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1Electrostatics

Electrostatics treats the phenomena caused by static electric
charges. Nearly 2000 years ago the Greek already gained
first qualitative experiences with electric effects. They dis-
covered that amber (greek: electron) became electrically
charged by rubbing.

Today we have, besides a more fundamental knowledge,
also a great number of technical applications of electrostat-
ics. A few of them will be discussed in detail. Nevertheless,
many basic questions have still to be answered. They are
based on a deeper fundamental knowledge of atomic physics
and we refer to volumes three and four of this textbook
series for more details.

1.1 Electric Charges; Coulomb’s Law

During the last three hundred years, many experimental
investigations revealed the following facts [1, 2]:

(a) There exist two different types of charges: positive +,
and negative − charges. They can be distinguished by
the forces between each other and also by the deflection
of charged particles in electric and magnetic fields (see
Sects. 1.8.2 and 3.3).

(b) Charges with equal signs repel each other while charges
with opposite signs attract each other (Fig. 1.1). Con-
trary to the force of gravitation where only attraction
exists, we now have repulsive as well as attractive
forces. These forces can be used to measure the amount
and the sign of electric charges.

(c) Charges are always associated with particles with mass.
The most important carriers of negative electric charges
are the electron and negative ions. Negative ions are
atoms or molecules with excess electrons.

The most important carriers of positive electric charges
are the atomic nuclei and positive ions. Positive ions are

atoms or molecules that miss at least one electron. Further-
more, there exist short living elementary particles with
negative or positive charges, i.e. pion, muon, positron and
anti-proton.

Charges with opposite signs attract each other while
charges with equal signs repel each other.

The positive charge +e of the proton and the negative
charge −e of the electron represent the smallest values of
electric charges found hitherto.

All charges Q in nature are an integer multiple of this
elementary charge e. Exceptions are the quarks, supposed
components of hadrons (heavy particles, see Vol. 1,
Sect. 1.4) with charges of 1/3 � e respectively 2/3 � e. How-
ever, according to our knowledge today, quarks do not exist
as free particles.

Very accurate measurements have shown that the
amounts of the charges of proton and electron differ at most
by 10−20e and we have good arguments to suppose that they
are exactly equal (see Vol. 3).

The total charge inside a closed system remains temporarily
constant, i.e. electric charges cannot be created or destroyed.

Note, however, that charges of one sign can be isolated
by spatially separating positive and negative charges (see
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→
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Fig. 1.1 Attraction of charges with opposite sign and repulsion
between charges with equal sign
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Sect. 1.5). An example is the ionization of hydrogen atoms
where electron and proton are separated.

• Charges can be transported between a source of charges
and a measuring instrument by an electrically isolated
metal ball (see Fig. 1.2a) but also by electric conductors
(Fig. 1.2b) or charged droplets of water (Fig. 1.2c).

The transport of electric charges represents an electric
current. Transport of charges is always connected with the
transport of mass.

Note Because our environment is electrically neutral,
charges of one sign are “created” by spatial separation of
negative from positive charges, where the condition must be
fulfilled that the algebraic sum of positive and negative
charges is always zero.

Examples

Triboelectricity (separation of charges by friction),
emission of electrons from the surface of a hot cath-
ode, ionization of atoms.

The forces between two charges Q1 and Q2 and their
dependence on their mutual distance r can be measured
quantitatively with Coulomb’s torsion balance (Fig. 1.3).
This is a device analogue to the Eotvos’ balance for mea-
suring the gravity force. (see Vol. 1, Sect. 2.9).

An electrically isolated rod is suspended by a thin wire.
At a distance L from the axis a metallic ball is mounted at

one end of the rod and a counterweight at the other end. Now
the ball is charged and another charged ball is moved
towards it. The force between both charges generates a
torque D = L � F which is balanced by the opposite torque
exerted by the twisted wire. Measuring the twist angle for
different distances r between the charged balls yields the
important equation for the force between charges Q1 and Q2,
named (Fig. 1.4) Coulomb’s law (Fig. 1.3)

F ¼ f � Q1 � Q2

r2
r̂; ð1:1Þ

with a proportionality constant f > 0, and the unit vector r̂ in
the direction from Q2 to Q1 (Fig. 1.5). Equation (1.1) shows
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Fig. 1.2 Transport of charged particles a) with a “spoon”, a metallic
ball on an isolating rod, b) via an electric conductor between the
charged metallic plates, c) by charged droplets of water
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that the force F and the vector r̂ are parallel for charges of
equal—repulsive force—and anti-parallel for charges with
opposite sign—attraction.

In Eq. (1.1) the units for the force F (Newton, N) and
the distance r (meter, m) are fixed. So only the units for
the proportionality constant f and the charge Q can be
chosen.

1.1.1 Systems of Measurement

During the historical development of physics mainly two
systems of units evolved. These are the earlier CGS (cm,
gramm, sec) system and the SI (systeme internationale).
The CGS system is still preferred by theoretical physicists.
In this book we will only use the SI.

1.1.1.1 The International System of Units (SI)
The SI has already been introduced in Vol. 1, Sect. 1.7.
The unit of electric charge Q is derived from the electric
current I, i.e. the amount of charges transported through the
cross section A in one direction during the unit of time
(second, s).

The current I is the fourth basic unit of the SI, (ampere,
A) and can be expressed by the units of length and force (see
Sect. 3.3.2 and Vol. 1 Sect. 1.6.8). So the unit of charge is

½Q� ¼ Coulomb ¼ C ¼ A s:

Coulomb’s experiment yields for the force between two
equal charges of 10−4 C and 1 m apart

F ¼ f � 10
�8 C2

1 m2
¼ 89:875 N:

The constant f in (1.1) becomes f ¼ 8:9875�
109 Nm2=C2. As will become evident the constant f is cho-
sen as

f ¼ 1
4pe0

and includes the dielectric constant e0 of the vacuum

e0 ¼ 8:854� 10�12 A2s4kg�1m�3;

Coulomb’s law is written in SI-units as

F ¼ 1
4pe0

Q1 � Q2

r2
r̂. ð1:2Þ

The unit of e0 can be written as As/(Vm) because
1 kgm2 s�2 ¼ 1Nm ¼ 1VA. The unit Volt, (V) is explained
in Sect. 1.3.1.

Examples

1. An electron carries a charge of �e ¼ �1:6�
10�19 C.

2. If it were possible to remove one electron of each
atom in two equal masses of 1 kg copper, con-
taining about N ¼ 1025 atoms this would represent
a positive charge of +N � e = 1.6 � 106 C. The
force between these two bodies separated by 1 m
would be Fj j ¼ 2:3� 1022N!!

1.1.1.2 The cgs System
The cgs system sets the factor f in Coulomb’s law equal to
the dimensionless number one. The force is measured in
dynes, the length in centimeters (cm). We then get from
½F� ¼ Q2=r2½ � the unit of charges

½Q� ¼ ½r� � ½F�1=2
¼ 1 cm � dyn1=2 named ESU ðelectrostatic unitÞ:

1 ESU ¼ 1 cm �
ffiffiffiffiffiffiffiffi
dyn

p
The cgs system is often used in theoretical physics

because of fixing the constant f to f =1 simplifies the notation
of many equations. But the great disadvantage is that you
have to know every conversion factor between mechanical
and electromagnetic units.

Therefore, in this textbook we will use solely the
internationally agreed units of the SI.

The SI unit Coulomb expressed in ESU is

1C ¼ 3� 109 ESU

1.1.1.3 Measurement of Charges
Charges can be measured with an electrometer. Figure 1.6a
shows the realization with a metallic pointer Z that can rotate
about the axis D.) It takes the equilibrium position when the
acting torques Dg—caused by gravity and Dc—caused by
electrostatic forces between the pointer and the vertical
support just cancel each other.

The center of mass of the pointer lies below the axis
D. Therefore without charges the pointer shows zero at the
top of the scale. Charges brought to the instrument create a
repulsive Coulomb force between the metallic pointer and
the metallic vertical support resulting in a deflection of the
pointer because they carry charges of the same sign.

1.1 Electric Charges; Coulomb’s Law 3



The electrometer with two filaments shown in Fig. 1.6b
uses the repulsive force between thin Lametta strings to
measure the amount of charges.

Note With both instruments only the amount of charges can
be measured but not the sign.

Charges can not only be measured by their forces on each
other but also by discharging a capacitor through a conductor
of high resistance. The time variation of the current I(t)
is measured (Fig. 1.2b).

For the total charge we get

Q ¼
Z1
0

IðtÞ dt:

Note Equation (1.1) for the force between two charges is
mathematically equivalent to the law of gravitation. The
ratio of gravitational and Coulomb’s force is

FG

FC
¼

G
m1 � m2

r2
Q1 � Q2

4pe0r2

¼ 4pe0 � G � m1 � m2

Q1 � Q2
:

Examples

1. We consider two balls of lead each of mass
m = 10 kg which carry a charge Q ¼ 10�6 C. At a
distance of 0.2 m between their centers the Coulomb
force is FC ¼ 0:22N but the gravity force is only
FG ¼ 1:7� 10�7 N. Their ratio is then
FG=FC ¼ 7:7� 10�7.

2. We replace the balls of experiment 1 by two
electrons of mass me ¼ 9:1� 10�31 kg, and charge
Q ¼ �e ¼ �1:6� 10�19 C. This gives the ratio

FG

FC
¼ 4pe0G � m2

e2
¼ 2:4� 10�43!

3. Electron and proton of the hydrogen atom attract
each other at a distance of 0:5 Å ¼ 5� 10�11 m
with the Coulomb force of FC ¼ 9:2� 10�8 N.
The corresponding gravitational force is smaller by
a factor of 4:4� 10�40.

4. The repelling force between two protons in the
atomic nucleus with a mean distance of r ¼ 3�
10�15 m is FC ¼ 26N. Because the nuclei are
stable there must be a compensating attractive
force (nuclear force). Since the force of gravitation
between these protons is only 2:1� 10�35 N
gravitation cannot be responsible for the
stability.

These examples illustrate that gravitational forces
in micro physics can be completely neglected
against the Coulomb forces.

The strong electrostatic forces are responsible for the rel-
ative high energy demanded to separate charges in macro-
scopic bodies. The following example will illustrate this fact.

Consider a ball of radius 1:5 cm made of electrically
neutral copper. If it were possible to ionize only 1% of the
1:2� 1024 atoms and transfer these electrons onto an equal
but neutral ball placed 1 m apart then each body would bear
an excess charge of DQ ¼ �1:9� 103 C. The attractive
force between the balls would be 3:3� 1016 N.

Macroscopic bodies are in general electrical neutral.
Therefore Coulomb’s forces of positive and negative charges
cancel each other. Then the gravitational forces become
dominant.

Even in the microscopic region (attraction or repulsion
between two atoms) the electrical forces between two
neutral atoms nearly outweigh. However, the positive and
negative charges have different spatial distributions and
therefore the Coulomb forces do not cancel completely (see
Sect. 1.4.3).

The chemical bond does not only depend on the Coulomb
interactions which can be attractive but also repulsive. In
addition exchange interactions play an important role which
can be explained only by quantum mechanics.

scale
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Fig. 1.6 Measurement of charges
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1.2 The Electrostatic Field

In Vol. 1, Sect. 2.7.5 we had introduced the gravitational
field G that is independent of a test mass m. A more common
concept is the electric and magnetic field. Here we also have
to find a field which is independent of the test charge.

1.2.1 Electric Field-Strength

The force

FðrÞ ¼ Q � q
4pe0r2

r̂; ð1:3Þ

of a charge Q located at the origin of a coordinate system
acting onto a test charge q at the position r can be measured.
The charge Q creates a force F(r) according to (1.3) with a
magnitude still dependent on the test charge q. To overcome
this dependence we define an electric field E(r) as the
quotient F(r)/q of force and test charge

EðrÞ ¼ Q

4pe0r2
r̂: ð1:4Þ

We name this expression the electric field strength of the
charge Q and the corresponding normalized force field F(r)/q
the electric field. Its unit is

½E� ¼ ½F=q� ¼ 1N/A s ¼ 1V/m:

F ¼ q � E: ð1:5Þ

If there are several charges Qi distributed in space then
wefind the total force upon a charge q by vector addition of the
individual forces (Fig. 1.7). Now we position the test charge
q at the origin and the field charges Qi at the positions ri.

The total force is then

F ¼ q

4pe0

X
i

Qi

r2i
r̂i: ð1:6aÞ

The total field strength at the position of the test charge
q is then E = F/q.

Besides point-charges there exist quasi continuous charge
distributions with the spatial charge density .ðrÞ, where . is
defined as the charge per unit volume (Fig. 1.8). The total
charge in volume V is

Q ¼
Z
V

.ðrÞ dV :

where we have chosen the origin arbitrarily.
The force F(R) upon a test charge q at a point P(R) out-

side of the volume V with the space charges dQ ¼ . dV is,
according to Fig. 1.8

FðRÞ ¼ q

4pe0

R� r

R� rj j3 . dV : ð1:6bÞ

The force between the total charge Q and the test charge
q is then

FðRÞ ¼ q

4pe0

Z
V

R� r

R� rj j3.ðrÞ dV : ð1:6cÞ

Correspondingly we treat electrically charged surfaces,
e.g. metal plates which have a surface charge density r =
Q/A. The total charge of the area A becomes

Q ¼
Z
A

r dA ð1:6dÞ

Generally speaking we can conclude:
The presence of point charges Qi or of the space charge

density .ðrÞ or the surface charge density r changes the
empty space. An electric vector field

EðrÞ ¼ FðrÞ=q

is created by the charges. Its amount and direction is in every
point defined by the total force F(r) on the test charge q.

Fig. 1.7 Force on a test charge q by different field charges Qi

dQ dV

V
0

Q

dV

q
r

R )R(P

rR

Fig. 1.8 Force on a test charge q by a continuous charge distribution
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This field can be illustrated by field lines. Their tangent in
the point P points always in the direction of the field
strength.

The direction of the field strength is defined by the
force on a positive point charge. It points from a
positive field charge away to a negative field charge.

Figures 1.9 1.10 and 1.11 show a few examples of
electric fields created by point charges.

To illustrate the determination of the field of a surface
charge we start with the calculation of the field of an infinite
flat sheet of homogeneous charge density r (Fig. 1.12).

The charge dQ ¼ r dA exerts a force

dF ¼ q

4pe0

r � dA
b2

b̂; ð1:7aÞ

on the test charge q at a distance b.

We split this force into a horizontal component dF � sin a
parallel to the surface, and a vertical component dF � cos a
normal to the surface. By integration over the angle u (see
Fig. 1.12) and using the surface element dA ¼ r du dr and
b ¼ a= cos a yields the contribution of the vertical
component.

dFv ¼ 2pr dr
4pe0b2

q � r � cos a

¼ q � r
2e0a2

cos3 a
� � � r dr; ð1:7bÞ

which is generated by the charges on the circular ring with
the area 2pr � dr (bright red area in Fig. 1.12).

(a) (b)

+

Fig. 1.9 Electric field lines (red) produced by a positive and a
negative point charge and equipotential lines (black dashed)
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Fig. 1.10 Electric field lines (red) and equipotiental lines (dashed
black) of two positive field charges Q1 and Q2
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Fig. 1.11 Electric field lines and equipotential lines of an electric
dipole
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Fig. 1.12 Illustration of the force on a test charge q in the electric field
of a surface charge
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The amount of the horizontal component becomes zero
because of the rotational symmetry i.e. each two opposing
components compensate. With a = tan a and dr=da ¼
a= cos2 a we reformulate dFv as

dFv ¼ � sin a � da
Integration over the infinite surface yields the total force

onto q that is equivalent to the integration over the angle a
from 0 to p/2.

F ¼
Zp=2
0

dFv ¼ q � r
2e0

ð1:7cÞ

The force F is always perpendicular to the plate and
therefore also the electric field E = F/q with E = r/e0).
Furthermore the electric field is independent of the normal
distance a from the charged surface. Such a field with a
spatially constant vector E is called a homogeneous field.

If the charged plate has finite dimensions D then
boundary effects disturb the homogeneity of the field. They
can be reduced by placing a second plate at a distance d
parallel to the existing one. Both plates are charged with |Q|
= |Q1| = |Q2| but of opposite sign. The distance d between the
plates is small compared to their extension d � Dð Þ. Inside
of such a charged parallel plate capacitor (see Fig. 1.13 and
Sect. 1.5.2) the force on a charge q is therefore

F ¼ rq
e0

x̂; x̂ ¼ x= xj j: ð1:8aÞ

The electric field strength E = F/q inside the parallel plate
capacitor is then

E ¼ r
e0
x̂: ð1:8bÞ

its amount is

E ¼ r
e0

ð1:8cÞ

Because amount and direction of the vector field are
constant within the capacitor, the electric field E is
homogeneous.

At the edges of the plates the field is inhomogeneous.
That can be minimized by a separate, isolated ring around
the plates, with the same potential as the capacitor ( guard
ring) (Fig. 1.13b).

1.2.2 Electric Flux; Charges as Sources
of Electric Fields

We consider a surface that encloses a volume with point
charges or with a volume charge density .. The electric field
lines of these charges penetrate the surface A. We denote an
area element dA of this surface by the outward normal vector
dA (Fig. 1.14a). The electric flux dUel through dA is defined
by the scalar product

dUel ¼ E � dA ð1:9aÞ

and is a measure of the number of electric field lines through
dA. We get the total electric flux through A by integration

Uel ¼
Z

E � dA: ð1:9bÞ

A point charge at the center of a sphere with surface
A creates the Coulomb field

E ¼ Q=ð4pe0r2Þr̂
and the electric flux through A

Q Q voltage source

guard ring

edge field

edge field

Q

+ Q

Main
capacitor

R R 0U

(a) (b)

d D

x

r

x

+ –

Fig. 1.13 a) Electric field of a parallel plate capacitor with edge
effects b) compensation of edge effects

Q=0

el= 0dA

E

el = E · d Ad

(a) (b)

Fig. 1.14 a) Illustration of the electric flux through a surface element
dA b) electric flux through a closed surface

1.2 The Electrostatic Field 7



Uel ¼ Q

4pe0

Z
r̂
r2
dA ¼ Q

4pe0

Z
dX ¼ Q=e0;

because dA=r2 is the solid angle dX and the integral over the
solid angle equals 4p.

With Gauss’ theorem it can be shown mathematically that
for every closed surface A

Uel ¼
Z
A

E � dA ¼
Z

VðAÞ

divE dV:

is valid [3].
From the result of the special case above the validity for

the general case

Uel ¼ 1
e0
Q ¼ 1

e0

Z
. dV

) divE ¼ .=e0

ð1:10Þ

can be deduced. In words

The spatially distributed charges are sources (if .[ 0)
or rather sinks (if .\0) of the electric field.

Note The total electric flux through a closed surface is
independent of the form of the surface and the distribution of
the charges .ðrÞ but depends solely on the total charge
Q included by the surface A.

In the model of field lines all field lines originate on a
positive charge and terminate on a negative charge (see
Fig. 1.11). If the surface A encloses a positive chargeQ (or an
excess charge DQ > 0) then Uel [ 0 i.e. more field lines come
out of the enclosed volume than enter the volume. If the total
charge inside the volume is zero then also Uel ¼ 0 and the
number of field lines entering the surface is the same as the
number of lines leaving the surface (Figs. 1.14b and 1.15).

1.3 The Electrostatic Potential

In order to bring a charge q in an electric field E from the
position P1 to P2 (Fig. 1.16) work has to be done (see Vol. 1,
(2.35))

W ¼
ZP2

P1

F � ds ¼ q �
ZP2

P1

E � ds: ð1:11Þ

Example

In the field of a point charge Q a test charge q is
brought from the distance r1 to the distance r2. The
necessary work is

W ¼ qQ

4pe0

Zr2
r1

dr
r2

¼ qQ

4pe0

1
r1

� 1
r2

� �

If the distance between charges of equal sign is
increased r2 [ r1ð Þ then W > 0 i.e. we gain energy at
the expenses of potential energy. When decreasing the
distance between the repelling charges we have to
supply energy (W < 0).

Q
d A

el = Q / 0 el = Q / 0

Q= · dV

E

el = 0

–Q

+Q

(a) (b)

(c)

E

d A

A

Fig. 1.15 a) Electric flux through a closed surface including a positive
point charge Q b) Electric flux produced by a volume charge c) The
electric flux through a closed surface including an electric dipole is zero

dW=F·ds

F=q ·E

E

P2

P1q

ds

Fig. 1.16 Illustration of the work necessary to bring a test charge q in
an electric field from P1 to P2
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1.3.1 Potential and Voltage

When we discussed the gravity potential (Vol. 1, Sect. 2.7) it
has been shown that in a conservative force field the
work-integral is independent of the path and depends solely
on the end points P1 and P2. Because the electric field is
conservative as the gravity field we can attribute to each
point of space an unambiguously defined function

/ðPÞ ¼
Z1
P

E � ds ð1:12Þ

which is called the electric potential at the point P. It is
usually set to zero at infinity: /(r = ∞) = 0.

The product q � /(r) gives the work that has to be done
resp. which is gained if the charge q is transferred from the
point P to infinity.

The potential difference between two points P1 and P2

U ¼ /ðP1Þ � /ðP2Þ ¼
ZP2

P1

E � ds ð1:13Þ

is called the electric voltage U (Fig. 1.17).
A charge q that is transferred in space and overcomes the

electric potential difference U suffers a change of its poten-
tial energy

DEpot ¼ �qU ð1:14Þ
Because the total energy E ¼ Ekin þEpot is constant the

kinetic energy must change by

DEkin ¼ �DEpot ¼ qU: ð1:14aÞ
The unit of the potential difference (voltage) is 1 V (V).

U½ � ¼ Epot=q
� � ¼ 1Nm=ðA sÞ

¼ 1VA s=ðA sÞ ¼ 1V:

In atomic physics it is more convenient to use the smaller
unit of energy 1 electron volt (eV). This is the energy gained

by an electron if it is accelerated by a potential difference
U ¼ D/ ¼ 1V. According to (1.14a) is

1 eV ¼ 1:602� 10�19 C � 1V ¼ 1:602� 10�19 J:

Examples

1. A hot cathode in an evacuated tube emits electrons
with an initial speed v0. The voltage U between
cathode and anode (Fig. 1.18) accelerates the
electrons. Their energy at the anode is then

Ekin ¼ m

2
v2 ¼ m

2
v20 þ e � U:

They hit the anode with a velocity v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v20 þ 2eU=m

p
.

Because generally v0 � v we can approximate

v � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eU=m

p
. With U ¼ 50V is v ¼ 4� 106 m/s,

which is about 1.3% of the speed of light.

2. How much energy has to be spent to ionize a
hydrogen atom, i.e. to bring the electron from the
distance r1 from the proton to infinity.

W ¼ �e2

4pe0

Z1
r1

dr
r2

¼ �e2

4pe0r1
:

With the numerical values e ¼ 1:6� 10�19 C, e0 ¼
8:85� 10�12 C/Vm and r1 ¼ 5� 10�11 m we get
W ¼ �27 eV. The experimental value is Wexp ¼
�13:5 eV. The discrepancy comes from neglecting
the kinetic energy in the ground state of the
hydrogen atom. The mean value of the kinetic
energy in a force field F / 1=r2 is

Ekinh i ¼ � 2Epot
	 
 ðVirial theorem):

This can be readily verified for a circular motion of a
charge q on a circle with radius r by equating
centripetal and Coulomb force.

Equipotential
lines

U

1P

2P

)    ( ) 0PPU 21= (

Fig. 1.17 Equipotential lines and electric field lines

U

+

+

A
K

Vacuum

e

E0v

Fig. 1.18 Electrons emitted by a hot cathode are accelerated by the
voltage U
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1.3.2 Potential Equation

It follows from the definition of the electric potential

/ðPÞ ¼
Z1
P

E � ds

exactly as for the gravity potential that the field strength
E can be written as the gradient

E ¼ �grad/ðx; y; zÞ ¼ �$/: ð1:15Þ
The electrostatic field can either be described by a scalar

potential function /ðx; y; zÞ or by the vector field Eðx; y; zÞ.
The scalar potential function assigns to each point in space a
scalar quantity while the vector field assigns to each point in
space the triple Ex;Ey;Ez

� �
that defines magnitude and

direction of the electric field in this point.
From (1.10) it follows

divE ¼ �div grad/ ¼ �D/ ¼ .=e0; ð1:16Þ

where D represents the Laplace operator (see Vol. 1,
Chap. 13).

The equation

D/ ¼ �.=e0 ð1:16aÞ

is called Poisson equation.

The integration of this differential equation makes it
possible to determine the potential /ðx; y; zÞ and the
electric fieldEðx; y; zÞ if the charge distribution .(x, y, z)
is given.

The constants of integration are determined by suitable
boundary conditions. In a space without charges the Poisson
Eq. (1.16a) simplifies to the Laplace equation

div grad/ ¼ D/ ¼ 0 ð1:16bÞ
Equation (1.16) plays an important role in electrostatics

comparable to Newton’s equation of motion F = ma in
mechanics.

If the distribution of charges .ðrÞ is known the potential
/ðrÞ and the field strength EðrÞ always can be determined, at
least numerically.

In Sect. 1.3.4 we will illustrate the calculation of potential
and electric field for some examples.

1.3.3 Equipotential Surfaces

Surfaces with constant potential /ðrÞ are called equipoten-
tial surfaces. Analysis taught us that the gradient (in this
case the electric field E = −grad /) is perpendicular to an
equipotential surface at any point of the surface. One can
imagine the equipotential lines similar to contour lines of
maps. Contour lines connect all points with a given altitude
(= distance to the mean sea level).

The mathematical expression for a three-dimensional
contour map is a scalar valued function z(x, y) describing the
distance z to the x-y-plane (z = 0). If we describe the surface
of mountains by the set of all points ðx; y; zÞ with height
z ¼ hðx; yÞ then a contour line is the subset
hðx; yÞ ¼ constant.

At any point of a contour line the gradient points in the
direction of steepest ascent and is always normal to the con-
tour line.

The contour lines also can be seen as lines of constant
potential energy Ep. At any point the field lines are parallel
to the forces and therefore are normal to the contour lines.
For electric field lines the behavior is completely
analogous.

Therefore the equipotential surfaces are surfaces perpen-
dicular to the field lines (Figs. 1.9, 1.10 and 1.11).

Moving a charge on an equipotential surface requires no
work.

W ¼ q �
Z

E � ds 	 0 because E? ds:

Examples

1. The equipotential surface of the Coulomb field of a
positive charge is a sphere about the charge at its
center (Fig. 1.9). If there are more than one point
charges things become more complicated. In the
case of two point charges we get the equipotential
surface of Figs. 1.10 and 1.11.

2. In the homogeneous field of a parallel plate
capacitors (Fig. 1.13) the equipotential surfaces are
planes parallel to the plates.

3. In electrostatics with its charges at rest all sur-
faces of conductors are equipotential surfaces. All
field lines are perpendicular to the surface of a
conductor. This is no longer valid if there are
electric currents through the conductors (see
Sect. 2.2.2).

10 1 Electrostatics



1.3.4 Special Distributions of Charges

1.3.4.1 Charged Hollow Spheres
The homogeneously charged surface of a conducting hollow
sphere of radius R has the surface charge density r and the
total charge Q ¼ 4pR2r. According to (1.9b) the electric flux
through the surface of a concentric sphere of radius r > R is

Uel ¼
Z

E � dA

¼ E � 4pr2 ¼ Q=e0 ) E ¼ Q

4pe0r2
r̂;

because of symmetry arguments E points radially outward,
i.e. E dAk kr̂.

The charged surface of a sphere of radiusR acts at r >R like
a point charge Q in its center.

We obtain the potential at a distance r > R to the center of
the hollow sphere from

/ðrÞ ¼
Z1
r

E � dr

¼ Q

4pe0r
) EðrÞj j ¼ /ðrÞ

r
:

Since the surface of a conductor is an equipotential sur-
face the electric field strength rises with decreasing radius of
curvature if the potential / has a fixed amount.

An arbitrary closed surface completely inside the sphere
(r < R) does not surround any charge. Because for each of
these surfaces is

Uel ¼
Z

E � dA ¼ 0;

it follows that E = 0 inside the sphere.

Inside the homogeneously charged hollow sphere is no
electric field. The potential inside the sphere is con-
stant (Fig. 1.19).

1.3.4.2 Charged Solid Sphere
Electric field and potential of a homogeneously charged not
conducting solid sphere with charge Q ¼ 4

3pR
3. are given

analogous to Vol. 1, Sect. 2.9 (see Fig. 1.20 and Problem
(1.8):

For r
R we get

E ¼ Q

4pe0r2
r̂; / ¼ Q

4pe0r
; ð1:17aÞ

resp. for r�R

E ¼ Qr

4pe0R3
r̂; / ¼ Q

4pe0R
3
2
� r2

2R2

� �
: ð1:17bÞ

~ r

)bra( 2

R

rR

3/2

1

IEI

2r/1~

)R(/)r( φφ

r

Fig. 1.20 Electric field and normalized potential of a uniformly
charged non-conducting solid sphere

R r

E

E 0

2
0r4

Q
E =

| |

rR

r4
Q

)r(
0

=

const.

(r)

Fig. 1.19 Electric field and potential inside and outside of a charged
hollow sphere
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1.3.4.3 Charged Rod
As a further example we will calculate field and potential of
a charged infinitely long rod of radius R (Fig. 1.21). The
charge per unit length is k ¼ Q=L ¼ pR2 � . Again for
symmetry arguments the field strength E at a point P with a
distance r from the rod axis is directed radially outward. The
electric flux through the surface of a coaxial cylinder of
radius r and length L is for r
R

Uel ¼
Z

E � dA ¼ E � 2pr � L

¼ Q

e0
¼ k

e0
� L ) Ej j ¼ /el

2pr � L
) E ¼ k

2pe0r
r̂.

ð1:18aÞ

(k = Q/L= charge per unit length).
For r�R we have Q ¼ k � L � pr2= pR2ð Þ

)
Z

E � dA ¼ E � 2pr � L ¼ k � L � r2
e0R2

) E ¼ kr
2e0pR2

:

ð1:18bÞ

With the boundary condition /ðRÞ ¼ 0 we get for r
R
the electric potential

/ðrÞ ¼ � k
2pe0

ln
r

R
ð1:18cÞ

and for r�R

/ðrÞ ¼ k
4pe0

1� r2

R2

� �
: ð1:18dÞ

Question: Why is here the boundary condition /ð1Þ ¼ 0
not useful?

1.3.4.4 Coaxial Cable
A coaxial cable is an arrangement of a conducting wire of
radius R1 surrounded by a coaxial hollow conducting
cylinder of radius R2 (Fig. 1.22). Both conductors carry the
same amount of charge density but of opposite sign,
k1 ¼ �k2.

For r[R2 we haveZ
E � dA ¼ 0 ) E ¼ 0;

because the total charge insides a cylinder of radius r[R2

is zero.
Let be R1 � r�R2.
The field caused by the outer cylinder is zero, because at

r\R2 there are no (negative) charges. The field caused by
the inner wire is

E ¼ k
2pe0r

r̂.

as we have derived in the previous example.

1.4 Electric Multipoles

The Poisson equation (1.16) is a linear equation in E and /,
i.e. the Poisson equation depends only linearly on the elec-
tric field EðrÞ as well as on its components and the potential
/ðrÞ. It follows that the Coulomb potentials /ðrÞ generated
by the charges Qi distributed in space can be linearly
superimposed at the point P.

Therefore N point charges Qi rið Þ (Fig. 1.23) produce at
the point P the total potential

/ðRÞ ¼ 1
4pe0

XN
i¼1

Qi

R� rij j; ð1:19Þ

where R is the position vector of P and ri the position vectors
of the charges Qi.

+    +    +    +    +    +    +

L
E

d A = 2 rdLπ
d E ·dAΦ=

E

φ E φ∝a br2

E ∝1 / r

r

E ∝ r

(b)

R

φ ∝ ln r

(a) →

→ →

→

r dL

−

−

a

λ

λ

ε

ε

Fig. 1.21 Electric field and potential of an infinitely long charged rod

L

+ λ →

R2

E
12R

isolating
layer

– λ

Fig. 1.22 Coaxial cable

12 1 Electrostatics



Now we consider a continuous distribution of space
charges with the density .ðrÞ (Fig. 1.24). Because of Q ¼R
. dV we have

/ðRÞ ¼ 1
4pe0

Z
V

.ðrÞ dV
R� rj j ; ð1:20Þ

where the origin of the coordinate system is often chosen at
the center of charges S.

The integral (1.20) over an arbitrary charge distribution
often has no analytic solution but if the distances R between
the center of charges R = 0 and the point PðRÞ is large
compared to the extension of the space charges one can
expand the potential /ðRÞ in a Taylor series and integrate
each term separately. The origin of the coordinate system is
either the center of the charge distribution S of one sign or
the midpoint between the centers of positive and negative
charges. Then /ðRÞ is expanded in terms of r=R � 1.

This so called multipole expansion divides the potential
of the charge distribution into sums /nðRÞ that are generated
by point charges (monopoles), by pairs of point charges
(dipoles), by pairs of dipoles (quadrupoles) and so on. Each
of these contributions decreases with another power R−n

depending on the distance R between field point and center
of charges S (Fig. 1.25). This model has been very useful for
example to calculate the interaction of atoms and molecules.
We get better insight into the distribution of charges.

Now we will treat the spatial distributions of potentials
and of fields for some simple multipoles to illustrate the
general multipole expansion discussed in Sect. 1.4.3 by
these concrete examples.

1.4.1 The Electric Dipole

An electric dipole consists of two charges of opposite signs
but equal amountsQ1 ¼ Q ¼ �Q2 at a distance d (Fig. 1.26).

It is characterized by its dipole moment

p ¼ Q � d;
Its direction is defined by pointing from the negative

charge to the positive charge where d is the distance between
–Q to +Q.

Field strength EðRÞ and potential /ðRÞ at any point PðRÞ
is given by superposition of the fields of both point charges.
We chose the origin at the midpoint S between +Q and –

Q. The calculation of the field is easier to accomplish if we
first calculate the potential and then apply the gradient
operator to the potential. Let r1 ¼ R� d=2 and r2 ¼
Rþ d=2 then we get

/DðRÞ ¼
1

4pe0

Q

R� d=2j j �
Q

Rþ d=2j j
� �

: ð1:21Þ

At sufficiently large distance from the dipole R � dð Þ we
can cut the Taylor series expansion after the linear term

P(R)

Fig. 1.23 Potential generated at the observation point P(R) by four
point charges Qi

r

R R >> r

r

P

S

Fig. 1.24 Potential of a charge distribution in a volume V(r) at a far
distant point P(R) with R >> r

+=

any
charge
distribution

monopole dipole quadrupole

higher multipoles

Fig. 1.25 Illustration of multipole expansion

z

Q

S

Q
p

plane z 0

P

d

R E

2/dR1

2/d2

ϕ

Fig. 1.26 Electric field of an electric dipole
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1
R� d=2j j ¼

1
R
� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� R�d
R2 þ d2

4R2

q
¼ 1

R
1 1

2
R � d
R2

þ � � �
� � ð1:22Þ

and get an approximation to the potential of a dipole at far
distances.

/DðRÞ ¼
Q

4pe0
� d � R
R3

¼ p � R
4pe0R3

¼ p � cos#
4pe0R2

:

ð1:23Þ

Because of grad ð1=rÞ ¼ �r=r3 we can rewrite the dipole
potential as the product of distance d between the charges and
the gradient of the monopole potential (Coulomb potential)

/DðRÞ ¼ � Q

4pe0
d � r 1

R

� �
¼ �d � grad/MðRÞ

ð1:24Þ

This illustrates that with increasing distance R the
potential /DðRÞ / 1=R2 decreases faster than the potential
/MðRÞ / 1=R of a monopole. The reason for it is that the
opposing potentials of +Q and –Q more and more com-
pensate with increasing distance. In the symmetry plane z =
0 is # ¼ 90� and therefore everywhere /D 	 0.

The electric field E ¼ �grad/D can be calculated from
(1.23) using

grad/D ¼ Q

4pe0
ðd � RÞgrad 1

R3
þ 1

R3
gradðd � RÞ

 �
Because of grad 1=R3 ¼ �3R=R5 and Qd � R ¼ p � R �

cos# and Q gradðd � RÞ ¼ p we get

EðRÞ ¼ 1
4pe0R3

ð3pbR � cos#� pÞ: ð1:25aÞ

The field can be best illustrated in polar coordinates
ðR; #; uÞ because of the cylindrical symmetry of the problem.

From

E ¼ �grad/

¼ � @/
@R

;
1
R

@/
@#

;
1

R sin#
@/
@u

 �
; 0

we get with (1.23)

ER ¼ 2p � cos#
4pe0R3

; E# ¼ p � sin#
4pe0R3

; Eu ¼ 0: ð1:25bÞ

The field does not depend on the azimuth angle u and is
therefore cylindrical symmetric about the dipole axis.

Figure 1.11 shows the electric field in the x-y-plane that
contains the axis of the dipole. Figure 1.26 shows the
components ER and E# of the field strength.

Electric field E and potential / of the dipole have
cylindrical symmetry about the dipole axis which we choose
as the z-axis.

1.4.1.1 The Dipole in a Homogeneous Electric
Field

In an external electric field E(r) the electric dipole has the
potential energy (Fig. 1.27)

Wpot ¼ Q/1 � Q/2 ¼ Q /1 � /2ð Þ; ð1:26Þ
which becomes zero if both charges +Q and –Q are situated
on an equipotential surface i.e. the dipole axis is normal to
E.

For an arbitrary position of the dipole the homogeneous
electric field acts with the forces F1 ¼ Q � E and F2 ¼
�Q � E on the charges Q and –Q. Because of r1 � r2 ¼ d the
forces generated a torque

D ¼ Q r1 � Eð Þ � Q r2 � Eð Þ
¼ ðQ � dÞ � E ¼ p� E

that is normal to d and E and therefore can be written in
vector mode

D ¼ p� E: ð1:27Þ
The potential energy of the dipole in an external homo-

geneous field results from (1.26) because of /1 � /2 ¼
gradð/ � dÞ and E ¼ �grad/ as

Wpot ¼ �p � E ð1:28Þ

Q

Q

.const1 2

E
p

2F

1F

S
r1

r2

.cons

equipotential planes

t

Fig. 1.27 Electric dipole in a homogeneous electric field
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The potential energy has a minimum if p and E are
parallel.

The dipole adjusts itself in this position if it is not hin-
dered by other forces.

1.4.1.2 The Dipole in an Inhomogeneous Electric
Field

In an inhomogeneous field E the resulting force

F ¼ Q � Eðrþ dÞ � EðrÞ½ �
¼ Q � d � dE

dr
¼ p � rE:

ð1:29Þ

acts on the dipole.
The vector gradient of E is a tensor and its scalar product

with the vector p yields the vector F.

Fx ¼ p � gradEx

¼ px
@Ex

@x
þ py

@Ex

@y
þ pz

@Ex

@z
;

Fy ¼ p � gradEy

¼ px
@Ey

@x
þ py

@Ey

@y
þ pz

@Ey

@z
;

Fz ¼ p � gradEz

¼ px
@Ez

@x
þ py

@Ez

@y
þ pz

@Ez

@z
:

ð1:29aÞ

The resulting force on a dipole in a homogeneous field is
zero. At an arbitrary orientation of p the torque D ¼ p� E
acts and turns the dipole into the direction of the field i.e. to
its energy minimum. In an inhomogeneous field a force F ¼
p � rE acts on the dipole that turns it into the direction of the
field and pulls it into the direction of increasing field strength
(Fig. 1.28).

1.4.2 The Electric Quadrupole

Now we arrange two positive and two negative charges in
such a way that we have two neighboring antiparallel dipoles
at a distance a (Fig. 1.29). So at a large distance R where
R >> a and R >> d (distance between the charges) the dipole
fields practically cancel each other.

Such an arrangement of four monopoles where the total
charge is zero is called a quadrupole The potential is the
result of the superposition of two dipole potentials

/QðRÞ ¼ /DðRþ a=2Þ � /DðR� a=2Þ
¼ a � grad/D:

ð1:30Þ

From (1.23) we get

/QðRÞ ¼
Q

4pe0
a � grad d � R

R3

� �
: ð1:31Þ

This shows that the quadrupole potential can be written as
a scalar product of distance vector a between the dipoles and
gradient of the dipole potential /D. This is analogous to the
dipole potential that is equal to the negative scalar product of
the distance of the charges and gradient of the monopole
potential (1.24). The sign of /Q Q results from the definition
of the direction of a.

1.4.3 Multipole Expansion

At a point PðRÞ the potential of an arbitrary distribution of
point charges (1.19), surface charges or volume charges
(1.20) can be evaluated by a series expansion in powers of
r/R (Fig. 1.23). The conditions to do this are: the distance
R between the center of the charge distribution and the point
P(R) is large compared to r, r=R � 1 and a sufficient
number of terms has to be taken into account in order to
acquire the desired accuracy.

Q
q

q
F

p

E

EgradpF =

Q
q q

d

r

S

Fig. 1.28 Electric dipole in an inhomogeneous electric field
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x
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12 dd

Fig. 1.29 Electric quadrupole
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The expression

1
R� rj j ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR� rÞ2

q
¼ 1

R

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð2R � r=R2Þþ r2=R2

p ð1:32Þ

in the sum of (1.19) resp. in the integral of (1.20) can be
expanded in a Taylor series (see [3]).

The expansion of the function

f ðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
1� x

p

¼ f ð0Þþ x � f 0ð0Þþ x2

2
f 00ð0Þþ � � �

¼ 1þ 1
2
xþ 3

8
x2 þ � � �

ð1:33Þ

with x ¼ 2ðR � rÞ=R2 � r2=R2 from (1.32) yields

)
ffiffiffiffiffiffiffiffiffiffiffi
1� x

p
¼ R�1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � 2ðR � rÞþ r2

p
¼ 1

2
R� rj j

1
R� rj j ¼

1
R
� r � r 1

R

þ 1
2
ðr � rÞðr � rÞ 1

R
þ � � � ;

ð1:34Þ
as you can proof by explicitly carrying out the differentiation
of (1.32).

The ∇ operator (also called nabla operator) in (1.34) acts
only on R. Inserting (1.34) in (1.19) yields the multipole
expansion

/ðRÞ ¼ 1
4pe0

1
R

XN
i¼1

Qi þ 1
R3

XN
i¼1

ðQiriÞR
"

þ 1
R5

XN
i¼1

Qi

2
ð3x2i � r2i ÞX2
�

þð3y2i � r2i ÞY2 þð3z2i � r2i ÞZ2

þ 2ð3xiyiXY þ 3xiziXZ

þ 3yiziYZÞ� þ . . .�:

ð1:35Þ

The first term in (1.35) (monopole term) gives the Cou-
lomb potential generated by the total charge at the origin.
Therefore this term is zero for neutral charge distributionsP

Qi ¼ 0ð Þ e.g. a neutral atom or molecule. The second
term in (1.35) can be written using the electric dipole
moment pi ¼ Qi ri of the ith charge as 1=R3 �P pi � R. This
dipole term depends not only on the sum of the dipole
moments but also on their orientation with respect to the
direction R to the observation point P. For a neutral

molecule with permanent electric dipole moment, for
example NaCl ¼ Naþ Cl�, the dipole moment is the leading
term in the multipole expansion.

The third term in (1.35) can be simplified by introducing
the following abbreviations

QMxx ¼
X
i

Qi 3x
2
i � r2i

� �
;

QMyy ¼
X
i

Qi 3y
2
i � r2i

� �
;

QMzz ¼
X
i

Qi 3z
2
i � r2i

� �
;

QMxy ¼ QMyx ¼ 3
X
i

Qixiyi;

QMxz ¼ QMzx ¼ 3
X
i

Qixizi;

QMyz ¼ QMzy ¼ 3
X
i

Qiyizi

ð1:36Þ

Like the moment of inertia (Vol. 1, Chap. 5) that
describes the mass distribution of a rigid body here we
describe the spatial charge distribution by the components
QMjk of the quadrupole tensor

QM ¼
QMxx QMxy QMxz

QMyx QMyy QMyz

QMzx QMzy QMzz

0@ 1A ð1:37Þ

With this definition the third term in (1.35) (quadrupole
term) becomes

/Q ¼ 1
8pe0R5

QMxxX
2 þQMyyY

2
�

þQMzzZ
2 þ 2 QMxyXY

�
þQMxzXZþQMyzYZ

��
:

ð1:38Þ

From (1.36) it follows that the quadrupole term is sym-
metrical and its trace (the sum of the main diagonal ele-
ments) is zero.

The quadrupole moment QM is a measure for the devi-
ation of the charge distribution from spherical symme-
try. A homogeneously charged sphere has QM = 0

Examples

With the charge distribution of Fig. 1.29 we get from
(1.36)

QMxx ¼ QMyy ¼ QMzz ¼ QMxz ¼ QMyz ¼ 0;

QMxy ¼ 3 � a � d � Q:
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1.5 Conductors in an Electric Field

In an electric field the charges inside a conductor are sub-
jected to forces F ¼ q � E. The forces move the charges
inside the conductor as long as the charges on their new
positions generate an electric field of equal magnitude but
with direction opposite to the external field which is then
compensated (Fig. 1.30). This displacement of charges in
conductors is called influence.

Inside a conductor is no electric field. The charges are
located only at the surface of the conductor.

1.5.1 Influence

Influence can be demonstrated by a simple experiment
(Fig. 1.31).

We hold two metallic plates in contact into the electric
field of a parallel plate capacitor Their handles are insulated
from all conductors. Now we separate these plates inside the
field and pull them out without any further contact. While
the plates were in contact inside the field the charges moved
to the outer sides of the conductors because of influence and

after separation the plates had a surplus of charges
+Q resp. –Q. That can be proved by an electrometer.

Influence can be also impressively demonstrated by the
beaker-electroscope (Faraday’s ice-pail experiment),
Fig. 1.32. We dip an insulated but electrically positive
charged ball in a metallic beaker without touching the walls.
The electric field exerts a force upon the free (negative)
electrons and moves them to the inner side of the metallic
beaker so that the electroscope sees a deficit of negative
charges. That means that it is positively charged and shows a
corresponding deflection. This deflection vanishes if we
remove the ball inside the beaker (Fig. 1.32).

But, if the ball touches the inner wall of the beaker the
ball discharges. Because of their repulsion the free charges
move to the outside of the beaker while its interior remains
free of electric fields. Now we can charge the ball again and
discharge at the inner wall of the beaker. In this way the
electroscope can be charged up to an arbitrary voltage (path
one in Fig. 1.33). Its limit depends on the loss of charges by
insufficient insulation of the electroscope. Using the way 2

Metal ball

(a) (b)

E

E

opposing field

Fig. 1.30 Illustration of influence. a) For a conductor inside a parallel
plate capacitor b) for a conducting sphere

insulating
handles

+

electroscope

Fig. 1.31 Demonstration of influence

turning
point

Electrometer

insulator

insulator

Fig. 1.32 Demonstration of influence when a charged ball is placed
inside a conducting cup

dc-voltage
source

electro-
cope

1

2

0U

Fig. 1.33 Different achievable voltages when charging a conducting
cup inside or outside the cup walls
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where the transfer of charges is accomplished at the outer
side of the beaker only a voltage not higher than that of the
charge source U is possible.

The fact that we can transfer nearly any amount of
charges to the inner walls of a spherical conductor and thus
reach high voltages is used in the van de Graaff generator
(Fig. 1.34).

An isolating belt moves about two cylinders one near the
bottom and the other inside the top sphere of the generator.
Because of the high field at the tips of a metallic comb
charges generated by a DC supply are transferred to the belt.
They are transported to the inner walls of the metallic sphere
at the top. There another metallic comb that is connected to
the inner wall of the sphere removes the charges from the
belt. By influence charges are forced to the outside of the
sphere and its interior is always free from electric fields.
Even with demonstration devices we can generate a voltage
of about 105 V that is limited only by coronary losses.

To avoid discharges and to reduce losses the high voltage
generator is placed completely inside a housing that is filled
with gas at higher pressure so that voltages above 1 MV are
attained [4].

The fact that the space inside a closed surface of a con-
ductor is free from electric fields is used by Faraday’s cage
(Fig. 1.35). To protect sensitive devices from high electric
fields, high tension or lightning flashes one puts them into a
grounded cage of conducting material.

1.5.2 Capacitors

A device consisting of two oppositely charged surfaces of
conductors is called a capacitor. When we bring the charge
+Q on one of the two surfaces then by influence on the other
surface which was initially neutral a separation of charges
takes place. At the surface next to the charged plate a charge
–Q will arise while on the distant surface the charge +Q will
appear. If we connect the initially uncharged plate with the
grounding point of the charging device for the first plate the
charge +Q drains away. The charge –Q remains on the
second plate (Fig. 1.36).

Because the electric field in the space between the con-
ductors is proportional to the charge Q on the conductor also
the voltage U ¼ R

E � ds is proportional to Q and we obtain
the relation

Q ¼ C � U: ð1:39Þ

The constant of proportionality C is called the capacitance
of the capacitor. It has the unit

½C� ¼ 1
Coulomb
Volt

¼def Farad ¼ 1 F: ð1:40Þ

10 kV

220 V Ua

insulator

Metal
sphere

conveyor
belt

K

Fig. 1.34 Van de Graaff generator

2

1
0

ground
Cylinder of
copper net

0E 2

1
0

0E

Fig. 1.35 Faraday’s cage. The volume inside a grounded metallic
surrounding is field-free
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Fig. 1.36 Influence in a plane plate capacitor. a) Uncharged capacitor
b) charging the left plate with the charge +Q. c) Grounding the right
plate
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Because 1 F is a very large capacity subunits are used

1 Picofarad ¼ 1 pF ¼ 10�12 F;

1 Nanofarad ¼ 1 nF ¼ 10�9 F;

1 Microfarad ¼ 1 lF ¼ 10�6 F:

Now we will calculate capacitance and field distribution
of the most important types of capacitors and thereby
illustrate the practical application of the Laplace equation.

1.5.2.1 Parallel Plate Capacitor
The plates of a parallel plate capacitor with the plates at x = 0
and x = d (see Fig. 1.37) have the charges +Q resp. –Q. The
space between the plates is free of charges and sowe can apply
the Laplace equation (1.16b) in its one dimensional form

@2/
@x2

¼ 0 ) / ¼ axþ b: ð1:41Þ

Let /1 be the potential of the left plate at x = 0 and /2 the
potential of the right plate at x = d. Then the voltage between
the plates is U ¼ /1 � /2. From (1.41) follows

/1 ¼ b and /2 ¼ a � dþ/1

) a ¼ /2 � /1

d
¼ �U

d
:

The potential between the plates

/ðxÞ ¼ �U

d
� xþ/1 ð1:41aÞ

decreases linearly with the voltage (Fig. 1.37).
The electric field strength is

E ¼ �grad/ ¼ U

d
� x̂: ð1:42Þ

The magnitude of the field (1.42) is

E ¼ U

d
: ð1:42aÞ

Because for an area A of the plate the field strength is
E ¼ Q= A � e0ð Þ (see (1.8b)) it therefore follows for the
capacitance C = Q/U

C ¼ e0 � Ad : ð1:43Þ

The capacitance of a parallel plate capacitor is propor-
tional to the area of the plate A and inversely proportional to
the distance d between the plates.

Example

A ¼ 100 cm2; d ¼ 1 mm ) C ¼ 88:5 pF:

1.5.2.2 Spherical Capacitor
The spherical capacitor consists of two concentric spheres of
radius r1 ¼ a and r2 ¼ b that carry the charges +Q resp. –Q.
(Fig. 1.38).

With the knowledge of Sect. 1.3.4 we can obtain field
strength E(r) and potential /ðrÞ immediately.

Inside (r < a) there is no field and the potential is con-
stant. Because the function E(r) must be finite, / is con-
tinuous at r = a and its value at r� a is

/1 ¼
Q

4pe0a
: ð1:44aÞ

In the space between the two spheres (a < r < b) we have
the field of a point charge at the center of the inner sphere

E2 ¼ Q

4pe0r2
r̂ ð1:44bÞ

d

E(x)

E(x)

xd0

2

1

0A
Q

E

d
21

E

Fig. 1.37 Field distribution inside a plane plate capacitor
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Fig. 1.38 Electric field and potential of a spherical capacitor
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and the potential

/2 ¼
Q

4pe0r
: ð1:44cÞ

Outside of the outer sphere we have because of Qtotal ¼ 0
no field and a potential

/3 ¼
Q

4pe0b
: ð1:44dÞ

The voltage between the two spheres is

U ¼ /i � /2 ¼
Q

4pe0

1
a
� 1
b

� �
¼ Q

4pe0

b� a

ab
:

ð1:45Þ

Figure 1.38 shows the variation of /ðrÞ and E(r) in the
different ranges. At the charged surfaces of the conductors E
(r) has a discontinuity of DE ¼ r=e0.

The capacitance of a spherical capacitor is according to
(1.39) and (1.45)

C ¼ Q

U
¼ Q

/i � /a
¼ 4pe0 � a � b

b� a
: ð1:46Þ

If the distance d = b – a is small compared to a we get

from (1.46) and the geometrically means R ¼ ða � bÞ1=2

C ¼ 4pe0R
2

d
¼ e0 � A

d
; ð1:46aÞ

an expression similar to the flat parallel plate capacitor where
A is now the area of a fictive sphere between the two con-
ductors of the capacitor.

For the limit of b ! 1 of the outer radius b we get from
(1.46) the capacitance of a sphere of radius a and its second
surface at infinity

C ¼ 4pe0 � a: ð1:46bÞ
Charging the sphere to a voltage U we get the charge

Q ¼ 4pe0a � U: ð1:46cÞ

The capacitance of a conducting sphere is proportional
to the radius of the sphere but not to its surface.

1.5.2.3 Capacitors in Parallel and in Series

Note A general note on drawings of electronic circuits:
Drawings of electronic circuits consist of symbols for

passive elements e.g. resistor, capacitor, inductor and active
elements e.g. voltage source, transistor and so on. These
elements are connected by lines that have no resistance! This
means that at both ends of the line is the same potential and
the same voltage.

Connecting several capacitors in parallel (Fig. 1.39a) the
voltage at each capacitor is the same. Otherwise charges
would move until the voltages are equal. The charges add
and we have according to (1.39) for the total capacitance

C ¼
X
i

Ci: ð1:47Þ

When connecting several capacitors in series the charges
are separated by influence so that two neighboring plates that
are connected by a conductor have the same amount of
charge but of opposed sign (Fig. 1.39b).

The voltage between the two plates that are connected by
a conductor, is of course zero, because the voltage due to the
external source is just compensated by the electric field
generated by the two charges +Q and –Q. For the total
capacitance C we now get

1
C
¼

X
i

1
Ci
: ð1:48Þ

For capacitors in series the total capacitance becomes
smaller but the break down voltage increases.

We also can see this fact from the relation U ¼ R
E ds.

For equal field strength E in each capacitor the voltages add,

(a)

(b)

1C 2C 3C0U

i
iCC

1C

2C

3C

0U

Q

Q

Q

Q

i
i0 UU

i iC
1

C
1

Q
Q

1U

2U

3U

Fig. 1.39 Parallel and Series circuits of several capacitors
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if the capacitors are connect in series. For the constant total
charge Q we get because of U ¼ P

Ui ¼
P Q

Ci
¼ Q=C the

relation 1=C ¼ P
1
Ci
.

For parallel plate capacitors Eqs. (1.47) and (1.48) also
can be derived from (1.43):

While for parallel connection the areas are added for
series connection the distances add.

Example

The total capacitance of two capacitors is for parallel
connection

C ¼ C1 þC2

whereas for capacitors in series is

C ¼ C1 � C2

C1 þC2

To realize very large capacitances the area A of the
conductors must be large and the distance between them as
small as possible.

The practical realization uses wound capacitors. Two
conducting foils separated by a thin isolating foil are wound
to a cylinder. This gives a large area and a very small dis-
tance d. Figure 1.40b shows some commercial examples.

Often a variable capacitance is needed and can be realized
by rotary capacitors (Fig. 1.40).

1.6 The Energy of the Electric Field

An isolated metallic sphere of radius a can be charged by
transferring small charges q¼ dQ step by step e.g. by a
“charge spoon”. Each step requires the work

dW ¼ dQ � ð/a � /1Þ
¼ dQ � /a for /1 ¼ 0

where according to (1.44a–1.44d)

/a ¼
Q

4pe0 � a
is the potential of the sphere with charge Q (Fig. 1.41). To
charge up to the total charge Q the work

W ¼ 1
4pe0 � a

Z
Q � dQ ¼ Q2

8pe0 � a ¼ 1
2
Q2

C

is needed where according to (1.46b) C ¼ 4pe0 � a is the
capacitance of the sphere.

The energy of the sphere that is charged to a voltage
U against its surroundings is then

W ¼ 1
2
Q2

C
¼ 1

2
� C � U2; because Q ¼ C � U:

This result that we have derived for a charged sphere is
valid generally for arbitrary capacitors (see Problem 1.12).

A capacitor of capacitance C charged up to a voltage
U contains an energy

W ¼ 1
2
C � U2; ð1:49Þ

that is stored as the energy of the electrostatic field.
The capacitance of the flat parallel plate capacitor of area

A and plate separation d is C ¼ e0 � A=d and its voltage is
U ¼ E � d. Therefore the energy becomes

holders

(a) (b)

insulator

turning
handle

Fig. 1.40 a) Variable capacitor, b) different designs of commercial capacitors
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Fig. 1.41 Derivation of the potential and the charging energy of a
conducting sphere
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Wel ¼ 1
2
e0E

2 � A � d ¼ 1
2
e0E

2 � V

The energy density of the electric field inside the
capacitor is

wel ¼ Wel

V
¼ 1

2
e0 � E2 ð1:50Þ

This result is valid for any electric field independent of its
mode of generation.

Example

A capacitor C ¼ 1 lF which is charged to U = 1 kV
stores the energy of W ¼ 1

2CU
2 ¼ 0:5 J.

1. In great plasma fusion plants capacitor banks of
C ¼ 0:1 F and U = 50 kV are used. Their stored
energy is 125 MJ. If they are discharged in one
millisecond the delivered electric power is
P ¼ C � U2=10�3W ¼ 1:25� 1011 W!

2. If we describe the electron by the model of a
homogeneously charged sphere of radius re
itselectrostatic energy is Wei ¼ e2=8pe0 � re.

3. If we assume that this energy equals the rest energy
E = mc2 of the electron (see Vol. 1, Chap. 4) we get
with the known value of the electron charge e ¼
1:6� 10�19 C and its mass me ¼ 9:108� 10�31 kg
the so called classical electron radius re ¼ 1:4�
10�15 m. Experiments show, however, (see Vol. 3)
that the “real radius” of the electron must be much
smaller. The simple model of a homogeneously
charged sphere of radius re cannot be correct.

1.7 Dielectrics in Electric Fields

If we fill a parallel plate capacitor that holds a charge Q ¼
C � U completely with a slab of dielectric material the volt-
age between the conducting plates decreases by a factor of e.
Because the charge Q is constant the capacitance C must
have increased by a factor e. Instead of (1.43) we get for the
capacitance of a parallel plate capacitor

CDiel ¼ e � CVac ¼ e � e0 Ad with e[ 1: ð1:51Þ

This number e is named relative dielectric constant of
the insulator. Such isolating materials are also called
dielectrics. Table 1.1 lists the values e of a few materials.

The magnitude of the electric field Ej j is proportional to
the voltage U and therefore E sinks too by the factor e. For
example, the field of a point charge Q inside a homogeneous
insulator is

E ¼ 1
4pee0

Q

r2
r̂: ð1:52Þ

What is the reason for the reduction of the electric field?

1.7.1 Dielectric Polarization

Analogue to the phenomenon of influence the charges in the
dielectric material are displaced in an external electric field.
But, in an insulator the carriers of electric charges cannot
move freely contrary to the situation in an electric conductor.
Therefore they cannot move to the boundaries of the insulator.
In an external electric field the charges can only be displaced
inside the atoms or molecules of the insulator (Fig. 1.42).

For an atom in an external electric field the center of
negative charges S–, (electrons), and the center of positive
charges S+, (atomic nucleus), no longer coincide. The atoms
have now become electric dipoles (Fig. 1.43).

These dipoles generated by an external electric field are
called “induced dipoles”.

If d is the distance between the centers of positive and
negative charges then the induced dipole moment of each
atom is

Table 1.1 Relative dielectric constants for some materials (Stöcker:
Taschenbuch der Physik (Harri Deurtsch Frankfurt)

Material er

Quartzglass 3.75

Pyrexglas 4.3

Porcelain 6–7

Copper-oxyd 18

Cearamic

TiO2 �80

CaTiO3 �160

SrBi(TiO3) �1000

Liquids

Water 81

Ethylalcohol 25.8

Benzene 2.3

Nitrobenzene 37

Gases

Air 1.000576

H2 1.000264

SO2 1.0099
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p ¼ q � d:
The vector sum of the dipoles of all N atoms in the unit

volume is the polarization

P ¼ 1
V

X
i

pi: ð1:53aÞ

If we neglect all other interactions (e.g. thermal) all
dipoles are aligned parallel to the electric field. Then, in a
homogeneous field E the amount of the polarization
becomes

P ¼ N � q � d ¼ N � p; ð1:53bÞ
where N is the number of dipoles per unit volume. The
displacement d between the centers of charge is determined
by the condition that the restoring force of the attracting
charges just compensates the external force F ¼ q � E.

In general the displacements are small compared to the
diameter of the atom.

Because at small displacements the restoring force –F is
proportional to the displacement d (Hooke’s law) we get

d / E. Therefore the dipole moment p in electric fields
E� 105 V/cm is

p ¼ a � E ð1:54Þ
The proportionality constant a is called atomic polariz-

ability. It depends on the data of the atom and is a measure
of the restoring forces that arise due to the displacement of
charges. In general, a is a tensor i.e. p depends on the ori-
entation in space

Example

The Na-atom has an atomic polarizability
a ¼ 3� 10�39 Asm2V�1. In a field E ¼ 105 V/m is
d ¼ 1:88� 10�5 Å ¼ 1:88� 10�15 m.

In electric fields of technical applications is the
displacement of charges very small compared to the
diameter of atoms.

1.7.2 Polarization Charges

Because of the displacement of charges in an electric field at
the front side of the dielectric material charges Q arise
(Fig. 1.44) that are called polarization charges. Their surface
charge density

rpole ¼ Qpole

A
¼ N � q � d � A

A
¼ P ð1:55Þ

is equal to the amount of the polarization P.
Inside the dielectric the negative and the positive charges

compensate and there the total charge density is zero. These
surface charges are opposite to the charges at the surface of
the capacitor plates that are called free charges because they
can move freely.

reverse field caused by
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Residual field
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Fig. 1.42 Dielectric material inside a capacitor
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Fig. 1.43 Displacement of electric charges and their center points in
an external electric field
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Fig. 1.44 Polarized dielectric inside a capacitor
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In the homogeneous field E of the parallel plate capacitor
without a dielectric it follows from the electric flux through
an area A parallel to the plates (see Sect. 1.5)

Uel ¼
Z

E � dA ¼ Q

e0

) E � A ¼ Q

e0
) E ¼ rfree

e0
:

ð1:56Þ

Inside the dielectric the external field E ¼ rfree=e0 and the
opposite field due to polarization Epole ¼ rpole=e0 superim-
pose and the resulting field in the dielectric becomes

EDiel ¼ rfree � rpole
e0

ê ¼ EVac � P
e0

ð1:57Þ

Because of PjjE it follows.
The field inside the dielectric becomes lower.

Note For the induced dipoles is p ¼ a � E. Therefore the
direction of the polarization P inside the dielectric is the same
as that of the external electric field creating the induced
dipoles. The direction of the electric dipole moment p is
defined as the direction from the negative to the positive
charge of the dipole while the electric field lines are directed
from the positive to the negative charge. Therefore the field
inside the dielectric generated by dipoles is opposite to the
external electric field and reduces it. The amount of the electric
field generated by the dipoles is smaller than the external field
so the remaining field inside the dielectric has the same
direction as the external field but has a smaller amount.

With (1.53a, 1.53b) and (1.54) the polarization P can be
written as

P ¼ N � EDiel: ð1:58Þ
Now we introduce the dielectric susceptibility v ¼ N �

a=e0 and we get from (1.57) and (1.58)

P ¼ e0vEDiel and EDiel ¼ EVac

1þ v
: ð1:59Þ

The comparison with

EDiel ¼ 1
e
EVac

yields the relative dielectric constant

e ¼ 1þ v ¼ 1þðN � a=e0Þ
and the polarization

P ¼ e0 EVac � EDielð Þ:

Influence and polarization are principally equal phe-
nomena. They describe the displacement of charges in
matter due to an external electric field. In conductors
the charges can move freely up to the surface. The
field inside the conductor is completely compensated
(influence).

In insulators charges can only be displaced inside the
atoms (polarization). Surface charges are generated. The
field inside is only partially compensated (1.57). Field
strength and voltage are lowered by the factor e. The
capacitance of a capacitor with dielectric rises correspond-
ingly by the factor e.

When we bring a conducting slab of thickness b between
the plates of a flat plate capacitor that is charged to a voltage
U0, of area A and distance d then the voltage will sink from
U0 ¼ Q � d=ðe0AÞ to U ¼ Q=ðe0AÞ � ðd � bÞ and the capaci-
tance rises correspondingly to

C ¼ Q

U
¼ Ae0

d � b
;

because the effective distance between the plates is now only
d � b.

With a dielectric of thickness b < d C rises to

C ¼ A0e0
d � bðe� 1Þ=e :

1.7.3 Equations of the Electrostatic Field
in Matter

In a homogeneous field the positive and negative polariza-
tion charges compensate inside the dielectric and only at the
surface of the dielectric are non-compensated polarization
charges of one polarity. Therefore at a boundary of the
dielectric perpendicular to the external field E a discontinuity
of the field strength from Evac to Ediel must exist.

In an inhomogeneous field the polarization P is not the
same at every position. Now we have polarization charges
also in the interior of the dielectric. Because of the spatially
varying displacement of charges there are no more the same
number of opposite charges in a volume element that can
compensate each other.

Consider a volumeVwith a surplus of chargesDQpol due to
the spatially varying polarization (Fig. 1.45). We describe
these charges by a spatially varying polarization charge den-
sity DQpol which has been taken away from volume V by
displacement of charges through the surface A that encloses
the volume
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DQpol ¼ �
Z
V

.pol dV :

This is according to (1.55)

DQpol ¼
Z
A

rpol dA ¼
Z
A

P � dA: ð1:60aÞ

Using Gauss’ law we convert the surface integral into a
volume integralZ

A

P � dA ¼
Z
V

divP dV ¼ �
Z

.pol dV ð1:60bÞ

and obtain by comparison with (1.60a, 1.60b)

div P ¼ �.pol; ð1:61Þ
In other words:

The polarization charges of density .pol, generated by
the external electric field, are the sources of the electric
polarization.

Equation (1.61) relates the polarization of matter to the
spatial density of polarization charges and corresponds to the
equation

divE ¼ .=e0

for free charges.
In matter the opposing polarization charges .pol are

added to the free charges and the electric field EDiel in the
dielectric is

divEDiel ¼ 1
e0

.free þ .pol
� �

: ð1:62Þ

Because of EDiel ¼ EVac � P=e0 we can rewrite (1.62) as

div EVac � P=e0ð Þ ¼ 1
e0

.free þ .pol
� �

;

which with (1.10) again yields (1.61). With the dielectric
displacement density

D ¼Def e0EDiel þP ¼ e � e0 � EDiel ¼ e0 � EVac ð1:63Þ
the Poisson equation for the electric field can be written in
generalized form

divD ¼ .; ð1:64aÞ

where . ¼ .free is the original i.e. the free charge density of
the considered volume. Equation (1.64a) is valid in matter
but also in vacuum where e ¼ 1 and therefore D ¼ e0 � E. In
a space free from charges . ¼ 0ð Þ is then

divD ¼ 0: ð1:64bÞ
The unit of D is

½D� ¼ ½e0 � E� ¼ 1
A s
m2

¼ 1
C
m2

:

D gives the surface charge density that has been displaced by
the external field.

At a boundary between dielectric and vacuum the normal
component of D is continuous because of

e0 � e � Ediel ¼ e0 � Evac

This is not valid for the tangential component of D as
we will derive from fundamental properties of the electric
field.

In Figs. 1.9, 1.10 and 1.11 we see that there are no closed
electric field lines generated by charges. If there were closed
field lines then a charge would move along these lines par-
allel to the field and would gain the energy W ¼ q � R E � ds
on each revolution. According to (1.50) the stored energy
density, i.e. the energy per unit volume, w ¼ 1

2 e0E
2 would

not be reduced by this action but the energy of the total
system would increase. That contradicts the conservation of
energy. Therefore it must be W = 0. Using Stokes’ theorem
(see Vol. 1, Sect. 8.6.1) the equationZ

E � ds ¼ 0 ð1:65aÞ

can be rewritten as Z
rotE � dA ¼ 0; ð1:65bÞ

where A is an arbitrary surface with the boundary line s.
Equation (1.65a) is valid for each closed path and therefore
(1.65b) is valid for each surface A. From this follows

A

V

pol

pol

inhomogeneousE

dAQ
S

polpol =

Fig. 1.45 Polarization of a dielectric material in an inhomogeneous
field
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rotE 	 0; ð1:65cÞ

This expresses the fact the static electric field E has no
closed lines, it is “curl-free” and it preserves energy
i.e. it is a conservative force field.

Note We can derive (1.65c) also from E ¼ �grad/ and
rot grad / 	 0 (Vol. 1, (13.26)). This means that E can be
written as the gradient of a potential which is another
statement of the fact that E is conservative.

In the next parts this knowledge will help us to under-
stand the behavior of the electric field at a boundary between
vacuum and dielectric. Of course, this can be also applied to
a boundary of two dielectrics with their dielectric constants
e1 and e2.

If the field vector E at the interface between vacuum and
the dielectric is normal to the surface it is weakened by the
factor e according to (1.57). For a field that enters the
dielectric under an angle a between field vector and normal
(Fig. 1.46a) we separate the vector E at the surface into a
component E? normal and a component Ek parallel to the
boundary. We are now interested in the behavior of Ek at the
boundary. We consider the integration

H
E � ds along the

rectangular path ABCD of Fig. 1.46b. The thickness d of
this rectangle is negligibly small so that practically only the
path AB in vacuum and the path CD in the dielectric count.

Because of

ZB
A

EVac
k � ds1 þ

ZD
C

EDiel
k � ds2 ¼

I
E � ds ¼ 0

and ds1 ¼ �ds2 it follows

EVac
k ¼ EDiel

k ð1:66aÞ

We get the following law of refraction for the electric field
(Fig. 1.46a). If the E-vector at the boundary between vacuum
and dielectrics forms at the vacuum side the angle a to the
boundary normal it has inside the dielectric the angle b against
the normal of the boundary. Because EVac

? ¼ e � EDiel
? we get

tan b ¼
EDiel
k

EDiel
?

¼ e �
EVac
k

EVac
?

¼ e � tan a: ð1:66bÞ

From this we obtain with D ¼ ee0E

DVac
k ¼ 1

e
DDiel

k : ð1:66cÞ

This implies that the charge density . is responsible for the
fact that the field in the dielectric is larger than that of the free
charge density generating the field in vacuum.

This can be illustrated by using a capacitor that is half
filled with a dielectric (Fig. 1.47). In such an arrangement
the charges on the plates are no more equally distributed but
increase discontinuously at the border between vacuum and
dielectric.

The capacitor of Fig. 1.47 is equivalent to the circuit of
two parallel capacitors where one of them is filled with a
dielectric. At equal voltages across both capacitors (parallel
circuit!) the second capacitor contributes more free charges
on its plates corresponding to the dielectric constant. Of
course at equal voltages also the field Ek parallel to the
boundary between vacuum and dielectric is equal in both
parts (1.66a) but Dk is higher by the factor e.

Vacuum

dielectric

(b)

A

D

B

C

dielectric

Vacuum

(a)

VacDiel E
1

E

1

EII
Diel

E EII
Diel

II
Vac

EVacEVac

1

EII
Vac

1

E d s 0

d 0

EII
Diel

ds1

ds2

EII
Vac

Fig. 1.46 a) Electric field at the boundary between dielectric and
vacuum b) Illustration of the behavior of the tangential component at
the boundary
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If we fill a charged capacitor with a dielectric then the free
charges move until (1.66a) resp. (1.66c) are satisfied.

1.7.4 The Electric Field Energy in Dielectrics

Consider a capacitor with the constant voltage U across its
terminals. Filling the volume between the plates of this
capacitor with a dielectric the initial capacitance C rises by
the factor e and so the charge density. The stored electric
energy is

Wel ¼ 1
2
CU2 ¼ 1

2
e � e0 Ad ðd � EÞ2

¼ e � 1
2
e0E

2 � A � d ¼ e � 1
2
e0 � E2 � V

and the energy density wel ¼ Wel=V with D ¼ ee0E becomes

wel ¼ e � e0
2
E2 ¼ 1

2
E � D: ð1:67Þ

with D ¼ e � e0 � E
Equation (1.67) is the general form of (1.50) and is valid

in vacuum D ¼ e0Eð Þ and in matter.
One can understand the increase of energy density

occurring when inserting a dielectric as follows: To the
energy 1

2 e0E
2 of the field in vacuum one has to add the

energy necessary to displace the charges Q in the atoms by
the distance x against the restoring force F ¼ �kx ¼ Q � E.

This additional energy is for one induced dipole

Wpol ¼ �
Zd

0

F dx ¼ 1
2
kd2 with k ¼ Q � E

d

) Wpol ¼ 1
2
Q � E � d ¼ 1

2
p � E:

ð1:68Þ

With Eqs. (1.60a, 1.60b) we get for N induced dipoles per
unit volume the necessary energy density for polarizing the
dielectrics that has to be added to the energy density 1

2 e0E
2

of the field in vacuum. Altogether we get then the energy
density (1.67).

wel ¼ 1
V
Wpol ¼ 1

2
NpE ¼ 1

2
P � E

¼ 1
2
e0ðe� 1ÞE2;

ð1:69Þ

wdiel
el ¼ 1

2
ee0E

2 ¼ 1
2
ED ð1:70Þ

If the charged capacitor of Fig. 1.47 is switched off the
voltage supply the capacitor remains charged but by inserting
a dielectric the voltage does not remain constant. The energy
stored in the field is reduced.Without the dielectric the energy
is W ¼ 1

2E0D0V where V is the volume of the capacitor
between the plates. If the dielectric fills the volume completely
then D1 ¼ D0 (because of .tot ¼ constant) and E1 ¼ E0=e.
Therefore the energy W ¼ 1

2eE0D0V is smaller than that
without dielectric.

A dielectric is pulled into an isolated charged capacitor.
Mechanical energy is gained at the expense of electric
energy. Work has to be done to remove the dielectric from
the capacitor.

For an isolated capacitor it is easy to see that the dielectric
is pulled into the capacitor. The system of capacitor-
dielectric is closed and the energy released from the field
is transferred to kinetic energy of the dielectric.

More difficult to understand is the case where the voltage
across the capacitor is fixed (e.g. via a connection to a bat-
tery, Sect. 2.8). Inserting the dielectric into the capacitor
causes a flow of charges from the battery onto the plates. The
D-field becomes larger by the factor e and the energy rises
(at constant E-field) by the same factor e.

Nevertheless the dielectric is pulled into the capacitor!Now
the system capacitor-dielectric is no longer a closed system.
The battery supplies charges and thus energy into the system
capacitor-dielectric. If the dielectric is completely inserted
then the surplus of charges on each plate is larger by the factor
e. To reach this goal workWBat ¼ DQ � U has to be supplied.

II II II II
vak vak diel dielD E E D

Fig. 1.47 Electric field E and dielectric displacement density D in an
electric field without and with dielectric medium
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Only half of this energy is used to increase the field energy.
The rest is transformed into kinetic energy of the dielectric.

An experimental application of this fact is the determi-
nation of the dielectric constant e of materials. A dielectric
slab mounted to a spring balance is brought between the
plates of an uncharged flat capacitor, so that only part of the
capacitor is filled with material (Fig. 1.48).

Nowwe apply a voltageU across the capacitor and the slab
is pulled by the distance Dz into the capacitor and the spring
balance shows an additional force DF ¼ k � Dz which is
caused by the attraction between the free charges on the
capacitor and the induced surface charges of the dielectric. The
workDW ¼ DF � Dzwhich has to be done against the force of
the spring is identical to the increase of the field energy

DWmech ¼ DWfield ¼ 1
2

CDiel � CVacð ÞU2

DW ¼ 1
2
e0ðe� 1Þb � DzU2=d:

ð1:71aÞ

Because of DW ¼ DF � Dz we get

DF ¼ 1
2
e0ðe� 1Þb � U2=d ð1:71bÞ

which gives the value of e.
In a second experiment we dip only a small part of the

parallel plate capacitor into a dielectric liquid (e.g.
nitrobenzene). The plates have a distance d and a width b.
We apply a voltage U across the capacitor and the liquid

inside the capacitor rises by the height h above the surface of
the liquid outside the capacitor (Fig. 1.49). The height h
adjusts so that the mechanical work necessary to lift the
volume of liquid in the vertical z-direction

Wmech ¼
Zh

z¼0

.Fl � g � b � d � z dz ¼ 1
2
.Fl � g � h � V ð1:72aÞ

with V ¼ d � b � h is equal to the change in the field energy
delivered by the battery

Wel ¼ 1
2
e0ðe� 1ÞE2V with E ¼ U=d ð1:72bÞ

Equating (1.72a) and (1.72b) yields the height

h ¼ e0ðe� 1Þ
.Fl � g

E2: ð1:73Þ

1.8 Atomic Fundamentals of Charges
and Electric Moments

As mentioned in Sect. 1.1 the material carriers of charges are
electrons with negative charge –e, and protons with positive
charge +e. The first quantitative measurements of the charge
of electrons has been made by Robert Andrews Millikan
(1868–1953, Fig. 1.50a) in 1909 with his famous oil-drop
experiment [5]. Because of its fundamental importance we
will dis cuss it here in some more detail.

1.8.1 The Millikan Experiment

Spraying of oil produces small droplets that diffuse between
the horizontal plates of a capacitor (Fig. 1.50). By friction
during spraying the droplets become electrically charged
with charges q ¼ n � e where n ¼ 1; 2; 3; . . ..

U

z

dielectric
Plate

capacitor

Fig. 1.48 A dielectric is pulled into a charged capacitor

d

U

h

FL

Fig. 1.49 A dielectric liquid is pulled into a charged capacitor until it
has reached a height h
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In a capacitor without electric field the droplets of mass
m and radius R descend with constant speed v if the force of
gravity Fg ¼ m � g just compensates the sum of the opposite
lift forces FB ¼ .Air � 43 p � R3 of buoyancy and FF ¼ 6pgR �
v of Stokes friction (see Vol. 1, Sect. 8.5.4). The measure-
ment of the constant velocity v of descent yields the radius
R of the oil droplets

R ¼ 9g � v
2gð.Oil � .AirÞ

 �1=2

and therefore also the mass m ¼ 4
3 pR

3.Oil of the droplet
since the density of oil is known.

Now we apply a suitable voltage U across the capacitor
(distance of plates d). Now in the electric field E = U/d the
oil drops can be kept at an equilibrium position if the electric
force Fel ¼ n � e � E acting on a droplet with n elementary
charges e compensates the gravity force reduced by the
buoyancy in air.

From this we get the charge

n � e ¼ ð.Oil � .AirÞ g �
4
3
pR3=E: ð1:74Þ

To determine the integer number n we change the charge
of the drops within the capacitor by irradiation with ionizing
X-rays. This causes changes by small multiples Dn of the
elementary charge e so that Dq ¼ Dn � e. Now the voltage
has to be adjusted to keep the droplet again at an equilibrium
position. From (1.74) follows for the equilibrium-voltages
U1 and U2 before resp. after the alteration of charge

n1 þDn
n1

¼ U1

U2
) Dn ¼ �n1

DU
U2

: ð1:75Þ

The smallest change of charge is Dn = 1… Measurements
with different values of Dn allow the determination of the
discrete values Dn and n from the measurements of the
difference DU ¼ U2 � U1: This gives from (1.74) the ele-
mentary charge e.

Today the accepted value of the elementary charge is

e ¼ 1:602176487ð40Þ � 10�19 C

with a relative uncertainty of 2:5� 10�8

1.8.2 Deflection of Electrons and Ions in Electric
Fields

If a particle of mass m and charge q is accelerated by the
voltage U to the kinetic energy Ekin ¼ 1

2mv
2 ¼ q � U i.e. to a

speed of

v0 ¼ ð2q � U=mÞ1=2 ð1:76Þ
and then passes through a homogeneous electric field
E (Fig. 1.51) it is deflected by the constant force F ¼ q � E.
The trajectory of the particle becomes a parabola (compare it to
the parabola of the horizontal throw in the gravity field).

For v0 ¼ vx; 0; 0f g and E ¼ 0; 0;Ezf g we get the
deflection

DzðxÞ ¼ 1
2
at2 ¼ qE

2m
x2

v2x
: ð1:77Þ

oil droplet

X-ray quantum for
recharge by

nozzle

E

EqF1

buoyancymgF2

(a)

(b)

Fig. 1.50 a) Robert Andrews Millikan (Nobel Prize 1923) b) Experimental arrangement for the oil drop experiment [5]
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Fig. 1.51 Deflection of an electron in a homogeneous electric field
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At the end of the capacitor (x = L) and with (1.76)
we have

DzðLÞ ¼ E � L2
4U

The slope a of the trajectory is given by

tan a ¼ dz
dx

� �
x¼L

¼ qE

m

L

v2x
¼ E � L

2U
:

On the fluorescent screen at the distance D behind the end
the capacitor the deviation

DzðLþDÞ ¼ EL2

4U
þD � tan a

¼ EL

2U
L

2
þD

� � ð1:78Þ

can be measured.

1.8.3 Molecular Dipole Moments

A molecule consists of K nuclei K ¼ 2; 3; . . .ð Þ with their
positive charges þ Zk � e and of

Ze ¼
XK
k¼1

Zk

electrons. The center of charges S+ of the positive charges is
chosen as the origin of the coordinate system. Then the
center S– of the electron charges with the coordinates ri of
the electrons is located at

d ¼ 1
Ze

XZe
i¼1

ri:

The dipole moment of the molecule is

p ¼ Q � d with Q ¼ Ze � e: ð1:79Þ
The quantity d is the distance between positive and

negative centers of charge (Fig. 1.52).
If both centers of charges coincide (d = 0) as for example

for atoms or molecules with two equal atoms, the electric
dipole moment becomes zero

However, in an electric field such non-polar molecules
obtain an induced dipole moment because the centers of
charge are displaced against each other (Fig. 1.43) In an
inhomogeneous field all dipoles suffer a force
F ¼ p � gradE.

An example for these forces is the attachment of neutral
molecules on ions in an electrolyte (Fig. 1.53).

For most molecules which do not consist of equal atoms
is d 6¼ 0. Such polar molecules therefore have non-vanishing
electric dipole moments.

p ¼ Q � d.

Example

The molecule H2O has a dipole moment p ¼ 6�
10�30 Cm because the center of the negative charge
Q ¼ �10e ¼ �1:6� 10�18 C has a distance of about
4 pm to the positive center of charge (Fig. 1.54).

d x

electron
distribution

(a)

(b)

eZ1

eZ2
1R

2R

2r

ikk reReZp

S S

eZ1
eZ2

x̂de)ZZ(p 21

1r

0
3r

Fig. 1.52 a) Electric dipole moment of a molecule with Z = Z1 + Z2
electrons and an equal amount of positive charges of the nuclei. b)
Displacement of the centers of positive and negative charges in an
external electric field

polarized molecules

Fig. 1.53 Attraction of polar molecules by a positive charge
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In molecular physics often the non-SI unit 1 Debye is
used for the molecular dipole moment.

1 Debye ¼ 3:3356� 10�30 Cm

Figure 1.54 shows a few examples of polar and non-polar
molecules and Table 1.2 lists some values.

The potential energy of the interaction between two
dipoles p1 and p2

Wpot ¼ �p1 � E2 ¼ �p2 � E1;

is obtained from (1.28) where Ei is the electric field of pi at
the position of dipole pk.

Using (1.25a) for the electric field Ei of dipole pi yields
with a distance R � d ¼ p=Q between the midpoints of both

dipoles bR ¼ R= Rj j
� �

at random orientations of both dipoles

Wpole

¼ 1
4pe0R3

p1 � p2 � 3 p1 � bR� �
p2 � bR� �h i

¼ p1p2
4pe0R3

cos p1; p2ð Þ � 3 cos p1; bR� �
cos p2; bR� �h i

;

ð1:80Þ

which allows one to calculate the force between the dipoles
using F ¼ �gradWpot. This illustrates that the interaction
between two dipoles decreases with the third power (/1/R3)
of the distance between the midpoints of the dipoles and it
depends furthermore on the mutual orientation of the two
dipoles.

The same result can be derived from F = p1 � grad E2 in
Eq. (1.29) where E2 is the electric field generated by p2
which is outlined in Eqs. (1.25a, 1.25b).

The dipole-dipole interaction has a minimum

Wmin ¼ � 2p1p2
4pe0R3

for the collinear orientation and a maximum

Wmax ¼ 2p1p2
4pe0R3

for anti-collinear arrangements (Fig. 1.55). This implies that
two suitable oriented dipoles attract each other. Figure 1.56
shows the general case and five special cases of dipoles with
different mutual orientations.

In gases or liquids the orientation of the molecular dipoles
are randomly distributed because of thermal motions of the
molecules. Therefore the macroscopic dipole moment per
unit volume of all N molecules at room temperature is zero
(Fig. 1.57).

In an external field E a torque acts upon the individual
dipole molecules which is proportional to Ej j and turns the
molecules with increasing field more and more into the
direction of minimum total energy..

The macroscopic polarization P ¼ 1
V

P
pi of polar but

randomly oriented molecules increases proportional to
E until all molecules are oriented in the same direction.

For a given field E the orientation of the moments
becomes better at low temperatures A measure of the ori-
entation is the ratio

m ¼ pE

3kT

105°

HH

O

1S
1S 2S

2S

S

OH2
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Fig. 1.54 Some examples of polar and nonpolar molecules

Table 1.2 List of some polar molecules

Molecule Dipole moment/D

NaCl 9.00

CsCl 10.42

CsF 7.88

HCl 1.08

CO 0.11

H2O 1.85

NH3 1.47

C2H5OH 1.69

1p
Wmin

R

1d

2p

2d

1p 2pWmax

Fig. 1.55 Interaction energy of two dipoles for parallel and
anti-parallel orientations
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of orienting electrostatic energy and the disorienting thermal
energy 3kT. Considering the statistical mean at the temper-
ature T only a fraction v\1 of all molecules is oriented
parallel to the field direction. A more rigorous consideration
gives the same result for the macroscopic polarization (see
Vol. 3)

P ¼ Np2

3kT
E: ð1:81Þ

In an external field also polar molecules get an additional
induced dipole moment that is proportional to E so that the
total polarization becomes

P ¼ aþ b � Ej jð ÞE ð1:81aÞ
In technical realized fields E is generally b � Ej j � a.

Example

The electric dipole moment of water molecules H2O is
p ¼ 6:1� 10�30 Cm. The attracting interacting force
between two water molecules has a maximum if both
dipole moments are parallel to the line of connection
between the two dipole centers.

At a distance of R ¼ 3� 10�10m we obtain from
(1.80)

Wpot ¼ �2:3� 10�20J ¼ 140meV:

1ϑ 2ϑ
d

y

x →
R

1Q− 2Q−

2Q+
1Q+

1ϕ
2ϕ

2χ1χ

→
1p

→
2p
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)

(cospppp 12121

+
ϑ⋅=⋅

→→

111 cosRpRp ϑ⋅⋅=⋅
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222 cospRp ϑ⋅=⋅
→→

;

cos 2ϑ
cos 1

+
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⋅
⋅

cos 1χ cos 2χ⋅
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(d)

(f)
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For the special cases cos (p1, p2) = ±1; cos (pi, R) = 0, ±1 gilt:
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Fig. 1.56 Two interacting dipoles a) with arbitrary mutual orientation, b–f) for some special orientations

E = 0

E = 0

(b)

(a)

Fig. 1.57 Random orientation of dipoles at temperature T a) without
external field b) partial orientation with external field
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Since the thermal motions of the molecules causes a
random orientation of the molecules mean interaction
energy becomes smaller by about a factor of ten.

Many molecules (e.g. H2, CO2) have no permanent dipole
moment i.e. the factor a in (1.81a) is zero. Here the total
polarization of gases and liquids increases proportional to E2.

The interaction between polar molecules (dipole-dipole
interaction) and between non-polar molecules (induced
dipole-induced dipole interaction) plays an important role in
molecular physics because it contributes an important part to
the chemical bond.

Summarizing we can state
The reasons for the macroscopic polarization of matter in

an electric field are:

(a) In an electric field the charges of molecules are dis-
placed and therefore the molecules get an induced
dipole moment.

(b) The spatial orientation of polar molecules with perma-
nent dipole moments which are randomly oriented
without external field, are oriented with increasing
external field into a preferential direction.

1.9 Electrostatics in Nature and Technology

Phenomena of electrostatics play an important role in a lot of
fields of our surrounding nature as well as to solve technical
problems. This we will illustrate by a few examples.

1.9.1 Triboelectricity and Contact Potential

When two different bodies ar brought into close contact e.g.
by rubbing one against the other, electrons are transferred
from one body to the other and after the bodies are separated
they bear opposed charges (triboelectrics, Fig. 1.58). The
direction of transfer of charges is determined by the differ-
ence of the effective work function of the electrons in the
specific material. The electrons are transferred from the body
with the lower work function to that of higher work function
because then the electrons gain energy.

This separation of charges causes a potential difference
U ¼ D/ between the bodies which is called contact
potential. The different materials can be ordered according
to their difference of contact potentials between a reference
material and the material considered. Table 1.3 lists the
materials in the order of increasing work functions (elec-
trochemical series). After the separation of two contacting

materials that with the lower work function has the positive
charge.

Note: For technical applications triboelectricity often has
a negative image because it can play a dangerous role. For
example during the flow of liquids (oil, gasoline) into ships
or when grain is blown into granaries explosions can occur.
To suppress these explosions charging has to be avoided.

1.9.2 The Electric Field of Our Atmosphere

Even at fair weather our earth generates an electric field in
the atmosphere. It is directed towards the surface of the earth
and decreases rapidly, faster than 1/h2 with increasing height
h above ground (Fig. 1.59).

(a) (b)

Pt Au Cu Ag Al

2,0

1,5

1,0

0,5
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= 2 eV

xptU

Mg

( )/eV

Fig. 1.58 a) Origin of tribo-electricity b) electric work functions of
some metals

Table 1.3 Work functions of some elements, ordered according to the
electrochemical series. (Stöcker: Taschenbuch der Physik, Harri
Deutsch, Frankfurt)

Metal //volt Metal /

Cs 2.14 Pb 4.25

Rb 2.16 Al 4.28

K 2.30 Sn 4.31

Sr 2.59 Zn 4.33

Ba 2.70 Ag 4.52

Na 2.75 W 4.55

Ca 2.87 Mo 4.6

Li 2.90 Fe 4.63

Nd 3.30 Cu 4.65

Th 3.47 Au 5.1

Mg 3.66 Ni 5.15

Ti 3.87 Pd 5.40

Cd 4.22 Pt 5.66
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Quantitative measurements show that the field strength a
few meters above the surface has a mean value of E ¼
130V=m [6]. From these measurements we conclude.

• The earth has a temporally averaged negative charge
of about Q ¼ �6� 105 C.

• The atmosphere contains carriers of positive as well as
negative charges with a surplus of positive charges in
the lower layers which partly screen the electric field
of the earth and cause the rapid decrease of the electric
field E with height h.

• The electric field of the earth accelerates the carriers of
positive charges toward the surface. This causes a
current density of about 2� 10�12A=m2 and a total
current of about 103 A toward the whole earth and
thus the surplus of negative charges is reduced. If this
were the only mode of charge transportation the total
surplus of charges of the earth would vanish within
about 10 min.

• The mean value of the electric field of the earth is
constant over long times and therefore the charge of
the earth must be also constant. The inflow of positive
charges must be compensated by a corresponding
inflow of negative charges resp. by a drain of positive
charges [7].

This can happen by a vertical wind that transports posi-
tively charged dust particles above land or water droplets
above sea into the higher atmosphere. Also lightings
cause a balance of charges between clouds and the sur-
face of the earth.
• The density of ions (positive and negative ions) in the

atmosphere depends strongly on weather. During fine
weather the average number of pairs of ions is 106–
108 m−3 compared to the density of the neutral
molecules of 1025m3. Thus the ionization of the
atmosphere is only very weak. This situation changes

in the ionosphere ðh[ 70 km) where UV-radiation
and particle radiation of the sun initiate photoioniza-
tion and a large part of the gas molecules become
ionized.

1.9.3 The Generation of Lightnings

Lightnings are caused if hot and cold air currents meet and
very strong vertical currents of air are created. This transport
of charged particles of dust, ice and especially of water
droplets creates local differences of charge densities. High
electric fields are the result. These vertical currents of wet air
between regions of large differences of temperature lead to
condensation of water if it is transported from hot to cold
areas resp. to vaporization for the opposite direction. The
impressive result are great cumulus clouds. The upper layers
of the cloud are positively charged while the lower layers
bear more negative charges. This is caused by the electric
field of the earth that induces a dipole moment in water
droplets with the positive charges facing the earth. The
greater drops of water sink because of their mass and
become mostly negatively charged because an impact with
positive ions is more likely at the downward face of the
drops than for its backside (Fig. 1.60). Smaller drops move
with the rising air and become mostly positively charged (for
the same reason).

If this separation of charges has lead to a sufficiently high
electric field strength between the upper and lower layers of
a cloud or between cloud and surface of the earth an electric
discharge (flash of lightning) occurs. The average amount of
charges transported in a flash is about 10 C often within 10−4

s (105 A!!) and results in a compensation of the charge
differences. This high electric current heats the air locally,
which results in a pressure shock wave (thunder). Between
the upper layer of a lightning cloud and the ionosphere in a
height between 50–100 km voltages up to 40 MV can arise.
In such high fields electrons can be accelerated to such high

(a) (b)
E Vm/ 1

100

50

2 4 6 8 h / km
C106 5

h

Fig. 1.59 a) Charge distribution of the earth surface and in the
atmosphere b) Electric field as a function of the heights h above ground
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droplets

Dv

Dv

large
drops

E

Fig. 1.60 Generation of lightenings by charge separation in water
droplets
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energies, that for collisions of these electrons with atoms or
molecules X-rays or even gamma radiation is generated.
ðh � m � 30MeV) [8, 9].

The energy of lightning is W ¼ I � U � Dt ¼ 105 � 4�
107 � 10�4 Ws ¼ 4� 108 Ws ¼ 400MWs.

After the lightning has reduced the voltage difference it
takes only a few seconds to rebuild the voltage differences
again by transport of charge carriers through air currents.

1.9.4 Ball Lightnings

A great number of persons among them also recognized sci-
entists report of observations of bright shining gas balls of
diameters between a few centimeters and nearly one meter.
These balls exist for several seconds, moving through the air,
cause serious burns or electric shocks at contact like usual
flashes of lightnings. Therefore they were called ball light-
nings. Because up to now there exists no scientific explanation
for this phenomenon it has been neglected or even consigned
to the realms of fantasy. During the last years scientists again
have taken care of the problem and tried to investigate ball
lightnings under controlled physical conditions.

With restrictions several laboratories have been successful
in creating ball lightings by discharging a high voltage
capacitor into water containing salt. The experimental
arrangement is shown in Fig. 1.61. A ring-shaped and a

U-formed electrode are immersed into salt water. A Capacitor
(1 mF) is charged up to 5 kV and then discharged through the
salt water by opening a switch. The U-shaped electrode is
isolated except at its upper end which is located at the surface
of the salt water. Here a bright light phenomenon appears
shaped as a very brilliant sphere with about 20 cm diameter
and a temperature of about 10.000 K. The bright ball exists
for about 0.3 s. It is named by the observers as plasmoid,
because it contains electrons, ions and water molecules. The
results show that ball lightnings are quasi neutral plasma
spheres of electrons and positive ions under metastable
conditions, which can exist for a while before they explode
by recombination [10]. Until now it cannot be explained why
the hot ball exists for a longer time as expected. For more
information about ball lightnings more detailed experiment
are necessary [11, 12].

1.9.5 Electrostatic Air Filter

The emission of dust produced by power stations and
industrial plants can be reduced significantly by electrostatic
air filters. Figure 1.62 shows schematically a possible ver-
sion. Inside the exhaust channel a central wire is mounted
between that and the surrounding metallic tube a high
voltage (50–100 kV) is applied. The resulting electric field
ignites a gas discharge. By adsorption of mostly negative
charges on the dust particles these are deposited at the
positively charged plates from where they are removed
mechanically and collected at the bottom [13, 14].

Water +

ceramics

plasmoid glass
contanier

10l≈

+5 kV

1 mF
C

Fig. 1.61 Experimental arrangement for the greation of ball
ligthenings

insulator

dust-free
exhaust gases

dust
+ gas

dust-
collector

Fig. 1.62 Electrostatic dust filter
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1.9.6 Electrostatic Deposition of Dye Coating

Through a nozzle a solution of colored dye is sprayed to a
conducting surface. Depending on the type of dye the drops
are charged by rubbing at each other or by a coronary dis-
charge. Figure 1.63 shows the maximum charge per drop as
a function of the drop radius consisting of water, conducting
particles, or insulators. An electric field accelerates the par-
ticles until their drag in air is compensated.

In this case the Stokes’s friction force (Vol. 1, Chap. 8)
and the accelerating force in an electric field are equal but
opposite.

F ¼ 6p � g � r � v ¼ q � E
The stationary speed v is then

v ¼ q

6pgr
E:

The object to be coated is grounded in order to deposit the
particles that move along the field lines at the object
(Fig. 1.64). By an appropriate form of the electrodes the
spatial distribution of the field can be adapted and thus the
distribution of dye particles be optimized. In each step of the
deposition only one color is used. In successive steps a
multi-color coating can be realized [15].

1.9.7 Electrostatic Copier and Printer

The principle of electrostatic copiers has been invented
already in 1935. It is based on a combination of the photo-
electric properties of certain materials (selenium, zinc-oxide)

and the electrostatic deposition of a fine powder on charged
surfaces.

The process of copying or printing is shown in Fig. 1.65.
A cylindrical drum coated with electrically charged selenium
is kept in the dark. An optical system creates an image of the
object to be copied on the drum. A part of the charges is
removed due to this exposure. The number of the removed
electrons is proportional to the incident light intensity
(photo-effect). The surface charge on the drum is larger at
those areas that correspond to the dark areas of the object
than at the bright areas. Powder with opposite charge is
accelerated onto the drum and remains at the charged
positions.

A charged sheet of paper is pressed against the rotating
drum where it removes the charged powder from the drum.
Then the paper runs through a heater where the melted
powder is permanently burned into the paper. The drum then
passes a blade and a brush that removes the remaining
powder to have a clean surface for the next copy [16, 17].
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Fig. 1.63 Maximum achievable charge of a droplet in a coronary
discharge as a function of the droplet radius (left scale). Velocity of
droplets in an electric field E ¼ 5� 105 V/m (right scale) (1) water
(2) conductive spheres (3) dielectric spheres (ref: [16–18])
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Fig. 1.64 a) Dye-coating of a plane surface by dye droplets ejected
from a nozzle and charged by friction b) coating of a spherical surface
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Fig. 1.65 Principle of a photo-copier
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Today selenium has been replaced by organic semicon-
ductors, e.g. polyvinyl-carbazol, as coating of the drum.
These materials are made conductive by doping. They are
cheaper and not poisonous as selenium and also the quality
of the reproduction is higher.

1.9.8 Electrostatic Charging and Neutralization

Newspapers and piles of newspapers are charged to avoid
slipping during their transport. Address labels are charged to
tie them to newspapers or leaflets before they are packed into
plastic wrap. When a surface is to be covered very evenly by
a liquid, a previous charging is very useful. An example for
this application is the production of DVDs, which consist of
two thin plastic disks that are glued together.

On the other hand for a lot of applications it is important
to protect the used materials from possible charging. One
example is the discharging of foils that are charged

unintentionally during their production. To use them as
packaging they mostly have to be electrically neutral.
Therefore the foils are discharged before they are wound up
on rolls. The principle is shown in Fig. 1.66. Electrons are
sprayed onto the foil and a grounded roller removes the
excess charge.

foil

grounded roller

electron gun
–10 kV

e–

Fig. 1.66 Neutralization of charged foils
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Summary

• The static electric field is created by charges. With
N charges Qi at the positions ri the total electric field
strength at the observation point P(R) is

EðPÞ ¼ 1
4pe0

XN
i¼1

Qi

R� rij j3 R� rið Þ:

• The field of a spatially distributed charge density .ðrÞ
at the point P(R) outside the volume of the charges is

EðPÞ ¼ 1
4pe0

Z
.ðrÞðR� rÞ

R� rj j3 d3r:

• The electrostatic field is conservative and therefore
can be written as the gradient

E ¼ �grad/

of the scalar potential

/ðRÞ ¼ 1
4pe0

Z
.ðrÞ d3r
R� rj j

• The charges are the sources of the electric field. In
vacuum the Poisson equation is valid

div E ¼ .=e0 ) D/ ¼ �.=e0;

where D is the Laplace operator.
• Inside of dielectric matter the electric field strength

decreases. For the field strength E and the displace-
ment field D is

EDiel ¼ 1
e
EVac;

DDiel ¼ e0EVac ¼ ee0EDiel;

divD ¼ .:

• At a boundary between two media with their relative
dielectric constants ei is

Eð1Þ
k ¼ Eð2Þ

k ; Dð1Þ
? ¼ Dð2Þ

?
1
e1
Dð1Þ

k ¼ 1
e2
Dð2Þ

k ; e1E
ð1Þ
? ¼ e2E

ð2Þ
? :

• The electric flux through the surface S

Uel ¼
I

E � dS ¼ Q=e0

is a measure for the source strength of the charge Q enclosed
by the surface S.

• From E ¼ �r/ follows rotE ¼ 0.
The static electric field is non-rotational it is eddy-free.
There are no closed field lines. Field lines begin on
positive charges and end on negative ones.
• Two conducting surfaces represent a capacitor with a

capacitance C that can carry a charge Q = CU. The
capacitance of a parallel plate capacitor with plate area
A and plate separation d is

C ¼ ee0 � Ad :

• The capacitance of a spherical capacitor of radius R is

C ¼ 4pe0R:

• The force F acting on a test charge q in an electric
field E is

F ¼ q � E:
• In an electric field E the work W that has to be per-

formed to bring the charge q from the position P1 to
the position P2 is

W ¼ q

ZP2

P1

E � ds

¼ q / P1ð Þ � / P2ð Þð Þ ¼ q � U;

where the voltage U equals the potential difference
D/ ¼ /1 � /2.

• An electric dipole consists of two charges of opposite
signs, –Q and +Q at a distance d. Its dipole moment is

p ¼ Q � d;
where d points from the negative to the positive charge. In a
homogeneous field a torque acts

D ¼ ðp� EÞ:
• In an inhomogeneous field an additional force acts

F ¼ p � gradE:
• The potential /ðPÞ and the field E(P) of an arbitrary

charge distribution that is sufficiently far away from
the point P can be calculated by a series expansion
(multipole expansion).

• Also between charge distributions that are neutral to
the outside, forces act except the distributions are
spherically symmetric.
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• An electric field displaces charges in matter. This
displacement is called influence for conductors and
polarization for insulators. There exists no field inside
a conductor. Inside insulators the field decreases to
EDiel ¼ 1

e EVac because induced dipoles are generated
and their field reduces the external field.

• The dielectric polarization

P ¼ N � q � d ¼ N � a � EDiel

is equal to the sum of all induced dipoles per unit volume
and it is also proportional to the field strength EDiel.
The factor a depends on the material and is called
polarizability.

• The static electric field in matter or in vacuum is
completely described by the field equations

rotE ¼ 0; divD ¼ .; D ¼ e0EþP.
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Problems

1:1 Gedankenexperiment: Two small balls of sodium of
mass m1 ¼ m2 ¼ 1 g are separated by 1 m. Suppose
that for every tenth atom one electron is missing.
Which surface charge density r is present on each
ball and with which force the balls repel each other?
(density of sodium . ¼ 0:97 g/cm3, mass of a sodium
atom ms ¼ 23� 1:67� 10�27 kg, elementary charge
e ¼ �1:602� 10�19 C).

1:2 Two equal balls of mass m carry equal charges Q and
are suspended by strings with length L with the same
suspension point A (Fig. 1.67).
(a) How large is the angle u? (numerical example:

m ¼ 0:01 kg; l ¼ 1m; Q ¼ 10�8 C.)
(b) How large is u, if a conducting plate with the

surface charge density r ¼ 1:5� 10�5 C/m2 is
placed symmetrically between the two balls?

1:3 A conducting annulus disc with the inner radius R1

and the outer radius R2 carries the charge density r.
(a) Calculate the force on a point charge q which is

located at the distance x on the symmetry axis
perpendicular to the disc

(b) What is the result for the limiting cases (a)
R1 ! 0, (ß) R2 ! 1, (c) R1 ! 0 and R2 ! 1?

1:4 Two conducting balls with radius R1 and R2 are
connected by a thin conducting wire with length
L � R1;R2. When the charge Q is brought onto the
system, how is the charge distribution Q1 and Q2(Q1 +
Q2 = Q) on the two balls and what are the electric
fields E1 and E2 on the two surfaces?

1:5 A point charge Q1 is located at the point P1ð0; 0; z ¼
aÞ another charge Q2 at the point P2ð0; 0; z ¼ �aÞ.
Calculate the force onto a charge q at the point
Pðr; #;uÞ and the potential energy Epot for the two
numerical examples Q1 ¼ Q2 ¼ 10�9 C and Q1 ¼
�Q2. What are the first three members of the multi-
pole expansion?

1:6 Calculate the potential energy of the three charge
distributions shown in Fig. 1.68, i.e. the energy, one
has to spend in order to bring the three charges from
infinity to the configurations shown in Fig. 1.68?

1:7 Calculate the quadrupole moments of the charge
distributions in Fig. 1.69.

1:8 Calculate the potential /ðrÞ and the electric field E(r)
for a charged non conducting homogeneous ball (ra-
dius R, charge Q). What is the work necessary to
bring a charge q
(a) from r = 0 to r = R
(b) from r = R to r =∞ if we choose /ðr ¼ 1Þ ¼ 0.

1:9 Execute the differentiation in (1.34) leading to the
multipole expansion, in all details.

1:10 Show that for a charged homogeneous ball with the
total charge Q all terms in (1.35) are zero, except the
monopole term.

1:11 For high voltage lines 4 wires (each with radius R) are
used that are arranged in such a way, that their
intersections with a plane z = z0 mark 4 points Pi at
the locations ðx ¼ �a; y ¼ 0Þ; and x ¼ 0; y ¼ �a)
which form a square with side lengths a � ffiffiffi

2
p

. All
wires have the same voltage U against earth. Calculate
(a) the electric field on the diagonal lines x = 0 and

y = 0
(b) the electric field Eðr;uÞ on the surface of each

wire with radius R = a/8
(c) by which factor is E smaller than for a single

wire at the voltage U?
Numerical values: R ¼ 0:5 cm; a ¼ 4 cm; U ¼
3� 105 V

m, Q m, Q

Fig. 1.67 Illustration of problem 1.2

(a)

a

aa

(b)

–Q a

aa

(c)

–Qa

aa

a–Q

Fig. 1.68 Illustration to solution 1.6

a

a

a

a

a aa

(a) (b)

Fig. 1.69 Illustration to problem 1.7
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1:12 Between the two plates of a plane capacitor (distance
d = 1 cm; area A ¼ 0:1 m2) a voltage U = 5 kV is
applied.
(a) How large are capacity C, charge Q on the plates

and electric field E?
(b) Prove, that the field energy of the capacitor is

W ¼ 1
2C � U2

(c) What is the torque on an atomic dipole
q ¼ 1:6� 10�19 C, d ¼ 5� 10�11 mð Þ in the
electric field of a capacitor with the dipole axis
parallel to the plates of the capacitor? How
much energy is gained resp. lost, if the dipole axis
is parallel or antiparallel to the electricfield vector?

1:13 What is the total capacity of the design, shown in
Fig. 1.70?

1:14 The charge Q is applied to the left plate of the
capacitor circuit in Fig. 1.71. What are field-
distribution E(x) and potential /ðxÞ?

1:15 On both sides of the cylindrical capacitor with radii R1

and R2 and angular extension u (Fig. 1.72) are aper-
tures with a slit at R ¼ R1 þR2ð Þ=2.
(a) Which voltage U has to be applied that allows an

electron with velocity v0 to pass both slits?
(b) At which angle u is the capacitor focusing, i.e.

electrons with a small angle against the path R =
const. should also pass the exit slit?

1:16 A thin wire with length L is bent to a circular arc with
R = 0.5 m. It carries the charge Q. Determine amount
and direction of the electric field in the center of
curvature as a function of the ratio L/R.

References

1. A. B. Arons: Development of Concepts of Physics (IAddison
Wesley Reading 1965)
JED Z. Buchwald, Robert Fox: The Oxford Handbook of the
History of Physics Oxford University Press (2013)

2. J. Munro: The story of electricity (Indy Publ. New York 2008)
3. Weltner/john/Weber: Mathematics for Physicists (Springer 2014)

G. Arfken et.al. mathematical Methods for Physicists 7th ed.
(Academic Press 2012)

4. Van de Graaff, R. J.; Compton, K. T; Van Atta, L. C. (February
1933). “The Electrostatic Production of High Voltage for Nuclear
Investigations” (PDF). Physical Review. 43 (3): 149–157. https://
en.wikipedia.org/wiki/Van_de_Graaff_generator

5. Millikan, R. A. “On the Elementary Electric charge and the
Avogadro Constant”. Phys. Rev. 2 (2): 109– 143 (1913). https://
www.aps.org/programs/outreach/history/historicsites/millikan.cfm
. https://en.wikipedia.org/wiki/Oil_drop_experiment

6. https://en.wikipedia.org/wiki/Atmospheric_electricity
7. F. K. Lutgens, E. J. Tarbuck: The Atmosphere 14th ed. (Pearson

2018)
8. H. Volland: Atmospheric Electrodynamics (Springer, Heidelberg

1984)
9. M. A. Uman: Ligthning (Dover Publ. 2003)

10. Cixing Liu, J. Martinsen: Ball Lightning (head of Zeus 2018).
https://en.wikipedia.org/wiki/Ball_lightning

11. G. Fussmann: Künstlicher Kugelblitz: Phys. in uns. Zeit 39, issue 5
246 (2008)

12. http://amasci.com/tesla/ballgtn.html#res
13. https://en.wikipedia.org/wiki/Electrostatic_precipitator
14. K. R. parker: Applied electrostatic Precipator (Springer, Dordrecht

1997)
15. J.F. Hughes: Electrostatic Powder Coating (DEncyclopedia of

Physical Sciences and Technology 2nd ed. Vol. 5 (Academic Press,
New York 1992 p.839 ff)

16. https://en.wikipedia.org/wiki/Photocopier
17. https://www.xerox.com/downloads/usa/en/s/Storyofxerography.

pdf
18. K.F. Riley et.al.: Mathematical Methods for Physicists (Cambridge

University Press 2007)

C C

C

C
C

C

C

Fig. 1.70 Illustration to problem 1.13

d d

x

a

Fig. 1.71 Illustration to problem 1.14

R

1R
2R

Fig. 1.72 Illustration to problem 1.15

1.9 Electrostatics in Nature and Technology 41

https://en.wikipedia.org/wiki/Van_de_Graaff_generator
https://en.wikipedia.org/wiki/Van_de_Graaff_generator
https://www.aps.org/programs/outreach/history/historicsites/millikan.cfm
https://www.aps.org/programs/outreach/history/historicsites/millikan.cfm
https://en.wikipedia.org/wiki/Oil_drop_experiment
https://en.wikipedia.org/wiki/Atmospheric_electricity
https://en.wikipedia.org/wiki/Ball_lightning
http://amasci.com/tesla/ballgtn.html#res
https://en.wikipedia.org/wiki/Electrostatic_precipitator
https://en.wikipedia.org/wiki/Photocopier
https://www.xerox.com/downloads/usa/en/s/Storyofxerography.pdf
https://www.xerox.com/downloads/usa/en/s/Storyofxerography.pdf


2Electric Currents

In this chapter we are going to introduce the basic features of
stationary electric currents and their various actions as well
as methods of their measurements. Especially the mecha-
nisms of electric conductivity in solids, liquids and gaseous
materials are explained. Also some possibilities for realizing
electric current sources are represented.

2.1 Current as Transport of Charges

An electric current means the transport of electric charges
through an electric conductor or in vacuum. The current I is
defined as the amount of charges Q transported into one
direction through a cross section of the conductor during the
unit of time.

I ¼ dQ
dt

: ð2:1Þ

The electric current I is measured in Coulomb per-second,
or amperes (named after Andre Marie Ampere (1775–1836,

Fig. 2.1a, b)) who first discovered that forces are acting
between current carrying wires) (Figs. 2.2, 2.3 and 2.4).

½I� ¼ ampere ¼ A:

Its official definition [NIST] is (see Vol. 1, Sect. 1.6.8).

The ampere is that constant current which, if main-
tained in two straight parallel conductors of infinite
length with negligible circular cross-section, and placed
1 m apart in vacuum, would produce between these
conductors a force equal to 2 � 10−7 N/m of length.

We define the current density j as the current through the
unit cross-section area perpendicular to j. The total current
I through the area A is

I ¼
Z
A

j � dA: ð2:2Þ

A I

Ad

j

AdjI
A

(a) (b)

Fig. 2.1 a) Andre Ampere. b) Definition of the current density j
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If the current density is spatially constant then is I ¼ j � A
(Fig. 2.1b).

The carriers of electric charges are mainly electrons and
positive or negative ions that transport the charges. It
depends on the material of the conductor which kind of
charges predominates the transport. We distinguish:

• In metals mainly the free electrons contribute to the
electric current.

Examples: solid and liquid metals, semiconductors
• In ionic conductors the carriers of charges are mainly

ions.
Examples: electrolytes (acids, alkaline solutions, salt
solutions), insulators with impurities.
• Mixed conductors, where electrons as well as ions

contribute to the current.
Examples: gas discharges, plasma.

We consider a conductor with n charges q per unit vol-
ume that move with the velocity v in one direction. The
charges inside the volume V ¼ A � vDt move during the time
interval Dt through the cross-section area A of the conductor
and represent the current

I ¼ n � q � A � v
and the current density

j ¼ n � q � v
With the charge density .el ¼ n � q we can rewrite the

current density as

j ¼ .el � v ð2:3Þ

If charges of both signs are present, e.g. in a gas discharge
then the net charge density is

.el ¼ .þ
el þ .�el ¼ nþ qþ þ n�q�;

and the total current density is

j ¼ nþ qþvþ þ n�q�v�; ð2:3aÞ

In general the velocities vþ and v� are of unequal amount
and point into opposite directions. For example, in a gas
discharge often is qþ ¼ e ¼ �q�. Since the plasma is
quasi-neutral it must be nþ ¼ n� ¼ n and the total current
density becomes

j ¼ enðvþ þ v�Þ jj j ¼ enðvþ � v�Þ ð2:3bÞ

VQ el

tvx

AvI el

Fig. 2.2 Relation between electric current I and charge density qel.
The volume V ¼ Dx � A where A is the cross section perpendicular to
Dx

v

v

E

vqnvqnj

v

Fig. 2.3 Current density for conductors with charge carriers of both
signs
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Fig. 2.4 Illustration of the continuity equation. a) Discharge of a
capacitor where the electric current I = dQ/dt flows through an arbitrary
surface surrounding the capacitor b) illustration of continuity equation
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Note For historical reasons in electrical engineering the
direction of current flow is defined as the flow direction of
the positive charges although later on it has been discovered
that the current in metals is caused by electrons (i.e. negative
charge carriers). The “technical” direction of current is
therefore from plus to minus.

The current through a closed surface A is

I ¼
I

j � dA

¼ � dQ
dt

¼ � d
dt

Z
.eldV

ð2:4aÞ

and must be equal to the rate of decrease of the included
charges.

With Gauss’s theoremI
j � dA ¼

Z
div j dV

we get the continuity equation

div jðr; tÞ ¼ � @

@t
.elðr; tÞ; ð2:4bÞ

This states that charges can neither be created nor
destroyed.

Thenegative change rate of charges in thevolumeV is
equal to the total flux through the surface of this volume.

2.2 Electric Resistance and Ohm’s Law

In this section we will gain fundamental insight into the
mechanism of charge transport in conductors andwewill show
the connection between electric field E and current density j.

2.2.1 Drift Velocity and Current Density

Even without an external electric field E the free carriers of
charges move inside a conductor. For example, the contri-
bution of velocities of ions in a conducting liquid is deter-
mined by their thermal motions at the temperature T. Ions of
mass m have a mean velocity (see Vol. 1, Chap. 7)

v ¼ hjvji ¼ ð8kT=pmÞ1=2:
For example, Na-ions in a liquid have a mean velocity of

500 m/s without an external field and at room temperature
T = 300 K.

Free electrons in metals have a much higher speed, about
106–107 m/s, caused by quantum mechanical effects.

On their way through the conductor the charge carriers
collide very often with the atoms or molecules of the con-
ductor. That changes the directions of the velocities statis-
tically into all directions and without an external field the
mean value ðvÞ becomes zero (Fig. 2.5). Therefore also the
mean value of the current density is zero

j ¼ n � q � v ¼ 0:

The mean time interval s between two successive
collisions

ss ¼ K=�v

is determined by the ratio of the mean free path K and the
mean speed �v (see Vol. 1, Chap. 7).

Example

1. Cu++ ions in a CuSO4 solution at room tempera-
ture: �v ¼ 300m/s, mean free path K ¼ 10�10 m )
ss ¼ 3:3� 10�13 s.

2. Free electrons in Cu at room temperature: K � 4�
10�8 m. Velocity at the Fermi surface �v ¼ 1:5�
106 m/s ) ss � 2:5� 10�14 s.

In an electric field E the carriers of charges with charge
q and mass m suffer an additional force

F ¼ q � E;
which leads to the acceleration a = F/m (Fig. 2.6). During
the time interval sS after the last collision the carriers get an
additional speed

(a) (b)

1P

2P
3P

4P

0pi

Fig. 2.5 a The average <p> of all electron momenta of the free
electrons in the conduction band of metals is zero without external
electric field. The peaks of the momentum vectors are located randomly
on a sphere (Fermi-Sphere). The center of this sphere rests in
momentum space. b Random path of an electron in an atomic lattice
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Dv ¼ a � ss ¼ F

m
ss; ð2:5Þ

in the electric field which is in general small compared to its
speed v and also small compared to the change Dvi ¼
vi � vi�1 by the ith collision.

With the mean time ss after the last collision (= half mean
time between two collisions). We get the mean additional
speed hDvi ¼ ðF=mÞhssi. Without external field is hDvi ¼ 0.

This mean additional velocity

vD ¼ hDvi
is called drift velocity. Positive charges are transported into
the direction of the field (negative charges opposite to the
field) with a current density

j ¼ n � q � vD ¼ .el � vD: ð2:6aÞ
From (2.5) and (2.6a) together with F ¼ q � E we get

j ¼ n � q2 � ss
m

E ¼ rel � E: ð2:6bÞ

The quantity

rel ¼ n � q2 � ss
m

with ½r� ¼ 1AV�1 m�1

depends on the material. It is called electric conductivity. It
depends on the number density n of the charge carriers, on
the mean time ss between two collisions, and on the mass m
of the carriers. Often the drift velocity is written as

vD ¼ u � E with u ¼ rel
n � q : ð2:6cÞ

where the factor u = rel/n � q is called mobility and has the
unit of m2/(Vs). It represents the drift velocity in an electric
field of E = 1 V/m.

Note In spite of the accelerating force F ¼ q � E a constant
drift velocity results. This is due to the fact, that the collisions
consistently change the direction of the velocity. If vD � v all
directions have the same probability immediately after the
collision. The preference of the velocity direction into the
field direction comes from the movement between two suc-
cessive collisions i.e. in the time interval sS. During the col-
lision the particle “forgets” its previous velocity direction.

The mean effect of the collisions can be described by a
“friction force” FF that is directed opposite to the field
direction and compensates the field force Fel = q � E when
the drift velocity is reached.

Ff þFEL ¼ FF þ q � E ¼ 0 hDvi ¼ vD:

From (2.6b, 2.6c) we get

Ff ¼ � nq2

rel
vD ¼ m

ss
vD:

The weaker the friction force Ff is, the higher becomes
the conductivity rel.

In an electric field the current density j ¼ .el � vD is
limited by the collisions of the charge carriers with the
material of the conductor. The electric conductivity is
determined by three facts:

(1) The concentration n of the charge carriers.
(2) The mean time interval ss between subsequent

collisions.
(3) The mass m of the charge carriers.

Examples

1. In case of conduction by electrons in copper is
rel ¼ 6� 107A/Vm, n ¼ 8:4� 1028 m�3, and
q ¼ �e ¼ �1:6� 10�19 C. With these numbers

the mobility becomes uj j ¼ 0:0043 m/s
V/m. For an

electric field of 0:1V/m a current of 600 A flows
through 1 cm2 of copper wire. However, the elec-
trons move only with a drift velocity of 0.4 mm/s!,
whereas the mean speed of electrons in copper is
v ¼ 1:6� 106 m/s, which is about 0.5% of the
speed of light. This illustrates that vD � hvi.

2. In an electrolytic conductor the mean thermal
velocity of the ions is about 103 m/s. For a density
of 1026 ions per m3 and a current density
j = 104 A/m2 the drift velocity is

E

1v

2v

3v
3v

4v

Dv m
p

vD

/pEq
t

IpI

IpI

Fig. 2.6 Schematic representation of the electron path in a solid
material, which is mainly determined by collisions with the atoms of
the solid. An external electric field changes this path only slightly. The
curvature of the path sections between two collisions is exaggerated.
However, the mean momentum <p> 6¼ 0
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vD ¼ j=ðn � eÞ ¼ 6� 10�4 m=s ¼ 0:6mm/s

and therefore still very low compared to vj jh i. For a
mobility u ¼ 6� 10�8 m2=ðVsÞ the electric conduc-
tivity is rel ¼ u � n � q � 1A/ðVmÞ. This is about eight
orders of magnitude smaller then in copper.

It turns out that the electric conductivity of metals is
proportional to the heat conductivity kh

kw
rel

¼ a � T Wiedemann�Franz’ law

The proportional constant a � 3(k/e)2 is determined by
the Boltzmann constant k and the elementary charge e. This
shows that the free electrons in metals contribute both to the
electric conduction as well as to the heat conduction (see
Vol. 3).

2.2.2 Ohm’s Law

Equation (2.6b) establishes the relation between current
density j and electric field E. It is called
Ohm’s law

j ¼ rel � E:
named after Georg Simon Ohm (1789–1854 Fig. 2.7). In a
homogeneous conductor of cross-section area A and length
L the integral form of Ohm’ law can be written with I ¼R
j � dA ¼ j � A and U ¼ R

E � dL as

I ¼ relA
L

� U ¼ U=R: ð2:6dÞ

The electric resistance R of the conductor depends on the
electric conductivity rel and the geometry of the conductor.

R ¼ L

rel � A ¼ .s �
L

A
with .s ¼

1
rel

ð2:7Þ

The specific resistance .S ¼ 1=rel depends solely on the
material of the conductor. The unit of the resistance R is

½R� ¼ U

I

� �
¼ 1Volt

1Ampere
¼ 1Ohm ¼ 1X:

The specific resistance .s ¼ R � A=L, with the unit ½.s� ¼
1Xm is the resistance of a cube with V = 1 m3. For practical
reasons often the specific resistance is given as the resistance
of a conductor with cross-section area 1 mm2 and length
1 m. The unit is then [X mm2/m] = 10−6 X m. Table 2.1
lists the specific resistance of a few materials.

If the specific resistance .s of a conductor is inde-
pendent of I and U (Ohm’s law) then current I and
voltage U = R � I along the conductor are propor-
tional, because R = const.

Note Along a conductor carrying the current I a voltage
gradient appears (Fig. 2.8)

UðxÞ ¼ /1 � /ðxÞ ¼ R � I � x
L

ð2:8Þ

• The conductor is no longer at a constant potential as in
electrostatics and therefore its surface is no longer an
equipotential surface.

• Not every conductor obeys Ohm’s law. There are a lot
of conductors where the conductivity rel depends on
the current I and therefore in such cases the current is
not proportional to the applied voltage (see Sect. 2.6).

• The electrical resistance R is also defined for con-
ductors of complicated geometry where the ratio
R = U/I of voltage U across the connecting electrodes
and the total current I defines the total resistance of the
conductor. In such cases R cannot be readilyFig. 2.7 Georg Simon Ohm

Table 2.1 Specific resistances qs of some conductors and isolators

Material .s=10
�6 Xm Material .s=Xm

Silver 0.016 Graphite 1.4 � 10−5

Copper 0.017 Water with 10 %
H2SO4

2.5 � 102

Gold 0.027 H2O + 10 % NaCl 8� 102

Zinc 0.059 Teflon 1 � 1017

Iron �0.1 Silicate glas 5 � 1015

Lead 0.21 Porcelain 3 � 1016

Mercury 0.96 Hard rubber �1020

Brass �0.08
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calculated from the specific resistance .s and the
complicated geometry of a sample but its value must
be obtained from measurements.

• In Fig. 2.9 some symbols for electric components are
compiled.

2.2.3 Examples for the Application of Ohm’s
Law

2.2.3.1 Charging of a Capacitor
A capacitor of capacitance C will be charged up to a voltage
U0 by a battery in series with a resistance R (Fig. 2.10). At
time t = 0 when the switch S1 is closed, the voltage at the
capacitor is zero Uð0Þ ¼ 0. Because QðtÞ ¼ C � UðtÞ the
charging current I(t) is

IðtÞ ¼ U0 � UðtÞ
R

¼ U0

R
� QðtÞ
R � C : ð2:9Þ

Differentiating (2.9) with respect to time we get with
I(t) = dQ/dt

dI
dt

¼ � 1
R � C � IðtÞ;

By integration we obtain with the initial condition
Ið0Þ ¼ I0

IðtÞ ¼ I0 � e�t=ðR�CÞ: ð2:10Þ
and with (2.9) the voltage across the capacitor

UðtÞ ¼ U0 � 1� e�t=ðR�CÞ
� �

: ð2:11Þ

2.2.3.2 Discharging a Capacitor
Now we consider the situation in Fig. 2.11 where the
capacitor holds a voltage U0 when the switch S1 is closed
and S2 is open. At time t = 0 we close switch S2 open S1.
Now a current I(t) flows through the discharge resistance R2

+ −

L

L x−x

BA

I

U x1 1= −φ φ U x2 2= −φ φ

φx

φ1 φ2

U0 1 2= −φ φ

Fig. 2.8 Variable voltage divider

(a) (b) (c) (d)

(e) (f)

(i) (j)

(g) (h)

– +

Fig. 2.9 Symbols for electrotechnical quantities: a) dc-voltage source
b) ground c) resistor d) variable resistor e) rectifying diode f) light bulb
g) voltage source h) inductance i) capacitor j) ac-source
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Fig. 2.10 Charging of a capacitor a) circuit b) voltage increase with
time
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Fig. 2.11 Discharging of a capacitor
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IðtÞ ¼ � dQ
dt

¼ �C � dU
dt

¼ UðtÞ
R2

: ð2:12Þ

The minus sign indicates that the charge on the capacitor
plates decreases. Integration of (2.12) yields

UðtÞ ¼ U0 � e�t=ðR2CÞ ð2:13aÞ
and

IðtÞ ¼ I0 � e�t=ðR2CÞ: ð2:13bÞ

2.2.3.3 Voltage Divider
The constant voltage gradient across a conductor with cur-
rent I can be used to supply a variable voltage U < U0 from
the constant source voltage U0. As we see from Fig. 2.8 a
variable voltage between point A and the sliding contact

U1ðxÞ ¼ x

L
� U0 ð2:14Þ

respectively

U2ðxÞ ¼ x� L

L
U0

between point B and the sliding contact can be taped.
The practical realization of such a potentiometer consists

of a thin conducting coating on a cylindrical insulator with a
contact sliding over the coating to tap the variable voltage.

2.2.3.4 Resistance of a Flat Circular Ring
of Thickness h

When we apply a voltage U across the inner cylinder (radius
r1) and the outer cylinder (radius r2) (Fig. 2.12). then a
current I flows radially through the dashed surface A ¼
2p � r � h of a cylinder with thickness h and radius r between
r1 and r2. We get

I ¼
Z

j � dA ¼ rel �
Z

E � dA
¼ rel � E � 2p � r � h:

Because E ¼ �grad/ ¼ � d/
dr ber it follows:

� d/
dr

¼ I

2p � rel � r � h ;

) U ¼ /1 � /2 ¼
I

2p � rel � h
Zr2
r1

dr
r

¼ I

2p � rel � h ln
r2
r1

) R ¼ U=I ¼ lnðr2=r1Þ
2phrel

:

ð2:15Þ

2.2.4 Temperature Dependence of the Electrical
Resistance of Solids: Super-conductivity

If an electron collides with lattice atoms of a regular crystal,
the momentum and collision energy is not transferred to a
single atom but to the whole lattice. The reason is that each
atom is bound elastically to its neighbors. Therefore, the
electrons stimulate the whole crystal to vibrations that rep-
resent standing waves in the crystal and are called phonons.
Boundary conditions select a finite number of possible
vibrations that have discrete amounts of vibration energies
and momenta. Because of these boundary conditions the
wavelength of the standing waves cannot be smaller than
twice the distance between the lattice planes and not greater
than twice the size of the crystal. Therefore a discrete
number of oscillation modes with discrete energies and
momenta is excited. Electrons colliding with the lattice can
create phonons and pass energy and momentum to the
crystal.

In addition to its regular lattice atoms each real solid
material has defects that are lattice points introduced by
doping, where either atoms are missing, or extra atoms are
sitting between the regular lattice points (see Vol. 3). These
defects are not bound to each other in the same way as
regular lattice atoms, and therefore can accept energy and
momentum while they collide with electrons without stim-
ulating lattice vibrations. The free path length K and thus the
conductivity rel of metals become larger for pure materials.
The specific resistance .s ¼ 1=rel can be composed of two
terms

.s ¼ .Ph þ .i;

where .Ph is determined by interactions between electrons
and phonons and .i by collision with impurity atoms or
dislocations.

dA

→
j

r

−

1r
2r

+1φ

2φ

Fig. 2.12 Resistance of a flat circular ring between two concentric
electrodes with radii r1 and r2
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Examples

Electrons in copper at room temperature have a mean
collision time ss ¼ m � rel=ðn � e2Þ ¼ 2:5� 10�14 s.
For a mean velocity of 1:5� 106 m/s the mean free
path is K ¼ 4� 10�8 m ¼ 40 nm. That corresponds to
about 200 atomic diameters. The conductivity
becomes, according to (2.6b), rel ¼ 6� 107 A/Vm
and the specific resistance is .s ¼ 1:7� 10�8 Vm/A.
Commercially available copper is a polycrystalline
material. Therefore, the contribution .i to the specific
resistance dominates because the micro crystals are
randomly oriented and there are no uniform phonons
for the whole body.

2.2.4.1 Temperature Dependence of the Specific
Resistance of Metals

The mean thermal velocity of the electrons rises with
increasing temperature; in addition their free path K
becomes smaller because more lattice vibrations are ther-
mally excited.

Therefore the probability increases that the electrons can
transfer energy and momentum to the phonons. Both effects
cause a decrease of the electric conductivity relðT Þ and an
increase of the specific resistance .sðTÞ ¼ 1=relðTÞ of
metals. This dependence can be written as

.sðTÞ ¼ .0 � ð1þ a � T þ b � T2Þ ð2:16Þ
which is valid in a wide temperature range. In this equation
is b � T � a. Within the for practical applications usually
relevant limited temperature range T1 < T < T2 we can use
the approximation

.sðTÞ � .0ð1þ aðTmÞTÞ

with a temperature dependent value of a and the mean
temperature Tm ¼ ðT1 þ T2Þ=2 of the chosen range.
Table 2.2 lists .0 and a of a few metals. Figure 2.13 shows
examples of their temperature dependence.

The number of excited lattice vibrations decreases with
decreasing temperature. At very low temperatures it
becomes very small and therefore the specific resistance
should go in the limit T − 0 to a constant value which is
caused by the impurities. Figure 2.14 shows the temperature
dependence of two Na-samples with different percentages of
impurities. A similar behavior can be found for a great
number of metals. However, a few solid materials show a
sudden vanishing of their dc resistance at a temperature TC
(superconductivity, Fig. 2.15).

2.2.4.2 Superconductivity
Superconductivity has been discovered for the first time
1911 by H. Kamerlingh-Onnes in Leiden, while he investi-
gated the temperature dependence of the specific resistance
of mercury (Hg) and its dependence on impurities. He
cooled mercury which could be purified easily by repeated
distillation, down to a temperature of 4 K.

These low temperatures were achieved by liquefying of
helium. To his great surprise Kamerlingh-Onnes found that
the resistance of his samples dropped suddenly down to zero
at temperatures below 4.2 K. He named this phenomenon
superconductivity. Later on the vanishing of the electric
resistance had been found for other materials with different
transition temperatures TC [1]. Because of the technical

Table 2.2 Temperature dependence of the electric resistance q(TC) =
q0 (1 + aTC) for some metals with q0 = q(T = 0 °Celsius)

Metall .0=10
�6 Xm a=K�1

Silver 0.015 4 �10−3

Copper 0.016 4 �10−3

Aluminum 0.026 4.7 �10−3

Mercury 0.941 1 �10−3

Constantan (Ni0;4Cu0;5Zn0;1) 0.5 <10−4

Tungsten 0.05 4.83 �10−3

T / K600500400100 200 3000
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coal
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Fig. 2.13 Temperature dependence of the specific resistance of some
conductors
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Fig. 2.14 Temperature dependence of two sodium samples with
different concentrations of impurities
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importance of this discovery many investigations have been
performed to find superconductors with a higher transition
temperature. However, for several decades the transition
temperatures remained below 30 K where liquid helium had
to be used (Table 2.3).

Only in 1986 Müller and Bednorz at IBM (Rüschlikon,
Swiss) found special oxide ceramics that became super-
conducting at transition temperatures above 80 K and
therefore could be cooled by liquid nitrogen [2]. In 1987
both scientists got the Nobel Price for their discovery just as
Kamerlingh-Onnes in 1913. In the meantime further super-
conducting oxides have been found (high temperature
superconductors) that have transition temperatures above
120 K and therefore we are optimistic about technical
applications in the nearer future [3].

It took also several decades to find a theoretical
description of the superconducting state. Not until about
40 years after its discovery Bardeen, Cooper and Schrieffer
developed a model that could explain most of the experi-
mental facts. It is named BCS-theory after the initials of the
three scientists. In this model the conduction electrons are
kept together in pairs by a polarizing interaction with the
lattice and become Cooper-pairs. These Cooper-pairs have
a finite binding energy DE and therefore can only be sepa-
rated if this energy is supplied by interactions with the lattice
i.e. by collisions with the vibrating lattice atoms [1, 4–6].

This BCS theory can be illustrated by a simple mechanical
model (Fig. 2.16): Two balls lie at different locations on the
top of a rubber-membrane that is bulged in by the weight of

the balls. If the balls are brought together then the dent in the
membrane becomes deeper because the weight at this posi-
tion is now twice as large. The potential energy of the balls
becomes lower than in the case of separation i.e. the elastic
membrane provides a binding energy between the balls.

We have to supply energy to separate the balls again.
Applied to the Cooper pairs this model tells us: Each

electron polarizes the electron shell of the ions by its Cou-
lomb interaction with the lattice ions during its motion
though the lattice (Fig. 2.17). If a second electron with
opposite but equal momentum moves along the same track
though the lattice it suffers besides its Coulomb interaction
with the ion cores an additional attractive interaction
between its charge and the induced charge polarization of the
lattice, created by the first electron. Also the first electron
experiences the additional attractive interaction caused by
the second electron. As a result the potential energy of both
electrons is reduced and that of the lattice is raised.

We say: The polarization of the lattice introduces a cor-
relation between both electrons that yields a “bound” electron
pair ðe�; p; e�;�pÞ with the momenta +p and −p of the two
electrons and the total momentum pC ¼ þ pþð�pÞ ¼ 0.
Because without an external field the total momentum of the
Cooper pair is zero it cannot supply any kinetic energy to the
lattice as long as the thermal energy of the phonons inter-
acting with the Cooper pair is lower than its binding energy.
If, however, an electric field is applied the drift velocity vD

superimposes the velocity v of both pair electrons and the
momentum of the Cooper pair becomes

Table 2.3 Transition temperatures Tc for some superconductors

Element Tc=K Compound Tc=K

Al 1.17 Al2CMo3 10.0

Hg 4.15 InNbSn 18.1

La 6.0 AlGeNb3 20.7

Nb 9.25 LaBaCuO 85

Tl-Ca-Ba-CuO 125

membrane

(a)

(b)

Fig. 2.16 Simple model of a Cooper-Pair
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Fig. 2.17 Polarization of lattice ions by electrons flying through the
lattice. a) Schematic illustration b) effective potential with and without
polarization, experienced by an electron
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Fig. 2.15 Superconductivity of some conductors with different tran-
sition temperatures
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p ¼ 2me � vD:

This results in a current density

j ¼ 2 � nC � e � vD;

where nC is the number density of Cooper pairs. Now the
friction force is missing because the Cooper pair cannot
transfer energy to the lattice and the current remains constant
even if the field is switched off. It has been shown that the
superconducting current did not measurably change over a
whole year.

If the external electric field is not switched off the drift
velocity vD resp. the electric current rises until the additional
kinetic energy of the Cooper pair

DEkin ¼ 1
2
ð2mÞðvþ vDÞ2 � 2 � 1

2
mv2

¼ 2mv � vD þmv2D

becomes larger than the negative binding energy. Then the
Cooper pair decays into two normal electrons which again
interact with the lattice and therefore their drift velocity
becomes lower than that of the Cooper pair. The supercon-
ductivity passes over into normal conductivity.

Also without an external field the Cooper pairs decay
above the critical temperature TC when the additional ther-
mal energy becomes larger than the binding energy.

Although this model of the BCS theory for Cooper pairs
can explain correctly many experimental facts there are still
a series of observations for which up to now no satisfactory
explanation can be given. Especially the new high temper-
ature superconductors cannot be described by the Cooper
pair model. Here new theoretical starting points have proved
that take into account the layered structure of the materials
(perovskite) and the resulting directional dependent con-
ductivity (see Vol. 3 and [5].).

2.2.4.3 Conductivity of Semiconductors and Its
Variation with Temperature

The situation is different for semiconductors. Their con-
ductivity is determined mainly by the number density n of
free conduction electrons.

In pure semiconductors at room temperature the number
density of free electrons and thus the conductivity are very low
but they can increase by many orders of magnitude by adding
impurity atoms (see Vol. 3). This can be seen in Fig. 2.18
where the specific resistances .sðT ; nDÞ for various degrees of
doping nD are plotted against the reciprocal temperature.

Note the logarithmic scale for resistivity and conductivity.
The density n of the free electrons increases exponentially

with temperature

nðTÞ ¼ n0 � e�DE=kT

where DE is the energy that has to be supplied in order to
transfer electrons from the bound state to free conduction
electrons.

In doped semiconductors impurity atoms have been
brought into the crystal which have much smaller energies
DE. Therefore at low temperatures mainly the impurity atoms
(donors) provide the conduction electrons. Above a satura-
tion temperature Ts all donors are ionized and the number of
charge carriers does not further increase because the contri-
bution of the crystal atoms which also rises with T is still very
small. As the mobility u decreases with increasing tempera-
ture the conductivity rel declines above Ts again (Fig. 2.19).

In the temperature range below Ts the decrease of the
mean free path K(T) and thus the mobility u(T) is over-
compensated with increasing T by the steep rise of the
density n(T) of the conduction electrons. Therefore the
conductivity rel(T) increases in this range with increasing
temperature i.e. the specific resistance .sðT Þ decreases.

Altogether, in this temperature range semiconductors have
a negative temperature coefficient a ¼ ½d.=dT�=.0 of their
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specific resistance and are therefore called NTC-resistances
(negative temperature coefficient).

In Table 2.4 specific values of a metal (copper) and a
semiconductor (germanium) are listed.

The strong dependence of the resistance of semiconduc-
tors on temperature is used to build sensitive temperature
sensors. If such a semiconductor is used in a voltage divider
(Fig. 2.20) every temperature variation yields a variation of
the voltage U at the output terminals and a signal indicating
the temperature. It can be also used to set up a circuit for
controlling temperatures.

2.3 Electric Power and Joule’s Heating

The transport of a charge q from a position with potential /1

to a position with potential /2 requires the work (see (1.13))

W ¼ q � ð/1 � /2Þ ¼ q � U
For a constant voltage U ¼ /1�/2 the charge dQ/dt

flowing per unit time through a conductor yields the electric
power

P ¼ dW
dt

¼ U � dQ
dt

¼ U � I; ð2:17aÞ

Its unit is ½P� ¼ V � A ¼ Watt ¼ W.
The work supplied during the time interval Dt ¼ t2 � t1 is

W ¼
Zt2
t1

U � Idt ¼ U � I � Dt; ð2:17bÞ

The second equal sign is only valid if U and I are tem-
porally constant. The unit of work is watt second ¼
Ws ¼ Joule ¼ J ¼ Nm

This electric energy is transformed into heat by the fric-
tional force FR ¼ �kR � vD that is opposite and equal to the
force q � E. The conductor becomes hot (Joule’s heat).

For Ohmic conductors that obey Ohm’s law U ¼ I � R we
can express the electric power as

P ¼ U � I ¼ I2 � R ¼ U2

R
; ð2:18Þ

Figure 2.21 demonstrates that those parts of a conductor
with the higher resistance consume the higher power if the

10,0

1,0

0,1
0 50 100 150 200 250 300

1

110−

210−0,1

1,0
n(T)

)T(elσ

)sV/m(/u 2 ⋅ )m/ 11
el

−−Ωσ

u(T)

T / K
ST

)cm/10(/n 316

Fig. 2.19 Electrical conductivity, electron density n(T) and mobility
u(T) of doped semiconductors as a function of temperature

Table 2.4 Comparison of the temperature dependence of the relative
specific resistance qs(T)/qs (0 °C). For a metal (Cu) and a semicon-
ductor (Ge)

.sðT Þ=.sðT ¼ 273KÞ Cu Ge

273 1 1

300 1.12 0.8

400 1.55 1.2 � 10−2

500 1.99 1.4 � 10−3

600 2.43 3 � 10−4

800 3.26 8 � 10−5

1000 4.64 –

−

+
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U
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T
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Fig. 2.20 Electric circuit for temperature measurements with an
NTC-semiconductor resistance
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Fig. 2.21 Demonstration of electric power transformed into heat a) for
constant current b) for constant voltage

2.2 Electric Resistance and Ohm’s Law 53



current through the conductor is constant. However, if the
voltage across each resistance has the same value the
consumed power of the resistor rises with decreasing
resistance!

2.4 Electric Networks; Kirchhoff’s Rules

Electric circuits often consist of a network of conductors
with nodes or junctions where currents meet or drain away.
We will use the following rules to calculate the individual
currents, voltages and the total resistance.

Kirchhoffs first rule (junction rule)

If conductors meet at one point P the sum of all currents
entering the junction must equal the sum of all currents
leaving the junction i.e. the algebraic sum of all currents
must be zero (Fig. 2.22).X

k

Ik ¼ 0 ð2:19Þ

This result follows from the continuity equation because
at the point P charges are neither created nor destroyed and
so the total current through a closed surface A around point P
must be zero. According to (2.4a) is

� dQ
dt

¼ � d
dt

Z
V

.el � dV

¼
Z
V

div j dV

¼
Z
A

j � dA ¼
X
k

Ik ¼ 0:

Kirchhoffs second rule (loop rule)

The algebraic sum of the voltages across elements in a
closed circuit path (loop) must be equal to the gener-
ator voltage (Fig. 2.23).

U0 ¼
XN
k¼1

Uk ¼ R1IþU2 þU3 þR2I � U5 þR3I; ð2:20aÞ

where the sum extends over all voltage sources and all
consumers. In Fig. 2.23 for example this gives

U1 ¼ R1 � I; U4 ¼ R2 � I; U6 ¼ R3 � I;
whereas the internal voltage sources are U2 + U3 − U5. The
external voltage source is U0.

Kirchhoff’s rule then requires:

U0 ¼ R1 � IþU2 þU3 þR2 � I � U5 þR3 � I
Kirchhoff’s rule is also valid for capacitive or inductive

resistances (see Sect. 5.4)

XN
k¼0

Uk ¼ 0: ð2:20bÞ

2.4.1 Resistances in Series

If we connect several resistances Rk in series to the circuit in
Fig. 2.24 with a current I then the voltage drops at the resis-
tances are

Uk ¼ I � Rk

From (2.20a) it follows

U0 ¼
X

Uk

The total resistance R ¼ P
Rk is equal to the sum of the

individual resistances.

Resistors arranged in series (one behind the other) add
to a total resistance.

A
P

0I
k

k =∑

I2
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I6
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Fig. 2.22 Illustration of Kirchoff’s junction rule
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Fig. 2.23 Illustration of Kirchoff’s loop rule
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2.4.2 Parallel Arrangement of Resistors

If two resistances are connected in parallel (Fig. 2.25) the
total resistance is smaller than the individual resistances.

When we apply a voltage U between the points A and
B (Fig. 2.25), we get the condition

U

R
¼ I ¼ I1 þ I2 ¼ U

R1
þ U

R2
)

1
R
¼ 1

R1
þ 1

R2
:

ð2:21Þ

For the parallel connection of resistors the inverse of
the individual resistances add up to the inverse of the
total resistance.

Therefore, the total resistance R is smaller than the
smallest value of the two resistances

By using the conductivity G = 1/R (2.21) simplifies to

G ¼ G1 þG2: ð2:21aÞ
We can formulate the rules for parallel and series net-

works of resistors:

For resistances placed in series (one behind the other)
the individual resistances add to the total resistance.

For resistances placed parallel to each other the
individual conductivities add to the total conductivity.

2.4.3 The Wheatstone Bridge

To measure resistances very accurately a Wheatstone bridge
can be used (Fig. 2.26). The values of R1, R2, and R3 are
known, but Rx is unknown. Across the points A and B a
voltage U0 is applied. The voltages

U1 ¼ U0 � Rx

ðR1 þRxÞ and U2 ¼ U0 � R2

ðR2 þR3Þ
at the points C and D referenced to B are equal if

R1

Rx
¼ R3

R2
) U1 ¼ U2:

Then the voltage DU ¼ U1 � U2 between the points
C and D is zero, i.e. the current through the measuring
instrument is zero and it follows

Rx ¼ R1 � R2

R3
:

Usually a variable voltage divider (potentiometer) is used
to adjust the bridge. So R2 and R3 can be varied simulta-
neously (Fig. 2.26). If the voltage divider has a length of
L and the wiper contact is at the position x we get

R2

R3
¼ L� x

x
:

The unknown resistance is then

Rx ¼ R1
L� x

x
: ð2:22Þ

The adjustment to zero is very sensitive because the
measuring instrument can detect very low currents and
voltages U1 � U2. Therefore, the Wheatstone bridge pro-
vides a means to measure precisely resistances and
their temperature dependence. The essential point is that
the adjustment to zero is independent of the applied
voltage U0.
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Fig. 2.24 Circuit with 3 resistors in series
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Fig. 2.25 Circuit with two parallel resistors
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Fig. 2.26 Wheatstone Bridge

2.4 Electric Networks; Kirchhoff’s Rules 55



2.5 Methods to Measure Electric Currents
and Voltages

In principle, all effects that are caused by electric currents
can be used to measure electric currents. These are especially
Joule’s heat, magnetic effects, electrolytic dissociation of
conducting fluids and the voltage drop in conductors. A de-
vice for the measurement of electric currents is named
ampere-meter. Some of these instruments will be explained
in more detail (see also [6–8]).

2.5.1 Current Measuring Instruments

2.5.1.1 Hot Wire Ampere-Meter
If a current I passes through a wire with resistance R the
electric power P = RI2 is transformed into heat and the wire
heats up. That causes an expansion of the wire (see Vol. 1,
Chap. 10). In a hot wire ampere-meter a system of levers
transfers the change of length to a revolving pointer.
A spring keeps the lengthened hot wire always tightened
(Fig. 2.27). These instruments are robust but insensitive;
they are suited for currents higher than about 0.1 A.

2.5.1.2 Using Magnetic Effects to Measure
Currents

Electric currents create magnetic fields (see Chap. 3) which
exert forces or torques on magnetic dipoles. This is used to
bring about the mechanical motion of a pointer.

In a moving coil instrument (Fig. 2.28) a coil, carrying
the current to be measured, is connected to a pointer. The
coil can revolve in a magnetic field. The coil experiences a
torque which is proportional to the current through the coil
and turns the pointer against the restoring force of the spiral
spring (see Sect. 3.5.1). Instruments that use the interaction

between the current flowing in a coil and magnetic fields are
called galvanometers or moving coil instruments.

In a moving iron instrument (Fig. 2.29a) the current car-
rying coil is fixed and a soft iron bar inside the coil becomes
magnetized and experiences a torque which is proportional to
the current through the coil. The pointer is connected to the
axis of the bar and indicates the current I. In the soft iron

spring

thread

conducting wire

Connecting terminal Connecting terminal

pointer

role

scale

Fig. 2.27 Hot wire ampere-meter

spiral spring
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Fig. 2.28 Moving coil ampere-meter (galvanometer)
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Fig. 2.29 Moving iron ampere-meter a) schematic drawing
b) illustration of repelling iron bars c) soft iron instrument
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instrument (Fig. 2.29b) the current to be measured flows
through a coil and creates a magnetic field that magnetizes
two rods of soft iron in the same direction so that they repel
each other. If the current changes its direction, also the
direction of magnetization is changed for both pieces of iron
and again they repel. The reading is therefore independent of
the direction of the current flow. Such instruments can be also
used to measure alternating currents. A modification of this
method uses one rod of iron that is pulled into the magnetic
field created by the current to be measured (Fig. 2.29c).

Here soft iron is used because this material can be readily
magnetized in one direction but its magnetization can be also
easily turned into the opposite direction when the magnetic
field is commutated. The hysteresis loop encloses only a
small area (see Sect. 3.5.5).

2.5.1.3 Electrolytic Effects to Measure Currents
Many liquid molecular materials are chemically decomposed
if they transport an electric current (Sect. 2.6). The mole-
cules dissociate into positive and negative ions, which are
deposited at the electrodes. The mass deposited per unit time
is proportional to the current and therefore can be used for
measuring the current.

2.5.1.4 Measurement of Currents with a Static
Voltmeter

When the current I flows through a resistor R it generates a
voltage drop U ¼ I � R and therefore the current I can be, in
principle, measured by a static voltmeter connected parallel to
R if its internal resistance is large compared to R (Fig. 2.30).

2.5.2 Circuits with Ampere-Meters

Each ampere-meter has a full scale value for the current to be
measured depending on the construction of the instrument.
This range can be extended to higher currents by a resistance
in parallel to the ampere-meter (Fig. 2.31). For an internal
resistance Ri of the instrument and a resistance R parallel to
it only the fraction Ii ¼ I � R= RþRið Þ of the total current
flows through the instrument.

The measurement of the current I by an instrument with
total resistance RM ¼ R � Ri= RþRið Þ changes the original

voltage in the circuit because a voltage drop of DU ¼ RM � I
appears across the measuring instrument. Therefore the
resistance RM of an ampere-meter should be as small as
possible. This can be achieved with instruments of high
sensitivity which can still measure very low currents Ii.

Modern instruments amplify the voltage drop Ue ¼ Re � I
at the input resistance Re by a factor V (Fig. 2.32). This
allows one to measure currents down to 10−16 A.

Example

I ¼ 10�10A;Re ¼ 10 kX ) Ue ¼ 1XV;Ua ¼ V � Ue

¼ 1V if V ¼ 106:

2.5.3 Current Measuring Instruments Used
to Measure Voltages

A voltage U across a resistance R causes a current I = U/R
through R and therefore we can use an ampere-meter to
measure voltages.

A resistor R is used in series with the measuring instru-
ment which has the inner resistance Ri (Fig. 2.32).
The external resistor R is chosen such that the current

IR

I

insulator

static
voltmeter

U I R= ⋅

Fig. 2.30 Measuring current with a static voltmeter
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ΔU R Ii= ⋅

RiI1

I2

ΔU R I R R)i i= ⋅ +/ ( /1

Fig. 2.31 Measuring currents with one of the instruments shown
before a) if the current is smaller than the maximum allowed current
through the instrument b) if I > Imax
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Fig. 2.32 Sensitive measurements of small currents by amplification
of the voltage Ue � Re
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I = U/(R + Ri) lies in the measurement range of the instru-
ment. Current measuring instruments that are used to mea-
sure voltages must have a very high total resistance R + Ri in
order not to influence the currents in the circuit (Fig. 2.33).

Ampere-meters are supposed to have a very low total
resistance but voltmeters a very high one. Voltages and
currents can be measured with the same instrument. For
current measurements a high resistance must be placed par-
allel to the instrument, whereas for voltage measurements a
high resistance has to be placed in series with the instrument.

2.6 Ionic Conduction in Fluids

Between two metallic electrodes inserted into a fluid where
acids, alkaline solutions or salts are added (Fig. 2.34) a
current I flows if a voltage U is applied which generates an
electric field E between the electrodes. Such electrically
conducting fluids are called electrolytes. In contrast to the
metallic conductors the flow of an electric current through
the fluid is connected with a chemical decomposition of the
electrolyte. At the positive electrode (anode) as well as at the
negative electrode (cathode) (Fig. 2.34) material in the solid
or gaseous phase is deposited.

For example for a copper-sulfate solution in water CuSO4

molecules dissociate into positively charged Cu++-ions and
negatively charged SO��

4 -ions even without an applied
voltage because of their interactions with the water mole-
cules. Etymologically, the word ion is derived from the
Greek meaning “hiking”. A voltage across the electrodes
creates an electric field that moves the positive ions (cations)

to the cathode where the Cu++-ion takes two electrons from
the cathode, where it is deposited as neutral metallic copper.
The negative ions (anions) move to the anode. There they
release two electrons and the neutral SO4 molecule reacts
with water as

2SO4 þ 2H2O ! 2H2SO4 þO2:

and oxygen escapes at the anode as a gas.
All electrolytes are composed of molecules with

non-symmetric distribution of electrons (the center of the
positive charge distribution does not coincide with the center
of the negative charge distribution and the molecules have a
permanent dipole moment). These permanent dipoles are
attracted by ions as is illustrated in Fig. 2.35.

In an electrolytic solution such molecules dissociate into
ions of opposite signs. The energy DW1 is necessary to
dissociate them. When the ions attach themselves to the
water molecules energy is released.

CuSO4 ���!þDW1

Cuþ þ þ SO��
4

Cuþ þ þ nH2O ���!
�DW2

�
Cu � nH2O

�þ þ

SO��
4 þ nH2O ���!

�DW3

�
SO4 � nH2O

�þ þ
:

The dissociation of the electrolyte molecules in water into
pairs of ions occurs spontaneously if the gain in energy
DW2 þDW3 for the attachment of the ions to the water
molecules is larger than the dissociation energy DW1.

When starting with small values of the concentration
(n molecules/m3) of salt molecules dissolved in water the
electric current I at a constant voltage U increases at first
with increasing concentration (Fig. 2.36). The conductivity
increases linearly with the concentration until saturation
starts, reaches a maximum and declines again at high
concentrations.

This can be understood as follows: According to
Eq. (2.6c) the electric conductivity

rel ¼ n � q � u

load resistorR

Ra
U R R Ii= + ⋅( )

Ri I

Fig. 2.33 Use of an amperemeter to measure voltages
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Fig. 2.34 Electric conduction in a galvanic cell
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can be written as the product of the ion concentration n and
the mobility u. For low concentrations the mobility u is
independent of n and its value is about 10�8 � 10�7 m2=ðVsÞ
(Table 2.5). In this concentration range the conductivity rel

increases linearly with n.

Example

For n+ = n− = 1024/m3 (low concentration of ions,
corresponding to a molar concentration of 1.5 mol/m3),
and the mobility uþ ¼ 4:3� 10�8 m2=Vs for Na+ and
u� ¼ 6:9� 10�8 m2=Vs for Cl− ions the electric con-
ductivity of a NaCl solution becomes
rel ¼ ðnþ uþ þ n�u�Þ � e ¼ 1:8� 10�2 A/Vm. At an
electric field E = 103 V/m the drift velocity becomes
vþD ¼ 4:3� 10�5 m/s and v�D ¼ 6:9� 10�5 m/s. This
results in a current density j ¼ rel � E ¼ 18A/m2.

With increasing concentration n themean distance between
the ions decreases and the attractions between the ions
increases. Work has to be done to spatially separate the ions.
This can be expressed by frictional forces which we have
already discussed in Sect. 2.2. They increase with increasing
concentration of ions due to the long range Coulomb forcesFC

between the ions which are proportional to 1/r2 whereas they
decrease with 1/r6 for interactions between neutral molecules.

Therefore the mobility decreases with increasing con-
centration at first slowly than faster and faster and the
increase of n is overcompensated by the decrease of u.

The conductivity rel of electrolytes incrseases with
increasing temperature in contrast to metals where it decrea-
ses. There are two reasons

(1) The viscosity of the solvents decreases with increasing
temperature and therefore the mobility u increases.

(2) The thermal energy of the ions increases with T and less
energy has to be supplied against the Coulomb attrac-
tion to separate the ions.

One mole of an ion with charge Z � e transports the charge
Q ¼ NA � Z � e ¼ F � Z

where NA is the Avogadro constant (number of molecules
per mole) and F is the Faraday constant .

The Faraday constant gives the charge that is trans-
ported by one mole of ions with one electron missing or one
extra electron attached (Z = 1).

F ¼ NA � e ¼ 96 485:309C/mol:

During the transport of the charge F a mass m = M/Z is
transported where M is the molar mass of the ions. The mass
of the ions that is deposited at the electrodes while the charge
of 1 C is transported is called electrochemical equivalent EC.

Example

½ � 63.5 g Cu++-ions transport the charge F ¼ 9:6�
104 C i.e. for the charge transport of 1 C the mass of the
cathode increases by 31:75=96 000 g ¼ 0:33mg.

Measuring the current I during the time Dt and the
resulting change of mass Dm of the copper cathode
yields the elementary charge e ¼ 1:6022� 10�19 C.

2.7 Current in Gases and Gas Discharges

Partially or totally ionized gases are called plasma. They
belong to the mixed conductors, because the charges are
transported by electrons as well as by positive and negative
ions. Apart from a few exceptions a plasma is quasi-neutral
because the mean number of negative and positive charges is
equal in a volume of at least DV � r3D. The quantity rD is
called Debye-length.

2.7.1 Concentration of Charge Carriers

The density of charge carriers nþ � n� ¼ n in a
quasi-neutral plasma is determined by the creation rate
ðdn=dtÞerz ¼ a and the rate of annihilation of the ion-pairs.

concentration n

elσ

2T

1T

12 TT >

Fig. 2.36 Electrical conductivity of an electrolyte as a function of the
concentration in water for two different temperatures

Table 2.5 Ion mobility in aqueous solutions at T = 20 °C for very
small ion concentrations

Cations uþ m2=ðV sÞ Anions u� m2=ðV sÞ
Hþ 31.5 � 10−8 OH� 17.4 � 10−8

Liþ 3.3 � 10−8 Cl� 6.9 � 10−8

Naþ 4.3 � 10−8 Br� 6.7 � 10−8

Agþ 5.4 � 10−8 I� 6.7 � 10−8

Znþ þ 4.8 � 10−8 SO��
4 7.1 � 10−8
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Recombination is the most important process of annihilation
where an electron and a positive ion collide and form a
neutral atom or molecule. The kinetic energy of their relative
motion before the collision is either transformed into
recombination radiation or transferred to a third collision
partner which also can be the wall of the container.

