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CHAPTER 1: Preface

Preface


U ntil a few year ago most banks and other financial institutions paid little 
attention to measuring or quantifying operational risk. In recent years 

this has changed. Understanding and managing operational risk are essen-
tial to a company’s future survival and prosperity. With the regulatory spot-
light on operational risk management, there has been ever-increasing 
attention devoted to the quantification of operational risks. As a result we 
have seen the emergence of a wide array of statistical methods for measur-
ing, modeling, and monitoring operational risk. Working out how all these 
new statistical tools relate to one another and which to use and when is a 
not a straightforward issue. 

Although a handful of books explain and explore the concept of oper-
ational risk per se, it is often quite difficult for a practicing risk manager to 
turn up a quickly digestible introduction to the statistical methods that can 
be used to model, monitor, and assess operational risk. This book provides 
such an introduction, using Microsoft Excel and Visual Basic For Applica-
tions (VBA) to illustrate many of the examples. It is designed to be used “on 
the go,” with minimal quantitative background. Familiarity with Excel or 
VBA is a bonus, but not essential. Chapter sections are generally short— 
ideal material for the metro commute into and from work, read over lunch, 
or dipped into while enjoying a freshly brewed cup of coffee. To improve 
your understanding of the methods discussed, case studies, examples, inter-
active illustrations, review questions, and suggestions for further reading 
are included in many chapters. 

In writing this text I have sought to bring together a wide variety of sta-
tistical methods and models that can be used to model, monitor, and assess 
operational risks. The intention is to give you, the reader, a concise and 
applied introduction to statistical modeling for operational risk manage-
ment by providing explanation, relevant information, examples, and inter-
active illustrations together with a guide to further reading. In common 

xiii 
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xiv PREFACE 

with its sister book Applied Statistical Methods for Market Risk Manage-
ment (Risk Books, March 2003), this book has been written to provide the 
time-starved reader, who may not be quantitatively trained, with rapid and 
succinct introduction to useful statistical methods that must otherwise be 
gleaned from scattered, obscure, or mathematically obtuse sources. In this 
sense, it is not a book about the theory of operational risk management or 
mathematical statistics per se, but a book about the application of statistical 
methods to operational risk management. 

Successful modeling of operational risks is both art and science. I hope 
the numerous illustrations, Excel examples, case studies, and VBA code list-
ings will serve both as an ideas bank and technical reference. Naturally, any 
such compilation must omit some models and methods. In choosing the 
material, I have been guided both by the pragmatic “can do” requirement 
inherent in operational risk management, and by my own practical experi-
ence gained over many years working as a statistician and quantitative 
analyst in the City of London, on Wall Street, at the quantitative research 
boutique StatMetrics, and in academia. Thus, this is a practitioners’ guide 
book. Topics that are of theoretical interest but of little practical relevance 
or methods that I have found offer at best a marginal improvement over the 
most parsimonious alternative are ignored. As always with my books on 
applied statistical methods, lucidity of style and simplicity of expression 
have been my twin objectives. 
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CHAPTER 1 
Introduction to Operational Risk

Management and Modeling 

Operational risk (OR) is everywhere in the business environment. It is the 
oldest risk facing banks and other financial institutions. Any financial 

institution will face operational risk long before it decides on its first market 
trade or credit transaction. Of all the different types of risk facing financial 
institutions, OR can be among the most devastating and the most difficult 
to anticipate. Its appearance can result in sudden and dramatic reductions 
in the value of a firm. The spectacular collapse of Barings in 1995, the ter-
rorist attack on the World Trade Center in September 2001, the $691 mil-
lion in losses due to fraud reported by Allied Irish Bank in 2002, and the 
widespread electrical failure experienced by over 50 million people in the 
northeastern United States and Canada in August 2003 are all concrete but 
very different illustrations of operational risk. The rapid pace of technolog-
ical change, removal of traditional trade barriers, expanding customer base 
through globalization and e-commerce, and mergers and consolidations 
have led to the perception that OR is increasing. Indeed, although many func-
tions can be outsourced, OR cannot. Increasingly, banks and other financial 
institutions are establishing OR management functions at the senior exe-
cutive level in an effort to better manage this class of risk. In this chapter 
we discuss the definition of OR, outline the regulatory background, and 
describe the role of statistical methods in measuring, monitoring, and assess-
ing operational risk. 

WHAT IS OPERATIONAL RISK? 

There is no generally accepted definition of OR in the financial community. 
This lack of consensus relates to the fundamental nature of operational risk 
itself. Its scope is vast and includes a wide range of issues and problems that 
fall outside of market and credit risk. A useful starting point is to acknowl-
edge that OR encompasses risk inherent in business activities across an 

1 
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organization. This notion of OR is a broader concept than “operations” or 
back and middle office risk and affords differing definitions. For example, 
Jameson (1998) defines OR as “Every risk source that lies outside the areas 
covered by market risk and credit risk.” 

Typically, this will include transaction-processing errors, systems fail-
ure, theft and fraud, “fat finger”1 trades, lawsuits, and loss or damage to 
assets. Jameson’s definition is considered by many as too broad in the sense 
that it includes not only operational risk but business, strategy, and liq-
uidity risks as well. An alternative provided by the British Bankers’ Asso-
ciation (1997) states, “The risks associated with human error, inadequate 
procedures and control, fraudulent and criminal activities; the risk caused 
by technological shortcomings, system breakdowns; all risks which are not 
‘banking’ and arising from business decisions as competitive action, pricing, 
etc.; legal risk and risk to business relationships, failure to meet regulatory 
requirements or an adverse impact on the bank’s reputation; ‘external fac-
tors’ include: natural disasters, terrorist attacks and fraudulent activity, etc.” 

Another frequently quoted definition of OR is that proposed by the 
Basel Committee on Banking Supervision (2001b): “The risk of loss result-
ing from inadequate or failed internal processes, people systems or from 
external events.” In this categorization OR includes transaction risk (asso-
ciated with execution, booking, and settlement errors and operational con-
trol), process risk (policies, compliance, client and product, mistakes in 
modeling methodology, and other risks such as mark-to-market error), sys-
tems risk (risks associated with the failure of computer and telecommuni-

OTHER SOURCES OF RISK 

There are three broad classifications of the risk facing financial insti-
tutions: operational risk, market risk, and credit risk. Market risk is the 

verse movements in the level or volatility of interest rates, equities, 
commodities, and currencies. It is usually measured using value at risk 

is associated with a price movement of a given confidence level over a 

million at a 95 percent confidence level will suffer a loss in excess of 
$100 million in approximately one two-week period out of 20, and 
then only if it is unable to take any action to mitigate its loss. Credit 
risk is the risk that a counterparty will default on its obligation. 

risk to a financial institution’s financial condition resulting from ad-

(VaR). VaR is the potential gain or loss in the institution’s portfolio that 

specified time horizon. For example, a bank with a 10-day VaR of $100 
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cation systems and programming errors), and people risk (internal fraud 
and unauthorized actions). 

However we choose to define OR, our definition should allow it to be 
prudently and rigorously managed by capturing the business disruption, 
failure of controls, errors, omissions, and external events that are the con-
sequence of operational risk events. 

THE REGULATORY ENVIRONMENT 

Traditionally, financial institutions have focused largely on market and 
credit risk management, with few if any resources devoted to the manage-
ment of operational risks. The perception that operational risk has in-
creased markedly over recent years, combined with the realization that 
quantitative approaches to credit and market risk management ignore oper-
ational risks, has prompted many banks to take a closer look at operational 
risk management. Indeed, the fact that the risk of extreme loss from oper-
ational failures was being neither adequately managed nor measured has 
prompted many regulators to issue guidelines to their members. In the 
United States, as early as 1997 the Federal Reserve Bank issued a document 
entitled “The Framework for Risk-focused Supervision of Large, Complex 
Institutions.” In June 1999 the Basel Committee (1999) signaled their inten-
tion to drive forward improvements in operational risk management by 
calling for capital charges for OR and thereby creating incentives for Banks 
to measure and monitor OR: “From a regulatory perspective, the growing 
importance of this risk category has led the committee to conclude that such 
risks are too important not to be treated separately within the capital 
framework.” 

The New Capital Adequacy Framework (also referred to as the New 
Capital Accord) proposed by the Basel Committee exposed the lack of pre-
paredness of the banking sector for operational risk events. Indeed, in a 
consultative document issued in January 2001, the Basel Committee 
reflected (2001a): “At present, it appears that few banks could avail them-
selves of an internal methodology for regulatory capital allocation [for 
OR]. However, given the anticipated progress and high degree of senior 
management commitment on this issue, the period until implementation 
of the New Basel Capital Accord may allow a number of banks to develop 
viable internal approaches.” 

By the early 2000s regulators were beginning to “get tough” on 
failures in operational risk management. Severe financial penalties for fail-
ing to monitor and control operational procedures are now a reality. Two 
examples from the first quarter of 2003 illustrate the new regulatory 
environment. 
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The Basel Committee on Banking Supervision represents the central 

the Netherlands, Spain, Sweden, Switzerland, the United Kingdom, 
and the United States. It was established at the end of 1974 and meets 
four times a year to develop supervisory standards and guidelines of 
best practice for national banking systems. Although the committee 

recommendations shape the international banking system. In 1988, 
the committee introduced a capital measurement system (commonly 
referred to as the Basel Capital Accord, or Basel I) that provided for 
the implementation of a risk measurement framework with a mini-
mum capital charge. In June 1999, the committee issued a proposal for 

Basel I. Basel II began the process of institutionalizing operational risk 
as a category for regulatory attention. Operational risk was required to 
be managed alongside other risks. Indeed, the proposed capital frame-
work required banks to set aside capital for operational risk. 

BASEL COMMITTEE ON BANKING SUPERVISION 

banks of Belgium, Canada, France, Germany, Italy, Japan, Luxembourg, 

does not possess any formal supranational supervisory authority, its 

a New Capital Adequacy Framework (known as Basel II) to succeed 

Mis-selling: In April 2003, Lincoln Assurance Limited was fined £485,000 
by the United Kingdom’s Financial Services Authority (FSA) for the mis-sell-
ing of 10-year savings plans by its appointed representative, City Financial 
Partners Limited, between September 1, 1998, and August 31, 2000. The 
operational risk event of mis-selling occurred because Lincoln Assurance 
Limited failed to adequately monitor City Financial Partners Limited and so 
failed to ensure that City Financial Partners Limited only recommended 10-
year savings plans where they were appropriate for customers’ needs. 

Systems failure: In February 2003 the Financial Services Authority fined 
the Bank of Scotland (BoS) £750,000 for the failure of one of its investment 
departments to administer customers’ funds appropriately. Between Novem-
ber 1999 and August 2001 problems with BoS systems used to administer 
personal equity plans (PEPs) and individual savings accounts (ISAs) implied 
that the bank could not be sure how much money it was holding on behalf 
of individual customers. 

The above examples underscore the fact that as a prerequisite to good oper-
ational risk management, firms must have good processes and procedures 
in place. Systemic failings in internal procedures such as staff training and 
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information systems management and control put investors at risk and in-
crease the risk of fraud going undetected and the possibility of catastrophic 
operational losses. In today’s regulatory environment systemic failure also 
results in heavy regulatory fines. Good operational risk management makes 
sound commercial sense. 

WHY A STATISTICAL APPROACH TO OPERATIONAL 
RISK MANAGEMENT? 

The effectiveness of operational risk management depends crucially on the 
soundness of the methods used to assess, monitor, and control it. Commer-
cial banks, investment banks, insurance companies, and pension funds, rec-
ognizing the central role of statistical techniques in market and credit risk 
management, are increasingly turning to such methods to quantify the oper-
ational risks facing their institutions. This is because modern statistical 
methods provide a quantitative technology for empirical science; they offer 
the operational risk manager the logic and methodology for the measure-
ment of risk and for an examination of the consequences of that risk on 
the day-to-day activity of the business. Their use can improve senior man-
agement’s awareness of the operational risk facing their institution by 
highlighting the expected losses due to operational failures, identifying un-
expected losses, and emphasizing the risk associated with starving key 
business units of their institution of resources. In the language of senior 
management, statistical methods offer a mechanism for the assessment of 
risk, capital, and return. Given this, the continued search for value by cus-
tomers and shareholders, and regulators seeking to force banks to set aside 
large amounts of capital to cover operational risks, a sound understanding 
of applied statistical methods for measuring, monitoring, and assessing 
operational risk is more than an optional extra, it is now a competitive 
imperative. 

DISTINGUISHING BETWEEN DIFFERENT SOURCES OF RISK 

Consider a bank that holds bonds in XYZ Corp. The value of the bonds 
will change over time. If the value fell due to a change in the market 
price of the bond, this would be market risk. If the value fell as a result 
of the bankruptcy of XYZ Corp, this would be credit risk. If the value 
fell because of a delivery failure, this would be operational risk. In 
each of the three cases the effect is a write-down in the bonds’ value, 
but the specific cause is a consequence of different risks. 
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SUMMARY


Operational risk has been described as the oldest of risks, yet the applica-
tion of statistical methods to operational risk management is a new and 
rapidly evolving field. This is because regulators have now elevated opera-
tional risk management to the forefront of risk management initiatives for 
banks and other financial institutions. The outcome is likely to be tighter 
internal controls and a drive toward better measurement, monitoring, and 
modeling of operational losses. Virtually all financial institutions are now 
paying attention to the application of statistical methods to their OR. In the 
remaining chapters of this book we focus attention on what statistical 
method to use and how these methods can improve a firm’s overall man-
agement of OR events. As we shall see, there are significant benefits to be 
gained from the use of statistical methods. Of course, the careful use of sta-
tistical methods in itself is not an assurance of success, but it is a means of 
calculating in advance the probability and possible consequences of an 
unknown future OR event, allowing managers to make better-informed 
decisions. 

REVIEW QUESTIONS 

1. What do you consider to be the weaknesses of the definitions of OR 
discussed in this chapter? What alternative definitions would you con-
sider more appropriate? 

2. Despite being the oldest risk facing financial institutions, OR is the least 
monitored. Why? 

3. What are the potential benefits to the firm, customers, and shareholder 
of monitoring OR? In your opinion, do these benefits outweigh the costs? 

4. In what way could VaR be used in an OR context? 
5. Why should statistical methods play a central role in the analysis of OR? 

FURTHER READING 

Further discussion surrounding the definition of operational risk can be found 
in British Bankers’ Association (1997) and Jameson (1998). Details on the 
changing regulatory environment for risk management are documented in 
Basel Committee on Banking Supervision (1999, 2001a, 2001b, 2001c, 2003) 
and Alexander (2003). 
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CHAPTER 2 
Random Variables, Risk 

Indicators, and Probability 

Operational risks are endogeneous in the sense that they are based on an 
institution’s internal operational environment. As such, they will vary sig-

nificantly from organization to organization. Although market and credit 
risk can be managed to some degree through the capital markets, OR is fun-
damentally different because it can only be managed by changes in process, 
people, technology, and culture. Given this and the continual reshaping of 
the business landscape through mergers, restructuring, and rapid techno-
logical and regulatory change, how can we capture the complex uncertainty 
surrounding future OR events? The notion of random variables, OR indi-
cators, and probability described in this chapter provides us with some of 
the tools we require. Probability offers a formal structure for describing the 
uncertainty in the business environment. Through its use, despite the real-
ity that OR does not lend itself to measurement in the same way as market 
or credit risk, we can gain valuable insights into the nature of the uncer-
tainty surrounding future OR events. In this chapter we outline the basic 
concepts of applied probability and demonstrate how they can be useful in 
an OR setting. 

RANDOM VARIABLES AND OPERATIONAL RISK INDICATORS 

Underlying all statistical methods are the concepts of a random experiment, 
or experiment of chance, and a random variable. A random variable is a 
variable that can take on a given set of values. A random experiment is the 
process by which a specific value of a random variable arises. 

7 
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EXAMPLE 2.1 NUMBER OF TRADES THAT FAIL TO SETTLE 
WHEN EXPECTED AS A RANDOM VARIABLE 

The number of trades that fail to settle when expected varies from one day 
to the next. In the language of statistics, the number of failed trades on any 
specific business day is a random variable, the settlement process is an ex-
periment, the passage of time from one day to the next is a trial, and the 
number of failed trades at the end of the day is the outcome. At the start of 
business on a particular day, the experiment begins. At this stage the out-
come of the experiment is unknown. Will the number of failed trades be 0, 
1, 5, or 200? At the end of the business day the outcome of the experiment, 
the observed number of failed trades, is known. 

x

The costs incurred through mistakes made in carrying out transactions, 
such as settlement failures, and the loss of business continuity when opera-
tions are interrupted for reasons such as electrical failure or the failure to 
meet regulatory requirements, are all examples of random variables. The 
key point to note is that a random variable is actually a function that asso-
ciates a unique numerical value to every outcome of a random experiment. 
In writing, we denote a random variable by X and the value it takes by x. 
When a random variable X is observed on N occasions, we obtain a suc-
cession of values denoted by {x1, x2, x3, . . . , xN}, each of which provides us 
with a realization of X at specific points in time. We may have observed the 
number of failures on the five days, for example, from August 19 to August 
23 as {5, 0, 0, 1, 0}. We also may write this sequence as {x1 = 5, x2 = 0, 

3 = 0, x4 = 1, x5 = 0}. 

TYPES OF RANDOM VARIABLE 

There are two fundamental types of random variable, discrete and continu-
ous. A discrete random variable may take on a countable number of distinct 
values. These are usually measurements or counts and take on integer values 
such as 0, 1, 2, 3, and 4. In Example 2.1 the number of trades that fail to set-
tle when expected is a discrete random variable because it can only take on 
the values 0, 1, 2, 3, and so on. A continuous random variable is one that can 
take on any real value, that is, a variable that can take any real number in a 
given interval. An example of a continuous random variable of interest to 
OR managers is the value of trades that fail to settle when expected. In this 
example, we observed that the discrete random variable (the number of 
trades that failed to settle) on the five days from August 19 to August 23 as 
{5, 0, 0, 1, 0}; the value of these trades was {$250,000, 0, 0, $500,000, 0}. 

Since the number of trades that fail to settle when expected and the 
value of trades that fail to settle when expected are random variables that 
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can be used to provide information on a OR event, they are called opera-
tional risk indicators. 

Operational risk indicators are random variables that are used to pro-
vide insight into future OR events. For example, a rising number of 
trades that fail to settle may be indicative of failing settlement or back 
office procedures. There are numerous risk indicators that firms can 
monitor to assess future OR events. Losses due to the failure of a ven-
dor to perform outsourced processing activities correctly and unau-
thorized transfers of money by employees into their personal bank 
accounts are examples of OR events for which we seek to find suitable 
OR indicators. Some risk indicators may generally be applicable to all 
businesses, while others will be specific to a particular business. The 
key objective of risk indicators is to provide insight into future prob-
lems at their earliest stages so that preventive action can be undertaken 
to avert or minimize a serious OR event. 

OPERATIONAL RISK INDICATORS 

PROBABILITY


We use probability to help characterize risk indicators, the number of OR 
events, and the size of OR losses. Intuitively, a probability should lie 
between 0 and 1. An outcome or event that cannot occur should have a 
probability of 0, and an event that is certain to occur will have a proba-
bility of 1. What is the probability that the number of trades that fail to 
settle when expected today will be the same as yesterday, equal to yester-
day, or more than yesterday? Since one of these outcomes is certain to 
occur, the probability is 1. Probability values indicate the likelihood of an 
event occurring. The closer the probability is to 1, the more likely the event 
is to occur. For example, suppose completion, within the next three days, 
of projects A and B is uncertain, but we know the probability of comple-
tion of project A is 0.6 (60 percent) and the probability of completion of 
project B is 0.25 (25 percent). These probability values provide a numeri-
cal scale for measuring our uncertainty in the sense that they inform us 
that project A is more likely to be completed within the next three days’ 
time than project B. More formally, we say that probability provides a 
numerical scale for measuring uncertainty. 

If E is an event of interest (for example a high settlement loss), we denote 
Prob(E) to be the probability of E. We also write Prob( E) as the probabil-
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ity of the complementary event of E not occurring. For simplicity, we shall 
assume the events E and E are mutually exclusive (that is, if E occurs, E 
cannot occur, and vice versa). Probability satisfies two basic properties: 

1. Convexity property: 0 ≤ Prob(E) ≤ 1 
2. Complement property: Prob(E) + Prob( E) = 1 

Convexity tells us that the probability of an event always lies between 0 and 1. 
The complement property tells us that the sum of the probabilities of the 
event E and E must sum to 1. For example, if the probability of comple-
tion of project A is 0.6 (60 percent), then the probability of not completing 
project A must be 0.4 (40 percent). 

EXAMPLE 2.2 COMPLEMENT PROPERTY AND THE NUMBER 
OF TRADES THAT FAILED TO SETTLE 

To illustrate the complement property, let: 

■	 A represent the event that the number of trades that failed to settle 
when expected today is equal to number of trades that failed to settle 
yesterday. 

■	 B represent the event that the number of trades that failed to settle 
when expected today is greater than the number of trades that failed to 
settle yesterday. 

■	 C represent the event that number of trades that failed to settle when 
expected today is less than the number of trades that failed to settle yes-
terday. 

We would expect Prob(A) + Prob(B) + Prob(C) = 1. This is because either 
A, B, or C is certain to occur. Furthermore, given Prob(A) and Prob(B), we 
can find Prob(C), which is equal to 1 − [Prob(A) + Prob(B)]. Now suppose 
Prob(A) = 0.3 and Prob(B) = 0.2; then Prob(C) = 1 − (0.3 + 0.2) = 0.5. 

Mutually Exclusive Events 

Given two events A and B that cannot both occur together, the probability 
that either A or B occurs is equal to the sum of their separate probabilities, 
or Prob(A or B) = Prob(A) + Prob(B). We have already seen in Example 2.2 
that either the number of trades that failed to settle when expected today is 
equal to (event A), greater than (event B), or less than (event C) the num-
ber of trades that failed to settle yesterday. Therefore, using the rule of 
mutually exclusive events, we can write Prob(A or B or C) = Prob(A) + 
Prob(B) + Prob(C), which in this case equals 1. 
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FREQUENCY AND SUBJECTIVE PROBABILITY


We can distinguish two basic approaches for calculating probability: the 
frequency approach and the subjective approach. The frequency approach 
gives an objective status to the notion of probability by rendering it a prop-
erty of real-world phenomena. It asserts that probability should be inter-
preted as stemming from the observable stability of empirical frequencies. 
For example, suppose an operational risk manger is interested in settlement 
loss, given product complexity and staff experience. Using the frequency 
approach, he or she might conclude that the probability of a very large loss 
is 0.5 percent because the empirical frequency of a repeated series of a large 
number of settlements with a given level of staff experience and product 
complexity is approximately 0.5 percent. 

Subjective probability renders the notion of probability subjective by 
regarding it as “degrees of belief” on behalf of individuals assessing the 
uncertainty of a particular situation. It depends on personal viewpoints and 
prior experience. For example, an operational risk manager might conclude 
the probability of a very large settlement loss is 0.25 percent. Another oper-
ational risk manager with similar experience might conclude it is only 0.01 
percent. Given the potential differences that can arise between experts’ sub-
jective probabilities, why should we use them? Where empirical data does 
not exist, numerical measures of probability can only be obtained via sub-
jective probability. In other words, if we have not empirically measured the 
relevant risk factors, we can only rely on expert opinion in the form of sub-
jective probabilities. 

Conditional Probability 

The conditional probability of an event A given another event B is the prob-
ability that A will occur given that B has occurred. We write it as Prob(A | B). 
We can calculate the conditional probability using the rule 

Prob(A and B)
Prob(A | B) = 

Prob(B) 

EXAMPLE 2.3 CONDITIONAL PROBABILITY OF A SERIOUS 
TRANSACTION ERROR GIVEN A COMPUTER FAILURE 

To illustrate this rule, let us suppose B represents the event that the “computer 
system fails,” which occurs with probability 0.2, and A to be the event “serious 
transaction error.” If events A and B occur jointly with probability 0.05, then 

Prob(A | B) = Prob(A and B) = 0 05  . = 0 25  . 
Prob(B) 0 2. 
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So the probability that we observe a serious transaction error given we have 
already observed a computer system failure is 0.25. 

We can rearrange the formula for conditional probability so that 

Prob(A and B ) = Prob(B) P(A | B) 

Using the above example, we calculate the joint probability Prob(A and B) 
= Prob(B)Prob(A | B) = 0.2 × 0.25 = 0.05, which is as expected. If 
Prob(A | B) = Prob(A), then the events A and B are said to be statistically 
independent. This means the occurrence of B does not alter the probabil-
ity that A will occur. 

manager is interested in using one of these indicators to provide infor-
mation about the OR event Z. Let us suppose he finds that for the 
potential risk indicator X 

Prob(Z | X) = Prob(Z) 

and for potential risk indicator Y 

Prob(Z | Y) ≠ Prob(Z) 

Since Z and X are statistically independent, he or she concludes that 

and Z are not statistically independent, he or she also concludes that 
Y may be a useful risk indicator of Z. 

STATISTICAL INDEPENDENCE 

What is the value of statistical independence? To gain an insight into its 
value, consider two potential risk indicators X and Y. Suppose the OR 

X is not a useful risk indicator for the OR event Z. However, since Y 

The formula for conditional probability allows the measurement of 
uncertainty given prior information. On occasion, we will have information 
on A (for example, a serious transaction failure) and may wish to make a 
probabilistic statement about B (computer system failure); to do this, we can 
use Bayes’ theorem, which states that 

P(A | B)P(B)
P(B | A) = 

P(A) 

The key value of Bayes’ theorem and the law of conditional probability is 
that they allow us to reason from uncertain evidence to arrive at a verdict 
using frequency or subjective probabilities. 
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EXAMPLE 2.4 USING BAYES’ THEOREM TO REASON 
ABOUT A COMPUTER SYSTEM FAILURE 

In Example 2.3, we denoted the event “computer system fails” by B and the 
event “serious transaction error” by A. Furthermore, we saw that Prob(B) = 0.2 
and Prob(A | B) = 0.25. Suppose Prob(A) = 0.15, and we observe that a seri-
ous transaction error has occurred. What is the likelihood that the com-
puter system has failed? In this situation we have evidence about event A 
and we wish to use this information to update our knowledge of event B. 
We can use Bayes’ theorem, in which case we calculate 

Prob (B | A) = 0 ×. . 
. 

25 0 2 
0 15  

= .0 3  

PROBABILITY FUNCTIONS 

Probability functions give a complete representation of the possible out-
comes of a random variable. They inform us what outcomes are possible 
and how likely they are. This is important because once we have knowledge 
of the possible outcomes and their probability of occurrence, we can begin 
to quantify the operational risks we face. 

Probability Mass Function and Probability Density Function 

Every discrete random variable has a probability mass function that tells us 
the probability with which the discrete random variable takes any particular 
value. For example, if we are interested in the discrete random variable X = 
“Citywide electrical failure,” which takes the value 1 if the event occurs and 
0 otherwise, the probability mass function p(x) takes the numerical values 

999
Prob(X = 0) = p (0) = 

1, 000 

1
Prob(X = 1) = p (1) = 

1, 000 

In this case p(0) and p(1) make up the probability distribution for the random 
variable. The low value of p(1) informs us that this OR event occurs with low 
probability and is in this sense unlikely. Figure 2.1 illustrates the probability 
distribution of a discrete random variable that can take discrete values be-
tween 1 and 9. From it we see that p(X = 1) = 0.3 and p(X = 9) = 0.045. 

Associated with every continuous random variable is a corresponding 
continuous probability density function that we denote by f(x). Figure 2.2 
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FIGURE 2.1 Probability distribution of a discrete random variable. 

x

illustrates a probability distribution for a continuous random variable. 
Since f(x) is a continuous function, the area between any two points x1 and 

2 represents the probability that the random variable will lie between these 
two values. We write this as 

x2 

Prob(x < X ≤ x2 ) = f ( ) dx  x1 ∫ 
x1 

0 

0.05 

0.1 

0.15 

0.2 

0.25 Probability 

−5 −4 −3 −2 −1 0 1 2 3 4 

Value of random variable 

FIGURE 2.2 Probability distribution of a continuous random variable. 

5 



02_chap_lewis.qxd  3/3/04  2:53 PM  Page 15

15 Random Variables, Risk Indicators, and Probability 

Since probabilities cannot be negative, the probability mass function and 
the probability density function satisfy p(x) ≥ 0 and f(x) ≥ 0. In addition, we 
have already seen that the sum over all possible outcomes is equal to 1 so

∞ 
that ∑ p(x) = 1 and ∫ f(x) dx = 1. 

x −∞ 

Cumulative Distribution Function and Percentile Function 

For any random variable X, the cumulative probability is measured by the 
cumulative distribution function. It is defined as 

 ∑ p x( )  if X is discrete 
 x k≤ 

F x( )  = Prob(X ≤ x) =  x 

f u  du if X is continuous( ) ∫ −∞ 

If X is a discrete random variable, then the cumulative distribution function 
F(x) is a step function, as illustrated in Figure 2.3. If X is a continuous ran-
dom variable, then F(x) is a continuous function, as illustrated in Figure 2.4. 
In this case, given a probability density function F(x), then 

x 

( )  = f u  duF x  ∫ ( ) 
−∞ 

The αth percentile (0 ≤ α ≤  1) is that value of a random variable X, say 
xα, which indicates the percentage of a probability distribution that is equal 

1 

F
(x

) 

Value of random variable 

FIGURE 2.3 Cumulative distribution function of a discrete random variable. 

0 
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FIGURE 2.4 Cumulative distribution function of a continuous random variable. 

to or below xα. Given the distribution function, F(x) the percentile function 
is F−1(1 − α). 

EXAMPLE 2.5 PERCENTILES OF THE NUMBER OF TRADES 
THAT FAIL TO SETTLE WHEN EXPECTED 

Suppose X is a random variable of the daily number of trades that fail to 
settle when expected. If over the past 1000 days we observe {x1, . . . , x1000}, 
where x1 is the observed number of failures on the first day and x1000 is the 
number observed on the one thousandth day, and p represents the observa-
tions {x1, . . . , x1000} arranged in ascending order, so that p1 is the smallest 
and p1000 the largest, the 99th percentile is equal to or greater than 99 per-
cent of the values recorded in {p1, . . . , p1000}. This is p990. 

CASE STUDIES 

For the first few chapters of this book, we illustrate a number of the con-
cepts raised through simple case studies. Working carefully through each 
case study will reinforce many of the ideas discussed. Operational risk is 
intrinsic to financial institutions, yet being harder to quantify, it cannot be 
so easily categorized and modeled as is the case with market and credit risks. 
The basic objectives of an operational risk manager are (1) identifying the 
operational risks the financial institution is exposed to, (2) assessing their 
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The aim of setting aside capital for operational risk events is to ensure 
the availability of sufficient economic capital to allow continued oper-
ation in an adverse environment or when internal operational failures 
have generated large unexpected losses. Operational value at risk 

is defined as the operational risk capital sufficient, in most instances, 
to cover operational risk losses over a fixed time period at a given con-

F−1(1 − α). 
α = 1 percent, which in this case is the 

0.99 = F−1(1 − 0.99) = F−1(0.01). 

OPERATIONAL VALUE AT RISK 

(OPVaR) is one way to calculate operational risk capital provision. It 

fidence level. OPVaR can be calculated provided we know 
A 99 percent OPVaR implies 
99th percentile, and thus OPVaR

extent, (3) setting aside capital for potential losses, and (4) mitigating the 
potential of OR events to cause business losses. In the following case stud-
ies we illustrate how we can begin to use the ideas presented in this chapter 
to achieve some of these objectives. 

CASE STUDY 2.1: DOWNTOWN INVESTMENT BANK 
Downtown Investment Bank has just begun to develop its operational risk 
activities. At this early stage, it has employed an MBA graduate named 
Richard to enhance its OR operation. The head of operational risk, Mr. Bel-
lyfan, has asked Richard to investigate the relationship between system 
downtime and serious transaction errors. In particular, Mr. Bellyfan insists 
that serious transaction errors are more likely when the system fails and asks 
Richard to confirm his assertion. After initial difficulty finding any data, 
which is not unusual in OR management, Richard eventually obtains the 
data presented in Table 2.1. The table shows whether there was a system fail-
ure, transaction failure, or both during each month from May 1999 to April 
2004. Richard, fresh out of business school, recalls his teaching on empirical 
statistics and decides to use all of the data because of the small sample size. 

Table 2.2 presents the recoded data used by Richard. In this table 
Richard codes a failure with the value 1, and 0 otherwise. The third column 
in this table takes a value 1 if both a system failure and a serious transaction 
error occur. Hence in May 2003, a serious transaction error occurred jointly 
with a system failure and so all elements in this row take the value 1. 

How can Richard investigate the relationship between the two fail-
ures? Recalling a lecture he attended on conditional probability, he decides 
to calculate the probability of a serious transaction error given a system 
failure. In order to calculate this probability, he requires information on the 
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TABLE 2.1 Data on Serious Transaction Errors and System Downtime 

Month 
System 
Failure 

Serious 
Transaction 

Error Month 
System 
Failure 

Serious 
Transaction 

Error 

31-May-99 No No 30-Nov-01 Yes No 
30-Jun-99 No Yes 31-Dec-01 No No 
31-Jul-99 No No 31-Jan-02 Yes Yes 
31-Aug-99 No Yes 28-Feb-02 No Yes 
30-Sep-99 No Yes 31-Mar-02 Yes No 
31-Oct-99 Yes No 30-Apr-02 No No 
30-Nov-99 No No 31-May-02 No Yes 
31-Dec-99 No Yes 30-Jun-02 Yes Yes 
31-Jan-00 Yes No 31-Jul-02 Yes No 
29-Feb-00 No Yes 31-Aug-02 Yes Yes 
31-Mar-00 Yes Yes 30-Sep-02 No No 
30-Apr-00 Yes No 31-Oct-02 Yes No 
31-May-00 Yes Yes 30-Nov-02 No No 
30-Jun-00 No No 31-Dec-02 Yes Yes 
31-Jul-00 No Yes 31-Jan-03 Yes No 
31-Aug-00 No No 28-Feb-03 Yes Yes 
30-Sep-00 No No 31-Mar-03 Yes No 
31-Oct-00 No Yes 30-Apr-03 Yes No 
30-Nov-00 Yes No 31-May-03 Yes Yes 
31-Dec-00 Yes Yes 30-Jun-03 Yes No 
31-Jan-01 No Yes 31-Jul-03 No No 
28-Feb-01 Yes Yes 31-Aug-03 No Yes 
31-Mar-01 Yes No 30-Sep-03 No Yes 
30-Apr-01 No Yes 31-Oct-03 Yes Yes 
31-May-01 Yes Yes 30-Nov-03 No Yes 
30-Jun-01 Yes Yes 31-Dec-03 Yes Yes 
31-Jul-01 No No 31-Jan-04 No No 
31-Aug-01 Yes Yes 29-Feb-04 Yes No 
30-Sep-01 Yes Yes 31-Mar-04 No Yes 
31-Oct-01 No Yes 30-Apr-04 No No 

joint probability of a system failure and serious transaction error and the 
probability of a system failure. He obtains these probabilities by counting 
the number of 1’s in each column of Table 2.2 and dividing by the number of 
rows, which in this case is 60. Using this method he calculates the approxi-
mate probabilities as follows: 

■ Probability of serious transaction error = 32/60 � 0.53 
■ Probability of system failure = 30/60 = 0.50 
■ Probability of system failure and serious transaction error = 16/60 � 0.27 
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TABLE 2.2 Recoded Data on Serious Transaction Errors and System Downtime 

Month Both Fail System Failure Serious Transaction Error 

31-May-99 0 0 0 
30-Jun-99 0 0 1 
31-Jul-99 0 0 0 
31-Aug-99 0 0 1 
30-Sep-99 0 0 1 
31-Oct-99 0 1 0 
30-Nov-99 0 0 0 
31-Dec-99 0 0 1 
31-Jan-00 0 1 0 
29-Feb-00 0 0 1 
31-Mar-00 1 1 1 
30-Apr-00 0 1 0 
31-May-00 1 1 1 
30-Jun-00 0 0 0 
31-Jul-00 0 0 1 
31-Aug-00 0 0 0 
30-Sep-00 0 0 0 
31-Oct-00 0 0 1 
30-Nov-00 0 1 0 
31-Dec-00 1 1 1 
31-Jan-01 0 0 1 
28-Feb-01 1 1 1 
31-Mar-01 0 1 0 
30-Apr-01 0 0 1 
31-May-01 1 1 1 
30-Jun-01 1 1 1 
31-Jul-01 0 0 0 
31-Aug-01 1 1 1 
30-Sep-01 1 1 1 
31-Oct-01 0 0 1 
30-Nov-01 0 1 0 
31-Dec-01 0 0 0 
31-Jan-02 1 1 1 
28-Feb-02 0 0 1 
31-Mar-02 0 1 0 
30-Apr-02 0 0 0 
31-May-02 0 0 1 
30-Jun-02 1 1 1 
31-Jul-02 0 1 0 
31-Aug-02 1 1 1 
30-Sep-02 0 0 0 
31-Oct-02 0 1 0 
30-Nov-02 0 0 0 
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TABLE 2.2 (Continued) 

Month Both Fail System Failure Serious Transaction Error 

31-Dec-02 1 1 1 
31-Jan-03 0 1 0 
28-Feb-03 1 1 1 
31-Mar-03 0 1 0 
30-Apr-03 0 1 0 
31-May-03 1 1 1 
30-Jun-03 0 1 0 
31-Jul-03 0 0 0 
31-Aug-03 0 0 1 
30-Sep-03 0 0 1 
31-Oct-03 1 1 1 
30-Nov-03 0 0 1 
31-Dec-03 1 1 1 
31-Jan-04 0 0 0 
29-Feb-04 0 1 0 
31-Mar-04 0 0 1 
30-Apr-04 0 0 0 

Therefore Probability (Serious transaction error | System failure) = 0.27/ 0.50 
� 0.53. Since this is approximately equal to the probability of a serious trans-
action error, Richard concludes that system failure and serious transaction 
error are independent. But how does he tell Mr. Bellyfan? 

CASE STUDY 2.2: MR. MONDEY’S OPVaR 
In early 2004 Andrew Mondey, vice president of OR at a middle-size 
national bank, was faced with the problem of estimating the 95 percent 1-
month OPVaR for his organization. He had been diligently collecting data 
on the value of OR losses over the past few years and now had a database 
going back 100 months. The full set of data is shown in Table 2.3. Recall-
ing that OPVaR is a percentile, he reorganizes the data into Table 2.4, in 
which the OR losses are ranked by size. From this table Mr. Mondey picks 
the 95th observation and therefore concludes that the 95 percent 1-day 
OPVaR = $88,875. 

CASE STUDY 2.3: RISK IN SOFTWARE DEVELOPMENT 
The software development unit of a small investment firm is considering the

possibility of replacing some of its highly experienced but costly program
-
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mers with more junior staff. Stephen, an operational risk analyst, has been 
asked to assess the likely impact on the number of serious software defects 
introduced into a new and critical product if the proposal takes place. After 
a degree of discreet digging around for empirical data, Stephen produces the 
information shown in Table 2.5. It shows the number of software modules 
developed by two different types of programmer. Type A programmers are 

TABLE 2.3 Operational Risk Losses of a Middle-size National Bank 

Month Loss ($) Month Loss ($) Month Loss ($) 

1 0 35 0 69 52,000 
2 0 36 0 70 0 
3 66,178 37 0 71 0 
4 0 38 23,863 72 11,982 
5 0 39 53,158 73 0 
6 43,711 40 46,490 74 1,060 
7 0 41 51,641 75 0 
8 0 42 36,182 76 74,339 
9 16,442 43 0 77 0 

10 0 44 0 78 0 
11 0 45 0 79 85,512 
12 0 46 0 80 0 
13 0 47 0 81 60,034 
14 0 48 76,578 82 0 
15 0 49 72,873 83 0 
16 0 50 0 84 42,512 
17 45,442 51 0 85 0 
18 0 52 0 86 0 
19 0 53 0 87 0 
20 0 54 0 88 20,998 
21 0 55 0 89 0 
22 85,803 56 49,709 90 0 
23 87,363 57 0 91 41,402 
24 0 58 0 92 0 
25 0 59 0 93 95,153 
26 89,028 60 0 94 0 
27 0 61 10,488 95 88,875 
28 0 62 0 96 0 
29 0 63 0 97 0 
30 0 64 0 98 91,067 
31 55,567 65 0 99 89,797 
32 0 66 34,194 100 0 
33 0 67 0 
34 97,916 68 0 
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TABLE 2.4 Operational Risk Losses Ranked by Size of a Middle-size National Bank 

Rank Loss ($) Rank Loss ($) Rank Loss ($) 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 

1,060 
10,488 
11,982 
16,442 
20,998 
23,863 
34,194 
36,182 
41,402 
42,512 
43,711 
45,442 
46,490 
49,709 
51,641 
52,000 
53,158 
55,567 
60,034 
66,178 
72,873 
74,339 
76,578 
85,512 
85,803 
87,363 
88,875 
89,028 
89,797 
91,067 
95,153 
97,916 

0 68 0 

more experienced than type B. Steven decides to use this information to cal-
culate the probability that the next module to be developed (of similar size 
and complexity to those considered in Table 2.5) will have fewer serious 
defects than the industry average if 

1. It was developed by a type A programmer. 
2. It was developed by a type B programmer. 
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TABLE 2.5 Number of Modules Developed by Two Types of Programmer 

Programmer A Programmer B Total Developed 

Modules <Industry Modules <Industry All <Average 
developed average developed average 

1,910 875 2,887 925 4,797 1,800 

In order to achieve this, Steven uses the following notation: 

1. PA denotes the event that the module is developed by a type A programmer. 
2. PB denotes the event that the module is developed by a type B programmer. 
3. Z denotes the event that the module has fewer serious defects than the 

industry average. 

Using the law of conditional probability Steven notes that: 

Z PA) = Prob(PA and Z)
Prob( |  

Prob( )PA 

and 

Z PB) = Prob(PB and Z)
Prob( |  

Prob( )PB 

Using the frequency definition of probability and the data from Table 2.5, 
Stephen calculates 

1 910 
Prob( )  = , = 0 398 39 8 percent)PA . ( . 

,4 797 
2 887 

Prob( )  = , = 0 602 60 2 percent)PB . ( . 
,4 797 
875 

A . ( .Prob(P and Z) = = 0 182 18 2 percent) 
,4 797 
925 

B . ( .Prob(P and Z) = = 0 193 19 3 percent) 
,4 797 

Therefore: 

Z PA ) = Prob(P and Z) = 0 182 
Prob( |  A . = 0 457 45 7 percent). ( . 

Prob( )  0 398 PA . 

Z PB ) = Prob(P and Z) = 0 193 
Prob( |  B . = 0 321 32 1 percent). ( . 

Prob( )  0 602 PB . 
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These results indicate that if a programmer of type A develops the module, 
there will be a higher probability that it will have less serious defects than 
if a programmer of type B develops the module. This is as we might expect, 
as programmers of type A are more experienced than programmers of type 
B. However, the advantage of using probability is that it gives us a scale on 
which to assess this difference. 

USEFUL EXCEL FUNCTIONS 

Excel has many probability and related functions of value in OR manage-
ment. One of the most useful is the Percentile() function, which returns 
the percentile of a given data set. It is illustrated in the workbook Opera-
tional Risk 02.xls worksheet Case study 2.2 and also discussed further in 
review question 6 below. Other valuable functions include the Normsinv(), 

which calculates the percentile function for a standard normally distributed 
random variable, and Normsdist(), which calculates the probability dis-
tribution of a standard normally distributed random variable. Other use-
ful functions for continuous probability distributions include Betadist() 
for the cumulative beta probability density function, Chidist() for the 
chi-squared distribution, Expondist() for the exponential distribution, 
Fdist() for the F distribution, Gammadist() for the gamma distribution, 
Lognormdist() for the lognormal distribution, Tdist() for the Student’s t 
distribution, and Weibull() for the Weibull distribution. Excels coverage of 
discrete probability distributions is not quite as extensive as the continuous 
case; however, it does provide functions for some of the important discrete 
distributions including Negbinomdist() for the negative binomial distribu-
tion, Binomdist() for the binomial distribution probability, Hypgeomdist() 
for the hypergeometric distribution, and Poisson() for the Poisson distri-
bution. A number of percentile functions (also known as inverse functions) 
for specific distributions are also available, including Betainv() for the 
beta distribution, Chiinv() for the chi-squared distribution, Finv() for the 
F probability distribution, Gammainv() for the gamma cumulative distribu-
tion, Loginv() for the lognormal distribution, and Tinv() for the Student’s 
t distribution. We shall see many of these and other functions in action in 
later chapters. 

SUMMARY 

Random variables, operational risk indicators, and probability provide us 
with some of the tools we require to gain insights into the nature of the 
uncertainty surrounding future OR events. We can capture such uncertainty 
using a probability function and a cumulative probability function. The 
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percentile function is also useful because it offers us a mechanism for cal-
culating OPVaR. The concept of probability and probability functions can 
assist OR managers in their efforts to control losses, keep their organization 
competitive, and protect shareholder value regardless of how they define 
OR. However, probability is not the only tool we need. As we see in the 
next chapter, knowledge of a random variable average value is also impor-
tant for effective OR management. 

REVIEW QUESTIONS 

1. List four examples of random experiments alongside their associated ran-
dom variables. From your list identify the continuous and discrete ran-
dom variables. 

2. Identify four potential OR events. What do you think are potential risk 
indicators for these OR events and why? 

3. Can you explain why probability is useful for describing OR events? 
4. Suppose the probability of the event “a serious transaction error” is 0.2 

and the probability of the event “computer system failure and a serious 
transaction error” is 0.1. What is the probability of a computer system 
failure given that you have observed a serious transaction error? 
■	 How does this probability change if the probability of a serious trans-

action error is 0.5? 
■	 What would you expect if the two OR events were statistically inde-

pendent or dependent? 
5. Describe each of the following and explain why they may be important 

tools for characterizing OR events and OR indicators: 
■	 Probability mass function 
■	 Probability density function 
■	 Cumulative distribution function 
■	 Percentile function 

6. Open the workbook Operational Risk 02.xls and use worksheets Case 
study 2.1 and Case study 2.1(a) to investigate the impact of a change in 
the number of system failures and serious transaction errors on the con-
ditional probability of a transaction error given a system failure. Do you 
agree with Richard’s conclusion of statistical independence? 

7. In the same workbook the worksheet Case study 2.2 gives the data col-
lected by Mr. Mondey and the formula he used to calculate OPVaR. Cell 
C11 contains the Excel function Percentile(), which can also be used 
to calculate OPVaR for this data. 
■	 Investigate the impact of changing the value of the percentile used 

(cell C9) on the value returned by Mr. Mondey’s approach and Excel’s 
Percentile() function. 
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■	 How would you explain these differences? 
■	 Type the value 0.69 into cell C9 and compare the different OPVaR 

values. Which is preferable and why? 
8. Is there a role for subjective probabilities in OR practice? How should we 

deal with situations in which data is nonexistent? 

FURTHER READING 

Operational value at risk is based on value at risk, which is frequently re-
ported in market risk management. Lewis (2003) provides an excellent, 
accessible introduction to the use of VaR and other statistical methods in 
market risk management. More advanced reading on VaR is provided by 
Butler (1999), Duffie and Pan (1997), Bahar et al. (1997), and Holton 
(1997). 
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CHAPTER 3 
Expectation, Covariance,


Variance, and Correlation


W e have seen that risk indicators and OR events are the outcome of a ran-
dom experiment whose realized values are determined by an under-

lying probability function. At the start of business on a particular day the 
random experiment begins. At this stage the outcome of the experiment is 
unknown, and the OR manager will be interested in the typical or average 
value of his or her risk indicators, how they vary from one day, week, or 
month to the next, and the interrelationship between OR indicators, in 
addition to their relationship with OR events. The typical value of an OR 
event or risk indicator is measured by its expected value, its variability by 
variance, and the interrelationship between risk indicators and OR events 
by correlation. In this chapter we introduce these measures and discuss their 
relevance to OR modeling. We begin with the concept of expected value of 
a risk indicator or OR event and end by measuring the association between 
risk indicators, using covariance and correlation. 

