






Preface

. . . ad alcuno, dico, di quelli, che troppo laconicamente vorrebbero
vedere, nei più angusti spazii che possibil fusse, ristretti i filosofici
insegnamenti, sı́ che sempre si usasse quella rigida e concisa maniera,
spogliata di qualsivoglia vaghezza ed ornamento, che é propria dei
puri geometri, li quali né pure una parola proferiscono che dalla
assoluta necessitá non sia loro suggerita.
Ma io, all’incontro, non ascrivo a difetto in un trattato, ancorché
indirizzato ad un solo scopo, interserire altre varie notizie, purché
non siano totalmente separate e senza veruna coerenza annesse al
principale instituto.∗

Galileo Galilei
“Lettera al Principe Leopoldo di Toscana” (1623)

Hydrodynamics is one of those fundamental areas in mathematics where progress
at any moment may be regarded as a standard to measure the real success of math-
ematical science. Many important achievements in this field are based on profound
theories rather than on experiments. In turn, those hydrodynamical theories stimu-
lated developments in the domains of pure mathematics, such as complex analysis,
topology, stability theory, bifurcation theory, and completely integrable dynamical
systems. In spite of all this acknowledged success, hydrodynamics with its spec-
tacular empirical laws remains a challenge for mathematicians. For instance, the
phenomenon of turbulence has not yet acquired a rigorous mathematical theory.
Furthermore, the existence problems for the smooth solutions of hydrodynamic
equations of a three-dimensional fluid are still open.

The simplest but already very substantial mathematical model for fluid dy-
namics is the hydrodynamics of an ideal (i.e., of an incompressible and inviscid)
homogeneous fluid. From the mathematical point of view, a theory of such a fluid

∗“ . . . Some prefer to see the scientific teachings condensed too laconically into the
smallest possible volume, so as always to use a rigid and concise manner that whatsoever
lacks beauty and embellishment, and that is so common among pure geometers who do not
pronounce a single word which is not of absolute necessity.
I, on the contrary, do not consider it a defect to insert in a treatise, albeit devoted to a single
aim, other various remarks, as long as they are not out of place and without coherency with
the main purpose,” see [Gal].
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filling a certain domain is nothing but a study of geodesics on the group of dif-
feomorphisms of the domain that preserve volume elements. The geodesics on
this (infinite-dimensional) group are considered with respect to the right-invariant
Riemannian metric given by the kinetic energy.

In 1765, L. Euler [Eul] published the equations of motion of a rigid body.
Eulerian motions are described as geodesics in the group of rotations of three-
dimensional Euclidean space, where the group is provided with a left-invariant
metric. In essence, the Euler theory of a rigid body is fully described by this
invariance. The Euler equations can be extended in the same way to an arbitrary
group. As a result, one obtains, for instance, the equations of a rigid body motion
in a high-dimensional space and, especially interesting, the Euler equations of the
hydrodynamics of an ideal fluid.

Euler’s theorems on the stability of rotations about the longest and shortest
axes of the inertia ellipsoid have counterparts for an arbitrary group as well. In
the case of hydrodynamics, these counterparts deliver nonlinear generalizations
of Rayleigh’s theorem on the stability of two-dimensional flows without inflection
points of the velocity profile.

The description of ideal fluid flows by means of geodesics of the right-invariant
metric allows one to apply the methods of Riemannian geometry to the study of
flows. It does not immediately imply that one has to start by constructing a consis-
tent theory of infinite-dimensional Riemannian manifolds. The latter encounters
serious analytical difficulties, related in particular to the absence of existence the-
orems for smooth solutions of the corresponding differential equations.

On the other hand, the strategy of applying geometric methods to the infinite-
dimensional problems is as follows. Having established certain facts in the finite-
dimensional situation (of geodesics for invariant metrics on finite-dimensional
Lie groups), one uses the results to formulate the corresponding facts for the
infinite-dimensional case of the diffeomorphism groups. These final results often
can be proved directly, leaving aside the difficult questions of foundations for the
intermediate steps (such as the existence of solutions on a given time interval).
The results obtained in this way have an a priori character: the derived identities
or inequalities take place for any reasonable meaning of “solutions,” provided
that such solutions exist. The actual existence of the solutions remains an open
question.

