —* oo in (21.11), we obtain 

(1 —  
r  q( t) — (1 _ ot — 1 (1 _ qt)0 

Part (b) shows that the g-beta function is symmetric about t and  s,  namely, 
B(t, s) = B(s,t), which is not obvious from simply looking at (21.9). Com-
paring (21.12) and (21.16), we also obtain an expression of the g-beta 
function in terms of the g-gamma function similar to (21.5): 

rg(s  
Bg (t, s) = r 

t)Fq() 
	 (21.17) 

This concludes our discussion of the g-gamma and the q-beta functions. 

(21.16) 



22 
h-Derivative and h-Integral 

We have thus far studied only g-calculus. Now we turn to h-calculus. 
Firstly, let us recall from Chapter 1 another quantum derivative that is 
characterized by an additive parameter h, the h-derivative: 

, f (x + h) — f (x)  

where h O. Let us begin by developing the properties of h-calculus in 
an analogous way to what we have done for g-calculus, and discuss its 
applications in subsequent chapters. 

It is easy to verify the product and quotient rules for h-differentiation: 

ph (f (X)9(X)) = f (X)Dhg(Z) + g(X + h)Dhf (x), 

D  (Al _ g(X)Dhf (X) - f (X)Dhg(X)  
h g(x) 	- 

g(x)g(x + h) 	' 

(22.1) 

(22.2) 

The first formula follows from (1.4), and the second one follows easily from 
the first. The resemblance in the product rule suggests that the h-binomial 
may be defined in a similar way. 

Definition. The h-analogue of a binomial (x — a)" is 

(x — a)Thi . (x — a)(x — a — h) • - • (s — a — (n — 1)h) 	(22.3) 

when n > 1, and (z — a)?, . 1. 



(x — arirti ±n 

1  
Ph 

GC — a)rh' 
1 

(a — xrhl 
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To verify that this is an adequate definition of h-binomial, consider 

Dh(x — a)7,, = T11  ((x — a + h)(x — a) - • • (z — a — (n — 2)h) 

— (x a)(x — a — h) • • - (x — a — (n — 1)h)) 

=(x — a) • • • (x — a — (n — 2)h) 
(x — a + h) — 	a (n — 1)h) 

Hence, we have 

D h(x — a) irl = n(x —  a) 1 . 	 (22.4) 

Note that the h-analogue of an integer n is still n, and (x 0)R xn . With 
(22.4) above, the sequence of polynomials {(x — a)R1 satisfies the conditions 
of Theorem 2.1 with respect to the linear operator D Dh. Therefore, we 
have the following h-Taylor formula for a polynomial f(x) of degree N: 

	

f(x)  = E (Dhif) fa\ (x 
 ! 	

(22.5) 

	

.j 	• i=o 

Example. The h-Taylor formula applied to  f(s) = (x + b)N , a  =0, gives: 

(x b) N  = 	 Xjh  . 

The following facts are stated without proof. The proofs are similar to 
those already given for their q-versions: 

h 

(22.6) 

(22.7) 

(22.8) 

(22.9) 

(22.10) 

(x a) 14 (x — a — nh)r, 

—n(a h xyr 4  

(x h 4'4-1  

(a — x)R+ 1  

The formulas above may be extended to all integers if we define 

1 
(x — a),Tn = 	 

(x — a + nh)rh.' 

as dictated by (22.6). 

Next, let us discuss f(s) = eh', the h-analogue of the exponential func-
tion. Three properties that  f(s) should have are (i) f(0) = 1, GO Dhf (x) = 
f(s) for any x, and (iii) (x) admits h-Taylor expansion (22.5) about x = 0 
(with N = oo) for small h. In fact, these three properties uniquely char-
acterize f(x), since with (i) and (ii), we know that (phi  f )(0) = 1 for any 
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j = 0,1, ... . By (22.5) with a = 0, we have 

= f (x —  0)jh  = ct x(x — h) • • • (x — — 1)h) 

3 - 	 .i! -1 
i=o 	im--o 

. x--,°* f (f.  — 1)•-• (f-i.  — j+1))hi 	ct°  (xIh) h  

i=o 

and hence, by ordinary Taylor expansion of a binomial, we have 

ef, = (I -I- /). (22.11) 

In particular, ef = 2x. Also, as h -- 0, the base (1 + h)* approaches e, as 
expected. Note that 

	 — (1 + h) Y  = (1 +  h)" — 1 
(1+ h)t 1 , 

h 	 h 

and hence 

Dher = Ecrii+her,  

which serves as an example where the chain rule fails. 

If DhF(s) = f (x), then  F(s) is called an h-antiderivative of  f(s) and is 
denoted by 

f 

The definite h-integral of a function from fe = a to x = b, where a and b 
differ by an integer multiple of h, may be defined as a finite sum: 

Definition. If b — a E hZ, we define the definite h-integral to be 

b  

h (f (a) + f (a + h) + • - - + f (b — h)) 	if a < b, 

ja  f (x)dhx = {0 	 if a = b, (22.13) 

h(f (b) + f (b + h) + - • • + f (a — h)) if a>  b. 