The rate of recombination is proportional to the product
n+ � n− of the densities of electrons and ions. It is therefore

ðdn=dtÞrek ¼ �b � n2

Altogether the rate of change of the charge density is
given by

dn
dt

¼ a� bn2: ð2:23Þ

where a is the creation rate of ion pairs. Stationary equi-
librium dn/dt = 0 is reached, if the rates of creation and of
destruction are equal. Then the stationary density of charge
carriers becomes

nstat ¼
ffiffiffiffiffiffiffiffi
a=b

p
: ð2:24Þ

Note The quantity n is the number density of ion-pairs.
Therefore we have a total of 2n charge carriers
(n+ + n− = 2n) per unit volume.

If the generation of electrons ends at time t = 0 with a
density of charge carriers n0 ¼ nðt ¼ 0Þ then the number
density n(t) decreases by recombination. Integration of
(2.23) with a ¼ 0 yields

nðtÞ ¼ n0
1þ bn0t

¼ n0
1þ t=s1=2

: ð2:25Þ

The decay curve n(t) is a hyperbola. The half-life s1=2 ¼
1= b � n0ð Þ is the time during which the concentration
decreases to half of its initial value n0.

2.7.2 Creation of Charge Carriers

In gases pairs of ion-electron can be created in various ways.

2.7.2.1 Thermal Ionization
Positioning a burning candle or a Bunsen burner below the
vertical electrodes of a parallel plate capacitor a current
begins to flow in the circuit of battery and capacitor
(Fig. 2.37). The current ends again if we remove the candle.
Obviously the flame creates carriers of charges that are
transported by the electric field and hit the-plates of the
capacitor. The carriers of charges are created by a combi-
nation of thermal excitation or ionization and chemical
reactions in the flame initiated by this ionization.

Example

At the temperature of the surface of the sun,
T = 6000 K, only a fraction of 10�4 of the neutral
hydrogen atoms is ionized.

Surfaces of special solid materials act as catalyst and can
substantially increase the fraction of ionization at lower
temperatures.

2.7.2.2 Ionization by Collisions with Electrons
An electron with enough kinetic energy, Ekin > Eion � 10
eV colliding with an atom A or a molecule M with the
ionization energy Eion can knock out one electron of the
atomic or molecular shell creating an electron-ion-pair

e� þA ! Aþ þ e� þ e�

e� þM ! Mþ þ e� þ e�:
ð2:26Þ

This is the main mechanism in gases of creating charge
carriers.

2.7.2.3 Photo-ionization
If we irradiate the air between the plates of a charged capacitor
with ultraviolet light of short wavelength or with X-rays then a
current is generated proportional to the intensity of the radi-
ation. The electron-ion pairs carrying this current are created
by photo-ionization of the gas molecules according to

Fig. 2.37 Thermal ionization of the air in the electric field between the
plates of a capacitor by a Bunsen burner
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Fig. 2.38 Creation of ions by electron impact or by photo-ionization
in the electric field of a parallel plate capacitor
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Mþ hm ! Mþ þ e�:

If radiation hits the plates of the capacitor then electrons
are released of the negative plate. In the electric field they
gain sufficient energy to create new electron-ion-pairs by
collision with air molecules (Fig. 2.38).

2.7.3 Current-Voltage-Characteristic of a Gas
Discharge

When we create charge carriers by one of the methods
described above inside a container filled with gas at a pressure
of a fewmillibars and two electrodes A and Kwe can measure
the functional dependence I(U) of the discharge current I as a
function of the voltage U between A and K (Fig. 2.39).

We start with a small voltage U. At the beginning the
current I(U) increases proportional to the voltage U. This is
called the linear range. Increasing the voltage U further the
current stays nearly constant at a value IS that is independent of
U. This is called the saturation range. Above a critical voltage
UC, which depends on the type of gas, the gas pressure and the
geometry of the container, a steep increase of the current I
occurs. Here the range of collision-ionization is reached.

Above this range at the ignition voltage UZ a
self-sustained discharge starts which continues also without
external creation of charge carriers.

This current-voltage characteristic I(U) can be explained
as follows: The charge carriers created by one of the pro-
cesses described above get a drift velocity due to the electric
field E between K and A

vD ¼ e � ss
m

E;

This drift velocity depends on the field strength E, on the
mean collision time ss ¼ K=�v and thus due to the mean free
path K ¼ kT=ðp � rcÞ on the pressure p of the gas and on the
collision cross section rc. The total velocity v is the vector
sum of drift velocity vD and thermal velocity.

The positive charge carriers drift to the electrode K and
the negative ones to the anode A.

On their path from the position of creation to the elec-
trodes the charge carriers can recombine. The number of
recombination events depends on the time between creation
and arrival at the electrodes and therefore decreases with
increasing field strength E. As long as the number Z = I/q of
charge carriers that arrive at the electrodes per unit time is
small compared to the recombination rate, the equilibrium
between creation and recombination is not significantly
disturbed. From (2.24) we get for the current density j at the
electrodes according to (2.3) and (2.6b) and with the
mobilities u� ¼ r�el=ðn � qÞ

j ¼ q � nstatðuþ þ u�Þ � E
¼ e

ffiffiffiffiffiffiffiffi
a=b

p
ðuþ þ u�Þ � E;

ð2:27Þ

if each charge carrier holds the elementary charge ±e. This
illustrates that Ohm’s law (2.6b) is valid in this range. The
current I ¼ j � A at the electrodes with surfaces A and sepa-
rated by the distance d increases linearly with the voltage
U ¼ E � d.

If the voltage increases further the rate of recombination
decreases because the drift velocity vD increases and there-
fore the time during which charge carriers stay in the plasma
where recombination takes place, decreases. Saturation of
the current I(U) is reached if all generated charge carriers
reach the electrodes before they can recombine. For a cre-
ation rate a per unit volume and a distance d between the
electrodes, the creation rate of pairs of charge carriers in the
volume V ¼ d � A is n ¼ a � d � A and the saturation current
density jsat ¼ I=A is

jsat ¼ 2a � e � d; ð2:28Þ
The factor 2 takes into account that positive as well as

negative charge carriers contribute to the total current.

Example

1. The cosmic radiation creates in the layers of our
atmosphere near the surface of the earth about
106 m−3 s−1 ion pairs. The coefficient of recombi-
nation at 1 atm is about b ¼ 10�12 m3 s�1. With
(2.24) we then get a stationary ion pair concen-
tration of 109 m−3.
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Fig. 2.39 Current-voltage characteristics of a gas discharge
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The mobility u of positive ions in air at atmo-
spheric pressure ðnneutral � 3� 1025m�3Þ and a
collision cross section rSt � 10�18m2 is

u ¼ e

m � �v � n � rSt ¼ 3� 10�4 m2=Vs;

The mean mobility of negative ions and electrons is
higher by about the factor two.
Applying a voltage U(V) at a parallel plate capacitor in
air with its plate distance d (m) an electric current
I flows because of the ion concentration in air with the
current density according to (2.27)

j ¼ e �
ffiffiffiffiffiffiffiffi
a=b

p
� ðuþ þ u�Þ � E )

j ¼ 1:5� 10�13U=d; ½j� ¼ A/m2

In case of saturation all the created charge carriers
reach the electrodes. The current density is then

jsat ¼ 2� 106 � 1:6� 10�19 � d:
For d ¼ 0:1m is jsat ¼ 3:2� 10�14A/m2. In this case
saturation is reached already at a field strength
E = 0.2 V/m.

2. Increasing the creation rate for example by irradi-
ation with X-rays, up to a = 1012 m−3 s−1 ion
pairs, the saturation field strength increases by a
factor 103 to 200 V/m for the same recombination
coefficient ß.

If the voltage U across the electrodes is raised above the
critical value UC the charge carriers get enough energy by
the electric field to ionize the neutral atoms or molecules of
the gas by collisions (ionization by collision). The main
contribution comes from the electrons because they have the
same mass as the electrons of the neutral atoms and therefore
the transfer of energy is more efficient (see Vol. 1, Chap. 4).

2.7.4 Mechanism of Gas Discharges

New charge carriers can be created by collision ionization
only, if the electrons gain between two successive collisions
sufficient energy in the electric field to ionize the neutral
particles. An electron moving in x-direction over the mean
free path Kx gains the energy e � E � Kx in an electric field
E in x-direction. The condition for ionization by collision
over the distance Kx is therefore

e � E � Kx 	Wion: ð2:29Þ

A current of N electrons per unit time that are accelerated
in x-direction by the field E creates along the distance dx

dN ¼ cNdx ð2:30Þ
new charge carrier pairs and therefore dN additional elec-
trons that can ionize by collision after having been acceler-
ated (Fig. 2.39). The factor

c ¼ ðdN=NÞ
dx

gives the mean number of secondary electrons that are cre-
ated by one primary electron on its way dx = 1 m along the
x-axis. The mean free path K / 1/p depends on the pressure
inside the discharge volume. Therefore also the ionization
capability c depends on the ratio of E/p of field strength
E and pressure p, and also on the ionization energy Wion.
Figure 2.41a shows c(E/p) for various gases. We see for
example that at equal values of E/d the ionization capability
of Ne or He is considerably lower than that of air. The reason
is the higher ionization energy of Ne and He.

Integrating (2.30) yields the number of electrons after the
distance x = d

N1 ¼ N0e
cd; ð2:31Þ

where N0 = N(x = 0) is the number of electrons at x = 0
created, for example, by thermal emission from the cathode.
The number N þ ¼ N0ðecd � 1Þ of positive ions created by
collisional ionization per unit time are accelerated in the
direction of the field and hit the cathode where they release
secondary electrons. Here the N0 primary electrons contained
in (2.31) have to be subtracted). If d is the mean number of
secondary electrons created per ion the total number of sec-
ondary electrons is d � N0ðecd � 1Þ. The coefficient d depends
on the material of the cathode as well as on the kind of ions
and their energy. The secondary electrons are accelerated
towards the anode and create on this path length d

N2 ¼ d � N0 � ðecd � 1Þ � ecd

ion pairs. This process continues and we get a total of

N ¼ N0e
cd
X
i

diðecd � 1Þi ð2:32Þ

secondary electrons per unit time (Fig. 2.40). For d � ðecd � 1Þ
\1 the geometric series (2.32) gives

N ¼ N0
ecd

1� d ecd � 1ð Þ : ð2:33aÞ

The discharge current

I ¼ eN ¼ eN0
ecd

1� d ecd � 1ð Þ ð2:33bÞ
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increases more than linearly with the field strength E because
c and thus N increase steeply with E (Fig. 2.41a). As long as
d � ðecd � 1Þ\1 the discharge is non-self-maintained. The
current (2.33b) becomes zero if the number of primary
electrons at x = 0 is zero (N0 = 0) and no charge carriers are
generated from outside, for example by X-rays or by a glow
cathode.

This changes, if the ionization capability c becomes so
large that dðecd � 1Þ	 1 or

c	 1
d
ln

dþ 1
d


 �
; ð2:34Þ

because then the number N of charge carriers in (2.32)
becomes infinite (N ! 1).

For N ! ∞ the discharge becomes self-sustaining. For
each accidentally created primary electron (created for
example by cosmic radiation) an infinitely increasing ava-
lanche of charge carriers is created. Since the ionization
capability c increases steeply with the field strength, the
ignition condition (2.34) is fulfilled for every discharge
above the ignition field strength EZ. The discharge is
self-sustaining. The ignition voltage UZ depends on the kind
of gas and the gas pressure (Fig. 2.41b) and on the geometry
of the gas container, the distance d of the electrodes, their
form, and of their material (because d depends on the
material of the cathode).

The condition for a self-sustaining discharge can be for-
mulated as

Each charge carrier has to provide its own substitute.

Note Since the conductivity rel increases with increasing
density n of charge carriers, the resistance of the
self-sustaining gas discharge decreases with increasing cur-
rent (Fig. 2.42) and the current-voltage characteristic dI/
dU becomes negative! Therefore the discharge current can
increase unlimited at a constant voltage U. This would
destroy the power supply or blow the fuse. To avoid such
failures an Ohmic series resistance is included in the circuit
to limit the current (Fig. 2.43).

In case of alternating current discharges a coil of induc-
tance L and resistance R = x � L (see Sect. 5.4) is a better
choice to stabilize the discharge.
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Fig. 2.40 Avalanche of electron-ion pairs created by collisional
ionization in a gas discharge
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The increasing current generates an increasing voltage
drop DU = I � R at the resistance and only the fraction

U ¼ U0 � R � I
remains at the discharge. A stable operation of the
self-sustaining discharge adjusts itself at the intersection of
the straight line of resistance I = (U0 − U)/R and the current-
voltage characteristic I(U) of the gas discharge (Fig. 2.43).

2.7.5 Various Types of Gas Discharges

During the collision with atoms the electrons can not only
ionize but also transfer energy W < Wion that can excite the
neutral atoms. In general these excited states release their
energy W within a short time (typically 10−8 s) by emitting
light with the photon energy W ¼ h � m. That’s why gas dis-
charges glow. Also during the recombination of electrons and
ions light is emitted. Intensity, color and spatial distribution of
the light emission depends on the gas itself, its pressure, and on
the type of gas discharge. We distinguish the following types.

2.7.5.1 Glow Discharge
Glow discharges are discharges at low pressure (p = 10−4–
10−2 bar) and low currents of a few mA. We see shining
layered structures (Fig. 2.44), which change with pressure p
and discharge voltage U. The observed structure corresponds
to the distribution of the electric field strength E(x) that is no
more constant (Fig. 2.45).

The secondary electrons created by the incident ions at
the cathode are accelerated until they have gained along the
distance x enough energy to excite the gas atoms. Therefore
next to the cathode the negative glow light is created. After
passing the distance x2 the electrons have enough energy to
ionize. At this position a great number of electron-ion pairs
is generated. The heavier ions leave the small volume slower
in the direction to the cathode than the electrons which leave
to the anode and the result is a surplus of positive charges.
Therefore the volume charges at x2 increase the field strength
between cathode and position x2: This is called the cathode
fall of the potential in Fig. 2.45c. Thus the field strength
between position x2 and anode is reduced correspondingly.
In this area the acceleration of the electrons is reduced and
consequently the rate of ionization. This space is filled with
negative volume charges (Fig. 2.45a).

The largest part of the discharge volume is filled with the
positive column with a relatively constant electric field,
which is strong enough to maintain an equilibrium between
ionization and recombination. Here the electrons have
enough energy to excite the atoms and the entire positive
column radiates diffuse light.

At decreasing pressure the mean free path becomes larger
and the positive column divides into many layers with a
mutual distance Kx corresponding to the mean free path.

2.7.5.2 Arc Discharge
Now we will discuss discharges of high currents and higher
pressure of the surrounding gas. Because of the high currents
the electrodes become very hot and can supply electrons by
thermal emission. Therefore the further supply of electrons
does no longer need the impact of ions. The electric conduc-
tivity of the arc discharge is very high so that after the ignition
the voltage across the arc decreases and the arc continues
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already at low voltages. An example is the carbon arc lamp
(Fig. 2.46a). It is used as a bright source of light for projec-
tions. Also electrical welding uses such high current arcs
between the workpiece and a rod of tungsten as the two elec-
trodes (Fig. 2.46b). To ignite the arc both electrodes are
brought into contact for a short time. To avoid corrosion of the
workpiece an inert shielding gas such as argon is blown around
the electrodes.

Also mercury or xenon high pressure arc lamps of high
brilliant intensity are examples of high current arc discharges.

They are ignited by a short high voltage pulse and then
they shine as a self-sustaining discharge

2.7.5.3 Spark Discharge
Spark discharges are short-time arc discharges that extin-
guish because the voltage across the distance of the arc
breaks down. A typical example is the discharging of a high
voltage capacitor through a gas discharge tube. A practical
application is the use of flash lights in photography to illu-
minate or to brighten objects. A spectacular form of dis-
charges can be observed as lightning in thunderstorms. Very
short but heavy heating up of the air in the discharge channel
creates a volume of high pressure that propagates as an
acoustic shock wave (thunder) through the air.

More extensive descriptions of gas discharges can be
found in the literature [8–10].

2.8 Current Sources

Up to now we have dealt with the mechanism of transporting
electric charges through solids, liquids, and gaseous conductors,
but we have not discussed the generation of electric currents.

All current sources are based on the separation of
positive and negative charges.

During this spatial separation work has to be done against
the attractive Coulomb forces. This work comes from
mechanical or chemical energy, from light or nuclear energy.
The separation of charges causes a potential difference
between the spatially separated charges inside the current
source. This can be measured as a voltage U across its ter-
minals or poles. Connecting these poles by a conductor
enables the flow of a current I. Its maximum value is smaller
than that defined by the open circuit voltage U and the Ohmic
resistance R of the external connection Imax < U/R. This is due
to the limited internal production of charges I = dQ/dt and can
be represented by a resistance called internal resistance that
adds to the external resistance R.

By far the most often used technical method to produce
currents are the electrodynamic generators. They use mag-
netic induction to separate the charges. We will treat them in
Chap. 5.

An important role in creating current sources which are
independent of the public power network play chemical
current supplies as batteries or accumulators. Especially
advanced fuel cells, which are the subject of intense research,
will become more important for electrically driven cars. We
will explain both types of chemical current supplies briefly.

The principle of solar cells where the light of the sun is used
to generate electric power (Fig. 2.47) cannot be explained
until Vol. 3 where we treat semiconductors.

Finally we will present thermo-electricity which uses the
dependence of the contact voltage between different metals
on temperature.
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Fig. 2.46 a) Arc discharge between two carbon electrodes and
imaging of the bright light for use in brilliant projection light sources
b) arc welding of metals with argon as shield gas

Fig. 2.47 Solar cell field as competion to coal power stations in the
background
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2.8.1 Internal Resistance of Current Sources

Each current source has an internal resistance Ri because the
charge carriers suffer collisions with the atoms or molecules
of the corresponding conductor on their path from the
position of the charge separation to the output terminals.
When an external resistor Re is connected between the ter-
minals the open circuit voltage U0 of the current supply (this
is the voltage without load, also called the emf = elec-
tro-motive force) decreases to the lower value

U ¼ U0 � I � Ri ¼ U0 � 1� Ri

Ri þRe


 �

¼ U0
Re

Ri þRe
:

ð2:35Þ

where I ¼ U0=ðRi þReÞ is the current through the load
(Fig. 2.48).

The voltage across the load becomes dependent on the
load!

Note The internal resistance Ri can be made very small by
an electronic stabilizer so that the external voltage is nearly
constant within a given range of the current I.

2.8.2 Galvanic Cells

If we immerse two different metals into a liquid electrolyte
an electric voltage is generated between the two electrodes.
The reason for this voltage can be explained as follows.

Between the metal electrode and the surrounding elec-
trolytic liquid is a concentration gradient of metal ions which
is counterbalanced by diffusion, i.e. by transfer of metal ions
from the electrodes into the liquid. However, the
binding-energy e � /1j j of the metal ions in the metal

electrode is generally much larger than the binding-energy
e � /2j j of the ions in the liquid, which is determined by the
accumulation of the ions to the water dipole molecules.
Therefore only a small part of the metallic ions dissolve into
the liquid where they form a narrow layer of positive charges
around the electrodes, whereas the electrodes become neg-
atively charged because of the missing positive ions
(Fig. 2.49). This results in a potential difference D/ between
electrode and electrolyte which drives the ions back into the
metal. Equilibrium is reached if the rate of dissolving ions
equals that of the ions returning into the metal.

The ratio of the concentrations c1 in the metal and c2 in
the liquid at equilibrium is given by the Boltzmann
distribution

c1
c2

¼ e�U=kT ð2:36Þ

(see the equivalent discussion of the barometric formula in
Vol. 1, Chap. 7).

Under this equilibrium condition no current flows. If an
external positive voltage Ua is applied between electrode and
electrolyte more positive metal ions pass into the solution
until the electrode is completely dissolved. In case of a neg-
ative external voltage the potential of the electrode is lowered
and more positive ions can accumulate at the electrode.

For the Galvanic cell with two different metal electrodes
(Fig. 2.50) the binding energy of the metal ions differs and
therefore also the potential differences D/i between the elec-
trolyte and the two electrodes differ. This results in a voltage

U ¼ D/1�D/2

+ load resistor
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U0 =

U U
R

R R
e

i e
=
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−

Fig. 2.48 Equivalent circuit diagram of a current source with internal
resistor Ri and external load resistor Re
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between the electrodes. The metals can be arranged in an
electro-chemical series (Table 2.6) with increasing standard
electrode potential which is defined as the potential differ-
ence against a standard hydrogen electrode under standard
conditions (T = 298.15 K, concentration of 1 mol/l of the
electrolyte).

Note The electro-chemical series is not identical to the
contact potential series of Table 1.3, where the work

functions for electrons are listed instead of the binding
energy of the ions.

One example of a Galvanic cell is the copper-zinc gal-
vanic cell (Fig. 2.51). A Zinc electrode is immersed into a
ZnSO4 solution and the copper electrode into a CuSO4-
solution. Since the binding energy of the Zn++ ions is smaller
than that of the copper ions, more Zn-ions are transferred
into the solution and leaving a surplus of electrons. Con-
necting the two electrodes by a conducting wire the electrons
flow to the copper electrode which forms the positive pole of
the Galvanic cell whereas the Zn-electrode forms the nega-
tive pole.

Instead of the two half-cells in Fig. 2.51a both electrodes
can be immersed into the same electrolytic solution
(Fig. 2.51b). The voltage delivered by a Galvanic cell is
equal to the potential difference between the two metals and
can be immediately obtained from the electro-chemical series
(Table 2.6) For example in a Zn-Cu Galvanic cell with a Zn
and a Cu-electrode in a dilute H2SO4 solution the voltage
between the electrodes is 1.1 V where the Zn-electrode forms
the negative pole and the Cu-electrode the positive pole.

Connecting the two electrodes by an external load resis-
tance Re one measures the current

I ¼ U=Re þRi;

where Ri is the internal resistance of the Galvanic cell and
the current is carried by electrons which flow from the
negative Zn-electrode to the positive Cu electrode.

Luigi Galvani (Fig. 2.52) was the first scientist who
discovered in 1780 that a voltage appeared if he connected
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Fig. 2.50 Two electrodes consisting of different materials immersed
into a liquid electrolyte form a galvanic cell

Table 2.6 Electrochemical series of some metals measured at T = 293
K against the reference of the hydrogen normal electrode for a
concentration of 1 mol ions per 1 liter electrolytic aqueous solution

Electrode U/V Electrode U/V

Li+/Li −3.02 Ni++/Ni −0.25

K+/K –2.92 Pb++/Pb −0.126

Na+/Na –2.71 H2/2H
+ 0

Zn++/Zn –0.76 Cu+/Cu +0.35

Fe++/Fe –0.44 Ag++/Ag +0.8

Cd++/Cd –0.40 Au3+/Au +1.5

Cu Zn

U1,1 V

electrolyte

U =
CuZn

Zn

Cu

CuU

ZnU

OHSOH 242

(a) (b)

Fig. 2.51 a) Cu-Zn Galvanic Cell with two separated parts (The original uploader was Ohiostandard at English Wikipedia. [CC BY-SA 3.0])
b) Galvanic cell with the different potential differences between electrodes and electrolyte
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two different metals with a frog’s leg. The unit of the voltage
1 V is named after Alessandro Volta (1745–1824 Fig. 2.53).
In Fig. 2.54 the different currents of ions and electrons in a
Galvanic cell are illustrated.

2.8.3 Accumulators

If two lead plates are immersed into a sulfur acid solution
diluted with water both plates are soon covered by a layer of
lead sulfate PbSO4. When now an external voltage is applied
to the plates (Fig. 2.55a) the ions H+ and OH−, which have
been dissociated in the electrolyte (see Sect. 2.6) move to the
electrodes. Here the ions deliver their charge and react with
the PbSO4 layers according to the following scheme:

Anode: PbSO4 þ 2OH� ! PbO2 þH2SO4 þ 2e�;
Cathode: PbSO4 þ 2Hþ þ 2e� ! PbþH2SO4:

ð2:38Þ
During this charging process the anode converts to lead

oxide PbO2 and the cathode to metallic lead Pb. The
charging process has created a Galvanic cell with two
unequal electrodes, which now can deliver a voltage
between the two poles. Between the plus-pole (PbO2) and
the minus pole (Pb) appears a voltage of 2 V.

At the end of the charging process one observes the
production of oxygen gas at the anode (from the

Fig. 2.53 Alessandro Volta
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reaction 4OH− ! 2H2O + O2 + 4e−) and of hydrogen gas
at the cathode (2H+ + 2e− ! H2).

When discharging the accumulator the processes (2.38)
proceed into the opposite direction:

Anode: PbO2 þHSO�
4 þ 3Hþ þ 2e� ! PbSO4 þ 2H2O

Cathode: Pbþ SO��
4 ! PbSO4 þ 2e�:

ð2:39Þ
The temporal variation of the output voltage during these

process is shown in Fig. 2.55b). The efficiency η of the
accumulator is defined as the ratio of delivered energy during
the discharge to the energy supplied for charging. It amounts
to about 75–80%. The residual 20–25% are wasted into heat.

The storage capacity is about 30 Wh per kg lead. In order
to enlarge the surface of the electrodes Pb-grids are used.
Technical details about Pb-accumulators can be found in
[10–12].

2.8.4 Different Types of Batteries

Besides the lead accumulator discussed in the foregoing
section, there are several other electric current sources which
are based on charge separation by chemical reactions. One
example is the rechargeable Nickel-Cadmium battery
(Fig. 2.56). Here Ni and Cd-electrodes are immersed into a
KOH-solution, which are covered by a hydroxide layer.
During the charging process the reactions

Cathode: CdðOHÞ2 þ 2e� ! Cdþ 2OH�

Anode: NiðOHÞ2 þ 2OH� ! 2NiðOHÞ3 þ 2e�

are initiated. The charging process ends when the whole
surface of the cathode has been converted to cadmium.
During the discharging process the reactions are inverted in
time and in the outer part of the circuit the electrons flow

from the cadmium to the nickel electrode. The whole battery
is enclosed in a gas-tight plastic mantle.

Remark
Since 2006 the Ni-Cd-batteries are forbidden because of the
toxic cadmium.

For many applications the ratio of stored energy and
weight of the lead accumulator is too bad. Furthermore the
liquid acid is often not acceptable. One therefore has looked
for solid electrolytes. One solution is the sodium-sulfur
battery with an electrolyte which consists of solid Al2O3

ceramics (Fig. 2.57). On one side of the electrolyte is liquid
sodium, on the other side liquid sulfur which is absorbed by
a graphite sponge, in order to increase the electric conduc-
tivity. At the anode the reaction

2Naþ þ Sþ 2e� ! Na2S

At the cathode the reaction

Na ! Naþ þ e�:

proceeds. The output voltage is about 2 V and the maximum
energy density is with 1 kWh/kg by a factor of 30 higher
than in the Pb-accumulator.

For small independent electronic devices, such as radios,
mobile telephones or tape recorders small “dry batteries” as
modern devices of the old Leclanchè-Elements (Fig. 2.58)
are used. A graphite rod doped with MnO2 is the central
positive electrode, whereas the outer zinc cylinder forms the
negative pole. The solid electrolyte consists of a NH4Cl
solution fixed in cellulose between the two electrodes.

A particular efficient and rechargeable device is the
lithium-ion-accumulator. Its energy storage capacity is
with 200–500 Wh/kg much higher than that of the
Pb-accumulator. Therefore it is nowadays used nearly
exclusively for laptops. i-phones and mobiles. Its basic
principle is explained in Fig. 2.59.

Cd

Ni
Plastic sheath

solid potassium
hydroxide solution

volume for
balance of gas
pressure

+

−

charged:

discharged: Cd OH( )

Cd + Ni(OH)

Ni(OH)
3

2 + 2

Fig. 2.56 Nickel-Cadmium battery

aR

−e

Na

isolation
and gasket
ceramics

sulfur
in graphite

Solid electrolyte

32OAl−β

Fig. 2.57 Solid sodium-sulphur battery

2.8 Current Sources 69



The anode consists of ametal-oxide compoundLi-M-oxide
(M = transition element e.g. Ni, Fe, Co, etc.), whereas the
cathode material is a Li-Graphite compound. The electrolyte
between the electrodes consists of awater-free gelatinous solid
(e.g. Lithium-tetrafluorborat LiBF4) which contains on the
anode side a lattice structure of Oxygen-Cobalt and Lithium
atoms, on the cathode side graphite compounds. The two sides
are separated by a micro-porous membrane (separator), which
is transparent for the Li+-ions.

During the discharging process the cathode delivers
electrons to the consumer circuit, which drift to the anode
through this external connection. The cathode then becomes
more positive and the anode more negative, which allows the
Li+-ions to pass through the separator to the anode. Since as
many Li+-ions migrate from the cathode to the anode as

electrons the electrodes remain neutral, i.e. the potential of
the electrodes stays nearly constant. During the charging
process the direction of ion-migration is reversed.

During charging the negative electrode acts a s cathode,
during the discharging as anode, whereas the positive elec-
trode acts during charging as anode and during discharging
as cathode. The electrons can move freely inside the elec-
trodes while the ions move free in the electrolyte.

The reactions during the charging and discharging pro-
cess can be described by the following equations:

Discharging:
Negative electrode:

Lix þCn ! n � Cþ x � Liþ þ x � e�

Positive electrode:

Li1�xMn2O4 þLixCn ! LiMn2O4 þCn0

Charging process:

Li1�xMn2O4 þLixCn ! LiMn2O4 þCn

The LiCoO2 accumulator delivers an output voltage of
3.6 V, which is about three times of the output voltage of the
Ni-metal-hydride accumulator.

Lithium-ion batteries are available also as small button
cells (Fig. 2.60) for electronic devices that do not consume
much energy. The diameter of the cell is about 1 cm, for
hearing devices about 0.7 cm.

More information about rechargeable batteries can be
found in [12, 13].

2.8.5 Fuel Cells

In the accumulator the chemical energy of the reaction
partners, (PbS + H2O) resp. (Pb + H2SO4) contained in the
accumulator is transformed into electrical energy. The reac-
tion products remain inside the cell and lead to the decrease
of the output voltage (discharging). The energy storage
capacity of batteries and accumulators is therefore limited.

positive pole

negative pole

cathode (coal pin)

anode (zinc cup)

manganese (IV) oxide

electrolyte (paper impregnated
by aluminium chloride)

Fig. 2.58 Solid magnesium-zink battery
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Fig. 2.59 Lithium-ion-accumulator

Fig. 2.60 Lithium-ion button cell
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This disadvantage is avoided in chemical fuel cells,
because here the reaction partners are continuously supplied
from outside. In Fig. 2.61 a simplified scheme of a fuel cell
operating with hydrogen and oxygen, is illustrated. Here
electric energy is generated by the exothermic oxy-hydrogen
reaction

2H2 þO2 ! 2H2O: ð2:40Þ
which proceeds in the fuel cell under controlled conditions,
in order to avoid an explosion-like energy release. The trick
of the fuel cell is the spatial separation of oxidation- and
reduction reactions. The reaction (2.40) is split by a suitable
construction of the fuel cell into the part

O2 þ 2H2Oþ 4e� ! 4OH� ð2:40aÞ
proceeding at the cathode which delivers one electron per
OH-radical (electron acceptance = reduction) and the part

2H2 þ 4OH� ! 4H4Oþ 4e�; ð2:40bÞ
at the anode where one electron is delivered per OH-radical
(oxidation reaction).

For both reactions a catalyst as well as an electrolytic
solution in water are necessary. Therefore the reaction can
only take place at the boundary between gas, electrolyte and
catalyst. This demands a special form and arrangement of
the electrodes. One uses for instance porous electrodes into
which the supplied gas (O2 resp. H2) as well as the elec-
trolyte can penetrate. The three-phase-boundary corresponds

to the meniscus of the electrolyte (Fig. 2.61b) in the pores of
the electrode, which is realized at equilibrium between gas
pressure and liquid capillary pressure (Vol. 1, Sect. 6.4). In
order to reach this equilibrium the diameter of the pores has
to be of the correct size. As catalysators for the cathode (H2-
elecrode) Nickel is used, while for the anode (O2 electrode)
silver is a good choice.

In the reactions (2.40a, b) two water molecules (H2O) are
formed from 2H2 molecules and 1O2 molecule. These reac-
tions are exothermic and the energy of about 5 eV is deliv-
ered, because the binding-energy of the two water molecules
is 2 � 9.5 = 19 eV, that of two H2. Molecules 2 � 4.5 eV and
that of one O2 molecule is 5.1 eV. The excess energy, which
is released is therefore Ee = 19 − 9 − 5.1 = 4.9 eV.

Typical output powers of such fuel cells are about 0.5 W
per cm2 electrode surface at a voltage of 0.8 V. Since this
voltage is for many applications too low one has to connect
several cells in series. In Fig. 2.62 output voltage and output
power of 33 fuel cells connected in series are shown in
dependence of the consumed current. Nowadays power den-
sities of 0.2 kW per 1 kg cell weight can be realized. This is
larger by one order ofmagnitude than that of Pb-accumulators.

The great advantage of such fuel cells is the direct con-
version of chemical energy into electric energy, without the
detour via thermal energy (which is necessary for thermal
power stations). Therefore here the limitation set by the
Carnot-efficiency (see Vol. 1, Chap. 10), is avoided. Themain
advantage is the avoidance of polluting exhaust gases, which
represent an unsolved problem for combustion engines,
because the exhaust of fuel cells is only harmless water vapor.

The main problem, unsolved up today is the membrane
which should be strong enough to withstand the pressure of
the supplied gases and the progressive poisoning of the
catalyst by tiny concentrations of impurities in the supplied
gases. Meanwhile it is, however, possible to develop pow-
erful and long living fuel cells, which represent in combi-
nation with an electro-motor interesting alternatives to
combustion engines for cars [14, 15]. While the combustion
engines emit besides CO2 gases also the toxic gases CO, NO
and unburned hydro-carbon gases the exhaust of fuel cells
consists only of harmless water vapor.
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Meanwhile already small fuel cells are commercial
available as energy sources for flash lights, bicycle illumi-
nation etc. In some German cities public busses run already
with fuel cells.

Several car manufacturers announced for 2019 to sell cars
with fuel cells as sole drive source.

More information about chemical energy sources can be
found in [16].

2.9 Thermal Current Sources

The temperature dependence of the contact potential
between two different metals as well as the thermo-diffusion
of conduction electrons in metals can be used for the gen-
eration of thermal current sources.

2.9.1 Contact Potential

In order to remove the freely moving conduction electrons in
a metal out of the metal one has to supply work against the
attractive forces between the negatively charged electrons
and the positively charged ions of the crystal lattice. This
work function Wa is analog to the evaporation energy of an
atom which leaves the liquid into the gaseous phase (see
Vol. 1, Sect. 10.4.2). If we choose the vacuum potential
/vak ¼ 0, the work function for a metal with the highest
electron energy state EC (also called the chemical potential
see Vol. 1, Sect. 10.8) becomes Wa ¼ �EC. The work
function is negative because one has to supply energy to
remove the electrons out of the metal.

If two different metals with different work functions Wa1
and Wa2 are brought into contact, electrons flow from the

metal with the lower work-function into the metal with the
higher work function, because this is energetically favorable.
This charge separation causes a space charge at the boundary
between the two metals (Fig. 2.63) which results in an
opposite electric field that drives the electrons back.
Equilibrium is reached if the currents in the two opposite
directions just cancel.

These space charges shift the potentials / of the two
metals to /1 and /2 and a potential difference U ¼ /2 � /1

develops which is called the contact potential.
However, this contact potential cannot be directly mea-

sured, because for the measurement a closed current loop
must be realized (Fig. 2.64) where the sum of all contact
potentials is zero.

2.9.2 Seebeck Effect

When two different electrical conductors A and B are con-
nected to a circuit (Fig. 2.65) the voltmeter shows the
voltage U = 0 as long as the two connections are kept at the
same temperature (see foregoing section). If, however, the
two contacts are at different temperature T1 and T2 the
thermo-voltage

U ¼ ðSA � SBÞðT1 � T2Þ: ð2:41aÞ
is measured. The coefficients SA and SB which depend on the
two materials are called Seebeck-Coefficients. They are
measured in units of [V/K]. Typical values for metals are
10−5–10−6 V/K, while for semiconductors they are much
larger, typically 10−3 V/K (Table 2.7). The Seebeck coeffi-
cients are temperature dependent (Fig. 2.66a) and for semi-
conductors they strongly depend on the concentration of
impurity atoms (Fig. 2.66b). When the volt-meter in
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Fig. 2.65 is replaced by an ampere-meter a current I = U/R
is measured which depends on the thermo-voltage and the
total resistance of the circuit.

The question is now: What is the cause of the
thermo-electric-voltage [17]?

2.9.3 Thermoelectric Voltage

The contact voltage depends on the temperature of the
contact. This can be explained as follows:

In Vol. 1, Sect. 7.3.5 it has been shown that under thermal
equilibrium the concentrations n1, n1 of particles with dif-
ferent energies E1 and E2 follow the Boltzmann distribution

n1=n2 ¼ e�DE=kT ð2:41Þ
with DE ¼ E2 � E1.

Although the freely moving conduction electrons in
metals do not generally follow a Boltzmann but a

Fermi-distribution (see Vol. 3) we can approximate for
DE 
 k � T the electron distribution by (2.41). In this case
the energy difference DE ¼ �e � /2�/1ð Þ ¼ e � U is given
by the contact voltage U. Solving for U yields

U ¼ k � T
e

ln
n1
n2

: ð2:42Þ

If the two contacts in this closed circuit are at different
temperatures the temperature dependent contact voltages

U1 ¼ kT1
e

ln
n1
n2

; U2 ¼ � kT2
e

ln
n1
n2

are different, The ratio n1/n2 of the electron concentrations is
mainly determined by the different work functions of the two
metals and only to a minor extent by the temperature (see
Vol. 3).

Note The voltmeter in Fig. 2.64 does not measure the dif-
ference DU = U1 – U2 between the points 1 and 2 but rather
the total voltage between the points a and b (Fig. 2.67). This
voltage can be composed of the potential differences

U ¼ /CðT1Þ � /BðT1Þ½ � þ /BðT1Þ � /BðT2Þ½ �
þ /BðT2Þ � /AðT2Þ½ � þ /AðT2Þ � /AðT1Þ½ �
þ /AðT1Þ � /CðT1Þ½ � ¼ 0:

ð2:42aÞ

This illustrates that, if the thermo-voltage would be solely
caused by the different contact potentials the voltmeter
would measure the voltage U = 0. Therefore there has to be
another real cause. This is the temperature dependent
thermo-diffusion of the electrons which results in a diffusion
current with the density

jThDðrÞ ¼ n � uðrÞ ð2:42bÞ

Table 2.7 Seebeck coefficients for some metals and semiconductors

Material S [lV/K]

Mercury 0.6

Aluminum 3.5

Copper 6.5

Germanium 300

Tellurium 500

Selenium 900
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Fig. 2.66 Temperature dependence of Seebeck coefficients a) for
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where the thermo-diffusion velocity can be derived as fol-
lows [17, 18].

The conduction electrons in the conductor material col-
lide with the lattice atoms (see Sect. 2.2.1). For the mean
free path K of the electrons the velocity of the electron at the
position r is determined by the temperature Tðr� kv=jvjÞ at
the location of the last collision. The mean velocity
〈v〉 = vD(r) is the drift velocity vD(r) = u(r). It can be
obtained by averaging over all directions of the velocity:

uðrÞ ¼ vh ir¼
1
4p

Z
�v � v̂ � Tðr� kv̂Þdk ð2:42cÞ

with the unit vector v̂ ¼ v= vj j. The expansion of the
integrand

Tðr� kv̂Þ � TðrÞ � kv̂ � rTðrÞ
�vðTðr� kv̂ÞÞ � �vðTðrÞÞ � kv̂rTðrÞ � d�v

dT

gives (see Problem 2.14):

uðrÞ ¼ � k
3
@�v
@T

� rTðrÞ: ð2:42dÞ

Besides the thermo-diffusion there is also the normal diffu-
sion which depends on the concentration gradient and which is
also existent for a spatially constant temperature (grad T = 0):
The normal diffusion generates a particle current density

jðrÞDiff ¼ �D � rnðrÞ: ð2:42eÞ
Since the electrons carry the charge −e their

thermo-diffusion from a location at higher temperature to a
location with lower temperature generates a spatial charge
that causes an electric field E(r). This field generates in turn
a drift of the charge carriers with the current density

jðrÞDrift ¼ � r
e
EðrÞ: ð2:42fÞ

The total current density is then

jtotal ¼ jDiff þ jThD þ jDrift: ð2:42gÞ
When the circuit in Fig. 2.67 is closed, a current with the

current density jtotal flows through the circuit, which can be
measured with the ampere-meter.

In the open circuit the spatial charge increases until the
resulting drift current just compensates the other shares in
(2.42g) and the total current density becomes zero. In this
case the thermo-voltage appears at the voltmeter.

Note As mentioned before this thermo-voltage is due to the
sum of all effects and would be zero if only the contact
potentials would contribute.

The relation between the Seebeck-coefficient S and
thermo-current density

j ¼ relðrU � S � rTÞ
is

S ¼ � 1
3
e � K � n

rel

d�v
dT

¼ e � K � jThD
rel � rT

ð2:42hÞ

where n is the electron density, �v the mean velocity of the
electrons, K their mean free path and rel the electric con-
ductivity (see Problem 2.15).

The thermo-voltage can be used for accurate temperature
measurements (Fig. 2.67 and Vol. 1, Sect. 10.1.1) but also
as voltage source for thermo-currents. This can be demon-
strated with the experiment illustrated in Fig. 2.68 One end
of a thick copper hoop is immersed into cold water while the
other end is heated with a burner. A bar made of another
material is welded between the cold and hot end of the
hoop. A thermo-voltage Uth appears between the two ends
K1 and K2 which causes a very large thermo-current Ith =
Uth/R (more than 100 A) through the copper hoop because
of its extremely low resistance R. The current can be
demonstrated by the magnetic field which it produces in two
iron plates which are placed on top of each other without
fixed connection. The magnetic field is so strong that the
lower iron plate can carry a weight of more than 5 kg. It falls
down as soon as the burner is removed.

2.9.4 Peltier-Effect

When a current is sent through a conducting bar that consists
of different metals in the sequence ABA (Fig. 2.69), one of
the contacts cools down while the other warms up. If the
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propane

copper
   rod

Ith

Ith
K T1 1( )

K T2 2( )

Fig. 2.68 Demonstration of the thermo-current
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polarity of the voltage source is reversed the sign of the
temperature changes DT1 and DT2 also have reverse polarity.

This Peltier-effect represents the reverse of the generation
of a thermo-current. The temperature increase occurs at that
contact, which is the colder one for the same direction of the
thermo-current.

The heat power, produced at the contact 1 is proportional
to the current I:

dW=dt ¼ PA �PBð Þ � I ð2:43Þ
where PA and PB are the Peltier coefficients of the materials
A and B. The sign of dW=dt depends on the direction of the
current. For dW=dt[ 0 heat is produced (the contact warms
up), while for dW=dt\0 heat power is extracted from the
contact (it cools down). Typical numerical values of the
Peltier coefficients are P � 102 J/K. The empirical relation
between thermo-voltage Uth and Peltier coefficient PP can
be written as

Uth ¼ Pe

T
� DT: ð2:44Þ

2.9.5 Thermo-electric Converters

Thermo-elements and Peltier-elements belong to the more
general group of thermo-electric converters. These devices
either produce an electric current by a temperature difference
or they generate a temperature difference by sending a cur-
rent through contacts between different conductors. They
represent a modern research area because they can often
solve problems of efficient heat transfer or they can optimize
the energy balance for the thermal current production.
Viewed from the energetic side thermo-electric converters
transport heat, supplying electric energy or they convert heat
energy into electric energy. It is, for example, possible to use
industrial waste heat for the production of electric energy.
Another application is the cooling of microchips or other

electronic devises by very effectively dissipating the heat
produced by the chips.

Such converters are applied in many technical areas. For
example the heat in the exhaust of cars can be used for the
production of electric energy in order to save the battery
energy. A further spectacular example is the conversion of
heat produced by the decay of radioactive atoms in space
probes into electric energy for the supply of the electronic
devices on board.

In Fig. 2.70a and b the two processes

(a) generation of a thermo-voltage
(b) transport of heat energy

are schematically illustrated where the red and the grey bars
are two different materials. For metals the Seebeck coeffi-
cient is of the order of lV/K, whereas for semiconductors it
is about mV/K, i.e. two to three orders of magnitude larger
(Table 2.7). An example for the heat transport induced by an
electric current is shown in Fig. 2.71 where the electric
current is sent through an n-semiconductor and a
p-semiconductor, which are connected by a metal plate. For
the correct polarity of the voltage source the upper metal
plate is cooled while the lower plates are heated up. This
implies that heat is transported from the upper side of the
semiconductors to the lower side. The energy conversion
efficiency is defined by the ratio

g ¼ DQ=Wel �ðT2�T1Þ=Tw with T2 [ T1: ð2:45Þ
of transported heat energy to supplied electric energy.
Because the Carno-efficiency (see Vol. 1, Sect. 10.3) sets an
upper limit to the efficiency of any device which cannot be
larger than the ratio of realized temperature difference to the
higher temperature.
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Fig. 2.69 Peltier-Effect
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Fig. 2.70 a) Generation of a thermo-voltage b) heat transprot using
the Peltier-effect
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The maximum efficiency can be related to the efficiency
number ZT, defined as

ZT ¼ S2rT=k ð2:46Þ
where S is the Seebeck coefficient, r the electric conductivity
and j is the thermal conductivity. In Fig. 2.72 the quantities S,
r k and ZT are plotted as a function of the free carrier charge
density. The figure illustrates that semiconductors have by far
the highest values of ZT. In Fig. 2.73 the temperature
dependence of ZT is plotted for some semiconductors.

The efficiency η depends not only on ZT but also on the
temperatures Tw of the warm side and Tc on the cold side
(Fig. 2.73). The maximum achievable efficiency is
(Fig. 2.74)

gmax ¼
Tw � Tkð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZTþ 1

p Þ � 1

Twð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZTþ 1

p � 1Þ : ð2:47Þ

Example

ZT ¼ 0:6; Tw ¼ 400K; Tc ¼ 300K ! gmax ¼ 0:35:

The example shows that the maximum efficiency is not
very high [18].

It is limited by the unwanted heat conduction through the
Peltier element.
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Fig. 2.74 Energy efficiency of thermoelectric converters compared to
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2.9.6 Thomson Effect

The Thomson effect (do not mistake this with the
Joule-Thomson effect in Thermodynamics Vol. 1,
Sect. 10.4.2) describes the altered heat conduction through a
current carrying conductor if a temperature gradient exists
along the conductor. The current I with the current density
j produces in a conductor with specific electric resistance qel,
cross section A and length L the heat energy per second in
the volume V ¼ A � L

dQ1=dtð Þ ¼ .el � j2 � V ð2:48Þ
This heat energy is dissipated through heat conduction

and is transferred to the surrounding. We regard a straight
wire in the x-direction with cross section A and heat con-
duction coefficient k. If we assume that there is no temper-
ature gradient in the radial direction, we need only to

consider the heat transfer into the length direction. The heat
losses are then

dQ2=dt ¼ �k � A � dT=dx ð2:49Þ
if the current has been switched off at t = 0. If the current
flow continues an additional heat transport occurs with a
sign that depends on the direction of the current. It can be
quantitatively described by

dQ3=dt ¼ �l � j � dT=dx: ð2:50Þ
The energy balance in the volume element dV is then

dQ=dt ¼ .el � j2 � ðk � Aþ l � jÞdT=dx: ð2:51Þ
The three phenomena Peltier-effect, Seebeck effect and

Thomson effect are not independent of each other. Between
the corresponding coefficients the following relations exist:

P ¼ S � T ; l ¼ T � dS=dT: ð2:52Þ
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Summary

• The electric current is a transport of electric charges. It
is always connected with a mass transport. The current
density

j ¼ nþ qþvþ
D þ n�q�v

�
D

depends on the densities n± of the charge carriers with the
charge q± and on their drift velocity v�D .

• The relation between current density and electric field
strength is given by Ohm’s law

j ¼ rel � E

The electric conductivity rel is dependent on the material
and generally also on the temperature.
• The specific electric resistance .s ¼ 1=rel of a con-

ductor is caused by collisions of the charge carriers
with the atoms of the conducting material. The total
resistance of a conductor depends also on its
geometry.

• The calculation of even complex networks is facili-
tated by Kirchhoff’s rules, which state:

(a) At the junction of several electric conductors the
sum of all currents is zeroX

k

Ik ¼ 0:

(b) In a closed circuit of a network of resistors or
capacitances the total voltage is zero

X
k

Uk ¼ 0:

• In gas discharges electrons and ions both contribute to
the discharge current. For the non-self-maintained
discharge the discharge ends, if no longer charge
carriers are generated. In stable self-maintained dis-
charges every charge carrier has to supply its on
substitute.

• In current sources energy is required to separate
positive and negative charges. This spatial charge
separation generates a potential difference resulting in
the voltage U0 between the poles of the current source.
The source can be used as energy storage. Connecting
the poles by a conductor with resistance R an electric
current I = U/(R + Ri) flows. The inner resistance Ri

of the source depends on the source material and on
the path length between the location of charge sepa-
ration and the poles of the source.

• With an external load Ra the voltage drops to U = U0

– I � Ri. With I = U/Re this gives U = U0/(1 + Ri/Ra).
• The voltage of chemical current sources is determined

by the difference between the contact potentials of the
two electrodes.

• The different temperature dependence of the contact
potential between to different metals is used for ther-
mometers and electric cooling (Peltier effect).
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Problems

2:1 A light bulb is connected to a dc-voltage source by
two 10 m long copper cables and a switch. When the
switch is closed a current of 1 A flows through the
cables. The density of copper is . ¼ 8:92 g=cm3 and
the concentration of charge carriers is
n ¼ 5� 1028 m�3.
(a) What is the fraction of charge carriers to the

number of neutral copper atoms?
(b) If the switch is closed at t = 0 at which time t1

starts the light bulb to shine? What is the time
dependence I(t) of the current I?

(c) Calculate the time t2 when the first electron of the
voltage source reaches the incandescent filament
of the bulb? Why is t1 so much shorter than t2?

(d) How long must the current of 1 A flow, until 1 g
electrons passes through a cross section of the
filament?

2:2 A 1 m long iron wire has at one end the diameter of
1 mm and tapers uniformly to 0.25 mm at the other
end. Calculate

(a) the total resistance of the wire (qel(iron) = 8.71
� 10−8 X m)

(b) The supplied electric power per unit length, when
a voltage of U = 1 V is applied between the ends
of the wire.

2:3 Calculate the resistance between A and B in Fig. 2.75.
2:4 What are the currents I1, I2 and I3 in the network of

Fig. 2.76? How large is the potential difference
between A and ground?
Numerical example: U1 = 10 V; Ri(U1) = 1 X;
U2 = 4 V; Ri0(U2) = 1 X, R1 = 1 X; R2 = 4 X;
R3 = 4, R4 = 8 X; R5 = 12 X; R6 = 24 X.

2:5 A car accumulator has a voltage of U0 = 12 V with-
out load. Starting the motor the current is I = 150 A
and the voltage drops to U1 = 10 V.

(a) What is the internal resistance Ri of the accu-
mulator and of Ra = resistance of the starter?

(b) At low temperatures the internal resistance Ri

increases to Ri = Ra. How large is now U1?
(c) How large is under the conditions of (a) and

(b) the electric power consumed in the starter and
in the accumulator?

2:6 The points A and B in Fig. 2.77 are the endpoints of a
circuit consisting of 8 elements (indicated by circles).
(a) What is the total capacity if the points represent

equal capacitors C?
(b) What is the total resistance R if the points rep-

resent equal resistors Ri?
2:7 A cylinder of 12 cm diameter and 60 cm length is put

into a nickel salt solution in order to cover it with a
0.1 thick nickel layer. The current density should not
exceed 25 A/m2,
(a) Which maximum current is possible?
(b) What is the electro-chemical equivalent EC?

(Nickel-ions have the mass density qm = 8.7
g/cm3 and the charge q = 2e, mNi = 58.71
1.67�10−27 kg, the Avogadro constant is
6.023�1023/mol, e = 1.6�10−19 C.

(c) How long have the cylinders to stay in the bath,
if always the maximum current Im flows.

2:8 A voltage source with the electro-motive force
EMF = 4.5 V and an internal resistance Ri = 1.2 X is
connected to the external load Ra. What is the

2R 2R
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2R 2R

R

B

A

R

Fig. 2.75 Illustration of Problem 2.3
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Fig. 2.76 Illustration of Problem 2.4
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Fig. 2.77 Illustration of Problem 2.6
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optimum value of Ra in order to supply the maximum
power to Ra? How large is this maximum power?

2:9 A capacitor C1 = 20 lF is charged to 1000 V. Then it
is connected to an uncharged second capacitor
C2 = 10 lF, through a conducting wire with the
resistance R.
(a) What were charge Q1 and Energy W1 of C1

before the connection?
(b) What are voltage, total charge and total energy of

C1 + C2 after the connection? Where did the
energy difference go?

2:10 Assume the current-voltage characteristics of a gas
discharge as that shown in Fig. 2.78.
(a) Calculate the values Rmax and Rmin for the

dropping resistor to achieve a stable discharge
when a voltage of 1000 V is applied.

(b) Assume the dropping resistor is R = 5 kX.
Which changes occur in the discharge if the
voltage is changed to 500 V resp. 1250 V?

2:11 Assume a KCl solution has the electric conductivity
rel = 1.1 (X m)−1. What are the amplitudes of the
alternating ion motion in an electric ac-field with
E = 30 V/cm and a frequency of f = 50 s−1 for an ion
density n+ = n− = 1020/cm3 and equal mobilities
u+ = u−?

2:12 A shielded cable consisting of an inner conductor
(r1 = 1 mm) and concentric metallic bush (inner
radius r2 = 8 mm) is filled with isolating material
.s ¼ 1012 Xmð Þ. How large is the leakage current
through the isolating material between inner and outer
conductor for a cable length of 100 m and a voltage of
3 kV between inner and outer conductor?

2:13 The cable described in 2.12 can be represented by the
circuit shown in Fig. 2.79, where R1 is the resistance of
the cable per m and R2 is the leakage resistance per m.
(a) What is the resistance Rn between a and b for

n meter cable length?

(b) How large is for R1 = R2 the limit lim Rn for
n ! ∞?

2:14 Derive the relation (2.42d).
2:15 Why illustrates Eq. (2.42h) that the thermo-voltage is

not caused by the contact potentials? Derive (2.42h)
(Note: you can find help in [17]).
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3Static Magnetic Fields

Already in ancient times it was observed that special minerals
that were found around the city Magnesia in Asian Turkey,
attracted iron matter. They were named magnets and were
used for producing compass needles for navigation, because
it was found that such needles always pointed to the north.
The Chinese knew about magnets already earlier. The exact
explanation of such magnetic properties had, however, to
wait until the 20th century after the development of quantum
theory and modern solid state physics. There are still open
questions about the details of magnetic phenomena in matter.

In Sect. 2.5 we have discussed that also electric currents
show magnetic effects.

In the present chapter we discuss in more detail the
magnetic fields produced by permanent magnets and by
electric currents. The properties of magnetic materials will
be here treated only phenomenological, while in Vol. 3 of
this series it will be shown that also the magnetic properties
of matter are caused by atomic electric moments and electric
currents on an atomic scale.

3.1 Permanent Magnets

We will start with some basic experiments.
When iron powder is spread onto a glass plate, where a

permanent bar magnet is placed below the glass plate, one
observes that the iron powder arranges in form of lines which
accumulate above two points of the bar magnet (Fig. 3.1).
We call these accumulation points the magnetic poles.

If a rod shaped permanent magnet is suspended by a wire
at its center of mass, it can turn around its center of mass.
One observes that one pole is alway pointing to the north
(we call this pole therefore the magnetic north pole, the other

pole points towards south (magnetic south pole). When a
second magnetic rod is neared to the turnable rod (Fig. 3.2)
the north pole of one rod is attracted by the south pole of the
other rod, but repelled by the north pole.

B

B
(a)

(b)

N S

Fig. 3.1 a) Magnetic field lines of a magnetic rod, b) experimental
demonstration of magnetic field lines with iron powder. Note that the
field lines form closed curves i.e. they continue inside the magnetic rod
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Equal poles repel each other, while opposite poles
attract each other. This is completely analogous to
the situation in electrostatics where equal charges
repel each other while opposite charges attract each
other.

However, there is a fundamental difference: If a magnetic
rod is broken in the mid into two halfes there will be no
separated poles but each piece is again a magnet with north
and south pole (Fig. 3.3). One can continue this process of
breaking each piece again into two halfes and both parts
represent again a magnet with north- and south pole. From
this experiment we can conclude:

There are no isolated magnetic poles. Always only
dipoles exist, no monopoles.

Another difference between electric and magnetic fields
shall be emphasized: Electric field lines start at the positive
charge and end at the negative charge, whereas magnetic
field lines are always closed lines. The impression, that they
apparently start at the north pole and end at the south pole is
not correct, because they continue inside the magnetic rod
from the south- to the north pole and thus form closed lines
(compare Figs. 1.10 and 3.1).

It will be shown later that static electric fields are gen-
erated by charges at rest, whereas static magnetic fields are
produced by moving charges, i.e. by electric currents.

Figure 3.1 shows that magnetic fields can be illustrated
by field lines analogous to electric fields. They give for every
point in space the direction of the field as tangent to the
field lines. We can, as for electric fields, define a
magnetic flux

Um ¼ Z
B � dA ð3:1Þ

through the area A, which can be illustrated by the number of
field lines through A. The quantity B [V s/m2] is the mag-
netic field strength (often called the magnetic flux density).
For abbreviation purposes a new unit for the magnetic field
B is introduced:

1Tesla ¼ 1T = ¼ 1V s/m�2 ð3:2Þ
For practical purposes 1 T is a very large unit. Therefore

smaller units are in use:

1mT ¼ 10�3 T

1 lT ¼ 10�6 T

1Gauss ¼ 1G ¼ 10�4 T

Compare: The unit of the electric flux Uel is V m, that of
the electric field strength E is V/m, the magnetic flux Um has
the unit V s, whereas the unit of the magnetic field strength
B is V s/m2.

Examples

The average magnitude of the earth magnetic field is
20 lT = 0.2 G. With large superconductive magnets
one can reach magnetic fields up to 30 T. With hybrid
magnets, where in addition to the magnetic field of the
superconductive coils a second field is superimposed,
produced by coils with normal conduction, a field
strength up to 40 T can be realized.

3.2 Magnetic Fields of Stationary Currents

When an electric current I is sent through a long straight wire
one observes that a compass needle in the distance r from the
wire is deflected in such a way, that it always points in the
direction of the tangent to a circle with radius r around the
wire (Fig. 3.4). This demonstrates that the electric current
produces a magnetic field. It can be visualized by iron
powder spread on a sheet around the wire. Placing small

Sample-
magnet

long field-
magnetS

N

N

S

r

Fig. 3.2 Magnetic torsion balance for measuring the force F(r) be-
tween magnetic poles. Note The distance between the poles of the field
magnet must be large compared with the distance between the poles to
be measured

N

N N

S

S S

Fracture

Fig. 3.3 Dividing a magnetic rod into two pieces does not separate
individual poles but creates two dipole magnets
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compass needles on a circle around the wire (Fig. 3.4) shows
the direction of the magnetic field. Viewing into the direc-
tion of the electric current I the magnetic field B on the circle
is directed clockwise (Fig. 3.5). A convenient rule is: If the
thumb of the right hand points into the direction of the
current I the curved other fingers give the magnetic field
lines and the direction of B.

A current through a solenoid (Fig. 3.6) produces a mag-
netic field which is similar to that of a magnetic rod. If such a
solenoid is fixed to a torsion balance as in Fig. 3.2, a com-
pletely equivalent behavior as for a bar magnet is observed:
One end of the solenoid acts like a north pole, the other as a
south pole. Reverting the current through the solenoid also
interchanges the magnetic poles. In a solenoid the magnetic
field lines can be visualized also inside the solenoid
(Fig. 3.6). This illustrates that the magnetic field lines are
closed lines which do not end at the poles.

In this chapter we will show, how magnetic fields of
arbitrary arrangements can be calculated. For this goal we
have to introduce some new terms and definitions.

3.2.1 Magnetic Flux and Magnetic Voltage

Since the magnetic lines are closed lines we can conclude that
the magnetic flux through a closed surface (Fig. 3.7) must be
always zero, because there are as many lines entering the

volume enclosed by the surface, as lines traversing the sur-
face from the inside. In a mathematical form this meansZ

B � dA ¼0 ð3:3Þ

Transformation of this surface integral into a volume
integral over the enclosed volume yields according to Gauss’
law: Z

B � dA ¼
Z

divB dV � 0

Since this is valid for arbitrary closed surfaces it follows
that

divB ¼ 0 ð3:4Þ
This is the mathematical formulation for the fact that no

magnetic monopoles exist. Sources and sinks of the

I

Fig. 3.4 Measuring the magnetic field of a current carrying wire with
a small magnetic needle

I

B

Fig. 3.5 Magnetic field lines around a straight current carrying wire

B
B

B

Solenoid-
axis

S N

Fig. 3.6 Magnetic field of a long current carrying solenoid

N S

(a) (b)

(c)

d B dAmΦ = ⋅
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Φm B dA= ⋅ ≡
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∫ 0

dA
→

B
→ dA

→

Φm ≡ 0

A

Fig. 3.7 The magnetic flux through a closed surface is zero
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magnetic field (north- and south poles) always exist in pairs,
contrary to the electric field where isolated charges of one
sign can exist and where for a charge density q the diver-
gence of the electric field is

divE ¼ .=e0 6¼ 0:

In the electrostatic field the line integralZ
E � ds ¼ U

is equal to the electric voltage U ¼ /1 � /2 between two
points with the potentials /1 and /2. Integrated over a closed
path is

R
E � ds ¼ 0. On the other side for the magnetic field

the integration over a closed path is not zero!
The experiments give for a closed path around a wire or

an area with current I

Z
B � ds ¼ l0 � I; Ampere’s law ð3:5Þ

The constant

l0 ¼ 4p� 10�7 V s
Am

ð3:6Þ

is called magnetic induction constant. From (3.5) we can
then obtain the unit of B as [V s/m2].

Because the current density j of a current I through the
area A is related to I by

I ¼
Z

j � dA

we can transform (3.5), using Stokes Theorem into

l0

Z
j � dA ¼

Z
B � ds ¼

Z
rotB � dA:

Since this is valid for arbitrary integration paths it
follows:

rotB ¼ l0 � j ð3:7Þ

whereas for the electric field is rotE ¼ 0 (see (1.65c)).
Static electric fields are curl-free, in contrary to static

magnetic fields.
Using Ampere’s law and the magnetic flux Um we can

readily calculate the magnetic fields of some special cur-
rent distributions. This will be demonstrated in the next
sections.

3.2.2 The Magnetic Field of a Straight
Cylindrical Conductor

Experiments measuring the magnetic field of a straight wire
carrying the current I (Figs. 3.5 and 3.6) have proved that
the magnetic field lines are concentric circles with radius
r where on each circle B(r) = const. We choose as integra-
tion path such a circle with radius r around the conductor
with radius r0 (Fig. 3.8a). For r > r0 this gives in polar
coordinatesZ

B � ds ¼
Z

r � B � du ¼ 2pr � BðrÞ ¼ l0 � I:

The amount of B is then

BðrÞ ¼ l0I
2pr

: ð3:8Þ

For r\r0 only the fraction pr2 � j of the total current I is
enclosed by the integration path. We now obtain:

2pr � B rð Þ ¼ l0pr
2 � j

) B rð Þ ¼ 1
2
l0 � j � r ¼

l0 � I
2pr20

r:
ð3:9Þ

B(r) has its maximum value at the surface (r = r0) of the
conductor (Fig. 3.8b).

3.2.3 Magnetic Field in the Inside of a Long
Solenoid

The experimental illustration with iron powder shows that the
magnetic field is concentrated in the inside of the solenoid
where it is practically homogeneous (Fig. 3.6) whereas out-
side the solenoid it is very weak and nearly negligible, if the

(a) (b)

I

Integra -
tion path

B
I

rmax =
μ0

02π

| |B
→

B
→

B r∝ B r∝ 1/

r0

r0

r

r

Fig. 3.8 a) Integration path along the circular magnetic field line
around a straight current carrying wire, b) magnetic field strength B(r)
as the function of the distance r from the wire center r = 0
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diameter of the solenoid is small compared to its length
L. We choose the integration path as shown by the dashed
line in Fig. 3.9. Since only the path inside the solenoid gives
a noticeable contribution (on the way AC and DB is B ⊥
ds and outside the solenoid we can place the path far
away from the solenoid, where the magnetic field B is very
small) we getZ

B � ds �
Z A

B
B ds ¼ B � L ¼ N � l0 � I

) B ¼ l0n � I
ð3:10Þ

where n ¼ N=L is the number of windings per m and L is the
length of the solenoid. This simplified treatment gives the
result, that the magnetic field is homogeneous in the inside,
i.e. independent of the location.

Example

N ¼ 103=m; I ¼ 10A; l0 ¼ 1:26 � 10�6 V sðAmÞ
) B ¼ 0:0126 T ¼ 126G

3.2.4 Vector Potential

In the Sects. 1.3 and 1.4 it was shown, that there is a general
method to calculate the electrostatic potential / rð Þ using
Eq. (1.20) and the electric field E rð Þ ¼ �grad/ rð Þ either
analytically or at least numerically, if the charge distribution
q rð Þ is known. Thequestionnowariseswhether the same is true
for magnetic fields, i.e. whether the magnetic field B(r) and a
“magnetic potential”, which still has to be defined, can be
calculated, if the distribution of electric currents is known.

We learn from Eq. (3.6) that
R
B � ds 6¼ 0 when the

integration path encloses electric currents. In such cases the
integral

R
B � ds is no longer independent of the integration

path. Therefore it is not possible to define a magnetic
potential /m that obeys the relation B ¼ �l0 � grad/m as in

the electrostatic case (see Sect. 1.3), because then we would
get rotB ¼ �l0 � r � r/m ¼ 0 contrary to Eq. (3.7).

Note For the vector relation ∇ � ∇ = 0 (see citation of
Vol. 1, Chap. 13, or any book about vector analysis [1]).

Since div B = 0 one can define a vector field A(r) by the
relation

B ¼ rotA ð3:11Þ
which is called the vector potential of the magnetic field
B. This definition automatically fulfills the condition div
B = 0, because

divB¼r � r � Að Þ � 0

The definition (3.11) does not determine A(r) unambigu-
ously, because another vector field

A0 ¼ Aþ grad f

With an arbitrary scalar function f(r) satisfy also (3.11)
because rot grad f � 0. This means that A′ gives the same
magnetic field B as A. It is therefore necessary to define an
additional condition (gauge condition) which for static
fields read:

div A ¼ 0 Coulomb Gaugeð Þ ð3:12Þ
These two definitions determine A unambiguously apart

from a scalar function f(r) with grad f = 0. We can choose
f(r) in such a way, that

A r ¼ 1ð Þ ¼ 0:

The two definitions of A are therefore:

rotA ¼ B and divA ¼ 0:

remark Unfortunately the vector potential A and the area
A are labeled with the same letter A. It should, however, not
cause confusion.

3.2.5 The Magnetic Field of an Arbitrary
Distribution of Electric Currents;
Biot-Savart Law

In this section we will show that the vector potential A(r) of
an arbitrary distribution of electric currents with current
density j(r) can be obtained in a completely analogous way
as the electric potential /e(r) from the electric charge dis-
tribution qel(r).

+−
L

BA

DC

Integration path

Fig. 3.9 Integration path for the determination of the magnetic field of
a long solenoid
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From (3.7) and (3.11) we obtain with

rotB ¼ r� ðr � AÞ ¼ grad divA� div grad A ¼ l0j:

Because div A = 0 we obtain with div grad A = DA (D is
the Laplace operator) the relation

DA ¼ �l0 � j ð3:13Þ

Writing (3.13) for the three components this becomes

DAi ¼ �l0 � ji; i ¼ x; y; z ð3:13aÞ
Note that these three component equations are completely

analogous to the Poisson equation D/el ¼ �q=e0 when one
replaces the current density j by the charge density q and l0
by 1=e0.

Therefore also the solutions must be equivalent. Analo-
gous to (1.20) we get for the vector potential A(r1) at the
point P(r1) the vector equation

A r1ð Þ ¼ l0
4p

Z
jðr2ÞdV2

r12
ð3:14Þ

with r12 ¼ r1 � r2j j. The integration extends over the whole
volume of electric currents (Fig. 3.10).

When the vector potential of a given current distribution
has been calculated, the magnetic field B(r1) in the obser-
vation point r1 can be obtained from B = rot A by differ-
entiation with respect to the coordinates r1 of the reference
point P(r1).

Note, that the differentiation must be performed with
respect to the reference point P(r1), but the integration has to
be performed over the volume dV2 of the current area.
The succession of differentiation and integration can be
interchanged. This yield for the magnetic field:

B r1ð Þ ¼ l0
4p

Z
r� jðr2Þ � dV2

r12
: ð3:15Þ

With r12 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 � x2ð Þ2 þ y1 � y2ð Þ2 þ z1 � z2ð Þ2

h ir
the

differentiation gives (see Problem 3.8)

Bðr1Þ ¼ l0
4p

Z
jðr2Þ � be12

r212
dV2 ð3:16Þ

with the unit vector be12 ¼ r12=r12.
When the current only flows through thin wires

(Fig. 3.11) we can simplify the integral. Because now the
current density is nearly constant across the cross sectional
area A we get: j � dV ¼ j � dA � ds ¼ I � ds and we can
immediately perform the integration over dA. This reduces
the volume integral to a line integral

Bðr1Þ ¼ � l0
4p

� I �
Z be12 � ds

r212
ð3:16aÞ

Relation (3.16a) is called Biot-Savart Law.
We will illustrate its application by some examples.

3.2.5.1 The Magnetic Field of a Straight
Conductor

We regard in Fig. 3.12 a long straight wire in which the
current flows into the +z-direction. The unit vector be12 ¼ ber
points from the line element dz to the reference point P on a

z

y

x

→
j

2dV

→
A

→
2r

→
1r

→
12r

)r(P 1
→

0

Fig. 3.10 Vector potential A(r1) of the current distribution j(r2)
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Fig. 3.11 Illustration of the Biot-Savart law
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Fig. 3.12 Calculation of magnetic field and vector potential of a long
straight wire
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circle with radius R around the wire. The vector productbe12 � ds has the amount

ê12 � dsj j ¼ sin b � dz ¼ cos a � dz
Its direction is the tangent to the circle with radius R.
According to (3.16a) we obtain for the magnetic field B

(R) in the point P on the circle

BðRÞ ¼ l0I
4p

êt �
Z

cos a
r2

dz: ð3:16bÞ

With r ¼ R= cos a, z ¼ R � tan a ) dz ¼ R da= cos2 a we
get for the amount B = ǀBǀ

B ¼ l0I
4pR

Zþ p=2

�p=2

cos a da ¼ l0I
2pR

; ð3:17Þ

which we had already derived by another way in Sect. 3.2.2.
Since the current density j has only a z-component, the

vector potential can also only have a z-component

A ¼ f0; 0;Azg:
With B = rot A it follows

Bx ¼ @Az

@y
; By ¼ � @Az

@x
and Bz ¼ 0:

In cylindrical coordinates (r, u, z) this reads

Br ¼ 1
r

@Az

@u
and Bu ¼ � @Az

@r
:

Because of the cylinder-symmetry Az does not depend on
u. Therefore is @Az=@u ¼ 0 ) Br ¼ 0. For r = R we then
obtain

B ¼ Bu ¼ � @Az

@r

� �
R

¼ l0I
2pR

: ð3:18aÞ

Integration yields for R > R0

Az ¼ �
ZR
R0

B dR ¼ � l0 � I
2p

ln
R

R0
: ð3:18bÞ

The boundary condition Að1Þ ¼ 0 can not be applied
here, similar to the potential of the charged rod in Eq. (1.18c).
Since Eq. (3.18b) shows that Az(R0) = 0, we choose
R = R0 as the zero location for A(R). In the inside of the
conductor (R < R0) is the current

I ¼ j � pR2 ) Bu ¼ � @Az

@R
¼ � 1

2
l0j � R

) Az ¼ � 1
4
l0jR

2 þ const:
ð3:18cÞ

From the condition Az(R0) = 0 the integration constant
can be determined. It is

const: ¼ 1
4
l0jR

2

The vector potential inside the conductor is then

AzðR�R0Þ ¼ 1
4
l0j R

2
0 � R2

� �
: ð3:18dÞ

Since I ¼ jpR2
0 is the total current through the conductor,

we can write (3.18d) as

AzðR�R0Þ ¼ þ 1
4p

l0I 1� ðR=R0Þ2
� �

: ð3:18eÞ

In Fig. 3.13c the magnetic field B Rð Þj j and the vector
potential Az Rð Þ are plotted inside and outside the conductor.
In Fig. 3.13a, b the comparison between the electric field of
a charged wire and the magnetic field of the current through
a straight wire is illustrated. This demonstrates the close
resemblance between the two situations.
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3.2.5.2 The Magnetic Field of a Circular Current
Loop

When we place the current loop in the x-y-plane (Fig. 3.14a),
the magnetic field B in this plane has, according to the
Biot-Savart Law (3.16a) only a z-component. Its amount at
the point P1(x, y, 0) is with ê12 � ds ¼ sinu ds

Bz ¼ l0 � I
4p

�
Z

sinu
r212

ds ð3:19Þ

In the center of the circle is r12 = R and u = p/2. The
magnetic field is then

Bz ¼ l0 � I
2 � R : ð3:19aÞ

On the symmetry axis (z-axis through the center of the
circle) (Fig. 3.14b) we obtain from (3.16a) the amount dB(z)
of the magnetic field B produced by the line element ds of
the loop

dB ¼ � l0 � I
4p

� r� ds
r3

: ð3:19bÞ

When integrating over all line elements of the circle the
components dB? ¼ dB � sin a perpendicular to the symmetry
axis average to zero. Only the parallel component dBk ¼ dB �
cos a remains. It yields after integration with r� dsj j ¼
R= cos a

Bk ¼ Bz ¼
Z

jdBjjj ¼
Z

jdBj � cos a:

Inserting (3.19b) gives

Bz ¼ l0 � I
4p � r3 �

Z
R � ds ¼ l0 � I � R

4p � r3 � 2p � R:

With r2 ¼ R2 þ z2 this yields for the magnetic field on the
symmetry axis of the loop (z-axis)

BzðzÞ ¼ l0 � I � p � R2

2pðz2 þR2Þ3=2
: ð3:19cÞ

The z-dependence of the magnetic field on the z-axis is
illustrated in Fig. 3.14d.

The magnetic field lines of the current loop are shown in
the upper part of Fig. 3.15. The progression of the lines is
similar to that of a short magnetic rod (Fig. 3.1).

The plane current loop represents a magnetic dipole. With
the area vector A ¼ pR2êz perpendicular to the plane with
the amount giving the area enclosed by the loop, we can
write the magnetic field (3.19c) as

B ¼ l0
2p

I � A
r3

: ð3:20Þ

where r is the distance of the observation point on the z-axis
from the loop plane.

The product

pm ¼ I � A ð3:21Þ
of electric current I and area vector A is the magnetic dipole
moment pm of the current loop.

Inserting (3.21) into (3.20) we can express the magnetic
field on the symmetry axis of the loop by

B ¼ l0
2p

pm
r3

: ð3:20aÞ

Comparing this expression with that for an electric dipole
(1.25) one to recognizes the similarity.
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Fig. 3.14 Illustration of the calculation of the magnetic field of
a) circular loop, b) on the symmetry axis, c) definition of dB⊥ and dB∥,
d) Magnetic field on the symmetry axis (z-axis)

−1 1 r / R

zB

z(a)

(b)

I

→
B

Fig. 3.15 a) Magnetic field lines of a circular loop, b) the
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For large distances from the loop z � Rð Þ we can use the

approximation r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þR2ð Þp � z and the field on the axis

is then

B z � Rð Þ ¼ l0pm=ð2pz3Þ ð3:20bÞ
For points outside the symmetry axis the calculation of the

magnetic field becomes more difficult. For points in the plane
of the loop one gets elliptic integrals which can be solved
only numerically (see for instance [2–4]). The magnetic field
strength in the plane of the loop is shown in Fig. 3.15b as a
function of the distance r from the loop center.

3.2.5.3 Helmholtz Coils
Helmholtz coils consist of a pair of parallel coils which are
separated by a distance d = R which equals the radius R of
the coils (Fig. 3.16). The current through the coils has in
both coils the same direction.

At first we regard a setup with arbitrary distance d be-
tween the coils. The origin of our coordinate system is in the
center of the coil pair. On the symmetry axis (z-axis). The
amount of the magnetic field is according to the last section

BðzÞ ¼ B1 zþ d

2

� �
þB2 z� d

2

� �
¼ l0 � I � R2

2
� 1

½ðzþ d=2Þ2 þR2	3=2
þ 1

½ðz� d=2Þ2 þR2	3=2
( )

:

ð3:22aÞ
Expanding this expression into a Taylor series around

z = 0 all terms with odd exponents vanish. This is obvious,
because the amount B is symmetrical around z = 0. After
some tedious calculations we obtain

BðzÞ ¼ l0IR
2

½ðd=2Þ2 þR2	3=2

� 1þ 3
2

d2 � R2

ðd2=4þR2Þ2 z
2 þ 15

8
ðd4=2Þ � 3d2R2 þR4

ðd2=4þR2Þ4 z4þ � � �
" #

:

ð3:22bÞ

For d = R (Helmholtz condition) the term with z2 is zero
and the field around z = 0 is approximately constant. We get:

BðzÞ � l0I

ð5=4Þ3=2R
1� 144

125
z4

R4

	 

: ð3:22cÞ

For a ratio z/R = 0.3 the relative deviation of B(z) from B(0)
is less than 1%.

This means that the magnetic field between the two coils
is nearly homogeneous.

Three mutually orthogonal Hemholtz pairs of coils are
used to compensate external magnetic fields such as the earth
magnetic field. This allows experiments at zero magnetic
fields.

In “Anti-Helmhotz coils” the current through the two
coils flows into opposite directions (Fig. 3.17) and a mag-
netic field B(z) is generated that is zero for z = 0 (B(0) = 0)
and has a nearly linear slope (B(z) = a � z) around z = 0.
Instead of (3.22a) one obtains

BðzÞ ¼ B1
d

2
þ z

� �
� B2 � d

2
þ z

� �
¼ 48

25 � ffiffiffi
5

p l0I
R2

zþ � � �
ð3:22dÞ

Such a field is for example used in combination with six
orthogonal laser beams to trap cold atoms (see [5]).

(a)

(b)

R

z

1B 2B

21 BB +

0

1 2

→
B

0−R/2 R/2 z

Rd=

Fig. 3.16 Magnetic field of a Helmholtz coil pair a) experimental
arrangement, b) magnetic field along the z-axis
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Fig. 3.17 Anti-Helmholtz field with two coils carrying opposite
currents
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3.2.5.4 The Magnetic Field of a Cylindrical
Solenoid with Finite Length

In Sect. 3.2.3 it was shown, that inside an infinity long
solenoid with n windings per m carrying the current I a
homogeneous magnetic field

B ¼ l0 � n � I
exists. We will now study the magnetic field for solenoids
with a finite length L and in particular the decrease of the
field at the ends of the solenoid. We choose the midpoint of
the solenoid as zero point of our coordinate system and the
symmetry axis as z-axis (Fig. 3.18).

The n � dn windings with cross section A ¼ pR2 within
the length interval dn contribute to the magnetic field at the
point P(z) the amount

dB ¼ l0 � I � A � n � df
2p½R2 þðz� fÞ2	3=2

: ð3:23Þ

The total field at P(z) is obtained by integration over all
windings from n ¼ �L=2 to n ¼ þ L=2. With the substitu-
tion z� f ¼ R � tan a the integral can be solved and gives

BðzÞ ¼
Zþ L=2

�L=2

dB ¼ � l0I � n
2

Za2
a1

cos a � da

¼ l0 � n � I
2

� zþ L=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2þ ðzþ L=2Þ2

q � z� L=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þðz� L=2Þ2

q
8><>:

9>=>;:

ð3:24Þ

At the midpoint (z = 0) of the solenoid the magnetic field
becomes

Bðz ¼ 0Þ ¼ l0 � n � I
2

� Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ L2=4

p
� l0 � n � I for L � R:

ð3:25Þ

At the ends of the solenoid at z ¼ 
 L=2ð Þ the field on the
symmetry axis has dropped to

Bðz ¼ 
 L=2Þ ¼ l0 � n � I
2

� Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ L2

p

� l0 �
n � I
2

for L � R

ð3:26Þ

which is only 1=2 of its value at z = 0.
For reference points far outside the solenoid

z � L � Rð Þ we can expand the radicand in (3.24) in a
power series of R= z
 L=2ð Þ and obtain:

BðzÞ � l0 � n � I � p � R2

4p

� 1

ðz� L=2Þ2 �
1

ðzþ L=2Þ2
( )

:

ð3:27Þ

The long solenoid with the cross section A ¼ p � R2 acts
on far reference points like a magnetic rod with the pole
strength

p ¼ 
l0 � n � I � A ¼ Bðz ¼ 0Þ � A: ð3:28Þ

3.3 Forces on Moving Charges in Magnetic
Fields

When charges are moving in magnetic fields an additional
force appears besides the Coulomb force between charges.
The magnitude and direction of this force can be obtained by
some basic experiments:

• A straight wire carrying the current I is freely suspended
in the field of a horseshoe magnet (Fig. 3.19). One
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Fig. 3.18 Illustration of the edge effects of the magnetic field of a
solenoid
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Fig. 3.19 The force on a current carrying conductor in a magnetic
field B is perpendicular to B and to the electric current I
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observes that the wire is deflected perpendicular to the
magnetic field B and to the direction of the current I. The
reversal of the current direction or of the magnetic field
cause a reversal of the direction of the force.

• When the electric currents I1 and I2 flow through two
parallel wires (Fig. 3.20) the two wires attract each other,
if I1 and I2 are flowing into the same direction. They repel
each other for opposite current directions. The force
between the two wires is proportional to the product I1 �
I2. Since a conductor carrying an electric current I gen-
erates a magnetic field and because electric currents are
due to moving charges, we conclude that a force acts on
moving charges in magnetic fields.

• When the electron beam in a cathode ray tube traverses a
magnetic field (Fig. 3.21) the electrons are deflected.
Experiments with different directions of the magnetic
field prove, that the force acting on the electrons is
always perpendicular to the field and to the direction of
the velocity. The magnetic field can be generated, for
example, by Helmholtz coils (Sect. 3.2.5.3). This allows
an easy change of magnitude and direction of the mag-
netic field just by altering the current through the coils
and by turning the coils. The velocity of the electrons can
be varied by altering the acceleration voltage.

The result of such experiments and many more other
experiments is: the force F on the electrons with velocity v,
causing their deviation in the magnetic field B, is propor-
tional to the vector product

F ¼ k � q � ðv� BÞ;
where k is a proportionality factor. In the international sys-
tem SI the electric current is I ¼ q � v is defined in such a
way (Sect. 3.3.1), that the dimensionless constant k becomes
k = 1, if the force is given in Newton (N) the charge q in As
and the velocity in m/s. The magnetic field strength B with
Bj j ¼ F=ðq � vÞ is therefore determined by the force F on
charges q moving with the velocity v: Its unit is then with
1 N m = 1 V A s

½B	 ¼ 1
N

Asm/s
¼ 1

N
Am

¼ 1
V s
m2

¼ 1T;

as has been already discussed in Sect. 3.1.
The force

F ¼ q � ðv� BÞ: ð3:29aÞ
is called the Lorentz force. If in addition an electric field
E superimposes the magnetic field B, the total force on the
charge q is

F ¼ q � ðEþ v� BÞ: ð3:29bÞ

This general Eq. (3.29b) was postulated by Hendrik
Antoon Lorentz (1853–1928) and is therefore called the
general Lorentz force.

We will discuss in Sect. 3.4 the deeper relation between
electric and magnetic fields and their mutual connections.

3.3.1 Forces on Conductors with Currents

The electric current I in a conductor with charge density
. ¼ n � q and cross section A is according to (2.6a)

I ¼ n � q � vD � A;
when the charges q move with the drift velocity vD. The
Lorentz force on the length dL of the conductor containing
n � A � dL charges q is

dF ¼ n � A � dL � q � ðvD � BÞ
¼ ðj� BÞ � dV; ð3:30aÞ

where dV ¼ A � dL is the volume of the conductor section.
The total force on the conductor with length L and current
density j = I/A in the magnetic field B is then

1I 1I2I

2I

→→
−= 21 FF

→→
−= 12 FF

Fig. 3.20 Between two parallel current carrying wires an attractive
force acts, if I1 and I2 are parallel, whereas a repulsive force acts
between anti-parallel currents
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Fig. 3.21 Deflection of an electron beam in a homogeneous magnetic
for vertical injection of the beam into the field perpendicular to the
drawing plane, inertial systems
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F ¼
Z

ðj� BÞdV: ð3:30bÞ

Note If the current is caused by electrons (as in all metallic
conductors), the charge is q ¼ �e and j points into the
opposite direction of vD, this means that j� B forms a
lefthanded screw.

In case of a straight wire in a homogeneous magnetic
field B (Fig. 3.22) j and B are spatially constant. The Lorentz
force on the section dL is then

dF ¼ I � ðdL� BÞ: ð3:31Þ

3.3.2 Forces Between Two Parallel Conductors

We will shortly discuss the definition of the unit 1 A of the
electric current by the force on two parallel wires carrying
the current I (Fig. 3.23). The Lorentz force on a charge dq ¼
q � A � dL which moves with the drift velocity vD through the
wire 1 with cross section A and length dL in the magnetic
field generated by wire 2 is

dF ¼ dq � ðvD � BÞ ¼ I1 � ðdL� BÞ:

The magnetic field generated by wire 2 is according to
(3.8)

B ¼ l0
2pr

� I2 � êu;

where êu is the unit vector in u-direction (tangent to a circle
around wire 2). For parallel wires in z-direction is B?vD.
The amount of the force per m of the wire (L = 1 m) is then
for a distance r = R between the wires according to (3.31)

F

L
¼ I1 � l02p � I2

R
¼ l0 � I2

2pR
; ð3:32Þ

If the same current I flows through both wires.
For a current I = 1 A the force F/L per m and a distance

R = 1 m between the two wires is

F=L ¼ l0=2p ¼ 2� 10�7 N/m: ð3:33Þ
This equation is used for the definition of the SI-Unit

1 A:
1 A is that electric current, which causes a force F=L ¼

2� 10�7 N/m between two parallel wires in vacuum with a
distance R = 1 m.

This determines the magnetic constant l0 (permeability
constant in vacuum) to the exact value

l0 ¼ 4p� 10�7 V s/ðAmÞ

3.3.3 Experimental Demonstration
of the Lorentz Force

The Lorentz force can be quantitatively demonstrated with a
focused electron beam in a cell at low gas pressure, which is
placed in a homogeneous magnetic field provided by Helm-
holtz coils (Fig. 3.24). The electrons are bent by the magnetic
field into a circular path, which can be seen, because they
collide with rest gas atoms, excite them and the excited atoms
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→

Fig. 3.22 Force onto an electric current perpendicular resp. paralleled
to the magnetic field B. Note that the drift velocity of the electrons is in
the opposite direction as the technically defined direction of I
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emit visible fluorescence. The electrons are emitted by a hot
cathode and accelerated by the voltage U. Their kinetic energy
is then ðm=2Þv2 ¼ e � U. Their velocity is

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2e � U
m

r
; ð3:34Þ

with the initial velocity v0 ¼ fvx; 0; 0g, perpendicular to the
magnetic field B ¼ f0; 0;Bzg. Since the Lorentz force lies,
according to (3.29a, 3.29b), in the x-y-plane and is always
perpendicular to v, the path of the electrons is a circle in the
x-y-plane. The Lorentz force acts as centripetal force and we
obtain from the condition Lorentz force = centripetal force
the equation

e � v � Bz ¼ m � v2
R

which allows the determination of the Radius of the circle

R ¼ 1
B
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m � U=e

p
: ð3:35Þ

The circle can be readily seen by the fluorescence induced
by collisions of the electrons with residual gas atoms.
Therefore its radius can be measured. The collimated elec-
tron beam is not spread out by the collision because of the
following facts:

• The density of the atoms is chosen sufficiently low to
make the mean free path length K ¼ 1=ðn � rÞ (r = col-
lision cross section) larger than the circumference 2pR2

of the circular path.
• Besides the excitation the electrons can also ionize the

atoms of the residual gas. Since the atoms are much
heavier than the electrons they diffuse much slower away
from the location of their generation. They form a posi-
tively charged tube around the electron path, which
focuses the electrons onto the center line of this tube.

From the measured values of R, U and B in (3.35) the ratio
e/m of electron charge to electron mass can be determined.

When the electrons are injected into the magnetic field
B ¼ f0; 0;Bz ¼ Bg with the velocity v ¼ fvx; vy; vzg
(Fig. 3.25), the equation of motion

m � a ¼ q � ðv� BÞ ð3:36Þ
can be written as the three equations for the components

m � _vx ¼ �e � vy � B;
m � _vy ¼ þ e � vx � B;
m � _vz ¼ 0:

The solution gives a helix as trajectory of the electrons in
the magnetic field with the radius of the envelope cylinder

R ¼ 1
B
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m � U=e

p
and the distance Dz which the electrons move during one
circulation period

Dt ¼ 2p � Rffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2x þ v2y

q ¼ 2p � m
e � B ð3:37aÞ

into the z-direction

Dz ¼ vz � Dt ¼ 2p � m
e � B � vz: ð3:37bÞ

Such spiral paths can be made visible with the electron
beam tube described above, when the tube is turned in order
to change the direction of the injection velocity against the
magnetic field.

3.3.4 Electron- and Ion-Optics with Magnetic
Fields

The Lorentz force enables the realization of optical systems
in magnetic fields, which have found diverse applications as
will be illustrated by some examples [3.4].

3.3.4.1 Focussing in Axial Magnetic Fields
The electrons emitted from a hot cathode are accelerated by
a voltage U and focused by a special electric field (e.g. an
electrically charged hollow cylinder) onto a pinhole aperture
at the position x ¼ 0; y ¼ 0; z ¼ 0ð Þ. They leave the pin-
hole as divergent beam with the velocity v ¼ fvx; vy; vzg
(Fig. 3.26).

In the axial magnetic field B ¼ f0; 0;Bzg they fly on
helical trajectories and are focussed again on the z-axis
according to (3.37a) after the time

R

R z

e

→
→v
v →

rv
→

zv

.constvz =
.constvr =

Be
vm

R r

⋅
⋅=

Fig. 3.25 Helical path of electrons injected inclined into a homoge-
neous magnetic field
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Dt ¼ 2p � m
e � B

At zf ¼ vz � Dt. The position zf is independent of the

transverse velocities vx and vy. If vz �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2x þ v2y

q
we can

approximate

vz � v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2e � U=m

p
:

The focal length f ¼ zf =4 of this magnetic electron lens is

f ¼ p
B

ffiffiffiffiffiffiffiffiffiffiffi
m � U
2e

r
ð3:38Þ

because a point (i.e. the entrance pinhole) at a distance
2f from the symmetry plane at z ¼ zf =2 ¼ 2f is imaged into
a point at z ¼ zf ¼ 4f .

3.3.4.2 Wien-Filter
When an electron beam or an ion beam is sent in the
z-direction through a homogeneous magnetic field B ¼
f0; 0;Bzg which is superimposed by an electric field E ¼
fEx; 0; 0g (Fig. 3.27) the Lorentz force becomes

F ¼ q � ðEþ v� BÞ ¼ q � ðEx � vz � ByÞêx: ð3:39Þ

For the velocity vz ¼ E=B ¼ Ex=By the force is Fj j ¼ 0.
This means, particles in the velocity interval Dv around v ¼
E=B are not or only very slightly deflected and can pass the
slit S2 in Fig. 3.27. Behind the slit one obtains particles with
a wanted velocity, which can be selected by choosing the
correct values of E and B. The width Dv of the transmitted
velocity interval depends on the slit width Db, the pathlength
Dz = L through the field region and the velocity v. The
calculation (see Problem 3.9) gives

Dv ¼ 2Ekin

q � L2 � B � Db: ð3:40Þ

The design which is called Wien-filter after its inventor
Max C. W. Wien (1866–1938) acts as a velocity selector for
electrons and ions.

3.3.4.3 Focussing by a Homogeneous Transverse
Magnetic Field

When ions with mass m and charge q > 0 enter through a slit
S divergent into a magnetic field B (B is perpendicular to the
drawing plane in Fig. 3.28) their trajectories are circular
paths with radius

R ¼ m � v
q � B :

An ion with initial velocity v0 in the drawing plane per-
pendicular to the line SA reaches the point A after traversing
the field in a half circle.

The trajectory of another ion with an initial velocity
inclined by an angle a against the vertical direction intersects
the trajectory of the first ion in the point C and arrives at the
point B on the line SA. For small angles a the distance AB is
approximately

AB � 2R � ð1� cos aÞ � R � a2: ð3:41Þ

+−

+

+

Focusing-
electrode

Vacuum-
tube

Luminous-
screen

z

B

K

z

f

U

0

B Bz

→
= { , , }0 0

zf

Fig. 3.26 Focusing of electrons in a homogeneous magnetic longitu-
dinal magnetic field, which acts like a lens with the focal length
f ¼ zf =4

x
y

z

Slit S
with width bΔ

B/EIvI =
→

L

]0,B,0[B]0,0,E[E y

S1 S2

x ==
→→

dv)v(nN
v
∫=

E
→

B
→

Fig. 3.27 Wien-filter

α

S B E DA

S

α

(a)

(b)

B A
C

2R cos α
b = R α2·

2R

m2

M1M2

m1 R1
R2

Fig. 3.28 Magnetic sector field as mass selector. a) Angular focusing,
b) mass selection

94 3 Static Magnetic Fields



All ions which exit the slit S within the angular interval
ð90� 
 a=2Þ against the line SA are transmitted through an
exit slit at the point A with the width b � R � a2. This
demonstrates that the 180° magnetic sector field images the
entrance slit S onto the slit with width AB.

If the source emits ions with different masses mi within
the angular range 90

� 
 a=2, these masses traverse the
magnetic field on circular trajectories with different radii

Ri ¼ mi � vi=ðe � BÞ ð3:41aÞ
They arrive therefore at different locations on the line SA.

Two masses m1 and m2 can be still separated if the arrival
interval AB of m1 does not overlap with the arrival interval
DE of m2. This demands that

R1 � R2 � 1
4
� R � a2; ð3:41bÞ

where R ¼ ðR1 þR2Þ=2 is the mean radius.
When the ions are accelerated by a voltage U before they

enter the magnetic field, their velocities are

vi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2e � U=mi

p
and their radii in the magnetic field are

Ri ¼ 1
B
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mi � U=e

p
: ð3:41cÞ

The relative mass resolution is then

Dm
m

¼ R2
1 � R2

2

R2

¼ ðR1 � R2Þ � 2R
R2

� a2=2:

ð3:42Þ

This shows that the mass resolution does not depend on
the radius R but quadratically on the divergence angel a of
the initial velocities v0i at the entrance into the magnetic field
[6–8].

Example

a ¼ 2
� ¼̂ 0:035 rad ) Dm

m
� 6:1 � 10�4

Two masses m1 = 1500 AMU and m2 = 1501
AMU can be still separated.

3.3.5 Hall Effect

If a conductor is placed in a magnetic field the Lorentz force
causes a deflection of charged particles in the conductor

perpendicular to the magnetic field and to the direction of the
current (Fig. 3.29). If the magnetic field is sufficiently weak
the charged particles are only slightly deflected. This
deflection leads to a partial separation of the positive charge
of the ions and the negative charge of the electrons and
causes an electric field EH. The charge separation increases
until the force FC ¼ n � q � EH on the charge carriers due to
the electric field just compensates the opposite Lorentz force
FL ¼ n � q � ðv� BÞ. Here n is the number of charges
q per m3.

For a conductor with rectangular cross section A = b �
d the electric field results in the Hall-voltage

UH ¼
Z

EH � ds ¼ b � EH

between the opposing side surfaces with the distance b. In
Fig. 3.29 the Hall voltage UH is the voltage between upper
and lower side surface of the conductor. The vector b points
therefore downwards. From the relation

q � EH ¼ �q � ðv� BÞ
we obtain with the current density j ¼ n � q � v the Hall
voltage

UH ¼ �ðj� BÞ � b
n � q : ð3:43aÞ

The vector product j � B points in Fig. 3.29 downwards
into the direction of b independent of the sign of the charges,
because for positive charges the sign of q and the direction
of j both change compared to negative charges. We can
therefore write the scalar equation

UH ¼ � j � B � b
n � q ¼ � I � B

n � q � d : ð3:43bÞ

In metals and in most semiconductors the current is
supplied by electrons with the charge q ¼ �e. This results in
a positive Hall voltage

UH ¼ I � B
n � e � d ð3:43cÞ
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Fig. 3.29 Hall effect
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Some semiconductors show a negative Hall voltage. This
can be explained as follows:

In these doped semiconductors mainly electron defects
(holes) in the valence band contribute to the current. Such an
electron defect acts like a positive charge. If the concentra-
tion and drift velocity of the holes are larger than those of the
electrons the holes contribute more to the electric current
than the electrons.

Measurements of the Hall voltage UH is a sensitive
method fort the determination of weak magnetic fields.
Special Hall probes have been developed, which have a very
high sensitivity S ¼ UH=B.

For a given current density j the Hall voltage increases
with decreasing charge density n! This surprising result is
due to the fact that with decreasing values of n the drift
velocity vD increases and with it the Lorentz force. The
charge density n is in semiconductors about 106-times
smaller than in metals. Therefore mainly semiconductors are
used as Hall probes [9].

Example

In a Hall probe with b ¼ 1 cm, d ¼ 0:1 cm, n ¼
1015=cm3 the current density j at a total current I = 0.1
A is j = 1 A/cm2. With e ¼ 1:6� 10�19 C the sensi-
tivity of the Hall probe becomes
S ¼ UH=B � 0:6V/T.

For very small magnetic fields a voltage amplifier is
necessary which enables the measurements of voltages in the
nanovolt range. This allows the determination of magnetic
field down to B\10�6 T.

3.3.6 Barlow’s Wheel for the Demonstration
of “Electron Friction” in Metals

The lower part of a circular aluminum disc emerges into
liquid mercury (Fig. 3.30). If a voltage is applied between
the axis of the wheel and the mercury trough an electric
current flows in radial direction through the disc. If now a
magnetic field is applied in axial direction, the electrons in
the disc are deflected perpendicular to the current direction,
which means the Lorentz force acts in tangential direction.
Due to the friction between electrons and metal atoms the
whole wheel is starting to rotate around its axis. Reversing
the directions of the magnetic field or of the electric current
inverts also the direction of the rotation.

This experiment represents a nice demonstration for the
model of electric conduction in solids, discussed in Sect. 2.2,

where the electric resistance is “explained” by the “friction
force” between electrons and lattice atoms in a solid
conductor.

3.4 Electromagnetic Fields and the Relativity
Principle

In Sect. 3.3 the Lorentz force was introduced as an additional
force that acts on charges moving in a magnetic field, besides
the Coulomb force between charges at rest. We will now
show, that the Lorentz force is by no means a principally new
force, because it can be directly related to the Coulomb force,
if the relativity theory is applied. It should become clear that
the relativistic treatment of the Coulomb Law applied to
moving charges automatically generates the Lorentz force.
This can be realized by the following vivid discussion.

A charge Q resting in an inertial system S′ (Fig. 3.31)
generates in this system a Coulomb field E′. In another
system S, moving against S′ with the velocity v the charge
Q has the velocity �v and represents therefore for the
observer O a current I ¼ �Q � vj j antiparallel to the velocity
v of the system S. This current generates a magnetic field
B in addition to the electric field E.
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On the other hand all inertial systems are equivalent, i.e.
the description of physical laws must be the same for all
inertial systems (see Vol. 1 Sect. 3.6). This includes that the
forces on a test charge q must be equal for both observers in
order to deduce the same equation of motion. When the
observer O′ in the system S′ describes his observations in the
system S he has to use the Lorentz transformations and will
then arrive at the same laws as the observer O in his system
S. Therefore there must be a relation between E, E′ and B in
such a way, that the equivalence of all inertial systems is
fulfilled. This implies that the force on the test charge by the
fields E and B, measured by O in S must be the same as the
force caused by E′ measured by O′.

This will be discussed in the following more quantita-
tively. The basic postulates and transformation laws of
special relativity, presented in Vol. 1, Chap. 3, are here
presupposed [10, 11].

3.4.1 The Electric Field of a Moving Charge

We regard a test charge q which rests in the system S at the
point fx; y; zg, while a field charge Q rests at the origin of the
system S′, and therefore moves with the velocity
v ¼ ðvx;vy;vzÞ ¼ fvx; 0; 0g against S (Fig. 3.32). At the
time t = 0 the origins of both systems should coincide. We
will now calculate the force F ¼ q � E on the test charge q at
the time t = 0. The electric field is determined by the field
charge Q which is moving for the observer O.

The magnitude of the charges Q and q will not be
changed by their motion. In the system S the charges have
the spatial and time coordinates at time t = 0 for Q ¼
f0; 0; 0; 0g and for q ¼ fx; y; z; 0g.

In the system S′ where the charge Q rests at the origin and
which moves with the velocity v ¼ fvx; 0; 0g against S the
charge Q has the spatial-time coordinates O0 ¼ f0; 0; 0; t0g,
while the coordinates of q are fx0; y0; z0; t0g. The Lorentz
transformations for length, time, velocity and force between
the systems S and S′ moving with the velocity v ¼ ðvx; 0; 0Þ

against each other are compiled in Table 3.1 in order to
remind the reader to the more extensive treatment in Vol. 1,
Sect. 3.6 where these formulas had been derived. In our case
with vx ¼ v, they reduce to

x0 ¼ cðx� v � tÞ; y0 ¼ y; z0 ¼ z;

t0 ¼ c t � v � x
c2

� �
:

Note that the events for f0; 0; 0; 0g and for fx; y; z; 0g, which
occur simultaneously at the time t = 0 for the observer O are
no longer simultaneous for the observer O′. For him they are
for Q ¼ f0; 0; 0; 0g and for q ¼ fx0; y0; z0; t0 ¼ �c � v � x=c2g.
In order to determine the force F between Q and q we must
know the distance between Q and q. This demands the
simultaneous measurements of the coordinates of both
charges. Since the field charge Q rests in S′ at the origin 0′ its
coordinates remain the same for the times t0 ¼ 0 and
t0 ¼ �c � v � x=c2. We can therefore determine the distance

r0 ¼ ðx02 þ y02 þ z02Þ1=2 unambiguously.
Experiments show, that for field charges Q at rest the

Coulomb force between Q and q does not depend on the
velocity u of q. as long as v is sufficiently small. The
observer O′ measures the force

F0 ¼ q � Q
4p � e0 �

r̂0

r02
: ð3:44Þ

Whenwenow transform the force componentsFx;Fy andFz

according to the Lorentz transformation in Table 3.1 into the
system S, we obtain for u′ = 0 (the field charge Q rests in S′)

Fx ¼ F0
x ¼

q � Q � x0
4p � e0 � r03 ;

Fy ¼ c � F0
y ¼

c � q � Q � y0
4p � e0 � r03 ;

Fz ¼ c � F0
z ¼

c � q � Q � z0
4p � e0 � r03 :

ð3:45aÞ
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Fig. 3.32 Illustration for the derivation of Eq. (3.45a, 3.45b)

Table 3.1 Lorentz-transformations for lengths, time, velocities and
forces

Length and time Velocities

x0 ¼ c ðx� v � tÞ u0x ¼ d ðux � vÞ
y0 ¼ y; z0 ¼ z u0y ¼ d

c uy

t0 ¼ c ðt � v� x
c2 Þ u0z ¼ d

c uz

where the abbreviations are

c ¼ 1� v2

c2

� ��1=2
d0 ¼ 1þ vu0x

c2

� ��1

d ¼ 1� v�ux
c2

� ��1

Forces: F ¼ F0

F0
x ¼ d � Fx � v

c2 F � u� �
Fx ¼ d0 F0

x þ v
c2 F � u0� �

Fy ¼ c
d0 F

0
y ; Fz ¼ c

d0 F
0
z F0

y ¼ d
c Fy ; F0

z ¼ d
c Fz
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Since for t = 0 the relations hold

x0 ¼ c � x; y0 ¼ y; z0 ¼ z

) r0 ¼ ðc2 � x2 þ y2 þ z2Þ1=2;

we get for the force F the vector equation

Fðc; rÞ ¼ q � Q
4p � e0 �

c � r
ðc2x2 þ y2 þ z2Þ3=2

¼ q � Eðc � rÞ:
ð3:45bÞ

We can see from Eq. (3.45b) that for the observer O the
force always points into the direction of the line between
Q and q, but is no longer spherical symmetric. If q is posi-
tioned on the x-axis in the direction of motion of Q, we have
y = z = 0 and F becomes smaller by the factor 1=c2. In the
direction perpendicular to the velocity of Q is x = 0 and
F increases by the factor c.

The field lines of the electric field

E ¼ Q

4p � e0
c � r

ðc2x2 þ y2 þ z2Þ3=2
ð3:46aÞ

are shown in Fig. 3.33 for three different velocities
v ¼ 0; v ¼ 0:5 � c and v ¼ 0:99 � c. The comparison with the

field lines of a charge at rest illustrates the deviation from a
spherical symmetric field.

Inserting the angles # between the directions of v and of
the radius vector r in Fig. 3.32 we can rewrite Eq. (3.46a)
using the relations

x2 ¼ r2 � cos2 # and y2 þ z2 ¼ r2 � sin2 #:
This gives

E ¼ Q

4p � e0 � r3
ð1� v2=c2Þ � r

½1� ðv2=c2Þ sin2 #	3=2
: ð3:46bÞ

The result of the above is:

The electric field of a moving charge is no longer
spherical symmetric. The electric field strength E de-
pends on the angle # against the velocity of the charge.
It has its maximum for # = 90°, perpendicular to the
direction of the velocity v.

3.4.2 Relation Between Electric and Magnetic
Field

We now consider the case where both charges qð0; y; z; t ¼ 0Þ
and Qð0; 0; 0; t ¼ 0Þ move in the system S with the velocity
v ¼ fvx; 0; 0g parallel to each other with the constant distance
r ¼ ðy2 þ z2Þ1=2 (Fig. 3.34).

In the system S′, which moves with the velocity v against
S, both charges are at rest. An observer O′ in S′ therefore
measures the Coulomb force components

Fx0 ¼ 0;

Fy0 ¼ q � Q � y0
4p � e0 � r03 ;

Fz0 ¼ q � Q � z0
4p � e0 � r03 :

ð3:47Þ

We now transform these force components into the sys-
tem S. Since q does not move in S′ we set u′ = 0 in Table 3.1
and obtain in the system S the force components

x

v = 0 c5,0vv x ==

c99,0vv x ==

Fig. 3.33 Electric field of moving charge Q for v ¼ 0, v ¼ 0:5 � c and
v ¼ 0:99 � c
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Fig. 3.34 The two charges q and Q rest in the system S′ and have
therefore the same velocity v ¼ vx in the system S
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Fx ¼ F0
x ¼ 0;

Fy ¼
F0
y

c
¼ q � Q � y

4p � e0 � c � r03 ;

Fz ¼
F0
z

c
¼ q � Q � z

4p � e0 � c � r03 :

ð3:48Þ

If q would rest in S we would obtain, according to (3.45a,
3.45b), the force components in S

Fx ¼ 0;

Fy ¼ c � q � Q � y
4p � e0 � r03 ;

Fz ¼ c � q � Q � z
4p � e0 � r03 ;

) F ¼ c � q � Q
4p � e0 � r03 f0; y; zg;

ð3:45cÞ

where we have used y0 ¼ y; z0 ¼ z ) r0 ¼ r
If the description in both systems S and S′ should give the

same results the difference between (3.48) and (3.45c)

DF ¼ q � Q
4p � e0 � r03

1
c
� c

� �
f0; y; zg

¼ Fmagn

ð3:49Þ

must be caused by the magnetic Lorentz force Fmagn ¼
q � ðv� BÞ which the observer O in S postulates, according
to (3.29a). Inserting into (3.49) gives

qðv� BÞ ¼ � q � Q
4p � e0 � r03 � c � ðv

2=c2Þ � f0; y; zg: ð3:50Þ

The comparison between (3.49) and (3.45c) further
demonstrates that between the magnetic force which is
measured by O for the field force Q moving with the velocity
v and the electric force which would be measured by O for
the field charge Q at rest the relation exists

Fmagn ¼ � v2

c2

� �
� Fel : ð3:51Þ

The additional magnetic force is therefore caused by the
motion of the field charge Q. If both charges Q and q would
move with the velocity c of light against the system of the
observer, we would get

Fmagn ¼ �Fel for v ¼ c

This implies that the total force between the two charges
moving parallel to each other with v ¼ c (Fig. 3.35) would
be zero. This situation can be indeed approximately realized
in particle accelerators (see Vol. 4), where electrons or
protons are accelerated to velocities v� 0:99999c. The
repulsive Coulomb forces between the electrons in an elec-
tron beam, which would destroy the collimation of the beam

and would spread out the electrons, is nearly compensated
by the attractive magnetic force (3.51).

From the magnetic and electric forces

Fmagn ¼ q � ðv� BÞ and Fel ¼ q � E
acting on a charge q which moves with the velocity v,
measured by the observer O in the system S, the relation
between electric and magnetic field can be obtained.
Inserting into (3.51) gives

E ¼ � c2

v2

� �
� ðv� BÞ ð3:52aÞ

The vectorial multiplication with v yields

v� E ¼ � c2

v2
v� ðv� BÞ ¼ � c2

v2
ðv � BÞv� v2 � B� �

:

The first term in the bracket is zero, because v?B (the
magnetic field B generated by a charge moving with the
velocity v is always perpendicular to the velocity v). We
obtain then finally

B ¼ 1
c2

� �
� ðv� EÞ ð3:52bÞ

Since B? v we get for the amounts of E and B for a
charge moving with the velocity v the relation

Bj j ¼ v
c2

� �
� Ej j: ð3:53aÞ

When the amount v of the velocity v approaches the
velocity c of light, (3.53a) reduces to

B ¼ 1
c

� �
� E withB ¼ Bj j andE ¼ Ej j ð3:53bÞ

The magnetic field B of a moving charge q can be
explained in the relativistic theory as a change of
the electric field. The corresponding change DF of the
Coulomb force F on a test charge q just gives
the Lorentz force FL ¼ q � ðv� BÞ

Q1

Q2

Fel
→

Fel

→

Fmagn

→

v
→

v
→

Fig. 3.35 Electric and magnetic forces between two charges Q1 and
Q2 of equal sign that move with the same velocity

3.4 Electromagnetic Fields and the Relativity Principle 99



3.4.3 Relativistic Transformation of Charge
Density and Electric Current

We will illustrate again the real origin of the magnetic field of
an electric current by a very instructive example: A test
charge q moves with the velocity v parallel to a long straight
conductor carrying the current I (Fig. 3.36). According to the
considerations described in Sect. 3.4.2 the observer in system
S where the conductor is at rest, measures the Lorentz force

F ¼ q � ðv� BÞ
For O the charge densities (charge per m length) in the

conductor are kþ for the positive ions and k� ¼ �kþ for the
electrons. This means that the conductor is electrically neu-
tral. The electrons move with the drift velocity vD against the
ions resting in the conductor. The current is then I ¼ k� � vD.

For an observer O′ who moves with the test charge q, i.e.
with the velocity v parallel to the conductor the length of the
conductor is shortened due to the Lorentz contraction. He
therefore measures the higher charge density

k0þ ¼ kþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p ¼ c � kþ ð3:54aÞ

for the ions resting in the conductor, and

k0� ¼ k0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v02=c2

p ¼ c0 � k0 ð3:54bÞ

for the electrons which move for O′ according to the Lorentz
transformations for velocities in Table 3.1 with the velocity

v0 ¼ vD � v

1� vDv=c2

Their charge density would be k0 for an observer moving
with the electrons, i.e. for whom the electrons are at rest.
According to (3.54a) we get the electron charge density forO′

k� ¼ k0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2D=c

2
p : ð3:54cÞ

inserting in (3.54b) gives with the abbreviations b0 ¼ v0=c
and bD ¼ vD=c

k0� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2D

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b02

p � k�:

Based on the relativistic addition theorem for velocities
(see Table 3.1)

b0 ¼ bD � b
1� b � bD

ðb ¼ v=cÞ

we can eliminate b0 and obtain finally

k0� ¼ 1� b � bDffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

p � k�

¼ c � ð1� b � bDÞ � k�:
ð3:54dÞ

k0 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

p � kþ þ 1� b � bDffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

p � k�

¼ c � ðv=c2Þ � vD � kþ ;
ð3:55Þ

where we have used kþ ¼ �k�.
The current I is for the observer O at rest in S

I ¼ k� � vD
For the moving observer O′, however, the current is

I0 ¼ k0þ � ð�vÞþ k0� � v0:
Inserting for k0þ ; k

0
� and v0 the expressions derived above,

and taking into account that kþ ¼ �k� one obtains the
result

I0 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

p � I ¼ c � I: ð3:56Þ

The moving observer O′ measures therefore a larger
current c � I(c > 1) than the observer O at rest.

The force on the charge q moving with the velocity v
parallel to the conductor is for the observer O′ who moves
with q

F0 ¼ q � E0 ¼ q � k0 � r̂
2p � e0 � r

¼ c � q � ðv=c2Þ � I

2p � e0 �
r̂
r
:

ð3:57Þ
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Fig. 3.36 Interaction between a straight conductor with the current
I and a charge q which moves with the velocity v ¼ vx parallel to the
wire a) in the system S where the conductor is at rest, b) in the system S′
where the charge q rests and the charges in the wire move with the
velocity vD ¼ �v
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The observer O at rest in S measures, according to the
Lorentz transformation (Table 3.1) the force

F ¼ F0=c ¼ q � v=c2 � I � r̂
2p � e0 � r : ð3:58Þ

The magnetic field of a straight conductor (3.17) has the
amount

B ¼ l0 � I=ð2prÞ
and its direction is perpendicular to v and r. Therefore (3.58)
can be also written as

F ¼ q � 1
c2 � e0 � l0

� ðv� BÞ: ð3:59Þ

This is identical to the Lorentz force (3.29a) if the relation

e0 � l0 ¼ 1=c2 ð3:60Þ
between the permittivity constant e0, the permeability con-
stant l0 and the speed of light c is fullfilled (see Sect. 7.1).

It is remarkable, that the difference in the Lorentz con-
traction of the conductor length for the ions resting in the
conductor and the electrons moving with the small drift
velocity vD is caused by the small drift velocity of somemm/s.
The much larger thermal velocity of the electrons, which is
randomly distributed into all directions, has the average zero
and is therefore unimportant for the Lorentz transformation.

One should, however, point out to the following facts:
For an electrically neutral conductor the electric forces

acting on a test charge due to electrons and ions would be
completely compensated if the test charge is at rest relative
to the conductor. If it moves relative to the conductor the
compensation is no longer complete, but there remains a
résidual charge

DQ ¼ c � ðv � vD=c2Þ � Q ð3:61Þ
of the total ion charge. The electric force of this residual
charge is equal to the magnetic Lorentz force
F ¼ q � ðv� BÞ.

Summarizing we can say:
The magnetic field of an electric current and the Lorentz

force acting on a moving charge can be deduced by the
relativity theory from the Coulomb law and the Lorentz
transformations. The magnetic field is therefore not a prop-
erty of charged matter independent of the electric field, but is
in fact a consequence of the change in the electric field
of moving charges, due to the Lorentz contraction. One
therefore speaks of the electromagnetic field of moving
charges.

3.4.4 Equations for the Transformation
of Electromagnetic Fields

We will now consider the magnetic field of an electric cur-
rent from another point of view. For this purpose we deduce
the equations for the transformation of electromagnetic fields
(E, B) for transitions from a system S at rest to a moving
system S′. We consider the case that in the lab system S at
rest the two charges QðxðtÞ; 0; 0Þ and qðxðtÞ; y; zÞ both move
with the velocity v ¼ fvx; 0; 0g parallel to each other at the

distance r ¼ y2 þ z2ð Þ1=2. Since the system S′ moves with
the velocity v against S the two charges both rest in S′. The
observer O in S measures the force components

Fx ¼ q � Ex;

Fy ¼ q � ðEy � vx � BzÞ;
Fz ¼ q � ðEz þ vx � ByÞ

ð3:62Þ

acting on the test charge q and he concludes the existence of
an electric and magnetic field.

The observer O′ in S′, who moves together with both
charges q and Q, measures only an electric field E′, which
differs, however, from the electric field E measured by O. He
measures the force components

F0
x ¼ q � E0

x;

F0
y ¼ q � E0

y;

F0
z ¼ q � E0

z:

ð3:63Þ

For the transformation of the force components from S to
S′ the Lorentz transformations (see Table 3.1) must be valid.

Note, that in S′ both charges are at rest and therefore is
u = 0.

We therefore get

F0
x ¼ Fx; F0

y ¼ c � Fy; F0
z ¼ c � Fz:

This gives the relation between the fields E, B and E′:

E0
x ¼ Ex;

E0
y ¼ c � ðEy � vx � BzÞ;

E0
z ¼ c � ðEz þ vx � ByÞ:

ð3:64aÞ

The back transformation from S′ to S for the case where
Q rests in S and therefore moves in S′ has the consequence
that O′ now measures an electric and a magnetic field. With
v0x ¼ �vx we get

Ex ¼ E0
x;

Ey ¼ c � ðE0
y þ vx � B0

zÞ;
Ez ¼ c � ðE0

z � vx � B0
yÞ:

ð3:64bÞ
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For the general case where the charge Q moves in S as
well as in S′ both observers measures an electric and a
magnetic field but of different magnitude. The corresponding
transformation equations can be obtained from (3.64a,
3.64b) and from the Lorentz transformations for velocities
(Vol. 1, Eq. (3.28). The result is

B0
x ¼ Bx;

B0
y ¼ c � By þ v

c2
� Ez

� �
;

B0
z ¼ c � Bz � v

c2
� Ey

� �
;

ð3:65aÞ

The associated back transformations yield

Bx ¼ B0
x ;

By ¼ c � B0
y �

v
c2

� E0
z

� �
;

Bz ¼ c � B0
z þ

v
c2

� E0
y

� �
:

ð3:65bÞ

The Eqs. (3.64a, 3.64b) and (3.65a, 3.65b) couple the
electric and the magnetic fields. These coupled fields are
therefore called the electromagnetic field. The separation
into a pure electric or pure magnetic field depends on the
reference system in which the observed process is described.

Note, however, that all observers in arbitrary inertial
systems come to the same conclusion for the equations
of motion, without any inconsistencies.

3.5 Matter in Magnetic Fields

In this section we will discuss the magnetic phenomena
which are observed when matter is brought into an external
magnetic field. We will do this in a more phenomenological
way because the microscopic model of magnetism, based on
an atomic theory can be treated only after the introduction of
atomic physics in Vol. 3.

The magnetic phenomena, discussed here are completely
equivalent to the corresponding dielectric polarization
introduced in Sect. 1.7. We start with the important defini-
tion of the magnetic dipole.

3.5.1 Magnetic Dipoles

We have seen in Sect. 3.2.6 that the magnetic field of a plane
current loop is equal to that of a short magnetic rod, called a
magnetic dipole. We define the product

Pm ¼ I � A ð3:66Þ

of current I and area A with surface vector A, enclosed by the
current loop as the magnetic dipole moment pm of the cur-
rent loop. The direction of pm is defined such, that it forms a
right hand screw with the current direction (Fig. 3.37).

When the current loop is placed in a magnetic field, the
Lorentz forces acting on the dipole cause a torque. We will
calculate this for the example of a rectangular loop, which
can rotate about an axis C (Fig. 3.38).

The Lorentz force acting on the two sides a of the rect-
angular loop with the area A ¼ a � b is

F ¼ a � I � ðêa � BÞ;
where êa is the unit vector in the direction of a and I � êa is
the technical current direction (opposite to the drift velocity
of the electrons). The forces on the sides b are compensated
by the restoring force of the suspension wire.

The forces on the sides a cause a torque

D ¼ 2 � b
2
� ðêb � FÞ

¼ a � b � I � ðêb � êaÞ � B ¼ I � A� B:

Inserting the magnetic dipole moment pm = I � A we
obtain

D ¼ pm � B ð3:67Þ
Note the analogy to the electric case where the torque on

an electric dipole in an electric field E is D ¼ pel � E.

A I

→
A

→
mp

Fig. 3.37 Magnetic dipole moment pm of an area A circumvented by
the current I
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Fig. 3.38 Torque acting onto a rectangular current loop
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In the same way the potential energy of the dipole is
analogue for both cases (see Sect. 1.4.1). In the magnetic
case the potential energy is

W ¼ �pm � B: ð3:68aÞ
And in the electric case

W ¼ �pel � E ð3:68bÞ
The force onto a magnetic dipole in a homogeneous

magnetic field is zero! In an inhomogeneous field it is

F ¼ pm � gradB: ð3:69Þ
The Eqs. (3.67)–(3.69) do not contain the specific geo-

metrical form of the current loop. They are therefore valid
for any magnetic dipole, e.g. also for permanent magnetic
rods.

In the following sections some examples of magnetic
dipoles and their applications are given.

3.5.1.1 Moving Coil Instruments
The torque on current coils in magnetic fields is used for the
measurement of small currents. A small rectangular coil with
N windings is suspended by a thin wire in a radial magnetic
field (Fig. 2.28). The torque excreted by the magnetic field
on the rotatable coil with N windings

D ¼ Pm � B ¼ N � I � A� B

with the amount D ¼ I � N � A � B � sin a ¼ I � N � A � B
because the surface normal vector A is always perpendicular
to the radial magnetic field.

The twist of the coil is given by the equilibrium condition
that the magnetic torque equals the opposite torque caused
by the torsion of the wire.

With a small mirror the twist can be projected with a light
beam on a scale (mirror galvanometer). More robust
instruments use instead of the wire a solid axis which is
rotatable suspended in ball bearings. A spiral spring provides
the restoring torque. The sensitivity is determined by the
strength of the spring and the friction of the ball bearings.

3.5.1.2 Atomic Magnetic Moments
A particle with mass m and charge q, that moves with the
velocity v on a circle with radius R represents a circular
current

I ¼ q � v ¼ q � v=ð2pRÞ:
where m is the number of circulations per second, i.e. the
orbital frequency. The magnetic moment of this current is

pm ¼ q � v � A ¼ 1
2
q � R2 � x ð3:70Þ

with x ¼ 2 p v. The angular momentum of the circulating
mass m is

L ¼ m � ðR� vÞ ¼ m � R2 � x: ð3:71Þ
We get from (3.70) and (3.71) the relation between

angular momentum and magnetic moment of the charged
circulating particle (Figs. 3.39 and 3.40)

pm ¼ q

2m
� L: ð3:72Þ

Example

In Bohr’s atomic model (see Vol. 3) the electron with
mass me and charge q ¼ �e moves on a circle about
the proton. The amount L of its angular momentum is
in units of the Planck constant �h ¼ h=2 p equal to

L ¼ ‘ � �h with ‘ ¼ 1; 2; 3; . . .

e

→
L

→→
−= L

m2
e

pm

Fig. 3.39 Relation between angular momentum L and magnetic
moment pm of a particle with mass m and charge q = −e moving on
a circle

(a) (b)
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M

Fig. 3.40 a) Magnetization M generated by induced (v\0) or
permanent (v[ 0) atomic circular currents within the atoms of the
magnetic material. Each of these circular currents generates a magnetic
dipole moment pm. b) The orientation of these dipoles results in the
macroscopic magnetization M ¼ ð1=VÞP pm, which either amplify the
magnetic field (paramagnetic material) or decrease it (diamagnetic
material)
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The orbital magnetic moment is then

pm ¼ � e

2me

� �
� L ) pmj j ¼ �l � e

2me

� �
� �h

With the orbital magnetic moment for
l ¼ 1 ) L ¼ �h. This gives the lowest energy
state of the Bohr atom.

remark: The real hydrogen atom has L = 0 in its lowest
state. This is one of the deficiencies of the Bohr model.

lB ¼ e � �h
2le

ð3:73Þ

is called the Bohr magneton

3.5.2 Magnetization and Magnetic
Susceptibility

The magnetic field in vacuum inside a long solenoid with
length L, N windings and the winding density n ¼ N=L is
according to Sect. 3.2.3 (Fig. 3.41)

B0 ¼ l0 � n � I:
Often the magnetic field is characterized by the magnetic

intensity

H ¼ B=l0

If the inside of the solenoid is filled with matter (e.g.
iron), one finds that the magnetic flux

Um ¼
Z

B � dA

changes by the factor l. Since the area A did not change, the
magnetic field strength B must have been altered to

Bmatter ¼ l � Bvacuum ¼ l � l0 �H ð3:74Þ

The dimensionless constant l is called the relative per-
meability constant.

The alteration of the magnetic flux is due to the interac-
tion of the magnetic field with the atoms or molecules in the
material. Analogous to the situation in the electric field
which induces electric dipoles by charge displacements or
orientates already existing permanent dipoles and thus
generates the dielectric polarisation of matter (see Sect. 1.7)
in the magnetic case a macroscopic magnetic polarisation
(called magnetization) is observed when matter is brought
into a magnetic field. It is caused by atomic magnetic
moments which are either induced by the magnetic field or
oriented in case of permanent magnetic dipoles. The mag-
netization M is defined as the vector sum

M ¼ 1
V

X
V

pm ð3:75Þ

of the atomic magnetic dipole moments pm per m3. The unit
of M is

Mj j ¼ 1
A �m2

m3
¼ 1

A
m

The magnetic field strength B in the inside of the solenoid
filled with matter is then

B ¼ l0 � ðH0 þMÞ ¼ l0 � l � H0:

where H0 ¼ Hvacuum. Experiments show that for not too high
fields (see below) the magnetization is proportional to the
magnetic intensity H

M ¼ v � H0: ð3:77Þ
The proportionality factor v is the magnetic suscepti-

bility. Its value decreases generally with increasing
temperature.

The comparison of (3.76) and (3.77) show that the fol-
lowing relation exists between v and the relative perme-
ability l

B ¼ l0 � l � H0 ¼ l0 � ð1þ vÞ � H0

) l ¼ 1þ v:
ð3:78Þ

Note The constants v and l are dimensionless numbers.
Often the molar susceptibility vmol is used with the unit
1/mol. For gases vmol is the susceptibility of the volume
V that is occupied by 1 mol of the gas. Its unit is then m3/mol.

With respect to their magnetic properties characterized by
the value of v, the magnetic materials are categorized into
the following classes:

ferro-
magnets

para-magnets

dia-magnets

M

0,01

M

100

H

relative
units

Fig. 3.41 Magnetization M(H) as a function of the magnetic field
H for dia- and para-magnetic materials (right side scale) and for
ferromagnetic materials (left scale)
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Diamagnetic substances: v\0; 10�9\ vj j\10�6

Paramagnetic substances: v[ 0; 10�6\ vj j\10�4

Ferromagnetic substances: v[ 0; 102\ vj j\105

Anti-ferromagnet: v[ 0; 0\ vj j\102

In Table 3.2 values of v are compiled for some sub-
stances at 0° C temperature [12]. For the molar susceptibility
the relation

Mmol ¼ vmol � H0; with vmol ¼ v � Vmol

between the magnetization M and the magnetic intensity H is
equivalent to (3.77), where Vmol is the volume occupied by
1 mol of the substance.

3.5.3 Diamagnetism

Diamagnetic substances consist of atoms or molecules that
possess no permanent magnetic moment. When such sub-
stances are brought into a magnetic field, induced dipoles pm
develop. Their direction is oriented opposite to the inducing
magnetic field. This causes a decrease of the field inside the

substance, which makes the field inside the sample smaller
than outside (see Sect. 4.2).

The magnetization

M ¼ v � H ð3:79aÞ
Is therefore also opposite to the external field, which

implies that v is negative (v < 0). The linear relation (3.79a)
holds for magnetic fields that are still small compared to the
inner atomic magnetic fields generated by the motion of the
electrons in the shell of the atoms. These field are of the
order of 102 T or more.

The force on a magnetic dipole in an inhomogeneous
magnetic field B is F ¼ pm � gradB (see (1.29)).

Since M is antiparallel to B a diamagnetic sample is
pushed out of the region of high magnetic fields into ranges
of lower field (Fig. 3.42a). The force F onto a sample with
volume V and magnetization M ¼ v �H ¼ ðv=l0Þ � B is

F ¼ M � V � gradB
¼ ðv=l0Þ � V � B � gradB: ð3:79bÞ

Example

We consider the magnetic field of a straight wire with
current I. It is inhomogeneous in the radial direction,
since it decreases with 1/r according to (3.17). The
magnetic field is

B ¼ l0I
2pr2

� f�y; x; 0g;

) gradBx ¼ l0I
2pr4

� f2xy; y2 � x2; 0g

gradBy ¼ l0I
2pr4

� fy2;�x2 � 2xy; 0g

Table 3.2 Molar magnetic susceptibility vmol of some dia- and
para-magnetic materials and relative permeabilities l of some
ferro-magnets under normal conditions ðp ¼ 105Pa,T ¼ 0

�
CÞ

Gases vmol=10
�12m3=mol Material vmol � 109=mol

(a) Diamagnetic materials

He −1.9 Cu −5.46

Ne −7.2 Ag −19.5

Ar −19.5 Au −28

Kr −28.8 Pb −23

Xe −43.9 Te −39.5

H2 −4.0 Bi −280

N2 −12.0 H2O −13

(b) Paramagnetic Materials

Al +16.5 O2 +3450

Na +16.0 FeCO3 +11,300

Mn(a) +529 CoBN2 13,000

Ho 72,900 Gd2O3 53,200

(c) Ferro-magnetic Materials

Material l

Iron, depending on
pre-treatment

500–10,000

Cobalt 80–200

Permalloy 78% Ni. 3% Mo 104–105

Mu-metal 76% Ni. 5% Cu. 2%
Co

105

Supermalloy 105–106

N
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Fig. 3.42 A diamagnetic body in an inhomogeneous magnetic field is
pushed out of the high field region. a) example of the inhomogeneous
field between the poles a an electro-magnet, b) inhomogeneous field of
a straight wire carrying the current I
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With M ¼ ðv=l0Þ � B the force on a diamagnetic
body with volume V is

F ¼ M � V � gradB
¼ ðv=l0Þ � V � B � gradB ð3:79cÞ

Where grad B is as the gradient of a vector a
tensor and the scalar product B � gradB ¼
Bx � gradBx þBy � gradBy þBz � gradBz is a vector
with the three components given in the sum above.
This finally gives for the force

F ¼ l0vI
2 � V

4p2r4
� fx; y; 0g ð3:79dÞ

Diamagnetic samples (v < 0) experience a force
into the radial direction away from the wire where the
field is weaker, whereas paramagnetic substances and
in particular ferromagnetic materials are attracted into
the region of higher magnetic field (Fig. 3.42b).

The inhomogeneous magnetic field is often realized
by a conical form of the poleshoes in an electromagnet.

The force F acting on magnetic substances in inhomo-
geneous fields can be used to measure the susceptibility v by
a weighing technique. In the Faraday method (Fig. 3.43a)
the sample which is suspended by a spring is brought into
the inhomogeneous magnetic field. Here the force

F ¼ ðv=l0Þ � V � B � gradB
acts on the sample with volume V, which can be measured
by the elongation (v > 0) or shortening (v < 0) of the spring.
The form of the conical poleshoes is chosen in such a way,

that a constant gradient B is achieved over the volume where
the sample immerses into the field.

For the method of Gouy the sample immerses only partly
into a homogeneous field (Fig. 3.43b) while the other part is
in a field-free region. The sample pends on one side of a
balance, the other side is loaded with a mass m. When the
sample with cross section A is shifted downwards by the
distance Dz due to the attractive magnetic force, the work

DW ¼ A �M � B � Dz ¼ F � Dz ¼ mg � Dz
is performed against the force F, where M ¼ ðv=l0Þ � B is
the magnetization. This work can be measured with the
balance and therefore the amount of the magnetic force can
be determined as

Fj j ¼ ðv=l0Þ � A � B2: ð3:80Þ

Example

For a sample volume V ¼ 1 cm3, a susceptibility
v ¼ �10�6, a magnetic field B ¼ 1 T and a field gra-
dient grad B = 100 T/m the force is for the Faraday
method F ¼ 8� 10�5. It reaches the same value in the
Gouy-method for A ¼ 10�4 m2 and B ¼ 1 T. One
therefore needs for both methods sensitive detection
techniques and strong magnetic fields.

3.5.4 Paramagnetism

The atoms of paramagnetic substances possess permanent
magnetic dipole moments pm. Without an external magnetic
field these dipoles are randomly orientated because of their
thermal motion. The average over the vector sum of the
dipoles (i.e. the magnetization M)

M ¼ 1
V

X
pm ¼ 0:

is therefore zero.
In an external magnetic field the dipoles are partially

orientated (Fig. 3.44). The degree of orientation depends on
the ratio pm � B=ðkTÞ of potential energy of the dipole in the
magnetic field to its thermal energy. In case of pm � B  k T
one obtains for N dipoles per m3 after averaging over all
three spatial directions (which gives the factor 1/3) the
average magnetization

M ¼ N � pmj j � pmB
3kT

� êB ð3:81aÞ

VSample

BgradVB)(F 0
2

0 AB)–(F

(b)(a)

Sample with
LAV

B
B

–z

zê

Fig. 3.43 Measurement of the magnetic susceptibly with a balance
technique. a) Faraday method. b) Technique according to Gouy
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With the unit vector êB in the field direction. This gives
the susceptibility

v ¼ l0 �M=B ¼ l0 � N � p2m
3kT

ð3:81bÞ

This shows that v decreases with increasing temperature
as 1/T.

3.5.5 Ferromagnetism

For ferromagnetic substances v is very high and the mag-
netization can be higher by several orders of magnitude than
for paramagnetic material. When a ferromagnetic sample is
brought into a magnetic field B and the magnetization M is
measured, one finds that M(B) is not an unambiguous
function of B, but depends on the previous history of the
sample. If the measurement starts with a completely
demagnetized sample at the external field B = 0, the mag-
netization M follows with increasing field the curve a in
Fig. 3.45. Here M increases at first linearly with B and than
gradually approaches saturation, where all dipoles are
aligned parallel to the field B.

If now the field decreases again, the magnetization M(B)
does not stay on the curve a but proceeds on the curve b
until saturation starts again at a reverse field –B. After
another reversal of the field the magnetization follows the
curve c until it meets the curve b in the reversal point R. The

curve a is called the virginal curve, the roundtrip on b and c
is the hysteresis loop. The residual magnetizationMR(B = 0)
on the curve b is the remanence MR. The field strength
B ¼ �Bc which is necessary to remove the residual mag-
netization is the coercitivity.

The roundtrip on the hysteresis loop requires energy for
the alignment of the magnetic dipoles in the ferromagnet. In
Sect. 4.4 it will be shown, that the magnetic energy in the
volume V is

Wmagn ¼ 1
2
� B � H � V: ð3:82Þ

The integralZ
MðBÞ � dB ¼ v � l � l0 �

Z
H � dH

¼ 1
2
� v � l � l0 � H2

¼ 1
2
ðl� 1Þ � H � B

ð3:83Þ

represents the area under the magnetisation curve M(B) and
corresponds, according to (3.82), to the magnetic energy
which is required for the magnetization of the unit volume
V of the sample. The area enclosed by the hysteresis loop
therefore gives the energy used for one magnetization cycle.
It is converted into thermal energy due to friction losses
during the cycle of magnetization and demagnetization.

Most ferromagnetic substances consist of transition ele-
ments, i.e. atoms with not completely filled inner electron
shells, as for example iron, nickel, cobalt, et cetera. The fol-
lowing experiments prove, however, that ferromagnetism is
not only determined by the atomic structure but it represents a
collective phenomenon in the solid ferromagnet, which comes
about through the cooperation of many interacting atoms in
the solid and would not be observed for free atoms in gases.

When a ferromagnet is heated up above a certain temper-
ature Tc (Curie-Temperature) the ferromagnetism disap-
pears. The substance remains paramagnetic for all
temperatures T > Tc. The impressive reduction of the sus-
ceptibility v at the Curie-Temperature can be readily
demonstrated by a small iron cylinder suspended by a string
which is attracted by a magnet for T < Tc causing a deflection
from the vertical suspension (Fig. 3.46a). When the temper-
ature rises above Tc by heating the nail with a Bunsen burner,
the nail returns to the vertical position of the suspension.

Another experiment uses a ring of ferromagnetic material,
which is rotatably suspended on a pedestal with a tip
(Fig. 3.46b). One part of the ring runs through a permanent
horseshoe magnet. When a Bunsen burner closely behind the
magnet heats the ring up above the Curie Temperature, it
becomes paramagnetic. The cold ferromagnetic part of the
ring is pulled into the magnetic field and the ring begins to
rotate. The energy gained by pulling the ferromagnet into the

0B =
→

0B >
→

0p
V
1

M m =Σ=
→→

B
m

m ê
kT3

Bp
pNM

→→
→ ⋅⋅=

Fig. 3.44 Alignment of magnetic dipoles by an external magnetic
field B which are randomly oriented at B = 0

M b

a

c

RM
CB

B

R

Fig. 3.45 Hysterisis loop of the magnetization M(B) in an external
magnetic field B
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magnetic field is converted into kinetic energy of the rotating
ring. The observed temperature dependence of the magnetic
susceptibility v can be described by the empirical formula

vðTÞ ¼ C

ðT � TCÞc ð3:84Þ

The exponent c takes values between 1 and 1.5,
depending on the material. The constant C, which also
depends on the material, is the Curie-Constant.

In Table 3.3 the Curie-temperature Tc, the Curie constant
C and the melting temperature Tmelt are compiled. The
numbers illustrate, that the Curie-Temperature (a phase
transition temperature for the change from a ferro- to a
paramagnet) happens already at lower temperatures than the
melting temperature Tm where a phase transition from a solid
into a liquid phase occurs.

When a ferromagnetic substance is evaporated, the free
atoms in the gas phase are paramagnetic. This proves that a
ferromagnetic solid body consists of paramagnetic atoms or
molecules. The ferro-magnetism must therefore be caused by
a special correlation between the atomic magnetic dipoles in
the solid body.

When the magnetization curve M(B) of a ferromagnetic
material is measured with high resolution (i.e. the resolvable
intervals DB are very small) it turns out that the curve M(B)

does not proceed continuously, but consists of many
small jumps of the magnetization (Fig. 3.47). this implies
that the alignment of the atomic magnetic dipoles does not
happen continuously but in small steps. These steps DM
(B) are called Barkhausen jumps. They can be explained by
the assumption that the ferromagnetic solid body consists of
microscopic domains in which all magnetic dipoles ore
orientated in the same direction due to a strong interaction
between the dipoles (spontaneous magnetization). These
domains which are called Weiss domains with the volume
Vw, contain about 108–1012 atomic dipoles. Without external
magnetic field the resulting magnetic moments

Mw ¼ Nw � pm Nw � 108 � 1012

of different Weiss domains are randomly orientated. There-
fore only a small total magnetic moment appears at B = 0
(remanence). When applying a magnetic field, all dipoles of
a Weiss domain with volume Vw flip simultaneously into the
field direction, causing a sudden increase DM of the mag-
netic moment M.

This flip occurs when the decrease of the magnetic energy

Wmagn ¼ �VW �MW � B ð3:85Þ
becomes larger than the energy necessary for the flip. This
energy is determined by the structure of the Weiss domains
and their interaction with their surroundings and can differ
for the different domains. Therefore the different Weiss
domains flip at different external magnetic fields.

The jumps in the magnetisation curve M(B), caused by
the flips of the magnetic moments in the Weiss domains can
be acoustically demonstrated (Fig. 3.48). They cause sudden
changes of the voltage in an induction coil surrounding the
ferromagnet and can be clearly heard, when an amplifier
with a loud speaker is connected to the coil.

It is possible to directly view the Weiss domains
(Fig. 3.49). This can be demonstrated when a small thin iron
crystal is placed in an iron-thiosulfate solution contained in a
flat beaker. The sample is illuminated and the reflected light
is viewed through a polarisation filter with a microscope.
The polarisation of the reflected light depends on the

cold

hot

magnet

direction
of

rotation

holder

bunsen
burner

N

strained thread

Fig. 3.46 Experimental demonstration of the disappearance of the
ferromagnetism above the Curie-temperature

Table 3.3 Curie-temperature TC, Curie-constant C and melting-
temperature Tm for some ferromagnetic substances [13]

Substanz TC=K C/K Tm=K

Co 1395 2.24 1767

Fe 1033 2.22 1807

Ni 627 0.59 1727

EuO 70 4.7 1145

Barkhausen

Steps

M

B

Fig. 3.47 Magnified section to the magnetization curve M(B) in
Fig. 3.45, which shows the steps (Barkhausen steps) which are caused
by flips of magnetic areas (Weiss-areas)
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orientation of the magnetization in the sample. One observes
bright and dark areas corresponding to the Weiss domains.
When an external magnetic field is applied, some of the
Weiss domains flip which appears as a brightness change of
the corresponding areas (see the teaching film by Ealing
about “Ferromagnetic Domain Motion” [14]).

The collective behavior of the atomic magnetic dipoles
inside a Weiss domain can be formidably demonstrated by
an array of small magnetic needles which are, supported by
pins in a quadratic plexiglas box (Fig. 3.50). The pins are
uniformly arranged in a two-dimensional quadratic or
hexagonal array. When a strong magnet is moved above the
assembly the magnetic needles can be randomly oriented
(Fig. 3.50a). When the external magnet is removed, the
small magnetic needles arrange themselves within definite
areas to point all into the same direction (Fig. 3.50b), giving
a macroscopic picture of the Weiss domains. With

increasing external field all magnets in more and more
domains flip into the field direction. The critical field
strength Bc where the flip occurs, depends on the position of
the domain relative to the edge of the whole assembly and on
the geometrical arrangement of the pins.

For the real ferromagnetic substances the coupling of the
atomic magnetic moments, which leads to the formation of
the Weiss domains is caused in a complex way by the
interaction between the conduction electrons and the mag-
netic spin moments of atomic electrons in only partly filled
inner atomic shells (see Vol. 3).

This interaction can be described by a special inneratomic
magnetic field (exchange field)

Be ¼ l0 � c �M ð3:86Þ
which is related to the magnetization M. One can derive the
relation

TC ¼ C � c ð3:87Þ
between the Curie-Temperature TC and the Curie constant C,
where c gives the magnitude of the interaction.

Ferromagnetic substances with a strong exchange inter-
action show a high Curie temperature TC.

Above the Curie-temperature TC the thermal energy k � T
becomes larger than the interaction energy and the ordered
orientation of all magnetic moments in a Weiss domain is
destroyed. The solid becomes paramagnetic.

More detailed models of ferromagnetism, which can
describe all observed phenomena correctly, have been
developed only recently [15, 16]

3.5.6 Antiferromagnetism, Ferri-Magnets
and Ferrites

For anti-ferromagnetic substances the crystal lattice can be
described by two sublattices A and B (Fig. 3.51) which have

U

B

field coil

sample coil

acrylic glass

amplifier
Loud-

Speaker

Iron single
crystal

Fig. 3.48 Acoustic demonstration of the Barkhausen steps audible by
short acoustic signals that are generated by a coil around the magnetic
iron rod where the magnetic flips induce voltage peaks given to a
loudspeaker

beam-
splitter

observation

solutionpolarisator

Iron single crystal

light

Fig. 3.49 Optical demonstration of the Weiss-areas. Polarized light is
reflected by iron single crystals in solution, The plane of polarization is
turned under reflection by magnetic material where the turning angle
depends on the orientation of the single crystal

(a) (b)

Fig. 3.50 Simple mechanical model simulating the Weiss areas by
tiny magnetic needles. Without external magnetic field the needles are
randomly oriented (left figure), whereas with increasing magnetic field
the needles within a specific area are all oriented in the same direction,
which is different for the different areas
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opposite directions of their atomic magnetic moments but
equal amounts. Both lattices have the same number of mag-
netic moments and the total magnetization is therefore zero.

Examples for anti-ferromagnetic substances are metallic
solids with implanted paramagnetic ions, for instance MnO,
MnF2 or UN (uranium nitride).

For ferrimagnetic material the amounts of the magneti-
zation in the two sublattices differs. Therefore there remains
a magnetization even at zero external field. By implantation
of impurity atoms or molecules (e.g. Mg; Al;) into the iron
lattice special ferrites can be produced which are important
for many applications in electrical engineering.

The magnetization curveM(B) of ferrimagnetic substances
is similar to that of ferromagnets in Fig. 3.45. However, the
saturationmagnetization is much lower than for ferromagnets.

Quite similar to ferromagnets the ferrimagnetic materials
change to paramagnets above the anti-ferromagnetic Nèel--
Temperature TN.

The susceptibility v(T) can be described for T > TN as
(Fig. 3.51b)

v ¼ C

T þ hN
: ð3:88Þ

where C is the Curie constant and hN the paramagnetic Nèel
temperature.

For anti-ferromagnets the exchange reaction can be
described by the formula

BAA ¼ l0ðcAB � cAAÞMA ð3:89aÞ

BAB ¼ l0ðcAB � cAAÞMB ð3:89bÞ
where MA and MB are the magnetization of the sublattices A
and B, BAA is the exchange field caused by the exchange
interaction between the atoms in sublattice A and BAB the
field due to the interaction of atomic magnetic moments in
A with atoms in B

For the two Nèel-temperatures TN for antiferromagnets
and hN for the paramagnetic Nèel temperature the relation
holds

TN ¼ ðC=2ÞðcAB � cAAÞ ð3:90aÞ

hN ¼ ðC=2ÞðcAB � cAAÞ: ð3:90bÞ
In Table 3.4 values of TN and hN are compiled for some

antiferromagnetic substances. The comparison with
Table 3.3 shows that the Nèel temperatures TN are generally
distinctively lower than the Curie-temperatures TC of ferro-
magnets. This demonstrates that the coupling energy, which
causes the alignment of the magnetic moments is higher for
ferromagnets than for antiferromagnets.

At lower temperatures T < TN antiferromagnets show
collective alignments of the atomic magnetic dipoles, due to
the domains structure of the sublattices. The orientation of
the dipoles can be either in the field direction or perpen-
dicular to it, depending on the orientation of the crystal
structure for the different domains. This causes two different
curves vjjðTÞ and v?ðTÞ, where v⊥ is nearly independent of

T. The geometric means vmðTÞ ¼ 1
2 ðvk k þ v?Þ has the

temperature dependence shown in Fig. 3.51b.
In Fig. 3.52 the temperature dependent susceptibilities of

paramagnetic, ferromagnetic and antiferromagnetic sub-
stances are schematically compared.
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Fig. 3.51 Anti-Frerromagnet. a) crystal model, b) susceptibility, c)
reciprocal susceptibility 1/v for antiferromagnetic material (curve a),
paramagnetic (curve b) and diamagnetic (c) (after Dr. John Bland)

Table 3.4 Magnetic susceptibility v, Neel-temperature TN and param-
agnetic Neel-temperature hN for some antiferromagnetic substances [13]

Substance vðTNÞ � 10�9 TN=K hN=K

FeCl2 2.5 23 +48

MnF2 0.27 72 −113

FeO2 0.1 195 190

MnO 0.08 120 610

CoO 0.07 291 280

Ti2O3 0.002 248 −2000
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3.5.7 Equations for the Magnetic Field in Matter

In Sect. 3.5.2 it was shown that in vacuum the relation
between magnetic field strengthB and magnetic intensityH is

B ¼ l0 �H
Whereas in matter with the relative permeability constant

l the relation is

B ¼ l � l0 �H ¼ l0 � Hþ Mð Þ
¼ l0 �H � ð1 þ vÞ

With the magnetization M ¼ v �H.
Because there are no magnetic monopoles neither in

vacuum nor in matter the relation

divB ¼ 0 ð3:91Þ
is also valid for magnetic fields in matter.

Since Ampere’s law (3.5) is also valid in matter, we get
for the magnetic intensity

rotH ¼ j; ð3:92Þ
where j is the density of electric currents that generate the
external magnetic field Ba ¼ l0 �H.

For the field B in homogeneous matter we obtain from div
B = 0

divB ¼ divðl � l0 �HÞ
¼ l � l0 � divHþ l0 � H � grad l ¼ 0:

In homogeneous substances is grad l = 0 and therefore
div H = 0, while in inhomogeneous media grad l 6¼ 0 and
therefore generally div H 6¼ 0.

In Sect. 1.7.3 the behaviour of the vectors E and D at the
boundary of two media with different permittivities e have
been discussed. It turned out, that for the transition from
medium 1 into medium 2 the tangential component of E is
continuous (E‖‖

(1) = E‖‖
(2)) whereas the perpendicular compo-

nent is discontinuous ðEð1Þ
? ¼ ðe2=e1Þ � Eð2Þ

? Þ. The behaviour
of D is just opposite.

A similar behaviour is found for the magnetic vectors
B and H. The argumentation is completely analogous to that
in Sect. 1.7. One can conclude that in media without electric
currents (j = 0) the condition rot H = 0 holds. This implies
(analogous to rot E = 0) that the tangential component of
H is continuous at the boundary between a medium with
l ¼ l1 and one with l ¼ l2.

Hð1Þ
jj ¼ Hð2Þ

jj )
Bð1Þ
jj
l1

¼
Bð2Þ
jj
l2

: ð3:93aÞ

For the perpendicular component we get from div B = 0
(see Problem 3.10) the condition

Bð1Þ
? ¼ Bð2Þ

? ) l1H
ð1Þ
? ¼ l2H

ð2Þ
? : ð3:93bÞ

Similar to Snellius law of refraction in optics we can
derive from (3.93a, 3.93b) a refraction law for magnetic
fields which describes the direction change of the magnetic
field vector B at the boundary between two media with
different values of l (Fig. 3.53):

tan a1 ¼ Bð1Þ
jj =Bð1Þ

? and tan a2 ¼ Bð2Þ
jj =Bð2Þ

?

which gives for the change of the angle a

tan a1
tan a2

¼ l1
l2

: ð3:94Þ

3.5.8 Electromagnets

The enhancement of the magnetic field B by substances with
a high value of the permeability l is used in electromagnets.
Their principle can be explained as follows:

The inside of a toroidal solenoid with N windings car-
rying a current I is wrapped around an iron ring (Fig. 3.54a).
For a closed integration loop in the iron ring we get,
according to (3.6) and (3.93a) the condition

–9χ·10 χ –9χ·10

T NTT Tθ 0–θ
N

Fig. 3.52 Comparison of the temperature dependence of the suscep-
tibilities for a) para- b) ferro- c) antiferro-magnetic materials
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Fig. 3.53 Behaviour of normal and tangential components of the
magnetic field B at the interface of two media with different
permeabilities
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Z
H � ds ¼ 2p � R � H ¼ N � I:

This gives

H ¼ N � I
2p � R ) B ¼ l � l0 �

N � I
2p � R : ð3:95Þ

Now we consider an iron ring with a small air gap with
width d. Since the normal component of B is continuos at the
boundary iron-air the condition holds with lair = 1

Biron ¼ Bair ) l � Hiron ¼ Hair ð3:96Þ
For the line integral over the magnetic intensity H we

obtain for one circulation

N � I ¼
Z

H � ds ¼ ð2p � R� dÞ � Hiron þ d � Hair

¼ 2p � R� d

l
þ d

� �
� Hair:

ð3:97Þ

With (3.6) the magnetic intensity in the air gap becomes

Hair ¼ N � I � l
ðl� 1Þdþ 2pR

� N � I � l
l � dþ 2pR

for l � 1
ð3:98Þ

And for the magnetic field strength

Bair ¼ l � l0 � N � I
l � dþ 2pR

: ð3:99Þ

For a gap width d ¼ 2pR=l the field strength B has
decreased to one half of its value in the iron core. Since the
permeability of iron is about l = 2000, the values of B and
H in the air gap decrease rapidly with increasing width d of
the air gap (Fig. 3.54b)

Example

With a toroidal solenoid with iron core (l = 2000), a
radius R = 20 cm and N = 5000 windings carrying a

current of I = 1 A, a magnetic field B = 0.6 T can be
generated in an air gap with d = 1 cm. Increasing the
gap to d = 2 cm decreases the maximum field already
to 70% or 0.42 T.

3.6 The Magnetic Field of the Earth

The magnetic field of the earth has been used for navigation
with compass needles for more than 2000 years. The insight
that needles of the mineral magnetite (the name comes from
the city magnesia in Turkey) always points to the north was
known to the Greek for about 1500 years and even earlier
for the Chinese. The exact form of the earth’s magnetic field
was, however, measured not before the 19th century and
definite models about its origin and its variation in time have
been developed only in the 20th century. Even today many
details are still unclear.

The magnetic field of the earth can be approximately
described by the field of a magnetic dipole in the center of
the earth. The dipole axis is at present inclined by 11.4°

against the rotation axis of the earth (Fig. 3.55). The amount
of the dipole moment is 1=c2 [17]. The total field strength on
the surface of the earth is 25 lT at the equator and 70 lT at
the poles. The horizontal and vertical components of the
magnetic field on the earth surface also depend on the
geographic latitude u. The total energy of the magnetic field
outside the earth is 1018 J, that inside the earth is about two
orders of magnitude higher.

People have named that pole of the magnetic needle
that points to the north as north-pole.

Since a magnetic north pole is attracted by a magnetic
south pole, the earth magnetic pole close to the geographic
north-pole should be named magnetic south-pole. In order
to avoid confusion, nowadays this pole is named arctic pole
while the magnetic north-pole at the geographic south-pole
is named antarctic pole. The two magnetic poles do not
coincide with the geographic poles (the points where the
rotation axis pierces through the surface of the earth),
but show a small deviation, which changes slowly with
time.

More detailed measurements have shown, that the actual
magnetic field of the earth deviates slightly from a dipole field
BD. The difference between the real field and the dipole field

DBðh;uÞ ¼ Brðh;uÞ�BDðh;uÞ

1 2

airB

)/R2(/d μπ

(b)(a)
1>>μ

R 1=μ d

Fig. 3.54 a) Circular coil with iron core and air gap of thickness d. b)
Magnetic field B as a function of d
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on the earth surface depends on the geographical longitude h
and latitude u. In Fig. 3.56 the curves of equal DB values
given in lT are shown. The local variations are caused by
different effects. One of them is the nonuniform distribution
of magnetic minerals in the earth crust. Whereas the field
strength of the dipole field decreases for r > R with 1/r3 the
difference DB declines with 1/r4. Therefore the magnetic
field of the earth approximates with increasing r more and
more an ideal dipole field.

Far away from the earth in the interplanetary space the
dipole field is strongly altered by currents of charged par-
ticles (electrons and proton) emitted from the sun (solar
wind, see Vol. 4) [18] and Fig. 3.57. The magnetic field
shields the earth surface (and therefore mankind) from the
solar wind, which can only enter along the magnetic lines
immersing into the earth close to the poles, where they
cause the aurora borealis (Northern Light) by collisions
with molecules in the air.
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Fig. 3.55 Magnetic field of the earth
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Fig. 3.56 Deviation of the measured magnetic field from a pure dipole field. The curves connect locations with the same deviation given in units
of micro-Tesla
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The magnetic poles wander slowly in the course of time
(Fig. 3.58). One distinguishes between two different poles:
The magnetic pole (this is the location where the magnetic
field lines pierce vertically through the earth surface) and the
geo-magnetic pole (this is the point where the axis of the
magnetic dipole moment touches the earth surface).

An important experimental result is the decrease of the
earth’s magnetic field with time. It turned out that magnitude
and direction of the field change in course of time (Fig. 3.59).
Investigations of the magnetization of ferromagnetic minerals
from volcanoes and in the sediments of the ocean ground,
where permanently magma is supplied from the interior of
the earth, conclusions about the variation of the magnetic
field during geological periods of time can be obtained. Such
conclusions are based on the assumption that in the magnetic
minerals the orientation of the magnetization following dur-
ing their liquid phase the earth magnetic field and that this
orientation was fixed when the minerals solidified and has
been no more altered. The time of the solidification can be
determined by measurements of the sequence of geological
layers and by radioactive dating methods (see Vol. 4).

It turns out, that the earth’s magnetic field reverses its
direction in random time intervals. The average time
between successive field reversions for a specific field
reversion is about 2 � 105 years. The overturn time itself is
much shorter. The magnetic field breaks down in about 104

years and rebuilds itself in the reverse direction in about the
same time.

The question is now, what is the origin of the magnetic
field, which mechanism generates this field?

Since all ferromagnetic minerals in the interior of the
earth have a Curie-temperature TC which is below the tem-
perature in the earth’s interior, these minerals cannot be the
source of the magnetic field.

Note For temperatures above the Curie temperature Tc
ferromagnets change their ferromagnetism into the much
weaker paramagnetism (see Sect. 3.5.5 and Books on Solid
State Physics).

Also the random fluctuations of the field with time
exclude permanent magnets, i.e. magnetic minerals as the
source of the field. These magnetic minerals in the earth
crust only cause small local variations of the magnetic field.
Therefore the assumption is that the magnetic field is gen-
erated by electric current loops in the interior of the earth
around the axis of the magnetic dipole where the high
temperature causes the liquidification of all materials
(magma). These liquids contain ionized atoms and they
move inside the liquid region of the earth’s interior.

The question is now: “what drives these liquids to flow?
There are several possible causes:

• Due to the radial temperature gradient convection cur-
rents are generated. Liquid material rises upwards, cools
down and sinks down again, because the cold material
has a higher density. The rotation of the earth causes a
Coriolis force FC ¼ 2m � ðv� xÞ on a particle with mass
m moving in the radial direction and deflects the con-
vection current into the tangential direction.

• Because of the missing restoring forces of liquids the
liquid region of the rotating earth shows a larger cen-
trifugal widening at the equator and a larger pole
oblateness as the solid crust. Therefore the principal
inertial axis of the liquid region does not revolute on the
same precession cone as the earth rotation axis. The
torques causing the precession (see Vol. 1, Chap. 5) are
different for the liquid and the solid region. This leads to
a relative motion of the liquid against the solid region and
causes magma currents. For such currents of partly ion-
ized materials the total electric current density

j ¼ .þ tþ þ .�t�

depends on the different flow velocities of positively and
negatively charged particles, since the negative charge car-
riers are generally electrons which have a much higher
mobility and therefore a higher drift velocity. The magnetic
field, generated by these electric currents causes a Lorentz
force FL ¼ q � ðt� BÞ which separates positive and nega-
tive charges and increases the difference of the drift veloc-
ities. This leads to an amplification of the magnetic field.
The motion of the charge carriers generates an additional
magnetic field which reinforces the initial field. This is
illustrated in Fig. 3.60 by an experimental example.

Magnetopause

geomagnetic tail

dayside nightside

Bog-shock front

Fig. 3.57 Deformation of the earth’ s magnetic field by the sun wind
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An electrically conducting disc rotates about the axis A in
a magnetic field with BjjA. When two electric sliding con-
tacts S1 and S2 are connect by a conductor loop an electric
current flows through the loop which generates a magnetic
field that is parallel to the original field and therefore rein-
forces it (dynamo principle) (Fig. 3.60).

Due to friction losses and emerging turbulence in the
motion of themagma the currents can change in time. They can
even have a spatial distribution of the currents which produces
no magnetic field and they can change their directions.

Many details of this model are still not clear and more
investigations are necessary before a complete understand-
ing of the origin of the earth’s magnetic field is reached [19].
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Fig. 3.58 Migration of the northern magnetic pole (black) and the
geo- magnetic pole (red)
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Fig. 3.59 Temporal change of magnitude and direction of the earth’s
magnetic field in Frankfort, Germany
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Fig. 3.60 Dynamo-model for the explanation for the amplification of
the magnetic field by electric currents, driven by the Lorentz force
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Summary

• Magnetic fields can be generated by permanent magnets
and by electric currents. Between the magnetic field
strength B and the magnetic intensityH exists the relation
B ¼ l0 �H (l0 = permeability constant in vacuum.)

• Stationary magnetic fields are source-free (div B = 0).
This implies that there are no magnetic monopoles.