For example, we deduce the formulas for the Riemannian curvature of a group
endowed with an invariant Riemannian metric. Applying these formulas to the
case of the infinite-dimensional manifold whose geodesics are motions of the
ideal fluid, we find that the curvature is negative in many directions. Negative-
ness of the curvature implies instability of motion along the geodesics (which
is well-known in Riemannian geometry of finite-dimensional manifolds). In the
context of the (infinite-dimensional) case of the diffeomorphism group, we con-
clude that the ideal flow is unstable (in the sense that a small variation of the
initial data implies large changes of the particle positions at a later time). More-
over, the curvature formulas allow one to estimate the increment of the expo-
nential deviation of fluid particles with close initial positions and hence to pre-
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dict the time period when the motion of fluid masses becomes essentially unpre-
dictable.

For instance, in the simplest and utmost idealized model of the earth’s atmo-
sphere (regarded as two-dimensional ideal fluid on a torus surface), the deviations
grow by the factor of 105 in 2 months. This circumstance ensures that a dynamical
weather forecast for such a period is practically impossible (however powerful the
computers and however dense the grid of data used for this purpose).

The table of contents is essentially self explanatory. We have tried to make the
chapters as independent of each other as possible. Cross-references within the
same chapter do not contain the chapter number.

For a first acquaintance with the subject, we address the reader to the following
sections in each chapter: Sections I.1–5 and I.12, Sections II.1 and II.3–4, Sections
III.1–2 and III.4, Section IV.1, Sections V.1–2, Sections VI.1 and VI.4.

Some statements in this book may be new even for the experts. We mention
the classification of the local conservation laws in ideal hydrodynamics (Theorem
I.9.9), M. Freedman’s solution of the A. Sakharov–Ya. Zeldovich problem on the
energy minimization of the unknotted magnetic field (Theorem III.3), a discussion
of the construction of manifold invariants from the energy bounds (Remark III.2.6),
a discussion of a complex version of the Vassiliev knot invariants (in Section
III.7.E), a nice remark of B. Zeldovich on the Lobachevsky triangle medians
(Problem IV.1.4), the relation of the covariant derivative of a vector field and the
inertia operator in hydrodynamics (Section IV.1.D), a digression on the Fokker–
Planck equation (Section V.3.C), and the dynamo construction from the geodesic
flow on surfaces of constant negative curvature (Section V.4.D).
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Chapter I

Group and Hamiltonian Structures of
Fluid Dynamics

The group we will most often be dealing with in hydrodynamics is the infinite-
dimensional group of diffeomorphisms that preserve the volume element of the
domain of a fluid flow. One can also relate many rather interesting systems to other
groups, in particular, to finite-dimensional ones. For example, the ordinary theory
of a rigid body with a fixed point corresponds to the rotation group SO(3), while
the Lobachevsky geometry has to do with the group of translations and dilations
of a vector space. Our constructions are equally applicable to the gauge groups
exploited by physicists. The latter groups occupy an intermediate position between
the rotation group of a rigid body and the diffeomorphism groups. They are already
infinite-dimensional but yet too simple to serve as a model for hydrodynamics.

In this chapter we study geodesics of one-sided invariant Riemannian metrics on
Lie groups. The principle of least action asserts that motions of physical systems
such as rigid bodies and ideal fluids are described by the geodesics in these metrics
given by the kinetic energy.

§1. Symmetry groups for a rigid body and an ideal fluid

Definition 1.1. A set G of smooth transformations of a manifoldM into itself is
called a group if

(i) along with every two transformations g, h ∈ G, the composition g ◦ h
belongs toG (the symbol g ◦ h means that one first applies h and then g);

(ii) along with every g ∈ G, the inverse transformation g−1 belongs to G as
well.

From (i) and (ii) it follows that every group contains the identity transformation
(the unity) e.

A group is called a Lie group ifG has a smooth structure and the operations (i)
and (ii) are smooth.
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Example 1.2. All rotations of a rigid body about the origin form the Lie group
SO(3).

Example 1.3. Diffeomorphisms preserving the volume element in a domain M
form a Lie group. Throughout the book we denote this group by S Diff(M) (or by
D to avoid complicated formulas).