With this definition, the definite h-integral is a Riemann sum of f(x) 
on the interval la, bb which is partitioned into subintervals of equal width. 
The following theorem justifies (22.13) as an appropriate definition for the 
h-integral. 

Theorem 22.1. (Fundamental theorem of h-calculus) If F(x) is an h-
antiderivative of  f(s) and b — a E hZ, we have Lb 

f (x)dhs = F(b) — F (a). 	 (22.14)  

f(s) 
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Proof. If  b> a, then by definition we have 

jrab 	 (b—a)  
(b—a)  

I  h 

f (x)dhx = h E f (a + jh) = h E DhF(X)1 x=a+jh 

	

j=0 	 i=0  

= E 
J=0 

(11  (a + (j + 1)h) — F (a + jh)) = F (b) — F (a), 

as desired. The case b < a is similar, and the last case, b = a, is trivial. 
D 

Applying Theorem 22.1 to Dh(F (x)g(x)) and using (22.1), we obtain the 
h-version of integration by parts: 

f (x)dhg(x) = f (b)g(b) — f (a)g(a) — f g(x + h)dh f (x), (22.15) 

where (assuming a < b) 

f(x)4g(x) = 
	

f (x)Dhg(x)dhx 

(b—a)  
h 

h E f (a + jh) (Dhg) (a + jh) 
i=o 

( 7)  3. 
E f(a+ih)(g(a+ih+h)—g(a+ih)). 
i=0 

Take h = 1 and a, b to be integers, with a < b. For a function („o(x) define 

f (x) = cp(0) + yo(1) + • • • + cp(x — 1), 

where z is a positive integer. In other words, D1  f (x) = r,o(x). From (22.15), 
we obtain 

b-1 	 b-1 

E(pu)gu +1) = g(b) f (b)—g(a)f (a) —E f (j) (9(j + 1) — g(j)) . (22.16) 
i=a 	 i=a 

This formula is known as the Abel transform. 
Another useful formula can be obtained by repeatedly applying h-

integration by parts. If s — a E hi„ then using (22.7) and (22.15), we 
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have 

(x) — 1(a) = 
a 
 Dhf (t)dht = — 	Dhf (t)dh(x t) 

a 

(Dh f)(a)(s — a) + f (x — h — t)131,f (t)dht 

= (Dh f)(a)(x a) — f x  DTt f(t)dh(x — 

(Dh.f)(a)(x — a) 
1 	 1 

— 	— — f 	(t)dh 6 a  

and so on, and hence for any nonnegative integer n, 

	

f  (x) 	(DU)(a) 	coj 	1 	X„ 4_ 1  
(t)dh(x —  t) 1 ,(22.17) 

h  (n + 1)! 	h  

or 

	

f (x) 	j(Dihf)(a)  (x — a) ih  -V x  (X — t — 	 f (t)dht. (22.18) 
n! a  

This formula is called the Newton interpolation formula. As we have seen, 
from the point of view of h-calculus, this is the h-Taylor formula with 
a remainder term. Suppose h > 0. By (22.13), the absolute value of the 
remainder term is bounded by 

1 	max  fyi+1 f 
.-71x 	atn+ 	h . I . 	

(22.19) 
n! 	[a,z1 

To see why (22.18) is called an interpolation formula, let x = a + mh, 
where m is a positive integer. The integral in (22.18) then equals 

m-1 

E ((a + mh) — (a + j h) — h) Dir f (a + jh) 
h 

j=0  

by (22.13). Since the function g(t) = (a + mh — t — h)7, vanishes when t = 
a+(m-1)h, a+ (m-2) h, , a+ (m—n)h, the remainder term vanishes when 
in is an integer between 1 and n. The integral obviously also vanishes when 
m = O. This shows that the finite sum in (22.18) is exactly equal to f (x) at 
the n + 1 equally spaced points x = a, a -I- h, a +2h, . .  ,a + nh. Therefore, 
the sum, when considered as a function of x, is in fact the interpolation 
polynomial of degree n that approximates an arbitrary function  f(z) in the 
interval [a, b a + nit]. The error term may be estimated using (22.19). 

Because of the resemblance between (22.18) and (20.4), a similar discus-

sion is also valid for the q-version, i.e., the sum on the right hand side of 
(20.4) may be looked upon as an interpolation polynomial which is exact 
at a, qa, . , 



23 
Bernoulli Polynomials and Bernoulli 
Numbers 

In this chapter, we introduce a sequence of polynomials that is closely 
related to the h-antiderivative of polynomials and has many important 
applications. 

Definition. In the Taylor expansion 

00 

E Bn (x) n  zem 
_ 	 (23.1) 

n=0 

Bn (x) are polynomials in x, for each nonnegative integer n. They are known 
as Bernoulli polynomials. 

If we differentiate both sides of (23.1) with respect to x, we get 

00 zez. BrAx) 	 Bn (x)  zn+i  
4 = Z 	 

n! 	ez - 1 4-d n! 
n=0 	 n=0 

Equating coefficients of Zn , where n > 1, yields 

	

B i (x) = nBn-i (x). 	 (23.2) 

Together with the fact that Bo (x) = 1, which may be obtained by letting 
z tend to zero on both sides of (23.1), it follows that the degree of  B(z) is 
n and its leading coefficient is unity. Using (23.2), we can determine  B(x) 
one by one, provided that their constant terms are known. 