EXPECTED VALUE OF A RANDOM VARIABLE 

The expected value of a random variable, denoted by E[X], is a measure of 
the mean or average value. The expected value of a discrete random variable 
X is calculated as 

[ ]  = ∑xp x E X (  )  
x 

27 
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EXAMPLE 3.1 SYSTEM FAILURE RISK AND THE EXPECTED 
NUMBER OF SYSTEM SUPPORT STAFF AVAILABLE 

To illustrate the calculation of expected value, consider the number of sys-
tem support staff available on particular day. The operational risk manager 
may be concerned about the risk of a system failure which he or she believes 
is related to the staffing level in the system support department on a partic-
ular day. In this case the OR event of interest is “system failure” and the OR 
indicator is “number of system support staff available.” We denote the risk 
indicator by X, and note that it is a discrete random variable. The manager 
knows that on any day there is always at least one individual available and 
at most nine. Therefore, X can take on values between 1 and 9. 

The probability of each specific value is given in the second column of 
Table 3.1, from which we see that the probability that X = 1 is 0.301. The third 
column of this table gives the values of X × P(x). For example, for the first row 
X = 1 and P(1) = 0.301, X × P(1) = 1 × 0.301 = 0.301. Taking the sum of all 
of the values in the third column, we find E[X] = 3.44. This informs us that 
the average or center of mass of the distribution lies between 3 and 4. Since 
X can only take on the value 3 or 4 (and not values in between), the expected 
value will never be observed. However, we might feel comfortable saying that 
we expect the number of system support staff available on a particular day 
will be around 3. The operational risk manager can use this figure to assist in 
his or her assessment of whether to hire agency staff. 

Working through Example 3.1, you will see that the expected value is a 
probability weighted average of the possible values of the random variable. 
If X is continuous, this probability weighted average is given by 

∞ 

E X  ∫ x f  x  dx[ ]  = ( )  
−∞ 

TABLE 3.1	 Calculation of Expected Value of 
a Discrete Random Variable 

X Probability X × P(x) 

1 0.301 0.301 
2 0.176 0.352 
3 0.125 0.375 
4 0.097 0.388 
5 0.079 0.396 
6 0.067 0.402 
7 0.058 0.406 
8 0.051 0.409 
9 0.046 0.412 
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Furthermore, if Y is some function of X, denoted by Y = G(X), then E[Y ] = 
∞ 

( )f (x) dx if X is continuous. G(x)p(x) if  X is discrete, and E[Y ] = G x∑ ∫ 
x −∞ 

There is not too much to remember about expected values. Provided 

track: 

1. In Chapter 2 we saw that the value of a random variable is the result 
of an experiment of chance. The expected value is the long-run prob-
ability weighted average of a large number of experiments of chance; 
that is, if you perform the random experiment on many occasions 
and take the probability weighted average, this will be the expected 
value. Since it is an average, its value may never actually be observed. 

2. A common mistake is to assume that the expected value of a ran-

experiment were performed once. This is not the case. The expected 
value is the long-run average value of a random variable. 

UNDERSTANDING EXPECTED VALUE 

you keep in mind the following two points, you will remain on the right 

dom variable will be the value you would observe if the random 

EXAMPLE 3.2 EXPECTED OPERATIONAL LOSS AND THE INTERNAL 
MEASUREMENT APPROACH TO REGULATORY CAPITAL CHARGE 

An internal measurement approach is one way for a bank to calculate its op-
erational risk capital charge. In this method commercial activities are catego-
rized into a number of business lines. For each business line the following are 
calculated: 

1. An exposure indicator (EI) that measures the size of the risk exposure of 
the specific business line. 

2. An expected frequency of OR loss events calculated from a probability 
distribution of loss events (PE). 

3. An expected severity of OR loss given an OR loss event calculated from 
a severity of loss probability distribution (LGE). 

The expected operational loss for a specific business line is then calculated as 

E[OR loss] = EI × PE × LGE
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The regulatory capital charge (RCC) for the specific business line is then 
calculated as 

RCC = E[OR loss] × g 

where g is a factor determined by the regulator. The total capital charge is the 
sum across all the bank’s business lines. 

OR capital charge. The first is the basic indicator approach, in which 
the required capital is determined by multiplying a financial indicator 
such as gross income by a fixed percentage. The second is the standard-
ized approach, in which a bank divides its function into a number of 
business lines. For each business line, the required operational risk cap-

or asset size of the business line, by a fixed percentage. The total oper-
ational risk capital charge is the sum of the required capital across all 
the business lines. The third method is a type of internal measurement 

capital across each business line and each event-type combination. 

NEW BASEL CAPITAL ACCORD METHODS OF CALCULATING 
OPERATIONAL RISK CHARGE 

The New Basel Capital Accord outlines three methods for calculating the 

ital is calculated by multiplying an indicator, typically the gross income 

approach based on a bank’s internal risk management system. In this ap-
proach, OR is categorized based on business lines and event types deter-
mined by the regulators. The total capital charge is the sum of the required 

Rules of Expectation 

There are a number of rules of expectation that are useful: 

Rule 1: The expectation of a constant C is the constant: 

E[C] = C 

Rule 2: If X is a random variable and C is a constant, then 

E[XC] = CE[X] 

and 

E[X + C] = C + E[X] 

Rule 3: The expected value of the sum of two random variables X and Y 
is the sum of their expected values: 

E[X + Y ] = E[X] + E[Y ] 
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Rule 4:	 Given two random variables X and Y, the conditional expectation of 
X given Y is denoted by E[X | Y ]. If X is continuous, it is defined by 

∞ 

E X  Y  ] = x f  x  y  dx  [ |  ( | )∫ 
−∞ 

If X is discrete, it is defined by 

E X  Y  ] = ∑ x p  x  y  )[ |  ( |  
x 

EXAMPLE 3.3 EXPECTED SHORTFALL 
AS A CONDITIONAL EXPECTATION 

Operational value at risk measures the distribution percentile, disregarding 
losses beyond a. In effect, it tells us what is the most we can expect to lose 
if ath percentile occurs. How much can we expect to lose if an OR event 
beyond OPVaR occurs? The BIS Committee on the Global Financial System 
(2000) identifies this problem as tail risk. Tail risk can be modeled using 
expected shortfall (ES): 

[ |= E X  X  > OPVaR1−α ]ES1−α 

Expected shortfall is the conditional expectation of loss given that the loss 
is beyond the OPVaR level a. By definition, expected shortfall considers los-
ses in the more extreme tail of a probability distribution than OPVaR. 

VARIANCE AND STANDARD DEVIATION 

The variance of a random variable is a measure of spread or dispersion of 
the probability density or mass function. If X is a discrete random variable 
with mean mX, variance is defined by 

X (  )  Variance ( )  = ∑(x − µX)
2 
p  x  

x 

If X is a continuous random variable, it is defined by 

∞ 

∫ 2Variance (X) = (x − µx ) f(x)dx 
−∞ 

Variance is non-negative and measured in squared units of X. The further

the values of X tend to fall from their expected value, the larger will be the




variance. The standard deviation (which we frequently shorten to Stdev) of a
random variable X is the square root of variance. It is also a measure of dis-
persion, but measured in the same units as X.

COVARIANCE AND CORRELATION

Given two random variables X and Y with mean and standard deviation mX,
sX, and mY, sY, respectively, their covariance is given by

Covariance (X, Y ) = E[(X − mX)(Y − mY)]

Covariance measures the linear relationship between X and Y, and it will
be positive if X and Y tend to have the same sign with high probability and
negative if they tend to have opposite signs with high probability. Unfortu-
nately, the actual value of covariance has little meaning because it depends
on the variability of X and Y. However, we can rescale covariance to lie
between −1 and +1 by dividing it by the product of the standard deviation
of X and the standard deviation of Y; this measure is known as the corre-
lation coefficient between X and Y:

The correlation coefficient is a unitless measure of the linear relationship
between X and Y. Figure 3.1 plots the relationship between two random

Correlation
Covariance

( , )
( , )

X Y
X Y

X Y

=
σ σ
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FIGURE 3.1 Positive correlation of 0.6 between two random variables.
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variables that have a positive correlation of 0.6, and Figure 3.2 plots the
relationship between two random variables that have a negative correlation
of −0.6. A perfectly positive linear relationship between X and Y occurs
when Correlation (X, Y ) = 1, and a perfectly linear negative relationship
occurs when Correlation (X, Y ) = −1. These relationships are illustrated in
Figures 3.3 and 3.4, respectively. In this sense, the correlation coefficient is
a better measure of linear relationship than the covariance.
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FIGURE 3.2 Negative correlation of −0.6 between two random variables.
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FIGURE 3.3 Perfect positive correlation between two random variables.
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SOME RULES FOR CORRELATION, VARIANCE, AND COVARIANCE

Rule 1: If X is a random variable and a is constant, then

Variance (X + a) = Variance (X)

Rule 2: If X is a random variable and a is a constant, then

Variance (X × a) = a2 Variance (X)

Rule 3: If X and Y are two random variables then

Variance (X + Y ) = Variance (X) + Variance (Y ) + 2Covariance (X, Y )

We can also write this rule using correlation, in which case we have

Variance (X + Y ) = Variance (X) + Variance (Y ) + 2Correlation (X, Y )

× Stdev (X) × Stdev (Y )

Rule 4: If X1, . . . , XN are random variables, then

Variance ( ) Variance ( ) Covariance ( , )

Variance ( ) Correlation ( , )

Stdev ( ) Stdev ( )

1

1 11

1 11

X X X X X

X X X

X X

N i

i

N
j k

k

N

j

N

i

i

N
j k
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FIGURE 3.4 Perfect negative correlation between two random variables.
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Rule 5: If X and Y are independent, then 

Correlation (X, Y ) = 0 

Rule 6: If X1, . . . , XN are independent identically distributed (that is, 
independent and from the same probability distribution), then 

jCorrelation (Xi, Y ) = 0 for all i ≠ j 

Rule 7:	 If X1, . . . , XN are independent identically distributed random 
variables, then 

N 
jVariance(X1 + . . .  + XN ) = ∑ Variance(X ) 

j =1 

CASE STUDIES 

Case study 3.1 and case study 3.2 explore some of the ideas presented in 
this chapter. They also develop the idea that even though we may not have 
any empirical observations, we can still obtain expected values. This is so 
provided we are able to use subjective probabilities elicited from relevant 
experts such as business managers or senior management. 

CASE STUDY 3.1: EXPECTED TIME TO COMPLETE A COMPLEX TRANSACTION 

Mr. Breedon, an OR manager at a small financial institution, has taken on 
a university student, Bernard, as a summer intern. Mr. Breedon is concerned 
about the time it takes to process certain complex transactions. His feeling 
is that the operational procedures of the back office need revamping because 
it seems to be taking the back office “too long” to process these transactions. 
Since he is very busy and not sure if his intuition is correct, he asks Bernard 
to investigate. 

Bernard speaks with the head of processing operations and finds out 
that they classify their transaction times for these particular trades into 
three groups: Those that take approximately 3 minutes to complete, those 
that take around 6 minutes, and those that take approximately 12 minutes 
to complete. Bernard asks the head of operations to give him data for each 
of these classifications so that he can calculate approximate probabilities. 
Unfortunately, no such data is collected. Rather than return to Mr. Breedon 
empty-handed, and mindful of the possibility of a full-time permanent 
position when he completes his degree, Bernard asks each of the four staff 
members who process these transactions for their subjective probabilities 



03_chap_lewis.qxd  3/3/04  3:00 PM  Page 36

36 OPERATIONAL RISK WITH EXCEL AND VBA 

TABLE 3.2 Individual Subjective Probabilities of the Time 
Taken to Complete a Complex Transaction 

Average Time 

3 minutes 6 minutes 12 minutes 

Person 1 0.82 0.17 0.01 
Person 2 0.79 0.18 0.03 
Person 3 0.78 0.19 0.03 
Person 4 0.85 0.14 0.01 

for each classification. These values are reported in Table 3.2. Bernard is 
pleasantly surprised by the close agreement between the subjective proba-
bilities. Encouraged by this finding, he decides to use the average of the sub-
jective probabilities, as shown in Table 3.3. 

Bernard then calculates the expected time to complete a transaction as: 

E(time to complete transaction) = (0.81 × 3 minutes) 

+ (0.17 × 6 minutes) 

+ (0.02 × 12 minutes) = 3.69 minutes 

Using the rule that Variance (X) = E(X2) − E(X)2, Bernard calculates that 

E(X2) = (0.81 × 9) + (0.17 × 36) + (0.02 × 144) = 16.29 

and therefore 

Variance (time to complete a transaction) = 16.29 − E(X)2 

= 16.29 − (3.69)2 = 2.67 

and the corresponding standard deviation is equal to 1.64 minutes. 
Bernard’s calculations are also contained in the Excel workbook Opera-
tional Risk 03.xls worksheet Case study 3.1. 

TABLE 3.3	 Average Time to Complete a Complex Transaction 
Based on Subjective Probabilities 

3 minutes 6 minutes 12 minutes 

Average 0.81 0.17 0.02 
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CASE STUDY 3.2: OPERATIONAL COST OF SYSTEM DOWNTIME 
The IT (information technology) systems department of a trading and broker-
age arm of a large multinational institution has requested that the IT system 
be shut down for between 10 and a maximum of 14 minutes every Monday 
during trading hours for essential maintenance. Dr. Young, the OR manager, 
would prefer this maintenance to be carried out during the evenings or on 
weekends. Unfortunately, deep budgetary cuts in the IT department have 
made senior management unresponsive to this idea. Dr. Young decides to cal-
culate the dollar impact to the firm of the IT systems department request. He 
assumes a fixed cost of $12,000 and an additional cost of $1,125 for every 
minute the system is down. So his model for the total cost is simply 

Total cost = $12,000 + ($1,125 × X) 

where X is the number of minutes the system is down. 
Dr. Young then asks the IT systems manager to provide subjective prob-

abilities of the time it should take to carry out the maintenance. These values 
are shown in Table 3.4. From this data, Dr. Young calculates the expected 
cost as 

Expected cost = $12,000 + ($1,125 × E[X]) 

where 

E[X] = (0.1 × 10) + (0.3 × 11) + (0.3 × 12) + (0.2 × 13) 

+ (0.1 × 14) = 11.9 minutes 

Therefore, Dr. Young concludes that the expected cost is $25,387.50. 

Excel and VBA Functions for Correlation, 
Covariance, and Variance 

The correlation between two variables can be calculated in Excel using the 
Correl() function. Covariance can be calculated using the Covar() func-
tion. Given a sample of risk indicators or OR events, the variance and stan-
dard deviation are best calculated using the Var() and Stdev() functions, 
respectively. An alternative, if we have the entire population, is to use the 

TABLE 3.4	 Subjective Probabilities of System Downtime Provided by 
IT Manager 

Minutes 10 11 12 13 14 
Probability 0.1 0.3 0.3 0.2 0.1 
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Varp() function. We discuss the calculation of these measures of dispersion 
using sample data in more detail in the next chapter. Excel does not have a 
function for calculating the variance of the sum of two or more random 
variables. However, it is straightforward to write a simple function to cal-
culate the variance between two random variables. We do this in the func-
tion Var_2(). The code for this function is 

Function Var_2(x As Range, y As Range) 

' pass the data cells to the function 

mean_x = Application.WorksheetFunction.Average(x) 

'calculate mean of x 

mean_y = Application.WorksheetFunction.Average(y) 

var_x = Application.WorksheetFunction.Var(x) 

' calculate variance of x 

var_y = Application.WorksheetFunction.Var(y) 

cov = Application.WorksheetFunction.Covar(x, y) 

var_2 = var_x + var_y + (2 * cov) 

' return the value for the variance of x + y 

End Function 

Once entered into Excel, the function can be called by entering Var_2 
(datarange1, datarange2). We illustrate its use in more detail in Case 
Study 4.1 and in the Excel workbook Operational Risk 04.xls. 

SUMMARY 

This chapter has presented an overview of approaches to measure the aver-
age value and variance of discrete and continuous random variables. We have 
also introduced the concepts of covariance and correlation. In the following 
two chapters we discuss the empirical version of these notions, and show 
how, given data, they can be easily calculated for OR indicators and used 
effectively in OR management. 

REVIEW QUESTIONS 

1. Explain why an OR manager would be interested in the 

■ Expected value of an OR event 
■ Correlation between OR indicators 
■ Variance of an OR indicator 

2. Suppose you were asked to investigate the time to complete a transac-
tion in two distinct business units. Both business units process similar 
transactions and have a similar staffing level. 
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■	 Suppose business unit A had a higher processing time standard devi-
ation than unit B. What, if any, conclusions might you draw? 

■	 If you were told that business unit A had a lower expected process-
ing time than business unit B, how would your conclusions alter? 

■	 If you were told that business unit A also had a higher expected pro-
cessing time than business unit B, how would your conclusions alter? 

3. Can you explain why the 

■	 Expected value of a constant is equal to the constant itself? 
■	 Variance of a constant is zero? 
■	 Expected value of a random variable is simply a probability weighted 

average? 

4. Identify an operational risk event and three operational risk indicators. 

■	 What do you expect the correlation between these risk indicators and 
the OR event to be (high, medium, low) and why? 

■	 What do you expect the correlation between the risk indicators to be 
and why? 

5. Take another look at Case Study 3.1. In your opinion, is the approach 
taken by Bernard acceptable? Why or why not? 

6. Senior management has asked you to identify and justify possible risk 
indicators for computer system failure. 

■	 What indicators do you feel are appropriate? 
■	 How would you use the methods discussed in this and the previous 

chapter to justify your assertion? 

7. Extend the function Var_2 so that it can calculate the sum of n random 
variables. 

FURTHER READING 

Expected shortfall is an important concept in market risk management. It 
will become increasingly important in OR as well. Lewis (2003) gives a num-
ber of examples of tail risk estimation and its practical use in risk manage-
ment. Artzner et al. (1997, 1999) and BIS Committee on the Global Financial 
System (2000) are useful references if you are interested in the detailed argu-
ments for the use of tail risk estimates. 
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CHAPTER 4 
Modeling Central Tendency 

and Variability of Operational
Risk Indicators 

n the previous two chapters we outlined some of the ideas behind random 
variables and probability. In practice we will collect a sample of measure-

ments on risk indicators and use the underlying theory of probability to help 
us in our decision making. Once we have measurements on our key risk indi-
cators, we will need to summarize their essential characteristics. In this 
chapter we discuss how to do this using the empirical equivalent of expected 
value and variance. 

EMPIRICAL MEASURES OF CENTRAL TENDENCY 

Suppose we are interested in describing the typical value of a risk indicator X. 
Our first step would be to collect a sample of observations say {x1, . . . , xN}. 
We denote the ith observation on the operational risk indicator by xi, where 
i goes from 1 to N. From this sample of observations we could calculate a 
measure of central tendency, such as the arithmetic mean. The arithmetic 

–mean (which we denote by x) is the sum of the set of observations in a sam-
ple divided by the number of observations: 

x1 + x2 + . . . + xNx = 
N 

–The formula for calculating x is known as an estimator, and the actual value 
– x takes is known as an estimate. Notice the similarity and difference be-
tween the arithmetic mean and the expected value. The expected value is a 
measure of the center of a probability distribution, and the arithmetic mean is 
a measure of the center or typical value of a sample of risk factors. However, 
whereas expected value is a probability weighted metric, the arithmetic mean 
is an equally weighted metric because the divisor for all observations is N. 

41 
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TABLE 4.1 Number of System Failures between January and May 

January February March April May 

23 35 25 27 50 

EXAMPLE 4.1 AVERAGE NUMBER OF SYSTEM 
FAILURES BETWEEN JANUARY AND MAY 

Suppose we observe system failures over five months, as shown in Table 
4.1. The average number of failures is

23 + 35 + 25 + 27 + 50 
x =	 = 32 

5 

There are alternative estimators for measuring the typical value of a 
sample. A popular alternative to the mean is the median. It is the value that 
is greater than or equal to half the values in the sample. For a continuous 
random variable with probability density function f(x) it is actually the 
value such that 

xmedian ∞ 1
( )  ( )f x dx  = ∫ f x dx  =∫ 

−∞1	 2xmedian 

From this definition we see that half the observations lie above the median, 
and half lie below the median. We can calculate the median by arranging 
the N observations of a sample in increasing order. The median is the [(N + 
1)/2]th observation when N is odd and the average of the (N/2)th and the 
[(N + 2)/2]th observation when N is even. 

EXAMPLE 4.2 MEDIAN NUMBER OF SYSTEM 
FAILURES BETWEEN JANUARY AND MAY 

For illustration we return to Example 4.1. The ranked data is shown in 
Table 4.2. Since N = 5, the median is equal to the (5 + 1)/2 = 3rd observa-
tion. In this case median number of failures is equal to 27, which is slightly 
lower than the arithmetic mean of 32 calculated in Example 4.1. 

TABLE 4.2	 Ranked Number of System Failures between January 
and May 

January March April February May 

23 25 27 35 50 
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WHY USE THE MEDIAN? 

Consider the following observations on system downtime over four days 
(Monday = = = 
Thursday = 40 minutes). The value 40 experienced on Thursday is 20 

or rogue value. If we use the arithmetic mean as our measure of cen-
+ 1 + 2 + 40)/4 = 11. Is this a good mea-

values lie between 1 and 2. In this case, since N is even, the median is 
the average of the (N /2)th = = 2nd observation and the [(4 + 2) /2] 
= 3rd observation. Therefore, the median = (1 + 2) /2 = 1.5. This is a 
much better measure of the center of the sample than the mean. In 

robust estimator because it is less sensi-
tive to extreme observations than the mean. It should be your first 
choice estimator of central tendency when your sample contains outlier 
observations. 

1 minute, Tuesday 1 minute, Wednesday 2 minutes, and 

times higher than the next largest value and appears to be an outlier, 

tral tendency, its value is (1 
sure of the center of the observations? Not really, because most of the 

4/2 

fact the median is known as a 

MEASURES OF VARIABILITY


Operational risk indicators vary over time, with some time periods more 
volatile than others. For example, the installation of a new back office system 
may temporarily increase the number of settlement errors or amount of time 
taken to process trades as staff members familiarize themselves with the 
system. Measures of variability such as the variance and standard deviation 
attempt to capture this. The sample variance and standard deviation pro-
vide a measure of how tightly individual values are clustered around the 
arithmetic mean of a sample. 

We encountered these measures when discussing random variables in the 
previous chapter. The empirical formulas are based on the idea of averag-
ing the distance of each observation from the mean. For an individual 
observation xi on a risk indicator X, the distance from the mean is meas-

–ured by xi − x. For N observations in our sample, we therefore have N such 
N 

distances, one for each xi. Since ∑ (x − x ) = 0 , we use the squared distances, i

N i =1


2 as ∑ (xi − x) ≥ 0 . The estimator of the sample variance (S2) is the average 
i =1 

of these: 
N 

∑ (x − x )i 

S2 = i=1 

N − 1 
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FIGURE 4.1 Impact changing the standard deviation of a probability distribution. 

The sample variance is measured in squared units of the sample. The sam-
ple standard deviation S is the square root of S2. When the observations 
cluster close together around the arithmetic mean, the sample variance and 
sample standard deviation will be small. The more spread out the observa-
tions are around the mean, the larger are the sample variance and sample 
standard deviation. This is illustrated in Figure 4.1, which shows two ran-
dom variables with expected value equal to 0 and standard deviations equal 
to 1 and 2. Since variance is not in the same units as the observations, most 
risk managers prefer to quote the sample standard deviation, which is meas-
ured in the same units as the data. 

CASE STUDIES 

Many operational and business risks are correlated. This is particularly the 
case if we adopt a broad definition of operational risk to include business 
risks associated with the state of the economy or with political change. In 
Case Study 4.1 we investigate how one might approximate business risk 
using the measures introduced in this chapter. 

CASE STUDY 4.1: APPROXIMATING BUSINESS RISK 
Dr. Agbaje has recently transferred from the market risk department to the

OR department of a internationally focused investment house. He was
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brought in because of his special expertise in statistical and mathematical 
methods. His first task is to calculate the business risk of the global opera-
tion. Business risk is defined as risk arising from changes in the market envi-
ronment. Since he cannot measure this risk directly, he decides to use fee 
earnings as a proxy. His rationale is that increased competition or a slug-
gish economy can have a direct impact on fee earnings, which in turn reflect 
changes in the market environment and hence business risk. 

Unfortunately, Dr. Agbaje is unable to find direct information on fee 
income for his company. Given time, he believes he could obtain this data, 
but he only has a matter of days before he needs to present his results to the 
CEO. Fortunately, he is able to obtain from an external agency the infor-
mation presented in Table 4.3. This table gives the average of fees in the sec-
tor and annual economic growth over the period 1992–2004. 

Dr. Agbaje, now slightly desperate because his meeting with the CEO is 
drawing nearer, decides to formulate a simple model. His model takes the 
form: Fee income = F(competitor fees, economic growth), where F(.) is 
some function. Since time is short, Dr. Agbaje assumes a linear function: Fee 
income = competitor fees + economic growth. For now, this linear model 
will have to do; he will get better-quality data and build a more complex 
model later. Since Dr. Agbaje’s background is in market risk, he decides to 
use the standard deviation or volatility of fee income as his actual measure 
of business risk. He calculates the variance of economic growth as 0.02 per-
cent and the variance of average competitor fees as 0.23 percent. In addi-
tion he finds the covariance between these two variables is 0.00037185. 

TABLE 4.3 Average Fees of the Sector and Economic Growth 

Average Competitor Economic 
Year Fees (%) Growth (%) 

1992 1.50 −1.0 
1993 0.50 0.0 
1994 2.50 1.5 
1995 5.00 2.0 
1996 7.50 1.3 
1997 7.60 1.5 
1998 8.90 5.0 
1999 15.20 2.8 
2000 12.50 2.5 
2001 13.40 2.0 
2002 1.40 1.5 
2003 9.00 3.5 
2004 5.00 3.8 
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Using the rule that Variance (X + Y) = Variance (X) + Variance (Y) + 2 × 
Covariance (X, Y), Dr. Agbaje calculates: 

Variance (fee income) = Variance (competitor fees) 
+ Variance (economic growth) + 2 
× Covariance (competitor fees, economic growth) 

and 

Variance (fee income) = 0.2323% + 0.0247% + (2 × 0.00037185) = 0.3313% 

Hence the standard deviation of fee income is 0 3313. percent ≈ 5.76 per-
cent. Dr. Agbaje’s only concern now is whether this figure is acceptable to 
his CEO. What do you think? 

The population of a particular risk indicator consists of the entire set 
of past and future values. In practice we will only observe a subset or 
sample of these values. Our initial goal is to use the limited informa-
tion provided by this sample to draw general conclusions about the pop-
ulation. As long as our sample is representative of the population from 
which it comes, we can use the sample estimator of the mean and stan-

tions from a population, could we use the same estimators? For the 

use the population variance estimator: 

with σ being the population standard deviation. This estimator is very 
similar to the sample estimator of variance except that it is divided by 
N, whereas the sample variance estimator is divided by N − 1. It turns 
out that dividing by N − 1 ensures the sample variance estimator pro-
vides an unbiased estimate of the population variance. Bias refers to 
how far the sample estimate lies from the population characteristic we 
are trying to estimate. An unbiased estimator will yield the correct esti-
mate of the population characteristic as the sample size increases. 

σ 2 

2 

1= 
− 

= 
∑ ( )x x 

N 

i 
i 

N 

POPULATIONS AND SAMPLES 

dard deviation discussed in this chapter. If we had all of the observa-

mean, the answer is yes. However, for the variance, we would need to 
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Further details of Dr. Agbaje’s calculations are given in the workbook 
Operational Risk 04.xls. Take a look at the worksheet Case Study 4.1. It 
gives the data and details of how the calculations can be carried out in Excel. 
The variance of a random variable is calculated using the function Var(). 
For example in cell E27 the function Var(E11:E23) calculates the variance 
of the competitor fees and returns a value of 0.23 percent. The only other 
built-in Excel function used in this worksheet is the function Covar() in cell 
E29, which calculates the covariance between competitor fees and eco-
nomic growth. We could also use the function Var_2(), which calculates 
the variance of the sum of two random variables, introduced in the previ-
ous chapter. Its use in this example is shown in cell E35. The worksheet 
Case Study 4.1 simulation illustrates the calculation of business risk in dif-
fering economic and competitor fee environments. The simulation can be 
activated by pressing <F9>. It makes use of Excel’s Randbetween() function 
and requires the activation of the analysis tool pack Addin which comes as 
standard with Excel. 

EXCEL FUNCTIONS 

The mean, median, variance, and standard deviation of a sample can be 
calculated using the Excel functions average(), median(), var(), and 
stdev(), respectively. In the situation in which we require the variance of 
the sum of two random variables, the user-defined function Var_2() is use-
ful. This function can be extended easily to the situation in which we are 
interested in the variance of the sum of n random variables (see Question 7 
from Chapter 3). 

SUMMARY 

Measures of central tendency, such as the mean and median, and measures 
of dispersion, such as the variance and standard deviation, are descriptive 
measures that can be used to summarize important features of our OR 
data. The advantage of using these metrics to summarize the center and 
dispersion of a risk indicator or OR event is that they are frequently 
reported in other areas of risk management and finance. In addition, they 
are widely understood summary statistics. However, reporting the mean 
and standard deviation of a risk factor or OR event is often not enough to 
adequately characterize the features of the underlying probability distribu-
tion. To gain further insight, we also require information on the shape, 
via metrics such as skew and kurtosis. We discuss these measures in the 
next chapter. 
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REVIEW QUESTIONS


1. Why take equal weights in calculating the arithmetic mean? Is it always 
suitable to treat all observations equally? 

2. Suppose new observations contain more information about an OR 
indicator than older observations. How would you adjust the formula 
for the arithmetic mean to take this into account? 

3. Given a sample on a risk factor that can take positive or negative val-
ues, which would you expect to be larger (mean or median) if: 

■	 The observations are symmetric? 
■	 The observations are asymmetric with more large positive values than 

large negative values (positively skewed)? 
■	 The observations are asymmetric with less large positive values than 

large negative values (positively skewed)? 

4. Suppose you observe the following observations on system downtime: 

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 

2 mins 3 mins 0 min 0 min 1 min 1 min 4 mins 12 mins 

■	 Calculate the arithmetic mean and median. Which is the better meas-
ure and why? 

■	 Recalculate the arithmetic mean and median ignoring day 8. What 
do you conclude? 

■	 Calculate the standard deviation using all observations. 

5. Can you explain the difference between sample and population? Which 
are we most likely to use as OR managers and why? 

6. Use the following data to calculate business risk using the approach of 
Dr. Agbaje (Case Study 4.1): 

Average Average 
Competitor Economic Competitor Economic 

Year Fees (%) Growth (%) Year Fees(%) Growth (%) 

1992 2.0 −1.0 1999 7.2 12.4 
1993 1.0 0.0 2000 12.0 12.5 
1994 4.0 1.5 2001 9.4 7.0 
1995 3.0 2.0 2002 7.3 7.5 
1996 6.0 3.0 2003 6.0 2.5 
1997 8.0 4.0 2004 5.2 2.8 
1998 8.0 9.0 
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In your opinion, is the approach taken by Dr. Agbaje appropriate? What 
are the other feasible alternatives? 

FURTHER READING 

Further details on the use of measures of central tendency in risk manage-
ment, and alternatives to those measures presented in this chapter, can be 
found in Lewis (2003). 
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CHAPTER 5 
Measuring Skew and Fat Tails 

of Operational Risk Indicators


So far we have used measures of central tendency and dispersion to sum-
marize a sample of operational risk indicators. Although these two 

measures allow us to reduce our sample to two numbers—the mean and 
variance—valuable additional insight into the shape of the probability dis-
tribution can be achieved by considering their degree of skew and “fat-
tailedness,” known as kurtosis. In this chapter we discuss these two metrics, 
and show how they can be calculated using traditional and robust statis-
tical methods. 

MEASURING SKEW 

Consider the histograms of the three discrete operational risk indicators 
shown in Figure 5.1. The histogram on the top depicts the situation in 
which the risk indicator values are symmetrically distributed about their 
mean. The middle diagram depicts the situation in which the risk indicator 
is positively skewed, and the bottom diagram depicts the situation in which 
the risk indicator is negatively skewed. In this example, the main difference 
in shape between the three risk indicators is their degree of symmetry. The 
distributions in the middle and bottom diagrams of Figure 5.1 have one tail 
longer than the other. 

The degree of skew is important in the practical modeling and measur-
ing of risk indicators and OR events because it provides information about 
the likelihood of extreme events. Given a sample of size N on a continuous 
risk indicator with sample mean −x and sample standard deviation S, we can 
calculate the degree of skew using the formula 

N 
3∑ (x − x) Ni 

i=1δ = 
3S 

51 



05_chap_lewis.qxd  3/3/04  3:11 PM  Page 52

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 Symmetric distribution 
P

ro
b

ab
ili

ty
 

Value of risk indicator 

P
ro

b
ab

lil
it

y 
P

ro
b

ab
ili

ty
 

Negatively skewed distribution
0.5 

0.4 

0.3 

0.2 

0.1


0


Value of risk indicator 

Positvely skewed distribution 
0.5 

0.4 

0.3 

0.2 

0.1


0


Value of risk indicator 

FIGURE 5.1 Symmetric, negatively and positively skewed risk indicators. 

52 



05_chap_lewis.qxd  3/3/04  3:11 PM  Page 53

53 Measuring Skew and Fat Tails of Operational Risk Indicators 

The important part of the formula is the numerator. We divide by S3 to 
ensure that the estimator of skew is independent of the units of measure-
ment. A symmetric distribution has skew equal to zero and large values are 
about as likely as small values. Negative skew indicates that large negative 
values are more likely than large positive values. Positive skew indicates 
that large positive values are more likely than large negative values. 

EXAMPLE 5.1 CALCULATING SKEW 
FOR THREE SMALL SAMPLES 

As an illustration, consider three separate samples of a random variable 
as shown in Table 5.1. Each sample has a mean of approximately 0 and a 
standard deviation of approximately 1. However, in this case the mean and 
standard deviation do not provide enough information to adequately sum-
marize the data. On close inspection you will observe that sample 1 is sym-
metric around 0, sample 2 negatively skewed, and sample 3 positively 
skewed. Using the above formula, we estimate the skew for sample 1 = 0, 
the skew for sample 2 = −0.7 and the skew for sample 3 = 0.7. 

Since for a skewed distribution the median is not equal to the mean, 
another popular measure of skew is 

δm 
3 (mean − median)= 

S 

If (mean − median) > 0, then the sample is positively skewed. If (mean − 
median) < 0, then the data is negatively skewed. If mean = median, the data 
is symmetric. A Visual Basic for Applications (VBA) function to calculate 
this measure is 

Function Skew_m(x As Range)


mean = Application.WorksheetFunction.Average(x)


s = Application.WorksheetFunction.StDev(x)


Median = Application.WorksheetFunction.Median(x)


Skew_m = (3 * (mean − Median)) / s


End Function


Using this function with the data of Table 5.1, we calculate skew as 0 
for sample 1, −1.8 for sample 2, and 1.8 for sample 3, indicating symmetric, 
negative, and positive skew, respectively. Excel also has a built-in function 
Skew() for calculating skew. The formula it uses is 

N 
3∑ (x − x)

N i=1 
i 

=δExcel 3(N − 1)(  N − 2) S 
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TABLE 5.1 Three Small Samples 

Observation Sample 1 Sample 2 Sample 3 

1 −1.26 −1.64 1.64 
2 −0.63 −0.29 0.29 
3 0.00 0.60 −0.60 
4 0.63 0.69 −0.69 
5 1.26 0.63 −0.63 

Average 0.00 0.00 0.00 
Standard Deviation 1.00 1.00 1.00 

Using this function with the data of Table 5.1, we estimate the skew for 
sample 1 = 0, the skew for sample 2 = −1.5, and the skew for sample 3 = 1.5. 

Despite the fact that δ, δ m, and δ are different estimators and willExcel 
therefore differ in their numerical value, for the data in Table 5.1 they all 
convey the same information: that sample 1 is symmetric, sample 2 is neg-
atively skewed, and sample 3 is positively skewed. Indeed, a very useful rule 
of thumb for assessing the degree of skew is 

1. If the estimated skew is greater than 1 in absolute value, the distribution 
is highly skewed. 

2. If the estimated skew lies between 0.5 to 1, the distribution is moderately 
skewed. 

3. If the estimated skew is less than 0.5, the distribution is fairly sym-
metrical. 

MEASURING FAT TAILS 

Kurtosis is a measure of the weight in the tails of a probability distribution. 
If the sample has a large kurtosis, it will tend to have a distinct peak near 
the mean, decline quickly, and have heavy tails. If on the other hand the 
sample has a low kurtosis, it will tend to have a flat top around the mean. 
Kurtosis can be calculated using 

N 
4∑ (x − x) Ni 

i=1ψ = 
4S 

where S is the sample standard deviation. Kurtosis is usually measured rel-
ative to the normal distribution, which has a kurtosis of 3 (we discuss the 
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normal probability distribution in detail in Chapter 7). Relative kurtosis is 
calculated as 

κ = ψ − 3 

As illustrated in Figure 5.2, distributions with positive relative kurtosis 
have large tails and are called leptokurtic. Distributions with negative rela-
tive kurtosis have short tails and are called platykurtic. When κ =  0, the dis-
tribution has the same degree of peakedness as the normal distribution; such 
distributions are called mesokurtic. 

Platykurtic distribution 
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FIGURE 5.2 Platykurtic and Lepokurtic risk indicators. 
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EXAMPLE 5.2 MEASURING KURTOSIS 
FOR THREE SMALL SAMPLES 

In this example we return to Table 5.1 and calculate the kurtosis of each of 
the three samples. Since the mean for each sample is 0 and the variance is 
equal to 1, the kurtosis is simply 

5 4ψ = 1 ∑ ( )xi5 i=1 

Therefore 

For sample 1, 

4− 1( 1.26 4 + −  0.63)4 + (0.00)4 + (0.63)4 + (  .26)ψ 1 = ( = 1 07  . 
5 

For sample 2, 

4 
ψ 2 = ( 1.64)4 + −  0.29)4 + (0.60)4 + (0.69)4 + (0.63) = 1 55  

− ( 
. 

5 

For sample 3, 

4 
ψ 3 = (1.64)4 + ( .29)4 + −  0.60)4 + −  0.69)4 + −  0.63) = 1 55  

0 ( ( ( 
. 

5 

Although we cannot distinguish between the three samples of Table 5.1 
based solely on their mean and variance, we are able to distinguish between 
them if we use the additional measures of skew and kurtosis. Sample 1 is 
symmetric with a lighter tail than samples 2 and 3. Although samples 2 and 
3 have the same degree of kurtosis, they differ in the direction of their skew. 

Excel also offers a function for calculation of kurtosis, Kurt(). This 
function calculates the relative kurtosis of a sample. The formula used by 
Excel is 

N  
4 

ψ Excel = 

 N N  + 1) ∑ (xi − x)  2(  3(N − 1)i=1  − 
(N − 1)(  N − 2)(  N − 3) S 4 

 (N − 2)(  N − 3) 
  

 xi − x  
Since in the calculation of kurtosis the deviation   is raised S 

to the fourth power, it is very sensitive to values that lie a long way from 
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the mean. Two robust alternatives are Groeneveld’s (1998) relative kurtosis 

measure and Moors’s (1988) kurtosis measure. Groeneveld’s measure is 
given by 

ψ G = [P / − 2 P3 4  + P5 8] − 0 144 7 8  / / . 
[P / − P5 8]7 8  / 

where P is the xth percentile. A VBA function to calculate Groeneveld’s x 
measure is 

Function Kurt_g(x As Range) ' pass the data cells to the function


p58 = Application.WorksheetFunction.Percentile(x, 5 / 8)


p78 = Application.WorksheetFunction.Percentile(x, 7 / 8)


p34 = Application.WorksheetFunction.Percentile(x, 3 / 4)


Kurt_g = ((p78 − (2 * p34) + p58) / (p78 − p58)) − 0.144 


' main calculation 

End Function 

Moors’s measure is given by 

7 8  /ψ M = [P / − P5 8] − 1.2 
[P / ]3 4  

A VBA function to calculate this measure is: 

Function Kurt_m(x As Range)' pass the data cells to the function


p58 = Application.WorksheetFunction.Percentile(x, 5 / 8)


p78 = Application.WorksheetFunction.Percentile(x, 7 / 8)


p34 = Application.WorksheetFunction.Percentile(x, 3 / 4)


Kurt_m = ((p78 − p58) / p34) − 1.233 ' return the value


End Function


For Groeneveld’s measure and Moors’s measure a value greater than 0 
indicates fatter tails than those of the normal distribution and a value less 
than 0 indicates thinner tails. 

REVIEW OF EXCEL AND VBA FUNCTIONS 
FOR SKEW AND FAT TAILS 

We can estimate the skew of a sample using the Excel-defined Skew() func-
tion or the user-defined Skew_m() function. Although these two functions 
will differ in their numerical value, they will generally convey the same 
information about the direction of skew. Kurtosis can be estimated using 
the Excel function Kurt(). Alternative robust estimators can be obtained 
via Moors’s measure, implemented in the function Kurt_m(), or Groen-
eveld’s measure, implemented in the function Kurt_g(). 
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SUMMARY


Measures of central tendency and dispersion are not always sufficient to 
describe risk indicators or OR events. We frequently require additional 
information about the shape of the distribution generating risk indicators 
and OR events. Information about skew, kurtosis, mean and standard devi-
ation will be required when we estimate frequency of loss and severity of 
loss probability models. In the next chapter we outline a formal procedure 
for testing the value of these and other metrics which may be of interest to 
the OR manager. 

REVIEW QUESTIONS 

1. Explain why the mean and variance alone are not necessarily adequate 
descriptors for a sample of a risk indicator or OR event. 

2. Calculate the mean and median of the following data: 65 76 12 56 90 
89 78 34. Calculate the degree of skew using all of the methods dis-
cussed in the chapter and comment on your findings. 

3. Would you expect OR losses to be left or right skewed or symmetric? 
Why? 

4. For the data of question 1, calculate the kurtosis using all the measures 
described in this chapter. 

FURTHER READING 

A detailed discussion of robust measures for calculating kurtosis can be 
found in Moors (1988) and Groeneveld (1998). 
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CHAPTER 6 
Statistical Testing of Operational

Risk Parameters 

Many OR management decisions require the selection of a single alterna-
tive from a number of possible alternatives. The choice is generally made 

without knowing whether it is correct; that is, it is based on incomplete infor-
mation. For example, a person either takes or does not take an umbrella to 
the office based upon both the weather report and possibly looking out the 
window to observe the current weather conditions. If it is not currently 
raining, this decision must be made with incomplete information. 

Hypothesis testing provides a formal procedure for making rational 
decisions with incomplete information. The procedure is stated in such a 
fashion that another individual, using the same information, would make 
exactly the same decision. Setting up and testing hypotheses about estimates 
of OR events or risk indicators is an essential part of OR practice. In order 
to formulate a hypothesis test, usually some theory about a risk indicator, 
model parameter, or OR event is put forward, either because it is believed 
to be true or because it is to be used as a basis for argument, for example, 
claiming that a new model of OR events is better than the current model 
because it fits the data better or results in a smaller capital charge. In this 
chapter we introduce the modern approach to hypothesis testing and outline 
its relevance to OR practice. 

OBJECTIVE AND LANGUAGE 
OF STATISTICAL HYPOTHESIS TESTING 

In the previous two chapters we discussed estimators for the sample mean, 
standard deviation, kurtosis, and skew. We saw that such estimates pro-
vide useful descriptive information about the underlying probability dis-
tribution. We also know that a sample estimate is only an estimate of the 
underlying population characteristic and will vary from sample to sample. 

59 
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In fact, only by chance will we obtain the exact same sample estimate for 
two different samples. 

How can we have confidence that our sample estimate reflects the actual 
value of the population characteristic rather than some rogue value? Intu-
itively, the larger the sample, the more confidence we may have in the sample 
estimates. Unfortunately, in OR we frequently have to deal with small data 
sets. In this circumstance we can use hypothesis testing to support our 
decision making. Hypothesis testing is a formal statistical procedure for 
determining whether a sample is consistent with a particular hypothesis about 
an unknown characteristic of the population from which the sample came. 

Table 6.1 lists summary statistics for a sample of daily operational losses 
over 260 days. The sample estimate of the average loss is $434,045, relative 
kurtosis of daily operational losses is approximately 2.26, and skew is 1.78. 
We know that if we were to take another sample over a different time period, 
say 300 or 500 days, the sample estimates will be different. A key question 
is: How can we be sure the sample estimates are not due to chance when in 
fact the real population estimates take on very different values? To illustrate 
this, consider the estimate of the relative kurtosis, that takes on a value of 
2.26. How can we be confident that the true population value is not actually
0? The answer will need to provide us with evidence on whether 2.26 is in 
some sense significantly different from 0. The way this problem is approached 
through hypothesis testing is to calculate how often we would get a sam-
ple estimate as large or larger than 2.26 if the population relative kurtosis 
really was equal to 0 and therefore the sample estimate of 2.26 was due to 
chance. If a value as large or larger than 2.26 occurs by chance frequently, 
then chance is a feasible explanation of the observed value. However, if 
such a value only occurs by chance very rarely, then chance is probably not 
a feasible explanation. This is the essence of the scientific approach to re-
search. The scientific approach to research operates by disproving unsatis-
factory hypotheses and proposing improved hypotheses that are testable. 
Statistical hypothesis testing is based on a similar principle. 

To carry out a hypothesis test, we are required to form two mutually 
exclusive hypothesis statements known as the null hypothesis (H0) and the 
alternative hypothesis HA. We start with a null hypothesis that we assume 

TABLE 6.1 Summary Statistics for Operational Losses 

Summary Statistic Operational loss 

Standard Deviation $ 73,812 
Average $434,045 
Kurtosis 2.26 
Skew 1.78 
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is correct. Since our goal is to reject the null hypothesis, in favor of the alter-
native hypothesis, the null hypothesis is always chosen to be the hypothesis 
in which there is no or zero change 

The significance level (often denoted by α) is the probability that you 
are prepared to accept in incorrectly rejecting the null hypothesis. Its value 
is the acceptable error threshold for rejecting the null hypothesis when 
the null hypothesis is in actual fact true. What value should we choose for the 
significance level? In general, we want it to be small, and in practice it is 
common to set it at 0.01, 0.05, or 0.1. The significance level is often re-
ported as a percentage, that is, 1 percent, 5 percent, and 10 percent. Incor-
rectly rejecting the null hypothesis when it is true is know as a type I error. 
When using the 1 percent significance level, we make a type I error 1 percent 
of the time or less. A type II error, typically denoted by β, is the probabil-
ity of failing to reject the null hypothesis when it is false. What value should 
we choose for a type II error? We would like to make our type II error as 
small as possible. The power of a statistical hypothesis test measures the 
test’s ability to reject the null hypothesis when it is actually false. It is cal-
culated as 1 − β. The maximum power a test can have is 1, and the mini-
mum is 0. It seems logical to require any hypothesis test to have as high a 
power as possible, which in turn requires a small type II error. 