The group S Diff(M) can be regarded as the configuration space of an incom-
pressible fluid filling the domainM . Indeed, a fluid flow determines for every time
moment t the map gt of the flow domain to itself (the initial position of every fluid
particle is taken to its terminal position at the moment t). All the terminal posi-
tions, i.e., configurations of the system (or “permutations of particles”), form the
“infinite-dimensional manifold” S Diff(M). (Here and in the sequel we consider
only the diffeomorphisms of M that can be connected with the identity trans-
formation by a continuous family of diffeomorphisms. Our notation S Diff(M)
stands only for the connected component of the identity of the group of all volume-
preserving diffeomorphisms ofM .)

The kinetic energy of a fluid (under the assumption that the fluid density is
1) is the integral (over the flow domain) of half the square of the velocity of the
fluid particles. Since the fluid is incompressible, the integration can be carried out
either with the volume element occupied by an initial particle or with the volume
element dx occupied by that at the moment t :

E � 1

2

∫
M

v2 dx,

where v is the velocity field of the fluid: v(x, t) � ∂
∂t
gt (y), x � gt (y) (y is an

initial position of the particle whose position is x at the moment t), see Fig. 1.

M

y

x = gt(y)

v(x,t)

Figure 1. The motion of a fluid particle in a domainM .

Suppose that a configuration g changes with velocity ġ. The vector ġ belongs
to the tangent space TgG of the group G � S Diff(M) at the point g. The kinetic
energy is a quadratic form on this vector space of velocities.

Theorem 1.4. The kinetic energy of an incompressible fluid is invariant with
respect to the right translations on the groupG � S Diff(M) (i.e., with respect to
the mappings Rh : G→ G of the type Rh(g) � gh).
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Proof. The multiplication of all group elements by h from the right means that
the diffeomorphism h (preserving the volume element) acts first, before a dif-
feomorphism g changing with the velocity ġ. Such a diffeomorphism h can be
regarded as a (volume-preserving) renumeration of particles at the initial position,
y � h(z). The velocity of the particle occupying a certain position at a given
moment does not change under the renumeration, and therefore the kinetic energy
is preserved. �

Similarly, the kinetic energy of a rigid body fixed at some point is a quadratic
form on every tangent space to the configuration space of the rigid body, i.e., to
the manifold G � SO(3).

Theorem 1.5. The kinetic energy of a rigid body is invariant with respect to the
left translations on the groupG � SO(3), i.e., with respect to the transformations
Lh : G→ G having the form Lh(g) � hg.

Proof. The multiplication of the group elements by h from the left means that the
rotation h is carried out after the rotation g, changing with the velocity ġ. Such
a rotation h can be regarded as a revolution of the entire space, along with the
rotating body. This revolution does not change the length of the velocity vector of
each point of the body, and hence it does not change the total kinetic energy. �

Remark 1.6. On the group SO(3) (and more generally, on every compact group)
there exists a two-sided invariant metric. On the infinite-dimensional groups of
most interest for hydrodynamics, there is no such Riemannian metric. However,
for two- and three-dimensional hydrodynamics, on the corresponding groups of
volume-preserving diffeomorphisms there are two-sided invariant nondegenerate
quadratic forms in every tangent space (see Section IV.8.C for the two-dimensional
case, and Sections III.4 and IV.8.D for three dimensions, where this quadratic form
is “helicity”).

§2. Lie groups, Lie algebras, and adjoint representation

In this section we set forth basic facts about Lie groups and Lie algebras in the
form and with the notations used in the sequel.

A linear coordinate changeC sends an operator matrixB to the matrixCBC−1.
A similar construction exists for an arbitrary Lie group G.

Definition 2.1. The composition Ag � Rg−1Lg : G → G of the right and left
translations, which sends any group element h ∈ G to ghg−1, is called an inner
automorphism of the groupG. (The product of Rg−1 and Lg can be taken in either
order: all the left translations commute with all the right ones.) It is indeed an
automorphism, since

Ag(f h) � (Agf )(Agh).
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The map sending a group element g to the inner automorphism Ag is a group
homomorphism, since Agh � AgAh.

The inner automorphismAg does not affect the group unity. Hence, its derivative
at the unity takes the tangent space to the group at the unity to itself.

Definition 2.2. The tangent space to the Lie group at the unity is called the vector
space of the Lie algebra corresponding to the group.

The Lie algebra of a group G is usually denoted by the corresponding Gothic
letter g.

Example 2.3. For the Lie groupG � S Diff(M), formed by the diffeomorphisms
preserving the volume element of the flow domain M , the corresponding Lie
algebra consists of divergence-free vector fields inM .