• For a closed path around a conductor carrying the electric
current I ¼ R

j � dA the relation holdsZ
B � ds ¼ l0 � I ) rotB ¼ l0 � j:

• The magnetic field around a straight wire with radius
R conducting the current I is cylindrical symmetric and
the radial dependence is

BðrÞ ¼ l0 � I
ð2prÞ for r[R and BðrÞ ¼ l0 � j � r

2
for r\R

• The magnetic field in the interior of a long solenoid with
n windings per m and the current I is homogeneous and
has the amount

B ¼ l0 � n � I

• The vector potential A of a magnetic field B is related to
B by

B ¼ rotA:

A can be defined unambiguously by the additional con-
dition (Coulomb gauge)

divA ¼ 0:

• The vector potential A(r1) at the point r1 outside an
arbitrary current distribution j(r2) within the volume V2 is

Aðr1Þ ¼ l0
4p

Z
jðr2Þ � ðdV2Þ

r1 � r2j j :

• The Lorentz force acting on a charge q moving with the
velocity v in a magnetic field B superimposed by an
electric field E is

F ¼ qðEþ v� BÞ Biot � SavartLawð Þ
• The force acting on the length dL of a conductor with

current I in a magnetic field B is

F ¼ IðdL� BÞ:
• Axial magnetic fields act as lenses for focusing a beam of

charged particles.
• Homogeneous magnetic sector fields can be used to

separate charged particles with different masses. They
form the basis of magnetic mass spectrometers.

• Metals and semiconductors with current density j and
electron charge density n � q generate in a magnetic field
B the Hall voltage

UH ¼ �ðj� BÞ � b=ðn � qÞ
where b is the thickness of the probe perpendicular to B.
• The magnetic field B of an electric current and the Lor-

entz force acting on a charge q moving in a magnetic
field can be deduced by the relativity theory just from the
Coulomb law and the Lorentz transformations.

• The magnetic part q � v� Bð Þ of the Lorentz force can be
attributed to electric forces by transformation to a moving
inertial system. In this system the magnetic field becomes
zero.

• The electric field as well as the magnetic field generally
alter in different inertial systems However, the total force
and with it the equations of motion remain invariant.

• The magnetic properties of materials are described by the
magnetic susceptibility v. One distinguishes between

Diamagnets : vj j  1; v\0
Paramagnets : vj j  1; v[ 0
Ferromagnets : vj j � 1; v[ 0
Antiferromagnets : 0\ vj j\100;

For paramagnets the temperature dependence of the
susceptibility v can be described by v ¼ C=ðTþ hÞ
where h is the Neel temperature. The susceptibility v is
smaller than for ferromagnets.

• In matter the relation between B and H is

B ¼ l � l0 �H ¼l0 � ð1þ vÞ �H:

The dimensionless constant l is the relative permeability
number.

• The magnetic dipole moment of the area A enclosed by
the current I is defined as pm ¼ I � A

• The magnetization

M ¼ v �H ¼ 1
V

X
pm

gives the vector sum of all atomic magnetic dipoles per
volume V.
• Ferromagnetism is determined by the macroscopic

structure of specific magnetic matter and depends on the
order of the atomic dipole orientations. It disappears
above the Curie-temperature.

• The magnetic field of the earth is mainly caused by
electric currents of the liquid magma in the interior of the
earth. Magnetic minerals in the earth crust cause only
small local variations of the magnetic field.
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Problems

3:1 Two long straight wires are stretched in the z-direc-
tion with a mutual distance of 2a = 2 cm. Each wire
carries a current of 10 A in the same direction and also
in the opposite direction.
(a) Illustrate the magnetic field in the x-y-plane by

drawing the field lines.
(b) Calculate the magnetic field on the x- as well as

on the y-axis (see Fig. 3.61a).
(c) Calculate the forces per m length between the

two wires.
(d) What is the force, if the two wires are perpen-

dicular to each other, i.e. one wire lies in the line
z = y = 0, the other in the line x = 0, y = −2 cm
(Fig. 3.61b)?

3:2 Two concentric tubes carry a constant current I flow-
ing into opposite directions through the two tubes
(Fig. 3.62). Determine the magnetic field and its
dependence on the distance r from the axis
(0 � r � ∞).

3:3 In the hydrogen atom the electron (m = 9.109 �
10−31 kg, e = 1.6.2 � 10−19 C) moves according to
the Bohr model on a circle with radius r = 0.529 �
10−10 m around the nucleus. Which average electric
current corresponds to this electron motion and what
is the magnetic field at the nucleus?

3:4 In a plane perpendicular to a magnetic field lies a wire
on a half circle (Fig. 3.63) which carries the current
I. Show that the force on the wire is the same as that
acting on a straight wire along the line AC between
the ends of the half circle.

3:5 Consider a Helmholtz coil pair with a radius of 40 cm
and 100 windings of each coil. The current I flows in
both coils into the same direction.
(a) What is the magnetic field in the center at z = 0

when the coil distance is d?
(b) What is the current I in order to compensate the

earth magnetic field of 5 � 10−5 T = 0.5 Gauß?
What is the orientation of the coil axis for a
complete compensation?

(c) What is the dependence B(z) on the coil axis
outside of the coils?

3:6 An electron starts from P ¼ f0; 0; 0g with the velocity
ðv0=

ffiffiffi
3

p Þf1; 1; 1g in a homogeneous magnetic field
B ¼ B0 � f0; 0; 1g
(a) Describe the path of the electron
(b) How does the path change, when an electric field

E1 ¼ E0 � f0; 0; 1g or E2 ¼ E0 � f1; 0; 0g is
superimposed?

(c) Which of the following quantities are not affected
by the electric field E1 or E2:
vx; vy; vz; vr; vj j pj j; p;Ekin?

3:7 A thin copper rod with rectangular cross section
(thickness Dx = 0.1 mm width Dy = 1 cm) carrying a
current I = 10 A is oriented perpendicular to a mag-
netic field B ¼ fBx; 0; 0g with 2 T. Assuming that
each copper atom delivers a free electron (ne = 8 �
1022/cm3) calculate
(a) The drift velocity of the electrons
(b) The Hall Voltage
(c) The force per m on the copper rod.
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Fig. 3.61 Illustration of Problem 3.1
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Fig. 3.62 Illustration of Problem 3.2
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Fig. 3.63 Illustration of problem 3.4
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3:8 A rod of constantan (length L = 20 cm, cross section
A = 5 mm2 specific resistance q ¼ 0:5� 10�6 ohm � m
and an iron yoke (L = 60 cm, A = 5 mm2,
v ¼ fvx; 0; 0g) are soldered together on both sides of the
constantan rod (Fig. 3.64). The constant a of the
thermo-voltage in Eq. (2.42a) is a = 53 l V/K.
(a) Calculate the current I if one end is in water at

T = 15 °C and the other end is heated by a flame
to T = 750 K.

(b) Calculate the magnetic field in the center of the
quadratic loop.

3:9 Calculate the velocity interval Dv which is transmitted
when a parallel beam of charged particles with
velocity v0 passes through a Wien filter with a slit
width Db (Fig. 3.27).

3:10 Show, that Eq. (3.93b) follows from the condition div
B = 0.
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4Temporally Variable Fields

Up to now we have treated only temporally constant electric
and magnetic fields. All properties of these static fields
caused by resting charges or stationary currents can be
derived from a few basic equations (see Chaps. 1–3). These
equations are based on experimental observations and are:

rotE ¼ 0 rotB ¼ l0 � j
divE ¼ .=e0 divB ¼ 0
E ¼ �grad/ B ¼ rotA:

j ¼ r � E
ð4:1Þ

From the spatial distribution of charges .ðx; y; zÞ the
electric field strength E(x, y, z) and the electric potential /(x,
y, z) can be calculated while from the current distribution j(x,
y, z) the magnetic field strength B and the vector potential
A can be obtained. The connection between j and E is given
by the electrical conductivity r as a material constant of the
respective conductor. As has been shown in (3.60) the
constants of nature e0 and l0 are connected to the speed of
light c in vacuum by

e0 � l0 ¼ 1=c2

Now the question is how these equations have to be
extended, if charge density . and current density j and with it
also electric and magnetic fields are temporally changing.

In this chapter we consider “slow” temporal changes
where the time Dt, which light needs to travel over the area
of the distribution of charges or currents is very short
compared to the time interval Dt of the temporal change of .
resp. j so that we can neglect the changes within Dt. In
Chap. 6 we drop this restriction.

4.1 Faraday’s Law of Induction

Michael Faraday (Fig. 4.1) was the first who recognized that
an electric voltage is generated across a conductor in a
temporally variable magnetic field. He named this voltage
induction voltage. At first we will discuss some fundamental

experiments to show the quantitative connection between
this induction voltage and the temporal change of the mag-
netic flux.

1. The north pole of a bar magnet is pushed through a coil
with N windings with its endings connected to an oscil-
lograph to measure the temporally varying voltage
(Fig. 4.2). During the motion of the magnet one observes
a voltage U(t). Its amount and temporal course depends
on several factors. U(t) is proportional
(a) to the speed vðtÞ with which the magnet is moved

through the coil,
(b) to the product N � A, of the number of windings of

the coil and its cross sectional area A,
(c) to the cosine of the angle a between the surface

normal AN of the coil and the magnetic field direc-
tion B.

If the experiment is performed with the south pole of the
magnet, the observations are the same but the voltage has
the opposite polarity.

2. In the homogeneous field of a Helmholtz-coil the cross
section A of a flat flexible test coil with N windings is
reduced by DA when compressing the coil. Again one

Fig. 4.1 Michael Faraday (1791–1867) found 1831 the induction law
named after him
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observes an induction voltage whose amount depends on
the speed of the surface change DA(t).

3. Instead of the bar magnet in the first experiment a current
carrying cylindrical solenoid is used that has n windings
per unit length (see Sect. 3.2.6). Its magnetic field can be
changed by changing the current. A small test coil,
revolving about a vertical axis inside the field coil,
detects the induction voltage.

The induction voltage U(t) as well as the current I(t) of
the field coil and with it the magnetic field BðtÞ ¼ l0 � n �
IðtÞ are displayed on a double beam oscilloscope (Fig. 4.3).
Now we run a current IðtÞ ¼ I0 � sinxt through the field coil
with total area N � A. The test coil remains at rest but we vary
the frequency x and get the induction voltage

Uind ¼ U0 � sinðxtþ 90�Þ
With

U0 ¼ �x � B � N � A � cos a;
N is the number of windings of the test coil, A is its cross
sectional area, and a the angle between the normal vector AN

and the direction of the field B.

The results of these three experiments show that the
measured induction voltage is the negative temporal
change of the magnetic flux through the test coil. This is
Faraday’s law:

Uind ¼ � d
dt

Z
B � dA ¼ � dUm

dt
: ð4:2Þ

Examples

1. A rectangular coil with N windings and cross
section A rotates with constant angular velocity x
in a constant homogeneous magnetic field B0

(Fig. 4.4). Then the magnetic flux Um through the
coil is

Um ¼
Z

B � dA ¼ B � N � A � cosuðtÞ ð4:2aÞ

where uðtÞ ¼ x � t is the angle between the normal
vector and the direction of the field. According to (4.2)
the induced voltage is then

Uind ¼ � d
dt
Um

¼ B � N � A � x � sinxt:
ð4:2bÞ

This equation represents the fundamentals of the
technical realization of alternating current generators.
Its basic principle can be demonstrated by a simple
model of an ac-generator driven by hand (Fig. 4.5).
A few realistic technical realizations are explained in
Chap. 5.

N

t

oscilloscope

indU

Fig. 4.2 When a magnetic rod is pushed through a solenoid with
N windings an electric voltage is Uind(t) is measured between the ends
of the solenoid, which is proportional to the time derivative dUm/dt of
the magnetic flux through the solenoid

coil

α
B

field current I

A

AN .

I

indU

N
→

Fig. 4.3 Induction voltage between the ends of a fixed coil with
N windings and area A in a temporal changing magnetic field

Coil with
N Windings

sliding
contacts

)t(Uind

→
A

ϕ

→
ω

→
B

Fig. 4.4 Generation of an ac induction voltage by turning a coil in a
constant magnetic field
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2. If we apply a rectangular current to a field coil,
then also the magnetic flux through a test coil is
modulated nearly rectangular (Fig. 4.6). The time
dependence of the induced voltage shows peaks at
the rise and drop of the current. The peaks have the
opposite sign as the rise and fall of the rectangular
current. From (4.2) the change of the magnetic flux
follows by integration over time

DUm ¼
Z

dUm ¼ �
Z

Uinddt: ð4:2cÞ

The integral
R
Uind � dt gives the area under the

curve Uind and is a measure of the change DU of
the magnetic flux within the time interval
Dt ¼ t2 � t1.

Now we consider a coil with only one winding, which
encloses the area A. If the magnetic field changes while the
cross section area of the coil and the direction of the mag-
netic field are kept constant an electric voltage is generated
across the ends of the test coil

Uind ¼ �
Z

_B � dA: ð4:2dÞ

This voltage can be traced back to an electric field E,
because according to (1.13) is

U ¼
Z

E � ds;

where the integration is performed over the circumference of
the conductor loop. With Stokes’ theorem isZ

E � ds ¼
Z

rotE � dA: ð4:3Þ

Since this is valid for arbitrary surfaces it follows from
the comparison of (4.2a) and (4.3)

rotE ¼ � dB
dt

: ð4:4Þ

In words:

A temporally changing magnetic field creates an
electric eddy field.

Note The electric field created by charges (Fig. 4.7a) is
conservative and rot E = 0. Therefore, E can be written as a
gradient of an electric potential: E = −grad /el. The electric
field lines start on positive charges and end on negative ones.
They are not closed. In contrast to this constant electric field
generated by static charges where rot E = 0, is rot E 6¼ 0 for
that part of the field E created by a temporary changing

N

S

Fig. 4.5 Model of a hand-driven ac-generator. The outside of the
sliding contacts are conductors, their inner sides isolating

mφ

indU

t

t

Fig. 4.6 For a rectangular modulation of the magnetic field sharp
peaks of the induced voltage appear between the ends of the fixed coil
which are Uind = −dUm/dt

(a) (b)

E
→

rot E
→

= 0
→
E = − grad φ

→ →
rot dB/dtE = −

E
→+ −

d
0

dt
B <
→

Fig. 4.7 The two sources of electric fields are: a) stationary electric
charges which generate a rotation-free stationary field, b) a changing
magnetic field, which produce an electric field with closed field lines.
For dB/dt > 0 the direction of E reverses
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magnetic field (Fig. 4.7b). For this field the electric field
lines are closed, and the electric field cannot be written as the
gradient of a scalar potential.

4.2 Lenz’s Rule

From the negative sign in the induction law (4.2) the fol-
lowing fact can be concluded known as Lenz’ rule.

• The change of the induction voltage Uind is opposite
to the change of the magnetic flux. The electric cur-
rents caused in a circuit by the induction voltage
generate a magnetic field with a sign which depends
on the sign of the magnetic flux Um. It points into the
direction of the initial field B0, if dB0/dt < 0 but points
into the opposite direction if dB0/dt > 0. The change
dB0/dt of the original field B0 is therefore reduced by
the induced magnetic field.

• The direction of the currents induced by the motion of
a conductor in a magnetic field is such, that the
induced currents impede the motion which generates
the currents.

This can be generalized as follows: The currents, fields,
and forces created by induction always hinder the
process that has initiated the induction (Lenz’s rule).

This is illustrated in Fig. 4.8.
Lenz’s rule should be further illustrated by some exper-

imental examples.

4.2.1 Motion Initiated by Induction

If the north pole of a bar magnet is moved towards an alu-
minum ring suspended as a pendulum (Fig. 4.9), the direction

of the current induced in the ring is such that the north pole of
the induced magnetic dipole points against the north pole of
the permanent magnet and therefore, the ring is pushed off by
the magnet. Of course, also the magnet is pushed off by the
ring and themotion of themagnet towards the ring is hindered.

Now, if we pull back the bar magnet, the induced current
and the dipole invert their direction and the movement of the
magnet is hindered again. A periodic repetition of these
movements can force the ring to swing. We can explain this
behavior by considering the conservation of energy.

While the bar magnet approaches the ring, work has to be
done that is used to build up the magnetic field created by
the induced current flowing in the ring. This magnetic
energy is converted to mechanical energy of the moving ring
that has been lifted from its rest position.

If we repeat the experiment with an identical ring but with
a slit which prevents a circular current through the ring, we
observe no motion of the ring because no induced currents
can arise.

4.2.2 Electromagnetic Catapult

A field coil with its axis vertically oriented is filled with a bar of
soft magnetic iron (Fig. 4.10). Above the coil lies a thick ring
of aluminum (or copper).When switching on a current through
the field coil the increasing magnetic field induces a current in
the ring above the coil. The two magnetic moments of ring and
coil are directed so that they repel each other and the ring is
thrown upward. Be careful. Heights of up to 10 m are acces-
sible. A technical application of this principle is the accelera-
tion of small particles to high speedswhich even can exceed the
escape velocity of 11 km/s from the earth surface [1, 2].

4.2.3 Magnetic Levitation

Magnetic levitation means the floating of a thick slab of
aluminum in the field of an electromagnet driven by an

E

I

B0

→

Bind
→

0
dt
Bd 0 <

→

Fig. 4.8 The direction of current I, electric field E and induced
magnetic field Bind, when B decreases in time. When B increases all red
arrows are reversed

N

Aluminium ring

Fig. 4.9 Experimental demonstration of Lenz’ rule. The aluminum
ring is always repelled when the magnetic rod approaches, it is attracted
when up the market rod is withdrawn. This is independent of the fact
whether he south- or the north-pole is closer to the ring
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alternating current. The slab floats a few centimeters above
the magnet (Fig. 4.11).

Here, again a varying magnetic flux induces currents and
their magnetic moment creates a repulsive force balancing
the gravitational force. To avoid the slab getting out of its
central position, there is an additional coil about the elec-
tromagnet that creates the stabilizing magnetic field. The
thicker the slab the higher is the repelling force because of
higher induced currents [3].

4.2.4 Eddy Currents

Induced currents in an extended conductor are called eddy
currents. Their direction and magnitude depend on the tem-
poral variation dB/dt of the surrounding magnetic field and of
the spatial distribution of the electric resistance R(x, y, z).
These eddy currents and Lenz’s law is clearly demonstrated
by the experiment shown in Fig. 4.12 (Waltenhofen’s
pendulum).

A solid aluminum disc is fixed at one end of a long stick
and is swinging between the poles of a currentless electro-
magnet. At time t = 0 the current through the electromagnet
is switched on, the oscillation of the pendulum dies away
nearly immediately. The reason for this observation are the
high eddy currents in the disc that are dissipated by Joule’s
heating. The mechanical energy of the swinging pendulum is
transferred into heat.

Sawing many gaps into the disc, perpendicular to the
direction of motion (Fig. 4.12b) only lower eddy currents
can be induced and the damping of the pendulum is corre-
spondingly smaller.

The eddy current brake is applied in many electrically
driven vehicles for emergency breaking.

4.3 Self Inductance and Mutual Inductance

For technical application of coils or other arrangements of
conductors it would be very annoying to calculate the inte-
gral (4.2) every time anew. To simplify the calculations we
assign a scalar quantity, called the inductance, to every
arbitrary arrangement of conductors. However, the calcula-
tion of the inductance itself can be for some arrangements
complicated and therefore its experimental determination
may be often the better choice.

U

Fig. 4.10 Electro-magnetic induction gun

(a)

(b)

Fig. 4.11 Eddy current levitometer a) schematic drawing, b)
photo-picture of the actual design (with kind permission of Prof. Gruben)

(a)

(b)

N S

Fig. 4.12 Waltenhof pendulum a) side view, b) front view
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4.3.1 Self Inductance

The magnetic flux through a coil changes with the temporal
change of the current through the coil. Therefore, according
to Faraday’s induction law, even in the coil itself an
induction voltage is generated. Due to Lenz’s law the sign of
this voltage is opposite to the external voltage driving the
current through the coil.

Since the magnetic field of the coil is proportional to the
current I through the coil it follows for the magnetic flux

Um ¼
Z

B � dF ¼ L � I; ð4:5aÞ

The proportionality constant L with the unit

½L� ¼ 1V s=A ¼ 1Henry ¼ 1H

is the coefficient of self-induction. The induced voltage is
then obtained from (4.2) as

Uind ¼ �L � dI
dt

: ð4:5bÞ

4.3.1.1 Switching on the Supply Voltage
In the circuit of Fig. 4.13a the external constant voltage U0 is
supplied to the circuit by closing the switch S at time t = 0.
According to Kirchhoff’s rule (see Sect. 2.6) we obtain the
relation

U0 ¼ I � R� Uind ¼ I � Rþ L � dI
dt

; ð4:6Þ

where R is the Ohmic resistance of the coil. With the ansatz

IðtÞ ¼ K � e�ðR=LÞ�t þ I0 ð4:7aÞ
The solution of the inhomogeneous differential equation

becomes with the initial condition I(0) = 0

IðtÞ ¼ U0

R
� ð1� e�ðR=LÞ�tÞ: ð4:7bÞ

The current does not reach immediately at t = 0 its final
value I = U0/R, expected by Ohm’s law, but increases
gradually to the final value. The time delay depends on the

ratio of self inductance L and Ohmic resistance R. This ratio
s = L/R is called the time constant of the circuit. At the time
t = s the current I(t) has reached the value I(s) = U0/R �
(1 − 1/e) * 0.63 � I(∞).

This time dependence I(t) can be directly viewed on an
oscilloscope. A more qualitative visual demonstration is
possible with the circuit shown in Fig. 4.13c, which includes
the two light bulbs G1 and G2. When the switch S is closed, at
first the lamp G1 lights up and only after the time s = L/R the
light bulb G2 shines.With sufficient large values of L the delay
time s can increase to several seconds. After the stationary
state has been reached both lamps shine equally bright,
because the same current I flows through both lamps if the
resistances R1 = R2 are equal.

4.3.1.2 Switching off the Supply Voltage
Now we consider the opposite process: the switch S in
Fig. 4.14 is closed for t = 0 and the current I1 through the
resistor R1 is I1(t < 0) = U0/R1 while the current through the
coil is I2(t < 0) = U0/R2. For R1 > R2 is I1 < I2. At t = 0 the
switch S is suddenly opened. With the initial conditions
U0(t = 0) = 0 and I2(t = 0) = I0 we obtain the equation

SS

L R+ L R+

I
I1 I2

G2G1

R

(a) (b) (c)
I

t

U0 I( )τ

I t
U
L

t( ) = ⋅

I t
U

R
e R L t( ) ( )( / )= ⋅ − −0 1

τ = L R/

U0

1
2

Fig. 4.13 Demonstration of sel- induction of a coil a) experimental setup, b) electric current I(t) after closing the switch S, c) illustration of the
delay of the current I(t) by two small light bulbs G1 and G2
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I t1 0( )<

t = 0

I I1 2= −

t = 0 τ

I2
I0

I1

− I0

U0

Fig. 4.14 Induction voltage after switching off the current source by
opening the switch S a) circuit, b) current I2(t), c) voltage U(t),
d) current I1(t)
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0 ¼ I2 � R� Uind ¼ I2 � Rþ L � dI2
dt

ð4:8aÞ

With the solution

I2ðtÞ ¼ I0 � e�ðR=LÞ�t ð4:8bÞ
With R = R1+ R2. Here R1 is a pure Ohmic resistor while

R2 is the Ohmic resistance of the coil with inductance L. After
opening the switch S at t = 0 the current I2 does not jump
immediately to zero but decreases exponentially with the time
constant s = L/R. Across the coil the induction voltage

Uind ¼ �I2ðR1 þR2Þ ¼ �L
dI2
dt

ð4:8cÞ

appears (Fig. 4.14c) and through the ampere meter the cur-
rent I1 = −I2 flows, which is opposite but larger than I1(t <
0). With U0 = I0 � R2 we get the induced voltage

Uind ¼ �U0
R1 þR2

R2
e�ðR=LÞt; ð4:8dÞ

This shows that for R1 � R2 the induced voltage Uind

(t = 0) � (R1/R2) � U0 is essentially higher than U0. Therefore
also the current I = Uind/R0 through R1 is much higher than
before the opening of the switch S. If, for instance R1 is
replaced by a light bulb it will suddenly flash very brightly
and may even blow up if L is sufficiently large.

4.3.1.3 Ignition of Fluorescent Tubes
Fluorescent tubes are long evacuated glass tubes which are
filled with a noble gas and a small addition of mercury. At
both ends of the tube are heated filaments. The inner wall of
the glass tube is covered with a thin film of fluorescent
material which converts the ultraviolet light of the
mercury-noble gas mixture into a continuous spectrum in the
visible range. This makes the total spectrum of the fluores-
cent tube similar to daylight.

The ignition is explained in Fig. 4.15. Closing the switch
S connects the tube to the power supply. Now the line
voltage appears between the two filaments and across the
starter, which consists of a small glow discharge lamp where
one electrode is a bimetallic strip. When the discharge
ignites, the bimetallic strip bends and closes a contact. This
causes a short cut across the discharge of the starter which
therefore goes off.

Now the full current flows through the filaments of the
fluorescent tube, which heat up and evaporate the mercury
deposited on the filaments. Furthermore the hot filaments
emit electrons which can ionize the gas atoms in the tube.

When the discharge in the starter has gone off, the
bimetallic strip bends back and opens the circuit again. This
sudden interruption of the current I through the coil with
inductivity L causes a high induction voltage Uind = L � dI/
dt (about 1 kV) across the coil, which appears between the
filaments of the tube. This causes the ignition of the discharge
in the tube. The interruption of the current before the ignition
is so short that the filaments do not cool down during this
short time. Since the gas discharge is now ignited, the elec-
tron and ion bombardment of the filaments leads to a con-
tinuous heating of the filaments, which therefore continue to
emit electrons and support the discharge, The voltage
between the point A and B in Fig. 4.15 drops to the much
lower burning voltage UB (100–120 V). The difference DU =
U0 − UB to the supply voltage U0 (in Germany 230 V)
appears across the inductance L. For an ac-current with fre-
quency x this is DU = x � L (see Sect. 5.4).

The coil L has a double function: It delivers the high
ignition voltage to start the discharge in the fluorescent tube
and it limits the discharge current through the tube by pro-
viding a dropping resistor R = x � L [4].

Instead of mercury one can also use sodium, where the
light emission efficiency is very high in the yellow spectral
region. Such lamps therefore emit yellow light.

In Fig. 4.16 a commercial starter with bimetallic switch is
illustrated. Modern designs use instead of the bimetallic
switch electronic switches, which have the additional
advantage, that the ignition time can be chosen at the peak of
the ac supply voltage, which makes the ignition process
more reliable. The fluorescent tube reaches its maximum
brightness only after some minutes, when the stationary
vapor pressure of the mercury has been reached.

heating filament

Hg

A
LStarter

S

(a)

bimetallic electrode(b)

fixed
electrode gas filling

inner surface coated with
fluorescent material

0U
≈

G

B

Fig. 4.15 Discharge lamp, a) electric circuit, b) ignition device
(starter) as glow discharge in a gas-filled bulb wit a bimetallic switch
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4.3.1.4 Self-inductance Coefficient of a Solenoid
The magnetic field in a solenoid with length l and n wind-
ings per m which carries a current I (Fig. 4.17) is, according
to (3.10)

B ¼ l0 � n � I:
The magnetic flux through one winding of the solenoid

with cross section A is

Um ¼ B � A ¼ l0 � n � I � A
The temporal change of Um due to a change dI/dt of the

current is

dUm

dt
¼ l0 � n � A � dI

dt
:

Between the ends of the solenoid with N = n�l windings
the voltage

Uind ¼ �N � _Um

¼ �l0n
2lA � dI

dt
¼ �L � dI

dt

ð4:9Þ

is induced. The self-inductance coefficient L is therefore

L ¼ l0 � n2 � V ; ð4:10Þ
here V = lA is the volume that is included by the solenoid.

4.3.1.5 Self-induction of a Double Circuit Line
Two long parallel wires with radius r0 and distance d which
carry the current I in opposite directions are called a double
circuit line (Fig. 4.18). It represents an important element for
the transmission of electric power.

When the direction of the wires is the z-direction, the
magnetic field B lies in the x-y-plane. On the connecting line
between the two wires, which we chose as the x-direction,
the amount of B outside the two wires is:

BðoutÞ ¼ l0I
2p

1
d
2 þ x

þ 1
d
2 � x

 !
: ð4:11Þ

Between the two lines is B for the left part of the spacing
d(I > 0, x < 0)

Fig. 4.16 Ignition device with bimetallic switch for a discharge lamp
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d

0U

dt
dI

LUind −=
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Fig. 4.17 Self-inductance of a solenoid
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Fig. 4.18 Parallel double line a) arrangement, b) magnetic field in the
x-y- plane
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BðinÞ
1 ¼ l0I

2pr20

d

2
þ x

� �
ð4:12aÞ

And for the right part of the spacing:

BðiÞ
r ¼ l0I

2pr20

d

2
� x

� �
: ð4:12bÞ

The magnetic flux Um through a part of the double circuit
line with length l and cross section area A = d � l in the x-y-
plane is then

Um ¼ l �
Zd=2�r0

�d=2þ r0

BðoutÞdxþ
Z�d=2þ r0

�d=2

BðinÞ
1 dxþ

Zd=2
d=2�r0

BðiÞ
r dx

2
64

3
75

¼ l0 � I � l
p

� 1
2
þ ln

d � r0
r0

� �
:

ð4:13aÞ
The self-induction coefficient becomes

L ¼ Um

I
¼ l0 � l

p
� 1

2
þ ln

d � r0
r0

� �
: ð4:13bÞ

Equation (4.13b) shows that the self-induction coefficient
L of a double circuit line increases logarithmically with the
distance d between the two wires.

Note, that L increases with decreasing radius r0 of the
wires. Therefore flat ribbons are used for double circuit lines
with low inductance which are separated by a thin insulating
layer. For d = 2r0 one obtains from (4.13b) the minimum
inductance

Lðd ¼ 2r0Þ ¼ l0 � l
2p

: ð4:13cÞ

4.3.2 Mutual Induction

We consider a circuit carrying the current I1 (Fig. 4.19).
According to the Biot-Savart-law (see Sect. 3.2.5) this cir-
cuit generates in a point P(r2) a magnetic field B with the
vector potential

Aðr2Þ ¼ l0I1
4p

Z
s1

ds1
r12

; ð4:14Þ

where ds1 is a line element of the circuit. This magnetic field
causes a magnetic flux

Um ¼
Z
F

B � dA

¼
Z
F

rotA � dA ¼
Z
s2

A � ds2
ð4:15Þ

through the area A which is encircled by a second conductor
loop with the line element ds2.

Note Unfortunately the vector potential A and the area
A are labeled with the same letter. The careful reader would
not be confused by this convention.

The last equality follows from Stokes’ law (see textbooks
on vector analysis).

Inserting (4.14) into (4.15) one obtains the magnetic flux
through the second loop, which causes the current I2

Um ¼ l0I1
4p

Z
s1

Z
s2

ds1 � ds2
r12

¼ L12 � I2: ð4:16Þ

The proportionality factor

L12 ¼ L21 ¼ l0
4p

Z
s1

Z
s2

ds1 � ds2
r12

ð4:17Þ

Is the coefficient of mutual inductance. It depends on
the geometric shape of the two circuits, from their mutual
orientation and their distance.

For arbitrary configurations (4.17) is generally only
numerically solvable. We will therefore illustrate (4.17) for
some simple examples.

4.3.2.1 Rectangular Conductor Loop
in a Homogeneous Magnetic Field

We consider a rectangular loop which encloses the area A in
a homogeneous magnetic field of a solenoid with current
I and n windings per meter (Fig. 4.3). The magnetic flux
through the loop is according to (3.10)

Um ¼
Z

B � dA ¼ l0 � n � I � A � cos a;

where a is the angel between the surface normal A and the
axis of the solenoid. The coefficient of mutual inductance is
then

L12 ¼ l0 � n � A � cos a:
It becomes zero for a = 90°.

21

→
1ds

→
2ds

→
1dA

→
B

12r
)r(P 1

→
)r(P 2

→

→
2dA

Fig. 4.19 Illustration of the coefficient L12 of mutual inductance
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4.3.2.2 Two Circular Loops with Different
Relative Orientation

In Fig. 4.20 two circular loops with radius R are shown with
different orientations. The maximum value of L12 is obtained
for a = 0°, i.e. both loops are parallel (Fig. 4.20b). The
vertical arrangement of Fig. 4.20c has the smallest value L12
= 0, because the magnetic field of the first loop is parallel to
the plane of the second loop and the magnetic flux through
the second loop is zero.

For the parallel arrangement in Fig. 4.20b and for small
distances d � R nearly the whole magnetic flux generated
by the first loop passes through the second loop. Therefor,
according to (3.19) the coefficient

L12 ¼ p
2
l0R ð4:18aÞ

is for d � R independent of the distance d.
For large distances (d � R) is according to (3.20)

B � l0
2p

� I � A
d3

; ð4:18bÞ

The coefficient of mutual inductance is then

L12 � p
2
l0 �

R4

d3
ð4:18cÞ

While for the two limiting cases (d � R and d � R) the
determination of L12 is relative easy, for the general case the
integral (4.17) has to be calculated. This leads to elliptical
integrals, where the solutions are only approximately possi-
ble. If an iron bar is arranged through both loops the magnetic
flux Um through the loop 2 becomes larger, because the
magnetic field, generated by loop 1 is amplified by the iron
bar and is guided through the bar into loop 2 (Fig. 4.20d).

Using ferromagnetic materials with a large relative per-
meability l the coupling between two conductive loops can
be very much enhanced, which enlarges the coefficient L12.
This is utilized in electric transformers (see Sect. 5.6).

4.4 The Energy of the Magnetic Field

The energy dissipated in the resistor R in Fig. 4.14 after the
disconnection of the voltage supply must have come from
the magnetic field of the solenoid. The energy of the mag-
netic field is therefore

Wmagn ¼
Z1
0

I � U � dt ¼
Z1
0

I2 � R � dt: ð4:19aÞ

With (4.8a, 4.8b, 4.8c, 4.8d) this gives

Wmagn ¼
Z1
0

I20 � e�ð2R=LÞ�t � R � dt

¼ 1
2
I20 � L;

ð4:19bÞ

where I0 = I(t < 0) is the stationary current through the
solenoid bevor the disconnection from the source.

Magnetic fields can be therefore used as energy storage. If
they are generated by currents in superconducting coils one
does not need any power to maintain the stationary magnetic
field (apart from the power to cool the system down below
the transition temperature to superconductivity.

With L = l0 � n2 � V (see (4.10)) we obtain the energy
density of the magnetic field

wmagn ¼ Wmagn

V
¼ 1

2
l0 � n2 � I20 ¼ B2

2l0
: ð4:19cÞ

Remark Compare the corresponding expressions for
energy W and energy density w of the electric and the
magnetic field.

Wel ¼ 1
2
CU2

Wmagn ¼ 1
2
LI2

wel ¼ 1
2
e0E

2

wmagn ¼ 1
2
l0H

2 ¼ 1
2l0

B2:

ð4:19dÞ

Using the relation e0 � l0 ¼ 1=c2 we can write the energy
density of the electromagnetic field in vacuum as

1 2

(a)

1 2

R
d

(b)

B

1

2

(c)

1 2

(d)
iron

→

→

2

2

A

A

→
1A
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→

B

α

B

→
1A

Fig. 4.20 Coefficient L12 of mutual inductance for two circular loops
with equal but different mutual orientations
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wem ¼ 1
2
e0ðE2 þ c2B2Þ: ð4:20aÞ

The energy density of the electromagnetic field in matter
with the relative permittivity e and the relative permeability
l is

wem ¼ 1
2
e0 eE2 þ c2

l
B2

� �
ð4:20bÞ

With D ¼ e � e0 � E and H ¼ B=ðl � l0Þ we can write
(4.20c) as

wem ¼ 1
2

E � DþB � Hð Þ: ð4:20cÞ

4.5 The Displacement Current

In many cases the formulation of Ampere’s lawI
B � ds ¼ l0I ¼ l0

Z
F

j � dA ð4:21aÞ

used in Chap. 3 is not unambiguous. If the differential form
(3.7)

rotB ¼ l0 � j
shall be derived form (3.6) the Eq. (3.6) must be valid for
arbitrary paths around the conductor and for arbitrary areas
which are encircled by these paths.

In Fig. 4.21b an electric circuit is shown with a capacitor
C that carries a time-varying current I(t). If the circular curve
s1 is chosen as integration path the circular area dA can be
inserted into the integral in (4.21a) as well as any area cir-
cumvented by an arbitrary curve s1. If the curve s2 inside the
capacitor C is chosen, the current density j, defined in the
conventional way, is zero. The magnetic field measured at
the point P1 is given by Eq. (3.6) with the integration path
s1. Choosing the path s2 inside the capacitor, the magnetic

field would be zero. However, the whole current circuit,
including the capacitor carries the alternating current I. What
is wrong with the conventional definition?

In order to remove the discrepancy Clark Maxwell (1831–
1879, Fig. 4.21a) introduced the term “displacement cur-
rent” with the following argument: If an ac-current flows
through the conducting line in Fig. 4.21, the charge Q on the
capacitor plates changes. This leads to a change of the
electric field between the plates. With the relation

I ¼ dQ
dt

¼ d
dt
ðe0A � EÞ ¼ e0A � @E

@t
ð4:21bÞ

between the charge Q ¼ e0 � A � E on the plates with area
A and the electric field E inside the capacitor a current IV ¼
e0 � A � @E=@t can be defined which is called “displacement
current”. The corresponding current density is then

jD ¼ e0 � @E
@t

ð4:22Þ

which is proportional to the time change ∂E/∂t of the electric
field inside the capacitor. Here the partial derivative is
chosen, because (4.22) is also valid for inhomogeneous
fields where E(r, t) also depends on the spatial coordinates.
When (4.22) is added to the current density j the total current
density is then j + jD. Inserting this into (3.6) we getZ

B � ds ¼ l0I ¼ l0

Z
ðjþ jDÞ � dA ð4:23aÞ

or in the differential form (3.7)

rotB ¼ l0ðjþ jDÞ
¼ l0jþ l0e0

@E
@t

:
ð4:23bÞ

With l0 � e0 ¼ 1=c2 we can write (4.23b) as

rotB ¼ l0jþ
1
c2

@E
@t

: ð4:23cÞ
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current
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Fig. 4.21 a) James Clerk Maxwell b) Illustration of the displacement current
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This important result implies:

Magnetic fields are not only generated by electric
currents, but also by time-varying electric fields.

Without this mechanism there would be no electromag-
netic waves and we would not receive any sun light.

Remark Due to the introduction of the displacement
current the continuity equation is fulfilled. This implies that
the preservation of charge is saved. This would not be the
case without the term ∂E/∂t in (4.23c), as can be seen by the
following arguments:

When we apply the operator div to Eq. (4.23c) we obtain:

div rot B ¼ l0div jþ e0l0
@

@t
divE ¼ 0 ð4:23dÞ

because div rot B = ∇ � (∇ 	 B) = 0 since the scalar product
of two orthogonal vectors ∇ and (∇ 	 B) is zero.

Inserting in (4.23d) divE ¼ .=e0 we get the continuity
equation

div jþ @.
@t

¼ 0 ð4:23eÞ

Equation (4.23a, 4.23b) can be checked experimentally
by applying a high frequency voltage

UC ¼ U0 � cosxt
to the arrangement in Fig. 4.21. The displacement current is
then

ID ¼ dQ
dt

¼ C � dUC

dt
¼ �C � U0 � x � sinxt: ð4:23fÞ

where C is the capacity of the capacitor. In case of circular
capacitor plates the magnetic field lines are circles around the
symmetry axis of the capacitor in the planes x= const (Fig. 4.22).

According to Eq. (3.8) the magnetic field B at the edge of
the capacitor at the distance R0 from the symmetry axis is

B ¼ l0 � ID
ð2pR0Þ :

The magnetic flux Um through a small induction coil with
N windings and its surface vector A normal to the area A of
the coil and parallel to the magnetic field is

Um ¼ N � A � B
The voltage induced in the coil by the alternating mag-

netic field is

Uind ¼ �N � A � dB
dt

¼ � l0
2pR0

N � A � C � d
2UC

dt2
ð4:23gÞ

With the amplitude

Umax
ind ¼ l0

2pR0
N � A � C � U0 � x2: ð4:23hÞ

Example

A = 10−4 m2; N = 103; R0 = 0.2 m; U0 = 100 V; x =
2p � 106 s−1; d = 0.1 m, ⟹ C = e0 � pR0

2/d = 11 �
10−12 F⟹ Uind

max = (4p � 10−7)/(2p � 0.2) � 11 � 10−12 �
102 � (2p � 106)2 V = 4.8 mV.

This voltage can be viewed directly on an oscillo-
scope without any amplifier.

When a dielectricum with the relative permittivity e and
the relative permeability l is inserted into the capacitor we
must modify (4.23c). Instead of the electric field E we have
to use the dielectric displacement density D ¼ e0 � E.
A similar approach is necessary for the magnetic field, when
magnetic materials with the permeability constant l are
introduced into the field. Equation (4.23a–4.23h) can be
formulated independently of the medium, if the magnetic
intensity H is used instead of the magnetic field strength
B. Instead of (4.23a–4.23h) we get

rotH ¼ jþ @D
@t

: ð4:24Þ

R

B-field

amplifier

Coil with N windings

VUind ⋅aU  =

E
→

dt
dQI −=

tcosUU 0 ω=

V

Fig. 4.22 Experimental proof of Eqs. (4.23a–4.23h)
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4.6 Maxwell’s Equations and Electrodynamic
Potentials

The introduction of the displacement current and with Fara-
day’s law of induction we can extend the field Eqs. (4.1) for
stationary charges and currents to temporally varying condi-
tions. Using (4.4) and (4.23c) we arrive at Maxwell’s
equations

rotE ¼ � @B
@t

; ð4:25aÞ

rotB ¼ l0jþ
1
c2

@E
@t

; ð4:25bÞ

divE ¼ .
e0
; ð4:25cÞ

divB ¼ 0: ð4:25dÞ

With the Eqs. (1.65) and (4.24) we can generalize these
equations and get

rotE ¼ � @B
@t

; ð4:26aÞ

rotH ¼ jþ @D
@t

; ð4:26bÞ

divD ¼ .; ð4:26cÞ

divB ¼ 0: ð4:26dÞ

Together with the Lorentz force

F ¼ q � ðEþ v	 BÞ ð4:26eÞ
and Newtons equation of motion F ¼ dp=dt these equa-
tions describe all electromagnetic phenomena observed up
to now.

Electric fields are generated by charges as
well as by temporary varying magnetic fields.
Magnetic fields are generated by electric currents
as well as by temporary varying electric fields
(Fig. 4.23).

Electric and magnetic fields are closely interlinked and
form electromagnetic fields.

For temporary constant fields (4.25a–4.25d) reduces to
(4.1)

The Maxwell equations, which provide the basis of the
whole electrodynamics can be derived from a few general
principles:

• The conservation of the electric charge (continuity
equation)

• The conservation of the magnetic flux Um (there are
no magnetic monopoles)

• The Lorentz force on charges moving in electromag-
netic fields.

The proof of these statements would surpass the frame-
work of this introductory textbook and the reader is referred
to the corresponding literature [5–7].

The Maxwell Eqs. (4.25a–4.25d) represent a system of
coupled differential equations for the fields E and B, where
the two fields are coupled with each other by the relations
(4.25a) and (4.25b).

For the solution of these equations it is often convenient
to write the equations in an uncoupled form. This can be
achieved by using the scalar electric potential /el and the
magnetic vector potential A with rot A = B.

Since rot E 6¼ 0 the electric field E can no longer be
written as grad /el.

However, we can deduce from (4.25a–4.25d) by inter-
changing the spatial and the temporal differentiation
@B=@t ¼ @=@tðrotAÞ ¼ rotð@A=@tÞ the equation

(a) (b) const.I=

const.B =
→

→→
= jµBrot 0)q(Estat

→

)t(Edyn

→
)t(B

→

t
E
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1
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t
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2 ∂
∂==

∂
∂

→
→
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∂
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∂
∂
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→

∂ t/B
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∂ t/E
→

∂

Fig. 4.23 Vivid illustration of the Maxwell equations describing the
generation of an electric field by the temporal variation of an magnetic
field (Faraday’ induction law) and the generation of a magnetic field by
time variation of an electric field. Both are compared with static fields
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rotEþ @B=@t ¼ rot ðEþ @A=@tÞ ¼ 0; ð4:27Þ
This equation allows us to write the sum Eþ @A=@t as

gradient of a scalar potential

Eþ @A
@t

¼ �grad/el

) E ¼ �grad/el �
@A
@t

;

ð4:28Þ

For stationary fields (∂A/∂t = 0) this reduces again to the
conventional form E = −grad /el used in electrostatics.

The vector potential A is not unambiguously defined by
B = rot A (see Sect. 3.2.4) since every function A + u with
rot u = 0 gives the same magnetic field B.

The additional Lorenz gauge condition

divA ¼ � 1
c2

@/el

@t
; ð4:29Þ

which reduces for stationary fields to the condition (3.12)
fulfills the Maxwell Eqs. (4.25a–4.25d) as can be seen from
(4.28) because

• rotE ¼ �rot grad/el � rot @A=@t ¼ �@B=@t
r	r/ 
 0 applies
• divB ¼ div rotA 
 0:

From (4.25c) we get with (4.29)

divE ¼ div �grad/el �
@A
@t

� �
¼ .

e0

) D/el �
1
c2

@2/el

@t2

 � .

e0
:

ð4:30aÞ

This represents an extension of the Poisson equationD/el ¼
�.=e0 of electrostatics (1.16) to temporal variable fields.

For the vector potential A we obtain from (4.25b)

rot rotA ¼ l0jþ
1
c2

@E
@t

: ð4:30bÞ

With the vector relation
∇ 	 ∇ 	 A = grad div A – DA = −(1/c2) � (∂/el/∂t) we get

by inserting this into (4.30b)

DA� 1
c2

@2A
@t2

¼ �l0j; ð4:31Þ

This equation represents the extension of the
Biot-Savart-law. For stationary fields it reduces to (3.13)

With the introduction of the electrodynamic potentials /el

and A together with the Lorentz gauge it is possible to
transform the coupled differential equations for E and B of
first order (Maxwell equations) into uncoupled differential
equations of second order for the potentials

D/el �
1
c2

@2/el

@t2
¼ � q

e0
ð4:32aÞ

DA� 1
c2

@2A
@t2

¼ �l0j ð4:32bÞ

where the vector Eq. (4.32b) for A stands for three equations
for the components of A.

In the charge free and current free vacuum is qel = 0 and
j = 0. The equations above then reduce to

D/el ¼
1
c2

@2/el

@t2
; ð4:32cÞ

DA ¼ 1
c2

@2A
@t2

: ð4:32dÞ

The comparison with Eq. (11.69) in Vol. 1 shows, that these
equations represent waves of /el and A and therefore also of
E and B, which propagate in space as electromagnetic waves
with the phase velocity vphase = c which equals the speed of
light c (see Chap. 7).
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Summary

• The temporal variation of the magnetic flux Um ¼R
B � dA through a coil with current I induces between

the ends of the coil a voltage

Uind ¼ � dUm

dt

• The currents, fields and forces generated by induction
are directed in such a way, that they counteract the
induction process (Lenz’s rule).

• The self-inductance L of an electrical network causes
an induced voltage

Uind ¼ �L � dI
dt

;

which is oppositely directed to the external voltage
applied to the network.

• The mutual inductance L12 between two conductor
circuits depends on their distance and their mutual
orientation.

• The spatial energy density of the magnetic field in
vacuum is

wmagn ¼ 1
2l0

B2 ¼ 1
2
B � H:

• The energy density of the electromagnetic field in
vacuum is

wem ¼ 1
2
e0ðE2 þ c2B2Þ:

• The general expression of the energy density which is
valid in vacuum as well as in matter reads

wem ¼ 1
2
ðEDþBHÞ:

• A temporally variable electric field E induces a
magnetic field B according to

rotB ¼ 1
c2

@E
@t

:

• All observed phenomena of Electrodynamics can be
described by the Maxwell Eqs. (4.25a–4.25d)
resp. (4.26a–4.26e) and the Lorentz force (3.29b). The
Maxwell equations obey the continuity equation

div jþ @.
@t

¼ 0:

The Maxwell equations can be derived from general
principles: The conservation of charge, the conservation of
the magnetic flux and the Lorentz force on moving charges
in magnetic fields. They are based on experimentally
observed quantities and can be therefore tested by
experiments.
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Problems

4:1 A rectangular bow in the x-y-plane with width Dy =
b is placed in a homogeneous magnetic field perpen-
dicular to the field direction (z-direction). If a rod in y-
direction which touches the bow is pulled friction free
with constant velocity v into the x-direction (Fig. 4.24)
work has to be performed against the Lorentz force.
(a) Show that a voltage Uind ¼ �dUm=dt is gener-

ated, that is equal to the “Hall-voltage” between
the ends of the bow.

(b) Show furthermore that the mechanical power
equals the electrical power P = U � I, if the
electric and mechanical resistance of the sliding
rod can be neglected.

(c) The area enclosed by the bow is penetrated by an
inhomogeneous field B = {0, 0, Bz} with Bz = a �
x. What is the time variation of the induced
current I(t) if the resistance of the bow R = b �
L is proportional to the total length L of the bow.

4:2 Calculate the self-induction per meter for a cable
consisting of two concentric cylindrical conducting
tubes with radii R1 and R2 for the back and forth
current. What is the magnetic energy density in the
space between the two tubes with the current I?
Numerical example: R1 = 1 mm; R2 = 5 mm; I = 10 A.

4:3 Two concentric circular rings which both lie in the
same plane have the radii R1 and R2.
(a) What is the mutual induction?
(b) What is the induction flux Um, when one of the

rings carries the current I? Show, that Um does
not depend on the choice which of the rings
carries the current I.

4:4 A two-conductor line consists of two thin stripes with
width b = 10 cm, and the thickness d = 0.1 cm at a
distance of 0.2 cm. A current I flows through each of
the two lines into opposite direction. Calculate the
induction L and the capacity per m length, when
between the two stripes an isolation material with e =
5 is located. Does the product L � C depend on the
dimensions of the double conductor line?

4:5 Show, that for the Waltenhofen-pendulum in
Fig. 4.12 the damping torque

(a) D0 / du=dt, where u is the angle of the pen-
dulum bar with the vertical direction

(b) D0 / I2 where I is the current through the field
coils.

4:6 A switch opens the connection of a coil (L = 0.2 H, RL

= 100 X) with the voltage supply (U0 = 20 V). Cal-
culate the current I(t).

4:7 Show with Gauss’s Law, that the temporal change
dQ/dt of the charge Q ¼ R . � dV in the volume V and
the current I ¼ R j � dS through the surface S enclos-
ing the volume V obeys the continuity equation

_.þ div j ¼ 0

4:8 A train runs with the speed v = 200 km/h over a
straight railroad where the rails have a distance of
1.5 m. Which voltage is generated between the two
rails due to the earth magnetic field B = 4�10−5 T when
B is inclined against the vertical direction by 65°?

4:9 A coil with N windings encloses a straight wire,
carrying an ac current I = I0 � sin xt. What is the
voltage induced across the ends of the coil
(a) if the N windings form concentric circles around

the wire
(b) if the coil windings form a torus and its central

line a circle with radius R2 around the wire
(c) if a rectangular flat coil with N windings and a

side length a in the radial direction and the side
length b parallel to the wire is placed at a dis-
tance d resp. d + a from the wire?

4:10 An electromagnet is fed with a current I = 1 A, which
flows through 103 windings of the field coil with a
cross section of 100 cm2, a length l = 0.4 m and an
electrical resistance of R = 5 X. The magnetic field in
the iron rod is B = 1T. What is the induction voltage
across the ends of the coil, if the current is shut off
within the time Dt = 1 ms?
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5Electrotechnical Applications

Fundamental research about electric and magnetic fields and
their temporal changes had already in the 19th century
opened the way to many technical applications, which had
essentially contributed to the “technical revolution” and
which had changed public life in many ways. Examples are
the generation and transportation of electric energy and its
applications in industry, traffic and private households.

In this chapter we will discuss only some of the most
important applications which are still in use today.

5.1 Electric Generators and Motors

Faraday’s Induction law represents the basis of electric
generators.

The most simple model of an ac-generator is a rectangular
conduction loop with cross section area A and N windings
which rotates in a homogeneous magnetic ac-field B ¼
B0 cosxt with the angular frequency x (Fig. 4.3). It gener-
ates the induced voltage

U ¼ B0 � N � A � x � sinxt;
which is transferred through two sliding contacts K1 and K2

to fixed output contacts (Fig. 5.1).
A generator transforms mechanical energy (which is

needed for turning the loop) into electric energy. On the other
hand the generator can be also used as a motor: When an
external ac voltage is supplied to the output contacts of the
generator, the loop turns with the frequency of the external ac
voltage and the system converts electric into mechanical
work. The generator has changed to a motor.

If a dc-current is sent through the loop, it can perform only
half a turn. If now the magnetic field is always commutated at
the right times, the loop can rotate continuously. This com-
mutation is realized by a slotted sliding contact called the
commutator (Fig. 5.2a). For the case of a single coil it
consist of two halves which are isolated against each other
but connected to the two ends of the coil. The commutator

allows the use of the generator as direct current (dc) generator
or motor.

When the loop with the commutator is turned by hand,
the output provides a pulsed dc-voltage (Fig. 5.2b). This
pulsating output can be smoothened by using N loops which
are tilted against each other by the angle a = p/N. The
commutator now consists of N segments with N output
contacts. The end of each loop is connected to the beginning
of the next loop and to the corresponding segment of the
commutator. For illustration a generator with two loops is
shown in Fig. 5.3a. The output voltage of the two loops
behind the commutator, which are shifted against each other
by half a period, and the sum of the two voltages are
depicted in Fig. 5.3c. The electric circuitry is illustrated in
Fig. 5.3b.

When the generator is used as a motor the magnetic force
acting onto the coils which carry the current I can be greatly
enhanced when a cylindrical iron core is inserted between
the two circularly carved poles of the magnet (Fig. 5.4). The
magnetic field in the gap between the iron core and the pole

external
ac-source

eU

1K

2K

N

S

Fig. 5.1 Simple model of an ac-generator
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shoes is radial. Therefore the force is approximately constant
for the whole time when the coil rotates in the gap.

The three most important parts of a generator (or motor)
are

• the fixed field magnet (stator)
• the rotating coils (rotor)
• the commutator or collector with the sliding contacts,

which are realized by carbon rods pressed by springs
onto the collector (Fig. 5.2a).

The optimization of the rotor was achieved by the
invention of the drum armature. Its principle is illustrated in
Fig. 5.5. Instead of the coils a cylinder of magnetic material
is used where the coils are winded in grooves milled into the
iron cylinder (Fig. 5.5b). This greatly enhances the magnetic
flux through the coils. For N segments on the drum collector2U
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Fig. 5.3 a) Generator with two coils. H and H′ are the two sides of the
horizontal coil, V and V′ those of the vertical coil
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Fig. 5.4 Amplification of the force acting on the current loop by an
iron kernel generating a radial magnetic field
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Fig. 5.5 a) Drum armature with a magnetizable iron core. Six coils
(red points) are embedded into grooves of the core. b) Description of
the connections between the coils presented in a plane. The numbers
give the corresponding grooves. The carbon rods shown in (a) form
sliding contacts on the collector behind the drum armature
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Fig. 5.2 a) dc-generator resp. motor with two-part commutator and
sliding contacts, b) pulsating dc-voltage with only one rotating coil

136 5 Electrotechnical Applications



the voltages of the different coils have to be added with the
correct phase. This can be reached, if the end of a coil is
connected with the beginning of the next coil. For the coil
position, shown in Fig. 5.5. The voltage between the seg-
ments 2 and 5 just gives the voltage between the ends of that
coil with its area perpendicular to the magnetic field of the
stator. Figure 5.6 shows a commercial dc-machine, which
can be used as generator as well as motor.

Since the induced voltage is proportional to the magnetic
field B the stator field should be as high as possible. This can
be best achieved with electromagnets instead of permanent
magnets. In order to save an external power supply, all elec-
trical machines produce their own field current. They use the
fact, that electromagnets have, evenwithout current, a residual
magnetic field due to the remnant magnetization of iron (see
Fig. 3.45, remanence). This residual field is sufficient to
induce a voltage when the coils on the rotor turn. The resultant
current is used to enhance the magnetic field of the stator. This
dynamo-electric principle was discovered in 1866 by Wer-
ner von Siemens. It allows the construction of large generators
which do not need any external power supplies. The
enhancement of the magnetic field is limited by saturation
effects and byOhmic losses in the windings. Generators based
on the dynamo-electric principle are called dynamos.

Note, that a higher electrical output power of generators
demands a higher mechanical input power for driving the
generator. This is illustrated by Fig. 5.12 where a high
power gas turbine is used for driving an electric generator.

The energetic efficiency of a generator is defined as the
ratio of electric output power to mechanical input power. It
is always smaller than one because of the unavoidable losses
by the ohmic resistance and by mechanical friction.

5.1.1 DC-Machines

Depending on the specific applications three different cir-
cuits of dc-machines are used:

5.1.1.1 Series Wound Motor
In the series wound motor (Fig. 5.7) the total current pro-
duced in the rotor coils is sent after rectification by the
commutator through the stator coils and the load resistor Ra.
This means that rotor, field coils in the stator and load
resistor are connected in series. The magnetic field current is
equal to the load current.

With increasing current I the magnetic field increases and
therefore also the induced voltage. Because of saturation in
the magnetic iron core the line U ¼ f Ið Þ is curved
(Fig. 5.7c). Stationary operation is reached at the crossing
point of the straight line U ¼ Ri þRað Þ I with the curved
line U ¼ f Ið Þ. With the total internal resistance Ri ¼
RF þRR as the sum of the resistance of the field coils and
that of the rotor the terminal voltage is

Fig. 5.6 Rotating part of a dc-motor with commutator, armature
windings and fan propeller, (with kind permission of Siemens AG)
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Fig. 5.7 Motor with series winding. a) Schematic representation,
b) equivalent circuit RR is the resistance of the rotor coils, RF that of the
field coils, Ra the load resistor, c) excitation curve with operating point,
d) current-voltage characteristic
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UK ¼ U0 � I � Ri; ð5:1Þ
where U0 is the voltage for Ri ¼ 0. If the resistance RR of the
rotor is very small compared with the resistance RF of the field
coilsU0 isnearlyequal to the inducedvoltageUindand therefore
proportional to the magnetic field B and the field current I. In
Fig. 5.7d the terminalvoltageUKand thevoltageU0 areplotted
as a function of the current I. Because of saturation of the
magneticfield for high currentsU0 approaches a constant value
andUK decreases according to (5.1).

With a load resistor Ra the total output power of the series
wound generator (Hauptschluß-Machine).

P ¼ U0 � I ¼ I2 � Ri þ Rað Þ;
where Ri ¼ RR þ RF is the total inner resistance (rotor and
field coils). The fraction Pi ¼ I2Ri is consumed inside the
machine and only the part Pa ¼ I2Ra is supplied to the
external load. The electric efficiency of the
hauptschluss-machine is

g ¼ Pa

P
¼ Ra

Ri þ Rað Þ : ð5:2Þ

In order to realize a maximum efficiency the internal
resistance Ri should be as small as possible. This means one
has to use thick wires for the coils.

The advantage of the hauptschluss-machine is its adap-
tion to the power consumed by external consumer. If a larger
power is consumed the current I increases and therefore the
magnetic field and the available power of the machine. Its
disadvantage is that the supplied voltage is not constant.

5.1.1.2 The Shunt-Motor
In the shunt motor (parallel circuit Fig. 5.8) the external load
circuit and the magnet coils are connected in parallel. Even
without load the current for the magnetic field IF remains
constant. The current, taken from the commutator

I ¼ IF þ Ia ¼ Uind

RF
þ Uind

Ra

) IF=Ia ¼ Ra=RF

ð5:3aÞ

is split into the field current IF and the consumer current Ia.
With I ¼ IF þ Ia we obtain

Ia ¼ I � RF

Ra þ RF
; IF ¼ I � Ra

Ra þ RF
ð5:3bÞ

The electric power delivered to the consumer is
Pa ¼ I2a � Ra, the power consumed in the field magnet
PF ¼ I2F � RF and in the rotor PR# ¼ I2 � RR. The electric
efficiency is then

g ¼ Pa

Pa þ PF þ PR

¼ I2aRa

I2aRa þ I2FRF þ I2RR
:

ð5:4Þ

With (5.3a, 5.3b) this gives

g ¼ 1

1 þ RR
Ra

þ Ra þ 2RR
RF

þ RaRR
R2
F

; ð5:5Þ

This shows that for optimization of η the resistance of the
field coils should be as large as possible, contrary to the
hauptschluß- machine where it should be as small as
possible.

The current-voltage characteristic of a shunt-machine is
shown in Fig. 5.8d. Without load Ia ¼ 0ð Þ is I ¼ IF. The
total current delivered by the rotor flows through the field
coils. This causes a maximum of the induced voltage
Uind ¼ U1. It adjusts to the intersection P1 between the
straight line.

U ¼ ðRR þ RFÞ � IF1
and the curve U ¼ f IFð Þ which is determined by the mag-
netization of the magnet.

If now a consumer is connected parallel to the inner
circuit the current I ¼ IF þ Ia increases. This causes a
decrease of the terminal voltage to the lower value

UK ¼ Uind � RRðIF þ IaÞ: ð5:6Þ
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Fig. 5.8 a) Motor with parallel winding, b) schematic representation,
c) excitation curve with load-dependent operation point, d)
current-voltage characteristic
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With decreasing voltage UK also the field current IF ¼
UK=RF and the magnetic field B decrease. This reduces the
induced voltage to the value

U0
ind ¼ f ðIF2Þ ¼ U2 ¼ ðRa þ RRÞIa þ RRIF2

¼ ðRa þ RRÞI � RaIF2
ð5:7Þ

which corresponds to the point P2 in Fig. 5.8c.
With increasing load current Ia the straight line U2 is

shifted. Above a critical current Ia there is no longer a
crossing point, which means that in this range a stable
operation of the machine is no longer possible.

The shunt machine is generally operated in the upper part
of the U I2ð Þ characteristic in Fig. 5.8d. If the output terminal
are short circuited Ra ¼ 0ð Þ the voltage U and the slope
dU=dI2 become zero. Therefor a short circuit does not harm
the machine.

The advantage of the shunt machine is a good stability of
the output voltage in the upper part of the current-voltage
characteristic. Its disadvantage is the small resistance against
changes of the load. If the load current becomes too large,
the machine may stand still already at lower load powers
than for the hauptschluss engine.

5.1.1.3 The Compound Motor
The advantages of the series wound motor and the haupts-
chluss and the shunt machine can be combined by introduc-
ing two separate coils for the magnet: One with thick wires
(small resistance) which is arranged in series with the load
circuit and one with large resistance RF which is connected as
parallel circuit to the coil with low resistance (Fig. 5.9). This
gives a better stability of the voltage U2 Iað Þ and furthermore a
better adaption to strongly changing load conditions.

5.1.2 AC-Generators

AC-machines do not need the commutator. The simple
model of Fig. 4.5 is, however, modified for obtaining a
higher efficiency.

Nowadays most of the generators are internal pole
machines, where the magnetic field coils rotate and the
induction coils are fixed. The advantage of this design is that
no sliding contacts are necessary which always represents a
problem for the transfer of large currents to the consumer. In
Fig. 5.10 a six-pole ac generator is shown as example. The
rotating field magnet is an electromagnet with three north- and
three south-poles. Fixed at the casing are six induction coils
with iron kernel and alternate reversed coiling direction and
connected in series. The output voltage at the terminals is the
sum of the three induction voltages.
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The rotor magnets receive the much smaller current over
sliding contacts. The voltage can be either supplied as shunt
circuit from the terminals and is then rectified, or an extra
dc-generator is installed which delivers the voltage to the
coils.

In order to generate an ac current with a frequency of
50 Hz the rotation frequency of the three induction coils has
to be f = 50 � 60/3 = 1000 turns per minute Fig. 5.11 gives a
compilation of the different types of generators and motors
and Fig. 5.12 illustrates the size of a gas turbine with 450
MW output for driving a 400 MW generator.

There are two different kinds of ac-generators: Syn-
chronous generators where the rotation frequency f ¼ fa=n
for n poles is synchronized with the frequency fa of the
external ac-voltage and asynchronous machines which
are generally operated as three phase ac- generators

(see Sect. 5.3) and which run at a rotation frequency f ¼
fa=n that is smaller than that of the external voltage. Due to
their robust operation and their simpler setup nowadays
mainly asynchronous machines are used. In Fig. 5.13 a big
three-phase generator with an output power of 100 MW is
shown during its mounting. In the Diagram 5.11 the different
technical designs for motors and generators are compiled [1].

5.2 Alternating Current (AC)

The alternating voltage

UðtÞ ¼ U0 � cos xt;

across a resistor R causes an alternating current

IðtÞ ¼ I0 � cos xt with I0 ¼ U0=R

The time interval T ¼ 2p=x between two maxima is the
period of the ac current (Fig. 5.14). In the integrated network

Fig. 5.12 New high temperature gas turbine for driving a high power
generator (with kind permission of Siemens AG)

Fig. 5.13 Installation of the rotor into a three-phase ac generator with 3000 turns per minute and an output power of 100 MW. (with kind
permission of Siemens AG)
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Fig. 5.14 The characteristic features of the ac-voltage
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of Europe is x ¼ 2p � 50Hz ) T ¼ 20ms. The electric
power of this current and voltage

Pel ¼ U � I ¼ U0 I0 cos2 xt ð5:8aÞ
is also a periodic function of time (Fig. 5.15). Its time
average is

�Pel ¼ 1
T

ZT
0

U0I0 cos2 xt dt with T ¼ 2p=x

¼ 1
2
U0I0:

ð5:8bÞ

A dc-current I ¼ I0=
ffiffiffi
2

p
caused by a dc-voltage U ¼

U0=
ffiffiffi
2

p
has the same time averaged power as the ac-voltage

and current with the amplitudes (maximum values) U0 and
I0. The expressions

Ueff ¼ U0ffiffiffi
2

p and Ieff ¼ I0ffiffiffi
2

p ð5:9aÞ

are therefore called the effective or actual values (root mean
square values) of voltage and current (Fig. 5.16).

Example

For the European uniphase network we get at our
electrical outlet the effective voltage Ueff ¼ 230V

) U0 ¼ 230 � ffiffiffi
2

p
V ¼ 325V. With f ¼ x=2p ¼

50Hz ) x ¼ 300 s�1. We can therefore write:

UðtÞ ¼ 325 � cos ð2p � 50 � t=sÞV:

If the network includes inductances L or capacitors C,
voltage and current are generally not in phase (see Sect. 5.4)
but show a phase difference u:

U ¼ U0 � cosxt; I ¼ I0 � cos ðxt þ uÞ: ð5:9bÞ
The average power is then

�Pel ¼ U0I0
T

ZT
0

cosxt � cosðxt þ uÞ dt

¼ U0I0
2

� cosu:
ð5:10Þ

For u ¼ 90� the average power becomes zero (Fig. 5.17).

Example

An inductance L in the network with an ohmic resis-
tance R = 0 does not consume, on the time average, any
energy. The energy needed for building up the magnetic
field during half a period of the ac power, is released
again in the next half, when the magnetic field decays.

Corresponding considerations are valid for a
capacitor in the network.

The power taken and released again by inductances and
capacitors is therefore called idle power or wattless power,
while the actual in ohmic resistors consumed power is the
real or wattful power (Figs. 5.17 and 5.18).
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Fig. 5.15 Power curve of dc-current for in-phase of current and
voltage
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Fig. 5.16 a) Average power of ac-current. b) Effective values of current and voltage
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For measurements of the wattful power instruments are
used where the readout is proportional to the effective power
�Pel. One example is the circuit of a modified moving coil
meter shown in Fig. 2.28. The permanent magnet in
Fig. 2.28 is replaced by a fixed field coil. Through this coil
the measured load current I flows. The field coil provides the
magnetic field for a moving coil galvanometer while the
measuring coil represents the moving coil of the instrument.
The voltage U ¼ I2 � R2 þRmð Þ is measured through the
current I2 that flows through the measuring coil with resis-
tance Rm and a large series resistor R2 limiting I2 to values
I2\\I. The magnetic moment of the measuring coil is

proportional to the voltage U and the magnetic field of the
field coil is proportional to the current I: Therefore the acting
torque on the measuring coil is proportional to the product
U � I. The mechanical inertia of the pointer connected to the
measuring coil and indicating on a scale the measured values
prevents that it follows the fast oscillations of the ac power
and therefore indicates the average power. The measuring
range of the device can be enlarged by parallel resistors or
resistors in series.

5.3 Multiphase and Rotary Currents

Replacing the coil in Fig. 5.1 by N coils which are twisted
against each other by the angle 2p=N, the voltages measured
between the ends of each coil

Uind
n ¼ U0 cos xt � n� 1

N
� 2p

� �
ð5:11Þ

are shifted by the angle Du ¼ 2p=N. These voltages can be
measured if one end of all coils is connected to the same
sliding contact and the other ends to N different contacts.
The device has then N + 1 contacts.

For technical applications the three-phase current with
N = 3 has found the widest distribution because it allows
with reasonable expenditure the transport of electric energy
with a given electrical power.

A general method for the generation of a three-phase
current uses a magnet that rotates about a central axis in
Fig. 5.19. It induces in three fixed coils which are displaced
by 120° three ac-currents that are also shifted against each
other by 120°. Connecting one end of each coil to a resistor
Ri i ¼ 1; 2; 3ð Þ, and the other ends of all coils to a common
return circuit (star connection) (Fig. 5.20), the currents Ii ¼
Uind=R in the three lines i = 1, 2, 3 are

I1 ¼ I0 cosxt;

I2 ¼ I0 cosðxt � 120
� Þ;

I3 ¼ I0 cosðxt � 240
� Þ:

ð5:12Þ
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Fig. 5.18 Circuit for measuring the effective power
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Fig. 5.19 Generation of three ac-voltages with a common reference
pole 0 shifted against each other by 120° by a rotating magnet
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Using the addition theorem for goniometric functions it
follows for the sum

RIi ¼ 0 ð5:12aÞ
This implies that the current through the common return

circuit is zero (Fig. 5.21). It is therefore called zero con-
ductor. Equation (5.12a) is only valid, if each of the three
lines contains the same resistor. Different resistors in the
three lines change the amplitude I0. Furthermore phase
shifting elements, such as inductances or capacitors shift the
relative phase between the three lines and then their currents
no longer add up to zero!

When each induction coil in Fig. 5.20 delivers the same
voltage amplitude U0 the voltage between the outlets 1 and 2
is

DU1;2 ¼ U1 � U2

¼ U0½cosxt � cosðxt � 120
� Þ�

¼ �U0 �
ffiffiffi
3

p
sinðxt � 60

� Þ

¼ þ U0 �
ffiffiffi
3

p
cosðxtþ 30

� Þ:

ð5:13Þ

The phase difference between outlets 1 and 2 is Du1,2 =
−30° and the amplitude is U1,2 = U0 � √3. Instead of −30°

the phase shift between 2 and 3 is Du2,3 = −90° and between
3 and 1 Du3,1 = −150°.

This shows that the voltage between two phases of the
three-phase current is larger by the factor √3 than the voltage
between one phase and the zero return line.

Example

Ueff
1 ¼ Ueff

2 ¼ 230V ) U0 ¼
ffiffiffi
2

p
� Ueff

¼ 325V ) DU0 ¼
ffiffiffi
3

p
� U0 ¼ 563V:

The maximum amplitude DU tð Þ of the ac voltage
between two phases of the three phase current is
563 V, the effective value is DUeff ¼ 398V.

Besides the Y-connection discussed before often the delta
connection in Fig. 5.22 is used. It exploits the fact that the
sum of all three voltages of a three phase current is zero.

Utot ¼
X2
n¼0

U0 cos xt � n
2
3
p

� �
¼ 0: ð5:14Þ

For the delta connection the voltages between the points 1, 2,
3 are always the voltages of one phase. The advantage compared
with the one-phase current is the smaller load per phase for a
given output power, if the different consumers are equally dis-
tributed among the three phases. However, the current through
each of the three lines is always the sum of two load currents
(Fig. 5.22), which are generally phase shifted against each other.
For example the current I from the outlet 1 in Fig. 5.22 is

I ¼ I1 þ I2 ¼ U13=R1 þU12=R2:

For the D-connection is always
P

Ui ¼ 0 independent of
the load resistors Ri. It is, however, no longer

P
Ii ¼ 0.

When the voltages

Un ¼
X

U0 cos xt � n
2
3
p

� �
;

obtained from the three output terminals in Fig. 5.20 are
applied to three magnetic coils with axis twisted by 120°
against each other, the superposition of the three fields gives
a magnetic field which rotates with the frequency x about

I,U 3/T

t

Fig. 5.21 The sum of three one-phase ac currents shifted by 120°
against each other is zero indicated by the t-axis U = 0, I = 0

2

1

3

I I1 2+

U13,

U3 2,

I I2 3+

I I1 3+

I1

R1

R3

I3

U12,

I2

R2

Fig. 5.22 Delta connection for the three phase ac current

U3

I I2 3+I1 +

I1

R

I3

U2

I2

U1

U2

R R

U12

U1

0

U3

Fig. 5.20 Star connection for the three-phase ac current
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the symmetry axis of Fig. 5.23 perpendicular to the drawing
plane. This can be demonstrated by a compass needle sup-
ported by a pin in the symmetry axis, if the frequency x is
chosen so low that our eye can follow the rotation of the
needle.

The rotation of the magnetic field can be explained by a
simple vector model (Fig. 5.24). The three magnetic fields Bn

of the three coils point into the direction of the coil axis (see
Sect. 3.2.6.4 and Fig. 3.6). They all lie in the same plane (the
drawing plane of Fig. 5.24) turned against each other by the
angle 120�. Assume that at time t = 0 the current through coil
1 has reached its maximum and the magnetic field points
radially towards the center. Since the currents in the coils 2 and
3 are phase shifted by �120� the fields B2 and B3 are weaker
by the factor cos 120� ¼ �1=2, resp cos 240� ¼ �1=2. They
are both directed radially outwards. The superposition of the
three fields gives a field in the direction of the coil axis 1. After
1=3 of a period, i.e. at t ¼ 2p=ð3xÞ the total magnetic field has
turned by 120� and points into the direction of the axis of coil 2
towards the center.

Because of the rotation of the magnetic field the three
phase current is also called rotary current.

The rotating magnetic field is used for the construction of
rotatary field motors [4]. Their principle was already illus-
trated by the rotating magnetic compass needle. The tech-
nical realization is shown in Fig. 5.25, Instead of the needle

a rotary iron ring is used, which is wrapped around with
coils (squirrel cage rotor).

5.4 AC-Current Circuits with Complex
Resistors; Phasor Diagrams

The phase shifts between currents and voltages caused by
inductances and capacitors in electric circuits, can be best
illustrated by using a complex notation [5]. How this com-
plex notation is translated into real circuits will be exem-
plified in the next section.

5.4.1 AC-Circuit with Inductance

The external voltage Ue ¼ U0 cosxt in Fig. 5.26 must be
opposite to the induced voltage Uind ¼ �L � dI=dt and with

B
→ B

→

B
→

B2

→
B2

→
B2

→B3

→
B3

→

B3

→

t = 0 t = ⋅
1
3

2π
ω t = ⋅

2
3

2π
ω

B1

→

B1

→

B1

→

Fig. 5.24 Vector addition of the magnetic fields in the three coils of the three phase current

Stator
coils

Direction of rotation of
the rotating field

radiales
Magnetfeld

Rotor

°60

R

S T

R

T

S

Fig. 5.25 Model of the three phase motor

Magnet

N
S

S

R

T

Fig. 5.23 Demonstration of the magnetic rotating field generated by
the three phase ac current

144 5 Electrotechnical Applications



equal amount, because the total voltage in a closed circuit
must be zero. We will at first neglect any ohmic resistor.

Ue þUind ¼ 0

) U0 cosxt ¼ L � dI
dt

;
ð5:15Þ

) I ¼ U0

L

Z
cosxt dt ¼ U0

xL
sinxt

¼ I0 sinxt with I0 ¼ U0

xL
:

ð5:16Þ

Current and voltage are no longer in phase. The
ac-current is delayed by 90� against the voltage, due to the
inductance L.

The amount jRLj of the inductive resistance is defined as
the ratio

RLj j ¼ U0

I0
¼ x � L ð5:17Þ

If the phase shift is taken into account the phase shifting
resistor can be expressed by the complex number Z. It can be
illustrated in a complex plane (x.iy) in Fig. 5.27 pointing
into the imaginary axis iy. Its amount is |Z| = |RL| and its
angle against the x-axis equals the phase shift u between
voltage and current [2].

It is tan u ¼ Im Zð Þ=Re Zð Þ (see Vol.1 Sect. 13.3.2). The
real part of Z is zero. This means that the inductance does
not consume in the average any power.

5.4.2 Circuit with Capacitance

From the equation

U ¼ Q=C

follows by differentiation with respect to time

dU
dt

¼ 1
C

dQ
dt

¼ 1
C
� I: ð5:18aÞ

With Ue ¼ U0 � cosxt we get

I ¼ �xC � U0 � sinxt
¼ xC � U0 � cos xtþ 90�ð Þ: ð5:18bÞ

In a circuit with a capacitance C the current I(t) is ahead
of the voltage U(t) by 90° (Fig. 5.28).

The complex resistance of the capacitance C is with
I0 = x C U0

Z ¼ U

I
¼ e�ip=2 U0

I0

¼ �i
1
xC

¼ 1
ixC

:

ð5:19Þ

5.4.3 General Case

We now consider an ac-circuit that includes an ohmic resistor
R, an inductance L and a capacitor C which are connected in
series. With the external voltage Ue tð Þ the sum of external
voltage and induced voltageUind in Fig. 5.29 must be equal to

Lϕ

Cϕ
°−=ϕ 90C

°=ϕ 90L

LiZL ω=

C/iZC ω−=

Im(Z)

Re(Z)

Fig. 5.27 Complex representation of inductive and capacitive
resistances

Ue

U, I

I(t)

U(t)
t

I

C

U

Fig. 5.28 AC circuit with capacitance C

T

R

C

L

I(t)

U(t)

t

U, I

Δt T= ⋅( / )ϕ π2

Ue

Fig. 5.29 General case of a series ac-circuit with inductance L,
capacitance C and Ohmic resistor R

Ue L

U, I

I(t)

U(t)
t

Uind

Fig. 5.26 AC circuit with inductance
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the voltage U1 þU2 ¼ I � RþQ=C across the resistor R and
the capacitor C. We therefore have the condition

Ue ¼ L � dI
dt

þ Q

C
þ I � R: ð5:20Þ

Differentiation with respect to time gives

dUe

dt
¼ L � d

2I

dt2
þ 1

C
IþR � dI

dt
: ð5:21Þ

We try the complex solution

Ue ¼ U0 � eixt; I ¼ I0 � ei xt�uð Þ: ð5:22Þ
Every reasonable solution must be, of course, real. For

the solution we use the following properties of linear dif-
ferential equations:

If the functions f(t) and g(t) are solutions of (5.21) then
any linear combination af tð Þþ bg tð Þ is also a solution, in
particular the complex function U tð Þ ¼ f tð Þ þ i g tð Þ This
implies: When we have found a complex solution U(t), the
real part as well as the imaginary part are both solutions of
(5.21). The special solution is determined by the initial
conditions. (see Vol. 1, Chap. 11).

The complex ansatz allows a more simple notation and in
particular a more elegant way to find the solution. Inserting
(5.22) into (5.21) gives for the relation between current and
voltage

ixU ¼ �Lx2 þ ixRþ 1=C
� �

I: ð5:23Þ
When we define in analogy to the Ohmic resistor R the

complex resistor Z by Z ¼ U=I we obtain from (5.23):

Z ¼ U

I
¼ R þ i xL � 1

xC

� �
: ð5:24Þ

The complex resistor can be visualized by a vector in the
complex plane (Fig. 5.27). Its amount

Zj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ xL� 1

xC

� �2
s

ð5:25Þ

Is called impedance.
The phase shift u caused by the complex resistor Z is

described by the ratio

tanu ¼ Im Zf g
Re Zf g ¼ xL� 1

xC

R
ð5:26Þ

of imaginary and real part. In the polar representation (see
Vol. 1. Sect. 13.3.2)

Z ¼ Zj j � eiu

|Z| gives the length of the vector and u the angle against
the x-axis.

The representation of complex resistors as vectors in the
complex plane is called in electrical engineering a vector
diagram. We will illustrate its usefulness by several exam-
ples in the next section.

From Fig. 5.30 and from Eq. (5.24) we see that for

x L ¼ 1
xC

The imaginary part of Z is zero. This implies that the
phase shift between current and voltage becomes zero. It is
therefore possible to make the idle power in a circuit with
inductances and capacitors zero by a proper choice of the
two phase shifting elements.

The current I(t) through the ac circuit in Fig. 5.29 with
the external voltage

U tð Þ ¼ U0 cosxt

can be written as

I tð Þ ¼ I0 cosðxt � uÞ
With

I0 ¼ U0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ xL� 1

xC

� �2q ; ð5:27aÞ

and

tanu ¼ xL � 1
xC

R
: ð5:27bÞ

The tangent of the phase shift u between current
and voltage is equal to the ratio of imaginary and
real part of the complex resistance of a circuit
(Fig. 5.30).

Im(Z)

Z

R Re(Z)

tan =
Im(Z)
Re(Z)

ϕ

Im( )Zω
ω

L
C

−
1

−
1

ωC

ϕ

ωL

Fig. 5.30 Representation of the total resistance Z in the complex plane
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5.5 Linear Networks; High- and Low
Frequency Passes; Frequency Filters

Linear networks are characterized by the linear relation
between current and voltage, i.e.

U ¼ Z � I ð5:28Þ
This can be considered as the complex form of Ohm’s

Law U = I � R (2.6a)
If several currents with different frequencies are present in

a linear network, it is possible to determine the currents I(xi)
from the voltages U(xi) for any of the frequencies xi. The
total current is then the sum of all currents I(xi).

This superposition principle which follows from the lin-
earity of the network can be expressed in a complex notation as

U tð Þ ¼
X
k

Uk xkð Þ

¼
X
k

U0ke
i xkt�ukð Þ;

ð5:29aÞ

I tð Þ ¼
X
k

I0ke
iðxkt�wkÞ;

) ZkðxkÞ ¼ U0k

I0k
� eiðwk�ukÞ:

ð5:29bÞ

The superposition principle is of great importance for
high frequency technology since it allows the determination
of complex voltage or current pulses and their changes when
these pulses pass through linear networks. The input pulses
are decomposed into their frequency components Ue(x) and
Ie(x) (Fourier analysis). For each frequency component the
change of amplitude and phase is calculated when it passes
through the network and finally all modified output fre-
quency components Ua(x) and Ia(x) are added again to
obtain the total final output pulse (Fourier Synthesis). This
shall be illustrated by some examples [3]:

5.5.1 High-Frequency Pass

An electrical high pass is a circuit, that lets pass all high
frequencies x barely attenuated, but blocks all low fre-
quencies. Figure 5.31 shows one of several realizations. The
input voltage Ue tð Þ ¼ U0cosxt is reduced by the
frequency-dependent voltage divider to the output voltage

Ua ¼ R

Rþ 1
ixC

� Ue: ð5:30aÞ

Multiplying numerator and denumerator with the conju-
gate complex of the denumerator yields

Ua ¼ R2x2C2 þ iRxC
1 þ x2R2C2

� Ue: ð5:30bÞ

Uaj j ¼ x � R � Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ x2R2C2

p � Uej j: ð5:31Þ

For the phase shift between output and input voltage we
obtain

tan u ¼ 1
xRC

: ð5:32Þ

From Eq. (5.31) we see, that for a high frequency pass the
ratio Uaj j= Uej j ¼ 0 for x = 0 and increases for increasing x.
For x ¼ 1=RC it has the value 1=

ffiffiffi
2

p
and for x ! ∞ it

becomes 1 (Fig. 5.29). The phase shift u drops from 90� at
x = 0 to 0° for x ! ∞.

It is interesting to study the transmission of a rectangular
pulse through a high frequency pass. The Fourier analysis of a
regular sequence of rectangular pulses shows that the steep
edges of the pulse correspond to the high frequencies whereas
the flat roof is represented by the low frequencies. Since the
high pass attenuates the high frequencies much less than the
low frequencies, the rising and falling edges of the pulse
barely decrease during the transmission through the high pass.

Another way to understand this, is the following:
The sudden voltage jump at the left capacitor plate in

Fig. 5.31c is transferred by influence onto the right plate,
which is discharged through the resistor R with the time
constant s ¼ R � C.

The voltage across the capacitor is U ¼ Q=C, the output
voltage Ua ¼ I � R. With I ¼ dQ=dt we get the output
voltage

Ua ¼ dQ
dt

� R ¼ R � C � dUe

dt
: ð5:33Þ

t

U

R

C

t

t

(a)

(b)

(c)

Ua

Ua

Ue

Ue

UaUe

Fig. 5.31 High frequency pass: a) circuit, b) input and output voltage
for a cosine voltage, c) for a square-wave input voltage
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The output voltage Ua is proportional to the time
derivative of the input voltage Ue. Therefore the high pass
is also called differentiating element, which is used in ana-
logue computers to perform the mathematical operation of
differentiation (Fig. 5.31c).

5.5.2 Low Frequency Pass

For the example of a low pass shown in Fig. 5.33 resistor
R and capacitance C are just interchanged compared to the
high pass in Fig. 5.31a. From Fig. 5.33 we can directly
obtain the equation of the voltage divider consisting of R and
C in series.

Ua ¼ 1=ðixCÞ
R þ 1=ðixCÞ � Ue

¼ 1
1 þ ixRC

� Ue;

ð5:34Þ

This gives for the amounts of input and output voltage

Uaj j ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þx2R2C2

p � Uej j; ð5:35aÞ

And for the phase shift

tanu ¼ �xRC: ð5:35bÞ
For a low frequency pass the ratio Uaj j= Uej j decreases

from 1 at x = 0 to zero at x = ∞.
The output voltage

Ua ¼ Q

C
¼ 1

C

Z
I dt

¼ 1
RC

Z
ðUe � UaÞ dt

ð5:36Þ

Is proportional to the integral over the difference Ue � Ua.
Therefore the low frequency pass is called an integration
element and is used in analogue computers to perform the
mathematical operation of integration (Fig. 5.33, lower part).

5.5.3 Frequency Filters

The circuit in Fig. 5.29 can be used as RCL bandpass filter.
This can be seen, when we determine the output voltage of
the circuit in Fig. 5.34a. We get:

Ua ¼ R

Rþ i xL� 1
xC

� � � Ue ð5:37Þ

Uaj j ¼ R

R2 þ xL� 1
xC

� �2 � Uej j: ð5:38Þ

For the resonance frequency

x ¼ xR ¼ 1ffiffiffiffiffiffiffiffiffiffi
L � Cp ð5:39Þ

is Uaj j ¼ Uej j. The ac-voltage UeðxRÞ at the resonance
frequency xR is transmitted through the frequency filter
without any attenuation.

For xL� 1=ðxCÞ ¼ �R the output voltage Ua drops to
Ue=

ffiffiffi
2

p
. This gives the condition

x1;2 ¼ � R

2L
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

4L2
þ x2

R

r
; ð5:40Þ

for the two frequencies x1 and x2 where Ua has dropped to
Ue=

ffiffiffi
2

p
. The width of the transmission curve (Fig. 5.34b)

TðxÞ ¼ Uaj j= Uej j
is

Dx ¼ x1 � x2 ¼ R

L
ð5:41Þ

1,0

90°

45°

1 2/√

U Ua e/

ω = −(RC) 1

ϕ

ω = −(RC) 1

ω

ω

Fig. 5.32 Ratio jUaj=jUej of the amplitudes of output- to input
voltages and phase shift between output- and input voltage for a high
frequency pass

t

t

R
C UaUe

Ue

Ua

Fig. 5.33 Low frequency pass (integration circuit)
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The output voltage is delayed against the input voltage.
The phase shift u between output and input voltage in
the circuit of Fig. 5.34a is shown in Fig. 5.34c. It is given by

tanu ¼ 1=xC � xL
R

: ð5:42Þ

For x = 0 is u(0) = + 90°, for x ¼ xR is uðxRÞ ¼ 0
and it becomes −90° for x ¼ 1, u 1ð Þ ¼ �90�.

While the circuit in Fig. 5.34a has its maximum trans-
mission at x = xR the circuit in Fig. 5.35a (blocking filter)
has its minimum transmission at the resonance frequency xR.
It is UaðxRÞ ¼ 0.

The transmission curves T(x) are shown in Fig. 5.34b for
the transmission bandpass filter and in Fig. 5.35b for the
blocking filter.

Compare Fig. 5.34 with the completely similar Fig. 11.22
in Vol. 1 for the forced oscillation. Explain this similarity!

5.6 Tranformers

In order to transport the electric power Pel ¼ U � I over large
distances, it is advantageous to minimize the transmission

losses by Joule’s heat power DPel ¼ I2 � R, due to the
resistance R of the transmission lines. For a given trans-
mitted power Pel the losses decrease with decreasing current.
One should therefore choose the voltage U as high as pos-
sible in order to minimize the current I ¼ Pel=U.

The relative transmission losses

DPel

Pel
¼ I2 � R

U � I ¼ I � R
U

¼ R

U2
Pel ð5:43aÞ

Decrease as 1/U2 with increasing voltage. The resistance
R of the transmission line causes a voltage drop DU ¼ I � R.
From (5.43a, 5.43b) we then obtain

DPel

Pel
¼ DU

U
: ð5:43bÞ

Example

A copper cable with 2.5 km length and a cross section of
0.2 cm2 has at the temperarture T = 20 °C a specific
resistance qel ¼ 1:7 � 10�8X �m and therefore a total
resistance of R ¼ 2:1X. If a power of Pel ¼ 20 kW
should be transmitted at a voltage of U ¼ 230V a

L

R

(a)

(b)

(c)

C

Ue Ua

Δω

U Ua e/

ω1 ω2
ωR

+ π / 2

− π / 2

ω

ω

ϕ

Fig. 5.34 Frequency dependent transmission filter. a) Circuit, b)
transmission curve T(x), c) phase shift u(x) between Ua and Ue
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R

(a)

(b)

(c)

CUe Ua

U Ua e/

ω R ω

ωω R

+ π / 2

− π / 2

ϕ

Fig. 5.35 Frequency dependent blocking filter. a) = circuit, b) trans-
mission curve T(x), c) phase shift u(x) between Ua and Ue
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current of I = 87 A is needed. The voltage drop along
the copper cable is, however, already DU ¼ I � R ¼
185V and therefore the voltage at the consumer is only
45 V. The relative power loss isDPel=Pel ¼ 0:80. This
means that only 20% of the original power provided by
the generator arrives at the consumer!

If, however, the voltage is transformed up to
20 kV, only a current of 1 A is needed for the same
transmitted power. The voltage drop is now only
DU ¼ 2:1V and the relative power loss in the
transmission line is DPel=Pel ¼ 10�4.

This example demonstrates that for sufficiently high
voltages the transmission losses are (opposite to the common
opinion), negligible (Fig. 5.36). For instance the transmis-
sion of Pel = 10 MW over a distance of 300 km at a voltage
of 380 kV demands a current I = 26 A and causes a voltage
drop in the transmission line with a resistance of 0:3 X=km
of DU ¼ 0:3 � 300 � 26V ¼ 2:4 kV and a relative power
loss DPel=Pel ¼ 2:4=380 ¼ 0:62% (Fig. 5.37)

The transformation of voltages is realized with trans-
formers (Fig. 5.39). Their principle is based on Faraday’s
induction law.

Two coils L1 and L2 with the number N1 and N2 of
windings are coupled by an iron yoke in such a way, that the
magnetic flux generated in coil 1 (primary coil) passes
completely through coil 2 (secondary coil) (Fig. 5.38b). Due
to the large magnetic permeability l of iron all magnetic
field lines generated in coil 1 pass through the iron core of
coil 2. In order to avoid eddy currents in the iron yoke,
which would result in heat losses, the yoke consists of many
thin sheets of iron, which are isolated against each other by a
thin isolating layer. They are pressed tightly together by
isolated screws to avoid vibrations of the sheets induced by
the alternating magnetic field at the frequency 2m ¼ x=p,
which exert forces onto the sheets which results in an
annoying noise (transformer drone).

5.6.1 Tranformer Without Load

We will at first consider the tranformer without load where
no current flows through the secondary coil I2 ¼ 0ð Þ.

When an external ac-voltage

U1 ¼ U0cosxt

is applied to the primary coil with inductance L1 and N1

windings the current I1 flows through L1 and induces a
voltage

Uind ¼ �L1
dI1
dt

¼ �N1
dUm

dt
¼ �U1; ð5:44aÞ

which is opposite to the external voltage U1, since according
to Kirchoff’s rule the total voltage in a closed circuit must be
zero:

U1 þ Uind ¼ 0: ð5:44bÞ
Here we have neglected the ohmic resistance of the

inductance, because it is very small compared to xL. If the
total magnetic flux Um, generated in the primary coil L1
passes through the secondary coil L2 with N2 windings the
voltage, induced in L2 is

Ue

I

Line
resistance R

consumer

IRV

UUe Δ−

0

↓

Fig. 5.36 Schematic illustration of the power loss in power lines

Fig. 5.37 Installation of a high voltage power line. In this picture each
phase of the three phase current is transmitted by 4 cables arranged in
quadratic form, connected by the diagonal bracket seen in the upper
part of the picture. Each cable consists of two wires. The technician just
fixes the connection between these wires (with kind permission by
information center of the Elektrizitätswirtschaft Frankfurt)
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U2 ¼ �N2
dUm

dt
ð5:45Þ

with dUm=dt ¼ U1=N1 it follows from (5.45) and (5.44a,
5.44b)

U2

U1
¼ �N2

N1
: ð5:46Þ

The minus sign indicates, that U1 and U2 have the
opposite sign, (i.e. U2 is phase shifted by 180� against U1) if
the windings of the two coils are both wound in the same
direction (Fig. 5.38 above). The two voltages are in phase, if
the windings are in the opposite direction (Fig. 5.38 below).
For N2 > N1 the secondary voltage is larger than the input
voltage (up-transformation).

The average power of the transformer without load
(lossless coils, no load connected to the secondary coil) is

�Pel ¼ 1
2
U01I01 cos u � 0; ð5:47Þ

Because the phase shift u between current and voltage is,
according to (5.16), u ¼ 90�. The current in the primary
coil is a pure idle current and does not consume energy [4].

5.6.2 Transformer with Load

When the secondary coil is connected to a load with resis-
tance R, the current through the coil is I2 ¼ U2=R. This
current produces a magnetic flux U2 / I2 which is
phase-shifted by 90° against the flux U1. The current I2 is in
phase with U2 ¼ RI2 but the phase of the voltage U2 ¼
�N2dU2=dt is shifted by 90° against U1.

This magnetic flux U2 generated by the current I2 is
superimposed to the flux U1 and gives the total flux

U ¼ U1 þ U2;

which has the phase shift Du 0\Du\90� against the input
voltage U1 with tan Du ¼ U2=U1

This superposition of the magnetic fluxes has the conse-
quence that in addition to the current I1 a second
phase-shifted contribution caused by the magnetic flux U2

superimposes the current in the primary coil. Now the power
consumed by the primary coil is no longer a pure eddy
power, but includes aln effective power. The total mean
power received by the transformer is now

�Pel ¼ 1
2
U0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I201 þ I202

q
� cosðu � DuÞ ð5:48Þ

It is no longer zero, because u�Du 6¼ 90�.
The quantitative description of the ideal transformer with

a secondary side connected to a complex resistance Z starts
from the equations

U1 ¼ ixL1I1 þ ixL12I2; ð5:49aÞ

U2 ¼ Z � I2 ¼ �ixL12I1 � ixL2I2; ð5:49bÞ
where we have neglected any heat losses in the coils or the
iron core and also all transmission losses of the magnetic
flux. The quantities L1 and L2 are the inductances of the
primary and secondary coil and L12 is the mutual inductance.
The voltage U1 generates the current I2 and is ahead of the
current by 90�, the induced voltage U2, however, is in phase
with the current if the load is a resistor R, but is phase-shifted

(a) (b)

I1 I2

I1

I2

U2

U2

U1

U1

U1

U1

I1

I1

φ1 φ φ2

L1 L2

L1 L2

I2

I2

U2

U2 R

R

φ1 φ φ2

Fig. 5.38 Transformator a) schematic circuit, b) technical design. In
the upper part primary and secondary windings have the same direction
of windings in the lower part opposite directions. In the upper part the

output voltage is shifted by 180° against the input voltage in the lower
part they are in phase. This is indicated by the black points in (a)
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for a complex load Z which induces a phase shift between
voltage and current (see below). This is indicated in (5.49a,
5.49b, 5.49c) by the minus sign.

For the lossless transformer the input power equals the
output power, i.e.

I1 � U1 ¼ I2 � U2: ð5:49cÞ
Solving (5.49b) for I2 and inserting this into (5.49a) gives

the relations between the currents I1, I2 and the input voltage
U1

I1 ¼ ixL2 þ Z

ixL1Zþx2ðL212 � L1L2Þ � U1; ð5:50aÞ

I2 ¼ � ixL12
ixL1Zþx2ðL212 � L1L2Þ � U1: ð5:50bÞ

This yields the ratio of output to input current

I2
I1

¼ � ixL12
ixL2 þ Z

ð5:51Þ

With I2 ¼ U2=Z we obtain the ratio of output to input
voltage

U2

U1
¼ � ixL12Z

ixL1Z þ x2ðL212 � L1L2Þ : ð5:52aÞ

The strength of the magnetic coupling k between primary
and secondary coil is defined by

k ¼ L12ffiffiffiffiffiffiffiffiffiffiffiffi
L1 � l2

p with 0\k\1

For a complete coupling (no coupling losses) is k = 1; i.e.
L12 ¼

ffiffiffiffiffiffiffiffiffiffi
L1L2

p
) For k = 1 (5.52a) reduces to

U2

U1
¼ L12

L1 � ixðk2 � 1ÞL1L2=Z : ð5:52bÞ

For the amounts we obtain

U2j j
U1j j ¼

L12=L1

1 þ ðx2L22= Zj j2Þðk2 � 1Þ2 : ð5:52cÞ

We will now discuss transformers with special loads
Z = R (pure ohmic load), Z = L (pure inductive load) and
Z = C (pure capacitive load).

5.6.2.1 Z = R
For a complete coupling (k = 1 and L12 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

L1 � L2
p

) we
obtain instead of (5.52c)

U2

U1
¼ L12

L1
¼ �

ffiffiffiffiffi
L2
L1

r
¼ � N2

N1
; ð5:53Þ

Because according to (4.10) is L � N2.
In case of complete coupling the ratio U2/U1 is inde-

pendent of the load resistor R.
This is, however, only valid if the resistance of the

transformer coils and therefore the voltage drop across them
are negligible. This was anticipated in (5.49a, 5.49b, 5.49c).

For k < 1 the ratio U2j j= U1j j decreases with decreasing
R (see 5.52d). This implies that with increasing current load
the secondary voltage U2 drops.

Example

With k = 0.9 the ratio U2/U1 drops for R = 0.1 � ∣xL2∣
to 1=

ffiffiffi
2

p ¼ 0:71 of its value for the transformer
without load.

The phase shift u between U2 and U1 can be obtained
from (5.52c) as

tanu ¼ � xL2ð1 � k2Þ
R

: ð5:54Þ

For k ! 1 the phase shift u ! 180° independent of
R. For incomplete coupling (k < 1) the phase shift u
becomes u(k < 1) < 180°.

5.6.2.2 Z = ixL (Pure Inductive Load)
From (5.52b) and (5.52c) we obtain the ratio

U2

U1
¼ � L12=L1

1 þ ðL2=LÞð1 � k2Þ : ð5:55Þ

This ratio is real in spite of the imaginary load ixL. The
phase shift is always u ¼ 180�. The voltage ratio depends
on the expression ðL2=LÞ � 1� k2

� �
.

Example

With k ¼ 0:9 and L2=L ¼ 10 we obtain from (5.55).
U2=U1ð ÞL¼ 1

2 U2=U1ð ÞL¼1. Where L ¼ 1 corre-
sponds to the case with no load. The output voltage
drops to ½ of the case with no load. This can be
understood because the parallel circuit of L ¼ 0:1 L2 to
the additional load of the secondary coil has the same
effect as the coupling losses of 10% for k = 0.9. For
k = 1 the load L does not affect the output voltage U2.
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5.6.2.3 Z = 1/(ixC) (Pure Capacitive Load)
The ratio

U2

U1
¼ L12

L1 � x2CL1L2ð1� k2Þ ð5:56aÞ

becomes larger!! than for the transformer with no load
(Z = ∞) described by (5.52c). For the resonance frequency

xR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
CL2ð1 � k2Þ

s
ð5:56bÞ

U2 becomes infinite if all losses in the transformer can be
neglected.

This is called the resonant voltage step up of the trans-
former output voltage.

5.6.3 Applications

Transformers play an important role for many technical
applications. They transform ac-voltages to higher or lower
values and they are indispensable for the generation of very
high ac- currents. For the transformation from the high
voltage lines to the medium voltage networks that distributes
the electrical power to the different neighborhoods of a city,
transformer stations have been constructed with many
transformers (Fig. 5.39a). One of these transformers is
shown in Fig. 5.39b.

An example for the transformation to high currents (i.e.
lower voltages) is shown in Fig. 5.40. The secondary coil
consists of only one winding, which is formed as a gutter.
With the current I2 the power I2

2 � R, dissipated in the gutter,
can become so large that solid metal in the gutter with a
lower melting point than the gutter itself becomes liquid.
Such high current transformers are used for melting alu-
minum in the aluminum producing industry.

Example

N1 ¼ 100; N1 ¼ 1; Ueff
1 ¼ 230V; R ¼ 5 � 10�3 X;

! Ueff
2 ¼ 2:3V ! Ieff2 ¼ 460A; �Pel ¼ I22R ¼ 1:06 kW:

(a) (b)

Fig. 5.39 a) High voltage transformator field, b) high voltage transformer station

U

N1 1>>

Fig. 5.40 Transformer with a single secondary winding used for
melting of metals

workpiece workpiecSecondary
winding of 
the transformer

(b)(a)

Fig. 5.41 Transformer with high secondary current a) used for spot
welding, b) for heating up a metal rod by eddy currents
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The large current can be also used for spot welding
(Fig. 5.41a). The two sharpened pins form part of the sec-
ondary coil. The twowork pieces are brought between the two
pins which can be pressed against each other with isolated
handles. The secondary current flows through a small spot of
the two work pieces which melt and are welded together.

If the secondary coil of the transformer with only a few
windings is connected to another coil around a metallic rod
(Fig. 5.41b) the high ac current heats the rod due to induc-
tive heating to such high temperatures that it glows bright
red. Many electro stoves use this induction principle for
heating the metallic bottom of cooking pots.

Most electronic devices demand a low voltage for their
power supply. Transformers can provide any wanted voltage
by choosing the appropriate ratio N1/N2.

Small high voltage transformers with a high ratio N2/N1

and secondary voltages of 10–20 kV provide the necessary
high voltage in older TV devices for the deflection of the
electron beam. They are still used in X-ray tubes.

5.7 Impedance Matching in ac-Circuits

Often the problem arises to transfer the maximum power from
the source to an electric circuit with a complex resistance
Z. This is only possible if the complex resistances of source and
load are matched. In order to find the optimum matching con-
ditions we consider in Fig. 5.42 an ac- source with the voltage
U ¼ U0cosxtwhich is connectedwith the load resistor Z2 by
a “matching resistor” Z1. From Fig. 5.42 we obtain

Z2 ¼ R2 þ i xL2� 1
xC2

� �
ð5:57aÞ

The effective current through the whole circuit is

Ieff ¼ Ueff=Z with Z ¼ Z1 þ Z2:

The real power consumed in the load is

�Pel ¼ I2eff � R2 ¼ U2
eff

Zj j2 � R2: ð5:57bÞ

Inserting the complex resistance

Z ¼ R1 þ R2

þ i xðL1 þ L2Þ � 1
x

1
C1

þ 1
C2

� �� � ð5:57cÞ

We obtain the real power consumption

�Pel ¼ U2
eff � R2

ðR1 þ R2Þ2 xðL1 þ L2Þ � 1
x

1
C1

þ 1
C2

	 
h i2 :
ð5:58Þ

From (5.58) we conclude immediately that �Pel becomes
maximum, if the second bracket in the denominator becomes
zero, i.e. if

xL2 � 1
xC2

¼ � xL1 � 1
xC1

� �
: ð5:59Þ

With this condition �Pel depends only on R1 and R2. For a
given value of R1 the mean power consumption �Pel becomes
maximum if dPel=dR2 ¼ 0. This gives the condition
R1 ¼ R2:

Optimum power matching is achieved if the real
resistances of source and load are equal. In this case no
blind power is produced and the transferred real power
becomes maximum.

5.8 Rectification

For many scientific and technical devices dc-voltages and
currents are demanded. Therefore circuits have to be
developed which transduce the ac-voltage supplied by the
wall outlet or by the secondary coil of a transformer into a
constant dc-voltage. This can be achieved with rectifiers
using electron tubes or semiconductor devices.

The circuit symbols for different devices are shown in
Fig. 5.43. The technical current direction (indicated by the
arrow direction in the symbol) is defined (because of historical
reasons) as the flow direction of positively charged particles, i.
e from the anode (plus) to the cathode (minus), although we
know today that the current in metals and semiconductors is
carried by electrons with the opposite flow direction.

The rectifying diode opens (transmits the current) if a
positive voltage is applied to the anode relative to the cathode.
For negative voltages it blocks the current. A typical
current-voltage characteristic of a rectifying diode is shown in
Fig. 5.44. For small negative voltages only the small blocking
current can pass through the diode, when the kinetic energy of
the electrons emitted from the cathode can overcome the
small negative voltage, i.e. if Ekin þ eU [ 0 [5].

matching
resistance

source

load
resistorU U= 0 cos tω

Z1

Z2

Fig. 5.42 Adapting the load resistance Z2 to the complex source
resistance Z1 for optimum power transfer
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5.8.1 One-way Rectification

When only one diode is used (Fig. 5.45a) only the positive
half of the ac-voltage can pass. This results in large ripples
of the rectified voltage (Fig. 5.45b). The maximum
dc-voltage is U0. Even when using a smoothing capacitor
(Fig. 5.46) the result is not satisfying for most applications
which demand a smooth dc-voltage. The solution is the
rectification with more than one diode.

5.8.2 Two-way Rectification

In the two-way rectification the midpoint of the secondary
coil of the transformer represents the reference voltage,
which is generally grounded, i.e. its voltage is zero. The two
ends of the secondary coil are connected with two parallel

diodes and the outputs of the two diodes are connected and
form one pole of the dc-voltage (Fig. 5.47). The upper diode
in Fig. 5.47 passes the current when the voltage between the
upper end of the transformer coil and the lower end is
positive, while the lower diode is open when this voltage is
negative, i.e. when the voltage between midpoint and lower
end of the coil is positive.

I

U

Saturation
range

starting current

reverse current

2

1

0,01

Fig. 5.44 Current-voltage characteristic of a diode with reverse
current, starting current and saturation range

diode

R

t

t

(a)

(b)

Ua

Ue

Ue Ua

Fig. 5.45 One way rectification, a) circuit, b) comparison of the
ac-voltage before and after rectification

t

RC UaUe

Ua

τ = ⋅R C

t

without
capacitance

with
capacitance

Ua

)RC/(t
e eU −⋅

Fig. 5.46 Smoothening of the pulsating dc-current by a capacitor

t

t

R

+

−

U0

U Ue = ⋅0 sin tω

U Ua ≤ 0 2/

Ua

2
U0

(a)

(b)

Fig. 5.47 Two-way rectification

+ − + −

−e

K

A
+
−

+ −p n

Forward direction

(c)

blocking direction

I = 0

(b)

(a)

Forward direction

I

I

Fig. 5.43 a) Graphical symbol for a diode. The diode arrow points
into the technical current direction which is opposite to the electron
current. b) Thermionic diode in an evacuated glass bulb. c) Semicon-
ductor diode
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This two-way rectification therefore overrides the gap of
the one-way rectification (Fig. 5.47b).

The maximum dc-voltage is U0/2 for an input ac-voltage
U ¼ U0 � cosxt: A small disadvantage is that a midpoint
tap of the secondary coil of the transformer is needed.

5.8.3 Bridge Rectifying Circuit

The mainly used rectifying circuit is the bridge circuit in
Fig. 5.48, also called Graetz- circuit. It is supplied nowa-
days as small integrated semiconductor device for small and
medium powers. From Fig. 5.48 one can see, that the same
form of the output power as for the two-way rectification is
obtained but with twice the dc-voltage. The smoothing of the
pulsating dc voltage is optimized by the circuit shown in
Fig. 5.49, consisting of a load capacitor C1 and a frequency
dependent voltage divider consisting of L and C2.

The dc-output voltage for a voltage U1 at the load
capacitor C1 is

Ua ¼ U1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x2LC2ð Þ2 þ x2L2=R2

q ; ð5:60Þ

This can be seen when considering the ac-resistances ixL for
the inductanceL and 1/(ixC2) for the capacitorC2 for the parallel
arrangement of C2 and R. While the dc-voltage passes without
attenuation the ac- contributions with x > 0 are diminished.

The filter circuit in Fig. 5.49 represents a special low pass
filter.

Replacing the inductance by a resistor R one gets the low
pass filter of Fig. 5.34. In the latter circuit, however, the
dc-voltage is also attenuated (see Problem 5.9).

Example

X ¼ 2p � 50 sw� 1w, R = 50 X, L = 1 H, C2 = 10−3

F, ! xL = 314 X, 1/(xC) = 3 X, ! Ua(x) = 0.01
Ue, while for the dc-voltage is
Ua(x = 0) = Ue(x = 0).

In modern rectifying devices for small and medium powers
(e.g. for power supplies of computers or for radios and
television sets) the output voltage is electronically stabilized.
This drops the ripples DU down to relative values
DU=U\10�3 � 10�4 [3].

For larger powers, the rotating three phase ac current
(Fig. 5.50) is the best solution for obtaining smooth
dc-currents with small ripples. Since the phase shift between
the different phases is only 120°, the rectification by

t

R

+

−

t

U0

U0

U Ue = ⋅0 sin tω

aU

aU

Ue

(a)

(b)

Fig. 5.48 Bridge rectification (Graetz-circuit)

load resistorR

L

U1 U2

C1 C2

Fig. 5.49 Smoothing of the dc voltage with ripples by an L-C-circuit

+

−

total dc-voltage

S R T

t

S

R

T

Ua

Fig. 5.50 Rectification of the three phases R, S, T of the three-phase
ac voltage
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two-way or bridge rectifiers, the dc-current has even without
a load capacitor a ripple

Umax�Umin

Umax
	 0:13 ¼ 13%

Compared to 100% for the two-way rectification of the
one-phase ac-current. Using a load capacitor C the
smoothing becomes much better. Between two peaks of the
ac-voltage it drops only by 1/3 of that for the one-phase
ac-current. Therefore the drop of the dc voltage U tð Þ ¼
U0 � e�Dt=RC during the time interval Dt is much smaller.

5.8.4 Cascade Circuit

For many special applications, in particular for particle
accelerators (see Vol. 4, Chap. 3) one needs very high
dc-voltages, which cannot be realized by the rectification
circuits discussed so far, because the dielectric strength of
transformers sets an upper limit for the secondary voltage.

To overcome this problem Greinacher (1880–1974)
developed an ingenious circuit based on a cascade of recti-
fying diodes and capacitors. In Fig. 5.51 such a circuit is
shown for the example of 6 diodes and capacitors. Its
understanding demands a more thorough consideration:

The lower end S0 of the secondary coil of the transformer
in Fig. 5.51 is grounded. During the negative half cycle in S1
the voltage change is transferred through the capacitor C1 to
the point P1. Since the diode D1 passes the negative voltage
in P1 to S0 it shortens the voltage between P1 and S0 and
keeps the voltage in P1 grounded, while S1 is at the voltage
–U0. During the next half cycle the voltage in S1 increases
from –U0 to +U0. This voltage step of 2U0 is transmitted
from C1 to P1. The voltage in P1 is now +2U0. It is trans-
ferred through D2, D3, D4, D5, D6 to the points P2 – P6

where at each of these points the voltage 2U0 exists. During
the next half cycle the voltage in S1 decreases again to –U0,
but in P1 only to U = 0 because of the shortening by D1. In
P3 the voltage decreases to +U0 because the capacitor C3

transfers the voltage step DU = –U0 in P1 completely to P3.

During the next positive half cycle in S1 there is again a
voltage step of DU = 2U0 in S1 which is transferred by the
diodes to the points P3 – P6. Now the voltage in P1 is +2U0

in P2 – P6, however, already +3U0. After each full cycle the
voltage increases by +U0 until finally the voltage in the point
Pn has increased to n � U0. In our example with n = 6 to +
6U0. For more details see [6].

5.9 Electron Tubes

Electron tubes consist of an evacuated glass bulb which
contains several electrodes connected by electric penetration
to the outside by conductive wires melted into the bottom of
the tube.

Although nowadays electron tubes have been mainly
replaced by semiconductor devices, they were in former
times indispensable tools for the development of modern
electronics and they are still in use as high power sources for
broadcasting stations. It is therefore worthwhile to study
their basic principles.

5.9.1 Vacuum Diodes

The simplest electron tube is the diode, consisting of only
two electrodes, the heated cathode and the anode (Fig. 5.52).
The heated cathode emits electrons which are accelerated to
the anode if it has a positive voltage against the cathode. The
electron current through the diode depends on the

2D

3D

3C

2P

3P

1D

1C
1P

4D

5D

5C

4P

5P

6D

6P
6 U0

1S

0S

2C 4C 6C

tcosUU 0e ω⋅=

Ue

Fig. 5.51 Cascade circuit for the multiplication of the rectified
dc-voltage
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Fig. 5.52 Vacuum diode a) circuit, b) heated cathode filament,
c) current-voltage characteristic
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temperature of the cathode and the anode voltage Ua. The
current increases at first with increasing voltage (Fig. 5.52c)
until it reaches a saturation value when all electrons emitted
by the cathode are collected on the anode. For negative
values of Ua the electrons are repelled by the anode and the
current is zero, if the kinetic energy of the electrons is
smaller than the repelling potential –e � Ua. Vacuum diodes
can be therefore used as rectifiers [7].

5.9.2 Triodes

Triodes contain besides cathode and anode a third electrode,
the control grid G. (Fig. 5.53). The control grid consists of a
cylindrical mesh, which encloses the cathode. The electrons
must pass on their way from the cathode to the anode
through the meshes of the control grid. If the voltage of the
control grid Ug is negative against the cathode, the electrons
cannot reach the anode and the anode current becomes zero.
The control grid can therefore control the anode current by
small changes of its voltage (Fig. 5.53b). As long as Ug < 0
the anode current can be powerless controlled.

If in addition to the dc-voltage a small ac-voltage

Ug ¼ Ug0 þ a � cosxt;

is applied to the control grid, the anode current is modulated
according to

Ia ¼ Ia0 þ b � cosxt:
If the anode is connected to the positive voltage supply

with U = Ua0 through a resistor Ra, the voltage between
anode and cathode is

Ua ¼ Ua0 �Ra � Ia:
Which is also modulated with the modulation amplitude

(Fig. 5.54)

DUa ¼ �R � b � cosxt;
The amplitude DUa of the modulated anode voltage is

generally much larger than the modulation amplitude
DUg ¼ a � cosxt of the control grid. The voltage
amplification

VU ¼ Ra � b
a

depends on the operation parameters Ug0, Ua0, Ra and on the
geometrical structure of the triode. One obtains values
V = 10 up to V = 1000. Figure 5.55 shows a realistic
drawing of a triode [8] and Fig. 5.56 a schematic drawing of
a tetrode.

The tetrode has an additional grid and Fig. 5.56 gives a
schematic drawing of a tetrode (screening grid), which has a
positive voltage against the cathode. It shields the control
grid against the anode. Above a threshold value the anode
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Fig. 5.53 Triode. a) Circuit, b) influence of grid voltage on anode
current
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Fig. 5.54 Modulation of anode current by the modulated grid voltage
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current is nearly independent of the anode voltage and is
essentially determined by the voltage of the control grid.
Tetrodes are used for high power applications in high fre-
quency technology (Fig. 5.56).

The connections to the different electrodes are realized by
metal pins, which fit into standardized sockets (Fig. 5.57).
From here the connections run to the different components of
an electric circuit [9].

anode

UG2

UG1

G1

K

G2

Ua

filament

Ua0

R

–
+

Fig. 5.56 Tetrode. G1 = conrol grid, G2 = screen grid

(a)

(b)

Fig. 5.57 a) Commercial pentode with tube socket, b) socket of an
electron tube. Upper part: side towards the tube; lower part: side of the
circuit

anode

cathode

heating
grid

electron

grid (spiral spring)

anode

filament (in the tube)

cathode tube

Fig. 5.55 Real design of a triode
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Summary

• The mechanical torques excerted onto coils with
electrical current in a magnetic field are used in
electromotors to perform mechanical work.

• Electrical generators generate an ac-induction voltage
by turning a coil in a magnetic field.

• The average power of an ac-current is

�P ¼ Ueff � Ieff � cosu ¼ 1
2U0 � I0 � cosu;

• where u is the phase shift between current and
voltage.

• A three-phase ac- current generates a rotating mag-
netic field which is used for the electric drive of
electro-motors.

• An electric ac-resonant circuit consists of resistor R,
inductance L and capacitor C. Its resonance fre-
quency is
xr ¼ 1=

ffiffiffiffiffiffiffiffiffiffi
L � Cp

:

• Series and parallel resonant circuits show with respect
to their complex resistance Z a complimentary

behavior: At the resonance frequency xr is Z real and
maximum for parallel but minimum for series circuits.

• Transformers consist of two solenoids coupled by an
iron core. They transform the input voltage Ue into an
output voltage Ua with the ratio Ua=Ue ¼ N2=N1

which equals the ratio of the number of windings N2

in the output coil and N1 in the input coil.
• AC-voltages are rectified by diodes. The commonly

used circuit with 4 diodes in a bridge arrangement is
called Graetz- circuit. The output dc-voltage must be
smoothed by using L-C voltage dividers or an elec-
tronic stabilization device.

• In an appropriate arrangement of capacitors and rec-
tifiers the output voltage can be a multiple of the input
voltage.

• Input ac-voltages and currents can be amplified by
transistors or electron tubes (triodes) in special
circuits.
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Problems

5.1 An electronic circuit in a black box consists of a
resistor R and a capacitor C and input and output
sockets (Fig. 5.58). For a dc-input voltage it has a
resistance of 100 X, for an ac-voltage with 50 Hz its
resistance is 20 X. Determine the circuit and the
values of R and C.

5.1b A frequency filter in the black box of Fig. 5.58 has
its maximum transmission T ¼ U2j j= U1j j at the
frequency x = 75 s−1. The transmission at x = 0 is
T = 0.01. It consists of resistor R, inductance L = 0.1
H with RL = 1 X and capacitor C. How is the circuit
set up and what are the values of R and C?

5.2 Calculate the frequency dependent complex resis-
tance Z(x) and its amount ∣Z(x)∣ for the parallel
electrical resonant circuit in Fig. 5.35a. What are the
resonance frequency x0 ad frequency halfwidth Dx
with RL = 1 X, L = 10−4 H and C = 1 lF?

5.3 A transformer without iron core consists of two long
solenoids with N1 and N2 windings with cross section
area A; which are tightly wound about one another.
Determine the secondary voltage U2, current I2 and
the phase shift Du against the primary voltage U1

when the transformer output is loaded

(a) with a resistor R
(b) with a capacitor C

What is the input power, if the losses in the trans-
former are negligible?

5.4 Calculate for the circuit in Fig. 5.59 the transmission
U2j j= U1j j of the voltage and I2j j= I1j j of the current at
the input voltage U1 ¼ U0 � cosxt with
x = 300 s−1, L = 0.1 H, C = 100 lF and R = 50 X.

5.5 A flat circular coil with N = 500 windings and an
area A = 100 cm2 rotates in a homogeneous
magnetic field B = 0.2 mT about an axis in the coil
plane (Fig. 5.1). What is the mechanical power one
has to apply for rotating the coils at a frequency
f = 50 Hz to deliver the electrical output into the
resistor R = 10 X, if the coil resistance is RL = 5 X?

5.6 An ac-source U ¼ U0 � cosxt with x = 2p � 50 s−1

and U0 = 15 V is connected to

(a) a one-way rectifying circuit (Fig. 5.45)
(b) a Graetz rectifying circuit (Fig. 5.48).

Illustrate for a load resistor R = 50 X and a
capacitor C = 1 mF the temporal course of the
output voltage U2(t) with the residual ripples
and the dc load power.

5.7 A capacitor C = 10 lF with a leak resistance of
10 MX is connected to an ac-voltage source U ¼
U0 � cosxt with U0 ¼ 300V and x = 2p � 50 s−1.
What is the total current (real- plus blind current) and
which power is consumed in the capacitor?

5.8 The ac-circuit in Fig. 5.29 is connected to the source
U ¼ U0 � sinxt. What is the voltage UL across the
inductance L (amplitude and phase)?
Numerical example: R = 20 X, L = 0.05 H, C = 50
lF, U0 = 300 V and x = 2p � 50 s−1.

5.9 Calculate the transmission (Ua/Ue) if the L-C filtering
element of Fig. 5.49 is replaced by the low pass filter
in Fig. 5.33.

5.10 Derive Eq. (5.7) and calculate the load current I2
which gives the maximum terminal voltage UK of the
shut-wound generator.
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6Electromagnetic Oscillations and the Origin
of Electromagnetic Waves

The next two chapters are very important, not only for
electro-technical applications but even more for the basic
understanding of the generation and the propagation of
electro-magnetic waves. The mathematical treatment is quite
similar to that of mechanical waves, which has been exten-
sively discussed in Vol. 1, Chap. 11.

6.1 The Electromagnetic Oscillating Circuit

An electromagnetic oscillating circuit consists of a capacitor
C, an inductance L and an Ohmic resistor R (see Sect. 5.4),
where the capacitor is periodically charged and discharged.
The comparison with a mechanical oscillating circuit is
illustrated in Fig. 6.1 for the model of an oscillating mass m,
that is bound by spring-forces to its equilibrium location
(harmonic oscillator Vol. 1, Sect. 11.1).

The maximum potential energy of the mass m corre-
sponds to the electrical energy Wel ¼ 1=2C � U2 of the
charged capacitor (Fig. 6.1a). The capacitor discharges
through the inductance L and the resulting current I ¼ dQ=dt
generates in the inductive coil L a magnetic field B with the
magnetic energy Wm ¼ 1=2L � I2, which corresponds to the
kinetic energy 1=2m � v2 in the mechanical model. Because
of its inertial mass the mass m moves through the equilib-
rium point to the other side and transfers its kinetic energy
again into potential energy. For the electrical circuit the
induction law and Lenz’s Rule are the analogue to the
inertia. When the current I decreases, an induction voltage is
generated in the coil which hinders the decrease of the
current I. The current I is driven by the induction voltage
into the capacitor C until C is completely charged again
(Fig. 6.1c). Now the procedure is repeated in the opposite
direction.

6.1.1 Damped Electromagnetic Oscillations

Analogue to the mechanical model where the friction causes
the damping of the oscillation, in the electromagnetic circuit
any Ohmic resistance R of the coil or the windings cause a
loss of the electric energy. The decrease of the electric
energy per sec is dWel=dt ¼ I2 � R which is converted into
heat energy. The result is a damped electromagnetic oscil-
lation (Fig. 6.2).

We regard as example the series circuit in Fig. 5.29.
When the circuit is excited to oscillations by an external
pulse (Fig. 6.2a) it performs after the end of the pulse
(Ue ¼ 0) damped electro-magnetic oscillations. Their
mathematical treatment starts from Eq. (5.21).

L � d
2I

dt2
þR � dI

dt
þ 1

C
I ¼ 0: ð6:1Þ

We try (completely analogue to the mechanical treatment
in Vol. 1, Sect. 11.4) the ansatz

I ¼ A � ekt ; ð6:2aÞ
where A and k can be complex quantities. Inserting into (6.1)
gives the equation for k

k2 þ R

L
kþ 1

LC
¼ 0 ; ð6:3aÞ

with the solutions

k1;2 ¼ � R

2L
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

4L2
� 1
LC

r
¼ �a� b

ð6:3bÞ

which depends on the value of a, i.e. on the ratio R/L.
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The general solution of (6.1) is

I ¼ A1e
�ða�bÞt þA2e

�ða þ bÞt : ð6:2bÞ
We will now discuss some cases with special initial

conditions.

6.1.1.1 Overdamped Case
For R2=ð4L2Þ[ 1=ðLCÞ the number b is a real quantity. Since
the current I as a real physical quantity must be real it follows

that A1 and A2 both have to be real. With the initial conditions
Ið0Þ ¼ I0 and dI=dt 0ð Þ ¼ dI0=dt we obtain from (6.2a)

A1 ¼ I0
2

1þ a
b

� �
þ

_I0
2b

;

A2 ¼ I0
2

1� a
b

� �
þ

_I0
2b

:

ð6:4aÞ

For the initial condition dI0/dt = 0 the special solution is
obtained

IðtÞ ¼ I0 � e�at coshðbtÞþ a
b
sinhðbtÞ

� �
: ð6:4bÞ

The current drops monotonically from I = I0 to I = 0
which is reached only for t ¼ 1 (curve (a) in Fig. 6.3). For
the case I0 = 0 but dI0/dt 6¼ 0 the solution is

IðtÞ ¼ ð_I0=bÞ � e�at sinhðbtÞ : ð6:4cÞ
The current increases initially from I(0) = 0 to a maxi-

mum and crepes then asymptotically towards I = 0 (curve b
in Fig. 6.3).

6.1.1.2 Aperiodic Limiting Case
For b = 0 we have the aperiodic limiting case with the
solution (see Vol. 1, Chap. 11)

IðtÞ ¼ e�atðI0 þA3tÞ ð6:5aÞ
With the constant A3 ¼ a � I0 þ dI0=dt.
For I0 ¼ 0 Eq. (6.5a) reduces to

IðtÞ ¼ _I0 � t � e�at ð6:5bÞ
(red curve c in Fig. 6.3). With these initial conditions I(t) does
not cross the line I = 0 but reaches I = 0 only asymptotically.

For another initial condition ðI 0ð Þ 6¼ 0; dI0=dt 0ð Þ 6¼ 0 I(t)
cuts the t-axis I = 0 for finite values of t and approaches again
zero for t = ∞ (curve d in Fig. 6.3.
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Fig. 6.1 Comparison between electro-magnetic oscillation circuit and
the mechanical model of an oscillating mass suspended between two
springs
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Fig. 6.2 Damped oscillating circuit, excited at t = 0 by an electric
pulse coupled to the circuit through a capacitance. a) Experimental
realization for the measurement of current I and voltage U. b) Temporal
dependence of Ua(t) and I(t) = U(t)/R
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Fig. 6.3 Limiting cases of the damped oscillation. a) Creeping case
with I(0) = I0 6¼ 0. b) Creeping case with I(0) = 0, c) aperiodic limiting
case, d) aperiodic case with I(0) < 0
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6.1.1.3 Damped Oscillation
The most important case is realized for R2\4L=C, where b
becomes imaginary. We set b ¼ i � x and obtain with (6.3a,
6.3b) the solution of (6.1) as

I tð Þ ¼ e�at½A1e
ixt þA2e

�ixt�; ð6:6Þ
where the coefficients A1 ¼ aþ i � b and A2 ¼ a� i � b are
complex conjugates of each other. Therefore the current
I(t) becomes a real physical quantity. Inserting the expres-
sions for Ai converts (6.6) to

I tð Þ ¼ 2 Aj j � e�at cosðxtþuÞ ð6:7Þ

With Aj j ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiða2 þ b2Þp
and tan u ¼ b=a. The values of

a and b are determined by the initial conditions.
The current I(t) in the circuit performs a damped oscil-

lation with the resonance frequency

xR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
LC

� R2

4L2

r
; ð6:8aÞ

which becomes for R = 0 the frequency x0 ¼ 1=
p
L � C of

the undamped circuit. The oscillation period of the circuit is

T ¼ 2p
xR

: ð6:8bÞ

Example

L ¼ 10�2H; C ¼ 10�6F; R ¼ 100X ) x ¼ 8:6 �
103 rad/s ) m ¼ 1:4kHz ) T ¼ 0:7 ms. With R = 0
these values would slightly change to m0 ¼ 1:6kHz;
T0 ¼ 0:63ms.

6.1.2 Forced Oscillations

When the series circuit in Fig. 6.4a is connected to an
external ac-voltage UðtÞ ¼ U0 � cosxt the circuit oscillates
with the stationary amplitude U0 and also the current I tð Þ ¼
I0 � cos xt � uð Þ has a temporally constant amplitude
I0 ¼ U0= Zj j, where Z is the complex resistance of the circuit
introduced in Sect. 5.4. The real electric power converted in
the resistor R into heat is

Preal
el ¼ I2R ¼ U2

Z2
� R

¼ ½U0 � cosðxtÞ�2
Z2

� R:
ð6:9Þ

Inserting for Z the expression (5.25) we obtain with
<cos2xt> = 1/2 the average loss of electric power

hPreal
el i ¼ 1

2
� U2

0 � R
R2 þ xL� 1

xC

� �2 : ð6:10Þ

The power loss of the oscillating series circuit reaches its
maximum

hPreal
el imax ¼

1
2
U2

0

R
: ð6:11Þ

for the resonance frequency x = x0 = xR = 1=
ffiffiffiffiffiffiffiffiffiffi
L � Cp

of the
undamped circuit. The resistance Z(x0) = R reaches its
minimum.

In Fig. 6.4a the frequency-dependent power loss is plot-
ted for the weakly damped series circuit. The full half width
of the resonance curve DPelðxÞ (this is the frequency dif-
ference Δx = x1 – x2 between the half points I x1ð Þ ¼
I x2ð Þ ¼ 1=2 I x0ð ÞÞ is for R=xL � 1: Dx1;2 � R=L.

Similar conditions are obtained for the parallel circuit of
Fig. 6.4b. However, here the resistance Z(x0) = R takes its
maximum value at x = x0 and the power loss its minimum
(see problems 5.8 and 6.2a, 6.2b).
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C
U0cos ωt

R

L

ω0
ω

ΔPel

(b)

Fig. 6.4 Frequency-dependent energy loss in oscillating circuits
connected to a source with periodic voltage. a) series circuit, b)
parallel circuit

6.1 The Electromagnetic Oscillating Circuit 165



An experimental example for the excitation of damped
oscillations is illustrated in Fig. 6.5. The circuit is excited by
a regular sequence of electric pulses. The damping can be
controlled by the choice of the ratio R/L. With this
arrangement the special cases of damped and over damped
oscillations or the aperiodic limiting case can be readily
demonstrated on the oscilloscope screen, just by selecting
the proper ratio R/L.

Historically the first generation of damped electrical
oscillations was realized by the spark oscillation circuit
shown in Fig. 6.6. The capacitor C is charged by a dc-source
with voltage U0 through the resistor R. As soon as the voltage
U at the capacitor exceeds the ignition voltage Uc of a spark
gap S the gap ignites. The discharge current I = dQ/dt
generates in the inductance coil a magnetic field, which drives
during the decrease of the field the current for recharging the
capacitor C again (as shown in Fig. 6.1). This leads to a
damped oscillation in the C, L, S circuit. The damping is due
to the resistance R of the ignited spark gap. If the oscillation
frequency is sufficiently high the electric conductivity of the
spark gap is preserved even at the zero crossing of the current
I(t), because the ions in the spark do not recombine fast
enough nor do they leave the spark during half an oscillation
period. The conductivity therefore never becomes zero.

6.2 Coupled Oscillation Circuits

Analogue to mechanical oscillators coupled by springs (see
coupled pendula in Sect. 11.8 of Vol. 1) also electrical
oscillation circuits can be coupled either by inductive cou-
pling, capacitive coupling or by an Ohmic resistor. This
coupling causes a partial transfer of the oscillation energy
from one circuit to the second one and back.

As example Fig. 6.7 shows the inductive coupling of two
electrical oscillation circuits. In addition to the induction
voltage Uind ¼ �dI=dt of the uncoupled circuit now a
voltage U1 ¼ �L12dI2=dt has to be added in the first cir-
cuit and U2 ¼ �L12dI1=dt in the second circuit. Instead of
the Eq. (5.21) we now obtain the coupled differential
equations

L1
d2I1
dt2

þR1
dI1
dt

þ I1
C1

¼ �L12
d2I2
dt2

ð6:12aÞ

L2
d2I2
dt2

þR2
dI2
dt

þ I2
C2

¼ �L12
d2I1
dt2

ð6:12bÞ

Inserting Ik ¼ I0;k � eixt (k = 1, 2) we get the two coupled
equations

�L1x
2 þ ixR1 þ 1

C1

� �
I1 � x2L12I2 ¼ 0

�x2L12I1 þ �L2x
2 þ ixR2 þ 1

C2

� �
I2 ¼ 0

ð6:13Þ

for the currents I1(t) and I2(t). The equations have nontrivial
solutions only if the determinant of the coefficients is zero.
This gives the equation for the determination of the reso-
nance frequency of the two coupled circuits

R1 þ i xL1 � 1
xC1

� �� �
� R2 þ i xL2 � 1

xC2

� �� �
¼ x2L212;

ð6:14Þ
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Fig. 6.5 Excitation of a damped parallel oscillation circuit by a
sequence of electric pulses
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Fig. 6.7 Inductively coupled oscillating circuits
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The general solution of this equation is a bit tedious. We
will therefore only discuss the more simple special case of
two coupled equal circuits with no losses (R1 ¼ R2 ¼ 0;
L1 ¼ L2 ¼ L; C1 ¼ C2 ¼ C). With the degree of coupling
k ¼ L12=L (see Sect. 5.6) we obtain from (6.14) as solution
of the quadratic equation for x2 the two frequencies

x1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
ðL� L12ÞC

s
¼ x0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� L12=L
p ¼ x0ffiffiffiffiffiffiffiffiffiffiffi

1� k
p ;

ð6:15aÞ

x2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
ðLþ L12ÞC

s
¼ x0ffiffiffiffiffiffiffiffiffiffi

1þ k
p : ð6:15bÞ

The coupling causes a splitting of the resonance fre-
quency x0 of the uncoupled circuits into the two frequencies
x1 and x2. For weak coupling (k � 1) the frequency dif-
ference becomes

Dx ¼ x1 � x2 ¼ x0 � k ¼ x0 � L12L ; ð6:16Þ

It is proportional to the degree k of coupling. Compare
the completely analogue conditions for mechanical oscilla-
tors (Vol. 1, Sect. 11.8).

Besides the inductive coupling also the capacitive cou-
pling by a common capacitor is used (Fig. 6.8a) or the

galvanic coupling through a common resistor R (Fig. 6.8b).
Their mathematical treatment is similar to that of inductive
coupling. Instead of the coupling term x2 L12 now the terms
1/xC for capacitive or x � R for galvanic coupling describe
the coupling [1].

If thefirst of the two inductively coupled circuits in Fig. 6.7
with the complex resistances Zi ¼ Ri þ i � xLi � 1=xCið Þ
(i = 1, 2) is connected to the ac-voltage U ¼ U0 � eixt one
obtains instead of (6.13) after division by ix the equations

U ¼ Z1I1 þ ixL12I2 ;

0 ¼ ixL12I1 þ Z2I2 :
ð6:17Þ

Elimination of I1 gives the current I2 in the second circuit

I2 ¼ � ixL12
x2L212 þ Z1Z2

U : ð6:18Þ

Inserting the expressions for Zi one obtains a rather long
expression. With the abbreviations X = Im(Z) = xL – 1/xC
it can be simplified for coupled equal circuits
(Z1 = Z2 = Z) and gives

I2j j ¼ xL12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½x2L212 þR2 � X2� þ 4R2X2

p Uj j: ð6:19aÞ

Remark In Electro-technics the symbol X is used for the
reactance Im(Z).

For lossless circuits (R = 0) we obtain from (6.19a) the
ratio

I2j j
Uj j ¼

x3k=L

x4ðk2 � 1Þþ 2x2
0x

2 � x4
0

; ð6:19bÞ

where x0 ¼ 1=
ffiffiffiffiffiffiffiffiffiffi
L � Cp

is the resonance frequency of the
uncoupled circuit. In Fig. 6.9 the ratio I2j j= Uj j is plotted as a
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Fig. 6.8 a) Capacitive coupling of parallel and series oscillating
circuits, b) galvanic coupling of oscillating circuits
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Fig. 6.9 Resonance curve for the current I2(x) in a parallel oscillating
circuit which is coupled to another circuit driven by an external voltage
U = U0 � cos xt
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function of the frequency x for different degrees of coupling.
The figure shows that for k 6¼ 0 two resonance frequencies
are present with a distance Dx that increases with increasing
degrees of coupling k.

6.3 Generation of Undamped Oscillations

In order to realize undamped oscillations even in circuits
with losses the energy loss of the circuit has to be com-
pensated by external energy supply. This can be realized in
different ways.

A simple examples which can be realized only for very
slow oscillations but is very impressive for demonstrations,
uses the manual action on a switch, which supplies the
missing energy from an external source to the capacitor
always at the correct time. Inductance L and capacitor C are
chosen so large that the oscillation frequency is about 1 Hz.
The phase-shifted oscillating current and voltage can be then
demonstrated on two large meters which can be viewed even
by a large auditorium. Using a light bulb as resistor the
periodic oscillations of its brightness visualize the periodic
oscillations of the current in the circuit (Fig. 6.10).

For higher frequencies the reaction speed of the human
brain is too low and electronic devices have to be used. One
example is the Meißner-circuit shown in Fig. 6.11. Here the
dc-current supply is connected to the circuit by inductive
coupling between the two coils L and Lf, where Lf generates
the feedback between grid G of the triode and the cathode. If
the grid voltageUG is negative against the cathode voltage the
electrons, emitted by the cathode cannot reach the anode [2].

Any small perturbation can induce a small oscillation in
the circuit, which is transferred to the grid by the inductive
coupling. It changes periodically the voltage of the grid and
generates a periodically changing anode current, which pro-
duces in the coil L a modulated magnetic field and a modu-
lated voltage that is transferred to the grid. The oscillation

amplitude increases until a stable oscillation U ¼ U0 cosxt
of the circuit is reached which depends on the voltage Ua and
the grid bias voltage UG.

The undamped oscillations are not restricted to cosxt or
sinxt oscillations but can have any time dependence. As
example Fig. 6.12 shows a circuit that generates a periodic
saw tooth voltage. When the switch S is closed at time t = 0
the source with the dc-voltage U0 charges the capacitor
C until the ignition voltage UZ of the glow discharge G is
reached where the glow discharge lamp G ignites. Since the
resistance of the ignited discharge lamp is very small com-
pared to the resistor R in the charging line (RG � R) the
capacitor C discharges and its voltage drops until the
extinction voltage is reach, where the discharge extin-
guishes. Now the charging process starts again. From
Eq. (2.11) one obtains the period T of the saw tooth voltage

T ¼ RC � lnU0 � UL

U0 � UZ
: ð6:20Þ
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Fig. 6.10 Realization of slow undamped oscillations of a damped
oscillation circuit by manual closing the switch S periodically at times
t = t0 + n � Dt with Dt = T (oscillation period). a) Experimental
arrangement, b) oscillations with and without periodic energy supply
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For very high frequencies, the capacitance C and the
inductance L in the oscillating circuit of Fig. 6.11 are too
large. Furthermore electron tubes are no longer capable to
induce oscillations with frequencies x[ 1010=s, because the
time of flight of the electrons through the tube from cathode
to anode becomes already larger than the period T of the
oscillation. Therefore, a new type of tubes has been devel-
oped for very high frequencies, called klystrons (Fig. 6.13).
They consist of two cavity resonators. Their principle can be
understood as follows [2]:

When electrons, emitted by the hot cathode are accelerated
by a positive dc-voltage U before they enter the first cavity,

they reach a velocity v ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2e � U=mð Þp

. A high frequency
voltage between cathode and anode modulates the velocity of
the electrons while they pass through the first cavity. This
causes a modulation of the current density j ¼ q � v of the
electrons when they enter the second cavity. The electrons
arrive as periodic charge packets that induce oscillations of
the second cavity. This high frequency voltage is coupled
with the proper phase back to the first cavity thus amplifying
the modulation amplitude of the electron current. This feed-
back causes the development of a stable oscillation with the
resonant frequency of the cavity, starting from random fluc-
tuations of the electron current density in the second cavity.
Since such random fluctuations always occur with a broad
frequency range, they also contain the resonant frequency of
the cavity, which acts as the starting element for the processes
mentioned above. Therefore no external HF-voltage is needed
to start the oscillations. With the proper choice of the
dimensions of the cavities frequencies in the gigahertz range
(x = 109– 10−12 s−1) can be realized.

6.4 Open Oscillating Circuits; Hertzian
Dipole

In the previous sections we have discussed electromagnetic
oscillating circuits, where the energy Wel oscillates periodi-
cally between electric field energy in capacitors and magnetic
field energy in solenoids. Now we will discuss the transition
from the closed circuit in Figs. 6.1 and 6.14a, where L and
C are still spatially separated, to the open circuit, depicted in
Fig. 6.14d. The inductance L of the solenoid in Fig. 6.14a
transforms to the inductance of the single conductor loop in
Fig. 6.14b. The capacitance C of Fig. 6.14a becomes smaller
and smaller when the loop in Fig. 6.14b is bent into the
straight wire of Fig. 6.14c. Finally, the end plates in
Fig. 6.14c can be completely removed and we are left with a
straight wire, which has a small capacitance and inductance.

The essential difference between the closed circuit in Fig,
6.14a and the open circuit in Fig. 6.14d where charges
oscillate back and forth through the wire is illustrated in
Fig. 6.15. In the closed circuit, the electric and the magnetic
field are spatially confined and separated from each other.
The main part of the electric field is concentrated between
the plates of the capacitor, while the main part of the mag-
netic field is found inside the solenoid (see Sect. 3.2.6.4).
The stray fields outside the capacitor or the solenoid are very
weak and can be neglected.

In Fig. 6.15b the electric field is still localized inside the
capacitor, but the magnetic field reaches already far out into
the whole space. In case of the straight wire in Fig. 6.15c,
which carries a high frequency current, the magnetic as well
as the electric field reach far out into the whole space.
A temporal change of current and charge density in the
straight wire also changes the electric and magnetic fields in
the surrounding space. These changes propagate with the
speed of light into the surrounding space as electromagnetic
waves and cause the emission of energy from the wire into
space. The arrangement of Fig. 6.15c is called transmitter,
because it transmits energy, supplied to the straight wire by
an external source, into space in form of electromagnetic
waves. The straight wire is the antenna.