STEPS INVOLVED IN CONDUCTING A HYPOTHESIS TEST 

The easiest way to become familiar with hypothesis testing is to work 
through an example. Given the sample estimate of relative kurtosis, which 
we denote by κ̂, the first step is to specify a null and alternative hypothesis. 
Differentiating the null and alternative hypothesis can be easily achieved if 
you remember that the null hypothesis is the hypothesis that includes any 
of the equalities =, ≥, or ≤. We investigate the null hypothesis that the pop-
ulation kurtosis is equal to 0 against the alternative that it is greater than 0. 
We write this as 

Test H0: κ = 0 against HA: κ > 0 

Since we are only interested in values greater than the null, this is known 
as a one-sided test. We note that if we specified our alternative hypothesis 
as HA: κ ≠  0, our test would be a two-sided test. 

The next step involves setting an appropriate significance level. We 
choose α =  5 percent as the convention adopted in much of the scientific and 
research literature. We then need to calculate an appropriate test statistic. A 
test statistic, which we denote by T̂, is a function of the sample data. Its esti-
mated value is used to decide whether or not to reject the null hypothesis. For 
every parameter that we can estimate there is an appropriate test statistic. 
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In this section we focus on the test statistic for kurtosis. Other test statistics 
will be introduced throughout the remainder of the book. 

Given a sample of size N, the test statistic for a relative kurtosis 
hypothesis test is 

T̂ = κ̂ 

24 
N 

Suppose we calculate the value of this test statistic, as 

. 
.T̂ = 

2 26  = 7 44  
24 

260 

Since the estimate of T̂ will vary from sample to sample, it is also a ran-
dom variable. We know from previous discussions that random variables 
have an associated probability distribution. What is the probability distri-
bution of T̂ ? In this example, T̂ is a standard normally distributed random 
variable. Figure 6.1 shows the probability distribution of T̂. The mean of 
the distribution of T̂ is zero because all test statistics are constructed on the 
assumption that the null hypothesis is valid and therefore the average dif-
ference between the sample estimate and population value should be 0. 
The probability distribution of the test statistic is usually referred to as the 
sampling distribution of the test statistic, or sampling distribution for 
short. The sampling distribution of the relative kurtosis test statistic is the 

Do not reject H0 Reject H0 

P
ro

b
ab

ili
ty

 

Value of Test Statistic 
−3 −2 −1 0 Tα1 2 3 

FIGURE 6.1 Sampling distribution for the kurtosis test statistic. 
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normal distribution. This is the most common sampling distribution. 
Other common sampling distributions include the Student’s t distribu-
tion, F distribution, and chi-squared distribution. Tables for each of these 
distributions are given in Appendix 1. 

The next stage of hypothesis testing involves calculating the critical 
value of the test statistic denoted Tα. This is the value beyond which the null 
hypothesis becomes untenable. The value of Tα can be obtained from the 

−1 1percentile function of the test statistic Fˆ ( − α). Since we set α =  5 per-
T 

cent and T̂ is a standard normal random variable, we will wish to obtain 
the value of T0.05. The critical values are tabulated in Table A.1. In this 
table we look up the closest value of F(z) to (1 − α) and read across to find 
the value z that is the critical value Tα. In our example, α = 0.05 so (1 − α) 
= 0.95. Looking in Table A1, we find F(z) = 0.949497 is the closest value 
to 0.95. Reading across, we see that this corresponds to a value of Z =1.64; 
therefore, the critical value T0.05 = 1.64. We can also obtain the critical 
value using the Normsinv function of Microsoft Excel. For this example we 
simply type Normsinv(0.95), and the function returns a value of 1.64. 
Thus, for a one-sided test we see that T0.05 = 1.64. This is the critical value 
for our hypothesis test. 

Finally, we compare the value of the test statistic to the critical value 
and use this comparison to decide whether to reject the null hypothesis. For 
this example we reject the null hypothesis in favor of the alternative hypoth-
esis if T̂ > Tα. Since T̂ = 7.44 > T0.05 = 1.64, we reject the null hypothesis of 
no kurtosis. The rationale for rejection of the null if T̂ > Tα is illustrated in 
Figure 6.1. It shows the sampling distribution of the test statistic T̂. From 
this diagram we can see that if the null hypothesis is true, then values of the 
test statistic T̂ near 0 are much more likely than values far away from 0. 
Indeed, the null hypothesis is rejected only if the evidence against it is strong 
since the estimate of T̂ could not easily have been produced by chance. This 
can be seen in Figure 6.1, in which values of T̂ beyond Tα are assumed not 
to furnish us with sufficient evidence in terms of probability to accept H0; 
therefore, for values beyond Tα we reject H0. When the null hypothesis, is 
rejected in favor of the alternative hypothesis, the result is referred to as 
statistically significant. 

Many statistical packages report the p value of the test statistic along-
side the critical value and the estimate of the test statistic. The p value is 
the probability that the test statistic is greater than or equal to T̂. The p 
value for the kurtosis test statistic is given by 1 − F (| T̂ |). It can be calcu-
lated in Microsoft EXCEL using the function normsdist(T̂). In this case 
normsdist(7.44) is approximately equal to 1, and therefore 1 − F (| T̂ |) lies 
close to 0. Since the value of 1 − F(| T̂ |) is less than the significance level 0.05, 
we reject the null hypothesis. 
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TWO-SIDED HYPOTHESIS TESTING 

In the above example, we were only interested in values greater than 
the null since our test was 

0: k = 0 against HA: k > 0 
and we reject the null hypothesis if T̂ > Tα. 

This is known as a one-sided hypothesis test. A one-sided test is a test 
in which we are only interested in values greater (or less) than the null. 
Another one-sided hypothesis test is 

0: k = 0 against HA: k < 0 
and we reject the null hypothesis if T̂ < Tα. 

A two-sided hypothesis test is a test in which we are interested in val-

0: k = 0 against HA: k ≠ 0 
and we reject the null hypothesis if | T̂ | > Tα 

In the two-sided case we calculate the critical value using α/2. For 
example if α = 5 percent, the critical value of the test statistic is 
T0.025. In Microsoft Excel we type Normsinv(1-0.025), which 
returns a value of 1.96; therefore, T0.025 = 1.96. Since in the above 
example T̂ = 7.44 and |7.44| > 1.96, we reject the null hypothesis. 

Test H

Test H

ues greater and smaller than the null hypothesis. We write this as 

Test H

CONFIDENCE INTERVALS


In the previous section we considered setting up and testing a hypothesis for 
an unknown population parameter. For most OR problems statistical test-
ing of this type will be inadequate. For example, suppose we reject the null 
hypothesis that the kurtosis is equal to 0. Faced with this result, the OR 
manager is likely to ask, “Since I have established that the kurtosis is not 
equal to 0, what else does this result tell me about the kurtosis for the pop-
ulation as a whole?” Questions of this kind require information beyond 
that provided in simple hypothesis testing. They require information on a 
range of plausible values in which the population parameter is likely to lie. 
Such information is provided by constructing a confidence interval around 
a sample estimate. A confidence interval is an interval constructed from a 
sample, which includes the parameter being estimated with a specified 
probability know as the confidence level. 
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EXAMPLE 6.1 CALCULATING A CONFIDENCE INTERVAL 
FOR AVERAGE OPERATIONAL LOSSES 

_ 
To illustrate this idea, suppose the mean operational loss X = $434,045 and set 
α = 5 percent so that we have a (1 − α) = 95 percent confidence interval around 
the estimate of the mean. Such an interval can be calculated using 

X ± zα × Stdev(X) 

Stdev(X), the standard deviation of X, is equal to $73,812, and z is the 
standard normal variable for α = 5 percent. Using the Normsinv() function, 
we see that Normsinv(0.95) = 1.64 (of course, we could also use Table 
A.1). Therefore, we set z = 1.64 and calculate the 95 percent confidence 
interval as $312,635 to $555,455. What does this tell us? It specifies a plau-
sible range of values within which the unknown population mean may lie. 
In this case the OR manager may feel comfortable stating the average OR 
loss as $434,045, although we have 95 percent confidence that the actual 
(population) value will lie somewhere close to this value, say, between 
$312,635 and $555,455. 

If a risk indicator was sampled on many occasions, and the confidence 
interval calculated each time, then (1 − α) percent of such intervals 
would cover the true population parameter being estimated. Therefore, 
the width of the confidence interval measures how uncertain we are 

indicates less uncertainty about the value of the population parameter 
than a very wide interval. Notice that since a confidence interval is a 
function of a sample, it is itself a random variable and will therefore 
vary from sample to sample. 

WIDTH OF A CONFIDENCE INTERVAL 

about the unknown population parameter. A very narrow interval 

CASE STUDY 6.1: STEPHAN’S MISTAKE 
Stephan, a hot-shot MBA graduate from a leading North American univer-
sity, is keen to prove himself on his first day in his new position as junior 
risk manager of GAI Investment Bank. He has been asked by his boss 
Dr. Richards to write a report on the impact of mispriced trades on daily 
reported profit and loss over the previous 12 months. Since the impact on 
profit and loss can be negative or positive and given that Stephan has 
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no reason to believe the impact should be positive or negative, he assumes 
the process generating mispriced trades has a normal distribution with a 
0 mean. He then decides to take a random sample of 20 mispriced trades _
(N = 20) and find x (the average value of mispriced trades) has a positive 
impact of $52,325 on the reported profit and loss. After talking to a num-
ber of coworkers, he assumes the population standard deviation σ is equal 
to $3,000 and decides to test formally whether the population mean is greater 
than $52,325. Denoting µ the population mean, Stephan wants to test 

H0: µ = µ = $50,000 against HA: µ > $50,0000 

The decision rule is to reject H0 in favor of HA if T̂ > Tα , where 

, ,
T̂ = x − µ 52 325 − 50 000 0 = .= 3 47  σ 3000 

20N 

For a 5 percent significance level he finds T0.05 = 1.64 (see Table A.1), since 
3.47 > 1.64 Stephan rejects the null hypothesis in favor of the alternative
hypothesis. 

Dr. Richards reads Stephan’s report with great interest. Unfortunately 
for Stephan, Dr. Richards is extremely unhappy with Stephan’s assumption 
about the population standard deviation. Throwing down Stephan’s hastily 
prepared report, Dr. Richards barks, “How can we possibly know what this 
value is?” Stephan is dumbstruck, and he fears his first day in his new job 
is not going very well. 

Why was Dr. Richards so angry? Well, in OR management we will rarely 
know the precise value of population parameters. The test statistic Stephan 
used assumed the population standard deviation was known. Stephan used 
the incorrect test statistic. He should have used the following test statistic: 

T̂ = x − µ0 

s 
N 

where s is the sample standard deviation. 
In actual fact, this test statistic has a different sampling distribution 

than the statistic Stephan used. Stephan’s test statistic is normally distributed, 
whereas the above test statistic has a Student’s t distribution with N − 1 
degrees of freedom. In many cases there is little difference between the two 
test statistics because the t distribution becomes approximately normally 
distributed as N becomes increasingly large. For the moment, let us suppose 
that s = 3,000; using the correct test statistic the value will be the same as 
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before, that is, 3.47. From Table A.3, we see that Tα = 1.729. Since 3.47 > 
1.729, Stephan’s rejection of the null hypothesis appears to be correct even 
through he used the wrong test statistic! Rather unfortunately for Stephan, 
Dr. Richards reworked Stephan’s calculations and found the estimate of s 
was 7,878. Hence the value of the test statistic should have been 1.32, 
which is less than 1.729, and therefore he concludes that he cannot reject 
the null hypothesis. 

EXCEL FUNCTIONS FOR HYPOTHESIS TESTING 

The common sampling probability distributions of the normal, Student’s t, 
chi-square, and F distributions can be accessed in Excel using the functions 
Normsdist(), Tdist(), Chidist(), and Fdist() respectively. Inverse or per-
centile functions are also readily available. We have made some use of 
Normsinv() for the normal distribution. We can also use Tinv(), Chiinv(), 
and Finv() for the percentile functions of the Student’s t, chi-square, and 
F distributions, respectively. The tables in Appendix 1 were all produced 
using Excel. Excel also provides a number of test procedures based on 
sampling distributions. Chitest(), Ztest() and Ttest() based on the Chi 
squared, Normal, and Student’s t sampling distributions, respectively. 

SUMMARY 

Setting up and testing hypotheses is full of pitfalls. The very first thing you 
should keep in mind is that hypotheses tests are designed to disprove 
hypotheses. The objective is to show that a null hypothesis is extremely 
unlikely because it’s acceptance occurs with an unacceptably small proba-
bility. It is very important to realize that if the value of the test statistic 
results in the acceptance of the null hypothesis, it does not follow that we 
have grounds for believing this hypothesis to be true; rather, we have no 
grounds for believing it to be false. A null hypothesis is not accepted as true 
because it is not rejected. 

Quantitative analysts often interpret the rejection of a hypothesis at the 
α percent level as implying that the probability that the null hypothesis is 
false is 1 − α. In fact, the α percent level of significance implies the observed 
test statistic result belongs to a class of results whose overall probability 
of occurrence if the null hypothesis is true is 1 − α. We encounter a number 
of hypothesis test statistics throughout the remainder of this book. The 
sampling distributions are always given and the values of the test statistic can 
be obtained from the tables at the end of this chapter or via the appropriate 
Excel function. 
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REVIEW QUESTIONS 

1. Why is a test statistic a random variable? 
2. Why is a confidence interval a random variable? 
3. Which is more informative: a hypothesis test or a confidence interval? 

Why? 
4. Explain the difference between a type I error and a type II error. 
5. What do you feel is an acceptable significance level for your OR prac-

tice and why? 
6. Calculate a 95 percent confidence interval around the estimate of the 

mean in Case Study 6.1. 
■	 Investigate what happens to the width of the interval for a 99 per-

cent and 90 percent confidence interval, respectively. 
■	 Supposing N = 10 in Case Study 6.1, would Stephan’s conclusion have 

been different? 
■	 What happens when N = 1000? 

FURTHER READING 

To gain a full appreciation of the pros and cons of classical hypothesis test-
ing, you need to read Chatfield (1985), Clark (1963), Carver (1993), Levin 
(1993), and Wilcox (1998). Applications in other areas of risk manage-
ment are given in Lewis (2003). 
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CHAPTER 7 
Severity of Loss

Probability Models 

F itting a probability distribution to data on the severity of loss arising from 
an OR event is an important task in any statistically based modeling of 

operational risk. The observed data to be modeled may consist of actual val-
ues recorded by a business line, or may be the result of a simulation. In fit-
ting a probability model to empirical data, the general approach is first to 
select a general class of probability distributions and then find the values for 
the distributional parameters that best match the observed data. In this chap-
ter we discuss the entire process of how to select, estimate, and assess suit-
able probability models for the severity of loss arising from an OR event. 

NORMAL DISTRIBUTION 

We begin our discussion of severity models with the normal distribution. A 
continuous random variable X is said to follow a normal distribution with 
mean m and standard deviation s if it has the probability density function 
given by 

1  1 2 f x( ) = 
2πσ 2 

exp 


− 
2σ 2

(x − µ) 
 − ∞  <  x <  ∞  

If m = 0 and s =1, the distribution is known as the standard normal dis-
tribution. The standard normal distribution is illustrated in Figure 7.1. The 
normal distribution is bell-shaped and symmetric around m, the mean. This 
implies a normally distributed random variable has zero skew and the median 
and mode equal m, the mean. The distribution has a kurtosis equal to 3. 

The formula for the normal probability density function actually 
defines a family of distributions depending on the parameters m and s. The 
parameter m is known as a location parameter because changing the mean 
shifts the curve along the x axis, as shown in Figure 7.2. The parameter σ 

69 
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FIGURE 7.1 Standard normal probability distribution. 

is known as a scale parameter because changing the standard deviation 
changes the spread of the curve, as illustrated in Figure 7.3. 

Open the spreadsheet Normal Distribution in the workbook Operational 
Risk 07.xls. It provides an interactive example of this phenomenon. Experi-
ment with differing values of the standard deviation (cell C8), and note how 
the distribution flattens as the value increases and becomes more peaked 
as the value decreases. Do the same thing with the mean (cell C7), and notice 
how the location of the distribution moves along the horizontal axis. 

The most flexible probability distributions will have parameters for 
location, scale, and shape. The location parameter controls where on 
the horizontal axis the distribution is centered, the scale parameter 
controls the spread of probability around the center of the distribu-
tion, and the shape parameter controls the shape of the distribution. 
The normal distribution only has parameters for location and scale. 

PARAMETERS OF PROBABILITY DISTRIBUTIONS 
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FIGURE 7.2 Changing the location parameter of a Normality distributed random variable. 
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FIGURE 7.3 Changing the scale parameter of a Normality distributed random variable.
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ESTIMATION OF PARAMETERS


Probability distributions are determined by their parameters. In order to 
obtain a suitable probability model for our severity of loss data, we need, 
among other things, to obtain an estimate of the parameters of the postu-
lated probability model. How can we obtain such an estimate? The answer 
lies in choosing a suitable estimator. There are three basic categories of 
parameter estimation. The first involves plotting the empirical data against 
a cumulative probability function on special graphical paper. The value of 
the estimated parameters can then be read off the graphical plot. Graphical 
methods are often used because of their simplicity and speed. However, they 
are less accurate than other methods. The second category involves the use 
of a system of equations equal to the number of parameters to be estimated. 
Common techniques in this category are the method of moments, proba-
bility weighted methods, order statistics, and percentile matching. The third 
category is optimization methods that seek to maximize or minimize some 
function of the data. Typical methods in this category are the methods of 
least squares and maximum likelihood. 

sider the estimator for the arithmetic mean of a sample of N 
on a random variable X that follows the normal distribution 

If for a specific sample , then 2.3 is our estimate. 1 In practice, 
the form of an estimator will depend on which probability distribution 
is selected as the most suitable for a given sample. 

X = 2 3. 

X 
N 

xi 
i 

N 

= 
= 
∑1 

1 

THE DIFFERENCE BETWEEN AN ESTIMATOR AND AN ESTIMATE 

To illustrate the difference between an estimator and an estimate, con-
observations 

BETA DISTRIBUTION


The standard beta distribution is most useful when the severity of loss is 
expressed as a proportion. Given a continuous random variable x, such that 
0 ≤ x ≤ 1, the probability density function of the standard beta distribution 
is given by 

x)β −1xα −1(1 −
f x( )  = 

B( ,α β) 
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where 

1 
β −1du  ,B( ,α β) = uα −1(1 − u) α > 0, β > 0∫ 

0 

The parameters a and b control the shape of the distribution. By their care-
ful selection, as illustrated in Figures 7.4 and 7.5, it is possible to achieve a 
very wide variety of density shapes. 
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FIGURE 7.4a Beta distribution of for various parameter values. 
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FIGURE 7.4b Beta distribution of for various parameter values. 
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FIGURE 7.5a Additional Beta distributions for various parameter values. 
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FIGURE 7.5b Additional Beta distributions for various parameter values. 

Open the workbook Operational Risk 07.xls, and select the spreadsheet 
Beta Distribution. Experiment with differing values of α and β What hap-
pens if α = β = 1? Scrutinize how this worksheet uses the Excel function 
BETADIST(x, a, b ) to calculate values of the standard beta cumulative 
probability function. Notice how by adjusting the parameters α and β, it is 
possible to achieve almost any desired density for which the random vari-
able X lies in the range of 0 to 1. Increasing either parameter by itself moves 
the mean of the distribution to the right or left, respectively. Increasing both 
parameters together decreases the variance. In fact, by taking a transfor-
mation such as Y = aX + b, we can get almost any desired density on the 
interval (b, a + b). 
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FIGURE 7.5c Additional Beta distributions for various parameter values. 
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FIGURE 7.5d Additional Beta distributions for various parameter values. 

The mean of the beta distribution is given by 

αMean = 
(α + β ) 

and Standard deviation = 
+ + + 

αβ 
α β α β( )2 1)  (  

The parameters of this distribution can be easily estimated using the fol-
lowing (method of moments) equations: 
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α = X 


 X (1 − X )  ˆ 

ˆ 
 − 1 β = (1 − X ) 




 

X (1 − X )
 − 12 2

 S   S  

The following VBA function can be used to obtain the parameter estimates 
of a beta distribution: 

Function est_beta(data As Range, which As Boolean) 

Dim mean As Double 

Dim var As Double 

Dim alpha As Double 

Dim beta As Double 

Dim temp As Double 

Mean = Application.WorksheetFunction.Average(data) 
var = Application.WorksheetFunction.var(data) 
temp = ((mean * (1 − mean) / var) − 1) 
If which = True Then est_beta = mean * temp 

' return alpha 

If which = False Then est_beta = (1 − mean) * temp 
' return beta 

End Function 

The function will return an estimate of α if the which Boolean variable is 
set to True or b if it is set to False. For example est_beta(c1:c1000,True) 
will estimate a using data in cells C1 to C1000. To illustrate the application 
of this function, select the worksheet Beta Estimation in the workbook 
Operational Risk 07.xls. This worksheet uses the est_beta() function to 
estimate the parameters from simulated data from the standard beta distri-
bution with known parameters. Enter values for the parameters a and b 
and press <F9> to run the simulation. Notice how the parameter estimates 

GENERAL BETA DISTRIBUTION 

In this section we have described the standard beta distribution. 
There is a more general beta distribution that can be used when 
the random variable x lies in the interval (a, b). The cumulative 
density function can be calculated in Excel using the function 
BETADIST(x,alpha, betabeta,a,b). The simulation in the worksheet 
Beta Estimation in the workbook Operational Risk 07.xls used the 
inverse beta function BETAINV(x,alpha,betabeta,a,b) with parameters 
BETAINV(RAND(),alpha, beta,0,1). 
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become closer to the actual values as the sample size increases. A sample of 
1000 observations yields more accurate parameter estimates than a sample 
of only 10 observations. This raises the important point that when using 
estimators, increasing the number of observations used to obtain the esti-
mate may substantially increase the accuracy of the estimate. As a rule of 
thumb, we should aim to collect at least 30 observations before attempting 
to estimate a severity of loss probability distribution. 

ERLANG DISTRIBUTION 

For continuous random variables where 0 ≤ x ≤ ∞  , the probability density 
function of the Erlang distribution is given by 

β − 1
 x   x  

exp 


−
 α  α  

f x( )  = 
[(α β − 1)! ] 

with parameters α > 0 and integer b > 0. The mean = α b, and standard 
2deviation = α β . Parameters of the distribution are estimated (method of 

moments) as 
2 

and β̂ = 

 

X  
2 

Sα̂ = 
X S  

The Erlang distribution is closely related to the gamma distribution and we 
explore the impact of the parameters on the shape of the distribution in the 
section on the gamma distribution. 

EXPONENTIAL DISTRIBUTION 

For continuous random variables where 0 ≤ x ≤ ∞  , the probability density 
function of the exponential distribution is given by 

1  x 
f x( ) =

α 
exp


− 

α  

where a is a scale parameter. The mean and standard deviation are equal to 
a, whereas the median is a log2 and the mode is equal to 0 . The distribution 
has a constant skew of 2 and kurtosis of 9. Since there is only one parameter, _ 
it can be easily estimated (maximum likelihood) by â=X−1 Figure 7.6 illus-
trates the exponential distribution with a = 1. The worksheet Exponential 
Distribution in the workbook Operational Risk 07.xls allows you to 
explore how the distribution changes with differing values of a. 



β̂ =






X

s

2
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FIGURE 7.6 Exponential distribution alpha = 1. 

GAMMA DISTRIBUTION 

For continuous random variables where 0 ≤ x ≤ ∞, the probability density 
function of the gamma distribution is given by 

 x 
β −1 

 x  
  exp −  α   α 

f x( )  = 
α Γ( )β 

where α > 0 is a scale parameter and β > 0 is a shape parameter, and Γ(β) is 
∞ 

the gamma function given by Γ( ) = exp(−u uβ −1 du. Thus, the gamma)β ∫ 
0 

distribution is a generalization of the Erlang distribution where the para-
meter b is not restricted to be an integer. Figure 7.7 illustrates a gamma dis-
tribution with a = 5, and b = 0.5. You can explore the impact of changing the 
value of the parameters in the worksheet Erlang & Gamma Distribution. 

The mean is equal to ab and the standard deviation, skew, and kurtosis 
2are α β . Parameters can be estimated (method of moments) using the same 

estimator as for the gamma distribution: 

2 
α̂ = s 

and , where s is the sample standard deviation
X 
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FIGURE 7.7 Gamma distribution alpha = 5, beta = 0.5. 

The following VBA function can be used to obtain the parameter estimates: 

Function est_gamma(data As Range, which As Boolean) 

Dim mean As Double 

Dim var As Double 

Dim alpha As Double 

Dim beta As Double 

Dim temp As Double 

mean = Application.WorksheetFunction.Average(data) 
var = Application.WorksheetFunction.var(data) 
If which = True Then est_gamma = var / mean 

' return alpha 

If which = False Then est_gamma = (mean / var ˆ 0.5) ˆ 2 
'return beta 

End Function 

The function will return an estimate of α if the which Boolean 
variable is set to True or b if it is set to False. For example 
est_gamma(c1:c1000,True) will estimate α using data in cells C1 to 
C1000. To illustrate the application of this function look at the worksheet 
Gamma Estimation in the workbook Operational Risk 07.xls. This work-
sheet uses the est_gamma function to estimate the parameters from simu-
lated data from the gamma distribution with known parameters. Enter 
values for the parameters a and b and press <F9> to run the simulation. 
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As expected, the parameter estimates become closer to the actual values as 
the sample size increases. 

LOGNORMAL DISTRIBUTION 

For continuous random variables where 0 ≤ x ≤ ∞  , the probability density 
function of the lognormal distribution is given by 

2 1  − [log(x / α )]
f x( ) = 

2  
xβ 2π 

exp 
 2β 

In this case we can directly interpret a as the median and b as the shape para-

meter. The mean is α exp  1 β 2 
 and the standard deviation is α (c2 − c) 2 

where c = exp b 2. Parameters can be estimated (maximum likelihood) using 

n 2 

α = exp 
 1 ˆ  1 

 ∑ ( log xi − log ˆˆ ∑ log Xi 


 and β = 

(n − 1)i = 

n 

1 n i = 1  

α) 

Figure 7.8 illustrates the lognormal distribution with mean = 2 and stand-
ard deviation = 0.5. The worksheet Lognormal Distribution allows 
you to explore how the distribution changes with differing values of the 
parameters. 
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FIGURE 7.8 Lognormal distribution mean = 2, standard deviation = 0.5. 
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PARETO DISTRIBUTION


For continuous random variables where 1 ≤ x ≤ ∞,  the probability density 
function of the Pareto distribution is given by f(x) = αx−α−1, where α < 0 the 

α 
is the shape parameter. The mean is (α − 1) , α > 1, and the standard devi-

 α  −  α 
ation is  α − 1

 
2

,α > 2. Parameters can be estimated (maximum α − 2  

n1 1
likelihood) using = ∑ log xi .α̂ n i = 1 

WEIBULL DISTRIBUTION 

The random variable X with probability density function 

β − 1  βx 
 exp −( x / α )βf x( ) =  

β  α 

for x > 0, has a Weibull distribution with scale parameter a > 0 and shape 
parameter b > 0. Figure 7.9 illustrates the Weibull distribution with a = 10 
and b = 5. The worksheet Weibull Distribution allows you to explore how the 
distribution changes with differing values of the parameters. 
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FIGURE 7.9 Weibull distribution alpha = 10, beta = 5. 
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For a sample of n observations {x1, . . . ,  x }, an estimate of a can be n
obtained as follows: 

X̃

ˆ β 

 
exp Ỹ

ˆ =α −


where 

n 
 

ln ln 






 




1
−


1








 

n1 1
 1
X̃ Ỹ =∑ ∑
and
 ln
xi
=


i
n n1i 1i=
 = 
+n


To complete the calculation, we require an estimate of β. This can be 
achieved as follows: 

Step 1: Calculate the mean rank Pi: 

−
rank( x ) .0 3iPi =

n
−
 .0 4  

and 
n

Pn =

n + δ


where d is a small positive number that is 1E-15. The rank can 
be calculated using the Excel function Rank(). 

Step 2: Calculate the transformed rank Ti: 

1
lnTi =


1
−
Pi 

y

Step 3: Transform the data by taking the natural log: 

i = ln(xi) 

^ Step 4: Use the excel function Slope(Ti’s,yi’s) to obtain b . 

EXAMPLE 7.1 ESTIMATING THE PARAMETERS 
OF THE WEIBULL DISTRIBUTION 

To illustrate this procedure, consider the data shown in Table 7.1. The first 
column shows the actual data. The second column shows the corresponding 
rank. The third column gives the values for Pi. For example, 
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TABLE 7.1 Calculation Required for Estimation of Weibull Parameters 

Original 
Data Rank Pi Ti ln (x) 

0.438 1 0.04795 −3.01323 −0.82554 
2.413 2 0.11644 −2.08913 0.88087 
3.073 3 0.18493 −1.58727 1.12265 
3.079 4 0.25342 −1.23012 1.12460 
3.137 5 0.32192 −0.94550 1.14327 
3.198 6 0.39041 −0.70326 1.16253 
3.918 7 0.45890 −0.48750 1.36558 
4.287 8 0.52740 −0.28835 1.45559 
4.508 9 0.59589 −0.09864 1.50585 
4.981 10 0.66438 0.08782 1.60563 
5.115 11 0.73288 0.27767 1.63218 
5.592 12 0.80137 0.48015 1.72134 
5.848 13 0.86986 0.71254 1.76610 
5.958 14 0.93836 1.02474 1.78473 
6.013 15 1.00000 3.60378 1.79392 

rank( x ) − 0 3  = 1 0  3  1 . − .
P1 =	 = 0 0. 

n − 0 4  n − 0 4. . 

The forth column gives the values of the natural logarithm of the original data 
(first column). Table 7.2 shows the estimate of the parameter values, alongside 
the values of X and Y 

OTHER PROBABILITY DISTRIBUTIONS 

There are a very wide variety of probability models that could be used for 
modeling the severity of loss. Examples include logistic, Cauchy, LogLogistic, 
Chi LogWeibull, Cobb-Douglas, Lorentz, Maxwell, and Fisk probability 
distributions. Since the severity of loss is bounded by 0, symmetric distri-
butions such as the normal, Cauchy, and logistic distributions may not be 
suitable choices.2 We have restricted our attention to those probability dis-

TABLE 7.2	 Estimates of Weibull Parameters 
and Intermediate Values 

^ b 
^ a 

1.814 
4.784 _ 

X −0.5128 _ 
Y	 1.2826 



tributions that we have found to be flexible, accurate, and relatively easy to
fit to simulated or empirical data.

WHAT DISTRIBUTION BEST FITS MY SEVERITY OF LOSS DATA?

In estimating the parameters of a number of potential probability distribu-
tions, we will eventually need to decide which, if any, best represent our
observations. There are two basic approaches to answer this question. The
first involves drawing a graph known as a probability plot. The second
approach involves the use of formal statistical hypothesis testing.

Probability Plot

A probability plot is a graphical technique for determining if sample data
comes from a specific probability distribution. It is a plot of the quartiles
(or percentages) of points below a given value of the sample data set against
the quartiles of the postulated probability distribution. A straight line
(known as the reference line) is also plotted. If the sample comes from the
postulated probability distribution, the plotted points will fall along this
reference line. Departures from the reference line indicate departures from
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FIGURE 7.10 Exponential Probability Plot for well fitting sample data.
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FIGURE 7.11 Exponential Probability plot for poorly fitting sample data.

the specified distribution. Figure 7.10 illustrates an exponential probability
plot for a sample data set. In this case the data points lie close to the refer-
ence line and we conclude that an exponential probability distribution is an
acceptable probability model for this data. Figure 7.11 illustrates an expo-
nential probability plot for the situation in which the data does not appear
to follow an exponential distribution. In this case the data points do not lie
close to the reference line, and an alternative probability model will need to
be selected.

Formal Test Statistics

There are numerous test statistics for assessing the fit of a postulated severity
of loss probability model to empirical data. In this section we focus on two
of the most general: the Kolmogorov-Smirnov goodness of fit test and the
Anderson-Darling goodness of fit test. In discussing these two test statistics,
we shall assume we have a sample of N observations on the severity of loss
random variable X. Furthermore, we will be interested in testing H0: Samples
come from the postulated probability distribution, against H1: Samples do
not come from the postulated probability distribution.
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Kolmogorov-Smirnov goodness of fit test: The Kolmogorov-Smirnov test statistic 
is calculated as the largest absolute deviation between the cumulative dis-
tribution function of the sample data and the cumulative probability distri-
bution function of the postulated probability density function over the 
range of the random variable: 

T = max SN ( ) − F  x  x  ( ) 

over all x, where the cumulative distribution function of the sample data is 
SN(x), and F(x) is the cumulative probability distribution function of the 
postulated probability density function. The Kolmogorov-Smirnov test relies 
on the fact that the value of the sample cumulative density function is asymp-
totically normally distributed. Hence the test is distribution free in the sense 
that the critical values do not depend on the specific probability distribution 
being tested. For a 10% significance level the critical value for the Kolmogorov-

Smirnov test statistic is approximately 1 224.  / N , for 5% significance level 

it is approximately 1 358.  / N , and for a 1% significance level it is approxi-

mately 1 628.  / N . 

Anderson-Darling goodness of fit test: The Anderson-Darling test statistic is 
given by 

N 

T̂ = −N − 1 ∑ 2(i − 1){ln F  xi ) + ln [1 − F( x̃N 1( ˜ + −i )]}N i=1 

~where xi are the ordered by size sample data. It is a modification of the 
Kolmogorov-Smirnov test that is more sensitive to deviations in the tails 
of the postulated probability distribution. It achieves this added sensitiv-
ity by making use of the specific postulated distribution in calculating 
critical values. Unfortunately, this extra sensitivity comes at the cost of 
having to calculate critical values for each postulated distribution. For 
example, if we postulate a normal distribution for our data, then for a 10 
percent significance level the critical value is approximately 0.631, for a 
5 percent significance level it is 0.752, and for a 1 percent significance 
level it is 1.035. However, if we postulate a Weibull distribution, then the 
critical value for a 10 percent significance level the critical value is 0.637, 
for a 5 percent significance level it is 0.757, and for a 1 percent signifi-
cance level it is 1.038. 

CASE STUDY 7.1: MODELING SEVERITY OF LEGAL LIABILITY LOSSES 

Table 7.3 shows the legal liability losses (measured in pounds Sterling) of a

financial institution. Table 7.4 presents the statistical characteristics, and
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TABLE 7.4 Statistical Characteristics of Legal Liability Losses 

Mean £151,944.04 
Median £103,522.90 
Standard deviation £170,767.06 
Skew 2.84 
Kurtosis 12.81 
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Figure 7.12 illustrates the corresponding histogram. Several interesting 
points are evident. First, the mean of the sample is considerably larger 
than the median, which is reflected in a coefficient of skew equal to 2.83. 
Second, the losses are very fat tailed, with a kurtosis in excess of 12. 

Since the losses are not symmetric, we would not expect them to come 
from a normal distribution. This is confirmed in the probability plot of 
Figure 7.13, for which the Anderson-Darling test statistic is 8.09. As the 
mean of the data lies close to the standard deviation, and given the shape 
of the histogram shown in Figure 7.12, we postulate that the data comes 
from an exponential distribution. This appears to be confirmed in the 
probability plot of Figure 7.14, for which the Anderson-Darling test sta-
tistic is 0.392. Therefore, we conclude that an exponential distribution 
with α = 151,944.04 adequately describes this data. Figure 7.15 shows the 
fitted exponential distribution against a histogram of the actual data. 

Is this the only distribution that can fit this data reasonably well? The 
answer is probably not. To see this, consider Figure 7.16, which shows a 
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FIGURE 7.12 Histogram of legal event losses. 
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FIGURE 7.13 Normal Probability Plot for legal event losses.
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FIGURE 7.14 Exponential Probability Plot for legal event losses.
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FIGURE 7.16 Weibull Probability Plot for legal event losses.
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probability plot for the Weibull distribution. The plot appears to indicate that 
the Weibull distribution fits the data at least as well as the exponential distri-
bution. Furthermore, the Anderson-Darling test statistic is only 0.267. Should 
we use the exponential distribution or the Weibull distribution? One argu-
ment in favor of the exponential distribution is that it depends on only one 
parameter and is therefore more parsimonious than a Weibull distribution. 
However, given that we have less than 200 observations (with more coming 
in the future), the added flexibility of the Weibull distribution provides an 
argument for choosing it. 

SUMMARY 

Fitting appropriate severity of loss probability models is a central task in 
operational risk modeling. It involves first selecting an appropriate pro-
bability distribution from a wide range of possible distributions and then 
assessing how well the selected model explains the empirical losses. Statis-
tical or graphical methods can be used to assess model fit. Although much of 
this work can be carried out in Excel, it will also be necessary to write addi-
tional statistical functions and estimators in VBA. In the following chapter 
we continue with the theme of fitting probability distributions to empirical 
data, considering the frequency of events rather than their severity. 

REVIEW QUESTIONS 

1. Why is the normal probability distribution not necessarily a good 
choice for modeling severity of losses? Under what circumstances 
would you envisage using the normal distribution? 

2. Given loss data which lies between the range of $0 and $75,000, what 
transformation do you need to apply before you could fit the standard 
beta distribution? 
■	 Calculate the mean, standard deviation, skew and kurtosis of the 

following loss data: 

$ 4,695.11 $ 147.86 $24,757.17 $12,928.33 
$ 9,073.66 $ 215.62 $13,647.10 $ 8,283.56 
$19,353.32 $ 2,965.99 $ 9,510.18 $ 3,981.05 
$15,669.64 $ 5,976.45 $ 1,643.43 $ 5,002.29 
$ 4,354.27 $ 8,003.83 $ 664.28 $ 1,232.87 
$13,817.18 $21,502.09 $ 5,128.66 $ 9,403.65 
$ 384.13 $10,270.70 $ 7,993.91 $ 4,504.84 
$ 8,386.20 $23,631.04 $ 1,690.75 $ 3,759.90 
$17,237.93 $ 4,508.38 $ 1,915.58 $15,211.48 
$ 745.39 $ 6,841.31 $ 3,385.31 $ 3,690.16 
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■	 Given your estimates, which probability models of those given in 
this chapter can you rule out as being unsuitable for modeling this 
data? 

3. Fit the beta, lognormal, and normal probability functions to the above 
data and determine which (if any ) of the fitted distributions is adequate 
for this data. 

4. Explain the difference between an estimator and an estimate. 
5. Suppose X follows a beta distribution. Create a worksheet to illustrate 

that using the following transformation Y = aX + b, we can get almost 
any shaped density on the interval (b, a + b). 

FURTHER READING 

Details of the distributions given in this chapter and many others can be 
found in Gumbel (1954), Aitchison and Brown (1957), Ascher (1981), 
Hahn and Shapiro (1967), Johnson et al. (1994, 1995), and Lewis (2003). 
Further information on goodness of fit tests can be found in Press et al. 
(1995). 
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CHAPTER 8 
Frequency of Loss

Probability Models


n the previous chapter we learned how to estimate and assess severity of 
loss probability models. In this chapter we focus on frequency of loss 

models. The entity of interest for frequency of loss modeling will be a dis-
crete random variable that represents the number of OR events observed. 

1These events will occur with some probability p.
Our discussion begins with three popular frequency of loss probability 

models: the binomial distribution, the Poisson distribution, and the negative 
binomial distribution. This is followed by a discussion of alternatives to 
these models. Since assessing the goodness of fit of a postulated frequency 
of loss probability model is an important issue, we introduce a formal test 
statistic known as the chi-squared goodness of fit test. This is followed by 
a detailed case study used to illustrate the process of building a frequency 
of loss probability model. 

POPULAR FREQUENCY OF LOSS PROBABILITY MODELS 

Three useful probability distributions for characterizing frequency of loss 
are the binomial distribution, the Poisson distribution, and the negative 
binomial distribution. We discuss the characteristics of these distributions 
and show how their parameters can be estimated. 

Binomial Distribution 

If x (0 ≤ x ≤ N) is the number of successes over N trials, then the binomial 
probability function is given by 

N! xf x( )  = px (1 − p)
x N − x)!  ! (  

93 



08_chap_Lewis.qxd  3/3/04  3:21 PM  Page 94

94 OPERATIONAL RISK WITH EXCEL AND VBA 

The mean is given by 

X = Np 
and standard deviation by 

σ = −Np p( )1 

Figure 8.1 illustrates a binomial distribution with N = 12 and various 
values of p. You can experiment with differing values of N and p by open-
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FIGURE 8.1a Binomial distribution with N = 12 and various values of p. 
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FIGURE 8.1b Binomial distribution with N = 12 and various values of p. 
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ing the spreadsheet Operational Risk 08.xls and selecting the worksheet 
BINO. Notice that as N increases, the distribution becomes increasingly sym-
metric. Also note that for small values of N or very large (or very small) val-
ues of p, the distribution is skewed. The parameter p can be estimated by 
maximum likelihood: 

p̂ = x 
N 
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FIGURE 8.1c Binomial distribution with N = 12 and various values of p. 
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FIGURE 8.1d Binomial distribution with N = 12 and various values of p. 
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Poisson Distribution 

The probability density function of the Poisson distribution is given by 

( )  = λ exp ( −λ )xf x  
x! 

where x ≥ 0 and the parameter l > 0 can be interpreted as the arithmetic 
mean. Figure 8.2 illustrates this distribution for l = 4 and l = 11. You can 
investigate the impact of differing values of l on the shape of the distribu-
tion by opening the spreadsheet Operational Risk 08.xls and selecting the 
worksheet POISSON. 

The standard deviation is λ . Estimation of the parameter can be carried 
out by maximum likelihood, in which case 

~ λ ̂ = X

~


where X i s the mean of the sample given by 

UL 

∑ ini 

X = i = 0 
UL 

˜

∑ ni 
i = 0 

where ni is the observed number of observations in category i and UL is 
some empirically determined upper limit. 
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FIGURE 8.2a Poisson distribution for various parameter values. 
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FIGURE 8.2b Poisson distribution for various parameter values. 

EXAMPLE 8.1 A FREQUENCY OF LOSS MODEL 
FOR CREDIT CARD FRAUD 

To illustrate the estimation process for the Poisson model, consider the fre-
quency of loss daily data for a specific type of credit card fraud, shown in 
Table 8.1. The first column shows the potential number of frauds of this 
type per day beginning at 0 and ending at 15. Thus, in this case UL = 15. 
The second column shows the actual number of frauds. The third column 
is the kth row in the first column multiplied by kth row in the second col-
umn. For example, the second row of the first column is equal to 1 and the 
second row of the second column is equal to 16; therefore, the second row 
of the third column is equal to 16 × 1 = 16. Therefore, the sum of the third 

15 

column is ∑ ini = 352 . We also see that in total there are 124 observations; 
i = 0 


15


therefore, ∑ ni = 124 and thus the estimate of the parameter of the dis-
i = 0  

tribution is 

15 

∑ ini 

λ = . ˆ i = 0  = 352 = 2 84  
15 

∑ ni 
124 

i = 0  
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TABLE 8.1 Summary of Frequency of Loss Daily Data 
for a Specific Type of Credit Card Fraud 

Number of Observed 
events per day frauds i × ni 

0  19  0  
1  16  16  
2 51 102 
3  9  27  
4  6  24  
5  5  25  
6  4  24  
7  6  42  
8  2  16  
9  1  9  

10 0 0 
11 0 0 
12 2 24 
13 1 13 
14 0 0 
15 2 30 

Negative Binomial Distribution 

The negative binomial distribution is a popular alternative to the Poisson 
distribution. In fact, it is very closely related to the Poisson, Pascal, and 
geometric distributions. The probability function is given by 

yf x( )  = 

 
x + y − 1

 px (1 − p) 
y 

This is similar to the binomial distribution except that the number of events 
is fixed and the number of trials (N in the binomial distribution) is variable. 
The Excel function Negbinomdist() can be used to calculate the probabili-
ties of this distribution.The mean is x(1− p) / p, and the standard deviation 

is x(1 − p) . An unbiased estimator of the parameter p is 
p2 

p̂ = x 
yx + x 

OTHER FREQUENCY OF LOSS DISTRIBUTIONS 

Geometric, hypergeometric, Pascal, Polya-Aeplli, Poisson inverse Gaussian,

Hofmann, Neymann Type A, and Neymann Type A plus Poisson are just
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AND POISSON DISTRIBUTIONS 

is to note that for the binomial distribution the variance is less than the 
arithmetic mean, for the Poisson distribution the variance is equal to 
the arithmetic mean and for the negative binomial distribution the 
variance is greater than the arithmetic mean. Thus, if we observe that 
our sample variance is much larger than the sample mean, the negative 
binomial distribution may be an appropriate choice. 

CHOOSING BETWEEN THE BINOMIAL, NEGATIVE BINOMIAL 

A useful rule of thumb for choosing between these popular distributions 

some of a very large number of alternative distributions to the binomial, 
negative binomial, and Poisson distributions. In this section we review three 
of these that find occasional use. They are the geometric distribution, the 
hypergeometric distribution, and the Pascal distribution. 

Geometric Distribution 

For an integer random variable where x ≥ 1, the probability density function 
of the geometric distribution is given by 

f x  − 1( )  = p(1 − p)x 

The mean is 1/p and standard deviation is (1 − p) . A maximum likelihood 
p2 

estimator of the parameter p is 

1 
p̂ = 

x 

Hypergeometric Distribution 

The hypergeometric distribution is given by 

 X N − X 
 n n − x  

f x( )  = 
 N 
  n 
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where n is the sample size, N is the number of groups in the population of

interest, and X is the number of events/ failures or other events of interest.


The mean is , and the standard deviation is nX 
N 

. 
n X 

N 
X 

N N n 

N 

( ) −( ) −( ) 
−( ) 

1 

1 

A maximum likelihood estimator of N is 

N̂ 
nX = 
x 

Pascal Distribution 

If the number of events is greater than or equal to 1, a Pascal probability 
distribution may be appropriate. The probability function is given by 

f x( )  = 

 

n − 1
 px (1 − p)n − x 

n − x 

where x is the event parameter. The mean of the Pascal distribution is 

X = x / p , and the standard deviation is σ = 
xp . An unbiased estima-
p 

tor of the parameter is given by 

p̂ =	
x − 1 
n − 1 

CHI-SQUARED GOODNESS OF FIT TEST 

Too often, a particular frequency of loss distribution is chosen for no reason 
other than the risk manager’s familiarity with it. As we have seen, a wide 
number of alternative distributions are always available, each generating a 
different pattern of probabilities. It is important, therefore, that the proba-
bility distribution be chosen with appropriate attention to the degree to 
which it fits the empirical data. The choice as to which distribution to use 
can be based on visual inspection of the fitted distribution against the actual 
data or a formal statistical test such as the chi-squared goodness of fit test. 
For the chi-squared goodness of fit test, the null hypothesis is 

H0: The data follow a specified distribution 

and the alternative hypothesis is 

H1: The data do not follow the specified distribution 
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The test statistic is calculated by dividing the data into n bins and is 
defined as 

n 2 
T̃ = ∑ (O − E )i i 

Eii = 1  

where Oi is the observed number of events, Ei is the expected number of 
events determined by the postulated frequency of loss probability distribu-
tion, and n is the number of categories. The test statistic is a measure of 
how different the observed frequencies are from the expected frequencies. 
It has a chi-squared distribution with n − (k − 1) degrees of freedom, where 
k refers to the number of parameters that need to be estimated. 