Example 2.4. The Lie algebra so(n) of the rotation group SO(n) consists of
skew-symmetric n × n matrices. For n � 3 the vector space of skew-symmetric
matrices is three-dimensional. The vectors of this three-dimensional space are said
to be angular velocities.

Definition 2.5. The differential of the inner automorphism Ag at the group unity
e is called the group adjoint operator Adg:

Adg : g→ g, Adg a � (Ag∗
∣∣
e
)a, a ∈ g � TeG.

(Here and in the sequel, we denote by TxM the tangent space of the manifold
M at the point x, and by F∗|x : TxM → TF(x)M the derivative of the mapping
F : M → M at x. The derivative F∗ of F at x is a linear operator.)

The adjoint operators form a representation of the group: Adgh � Adg Adh by
the linear operators acting in the Lie algebra space.

Example 2.6. The adjoint operators of the group S Diff(M) define the diffeomor-
phism action on divergence-free vector fields in M as the coordinate changes in
the manifold.

The map Ad, which associates the operator Adg to a group element g ∈ G, may
be regarded as a map from the group to the space of the linear operators in the Lie
algebra.

Definition 2.7. The differential ad of the map Ad at the group unity is called the
adjoint representation of the Lie algebra:

ad � Ad∗e : g→ End g, adξ � d

dt

∣∣
t�0 Adg(t),

where g(t) is a curve on the group G issued from the point g(0) � e with the
velocity ġ(0) � ξ (Fig. 2). Here, End g is the space of linear operators taking g to
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itself. The symbol adξ stands for the image of an element ξ , from the Lie algebra
g, under the action of the linear map ad. This image adξ ∈ End g is itself a linear
operator in g.

e
G

g(t)

Figure 2. The vector ξ in the Lie algebra g is the velocity at the identity e of a path g(t)
on the Lie group G.

Example 2.8. Let G be the rotation group in R
n. Then

adξ ω � [ξ, ω],

where [ξ, ω] � ξω−ωξ is the commutator of skew-symmetric matrices ξ and ω.
In particular, for n � 3 the vector [ξ, ω] is the ordinary cross product ξ ×ω of the
angular velocity vectors ξ and ω in R

3.

Proof. Let t �→ g(t) be a curve issuing from e with the initial velocity ġ � ξ ,
and let s �→ h(s) be such a curve with the initial velocity h′ � ω. Then

g(t)h(s)g(t)−1 � (e + tξ + o(t))(e + sω + o(s))(e + tξ + o(t))−1

� e + s[ω + t (ξω − ωξ)+ o(t)]+ o(s)
as t, s → 0. �

Example 2.9. Let G � Diff(M) be the group of diffeomorphisms of a manifold
M . Then

(2.1) adv w � −{v,w},
where {v,w} is the Poisson bracket of vector fields v and w.

The Poisson bracket of vector fields is defined as the commutator of the corre-
sponding differential operators:

(2.2) L{v,w} � LvLw − LwLv.
The linear first-order differential operator Lv , associated to a vector field v, is the
derivative along the vector field v (Lvf �

∑
vi
∂f

∂xi
for an arbitrary function f and

any coordinate system).
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The components of the field {v,w} in an arbitrary coordinate system are ex-
pressed in terms of the components ofw and v according to the following formula:

{v,w}i �
∑
j

vj
∂wi

∂xj
− wj ∂vi

∂xj
.

It follows from the above that the field {v,w} does not depend on the coordinate
system (x1, . . . , xn) used in the latter formula.

The operator Lv (called the Lie derivative) also acts on any tensor field on a
manifold, and it is defined as the “fisherman derivative”: the flow is transporting the
tensors in front of the fisherman, who is sitting at a fixed place and differentiates
in time what he sees. For instance, the functions are transported backwards by
the flow, and hence Lvf �

∑
vi
∂f

∂xi
. Similarly, differential forms are transported

backwards, but vector fields are transported forwards. Thus, for vector fields we
obtain that Lvw � −{v,w}.

The minus sign enters formula (2.1) since, traditionally, the sign of the Poisson
bracket of two vector fields is defined according to (2.2), similar to the matrix
commutator. The opposite signs in the last two examples result from the same
reason as the distinction in invariance of the kinetic energy: It is left invariant in
the former case and right invariant in the latter.