H1 H2

K

electron
beam

feedback

exit

–
+

high
frequency

~~~

Fig. 6.13 Schematic presentation of the operation of a klystron

C

(a) (b) (c) (d)

L C L C + L C + L

Fig. 6.14 Schematic illustration of the continuous transition from a
closed oscillating circuit to the straight wire of an antenna emitting
electromagnetic waves into space
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We must now answer four questions:

• How can one experimentally realize that electric
charges oscillate in a straight wire?

• What is the form of the electric and magnetic fields
generated by such an oscillating charge distribution?

• What is the relation between temporally oscillating
fields and the electromagnetic waves propagating into
space?

• Which radiation power is emitted by the transmitter?

6.4.1 Experimental Realization of a Transmitter

The excitation of electromagnetic oscillations in an open
circuit can be realized by inductive, capacitive or galvanic
coupling to a closed oscillating circuit that gets its energy loss
replaced by an external source. A schematic circuit is shown
in Fig. 6.16 and the practical realization in Fig. 6.17. Here the
high frequency source is a closed oscillation circuit, where the
grid of the triode is coupled by a capacitor to the anode voltage
supply, which compensates the energy losses caused by
Joule’s heat and the energy coupled to the open transmitter.

The first circuit serves as impedance converter (see
Sect. 5.7) between the energy source (anode voltage source)
and the consumer (emitted radiation energy by the oscillat-
ing charge in the straight wire).

As has been shown in Sect. 5.7 the energy transfer is
optimum, if the real resistances of source and consumer are
equal and the reactances are opposite equal. If the capaci-
tance of the first circuit with the inductances L1 + L12 is
chosen such that the circuit is in resonance with the wanted
frequency, its resistance Z becomes real. By the proper
choice of L and C the amount Zj j can be most suitably
matched with the impedance of the energy generator (elec-
tron tube plus resistance Ra). The inductive coupling
between the closed oscillation circuit and the antenna acts
like a transformer that transforms to the small resistance of
the antenna (large current).

The current I2(t) through the antenna can be visualized by
a small light bulb. Any change of the coupling degree k
between L1 and L12 (for instance by changing the distance
between the two coils or the angle between them) is

(a)

E
→

B
→

E
→

B
→

E(t)
→

B(t)
→

(b)
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+
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Fig. 6.15 Illustration of the change of the electro-magnetic field
during the transition from a closed circuit to the straight wire antenna
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Fig. 6.16 Schematic representation of the generation of high fre-
quency current in a rod antenna. The two drawings show the electron
current and a cut through the electric field lines at two phases of the ac
generator shifted by 180°. The field lines have rotational symmetry
about the antenna
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Fig. 6.17 Inductive coupling of an open oscillating circuit with a
closed circuit oscillating with constant amplitude induced by capacitive
coupling to the grid G of a triode. The inductance L2 is not necessarily a
coil but can be the inductivity of the straight wire
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indicated by the changing brightness of the light bulb. Since
the brightness is proportional to T4 (T = temperature of the
filament in the light bulb which depends on the electric
power R � <I>2 consumed in the antenna), already a small
change of the current I causes a readily visible change of the
brightness.

We assume the antenna with length l to be orientated in
the z-direction. If the current through the antenna is descri-
bed by

Iðz; tÞ ¼ I0ðzÞ � sinxt;
The boundary condition

Iðz ¼ �1=2lÞ ¼ 0

demands that the current amplitude is zero at both ends of
the antenna (Fig. 6.18).

The resonant ac-current Iðx; tÞ has a spatial amplitude
distribution I0ðzÞ, which forms a standing wave with possi-
ble wavelengths kn = 2l/n, where l is the length of the
antenna and n is integer [3].

The lowest resonance frequency of the antenna is then

x0 ¼ 2pvPh
k

¼ p
l
� vPh;

with the phase velocity vph

vPh ¼ cffiffiffiffiffiffiffiffi
e � lp ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

ee0ll0
p

This is the velocity of the electro-magnetic field along the
antenna. The velocity of light in vacuum is

c ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðe0 � l0Þ

p
.

The current distribution along the antenna can be again
demonstrated by several small light bulbs placed along the
antenna. Their brightness is proportional to I20ðzÞ

The current distribution I(z) is shifted against the voltage
distribution by k/4, because the voltagemaxima appear at both
ends of the antenna where the charge separation is maximum.

6.4.2 The Electromagnetic Field
of the Oscillating Dipole

We regard a conductive straight wire with the charge density
q. When an ac-current is induced, the freely moving elec-
trons oscillate against the fixed ion cores of the metallic
material. The current density j ¼ q � v of the electrons
depends on the charge density q and the velocity vðtÞ of the
oscillating electrons.

According to Eq. (3.14) the vector potential A(r1) of a
stationary current distribution j(r2) is

Aðr1Þ ¼ l0
4p

Z
V2

jðr2ÞdV2

r12
; ð6:21Þ

where r12 ¼ jr1 � r2j is the distance between the charge
dq ¼ . � dV2 and the observation point P(r1) (Fig. 6.19).

In order to determine the vector potential A(r1, t) of a
time-dependent current density j(r2, t) one has to take into
account that the propagation of the electromagnetic field,
that is generated by the oscillating charge at the position r2
takes the time Dt ¼ ðr1 � r2Þ=c to reach the observer in
P(r1). Every change of the field in the volume element dV2

caused by a changing current need the time Dt to arrive in
P(r1) (retardation).

Therefore one must consider in (6.21), that the vector
potential A(r1, t) which is measured in P(r1) at the time t has
been generated by currents in the volume dV2 at the earlier
time (t − r12/c). The Eq. (6.21) that was derived for
stationary currents has to be modified into

Aðr1; tÞ ¼ l0
4p

Z
jðr2; t � r12=cÞ � dV2

r12
: ð6:22Þ

For large distances of the observation point P1 from the
antenna with length l (r12 	 l) (6.22) can be readily solved
if the following approximations are made:

(a)

I(z,t0)

z

(b)
U(z,t0)

Fig. 6.18 a) Current I(z, t0) and voltage distribution U(z, t0) along a
straight wire at t = t0. b) Detection of the current distribution I2ðzÞ	 

with small light bulbs
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Fig. 6.19 Determination of the time dependent vector potential A in
the observation point P1 generated by the oscillating charge distribution
j ¼ q � vðtÞ in the wire
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• For a fixed observation point P1 is the distance to all
points of the antenna nearly equal. This means that
1=r12 can be extracted from the integral.

• The velocity v of the oscillating charge is small
compared to the velocity c of light.

• The travel time s ¼ l=c of the electromagnetic wave
along the length l of the antenna is small compared
with the oscillation period T ¼ 2p=x of the oscillat-
ing charge dq ¼ q � dV2. This implies that the differ-
ence Dðr12=cÞ of the travel time t = r12/c from
different points of the antenna is small compared with
the oscillation period T, i.e. the waves, which are
emitted at time t2 from different points r2 of the
antenna arrive in P1 nearly at the same time
t2 ¼ t1 þ r=c; which means that they all have nearly
the same phase.

With these approximations (6.22) converts to

Aðr1; tÞ ¼ l0
4pr

Z
t � .ðr2; t � r=cÞ dV2: ð6:23Þ

Since the rf-current through the antenna is caused by the
flux of electrons with the charge density q, we can interpret
the integrand in (6.23) as a negative charge dq = q � dV2

which moves with the time-dependent velocity vðtÞ against
the positive ions in the conductive material of the antenna
(Fig. 6.20). The distance d between the centers of positive
and negative charge distributions changes as d = d0 � sinxt
when the current through the antenna is I = I0 � cosxt. The
time dependent dipole moment p(t) of this Hertzian Dipole is

pðtÞ ¼ q � d0 � sinxt � bez ¼ q � d: ð6:24Þ

Note The amplitude d0 is much smaller than the length l of
the antenna, because the electrons move with the velocity
v � c and cover during a quarter period T/4 of the oscilla-
tion only the distance d0 ¼ 1

4 v � T . However, all N electrons
in the antenna participate in the oscillation, i.e. q = N � e.

Example

For copper the mobility of the electrons is u = 4.3 �
10−3 (m/s)/(V/m). At an electric field strength E = 103

V/m ! the drift velocity is vd ¼ u � E ¼ 4.3 m/s. At
the oscillation frequency v = 10 MHz ! T = 10−7 s
d0 = ¼ � 4.3 � 10−7 m � 10−7 m, while the length
l of the antenna is some meters.

With vph = dp/dt we get from (6.24)

dp
dt

¼ q � t;

The vector potential of the Hertzian dipole is then

Aðr1; tÞ ¼ l0
4pr

d
dt

pðt � r=cÞ: ð6:25Þ

With x � ðt � r=cÞ ¼ xt � ð2p=kÞ � r ¼ xt � kr the vec-
tor potential becomes

Aðr1; tÞ ¼ l0
4p

q � d0 � x cosðxt � krÞ
r

bez: ð6:26Þ

This is the equation of a spherical wave (see Vol. 1,
Sect. 11.9.4) which starts from the center of the Hertzian
dipole and propagates with the velocity c = x/k (velocity of
light) into the surrounding space.

The oscillating charge q generates an oscillating vector
potential A(r, t) and therefore also a magnetic and
electric field which propagate into space as
electro-magnetic waves with the speed of light c.

What are the properties of the two fields?
For the calculation of the magnetic field we choose the

dipole axis as the z-axis (Fig. 6.21). With A = {0, 0, Az} and
B = rot A (see Sect. 3.2) we get the relations

Bx ¼ @Az

@y
; By ¼ � @Az

@x
; Bz ¼ 0 ; ð6:27Þ

This shows that the B-field lies in the x-y-plane.
When performing the spatial derivative with respect to y,

we must observe that also r(x, y, z) depends on y. Using the
chain rule we obtain with p ¼ jpj ¼ pz

Bx ¼ l0
4p

_p t � r

c

� � @

@y

1
r

� �
þ 1

r

@

@y
_p t � r

c

� �� �� �
:

Using the abbreviation u ¼ t � r=c and _p ¼ dp=du we get

with @u=@r ¼ �1=c, r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
! @r=@y ¼ y=r

0d

q−

q+

tsindd 0 ω⋅=
→ →

l

z

Fig. 6.20 Hertzian dipole
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With
@

@y

1
r

� �
¼ �y=r3

We finally obtain

Bx ¼ � 1
4pe0c2

_p
y

r3
þ €p

y

c � r2
h i

: ð6:28aÞ

where we have used the relation l0 � e0 = 1/c2. In a similar
way we get

By ¼ 1
4pe0c2

_p
x

r3
þ €p

x

c � r2
h i

: ð6:28bÞ

The Cartesian coordinates x and y of the point P(x, y, z) can
be transformed into polar coordinates

x ¼ r � sin# � cosu ; y ¼ r � sin# � sinu;
where r is the distance between P and the center of the
dipole, which is chosen as the coordinate origin and # is the
angle between r and the dipole axis (Fig. 6.22). The
Eqs. (6.28a, 6.28b) read in polar coordinates:

Bx ¼ � 1
4pe0c2

_pðuÞ sin# sinu
r2

�
þ €pðuÞ sin# sinu

r � c
�
;

ð6:29aÞ

By ¼ 1
4pe0c2

_pðuÞ sin# cosu
r2

�
þ €pðuÞ sin# cosu

r � c
�
;

ð6:29bÞ

We can combine both equations for the components in
the vector equation

Bðr; tÞ ¼ 1
4pe0c2r3

½ð _p� rÞþ r

c
ð€p� rÞ� ð6:30Þ

Note, that because of the retardation the magnetic field
Bðr; tÞ is generated by the dipole p at the earlier time
ðt � r=cÞ. Therefore in (6.30) the quantities _p and €p must be
calculated for the time ðt � r=cÞ.

Since p k _p k €p it follows that B? p and B? r.

At large distances from the dipole (r 	 d0) the mag-
netic field B is perpendicular to the dipole axis and
perpendicular to the propagation direction r of the
electromagnetic wave emitted by the dipole.

The magnetic field (6.30) has two parts, which decrease
with different powers of the distance r. At large distances the
second term (*1/r) where €p is dominant because it
decreases only with 1/r. The first term with _p decreases as
1=r2. It is dominant at small distances.

The comparison with the Biot-Savart law (3.16)

dB ¼ 1
4pe0c2

j� r
r3

� dV

shows that because of
R
j � dV ¼ _p the first term describes

the magnetic field, that is directly generated by the oscil-
lating current density j(t).

The second term in (6.30) is indeed indirectly also caused
by the oscillating dipole, but the fact that it decreases more
slowly with increasing distance than the first term, indicates
that an additional source must be present. We will clear this
point as follows:

In Fig. 6.23 we regard the oscillating magnetic field B at
the point P in the x-y-plane. The radius vector r of P(r) is
perpendicular to the dipole axis, i.e. # ¼ 90



. The second

term in (6.30) then gives the magnetic field in the
space-fixed point P where _p? r and €p? r.
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p
→
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ϑ
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ϑ

Fig. 6.22 Illustration of the derivation of Eq. 6.29a, 6.29b
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Fig. 6.21 Determination of the magnetic field B from the vector
potential of the oscillating dipole with the dipole axis in the z-direction
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jBðr; tÞj ¼ €p

4pe0c3r
¼ qd0x2

4pe0c3r
sinðxt � krÞ:

While the envelope of the amplitude that decreases with
1/r describes the spatial change of B, for the observer in the
space-fixed point P the variation of _B is mainly caused by the
high speed c of the electro-magnetic wave passing through
P. This means that dB=dt is for the observer very large. This
large derivative dB=dt generates, according to Faraday’s law
of induction, an alternating electric field E(t) in P(r). This in
turn creates according to (4.25b) a displacement current which
generates an alternating magnetic field

This magnetic field, which is not directly generated by
the dipole but by the alternating electric part of the
electromagnetic wave is described by the second term
in (6.30).

Note, that both parts for the generation of the magnetic
field are already included in the Maxwell Eq. (4.25b)

rotB ¼ l0jþ
1
c2

@E
@t

The first term in (4.25b) corresponds to the first term in
(6.30), the second term in (4.25b) to the second term in (6.30).

The oscillating fields E(r, t) and B(r, t) which are pro-
duced by the oscillating dipole, propagate with the velocity
of light c into the surrounding space. At every point of the
space electric and magnetic fields generate each other
because of their time variation. These “secondary fields”
superimpose the fields that are directly generated by the
oscillating dipole. With increasing distance from the dipole
the relative contribution of the secondary fields increases,
because their amplitude decreases only with 1/r, whereas the
primary wave amplitude declines with 1/r2.

The electric field can be deduced from the electric
potential /el which is related to the vector potential A by the
Lorenz’s gauge condition

divA ¼ � 1
c2

@/el

@t
ð6:31Þ

With A = {0, 0, Az} is divA ¼ @Az=@z and we can, quite
analogue to the calculation of Bx in (6.28a, 6.28b), directly
get the derivative of A. From (6.25) we then get

r � A ¼ � 1
4pe0c2

r � _pþ r
c

� �
€p

 �
ðt�r=cÞ

r3
: ð6:32Þ

With (6.31) we obtain the electric potential by time-
integration

/elðr; tÞ ¼
1

4pe0

r � pþ r
c

� �
_p

 �
ðt� r=cÞ

r3
; ð6:33Þ

which finally gives with (4.28) the electric field

E ¼ �r/el �
@A
@t

We can again compose E as the sum of two terms:

Eðr; tÞ ¼ E1ðr; tÞþE2ðr; tÞ: ð6:34aÞ
The first term can be calculated from (6.33) with

E = �grad фel

E1ðr; tÞ ¼ 1
4pe0r3

�p� þ 3 p� � brð Þ � br½ � ð6:34bÞ

With the abbreviation

p� ¼ pðt � r=cÞþ r

c
_pðt � r=cÞ ð6:34cÞ

where br ¼ r=r. Equation (6.34b) describes the electric field
of a time dependent electric dipole p*, if the retardation is
taken into account.

The electric field E(r, t) is generated by the electric
moment p at the earlier time (t – r/c) and its time derivative
_pðt � r=cÞ, which causes the current through the dipole.

The second term in (6.34a)

E2ðr; tÞ ¼ 1
4pe0c2r3

�€pðt � r=cÞ � r½ � � r

¼ 1
4pe0c2r

€pðt � r=cÞ � ðbr � €pðt � r=cÞÞbr½ �
ð6:34dÞ

is that part of the electric field which is generated by the
changing magnetic field. It is proportional to the second
derivative €p of the dipole moment p and E2 is perpendicular
to r and to B as can be seen by the comparison with (6.30).
While the first term E1 decreases strongly (/ 1=r3) with
increasing distance r the second term E2 declines only with

B

~1/r

c

P r

z

x
yr

p
→

B
→

P(x,y,z = 0)

Fig. 6.23 Illustration of the second term in Eq. (6.30) The dashed
curve gives the envelope of the spatially with 1/r decreasing magnetic
field amplitude
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Fig. 6.24 Electric field lines of the Hertzian dipole at times
t = t0 + n � T/4. The field lines have cylindrical symmetry about the
dipole axis. Je is the electrical current density in the antenna
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Fig. 6.25 Magnetic field lines of the Hertzian dipole in the equator
plane
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λ

Fig. 6.26 Spatial distribution of the electric field lines. The wave-
length k of the radiated electro-magnetic wave corresponds to twice the
spatial distance between the nodes of the electric field

1/r. In the near-field range is E1 dominant, whereas in the
far field range E2 predominates.

Summarizing we can say:

The temporally and spatially oscillating electric and
magnetic fields represent electro-magnetic waves,
which propagate through space with the velocity
v ¼ c. In each point P(r) covered by the wave the
changing electric field generates a magnetic field and
vice versa.

In a point P(r) where r forms the angle # against the
dipole axis (Fig. 6.22) Eq. (6.34d) can be written as

E2 r; #; tð Þj j ¼ €pðt � r=cÞ sin t
4pe0c2r

: ð6:34eÞ

Note, that the second time derivative of p means €p ¼
d2p=du2 with u = (t − r/c), i.e. the time derivative describes
the change of the dipole moment p at the time (t − r/c).

In Fig. 6.24 snapshots of the electric field in the near field
range around the dipole are shown at times t = t0 + n � T/4,
i.e. every quarter oscillation period.

The magnetic field lines are circles around the dipole axis
(Fig. 6.25).

For a given time t0 and for large distances r the magnetic
field amplitude shows the spatial modulation B rð Þ ¼ B0=rð Þ
coskr with nodes at distances Dr ¼ p=k ¼ p � c=x.

Analogous statements are valid for the electric field. The
electric field in the polar plane of the dipole axis has a
kidney-shaped pattern of the field lines (Fig. 6.26). The electric
field lines run perpendicularly through the equator plane.

6.5 The Emitted Radiation of the Oscillating
Dipole

We have discussed in the previous section that the Hertzian
dipole emits radiation in the form of electro-magnetic waves,
which propagate into spacewith the velocity c of light.Wewill
now investigate the emitted power and its frequency spectrum.
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6.5.1 The Emitted Power

The comparison of (6.34d) for the electric field and (6.30)
for the magnetic field B reveals that at large distances r from
the dipole (far field) the amount of B is smaller by the factor
1/c = 3.3 � 10−9 s/m than the amount of E. Inserting this
relation into the Eq. (4.20a) for the energy density of the
electro-magnetic field we obtain

wm ¼ 1
2
e0ðE2 þ c2B2Þ ¼ e0E

2: ð6:35Þ

This gives the energy flux (energy which is transported
per unit time through the unit area)

S ¼ e0 � c � E2: ð6:36aÞ
Inserting for the amount of E the expression (6.34e) and

for the dipole moment p ¼ q � d0 � sinðxt � r=cÞ ! €p ¼
�qd0 � x2 � sinðxt � r=cÞ we obtain in the far field (r 	 d0)
the energy that passes per sec through the surface of a sphere
with radius r in the direction # against the dipole axis

S ¼ q2d20x
4 sin2 #

16p2e0c3r2
sin2 x ðt � r=cÞð Þ: ð6:36bÞ

The dipole emission is maximum in the direction per-
pendicular to the dipole axis (# = 90°), whereas in the
direction of the dipole axis (# = 0) no energy is emitted
(Fig. 6.27).

Since the energy flux S is proportional to 1/r2 the total
flux through the surface of a sphere with radius r is inde-
pendent of r.

With increasing distance the terms proportional to 1/r of
the electric field (6.34d) and of the magnetic field (6.30), win
more and more importance for the energy transport, whereas
the other parts (/ 1/r3 for E and/ 1/r2 for B) approach faster
zero and can be neglected for large distances from the dipole.

The power, transported through the area dA = r2 � sin# �
d# � du (see Vol. 1, Sect. 13.2.3) is P = S � dA. Integration
over # and u gives the total power, emitted by the oscillating
dipole into the whole space

Pem ¼
I

S � dA ¼ q2d20x
4

6pe0c3
sin2 xðt � r=cÞð Þ ð6:37Þ

With sin2x t � r=cð Þ ¼ 1=2 we obtain for the average
power, emitted by the dipole with the oscillation amplitude
p0 ¼ q � d0 oscillating at the frequency m ¼ x=2p

Pemh i ¼ q2x4d20
12pe0c3

: ð6:38Þ

Note that P is proportional to x4 [4].

6.5.2 Radiation Damping

The total mechanical energy (potential + kinetic energy) of a
harmonic oscillator with mass m, oscillation frequency x
and amplitude d0 is (see Vol. 1, Sect. 11.6)

�W ¼ �Ekin þ �Epot ¼ 1
2
mx2d20 : ð6:39Þ

This is also true for the Hertzian dipole, where charges q
with mass m oscillate with the velocity t ¼ x � d0 � cosxt.

If the energy loss of the oscillating dipole is not supplied by
external sources the oscillation amplitude will decrease in the
course of time due to the emitted radiation energy (6.38). The
relative energy loss is given by the ratio of (6.38) and (6.39).

dW=dt
�W

¼ � q2x2

6pe0mc3
¼ �c: ð6:40Þ

From dW=dt ¼ �c �W we obtain by integration

�WðtÞ ¼ �W0 � e�ct: ð6:41Þ
After the time s ¼ 1=c the energy of the oscillating dipole

has dropped to 1/e of its initial value �W0 ¼ �Wðt ¼ 0Þ
(Fig. 6.28a)
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r ∝S
→

Fig. 6.27 Angular dependence of the radiated power of an oscillating
dipole. The length ∣r(#)∣ is proportional to the energy flux density S
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Fig. 6.28 a) Exponential decay of the energy of the damped oscillator
b) frequency spectrum of the radiated power
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Example

We can describe an excited atom with an electron of
mass me by the model of a damped oscillator that
releases its excitation energy by emitting light. When we
insert into (6.40) the numerical values
m ¼ me ¼ 9� 10�31 kg, q ¼ �e ¼ �1:6� 10�19 C,
x ¼ ð2pcÞ=k � 3:8� 1015 s�1 for k = 500 nm we
obtain c = 9 � 107s−1. This gives a damping time
s ¼ 1=c ¼ 1:1� 10�8 s.

The mean energy of the excited atom is
�W � 4� 10�19 J. This gives the oscillation amplitude
d0 = 8 � 10−11 m of the excited electron. The mean
radiation power of the atom is then

dW=dtð Þ ¼ �c �W ¼ �9� 107 � 4� 10�19 W
� 3:6� 10�12 W:

In a gas discharge lamp which delivers 1 W visible
radiation therefore about 3� 1011 atoms are excited per s.

6.5.3 Frequency Spectrum of the Emitted
Radiation

The oscillation amplitude of a damped oscillator is

z ¼ d ¼ d0e
�bteixt;

If the oscillator is driven by the electric field strength
E = E0 � eixt it performs forced oscillations which are
described by the equation of motion (see Vol. 1, Sect. 11.5)

€zþ 2b_zþx2
0z ¼

q

m
E0e

ixt ð6:42Þ

The energyW / d2 decays asWðtÞ ¼ W0e�ct if b ¼ c=2.
Inserting the ansatz

z ¼ z0 � eixt

Into (6.42) we get the complex oscillation amplitude

z0 ¼ ðq=mÞE0

x2
0 � x2

� �þ icx
; ð6:43Þ

with the square of the absolute value

jz0j2 ¼ ðq2=m2ÞE2
0

x2
0 � x2

� �2 þ c2x2
ð6:44Þ

With z0j j ¼ d0 we get from (6.38) the frequency spectrum
of the mean radiation power (Fig. 6.38b)

�P ¼ d �W
dt

¼ q4x4E2
0

12pe0m2c3
1

x2
0 � x2

� �2 þ c2x2
: ð6:45Þ

For x2
0 � x2

� �2¼ x2c2 the power drops to ½ of its
maximum value at x = x0. This gives the two solutions

x1;2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

0 þ c2=4
q

� c=2

For those frequencies where the power has decreased to
½ of its maximum value. The frequency interval Dx = x1 –

x2 = c is therefore called the full width at half maximum
(FWHM) of the emitted radiation.

Example

When light of the correct frequency passes through an
ensemble of atoms they can absorb the light and are
excited into energetically higher states. The excitation
energy is subsequently emitted as resonance fluores-
cence, where the time dependence follows (6.41).
Changing the frequency of the exciting light the total
fluorescence power follows Eq. (6.45). With c = 108

s−1 and x = 3.8 � 1015 s−1 the spectral half-width
becomes Dx = 108 s−1 ! Dm = 16 MHz. The relative
linewidth is then with Dx/x = c/x = 2.6 � 10−8 very
small. Excited atoms emit their radiation only within
very small frequency intervals.

6.5.4 The Radiation of an Accelerated Charge

We have seen in Sect. 6.4.2 that the amplitude E0 of the
electromagnetic wave emitted by the oscillating dipole, is in
the far field (r 	 d0) proportional to the second derivative €p
of the dipole moment p = q � d, i.e. to the acceleration a = €d
of the oscillating charge q. The emitted radiation power is
then proportional to the square a2 of the acceleration.

This statement is not restricted to harmonic oscillations but
is valid quite general for arbitrary acceleration of charges [4].

The following discussion illustrates the form of the
electromagnetic waves emitted by accelerated charges [5].

In Sect. 3.4.1 we have discussed the electric field of a
charge moving with the velocity v. When the charge is
accelerated, the velocity v changes either its amount or its
direction or both. This changes the spatial distribution of the
electric field. This is illustrated again in Fig. 6.29a–d.

Figure 6.29a shows the electric field lines of a charge q at
rest. If q is accelerated at the time t = t0 nearly abruptly to a
large velocity v � c the electric field pattern changes to that
of a moving charge (Fig. 6.29b). This change cannot be
present immediately in the whole space but propagates with
the velocity c of light. The modified field generated by the
charge at the time t1 = t0 + Dt in the point B cannot be
observed by an observer at the time t2, if his distance from
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the source is larger than c � ðt2 � t1Þ. He then still observes
the field of a charge resting in A.

Since the field lines of a point charge at rest are equally
distributed over all directions (Coulomb field) but are com-
pressed for a moving charge around the angle a ¼ 90
 against
the direction of v, there is a sudden jump on the surface
R ¼ cðt2 � t1Þ. It is shown schematically in Fig. 6.29c.

For the more realistic case of a uniform acceleration the
change of the field line pattern does not occur abruptly but
continuously. For a uniform acceleration of a charge q one
obtains instead of the sudden jump a curvature of the field
lines (Fig. 6.29d) (see for instance the Ealing teaching movie
“charges that start and stop” [5].

A similar situation occurs for the magnetic field. When
the velocity of the charge changes, the current density j ¼
q � v changes correspondingly and therefore also the mag-
netic field.

The emitted power of a charge that moves with the
velocity t parallel to the acceleration a, shows an angular
distribution, which is tilted towards the direction of the
acceleration away from the dipole axis (Fig. 6.30).

The general treatment of the radiation of charges that are
accelerated in an arbitrary way can be found in textbooks of
theoretical electrodynamics. In the present textbook, we will
restrict the discussion to two examples.

6.5.4.1 Bremsstrahlung of X-Rays
In an evacuated tube electrons are emitted by a hot cathode
K (Fig. 6.31) and are accelerated to large velocities by a high
anode voltage of about 10–100 keV. These energetic elec-
trons hit the cathode, made of copper or tungsten. The
electrons are deflected in the Coulomb field of the atomic
nuclei (Fig. 6.32). This change of the direction of v over an
extremely short distance represents a large acceleration and
results in the emission of a continuous radiation with a broad
spectrum in the X-ray region (bremsstrahlung)

6.5.4.2 Synchrotron Radiation
Electrons that have been accelerated to very high energies
(MeV–GeV) and velocities close to the velocity c of light
can be forced by a magnetic field on a circular path with
radius R, where the Lorentz force FL ¼ e � ðv� BÞ and the
centrifugal force Fc ¼ m � v2=R just cancel. The acceleration
of the electrons, which move with constant velocity v around
the ring is a ¼ v2=R. The vector a is always perpendicular to
v. The emitted radiation is proportional to a2. For large
velocities the spatial distribution of the emitted radiation is
strongly concentrated around the velocity v (Fig. 6.33b).

0tt <

→
v

c95,0v =0v = für 0tt <

(a) (b)

→→
a,v

für

(c) (d)

c95,0v = 0tt ≥ →→⋅= v||a,tav

A B

Fig. 6.29 a) Electric field lines of a charge at rest, b) stationary field
lines of a charge moving with constant velocity v; c) field lines of a
charge q at time t = t0 + R/c if the charge at rest had been suddenly
accelerated at time t0 to the velocity v; d) field lines of a continuously
accelerated charge with a ‖ v
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power, which has rotational symmetry about the direction of the
acceleration a ‖ v of a moving charge for different velocities

–

K

evacuated
glass bulb

X-rays

A
+e–

Fig. 6.31 X-ray tube

178 6 Electromagnetic Oscillations and the Origin of Electromagnetic …



electron shell

Bremsstrahlung

nucleus

)0(Ekin

E)0(Ekin Δ−

−e
path without
deflection

Fig. 6.32 Deceleration of electrons in the Coulomb field of the atomic
nuclei in the anode

(a)

a
→

x

y

z
Path

v << c

a
→

path

v
→

(b)

v < c~

Fig. 6.33 Radiation characteristic of an accelerated charge that moves
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rotational symmetry about the x-axis = direction of the acceleration
a. b) With increasing velocity v the distribution becomes more and
more peaked within a narrow angular range around the tangent to the
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Fig. 6.35 Spectral distribution of the synchrotron radiation within a
spectral interval of Dk = 1 nm in the storage ring DORIS for an
electron beam of 0.16 pA (106 e/s) for different electron energies [8]

Fig. 6.36 Synchrotron SOLEIL in Gif-sur-Yvette near Paris with 8
beam lines and measuring stations The small ring in the inner part is the
pre-accelerator for the electrons

The electrons in a synchrotron have velocities
v � 0.99999c and their emitted radiation is therefore con-
centrated within a narrow angular range around the tangent to
the electron path (Fig. 6.34).

In Fig. 6.35, the spectral distributions of the synchrotron
radiation of the storage ring DORIS inHamburg are shown [6]
for several values of the electron energy. This illustrates that
for example at W = 6 GeV the maximum of the distribution
occurs at the wavelength k = 0.03 nm, i.e. in the X-ray
region. Generally many beamlines are installed tangentially to
the circular path of the electrons. In Fig. 6.36 the 8 beam lines
of the synchrotron SOLEIL near Paris are illustrated [7].
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Summary

• Electromagnetic oscillations in an oscillation circuit of
capacitor and inductance constitute a periodic
exchange of electric energy in the charged capacitor
and magnetic energy in the inductance coil.

• The resonant frequency of the oscillation in the circuit
consisting of capacitor C, Inductance L and Ohmic
resistor R is

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
LC

� R2

4L2

r
:

• The oscillation energy can be transferred from one
oscillation circuit to another, coupled to the first one
by inductive, capacitive or Ohmic coupling. The
degree of coupling is for inductive coupling
k ¼ L12=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
L1 � L2

p
.

• For the open oscillation circuit the electric and the
magnetic fields are no longer localized but spread
out as electromagnetic waves into the surrounding
space.

• A model for an open oscillation circuit is the Hertzian
dipole, where a negative charge −q oscillates period-
ically against a positive charge +q. This causes an
oscillating electric dipole moment p ¼ q � d0 � sinxt.

• The electromagnetic power, emitted by the Hertzian
dipole into the whole surrounding space is

Pem / q2d20x
4:

• The power emitted into the solid angel dX under the
angle # against the dipole axis is for a dipole at rest
proportional to sin2 # � dX.

• Every accelerated charge q emits energy in form of
electromagnetic waves. The emitted power is
Pem / q2 � a2, where a is the amount of the acceleration.

• For large velocities of the charge q (v � c) amount
and angular distribution of the emitted radiation power
change with increasing v. They are more and more
concentrated in a narrow angular range D# around the
direction of the velocity v. It is D# / 1=c with

c ¼ ð1� v2=c2Þ�1=2
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Problems

6:1. A parallel oscillation circuit oscillates at a frequency
m = 800 kHz. After 30 oscillation periods the voltage
amplitude across the capacitor has dropped to 1/2 of
its initial value. How large are L and R?

6:2. To which fraction of the maximum value P(x0) has
the power P(x) in a series oscillating circuit dropped
at the frequencies x1 ¼ x0 � R=L and
x2 ¼ x0 � 2RL? What is the ratio jZðx0 �
R=LÞj=jZðx0Þj in the parallel circuit? Why does the
maximum of the active power occur at xr but not at
the resonance frequency x0 of the lossless circuit?

6:3. What are the resonant frequencies x1 and x2 in a
system of two coupled equal oscillating circuits with
x0 = 106 s−1, L = 104 H and L12 = k � L with
k = 0.05?

6:4. The electron in the classical model of the hydrogen
atom has a kinetic energy of 13.6 eV and moves on a
circle with the radius R = 5.3 � 10−11 m
What would be in a classical model the radiation
power
(a) For one revolution and
(b) per second?
(c) How would the path look like, if this energy loss

is taken into account? How much would the
radius R change per revolution? How long would
it take before the electron arrives at the proton?

6:5. What is the radiation power emitted by a charge
q which moves with a velocity v � c in a plane
perpendicular to a magnetic field B? What is the initial
radius R of its circular path and what is the change of
the velocity v and the radius R in course of time.

6:6. A proton travels in a linear accelerator a distance of
3 m with a potential difference of 106 V. It therefore
experiences a constant acceleration
(a) Which radiation power does the proton emit?
(b) Compare this with the power, emitted by a pro-

ton moving with the energy of 106 eV on a circle
with circumference of 3 m.

(c) What is the total energy emitted by the proton in (a)?
6:7. A system of microscopic oscillating dipoles, which

are concentrated in a tiny volume, emit isotropically a
radiation power of 104 W

(a) What are the amplitudes of the electric and the
magnetic fields at a distance r = 1 m (r 	 di-
ameter of the source)?
What is the intensity of the electromagnetic
wave?

6:8. A nonisotropic emitter radiates electromagnetic waves
into the solid angle dX = 10−2. At a distance of 103 m
the electric field has the amplitude of 10 V/m. What is
the radiation power of the emitter?

6:9. The earth receives from the sun the radiation power
density of 1.4 � 103 W/m2 (solar constant)
(a) What are the electric and magnetic field strengths

at the surface of the earth, if reflection and
absorption in the atmosphere are neglected?

(b) What is the total power, the sun radiates into all
directions?

(c) What is the electric field strength of the radiation at
the surface of the sun R = 6.96 � 108 m, if other
contributions to electric fields are neglected?

6:10. A light bulb with an electric input power of 100 W
converts about 70% of this power into isotropic
radiation. What is the electric field strength at a dis-
tance of 1 m? Compare this with the field strength of
the sun radiation. Which input power must the light
bulb have in order to generate the same field strength
as the sun radiation?
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7Electromagnetic Waves in Vacuum

In the previous chapter it has been shown, that oscillating
dipoles emit electromagnetic radiation. In this chapter we
will treat the description and properties of waves in more
detail. The reader is advised to consult the analog description
for mechanical waves in Vol. 1, Chap. 11.

7.1 The Wave Equation

We start with Maxwell’s equations in vacuum without
charges and currents (q = 0, j = 0)

r� E ¼ � @B
@t

; ð7:1aÞ

r � B ¼ e0 � l0 �
@E
@t

: ð7:1bÞ

Now we apply on both sides of (7.1a) the differentiation
operator curl and insert curlB from (7.1b). We get

r�r� E ¼ �r� @B
@t

¼ � @

@t
ðr � BÞ

¼ �e0 � l0
@2E
@t2

;

ð7:2Þ

Here we have used the fact that the differentiation with
respect to time can be preponed because ∇ does not depend
on time.

Now we use the vector relation for rot rot E (see Vol. 1,
Sect. 13.1.6)

r�r� E ¼ rðr � EÞ � r � ðrEÞ
¼ gradðdivEÞ � divðgradEÞ:

In a space without charges is the charge density q = 0 and
therefore according to (1.10) divE ¼ q=e0 ¼ 0. Therefore
we obtain from (7.2) the equation

DE ¼ e0l0
@2E
@t2

; ð7:3Þ

where D = div grad is the Laplace-operator. A comparison
with (11.69) in Vol. 1 shows, that (7.3) describes a wave
equation for the propagation of a time-dependent electric
field E(r, t) in vacuum which propagates at the speed of
light

c ¼ 1ffiffiffiffiffiffiffiffiffi
e0l0

p ð7:4Þ

This is a vector equation that represents three component
equations. As example, the Eq. (7.3) reads for the compo-
nent Ex in Cartesian coordinates

@2Ex

@x2
þ @2Ex

@y2
þ @2Ex

@z2
¼ 1

c2
@2Ex

@t2
: ð7:3aÞ

Corresponding equations are valid for the components Ey

and Ez.
An analogue wave equation can be derived for the

magnetic field Bðr; tÞ if one takes curlcurl of (7.1b) and uses
(7.1a), (see Problem 7.1).

Note In the SI-system the speed of light can be expressed
by (7.4) with the permittivity of vacuum e0 and the perme-
ability of vacuum l0. This follow from

(a) the wave Eq. (7.3) derived from the Maxwell equations
and the comparison with (11.69) in Vol. 1

(b) the comparison of the Lorentz forces in two different
systems of inertia (Sect. 3.4.3).
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7.2 Electro-magnetic Plane Waves

Especially simple solutions of the wave Eq. (7.3) are
obtained if E depends only on one coordinate, e.g. the z-
coordinate.

@E
@x

¼ @E
@y

� 0; ð7:5Þ

i.e. the vector E has at a fixed time t = t0 on a plane z = z0
everywhere the same magnitude and the same direction. The
wave Eq. (7.3) simplifies to

@2E
@z2

¼ 1
c2

@2E
@t2

: ð7:6Þ

From div E = 0 in a space without charges we find from
(7.5)

@EZ

@z
¼ 0 ) Ez ¼ a ¼ spatially constant ð7:6aÞ

We choose the boundary conditions so that the constant
becomes zero, a = 0. The wave has now only the compo-
nents Ex and Ey.

E ¼ fEx;Ey; 0g:
The general solutions of (7.6) for plane waves are

Exðz; tÞ ¼ fxðz� ctÞþ gxðzþ ctÞ;
Eyðz; tÞ ¼ fyðz� ctÞþ gyðzþ ctÞ: ð7:7Þ

Here f and g are arbitrary, but continuously differentiable
functions with their arguments ðz� ctÞ or ðzþ ctÞ (see Vol. 1,
Sect. 11.9). They represent plane waves (Fig. 7.1) because
the planes z = constant are areas of constant phase. That
means, for every point in the plane z ¼ z0 the argument
(z ± ct) is equal at equal times. These phase areas z = z0move
for f ðz� ctÞwith the speed c in the +z-direction, because from
the phase condition (z − ct) = constant we get by
differentiation

dz
dt

� c ¼ 0 ) dz
dt

¼ þ c:

For the function g(z + ct) the waves move in the −z-
direction. The solutions (7.7) of the wave Eq. (7.6) are plane
transverse waves because the electric field vector E = {Ex,
Ey, 0} is perpendicular to the direction of propagation ez.

Note

(a) The transversality E? ez. follows from div E = 0 and is
therefore only valid in charge-free space! In matter with
a charge density q 6¼ 0 or if conducting boundaries
exist, the wave need not be transverse. Examples are

waves within wave guides or in anisotropic materials
(see Sect. 7.9). The transversallity is in general not
given if the wave travels through a space that is limited
on both sides. An example is a linear polarized wave
traveling into the z-direction through a space that is
restricted in the x-direction.

(b)
Eðx; zÞ ¼

Ex

0
�ði=kÞ @Ex

@x

8<
:

9=
;

(c) A wave need not be periodic. Think about shock waves
(Vol. 1, Sect. 11.13) or electromagnetic pulses, which
can be produced by pulsed arcs. They have a broad
frequency spectrum with statistically distributed phases
of their components. Also these nonperiodic waves are
solutions of the wave equation (7.3) and if they follow
Eq. (7.7) they are also plane waves.

7.3 Periodic Waves

An important and frequently found special case of electro-
magnetic waves are periodic plane waves, which can be
described by sine- or cosine-functions.

We denote as the wavelength k the distance between two
equal values of the function f in (7.7) at the same time
(Fig. 7.2a).

f ðzþ k� ctÞ ¼ f z� ctð Þ: ð7:8Þ
For periodic waves we use the ansatz

E ¼ E0 � f ðz� ctÞ ¼ E0 � sin kðz� ctÞ; ð7:9aÞ
Then we get for the constant k with the conditions for

periodicity (7.8),
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Fig. 7.1 Non-periodical plane wave, propagating into the +z-direction
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k � k ¼ 2p ) k ¼ 2p
k
: ð7:10aÞ

The constant k is named wave number. We can rewrite
(7.9a), using c ¼ v � k, as

E ¼ E0 � sin kz� 2pc
k

t

� �
¼ E0 � sin kz� xtð Þ:

ð7:9bÞ

Of course we can also apply cosine-functions as periodic
solution

E ¼ E0 � cosðkz� xtÞ: ð7:9cÞ
The correct choice depends on the initial conditions.
Often a notation with complex numbers is used,

E ¼ A0 e
iðkz�xtÞ þA�

0 e
�iðkz�xtÞ

¼ A0 e
iðkz�xtÞ þ c:c:

ð7:9dÞ

where c.c. stands for the complex conjugate.
If the amplitude A0 is a real valued vector, (7.9d) becomes

E ¼ 2A0 cosðkz� xtÞ: ð7:9eÞ
The comparison with (7.9c) shows, that E0 = 2A0.
In the shorthand notation of (7.9d) the complex conjugate

term is left out. However, always keep in mind, that the field
E is a real value.

If a plane wave propagates in an arbitrary direction we
can define a vector k = {kx, ky, kz}.which points into the
direction of the wave propagation and which is named wave
vector with the amount

kj j ¼ k ¼ 2p
k
: ð7:10bÞ

The phase surfaces are planes perpendicular to k. The
wave vector k is therefore a normal vector on the phase
planes, (Fig. 7.3). The complex representation of such
waves is in a shorthand form

E ¼ A0 � eiðk�r�xtÞ: ð7:11Þ
For k= {0, 0, kz = k}
Because of k � r = kxx + kyy + kzz = kz Eq. (7.11) trans-

fers into the form of (7.9d).

7.4 Polarization of Electromagnetic Waves

The polarization of an electromagnetic wave is defined by
the direction of the electric vector E.

7.4.1 Linear Polarized Waves

If the vector E0 of a wave

E ¼ E0 � cosðxt � kzÞ
always points into the same direction perpendicular to?bez, i.e.

E0 ¼ E0xbex þE0ybey; ð7:12Þ
then we call the wave linear polarized (Fig. 7.4). Both
components of the wave

0

Phasefronts

1r
→

2r
→

k
→

21 rr −→ →

0)rr(k 21 =−⋅
→→ →

⇒ ⋅k r = const
for all points of
a plane perpendicular
 to k

→ →

Fig. 7.3 Plane wave in the propagation direction of the wave-vector
k. The phase planes are the planes k � r = const., perpendicular to the
vector k

Ey λ
→
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T = 2π
ω
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(b)

→
E(z=z1, t)

)tkzsin(EE 0 ω−=

→ →
)tkzsin(EE 0 ω−=

Fig. 7.2 Harmonic electro-magnetic wave with the electric field vector
in y-direction propagating into the z-direction a) momentary state E(z,
t = t1), b) time dependence at a given location z = z1
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Fig. 7.4 Momentary state of a linearly polarized plane wave E = E0 �
cos(xt − kz). a) Direction of the vector E in the x-y plane. b)
Representation of the electric field vector E(z, t = t1)
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Ex ¼ E0x � cosðxt � kzÞ
Ey ¼ E0y � cosðxt � kzÞ

oscillate in phase (Fig. 7.4a).

7.4.2 Circular Polarization

If the amounts E0x and E0y are equal (E0x = E0y = E0) but the
corresponding phases differ by 90° the wave is described by

Ex ¼ E0x � cosðxt � kzÞ

Ey ¼ E0y � cos xt � kz� p
2

� �
¼ E0y � sinðxt � kzÞ

ð7:13aÞ

The arrow head of the vector

Eðz ¼ 0; tÞ ¼ Exbex þEybey
¼ E0 bex cosðxtÞð Þþbey sinðx � tÞÞ

moves on a circle in the xy-plane with the angular frequency
x ¼ du=dt, i.e. u ¼ x � t. The electric field vector E with its
amount |E| = E0 describes a circular helix about the z-axis
(Fig. 7.5).

As component representation we can write (7.13a) in a
complex notation (Sect. 7.3)

Ex ¼ A0 � eiðxt�kzÞ ¼ A0 cosðxt � kzÞþ i sinðxt � kzÞ½ �
Ey ¼ A0 � i � eiðxt�kzÞ ¼ A0 � sinðxt � kzÞþ i cosðxt � kzÞ½ �
with A0 ¼ 1

2
E0:

ð7:13bÞ

Comment

Equation (7.13b) describes light, where the end of the E-
vector moves on a right-hand screw when the observer looks
in the direction of propagation. We will denote it as r+-light.
In the older literature it is called left-circular polarized,
becauseE runs through a left-handed screw, if looking into the
opposite direction of propagation, i.e. into the light source
(Fig. 7.5a). We have the following assignments:

r� ! right circular polarized;

rþ ! left circular polarized

The new notation r+ and r– is more meaningful, because
the angular momentum ħ � k/∣k∣ of a circular polarized wave
for r+-light points in the direction of propagation k, for r−

light into the opposite -k-direction (see Sect. 9.6.7).

7.4.3 Elliptical Polarized Waves

If E0x 6¼ E0y or if the phase difference Du between the
components E0x and E0y are not exactly p/2, then the end of
the vector E moves on an elliptic spiral. Such waves are
called elliptical polarized.

7.4.4 Unpolarized Waves

If the direction of the vector E0 of the wave (7.9a–7.9e)
changes statistically, we call such a wave unpolarized. Light
waves are generally unpolarized, because they are a super-
position of the emission from many atomic dipoles in ran-
domly distributed directions with statistical phases

In the next chapter we will explain the generation and
measurement of polarized light.

7.5 The Magnetic Field of Electromagnetic
Waves

Applying the differential operator curl to a wave E ¼
E0 � ex � eiðxt�kzÞ that is linear polarized in the x-direction we
obtain

(a)

E0
→

y

x

z

ϕ (t)

y

x

(b)

ϕ= sin|E|E 0y0

ϕ= cos|E|E 0x0

Fig. 7.5 Left-circular polarized electromagnetic wave (r+-wave).
a) E0(x, y), the z-axis is directed into the page. b) Three-dimensional
representation
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ðr � EÞx ¼ 0; ðr � EÞz ¼ 0;

ðr � EÞy ¼
@Ex

@z
:

ð7:14Þ

From the Maxwell equation

@B
@t

¼ �ðr � EÞ ð7:15aÞ

We therefore get
@Bx

@t
¼ @Bz

@t
¼ 0 ð7:15bÞ

Which yields Bx(t) = constant and Bz(t) = constant.
The solutions for the Bx- and the Bz-component give only

time independent fields that do not contribute to the real
wave. We can choose these boundary conditions in a way
that the constants become zero. The B-field then has only a
y-component. From (7.14) follows

� @By

@t
¼ @Ex

@z
¼ �ikEx;

Which gives after integration with respect to time

By ¼ ikE0

Z
eiðxt�kzÞdt

¼ k

x
E0e

iðxt�kzÞ:
ð7:16Þ

With E = {Ex, 0, 0} and B = {0, By, 0} we see that E and
B are orthogonal (Fig. 7.6). Both vectors are also orthogonal
to the propagation vector k. We describe this by the vector
equation

B ¼ 1
x
ðk� EÞ ð7:16aÞ

With the relation x/k = c we get |B| = |E|/c.
The electric and magnetic field vectors of a plane elec-

tromagnetic wave are orthogonal to each other and to the

propagation vector k. Both fields oscillate in phase. The
amount of B is

Bj j ¼ 1
c
Ej j: ð7:17Þ

Examples

1. A 100 W light bulb emits in the range of visible
light a power of 5 W. In a distance of 2 m an area
of 0.1 m2 receive the radiation power of 0.1 W.
Then the electric field at this point is |E| = 6 V/m,
but the magnetic field is only Bj j ¼ Ej j=c ¼ 2�
10�8 Vs=m2.

2. At a wavelength of k = 500 nm we filter from the
radiation of the sun a spectral interval ofDk = 1 nm.
Then the transmitted green light has an intensity of
about 4 W/m2 at the surface of the earth. This results
in an electric field of about 40 V/m. The amount of
the magnetic field is then B = 3.3 � 10−9 � 40
Vs/m2 = 1.3 � 10−7 T = 1.3 � 10−3 G (Gauss).
This is much smaller than the meanmagnetic field of
the earth of 0.2 G.

The cause for the effect of light onto matter (for example
exposure of a photographic film, stimulation of the retina
cells in our eyes) is mainly due to the electric part of the
wave. The magnetic part has, especially in the visible range
of the spectrum, a minor influence.

Note

• Only at far distances from the Hertzian dipole (r� d0)
are the electric field E(t) and the magnetic field B(t) in
phase. Close to the dipole the first term in (6.30) for the
magnetic field dominates. This term is proportional to
dp/dt and therefore has another phase than the second
term, which is proportional to d2p/dt2. For the electric
field E the first term in (6.34) dominates which depends
on dp/dt and on d2p/dt2. Directly at the dipole the
phases of B and E differ by 90°. This can be seen from
Fig. 6.2 for current and voltage of an oscillator and also
from the graphs of magnetic and electric field lines in
Figs. 6.24 and 6.25. In the transition region between
near-field and far-field the phases change continuously
until E and B have the same phase.

• The relations B ⊥ E and E, B, ⊥ k (transversality of
electromagnetic waves) is generally valid only in
vacuum. In case of currents or volume charge densi-
ties, B and E need not be perpendicular.

x x

y y

z

z

0}0,,E{E x=
→

0}0,,E{E x=
→

0},B,0{B y=
→

0},B,0{B y=
→

→
k

Fig. 7.6 Electric and magnetic field vectors of a linearly polarized
plane wave
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7.6 Transport of Energy and Momentum
by Electromagnetic Waves

In Sect. 4.4 we have derived for the energy density of
electromagnetic fields the expression

wem ¼ 1
2
e0ðE2 þ c2B2Þ ¼ e0E

2 ð7:18Þ

with B2 = E2/c2.
This energy density of an electromagnetic wave is

transported with the propagation speed c in the direction of
the wave vector k (Fig. 7.8). We denote the amount of
energy that is transported within the unit of time through a
unit area perpendicular to k as the intensity I or energy flux.

I ¼ c � e0 � E2: ð7:19Þ
Since E = E0 cos(xt – k � r) is a periodic function in time

the intensity of a linear plane wave varies periodically with
the frequency 2x (because cos2xt = (1 + cos 2xt)).

IðtÞ ¼ I0 � cos2ðxt � k � rÞ mit I0 ¼ ce0E
2
0

The intensity is two times per period T equal to zero. The
mean value of I is with cos2xt

� �
= ½

IðtÞh i ¼ 1
2
c � e0E2

0: ð7:20aÞ

Example

The intensity of the sun radiation outside of our
atmosphere is 1.2 kW/m2 (solar constant). The total
power radiated by the sun to the earth is then
P = 1.2 kW � 2pR2 	 3 � 1014 W with R = 6.7 �
106 m = radius of the earth. Due to absorption and
scattering in the atmosphere the intensity reaching the
surface of the earth is only about 700 W/m2 A col-
lector surface of 100 m2 (Fig. 7.7) can then collect at
most a power of 70 kW. With an efficiency of 20%
this gives about 14 kW at noon time. On the average
for a sunny day with 10 h sunshine at a latitude of 45°
the electric output energy of about 10 kWh (because in
the morning and evening the sun radiation power is
much lower. In summary: Although the sun radiation
to the whole earth yields a power which is by far the
highest energy supply available, the power getting
from small areas of sun radiation collectors is modest
and is not sufficient to supply the demand.

Comment

1. Using the complex

Notation E= A0 � ei(xt – k � r) + c.c (see Sect. 7.3) and

I ¼ c � e0 � Ej j2¼ 4c � e0 A0j j2� cos2ðxt � krÞ the mean value
becomes

hIðtÞi ¼ 2ce0 A0j j2: ð7:20bÞ

2. Circular polarized waves show a phase difference of 90o

between Ex- and Ey- component. Therefore the intensity

I ¼ ce0ðE2
x þE2

yÞ
¼ ce0E

2
0½sin2ðxt � k � rÞþ cos2ðxt � k � rÞ�

¼ ce0E
2
0

ð7:20cÞ

is constant in time and never becomes zero (contrary to
the linear polarized wave).

The direction of the energy flux is defined by the
Poynting vector

S ¼ E�H ð7:21aÞ
In vacuum it is with c2 = 1/(l0e0)

S ¼ e0 � c2ðE� BÞ ð7:21bÞ
The amount of S is with (7.17) and (7.20a–7.20c)

S ¼ Sj j ¼ e0c
2 Ej j � Bj j

¼ e0cE
2 ¼ I;

ð7:22Þ

equals to the intensity I of the wave. The unit for S is

S½ � ¼ W=m2:

Fig. 7.7 Collector field for sun radiation (http://www.yaacool-bio.de/
index.php?article=1637)
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For a plane electromagnetic wave in vacuum is E?B;

E? k; and B? k:

Then the Poynting vector S = e0c
2(E � B) must point

into the direction of propagation k of the wave (Fig. 7.8).
We can visualize Eq. (7.22) in the following way.

We consider a volume V in vacuum (Fig. 7.9) which
contains the field energy

Wem ¼
Z

e0E
2 � dV

The energy flow per unit time through the surface A of
this volume V must be equal to the rate with which the
energy included in V decreases.

� @

@t

Z
e0E

2 � dV ¼
I

S � dA ¼
Z
V

div S � dV; ð7:23aÞ

The last equation in (7.23a) is Gauss’ theorem. Because it
is valid for any volume (conservation of energy) it follows
for the integrand

� @

@t
ðe0E2Þ ¼ div S: ð7:23bÞ

Since div S describes the productivity of the source of the
electromagnetic field, i.e. the amount of energy per unit time
and per unit volume that flows out (or into) the whole vol-
ume, it follows from (7.23a) that S is the field energy flux
through the surface that encloses the volume V (Fig. 7.9).
The amount |S| = S is according to (7.18) the intensity I of
the electromagnetic wave that leaves the volume V.

Note This is not valid in anisotropic media, where the direction
of the Poynting vector S (energy flux) and the vector k (direc-
tion of propagation) do not point into the same direction.

Examples

1. While a capacitor is charged, between its plates an
electric field E develops and an electric current
I = dQ/dt. flows through the connecting wires.
Around the increasing electric field in the volume
between the plates of the capacitor a circular
magnetic field B is formed (Fig. 7.10a).
The Poynting vector S = e0 � c2(E �B) points radially
to the center. This implies that the energy flux which
builds up the electric field is not parallel to the sup-
plying wires in z-direction, as one would suppose, but
the energy flows radially from outside into the field.

2. Through a straight wire with the resistance R flows a
constant current I, creating Joule’s heat dWel=dt ¼
I2R. Of course for stationary equilibrium the dissi-
pated power must be supplied from external sources.
Also in this case the Poynting vector is directed
radially from outside into the wire but not along the
wire (Fig. 7.10b). The explanation is as follows. The
current carying electrons move with the very small
drift velocity vD (see Sect. 2.2). At a current of 10 A
through a wire of 1 mm2 cross section is the drift
velocity vD ¼ 8 mm=s. The electric and magnetic
fields created by the current, propagate with the

speed of light v ¼ ðe � e0 � l � l0Þ�1=2 along the wire,
Therefore the energy is transported by the electro-
magnetic field but not by the physical carriers of
charge.

E

0c2 (E B) kS = 
k

B

90°
90°

90°

Fig. 7.8 Energy transport by a plane wave into the direction of the
pointing vector S
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Fig. 7.9 a) Illustration of the pointing vector as vector of energy flux
per unit area. b) For a plane wave S is perpendicular to the phase planes
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Fig. 7.10 Direction of the pointing vector a) during charging of a
capacitor, b) for the supply of the energy, spent by Joule’s heating in a
wire carrying the electric current I
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A plane electromagnetic wave causes not only an energy
flow S but also a momentum transfer per unit volume

pSt ¼ 1
c2

S ¼ e0ðE� BÞ: ð7:24Þ

The momentum has the direction of the Poynting vector
S and the amount

pStj j ¼ e0 � E � B ¼ wem=c ¼ I=c2; ð7:25Þ
where I is the intensity of the wave.

The momentum density of the electromagnetic wave is
then pSt ¼ wem=c. A particle which would move with nearly
the speed of light c had the energy E = mc2 and the
momentum p ¼ mc ¼ E=c (see Vol. 1, Sect. 4.4). Therefore
we can in an analogue way ascribe to the electromagnetic
wave a mass density

qm ¼ wem=c
2 ¼ e0=c

2
	 


E2:

If an electromagnetic wave is absorbed by a particle (see
Sect. 8.2) its momentum is transferred to this particle which
therefore suffers a repulsion. If the wave is reflected by the
particle, twice the momentum is transferred. The transferred
momentum per unit time and area corresponds to the pres-
sure onto the surface.

Therefore the radiation pressure of a plane wave per-
pendicular to a completely absorbing surface of a body is

pSt ¼ c � pStj j ¼ e0E
2 ¼ wem ð7:26Þ

where the unit of energy density of the electromagnetic wave
is equal to the unit of pressure

wem½ � ¼ 1
Ws
m3

¼ 1
N
m2

The radiation pressure can be measured by a very sen-
sitive balance (Fig. 7.11).

Examples

1. A light beam with the mean power �Pel ¼ 10W falls
normally on an absorbing area A ¼ 1mm2. It
transfers per unit time the momentum dp=dtj j ¼
pSt � A � c onto the area. The amount of the repulsive
force is

Fj j ¼ dp
dt

¼ �Pel=c: ð7:27Þ

Its amount is F = 3.3 � 10−8 N. The radiation pres-
sure pSt ¼ F=A ¼ 3:3 � 10�2 Pa is very low and can
only be measured for high light powers and by sen-
sitive balances.
2. With a pulsed high power laser with intensities up

to 1018 W/cm2 radiation pressure of 109 bar = 1014

Pa can be realized.
3. With nearly frictionless bearings in vacuum and

with the help of radiation pressure one can operate a
light mill [1]. It consists of four wings that are
reflecting light at one side and absorbing it at the
other side. The wings are mounted so that they can
rotate about a common vertical axis. The transferred
momentum is at the reflecting side twice that at the
absorbing area. This results in a net angular
momentum that rotates the wings against the low
friction of its bearings. The commercially available
light mills rotate in the opposite direction as that
described above (Fig. 7.12). What is the difference?

4. Hint: There is no vacuum inside the mill (see
Example 7.10).

5. The radiation pressure of the sun is one of the rea-
sons for the curvature of the tails of comets. The tail
of comets consists of matter from the core of the
comet that evaporates while the comet moves near
the sun. The radiation of the sun supplies the nec-
essary energy. The tail consists of neutral molecules,
ions and dust. The electrically charged ions are
deflected by the magnetic field of the sun. The
dust-particles are more affected by the radiation
pressure. Therefore one observes two tails with
different curvature (Fig. 7.13) where the dust-tail
has the stronger curvature [2, 3].

laser beam

quartz threadA

A
scale

Fig. 7.11 Measurement of radiation pressure through the deflection of
a sensitive quartz balance with absorbing surface with area A

radiation

a r

r

a

r a

absorbing

reflective

surface

Fig. 7.12 Light mill in a vacuum container. For the given design it
rotates anticlockwise
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Note The solar wind (protons and electrons) causes inho-
mogeneous electric and magnetic fields and divide the
comet’s tail sometimes in more than two components.

7.7 Measurement of the Speed of Light

According to our present knowledge the speed of light is in
vacuum independent of its frequency x. That means, that
phase- and group-velocity in vacuum are always equal; there
is no dispersion! (see Vol. 1, Sect. 11.9.7).

vPh ¼ vG ¼ x
k
¼ c: ð7:28Þ

The speed of light can, therefore, be measured at any
frequency. Up to now most of the measurements were done
with visible light. That is the reason for naming c the speed
of light, although the value is valid for all electromagnetic
waves of the complete spectrum.

7.7.1 The Astronomical Method of Ole Roemer

The oldest method to determine the speed of light is based
on astronomical observations. Many astronomers have
measured the orbital period of the moons of Jupiter with
high precision, because the time of darkening—the moons
are concealed by Jupiter—and the time of reappearance
could be observed very well. Ole Roemer (1644–1710)
found out, that the available tables reproduce the period of
revolution well, if the earth is near to Jupiter (position 1 in
Fig. 7.14)—Jupiter in opposition to the sun—but the
observed darkenings were 22 min later, if Jupiter where in
conjunction (position 2 of the earth).

Contrary to other scholars of his time, Roemer traced back
the results of the observations to the different times the light

needed between Jupiter and earth for the two positions 1 and 2
in Fig. 7.15 with the path difference Ds ¼ s2 � s1. Roemer
could show, that the speed of light has a finite amount and is

comet

Sunperihelion

radiation 
pressure

radiation
pressure

→
v

Fig. 7.13 Deflection of the comet tail by the radiation pressure from
the sun

Fig. 7.14 Photograph of the comet Mrkos 1957d where the tail is split
(with kind permission of the Hale observatory)
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Fig. 7.15 Determination of the speed of light by the astronomical
method of Ole Roemer. The drawing is not to scale
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not infinitely large, contrary to the opinion of Descartes. For
the exact determination of the path difference, one has to take
into account, that Jupiter has moved by the arc length Dsj
during the timeDt ¼ t2 � t1. The diameterD of the earth orbit
has been well known D 	 3 � 1011mð Þ. So, Roemer could
calculate the speed of light from the difference of his mea-
surements and the data in the available tables.

But Roemer did not publish a definite value of c, maybe
because he believed his measurements to be not exact enough
[4]. Later Huygens published a value of c between 220,000
and 300,000 km/s [5], a value, that includes the true value.

7.7.2 Cogwheel Method by Fizeau

While Roemer used a very large distance (3 � 1011 m)
Armand Fizeau (1819–1896) had improved the time mea-
surements so much that he could use a distance on earth to
determine the speed of light. He used an experimental setup
according to Fig. 7.16. An astronomical telescope colli-
mated the light coming from an extended source LQ to a
parallel beam that was reflected by the mirror S at a distance
d. A part of the reflected light was split by a beam splitter BS
and the transmitted light reached the observer.

A fast rotating cogwheel CW in the focal plane of the lens
L1 periodically interrupts the-light beam, so light pulses of
duration T1 and frequency m ¼ 1=DT ¼ 1= 2T1ð Þ are emitted
if tooth and gap of the cogwheel have the same width.

If the cogwheel rotates with such an angular velocity x
that the light pulse transmitted by the gap n returns back at
the next gap (n + 1) the observer sees light.,

At a faster rotation of the cogwheel the reflected beam
meets a tooth and one observes darkness. At twice the
rotational velocity, 2x, the reflected light pulse meets again
a gap n + 2, and so on.

Assume the cogwheel has N teeth and rotates with x, then
the time between two successive gaps is

DT ¼ 2p
x

1
N
;

The speed of light is then calculated as

c ¼ 2d
DT

¼ d � N � x
p

¼ 2dN � f

where f = x/2p is the rotation frequency.
Fizeau used a distance of d = 8.6 km between the sum-

mits of two mountains. His cogwheel had N = 720 teeth and
rotated with the frequency f = 25.2 Hz. The light was
interrupted at the frequency v = Nf = 720 � 25.2 Hz. His
result was c = 315,000 km/s. The difference of 5% to the
accepted value today results mainly from errors in deter-
mining the rotation frequency [6].

7.7.3 The Rotating Mirror of Foucault

A much higher accuracy was achieved by Bernard Leon
Foucault in 1850 with his method of the rotating mirror
(Fig. 7.17). A lens L focusses the light source onto the
aperture B and after a distance L the light is reflected by a
rotating plane mirror M1 onto a fixed concave mirror M2.
Without rotation of M1 the light reflected by M2 would hit the
aperture B again. When M1 rotates with the frequency x the
reflected light produces on a photographic plate an image of
the slit S which is shifted against the slit S by the distance Dx.

The mirror M1 with a rotation period T ¼ 2p=x rotates
during the time

DT ¼ 2d
c

¼ T � a
2p

¼ a
x
: ðaÞ

by the angle a = 2d � x/c. The distance Dx is then

Dx ¼ L � tan 2a 	 2L � a: ðbÞ
The velocity of light is now obtained from (a) and (b) as

c ¼ 2d � x=a ¼ 4d � x � L=Dx ðcÞ
The measurement of the speed of light c by this method is

reduced to the measurement of the distances d, L and Dx and
the rotation frequency x.
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Fig. 7.16 Measurement of the light velocity with the cog-wheel
method of Fizeau
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Fig. 7.17 Principle of the rotating mirror method of Foucault
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Repeating Foucault’s experiment today, we use a laser as
the light source that can be much better collimated. The
rotation frequency of the plane mirror is driven by an electric
motor and can be determined easily and very accurately.
Therefore much smaller distances d are sufficient to reach an
acceptable accuracy. The experiment can then even be used
as demonstration in the lecture hall [7].

7.7.4 Phase Method

Instead of a cogwheel as in Fizeau’s experiment today
optical modulators are available to interrupt the light at much
higher frequencies f (Fig. 7.18). With a He–Ne-laser that
produces a collimated parallel beam of light which passes
through a Pockels cell. A Pockels cell is an optical modu-
lator that rotates the polarization plane following the high
frequency of an applied high voltage. Together with a
polarizer it acts as an intensity modulator

The transmitted intensity It behind the polarizer P is
modulated at the frequency f according to

It ¼ 1
2
I0½1þ cos2ð2pftÞ� ðdÞ

Part of the transmitted beam is split by the beam splitter
BS onto the fast photo detector PD1. After reflection at a
retroreflector the other part of the light is imaged onto the
photo detector PD2. The phase shift

Du ¼ DT � 2pf ¼ s2�s1ð Þ � 2pf=c ðeÞ
between the two modulated laser beams is measured and
yields the speed c = (Ds � 2pf/Du of light.

Example

f ¼ 107Hz;Ds ¼ 3m, ) Du ¼ 2pf � DT ¼
2pf � 2d=c 	 72
. The phase u can be measured to
0.1°. Therefore the result is accurate within ±0.14%.

7.7.5 Determination of c by Measurements
of Frequency and Wavelength

From the relation
c ¼ m � k

for electromagnetic waves the velocity of light c can be
determined, if both the wavelength k and the frequency m can
be measured simultaneously. The wavelength k can be mea-
sured with high accuracy using modern interferometric tech-
niques [8]. Optical frequencies can bemeasured only recently,
since techniques for division of frequencies and the frequency
comb have been developed [9]. The most accurate measured
value of the speed of light is obtained by a weighted average
of several measurements. The today accepted value is

c ¼ 2; 99792458� 108m=s:

This value is now used to define the unit of length . The
new definition of the meter is:

1 m is the length, that is travelled by light in vacuum
within 1/299792458 s. The speed of light is no longer
a quantity that can change by new measurements but
has the fixed defined value (see Vol. 1, Sect. 1.6.1).

k ¼ c=m

With this definition only the frequency has to be mea-
sured. This is nowadays possible with a much higher accu-
racy than that of wavelength measurements [10].

Table 7.1 lists some historical measurements of the speed
of light and their uncertainties.

Laser

P
BS

retro-
reflector

photo
diodes

PD1 PD2

Δϕ

S1

S2
modulator

Fig. 7.18 Measuring the velocity with the phase method. P =
polarizer, BS = beamsplitter

Table 7.1 Historical measurements of the speed of light

Year Author Method Measured value
given in km/s

1677 Ole Rømer astronomical finite, no value
given

1678 Huygens Analysis of Romers
measurements

220–300 � 103

1849 A. Fizeau cogwheel method 315 000

1862 L. Foucault rotating mirror
method

298 000

1879 A. Michelson improved rotating
mirror technique

299 910

1926 A. Michelson interferometer 299 791

1950 L. Essen Microwave cavity 299 792,5

1973 K. Evenson measurement of
wavelength and
frequency of a laser
transition

299 792,45

seit 1983 – todays defined fixed
value

299 792,458
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7.8 Standing Electromagnetic Waves

Standing electromagnetic waves can be created exactly in
the same way as mechanical waves by superposition of
travelling waves from opposite directions which have equal
frequencies.

7.8.1 Standing Waves in One Direction

Standing waves in one direction arise from reflection of a
plane wave that is incident normally onto the plane boundary
of a conducting medium (see Vol. 1, Sect. 11.12).

Now we consider a linearly polarized plane wave

E ¼ E0x cosðxt � kzÞ
Travelling into the +z-direction, with the electric vector

E = {Ex, 0, 0} and the magnetic vector B= {0, By, 0}
(Fig. 7.19).

Because no tangent component Ex can exist at the surface
of a perfect conductor at z = 0, we get at the plane z = 0

Eðz ¼ 0Þ ¼ E0i þE0r ¼ 0
) E0i ¼ �E0r:

ð7:29Þ

The superposition of incident wave Ei and reflected wave
Er gives

Eðz; tÞ ¼ E0i cosðxt � kzÞþE0r cosðxtþ kzÞ
¼ 2E0 � sinðkzÞ � sinðxtÞ

ð7:30Þ

where E0 ¼ E0i ¼ �E0r.
The magnetic part is obtained from the relation

@Ex

@z
¼ � @By

@t
;

that follows from the Maxwell equation rot E ¼ � _B

B z; tð Þ ¼ 2B0 cos kzð Þ � cos xtð Þ ð7:31Þ
with B0 ¼ 0; k=xð Þ�E0; 0f g.

Contrary to travelling waves at large distances from the
source where E and B are in phase, we have now between
the maxima of E and B a spatial displacement of k/4 and a
temporal difference of T/4 = p/2x.

The reason for this phase shift is the phase jump of 180°
for the electric component E at the reflection (7.29). There is
no such phase shift for the magnetic component (see
Sect. 8.4) because it has according to (7.31) its maximum at
z = 0 and suffers no phase reversion at reflection.

Such standing electromagnetic waves with wavelengths in
the range of about 0.1–1 m can be demonstrated for a dipole
antenna with a sensitive light bulb in its center, which is
moved in z-direction (Fig. 7.20). At the maxima of the
electric field E the lamp lights up, while at the nodes it is dark.

x

y

z

Ei

Er = –Ei

E  = E0i cos( t – kz)

Bi = Br

E  = E0rcos( t +kz)

i

r

Fig. 7.19 One-dimensional electro-magnetic standing wave generated by superposition of the wave reflected at a conductive plane at z = 0 with
the incident wave

transmitter

antenna

reflector

insulating
handle

Fig. 7.20 Detection of a one-dimensional electro-magnetic standing
wave with a dipole antenna and a light bulb
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7.8.2 Three-Dimensional Standing Waves;
Cavity Resonators

We consider a cuboid of size a, b, c with perfectly con-
ducting walls (Fig. 7.21). The origin of our Cartesian
coordinate system is at one corner and its axes along the
edges. So the boundary conditions for the electric field E =
{Ex, Ey, Ez} demand, that the tangent component at the walls
must be zero.

Ex ¼ 0 for z ¼ 0; c and y ¼ 0; b;
Ey ¼ 0 for x ¼ 0; a and z ¼ 0; c;
Ez ¼ 0 for x ¼ 0; a and y ¼ 0; b:

ð7:32aÞ

If an electromagnetic wave with wave vector k = {kx, ky,
kz} is created in a cavity, it is reflected at the walls. The
superposition of the various components with wave vectors
{±kx, ±ky, ±kz} leads only then to a stationary standing
wave, if the boundary conditions

kx ¼ np=a; ky ¼ mp=b; kz ¼ qp=c ð7:32bÞ
are fulfilled with integer numbers n, m, q. The amount of the
wave vector

kj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y þ k2z

q

is obtained from the boundary conditions (7.32b) as

kj j ¼ k ¼ p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

a2
þ m2

b2
þ q2

c2

r
: ð7:33Þ

The possible frequencies x of an arbitrary standing wave
in the cuboid are with x ¼ c0 � k (here c0 is the speed of light
in vacuum)

x ¼ c0 � p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

a2
þ m2

b2
þ q2

c2

r
: ð7:34Þ

In the cuboid only such standing waves are possible, that
have the following form:

En;m;q ¼ E0ðn;m; qÞ � cosxt
With E0 ¼ fE0x;E0y;E0zg and

E0x ¼ A � cos pn
a
x

� �
sin

pm
b

y
� �

sin
pq
c
z

� �
;

E0y ¼ B � sin pn
a
x

� �
cos

pm
b

y
� �

sin
pq
c
z

� �
;

E0z ¼ C � sin pn
a
x

� �
sin

pm
b

y
� �

cos
pq
c
z

� �
:

ð7:35Þ

Their amplitude E0 is perpendicular to the wave vector
k that fulfills the boundary condition (7.32b).

We name the ideal conducting box a cavity resonator and
the possible standing wave (7.35) its resonant oscillations.
Their frequencies are called eigen-frequencies or natural
frequencies.

Our next question is, how many frequencies x up to a
given upper limit xG are possible inside the cavity.

To simplify the calculation we consider the special case
of a cube with c = b = a. instead of a cuboid. The conditions
for the frequencies (7.34) then become

x ¼ c0 � p
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þm2 þ q2

p
) n2 þm2 þ q2 ¼ x2a2= c20p

2
	 


:
ð7:36Þ

In a coordinate system with the axes kx, ky, kz the points
(n, m, q) form a lattice with a lattice constant p/a (Fig. 7.22).
There are as many natural oscillations in the cavity as lattice
points in the k-space. In the k-space (7.33) represents the
equation of a sphere with the radius

kj j ¼ p=a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þm2 þ q2

p
¼ x=c0.

For n2 + m2+ q2 � 1 the radius of the sphere is large
compared to the lattice constant p/a, i.e. k � 2a. Then the
number NG of lattice points with n, m, q > 0 is with a good
approximation equal to the number of unit cells (p/a)3 in an
octant of the sphere (Fig. 7.23). Its volume in the k-space is

Vk ¼ 1
8
� 4p
3
k3G ¼ p

6
x
c0

� �3

: ð7:37aÞ
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→
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Fig. 7.21 Cuboid made of conductive walls as cavity for standing
electro-magnetic waves. a) Representation in the spatial domain. b)
Illustration of the boundary conditions (7.32b) and (7.33) in momentum
space
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The number of lattice points is then

NG ¼ Vk=VE ¼ p
6

ax
pc0

� �3

; ð7:37bÞ

where VE ¼ p=að Þ3 is the volume of the unit cell in k-space.
Now we take into consideration that each standing wave

can have an arbitrary direction of its polarization, which can
be generated by the linear combination of two orthogonal
polarized waves. For a standing wave in z-direction

E ¼ E0 � sin kz � sinxt
is E0 ¼ E0xex þE0yeyÞ;

Then we get the number of possible natural oscillations in
the cavitywith frequenciesx lower than agivenupper limitxG

Nðx�xGÞ ¼ p
3

a � xG

pc0

� �3

¼ 8pm3Ga
3

3c30
; ð7:38aÞ

where we have inserted the frequency mG ¼ xG=2p.
Dividing by the real volume, V ¼ a3, of the resonator

gives the number of modes per unit volume with m� mG

N=V ¼ n ¼ 8pm3G
3c30

: ð7:38bÞ

Often it is of interest to know the spectral density of
modes dn/dm, that is the number of possible natural fre-
quencies per unit volume of the resonator in the frequency
interval between m and mþDv, with Dm = 1 Hz.

Differentiation of (7.38b) results in

dn=dm ¼ 8pm2

c30
; ð7:39Þ

where dn/dm is denoted spectral density of modes.

Note

• The results above are also obtained in a very general
form, when we solve the wave equation

DE ¼ 1
c2

@2E
@t2

with the boundary conditions Et = 0 for x = 0, a; y = 0, b;
z = 0, c.

The general stationary solution is the linear combination
of the resonator modes (7.35)

E r; tð Þ ¼
X
n

X
m

X
q

En;m;q ð7:40Þ

• If the resonator is not a cuboid, it is not always pos-
sible to find analytic solutions. If we have a circular
cylinder the solutions are Bessel functions instead of
the sinusoidal functions (7.35) for the amplitudes of
the resonator modes [11].

7.9 Waves in Wave Guides and Cables

Waveguides are special resonators with open end faces, so
that not only standing waves but also travelling waves in the
direction to the open end faces are possible. These waves
are, however, spatially restricted in the perpendicular
directions. Wave guides gain increasing importance not only
in microwave technology but also in optics as optical fibers
(see Sect. 12.8) and in integrated electronic circuits. We will
now explore the influence of the boundary conditions for
waveguides on the solutions of the wave Eq. (7.3).

ky

π/b R
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→
k2

π/a
0

→
k1 = { 5π

b
4π
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, } ;
→
k2 = { 3π

b
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, }

Fig. 7.22 Representation of the k-vectors of possible standing waves
in the cavity as grid points in the k-domain

→
k

R = 2π
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ky = n2 π/a

kz = n3 π/a

· ·

·

kx = n1 π/a

Fig. 7.23 Illustration of the number of possible natural oscillations in
a cubic resonator
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7.9.1 Waves Between Two Plane Parallel
Conductors

As a simple example we consider two parallel conducting
planes with a distance Dx = a. Electro-magnetic waves can
travel to and fro between the plates (Fig. 7.24). A wave with
the electric vector E = {0, Ey, 0} with the wave vector
k = {kx, 0, kz} is alternately reflected by the upper
(x = a) and the lower plane (x = 0) respectively.

At the reflection kx changes its sign, while kz does not.
The wave suffers a phase change of p, so the amplitude
E changes its sign. In the space between the plates we have a
superposition of the waves with k = {kx, 0, kz} and k = {–
kx, 0, kz}. The resulting field is

E ¼ E0 sin xt � kxx� kzzð Þ½
� sin xtþ kxx� kzzð Þ�

¼ �2E0 sin kxxð Þ � cos xt � kzzð Þ
mit E0 ¼ 0;E0y; 0

� �
:

ð7:41Þ

The tangential component of the electric field Et ¼
f0;Ey;Ezg must be zero at the conducting planes x = 0 and
x = a. This gives, similar to the discussion in the previous
section the boundary condition

kx ¼ n � p=a ðn ¼ 1; 2; 3; . . .Þ: ð7:42Þ
Contrary to the component kx the component kz of the

wave vector k has no restriction by boundary conditions.
Equation (7.41) describes a wave that is substantially

different from standing waves (7.32a, 7.32b) resp. (7.35)
because (7.41) represents a travelling wave in z-direction
with its amplitude �2E0 sin kxxð Þ as a function of the coor-
dinate x (Fig. 7.25).

The electric field E of the wave (7.41) is, according to
(7.42), zero in the planes

x ¼ p
kx

¼ a

n
: ð7:43Þ

These planes are called nodal planes (Fig. 7.25).

Note

• Above we have discussed the special case of waves
with amplitudes E0 = {0, E0y, 0}. However with the
boundary conditions E0 = 0 for x = 0 and x = a the
wave Eq. (7.3) has an infinite number of further
solutions with amplitudes E0 = {E0x, E0y, E0z}.

Examples are:
E ¼ ðA sin kxxþB cos kxxÞ cosðxt � kzzÞ with A;B exk
or waves with an amplitude E0 ¼ 0; 0;E0zf g in z-
direction.
We distinguish two types of solutions: If the electric vector
is normal to the direction of propagation, i.e. E0 ¼
fE0x;E0y; 0g we call these waves TE-waves (transverse
electrical).
If the component Ez is not equal zero, then the magnetic
field B ¼ fB0x;B0y; 0g must be orthogonal to the direc-
tion of propagation and we name the waves TM-waves
(transverse magnetical) (see Sect. 7.9.2).
• The (restriction of the waves by the walls at x = 0 and

x = a results in a spatial modulation of the field
amplitude in x-direction, whereas for a plane wave in z-
direction in free space which is not restricted in the x or
y-direction, the field amplitude is independent of x or y.

The second factor in (7.41) describes the wave cos(xt –
kzz) that propagates in z-direction with the phase velocity

vph ¼ x
kz

ð7:44aÞ

Since the speed of light in vacuum is

c ¼ x=k ¼ x=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

� �1=2
r

x

a

0

z

k
→

kz

kx

kz

–kx

Fig. 7.24 Wave propagation wave propagation between two
plane-parallel plates

x = a

x = a

x = 0

x = 0
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n = 1
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vPh

z

vPh
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)x(Ey

Fig. 7.25 The boundary conditions kx = n � p/a for the kx-component
determine the electric field distribution of a wave propagating between
two conductive plates at x = 0 and x = a
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Equation (7.44a) can be rewritten as

vph ¼ c

kz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2z

q
¼ c �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ kx=kzð Þ2

q
 c!

ð7:44bÞ

This shows surprisingly that the phase velocity of light in
a wave guide can be higher than in free space, (vPh > c). The
group velocity in wave guides

vG ¼ dx
dkz

¼ dx
dk

� dk
dkz

¼ c2

x
kz ¼ c2

vph
\c;

ð7:45Þ

is, however, smaller than that for waves in free space, where
for vacuum is vG ¼ vph ¼ c.

Waves in a wave guide show dispersion, i.e. the phase
velocity vPh ¼ x=k and therefore also the group velocity vg
depend on the frequency x (Fig. 7.26).

Using the boundary condition (7.42) kx = np/a the rela-
tion k2 = kx

2 + ky
2 yields with k = x/c

kz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

c2
� n2p2

a2

r
; ð7:46Þ

so that

vPh ¼ cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2p2c2

a2x2

q ð7:47Þ

which shows the dependence vPhðxÞ.

Note that vPh depends on n, i.e. the phase velocity is different
for different modes.

Figure 7.26b shows the dispersion x(k) with its slope
vG ¼ dx=dkz representing the group velocity.

Because a physical wave has a real valued component kz
of the wave vector it follows from (7.46) for the frequency

xxG ¼ n � cp
a

) v vG ¼ n � c
2a

: ð7:48Þ

We can assign to this frequency limit vG an upper limit
for the wavelength k

k� kG ¼ c

vG
¼ 2a

n
n ¼ 1; 2; 3; . . .ð Þ ð7:49Þ

of a wave outside the wave guide.

For waves in a waveguide there exist a lower fre-
quency limit xG and an upper limiting wavelength kG.

The wavelength k of waves between the parallel plates
cannot be larger than twice the distance a between the plates.
The maximum wavelength k = 2a corresponds to the lim-
iting case kz = 0 for k = kG.

Such a wave guide acts like a filter that allows only waves
with a wavelength k < kG to pass. By choosing the suitable
distance a we can define kG and the minimum frequency xG.

Note For kx = 0 ! k = kz = x/c and vPh ¼ c which implies
that there is no dispersion.

Dispersion arises from the zigzag way of the wave front,
due to the reflection at the walls x = 0 and x = a. The angle
of k against the z-direction depends on x.

7.9.2 Wave Guides with Rectangular Cross
Section

Now we limit the space between systems of parallel plates
discussed above by a further wall to realize a wave guide
with rectangular cross section Dx � Dy ¼ a � b (Fig. 7.27),
that is open in z-direction. This causes a further boundary
condition in y-direction and the field amplitude E0(x, y) of
the travelling wave

Eðx; y; z; tÞ ¼ E0 x; yð Þ � cosðxt � kzzÞ ð7:50Þ
becomes a function of x and y.

At the conducting walls the tangential component of
E must be zero.

Using the ansatz (7.50) in the wave Eq. (7.3a) yields

@2E
@x2

þ @2E
@y2

þ x2

c2
� k2z

� �
� E ¼ 0: ð7:51Þ

In analogy to the wave guides that are restricted only in x-
direction, we now get two types of solutions: transverse
electric TE-waves with E ¼ fEx;Ey; 0g and transverse
magnetic TM-waves with B ¼ fBx;By; 0g.

(a)

vG

ω

vG · vPh = c2

ωGr

vPh

v

c

ωGr

ω

kz

Wave in
free space

(b)

0

Fig. 7.26 a) Phase- and group velocities of electro-magnetic waves
propagating between two parallel boundaries as a function of the
frequency. b) Dispersion relation x(k) for waves between two
parallel plates (red curve) and in free space (Black cuvce). The ratio
vph = x/k gives the phase velocity, while the slope dx/dk gives the
group velocity
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The general solution (7.50) can be found from (7.51) by
using Maxwell’s equations. With the boundary conditions

kx ¼ np=a; ky ¼ mp=b ð7:51aÞ
these are the solutions for TE-waves

E0x x; yð Þ ¼ A � cos np
a
x � sinmp

b
y;

E0y x; yð Þ ¼ B � sin np
a
x � cosmp

b
y;

E0z ¼ 0:

ð7:52Þ

The magnetic field is then obtained from

rot E ¼ � @B
@t

: ð7:52aÞ

We consider as example, a special TEnm-solution with
Ex ¼ Ez ¼ 0 and n ¼ 1;m ¼ 0 illustrated in Fig. 7.27. From
(7.52) and (7.50) it follows with kx ¼ p=a:

Ey ¼ E0 sin
p
a
x

� �
cos xt � kzzð Þ: ð7:50aÞ

The magnetic field of this so called TE10-wave is
obtained with the help of (7.52a):

Bx ¼ � kz
x
E0 sin kxxð Þ � cos xt � kzzð Þ;

By ¼ 0;

Bz ¼ � kx
x
E0 cos kxxð Þ � sin xt � kzzð Þ:

ð7:53Þ

One observes that B = {Bx, 0, Bz} is no longer normal to
the direction of propagation z, (Fig. 7.27x), because the
magnetic field has a component Bz 6¼ 0.

Figure 7.27 shows a snapshot of the electric and magnetic
fields at time t = 0 in the three planes z0 ¼ 0; z1 ¼ 1

4 keff ; z2 ¼
1
2 keff .

For the electric field we obtain

Ey x; z0ð Þ ¼ E0 sin
p
a
x

Ey x; z1ð Þ ¼ 0

Ey x; z2ð Þ ¼ �E0 sin
p
a
x

and for the magnetic field in the plane z0 = 0

Bx x ¼ 0; z0ð Þ ¼ 0

Bx x ¼ a; z0ð Þ ¼ 0

Bx x ¼ a=4; z0ð Þ ¼ Bx x ¼ 3a=4; z0ð Þ
¼ � 1

2

ffiffiffi
2

p
kz
E0

x

Bx x ¼ a=2; z0ð Þ ¼ �kz
E0

x
Bz x; z0ð Þ ¼ 0;

Whereas for the magnetic field in the plane z1 = k/4 we
get

Bx x; z1ð Þ ¼ 0

Bz x ¼ 0; z1ð Þ ¼ �Bz x ¼ a; z1ð Þ
¼ p

E0

xa
Bx x ¼ a=4; z1ð Þ ¼ �Bz x ¼ 3a=4; z1ð Þ

¼ 1
2

ffiffiffi
2

p
p
E0

xa
Bz x ¼ a=2; z1ð Þ ¼ 0:

The values for the field at plane z2 correspond to those at
z0 but with the opposite sign.

For the wave vector in the direction of propagation, we
get by inserting (7.50) into (7.51) the condition

k2xEy þ k2z Ey � x2

c2
Ey ¼ 0;

from which follows

kz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2=c2ð Þ � p2=a2

p
: ð7:54aÞ

The effective wavelength keff ¼ 2pvPh=x with vPh ¼
x=kz results from (7.47) as:

keff ¼ k0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k0=2að Þ2

q ; ð7:54bÞ

if k0 ¼ c=m is the wavelength of a wave with the same
frequency but in free space.
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Fig. 7.27 Waveguide with rectangular cross section and with a TE1,0

wave (E = {0, Ey,0} and B = {Bx, 0, Bz}) propagating into the z-
direction
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The wavelength of a cavity wave is larger than in free
space!

In wave guides not only TE-waves exist, but also
TM-waves with a transverse magnetic field while the electric
field has a component in the direction of propagation
(Fig. 7.28).

The corresponding solutions of the wave equation are e.g.

Ex ¼ E0
kxkz

k2x þ k2y
cos kxxð Þ sin kyy

	 

� sin xt � kzzð Þ;

Ey ¼ E0
kykz

k2x þ k2y
sin kxxð Þ cos kyy

	 

� sin xt � kzzð Þ;

Ez ¼ E0 sin kxxð Þ sin kyy
	 


cos xt � kzzð Þ;

ð7:55aÞ

Bx ¼ � x
kzc2

Ey

By ¼ þ x
kzc2

Ex

Bz ¼ 0:

ð7:55bÞ

with the corresponding boundary condition (7.51a) for kx
and ky, [13].

Such travelling waves in wave guides are called TEnm-
resp. TMnm-waves, depending on whether E or B is orthog-
onal to the z-direction. With the boundary condition (7.51a)

the spatial distribution of the amplitudes in the xy-plane has
n nodal x-planes at x = xn and m nodal y-planes at y = ym.

For TE-waves it is possible, that n or m are zero. For
TM-waves n as well as m must be greater than zero. So the
TMn-wave, shown in Fig. 7.27, is the most simple TM-wave.

In semiconductors waveguides with circular cross sec-
tion, we derive from its boundary conditions for the pre
factors Bessel functions instead of sin(kxx) and cos(kyy).

A few examples for such distributions of the amplitudes E
(x, y) in cylindrical cavities are shown in Fig. 7.29. In this
case is n the number of radial and m the number of the
azimuthal nodal surfaces.

The limiting frequency x is determined analogous to
(7.48). From the relation

kz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2x � k2y

q
We obtain with k = x/c and the boundary conditions

(7.42) the relation

xxG ¼ c � p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

a2
þ m2

b2

r
: ð7:56Þ

If we choose suitable values for a and b we can, for
example, achieve that only one TEn-wave mode is realized
for a fixed frequency x.

Such wave guides play an important role for the trans-
mission of microwaves [12]. They prohibit that microwave
power produced by a transmitter, radiates into all directions.
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Fig. 7.28 TEM-waves in a waveguide with rectangular cross section. The red lines are the electric field lines a) TE10 wave. The electric field lines
point into the ±y-direction, b) TM11-wave The magnetic field is perpendicular to the drawing plane. (� means B points into the drawing plane,
• means B points out of the drawing plane)
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The conducting walls create a finite volume where the waves
are “guided”, practically without loss, to the location of
consumption. With this arrangement we can guide waves
“around the corner” (Fig. 7.30). This possibility allows a
great variability of wave guides.

The commercially available cavity resonators consist of
conducting parts with flanges (Fig. 7.31) so that by

combining various parts the wave guides can be adapted to
the problem at hand.

7.9.3 Waves Along Wires; Lecher Line; Coaxial
Cable

Electromagnetic waves can not only be “guided” by cavity
resonators, but can be also transmitted along electrical
conducting wires and in coaxial cables. We illustrate this
with the equipment shown in Fig. 7.32.

7.9.3.1 Lecher-Line
Two parallel wires in z-direction connected with each other
on one end (Lecher line) are placed in an electromagnetic
field produced by a high frequency transmitter.

Now we observe standing waves along the wires that
create a spatially periodic voltage U(z) and a corresponding
current distribution I(z).

The distribution of the voltage U(z) can be demonstrated
by a glow lamp or a sensitive light bulb that is connected to
the two wires and can slide along the z-axis (Fig. 7.32a).

At the open end of the Lecher line is a maximum of the
voltage and a node at the short circuited end.

→
B

01TE 11TE

11TM

→
E

Fig. 7.29 Examples for the field distribution of TMnm and TEnm in a
cylindrical waveguide with circular cross section

Fig. 7.30 Branching of a waveguide

Fig. 7.31 Commercial microwave guides with T-part and flanges
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The distribution of the current I(z) can be shown by its
magnetic field B(r, z) that induces a voltage in a small coil
above the conductors With a rectifying diode the induced
voltage can be measured directly by a voltmeter (Fig. 7.32b).

The current I(z) is zero at the open end of the Lecher line
and has a maximum at the closed end, where a phase shift of
p occurs. If the distance between the two conductors becomes
small compared to the wavelength k of the standing wave,
then the currents in the both conductors have opposite phases.

7.9.3.2 Coaxial Cables
In Chap. 6 we have learned that a straight wire that carries an
alternating current of high frequency acts like a Hertzian
dipole and radiates energy in the form of electromagnetic
waves. The transmitted power is according to (6.38) pro-
portional to the fourth power of the frequency x.

Therefore the transport of high frequency electric currents
through single wires is not practicable, because of the large
energy losses. In this case twin-conductors can be used
(Fig. 7.32), where the distance between both conductors is
small compared to the wavelength k, because then the waves
radiated from the two wires have a phase shift of p and
therefore interfere destructively.

Still better for the reduction of the losses by radiation is a
coaxial cable (Fig. 1.21). It consists of a thin wire as inner

conductor with radius a and a concentric outer conductor
with radius b (Fig. 7.33). This system can be regard as
cylindrical wave guide with circular cross section.

The essential difference to the normal wave guides is the
inner conductor that represents an additional boundary
condition. If the outer conductor is grounded, the electric
field is radial. Direction and amount of the electric field
E depend on the potential V of the inner conductor. The
magnetic field lines are concentric circles about the inner
conductor The direction of rotation of the magnetic field as a
function of z changes periodically from clockwise to coun-
terclockwise with the wavelength k as period.

If an electromagnetic wave is travelling in z-direction
through the coaxial cable, the voltage U between inner and
outer conductor becomes a function of z (Fig. 7.34).

With the inductance L̂ and the capacitance C per unit
length of the cable, we get for the voltage change along the
cable, according to the law of induction

DU ¼ U zþDzð Þ � U zð Þ ¼ �L̂Dz
dI
dt

;

Which yields for Dz ! 0

@U

@z
¼ �L̂

@I

@t
: ð7:57Þ

The electric charge per cable length Dz is

Q ¼ Ĉ � U � Dz:

2a

2b

E
→

B
→

Fig. 7.33 Coaxial waveguide with radial electric field lines and circles
of the magnetic field lines

I(z)

U(z) dQ/dt

Δz
z outer conductor

z

inner conductor

I(z+ z)Δ

U(z+ z)Δ

Fig. 7.34 Illustration of the derivation of the wave Eqs. (7.59a, 7.59b)

z

(a)

Uind ∝ I(z)

U(z)

wire

I(z)

z

d << λ

(b)

Fig. 7.32 Lecher conductors a) measurement of the voltage U(z) with
a glow lamp dipole antenna, b) measurement of the current I(z) with an
induction coil. The current has amplitude maxima at the shortened end
and nodes at the open end, for the voltage U(z) the situation is just
reversed. The distance d is here enlarged in order to make the
illustration more clear
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The temporal change @Q=@t corresponds to the current

DI ¼ I zþDzð Þ � I zð Þ;
flowing out of or into the volume between z and
z + Dz. Therefore it is

@I

@z
¼ �Ĉ

@U

@t
: ð7:58Þ

Differentiating (7.57) with respect to z and (7.58) with
respect to t and inserting ∂2I/(∂z∂t) into (7.58) yields the
equations

@2U

@z2
¼ L̂Ĉ

@2U

@t2
; ð7:59aÞ

@2I

@z2
¼ L̂Ĉ

@2I

@t2
: ð7:59bÞ

These are wave equations for the voltage U ¼ U0 �
sin xt � kzð Þ and the current I ¼ I0 � sin xt � kz� uð Þ. The
amplitudes of voltage and current propagate into the z-
direction with the speed

vPh ¼ 1ffiffiffiffiffiffiffiffiffiffi
L̂ � Ĉ

p ð7:60Þ

In general the resistance Z ¼ U=I is a complex quantity
which depends on the phase shift between U and I. We get
the relation (see Sect. 5.4)

tanu ¼ ImðZÞ
ReðZÞ :

The real quotient Z0 ¼ U0=I0 ¼
ffiffiffiffiffiffiffiffiffi
L̂=Ĉ

q
is called wave

resistance of the coaxial cable (see Problem 7.15). Its unit is
[Z0] = 1 V/A= 1 X.

If we connect a resistor R = Z0 to one end of the cable
then the wave travelling through the coaxial cable will not be
reflected.

Example

A coaxial cable with Ĉ ¼ 100 pF=m and L̂ ¼
0:25 lH=m has a wave resistance of Z0 = 50 X.

The wave resistance of a coaxial cable as that shown in
Fig. 7.33 depends on the radii a and b of the inner and outer
conductor. We get (see Problem 7.15)

Z0 ¼ 1
2pe0c

lnðb=aÞ: ð7:61Þ

In a flexible coaxial cable is the inner conductor a thin
wire, the outer conductor a wire net. The space between
inner and outer conductor is filled with an insulator (e > 1).

This increases the capacitance C of the cable by the factor e
and the phase velocity is therefore smaller by the factor e
than in vacuum (see Chap. 8).

In coaxial cables as well as in free space the fields E and
B are transverse to the direction of propagation. The wave-
forms of the waves travelling in the cable are called TEMnm-
modes (transverse electromagnetic). They have n nodes in r-
direction and m nodes along the azimutal coordinate.

7.9.4 Examples of Wave Guides

Now we will consider some examples of wave guides for
different wavelengths.

7.9.4.1 Radiowaves in the Atmosphere
of the Earth

The radiation of the sun with very short wavelengths ionizes
part of the molecules and atoms in the higher earth atmo-
sphere in altitudes above 50–100 km.

This ionosphere reflects electromagnetic waves in the
rf-range (radio frequency). In the layer where the dielectric
constant e changes rapidly, reflection of the wave takes
place. This layer is named Heaviside layer (Fig. 7.35). The
frequency limit mG depends on the ionization density which
in turn depends on the season of the year, on day and night
and on the activity of the sun.

The layers are divided in the D-layer (approx. 80 km),
E-layer (120 km) and F-layer (200–400 km).

The D-layer reflects waves with frequencies m > 5–
30 MHz. Because of this reflections, waves from the trans-
mitter S can reach points B the earth, which cannot be
reached by mere geometric propagation.

The ionosphere and such the height of the Heaviside layer
are influenced by the flux of particles from the sun and
therefore changes of this flux by protuberances or flares on
the surface of the sun can change the reflectivity of the
ionosphere and disturb the radio communication.

Ionosphere

Hea
vis

ide-la
yer

≈100 km

earth

S

B

Shortwave
transmitter

ν > ν ≈ 30 MHzg

ν < νg

Fig. 7.35 Reflection of radio waves at the Heaviside layer between
ionosphere and mesosphere
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7.9.4.2 Microwave Guides
In Sect. 7.9.2 we have discussed metallic cavities (conduc-
tors). In microwave spectroscopy they are used to transport
microwaves over short distances from the transmitter through
the absorbing sample to the detector. This is a common
method to guide microwaves over distances of several meters.

7.9.4.3 Wave Guides for Light
Also light waves can be transported for distances up to
1000 km by thin, flexible fibers of quartz. Today these
optical fibers are used to transmit digital optical signals with
bit rates up to 1011 s−1 (see Sect. 12.7).

7.10 The Electromagnetic Frequency
Spectrum

The Maxwell equations and the wave equation derived from
them describe electromagnetic fields and their transmission
as waves. Periodic waves are special cases of many other
possible solutions of the wave equation. The frequency x
and the wavelength k ¼ 2pc=x of these solutions are still
undefined and can be selected arbitrarily.

All phenomena of electromagnetic waves in vacuum
like for instance, the speed of propagation c, the energy
density wem, The Poynting vector S, must be described
by the Maxwell equations for all frequencies.

The whole frequency range of electromagnetic waves
known to us today comprises a range of 24 decades. In order
to readily compare the corresponding frequencies m (in Hz),
wavelengths k (in m) and photon energies (in eV) a sche-
matic comparison is illustrated in Fig. 7.36.

As shown in quantum physics, a photon with energy h � m
is the smallest unit of energy of an electromagnetic field with
frequency m. The energy density wem of the electromagnetic
field is quantized and can be always written as n � h � m,
where n is the number of photons per unit volume. The
constant h is Planck’s constant (see Vol. 3, Sect. 3.1).

The total spectral range of the electromagnetic field in
vacuum can be described by the four Maxwell equations and
the constants e0, l0.

The situation changes fundamentally if matter is present,
because now the interaction between electromagnetic field
and matter has to be considered. Then the frequency
dependent properties of matter become important, i.e.
absorption, scattering, dispersion or reflection (see Chap. 8).

The investigation of the material properties in different
ranges of the spectrum has brought an enormous increase of

our knowledge about the subatomic structure of matter (see
Vols. 3, and 4).

Up to about 1910 investigations were only possible in
the visible range of electromagnetic waves (k = 400–
700 nm), because the human eye was the only known
detector of electromagnetic waves. The phenomena and
their description, found in that range of visible light are the
subject of optics. In the meantime a number of radiation
sources and detectors have been developed that work in
much more extended ranges beyond the visible spectrum.
These are:

The infrared spectral range 700 nm < k < 100 lm
The microwave range 100 lm < k < several cm
the visible range 400 nm < k < 700 nm
The ultraviolet range 10 nm < k < 400 nm
The X-ray range 0.01 nm < k < 10 nm
The gamma radiation range k < 0.01 nm.

For all these ranges new experimental methods have been
developed. Therefore modern optics includes as well the
infrared and ultraviolet range.

Especially remarkable are the advances in astrophysics by
disclosing new areas of the spectrum. In former times the
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observation of celestial bodies (planets, comets, stars or
galaxies) by astronomers was restricted to visible light,
except for the investigation of meteors. In the meantime
radio astronomy has brought a wealth of new information.
Also in the infrared and X-ray range, previously unknown
phenomena are now accessible. Besides observations from
satellites outside of the earth atmosphere also observers
bound to the surface of the earth can watch the sky using
electromagnetic waves with frequencies that are not absor-
bed by the atmosphere. These are mainly visible light, radio
frequencies and small windows in the near infrared, where
the atmosphere is less absorbing, so that radiation can reach
the surface of the earth. In Fig. 7.37 the spectral windows
accessible to observers on the earth are shown. The red curve
gives that altitude above the earth surface where the radia-
tion from outside has dropped due to absorption to 1/e of its
value outside the atmosphere. The radiation with wave-
lengths k > 180 nm is mainly absorbed by trace gases in the
atmosphere such as CO2, H2O or CH4.

The main components of the atmosphere, N2 and O2,
absorb only in the spectral range with k < 180 nm, in the so
called vacuum-ultraviolet range. Therefore measurements in

this range have to be done outside the atmosphere, i.e. from
balloons, satellites or stations in the orbit.

The transmitters for the various ranges of the electro-
magnetic spectrum differ very much. For waves with
k > 1 m (m < 300 MHz) radio frequency transmitters are
commercially available (see Fig. 6.17). For microwaves
k > 1 mm, m < 300 GHz), sources e.g. clystrons or car-
cinotrons [13, 14] are also commercially available. Infrared
radiation is emitted by thermal sources, e.g. wolfram fila-
ments heated to about 2000 K. For visible light is the
transition between energy levels of atoms and molecules
the main source of radiation. (see Vol. 3).

Because of the importance for the human being, the next
chapters deal with phenomena and interactions of visible
light with matter, superposition of electromagnetic waves
(interference or diffraction). The phenomena are demon-
strated for light, because these waves are essentially con-
spicuous and can be observed without an additional detector.

Theprinciples andphenomenaof visible light discussed in the
following chapters, are the subject of optics. Today it includes
also the infrared and ultraviolet range of the spectrum, because
many detectors for these ranges are nowadays available.
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Fig. 7.37 Spectral absorption of the earth atmosphere. The red cure
gives the height h above the earth surface where the intensity of the
radiation, incident from outside, has decreased to 1/e of its initial value.

This illustrates that there are only a few spectral windows Dk where the
intensity I(k) reaches the ground without significant attenuation
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Summary

• All electromagnetic waves in vacuum are solutions of
the wave Eq. (7.3)

DE ¼ 1
c2

@2E
@t2

:

which can be derived from the Maxwell equations.
• Plane periodic wavesE = E0 cos(xt− k � r) are important

special cases of the general solutions.
• The speed of propagation c = xk of electromagnetic

waves in vacuum is the same for all frequencies x, i.e.
there is no dispersion. The value of c = 299,792,458 m/s
is now defined and is used for the definition of the unit of
length. 1 m (m) is that distancewhich is traveled by light
in the time t = 1/299,792,458 s.

• Between electric and magnetic field of an electro-
magnetic wavet the relations hold:

Ej j ¼ c Bj j; E?B; E;B?k:

where E, B and k form a right-handed system.
• The electromagnetic wave transports energy and

momentum. The Poynting vector

S ¼ e0c
2 E� Bð Þ

gives the direction of transport.
• The intensity I of a wave is the energy transported per

unit time (second) through the unit area (square
meter). The following relations pertain:

I ¼ Sj j:

The momentum of the electromagnetic wave per unit
volume is

pSt ¼ 1
c2

S:

• The stationary solutions of the wave equation in closed
resonators are standing waves E = E0 sin(k � r). The
spatial distribution of their amplitudes is determined by
the boundary conditions at the walls of the resonator.

• In wave guides with propagation possibilities in
z-direction TEmn-respectively TMmn-wavesE = E0(x, y) �
cos(xt − kzz), with amplitudes depending on x and y,
propagate into the z-direction.
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Problems

7:1 Prove, that from the Maxwell Eqs. (7.1a, 7.1b) a wave
equation for the magnetic field B can be derived, that
is analogue to the Eq. (7.3) for the electric field.

7:2 Show, that for an arbitrary plane wave, propagating
into the direction of k, the planes k � r = constant are
phase planes.

7:3 From the linearity of the wave equation it follows that
every linear combination of solutions for the field
amplitudes represents the most general solution. Is
this also valid for the intensities? Are there situations
where the sum of the intensities of two waves gives
the total intensity?

7:4 Prove that every linear polarized wave can be com-
posed of two circular polarized waves with opposite
directions of rotation.

7:5 A sun energy collector has an effective area of 4 m2

and consists of a blackened metal plate which absorbs
80% of the incident energy. The plate has in its
interior pipes for the cooling water. What is the
maximum water flow, if the temperature of the plate
should not exceed 80 °C? The unwanted energy
exchange with the surroundings (T = 20 °C) is
DQ = j � DT with j = 2 W/K. The incident sun
radiation is 500 W/m2 and hits the collector under an
angle of 20° against the surface normal.

7:6 A capacitor with plane parallel plates has the capacity
C. it is charged by the constant current I = dQ/dt.
(a) Determine the electric and the magnetic field

during the charging.
(b) How large is the Poynting vector S
(c) Express the total energy that is used to transport

the charge Q to the capacitor by the Poynting
vector and by the charge Q and capacitance C.

7:7 The sun radiates to the earth (outside the atmosphere)
the intensity I = 1400 W/m2. How much sun energy
receives Mars?
Assume Mars diffusely reflects 50% of the incident
energy (i. e uniformly into the angle 2p). How much of
this energy can the earth receive at the time when the
earth is located between sun and Mars
(distance earth-sun = 1.5 � 1011 m and sun-Mars =
2.3 � 1011 m).

7:8 The maximum intensity of the solar radiation falling
onto an area perpendicular to the earth surface is in
Germany in June about 800 W/m2. Which radiation
power would pass through the pupil of the eye with a
diameter of 2 mm, if one looks without filters into the
sun? The eye lens images the sun onto the retina and
forms there a spot with 0.1 mm diameter. What is the
intensity on the retina?

7:9 A small ball can float in air, if the radiation pressure
caused by a vertical laser beam just balances the
gravitation (Fig. 7.38). How large must be the inten-
sity of the laser beam with a constant intensity over
the cross section of the beam which is equal to that of
the ball. The reflectivity of the ball is 100%.

7:10 (a) A light mill in vacuum with 4 quadratic wings
(2 � 2 cm2) consisting alternately of totally
absorbing resp. reflecting surfaces is hit by a light
beam with a cross section of 6 � 6 cm2 and an
intensity of 104 W/m2. How large is the torque
acting on the light mill?

(b) Now the mill is brought into a container filled
with argon (p = 10 mbar). The heat capacity of
the absorbing surfaces is 10−1 Ws/K. Estimate
the torque for a gas temperature of 20 °C.

7:11 A small antenna emits a radiation power of 1 W,
which is collected by a parabolic mirror with 1 m
diameter and a focal length of 0.5 m, which reflects
the radiation as a parallel beam (plane wave). What is
the intensity of the plane wave, if the dipole sits in the
focal point of the parabolic mirror and its axis is
orientated perpendicular to the line SO in Fig. 7.39?

I

m·g
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ρ

Fig. 7.38 To problem 7.9

0

f
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1m

ϑ

Fig. 7.39 To problem 7.11
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7:12 In a wave guide with quadratic cross section
(a = 3 cm) an electromagnetic wave propagates with
the group velocity vG = 108 m/s. What is the value of
its wavelength k and how large is the phase velocity
vPh?

7:13 A current of 30 A flows through a straight copper wire
(3 mm diameter, resistance R = 0.03 X/m length
L = 100 m). Calculate E, B, and the Pointing vector
S at the surface of the wire.

7:14 There are plans to send space ships on the journey to
other planets. They shall be accelerated by photon
recoil to large velocities. How large must be the
intensity of a light source with 100 cm2 area in the
space ship, which sends light backwards to produce
the recoil, in order to reach an acceleration of
10−5 m/s2 for a mass of 1000 kg?

7:15 Calculate for a coaxial wave guide with inner
radius a and outer radius b the capacitance per m
and the wave resistance Z0. How large must be
b for a = 1 mm in order to reach a value
Z0 = 100 X?
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8Electromagnetic Waves in Matter

In the previous chapter we have discussed the characteristics
of electromagnetic waves in vacuum. We will now investi-
gate the influence of matter on the propagation of electro-
magnetic waves. For this purpose we have to add to the
Maxwell Eq. (7.1), which are valid for waves in vacuum,
terms that describe the different effects of matter on elec-
tromagnetic waves.

While the propagation and superposition of electromag-
netic waves in matter can be satisfactorily treated by a
classical macroscopic theory, based on the Maxwell equa-
tions, the generation and annihilation of electromagnetic
waves (emission and absorption) by the atoms or molecules
of the medium can be only described quantitatively by a
microscopic model based on quantum theory (see Vol. 3).

Nevertheless the classical model of the damped oscillator
for the absorbing or emitting atoms, which we have already
used for the description of the Hertzian dipole, can give a
good intuitive insight into the physical phenomena observed
for electromagnetic waves in matter.

We will at first give a vivid phenomenological repre-
sentation of these phenomena, before we treat the solutions
of the extended Maxwell equations.

8.1 Refractive Index

Measuring the phase velocity vph of electromagnetic waves
in matter we find:

• The phase velocity vph in matter is smaller than that in
vacuum by a factor n that depends on the medium

vphðnÞ ¼ c

n
: ð8:1Þ

• The value of n and therefore also that of vph not only
depends on the medium but also on the wavelength k
of the wave.

n ¼ nðkÞ ! vph ¼ vphðkÞ ðdispersionÞ:
How can we understand these results?
We regard in Fig. 8.1 a plane wave

Ee ¼ E0e
i ðxt�kzÞ ¼ E0e

ixðt�z=vPhÞ;

which travels in the z-direction through a medium (for
instance a gas layer) with the thickness Dz. Inside the
medium the wavelength k ¼ k0=n is smaller than the
wavelength k0 in vacuum, whereas the frequency x is
the same inside and outside.

The electromagnetic wave induces the atomic electrons to
forced oscillations. They can be regarded as oscillating
dipoles that emit again electromagnetic waves with the same
frequency as the exciting wave. However, the phase of the

z
E

E = E 0x
·ei (t (n 1) z/c z/c)

x

z

E = E 0x
·ei( t kz)

n

z

E 0

= 0 /n

Fig. 8.1 Passage of a plane wave through a medium with refractive
index n. The reflection at the interfaces has been here neglected
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induced emission is delayed against that of the exciting wave
(see Vol. 1, Sect. 11.5).

At the observation point P(z) behind the medium the
primary and secondary waves superimpose and form the
total field amplitude

E ¼ Ee þ
X
k

Ek: ð8:2Þ

where the second term represents the sum of the secondary
waves emitted by all atoms in the plane z1 inside the
medium.

Because of the phase delay of the secondary waves the
total wave arrives at P(z) with a time delay, i.e. it arrives later
than without the presence of the medium. Its velocity inside
the medium is therefore smaller than in vacuum (Fig. 8.2).

Wewill at first describe this fact by the broad brush quantity
of the refractive index n, before we will derive the relation
between n and the atomic characteristics of the medium.

8.1.1 Macroscopic Description

In vacuum the wave would need the time t ¼ Dz=c0, to
traverse the distance Dz, while inside the medium it takes the
time tm = Dz/c = nDz/c0, i.e. it needs the additional time

Dt ¼ ðn� 1Þ � Dz=c0:

Behind the medium the wave at the point P(z) is then
described by

EðzÞ ¼ E0e
ix t�ðn�1ÞDz=c�z=c½ �

¼ E0e
ixðt�z=cÞ � e�ixðn�1ÞDz=c:

ð8:3Þ

The first factor in (8.3) gives the unperturbed wave which
would occur in the absence of the medium.

The influence of the medium is described by the second
factor

e�iDu with Du ¼ xðn� 1ÞDz=c ¼ 2pðn� 1ÞDz
k

If the phase shift Du is sufficiently small (this is the case
for gaseous media with n� 1 � 1, but is generally not valid
for solid media), we can apply the approximation

e�iu � 1� iu

This gives with (8.3) the superposition (8.2) in the sim-
plified form

ð8:4Þ

where the influence of the secondary waves onto the delay of
the total wave is described globally be the refractive index
n and the thickness Dz of the medium.

8.1.2 Microscopic Model

The second term Emed in (8.4) can be described by a
microscopic but still classical theory. We characterize each
atomic electron that is induced by the electromagnetic wave
E ¼ E0 � eiðxt�kzÞ to forced oscillations due to the force
F = −e � E by the classical model of the damped harmonic
oscillator (see Vol. 1, Sect. 11.5).

The oscillation forced by a wave that is linear polarized in
x-direction, is described by the equation of motion

m€xþ b _xþDx ¼ �eE0e
iðxt�kzÞ ð8:5Þ

This gives with the abbreviations x2
0 ¼ D=m, c = b/m the

oscillation amplitude of the atomic electrons (see 6.43)

x0 ¼ � eE0=m

ðx2
0 � x2Þþ icx

: ð8:6aÞ

n = 1

Primary wave

Δz

n > 1

Secondary waves

Resulting total wave

emitted by 

2. layer
3. layer
4. layer
5. layer
6. layer
7. layer

λ
Δ

−π=ϕΔ
z

)1n(2

1. layer

P    z

Fig. 8.2 Vivid schematic representation of the delay of a wave during
its passage through a dielectric medium. The incident wave is
superimposed by secondary waves with a phase delay, emitted by the
atoms in the layer of the medium induced to oscillations by the incident
wave. The thickness of these layers corresponds to an atomic layer with
Dz � 0.4 nm
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Note We have here, contrary to the definition in Vol.
1 defined the damping factor of the amplitude as c/2 instead
of c. With this definition c becomes the damping factor of
the power and the following equations then agree with the
majority of the literature.

Expanding (8.6a) by ½ðx2
0 � x2Þ � icx� yields

x0 ¼ �ðx2
0 � x2 � icxÞe=m

ðx2
0 � x2Þ2 þðcxÞ2 E0

¼ �ðaþ ibÞE0 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

q
E0e

iu

) x ¼ � e=mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2

0 � x2Þ2 þðcxÞ2
q E0e

iðxtþuÞ:

ð8:6bÞ

This shows that the amplitude of the forced oscillation not
only depends on the driving force �e � E0 but also on the
frequency difference x0 � x and the damping constant c.
The phase shift u between oscillation amplitude x(t) and the
inducing wave E(t) is

tanu ¼ � c � x
x2

0 � x2
: ð8:6cÞ

It also depends on the difference x0 − x and the damping
factor c (Fig. 8.3).

The oscillating dipoles with the dipole moment p tð Þ ¼
�e � x tð Þ (the valence electrons oscillate against the ion cores
which are assumed to be fixed in space) radiate themselves
waves (see Sect. 8.6.4). The share of a single dipole measured
at time t at the point P(r) with a distance r � x0 from the
dipole is

EDðr; #Þ ¼ � ex2x0 sin#
4pe0c2r

eixðt�r=cÞ ; ð8:7Þ

where the retardation, i.e. the travelling time t = r/c of the
wave from the dipole to the point P has been taken into
account.

We regard in Fig. 8.4 oscillating dipoles in a thin layer Dz
around the plane z ¼ z0. Their number is

DN ¼ Dz � Z N � dA
where N is the density number of dipoles per unit volume
and dA ¼ 2p � q � dq the area of the annulus with radius q
and width dq in the x-y-plane.

The total field amplitude generated in the point P by all
dipoles in the layer Dz is the superposition of the individual
field amplitudes from the single dipoles. Since the distance
between the different atoms in the layer is small compared
with the wavelength k of visible light, we can consider the
distribution of the dipoles as continuous, We then obtain by
integration the total field amplitude of all dipoles in the layer
with thickness Dz around z = 0

EðzÞ ¼ � ex2x0eixt

4pe0c2
Dz �

Z1
0

N
e�ixr=c

r
sin#2p.d. : ð8:8aÞ

If the incident light beam has the cross section p � . 2
max

only dipoles in the range from . ¼ 0 to . ¼ .max are exci-
ted. For z � .max we can approximate a � 0 ! # � 90°
=> sin # � 1.

If the density N of oscillating dipoles is constant within
the volume dV = dz � dA we can extract N out of the integral
and obtain

EðzÞ ¼ � ex2x0eixt

2e0c2
N � Dz �

Z
e�ix r=c

r
.d. : ð8:8bÞ

With r2 ¼ z2 þ .2 ) rdr ¼ .d. (in the plane z = z0 is
z constant) the integral yields

Z 1

0

e�ix r=c

r
.d. ¼

Z 1

r¼z
e�ix r=cdr

¼ � c

ix
e�ix r=c
h i1

z
:

ð8:9Þ

0

2/π−

π−

ϕ

ω
0ω

0=γ

0>γ

Fig. 8.3 Phase shift u between oscillation amplitude x(t) of the
dipoles and the excitation wave E(t) as a function of the frequency x of
the excitation wave for different values of the damping constant c

ρ

x

z

r

PΔz

x

y

dρ

ρ

N ·2πρ dρ dz
dipoles at the
distance r from P

ϑ

α
α ϑ −= 90°

Fig. 8.4 Illustration of the derivation of the electric field E at the point
P, caused by dipoles in the layer Dz around z = 0
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When the diameter of the incident light beam is d ¼ 2.max

the range .[ d=2 does not contribute to the integral because
there are no excited dipoles. We therefore can neglect the
contribution from dipoles in the range .max\.\1 corre-
sponding to .max= sin a\r\1 to the integral and obtain

EðzÞ ¼ ixex0N
2e0c

eixðt�z=cÞ � Dz : ð8:10Þ

Inserting the expression (8.6a) for the amplitude x0 the
field amplitude generated by N � Dz dipoles in a layer Dz

EðzÞ ¼ �ix
Dz
c
� Ne2

2e0m½ðx2
0 � x2Þþ ixc� � E0e

ixðt�z=cÞ :

ð8:11Þ

Note that the incident light beam diameter 2.max does not
enter (for z � Dz) into the field amplitude E(z).

This is the additional contribution to the field amplitude,
described by the second term in (8.4). The comparison with
(8.4) gives for the refractive index the expression

n ¼ 1þ Ne2

2e0m½ðx2
0 � x2Þþ ixc� : ð8:12aÞ

The refractive index is a complex number! We can write
this as

n ¼ nr � i � j:
It depends on

• the density N of oscillating dipoles, which means the
atomic density of the medium

• the frequency difference Dx ¼ x0 � x between the
frequency x of the incident electromagnetic wave and

the resonance frequency x0 ¼
ffiffiffiffiffiffiffiffiffiffi
D=m

p
of the oscil-

lating atomic electrons. The latter is determined by the
restoring force (−D � x) which is proportional to the
displacement from the equilibrium position x = 0 and
by the electron mass m ¼ me.

Note The derivation of the refractive index, outlined above,
is strictly valid only for optical thin media ðn� 1 � 1Þ,
where the density N of the oscillating dipoles is sufficiently
small. This is the case for gases.

Example

The refractive index of air at atmospheric pressure is
n ¼ 1:0003, ðn� 1Þ � 1 (see Table 8.1).

Remark The approximation in the derivation of (8.12a) has
been used twice: Firstly by approximating e−i(n−1) �
1 – i(n − 1) when deriving (8.4) from (8.3) and secondly
when we assumed that the electromagnetic field emitted by
the atomic dipoles should be very small compared to the
field of the incident wave. With this approximation we could
assume that the amplitude of the exciting wave is equal to
that of the incident wave, although we should have used the
total amplitude (which depends in the medium on z, because
the incident wave is partly absorbed and scattered). For
(n − 1) � 1, which means a small density N of oscillating
dipoles, both approximation are well justified. This restric-
tion to media with n − 1 � 1 is set aside in Sect. 8.3.

8.2 Absorption and Dispersion

Wecanunderstand thephysicalmeaningof the complex refractive
index, when we write (8.12a) as n ¼ nr � ij. Expanding the
fraction in (8.12a) by ½ðx2

0 � x2Þ � ixc� we get

n ¼ 1þ Ne2

2e0m
� ðx2

0 � x2Þ � ixc

ðx2
0 � x2Þ2 þx2c2

¼ nr � ij:

ð8:12bÞ

Inserting this into (8.3), the electric field EðzÞ of the wave
propagating through the medium with thickness Dz becomes
with k0 ¼ x=c

EðzÞ ¼ E0e
�xjDzc � e�ixðnr�1ÞDzc � ei ðxt�k0zÞ

¼ A � B � E0 � ei ðxt�k0zÞ :
ð8:13Þ

Table 8.1 Real part nr of the complex refractive index for dry air at
20 �C and 1 bar pressure. Here is nr � j

k=/nm ðn� 1Þ 	 104

300 2:915

400 2:825

500 2:790

600 2:770

700 2:758

800 2:750

900 2:745
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The factor A ¼ e�xjDz=c describes the attenuation of the
amplitude of the wave passing through the medium. After
the path length z = c/(x � j) the amplitude has decreased to
1/e of its initial value (absorption).

The intensity I ¼ c � e0 � E2 of the wave has then
decreased to

IðzÞ ¼ I0 � e�aDz ð8:14Þ
(Beer’s law of absorption). The quantity

a ¼ 4pj
k0

¼ 2k0j ð8:15Þ

is the absorption coefficient. Its unit is ½a� ¼ 1m�1.
The absorption coefficient a is proportional to the imag-

inary part of the complex refractive index, where k0 = 2p/k0
is the wavenumber of the wave in vacuum.

The factor B ¼ e�ixðnr�1ÞDz=c in (8.3) gives the phase shift
of the wave while propagating through the medium. This
additional phase delay compared with the passage over the
distance Dz in vacuum, is

Du ¼ xðnr � 1ÞDz=c
¼ 2pðnr � 1ÞDz=k0 ;

ð8:16Þ

For illustration: the total phase shift of the wave along the
distance Dz = k0 is Dumedium = nr � 2p while in vacuum it is
Duvacuum = 2p. The difference is then Du = 2p � (nr − 1).

Since the wavelength k is defined as the distance between
two phase planes that differ by 2p it follows from the dis-
cussion above that the wavelength in the medium is smaller
by the factor 1/nr than that in vacuum.

k ¼ k0
nr

ð8:17Þ

Because the frequency of the wave does not change in the
medium, (see Sect. 8.4) the phase velocity vph ¼ m � k ¼
ðx=2pÞ � k decreases as

vPh ¼ c

nr
: ð8:18Þ

Electro-magnetic waves show in a medium with
refractive index n = nr − ij the wavelength k = k0/nr
and the phase velocity vph ¼ c=nr. Their intensity
decreases as I(z) = I0 � e−az where a = 2k0 �j is pro-
portional to the imaginary part of the refractive
index.

If the medium is characterized by the relative dielectric
constant e (Sect. 1.7.2) and the magnetic induction constant
l (Sect. 3.5.2) the phase velocity is

vPh ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e � e0 � l � l0p ¼ cffiffiffiffiffiffiffiffi

e � lp : ð8:19Þ

In nonmagnetic media is l � 1. The phase velocity is
then

vPh ¼ cffiffi
e

p ¼ c

nr
) nr ¼

ffiffi
e

p
: ð8:20Þ

For all transparent media (glass, water, air) the absorption
coefficient a for visible light is very small (otherwise the
media would not be transparent). The imaginary part j of the
refractive index n ¼ nr � ij is then small compared to the real
part nr. In this case the refractive index is n � nr. Therefore in
many equations in optics where mainly transparent media are
used (for lenses or prisms) one finds for the refractive index
the label n instead of the complex notation nr – ij (Table 8.2).

From (8.12b) we obtain for the real and the imaginary
part of the refractive index n the dispersion relations

nr ¼ 1þ Ne2

2e0m
ðx2

0 � x2Þ
ðx2

0 � x2Þ2 þ c2x2
; ð8:21aÞ

j ¼ Ne2

2e0m
cx

ðx2
0 � x2Þ2 þ c2x2

; ð8:21bÞ

which relate absorption and dispersion of electromagnetic
waves in matter with the real and the imaginary part of
n (Fig. 8.5).

Note The maximum of the function jðxÞ occurs not
exactly at the resonance frequency x0, but rather at

xmax ¼ x0 � ½1� c2

3x2
0

�1=2

as can be readily proved by using the condition dj=dx ¼ 0
in (8.21b) (see Sect. 10.9.2 and Problem 10.14).

Table 8.2 Refractive indices n � nr for some optical glasses and
transparent materials

k=/nm 480 589 656

FK3 1:470 1:464 1:462

BK7 1:522 1:516 1:514

SF4 1:776 1:755 1:747

SFS1 1:957 1:923 1:910

Quartz glass 1:464 1:458 1:456

Lithiumfluorid LiF 1:395 1:392 1:391

Diamant 2:437 2:417 2:410
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Equation (8.12a) for the refractive index anticipated that
all damped oscillators had the same resonant frequency x0

and the same damping constant c. In order to apply this
classical model to real atoms we have to take into account
the following facts:

• The atoms in an absorbing medium have many energy
states Ek and can absorb on all frequencies that cor-
respond to transitions between these states, because
every transition between two different energy states
causes absorption or emission at the frequency xk

DE ¼ Ek � E0 ¼ �hxk;

where �h ¼ h=2p is the reduced Planck constant (see Vol. 3,
Sect. 8.3.1).

• Because an atom with one valence electron can absorb
at different frequencies, the probability Pik that it
absorbs at a definite frequency xik is smaller than the
total probability P = RPk.

For a single absorbing transition the atom has only the
fraction (fk < 1) of the absorbency of a classical oscillator.
The number fk < 1 is called oscillator-strength. It gives the
fraction of the absorption probability of a classical oscillator
that corresponds to the absorbency of the selected atomic
transition. Summing over all possible transitions of the atom
the total absorption probability must be that of the classical
oscillator. This is equivalent to the conditionX

k

fk ¼ 1 ð8:22Þ

Sum rule of Thomas, Reiche and Kuhn [1]. The same
considerations for the absorption apply for the emission of
radiation.

The different excited atoms can absorb energy from the
incident wave independently from each other. The total
absorption is then the sum of all contributions from the
different atoms. The refractive index becomes

n ¼ 1þ e2

2e0me

X
k

Nkfk
ðx2

0k � x2Þþ ickx
ð8:23Þ

where Nk is the number of atoms per m3 with the absorption
frequency xk. Absorption coefficient a(x) and refractive
index nr(x) have therefore for media with many absorption
frequencies a more complex dependence on the frequency x
(Fig. 8.6) as is shown for the single absorption line in
Fig. 8.5. In Fig. 8.7 the refractive index nr(x) and the
absorption coefficient aðxÞ are illustrated in the vicinity of
the two yellow sodium D-lines.

Since in media with dispersion the speed of light vphðxÞ
depends on the frequency x, phase- and group-velocities
differ (see Vol. 1 Sect. 11.9.7). Because vph ¼ x=k we
obtain for the group velocity

ω0 ω

α

ω

0

1

γ0,5

1

rn

Fig. 8.5 Absorption coefficient a(x) = 2k0 � j(x) around an absorp-
tion line at x = x0

0

1

n

κ

ω

ω

ω1 ω2 ω3

r

Fig. 8.6 Schematic representation of j(x) and nr(x) over a frequency
range which includes several absorption frequencies xi

1

n ( )

589 0 6985, , / nm

nr

r

Fig. 8.7 Illustration of dispersion and absorption in the vicinity of the
two yellow absorption lines of sodium atoms at k1 = 589.0 nm and
k2 = 589.6 nm (without taking account of the hyperfine structure)
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vG ¼ dx
dk

¼ d
dk

ðvPh � kÞ ¼ vPh þ k � dvPh
dk

:

With k = k0 � nr and vph ¼ c=nr this can be written as

vG ¼ vPh þ k0nr
d
dk

c

nr

� �

¼ vPh � k0nrc
1
n2r

dnr
dk

:

From the relations

k ¼ k0 � nr ¼ x
c
nr ) dk ¼ nr

c
dxþ x

c
dnr

) dk
dnr

¼ nr
c

dx
dnr

þ x
c

) tG ¼ tPh � tPhk0
1
tPh

dx
dnr

þ k0
¼ tPh

1þ x
nr
dnr
dx

tG ¼ c

nr þx dnr
dx

: ð8:24Þ

This relation gives the following insight:
Figure 8.6 illustrates that there are spectral ranges where

the refractive index becomes nr < 1. In these ranges is vph ¼
c=nr [ c larger than the speed of light in vacuum.

For the determination of the group velocity vG we cal-
culate dnr/dx from (8.21a).

dnr
dx

¼ Ne2

2e0m

2x ðx2
0 � x2Þ2 � ðcx0Þ2

h i
ðx2

0 � x2Þ2 þðcxÞ2
h i2 : ð8:24aÞ

For x2
0 � x2 [ cx0 => dnr/dx > 0. In this range is

vG\vph and nr decreases with increasing wavelength k. This
is called the region of normal dispersion. In this range is
according to (8.24) always vG\vph.

The range of anomalous dispersion Dxad, where dnr/dx <
0 can be expressed with x0

2 − x2 = (x0 − x) (x0 + x) �
2x0(x0 – x) as

x0� c=2 
x
x0 þ c=2 ¼¼[Dxad ¼ c:

This is the frequency range around an absorption fre-
quency xk where, according to (8.21b), the absorption j(x)
is larger than half of the maximum value j(x0).

In the range of anomalous dispersion the imaginary part
j(x) of the complex refractive index, and therefore also the
absorption coefficient a(x) becomes maximum.

The group velocity vG becomes larger than the speed of
light c in vacuum, if the condition

nr þx � dnr=dx\ 1:

is valid. Inserting the expression for nr from (8.21a) and
looking for the derivative dnr/dx one obtains the condition

tG [ c for x0 � xj j\ c=2; ð8:24bÞ
This corresponds to the range of anomalous dispersion.
The fact that the group velocity vG can be larger than the

speed of light c is surprising at first sight, because it seems to
contradict the special relativity theory, which postulates that
the speed of light sets an upper limit for all possible
velocities of signal transmission.

The result of (8.24b) is, however, not in contradiction to
special relativity theory. This can be seen as follows:

We must distinguish between different velocities

• the phase velocity vph = c/nr.
• the group velocity vG ¼ dx=dk.
• The velocity of energy transport vE, defined by vE ¼

I=wem as the ratio of intensity I and energy density
wem.

• the velocity of signal transmission.

It turns out that for all media the relation holds

tE \ c:

In order to transmit a signal the incident light must have a
specific intensity profile I(t), as for example a short pulse. The
maximum of I(t) can be defined as the signal time. In the
spectral range of anomalous dispersion the refractive index
n(x) changes very fast with x (see Fig. 8.7). A pulse with
width Dt has the frequency widthDx � 2p/Dt. Its frequency
width increases with 1/Dt (Fourier theorem). Because of the
large value of dn/dx the different frequency components of the
pulse have different phase velocities. The superposition of
these components after passing through the medium gives a
different form of the pulse I(t). Such a deformed pulse
I(t) contains the original information only in a modified form.
The maximum of the pulse does not travel with the group
velocity vG but with the velocity vs, which is different from vG.
It turns out that vs is always smaller than c [2–4].

Remarks

• In recent years specially prepared atoms in a gas
which have been optically pumped into so called
“dark states” absorb light and reemit it after a partic-
ularly long time. The travelling time of light thus
becomes extremely long, which corresponds to a
velocity of light of a few m/s [5]. However, this
apparent low velocity is only due to the long capture
time in the atoms and has nothing to do with the speed
of light between the capture times, which has still the
normal value c. This is analogous to the lower phase
velocity vph = c/nr in a medium with refractive index
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n, where the emission of excited atoms occurs with a
time delay (see Sect. 8.1).

• Often the wavenumber k of waves in media is written
as a complex number.

k ¼ n � x=c ¼ n � k0 ¼ k0 nr � ijð Þ:

The advantage of this convention is that one can use the
same expression for waves in vacuum and in matter

E ¼ E0 � eiðx t�kzÞ ¼ E0 � e�jðx=cÞz � eiðx t�nrðx=cÞzÞ

¼ E0 � e�ða=2Þz � eiðx t�nrk0zÞ:

8.3 Wave Equation of Electromagnetic
Waves in Matter

We start with the Maxwell Eq. (4.26), which have, accord-
ing to Sects. 1.7.3 and 3.5.2, with the charge density . and
the current density j the form

r	 E ¼ � @B
@t

; r � D ¼ . ;

r	 B ¼ ll0 jþ @D
@t

� �
; r � B ¼ 0

where the dielectric displacement density D is defined as

D ¼ ee0E ¼ e0EþP ;

with the dielectric polarisation P.
In the following we will discuss waves in different media

based on the wave equation.

8.3.1 Waves in Nonconductive Media

In no conducting media is the current density j = 0, because
there are no conduction currents. In neutral isolators there
are also no free charges, which means . ¼ 0.

In a similar way as the derivation of the wave equation in
vacuum (Sect. 7.1) we obtain the wave equation for waves
in isolators

DE ¼ ll0ee0
@2E
@t2

¼ 1

v2Ph

@2E
@t2

ð8:25aÞ

With the phase velocity

vPh ¼ c0 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
ll0ee0

p ¼ cffiffiffiffiffiffiffiffi
l � ep : ð8:26Þ

An analogous equation

DB ¼ 1
c02

@2B
@t2

ð8:25bÞ

is obtained for the magnetic field,
In non-ferromagnetic media is l � 1 (see Sect. 3.5).
The comparison of (8.26) with (8.1) shows that the

refractive index n is related to the dielectric constant e by

n ¼ ffiffi
e

p
: ð8:26aÞ

Inserting the expression D = e0E + P into the Maxwell
equation

rotB ¼ l0
@D
@t

We obtain instead of (8.26) the equivalent equation

DE ¼ l0e0
@2E
@t2

þ l0
@2P
@t2

¼ 1
c2

@2E
@t2

þ 1
e0c2

@2P
@t2

:

ð8:25cÞ

This equation contains in concise form the result already
discussed in an intuitive way in Sect. 8.1.

The electromagnetic wave in a medium consists of the
primary wave, propagating with the vacuum light velocity
c (first term in (8.25c)) and the secondary waves generated
by the induced atomic dipoles, which superimpose the pri-
mary wave with a phase lag (second term in (8.25c)). These
secondary waves also propagate through the medium with
vacuum light velocity c. The smaller velocity c′ = c/n of the
total wave is due to the phase shift between secondary and
primary waves (Fig. 8.2).

From B = (k 	 E)/x (7.16a) it follows with k = n � k0
and ∣k0∣ = x/c; bk0 = k0/∣k0∣

B ¼ n

c
ðbk0 	 EÞ ¼ jnj

c
ðbk0 	 EÞeiuB ; ð8:27Þ

where the complex refractive index is written as

n ¼ nr � ij ¼ jnj � eiuB with tanu ¼ �j=nr:

This shows that in absorbing media (j 6¼ 0) electric
field E and magnetic field B are no longer in phase but
show a phase shift u = arctan (−j/nr).

For the simple case of an isotropic and homogeneous
medium and an incident plane wave

E ¼ fEx; 0; 0g ¼ E0 � ei ðxt�kzÞ; 0; 0
n o
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The dielectric polarization P has only one component Px.
For a sufficiently small field E (range of linear optics) it is

Px ¼ NaEx ¼ NaE0e
i ðxt�kzÞ ; ð8:28Þ

where N is the number of induced dipoles per m3 and a is the
polarizability (see Sect. 1.7).

Inserting (8.28) into (8.25c) gives

�k2Ex ¼ �x2

c2
Ex � x2Na

e0c2
Ex

) k2 ¼ x2

c2
ð1þNa=e0Þ :

ð8:29Þ

With vph = c/nh = x/k => n = cx/k we obtain

n2 ¼ 1þNa=e0 : ð8:30Þ
This equation gives the relation between refractive index

n and polarizability a of the atoms in the medium.
The induced dipole moment p ¼ �e � x of each atomic

dipole, where the charge −e experiences the displacement
x by the electric field E of the electromagnetic wave is then
obtained from (8.6a) as

p ¼ e2E

mðx2
0 � x2 þ icxÞ :

With p ¼ a � E the polarizability

a ¼ e2

mðx2
0 � x2 þ icxÞ : ð8:31Þ

The comparison with (8.30) finally yields

n2 ¼ 1þ e2N

e0mðx2
0 � x2 þ icxÞ : ð8:32Þ

This equation is also valid for large values of
n (n − 1 �1).

For small values of n (n − 1 � 1), (8.32) converges with
(n2 − 1) = (n + 1) � (n − 1) � 2(n − 1) towards Eq. (8.12a).

Note

(1) The polarizability a and the absorption coefficient a are
unfortunately denoted by the same letter, because this is
conventional in the physics textbooks.

(2) In magnetic materials the relative magnetic permeabil-
ity is l 6¼ 1. The refractive index then becomes

n2 ¼ e � e0 � l � l0 ¼
1
c2

el

) n ¼ � ffiffiffiffiffi
el

p
:

ð8:33Þ

Recently it has become possible to realize microscopic
structures consisting of very small capacitors and induc-
tances where e < 0 and l < 0. For such media the minus
sign in (8.33) has to be taken. This means that the
refractive index becomes negative!

This has the consequence that for e < 0 the pointing
vector S = e � e0c

2 � (E 	 B) points into the opposite
direction as the wave vector k.

In media with a negative refractive index n the
energy flux is opposite to the propagation direction
of the wave [6–8] (see also Sect. 8.4.4).

8.3.2 Waves in Conducting Media

When an electromagnetic waves enters a conducting med-
ium with the electric conductivity r the electric field of the
wave induces an electric current with the current density j. In
the Maxwell Eq. (4.26b) one can no longer set j = 0. The
derivation of the wave equation proceeds, however, in a
similar way as in Sect. (8.3.1). With the relation j = r � E we
obtain the wave equation

DE ¼ 1

v2Ph

@2E
@t2

þ ll0r
@E
@t

: ð8:34Þ

The additional term ll0r � ∂E/∂t corresponds to the
damping term –c � dx/dt in the equation of motion of the
damped harmonic oscillator (see Vol. 1, Sect. 11.2). The
solutions of (8.34) for an incident plane wave propagating in
z-direction through the medium is

Eðz; tÞ ¼ E0 � e�ða=2Þz � eiðxt�kzÞ ð8:35Þ
with the absorption coefficient a = 2 � k0 � j.

We will now discuss the relation between the absorption
coefficient a and the electric conductivity r.

For high frequencies x of the incident wave the free
conduction electrons give the main contribution to the
refractive index. Since here the restoring force is zero
(contrary to the atomic electrons which are bound to their
equilibrium position in atoms by the restoring force with the
constant k = m � x2) the frequency x0 in (8.32) is x0 = 0.
We then obtain for the refractive index the equation

n2 ¼ 1� Ne2=ðe0mÞ
x2 � icx

: ð8:36Þ

The damping constant c is determined by collisions of the
free electrons with the lattice atoms. The mean time between
two collisions is s = 1/c.
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With (8.36) we define the plasma frequency

xP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � q2
e0 � m

s
ð8:37Þ

The plasma frequency xp is the resonance frequency of
the free electrons with density N and mass m, which oscillate
against the positive charges of the plasma (=highly ionized
gas) which is altogether electrical neutral (the average pos-
itive and negative charges just compensate).

Inmetals the free electrons with the charge q = −e oscillate
under the influence of the electromagnetic wave against the
positive charges of the lattice ions. Inserting (8.37) into (8.36)
we get

n2 ¼ 1� x2
P

x2 � icx
¼ 1� x2

P

x2 1� i
xs

� � : ð8:38Þ

With the complex refractive index n = nr − ij => n2 =
(nr − ij)2 = nr

2 − j2 − 2inrj we get after expansion of the
fraction in (8.38) with (1 + i/(xs)) and comparing nominator
and denominator

n2r � j2 ¼ 1þ s2 x2 � x2
P

� �
1þx2s2

ð8:39aÞ

2nrj ¼ x2
Ps

xð1þx2s2Þ : ð8:39bÞ

In order to determine the electric conductivity r(x) as a
function of the frequency x we start with the equation of
motion for a damped electron without restoring force under
the influence of the electric field E = E0 � e−ixt

m
dv
dt

þ cv
� �

¼ e � E0e
�ixt :

With the ansatz v ¼ v0 � e�ixt for the velocity of the
electrons we obtain the solution

v0 ¼ eE0

m

1
c� ix

:

Since the mean current density j at a charge carrier den-
sity N is

j ¼ N � e � v0 ¼ rel � E
(see Sect. 2.2) we get

rel ¼ Ne2

m

s
1� ixs

¼ e0x
2
P

s
1� ixs

¼ e0x
2
P
sð1þ ixsÞ
1þx2s2

:

ð8:40Þ

The comparison of real- and imaginary parts in (8.40) and
(8.39a, 8.39b) gives the relations

n2r � j2 ¼ 1� ReðrelÞ
e0=s

; 2nrj ¼ ImðrelÞ
e0x2s

ð8:41Þ

between absorption coefficient a = 2k0 � j and the electric
conductivity rel.

Note Unfortunately the polarizability a and the absorption
coefficient a are denoted in literature by the same letter.
Nevertheless, the careful reader will hopefully not be
confused.

It is illustrative to consider the two limiting cases of small
frequencies (xs � 1) and high frequencies (xs� 1), where
s is the mean time between collisions of the electrons.

(a) Low to medium frequencies (xs � 1 � xp � s)

For this limiting case of low frequencies the electric con-
ductivity rel can be obtained from (8.40). It is
approximately:

rel � e0 � s � x2
P : ð8:42aÞ

and is independent of the frequency x. The complex
refractive index at low frequencies is

nr � ij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

Ps
xðxs� iÞ

s

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� i � x

2
Ps
x

r
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�i

x2
Ps
x

r
:

With √(−i) = (1 − i)/√2 this becomes

nr ¼ j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

Ps=2x
q

: ð8:42bÞ

Real- and imaginary part of the complex refractive
index become equal for low frequencies
xs � 1 � xPs!

Example

In a metal is N � 8 	 1028 m−3 => xp = 1.6 	 1016

s−1. The mean time between collisions of the electrons
is s � 2 	 10−14 s. For the frequency x = 2 	 1013

s−1 (k = 94 lm) we get xs = 0.4, xps = 320 and
xp
2s = 5 	 1018 s−1. This gives

nr ¼ j ¼ 354 :
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The penetration depth of the electromagnetic wave
(skin depth) is only

d ¼ 1=a ¼ c=ð2xjÞ ¼ k=4pj ¼ 2 � 10�8m:

The wave barely penetrates into the metal. The
major part is reflected.

(b) High frequencies, which are, however, still
smaller than the plasma frequency (xp �
s > xs � 1).

In this frequency range the electric conductivity
becomes

rel � i � e0 � x
2
P

x
ð8:42cÞ

and we obtain from (8.38)

n2 � 1� x2
P

x2
: ð8:42dÞ

For x < xp => n2 < 0 => n = nr − ij becomes
pure imaginary, which implies nr = 0 (Fig. 8.8a). The
wave does not propagate in the medium but is totally
reflected (Fig. 8.8b). It penetrates, however, over a
small distance into the medium (penetration depth).

With the absorption coefficient

a ¼ 4pj
k

¼ 4p
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

P

x2
� 1

r
¼ 2

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

P � x2
q

: ð8:42eÞ

the penetration depth becomes

d ¼ 1
a
¼ c

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

P � x2
p : ð8:42fÞ

(c) Very high frequencies (x > xp).

For this case the refractive index n becomes real,
the imaginary part is zero (j = 0).

The medium becomes transparent.

Note

(1) In this simple model the plasma frequency xp depends
solely on the charge carrier density N. The limiting
frequency x = xp, where metals become transparent, is
proportional to √N.

(2) Te influence of the bound atomic electrons has been
neglected, which increases with increasing frequency.
Therefore even forx > xp a rest absorption remains,which
is caused by absorption of the bound atomic electrons [7].

Examples

(a) For copper is rel � 6 	 107 A/V m, s = 2.7 	
10−14 s, => xp = 1.6 	 1016 s−1 => k = 120 nm.
This means: For k > 120 nm the refractive index
of copper is purely imaginary, i.e. copper is
highly absorbing. For k < 120 nm copper
becomes transparent.

(b) Forx = 1013 s−1 (k = 180 lm) isxs � 1 and the
refractive index becomes n = 580 (1 − i) => a =
3.8 	 107 m−1. The penetration depth is only
d = 1/a � 26 nm.

(c) For x = 3 	 1015 s−1 (k = 600 nm) is xs � 1
and, according to (8.42d) is n2 = −27 => nr � 0
and j = 5.2. The absorption coefficient becomes
a = � 108 m−1. The incident wave is completely
reflected and the penetration depth is only
d = 10−8 M = 10 nm.

(d) For x = 3 	 1012 s−1 (k = 600 lm) the refractive
index becomes n = 107 (1 − i). Real- and imag-
inary part are equal. The penetration depth
becomes d = 15 nm. However, in this range our
simple model fails and the influence of the bound
electrons as well as the vibration of the atoms
contribute to the absorption.

(e) In the ionized layers of the earth atmosphere
(Heaviside layer see Sect. 7.9.4) is N � 1011

m−3 => xp = 2 	 107 s−1 => vp = 3 MHz.
Radio waves with v\3 MHz are totally reflected
at the lower side of the Heaviside layer.

8.3.3 The Energy of Electromagnetic Waves
in Matter

The wave vector k of a wave in an isotropic medium with
refractive index n = nr − ij is

k ¼ n � k0 ;
where jk0j ¼ x=c is the wave vector in vacuum.

Pω Pω ωω

0

1

Rn2
(a) (b)

Fig. 8.8 a) Square n2 of the refractive index n(x), b) Reflectivity R of
metals as a function of the frequency x of the incident wave

8.3 Wave Equation of Electromagnetic Waves in Matter 219



The magnetic field of the wave is, according to (8.27),

B ¼ 1
x
ðk	 EÞ ¼ n

c
ðbk0 	 EÞ

¼ jnj
c
ðbk0 	 EÞeiuB ¼ 1

vPh
ðbk0 	 EÞeiuB :

In vacuum B is perpendicular to E and k. In matter with a
complex refractive index E and B are generally out of phase.
If the imaginary part ij of n is small compared to the real
part nr, the phase shift is negligible.

The Pointing vector of the wave is

S ¼ E	H ¼ 1
ll0

E	 B ¼ ee0v
2
PhðE	 BÞ : ð8:43Þ

Inserting the expression (8.27) for B and for E the electric
field becomes

E ¼ E0 � eixðt�nz=cÞ ¼ E0 � e�a
2 z � eþ iu

We obtain for the amount of the Pointing vector

jSj ¼ ee0vPhE
2
0e

�az cosu cosðuþuBÞ ; ð8:44aÞ
where a = 2k0 � j is the absorption coefficient. The time
average of Sh i can be written as

Sj jh i ¼ ee0cnr
2 nj j2 E2

0 ð8:44bÞ

Because

cosu � cosðuþuBÞh i ¼ cos2 u � cosuB � cosu � sinu � sinuB

	 

¼ 1

2
cosuB

and

tanuB ¼ �j=nr ) cosuB ¼ nr
jnj

The time average of the intensity of the wave in a med-
ium with refractive index n is therefore

I ¼ 1
2
ee0cnr=jnj2 � E2

0e
�az

¼ 1
2
ee0vPhE

2
0e

�az cosuB:

ð8:44cÞ

8.4 Electromagnetic Waves at the Interface
Between Two Media

Assume the incident plane wave

Ee ¼ Ae � eiðxet�ke�rÞ ð8:45aÞ

passes through the interface between two media with dif-
ferent refractive indices n1 and n2 (Fig. 8.9). According to
the model discussed in Sect. 8.2 the incident wave induces
in both media oscillations of the atomic electrons. The
question is now how the structure of the total wave can be
calculated on both sides of the interface.

The experiment shows that the incident wave splits into a
reflected and a refracted part. The refracted wave is

Eg ¼ Ag � ei ðxgt�kg�rÞ; ð8:45bÞ
which penetrates into the second medium and has generally
another direction as the incident wave.

The reflected wave is

Er ¼ Ar � ei ðxr t�kr �rÞ: ð8:45cÞ
We will now find relations between the amplitudes Ai, the

frequencies xi and the wave vectors ki of the three waves.

8.4.1 Boundary Conditions for Electric
and Magnetic Field

We partition the vectors E and B into a part Et, resp. Bt

parallel to the interface plane (tangential component) and a

(a)

n1

α

Surface normal

n2 > n1

α'

→
ke

→
kr

→
kg

→
ke

→
kg

Interface

(b)

E1t

E1n

E1

→

E2

→

E2t

E2n

β

1

2

Fig. 8.9 Wave-vectors of incident, reflected and refracted wave at the
plane interface between two different media. b Dividing the electric
field E into the components parallel (tangential) and perpendicular
(normal) to the plane of incidence
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part En resp. Bn normal (i.e. perpendicular) to the interface
(normal component). We then write the field vectors as
E = Et + En and B = Bt + Bn. This is valid for any arbitrary
orientation of Ei ⊥ ki. For the transition of the wave from
medium 1 into medium 2 the tangential component of E and
the normal component of B must be continuous, which means
Et(1) = Et(2) and Bn(1) = Bn(2) (see Sects. 1.7.3 and 3.5.7).
We will abbreviate Et(1) = E1t; Et(2) = E2t, etc.

As has been shown in Sect. 1.7 the electric field in a
medium with relative permeability e decreases to 1/e of its
value in vacuum. Since the tangential component does not
change at the interface the jump of E must be solely attrib-
uted to the normal component. Therefore we get for the
electric field the relation at the interface between two media
with the relative dielectric constants e1 and e2

E1n

E2n
¼ e2

e1
¼ n22

n21
; ð8:46Þ

where we have used the relation n � √e, if absorption and
magnetic effects (l = 1) can be neglected.

For the magnetic field the conditions are just opposite:
Here is, according to Sect. 3.5.7

B1n ¼ B2n;
B1t

B2t
¼ l1

l2
: ð8:47Þ

However, since for all non-ferromagnetic materials l � 1
we generally also get B1t � B2t.

8.4.2 Laws for Reflection and Refraction

We choose our coordinate system such, that the interface
plane is the x-z-plane and that the wave vector ki of the inci-
dent wave lies in the x-y-plane (Fig. 8.10). The plane, defined
by ki and the vector N normal to the interface plane is called
the plane of incidence (in Fig. 8.10 this is the x-y-plane). The
continuity of the tangential components then demands

Eet þErt ¼ Egt : ð8:48aÞ

At the origin of the coordinate system (r = 0) the inser-
tion of (8.45a, 8.45b) gives

Aete
i ðxetÞ þArte

i ðxr tÞ ¼ Agte
i ðxgtÞ : ð8:48bÞ

This equation has to be valid for all times. This demands

xe  xr  xg; ð8:49Þ

All three waves have the same frequency x.

Since at the transition from medium 1 to medium 2 with
different refractive indices n1 and n2 the phase velocity

vph ¼ c0 ¼ c=n ¼ m � k ¼ x � k=2p
changes but the frequency x does not change, only the
wavelength k must change.

The relation (4.48a), which is valid for all points of the
interface, has the consequence that the phases of all three
waves must be equal at the interface. We therefore can
conclude for all points of the interface:

ke � r ¼ kr � r ¼ kg � r : ð8:50Þ
Sincewith our choice of the coordinate system the interface

is the x-z-plane and the plane of incidence the x-y-plane we get

kr ¼ krxbex þ krybey þ krzbez ;
kg ¼ kgxbex þ kgybey þ kgzbez:

Plane of
incidence

kg

α

→
β

y

z

x

ke

→

kr

→

(b)

Interface

y

ke

→

kr

→

α

β

kg

→

(a)

x

α'

α'αkey

krx

kry

kgy

kgx

kex

α'

N
→

1

2

Fig. 8.10 Choice of the coordinate system for the description of
reflection and refraction a) plane of incidence as drawing plane b)
perspective representation
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Since up to now we do not know the directions of kg and
kr we make the ansatz

kr ¼ krxbex þ krybey þ krzbez ;
kg ¼ kgxbex þ kgybey þ kgzbez:

Inserting this into (8.50) and using (8.51) we obtain

kexx ¼ krxxþ krzz ¼ kgxxþ kgzz : ð8:52Þ
This must be valid for all points of the interface, i.e. for

arbitrary values of x and z. We therefore get

kex ¼ krx ¼ kgx ;

krz ¼ kgz ¼ 0 :
ð8:53Þ

This means:

The wave vectors of reflected and refracted wave lie in
the same plane as that of the incident wave. All three
waves propagate in the plane of incidence.

In Fig. 8.10a the plane of incidence is the drawing plane.
From the figure we conclude:

kex ¼ ke � sin a;
krx ¼ kr � sin a0;
kgx ¼ kg � sinb:

ð8:54Þ

Since the phase velocity of electromagnetic waves is
vph ¼ c=n the amounts of the wave vector is

k ¼ x
c0
¼ n � x

c
: ð8:55Þ

The frequency x has the same value in both media.
Therefore we get from (8.55) and (8.54)

sin a
c01

¼ sin a0

c01
¼ sin b

c02
: ð8:56Þ

This implies:

sin a ¼ sin a0 ) a ¼ a0 : ð8:57Þ

The angle of incidence a and the angle of reflection a′
are equal. Between the angle of incidence a and the
angle of refraction ß the relation holds

sin a
sin b

¼ c01
c02

¼ n2
n1

ð8:58Þ

(Snell’s Law of refraction).

8.4.3 Amplitude and Polarization of Reflected
and Refracted Waves

We will partition the amplitudes of the three waves (8.54)
into a part A‖ = Aep parallel to the plane of incidence and
A⊥ = Aes perpendicular to it (Fig. 8.11). This should not be
mixed up with the components of the electric field Et and En

parallel and perpendicular to the interface plane.
With our choice of the coordinate system the parallel part

of the amplitude vector A‖ = {Ax, Ay, 0} has only an x- and a
y-component, while the perpendicular part A⊥ = {0, 0, Az}
has only a z-component and is therefore tangential to the
interface plane. The continuity of En at the interface follows
immediately from (8.48b) and (8.49)

Aes þArs ¼ Ags: ð8:59aÞ
For the tangential component of the magnetic field vector

B it follows from (8.47) and (8.27) for non-ferromagnetic
materials (l � 1)

B ¼ n

ck0
ðk0 	 EÞ ¼ n

x
ðk0 	 EÞ

¼ 1=xðk	 EÞðke 	 EeÞx þðkr 	 ErÞx ¼ ðkg 	 EgÞx ;
This gives the condition for the normal component En

perpendicular to the plane of incidence

keyAes þ kryArs ¼ kgyAgs ð8:59bÞ
With kry = −kiy we obtain

Aes � Ars ¼ kgy
key

Ags : ð8:60Þ

y

x

α α

k gx

k gy

ββ

k g

→

k e

→

A x

A y

→

epA

A es = { , }0 0 , A z

1n

12 nn >

k r

→

→

A ep = { }A x

→
, A y, 0

Fig. 8.11 Illustration of the different quantities used in the Fresnel
formulas
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From (8.59a) and (8.60) it follows

Ags ¼ 2
1þ a

Aes with a ¼ kgy=key ;

Ars ¼ 1� a

1þ a
Aes :

This gives with kg = (n2(n1)ki0

key
ke

¼ cos a;
kgy
kg

¼ cos b :

a ¼ n2 cos b
n1 cos a

:

using (8.58) we finally get the amplitude ratios of reflected
and refracted waves (reflection coefficient q⊥ and trans-
mission coefficient s⊥)

.s ¼
Ars

Aes
¼ 1� a

1þ a

¼ n1 cos a� n2 cos b
n1 cos aþ n2 cos b

¼ � sinða� bÞ
sinðaþ bÞ ;

ð8:61aÞ

ss ¼ Ags

Aes
¼ 2

1þ a

¼ 2n1 cos a
n1 cos aþ n2 cos b

¼ 2 sin b cos a
sinðaþ bÞ :

ð8:61bÞ

The completely similar derivation for the parallel com-
ponents yields

.s ¼
Ars

Aes
¼ n2 cos a� n1 cos b

n2 cos aþ n1 cos b

¼ � tanða� bÞ
tanðaþ bÞ ;

ð8:62aÞ

sp ¼ Agp

Aep
¼ 2n1 cos a

n2 cos aþ n1 cos b

¼ 2 sin b cos a
sinðaþ bÞ cosða� bÞ :

ð8:62bÞ

Equations (8.61) and (8.62) are the Fresnel equations.
They form the basis for all calculations of reflection and
transmission of electromagnetic waves at the interface
between two media with refractive indices n1 and n2. Here the
incident wave propagates through medium 1 and impinges
under the angle a onto the interface. These equations allow
one to determine the polarization of reflected and refracted
waves for an arbitrary polarization of the incident wave [9].

We will now illustrate the application of the Fresnel
formulas by a few examples.

8.4.4 Reflectivity and Transmittance
at the Interface

The time average of the intensity �Ii of a wave incident onto a
medium with real refractive index n1 is according to (8.44c)

�Ie ¼ e0e1c
0
1E

2
e ¼

1
2
e0e1c

0
1A

2
e ð8:63aÞ

With Ai = (A⊥ + A‖)
½ and c01 ¼ c1=n1. The reflected

mean intensity is then

�Ir ¼ 1
2
e0e1c

0
1A

2
r : ð8:63bÞ

The ratio

R ¼
�Ir
�Ie

¼ A2
r

A2
e

ð8:64aÞ

Is the reflectivity of the interface.
Strictly speaking we must consider that a light beam with

cross section F incident onto the interface under the angle a
covers only the area Fa = F � cosa. The intensity of the
incident beam is therefore higher by the factor 1/cosa than
on the surface. The correct definition of the reflectivity
should be therefore

R ¼
�Ir cos a0

�Ie cos a
: ð8:64bÞ

However, since the reflection angle a0 ¼ a is the same as
the incidence angle a, the former definition (8.64a) remains
valid.

This is no longer true for the transmission of the refracted
beam. Here we have to consider that the refraction angle
ß 6¼ a differs from the incidence angle a. We therefore
define the transmittance T as

T ¼
�It cos b
�Ie cos a

: ð8:64cÞ

For It we insert the expression

�It ¼ 1
2
e2e0c

0
2A

2
g ¼

1
2
� e2e0l2l0c022 � 1

l0c
0
2

A2
g

¼ 1
2

n2
l0c

A2
g ;

where we have used the relation c2′ = 1/(e2e0l2l0) and
assume that l2 = 1. In an analogous way we obtain

�Ie ¼ 1
2
n1
l0c

A2
e ;
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This gives for the transmittance

T ¼ n2 cos b
n1 cos a

A2
g

A2
e
: ð8:64dÞ

Since the ratio Ar/Ai differs for the components of Ai

parallel or perpendicular to the plane of incidence the
reflectivity depends, according to the Fresnel Eqs. (8.61a)
and (8.61a) not only on the angle of incidence a and the
refractive indices n1, n2, but also on the polarization of the
incident wave. For the component perpendicular to the plane
of incidence we obtain from (8.61a)

Rs ¼ A2
rs

A2
es
¼ n1 cos a� n2 cos b

n1 cos aþ n2 cos b

� �2

¼ sinða� bÞ
sinðaþ bÞ

� �2

;

ð8:65aÞ

while for the parallel component the reflectivity is

Rp ¼
A2
rp

A2
ep
¼ n2 cos a� n1 cos b

n2 cos aþ n1 cos b

� �2

¼ tanða� bÞ
tanðaþ bÞ

� �2

:

ð8:65bÞ

In Fig. 8.12 the reflection coefficient q and the reflectivity
R are plotted for both components for the case n1 < n2. For

vertical incidence (a = 0) the reflectivity R is equal for both
components, as can be deduced already by symmetry argu-
ments. From (8.65a, 8.65b) we get

Rða ¼ 0Þ ¼ n1 � n2
n1 þ n2

� �2

: ð8:66Þ

Example

The reflectivity at the interface between air and glass
(n1 = 1, n2 = 1.5) is for vertical incidence (a = 0)

R ¼ 0:5
2:5

� �2

¼ 0:04

i.e. 4% of the incident intensity are reflected. The fraction

T ¼ 4n1n2
ðn1 þ n2Þ2

¼ 0:96

is transmitted through the interface into medium 2.
One can readily prove that without absorption for both

components the relations hold:

Tk þRk ¼ 1;

T? þR? ¼ 1;

This is valid for any polarization and we can write quite
general

T þR ¼ 1:

Note For materials with negative refractive index (see
Sect. 8.4.10) the refracted light beam is on the same side of
the interface normal N as the incident beam (Fig. 8.13).
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Fig. 8.12 Amplitude reflection coefficient q(a) and reflectivity R
(a) = q2(a) at an air-glass interface (n1 = 1, n2 = 1.5) for the compo-
nents with parallel or perpendicular polarization
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With n1 = 1 and n2 < 0 it follows from (8.58).
sinß = (n1/n2) � sina = sina/n2 < 0 => ß < 0. This means

that the wave vector kg in Fig. 8.13 points into the direction
left of the normal N.

8.4.5 Brewster Angle

From (8.62a) it follows the for a + ß = 90° the amplitude Ar‖