EXAMPLE 8.2 GOODNESS OF FIT TEST FOR FITTING FAILURES 
IN A CRITICAL BACK OFFICE SYSTEM 

As a example of the calculation of this statistic consider Table 8.2, which 
shows the observed and actual number of failures per day of a critical back 
office transaction-processing system. Using this data, the chi-squared test 
statistic is calculated as 

n	 2 
T̃ = ∑ (O − E ) (56 − 60)2 (52 − 40)2 (92 − 100)i i = + + 

Ei 60 40 100i = 1  

Since n = 3 and there are no parameters to be estimated, the test statistic 
has a chi-squared distribution with 2 degrees of freedom. Thus, given a 
significance level of 5 percent, the critical value of this test statistic using 
the function Chiinv(0.05,2) = 5.99 (we could also look up the value in 
Table A2 in Appendix 1). Since the test statistic is less than the critical 
value, we fail to reject the null hypothesis and conclude that there is no evi-
dence to support the alternative hypothesis that the observed distribution is 
significantly different from the expected distribution. 

TABLE 8.2	 Observed and Actual Number of Failures 
per Day of a Critical Back Office System 

Number failures 
per day Observed Expected 

0  56  60  
1  52  40  
2 92 100 
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TABLE 8.3 Number of Back Office Staff Leaving per Month 

Numbers leaving 
per month Observed 

0  18  
1  20  
2  21  
3  11  
4 4 
5 1 

CASE STUDY 8.1: KEY PERSONNEL RISK 
An important source of operational risk arises when there is high turn-
over in back office transaction-processing employees. High turnover may 
have an impact on the smooth processing of transactions. Table 8.3 lists 
the actual number of back office staff who left a particular company organ-
ized by category. This particular institution had a total back office staff of 
around 50 people over the period under consideration. Interestingly, over 
the 75 months for which measurements were available, there was one 
month in which five people left and 18 months in which nobody left. 

In Figure 8.3 we fit a Poisson distribution to this data. The parameter 
λ is estimated as 1.55. What does this figure tell us? It reflects the observa-
tion that there has been a constant turnover in staff of between one or 
two people per month. In Figure 8.3 the Poisson distribution appears visu-
ally to fit the data fairly well. This is confirmed in the chi-squared test 
statistic T̂t= 1.51, which is less than the critical value of 3.84 at 5 percent 
significance (see Table A2 in Appendix 1). Thus, we conclude that the Pois-
son distribution with parameter of 1.55 is a suitable frequency model for 
the observed data. 

0 
5 

10 
15 
20 
25 
30 

Observed 

Poisson

F
re

q
u

en
cy

 

0 1 2 3 4 5 
Values 

FIGURE 8.3 Actual Poisson fitted values for back office turnover risk. 
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SUMMARY


In this chapter we have considered how to model the frequency of loss arising 
from an operational loss. The discussion followed a similar approach to 
that taken in modeling the severity of loss. We begin by postulating a discrete 
probability distribution such as the Poisson or negative binomial distribution. 
Then we assess the goodness of fit of the postulated distribution against 
empirical observations. Goodness of fit can be assessed using formal test 
statistics such as the chi-squared goodness of fit test and/or visual inspec-
tion of the fitted distribution to the empirical data. In the next chapter we 
illustrate how to use the severity and frequency of loss distributions to 
obtain the aggregate loss distribution and thus to arrive at an estimate of 
operational value at risk. 

REVIEW QUESTIONS 

1. Create a spreadsheet using the Excel function Negbinomdist() that 
allows you to investigate how the shape of the negative binomial distri-
bution changes as the values of its parameters are altered. 

2. Write a VBA function to calculate the mean and variance of the hyper-
geometric probability distribution. 

3. Why do you think the negative binomial distribution is popular for 
modeling frequency of loss? 

FURTHER READING 

Comprehensive details on the characteristics and estimation of a wide range 
of alternative probability distributions such as the Polya-Aeplli, with use-
ful examples, can be found in Arbous and Kerrich (1951), Sharma (1988), 
Johnson et al. (1994, 1995), and Lewis (2003). 



09_chap_lewis.qxd  3/3/04  5:15 PM  Page 105

CHAPTER 9 
Modeling Aggregate


Loss Distributions


Even a cursory look at the operational risk literature reveals that measur-
ing and modeling aggregate loss distributions are central to operational 

risk management practice. Since the daily operations of doing business have 
considerable risk, quantification in terms of an aggregate loss distribution 
is an important objective. A number of approaches have been developed to 
calculate the aggregate loss distribution. We begin this chapter by examin-
ing various approaches. We go on to give details of a practical Monte Carlo 
simulation–based approach from which we can also obtain an estimate of 
operational value at risk (OPVaR). However, OPVaR certainly is not the 
only risk measure of interest to operational risk managers and analysts. We 
discuss its limitations, outline the optimal criteria for a risk metric, and then 
introduce the risk measure known as expected shortfall (ES). 

AGGREGATING SEVERITY OF LOSS 
AND FREQUENCY OF LOSS DISTRIBUTIONS 

Even though in practice we may not have access to a historical sample of 
aggregate losses, it is possible to create sample values that represent aggre-
gate OR losses given a severity and frequency of loss probability model. 
Using frequency and severity of loss data, we can simulate aggregate oper-
ational risk losses and then use these simulated losses to inform operational 
risk practice. The simplest way to obtain the aggregate loss distribution is 
to collect data on frequency and severity of losses for a particular opera-
tional risk type and then fit frequency and severity of loss models to the data. 
The aggregate loss distribution then can be found by combining the distri-
butions for severity and frequency of operational losses over a fixed period 
such as a year. To see how this is accomplished, suppose N is a random 
variable representing the number of OR events between time t and t + δ  
with associated probability mass function p(N); thus, p(N) denotes the 

105 
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probability of exactly N losses in the time interval between t and t + δ. Also, 
let X be a random variable representing the amount of loss arising from a 
single type of OR event with associated severity of loss probability density 
function f(x). Provided we assume the frequency of events N is independ-
ent of the severity of events, the total loss from the specific type of OR event 
between time t and t + δ is 

S  = X1 + X2 + . . .  + XN 

The probability distribution function of S is a compound probability distri-
bution: 

∞

∑
i = 1 





F
i* x(  )  p i( ) ×
 0
>
x
G x( ) =



 p i( )  0
=
x


where F(x) is the probability that the aggregate amount of i losses is x, * is 
the convolution operator on the functions F, and Fi* is the i-fold convolution 
of F with itself. For most distributions, G(x) cannot be evaluated exactly 
and it must be evaluated numerically using methods such as Panjer’s recursive 
algorithm or Monte Carlo simulation. 

Panjer’s recursive algorithm 

If the frequency of loss probability mass function can be written in the form 




a
+


b


k





k
 =
1,  2,  3 . . .  , . . .p k(  )  =
 p k( −
1)


where a and b are constants, Panjer’s recursive algorithm can be used. The 
recursion is given by 

x 

b
y

g x( ) =
 p(  )  ( )  1 f  x  +
 ∫
(
 −
x f y  g  x  )  (  )  (  y dy  x  ) 0a +
 >
, 
0 

where g(x) is the probability density function of G(x). 




1) a 
b 
k 




Probability distributions that satisfy p k( ) = p k( − include the
+ 

λ 

Poisson distribution, binomial distribution, negative binomial distribution, and 
geometric distribution. For example, if our severity of loss is the Poisson 
distribution 

−λ ne

p n( ) =


n!
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then a = 0 and b = λ. If, on the other hand, we choose to use a binomial 
distribution 

 K 
p n pn K−n( )  =   (1 − p)

 n

p 
.then a = −  p 

and b = (K + 1)  

(1 − p) (1 − p) 

A limitation of Panjer’s algorithm is that it is only valid for discrete 
probability distributions. This implies that our severity of loss distribution, 
which is generally continuous, must be made discrete before it can be used. 
Another much larger drawback to the practical use of this method is that 
the calculation of convolutions is extremely time-intensive and rapidly becomes 
impossible as the number of losses in the time interval under consideration 
becomes large. Closely related adaptations to Panjer’s algorithm include 
Kornya’s algorithm and De Pril’s algorithm. Other methods that take a 
slightly different approach are those based on the fast Fourier transform 
and the Heckman-Myers inversion method. 

Monte Carlo method 

Perhaps the simplest and often most direct approach is Monte Carlo simu-
lation. The Monte Carlo method involves the following steps: 

1. Choose a severity of loss and frequency of loss probability model. 
2. Simulate the number of losses and individual loss amounts and then 

calculate the corresponding aggregate loss. 
3. Repeat many times (at least 5,000) to obtain an empirical aggregate 

loss distribution. 

EXAMPLE 9.1 MONTE CARLO SIMULATION 
OF AN AGGREGATE LOSS DISTRIBUTION 

To illustrate the application of this method, open the worksheet MC Simu-
lation in the workbook Operational Risk 09.xls. It generates a aggregate 
loss distribution using a Poisson frequency of loss model and a Weibull 
severity of loss model. Enter parameter values for each distribution and the 
number of simulations required; then press the <RUN SIMULATION> button. 
The aggregate values (results of simulation) are stored in column B starting 
at cell B6. Table 9.1 shows the descriptive statistics of the aggregate loss 
distribution for a simulation of 30,000. Figure 9.1 presents the associated 
histogram. The simulation parameters were λ = 1.95 for the Poisson distri-
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TABLE 9.1 Summary Statistics for Simulation 

Average loss (million $) 0.412 
Standard deviation 0.839 
Skew 3.943 
Kurtosis 26.609 

bution and β = 0.25 and α = 0.75 for the Weibull distribution. The average 
loss is around $412,000 with a standard deviation of $839,000. The distri-
bution is typical of operational loss distributions in that it is skewed and fat-
tailed. 

CALCULATING OPVAR 

Operational value at risk offers a basis for risk managers to provide a con-
sistent and integrated approach to the management of operational and 
other risks, leading to greater transparency and more informed manage-
ment decisions. It provides a consistent and familiar measure of risk across 
different risk and asset types and is widely used in market risk (where it is 
known as value at risk), where it provides a common metric by which to 
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FIGURE 9.1 Simulated aggregate loss distribution using a Poisson frequency model 
and Weibull severity model. 
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compare risk in different portfolios. Furthermore, its calculation gives sen-
ior management the ability to set their overall operational risk target, and 
from that to determine the target risks for their various business divisions. 
Once the complete loss distribution has been obtained, OpVaR then can be 
evaluated by a given percentile of the empirical distribution. An alternative 
is to fit a probability distribution to the empirical loss distribution and 
then obtain OpVaR from the percentile function of the fitted probability 
distribution. Since OpVaR reflects large operational losses, it also can be 
used to determine operational economic capital and allocate it among var-
ious business lines. 

EXAMPLE 9.2 CALCULATION 
OF OPVAR USING MONTE CARLO SIMULATION 

To illustrate the calculation of OpVaR using Monte Carlo simulation open 
the workbook Operational Risk 09.XIS and select the worksheet Legal 
Event Simulation. This worksheet contains 30,000 legal liability losses 
simulated using the worksheet MC Simulation. Enter a confidence value in 
cell E6; typically, OR managers are interested in confidence values in the 
region 0.95 to 0.999. The worksheet uses the simulated data in column C 
and the Excel function Percentile(loss_data,confidence_level) to cal-
culate the value of OpVaR. At 95 percent confidence, the OpVaR is equal 
to $15.99 million. Will the value of OpVaR differ significantly if we were 
to rerun the simulation? Since we used 30,000 in our simulation run, the 
OpVaR value should not be very different if you rerun the simulation. We 
ran it five times and obtained the values $16.03 million, $15.98 million, 
$16.04 million, $15.99 million, and $16.00 million. Thus, it appears that 
OpVaR for legal liability losses is around $16 million. 

Operational value at risk also can be used in the calculation of an 
operational risk capital charge for a financial institution. To see how this 
might work, consider the classification of operational risk events proposed 
by the Risk Management Group of the Basle Committee. Their classifica-
tion consists of eight standardized business lines and seven loss types. The 
eight business lines are: 

1. Corporate finance 
2. Trading and sales 
3. Retail banking 
4. Payment and settlement 
5. Agency services 
6. Commercial 
7. Banking 
8. Asset management and retail brokerage 
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The seven loss types are 

1. Internal fraud 
2. External fraud 
3. Employment practices and workplace safety 
4. Clients, products, and business practices 
5. Damage to physical assets 
6. Business disruption and system failure 
7. Execution, delivery, and process management 

For each line of business and operational risk type, we can calculate the 
severity and frequency of loss probability models over a particular time 
horizon (usually one year). Given the frequency and severity of loss model, 
we can compute the aggregate operational loss distribution for each risk 
type and business line. The total required capital is the sum of these OpVaRs. 
Adoption of Basle-type standards as a benchmark in operational risk man-
agement practice may enhance the focus and consistency of data collection 
and thereby make it possible for senior management to compare their loss 
experience across business lines, and for regulators to compare loss experience 
across regulated institutions. 

COHERENT RISK MEASURES 

We have emphasized throughout this book that in order to control operational 
risks, we must first be able to measure them. Operational value at risk gives 
us one way in which to measure risk. Is it the optimal measure? In order to 
answer this question, we need to outline the properties that a good risk metric 
should possess. We do this within the context of two random uncorrelated 
losses X and Y and a risk measure that we denote by r(). If r() is an opti-
mal risk measure, it will satisfy the following criteria: 

1. Subadditivity: For all X and Y, r(X + Y) ≤ r(X) + r(Y). This implies that 
aggregating individual risks does not increase overall risk. 

2. Monotonicity: If X ≤ Y, then r(X) ≤ r(Y). This implies that if a portfo-
lio X does better than portfolio Y under all scenarios, then the risk for 
X should be less than for Y. 

3. Positive homogeneity: For all d > 0, r(dX) = dr(X). This is the limiting 
case of subadditivity and informs us that combining perfectly correlated 
risks should not change the level of overall risk. 

4. Translation invariance: For a constant θ, r(X + θ) = r(X) − θ. This 
implies if a nonrisky investment of $θ is added to a risky portfolio, then 
the risk should decrease by $θ. 

A risk measure which satisfies all of the above criteria is called a co-
herent measure of risk. Operational value at risk is not a coherent risk 
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measure because it fails the first criteria. An alternative to OpVaR that is 
consistent is expected shortfall (ES). Expected shortfall is the average value 
of losses we can expect if we observe a loss in excess of OpVaR, or 

|ES =  E[ X X >  OpVaR] 

where E[ ] is the expectation operator. Unlike OpVaR, which tells us how 
much we might expect to lose if a event in the tail of the loss distribution 
does not occur, ES informs us of how much we might expect to lose if an 
event in the tail of the distribution does occur. 

Since ES is the probability weighted average loss beyond OpVaR, it is 
relatively easy to calculate. The simplest way to do this in Excel is to 
slice the tail of the aggregate loss distribution above the OpVaR confi-
dence level into N slices and then use the Excel Percentile(data, 
confidence_interval + Slicei × d) function to return the percentile of 
each slice. The average of these slices will give an estimate of ES. 

EXAMPLE 9.3 CALCULATION OF EXPECTED SHORTFALL 
FOR LEGAL LOSSES 

We illustrate this procedure using the in the worksheet Legal Event Simulation, 
which was previously discussed. Suppose we set N = 10 and d = 0.005 and 
choose a confidence level of 95 percent. The first percentile to be calculated will 
be the 95.5th. The function Percentile(loss_data,confidence_level+ 

(1*d)) returns the value $17.2539. For the second slice we will use the 96th 
percentile and Percentile(loss_data,confidence_level+(2*d)) returns 
the value $18.7905. The process is repeated 10 times, as shown in Table 9.2. 
The average of these 10 values provides an estimate of the expected shortfall; 
in this case it is $33.228. This value is much larger than the OpVaR value of 
$16 million because it reflects what you can expect to lose on average if an 
event beyond OpVaR occurs. 

TABLE 9.2 Calculation of Expected Shortfall for Aggregate Loss Data 

Slice Percentile (%) Value (million) 

1 95.5 $17.2539 
2 96.0 $18.7905 
3 96.5 $20.4415 
4 97.0 $22.5264 
5 97.5 $24.7601 
6 98.0 $27.5162 
7 98.5 $31.3849 
8 99.0 $35.9769 
9 99.5 $44.3944 

10 99.99 $91.1834 
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TABLE 9.3 Impact of Differing Numbers of Time Slices 
on the Estimated Value of Expected Shortfall 

N  ES  

10 $33.4228 
25 $30.2328 
50 $29.2617 

100 $28.7931 
500 $28.4534 

1,000 $28.4120 
5,000 $28.3806 

In practice, the number of slices, N, used in the calculation of ES needs to 
be reasonably large. Table 9.3 illustrates the impact of increasing N on the 
estimated value of ES for this data. In this case setting N at least equal to 1,000 
produces a reasonably stable estimate of ES. The worksheet ES allows you to 
recalculate ES using different confidence levels and numbers of time slices. 

SUMMARY 

The assumption made in constructing the aggregate loss distribution is that 
the simulated losses are a realization of the combined frequency and severity 
of loss distributions. The process of generating aggregate loss distributions 
involves the specification of a number of probability distributions for the 
frequency and severity of loss models. For each frequency/severity of loss 
model the parameters need to be estimated and the adequacy of the model 
determined; only then can the loss distribution be simulated. A key objective 
in fitting the loss distribution is to obtain risk measures such as operational 
value at risk or expected shortfall. 

REVIEW QUESTIONS 

1. How useful do you think OpVaR is as a practical operational risk 
management tool? 

2. Write a VBA function that calculates ES. 
3. Is the fact that OpVaR is not coherent of any practical significance? 
4. Rewrite the worksheet MC Simulation to use a negative binomial dis-

tribution instead of the Poisson distribution. 

FURTHER READING 

Further discussion of Panjer’s approach with the alternative methods of 
Kornya and De Pril can be found in Kornya (1983) and De Pril (1986). 
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CHAPTER 10 
The Law of Significant Digits

and Fraud Risk Identification 


n this chapter we discuss Benford’s law of significant digits. Benford’s law 
predicts the frequency of the leading digit in numbers met in a wide range 

of naturally occurring phenomena. In data following Benford’s law, num-
bers start with a small leading digit more often than those with a large lead-
ing digit. Although the simplicity of the law is somewhat surprising, it has 
had some success in the field of fraud risk. In this chapter we illustrate, 
through a number of examples, how Benford’s law can be used to help 
determine whether numerical data has been fabricated or altered. 

THE LAW OF SIGNIFICANT DIGITS 

Benford’s law of significant digits states that a sample of the first significant 
and subsequent digits of numbers drawn from a wide variety of random prob-
ability distributions will have a certain form as the sample size becomes 
increasingly large. The law is actually based on a conjecture by the astronomer 
and mathematician Simon Newcomb. In a two-page article in 1881 in the 
American Journal of Mathematics, Newcomb conjectured that the prob-
ability that a number has first significant digit d is 


 1


Prob (
X
 =
 d
)
=
 log
 1
+
 d
 =
1,  2,  3,  4,  5,  6,  7,  8,  9




10 d 

Figure 10.1 plots this distribution. Notice how the probability of the first 
digit being 1 is much higher than the probability of it being 9. This may 
seem a counterintuitive result. What you might expect is for each digit to 
have a more or less equal chance of occurring, as shown in Figure 10.2. 

113 
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FIGURE 10.1 Probability distribution of first digits according to Benford’s law. 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.8 

0.8 

0.9 

1 

P
ro

b
ab

ili
ty

 o
f 

fi
rs

t 
se

g
m

en
t 

1 2 3 4 5 6 7 8 9

Digits 1-9


FIGURE 10.2 What we might expect the probability distribution of first digits 
to look like. 
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In fact, the significant digits are not uniformly distributed but obey Newcomb’s 
logarithmic probability distribution. Unfortunately for Newcomb, his con-
jecture went largely unnoticed until the late 1930s when Benford, a physi-
cist, tested the conjecture and found it did indeed hold on a very wide range 
of data sets. Thus, with the publication of Benford’s results the Newcomb 
conjecture became widely known as Benford’s law of significant digits. 

EXAMPLE 10.1 SIMULATING BENFORD’S LAW 

Let us investigate this law further using Excel. Open the file Operational Risk 
10.xls. It contains the worksheet Benfords. The worksheet simulates 100 
random numbers and then calculates Benford’s law for the first significant 
digit. Press <F9> to start the simulation. Run it several times. The result is 
rather surprising. Benford’s law is a good approximation for this data. The 
worksheet also makes use of the VBA function Benford(), which returns 
Benford’s probability for any integer in the range 1 through 9. The code for 
the function is 

Function Benford(d) ' Returns the probability of d 

for the Benford distribution 

If d>9 Or d<1 Then 

Benford = −99 ' function only works with numbers 1–9 

Else 

Benford = (Log(1 + (1 / d))) / Log(10#) 
End If 

End Function 

For example, Benford(1) returns the value 0.301 and Benford(9) returns 
the value 0.0458. 

answer is related to the central limit theorem. Recall that the central 
theorem informs us that sums of random variables, under certain con-
ditions, will follow the normal distribution. It turns out that if proba-
bility distributions are selected at random and then random samples 
are taken from each of these selected distributions, then the leading 
significant digits of the combined sample will be distributed according 

STATISTICAL EXPLANATION OF BENFORD’S LAW 

Why does Benford’s law hold for so many empirical observations? The 

to Benford’s law. 
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BENFORD’S LAW IN FINANCE


Empirical evidence in support of Benford’s law has appeared in a wide vari-
ety of contexts, including newspaper articles, tables of physical constants, 
accounting data, and demographic data. 

EXAMPLE 10.2 BENFORD’S LAW AND THE CLOSING PRICE 
OF IBM STOCK 

To illustrate Benford’s law with financial data, we consider the daily return 
of the closing price of IBM Corporation stock over the period January 1990 
to the end of August 2002. Figure 10.3 plots Benford’s distribution against 
the sample distribution calculated from IBM daily returns. Benford’s distri-
bution provides an excellent fit to the empirical observations. 

Until recently empirical results such as those presented in Example 10.1 
were regarded as little more than a statistical curiosity with no apparent 
application in risk management. However, in the mid-1990s, the law was 
applied successfully to detect fraud in accounting data. This proved the wake-
up call to risk management. 

CASE STUDY 10.1: ANALYSIS OF TRADER’S PROFIT AND LOSS 
USING BENFORD’S LAW 

To illustrate the application of Benford’s law in operational risk management,

we consider the daily reported profit and loss of a foreign exchange options

trading desk over the period January 10, 2000, to June 15, 2001. The
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FIGURE 10.3 First significant digit of the daily return on the IBM stock price and 
Benford’s distribution. 
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TABLE 10.1 Daily Profit and Loss of Five Traders 

Trading Date Trader 1 Trader 2 Trader 3 Trader 4 Trader 5 

1/10/2000 −0.0336% 0.0669% −0.0276% −0.0125% 0.0456% 
1/11/2000 −0.0166% 0.0368% 0.0527% 0.0114% 0.0433% 
1/12/2000 −0.0419% 0.0866% −0.0276% 0.0233% −0.0170% 
6/13/2001 −0.0247% 0.0132% 0.0697% 0.0242% −0.0415% 
6/15/2001 0.0104% −0.0382% 0.0152% −0.0276% −0.0160% 
6/15/2001 −0.0107% −0.0421% 0.0259% 0.0527% 0.0309% 

desk consists of five traders. Their typical profit and loss are shown in 
Table 10.1. For example, on January 10, 2000, trader 1 exhibited a loss of 
0.0336 percent on his book, whereas trader 5 recorded a profit of 0.0456 
percent. Table 10.2 gives the summary statistics for each of the traders. The 
standard deviations, maximum gain, and maximum loss are all very simi-
lar—around 0.046 percent, 0.099 percent, and −0.99 percent, respectively. 
We cannot discern anything unusual in these figures, except that on average 
over the period trader 2 and trader 4 lost money and might therefore be 
expected to seek alternative employment. 

To conduct a first digit analysis of the entire trading desk we need to 
stack the daily returns of each trader on top of each other to give a single 
series upon which to perform the analysis. Figure 10.4 presents the empiri-
cal distribution of the first significant digit of the individual daily profit and 
loss for the five traders over a period of 18 months against Benford’s dis-
tribution. The empirical observations fit Benford’s distribution very well, in 
the sense that they agree with Table 10.2, which showed nothing untoward. 
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FIGURE 10.4 First significant digit of the daily profit and loss of trading desk. 
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TABLE 10.2 Summary Statistics for Each Trader 

Trader 1 Trader 2 Trader 3 Trader 4 Trader 5 

Average 0.0046% −0.0013% 0.0041% −0.0001% 0.0025% 
Stdev 0.0458% 0.0462% 0.0467% 0.0458% 0.0443% 
Max gain 0.0991% 0.0997% 0.0995% 0.0998% 0.0995% 
Max loss −0.0978% −0.0978% −0.0998% −0.0998% −0.0998% 

Although their appears little of concern in the data, it is always prudent 
to dig further. This can be achieved by plotting the absolute difference 
between the empirical distribution for each trader against the expected Ben-
ford frequency. For traders 1 to 4 this difference was close to 0 for each digit. 
The result for trader 5 was somewhat different and is shown in Figure 10.5. 
It reveals that the digit 5 occurs much more frequently than predicted by 
Benford’s law. This was flagged as unusual and on further investigation it was 
discovered that trader 5, who had sole responsibility for inputting volatility 
into the pricing models, had been concealing losses by deliberately mispricing 
and overvaluing option contracts. 

it is based on an empirical observation. There is no guarantee that all 

include tables of square roots or lists of telephone numbers, which usu-

true in a surprising number of situations. It shows that OR processes can 
be remarkably resistant to complete randomness. 

LIMITATIONS OF BENFORD’S LAW 

Although Benford’s law may seem almost miraculous, we caution that 

numerical data will follow this law; indeed, some does not. Examples 

ally begin with the local area code. You also should be aware that the 
law is a large sample law, and it may not be true if the sample size is too 
small, say, less than 100 observations. However, Benford’s law holds 

A STEP TOWARD BETTER STATISTICAL METHODS 
OF FRAUD DETECTION 

There is a perception that the degree of fraud, in particular that related to 
money laundering, has increased dramatically with the expansion in mod-
ern telecommunications and computing technology. The loss to legitimate 
business from money laundering and other types of fraud must be counted 
in the billions of dollars annually. After the terrorist attack on the World 
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FIGURE 10.5 Absolute difference between the empirical observations and Benford’s 
distribution for trader 5. 

Trade Center on September 11, 2001, many operational risk managers have 
sought to reduce fraud risk by pursuing active strategies for fraud preven-
tion and fraud detection. The idea behind the use of the Benford’s law to 
detect anomalies in data is that fabricating data that agrees with the law is 
difficult. Since we know the distribution of the first significant digit (and 
subsequent digits—see box “Extending Benford’s Law”), we may be able to 
detect erroneous and fraudulent data simply by comparing the observed 
distribution of digits with that expected by Benford’s law. 

For example, the first three significant digits (3, 1, 4) occur with prob-
ability of approximately 0.0014. 
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EXTENDING BENFORD’S LAW 

Benford’s law also specifies the distribution of higher significant digits: 

Prob ( , ..., d  X  10  10  

1,  2,  3,  4,  5,  6,  7,  8,  9  
0,  1,  2,  3,  4,  5,  6,  7,  8,  9 for 
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SUMMARY


Benford’s law is no “silver bullet”. Deviation from Benford’s law alone cannot 
provide absolute certainty that a operational risk event is definitely taking 
place. Rather, the objective of the method is to point out unusual observa-
tions. Used this way, Benford’s law offers a powerful tool for seeking out 
anomalies in data and thereby assists in the task of fraud identification, and 
prevention and operational risk reduction. 

REVIEW QUESTIONS 

1. Generate 100, 500, 1000, and 10,000 random numbers in Excel using 
the Rand() function. Construct a histogram of the observations and com-
ment. Compare the empirical distribution of the first significant digit 
with Benford’s law. What do you conclude? 

2. Generate 100, 500, 1000, and 10,000 random numbers in Excel using 
the combined functions Abs(Normsinv(Rand())). Construct a histogram 
of the observations and comment. Compare the empirical distribution of 
the first significant digit with Benford’s law. What do you conclude? 

3. Write a VBA function that extends Benford’s law to the second and 
third significant digits. Use your VBA function to investigate the distri-
bution of the second and third significant digits of the random numbers 
generated in Questions 1 and 2. 

FURTHER READING 

Details of the application of Benford’s law in accountancy fraud can be found 
in Nigrini and Mittermaier (1997) and Nigrini (1999). Ley (1996) gives de-
tails of how well the Benford’s distribution fits stock prices. For a discussion 
as to why the law holds and a derivation based on modern statistics, see Hill 
(1995, 1996, 1998). 
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CHAPTER 11 
Correlation and Dependence


n risk management theory and practice the notion of correlation and 
dependence is central; for example, in market risk management, correla-

tion is used as a measure of the relationship between different financial 
instruments in the calculation of value at risk. The complexity of OR events 
has led recently to increased interest in the modeling of correlation and 
notions of dependence. This is partly driven by the quest for a sound 
methodological basis for integrated risk management, which in itself also 
raises the issue of correlation and dependence, and partly because the cor-
rect modeling of OR events requires accurate and consistent measures of 
association and dependence. Correlation, as well as being one of the most 
ubiquitous concepts in modern risk management, is also one of the most mis-
understood concepts. The main aim of this chapter is to collect together and 
clarify the essential ideas of correlation and dependence. In particular, we 
highlight a number of important empirical formulas for calculating corre-
lation, explore common fallacies concerning the interpretation of correla-
tion, and develop a notion of dependence that is relevant to operational risk 
management regression–based causal modeling to be introduced in the fol-
lowing chapters. 

MEASURING CORRELATION 

Correlation is a measure of association, whereas dependence is a measure 
of the presence or absence of a relationship between variables. In this chap-
ter we provide empirical formulas for calculating correlation and discuss 
the concept of simple and stochastic dependence. There are many ways to 
calculate the correlation coefficient between two variables. We discuss some 
of the popular approaches here. 

121 
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Sample Correlation Coefficient 

Given a sample of n observations on two random variables S and T, the sam-
ple correlation coefficient (also known as the Pearson correlation coefficient) 
can be calculated as 

n1 ∑ (S − S )(Ti − T )i 

ρ = 
(n − 1) i = 1 

σ σT S  

– – 
where sS and sT are the sample standard deviations and S and T are the 
sample means. Since 0 r 1, we see that if large values of S are associated 
with small values of T, then the correlation is negative. On the other hand, 
if large values of S are associated with large values of T, the correlation is 
positive. 

EXAMPLE 11.1 CALCULATION OF PEARSON CORRELATION 
BETWEEN INCOME GENERATION AND SALARY 

Table 11.1 lists the gross income generation and salary as a proportion of 
the sector median for 10 foreign exchange options traders. We can calculate 
the Pearson correlation coefficient in Excel using the Pearson() or Correl() 
functions. Using Pearson(), we estimate the correlation as 0.717. 

The key assumption underlying the Pearson correlation coefficient is 
that the joint probability distribution of the variables is the bivariate normal 
distribution. If this assumption is untenable, an alternative measure of corre-
lation known as the Spearman rank correlation coefficient can be calculated. 

In empirical work we consider an absolute correlation in the range of 
1.0 to 0.7 as indicating that the two variables are strongly correlated, 
0.7 to 0.3 as weakly correlated, and less than 0.3 as indicative of weak 
or very little correlation. 

CORRELATION RULES OF THUMB 

Spearman Rank Correlation Coefficient 

The Spearman rank correlation coefficient retains all of the assumptions of 
the Pearson correlation coefficient except the assumption of joint normal-



11_chap_lewis.qxd  3/3/04  3:49 PM  Page 123

123 Correlation and Dependence 

TABLE 11.1 Gross Income Generation and Salary Ratio for 10 Traders 

Gross income Salary 
Trader generation ($) ratio (%) 

Trader 1 114,110.75 90.66 
Trader 2 828,113.51 182.84 
Trader 3 74,596.96 114.18 
Trader 4 994,182.19 167.46 
Trader 5 405,435.58 151.55 
Trader 6 414,132.38 144.58 
Trader 7 307,932.27 187.85 
Trader 8 208,949.86 150.67 
Trader 9 23,011.67 69.78 
Trader 10 844,090.39 166.44 

ity between the two variables. Spearman correlation is calculated using the 
ranks of the original data, rather than the actual values. Provided that there 
are no tied ranks, we can use the following formula 

n 
26 ∑ di 

1 i = 1ρ = −  (n2 − 1)n 

where di are the differences of the ranked pairs. 

EXAMPLE 11.2 CALCULATION OF SPEARMAN RANK 
CORRELATION BETWEEN INCOME GENERATION AND SALARY 

Table 11.2 presents the steps involved in calculating the Spearman rank cor-
relation coefficient for the data of Table 11.1. The fourth column gives the 
rank of gross income, and the fifth column gives the rank of salary. The 
sixth column gives the difference between the ranks, and the final column 
gives this difference squared. The sum of the final column is 46, and hence 
the estimated value of the Spearman rank correlation is therefore given by 

276ρ = −  .1 (102 − 1 10 
= 0 721 ) 

This value is very close to the estimate of 0.717 given by the Pearson cor-
relation coefficient. 
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TABLE 11.2 Calculation of Spearman Rank Correlation for Gross Income 
Generation and Salary Ratio 

Gross Salary Rank di = (Rank 
income ratio gross Rank gross income 

Trader generation ($) (%) income salary − rank salary) di × di 

Trader 1 114,110.75 90.66 8 9 −1 1 
Trader 2 828,113.51 182.84 3 2 1 1 
Trader 3 74,596.96 114.18 9 8 1 1 
Trader 4 994,182.19 167.46 1 3 −2 4 
Trader 5 405,435.58 151.55 5 5 0 0 
Trader 6 414,132.38 144.58 4 7 −3 9 
Trader 7 307,932.27 187.85 6 1 5 25 
Trader 8 208,949.86 150.67 7 6 1 1 
Trader 9 23,011.67 69.78 10 10 0 0 
Trader 10 844,090.39 166.44 2 4 −2 4 

EXAMPLE 11.3 SIMULATION OF PEARSON 
AND SPEARMAN CORRELATIONS 

In this example we take a moment to reflect on the calculation of the Spear-
man correlation coefficient, and contrast its value using simulation with the 
Pearson correlation coefficient. Open the file Operational Risk 11.xls and 
select the worksheet entitled Spearman & Pearson. This calculates the Spear-
man and Pearson correlation coefficients for the data in Table 11.1. In the 
calculation of the Spearman coefficient it uses the Excel function Rank() in 
order to obtain the di values. Spend a moment familiarizing yourself with 
the worksheet. Now select the worksheet Spearman & Pearson Simulation. 
You can use this worksheet to investigate the differences via simulation 
between the Spearman and Pearson estimates of correlation. Press <F9> to run 
a simulation. Make a note of the values obtained for 10 simulations. What 
do you conclude? 

Correlation coefficients that make assumptions about the joint distri-
butions of the correlated variables are known as parametric correlation 
metrics. The most popular is the Pearson correlation coefficient. The 
Spearman rank correlation coefficient is nonparametric because it does 
not make any assumption about the joint distribution of the variables. 

PARAMETRIC AND NONPARAMETRIC CORRELATION COEFFICIENTS 
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Point Biserial Correlation 

When one of the variables is binary and the other continuous, we can use 
the point biserial correlation coefficient. If S is a continuous variable and Y 
a binary variable taking the values 0 and 1, the point biserial correlation is 
calculated as 

(S1 − S0 )ρ = 
−p p)1(  

σ S 

– 

S

where S1 = mean of S when Y = 1 

0 = mean of S when Y = 0 

s = sample standard deviation of S s 

r = proportion of values where Y = 1 

A VBA function to estimate the biserial correlation coefficient is given 
below. Note that the first column passed to the function should be the 
continuous variable and the second column the binary variable. 

Function Biserial(data As Range) 

' Calculate Biserial correlation 

Dim number_columns As Double


Dim number_rows As Double


Dim row As Integer


Dim x1 As Double


Dim x0 As Double


Dim s As Double


Dim p As Double


Dim average_x As Double


Dim all_x() As Double


number_columns = data.Columns.Count


number_rows = data.Rows.Count


If (number_columns <> 2) Then 'check no more than 

2 columns Biserial = ˝2 columns only˝ 
ElseIf (number_rows< 4) Then 'We should use at least 4 

' observations although the more the better 

Biserial = ˝need at least 4 rows˝ 

Else 

x0 = 0


x1 = 0


p = 0




11_chap_lewis.qxd  3/3/04  3:49 PM  Page 126

126 OPERATIONAL RISK WITH EXCEL AND VBA 

s = 0 
average_x = 0


Dim number_ones As Integer


number_ones = 0


ReDim all_x(number_rows)


For row = 1 To number_rows ' calculate averages and 


sum of binary variable


Dim is_one As Integer


is_one = data(row, 2).Value


p = p + is_one


If (is_one = 0) Then


x0 = x0 + data(row, 1).Value 

Else


x1 = x1 + data(row, 1).Value


number_ones = number_ones + 1


End If 

average_x = average_x + data(row, 1).Value


all_x(row) = data(row, 1).Value


Next row


x0 = x0 / (number_rows − number_ones)


x1 = x1 / number_ones


average_x = average_x / number_rows 
p = p / number_rows 
For row = 1 To number_rows 'calculate standard deviation 
s = s + (all_x(row) - average_x)ˆ2 

Next row 

s = (s / (number_rows−1))ˆ0.5


Dim temp As Double


Biserial = ((x1 - x0) * (p * (1 - p))ˆ0.5) / s 
' Return Biserial correlation 

End If 

End Function 

EXAMPLE 11.4 CORRELATION BETWEEN OPERATIONAL RISK 
AND GROSS INCOME OF BUSINESS LINES 

An application of this function is given in the worksheet Biserial in the 
workbook Operational Risk 11.xls. The worksheet is based on the follow-
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TABLE 11.3 OR Risk and Gross Income across Business Lines 

Operational Gross income Risk 
Business line risk (millions $) coding 

Corporate finance Low 117.78 0 
Trading and sales High 161.84 1 
Retail banking Low 117.11 0 
Commercial banking High 161.91 1 
Payment and settlement High 162.11 1 
Agency services and custody High 80.45 1 
Asset management Low 50.57 0 
Retail brokerage High 172.88 1 

ing example: Let us imagine that the level of operational risk in an institu-
tion’s business lines is graded as high or low based on the opinion of an 
OR analyst. Suppose we are interested in assessing the degree of correlation 
between OR risk and gross income of the business lines. Since in this case 
OR risk is a binary variable and gross income a continuous variable, we 
can use the biserial coefficient to estimate correlation. Table 11.3 provides 
a typical example. The final column gives the mapping of high or low into a 
binary variable. Using the above Biserial() function in the worksheet 
Biserial, the estimate of correlation is 0.57. 

Tetrachoric Correlation 

Tetrachoric correlation measures the association between two binary vari-
ables. Assume T and S are dichotomized at unknown threshold values θS 
and θT , respectively. Our observable measurements on S and T are denoted 
by Sd and Td, where Td = 1 if T ≥ θT (otherwise Td = 0), and Sd =1 if S ≥ qS 
(otherwise Sd = 0). The joint distribution of (Sd, Td) can be summarized as 

TABLE 11.4	 The General Situation for Outcomes of a Binary 
Variables S and T with Probability of Occurrence 

T = 1 T = 0 
S = 1 P11 P01 PS 
S = 0 P10 P00 1 − PS 

PT 1 − PT 1 

Note Pkj is the probability that T = k and S = j where j, k = 0 or 1 
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a 2 × 2 contingency table. The general situation is outlined in Table 11.4, 
where Pij = Prob (Td = i , Sd = j). Each cell is a bivariate normal integral. 
For example: 

P00 = Prob ( T d = 0, S d = 0) = Prob (T < θ , S < θ S )T 
θ T θ S 

t s r) dtdsΦ ( , ,= ∫ ∫ 
-∞ -∞ 

The actual formula for the tetrachoric correlation coefficient is complex and 
contains an infinite series of terms. However, Pearson1 provides an easy-to-
use approximation2 given by 

  
 o  

ρ̂ = cos 180  
 
 1 + bc

ad 

 






 

where a, b, c, and d refer to the frequencies in a fourfold table in cells 11, 12, 
21, and 22, respectively, and where row 1 and column 2 designate presence. 

Consider Table 11.5, which provides information concerning whether 
a reputational risk event has occurred alongside an internal OR audit score. 

TABLE 11.5	 Reputational Risk Events and OR Internal Audit Score for 
12 Fictional Banks 

Recorded Data Data Mapping 
Reputational OR Reputational OR 

Bank risk event audit score risk event Audit Score 

XYZ Bank No Low 0 1 
GIA Financials No Low 0 1 
City FG Holdings Yes High 1 0 
Financial Street Bank Yes High 1 0 
FPG No Low 0 1 
Boston Regal Yes High 1 0 
Imperial Crown No Low 0 1 
Market DG Yes Low 1 1 
Coventry Provincial No High 0 0 
Bank 10 Yes High 1 0 
AG Swift Inc Yes Low 1 1 
High Street Holdings Yes Low 1 1 
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For this table the tetrachoric correlation coefficient is equal to 0.58. A VBA 
function to calculate tetrachoric correlation is 

Function Tetra(S As Range, T As Range)' Function 

takes two binary ranges S and T


' Error checks


If (S.Columns.Count > 1 Or T.Columns.Count > 1) Then


Tetra = ˝Need only 1 column˝


ElseIf (S.Rows.Count < 10 Or T.Rows.Count < 10) Then


Tetra = ˝Need at least 10 rows˝


ElseIf (S.Rows.Count <> T.Rows.Count) Then


Tetra = ˝Need at equal number of rows˝


Else ' correlation calculation starts here


Dim a As Integer


Dim b As Integer


Dim c As Integer


Dim d As Integer


Dim i As Integer


a = 0


b = 0


c = 0


d = 0


Dim pi As Double


pi = 3.14159265358979


For i = 1 To S.Rows.Count


If (S(i, 1) = 1 And (T(i, 1) = 1)) Then a = a + 1


If (S(i, 1) = 1 And (T(i, 1) = 0)) Then b = b + 1


If (S(i, 1) = 0 And (T(i, 1) = 1)) Then c = c + 1


If (S(i, 1) = 0 And (T(i, 1) = 0)) Then d = d + 1


Next i


Tetra = Cos(pi / (1 + (Sqr((b * c) / (a * d)))))


End If


End Function


The function Tetra() takes two columns which must be of equal length 
and have at least 10 rows. An example of the use of this function is given 
in the worksheet Tetrachoric. The worksheet combines the Tetra() 
function with a simulation of the two binary variables “OR Audit Score” 
and “Reputational Risk Event” for 12 fictional financial institutions. Press 
<F9> to run the simulation. 
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Note that when bc = ad, 
means that the overall denominator is 2, and that the overall fraction 

r = 0 and therefore there is no correlation between S and 
T. When bc dominates over ad, the overall denominator is greater 
than 2, which means that the overall fraction is less than 90º, and the 
resulting estimate of r̂ is negative. 

UNDERSTANDING THE PEARSON TETRACHORIC APPROXIMATION 

the fraction under the radical is unity, which 

is 90º so that ˆ

Confidence Intervals and Hypothesis Testing 

Occasionally, we will wish to conduct a hypothesis test or construct a con-
fidence interval around our correlation estimate. To do this, we will need 
to draw on two properties introduced by Fisher3 and discussed in detail 
by Cramér4: 

Property 1: If the population correlation (which we refer to as r) = 0, then 

ρ (N − 2) has a t distribution on N − 2 degrees of freedom.ˆ 
2ˆ )(1 − ρ 

Property 2: As the sample size N increases, the distribution of 

)ˆ. ln  
 
(1 + ρ 

ˆ )
 approaches a normal distribution with a mean of0 5

(1 − ρ 

. ln  
 
(1 + )r 0 5  

(1 − r) and variance 1 . 
N − 3 

These properties can be used to test hypotheses and construct confidence 
intervals for r, the population correlation coefficient. We illustrate this by 
assuming the correlation of interest between two variables S and T is esti-
mated as r̂ = 0.156 from a sample size of 339. The question now is: Does the 
data provide good evidence that there is weak positive correlation between 
the S and T? To answer this question, we must test the null hypothesis (H0) 
that r = 0 against the alternative (H1) that r > 0. Since r̂ = 0.156 and N = 339, 
using property 1 we see that 

ˆ .ρ (
( 
1 

N 

−

−

ρ 

2)
) = 0.156 

( 337)
= 2 899 

2 ˆ 2  1 − ( 0.156)  
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If H0is true, then this should be an observation from a t distribution on 337 
degrees of freedom. But the upper 5 percent significance point of this t dis-
tribution is 1.65, and since the test is one-tailed we therefore reject H0 at 
the 5 per cent significance level. In fact, the upper 1 per cent and 0.1 per 
cent are 2.33 and 2.68, respectively, so there is highly significant evidence 
in favor of the alternative hypothesis, r > 0. We would also like to find a 95 
percent confidence interval for r̂. To do this, we need to use property 2. 

Now 

. ln  (1 + ρ̂)0 5  ˆ) 
.= 0 1573 (11.1)

(1 − ρ 
and 

1 = 0 0546 (11.2). 
N − 3 

. ln  
 
(1 + ρ 

)
(

ˆ ) 
but if 0 5  ˆ) is normally distributed with mean(1 − ρ 

0 5  


. ln   (1 + r 
1 − r)

 and variance 1 , then 
N − 3 

 
ˆ
ˆ

)
)

 

− 0 5  
 (1 + r)   (1 + ρ 

Prob 
− 1 96  ≤ N − 3  0 5  ln  


 (1 − ρ 

. ln   ≤ 1 96  . . . 
    (1 − r)



 

 
= 0 95  . 

so that 

ˆ )Prob 
 
0 5  

 (1 + ρ
. ln   ˆ ) − 1 96  / N − 3 ≤ 0 5  ln  


 
(1 + r) 

. 
  (1 − ρ 

. 
 (1 − r)






= 0 95   .
ˆ )≤ . ln  

 (1 + ρ 

 
0 5  

ˆ) + 1 96  / N − 3 

 

  (1 − ρ  
. 

Using the values obtained in Equation 11.1 and Equation 11.2, therefore 

Prob  0 1573 − 1 96 × 0 0546 ≤ 0 5 . . . .
 
ln 

 (1 + r) = 0 95  . 
  (1 − r)

 ≤ 0 1573 + 1 96 × 0 0546 . . . 
 

From this value we see that 

Prob 0 0503 ≤ 0 5 ln  
 (1 + r)

≤ 0 2643 

 = 0 95 and. .  . . 

  (1 − r)
 

 



11_chap_lewis.qxd  3/3/04  3:49 PM  Page 132

132 OPERATIONAL RISK WITH EXCEL AND VBA 


Prob 0 1006 ≤ ln  

 (1 + r )
≤ 0 5286 


 = 0 95 .  . . 

  (1 − r )
 

 

which on exponentiation throughout gives 

Prob 
 
1 1058 ≤ (1 + r )  

. ≤ 1 697  = 0 95 . . 
 (1 − r )  

Now if (1 + r ) ≥ c , where c is a constant, and r ≠ 1, then (1 + r ) ≥ c 
(1 − r ) 

(1 − r) so that r ≥ (c − 1) ; similarly, (1 + r ) ≤ c(c + 1) (1 − r ) 

implies r ≤ (c − 1) . 
(c + 1) 

Setting c successively equal to 1.1058 and 1.697, we therefore obtain 

Prob { 0 050 ≤ ρ ≤ 0 258 } = 0 95 . ˆ . . 

Hence an approximate 95 percent confidence interval for r̂ = 0.156 is 

(0.05, 0.258). 