Proof of Formula (2.1). Diffeomorphisms corresponding to the vector fields v
and w can be written (in local coordinates) in the form

g(t) : x �→ x + tv(x)+ o(t), t → 0,

h(s) : x �→ x + sw(x)+ o(s), s → 0.

Then we have g(t)−1 : x �→ x − tv(x)+ o(t), whence

h(s)(g(t))−1 : x �→ x − tv(x)+ o(t)+ sw(x − tv(x)+ o(t))+ o(s)

� x − tv(x)+ o(t)+ s
(
w(x)− t ∂w

∂x
v(x)+ o(t)

)
+ o(s),

and

g(t)h(s)(g(t))−1 : x �→ x+ s
(
w(x)+ t

(
∂v

∂x
w(x)− ∂w

∂x
v(x)

))
+o(t)+o(s).

�

Example 2.10. Let G � S Diff(M) be the group of diffeomorphisms preserving
the volume element in a domain M . Formula (2.1) is valid in this case, while all
the three fields v,w, and {v,w} are divergence free.

Definition 2.11. The commutator in the Lie algebra g is defined as the operation
[ , ] : g× g→ g that associates to a pair of vectors a, b of the tangent space g (at
the unity of a Lie group G) the following third vector of this space:

[a, b] � ada b.
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The tangent space at the unity of the Lie group equipped with such operation [ , ]
is called the Lie algebra of the Lie group G.

Example 2.12. The commutator of skew-symmetric matrices a and b is ab− ba
(in the three-dimensional case it is the cross product a × b of the corresponding
vectors). The commutator of two vector fields is minus their Poisson bracket.
The commutator of divergence-free vector fields in a three-dimensional Euclidean
space is given by the formula

[a, b] � curl(a × b),
where a × b is the cross product. It follows from the more general formula

curl(a × b) � [a, b]+ a div b − b div a,

and it is valid for an arbitrary Riemannian three-dimensional manifoldM3. The lat-
ter formula may be obtained by the repeated application of the homotopy formula
(see Section 7.B).

Remark 2.13. The commutation operation in any Lie algebra can be defined by
the following construction. Extend the vectors v andw in the left-invariant way to
the entire Lie group G. In other words, at every point g ∈ G, we define a tangent
vector vg ∈ TgG, which is the left translation by g of the vector v ∈ g � TeG. We
obtain two left-invariant vector fields ṽ and w̃ on G. Take their Poisson bracket
ũ � {ṽ, w̃}. The Poisson bracket operation is invariant under the diffeomorphisms.
Hence the field ũ is also left-invariant, and it is completely determined by its value
u at the group unity. The latter vector u ∈ TeG � g can be taken as the definition
of the commutator in the Lie algebra g:

[v,w] � u.
The analogous construction carried out with right-invariant fields ṽ, w̃ on the
group G provides us with minus the commutator.

Theorem 2.14. The commutator operation [ , ] is bilinear, skew-symmetric, and
satisfies the Jacobi identity:

[λa + νb, c] � λ[a, c]+ ν[b, c];
[a, b] � −[b, a];
[[a, b], c]+ [[b, c], a]+ [[c, a], b] � 0.

Remark 2.15. A vector space equipped with a bilinear skew-symmetric opera-
tion satisfying the Jacobi identity is called an abstract Lie algebra. Every (finite-
dimensional) abstract Lie algebra is the Lie algebra of a certain Lie group G.

Unfortunately, in the infinite-dimensional case this is not so. This is a source of
many difficulties in quantum field theory, in the theory of completely integrable
systems, and in other areas where the language of infinite-dimensional Lie algebras
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replaces that of Lie groups (see, e.g., Section VI.1 on the Virasoro algebra and KdV
equation). One can view a Lie algebra as the first approximation to a Lie group,
and the Jacobi identity appears as the infinitesimal consequence of associativity
of the group multiplication. In a finite-dimensional situation a (connected simply
connected) Lie group itself can be reconstructed from its first approximation.
However, in the infinite-dimensional case such an attempt at reconstruction may
lead to divergent series.

It is easy to verify the following

Theorem 2.16. The adjoint operators Adg : g → g form a representation of a
Lie group G by the automorphisms of its Lie algebra g:

[Adg ξ,Adg η] � Adg[ξ, η], Adgh � Adg Adh .