of the reflected beam becomes zero, which means that the
reflected wave has no component of the electric field parallel
to the plane of incidence (Fig. 8.14), it is completely
polarized perpendicular to the plane of incidence.

The angle of incidence a = aB for which a + ß = 90° and
R‖ = 0, is called the Brewster angle. The wave vectors of
reflected and refracted light wave are perpendicular to each
other (Fig. 8.14a).

This can be vividly understood as follows:
The incident wave induces the atomic electrons in the

interface layer to forced oscillations in the direction of the
electric field vector of the transmitted wave (Fig. 8.14b).
The amount of the Pointing vector S in the direction 0
against the dipole axis is proportional to sin2# (see
Sect. 8.6.5). The induced dipoles do not radiate into the
direction of the dipole axis (# = 0), which is for a = aB the
direction of the reflected beam.

From sina/sinß = n2/n1 and a + ß = 90° we obtain the
Brewster condition

tan aB ¼ n2
n1

: ð8:68Þ

Example

For the air-glass interface is n1 = 1 and n2 = 1.5 (for
k = 600 nm). This gives the Brewster angle
aB = 56.3°.

If a linear polarized laser beam with the amplitude
vector A = A‖ incides onto a glass plate under the
angle a = 56.3° the beam passes the plate without any
reflection losses, because A⊥ = 0. This is used in gas
lasers where the discharge tube is sealed on both ends
by glass plates under the Brewster angle in order to
avoid any reflection losses.

8.4.6 Total Internal Reflection

When a light wave propagates from an optical dense med-
ium 1 into an optically less dense medium 2 (n2 < n1) one
obtains from Snell’s law of refraction

sin a ¼ ðn2=n1Þ sin �
the condition,

sin ag ¼ n2=n1 ð8:69Þ
so that the wave can enter medium 2 only for sina < n2/n1
because it is always sinß 
 1 (Fig. 8.15).

For all angles a with sina > n2/n1 the light is reflected at
the interface (total reflection). The angle ac for which
sinac = n2/n1 is the critical angle of total reflection.
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Ag = {Agp, Ags}
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Fig. 8.14 If the incident light forms the Brewster angle aB with the
normal to the interface, the reflected light is linear polarized.
a) schematic illustration, b) physical explanation based on the angular
distribution of the intensity radiated by an electric dipole
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Fig. 8.15 Total reflection of waves that come from the optical dense
material and hit the interface under the angle a > ag
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Example

For n1 = 1.5 and n2 = 1 the critical angle becomes
ac = 41.8°.

The total internal reflection is used in a 90° prism
(Fig. 8.16) where the incident light beam hits the
interface glass-air under the angle a = 45° and is twice
totally reflected. If absorption losses in the prism can
be neglected the reflected beam with the opposite
direction as the incident beam has the same intensity.
The reflectivity of this prism is therefore R = 1. Such
retroreflectors were placed by the astronauts on the
moon. When a laser beam, sent from a telescope on
earth hits the retroreflectors, it is reflected back to the
earth. Using short laser pulses the measurement of
their travel time earth-moon-earth allows the deter-
mination of the distance between retroreflector and
telescope with an accuracy of a few centimeters.

The total internal reflection is used in optical fibers, which
consist of a thin kernel (5–50 lm diameter) with a refractive
index n1, which is sheathed by a cladding with n2 < n1
(Fig. 8.17). The incident light entering the fiber under an
angle a < 90° − ac against the central line of the fiber is
captured within the kernel by total internal reflection and can
be thus propagating over long distances.

Note

• Total internal reflection only occurs for the transition
from the optically dense medium into the optically
less dense medium if a > ac with sin ac = n2/n1.

• Even for total internal reflection the incident wave
penetrates within a small layer with thickness d � k
into the medium with n2 < n1. This evanescent wave
can be detected by the method of frustrated internal
reflection (Fig. 8.18). If a second glass plate is drawn
nearer to the interface glass-air, the light enters the
second glass plate if the air gap between the two glass
surfaces becomes smaller than the wavelength k of the
light wave.

Such experiments show that the intensity of the wave in
the second glass plate decreases exponentially with the
thickness Dx of the air gap as I = I0 � e−Dx/k. If the medium 2
has no absorption the reflected wave has in spite of its
penetration into the second plate the full intensity, i.e. 100%
of the incident wave. If, however, an absorbing sample is
brought into the air gap, the reflected wave shows the
absorption lines of the sample. This technique of absorption
spectroscopy of thin absorbing layers based on the evanes-
cent wave, is a very sensitive method.

8.4.7 Change of the Polarization for Inclined
Incidence

If linear polarized light falls under the angle a onto an
interface the polarization vector of the reflected as well as of
the refracted wave is generally turned.

The angle ci between the electric field vector Ei of the
incident wave and the plane of incidence is defined by

tan ci ¼
Ais

Aip
:

α

gα>α

Fig. 8.16 Retro-reflection prism (cats eye)
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Fig. 8.17 Total reflection in on optical fiber consisting of a quartz core
with refractive index n1 and a cladding with n2 < n1
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Fig. 8.18 Frustrated total reflection a) intensity penetration of fast
decreasing light intensity through the interface into the medium with
n2 < n1. b) Experimental arrangement for demonstrating frustrated total
reflection. With increasing thickness d of the air gap the penetrating
intensity strongly decreases
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The angle cr between the field vector Er of the reflected
wave and the plane of incidence can be obtained from the
Fresnel formulas (8.61a and 8.62a) as

tan cr ¼
Ars

Arp
¼ � cosða� bÞ

cosðaþ bÞ � tan ce : ð8:70Þ

Since cos(a − ß) > cos(a + ß) it follows (Fig. 8.19):

cr [ ce:

The reflection turns the polarization vector E away
from the plane of incidence.

Only for vertical incidence (a = 0°) and for ci = 0° or 90°
the direction of polarization remains unchanged.

For the refracted wave the angle cg is obtained from

tan cg ¼
Ags

Agp
¼ cosða� bÞ � tan ce : ð8:71Þ

Since cos(a − ß) 
 1 it follows cg 
 ce.

The refraction turns the polarization vector E towards
the plane of incidence.

8.4.8 Phase Shift at the Reflection

In the following we consider only media with no absorption
(j = 0). If the wave is reflected at the interface to an opti-
cally dense medium 2 (n2 > n1) we conclude from (8.61a)
with cosß > cosa that for the reflected wave the amplitude

Ar⊥ of the component perpendicular to the plane of inci-
dence changes sign against the component Ai⊥ of the inci-
dent wave. This means:

Under reflection at the optically dense medium the
component perpendicular to the plane of incidence
suffers a phase jump of p.

For the component Ap = A‖ in Fig. 8.11 a phase jump of
p has occurred, if the y-component changes sign.

From (8.62a) we can conclude that the reflection coeffi-
cient .p becomes negative for (a + ß) > p/2.

Since a + ß = p/2 is the condition for the Brewster angle
aB, where the amplitude of the reflected wave is zero, the
parallel component suffers a phase jump only for a > aB for
the reflection at the optically dense medium. The transition
from a < aB to a > aB is not discontinuous because
A‖(aB) = 0 (Fig. 8.20).

In Fig. 8.21 the phase jump Du under reflection at the
interface between air and glass is shown for both compo-
nents as the function of the angle a of incidence.
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Note For vertical incidence (a = 0°) the distinction between
A⊥ and A‖ becomes meaningless, since all planes through
the direction of the incident light beam are planes of inci-
dence. If for a > 0 the plane of incidence is defined it fol-
lows for a ! 0 from (8.61a and 8.61b) for the two
components with n2 > n1

Ar?=Ai? ¼ Ark=Aik ¼ n1 � n2ð Þ= n1 þ n2ð Þ\ 0

This means that both components suffer a phase
jump. One can therefore make the statement: For
n2 > n1 (interface air-glass) the wave suffers at the
reflection a phase jump of p.

Under reflection at the optically thin medium (n2 <
n1) => a < ß) it can be concluded from (8.61a) that the
component A⊥ does not suffer a phase jump. For the parallel
component A‖ (8.62a) shows that for (a + ß) < p/2 i.e. for
a < aB a phase jump of p occurs. For aB 
 a 
 ac (crit-
ical angle of total reflection) the phase jump is zero, for
a > ac it increases from Du = 0 up to Du = 90° (Fig. 8.22).

For the refracted wave the phase jump is zero for all cases
discussed above.

For total reflection the phase jumps differ for the two
components (Fig. 8.22). This can be seen when (8.61a,
8.61b) and (8.62a, 8.62b) are rewritten using (8.69). For
example, reducing the fraction (8.61a, 8.61b) by n1 yields

.s ¼
cos a�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 ag � sin2 a

q
cos a�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 ag � sin2 a

q : ð8:72Þ

For a > ag the radicand becomes negative and numerator
and denominator both become complex. However, recalcu-
lating shows that . � .* = 1 ! the reflectivity is R = 1.

Under total internal reflection (n2 < n1) one obtains for
the for the component Ar⊥ the phase jump Du⊥ defined by

tan
Dus

2

� �
¼ 1

cos a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 a� n2

n1

� �2
s

ð8:73aÞ

and for the component Ar‖

tan
Dup

2

� �
¼ n21

n22 cos a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 a� n2

n1

� �2
s

: ð8:73bÞ

More detailed information can be found in [7, 8].

8.4.9 Reflection at Metal Surfaces

Metals absorb electromagnetic waves within a wide fre-
quency range.

The imaginary part j of the refractive index n = nr − ij is
in the visible range generally larger than the real part nr (see
Sect. 8.3.2)

For the determination of the reflectivity of an interface
air-metal using the Fresnel formulas (8.61a, 8.61b) we have
to insert n1 = 1 and n2 = nr – ij. This gives for a real
amplitude of the incident wave complex expressions for the
amplitudes Ar‖ and Ar⊥ of the reflected wave. This implies
that the amplitude as well as the phase suffer changes under
reflection at a metal surface.

The phase jumps Du between reflected and incident wave
are given by

tan ðDuÞ ¼ � b

a
¼ ImðzÞ

ReðzÞ
¼ 2j

1� n2 � j2:

They can take values between 0 and p and are generally
different for Ar‖ and Ar⊥ (see Problem 8.5). Therefore the
polarization state of the reflected wave differs from that of
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Fig. 8.23 Wavelength-dependent real- and imaginary part of the
refractive index of gold
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the incident wave. An exception is linear polarized light with
the electric vector E parallel or perpendicular to the plane of
incidence. For all other directions of E the reflection at metal
surfaces generates elliptical polarized light.

For vertical incidence (a = 0°) we obtain from (8.66)
with n1 = 1 and n2 = nr − ij the reflectivity

R ¼ .sj j2¼ nr � ij� 1
nr � ijþ 1

����
����
2

¼ nr � 1ð Þ2 þ j2

nr þ 1ð Þ2 þ j2
ð8:74Þ

It depends on the real part as well as the imaginary part of
the complex refractive index. Since both parts depend,
according to (8.39a), on the frequency x and therefore on
the wavelength k (Fig. 8.23) the reflectivity R becomes
wavelength-dependent.

Equation (8.74) shows that for j � nr the reflectivity
approaches R � 1.

Example

The refractive index of aluminum at k = 600 nm is:
nr = 0.95 and j = 6.4. The reflectivity at vertical
incidence is then R = 0.91.

This demonstrates: The surface of strongly
absorbing materials has a high reflectivity (see
Table 8.3).

The transmission of a thin absorbing layer with the
thickness Dz is

T ¼ It
Ie
¼ e�aDz ¼ e�4pjDz=k0

The absorption coefficient a(k) and therefore also
j(k) = a(k)/2k0 depend on the wavelength k (see Fig. 8.6).
Those wavelengths km where j(k) becomes maximum are
preferentially reflected (see 8.74).

The surfaces of strongly absorbing materials where the
refractive index shows a jump, have a reflection coefficient
that is proportional to the absorption coefficient.

Note If the absorption does not change suddenly but
smoothly over a small distance of a wavelengths the
reflectivity converges to zero and the incident radiation is
completely absorbed. Examples are surfaces covered with
soot, black velvet or the surface of the sun.

Experiment:

When writing with a red transparency marker onto a trans-
parency the writing appears under illumination by white
light red in transmission but green in reflection, because the
red writing absorbs green (Fig. 8.24). The reflected light can
be best seen, if the transparency is placed on a dark back-
ground and is illuminated from above.

Remark In Fig. 8.24 the incident white light falls onto the
surface under an inclined angle a 6¼ 0° different from the
assumption in (8.74), because in the experiment the reflected
light should be separated from the incident light. This does
not change, however, the conclusions drawn from (8.74).

8.4.10 Media with Negative Refractive Index

In the foregoing sections of this chapter we have discussed
that the phase velocity of electromagnetic waves in matter
with the constants l and e is given by the relation

vph ¼ e � e0 � l � l0ð Þ�1=2¼ c=nr

where nr = √el is the real part of the refractive index. For
several years researchers succeeded in producing special
materials with periodic structures for which both l and e are
negative, as long as the wavelength of the radiation is larger
than the lattice constant a of these periodic structures (a is

Table 8.3 Real part nr and imaginary part j of the complex refractive
index n ¼ nr � ij and reflectivity R of some metals between k = 500
and 1000 nm

Wavelength in nm Metal nr j R

500 Copper 1.031 2.78 0.65

500 Silver 0.17 2.94 0.93

500 Gold 0.84 1.84 0.50

1000 Copper 0.147 6.93 0.99

1000 Silver 0.13 6.83 0.99

1000 Gold 0.18 6.04 0.98

White
Light

Green

Red

Thin layer,
absorbing green

Δz

Fig. 8.24 Experimental demonstration that reflectivity and absorbance
of strongly absorbing materials are proportional
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the length of the unit cell of the periodic structure). It turns
out that the definition of the refractive index has to be
broadened to (Fig. 8.25)

nr ¼ � ffiffiffiffiffiffiffiffi
e � lp

where both signs are possible, while before we have only
used the + sign. In such with special techniques produced
“meta-materials” with periodic structures a < k the minus
sign has to be used and the refractive index becomes nega-
tive. The propagation of light in these meta-materials differs
from that in ordinary media with n > 0 [9].

The periodic structures are produced by vapor deposition
of many micro-resonators, which are arranged in a periodic
way. They consist of tiny L-C-circuits which are realized by
small squares with silver walls (dimensions w < k, thickness
c) and a hole with width g (Fig. 8.26a). The relative

permeability l around the resonance frequency, shown in
Fig. 8.26c, illustrates that just above the resonance fre-
quency l becomes negative.

Meanwhile it is possible to further minimize the periodic
structures and to achieve even in the visible range at
k = 760 nm a negative refractive index nr = −0.6. These
devices, shown in Fig. 8.27, are fabricated by a
photo-lithographic technique. They consist of many
micro-resonators in the form of layer structures causing
l < 0 and a sequence of electrical conductive micro-rods
which cause a negative electric permeability e < 0.

Pendry [10] has proved that with lenses of such
meta-materials light can be focused much better than with
conventional lenses and that the limitation by diffraction (see
Sect. 11.3) can be essentially reduced [8].

8.4.11 Photonic Crystals

Photonic crystals are periodic configurations of dielectric
media with alternative different dielectric constants e and
therefore different refractive indices (Fig. 8.28). They can be
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Fig. 8.25 Propagation of an electro-magnetic wave in a “normal”
medium with e = l = 1 (left part) and in a “meta-material” with
e = l = −1 (right part). Note that in the metamaterial the wave-vector
k is antiparallel to the pointing vector S
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Fig. 8.27 Realization of meta-materials with nr < 0 as superposition
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Fig. 8.28 Model of a one-dimensional optical crystal with periodic
spatial variation of the dielectric constant e
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realized by transparent materials (glass, semiconductors etc.)
into which periodic structures (e.g. periodic micro-cylinders)
are implanted with a period a which is about equal to the
wavelength of the incident light wave. These structures have
a lasting effect on the propagation of light through the
photonic crystal [10, 11].

If a light wave falls onto the photonic crystal part of its
amplitude is reflected at the interfaces of the periodic spatial
arrangement of the microstructure. For a = mk the parts
reflected at successive interfaces superimposes constructively
because their phase difference is 2 m � p. The total reflectivity
of the crystal is increased.

For a = (2m − 1) � k/4 their superposition is destructively
(phase difference (2m − 1) p) and the reflected light is
diminished or even completely suppressed.

In Fig. 8.28 is the spatial distribution of e shown for the
model of a one-dimensional photonic crystal.

8.5 Light Propagation in Anisotropic Media;
Birefringence

In anisotropic media the restoring force Fr = −kr � r (in the
model of the oscillating dipole), which bonds the oscillating
atomic electron to its equilibrium position depends on the
direction of the oscillation in the crystal. This implies that
the resonance frequencies xi = (kri/m)

½ of the absorption
lines differ for the different polarization directions of the
incident electromagnetic wave. According to (8.32) this has
the consequence, that the refractive index n depends not only
on the frequency x but also on the direction of the E-vector
and the k-vector of the wave, i.e. on the direction of polar-
ization and propagation of the wave (Fig. 8.29).

The optical anisotropy depends on the crystal structure. In
Fig. 8.30 the spatial configuration of the atoms in a calcite
crystal CaCO3 is illustrated. One can see, that there exists a
preferential direction (perpendicular to the drawing plane),
called the optical axis. The atomic configuration is, how-
ever, not rotationally symmetric around the optical axis. This
illustrates that the restoring forces onto the atomic electrons
depend on the direction in the drawing plane in Fig. 8.30b,
due to the anisotropic force fields caused by the positively
charged ions.

Note The optical axis is no geometrical line but indicates
that propagation direction in the crystal where all polariza-
tion directions have the same refractive index.

8.5.1 Propagation of Light Waves in Anisotropic
Media

A simple mechanical experiment can illustrate the conditions
for the propagation of light waves in anisotropic media: Two

1

n

1α
2α

α

sωΔ ω

ω

1n 2n

Fig. 8.29 Refractive indices n1(x) and n2(x) and absorption coefficient
a in the vicinity of n absorption line n for two mutually perpendicular
polarizations of a wave propagating in an anisotropic crystal. The visible
range is marked by the red shaded area with spectral width Dxs

C
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(a)

(b)

O

optical
axis

Fig. 8.30 Crystal structure of CaCO3. a) Spatial arrangement of the
atoms b) cut through a CaCO3-crystal perpendicular to the optical axis
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spiral springs with different force constants kr are acting on a
mass m in the x-resp. the y-direction (Fig. 8.31). In the
equilibrium position m rests in the point P(0, 0). With a
thread connected to the mass m a force

F ¼ Fx; Fy
� 

is exerted onmwhich points into the direction of the taut thread.
The mass, however, does not follow the direction of the threat
butmoves into the directionDs = {kx � x, ky � y}. For each point
of the trajectoryDs the total force acting on m (traction force Ft
plus restoring force Fr = −{kx � x, ky � y} is zero.

For our oscillator model of the propagation of electro-
magnetic waves through anisotropic media this means: The
direction of oscillation of the induced dipoles is not neces-
sarily parallel to the inducing electric field vector E of the
incident wave. The mathematical formulation of this situa-
tion is the description of the relative dielectric constant e by
a tensor instead by a scalar as in isotropic media. This tensor
is written in form of a matrix

~e ¼
exx exy exz
eyx eyy eyz
ezx ezy ezz

0
@

1
A: ð8:75Þ

The relation between electric field amplitude E and
dielectric displacement density D is then, instead of (1.64)
for isotropic media given by

D ¼~e � e0E ð8:76aÞ
where ~e is a tensor with the nine components ei;k which can
be written by the three equations for the components as

1
e0
Dx ¼ exxEx þ exyEy þ exzEz;

1
e0
Dx ¼ eyxEx þ eyyEy þ eyzEz;

1
e0
Dx ¼ ezxEx þ ezyEy þ ezzEz:

ð8:76bÞ

Note, that E and D are generally no longer parallel as in
isotropic media. When the dielectric displacement density
D is expressed by

D ¼ e0EþP; ð8:76cÞ
one can write the dielectric polarization P as

P ¼ D�e0E ¼e0 ~e� e1� �
� E ¼e0 � ~v � E: ð8:76dÞ

In anisotropic media the polarization P is generally no
longer parallel to the electric field E and the direction of the
oscillation of the induced dipoles is then also not parallel to
the acting force F = q � E, (Fig. 8.31b) analog to our
mechanical model in Fig. 8.31a. The susceptibility ~v ¼
ð~e� ~1Þ is a two-stage tensor and (8.76d) can be written as an
equation for the components

Pi ¼ e0 �
X3
j¼1

vijEj i ¼ x; y; zð Þ; ð8:76eÞ

This shows that each component Pi of the dielectric
polarization can depend on all three components Ej of the
incident wave.

In order to investigate the propagation of an electro-
magnetic wave in insulating charge-free (q = 0) anisotropic
media, we use the two Maxwell equations

divD ¼ 0 and divB ¼ 0:

From these equation follow the relations
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P

)y,k,x,k(F

)y,x(P
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ky→
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→

)0,0(P

Fig. 8.31 Mechanical model for illustration of optical birefringence.
The directions of the acting force a) and the elongation are not parallel
for unequal restoring forces b) for the optical case this means: Inducing
field and polarization do not point into the same direction
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D � k ¼ 0; B � k ¼ 0: ð8:77Þ
Both vectors D and B are perpendicular to the wave

vector k. With the relation (8.27)

B ¼ n=cð Þ � k0 	 Eð Þ
we conclude that B ⊥ E.

From the definition (7.21) of the Pointing vector

S ¼ e0c
2 E	 Bð Þ ðfor l¼ 1Þ

it follows that B ⊥ S. Since in dielectric media no electric
current flows, is rot B = ll0 � ∂D/∂t (see Sect. 8.3). This
implies B ⊥ D.

The consequence of the relations above is the following:
Since B is perpendicular to k, E, D and S, the latter four

vectors all have to lie in a plane ⊥ B (Fig. 8.32). E and
D include the angle a, which is determined by the tensor
(8.75). An important consequence is that the direction of the
wave vector k is no longer identical with the direction of the
energy flow S. The two vectors k and S include the same
angel a as E and D because E ⊥ S and D ⊥ k. While the
phase planes are perpendicular to k the energy flows in the
direction of S.

In anisotropic crystals the direction of light propaga-
tion and energy flow are generally different.

The electric field vector E is perpendicular to S but not to
k. The wave is no longer strictly transversal. The electric
field E has a component in the direction of k.

8.5.2 Refractive Index Ellipsoid

In non-absorbing media the tensor elements eik in (8.75) are
real numbers and for media without optical activity the
tensor becomes symmetric, i.e. eik = eki. In this case the
number of tensor components reduces to six. One can

always choose a coordinate system (x, y, z) where the
coordinate axes are oriented in such a way that all
non-diagonal elements of (8.75) are zero and the tensor
becomes diagonal (principal axis transformation)

~epa ¼
e1 0 0
0 e2 0
0 0 e3

0
@

1
A ð8:78Þ

The principal values e1, e2, e3 are obtained by the diag-
onalization of the corresponding matrix (8.75). These prin-
cipal values of e correspond to three values of the refractive
index n

n1 ¼ ffiffiffiffi
e1

p
; n2 ¼ ffiffiffiffi

e2
p

; n3 ¼ ffiffiffiffi
e3

p
:

If the vector

n ¼ n1; n2; n3f g
is plotted in a coordinate system with axes n1, n2, n3 (prin-
cipal axis system), its endpoint describes the ellipsoid

n2x
n21

þ n2y
n22

þ n2z
n23

¼ 1 ð8:79Þ

which is called the index ellipsoid (Fig. 8.33). The lengths
of the principal axes of this ellipsoid give the principal
values ni of the refractive index.

Crystals for which n1 = n2 6¼ n3 are called optical uni-
axial crystals.

Their index ellipsoid shows rotational symmetry about
the z-axis; which corresponds to the crystallographic c-axis
of the uniaxial crystal. For n3 > n1 = n2 the crystal is called
optical positive, for n3 < n1 = n2 it is optical negative.

If a plane wave falls into the direction of the wave vector
k onto an uniaxial crystal the plane perpendicular to k cuts

D
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k

S

α

α
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→

→

→

(90° )− α

B
→

Fig. 8.32 When a light wave propagates in an anisotropic crystal the
vectors k; E; D and S all lie in the same plane perpendicular to B, but
E is no longer perpendicular to k

(a)

ne

n1 = n2

k

Optical axis Optical axis

ne( )

n0

k

n0

n3

(b)

D

Fig. 8.33 a) Rotationally symmetric index ellipsoid with the symmetry
axis in the direction of the optical axis. b) two-dimensional representation
of the extraordinary refractive index ne(h) and the ordinary index n0
which is independent of h for a positive uniaxial crystal

8.5 Light Propagation in Anisotropic Media; Birefringence 233



the ellipsoid in an ellipse (Figs. 8.33 and 8.34). The vector
D lies in this plane. The length of the line segment in the
direction of D from the origin to the ellipse gives the
refractive index n for this wave and therefore also its phase
velocity vph ¼ c=n. It exists a special direction of k for
which the slice plane is a circle. This direction is the optical
axis of the crystal. For this direction of k the refractive index
does not depend on the orientation of D.

For the general case n1 6¼ n2 6¼ n3 6¼ n1 there are two
directions of k for which the slice plane is a circle. In such
biaxial crystal there are two optical axes. For all waves
propagating into the direction of one of these optical axis the
refractive index and the phase velocity of the waves are
independent of the direction of E. In this case E and D point
into the same direction.

For an uniaxial crystal the z-axis is chosen as the optical
axis. Then the x-z-plane through the origin cuts the index
ellipsoid, which is rotationally symmetric about the z-axis, in
an ellipse for one polarization component (E in the x-z-plane),
while the cut for the other component in the x-y plane gives a
circle (Fig. 8.34). The refractive index for the component in
the x-y-plane does not depend on the angle h between optical
axis and wave vector k. It behaves as in an isotropic medium
and is called the ordinary refractive index, while the refractive
index for the other component in the x-z-plane, which does
depend on the angle h is the extraordinary refractive index. Its
maximum value in positive uniaxial crystals is obtained for
h = 90°, where ne = n3 and k ‖ x (Fig. 8.34a) its minimum
value ne = n0 for h = 0° (k ‖ z). For our choice of the coor-
dinate axes the light waves with E = {0, Ey, 0} are ordinary
waves while those with E = {Ex, 0, Ez} are extraordinary
waves. Table 8.4 compiles some values of n0 and ne for some
uniaxial crystals.

For crystals with lower symmetry there is no longer a
preferential axis and the propagation of light in such crystals
is much more complex. There exists no ordinary wave with a
refractive index that is independent of the direction of k but
there are two extraordinary waves with refractive indices that
depend on the direction of k. For optical biaxial crystals with
two optical axes there are three refractive indices
n1 6¼ n2 6¼ n3 6¼ n. The index ellipsoid has no longer rota-
tional symmetry. With the vector r ¼ fx; y; zg ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiðqem�
p

e0) �
{Dx, Dy, Dz}, where D = {Dx, Dy, Dz} is the displacement
density vector, and ni

2 = ei (i = x, y, z) one obtains the index
ellipsoid

1 ¼ x2

n2x
þ y2

n2y
þ z2

n2z
:

8.5.3 Birefringence

When a parallel unpolarized light beam enters a calcite
crystal (CaCO3) it splits into two beams with different
polarization (Fig. 8.35). One beam follows Snell’s law of
refraction (8.58). For a = 0 is also ß = 0. It is therefore
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Fig. 8.34 Cut through the index ellipsoid a) for a positive and b) for a
negative uniaxial optical crystal. The distance between the center and
the intersection of the propagation direction and the circle resp, ellipse
give the refractive indices n0 resp. ne for this propagation direction. The
red arrows represent two waves in arbitrary directions where only the
ordinary beam or the extraordinary beam is shown. The ellipsoids arte
rotationally symmetric about the optical axis

Table 8.4 Ordinary refractive indices no ¼ n1 and extraordinary index
nað90 �Þ ¼ n3 for some birefringent uniaxial optical crystals at
k ¼ 589:3nm

Crystal no na

Crystal quartz 1.5443 1.5534

Calcite 1.6584 1.4864

Tourmaline 1.669 1.638

ADP = Ammonium-Dihydrogen-Phosphate 1.5244 1.4791

KDP = Potassium Diphosphate 1.5095 1.4683

Cadmium sulfid 2.508 2.526
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called the ordinary beam (see last section). The second
beam has even for A = 0 a refraction angelß 6¼ 0
(extra-ordinary beam).

The two beams are polarized orthogonal to each other.
The ordinary beam is polarized perpendicular to the optical
axis of the crystal, while the E-vector of the extra-ordinary
beam is parallel to the optical axis. Crystals that split the
incident light beam into two components, are called bire-
fringent crystals.

As has been discussed in Vol. 1, Sect. 11.11 the refrac-
tion can be understood with Huygens principle. The propa-
gation direction is the normal to the envelope of the wave
fronts of the elementary waves, which are emitted from each
point hit by the primary wave (Fig. 8.36).

If the incident light impinges perpendicular to the optical
axis onto the crystal (Fig. 8.36a) the phase velocity of the
wave does not depend on the propagation direction in the
crystal. This is true for both polarization directions. The
phase surfaces for each elementary wave (in Fig. 8.36a is
only one indicated) originating from the point A are spheres
and their cuts with the x-y-plane are circles. However, the
phase velocities differ for the ordinary and the extraordinary
wave, because no is different from ne. the tangent from the
point B to the phase velocity circles gives the phase front of
the total wave for ordinary and extraordinary wave. The
wave vectors ko and ke are perpendicular to these tangents.
They point into different directions.

If the direction of the incident light is inclined against the
optical axis (in Fig. 8.36b lies the optical axis in the drawing
plane) the phase velocity of the extraordinary wave (polar-
ization vector is parallel to the optical axis) depends on the
inclination angle against the optical axis (Fig. 8.34).
Therefore the cuts of the phase surfaces with the x-y-plane
are ellipses, for the ordinary wave (polarization direction
perpendicular to the optical axis) they are circles.

If the wave impinges vertically onto the surface of the
crystal (Fig. 8.35a) the ordinary wave passes through the
crystal into the same direction as the incident wave (there is no
refraction, i.e. the refractive angle ß = a is equal to the angle of
incidence). The extraordinary wave is refracted (ß 6¼ a),

In Fig. 8.37 the generation of the elliptical phase surface
is again illustrated for the general case. The E-vector of the
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Fig. 8.35 Optical birefringence. a) vertical incidence b) inclined
incidence c) Illustration of birefringence in a calcite crystal. The incident
unpolarized light is split into ordinary and extraordinary beam which are
linearly polarized orthogonal to each other
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Fig. 8.36 a) Birefringence of the incident light, if the optical axis is
perpendicular to the drawing plane. b) Elliptical wave front for the
extraordinary wave with Pointing vector S and wave vector k
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Fig. 8.37 Origin of the elliptical wave fronts in a birefringent crystal
when the polarization plane of the incident wave forms an arbitrary
angle against the optical axis
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incident wave is divided into the component E‖ parallel and
a component E⊥ perpendicular to the optical axis. The phase
velocities for the two polarization directions are v‖ and v⊥.
The refraction angle ß for the extraordinary component is
then sinß = v‖/c.

The magnitude of the splitting depends on the angle a of
the incident beams against the optical axis and on the dif-
ference between the refractive indices no and ne.

Because of the different phase velocities and the different
wave vectors k for the two polarization directions wave
vector k and Pointing vector S have in birefringent crystals
generally different directions. In Fig. 8.38 the directions of
field vector E, displacement density vector D, wave vector
k and Pointing vector S are illustrated for the general case in
a birefringent crystal.

The tangent to the phase surfaces of the different ele-
mentary waves gives the phase surface of the total wave.
The propagation vector (wave vector) k is perpendicular to
this phase plane. The direction of the Pointing vector S gives
the direction of the energy flux. It is

S�E2
kvk þE2

?v?

Since S ¼ e � e0 � v2
PhðE	 BÞ, the vector E is perpendicu-

lar toS, The dielectric displacement densityD is perpendicular
to k, the directions of D and E include the same angle a as the
directions of k and S. The angle a depends on the components
eik of the dielectric tensor ~e;which in turn depend on the
structure of the crystal: If a light beam with small cross
section enters a birefringent crystal of sufficient thickness the
energy flux travels out of the light beam (the direction of k),
which implies that in this case no energy is transported.

If the optical axis coincides with the propagation direc-
tion, no birefringence occurs. Both waves have then equal
refractive indices and therefore also equal phase velocities
(see Fig. 8.34).

8.6 Generation and Application of Polarized
Light

As has been shown in Sect. 8.7.4 an electro-magnetic wave
propagating in z-direction can be always described by the
representation

E ¼ Ax þAy

� �
ei x t�kzð Þ;

where the amplitudes

Ax ¼ E0xe
iu1 ; Ay ¼ E0ye

iu2

are generally complex vectors.
For u1 = u2 the wave is linearly polarized (Fig. 7.4). For

∣Ax∣ = ∣Ay∣ and ∣u1 − u2 ∣ = p/2 it is circularly polarized
(Fig. 7.5) and for ∣Ax∣ 6¼ ∣Ay∣ o r ∣u1 − u2∣ 6¼ 0; ½p; or p it
is elliptically polarized.

If there is no temporary constant but a randomly fluctu-
ating phase difference, the direction of E varies randomly in
a plane perpendicular to the propagation direction z and the
wave is unpolarized.

A wave, that is emitted by an oscillating dipole becomes
at a sufficiently large distance r from the dipole
(r � d) linearly polarized, where E is oriented parallel to the
dipole axis (see Sect. 8.6.4).

Light waves are emitted by excited atoms or molecules.
In most cases (for example for collisional excitation) the
directions of the excited atoms are randomly distributed over
all directions. Therefore the light emitted by excited atoms or
molecules (e.g. in gas discharges) is unpolarized.

The question is now, how to transform this unpolarized
light into polarized one. There are several experimental
possibilities. Some of them will be shortly introduced in the
following section [12].

8.6.1 Generation of Polarized Light
by Reflection

If unpolarized light falls under the Brewster angle
(Sect. 8.4.5) onto a glass plate, the reflected light contains
only the component A⊥ perpendicular to the plane of inci-
dence (Fig. 8.14). The reflected light is therefore completely
linearly polarized (see Sect. 8.4.4). The transmitted light is
only partly polarized. The degree of polarization DP of
partly linear polarized light is defined as

α

α

S
→

k
→

→

E
→

D
→

90°

Fig. 8.38 Directions of the different vectors of a wave in anisotropic
crystals. E ⊥ S and D ⊥ k
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DP ¼ Ik � I?
Ik þ I?

; ð8:80Þ

where I‖ and I⊥ are the intensities of light with the E-vectors
parallel rep. perpendicular to a defined direction.

From (8.65a) we can calculate the reflectivity R of the
perpendicular part and with R + T = 1 we can conclude that
the transmission T of the light at the Brewster angle is
attenuated by about 15%.

The degree of polarization of the transmitted light for
unpolarized incident light is at the Brewster angle

DP ¼ 0:5� 0:5 � 0:85
0:5þ 0:5 � 0:85 � � 0:08;

When the incident light passes through several glass
plates under the Brewster angle, the degree of polarization
can be increased (Fig. 8.39). Since only the perpendicular
component is reflected out of the incident beam there are no
losses for the parallel component. The intensity of the
transmitted light after passage through m Brewster glass
plates converges towards I║ ! 0.5 I0 for m ! ∞.

8.6.2 Generation of Polarized Light
at the Passage Through Dichroitic Crystals

The most useful method for practical applications is the
generation of polarized light by the transmission of the inci-
dent unpolarized light through thin polarization foils con-
sisting of small dichroitic crystals, which are embedded with
definite orientation in a gelatin layer. These anisotropic
crystals have restoring forces for the induced atomic dipoles
that depend on their direction. Therefore their resonant fre-
quencies x0 in (8.21a, 8.21b) and the absorption coefficient a
at a given wavelength k depend on the direction of the electric
E-vector of the incident wave (Fig. 8.40). The foil can be
turned in such a way, that light with the wanted polarization is
transmitted and the perpendicular component is absorbed.

Such an optical anisotropy can be also realized, when a foil
of cellulose hydrate is stretched into one direction, which
makes it dichroitic (stress birefringence, see Sect. 8.6.6).

The drawback of the polarization foils is their relatively
large attenuation even for the wanted polarization

component. For high intensities (which can be achieved for
instance with lasers) the large absorption leads to burning of
the foil. Therefore in such cases birefringent crystals are the
better choice for generating polarized light.

8.6.3 Birefringent Polarizers

By optical birefringence in optical uniaxial transparent
crystals linearly, circular or elliptically polarized light can be
generated from unpolarized light even for very high
intensities.

An example is the Nicol’s prism (Fig. 8.41a), which
consists of a birefringent negative optical uniaxial
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Linearly polarized

Linearly

Polarized

Fig. 8.39 Realization of linearly polarized light by transmission
through several Brewster plates

Unpolarized
light
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vertical
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Fig. 8.40 Principle of dichroitic polarization after transmission
through a dichroitic foil. One of the polarization modes is more
strongly absorbed than the other
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Fig. 8.41 a) Nicol prism for generating linearly polarized light. b)
Glan-Thompson polarizer
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rhombohedrum crystal. The crystal is cut along the diagonal
surface inclined to the optical axis. The two parts are glued
together by a transparent glue. If unpolarized light hits the
entrance surface it is split into an ordinary and an extraor-
dinary beam. Since no > ne the refracted ordinary beam
suffers a larger refraction angle ß. Therefore the two beams
hit the glue surface under different angles. The glue (e.g.
Canada balsam) has a smaller refractive index nC = 1.54
than the refractive index no = 1.66 of the ordinary beam but
is larger than ne = 1.49 of the extraordinary beam. If the
incidence angle of the ordinary beam at the interface to the
Canada balsam is larger than the critical angel ßc with
sinßc´ = nc/no the ordinary beam is totally reflected. The
transmitted light then contains only the extraordinary beam
and is therefore completely linear polarized with the electric
vector E parallel to the plane of incidence.

Since the entrance and exit planes of the Nicol’s prism are
inclined against the direction of the k-vector of the incident
light a spatial displacement of the exit beam against the
incident beam occurs (Fig. 8.41a).

This disadvantage is avoided for the Glan-Thompson
prism (Fig. 8.41b), which has end faces perpendicular to the
direction of light propagation. It is cut from a calcite crystal
in such a way, that the optical axis is parallel to the end
faces. Therefore there will be no birefringence for incident
unpolarized light. Ordinary and extraordinary beam propa-
gate parallel in the Glan-Thompson prism, but with different
velocities v0 ¼ c=no resp. ve ¼ c=ne. At the glue layer the
two beams are split, if the angle of incidence at the
Canada-balsam layer exceeds the critical angle ßc of total
reflection for the ordinary beam but is smaller than ßc for the
extraordinary beam.

The advantages of the Glan-Thompson prism are

• there is no beam displacement as in the Nicol’s prism
• the incident beam can cover the total entrance face of

the prism

• the total length of the Glan-Thompson can be shorter
than for the Nicol’s prism.

Often it is advantageous to use both polarized beams.
This can be achieved with a polarization beam splitter cube
(Fig. 8.42). One could in principle use the same technique as
in the Glan-Thompson prism but then a cube material has to
be used which has a larger refractive index then the critical
angle ßc already for a = 45°. Therefore it is technical more
efficient to use ordinary isotropic glass for the cube material
and to cut the cube in the diagonal plane, place a thin
polarization foil onto the cut surface and glue the two parts
of the cube together. The polarizer consists of many thin
dielectric layers with thickness d = k/2, which have a high
reflectivity for one polarization component but a low
reflectivity for the other component (Fig. 8.43).

With birefringent crystals linear polarized light can be
converted into elliptical or circular polarized light. The
crystal consists of a thin plan-parallel disc with the optical
axis in the plane of the disc and directed under 45° against
the direction of the electric vector E of the incident light
wave (Fig. 8.44).

E ¼ E0 � eiðxt�kzÞ with E0 ¼ E0x; E0y; 0
� 

The two orthogonal components E0x and E0y experience
different refractive indices n1 and n2 (see Fig. 8.34) and
show after a path length d through the birefringent crystal
the relative phase difference

Du ¼ 2p
k0

d n1 � n2ð Þ:

When the path length d is chosen such that Du = p/2, the
output wave is circular polarized, if the input wave is ori-
ented under 45° against the optical axis (E0x = E0y). This
polarizer is called k/4-plate (quarter wave plate). For other
angles of incidence (a 6¼ 45°) is E0x 6¼ E0y and the output
wave is elliptical polarized.

Thin film
polar izator
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Fig. 8.42 Polarization beam splitting cube with a polarization foil
inserted on the parallel and orthogonal diagonal
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Fig. 8.43 Transmission T of the dielectric polarization beam splitter
for the polarization component parallel and orthogonal to the drawing
plane within a wavelength range around the optimum wavelength k0
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Example

For a positive optical uniaxial crystal with n1 = 1.55
and n2 = 1.58 the length of the k/4-plate is d = k/(4 �
0.03) = 8.3 k = 4.3 lm for k = 500 nm.

This shows that k/4 plates are generally very thin and
therefore mechanical fragile. This can be improved by
choosing a crystal with a small value of Dn, which increases
the thickness d. Another possibility is a thicker crystal with a
higher order n of the phase difference

Du ¼ 2mþ 1ð Þp=2 withm � 1

The disadvantage of these higher order k/4-plates is the
stronger dependence of the phase shift Du(k) on the wave-
length k.

8.6.4 Polarization Turners

For many applications in optics the problem arises to turn
the direction of the E-vector of plane polarized light by a
definite angle Da. This can be achieved with a k/2 plate
which has twice the optical length n � d of a k/4-plate. The

optical axis lies in the plane of the plate. If the E-vector of
the incident wave forms the angle u against the optical axis
(Fig. 8.45) we can split the vector E0 into the two
components

E0k ¼ E0 � cosu; and E0? ¼ E0 � sin u

parallel and perpendicular to the optical axis. Both compo-
nents are in phase at the entrance surface. Due to the dif-
ferent refractive indices the two components show at the exit
surface the phase difference

Du ¼ 2p=kð Þ � d � Dn:
For a crystal length d = k/(2 � Dn) the phase difference

becomes Du = p. With the wavenumber k = 2p/k we can
write the electric vector E at the exit surface as

Ek ¼ E0 cos u � eikkdeix t;

E? ¼ E0 sin u � eik?deix t;

¼ �E0 sin u � eikkdeix t;

ð8:81Þ

The vector E has turned after the crystal length d by the
angleDa = 2u. Turning the k/2 plate about the direction of the
incident beam allows one to realize any angle u against the
optical axis and therefore also any turning angle Da = 2u.
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Fig. 8.45 Rotation of the polarization plane of an incident linearly
polarized wave by a k/2-plate
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Fig. 8.44 Principle of the circular polarizer (k/4 plate). a) Vivid
representation b) direction of the electric vector E of the incident wave
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The polarization characteristic of light and the influence
of optical components can be used for sensitive measure-
ments of small changes of the refractive index. One example
is the polarization- dependent interferometric detection
technique [13] where two applications are illustrated in
Figs. 8.46 and 8.47.

8.6.5 Optical Activity

Some materials turn the polarization plane even for an
arbitrary direction of the E-vector after passing through the
material thickness d by the angle

a ¼ as � d: ð8:82Þ
The proportionality factor as is the specific optical

rotation power (Fig. 8.48). One has to distinguish between
right and left turning materials. The sense of rotation is
defined for an observer looking towards the propagation
direction of light. They are labeled as “+” for right turning
materials and “–” for left turning ones.

The physical reason for the optical activity are symmetry
properties of the optical medium. For some substances
optical activity is observed only in the solid crystalline phase
whereas it disappears in the liquid or gaseous phase. It
therefore must be caused by the special symmetry of the
crystal. One example is crystalline quartz, which can be
found in nature as right- or left turning quartz (Fig. 8.49).

On the other side there are also substances (e.g. sugar or
lactic acid) which show optical activity also in the liquid

Fig. 8.47 Wird 8.54x Water runner on a water surface. The interfer-
ence fringes around the legs indicate the deformation of the water
surface, which depend on the balance between weight of the animal and
the surface tension of the water. From Francon and Malik (1971)
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ds ⋅α=α

α

Fig. 8.48 Optical activity of a medium, indicating the rotation of the
polarization plane

Optical axis

d

Clockwise

l

Anti clockwise

Fig. 8.49 The two mirror images of the crystal structures of a left- and
right turning quartz crystal

Fig. 8.46 Convection currents above a candle flame observed with a
differential interferometer (interferometer with polarization) From: M.
Cagnet, M. Francon, S- Malick: Atals optischer erscheinungen
(Springer, Berlin, Heidelberg 1971)
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phase. Here the symmetry of the molecules must be
responsible for the optical activity (Fig. 8.50).

A complete explanation of optical activity is only possi-
ble on the basis of quantum theory. However, a descriptive
model can illustrate the physical basis, as is shortly outlined
as follows [14]:

Similar to the generation of linearly polarized waves by
the induced oscillations of atomic dipoles in a homogeneous
medium, here it is assumed that the outer electrons of these
special molecules or crystals are induced by a circular
polarized wave to elliptical motions about the propagation
direction of the wave. This model is supported by the spiral
shaped arrangement of oxygen and carbon atoms in crys-
talline quartz. The spiral is right-handed for right turning
quartz and left-handed for left-turning quartz. Such mole-
cules are called chiral molecules. They exist in two mirror
configurations (mirror isomers, Fig. 8.50). Examples are
sugar, lactic acid or 2-butanol.

We can compose a linear polarized wave

E ¼ êxE0x � eiðxt�kzÞ

of two opposite circular polarized waves

Eþ ¼ 1
2

êxE0x þ iêyE0y

� �
eiðxt�kzÞr

E� ¼ 1
2

êxE0x � iêyE0y
� �

eiðxt�kzÞ:
ð8:83Þ

If the two circular polarized components have different
phase velocities vþ ¼ c=nþ or v� ¼ c=n� the composite
wave becomes again linear polarized after the pass length
d = k/Dn but its plane of polarization has turned by the angle

a ¼ p
k0

d n� � nþð Þ

The differing refractive indices n+ and n− are due to the
different interaction of the right- or left circular polarized
wave with the electrons that move in a preferential direction
of rotation.

The fact that optical activity can also occur in a liquid
where the orientations of the molecules are randomly dis-
tributed without the incident optical wave, can be understood
as follows:

Due to the electric and magnetic dipoles of chiral mole-
cules, induced by the circular polarized wave a small ori-
entation is generated which can effect optical activity. For
biological molecules nature apparently favors one of the two
mirror isomers.

For instance, the blood sugar is always left handed. With
a polarimeter the rotation angle a = as � C � d of a sugar
solution with the concentration C and the length d can be
measured and the concentration C can be determined. The
sample is placed between two crossed polarizers (Fig. 8.52)
and the analyzer is turned by the angle –a until the trans-
mitted intensity becomes again zero [13].

8.6.6 Stress Birefringence

Even in homogeneous isotropic media optical birefringence
can be induced by anisotropic external pressure or tension,
which result in changes Dn of the refractive index n which
are dependent on orientation and location in the media.
Measuring these changes Dn gives information about the
spatial distribution of mechanical stress in the medium. Such
a measurement can be performed with the design shown in
Fig. 8.52 where the white light beam is expanded to a cross
section that covers the whole sample. The transparent sam-
ple is placed between to crossed polarizers. For an isotropic
sample no light is transmitted through the second crossed
polarizer and the observation plane is dark. When mechan-
ical stress is applied to the sample a spatially dependent
change of the polarization direction is induced and colored
pattern is observed behind the second polarizer which ima-
ges the spatial distribution of the anisotropic stress
(Fig. 8.53). The optical phase shift.

Du x; yð Þ ¼ 2p
k0

�
Zd
0

Dn x; yð Þdz

Mirrror
plane

CC

H H

OH OH

CH3 CH3

C  H2 5 C  H2 5
–+

Fig. 8.50 Two isomeric forms of the 2-butanol molecule which are
mirror images with respect to a mirror plane perpendicular to the
drawing plane
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Fig. 8.51 A linearly polarized wave can be composed of a right (r−)
and a left (r+) circular polarized wave
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is given by the integral of Dn integrated over the path length
z = d through the sample. Since Du depends on the wave-
length, measurements with white light give colored patterns
of the spatial distribution of stress-induced birefringence and
allows a detailed information about the distribution and
magnitude of the stress. Glass blowers use this technique of
polarimetry to judge the residual stress in blown glass, which
can be removed by annealing the glass, where the temper-
ature is raised up to a value closely below the melting
temperature and then slowly cooled down.

Illustrative examples are a plexi glass rod which is sup-
ported by two holders at the two ends and pressed down in
the middle. Another nice example is the water strider on the
water surface shown in Fig. 8.47, which does not sink due to
surface tension, but causes dents of the water surface around
the legs caused by the weight of the strider.

For many technical applications the spatial stress distri-
bution is very important to judge the upper load limit for a
bridge or a building. For the measurements a transparent
reduced scale model of the building in question is placed

Fig. 8.53 Stress induced birefringence of a spanner holding a work
piece (Dr. G. Haberland, Woltersdorf)

Fig. 8.54 Birefringence of a plexi glass rod induced by mechanical
stress in the rod supported at two points and pressed in the midpoint

(b)

Light-
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Filter

Lens

Polarizer

Sugar solution

Cell

Analyser

Detector

P1 P2α

Fig. 8.52 a) Measurement of the sugar concentration with a polarimeter. b) Measurement of stress-induced birefringence

Fig. 8.55 Stress-induced birefringence detected in convergent light.
Two equal quartz plates cut parallel to the optical axis are turned to a
crossed position of their optical axes and are placed between two
crossed polarizers. Convergent white light passes through the arrange-
ment. From Francon et al. (1971)
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between the crossed polarizers. In Fig. 8.52b the arrange-
ment for measuring stress-induced birefringence is shown
and Fig. 8.54 illustrates the observed pattern for a plexi glass
rod under specific stress.

In Fig. 8.53 the stress-induced polarization of a spanner is
shown which illustrates the spatial distribution of the stress
and in Fig. 8.55 the stress-induced birefringence in a quartz
plate is detected between two crossed polarizers.

8.7 Nonlinear Optics

For sufficiently small electric field strength E of the incident
wave the amplitudes of the induced oscillations of the atomic
electrons are small and the restoring forces are proportional
to the elongations from the equilibrium position (Hooke’s
linear range). The induced electric dipole moments p = a �
E are proportional to the electric field E. The components of
the dielectric polarization

Pi ¼ e0 �
X
j

vijEj

depend linearly onE. The coefficients vij are the components of
the electric susceptibility tensor ~v (see 1.58). This is the range
of linear optics. For isotropic media the susceptibility tensor
reduces to a number i.e. vij = v � dij where v is a scalar
quantity.

Example

The electric field strength E of the sunlight within a
spectral range Dk = 1 nm around k = 500 nm reach-
ing the earth surface is about 3 V/m. The Coulomb
force which binds the outer atomic electron to the
nucleus is, however,

EC � 10V
10�10 m

¼ 1011 V=m: ð8:84Þ

Therefore the elongation of the atomic electrons induced
by the sunlight, are very small compared to their average
distance from the atomic nucleus and the range of linear
optics is not exceeded.

For much larger intensities [as for example reached with
focused laser beams (see Vol. 3)] the range of nonlinear
elongations of the atomic electrons can be reached. Instead
of (8.84) we have to use the equation

Pi ¼ e0
X
j

vð1Þij Ej þ
X
j

X
k

vð2Þij EjEk þ
X
j

X
k

X
l

vð3ÞijklEjEkEl þ . . .

 !
;

ð8:85Þ
where v(n) is the susceptibility of n-th order, which is
described by a tensor of rank (n + 1). Although the quanti-
ties v(n) which depend on the symmetry properties of the
medium rapidly decrease with increasing n the higher order
terms in (8.85) can no longer be neglected for high inten-
sities of the incident wave.

When a monochromatic light wave

E ¼ E0 � cos xt � kzð Þ ð8:86Þ
propagates through the medium, the polarization P contains,
due to the higher order powers Em of the electric field E with
m > 1, besides the fundamental frequency x also higher
order frequencies mx (m = 2; 3; 4;…). This implies, that the
induced oscillating dipoles emit electromagnetic waves not
only on the fundamental frequency x (Rayleigh scattering)
but also on higher harmonics mx. The amplitudes of these
higher harmonics depend on the coefficients v(m) (i.e. from
the characteristic features of the medium) but also on the
amplitude of the incident wave.

We will illustrate this by some examples [15, 16].

8.7.1 Optical Frequency Doubling

Inserting (8.86) into (8.85) gives when neglecting all terms
v(m) with m > 2 The polarization at z = 0

Px ¼ e0 vð1ÞE0x cos x tþ vð2ÞE2
0x cos

2 x t
� �

:

Here we have assumed an isotropic medium and a linear
polarized incident wave with E0 = {E0x, 0, 0}.

With cos2x = ½(1 + cos2x) we obtain

Px ¼ e0 vð1ÞE0x cos x tþ 1
2
vð2ÞE2

0x þ
1
2
vð2Þ cos2 x t

� �
:

ð8:87Þ
The polarization contains a constant term ½e0v

(2)E0x
2 , a

term that oscillates with the frequency x and a term that
describes the oscillation with the double frequency 2x. This
means:

Every atom hit by the incident wave with the fundamental
frequency x, emits a scattered wave with the frequency x
(Rayleigh scattering) and a part that oscillates with the fre-
quency 2x (overtone wave).
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The amplitude of this overtone wave is, according to
(8.87) proportional to the square of the amplitude of the
incident wave, i.e. the intensity of the overtone wave is
proportional to the square of the incident intensity.

The microscopic parts from the different atoms super-
impose each other. This superposition can only lead to a
macroscopic wave if all the different parts are in phase at
each location in the nonlinear medium. This demands that
the phase velocities of the fundamental wave and the over-
tone wave must be equal. Because of dispersion this cannot
be achieved in a normal isotropic medium, where the phase
velocity depends on the frequency of the wave, but can be
realized in birefringent optical crystal where the phase
velocity depends on the propagation direction against the
optical axis and on the polarization of the wave.

8.7.2 Phase Matching

When the plane wave (8.86) propagates in z-direction
through the medium, it induces in each plane z = z0 atomic
dipoles. The oscillation phase of the dipoles depends on the
phase of the inducing wave at the plane z = z0. In the
neighboring plane z = z0 + Dz the same phase difference
between inducing wave and dipole oscillation exists.

The secondary wave emitted by the dipoles at the fre-
quency x reaches the plane z = z0 + Dz at the same time as
the inducing wave. They therefore superimpose the sec-
ondary waves generated in the plane z = z0 + Dz in phase
(see Sect. 8.1). This leads to a macroscopic secondary wave
at the frequency x that superimposes the primary wave at x.
Because of its phase shift against the primary wave the total
wave at the frequency x has a phase velocity vph � c=n that
is smaller than in vacuum (see Sect. 8.1).

Due to the dispersion of the medium this is generally no
longer true for the overtone waves, because the phase
velocities vph(2x) = c/n(2x) 6¼ vph(x) are different for the
fundamental and the overtone wave. Therefore the overtone
wave generated at the plane z = z0 arrives at the plane
z0 + Dz later than the fundamental wave and the overtone
wave at 2x, generated at z = z0 has a phase lag against the
overtone wave generated in z = z0 + Dz when it arrives at
z = z0 + Dz. This means: In isotropic media the microscopic
shares of the overtone wave generated at the different atoms
cannot build up to a macroscopic overtone wave (Fig. 8.56).

After a path length

Dz ¼ k=2
n 2xð Þ � nxð Þ ¼ lc

the overtone wave shows a phase lag of Du = p. It is
therefore opposite in phase against the secondary waves

emitted at the plane z = lc and the superposition becomes
destructive at the critical phase-matching length lc.

Averaged over the whole medium the conversion of the
fundamental into the overtone wave becomes zero, i.e. there
is practical no energy transfer from the incident fundamental
wave into the overtone wave. One therefore has to look for a
way where the phase velocities of fundamental and overtone
wave become equal.

Fortunately birefringent crystals offer such a possibility (see
Sect. 8.5), based on the different phase velocities of ordinary
and extraordinary wave. If it is possible to choose a direction hp
against the optical axis of an uniaxial crystal where the
refractive index ne(2x) of the extraordinary wave is equal to
n0(x) of the ordinary wave the fundamental wave E0(x)
propagates in this direction with the same velocity as the
overtone wave Ee(2x) (Fig. 8.57). Now all overtone waves
generated in arbitrary planes can superimpose in phase with the
overtone waves in subsequent planes. In this case a macro-
scopic overtone wave is generated which propagates into the
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Fig. 8.56 Schematic representation of the realization of optical
frequency doubling
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Fig. 8.57 Phase-matching of fundamental wave with frequency x and
its first harmonic (2x) in birefringent crystals
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same direction as the fundamental wave (optical frequency
doubling). For example is the red light at k = 690 nm emitted
by the Ruby Laser converted into ultraviolet light at
k = 345 nm. Since the ordinary and the extraordinary wave are
polarized perpendicular to each other is

E 2xð Þ?E xð Þ:
The phase-matching condition is

na 2xð Þ ¼ n0 xð Þ ) vph xð Þ ¼ vph 2xð Þ
) k 2xð Þ ¼ 2k xð Þ: ð8:88Þ

The disadvantage of birefringent crystals for optical fre-
quency doubling is the limited spectral range of the
phase-matching condition for a given angle hp against the optical
axis,which is only strictly fulfilled for a selectedwavelength. For
other wavelengths the optical axis has to be turned.

In recent years another method of quasi-phase-matching
has been introduced. Here a ferro-electric medium is used
which consists of many thin slices with alternatively
changing signs of the refractive index difference Dn = n(2x)
− n(x). This alternation is realized by an external electric
field which periodically changes its polarity (Fig. 8.58a).
The phase difference developing within one slice is

compensated in the next slice. The intensity of the overtone
wave does not increase as fast with the length of the dou-
bling device as for exact phase matching in a single crystal,
but quasi phase matching can be realized for a much larger
wavelength range [17].

8.7.3 Optical Frequency Mixing

When two light waves

E1 ¼ E01êx cos x1t � k1 � rð Þ
E2 ¼ E02êx cos x2t � k2 � rð Þ

are superimposed in a nonlinear optical medium, the total
electric field E = E1 + E2 causes, according to (8.85) a
dielectric polarization P of the atoms, with a nonlinear part

Pð2Þ xð Þ ¼ e0v
ð2Þ E2

01 cos
2 x1tþE2

02 cos
2 x2tþ 2E01E02 cosx1t � cosx2t

� �
¼ 1

2
e0v

ð2Þ E2
01 þE2

02

� �� þE2
01 cos 2x1tþE2

02 cos 2x2t

þ 2E01E02 cos x1 þx2ð Þtð þ cos x1 � x2ð ÞtÞ�:
ð8:89Þ

Besides the overtones with x = 2x1 resp. 2x2 waves
with the sum frequency (x1 + x2) and the difference fre-
quency (x1 − x2) are generated.

Choosing the right phase matching one can realize that
for one of these frequencies all contributions of the sec-
ondary waves from the different atoms in the medium
superimpose with the correct phase, resulting in a macro-
scopic wave with the corresponding frequency (optical
frequency mixing).

For instance is the phase matching condition for the
generation of the sum frequency

k3 x1 þ x2ð Þ ¼ k1 x1ð Þþ k2x2

n3 � x3 ¼ n1x1 þ n2x2 with ni ¼ n xið Þ: ð8:90Þ

It is generally easier to accomplish phase-matching for
the sum frequency generation than for optical frequency
doubling, because the directions of the wave vectors k1 and
k2 can be chosen within certain limits in order to achieve
phase matching for a wider frequency range.

This optical frequency mixing has considerably enlarged
the spectral range for the realization of coherent radiation
sources, extending from the near infrared to the ultraviolet
region. Furthermore it has allowed the investigation of
electronic properties of nonlinear optical media [18, 19].
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Fig. 8.58 Quasi-phase-matching in periodical poled optical crystals.
a) periodical change of the difference Dn = n(2x) − n(x) in a
ferro-electric crystal, b) Output power P(2x) as a function of the crystal
length. a single crystal with slight phase- mismatching b periodical
poled crystal with the same phase mismatch c single crystal with ideal
phase matching (is only valid for the correct frequency x)
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Since the efficiency of these nonlinear optical frequency
mixing increases with the square of the incident intensity of the
fundamental wave, suchmixing experiments were in the earlier
days of lasers only possible with pulsed lasers with high peak
intensities (see Vol. 3 and [20]). Meanwhile new optical non-
linear crystals can be grown (e.g. barium-beta Borat Ba(BO2)2
or lithium-iodate LiJO3) with large nonlinear coefficients of the
susceptibility tensor v(2) which enable optical frequency mix-
ing or doubling even with continuous (cw) lasers.

8.7.4 Generation of Higher Harmonics

In recent years researchers have succeeded in the generation of
high harmonic frequencies mx (m = 2; 3; 4; …300) by
focusing pulsed lasers into a container with a noble gas (e.g.
neon or argon) at high pressures. The atoms in the gas become
ionized in the high electric field of the focused laser beam. The
photo- electrons are periodically accelerated by the electricfield
E(x) of the laser,which changes signwith the optical frequency
x. These accelerated electrons radiate electromagnetic waves
within a broad frequency range [21]. In Fig. 8.59 such a fre-
quency spectrum of higher harmonics is shown [18] generated
by a focused fundamental laser wave at k = 1.050 nm. The
energy of 160 eV corresponds to the 150th overtone wave at
k = 7 nm which lies already in the soft X-ray region.

Example

For m = 100 the frequency mx of the overtone wave
from the fundamental wave at k = 700 nm (x = 2p 	
1014 s−1) is 2p 	 1016 s−1, corresponding to a wave-
length km = 7 nm which is located in the soft X-ray
region. This illustrates that the high harmonics gen-
eration enables the realization of intense X-ray
sources.
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Fig. 8.59 Spectrum of high harmonics of the laser radiation at
L = 1.05 lm with quasi. phase-matching (red curve) and without phase
matching (black curve)
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Summary

• Electromagnetic waves have in a medium with
refractive index n the phase velocity vph ¼ c=n, which
depends on the frequency x, because n(x) depends on
x.

• The refractive index is a complex number

n ¼ nr�ij:

The real part describes the dispersion, the imaginary part
the absorption of an incident electromagnetic wave. The two
parts nr and j are related by the dispersion relations (8.21a).

• The intensity of an electro-magnetic wave propagating
into the z-direction through a medium with absorption
coefficient a decreases with z as

I ¼ I0 � e�az with a ¼ 4p=k0ð Þj:
This Beer’s absorption law is valid for not too high

intensities, where saturation effects can be still neglected.

• At the interface between two media with different
refractive indices n1 and n2 reflection and refraction
occur. Amplitudes and polarization of reflected and
refracted waves depend on the angle of incidence a
and on the polarization of the incident wave. They can
be calculated using the Fresnel formulas (8.61a,
8.61b, 8.62a, 8.62b).

• The sum of reflectivity R and transmission T in
absorption-free media is always

R þ T ¼ 1

For vertical incidence (a = 0°) is

R ¼ n1 � n2
n1 þ n2

����
����
2

:

Interfaces of strongly absorbing media have a high
reflectivity.

• For the transition from an optically dense to an opti-
cally thin medium total reflection occurs for angles
a > ac. Nevertheless the wave penetrates into a thin

layer Dx < k of the optically thinner medium as
evanescent wave. The total reflection is still 100%.

• At the Brewster angle a = aB the reflectivity R‖ for the
component Aǁ parallel to the incidence plane becomes
zero. For a = aB the direction of the reflected beam is
perpendicular to that of the refracted beam.

• In anisotropic media the electric field vector E and the
dielectric displacement vector D are generally no
longer parallel. The pointing vector S includes with
the wave vector k the same angle a as E with D.

In birefringent media the incident wave splits into an
ordinary and an extra-ordinary part. The refractive index
depends on the polarization of the incident wave. For the
ordinary wave no is independent of the direction of k, like in
isotropic media. For the extraordinary wave ne depends on
the angle between k and the optical axis.

• Polarized light can be generated

(a) by reflection under the Brewster angle
(b) by dichroitic thin film polarizers
(c) by birefringent crystals.

• Electromagnetic waves in media can be described by a
wave equation that is derived from the Maxwell
equations. The equations contain for the propagation
in media an additional term that represents the polar-
ization of the medium by the wave. This polarization
is the source of new waves (secondary waves), emit-
ted by the induced atomic dipoles.

• If the incident light has sufficiently high intensity, the
linear dependence of the oscillation amplitude of the
dipoles for small elongations is exceeded and non-
linear effects arise. The dipoles emit overtone waves
with frequencies mx, (m = 1; 2; 3; …). For the cor-
rect alignment of the nonlinear optical birefringent
crystal the secondary overtone waves superimpose in
phase (phase matching) and a macroscopic overtone
wave is generated (optical frequency doubling, non-
linear optics).
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Problems

8.1 Calculate the refractive index of air at atmospheric
pressure for light with the wavelength k = 500 nm,
using Eq. (8.12b). The resonance frequency of the
nitrogen molecules is x0 = 1016 s−1. The influence of
the other gases should be neglected. Comparing with
the value in Table 8.1 what can you say about the
oscillator strength in Eq. (8.13)?

8.2 Under which angle must a light beam enter the
interface air-glass that the angle between incident and
reflected beam becomes equal to the angle between
incident and refracted beam?

8.3 Assume that 8 atoms are located at the 8 corners of a
cube with side length L = 100 nm. An incident plane
light wave propagating into the z-direction induces the
atoms to oscillations in x-direction. How large is the
fraction of the incident light which is scattered into the
y-direction when the scattering cross section for a
single atom is r = 10−30 m2?

8.4 Derive the Fresnel Eqs. (8.62a, 8.62b)
8.5 Calculate the amplitude reflection coefficients ‖ and ⊥

and the reflectivity R at the interface between air
(n1′ = 1, j = 0) and silver (n2′ = 0.17, j = 2.94) for
the angles of incidence a = 0°, 45° and 85°, using the
Fresnel formulas (8.62a, 8.62b).

8.6 A light wave with the power P = 1 W passes through
an absorbing medium with the length L = 3 cm and
the absorption coefficient a. How large is the absorbed
power for

(a) a = 10−3 cm−1

(b) for a = 1 cm−1?

8.7 An optical fiber has the kernel diameter of 10 lm. The
refractive index of the kernel is n1 = 1.6, that of the
cladding n2 = 1.59. What is the minimum radius of
curvature of the fiber in order to maintain total
reflection?

8.8 Show that Eq. (8.12a) could be also written for x – x0

� c as n − 1 = a + b/(k2 − k0
2) in order to obtain a

simple dispersion formula for air at atmospheric
pressure.

8.9 An optical wave with the frequency x = 3.5 	 1015

s−1 (k = 500 nm) and the intensity I = 1012 W/m2

travels through a nonlinear uniaxial crystal with the
nonlinear susceptibility v (2) (x) = 8 	 10−13 m/V. the
refractive indices are n0(x) = 1.675; ne(2x,
h = 90°) = 1.615; n0(2x) = 1.757

(a) For which angle hopt against the optical axis can
be phase matching obtained?

(b) What is the coherence length Lcoherent for a small
misalignment h = hopt + 1°?

(c) What is the output intensity I(2x), which is given
by the relation

I 2x; Lð Þ ¼ I2 xð Þ � 2x
2 vð2Þ
�� ��2L2

n3c3 � e0
sin2 Dk � Lð Þ
Dk � Lð Þ2

for L = Lcoherent?
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9Geometrical Optics

For many applications the wave nature of light is of minor
importance. The main interest is the propagation direction of
light and its alterations by imaging elements, such as mir-
rors, prisms and lenses.

The propagation direction of a wave is determined by the
normal vector to the phase front. These normal vectors
k(r) as a function of the location along the propagation of the
light wave form the light rays in geometrical optics.

When a light wave is limited by boundaries, such as
apertures, edges of lenses or mirrors we call the confined
part of the wave a light beam. A light beam can be regarded
as the total quantity of all light rays filling the cross section
of the light beam (Fig. 9.1). Besides its cross section and its
propagation direction we can attribute to the light beam also
wave qualities, such as wavelength k, amplitude E, velocity
c0 ¼ c=n, intensity I ¼ c0 � e � e0 � E2 and polarization. In a
more sloppy language one speaks of an intense or a weak
light beam or a polarized light ray.

The description of a light wave confined by limiting
boundaries by rays of light is of course an approximation.
Inside the light beam, where the change of the electric field
E across the beam is sufficiently slow and therefore negli-
gible, this approximation is justified (For a plane wave E ¼
E0 � cosðxt � kzÞ E is constant on a plane z = constant, i.e.
along the x- and y-directions). However, at the edges of the
light beam large changes of the intensity appear and
diffraction effects are no longer negligible.

We can use the approximation of geometrical
optics, if the diameter of the light beam is large
compared to the wavelength k. In this case
diffraction effects can be neglected.

As a rule of thumb note that for k = 500 nm light beams
should have a diameter d[ 10 lm in order to treat them by

geometrical optics, because then diffraction effects can be
neglected. In this sense light rays as geometrical straight
lines with zero diameter are an idealization, which is, how-
ever, very useful for the graphic construction of light prop-
agation through optical systems.

The approximation of light rays has the following
advantage: The investigation of the propagation of real
waves through optical systems with many, often curved
interfaces between media with different refractive indices
(see Sect. 8.4) is very complicated. The approximation of
geometrical optics allows a much simpler treatment which is
for many applications sufficiently accurate.

In order to determine the propagation of light rays
through optical instruments we have to introduce same basic
facts of geometrical optics.

(a)

(b)

apertures

light rays

light beam

phase fronts

grad n

)r(nn
→=

grad n ≠ 0

D

Fig. 9.1 Definition of light rays and light beams as laterally confined
light waves. The normal to the phase front gives the propagation
direction. a) In an optical homogeneous medium b) in optically
inhomogeneous media with grad n 6¼ 0
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9.1 Basic Axioms of Geometrical Optics

The propagation of light waves follows some basic rules,
which can be derived from theoretical principles as well as
from experimental observations:

• In an optical homogeneous medium the light rays are
straight lines.

• At the interface between two media light rays are
reflected according to the reflection law (8.57) and
they are refracted following Snelle’s refraction law
(8.58).

• Several light beams which intersect each other, do not
influence each other if the intensities are not too high
(region of linear optics). They do not deflect each other.
In the superposition region interference effects can
occur, but behind the intersection region the intensity
distribution is not affected by the superposition.

Note, that this is no longer true for nonlinear optical
phenomena.

The first two rules can be derived from Fermat’s prin-
ciple, which was illustrated in Vol. 1. Sect. 11.11 for the
refraction. It states, that light emitted from the point P1

reaches the point P2 always on such a path where the transit
time is minimum. We will illustrate this by the example of
reflection at a plane interface y = 0 (Fig. 9.2).

The path length from P1ðx1; y1Þ via Rðx; 0Þ to
P2ðx2; y2Þ is

s ¼ s1 þ s2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x1Þ2 þ y21

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 � xÞ2 þ y22

q
:

ð9:1Þ

If the transit time t = s/c should be minimum it follows

dt
dx

¼ 0

) x� x1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x1Þ2 þ y21

q ¼ x2 � xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 � xÞ2 þ y22

q
) sin a1 ¼ sin a2:

ð9:2Þ

The reflection law can be therefore deduced from Fer-
mat’s principle.

sin a1 ¼ sin a2 ) a1 ¼ a2 : ð9:3Þ
Fermat’s principle is also valid in inhomogeneous media

with locally changing refractive index. Here the light rays
are curved (Fig. 9.1b). The principle of minimum transit
time between the two points P1 and P2 is now (Fig. 9.3).

d
ZP2

P1

nds ¼ 0 ; ð9:4Þ

where d means an infinitesimal variation of the optical path
length.

9.2 Optical Imaging

The goal of most optical arrangements is the generation of
optical imaging, where the light emerging from a point P1 is
again concentrated in another point P2. Such an imaging can
be reached with a plane mirror, as can be seen in Fig. 9.4.
Although all light rays emerging from P1 are reflected
divergently at the mirror plane, their extension into the lower
half plane below the mirror plane intersect at the point P0, the
image point of P1. An observer in the upper half plane sees
the image P0 behind the mirror. The image of an object

P1(x1,y1)y

x

x x1

1
2

P2(x2,y2)

x2 x

xR(x,0)

1s 2s

Fig. 9.2 Application of Fermat’s principle to the reflection of a wave
at a plane interface

P2Δ1

Δ2

Δmin

P1

grad n = ∫ n(s)ds
P2

P1

Δ i

Fig. 9.3 Fermat’s principle as variation principle for light beams in an
optically inhomogeneous medium

P

P'

Fig. 9.4 Optical imaging by a plane mirror which produces from
every arbitrary point above the mirror a virtual image below the mirror
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appears with the same size as the object itself (Fig. 9.5), it is,
however, inversed left to right (Fig. 9.6) but not upside
down!

The plane mirror is the only optical element that gener-
ates an ideal imaging. Each point P in space is imaged into a
well defined other point P0.

There are other optical systems which image only selec-
ted points. One example is the elliptical mirror (Fig. 9.7)
which images the two focal points into each other.
A spherical mirror images only one point, the centerM of the
sphere into itself.

The approximate imaging of arbitrary points can be
achieved with a very simple device, called the pinhole camera
illustrated in Fig. 9.8. An illuminated or self-luminous object
in the plane A is imaged through a small pinhole into the
plane B. The diameter d of the pinhole can be varied. All light

rays starting from a point P are imaged into an elliptical area
around the point P0. The larger diameter d0 of this area is,
according to theorem of intersecting lines

d0 ¼ aþ b

a
d : ð9:5Þ

This pinhole camera provides therefore no exact imaging
of an arbitrary point P into the image point P0 but into an
area around P0. According to (9.5) the size of this area
decreases with decreasing diameter d of the pinhole, i.e. the
image becomes clearer but dimmer with decreasing pinhole
diameter. This is illustrated in Fig. 9.9, which shows that
there is an optimum diameter d, because for smaller values
of d diffraction effects decrease the quality of the image (see
Sect. 10.7.4). When the size dd ¼ 2b � k=d of the central
diffraction maximum exceeds the geometrical diameter d0 ¼
d � ðaþ bÞ=a in Fig. 9.8 the quality of the image becomes
worse. The optimum diameter of the pinhole is therefore

dopt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a � b
aþ b

� 2k
r

: ð9:6Þ

Example

k = 500 nm, a = 20 cm, b = 5 cm, => dopt = 0.2
mm. Each point in the object plane A is the imaged
into a circle with radius r = 0.1 mm around P0. This
image sharpness is for many applications sufficient.

A

B

Sp A'

B'

eye

Fig. 9.5 A plane mirror images the object AB into the virtual image A′
B′ of the same size (Magnification M = 1)

x-y-plane z = 0

z

Fig. 9.6 Imaging by a plane mirror: person right, mirror image left.
The image is laterally reversed. The right hand of the person becomes
the left hand of the image

F21F

Fig. 9.7 An elliptical mirror images exactly two points (the focal
points) into each other

P

A

a b

d

B

P' d'

P'

transparent
screen

Fig. 9.8 Schematic representation of a pin hole camera

9.2 Optical Imaging 251



The main disadvantage of the pinhole camera is its small
luminous intensity. The importance of imaging elements
such as lenses or mirrors are the following:

• They allow much larger apertures and therefore
transmit much higher light powers.

• They can produce the image of an object at every
suitable distance.

Both points are very important for practical applications.
However, all optical elements show imaging errors (see
Sect. 9.5.6) which can be minimized by clever combination
of different elements but which never can be completely
eliminated. We will discuss this in the following by some
examples.

9.3 Concave Mirrors

While plane mirrors generate distortion-free images of
objects with a magnification 1:1, with curved mirrors
enlarged or reduced images can be generated, which are,
however, no longer distortion-free. We regard in Fig. 9.10 a
spherical mirror with the center M. Two light rays 1 and 2
incident parallel to the mirror axis are reflected at the mirror
surface according to the reflection law ai ¼ ar ¼ að Þ. They
intersect in the focal point F on the axis. The triangles MFS
and MFS’ in Fig. 9.10 are isosceles (since the two angles a
are equal). Therefore the relation holds FM ¼ R=2ð Þ=cos a
and it follows

OF ¼ R 1� 1= 2 cos að Þð Þ: ð9:7aÞ
For sufficiently small distance h of the incident rays from

the symmetry axis MO (paraxial rays) the angle a becomes

small and we can approximate cos a � 1. In this case the
focal length f ¼ OF becomes

f ¼ R=2: ð9:7bÞ
For paraxial rays the focal length f of a spherical

mirror equals half of its radius R.

Note The location of the focal point F depends on the
distance h of the incident rays from the symmetry axis OM
(Fig. 9.11)

With cos a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2 a
� �q

and sin a ¼ h=R we get for

the focal length f

f ¼ R 1� 1
2 cos a

� �

¼ R 1� R

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � h2

p
� �

:

ð9:7cÞ

Fig. 9.9 Imaging of illuminated letters by a pin hole camera for different pin hole diameters. (Dr. N. Joel, Unesco, pilot project for the teaching of
physics)

α
h α

F

R

αR

α

S

S′

O

1

2

h α
M

Fig. 9.10 Spherical mirror with radius R, focal point F, center M and
focal length f ¼ OF � R=2
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The focal length f of a spherical mirror decreases with
increasing distance h of the incident rays from the sym-
metry axis.

Example

For a = 60° (h = 0.87R) the focal length f ¼ OF
becomes f = 0.3 � R

In Fig. 9.12 the image B of a point A at an arbitrary
distance g ¼ OA[R is shown. We get for the angles shown
in Fig. 9.12 the relations

d = a + c; (d is exterior angle to the triangle BSM), and

cþ b ¼ 2d: ð9:8Þ
For small angles c (small distances h from the axis) we

can use the approximations:

c � tan c ¼ h

g
;

b � tan b ¼ h

b
;

d � sin d ¼ h

R
;

With (9.8) and (9.7b) we then get the imaging equation

1
g
þ 1

b
� 2

R
� 1

f
ð9:9Þ

With the object distance g with the image distance b and the
focal length f (9.9) is valid for incident rays with small
values of h.

For the graphical construction of the image we regard in
Fig. 9.13 the imaging of the arrow A0A with the length h. We
draw three rays starting rom A:

• The ray S1 parallel to the symmetry axis MO which
intersects after reflection the focal point F.

• The inclined ray S2 which intersects F before the
reflection and is therefore after reflection parallel to
the axis MO

• The ray S3 through the center M of the sphere which is
reflected in itself.

All three rays intersect (in the approximation of paraxial
rays with h � f) in point B, the image point of A. If the
object distance g ¼ A0O is larger than the mirror radius
R ¼ OM, B is located between F and M but on the opposite
side of the symmetry axis. The image B of A is reversed.

Remark For the graphical construction of the image
B two rays would be sufficient. The third ray can be used to
prove the consistency of the graphical construction.

The magnification factor BB0=AA0 can be obtained from
the relations

AA0=A0O ¼ tanb ¼ BB0=B0O ) BB0=AA0

¼ B0O=A0O ¼ b=g: ð9:10Þ

b

α

g

M           BA

h
α

βδγ

S

0

R

Fig. 9.12 Imaging of a point A on the symmetry axis into the image
point B which lies also on the axis

α

h

FM

R
2α

B

A

0
A'

g

B'

b

S1

S2S3

S2

S1

α

β

β

Fig. 9.13 Geometrical construction of the image B of an arbitrary
point A close to the symmetry axis

M F2
F1

1

1

1

1

2

2

2

2

Fig. 9.11 The focal length of a spherical mirror is smaller for rays
farther away from the axis than for rays closer to the axis
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The magnification factor is equal to the ratio of image
distance b to object distance g.

When the object AA′ is placed between mirror and focal
point F the reflected rays are divergent (Fig. 9.14). Their
opposite extensions intersect (in the paraxial approximation)
in the point B behind the mirror. The image BB′ is called a
virtual image, because it is not a real image, and it cannot be
seen on a screen placed at the position BB′. It just represents
the mirror image of AA′ seen by the eye.

When the center M of the curved mirror is on the same
side as the object AA′ the mirror is concave (Fig. 9.15a). If
M and A lie on opposite sides of the mirror, the mirror is
convex (Fig. 9.15b). A convex mirror can only produce
virtual images produced on the other side of the mirror.

A special curved mirror, which is often used, in particular
for headlights in cars and for astronomical telescopes, is the
parabolic mirror (Fig. 9.16). A parabolic mirror focusses
parallel light into the focal point F. It converts a plane wave
into a nearly spherical wave. This can be seen from
Fig. 9.16b and Fermat’s principle.

The phase surfaces of the incident wave are the planes
x = const. If all rays parallel to the symmetry axis (x-axis)
intersect in the point F independent of their distance y from
the x-axis, the optical path length from the plane

x = const. = f should be the same for all rays. The optical path
length of a ray after reflection at the mirror point P(x, y) is

s ¼ s1 þ s2 ¼ f�xþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f � xð Þ2 þ y2

q
:

For y2 = 4fx the path length becomes s = 2f independent
of y. The equation of the mirror surface with the focal length
f and the x-axis as symmetry axis is therefore

y2 ¼ 4fx ) x ¼ y2
�
4f : ð9:11Þ

It is interesting to look for the difference between the
parabolic and the spherical mirror. For the spherical surface
in Fig. 9.17 we get instead of (9.11) the equation

y2 þ R� x0ð Þ2 ¼ R2

) x0 ¼ R�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � y2

p
:

ð9:12aÞ

B

A

F

R

A' B'M

α

Fig. 9.14 Generation of a virtual image by a spherical mirror, if the
object point A lies between mirror and focus F

A

B'

FMA'

B

(a)

MB'

BA

A'

(b)

Fig. 9.15 a) Concave spherical mirror b) convex spherical mirror

(a) (b)

F fFx

y

P(x,y)

phase
fronts

1s

2s

fx4y2 =

Fig. 9.16 a) Parabolic mirror b) application of Fermat’s principle to
the imaging of a plane parallel wave by a parabolic mirror

parabolic mirrorspherical mirror

2S

1S

f
xf − x

)y,x(P
)y,x('P

'xR −

'x x

Fig. 9.17 Comparison of the ray paths for a spherical and a parabolic
mirror with focal length f = R/2. For y � R the focal point Fs of the
spherical mirror moves towards that of the parabolic mirror FP

254 9 Geometrical Optics



For y2\R2 the square root can be expanded into a Taylor
series:

x ¼ y2

2R
þ y4

8R3
þ y6

16R5
þ � � � : ð9:12bÞ

For paraxial rays the higher order terms can be neglected
and we obtain with f = R/2 the Eq. (9.11) of a parabola. This
shows:

In the paraxial approximation the spherical mirror with
radius R acts like a parabolic mirror with focal length
f = R/2.

For rays farther away from the symmetry axis the focal
length of the spherical mirror decreases while that of a
parabolic mirror remains constant.

This means that the parabolic mirror can image incident
beams with a larger diameter.

According to (9.12b) the distance Dx ¼ X FKð Þ�X FPð Þ �
y4

8R3
between the focal points of the spherical and the para-

bolic mirror increases with the distance y of the incident rays
proportional to y4.

Note that the parabolic mirror has the same focal point for
all rays incident parallel to the symmetry axis, while for the
spherical mirror this is only true for paraxial rays, i.e. rays
with small distances y from the symmetry axis.

Parabolic mirrors are used in astronomy. One example is
the large mirror in Effelsberg, Germany, with a diameter of

100 m (Fig. 9.18). It is used for receiving radio signals from
the universe and it can be rotated and tilted in order to reach
a large angular range in the sky. The radio radiation
received by the parabolic mirror is focused onto a detector
cooled to a low temperature of about 10 K. Radiation with a
wavelength of k = 21 cm is emitted by hydrogen atoms in
our galaxy on a hyperfine transition. Also rotational tran-
sitions in molecules can be detected by the telescope and
many molecules have been found in space up to large
biological molecules.

9.4 Prisms

A light ray passing through an isosceles prism is two times
refracted and its total deflection d against the incident
beam is, according to Fig. 9.19.

d ¼ a1�b1 þ a2�b2:

We can express the deflection angle d by the incident
angle a1 and the prism angle c. From Fig. 9.19 we can derive
the relations c ¼ b1 þ b2 (because the sum off the three
angles in the triangle ABC is

cþ 90� � b1ð Þþ 90� � b2ð Þ ¼ 180� )
d ¼ a1 þ a2�c:

ð9:13Þ

Minimum deflection at a fixed angle c occurs, if
dd/da1 = 0

This gives

dd
da1

¼ 1þ da2
da1

¼ 0 ) da2 ¼ �da1: ð9:14Þ

Fig. 9.18 Large radio-telescope in Effelsberg, Germany. The diameter of the parabolic mirror is 100 m its weight is 32,300 tons. It can be turned
about a vertical and a horizontal axis, to cover a large angular section of the sky
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From the derivatives of Snell’s refraction law sin a ¼
n � sin b we get

cos a1da1 ¼ n � cos b1 � db1; ð9:15aÞ

cos a1da1 ¼ n � cos b2 � db2: ð9:15bÞ
From ß1 + ß2 = c and dc/da 1 = 0 (because c = const.) we

can deduce db1 ¼ �db2. Dividing (9.15a) by (9.15b) gives

cos a1
cos a2

da1
da2

¼ cos b1
cos b2

:

For the ray passing with minimum deflection d (da1 =
−da2) this can be reduced to

cos a1
cos a2

¼ cos b1
cos b2

;

This can be transformed, using the refraction law, into

1� sin2 a1
1� sin2 a2

¼ n2 � sin2 a1
n2 � sin2 a2

: ð9:16Þ

Since n 6¼ 1 this can be only fulfilled if a1 ¼ a2 ¼ a.

For the symmetric ray path with AC ¼ BC and a1 = a2
the deflection d is minimum. For the incident angle a the
total deflection d of rays passing through an isosceles
prism with prism angle c is

dmin ¼ 2a� c: ð9:17Þ
With the refraction law sina = n � sinß one obtains the

relation

sin
dmin þ c

2
¼ sin a ¼ n � sin b
¼ n � sin c=2ð Þ:

ð9:18Þ

The dependence of d on the refractive index n can be
derived from (9.18) with dd/dn = dn/dd)−1. The result is

dd
dn

¼ 2 sin c=2ð Þ
cos dþ cð Þ=2½ �

¼ 2 sin c=2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2 sin2

p
c=2ð Þ

:

ð9:19Þ

Since the refractive index n(k) depends on the wavelength
k (dispersion, Sect. 8.2) we finally arrive at the relation
between d and k using dd=dk ¼ dd=dnð Þ � dn=dkð Þ.

dd
dk

¼ 2 sin c=2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2 sin2

p
c=2ð Þ

� dn
dk

: ð9:20Þ

Figure 9.20 illustrates the deflection of a parallel white
light beam which is separated into the different colors
because of the wavelength-dependent refractive index n(k).

For most transparent media is in the visible range dn/
dk < 0 (normal dispersion). This implies that blue light
experience a larger deflection than red light.

Example

For an isosceles prism with c ¼ 60�ð Þ is
dd
dk

¼ dn=dkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2=4

p :

With dn/dk = 4 � 105 m−1 at the wavelength
k = 400 nm and n = 1.8 (for Flint glass) we obtain dd/
dk = 1 � 103 rad/nm. Two wavelengths k1 and k2
which differ by Dk = 10 nm experience deflection
angles that differ by 10−2 rad � 0.6°.

9.5 Lenses

Optical lenses had an enormous influence onto the devel-
opment of optics over the last centuries. The lens maker
Hans Lipershey (1570–1619) constructed in Holland the first
telescope with lenses that he had grinded himself. Copying
and essentially improving this first telescope Galilei could
observe 1610 for the first time the four largest moons of
Jupiter (Io, Europe, Ganymede and Calisto, called the
Galilean moons, see Vol. 1, Fig. 1.1).

A
α1 B

α2

δ
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γ

D

β1

β2

·

Fig. 9.19 Deflection of a light ray in a prism

white
light
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green

blue

Fig. 9.20 Within the spectral range of normal dispersion (dn/dk < 0)
blue light is deflected more than red light
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Besides the telescope many other optical instruments (e.g.
spectacles, magnifying glass, microscope, projectors cam-
eras) are based on optical lenses (see Chap. 11). It is
therefore worthwhile to study the optical characteristics of
lenses in more detail.

9.5.1 Refraction at a Curved Surface

We regard in Fig. 9.21 an optical ray parallel to the sym-
metry axis with a distance h, which impinge onto a spherical
interface between two media with refractive indices n1 and
n2. The ray is refracted at the point A on the surface, prop-
agates on a straight line in the homogeneous medium and
intersects the symmetry axis in the focal point F. From
Fig. 9.21 we can derive

h ¼ R � sin a ¼ f � sin c:
With c ¼ a�b we get the focal length f

f ¼ sin a
sin a� bð Þ � R:

With the refraction law

n1 � sin a ¼ n2 � sin b

we obtain with sin a� bð Þ ¼ sin a cos b� cos a sin b for
small angles cos a � cos b � 1ð Þ the focal length

f ¼ n2
n2 � n1

� R: ð9:21aÞ

Example

For the interface between air (n1 = 1) and glass
(n2 = 1.5) Eq. (9.21a) gives f = 3R. For n1 = 1 and
n2 = 3 => f = 1.5R

Note Equation (9.21a) is only valid for paraxial rays
(h � R).

Analogue to the construction of the image by a curved
mirror the image B of an object A can be graphically con-
structed, by drawing at least two rays (Fig. 9.22).

The ray parallel to the symmetry axis, which passes
through the focal point F2 and the ray through the center
point M of the curved surface, which passes without
refraction through the interface. The two beams intersect at
the image point B.

A third beam can be used for checking the accuracy of the
first two rays, which passes through the left focal point F1

and propagates in the second medium parallel to the sym-
metry axis.

Of course one can also construct the reverse propagation,
regarding the point B as the object and A as the image point.
The ray from B parallel to the axis in medium 2 intersects the
symmetry axis in medium 1 at the focal point F1 on the object
side. One obtains for the focal length on the object side

f1 ¼ n1
n1 � n2

� 	
R: ð9:21bÞ

If the object A has the distance a from the point
O (Fig. 9.23) we can deduce from the approximate refraction
law n1 � a � n2 � b for paraxial rays with a ¼ dþ e and b ¼
d�c (d and a are exterior angles to the triangle APM,
resp. PMB) the relations

n1 dþ eð Þ � n2 d� cð Þ: ð9:22aÞ
The distance PX in Fig. 9.23 can be expressed for

paraxial rays as

PX ¼ aþ xð Þ tan e � a � e;weil x � a; tan e

¼ bþ xð Þ tan c � b � c
¼ R � sin d � R � d:

Inserting this into (9.22a) yields, after rearrangement and
division by PX, the relation

Normal

A

h

0

f
M F

R

α

β

α γ

12 nn >1n

β−α=γ

Fig. 9.21 Definition of the focal length of a spherical curved surface
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Fig. 9.22 Geometrical construction of light rays for the imaging of an
object A by a spherical surface into the image B
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n1
a

þ n2
b
¼ n1 � n1

R
ð9:22bÞ

between the object distance a, the image distance b and the
radius of curvature R. Using (9.21a and 9.21b) we can
express this by the focal length f and obtain

n1
a

þ n2
b
¼ n2

f2
¼ � n1

n2
: ð9:22cÞ

9.5.2 Thin Lenses

A lens consists of a transparent medium with refractive
index n2 which is separated on both sides by polished sur-
faces from a medium with refractive index n1 (generally air
with n1 = 1) (Fig. 9.24).

We will here restrict the discussion on lenses with
spherical surfaces in air. We can then set n1 = 1 and
n2 = n. The different types of lenses are classified according
to their radii of curvature R1 and R2 which are defined as the
orientated distance from the curved surface to its center of
curvature M (Fig. 9.25). The radius of curvature is positive
(R > 0) if it points into the positive direction to the right of

the curved surface, it is negative (R < 0) if it points into the
negative direction.

Note We will always use the convention that the incident
light propagates from left to right, i.e. from the negative to
the positive half space (Fig. 9.24). We can therefore also use
the equivalent definition that R is positive if the center of
curvature M lies on that side of the interface which is
opposite to the light source.

The interface in Fig. 9.23 has, for instance a positive
radius of curvature. In Fig. 9.24 is R1 > 0 and R2 < 0.

In Fig. 9.26 some types of lenses are illustrated. A curved
lens surface is convex, if the lens lies between surface and
the center M of curvature, otherwise it is concave. The types
(a), (b) and (f) in Fig. 9.26 are convergent lenses, (d) and
(e) are diverging lenses. The form (c) is a convergent lens for
R1j j\ R2j j but a diverging lens otherwise.
A thin lens is the idealization of real lenses where the

maximum distance between the two surfaces is small com-
pared to the focal length.

The optical imaging by a lens can be described by suc-
cessive imaging by the two surfaces of the lens (Fig. 9.27).
For the first surface we obtain from (9.22a) to (9.22c) with
n1 = 1 and n2 = n

1
a1

þ n

b1
¼ n� 1

R1
: ð9:23aÞ

If only the interface 1 with radius of curvature R1 would
exist (i.e. to the right of the surface 1 extends only the
homogeneous medium with refractive index n2) the point
A would be imaged into the point B1 in Fig. 9.27a.

By the second refraction at the second interface the rays are
again bent and intersect in the image point Bwhich is closer to
the lens. Equation 9.22b for the second imaging can be
obtained by the following consideration:When we reverse the
role of object and image we can regard B as the object which
is imaged into the point A. Since we have now reversed the
direction of imaging we also have to reverse the succession of

A

a

0

P

R

b
M

B

1n 2n

ε

α

β

δ γ

X

Fig. 9.23 Illustration of Eq. (9.22a–9.22c)

Central plane

M2

ε = α1 + α2 – β1 – β2

α1 α2

A M1 B

n3 = 1n1 = 1

n2 = n

β1 β2

O2O1

n1=

d

Fig. 9.24 Imaging of the object point A on the symmetry axis into the
image B by a lens with radii R1 and R2

M M

R > 0 R < 0

Fig. 9.25 Definition of the signs of radii of curvature
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the refractive indices. The rays starting from B in the reverse
direction would proceed, without refraction at the surface 2,
along the dashed lines. An observer in B would assume that
the light rays come from the points B′ or B″. For considering
the imaging by the curved surface 2 we have to set
(Fig. 9.27b) n1 ! n, n2 ! 1, a ! −(b1 − d), and R ! −R2.

The minus sign appears because the imaging now proceeds
from right to left. We then obtain

�n

b1 � d
þ 1

b2
¼ 1� n

R2
: ð9:23bÞ

Adding (9.23a) and (9.23b) gives the equation

1
a1

þ 1
b2

¼ n� 1ð Þ 1
R1

� 1
R2

� 	
þ n � d

b1 b1 � dð Þ : ð9:24aÞ

Introducing the distances a ¼ a1 þ d=2 and b ¼
b2 þ d=2 from A until the mid of the lens we obtain for thin
lenses the lens equation

1
a
þ 1

b
¼ n� 1ð Þ 1

R1
� 1
R2

� 	
: ð9:24bÞ

This is the general equation for the imaging by thin
lenses, where the distance O1O2 is small compared to the
focal lengths f1 and f2. For the graphic construction one can
replace the refraction at the two lens surfaces by a single
refraction at the center plane of the lens with the refraction
angle a1 � �1ð Þþ a2��2ð Þ (Figs. 9.27 and 9.28).

For an incident beam parallel to the axis is in (9.24b)
a ¼ 1. Since this ray has to pass through the focal point F is
b = f and we get for the focal length of a thin lens

f ¼ 1
n� 1

R1 � R2

R2 � R1

� 	
: ð9:25aÞ

For a biconvex lens with equal radii of curvature
(R1 = −R2 = R) the focal length becomes

f ¼ R=2
n� 1

: ð9:25bÞ

Compare this result with the focal length f = R/2 of a
spherical mirror.

Inserting the focal length (9.25a) into (9.24a and 9.24b
one obtains the imaging equation of thin lenses

1
a
þ 1

b
¼ 1

f
: ð9:26Þ

For the graphic construction of the imaging by thin lenses
one uses the ray 1 parallel to the axis (Fig. 9.28) which
passes through the focal point F2 on the image side and the
ray 2 through the center point O of the lens, which is not
deflected. The displacement D of this ray

D ¼ d � sin a 1� cos affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � sin2 a

p
� 	

1 2 1 2 1 2
(a) (b) (c)

(d) (e) (f)

R1 0R1

0R2R1

1 2 1 2

aspherical

spherical
surface

2M 1M
1R

2R

n

0R2

0R1

0R2

0R2

0R1 0R1

2R

Fig. 9.26 Examples of different forms of lenses: a) convex-convex =
biconvex b) plane-convex c) convex-concave d) biconcave e)
concave-plane f) aspherical lens
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Fig. 9.27 Illustration of the derivation of the lens equation
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can be neglected for thin lenses with d ! 0. Assuming B as
object point and A as image point the ray 3 parallel to the
axis on the image side has to pass through F1 on the object
side. Inserting in (9.26) a = f + xa and b = f + xb we obtain
for the distances xa between object point A and focal point F1

and xb between image point B and focal point F2 Newton’s
imaging equation

xa � xb ¼ f 2: ð9:26aÞ
With the lateral magnification (imaging scale….) M this

yields

M ¼ BB0

AA0

The quantity M can be immediately obtained from
Fig. 9.28 using the relation

M ¼ � b

a
¼ f

f � a
: ð9:27Þ

For M < 0 the image of the object is reversed, for M > 0
the image arrow in Fig. 9.28 has the same direction as the
object arrow.

One can see from (9.27) thatM < 0 for a > f. This means:
The imaging is always reversed (the image arrow has the
opposite direction as the object arrow) if the object distance
a is larger than the focal length f. For a = 2f ! M = −1, i.e.
object and image have the same size but opposite directions.
For a = f ! b = ∞, i.e. the image is shifted towards infinity
and M = ∞.

9.5.3 Thick Lenses

For thin lenses we could replace the twofold refraction at the
two lens surfaces by a single refraction at the center plane of
the lens. For thick lenses where the distance S1S2 of the
vertices of the two surfaces is no longer negligible; this
simplification would lead to larger deviations from the real
situation. Looking at the ray passing through the center O of

the thick lens (Fig. 9.29) one can see that the output ray is
not deflected but only displaced by the displacement D. This
offers the following substitute of the ray path through thick
lenses (Fig. 9.30): The incident beam is prolonged up to its
intersection P1 with the axis. Then it proceeds along the axis
until the point P2 where it follows the straight extension of
the exit ray. The vertical planes through the points P1 and P2

are called the principal planes. The refraction of rays at the
surfaces of thick lenses can be replaced by two refractions at
the principles planes (instead at one plane for thin lenses).

This construction replaces the thick lens by two thin lenses
located at the principle planes through P1 and P2. with their
distance h. It is possible to prove with some mathematical
efforts that one obtains also for thick lenses the imaging
Eq. (9.26) of thin lenses, if the objet distance is measured
from the object A to the point P1 of the first principal plane,
and the image distance from P2 to the image point B. For the
focal length of a thick lens with the thickness d = h1 + h + h2
in air one obtains instead of (9.25a) the expression

1
f
¼ n� 1ð Þ 1

R1
� 1
R2

þ n� 1ð Þd
nR1R2

� �
: ð9:28Þ

For the distances between the vertices Si and the points Pi

one gets

h1 ¼ � n� 1ð Þf � d
n � R2

;

h2 ¼ � n� 1ð Þf � d
n � R1

;

ð9:29Þ
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Fig. 9.28 Geometrical construction of the imaging by a thin lens
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Fig. 9.29 The ray passing through the center of a lens is not deflected
but displaced by the distance D
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Fig. 9.30 Definition of the principle planes P1 and P2 of a thick lens
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where hi > 0 if Pi is located on the right side of Si(x(Pi) > x
(Si)) and hi < 0 if Pi is left of Si. Note that the signs of f and
Ri have to be considered according to the conventions in
Fig. 9.25.

The intersections Pi of the principle planes with the
symmetry axis are called principal points of the lens. For
d ! 0 the principle planes converge against the center plane
of the thin lens and (9.28) transfers into (9.25a).

In Fig. 9.31 some examples of the principle planes of
different forms of thick lenses are shown. This illustrates that
the principle planes can indeed lie outside the lens. The
principle planes are often designated by the letter H (from
the German Hauptebene).

Example

For a biconvex lens with N = 1.5, R1 = 20 cm,
R2 = −30 cm and d = 1 cm the focal length becomes
according to (9.28) f = 24 cm. The principle planes
have the distances h1 = +2.6 cm rom S1 and h2 = −4.0
from S2 as can be proved by inserting the numbers into
(9.29) (Fig. 9.32).

The geometrical construction of the imaging by a thick
lens is analogue to that for a thin lens (Fig. 9.28), if the
principle planes are regarded as the refracting planes
(Fig. 9.31). The object distance a is measured from A to P1,
the image distance b from P2 to B (Fig. 9.30).

The distances xa between object A and focal point Fa and
xb between focal point Fb and image B can be determined
from Fig. 9.31 using the theorem of intersecting lines

xa
f
¼ A

B
and

xb
f
¼ B

A

) xa � xb ¼ f 2:
ð9:30Þ

With xa ¼ a� f and xb ¼ b� f this gives the lens
Eq. (9.26)

f ¼ a � b
aþ b

) 1
f
¼ 1

a
þ 1

b
ð9:31Þ

which is valid also for thick lenses. The only difference is that
a and b are measured from the principal planes P1 and P2 and
not, as for thin lenses, from the center plane of the lens.

9.5.4 System of Lenses

Often more than one lens has to be used for special imaging
problems (see Sects. 9.5.5 and Chap. 11). The optimum
choice for the combination of several lenses can consider-
ably improve the quality of the image. We will illustrate for
the example of two lenses the method for determining the
relevant parameters of a lens system.

We regard in Fig. 9.33 a system of two thick lenses L1
and L2 with focal lengths f1 and f2 and the distance
D = P12P21 between the inner principal planes P12 and P21.
A ray from the object A parallel to the axis passes through
the focal point Fb1 on the image side of L1 and propagates
further on until it reaches the focal point Fb of the lens
system. An object A at a far distance (a ! ∞) is imaged by
L1 into its focal plane b = f1.

The intermediate image of L1 in Fb1 has for L2 the object
distance a2 = D – f1 is further imaged by L2 according to
(9.31) into the image distance

b2 ¼ a2f2
a2 � f2

¼ D� f1ð Þf2
D� f1 � f2ð Þ : ð9:32aÞ

For arbitrary distances a1 it follows from (9.31)

b1 ¼ a1f1
ða1 � f1Þ.

The focal length f of the total system can be defined as
(see problem 9.15)

f ¼ f1 � f2
f1 þ f2 � D

ð9:32bÞ
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B
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Fig. 9.31 Geometrical construction for the imaging by a thick lens
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Fig. 9.32 Examples of the position of the principle planes for different
forms of lenses
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This gives for the lens system the imaging equation
analogue to the Eq. (9.31) for a singel lens

1
f
¼ 1

f1
þ 1

f2
� D

f1f2
; ð9:32cÞ

where the focal lengths fi are defined as shown in Fig. 9.33.
For D < <f1 and D < < f2 we can neglect the last term and
obtain the result:

The reciprocal focal length of two close lenses add up to
the reciprocal focal length of the lens system.

The reciprocal focal length D* = 1/f of a lens is called its
refractive power. It is measured in units of diopter D*,
where 1dpt = 1 m−1.

Equation (9.32c) can be formulated as

The refractive powers of two close lenses centered
around the same symmetry axis add up to the total
refractive power of the lens system.

Example

A lens with f = 50 cm has a refractive power D1* = 1/
(0,5 m) = 2 dpt. A lens L2 with f2 = 30 cm has a
refractive power D2* = 3.33 dpt. The total system has
the refractive power D* = D1* + D2* = 5.33 dpt and
therefore a focal length f = 18.8 cm if the distance
D between the two lenses can be neglected.

Choosing the right combination of f1, f2 and D in (9.32c)
any wanted focal length of the system can be realized.

Example

Two lenses with f1 = 20 cm and f2 = 30 cm and the
distance D give the focal length of the system

f ¼ 20 � 30
20þ 30� D

cm:

For D < 50 cm is f > 0, the system acts as col-
lecting lens. For D > 50 cm the total focal length
becomes negative The system acts as diverging lens.
For D = 6 cm the focal length is f = 13.6 cm, for
D = 60 cm ! f = −60 cm.

Figures 9.33 and 9.34 show the geometric construction of
two different lens systems where in Fig. 9.34 the distance
D > f1 + f2 is larger than the sum of the two focal lengths,
whereas in Fig. 9.35 D < f1 and f2 is smaller than each of the
two focal lengths. In Fig. 9.35 the imageB is inverted.Without

A
D

a

1aF b1F 2aF 2bF bF

1L 2L

11P 12P 21P 22P

1f
1f 2f 2f

Fig. 9.33 Example of an optical system of two thick lenses

L2

B1Fa2

D > f1 + f2
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f1
f2

Fb1 Fb2

b1
a2 b2a1

A a2

b2
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B

a1

b1M = = ·

B

Fig. 9.34 Imaging by a system of two lenses with a distance D > f1 + f2. The intermediate image B1 produced by L1 is further imaged by L2 into
the final image B
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the lens L2 the larger image B′ would be generated (by the
dashed straight lines). Due to the refraction by the second lens
L2 the three ray intersect at the smaller image B.

The magnification factor M of the lens system is for
D > f1 + f2 equal to the product M1 � M2 of the two lenses.
From Fig. 9.34 we obtain

M ¼ M1 � M2 ¼ b1
a1

� b2
a2

¼ b1b2
a1 D� b1ð Þ ; ð9:33aÞ

because a2 = D − b1. Using the expression (9.27) for the
magnification factors M1 and M2 one obtains

M ¼ f1 � f2
f1 � a1ð Þ f2 þ b1 � Dð Þ

¼ 1
1� a1=f1ð Þ 1þ b1 � Dð Þ=f2ð Þ :

ð9:33bÞ

Replacing b1 with the expression in the imaging
Eq. (9.26) the result of the magnification factor becomes

M ¼ 1

1� a1
f1
� a1 þD

f2
þ a1D

f1f2

: ð9:33cÞ

More information about systems of several lenses can be
found, for instance, in [1].

9.5.5 Zoom-Lens Systems

For many applications, in particular for photo-shooting or
video cameras a variable magnification without changing the
lenses is very useful. This can be achieved by system of
lenses, where the distance D between the lenses can be
varied, which changes the magnificationM without changing
the object plane or the image plane (see Eq. (9.33c)). Such
lens systems are called Zoom lenses. They consist of at least
3 lenses. In Fig. 9.36 a system of 4 lenses is shown con-
sisting of a pair of divergent lenses with a firmly fixed dis-
tance between two fixed converging lenses. The pair can be
shifted by the distance d*. The magnification M of the

system is for an object distance a 	 f proportional to the
focal length of the system. In order to change the magnifi-
cation by the factor V = Mmax/Mmin one has to change the
focal length by this factor. This can be achieved by shifting
the pair of divergent lenses. The image plane should not
change while doing this.

With a rather elaborate calculation [2], which starts from
equations analogue to (9.33a–9.33c) one can show that the
shift d at a given focal length f is related to the magnification
ratio V by

d
 ¼ V � 1ð Þffiffiffiffi
V

p

Nowadays Zoom-objectives for cameras can be bought,
which change their magnification by a factor 10 just by
turning the lens mount thus converting the camera operation
from wide angle to telephoto (Fig. 9.37) [3].

Example

V ¼ 4 ! d
 ¼ 1:5 � f :

9.5.6 Lens Aberrations

The previous representation of lenses and their imaging
properties were dealing with ideal lenses and are for real
lenses approximately correct only for paraxial light rays
close to the symmetry axis.

For rays which are farther away from the symmetry axis
or which are inclined against this axis image aberrations
occur, which cause that an object point A is no longer
imaged into an image point B but rather into an area around
B. This results in a blur of the image and often also in a
distortion which is different for the different local parts of the

1aF b1F

2aF

2bF

1L 2L

1f 2fD

A

1

2

3

B

B'

1a 1b

21 fD;fD< <

Fig. 9.35 Imaging by a system of two lenses with a distance D < f1
and D < f2

B

B

1L 2L 3L

3F

3F

*d

Fig. 9.36 Zoom-lens system. Alteration of the magnification M by
shifting the pair of diverging lenses. L2 within the distance d* between
the two converging lenses L1–L3
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image. These deviations from an ideal image formation are
called aberrations.

For all applications where very small structures should be
still imaged true to scale all lens aberrations should be made
as small as possible. Examples are the lithographic produc-
tion of integrated circuits where a spatial resolution of
100 nm is required. Also the imaging of finer details in
biological cells demands a distortion free image. Therefore
large efforts are undertaken to realize systems of lenses with
minimum aberrations.

We will now shortly discuss the most important lens
aberrations and measures to minimize them [4–6].

9.5.6.1 Chromatic Aberration
Since the refractive index n(k) depends on the wavelength k
the focal length f changes with k according to (9.25a). For
instance, for glass n(k) increases with decreasing wavelength
(normal dispersion, see Sect. 8.2). For incident parallel
white light the focal point for blue light is therefore located
before that for red light (Fig. 9.38). This can be demon-
strated for a large audience when concentric circular rings

carved into a black coated plate are illuminated by a con-
tinuous light source and imaged onto a screen. For the
position 1 in Fig. 9.38 one observes blue rings with red
edges whereas in the position 2 red rings with blue edges
are seen.

The chromatic aberration can be minimized when a sys-
tem of two lenses with different refractive indices n1(k) and
n2(k) is used. Such an achromat (Fig. 9.39) consists of a
biconvex converging lens L1 (n1k) and a diverging lens L2
with n2(k) which are cemented together.

We will now calculate the relation between the focal
lengths f1 and f2 that results in a refractive index n of the
system which is nearly independent of k. The lens
Eq. (9.25a) gives for the focal length of the lens Li

1
fi
¼ ni � 1ð Þ.i; ð9:34aÞ

1 2

)(f bλ

)(f rλ

blue red

Fig. 9.38 Chromatic aberration
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Fig. 9.39 Achromat with the two lenses cemented together
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where .i ¼ Ri2�Ri1ð Þ= Ri2 � Ri1ð Þ and Ri1, Ri2 are the radii of
curvature for the front side and the backside of the lens Li.

The focal length of the achromat with two lenses at close
contact (d = 0) is

1
f
¼ n1 � 1ð Þ.1 þ n2 � 1ð Þ.2: ð9:34bÞ

The focal length of the achromat for blue light is equal to
that of red light if

n1r � 1ð Þ.1 þ n2r � 1ð Þ.2
¼ n1b � 1ð Þ.1 þ n2b � 1ð Þ.2
) .1

.2
¼ � n2b � n2r

n1b � n1r
:

ð9:34cÞ

The wavelength-dependence n(k) of the various types of
glasses can be obtained from tables of the glass producers
which give accurate values of n(ki) for selected wavelengths
ki that correspond to readily accessible spectral lines of some
elements. Examples are:

nr = n(k = 644 nm = red cadmium line)
nD = n(k = 590 nm = mid between the two yellow sodium
lines)
ng = n(k = 546 nm = green mercury line)
nb = n(k = 480 nm = blue cadmium line)
nh = n(k = 404.65 nm = violet mercury line)

For these wavelengths the refractive indices are listed for
all current types of glasses.

Often the focal length of a lens is given for yellow light
(k = 590 nm) or for green light (ng = n(k = 546 nm)). The
refractive index for green light is given as the average of the
indices for red and blue light.

ng � 1
2

nb þ nrð Þ:

From (9.34a) we obtain the ratio of the two focal lengths
of the two lenses

f2
f1
¼ n1g � 1
� �

n2b � n2rð Þ
n2g � 1
� �

n1b � n1rð Þ : ð9:34dÞ

With the abbreviation

v ¼ ng � 1
nb � nr

¼ dg
Dd

ð9:34eÞ

introduced by Ernst Abbe one obtains

1
f1v1

¼ 1
f2v2

: ð9:34fÞ

The Abbe number m gives the ratio of diffraction angle dg
for yellow light to the difference Dd of the refraction angels
for blue and red light. It is therefore a measure for the dis-
persion of a glass (Fig. 9.40).

The total focal length of the system with two lenses can
be calculated with the equation

1
f
¼ 1

f1
þ 1

f2
¼ � v1

v2

1
f2

þ 1
f2

¼ v1 � v2
v2

1
f2
:

ð9:34gÞ

With (9.34f) this yields for the focal lengths of the two
lenses

f1 ¼ f � v1 � v2
v1

; f2 ¼ �f � v1 � v2
v2

: ð9:34hÞ

In case of two lenses cemented together the two radii of
curvature R12 = R21 must be equal. If the first lens is sym-
metrical biconvex, it is R11 = R1 = −R12 = −R21 and
R22 = R2. This gives the condition

R1 ¼
2 n1g � 1
� �

v1 � v2ð Þð Þ
v1

;

R2 ¼ 2 v1 � v2ð Þ � f
2v2

n2g�1 � v1
n1g�1

:
ð9:34iÞ

Example

If the lens L1 is made of optical glass BK7
(n1b = 1.52283; n1g = 1.5168; n1r = 1.51472) and the
lens L2 of flint glass (n2b = 1.77647; n2g = 1.75513;
n2r = 1.74843 we obtain from (9.34e)

m1 ¼ 64; m2 ¼ 27:

red

yellow

blue

gδ

δΔ

Fig. 9.40 Definition of the Abbe-number
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If the focal length of the achromat shall be
f = 100 mm, we get from (9.34h) the focal lengths of
the two lenses: f1 = 64 mm; f2 = −179 mm => R1 =
66 mm; R2 = +130 mm. The diverging lens is
therefore not symmetric.

9.5.6.2 Spherical Aberration
Also for monochromatic light one observes deviations from
the correct point to point imaging. For example, the focal
length of a lens with spherical surfaces depends on the
distance h of the rays from the symmetry axis (Fig. 9.41).
This spherical aberration, which we have already discussed
in Sect. 9.3 for the spherical mirror, occurs for thin as well
as for thick lenses.

We will illustrate this at first for the refraction at a
spherical surface (Fig. 9.42). When a paraxial ray with the
distance h from the symmetry axis is incident onto a
spherical surface the focal length is

f ¼ Rþ b with b ¼ R � sin b
sin c

:

With sin b ¼ sin a=n; sin a ¼ h=R and a ¼ bþ c we get

f ¼ Rþ h

n � sin c ¼ R 1þ 1
n cos b� cos a

� �
;

¼ R � 1þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � sin2 a

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2 a

p
� �

;

¼ R � 1þ 1

n �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

n2R2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

R2

q
2
64

3
75:

ð9:35Þ

Neglecting the term h2/R2 � 1 completely, we obtain
immediately the approximation (9.21b) for paraxial rays
with small distances h. For a better approximation we

expand the square root in (9.35) according to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� xð Þp ¼

1� 1=2x for x � 1. We get with 1� xð Þ�1=2� 1þ x after a
short calculation the result

f ¼ R � n

n� 1
� h2

2n n� 1ð ÞR2

� �
¼ f0 � Df hð Þ:

ð9:36Þ

with Df hð Þ ¼ R � h2= 2n n� 1ð ÞR2ð Þ
This shows that the focal length f decreases with

increasing distance h of the rays from the axis.
In a similar way one obtains the imaging equation for a

refracting spherical surface when the term h2/R2 is included
(this is identical with the approximation cos c � 1� c2=2).

1
a
þ n

b
¼ n� 1

R
þ h2

1
2a

1
a
þ 1

R

� 	2

þ n

2b
1
R
� 1
b

� 	2
" #

;

ð9:37Þ
which reduces to (9.22a–9.22c) for h ! 0ð Þ.

The second term in (9.37) describes the deviation of the
image distance b due to spherical aberration. This term
depends on h and R as well as on the object distance a.

The focal length of a thin lens, taking into account
spherical aberration can be obtain in a similar way as
Eq. (9.25a) without aberration. One has to replace (9.21a)
and (9.21b) by the more accurate Eq. (9.36) and instead of
the paraxial approximation sin a � tana � a the expansion

sina � a� 1
3!
a3 and cos a � 1� a2

2

must be used. The somewhat lengthy calculation yields for
the difference of the reciprocal focal length with spherical
aberration from the calculation without aberration

Ds ¼ 1
f ðhÞ �

1
f ðh ¼ 0Þ

when inserting the expressions (9.35) for f(h) and (9.25a)
for f0

fΔ

Fig. 9.41 Spherical aberration at the imaging by a spherical biconvex
lens
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bROFf +==

Fig. 9.42 Illustration of the dependence f(h) of the focal length f from
the distance h of the parallel ray from the symmetry axis
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Ds ¼ h2

8f 30 n n� 1ð Þ2 n3 þ 3nþ 2ð Þ n� 1ð Þ2p2
h

þ 4 n2 � 1
� �

pqþ nþ 2ð Þq2

ð9:38Þ

with q ¼ R1 þR2ð Þ= R2�R1ð Þ and p ¼ b� að Þ= bþ að Þ,
where a and b are the object distance and the image distance.

The minimum spherical aberration is obtained for

q ¼ � 2 n2 � 1ð Þp
nþ 2

: ð9:39Þ

In Fig. 9.43 the values of q are indicated for several types
of lenses.

This illustrates that for the imaging of a far distant object
a ¼ 1 ! p ¼ �1ð Þ by a plan-convex lens with n = 1.5
and with the curved surface towards the object (9.39) the
optimum value q = 0.7 is achieved. This is close to the value
q = 1 for the aberration-free lens.

For a given refractive index n there is an optimum form of
the lens for which Ds becomes minimum. For instance is it
better for a plan-convex lens to turn the curved surface
towards the object (Fig. 9.44b) because then the rays far
away from the symmetry axis pass the lens around the
minimum deviation (see Sect. 9.4).

The general rule for achieving minimum spherical aber-
ration for the imaging by a plan-convex lens with object
distance a and image distance b is the following:

Fort a > b the curved surface should be directed towards
the object, for a < b it should be directed towards the image
space. For a biconvex lens with R1 6¼ R2 the side with the
smaller value of R (more strongly curved) should be directed
towards the object.

The spherical aberration can be decreased

• when the rays far from the axis are suppressed by an
aperture

• when using a plan-convex lens where the convex
surface is directed towards the object

• by the combination of several collecting and diverging
lenses which realizes a spherical corrected lens system

• by special lenses with non-spherical surfaces. They are
more difficult to ground but with modern computerized
techniques it is nowadays possible to fabricate such

lenses with nearly zero spherical aberrations. Since it
takes more efforts to ground non-spherical lenses often
such lenses are made of plexiglas, (acryl glass) which
can be cast from its liquid phase in the wanted form and
then needs only some polishing.

9.5.6.3 Aspherical Lenses
An aspherical lens has at least one surface that deviates from
a sphere or a plane. In Fig. 9.45 the difference is shown
between a convex-plane lens with spherical front surface and
an aspherical lens with a front surface deviating from a

Fig. 9.43 Values of q = (R1 + R2)/(R1 − R2) for some types of lenses

(a)

(b)

(c)

(d)

Δf

Δf

F

aspherical

spherical

1R
)R(M 1 F

Fig. 9.44 Different spherical aberration by a plane-convex lens for
different orientations of the lens. a) Plane surface towards the object b)
spherical surface towards the object c) plane-convex aspherical lens d)
convex-concave aspherical lens
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sphere and a plane backside. In former times the problem of
producing aspherical lenses was the lack of suitable pol-
ishing procedures which could make the wanted aspherical
surface with the required accuracy (surface roughness
smaller than k/10). Nowadays computer-aided grounding
and polishing machines are available, that can manufacture
any desired surface form.

The radius of curvature of an aspheric surface changes
with the distance h from the symmetry axis. This is indicated
in Fig. 9.46 by the thin spherical dashed curves.

It is much cheaper to produce aspherical lenses made of
plastic. They can be manufactured in special aspheric molds
where the liquid plastic is poured in and pressed into the
wanted form (Fig. 9.47). The problem is that the solidified
lens shrinks against the liquid form. This has to be taken into
account if a minimum accuracy of the lens form is required.
Because the plastic material is softer than glass the polishing
is easier.

9.5.6.4 Coma
The spherical aberration has been discussed in Sect. 9.5.6.2
for incident rays parallel to the symmetry axis. If a parallel
light beam passes through a lens that is inclined against the
beam axis, (Fig. 9.48a) the refraction angles not only depend
on the distance h of light rays from the symmetry axis, but
they differ also for equal values of h above and below the axis.
The focal points of the different light bundles no longer
are located on the symmetry axis, which we choose as the
x-axis.

When an object point A is imaged by the inclined lens the
image points Bi(x, y) for the different light bundles are at
different values of x and y (Fig. 9.48b). If only spherical
aberration would be present, the image of A would be a
small circle around the image point B in the plane x = xB.
Because of the coma aberration the image of A is now a
complex surface non-uniformly illuminated.

The effect is particularly obvious, when the central part of
the lens is masked so that only rays through the outer parts
of the lens contribute to the image. One obtains then instead

(a) (b)

Fig. 9.45 Comparison of a plane-convex lens with spherical aberration a) and an aspherical lens where the spherical aberration is completely
corrected b) [Edmund Optics]

Fig. 9.46 Aberration-free imaging by an aspherical lens with a plane
backside and an aspherical frontside. The radius of curvature changes
with the distance h from the symmetry axis [Wikipedia]

Fig. 9.47 Fabrication of photo-polymer aspherical lenses [Edmund
Optics]
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of a single image point B a blurred curve with a form that
depends on the distance xB of the image plane from the lens.
In Fig. 9.49 such blurred images are shown for illustration of

the effect. They have been obtained with the arrangement of
Fig. 9.48b at the image plane x = F13 with and without
masking the central part of the lens.

This image distortion is called coma (greek: jolη = hair)

Remark Comets have their name from their striking tail
which was believed by the Greek to be the hair of a goddess.

9.5.6.5 Astigmatism
Imaging of object points A far away from the symmetry axis,
which is often necessary in photographic practice, results in
a further aberration, called astigmatism. We will shortly
discuss the distortion of images because it also appears often
at the imaging of objects by our eye lens. We regard in
Fig. 9.50a a horizontal plane S (sagittal plane) and a vertical
sectional plane M (meridian plane) through an inclined light
bundle, which is emitted by an object point A away from the
symmetry axis and imaged by the lens into the image space.

All rays in the sagittal plane S are imaged into the image
point BS at the distance xS from the lens whereas the rays in
the meridian plane are imaged into another point BM at the
distance xM. This is due to the fact, that the ray AM1 hits the
lens surface under a larger angle than the ray AM2 and are
therefore more strongly refracted.

The imaging of the object point A by all rays produces a
horizontal line in the image plane bM and a vertical line in
the plane bs, while in between these planes an elliptical
image is produced (Fig. 9.50b)

The distance Dx ¼ bS � bM (astigmatic difference)
becomes larger with increasing inclination of the incident
light rays.

Such an astigmatic distortion also appears when a light
beam passes through an oblique plane parallel glass plate
(Fig. 9.51). When an oblique glass plate is placed into the
optical path behind the imaging lens L the image of an object
point A on the symmetry axis is no longer a point B but a
horizontal or vertical line or an elliptical area around the
image point B without distortion, depending on the image
distance xB.

Particularly pronounced are astigmatic aberrations for
imaging by cylindrical lenses (Fig. 9.52), which focusses only
in one direction. All rays from the object point A in a plane
perpendicular to the cylinder axis (red plane in Fig. 9.52) are
focused into the point b in this plane.All rays in a plane parallel
to the cylinder axis are divergent. Their rearward prolongation
intersect in the virtual image point B′. Overall is the image of
the object point A a line parallel to the cylinder axis.

The correction of astigmatic aberrations can be achieved
with a combination of cylindrical and spherical lenses. This
can be for instance realized by a single lens, when a
spherical lens gets an additional cylindrical curvature. This is
used in eyeglasses for the correction of astigmatic aberra-
tions of the eye.

Fig. 9.49 Distorted images of a point A obtained with the arrangement
of Fig. 9.47b. a) without mask, b) masking the central part of the lens
c) distorted image o f a sheet with equally distributed holes
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(b)
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Fig. 9.48 a) Coma occurring when a light beam passes an inclined
lens. The different rays have different focal points. b) For the imaging
of a point A outside the symmetry axis the different rays have different
images B away from the symmetry axis
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9.5.6.6 Image Field Curvature and Distortion
Due to the different refraction of light rays which enter a lens
under different angles against the symmetry axis the image
distances bi are different for object points Ai in the same object
plane but with different distances from the symmetry axis. The
image of the object plane is no longer a flat plane but a curved
surface (Fig. 9.53). Because of the astigmatic aberrations two
different image distances xS and xM occur for the sagittal and
the meridian rays. The image surfaces of the object plane are
therefore two curved surfaces BS and BM. They can be visu-
alized by rotating the image points Bi of object points Ai in a
plane perpendicular to the symmetry axis around this axis.

This image field curvature can be demonstrated by
imaging of a plane spoke wheel through a cylindrical lens
(Fig. 9.54). Depending on the distance xB of the image plane
either the inner rings are focused/(Fig. 9.54a) or the inner
rings (Fig. 9.54b).

We had seen in Sect. 9.5.6.2, that masking the outer parts
of a lens diminishes for paraxial ray the spherical aberration
and improves the quality of the image. However, for rays
inclined against the symmetry axis aberrations occur in spite
of masking the edge rays, which results in the distortion of
the image of extensive objects. This can be demonstrated by
imaging a plane quadratic grid (Fig. 9.55). Placing a circular
aperture in front of the lens which transmits only the central
rays, the image shows a barrel distortion (Fig. 9.55 right),
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0B

Fig. 9.51 Astigmatism of a light beam passing through an inclined
plane-parallel plate behind the focusing lens. Without plate the image
of A would be at B0. The light rays in the horizontal cut (x-y-plane)
intersect along the line B′, they therefor do not form a point-like image
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Fig. 9.50 Astigmatism at the imaging of an inclined light beam. a) Perspective view b) cross section of the light beam at different distances
behind the lens
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Fig. 9.52 Astigmatism at the imaging by a cylindrical lens
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whereas a mask before the lens which blocks the central rays
a pincushion distortion of the grid appears (Fig. 9.55 left).

This can be understood as follows:
We regard in Fig. 9.53 two points A0 and A1 of the

extended plane object. Because of the larger refraction of the
inclined rays from A1 the image plane of B1 is formed before
that of B0. Therefore the object point A1 forms in the image
plane of B0 a circle with the center M, where M is defined by
the dashed line through the center of the lens. The diameter
D ¼ R1R2 of this circle is determined by the edge rays from
A1 which can still pass through the aperture before the lens
(Fig. 9.56a). Only rays within a narrow angular range
around the ray 1 can be transmitted. A square around A1 is
imaged into a barrel like distorted area around M.

In Fig. 9.56b the circular aperture is placed behind the
lens. Now again the point A1 is imaged into a circular area
with the center M1 by rays in a narrow angular range around
the ray 1. These rays form in the image plane of B0 again a
circle but with smaller diameter D ¼ R1R2 and a center M1

that is farther away from B0 than M. Since the shift of
M against M1 becomes larger with increasing distance h of
A1 from the symmetry axis a square around A1 is imaged into
a pin-cushion distortion in the image plane of B0.

9.5.7 The Aplanatic Imaging

For practical applications not only single points but extended
areas should be imaged with minimum distortion. Further-
more a large luminosity of the imaging lens system is

Fig. 9.54 Experimental demonstration of image field curvature of a
plane spoke wheel. a) Image plane is at B0 in Fig. 9.55 b) image plane
is shifted towards the lens and includes B1M

(a)

(b)

Fig. 9.55 Pin-cushion distortion and barrel distortion of a plane
regular grid. a) Schematic representation (https://de.wikipedia.org/wiki/
Abbildungsfehler) b) real photos, taken by the author
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Fig. 9.53 Image field curvature
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required which excludes small apertures which restrict the
transmitted light to paraxial rays close to the symmetry axis.
Great efforts have been undertaken to construct lens systems
which minimize all lens aberrations even for large aperture
ratios. An important insight was provided by a relation,
postulated by Ernst Abbe (1840–1905) between the magni-
fication ratio M ¼ Bj j= Aj j ¼ b=a of a lens system and the
aperture angles ug and ub of the transmitted rays on the
object side and the image side (Fig. 9.57). This relation
states that even for large aperture angles an image formation
with small distortions is possible, if Abbe’s sinus condition

sin ug
sin ug

¼ Bj j
Aj j ¼ const: ð9:40Þ

is fulfilled.
We will illustrate Abbe’s sinus condition by a simple

example: The imaging of an illuminated circular aperture by
a lens (Fig. 9.57). We assume that the aperture is illuminated
by an extended light source with diameter A at a far distance.
The parallel light bundles emitted by two different points of
the source are drawn in Fig. 9.57 together with their phase
planes. The path difference between upper and lower edge of
the aperture is

Dsg ¼ A � sin ug:
The lens images the aperture into the image plane at the

distance b from the lens. The image of the aperture has the
diameter B. For B � b the curvature of the phase front can
be neglected. The corresponding optical path difference on
the image side is then

Dsg ¼ B � sin ub:
For a distortion-free image the path difference Dsg on the

object side must be equal to Dsb on the image side, because
then every point of A is imaged into the plane of B. This
gives immediately the sine-condition (9.40).

The image obeying the sine- condition is called
aplanatic [7].

A single lens or a lens system can fulfill the conditions for
an aplanatic imaging only for certain ranges Da in the object
space and Db in the image space, which depend on the
construction of the optical system [2, 9].

Figure 9.58 shows two examples of Zeiss photo-
objectives which minimize lens aberrations. They are cor-
rected for spherical and chromatic aberrations and also for
astigmatism. The chromatic aberration is minimized by
using an achromat in the Tessar (4 lenses) and a double
achromat in the Planar (6 lenses). These objectives provide
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Fig. 9.57 Abbe’s-sine-condition for the aplanatic imaging of an
aperture area
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Fig. 9.56 For the imaging of a plane object the kind of distortion
depends on the position of the aperture a) before and b) behind the lens
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Fig. 9.58 The photo-objectives a) Tessar with data collected in
Problem (9.14) b) Planar. Both objectives have been developed by Carl
Zeiss, Jena. They provide an achromatic imaging and a broad
realization of an aplanatic imaging
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a nearly aberration-free imaging up to an opening ratio of
1:2.8 for a short focal length of the Planar. They were one of
the standard objectives for better cameras (Fig. 9.58).

9.6 Matrix Methods of Geometrical Optics

The propagation of light rays through complex optical sys-
tems consisting of several lenses is generally complicated
and not easy to calculate. Therefore methods have been
developed which can perform such calculations for general
optical systems with computers more readily and fast.
A very efficient procedure is the matrix method, which will
be shortly introduced.

In geometrical optics every optical imaging is described
by the graphical depiction of light rays (see Sect. 9.1). These
rays propagate in homogeneous media on straight lines
which change their direction at the interfaces between two
media with different refractive index n.

In optical systems with a symmetry axis each point
P(x, r) on the light ray is defined by its coordinate x on the

symmetry axis and its distance r ¼ y2 þ z2ð Þ1=2 from this axis.
The light rays can also be inclined against the symmetry axis
by the angle a.

We can therefore describe the propagation of a light ray
even through complicated systems by defining for each point
of the ray its distance r from the axis and the inclination
angel a of the ray in this point.

9.6.1 The Translation Matrix

Within the paraxial approximation (the distance r of a ray is
small compared with the relevant distances in the x-direc-
tion, for instance the focal length of a lens) we can use the
approximation sin a � tan a � a. For the straight propaga-
tion of a light ray in a homogeneous medium from the plane
x = x0 to the plane x = x1 the linear relations holds

r1 ¼ x1�x0ð Þ � a0 þ r0;

n � a1 ¼ n � a0:
ð9:41Þ

These linear equations for r and a can be written in the
form of matrices. We describe the ray parameters r and a by
a two-component column vector. We can then write (9.41) in
matrix form as

r1
n � a1

� 	
¼ 1 x1�x0

n
0 1

� 	
:

r0
n � a0

� 	
: ð9:41aÞ

Denoting the distance between the planes x = x1 and
x = x0 by d ¼ x1�x0 the translation matrix for a light ray in
a homogeneous medium with refractive index n can be
written as

~T ¼ 1 d=n
0 1

� 	
: ð9:41bÞ

Note The angle a is defined as positive, if one proceeds
from the x-axis anti-clockwise to the ray and as negative for
the clockwise rotation.

9.6.2 The Refraction Matrix

Also for the refraction at the interface between two different
media a linear relation exists between the parameters (r1, a1)
on one side of the interface and (r2 = r1, a2) on the other
side. Using Snell’s refraction law for small angles

n1a ¼ n2b

we obtain from Fig. 9.59 for a curved boundary with cur-
vature radius R the relation

a� a1 ¼ �a2 þ b ¼ c ¼ r1=R;

(a2 is negative, because it is measured clockwise against
the positive x-axis.

n1
r1
R

þ a1
� �

¼ n2
r1
R

þ a2
� �

) n2a2 ¼ n1a1 þ n1 � n2ð Þ r1
R
:

We therefore obtain the equations for the refraction at a
spherical surface (Fig. 9.59)

r2 ¼ r1;

n2a2 ¼ n1a1 þ n1 � n2ð Þr1=R;
ð9:42aÞ

We get from (9.42a) the matrix equation

r2
n2a2

� 	
¼ 1 0

n1�n2
R 1

� 	
� r1

n1a1

� 	
: ð9:42bÞ
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Fig. 9.59 Matrix representation of translation and refraction of a light ray
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The refraction at a curved surface with radius R between
two media with refractive indices n1 and n2 can be therefore
described by the refraction matrix

~B ¼ 1 0
n1�n2

R 1

� 	
ð9:42cÞ

9.6.3 Reflection Matrix

Analogue to the refraction at a spherical interface we can
describe the reflection at a spherical mirror by the reflection
matrix. From Fig. 9.60 we get with a mirror radius R and the
refractive index n = 1 in the space left of the mirror the
relations

r2 ¼ r1

a2 ¼ 2a þ a1 ¼ 2 aþ a1ð Þ� a1

¼ �2
r1
R
� a1

when the direction of the angle arrow in Fig. 9.59 and the
note in the previous section, regarding the sign of the angle
is taken into account

~R ¼ 1 0
� 2

R �1

� 	
; ð9:43Þ

The matrix method allows the calculation of the path of
light rays through optical systems with many refracting or
reflecting interfaces by multiplication of the corresponding
matrices of the different interfaces. This technique is par-
ticular useful for the calculation of complex lens systems
such as camera objectives or microscopes. We will illustrate
this by some examples.

9.6.4 Transformation Matrix of a Lens

We regard in Fig. 9.61 a light ray, which passes from the
object space with refractive index (n = n1) through a lens
with thickness D, radii of curvature R1 and R2 and refractive
index n2 into the image space with n = n3. The ray param-
eters (n, r, a) change at every interface from the initial values
(n1, r1, a1) at the point P1 to the final values (n3, r3, a3) in the
point P4. The sequence of the parameters can be written as

r1
n1a1

� 	
! r1

n2a2

� 	
! r2

n2a2

� 	
! r2

n3a3

� 	
:

In the matrix notation initial and final state are related by

r2
n3a3

� 	
¼ ~B2 � ~T12 � ~B1

r1
n1a1

� 	
ð9:44Þ

with the matrices

~B1 ¼
1 0n1 � n2
R1

1

 !
; ð9:44aÞ

~T12 ¼ 1
x2 � x1

n2
0 1

 !
; ð9:44bÞ

~B2 ¼
1 0

� n2 � n3
R2

1

 !
; ð9:44cÞ

where, according to the rules of matrix multiplication at first
the input vector (n1, a1, r1) is multiplied by the matrix B1 and
the resulting vector (n2, a2, r2) is multiplied with T12 etc.

The radius of curvature R2 of the second lens surface is
negative, according to the definition in Sect. 9.5.2 whereas
R1 is positive.

D

n2

α1

R2R1

α3

r2r1

P1 P2
P3

P4

α2

n1 n3

x1 x2

d

Fig. 9.61 Illustration for the transformation matrix of a lens with radii
of curvature R1 and R2 and thickness D

R

1

2

1α
2α

α
α

α+α1

1r

Fig. 9.60 Characteristic quantities for the matrix representation of a
spherical mirror
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The product of the three matrices is the transformation
matrix ML of an arbitrary lens with refractive index n2 in a
surrounding with refractive indices n1 and n3. Performing the
multiplication gives

~ML ¼ ~B2~T12~B1

¼
1� x21n21

n2R1

x21
n2

n2n32R1 � n2n21R2 � n32n21x21
n2R1R2

1þ n32x1
n2R2

0
B@

1
CA;

ð9:45Þ
For thin lenses (x2 – x1 => 0 ) with the focal length f and

the refractive index n2 = n in air (n1 = n3 = 1) the equation
(9.45) has the much simpler form

~ML ¼
1 0

n� 1ð Þ 1
R2

� 1
R1

� 	
1

 !
1 0

� 1
f

1

 !
; ð9:45aÞ

where we have used the relation (9.25a) for the focal length f.

9.6.5 Imaging Matrix

When the object point A is imaged by the lens L onto the
image point B (Fig. 9.62) the imaging equation in matrix
representation is with n1 ¼ n3 ¼ n1; n2 ¼ n

r2
a2

� 	
¼ ~MAB

r1
a1

� 	
ð9:46Þ

with the imaging matrix

~MAB ¼ ~T2 ~ML~T1; ð9:47Þ
where the translation matrices for the object space and the
image space are

~T1 ¼ 1 a
0 1

� 	
; ~T2 ¼ 1 b

0 1

� 	
; ð9:48Þ

The imaging matrix for thin lenses is then, using (9.45a)

~MAB ¼ 1� b
f aþ b� ab

f

� 1
f 1� a

f

 !
: ð9:49Þ

The imaging equation is therefore

r2
a2

� 	
B

¼
1� b

f

� �
r1 þ aþ b� ab

f

� �
a1

� r1
f þ 1� a

f

� �
a1

0
@

1
A; ð9:46aÞ

where a and b are the distances from the medium plane of the
thin lens to object a or image b (Fig. 9.26). For thick lenses the
distances are measured up to the principal planes (Fig. 9.30).

For a1 = 0 (incident rays are parallel to the symmetry
axis) is

r2
a2

� 	
¼

f�b
f � r1
� r1

f

 !
; ð9:46bÞ

Such rays intersect the symmetry axis in the image space
behind the lens at r2 = 0 => f = b. The image of an infinitely
far away object is formed in the focal point of the lens.

9.6.6 Matrices of Lens Systems

The advantage of the matrix method becomes more evident
when systems of many lenses shall be calculated. We will
this illustrate for the example of a system of two lenses with
the focal lengths f1 and f2, the distances dik between the
principal planes of each lens and the distances D between the
two lenses (Fig. 9.63).

The transformation matrix of the lens system is

~MLS ¼ ~B4~T34~B3~T23~B2~T12~B1

~ML2~T23 ~ML1;
ð9:50Þ

where ~Tik is the transformation matrix for the light path from
Pi to Pk and ~Bi the matrix (9.42c) for the refraction at the
surface i with radius of curvature Ri. According to (9.45). As
already indicated in (9.50) the outer thre matrices can be
condensed into the matrix MLi of the thick lenses L1 and L2.

For further examples see the problems (9.12–9.14) and
the references [1, 2, 8, 9].

9.6.7 Jones Vectors

As has been mentioned already in the beginning of this
chapter, the polarization characteristics of light can be for-
mally treated within the frame work of geometrical optics if
we introduce the electric field vector E in addition to the
vector k which gives the direction of propagation of the light

A

a
b B

1r

2r

1P 2P

1α

2α

Fig. 9.62 Illustration of the transformation matrix of a thick lens
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ray. When we choose the z-axis as the direction of propa-
gation the electric field vector becomes

E ¼ Exêx þEyêy;

where the components Ex and Ey may be complex numbers
(see Sect. 7.4). We therefore write the polarization vector as
column vector

E ¼ Ex

Ey

� 	
¼ E0xeiux

E0yeiuy

� 	
ð9:51aÞ

With Ej j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
x þE2

y

q
we can define a normalized vector

J ¼ Jx
Jy

� 	
¼ 1

Ej j
E0xeiux

E0yeiuy

� 	
ð9:51bÞ

called the Jones vector. Since the polarization characteristics
of the electric vector only depends on the phase difference
Du ¼ ux � uy between the two components but not on the
absolute value of the phases, we can choose ux ¼ 0.

Examples

(a) For light linearly polarized in x-direction is
E0y = 0 and the Jones vector becomes

Jh ¼ 1
0

� 	
horizontal Polarizationð Þ

when we choose the x-direction as the horizontal and
the y-direction as the vertical direction.
For light polarized in the y-direction we get
correspondingly

Jv ¼ 0
1

� 	
vertical Polarizationð Þ:

(b) When the E-vector points into the direction 0
against the x-axis (Fig. 9.64) we have Ex ¼ E �
cos# and Ey ¼ E � sin#. The two phases ux and
uy are equal and we can choose them as
ux ¼ uy ¼ 0. The Jones vector then becomes

J #ð Þ ¼ cos#
sin#

� 	
; ð9:52Þ

This reduces for 0 = 45° to

J45� ¼ 1ffiffiffi
2

p 1
1

� 	
: ð9:52aÞ

(c) For circular polarized light is E0x ¼ E0y ¼ E=
ffiffiffi
2

p
and ux�uy ¼ �p=2. For r+-light the Jones
vector becomes

J rþð Þ ¼ 1
E

E0x

E0x � eip=2
� 	

¼ 1ffiffiffi
2

p 1
þ i

� 	
ð9:53aÞ

while for r−-light we get correspondingly

J r�ð Þ ¼ 1ffiffiffi
2

p 1
�i

� 	
: ð9:53bÞ

For elliptical polarized light is

E ¼ Ex

Eye�iu

� 	
;

The Jones vector therefore becomes

J ¼ 1
Ej j

Ex

Eye�iu

� 	

If polarized light propagates through anisotropic media
or if it is reflected at inclined surfaces its polarization
characteristics changes (see Chap. 8). Such polarization
changing elements can be described analogue to lenses by
matrices, called Jones matrices. For instance, a linear

A

a

1 2

D
3 4

B

x

b

1H 2H

3H 4H

1L

2L

1R 2R 3R 4R
12d 34d

Fig. 9.63 Characteristic quantities needed for the transformation
matrix for the imaging by a lens system of two lenses

E

xE

y
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yE

Fig. 9.64 Electric vector E of linear polarized light
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polarizer, which transmits light with its E-vector in x-
direction, is described by

MðxÞ ¼ 1 0
0 0

� 	
x�polarizerð Þ ð9:54aÞ

When unpolarized light passes through an x-polarizer the
transmitted light has the E-vector

EðtÞ ¼ Etx

Ety

� 	
¼ 1 0

0 0

� 	
� Eex

Eey

� 	
¼ Eex

0

� 	
ð9:54bÞ

which has only a component in x-direction. A linear polar-
izer with a maximum transmission direction 0 against the x-
axis has the Jones matrix

MðhÞ ¼ cos2 h sin h cos2 h
sin h � cos2 h sin2 h

� 	
: ð9:54cÞ

Examples

The Jones matrix for 0 = 45° is

M 45�ð Þ ¼ 1
2

1 1
1 1

� 	
: ð9:54dÞ

An optical retardation plate causes a rotation of the
polarization plane. It has the Jones matrix

M ¼ eiDux 0
0 eiDuy

� 	
; ð9:55Þ

The exit light is then

Etx

Ety

� 	
¼ eiDux 0

0 eiDuy

 !
� Eexeiux

Eeyeiuy

 !

¼ Eexei ux þDuxð Þ

Eeye
i uy þDuyð Þ

 ! ð9:56Þ

For a k/4-wave plate with the fast axis in the x-
direction is Duy�Dux ¼ p=2. The Jones matrix for
the k/4-plate is then

Mk=4 ¼ e�ip4
1 0
0 þ i

� 	
¼ 1

2

ffiffiffi
2

p 1� i 0
0 1þ i

� 	
;

ð9:57Þ
where we have chosen Dux ¼ �p=4 and
Duy ¼ þ p=4.

For a k/2-plate with the fast axis in x-direction we
obtain the Jones matrix

M xð Þ
k=2 ¼ e�ip=2 1 0

0 �1

� 	
¼ �i 0

0 þ i

� 	
; ð9:57aÞ

while for the fast axis in y-direction we get

M yð Þ
k=2 ¼ e�ip=2 1 0

0 �1

� 	
¼ þ i 0

0 �i

� 	
: ð9:57bÞ

The polarization condition of light after passing through
several elements that change the polarization status can be
calculated by multiplying the corresponding matrices.

Example

A linear polarized wave with its E-vector in the
direction of 45° against the x-axis passes through a
k/2-plate with the fast axis in x-direction. Subse-
quently it traverses a k/4-plate with the fast axis in
y-direction. The exit wave is described by

Etx

Vty

 !
¼ E0

2

ffiffiffi
2

p 1 0

0 i

 ! �i 0

0 þ i

 !

� 1ffiffiffi
2

p 1

1

 !

¼ E0

2

�i

�1

 !
¼ E0

2
eip=2

1

�i

 !
:

This is a circular polarized r�-wave with a phase
that is shifted against the incident wave by Du = p/2.
For further information see [10].

9.7 Geometrical Optics of the Atmosphere

Several optical phenomena in our earth atmosphere, which
are related to reflection and refraction of sun light can be
explained by geometrical optics. However, there are also
phenomena such as light scattering (see Sect. 10.9) which can
be only described by the wave model of light. Often quantum
theory is needed to obtain a quantitative description e.g. of
absorption and scattering of radiation in the atmosphere. The
optics of our atmosphere is therefore much more complex
than the few examples given here might suggest [11, 12]

9.7.1 Deflection of Light Rays
in the Atmosphere

Since the density of the atmosphere decreases with
increasing heights h (see Vol. 1, Sect. 7.2), also the refrac-
tive index n(h) decreases with increasing h. If a light ray
enters the atmosphere from the outside (e.g. from a star)
under the angle f against the vertical, the radial change of
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n(h) cause a curvature of the ray (Fig. 9.65a). This is
quantitatively illustrated in Fig: 9.65b.

This curvature of light rays in the atmosphere has the effect,
that the angle f under which the light from a star appears for
the observer (zenith distance) is decreased from the true value
ft to the apparent value fa. The difference . ¼ ft�fa between
the true and the apparent zenith distance is called refraction
angle of the atmosphere. It increases with the path length of
the light ray through the atmosphere. It is therefore larger for
stars which appear close to the horizon.

In order to determine the refraction angle q we divide the
atmosphere into many thin horizontal layers (Fig. 9.65b).
Within each of these layers the refractive index changes so
little that we can regard it as constant. Within this approxi-
mation n(h) makes a small jump from layer to layer and we
approximate the continuous function n(h) by a step function
and the smooth path of the light ray by a polygon course.

We can apply Snell’s law of refraction for each interface
between successive layers and obtain with n0 = n(h = 0)

n0 � sin fs ¼ n1 � sin f1 ¼ n2 � sin f2 ¼ . . .

¼ nk � sin fk ¼ sin ft
) ft ¼ n0 � sin fa;

ð9:58Þ

because for large values of k the density of the atmosphere at
large values of h becomes so low that nk = 1.

The refraction angle q is very small. Therefore we can
write in (9.58)

sin ft ¼ sin .þ fað Þ ¼ sin. � cos fa þ cos . � sin fa
n0 � sin fa ¼ sin ft � . � cos fa þ sin fa

) . ¼ n0 � 1ð Þ tan fa
ð9:59Þ

The experimental observation gives the value

.exp ¼ 58:200 � tan fa for f\fmax with fmax � 60�

For f = 88.5° is q � 30′. This corresponds nearly with
the angular diameter of the sun (�30′). This means: When
the lower edge of the sun just touches the horizon the sun
has in reality already sunk completely.

For the precise determination of star positions the
refraction of the atmosphere has to be taken into account.

The refraction of the atmosphere has the effect that an
observer at the heights h can see farther up to a point C
(Fig. 9.66) than the straight line of the tangent fromB toAwould
indicate. The point C appears to the observerB in the direction of
C′. The horizon appears to be lifted by the angle (at – aa).

Example

At the heights h of the observer B the distance

AB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rþ hð Þ2�R2

q
� ffiffiffiffiffiffiffiffi

2Rh
p

. With R = 6370 km

(earth radius) we obtain AB ¼ 35:7 km. The refraction
in the atmosphere increases this to BC ¼ 38 km.

If the atmosphere shows inversion the temperature gradient
dT/dh increases with h (instead decreasing under normal con-
ditions) the gradient dn/dh becomes particularly large and with
it the curvature of the light rays. One can then see “above” a

zenith

(a)

d

B

t

apparent

real

star position

n0

(b)

w

k

s

3

4

k–1

n1

n2

n3

nk–1

nk

n = 1

2

1

Fig. 9.65 Astronomical refraction of light in the atmosphere. The
curvature of light from a star is here strongly exaggerated. b)
Segmentation of the atmosphere into small sections
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αw
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R

B

h

C'

Fig. 9.66 Enlargement of sight distance due to refraction in the
atmosphere
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barrier (Fig. 9.67). For example the observerB in Fig. 9.67 can
see the peak of a tower T which would be hidden behind the
mountain for a light ray along a straight line.

9.7.2 Apparent Size of the Rising Moon

The rising full moon appears to the observer substantially
larger than at its position high in the sky. This is often
erroneously explained by the refraction of light in the
atmosphere. The refraction plays only a minor role which let
the full moon appear as a slightly elliptical disc just above the
horizon. The apparent larger size of the moon close to the
horizon is a pure psychological effect, an optical illusion. Our
brain compares the moon diameter with its distance from the
horizon. If the latter is small the diameter of the moon appears
larger. This is illustrated by Fig. 9.68. The red circle in the
mid has exactly the same size in the Figs. 9.68a and 9.68b.
Nevertheless it appears larger in (b) than in (a), because it is