Definition. Fr  n 0, b = B(0) are called Bernoulli numbers. 
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Putting x = 0 in (23.1), we get 

00 bn  „ 

n. 
n=0 

 

(23.3) 

 

Since using Taylor's expansion we have 

1 

 

ez — 1 	1 4. 
26 	24 

we may use long division to find the Bernoulli numbers. However, we would 
like to determine bn  and  B(x) in an easier and more systematic way. To 
achieve this, we need the following propositions. 

Proposition 23.1. For any n > 1, 

Bn(x +1) - B(x) = ne1-1 . 	 (23.4) 

Proof. Comparing the coefficient of zn in 
00 	 00 

n1  
+  1)  n 	B ( x) (x) 	zez(x+ - zez 	 d 

z 	 TIE 	

n! 	

= 	  
- 1 	

= zezz —ez 
dx 

where 
OE> n n X Z 

exx = 
n! 

we have 

Bn (x + 1) - B(x) = —
d

xn = nxn' 
dx 

as desired. 

n=0 	 n=0 

n=0 

Proposition 23.2. For any n > 0, 

B(x) =i
3-

X 
= 0 

Proof. Let 

Fn (s) E (73!) n-i 

(23.5) 

It suffices to show that (i) Fn (0) = bn  for n > 0 and (ii) F' (x) = nFn_i (x) 
for any n > 1, since these two properties uniquely characterize B.(x). The 
first property is obvious. As for the second property using the fact that for 

> j > 0, 

(n - j(n  ).) 	
ni  

.!( . 3 	1fl j 
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we have for  n>  1, 

d 	n-1 	 n-1 

= E (ni)(n - j)bixn-1-3  = n E (n; 1) 
dx  

j=0 

as desired. 

Putting z = 1 in (23.5), we have 

B, (1)  = 7 (11.) 
3 3=0 

n-1 

= bn  E n > 1. 

However, for any n > 2, we have B(1) = bn , which follows from (23.4) 
with z  = 0. Therefore, we obtain the formula 

n-1 

E 	0, 

i=0 

n > 2. (23.6) 

This formula allows us to compute the Bernoulli numbers inductively. The 
first few of them are 

1 	1 	 1 	 1 
bo = 1, b1 	-2-, b2  = -6 , b3 = 0, b4 = ---3-0-, b6 = 0, b6 = 	

(231) 

It is tempting to 
some other numbers 

b8 = - , 

b16 

guess that lbn  
in the sequence, 

1 
b10  = 

3617 L  

I 

5 

= 

-> 0 as n 	oc.  However, if we consider 

691 	7 
b.= 	b14 = —

2730' 

43867 	174611 
018 

510 
, 020 = 798 	 330 

we notice that their values are in general growing with alternating sign (see 
a discussion of this question in Chapter 25). Another important property 
of the Bernoulli numbers is bn  --= 0 for odd n 3, which follows from the 
fact that the function 

f (z) = 	— biz = 	
z1

+ = 	 
e -   

n=O 71.  

is even, i.e., f ( - z) = f (z). (The coefficients of tn in the Taylor expansion 
about 0 of any even function g(t) vanish for all odd n, because if g is even, 
g(n)  (t) = 

 
(- 1)' g(')(-t)  for any n and g(n)(0) = -g(n)(0) for any odd n.) 

Another interesting formula involving the Bernoulli numbers may be 
obtained by putting z  = -1 into both (23.4) and (23.5), which yields 

bn  + n(-1)"  =B(-1)  =
`--- 

(71.)bi(-1)n-i, 
" 3 j=0 



or 

(1c + 1 

3 
, 	Bi (x) = 
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or 

n-1 

E( 1 
2 

.1=-2 

Replacing j by j ± 1, and n by n +1, we get: 

n-1 

E (-1) bi+1  - 
(i)j+1 	n 	+ 1 2 

Proposition 23.3. For any n > 1, 

n-1 

E (n
)B.(x) = nxn-1 . 

3  j =0 

(23.8) 

(23.9) 

Proof. The case where n = 1 is obvious. If we assume that (23.9) is true 
for some k > 1, we have, by (23.2), 

k 

E(k+ -)Bi  (x) = (k +1)xk  + C, 
i=o 

for some constant C. Putting x = 0 and using (23.6) show that C = O. 
Hence, by induction, (23.9) is true for any positive integer. El 

As has been mentioned above, formula (23.2) and the knowledge 
of Bernoulii numbers allow us to determine the Bernoulii polynomials 
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inductively. The first six of them are listed below: 

Bo(x) 

(x) 

B2 (X) 

B3 (X) 

B4 (X) 

B5(X) 

= 

= 

= 

= 

= 

= 

1, 
1 

x — 

x2 - X + -
6 

3  2 	1  
X3 - -

2
x + —

2
x, 

X4  - 2X3  + X 2  - 
30' 

5 	54
5- 	

1 
X - 	+ -X3 - 6-X. 

2 	3  



24 
Sums of Powers 

We now turn to the relation between the Bernoulli polynomials and h-
calculus. By Proposition 23.1, we have 