Coefficient of Determination 
The coefficient of determination is the square of the correlation coefficient 
and therefore takes values in the range 0 to 1. The magnitude of the coeffi-
cient of determination indicates the proportion of variance in one variable, 
explained by the second variable. For example, a correlation between S and 
T of 0.33 implies that around 10 percent of the variance of S can be ex-
plained by T (or vice versa). If the correlation is 0.71, the proportion 
explained rises to 50 percent. A deterministic linear relationship between S 
and T gives a coefficient of determination of 1, whereas no relationship 
gives a coefficient of determination of 0. 

DEPENDENCE 

We explore the notion of simple dependence by considering the relationship 
between a group of continuous variables T, S, and X, where S and T are dif-
ferent types of OR losses (due to systems failure, legal costs, etc.) and X is an 
OR indicator. Let us further assume T and S are linear functions of X given by 

T = a + bX (11.3) 
and 

S = a + b X (11.4)s s 
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It is tempting to conclude that a strong correlation between two vari-
ables implies a causal relationship between them. This is not necessar-
ily the case. Just because two variables are highly correlated does not 

lation does not imply causation. Why? First, the high correlation may 
be through chance alone. As an illustration consider European storks, 

increase in the number of new babies born in the spring, precisely 
when the storks, appear and begin nesting. The correlation between 
babies and the appearance of the storks is high but spurious. Second, 
even if the particular observed correlation is not due to chance, the 

Causality requires the addition of time. 
S and T. 

If S is always followed by T, then it might be arguable that the appear-
ance of S causes T S is always followed by T, there is 
the possibility that S and T are both caused by a third event, R, and it is 
just that R always causes S more rapidly than T. 

As a simple illustration of a common causal event consider the 
correlation between the dollar cost of damage in London and the num-
ber of fire engines attending the fire. The correlation is high, not 
because the number of fire engines causes the dollar cost or vice versa, 
but because both variables are caused by a third variable, “severity of 
the fire.” In this example, assuming that a high correlation implies 

ber of fire engines causes the dollar cost or vice versa is a false cate-
gorical syllogism. The fallacy ignores the possibility that the correlation 
is coincidence or the result of a third common causal variable. The fal-
lacy is ignoring something besides coincidence. The statement “corre-
lation does not imply causation” is given as a warning not to deduce 
causation from a statistical correlation alone. Knowledge of the oper-
ational processes under consideration, logic, and statistical modeling 
are all required. 

CORRELATION DOES NOT IMPLY CAUSATION 

mean that one causes the other. In statistical terms, we say that corre-

which breed over parts of central Europe. In such areas there is an 

fact that storks and babies occur together does not imply causality. 

To explore this argument further, consider two variables 

. However, even if 

causation leads to a logical fallacy. The causal argument that the num-

The parameters a and a s are the intercept terms. We can interpret b and 
b as the slope of the line between T and X, and the slope of the line be-s 
tween S and X, respectively. Since a slope measures the change in one vari-
able as the other changes, we can write β = ∆T 

∆X 
and βS = ∆S 

∆X 
,, 



11_chap_lewis.qxd  3/3/04  3:49 PM  Page 134

134 OPERATIONAL RISK WITH EXCEL AND VBA 

where ∆ represents a finite increment. Taking limits as ∆X → 0, we have 

 ∆T  dT
Limit = (11.5)
∆X→ 0  ∆X  dX 

and 
 ∆S  dS

Limit  = (11.6)
∆X→0  ∆X  dX 

which are the derivatives of T with respect to X and S with respect to X, 
respectively. 

Given risk indicator X, we are generally interested in assessing the 
dependence of operational loss T on X. Since T = α  if, b = 0, it should be 
clear that we can use b ≠ 0 to signify dependence of operational loss T on 
X. Similarly, b s ≠ 0 would signify dependence of operational loss S on risk 
indicator X. This type of dependence can be estimated using regression 
models. We investigate this further in the following chapters. 

STOCHASTIC DEPENDENCE 

What dependence characteristics would we like our related variables to sat-
isfy? To begin to answer this question, let S and T be two dependent random 
variables representing OR events or risk indicators of interest. Let F, a 
right continuous function on the real line, be the corresponding cumulative 
density function, such that Lim F(S, T) = 0 and Lims→ ∞,T→ ∞F(S, T) = 1,s→ −∞

P

so that F(S,T) is the joint cumulative distribution function. We denote the 
bivariate probability density function as P11 with marginal densities PT and 

S for T and S, respectively. 

Stochastic Increase 

If T is more likely to take on larger values as the value of S increases, we say 
that T is stochastically increasing.5 More formally, this is written as 

| |Prob (T > t  S  > s) = 1 − | (t  s  ) ↑ s for all t (11.7)FT S  

where FT is the conditional distribution function of T given S. By revers-|S 
ing the direction of monotonicity in Equation 11.7 from ↑ to ↓, T is said 
to be stochastically decreasing in S. The reason why Equation 11.7, is a 
positive dependence condition is that T takes on larger values as S 
increases. 
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Positive and Negative Quadrant Dependence 

If S is independent of T then 

(S > s)PT (T > t)P11 (S > s, T > t) = Ps 

On the other hand, if S and T are dependent in some way, we may expect 
S to be large when T is large and small when T is small; thus 

P S11 ( > s  T  , > t) = PS S( > s) PT T( > t) (11.8) 

or alternatively 

Prob (S ≤ ,s T ≤ )t ≥ Prob ( ) Prob (S s T≤ )t≤ (11.9) 

If Equation 11.8 holds, then S and T are said to be positive quadrant depend-
ent.6 If the inequalities in Equation 11.8 are reversed, then S and T are said 
to be negative quadrant dependent.7 The reason why Equation 11.8 is a rel-
evant positive dependence concept is that S and T are likely to be large 
together when they are dependent compared to the situation when they are 
independent. 

Totally Positive of Order 2 

We may expect dependent variables S and T to be more likely to have two 
pairs matching high-high and low-low than two pairs matching high-low 
and low-high. This idea is captured in the dependence concept of totally 
positive of order 2.8 The joint probability P11 is totally positive of order 2 
if for all t1 < t2 and s1 < s2 P11(s1, t1) P11(s2, t2) ≥ P11(s1, t2) P11(s2, t1). 

Dependence Properties 

Three dependence properties9 are worth noting: 

Dependence property 1: The joint density function of the standardized 
bivariate normal distribution is total positive of order 2. 

Dependence property 2: If S and T are bivariate normally distributed and 
positively (negatively) correlated, then T is stochastically increasing 
(decreasing) in S. 

Dependence property 3: If T is stochastically increasing (decreasing) in S, 
and S and T are bivariate normally distributed, then S and T are positive 
(negative) quadrant dependent. 
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SUMMARY


The concept of correlation and dependence permeates operational risk man-
agement in a most profound manner. Examples of correlated and interde-
pendent OR events and indicators are too numerous to be cited individually. 
As such, operational risk management calls for an understanding of the dis-
tinction between correlation and dependence. It also requires tools that 
allow us to measure correlation and dependence beyond the situation in 
which both variables are continuous. The point biserial and tetrachoric coef-
ficient are useful in this situation. Dependence and causal modeling using lin-
ear and logistic regression will be discussed in the following two chapters. 

REVIEW QUESTIONS 

1. What is the difference between correlation and dependence? 
2. In what circumstances would you prefer to use the Pearson coefficient 

over the Spearman coefficient? 
3. Use the coefficient of determination to explain the values for the rules 

of thumb for assessing the strength of correlation. 
4. Explain the concept of simple and stochastic dependence. 

FURTHER READING 

Further discussion on the relationship between correlation and dependence 
can be found in Mari and Katz (2001). Castellan (1966) provides a superb 
discussion on the estimation of the tetrachoric correlation coefficient. 
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CHAPTER 12 
Linear Regression in

Operational Risk Management 

How should we characterize the relationship between the size of operational 
losses and computer system downtime? We might speculate that the 

longer is the computer system downtime, the larger are the operational 
losses. Although we might not expect the relationship to be perfect, if we 
could establish its approximate validity this knowledge would provide us 
with useful risk management information. Linear regression is one way we 
can investigate this relationship. It offers a tried and tested way to deter-
mine the relationship between operational risk factors. It involves finding 
the best-fitting line through a data sample. In most circumstances, the slope 
of this line and the intercept have a clear operational risk interpretation. In 
other cases, we can use linear regression to forecast future values of opera-
tional risk factors. In this chapter we introduce aspects of the applied use 
of linear regression. 

THE SIMPLE LINEAR REGRESSION MODEL 

Suppose we observe a sample of n pairs {(y1, xi), . . . , (yn, x )} on the opera-n
tional risk factors X and Y. If we wish to use X to help explain Y, we can 
use simple linear regression. Simple linear regression models the relationship 
between X and Y by 

y = α + β xi + εii 

where xi is known as the independent (or explanatory) variable, and yi is 
known as the dependent (or response) variable. The realized value yi is the 
observed response for the ith observation and xi is the corresponding 
known constant level of the independent variable. The coefficients a and b 
are unknown model parameters and e is known as the residual (or random) 
error, generally assumed to be an independent identical normally distrib-

2uted random variable with mean 0 and variance s . 

137 
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EXAMPLE 12.1 POSTULATING A SIMPLE LINEAR REGRESSION 
MODEL FOR OPERATIONAL LOSSES 

Table 12.1 presents the format of daily data (102 observations in total) over 
a number of months on the size of operational losses and system downtime. 
We are interested in investigating whether the size of operational loss is 
related to system downtime. A scatter plot of the two variables is shown in 
Figure 12.1. 

Since the relationship appears fairly linear, we postulate the simple linear 
regression model 

Operational_loss day i = [intercept] + [slope × system 
downtime day i] + [random error day i] 

Interpretation of Model and Parameters 

What is the meaning of the regression equation? To gain some insight, con-
sider the linear equation 

y = a + bx 

The coefficient b is the slope of the line and the coefficient a is the intercept. 
As shown in Figure 12.2 , when b > 0 the line has positive slope, for b < 0 it 
has negative slope, and for b = 0 it has zero slope. The linear regression par-
ameters a and b are interpreted in an analogous fashion. The regression 
model of the relationship between Y and X can be interpreted as 

yi = [intercept] + [slope × xi] + [random error] = a + b xi + ei 

In Chapter 2 we gave the expectation of a risk factor Y as E(Y) and 
the conditional expectation of Y given the risk factor X as E(Y|X

assume the random error has an expected value of 0; then we can write 
E(Y|X) = a + bX. Therefore, simple linear regression is essentially a 
conditional expectation, where the intercept a tells us the value of Y 
that is expected when X = 0. The slope parameter b measures the rela-
tionship between X and Y. It is interpreted as the expected change in 
Y for a 1-unit change in X. For example, if we estimate a regression 
and find E(Y|X) = 2.75 + 0.35X, a 1-unit change in X is expected to 
lead to a 0.35-unit change in Y. 

LINEAR REGRESSION AND EXPECTATIONS 

). We 
can interpret linear regression as a conditional expectation. To see this, 
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FIGURE 12.1 Scatter plot of system downtime against amount of operational loss.

TABLE 12.1 Operational Losses and System Downtime

Operational System down
Date losses ($) time (minutes)

1-Jun 1,610,371 9
2-Jun 25,677 0
3-Jun 1,504,852 11
4-Jun 0
5-Jun 913,881 7
6-Jun 2,352,458 18
7-Jun 3,549,325 19
8-Jun 0 0
9-Jun 0 0

10-Jun 1,649,917 13

Estimators of parameters

As yet, we have only a postulated model between two risk factors Y and X
of the form

yi = a + b xi + ei

We will need to estimate the value of the intercept and slope from our data.
These model parameters can be estimated using the method of ordinary
least squares (OLS) or maximum likelihood estimation (MLE).
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FIGURE 12.2 Linear equation with varying slope parameter b. 

Ordinary least squares estimators of the parameters are given by 

n 

∑ (xi − x )(yi − y) 
ˆ ˆ i = 1α = y − β x and β = n 

2∑ (xi − x ) 
i = 1 

where y and x are the arithmetic mean of Y and X, respectively. The sam-
ple variance is calculated as 

n 2∑ (y − y)i 

σ 2 = i = 1ˆ
n − 1 

We also can estimate the parameters using maximum likelihood. In this 
case we assume the residual e ~ N (0, s 2), so, as shown in Figure 12.3, the 
individual yi values are yi ~ N(mi,s 2), where mi = a + b xi. The likelihood 
equation is given by 

n 
2L(µ σ ) = ∏ f y  µ σ ),i , 2 ( i i 

i = 1 
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FIGURE 12.3 Distribution of dependent variable given independent variable in 
linear regression. 

Taking logs, we have the log likelihood 

log L , ,α β σ  ( , , , ,1y x y xi n n( ) ( ){ })K = − 1 
2 

logn π2 − 1 
2 

log σn 2 

− 1 
2 

yi 
i 

n 

( 
= 
∑ 

1 

α− − βxi )2 σ 2 

This can be be solved to give 

n n 

∑ (xi − )(  x yi − )y ∑ (Yi )− Y 2 

α̂ = y − β x β̂ = i = 

∑ 
n 

1 

(xi − )x 2 

σ̂ 2 = i = 1 

n 

=i 1 

The only difference between the ordinary least squares and maxi-
mum likelihood estimations is that the divisor for the sample variance is 
n in MLE and n − 1 for OLS. In fact, the MLE estimator of sample vari-
ance is biased, although as n becomes large this bias becomes less of an 
issue. 
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Since the sample from which we derive the estimates is a random sam-
ple, the estimates themselves are also random variables. Their value will 

the variation measured by the standard deviation in the estimate from the 
sample becomes increasingly small. In empirical studies we estimate this 
variation in the parameter estimates using the standard deviation, more 

for the standard error because its precise algebraic form is rather com-
plicated. For practical purposes, you should interpret it as the standard 
deviation in the estimated value of the parameter of interest. 

ANOTHER RANDOM VARIABLE 

change from sample to sample. In theory, as the sample size increases, 

frequently called the standard error. We do not give an explicit formula 

EXAMPLE 12.2 OLS ESTIMATION OF THE REGRESSION 
OF OPERATIONAL LOSSES ON SYSTEM DOWNTIME 

Continuing with Example 12.1, we estimate the regression equation using 
OLS as 

Operational_Loss = − $34,815 + [$136,205 × system downtime] 

These estimates provide us with useful operational risk management in-
formation because they inform us that the longer is system downtime, the 
higher are the operational losses. Furthermore, a 1-minute change in system 
downtime is expected to lead to a $136,205 change in operational losses. 
Thus, the cost of an additional 1 minute of system downtime is approxi-
mately $136,205. Such information is very useful for managing operational 
risk; if average downtime can be reduced by 2 minutes a day, we can expect 
to reduce daily average operational losses by around $272,410. 

Assumptions of Simple Linear Regression 

Linear regression requires that a number of assumptions hold for the data. 
The first is that the relationship between X and Y is linear. If this assump-
tion is not met, the model will not be adequate and the OLS estimates will 
be biased. Second, we assume homoscedasticity in variance. This implies 
the variance of the residual term s2 is constant across all values of X. Third, 
we require the independence of εi and εi for all i ≠ j so that errors associ-
ated with different observations are independent of one another. For a sim-
ilar reason we also require the residual to be uncorrelated with the xi values. 
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Finally, we assume the residual is normally distributed. If all of these 
assumptions are met, then the OLS estimates are known as the best linear 
unbiased estimators. 

mum likelihood, the method of ordinary least squares, and various 

and for simple linear regression the MLE estimator of the variance is 
biased and the OLS estimator is unbiased. A best linear unbiased esti-
mator is an estimator that has the smallest variance in the class estima-
tors that are linear in the dependent variable Y. Why is this important? 
Because apart from wanting an estimator that is unbiased, we also 
would like an estimator that is always close to the population parame-
ter we are trying to estimate. One way to measure this closeness is 

tors, one with a large variance and the other with a small variance, we 
always choose to use the estimator with the small variance. 

WHAT ARE BEST LINEAR UNBIASED ESTIMATORS? 

We have seen that estimators can be derived by the method of maxi-

other methods. We know that a good estimator should be unbiased, 

through the variance of the estimator. If we have two unbiased estima-

Coefficient of Determination 

Before we make inferences about parameters from our sample estimates, we 
would like to determine how well the regression model fits our risk factor 
data. The coefficient of determination (R2) is the most commonly cited 
measure to achieve this. In the simple linear regression model, R2 is the 
square of the correlation between X and Y. For a poor fitting model, R2 will 
be small. For a good fitting model, R2 will be large. In fact, for a very poor 
model, R2 = 0, and for a perfect fit, R2 = 1. Since R2 is the square of the 
correlation between X and Y, it lies between 0 and 1. 

An important interpretation of R2 is as the proportion of the variation 
in the dependent variable Y explained by the linear regression. To see this, 
recall that our OLS parameter estimates were â and b̂ , and our estimated 
linear regression equation was 

ˆ ˆy = α + β xi + εii 

The estimated value of yi can also be written as 

y = ŷ i + εii 
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ˆ ˆwhere ŷ i = α + β x and is the expected value for yi. If we square both sides 
and take the sum, we have 

n n n	 n n 
2	 2∑ y2 = ∑ (ŷ + ε )2 = ∑ (ŷ2 + 2ε ŷ + ε ) = ∑ ŷ i 2 + ∑ ε ii i i i i i i 

i = 1 i = 1 i = 1 i = 1 i = 1 
n 

because ∑ 2ε ŷ = 0.i i 

i= 1


If we now use the fact that the average value of the residual is zero and express 
the above result in deviation form, we obtain 

n n n 
2∑ (y − y)2 = ∑ (ŷ − y)2 + ∑ (y − ŷ)i i i 

i = 1 i = 1 i = 1 

n 2 
iIf we recall the formula for sample variance, 	∑ (Y − Y ) , we see that 

i = 1 n − 1 
the equation measures the total variation explained by the model and resid-

n 
2

ual. In fact,	 ∑ (yi − y) is known as the total sum of squares (TSS), 
i = 1 

n	 n 

∑ (ŷ − y)2is known as the explained sum of squares (ESS), and ∑ (y − ŷ)i i

i = 1 i = 1


is known as the residual sum of squares (RSS).The difference between TSS 
and RSS represents the improvement obtained by adjusting Y to account for 
X. This difference is, of course, ESS, which measures the amount of vari-
ability in Y that is eliminated by including X in the model. So we see that 
TSS = ESS + RSS. 

THINKING ABOUT ESS AND R 2 

the operational risk factor X in the model compared to a model that 
does not include X. The measure of fit R2 can be constructed by tak-
ing the ratio of the explained variance to the total variance, that is, 

. Therefore, R2 is simply the proportion of total vari-

ation in Y 
this interpretation provided an intercept term is included in the regression. 

and ESS to be small and consequently R2 will be small. For a good-fitting 
model ESS will be large and RSS small and therefore R2 will be large. It is 
easy to see that for a very poor model ESS = 0 and therefore R2 = 0. For 
a perfect fit RSS = 0 and therefore ESS = TSS and R2 = 1. 

ESS 

TSS 

RSS 

TSS 
= −  1 

You should think of ESS as measuring the “value added” by including 

explained by regression model. However, it will only have 

If this is the case for a poor-fitting model, we would expect RSS to be large 



EXAMPLE 12.3 CORRELATION AND COEFFICIENT
OF DETERMINATION BETWEEN OPERATIONAL LOSSES
AND SYSTEM DOWNTIME

To illustrate the calculation of R2 we return to Example 12.2. We calculate
the correlation between operational losses and system downtime as 0.970,
and thus R2 = (0.970)2 = 0.941. Therefore, around 94 percent of the varia-
tion in the data is explained by the regression model. This is quite high and
provides information that the model may have some value. Figure 12.4 pres-
ents the fitted regression line for this model.

A t Test and Confidence Interval for Simple Regression

Our objective in using linear regression is to determine if the value of the
dependent variable can be explained by the independent variable. In this case,
for a two-sided hypothesis test and given the standard error of b̂ [denoted by
S.E. b̂ ], the test statistic is

A 100(1 − a) confidence interval is given by

where t is the t distribution with n − 2 degrees of freedom.

ˆ . .( ˆ )β β α± ×s e t
2

t
s e

α
β β

β2

0= −ˆ

. .( ˆ )
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FIGURE 12.4 Fitted regression line for operational loss dependent on system
downtime.
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EXAMPLE 12.4 A t TEST FOR THE REGRESSION OF THE 
EFFECT OF SYSTEM DOWNTIME ON THE AMOUNT OF 
OPERATIONAL LOSSES 

In Example 12.3, does system downtime affect the amount of operational 
losses? It appears that the answer is yes since the slope of the regression line 
β̂ = 136205, which is clearly not 0. We may, if we wish, test this formally 

with H0: β = 0 against H0: β > 0.0 0 

ˆ ,The standard error of β = 2 132 and t = 63.90 with a resulting p value 
less than 0.001. Therefore, we reject the null hypothesis and conclude there 
is a positive relationship between operational losses and system downtime. 

Checking the Assumptions of the Regression Model 

Checking that the assumptions of the regression model are satisfied is an 
important part of regression modeling. In general we check for unusual 
observations, homoscedasticity of variance, independence, and normality. 

Standardizing the residuals by dividing them by their standard devia-
tion is a quick and simple way to check for unusual observations. Values 
grater than 2 or less than −2 are considered significant outliers. Occasion-
ally, values outside of these ranges may be due to a transcription or data 
collection error or random chance. However, if there are a large number of 
such values, the regression model may be misspecified. 

Analysis of homoscedasticity and normality may also be carried out 
using the standardized residuals. A simple check for homoscedasticity is to 
visually inspect a standardized residual plot. Figure 12.5 illustrates what 
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FIGURE 12.5 Random variable with increasing variance. 
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such a plot might look like for a random variable with increasing variance. 
For a homoscedastic standardized residual we would expect the scatter of 
points to be distributed randomly around 0, with no discernable trend. We 
can investigate normality of the residual by building a histogram; alterna-
tively, we can construct a normal probability plot. If normality holds, the 
residuals should lie along a 45º line. We can check visually for indepen-
dence by plotting the standardized residuals against the fitted values and 
against time to see if any nonrandom patterns emerge. We illustrate some 
of these ideas with the following example. 

EXAMPLE 12.5 MISSPECIFICATION TESTING SIMPLE LINEAR 
REGRESSION OF OPERATIONAL LOSSES 
ON SYSTEM DOWNTIME 

Figure 12.6 plots the standardized residuals for the regression model of 
Example 12.4. The vast majority of residuals lie within −2 to 2, although 
there are three points which lie considerably above −2 and three points which 
lie considerably below −2. Further checking revealed these six observations 
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FIGURE 12.6 Standardized residuals for operational loss dependent on system 
downtime simple linear regression. 
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FIGURE 12.7 Standardized residuals versus fitted values for linear regression 
of operational losses on system downtime.
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were recorded correctly, and therefore their large values were assigned to
chance. A visual inspection of Figure 12.6 does not reveal any violations in
the homoscedasticity or the independence assumption. As a further check
of independence, in Figure 12.7, we plot the residuals against the fitted val-
ues; no discernable nonrandom pattern is obvious. In Figure 12.8 we con-
struct a histogram of the standardized residuals. It clearly shows evidence
of non-normality. This is confirmed in Figure 12.9, in which the standard-
ized residuals appear to form two separate lines. The assumption of normal
residuals appears to have failed in this model. This failure indicates that an
alternative specification may be more appropriate. We investigate this fur-
ther in the next section.

MULTIPLE REGRESSION

In many operational risk applications the relationship proposed by a sim-
ple linear regression model, with only one independent variable, may not
adequately explain the variation in the dependent variable. This is because
in practice there will be many influences on the dependent variable. In such
cases, we can extend simple linear regression to multiple linear regression.
Given the dependent random variable Y and k explanatory variables X1,X2,
. . . , Xk, multiple regression model takes the form

where e is the residual generally assumed to be an independent identical nor-
mally distributed random variable with mean 0 and variance s 2.

y x x xi i i k i
k

i= + + + + +α β β β ε1
1

2
2 L
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FIGURE 12.8 Histogram of standardized residuals for linear regression of
operational losses on system downtime.
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FIGURE 12.9 Normal probability plot for the standardized residuals for linear
regression of operational losses on system downtime.
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EXAMPLE 12.6 MULTIPLE LINEAR REGRESSION 
OF OPERATIONAL LOSSES 

Recall Example 12.1 in which system downtime was the sole independent 
variable and operational losses were the dependent variable. We might expect 
a more accurate model if we included a number of other independent vari-
ables. Table 12.2 provides details on other independent variables that also 
might be relevant. They include the number of trainees employed in the back 
office on a particular day, number of experienced staff, volume of transac-
tions and number of transaction errors. Therefore, we might postulate 

1 2 3 4 5y = α + β1 xi + β2 xi − β3 xi + β4 xi + β5 xi + εii 

x

where Y is operational losses, x1 is system downtime, x2 is the number of 
trainees working in the back office, x3 is the number of experienced staff, 

4 is the volume of transactions, and x5 is the number of transaction errors. 
We might expect the coefficient on b3 to be negative—the more experienced 
the staff working in the back office on a particular day, the less likely is an 
operational loss. All the other independent variables are expected to have a 
positive sign. 

Estimation, Model Fit, and Hypothesis Testing 

As with simple linear regression, parameters can be estimated using ordinary 
least squares or maximum likelihood. Model fit cannot necessarily be assessed 
using R2 because it can be inflated towards its maximum value of 1 simply by 

TABLE 12.2 Postulated Causes of Operational Losses for a Multiple Regression Model 

System 
Operational down- Experienced Transaction 

Date loss ($) time Trainees staff Transactions errors 

1-Jun 1,610,371 9 15 30 389,125 38,456 
2-Jun 25,677 0 7 21 327,451 28,372 
3-Jun 1,504,852 11 6 29 258,321 23,916 
4-Jun 0 0 5 37 209,124 17,456 
5-Jun 913,881 7 16 33 198,243 15,912 
6-Jun 2,352,458 18 4 33 152,586 7,629 
7-Jun 3,549,325 19 0 3 121,411 9,070 
8-Jun 0 0 16 34 127,407 7,370 
9-Jun 0 0 14 28 144,760 10,238 
10-Jun 1,649,917 13 9 32 116,548 7,827 
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adding more independent variables to the regression equation. The adjusted 
coefficient of determination [R2(adj)] takes into account the number of ex-
planatory variables in the model: 

 RSS  
  

1 n − k R2 ( )adj = −  
 TSS  
  n − 1  

Notice that when k = 1: 

 RSS  
  

1 n − k  2R2 ( )adj = −  = − RSS = R1 
 TSS  TSS 
  n − 1  

The value of the estimated coefficients can be investigated using the t 
test described in the previous section. We may also be interested in the joint 
test of the null hypothesis that none of the explanatory variables have any 
effect on the dependent variable. In this case, provided our regression model 
has an intercept, we would use the test statistic 

(TSS − RSS)  

F =  
 

 
 

k 

RSS 

 
 

 
 

 k(n − −  1)  

This test statistic has an F distribution with k and n − k − 1 degrees of free-
dom. Rejection of the null hypothesis implies that at least one of the explan-
atory variables has an effect on the dependent variable. 

EXAMPLE 12.7 ESTIMATION OF PARAMETERS OF MULTIPLE 
LINEAR REGRESSION OF OPERATIONAL LOSSES 

The parameter estimates for Example 12.1 are shown in Table 12.3. The first 
thing to notice is that the signs are more or less as expected. Second, the 
coefficient on system downtime is only slightly different from the value esti-
mated in simple linear regression. However, R2 is higher, indicating that the 
model fits the data slightly better than simple linear regression. The t sta-
tistic and F test statistic, with their corresponding p values, are also listed. 
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TABLE 12.3 Multiple Linear Regression for Operational Loss 

The regression equation is 
Opp_Loss = 153165 + 135950 System down time + 5506 Trainees − 11286 

Exp_Staff + 0.888 Transactions − 0.52 Trans_errors 

Predictor Coef SE Coef T p VIF 

Constant 153165 46611 3.29 0.001 
Sys_down 135950 1864 72.93 0.000 
Trainees 5506 2335 2.36 0.019 1.7 
Exp_Staf −11286 1416 −7.97 0.000 1.7 
Transact 0.8883 0.3135 2.83 0.005 1.4 
Trans_err −0.520 1.826 −0.28 0.776 1.4 
R2(adj) = 95.4% 
S = 160556 
F joint test = 4082 (p < 0.001) 

All of the independent variables, except transaction errors are significantly 
different from zero. The coefficients shown in Table 12.3 allow us to assess 
the impact on operational losses of a change in the independent variables. 
For example reducing the number of trainees on a particular day by 1 indi-
vidual will lead to a reduction in operational losses of around $5,506, 
whilst reducing the number of trained staff by 1 individual increases opera-
tional losses by $11,286. Knowledge of this type is important in assessing the 
operational impact of decisions to change the trainee/experienced staff mix. 

Checking the Assumptions of the Multiple Regression Model 

We can use the same procedures mentioned for simple linear regression. The 
only additional concern is that the independent variables are uncorrelated. If 
this is not the case, the regression model may suffer from multicollinearity. 
Multicollinearity occurs when a linear relationship exists among the inde-
pendent variables. If this occurs, the estimated regression coefficients become 
unreliable. There are a number of quantitative ways to detect multi-
collinearity. The simplest involves inspecting the sample correlation matrix 
constructed from the independent variables. Another way to detect multi-
collinearity, available in most regression software packages, involves the 
calculation of variance inflationary factors (VIFs) for each variable. VIFs 
are used to detect whether one predictor has a strong linear association with 
the remaining predictors (the presence of multicollinearity among the pre-
dictors). VIFs measure how much the variance of an estimated regression 
coefficient increases if the independent variables are highly correlated. It is 
generally accepted that a value greater than 5 indicates multicollinearity 
may be a serious problem, and therefore the regression coefficients, partic-
ularly those with high VIFs, may be unreliable. 

1 
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EXAMPLE 12.8 MISSPECIFICATION TESTING THE SIMPLE 
LINEAR REGRESSION OF OPERATIONAL LOSSES 
ON SYSTEM DOWNTIME 

Figure 12.10 plots the standardized residuals for the multiple regression model 
of Example 12.7. The vast majority of residuals lie within −2 to 2. Table 12.3 
also reports that the variance inflation factors all are less than 2. Multi-
collinearity should not be a problem. Inspection of Figure 12.10 does not 
reveal any violations in homoscedasticity, although the pattern of observa-
tions seems to indicate failure of the independence assumption. The stan-
dardized residuals appear approximately normal, as shown in Figure 12.11. 

PREDICTION 

Regression occasionally is used to predict future values of the dependent 
variable. In the case of simple regression our predicted value ^yi + 1 is 

ˆ ˆŷ i+1 = α + β xi+1 

and in the case of multiple regression we have 

ˆ 1 ˆ 2 ˆ kŷ i+1 = α + β1 xi+1 + β2 xi+1 + L + βk xi+1 
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FIGURE 12.10 Standardized residuals for operational loss dependent on system 
downtime in multiple linear regression model. 



EXAMPLE 12.9 PREDICTION OF OPERATIONAL LOSSES

In Example 12.1 we found Operational loss = − 34815 + [136,205 × system
downtime]. Suppose today we know that tomorrow our system downtime
will be 10 minutes. Then our prediction for operational losses is − 34,815 +
[136,205 × 10] = $1,327,235.
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PREDICTIONS ARE RANDOM VARIABLES

Since a prediction is a function of a random variable, it, too, will be a
random variable and will have an underlying probability distribution.
We can, if we wish, calculate analytical confidence intervals for our
prediction, known as prediction intervals. Such intervals can be inter-
preted along similar lines to a confidence interval, but are generally
much wider because of the inherent uncertainty of predicting the
future. Details of a simple-to-implement procedure for calculating such
intervals numerically are given in Lewis (2003).

FIGURE 12.11 Normal probability plot for the standardized residuals for
multiple linear regression of operational loss.
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POLYNOMIAL AND OTHER TYPES OF REGRESSION


On occasion, the relationship between a dependent variable and indepen-
dent variable may have considerable curvature. Polynomial regression offers 
a way to deal with this. For example, suppose you were considering the 
regression of Y on X and found the linear model is inadequate. You might 
then choose to model the relationship using a quadratic regression model, 
such as 

2β2y
i =
α
 +
 1 xβ i +
 ε+ ix
i 

If this model proved unsatisfactory, you might then consider the model that 
includes x3: 

β 2 
2 β 3 

3y
i =
α
 +
 1 xβ i +
 ε+ i+
x xi i 

Polynomial regression analysis is sequential. We first evaluate a linear model. 
If this is inadequate, we add a quadratic term and then decide whether the 
addition of such a term is justified. 

Other frequently specified forms of the relationship between the depen-
dent and independent variable are the logarithmic regression, in which yi =

a + b1 ln(xi) + ei, and the exponential regression, in which yi = a exp(b1xi) 
+ ei. Figure 12.12 shows these nonlinear relationships alongside the linear 
relationship between a dependent Y and independent variable X. 

MULTIVARIATE MULTIPLE REGRESSION 

In some circumstances the relationship between various types of operational 
risk factors will depend on a common set of explanatory variables. Where 
this is the case, we can estimate a multivariate multiple linear regression. As 
an illustration, suppose we have n measurements on q classes of operational 
losses Y1, . . . ,  Yq that are believed to be influenced by a common set of 
explanatory variables X1, X2, . . . ,  Xk. The multivariate multiple regression 
model takes the form 

β+α1  11  x
 β+ 12 β1k x
k 
i ε1i 

1 1 
i 

2 
i
 + +
 += ...yi x






















+α2 β21  x +
β22 
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FIGURE 12.12 Various relationships between a dependent variable and independent 
variable. 
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The model parameters are estimated simultaneously using a procedure 
such as univariate least absolute deviation or coordinate rank regression.1 

Provided the model is correctly specified, it will have smaller standard errors 
than if we estimated each regression equation separately. We can check the 
validity of the regression assumptions using the methods previously outlined. 

REGIME-SWITCHING REGRESSION 

When an operational risk event is subject to regime shifts, the parameters of 
the statistical model will be time-varying. For example, consider the time 
series of minutes of system downtime per month for a particular business unit 
shown in Figure 12.13. In June 2003 total downtime fell sharply as a result 
of the business unit outsourcing its IT administration. Thus, the change in 
management policy had a direct impact on the stochastic behavior of the OR 
event “system downtime.” 

There are five issues that arise when we consider modeling shifts in 
regime: 

1. How to extract the information in the data about regime shifts in the past 
2. How to estimate the parameters of the model consistently and efficiently 
3. How to detect recent regime shifts 
4. How to correct the models at times when it is known that the regime 

has occurred 
5. How to incorporate the probability of future regime shifts into forecasts 

In general, these issues are tackled in a linear regression model by character-
izing the process generating the dependent variable as piecewise linear. This 
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FIGURE 12.13 A structural break in minutes of system downtime. 
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is achieved by restricting the process to be linear in each regime. Although 
the importance of taking into account regime shifts in the OR analysis is 
widely appreciated, there is no established statistical theory offering a unique 
approach for specifying regression models that embed changes in regime. 
Indeed there are numerous models2 that differ in their assumptions concern-
ing the stochastic process generating the regime. One simple approach for 
the above example would be to model each regime separately: 

Yt = α1 + β Xt1 

Yt = α2 + β Xt2 

a

where a1 is the intercept term before the change in management policy and 

1 the intercept term after the IT function has been outsourced. This illus-
trates the basic idea of regime-switching models—that the process is time-
invariant conditional on the regime prevailing at time t. An alternative 
approach is to consider regime shifts not as singular deterministic events, 
but governed by an exogenous stochastic process. Thus, regime shifts of the 
past are expected to occur randomly in the future. 

THE DIFFERENCE BETWEEN CORRELATION AND REGRESSION 

Correlation analysis compares how two random variables vary together. In 
regression we assume the values taken by the dependent variable are influ-
enced or caused by the independent variables. Therefore, regression provides 
us with a cause-and-effect modeling framework. Correlation, on the other 
hand, informs us that two variables may be related, but it tells us nothing 
about causation. For example, in Figure 12.14 we consider two random 
variables, W and X, and a dependent variable Z. If increasing values of W 
and increasing values of X tend to influence Z in the same direction, then 
W and X will be positively correlated, but not causally related; however, W 
and X do cause Z. 

Causal relationship { 

W 

X 

Z 

Legend 
} 

Correlation { } 

FIGURE 12.14 Correlation and causal relationship 
between three variables. 
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A STRATEGY FOR REGRESSION MODEL BUILDING 
IN OPERATIONAL RISK MANAGEMENT 

A general strategy for successful regression model building consists of three 
stages. In the first stage we postulate a causal model between a dependent 
variable and at least one explanatory variable. The relationship between 
each explanatory variable and the dependent variable can be explored using 
a scatter plot and correlation. For each independent variable we may then 
visually examine the relationship with the dependent variable. Questions to 
bear in mind at this stage include: 

■	 What does the scatter plot of the dependent variable indicate about the 
relationship between the two variables? 

■	 What is the direction of causation? Is it positive or negative? 
■	 What is the shape of the relationship? Linear or nonlinear? 
■	 What is the correlation between the two variables? 

The second stage involves estimation of the regression equation and 
interpreting the output. In this stage we are interested in what proportion 
of the variance in the dependent variable is explained by the regression model 
and the interpretation and statistical significance of the regression coeffi-
cients. Are the signs of these coefficients as expected? 

The third stage of analysis involves checking that the assumptions of the 
regression model are met. This can be achieved informally by looking at 
graphs of the residuals, including the histogram, the normal probability plot, 
and the scatter plot of the standardized residuals as a function of the stan-
dardized predictions. If serious failure is evident, formal hypothesis testing 
can be carried out. 

SUMMARY 

Linear regression is intuitive and easy to calculate and presents risk man-
agement information in a clear and unambiguous fashion. A thorough 
understanding of its applicability and use will enhance your operational risk 
management planning and practice. 

REVIEW QUESTIONS 

1. What is the difference between the simple linear regression model and lin-
ear multiple regression? 

2. Define and explain the coefficient of determination. 

■	 What is its relationship to the correlation coefficient? 
■	 What is its relationship to the adjusted coefficient of determination? 



12_chap_lewis.qxd  3/3/04  5:13 PM  Page 160

160 OPERATIONAL RISK WITH EXCEL AND VBA 

3. Give the form of the t-test statistic for testing the regression parameter 
estimates. How would you calculate a confidence interval around the 
regression parameter estimates? 

4. What are the key misspecification tests you should carry out when using 
linear regression? 

5. Why are predictions from linear regression models random variables? 
6. Correlation is about association and regression about dependence. 

Discuss. 
7. For the simple linear regression model ordinary least squares is a better 

estimator than maximum likelihood. Do you agree or disagree and why? 

FURTHER READING 

Further details on the linear regression model, including measures for detect-
ing unusual observations such as leverage and Cook’s distance, and formal 
hypothesis tests for normality such as the Kolmogorov-Smirnov test, are dis-
cussed in Montgomery and Peck (1982). Lewis (2003) gives details of how 
to calculate confidence intervals for any parameter using a simple numerical 
procedure. 
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CHAPTER 13 
Logistic Regression

in Operational Risk Management 

Logistic regression is a useful tool for analyzing data that includes binary re-
sponse variables, such as presence or absence of a fraud and success or 

failure of a back office process or system. The models work by fitting the prob-
ability of successes to the proportions of successes observed. For instance, 
“computer system failure today?” is an observed response (or, in the lan-
guage of linear regression, the dependent variable). The observed number of 
failures are converted to proportions, which are then fitted by models that 
determine the probability that the computer system will fail today. In fact, 
logistic regression is a simply nonlinear transformation of the linear regres-
sion model. However, unlike linear regression, discussed in the previous chap-
ter, logistic regression does not require assumptions about normality. We 
show in this chapter how it can be used in a univariate setting and then 
develop in detail a model for bivariate binary data. 

BINARY LOGISTIC REGRESSION 

Given a binary dependent variable Y, where Y = 1 if an event of interest occurs 
and 0 otherwise. Assume the event occurs with probability p and that we have 
k explanatory or independent variables X1, X2, . . . ,  Xk. The binary logistic 
regression model takes the form 

 1 2 kln 

(1 − 

p
p)

 
= α + β1 xi + β2 xi + L + βk xi + ε i 

 

e is the residual, or error. This is very similar to the linear regression intro-
duced in the previous chapter. To see this, recall that the linear regression 
specification is given by 

1 2 kY = α + β1 xi + β2 xi + L + βk xi + ε i 

161 
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Since Y is binary, the above linear regression model cannot be used because 
we would encounter difficulties ensuring that the predicted value of Y lies 
between 0 and 1. 

The ratio  p  is known as the odds ratio. The log of the odds
− (1 p) 

ratio, ln 

 p 

(1 p) 

 is known as the log odds ratio or logit. An odds ratio

− 

equal to 1 implies that p, the probability of the event, equals 0.5 Therefore, 
there is a 50–50 chance the event will occur. Table 13.1 illustrates the rela-
tionship between p and the odds and log odds ratios. For p > 0.5, the odds 
ratio is greater than 1 and the log odds ratio is greater than 0; for p < 0.5 
the odds ratio is less than 1 and the log odds ratio is negative. 

Since p is a probability, the logistic regression model is constructed so 
that 0 ≤ p ≤ 1. To see that this is so, note that as 

1 2 kα + β 1 xi + β 2 xi + L + β k xi 

becomes very large, p approaches 1, and as 

1 2 kα + β 1 xi + β 2 xi + L + β k xi 

becomes very small, p approaches 0. Furthermore, if 

1 2 kα + β 1 xi + β 2 xi + L + β k xi = 0 

then p = 0.5. As with linear regression, the logistic regression coefficients 
can be estimated by maximum likelihood. 

TABLE 13.1 Relationship between p, Odds Ratio, and Log Odds Ratio 

p Odds ratio Log odds ratio 

0.9 9.000 2.197 
0.8 4.000 1.386 
0.7 2.333 0.847 
0.6 1.500 0.405 
0.5 1.000 0.000 
0.4 0.667 − 0.405 
0.3 0.429 − 0.847 
0.2 0.250 − 1.386 
0.1 0.111 − 2.197 
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EXAMPLE 13.1 MODELING COMPUTER SYSTEM FAILURE RISK 
WITH LOGISTIC REGRESSION 

Processing risk covers losses from back office operations. It includes, among 
other factors, the failure of computer systems such as order routing or elec-
tronic quote systems. Logistic regression allows us to calculate the proba-
bility associated with such a failure, given assumed risk indicators. Suppose 
(given the data) we postulate that the probability of computer failure is re-
lated to the ratio of available staff (systems support and maintenance) to all 
available staff on a particular day and the volume of computer-related busi-
ness activity as a proportion of the recommended maximum capacity of the 
computer system. Table 13.2 shows how the data might be coded. We can 
model the probability of a computer system failure as 


ln 


(1 − 

p
p)

 
= α + β1 (staff ratio i ) + β (volumei ) + ε2 i 

 

Interpretation and Model Fit 

i) as the effect of the independent variable on the odds ratio. 
For example, if we postulate the logistic regression 

= α + β1 xi + ε iln



(1 − 

p
p) 


 
 

ˆWe interpret exp ( b

ˆand on estimation find thatb
1 
ˆ0.963, then exp(b=
 1) = 1.999 and a 1-unit 

change in X would make the event Y about twice as likely. Positive coeffi-
cients lead to an odds ratio greater than 1 and negative coefficients to a 

TABLE 13.2 Example of Coding Daily Data Computer System Failure 

Coding of Staff ratio Volume 
Date System failure system failure (%) (%) 

1-Feb Yes 1 3.0 79.5 
2-Feb No 0 18.0 53.6 
3-Feb Yes 1 4.5 21.9 
4-Feb No 0 5.0 52.3 
5-Feb Yes 1 1.4 10.3 
. . . . . . . . . . . . . . . 

12-Dec No 0 12.3 45.1 
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odds ratio less than 1. As with linear regression, our objective is to determine

if the value of the dependent variable can be explained by the independent 
variables. In this case, given the standard error of i)],

ˆ[denoted by (bs.e.i b̂

the test statistic is 

ˆ 
2

 βiC =  
 . .( ˆ )

 
s e  βi  

which has a chi-squared distribution with 1 degree of freedom. We also may 
be interested in the joint test of the null hypothesis that none of the explana-
tory variables have any effect on the dependent variable. In this case we use 
the test statistic 

G = −2[LL( ˆ ) − LL( ˆ , ˆ , ˆ ˆ )]α  α β  β  , L , β1 2 k 

ˆwhere LL(a
 is the maximized log likelihood function of the model with 
ˆ ˆLL( ˆ , ˆ ,α β  β  2, , βk) is the maximized log likeli-1only the intercept term and 
 L


h o o d 
function with all the independent variables. G has a chi-squared distribution 
with k degrees of freedom. Rejection of the null hypothesis implies that at 
least one of the explanatory variables has an effect on the dependent variable. 

Measuring overall model fit is not quite as straightforward as with linear 
regression. This is because there is no comparable measure of R2, the pro-
portion of variance in the dependent variable explained by the independent 
variables. However, there are quite a few number of “pseudo-R2” statistics. 
Typical is McFadden’s R2 (McR2) statistic 

1
LL( ˆ , ˆ

1, ˆ
2 

ˆ 
k)α β  β  , L , β

McR2 = −  
LL( ˆ )α 

R 2 

R2 (McR2) is called a pseudo-R2 statistic because unlike R2 , 
which takes on a minimum value of 0 and a maximum value of 1, 0 
≤McR2 <1. In fact, McR2 can only be used to determine the optimal 
number of independent variables given a specific data set. It cannot be 
used to compare the adequacy of models constructed using a different 
data set. Nevertheless, within these limitations, higher values of McR2 

MCFADDEN’S 

McFadden’s 

are supposed to be indicative of a better-fitting model. 
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EXAMPLE 13.2 ESTIMATION AND INTERPRETATION 
OF LOGISTIC REGRESSION COEFFICIENTS 
FOR SYSTEMS FAILURE 

Continuing with Example 13.1, we estimate the logistic regression equation 
(p values in brackets) as 

 p  
. ( . . ( .ln  = −1 9936 0 001) + 1 416 0 002) × Staff _ ratio 

(1 − p) 
.+ 1 3917 (.003) × Volume 

The estimates indicate that both explanatory variables are significant. Thus, 
the higher the staff absence ratio and volume, the more likely is a system 
failure. Furthermore, the estimated odds ratio on staff absence is 4.12 (95 
percent confidence interval 1.71 to 9.91), which informs us that a 1-unit 
change in this ratio makes a system failure about four times as likely. We 
get a similar figure for volume, with an odds ratio of 4.05 (95 percent con-
fidence interval 1.60 to 10.10). The test statistic G = 18.75, p < 0.001, and 
therefore we reject the joint test of the null hypothesis that none of the 
explanatory variables have any effect on the dependent variable. 

BIVARIATE LOGISTIC REGRESSION 

In some circumstances we may wish to model bivariate binary data with 
two binary dependent variables T and S. For example, T might be whether 
there has been a nostro break at the London office and S whether there has 
been a nostro break in the New York office during a particular time period. 
The model we develop is specified in such a way that the correlations 
between the binary dependent variables and the logistic regression coeffi-
cients are model parameters. In addition, the dependent variables T and S 
are assumed to be latent variables from a bivariate normal distribution. 
Latent variable constructions have been widely used in the social sciences as 
a means of characterizing the relationship between different outcomes.1 We 
shall assume we have a data set with N paired binary outcomes on a 
dependent variable S and dependent variable T. Observations within pairs 
are correlated, but observations from different pairs are independent. The 
marginal outcome probabilities are denoted by PS and PT for S and T, respec-
tively. The general situation is outlined in Table 13.3. 