surrounded in (b) by smaller circles, in (a) by larger ones.

If the moon is photographed at different positions all
picture of the moon have the same size, because here the
psychological effects is not present.

9.7.3 Fata Morgana

Also the Fata Morgana is based on the gradient n(h) of the
refractive index in the atmosphere causing reflection and
curvature of light rays. The intense radiation of the sun in hot
regions heats up the atmosphere close to the ground, in
particular above surfaces that absorb much of the sun radi-
ation (for instance black asphalt roads). In such cases a
negative temperature gradient (dT/dh < 0) and a positive
density gradient d.=dh[ 0ð Þ occur. The gradient of the
refractive index dn/dh then becomes especially large. Light
rays which are incident from above in a nearly horizontal
direction are totally reflected at the atmospheric layer closely
above ground (Fig. 9.69). The observer B then sees through

B
straight 
viewing line

normal refraction

abnormal refraction

T

Fig. 9.67 Anomalous refraction of the atmosphere with dT/dh > 0,
with resultant enlargement of the sight distance

(a) (b)

Fig. 9.68 Optical illusion. The circle in the center has the same size in
a) as in b) although it appears larger in b

gα gα

1n
12 nn >

O
B

h

Fig. 9.69 Total reflection at an atmospheric layer close to the ground
with a large gradient dn/dh > 0

Fig. 9.70 Fata morgana in the desert. The apparent lake is a reflection
of the sky. The islands in the lake are in fact far away mountains

1n

O

B

O'

12 nn >

boundary layer

Fig. 9.71 Curvature of light rays in the atmosphere by sufficiently
large gradient dn/dh > 0 of the refractive index n
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the flickering atmosphere light from the blue sky, which
appears on the road as a lake (Figs. 9.70).

During noon time the sand in the desert strongly heats
up. Therefore suchmirror images (Fat aMorgana) appear often
in the desert and delude the thirsty walker lakes and plenty of
water. Far mountains appear as islands in such simulated lakes.

Example

T h ¼ 0ð Þ ¼ 45 �C ¼ 318K; T(h = 50 m) = 20 °
C = 293 K; .0 T ¼ 273Kð Þ ¼ 1:293 kg=m3;
.1 T ¼ 318Kð Þ ¼ 1:110 kg=m3;
.2 T ¼ 293Kð Þ ¼ 1:205 kg=m3. For the refractive
index we obtain

nð.Þ ¼ nð.0Þ �
.
.0

n1 ¼ 1þ 2:77� 10�4 � 1:110
1:239

¼ 1:000238;

n2 ¼ 1:000277 � 1:205
1:293

¼ 1:0002582:

The gradient of the refractive index is then 2 �
10−5/50 m = 4 � 10−7/m. The angle of total reflection
is therefore

sin ag ¼ n1
n2

¼ 0:999975 ) ag ¼ 89:59�:

Light rays which are incident under an angle a� ag
are totally reflected.

When the temperature rises with increasing h the refractive
index decreases with heights (n2(h) < n1(h = 0)). In this case
a curvature of the rays entering from below onto the interface
occurs (Fig. 9.71). Only for a sufficient large gradient dn/
dh total reflection can be observed. An object O far away from
the observer, appears for the observer B above its real location.
If total reflection occurs the image of the object is reversed.

9.7.4 Rainbows

The colorful and impressive picture of a rainbow (Fig. 9.72)
can be observed, when the sun, no longer obscured by
clouds, shines onto a rain shower and the observers stands
between sun and rain with his back towards the sun. The
rainbow represents the visible segment of a circle with the
center M on the extended line SB (Fig. 9.73). Only shortly
before sunset a half circle can be seen.

Often two rainbows are observed. The primary rainbow
has a sharp edge at its red outside. Towards the inside follow
the colors with decreasing wavelength from red to blue. The
opening angle between the symmetry axis SBM and the sharp
red edge is uH � 42� while the secondary rainbow with

reversed color sequence has an opening angle of uN ¼ 51�

between symmetry axis and the sharp blue outer edge.
Since the amplitudes of refracted and reflected light

depend on the polarization of the light, the rainbow light is
partially polarized.

Rene Descartes (1596–1650) recognized already in 1637
that the observed rainbow results from refraction and reflec-
tion of sunlight at many small water droplets in a rain front
(Fig. 9.74). A light ray enters a water droplet, is refracted,
passes through the droplet and is reflected at the backside
(Fig. 9.75). At the exit it is again refracted. For the primary
rainbow there occurs only one reflection (Fig. 9.75a), for the

Fig. 9.72 Primary Rainbow with weaker secondary bow. Note the
reverse color sequence in the secondary bow

incident sunlight secondary rainbow

42°
51° R

M
primary rainbow

BS

S *

red

blue 
blue 

Fig. 9.73 Conditions for the observation of rain bows

water droplets 

radiation from sun

rain  front

horizon

eye

counterpoint to sun

42º

Fig. 9.74 Reflection and refraction of sunlight by many water droplets
in a rain front

280 9 Geometrical Optics



secondary bow two reflections (Fig. 9.75b). This causes the
reverse sequence of colors. Since the refractive index of water
depends on the wavelength k, the refraction angle differs for
the different colors.

The deflection angle d ¼ 180��u for the light rays
leaving the droplet depends on the entrance position z. From
Fig. 9.76a we get the relations:

d ¼ 180� � 4bþ 2a;

sin a ¼ z

R
; sinb ¼ z

n � R :

The function d(z) becomes minimum for (see Problem
9.10)

z ¼ R �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
3

4� n2ð Þ
r

;

For n = 1.33 the angle u ¼ 4b� 2a ¼ 4 arcsin z=nRð Þ
becomes umax = 42°.

At this angle umax is du/dz = 0 and a maximum width Dz
of incident rays contributes to the deflection of the sunlight
into the angular interval umax � Du. Therefore for this angle
the intensity of the sunlight reflected by the rain front
becomes maximum. This is illustrated in Fig. 9.77. The light
rays around the ray 6 (in the figure these are the rays 5–10)
are all reflected aproximately into the same direction around
uH ¼ 42�.

For the two reflections leading to the secondary rainbow a
similar consideration (see Problem 9.10) gives the angle
uN � 51�.

The angular width Du of the rainbow can be derived from
the dispersion n(k) of water. The result is

Du ¼ du
dn

� 	
� dn

dk

� 	
� DkwithDk ¼ kred�kblue � 330 nm:

Although the theory of Descartes describes the main
features of the rainbow correctly there are still finer details,
such as additional faint red-green rainbows in between the
primary rainbow, which cannot be understood by this theory.
They are caused by interference and diffraction phenomena
(see Chap. 10) and can be therefore only explained if the
wave nature of light is considered [13].

Hϕ 42°red

blue

(a) (b)

51°Nϕ

red

blue

S

Fig. 9.75 Explanation of the generation of a) primary and b)
secondary rain bow
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Fig. 9.76 a) Determination of the deflection angle d as a function of
the distance z of the incident sun light from the symmetry axis. b)
Reflected intensity as a function of the deflection angle
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Fig. 9.77 Geometric construction of the rain bow effect, which
appears as accumulation of rays for red light around the angle
d = 42° against the incident direction and for blue light around d = 40°.
The total deflection angle is then 180° − d
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Summary

• When diffraction phenomena can be neglected (this
demands that the diameter of light beams is large
compared to the wavelength k) the propagation of
light can be described by geometrical optics, which
uses the concept of light rays.

• For the ideal optical imaging all rays emerging from a
point A (light source) are imaged onto a point B (im-
age of A). For real situations the image of A is an area
around the image point B, The imaging can be real-
ized by reflection (mirrors) or refraction (lenses).

• The imaging magnification is defined as the ratio of
image diameter to object diameter

• The equation for imaging by thin lenses with focal
length f is

1
a
þ 1

b
¼ 1

f
;

where a is the object distance AO from the lens and
b the image distance OB.

• The total focal length f of a system of two close thin
lenses L1 and L2 obeys the equation

1
f1

þ 1
f2
¼ 1

f

• All optical elements (except the plane mirror) have
imaging aberrations. They can be neglected for
paraxial rays (their maximum distance from the
symmetry axis is small compared to the focal length
(paraxial approximation).

• The most important imaging aberrations are the
spherical and the chromatic aberration, astigmatism,
coma and image field curvature.

• The imaging by thick lenses can be reduced to that of
thin lenses by introduction of principal planes.

• Systems of several lenses allow a broad variation of the
imaging properties by changing the distance between
the lenses without changing object and image planes.

• Within the paraxial approximation the imaging can be
described by matrices. The imaging matrix of a sys-
tem of lenses is the product of the matrices of the
system components.

• In a mediumwith spatially varying refractive index n(r)
the light rays are curved. The curvature is proportional
to grad n(r).

• The phenomenon of the Fata Morgana appears if large
gradients dn/dh of the refractive index of air with the
height h exist which cause a curvature of light rays

• Rainbows are caused by refraction and reflection of
the sunlight in small water droplets.
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Problems

9:1. Show by applying Fermat’s principle, that a reflecting
surface which focusses a plane wave into a point must
be a paraboloid.

9:2. A plane wave is incident at the angle a onto a plane
mirror. By which angle is the reflected wave turned, if
the mirror is rotated by the angle d? How is the sit-
uation for a spherical mirror, if the incident wave hits
the mirror in the direction of the symmetry axis?

9:3. Derive Eq. (9.26) directly from Fig. 9.27 with the
approximation sin x � tan x � x:

9:4. Between two plane mirrors at the positions z� d=2 is
a point-like light source A placed at the position
z ¼ 1=3d; x ¼ 0. Determine by graphical construction
the four images Bi, which are closest to A.

9:5. A 2 cm thick water layer (n = 1.33) is located above a
4 cm thick layer of carbon tetrachloride (n = 1.46) in
a cylindrical glass with radius R = 3 cm.
(a) What is the maximum angle of incidence amax

under which the center of the glass bottom can be
still seen?

(b) How large must R be to allow amax ¼ 90�?
9:6. You should produce with a lens a tenfold magnified

image B of an object A at a distance d = 3 m from
A. What is the focal length of the lens?

9:7. A light ray passes through a plane parallel glass plate
with refractive index n and thickness d. The light ray
enters the glass plate under the angel a.
(a) Show that the exit ray is parallel to the incident ray
(b) How large is the shift against the incident ray?

9:8. A light ray hits a mirror that consists of three plane
surfaces which are orthogonal to each other. Show
that the ray is reflected antiparallel to the incident ray,
independent of the point of incidence.

9:9. A telescope has an objective lens with D1 = 5 cm
diameter and a focal length f1 = 20 cm. How large
should be the diameter D2 of the ocular lens with focal
length f2 = 2 cm, to ensure that all light collected by
the objective lens passes through the ocular lens?
What is the angular magnification?

9:10. A light ray hits a glass sphere with radius R and
refractive index n at a distance z = h from the axis
(Fig. 9.78). It is refracted at the first surface and
reflected at the back surface.

(a) Where does the rays intersect the axis?
(b) Under which angle d against the incident ray does

it leave the sphere after one or two reflections?
(c) For which ratio h/R is d minimum?
(d) Show that for water spheres (n = 1.33) dmin ¼

138� for one reflectionand128° for two reflections.
9:11. A thin lens with R1 = +10 cm and R2 = +20 cm has

the refractive index n(k = 600 nm) = 1.485 and n
(k = 400 nm) = 1.50
(a) What are the focal lengths for the two

wavelengths? (b) Give the parameters for a
diverging lens that compensates the chromatic
aberration.

9:12. Two thin lenses with f1 and f2 have a distanceD (D < f1
andD < f2). What is the focal length of the lens system
with f1 = 10 cm, f2 = 50 cm and D = 5 cm?

9:13. Two concave mirrors S1 and S2 with the centers of
curvature M1 and M2 face each other at a distance
d. Where are the images B1 and B2 of a point A
located on the symmetry axis between S1 and S2 x cm
away from S1 generated by S1 and S2? Numerical
example: R1 = 24 cm; R2 = 40 cm; d = 60 cm;
x = 6 cm.

9:14. Calculate with the matric method the focal length of
the special version of the Tessar lens system shown in
Fig. 9.58a with the numerical data (given in cm)
R1 = 1.682; R2 = −27.57; R3 = −3.457
R4 = 1.582; R5 = ∞; R6 = 1.92; R7 = −2.40
n1 = 1.6116; n2 = 1.6053; n3 = 1.5123; n4 = 1.6116;
d12 = 0.357; d23 = 0.189; d34 = 0.081;
d45 = 0.325; d56 = 0.217; d67 = 0.396.

h R

M

n

P
n = 1

α

Fig. 9.78 To problem 9.10
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10Interference, Diffraction and Scattering

Because of the linearity of the wave equation

DE ¼ 1
c2

@2E
@t2

ð10:1Þ

every linear combination of arbitrary solutions E1 and E2

E ¼ aE1 þ bE2

is also a solution of (10.1).
In order to obtain the total wave field Eðr; tÞ at an arbi-

trary point P(r) at time t one has to add all amplitudes of the
partial waves Ei r; tð Þ that superimpose in P (superposition
principle of linear equations). The total field amplitude

Eðr; tÞ ¼
X
m

Amðr; tÞeium ð10:2Þ

depends on the amplitudes Am r; tð Þ and on the phases um of
the superimposing partial waves. It is generally dependent
on the local position r as well as on the time t.

This superposition of partial waves is called interference
(see Vol. 1, Sect. 11.10). The total spatial area where the
partial waves overlap is called the interference field. Its
spatial structure is determined by the total intensity

I r; tð Þ / E r; tð Þj j2. Spatial limitations might suppress part of
the interfering waves, which are then missing in the sum
(10.2). This leads to incomplete interference which results in
diffraction phenomena (see Sects. 10.7 and 11.3.4), causing
additional structures of the wave field.

10.1 Temporal and Spatial Coherence

A temporal stationary interference structure can be only
observed, if the phase differences Du ¼ uj � uk between
arbitrary partial waves Ej and Ek in the point P rð Þ do not
change during the observation time Dt by more than 2p. The
partial waves are then called temporal coherent. A possible

time dependence Du of the phase difference can have dif-
ferent reasons.

• The frequency m may change in time
• The light source emits finite wave trains with ran-

domly distributed phases.
• The refractive index of the medium between source

and observer might fluctuate in time.

The maximum tine interval Dtmax during which the phase
differences between all interfering partial waves are chang-
ing by less than 2p is the coherence time.

We will illustrate this by regarding a light source that
emits light with the central frequency m0 and the spectral
width Dm (Fig. 10.1a). This light can be considered as the
superposition of many partial waves with frequencies within
the spectral range Dm.

The phase difference between these partial waves with
frequencies m1 ¼ m0 � Dm=2 and m2 ¼ m0 þDm=2 is

Du tð Þ ¼ 2p m2 � m1ð Þ t � t0ð Þ:
It increases linearly with time t. After the coherence time

Dtc ¼ 1=Dm it has increased to Du Dtcð Þ[ 2p.
The coherence time of the light wave therefore equals the

inverse spectral width Dm

Dtc ¼ 1
Dm

: ð10:3Þ

For all other components with frequency differences
Dm < Dmc is Du Dtcð Þ\2p. The superposition of all com-
ponents contains all phase differences from 0 to 2p
(Fig. 10.1b). For the temporal average of the superposition
we get

Eðr; tÞh i ¼ 1
Dtc

ZDtc
0

X
m

AmðrÞeiumdt � 0:
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This can be also explained as follows:
The superposition of all spectral components results in a

total amplitude E tð Þ which decays in time, because in the
course of time more and more destructive interference with
phase differences Du > p/2 appear. (Note that two waves
with equal amplitude but a phase difference of p completely
cancel each other).

The calculation shows that after the coherence time Dtc
the total amplitude has decreased to 1=e of its initial value
(Fig. 10.1c).

Light with a spectral width Dm therefore represents a
finite wave train with the coherence length Dsc = c � Dtc.

The coherence length Dsc is the path length that light
propagates during the coherence time Dtc.

The phase differences Duj;k between the partial waves Ej

and Ek may be different for different points P rð Þ within the
interference volume, because the phase differences Dui ¼
2p=kið ÞDsi of each partial wave Ei depends on the path

difference Dsi = SP between source S and observation point
P. If this spatial phase difference

Drui ¼ uiðr1Þ � uiðr2Þ ð10:4Þ
for an arbitrary partial wave Ei changes during the obser-
vation time Dt by less than 2p, the wave field is spatially
coherent (Fig. 10.2). The surface perpendicular to the
propagation direction is called the coherence surface Ac.

The product of coherence surface and coherence length
Dsc is the coherence volume DVc [1].

Interference structure can be observed only within the
coherence volume.

Example

1. For light with the spectral width Dm ¼ 2� 109 Hz
(typical Doppler width of spectral lines in the vis-
ible range) the coherence time is Dtc ¼ 1=Dm ¼ 5�
10�10s. The coherence length Dsc ¼ c � Dtc is then
Dsc ¼ 0:15m.

2. A plane wave E ¼ A � eiðxt�k�rÞ is on the entire
plane k � r ¼ const. spatially coherent. If the wave
is monochromatic. Dm ¼ 0ð Þ the coherence length is
infinite. Such a wave is coherent in the entire
space. If its spectral width Dm[ 0 is finite the
coherence length is finite and the coherence vol-
ume is infinite in the direction perpendicular to the
wave vector k but finite in the propagation
direction.

3. A monochromatic spherical wave is coherent in the
entire space. The general rule is: Waves emitted

E(s = s0,t)

ν0

I(ν0)

ν

Δν

Δt

1/2 I(ν0)

I(ν)

t

s

Δtc

Δsc

E(s, t = t0)

E(t)

E(0)/e

(a)

(c)

ν1 ν2

Δtc

(b) E(ν1) (ν2)

t

E

= 2 · ν· t

Fig. 10.1 Temporal coherence of light with the spectral width Dm. The
coherence time is Dtc ¼ 1=Dm. a) Spectral distribution of the intensity
I mð Þ, b) temporal superposition of two partial waves with slightly
different frequencies, c) temporal decay of the total field amplitude
E(t) of all components in (a)

(a)

P2

sc

Vc = Fc· sc

P1
Coherence
surface

(b)

s2

E1

s1

E2

S(r0)

P1(r1)

P2(r2)

(r1) = 0
2 s1

(r2) = 0
2 s2

r = (r1) (r2)

Fc

Fig. 10.2 a) Phase difference Dru between the phases u r1ð Þ and
u r2ð Þ of a monochromatic wave at two different spatial points, b)
coherence surface Fc and coherence volume DVc
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from a point source (which is of course an ideal-
ization) are spatially coherent in the entire space.

We will now illustrate the terms coherence and interfer-
ence by some examples which show how coherent waves
can be generated and how their superposition can be
realized.

10.2 Generation and Superposition
of Coherent Waves

There are in principle two different methods how to generate
coherent partial waves and their superposition, which results
in interference structures:

• The emitters (i.e. the sources of the partial waves) are
phase-locked with each other (Fig. 10.3).

• The waves emitted by the source S are split into two or
more partial waves, which propagate through different
paths with different path lengths until they are again
superimposed. Their interference structure can then be
observed in the points P1 or P2 (Fig. 10.4).

The first method can be realized for acoustic waves (see
Vol. 1, Sect. 11.10) by feeding two spatially separated loud-
speakers which are both driven by the same ac-voltage source.

In case of optical waves the sources are energetically
excited atoms or molecules (see Vol. 3) which are generally
independent of each other and emit light waves with ran-
domly distributed phases. The light emitted from the whole
light source is therefore incoherent. This implies that the first
method is not applicable for classical light sources such as
light bulbs, gas discharges or the sun.

Nowadays one can use frequency-stabilized lasers (see
Vol. 3). Here the atoms can be excited by the coherent laser
wave to phase-coupled oscillations (see Sect. 8.2). For
instance in Fig. 8.4 all atoms in the plane z ¼ z0 oscillate in
phase, if the incident wave is coherent.

With special techniques it is possible to phase-lock two
stabilized lasers with each other. This enables one to use the
first method for generating interference patterns also in the
optical range.

Stabilized lasers are often used to demonstrate interfer-
ence and diffraction phenomena to a large auditorium,
because their coherence length is much larger than that of
incoherent light sources.

Lasers are therefore often named “coherent light
sources”.

In most cases in optics the second method is preferred,
even when lasers are used. The waves emitted by the source
are split by different realizations of beam splitters, propagate
through different path lengths and are again superimposed in
the interference space.

Two beam interference occurs when two partial waves
are superimposed, whereas multiple beam interference
means the superposition of several partial waves.

Interference is the basis of all interferometers. These are
devices for the accurate measurement of wavelengths. They
are also applied to the very precise determination of small
distance-changes or the recording of refractive indices of
transparent media and their dependence on pressure and
temperature.

Note Interference as spatially structured and temporal
constant intensity I(r) can be only observed in a limited
volume of the superimposed partial waves where the path
difference Ds between the partial waves is smaller than
the coherence length Dsc ¼ c � Dtc. We will see, that the
coherence volume depends on the spatial as well on the
temporal coherence of the interfering waves.

Phase
coupling

S

phase 
coupling

1L

2L

2s

1s P(r)
→

)ss(
2

)r( 21 −
λ
π=ϕΔ

→

Fig. 10.3 Two sources L1 and L2, phase-locked to the common source
S. The waves emitted by L1 and L2 superimpose within the coherence
volume with temporally constant but location-dependent phase differ-
ences Du rð Þ …

E1 + E2
S

Δϕ = 2π
λ

Δs

E1 + E2

s1

s2

E2

E1

Δs = s  –2 s1

1BS BS2

2P

1P

Fig. 10.4 Two-beam interference realized by splitting the incident
wave into two partial waves which are again superimposed after having
travelled different path lengths
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10.3 Experimental Realization of Two-Beam
Interference

There are a large number of possible experimental arrange-
ments, which split the light wave from a source S into two
partial waves, which can be again recombined by mirrors or
lenses. We will illustrate this by some examples.

10.3.1 Fresnel’s Mirror Arrangement

The light from a point source S is reflected by two mirrorsM1

and M2 which are slightly tilted against each other
(Fig. 10.5). For an observer in the observation plane (which
we choose as the x-y-plane), the light reflected by the two
mirrors seems to come from the two virtual sources S1 and S2.

The optical path lengths s1 = SM1P(x, y) and s2 = SM2P
(x, y) is equal to the path lengths S1P and S2P. If the two
virtual light sources have the coordinates (x = ±d; y = 0,
z = z0) the path difference between S1P and S2P is

Ds ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ dÞ2 þ y2 þ z20

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� dÞ2 þ y2 þ z20

q
: ð10:5Þ

All points P(x, y) for which Ds = const. form a hyperbola
(see Problem 10.1).

For Ds ¼ m � k the two partial waves are in phase, i.e.
they superimpose constructively and the maximum intensity

Imax ¼ ce0ðE1 þE2Þ2

is observed (black points in Fig. 10.5).
For Ds ¼ 2mþ 1ð Þk=2 the two waves have opposite

phases and the total intensity is

Imin ¼ ce0ðE1 � E2Þ2

One observes therefore in the x-y-plane a pattern of dark
and bright hyperbolas. The spatial extension of the pattern is
determined by the coherence length Dsc ¼ c=Dm and there-
fore by the spectral width Dm of the radiation from the light
source and by the mutual distance of the two virtual light
sources S1 and S2.

We have assumed a point like light source where the
spatial extension of the source has been neglected. We will
now discuss the influence of the finite size of the source on
the extension of the coherence volume.

10.3.2 Young’s Double Slit Experiment

The light emitted by an extended light source with diameter
b illuminates two slits S1 and S2 which are separated by the
distance d (Fig. 10.6). The total amplitude and the phase at
the slits is obtained by the superposition of all partial waves
emitted from the different surface elements dFi of the source
LS. For the determination of the phase one has to take into
account the different path lengths from the elements dFi to
the slits S1 and S2.

The two slits can be regarded as sources of new waves
which superimpose (Huygens’s principle, see Vol. 1,
Sect. 11.11). The total intensity at the point P in the
observation plane is determined by the amplitudes Ai and the
phases ui of the partial waves at the slits S1 and S2 and by
the path difference Ds = S2P − S1P.

S2

A

S1

B

b 0

R

dF

LS

D P(x)

I(x)

x

d

2

R1

D

Fig. 10.6 Young’s double-slit demonstration

S1 S2

z

x

x

m = –1 m = 0 m = +1

I

P

M2

M1

m

S

2d

B

Fig. 10.5 Fresnel’s mirror experiment
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If the different surface elements dFi emit independently
waves with randomly distributed phases (this is the case for
incoherent sources), the phase of the total wave E = REi will
show a randomly fluctuating phase at S1 and S2. However,
this would not affect the intensity at the point P as long as
the fluctuations occur synchronously in S1 and S2 because
then the phase difference Du ¼ u1 � u2 of the waves
emitted by the slits would be constant in time. In this case
the two slits represent two coherent light sources which
produce in the observation plane a static interference pattern,
completely analog to that in Fresnel’s mirror experiment.

For light emitted from the center O of the extended source
this situation occurs indeed because the path lengths OS1 and
OS2 are equal. Therefore phase fluctuations of the source
arrive simultaneously at the two slits S1 and S2. This is no
longer true for all other pointsQ of the light source, where path
length differences Ds = QS1 − QS2 6¼ 0 appear which are
maximum for the points at the edge of the source (Fig. 10.7).

With the distance D � d between source and the slits the
maximum path difference is

Dsmax ¼ R1S2 � R1S1 ¼ R2S1 � R1S1 � b � sin#
¼ 1=2 � b � d=ð2DÞ ð10:6Þ

Because of symmetry reasons is R1S2 = R2S1.
If for random emission of the different source elements

Q the maximum path difference is larger than the half wave-
length (Dsmax > k/2), the phase difference Du ¼ u S1ð Þ �
u S2ð Þ ¼ 2p=kð Þ � Ds fluctuates by more than p and the
interference structure in the observation plane disappears.

The condition for the coherent (i.e. phase correlated)
illumination of the two slits by an extended source with
diameter b is then

Dsmax � b � d
2D

\k=2

) d

k
\

D

b
) d2

k2
\

D2

b2
� 1

DX
:

ð10:7Þ

where DX is the solid angle under which the light source LS
is seen from the point A between the two slits.

For coherent illumination of two slits by an extended
light source the distance d/k of the slits in units of the
wavelength k should not exceed the ratio D/b of dis-
tance D from the slits to the source and the diameter
b of the source.

Since b2=D2 ¼ DX is the solid angle under which the
source area b2 appears from the slits, we can also formulate
this condition as follows:

The coherence surface d2=k2 in units of k2 is equal to the
solid angle DX.

The coherence surface of the radiation from an
extended source is

Ac ¼ d2 5 k2=DX

where DX is the solid angle under which the source
appears from a point of the coherence surface.

If the condition (10.7) is satisfied, an interference pattern
can be observed in the observation plane, even for the illu-
mination by an extended incoherent source. The extension of
the source can be the larger the farther away it is.

Examples

1. b = 1 cm, D = 50 cm, k = 500 nm, ) d � 25 lm.
2. Our next fixed star (besides our sun) is Proxima

Centauri. Its distance is D = 4.3 Ly = 4 � 1016 m
and its diameter b � 1010 m. The diameter d of the
coherence surface on earth is then for k = 500 nm
d � 2 m.

b 0

Q ϑ
ϑ

D d/2

d/2

A

1S

2S

1R

2R ϑ⋅≈Δ sinbsmax

Fig. 10.7 The influence of the source size on the coherence properties
at the two slits
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Fig. 10.8 Determination of the path difference between the two partial
waves reflected at the two surfaces of a plane parallel transparent plate.
a) For the reflected light, b) for the transmitted light
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10.3.3 Interference at a Plane-Parallel Plate

When a plane wave falls under the angle a onto a transparent
plane-parallel plate with refractive index n (Fig. 10.8) part of
the wave is reflected and the other part is refracted (see
Sect. 8.4). The refracted wave is again reflected at the lower
surface, is refracted at the upper surface and leaves the plate
parallel to the partial wave 1.

The path difference between the two partial waves is for a
thickness d of the plate according to Fig. 10.8

Ds ¼ n � ðABþBCÞ � AD

¼ 2nd
cos b

� 2d tan b sin a:

With sin a ¼ n � sin b this can be written as

Ds ¼ 2nd
cos b

� 2nd sin2 b
cos b

¼ 2nd cos b

¼ 2d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � sin2 a

p
:

ð10:8Þ

Since a phase jump of p occurs for the reflection at the
upper surface, (see Sect. 8.4.8) the phase difference between
the two reflected partial waves is

Du ¼ 2p
k
Ds� p: ð10:9Þ

The two partial waves interfere constructively (their
amplitudes add) for Du ¼ m � 2p whereas for Du ¼
2mþ 1ð Þp minimum intensity is observed (destructive
interference, the amplitudes are subtracted).

When the plate is illuminated by divergent monochro-
matic light with wavelength k which contains rays with
angles of incidence a in the range a0 	 Da one obtains for all
angles a maximum intensity if

2d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � sin2 a

p
¼ ðmþ 1=2Þk: ð10:10Þ

One therefore observes in the reflected light a system of
bright and dark concentric rings around the normal to the
surface (Fig. 10.9).

Also for the transmitted light the path difference between
two partial waves is given by (10.8) as can be readily
verified.

However, here no phase jump occurs. The phase differ-
ence is therefore instead of (10.9) now Du ¼ 2p=kð Þ � Ds.
Maximum transmission is obtained for Ds ¼ m � k. The
reflected intensity is then minimum.

For small reflectivity R 
 1 (for instance for an uncoated
glass plate) the influence of the multiple reflected partial
waves can be neglected and we have an example of two-beam
interference. It can be demonstrated for a large auditorium as
shown in Fig. 10.9 where a thin glass plate was illuminated
with the divergent beam from an argon ion laser. Because of

the high intensity of the laser the entire wall of the lecture hall
can be filled with such an interference pattern.

10.3.4 Michelson Interferometer

We regard in Fig. 10.10 a parallel light beam which prop-
agates into the z-direction. It is split by the beam splitter BS
into two partial beams. The reflected part travels into the y-
direction, is reflected at the mirror M1 and transmitted
through BS and reaches the observation plane B. The second
partial beam is transmitted by BS, reflected by the movable
mirror M2, is again reflected at BS and superimposes the first
partial beam in the observation plane B. For strictly plane
waves and correctly aligned mirrors the observation plane is
a phase plane. Therefore for destructive interference it is
completely dark, for constructive interference it appears
bright without any spatially structured interference pattern.

Fig. 10.9 Photo of the interference rings observed with the divergent
green light of an argon laser reflected by a plane parallel glass plate

BS

B

y

z

IE

1s

2s

1M

2M

Fig. 10.10 Schematic drawing of the Michelson interferometer
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We will now determine the intensity It transmitted by the
interferometer as a function of the path difference
Ds ¼ s1 � s2.

The incident plane wave

Ei ¼ Ai � cosðxt � kzÞ: ð10:11aÞ
is reflected at M1 (reflectivity R) and transmitted through the
beam splitter BS (transmission T), In the observation plane it
has therefore the amplitude

E1j j ¼
ffiffiffiffiffiffiffiffiffiffi
R � T

p
Ai � cosðxtþu1Þ; ð10:11bÞ

where the phase u1 depends on the optical path
BS�M1 � BS� B.

For the second partial wave we obtain

E2j j ¼
ffiffiffiffiffiffiffiffiffiffi
R � T

p
Ai � cosðxtþu2Þ: ð10:11cÞ

where the phase u2 depends on the path BS-M2-BS-B. The
amplitude of the two waves in the plane B is equal, inde-
pendent of the reflectivity R or the transmission T of the
beam splitter BS, because both waves suffer one reflection
and one transmission.

Note This is not true for the wave reflected back into the
source.

The total transmitted intensity observed in the plane B is
then

IT ¼ ce0ðE1 þE2Þ2

¼ ce0RTA
2
i ½cosðxtþu1Þþ cosðxtþu2Þ�2:

ð10:12Þ

Since the detector in B cannot follow the rapid optical
oscillations with frequency x, it averages over many oscilla-
tion period T ¼ 2p=x. We therefore obtain from (10.12) with
hcos2 xti ¼ 1=2 the time average of the transmitted intensity

IT ¼ RTI0ð1þ cosDuÞ; ð10:13Þ
where I0 = c � e0 � Ei

2 is the incident intensity and Du = u1

− u2 = (2p/k) � Ds is the phase difference between the two
interfering waves, which depends on the path difference
Ds ¼ s1 � s2 and the wavelength k ¼ 2pc=x of the incident
wave. For R ¼ T ¼ 0:5 we obtain for the temporal average
of the intensity with IT ¼ 1

2 I0

IT ¼ 1
2
I0ð1þ cosDuÞ: ð10:13aÞ

Depending on the phase difference the transmitted
intensity varies between zero (for cos Du = −1) and I0 for
cos Du = +1 (Fig. 10.11). For IT ¼ 0 ðD ¼ 2mþ 1ð Þ � pÞ
the total intensity is reflected back into the source.

The Michelson interferometer with R ¼ T ¼ 0:5 acts as a
wavelength dependent mirror. If the incident light has a
broad spectral bandwidth, all wavelengths km ¼
2Ds= 2mþ 1ð Þ are completely reflected, whereas the wave-
lengths km ¼ Ds=m are completely transmitted. All wave-
lengths in between these limiting cases are partly reflected
and partly transmitted.

The Michelson interferometer can be used for very pre-
cise wavelength measurements. The mirrorM2 is placed on a
carriage which smoothly moves with the velocity v on an air
track. The path difference between the two partial waves

Ds tð Þ ¼ Ds 0ð Þþ 2v � t ð10:14Þ
is now time dependent and a constant sequence of intensity
maxima and minima are observed in the plane B. After a
time T = N � k/2v where the mirror has moved over the path
length Dz the number of measured intensity maxima is
N. The wavelength is then

k ¼ 2v � T=N ¼ 2Dz=N

Example

With a velocity v = 0.1 m/s and an observation time
T = 10 s the carriage travels the distance Dz = 1 m.
The number of counts N is for a wavelength
k = 500 nm N = 4 � 106. The relative uncertainty

Dk=k ¼ 2Dz=k 1=N � 1= Nþ 1ð Þð Þ ¼ 2:5� 10�7:

Of course the path difference should not be larger than the
coherence length. The example above is for wavelength
measurements of stabilized lasers with a coherence length of
more than 1 m.

The intensity contrast between the maximum and mini-
mum intensity of the transmitted light

1

0,5

0 π/2 π 2π 3π Δϕ

1 Δ λs/1/4 1/2 3/4 5/4

π3/2 π5/2

0T I/I

Fig. 10.11 Transmitted intensity of the Michelson interferometer as a
function of the path difference between the two arms
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K ¼ Imax � Iminð Þ= Imax þ Iminð Þ
approaches zero for Dz � Dsc with increasing Dz
(Fig. 10.12).

Example

For a spectral bandwidth Dm � 3 � 109 s−1 of the
incident radiation the coherence length becomes
Dsc = c/Dm � 0.1 m. A path difference of 2Ds = 0.2
m can be realized when the carriage moves over a
distance of 10 cm in such a way that Ds changes from
−5 to +5 cm. The absolute uncertainty for the wave-
length measurement is than Dk = 1.25 � 10−3 nm.
Since the light from stabilized lasers has a coherence
length of Dsc > 5 m, one can realize path differences
of Ds > 5 m. With modern devices a relative accuracy
of better than Dm/m = 10−8 can be achieved [2, 3].

If the incident light beam is strictly parallel but the mir-
rors of the Michelson interferometer are slightly tilted, one
observes in the plane B a regular system of bright and dark
parallel lines.

In practice strictly parallel light beams are difficult to
realize and the incident light is generally slightly divergent.
The light rays in the divergent beam have slightly different
inclination angles against the z-axis (Fig. 10.13). Since the
path difference Ds = Ds0/cos a depends on the inclination
angel a one obtains in the plane B not a uniform intensity,
independent of x and y as for parallel incident light, but a

system of concentric bright and dark rings (see Sect. 10.3.3
and Fig. 10.9). For the bright rings the condition Ds = mk is
fulfilled, for the dark rings is Ds = (2m + 1) � k/2.

10.3.5 The Michelson-Morley Experiment

Such an interferometer was used 1887 by A. Michelson
(Fig. 10.14) and E. Morley in order to clarify whether there
is a medium, that fills the entire space of the universe, where
the electromagnetic waves penetrate through this medium
and which possibly rests relative to the earth. This medium,

0T I/I

0 1 2 2 3 5 6 Δ λs/ 0

(a)

(b)

1

0,5

K

c/(2 v)Δ Δs

Fig. 10.12 a) Transmitted intensity of the Michelson interferometer of
a Doppler-broadened spectral lines as a function of the path difference
Dv. b Contrast function K Ds;Dmð Þ for light with a spectral Gauß-profile
with spectral width Dv

y

x

z

x

B

Fig. 10.13 Generation of a ring system for divergent incident light

Fig. 10.14 Albert Abraham Michelson (1852–1931) (with kind per-
mission of Deutsches Museum München)
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which was controversial discussed among scientists, was
called “ether”. The experiment should determine the relative
motion of the earth against this ether and should resolve the
problem whether the speed of light c depends on the direc-
tion of the incident light against or with the velocity v of the
earth moving around the sun (see Vol. 1, Sect. 3.4), which
would be true if the ether rests relative to the moving earth.
This can be illustrated by the example of water waves:

When throwing a stone from a moving boat into the water
spherical waves are generated. The phase velocity of these
waves is independent of the direction in a coordinate system
of an observer resting against the water. However, relative to
the boat, which has the velocity vs against the water, the
phase velocity of the waves in the driving direction of the
boat is v1 ¼ vph � vS and in the opposite direction
v2 ¼ vph þ vS. Measuring the two velocities v1 and v2, the
velocity vph ¼ v1 þ v2ð Þ=2 of the boat as well as the phase
velocity vS ¼ v2 � v1ð Þ=2 of the water wave can be deter-
mined. The question is now whether the same situation
applies for light waves.

By corresponding experiments with light from a star the
two scientists hoped to be able to determine the speed of
light c and the velocity v of the earth relative to the ether.
Many earlier experiments by Fizeau, Michelson and other
scientists had already proved that the moving earth did not
take along a possible ether. This means when the earth
moves with the velocity v, the ether has the velocity �v
against the earth if it rests relative to the sun.

When the Michelson interferometer is orientated in such a
way that one arm is parallel, the other perpendicular to the
velocity v of the earth (Fig. 10.15), the time of flight of the
light from the beam splitter BS to the mirror M1 and back to
BS, should be for the parallel arm with length L1

tjj ¼ L

c� v
þ L

cþ v
¼ 2cL

c2 � v2

¼ c2
2L
c

with c ¼ 1� v2

c2

� ��1=2

:

ð10:15aÞ

because the light travels on its way BS-M1 against the ether
and therefore should have the velocity c� v and on its way
back cþ v.

For the arm perpendicular to v the mirror M2 moves
during the time of flight t2 along the distance Dz ¼ v � t2. The
light beam therefore has to be inclined against the vertical
arm in order to reach the mirror M2. The inclination can be
calculated by vector addition of the two perpendicular dis-
tances Lþ v � t2 ¼ c � t2 (Fig. 10.15c). We get the relation

c2t22 ¼ v2t22 þ L2;

This gives for the time of flight back and forth between
BS and M2

t? ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � v2

p ¼ c � 2L
c

ð10:15bÞ

The time difference between the two partial waves is then

Dt ¼ tjj � t? ¼ 2L
c

c2 � c
� �

: ð10:16Þ

The velocity v of the earth on its way around the sun is
v � 3� 104m=s (the additional velocity due to the rotation
of the earth around its axis is at the latitude u ¼ 45 only
3:2� 102m=s, i.e. 1% of v, and can be therefore neglected).

We can therefore approximate

c � 1þ 1
2
v2=c2 and c2 ¼ 1þ v2=c2:

This converts (10.16) to

Dt ¼ L
v2

c3
: ð10:17aÞ

(a)

M2
v t2
→

L ct2M1(t)
LA v tII

h

z1

M1

L

v tII
r

(b) (c)

M2

ct2L

v t2
A

M2

v
→

L L

M1

BS

A

→

M1(0)
→

→

outbound trip

A(0)
A(t)

way back

Fig. 10.15 Experimental examination of a possible time difference
between the two partial waves in the Michelson interferometer if there
were a resting ether. a) Schematic experimental arrangement, b) time
diagram for the travel time of light parallel to the velocity v of the earth,
c) perpendicular to v
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Dt is the time difference that corresponds to a phase
difference

Du ¼ 2pvDt ¼ 2pc
k

Dt � 2p
k
Lv2

c2
: ð10:17bÞ

For incident light which is slightly inclined against the
interferometer axis (this means that a light beam in y-
direction is slightly inclined against the z-axis) interference
stripes appear in the observation plane (see Problem 10.3)
which can be observed with a magnifying telescope with
cross hairs (Fig. 10.16). A phase difference Du corresponds
to the shift of x interference stripes in the observation plane
B, where

x ¼ Du
2p

¼ Lv2

kc2
: ð10:17cÞ

When the whole interferometer which is mounted on a
turn table (Fig. 10.17) is rotated by 90° a stripe shift

Dm ¼ 2x ¼ 2Lv2

kc2
ð10:18Þ

should be expected if the ether theory is valid.
Michelson and Morley increased the sensitivity of their

interferometer by multiple reflections in both arms
(Fig. 10.16) which allowed them to realize an effective
length L = 11 m. Inserting the numerical values L ¼ 11m;
v2=c2 ¼ 10�8 and k ¼ 5� 10�7 m yields a stripe shift of
Dm ¼ 0:4. This is far above the detection limit.

For the real experiment the researchers used the following
tricks:

• Since the star light has a large spectral width Δk the
transmission through the beam splitter BS causes
dispersion which results in a washing out of the
interference stripes because the phase shifts depend on
the wavelength k. This can be avoided by inserting a
compensation plate in one arm of the interferometer
which compensates the dispersion in the other arm,
because now the light in both arms has to pass through
a glass plate.

• The whole basis of the interferometer rests on a stone
plate which in turn is placed on a wooden body that
floats on a mercury bath (Fig. 10.17). This allows the
easy rotation of the whole system [5].

In spite of very careful measurements which were several
times repeated no stripe shift could be detected when the
interferometer was turned by 90°. Therefore Michelson and
Morley concluded correctly, that the speed of light is equal
for all directions and independent of the velocity of the
detector or the light source (see Vol. 1, Sect. 3.4). This also
means that there is no ether [4]. Its existence is further-
more not at all necessary for the explanation of the obser-
vations, as is evident from the theory of electromagnetic
waves discussed in more detail in Chap. 6, which shows that
electromagnetic waves can propagate also in vacuum and do
not need any material such as the ether for their propagation.

10.3.6 Sagnac Interferometer

Similar to the Michelson interferometer also the Cagnac
interferometer has proved to be an important tool for tests of
General Relativity and also for navigation purposes. Its
principle is illustrated in Fig. 10.18. The incident plane wave
with intensity I = I0 � cos xt is split by the beam splitter BS
into two partial waves which circumvent the area A in

Mi

Mk

ST

Ml M2

M1

Mj

L.Q.

compensation plate

observation
telescope

Fig. 10.16 Schematic arrangement of the Michelson-Morley experi-
ment The mirrors M1 and M2 are adjustable to reflect the light beams
back into themselves

polished
surface

granite

wooden body

Circular trough 
filled with
mercury

concrete

foundation made
of bricks

rotation
axis

Fig. 10.17 Experimental realization of the rotatable interferometer
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opposite directions: One wave with intensity I1 traverses the
path BS-M3-M2-M1-BS clockwise, the other wave with
intensity I2 anticlockwise. Both waves are superimposed at
BS and reach the detector D. If the interferometer is at rest
(no rotation) both waves are in phase and interfere con-
structively. The total intensity is then I ¼ I1 þ I2 ¼ I0.

If the whole interferometer rotates, for instance clock-
wise, then the wave in clockwise direction has to pass a
longer way (the mirrors recede for this wave) than the
anticlockwise wave (the mirrors move against the wave).
Therefore a phase difference Du appears between the two
waves at BS and the total intensity at the detector D is now
for I1 ¼ I2 ¼ I0=2

IðDuÞ ¼ I1 þ I2 cosDu ¼ 1
2
I0ð1þ cosDuÞ;

where the phase difference

Du ¼ 8pA
c � kX cosH

depends on the area A, the angular rotation frequency X of
the interferometer, the wavelength k of the incident light and
the inclination angle H between rotation axis and the normal
of the area A.

From the measured fringe shift D ¼ Du=2p the phase
difference Δu and the rotation frequency X is obtained.

Using such a Cagnac interferometer with an enclosed area
A ¼ 207;836m2 Michelson and Gale have measured 1925
the earth rotation. They obtained an interference stripe shift
of Δ = 0.230 ) Du ¼ D � 2p rad = 1.45 rad, which gives a
rotation frequency X ¼ 7:42� 10�5 s�1 of the earth. The
correct value, obtained from the known rotation period of the
earth is D = 1.48 rad, which gives a relative error of 0.2%.
The inclination angle H = 0 for an interferometer with a
horizontal area A depends on the latitude 0 of the lab
location.

Nowadays Sagnac interferometers are used with lasers as
light sources (see Vol. 3) and optical fibers which circum-
vent many times the area A.

Example

With an area A = 1 m2 and an optical fiber which
circumvents the area A N = 105 times the effective
area is Aeff = 105 m. With stabilized lasers a phase
difference Δu = 10−4 rad can be still measured. This
allows a lower detection limit for the rotation fre-
quency with an uncertainty ΔX/X = 5 � 10−4.

For navigation purposes such a laser gyro consists of
three Sagnac interferometers with areas that are mounted
perpendicular to each other. Since the phase shift Δu
depends on the latitude 0 the position of a ship can be
determined if the longitude is measured by accurate time
measurements. However, nowadays the GPS navigation
system (see Vol. 1) has replaced most Sagnac systems
because it is more accurate and faster.

10.3.7 Mach-Zehnder Interferometer

In A Mach-Zehnder-interferometer the incident wave is split
by the beam splitter BS1 into two partial waves (Fig. 10.19).
One passes through a cell that contains a medium with
refractive index n and length L the other through open air. At
the beam splitter BS2 the two waves are again superimposed
and reach either the detector D1 or the detector D2. The
phase difference between the two waves depends on the path
difference

Ds ¼ Ds0 þ n� 1ð Þ � L
where Δs0 is the path difference for the empty cell (n = 1).

When the gas pressure p in the cell is continuously
changed, the path difference changes accordingly and the
measured interference intensity I(p) at the detectors D1 and
D2 allows the accurate determination of the refractive index
n(p). One just counts the interference maxima N = [n(p1) − n
(p2)] � L/k which appear when the pressure is altered from p1
to p2 where the phase difference changes by
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1M 2M
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2I

Fig. 10.18 Sagnac interferometer
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Fig. 10.19 Mach-Zehnder interferometer

10.3 Experimental Realization of Two-Beam Interference 295



Du ¼ 2p=kð Þ � L � n p1ð Þ � n p2ð Þ½ �
The phase difference at the detector D2 differs by

Δu0 = p than that at D1 because of the phase jump for the
reflection at the optically thicker medium BS2.

10.4 Multiple Beam Interference

Often interference phenomena are due to the superposition
of many partial waves. For instance, if the two surfaces of
the plane-parallel plate discussed in Sect. 10.3.3 are coated
with highly reflecting layers the incident wave can be
reflected many times between front surface and back surface
(Fig. 10.20). All transmitted as well as all reflected partial
waves can interfere.

We will now discuss this case in more detail, because it
plays an important role in modern optics and interferometry.
The discussion is similar to that in Sect. 10.3.3 but here the
decrease of the amplitudes of the partial waves has to be
taken into account.

When the incident plane wave

E ¼ A0 � eiðxt�krÞ

Falls under the angle a onto the plane parallel plate, the
amplitude Ai is split at both surfaces into a transmitted and a
reflected part.

The reflected part has the amplitude Ai �
ffiffiffi
R

p
, while the

transmitted part has the amplitude Ai �
ffiffiffiffiffiffiffiffiffiffiffiffi
1� R

p
), as long as

absorption can be neglected. From Fig. 10.20 we obtain the
following relations for the amounts of the amplitudes Ai of the
waves reflected at the upper surface, Bi of the waves refracted
at the upper surface, Ci of the waves reflected at the lower
surface and Di of the waves transmitted at the lower surface.

A1j j ¼
ffiffiffi
R

p
A0j j; B1j j ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1� R

p
A0j j;

C1j j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rð1� RÞ

p
A0j j; D1j j ¼ ð1� RÞ A0j j;

A2j j ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1� R

p
C1j j ¼ ð1� RÞ

ffiffiffi
R

p
A0j j;

B2j j ¼
ffiffiffi
R

p
C1j j ¼ R �

ffiffiffiffiffiffiffiffiffiffiffiffi
1� R

p
A0j j;

A3j j ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1� R

p
C2j j ¼ R3=2ð1� RÞ A0j j etc:

ð10:19Þ

The general expression for the amplitudes Ai with i > 1 is

Aiþ 1 ¼ R � Aij j ð10:20aÞ
And for the transmitted waves

Diþ 1 ¼ R � Dij j: ð10:20bÞ
As has been shown in Sect. 10.3.3 the optical path dif-

ference between consecutive reflected as well as transmitted
partial waves is

Ds ¼ 2d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � sin2 a

p
;

This results in a phase difference

Du ¼ 2pDs=kþ du

where du describes possible phase jumps on reflections at
the medium with higher refractive index.

In Sect. 8.4.8 it has been shown that du depends on the
direction of the electric vector E of the incident wave which
can be parallel or perpendicular to the plane of incidence.

For E⊥ the following statements apply

(a) Under reflection at the optically thicker medium is
du ¼ p

(b) Under reflection at the optically thinner medium is
du ¼ 0.

For E∥ applies:

(a) Under reflection at the optically thicker medium du ¼ 0
for all angles of incidence a\aB, but du ¼ p for
a[ aB, where aB is the Brewster angle with (tan
aB = n2/n1).

(b) Under reflection at the optically thinner medium is
du ¼ p for a\aB but du ¼ 0 for aB\a\ac where ac
is the critical angle of total reflection (sin ac = n2/n1).

For vertical incidence (a = 0) the distinction between E⊥

and E∥ disappears. There is always a phase jump du ¼ p
under reflection at the optically thicker medium and du ¼ 0
at the optically thinner medium.

As can be derived from Fig. 10.20 the phase difference
between the reflected waves Ai and Aiþ 1 (for i > 1) is for all
cases

Du ¼ 2pDs=k:

A1 A2 A3 A4

A0

B1 B2 B3 B4

C1 C2 C3

D1 D2 D3 D4

α

d

Fig. 10.20 Multiple beam interference at two plane-parallel flat
surfaces with reflectivity R and distance d
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Possible phase jumps under reflection influence the phase
difference only for the transitions A0 ! A1 and A1 ! A2.

For A1⊥ we get

A1? ¼
ffiffiffi
R

p
� A0 � eip ¼ �

ffiffiffi
R

p
A0; ð10:21aÞ

For A1∥ is

A1jj ¼ 	
ffiffiffi
R

p
� A0 ð10:21bÞ

where the sign depends on the condition a\aB (+sign) or
a[ aB (−sign).

The total amplitude of the reflected wave is the sum of all
reflected partial waves where the phases have to be taken
into account.

A ¼
Xp
m¼1

Ame
iðm�1ÞDu

¼ 	A0

ffiffiffi
R

p
� 1� ð1� RÞeiDu � Rð1� RÞe�2iDu � . . .
� �

¼ 	A0

ffiffiffi
R

p
� 1� ð1� RÞeiDu �

Xp�2

m¼0

RmeimDu
" #

:

ð10:22Þ
If the cross section of the plane parallel plate is suffi-

ciently large or the incidence angle a sufficiently small,
many partial waves can overlap and we can set p ! ∞.
The limit p ! ∞ of the geometrical series (10.22) is

A ¼ 	A0

ffiffiffi
R

p 1� eiDu

1� ReiDu
: ð10:23Þ

The intensity of the reflected wave is then

IR ¼ ce0AA
� ¼ I0 � R � 2� 2 cosDu

1þR2 � 2R cosDu
:

This can be written with 1� cos x ¼ 2sin2 x=2ð Þ as

IR ¼ I0 � 4R � sin2ðDu=2Þ
ð1� RÞ2 þ 4R � sin2ðDu=2Þ : ð10:24Þ

In a similar way one finds for the intensity of the trans-
mitted wave

IT ¼ I0 � ð1� RÞ2
ð1� RÞ2 þ 4R � sin2ðDu=2Þ : ð10:25Þ

From (10.24) and (10.25) we see that IR þ IT ¼ I0,
because we have neglected any absorption.

With the abbreviation

F ¼ 4R

ð1� RÞ2

We obtain from (10.24) and (10.25) the Airy Formulas
for the reflected and transmitted intensities

IR ¼ I0
F � sin2ðDu=2Þ

1þF sin2ðDu=2Þ : ð10:24aÞ

IT ¼ I0
1

1þF sin2ðDu=2Þ ; ð10:25aÞ

Since both intensities depend on the phase difference Δu
between consecutive partial waves it is of interest to find
experimental ways to alter Du. There are two ways to realize
this:

(a) By tuning the wavelength k for a fixed path difference
Ds ¼ k=2pð ÞDu

(b) By variation of Δs for a fixed wavelength k. This can be
realized with the interferometer of Fig. 10.21b which
consists of two plates each with one reflecting and one
anti-reflecting surface layer. The two reflecting surfaces
oppose each other and are carefully aligned to form a
parallel air space between them.

For the case (a) a solid plane parallel plate with reflecting
surfaces can be used (Fig. 10.21a). The incident light is
either monochromatic and the wavelength k is tuned, or a
light source emitting a spectral continuum that contains all
wavelengths between k1 and k2 is used. The interferometer
then filters those wavelengths km = Δs/m (m = 1; 2; 3; …)
that are fully transmitted. Using (10.8) we get

km ¼ Ds=m ¼ 2d=m �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � sin2a

p
:

If the incidentmonochromatic light is divergent a system of
bright rings appears for the transmitted light, where all angles
a give maximum transmission for which (10.8) is fulfilled.

Reflection
layers

Reflection
layers

d

d

nd

fused silica

Anti-reflection
layers

(b)

α

(a)

Fig. 10.21 Fabry-Perot interferometer. a) Etalon with reflecting
coatings on both sides, b) two plates with reflecting surfaces on one
side and anti-reflecting coatings on the other sides
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For illustration Fig. 10.22 shows the transmission T(Δu)
for different values of the reflectivity R of each surface. This
diagram shows that the transmission becomes T = 1 for
Δu = 2m � p. This means that all incident light is transmit-
ted. For Δu = (2m + 1)p the transmission becomes mini-
mum and therefore the reflection maximum.

The full half width e of the transmission peaks I(Δu) in
Fig. 10.22, i.e. the phase difference e = Δu1 − Δu2 with
IT(Δu1) = IT(Δu2) = I0/2 can be obtained from (10.25a) as

e ¼ 4 arcsin
p

1=Fð Þ
For sufficient small values of F (narrow transmission

maxima of IT Duð Þ this becomes

e ¼ 4ffiffiffiffi
F

p ¼ 2ð1� RÞffiffiffi
R

p : ð10:26aÞ

The full half width e is the smaller the larger the reflec-
tivity R is.

As has been mentioned before a plane parallel plate with
thickness d and refractive index n acts as a spectral filter. For
vertical incidence (a = 0) the wavelengths km ¼ 2nd=m
have their maximum of transmission, while the wavelengths
kp = 4n � d/(2p + 1) are maximal reflected.

The relative spectral half width of the transmitted inten-
sity is with

Du ¼ e ¼ 2pDs
k

� 2pDs
kþDk

¼ 2pDs
Dk

k � ðkþDkÞ � 2p � mkDk
k2

Dk
k

¼ e
2p � m ¼ 1� R

p � m � ffiffiffi
R

p

ð10:26bÞ

It depends on the reflectivity R of the surfaces and on the
interference order m. With k ¼ c=m ! dk=dv ¼ � c=m2ð Þdv
we obtain the relations

dk=k ¼ �dv=v ð10:26cÞ

Examples

1. R ¼ 0:55 ) e ¼ 1:2 � 0:2 � 2p ) Dk ¼ 0:19 � km=m.
For d = 1 cm and n = 1.5, k = 500 nm ) m = 6 �

104 ) Δk/k = 3.15 � 10−6.
2. R ¼ 0:9 ) e ¼ 0:21 � 0:03 � 2p ) Dk ¼ 0:03 � km=m

) Δk/km = 5 � 10−7.
This illustrates the large influence of the reflectivity

on the half width of the transmission maxima.

10.4.1 Fabry-Perot-Interferometer

The multiple beam interference was already used in 1897 by
the French Scientists Charles Fabry and Alfred Perot for the
realization of high resolution interferometers, which have
found increasing importance in modern optics and laser
physics [6]. These Fabry-Perot-Interferometers (FPI) can
be either a single plane parallel plate of optical glass or fused
quartz with reflecting surfaces (Fig. 10.21a), or two plates
which are coated only on one side. The coated sides of the
two plates oppose each other and are carefully aligned to
form a plane parallel air gap between them (Fig. 10.21b). In
order to avoid reflections at the back sides of the plates they
are either slightly wedge-shaped or the back sides are coated
with an anti-reflection layer (see Sect. 10.4.3).

0,5

1

2m 2(m+1) ·

1 + c/(2nd)1

R 0,83

R 0,55

F* = 1

F* = 5,2

F* = 7

F* = 50

IT /I 0

R 0,1

R = 0,94 R= 0,94

Fig. 10.22 Transmission T ¼ IT=I0 of a plane-parallel plate for
vertical incidence as a function of the phase difference of the interfering
partial waves for different reflectivities
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(b)
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λ=δλ

nd2
c=δν
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mν 1m+ν ν

λ
m 1m+λλ

Fig. 10.23 Transmission of parallel incident light through a FPI. a)
Experimental arrangement, b) transmitted intensity I(m)
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We will illustrate the application of the FPI by two
examples:

The light of a nearly point like source in the focal plane of
a lens L1 (Fig. 10.23) passes as parallel beam through the
FPI and is imaged by a second lens L2 onto the detector. The
transmitted intensity IT(Δu) depends for vertical incidence
(a = 0) on the phase difference

Du ¼ ð2p=kÞ � Ds ¼ ð4p=kÞn � d

Ds ¼ m � km ) km ¼ 2nd
m

ð10:27Þ
In Fig. 10.23 the transmitted intensity I(k) resp. I(m) is

plotted. One sees that the function I(m) is periodic with the period

dv ¼ vmþ 1 � vm ¼ c=2nd ð10:28aÞ
In terms of the wavelength k this becomes

dk ¼ km � kmþ 1 ¼ 2nd
m

� 2nd
mþ 1

¼ 2nd
mðmþ 1Þ ¼

km
mþ 1

;
ð10:28bÞ

The distance dk resp. dm between two successive trans-
mission maxima is called the free spectral range of the
interferometer.

The full half width Dm ¼ m1 � m2 of the transmission
maxima with the peak IT vmð Þ is defined by

IT m1ð Þ ¼ IT m2ð Þ¼1=2 � IT mmð Þ
Inserting this into (10.25) we get

Dm ¼ 2
p
dvffiffiffiffi
F

p ¼ c

2nd
1� R

p
ffiffiffi
R

p : ð10:29Þ

The ratio of free spectral range dm to the full half width Dm

F� ¼ dm
Dm

¼ p � ffiffiffi
R

p

1� R
ð10:30Þ

is called the finesse of the interferometer. It is a measure of
the number of interfering transmitted or reflected partial waves.

This can be seen as follows:
The width of the transmission maxima is determined by

the number p of interfering partial waves. If Δs is the path
difference between consecutive interfering beams then the
free spectral range is

Dm ¼ c

Ds
:

The path difference between the first and the p-th beam is
then p � Ds and the half width of the maxima is

Dm ¼ c

p � Ds

The finesse F* is then

F� ¼ dm
Dv

¼ p:

The half width Dm ¼ dm=F� of the transmission max-
ima of the interferometer is the ratio of free spectral
range and finesse F�.

Example

R ¼ 0:98 ) F� � 155. This means 155 partial waves
interfere with each other. With an optical thickness
n � d = 3 cm) dm = c/(2n � d) = 5 � 109 s−1 ) Dm =
dm/F* = 3.2 � 107 s−1 = 32 MHz.

Remark The considerations above have anticipated that the
reflecting surfaces are ideal planes, which are aligned exactly
plane parallel. In reality the surfaces deviates from ideal
planes and show small surface irregularities and micro
roughness. With the maximum distortion 2p=q of the phase
front of a wave after reflection by the surface the flatness of the
surface is defined as k=q. After p transits with p reflections the
maximum deviation of the phase front from an ideal plane is

Du ¼ p=qð Þ � 2p
For p ¼ q=2 the phase difference between the first and the
pth partial wave has increased to Du = p. This partial wave
experiences therefore destructive instead of constructive
interference which diminishes the reflected intensity.

Furthermore any misalignment that causes a deviation
from the exact plane-parallel position of the two reflecting
surfaces causes a variation of the phase difference across the
beam diameter. This results in a decrease of the number p of
transits with constructive interference and causes a reduction
of the finesse F*. Also diffraction effects at the edges of the
beam result in a deviation of the phase front from an ideal
plane and cause a reduction of the finesse.

The total finesse Ft
* of a Fabry-Perot interferometer is

therefore smaller than the reflectivity finesse F* defined in
(10.30). It is defined as

1
F�
g
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

1
F�
i

� �2
s

; ð10:31Þ

where the different summands in the square root describe the
influence of surface defects, misalignment and diffraction on
the spectral width of the transmission maxima. It is therefore
useless to increase the reflectivity above a limit which is set by
all other effects that decrease the total finesse. It turns out that
the optimum choice of the reflectivity R is reached for p ¼ q.
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Generally the illumination of the FPI is not realized by a
point-like source but by an extended light source. We regard
in Fig. 10.24 a FPI with a plane parallel air gap (refractive
index n � 1) which is illuminated by an extended light
source LS in the focal plane z ¼ z0 ¼ f1 of the lens L1 per-
pendicular to the symmetry axis z. Light emitted by a point
Q of the light source passes through the FPI as parallel light
beam under the angle a against the z-axis. Only for those
angles ap p ¼ 1; 2; 3. . .ð Þ maximum transmission occurs
which fulfill the condition

Ds ¼ 2d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � sin2 ap

q
¼ 2d cos ap

¼ m � k
ð10:32Þ

with m = integer. For a monochromatic light source the
transmitted light therefore shows a pattern of concentric
bright rings (Fig. 10.25). The acuity of the rings depends on
the total finesse F�

t of the FPI.
When the parallel light passing through the FPI is imaged

by a second lens L2 with focal length f2 onto the observation
plane B the diameters Dp of the rings are

Dp ¼ 2f2 � tan ap � 2f2 � ap: ð10:33Þ
The diameter D ¼ D0 of the smallest ring obeys the

condition (10.32) for m = m0. For this ring is a 
 1 and we

can approximate cos a � 1� a2=2. We then obtain the
condition (10.23) for constructive interference

2dð1� a2p=2Þ ¼ mp � k ¼ ðm0 � pÞk

) 2d ¼ m0 þ da20
k

� �
k ¼ ðm0 þ eÞk:

ð10:34Þ

the quantity e ¼ da20=k\1 is the excess of the FPI.
For a0 ¼ 0 is e ¼ 0. In this case an integer number of half

wavelengths fits between the two parallel reflecting surfaces,
i.e. m0 � k=2 ¼ n � d.

For a0 6¼ 0 the quantity e gives the excess e ¼ d= k=2ð Þ � m0

of the optical distance d between the two surfaces in units of
k/2 over the integer m0. This means that the rings appear for
plate separations that are non-integer multiples of k/2.

For the squares D2
p of the ring diameters Dp we get from

(10.34)

D2
p ¼

4f 22 � k
d

ðpþ eÞ: ð10:35Þ

Plotting the squared ring diameters D2
p against the ring

number p allows the determination of k from the slope of the
straight line Dp

2(p), if the plate separation d is known
(Fig. 10.26). The intercept with the axis p = 0 gives the
excess e. The distance d can be obtained when the ring
diameters are measured with a known calibration wave-
length kc.

10.4.2 Dielectric Mirrors

With metal mirrors (surfaces covered with metal layers such as
aluminum, silver or gold) themaximum reflectivity isR ¼ 0:95.
In reality generally only R ¼ 0:90 is reached. The reason for
this upper limit is the high absorbance of metals in the visible
range. The reflectivity is mainly determined by the imaginary
part of the complex refractive index (see Sect. 8.4.9).

This limited reflectivity of metal mirrors is for many
applications not sufficient. For example laser mirrors gen-
erally demand a reflectivity of R > 0.98 (see Vol. 3).
A higher reflectivity up to R = 0.999 can be achieved by

Q

d
B

Q'

1f 2f

1L 2LFPI

α α

λ⋅=α mcosd2 p

Fig. 10.24 Formation of a ring system behind the FPI under
illumination by an extended light source

1D
0

)p(
d

f4
D

2
22

p ε+λ⋅=

Fig. 10.25 Ring system of the transmitted light through a plane FPI
emitted by an extended light source
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2
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d
f4
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2
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2
2

Fig. 10.26 Determination of the wavelength k from the slope and the
intercept of the straight line D2

p pð Þ, plotting the square of the ring
diameters against the ring number p
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constructive interference between the partial waves reflected
by many thin dielectric layers with different refractive indi-
ces, but small absorbance (Fig. 10.27). In order to achieve
maximum reflectance R all partial waves, reflected by the
different layers must be in phase. This will be illustrated by
the example of vertical incidence (a = 0) onto a dielectric
mirror with two layers and zero absorbance (Fig. 10.28). For
this case a phase jump Du = p occurs under reflection at the
optical thicker medium, whereas no phase jump appears for
the reflection at the optically thinner medium.

If the refractive indices follow the sequence nair < n1 >
n2 > n3 the incident light suffers a phase jump only for the
reflection at the upper surface.

Constructive interference is obtained if the optical thick-
ness of the upper layer is n1 � d1 = k/4 and n2 � d2 = k(2).

The reflectivity of the three interfaces are

R1 ¼ n1 � 1
n1 þ 1

� �2

; R2 ¼ n1 � n2
n1 þ n2

� �2

;

R3 ¼ n2 � n3
n2 þ n3

� �2

:

ð10:36aÞ

The total reflected amplitude is then

AR ¼ A1 þA2 þA3

¼ A0
ffiffiffiffiffi
R1

p þðA0 � A1Þ
ffiffiffiffiffi
R2

p

þðA0 � A1 � A2Þ
ffiffiffiffiffi
R3

p
:

ð10:36bÞ

The reflected intensity is with the amplitudes

A2 ¼ A0ð
ffiffiffiffiffi
R2

p � ffiffiffiffiffiffiffiffiffiffi
R1R2

p Þ
A3 ¼ A0ð

ffiffiffiffiffi
R2

p � ffiffiffiffiffiffiffiffiffiffi
R1R3

p � ffiffiffiffiffiffiffiffiffiffi
R2R3

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R1R2R3

p Þ ð10:36cÞ

IR ¼ e0 � c
X3
p¼1

Ap

					
					
2

¼ e0 � cA2
0

ffiffiffiffiffi
R1

p� ð1� ffiffiffiffiffi
R2

p � ffiffiffiffiffi
R3

p Þ

þ ffiffiffiffiffi
R2

p ð2� ffiffiffiffiffi
R3

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R1

ffiffiffiffiffi
R3

pq
Þ

2

ð10:36dÞ

and the reflectivity is R ¼ IR= e0 � cA2
0

� �
Nowadays it is possible the reach values of R > 0.999 for

a selected wavelength k with 15–20 layers [7]. Figure 10.29
shows the reflection curve R(k) of a dielectric mirror with 12
layers.

As material for layers with a low refractive index
MgF2 n ¼ 1:38ð Þ or SiO2 n ¼ 1:46ð Þ are, for instance, cho-
sen, while the layers with high values of n consist, for
example, of titanium oxide TiO2 n ¼ 2:4ð Þ .

For multilayer dielectric mirrors the amplitudes of the
reflected partial waves are

Substrate

n1

n2

n3

n1

n2

n1

n2

Fig. 10.27 Dielectric mirror with glass substrate and many thin
dielectric layers with small absorption and alternating different
refractive indices n1 and n2. The thickness of the layers is exaggerated.
It is in reality only about 1 lm
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Fig. 10.28 Superposition of the reflected partial waves for a dielectric
two-layer mirror with n1 [ n2 [ n3

R

1,0

0,8

0,6

0,4

8

7

5

4

3

2

1

%

T

R = 0,995

500 600 700 λ/nm

6

Fig. 10.29 Reflectivity R kð Þ of a dielectric multilayer mirror
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A1j j ¼ ffiffiffiffiffi
R1

p
A0j j;

A2j j ¼ ð1� R1Þ
ffiffiffiffiffi
R2

p
A0j j;

A3j j ¼ ð1� R1Þ
ffiffiffiffiffi
R2

p
A0j j;

A4j j ¼ ð1� R1ÞR3=2
2 R1 A0j j;

A5j j ¼ ð1� R1ÞR2
2R

3=2
2 A0j j etc:

ð10:36eÞ

The intensities are proportional to the squares of the
amplitudes.

The exact calculation of the reflectivity R(k) = IR(k)/I0 of
multilayer dielectric mirrors and the selection of the different
layers demands sophisticated computer programs [7, 8].

10.4.3 Anti-reflection Coating

In order to minimize the often disturbing and unwanted
reflections at glass surfaces (for instance at eye glasses or at
the lenses of a camera objective) the surfaces of the lenses
are covered with a thin layer that suppresses reflection by
destructive interference (Fig. 10.30a). The phase difference
between the two partial waves reflected by the two interfaces
must be Du = (2m + 1) � p. We will restrict the discussion
to vertical incidence (a = 0).

Part of the incident wave is reflected at the interface air
(n = 1) − antireflection layer (n1 > 1). It suffers a phase
jump of p. The transmitted part is partly reflected at the
second interface layer-glass.

The amplitudes of the reflected partial waves for a
two-layer antireflection coating (Fig. 10.30b) can be calcu-
lated similar to (10.36e). The difference is only that here
destructive instead of constructive interference is optimized.
One obtains for the amplitudes of the partial waves reflected
by the 4 interfaces

jA1j ¼
ffiffiffiffiffi
R1

p jA0j ;
jA2j ¼ð1� R1Þ

ffiffiffiffiffi
R2

p jA0j ;
jA3j ¼ð1� R1ÞR2

ffiffiffiffiffi
R1

p jA0j ;
jA4j ¼ð1� R1ÞR3=2

2 R1jA0j ;
jA5j ¼ð1� R1ÞR2

2R
3=2
1 jA0j etc.

ð10:36fÞ

For a one-layer antireflection coating only three reflected
partial waves must be considered. Complete extinction of the
total reflected amplitude is obtained if

n2 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nLuft � n3p

� 1:225 for n3 ¼ 1:5
ð10:37aÞ

The optical thickness of the layer is then (see Problem
10.12)

d ¼ ð2mþ 1Þ
4

k0
n2

with m ¼ 0; 1; 2; . . . ð10:37bÞ

For the single layer a complete suppression of the reflected
wave (IR(k0) = 0) can be obtained only for a selected wave-
length k0 (Fig. 10.31). Using several layer the reflection can
be minimized for a broader spectral range. With a two-layer
antireflection coating for instance the residual reflected
intensity is below 1% over the whole visible range, compared
with 4% for an uncoated glass surface.

10.4.4 Applications of Interferometers

An important technical application field is the accurate mea-
surement of distances and lengths. Since here phase differ-
ences between the partial waves reflected by the two ends of a
measured distance can be determined, the uncertainty of the
length measurement is only a small fraction of the visible
wavelength. One example is the Michelson interferometer in
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n1

/4
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/2
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n4
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n3 > n2 > n1

n4 > n3 < n2 > n1

n3
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(1 – R1)R2I0

IR = 0
I0(a) (b)

Fig. 10.30 Anti-reflection coating. a) Single layer, b) two layers
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Fig. 10.31 Residual reflectivity R(k) for a single anti-reflection layer
(curve 1) compared with a an uncoated glass surface with n = 1.5. The
curve 2 represents a two-layer broad band anti-reflection coating, curve
3 a three layer coating
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Fig. 10.10. When the mirror M2 moves by the length Ds ¼
mþ eð Þ � k with e\1 one observes 2(m + e) interference
maxima in the observation plane B. For a sufficient high
signal-to-noise ratio the excess e can be determined by inter-
polation within 0.01 � e. This allows the determination of the
length within k/100. This interferometric measurement is
utilized for the control of the movement of machine tools in
three dimensions (Fig. 10.32) where three interferometer
arms are necessary for the very accurate control of the
three-dimensional motion of the machine with an accuracy of
better than 50 nm.

This precision is necessary for the production of wavers for
integrated circuits. Since the waver has to be precisely posi-
tioned at the same position within 50 nm after each process
step, this can be only achieved with interferometric methods.

Another example is the inspection of surfaces in order to
determine local deviations from the ideal surface. The mea-
surement principle illustrated in Fig. 10.33 uses a Michelson
interferometer. The inspected surface is illuminated by an
expanded laser beam. The light reflected by the slightly tilted
surface is superimposed at the beam splitter BS with a refer-
ence beam in the second arm of the interferometer. An ideal
plane would produce straight parallel stripes in the observa-
tion plane B with a distance D ¼ k=2 � sinð2aÞ where a is the
tilt angle. Any deviation from the ideal plane appears as
distortion of the interference stripes. The degree of distortion
is a measure of the geometrical magnitude of the deviation
and the number of the distorted stripe gives information about
the location of the deviation on the surface.

This method is applied for the inspection of extremely flat
or spherical mirrors where deviations of less than k/100 are
demanded.

Another example is the measurements of local variations
of the refractive index n(x, y), which can be determined with
a Mach-Zehnder interferometer (Fig. 10.34a). Such local
variations in air are for instance produced by the temperature
gradient above a candle flame. The interference stripes are
deformed in this region (Fig. 10.34b). The degree of
deformation allow the determination of the local temperature
profile. For further examples see [9].

CCD-plane

test surface

flat mirror

incident

plane wave

Bs

2α

Fig. 10.33 Measurement of small deviations from a nearly plane
surface, using a Michelson interferometer. In the plane of the
CCD-detector an interference stripe pattern occurs which is deformed
by any deviation of the test surface from an ideal plane

Observation plane

Laser

2L

2B 2M

1B 1M

1L

(a) (b)

Fig. 10.34 Measurement of local variations of the refractive index n. a) Mach Zehnder interferometer, b) variation of n x; yð Þ above a candle flame
visible by the distortion of the interference fringes
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Fig. 10.32 Principle of an interferometric controlled machine tool
movable in three directions. The work piece is moved within the x-y-
plane. The tool is moved in the z-direction
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10.5 Diffraction

When a light beam passes through apertures or along edges
of transparent media part of the light is diffracted out of its
original propagation direction. Light is then observed in
directions that are not allowed in geometrical optics. This
phenomenon is called diffraction.

10.5.1 Diffraction as Interference Phenomenon

We regard in Fig. 10.35 N oscillators that are regularly
located with the mutual distance d on the x-axis. They are
induced to oscillations by a plane wave propagating into the
z-direction. These induced oscillators radiate secondary
waves which are in the plane z ¼ z0 all in phase. When
calculating the total amplitude of all waves emitted into the
direction h by the N oscillators on the x-axis we have to take
into account the different path lengths for the partial waves
which differ by Ds ¼ d � sin h between waves from adjacent
oscillators. If the amplitudes of all partial waves are equal
(Ai = A) we get the phase difference

Du ¼ 2p
k
Ds ¼ 2p

k
d � sin h ð10:38aÞ

where we have set the phase of the first wave u1 = 0. The
sum of the different contributions assuming the same
amplitude gives the total amplitude is

E ¼ A:
XN
j¼1

eiðxtþujÞ ¼ A � eixt
XN
j¼1

ei�ðj�1ÞDu; ð10:38bÞ

The sum of the geometrical series is

XN
j¼1

eiðj�1ÞDu ¼ eiNDu � 1
eiDu � 1

¼ ei
N�1
2 Du � e

iN2Du � e�iN2Du � 1

eiDu=2 � e�iDu=2

¼ ei
N�1
2 Du � sin ðN=2ÞDu½ �

sinðDu=2Þ :

ð10:39Þ

The intensity I ¼ ce0 Ej j2 of the total wave in the direction
h is then with (10.38a)

IðhÞ ¼ I0 � sin
2 Npðd=pÞ sin h½ �

sin2 pðd=pÞ sin h½ � ; ð10:40Þ

The shape of the function I(h) depends strongly on the
ratio d=k .

For d\k the function I hð Þ has only one maximum for
h ¼ 0 and decreases to zero for increasing values of h (see
Vol. 1, Sect. 11.11). For small values of h we can approx-
imate sin h � h. For d\k and sin h 
 1 is also
pðd=kÞ sin h 
 1 and we can reduce (10.40) to

I hð Þ ¼ N2I0 � sin
2 x

x2
ð10:41Þ

with x ¼ Np d=kð Þ sin h. The function sin x=xð Þ2 is plotted in
Fig. 10.36. This illustrates that the function has higher val-
ues only in the range −p < x < + p (k/(N � d) < sin h < +
/(N � d)) of the central maximum. The area of this central
intensity maximum

Zþ p

�p

sin2 x
x2

dx � 0:9 �
Zþ1

�1

sin2 x
x2

dx ð10:42Þ

contains already about 90% of the total intensity diffracted
into all directions h.

When the width D ¼ N � d of the oscillator arrangement
is large compared to the wavelength (D � k) it follows for
the range ∣x∣ < p the angular range ∣sin h∣ 
 x/p < 1. This
means that the diffracted intensity has noticeable values only
in a very narrow angular range Dhj j ¼ k= N � dð Þ\\1
around h ¼ 0.

θ
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θ

Phase fronts of
wave in θ-direction

eye lens
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Phase front
of incident wave
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→

Fig. 10.35 Illustration of Eq. (10.40)
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Fig. 10.36 The function sin2 x=x2
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Example

D = 1 cm, k = 500 nm ) sin h < 5 � 10−7/10−2 =
5 � 10−5. The central intensity maximum has an
angular width of Dh < 0.003°.

This result illustrates the following astonishing fact:
Although each single oscillator radiates its intensity
into all directions −p < h < +p, the superposition of
the radiation from many regularly spaced oscillators
with a distance d\k leads to a total radiation intensity
that is essentially emitted in forward direction within
the narrow angular range h ¼ 0	 Dh with Dh =
k/(N � d) 
 1 which depends on the total width
N � d of the oscillator arrangement.

The angular width of the central intensity maximum
between the maximum of sin2 x/x2 at x = 0 and the zero
points at x ¼ p ) Dh ¼ k= N � dð Þ ¼ k=D:

For D ! 1 ) Dh ! 0 (Fig. 10.37).
The propagation of the waves in directions h 6¼ 0 is called

diffraction. We see from the above considerations that
diffraction can be explained by interference of many partial
waves. It comes about because of the finite extension of
the oscillators or the limiting cross section of the incident
wave.

Note The coherent superposition of N equal amplitudes Ai

of the partial waves emitted by N oscillators is
At = RAi = N � A. The total intensity is, however, It = c �

0 � (RAi)
2 = c � e0 N2 � A2 = N2 � I0. This means that

N oscillators, coherently excited, do not have the total
intensity N � I0 (as one might suggest at first sight) but
N2 � I0.

10.5.2 Diffraction by a Slit

When we apply the above considerations to the propagation
of a plane wave through a slit with width b we have to take
into account the following:

Each point within the slit is a source of a spherical wave,
because the electric and the magnetic field of the incident
wave change with time in P and are therefore according to
the Maxwell equations even in vacuum the origin of new
electromagnetic waves. These secondary waves superimpose
(Huygens principle see Vol. 1, Sect. 11.11).

If we replace each oscillator by a line segment
Db (Fig. 10.38) with continuously distributed emitters, the
slit contains N ¼ b=Db emitting line segments. Their ampli-
tude is A ¼ N � A0 � Db=b. Instead of (10.40) we then obtain

I hð Þ ¼ N2I0
Db2

b

� �
sin2 pðb=pÞ sin h½ �
sin2 pðDb=pÞ sin h½ � ; ð10:43Þ

where I0 is the intensity emitted by one emitter line segment.
With the abbreviation x ¼ p � b=kð Þ � sin h and Db ¼ b=N
this becomes

I hð Þ ¼ I0 � sin2 x

sin2ðx=NÞ : ð10:44Þ
Now we consider the limit N ! ∞, i.e. Db ! 0 )

sin2 (x/N) ! x2/N2. This implies a continuous spatial
intensity distribution. The total intensity, transmitted by the
slit is Is = N2I0, which can be written as

lim
N!1

I hð Þ ¼ N2I0 � sin
2 x

x2
¼ IS � sin

2 x

x2
: ð10:45Þ

I( )θ
N  I2

0

sin θ

2 /(N·d)λ

–0,01 0 0,01 0,02

Fig. 10.37 The scattered intensity I(h) for d < k and D = N � d =
100 k. The width between the two closest zero point on both sides of
I(h) is Dh = 2k/(N � d)

P2Δb P3P1

b

Fig. 10.38 Diffraction at a slit
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because
R
(sin2 x/x2)dx = 1.

This function, which has been shown already in
Fig. 10.36, is again illustrated in Fig. 10.39 as a function of
the diffraction angle h. Most of the light propagates straight
on h ¼ 0ð Þ. The intensity I hð Þ becomes zero for sin h ¼ k=b
but has many more maxima for sin h[ k=b which become
smaller and smaller with increasing h. This can be vividly
understood by Fig. 10.40. For sin h ¼ k=b the path differ-
ence between the edges of the transmitted light beam is just
Dsm ¼ k. We can divide the beam into two halves. To each
partial light beam in the first half exists a partial beam in the
second half with a path difference of k/2. All these corre-
sponding partial waves therefore suffer destructive interfer-
ence and cancel each other. Therefore zero intensity appears
for Dsm = d � sin h = k.

For Dsm = (3/2)k we divide the total wave into three sec-
tions. Two of these sections cancel each other while the third
section is left over. This corresponds to the first sidemaximum
of I(h). The central maximum contains 90% of the total
transmitted intensity, independent of the ratio k/b (see 10.42).

In Fig. 10.39 the intensity distribution I(h) is plotted for
different ratios k/b. For b � k the central maximum of I hð Þ
becomes very narrow, i.e., the angular full width Dh ¼ 2k=b
between the two zero points becomes small. The transmitted
light propagates essentially straight on.

Example

b ¼ 1000k ) Dh ¼ 2� 10�3 rad ¼ 0:11:

Note, however, that in spite of this small diffraction
angle the light beam is slightly divergent and its
diameter increases with increasing distance from the
slit. For k = 500 nm and a slit width of b = 0.5 mm at
a distance d behind the slit the beam diameter has
increased to b + d � Dh. This gives for d = 10 m and
Dh = 2 � 10−3 rad a diameter of 20.5 mm. The
diffraction has caused an increase of the beam diam-
eter by a factor of 41!

For b� k no minimum of I hð Þ exists because it should
occur for sin h = k/b and ∣sin h∣ � 1 cannot be larger than 1.
In this case the central maximum is spread out over the
whole half space behind the slit. Therefore one cannot see any
diffraction pattern, but a monotonically decreasing intensity
I hð Þ in the angular range 0 � h � p/2.

The angular intensity distribution I(h) of a monochro-
matic wave with wavelength k, transmitted through a slit
with width b depends on the ratio k=b. For k=b 
 1 a
central diffraction maximum appears with an angular width
Dh ¼ 2k=b between the two zero points and furthermore
small side maxima at hm ¼ 	 2mþ 1ð Þk=2b. For k=b[ 1
the intensity of the central maximum is spread out over the
whole angular range hj j � 90.

When passing through a circular aperture with radius
R the diffracted intensity distribution I hð Þ has to show
rotational symmetry around the symmetry axis of the aper-
ture (Fig. 10.41). The more complex calculation [10] gives
instead of (10.43) the distribution

I hð Þ ¼ I0 � 2J1ðxÞ
x

� �2

ð10:46Þ

with

x ¼ 2pR
k

� sin h;

where J1 xð Þ is the first order Bessel-function. The distribu-
tion (1.46) has zero points at x1 ¼ 1:22p, x2 ¼ 2:16p; . . .;
The first zero point of I hð Þ therefore appears at
sin h1 ¼ 0:61k=R. The position of the side maxima and their
intensities are:

π/40 θπ/2

b = 0,2 λ

b >> λ

b = 5λ

b = λ ·   2

I(θ)
b → 0

Fig. 10.39 Angular intensity distribution of light diffracted by a slit
for different ratios k/b of wavelength k to slitwidth b

b

Δs

Δsik =

θ

θ

Δs = b · sin θ

ki

1/2 b · sin θ

= 1/2 λ für sin θ = λ/b

Fig. 10.40 Illustration of the intensity minimum for sin h = k/b
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IM1 ¼ 0:0175I0 at sin hM1 ¼ 0:815k=R;
IM2 ¼ 0:00415I0 at sin hM2 ¼ 1:32k=R;
IM3 ¼ 0:0016I0 at sin hM3 ¼ 1:85k=R:

Note Diffraction phenomena not only appear when a light
beam passes through a limiting aperture, but also when a
light wave is reflected by a mirror with limited cross section
(Fig. 10.42). The intensity pattern of light reflected by a
circular mirror with diameter 2R equals exactly that of light
passing through a circular aperture with radius R (see
Sect. 10.7.5).

10.5.3 Diffraction Gratings

When a plane wave incides onto an arrangement of N par-
allel slits in the plane z = 0 (diffraction grating
Fig. 10.43) the intensity distribution I hð Þ is determined by
two factors:

• The interference between the light beams through the
different slits. This distribution corresponds exactly to
the coherent emission of N oscillators treated in
Sect. 10.5.1, resulting in the intensity distribution
(10.40).

• the intensity distribution (10.43), due to the diffraction
by each slit.

With the slit width b and the distance d between adjacent
slits we get, according to (10.43) and (10.40) the angular
intensity distribution

I hð Þ ¼ IS � sin
2 pðb=kÞ sin h½ �
pðb=kÞ sin h½ �2

� sin
2 Npðd=kÞ sin h½ �

sin2 pðd=kÞ sin h½ �2 ;

ð10:47Þ

where h is the angle against the z-axis and Is is the intensity
transmitted by each slit. The first factor describes the
diffraction by a single slit and the second factor the inter-
ference between the light transmitted by N slits.

Maxima of I hð Þ appear for those directions h for which
the path difference between adjacent slits

Ds ¼ d � sin h ¼ m � k ð10:48Þ
becomes an integer multiple m of the wavelength k. The
intensity of these maxima depends on the diffraction distri-
bution of the single slits, i.e. on the first factor in (10.48).
The diffraction ensures that altogether the transmitted
intensity reaches the angular range h[ 0. The larger the slit

Fig. 10.41 Diffracted ring system observed when a parallel light
passes through a circular aperture. (from: M. Cagnac, M. Francon, J.C.
Thrier: Atlas optischer Erscheinungen Springer Berlin Göttingen 1962)

Itrans

b

m

Irefl

sin m = /bI( ) m

b

Fig. 10.42 Equivalent diffraction patterns for the diffraction at an
aperture or a mirror with equal width b

Δs = d· sin θ

z = 0
d b

θ
θ

Fig. 10.43 Diffraction grating with N parallel slits, which is illumi-
nated perpendicular by a plane wave
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width b is, the smaller is the angular range h which can be
reached by the diffracted light.

In Fig. 10.44 is as example the distribution I hð Þ for a
diffraction grating with 8 slits and a ratio d/b = 2 illustrated.

The different maxima are called diffraction maxima of
mth-order (a better name would be interference maxima).
As can be seen from (10.48) the maximum order is (because
of sin h\1)

mmax ¼ d=k;

It is determined by the ratio of slit distance d and
wavelength k. The principal maxima occur, when the
denominator of the second factor in (10.47) becomes zero
(the nominator becomes then also zero and the value of the
fraction can be obtained by the rule of de l’Hopital, which
gives N2 for the second factor in (10.47). The intensity of the
principal maxima is determined by the diffraction distribu-
tion described by the first factor (dashed curve in
Fig. 10.44).

Between the principal maxima N � 2 side maxima occur
at such angles hp, for which the nominator of the second
factor becomes 1 and the denominator is 6¼ 0. On gets

sin hp ¼ ð2pþ 1Þk
2N � d ðp ¼ 1; 2; . . .;N � 2Þ:

The magnitude I(hp) of these side maxima can be
obtained from the second factor in (10.47). The result is

IðhpÞ ¼ I0
N2

1

sin2 ð2pþ 1Þp=ð2NÞ½ � ;

For odd values of N the intensity of the mid side maxi-
mum at ðp ¼ N � 1ð Þ=2Þ becomes I ¼ I0=N2. For suffi-
ciently large values of N these side maxima are therefore
negligible. For example, in modern optical diffraction grat-
ings is N = 105 which gives

I ¼ 10�10 � I0:

Figure 10.44 illustrates that the intensity of the principal
diffraction maxima ofmth order depends on the angular width
of the diffraction intensity. The slit width b must be therefore
sufficiently small in order to diffract sufficient intensity at least
into the first order interference maximum.

Diffraction gratings play an important role in spec-
troscopy for the measurement of optical wavelengths. For a
sufficiently high spectral resolution one needs gratings with
N = 105. For a grating with total width D = 10 cm this
implies a slit distance of 1 lm. Such gratings are difficult to
produce as transmission gratings. Therefore reflection grat-
ings are generally used which are produced by carving
grooves into a plane glass or quartz surface. Nowadays such
gratings are often produced [11] by holographic techniques
(see Sect. 12.4).

In order to describe the situation for the reflection, the
diffraction and interference we introduce two different nor-
mal vectors (Fig. 10.45):

• The grating normal, which is perpendicular to the
grating surface

• the groove normal which is perpendicular to the
inclined groove surface

When a plane wave incides under the angle a against the
grating normal the path difference between the light beams
reflected by two adjacent grooves into the direction ß against
the grating normal is

Ds ¼ D1 � D2 ¼ dðsin a� sinbÞ; ð10:49aÞ
if the diffraction angle b is on the opposite side of the grating
normal as the incident angle a (Fig. 10.45a). If a and b are
on the same side of the grating normal we get

Ds ¼ D1 þD2 ¼ dðsin aþ sin bÞ: ð10:49bÞ
In order to describe the two cases by the same formula,

the following convention is introduced: The incidence angle
a is always positive. The diffraction angle b is positive if it is

distribution due to diffraction

sinθ3. 2. 1. 0. 1. 2. 3.order

Interference maximum
of first order

sinθ=λ/b

0.order

Fig. 10.44 Intensity distribution I(h) for a diffraction grating with 8 slits and d/b = 2. The second interference order receives no light because the
diffraction minimum just falls into this direction
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on the same side of the grating normal as a, it is negative if it
is on the opposite side. With this definition we can write for
both cases:

Ds ¼ dðsin a� sin bÞ; ð10:49cÞ
For a given angle a constructive interference of the dif-

fracted intensity is only obtained if the grating equation

dðsin aþ sin bÞ ¼ m � k ð10:50Þ

is fulfilled.
A plane wave incident under the angle i against the

groove normal is reflected under the angle r ¼ i. From
Fig. 10.45 we can see that i ¼ a� h and r ¼ h� b. (b is
negative). For the angle h between groove normal and
grating normal (Blaze angle) we therefore get

hb ¼ aþ b=2: ð10:51Þ
The blaze angle gives the inclination of the groove sur-

face against the grating surface. The angle a is generally
specified by the construction of the grating spectrograph and
the angle ß is determined by the groove distance d and the
wavelength k, while the blaze angle h depends on the

inclination of the grooves (Fig. 10.45a). It is, according to
(10.50 and 10.51) given by

hb ¼ a
2
þ 1

2
arcsin

m � k
d

� 

sin a

It can be optimized only for a certain wavelength range. It
is chosen such, that for the center wavelength km of the
wavelength range Dk the angle ß where the interference
maximum of mth order appears, coincides with the reflection
angle r ¼ h� b. In this case nearly the whole reflected
intensity is concentrated in the mth-order. Because of the
diffraction at each groove the reflected light is diffracted into
the angular width Db around bm ¼ r � h (Fig. 10.46). This
allows one to detect a wavelength range Dk where the
intensity I bð Þ varies only slightly.

Example

An optical grating with d ¼ 1 lm is illuminated by
parallel light with the wavelength ðk ¼ 0:6 lmÞ under
the incidence angel a ¼ 30. The first interference
order (m = 1) of the reflected light appears, according
to (10.50) under the angle b with sinb ¼
k� d � sin að Þ=d ) sin b ¼ 0:1 ) b � þ 5:74. The
diffraction angle lies therefore on the other side of the
grating normal as the incidence angle a. For m ¼ �1 is

sinb ¼ � k
d
� sin a ¼ �1:1;

this means that the −1. order does not appear. The
optimum blaze angle hb is then with (10.51) h ¼ 18

for b ¼ þ 6 ) r ¼ i ¼ 12.

The angular width Db of the intensity distribution IðbÞ
between the two zero points on both sides of the angle b1 of
the intensity maximum can be obtained from (10.47) for
h ¼ b as Db ¼ k=N � d.

This complies exactly with the diffraction width of the
intensity transmitted through a slit with width b ¼ N � d,
which equals the width of the whole grating.

d

1
2

i r

d

r

i
2

phase fronts

grating
normal

groove
normal

(a)

(b)

21s
2
1

d · sin

sind2

sind1

d · sin

Fig. 10.45 Optical reflection grating. Incident and reflected light are
a) on different sides of the grating normal. b) on the same side

i
r = i

groove
normal

Fig. 10.46 Intensity distribution of light diffracted by a single groove
of the grating
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The intensity distribution of the interference maxima
reflected by the grating with N grooves and a total size
N � d has the same angular width as the central diffrac-
tion maximum of a slit with the same width b ¼ N � d.

When the blaze angle hb is chosen such that the incident
light with wavelength k falls perpendicular onto the groove
surface (h ¼ a) the mth interference order is reflected back
into the incidence direction (b ¼ a) if the condition

Ds ¼ 2d � sin a ¼ m � k:
is fulfilled. Such gratings, called Littrow gratings, act as
wavelength selective mirrors. Even if the incidence angle
a 6¼ 0 they reflect the incident intensity back into the inci-
dent direction (Fig. 10.47).

10.6 Fraunhofer- and Fresnel-Diffraction

Up to now we have regarded interference- and diffraction
phenomena only for parallel incident light beams, which
implies the same well defined diffraction angle h against the
direction of the incident light for all partial waves in the
beam. This situation is called Fraunhofer diffraction. The
situation becomes more complicated for divergent or con-
vergent incident light beams where the different parts of the
light beam have different incidence angles a within the
angular range a0 	 Da and therefore experience different
diffraction angles h and different path lengths Ds of the
interfering partial waves (Fresnel Diffraction).

Remark One can regard Fraunhofer- and Fresnel-Diffraction
also as two different approximations of a more general
diffraction theory (see Sect. 10.7).

We will illustrate Fresnel diffraction by some examples.
At first we will emphasize the importance of Huygens
principle by a more detailed discussion of the propagation of
a spherical wave.

10.6.1 Fresnel Zones

We regard in Fig. 10.48 a spherical wave which is emitted
by the point source L. We will calculate the intensity in an
arbitrary point P and determine, how this intensity is altered
by obstacles in the way between L and P. On the spherical
surface with radius R around L the phase of the wave is
constant and the electric field amplitude is

E Rð Þ ¼ E0

R
eiðxt�kRÞ: ð10:52Þ

Now we regard (following Huygen’s principle) every
point S on this surface as source of secondary waves.
Amplitudes and phases of these secondary waves in the
point P depend on the distance SP and the angle h against
the wave vector k of the spherical primary wave in S.

All points S on the spherical surface, which have the same
distance r ¼ SP are located on a circle around the line LP
with the Radius q ¼ R � sinu. With r u ¼ 0ð Þ ¼ r0 we can
write the distance r = LP = R + r0. We now construct
spheres around P with the radii r ¼ r0 þ k=2; r0 þ k;
r0 þ 3=2k; etc. The intersections of these spheres with the
circle around L are circles around the axis LP (dashed curves
in Fig. 10.48) which have the distances rm ¼ r0 þm � k=2
from P. The areas between the circles with distance
r0 þðm� 1Þk=2 and r0 þm � k=2 are called Fresnel zones.
For each point Qi inside a Fresnel zone there is a point Qk in
the neighboring zone which has a distance QkP that differs
by ½k from the distance QiP.

The amplitude E0 of the light source L has decreased to
Ea ¼ E0=R on the circle with radius R around L. The con-
tribution of the mth Fresnel zone with area dSm to the field
amplitude in P is

dE ¼ K � Ea

r
ei �kðRþ rÞþxt½ � dS: ð10:53Þ

grating normal

α

α⋅sind

β=α

d

λ=α=Δ msind2s

θ

α θ=
i = 0
r = 0

θ

Fig. 10.47 Littrow grating

Qk

λ/2
P

ϕ

L

S

R

Qi

r0

r

θ

Fresnel zones

k
→

ρ

Fig. 10.48 Construction of Fresnel-zones. The Figure is rotationally
symmetric about the axis LP

310 10 Interference, Diffraction and Scattering



The factor K(h) describes the dependence of the field
amplitude emitted by dSm into the direction h against the
surface normal of dSm. The factor K hð Þ is a slowly varying
function of h (e.g. K hð Þ ¼ cos h) and it can be regarded as
constant within one Fresnel zone.

r2 ¼ R2 þðRþ r0Þ2 � 2RðRþ r0Þ cosu; ð10:54Þ
The differentiation with respect to u gives

2r dr ¼ 2RðRþ r0Þ sinu � du; ð10:55Þ
The area of the Fresnel zone with radius q ¼ R � sinu is

dS ¼ 2pR � R � sinu du

Inserting sinu du from (10.55) gives

dS ¼ 2pR
Rþ r0

rdr: ð10:56Þ

The contribution of the mth Fresnel zone to the field
amplitude in P is then

Em ¼ Km � Ea � 2pR
Rþ r0

Zrm
rm�1

e�i kðR þ rÞ�xt½ �dr

¼ � kKmEaR

iðRþ r0Þ e
�i kðR þ rÞ�xt½ �

� 
rm
rm�1

:

ð10:57Þ

With k ¼ 2p=k and rm ¼ r0 þm � k=2 this becomes

Em ¼ ð�1Þm þ 1 2kKmEaR

iðRþ r0Þ e
�i kðR þ r0Þ�xt½ � : ð10:58Þ

The contributions of the different Fresnel zones change
their sign from one zone to the next. This is obvious,
because all points in one zone experience the same phase of
the wave emitted by L, but the path length to P changes by
k=2 from one zone to the next one. The phases of the dif-
ferent partial waves from two adjacent Fresnel zones there-
fore differ by p.

The total field amplitude E Pð Þ is then

EðPÞ ¼
XN
m¼1

Em

¼ E1j j � E2j j þ E3j j � E4j j þ � � � 	 ENj j:
ð10:59aÞ

The amounts of Em vary only slowly with m, because
r � k and K differs only slightly between neighboring zones
(the angle h barely changes between adjacent zones). We can
therefore approximate

Emj j � 1
2

Em�1j j þ Emþ 1j jð Þ: ð10:59bÞ

It is therefore reasonable to rearrange the series (10.59a)
into

EðPÞ ¼ 1
2
E1j j þ 1

2
E1j j � E2j j þ 1

2
E3j j

� �

þ 1
2
E3j j � E4j j þ 1

2
E5j j

� �

þ � � � þ 1
2
ENj j:

ð10:59cÞ

because of (10.59b) all members of this series are negligible
except the first and the last term. We therefore obtain

EðPÞ � 1
2

E1j j þ ENj jð Þ: ð10:59dÞ

When we assume, that the factor K is K = cos h the
contribution of the last zone with m = N, where the line SP
is the tangent to the circle around L becomes zero, because
h = 90° and cos 90° = 0. All zones with m > N cannot emit
light into the direction towards P. This gives the final result

EðPÞ � 1
2
E1

¼ K1kEaR

iðRþ r0Þ e
�i kðRþ r0Þ�xt½ �:

ð10:60Þ

There is also a primary wave propagating from S to P,
which contributes to the field amplitude in P. Taking this
into account we get

EðPÞ ¼ E0

Rþ r0
e�i kðR þ r0Þ�xt½ �: ð10:61Þ

Of course, (10.60) and (10.61) have to give the same
result, because the introduction of a fictive sphere around L
and the application of Huygens’s principle cannot change
the field amplitude in P. The comparison between (10.60)
and (10.61) then yields an expression for the factor K which
gives with Ea ¼ E0=R for m = 1

K1 ¼ i=k: ð10:62Þ
For the mth Fresnel zone is Km ¼ i=k � cos hm . For the

first zone (m = 1) is h1 � 0 and therefore cos h1 � 1.
How large are the Fresnel zones? As can be seen from

Fig. 10.48 the radius qm of the mth zone is

qm �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � r20

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr0 þm � k=2Þ2 � r20

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m � r0 � k

p
for r0 � k

It therefore depends on the wavelength k and on the
distance r to the observation point P.

Example

r0 ¼ 10 cm; k ¼ 0:5 lm ) q1 ¼ 0:22mm:
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When we place between L and P a screen with an aper-
ture, that equals the diameter 2 � ffiffiffiffiffiffiffi

r0k
p

of the first Fresnel
zone (Fig. 10.49a) the field amplitude transmitted by this
aperture is

EðPÞ ¼ E1 ¼ 2E0

Rþ r0
e�i kðRþ r0Þ�xt½ � ð10:63Þ

This is twice as large as the field amplitude without the
screen (the intensity is then 4-times as large). This gives the
astonishing result that the introduction of the absorbing
screen increases the intensity!

The reason is, of course, the prevention of destructive
interference between the higher zones and the first zone by
the screen. These zones give the contribution −½E1 as can
be recognized from the comparison between (10.59a) and
(10.59d). The first Fresnel zone acts like a lens, which par-
tially refocuses the divergent light emitted by L.

Instead of selectively transmitting the first Fresnel zone
through a circular aperture, one can also selectively block
the light from this zone by an absorbing disc (Fig. 10.49b)
thus allowing the light from all other zones to reach the
detector in P. In the series (10.59a) then the first term is
missing. From the rearranged series (10.59c) it can be seen
that now the second term is no longer cancelled by the
missing first term (because E1 ¼ 0). In this case the total
intensity in P is as large as without the absorbing disc.

These surprising facts demonstrate that Huygens’s
principle (which was postulated by Christiaan

Huygens (Fig. 10.50) already in 1690) is very useful
to describe the propagation of waves in space, while
geometrical optics cannot explain these phenomena.

When the distance R in Fig. 10.49 between light source
L and aperture becomes very large compared with the
diameter of the aperture, the incident wave can be regarded
as plane wave and the virtual sphere in Fig. 10.48 with the
Fresnel zones converges against a plane surface (Fig. 10.51).
The radius qm of the mth Fresnel zone still depends on the
distance r0 of the observation point P.

Fresnel diffraction is always observed when the aperture
which contributes to the illumination in P contains many
Fresnel zones, i.e. when its diameter D � ffiffiffiffiffiffiffiffiffiffi

r0 � k
p

. This
implies that many Fresnel zones contribute to the field
amplitude in P. If r0 is so large, that only the first Fresnel zone
contributes one obtains Fraunhofer diffraction patterns [11].

(a)

r0

opaque screen aperture = 1. Fresnelzone

L

R

r = r0 + λ/2

L

S1

S2

r0

r = r0 + x1 · λ/2

r = r0 + x2 · λ/2

r = r0 + λ/2

screen

(b)

P

P

Fig. 10.49 a) Through the circular aperture in the opaque screen
corresponding to the first Fresnel zone, twice as much intensity is
received in P than without the screen. b) With the opaque mask which
blocks the first Fresnel zone, as much intensity reaches P as without the
mask. The points Si are arbitrary points in the plane z ¼ 0

Fig. 10.50 Christiaan Huygens (1629–1695). (With kind permission
of “Deutsches Museum München)”

ρ m

P

r   = rm + m · λ /2

r0

z = z0
z

ρm = √m · r0 · λ
0

Fig. 10.51 Radius of the mth-Fresnel zone in the plane z ¼ z0 of a
plane wave propagating into the z-direction for an observer in P at
z ¼ z0 þ r0
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10.6.2 Fresnel’s Zone Plate

The result of the foregoing section can be utilized to concen-
trate more light onto the observation pointP, as is possible with
the simple circular aperture in Fig. 10.49a. For this purpose
one uses instead of the screen a glass plate where opaque cir-
cular rings are vapor deposited which block all Fresnel zones
with odd zone number m (Fig. 10.52). This arrangement
transmits the light from all zones with even m. in the series
(10.59a). Therefore only terms with the same sign appear
which are all in phase. This eliminates destructive interference.

Such an arrangement is called Fresnel’s zone plate. The
diameter and the width of the transmitting rings depend on
the distance LP and on the distance r0 between zone plate
and observation point P. As can be inferred from Fig. 10.51
the radius of the mth zone for r0 � m � k is obtained from

the relation q2m ¼ ðr0 þm � k=2Þ2 � r20 ) q2m ¼ r0mkþ
m2k2=4. With r0 � m � k this can be simplified to

qm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mr0 � k

p
: ð10:64Þ

The width of the mth zone

Dqm ¼ qmþ 1 � qm

¼
ffiffiffiffiffiffiffi
r0k

p ffiffiffiffiffiffiffiffiffiffiffiffi
mþ 1

p � ffiffiffiffi
m

p� � ð10:65Þ

decreases with increasing m. However, the area of the zones

Am ¼ pðq2mþ 1 � q2mÞ ¼ pr0k ð10:66Þ

is the same for all zones.

Such a zone plate acts as a lens that collects light
which is incident onto the plate within a certain an-
gular range (Fresnel lens).

If r0 is the distance of the pointP from the center of the zone
plate, then all points of the mth zone have the distance r = r0
+m � k/2. from P. When the zone plate is illuminated with a
parallel light beam from the left side in Fig. 10.52, the sec-
ondary waves in all “open” zones are excited in phase. Since
the path ways from the open zones differ by k between adja-
cent open zones all secondary waves arrive in P with equal
phase, the point P is therefore the focal point of the incident
wave and the focal length f ¼ r0 is obtained from (10.64) as

f ¼ q2m
m � k ¼ q21

k
: ð10:67Þ

The focal length of a Fresnel zone plate is given by the
radius q1 of the first zone and the wavelength k. A zone plate
therefore has a wavelength-dependent focal length.

Such zone plates that represent lenses have gained
increasing importance for imaging wavelength ranges where
no transparent material for classical lenses is available. This
applies in particular to the X-ray region where zone plates
are the only possible lenses. Glass or quartz lenses not only
absorb X-rays but have also a refractive index n � 1 which
implies that their focusing properties are nearly zero.

The experimental realization of Fresnel lenses for X-rays
uses a thin foil, transparent for X-rays. The opaque zones are
realized by vapor deposition of heavy metals [12]. Special
Fresnel lenses with zones that are transparent for atoms are
also used for focusing mono-energetic atomic beams (see
Vol. 3).

10.7 General Treatment of Diffraction

We will now discuss a general way how to describe and
calculate diffraction by apertures or obstacles of arbitrary
form. Although such calculations are often only possible with
numerical methods, the simplified version of the Fresnel-
Kirchhoff diffraction theory, represented here, can give a
better insight into the basic ideas of the Fresnel diffraction.

10.7.1 The Diffraction Integral

We regard in Fig. 10.53 an arbitrary hole with the area r in a
screen, which is placed in the x-y-plane at z ¼ 0 and which is
illuminated by a light wave. We will calculate the intensity
distribution in the x′-y′-plane at z ¼ z0 (observation plane).
The electric field amplitude can be described by

ESðx; yÞ ¼ E0ðx; yÞ � eiuðx;yÞ ð10:68Þ
A point-like light source placed at L = (0, 0, −g) emits its

radiation with the amplitude A uniformly into all directions
(Fig. 10.53b). At the position of the screen we get the
amplitude

f = r0

zone plate

P

rm= r0+ m · λ/2

Fig. 10.52 Fresnel’s zone plate
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E0ðx; yÞ ¼ A

R
¼ Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2 þ x2 þ y2
p and

u ¼ ðxt � kRÞ:
ð10:68aÞ

The infinitesimal area dr of the hole emits according to
Huygens’s principle secondary waves which contribute to
the field amplitude in the point Pðx0; y0Þ the amount

dEP ¼ C � ES � dr
r

e�ikr ð10:69Þ

As has been discussed in Sect. 10.6.1 the proportional
factor C can be written as C ¼ i � cos h=k.

The total radiation of the illuminated hole at z = 0 gen-
erates at the point P the field amplitude

EP ¼
Z Z

C � ES � e
�ikr

r
dx dy; ð10:70Þ

where the two-dimensional integral extends over all area
elements dr ¼ dx � dy of the hole in the screen. The integral
(10.70) is called Fresnel-Kirchhoff diffraction integral.

If the distance r between the points Sðx; yÞ and the
observation point Pðx0; y0Þ is large compared with the dis-
tances x, y of the hole elements at x=z0 
 1 and y=z0 
 1)
we can replace the distance r in the denominator in (10.70) by
r � z0. The phase in the exponent depends, however, sensi-
tively on r and therefore we cannot replace here r by z0 but
have to use a better approximation. In the Taylor expansion

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z20 þðx� x0Þ2 þðy� y0Þ2

q

� z0 1þ ðx� x0Þ2
2z20

þ ðy� y0Þ2
2z20

þ � � �
 ! ð10:71Þ

we keep all terms up to the quadratic one and neglect only
the higher order terms. With cos h ¼ z0=r � 1 ) C ¼ ði=kÞ
the diffraction integral becomes

Eðx0; y0; z0Þ ¼ i
e�ikz0

kz0

Zþ1

�1

Zþ1

�1
ESðx; yÞ

� exp �ik
2z0

ðx� x0Þ2 þðy� y0Þ2
� � 


dx dy:

ð10:72Þ
This formula allows one to calculate the distribution of

the electric field amplitude Eðx0; y0; z0Þ, if the field distribu-
tion Eðx; yÞ in the plane z ¼ 0 is known.

The approximation, used in the derivation of (10.72) is
called Fresnel-approximation. If the diameter of the hole
is small compared to z0, a further approximation can be
used. With

z0 � 1
k

x2 þ y2
� �

;

the quadratic terms x2 and y2 in (10.71) can be also neglected
and we get

r � z0 1� xx0

z20
� yy0

z20
þ x02 þ y02

2z20

� �
:

Since the integration extends over x and y we can extract
the terms with x0 and y0 out of the integral and we obtain
instead of (10.72) the expression

Eðx0; y0; z0Þ ¼ Aðx0; y0; z0Þ
Zþ1

�1

Zþ1

�1
ESðx; yÞ

� exp þ ik
z0

x0xþ y0yð Þ
� 


dxdy

ð10:73Þ

with

Aðx0; y0; z0Þ ¼ ie�ikz0

kz0
� eð�ipÞ=ðkzÞ � ðx02 þ y02Þ:

This approximation is the Fraunhofer-diffraction, where
the diffraction structures are observed in the far-field region.
The general case, where the linear approximation is no
longer valid is called Fresnel diffraction.

We will now illustrate the two cases by some examples.

10.7.2 Fresnel- and Fraunhofer Diffraction
by a Slit

A narrow slit in y-direction with the width Dx ¼ b � k
should be illuminated by a parallel light beam (Fig. 10.54).
We will determine the intensity distribution Iðx0; z0Þ of the
diffracted light in the plane y = 0 for different distances z0
from the plane z = 0 of the slit. The diffraction integral
(10.72) reduces to a one-dimensional integral

(a)

z = 0 z = z0

θ

σ

y

x

y'

x'

z

z
z = z0

z = 0 P(x', y')

rL

R
Esdσ

(b)

g

Fig. 10.53 Illustration of the derivation of the Fresnel-Kirchhoff-
diffraction integral
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EðPÞ ¼ C � ES

Zþ b=2

�b=2

1
r
e�ikrdx; ð10:74Þ

where

r ¼ ½ðx� x0Þ2 þ z20�1=2 ¼ z0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x� x0

z0

� �2
s

is the distance from the observation point P to a point ðx; 0; 0Þ
of the slit. The field amplitude ES is constant over the whole
slit and can be therefore extracted before the integral. We
distinguish between three different observation zones.

• the near-field zone where z0 is of the same order of
magnitude as the slit width b � k. Here the radius

r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiðz0 � kÞ

p
of the first Fresnel zone is small

compared with the slit width b and many Fresnel
zones contribute to the field amplitude in P. This
means that the phase of the total wave in P strongly
varies with x0. The numerical integration of (10.74)

gives the intensity distribution IðxÞ / jEðxÞj2 shown
in the left part of Fig. 10.54.

• the medium distance zone, where only a few Fresnel
zones contribute to Iðx0Þ is shown in the middle part of
Fig. 10.54.

• the far field zone (z0 � b) where the radius r1 ¼
ffiffiffiffiffiffiffi
z0k

p
of the first Fresnel zone is larger than b. This is the
region of the Fraunhofer diffraction (right picture in
Fig. 10.54, where the approximation (10.73) is valid.
All terms that do not depend on x and also the essen-
tially constant denominator r can be extracted from the
integral. This gives the Fraunhofer diffraction formula
for the diffracted intensity distribution (10.43) (see
Problem 10.5).

The discussion above illustrates that the intensity distri-
bution I(h) of Fraunhofer-diffraction, which commonly
represents the diffraction by a slit, is an approximation which
is only valid for sufficiently large distances (r � b) of the
observation point P behind the diffracting slit, but dos not
describe the observed phenomena in the near field zone.

The infinitely far away observation point of the far field
can be transferred by a lens behind the diffracting aperture
into the focal plane of this lens. The focal length of the lens
has to be large compared to the diameter of the aperture.

10.7.3 Fresnel Diffraction at an Edge

When a parallel light beam incides onto an opaque screen in
the x-y-plane at z = 0 which covers the plane x < 0 with an
edge along the y-axis (x = 0) one observes the diffraction
pattern shown in Fig. 10.55. There is also some light pen-
etrating into the half-space x′ < 0 where without diffraction
no light should be present, while in the half-space x′ > 0 an
oscillating intensity I(x′) can be seen.

The diffraction integral (10.47) in the observation point
P becomes

z0 ≈ b2/λ

b

x

z0 << b2/λ

Fresnel-
diffraction 

transition
region

near field 
zone

z0 >> b2/λ

Fraunhofer
diffraction

z

far field

Fig. 10.54 Fresnel- and Fraunhofer diffraction behind a slit. Illus-
trated are the intensity distributions for different distances behind the
slit in the “near” and the “far-zone”

(a)

(b)

(c) 0

I

x

0I

4/I0

Fig. 10.55 Intensity distribution behind a diffracting edge.
a) Schematic drawing, b) calculated from the diffraction integral. The
dashed curve gives the intensity without diffraction, c) observed
intensity distribution (From D. Meschede: Gehrtsen, Physik, 21 ed.
Springer Berlin, Heidelberg)
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EðPÞ ¼ C � ES

Z1
0

e�ik
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ z20

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ z20

q dx: ð10:75Þ

For x0 
 z0 the integral can be solved by a series
expansion [13] and gives the diffraction intensity pattern
Iðx0Þ, shown in Fig. 10.55.

10.7.4 Fresnel Diffraction at a Circular Aperture

When a circular aperture with radius a in an opaque screen is
illuminated by a parallel light beam one observes in the
plane z = z0 behind the aperture a diffraction structure that
has rotational symmetry around the z-axis (Fig. 10.56). The
intensity distribution IðqÞ with q2 ¼ x02 þ y02 depends on the
diameter 2a of the aperture and the distance z0 between
observation point P and the aperture. The intensity I(q = 0)
in the central point P0ðq ¼ 0Þ becomes maximum for
z0 ¼ a2=k, because then the area of the first Fresnel zone
with radius r1 ¼

ffiffiffiffiffiffiffiffiffiffi
z0 � k

p ¼ a equals the area of the circular
aperture (see Sect. 10.6.1). For a smaller distance z0 ¼
a2=2k (or a larger aperture radius) the aperture area covers
the first two Fresnel zones. Their contributions to the field
amplitude in P0 interfere destructively, which decreases the
intensity in P0 nearly to zero. One observes a dark central
point of the circular diffraction pattern. The intensity IðP0Þ varies periodically along the z-axis

when the distance from the aperture is altered.
A similar diffraction pattern is observed when the screen

with the circular aperture is replaced by a circular opaque
disc with radius a (Fig. 10.57). For this case one also
observes maximum intensity on the z-axis for z0 ¼ a2=k and
minimum intensity for z0 ¼ a2=2k.

10.7.5 Babinet’s Theorem

From Eq. (1.72) we see, that the electric field strength EP in
the observation point P is determined by the surface integral
of the electric field amplitude over the area r of the aperture.
The calculation of the diffraction phenomena caused by
apertures or obstacles with a more complicated form is
facilitated by a theorem, first postulated by J. Babinet
(1794–1872). It is based on the following statements:

If the area r of the aperture is divided into two subareas
r1 and r2 the field amplitude measured in P is

EPðrÞ ¼ EPðr1ÞþEPðr2Þ ;
where EPðriÞ is the field amplitude which would be mea-
sured if the aperture only includes the sub-area ri. The more
general statement is:

I/I∞

1

a/  z0 · λ

2

3

1. F.Z.
1. – 3. F.Z.

1. – 4. F.Z.

z-axis 
1. + 2. F.Z.

10 2 3 2

a =∞

a = (z0 · λ)1/2 a = (2z0 · λ)1/2 a = (3z0 · λ)1/2

Fig. 10.56 Intensity distribution of light in a point P z0ð Þ due to
diffraction by a circular aperture, as a function of the aperture radius a.
The upper part illustrates the Fresnel zones for aperture with a ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
nz0 � k

p
for n ¼ 1; 2; 3, corresponding to the maxima in the lower

part. The light passing through the 2. Fresnel zone has a path difference
of k/2 and interferes destructively. The dashed lie gives the intensity
without diffraction (a = ∞)

Fig. 10.57 Comparison of the diffraction pattern by a circular aperture
(right) and a opaque disc with equal diameter (left). The photos in the
upper and lower part have been taken at different distances from the
aperture resp. disc (From Weizel, Lehrbuch der theoretischen Physik,
Springer Berlin, Heidelberg 1949)
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If the area r is divided into N subareas the total field
amplitude in P is

EPðrÞ ¼
XN
i¼1

EPðriÞ: ð10:76Þ

Examples

1. An annulus aperture with inner radius q1 and outer

radius q2 generates in P a field amplitude EP ¼
Eð1Þ
P � Eð2Þ

P where EðiÞ
P is the field amplitude that is

generated by a circular disc with radius qi. Of course

one has to consider the different phases of Eð1Þ
P and

Eð2Þ
P in P.

2. A rectangular aperture is divided into two
sub-areas as shown in Fig. 10.58a. The diffraction
pattern of the complex form r1 can be obtained as
the difference

EPðr1Þ ¼ EPðrÞ � EPðr2Þ
between the patterns generated by the simpler areas r
and r2 which are much easier to calculate.

Two apertures r1 and r2 are called complementary to
each other when r1 is transparent at such parts of the aper-
ture where r2 is opaque. Further examples of complimentary

apertures are a circular hole in an opaque screen and an
opaque circular disc or a slit with width b and a straight wire
with a diameter d = b (Fig. 10.58b, c). For the cases (b) and
(c) the sum r1 þ r2 gives the total unlimited area which
shows no diffraction effects because it has no edges. For the
total field amplitude we therefore get

EPðr1Þ ¼ �EPðr2Þ : ð10:77Þ

For the intensity distribution IðPÞ ¼ jðEPÞj2 one gets the
astonishing result that the diffraction intensity pattern of an
opaque circular disc and of a transparent circular aperture are
equal, if one subtracts the intensity from S that reaches
P through the aperture on a geometrical path (i.e. without
diffraction).

10.8 Fourier Representation of Diffraction

Using the Fourier-Theorem the diffraction at arbitrarily
formed apertures can be described quite generally in a
mathematically elegant form. This has considerably advanced
modern optics. We will therefore shortly discuss the basic
principles of Fourier-optics.

10.8.1 Fourier-Transformation

For an arbitrary real or complex function f xð Þ which is
square-integrable the integral

Zþ x0

�x0

f ðxÞj j2dx

must remain finite for x0 ! 1. The Fourier-transform of
f(x) is defined as the function

FðuÞ ¼ 1ffiffiffiffiffiffi
2p

p
Zþ1

�1
f ðxÞ � e�iuxdx: ð10:78Þ

In order to calculate f(x) from F(u) we multiply both sides of
(10.78) with ei2pux

0
and integrate both sides over the variable

u. This gives, when we subsequently rename x′ by x

f ðxÞ ¼ 1ffiffiffiffiffiffi
2p

p
Zþ1

�1
FðuÞeþ iuxdu: ð10:79Þ

The two functions f(x) and F(u) are called a Fourier-pair
and the variables x and u are Fourier-conjugated variables.
The dimensional units of x and u must be reciprocal, because
the product u � x in the exponent has to be dimensionless.

(a)

σ1 σ2σ

σ1σ2σ1 σ2

(b) (c)

Fig. 10.58 Complementary diffraction areas: a) rectangular aperture,
b) circular aperture and opaque circular disc of the same size, c) slit and
wire with equal thickness
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Example

The frequency spectrum F(x) of the exponentially
decreasing light amplitude

EðtÞ ¼ A0 � e�ct cosx0t ð10:80Þ
can be obtained from (10.78) with u = x; x = t and
E(t) = f(x). This gives for the initial condition A0(t) = 0
for t < 0.

FðxÞ ¼ A0ffiffiffiffiffiffiffiffi
p=2

p Zþ1

0

e�ct cosx0t � e�ixtdt: ð10:81Þ

The integral can be readily solved and gives for
x � ðx0 � xÞ

FðxÞ ¼ cA0ffiffiffiffiffiffi
2p

p 1

ðx0 � xÞ2 þ c2
: ð10:82Þ

F(x) is the amplitude of the light wave at the fre-
quency x. The frequency spectrum of the intensity
I / A � A� is the Lorentz-profile

IðxÞ ¼ C

ðx0 � xÞ2 þ c2
h i2 ; ð10:83Þ

where the constant C is chosen such, that the integralR
I xð Þdx is equal to the total intensity I0 (Fig. 10.59).

For the representation of diffraction theory one needs the
two-dimensional Fourier-transformation

Fðu; vÞ ¼
Zþ1

�1

Zþ1

�1
fðx; yÞ � e�i2pðu � x þ vyÞdx dy; ð10:84aÞ

f ðx; yÞ ¼
Zþ1

�1

Zþ1

�1
Fðu; vÞ � ei2pðu�xþ v�yÞdu dv: ð10:84bÞ

If the function f(x, y) can be split into two factors
(f(x, y) = f1(x) � f2(y) then the Fourier-transform

Fðu; vÞ ¼ F1ðuÞ � F2ðvÞ; ð10:85Þ
can be also split into two one-dimensional functions
F1(u) and F2(v), where F1(u) is the Fourier-transform of
f1(x) and F2(v) that of f2(y).

10.8.2 Application to Diffraction Problems

We will now treat the general case that a light wave with the
field amplitude Ei(x, y) falls onto an area r in the plane z = 0
with the transmission s x; yð Þ. For an aperture, for instance, is
s x; yð Þ ¼ 1 inside the aperture opening and s = 0 outside
(Fig. 10.60).

Directly behind the area r is

E x; yð Þ ¼ s x; yð Þ � Ei x; yð Þ: ð10:86Þ
The spatial distribution of the field amplitude in the

observation plane z = z0 can be calculated when using the
diffraction integral (10.73). Inserting (10.84a, 10.84b) into
(10.73) and comparing the result with (10.84a, 10.84b)
where one has to replace u ¼ x0= kz0ð Þ and v ¼ y0= kz0ð Þ one
recognizes that

f ðx; yÞ ¼ Eðx; yÞ ¼ sðx; yÞ � Eiðx; yÞ ð10:87Þ
describes the amplitude distribution directly behind the
diffraction plane z = 0.

A0
e t−γ

E(t)

t

(a)

2 γ

ω0 ω

I( )ω

0,5

1

(b)

Fig. 10.59 a) Temporally decaying amplitude E(t) of a light wave.
b Fourier-transform I xð Þ of EE� tð Þ

x

y y'

x'

E(x',y')E(x,y)

z = 0 z = 0z

Fig. 10.60 Fourier-representation of Fraunhofer diffraction
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The field amplitude E x0; y0ð Þ in the observation plane
z = z0 is then with (10.73)

Eðx0; y0Þ ¼ Aðx0; y0; z0Þ �
Zþ1

�1

Zþ1

�1
Eeðx; yÞ � sðx; yÞ

� e�i2pðx0xþ y0yÞ=ðkz0Þdx dy:

ð10:88Þ
The comparison with (10.84a, 10.84b) then yields

Eðx0; y0; z0Þ ¼ Fðu; vÞ � Aðx0; y0; z0Þ: ð10:89aÞ
We therefore obtain the important result:

The amplitude distribution of the Fraunhofer-
diffraction pattern in the observation plane z ¼ z0 is
proportional to the Fourier-transform F x0; y0ð Þ of the
function f x; yð Þ ¼ s x; yð Þ � Ei x; yð Þ where s x; yð Þ is the
transmission function of the diffracting area and
Ei x; yð Þ the field distribution of the incident wave.

The intensity distribution in the observation plane is then

Iðx0; y0Þ / Eðx0; y0Þj j2¼ Aðx0; y0Þj j2� Fðx0; y0Þj j2 ð10:89bÞ

because Aðx0; y0Þj j2 ¼ 1:
We will apply this result onto the diffraction at a rect-

angular opening. Further examples follow in Sect. 12.5.

Rectangular Aperture

We regard in Fig. 10.61 a rectangular aperture with width
a and height b in an opaque screen. The transmission
function s(x, y) is then

sðx; yÞ ¼
1 for� a=2\x\þ a=2;

�b=2\y\b=2;
0 otherwise:

8<
:

A plane extended wave Ei x; yð Þ ¼ E0 ¼ const. incides
onto the aperture. We divide the aperture into small stripes
with width dx. The contribution dE x0; y0ð Þ of such a stripe to
the field amplitude is according to (10.88)

dE x0; y0ð Þ

¼ E0e
�2pix0x=ðkz0Þdx �

Zþ b=2

�b=2

e�2piy0y=ðkz0Þdy:
ð10:90aÞ

Integration over all stripes yields the electric field distri-
bution in the observation plane

E x0; y0ð Þ

¼ E0 �
Zþ a=2

�a=2

e�2pix0x=ðkz0Þdx:
Zþ b=2

�b=2

e�2piy0y=ðkz0Þdy:

ð10:90bÞ
The integration gives

Eðx0; y0Þ ¼ E0 � k2z20
p2x0y0

� sinpx
0a

kz0
� sin py

0b
kz0

: ð10:91Þ

The intensity in the observation plane I x0; y0ð Þ /
Aj j2� Ej j2 is then

Iðx0; y0Þ ¼ I0 � sin
2ðpx0a=kz0Þ

ðpx0a=kz0Þ2
� sin

2ðpy0b=kz0Þ
ðpy0b=kz0Þ2

: ð10:92Þ

The comparison with (10.45) shows with sin h ¼ x0=z0
resp. y0=z0 the same result, which had been derived in a
completely different way. A rectangular aperture a � b has
therefore a diffraction pattern which is equal to that of two
mutual perpendicular infinitely long slits in x- and y-direc-
tion with widths a and b.

10.9 Light Scattering

In Sects. 8.1 and 8.2 dispersion and absorption were
explained by the interaction of the electro-magnetic wave
with atomic oscillators which are induced to forced oscilla-
tions in the direction of the E-vector of the wave. Each
dipole radiates the average power

PS ¼ e2x20x
4

32p2e0c3
sin2 # ð10:93Þ

into the solid angle dX ¼ 1 sterad around the direction with
the angle # against the dipole axis. A plane wave polarized

a
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b/2
dx x

y

0−
λ z

a
0 λ z
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λ z
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0−

λ z
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0 0

x'
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I

I

Fig. 10.61 Diffraction at a rectangular aperture
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in the x-direction which travels into the z-direction aligns the
dipoles and induces oscillations in the x-direction. These
oscillating dipoles emit radiation according to (10.93) also
into directions that deviates by the angle a ¼ p=2� # from
the z-direction. This phenomenon, that light, induced by the
incident wave in z-direction, is emitted into all directions, is
called light scattering [14, 15].

The following questions arise:

• Under which conditions can light scattering be
observed?

• What is the frequency dependence of light scattering?
• Which quantities determine light scattering?
• Why does a light beam propagating through a

homogeneous medium not suffer any scattering,
although the atomic dipoles emit their radiation into
all directions?

10.9.1 Coherent and Incoherent Scattering

In Sect. 10.5.1 it was shown that for N oscillators which
oscillate in phase, the total intensity is emitted only into those
directions where the contributions of the different dipoles
show constructive interference i.e. their radiation superim-
poses in phase. We call the scattering by phase-coupled
oscillators coherent scattering. One example is the propa-
gation of a plane wave through a homogeneous crystal with
regularly arranged atoms (Fig. 10.62) where the wave tra-
verses straight on without any scattering, if the distance d be-
tween the atoms is small compared to the wavelength k.
(d/k 
 1) but the totalwidth of the crystal perpendicular to the
propagation direction is large compared to the wavelength
(D ¼ dN1=3 � k) (so that diffraction effects can be neglected).

The situation changes dramatically if the atoms are
irregularly placed (e.g. in powder) or if they perform irreg-
ular thermal motions and therefore the distances between the
atoms change statistically in time (for example in a liquid or
a gas). In such cases there is no longer a fixed phase relation

between the emission of the different oscillators as for the
coherent scattering and there is no well-defined coherent
superposition of the emission from the different atoms. We
call this situation incoherent scattering.

We will illustrate the difference by the simple example of
the superposition of the radiation from two oscillators
located at the positions r1, r2 with distance d and oscillation
amplitudes (Fig. 10.63).

x1ðtÞ ¼ A1 � cosxt; x2ðtÞ ¼ A2 � cosðxtþuÞ
The total intensity in the direction a is then

I ¼ ce0½A1 � cosxtþA2 � cosðxtþwÞ�2; ð10:94Þ
where the phase shift is

w ¼ uþ 2p=kd � sin a
The total phase shift w is the sum of the temporal phase

shift u between the two oscillators and the spatial phase
difference 2p=kð Þd � sin a. Calculating the square of the
bracket in (10.94) yields with the relation 2 cos a � cos b ¼
cosðaþ bÞþ cosða� bÞ

I ¼ ce0½A2
1 cos

2ðxtÞþA2
2 cos

2ðxtþwÞ
þ A1A2ðcosð2xtþwÞþ coswÞ�: ð10:95aÞ

All detectors available today cannot follow the rapid
oscillation of light but measure the time average of the

intensity, which is because of cos2 xt ¼ 1=2 and cosxt ¼ 0

I ¼ 1
2
ce0½A2

1 þA2
2 þ 2A1A2cosw� ð10:95bÞ

Δz

Ee= E0·ei(ωt – kz)

d << λ

EaEe

Ea= E0 · e–(α/2)Δz ·ei(ωt – k(z +Δz))

z

Fig. 10.62 An electro-magnetic wave propagating through an ideal
crystal with atom distance d 
 k suffers a phase delay but no scattering

d

d · sin

P

x2(t)

= A2 cos ( t + )

x1(t)

= A1 cos t

S1

S2

Fig. 10.63 Superposition of the scattering amplitudes in the direction
a, caused by two scattering particles S1 and S2 with the mutual distance
d. Note that the plane through S1 and S2 is no longer a phase plane for
light scattered in the direction a 6¼ 0
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here we have anticipated possible temporal fluctuations of the
of the phase w are slow compared to the oscillation period
T ¼ 2p=x. For a temporal constant phase w (phase coupled
oscillators) is cosw ¼ cosw. Then the time-averaged inten-
sity depends on the phase w and can vary between the maxi-
mum intensity

Imax ¼ 1=2ce0ðA1 þA2Þ2

for

w ¼ m � 2p; with m ¼ 0; 1; 2; . . . ð10:96aÞ
and the minimum intensity

Imin ¼ 1
2
ce0ðA1 � A2Þ2

for

w ¼ ð2mþ 1Þp ð10:96bÞ
There are interference phenomena (see Sect. 10.4 and

Vol. 1, Sect. 11.10), which result in spatial structures of the
intensity distribution (coherent superposition) For coherent
scattering one can observe a spatially varying intensity
which shows for d > k maxima for certain angles a against
the direction of the incident parallel light beam.

For the case of incoherent scattering by particles with a
mean distance d > k the phase w varies statistically between
−p and +p and the time average of cosw ¼ 0 . Therefore the
time average of the total intensity becomes

I ¼ 1
2
ce0ðA2

1 þA2
2Þ: ð10:97Þ

If, for example, the distances between the scattering
particles are randomly distributed in space, also the phases
of these oscillators excited by a plane wave are randomly
distributed, which causes the time average of cos w to vanish
(cosw ¼ 0).

We therefore obtain the important result:

For the coherent scattering the total intensity is the
square of the sum of the different amplitudes (taking
into account the relative phases). For the incoherent
scattering the intensities of the different contributions
are added. The relative phases are not important
because the average to zero.

The time average of the total intensity, incoherently
scattered by N particles into the solid angle dX = 1 sr
around the angle 0 against the electric vector E of the
incident wave (Fig. 10.64) is then according to (10.63)

PSð#Þ ¼ Ne2x20x
4

32p2e0c3
sin2 #: ð10:98aÞ

Inserting for x20 the expression (8.6b) we finally obtain

PSðx; #Þ ¼ Ne4E2
0 sin

2 #

32p2m2e0c3
� x4

ðx2
0 � x2Þ2 þ c2x2

ð10:98bÞ

The total power of the scattered radiation integrated over
all angles 0 and emitted into all directions (X = 4p) is then

PSðxÞ ¼ Ne4E2
0

12pe0m2c3
� x4

ðx2
0 � x2Þ2 þ c2x2

; ð10:98cÞ

10.9.2 Scattering Cross Sections

We define the ratio

rS ¼ PS=Nð Þ=Ii ð10:99Þ
of the power PS=N scattered by one atom and the incident
light intensity Ii ¼ 1=2e0cE2

0 as scattering cross section r
with the dimension [r] = 1 m2). This definition has the
following descriptive meaning:

The scattering of light by an atom can be described by a
circular disc with area r. All the light passing through this
area is completely scattered.

The time averaged radiation power scattered by N atoms
is then

PS ¼ N � rS � Ii:
From (10.98c) we get the scattering cross section for light

scattering by atoms or molecules with a mean distance d > k
(Rayleigh Scattering)

rS ¼ e4

6pe20c
4m2

� x4

ðx2
0 � x2Þ2 þx2c2

: ð10:100Þ

Fig. 10.64 Measurement of the light power Ps(0), scattered by the
angle # against the electric field vector E into the solid angle dX
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The scattering cross section takes particular large values
around the resonance frequency x0, i.e. when the frequency
of the incident light is nearly equal to the resonance fre-
quency of the atoms or molecules (Resonance–Rayleigh
Scattering).

The maximum rm of r(x) is at the frequency

xm ¼ x0ð1� c2=2x2
0Þ�1=2; ð10:101Þ

This follows from drS=dxxm ¼ 0 for x = xm.
If the incident light is not monochromatic but has a

spectral bandwidth Dx with c\Dx 
 x0 the average of the
scattering cross section is obtained by integration of
(10, 100) over the frequency range Dx [18]. For Dx 
 x
one obtains

rS xð Þ / x4: ð10:102Þ

This shows that the scattering cross section strongly
increases with increasing frequency x.

Some examples shall illustrate the different aspects of
light scattering.

10.9.3 Scattering by Micro-particles;
Mie-Scattering

When light is scattered not by atoms or molecules but by
small solid micro-particles (dust, cigarette smoke, etc.) or by
small liquid droplets (fog), a partial coherent scattering
occurs if the diameter of the particles is small compared with
the wavelength k. In this case the phase differences between
the partial waves scattered by the atoms of the particle are
small compared with 2p (Du 
 2p). This means that the
amplitudes of the partial waves superimpose nearly with
the same phase. The total intensity scattered by the particle is
then

I /
XN
K¼1

A2
K

					
					 ð10:103Þ

where Ak is the scattering amplitude of the kth atom in the
particle with N atoms (Fig. 10.65). Even if the atoms per-
form random motions with path lengths s 
 k this changes
the phase differences only by Du 
 2p. The scattered
intensity then increases with d 6 as long as the diameter d of
the particles is still small compared to the wavelength k.

PS /
X

AK

			 			2¼ ðN � ASÞ2 ¼ N2 � PSðAtomÞ ð10:104Þ

Example

A micro particle with d ¼ 0:05 lm ¼ 50 nm consists
of about N ¼ 106 atoms. The light intensity scattered
by these atoms at k ¼ 500 nm is about 106-times
higher than for incoherent scattering by the different
atoms.

When the diameters of the particles reach the wavelength
k the scattered intensity strongly depends on the diameter d,
and also on the material of the particle and its surface
quality. Now constructive as well as destructive interference
between the different partial scattered waves can occur,
depending on their optical path difference. The accurate
theoretical treatment of this Mie-scattering (Gustav Mie,
1886–1957) demands significant mathematical efforts which
exceed the framework of this introduction [14–17].

Interference, diffraction and scattering are responsible for
many optical phenomena in our atmosphere. We will discuss
this in the next section.

10.10 Optical Phenomena in Our
Atmosphere

We start with atmospheric phenomena, which are based on
light scattering.

d << λ

coherent
superposition
of scattered waves

2

K
KAI ∑∝

Fig. 10.65 Scattering of light by micro-particles with diameters
d 
 k (Mie-Scattering)

S

direction
of view

atmosphere

sun
radiation

Fig. 10.66 Scattering of the sun light in the earth atmosphere
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10.10.1 Light Scattering in Our Atmosphere

Even if we do not look towards our sun, we see on a sunny
day a bright blue sky or white clouds. This is due to the
scattering of the sun light by molecules, micro particles such
as water droplets, dust particles or aerosols in the atmosphere
(Fig. 10.66). For astronauts outside of our atmosphere the
sky is dark (besides some bright stars) if they look away
from the sun.

We will now discuss and answer the following questions:

10.10.1.1 Why Is the Unclouded Sky Blue?
The blue color of the sky is determined by three factors:

• The spectral intensity distribution I kð Þ of the sun
radiation, which has a maximum at k ¼ 455 nm
(Fig. 10.67). This is discussed in more detail in Vol.
3, Sect. 3.1.

• The wavelength-dependence of the scattering cross
section r(k), which varies with 1=k4.

• The spectral distribution of the detection sensitivity
g kð Þ of the human eye which is maximum at the
wavelength km (biological adaption).

The color of the sky as perceived be our eye, is therefore
determined by the signal

S kð Þ / I kð Þ � r kð Þ � g kð Þ: ð10:105Þ
registered by our brain.

The absorption or emission wavelengths of the molecules
in our atmosphere (N2, O2, H2) are all in the ultraviolet
region at k < 200 nm. For the visible range the frequencies
x are therefore far away from the resonance frequency x0.
This means that the term x2

0 � x2 in (10.100) is large
compared to x � c but does not vary much over the visible
region. We can then set r xð Þ / x4 ! r kð Þ / 1=k4.

Example

For x ¼ 1=3x0, c ¼ 108 s�1 x0 ¼ 1015 s�1 )
x2

0 � x2
� �2¼ 0:8x4

0 � x2c2ð Þ.

In Fig. 10.68 the scattering of the light beam of an argon
laser is shown. Without scattering the laser beam would not
be visible from the side. In order to determine the spectral
maximum of S(k) we have to investigate the penetration
depth Li of the radiation with wavelength k into the earth
atmosphere. If the main contribution of the attenuation is due
to Mie scattering by particles with scattering cross section rS
we obtain

I Lð Þ ¼ I0 � e�n�r�L

and for the extinction length

Le � 1
n � rS ; ð10:106Þ

where n is the number density of scattering particles (number
per unit volume). After the path length Le has the intensity of
the incident radiation decreased to 1/e of its initial value.

Other contributions to the attenuation are Rayleigh scat-
tering and absorption by molecules in the atmosphere. The
main gas components are N2, O2, O3 and CO2. The first two
components do not absorb in the visible and UV region, O3

which represents only a minor fraction of molecules, absorbs
in the UV below 350 nm and protect us from the dangerous
region of UV radiation of the sun, CO2 absorbs in the
infrared region. Therefore absorption plays only a minor role
for the attenuation of the sun radiation. The Rayleigh scat-
tering cross section is proportional to x4 or 1/k4.

With rS / 1=k4 we get

Le / k4

n
: ð10:107Þ

Example

Typical cross sections for Rayleigh scattering by
nitrogen molecules are rS k0ð Þ � 3� 10�31 m2 for
k ¼ 600 nm. With a density n ¼ 1025m�3 of N2-
molecules at atmospheric pressure we get

Le � 3� 105
k
k0

� �4

m:

For k ¼ 400 nm (blue light) ) Le ¼ 60 km, for
k ¼ 700 nm (red light) ) Le ¼ 550 km:

I(λ)

I(λ)

η(λ)

λ/μm0,5

σS(λ)
σS(λ)

Fig. 10.67 Spectral intensity distribution I kð Þ of the sun radiation.
Scattering cross section rS kð Þ and spectral dependence of the
sensitivity g kð Þ of the human eye
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These numerical examples show that the attenuation of
sun light by Rayleigh scattering only plays an essential role
in the morning and evening, where the solar altitude is low
and the path length of sun radiation through the atmosphere
is large (Fig. 10.70). However, the contribution of Mie
scattering due to dust and aerosol particles, water droplets
and microscopic ice crystals is much higher than that of
Rayleigh scattering. Therefore the attenuation of the blue
contribution in the sun light is even at noon noticeable. On
high mountains one observers a color of the sky that is
shifted towards the UV region and appears to the eye as dark
blue (Fig. 10.68).

Since the sun light is scattered into all directions, part of
the sunlight, in particular the blue contribution, is scattered
onto the earth surface. Therefore we see a blue sky when we
do not look into the direction of the sun. Part of the sun light
is scattered back into outer space. The earth therefore
appears for an observer outside the earth (for instance from
the moon) as the “blue planet”, although part of this blue
appearance is due to light scattered from the oceans.

Note The detailed treatment of light scattering in the
atmosphere is very complex and can be found in [16–18].

10.10.1.2 Why Is the Sky Light Partially
Polarized?

When one looks through a polarization filter into the blue
sky one finds by rotating the filter, that the sky light is
partially polarized. This can be explained as follows:

The molecular dipoles, induced by the sun light, oscillate
in a plane perpendicular to the incidence direction k of the
light (Fig. 10.69).

In this plane they have randomly orientated oscillation
directions because the sun light is unpolarized. The dipoles
oscillating in the plane SMB in Fig. 10.69 radiate into the
direction towards the observer B the fraction IS ¼
I0 � sin2 h ¼ I0 � cos2 a which is polarized in the plane SMB.
For the dipoles oscillating perpendicular to the plane SMB
the angle h is h ¼ 90. This means their maximum scattering
intensity if towards the observer B.

The component of the scattered radiation polarized per-
pendicular to the plane SMB is therefore stronger than the
parallel component. The degree of polarization

Fig. 10.68 Light scattering of the green out-
put beam of an argon laser and the red beam of
a krypton laser. The two beams are sent
through the lab window (reflections) into the
night sky. The yellow beam is a color mix of
red and green-blue on the film. The beams are
visible from the side only because of scattering
(H. J. Foth, Kaiserslautern)
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Fig. 10.69 Explanation of the partial polarization of the sun light
scattered in the atmosphere
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PG ¼ Ik � I?
Ik þ I?

¼ 1� cos2 a
1þ cos2 a

ð10:108Þ

depends on the angle a ¼ 90 � h between the viewing
direction BM and the direction SM of the sun radiation.

Bees use this partial polarization for their orientation.

10.10.1.3 Why Appears the Rising and Setting
Sun Reddish?

This is also due to light scattering in the atmosphere. For the
low position of the sun in the morning and evening the path
length of the sun radiation through the atmosphere becomes
very long. The observer looking into the direction to the sun
observes the direct radiation which is attenuated by Rayleigh
and Mie scattering (Fig. 10.70). The blue spectrum is much
more scattered out of the incident direction than the red one.
Therefore the spectral distribution has shifted to the red.

The sun radiation is also strongly attenuated on its way
through the atmosphere. This effect is much more pronounced
for low sun positions because the sun radiation now propa-
gates a long way through the lower atmosphere, where
besides the air molecules water droplets, ice-crystals and dust
particles give a large contribution to the attenuation of the
radiation. Therefore it is possible to look with the naked eye
directly into the red sun. This would not be possible without
filters at noon time, because the strong sun radiation, in par-
ticular the UV-fraction would damage the retina of the eye.

10.10.1.4 Why Appear Faraway Mountains Blue?
The sky light scattered by faraway mountains reach the
observer after propagating through the low atmosphere
(Fig. 10.70). Here the main contribution for the attenuation is
Mie scattering by water droplets, dust particles and micro ice
crystals. The size of these particles in the lower atmosphere is
of the same order of magnitude as the wavelength k. For such
sizes of the scattering particles the Mie cross section does not
strongly depend on the wavelength. Therefore the wave-
length distribution of the radiation reaching the observer, is
about the same as that, incident onto the mountains, which is
the blue shifted radiation scattered by the sky.

For longer ways through the lower atmosphere the con-
tribution of the Rayleigh scattering increases. This causes
that the blue part of the spectrum is more strongly scattered

out of the observation direction than the red part. This brings
about a red shift of the observed radiation. Therefore very
faraway mountains appear in a blue-white color [19].

10.10.2 Halo Phenomena

Under certain weather conditions one observes a colored ring
around the sun, where the inner edge appears red and the outer
edge blue (Fig. 10.71). This phenomenon is called Halo
(= gloriole). Its formation is due, similar to the origin of the
rainbow, to refraction and reflection of sun light. The
refracting objects are here no spheres as for rainbows, but
cylindrical ice crystals with hexagonal basis (Fig. 10.72)
which are formed in the higher atmosphere. For a symmetrical
ray path the minimum deflection angle is dmin ¼ 22 for a
refractive index n ¼ 1:31 (see Sect. 9.4 and Problem 10.13).

atmosphere

scattered parts of sun
radiation ∝ ω4

earth

observer

Fig. 10.70 Explanation of the reddish color of the rising or setting sun

Fig. 10.71 Halo around the sun (Andreas Möller - CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=44286865)

from
sun

n = 1,31

α β β α

δ = 22°
min

(a)

(b)

Fig. 10.72 Explanation of the halo. a) Rhombohedra ice-crystal with
hexagonal basis, b) ray path for minimum deflection
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Since the ice crystals in the atmosphere are randomly
orientated, all possible angles a of incidence occur. For the
case of minimum deflection is dd=da ¼ 0. For dmin therefore
many angles of incidence in the interval aS 	 Dað Þ con-
tribute to the same deflection angle similar to the rainbow
effect (Fig. 9.71). From all ice crystals those with the ori-
entation that results in a symmetric ray path contributes most
of the light deflected by 22. Therefore at 22 appears an
intensity maximum.

10.10.3 Aureole Around the Moon

Just before a bad weather period one can observe colored
rings around the moon. They have, however, a reverse
sequence k(r) of colors compared to the halo (Fig. 10.73).
Therefore this aureole must be caused by another physical
phenomenon as the halo. Fraunhofer recognized already in
1825 that the cause of this moon aureole is not refraction but
diffraction by small water droplets or ice crystals in the
atmosphere.

Since the central diffraction maximum for diffraction by a
spherical droplet with a diameter d covers the angular range
Dh ¼ 	1:2k=d the diameter d of the droplets must be
smaller than d\1:2k=Dhm in order to make the aureole
larger than the angular diameter DhM ¼ 0:5 ¼ 8:7� 10�3

rad of the moon disc. For k = 500 nm this gives d\70 lm.
Often this colored ring with the blue inner edge and the red

outer edge is called the Corona of the moon [20]. This name
should be not confused with the corona of the sun, which is

due to its very hot outer atmosphere and not to any diffraction
effects. Its radiation can be seen during a sun eclipse.

10.10.4 Glory Phenomena

When looking out of a plane which flies above the clouds,
one can see (if the position of the sun is opposite to the
viewing direction) the shadow of the plane surrounded by a
bright colored circular disc (Fig. 10.74). Often a similar
phenomenon can be observed when standing on the top of a
mountain above the clouds with the backside towards the
sun. One can then see its own shadow, where the head is

(a) (b)

Fig. 10.73 a) Aureole around the moon [Benjamin Kühne], b) around the sun [Karl Kaiser]

Fig. 10.74 Glory and shadow of a plane, observed from the plane
above the clouds
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surrounded by a glory like the gloriole around the heads of
the Saints on ancient paintings.

Its physical origin is more difficult to explain than the
rainbow or the aureole. Only recently it was recognized [21]
that it is based on the quantum-mechanical tunnel effect (see
Vol. 3, Sect. 4.2.3). This is illustrated in Fig. 10.75.

The incident sunlight partly penetrates into a water droplet
and is then refracted and reflected at the spherical surface of
the droplet. It turns out, however, that this alone cannot
correctly describe the observed phenomena. Even light that
falls closely above or below the droplet can tunnel through
the droplet surface into the inside (Fig. 10.75) and propagates
by total reflection many times along the inner part of the
surface [20]. At each reflection part of the wave can tunnel
back out of the droplet. If the exit location can be seen by the
observer, he sees the blaze of glory. The light is deflected in
all directions, different from the situation for the rainbow.

part of the incident wave tunneled into water drop

wave inside the drop
propagates by total reflection

part of propagating wave
leaves the drop by tunneling

to observer

Fig. 10.75 Explanation of the glory phenomenon
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Summary

• Interference phenomena can be observed when two or
more coherent partial waves with locally dependent
phase differences are superimposed in a defined space
region. The coherence volume is the maximum vol-
ume where still coherent superposition is possible.

• The coherent partial waves can be realized either by
phase coupling of two or more radiation sources or by
splitting of one wave into two or more partial waves,
which are again superimposed after traversing differ-
ent path lengths Ds. This superposition gives maxi-
mum intensity, if the path differences Ds ¼ m � k are
an integer multiple of the wavelength.

• Albert Abraham Michelson could experimentally
prove, using a two-beam interferometer, that the speed
of light is independent of the motion of source or
observer.

• Multiple-beam interference is used in the Fabry-Perot-
interferometer (FPI) for the precise measurement of
optical wavelengths. For dielectric multi-layer mirrors
it allows the realization of any requested wavelength-
dependent reflectivity R kð Þ.

• The spatial propagation of waves can be described by
Huygens’s principle which states that each point of a
phase surface can be regarded as the source of a
spherical wave (secondary wave). The total wave is
then the superposition of all secondary waves.

• The diffraction of waves can be taken as interference
of secondary waves which are emitted from a spatially
confined region.

• The angular intensity distribution of a plane wave
diffracted by a slit with width b can be described as

IðhÞ ¼ I0
sin2½pðb=kÞ sin h�
½pðb=kÞ sin h�2 ;

where h is the angle against the direction of the inci-
dent wave.

• The rotational symmetric intensity distribution of a
plane wave diffracted by a circular aperture with
radius R is

IðhÞ ¼ I0
J21 ½2pðR=kÞ sin h�
½2pðR=kÞ sin h�2 ;

where J1 is the first order Bessel function.
• The intensity distribution of a diffraction grating is

determined by two factors: (1) the diffraction by a
single slit, (2) the interference of the partial waves
transmitted by the different slits of the grating.

• Fraunhofer-diffraction describes the diffraction of
parallel light beams, Fresnel diffraction that of diver-
gent or convergent light. Fraunhofer-diffraction is
observed in the far field at the distance z � b2=kð Þ
behind the diffracting aperture with diameter b, Fres-
nel diffraction is observed in the near field where still
z � b but where only a few Fresnel zones contribute
to the field amplitude of the wave in the observation
plane.

• Blocking the first Fresnel zone increases the intensity
in the observation plane.

• With Fresnel zone plates (Fresnel lenses) the optical
imaging of a light source can be realized by blocking
either all even Fresnel zones or all odd ones. This
yields constructive interference of all transmitted light
beams and increases the intensity in the observation
plane.

• Babinet’s theorem states that two complementary
areas where transparent and opaque areas are inter-
changed show the same diffraction structures (outside
of regions described b geometrical optic).

• The amplitude distribution E x0; y0ð Þ of the Fraunhofer
diffraction pattern is proportional to the Fourier-
transform of the field distribution E x; yð Þ in the
object plane.

• The Fourier transform of a constant field amplitude
within a rectangular opening a � b yields in the
observation plane x0; y0 the diffraction pattern of two
orthogonal infinitely extended slits with widths a and
b resp.

• Light is scattered by atoms, molecules and micro-
particles. Coherent scattering occurs if there are tem-
porally constant distances b\k between the different
scattering centers. If these distances vary randomly in
time, incoherent scattering is observed.

• For coherent scattering the scattered intensity is
obtained by adding the amplitudes from the different
scattering centers and then squaring the sum i.e.
I = (RAk)

2.
• For incoherent scattering the intensities of the different

scattering centers are added: I = RIk.
• The circular halo around the sun with an angular

diameter of 2� 22 is generated by refraction and
reflection of light by hexagonal ice crystals in the
higher atmosphere.

• The aureole around the moon is due to diffraction of
the moon light by water droplets or ice crystals in the
atmosphere.
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Problems

10:1 (a) Show that the expression (10.5) describes for
constant values of Ds hyperbolas x2=a2ð Þ�
y2=b2ð Þ ¼ 1. How depends a and b from Ds and
from the distance 2d of the two virtual light
sources?

(b) Calculate for z0 � d the distance between the
vertexes of the two hyperbolas.

10:2 How large are the radii of the interference rings in
the observation plane behind a Michelson interfer-
ometer that is illuminated by divergent light as a
function of the path difference Ds?

10:3 Why is an interference pattern of parallel stripes
observed behind a Michelson interferometer, when
one of the mirrors M1 or M2 is slightly tilted?

10:4 What is the reflectivity R of a dielectric mirror for
vertical incidence
(a) for one layer nH � d ¼ k=4
(b) nH � d ¼ k=2
(c) For (H, L) alternating layers consisting of two k/

4 layers with nH ¼ 1:8, nL ¼ 1:3 on a glass
substrate with nS ¼ 1:5 in air with n0 ¼ 1?

10:5 Determine the intensity distribution of diffracted
light behind a slit with width D when a parallel light
beam with wavelength k under the angle a0 against
the surface normal incides onto the slit. Show that
the distribution I a0; að Þ reduces to (10.43) for a0 = 0.

10:6 A parallel light beam with k = 480 nm hits an
optical grating with 1000 grooves per mm under the
incidence angle a ¼ 30 against the grating normal.
(a) At which angle b appears the first diffraction

order? Does the second order exist?
(b) How large must be the blaze angle h?
(c) How large is the difference Db for the two

wavelengths k1 = 480 nm and k2 = 481 nm?
(d) What is the maximum entrance slit width b in a

grating monochromator with a 100 � 100 mm2

grating and focal lengths f1 = f2 = 1 m when
the two wavelengths should be resolved? How
large is the diffraction limited width of the
entrance slit image?

(e) Under which angle a must the incident beam hit
the grating when the diffracted light should be
reflected back into the incidence direction (Lit-
trow grating)?

10:7 An oil layer (n = 1.6) on a water surface is illumi-
nated by light with k = 500 nm It reflects maximum
intensity when illuminated under the incidence angle
a = 45°. How thick is the layer? Which wavelength

would be preferentially reflected for vertical inci-
dence (a = 0)?

10:8 Two plane parallel glass plates are placed on top of
each other. At one edge a thin paper strip is placed
between the plates, causing a wedge-shaped air layer
between the plates. For vertical illumination with
parallel light at the wavelength k = 589 nm one
observes 12 interference stripes per cm. What is the
wedge angle?

10:9 The first slit in Young’s double slit experiment may
be twice as broad as the second slit. How does the
intensity distribution looks like on a screen far
behind the slits?

10:10 The first order diffraction maximum is located not
right in the middle between the first and the second
diffraction minimum. How large is the deviation
from the middle point?

10:11 The diameter of a laser beam (k = 600 nm) is
enlarged by a telescope to a parallel beam with 1 m
diameter d and is sent to the moon.
(a) How large is the light spot on the moon

(D = 380.000 km), if air turbulence in the earth
atmosphere can be neglected?

(b) Which power of the light reflected by the
retroreflector on the moon (0:5 � 0:5m2 area)
reaches the telescope, when 108 W have been
sent through the telescope to the moon?

(c) How large would this power be, if the light is
diffusively and uniformly reflected by the moon
surface with the reflectivity R ¼ 0:3 into all
directions within the solid angle X ¼ 2p
(without retroreflector)?

10:12 (a) Show, that for a single anti-reflection-layer
(10.37a, 10.37b) is valid. Take into account
the two possibilities for the refractive index n1
of the layer and select the correct thickness d of
the layer.

(b) Show that a satisfactory result can be obtained
even for only two reflected rays.

10:13 Show that the minimum deflection angle for the