Di  B „ (x) = B,i (x + 1) — Bn (x) = 

Or 

	

n f xn — 1  d i x = Ba (s), 	 (24.1) 

where D1  is the h-derivative with h = 1 and f f(x)d i x stands for the h-
antiderivative with h=1. Applying the fundamental theorem of h-calculus 
(22.14), we have for a nonnegative integer n, 

b 

a + (a + 1) + + ( Bn÷i (b) — Bn+i (a),  (24.2) n 	n  - • • 1) — 1r = f Xn di X = 
n + 1 a 

where a < b and b — a E Z. If we rewrite the right-hand side using (23.5) 
and let a =- 0,  b= M+  1, we get 

M 	 1 	n E  kn  = J.  E  (n+ 1) f m  

k=0 	 j=0 

(24.3) 

Once the Bernoulli numbers are known, one can use (24.3) to easily find 
the formulas for summing integer powers. 
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For example, when n = 2, (24.3) becomes 

.81 	1 mw + 1)(2m + 1)  1 
E k2 = ((f + 1)3 _ _

3 
(M + 1) 2  + —

2 
(M + 1)) 	 . 

2 	 6 
k=1 

When n = 3, we have 

m- 
E k3 = _

1 
((f + 1)4 

4 
k=1 

— 2(M + 1) 3  ± (M + 1) 2 ) = 
(M(M+ 1)) 2 .  

2 	) 

It is an interesting coincidence that for any positive integer M, 

1 3  + 23  + • • • + M3  = (1 + 2 + • - • + M) 2 . 

Also, (24.3) reveals the general fact that the formula for in  + 2n  + - • ' + Mn  
is a polynomial in M of degree n + 1. This polynomial, for any positive 
integer n, contains the factor M(M + 1), since the right-hand side of (24.3) 
obviously vanishes at M = —1 and, by (23.6), also vanishes at M =-- O. 
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In q-calculus, the Jackson formula (19.2) provides a way to compute ex-
plicitly a q-antiderivative of any function. Recall that the Jackson formula 
was deduced formally using operators. We will do a similar thing for the 
h-antiderivative in this chapter. 

Suppose DhF(x) = f(x). Using the ordinary Taylor formula, we have 

x--. F01) (x)hn 
F (x + h) =  nt 

n=0 

and  hence, formally, 

(

00 hni3n)  E 	 F(x), 
n=0 

F (x + h)  = ehD F (x),  

where D -11- • Thus, we have dx 

F 	(x + h) — F (x)  ehD 
 F( 
—  

f (x) 	 = 	x), 
h 	 h 

Or 

 F (x) = 	 f (x)dx ehD 

By the definition of Bernoulli numbers (23.3), we have 

hD = Y"'°°  ---bn  (hD)n , ehD 	 n! 
n=0 

(25.1) 

(25.2) 



fab 
f (x)dx - (f (b) - f (a)) 

n° 1  ( b:nn) ! 
(f(2n-1)(b) _  

b-1 
E f (n) = 
n=a 

(25.4) 
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and hence 

F (x) =
!
(hD)n 

J
f (x)dx 

n 
n=0 

Using the fact that bn, = 0 if n is odd and n > 3, we deduce the Euler-
Maclaurin formula 

h 	c°  b2 
F (x) = f f (x)dx - f (x) + 	f(2n-1) (x). 	(25.3) 

2 	 (2n)! 
n=1 

Note that the ordinary integral and derivative are involved in (25.3). Sup-
pose h = 1 and b - a E N. Using the fundamental theorem of h-calculus, 
we have 

If f decreases so rapidly with x that all its derivatives approach zero as 
x co, we have 

00 
 = f 
00 

f (x)dx ± -
2
f (a) - 

1 	v.■°° 
(2n)! 
b2n f(2n-1) 

(a). 	(25.5) E f (n) 
a n=a 	 n=1 

In order to justisfy the formal derivation of these formulas, let us consider 
some examples. If f (x) =  z 8 ,  where s is a positive integer, (25.4) becomes 

b8+1 _ as+4 
 

b8  - a' 
s + 1 	2 

s+1 
To  ( - 1) .. • (s — m 2)(b.-m-fi a8—m+1) 

m=2 

s+1 1 	s + 1 
x 8  ± 	

+ 1) 
bm x 8 +1— m 

s + 1 ( 8+1 	2 
m=2 

x=b 

x=a 

which, by (23.5), is simply 8+1  (B8+1  (b) 138+1  (a)). We have just recovered 
formula (24.2) from the previous chapter. As a second example, consider 
(25.5) with 1(x)  = e-x and a = O. The LHS is a geometric series, 

00 
(e-I ) '  = 

n=0 

which agrees with the RHS, 

La  (2n)! =  e'-l'  
n=1 

1 - e -1  
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where we have used (23.3) with z = -1. Hence, the Euler-Maclaurin for-
mula has more than merely formal value, at least for functions decreasing 
rapidly at infinity, like /(x)  = e-z . 