Definition 2.17. The set of images of a Lie algebra element ξ , under the action
of all the operators Adg , g ∈ G, is called the adjoint (group) orbit of ξ .

Examples 2.18. (A) The adjoint orbit of a matrix, regarded as an element of the
Lie algebra of all complex matrices, is the set of matrices with the same Jordan
normal form.

(B) The adjoint orbits of the rotation group of a three-dimensional Euclidean space
are spheres centered at the origin, and the origin itself.

(C) The Lie algebra sl(2,R) of the group SL(2,R) of real matrices with the unit
determinant consists of all traceless 2× 2 matrices:

sl(2,R) :�
{(
a b

c −a
)}

with real a, b, and c. Matrices with the same Jordan normal form have equal values
of the determinant � � −(a2 + bc). The adjoint orbits in sl(2,R) are defined by
this determinant “almost uniquely,” though they are finer than in the complex case.
The orbits are the connected components of the quadrics a2 + bc � const �� 0,
each half of the cone a2 + bc � 0, and the origin a � b � c � 0; see Fig. 3a.

(D) The adjoint orbits of the group G � {x �→ ax + b | a > 0, b ∈ R} of affine
transformations of the real line R are straight lines {α � const �� 0}, two rays
{α � 0, β > 0}, {α � 0, β < 0}, and the origin {α � 0, β � 0} in the plane
{(α, β)} � g; Fig. 3b.

(E) Let v be a divergence-free vector field on M . The adjoint orbit of v for the
group S Diff(M) consists of the divergence-free vector fields obtained from v by
the natural action of all diffeomorphisms preserving the volume element in the
domainM . In particular, all such fields are topologically equivalent. For instance,
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q

p

(a) (b) (c)

Figure 3. (a) The (co)adjoint orbits in the matrix algebra sl(2,R) are the connected
components of the quadrics. The adjoint (b) and coadjoint (c) orbits of the group of affine
transformations of R.

they have equal numbers of stagnation points, of periodic orbits, of invariant
surfaces, the same eigenvalues of linearizations at fixed points, etc.

Remark 2.19. For a simply connected bounded domain M in the (x, y)-plane,
a divergence-free vector field tangent to the boundary of M can be defined by
its stream function ψ (such that the field components are −ψy and ψx). One can
assume that the stream function vanishes on the boundary ofM . The Lie algebra
of the group S Diff(M), which consists of diffeomorphisms preserving the area
element of the domainM , is naturally identified with the space of all such stream
functions ψ .

Theorem 2.20. All momenta In �
∫∫
M

ψndxdy are constant along the adjoint

orbits of the group S Diff(M) in the space of stream functions.

Proof. Along every orbit all the areas S(c) of the sets “of smaller values” {(x, y) |
ψ(x, y) < c} are constant. �

Remark 2.21. Besides the above quantities, neither a topological type of the
function ψ (in particular, the number of singular points, configuration of saddle
separatrices, etc.) nor the areas bounded by connected components of level curves
of the stream function ψ change along the orbits; see Fig. 4.

The periods of particle motion along corresponding closed trajectories are con-
stant under the diffeomorphism action as well. However, the latter invariant can
be expressed in terms of the preceding ones. For instance, the period of motion
along the closed trajectory ψ � c, which bounds a topological disk of area S(c),
is given by the formula T � ∂S

∂c
.



10 I. Group and Hamiltonian Structures of Fluid Dynamics

2=c

S (c)

S (c)

1=c

Figure 4. The stream functions of the fields from the same adjoint orbit have equal areas
of “smaller values” sets.

§3. Coadjoint representation of a Lie group

The main battlefield of the Eulerian hydrodynamics of an ideal fluid, as well as
of the Eulerian dynamics of a rigid body, is not the Lie algebra, but the corre-
sponding dual space, not the space of adjoint representation, but that of coadjoint
representation of the corresponding group.

3.A. Definition of the coadjoint representation

Consider the vector space g∗ dual to a Lie algebra g. Vectors of g∗ are linear
functions on the space of the Lie algebra g. The space g∗, in general, does not have
a natural structure of a Lie algebra.

Example 3.1. Every component of the vector of angular velocity of a rigid body
is a vector of the space dual to the Lie algebra so(3).