refraction by a hexagonal ice crystal with n ¼ 1:31 is
given by dmin ¼ 22.

10:14 Calculate the optical frequency xm for which the
scattering cross section for light scattering becomes
maximum. Compare the result with the frequency-
dependent energy consumption of a damped forced
oscillator (Vol. 1, Chap. 11).
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11Optical Instruments

Our ability to see is probable the most important commu-
nication between the human individual and his surroundings.
Although the human eye is, regarded from the optical
standpoint, a lousy lens with many lens aberrations, it forms
in combination with our brain, which corrects most of the
aberrations, an admirable optical instrument, which can
optimally adapt to the actual optical conditions.

Nevertheless it needs for many situations additional
instruments, which can enlarge the perception range. They
can increase the spatial resolution capacity (magnifying
glass, microscope), the light intensity reaching the eye from
weak sources (telescope) or broaden the accessible spectral
range (image converter).

In this chapter we will represent the most important optical
instruments, their advantages and their limitations. Further-
more the spectrograph and the monochromator, which are
essential instruments for spectroscopy, are introduced. Their
spectral resolution is compared with that of interferometers,
which have been already discussed in Chap. 10.

11.1 The Human Eye

The human eye can be regarded as an adaptive optical
instrument that can be optimized for different distances of
the observed object and for different incident light intensi-
ties. Its biological composition is accordingly complex.

11.1.1 The Bio-physical Structure of the Eye

One distinguishes between the external eye (eyelid with
eyelashes, lacrimal glands, eye muscles), the eyeball as the
main part of the eye lens, and the retina with the optic nerves
as detector (Fig. 11.1).

The eye ball is nearly spherical with a diameter of about
22 mm. It is enclosed by the opaque white sclera S which is
connected on the front side with the transparent bulged

cornea C. behind the cornea is the iris I which has a circular
aperture with variable diameter (pupil P) which can adapt to
the incident light intensity (controlled by the brain). The
space between cornea C and iris I is the anterior chamber of
the eye, which is filled with a transparent diluted liquid.
Behind the iris is the biconvex eye-lens which consists of
many transparent layers. Its radius of curvature is controlled
by the eye muscle M which adapts the focal length of the
lens according to the distance of the observed object (ac-
commodation). The focal length of the exe is however not
only determined by the lens, but also by the cornea, the eye
chamber liquid and the vitreous body of the eye ball. Since
the outer interface of the cornea faces atmospheric air, but
the inner interface the liquid of the anterior eye chamber the
focal length f1 of the object side is different from the focal
length f2 on the image side (Fig. 11.2).

For the discussion of the optical imaging of the human
eye, it can be replaced by a lens with variable focal length.
For observed objects in an infinite distance d (relaxed eye) is
f1 ¼ 17mm and f2 ¼ 22mm. For observed objects in a
near distance d down to d = 10 cm (visual range) the eye
lens must be stronger curved by the eye muscle and f1
decreases to f1 = 14 mm and f2 = 19 mm.

The light sensitive part of the eye is the retina which
consists of several layers (Fig. 11.3). At first (seen from the
eye lens) a layer of nerve fibers covers a layer of ganglia and
bipolar cells followed by a layer where the actual photore-
ceptors (rods and cones) are located. The total retina has
much more rods (120 Millions) than cones (10 Millions).
Only in the area of the sharpest seeing (fovea) where most of
the light at normal seeing is focused, are exclusively cones
with a density of 14.000/mm2, which decreases strongly
towards the edge of the retina.

The rods are more sensitive than the cones, but they are
color-blind, i.e. they can only distinguish between dark and
bright contrary to the cones which exist as three types with
different types of receptors for red, green and blue. In
Fig. 11.4 the relative sensitivity gðkÞ=gm is depicted for the
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different types of cones, where ηm is the maximum sensitivity
of cone type b. At sufficiently high light intensity we see only
with the cones, at darkness only with the rods, at twilight with
both. Since the rods are more sensitive than the cones it is
difficult to distinguish colors at twilight [1, 2]. Recently new
cells (ganglion cells) have been discovered in the retina,
which control the daily rhythm of our body. When these
cells receive light, they alter their electrical conductivity.
This generates neuronal signals that are transferred to the
brain.
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Fig. 11.1 a) Vertical cut through the human eye. b) Horizontal cut through the right eye seen from above
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Fig. 11.2 Compensation representation of the eye by a lens with focal
length f1 on the object side and f2 on the image side
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It is interesting that the incident light has to pass through
all layers of the retina before it reaches the photoreceptors.
This is certainly not optimized with respect to the function of
the eye as optical imaging system. The electrical output
signals of the photoreceptors has to be sent back to the nerve
cells in the first layer of the retina, which then send their
output signals to the brain. The question arises whether the
light on its way through all layers of the retina is not scat-
tered, which would blur the image on the photoreceptors and
therefore would decrease the spatial resolution. Only
recently detailed investigations have shown, that some cells
in the retina act as optical fibers which guide the light to the
photoreceptors without scattering.

11.1.2 Short- and Far-Sightedness

For a short-sighted eye the focal length f2 on the image side
is too small. The eye muscle cannot sufficiently stretch the
eye lens (for instance if the eye socket is too small). The
radius of curvature of the lens is then too small. For all
objects at a far distance the image is produced before the
retina (Fig. 11.5a), while objects at very small distances are
correctly imaged. Shortsightedness can be corrected by an
additional diverging lens (Fig. 11.5a) which can be either
carried as eyeglasses or as contact lenses.

For a farsighted eye the eye lens cannot be sufficiently
contorted (for instance because of the visual fatigue of the
eye muscle for older people, called presbyopia). Therefore
the focal length of the image side is too large and the image
of objects lies behind the retina. Here a converging lens is
needed for correction (Fig. 11.5b)

Since the eye acts as an imaging lens, all lens aberrations,
discussed in Sect. 9.5.5 (for instance astigmatism) can occur.
They can be corrected by special grounded eye glasses. For
astigmatism these are a combination of spherical and
cylindrical lenses [3].

11.1.3 Spatial Resolution and Sensitivity
of the Eye

The nearer an object is brought to the eye the larger appears
its size, i.e. the larger becomes the angle e between the light
rays from the edges of the object (Fig. 11.6). At a distance
s of the object with diameter G we get for the visual angle e

tan e=2 ¼ 1
2
G

s
) e � G

s
ð11:1Þ

An object at the distance g has an image distance b ac-
cording to the lens equation

f1
g

þ f2
b

¼ 1 ð11:2Þ

10–17

λ/nm400

η(λ)/ηm

500 600

10–18
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c

Fig. 11.4 Relative spectral sensitivity of the three receptor cells a,
b and c in the cones and of the rhodopsin pigments in the rods (dashed
curve) The right ordinate scale gives the minimum power, incident onto
the retina, which can be still detected by the cones, which is smaller
than that for the rods
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Fig. 11.5 a) the short-sighted eye with and without a diverging lens,
b) the far sighted eye with and without a converging lens
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Note: Equation (11.2) differs from (9.26) because the
media before (air) and behind (eye liquid) are different and
therefore f1 6¼ f2. It can be derived in a similar way as (9.26)
following the discussion in Sect. 9.5.2 (see problem 11.3
and [4]).

Since the distance b between eye lens and retina is fixed by
the geometry of the eye the focal length of the eye lens has to
be adapted to the distance g of the object by changing the
curvature of the eye lens in such a way that the image occurs
exactly on the retina. This is, however, only possible down to a
minimum distance smin of the object, which differs for dif-
ferent persons but lies always around smin ¼ 10 cm. To avoid
fast fatigue of the eye the distance of objects should not be
smaller than s0 ¼ 25 cm. This distance s0 is called the clear
visual range and the corresponding visual angle is e0.

Example

An object at a distance s ¼ 1m can be imaged onto
the retina with distance b ¼ 22mm by the eye lens
with f1 ¼ 16mm if the focal length f2 becomes
f2 ¼ 21: 6mm. For s ¼ 15 cm and f1 ¼ 14mm, b ¼
22mm is f2 ¼ 19:95mm because the image distance
is for both cases nearly the same. Without the change
of f2 ¼ 21:6mm the focal length on the object side
had to be f1 ¼ 2:7mm, which is impossible because
of the geometry of the eye. The change of both focal
lengths is therefore an optimization process where the
largest possible range for the focus depth can be
reached at a minimum change of the curvature of the
eye lens.

The smallest still resolvable visual angle emin is deter-
mined by two factors:

(1) The diffraction by the eye pupil (see Sect. 11.3)
(2) The mutual distance between the photoreceptors on the

retina.

Nature has optimized this distance in such a way that both
limitations become equal. They limit the minimum still
resolvable visual angle to emin = 0.00028rad $ 1′. This
implies that two object points in a plane at the clear visual
range s0 = 25 cm with a mutual distance smaller than

Dxmin � s0 � emin � 25 � 2:8 � 10�4 cm

¼ 73 lm

cannot be resolved, i.e. they cannot be recognizes as two
different objects.

Example

Many older printers operate with a spatial resolution of
360 dpi (dots per inch). This corresponds to a distance
between two points of 70 lm. If the printed page is
hold closer than 25 cm in front of the eye one can still
see structures of the print letters. The present book is
printed with a resolution of 2540 dpi!

The sensitivity of the human eye for the detection of very
small light intensities is astonishing. For eyes adapted to
darkness the brain can still perceive signals from the rods and
cones in the retina if the received light power is as low as 10−17

W, whereas the maximum light power which can be received
without damage of the retina is 10−6 W. This illustrates the
large range of light powers that can be handled by our eyes.

The light perception of our eyes is proportional to the
logarithm of the incident light power, but also depends on
the intensity received beforehand. The eye adapted to
lightness stores the incident light power for about 50 ls, the
eye adapted to darkness for about 500 ls. The determination
of absolute light intensities from our visual light perception
is therefore not reliable, whereas the relative comparison
between the intensities reflected from two illuminated sur-
faces is very sensitive and reliable.

11.2 Magnifying Optical Instruments

The purpose of magnifying optical instruments is the mag-
nification of the visual angle e without coming below the
clear visual range s0. The angular magnification V of the
instrument is defined as the ratio

V ¼ visual angle e with instrument
visual angle e0 without instrument

Magnifying instruments allow the resolution of finer
details of the observed object which could not be resolved by
the naked eye if the visual angle e0 of an object at the clear
visual range s0 is smaller than emin = Dxmin/so = 1′ (see
Sect. 11.1.3).

Note: The angular magnification is generally not the same
as the image ratio B/G, defined as the ratio of image size
B divided by the object size G.

Since the optical instruments generally have a fixed focal
length f, they can generate sharp images of object points
A only in a fixed image plane z = g. If the object point A is
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shifted by the distance Dz, the image in the plane z = g be-
comes blurred out into a disc. The maximum shift Dzmax

which still gives an image size of an object point below the
resolution of the eye at the distance s0 is called the focus
depth of the optical instrument. The images within the focus
depth are still regarded as sharp images. The focus depth
depends on the diameter Da of the aperture in the instrument.
This can be seen as follows:

In Fig. 11.7 the point A is imaged by a lens into the point
B. If the object A is shifted to Af at the front side of the focus
depth the image is a circle with diameter u. The same is true,
if A is shifted to Ab at the backside of the focus depth.
According to the theorem of intercepting lines we get from
Fig. 11.7 the relation

u

DB
¼ bb � b0

bb
:

in a similar way the imaging of Ab gives the relation

u

DB
¼ b0 � bh

bh
:

using the lens equation

1
a

þ 1
b
¼ 1

f

we obtain for the imaging of the points Af, A and Ab the front
focus depth

Daf ¼ a0 � af ¼ b0f 2u

ðb0 � f ÞðDBb0 � DBf þ uf Þ
ð11:3aÞ

and for the back focus depth

Dab ¼ ab � a0 ¼ b0f 2u

ðb0 � f ÞðDBb0 � DBf � uf Þ :

ð11:3bÞ
The front focus depth Daf is therefore smaller than the

back focus depth Dab. Both are proportional to the square of

the focal length f and increase with decreasing diameter DB

of the aperture. The focus depth is therefore increased by
using a smaller aperture diameter Da.

Example

a0 = 1 m, f = 50 mm, b0 = 52.6 mm, u = 0.1 mm.

(a) For DB = 1 cm => Dab = 0.24 m and Daf =
0.16 m.

(b) For Da = 0.3 cm => Dab = 1.8 m and Daf =
0.40 m.

For case (a) the focus depth ranges from 1.24 to
0.84 m, for case (b) from 2.8 to 0.60 m.

11.2.1 Magnifying Glass

A magnifying glass is a lens with short focal length f. It is
placed between object and eye in such a sway that the object
lies in the focal plane of the lens (Fig. 11.8). Therefore a
parallel light beam enters the eye and the object appears at
infinite distance. The relaxed eye can adapt to this infinite
distance. The object with diameter A appears for the eye
under the angle e ¼ A=f . Without magnifying glass the
object would appear at the clear visual range s0 under the
angle e0 ¼ A=s0.

The angular magnification of the magnifying glass is then

VM ¼ tan e
tan e0

¼ A

f
� s0
A

¼ s0
f
: ð11:3cÞ
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Fig. 11.7 Definition of the focus depth for imaging by a lens
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The angular magnification of the magnifying glass is
equal to the ratio of clear visual range s0 to the focal
length f.

Example

f = 2 cm, s0 = 25 cm => VM = 12.5

The reason for the magnification is the small focal length
f which allows one to bring the object much closer to the eye
than the clear visual range s0 where the eye sees the object at
infinite distance and must therefore not accommodate to
small distances but can completely relax.

The magnification can be further enlarged if the object is
brought to the lens closer than the focal length (s < f). The
object then does not appear at infinite distance but at the
distance b (Fig. 11.8b) as a virtual image of A. (Fig. 11.9)

The magnification VL then becomes with B/b = A/a (the-
orem of intersecting lines)

VL ¼ tan e
tan e0

¼ B=b

A=s0
¼ A=g

A=s0
¼ s0

g
:

With the lens equation
we get

1
f
¼ 1

g
þ 1

b
) 1

g
¼ b � f

b � f
) VL ¼ s0ðb � f Þ

b � f :

For the clear visual range b = −s0 we obtain

) VL ¼ s0 þ f

f
¼ s0

f
þ 1: ð11:4Þ

The minimum object distance is

gmin ¼ s0 � f
s0 þ f

:

Example

s0 = 25 cm, f = 2 cm => gmin = 1.85 cm => VL = 13.3.

The eye lens now has to curve more strongly in order to
focus the divergent light rays onto the retina.

11.2.2 The Microscope

The microscope allows a much larger magnification than the
magnifying glass. Its basic design consists of two lenses
(Fig. 11.10). The first lens (objective) generates a real
intermediate image of the object in the focal plane of the
second lens (ocular). Therefore again parallel light beams
from each object point reach the eye similar to the situation
for the magnifying glass in Fig. 11.8.

One can derive from Fig. 11.10, using the theorem of
intercepting lines the relation B/A = b/a. With the lens
equation for L1 one obtains

1
f1

¼ 1
g

þ 1
b

) b ¼ g � f1
g � f1

¼ gf1
d

: ð11:4aÞ

When the object is placed close to the focal plane of L1

which gives g = f1 + d (d << f1) we get b >> g ) B >> G,
The ocular L2 acts as magnifying glass for the interme-

diate image. It is

tan e ¼ B1=f2 ¼ G � b
g � f2 : ð11:4bÞ

Without microscope the visual angle for a distance s0 of
the object would be

tan e0 ¼ G

s0
: ð11:4cÞ

The angular magnification of the microscope is then

VM ¼ Gbs0
Ggf2

¼ bs0
gf2

: ð11:5Þ
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Fig. 11.9 Illustration of Eq. (11.4)
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With the distance d = b + f2 between L1 and L2 one gets
with g � f1

VM � ðd � f2Þs0
f1f2

: ð11:6Þ

Example

f1 = 0.5 cm, f2 = 2 cm, d = 10 cm, s0 = 25 cm )
VM = 200.

The magnification can be controlled by the choice of the
focal lengths f1 and f2. Generally different objective lenses
are mounted in a rotatable cylinder and can be brought into
the light path by rotating the cylinder.

The commercial microscopes are more complicated than
the simple principal device in Fig. 11.10. The two single
lenses are replaced by lens systems which correct lens
aberrations and allow a larger aperture angle. In Fig. 11.11a
the ray path is shown for imaging of the object which is
placed in front of the microscope objective and which is
illuminated by light from a hot tungsten filament. The image
appears on the retina of the observing eye. On the right side
of Fig. 11.11 the ray path for the illumination of the object is
depicted. The bright tungsten filament is imaged into the eye
lens of the observer and not onto the retina. The observer
therefore does not see the filament but only a bright back-
ground at the position of the illuminated object. In Fig. 11.12
the design of a Zeiss microscope is illustrated. The light rays
are divided by a beam splitter and two light sources LQ1 and
LQ2 are used, which allow the observation of the object with
transparent illumination and in reflected light. Instead of the
observer’s eye a video camera can be installed which can
send the pictures directly to a computer [4].

11.2.3 Telescopes

Contrary to the microscope which magnifies objects close to
the objective lens, telescopes are used to magnify the images
of objects at far distances. The first telescope was constructed
1608 in Holland by Hans Lippershey (1570–1619) and later
Galilei improved it to use ít as astronomical telescope for the
observation of the planets (see Vol. 1, Fig. 1.1). Such a
telescope was also used in a modified form by Johannes
Kepler (1571–1630). The principle of the Kepler telescope is
shown in Fig. 11.13. It consist, analog to the microscope, of
two lenses. Here, however, the lens L1 has a large focal length
f1. It generates a real intermediate image of the faraway object
in the focal plane of the lens L1 which coincides with the left

lamp with
filament

collector

Field diaphragm

(b)(a)

aperture
(EP)

sample

condenser

microscope objective

AP

real
intermediate

image

Microscope-
ocular

exit pupil

retina
eye

Imaging beam path lighting beam path

Fig. 11.11 Ray path in the microscope with illumination of the object.
a) Imaging of the object, b) imaging of the illuminating light source
(after Pedrotti: Optics.)
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Fig. 11.12 Cut through a commercial microscope (Zeiss, Oberkochen
Germany)
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focal plane of L2. The lens L2 acts as magnifying glass for
observing this intermediate image. When the symmetry axis
of the telescope (black line in Fig. 11.13) points to the center
of a planet with diameter D, the angle between the rays from
the edges of the planet is 2e0 = D/f1, while the angle between
the rays seen by the observer behind L2 is 2e = D/f2.

The angular magnification is then

VF ¼ e
e0

¼ B

f2e0
¼ f1e0

f2e0
¼ f1

f2
: ð11:7Þ

The angular magnification of the telescope is equal to
the ratio f1/f2 of the focal lengths.

Note The image of an object, formed by the Kepler tele-
scope, is inverted.

Example

f1 = 2 m, f2 = 2 cm ) VT = 100

Remarks:

(a) Equation (11.6) converts to (11.7) for d = f1 + f2 and
s0 = f1.

(b) If one wants to avoid the inversion of the image (for
example if objects on earth are observed) either
inversion prisms can be used (prismatic binocular

Fig. 11.14) or the ocular must be a diverging lens
(Fig. 11.15).

For astronomical observations today generally mirror
telescopes instead of lens telescopes are used (Fig. 11.16)
because spherical or parabolic mirrors can be produced with
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Fig. 11.13 a) Magnification by the Kepler- telescope. b) Determina-
tion of the angular diameter of a planet as angle 2e between the rays
from opposite edges of the planet

Fig. 11.14 Prismatic binocular (with kind permission of Zeiss
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much larger diameters than lenses [5]. This increases the
luminosity of the telescope which is proportional to the
square of the mirror diameter. The largest today existing
telescopes (European Southern observatory on the Paranal, a
mountain in Chile, and the Keck telescope on Hawaii) have
mirror diameters of 10 m. Still larger telescopes are in
preparation which consist of many mirrors (up to 200)
forming together a parabolic reflecting surface (see Vol. 4,
Chap. 10). The alignment of the different mirrors must be
precise within k/10, which means within 50 nm! This can be
only achieved with laser-interferometric techniques [6].

There are several designs of mirror telescopes. In the
Cassegrain telescope(Fig. 11.16b) the light, falling onto the
large primary mirror is reflected onto a small secondary
mirror which reflects and focusses the light through a small
hole in the primary mirror and an ocular lens images the
light into the eye of the observer. Nowadays electronic
devices (CCD cameras or cooled CCD arrays) are used as
detectors instead of the visual observation.

In the radio frequency range (megahertz to Gigahertz
range) huge parabolic antennas (diameters about 100 m) are

used for the detection of radio waves from the universe). In
Fig. 9.17 the radio telescope in Effelsberg illustrates the size
of such devices. The parabolic mirror can be turned and
tilted to any desired position on the sky within a large
angular range.

11.3 The Importance of Diffraction in Optical
Instruments

In Sect. 11.2 we have discussed that magnifying optical
instruments allow the resolution of finer details of the
observed object. The increase of the spatial resolution is,
however, limited by diffraction. This will be illustrated by
two examples: The telescope and the microscope.

11.3.1 Angular Resolution of Telescopes

We regard in Fig. 11.17b the images of two stars S1 and S2
with the angular distance d generated in the focal plane of a
telescope. Because of their large distance the stars can be
treated as point light sources. This implies that the light from
these stars falling onto the telescope can be regarded as plane
waves. Due to diffraction at the limiting aperture D of the
telescope the image of a star is no longer a point but a
circular intensity distribution I(r) in the image plane, which
is shown in Fig. 11.17a as a cut I(x) in the x-direction. The
diameter d of the central diffraction maximum is

ddiffr ¼ 2f1 � sin adiffr � 2:44 � f1 k=D: ð11:8aÞ
In Fig. 11.17b the diffraction limited intensity distribu-

tions I(x − x1) and I(x − x2) of the images of two close stars
around the central focal points F1(x1, z0) and F2(x2, z0) are
shown in the focal plane z = z0.When the central maximum
I1(x1) coincides with the first minimum of I2(x − x2) the
superposition I(x) = I1(x) + I2(x) of the two images just
barely shows does two distinctly separated maxima, i.e. for
smaller separations one cannot decide whether the observed
intensity distribution is due to two separated sources S1 and
S2 (Rayleigh Criterion) (see also Problem 11.4 and
Sect. 11.5.3). Since the first minimum appears at the diffrac-
tion angle h = 1.22 k/D (see Sect. 10.5) the minimum still
resolvable angle between the light rays from two sources is

dmin ¼ 1:22 � k=D: ð11:8bÞ
For this angular distance the superposition of the two

Bessel functions J1(x − x1) and J2(x − x2) has still two
distinct maxima at x = x1 and x = x2 with a recess of the
total intensity
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Fig. 11.16 Mirror telescope.a) Schematic representation of the angu-
lar magnification (in real telescopes the light is deflected into the eye by
a small mirror before the ocular, b) cassegrain- telescope
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I(x = ½(x1 + x2)) = 0.85 � Imax between these maxima.
We therefore define the quantity

RW ¼ 1
dmin

¼ D

1:22k
: ð11:8cÞ

as the diffraction limited angular resolving power of the
telescope.

The angular resolution of an optical instrument is
limited by the ratio D/k of diameter D of the limiting
aperture and wavelength k

Example

k = 500 nm, D = 1 m, f1 = 10 m ) Dmin = 6 10−7

rad = 0.13″ ) ddiffr = 6 lm

This diffraction limited resolution is, however, for
earthbound telescopes with D > 10 cm not the real limiting
factor because the random fluctuation of the atmospheric
refractive index (air turbulence) limits the angular resolution

to about 1″. With a special technique, the speckle inter-
ferometry [7] or the adaptive optics (Sect. 12.3) the air
turbulence can be partly outwit, In particular the adaptive
optics allows even for large telescopes an angular resolution
close to the diffraction limit.

For telescopes outside the earth atmosphere (e.g. the
Hubble telescope) air turbulence is of course completely
absent and these instruments reach indeed the diffraction
limited resolution.

For a mirror diameter D = 2.4 m (Hubble telescope) this
means for k = 500 nm an angular resolution of dmin = 2.54
10−7 rad = 0.052″. This corresponds to a spatial resolution
on the moon (r = 380.000 km) of Dxmin = 96 m!

11.3.2 Resolving Power of the Human Eye

The pupil of the eye has a diameter D which varies
according to the incident light intensity between 1 and
8 mm. Neglecting all lens aberrations the eye lens creates on
the retina a circular diffraction disc as image of a point like
source with a diameter
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Fig. 11.17 Limitation of the angular resolution of a telescope by the diffraction at the telescope aperture (entrance pupil). a) Diffraction intensity
distribution in the focal plane of L1, b) superposition of the images of two barely resolvable objects, c) photo of two barely resolved point-like
sources, d) Rayleigh criterion of the diffraction limited resolution
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ddiffr ¼ 2:44fk=D

For green light (k = 550 nm), which converts in the eye
ball (refractive index n = 1.33) to k = 413 nm, this gives for
f = 24 mm, D = 2 mm:

ddiffr � 10 lm:

This corresponds to the mean distance between the pho-
toreceptors (cones and rods) in the area of the fovea in the
retina where the packing density of the photo receptors is
maximum. This illustrates that nature has optimized in the
course of a long development the structure of the retina to
match the diffraction limited resolution.

The corresponding diffraction limited angular resolution
for k = 550 nm is

dmin � 1:22k=D � 2:9 � 10�4 rad � 10:

Our eye can therefore resolve structures of objects at the
clear visual range s0 down to the minimum size of

Dxmin ¼ s0 � dmin � 25 cm � 2:9 � 10�4 � 70 lm

For the resolution of smaller details one needs magnify-
ing glasses or microscopes.

Remark: The resolving power depends also on the form
of the object and the contrast of its structure.

11.3.3 Resolving Power of the Microscope

Diffraction represents also for the microscope the principal
limit of the spatial resolution.

We regard in Fig. 11.18 a point P1 of the illuminated
object in the observation plane which has the distance g from
the object lens L1 with diameter D.

In the image plane with distance b from L1 the image of
P1 shows a diffraction pattern with the diameter of the
central diffraction maximum

ddiffr ¼ 2:44 � k � b=D: ð11:9aÞ
In order to recognize a point P2 with a distance Dx =

P1P2 as spatially separated from P1 the distance between the
corresponding diffraction maxima of their images must be at
least ½ddiffr = 1.22 k b/D. According to the lens equation
this corresponds to a distance between two still resolvable
object points

Dxmin ¼ 1
2
ddiffr �

g

b
¼ 1:22k � g

b
: ð11:9bÞ

Since the object observed by a microscope lies generally
in the focal plane, it is g � f1 (Fig. 11.19). This gives for the
minimum still resolvable distance between two object points

Dxmin ¼ 1; 22:
k0

2n � sin a : ð11:9cÞ

The image distance is large compared to the object dis-
tance (b >> f1). From Fig. 11.18x we obtain the relation

tan amin ¼ Dx0

b
� 1 ) tan amin � amin

Similarly is

tan a0 � a0 ¼ D

2b

) Dx0 � a0 ¼ ðD=2Þ � amin ¼ D

2
� 1:22 k

D
¼ 0:61 k :

ð11:9dÞ
The image equation follows Abbe’s sin-theorem (9.40)

Dx � sin a ¼ x0 � sin a0 � Dx0 � a0 ð11:9eÞ
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Fig. 11.18 Illustration of the derivation of the resolving power of the
microscope
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Fig. 11.19 Basic illustration of the characteristic quantities used for
the explanation of the diffraction-limited resolution
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The maximum aperture angle a collected by the objective
lens L1 is given by

Dx � sin a ¼ Dx0 � sin a0 � Dx0 � a0 ð11:10Þ
We can then write (11.9c) as

) Dxmin ¼ Dx0 � a0
sin a

¼ 0:61k
sin a

: ð11:9fÞ

Using immersion oil with a large refractive index
(n = 1.5) between object and objective lens the resolution
can be increased by the factor 1.5 because kn = k0/n This
gives for the minimum distance

Dxmin ¼ 1:22 � k0
ð2n � sin aÞ : ð11:11aÞ

The product n sina = NA is called the numerical aper-
ture of the microscope . We can write (11.11a) then as

Dxmin ¼ 0:61
k0
NA

: ð11:11bÞ

Example

n = 1.5, sina = 0.8, (2a = 106°) ) NA = 1.2 )
xmin � 0.5 k.

Structures on objects illuminated by light with the
wavelength k, which are smaller than k/2 cannot be
resolved.

In order to reach a higher spatial resolution for optical
microscopes the wavelength k has to be decreased. Meanwhile
first successful attempts for the construction of X-ray- micro-
scopes (k � 10–50 nm) with Fresnel lenses (see Sect. 12.6.2)
have been performed. New optical techniques with lasers can
overcome the diffraction limit (see Sect. 11.3.5).

With electron microscopes (see Vol. 3) a much higher
spatial resolution down to Dx = 0.1 nm) can be realized.

11.3.4 Abbe’s Theorem of the Formation
of Images

Ernst Abbe (1840–1905) realized already 1890 that diffrac-
tion plays an essential role for the spatial resolution of
imaging optical instruments. He illustrated his theory by the
example of image formation in a microscope (Fig. 11.20).

We regard two illuminated slits S1 and S2 with the dis-
tance d as our objects. If only the zeroth diffraction order is
observed no information is obtained about the distance d.

The mth diffraction order appears under the angle hm against
the propagation direction of the incident light. Since

d � sin hm ¼ m � k ðm ¼ 1; 2; 3; . . .Þ
the diffraction angle hm = arcsin(m k/d) depends on the
distance d. Figure 11.20 illustrates that at least the +1. and
the −1. diffraction order contribute to the generation of the
images of the object slits. The objective lens therefore must
collect at least these diffraction orders to form the images of
the objects. This implies that the numerical aperture NA must
be at least

NA ¼ n sin a [ n sin h1 ¼ k
d

ð11:12aÞ

(where n is the refractive index of the immersion oil) in order
to achieve the spatial resolution Dxmin = d. The minimum
distance of two still resolvable objects is then for a given
numerical aperture

dmin ¼ k
ðn sin aÞ ¼ k

NA
; ð11:12bÞ

This agrees, apart from a factor 0.6 with (11.11b).
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Fig. 11.20 Illustration of Abbe’s theory of image formation in a
microscope. The red area gives the transmitted light of S1 between the +1.
and the –1. diffraction orders, the black shaded area that of light source S2
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The Abbe theory can be impressively demonstrated by
the following experiment: A quadratic grid in the x-y focal
plane of L1 is illuminated by parallel light (Fig. 11.21).
Behind L1 two mutual perpendicular slits with variable slit
width are placed in the x-direction resp. the y- direction. If
one of the slits is constricted such, that only the zeroth
diffraction order of the illuminated grid is transmitted, the
grid structure in one direction disappears and the image of
the two-dimensional quadratic grid becomes a one-
dimensional graticule, where the lines in the image are
perpendicular to the narrowed slit. If also the second slit is
narrowed the grid structure of the image disappears com-
pletely. With a beam splitter BS part of the light can be
reflected onto the plane B2 where the Fraunhofer diffraction
structure of the grid can be observed and one can see, which
diffraction orders are transmitted by the slits.

Within the framework of Fourier-representation
(Sect. 10.8) the Fraunhofer diffraction intensity distribution
can be regarded as Fourier-transform of the field distribution
in the diffraction plane. The image of the object in the
observation plane B1 is the Fourier transform of the dif-
fracted intensity distribution. If spatial structures are missing
(because they have been cut off by the aperture) the corre-
sponding Fourier parts are missing in the real image, which
means that the image is washed out (see Chap. 12).

11.3.5 Surpassing of the Classical Diffraction
Limit

In the last years several methods have been developed, which
can surpass the resolution limits, previously regarded as a
fundamental bound. We will here discuss only some of them:

(a) Confocal microscopy (Sect. 12.1)
(b) Optical near field microscopy (Sect. 12.2)
(c) the 4p-microscopy (this section)
(d) Stimulated depletion spectroscopy (this section).

All these techniques do not contradict Abbe’s theory,
because they achieve a higher spatial resolution by using
some tricks:

They either use a spatial narrowing of the light emitted by
the illuminated object, by using spatial filters (a), or they
limit the spatial volume of the light emitting molecules (b),
or they use the destructive interference when a laser beam
superimposes the beam reflected by a spherical mirror (c), or
they suppress the light emitted by the illuminated object for
all locations except a very small volume in the center of the
illuminating laser beam (d), which increases the spatial
resolution at least by a factor 10.

All these techniques use the high intensity and the
coherence properties of laser light sources (see Vol. 3,
Chap. 8). They therefore could not have been developed at
Abbe’s time.

In many cases not only the lateral spatial resolution
(perpendicular to the axis of the microscope) but also the
axial resolution (in the direction of light propagation) play
the essential role. For the classical microscope this is the
Rayleigh length zR (2zR is the distance around the focus,
where the diameter of the focused light beam has increased
to

ffiffiffi
2

p
times the diameter 2w0 in the focal plane (Fig. 11.22).

The cross section of the light beam has then doubled com-
pared to p w0

2 in the focal plane. As can be shown [8]:
The Rayleigh length is zR = p � w0

2/k.
Inserting for w0 the minimum still resolvable distance

Dx = 0.7 k in air (n = 1) we obtain a Rayleigh length
zR = 1.5k.

The technique of 4p microscopy, developed by Stefan
Hell [9] improves the axial resolution considerably.

The coherent laser light is focused by the lens L1 into the
sample. It is then reflected back into itself by a spherical
mirror and again focused into the same spot as the incident
light (Fig. 11.23). The superposition of the two waves gives
the total field amplitude

Eðz; r; /Þ ¼ E1ðz; r; /Þ þ E2ð� z; r; /Þ ð11:13aÞ
of a standing wave with the intensity distribution
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Fig. 11.21 Demonstration of Abbe’s theory
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Fig. 11.22 Definition of the Rayleigh length
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Iðz; r; /Þ ¼ jE1 þ E2j2
¼ E2

1 þ E2
2 þ 2E1 � E2 � cosðkz þ /Þ:

ð11:13bÞ
The last term describes the interference between incident

and reflected beam, which leads to intensity maxima and
minima with the distance of k=2. Because of the strong
divergence of the focused beam the intensity decreases
strongly as 1=r2 with increasing distance z from the focus.
The intensity I(z) has a narrow maximum at the focus z = 0
with the half width Dz � k/4. For the next maximum at
z ¼ k=2 the beam radius has already decreased from w0 in
the focus to

w z ¼ k=2ð Þ ¼ w0 � 1 þ 2f 2

pw2
1

� �2
" #1=2

ð11:13cÞ

where f is the focal length of the lens L1 and wl is the beam
diameter at the lens. For typical values f = 2 wl one obtains r
(z = ½ k) = 3.6 w0. The intensity I(z = ½ k) of the next
maximum has already decreased to 0.077 of the intensity in
the first maximum at z = 0.

Often a two-photon absorption spectroscopy is used. Here
the intensity decreases with 1/r4 and the second maximum
has only 0.6% of the intensity in the central maximum.

The signal is the fluorescence emitted from the excited
molecules in the focal volume. It is observed through a
microscope perpendicular to the incident laser beam.

With this technique it is possible to resolve structure in
biological cells that is smaller than k/10.

The radial resolution can be greatly improved be the
technique of stimulated depletion spectroscopy [10]. Here the
molecules are excited in the focus of a Gaussian laser beam
and emit fluorescence. The excited molecules are de-excited
by a second “depletion laser”with a radial donut beam profile
that surrounds the Gaussian profile of the first laser. This
depletion laser induces stimulated downward transitions of
the excited molecules and extinguishes the fluorescence
because the stimulated emission propagates into the direction
of the laser beam and does not reach the detector, perpen-
dicular to the laser beam. Depending on the intensity of the
depletion laser the radial profile of the fluorescence emitting
molecules can be narrowed down to 10 nm.

Another method for the improvement of the radial and
lateral resolution is the confocal microscopy which is dis-
cussed in Sect. 12.2 (see also [11]).

11.4 The Luminosity of Optical Instruments

Besides their spatial resolution the luminosity of optical in-
struments is often essential for many applications. Examples
are cameras, telescopes, slide projectors spectrographs etc.

The light power transmitted by an optical instrument
depends on the apertures which limit the cross section of the
transmitted light beam. Such apertures can be the lens
mounts, the area of prisms or gratings in spectrographs or
additional apertures in the light path through the instrument.

We name the common cross section of all incident light
rays the entrance pupil, the common cross section on the
image side the exit pupil.

For the simple imaging of an extended object by the lens
L (Fig. 11.24) the lens cross section is the common
entrance- and exit pupil. Placing an aperture B in the object
space before the lens (Fig. 11.25), this aperture limits the
maximum opening angle X for light emitted by any point
P of the object and therefore also limits the transmitted light
power. The aperture acts as entrance pupil. The real image of
the aperture on the image side is the exit pupil which

70 –140 nm

z fluorescence

ϕ

detector

(a)

(b)

plane
mirror

zzfocus

IFl

Fig. 11.23 a) The 4p imaging method to improve the axial resolution,
b) intensity I(z) of the fluorescence emitted by the sample in the focal
region
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Fig. 11.24 For the imaging by a lens without further apertures the lens
mount is the common entrance and exit pupil
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transmits only light beams on the image side with opening
angles �X′.

Since a self-luminous object generally emits light into the
whole solid angle 4p, the light power transmitted by the
instrument is proportional to the opening angle X accepted
by the entrance pupil. If the object is placed in the focal
plane of the light collecting lens with the focal length f and
the entrance pupil with diameter D in the plane of the lens L
(e.g. for a camera) the accepted solid angle is for D < f

X ¼ pD2=4
f 2

¼ p
4

D

f

� �2

: ð11:13Þ

Enlarging the diameter D by the factor
ffiffiffi
2

p
increases the

transmitted light power by the factor 2. For cameras the label
“aperture 8” means f=D ¼ 8. The ratio f/D is often called
“f-number ”. For f/D = 8 and f ¼ 40mm ) D ¼ 5mm,
for the f-number 11 is D ¼ 3:6mm and the transmitted light
power is just ½ of that transmitted for the f-number 8.

We will illustrate the luminosity for the example of a
projector (Fig. 11.26). The light emitted by a bright lamp is
collected by the condenser lens with a preferably large ratioD/
f. In order to collect also the light emitted into the backwards
direction a sphericalmirror reflects the light back into the lamp
and to the condenser lens. The slide is placed at a location
where the light beam has about the same cross section as the
slide in order to uniformly illuminate the slide. Each point of
the slide is now imaged by the lens L2 (objective, often a
system of several lenses) onto the projection screen. For a size
G of the slide the size of the projection image is

B ¼ b

g
G ð11:14bÞ

where b is the distance between projection screen and the
principal plane on the image side of the lens system L2 and
g is the distance between slide and principal plane of L2 on
the object side. The two quantities b and g are not inde-
pendent but are related by the lens equation

1
f2

¼ 1
g

þ 1
b

ð11:14cÞ

The image of the bright filament of the lamp should not
be imaged onto the screen. This can be avoided by the
proper choice of f1 and f2. Generally the focal lengths are
chosen such,that the image of the filament lies between the
lenses of the lens system L2 (red point in Fig. 11.26).

11.5 Spectrographs and Monochromators

The spectral distribution I kð Þ of the light emitted by a
radiation source can be measured with spectrographs where
the transmitted light is spatially separated according to its
wavelength k [12]. This spatial separation can be achieved
with prisms (prism spectrograph Fig. 11.27) or with opti-
cal gratings (grating spectrograph, Fig. 11.28).
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pupil, its image on the image side acts as exit pupil
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In prism spectrographs the dispersion of the refracted
index of the prism material is used which leads to
wavelength-dependent refraction angles, while in grating
spectrographs the wavelength-dependent diffraction and
interference of the waves reflected by the optical grating
cause the spatial separation of the reflected light.

In all types of spectrographs an entrance slit S1 is imaged
by lenses or mirrors onto the observation plane. If a slit S2
with width Dx is placed in the observation plane it transmits
only a limited wavelength interval

Dk ¼ ðdk=dxÞDx
which is determined by the inverse wavelength dispersion

ðdx=dkÞ�1 ¼ dk=dx of the spectrograph. The spectrograph
has been converted into a monochromator. The wanted
wavelength can be transmitted either by shifting the slit
across the observation plane or by turning the grating in
Fig. 11.28 around a vertical axis.

The dispersing element (prism or grating) causes a
wavelength-dependent deflection h of the incident parallel
light beam (Fig. 11.29). The lens L2 (or the mirror M2 in the
grating spectrograph) focuses the parallel light into the
observation plane. The lateral shift xðkÞ of the slit image
S2ðkÞ is for the wavelength change Dk

Dx ¼ xðk þ DkÞ � xðkÞ ¼ f2
dh
dk

Dk ð11:14dÞ

It depends on the angular dispersion dh=dk and the focal
length f2 of the objective lens L2.

11.5.1 Prism Spectrographs

The light emitted by the light source LQ in Fig. 11.27 is
collected by the lens L0 and focused onto the entrance slit
S1which is placed in the focal plane of the lens L1. The light
emerging through the slit S1 is formed by L1 into a parallel
light beam which passes through the prism. Due to the

wavelength-dependent dispersion the different wavelengths
suffer a different diffraction and form behind the prism dif-
ferent parallel light beam with different deflection angles h.
The lens L2 produces in the observation plane spatially
separated slit images S2ðkiÞ for the different wavelength ki.
The deflection angle hðkÞ is for the symmetric optical path
through the prism according to (9.20) given by

dh
dk

¼ 2 sinðc=2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2 sin2ðc=2Þ

q � dn
dk

ð11:14eÞ

It depends on the prism angle c and the dispersion dn=dk
of the prism material (Fig. 11.30).

Example

For flint glass is for k ¼ 500 nm n ¼ 1:81,
dn=dk ¼ 4400=cm. With an equilateral prism this
gives: dh=dk ¼ 1:02 � 10�3 rad/nm. The slit images
for two wavelengths that differ by Dk = 10 nm are
separated by Dx = f2 dh/dk Dk. With f2 ¼ 40 cm this
gives Dx = 4.1 mm.

The advantage of the prism spectrograph is its compact
design and the unambiguous assignment of the wavelength
ki from its position x(ki) in the observation plane. Its
drawback is the relative small wavelength dispersion, caus-
ing a moderate spectral resolution.

Example

With a slit width b ¼ 100 lm of the entrance slit two
spectral lines can be barely separated in a prism
spectrograph with the data of the previous example, if
their wavelength difference Dk is at least
Dk � f2 � dh=dk � b ¼ 0:25 nm. This gives a relative
spectral resolution k/Dk = 500/0.25 = 2000

L2

dispering
element

λ + ΔλΔx2 = f2 · dθ Δλ

λ

θ
Δθ

B

f2

Δx2

dλ

Fig. 11.29 Relation between angular and spectral dispersion
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Fig. 11.30 Dispersion curvesn(k) for some optical materials
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The measured spectral ranges are restricted to regions where
the prism material does not absorb. In the ultraviolet range
fused quartz (suprasil) is used. For the infrared region LiF or
NaCl are good candidates. Since the dispersion dn=dk is
particularly large close to absorbing transitions, one must
make a compromise between high spectral resolution and
high transmission. In Table 11.1 some materials which are
generally used, are listed.

11.5.2 Grating Monochromator

In a grating monochromator (Fig. 11.28) divergent light
transmitted through the entrance slit S1 is collected by the
spherical mirror M1 which reflects a parallel light beam, if
S1is located in the focal plane of M1. The parallel light beam
impinges onto the optical reflection grating under the angle a
against the grating normal (Fig. 10.45). The different partial
waves reflected by the different grating grooves superimpose
and interfere constructively in those directions b which
fulfill the grating equation

dðsin a þ sin bÞ ¼ m � k ð11:15Þ
For a fixed incidence angle a the direction b for construc-

tive interference depends on the wavelength k. The reflected
parallel light beam is focused by the spherical mirror M2 onto
the exit slit S2. The photodetector PhD sits behind S2.

The angular dispersion db=dk ¼ dk=dbð Þ�1 is obtained
by differentiating (11.15) with respect to b. This gives

db
dk

¼ m

d: cos b

¼ d2 cos2 a
m2

þ 2dk
m

sin a � k2
� ��1=2

:

ð11:16Þ

This illustrates that the angular dispersion depends on the
grating constant d (distance between adjacent grooves), the
interference order m, the wavelength k and the angle of
incidence a.

The spatial separation of two wavelengths k1 and k2 ¼
k1 þ Dk in the observation plane is

Dx ¼ f2:
db
dk

Dk ¼ f2
m:Dk

d � cos b : ð11:17Þ

11.5.3 The Spectral Resolution
of Spectrographs

The spectral resolution is defined as the ratio k=Dk of
wavelength k and the minimum still resolvable wavelength
interval Dk. For spectrographs isDk ¼ k1 � k2 the minimum
distance between the twowavelengths k1 and k2 for which two
separated slit images can be obtained. Without diffraction the
image of the entrance slit with width b is a rectangular
intensity distribution with width B = (f1/f1) b (Fig. 11.31a),
where f1 and f2 are the focal lengths of the lenses L1 and L2 in
Fig. 11.27 resp. the mirrors M1 and M2 in Fig. 11.28. For
most spectrographs is f1 = f2 ) B = b.

Due to the diffraction at the entrance pupil with diameter
a (this can be the lens mount of L1 In Fig. 11.32 or the edges
of the mirror M1 in Fig. 11.28) the intensity distribution I(x)
of the entrance slit image in the observation plane is, even
for b ! 0, not a delta function but becomes the diffraction
pattern of Eq. (10.43) in Fig. 11.31c with a bottom width
DxB ¼ 2 � f2 � k=a.

The images of the entrance slit for two adjacent wave-
lengths k1 and k2 ¼ k1 þ Dk are the two distributions
I1 x1; k1ð Þ and I2 x2; k2ð Þ which are separated by the distance
Dx = x2 – x1. They can be recognized as separated structures
if the maximum of I1(x) coincides with the first minimum of
I2(x). In this case the superposition of the two distributions
shows a recess between the two maxima which is 8/p2

0.8 = 80% of the maxima (Fig. 11.33).

Note: Although the diffraction at the much small entrance
slit with width b is much larger than that at the entrance

Table 11.1 Transmission range of some optical glasses

Glass Transmission range (nm)

Fused quartzglass 200–3000

Borosilcate glass 350–2000

Crownglass 350–2000

Flintglass 400–2500

dense Flint SF6 380–2500

(a)

Δx = B + 2f2λ/a

I(x)

x

B

x(λ)

I(x)

x

(b)

B = (f2/f1) · b

2f2λ/a

I(x)

x

(c)

Fig. 11.31 Intensity profile I(x) a) without diffraction for finite slit
width b[ [ k. b) With diffraction for b ! 0

11.5 Spectrographs and Monochromators 347



pupil with diameter a � b, it does not limit the resolution.
It causes a larger opening angle (in addition to the geo-
metrical divergence). For a parallel light beam falling onto
the entrance slit, the light transmitted by the slit has the
angular distribution shown in Fig. 11.34 with a diffraction
angle h ¼ k=b for the half angular width of the central
diffraction maximum. If h becomes larger than the accep-
tance angle a/2 = a/2f1 of the spectrometer the collimator
lens L1 cannot collect all the light, i.e. the transmitted light
power decreases. This is the case for

b\2f1 � k=a ð11:17aÞ

Therefore b should be larger than 2f1/k/a in order to avoid
a noticeable transmission loss. For b ¼ 2f1 � k=a the slit
image in the observation plane, broadened by the diffraction
at the entrance pupil has the base width

Dx ¼ f1 þ f2ð Þ k
a
: ð11:18aÞ

With increasing width b of the entrance slit the geomet-
rical image of the slit image in the observation plane B
becomes larger. The half-bottom width of the central
diffraction maximum becomes for monochromatic light and
f1 ¼ f2 ¼ f (Fig. 11.31b)

Dx ¼ b

2
þ f

k
a
: ð11:18bÞ

This corresponds to a wavelength interval

Dk ¼ dk
dx

Dx ¼ ð1
f
Þ dk
dh

Dx: ð11:18cÞ

For the minimum slit width b ¼ 2f � k=a the spectral
resolution becomes

k
Dk

¼ a

2
dh
dk

; ð11:19Þ

a

x
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Fig. 11.32 Broadening of slit image by diffraction at the limiting
edges of the enlarged light beam
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Fig. 11.33 Rayleigh criterion of the resolution of two close spectral
lines I k1ð Þ and I k2ð Þ
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Fig. 11.34 The diffraction by the entrance lit results in a loss of
transmission for k=b > a= 2f1ð Þ but not in a broadening of the slit image
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For a prism spectrograph with an equilateral prism
(c ¼ 60	 ) sin c=2ð Þ ¼ 1=2) and symmetric optical path
we get

k
Dk

¼ a

2
dn=dkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2=4

p ð11:20Þ

If the entrance pupil is limited by the size of the prism the
diameter a of the entrance pupil with base length L is
a = L cosa/(2sin½c) = L2 for a ¼ 60	 (Fig. 11.35). The
exit pupil has the same size for symmetric optical path. The
spectral resolution of the prism spectrograph Fig. 11.36

k
Dk

¼ 1
4

Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2=4

p dn
dk

ð11:21Þ

is then limited by the size L of the prism and the dispersion
dn=dk of the prism material.

Example

L ¼ 10 cm; n ¼ 1:47 (quartz glass suprasil)
dn=dk ¼ 1100=cm )

k
Dk

¼ 1
4

10ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0; 54

p � 1100 ¼ 4060: ð11:21aÞ

This means: For k ¼ 540 nm two wavelengths can
be separated if their difference is at least
Dk ¼ 0:14 nm.

A much higher spectral resolution can be achieved with
grating spectrographs. Here the diameter of the exit pupil is
a ¼ N � d � cosb, where d is the distance between adjacent
grooves and N is the number of illuminated grooves
(Figs. 11.28 and 11.37a). The angular distance Db between
the directions of the two wavelengths k1 and k2 ¼ k1 þ Dk
in the reflected light must be larger than half of the bottom
width of the central diffraction maximum for the diffraction
at the effective grating width N � d � cosb, i.e.

Dbmin ¼ k
a
¼ k

N � d � cos b ð11:22Þ

With (11.16) we get

Dk ¼ dk
db

Db ¼ d cos b
m

� Db

� d � cos b
m

� Dbmin ¼ k
m � N

) k
Dk

� m � N

ð11:23Þ

The spectral resolving power of a grating spectrograph
with N illuminated grooves is equal to the product of
interference order m and the number N of illuminated
grooves.

Two wavelengths k1 and k2 ¼ k1 þDk can be still
resolved (for an entrance slit width b ! 0) if the maxima of
the intensity distributions of the slit images in the observa-
tion plane (Fig. 11.35) are separated by at least

Dx� f2 � cosb � Dbmin ¼ f2k= N � dð Þ ð11:23aÞ

Example

A grating with 10 cm width and 1200 grooves/mm
operated in second order (m = 2) has a spectral reso-
lution (for full illumination of the grating)

d = L/(2sin /2)

L

a

Fig. 11.35 Determination of the entrance pupil with diameter d in the
prism spectrograph if the prism represents the boundary of the light
beam

x

I(x)

x

x = f2 N · d

Fig. 11.36 Spectral resolution of the grating spectrograph
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k=Dk ¼ 2 � 1:2 � 105 ¼ 2:4 � 105. This is 50 times as
large as for the example of the prism spectrograph.

11.5.4 A General Expression for the Spectral
Resolution

The Rayleigh criterion for the spatial separation of the slit
images of two spectral lines (the maximum of the intensity
distribution of the slit image for the wavelength k1 should be
not closer to that of k2 than the first diffraction minimum for
k2) can be formulated in a more general way:

A maximum of I k1ð Þ occurs if the maximum path dif-
ference Dsm between the interfering partial waves is an
integer multiple of the wavelength k1.

Dsm ¼ 2qk1 q ¼ integerð Þ: ð11:24aÞ
For this case the total light beam can be divided into two

halves.For each partial beam in the first half there exists a partial
beam in the second half with a path difference q � k, i.e. all
partial waves interfere constructively. For the grating spec-
trograph used in first order (m = 1) is for example 2q ¼ N.

If for the second wavelength k2 the first diffraction min-
imum should occur at the same diffraction angle ß the
condition for destructive interference is

Dsm ¼ 2q� 1ð Þk2: ð11:24bÞ

with k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 � k2ð Þp

we obtain from (11.24a, 11.24b)

k
Dk

¼ DSm

k
: ð11:25aÞ

The spectral resolution is equal to the maximum
path difference Dsm measured in units of the
wavelength k.

With k ¼ c=m and Dk=kj j ¼ Dm=mj j and Dsm ¼ c � DTm
the relation (11.25a, 11.25b) can be written as

m
Dm

� m � Dsm
c

¼ m � DTm ð11:25bÞ

this gives the important relation

Dm � DTm � 1: ð11:26Þ

For every spectrometer and interferometer the product
of the minimum resolvable frequency interval Dm and
the maximum transit time difference DTm between the
interfering partial waves is equal to 1.

In order to increase the spectral resolution one has to
increase the maximum path difference between the inter-
fering partial waves. However, this is only possible up to an
upper limit determined by the coherence length of the inci-
dent radiation (see Sect. 10.1).

Example

1. A general example of a common spectrometer or
interferometer:
Dsm ¼ 1m, c ¼ 3 � 188 m=s, => DTm ¼ 3:3 ns, )
Dm = 3 108 s−1. For visible light (m = 5 1014 s−1).
This corresponds to a spectral resolution

m
Dm

¼ 1:7 � 106:

2. For a grating spectrograph is Dsm ¼ N � d � sinaþð
sinbÞ ¼ N � m � k ) k=Dk ¼ m � N. For m ¼ 1
and N ¼ 105 ) Dk ¼ 10�5k ¼ 5 � 10�3nm for
k ¼ 500 nm.

3. For the Fabry-Perot interferometer is Dsm ¼ 2F
d �
cosa (see Eq. 10.32) where F
 is the effective
number of interfering partial waves. With
2d cosa ¼ m � k ) Dsm ¼ F
 � m � k. With F
 ¼
100;m ¼ 2 � 105 ) k=Dk ¼ 2 � 107:

d

(a)
N · d

sm = 2 – 1

1

cos

2

= 2q · 1 für Imax

= (2q – 1) 2 für Imin

1

1

2 3 ... F*

(b)

sm = – 1
2F*d

= 2F*d · cos

Fig. 11.37 General definition of the spectral resolution k=Dk ¼ Dsm=k.
a) For the grating spectrograph is Dsm ¼ N � m � k; b) for the interfer-
ometer is Dsm ¼ 2F
 � d � cosa, where F
 is the finesse
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Summary

• The angular resolution of the human eye is limited by
diffraction and by the distance between the photo-
receptors. The minimum still resolvable angle is

e0 ¼ 3 � 10�4rad � 10:

• The magnification V of an optical instrument is
defined as V = (visual angle e with instrument/visual
angle e0 without instrument) where e0 ¼ G=s0 is the
visual angle under which the object G at the visual
range s0 ¼ 25 cm appears.

• A lens generates for a given image distance b a distinct
image only for a finite intervalDa of the object distance
a. The blurring of the image is within this object dis-
tance interval still smaller than the spatial resolution of
the eye. This rangeDa is called focus depth. It increases
with decreasing diameter of the entrance pupil.

• The minimum possible angular resolution dmin of an
optical instrument is limited by diffraction. With a
diameter D of the imaging lens is dmin � 1:22 k=D.
The angular resolving power is defined as the inverse
R = 1/dmin = D/(1.22 k).

• A classical microscope can only resolve structures of
an object that are larger than k/2.

• The imaging of an object through an optical system is
only possible, if at least the zeroth and the first
diffraction orders are transmitted by the system.
(Abbe’s theory of imaging). The zeroth diffraction
order alone cannot produce a recognizable image.

• The transmission of optical systems is limited by the
minimum cross section common to all incident light
beams (entrance pupil) and that of the light beams on
the image side (exit pupil). The measure for the
luminosity of a lens with diameter D is the acceptable

solid angle X ¼ p=4ð Þ D=fð Þ2.

• Spectrometers are optical instruments that are based
on the refraction or diffraction of light by prisms or
gratings, which result in a spatial separation of the
different wavelengths.

• Interferometers are based on the separation of the
incident wave into two or many partial waves which
traverse different path lengths and are then superim-
posed. The interference of these partial waves depends
on the wavelength k and is used for the precise
determination of k.

• The spectral resolving power of any spectral apparatus

k
Dk

¼ Dsm
k

is equal to the maximum path difference Dsm between the
interfering partial waves measured in units of the
wavelength k.

• For the prism spectrograph is

k
Dk

¼ a

2
dh
dk

;

where a is the diameter of the entrance pupil and dh=dk /
dn=dk the angular dispersion which depends on the spectral
dispersion of the prism material with refractive index n(k).

• For the grating spectrograph is

k
Dk

� m � N

dependent on the interference order m and the number N of
illuminated grating grooves.
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Problems

11:1 A lens generates a sharp image of the sun on a screen
2 m away from the lens. How large are the focal
length f, the diameter d of the sun image and the
lateral magnification? Which angular magnification
is achieved with this lens, if the sum image is
observed at the visual range s0 = 25 cm?

11:2 A magnification glass with f = 2 cm is placed at a
distance a = 1.5 cm above a book page in order to
view the magnified letters. The eye of the observer is
accommodated on the distance to the virtual image
of the letters. What is the angular magnification?
How large appears a letter with 0.5 mm size to the
observer?

11:3 Derive, analogue to the derivation of Eq. (9.26) the
more general Eq. (11.2).

11:4 The two components of a double star system have
the angular distance e = 1.5″. What is the minimum
diameter of a telescope outside of our atmosphere
which resolves both components? What is the min-
imum angular distance between two stars which can
be still resolved by the naked eye?

11:5 What is the visual angle e0 under which the diameter
of Jupiter appears to the naked eye? Why do planets
not twinkle contrary to stars?

11:6 Sometimes one can read in newspapers that a tele-
scope on board of a satellite in the altitude h ¼ 400
km above ground can recognize a tennis ball
d ¼ 10 cmð Þ on earth. Is this possible? How large
should be the diameter of the telescope, if air tur-
bulence is neglected? Which is the minimum
resolvable size of objects on earth, if the air turbu-
lence is taken into account?

11:7 A radar system operating at k = 1 cm should resolve
structures of 1 m on an object 10 km away. Which
angular resolution is necessary and what is the
minimum size of the parabolic antenna?

11:8 A fine wire grating with a wire distance d ¼ 20 lm is
viewed with relaxed eye (i.e. accommodated to
a = ∞) through a microscope. The objective lens of
the microscope has the angular magnification
V = 10. Which focal length f2 of the ocular lens has
to be chosen that the grating wires appear to the eye
like a mm-scale?

11:9 An optical diffraction grating (d ¼ 1 lm, size
10 � 10 cm) is illuminated by light with wavelength
k ¼ 500 nm under the angle a ¼ 60	. What is the

distance of two slit images S1 k1ð Þ and S2 k2ð Þ in the
observation plane of a grating spectrograph with f1 ¼
f2 ¼ 3 m for k1 ¼ 500 nm and k2 ¼ 501 nm? How
large is the bottom width of the zeroth diffraction
maximum for an entrance slit width b ! 0? What is
the maximum width b of the entrance slit for the
resolution of the two wavelengths?

11:10 (a) What are the spectral resolving power and the
free spectral range of a Fabry-Perot interferometer
with a plate separation d ¼ 1 cm and a reflectivity of
the mirrors R = 0.98
(b) In order to achieve an unambiguous assignment
of a wavelength k with this interferometer a prism
spectrograph is placed before the FPI. What should
be its focal length f to achieve the total separation of
two wavelengths with a distance Dk equal to the free
spectral range of the FPI when the slit width is
b = 10 lm and the dispersion dn=dk ¼ 5000=cm?
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12New Techniques in Optics

For the last years several new optical techniques have been
developed and applied. Some of them are based on old ideas
but could not be realized because the technical requirements
were missing, while also some completely new concepts
have led to astonishing results. They have meanwhile often
captured many fields in daily life and have enlarged con-
siderably the possibilities of optics and its applications.

In this chapter we will present some of these techniques,
which will illustrate that we are experience the beginning of
an “optical revolution”.

The references at the end of the chapter give the possi-
bility for a more detailed information about the different
techniques.

12.1 Confocal Microscopy

The confocal microscopy combines the high radial spatial
resolution (in the x, y-plane perpendicular to the light
propagation) with a comparable high resolution in the
z-direction (in the direction of the optical axis). A confocal
microscope can be regarded as an instrument with extremely
short focus depth. It has an essentially better suppression of
stray light than the classical microscope. Its principal design
is illustrated in Fig. 12.1. The light from a light source (here
generally lasers are used because of the necessary higher
intensity) is focused onto a small circular aperture B1, is
reflected by a beam splitter BS and focused by the lens L2

onto the plane z = z0 of the object under investigation. The
backscattered light is collected by L2, focused after trans-
mission through BS onto a pinhole aperture B2 and reaches
the detector. Light scattered from other planes
z = z0 ± Dz of the object is not focused onto the pinhole and
therefore only a small fraction reaches the detector. The
pinhole B2 therefore suppresses light from other planes in
the object. The maximum signal is obtained for light that is
exactly focused onto the pinhole. Because a focal spot of the
object is imaged onto the focus in the pinhole B2 the

technique is called “confocal microscopy” [1]. When
shifting the object into the z-direction other z-planes of the
object are selectively viewed. Shifting the sample in the x, y-
plane yields z-dependent images for any point in the x, y-
plane which gives three-dimensional images of the sample.
This is used in cell biology to win three-dimensional struc-
tures of cells. They are generated by a computer program
that calculates the structure from the z-dependent transmitted
intensity of the backscattered light.

The spatial resolution in the x, y-planed is given by the
size of the pinhole, the distance of the plane z = z0 from L2

and the focal length f2 of L2. Instead of shifting the sample
one may also use a turnable mirror as shown in Fig. 12.2.
Turning the mirror about the y-axis gives a scan of the
sample along the x-axis. The backscattered light is always
focused onto the pinhole B2 [2, 3], The measurement can be
also performed at daylight, if a spectral filter is placed before

B2

detector

z = z0sample

L2

Laser

B1

L1

z
y

x

BS

z < z0

Fig. 12.1 Confocal microscopy
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the detector to restrict the detected light to the narrow
spectral interval of the illuminating laser.

The main application fields are

• Fluorescence microscopy of biological cells where
selected parts of the cell are illuminated by the
focused laser beam and the resulting fluorescence is
detected with high spatial resolution.

• Investigation of surface structures and molecules
adsorbed on the surface. As example the confocal
microscopy of a grinding disc is shown in Fig. 12.2b,
where a human hair is included for size comparison.

An interesting version of confocal microscopy is shown
in Fig. 12.3, where larger areas of the sample can be viewed
simultaneously. The widened beam of a laser is sent through
a perforated mask (this is an opaque screen with many small
holes) and reflected by the beam splitter onto the sample. In

the sample plane a pattern of focal points is generated which
are the source of scattered light or fluorescence. They are
imaged by the lens L onto a CCD-camera. The perforation
pattern is designed in such a way that it corresponds to the
pixels of the CCD-camera. The output of the CCD camera
gives a picture of all illuminated points of the sample and
measures therefore a larger area of the sample simultane-
ously with high spatial resolution.

In Fig. 12.4 chromosomes of a human cell are shown,
which are made visible by transmitted light using differential
interference contrast techniques. The bright chromosomes
were selectively excited by the illuminating light and their
fluorescence was spatially resolved by confocal microscopy
[4].

microscope-
objective

turnable mirrorbeam expansion
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Fig. 12.2 Confocal microscopy with raster principles using laser beams a) experimental arrangement b) measurement of the rough surface of a
grinding disc with a human hair for size comparison, (H. Jochen Foth, TU Kaiserslautern)
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Fig. 12.3 Confocal microscopy with shadow masc and CCD camera Fig. 12.4 Confocal microscopy of chromosomes in the human cell [4]
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12.2 Optical Near Field Microscopy

In Sect. 113.3 we have learned that with a classical micro-
scope structures below k/2 cannot be resolved when illu-
minated by light with the wavelength k. This resolution limit
due to diffraction can be surpassed by optical near field
microscopy [5] which is especially used for the investigation
of tiny structures on surfaces. Its principle is illustrated
schematically in Fig. 12.5.

The surface is illuminated by an intense laser. The light
scattered by structures on the surface is detected behind a
very small aperture (about 100 nm diameter) which is
brought close to the surface (Fig. 12.5a). Shifting the aper-
ture at a constant distance z from the surface across the
surface the scattered light intensity Iðx; yÞ is measured as a
function of the location ðx; yÞ on the surface. This gives
information about the structure of the surface which influ-
ences the scattered light intensity.

This method is a raster scanning technique, where the
information about the different points (x, y) of the surface is
not obtained simultaneously but sequentially in time.
A computer converts the measured signals into a
three-dimensional picture of the surface, if a model for the
relation between scattered light intensity Iðx; yÞ and surface
structure has been fed into the computer [5].

Often the light is transmitted through an optical fiber with
the fiber-end placed closely above the surface (within a few
nm). In order to increase the spatial resolution the fiber end
is sharpened to a cone and the sides of this cone are covered

by a thin metal layer which prevents that light leaves through
these sides. (Fig. 12.5b). The light can then only escape
through the narrow peak (diameter 50 nm) and illuminates a
small spot on the surface. The light scattered from this tiny
spot is collected by a lens and focused onto the detector.
With this technique a resolution of 20–30 nm can be reached
which surpasses that of conventional microscopy by one
order of magnitude.

With increasing spatial resolution the light power,
received by the detector drastically decreases. One has
therefore to use high light powers of the laser and sensitive
detectors with a small background noise.

Since with this near field method the scattered light in the
near field of the scattering centers is detected where Fresnel
diffraction governs the total field amplitude (see Sect. 10.6)
the interpretation of the results is not straight forward and
demands sophisticated computer programs. This can be seen
for the simple example of an illuminated slit with width b1
(Fig. 12.6). When a second slit with width b2 < b1 is shifted
across the transmitted light at a distance d < b1 the near field
of the Fresnel diffraction is detected and the measured
intensity I(x) shows a complicated structure which sensi-
tively depends on the distance d from the first slit because
the phase differences between the different diffracted partial
waves strongly change with the distance d.

More information about the near field microscopy can be
found in [6–8] and in the Journal Scanning Microscopy.

12.3 Active and Adaptive Optics

For astronomical telescopes (mirror telescopes see
Sect. 11.2.3) the light power received from objects at far
distances is proportional to the area of the primary mirror.
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Fig. 12.5 Near field microscopy: spatial resolution of structures
Dx\k=2 on surfaces a) by measurements of laser light scattered from
the illuminated surface and collected through a very small aperture
(d � k) close to the surface onto the detector b) illumination of a small
spot on the surface through the sharpened peak of an optical fiber closely
above the surface and detection of light scattered from the surface
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Fig. 12.6 Optical near field microscopy of the Fresnel diffraction
closely behind the slit
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Therefore the mirror should be as large as possible. For very
large parabolic mirrors (diameter 6–10 m) the mirror cannot
be made thick enough (because of weight problems) to
completely avoid varying bending when the telescope is
oriented towards different celestial objects. This bending
changes the parabolic surface of the mirror and deteriorates
the imaging quality. Thicker mirrors would extremely
increase the production and transportation costs and would
also demand much stronger mirror mounts.

The solution of this problem is the active optics.

12.3.1 Active Optics

Themirror is kept as thin as its stability allows and can therefore
bend under the influence of gravitational forces. This bending
is, however, avoided by many adjustable control elements in
form of piezo-rods which are mounted on the backside of the
mirror (Fig. 12.7). These rods change their length depending on
the voltage applied to the piezo-element. They are controlled by
a computer in such a way, that the mirror surface always forms
the wanted rotational paraboloid, independent of the mirror
position. For illustration Fig. 12.7b shows the backside of the
8 m mirror of the very large telescope VLT on the mountain
Paranal in Chile with the many control elements.

This technique of active optics is nowadays used for all
modern large telescopes. For very large mirrors (for instance
the 10 m mirror of the Keck telescope on the Mouna Kea on
Hawai completely new techniques have been invented.
Many small mirrors are united to a large mirror (Fig. 12.8) in
such a way that their surfaces are perfectly aligned to form
the parabolic surface of a large mirror which images the star
light into the common focus This implies that the relative
position of these many small mirrors has to be aligned within

k/10 and has to be stable when the telescope is turned to the
wanted direction towards a star under investigation. For such
a honey comb telescope the production and transportation
costs are much lower, but the assembling and alignment of
up to 100 single mirrors to a large mirror demands high
technical efforts and knowledge [9, 10].

Several large mirrors can be optically combined by
optical beamlines and act as huge interferometers [11] with a
spatial resolution that exceeds by far that of single mirrors.
In such arrangements the light collected by the different
mirrors is transported by optical beam lines to a common
location where the different contributions superimpose and
interference structures can be observed which strongly
depend on the location of the light source (i.e. the star). The
optical path lengths Dsi between the light from the different

electromechanical
positioning elements

paraboloid-
mirror

stable
base

(b)(a)

Fig. 12.7 Paraboloid mirror with active optics a) principle design b) backside of the large primary mirror with the many piezo-electric positioning
elements (Very large telescope of the ESO at the Paranal in Chile)

Fig. 12.8 Primary mirror of an astronomical telescope which is
composed of many hexagonal segments. The whole surface forms a
paraboloid with maximum deviations <k/10 from the ideal surface
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telescopes should not fluctuate by more than k/10 for path
length of many meters. For a diameter D of the total tele-
scope array the diffraction limited angular resolution can be
decreased by this technique to De � k=D. With a realistic
number of D ¼ 200 m this gives for k ¼ 1lm the angular
resolution 5� 10�9 rad ¼ 0:00100.

This is quite similar to the diffraction by an optical grating
withN grooves, a groove distance d and a total widthD = Nd.
Here the diffraction limited width of the interference maxi-
mum is the same as that caused by a slit with width D.

12.3.2 Adaptive Optics

The angular resolution of large ground based telescopes does
not reach by far the diffraction limit due to turbulences in the
atmosphere and uprising air caused by local thermal heating.
This leads to time-dependent changes of the refractive index
resulting in a fluctuation of the deflection of star light.

The image of a star in the observation plane of a telescope
moves randomly around a center and yields for longer illu-
mination times an average intensity distribution which has a
much larger diameter than the diffraction limited image [12].

Example

For a telescope with mirrors diameter D = 1 m the
diffraction limited angular resolution is for k ¼ 500 nm
Dediffr � k=D � 5� 10�7 rad ¼ 0:100. However, the air
turbulence limits the angular resolution to about De �
100 i.e. to 10 times the diffraction limit. This resolution
limited by air turbulence is called by astronomers
“seeing”. For larger telescopes the difference between
diffraction limited resolution and air turbulence limited
resolution becomes accordingly larger.

On high mountains this effect becomes smaller because
the path length through the atmosphere is shorter and water
droplets or dust particles are much less abundant. Never-
theless also for selected locations of telescopes the air tur-
bulence still limits the angular resolution. This is shown in
Fig. 12.9. which compares the diffraction limited image in
the observation (x, y)-plane with the broadened image
caused by air turbulence. Instead of the intensity distribution
I(r) = sin2 r=r2 (r2 ¼ x2 þ y2) of the diffraction intensity
maximum one obtains a more or less irregular intensity
distribution over a much larger area.

The perturbations caused by air turbulence can be greatly
reduced by the technique of adaptive optics. The technique
works as follows (Fig. 12.10).

The star light reflected by the secondary mirror M2 is
formed by the lens L1 into a parallel beam which falls onto a

flat thin mirror M3 which has control elements on its backside
which can deform the mirror surface (active optics). The light
reflected by the deformable mirror is reflected by mirror M4

passes through a beam splitter BS. The reflected light is
detected by a wave front sensor which detects any deforma-
tion from a plane wave front, while the light transmitted by BS
reaches the detector and forms the image of the observed star.
The wave front sensor delivers a signal which is proportional
to the deviation from a plane wave front. This signal is sent to
the actuators on the backside of the deformable mirror M3
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Fig. 12.9 Intensity distribution of the star image a) diffraction limited
distribution without distortion by the atmosphere. b) Speckle picture,
broadened by refractive index fluctuations in the atmosphere
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Fig. 12.10 Principle of adaptive optics
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which deform M3 in such a way that the wave fronts become
planes and the image of the star becomes nearly diffraction
limited. Since the air turbulence can change within a fraction
of a second the feedback control must be fast enough.
Therefore it needs a sufficiently large input signal, i.e. a bright
radiation source. Since such bright stars are not available for
all positions of the telescope an artificial star is created by
sending a laser beam along the axis of the telescope with a
laser wavelength tuned to the yellow absorption line of
sodium atoms. In the altitude of about 50 km a layer of sodium
atoms exists. The excited sodium atoms emit fluorescence
which represents a very bright light source that is used for
activating the feedback control [12]. In Fig. 12.11 the effect of
the adaptive optics is illustrated by exposures of the star
Cygnus a with and without adaptive optics.

The adaptive optics can be, of course, also used for
observing objects on earth with a telescope.

Special techniques of nonlinear optics (four wave mixing)
have been developed which correct distorted wave fronts of
incident light after reflection by mirrors of selected materials
(liquids or gases) (phase conjugated mirrors) [13].

12.3.3 Interferometry in Astronomy

The fundamental limit for the angular resolution
De[ 1:22k=D of telescopes with diameter D is given by
diffraction. For a diameter D ¼ 5m of the primary mirror this
implies for k ¼ 1 lm a limit of De[ 2:4� 10�7 rad ¼ 0:0500

if the effect of air turbulence has been eliminated by adaptive
optics. Since 2005 interferometric methods can be applied
where two or more telescopes with a distance Dx � D can be
connected by optical beam lines in such a way that a coherent
superposition of the signals from the two telescopes is
achieved. This results in an interference structure which
depends on the phase difference between the signals from the
two telescopes (Fig. 12.12).

The angular resolution of this coupled system corre-
sponds to that of a telescope with a mirror diameter Dx and is
therefore with Dx � D much higher than that of a single
telescope although the received light power is only twice as
large. The technical challenge is tremendous, because the
light path from the telescopes to the detector, which can be
longer than 100 m, has to be kept constant within k/10. This
can be only achieved with an electronic feedback for the
control of the path length. In order to change continuously
the path difference for the two signal one of the two signals
is sent to a retro-prism on a wagon (Fig. 12.13) which can
move on precisely aligned smooth rails [11].

Interferometric Laboratory
(VICNI)

ANTU MELIPAL

102 m

Interfe-
rence
pattern

retroreflector

optical delay

delay line

Fig. 12.12 Principal design of the interferometric detection with two
large telescopes and adaptive optics at the Paranal in Chile (with kind
permission of Dr. Glindemann [18])

Fig. 12.11 Image of the star Cygnus a a) without and b) with adaptive
optics
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12.4 Holography

Classical photography images an illuminated object through
a lens system into the detector plane (Fig. 12.14a). Each
point of the object is mapped into the corresponding point of

the image. The detector signal is proportional to the incident
intensity. Any information about the phase of the incident
light is lost. This implies that no direct information about the
three-dimensional structure of the object is obtained. The
three-dimensional object is reduced to a two-dimensional
image. The fact that we can recognize the three-dimensional
object by looking at the two-dimensional image is due to our
brain which can reconstruct the real object by comparison
with earlier stored information.

Denis Gabor (1900–1979) published 1948 the idea, to
superimpose in the detection plane two coherent waves,
namely the illumination wave scattered by the object, and a
reference wave from the same source. This superposition
generates an interference pattern on the photo plate in the
detector plane, that contains information about the amplitude
and the phase of the wave scattered by the object. This
allows the determination of the distance between the dif-
ferent object points and the photo plate (Fig. 12.14b). The
blackness pattern on the photo plate is called a hologram.
After developing the photo plate and illuminating it with
light of the same wavelength a three-dimensional picture of
the object is “reconstructed”. This idea laid the foundation of
a completely new optical technique, called holography.
Gabor received for his invention the Nobel Prize 1971.

Since this method demanded coherent light sources with
high intensity, Gabor could realize his idea merely imper-
fectly. Only after the development of lasers (see Vol. 3,
Chap. 7) holography started its triumph [14–16].
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Fig. 12.14 Comparison between a) classical photography and b)
holography

Fig. 12.13 Part of the interferometric path with a retro-reflecting mirror mounted on a waggon which moves smoothly on a track (ESO
observatory on the Paranal in Chile)
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12.4.1 Recording of a Hologram

In Fig. 12.15 the principle of the recording of a hologram is
illustrated schematically. The output beam of a laser is
widened by a lens system and split into two beams by a
beam splitter. The reflected wave is the reference wave

E0 ¼ A0e
iðxt�k0 � rÞ ð12:1Þ

which is sent to the photo plate in the x-y-plane. The
transmitted partial beam illuminates the object. The wave
scattered by the object has the amplitude in the plane of the
photo plate

Esðx; yÞ ¼ Ase
i xtþusðx;yÞ½ �; ð12:2Þ

where the phase uðx; yÞ depends on the distance of the
object points that scatter the wave. The amplitude Esðx; yÞ is
the sum of all amplitudes which are scattered by the different
object points into the point ðx; yÞ on the photo plate. Also the
phase uðx; yÞ in the point ðx; yÞ is determined by the
superposition of the phases of all partial waves scattered
from all illuminated points of the object. The total intensity
at the point r0 ¼ fx; y; 0g is then

Iðx; yÞ ¼ ce0jEsðx; yÞþE0ðx; yÞj2

¼ ce0 A2
0 þA2

s þA	
0Ase

i k0 � r0�usðr0Þ½ ���
þA0A

	
s e

�i k0 � r0�usðr0Þ½ ���
¼ ce0jA2

0 þA2
s þ 2A0As cosðu0 � usÞj;

ð12:3Þ

where u0 ¼ k0 � r0. The phase difference ðu0 � usÞ depends
on the optical path difference between reference- and scattered
wave. The phase dependent interference term in (12.3) con-
tains the desired information about the distance of the different
object points from the points ðx; yÞ on the photo-plate i.e. they
give the three-dimensional structure of the object.

Example

1. We assume that the object is a plane illuminated by
a plane wave and reflects this wave (Fig. 12.16). In
the plane of the photo plate is k0 � r0 ¼ k0x � sin a1;
us ¼ �k0 � x sin a2 ) ðu0 � usÞ ¼ k0xðsin a1 þ sin a2Þ.
The cosine-function in (12.3) has the period
Dx ¼ k=ðsin a1 þ sin a2Þ. The superposition of
reference and object wave results in a periodic
intensity modulation in x-direction on the photo
plate with a distance between the intensity maxima

d ¼ k
sin a1 þ sin a2

;

which depends on the angles a1 and a2 between the
normal of the two waves and the surface normal of the
photo plate. On the developed photo plate occurs a
periodic pattern of parallel stripes with a sinewave
distribution of the blackening.

Such a periodic blackening pattern can be used as
holographic transmission grating with the grating
constant d. When the grating is illuminated by a plane
wave from the same laser, one obtains for the correct
choice of the angle a a plane wave with the phase
plane coincident with the object plane.

If the illuminated positions on the photographic
layer are removed by chemical techniques with sub-
sequent etching and coating with a reflecting layer a
holographic reflection grating can be produced. Such
gratings have a perfect grating constant d without any
errors because d = Dx is determined by the optical
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Fig. 12.16 Production of a holographic grating by superposition of
two plane waves where the wave vectors form the angles a1 and a2
against the normal of the grating plane
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Fig. 12.15 Optical setup for taking a hologram
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wavelength k of the illuminating laser light used for
the production of the grating. Their drawback is,
however, the sinewave structure of the grooves in
contrast to the ruled gratings which have a staircase
shaped form. The reflectivity of holographic gratings
is therefore smaller than that of ruled gratings and they
have no blaze angle (see Sect. 10.5.2).
2. A plane wave superimposes a spherical wave

(Fig. 12.17). The resulting hologram shows a
structure of black circles, which corresponds to a
Fresnel’s zone plate. When the developed holo-
gram is illuminated by a plane wave a spherical
wave originates which is focused into a point that
corresponds to the center of the spherical wave
used for producing the hologram. The blackness of
the photo plate is proportional to the incident
intensity and the contrast between maximum and
minimum blackening depends on the difference
between the amplitudes of the two waves. If the
amplitudes of the two waves have a ratio of 1:10
the contrast is

K ¼ ðImax þ IminÞ=ðImax � IminÞ ¼ ð1:1=0:9Þ2 ¼ 1:5

Note: In classical photography each point of the object is
imaged into a well-defined point of the image, while in
holographic imaging the wave scattered by a point of the
object is distributed over the whole hologram. This implies
that each part of the hologram contains already information
about the whole object. One can, for instance, cut the
hologram into two pieces. Each piece can produce the whole
three-dimensional object, although with lower quality.

12.4.2 The Reconstruction of the Wave Field

In order to obtain a three-dimensional image of the object
from the hologram which contains the information about the
object in encoded form (Fig. 12.18) the developed photo
plate has to be illuminated by a coherent plane wave, the
reconstruction wave

Er ¼ Ar � eiðxt�kr � rÞ ð12:4Þ
with the same light frequencyx as the illuminatingwave, used
for the exposure of the hologram (Fig. 12.19). The amplitude
of the reconstruction wave transmitted by the hologram

AT ¼ Tðx; yÞ � Ar ð12:5Þ

Fig. 12.18 Hologram of a chess-board (from: H. Nassenstein, Z.
Angew. Physik 22, 37–50 (1966))
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Fig. 12.19 Reconstruction of a hologram
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Fig. 12.17 The superposition of a plane wave with a spherical wave
results in a circular interference ring system. The corresponding
hologram represents a Fresnel zone plate
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depends on the blackening of the hologram which in turn is
proportional to the intensity (12.3) used for the exposure.
The transmission of the developed photo-plate is

Tðx; yÞ ¼ T0 � cIðx; yÞ ð12:6Þ
where c is the blackening coefficient of the photo plate and
Iðx; yÞ the intensity (12.3). The transmitted reconstruction
wave

ET ¼ Tðx; yÞ � Ar � eiðxt�krrÞ ð12:7aÞ
has the amplitude

AT ¼ ArT0 � cArðA2
0 þA2

s Þ
� cArA

	
0Ase

iðk0 � r0�usÞ

� cArA0A
	
se

�iðk0 � r0�usÞ
ð12:7bÞ

The first two terms describe an attenuation of the trans-
mitted wave that is independent of the location ðx; yÞ. The
last two terms represent two new waves

ET1 ¼ �cA	
0ArAse

i xt�ðkr�k0Þ � r0�us½ � ð12:8aÞ

ET2 ¼ �cA0ArA
	
s e

i xt�ðkr þ k0Þ � r0 þus½ � ð12:8bÞ
which propagate into the directions k1 ¼ kr � k0 and
k2 ¼ kr þ k0.

Note: The directions of these waves are not identical with
the direction of the reconstruction wave. The reconstruction
wave transmitted through the hologram is diffracted by the
blackening structures of the hologram, which act like an
amplitude grating.

Both waves carry information about the amplitude As and
the phase us of the wave, scattered by the object and used
for the exposure of the hologram, because they contain the
amplitude

Es ¼ As � eiðxt�usÞ resp: E	
s ¼ A	

s � e�iðxt�usÞ ð12:8cÞ
which have been also used for the exposure of the hologram.

As is shown in Fig. 12.19 two images of the same object
appear: A virtual image produced by the wave ET1 which
appears behind the hologram and a real image due to the
wave ET2 . This real image can be made visible if a screen is
placed at the location of the real image. However, this
projection on the screen gives, of course, only a
two-dimensional image.

Looking through the hologram in the direction towards
one of the two waves a three-dimensional image of the
object appears to the eye, which is equal to a view of the real
object seen from the location of the photo plate [17, 18].

Remark When using another wavelength kr for the
reconstruction wave as the wavelength ks of the original
wave scattered by the object, the reconstructed image
appears magnified or scaled down by the factor kr=ks.

12.4.3 White Light Holography

The wide distribution and acceptance of holography was
fostered by the invention of white-light holography, because
here no laser is needed for the reconstruction of the image, but
only an incoherent light source (e.g. a light bulb or the sun).

How can we understand this?
For the construction of the hologram, which does need a

laser, a special design has to be chosen (Fig. 12.20). A thin
photographic layer on a glass plate is illuminated from above
by the enlarged beam of a laser (reference wave) and below
from the light scattered b the object (object wave).

In the photographic layer the intense reference wave and
the weaker object wave superimpose and generate and
interference stripes of maxima and minima, which are
essentially parallel to the surface of the photo plate and
generate a layer structure of the blackening (see for instance
Fig. 12.16). For a wavelength k ¼ 0:6 lm and a layer
thickness of 10 lm about 20 parallel blackness layer are
formed, which correspond to the interference layers of
maximum intensity.

When the developed photo plate is illuminated by light with
the wavelength k the light is partially reflected and the partial
waves reflected by the different layers interfere. Their path dif-
ference is for an incidence angleDs ¼ 2d � sin a (Fig. 12.20b).
Only for those wavelength k with a path difference

2d � sin a ¼ m � k ðm ¼ 1; 2; 3. . .Þ ð12:9Þ

Space-
filter

Photo layers

object

(a)

d

(b)

Phase front

Laser

α α
α

d ⋅ sinαΔS d= ⋅2 sinα

glass slide

Fig. 12.20 White light holography a) taking the hologram b) selective
reflection at the developed hologram due to interference between the
partial waves reflected at the different layers
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constructive interference occurs (Bragg condition). The layer
structure generated at the construction of the hologram
selects from the spectral continuum of the white light source
only those wavelength that fulfill the condition (12.9). The
reconstructed image of the object appears under white light
illumination at a wavelength k which depends on the inci-
dence angle a. Changing the angle a also changes the color
of the three-dimensional image.

12.4.4 Holographic Interferometry

In Sects. 10.3 and 10.4 some classical types of interferom-
eters were introduced which are based on two-beam inter-
ference or multiple beam interference. They are used for the
accurate measurement of small path differences Ds or of
wavelengths ki of spectral lines.

Holographic interferometry broadens the possibilities of
classical interferometer considerably and can be applied to
many interesting areas of science and technology. There are
in principle three procedures [19]:

(a) In the real time technique a hologram is recorded from
an object at rest. The hologram-plate is now developed
at the same place without moving it and is then illu-
minated with the reference wave, creating a hologram
image in the same way as in Fig. 12.19. Now the object
is exposed to external influences (such as pressure or
temperature changes) and is illuminated by the same
wave as before. The changes of the object appear as
phase changes of the signal wave. The superposition of
this altered signal wave with the reconstruction wave of

the hologram before the object was modified, results in
interference structures in the holographic image which
appear only for such points of the object, which were
modified. This technique allows the detection of object
modifications that are much smaller than the wave-
length k. This is illustrated in Fig. 12.21a, which shows
two exposures of a wine glass: At first a hologram of
the wine glass is constructed and then the photo plate is
developed and again a hologram is reconstructed.
During the developing process the photo plate shrinks a
little bit. Therefore the holographic image is a little bit
larger. When this hologram is superimposed onto the
first hologram, horizontal interference stripes are gen-
erated which give quantitative information about the
magnitude of the shrinking.
If now the glass is filled with a hot lighter gas the rising
gas changes the refractive index and causes deformed
interference lines (Fig. 12.21b).

(b) In the double exposure method a hologram of the object
is taken before the modification of the object takes place
and then for a fixed position of the photo plate a second
hologram on the same photo plate after the modifica-
tion. For example, the deformation of a metal plate
under the influence of external forces is measured by
making a hologram before the deformation, then
deforming the plate without moving it from its position
and afterwards take a second hologram (double expo-
sure of a fixed photo plate). In Fig. 12.22 a double
exposed hologram of an aluminum disc is shown. The
black lines give information about the magnitude of the
deformation. The wave scattered by the object has a
different phase before and after the deformation. For a

Fig. 12.21 Real time holographic interferometry a) interference between the original object wave and the wave reconstructed from the hologram
b) superposition of two exposures of an empty glass and this glass filled with coal gas from a lighter
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phase difference of ½p the deformation is k/2 and the
double exposed hologram shows black lines of
k/2-deformations.
Another example is the double exposure hologram of a
light bulb shown in Fig. 12.23 where the first hologram
is taken when the light bulb is on and the second some
seconds after it is switched out. The reconstructed

hologram shows the convection of the filling gas above
the filament and the thermal deformation of the glass
bulb. The distance between two black lines corresponds
to a deformation of k/2.

(c) For periodically oscillating objects the exposure of the
hologram is chosen longer than the oscillation period.
Since the object stays longest in the turning points of the
oscillation (because here the velocity of the oscillating
parts is zero) the wave scattered by the object during this
times contributes more to the exposure of the hologram
than at other times. These positions of the object are
therefore more distinct visible after the reconstruction of
the hologram. The separation of the black lines corre-
sponds to an oscillation amplitude of k/2.

12.4.5 Applications of Holography

From the many possible and already realized applications of
holography only a few will be discussed here besides those
which have been already treated in the previous section.

An interesting application is the digital calculation of the
hologram for ideal objects in their nominal condition. Such a
digital hologram stored in a computer can then be transferred
into a real hologram by printing it on a transparent foil. The
superposition of this ideal hologram with that produced by
exposure of the real object makes all deviations of the object
from its nominal conditions visible. One example is the
polishing procedure of large astronomical telescope mirrors.
With this technique all locations on the mirror surface which
have deviations from the ideal rotational paraboloid are
simultaneously visible and can be removed by polishing.
This shortens the polishing process considerably.

Applications in car industry are for instance double
exposure holograms of car tires at different pressures, where
small bulges due to locally changing tire wall thickness can
be made visible.

With the holographic interferometry the growth of
mushrooms can be measured within seconds when two
holograms are taken within some seconds and superimposed
on the photo plate. This allows the optimization of essential
nutrient intake in fungal cultures.

An interesting application in medicine is the holographic
survey of human skulls. Comparing such surveys with X-ray
exposures the distribution of soft tissue can be deduced.
Compiling a list of this distribution for different face shapes the
surgeon of anomalies or injuries of the face can decide which
affect the planned operation has onto the final natural appear-
ance and he can optimize his operations accordingly [20].

In information technology the optimization of holo-
graphical storage media will become important. They have a
larger information density because it is possible to super-
impose many holograms in a small volume. A possible

Fig. 12.22 Holographic interferogram showing the deformation of an
aluminum disc. The hologram was exposed for 15 s before and after the
deformation

Fig. 12.23 Convection above the filament of a ligth bulb and thermal
expansion of the heated bulb (from: M. Cagnet, M. Francon and S.
Mallick: Atlas optischer Erscheinungen, Springer Berlin, Heidelberg
1971)
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storage material is for instance a Ferro-electric crystal. The
electric field of the light wave constructing the hologram
shifts the electric charges. The hologram does not appear as
blackening pattern of a photo plate but as a space charge
distribution which results in a spatial pattern of the refractive
index (Fig. 12.24). Such holograms can be read out by a
reference wave [21].

12.5 Fourier-Optics

Many problems in modern optics can be solved in an elegant
mathematical way by Fourier-transformations. We have
already seen in Sect. 10.8 that the spatial amplitude distri-
bution of the Fraunhofer diffraction pattern in the observa-
tion plane can be regarded as the Fourier transform of the
amplitude distribution of the transmitted incoming wave. We
will show here that the imaging lens acts as a Fourier-lens,
which transforms the object plane into the Fourier-plane
where the diffraction image of the object is formed. When
this Fourier-plane is further imaged by a second lens the
original object is reproduced because the Fourier-transform
of the Fourier-transform of a function f reproduces the
original function f, but with reversed sign of the arguments.

F F½f ðx; yÞ�½ � ¼ f ð�x;�yÞ:
The image is therefore inverted. The essential point is

now, that the diffraction image can be altered by apertures,
filters or phase plates. This leads to corresponding changes
of the real image of the object. Such an optical filtering can,
for instance, enhance the contrast of structures in the object

image, or it can reduce incommoding background structures.
This leads to an improvement of the image quality. Finer
details, which could have been masked by background
perturbations, can be made clearly visible by background
subtraction.

For more details the reader is pointed to the literature
[22, 23] ….

12.5.1 The Lens as Fourier-Imaging Component

We regard in Fig. 12.25 a plane wave with a wave vector
k. Its x-component forms the angle a and its y-component
the angle b against the z-direction. The wave is imaged by
the lens L into the plane z ¼ fB. According to (10.88) the
amplitude distribution in this Fourier-plane

Eðx0; y0Þ ¼ Aðx0; y0; fBÞ �
Zþ1

�1

Zþ1

�1
Eðx; yÞe�2piðmxxþ myyÞdxdy

ð12:10Þ
is given by the Fourier-transform of the field distribution E
(x, y) in the object plane, where the phase factor A is

A ¼ eikzeðip=kzÞ �ðx
02 þ y02Þ

with jAj ¼ 1.
The quantities

mx ¼ x0

kz
¼ fB

tan a
kz

� a
k

ð12:11aÞ

my ¼ y0

kz
¼ fB

tan b
kz

� b
k

ð12:11bÞ

for the plane z ¼ fB and with the approximation tan a � a
and tan b � b are called the spatial frequencies of the
diffraction pattern in the Fourier-plane.

If the object plane is the front focal plane of the lens
L ðz0 ¼ �fBÞ, the factor

x

lens diffraction
plane

fB x'

z

fB

α

E x y( , )

Fig. 12.25 The lens as Fourier-transformer of the field distribution
E x; yð Þ into the diffraction pattern E x0; y0ð Þ ¼ E mx; my

� �

light intensity

spatial variation
of refractive index

FeFe

Fig. 12.24 Holographic storage in a Ferro-electric crystal LiNBO3

doped with Fe2+ and Fe3+ ions a) before b) after exposure—The red
curve gives the light intensity, the black curve the spatial distribution of
the charge density, which influence the refractive index
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A ¼ e�ikfBeðipfB=kÞða
2 þb2Þ

becomes independent of the location ðx0; y0Þ in the Fourier
plane. In this case the lens L performs, according to (12.10),
exactly a Fourier transform of the front focal plane into the
image focal plane.

The spatial intensity distribution in the observation plane

Iðx0; y0Þ ¼ jEðx0; y0Þj2 ¼ jFðEðx; yÞÞj2 ð12:12Þ
is the observed diffraction image of the object. Since for the
intensity which is proportional to the absolute square of the
amplitude, that phase factor becomes 1, any arbitrary plane
in front of the lens can be chosen as the object plane (for
instance directly before the lens).

The diffraction image is generally very small. Therefore
one has to choose lenses with a large focal length fB in order
to generate an image with convenient size.

We will illustrate the Fourier-transform with a lens by
some examples.

12.5.1.1 Point-like Light Source
A point-like light source at the point ðx0; y0Þ in the front
focal plane of the lens (Fig. 12.26) has the electric field
amplitude distribution

Eðx; yÞ ¼ E0dðx� x0Þdðy� y0Þ; ð12:13Þ
where dðxÞ is the delta function. Inserting into (12.10) yields
the amplitude distribution in the image plane

Eðx0; y0Þ ¼ A �
Z Z

E0dðx� x0Þdðy� y0Þ

� e�2piðmxxþ myyÞdxdy

¼ A � E0e
�2piðmxx0 þ myy0Þ:

ð12:14Þ

This represents with

mx ¼ x0

kfB
� a

k
;

my � b
k

a plane wave with a wave vector k, where the x-component
and the y-component form the angles a and b against the z-
axis.

The intensity

I / jEðx0; y0Þj2 ¼ E2
0

in the Fourier plane is constant, i.e. independent of x 0 and y 0.
The observation plane is uniformly illuminated.

12.5.1.2 Two Point-like Sources
We regard two point-like light sources in the object plane at
the locations ð0; y0Þ and ð0;�y0Þ (Fig. 12.27). The field
distribution in the object plane is then

Eðx; yÞ ¼ E0dðxÞ½dðy� y0Þþ dðyþ y0Þ�: ð12:15Þ
The Fourier-transform in the image plane is then obtained

from (12.10) analogous to (12.14) as

Eðx0; y0Þ ¼ A � ðe�2pimyy0 þ e2pimyy0Þ
¼ 2A � cosð2pmyy0Þ

ð12:16Þ

and the intensity distribution becomes

Iðx0; y0Þ / 4A2 cos2ð2pmyy0Þ ¼ 2A2½1þ cosð4pmyy0Þ�:
ð12:17Þ

This represents a cosine grating with parallel stripes in the
x-direction which have a space frequency

my ¼ 1
2y0

ð12:18aÞ

that is equal to the inverse distance of the two point light
sources.

The spatial distance of the stripes in the focal plane of the
lens

Dy0 ¼ my � k � fB ð12:18bÞ
is proportional to the focal length fB of the imaging lens and
to the wavelength k.

y

x

object plane diffraction plane

−3

0y4
−1

0y4
+1

0y4
+3

0y4

I y( )ν

νy
− y0

y0

Fig. 12.27 Fourier-Frequency spectrum of two point sources

x

lens

x0
x'

α

fB fB

Fig. 12.26 Fourier-transformation of a point like source
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12.5.1.3 Optical Line Grating
The field amplitude of an incident plane wave in z-direction
transmitted through a line grating with groove distance d is

Eðx; yÞ ¼ E0 �
XN
n¼1

dðx� ndÞ 	 rect x
a

ð12:19Þ

where * means the convolution of the delta function with the
step function rect ðx=aÞ. (rectðx=aÞ ¼ 1 for 0
 x=a
 1 and
rect(x/a) = 0 elsewhere).

The amplitude distribution in the observation plane is
obtained by inserting (12.19) into (12.10). This yields

Eðx0; y0Þ ¼ E0 � dðmyÞ � sin pamxpmx

XN
n¼1

e�2pin � d�mx ; ð12:20Þ

This gives the intensity distribution, already known from
Sect. (10.5.2)

Iðmx; myÞ / jE0j2dmy � a2 � sin
2ðpamxÞ

ðpamxÞ2
� sin

2ðpNdmxÞ
sin2ðpdmxÞ

ð12:21Þ

which is shown in Fig. 12.28. This illustrates that the coarse
structure in the diffraction pattern i.e. the spatial frequency mx
which corresponds to the envelope of the interference
maxima is caused by the narrow slit width a in the object
plane whole the fine-structure, i.e. the high spatial frequency
N � mx which corresponds to the distance between the inter-
ference maxima is caused by the whole grating with the
width N � d, i.e. by a broad structure in the object plane.

Small spatial frequencies in the diffraction pattern are
caused by broad spatial structures in the object plane,
while fine structures of the object cause high spatial
frequencies, i.e. large deviations in the diffraction
plane.

12.5.2 Optical Filtering

The basic principle of optical filtering is illustrated by
Fig. 12.29.

The lens L1 transforms the amplitude distribution in the
object plane into a diffraction pattern in the focal plane of L1
which is equal to the Fourier-transform of the amplitude
distribution E(x, y). When the image plane of L1 is further
imaged by a second lens L2 into the focal plane of L2 the
image produced there is equal to the Fourier-transform of the
Fourier-transform of the object plane. As has been shown
earlier, this corresponds to the structure in the object plane.
The two equal lenses with focal length f1 = f2 = f and a
distance 2f generate the real inverse image (x ! −x,
y ! −y) of the object.

What is the difference of this procedure from a normal
imaging of an object at the distance 2f by a single lens?

The essential point is that for the imaging in Fig. 12.29 a
Fourier plane between the two lenses exists, where optical
filters or aperture can be inserted which change the diffrac-
tion pattern in this plane, and which in turn modify the real
image of the object in a characteristic but wanted way. This
will be illustrated by some examples.

12.5.2.1 Low Pass Filter
We have seen in the previous section that fine structure
details in the object plane result in high spatial frequencies in
the diffraction plane. If these high spatial frequencies (which
corresponds to large spatial deviations in the Fourier plane)
are suppressed by an aperture, the often unwanted fine
structures of the object do not appear in the real image. An
example is an area, uniformly illuminated by the laser beam
enlarged by the two lenses L1 and L2 (Fig. 12.30). The
magnification of the diameter is given by the ratio f2=f1 of
the focal lengths. Impurities (dust particles, streaks) or
irregularities on the lens surfaces cause diffraction of the
light into higher diffraction orders. The imaging by the
second lens lead to a granular structure of the image which is
often superimposed by diffraction rings of the dust particles.
A pinhole in the focal plane of L1 suppresses all higher
diffraction orders and generates a uniform brightness of the
enlarged laser beam. All filters which eliminate higher
diffraction orders are called low pass filters following the

object plane Fourier plane image plane

(x,y) (u,v)

g( x, y)− −

f fff
L1 L2

g(x,y) G u v F g x y( , ) [ ( , )]=

Fig. 12.29 Schematic representation of the optical Fourier-
transformation by L1 and the back transformation by L2

E

x

d a
I x( )ν

νxobject plane diffraction plane

Fig. 12.28 Difraction pattern of a grating with rectangular long slits
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nomenclature in Electro-technics, where low pass filters
suppress all higher frequencies. (see Sect. 5.5). The pinhole
acts like a point-like light source in the focal plane of L1,
which generates a plane wave behind the lens L2 and
therefore a uniform intensity in the image plane.

12.5.2.2 High Pass Filter
High pass filters in the diffraction plane of the optical system
suppress the lower diffraction orders, which are less
deflected, but transmit the higher orders. This shall be
illustrated by the imaging of a one-dimensional cosine
grating with the grating period d in the x-direction. The
electric field distribution in the object plane is

EðxÞ ¼ E0 cos2
px
d

� �
¼ E0

2
1þ cos

2px
d

� �	 
 ð12:22aÞ

This can be written in the form

EðxÞ ¼ E0
1
2
þ 1

4
e2pix=d þ 1

4
e�2pix=d

	 

ð12:22bÞ

Inserting this into (12.10) one obtains after a short cal-
culation for the Fourier-transform, i.e. the amplitude distri-
bution in the diffraction plane

Eðmx; myÞ ¼ E0

2
dðmyÞ dðmxÞþ 1

2
d mx � 1

d

� �	

þ 1
2
d mx þ 1

d

� �

;

ð12:23Þ

where the three terms represent the 0th, the +1st and the-1st
diffraction orders. The diffraction pattern consists of 3 points
on the mx-line with spatial frequencies mx ¼ 0 and
mx ¼ �1=d. In the diffraction plane these points are located
at the points x0 ¼ 0 and x0 ¼ �f � k=d (red points in
Fig. 12.31). The lens L2 images this diffraction pattern into
the image of the original cosine grating.

If now the 0th diffraction order is suppressed by a small
opaque disc the first term in (12.23) is missing. The
Fourier-transform of this new diffraction pattern

Eðmx; myÞ ¼ E0

4
dðmyÞ d mx � 1

d

� �
þ d mx þ 1

d

� �	 

ð12:24Þ

with mx ¼ x0=ðk � f Þ, my ¼ y0=ðk � f Þ is obtained by inserting
this into (12.10). This gives the field distribution in the
image plane

EðxÞ ¼ 1
2
cos

2px
d

� �
) IðxÞ ¼ 1

4
cos2

2px
d

� �
: ð12:25Þ

This is again a cosine grating, which has, however, only
the half period. There are twice as many maxima and min-
ima as for the field distribution (12.23).

This high pass filtering can be used also for making
transparent objects visible. Although there is no essential
attenuation of the transmitted light but a phase shift does
occur. If such objects are observed without filtering the
phase factor for the intensity I / ∣E∣2 becomes 1 and the
object is not noticeable.

This is no longer the case, if for example the 0th
diffraction order is suppressed. This can be understood as
follows:

For a transmission

sðx;\yÞ ¼ a � eiuðx;yÞ; ð12:26Þ
of the object wave the spatial amplitude distribution in the
object plane becomes

Eðx; yÞ ¼ E0 � sðx; yÞ ¼ a � E0e
iuðx;yÞ ð12:27Þ

The phase factor u(x, y) contains the information about
the object. The transmitted intensity

Iðx; yÞ / jEj2 ¼ a2 � E2
0 ¼ I0

does not depend on x or y i.e. it is constant over the whole
area of the image.

filterd

f

x
L1 L2νx

d / 21/d

E x y( , )

x'

Fig. 12.31 High frequency pass filter at the imaging of a cosine
grating

pinhole

laser beam

image plane

L2

L1

f1 f2

Fig. 12.30 Pinhole as low-pass space frequency filter to improve the
quality of the enlarged laser beam
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For small phase shifts ðuðx; yÞ � 1Þ we can expand the
exponential function in (12.27) and obtain the approximation

Eðx; yÞ ¼ a � E0½1þ iuðx; yÞ�; ð12:28Þ
The Fourier-transform of (12.28) gives the amplitude

distribution in the diffraction plane

Eðmx; myÞ ¼ F Eðx; yÞ½ �
¼ a � E0 dðmxÞdðmyÞþ iF uðx; yÞ½ �� � ð12:29Þ

If the 0th diffraction order is suppressed, the first term in
(12.29) becomes zero. The amplitude distribution in the
image plane after imaging the diffraction plane by the lens
L2 into the image plane becomes

EðxB; yBÞ ¼ iE0 � a � F F½uðx; yÞ�½ �
¼ ia � E0uð�x;�yÞ ð12:30Þ

and the intensity distribution in the image plane is

IðxB; yBÞ / jEðxB; yBÞj2 ¼ a2E2
0u

2ð�x;�yÞ; ð12:31Þ
This shows that the phase information is saved and the

object becomes visible.

12.5.3 Optical Pattern Recognition

Optical filtering is also very useful for optical pattern
recognition . One possible application is the inspection of
produced pieces (e.g. small cogwheels or punched forms) in
a serial inspection of a large number of pieces [24, 25].

It must be assured that for each piece the technical tol-
erances are kept within the demanded limits. Every piece
must be compared with a model that has been precisely
produced and shows no deviations from the desired values.

At first a hologram of this model is taken by placing the
hologram plate in the diffraction plane of the model as object
and illuminating it with a plane reference wave. Such a
hologram is called Fourier-hologram and corresponds to the
Fourier-transform of the model. The developed hologram is
now placed in the filter plane (i.e. the diffraction plane of the
pieces to be inspected). In the image plane the superposition
of the images of the model and the real object can be seen.
Choosing the correct phase one can reach that the difference
of the two images appears, which immediately shows the
deviation of the inspected piece from the model.

An important biological application of this pattern
recognition is the fast distinction between healthy and cancer
cells, which is very useful for serial histological examina-
tions for early cancer diagnosis.

If objects change in time (for instance deformation of work
pieces under external pressure, or the change of the cloud
structure in Jupiter’s atmosphere) this can be readily inspected

by such methods of pattern recognition. All images of objects
at a later time are compared with the image at time t0 in a
similar way as described before. Only changes appear in the
difference image while all constant forms are suppressed.

A drawback of this method is its extreme sensitivity
against even very small shifts of the filter which can alter the
pattern which should be recognized.

12.6 Micro-Optics

Micro-Optics is a modern branch of optics which started
around 1980 and has meanwhile undergo a very rapid devel-
opment reaching technical maturity. This dynamic expansion
was only possible through the parallel proceeding of
micro-technology (lithographic techniques, mechanical pro-
duction of micro-structures) and due to a better understanding
of the physical phenomena which occur at the optical imaging
and wave propagation through micro-optical elements.

In this section we will only briefly deal with some aspects
and applications of micro-optics [26, 27].

12.6.1 Diffractive Optics

In Chap. 9 we have discussed that light can be deflected by
prisms or collected by lenses. Both effects are based on the
wavelength dependent light refraction at interfaces between two
media with different refractive index. All imaging techniques
which are based on refraction are called refractive optics.

During the last years new fabrication techniques of
micro-mechanics and microelectronics together with new
methods of computer aided design have facilitated the cre-
ation of new optical elements which are based on diffraction
instead of refraction. They can perform deviation as well as
focusing of light beams. Such imaging methods based on
microscopic small optical elements are called diffractive
optics. Its principle will be illustrated by some examples.
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Fig. 12.32 a) Diffraction of light at a strip-type phase plate where b2 is
the width and h the depth of the grooves, b1 the width of the stripes and
d the distance between two grooves. b) Diffraction by a graded profile
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In Fig. 12.32a a glass plate is shown, where stripes of
rectangular grooves with width b and depth h are etched into
the glass surface. When a plane wave is incident onto the
glass plate, an optical path difference Ds = ðn� 1Þh appears
between vertically incident light passing through the grooves
with depth h and light that passes through the stripes
between the grooves. The glass plate therefore acts as a
phase grating. While for a transmission grating with equal
slits and strips the transmitted amplitude is spatially modu-
lated in y-direction and the transmission is T = 0.5, for the
phase grating the phase is spatially modulated in y-direction
and the transmission is T = 1.0. Analog to the classical
optical grating each stripe with width b acts with respect to
diffraction as a slit where the central diffraction order is
deflected within the angular range j sin aj 
 k=b. If suffi-
ciently large deflection angles are demanded, the stripe
width b must be of the same order as the wavelength k.

The partial waves from the different stripes add to a
macroscopic wave if the phase difference between the waves
from adjacent stripes is Du ¼ m � 2p, which implies that the
optical path difference isDs ¼ m � k. FromFig. 12.32awe can
see, that the path difference between adjacent beams for
m = 2, 4, 6, … = even and between adjacent odd beams
(m = 1, 3, 5, …) in the direction a is Ds ¼ d � sin a with
d ¼ b1 þ b2. For constructive interference we therefore get
the condition.

d � sin a ¼ �m1 � k ðm1 ¼ 0; 1; 2; . . .Þ: ð12:32aÞ
The odd-numbered beams have the optical path difference

Ds2 ¼ �ðn� 1Þ � h� 1
2
d sin a ð12:32bÞ

against the adjacent even numbered beams.
All odd-numbered partial beams can interfere construc-

tively with the even numbered beams if Ds2 ¼ m2 � k,
ðm2 ¼ 0; 1; 2Þ. The subtraction of (12.32b) and (12.32a) gives

�ðn� 1Þ � hþ 1
2
d sin a ¼ ðm2 � m1Þ � k: ð12:33Þ

For m2 � m1 ¼ 0 the direction for the zeroth order con-
structive interference becomes

sin a0 ¼ � 2ðn� 1Þh
d

: ð12:34aÞ

Here the optical path difference is zero (besides disper-
sion effects) and sina0 is independent of k. For the inter-
ference maximum of 1. Order (m2 � m1 ¼ �) the deflection
angle is

sin a1 ¼ ðn� 1Þh� k
d=2

: ð12:34bÞ

Examples

n ¼ 1:5, h ¼ 1:5 lm, b1 ¼ b2 ¼ 1lm ) d ¼ 2lm;
m2 � m1 ¼ 0 ) sin a0 ¼ 0:75 ) a0 ¼ �48:6 inde-
pendent of k.

(a) For a wavelength k ¼ 0:5lm we obtain for
m2 � m1 ¼ 1: sin a1 ¼ 0:25 ) a1 ¼ 14:5. For
m2 � m1 ¼ �1 we get sin a1 ¼ 1:25 which shows
that there is no interference maximum for the-1st
order.

(b) With a stripe heights h ¼ 1lm one obtains:

For m2 � m1 ¼ 0 ) sin a0 ¼ 0 ) a0 ¼ 0
For m2 � m1 ¼ þ 1 ) a1 ¼ 0
For m2 � m1 ¼ �1 ) a1 ¼ 90.
For this example there is only a constructive

interference in the forward direction a = 0 for the
zeroth—as well as for the first order.

This example illustrates that the deflection of the trans-
mitted light against the incident light can be chosen within
wide angular ranges

a0 ¼ arcsin
2ðn� 1Þh

d

� �
; ð12:34cÞ

by selecting the proper values of grating constant d and
stripe heights h. Since the refractive index n depends slightly
on k there remains a weak dependence of a0 from k.

The transparent plate can be also constructed with a
stepped profile as shown in Fig. 12.32b. The phase plane of
the transmitted wave is inclined by the angle a against that of
the incident wave and is determined by the condition that the
optical path difference Ds1 = n � h is just compensated by the
corresponding path difference Ds ¼ b � sin a behind the
plate. The zeroth interference order therefore occurs for

n � h� b � sin a0 ¼ 0 ) sin a0 ¼ n � h=b: ð12:35Þ

Example

n ¼ 1:5, h ¼ 0:2lm, b ¼ 1lm ) sin a0 ¼ 0:30 )
a0 ¼ 17:5.

Note that also for the zeroth interference order the
deflection angle a0 depends slightly on k because of the
dispersion nðkÞ. This dependence is, however, for the zeroth
order much smaller than for higher orders. For the mth−in-
terference order is

n � h� b � sin a ¼ �m � k
) sin a ¼ ðn � h� m � kÞ=b: ð12:36Þ
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For the example above the interference angles for the first
two diffraction orders appear for k ¼ 0:5 lm at

a1ðm ¼ þ 1Þ ¼ �11:5

; a2ðm ¼ �1Þ ¼ þ 53:

Parallel incident light falling onto such a stepped profile
plate is split into several partial beams with deflection angles
determined by (12.36). The number of these partial beams
depends on the width b of the steps. The diffraction at each
single step limits the angular range, where only deflected
light can be observed for sin a
 qk=b.

Example

For b ¼ 1lm and k ¼ 0:5lm the angular range is
limited to aj j\30. This means that the total trans-
mitted intensity is distributed among the 0th and the
1st interference order. In this case only the 0th and the
1st order appear. The incident beam is split into two
transmitted partial beams. For smaller values of h and
b higher orders are realized and more deflected beams
are obtained.

12.6.2 Fresnel Lenses and Lens Arrays

As a second example we will discuss a Fresnel lens, which
acts as a Fresnel zone plate (Sect. 10.6.2).

For Fresnel zones the path difference between the
observation point and two adjacent zones is k=2. They can
be realized by etching circular grooves into the surface of a
circular transparent glass plate (Fig. 12.33). The difference
Dsm ¼ smþ 1 � sm for the path length from adjacent grooves
to the focal point F can be expressed by the radii of the
grooves

r2m ¼ s2m � s20 ¼ ðs0 þm � k=2Þ2 � s20 � s0 � m � k ð12:37aÞ
which is valid for s0 � m � k. We can therefore write for the
radius of the mth-Fresnel zone (as already derived in (10.64))

rm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m � s0 � k

p
: ð12:37bÞ

The area A of each zone

A ¼ p r2mþ 1 � r2m
� � ¼ p � s0 � k ð12:38Þ

is independent of m and therefore equal for each zone..
The path difference between a strip zone and a groove

zone is

Ds ¼ n� 1ð Þh� k=2:

If the heights h of the stripe is chosen such that ðn� 1Þ �
h ¼ k=2 then all partial waves from stripes and grooves are
in phase at the point F and interfere constructively. Such a
zone plate then acts as a lens with the focal length

f ¼ s0 ¼ r21=k; ð12:39Þ
Note that the focal length depends on the wavelength k

and the radius r1 of the first Fresnel zone.

Remark For the Fresnel-zone plate, discussed in
Sect. 10.6.2 with alternate transparent and opaque zones the
zones producing destructive interference had to be masked.
This causes a 50% decrease of the transmitted intensity. For
the phase modulated zone plate, however, the destructive
interference is converted into a constructive one just by
choosing the correct phase shifts. Therefore the total incident
intensity is transmitted, which implies a gain by a factor 2
compared to the amplitude modulated zone plate.

From Eq. (12.39) we learn that the focal length f of
diffractive lenses decreases with increasing wavelength k
contrary to refractive lenses where in the range of normal
dispersion the refractive index decreases with increasing
wavelength and therefore the focal length increases. By an
appropriate combination of the diffractive and refractive effect
of a lens, an achromatic lens can be realized (Fig. 12.34).

f F

red

blue

Fig. 12.34 Combination of a diffractive Fresnel lens and a refractive
classical lens for the realization of an achromatic lens
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Fig. 12.33 Glass plate with circular grooves. Acting as Fresnel lens
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Besides their possible small sizes a great advantage of
diffractive lenses is the possibility of cheap mass production
based on etching techniques which have been already opti-
mized in micro-electronics for the production of microchips.
The calculated optimization of the surface structure can
minimize imaging optical aberrations. Diameter and focal
length of such micro lenses can be made quite small (e.g.
below 1 mm). They can be therefore used in medicine as
imaging elements in endoscopes (these are optical fiber
systems that can be inserted into the human body for medical
inspection and treatment).

A whole array of Fresnel lenses can be arranged on a
glass plate (Fig. 12.35). This allows the simultaneous
imaging of many different sections of an extended object. If
a photodiode array is placed in the image plane, each diode
receives the signal of the corresponding section of the object.
Since Fresnel lens arrays as well as photodiode arrays can be
produced with integrated techniques, imaging system and
detector unit can be produced on a single chip, which
reduces the production costs considerably [28].

12.6.3 Production Techniques of Diffractive
Optical Elements

The most important technique for the production of
diffractive optical elements is the lithography. At first a
heavily scaled down copy of the original pattern is produced
on a photosensitive layer by illumination with ultraviolet
light. The illuminated parts appear black after the develop-
ment of the photo layer. This structured layer is now used as
mask which is placed on top of a thin glass plate with a
photo-layer on its surface (Fig. 12.36). The photo-layer is
now illuminated through the mask and the illuminated parts
are removed by etching reagents. These parts are now
accessible to further treatment by other etching substances

which produce the wanted pattern (e.g. the circular zones of
a Fresnel lens) on the glass plate.

Besides by this photographic technique the mask can be
also produced by an electron beam which is scanned across
the mask plane and generates there the wanted pattern.

12.6.4 Refractive Micro-Optics

Besides lenses based on diffractive optics , micro lenses can
be also produced which use the refraction for the imaging
process, just as for macro lenses. One can distinguish
between two different classes of micro lenses:

object plane

Fresnel lenses

10μm

Fig. 12.35 Two-dimensional array of small Fresnel lenses for the simultaneous imaging of large object areas without aberrations onto a
photodiode array in the image plane

etching structure
in substrate

Mask
photoresist

Substrate

developed
photoresist

Substrate

illumination

Fig. 12.36 Lithographic technique for the production of micro-optics
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(a) lenses with a given surface structure which perform
imaging of light beams

(b) lenses with a radial gradient of the refractive index
which are made of an inhomogeneous material.

Refractive micro-lenses can be for instance produced by a
lithographic process (Fig. 12.37). Plastic micro-cylinders
with diameter D and heights h are placed on a glass surface.
If they are heated above their melting temperature the
cylinders are transformed into the liquid phase. Due to sur-
face tension the liquid takes up a form with minimum sur-
face for a given volume. This is a spherical cap with a radius
of curvature, which depends on the quantities D and h and
which acts as a micro-lens on the glass surface. By selecting
the dimensions D and h of the cylinder one can define the
radius of curvature R and therefore the focal length

f ¼ R=ðn� 1Þ
of the micro-lens.

Using cylinders with a gradient of the refractive index,
which can be produced by diffusion of impurity atoms into
the plastic material, they can be used as cylindrical lenses.

The diameter of the micro lenses range between 5 and
500 lm, their focal length is between 50 lm and some mil-
limeters [29].

12.7 Optical Waveguides and Integrated
Optics

The realization of integrated optics takes advantage of the
already existing micro structures (in the micrometer to
nanometer range) of integrated electronic devices on the
surface or in the interior of a substrate. Here light is coupled
into and guided through tiny waveguides in the lm-range,
where it is modulated or transferred into adjacent
wave-guides. By this means an arbitrary optical input signal
can be structured, encoded or transformed into any wanted
form. It can be also distributed into many exit channels.

We will now discuss this in more detail:

12.7.1 Light Propagation in Optical Waveguides

Essential technical principles of integrated optics are based
on the propagation of optical waves in waveguides, which
has been already discussed in Sect. 7.9. Here are, however,
no hollow waveguides with electrical conducting walls are
used as shown in Fig. 7.26, but stripes or rectangular
channels made of transparent, i.e. non conducting material
with a refractive index, which is larger than that of the
surroundings. The optical wave is therefore enclosed in and
guided through the waveguide by total reflection [30].

All waves propagating through a waveguide with
refractive index n must obey the wave equation

DE ¼ n2

c2
@2E
@t2

ð12:40Þ

where D is the Laplace operator. The selection of special
solutions is determined by boundary conditions, which
depend on the dimensions and the refractive index of the
waveguide and its surroundings.

As example we regard a planar waveguide between the
planes x = 0 and x = a, which extends in the y-direction
from y = −∞ to y = + ∞ with the refractive index n2 of the
waveguide between two surrounding media with refractive
indices n1 and n3 (Fig. 12.38). For a TE-wave (see Sect. 7.9)
with a wave vector k forming the angle # against the z-
direction we get the expression

Eðx; y; z; tÞ ¼ EyðxÞeiðxt�bzÞ ð12:41Þ
with the propagation constant b ¼ k � n2 cosh and the
wavenumber k ¼ x=c. The amplitude EyðxÞ which depends
solely on x, is given in the three ranges by

EyðxÞ ¼
A � epx for x
 0;
B � cosðhxÞþC � sinðhxÞ for 0
 x
 a;
D � e�qðx�aÞ for x� a

8<
:

ð12:42Þ

x
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y

x = a

x = 0
E

x

n3

n2

n1

Fig. 12.38 Planar wave guide made as a layer with refractive index n2
between layers with n1 and n3

glasspolymer

Fig. 12.37 Fabrication of micro-lenses of plastic by heating and
melting of micro-cylinders which have been produced by lithographic
techniques on a glass substrate
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This can be proved by inserting (12.42) into (12.40).
The continuity condition for EyðxÞ at x = 0 and

x = a demands B = A and D ¼ B � cosðhaÞþC � sinðhaÞ.
The additional condition, that also @Ey=@x should be con-
tinuous, gives for x = 0 the relation A � p ¼ C � h where
p and q are real numbers. We can therefore express all
amplitudes by A and obtain:

EyðxÞ ¼
A � epx for x
 0;
A � ½cosðhxÞþ p

h sinðhxÞ� for 0
 x
 a;
A � ½cosðhaÞþ p

h sinðhaÞ�e�qðx�aÞ for x� a:

8<
:

ð12:43Þ
Inserting (12.43) into the wave Eq. (12.40) gives

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � n21k

2

q
;

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n22k

2 � b2
q

;

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � n23k

2

q
:

ð12:44Þ

All three quantities p, h and q are therefore determined
solely by the wavenumber k, the refractive indices ni and the
parameter b ¼ k � n2 � cosh which gives the propagation
parameter in the direction #.

From the continuity of @Ey=@x at x = a we get the
additional condition

�h sinðhaÞ � ðq=hÞ cosðhaÞ
¼ �p cos hað Þþ q=hð Þ sin hað Þ½ �; ð12:45aÞ

which gives

tanðhaÞ ¼ � pþ q

hð1� qp=h2Þ ð12:45bÞ

Together with (12.43) this sets up a relation between the
quantities p, q and h and illustrates that not arbitrary values
of the propagation parameter b are allowed but only discrete
values bn which describe the allowed propagation modes of
a wave in the waveguide.

From (12.42) we can see, that the wave can penetrate into
the adjacent regions on both sides of the waveguide. Its
amplitude decreases, however, exponentially.

The question is now, which propagation modes with
wavelength k can be guided through the planar waveguide
with width a, without walking out of the waveguide? This
depends on the difference Dn ¼ n2 � n1 resp. n2 � n3
between the refractive indices of waveguide and surrounding
material.

For practical applications symmetric waveguides with
n1 ¼ n3 ¼ n are standard. This implies according to (12.44)

b ¼ n1 � k ¼ n3 � k = n � k. With (12.45) we obtain the
boundary condition for symmetrical planar waveguides

tanðhaÞ ¼ 0 ) ha ¼ ms � p: ð12:46Þ
For the coefficients h and a (12.46) gives the relations

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n22k

2 � b2
q

¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n22 � n2

q
¼ 2p

k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n22 � n2

q ð12:47Þ

a ¼ ðms � k=2Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn22 � n2Þ

q
ð12:48Þ

The integer ms gives essentially the ratio of width a of the
waveguide to the half wavelength k=2.

Inserting (12.31) into (12.46) we obtain with n22 � n2 ¼
ðn2 � nÞ � ðn2 þ nÞ the minimum difference of the refractive
indices

Dn ¼ n2 � n[
m2

sk
2

4a2ðn2 þ nÞ ; ð12:49Þ

that is necessary to keep the wave mode with the mode
parameter ms inside the symmetric waveguide. This relation
allows the calculation of

(a) the minimum difference Dn for a given wavelength k
and mode parameter ms

(b) the maximum number ms of modes that can be still
guided for given values of Dn and wavelength k.

Examples

1. ms ¼ 0 ) h ¼ 0 ) b ¼ n2k ) # ¼ 0. The wave
vector points into the z-direction and the wave
propagates parallel to the walls of the waveguide.
There is no wavelength limit, but with increasing
values of k/a the fraction of the wave, travelling
outside the waveguide, increases (Fig. 12.39).

x

z

a 1 2 1
k

Fig. 12.39 Amplitude distribution E(x) of the lowest TE-mode with
ms = 0 for two different wavelengths k1\a=2 and k2 [ a=2
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2. ms ¼ 1, k ¼ 600 nm, a ¼ 2 lm, n ¼ 1:5 )
Dn[ 0:0075 ) n2 ¼ 1:5075. This illustrates that
already a very small difference Dn is sufficient to
guide a wave mode with ms = 1. From (12.44) we
obtain for # ¼ 0 the relations

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � n2k2

q
¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n22 � n2

q
¼ 2p

k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0215

p
� 0:9

k

) Eyðx\0Þ ¼ A � e�0:9 xk

) I / Ey

�� ��2¼ A � e�1:8 x=k:

The penetration depth into the surrounding material
is about k/2 which means that for x = k/2 the ampli-
tude has decreased to 1/e of its value inside the
waveguide.

If the wave penetrates into the surrounding, its phase
velocity is not only determined by the refractive index n2 of
the waveguide, but also by the index n of the surrounding
material. Taking this into account the propagation parameter
can be written as

b ¼ k � neff � cos#
Planar waveguides, where the wave is only limited in one

direction, are a special class of more general waveguides
with rectangular cross section where the wave is limited in x-
and in y-direction. Possible technical realization are shown
in Fig. (12.40). For instance, a groove with width 2a and
depth 2d can be etched into a bulk material with refractive
index n1. Above the design either air with ðn3 ¼ 1Þ is the
third region or the system is coated with another material
with n3 > 1. it is also possible to deposit a stripe of material
with refractive index n2 onto the planar surface of the bulk
material, where the lower border has the refractive index n1
and the sides the index n = 1 of air.

12.7.2 Modulation of Light

When a dielectric material is brought into an external electric
field, its refractive index n changes. This gives the basis for

electro-optical modulation of light in wave guides. Assume a
waveguide with width a and refractive index n2 is applied to
a bulk material with refractive index n3. When a voltage U is
applied between two electrodes (Fig. 12.41) the refractive
index of the material between the electrodes changes. If the
bulk material has a non-vanishing electric conductivity the
whole voltage app ears across the nonconductive wave guide
and the electric field strength in the waveguide is jEj ¼ U=a.

As can be shown [40] the change of the extra-ordinary
refractive index is

DnEO ¼ n32 � aE � U=a; ð12:50Þ
where aE is a factor that depends on the polarizability of the
material in the waveguide.

If the refractive indices n2 and n3 are chosen such that
without electric filed the condition (12.49) is fulfilled for
ms ¼ 0 but not for ms ¼ 1 no wave mode with ms ¼ 1 can
propagate through the waveguide. Increasing the difference

Dn ¼ n2 þDnEO � n3 ð12:51Þ
the condition (12.49) can be also satisfied for ms ¼ 1. This
means that the wave mode with ms ¼ 1 can be switched on
and off by the electric field.

12.7.3 Coupling Between Adjacent Waveguides

If two waveguides are separated by a thin layer with
refractive index n2 a wave which has been coupled into
waveguide 1 and propagates there into the z-direction can
extend with exponentially decreasing amplitude into
waveguide 2. Part of the wave energy is then transferred to
waveguide 2. We obtain for the electric field amplitudes

dA1ðzÞ
dz

¼ �ib1A1 þ ij12A2ðzÞ; ð12:52aÞ

dA2ðzÞ
dz

¼ �ib2A2 þ ij21A1ðzÞ; ð12:52bÞ

2d

2a

2d
2a(a) (b)
n2

n2

n3 1=n3

n1 n1

Fig. 12.40 Two possible realizations of dielectric stripe conductors a)
imbedded b) superimposed

waveguide

Substrate

U

a n2

n3

Fig. 12.41 Electro-optical modulation of a wave guide
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where b ¼ n2 � cos# is the propagation parameter and j is
the coupling coefficient. If both waveguides have equal
dimensions is b1 ¼ b2 ¼ b and j12 ¼ j21 ¼ j.

Wirth the initial conditions A1ð0Þ ¼ 1 and A2ð0Þ ¼ 0 the
solutions of (12.52a, 12.52b) are

A1ðzÞ ¼ cosðjzÞ � eibz; ð12:53aÞ

A2ðzÞ ¼ �i sinðjzÞ � eibz; ð12:53bÞ
The power of the waves in the two waveguides is then

(Fig. 12.42)

P1ðzÞ / A1 � A	
1 ¼ cos2ðjzÞ ð12:54aÞ

P2ðzÞ / A2 � A	
2 ¼ sin2ðjzÞ ð12:54bÞ

This shows that the energy oscillates back and forth
between the two wave guides. After the path z1 ¼ p=2j it
has been completely transferred from 1 to 2 and after z2 ¼
p=j it is again back to 1.

Choosing the coupling length just equal to z1 the wave
energy is completely transferred from waveguide 1–2; for
z ¼ p=ð4jÞ half of the energy is transferred to 2.

Remark The problem is completely analog to that of two
coupled pendula (see Vol. 1, Sect. 11.8).

If also other losses of the wave besides the coupling
losses are taken into account (for instance absorption of the
waveguide material) a complex refractive index is intro-
duced (see the discussion in Sect. 8.1). The complex prop-
agation parameter then becomes.

b ¼ kn2 � cos# ¼ br � ia=2

The wave propagating in the waveguide is a damped
wave and one obtains instead of (12.54a and 12.54b) the
equations

P1ðzÞ ¼ cos2ðjzÞ � e�az

P2ðzÞ ¼ sin2ðjzÞ � e�az
ð12:55Þ

12.7.4 Integrated Optical Elements

The large technical significance of integrated optics is owed
to the combination of integrated light sources in thin film
technology (semi-conductor lasers) integrated optical ele-
ments (lenses, prisms waveguides), micro-optical detectors
and optical fibers [31, 32].

In this way source, communication channel and detector can
be combined in integrated technique, i.e. small and compact. As
example emitter, lens, waveguide and detector in effective pla-
nar layer structure are shown schematically in Fig. 12.43. The
cylinder lens is realized by a region Dz with different refractive
index, the semiconductor laser by a sandwich structure of sili-
con layers doped with different concentrations of impurity
atoms (see Vol. 3, Sect. 8.4 and 14.3). The distribution of the
input energy onto the different exit channels can then be realized
by coupling adjacent wave guides, which can be controlled by
electro-optical modulation (see foregoing section).

12.8 Optical Fibers

Optical fibers are thin fibers of fused silica with diameters
between 5 and 50 lm, where a core zone has a slightly
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Fig. 12.42 Coupling between two close wave-guides by superimpos-
ing field distributions a) cross section in the x-y-plane b) in the x-z-
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Fig. 12.43 Light source, wave guide optics and optical fiber with
detector in integrated design
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higher refractive index than the surrounding mantle called
cladding (Fig. 12.44). The inner core has a refractive index
which is larger than that of the surrounding cladding. The
silicon cladding is covered by a plastic protective coating in
order to protect the fiber from external damage. Typical
values of the refractive indices are ncore ¼ n1 ¼ 1:48;
ncladding ¼ n2 ¼ 1:46. A light wave coupled into the core is
trapped due to total reflection at the boundary between core
and cladding as long as the angle between wave vector k and
boundary is above the critical angle cg for total reflection
with sin cg ¼ n2=n1 (Fig. 12.45) (see Sect. 8.4.6).

The maximum acceptance angle aa for the coupling into
the core is with sin a= sin b ¼ n1 given by

sin amax ¼ n1 � sin bg ¼ n1 � cos cg ¼ n1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2 cg

q
¼ n1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðn2=n1Þ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 � n22

q
:

ð12:56Þ

The angular acceptance range

AN ¼ sin aa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 � n22

q
ð12:57Þ

is the numerical Aperture of the optical fiber.

Example

n1 ¼ 1:48,
n2 ¼ 1:46 ! sin amax ¼ 0:14 ) amax ¼ 8.

The numerical aperture limits the maximum light power
that can be coupled into the fiber core. Using a lens with
focal length f to focus a light beam with diameter d onto the
core (Fig. 12.46) we get

tan amax ¼ d=2f

The advantage of optical fibers is the possibility of
bending the fiber, for instance winding a long piece of the
fiber on a circle with many windings. As long as the radius
of curvature of a bent fiber is not too small, the light is still
trapped in the core (Fig. 12.47).

The radial profile of the refractive index n in optical fibers
can be chosen in different ways: For the step index fiber
(Fig. 12.48a) is n(r) = const within the core. At the

Fig. 12.44 Cross section of an optical fiber (www.explainthatstuff.com)

kernelcladding

plastic protection layer
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Fig. 12.45 Design of an optical fiber
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Fig. 12.46 Coupling of light into an optical fiber

Kernel cladding

Fig. 12.47 Propagation of light in an optical fiber with step-index
profile with total reflection at the interface between core and cladding
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Fig. 12.48 Radial index profile a) for a step-index profile fiber b) for
a gradient index fiber
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boundary core-mantle n makes a step from n1 to n2 and is
then again constant in the mantle. In the gradient index fiber
n(r) has a radial profile as shown in Fig. (12.48b). Often
n(r) has a parabolic profile nðrÞ ¼ nð0Þ � b � r2. The light
rays in the core of gradient index fibers are curved
(Fig. 12.49b). The advantage of gradient index fibers is the
smaller dependence of the propagation velocity from the
entrance angle (see next section).

12.8.1 Light Propagation in Optical Fibers

In Sect. 7.9 we have discussed the propagation of different
wave modes in waveguides with rectangular cross section. In
a similar way also in waveguides with circular cross section
the propagation characteristics depends on the specific mode
of the wave and on the dimensions of the waveguide. For
instance, in a step index fiber with core diameter 2a\k only
the fundamental mode TEM00 can propagate.

The propagation velocity of a wave in an optical fiber
differs for the different transverse modes. The difference is
smaller for step index fibers than for gradient index fibers
(Fig. 12.49). Therefore generally either step-index fibers or
even better single mode fibers are used for optical commu-
nication. We will discuss the propagation characteristic in
such fibers in more detail [32] (Fig. 12.50).

According to Fermat’s principle (see Sect. 9.1) the light
chooses its path between two points P1 and P2 such that the
optical path length

Lopt ¼
Z P2

P1

nðrÞds ¼ Minimum ð12:58Þ

becomes minimum (Fig. 12.50). With ds ¼ êt � dr )
dLopt ¼ nðrÞ � êt � dr where êt is the tangent unit vector at the
point P. On the other hand is dLopt ¼ ðgradLoptÞ � dr )

rLopt ¼ nðrÞ � êt. Scalar multiplication of ds with êt gives
êtds ¼ dr and therefore

rLopt ¼ n rð Þ � dr
ds

¼ n rð Þ � êt ð12:59Þ

Differentiation of (12.59) with respect to ds yields
because dêt=ds ¼ 0

d
dt

n � dr
ds

� �
¼ d

ds
rLopt
� � ¼ rnðrÞ ð12:60Þ

For gradient index fibers often a parabolic index profile is
chosen

nðr
 aÞ ¼ n1 1� D
r

a

� �2� �
nðr� aÞ ¼ n2

mit D ¼ ðn1 � n2Þ=n1:
ð12:61Þ

where D ¼ n1 � n2ð Þ=n1 is the relative difference of the
refractive indices n1 of the core and n2 of the cladding.

Since n depends solely on the distance r from the fiber
axis, is rn ¼ dn=dr and we obtain from (12.60) the equa-
tion in cylinder coordinates r;u; zð Þ (see problem 12.11)

d2r
dz2

¼ 1
nðrÞ

dn
dr

ð12:62Þ

Inserting (12.61) finally yields the equation

d2r
dz2

þ 2D
a2

r ¼ 0 ð12:63Þ

with the solution

rðzÞ ¼ a sin

ffiffiffiffiffiffi
2D

p

a
� z

 !
: ð12:64Þ

The path r(z) of the light rays in a gradient index fiber
shows a sinusoidal pathway around the axis r = 0
(Fig. 12.49b) with the period
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Fig. 12.50 Application of Fermat’s principle to light propagation in a
medium with locally varying refractive index n(r)
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Fig. 12.49 Propagation of different modes a) in a step-index fiber b)
in a gradient index fiber
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Dz ¼ K ¼ 2pa=
ffiffiffiffiffiffi
2D

p
: ð12:65aÞ

Introducing the wavenumber

K ¼ 2p=K ¼ 1
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
n1 � n2

n1

r
: ð12:65bÞ

The velocity of the light propagating along the trajectory
(12.64) is

tphðzÞ ¼ c

nðzÞ ¼
c

n1 1� D sin2 Kz
� �

¼ c

n1 1� K2

2 a2 sin2ðKzÞ� � :
ð12:66Þ

The phase velocity tph oscillates between the minimum
value c=n1 for K � z ¼ n � p (which occurs for r = 0) and the
maximum value c=n2 for K � z ¼ ðnþ 1

2Þp which is reached
for r = a i.e. at the boundary between core and cladding.

The propagation velocity in the z-direction depends on
the incidence angle a. Its mean value averaged over one
period K is

tzh i ¼ K
T
¼ KRK

0
dz

tph � cos a
ð12:67Þ

hvzi ¼ c

n1
1� D � a

2a0

� �2
 !

; ð12:68Þ

where a0 ¼ p
2Dð Þ � dr=dzð Þr¼0 is the angle between the

trajectory and the symmetry axis r = 0.
Since D � 1, Eq. (12.68) shows that the travel time of

light through gradient index fibers depends less strongly on
the incidence angle a than in step index fibers (Fig. 12.49a).

12.8.2 Absorption in Optical Fibers

The losses which light suffers when propagating through
optical fibers are of fundamental importance for optical
communication over large distances. They are caused by
absorption, scattering and leakage from the core into the
cladding. Their combined effect is called the fiber
attenuation.

If the relative power loss on the fiber length dL is

dP
P

¼ �j � dL; ð12:69Þ

Integration yields

PðLÞ ¼ Pð0Þ � e�jL: ð12:70Þ
The transmitted power decreases exponentially with

increasing propagation length L. The damping constant

j ¼ � 1
L
ln
PðLÞ
Pð0Þ ð12:71Þ

depends on the fiber material and the wavelength k. Since
the damping constant can vary over several decades, in
telecommunication generally the decadic logarithm is used
and the damping coefficient is defined as

a ¼ � 10
L
log

PðLÞ
Pð0Þ ð12:72aÞ

with the unit decibel (db) per km fiber length. Rearranging
gives

P Lð Þ ¼ P 0ð Þ � 10�aL=10 ð12:72bÞ

Example

For a ¼ 0:5 dB/km the transmitted power has
decreased after a fiber length of 10 km to
PðLÞ=Pð0Þ ¼ 10�0:5 ¼ 0:316 � P(0). The power has
decreased to 31.6% of its initial value.

For a = 0.1 db/km (which can be realized today)
the transmitted power decreases after 10 km to 80%
and after 100 km to 10% of its initial value.

In Fig. 12.51 the spectral damping curve of a modern
optical silicon fiber is shown. It shows that the damping
coefficient has a minimum at k ¼ 1:6lm. This is due to the
superposition of several effects: The scattering cross section
for Rayleigh scattering is proportional to 1=k4 and increases
therefore steeply with decreasing wavelength (see Sect. 8.2).
The absorption is essentially caused by the low-wavelength
side of the infrared absorption by excitation of vibrations
which impurity atoms perform against the lattice of the fiber
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Fig. 12.51 Attenuation a kð Þ of a standard fiber, which contains small
residual impurities (red curve) and for a fiber with very low
OH-concentration
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material. Scattering and absorption increase drastically with
the concentration of impurity atoms and molecules. In par-
ticular the OH-radical absorbs strongly around k ¼ 1:4 lm.
Therefore it is essential to use extremely purified material.
For shorter wavelengths the long wavelength side of the
UV-absorption due to electronic transitions of the atoms and
molecules becomes important [32].

12.8.3 Optical Pulse Propagation in Fibers

The propagation of optical pulses in fibers is not only
influenced by absorption and scattering but also by disper-
sion which alters the form of the pulses. Dispersion has two
different causes:

(a) The different propagation modes of waves in the fiber
(Fig. 12.49) have different velocities (mode dispersion,
see Eq. 7.47)

(b) The refractive index n and the phase velocity c 0 = c/n(k)
depends on the wavelength k (Fig. 12.55). Since optical
pulses with the temporal width DT are composed of an
infinite number of waves with frequencies m within the
frequency range Dm = 1/DT, the different velocities of
these frequencies result in a change of the pulse form I
(t) particular in a broadening of the pulse. Since the pulse
width has to be smaller than the time interval between
successive pulses this effect limits the fiber length for the
optical communication for a given pulse rate
(Fig. 12.52).

In an optical fiber with a core diameter 2a � k generally
many propagation modes are possible. This has been illus-
trated in Sect. 7.9 by the example of a waveguide and in
Fig. 12.49 for two different modes in an optical fiber.
Therefore multimode fibers are not appropriate for optical

communication over large distances. On has to use mono-
mode fibers with core diameters 2a < 3k. This demands a
very precise adjustment for coupling the light into the fiber.
This is, however, nowadays technical feasible, even for the
splicing of fiber ends under operating conditions in outside
cable trenches.

The dispersion n(k) is shown in Fig. 12.53 for a silicon
fiber doped with GeO2 which is often used for optical
communication.

The propagation of pulses is governed by the group
velocity (see Sect. 8.2 and Vol. 1, Sect. 11.x)

tG ¼ tph þ k
dtph
dk

¼ c

nr þx dnr=dx
ð12:73Þ

which depends on the refractive index n ¼ nr � ij
(Sect. 8.1). For the pulse deformation the dispersion of the
group velocity dtG=dk resp. dtG=dk is responsible.
Figure 12.53 shows that for standard optical fibers the group
velocity has a maximum for k � 1:3 lm and therefore its
dispersion becomes zero. This wavelength is therefore
optimal for the transmission of high bit rates. The absorp-
tion, however, has a minimum at k ¼ 1:5 lm. This implies
that the minimum dispersion is paid dearly for a higher
absorption. It is possible to shift the maximum of tG by
increasing the concentration of impurity atoms to
k ¼ 1:5 lm, but this leads to a slightly higher absorption
than for a lower concentration (Fig. 12.54).

The question is now whether it might be possible to find a
better solution. This search has been indeed successful by
making use of nonlinear effects which allow the generation
of pulses called solitons, that do not change their form
during their propagation through the fiber.
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t

t

Fig. 12.52 Broadening and frequency shift (chirp) of an optical pulse
propagating through a medium with normal dispersion
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Fig. 12.53 Refractive index n kð Þ, group refractive index n�k � dn=dk,
and group velocity tG of a quartz fiber doped with 7 mole% GeO2
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12.8.4 Nonlinear Pulse Propagation; Solitons

For a sufficiently high intensity of the light pulses the atomic
electrons are induced to oscillations with amplitudes that
exceed the harmonic range (linear restoring force). The
refractive index is then no longer described by Eq. (8.1a) but
depends on the intensity. We can write:

nðx; IÞ ¼ nrðxÞþ n2 � I; ð12:74Þ
where the second term n2 � I becomes comparable to the first
term only for high intensities. The phase / ¼ xt � kz of an
optical wave E ¼ E0 cosðxt � kzÞ is with
k ¼ 2p=k ¼ n � x=c
/ ¼ xt � x � n � z=c ¼ xðt � nrz=cÞ � A � IðtÞ; ð12:75aÞ

where A ¼ n2xz=c. It therefore depends on the intensity

IðtÞ ¼ c � e0
Z

E0ðx; tÞj j2 cos2ðxt � kzÞdx ð12:75bÞ

The momentary optical frequency of the wave which is
equal to the time derivative of the phase

x ¼ d/=dt ¼ x0 � A � dI
dt

ð12:75cÞ

depends on the temporal change of the intensity.
When a light pulse with center frequency x0 and intensity

I tð Þ propagates through the fiber, the intensity derivative at
the leading edge of the pulse is dI=dt[ 0 and therefore
x\x0 while at the trailing edge dI=dt\0 and therefore
x[x0. This frequency variation during the pulse duration
is called frequency chirp. It leads to a spectral broadening
of the pulse and also to a temporal broadening, because the
red-shifted frequencies at the leading edge precede the
blue-shifted frequencies. If one now chooses the optical
wavelength k within the spectral range of “anomalous dis-
persion” with dn=dk[ 0 the red frequencies have a lower

phase velocity then the blue ones. For the correctly chosen
intensity the two opposite effects just compensate. This gives
pulses which are spectrally broadened but have a temporal
pulse width that stays constant. Such pulses are called
solitons [40].
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Fig. 12.55 Dispersion of some fiber-types. a) Standard single-mode
fiber b) dispersion-shifted single mode fiber c) dispersion-smoothed
single mode fiber

0

2

2

4

1,2 1,3 1,5 1,6 1,71,4

2
1

/ m

D [ps / (nm km)]
dT/d

Fig. 12.54 Group velocity dispersion (Black curves, left ordinate) and
transit time dispersion (red curves 1 and 2, right ordinate) for two
different optical fibers with different germanium doping

n  (

Ι (z)

)ω0 normal

anomalous

(a)

ω t

(c)

0ω

red
blue

(d)
I(t)

t

(b)

I

n  ( )I

n2

2

(e)

blue
red

z
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progression of a light pulse with frequency chirp e) spatial form of a
pulse, which becomes shortened after a path length z(I) in a medium
where the normal and anomalous dispersion have been compensated
and which travels with a constant pulse profile further on (soliton)
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This is again illustrated in Fig. 12.56. The linear disper-
sion causes a temporal broadening of the pulses, while the
nonlinear dispersion increases their spectral width. In the
spectral range of anomalous dispersion the temporal pulse
width of the broadened pulse decreases again. In Fig. 12.57
the change of the pulse form and width are illustrated for the
different fiber types.

This example shows that for the technical realization of
new methods a sound fundamental research is required in
order to achieve optimum solutions [33, 34] (Fig. 12.55).

12.9 Optical Communication