For formulas (25.4) and (25.5), although both their left- and right-
hand sides involve summations, those on the RHS may converge much 
faster than those on the LHS. In that case, the formulas provide efficient 
ways to estimate finite and infinite sums. However, we must be careful 
in applying these formulas to estimate a sum, because, as discussed in 
Chapter 23, 11)2,2 1 increases indefinitely with n. Consider 1(x)  =  x 2 .  Since 
f (n)(x) =(-1)n2 • 3 - - • (n + 1)x -n-2 , we have 

00 	 00 x--, 1 	1 	1  
Z-d -in  = 72  4-  Tc-12 + Z,,,d a2n-I-1' 
n=a 	 n=1 

(25.6) 

We will see that the series on the RHS first converges rapidly, but at some 
sufficiently large n, 1b2n  I becomes dominant over a2n , and the partial sum 
bounces up and down more and more drastically. In order to see how well a 
certain partial sum approximates the actual value, we would like to derive 
a formula similar to (25.4), but with the infinite sum on the RHS replaced 
by the Nth partial sum, 8 N , plus an additional remainder term,  RN.  

To begin with, we rewrite the RHS of (25.4) as 

	

t° 	- 
k. 

k=0 

where h(x) = f f (x)dx. Suppose a E Z and b = a + 1. Consider the Nth 
partial sum, 

N 

S N = 
E  B k (0)  (h(k)  (a + 1) - 

k! 

where N is a positive integer. If we let g(x) = B N (x) I N! , we have 
g(N- k ) (x) = Bk(x) I k! by (23.2). By Proposition 23.1, we have Bk(1) = 
B k (0) for k # 1 and B1(1) = Bi (0) + 1. Hence 

N E  (B,,,(,0) (k)(a +1)  B,,k(! i) 
(k) (a)) + le (a) 

k =0 \ 
N 

= E  (g(N_k) (0)h(k) (a  + 1 ) _ g(N –k) ( i ) h(k)(a)) + hi(a) 

k=0 

	

N 	 x=1 
h' (a) - E g(v-k)(x)h(k)(a + 1 - s)1 	• 

o 
k=0 

 

k=0 

SN 
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Since the function 

G (x) = E g(1  \ 	(X)h (k)  (a + 1 - X) 

k=0 

has a very simple derivative, 

G' (x) 	E,(,,,k+i)(x)h(k)(a +1 - x) 
k=0 

—Eg(N—k)(x)h(k+1)(ct +1— x) 
k=0 

E  g(N —k-F1) ( x)h(k) (a  1  _ x) 

k=0 
N+1 

— 9

(N -k+1) (x )h(k) (a + 1 - x) 
k=1 

- g (N  +1)  (x)h(a + 1 - x) - g(x)h (N  +1)  (a + 1 - x) 

- g(x)h (N  +1)  (a + 1 - x), 

where g(N  + 1)  (X) = 0 because deg g = deg BN =  N,  we have 

f i  
sN = W(a) - G(1) + G(0) = (a) +  j  g(x)h (N  +1)  (a + 1 - x)dx 

or 

E kki 

 

N  b 
(k_1)  (a +1) _ f (k-1) (a) ) _ f(a) +.11  BN (X)  

f (N)  (a + 1 - XXX, 

k 	 0 	N! 

if we denote f f (x)dx by f (-1) (x). Performing the change of variable x = 

a + 1 t in the integral, we obtain 

f (a) = 
	bk (k-1) (a +1) - f (k-1) (a)) 

k=0 

faa +1  BN({1 - 	
f (N)  (t)dt, 

N! 

where {y} G  [0, 1) denotes the fractional part of a real  number y. In fact, 

since a is an integer, for a < t  <  a+  1 we have -a < 1 t < -a +  land 

thus {1 - t} = a + 1 - t. Finally, replacing a by a + 1,a + 2, ... , b 1 and 
summing all of them yields 

b-1 

E f (n) = E p_c; (f (k-1) (,)  _ f(k_i) (a) \ _ fb  BN ({ 1  t})  j(N) (t)dt, 
" Ja 	NI 

n=a 	k=0 
(25.7) 
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or, with N = 2m + 1, 

Zb 
f (t)dt - (AO -  1(a)) 

tr4 ,b22: 1 (f (2k-4) (b)  _ pk-i)(a)) 

k=1 	) 

B2m+1({ 1  t})  f(2"2+1) (t)dt, 	(25.8) 
j 	(2m + 1)! a 

which is the Euler-Maclaurin formula with remainder. If f and its 
derivatives vanish at infinity, we have 

cx) 
k 1 E f (n) 	f f (t)dt + -

1 
f (a) - 	b2k N-` 	f (2  - ) (a) 

2 	(2k) a n=a 	 k=1 ro B2r3+1({1_ 
 Pm+1)(t)dt. 	(25.9) 

fa 	(2m + 1)! 

It follows from (25.7) that we may replace 2m + 1 by 2m in the remainder 
of (25.8) and (25.9) if m, > 1. 

Formulas (25.8) and (25.9) tell us that the error in approximating the 
sums on the LHS by 82m+1 is given by the remainder term, 

R2ra+1 = 
6  B2m+1 ({ 1  — t})  f (27n+1) (t)dt (b < 00) . 	(25.10) 

(2m + 1)! 