In 1970 Ashford and Sowden2 introduced the multivariate probit model 
for modeling bivariate normally distributed random variables. Le Cessie & 
Van Houweligen,3 in an analysis of neonatal mortality and morbidity in 
twins, replaced the probit marginals in the Ashford and Sowden bivariate 
probit model with identical logistic marginals. We adopt the Ashford and 



13_chap_lewis.qxd  3/3/04  5:04 PM  Page 166

166 OPERATIONAL RISK WITH EXCEL AND VBA 

TABLE 13.3	 Outcomes for Two Binary Dependent Variables 
with Probability of Occurrence, Where Pkj Is the 
Probability that T = k and S = j, Where j, k = 0 or 1 

T = 1 T = 0 
S = 1 P11 P01 PS 
S = 0 P10 1−PS 

P
P00 

T 1−PT 1 

Sowden bivariate framework and adjust the Le Cessie & Van Houweligen 
model to use nonidentical logistic marginals. 

We assume the marginal outcome probabilities PS and PT are logistic 
and dependent upon an independent variable (also known as a covariate) x. 
For example, PS and PT might be the probabilities of a nostro break in the 
London or New York office, respectively, and x might be the total volume of 
activity. Thus, the marginal probabilities have a direct interpretation in terms 
of the logarithm of the odds in favor of success for the S and T endpoints, 
respectively. Therefore 

PS = exp[α  β  x]	 (13.1)+s s 

+1 + exp[α  β  x]s s 

and 

PT = exp [α β  x]	 (13.2)+ 
+1 + exp [α β  x] 

where α, β, α s, β , are unknown model parameters and x is the independents
variable vector. PS and PT represent the logistic regression models discussed 
in the previous section. 

Latent variables provide a useful and intuitive way to characterize the 
underlying distribution giving rise to the observable dependent variables. 
Such models presuppose the existence of unobservable continuous variables 
and assume that S and T enter a particular state when their associated latent 
variable exceeds a certain threshold. We model dependence by regarding the 
dichotomous outcome as realizations of a pair of associated continuous 
latent bivariate standard normally distributed variables SL

n and TL with n 
correlation r. We capture this situation in the assumptions that 

−1(PS)S = 1 if SL < gS, with gS = φ 	 (13.3)n n 

and 
−1(PT)T = 1 if TL < gT , with gT = φ	 (13.4)n n 

The function φ is the standard normal cumulative distribution function. 
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Now we can begin to see why the latent variable idea offers a natural 
model for the underlying mechanisms that are manifest, perhaps only 

variables S and T. The joint probability is given by 

Prob 

where the function f(s, t, r) is the joint density function of the standard-
ized bivariate normal distribution. In this context r is the tetrachoric 
correlation4 between S and T. 

( , ) , )S g T gn 
L 

S n 
L 

T 
gTg S< < = 

−∞−∞ 
ρ 

THE VALUE OF A LATENT VARIABLE SPECIFICATION 

roughly, in the realization of jointly distributed dichotomous dependent 

(  ,  f  s  t  ds  dt  ∫ ∫ 

Using the above and the notation in Table 13.3, we can write the full 
model as 

gS gT f s  t  , ρ ) ds  dt  ( ,P11 = ∫ ∫−∞ −∞ 

= PS −P01 P11 

= PT −P10 P11 

= 1 − P01 −P00 P10 − P11 

The advantage of this particular latent variable formulation is that it leads to 
a set of intuitively appealing parameters. First, bS and b have the same inter-
pretation as they do in the marginal setting. Second, r gives us a measure of 
association between the dependent variables. Also, since P11 ≥ PSPT , our 
model guarantees that if S and T are related, then they are at least positive 
quadrant–dependent. In addition, the dependence properties discussed in 
Chapter 11 inform us that the joint density function of the standardized 
bivariate normal distribution is totally positive of order 2. Therefore, if S 
and T are positively correlated, it follows, from the dependence properties 
of discussed in Chapter 11, that they are positively associated, and that T is 
stochastically increasing in S. Thus, a positive correlation implies dependence 
between S and T. 

Parameter Estimation 

In order to estimate the parameters of the model, we can use the method of 
maximum likelihood. For this we will need to define the associated likelihood 
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equation. To achieve this, let q be a 5*1 vector of the unknown parameters 
a a  s, b, b and r given by:s 

αs 
α  
θ = βs 

 
 

β  
ρ  

The log likelihood function is given by 

N 

LL( ) θ = ∑ Y11i log P11i + Y01i log P01i + Y10i log P10i + Y00i log P00i 
i = 1 

where Yjki is an indicator variable such that 

Yjki 



= 1 if Si = k and Ti = j 

= 0 otherwise 

Estimates of the parameters can be obtained by differentiating the log 
likelihood equation with respect to each parameter to obtain the efficient 
scores, and then solving the resulting simultaneous equations: 

Nθ∂ LL( ) = ∑

 
Y11i ∂P11i + 

Y10i ∂P10i 

∂α s i = 1  P11i ∂α s P10i ∂α s 

Y01i ∂P01i Y00i ∂P00i+ + 
P01i ∂α s P00i ∂α s 

= 0

Nθ∂ LL( ) = ∑

 
Y11i ∂P11i + 

Y10i ∂P10i 

∂α i = 1  P11i ∂α P10i ∂α 
Y01i ∂P01i Y00i ∂P00i+ +  = 0 

P01i ∂α P00i ∂α 

Nθ∂ LL( ) = ∑

 
Y11i ∂P11i + 

Y10i ∂P10i 

∂ βs i = 1  P11i ∂βs P10i ∂βs 

Y01i ∂P01i Y00i ∂P00i+ +  = 0 
P01i ∂βs P00i ∂βs 
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∂
LL( )θ =

N 
 ∂
 ∂
Y11 P11 Y10 P10ii i i+∑ 

1 

β i β∂ β∂∂ P11 P10i i= 

∂ ∂
Y01 P01 Y00 P00i i i i 0+
 +
  = 

β
∂β∂P01 P00i i 

For the unknown correlation coefficient note that


∂
P10i =

∂
(
Psi  −
 ∂
)P11 P11i i= − and

ρ∂ρ∂ ρ∂ 
( 

ρ∂ 
∂ 

ρ∂ 
−
 )Pyi P11∂
 ∂
P01 P11ii i= −=


ρ∂ 

θ 
ρ 

∂ LL( )
∂ 

Thus we can simplify slightly by writing 

N 






θLL( )
∂ 

∂
 ∂
Y11i −

Y10i −


Y01i +

Y00i P11∑
 i =
 0
=


ρ∂P11 P10 P01 P00ρ = 1i i i i i 

Taking the expectation of the second order derivatives, we have


N
 
 
1 

2 θ 
α∂ 

LL( ) ∂
 ∂
 ∂
 ∂
 ∂
1 1P11 P11 P10 P10∑
 i i i iE + =
2 

s α∂ s α∂ s α∂ s α∂ sP11 P10
 i i i= 




∂ ∂
 ∂
 ∂
1 1P01 P01 P00 P00i i i i+
 +
α∂ s α∂ s α∂ s α∂ sP01 P00i i 





N
 

α 

2 LL( θ ) 
 = −
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 i i 

i 


∂ ∂
 ∂
 ∂P001 1P01 P01 P00i i i+
 +
β∂ s β∂ s β∂ s β∂ sP01 P00i i 



13_chap_lewis.qxd  3/3/04  5:04 PM  Page 170

170 OPERATIONAL RISK WITH EXCEL AND VBA 


∂
2 LL( )
 = −  
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2 ∑
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P11 P11 P10ii i



E
 +
 β∂β∂ β∂β∂∂ i 1 P11 P10ii 




∂ ∂
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1 1P01 P01 P00i i i+
 +
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ρ∂ 
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 1 i i 

1 P11 P10 P01 P00 
∑
= 

−
 −
E
 + 
 ρ∂ρ∂
 i i i i i 

where E[.] is the expectation operator discussed. 
For notational ease in writing out the expectation of the cross derivatives, 

we denote 
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=θ =  


 

so that q1 = a etc. Using this notation, we haves 


 
 
2 θLL( )j ∂
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+
 +
θ θ5j θ∂ j θ∂ j θ∂ j∂
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∂ ∂
P00 P111 i i for 1 4j+
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=
θ∂ j θ∂ 5P00 i 
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 θLL( )j 
2 ∂
 ∂
 ∂
 ∂∂ P11 P11 P10 P101 1N i i i i= −  


∑  P11 

E

 


 

+

θ θkj θ∂ j θ∂ k θ∂ j θ∂ k∂
 P101i = i i 

∂
 ∂
P01 P011 i i+

θ∂ j θ∂ kP01i 

∂ ∂
P00 P001 i i for
 1 4j k,+
 to
=
∂θk θ∂ jP00i 

In practice, the above equations are highly nonlinear and do not yield 
an explicit solution for the parameter estimates. A straightforward approach 
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to finding the solution numerically involves assembling the efficient scores 
into a 5*1 vector 


 
LL( )θ∂ 











 









 

θ1∂ 
.


.


.


U( ) =θ 

LL( )θ∂ 
θ5∂ 

θ 
θ∂ 

LL( )  
j 

∂
 =
 0 (
j
 =
1, L , 5) is the jthso that the jth component of this vector 

efficient score. 
Define U(q̂) as the vector of efficient scores evaluated at the maximum 

likelihood estimate L(q̂) of the estimated parameters. Let H(q) be the 
observed matrix of negative second derivatives associated with U(q) such 
that its 
(i, j)th element is given by 

2 θ 
∂ 

LL( )  
θ θ ji 

∂− 1, 5; 1, 5i
 =
 j
 =
L L, , 

by definition at the maximized value of the likelihood function U(q̂) = 0. 
A first-order Taylor series expansion of U(q̂) around q0 gives 

θ( ˆ) 

from which it follows that 

−)  ( ˆθ  θ  θ  θ( )0≈
U (
 )U H+
 0 0 

≈θ̂ θ −1 θθ 

θ−θθ 

( )  ( )0 0 

which suggests an iterative scheme, such as the Newton-Raphson procedure,5 

for estimating q̂. The estimate of q at the (m+1)th cycle of the iteration is 
given by 

ˆ ˆ 1( ˆ 
m m m 

−
H U0 

θ) ( ˆ )U m−
 , ,0 1 2, 3,H
=
 =
m ...1+ 

whereq̂0 is the parameter vector of initial (first guess) estimates of q. 
In practice, the algorithm you should implement to estimate the above 

is a slight modification of this scheme. We replace the observed matrix of 
negative second derivatives with the expected information matrix: 


 
2 θLL( )∂θI( )  = −  E i =
1, 5;
j =
1, 5








L L, ,
∂θ θi j  
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so that the iterative scheme we use is given by 

θ̂ 
m+1 = θ̂ − kI −1( ˆ ) ( ˆ , , ,θ U θ ) m = 0 1 2  3, ... m m m 

where k is a positive constant used to improve optimization.6 To remove the 
restriction that − 1 < r < 1 in our computations, we use the transformation 

 + ρ log 
1

1 − ρ in place of r. Maximization of the likelihood function 

occurs where | (  ˆL θm+1) − L( θ̂ 
m) |  < ε , where e is a small positive constant. In 

addition to obtaining the parameter estimates, I-1(ˆqm) provides an esti-
mate of the asymptotic variance-covariance matrix evaluated at the maximum 
likelihood estimate. 

REGRESSION 
CASE STUDY 13.1: NOSTRO BREAKS AND VOLUME IN A BIVARIATE LOGISTIC 

We postulate that nostro breaks in the London office and New York office 
are dependent on the volume of activity. We code breaks in the London 
office (S) and New York office (T) as binary variables, whereas volume (X) is 
takes the values low, medium, and high. Table 13.4 shows the joint model and 
individual logistic model parameter estimates. The relevant regression coeffi-~ 
cients for the marginal models of Equations 13.1 and 13.2 are b = −0.2542 ~ 
(s.e = 0.2119, p = 0.230) and b s = − 0.1478 (s.e = 0.2192, p = 0.500), and 
for the joint model b̂ = − 0.2569 (s.e = 0.2119, p = 0.225) and b̂s = − 0.1414 
(s.e = 0.2191, p = 0.519). Thus, there is little evidence in this sample of 
dependence between T or S on X, and we conclude that nostro breaks are 
not dependent on volume. Further investigation is clearly required. Perhaps 
we might include other variables in the model such as the absence or pres-
ence of key systems and back office staff. 

TABLE 13.4 Table 13.4 Joint model parameter estimates (b̂,b̂s, r̂) and marginal~ ~ 
logistic regression parameter estimates (b b s) for bivariate logistic 
regression of Nostro Breaks against volume 

~ ~ ~ ~ˆr̂ s.e r̂ b̂ b s.eb̂ s.e b b b s.eb̂ b s s s s 

0.095 0.058 −0.2569 −0.2542 0.2119 0.2119 −0.1414 −0.1478 0.2191 0.2192 
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OTHER APPROACHES FOR MODELING BIVARIATE 
BINARY ENDPOINTS 

As always in statistical modeling, there are many ways to achieve our objec-
tives. In this section we highlight a number of alternative models. 

Bivariate Bernoulli Model and Bivariate Binomial Model 

The bivariate Bernoulli distribution is natural starting point for modeling 
bivariate binary data. It is parameterized by two marginal parameters (PS and 
PT) and one bivariate parameter (P11). The correlation between S and T (r) is 
given by7 

(P − P P  ρ = 11 S T ) 

P (1 − P  P  (1 − PS S) T T ) 

It can also be shown that 

 P P  (1 − P )(1 − PT )

 

≤ r ≤SMax S T  , 
 (1 − P )(1 − P S T   S T ) P P  

, ,min[P PT ](1 − max[P PT ])S S 

, ,max[P PT ] − (1 − min[P PT ])S S 

from which it can be seen that r is only an adequate measure of association, 
in the sense that we get the full range of correlation − 1 ≤ r ≤ 1 when the S 
and T marginal probabilities are the same in the sense that Ps = P . An alter-T
native would be to use the bivariate binomial model 

sn! s ∑ ∑ t P∑ ∑ t 
1 − n − PS PT ∑ ∑ t!  [  n − ∑ s − ∑ t]!  

PT  s! S 

Gumbel-type Models 

An alternative to the bivariate binomial distribution was introduced by 
Gumbel.8 Gumbel developed several bivariate logistic distributions with the 
property that their marginal distributions were also logistic. His first distri-
bution is given by 

F s t  ( , ) = [1 + exp−s + exp−t ]−1 
(13.5) 

where F(s, t) is the cumulative probability function. 
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Gumbel showed that the logistic distribution implied by Equation 13.5 
is asymmetric. In particular, the probability at the center F(0,0) = 0.3333 
instead of 0.25 as implied by the bivariate normal probability function used 
in the bivariate logistic model discussed in Case Study 13.1. The author 
goes on to show that Equation 13.5 cannot be split into the product of the 
marginal distributions; therefore, it implies a priori that the variables are 
dependent. In addition, Gumbel showed that Equation 13.5 can be used in 
cases where the marginal distributions are symmetrical and resemble the 
normal distribution if the sample coefficient correlation is of the order 0.5. 

Gumbel’s second logistic distribution is given by 

s  t  F s t  − −1 −  −  1 − −  ( , ) = [1 + exp s ] [1 + exp t ] [1 + α exp 
t ][1 + exp− −1s ] [1 + exp−  −  1]	 (13.6) 

where the unknown parameter α is subject to the restriction −1 < α < 1. The 
author shows that the correlation (r) between S and T is a function of α 
given by 

3αρ = 
2π 

where π = 3.1415927 . . . .  Equation 13.6 is more flexible than Equation 13.5 
due to the addition of the dependence parameter a. The probability at 

0 0  .the center F( ,  )  = 0  25  1 + α  Independence occurs when a = 0.	 4  

Grizzle-type Models 

Following Gumbel’s proposal, a number of authors introduced covariates 
into the bivariate logistic framework. An early marginal modeling approach 
was developed by Grizzle,9 who analyzed data on coal miners in nine five-
year-wide age groups reporting either, neither, or both of the respiratory 
symptoms, breathlessness and wheeze. For each age category the author 
considered only the marginal data of how many had or did not have breath-
lessness and how many or did not have wheeze. Two marginal models were 
developed for each symptom: 

 PS 

x i = 1, ..., 9
1.	 ln 



1 −P 

 = αwheezei 
+ βwheezei i


 S 


 PS 

x i = 1,...,9
2.	 ln 



1 −P 

 = αbreathlessnessi
+ βbreathlessnessi i


 S 
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where x is an indicator variable for wheeze or breathlessness. Mantel and 
Brown along with Nerlove and Press10 extended this model into the multi-
variate setting. 

Generalization of the Ashford-Sowden Probit Model 

Morimune,11 in a discussion of the differences between the bivariate logistic 
and bivariate normal distribution, developed a generalization of the Ashford-
Sowden probit model in which the correlation coefficient is made a function 
of X: 

X +1. P11 
exp ( β X + β  κ  X)= S


X +
1 + exp ( β X + β  κ  X)S 

2. P01 
exp ( β X)= S − P11X +1 + exp ( β X + β  κ  X)S 

3. P10 
exp ( βX)= − P11X +1 + exp ( β X + β  κ  X)S 

4. P00 = − P01 − P − P111 10 

This was extended into a fully logistic version of the Ashford-Sowden 
model by Maddala,12 given by 

X +1. P11 
exp ( β X + β  κ  X)= S


X +
1 + exp ( β X + β  κ  X)S 

2. P01 
exp ( β X)= S − P111 + exp ( β X)S 

3. P10 
exp ( βX)= − P111 + exp ( βX) 

4. P00 = − P01 − P − P111 10 

Copula-based Models 

An alternative framework for developing multivariate models is based on the 
use of copula functions. Let PS and PT represent two univariate marginal 
distribution functions. Let H(u, v) denote a bivariate distribution function 
concentrated on the unit square having uniform marginal distributions, so 
that H(1,1) = 1, H(0,0) = 0, H(u,1) = u, and H(1,v) = v. Such bivariate 
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distribution functions are called copulas. We can define a bivariate distribu-
tion for random variables S and T by 

< [ s tProb (S s, T < t) = H  P  (  ),  PT (  )]  s 

Since H has uniform marginal distributions, S and T have marginal distribu-
tion functions PS and PT. All that remains is to choose an appropriate distri-
bution for H. There are a wide variety of one-parameter and two-parameter 
parametric families of multivariate copulas. The choice between one-
parameter and two-parameter families will depend on how many types of 
dependence you wish to capture in your model. One-parameter families, in 
particular the Plackett family,13 have been popularized by Dale,14 and Le 
Cessie and Van Houwelingen.15 For 0 ≤ d < ∞, the Placket copula is given by 

2H s t  δ (δ 1)(  s t)  [(1 (δ 1)(  s( , ,  )  = 1
(δ − 1)−1{1 + −  + − + −  +  t)  )  

2 
4(δ st /−  −  1)  ]1 2} 

where d is the dependence parameter such the marginal distributions are 
independent if d = 1. 

The Plackett copula is considered by Dale,16 who investigates the 
problem of correlated ordinal outcomes. Dale quantified the dependence 
parameter d in the Plackett copula as the “cross ratio” between outcomes 
defined as 

δ = P P0011 

P P01 10 

When the responses are binary, the cross ratio reduces to the odds ratio. Le 
Cessie and Van Houweligen,17 who used the Plackett copula, with the depend-
ence parameter given by the Dale cross ratio, to model correlated binary 
outcomes in such a way that the marginal response probabilities are logistic. 

SUMMARY 

R

There are many important research topics in OR for which the dependent 
variable is limited (discrete, not continuous). OR managers may wish to ana-
lyze whether some event occurred, such as failure of a system or fraud. Binary 
logistic regression is a type of regression analysis where the dependent vari-
able is a coded 0 or 1. Logistic regression has many analogies to linear 
regression, the logistic regression coefficients correspond to coefficients in 
the linear regression equation, and a pseudo-R2 statistic such as McFadden’s 

2 can be used to summarize the strength of the relationship. Unlike linear 
regression, logistic regression does not assume linearity of relationship 
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between the dependent and independent variables, nor does it require nor-
mally distributed random variables or homoscedasticity. We can easily 
extend logistic regression into the bivariate setting. Indeed, the bivariate 
model developed in this chapter allows us to explore the relationships 
between the independent and binary dependent variables. The model is sim-
ple to apply and easy to implement. The parameters in the joint model have 
the same interpretation as they do in the standard logistic regression setting. 
In the following chapter we discuss how we can generate multivariate 
regression–type models where the dependent variables may be all binary, all 
continuous, or an arbitrary combination. 

REVIEW QUESTIONS 

1. Outline the differences between logistic and linear regression. 
2. Can we estimate the logistic regression parameters using ordinary least 

squares? 
3. How can we assess model fit in logistic regression? 
4. What is the odds ratio? 
5. Write a function in VBA that returns the parameter estimates for the 

bivariate logistic model introduced in this chapter. 

■	 Test the model on a range of simulated and real binary data. 
■	 Is the latent variable assumption of normality generally valid for your 

data? 

FURTHER READING 

Details of estimation of ordinal logistic regression parameters using an iter-
ative reweighted least squares algorithm to obtain maximum likelihood 
estimates are given in McCullagh and Nelder (1992). 
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CHAPTER 14 
Mixed Dependent


Variable Modeling


n the previous two chapters we have discussed how to use linear regression 
and logistic regression when we have continuous or binary dependent 

variables. In some other situations we might wish to model jointly depen-
dent variables that are a mixture of binary and continuous variables. For 
example, an OR manager might be interested in developing a joint model 
with the binary dependent variable “transaction completed” alongside the 
continuous dependent variable “transaction time.” In this chapter we out-
line a general and easily implemented approach for multivariate regression 
modeling of this type. 

A MODEL FOR MIXED DEPENDENT VARIABLES 

The general challenges in constructing multivariate models that cater for 
mixed dependent variables (which we also refer to as endpoints) have been 
well documented.1 Our primary concern as OR managers and analysts is to 
obtain accurate estimates of model parameters for use in management deci-
sion making. For parsimony we shall focus on the situation where we wish 
to model jointly binary and continuous dependent variables in a regression 
framework. We assume T is a continuous variable and measures the time to 
failure of a back office system. We assume a specific parametric distribution 
is known, possibly up to a vector parameter β and that there is available for 
inference about β a sample of uncensored observations and an independent 
variable vector X of relevant risk indicators. Also suppose for a binary de-
pendent variable S a specific parametric distribution is known possibly up 
to a vector parameter βS and that there is available for inference about βS a 
complete sample of observations, given the dependent variable vector X. 
We also assume we have n paired outcomes on S and T. Furthermore, 
observations within pairs are correlated, but observations from different 
pairs are independent. 

179 
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Since S is binary, the probability of a response to X can be modeled 
using the logistic regression given by 

PS =  Prob {e } = 
exp[α S + βSX] 

S 1 + exp[α + β X]S S 

where aS and bS are unknown model parameters. Similarly, as T is a time 
to failure variable, the probability of failure at T = t is conditional upon sur-
vival to time t and the dependent variable X is given by 

Prob (t ≤ T < t + δ | T ≥ t, X = x)
PT = lim 

δ →0+ δ 

If we were only interested in PS or PT , we could quite easily specify a mar-
ginal model for PS (logistic) and PT (lognormal, exponential, etc.). Mis-
specification testing (goodness of fit, omitted variables, etc.) can be carried 
out on these marginal models. Returning to the framework and notation 
introduced in the previous chapter, we write 

1. P11 
2. P01 = PS − P11 
3. P10 = PT − P11 
4. P00 = 1 − P01 − P10 − P11 

where we denote the bivariate probability density function as P11 with mar-
ginal densities PT and PS for T and S, respectively. In the context of our exam-
ple, P01 can be interpreted as the probability of only observing a response 
in the dependent variable S and P10 can be interpreted as the probability of 
only observing a failure in the time to failure endpoint T during the time 
interval t ≥ T ≥ t + δ (δ > 0). 

P

P
P

Notice that the above framework is essentially the same as that dis-
cussed in the previous chapter; however, in this case we interpret P11, P01, 

00, and PT as probability density functions. Furthermore, since S is discrete, 

S and P01 can be interpreted as probability mass functions. Thus, in this 
example we have a joint probability density function (P11) whose marginal 
probabilities are generated by a marginal probability density function (PT) 
for the dependent variable T and a marginal probability mass function 
(PS) for the dependent variable S. If P11, PS, and PT are known, a likelihood 
function can be specified and parameter estimates obtained. Unfortunately, 

11 is generally unknown and T may be heavily censored. 
As the exact form of P11 is generally unknown, a variety of parametric 

models from which we could obtain an estimate of the model parameters have 
been proposed. For example Catalano and Ryan,2 for binary and continuous 



14_chap_lewis.qxd  3/3/04  4:13 PM  Page 181

181 Mixed Dependent Variable Modeling 

outcomes, used the concept of a latent variable to derive the joint distribution 
of a discrete and continuous variable. The Catalano model is parameterized 
such that the joint distribution is the product of a standard linear model for 
the continuous variable and a correlated probit model for the discrete vari-
able. It involves specifying a model for association between the binary and 
continuous outcomes and a model for the means. Unfortunately, the regres-
sion parameters in their probit model do not have the same interpretation 
as the parameters in the marginal model. In addition, if the model for the 
mean has been correctly specified, but the model for the association between 
the binary and continuous outcomes is misspecified, the regression param-
eters in their probit model are not consistent. 

Olkin and Tate,3 for a continuous and discrete outcome, assumed a 
multinomial model for discrete outcomes and a multivariate normal model 
for continuous outcomes, given the discrete outcome. Fitzmaurice and Laird4 

described a likelihood-based extension to the approach of Olkin and Tate. 
O’Brien,5 and Pocock et al.,6 among others, discussed methods for com-
bining outcomes in a general testing context. Lefkopoulou et al.7 considered 
multiple outcomes in the developmental toxicity context but deal only with 
binary endpoints. Recently, Molenberghs et al.8 used a latent variable pro-
bit model and a Plackett-Dale bivariate density to model mixed discrete and 
continuous endpoints. Although it may be possible to use any of the above 
models to obtain an estimate of parameters, the assumed structure for the 
association between endpoints in the above models is complex. 

In many situations the OR manager will not know the nature of the 
relationship between S and T, and is unlikely to have any information on 
the form of the joint distribution. What is required is a generally applicable 
approach to estimating the parameters that is suitable for arbitrarily mixed 
endpoints. One solution is to use a bootstrap procedure.9 Indeed, for many 
situations this will prove adequate. However, where there are few events in 
T (that is, few failures), bootstrapping will be infeasible. An alternative that 
works well in this situation is to obtain the parameters using the asymptotic 
distribution via a working assumption of independence (WAI). We discuss 
WAI in the next section. 

WORKING ASSUMPTION OF INDEPENDENCE 

A working assumption of independence (WAI)10 offers a pragmatic solution 
to the complex estimation problem, especially where we have no informa-
tion on the joint distribution of the dependent variables. Huster et al.11 and 
Wei et al.12 considered the relative effects of one or more explanatory vari-
ables, such as treatment assignments, on the distribution of multivariate fail-
ure times. Their estimation approach ignores the form of association between 



14_chap_lewis.qxd  3/3/04  4:13 PM  Page 182

182 OPERATIONAL RISK WITH EXCEL AND VBA 

endpoints. They use instead a WAI, in which failure times are formulated 
independently for each endpoint. The general appeal of WAI formulation is 
that all modeling is done independently within margins. Where appropriate, 
marginal forms can be drawn from well-studied models. Misspecification 
testing (goodness of fit, omitted variables, etc.) can be carried out on these 
marginal models, and thus the inherent complexity of carrying out mis-
specification testing on a joint model is avoided. 

A WAI leaves the nature of dependence between endpoints completely un-
specified. To appreciate the consequence of this, consider some asymptotic re-
sults under separate marginal analysis of S and T. Given a model for PT and PS, 
under standard regularity conditions,13 and given the consistent maximum like-
lihood estimators of the marginal models b̂ and b̂ S of the true values of the para-

/ /β 1 2  β N − β β S 
1 2  β ˙ )meters b and b S, respectively, then I[ ˆ ] ( ˆ ˙) and I[ ˆ ] ( ˆ 

S N 
− β S 

both converge asymptotically in distribution to the standard normal distri-
bution,14 where I[b] and I[bS] are the information matrices obtained from 
the associated marginal likelihood functions of PT and PS. This allows us to 
set the usual approximate confidence interval of b̂ ± z I[b ]− 1/2 and b̂ S ± z 

1/2.I[b S]
− 

The asymptotic validity of these intervals depend on three properties: 

Property 1: Consistency of b̂ for estimating b and b̂ S for estimating b S 

Property 2: Asymptotic normality of N / { β N − β } and N / { β SN 
− β }1 2 ˆ ˙ 1 2 ˆ ˙ 

Property 3: Consistency of n I[b̂]− 1 and n I[b̂ S]
− 1 for estimating the vari-

ance

of the respective limiting distributions


Under the WAI the joint likelihood is the product of the likelihood of 
the marginal models. Parameters are estimated by maximizing separately the 
likelihood from each of these models. Of course, in reality, there is depen-
dence between S and T. Thus the WAI likelihood is misspecified and we 
should be concerned that property 1 will not hold, that is, that the estimates 
of the marginal parameters may not be consistent for those of the true 
(unknown) bivariate distribution. Fortunately, the key feature of WAI is the 
result that consistent parameter estimates are obtained, despite the possible 
misspecification of the joint distribution, as long as the marginal models are 
correctly specified with respect to the true margins of the unknown joint dis-
tribution. The trade-off is a potential loss of efficiency for not making full 
use of information contained in the true joint distribution of the endpoints. 

Although parameter estimates for well-specified models will be consis-
tent, in general, the likelihood estimates of the variance will not be consistent 
unless the WAI assumption is true and our dependent variable S contains no 
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information about the outcome on the final endpoint. Royall15 discusses the 
WAI adjustment to variance estimation that is robust to the failure of this 
type. For notational ease, we write 

ˆ 
ˆ 
β
βS 










 and 
˙ =θ 
˙ 

˙ 
β
βS










ˆ =θ 

and denote the vector pth derivatives at the maximum likelihood as



 
pLL( ,β β )S∂
















 

β∂
p 

p( ˆ)U θ =

pLL( ,β β )S∂


β∂
p 

S 

Royall notes that it is possible to approximate U1[q̂], the score vector, using a 
first-order Taylor series expansion around q so that 

0 = U 1[q̂ ] ≈ U 1[q ] + U2 [q ] (q̂ − q ) 

from which we see that 

−

1U 

2U 
= 

θ

θ̇[ ] 

˙[ ] 


θ(
̂ −
 )
θ̇ (14.1) 

Royall shows that n1/2{q̂ − q } converges as n → ∞ to a normal distribution 
(by the central limit theorem because U1[q ] and U2[q ] are sums of inde-
pendent random variables) with mean zero [since E(q̂ − q ) = 0, as n → ∞, 
where E(.) is the expectations operator] and variance covariance matrix Σ 
given by 



 





U 

− 
θ̂

1 
2[ ]  (14.2)


− n 

ψ
 =
 nU
 θ̂2[ ] θθ ˆˆ U[ ]  [ ] 
1 T

∑
 11Ui i

 = 1i 

θ̂[ ] 

Therefore, by using a postestimation correction to the information 

matrix, an asymptotic estimate of the variance-covariance matrix that is 
robust to the WAI is obtained.16 Hence, given I[q̂ ], the joint model infor-
mation matrix 

1where Ui is the contribution of the ith pair to the vector of first derivatives. 
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ψ rather than nI[q̂ ]−1 could be used for estimating the variance of the limiting 
distribution. 

UNDERSTANDING THE BENEFITS OF USING A WAI 

Our use of WAI is essentially pragmatic; if we have a large number of events 
in T, we could use a bootstrap procedure. However, OR managers will fre-
quently collect data on dependent variables when there are a very limited 
number of events. If we had knowledge of the joint distribution of T and S, 
a joint model could have be specified. Unfortunately, in OR practice, such 
knowledge is rarely available. 

CASE STUDY 14.1: MODELING FAILURE IN COMPLIANCE 
In April 2003 the UK Financial Services Authority (FSA) fined Lincoln 
Assurance Limited £485,000 for the misselling of 10-year savings plans by 
its appointed representative, City Financial Partners Limited (CFPL), 
between September 1, 1998 and August 31, 2000. The misselling occurred 
because Lincoln Assurance Limited did not adequately monitor CFPL and so 
failed to ensure that CFPL only recommended 10-year savings plans where 
they were suitable for their customers’ needs. We can use our WAI model to 
investigate the joint likelihood of a similar failure in compliance and the 
time before a hefty fine is imposed. Suppose we denote an internally de-
tected serious failure in compliance as S, where S is 1 if there is a serious 
failure, and 0 otherwise. Ideally, all such failures will be detected internally, 
although this is not necessarily the case. We assume the marginal outcome 
probabilities for S (PS ) are logistic, dependent upon the amount of staff 
training (X), given by 

(14.3)
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where aS and bS are unknown model parameters. We assume X is categorical, 
representing “none,” “very low,” “low,” “average,” “high,” or “very high.” 
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TABLE 14.1	 Parameter Estimates for the Marginal Logistic Regression, Marginal 
Weibull Regression, and Joint WAI Model, with Standard Errors in 
Parentheses 

âS b̂ â b̂ S k̂S 

Marginal 3.5316 −0.7747 10.5226 −0.7943 1.3517 
(0.5501) (0.3212) (0.8464) (0.3569) (0.2420) 

Joint WAI 3.5587 −0.7850 10.5670 −0.8099 1.3728 
(0.5662) (0.3282) (0.7690) (0.3827) (0.1288) 

We assume the time to a serious fine by the regulatory authorities (T) 
follows a Weibull distribution, such that 

= exp {− (a + b X)} and wi = k ln (λ ti)λi	 i 

where β, α, and κ are unknown model parameters. 
We will use maximum likelihood to estimate the model parameters. 

The WAI log likelihood is given by 

n	  
i (∑ {δ ln f (w ) + (1 − δ )}ln G  w  ) S log ( P ) + (g − Si ) log (1 − P )i i i i S i S 

i = 1 
 g  + log i
  
 Si  

where δi is a censoring indicator (δ = 0 for censored observations), f(wi)i 

1	 1 1 =
σ

exp{wi − exp ( wi )}, G(wi ) = σ 
exp { − exp ( wi )}, σ = , and gi is 

κ 
the number of categories in X. 

The marginal logistic regression of S on X yields a log odds ratio of b̂S 
= −0.7747 (s.e 0.3212, p = 0.016), whereas the marginal Weibull regression 
yields b̂ = −0.7943 (s.e 0.3569, p = 0.026). In this case there is a significant 
effect on both endpoints. From Table 14.1 we see that the WAI estimates 
of the model parameters (standard errors in parentheses) are comparable 
with the marginal models. 

SUMMARY 

Whether our dependent variables are binary or mixed, it is possible to build

a joint or multivariate model and easily obtain parameter estimates using
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WAI. The principle disadvantages of WAI are that it tends to be biased 
downward in very small samples17 and, as the number of parameters esti-
mated per marginal model increases, it tends to underestimate the finite 
sample variance, with the magnitude of bias growing as the number of param-
eters estimated per marginal model increases.18 This is not really a drawback 
in OR practice because the number of parameters per marginal model tends 
to be small. Thus, WAI provides a solution to the problem of estimating 
model parameters when the joint distribution of S and T is unknown and 
bootstrapping proves infeasible. It gives the OR manager the ability to con-
struct models simply by specifying the marginal distributions. Furthermore, 
the parameters in the joint model have the same interpretation as they do 
in the marginal setting. 

REVIEW QUESTIONS 

1. Why would we use WAI rather than develop a joint model? 
2. What are the key drawbacks of using WAI? Are these drawbacks of prac-

tical concern to the OR manager? 
3. Write VBA code to estimate a joint binary model using WAI and compare 

your parameter estimates using the bivariate binary model discussed in 
the previous chapter. 

4.	 Under what conditions would you prefer to build a true joint model rather 
than an approximate WAI model? 

FURTHER READING 

Further details on WAI can be found in Huster et al. (1989) and Wei et al. 
(1989). Details on the application of the bootstrap in risk management are 
given in Lewis (2003). 
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CHAPTER 15 
Validating Operational Risk

Proxies Using Surrogate
Endpoints 

Over the past decade there has been much interest in the scientific literature 
in the replacement of so-called final endpoints with surrogate variables.1 

A final endpoint is a dependent variable of direct interest. A surrogate end-
point is a dependent variable used as a proxy for the final endpoint. For 
example, we might be interested in large operational losses above $2 mil-
lion due to failure in information systems but because they occur very 
rarely, we might use operations staff experience, turnover, or days of training 
as a surrogate or proxy. In this chapter we illustrate the potential of surrogate 
endpoints in OR analysis, examine the key ideas of surrogate modeling, and 
discuss the major validation techniques and their limitations. 

THE NEED FOR SURROGATE ENDPOINTS IN OR MODELING 

Operational risk practice is dogged by limited data availability and missing 
observations. Operational risk studies investigating the effects of various 
risk indicators or key OR events, such as serious operational losses and 
costly legal cases or reputation damage, require extended periods of time to 
collect the data, are costly, and may take many years to complete. Fortu-
nately, some of the tools required to draw useful conclusions about the 
cause of OR events as soon as possible from surrogate endpoints have been 
developed in the medical statistics field. Here, researchers are required to 
explore events or biological markers that may be observed and assessed 
prior to the appearance of the clinical outcome measure of primary inter-
est. The occurrence of these surrogate events, sometime between a given 
exposure or intervention that affects the disease process and the time of the 
clinical outcome, allows medical researchers to speculate that they may 
serve as a surrogate for the final endpoint. The notion of surrogate endpoints 
is clearly relevant in OR modeling. 

187 
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Much of the reported work in the literature about the use and validation 
of surrogate endpoints has been motivated by the need to increase the 
speed by which results for new medical treatments can be obtained. 
Progress has been so swift that there are now numerous surrogate end-

directly relevant to OR modeling and practice. The replacement of a rare 

in sample size, study duration, and cost.2 Piantadosi3 illustrated the 
potential benefits using a simple medical example (p. 141): 

Suppose we wish to test the benefit of a new anti-hypertensive 
agent against standard therapy in a randomised trial. Survival is 
a definitive endpoint and blood pressure the surrogate. If it were 
practical and ethical to follow patients long enough to observe 

ple, the difference between 95% and 90% overall mortality at 
five years requires 1162 subjects to detect a statistically signifi-
cant difference with 90% power and a two sided 0.05 signifi-
cance level test. In contrast, if we use diastolic blood pressure as 
the endpoint, we could detect a reduction of as little as 1⁄2 of a 
standard deviation using 170 patients with a trial duration of a 
few weeks or months. 

MEDICAL STATISTICS METHODS DOMINATE 
THE SURROGATE ENDPOINT LITERATURE 

point techniques developed in the medical statistics literature that are 

final endpoint with a surrogate variable that can be measured earlier, 
more conveniently, or more frequently can lead to substantial reductions 

overall mortality, such a trial would need to be large. For exam-

In order to be consistent with the medical literature and to assist your 
reading of this literature, we refer to an independent variable as the treatment. 
Our objective in assessing the value of a surrogate variable lies in assessing 
how the final endpoint and surrogate variable respond to the treatment. 
Before we can replace a final endpoint with a surrogate, we need to be sure 
that it has a causal relationship with the final endpoint; that is, we need to 
validate surrogate endpoints prior to their use. One criteria for doing this is 
know as the Prentice criterion. 

THE PRENTICE CRITERION 

The practical use of surrogate variables is founded in notions of dependence

and causality. In the language of statistics this relationship requires that we

test for dependence by specifying a null hypothesis of no causal link between
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the surrogate variable and the final endpoint. Of course, non-counterfactual 
tests of this type prove difficult to construct.4 In practice, we need to couch 
all notions of causality in much weaker hypotheses that may be more easily 
subjected to statistical testing. An influential series of applied papers pub-
lished in 1989 on the role of surrogate variables in cancer5 and ophthalmic 
conditions6 provided the necessary basis from which such a hypothesis 
could be generated. These papers offered empirical support for the idea that 
the strength of association between a surrogate variable and final endpoint 
offers a plausible criteria for assessing dependence. Prentice,7 in a published 
commentary on these papers, used this result to propose a formal criteria 
for surrogate variables (p. 432): 

In considering criteria for use of the term “surrogate” it is natural to 
ask what we require of a treatment comparison based on a surrogate 
response variable. Even though a range of endpoint comparisons may 
have relevance to an understanding of the effects of treatments under 
study, it seems logical to restrict the use of surrogate to response variables 
that can substitute for a true response variable for certain purposes. 
Equivalently, it seems reasonable to require a surrogate for some true 
endpoint to have potential to yield unambiguous information about 
differential treatment effects on the true endpoint. While one could 
attempt to require a surrogate response to provide some quantitative 
information on the comparison of true endpoint rates among treatments, 
a criterion involving only a qualitative link will be much more readily 
applied. Hence, I define a surrogate endpoint to be a response variable 
for which a test of the null hypothesis of no relationship to the treatment 
groups under consideration is also a valid test of the corresponding null 
hypothesis based on the true endpoint. 

Prentice captured this idea more formally within a failure time setting 
as follows: Let T be a non-negative random variable representing the fail-
ure time of an individual from the population of interest. T is the event of 
primary interest (final endpoint). Let x = (x1, x2, . . . ,  xp) consist of the 
indicator variates (independent variables in the language of regression) for 
p (≥1) of the p +1 levels to be compared. In addition, denote S(t) = {Z(u); 
0 ≤ u ≤ t} as the history prior to t of a possibly vector-valued stochastic 
process Z(u) = {z1(u), z2(u), . . .  },which is to be used as the surrogate vari-
able for the final endpoint T. The survivor function for T is given by 

FT(t) = Prob (T ≥ t) 

T ( ) = 0.where: FT(0) s = 1 and lim F t
t →∞ 
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The instantaneous hazard function specifies the rate of failure at T = t con-
ditional upon survival to t. It is given by 

λ ( ) = lim 
Prob(t ≤ T < t + δ | T ≥ t)

tT δ →∞ δ 

By the rule of conditional probabilty and the log function rule of calculus it is 
easy to see that 

T ( )  −d log F  t  
(15.1)λ ( )  = f t  T ( ) 

t = T 
T ( )  dtF t  

Prentice establishes a link between the surrogate variable and final endpoint by 
assuming 

, ( )}] = ∫ λT {t | x S t  S t  , ( )} λ (t | x) = E[λ {t | x S t  , ( )}dProb { ( ) | x F t  T T 

where lT(.|.) is the conditional failure rate at t, E[.] is the expectation over the 
distribution of S(t) given x, Prob (.|.) is a conditional probability, and F(t) 
represents the final endpoint failure distribution function and censoring 
histories prior to t. 

Prentice now makes a critical assumption that provides a direct link to the 
unconditional instantaneous hazard function of Equation 15.1. He assumes 
that the final endpoint and treatment are conditionally independent, given the 
surrogate variable, so that 

λ ( |  , (  ))  = λ ( |  (  ))  (15.2)t x  S t  T t S t  T 

This is directly related to Equation 15.1 because 

λ (t x) = ∫ λT {t S t  S t  ( )} = λ ( ) (15.3)| ( )} dProb{ ( ) | F t  tT | T 

To ensure the surrogate variable has some prognostic value for the final end-
point, Prentice additionally assumes 

t S t  T t x) (15.4)λ ( |  (  ))  ≠ λ ( |T 

and 
λ ( |  tt x) = λ (  )  (15.5)T T 

Equations 15.2, 15.4, and 15.5 have become known as the Prentice criterion.
Using a Cox proportional hazards model,9 we can investigate whether 

Equation 15.2 holds by specifying 

|  ( ),  x) = λ ( )exp [β xS t  ( )}  + β S t  λ (t S t  0T t 1 ( )  + β x{1 − S t  ( )]  T 2 3 

8 
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The parameters can be estimated using partial likelihood or marginal likeli-
hood procedures.10 We could then investigate whether: 

b1 = 0, which examines the interaction between the dependent variable and 
the surrogate and is known as the treatment effect. 

b2 = 0, which examines the relationship between those who do not show a 
surrogate response and the final endpoint. 

b3 ≠ 0, indicating a relationship between the surrogate and the final endpoint. 

LIMITATIONS OF THE PRENTICE CRITERION 

Freedman et al.11 highlight a conceptual difficulty with Equation 15.2. It 
requires the treatment effect on the true endpoint to be 0 after adjustment 
for the surrogate variable. This seems reasonable to test the hypothesis of 
rejecting a poor surrogate variable when in fact the surrogate variable is 
poor. However, it is certainly inadequate when considering a good surro-
gate variable because failing to reject the null hypothesis may be due to 
either insufficient power or that requiring such a perfect surrogate variable 
is really too hopeful. 

The Prentice criterion defines a surrogate endpoint as a surrogate vari-
able12 that fully captures the relationship between the dependent variable 
and the final endpoint in the sense that any information the dependent 
variable gives about the final endpoint failure rate is also contained in the 
surrogate endpoint. The Prentice notion of a surrogate endpoint has been a 
persistent one in the medical statistical literature. The nature of the debate 
surrounding the validation and use of surrogate variables seems to have 
been much influenced by his basic premise.13 Buyse and Molenberghs14 

show that the criterion is neither necessary or sufficient for the Prentice def-
inition, except for binary endpoints, and the criterion continues to provide 
motivation for many surrogate variable validation techniques.15 

The general acceptance within the statistics community of the Prentice 
criterion as the de facto benchmark against which potential surrogate vari-
ables should be compared came under attack in a Royal Statistical Society 
paper16. The debate was focused around the issue of whether the Prentice 
criterion is appropriate for deciding whether or not to use a surrogate vari-
able, or for distinguishing the merits of alternative candidates. At the core 
of the debate is an argument about the generic applicability of a surrogate 
variable (p. 28)17: 

Another point of contention is the issue of whether or not a surrogate 
endpoint should be considered for its generic applicability, as opposed 
to being evaluated specifically for the trial being planned. In our expe-
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rience we know of no surrogate endpoint that has any unique features 
that would make it specifically applicable to a particular treatment con-
trast. Widely used surrogate endpoints in medical research, such as 
prostate-specific antigen failure in prostate cancer, or viral load in stud-
ies of acquired immune deficiency syndrome or, indeed, factors related 
to incidence as opposed to mortality in cancer screen trials, are all 
inherently generic. 

We should mention that Prentice himself was quite aware that his criterion 
was not a particularly realistic one. Indeed, he laments (p. 439)18: 

. . . I am  somewhat pessimistic concerning the potential of the surrogate 
endpoint concept, as it is interpreted in this paper. One interpreta-
tion . . . is that the surrogate endpoint must have precisely the same 
relationship to the true endpoint under each of the treatment strategies 
being compared. We need only look as far as the Multiple Risk Factor 
Intervention Trial for an example in which important differences in 
prominent risk factors—namely blood pressure levels, smoking habits, 
and blood cholesterol—between intervention and control subjects 
evidently did not convey the anticipated difference in coronary heart 
disease mortality. 

This raises the question as to why Prentice and subsequent authors19 have 
spent so much time and effort in developing approaches to investigate a line 
of inquiry founded on a criterion that Prentice himself believed to be false. 
The issue is not why such a criterion should be employed in making precise 
the notion of a surrogate endpoint (the nature of the inquiry makes this 
inevitable), but why choose to focus on criterion which appears to require 
such a strong relationship between the surrogate variable and final end-
point? Part of the answer, as far as Prentice is concerned, can be found in 
his more recent comments that (p. 26)20: 

The purpose in setting out these criteria was not to encourage their 
adoption in any particular setting. . . but rather to reinforce that it is 
only in very special circumstances that treatment information on an 
early surrogate endpoint will convey direct information concerning a 
treatment effect on a true later endpoint. 