Optical signal transmission over larger distances has been
used for many centuries for fast communication of important
facts in particular for military communication. One possi-
bility is the system developed 1792 by Claude Chappe
(Fig. 12.58), where the letters of the alphabet were encoded
as special positions of the arms of the transmitting station.
These positions could be viewed by the next station about
10–20 km away. A whole network of stations was built in

France. Since the mechanical change of the arm positions
took some time, the communication was not very fast.

About 100 years later the first electrical communication
technique, where voltage- or current signals were sent
through electrical cables were invented. It remained for
many years the only way to communicate information with
high speed over large distances. Later on the wireless
communication and radio transmission were developed
(Fig. 12.59).

Recently the digital optical communication has gained
increasing importance, where short light pulses are send
through optical fibers. The large bandwidth of this technique
allows the simultaneous transmission of several thousand
channels. With digital communication systems meanwhile
bitrates of up to 1012 bits/s with optical pulse widths below
10−12 s have been reached. Another advantage of this
method is its security against interception. The attenuation of
the optical pulses by fiber losses is smaller by several orders
of magnitude than for electric signals sent through copper
cables (see Sect. 12.8.3 and 12.8.4). Since optical commu-
nication is a very important part of modern optics we will
discuss at the end of this textbook the required system

(a) (c)(b)
multimode fiber single-mode fibers

Step index fiber
with total reflection

Step index fiber
with wave guiding

gradient index fiber
with refraction

125 µm

50.. 100 µm

125 µm

50 µm

125 µm

2.. 10 µm

output pulseinput pulse output pulseinput pulse output pulseinput pulse

5–30 db/km, 10–100 MHz ⋅ km 3–10 db/km, >1 GHz ⋅ km 2–5 db/km, 3–50 GHz ⋅ km

Fig. 12.57 Light propagation a) in a step index fiber b) in a gradient index fiber c) in a single mode fiber. Below the figures are shown incident
and exit pulse profile, the attenuation in db/km, and the achievable bandwidth in MHz km
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components and the merits and drawbacks of this exciting
communication technique and also some problems which
have still to be solved (Fig. 12.59).

The principle of information transmission is schemati-
cally depicted in Fig. 12.60. The input information is pro-
cessed in the transmitter and is sent through the transmission
line. The receiver at the end of this line processes and
amplifies the signals, filters the wanted information and
converts it into a form readable by the recipient.

The system for optical communication is depicted in
Fig. 12.61 in more detail. The output beam of a light source
(generally a laser) is amplitude- or phase modulated by the
signal which should be transmitted and is then sent through
the transmitter optics (generally an optical fiber). Since many

different channels can be simultaneously transmitted, a
channel selector separates the different channels and the
detector following the receiver optics converts the optical
signal into an electrical output which gives the output
information. The semiconductor laser as the source emits
very short pulses and the repetition rate of the pulses is
modulated by the signal. A fast photodiode receives the
pulses and converts them into electrical pulses. The infor-
mation is presented in digital form as binary code and is
extracted by the receiver and transformed into an analogue
signal for example as music or language text.

In Fig. 12.62 the general scheme for optical communi-
cation is shown as a flowchart.

The great advantage of optical communication through
fibers is the available large bandwidth. For a wavelength
k ¼ 1:5 lm (this corresponds to the optical frequency
m ¼ c=k ¼ 2� 1014 s�1) about 2 million channels width a
bandwidth of 100 MHz each can be simultaneously trans-
mitted through a single optical fiber. De facto however, this
number is considerably lower because the dispersion of the
fiber broadens the pulses and limits the maximum pulse rate.

Fig. 12.59 Signal processing and transmission for optical
communication

Fig. 12.58 Claude Chappe and his Morese code which can be mechanically realized by moving the arms of the transmitting station

Information

input
trans-
mitter

transmission

route

recipi-
ent

Information

output

Fig. 12.60 Basic principle of information transfer
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Example

With a pulse width s ¼ 7:5 ps the Fourier-limited
spectral width of the pulse is Dm � 1

s ¼ 1:4�
1011 s�1 ¼ 140GHz ) Dk ¼ ðc=m2ÞDm ¼ 2 nm for
m ¼ 2� 1014 s�1. With this spectral width the disper-
sion is about 2 ps/km. After 50 km fiber length the

pulses have broadened to 100 ps. The maximum pulse
rate is then limited to 1010 pulses/s and the maximum
transmitted bandwidth is 10 GHz. The number of
simultaneously transmitted channels is now N = 1010/
108 = 100.

Most connections between two large cities use fiber
bundles which contain many single fibers (Fig. 12.63). This
multiplies the number of channels that can be simultaneously
transmitted.

More detailed information can be found in the excellent
book by Rogers [36] and in [35–40]

Fig. 12.62 More detailed block diagram of optical information
communication

Fig. 12.63 Optical glass fiber bundle with protective jacket

transmitter recipient

prism Optical wave guide prism
channel B
channel A

channel C
channel B
channel A

channel C

Channel BChannel A Channel C

Fig. 12.61 Simultaneous transfer of several channels achieved by optical wavelength multiplexing (http://Einstein.informatik.uni-oldenburg.de/
rechnernetze/optische.htm)

384 12 New Techniques in Optics

http://Einstein.informatik.uni-oldenburg.de/rechnernetze/optische.htm
http://Einstein.informatik.uni-oldenburg.de/rechnernetze/optische.htm


Summary

• Confocal microscopy allows a high spatial resolution
in the x-y-focal plane perpendicular to the light
propagation as well as in the z-direction. The achieved
contrast is generally higher than in conventional
microscopy.

• With the near field microscopy a spatial resolution
below 100 nm can be achieved. One needs, however,
intense light sources, such as lasers for the illumina-
tion of the object. This method is mainly used for
inspection of structures on surfaces.

• Active optics corrects unwanted deformations of
mirrors in astronomical telescopes by electronically
controlled elements. It minimizes image aberrations,
improves the quality of the image and increases the
angular resolution of the telescope.

• Adaptive optics corrects the degradation of the image,
caused by turbulences in the atmosphere. In combi-
nation with active optics it achieves a nearly ideal
image quality of astronomical mirrors where the
image of a star is equal to the diffraction disc of a
point source limited by the diameter D of the primary
mirror of the telescope. The angular resolution
approaches Da ¼ k=D.

• Diffraction optics utilizes diffraction and interference
for the imaging of objects (Fresnel lens) or for
deflection of light beams (step plate). This technique
allows the fabrication of micro-lenses and lens arrays
in integrated design.

• Holography allows the construction of a three-
dimensional image of an object. It is based on the
interference of the signal wave scattered by the object
with a coherent reference wave. This enables the mea-
surement of the phases of signal waves scattered by
different points of the object. The information about the
object is stored in encoded form in the hologram. The
illumination of the hologram with a reconstruction
wave produces the real three-dimensional image of the
object.

• The combinationof holography and interferometry allows
the visualization of small temporal changes of an object or
of the deviation of objects from a reference model.

• Three-dimensional holograms stored in special mate-
rials can be used as storage for information with high
packing density.

• Fourier-optics is based on the insight that for Fraun-
hofer diffraction the amplitude distribution in the
diffraction plane is equal to the Fourier-transform of
the light amplitude in the object plane. The further
imaging of the diffraction plane into the image plane
gives the real image of the object.

• Manipulations of the diffraction pattern (optical fil-
tering by apertures, optical amplitude filters, phase
plates or holograms) can specifically alter the image of
an object. If only low spatial frequencies are trans-
mitted in the diffraction plane finer details in the
image disappear (low pass filter). If only high spatial
frequencies are transmitted finer details of the object
are imaged with higher contrast (high pass filter).

• By high pass filtering phase objects (smear formation
or turbulences in liquids) can be made visible.

• Integrated optics uses microscopic small optical
waveguides for modulation and deflection of light
waves. They are produced by integrated techniques
(etching, evaporation techniques or the use of micro-
scopic masks). This allows the integration of light
source, wave guide and detector on a single chip.

• Fast optical communication is based on the trans-
mission of ultrashort laser pulses through optical
fibers with very small damping. This allows the real-
ization of long transmission distances. The maximum
possible bit rate is limited by the dispersion of the
fiber. The dependence of the refractive index on the
intensity of the transmitted light makes it possible that
under optimum conditions optical pulses can be
transmitted without changing their form I(t) during the
passage through the fiber (solitons).
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Problems

12.1 For a special application of confocal microscopy the
diameter of the circular aperture is 0.01 mm, the
distance aperture-lens is 100 mm, the focal length of
the lens f = 10 mm

(a) Where is the focus located and what is its diam-
eter derived for geometrical optics and if
diffraction is taken into account?

(b) What is the distance Dz from the focal plane,
where the intensity of the light scattered by the
sample and transmitted through the aperture has
decreased to ½ of its maximum value for Dz ¼ 0?

12.2 A star as point source is imaged by a parabolic mirror
with diameter D = 5 m

(a) What is the diameter of the central diffraction
disc?

(b) The mirror is deformed in such a way that its sur-
face can be described by y2 ¼ 4 f exwith je� 1j �
1 instead by (9.11). How large is now the image of
the star?

12.3 A star has the zenith distance f ¼ 60.The refractive
index n averaged over the observation time has the
mean fluctuation dn ¼ 3� 10�2n with n = 1.00027.
How large is the angular broadening and what is the
size of its image for a focal length f = 10 m of the
mirror?

12.4 Rectangular parallel grooves (depth h ¼ 1 lm, width
b ¼ 2 lm, distance between the grooves d ¼ 4 lm)
are etched into a glass plate (n = 1.4). Under which
angles can transmitted light with the wavelength k ¼
500 nm be observed, when it falls onto the glass plate
as parallel beam
(a) vertical
(b) with the incidence angle a ¼ 30 against the

surface normal?
12.5 A Fresnel lens with focal length f = 10 mm and

diameter D = 20 mm should be realized
(a) How large must the radii of the circular grooves

be (depth 1 lm)? How many grooves are
possible?

(b) Could a lens with D/f = 2 also be realized as
refractive lens?

(c) How could the Fresnel lens be technically pro-
duced?

12.6 A holographic grating with 105 parallel grooves and
a groove distance d ¼ 1 lm shall be produced by
illumination of a photo layer by two plane waves.
How large should be the diameter of the enlarged
beams and what is the angle between the two wave
vectors for symmetric illumination?

12.7 What is the amplitude distribution of 5 light sources
in the diffraction plane of a lens with focal length
f for the positions (x0, 0), (−x0, 0), (0, −y0), (0, + y0)
and (0, 0) of the light sources

(a) for all 5 light sources
(b) if the sources (x0, 0) and (−x0, 0) are extinguished
(c) if the source (0, 0) is extinguished
(d) if all sources except (0, 0) are extinguished?

12.8 A parallel light beam is incident onto a grating with
parallel grooves and bars (width b ¼ 1 lm, distance
d ¼ 2 lm)

(a) What is the far field amplitude- and intensity
distribution in the diffraction plane?

(b) How is the distribution altered if only every 3rd
groove is open?

12.9 A planar wave guide in z = direction has the width
a ¼ 2 lm and the refractive index n2 = 2. What are
the three lowest modes with the mode numbers
ms = 1, 2, and 3 for k ¼ 500 nm? What is the
minimum difference Dn = n2 – n1 for keeping these
modes within the waveguide? Which angles # have
the k-vectors of these modes against the z-direction?
What are their parameters p, h, q?

12.10 A light pulse (k = 1.3 lm) with the width Dt ¼ 1 ps
propagates through a single mode fiber with
refractive index n = 1.5 and the dispersion
dn=dk ¼ 2� 10�6=nm. After which propagation
length has the pulse width doubled due to
dispersion?

12.11 Derive (12.62) from (12.60) for the case of the
parabolic index profile (12.61).

12.12 Calculate the dependence of the mean propagation
velocity on the incidence angle a in a step index
fiber and a gradient fiber. Show, that the maximum
value of a in a gradient fiber is given by amax = √2D
with D defined in Eq. (12.61)
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Solutions of Problems

Chapter 1

1:1 The number of Na-atoms in each ball is

N ¼ M

m
¼ 10�3

2:9 � 1:67� 10�27
¼ 2:06� 1022

⟹ The charge is

Q ¼ þ e � 0:1 � 2:6� 1022

¼ 2:6 � 1021 � 1:6� 10�19 C

¼ 4:16� 102 C:

The volume of each ball is

V ¼ m

.
¼ 1:03 cm3 ¼ 4

3
pr3

) r ¼ 3 � 1:03
4p

� �1=3

cm ¼ 0:63 cm,

The surface is

S ¼ 4pr2 ¼ 4:93 cm2;

The surface charge density is then

r ¼ Q

4pr2
¼ 8:4� 105 C/m2;

The repulsive force at a distance r = 1 m between the
two balls is

FC ¼ 1
4pe0

Q2

r2
¼ 1:56� 1015 N:

and the electric field strength on the surface of each
ball is

E ¼ Q

4pe0r2
¼ 9:6� 1016 V/m:

1:2 (a) The total force must be directed into the direction of
the string.

) tan u=2ð Þ ¼ Fel

m � g :

Fel ¼ Q2

4pe0 2L � sinu=2ð Þ2

) sin3 u=2ð Þ
cos u=2ð Þ ¼ Q2

16pe0L2 � mg

Numerical values: Q = 10−8 C, m = 10 g, L = 1 m

) sin3 u=2ð Þ
cos u=2ð Þ ¼ 10�16

16pe0 � 10�2 � 9:81 ¼ 2:3� 10�6

) sinu � u; cosu � 1

) u � 2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:3� 10�63

p
¼ 2:6� 10�2rad � 1:5

�

) Distance r ¼ 2L � sinu=2
¼ 0:026m ¼ 2:6 cm:

) the distance between the balls is r = 2L � sin(u/2).

(b) The conductive plate in the middle plane generates
the electric field

E¼ r
2e0

x̂ ) Fel ¼ Q � r
2e0

x̂

) tan u ¼ Fel

m � g ¼ Q � r
2e0m � g :

Numerical values: Q = 10−8 C, r ¼ 1:5� 10�5 C/m2;

m ¼ 0:05 kg

) tanu ¼ 10�8 � 1:5� 10�5

2 � 8:85� 10�12 � 0:05 � 9:81
¼ 1:7� 10�2

) u ¼ 1�:

) Distance from the plate: x ¼ l � u ¼ 17mm.
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1:3 (a) The force is, according to Fig. 1.11:

F ¼
Zaa

a¼ai

q � r
2e0

sin a � da

¼ q � r
2e0

cos ai � cos aað Þ;

cos a ¼ xffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ x2

p

) F ¼ qrx
2e0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
i þ x2

p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
a þ x2

p
" #

;

(b) (a) Ri ! 0

F ¼ q � r
2e0

1� xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
a þ x2

p
" #

;

(ß) Ra ! ∞:

F ¼ q � r
2e0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þR2

i =x
2

p ;

(c) Ri ! 0, Ra ! ∞

F ¼ q � r
2e0

:

1:4 The potential /(r) is

/ rð Þ ¼ Q

4pe0R
:

Since the two balls are connected by conductors
their potentials must be equal.

) /1 R1ð Þ ¼ Q1

4pe0R1
¼ /2 R2ð Þ ¼ Q2

4pe0R2

) Q1

Q2
¼ R1

R2
; Q ¼ Q1 þQ2 ¼ Q1 1þ R2

R1

� �

) Q1 ¼ Q � R1

R1 þR2
;Q2 ¼ R2 � Q

R1 þR2

E1 ¼ Q1

4pe0R2
1

¼ Q

4pe0R1 R1 þR2ð Þ
E2 ¼ Q2

4pe0R2
2

¼ Q

4pe0R2 R1 þR2ð Þ :

1:5 According to Fig. A.1 is

(a) Q1 = Q2 = Q

/ Rð Þ ¼ Q

4pe0

1
r1

þ 1
r2

� �
:

For R � a is

/ Rð Þ � Q

4pe0

1
R� a cos#

þ 1
Rþ a cos #

� �
for R � a

¼ 2Q
4pe0R

� 1

1� a2
R2 cos2 #

:

The Taylor expansion of the fraction yields with

1
1� x

� 1þ xþ x2 þ � � � þ xn

) / Rð Þ ¼ 2Q
4pe0R

1þ a2

R2
cos2 #þ a4

R4
cos4 #þ � � �

� �
:

The force onto the charge q is obtained from

F ¼ �q � grad / rð Þ:
(b) Q1 = −Q2 = Q:

/ ¼ Q

4pe0

1
r1

� 1
r2

� �

¼ 2aQ
4pe0

cos#
R2 � a2 cos2 #

¼ 2 pj j: cos#
4pe0R2

1

1� a2
R2 cos2 #

¼ 2p: cos#
4pe0R2

1þ a2

R2
cos2 #þ a4

R4
cos4 #þ � � �

� �
:

The comparison of (a) and (b) shows that for equal
charges the first term gives the Coulomb potential of the
total charge. This term is missing in (b) because Q1 + Q2

= 0. In (b) the series begins with the dipole term. ForR�
a this term gives the major part of the force onto q.
(a) for Q1 = Q2:

F ¼ 2Qq
4pe0R2

R̂,

(b) for Q1 = −Q2 see Eq. (1.25b).

q

R
a

a

ϑ

1Q

2Q

1r

2r

Fig. A.1 Illustration of problem 1.5
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1:6 (a)

Epot ¼ þ 3
Q2

4pe0a

(b)

Epot ¼ 1
4pe0a

Q2 � 2Q2
� �

¼ � Q2

4pe0a

(c)

Epot ¼ �4Q2

4pe0a
þ 2

Q2

4pe0a
ffiffiffi
2

p

¼ Q2

4pe0a
�4þ

ffiffiffi
2

p	 

� � 2:6Q2

4pe0a

1:7 We place the four charges in the x-y plane. For case
(a) we get the positions:

Q1 ¼ þQ:
�a

2
; 0

	 

;

Q2 ¼ þQ:
þ a

2
; 0

	 

;

r21 ¼ r22 ¼
a2

4
;

Q3 ¼ �Q: 0;
a

2

ffiffiffi
3

p	 

;

Q4 ¼ �Q: 0;
�a

2

ffiffiffi
3

p	 

;

r23 ¼ r24 ¼
3a2

4
:

From the definition (1.36) we obtain:

QMxx ¼ Q1
3
4
a2 � 1

4
a2

� �
þQ2

3
4
a2 � 1

4
a2

� �

þQ3 � 3
4
a2

� �
þQ4 � 3

4
a2

� �

¼ 5
2
Qa2;

QMyy ¼ � 7
2
Qa2; QMzz ¼ þ a2Q;

QMxy ¼ QMxz ¼ QMyz ¼ 0:

For case (b) we get:

Q1 ¼ �Q: �a; 0ð Þ; Q2 ¼ 2Q : 0; 0ð Þ;
Q3 ¼ �Q: þ a; 0ð Þ:

this yields with (1.36) the result:

QMxx ¼ �4Qa2; QMyy ¼ 2Qa2;

QMzz ¼ 2Qa2;

QMxy ¼ QMxz ¼ QMyz ¼ 0:

1:8 Analogue to the calculation of the gravitational poten-
tial in Vol. 1, Sect. 2.9.5 the electrical potential /(r) at
the point P(r) of a homogeneously charged ball with
radius R
(a) For r � R:

/ rð Þ ¼ Q

8pe0R3
3R2 � r2
� �

with Q ¼ 4
3
p.elR

3

¼ 1
6
.el
e0

3R2 � r2
� �

:

(b) For r 	 R:

/ rð Þ ¼ Q

4pe0r
:

The work necessary to bring a charge q from r = 0 to
r = R is

W1 ¼ q � / Rð Þ � / 0ð Þ½ 
 ¼ q � Q
4pe0R

� 1� 3
2

� �

¼ � q � Q
8pe0R

:

On the way from r = R to r = ∞ the work

W2 ¼ � q � Q
4pe0R

;

that has to be spend is twice that of W1. The electric
field strength is

E rð Þ ¼ � d/ rð Þ
dr

:

E rð Þ ¼ Q � r
4pe0R3

r̂ for r�R;

E rð Þ ¼ Q

4pe0r2
r̂ for r	R:

1:9 The explicit calculation of the Taylor expansion is as
follows:
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1
R� rj j ¼

1
R
� x

@

@X

1
R
þ y

@

@Y

1
R
þ z

@

@Z

1
R

� �

þ 1
2

xx
@2

@X2

1
R
þ xy

@2

@X@Y

1
R
þ � � � þ zz

@2

@Z2

1
R

� �
þ � � � :

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Y2 þ Z2

p
) @

@X

1
R
¼ �X

R3

@2

@X@Y

1
R
¼ 3

2
X � Y
R5

etc:

Corresponding expressions are obtained for the other
derivations. Inserting these expressions the potential
becomes:

/ Rð Þ ¼ 1
4pe0

X Qi

R� rij j
¼ 1

4pe0

P
Qi

R
þ 1

R3

X
Qirið Þ � Rþ 1

R5

1
2

X
Qi 3x2i � r2i
� �

X2
��

þ 3y2i � r2i
� �

Y2 þ 3z2i � r2i
� �

Z2 þ 2 � 3xiyiXY
þ 2 � 3yiziYZþ 2 � 3xiziXZg
:

1:10 In order to prove that only the monopole term does
not vanish one must show that

/ Rð Þ ¼ 1
4pe0

Z
V

.el
R� rj jdV ¼ Q

4pe0R
:

The charge dQ = qel � 2py � dy � dx on the circular ring
with radius y and a distance x of the ring plane from the
center x = y = 0 (see Fig. A.2) have the same distance

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ R� xð Þ2

q
from the point P(R) and contribute the share

d/ ¼ dQ
4pe0r

¼ .el
2e0

y dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ R� xð Þ2

q dx:

to the potential in P(R).

The potential generates by the whole circular disc is
then

/dis ¼
.el
2e0

Zffiffiffiffiffiffiffiffiffia2�x2
p

y¼0

y dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 � R� xð Þ2

q dx

2
64

3
75:

Integration from x = −a to x = +a yields the
contribution of the sphere

/sphere ¼
.el
e0

a3

3R
¼ Q

4pe0R
:

1:11 The electric field strength E of a single wire is
according to (1.18a) for r 	 R

E ¼ k
2pe0r

r̂

with k = Q/L = charge per unit length of the wire.
The total field strength of the charge distribution in
Fig. A.3 is along the x-axis for |x| < a

E¼ Ex; 0; 0f g

Ex ¼ k
2pe0

1
aþ x

� 1
a� x

þ 2x
a2 þ x2

� �

¼ k
2pe0

�2x
a2 � x2

þ 2x
a2 þ x2

� �

¼ � k
pe0

2x3

a4 � x4
:

For x = 0 is E = 0, For x = a − R (i.e. on the inner
surface of the wire) is

Ex ¼ � k
pe0

2 a� Rð Þ3
a4 � a� Rð Þ4

¼ � k
2pe0R

� 4 � R a� Rð Þ3
a4 � a� Rð Þ4 :

With a = 4 cm and R = 0.5 cm this becomes

Ex ¼ � k
2pe0R

� 0:8V/m:

y

a

y

x

dx

R – x Px

dy

r
→

Fig. A.2 Illustration of problem 1.10

+

+ +

+

y

r

x P x
a

Fig. A.3 Illustration of problem 1.11
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The electric field strength at the surface at (x =
a − R) is only 80% of the field of a single wire with
equal charge density. For the outer surface (x = a + R)
the electric field

E ¼ k
2pe0R

� 4R aþRð Þ3
aþRð Þ4�a4

¼ k
2pe0R

� 1:18V=m

is slightly larger than that of a single wire. However,
one can transport the fourfold electric power 4P. If the
single wire should transport the same power P =
U2/R one has to double the voltage U.

1:12 (a) One obtains

C ¼ e0 � Ad ¼ 8:85� 10�12 � 0:1
0:01

F

¼ 8:85� 10�11 F ¼ 88:5 pF;

Q ¼ C � U ¼ 8:85� 10�11 � 5� 103 C

¼ 4:4� 10�7 C;

E ¼ U

d
¼ 5� 105 V=m:

(b) If the capacitor with the voltage U0 is discharged
through the resistor R the total energyW = C � U2

is converted into Joule’s heat energy. We t hen get

W ¼
Z1
0

I2 � R � dt:

With I = (U0/R) � e-t/(RC)(see (2.10) this gives

W ¼ U2
0

R
� �R � C

2

� �
� e�2t= RCð Þ 1

0

��
¼ U2

0C

2
:

(c) D = p � E

) Dj j ¼ 1:6� 10�19 � 5� 10�11 � 5� 105Nm

¼ 4� 10�24Nm;

Wpot ¼ p � E ¼ 4� 10�24Nm:

1:13 Figure 1.69 can be redesigned into the equivalent
circuit in Fig. A.4. Then we get

1
Cg

¼ 1
C

þ 1
3C

) Cg ¼ 3
4
C:

The capacity in the dotted box is

Cþ 1
2
C ¼ 3

2
C:

We then get for the right part in Fig. A.4

1
C

þ 1
3=2C

¼ 5
3C

) Cr ¼ 3
5
C:

For the right and left part is

3
5
Cþ 2C ¼ 13

5
C

The total capacity is then

Ctotal ¼ 13=18ð ÞC

1:14 On the right plate in Fig. 1.70 the charge –Q/2 is
accumulated by influence. This charge must be taken
from the left plate of the right capacitor, where the
residual charge +Q/2 remains. We therefore get
electric field and the potential as shown in (Fig. A.4)

E ¼ U

d
¼ 3

4
Q

C � d :

1:15 (a) For the calculation of the potential / we write the
Laplace equation (1.16b) in cylindrical coordi-
nates (note, that / does not depend on z and u).

D/ ¼ 1
R

@

@R
R � @/

@R

� �
¼ 0

) / ¼ c1In R + c2

ð1Þ

With /(R1) = /1, /(R2) = /2 it follows

2C

C

C

1/2C

C

Fig. A.4 Illustration of problem 1.13

φ,E

φ(x)

0 d a d x

E(x)

Fig. A.5 Illustration of problem 1.14
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c2 ¼ /1 � c1In R1;

c1 ¼ /2 � /1

In R2=R1ð Þ
) / Rð Þ ¼ /1 þ

/2 � /1

In R2=R2ð Þ In R=R1ð Þ;
ð2Þ

E Rð Þ ¼ @/
@R

¼ � /2 � /1ð Þ
In R2=R1ð Þ

1
R
: ð3Þ

For the desired circular path with radius R0 =
(R1 + R2)/2 the relation holds

mt20
R0

¼ e � E R0ð Þ ¼ 2e
R1 þR2

/1 � /2 In R2=R1ð Þ

) U ¼ R1 þR2

2e
In R2=R1ð Þ � m

R
t20

¼ R1 þR2

2R
m

e
t20In

R2

R1
:

For R = (R1 + R2)/2 is

U ¼ m

e
t20 In

R2

R1
: ð4Þ

(b) Assume an electron enters the cylindrical capacitor
at r = R0, u = 0 with tj j ¼ t0j j , but under a small
angle a against the desired path R = R0. Can the
electron intersect the desired circle R = R0?. At
which angle u does this happen?
Since E(r) is a central field the angular momentum
of the particles remains constant, i.e.

t � R ¼ t0 � R0 ¼ const: ð5Þ
When the deviation at time t is dR the equation of
motion is

m � d€R� m � t
2

R
� e � E R0 þ dRð Þ ¼ 0: ð6Þ

Expansion into a Taylor series yields

E R0 þ dRð Þ ¼ E R0ð Þþ dE
dR

� �
R0

dRþ � � � : ð7Þ

From (6) it follows

dE
dR

¼ U

In R2=R1ð Þ
1
R2

:

Inserting into (9) gives with (8)

d€R� t20
R3

R2
0 þ

t20
R0

1� dR
R0

� �
¼ 0:

1
R3

¼ 1

R3
0 1þ dR

R0

	 
3 � 1

R3
0

� 3
R4
0

dRþ � � �

) d€R� t20
R0

1� 3
dR
R0

� 1þ dR
R0

� �
¼ 0

) d€Rþ 2x2
0dR ¼ 0 with x0 ¼ t0

R0
:

The motion proceeds on a circular path with
superimposed radial oscillation.

dR ¼ R0 � sin
ffiffiffi
2

p
x0 � t

h i
;

which becomes zero after the time t ¼ p=
ffiffiffi
2

p
x0

� �)
u ¼ p=

ffiffiffi
2

p ¼ 127�.
A cylindrical capacitor with u ¼ 127� focusses the

divergent incident particles.

1:16 The charge density of the wire is k = Q/L. The ele-
ment dL produces at P = (0, 0) the electric field

dE ¼ 1
4pe0

k � dL
R2

cos u; sin u; 0f g

The field generated by the total charged wire is (see
Fig. A.6)

Ex ¼ 1
4pe0

k
R2

Zu2

u1

R � cos u du;

Ey ¼ 1
4pe0

k
R2

Zu2

u1

R � sin u du;

u1 ¼
p
2
� a
2
¼ p

2
� L

2R
;

u2 ¼
p
2
þ L

2R

) Ex ¼ 1
4pe0

k
R

sin u2 � sin u1ð Þ

¼ 1
4pe0

k
R

cos
L

2R
� cos

L

2R

� �
¼ 0;

Ey ¼ 1
4pe0

k
R

cos u1 � cos u2ð Þ

¼ 1
4pe0

2k
R

sin
L

2R
:

The field E has therefore only a y-component and its
amount is

Ej j ¼ 1
2pe0

k
R
sin

L

2R
:

y

L

R
α

x
2ϕ 1ϕ

R
L

a =

Fig. A.6 Illustration of problem 1.16
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Chapter 2

2:1 (a) The mass of a Cu-atom is 63.5 � 10−27 kg. The
number of atoms per m3 is

n ¼ 8:92� 103

63:5 � 1:66� 10�27 m�3
¼ 8:5� 1028=m3

⟹ on the average one free electron is present per
8.5/5 = 1.7 atoms.

(b) The electric current flows through the light bulb after a
time

t1 ¼ L

c
¼ 10m

3� 108 m=s
� 3� 10�8 s;

i.e. practically instantaneously. Because the filament of
the bulb heats up, its electrical resistance increases from
R0 to R. The current therefore decreases from the initial
value I0 = U/R0 to I = U/R= Pel/U when Pel is the
electrical power of the light bulb. The temperature of the
filament increases up to a value Tm where the power
radiated by the hot filament equals the electrical power
supplied to the light bulb.

(c) The current density is

j ¼ I

pr2
¼ 2:6� 106 A=m2:

For j ¼ e � n � vD follows with n = 5 � 1028/m3 the drift
velocity vD = 0.33 � 10−3 m/s = 0.33 mm/s ⟹ t2 =
3 � 104 s.
It takes about 8 h (!) until the first electron from the
current source reaches the filament.

(d) At a current of 1 A pass N = 6.25 � 1018 electrons per
sec through the cross section of the wire. Their total
mass is

M ¼ 6:25� 1018 � 9:1� 10�31 kg ¼ 5:6� 10�12 kg:

0t1 ≈ s1t2 ≈ t

T

I

Fig. A.7 To solution of problem 2.1b

It takes therefore 1.7 � 1011 s = 5.4 years (!) until 1 g
of electrons has passed through the filament.

2:2 The electrical resistance dR of the conductor element
dx is

dR ¼ .el �
dx
AðxÞ :

The cross section of the wire is

AðxÞ ¼ p
4

dðxÞð Þ2 ¼ p
4

d1 þ d2 � d1
L

x

� �2

:

The total resistance is then

R ¼ 4.el
p

ZL
0

d1 þ d2 � d1
L

x

� ��2

dx

¼ 4.el
p

ZL
0

dx

ðaþ bxÞ2

with a ¼ d1; b ¼ ðd2 � d1Þ=L

¼ 4.el
p � b

1
ðaþ bxÞ

����
L

0

¼ 4.el
p

� L

d1 � d2 :

Numerical values:

R ¼ 4 � 8:71� 10�8

p
� 1
0:25� 10�6 X

¼ 0:44X:

(b) At the voltage U = 1 V the current is

I ¼ 1
0:44

A � 2:25A:

For the total length of the wire the electric power
consumption is Pel = U � I = 2.25 W. It is not uniformly
distributed along the wire because of the changing
cross section of the wire. With dPel = I2 � dR we get

PelðxÞ ¼ I2 � .el �
dx
AðxÞ :

The electric power consumption is inversely proportional
to the cross section A(x) of the wire (Fig. A.7).

2:3 The two resistors 2R in the middle of Fig. 2.75 are
shortened and should therefore not be taken into
account. Between B and the middle point M the total
resistance is 4R/5. The same holds for the resistance
between A andM. The total resistance Rt between A and
B is then Rt = 8R/5.

2:4 The circuit in Fig. 2.76 can be arranged in a simplified
form as shown in Fig. A.8:
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R0
3 ¼ R3 þRiðU2Þ ¼ 4þ 1ð ÞX ¼ 5X

R7 ¼ R1 þRiðU1ÞþR4 þ R5 � R6

R5 þR6

¼ 3þ 1þ 8þ 12:24
36

� �
X ¼ 20X

(a) I1 + I3 = I2 (Kirchhoff’s current law)
(b) I1 � R7 þ I2 � R2 ¼ U1 (upper mesh)
(c) I3 � R0

3 þ I2 � R2 ¼ U2 (lower mesh)

From (b) it follows I1 ¼ U1 � I2R2

R7
:

From (c) it follows I3 ¼ U2 � I2R2

R0
3

:

Inserting into (a) gives for I2, I1 and I3:

I2 ¼ U1R0
3 þU2R7

R2 R0
3 þR7

� �þR0
3R7

¼ 0:65A:

I1 ¼ U1

R7
� R2

R7
I2 ¼ 0:37A;

I3 ¼ I2 � I1 ¼ 0:28A:

The potential difference is equal to the voltage

UðAÞ ¼ R5 � R6

R5 þR6
� I1 ¼ 2:96V:

2:5 (a) U1 ¼ U0�IRi

) Ri ¼ U0 � U

I
¼ 2

150
X ¼ 13:3mX

Ra ¼ U1

I
¼ 10

150
X ¼ 66:7mX:

(b) For Ri = Ra is

I ¼ U1

Ra
¼ U0 � IRa

Ra

) I ¼ U0

2Ra
¼ 12

0:133
A ¼ 90A

U1 ¼ U0 � IRa

¼ ð12� 90 � 0:0667ÞV ¼ 6V:

(c) For the case (a) the power, consumed in the starter
is

PA
el ¼ I2 � Ra ¼ 1502 � 0:0667W ¼ 1500W

In the battery is the power, consumed during the starter
process

PðBÞ
el ¼ I2 � Ri ¼ 1502 � 0:0133W � 300W

For case (b) is

PðAÞ
el ¼ 902 � 0:0667W � 540W

PðBÞ
el ¼ 540W

2:6 We conflate the elements 1–8 as follows:

) Cg ¼ 21
34

C;Rg ¼ 34
21

R:

2:7 The wanted nickel layer with thickness d has the
volume

V ¼ d � A ¼ d 2pr � Lþ 2pr2
� � ¼ 24:9 cm3

Its mass is

m ¼ . � V ¼ 8:7 � 24:9 g ¼ 216:5 g:

(a) The total current I is equal to the acceptable current
density j times the surface A of the cylinder.

I ¼ 2:5� 10�1 A=cm2 � 2:49� 103 cm2 ¼ 623A:

(b) The electro-chemical equivalent is

1I

2I

3I

2R

3R'

7R

Fig. A.8 Illustration of problem 2.4

Zusammenfassung Art Cg Rg

7 + 8 = a Serie 1
2C 2R

6 + a = b Parallel 3
2C

2
3R

5 + b = c Serie 3
5C

5
3R

4 + c = d Parallel 8
5C

5
8R

3 + d = e Serie 8
13C

13
8 R

2 + e = f Parallel 21
13C

13
21R

1 + f Serie 21
34C

34
21R

A

B

1

2

3

4

5

6

7

8

Fig. A.9 Illustration of solution 2.6
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EC ¼ 1
2
� NA � mNi

96485:3
kg
C

¼ 1:825� 10�7 kg=C

¼ 1:825� 10�4 g=C:

The total time for galvanizing the cylinder is

t ¼ 216:5
1:825� 10�4 � 623 s ¼ 1:9� 103 s ¼ 31:7min:

2:8 With the open circuit voltage U0, the voltage U under
workload is

U ¼ U0 � I � Ri

I ¼ U

Ra
) U ¼ U0

1þRi=Ra

Pel ¼ dWel

dt
¼ U2

Ra
¼ U2

0Ra

Ri þRað Þ2
dPel

dRi
¼ 0 ) Ri ¼ Ra

) Pmax
el ¼ U2

0

4Ri
¼ 4:5

4 � 1:2 W ¼ 4:22W:

2:9 (a)

Q ¼ C1U1 ¼ 2 � 10�5F� 103 V ¼ 2� 10�2 C

After connecting the two capacitors with each other, the
charge is distributed onto C1 and C2 in such a way that
the voltage of the two capacitors has the same value U2.

Q ¼ ðC1 þC2ÞU2

) U2 ¼ Q

C1 þC2

¼ 2� 10�2 C
3� 10�5F

¼ 2
3
� 103 V:

Before the connection the energy was

Wel ¼ 1
2
C1U

2
1 ¼ 10Ws:

After the connection is

W1 ¼ 1
2
C1U

2
2 ¼ 40

9
Ws

W2 ¼ 1
2
C2U

2
2 ¼ 20

9
Ws

) W ¼ W1 þW2 ¼ 20
3

Ws:

The difference DW = 10/3 Ws has been consumed as
Joule’ heat by the current from C1 to C2 during the
recharging process.
This can be expressed also by

Wel ¼ 1
2
Q2

C1
; W1 þW2 ¼ 1

2
Q2

C1 þC2
\Wel

⟹ the fraction C2/(C1 + C2) of the initial energy is
lost as heat energy (Fig. A.9).

2:10 From Fig. A.10 we obtain

U ¼ U0 � R � I:
A stable discharge is possible up to the turning point
in Fig. A.10. This gives for the turning point the
values U = 630 V and I = 0.33 A.
ForRmin is the straight line I(U) = (U0 –U)/R the tangent
to the current-voltage characteristic curve of the gas
discharge. For U0 = 1000 V and U = 630 V is then I =
0.33 A,

) Rmin ¼ U0 � U

I
¼ 1000� 630

0:33
X � 1121X

Rmax ¼ 1000� 400
0:1

X ¼ 6000X.

(a) For R = 5 kX and U0 = 500 V is

I ¼ U0 � U

R
¼ 0:1A� U

R
:

The intersection of the straight resistance line with the
current-voltage characteristic curve is located in the
dependent part. The discharge extinguishes.
For U0 = 1250 V is

I ¼ 1240V
5000X

� U

5000X
¼ 0:25A� U

5000X
:

Since U < 700 V lies I in the range 0.25 A > I > 0.11
A. The straight resistance line intersects the current-
voltage characteristic is the stable range. From the
graphical representation we get U = 620 V, I = 0.12 A.

I/A

0,3

0,2

0,1

0
0 200 400 600 800 1000 1200

U

IRUU 0 ⋅−=

0U

1α

2α

max2 R/1tg =α
min1 R/1tg =α

R

U/V

Fig. A.10 Illustration of solution 2.10
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2:11 j ¼ nþ þ n�ð Þe � v ¼ r � E

E ¼ E0 � cos xt
t ¼ r

nþ þ n�ð Þe E0 cosxt ¼ t0 � cosxt

t0 ¼ 1:1 � 3000
2� 1028 � 1:6� 10�18

m
s
¼ 1� 10�6 m=s

s0 ¼ t0
x
; because s ¼

Z
t dt ¼ 1

x
t0 sinxt

s0 ¼ 3:2� 10�9 m ¼ 3:2 nm:

2:12 According to (2.15) we get with h = L

R ¼ .s � ln r2=r1ð Þ
2p � L

¼ 1012 ln 8
200p

¼ 3:3� 109 X;

I ¼ U

R
¼ 3� 103

3:3� 109
A ¼ 0:9� 10�6 A ¼ 0:9 lA:

2:13 The resistance for n m cable length is

Rn ¼ 2R1 þRn�1

where

1
Rn�1

¼ 1
R2

þ n� 1
2R1 þR2

) Rn�1 ¼ R2ðR1 þR2Þ
2R1 þ n � R2

:

(b) For R1 = R2:

) Rn�1 ¼ 3R1

2þ n
) Rn ¼ 2R1 þ 3R1

2þ n
;

) lim
n!1Rn ¼ 2R1:

2:14 With the mean free path length K an electron at the
position r has suffered its last collision at the position
r – K where its velocity was

vðr � KÞ ¼ hviðTðr � KÞÞ�e
where ê is the unit vector in the direction of v. The
mean velocity <v> depends on the temperature T. The
mean velocity at the position r is obtained by inte-
gration over all directions, because only the direction
but not the amount of v is altered at each elastic
collision. This gives:

vh i ¼ 1
4p

Z
v̂ � �v ðTðr � Kv̂ÞÞ dX

If the temperature changes only slightly over the mean
path length K one needs only to keep the first two
members in the Taylor expansion

hviTðr � KÞ ¼ ðTðrÞÞ � K � rTðrÞ � d�v=dT :
and can neglect all higher terms. This gives

hviTðr � KÞ � hviTðrÞ � K � hvi � rTðrÞ � dhvi=dT:
Inserting this expression into the integral gives for the
first term the value zero because the velocities are
uniformly distributed over all directions. For the
second term one obtains for the drift velocity

nðrÞ ¼ vh ir ¼ � 1
4p

rTðrÞ � d�v
dT

�
Z

Kv̂dX

¼ � 1
3
K � d�v

dT
� rTðrÞ:

The current density caused by thermo-diffusion is then

jðrÞTD ¼ n � vðrÞ:
2:15 Without thermo-diffusion is jTD = 0. According to

(2.42h) the Seebeck coefficient is then also zero.
According to (2.41a) the thermo-voltage is deter-
mined by the difference of the Seebeck coefficients.
Without thermo-diffusion therefore also the thermo-
voltage is zero.

Chapter 3

3:1 (a) B(0) = 0: Outside the wires the fields add, inside
they subtracted each other.

v( r )

r

−Λ⋅v

r v− Λ⋅

v( r v)−Λ⋅
→

Λ

→

→ →

→

ˆ

ˆ

ˆ→

Fig. A.11 Illustration of solution 2.14
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F1 ¼ þFx; 0; 0f g; F2 ¼ �Fx; 0; 0f g
(b) For the magnetic field we get:

B1j j ¼ B1 ¼ l0I1
2pr1

;

B1x ¼ B1 � sin a1 ¼ B1
a� y

r1
;

B1y ¼ B1 � cos a1 ¼ B1
x

r1
;

B2j j ¼ B2 ¼ l0I2
2pr2

;

B2x ¼ �B2 sin a2 ¼ �B2
aþ y

r2
;

B2y ¼ B2 cos a2 ¼ B2
x

r2
:

The total field at the point P(x, y) is

Bx ¼ a� y

r1
B1 � aþ y

r2
B2

¼ l0
2p

I1 a� yð Þ
r21

� I2 aþ yð Þ
r22

� �
;

By ¼ l0x
2p

I1
r21

þ I2
r22

� �

with r21 ¼ x2 þ y� að Þ2; r22 ¼ x2 þ yþ að Þ2.
Special cases:(a) I1 = I2 = I, y = 0 (field on the x-axis)

Bx ¼ 0; By ¼ l0I
p

x

a2 þ x2
¼ Bj j:

On the y-axis (x = 0) outside of the wires (y 6¼ ±a) is

Bx ¼ l0I
p

y

a2 � y2
; By ¼ 0

) Bj j ¼ Bx:

(ß) I1 = −I2 = I: Now we obtain for y = 0:

Bx ¼ l0I
p

a

a2 þ x2
; By ¼ 0

and on the y-axis (x = 0) for y 6¼ ±a

Bx ¼ l0I
p

a

a2 � y2
; By ¼ 0:

(c) For parallel wires the force between the conductors
per meter length is according to (3.32)

F

L
¼ l0

4pa
I1 � I2 êu � êz

� �
;

where êz is the unit vector pointing into the z-direction
êu gives the azimuthal direction of the magnetic field
B of a wire at the position of the other wire (Fig. A.11).
For I1 = I2 = I the forcesF1 andF2 are antiparallel towards
each other (Fig. A.12a) (Attraction), For I1 =−I2 = I they
are antiparallel away from each other (Fig. A.12b)
(repulsion). The amount of the forces is for both cases

Fj j
L

¼ l0I
2

4pa
:

(d) In case of two perpendicular wires where one wire
points into the x-direction the other into the z-
direction with y = −a = −2 cm the magnetic field
generated by the wire in x-direction is B1 = {0, By,
Bz}, the field induced by thewire in z-direction isB2

= {Bx, By, 0}. The force exerted by the field B1 on
the length element dL of the wire in z-direction is

dF ¼ I2 dL� B1ð Þ
dL ¼ 0; 0; dzf g; B1 ¼ 0;By;Bz

� 
) dFx ¼ �I2Bydz; dFy ¼ dFz ¼ 0:

The component By of the magnetic field caused by the
wire in x-direction is at the point P(0, −a, z) of the wire
in z-direction is

By ¼ l0I1
2p

z

a2 þ z2
;

) dFx ¼ l0
2p

I1I2
zdz

a2 þ z2
:

(a)

(b)

0a− a+

1F
→

2F
→

+I +I

III 21 ==
0)0(B =

+I −I

1F
→

2F
→

0)0(B ≠
III 21 =−=

0

Fig. A.12 a) and b): Illustration of solution 3.1a

y

1I

2I

a

a
x

)y,x(P

1r

2r

1α

2α

1B
→

2B
→

Fig. A.13 Illustration of solution 3.1b
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Theforceonthe lengthelementDz fromz1=−b toz2=+b is

Fx ¼
Zz2
z1

dFx ¼ l0I1I2
4p

In a2 þ z2
� �

z¼þ b
z¼�b

�� ¼ 0:

The force between the two wires is therefore zero!
Question: Could this result be obtained simply by
symmetry consideration?
Answer: Yes. Establish this answer.

3:2 Because of the cylinder symmetry the magnetic field
has only a tangential component Bu(r), which can be
calculated fromZ

B � ds ¼ 2pr � Bu ¼ l0 � I rð Þ;

where I(r) is the current through a cross section along
the integration path. We then obtain:

(1) r � r1: ) B = 0;
(2) r 	 r4 ) B = 0 because the total current I = I1 +

I2 with I2 = −I1 is zero.
(3) r1 � r � r2.

B ¼ l0I
2pr

r2 � r21
r22 � r21

� �
;

(4) r2 � r � r3

B ¼ l0I
2pr

;

(5) r3 � r � r4

B ¼ l0I
2pr

1� r2 � r23
r24 � r23

� �
:

3:3 The motion of the electron corresponds to the current

I ¼ �e � m ¼ �e � x=2p:
The frequency x of the circular motion is obtained from

mx2 � r ¼ 1
4pe0

e2

r2
;

because the centripetal force is equal to the Coulomb
force.

x ¼ e2

4pe0mr3

� �1=2

) I ¼ � e2

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4pe0mr3

r
� 1mA:

The magnetic field at the center of the circular motion
is according to (3.19a)

Bz ¼ l0 � I
2r

¼ � l0e
2

4pr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4pe0mr3

r
� 12:5T:

3:4 From (3.31) we get for the force onto the path element
dL of the conductor with current I

dF ¼ I � dL� Bð Þ

dL ¼
dx

dy

0

8>><
>>:

9>>=
>>; ¼

r � sin u du

r � cos u du

0

8>><
>>:

9>>=
>>;

Since B = {0, 0, B} has only a z-component we get

dFx ¼ I � dy � B
dFy ¼ �I � dx � B

) Fx ¼ I � B � r �
Zp
0

cosu du ¼ 0

Fy ¼ �I � B � r �
Zp
0

sinu du ¼ �2r � I � B:

The same force would act onto a straight wire of length
L = er which carries the current I.

3:5 (a) According to (3.22b) the magnetic field at z = 0 is

B z ¼ 0ð Þ ¼ l0NIR
2

d=2ð Þ2 þR2
h i3=2 :

With N = 100, R = 0.4 m we obtain

B z ¼ 0ð Þ ¼ l0I
16m2

0:16m2 þ d=2ð Þ2
h i3=2 :

For d = R and I = 1 A this becomes

B z ¼ 0ð Þ ¼ 2:25� 10�4 T ¼ 2:25Gau�

(b) With B(0) = 5 � 10−5 T the current is I = 0.22 A.
The coil axis has to be aligned antiparallel to the
direction of the earth magnetic field.

(c) For the calculation of the field outside the solenoid
we set z = ±(d/2 + Dz) where Dz is the external
distance from the plane of the solenoid. Expanding
(3.22a) into a Taylor series around Dz = 0 we get

B zð Þ ¼ l0IR
2

2
1

dþDzð Þ2 þR2
h i3=2
2
64 þ 1

Dz2 þR2ð Þ3=2
#
:
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For d = R this gives

B zð Þ ¼ l0I
2R

1

1þ 1þ Dz
R

� �2
" #3=2 þ 1

1þ Dz
R

� �2
" #3=2

2
666664

3
777775

� l0I
2R

1ffiffiffi
8

p 1� 3
2
Dz
R

� 3
4

Dz
R

� �2
 !"

� 15
8

Dz
R

� �2

þ � � � þ 1� 3
2
Dz
R

� 15
8

Dz
R

� �2

þ � � �
#

� l0I
2R

1:35� 2
Dz
R

� 2:8
Dz
R

� �2

� � � �
" #

:

3:6 (a) The determination of the electron trajectory in
the magnetic field B = {0, 0, B0} proceeds as
follows:

The velocity component vz = v0/√3 remains constant.
The other two components can be obtained from the
condition: Lorentz-force is equal to the centripetal
force:

e � t� Bð Þ ¼ m � x2 �
x

y

0

8><
>:

9>=
>;

) etyB0 ¼ mx2x;

�etyB0 ¼ mx2y:

With r2 = x2 + y2 and v⊥
2 = vx

2 + vy
2 if follows:

e2t2?B
2
0 ¼ m2x4r2:

For vz = 0 the electron follows a circular path in the x-
y-plane with the radius

r ¼ m � t?
eB0

¼ m � t0 �
ffiffiffi
2

p

e � B0 �
ffiffiffi
3

p :

The orbital period is

T ¼ 2pr
t?

¼ 2pm
eB0

:

With vz = v0 � √3 the trajectory is a circular helix
around the z-axis with a helix pitch

Dz ¼ t2 � T ¼ 2p � t0 � mffiffiffiffiffi
3e

p � B0
:

For this example the quantities vz, vr = ṙ = 0, |v|, |p| =
m � |v| are temporally constant.

(b) An additional electric field E1 = E0{0, 0, 1} affects
only vz but not vx and vy. It is

tz ¼ tz 0ð Þþ a � t ¼ t0=
ffiffiffi
3

p
þ eE0

m
t:

The electron trajectory remains s helix with a helix
pitch, that increases with time. We obtain:

Dz tð Þ ¼ tz � T ¼ t0=
ffiffiffi
3

p
þ eE

m
t

� �
2pm
eB0

¼ Dz0 þ 2pE0

B0
t:

Only vr = 0 remains constant.
An additional electric field E2 = E0{1, 0, 0} leads to the
coupled differential equations

€x ¼ e

m
E0 þ e

m
B0 _y;

€y ¼ � e

m
B0 _x;

With the initial conditions ẋ(0) = ẏ(0) = v0/√3 the
solutions are

_x tð Þ ¼ t0ffiffiffi
3

p cosxtþ E0

B0
þ t0ffiffiffi

3
p

� �
sinxt;

_y tð Þ ¼ �E0

B0
þ E0

B0
þ t0ffiffiffi

3
p

� �
cosxt � t0ffiffiffi

3
p sinxt:

Integration of these equations gives the trajectories
x(t) and y(t). None of the quantities given in (a) remains
constant.

3:7 (a) The drift velocity of the electrons is given by the
current density

j ¼ n � e � tD ¼ I=A

) tDj j ¼ I

n � e � A
¼ 10

8� 1028 � 1:6� 10�19 � 10�4 � 10�2

m
s

¼ 0:78� 10�3 m=s ¼ 0:78mm/s:

(b) The Hall-voltage is according to (3.43c)

UH ¼ I � B
n � e � d

with d = Dy = 1 cm, B = 2 T, I = 10 A, ne =
8 � 1018 m−3 ⟹ UH = 1.56 � 10−7 V = 0.156 lV.
(c) The force per meter of the copper rod is

F

l
¼ I � B ¼ 10 � 2N/m = 20N/m:
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3:8 (a) The electric resistance of the iron yoke is

RFe ¼ . � L
A
¼ 8:71� 10�8 � 0:6

5� 10�6
X

¼ 1:05� 10�2 X:

RKonst ¼ 0:5� 10�6 � 0:2
5� 10�6X

¼ 2� 10�2X

Uth ¼ a � DT ¼ 53� 10�6 � 750� 15ð ÞV
¼ 39mV:

The current through the circuit is then

Ith ¼ Uth

RFe þRKonst
¼ 3:9� 10�2

3:05� 10�2
A

¼ 1:28A:

(b) The magnetic field at the center of the quadratic
loop in the x-y-plane with side length a = 20 cm
has only a z-component. Integrating (3.17) only
from –p/4 to + p/4 gives the magnetic field gen-
erated by one side of the quadratic loop.

B1 ¼ l0I
4pa=2

Zp=4
�p=4

cos a da ¼ l0Iffiffiffi
2

p
pa

;

This gives for the total field

B ¼ 4B1 ¼ 2
ffiffiffi
2

p
l0I

pa
¼ 7:2� 10�6 T:

If the current loop is embedded into a ferromag-
netic material (e.g. Perm alloy with l = 104) one
can reach B = 0.07 T (Fig. A.13).

3:9 For the Wien-filter (Fig. A.14) particles with the
velocity v0 can pass the filter if the condition

t0 � q � B ¼ q � E ) t0 ¼ E
B
:

is fulfilled. Particles with the velocity v = v0 + Dv ex-
perience the additional force

DF ¼ Dt � q � B ¼ m � €x

) dx
dt

¼ q

m
Dt � B � tþC1:

For particles which enter the field at t = 0 with the
velocity in z-direction is dx=dtð Þt¼0¼ 0 ) C1 ¼ 0 .
Integration gives

x ¼ 1
2
a

m
Dt � B � t2 þC2:

If x(t = 0) = 0 ) C2 = 0. The transit time through the
filter with length L is

t ¼ L

t
� L

t0
) Dt ¼ 2m � x � t20

q � B � L2 :

For x � Db/2 is

Dtj j � m � Db � t20
q � B � L2 :

Chapter 4

4:1 The conducting rod is dragged with constant velocity
v over the yoke with width b (Fig. A.15).
The induced voltage is then

Uind ¼ � d/
dt

¼ �B � dF
dt

¼ �B � b � v:

(a) The moving conducting rod represents the current

I ¼ .el � b � d � v
(d = thickness of the conductive wire of the yoke). The
current density is

Δb

x

z

E
→

L

×
×

×
×
B
→

Fig. A.14 Illustration of solution 3.9

b
B

F
v
→

×
×
×

×
×
×

Fig. A.15 Illustration of solution 4.1
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j ¼ .el � v ¼ �n � e � v

The induced voltage is then with b � v ¼ �I=ðn � e � dÞ

Uind ¼ I � B
n � e � d ;

This is identical with the Hall voltage (3.43c).

(b) The mechanical power is

dWmech

dt
¼ Lorentz-force times velocity:

The Lorentz force is according to (3.31)
FLor ¼ I � b � B. We therefore get

dWmech

dt
¼ I � b � B � v ¼ �I � Uind

(c)

Uind ¼ � d
dt

Z
B � dF

¼ � d
dt

Z
a � x � b � dx

¼ �a � b � d
dt

x2

2

� �
¼ �a � b � x � v

x ¼ v � t ) Uind ¼ ab � v2 � t:
The electric resistance of the yoke is

RðtÞ ¼ ð2bþ 2xÞg ¼ 2gðbþ v � tÞ:
The current is then

IðtÞ ¼ UðtÞ
RðtÞ ¼

a � b � v2 � t
2gðbþ v � tÞ :

4:2 We assume at first that the distance between the con-
centric tubes is large compared to the wall thickness of
the tubes. We then get for the magnetic field

B ¼ l0I
2pr

for R1 � r�R2:

The magnetic flux / through the rectangular cross
section A = a � b with a = R2 − R1 and b = l is

/ ¼ l0I � l
2p

ZR2

R1

B � dr ¼ l0I � l
2p

ln
R2

R1
:

(a) The inductance per m length of the tubes is

bL ¼ l0
2p

ln
R2

R1
:

Numerical example: R1 = 1 mm, R2 = 5 mm

) bL ¼ 1:26� 10�6

2p
ln 5H=m ¼ 0:32� 10�6 H=m:

(b) The energy density is

wðrÞ ¼ 1
2
B2

l0
¼ 1

2l0

l20I
2

4p2r2
¼ l0I

2

8p2r2
:

The energy is then

W ¼
Z

w dv ¼ 2pl
ZR2

R1

wðrÞrdr

¼ l0I
2l

4p
ln
R2

R1
¼ 1

2
LI2:

The energy per m length is

bW ¼ 1
2
bLI2 ¼ l0I

2

4p
ln
R2

R1
:

For a current of 10 A and R1 = 1 mm, R2 = 5 mm
this gives

bW ¼ 1:6� 10�5 J=m:

(c) If the wall thickness is not negligible the magnetic
field in the inner tube must be calculated according
to (3.9). This gives as additional contribution to the
inductance per meter

L2 ¼ ll0
8p

and for the energy per meter

bW ¼ ll0I
2

16p
:

The calculation of the contribution of the outer tube
leads to an integral that can be solved by a Taylor
expansion of the integrand.

4:3 (a) The mutual inductance is according to (4.17)

L12 ¼ l0
4p

Z
s1

Z
s2

ds1 � ds2
r12

;

With ds1 � ds2 ¼ R1R2du1du2 cosðu1 � u2Þ; and

r12 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
1 þR2

2 � 2R1R2 cosðu1 � u2Þ
p

we get
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) L12 ¼ l0 � R1R2

4p
�
Z2p

u1¼0

Z2p
u2¼0

cosðu1 � u2Þdu1du2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
1 þR2

2 � 2R1R2 cosðu1 � u2Þ
p

¼ l0
4p

R1R2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
1 þR2

2

p �
Z2p

u1¼0

Z2p
u2¼0

cosðu1 � u2Þdu1du2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k � cosðu1 � u2Þ

p

with k ¼ 2R1R2=ðR2
1 þR2

2Þ.
With the substitution cos 1=2ðu1 � u2Þð Þ ¼ sinw this
leads to a sum of elliptical integrals which are listed e.g.
in Bronstein’s integral tables. For R1 � R2 ) k � 1
the square root in the denominator can be expanded and
the integral becomes

Z2p
u1¼0

Z2p
u2¼0

cosðu1 � u2Þ� 1þ 1
2
k cosðu1 � u2Þ

� �
du1 du2;

which has the solution kp2: We then obtains for the
inductance

L12 ¼ l0p
2

R2
1R

2
2

R2
1 þR2

2

� �3=2 :
(b) The derivation in Sect. 4.3.2 and the Eq. (4.16)

/m ¼ l0I1
4p

Z
s1

Z
s2

ds1 � ds2
r12

is for I1 = I2 invariant under the interchange of the
indices. The interchange of the indices I1 ! I2 and vice
versa interchanges the situation that a current through
the circuit 1 generates a magnetic field in the circuit 2
into the situation that a current through circuit 2 creates
a magnetic field in the circuit 1. This means that L12 =
L21 (Fig. A.16).

4:4 The capacity of the line with two metal stripes with
width 2b and distance d between the stripes is

bC ¼ e0 � 2bd ;

if vacuum is between the stripes. If material occupies
the space between the stripes an additional factor e has
to be included. The calculation of the inductivity L is
more tedious: We regard the magnetic field dB at the
point P(x, y) produced by the current dI through an
infinitesimal small band dx’ of the metal stripe (Fig.
A.17). With dI = I � dx′/(2b) we obtain

dB ¼ l0dI
2pr

¼ l0I
4p � b � r dx

0

with the components

dBx ¼ � y

r
dB ¼ � l0I

2bp
y � dx0

ðx� x0Þ2 þ y2
;

dBy ¼ � x� x0

r
dB ¼ l0I

4pb
ðx� x0Þdx0

ðx� x0Þ2 þ y2
:

The field B which is produced by the total current
I through the total metal stripe is

B ¼
Zx0¼þ b

x0¼�b

dB:

With the substitution u = (x′ − x)/y we get

Bx ¼ l0I
4pb

Zu2
u1

du
1þ u2

¼ � l0I
4pb

arctan
b� x

y
þ arctan

bþ x

y

� �
;

By ¼ � l0I
4pb

Zu2
u1

u du
1þ u2

¼ � l0I
8pb

ln
y2 þðbþ xÞ2
y2 þðb� xÞ2 :

For b � y is

arctan
b� x

y
! p

2
� sig y

1R

2R

2ϕ

1ϕ

2ds
→

1ds
→

x

Fig. A.16 Illustration of solution 4.3

y

r

xb− b+dx'

)y,x(P
dB

→

Fig. A.17 Illustration of solution 4.4
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and

ln
y2 þðbþ xÞ2
y2 þðb� xÞ2 ! 4x=b:

This gives

Bx ¼ � l0I
4b

sig y; By ¼ � l0I � x
2p � b2 :

For our double line is y = ±d/2. This gives

Bx ¼ � l0I
4b

� sigðy� d=2Þ:

The current through the upper stripe line is +I, through
the lower line –I. The magnetic fields of the two lines
point between the lines into the same direction namely
the +x direction. The two contributions therefore add.
Outside the stripes the magnetic fields cancel each
other. The magnetic field energy per m stripe length is

bWmag ¼ 1
2l0

B2 � 2b � d ¼ B2 � b � d
l0

¼ l0I
2

4b
� d

with B2 ¼ B2
x þB2

y .

Since Wmagn ¼ 1=2LI2 we get for the inductivity

bL ¼ l0 � d
2b

:

The product C � L of capacity C and inductivity L

bC � bL ¼ e0l0

is independent of the geometrical dimensions of the
double line as long as d � b.

4:5 The voltage induced in the pendulum is

Uind ¼ � _U ¼ �B � dF=dt;

where dF*/dt is the area of the pendulum that enters the
magnetic field per second.

dF=dt/v ¼ L � _u;
where L is the length of the pendulum from the pivot
point to the center of the magnetic field.

) Uind/ _u:

(a) The induced voltage generates eddy currents

Ie ¼ Uind=R;) Ie / du=dt

where R is the resistance for the eddy currents.

The damping torque DD = L � FL is determined by
the Lorentz-force

FLj j / IW � B

The force is according to Lenz’s rule pointing in
such a direction that it hinders the motion that
generates the force. This means DD / � _u.

(b) Since Iw / Uind / B we get

DD / B2 / I2F

where IF is the field generating current.

4:6 The current I is

IðtÞ ¼ U0

R
ð1� e�ðR=LÞtÞ

¼ 20
100

ð1� e�ð500t=sÞÞA

¼ 0:2ð1� e�ð500t=sÞÞA:

At the time t0 = 0 is I(0) = 0, at the time t1 = 2 ms is

Iðt1Þ ¼ 0:2 1� 1
e

� �
A ¼ 0:126A;

Ið1Þ ¼ 0:2A:

4:7 Gauss’s law is for a vector function u(x, y, z)I
u dS ¼

Z
divu dV ;

where S is the surface of the volume V. The conser-
vation of the electric charge Q ¼ R .eldV demands

� dQ
dt

¼ � d
dt

Z
.eldV ¼ � @

@t

Z
.eldV

¼ �
Z

@.el
@t

dV ¼
I
S

.elt � dS;

since spatial and temporal integration can be inter-
changed. The partial differentiation @.=@t takes into
account that .ðx; y; zÞ can depend on the coordinates
(x, y, z). However, the total charge Q inside the volume
V does not depend on the coordinates, even if . does
depend on (x, y, z). Therefore the total derivative
dQ/dt is equal to the partial derivative ∂Q/∂t. FromZ

S

.elt � dS ¼
Z

divð.eltÞdV
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(Gauß’s law) it follows the continuity equation

div jþ @.
@t

¼ 0

with j ¼ .el � t
4:8 The train acts as short circuit bar. We therefore are

faced with a problem that is equivalent to that of
Problem 4.1

Uind ¼ �B? � b � t ¼ � Bj j � cos 65� � b � t:

With b = 1.5 m, v = (200/3.6) m/s we get

Uind ¼ 4� 10�5 � cos 65� � 1:5 � 200
3:6

¼ 1:41� 10�3 V ¼ 1:41mV:

4:9 (a) If the straight wire is concentric to the circular loop
with N windings (Fig. A.18) the magnetic field
induced by the current through the straight wire is
always directed along the circular loop. Themagnetic
flux dU ¼ B � dF is therefore zero because B is per-
pendicular to the vector dF which points in the
direction of the straight wire perpendicular to the
circular loop area.

(b) the situation is different for the arrangement of
Fig. A.18b.
The magnetic field of the straight wire is

B ¼ l0I
2pr

and the magnetic flux through the rectangular coil cross
section F = a � b is

U ¼
Z
F

B dF ¼ b � l0I
2p

Zdþ a

r¼d

dr
r

¼ l0 � b � I
2p

ln
dþ a

d
¼ l0 � b � I

2p
ln 1þ a

d

	 

:

With I = I0 � sin xt is

Uind � N � _U ¼ U0 � cosxt

with

U0 ¼ N � x � I0 � l0 � b
2p

ln 1þ a

d

	 

:

(c) For the toroid coil in Fig. A.18c the toroid windings
enclose the magnetic field lines. For a radius rs of the
coil windings the coil cross section is F ¼ N � p � r2S.
The magnetic flux is then with n ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
r2S�z2

p
Þ

U ¼
Z

B dF

¼ N � l0I
2p

Zþ rS

z¼�rS

ZRþ n

r¼R�n

dr
r

0
B@

1
CAdz

¼ N � l0I
2p

Zþ rS

z¼�rS

ln
Rþ n
R� n

dz

¼ N � l0I
2p

Zþ rS

z¼�rS

ln Rþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2S þ z2

q� ��

� ln R�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2S þ z2

q� ��
dz:

4:10 The magnetic field in the iron kernel is

B ¼ l � l0 � n � I ¼ 1T

With n = N/l is

) l ¼ B

l0 � l � I ¼
0:4

4p � 10�7 � 10�3
¼ 320:

The inductivity is then

L ¼ l � l0 � n2F � l ¼ 10H:

If the external circuit is switched off within 1 ms, the
induced voltage is

Uind ¼ �L � dI
dt

¼ �10� 10�3V ¼ �10 kV:

The output voltage current jumps from the value
I(t < 0) = U/R to the value

Iðt[ 0Þ ¼ I0 ¼ Uind

R2
¼ 10 � 103

5
A ¼ 2000A:

it decreases the exponentially as

I ¼ I0 � e�ðR=2Þt

The situation is similar to that in Fig. 4.14c-d.

(a) (b) (c)

NS

Rra

b d

Fig. A.18 Illustration of solution 4.9
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Chapter 5

5:1 (a) R and C must be connected in parallel (Fig. A.19).

Z1 ¼ R; Z2 ¼ 1
ixC

) Z ¼ Z1 � Z2
Z1 þ Z2

¼ R

ixC Rþ 1
ixC

� �

¼ R

1þ ixRC

jZj ¼ Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðxRCÞ2

q

jZðx ¼ 0Þj ¼ R ¼ 100X

jZðx ¼ 2p � 50=sÞj ¼ 20X

¼ 100ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4p2 � 2500 � 1002 � C2

p

) C ¼ 156 lF:

(b) Since the output voltage U for x = 0 is U 6¼ 0 the
circuit must be a parallel circuit. For x = 0 is

U2

U1
¼ RL

RþRL
¼ 0:01

)R ¼ 0:99RL

0:01
¼ 99RL ¼ 99X:

The maximum output voltage is obtained for x � L –

1/(xC) = 0, i.e. for the resonant frequency

xR ¼ 1ffiffiffiffiffiffi
LC

p ) C ¼ 1

Lx2
Rð Þ ¼ 1:78mF:

The approximation xR ¼ 1
ffiffiffiffiffiffiffiffiffiffi
L � Cp

is only valid for
small values of the resistance RL.
If RL cannot be neglected one has to form the
derivative of

U2j j
U1j j ¼ 1� R

Rþ 1

ixCþ 1
1xLþRL

�����������

�����������

with respect to x and then set this derivative = 0 (ex-
treme value of the function). The corresponding equa-
tion must be solved for C. For RL = 1 X this gives C =
1.80 mF, for RL = 20 X one obtains C = 5.15 mF.

Remark Although such calculations train the brain, they
are more suited for computer calculations rather than for
physicists who want to illustrate the physical essence of
problems.

5:2 The resistance of the complete circuit in Fig. 5.35a is
the sum

Ztot ¼ ZK þR;

where

ZK ¼ Z1 � Z2
Z1 þ Z2

with

Z1 ¼ 1
ixC

; Z2 ¼ ixLþRL

here Ztot is the resistance of the parallel circuit and R is
the load resistor which is here assumed as pure Ohmic
resistor. The output voltage is then

Ua ¼ R

ZK þR
Ue ¼ R

Ztot
� Ue:

For the complex resistance Ztot we obtain

ZK ¼ RL þ ixL
1� x2LCð Þþ ixRLC

;

So, look for the total resistance

Ztot ¼ RL þR� x2RLCþ ix LþRLRCð Þ
1� x2LCð Þþ ixRLC

The resonance frequency of the undamped parallel
circuit is with L = 10−4 H and C = 10−6 F

xR ¼ 1ffiffiffiffiffiffiffiffiffiffi
L � Cp ¼ 105 s�1:

Since the inductive resistance ∣xR � L∣ = 10 Ω at the
resonance frequency xR is large compared with the Ohmic
resistance RL = 1 Ω of the inductance the resonance
frequency of the damped circuit is only by 1% smaller than
that of the undamped circuit. The total resistance at the
resonant frequency is

Ztot xRð Þ ¼ Rþ L

C � RL
� i

ffiffiffiffiffiffiffiffiffi
L=C

p
:

Numerical values: RL ¼ 1X;R ¼ 50X;C ¼ 1 lF; L ¼ 10�4 H

) Ztot ¼ 150� 10ið ÞX

C

R

L LR1U

2U

Fig. A.19 Illustration of solution 5.1
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with the amount

Ztot ¼ 150:3X:

Note, that the total resistance at the resonance frequency
is not real. This means that the output voltage Ua has a
phase shift against the input voltage Ue. It is

UA ¼ UeðR=ZtotÞ ¼ Ue

¼ Ue � ð0:332þ 0:022iÞ
) Ua ¼ Ue � cosðxtþuÞ:

⟹ With tan u = 10/150 = 0.067 ⟹ u = 3.81°.
The frequency dependence of the resistance ZK of the
parallel circuit can be determined by setting R = 0.
The frequency width of the resonance is approximately

Dx ¼ R

L
¼ 104 s�1:

This can be also expressed by the quality factor

Q ¼ xL
R

¼ 10

of the circuit, because the relation

Dx
x0

¼ 1
Q
¼ 1

10
) Dx ¼ x0

10
¼ 104 s�1:

The frequencies x1 and x2 where the resistance Z has
dropped to ½Z(xR) are

x1:2 ¼ 105 � 104
� �

s�1:

The full half width of the resonance curve is therefore
Dx = 2 � 104 s−1.

5:3 Since the total magnetic flux penetrates also the
secondary coil the coupling factor is k = 1. Therefore
the phase shift between U2 and U1 is Du = 180° if
both coils have the same winding orientation.

) U2

U1
¼ �N2

N1
:

(a) If the load resistor R is pure Ohmic, the ratio U2/U1

is independent of R as long as R is large compared
with the resistance of the secondary coil. The
effective input power is

Pe ¼ U2
2

R
¼ N2

N1

� �2U2
1

R
:

The secondary current is according to (5.50b) with
L12 = √(L1 � L2)

I2 ¼ U1

R

ffiffiffiffiffi
L2
L1

r
¼ U1

R
� N2

N1
) Pe ¼ U2 � I2:

(b) For a capacitive load and a coupling factor k = 1 is

U2

U1
¼ L12

L1 � x2C1L2 1� k2ð Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
L1 � L2

p
L1

¼
ffiffiffiffiffi
L2
L1

r
¼ N2=N1

in this case the same result is obtained as for a pure
Ohmic load.

5:4 From Fig. A.20, which represents a redrawing of
Fig. 5.54 the following relations can be obtained:

ZD ¼ 1
ixC

þ 1
1

ixL
þ 1

R

ZB ¼ 1
ixC

þ 1
1

ixL
þ 1

ZD

¼ 1
ixC

þ 1
1

ixC
þ 1

ixC
þ 1

1=ðixLÞþ 1=R

Z ¼ 1
1

1xL
þ 1

ZB

¼ 1
1

ixL
þ 1

1
ixL

þ 1

1
1xC þ 1

1=ð1xLÞþ 1=R

Ua = U1, Ia = U1/(i � x � L), IB = I1 – Ia , UB = IB � ZB,
IC = UB/(i � x � L), ID = IB – IC , UD = ID � ZD = U2, I2
= UD/R, I1 = U1/Z.

Inserting these relations into the equation for Z gives

t
co

s
U

U
0

1

L L L

R

C

C

Z

AU BU 2U

AI BI

CI DI

1I BZ

DZ

Fig. A.20 Illustration of solution 5.4
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Z ¼ ð37:6þ 38:9iÞX; jZj ¼ 54:1X;

ZB ¼ ð22:7� 35:4iÞX; ZBj j ¼ 42:0X;

ZD ¼ ð13:2� 11:3iÞX; ZDj j ¼ 17:4X;

U2j j
U1j j ¼ 0:414;

I2j j
I1j j ¼ 0:448:

5:5 Pel ¼ I � U ¼ U2
ind= Ri þRað Þ; because I ¼ Uind= Ri þRað Þ:

Uind ¼ � dU
dt

� N ¼ �B � N � F � x � cosxt

) Pel ¼ 1
2
B2N2F2x2

Ri þRa

¼ 1
2
0:22 � 25� 104 � 10�4 � 4p2 � 502

10þ 5
kW

¼ 3:29 kW:

5:6 The time constant of the capacitor discharge is

s ¼ R � C ¼ 50� 10�3 s ¼ 50ms:

⟹ The discharge starts at t = 0 after the peak voltage
U0 has been reached.

⟹ (a) One way rectification: The discharge lasts
until the intersection of the curve U1(t) =
U0 � e-t/(RC) with the curve U2(t) = U0 � cos
(xt − 2p) (Fig. A.21a). This gives

t ¼ �RC � In cosxt � 2pð Þ
) t1 ¼ 17:5ms;U t1 ¼ 17:5msð Þ
¼ U0 � e�17:5=50 � 0:7U0:

The ripple of the DC output voltage is then

w ¼ Umax � Umin

Umax
¼ 0:3:

(b) For the Graetz-rectifier (full wave bridge circuit)
one obtains (Fig. A.21b):

e�t2=ðRCÞ ¼ j cosðxt � pÞj
) t2 ¼ 8:3ms

U ¼ U0e�8:3=50 ) U

U0
¼ 0:83

)w ¼ 0:17:

With the Graetz- rectifier the ripple is smaller than that
of the one-way rectification by the factor 0.17/0.3 =
0.57. Its frequency is, however, two times higher. It
can be therefore much easier filtered by an RC-circuit
(see Fig. 5.44).

Z ¼ Z1 � Z2

Z1 þZ2
¼ R

1þ ixRC
:

I ¼ U

Z
¼ U0 cosxt

R
1þ ixRCð Þ

¼ U0

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þx2R2C2

p
cos xtþuð Þ

¼ I0 cos xtþuð Þ

with

I0 ¼ U0

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þx2R2C2

p
and

tanu ¼ xRC
1

¼ 2p � 50� 107 � 10�5

¼ 3140 ) u.90�:

We then obtain

PWirk ¼ I � U ¼ 1
2
I0U0 cosu

cosu; ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2 u

p ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðxCRÞ2

q
) PWirk ¼ 1

2
U2

0

R
:

Only this part of the total power can be consumed.
The rest is the wattless power

PBlind ¼ 1
2
I0U0 sinu ¼ 1

2
U2

0xC:

Numerical values:

I0 ¼ 0:94A;

IWirk0 ¼ 3� 10�5 A

IBlind0 ¼ 0:94A

PWirk ¼ 4:5mW

PBlind ¼ 141W:

U

(b)

U

(a)

t

t

1t

2t

RC/te−

Fig. A.21 Illustration of solution 5.6
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Although the wattless power does not produce Joule’s
heat it has to be taken into account for the dimen-
sioning of the cable diameters (Fig. A.22).

5:8 The current through the series circuit is

I ¼ U0 sinxt
Z

with Z ¼ Rþ i xL� 1
xC

� �
:

The voltage across the inductance is

UL ¼ ixL
Z

U0 sinxt

¼ �x2LC

1� x2LCþ ixRC
U0 � sinxt

¼ �x2LC 1� x2LCixRCð Þ
1� x2LCð Þ2 þx2R2C2

U0 sinxt

¼ U � sinðxt � uÞ

with

U ¼ x2LCffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2LCð Þ2 þx2R2C2

q
and

tanu ¼ xRC
1� x2LC

¼ 0:417 ) u ¼ 22:6�:

With the numerical values given, the voltage is

U ¼ 0:302V:

5:9 The ratio of output voltage to input voltage is
(Fig. A.23):

Ua

Ue
¼ Z

Rþ Z
:

where K is a real number.

Z ¼
Ra � 1

1xC

Ra þ 1
ixC

¼ Ra

1þ ixRaC

Ua

Ue
¼ Ra

Ra þRþ iRRaxC

¼ Ra � Ra þR� iRRaxCð Þ
Ra þRð Þ2 þ RRaxCð Þ2

Uej j ¼ Raffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ra þRð Þ2 þ RRaxCð Þ2

q
Ua ¼ K � Ue � eiu; tanu ¼ �RRaxCÞ

RþRa

Numerical example: Ra= R = 1 kX, C = 100 lF,

(a) for x = 0:

Uaj j
Uej j ¼

Ra

Ra þR
¼ 1

2
;

(b) For x = 2p � 50 Hz

Uaj j
Uej j ¼ 0:032:

5:10 The terminal voltage UK is

UK ¼ Uind � RR IF þ Iað Þ:

On the other hand is

UK ¼ RF � IF:
Comparing the two results gives for Uind = U0

ind and
IF = IF2

U0
ind ¼ RRIa þ RR þRFð ÞIF2 :

According to (5.6) is

UK ¼ U0
ind � RR IF þ Iað Þ:

Since U0
ind decreases with increasing load current

(IF2 becomes smaller) decreases also UK(Ia) with
increasing Ia. Therefore UK becomes maximum for
Ia = 0.

tcosU0

C R

Fig. A.22 Illustration of solution 5.7

R

CeU aUaR

Fig. A.23 Illustration of solution 5.9
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Chapter 6

6:1 For the frequency x the relation holds:

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
LC

� a2
r

with a ¼ R

2L
;

x ¼ 2p � 8� 105 s�1 ¼ 5� 106 s�1;

U ¼ U0 � e�at ) a ¼ 1
t
ln
U0

U
:

The oscillation period is then

T ¼ 2p
x

¼ 1:25� 10�6s�1:

After the time t = 30 T is U=U0 ¼ 1=2.

) a ¼ 106

30 � 1:25 ln 2 ¼ 1:8� 104 s�1;

L ¼ 1
C � ðx2 þ a2Þ

¼ 109

25� 1012 þ 3:4� 108
H

� 4� 10�5 H;

) R ¼ 2a � L ¼ 2 � 1:8� 104 � 10�5

¼ 1:44X:

6:2 The amount of the complex resistance of a series res-
onant circuit is

Zj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ xL� 1

xC

� �2
s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þX2

p
:

The ratio is then

Zðx0 þR=LÞ
Zðx0Þ

����
���� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þX2

p
ffiffiffiffiffi
R2

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

R2

r
;

X ¼ x0 þ R

L

� �
L� 1

ðx0 þR=LÞC
With the resonant frequency x0 ¼ 1=

ffiffiffiffiffiffi
LC

p )

X ¼
ffiffiffiffiffiffiffiffiffi
L=C

p
þR� 1ffiffiffiffiffiffiffiffiffi

C=L
p þRC=L

¼ R � 1þ 1

1þR � ffiffiffiffiffiffiffiffiffi
C=L

p
 !

¼ R � 1þ 1
1þRCx0

� �

) Zðx0 þR=LÞj j
Zðx0Þj j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1þ 1

1þRCx0

� �2

:

s

For x ¼ x0 � R=L we get

Zðx0 � R=LÞj j
Zðx0Þj j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1þ 1

1� RCx0

� �2
s

:

Note the asymmetry. The function ZðxÞ is not
symmetric around x ¼ x0.The effective power is
according to (6.10)

PWirk
el

� � ¼ 1
2
U2

0 � R
Zj j2 :

Forx ¼ x0 þR=L thepowerhasdecreases to the fraction

Pðx0 þR=LÞ
Pðx0Þ ¼ 1

1þ 1þ 1
1þRCx0

� �2

6:3 According to (6.15a, 6.15b) is

x1 ¼ x0ffiffiffiffiffiffiffiffiffiffiffi
1� k

p ¼ 106ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:05

p ¼ 1:0266� 106s�1;

x2 ¼ x0ffiffiffiffiffiffiffiffiffiffi
1þ k

p ¼ 106ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0:05

p ¼ 0:9759� 106s�1:

The upper frequency x1 is 26 kHz above the resonance
frequency x0, the lower frequency x2 24.1 kHz below
x0. This shows that the resonance curve is not exactly
symmetric. For the frequency m = x/2p is m1 about
4.1 kHz above and m2 about 3.9 kHz below the center
frequency m0.

6:4 The velocity of the electron is

t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ekin=m

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27:2 � 1:6� 10�19=9:1� 10�31

p
m=s

¼ 2:186� 106 m=s:

Its centrifugal acceleration on a circular path is

a ¼ t2

r
¼ 2:1862 � 1012

5:3� 10�11

m
s2

¼ 9:1922 m=s2:

The radiated power is for a classical treatment (non-
relativistic)

�P ¼ e2a2

6pe0c3
:

This is identical to (6.38) when we set

ax ¼ d0x
2 cosxt

ay ¼ d0x
2 sinxt
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The presence of two polarization-directions explains
the difference to (6.38) by a factor 2.
Inserting the numerical values gives

�P ¼ 4:6� 10�8 W:

(a) The revolution period of the electron is

T ¼ 2pr
t

¼ 1:5� 10�16s:

The energy radiated per circulation is

T � dW
dt

¼ 1:5� 10�16 � 4:6� 10�8 Ws

¼ 7� 10�24 Ws ¼ 4 leV:

(b) The energy radiated per sec would be
44.6 � 10−8 Ws = 290 GeV

(c) When the electron loses energy by radiation it
would follow in a classical model on a spiral path
and finally crash into the nucleus. The quantitative
calculation is as follows:
The total energy of the electron is the sum
W ¼ Ekin þ Epot.
On a stable circle with radius r around the nucleus
the centripetal force is equal to the Coulomb-force:

mt2

r
¼ e2

4pe0r2

Therefore the kinetic energy is

) Ekin ¼ m

2
t2 ¼ 1

2
e2

4pe0r
¼ 1

2
Epot

) W ¼ þ 1
2
Epot ¼ � e2

8pe0r
;

dW
dr

¼ þ e2

8pe0r2
) dW

dt
¼ e2

8pe0r2
dr
dt

:

This is the mechanical power which is gained when the
radius of the electron path decreases. It must be equal to
the energy radiated away:

dW
dt

¼ � e2a2

6pe0c3

(the negative sign indicates that the energy of the
electrons decreases).The acceleration a is

a ¼ t2

r
¼ e2

4pe0r2m
:

This shows that the radiation power depends on the
radius r of the electron path. We obtain

� e2

6pe0c3
� e2

4pe0m

� �2

� 1
r4

¼ dW
dt

� �
em
ðrÞ¼! dW

dt
dr
dt

¼ e2

8pe0r2
dr
dt

) �r2dr ¼ 4
3c3

e2

4pe0m

� �
dt

Integration from r = a0 to r = 0 gives

a3 ¼ 4
c3

e2

4pe0m

� �
Dt;

where a0 = 5.3 � 10−11 m. The time it takes for the
electron to reach the nucleus is

Dt � 1:6� 10�11s:

Note Experiments show, however, that the hydrogen
atom in its lowest energy state is stable, i.e. the electron
does not spiral into the nucleus. This can be only
explained within the framework of quantum theory (see
Vol. 3). In energetically higher states the atom radiates
in deed energy in form of photons, which brings the
atom back into the lowest stable energy state.

6.5 On a circular path with the radius R perpendicular to the
magnetic field the centripetal force is equal to the
Lorentz force.

m � t2
R

¼ q � t � B ) a ¼ t2

R
¼ q

m
t � B:

The radiation power per sec is

dW
dt

¼ q2a2

6pe0c3
¼ q4t2B2

6pe0m2c3

¼ d
dt
Ekin ¼ m � t � dt

dt

) dt
dt

¼ q4t � B2

6pe0m2c3
;

Here the change dv/dt of the amount of the velocity is
assumed to be small compared to the change of the
direction of v.
From the first equation we get the radius R of the
circular path
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R ¼ m � t
q � B

) dR
dt

¼ m

q � B
dt
dt

¼ q3 � tB
6pe0m2c3

¼ dW
dt

� 1
q � t � B :

6:6 (a, b) The accelerating force is

F ¼ q � E
) a ¼ q

m
E ) aj j ¼ a ¼ q

m
� U
d
:

Numerical values: q ¼ þ 1:6� 10�19 As, m ¼ 1:67�
10�27kg; U ¼ 106V; d ¼ 3m;) a ¼ 3:2� 1013 m=s2.
The radiated power is then

dW
dt

¼ q2a2

6pe0c3
¼ 5:8� 10�27 W;

This is very small compared to the radiated power in
the foregoing problem. The time needed for passing the
acceleration length d can be obtained from

d ¼ 1
2
at2

which gives

t ¼
ffiffiffiffiffi
2d
a

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6

3:2� 1013
s

r
¼ 4:3� 10�7s:

During this time a proton looses the energy

DW ¼ dW=dt ¼ 5:8� 10�27 � 4:3� 10�7 Ws

¼ 2:5� 10�33 Ws:

This corresponds to the fraction

g ¼ 2:5� 10�33

1:6� 10�19 � 106
¼ 1:5� 10�20

of its acceleration energy and can be therefore neglected.
On the circular path the acceleration is

a ¼ t2

R
¼ 2Ekin

m � R
¼ 2� 106 � 1:6� 10�19

1:67� 10�27 � 3=2p
m
s2

¼ 4� 1014 m=s2:

The acceleration is here 12.5 times larger and the radiated
power dW/dt, which is proportional to the square a2 of
the acceleration, is therefore 156 times larger.

6:7 The intensity I of the wave is equal to the energy-
flux-density at a distance of 1 m from the source.

I ¼ Sj j ¼ Pem

4pr2
¼ 104W

4p � 1m2
¼ 8� 102 W=m2:

The electric field strength E is according to (6.36a)

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S=ðe0 � cÞ

p
¼ 5:5� 102 V=m:

The magnetic field strength is

B ¼ 1
c
E ¼ 1:83� 10�6 Vs

m2
¼ 1:83 lT:

6:8 The energy flux density is equal to the pointing vector S

S ¼
�Pem

4pr2 � DX ) �Pem ¼ 4pr2 � 10�2 � S:

S is defined as

S ¼ e0cE
2 ¼ 8:85� 10�12 � 3� 108 � 102 W=m2

¼ 0:26W=m2

We therefore get the average emitted power as

�Pem ¼ 3:27� 104W:

From (6.38) it follows with q = N � e

�Pem ¼ N2e2 � 16p4m4d20
12pe0c3

) d0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3e0 � c3 � �Pem

N2e2 � 4p3m4 :
r

Inserting the numerical values N = 1028 � 10−4 � 10 =
1025, m = 107 s−1, e = 1.6 � 10−19 C gives

) d0 ¼ 2:7� 10�12 m:

This illustrates that the oscillation amplitude of the
oscillating electrons is very small.

6:9 (a) The solar constant gives the energy flux density at
the upper edge of the earth atmosphere where the
absorption of the sunlight can be still neglected.

From
S ¼ e0 � c � E2

we can derive the electric field of the sun radiation at
the upper edge of our atmosphere

E ¼
ffiffiffiffiffiffiffiffiffiffi
S

e0 � c

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:4� 103

8:85� 10�12 � 3� 108

r
V
m

¼ 7:26� 102 V=m
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The magnetic field is then

) B ¼ 1
c
� E ¼ 7:26� 102

3� 108
V s
m2

¼ 2:4� 10�6 T:

(b) the distance from the center of the sun to the earth
is r = 1.5 � 1011 m.
The total power radiated by the sum is then

�Pem ¼ 4pr2 � S ¼ 1:4� 103 � 4p � 1:52 � 1022 W

¼ 4� 1026 W:

(c) The energy flux density at the surface of the sun
is

S� ¼
�Pem

4pR2�
¼ 4� 1026

4p � 6:962 � 1016

¼ 6:57� 107 W=m2

) E ¼
ffiffiffiffiffiffi
S

e0c

r
¼ 1:57� 105 V=m:

6:10 As in Problem 6.9 is

S ¼
�Pem

4pr2
; E ¼

ffiffiffiffiffiffi
S

e0c

r
:

With r = 1 m and �Pem ¼ 70W is E = 45 V/m.
In order to reach the same electric field strength as that
of the sun radiation one must increase the energy flux
density by a factor k = (726/45)2 = 260. This implies
that also the powermust be larger by a factor of 260, i.e.
it must be 26 kW.
Note, however

(a) that absorption and scattering in the earth atmo-
sphere decreases the radiation flux density of the
sun by a factor 0.5–0.6

(b) Only a fraction of the sun radiation falls into the
visible range (see the spectral curve of the sun
radiation (Vol. 3, Chap. 2) with a temperature of
the sun surface of about 5800 K.

Chapter 7

7:1 From the equation rot B = e0l0∂E/∂t it follows

rot rotB ¼ e0l0
@

@t
ðrotEÞ

¼ �e0l0
@2B
@t2

;

rot rotB ¼ gradðdivBÞ � divgradB

¼ �DB;

because div B = 0. We therefore get

DB ¼ e0l0
@2B

@t2
¼ 1

c2
@2B

@t2
:

7:2 A plane wave propagating into the z-direction is
described by

E ¼ E0 � eiðxt�k�rÞ:

For k � r = 0 the phase u = x � t0 – k � r has for a
given time t0 for all positions r the same value. This
means: The geometrical position for all vectors r with
k � r = const represents the phase surface (Fig. A.24).
From k � r1 =k � r2 = const.! k � (r1 – r2) = 0! k ⊥
(r1 – r2). The vector r1 – r2 is a vector in the plane ⊥
k. This implies that the plane ⊥ k is a phase plane.

7:3 With E = a1E1 + a2E2 !

I ¼ e0cE
2

¼ e0c a21E
2
1 þ a22E

2
2 þ 2a1a2E1 � E2

� �
:

With Ei = E0 � cos(xt + ui) we obtain

I ¼ e0cE2 ¼ 1
2
e0c a21E

2
01

�
þ a22E

2
2 þ 2a1a2E10E20 cos u1�u2ð Þ


¼ I1 þ I2 þ 2 � ffiffiffiffiffiffiffiffi
I1I2

p � cos u1 � u2ð Þ:

For incoherent light the phase-differences D/ = /1(t) –
u2(t) fluctuate randomly and therefore is the mean
value cosu1 � u2 ¼ 0 . In this case is the total inten-
sity equal to the sum of the intensities of the partial
waves. For coherent light this is no longer true.

7:4 The representation of a circular polarized wave is

cE ¼ A � eiðxt�kzÞ mit A ¼ A0ðx̂� iŷÞ
rþ � Licht :A ¼ A0ðx̂þ iŷÞ
r� � Licht :A ¼ A0ðx̂� iŷÞ

Eþ þE� ¼ 2A0x̂eiðxt�kzÞ

This is a linear-polarized wave with the E-vector
pointing into the x-direction.

z

x

y

Phase 
surfaces

k

2r

1r

Fig. A.24 Illustration of solution 7.2
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7:5 For stationary equilibrium the total input power must
be equal to the total output power. This gives the
equation

dW
dt

¼ a � I � F � cos c� cW � dM
dt

T � TUð Þ
� j T � TUð Þ ¼ 0:

where a is the fraction of the absorbed power. The
mass of the water running per sec through the pipe is

dM
dt

¼ a � I � F � cos c
cW T � TUð Þ � j

cW
:

With the numerical values a = 0.8; I = 500 W/m2, cos c
= 0.94; cw = 4.18 kJ/kg; T – Tu = 60 K, j = 2 W/K we
obtain

dM
dt

¼ 0:8 � 500 � 4 � 0:94
4:18� 103 � 60 � 0:48� 10�3 kg=s

¼ 6� 10�3 � 0:48� 10�3
� �

kg=s

� 5:5� 10�31=s ¼ 201=h:

The mean sun energy density incident in June per
sunny day per m2 is about 6 kWh. This is sufficient to
heat per day and m2 collector area 60 l water by 60 K
(from 20 to 80 °C). if the heat losses can be neglected
(j = 0)

7:6 (a) We regard a capacitor with circular plates and areas
A=4pr2 and the plate distance d. The chargeQ is then

Q ¼ C � U ¼ e0
A

d
U ¼ e0 � A � E

With E = {0, 0, E} the intensity is,

I ¼ dQ
dt

¼ e0A � @E
@t

:

The magnetic field lines are circles around the z-axis

H
B ds ¼ BðrÞ � 2pr ¼ l0 �

r2

R2
I

) BðrÞ ¼ l0I
2pR2

r:

(b) The Pointing vector is

S ¼ e0c
2ðE � BÞ:

it has only a radial component in a plane perpendicular
to the z-axis. Its amount is

jSj ¼ e0c
2 � Q

e0A
� l0I
2pR2

r

¼ Q � I � r
2e0A2

¼ r

2e0A2

d
dt

1
2
Q2

� �
:

(c) The energy flux passing per sec through the cylinder
surface 2p � r � d is

dW
dt

¼ jSj � 2pr � d

¼ pr2 � d
e0A2

d
dt

1
2
Q2

� �

¼ pr2

A

d
dt

1
2
C � U2

� �
:

This is the fraction of the energy W = ½C � U2 stored
in the volume pr2 � d of the capacitor which streams
per second out of the capacitor.

7:7 The earth appears from the sun under the solid angle

XE ¼ pR2
E

ð1AEÞ2 :

Mars appears under the angle

XM ¼ pR2
M

ð1:52AEÞ2 :

We then get

SM
SE

¼ R2
M

R2
E � 1:522

¼ 0:5322

1 � 1:522 ¼ 0:123;

where the radius of Mars is RM = 0.532 RE and the
distance Sun-Mars is 1.52 AE.
The power reflected by Mars into the solid angle 2p is

SMR ¼ 0:5 � 0:123 SE:
The solid angle of the earth seen from Mars at its
closest approach is

XME ¼ pR2
E

ð0:52AEÞ2 :

The diffuse sun radiation reflected by Mars and
received by the earth is

dWME

dt
¼ 0:5 � 0:123 SE � pR2

E

ð0:52AEÞ2 � 2p ¼ 1:9� 10�9 SE:

Mars therefore radiates to the earth at its closest
approach only 1.9 � 10−9 times the radiation power
which is directly received by the earth from the sun.

7:8 The maximum radiation power transmitted by the pupil
of the eye is

dW
dt

¼ 800W=m2
� � � pr2 ¼ 800p� 10�6 W ¼ 2:5mW:
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The intensity on the retina is then

I ¼ APupille

ANetthaut
I0 ¼ 400I0 ¼ 320 kW=m2:

This is sufficient to destroy the photo-receptors of the
retina.

7:9 The weight force m � g has to be balanced by the light
pressure. With the intensity I of the radiation incident
into the z-direction the light pressure exerted onto the
areaA oriented under the angle0 against the z-direction is

dAz ¼ dA � cos# ¼ 2pR2 � sin# cos#d#:

A circular stripe with the radius a = R � sin0 has the
area dA = 2pa � R � d0 (Fig. A.25). The projection
perpendicular to the incident light is

dpe
dt

¼ I

c
dAz

The momentum transfer by the reflected light is

dpr
dt

¼ I

c
cos 2#ð ÞdAz:

The other components dpx/dt and dpy/dt cancel when
integrating over the total stripe.
Integration over the lower half sphere gives

dp
dt

¼ I

c

Zp=2
0

ð1þ cos 2#ÞdAz

¼ 2pR2 I

c

Zp=2
0

ð1þ cos 2#Þ sin# cos#d#

¼ pR2 � I=c:

Only the first term in the integral gives a contribution
because the integration over cos20 � sin0 � cos0 gives
zero.
The momentum transfer is therefore only caused by the
incident light and not by the reflected light. It has half
the amount as for a circular disc with the area p � R2

oriented perpendicular to the incident radiation because
for the disc the reflected light contributes the same
amount to the momentum transfer as the incident light,
while for the sphere the reflected light transfers the
momentum for 0 < 45° into the +z-direction but for 0 >
45° into the −z-direction. The two contributions
therefore cancel each other.
Question: Could this result have been obtained
immediately by intuitionwithout the lengthy calculation?
The necessary intensity of the incident light is the for a
mass density q = m/V of the sphere

I ¼ m � g � c
pR2

¼ 4
3
R � . � g � c:

The result applies for the absorbing as well as for the
reflecting sphere.

7:10 For the arbitrary position of the light mill in Fig. A.26
the incident parallel light beam forms the angle a
against the surfaces 1 and 3 and the angle ß = 90° – a
against the surfaces 2 and 4. The radiation pressure
onto the reflecting surfaces 1 and 2 causes a clockwise
torque the radiation pressure onto the absorbing sur-
faces 3 and 4 an anticlockwise torque. The area of
each surface is A = a2.
Radiation with the intensity I exerts according to
(7.27) the force

dF ¼ 2I
c
a � ds � sin a � êx

onto the surface element dA1 = a � dx of the surface 1.
This force causes a torque dD1 = dF1 � s about the
z-axis. With y = s � sina the amount of the torque is

z

R

a

Fig. A.25 Illustration to solution 7.9

d
I

A = a2

y

x

y = d · cos

b

s

= 90

d

dA = d ·ds

s

z

b

Fig. A.26 Illustration to solution 7.10a
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dD1 ¼ dF1 � s � sin a ¼ 2I
c
a sin2 a � sds

¼ 2I
c
ay � dy

) D1 ¼ 2I
c
� a �

Zðbþ aÞ sin a

b� sin a
ydy

¼ I

c
a sin2 a a2 þ 2ba

� �
:

The torque of the surface 2 is accordingly

D2 ¼ 2I
c
a

Zy2
y1

y dy ¼ I

c
a y22 � y21
� �

with y = s � cos a. The surface 2 is partly obscured by the
surface1.Therefore onlyapart of surface2 is illuminated.
Fora<45° this is the part from y1= (a + b) � cosßuntil y2
= (a + b) � sin ß. Because cos ß = sin awe canwrite: y1 =
(a + b) sin a and y2 = (a + b) cos a. This gives

D2 ¼ I

c
aðaþ bÞ2 sin2 a� cos2 a

� �
¼ I

c
aðaþ bÞ2 1� 2 cos2 a

� �
:

For a 	 45° the illuminated part reaches from y1 =
b � cos a until y2 = b � sin a, which gives for the torque.
The torque D3 can be obtained in a similar way as D1

by replacing a by ß = 90° – a and taking into account
that the absorbing surface experiences only ½ of
momentum transfer as the reflecting surface.

) D3 ¼ � I

2c
a � cos2 a a2 þ 2ba

� �
;

D4 ¼ � I

2c
aðaþ bÞ2 1� 2 sin2 a

� �
for a� 45

�
;

D4 ¼ I

2c
ab2 1� 2 sin2 a
� �

for a	 45
�
:

The total torque is D = D1 + D2 +D3 + D4. With b =
1 cm, a = 2 cm, I = 104 W/m2 one obtains:

D1 ¼ I

c
� sin2 a � 16� 10�6 Nm

¼ 5:3� 10�10 � sin2 aNm,

D2 ¼ 6� 10�10 sin2 a� cos2 a
� �

;

D3 ¼ �2:67� 10�10 cos2 a;

D4 ¼ �3� 10�10 cos2 a� sin2 a
� �

;

) D ¼ 14:3� 10�10 sin2 a

� 11:67� 10�10 sin2 a for a� 45
�
:

This is by far too small to turn the light mill. Therefore
the mill will not turn in vacuum.

(b) We assume, that the incident light increases the tem-
perature only of the absorbing black surface but not that
of the reflecting, non-absorbing surface. The tempera-
ture increase DT of the absorbing surface can be
obtained from

DT ¼ 1
CW

I � DA� dW
dt

� DT
� �

;

where Cw is the heat capacity of one plate of the light
mill, DA is the illuminated area and (dW/dt) � DT the
power taken away from the plate by collisions with
argon atoms.

) DT ¼ I � DA
CW þ dW=dt

An atom has the kinetic energy Ekin = ½mv2 = 3/2
k � T before the collision with the plate and 3/2
k � (T + DT) after the collision. The thermal power
taken away from the plate is then (see Vol. 1, Sect. 7.5.3)

dW
dt

� DT ¼ n

4
� 3
2
kDT � t � A

(n = atom number density). With n = 3 � 1016/cm3, A =
4 cm2, m = 5 � 104 cm/s, k = 1.38 � 10−23 J/K we get

dW
dt

¼ 0:031W:

Each surface is illuminated during ¼ of the circulation

period.With sin2 a ¼ 1=2 themean illumination power is

I � DA ¼ 1
2
� 1
4
I � A

¼ 1
8
� 104 W=m2 � 4� 10�4m2 ¼ 0:5W

) DT ¼ 0:5
0:13

� 4K:

The black surface is heated up by DT = 4 K.
The momentum transfer from the colliding atoms onto
the surface is

dp
dt

¼ n � m
4

� ½tðT þDTÞ � tðTÞ
 � At

(see Vol. 1, Eq. (7.47) where m = 40 � 1.67 � 10−27 kg
is the mass of one argon atom and v its mean velocity.

t ¼
ffiffiffiffiffiffiffiffiffiffi
8kT
p � m

r

) dp
dt

¼ n � m
4

A
8k

p � m ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TðT þDTÞ

p
� TÞ

¼ 3
4
� 1022 � 4� 10�4 � 8

p
� 1:38� 10�23 � ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
300 � 304

p
� 300Þ;

F ¼ 5:3� 10�5 N:
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The mean torque is then (similar to solution 7.10a)

D ¼ F � ðbþ a=2Þ � 10�6N �m;

This is more than 3 orders of magnitude larger the
torque caused by photon recoil.

7:11 The power radiated by the antenna has rotational
symmetry around the antenna axis and is proportional
to sin20. The power radiated into the solid angle

dP ¼ P0 � sin2 # d#

is

dX ¼ 1
r2

� r da � r � sin a du
¼ sin a da du:

Integration over all angles u (the parabolic mirror has
rotational symmetry around the x-axis) gives the
power radiated into the angular range from 0 to
0 + d0

dP ¼ P0 � sin2 # sin a � 2p � da a ¼ 90� � #ð Þ
¼ �P0 sin2 # cos# � 2p � d#;

P ¼ �2pP0

Z
#¼90�

sin2 # cos#d#

¼ 2p
3
P0 sin3#jp=2#min

¼ 2p
3
P0 1� sin3 #min
� �

:

integration over 0 gives The angle 0min can be
obtained from cos 0 = y/r

cos#min ¼ D=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þðf � xÞ2

q :

With y2 = 4 � f � x (equation for the parabolic surface)
it follows:

cos#min ¼ D=2
f þ x

;

x ¼ D2

16f

) cos#min ¼ D=2
f þD2=16f

¼ 8Df
D2 þ 16f 2

;

P ¼ 2p
3 P0 1� sin3 arccos

8Df
D2 þ 16f 2

� �� �
:

7.12 tG ¼ 1=3c ¼ c2=tPh

) vPh ¼ 3c ¼ cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2p2c2

a2x2

r

) n2p2c2

a2x2
¼ 8

9
) k2 ¼ 4a2

n2
� 8
9
:

The maximum wavelength is obtained for n = 1

) kmax ¼ 2a
3
�
ffiffiffi
8

p
cm ¼ 5:66 cm:

7.13 U = I � R = 3 � 10 V = 30 V. If the current streams
into the z-direction the electric field has only a z-
component. Its amount is

E ¼ U

L
¼ 30

100
V
m

¼ 0:3V=m

The magnetic field on the surface of the wire is

B ¼ l0I
2pr0

¼ 4p� 10�7 � 10
2p � 3� 10�3

T ¼ 0:67mT:

The Poynting vector points into the radial direction
towards the wire axis. Its amount is

S ¼ 1
l0

E � B ¼ I � U
2pr0 � L :

S gives the energy floux per sec and surface area A =
1 cm2. The total power streaming into the wire is then
for a wire surface A = 2P � r0 � L

dW
dt

¼ U � I ¼ I2 � R;

This is equal to the energy loss I2 � R due to the Ohmic
resistance R.

7:14 The photon recoil per sec is according to (7.26)

dp
dt

¼ FR ¼ e0E
2 � A ¼ m � a:

with I = e0 � c � E2 we get

I ¼ c � m � a
A

:

If the acceleration a = 10−5 m/s2 should be reached
for a mass of m = 103 kg and an area of A = 10−2 m2

the intensity must be at least

I ¼ 3� 108 W=m2
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The radiation power of the lamp must be then

PLicht ¼ I � A ¼ 3� 106 W

Remark More realistic are space ships with huge solar sails
which can use the light pressure of the sun radiation, for
instance for a journey to Mars. With an area A = 104 m2

and the sun intensity I = 103 W/m2 one obtain the
acceleration

a ¼ 2I � A
m � c ¼ 6:6� 10�5m=s2

without any energy consumption of the energy storage in the
space ship.

7:15 As has been discussed in Sect. 1.3.4 the electric field
between the outer and the inner conducting cylinder
of the coaxial waveguide is

E ¼ k
2pe0r

r̂ for a� r� b:

for a � r � b.
The voltage between inner and outer cylinder is then

U ¼
Zb
a

E dr ¼ k
2pe0

lnðb=aÞ;

where k = Q/l is the charge per unit length. The
capacity per unit length is then

Ĉ ¼ k
U

¼ 2pe0
lnðb=aÞ :

The inductanceper unit length is according toProblem4.2

L̂ ¼ l0
2p

ln
b

a
) Ĉ � L̂ ¼ e0 � l0 ¼

1
c2

;

Note that L is independent of the geometry of the
coaxial cable.
The wave impedance of the coaxial waveguide is

Z0 ¼
ffiffiffiffiffiffiffiffiffi
L̂=Ĉ

q
¼ 1

2p

ffiffiffiffiffi
l0
e0

r
ln
b

a

¼ l0 � c
2p

ln
b

a

) b ¼ a � exp 2pZ0
l0 � c
� �

:

For Z0 ¼ 100X; a ¼ 10�3 m follows b ¼ 10�3 � e10=6 m ¼
5:3mm.

Chapter 8

8:1 At atmospheric pressure the molecular number density
is N � 2.5 � 1025/m3. For a wavelength k = 500 nm
we get x ¼ 3:77� 1015s�1:

The electron mass is m = 9.1 � 10−31 kg.

x2
0�x2 ¼ 1� 0:3772

� �� 1032

¼ 0:86� 1032 � c � x

n ¼ 1þ 2:5� 1025 � 1:62 � 10�38

2 � 8:8� 10�12 � 9:1� 10�31 � 0:86� 1032

¼ 1þ 4:6� 10�4

The comparison with Table 8.1 shows that the experi-
mental value is n� 1ð Þex¼ 2:79� 10�4:

This means that by the comparison with Eq. 8.23 that
the oscillator strength for the strongest transition start-
ing from the ground state is f1 � 2.79/4.6 = 0.6. This
means that the molecules show on their ground state
absorption at k = 190 nm an absorptivity which cor-
responds to 60% of a classical oscillator (Fig. A.27).

8:2 For the angles ∠ir between incident and reflected
light beam and ∠ig between incident and refracted
beam we get

∠ir = 2a, ∠ig = 180° + ß – a (Fig. A.28)

) 2a ¼ 180� � aþ b;

) 3a ¼ 180� þ b;

) sin 3a ¼ sin 180� þ bð Þ ¼ � sin b

¼ � 1
n
sin a

) 1
n
¼ � sin 3a

sin a
¼ 4 sin3 a� 3 sin a

sin a
¼ 4 sin2 a� 3

) sin a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 1

n

� �
=4

s
:

y

D/2

x

d

90

Fig. A.27 Illustration to solution 7.11

Solutions of Problems 419

http://dx.doi.org/10.1007/978-3-030-02291-4_1
http://dx.doi.org/10.1007/978-3-030-02291-4_8
http://dx.doi.org/10.1007/978-3-030-02291-4_8
http://dx.doi.org/10.1007/978-3-030-02291-4_8


For n = 1.5 we get

sin a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:91666

p
� 0:957

) a ¼ 73:3�:

8:3 We assume that the incident wave propagates parallel
to the z-direction and its E-vector is parallel to the x-
direction. The scattered radiation is observed in the y-
direction (Fig. A.29). The atoms 5–8 are later excited
than the atoms 1–4. The phaseshift is

Du ¼ d

k
� 2p ¼ 1

3
� 2p ¼ 2

5
p:

The light emitted by the atoms 1, 2, 5 and 6 is detected
with a phase shift Du against the light detected from
the atoms 4, 3, 7, 8. If we set the phase of the light
scattered by the atoms 3 and 4 as u = 0, the wave
scattered by the atoms 1, 2, 7 and 8 the phase shift Du,
that emitted by the atoms 5 and 6 the phase shift 23Du.
The total amplitude of the scattered light is then

A ¼ A0 � eix t 2þ 4 � eiDu þ 2 � e2iDu� �
¼ A0 � ei x tþDuð Þ � 4þ 4 � e

iDu þ e�iDu

2

� �
¼ A0 � ei x tþDuð Þ 4þ 4 cos Duð Þ
) P ¼ P0 � 16 1þ cos Duð Þ2
¼ 16P0 � 4 cos4 Du=2ð Þ;

D/ ¼ 2p � l=kð Þ ¼ 2p � 100=500ð Þ ¼ 2=5ð Þp
! cos4 D/=2ð Þ ¼ 0:428 and P ¼ 27:4 � P0:

The 8 atoms at the corners of the cube therefore radiate
into the y-direction 27.4 times the radiation power of a
single atom!
Question: Why does this not violate the energy
conservation law?
With a total scattering cross section

rtot ¼ 10�30 m2 ¼ r0 �
Z
X

sin2 t dX

¼ r0

Zp
t¼0

Z2p
u¼0

sin2 t dt du ¼ p2

it follows: r0 = rtot/p
2 � 10−31 m2. (r0 is the cross

section for the scattering into the solid angle dX = 1
sterad around the y-direction (# = 90°). The scattered
power for the incident intensity Ii is

) P0 t ¼ 90�ð ÞdX ¼ Ie � r0dX
¼ 10�35 m2 � IedX:

8:4 If the E-vector of the incident wave lies in the plane of
incidence we get for the parallel component E the
continuity condition at the interface between the two
media

Aek cos a� Ark cos a ¼ Agk cos b.

The continuity of the parallel components of the
magnetic field Bk gives the condition (analog to (8.
59b)) for non-ferromagnetic media (l1 � l2 � 1)

1
c0
Aek þ 1

c01
Ark ¼ 1

c02
Agk

) Aek cos a� Ark cos a ¼ c02
c01

cos bAek þ c02
c01

cos bArk

) Ark
Aek

¼
cos a� c02

c01
cos b

cos a ¼ c02
c01
cos b

With c01=c
0
2 = n1/n2 we get

e

g

r

Fig. A.28 Illustration to solution 8.2

2 3

1 4

6 7

5 8

z

x
y

Fig. A.29 Illustration to solution 8.3
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Ark
Aek

¼ n2 cos a� n1 cos b
n2 cos a� n1 cos b

:

8:5 The Fresnel formulas for the amplitude coefficients of
the reflected wave at the boundary to a medium with
complex refractive index (Fig. A.30) are for the polar-
ization parallel and vertical to the incidence plane

.? ¼ cos a� n02 � i j
� �

cos b

cos aþ n02 � i j
� �

cos b
;

.k ¼
n02 � i j
� �

cos a� cos b

c n02 � ij
� �

os aþ cos b
:

With a = 0° ⟹ .? ¼ .k ¼ . , ß = 0°

. ¼ 1� n02 � i j
� �

1þ n02 � i j
� �

¼ 1� j2 þ i � 2j
1þ n02
� �2 þ j2

:

Numerical example: j = 2.94; n02 = 0.17

. ¼ 1� 8:64þ 5:88 � i
10

¼ �0:76þ 0:59 i,

R ¼ . � . ¼ 0:762 þ 0:592 ¼ 0:926:

For oblique incidence (a 6¼ 0) we have to determine the
refraction angle ß in order to calculate the refraction
coefficients. We have to extend Snellius’ refraction law
(8.58) to the refraction at the boundary air-absorbing
medium.
The tangential component kx of the wave vector k stays
constant at the boundary from air (n = 1) to medium 2
(n2 = n′ – i � j). It is

kg ¼ kgx; kgy; 0
� 

;

kg ¼ x
c

	 

n1 sin a; n2 cos b; 0f g

with n1 = 1 and n2 = n′ – i � j. With the relation

cos b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2 b

q
and

sin b ¼ n1
n2

sin a

we get

n2 cos b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n22 � sin2 a ¼ g � e�i c;

q
where we have expressed the complex quantity n2 �
cosß as g � e�i c ¼ g � cos c�i � sin cð Þ: With the com-
parison of real- and imaginary part we get after squaring

n02�j� sin2 a ¼ g2 cos 2c;

2n0j ¼ g2 sin2 c

) kg ¼ x
c
fsin a; g cos c� i g sin cð Þg:

ð1Þ

For the wave penetrating into the absorbing medium we
obtain:

e�i kg�r ¼ e �i x=cð Þ sin a�xð Þþ g cos c�y½ 
 � e � x=cð Þg sin c�y½ 
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Absorption

¼ e� a=2ð Þy � ei axþ byð Þ:

The surfaces of constant amplitude with y = const. are
the surfaces parallel to the interface, the surfaces of
constant phase are given by sin a � xþ g � cos c � y ¼
const: They depend on the angle a of incidence and for
a 6¼ 0 they do not coincide with the surfaces of equal
amplitude. The normal to the phase front point into the
direction of the vector

nT ¼ sin a � bxþ g cos c � by
They have the amountffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin2 aþ g2 cos2 c
q

¼ nT:

We define the refraction angle ßT by

sin bT ¼ sin affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 aþ g2 cos2 c

p
Now we can write Snellius’ refraction law as

sin a
sin bT

¼ nT
n1 ¼ nT

because n1 = 1. Instead of the angle ß for transparent
media we have to use the angle ßT for absorbing media.
Numerical example:
For the previous example with n2′ = 0.17; j2 = 2.94 we
obtain from (1)

y

kx
ky

k'y

k'x

x

1n1

i'nn2

Fig. A.30 Illustration to solution 8.5
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g2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n022 � j2 � sin2 a
� �2 þ 4n02j2

q
) g2 ¼ 2:42

) g ¼ 1:556;

sin 2c ¼ 2n0j
g2

¼ 0:413

) c ¼ 12:2� ) cos2 c ¼ 0:955:

For a = 45° this gives

sin bT ¼ 0:71ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:712 þ 2:42 � 0:955p

¼ 0:46

) bT ¼ 27:7�:

Replacing in the Fresnel formulas cosß ! cosßT =
0.885 we obtain

.? ¼ cos 45� � n02 � i j
� �

cos bT
cos 45� þ n02 � i j

� �
cos bT

¼ 0:71� 0:17 � 0:885þ i � 2:94 � 0:885
0:71þ 0:17 � 0:885� i � 2:94 � 0:885

¼ 0:56þ i � 2:6
0:86� i � 2:6

) R? ¼ 0:562 þ 2:62

0:86þ 2:62
¼ 7:07

7:5
) R? ¼ 0:943:

The corresponding calculations yield .k and Rk for a =
45° and a = 85°.

8:6 P(x) = P0 � e-ax.
The absorbed power is

DP ¼ P0 � PðxÞ ¼ P0 1� e�axð Þ:
For a = 10−3 cm−1, x = d = 3 cm is

DP � P0 � ad ¼ 3� 10�3P0:

Only 0.3% are absorbed.
The situation changes for a = 1 cm−1 and d = 3 cm

DP ¼ P0 1� e3�� � ¼ 0:95P0:

8.7

sin a ¼ R� d=2
Rþ d=2

	 sin ag ¼ n2
n1

) R� d

2
	 n2

n1
rþ d

2

� �

) R	 d

2
1þ n2=n1
1� n2=n1

¼ d

2
n2 þ n1
n2 � n1

:

For d = 10 lm, n1 = 1.6; n2 = 1.59 ⟹

R	 5� 10�6 � 3:1
0:01

m ¼ 1550 lm ¼ 1:5mm:

8:8 For x – x0 � c we get from (16) with

a1 ¼ Ne2

2e0m
; a2 ¼ a1

4p2c2
;

n� 1 � a1
x2

0 � x2
¼ a2

1=k20 � 1=k2

¼ a2k
2
0k

2

k2 � k20
¼ a2k

2
0 þ

a2k
4
0

a2k
2
0

¼ aþ b

k2 � k20
;

with a = a2 � k02 and b = a2 � k04.
8:9 (a) The extra-ordinary refractive index na (h) obeys the

equation for an ellipse

1
n2e hð Þ ¼

cos2 h
n20

þ sin2 h
n2a h ¼ 90�ð Þ : ð1Þ

Phase matching is achieved for n0(x) = ne(2x)

) 1
n2a h; 2xð Þ ¼

1
n20x

¼ 1� sin2

n20 2xð Þ þ sin2 h
n2a 2xð Þ

) sin2 hopt ¼ n0x½ 
�2� n0 2xð Þ½ 
�2

na 2xð Þ½ 
�2� n0 2xð Þ½ 
�2 :

ð2Þ

Inserting the numerical values yields

sin2 hopt ¼ 0:5424 ) hopt ¼ 47:4�:

(b) For h = 48.8° is according to (1) ne(48.80. 2x) =
1.674. The difference Dn = n0(x) – ne(h, 2x)

1n

2n

2/dR +

R

Fig. A.31 Illustration to solution 8.7
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decreases to 0.001 and the coherence length
becomes

Lkoh€arent ¼ k=2
na 2xð Þ � n0 xð Þj j ¼ 500k ¼ 250 lm:

(c) The output intensity I(2x, L) becomes for Dh = (2p/
k)Dn = 1.25 � 104 m−1

I 2x;Lð Þ ¼ 1024 � 2 � 3:52 � 1030 � 64� 10�24 � 2:52 � 10�8

1:6753 � 27� 1024 � 8:85� 10�12

¼ 1:5� 1011W/m2:

This is about 15% of the input intensity Ii of the
fundamental wave.

Chapter 9

9:1 We will show that an incident plane wave propagating
into the x-direction, is focused by a parabolic mirror
into the point F. This can be proved by showing that for
all rays of the wave the optical path lengths from the
plane x = f until the point F = {f, 0} are equal inde-
pendent of y.

s ¼ s1 þ s2

¼ f � xð Þþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ f � xð Þ2

q
¼ min

) ds
dx

¼ �1þ 2yy0 � 2 f � xð Þ
2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ f � xð Þ2

q ¼ 0

) yy0 � f � xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ f � xð Þ2

q

y0 � f � x

y
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f � x

y

� �2
s

Squaring gives

y02 � 2 f � xð Þ
y

y0 ¼ 1:

The solution of this equation is x

) y ¼
ffiffiffiffiffiffi
4fx

p
) y2 ¼ 4fx ) 2yy0 ¼ 4f :

9:2 (a) If a planemirror is turned by the angle d the angle of
incidence changes from a to a + d and the reflection
angle also changes from a to aþ dð Þ, The deflec-
tion angle of the reflected beam against the incident
beam is thereforeD = 2a + 2d, which is larger by 2d
against the mirror before its turning (Fig. A.32a).

(b) For the spherical mirror, however, there is no
change of the direction of the reflected beam,

when the mirror is turned around the center of
curvature (Fig. A.32b). If, however, the spherical
mirror is turned around the point where the light is
incident onto the mirror, the direction of the
reflected light beam is also turned by the angle 2d
exactly as for the plane mirror.

For a twofold reflection the total deflection is D = 360°
− 4a for the incidence angle a and D′ = 360° – 4(a+d) if
the mirror is turned by the angle d. Furthermore a beam
shift occurs (Fig. A.32c).

9:3 From Fig. 9.27 we can find

tan a ¼ G

a
¼ B

b
) G ¼ a

b
� B;

tan b ¼ G

f
¼ B

b� f
) a � B

b � f ¼ B

b� f

) ab ¼ af ¼ bf ;

f ¼ ab

aþ b
) 1

f
¼ 1

a
þ 1

b
:

9:4 The virtual images Bi of the point A which are gener-
ated by the reflection at the mirrors M1 and M2 are
located at the positions xi. We get

R

(a) (b)

M

(c)

M

M'

' '

'

'

Fig. A.32 Illustration to solution 9.2

Solutions of Problems 423

http://dx.doi.org/10.1007/978-3-030-02291-4_9
http://dx.doi.org/10.1007/978-3-030-02291-4_9


B1: x1 ¼ � d

2
� d

3
¼ � 5

6
d;

B2: x2 ¼ d

2
þ � 2

3
d ¼ 7

6
d;

B3: x3 ¼ d

2
þ d

2
þ d

6
d ¼ 11

6
d;

B4: x4 ¼ � 13
6
d:

9:5 From the relations

sin a
sin b

¼ n2;
sin c
sin b

¼ n2
n1

) sin c ¼ n2
n1

sin b ¼ 1
n1

sin a;

n1 ¼ 1:46; n2 ¼ 1:33;

h1 ¼ 4 cm; h2 ¼ 2 cm:

we get

(a) am ¼ 90�: at the upper interface total reflection
occurs.

) sin bm ¼ 1
n2

¼ 0:752 ) bm ¼ 48:76�

) sin cm ¼ 1
n1

¼ 0:685 ) cm ¼ 43:235�:

The radius R of the cylindrical glass container has
to be

R	 x1 þ x2 ¼ h1 � tan cm þ h2 � tan bm
4 cm � tan 43:23� þ 2 cm � tan 48:76�
6:04 cm:

(b) For R � 6.04 cm the maximum observable angle
can be obtained from

R ¼ x1 þ x2 ¼ h1 tan cþ h2 tan b

h1
sin c
cos b

þ h2
sin b
cos b

¼ h1
n1

sin affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1=n21 � sin a

p
þ h2

h1

sin affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1=n21 � sin a

p
¼ h1 � sin affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� n22=n
2
1 � sin a

p þ h2 � sin affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2 a

p :

d/2

x

d/3

A1B4B 2B 3B

y

Fig. A.33 Illustration to solution 9.4

More elegant is the solution based on Fermat’s
principle. For the light travel time T is

T2 ¼ x21 þ h21
n21 � c2

þ x22 þ h22
n22 � c2

¼ min:

With x2 = R – x1 it follows (Figs. A.33 and A.34):

dT2

dx1
¼ 2x1

c � n21
� 2 R� x1ð Þ

c � n22
¼ 0

x1 ¼ n21
n22

� R� x1ð Þ

) x1 ¼ R � 1

1þ n22=n
2
1

¼ R

1:83

) tan c ¼ x1
h1

¼ R

1:83h1
¼ 0:41

) c ¼ 22:3� ) sin c ¼ 0:38

) sin b ¼ n1
n2

sin c ¼ 0:417

) b ¼ 24:6�

) a ¼ 33:6�:

9:6 With the lens equation

1
a
þ 1

b
¼ 1

f

and the image scale B/A = b/a = 10 and a + b = 3 m it
follows

11a ¼ 3m ) a ¼ 3
11

m,

b ¼ 3� 3
11

� �
m =

30
11

m

) f ¼ a � b
aþ b

¼ 90
11 � 11 � 3 m ¼ 0:25m:

9:7 The incident beam is deflected downwards at the first
interface by the angle (a − ß), at the second interface by
the angle −(a − ß) upwards. The total deflection is
thenu ¼ a� bð Þ � a� bð Þ ¼ 0. This means that the
exit beam is parallel to the incident beam, but it is
shifted (Fig. A.35). The shift is

h2

h1

x1 x2

Fig. A.34 Illustration to solution 9.5
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D ¼ d

cos b
� sin a� bð Þ

dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2 b

p sin a cos b� cos a� sinbð Þ

¼ d � nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � sin2 a

p

sin a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2 a

n2

s
� 1
n
cos a sin a

0
@

1
A

¼ d � sin affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � sin2 a

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � sin2 a

p
� cos a

	 


¼ d � sin a 1� cos affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � sin2 a

p
� �

:

9:8 At first we regard a light beam in the x-y-plane, which
impinges onto the mirror under the angle a. Its total
deflection Du is with b ¼ 90� � a

Du ¼ 2bþ 2a ¼ 2 90� � að Þþ 2a ¼ 180�:

If the beam propagates inclined against the x-y-plane we
partition thewave vectork into a parallel component kjj ¼
kx; ky; 0
� 

and kjj ¼ 0; 0; kzf g. For kjj the consideration
above is valid. Since the two mirrors in the x-y plane are
perpendicular to each other the component kz is
transferred into –kz after two reflections. This means
that for any incidence angle a the wave vector k is
transferred into –k, whichmeans that the incident beam is
back-reflected into the incidence direction (Fig. A.36).

9:9 Generally the distance between the two lenses of a
telescope is chosen as d ¼ f1 þ f2, which causes parallel
light reaching the eye of the observer.
According to the intercept theorem is

D1=D2 ¼ f1=f2:

The diameter of the ocular lens has to be

D2 ¼ D1 � f2f1 ¼ 5 � 2
20

cm ¼ 0:5 cm

in order to transmit the whole incident beam. The
angular magnification of the telescope is

V ¼ f1
f2
¼ 10

(see Sect. 11.2.3).

9:10 (a) For the triangle MAP is the sine theorem

x2
R

¼ sin b
sin 90� þ bþ cð Þ ¼

sin b
sin a� bð Þ :

An intersection point exists only for x2 < R.

) sin b\ sin a� bð Þ
) sin b

n
\ sin a� bð Þ

) h

R
\n � sin a� bð Þ

) h\R � n � sin a� bð Þ
Using the relation

sin a� bð Þ ¼ sin a cos b� cos a sin b

h

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2 a

n2

s
� cos a sin a

n

this can be written as

h\R �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � 1þ cos að Þ2

q
:

(b) As can be seen from Fig. A.37a the total deflec-
tion angle is

d ¼ a� bþ 360� � 2bð Þþ a� b

¼ 360� þ 2a� 4b:

d

Δ

α

α
β

β

Fig. A.35 Illustration to solution 9.7

1D 2D

1L 1f 2f

d

Fig. A.36 Illustration to solution 9.9
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Measured against the backward direction the
deflection is

u ¼ d� 180� ¼ 180� þ 2a� 4b:

With sin a ¼ h=R and sin b ¼ h=Rð Þ=n we get

u� 180� þ 2 arcsin
h

R
� 4 arcsin

1
n
� h
R

� �
:

(c) The deflection angle becomes minimum for
du=dh ¼ 0.

du
dh

¼ 2
ffiffiffi
R

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2=R2

p � 4= n � Rð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2= n2R2ð Þp

¼ 0

hm ¼ R �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
3

4� n2ð Þ
r

) sin am ¼ h

R
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
3

4� n2ð Þ
r

(d) With n = 1.33 we get the numerical results

sin am ¼ 0:86238 ) am ¼ 59:6�;

sin bm ¼ sin am
n

¼ 0:6484 ) bm ¼ 40:4�

) u ¼ 180� þ 2a� 4b ¼ 137:6�:

After the second reflection the total deflection is

d ¼ 360� þ 2a� 6b;

This means t at the deflection against the backwards
direction is

u ¼ 180� þ 2a� 6b

¼ 180� þ 2 arcsin h=Rð Þ � 6 arcsin
1
n
� h
R

� �
:

For the minimum deflection is du/dh = 0. This gives
the relations

hm ¼ R �
ffiffiffi
1
8

r
9� n2
� �

) hm
R

¼ 0:951 ) um ¼ 128�:

9:11 (a) According to (9.25a) we obtain

f ¼ 1
n� 1

R1R2

R2 � R1

n 600 nmð Þ ¼ 1:485

The refractive index for k = 600 nm is n (600 nm) =
1.48

frot ¼ 1
0:485

� 200
10

cm ¼ 41:24 cm;

With the refractive index n (400 nm) = 1.50 the focal
length becomes

fblau ¼ 1
0:50

� 20 cm ¼ 40 cm:

(b) In order to compensate the chromatic aberration
a diverging lens with focal length f2 has to be
used, which can be calculated as follows:
According to (9.34d) the ratio of the focal lengths
f2 ng
� �

=f1 ng
� �

with

ng ¼ 1
2

nr þ nbð Þ ¼ 1:492

must be

f2
f1
¼ � n1g � 1

� �
n2b � n2rð Þ

n2g � 1
� �

n1b � n1rð Þ

¼ � 0:492 � n2b � n2rð Þ
n2g � 1
� � � 1:5� 1:485ð Þ

¼ � 32:8 � n2b � n2rð Þ
1=2 n2b � n2rð Þ � 1

:

Choosing n2b = 1.6 and n2r = 1.55 we obtain

f2
f1
¼ �2:85:

(a)
A

n = 1

M

R
n

x

(b)

h R

x

h

Fig. A.37 Illustration to solution 9.10
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The focal length of the diverging lens in the achromat
must therefore be

f2 ¼ �2:85f1 ¼ �2:85 � 40:62 cm
¼ �115:85 cm:

9:12 Since the distance D between the two lenses is smaller
than their focal lengths f1 and f2 the focal length of the
total system is obtained, according to (9.32) from the
relation

1
f
¼ 1

f1
þ 1

f2
� D

f1f2

¼ 1
10

þ 1
50

þ 5
500

� �
1
cm

¼ 55
500

1
cm

) f ¼ 9:1 cm:

9:13 We start from the imaging equation

1
g
þ 1

b
� 2

R
:

For the imaging by the spherical mirror S1 we get
(Fig. A.38a)

g1 ¼ S1A ¼ x ¼ 6 cm, R1 ¼ 24 cm

) b1 ¼ g1R1

2g1 � R1
¼ 2 � 6 � 24

12� 24
cm ¼ �24 cm:

The imaging is divergent because A is located between
mirror S1 and focal point F1. A virtual image B* is
generated on the left side of S1 at the distance x =
−24 cm from S1.

For the imaging by S2 we get

g2 ¼ � d � xð Þ ¼ 54 cm,

R2 ¼ �40 cm

) b2 ¼ 54 � 40 cm
�2 � 54þ 40

¼ �31 cm

) x b2ð Þ ¼ 60� 31ð Þ cm ¼ 29 cm:

B2 can be again imaged by S1 into B3. We get

b3 ¼ g3R1

2g3 � R1
with g3 ¼ 29cm

) b3 ¼ 20cm:

This is identical with the center M2 of the spherical
mirror S2. Therefore B3 is imaged by S2 into itself, by S1
intoB2, etc. There are therefore two real images and one
virtual image.

9:14 The matrix of the system is

eM ¼ eB7 � eT76 � eB6 � eT65 � eB5 � eT54 � eT4 � eT43

eB3 � eT32 � eB2 � eT21 � eB1:

eB1 ¼
1 � 1:6116� 1

1:628

0 1

0
B@

1
CA; eB2 ¼

1 � 1� 1:6116
�27:57

0 1

0
B@

1
CA

The translation matrices are

eT21 ¼
1 0

0:357
1:6116

1

 !
; eT32 ¼ 1 0

0:189
1 1

� �

etc. The product matrix, which can be best calculated
with a computer program, is

eM ¼ 0:848 �0:198
1:338 0:867

� �
:

With the approximation of thin lenses we get according
to (9.45a) M12 = −1/f which gives f = 5.06 cm.

Chapter 10

10:1 We start from (10.5)

Dsþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� dÞ2 þ y2 þ z20

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� dÞ2 þ y2 þ z20

q
:

Squaring and cancelling gives

4xd � Ds2 ¼ 2Ds
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� dÞ2 þ y2 þ z20

q
:

If we again square this equation and rearrange the
terms we get

x2ð16d2 � 4Ds2Þ ¼ 4Ds2ðd2 þ y2 þ z20 � Ds2Þ

) x2

a2
� y2

b2
¼ 1

cm24R1 = cm40R2 =

*B1 2B2M 1M1F 2F 2S

1S 3B
A

Fig. A.38 Illustration to solution 9.13

Solutions of Problems 427

http://dx.doi.org/10.1007/978-3-030-02291-4_9
http://dx.doi.org/10.1007/978-3-030-02291-4_9
http://dx.doi.org/10.1007/978-3-030-02291-4_10
http://dx.doi.org/10.1007/978-3-030-02291-4_10


With

a2 ¼ d2 þ z20 � Ds2

ð2d=Ds2Þ � 1
;

b2 ¼ d2 þ z20 � Ds2:

The distance between the vertices of the two
hyperbolas is

Dxs ¼ 2a:

For z0 � d we get

Ds ¼ z0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðxþ dÞ2

z20
þ y2

z20

s2
4

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðxþ dÞ2

z20
þ y2

z20

s 3
5

) Ds � z0
2xd

z20

� �
¼ 2xd

z0
¼ m � k:

and we obtain the distances between the two vertices

DxS ¼ 2a ¼ z0
d
� m � k:

10:2 The optical path difference between the two arms of
the Michelson interferometer is

Ds ¼ Ds1�Ds2

with

Ds1 ¼ d1
cos a

þ Dx
cos a

;

and

Dx ¼ d1 � ðy1 þ y2Þ;
y1 ¼ d1 tan a; y2 ¼ d1 � ðy1 þ y2Þ tan a

) y2 ¼ d1 � tan að1� tan aÞ
1þ tan a

) Dx ¼ d1 � 1� tan aÞ
1þ tan a

) Ds1 ¼ 2d1
cos a

1
1þ tan a

¼ 2d1
cos aþ sin a

:

In the same way we get

Ds2 ¼ 2d2
cos a

1
1þ tan a

¼ 2d2
cos aþ sin a

:

Note, that the beam splitter in inclined by 45°. This
implies Dx ¼ Dy for d1 ¼ d2 (Fig. A.39).

The path difference between the two partial beams
which are inclined by the angle a against the
symmetry axis is then

Ds ¼ 2
d1 � d2

cos aþ sin a
:

For Ds ¼ m � k bright rings are observed in the
observation plane, which change their radius R when
the path difference d1 � d2 varies. For a given value of
the integer m we get

cos aþ sin a ¼ d1 � d2
m � k=2

10:3 The light beam which is reflected at the mirror M1

inclined by the angle 2d against the symmetry axis
impinges onto the observation plane under the same
angle 2d against the normal of the plane (Fig. A.40).
It is still a plane wave.
The phase difference between the wave with d = 0 and
the inclined wave is

/ðxÞ ¼ 2p � x
k
� sin 2d:

The fringe separation Dx of the interference pattern
occurs for D/ ¼ 2p. We therefore get

45°

Dx

1y

2y

1d

2d

Fig. A.39 Illustration to solution 10.2

(a)

(b)

x

2

2

phase surfaces

2

2

Fig. A.40 Illustration to solution 10.3
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Dx ¼ k
sin 2d

:

10:4 What is the reflectivity of a dielectric coating for a plane
wavewhich reaches the layer perpendicular (a= 0) for a
coating with
(a) nHd ¼ k=4;
(b) nHd ¼ k=2;
(c) a coating consisting of two alternate layers with

high refractive index nh and low refractive index nl
and nHd ¼ k=4�H and nLd ¼ k=4�Lwith nH ¼
1:8 and nL ¼ 1:3 on a substrate with ns ¼ 1:5?
Discuss the different effects of k/4 and k/2 layers.
For which value of nh is the reflectivity in case
(a) completely suppressed?
Solution (from Dr. E. Welsh, University Jena)
Analytical solution for the case of a k/4-layer (two
interfaces AH and HS (Fig. A.41). For vertical
incidence there is no polarization dependence.
Approach:

E0 ¼ A0e
ik0z þAre

ik0z; k0 ¼ 2p
k

in ð1Þ

EH ¼ A1e
ikHz þA2e

�ikHz; kH ¼ 2p
k
nH in ð2Þ

ES ¼ Ate
ikSz kS ¼ 2p

k
nS in ð3Þ

For A0 ¼ 1 all coefficients are normalized to the
incident intensity. The reflectivity is then R = Ar

2. The
other 4 unknown amplitudes can be calculated when
the continuity of the amplitudes at the two interfaces is
observed (Fig. A.42).

The boundary condition at z ¼ 0 demands:

E0 z ¼ 0ð Þ ¼ EHðz ¼ 0Þ
) 1þAr ¼ A1 þA2;

ð4Þ

d
dz

E0ðz ¼ 0Þ ¼ d
dz

Enðz ¼ 0Þ
) 1� Ar ¼ nHðA1 � A2Þ:

ð5Þ

The boundary condition at z ¼ k= 4nHð Þ demands

EH z ¼ k=4nHð Þ ¼ Etðz ¼ k=4nHÞ
) iA1 � iA2 ¼ Ate

iðp=2ÞðnS=nHÞ;
ð6Þ

d
dz

EHðz ¼ k=4nHÞ ¼ d
dz

Etðz ¼ k=4nHÞ
) �nHðA1 þA2Þ ¼ inSe

iðp=2ÞðnS=nHÞAt:

ð7Þ

The Eqs. (1)–(4) leads with the abbreviation

d ¼ ei
p
2
nS
nH

to the system of equations

�Ar þA1 þA2 þ 0 ¼ 1

�Ar þ nHA1 � nHA2 þ 0 ¼ 1

0þA1 � A2 þ idAt ¼ 0

0þ nHA1 þ nHA2 þ inSdAt ¼ 0

ð8Þ

The coefficient determinant is

Dj j ¼ id

�1 1 1 0
1 nH �nH 0
0 1 �1 0
0 nH nH nS

��������

��������
: ð9Þ

The solution gives for Ar

Ar ¼ DRj j
Dj j ¼ nS � n2H

nS þ n2H
ð10Þ

and the reflectivity

R ¼ A2
r ¼

nS � n2H
nS þ n2H

� �2

: ð11Þ

Numerical values:
ns = 1.5; nh = 1.8; ! Ar

2 = 0.13:
Discussion:
Because nH [ nS a phase jump of p occurs for the
reflection at the interface at z ¼ 0 and the phase
difference between the partial waves reflected at z ¼ 0
and z ¼ k=4nH becomes Du = p. For nH\nS an
additional phase jump of p at z ¼ k=4nH occurs. In

AH HS

(1) (2) (3)

z0

1n0

0A

rA
1A

2A

tA

SnHn

Hn4

Fig. A.41 Illustration to solution 10.4

AH

(2) (3) z(4)

0

HL LS
1n0 =

0A

rA
1A

2A

Hn

3A

4A

Ln

tA

Sn

Hn4)/(λ )n/1n/1(4/ LH +λ

(1)

Fig. A.42 Illustration to solution 10.4
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this case destructive interference between the two
reflected waves at z ¼ 0 and z ¼ k=4nH appears. For
n2H � n0nS ¼ 0 the reflected amplitude Ar becomes
zero. In this case the refractive index of the layer must
be nH ¼ ffiffiffiffiffiffiffi

1:5
p � 1:22 instead of 1.8.

(c) The analytical solution for the case of two layers
with nh and nl (Fig. A.43) has to regard 3 interfaces AH,
HL and LS.
The ansatz for the electric field amplitudes is

E0 ¼ A0e
ik0z þAre

�ik0z;

EH ¼ A1e
ikHz þA2e

�ikHz;

EL ¼ A3e
ikLz þA4e

�ikLz;

ES ¼ Aze
�kSz:

ð12Þ

The same boundary conditions as in (a) for the three
interfaces at z=0; z=k/(4nh) and z=k/(4 � (1/nh + 1/ns))
lead to a 6 � 6 system of linear equations with a
solution that can be obtained analogous to (1). The
reflected amplitude is

Ar ¼
nS � nL

nL

� �2

nS � nL
nH

� �2 : ð13Þ

and the reflectivity becomes

A2
r ¼

nS � nL
nL

� �2

nS � nL
nH

� �2

0
BBB@

1
CCCA

2

: ð14Þ

The numerical value is A2
r � 0:23.

Since the phase jump of p only occurs at the interfaces
AH and LS the k/4-components Du ¼ p=2 cause
constructive interference. If several HL-layers are laid
on top of each other the reflected amplitude can be
substantially enhanced. One obtains quantitatively

A2
r ¼

nS � nL
nH

� �2k

nS � nL
nH

� �2k

0
BBB@

1
CCCA

2

: ð15Þ

For nL ¼ nS the third interface disappears and the
reflectivity becomes

Ar ¼ nS � 1
nS þ 1

; A2
r ¼

nS � 1
nS þ 1

� �2

: ð16Þ

Numerical value: R = 0.04.

10:5 For vertical incidence (a = 0) the path difference
between two edge rays is for the diffraction angle h

Ds ¼ b � sinh:
For inclined incidence with a = a0 the path difference
becomes

Ds ¼ b � sinh� sina0ð Þ ¼ D2 � D1:

Instead of sin h the expression sinh�sina0 has to be
inserted into Eq. (10.45). The central diffraction
maximum appears at h0 ¼ a0.
The ±1 diffraction maximum appears at the angle h
defined by the equation

b

k
ðsin h� sin a0Þ ¼ �1

) sin h1:2 ¼ � k
b
þ sin a0:

The angular width of the central maximum is

Dh ¼ h1 � h2

¼ arcsin sin a0 þ k
b

� �

� arcsin sin a0 þ k
b

� �
:

Example: a ¼ 30�k=b ¼ 0:2

) Dh ¼ 44:4� � 17:6� � 26:8;

For a0 = 00 is Dh0 = 25.6°.

1,00

0,75

0,50

0,25

0,00
0 2 4 6 8 10

2
RA

5,1nS =
3,1nL =
8,1nH =

Fig. A.43 Illustration to solution 10.4

0 1

2

b

Fig. A.44 Illustration to solution 10.5
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10:6 (a) From the grating equation

d � sinaþ sinbð Þ ¼ m � k
we get for m = 1 and a ¼ 30�.
The diffraction angle is on the opposite side of the
incidence angle a. The angle between diffracted
beam and incident beam is Du ¼ a� b ¼ 31:5�:
For m = 2 is

sinbð2Þ ¼ 2
k
b
� sin a ¼ 0:96� 0:5 ¼ 0:46

The second order diffraction appears at the angle ß2 =
14.35°.

(b) the blaze angle is

h ¼ aþ b
2

¼ 30� 1:3
2

¼ 14:35�:

(c) The angular difference Db between the first and
the second diffraction order can be obtained from

sinb1 � sinb2 ¼
k1 � k2

d
¼ �10�9 m

�10�6 m

(d) The lateral distance between the centers of the
two slit images b k1ð Þ and b k2ð Þ is

Db ¼ f � Db ¼ 1mm:

for a grating with area 10 � 10 cm is the diffraction
limited basis width

Db ¼ 2 � k
d
� f

¼ 2 � 4:8� 10�7 m
10�2 m

� 1m ¼ 9:6� 10�5 m

� 0:1mm:

The width of the entrance slit should be no larger than
0:9mm.

10:7 According to (10.9) the phase difference between the
partial waves reflected at the interfaces air-oil and
oil-water including the phase jump is

Du ¼ 2p
k0

Ds� p:

For constructive interference the phase difference has
to be Du ¼ 2m � p. The path difference is then

) Ds ¼ 2mþ 1
2

k0:

Since Ds ¼ 2d �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2�sin2a

p
we get for k ¼ 500 nm

(green)

d ¼ Dsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � sin2 a

p ¼ ðmþ 1=2Þk0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � sin2 a

p :

For m = 0, i.e. a ¼ 45� is the numerical value

d ¼ 2:5� 10�7 mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:62 � 0:5

p ¼ 1:74� 10�7 m

¼ 0:174 lm:

10:8 The distance between the tilted planes with the wedge
angle e is (Figs. A.44 and A.45)

d xð Þ ¼ x � tan e:
For a sufficiently small angle ewe can neglect the small
inclination angle of the light reflected at the lower
surface. The thickness of the glass plates is assumed to
be large compared to that of the airwedge and also larger
than the coherence length of the incident light. This
implies that the glass plates do not act as interferometers
and do not cause additional interferences.
Constructive interference between the light reflected at
the upper and the lower interface of the air wedge
appears w if the phase difference is

Du ¼ 2p
k0

Ds� p ¼ 2m � p

(Note the phase jump for the reflection by the lower
edge of the wedge).
With Ds ¼ 2d xð Þ ¼ 2x � tane we get

2x � tane ¼ mþ 1
2

� �
k:

With the distance Dx between the interference stripes
we get with 2Dxtane ¼ k for m = 1.

) tan e ¼ k
2Dx

¼ 5:89� 10�7

2 � 1
12 � 10�2

¼ 3:5� 10�4

) e ¼ 0:02�

10:9 With the amplitude A0 of the light transmitted
by the smaller slit with width b the transmitted
intensity is

1 2

d(x) x

Fig. A.45 Illustration to solution 10.8
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I0 ¼ c � e0A2
0

The intensity transmitted by the larger slit with the
twofold width 2b is 2I0, the amplitude is thereforeffiffiffi
2

p
A0. The total amplitude at the point P (Fig. A.46)

is therefore

I ¼ c � e0 � A0 þ
ffiffiffi
2

p
A0 � eiDu

��� ���2;
where

Du ¼ 2p
k

� Ds ¼ 2p
k
d � sin h

is the phase difference between the two partial waves
and d is the distance between the two slits. This gives
the total intensity

I ¼ I0 � 1þ
ffiffiffi
2

p
eiDu

	 

1þ

ffiffiffi
2

p
e�iDu

	 
h i
¼ I0 � 3þ 2 �

ffiffiffi
2

p
cos Du

	 

) Imax ¼ 5:83 I0

Imin ¼ 0:172 I0:

10:10 The first zero of the function sin2 x=x2 appears at
x ¼ p, the second at x ¼ 2p.
The first maximum is found by setting the first
derivative equal to zero.

0 ¼ d
dx

sin2 x
x2

� �
¼ 2

x cos x
x2

� sin x
x2

� �
) x � cos x ¼ sin x ) x ¼ tan x
) x ¼ 4:4934 ¼ 1:43p:

The relative deviation from the value 1.5p between
the two maxima is therefore

D ¼ 1:5� 1:43
1:5

¼ 4:67%:

10:11 The angular width between the two basis points �h1
of the central diffraction maximum is, according to
(10.46), with sinh1 ¼ � 1:2 � k=D and h1\\1

Dh ¼ 2:4 � k=D:

(a) The mean distance to the moon is
r ¼ 3:8� 108 m. The diameter of the central
diffraction maximum on the moon is then

d ¼ r � Dh ¼ 3:8� 108 � 2:4 � 6� 10�7

1
m

¼ 5:47� 102 m:

(b) The retro-reflector with area A on the moon
receives the fraction

e1 ¼ A

pðd=2Þ2 ¼
0:25

p � 2:72 � 10�4 � 10�6

of the emitted intensity. The radiation reflected by the
reflector has the diffraction angle

Dh2 ¼ k
0:5m

¼ 1:2� 10�6:

This reflected light covers on the earth surface an area

A2 ¼ ðr � 1:2� 10�6Þ2 ¼ ð3:8 � 1:2� 102Þ2 m2:

The telescope receives the fraction

e2 ¼ pðD=2Þ2
A2

¼ 3:8� 10�6:

of this reflected light intensity.
(c) Without retroreflector about 30% of the total inten-

sity received by the moon, would be backscattered
into the solid angle X ¼ 2p. The telescope would
receive the fraction

e3 ¼ pðD=2Þ2
2p � r ¼ D2

8r2
¼ 1

8 � 3:82 � 1016

¼ 8:6� 10�19

of this back-scattered light. The retroreflector therefore
increases the intensity received by the telescope by the
factor

e1 � e2
0:3 � e3 ¼

3:8� 10�12

0:3 � 8:6� 10�19
¼ 1:5� 107!

10:12 (a) The refractive index n1 of the antireflection
coating may be larger or smaller than the index
n2 of the substrate. If it is larger, the incident
wave suffers a phase jump at the first interface
air-coating, but not at the second one
coating-substrate. For destructive interference of

2b b

s

Fig. A.46 Illustration to solution 10.9
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0A 1A 2A

1n

2n

Luftn

Fig. A.47 Illustration to solution 10.12b

60° 60°

Fig. A.48 Illustration to solution 10.13

the waves reflected by the two interfaces the
layer thickness must be

d ¼ m � k0=ð2n1Þ
If n1 is smaller than n2 the wave reflected at the
interface coating-substrate suffers a phase jump of p.
The anti-refection coating must now have a thickness of

d ¼ 2mþ 1
4

k0
n1

The total amplitude of the reflected wave is

A ¼ ffiffiffiffiffi
R1

p
A0 � ð1� R1Þ

ffiffiffiffiffi
R2

p
A0 þð1� R1Þ

� R2
ffiffiffiffiffi
R1

p
A0 � ð1� R1ÞR3=2

2 R1A0 � � � �
¼ A0

ffiffiffiffiffi
R1

p � ð1� R1Þ
ffiffiffiffiffi
R2

p ð1þ ffiffiffiffiffiffiffiffiffiffi
R1R2

p Þ
þ R1R2 þðR1R2Þ3=2 þ � � �

¼ A0
ffiffiffiffiffi
R1

p � ð1� R1Þ
ffiffiffiffiffi
R2

p � 1

1� ffiffiffiffiffiffiffiffiffiffi
R1R2

p
� �

¼ A0

ffiffiffiffiffi
R1

p � ffiffiffiffiffi
R2

p
1� ffiffiffiffiffiffiffiffiffiffi

R1R2
p

� �
:

The amplitude becomes minimum for
ffiffiffiffiffi
R1

p ¼ ffiffiffiffiffi
R2

p
.

This implies

n1 � nLuft
n1 þ nLuft

¼ n2 � n1
n2 þ n1

) n21 ¼ nLuftn2:

The above considerations show that

d ¼ k=4þm � k=2 m ¼ 0; 1; 2; . . .ð Þ

(b) (Fig. A.47) One has the solve the equationffiffiffiffiffi
R1

p
A0 � ð1� R1Þ

ffiffiffiffiffi
R2

p
A0 � ð1� R1Þ

ffiffiffiffiffi
R1

p
A0 ¼ 0

for n1. This represents an equation of third order,
which can be best solved with a computer program.
The result is for nLuft ¼ 1 and n2 ¼ 1:5

n1 ¼ 1:22473198. . .;

which deviates from the experimental value only by
0:001%.

10:13 If the hexagon is supplemented by an equilateral
triangle (Fig. A.48) with the apex angle c ¼ 60�, the
situation in Sect. 9.4 is copied. There it was shown
that the total deflection of the incident beam is

d ¼ ða1 � b1Þþ ða2 � b2Þ
The minimum deflection dmin is obtained for

a1 ¼ a2 ¼ a and b1 ¼ b2 ¼ b

c ¼ 2b ! dmin ¼ 2a� c

From Snellius rule sina=sinb ¼ n )

sin
dmin þ c

2

� �
¼ n � sin b ¼ n � sinðc� 2Þ

)
ffiffiffi
3

p
� sin dmin

2

� �
þ cos

dmin

2

� �
¼ n ¼ 1:31

) dmin ¼ 22�:

10:14 The scattering cross section is

rs ¼ a
x4

ðx2
0 � x2Þ2 þx2c2

dr
dx

¼ 0 ¼ a �
4x2 ðx2

0 � x2Þ2 þx2c2
h i

N2

8<
:

� x4 �4xðx2
0 � x2Þþ 2c2x

� �
N2

�
) ðx2

0 � x2Þ2 þx2c2 þx2ðx2
0 � x2Þ

� 1
2
c2x2 ¼ 0

) xm ¼ x2
0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2
0 � c2=2

p ¼ x0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2=2x2

0

p :
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Chapter 11

11:1 The imaging equation is

1
a
þ 1

b
¼ 1

f
:

Since here is a � b we can approximate f � b ¼ 2m.
The diameter of the sun image is

d ¼ b

a
� D ¼ 2

1:5� 1011
� 1:5� 109 m

¼ 2:10�2 m ¼ 2 cm:

With the naked eye the sun appears under the angle

e0
D

r
¼ 1:5� 109

1:5� 1011
¼ 10�2 rad � 0:5�

if the sun image generated by the lens is observed at
the distinct visual range s0 ¼ 25 cm the visual angle is

e ¼ 2
25

¼ 8� 10�2 rad:

The angular magnification is therefore V = 8. The
lateral reduction is

V ¼ b

a
¼ 2

1:5� 1011
¼ 1:3� 10�11:

11:2 The magnification of the visual angle is according to
(11.45)

VL ¼ s0
f

1þ f � g

g

� �
¼ 25

2
1þ 0:5

1:5

� �
¼ 16:7:

From

1
f
¼ 1

g
þ 1

b

follows

b ¼ g � f
g� f

¼ 3
0:5

cm ¼ �6 cm:

From Fig. 11.8 one can see, that the virtual image of
the letter G is with B=G ¼ �b=g

B ¼ �G � b
g
¼ 0:5

6
1:5

mm ¼ 2mm

The lateral magnification is therefore fourfold.

11:3 Different from the derivation of Eq. (9.26) the
derivation of (11.2) demands the consideration of the
three different refractive indices n1, n2 and n3. Equa-
tion (9.23a) then becomes

n1
g1

þ nL
b1

¼ nL � n1
R1

;

and (9.23b) changes to

� nL
b1 � d

þ n2
b2

¼ n2 � nL
R2

:

After addition according to (9.24a) and the approxi-
mation (9.24b) for thin lenses one obtains

n1
g

þ n2
b
¼ nL � n1

R1
� nL � n2

R2
¼def X: ðÞ

For g ¼ 1 is b ¼ f2 and we get

n1
f2

¼ nL � n1
R1

� nL � n2
R2

¼ X:

In a similar way one finds

n1
f1

¼ X:

These two equations can be rearranged into

n1 ¼ f1 � X and n2 ¼ f2 � X:
If this is inserted into Eq. (*) one obtains after dividing
by X

f1
g
þ f2

b
¼ 1:

11:4 According to (11.8b) is

dmin ¼ 1:22
k
D
\e ¼ 1:500 ¼ 7:2� 10�6rad

) D[
1:22 � k

e
¼ 0:084m ¼ 8:4 cm:

The diameter of the pupil is at night about 5 mm. The
eye has its maximum sensitivity at k ¼ 500 nm

) emin ¼ 1:22 � k
D

¼ 1:22� 10�4rad ¼ 2500:

11:5 The diameter of Jupiter is 71,398 km. The radius of its
orbit around the sun is r = 5.2 AU (astronomical
units). At its closest approach to earth its distance to
earth is

Dr ¼ ð5:2� 1ÞAE ¼ 4:2AE ¼ 6:3� 1011 m:

For the naked eye its diameter appears under the angle

e0 ¼ 7:14� 107

6:3� 1011
¼ 1:13� 10�4rad ¼ 2300
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This angle is large compared to the random variations
De � 100 caused by air turbulences. The image of
Jupiter therefore does not fluctuate like the twinkling
stars. The same is true for Venus and Mars.

11:6 The angle under which the diameter of a tennis ball is
observed by the satellite, is

e ¼ d

r
� 10�1

4:55
rad ¼ 2:5� 10�7rad ¼ 0:0500

The mirror of the telescope should have a diameter

D ¼ 1:22 � k
e

¼ 1:22 � 4� 10�7

2:5� 10�7
� 2m

Because of the air turbulence which limits the angular
resolution to about 1’’ the smallest dimension on earth
which can be resolved by the satellite is about 2 m.
With special techniques of image processing this limit
can be improved by about a factor of 4. This allows
the resolution of 50 cm with a telescope with 1 m
diameter on board of the satellite.

dmin ¼ Dx
r

¼ 1
104

¼ 10�4rad

) D ¼ 1:22k
dmin

¼ 1:22 � 0:01
10�4

m

¼ 1:22� 102 m ¼ 122m!

This cannot be reached with a single antenna but is
realized with an array of antennas, which have
distances of about 100 m.

11:8 The magnification of the microscope must be 50
times.

e0 ¼ D0

s0
¼ 2� 10�5

0:25
¼ 8� 10�5:

The objective lens brings the angular magnification

e1
e0

¼ V1 ¼ 10 ) e1 ¼ 8� 10�4:

With e1 ¼ D0=g is follows

g ¼ D0

e0
¼ 2:10�5

8:10�4
m ¼ 2:5� 10�2 m ¼ 2:5 cm:

We choose the focal length f1 ¼ 2 cm

) b ¼ gf1
g� f1

¼ 2:5 � 2
0:5

cm ¼ 10 cm:

The total magnification of the microscope is

VM ¼ b � s0
gf2

) f2 ¼ b � s0
g � VM

¼ 10:25
2:5 � 50 cm ¼ 2 cm:

11:9 We start with the grating equation

d � sinaþ sinbð Þ ¼ m � k:
For m ¼ 1 one gets for the difference of the diffraction
angles ß1 and ß2 the condition

sinb1 � sinb2 ¼
k1
d
� k2

d
:

The distance between the two slit images is

DxB ¼ f2 � k1
d
� k2

d

� �

¼ 3
10�6

501� 500ð Þ � 10�9 m

¼ 3� 10�3 m ¼ 1mm:

The angular width between the two zeros on both
sides of the central diffraction maximum is

Da ¼ 2k
D

) Dx ¼ f2 � 2kD :

With D ¼ 10 cm we get

Dx ¼ 2:5� 10�7 � 3
0:1

¼ 3� 10�5 m ¼ 30 lm:

For the slit width b the total with of the slit image
becomes

Dxtot ¼ bþ 30 lm� 1mm:

Therefore b has to be smaller than 0.97 mm in order to
achieve the complete resolution of the two spectral
lines.

11:10 The free spectral range of the Fabry-Perot Interfer-
ometer (FPI) is according to (10.28)
With n = 1 (air spaced FPI) and d = 1 cm we get

dm ¼ 1:5� 1010s�1 ¼ 15GHz:

Expressed in wavelengths this becomes

dk ¼ � k2

c
dm ¼ � k2

2nd
:

For k ¼ 500 nm is

dk ¼ � 25� 10�14

2� 10�2
¼ 12:5� 10�2 m ¼ 12:5 pm:
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The finesse is

F ¼ p � ffiffiffi
R

p

1� R
¼ p � ffiffiffiffiffiffiffiffiffi

0:98
p

0:02
¼ 155:

If the FPI plates are ideals planes and the alignment is
perfect the spectral resolving power is

k
Dk

����
���� ¼ m

Dv

��� ��� ¼ Dsm
k

¼ F � 2d
k

¼ 155 � 2� 10�2

5� 10�7
¼ 6:2� 106

This means that two wavelengths with a separation

Dk ¼ k
6:2� 106

¼ 5� 10�7

6:2� 106
m

¼ 8� 10�14 m ¼ 0:08 pm

can be still resolved.
Measured in frequencies m we get

Dm ¼ dv=F ¼ 15GHz
155

Note: Here we have used a finesse F* = 155 and the
relation
Dm = dm/F* between spectral width Dm of a spectral
line and the free spectral range dm of the FPI.
(b) The free spectral range of the FPI in units of the

wavelength is

dk ¼ 12:5 pm ¼ 0:0125 nm:

The lateral distance of the slit images of two spectral
lines in a spectrograph with the focal length f2 with
this wavelength separation dk is

Dx ¼ f2 � dndk dk[ b

⟹ The focal length has to be at least

) f [
b

dn=dk � dk ¼ 10�5

5� 105 � 12:5� 10�12
m

¼ 1:6m

Chapter 12

12:1 (a) The distance between lens and focal plane can be
obtained from the lens equation

1
a
þ 1

b
¼ 1

f
) b ¼ a � f

a� f
¼ 100� 10

90
mm ¼ 11:1mm:

The focus diameter d2 is according to geometrical
optics given by

d2 ¼ b

a
� d1 ¼ 11:1

100
� 0:01mm ¼ 1:1 lm:

Taking into account diffraction the distance between
the two zeros on both sides of the central diffraction
maximum is for a lens diameter D and parallel
incident light

d2 ¼ 2:4ðk=DÞ � f ¼ 2:4 � ð600� 10�6=5Þ � 10mm

¼ 2:88� 10�3 mm ¼ 2:88 lm:

For a point like source the diffraction limited image is
already larger than the geometrical image for an
aperture diameter of 10 lm.
The actual image in the focal plane is the convolution of
the geometrical image and the diffraction intensity
distribution.
(b) According to geometrical optics the Rayleigh length

Dz is the distance between the focal plane at z = 0
and the plane z = Dz where the diameter of the
divergent beam has enlarged by √2.

Using the intercept theorem is (Fig. A.49)

D=2� d2
b

¼ ð ffiffiffi
2

p � 1Þd2
Dz

) Dz ¼ b � d2ð
ffiffiffi
2

p � 1Þ
D=2� d2

� 0:414b � d2
D=2

� 0:414:11; 1:1; 1:10�3

2:5
mm ¼ 2 lm:

The exact calculation using Gauss-profiles for the
light beam gives

Dz ¼ p � d22=k ¼ p � 1:12 � 10�6=6� 10�4 mm ¼ 2 lm;

which is identical to the result of geometrical optics.
The numerical values illustrate that the focus depth of
confocal microscopy is about 1 lm.

12:2 (a) The angular range 2Dh between the two zeros at
both sides of the central maximum is for a mirror
diameter D

2D# ¼ 2 � 1:2k=D ¼ 2:4 � 5� 10�7=5

¼ 2:4� 10�7 rad ¼̂0:05100:

b

2d2D

2D

2dz

2d2

Fig. A.49 Illustration to solution 12.1
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The diameter d for a focal length f is then

d ¼ f � 2D# ¼ 2:4� 10�7 � 10m¼̂2:4� 10�6 m

¼ 2:4 lm:

(b) We regard a ray in Fig. A.50 which starts from
the focus F and hist the mirror at P(x, y) where it
is reflected. For the ideal parabolic mirror all
reflected rays should be parallel. For the
deformed mirror the direction ða� bÞ of the
reflected ray depends on the point P(x, y). It is

y2 ¼ 4f ex ) dy
dx

¼ f � effiffiffiffiffiffiffi
f ex

p ) dy
dx

¼
ffiffiffiffiffiffiffiffiffi
x=f e

p
:

The slope of the normal to the mirror surface in the
point P(x, y) is obtained from

� tan a ¼ dx
dy

¼
ffiffiffiffiffiffiffiffiffi
x=f e

p
) tan a ¼ � y

2f e
:

From Fig. A.50 we see that

tan c ¼ y

f � x
:

The slope of the reflected beam is � tanða� bÞ. With
the relation

tanða� bÞ ¼ tan a� tan b
1þ tan a � tan b

;

c ¼ �ðaþ bÞ ) b ¼ �ðaþ cÞ;
tan b ¼ � tan aþ tan c

1� tan a � tan c

) tanða� bÞ ¼ 2 tan aþ tan cð1� tan2 aÞ
1� 2 tan a � tan c� tan2 a

:

we obtain

tan b ¼ � tan aþ tan c
1� tan a � tan c

) tan a� bð Þ ¼ 2 tan aþ tan c 1� tan2 að Þ
1� 2 tan a � tan c� tan2 c

Inserting tan a and tan c yields

tanða� bÞ ¼ f � yðe� 1Þ
f 2eþ 3xf e� xf þ x2

:

For e ¼ 1 is ða� bÞ ¼ 0, i.e. the reflected beam is
always parallel to the symmetry axis. For e[ 1 the
maximum deviation from the parallel direction (a − ß)
= 0 is reached for x = D/2, i.e. at the edge of the
mirror, where

x ¼ y2

4f e
¼ D2

16f � e :

Inserting into the relation for tan ða� bÞ gives

tan ða� bÞmax ¼
ðf=DÞðe� 1Þ

ðf=DÞ2eþ 3e� 1
16e

þ D2

162f 2e2

:

For e ¼ 1:01 and f ¼ 4D ) we get

tanða� bÞmax ¼
0:04

16:16þ 2:03
16:16

þ 1
163

� 0:0025

The maximum inclination angle of the reflected ray is

D a� bð Þ ¼ 0:0025 rad ¼ 0:150:

For e ¼ 1:001 (0.1% deviation from the ideal
parabolic mirror)

) tanða� bÞmax �
0:004
16:02

¼ 2:5� 10�4

) ða� bÞmax ¼ 5300!

Even such a small deformation of the parabolic mirror
would deteriorate the angular resolution of the mirror
about 50 times more than the air turbulence (seeing).

12:3 We have discussed in Sect. 9.7 that the difference

. ¼ fw � fs � aðn0 � 1Þ � tan f

between real and apparent zenith distance f is deter-
mined experimentally as

. � 58:200 � tan f

The relative density fluctuation dn=n of the
atmosphere causes a smear

x

y

P

f

F

normal )x(fy

Fig. A.50 Illustration to solution 12.2
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d. ¼ dn
n
� a � ðn0 � 1Þ tan f ¼ dn

n
� 58:200 tan f

¼ 3� 10�2 � 58:200 tan f ¼ 3:000:

12:4 The central diffraction maximum at a groove width of
b ¼ 2 lm lies in the angular range

�k
b

� sin a� þ k
b
) sin aj j � k

b
¼ 0:25

) aj j � 14:48�:

The interference maxima appear according to (12.33)
at the angles a determined by

sin a ¼ 2b
d
ðn� 1Þ � ðm2 � m1Þ � 2kd :

Possible angles ai with aij j � 14:48� are

(1) m2 � m1 ¼ 0: ) sin a0 ¼ 0:2 ) a0 ¼ 11:5�

(2) m2 � m1 ¼ 1: ) sin a1 ¼ �0:05 ) a1 ¼ �2:87�:

For m2 � m1 ¼ �2: ) sin a2 ¼ �0:3 ) a2 ¼ �17:4�.
This is already outside the central diffraction maximum
and therefore only a very small intensity is found for this
interference maximum. The same is true for all other
interference orders.

(b) For an incidence angle ae 6¼ 0 the condition for the
zero at both sides of the central diffraction maximum
is with a0 ¼ ae

bðsin ae � sin aÞ ¼ �k:

this gives with sin ae ¼ 0:5:

sin a ¼ 0:25 or0:75

) 14:48� � a� 48:6�:

The condition (12.33) is now

ðn� 1Þb� d

2
ðsin a� sin aeÞ ¼ ðm2 � m1Þk

) sin a ¼ 2b
d
ðn� 1Þ � 2k

d
ðm2 � m1Þþ sin ae:

This gives for m2 � m1 ¼ 0:

sin a0 ¼ 2
4
� 0:4þ 0:5 ¼ 0:7 ) a0 ¼ 44:4�

and for m2 � m1 ¼ þ 1

sin a1 ¼ 0:45 ) a1 ¼ 26:7�:

All other interference orders lie outside the central
diffraction maximum

12:5 (a) The depth of the grooves for k ¼ 600 nm can be
obtained from the condition

ðn� 1Þ � h ¼ k=2 ) h ¼ ð0:3=0:5Þ lm ¼ 0:6 lm:

The radii of the rings are

rm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m � s0 � k

p
:

The focal length is f ¼ s0 ¼ r21=k ¼ 10mn

) r1 ¼
ffiffiffiffiffiffiffiffi
f � k

p
¼ 7:7� 10�5 m ¼ 77 lm:

The maximum radius of the outermost ring is
rm ¼ d=2 ¼ 10�2 m ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m � f � kp ¼ 77
ffiffiffiffi
m

p
lm

) m ¼ r2m=ðf � kÞ ¼
10�4

10�2 � 6� 10�7
¼ 1667:

(b) The focal length of a refractive biconvex lens with
radii of curvature R1 ¼ R2 ¼ R is

f ¼ 1
n� 1

R

2
:

The diameter D is for a given radius of curvature
R maximum for a sphere, where Dmax ¼ 2R.

) f ¼ 1
n� 1

� Dmax

4
) Dmax ¼ 4ðn� 1Þ � f :

For n ¼ 1:5 ) Dmax ¼ 2f .

The aberrations of such a lens are very large. For a
plane-convex half-sphere is Dmax ¼ f .

(c) A Fresnel zone plate can be produced in the fol-
lowing way (Fig. A.51): A plane wave is super-
imposed with a spherical wave. At the distance s0
from the center of the spherical wave a photo-plate
is positioned. The interference pattern in the plane
of the photo-plate corresponds to the Fresnel-zone
arrangement. The photo-plate is developed and then

photographic plate

spherical
mirror

Fig. A.51 Illustration to solution 12.5
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1 2z

x

x

Fig. A.52 Illustration to solution 12.6

circular ring grooves are produced by chemical
etching techniques.

12:6 If two plane waves propagating in the x-z-plane
impinge onto the x-y-plane under the angles �a
against the normal to the plane (Fig. A.52) the path
difference Ds ¼ s1 � s2 between the two waves on the
line x ¼ 0 (i.e. in the y-direction) is zero.
Along the x-direction the path length s1 changes
by Ds1 ¼ þDx, for s2 by Ds2 ¼ �Dx � sin a )
Ds ¼ 2Dx � sin a ). The path difference between the
two waves is then.
Interference maxima appear in the x-direction for
Ds ¼ m � k. The distance between the lines x = const
of maximum intensity is therefore

Dx ¼ k
2 � sin a

:

Example: In order to achieve a distance Dx ¼ 1 lm
under illumination with k ¼ 500 nm, we get sin a ¼
0:5=2 ¼ 0:25 sein, ) a ¼ 14:5�.

12:7 (a) The spatial distribution of the electric field
amplitude in the plane of the 5 light sources is

Eðx; yÞ ¼ E0 � ½dðxÞdðyÞþ dðx� x0ÞdðyÞ
þ dðxþ x0ÞdðyÞþ dðxÞdðy� y0Þ
þ dðxÞdðyþ y0Þ
:

The amplitude distribution in the diffraction plane is

Eðx0; y0Þ ¼ A �
ZZ

Eðx; yÞe�2piðvxxþ vyyÞdxdy

¼ AE0 1þ e�2pivxx0 þ e2pivxx0 þ e�2pivyy0 þ e2pivyy0
� �

¼ AE0½1þ 2 cosð2p vxx0Þþ 2 cosð2p vyy0Þ

¼ 2AE0½cos2ðp vxx0Þþ cos2ðp vyy0Þ � 3=2
:

this corresponds to an amplitude cross-grid with
maxima along the perpendicular lines x = const and

y = const., superimposed by a constant background,
which would disappear if the amplitude of the source at
(0, 0) is four times as large as that of the other sources.
The periods in the diffraction plane are vx ¼ 2=x0 and

vy ¼ 2=y0. Since vx ¼ x0
kf and vy ¼ y0

kf the spatial

separation between the lines of maximum intensity is
Dx0 ¼ k � fvx ¼ 2k � f=x0 and Dy0 ¼ 2kf=y0.

(b) If the sources at (x0, 0) and (−x0, 0) are extinguished,
the term cos2ðp vx; x0Þ becomes zero and therefore
the stripes parallel to the y-direction disappear. It
remains a pattern of stripes parallel to the x-direction.

(c) If the source at (0, 0) is extinguished, the constant
background disappears. Now one gets a pattern with
the half distance Dx0 ¼ kf=x0;Dy0 ¼ kf=y0 between
the stripes.

12:8 We regard a grating with grooves (width b and dis-
tance d) parallel to the y-axis. The field amplitude in
the plane of the grating is then

E ¼ E0 for mdþ b� x�ðmþ 1Þd
¼ 0 for md\x\mdþ b:

This can be written as the product

Eðx; yÞ ¼ E0 rect
x

b

	 


XN
m¼1

dðx� m � dÞ ¼ E1  E2;

where the rectangle function rectðx=bÞ ¼ 1 for
0� x=b� 1 describes the constant field amplitude
within the slit width b. The field amplitude in the
diffraction plane is given by the Fourier-transform of
Eðx; yÞ which can be written as the convolution of the
one-dimensional functions E1(x) and E2(y) (see
Sect. 10.8).
Since the slits extend in y-direction from −∞ to +∞
there is no interference structure in the y-direction.
The Fourier-transform of the rectangle function gives
in the focal plane of the lens with focal length f

F 1ðvxÞ ¼ sinðpbvxÞ
p vx

with vx ¼ x0

k � z �
a
k

for z = f, while the Fourier-transform of the delta
function is

Fðdðx� mdÞÞ ¼ e�2pmdvx

Finally we get the field amplitude in the observation
plane

Eðx0; y0Þ ¼ E0 � dðvyÞ sinðpbvxÞpvx

XN
m¼1

e�i2pmdvx

¼ E0 � dðvyÞb sinðpbvxÞp bvx

� e�ipdvxðNþ 1Þ sinðpNdvxÞ
sinðpdvxÞ :
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The intensity distribution of the Fraunhofer diffraction
pattern is then

Iðx0; y0Þ / Eðx0; y0Þj j2

¼ E2
0 � dðvyÞb2 �

sin2ðpbvxÞ
ðpbvxÞ2

sin2ðpNdvxÞ
sin2ðpdvxÞ

;

This had been already derived in Sect. 10.8 in another
way.
For b = d/2 we can rewrite this with sin 2x = 2sin x � cos
x as

Iðx0; y0Þ ¼ I0 � dðvyÞb2 sin
2ðpNbvxÞ cos2ðpNbvyÞ
ðpbvxÞ2 cos2ðpbvxÞ

:

The corresponding intensity distribution is shown in
Fig. 10.42.

12:9 The minimum acceptable difference Dn of the
refractive indices is according to (12.49)

Dn ¼ n2 � n1 [
m2

sk
2

4a2ðn2 þ nÞ

) n\ n22 �
msk
2a

� �2
" #1=2

:

(a) ðaÞms ¼ 1: ) n\ 4� 0:6
4

� �2
" #1=2

¼ 1:994 ) Dn	 0:006:

The parameter h, p and q are determined from the
relations

h ¼ 2p
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n22 � n2

q
	 2p

0:6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 1:9942

p
lm�1

¼ 1:621 lm�1:

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n22k

2 � b2
q
) b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n22k

2 � h2
q

� k � n ¼ 20:88 lm�1

) cos # ¼ b
n2k

	 0:997 ) #� 4:44�:

this mode can only propagate through the fiber, if the
angle of the k-vector against the z-axis is below 4.44°.
Its penetration depth h into the surrounding medium
must be calculated from the coefficients p and q and is
for n1 ¼ n3 ¼ n and p = q according to (12.45)

p ¼ h2=d ¼ 1:6212

2
lm�1 ¼ 1:3 lm�1:

The amplitude of the guided wave has decayed in the
surrounding medium for a penetration depth of 0.76
lm to 1/e of its value in the core of the fiber.

(b) ms ¼ 2 :) n� 4� 1:2
4

� �2
 !1=2

¼ 1:227 ) Dn	 0:023;

h	 3:17 lm�1 ) #� 8:7�,

p	 3:172

2
lm�1 ¼ 5:02 lm�1. The penetration

depth into the surrounding is now only 0.2 lm.

(c) ms ¼ 3 :) n� 4� 1:8
4

� �2
" #1=2

¼ 1:949 )

Dn	 0:0051; h	 k �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n22 � n2

p
	 4:70 lm�1;

q ¼ p	 11:0 lm�1;#� 13�:

Penetration depth = 0.09 lm.

12:10 The frequency width of the pulse is with
Dv � Dt ¼ 1 ) Dv ¼ 1012 s�1

with k ¼ c=v ) Dkj j ¼ c=v2Dv ¼ ðk2=cÞ � Dv
) Dk ¼ 1:32 � 10�12=ð3� 108Þ � 1012 m

¼ 5:6� 10�9 m ¼ 5:6 nm:

Dt ¼ L

c
� Dn ¼ L

c
� dn
dk

� Dk

) L ¼ c � Dt
dn
dk

� Dk
¼ 3� 108 � 10�12

2� 10�6 � 5:6 m ¼ 26:8m:

After L = 26.8 m the width of the pulse has increased
to 2 ps.

12:11 The light path through the gradient fiber is r(z) where
the z-axis is the symmetry axis of the fiber.
The differentiation dr/ds in (12.60) changes to dr/
dz and the index gradient is rn ¼ ðdn=drÞ � êr (êr is
the unit vector in the radial direction) because n does
not depend on z.
From (12.60) it follows:

d
ds

n � dr
ds

� �
! nðrÞ � d

2r

dz2
êr ) d2r

dz2
¼ 1

nðrÞ �
dn
dr

:

12:12 The maximum angle a0 appears when the light beam
passes through the symmetry axis.

From rðzÞ ¼ a � sin
ffiffiffiffiffiffi
2D

p

a
� z

 !
)

dr
dz

¼
ffiffiffiffiffiffi
2D

p
� cos

ffiffiffiffiffiffi
2D

p

a
� z

 !
:

For r ¼ 0 is

ffiffiffiffiffiffiffiffiffi
2Da

p

a
� z ¼ n � p

) zðr ¼ 0Þ ¼ n � a � pffiffiffiffiffiffi
2D

p

) dr
dz

����
r¼0

¼
ffiffiffiffiffiffi
2D

p
� cosðn � pÞ ¼

ffiffiffiffiffiffi
2D

p
¼ tan a0:
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Values of the Physical Fundamental Constantsa

Astronomical Constants

Quantity Symbol Value Unit Relative uncertainty in 10−6

Speed of light in vacuum c 29,9792,458 m s−1 exact

Gravitation constant G 6.6730 � 10−11 m3 kg−1 s−2 22

Planck constant h 6.62607015 � 10−34 J s exact

Reduced Planck constant ħ 1.054571817… � 10−34 J s exact

Molar gas constant R 8.314462618 J mol−1 K−1 exact

Avogadro constant NA 6.02214076 � 1023 mol−1 exact

Lohschmidt constant (T = 273.15 K, p = 100 kPa) NL 2.6516467 � 1025 m−3 0.57

Boltzmann constant R/NA k 1.380649 � 10−23 J K−1 exact

Molar volume
(T = 273.15 K, p = 101,325 Pa)

VM 22.41396454 � 10−3 m3 mol−1 exact

(T = 273.15 K, p = 100 kPa) 2271095464 � 10−3 m3 mol−1 exact

Elementary charge e 1.602176634 � 10−19 As ¼Def C 0.0003

Electron mass me 9.1093837015 � 10−31 kg 0.0003

Proton mass mp 1.67262192369 � 10−27 kg 0.0003

Magnetic constant ml0 1.256637062 � 10−6 V s A−1 m−1 0.00015

Electric constant 1/(l0c
2) e 8.8541878128… � 10−12 A s V−1 m−1 0.00015

Fine structure constant l0ce
2/2h a 7.2973525693 � 10−3 – 0.00015

Rydberg constant meca
2/2h Ry∞ 1.0973731568160 � 107 m−1 0.0000019

Bohr radius a/(4pRy∞) a0 5.29177210903 � 10−11 m 0.00015

Proton–Electron mass ratio mp/me 1836.15267343 – 0.00006

Electron charge-to-mass quotient −e/me −1.75882001076 � 1011 C kg−1 0.0003

Proton charge-to-mass quotient +e/mp +9.57882001560 � 107 C kg−1 0.00031

Atomic mass unit 1
12m(

12C) AMU 1.66053906660 � 10−27 kg 0.0003

Conversion factor
1 eV = 1.60217653 � 10−19 J
1 eV/hc = 8065.541 cm−1

1 Hartree = 27.2113845 eV
1 Hartree/hc = 2.194746313 � 105 cm−1

aCODATA, international recommended values (NIST 2018)

Mass of Earth ME = 5.9736 � 1024 kg

Mass of Moon MM = 7.35 � 1022 kg ≙ 0.0123 ME

Mass of sun M0 = 1.989 � 1030kg ≙ 3.33 � 105ME

Radius of sun 6.96 � 108 m

Distance earth-moon

Minimum (Perihel) 3.564 � 108 m

Maximum (Aphel) 4.067 � 108 m

Mean distance earth-sun 1.496 � 1011 m

1AU = astronomical unit 1.49597870700 � 1011 m

Solutions of Problems 441



Useful Conversion Factors

The Greek Alphabet

Lengths

1 Å 1 Ångström ≙ 10−10 m ≙ 100 pm

1 f 1 Fermi ≙ 10−15 m ≙ 1 fm

1 AE 1 Astronomical unit AU ≙ 1.49598 � 1011 m

1 ly 1 light year ≙ 9.46 � 1015 m

1 pc 1 Parsec ≙ 3.09 � 1016 m

Time

1 Year = 3.156 � 107 s

1 Day = 8.64 � 104 s

Energy

1 eV 1.60218 � 10—19 J

1 kWh 3.6 � 106 J

1 kcal 4.1868 kJ

1 kcal/mol 4.34 � 10−2 eV pro Molekül

1 kJ/mol 1.04 � 10−2 eV pro Molekül

From E = mc2 is follows: 1 kg � c2 = 8,98755 � 1016 J
With k = 1,380658 � 10—23 J K—1 follows for 1 eV ≙ k � T bei
T = 11604 K
With h � m = E follows for the frequency m of electromagnetic radiation
m ¼ E=h ¼ 2.418 � 1014 Hz eV—1

Angles

1 rad 57.2958°

1° 0.0174 rad

1′ 2.9 � 10−4 rad

1ʺ 4.8 � 10−6 rad

Mathematical constants

p 3.141592653589

e 2.718281828459

ln2 0.693147180559ffiffiffi
2

p
1.414213562373ffiffiffi

3
p

1.732050807568

Approximation formulas for xj j � 1

ð1� xÞn � 1� nx cos x � 1� x2=2ffiffiffiffiffiffiffiffiffiffiffi
1� x

p � 1� 1
2 x ex � 1þ x

sin x � x lnð1þ xÞ � x

Letters Name Letters Names

A, a Alpha N, v Ny

B, b Beta N; n Xi

C, c Gamma O, o Omikron

D, d Delta P, p Pi

E, e Epsilon P, . Rho

Z, f Zeta
P

, r Sigma

H, g Eta T, s Tau

H, # Theta � , t Ypsilon

I, i Jota /, u Phi

K, j Kappa X, v Chi

K, k Lambda W, w Psi

M, l My X, x Omega
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Index

A
Abbe’s sin-theorem, 341
Abbe’s sinus condition, 272
Abbe’s theorem, 342
Abbe number, 265
Absorption and dispersion, 212
Absorption coefficient, 213, 214
Accommodation, 331
Accumulators, 68
AC-current circuit, 144
AC-generator, 120, 139
Achromat, 264
Active optics, 356
Adaptive optics, 340, 357
Airy formula, 297
Alternating Current (AC), 140
Ampere-meter, 57
Amperes, 43
Ampere’s law, 84
Amplitude reflection coefficient, 227
Angular magnification, 334
Anisotropic media, 231
Antenna, 169
Anti-Helmhotz coils, 89
Anti-proton, 1
Anti-reflection coating, 302
Aperiodic limiting case, 164
Aplanatic, 272
Aplanatic imaging, 271, 272
Arc discharge, 64
Aspherical lens, 267
Astigmatism, 269, 270
Asynchronous machines, 140
Atmosphere

deflection of light rays, 277
light scattering, 323
optics of, 277

Atomic magnetic moments, 103
Atomic polarizability, 23
Aureole around the moon, 326
Axial magnetic field, 93

B
Babinet’s theorem, 316
Ball lightnings, 35
Barlow’s wheel, 96
Batteries, 69

BCS-theory, 51
Beer’s law of absorption, 213
Biaxial crystal, 234
Bio-physical structure of the eye, 331
Biot-Savart law, 85, 132, 173
Birefringence, 231, 234
Birefringent polarizers, 237
Blaze angle, 309
Blocking filter, 149
Blue color of the sky, 323
Boundary conditions, 220
Bremsstrahlung of X-rays, 178
Brewster angle, 225
Bridge rectifying circuit, 156

C
Capacitance, 18
Capacitive coupling, 167
Capacitors, 18
Capacitors in parallel, 20
Capacitors in series, 20
Cascade circuit, 157
Cassegrain- telescope, 339
Charge density, 100
Charge distributions, 5
Chemical bond, 4
Chiral molecules, 241
Christiaan Huygens, 312
Chromatic aberration, 264
Circuit with capacitance, 145
Circular aperture, 316
Circular current loop, 88
Circular polarization, 186, 236
Circular polarizer, 239
Clark Maxwell, 129
Coaxial cable, 12, 202
Coefficient of self-induction, 124
Cogwheel method by Fizeau, 192
Coherence length, 286
Coherence surface, 286
Coherence time, 285
Coherence volume, 286
Coherent light sources, 287
Coherent scattering, 320
Collector, 136
Collisional ionization, 62
Coma, 268
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Commercial microwave guides, 201
Commutator, 136
Complementary diffraction areas, 317
Complex refractive index, 212
Complex resistor, 144, 146
Compound motor, 139
Concave, 258
Concave mirror, 252
Conduction, 58
Conductivity

relof electrolytes, 59
of semiconductors, 52

Conductors, 44
Cones, 331
Confocal microscopy, 343, 353
Contact potential, 33, 72
Continuity equation, 45, 130
Contour map, 10
Convex, 258
Cooper-pairs, 51
Cornea, 331
Coulomb, 2
Coulomb potential, 16
Coulomb’s law, 1, 2
Coupled oscillation circuits, 166
Coupling between adjacent waveguides, 375
Critical angle of total reflection, 225
Cumulus cloud, 34
Current, 142

density of, 43
source of, 66
technical direction of, 45

Curved surface
refraction at, 257

D
Damped electromagnetic oscillation, 163
Damped oscillation, 165

limiting cases of, 164
Damped oscillator

classical model of, 209
DC-machines, 137
Debye, 31
Debye-length, 59
Delta connection, 143
Dichroitic crystals, 237
Dichroitic polarization, 237
Dielectric constant, 3, 28
Dielectric displacement density, 25
Dielectric mirror, 300
Dielectric multilayer mirror, 301
Dielectric polarization, 22
Dielectrics, 22
Dielectric stripe conductors, 375
Differential interferometer, 240
Diffracting edge, 315
Diffraction, 304, 305

by a slit, 305
general treatment of, 313
gratings, 307
limited angular resolving power, 340
maxima of mth-order, 308
of integral, 313

Diffractive optical elements, 372
Diffractive optics, 369

Difraction pattern
grating, 367

Digital hologram, 364
Diode, 155
Diopter, 262
Dipole-dipole interaction, 31, 33
Dipole emission, 176
Dipole moment, 13
Dispersion curves, 346
Dispersion relations, 213
Displacement current, 129
Double exposure hologram, 364
Drift velocity, 45, 46
Drum armature, 136
Dry batteries, 69
Dynamo-electric principle, 137

E
Eddy current, 123
Effective, 141
Effelsberg, 255
Electrical energy, 163
Electric conductivity, 46, 218
Electric dipole, 13
Electric field of

earth, 34
moving charge, 97, 98

Electric field strength, 5
of sunlight, 243

Electric flux, 7
Electric generator, 135
Electric multipoles, 12
Electric potential, 9
Electric power, 53
Electric quadrupole, 15
Electric resistance, 45
Electro-chemical series, 67
Electrodynamic potentials, 131
Electrolytes, 58
Electrolytic effects, 57
Electromagnetic catapult, 122
Electromagnetic field, 96, 101

of the oscillating dipole, 171
transformation of, 101

Electromagnetic frequency spectrum, 204
Electromagnetic oscillating circuit, 163
Electromagnetic oscillations, 163
Electro-magnetic plane waves, 184
Electromagnetic spectrum, 204
Electromagnetic wave

interface between two media, 220
magnetic field of, 186
phase and group velocities of, 198
polarization of, 185

Electromagnetic waves in matter
energy of, 219
wave equation of, 216

Electrometer, 18
Electron and ion-optics, 93
Electron pair, 51
Electron tubes, 157
Electron volt, 9
Electrostatic air filter, 35
Electrostatic charging, 37
Electrostatic copier, 36

444 Index



Electrostatic energy, 22
Electrostatic field, 5

energy of, 21
Electrostatic field in matter, 24
Electrostatic potential, 8
Electrostatic unit, 3
Elementary charge, 1
Elliptically polarized, 236
Elliptical mirror, 251
Elliptical polarized waves, 186
Emitted power, 176
Emitted radiation

frequency spectrum of, 177
Energetic efficiency, 137
Energy density, 27
Energy of lightning, 35
Energy storage, 128
Entrance pupil, 344
Equipotential surface, 10
Ernst Abbe, 272
Excess, 300
Exit pupil, 344
External eye, 331
Extraordinary beam, 235
Extraordinary refractive index, 234
Extraordinary waves, 234
Eye ball, 331
Eye-lens, 331

F
Fabrication of micro-lenses, 373
Fabry-Perot interferometer, 297, 298
Faraday, 18, 119
Faraday constant, 59
Faraday’s law of induction, 119
Far field range, 175
Farsighted eye, 333
Fermat’s principle, 250
Fiber attenuation, 379
Field energy in dielectrics, 27
Field lines, 6
Fluorescence microscopy, 354
Fluorescent tubes, 125
f-number, 345
Focus depth, 335
Force

of gravitation, 1
on moving charges, 90
onto a magnetic dipole, 103

Forced oscillation, 165
Formation of images, 342
Forms of lenses, 259
Foucault

rotating mirror of, 192
Fourier-Imaging Component

lens as, 365
Fourier-optics, 365
Fourier representation, 317

fraunhofer diffraction, 318
Fourier-transformation, 317

at point like source, 366
4p imaging method, 344
4p-microscopy, 343
Fovea, 331
Fraunhofer diffraction, 310

Free spectral range, 299
Frequency Filters, 148
Fresnel approximation, 314
Fresnel diffraction, 310
Fresnel equation, 223
Fresnel-Kirchhoff diffraction integral, 314
Fresnel lens, 313, 371
Fresnel’s mirror arrangement, 288
Fresnel’s zone plate, 313
Fresnel zones, 310
Frustrated total reflection, 226
Fuel cell, 71
Full Width at Half Maximum (FWHM), 177
Fundamentals of charges, 28

G
Gabor, Denis, 359
Galilei, 337
Galvanic cell, 66
Galvanometers, 56
Ganglion cells, 332
Gas discharge, 44, 61
Gauge condition, 85, 132
Gauss’s theorem, 45
General case, 145
General case of a series ac-circuit, 145
Generation of polarized light, 236
Geometrical optics

basic axioms of, 250
matrix method of, 273

Glan-Thompson prism, 238
Glory, 326
Glory phenomena, 326
Glow discharges, 64
Gradient index fiber, 378
Grating monochromator, 345
Grating spectrograph, 345
Group velocity dispersion, 381
Guard ring, 7

H
Hall effect, 95
Hall probe, 96
Hall-voltage, 95
Halo phenomena, 325
Hans Lippershey, 256, 337
Hauptschluss-machine, 138
Heaviside layer, 203
Helmholtz coils, 89
Hertzian dipole, 169, 209

electric field lines of, 175
magnetic field lines of, 175
vector potential of, 172

Higher harmonics
generation of, 246
spectrum of, 246

High frequency pass, 147
High pass filter, 368
High temperature superconductors, 51
Hollow sphere, 11
Hologram

of chess-board, 361
recording of, 360

Holographic interferogram, 364
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Holographic interferometry, 363
Holographic storage, 365
Holography, 359

applications of, 364
Homogeneous field, 7
Hot wire ampere-meter, 56
Hubble telescope, 340
Human eye, 331

I
Idle power, 141
Ignition device, 126
Image field curvature, 270, 271
Image ratio, 334
Imaging by a plane mirror, 251
Imaging matrix, 275
Impedance, 146
Impedance converter, 170
Impedance matching, 154
Incoherent scattering, 320
Index ellipsoid, 233
Induced dipoles, 22
Induction voltage, 119
Inductive coupling, 168
Influence, 17
Inspection of surface, 303
Integrated optical elements, 376
Integrated optics, 373
Intensity I, 188

of sun radiation, 188
Interference, 285
Interference field, 285
Interference rings, 290
Interferometer

applications of, 302
finesse of, 299

Interferometric controlled machine, 303
Interferometry in astronomy, 358
Internal resistance, 65
Ionization

by collisions, 60
Ions in electric field, 29
Iris, 331
Isomeric form, 241
Isosceles prism, 256

J
Jones matrix, 277
Jones vector, 275
Joule, 53
Junction rule, 54

K
Kepler- telescope, 338
Kirchhoff’s rules, 54
KIystrons, 169

L
Laplace equation, 10
Lattice points, 49
Laws for reflection, 221
Lecher-line, 201

Left-circular polarized, 186
Lens

transformation matrix of, 274
Lens aberration, 263
Lens equation, 259
Lens systems

matrices of, 275
Lenz’s rule, 122
Light

astronomical refraction of, 278
modulation of, 375

Light beam, 249
Light mill, 190
Lightnings, 34
Light perception of our eyes, 334
Light rays, 249

geometrical construction of, 257
Light scattering, 319, 320
Linearly polarized, 236
Linearly polarized plane wave, 185
Linear network, 147
Linear polarized waves, 185
Lithium-ion-accumulator, 69
Lithography, 372
Littrow gratings, 310
Loop rule, 54
Lorentz force, 91
Low frequency pass, 148
Low pass filter, 367
Low-pass space frequency

pinhole, 368
Luminosity of optical Instruments, 344

M
Mach-Zehnder interferometer, 295
Macroscopic polarization, 32
Magnetic dipoles, 102
Magnetic energy, 163
Magnetic field

energy of, 128
origin of the, 100

Magnetic field strength, 82
Magnetic flux, 83, 131
Magnetic flux density, 82
Magnetic induction constant, 84
Magnetic levitation, 122
Magnetic monopoles, 83
Magnetic poles, 81
Magnetic rotating field, 144
Magnetic south pole, 81
Magnetic vector potential, 131
Magnifying glass, 335
Magnifying optical instruments, 334
Mass resolution, 95
Matter in magnetic field, 102
Maxwell’s equation, 131, 174
Measurement of distance, 302
Meißner-circuit, 168
Meta materials, 230

realization of, 230
Michelson, A., 292
Michelson interferometer, 290
Michelson-Morley experiment, 292, 294
Micro-optics, 369
Microscope, 336
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resolving power of, 341
Microwave guides, 204
Mie-scattering, 322
Millikan experiment, 28
Mirror isomers, 241
Mirror telescope, 338, 339
Mobility, 46, 52
Mobility of the electron, 172
Molecular dipole moments, 30
Molecule H2O, 30
Morgana, 279
Motor, 135
Moving coil instrument, 56, 103
Multiphase, 142
Multiple beam interference, 287, 296
Multipole expansion, 13, 15
Mutual induction, 127

N
Nabla operator, 16
Near field range, 175
Negative refractive index, 229
Negative temperature coefficient, 52
Nicol prism, 237
Nonlinear optics, 243
Non-periodical plane wave, 184
Non-polar molecules, 30
Normal dispersion, 215
Numerical aperture, 342

O
Ohm’s law, 45, 47
Ole Roemer, 191
One-way rectification, 155
Open oscillating circuit, 169
Optical activity, 240
Optical axis, 231
Optical communication, 382
Optical fiber, 376

absorption, 379
cross section, 377
propagation of light, 377

Optical filtering, 367
Optical frequency doubling, 243
Optical frequency mixing, 245
Optical glass fiber bundle, 384
Optical illusion, 279
Optical imaging, 250
Optical near field microscopy, 343, 355
Optical pattern recognition, 369
Optical pulse propagation in fibers, 380
Optical uniaxial crystals, 233
Optical waveguides, 373
Ordinary beam, 235
Oscillator-strength, 214
Overdamped case, 164
Oxide ceramics, 51

P
Parabolic mirror, 254
Parallel conductors, 92
Paraxial approximation, 282
Pb-accumulators, 69

Peltier-effect, 74
Periodic waves, 184
Permanent magnets, 81
Permeability constant, 101
Permittivity constant, 101
Phase jump, 296
Phase matching, 244
Phase method, 193
Phase shift at the reflection, 227
Phase velocity, 213
Phase velocity of light, 198
Phasor diagrams, 144
Phonons, 49
Photo-ionization, 60
Photonic crystals, 230
Pin-cushion distortion, 271
Pin hole camera, 251
Planar wave guide, 373
Plane current loop, 88
Plane mirror, 251
Plane of incidence, 221
Plane-parallel plate, 290
Plasma frequency, 218
Plate capacitor, 7
Pointing vector, 189, 236
Poisson equation, 10, 86, 132
Polarimeter, 242
Polarimetry, 242
Polarizability, 217
Polarization, 23
Polarization beam splitter, 238
Polarization charges, 23
Polarization plane

rotation of, 239
Polarization turners, 239
Polar molecules, 30
Positive column, 64
Potential equation, 10
Potential of a dipole, 14
Potentiometer, 49, 55
Principal diffraction maxima, 308
Principal maxima, 308
Principal planes, 260
Principal points, 261
Prism, 255
Prism spectrograph, 345, 346

Q
Quadrupole moment, 16
Quadrupole potential, 15
Quark, 1
Quasi phase matching, 245

R
Radial resolution, 344
Radiation damping, 176
Radiation of

accelerated charge, 177
oscillating dipole, 175

Radiation pressure, 190
Radii of curvature, 258
Radiowaves in the atmosphere, 203
Radius of the mth-Fresnel zone, 312
Rainbow, 280
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Rayleigh criterion, 339
resolution of, 348

Rayleigh length, 343
Rayleigh scattering, 321
Rectangular conductor loop, 127
Rectification, 154
Reflected and refracted waves

amplitudes of, 222
polarization of, 223

Reflection
change of polarization, 227

Reflection at metal surfaces, 228
Reflection coefficient, 223
Reflection matrix, 274
Reflectivity, 223
Refraction for the electric field, 26
Refraction matrix, 273
Refractive index, 209, 210, 212

of air, 212
Refractive index ellipsoid, 233
Refractive micro-optics, 372
Refractive power, 262
Relative dielectric constant, 22
Resistances in series, 54
Resistors

parallel connection of, 55
Resonance–Rayleigh scattering, 322
Resonant voltage step up, 153
Retardation, 171
Retina, 331
Retro-reflection prism, 226
Right-circular polarized, 186
Rising and setting sun, 325
Rods, 331
Rotary current, 144
Rotatable interferometer, 294
Rotor, 136

S
Sagnac interferometer, 294
Saw tooth oscillation, 168
Scalar electric potential, 131
Scattering cross section, 321
Secondary rainbow, 281
Seebeck-coefficients, 72
Seebeck effect, 72
Self inductance, 123
Self-inductance coefficient of a solenoid, 126
Self-induction of a double circuit line, 126
Series wound motor, 137
Short-sighted eye, 333
Shunt motor, 138
Side maxima, 308
r+-light, 186
Signal processing, 383
Sky light, 324
Slide projector, 345
Snell’s law of refraction, 222
Solar wind, 191
Solenoid, 83
Solid sphere, 11
Solitons, 381
Spark discharge, 65
Spark oscillation circuit, 166

Spatial frequencies, 365
Spatial resolution of the eye, 333
Specific optical rotation power, 240
Specific resistance, 47, 49
Speckle interferometry, 340
Spectral dispersion, 346
Spectral resolution

general definition of, 350
general expression for, 350

Spectral sensitivity of
three receptor cells, 333

Spectral windows, 205
Spectrographs

spectral resolution of, 347
Speed of light, 193

measurement of, 191
Spherical aberration, 266
Spherical capacitor, 19
Spherical curved surface

focal length of, 257
Spherical mirror, 252
Spiral paths, 93
Standardized sockets, 159
Standing electromagnetic waves, 194
Star connection, 142
Static voltmeter, 57
Stator, 136
Step-index profile, 377
Stimulated depletion spectroscopy, 343
Stokes’s friction force, 36
Stress birefringence, 241
Stress induced birefringence, 242
Structure of the retina, 332
Superconductivity, 50
Surface charge, 5
Surpassing of the classical diffraction limit, 343
Symmetric index ellipsoid, 233
Synchrotron radiation

spectral distributions of, 179
System, 3
Systeme Internationale (SI), 3
System of lenses, 261

T
TE10-wave, 199
Technical application, 135
Technical current direction, 154
Telescope, 337

angular resolution, 339
Temporal coherent, 285
Tesla, 82
Tetrode, 159
Thermal current sources, 72
Thermal ionization, 60
Thermo-electric converters, 75
Thermoelectric voltage, 73
Thick lens, 260
Thin lens, 258
Thomson effect, 77
Three-dimensional standing waves, 195
Three-phase current, 142
Three-phase generator, 140
TMnm-waves, 200
Torque on an electric dipole, 102
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Torsion balance, 2
Total internal reflection, 225
Tranformer, 149
Tranformer without load, 150
Transformer with load, 151
Translation matrix, 273
Transmission coefficient, 223
Transmittance, 224
Transmitted light

ring system of, 300
Transmitter, 170
Transport of electric charges, 43
Transport of energy and momentum, 188
Triboelectricity, 2, 33
Triodes, 158
Two-beam interference, 287
Two-way rectification, 155

U
Unit

of length, 193
of voltage, 68
of work, 53

Unpolarized waves, 186

V
Vacuum diodes, 157
Van de Graaff generator, 18
Vector potential, 85
Velocity of light, 171
Visual angle, 333
Voltage, 9, 141
Voltage divider, 49
Voltage measurements, 58

W
Waltenhof pendulum, 123
Wattful power, 141
Wattless power, 141
Wave equation, 183
Wave field

reconstruction of, 361
Wave guide, 198, 203

waves in, 196
Wave guides for light, 204
Wavelength of a cavity wave, 199
Wave number, 185
Wave propagation

two plane-parallel plates, 197
Waves along wires, 201
Waves in nonconductive media, 216
Wheatstone bridge, 55
White light holography, 362
Wiedemann-Franz' law, 47
Wien-filter, 94
Work function, 72

X
X-ray tube, 178

Y
Young’s double slit experiment, 288

Z
Zero conductor, 143
Zoom lenses, 263
Zoom-lens systems, 263
Zoom-objective, 264
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