To estimate its size, we need an upper bound of B2m+1(z) on the interval 
[0, 1]. By the definition of Bernoulli polynomials (23.1), we have 

00 
Bn(a) n 

 = 
 zeaz 

n! z  ez 	
(25.11) 

n=0 

for any 0 < a < 1. It is known from complex analysis that the radius of 
convergence of the power series of a function f(z) about z = 0 is given 
by the distance on the complex plane from the origin to the nearest point 
where f(z) blows up. (For example, it is well known that the radius of 
convergence of the geometric series En>o  Zn  is 1, which also follows from 
the fact that the sum equals (1 - z) - r wherever it converges.) Now, all 
the points where (6' - 1) -1  blows up are 27rni, where n is an integer; 
hence the nearest to the origin among such points are ±27ri. The radius of 
convergence of the power series in (25.11) is thus 27r. 

On the other hand, another fact from analysis tells us that if R is the 
radius of convergence of the power series E  ax', then the upper limit 
of the values (fan fR 2 ) 1In = Riana/n is unity, i.e., lani lin  is eventually 
bounded by 1/R, but by no smaller numbers. (One may verify this fact by 
considering the geometric series E n xn , where R=1/1a1.) What all this 
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means is that as n tends to oc, we have 
1 

n! 

or 

13,,  (a)1 	1  
n! 	(27r)' 

Hence, following from (25.10), the required bound of IR2 ,n+ 11 has a size 
similar to 

(2 702m-1-1 fa  
It is important to note that our discussion of the size of JR2,, ±1 1 here is 
not a rigorous one. However, the above result is valid, since in fact, it is 
known that for 0 < a < 1, 

I.B2m±i(a)1 	4e2' 
(25,12) 

(2m + I)! 	(270 2m-F 1 * 

(This estimate can be obtained by decomposing B2 m+i(x) in a Fourier 
series.) Therefore, we have 

(271-)2m+1 	
I f (2m+1) (t)idt. 	(25.13) 

4e2lr  

For example, with f(x) = e — z, a = 0, and b = oc, (25.13) tells us that 
IR2,m+1 j < 4e27 /(27r) 2m+1  goes to zero very rapidly, and we saw earlier in 
this chapter that the Euler—Maclaurin series does converge. 

Next, let us consider f(x) =  x 2 , b = oc again. Suppose we want to 
estimate the sum 

1 
dt 

  

< 

(25.14) 

and we first do it by adding up a large number of terms, say 1000. The tail 
of the sum may be estimated using integrals, namely, 

 0.001 = 
low < 

E 	<r-dx 0.001001.... 
n.1000 n2 	999 x2  

We see that our first method gives an answer accurate only to about the 
sixth decimal place. What if we go further and use (25.9) to approximate 
the tail? From (25.13), we have the inequality 

4e2"(2m  + I)!  
1000(200070 2m+ 1  

In particular, we have 

1R31‹ 10-1° , 	1R51< 	1R71< 10-23. 
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This means that a few more calculations will enormously increase the 
accuracy of our approximations. 

It is tempting to conclude that the more terms we compute, the more 
accurate an estimate we obtain. However, the ratio 

R2m-1- 1 

R2m-1 

2m(2m +  1) 

(Nd  (2000702  

  

eventually exceeds unity. When m is small, I R2m+1 I diminishes rapidly and 
the partial sums seem to converge, until when m  c  10007r, the value of 
IR2,n+iI is minimized, and beyond that, the partial sums start to bounce 
more and more vigorously away from the actual value. In general, if the 
tail starts from n = a, 1/12„.0. 1 I is minimized when m R-1 ira. 

The exact value of the sum (25.14) was first discovered by Euler to be 
7r2 /6. There are many ways to prove it, one of which makes use of complex 
analysis and another involves Fourier series. Both of them also allow us 
to compute the exact values of En°°  (1/n8 ), where s is an even positive 
integer: they turn out to be 2s -l 1rsIb3 i/s!. However, no similar closed form 
has been discovered for these sums when s is odd. 

In conclusion consdier two other simple examples of the Euler-MacLaurin. 
formula (25.8), with a = 1, m. = 1. 

Example 1. f (x) = 1. Then we have: 

\---‘ 1  = log b + R(b), where Hill R(b) = c . 	(25.15) 
tt 	 b-too  

n=1 

The number e is called Euler's constant. 

Example 2. f(s) = logs. Then we have: 

log(b - 1)! = f log t dt - log b Ri (b), where 

Integrating by parts, we get 

litn  Ri  (b)  = C (25.16) 
b-t  oc  

log t dt = b(log b - 1) . 