We agree with Prentice; his criterion will be too restrictive for nearly all 
purposes. However, in the rare situations where surrogate variables can be 
shown to satisfy his criterion, the implications provide some interesting 
insights and are worth studying for this reason alone. 
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THE REAL VALUE ADDED OF USING SURROGATE VARIABLES


The fundamental proposition of the advocates of surrogate variables is 
that they have the potential to add value to statistical inference about the 
treatment effect on a final endpoint. No matter what side of the controversy 
is in question, no matter what statistical techniques have been adopted, 
the proposition that surrogate variables add value is central. It would be 
premature to say that the theory surrounding this subject is complete. But 
it is clear that enough has been done to warrant our taking this central 
proposition as established. Therefore we proceed to inquire under what 
conditions value added is attainable. This is a matter of some intricacy that 
deserves attention, not only for its own sake, but for the light it casts upon 
surrogate variable validation methods in general. 

Cox’s Study of the Information Gain from Using Auxiliary Endpoints 

Cox21 developed a theoretical study on how information contained in a sur-
rogate variable can be used to strengthen the data analysis of the treatment 
effect on the final endpoint. Following Flemming et al.22 a surrogate used 
for this purpose is known as an auxiliary endpoint. Some consideration of 
the potential of this approach has appeared more recently in the statistical 
literature.23 

Cox asks the question, How can information on a surrogate variable S 
be used and what gain in information is potentially achievable? To this end, 
the author assumes there exists a surrogate variable S measured on all cen-
sored individuals that is related to the final endpoint of interest. Cox makes 
the simple assumption that if Vi is the unobserved remaining lifetime of the 
ith individual on the final endpoint and Wi is an independent noise compo-
nent having some fixed distribution independent of the censoring time and 
treatment, then 

Si = V 
W 

i 
i 

He takes a parametric approach by assuming Wi to have a gamma distribu-

(β βω  )λ − 1 exp(−βω  )
tion, with parameters b, w and l, given by Γ ( )  

and that Viλ 
λq λβi

is exponential with parameter q so that Si has the density (β + q s)λ + 1
. 

i 

Cox then goes on to show that if l and b are known so that S is directly 
calibrated to relate to the final endpoint, a proportion l/(l + 2)− 1 of the 
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loss of information from the censored variables can be recovered by the 
incorporation of information on S into the likelihood function. 

Augmenting the Final Endpoint Likelihood 
with Surrogate Information 

The approach of Cox suggests there could be benefits from incorporating sur-
rogate information directly into the estimation of the treatment effect on 
the final endpoint, where the final endpoint is a time to event with right 
censoring. We explore this issue further in this section. We begin by con-
sidering how information contained in a surrogate variable could be used 
to strengthen the data analysis of the treatment effect on the final endpoint. 
Note that it is the fact that the final endpoint is right-censored that opens 
up this possibility. An obvious and immediately appealing approach would 
be to incorporate surrogate information directly into the final endpoint 
likelihood function. 

Suppose a specific parametric survival distribution is known up to a vec-
tor parameter b and that there is available for inference about b a single 
sample of censored failure times on a final endpoint. A subject observed to 
fail at t contributes a term f(t | b) to the likelihood, the probability of fail-
ure at t. The contribution from a subject whose survival time is censored 
at c is F(c | b), the probability of survival beyond c. The full likelihood from 
n independent subjects indexed by i is then 

L( ) = ∏ f  ti | β)∏ F ci | β) (15.6)β ( ( 
δi=1 δi=0 

t

The two products are taken over uncensored and censored subjects, respec-
tively, where δi is the censoring indicator such that for a uncensored event 

i = ci if δi = 1, and for a censored observation ti > ci if δi = 0. 
Suppose the data now includes a surrogate variable S for each subject. 

Two strategies are apparent: 

■ Replacing censored observations by their surrogate counterparts 
■ Augmenting the censored observations with their surrogate counterparts 

We discuss each of these strategies below. 

Replacing Censored Observations by Their Surrogates 

If we use the surrogate S to replace censored subjects, the surrogated adapted 
likelihood is given by 

L( )  = ∏ f  ti | β)∏ F  si | β) (15.7)β ( ( 
δi=1 δi=0 
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With perfect association24 between the surrogate and final endpoint this is 
equivalent to the likelihood based on the true failure time data on all sub-
jects without censoring: 

n 

β (L( )  = ∏ f ti | β) (15.8) 
i=1 

Therefore, in this ideal situation the use of the surrogate variable improves the 
precision of the parameter estimates without introducing bias. In practice, 
perfect association is rather unlikely. Where perfect association does not hold, 
we cannot be certain that the likelihood of Equation 15.7 will be maximized 
at the same parameter values as the likelihood of Equation 15.8. Thus, there 
may remain considerable uncertainty as to the appropriate interpretation of 
parameter estimates from Equation 15.7. 

Augmenting the Censored Observations with Their Surrogates 

If we use a surrogate S to augment the likelihood for the censored individ-
uals, we face a similar problem. The surrogate augmented likelihood is 
given by 

β ( ( ,L( )  = ∏ f ti | β)∏ F s  ci | β)i 
δi=1 δi=0 (15.9)

= ∏ f ti ( (( |  β)∏ F si | ci , β) F c  | β)i 
δi=1 δi=0 

If the final endpoint and surrogate variable are independent (so that there is 
no association), then 

( ( i (F s c  | β) = F s | β) F  c  | β)i i  i  

so that the surrogate augmented likelihood is given by 

β ( ( (L( )  = ∏ f ti | β)∏ F si | β) F  c  | β) (15.10)i 
δi=1 δi=0 

from which it should be obvious that Equation 15.8 ≠ Equation 15.10. 
Even where the final endpoint and surrogate variable are not independent 
(as given in Equation 15.9), we cannot be certain that the maximized value 
of Equation 15.9 will yield parameter estimates close to the parameter esti-
mates of the maximized value of Equation 15.8. 

Practical Limitations 

A final endpoint and surrogate variable are very unlikely to be perfectly asso-
ciated. The idea of augmenting or adapting a likelihood function with 
surrogate information, although appealing, is clearly fraught with danger. 
It requires the validation of the surrogate variable, specification of specific 
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models, simulation, and extensive empirical testing because even if the cor-
relation between the surrogate endpoint and final endpoint is large, an 
effect of clinical significance on the surrogate endpoint will not necessarily 
imply a clinically significant effect on the final endpoint. 

When the surrogate variable and final endpoint are not perfectly associ-

analogy in which it is quite possible that a treatment is beneficial for the 
surrogate endpoint but harmful for the final outcome. An example of 
just such a finding can be seen in a cardiac arrhythmia suppression 
trial.25 

to be associated with sudden death after myocardial infarction and are 
often treated with antiarrhythmic drugs.26 In the Cardiac Arrhythmia 

it was hoped that the suppression of asymptomatic or mildly sympto-
matic ventricular arrhythmias after myocardial infarction would reduce 

patients who took antiarrhythmic drugs were more likely to die than 
those who received the placebo. The authors comment (p. 406): 

During an average of 10 months of follow-up, the patients 

assigned to placebo. Encainide and flecainide accounted for the 
excess of deaths from arrhythmia and non-fatal cardiac arrests 
(33 of 730 patients taking encainide or flecainide [4.5 percent]; 
9 of 725 taking placebo [1.2 percent]; relative risk, 3.6; 95 per-

nor flecainide should be used in the treatment of patients with 
asymptomatic or minimally symptomatic ventricular arrhythmia 
after myocardial infarction, even though these drugs may be 
effective initially in suppressing ventricular arrhythmia. 

A WORD OF CAUTION FROM THE MEDICAL STATISTICS LITERATURE 

ated, extreme care must be taken. To see why, consider again a medical 

Asymptomatic ventricular premature depolarisation’s are known 

Suppression Trial, a multicenter, randomized placebo-controlled study, 

the death from arrhythmia. Unfortunately, the trial showed that that 

treated with active drug (encainide, flecainide, or moricizine) 
had a higher rate of death from arrhythmia than the patients 

cent confidence interval 1.7 to 8.5). They also accounted for the 
higher total mortality (56 of 730 [7.7 percent] and 22 of 725 
[3.0 percent], respectively, relative risk, 2.5; 95 percent confi-
dence interval, 1.6 to 4.5). We conclude that neither encainide 

VALIDATION VIA THE PROPORTION EXPLAINED


Perhaps a more realistic expectation, for the type of surrogate variables en
-
countered in OR practice, is that they will account for a proportion of the
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treatment or independent variable effect on the final endpoint. Freedman et 
al.27 called such surrogate variables intermediate endpoints. They suggested 
that we focus attention on the proportion of the treatment effect explained 
by the surrogate variable. The authors developed their intermediate end-
point procedure within the context of logistic regression for a binary final 
endpoint T and a binary surrogate variable S. 

Let PE stand for the proportion of the treatment effect on the final end-
point that can be explained by the surrogate variable. An estimate of this 
proportion is given by 

βSPE = 1 −
β (15.11) 

where b and bS are the estimates of the treatment effect on the final endpoint 
without and with adjustment for the surrogate variable calculated from the 
following logistic regressions: 

exp(α β  X)+
PT X = (15.12)+| 1 + exp(α β  X) 

and 

exp ( α β  X + δ S)=PT XS  
+ S 

| 1 + exp ( α β  X + δ S) 
(15.13)+ S 

where b, bS, a, aS and d are unknown model parameters and X is the 
treatment vector. 

The proportion explained is large if bS is small relative to b. The Prentice 
criterion requires bS = 0, or equivalently, PE = 1. In many cases, we suspect 
that PE < 1, indicating that the surrogate variable only explains a propor-
tion of the treatment effect on the final endpoint. Confidence intervals can 
be calculated around PE using a method based on Fieller’s theorem28 or the 
delta method.29 

Lin et al.30 extend the test procedure of Freedman et al. to failure time 
endpoints. Let S(t) denote a time-dependent surrogate variable observed at 
times t1, . . . , tn. The PE is calculated as 

βSPE = −1 
β 

wherebS and b are calculated from the following Cox proportional hazards 
models: 

t  e  βX)( |λ t X) = λ10(  )  ( (15.14) 
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and 
β  ω  S t  t e  sX+ ( ))  (15.15)λ( |  ,t S X  ) = λ ( )  ( 20 

bS, b, and w are unknown model parameters. 
The authors show that Equations 15.14 and 15.15 cannot hold simul-

taneously. If we assume Equation 15.15 holds and that S(t) = S, that is, the 
surrogate is time-invariant, Lin et al. show that 

t  e  β ω  seωs exp{−D( ) X + }dProb(s | X)
( |  t  e  (βX) ∫λ t X) = λ20(  )  

exp{−D( ) X + (15.16)
t eβ ω  s}dProb(s | X)∫ 

t 

t uwhere D( )  = ∫ λ20 (  )  du 
0 

They also argue that for Equation 15.14 to provide a reasonable approxi 
mation to Equation 15.16, l(t) or a must be small. However, there is no 
guarantee that this condition will be satisfied. The authors suggest its 
appropriateness be validated via empirical analysis. 

Practical Limitations of the Proportion Explained 

There are a number of concerns about the practical use of PE. First, PE is not 
well calibrated as a measure of a proportion because when the adjustment 
for the surrogate variable changes the direction of the treatment effect on the 
final endpoint, PE does not necessarily lie in the range 0 to 1. How should 
we interpret PE < 0 or PE > 1? Second, PE is not unique. In Freedman et al.’s 
model, 2b is a measure of log odds ratio of disease given exposure. We could 
also use the excess relative odds exp (2b)−1 to give an alternative measure: 

1 
 exp (2βS ) − 1

PA = −

 exp (2β) − 1 

 

In Table 15.1 we calculate the difference between these two measures for var-
ious values of bS. The difference between the two measures can be substantial. 

Finally, Buyse and Molenberghs31 outline a third practical problem with 
PE (p. 194): 

Even when large numbers of observations are available, however, the 
denominator of the proportion explained (the effect of treatment on 
the true endpoint) will be estimated with little precision, for otherwise the 
need for a surrogate endpoint would no longer exist. Therefore the pro-
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TABLE 15.1	 The Difference between the Proportion Explained (PE) and an 
Alternative Measure of the Proportion Explained (PA), for Various 
Values of the Log Odds Ratio on the Surrogate Endpoint (bS) 
Given the Log Odds Ratio on the Final Endpoint (b) 

bS 1 0.8 0.6 0.4 0.2

b 1 1 1 1
 1 

PA 0.00% 38.13% 63.69% 80.82% 92.30% 
PE 0.00% 20.00% 40.00% 60.00% 80.00% 

portion explained will generally be too poorly estimated to be of much 
practical value. 

Buyse and Molenberghs Validation 
Buyse and Molenberghs32 suggest an alternative to the proportion explained 
that consists of two components: 

1. The relative effect (RE), which is a measure of the effect of the treatment 
on the surrogate variable relative to the treatment effect on the final 

endpoint. The relative effect is captured by RE = λ
β , where b, in the 

binary setting, is estimated from the logistic regression of Equation 
15.12, and l is estimated from logistic regression of the surrogate S on 
the treatment X given by 

exp ( π λ  X)+
PS X = | +1 + exp ( π λ  X) 

2. The adjusted association (AA), which is d in Equation 15.13 

A key problem with using the pair RE and AA as a complement to 

model-dependent. For example, the authors define a perfect surrogate in 
the binary setting (where both the final endpoint and surrogate variable 
are binary) as one for which RE = 1 and AA = ∞. When the surrogate 
variable and final endpoint are normally distributed, they define a per-
fect surrogate as AA = 1 and RE = 1. The authors acknowledge this to 
be a considerable drawback.33 

PROBLEMS WITH THE BUYSE AND MOLENBERGHS ALTERNATIVE 

the proportion explained is that the interpretation of RE and AA is 
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If RE = 1, the treatment effects on the surrogate variable and final endpoint are 
of the same magnitude. Buyse and Molenberghs argue a perfect surrogate, in 
the binary setting, has RE = 1 and AA = ∞. 

Further Problems with the Proportion Explained and the Buyse 
and Molenberghs Alternative 

The above discussion provides some insight into why the notions of the 
proportion explained and relative effect are fraught with difficulties. It has 
frequently been reported (and acknowledged by Freedman et al. and Buyse 
and Molenberghs) that both RE and PE suffer from unacceptably wide con-
fidence intervals. This seriously restricts the practical usefulness of these 
measures. Notwithstanding this important point and irrespective of the 
value of the proportion explained, relative effect, and adjusted association 
estimated in a particular study, it will still be necessary to directly examine 
the relationship between the final endpoint and the treatment. This is 
because the relationship between the surrogate variable and the treatment 
cannot generally convey definitive information concerning the relationship 
between the final endpoint and the treatment. Thus, we argue the use of 
surrogate variables in place of the endpoint of principal concern should 
only be considered with caution. In such circumstances, effort will need to 
be directed toward extracting as much information about these relation-
ships as possible. 

LIMITATIONS OF SURROGATE MODELING 
IN OPERATIONAL RISK MANAGEMENT 

In his article “Surrogate Endpoints in Clinical Trials: Definition and Opera-
tional Criteria,” Prentice34 suggested that a surrogate variable is (p. 432): 

A response variable for which a test of the null hypothesis of no rela-
tionship to the treatment groups under comparison is also a valid test 
of the corresponding null hypothesis based on the true endpoint. 

This idealized view of the nature of the relationship between a surrogate vari-
able and final endpoint has been a persistent one, and the nature of subsequent 
research seems to have been much influenced by this basic premise. We are 
led to believe that the identification of such variables can facilitate a more 
speedy evaluation of competing treatments and thus provide the necessary 
scientific background against which the development of alternative, more 
appropriate treatments can be designed. Yet, in the literature there has been 
surprising little interest in investigating the practical limits inherent in this 
idealized notion of a surrogate variable. 
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Unfortunately, the nature of the fundamental issues that can be addressed 
when considering, reasoning, and arguing about the relationship between a 
treatment regimen, surrogate variable, and final endpoint have largely been 
ignored. Understanding what issues can be legitimately addressed within 
any specific surrogate variable framework is important because rigorously 
controlled experimental research cannot be executed effectively until the 
fundamental descriptive work has been carried out to establish a context 
within which meaningful questions and hypotheses about treatment effects 
on surrogate variables, final endpoints, and their interrelationships can be 
made and interpreted. 

Since a surrogate variable either does or does not satisfy the Prentice 
criterion, the question of “how good” will remain if the surrogate variable 
fails the Prentice test. This is because inherent in the question is an underly-
ing scale (for example, perfect, very good, good, poor, and very poor) whose 
gradations cannot be captured in the two-state “is a surrogate–is not a sur-
rogate” dichotomization of Prentice. Buyse and Molenberghs report an 
odds ratio between the final endpoint and the treatment, adjusted for the 
surrogate variable (see Equation 15.3) of 1.44 (p = 0.34). Thus, they fail to 
find any evidence that the full effect of the treatment on the final endpoint 
is mediated through the surrogate variable, and therefore conclude that the 
Prentice criterion is not satisfied. 

FOR LEGAL COSTS FOR A BUSINESS UNIT 
CASE STUDY 15.1: LEGAL EXPERIENCE AS A SURROGATE ENDPOINT 

The proportion explained of Freedman et al. and the relative effect and 
adjusted association metrics of Buyse and Molenberghs attempt to measure 
the deviation from the Prentice criterion. In this sense they seek to quan-
tify the underlying scale inherent in the question, “How good?” Table 15.2 
shows the estimate of these measures for an OR example in which the sur-
rogate variable is years of legal experience (dichotomized into a binary vari-
able of high and low) of a business unit and the final endpoint is legal costs. 
The confidence interval on the PE covers the whole interval 0 to 1, although 

TABLE 15.2 Estimates of the PE, RE, and AA with their 
Respective 95% Confidence Intervals for a Study 
on Legal Experience as a Surrogate for Legal Costs 

PE RE AA 

Estimate 0.45 0.94 2.92 
Lower 95% CI −0.30 0.20 8.86 
Upper 95% CI 4.35 3.15 38.77 
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the estimate at 0.45 suggests the surrogate endpoint may have some poten-
tial as a surrogate variable for legal costs. The RE and AA are both positive 
with very wide confidence intervals. Unfortunately, by juggling the two 
variables of RE and AA, it is difficult to grasp exactly how suitable the sur-
rogate variable is. For example, is a surrogate variable with an RE = 2 and 
AA = 3 better than a surrogate variable with an RE = 1.5 and AA = 2.0? If 
so, by how much? 

SUMMARY 

Surrogate endpoint validation offers a scientific mechanism for replacing OR 
events that are rare or difficult to measure. Although the validation procedures 
outlined in this chapter are far from perfect, they do offer OR analysts a 
rational procedure by which to select potential surrogate endpoints for use in 
further statistical modeling. 

REVIEW QUESTIONS 

1. Why is there a potential need for surrogate endpoint modeling in OR? 
2. Do you feel it is possible to use such endpoints to yield meaningful insight 

into future OR events? 
3. How would you validate a surrogate endpoint? 
4. What do you see as being the practical limitations that would hinder such 

a validation? 
5. How useful are the current surrogate endpoint validation procedures? 
6. How can they be improved for OR modeling? 

FURTHER READING 

Further details can be found in Herson (1989), Prentice (1989), Lin et al. 
(1997), Buyse and Molenberghs (1998), and Lewis (2003). 
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CHAPTER 16 
Introduction to Extreme 

Value Theory 

M anaging the risk of OR events that could lead to catastrophic losses lies at 
the heart of OR management. What is the maximum amount of loss due 

to operational risk that can be expected in a specific business unit over a period 
of one year at a very high confidence level? The answer requires estimation of 
high percentiles of the aggregate loss distribution. The primary difficulty is that 
such events are rare by definition and therefore we may have very little infor-
mation about them. Even though such events occur with very low probability, 
OR managers may seek to ensure that their financial institutions maintain (or 
are at least aware of ) a minimum level of capital in reserve to adequately cover 
such events. Extreme value theory (EVT) offers one way by which this can be 
achieved. It provides a theoretical framework for studying rare events by 
focusing on the tails of probability distributions. Whereas statisticians have 
used EVT techniques for a long time, they have only recently been proposed 
in operational risk management. In this chapter we explore how EVT can be 
used to assist in the quantification and management of operational risk. 

FISHER-TIPPET–GNEDENKO THEOREM 

The Fisher-Tippet–Gnedenko theorem states that given a sample of inde-
pendent identically distributed loss data {x1,x2, . . . ,x }, as the number ofn
observations n becomes increasingly large, the maximum of the sequence 
of observations, under very general conditions, is approximately distributed 
as the generalized extreme value (GEV) distribution with cumulative 
probability distribution function 
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where µ is the location parameter, σ > 0 is a scale parameter, 1 + ξ  z > 0, 
-∞ ≤ ξ ≤ ∞, σ > 0, and ξ is the tail index parameter. 

The GEV distribution has three forms. If ξ > 0, then the distribution 
takes the form of a type II (Frechet) heavy-tailed distribution. For ξ < 0, the 
distribution is the type III (Weibull) distribution. When ξ = 0, the distribu-
tion is the type I (Gumbel) light-tailed distribution. In fact, the larger the 
tail index parameter, the fatter is the tail. As we have seen in Chapter 9, 
operational losses are often fat-tailed. 

Parameter Estimation 

The parameters µ and σ can be estimated from the sample mean and 
sample standard deviation, respectively. If we rank the data in order of size 
so that x1>x2> . . . >x , the tail index parameter ξ can be estimated usingn
the Hill estimator: 

ˆ  1 k −1  
Method I: ξk =  ∑ ln ( xj ) − ln ( xk )

 k − 1 j = 1 
or 

 k
ˆMethod II: ξk =  

1 ∑ ln ( xj )
 

− ln ( xk )
 k j =1 

The problem is how to choose k. Theory gives little advice as to what value 
to choose. Furthermore, the actual estimate will be sensitive to the value of 
k chosen. In practice, the average estimator, using either of the following 
two formulas, often works well: 

ˆ
n 1 k −1  

Method 1: ξ = 1 ∑ θ i where θk =
 

∑ ln ( xj ) − ln ( xk )n i =1 
 k − 1 j = 1 

for k =1, 2,. . . ,  n 
k n

ˆMethod 2: ξ = 1 ∑ θ i where θk =
 1 ∑ ln ( xj ) − ln ( xk ) for k =1, 2, . . . ,  n
n i =1 
 k j = 1 

EXAMPLE 16.1: CALCULATION OF GEV PARAMETERS 
FOR RETAIL BANK FRAUD 

To illustrate the calculation of the parameters of the GEV distribution, 
consider the loss data shown in Table 16.1. The table shows the monthly 
maximum loss from fraud for a retail bank over a 14-month period, ranked 
by size. The data has been rounded up to the nearest $1,000. The first and 
second columns shows the rank and observed losses; the largest value of 
$195,000 has a rank of 1 and the smallest value of $11,000 has a rank of 14. 
The third column gives the natural logarithm of the data. The fourth and fifth 
columns show the value of the tail index parameter for a particular k using 
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TABLE 16.1 Calculation of Tail Index Parameter Using the Hill Estimator 

Rank Loss $(thousands) ln(x) ξ (Method I) ξ (Method II) 

1 195 5.273 
2 185 5.220 0.053 0.026 
3 177 5.176 0.071 0.047 
4 166 5.112 0.111 0.083 
5 161 5.081 0.114 0.091 
6 142 4.956 0.217 0.181 
7 108 4.682 0.454 0.389 
8 89 4.489 0.583 0.510 
9 88 4.477 0.520 0.462 

10 61 4.111 0.829 0.746 
11 36 3.584 1.273 1.157 
12 33 3.497 1.244 1.141 
13 29 3.367 1.270 1.172 
14 11 2.398 2.142 1.989 

method I and method II, respectively. The average of columns four and five 
ˆyields an estimate of the tail index parameter as ξ̂ = 0.684 and ξ = 0.615, 

respectively. The value of µ = 105.786 and σ = 65.014.ˆ ˆ

METHOD OF BLOCK MAXIMA 

The method of block maxima (BM) can be used to calculate OpVaR for high 
percentiles of the loss distribution. In this approach we first divide our loss 
sample into L non-overlapping subsamples of fixed length of time. The 
length is usually a month, quarter, or year. The absolute value of the maxi-
mum loss in each of the L blocks is then used to estimate the parameters of 
a suitable probability distribution. The question then becomes, which is the 
most suitable probability distribution to fit? Fortunately as we have seen, the 
Fisher-Tippet–Gnedenko theorem tells us exactly what distribution to fit. 
Indeed, the method of block maxima exploits the fact that the Fisher-
Tippet–Gnedenko theorem tells us that limiting distribution of the maximum 
is from the generalized extreme value distribution, irrespective of the proba-
bility distribution that generated the losses. Once we have obtained estimates 
of the parameters for the K non-overlapping subsamples, we can plug them 
into the following formula to obtain an estimate of the α percent OpVaR: 

ˆ 
( 

ˆ ˆµ̂ − σ 1 − −  ln α)− ξ  if ξ > 0 ˆ   ξ 
OpVaRα =  

ˆµ σ  αˆ − ˆ log [− ln ( )] if ξ = 0 
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EXAMPLE 16.2: CALCULATION OF OPVAR 
FOR RETAIL BANK FRAUD 

From Example 16.1 we found estimated the tail index parameter as ξ̂ = 0.684 

(method I) with µ = 105.786 and σ̂ = 65.014. This implies OpVaR at 0.99 ˆ
percent confidence is approximately equal to $2.2 million. Alternatively, 
if we use the tail index estimate ξ̂ = 0.615, then OpVaR is approximately 
$1.8 million. 

PEAKS OVER THRESHOLD MODELING 

An alternative EVT approach to calculate OpVaR is to use peaks over thresh-
old modeling (POTM). Although the method of block maxima utilizes 
the Fisher-Tippet–Gnedenko theorem to inform us what the distribution of the 
maximum loss is, POTM uses the Picklands-Dalkema-de Hann theorem to 
inform us what is the probability distribution of all events greater than some 
large preset threshold. The Picklands-Dalkema-de Hann theorem states that 
if F is the conditional excess distribution function of values of the ordered u 
losses X above some threshold, µ is given by F = Prob(X − m ≤ y | X > m ),u 
0 ≤  y ≤ xF − m. Then for a suitably high threshold the limiting distribution of F u 
is a generalized Pareto distribution (GPD) with cumulative distribution function 

1 ξ 
−

ξ 1 − 


1 +

σ 
x
 if ξ ≠ 0

F x( )  =  
 1 − exp ( − x / σ ) for ξ = 0


 

This is an important result because it tells us the exact distribution of excesses 
above some threshold. How do we choose a suitably high value of the thresh-
old µ? One tool for choosing a suitable threshold is to use the sample mean 
excess function, which is a measure of the excess over the threshold divided 
by the number of data points that exceed the threshold: 

n +∑ (x − µ)i 

( )  = i = 1e un n 

∑ 1{xi >µ}
i = 1 

The sample mean excess function describes the expected overshoot of the

threshold given that an exceedance has occurred. If the GPD is a suitable
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distribution, a plot of the mean excess against the threshold should follow

ξ 

a straight line with slope approximately equal to A value for µ can1 − ξ .

be chosen as the value at which the plotted curve becomes linear. The 
parameters of the GPD distribution can be estimated using the method of 
maximum likelihood or L moments. 

One advantage of fitting the GPD via POTM is that once we have the 
parameter estimates, we can easily obtain an estimate of OpVaR: 

ˆ 
ˆ 
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)α−(1ˆOpVaRα = +µ 



Furthermore, we can also easily obtain an estimate of ES:


µ
ξ 

- ˆ ˆσ ξ
− ˆαES = α 

ξ 
VAR 

1 - ˆ + 
1 

SUMMARY 

Due to their rarity, catastrophic losses have very limited data and are there-
fore likely to give imprecise associated risk estimates. The use of EVT to 
estimate operational risk at high percentiles has a number of advantages 
over the more traditional methods discussed in Chapters 7 to 9. This is be-
cause methods discussed in these chapters use all the return data and fit the 
majority of observations that tend to lie near the center of a probability dis-
tribution, rather than specifically accommodating the tail observations. Yet 
it is the tail observations that are important for operational risk manage-
ment. The key disadvantage of EVT is that model calibration is demanding, 
requiring a large amount of data. 

REVIEW QUESTIONS 

1. What are the benefits and limitations of the practical use of EVT? 
2. Explain the difference between POTM and BM. 
3. Which method do you feel is most appropriate for your practice? 

FURTHER READING 

Further discussion of applied extreme value theory can be found in Bassi 
et al. (1997), Danielsson and de Vries (1997), Longin (1997), Embrechts et al. 
(1998), and Lewis (2003). More theoretical work can be found in Gumbel 
(1954). 
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CHAPTER 17 
Managing Operational Risk with

Bayesian Belief Networks 

Bayesian belief networks (BBNs) have attracted much attention as a pos-
sible solution to many of the complex issues surrounding operational 

risk management. By providing a succinct way to encode knowledge about 
a business environment in terms of simple probabilities, BBNs are increas-
ingly being seen as attractive knowledge representation tools for reasoning 
about operational risk. They have proven useful in a wide range of practi-
cal applications. For example, fraud debt detection,1 optimization of traffic 
flow,2 validation of rocket engines,3 and providing assistance in formulat-
ing diagnoses.4 In this chapter we explore how BBNs make it possible to 
base inferences within complex business environments about operational 
risk events on the sound foundations of probability theory. 

WHAT IS A BAYESIAN BELIEF NETWORK? 

A BBN is a directed graph, together with an associated set of probability 
tables. Figure 17.1 shows a simple BBN to predict settlement loss. The fig-
ure consists of nodes and directed arcs. It describes the relationship between 
staff experience, product complexity, and design effort that went into devel-
oping the settlement system and settlement loss. The nodes represent ran-
dom variables that can be discrete or continuous. For example, the node 
Staff Experience is discrete, having two states: Experienced and Novice. 
The directed arcs between the nodes represent directed causal relationships 
between variables. To see this, look at the directed arc between Design 
Effort and Settlement Loss; the direction of the arc designates Design Effort 
as a cause and Settlement Loss as the effect. The absence of a link between 
two nodes, for example, between Staff Experience and Product Complex-
ity, signifies that the corresponding variables do not influence each other 
directly in a probabilistic sense. 

209 
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Settlement Loss 

Design Effort 

Product ComplexityStaff Experience 

FIGURE 17.1 A simple Bayesian Belief Network to 
predict settlement loss. 

Each node in a BBN is a random variable; as such, it will have an under-
lying probability distribution. How do we represent this probability distri-
bution? The probability distribution of the node is captured in a node 
probability table (NPT). To illustrate this, consider the NPT for Staff Expe-
rience in Figure 17.1 It might consist of two states: Novice with 25 percent 
probability and Experienced with 75 percent probability. The node Product 
Complexity might also consist of two states: High with probability 40 per-
cent and Low with probability 60 percent. Since Staff Experience and Prod-
uct Complexity are nodes without parents, their NPTs are known as prior 
probabilities. The node Design Effort has two states: Low with 50 percent 
probability and High with 50 percent probability. Finally, we shall assume 
the node Settlement Loss has three states: None with 51 percent probabil-
ity, Low with 19.5 percent probability, and High with 29.5 percent proba-
bility. Because Settlement Loss has parent nodes (Staff Experience, Product 
Complexity, Design Effort) its NPT captures the conditional probabilities 
of a particular type of settlement loss given the state of its parent nodes. 

EXAMPLE 17.1 SIMPLE EVIDENCE PROPAGATION THROUGH 
BAYESIAN BELIEF NETWORKS 

Suppose we know that the member of the staff who processes an individual 
transaction is a novice. We might expect the probability of a high settlement 
loss to be larger than if we know the staff member is experienced. The NPT 
of Settlement Loss might look like that shown in Table 17.1. 

The construction of BBN models requires the user to specify the prob-
ability distribution for each node. These can be frequency probabilities 
derived from empirical data or subjective probabilities elicited from domain 
experts. Given new information about the state of one or more of the ran-
dom variables, Bayes’ theorem is used to update the values of all the other 
probabilities in the BBN. The process of updating probabilities is known as 
evidence propagation. 
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TABLE 17.1 Node Probability Table for a Simple Settlement Loss BBN 

System design effort Low High 

Product 
complexity Low High Low High 

Novice Expert Novice Expert Novice Expert Novice Expert 
Staff experience (%) (%) (%) (%) (%) (%) (%) (%) 

Settlement loss 
None 50 75

Low 35 20

High 15 5


5 10 75 90 10 15 
15 20 20 9 27 25 
80 70 5 1 63 60 

For example, suppose the probabilities for the settlement loss BBN are 
those mentioned above, so that the probability of a large settlement loss is 
29.5 percent. Suppose the operational risk manager receives information that
for the next three hours only trainee members of the staff will be available 
to process transactions. This information can be entered into the BBN and 
propagated through the network recursively using Bayes’ theorem. Although 
Bayes’ theorem has been around for a long time, the propagation computa-
tions required to calculate the probabilities in BBNs become very complex as 
the number of nodes in the network increases. It is only fairly recently that 
efficient algorithms and tools to implement them have emerged.5 These algo-
rithms enable quick evidence propagation even in very large networks. The 
result of evidence propagation in the above example is that the probability of 
a high settlement loss rises slightly from 29.5 percent to 34.6 percent. What 
happens if a complex product needs to be processed? This evidence can also 
be entered into the BBN; in this case, the probability of a high settlement loss 
rises to 71.5 percent. Given this information, the operational risk manager 
may insist that an experienced member of the staff be made available. 

BBN modeling consists of three components: 

1. A graph that provides information about the relationships between 
variables 

2. An associated set of probability tables that provide information 
about the dependencies between variables 

3. Bayes’ theorem applied recursively to propagate probabilistic infor-
mation through the network 

COMPONENTS OF A BAYESIAN BELIEF NETWORK 
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CASE STUDY 17.1: A BBN MODEL FOR SOFTWARE PRODUCT RISK 
Investments in information technology (IT) and information systems (ISs) 
take place in an environment rife with uncertainty. As a consequence, projects 
are frequently behind schedule and over budget. The resulting systems may 
be of poor quality or fit inadequately to user requirements. As the dollar cost 
of such investments continues to rise, the competitive advantage of IT/IS 
projects needs to be carefully scrutinized and justified. Senior managers are 
increasingly seeking the assistance of decision-making tools to improve their 
ability to reason about the progress and outcome of a particular project. In 
this section we illustrate how BBNs can be used by operational risk and other 
managers as a project management tool. We consider a retail bank that is con-
sidering releasing a new software product to its customers. The key concern 
is to identify the number of serious defects in the software prior to release and 
to investigate the impact of different managerial policies on product quality, 
cost, and schedule during the development of the software product. 

Large and complex commercial software is usually constructed using 
multiple modules. The initial requirements are analyzed and converted into 
a design, and the software modules are coded, tested, and debugged. We 
assume the software development consists of four stages: 

1. Requirements analysis 
2. Product design 
3. Product coding 
4. Testing 

We discuss each of these stages below. 
The first stage covers requirements analysis, a complete validated spec-

ification of the required interfaces, functions, and performance of the soft-
ware product to be developed. The BBN topology is presented in Figure 17.2 
The node Problem Complexity represents the degree of complexity inher-
ent in the new product to be developed. Problem complexity simultaneously 
influences the actual effort allocated to the requirements initiative and the 
number of serious defects introduced in the initial requirements specifica-
tion. During requirements rework, a number of these serious defects may be 
discovered and others introduced. The node Residual Defects after Rework 
contains the total number of defects inherent in the product at the end of 
the requirements analysis. It is directly influenced by the number of defects 
introduced in the initial requirements specification, defects introduced dur-
ing any subsequent requirements rework, and defects found during the 
requirements analysis. 

The second stage of the software development process covers product 
design. The BBN topology is presented in Figure 17.3. The node Problem 
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Problem complexity 

Requirements effort 

Defects introduced 
in requirements 

Requirement rework 
effort 

Defects found in 
requirements 

Defects introduced 
during rework 

Residual defects 
after rework 

FIGURE 17.2 Requirements fragment. 

Complexity influences the node Design Effort, which measures actual design 
effort and the node Design Complexity. Design rework plays a significant 
role in many software development processes, and it is both a means to cor-
rect identified defects and a potential source of additional design defects. 
The node Residual Defects after Design represents the total number of 
defects inherent in the product at the end of the design phase. 

The third stage of development covers product coding. It involves the cre-
ation of a complete set of program components aimed at satisfying the 
design produced in the previous phase. The BBN topology is presented in 

Problem complexity 
Defects introduced 

in design 

Design effort
Design complexity 

Defects found during Design rework effort

design


Defects introduced

Residual defects during rework


after rework


Residual defects 
after design 

FIGURE 17.3 Design fragment. 
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Defects introduced 
after rework Residual defects 

after coding 

Defects found 
during coding 

Defects introduced 

Coding rework effort 

Code complexity 

Coding effort Residual defects 
after design 

FIGURE 17.4 Coding fragment. 

Figure 17.4. The node Coding Effort represents the actual resources allocated 
by management to the coding task. Coding effort influences the number of 
coding defects introduced into the product and the amount of effort allocated 
to coding rework. The node Residual Defects after Coding represents the 
total number of defects inherent in the development process at the end of 
the design phase. 

The final stage in our process model covers product testing. The BBN 
topology is illustrated in Figure 17.5. The amount of resources allocated to 
testing effort influences the number of defects detected during testing and 
subsequently the number of defects delivered to the customer. 

The full BBN model is illustrated in Figure 17.6. The model provides 
interim information to ensure the developing product is satisfying cost, 
schedule, and quality requirements. It provides the operational risk and 
other managers with an objective basis for assessing risk, predicting out-
comes, and tracking progress. We do not make any claims about this model 
being correct for all situations. Indeed, we freely acknowledge that this 
model may not reflect what really happens during the product development 
in many organizations. For other organizations a cyclical model may be more 
appropriate, or perhaps software development is an iterative, evolutionary 

Defects delivered 
to customer 

Testing effort Defects found 
during testing 

Residual defects 
after coding 

FIGURE 17.5 Testing fragment. 
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problem complexity 

requirements effort defects introduced in 

defects found in 
requirements 

requirements 
rework effort 

defects introduced 
during rework 

residual defects after 
rework 

defects introduced in 
design 

defects found during
 design 

design rework effort 

defects introduced 
during rework 

residual defects after 
design 

design complexity 

coding effort 

defects introduced 

residual defects after 
coding 

defects found during 
coding 

code complexity 

coding rework effort 

defects introduced after 
rework 

testing effort defects found during 
testing 

defects delivered to 
customer 

design effort 

FIGURE 17.6 BBN process model for cost, schedule, and defects. 

process where design, coding, etc., are performed in parallel. The reality is 
that the development of new products is performed in many different ways. 
What is important is that this activity can be captured in a BBN model. Of 
course, one may be able to think of many other variables that might also be 
included in the BBN topology of Figure 17.6. The exact process variables 
and topology are context-dependent. 

CREATING A BBN-BASED SIMULATION 

Simulation requires a number of assumptions necessary for exploring the 
dynamics of the development process. These assumptions should not be seen 
as irrevocable. They can be relaxed, changed, or added to as necessary. We 
shall assume the development process is characterized as follows: 
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1. The retail back office is developing a software product that consists of 
100 modules. Forty percent of the system will consist of systems mod-
ules. Application modules will make up 30 percent of the system, and 
the graphical user interface (GUI) modules will make up the remaining 
40 percent. 

2. High problem complexity modules require more effort and consume more 
resources than low problem complexity modules. Very high complexity 
modules cost twice as much and take twice as long to develop as very low 
complexity modules. Problem complexity is very low for system modules, 
very high for application modules, and medium for the GUI modules. 

3. Each process stage (requirements, design, coding, testing) has five teams 
of dedicated staff. 

4. Each process variable can be in one of five states (very high, high, 
medium, low, very low). 

5. Rework is essentially an iterative activity. A high rework effort implies 
a large number of iterations, a longer schedule, and higher costs than a 
low rework effort. 

ASSESSING THE IMPACT OF DIFFERENT 
MANAGERIAL STRATEGIES 

We consider the implications for cost, quality (defect density), and schedule 
of three management strategies: 

1. Schedule minimization 
2. Total quality 
3. Cost minimization 

Schedule Minimization 

Schedule minimization is a strategy employed by an organization whose pri-
ority is to bring the product to the market in the minimum development time 
possible. Such a strategy involves the organization committing enough re-
sources to support very high requirements and design, coding, and testing 
efforts while keeping rework to a minimum. Table 17.2 presents the expected 

TABLE 17.2 Module Expected Cost and Expected Schedule Implications of a 
Schedule Minimization Strategy 

Managerial strategy: 
schedule minimization Module complexity Cost ($) Schedule 

Systems modules 5,180 11.66 days 
GUI modules 7,770 17.49 days 
Application modules 10,360 23.32 days 
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TABLE 17.3 Total Expected Cost and Schedule for 
Schedule Minimization Strategy 

Schedule minimization 

Expected project cost $4,144,062 
Expected project schedule 53.31 weeks 

cost and expected schedule per module for this strategy. A full breakdown 
of costs and schedule for each stage of the development process is given in 
Table 17.2. The expected total project cost and expected schedule are given 
in Table 17.3. The project is expected to be completed in just over a year at a 
cost of $4.1 million. Table 17.4 gives the probability distribution of defects 
likely to be present in the product after testing and debugging. There is ap-
proximately a 96 percent likelihood that the project will be delivered with a 
medium to very low number of defects. If we assume the number of product 
defects is positively correlated with maintenance cost, the project manager can 
reasonably expect the maintenance cost of the developed software to be low. 

Total Quality 

A strategy of total quality places product quality ahead of schedule or cost. 
For the software development process in our example, it implies very high 
requirements, a heavy design, coding, and testing effort, and a large num-
ber of rework iterations. Table 17.5 presents the expected cost and expected 
schedule per module for this strategy. The very high levels of rework increase 
the cost of each module by around 19 percent over the schedule minimiza-
tion strategy. Heavy rework also increases schedule. Table 17.6 presents the 
total cost and schedule figures for the total quality strategy. The overall 
impact of a total quality strategy is an increase in schedule by 25.7 weeks 
and an additional cost of approximately $782,000 over a schedule mini-
mization strategy. Table 17.7 shows the probability distribution of defects 
remaining in the product at the end of the testing and debugging phase. As 

TABLE 17.4 Defects Delivered with Schedule Minimization Strategy 

Managerial strategy: 
schedule minimization Defects delivered Likelihood (%) 

Very low 69.7 
Low 15.5 
Medium 10.3 
High 3.9 
Very high 0.6 
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TABLE 17.5 Module Expected Cost and Expected Schedule Implications of a Total 
Quality Strategy 

Managerial strategy:

total quality Module complexity Cost ($) Schedule


Systems modules 
GUI modules 
Application modules 

6,157 17.28 days 
9,236 25.93 days 

12,314 34.57 days 

we might expect, the total quality strategy yields a very high likelihood of 
a low number of defects in the developed software product. 

Cost Minimization 

When product quality or schedule is not at a premium, cost minimization 
may prove a more suitable corporate objective. Cost minimization implies 
allocating a minimum amount of effort to requirements and design and test-
ing, with very low level of rework at each stage of development. Table 17.8 
gives the expected cost and expected schedule per module for this strategy. 
The cost minimization strategy results in a 54 percent reduction in module 
costs over the schedule minimization strategy and a 65 percent reduction over 
the total quality strategy. However, development time tends to be longer and 
defects remaining in the product higher. Table 17.9 presents the total ex-
pected project cost and schedule. Table 17.10 shows the probability distri-
bution of introduced defects. 

PERCEIVED BENEFITS OF BAYESIAN BELIEF 
NETWORK MODELING 

Since a key feature of BBNs is that they allow us to model and reason about 
uncertainty surrounding future events, they appear to provide a natural tool 
for dealing with two of the central problems that hinder effective opera-
tional risk management—uncertainty and complexity. Other important 
benefits include: 

TABLE 17.6	 Total Expected Cost and Schedule 
for Total Quality Strategy 

Total quality 

Expected project cost $4,925,763 
Expected project schedule 79.01 weeks 
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TABLE 17.7 Defects Delivered with Total Quality Strategy 

Managerial strategy:

total quality Defects delivered Likelihood (%)


Very low 95.4 
Low 3.0 
Medium 1.3 
High 0.4 
Very high 0.0 

1. A scientific and rigorous framework: Bayesian belief networks combine 
a rigorous probabilistic framework for representing the relationships 
among variables with an inherently appealing graphical structure that 
encourages easy communication between the user and the probabilistic 
model. In addition, the BBN graphical structure forces the model 
builder/user to expose all assumptions about the impact of different 
forms of evidence. In this sense BBNs provide a visible and auditable 
tool for building consistent and comparable models about risk inherent 
in differing business lines. 

2. Easy representation and manipulation of evidence from diverse sources: 
A key strength of BBNs lies in their ability to take into account evidence 
from diverse sources. Empirical evidence, judgment, and uncertainty 
about tools, methods, and procedures can all be incorporated into a 
BBN model. They can take the plausibility (or prior belief) about the 
current operational risk processes of a business line. Plausibility is estab-
lished from the prior knowledge and experience of the management 
practices, people, and technology involved in the various processes that 
constitute a particular business line. This can be combined with any 
available empirical evidence to obtain a probability statement about the 
likely severity and frequency of losses. Therefore, BBNs give operational 
risk managers the ability to integrate experiences of people, technology, 
and management style into a model of the operational process for their 

TABLE 17.8	 Module Expected Cost and Expected Schedule Implications of a Cost 
Minimization Strategy 

Managerial strategy: 
cost minimization Module complexity Cost ($) Schedule 

Systems modules 3,352 19.93 days 
GUI modules 4,945 29.61 days 
Application modules 6,584 39.17 days 
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TABLE 17.9 Total Expected Cost and Schedule for 
Cost Minimization Strategy 

Cost minimization 

Expected project cost $2,647,015 
Expected project schedule 90.20 weeks 

organization. This is particularly important in the business environment 
because management practices, policies, and operational procedures 
can differ substantially from organization to organization. Indeed, in 
practice there are likely to be large variations in the way successful 
companies organize their people and processes. In such circumstances 
the use of BBN models provides operational risk managers with a tool 
that can be tailored to their own individual organization. In this sense, 
the scope of BBN modeling is not limited to any one specific manage-
ment approach or to any specific organizational domain, and BBN 
modeling allows operational risk to be evaluated relative to the 
methodology and technology of the particular organization. 

3. Ability to quickly integrate new structural knowledge: Another impor-
tant benefit is the ability of BBN models to represent and respond to 
changing structural knowledge. New knowledge about business lines 
can be translated easily into a reconfiguration of the network topology. 
As an example, consider an operational risk manager who after many 
years of settlement experience realizes that for the settlement process in 
his organization, staff experience has no impact on the number or sever-
ity of settlement losses. To represent this new knowledge, we simply 
delete from the BBN model of Figure 17.1 all links incident to the node 
Staff Experience, as shown in Figure 17.7. This flexibility enables 
managers to assess how the probability distribution of target variables 

TABLE 17.10 Defects Delivered with Cost Minimization Strategy 

Managerial Strategy: 
cost minimization Defects delivered Likelihood (%) 

Very low 54.4 
Low 18.1 
Medium 15.4 
High 13.7 
Very high 8.5 
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Settlement Loss 

Design Effort 

Product ComplexityStaff Experience 

FIGURE 17.7 Impact of new structural knowledge 
on a BBN. 

changes in response to new structural knowledge, thereby providing a 
basis for systematic planning in the presence of uncertainty. Once the 
manager knows the identity of the causal mechanism to be altered, the 
overall effect can be propagated through the network. 