Hence, adding log b to both sides of (25.16), we get: 

log b! = log AA ( 1-1-) b 	(b). 
e 

Therefore, 

b b  
b! ec  v b (-

e 	
as b -> oo . (25.17) 

Additional calculations show that ec = VFW. The result is the famous 

Stirling's formula. 
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26 
Symmetric Quantum Calculus 

The q- and h-differentials may be "symmetrized" in the following way, 

ciq  f (x) = f (qx) - f (q -1  x), 	 (26.1) 

4g(x) = g(x + h) g(x - h), 	 (26.2) 

where as usual, q 0 1 and h 	O. The definitions of the corresponding 
derivatives follow obviously: 

bq f (x) = 
rig f (x) 

ciqx 

ilhg(x) 

clhx 

f  (qx) f  (q-i 

(q - q-1 )x 

_ g(x + - g(x h)  
2h 

f4 9(x) = 

(26.3) 

(26.4) 

We are going to concern ourselves briefly with symmetric q-calculus only, 
since it is important for the theory of some algebraic objects called quantum 
groups. 

The symmetric q-product and quotient rules are 

f (qx)ii gg(x) + g(q-1  x)bq  f (x) 

f (q -1  x)be(x) + g(qx):A i  f (x), 

g(qx)15 q  f (x) f (qx)A ig(x)  
g(qx)g(q-1  

g(q-  x)bq  f (x) f (q -1  x)b 9g(x)  

g(qx)g(q - 1s) 

(26.5) 

(26.6) 
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For any number a, we have 

Asa [a1xa-1 , 	 (26.7) 

where 

	

q q 
	 (26.8) 

Proposition 26.1. For any positive integer n, if we define 

(x - a) - = (x - q11-1 a)(x - qn-3a)(x qn-5a) • • (x - q -n-1-1 a), (26.9) 

and (x - a) .cq! = 1, we have 

iig (x - a):id  = [n] (x - 	 (26.10) 

Proof The case of n = 1 is trivial. Note that for any n>  1, (x-a)!-:+1  
(x qa)Z(x q -na). Thus, by (26.5) and induction on n, we have 

i-5q (x ar+1  n- - = (qx qa)?, + [n] (x qa) 14 	1  x - q' a) 
qn(x  _ a) it q-i[nr(x  _ qa)-1(x q-n-Fi a) 

= (qn + 	tnr)(x - a)j = 	11 -(x - 

as desired. 

Note that deg(x - a)n4  = n for each n, and the first three of them are 

(x a)14 	(x - a), 

(x - a)?4. 	(x - qa)(s - q -1  a), 
(x -a) 	(x - q2  a) (x a)(x q -2  a). 

However, if a 0 0, (x - an: does not vanish at x = a when n is even, and 
thus the polynomials  P(x) = (x - a)'3'd  I [nr! do not satisfy all the conditions 
for the generalized Taylor formula (Theorem 2.1). (We refer to (26.23) for 
the family of polynomials to which Theorem 2.1 does apply.) For a  = 0, 
the Taylor expansion of a formal power series is 

X3  
f(s) 	ct°  (in f) 	 (26.11) 

i.o 

Consider  f(s) = (x + a). Since (4f)(0) = [nr[n - 1 ]  • • En - j 1]-  

x (0 +  a) 1  = (Inn/En - jr!)an -i for j n and 'fill  f (x) = 0 for j > n, we 
have 

where 

n 
• 	• 

(x + a) 	
n 

- 

d  = 	. an  3  X2  
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Equation (26.12) is the 4-analogue of Gauss's binomial formula (5.5). We 
would also like to obtain a 4-ana1ogue of Heine's binomial formula (8.1). 
Let us consider g(x) = 1/(1 - x ) . Since 

(1 - x ) d  = (1  _ qn-ix)( 1  _ qn-3x). .. (1  _ qi-nx) 

qn-i (qi-n _ x ) qn-3 (q3-n 	qi-n(qn-1 

Or 

(1 — 	= (-1r(x — 	 (26.14) 

we have 

4(1 - 	= (-1) n [n](x - 1 ) -1  = --[nr(1 - 	, 

and, by (26.6), 

[n]-(1 - x )

-1 	[n]  
(26.15) 49(x) (1 _ 	qx)3(1 - q --1 s)3 	(1 - 

 

Therefore, for for any j > 0, we have (134 g) (0) = [n]  • • • [n j - 1] , and 

1 	‘-..c°  [n]  • • • [n j - 11-xi  
n (1 -  x)  	 [M1.0  

which is very similar to (8.1). 
Let us now turn to integration. To derive an explicit formula for the 4- 

antiderivative of an arbitrary function f (x), we may again employ a formal 
approach using operators. Suppose F(x) is a 4-antiderivative of f (x). Using 
the operator A as defined in (5.6), we have 

(laq 	)F(x) = F (qx) F(q-1  x) = (q - q-1 )x f (x). 

Since 

g(x) 	114.0(x) = g(x) 

for any g(x), it is natural to write /c/4-1 = (ks/q ) - '. Thus, we have 

- 	F(x) = (q -  

or 

F(x) 

Hence, we have 

	(q-1  - q)xf (x) 
1 - Mi  

= (q-1  q)(.1aq  + 14: + 	+ • • • )x f (x). 

F(x) = x(q -1  - q) E 	f (ex). 	(26.17) 

(26.16) 



fqm.+ 1 

qm 

f (x)ciqx = (q-1  - q) 
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It is straightforward to verify that if the RHS of (26.17) converges, it does 
give a 4-antiderivative of f(x), and this antiderivative vanishes at x = O. 
Consequently, provided that the series converges, the definite 4-integral is 
given by 

a 

f (x)cigs = a(q-1  q) E qn f (qn a). 	(26.18) 
n=1,3,... 