4. Ease of use and interpretation: Real-world modeling of operational 
risk involves complex knowledge structures comprised of large numbers 
of variables. Traditional statistical techniques involve sophisticated 
mathematics even for relatively simple knowledge structures. In addi-
tion, they frequently impose restrictive assumptions on the variables 
modeled. The BBN combination of a rigorous probabilistic framework 
for representing the relationships among variables and an inherently 
appealing graphical structure that encourages easy communication 
between the user and the probabilistic model allows complex knowledge 
structures to be modeled using relatively simple mathematics. 

There are numerous statistical techniques that are useful in model-
ing operational risk. However, one of the disadvantages with these 
methods is the high level of quantitative expertise required before they 
can be used effectively. The consequences are obvious and important. 
Mastery of the appropriate statistical concepts and techniques requires 
a level of statistical sophistication not readily available in the general 
operational risk community. Even where such expertise exists, explain-
ing the details of a statistical model and conveying the implications in 
a convincing manner to senior management often prove difficult. In 
contrast, BBNs allow the user to unlock the intricacies of complex busi-
ness processes using simple mathematics and easily interpretable 
graphs. Advanced statistical knowledge is not required. BBNs offer an 
easy to use practical decision-making tool that enables both quantita-
tive specialists and senior managers to communicate, analyze, interpret, 
and assess the impact of decisions made on their business lines. 
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COMMON MYTHS ABOUT BBNS—THE TRUTH 
FOR OPERATIONAL RISK MANAGEMENT 

Despite the above advantages of BBN modeling, there remains a high degree 
of confusion and skepticism about its true value in an operational risk contest. 
On the one side are commercial vendors often founded by pseudo-academics6 

keen to exploit a cash-rich market niche. On the other side are the practi-
tioners, bemused and skeptical about the ability of BBNs to deliver. Amid 
this confusion have arisen a number of oft-quoted myths: 

Myth 1—Bayesian belief networks are difficult to build: On the contrary, 
BBNs are extremely easy to build since they require only a domain 
expert. The real difficulty lies not in specifying and building a BBN, but 
in determining whether the BBN correctly represents the relationships 
between the variables that make up the model. At the heart of the prob-
lem lies a lack of quantitative data. Without quantitative data, the highly 
successful tools of classical statistical inference, which have underpinned 
many scientific, medical, and industrial advances over the past century, 
are not available to us. We have little choice but to rely almost exclu-
sively on domain experts. This might not be a serious drawback in other 
applications, but in operational risk management domain experts will 
inevitably be managers of the business line and their co-workers whose 
operational risk the OR manager wishes to assess. How can one elicit 
from self-interested individuals an unbiased and verifiable BBN model? 

Myth 2—Operational risk is too complicated to be captured in a Bayesian 
belief network: This is not necessarily the case.The BBNs of complex 
processes can be easily and rapidly developed. The real difficulty is two-
fold. First, the BBNs themselves might become very large and too com-
plex to be easily understandable. Second, even if we believe that the BBN 
topology is correct, how can we be certain that the probabilities in the 
NPTs are well specified? The first point can be dealt with via careful 
design and the appropriate software tools to hide the complexity of very 
large BBNs. The second problem is not easily addressed because it re-
volves around the issue of how to validate a BBN model. One solution 
is to build the BBN model for a particular OR event and see how it per-
forms through a considerable period of time. Although this approach 
to validation might be adequate for monitoring software development 
or a manufacturing processes, it certainly is not a responsible approach 
for a regulated financial institution. 

Myth 3—Bayesian belief networks for operational risk can be easily main-
tained: In practice, BBNs are subject to domain expert risk, the pos-
sibility that key domain experts may leave an organization. To see why 
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this is a serious issue, consider an operational risk BBN for a specific 
business line. Because the model will have been developed from the ex-
perience of the domain experts, its topology and NPTs will reflect the 
views of these experts. Over time all businesses evolve, and should 
the key domain experts leave, the operational risk manager may be 
faced with using a BBN model that does not reflect the operational risk 
inherent in the specific business line. This may remain the case even if 
experienced staff are hired to replace those leaving, simply because it 
takes time for new individuals to absorb the culture and peculiarities of 
a business. Even for very experienced individuals, it takes time to be-
come a domain expert.7 Traditional statistical models are not subject to 
this risk. BBN models may therefore have a much shorter life than tra-
ditional statistical models. 

Myth 4—Bayesian belief networks are not forward-looking: In actual 
fact, BBNs are used to make predictions and are in this sense forward-
looking. However, in this they are no different from standard statistical 
models, which although built using historical data, have been used suc-
cessfully for a century to provide a rational basis for decision making 
in medicine, industry, and science. Related to this myth is the frequent 
claim by advocates of BBNs that key knowledge about operational risk 
is contained in the total sum of key individuals’ experiences in their cur-
rent and previous organizations. This knowledge is valuable, and often 
overlooked, but easily captured in a BBN. Thus, it is claimed by purvey-
ors of BBN systems that they are superior to aggregate loss distribution 
simulations, scorecards, or other well proven statistical and nonstatis-
tical methods! 

Our answer to this claim is essentially pragmatic. The loss distri-
bution approach has served the insurance industry well, and scorecards 
are widely used in assessing credit risk. If it works use it; if not, discard 
it. But be aware of the weaknesses and risks. This goes for all modeling 
approaches, widely accepted or not. In the final analysis operational 
risk modeling is more of an art than a science. As such BBNs have a 
role in providing a rigorous framework for incorporating both qualita-
tive and quantitative information into management decision making. 
However, reliance on an approach based on subjective opinions, which 
can be manipulated through institutional pressure to get the desired 
results, is a major weakness. At some point quantitative data must to 
be collected on all of the important risk indicators and operational risk 
events. Where this is not (yet) possible, the use of BBNs for incorpo-
rating qualitative information into decision making may be an appro-
priate choice. However, in the end, quantitative information on all key 
risk indicators and types of OR events will have to be collected. If you 
do not quantitatively measure operational risk indicators and events, 
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how can you expect to objectively assess, model, and control the oper-
ational risk environment? 

SUMMARY 

Bayesian belief networks enable reasoning under uncertainty and combine 
the advantages of an intuitive visual representation with a sound mathemat-
ical basis in Bayesian probability. They can accommodate both subjective 
probabilities elicited from domain experts and probabilities obtained from 
objective data. With BBNs it is possible to capture both expert beliefs and 
empirically derived rules about the dependencies between the variables. The 
impact of new evidence on the probabilities can be propagated consistently 
throughout the model. BBN models for operational risk offer 

■	 A systematic mechanism for incorporating human reasoning and judge-
ment about knowledge, such as the past behavior of a key attribute or 
other company-specific information 

■	 Rigorous probabilistic information on the likely impact on key product 
or process attributes of varying risk factors 

■	 A systematic decision-making tool that can provide explicit justifications 
for management actions 

REVIEW QUESTIONS 

1. Describe the elements that make up a BBN. 
2. What theory of probability is used in evidence propagation? 
3. Explain why, despite the claims to the contrary, BBNs do not represent 

a full solution to the problems faced in operational risk. 

FURTHER READING 

We have given extensive references in the chapter notes collected at the end 
of the book. Additional information on BBNs for real-world problems can 
be found in Lewis (1999). Further applications in operational risk manage-
ment are given in Alexander (2000, 2001, 2003) and King (2001). There are 
a number of free software packages for building BBNs. A popular package 
is MSBN, which is fully compatible with Excel and developed by Microsoft. 
It can be found at http://research.microsoft.com/adapt/msbnx/. Another 
freely available Internet-based application called Belief Net can be found at 
http://www.cs.ubc.ca/labs/lci/CIspace/bayes/. An alternative for commercial 
use (with a free demonstration version) is Hugin, which can be found at 
http://www.hugin.com/. 
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CHAPTER 18 
Epilogue


n writing this book my aims purposely have been rather limited. These aims 
will have been achieved if someone who has read the previous chapters 

carefully and experimented with the Excel/VBA examples has a fair idea of 
what can and cannot be achieved using the statistical methods that are most 
widely suggested as useful for operational risk management. My hope is that 
the book will help many individuals take the first step in the new and rap-
idly evolving field of operational risk modeling. For those who wish to 
develop further their knowledge, experience is best achieved by analyzing 
different sets of data, creating Excel worksheets and VBA functions, and 
interpreting the results obtained. Competence in operational risk modeling 
requires practice. 

WINNING THE OPERATIONAL RISK ARGUMENT 

Although few senior executives doubt the need to improve operational con-
trols, often they are skeptical about whether operational risk such as fraud 
or rogue trading can be adequately measured and modeled. In persuading 
senior management to allocate resources to operational risk management, a 
number of arguments can be used: 

1. The recent changes in the regulatory environment have many important 
dimensions. The most significant is its role in institutionalizing opera-
tional risk as a category for regulatory attention. It is something that 
must be managed alongside market and credit risk. 

2. The statistical analysis of operational risk provides the necessary tools 
for modeling high-frequency low-impact events as well as low-frequency 
high-impact extreme events. It allows institutions to identify operational 
loss events to which they have exposure but have yet to experience. 

3. Senior management needs to take into account operational risk alongside 
credit and market risk if it is to accurately assess capital requirements, 
profitability, and which business lines to invest in or shut down. 

225 
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4. Operational risk management is not simply a compliance or back office 
function because if offers significant value beyond regulatory compliance 
by contributing to shareholder value. If adequately funded, operational 
risk management offers significant benefits for an institution. 

FINAL TIPS ON APPLIED OPERATIONAL RISK MODELING 

The statistical analysis and modeling of operational risk make sound business 
sense. Institutions that measure and manage operational risk can significantly 
reduce costs and are likely to be less susceptible to systemic problems. Once 
the decision has been made to adopt a statistical approach, the key question 
for the operational risk analyst is: What modeling assumptions are reason-
able? In answering this question, it should be remembered that there are 
often alternative ways of approaching the analysis, none of which is neces-
sarily the best approach. Indeed, as we have emphasized throughout this text, 
there are many different types of models that can be employed, models that 
are idiosyncratic to a firm, models that are idiosyncratic to a business line, 
and models that are idiosyncratic to controls. At the same time, several types 
of analysis may be carried out to investigate different aspects of the data. 

It is important to keep in sight the goal of attaining flexible firm-specific 
modeling and consistency of treatment across all business lines of an insti-
tution. In order to use statistical techniques, it is important to collect appro-
priate data. The minimum that is required is the total loss amount, line 
of business causing the loss, risk categorization, and date of occurrence. Of 
course, the type and extent of data collected will depend on how an insti-
tution defines operational risk and their objectives in respect to operational 
risk management. 

One further issue is whether to use qualitative or quantitative modeling. 
The key issue in selection will center on how the two different aspects of 
modeling contribute to our understanding of operational risk and help us in 
assessing controls. Therefore, it is the purpose that drives the technique. If we 
are interested in pricing operational risk, then a quantitative approach has the 
advantage of not relying on local management for subjective input. 

FURTHER READING 

Texts on operational risk are remarkably silent on the question of applied 
statistical modeling. To some extent, this is because the field of operational 
risk is rapidly evolving and partly because useful analysis is by no means a 
straightforward matter. Useful further reading includes, Hussain (2000), 
Marshall (2000), King (2001), Cruz (2002), Hoffman (2002), and Alexander 
(2003). For a slightly broader perspective and the application of statistical 
methods in other areas of risk management see Lewis (2003) and Saunders 
et al. (2004). 
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APPENDIX 

Statistical Tables


This Appendix contains statistical tables of the common sampling distri-
butions of test statistics. Refer to the text for examples of their use. 

CUMULATIVE DISTRIBUTION FUNCTION 
OF THE STANDARD NORMAL DISTRIBUTION 

Table A.1 shows the probability, F(z) that a standard normal random vari-
able is less than the value z. For example, the probability is 0.97725 that a 
standard normal random variable is less than 2. 

TABLE A.1 Cumulative Distribution Function of the Standard Normal Distribution 

z F(z) z F(z) z F(z) z F(z) 

0 
0.01 
0.02 
0.03 
0.04 
0.05 
0.06 
0.07 
0.08 
0.09 
0.1 
0.11 
0.12 
0.13 
0.14 
0.15 
0.16 

0.5 
0.503989 
0.507978 
0.511967 
0.515953 
0.519939 
0.523922 
0.527903 
0.531881 
0.535856 
0.539828 
0.543795 
0.547758 
0.551717 
0.55567 
0.559618 
0.563559 

0.17 
0.18 
0.19 
0.2 
0.21 
0.22 
0.23 
0.24 
0.25 
0.26 
0.27 
0.28 
0.29 
0.3 
0.31 
0.32 
0.33 

0.567495 
0.571424 
0.575345 
0.57926 
0.583166 
0.587064 
0.590954 
0.594835 
0.598706 
0.602568 
0.60642 
0.610261 
0.614092 
0.617911 
0.621719 
0.625516 
0.6293 

0.34 
0.35 
0.36 
0.37 
0.38 
0.39 
0.4 
0.41 
0.42 
0.43 
0.44 
0.45 
0.46 
0.47 
0.48 
0.49 
0.5 

0.633072 
0.636831 
0.640576 
0.644309 
0.648027 
0.651732 
0.655422 
0.659097 
0.662757 
0.666402 
0.670031 
0.673645 
0.677242 
0.680822 
0.684386 
0.687933 
0.691462 

0.51 
0.52 
0.53 
0.54 
0.55 
0.56 
0.57 
0.58 
0.59 
0.6 
0.61 
0.62 
0.63 
0.64 
0.65 
0.66 
0.67 

0.694974 
0.698468 
0.701944 
0.705402 
0.70884 
0.71226 
0.715661 
0.719043 
0.722405 
0.725747 
0.729069 
0.732371 
0.735653 
0.738914 
0.742154 
0.745373 
0.748571 

(continued) 
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TABLE A.1 (continued) 

z F(z) z F(z) z F(z) z F(z) 

0.68 0.751748 
0.69 0.754903 
0.7 0.758036 
0.71 0.761148 
0.72 0.764238 
0.73 0.767305 
0.74 0.77035 
0.75 0.773373 
0.76 0.776373 
0.77 0.77935 
0.78 0.782305 
0.79 0.785236 
0.8 0.788145 
0.81 0.79103 
0.82 0.793892 
0.83 0.796731 
0.84 0.799546 
0.85 0.802338 
0.86 0.805106 
0.87 0.80785 
0.88 0.81057 
0.89 0.813267 
0.9 0.81594 
0.91 0.818589 
0.92 0.821214 
0.93 0.823814 
0.94 0.826391 
0.95 0.828944 
0.96 0.831472 
0.97 0.833977 
0.98 0.836457 
0.99 0.838913 
1 0.841345 
1.01 0.843752 
1.02 0.846136 
1.03 0.848495 
1.04 0.85083 
1.05 0.853141 
1.06 0.855428 
1.07 0.85769 
1.08 0.859929 
1.09 0.862143 

1.1 
1.11 
1.12 
1.13 
1.14 
1.15 
1.16 
1.17 
1.18 
1.19 
1.2 
1.21 
1.22 
1.23 
1.24 
1.25 
1.26 
1.27 
1.28 
1.29 
1.3 
1.31 
1.32 
1.33 
1.34 
1.35 
1.36 
1.37 
1.38 
1.39 
1.4 
1.41 
1.42 
1.43 
1.44 
1.45 
1.46 
1.47 
1.48 
1.49 
1.5 
1.51 

0.864334 
0.8665 
0.868643 
0.870762 
0.872857 
0.874928 
0.876976 
0.878999 
0.881 
0.882977 
0.88493 
0.88686 
0.888767 
0.890651 
0.892512 
0.89435 
0.896165 
0.897958 
0.899727 
0.901475 
0.903199 
0.904902 
0.906582 
0.908241 
0.909877 
0.911492 
0.913085 
0.914656 
0.916207 
0.917736 
0.919243 
0.92073 
0.922196 
0.923641 
0.925066 
0.926471 
0.927855 
0.929219 
0.930563 
0.931888 
0.933193 
0.934478 

1.52 
1.53 
1.54 
1.55 
1.56 
1.57 
1.58 
1.59 
1.6 
1.61 
1.62 
1.63 
1.64 
1.65 
1.66 
1.67 
1.68 
1.69 
1.7 
1.71 
1.72 
1.73 
1.74 
1.75 
1.76 
1.77 
1.78 
1.79 
1.8 
1.81 
1.82 
1.83 
1.84 
1.85 
1.86 
1.87 
1.88 
1.89 
1.9 
1.91 
1.92 
1.93 

0.935744 
0.936992 
0.93822 
0.939429 
0.94062 
0.941792 
0.942947 
0.944083 
0.945201 
0.946301 
0.947384 
0.948449 
0.949497 
0.950529 
0.951543 
0.95254 
0.953521 
0.954486 
0.955435 
0.956367 
0.957284 
0.958185 
0.959071 
0.959941 
0.960796 
0.961636 
0.962462 
0.963273 
0.96407 
0.964852 
0.965621 
0.966375 
0.967116 
0.967843 
0.968557 
0.969258 
0.969946 
0.970621 
0.971284 
0.971933 
0.972571 
0.973197 

1.94 0.97381 
1.95 0.974412 
1.96 0.975002 
1.97 0.975581 
1.98 0.976148 
1.99 0.976705 
2 0.97725 
2.01 0.977784 
2.02 0.978308 
2.03 0.978822 
2.04 0.979325 
2.05 0.979818 
2.06 0.980301 
2.07 0.980774 
2.08 0.981237 
2.09 0.981691 
2.1 0.982136 
2.11 0.982571 
2.12 0.982997 
2.13 0.983414 
2.14 0.983823 
2.15 0.984222 
2.16 0.984614 
2.17 0.984997 
2.18 0.985371 
2.19 0.985738 
2.2 0.986097 
2.21 0.986447 
2.22 0.986791 
2.23 0.987126 
2.24 0.987455 
2.25 0.987776 
2.26 0.988089 
2.27 0.988396 
2.28 0.988696 
2.29 0.988989 
2.3 0.989276 
2.31 0.989556 
2.32 0.98983 
2.33 0.990097 
2.34 0.990358 
2.35 0.990613 
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TABLE A.1 (continued)


z F(z) z F(z) z F(z) z F(z) 

2.36 0.990863 2.78 0.997282 3.19 0.999289 3.6 0.999841 
2.37 0.991106 2.79 0.997365 3.2 0.999313 3.61 0.999847 
2.38 0.991344 2.8 0.997445 3.21 0.999336 3.62 0.999853 
2.39 0.991576 2.81 0.997523 3.22 0.999359 3.63 0.999858 
2.4 0.991802 2.82 0.997599 3.23 0.999381 3.64 0.999864 
2.41 0.992024 2.83 0.997673 3.24 0.999402 3.65 0.999869 
2.42 0.99224 2.84 0.997744 3.25 0.999423 3.66 0.999874 
2.43 0.992451 2.85 0.997814 3.26 0.999443 3.67 0.999879 
2.44 0.992656 2.86 0.997882 3.27 0.999462 3.68 0.999883 
2.45 0.992857 2.87 0.997948 3.28 0.999481 3.69 0.999888 
2.46 0.993053 2.88 0.998012 3.29 0.999499 3.7 0.999892 
2.47 0.993244 2.89 0.998074 3.3 0.999517 3.71 0.999896 
2.48 0.993431 2.9 0.998134 3.31 0.999533 3.72 0.9999 
2.49 0.993613 2.91 0.998193 3.32 0.99955 3.73 0.999904 
2.5 0.99379 2.92 0.99825 3.33 0.999566 3.74 0.999908 
2.51 0.993963 2.93 0.998305 3.34 0.999581 3.75 0.999912 
2.52 0.994132 2.94 0.998359 3.35 0.999596 3.76 0.999915 
2.53 0.994297 2.95 0.998411 3.36 0.99961 3.77 0.999918 
2.54 0.994457 2.96 0.998462 3.37 0.999624 3.78 0.999922 
2.55 0.994614 2.97 0.998511 3.38 0.999638 3.79 0.999925 
2.56 0.994766 2.98 0.998559 3.39 0.99965 3.8 0.999928 
2.57 0.994915 2.99 0.998605 3.4 0.999663 3.81 0.99993 
2.58 0.99506 3 0.99865 3.41 0.999675 3.82 0.999933 
2.59 0.995201 3.01 0.998694 3.42 0.999687 3.83 0.999936 
2.6 0.995339 3.02 0.998736 3.43 0.999698 3.84 0.999938 
2.61 0.995473 3.03 0.998777 3.44 0.999709 3.85 0.999941 
2.62 0.995603 3.04 0.998817 3.45 0.99972 3.86 0.999943 
2.63 0.995731 3.05 0.998856 3.46 0.99973 3.87 0.999946 
2.64 0.995855 3.06 0.998893 3.47 0.99974 3.88 0.999948 
2.65 0.995975 3.07 0.99893 3.48 0.999749 3.89 0.99995 
2.66 0.996093 3.08 0.998965 3.49 0.999758 3.9 0.999952 
2.67 0.996207 3.09 0.998999 3.5 0.999767 3.91 0.999954 
2.68 0.996319 3.1 0.999032 3.51 0.999776 3.92 0.999956 
2.69 0.996427 3.11 0.999064 3.52 0.999784 3.93 0.999958 
2.7 0.996533 3.12 0.999096 3.53 0.999792 3.94 0.999959 
2.71 0.996636 3.13 0.999126 3.54 0.9998 3.95 0.999961 
2.72 0.996736 3.14 0.999155 3.55 0.999807 3.96 0.999963 
2.73 0.996833 3.15 0.999184 3.56 0.999815 3.97 0.999964 
2.74 0.996928 3.16 0.999211 3.57 0.999821 3.98 0.999966 
2.75 0.99702 3.17 0.999238 3.58 0.999828 3.99 0.999967 
2.76 0.99711 3.18 0.999264 3.59 0.999835 4 0.999968 
2.77 0.997197 
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CHI-SQUARED DISTRIBUTION


For a given probabily α, Table A.2 shows the values of the chi-squared dis-
tribution. For example, the probability is 0.05 that a chi-squared random 
variable with 10 degrees of freedom is greater than 18.31. 

TABLE A.2 Cut-off Points for the Chi-squared Distribution 

α 

Degrees 
of freedom 0.005 0.01 0.025 0.05 0.1 

1 7.88 6.63 5.02 3.84 2.71 
2 10.60 9.21 7.38 5.99 4.61 
3 12.84 11.34 9.35 7.81 6.25 
4 14.86 13.28 11.14 9.49 7.78 
5 16.75 15.09 12.83 11.07 9.24 
6 18.55 16.81 14.45 12.59 10.64 
7 20.28 18.48 16.01 14.07 12.02 
8 21.95 20.09 17.53 15.51 13.36 
9 23.59 21.67 19.02 16.92 14.68 
10 25.19 23.21 20.48 18.31 15.99 
11 26.76 24.73 21.92 19.68 17.28 
12 28.30 26.22 23.34 21.03 18.55 
13 29.82 27.69 24.74 22.36 19.81 
14 31.32 29.14 26.12 23.68 21.06 
15 32.80 30.58 27.49 25.00 22.31 
16 34.27 32.00 28.85 26.30 23.54 
17 35.72 33.41 30.19 27.59 24.77 
18 37.16 34.81 31.53 28.87 25.99 
19 38.58 36.19 32.85 30.14 27.20 
20 40.00 37.57 34.17 31.41 28.41 
21 41.40 38.93 35.48 32.67 29.62 
22 42.80 40.29 36.78 33.92 30.81 
23 44.18 41.64 38.08 35.17 32.01 
24 45.56 42.98 39.36 36.42 33.20 
25 46.93 44.31 40.65 37.65 34.38 
26 48.29 45.64 41.92 38.89 35.56 
27 49.65 46.96 43.19 40.11 36.74 
28 50.99 48.28 44.46 41.34 37.92 
29 52.34 49.59 45.72 42.56 39.09 
30 53.67 50.89 46.98 43.77 40.26 



bappx_lewis.qxd  3/1/04  11:23 AM  Page 231

Appendix 231 

TABLE A.2 (continued) 

α 

Degrees 
of freedom 0.005 0.01 0.025 0.05 0.1 

31 55.00 52.19 48.23 44.99 41.42 
32 56.33 53.49 49.48 46.19 42.58 
33 57.65 54.78 50.73 47.40 43.75 
34 58.96 56.06 51.97 48.60 44.90 
35 60.27 57.34 53.20 49.80 46.06 
36 61.58 58.62 54.44 51.00 47.21 
37 62.88 59.89 55.67 52.19 48.36 
38 64.18 61.16 56.90 53.38 49.51 
39 65.48 62.43 58.12 54.57 50.66 
40 66.77 63.69 59.34 55.76 51.81 
41 68.05 64.95 60.56 56.94 52.95 
42 69.34 66.21 61.78 58.12 54.09 
43 70.62 67.46 62.99 59.30 55.23 
44 71.89 68.71 64.20 60.48 56.37 
45 73.17 69.96 65.41 61.66 57.51 
46 74.44 71.20 66.62 62.83 58.64 
47 75.70 72.44 67.82 64.00 59.77 
48 76.97 73.68 69.02 65.17 60.91 
49 78.23 74.92 70.22 66.34 62.04 
50 79.49 76.15 71.42 67.50 63.17 
51 80.75 77.39 72.62 68.67 64.30 
52 82.00 78.62 73.81 69.83 65.42 
53 83.25 79.84 75.00 70.99 66.55 
54 84.50 81.07 76.19 72.15 67.67 
55 85.75 82.29 77.38 73.31 68.80 
56 86.99 83.51 78.57 74.47 69.92 
57 88.24 84.73 79.75 75.62 71.04 
58 89.48 85.95 80.94 76.78 72.16 
59 90.72 87.17 82.12 77.93 73.28 
60 91.95 88.38 83.30 79.08 74.40 
61 93.19 89.59 84.48 80.23 75.51 
62 94.42 90.80 85.65 81.38 76.63 
63 95.65 92.01 86.83 82.53 77.75 
64 96.88 93.22 88.00 83.68 78.86 
65 98.10 94.42 89.18 84.82 79.97 
66 99.33 95.63 90.35 85.96 81.09 
67 100.55 96.83 91.52 87.11 82.20 
68 101.78 98.03 92.69 88.25 83.31 

(continued) 
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TABLE A.2 (continued) 

α 

Degrees 
of freedom 0.005 0.01 0.025 0.05 0.1 

69 103.00 99.23 93.86 89.39 84.42 
70 104.21 100.43 95.02 90.53 85.53 
71 105.43 101.62 96.19 91.67 86.64 
72 106.65 102.82 97.35 92.81 87.74 
73 107.86 104.01 98.52 93.95 88.85 
74 109.07 105.20 99.68 95.08 89.96 
75 110.29 106.39 100.84 96.22 91.06 
76 111.50 107.58 102.00 97.35 92.17 
77 112.70 108.77 103.16 98.48 93.27 
78 113.91 109.96 104.32 99.62 94.37 
79 115.12 111.14 105.47 100.75 95.48 
80 116.32 112.33 106.63 101.88 96.58 
81 117.52 113.51 107.78 103.01 97.68 
82 118.73 114.69 108.94 104.14 98.78 
83 119.93 115.88 110.09 105.27 99.88 
84 121.13 117.06 111.24 106.39 100.98 
85 122.32 118.24 112.39 107.52 102.08 
86 123.52 119.41 113.54 108.65 103.18 
87 124.72 120.59 114.69 109.77 104.28 
88 125.91 121.77 115.84 110.90 105.37 
89 127.11 122.94 116.99 112.02 106.47 
90 128.30 124.12 118.14 113.15 107.57 
91 129.49 125.29 119.28 114.27 108.66 
92 130.68 126.46 120.43 115.39 109.76 
93 131.87 127.63 121.57 116.51 110.85 
94 133.06 128.80 122.72 117.63 111.94 
95 134.25 129.97 123.86 118.75 113.04 
96 135.43 131.14 125.00 119.87 114.13 
97 136.62 132.31 126.14 120.99 115.22 
98 137.80 133.48 127.28 122.11 116.32 
99 138.99 134.64 128.42 123.23 117.41 
100 140.17 135.81 129.56 124.34 118.50 

STUDENT’S t DISTRIBUTION 

For a given probability α, Table A.3 shows the values of the Student’s t dis-
tribution. For example, the probability is 0.05 that a Student’s t random 
variable with 10 degrees of freedom is greater than 1.812. 
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TABLE A.3 Cut-off Points for the Student’s t Distribution 

α 

Degrees 
of freedom 0.005 0.01 0.025 0.05 0.1 

1 63.656 31.821 12.706 6.314 3.078 
2 9.925 6.965 4.303 2.920 1.886 
3 5.841 4.541 3.182 2.353 1.638 
4 4.604 3.747 2.776 2.132 1.533 
5 4.032 3.365 2.571 2.015 1.476 
6 3.707 3.143 2.447 1.943 1.440 
7 3.499 2.998 2.365 1.895 1.415 
8 3.355 2.896 2.306 1.860 1.397 
9 3.250 2.821 2.262 1.833 1.383 
10 3.169 2.764 2.228 1.812 1.372 
11 3.106 2.718 2.201 1.796 1.363 
12 3.055 2.681 2.179 1.782 1.356 
13 3.012 2.650 2.160 1.771 1.350 
14 2.977 2.624 2.145 1.761 1.345 
15 2.947 2.602 2.131 1.753 1.341 
16 2.921 2.583 2.120 1.746 1.337 
17 2.898 2.567 2.110 1.740 1.333 
18 2.878 2.552 2.101 1.734 1.330 
19 2.861 2.539 2.093 1.729 1.328 
20 2.845 2.528 2.086 1.725 1.325 
21 2.831 2.518 2.080 1.721 1.323 
22 2.819 2.508 2.074 1.717 1.321 
23 2.807 2.500 2.069 1.714 1.319 
24 2.797 2.492 2.064 1.711 1.318 
25 2.787 2.485 2.060 1.708 1.316 
26 2.779 2.479 2.056 1.706 1.315 
27 2.771 2.473 2.052 1.703 1.314 
28 2.763 2.467 2.048 1.701 1.313 
29 2.756 2.462 2.045 1.699 1.311 
30 2.750 2.457 2.042 1.697 1.310 
40 2.704 2.423 2.021 1.684 1.303 
60 2.660 2.390 2.000 1.671 1.296 
100 2.626 2.364 1.984 1.660 1.290 
500 2.586 2.334 1.965 1.648 1.283 
1000 2.581 2.330 1.962 1.646 1.282 
∞ 2.576 2.327 1.960 1.645 1.282 

F DISTRIBUTION 

Tables A.4, A.5, and A.6 show, for a given probability α, the values of the 
F distribution. For example, the probability is 0.05 that an Fv, k distributed 
random variable, with v = 8 and k = 10, is greater than 6.0. 
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CHAPTER 7 SEVERITY OF LOSS PROBABILITY MODELS 

1. Throughout this and the following sections we refer to the sample mean _

with the symbol X .


2. There is an argument that profits from OR events should also be 
modeled, in which case the loss distribution will no longer be bounded 
by 0 and our choice of potential probability distributions is much greater. 

CHAPTER 8 FREQUENCY OF LOSS PROBABILITY MODELS 

1. On occasion in the literature you will also see the notation q = (1 − p). 

CHAPTER 11 CORRELATION AND DEPENDENCE 

1. Camp, B.H. (1934). The Mathematical Part of Elementary Statistics. 
D.C. Heath. New York; Castellan, N.J. (1966). On the estimation of the 
tetrachoric correlation coefficient. Psychometrika, 31, 67–73. 

2. Several approximations have been reviewed by Castellan (1966). The 
most accurate of these is the one given by Camp (1934), but it is restricted 
to |ρ |< 0.8 and cannot be expressed in analytical form. 

3. Fisher, R.A. (1915). Frequency distribution of the values of the correlation 
coefficient in samples from an indefinitely large population. Biometrika, 
10, 507; Fisher, R.A. (1921). On the “probable error” of a coefficient of 
correlation deduced from a small sample. Merton, 1, 309; Fisher, R.A. 
(1941). Statistical Methods for Research Workers. London. 

4. Cramér, H. (1946). Mathematical Methods of Statistics. Princeton Uni-
versity Press. Princeton, NJ. 

237 



bnotes_lewis.qxd  3/1/04  11:31 AM  Page 238

238 NOTES 

5. Joe, H. (1997). Multivariate Models and Dependence Concepts. Chap-
man & Hall. London. 

6. See Note 5. 

7. See Note 5. 

8. See Note 5. 

9. See Note 5. 

CHAPTER 12 LINEAR REGRESSION IN OPERATIONAL RISK 
MANAGEMENT 

1. See Esa Ollila et al. (2002) for an overview. These authors also introduce 
a new approach to estimates of regression coefficients based on the sign 
covariance matrix. Their approach appears to be highly efficient and may 
perform better than other methods, especially where the multivariate data 
is fat-tailed. 

2. See, for example, Diebold et al. (1994), Durland and McCurdy (1994), 
Elliot et al. (1995), Engel (1994), Engel and Hamilton (1990), Gable et al. 
(1995), Goldfeld and Quandt (1973), Hamilton (1989, 1992, 1994, 
1996), Hansen (1992), Hartley (1978), and Kim (1994). 

CHAPTER 13 LOGISTIC REGRESSION IN OPERATIONAL RISK 
MANAGEMENT 

1. Chow, G.C. (1988). Econometrics. McGraw-Hill. New York. 

2. Ashford, J.R., and R.R. Sowden (1970). Multivariate probit analysis. 
(Biometrics), 26, 535–546. 

3. Le Cessie, S., and J.C. Van Houweligen (1994). Logistic regression for 
correlated binary data. Applied Statistician, 43, 95–108. 

4. Pearson, K. (1901). Mathematical contribution to the theory of evolu-
tion: VII, On the correlation of characters not quantitatively measurable. 
Philosophical Transactions of the Royal Society of London, Series A, 
200, 1–66. 

5. See Note 1. 

6. See Note 1. 

7. See Note 1. 

8. Gumbel, E.J. (1961). Bivariate logistic distributions. Journal of the Amer-
ican Statistical Association, 56, 335–349. 

9. Grizzle, J. (1971). Multivariate logit analysis. Biometrics, 27, 1057–1062. 



bnotes_lewis.qxd  3/1/04  11:31 AM  Page 239

Notes 239 

10. Nerlove, M., and J. Press (1973). “Univariate and Multivariate Log-
Linear and Logistic Models.” RAND report R-1306-EDA/NIH. 

11. Morimune, K. (1979). Comparisons of the normal and logistic models 
in the bivariate dichotomous analysis. Econometrica. 47, 957–75. 

12. Maddala, G.S. (1983). Limited Dependent and Qualitative Variables in 
Econometrics. Cambridge University Press. Cambridge, UK. 

13. Plackett, R.L. (1965). A class of bivariate distributions. Journal of the 
American Statistical Association, 60, 516–522. 

14. Dale, J.R. (1986). Global cross-ratio models for bivariate, discrete, 
ordered responses. Biometrics, 42, 909–917. 

15. See Note 3. 

16. See Note 14. 

17. See Note 3. 

CHAPTER 14 MIXED DEPENDENT VARIABLE MODELING 

1. Catalano, P.J. (1997). Bivariate modelling of clustered continuous and 
ordered categorical outcomes. Statistics in Medicine, 16, 883–900. 

2. Catalano, P.J., and L.M. Ryan (1992). Bivariate latent variable models 
for clustered discrete and continuous outcomes. Journal of the American 
Statistical Association, 87, 651–658. 

3. Olkin, L., and R.F. Tate. (1961). Multivariate correlation models with 
mixed discrete and continuous outcome variables. Annals of Mathe-
matical Statistics, 32, 448–465. 

4. Fitzmaurice, G.M., and N.M. Laird (1995). Regression models for 
bivariate discrete and continuous outcomes. Journal of the American 
Statistical Association, 90, 845–852. 

5. O’Brien, P. (1984). Procedures for comparing samples with multiple 
endpoints. Biometrics, 40, 1079–1087. 

6. Pocock, S.J., N.L. Geller, and A.A. Tsiatis (1987). The analysis of mul-
tiple endpoints in clinical trials. Biometrics, 43, 487–498. 

7. Lefkopoulou, M., D. Moore, and L. Ryan (1989). The analysis of mul-
tiple correlated binary outcomes: application to rodent teratology experi-
ments. Journal of the American Statistical Association, 84, 810–815. 

8. Molenberghs, G., H. Geys, and M. Buyse (1998). Validation of surro-
gate endpoints in randomized experiments with mixed discrete and 
continuous outcomes. Unpublished manuscript. Limburgs Universitair 
Centrum, Belgium. 
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9. See, for example, Lewis (2003). 

10. Ziegler, A., C. Kastner, and M. Blettner (1998). The generalised esti-
mating equations: an annotated bibliography. Biometrical Journal, 40, 
115–139. 

11. Huster, W.J., R. Brookmeyer, and S.G. Self (1989). Modelling paired 
survival data with covariates. Biometrics, 45,145–156. 

12. Wei, L.J., D.Y. Lin, and L. Weissfeld (1989). Regression analysis of mul-
tivariate incomplete failure time by modelling marginal distributions. 
Journal of the American Statistical Association, 84, 1064–1073. 

13. Cox, D.R., and D.V. Hinkley (1974). Theoretical Statistics. Chapman and 
Hall. London. 

14. See Note 13. 

15. Royall, R.M. (1986). Model robust confidence intervals using maximum 
likelihood estimators. International Statistics Review, 54, 221–226. 

16. Zeger, S.L., and K.Y. Liang (1986). Longitudinal data analysis for dis-
crete and continuous outcomes. Biometrics, 42, 1019–1031. 

17. Johnson, M.E., H.D. Tolley, M.C. Bryson, and A.S. Goldman (1982). 
Covariate analysis of survival data: a small sample study of Cox’s model. 
Biometrics, 48, 685–698; Loughin, T.M. (1995). A residual bootstrap for 
regression parameters in proportional hazards models. Journal of Sta-
tistical Computation and Simulation, 52, 367–384. 

18. Loughin, T.M., and K.J. Koehler (1997). Bootstrapping regression 
parameters in multivariate survival analysis. Lifetime Data Analysis, 3, 
157–177. 

CHAPTER 15 VALIDATING OPERATIONAL RISK PROXIES USING 
SURROGATE ENDPOINTS 

1. Herson, J. 1989. The use of surrogate endpoints in clinical trails (an 
introduction to a series of four papers). Statistics in Medicine, 8, 
403–404; Ellenberg, S.S, and J. Michael Hamilton (1989). Surrogate 
endpoints in clinical trails: cancer. Statistics in Medicine, 8, 405–413; 
Burke, H.B. (1994). Increasing the power of surrogate endpoint bio-
markers: the aggregation of predictive factors. Journal of Cellular Bio-
chemistry, Supplement 19, 278–282; Lipkin, M., M. Bhandari, M. 
Hakissian, W. Croll, and G. Wong (1994). Surrogate endpoint bio-
marker assays in phase II chemoprevention clinical trials. Journal of 
Cellular Biochemistry, Supplement 19, 46–54; Kellof, G.J., C.W. 
Boone, J.A. Crowell, V.E. Steele, R. Lubert, and L.A. Doody (1994). 
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Surrogate endpoint biomarkers for phase II cancer chemoprevention 
trials. Journal of Cellular Biochemistry, Supplement 19, 1–9; Karlan, 
B.Y. (1995). Screening for ovarian cancer: what are the optimal surro-
gate endpoints for clinical trials? Journal of Cellular Biochemistry, Sup-
plement 23, 227–232; Ruffin, M.T., M.P.H. Mohammed, S. Ogaily, 
C.M. Johnston, L. Gregoire, W.D. Lancaster, and D.E. Brenner. Surro-
gate endpoint biomarkers for cervical cancer chemoprevention trials. 
Journal of Cellular Biochemistry, Supplement 23, 113–124; Dhingra., 
K. (1995). A phase II chemoprevention trial design to identify surrogate
endpoint biomarkers in breast cancer. Journal of Cellular Biochemistry, 
Supplement 23, 19–24. 

2. Prentice, R.L. (1989). Surrogate endpoints in clinical trials: defini-
tion and operational criteria. Statistics in Medicine, 8, 431–440; 
Kellof, G.J., C.W. Boone, J.A. Crowell, V.E. Steele, R. Lubert, and 
L.A. Doody (1994). Surrogate endpoint biomarkers for phase II cancer
chemoprevention trials. Journal of Cellular Biochemistry, Supplement 
19, 1–9. 

3. Piantadosi, S. (1997). Clinical Trials: A Methodologic Perspective. John 
Wiley & Sons. New York. 

4. Stone, R. (1993). The assumptions on which causal inferences rest. 
Journal of the Royal Statistical Society, B, 55, 455–466. 

5. Ellenberg, S.S., and J. Michael Hamilton (1989). Surrogate endpoints 
in clinical trials: cancer. Statistics in Medicine, 8, 405–413. 

6. Hillis, A., and D. Siegel (1989). Surrogate endpoints in clinical trials: 
ophthalmologic disorders. Statistics in Medicine, 8, 427–430. 

7. Prentice, R.L. (1989). Surrogate endpoints in clinical trials: definition 
and operational criteria. Statistics in Medicine, 8, 431–440. 

8. There is also another condition that direct tests of Equation 15.2 re-
quire restricting the class of alternative distributions to those for which 
the treatment effects on the surrogate response distribution have some 
impact on the final endpoint failure such that E[λT (t|S(t)|x, F(t))] ≠ E 
(λT (t|S(t))| F(t)], although in practical terms it is Equation 15.2 that pro-
vides the basis for empirical testing. 

9. Kalbfleusch, J.D., and R.L. Prentice (1980). The Statistical Analysis of 
Failure Time Data. John Wiley & Sons. New York. 

10. See Note 9. 

11. Freedman, L.S., B.I. Graubard, and A. Schatzkin (1992). Statistical val-
idation of intermediate endpoints for chronic diseases. Statistics in Med-
icine, 11, 167–178. 
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12. Notice the clear distinction between a surrogate variable and a surrogate 
endpoint introduced by Prentice. Surrogate endpoints are that subset of 
surrogate variables that satisfy the Prentice criterion. 

13. Begg, C.B., and D.H.Y. Leung (2000). On the use of surrogate endpoints 
in randomised trials. Journal of the Royal Statistical Society, A,163, 
15–28. 

14. Buyse, M., and G. Molenberghs (1998). Criteria for the validation 
of surrogate endpoints in randomized experiments. Biometrics, 54, 
186–201. 

15. See Notes 11 and 14; Lin, D.Y., T.R. Flemming, and V. De Gruttola 
(1997). Estimating the propotion of treatment effect explained by a 
surrogate marker. Statistics in Medicine, 16, 1515–1527. 

16. See Note 13. 

17. See Note 13. 

18. Prentice, R.L. (1989). Surrogate endpoints in clinical trials: definition 
and operational criteria. Statistics in Medicine, 8, 431–440. 

19. See Notes 11 and 14. 

20. See Note 13. 

21. Cox., D.R. (1993). A remark on censoring and surrogate response 
variables. Journal of the Royal Statistical Society, B, 45, 391–393. 

22. Flemming, T.R., R.L. Prentice, M.S. Pepe, and D. Glidden (1994). 
Surrogate and auxiliary endpoints in clinical trails, with potential 
applications in cancer and AIDS research. Statistics in Medicine, 13, 
955–968. 

23. Taylor, J.M.G., A. Munoz, S.M. Bass, A.J. Saah, J.S. Chimiel, and L.A. 
Kingsley (1990). Estimating the distribution of times from HIV sero-
conversion to AIDS using multiple imputation. Statistics in Medicine, 9, 
505–514; see Note 22. 

24. A surrogate variable is perfectly associated if it is a perfect substitute 
for the final endpoint, that is, given a treatment it always reacts in 
exactly the same direction and degree as the final endpoint. 

25. The Cardiac Arrhythmia Suppression Trial Investigators. 1989. Effect of 
encainide and flecainide on mortality in a randomized trial of arrhyth-
mia suppression after myocardial infarction. New England Journal of 
Medicine, 321, 406–412. 

26. See Note 25. 

27. See Note 11. 
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28. Fieller, E.C. (1940). The biological standardization of insulin. Journal 
of the Royal Statistical Society, 7, Supplement, 1–15. 

29. Lin, D.Y., T.R. Flemming, and V. De Gruttola (1997). Estimating the 
proportion of treatment effect explained by a surrogate marker. Statis-
tics in Medicine, 16, 1515–1527. 

30. See Note 29. 

31. See Note 14. 

32. See Note 14. 

33. See Note 11. 

34. See Note 2. 
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145–146

Skew 

example, 53–54 
Excel and VBA functions, 53, 57 
measuring, 51–53 
overview, 51, 58 
review questions, 58 

Spearman rank correlation coefficient, 
122–124 

example, 123–124 
Standard deviation, 31–32 

case studies, 35–36 
Excel function, 47 

Standard normal distribution, 69 
Statistical independence, 12 
Statistical significance, 63 
Statistical tables, 227–236 

chi-squared distribution, 

230–232


cumulative distribution function of 
standard normal distribution, 
227–229 

F distribution, 233–236 
student’s t distribution, 232–233 

Statistical testing of operational risk 
parameters


case study, 65–67

confidence intervals, 64–65


example, 65 
width of, 65–67 

Excel functions, 67 
objective and terminology, 59–61 
overview, 59, 67 
review questions, 67 
steps in conducting a hypothesis 

test, 61–63 
two-sided hypothesis testing, 64 

Stdev() Excel function, 37, 47 

Student’s t distribution, 24 
table, 232–233 

Subadditivity, 110 
Subjective probability, 11 
Surrogate endpoints, validating opera-

tional risk proxies using 
case study, 201–202 
limitations of surrogate modeling in 

operational risk management, 
200–201 

medical statistics methods and, 188, 
196 

need for, 187–188 
overview, 187, 202 
Prentice criterion, 188–192 

limitations of, 191–192 
real value added of using surrogate 

variables, 193–196 
augmenting censored observa-

tions with surrogates, 195 
augmenting final endpoint 

likelihood with surrogate 
information, 194 

Cox’s study of information gain 
from using auxiliary endpoints, 
193–194 

practical limitations, 195–196 
replacing censored observations 

by surrogates, 194–195 
review questions, 202 
validation via proportion 

explained, 196–200 
Buyse and Molenberghs valida-

tion, 199–200 
practical limitations, 198–200 

T 

Tables. See Statistical tables 
Tdist() Excel function, 24, 67 
Test statistics, 61 
Tetrachoric correlation, 127–130 

VBA function, 129 



bindex_lewis.qxd  3/1/04  11:29 AM  Page 267

V 

Index 267 

Tinv() Excel function, 24, 67

Translation invariance, 110

t test and confidence interval,


145–146

Ttest() Excel test procedure, 67

Two-sided hypothesis testing, 61, 64

Type I error, 61

Type II error, 61


Value at risk (VaR), 2

Var() Excel function, 37, 47

Variability, measures of, 43–44


case study, 44–47

Excel functions, 47

overview, 47

review questions, 48–49


Variance, 31–32 
case study, 35–36 
Excel and VBA functions, 37–38, 

47

overview, 26, 38

review questions, 38–39

rules, 34–35


Varp() Excel function, 38

VBA (Visual Basic for Applications)


functions


Benford() function, 115

beta distribution function, 76

biserial correlation coefficient


function, 125–127

correlation function, 37–38

covariance function, 37–38

fat tails function, 57

gamma distribution function, 


79

Groeneveld’s relative kurtosis


measure function, 57

Moors’s kurtosis measure function,


57

skew function, 53

tetrachoric correlation function,


129


W 

Weibull distribution, 81–83 
example, 82–83


Weibull() Excel function, 24

Working assumption of independence


(WAI), 181–184 

Z 

Ztest() Excel test procedure, 67
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