The uniqueness problem rests upon the nature of the solutions to the func-
tional equation AG(x) = O. This equation implies G(qx) = G (q-1  x), or 
G(x) G (q2n x) for any x and integer n. If we require G (x) to be continu-
ous at 0, then  C(s) will be arbitrarily close to G(0); thus G(x) is constant. 
Therefore, as in q-calculus, continuity at z= 0 forces the 4-antiderivative 
to be uniquely determined up to a constant summand. 

If we define 
a 

f(x)c-iqx f f (x)ci qx - f f (x)ci q x, 

we have, in particular, 

(  n= 

E  gni-ra- 1 f ( qn-i-rn -1) 

1,3,... 

Eq7,m+i f(qn+m+1 )  
n=1,3,... 

= 07-1 	Eqrn) .  

It is then natural to define 

f (x)ciqx f: 
m-1 

E 
m=±1,±3,... ten +1  

= 	 ef(e.). 	(26.19) 

We stop here, leaving it to the reader to develop the symmetric q-calculus 
further along the lines of the q-calculus. 

We conclude the book with a brief discussion of more general quantum 
calculi. In this book we have encountered three different quantum calculi, 
namely, the q-calculus, the h-calculus, and the symmetric q-calculus. The 
most general definition of a quantum differential would be 

f (x) = f (qx + h) - f (q' + h'). 

Similar theories consisting of the corresponding derivatives, Taylor's formu- 
las and antiderivatives may thus be developed. In order that the derivative 
D f (x) = d f (x)/ dx, be well-defined, we should assume that either q # q' or 
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hSW.A family of polynomials {Pn }n>0 satisfying all three assumptions 
of Theorem 2.1 always exists, since such polynomials may be derived one 
after another starting from n =  O. In general, these polynomials have the 
following expression: 

	

P(x) = Cn (X — a)(x - a2) - - - an), 	 (26.20) 

where a2, a3 , are functions in a, q,  q', h, h'.  By comparing the leading 
coefficients in  DP(x) and Pn_i(x), it is easy to see that cn/cn_i = 1/[n], 
where we define 

[n] = (qn q'n)/(q g') if q q' and [n] = nqn-1  if q = q' 

Letting [n] ! = [1] 	[n] for a positive integer n, and [OP = 1, we have 

1 
	, 	n > 0. 

cn = [n]! 
 

However, the general expression of an  is too complicated to write down 
explicitly. This time, we compare the coefficients of xn-1  in dPn (x) and 
Pn-i(x)dx. This allows us to deduce the following recursion formula for 
Sn = a + a2 + • • + an, n > 2: 

[n]  
Sn  [n - I] 

(n(

qn

n-ih _ 

qm-1 

en-1 h' 	
q 

)  	) 
if q 	q',  (26.21)  

1 

n 1 
qsn_i +

2
n(h + hi) if q = q 	 (26.22)  Sn 

One can easily see that in general, even a2 and a3 have unpleasant expres-
sions. The recursive relation is simpler when h - h'. In that case, (26.21) 
becomes 

Sn = 	
[n] 
 Sn-i nh, 

[n 	1] 

which, together with the initial condition s i  = a, gives the solution 

n , 	1 	2 

(The solution may be obtained by means of the subsitution  t,.  = 
Then, we have 

= 3n  — 3n-1 

= (a — On] — [n 11) + nh 

n 1  \ 
[n 	n> 2. 

 

an 
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In particular, for the symmetric g-calculus, i.e., h = 0, q' 	we have 

= anr - [n 111a = 	- qn-2  qn-3  — • • • + ql-n)a n > 1. 

In other words, the sequence of polynomials for symmetric q-calculus to 
which the generalized Taylor formula applies is given by 

1 
P(x) = 1-1-ifri (x - a)(x - (q - 1 + q -1 )a) • • • 

x 	n - I 	-2  +q"3 	q l-n)a). (26.23) 



Appendix 



(a 0 -1) 
kt + 1] 
q - 1 
	log s  
log q 
(x - a)cqr+1  

[a + 1] 
q(a - q-1x);+1  

[a + 1] 
1 

gil - aj(x - qarr 1 
 1 

X ol-F 1 

a 0 -1) 

Appendix: A List of q-Antiderivatives 

f xadgx -= 

f d sgx = 

f (x - a)dgx -- 

1 (a - x):dgx =-- 

f . dgx  

J  (x - a ) 
 f  dgx  

J (a - x)(,21  

f e:z dgx 

f Er dgx = 

f cosg (a.x)dgx 

f sing (ax)dgx 

f Cosg (ax)dgx 

= 

= 

f Sing  (ax)dgx = 
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Integration by parts: 

L
b 	 b 

f(x)do(x) f (b)g(b) — f (a)g (a) — f g(qx)d q  f (s) 

Change of variable: 

u (b) 

fu(a) 	

b 
f (u)d

q 	•2 

u = f f (u(s))d o  / 0  u(x) , 	where u(x) = ete3 
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