To every linear operator A : X → Y one can associate the dual (or adjoint)
operator acting in the reverse direction, between the corresponding dual spaces,
A∗ : Y ∗ → X∗, and defined by the formula

(A∗y)(x) � y(Ax)
for every x ∈ X, y ∈ Y ∗. In particular, the differentials of the left and right
translations

Lg∗ : ThG→ TghG, Rg∗ : ThG→ ThgG

define the dual operators

L∗g : T ∗ghG→ T ∗h G, R∗g : T ∗hgG→ T ∗h G.

Definition 3.2. The coadjoint (anti)representation of a Lie group G in the space
g∗ dual to the Lie algebra g is the (anti)representation that to each group element
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g associates the linear transformation

Ad∗g : g∗ → g∗

dual to the transformation Adg : g→ g. In other words,

(Ad∗g ξ)(ω) � ξ(Adg ω)

for every g ∈ G, ξ ∈ g∗, ω ∈ g. The operators Ad∗g form an antirepresentation,
since Ad∗gh � Ad∗h Ad∗g .

The orbit of a point ξ ∈ g∗ under the action of the coadjoint representation of a
group G (in short, the coadjoint orbit of ξ ) is the set of all points Ad∗g ξ (g ∈ G)
in the space g∗ dual to the Lie algebra g of the group G.

For the group SO(3) the coadjoint orbits are spheres centered at the origin of the
space so(3)∗. They are similar to the adjoint orbits of this group, which are spheres
in the space so(3). However, in general, the coadjoint and adjoint representations
are not alike.

Example 3.3. Consider the group G of all affine transformations of a line G �
{x �→ ax + b | a > 0, b ∈ R}. The coadjoint representation acts on the plane g∗

of linear functions p da + q db at the group unity (a � 1, b � 0). The orbits of
the coadjoint representation are the upper (q > 0) and lower (q < 0) half-planes,
as well as every single point (p, 0) of the axis q � 0 (see Fig. 3c).

Definition 3.4. The coadjoint representation of an element v of a Lie algebra g
is the rate of change of the operator Ad∗gt of the coadjoint group representation as
the group element gt leaves the unity g0 � e with velocity ġ � v. The operator
of the coadjoint representation of the algebra element v ∈ g is denoted by

ad∗v : g∗ → g∗.

It is dual to the operator of the adjoint representation ad∗v ω(u) � ω(adv u) �
ω([v, u]) for every v ∈ g, u ∈ g, ω ∈ g∗. Given ω ∈ g∗, the vectors ad∗v ω, with
various v ∈ g, constitute the tangent space to the coadjoint orbit of the point
(similar to the fact that the vectors adv u, v ∈ g form the tangent space to the
adjoint orbit of the point u ∈ g).

3.B. Dual of the space of plane divergence-free vector fields

Look at the groupG � S Diff(M) of diffeomorphisms preserving the area element
of a connected and simply connected bounded domain M in the {(x, y)}-plane.
The corresponding Lie algebra is identified with the space of stream functions,
i.e., of smooth functions in M vanishing on the boundary. The identification is
natural in the sense that it does not depend on the Euclidean structure of the plane,
but it relies solely on the area element µ onM .
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Definition 3.5. The inner product of a vector v with a differential k-form ω is the
(k − 1)-form ivω obtained by substituting the vector v into the form ω as the first
argument:

(ivω)(ξ1, . . . , ξk−1) � ω(v, ξ1, . . . , ξk−1).

Definition 3.6. The vector field v, with a stream function ψ on a surface with an
area element µ, is the field obeying the condition

(3.1) ivµ � −dψ.
For instance, suppose that (x, y) are coordinates in which µ � dx ∧ dy.

Lemma 3.7. The components of the field with a stream function ψ in the above
coordinate system are

vx � −∂ψ
∂y
, vy � ∂ψ

∂x
.

Proof. For an arbitrary vector u, the following identity holds by virtue of the
definition of µ � dx ∧ dy:

(ivµ)(u) � µ(v, u) �
∣∣∣∣ vx vy
dx(u) dy(u)

∣∣∣∣ � (vx dy − vy dx)(u).
�

Condition (3.1) determines the stream function up to an additive constant. The
latter is defined by the requirement ψ

∣∣
∂M
� 0.

The space dual to the space of all divergence-free vector fields v can also be
described by means of smooth functions onM , however, not necessarily vanishing
on ∂M . Indeed, it is natural to interpret the objects dual to vector fields in M as
differential 1-forms α on M . The value of the corresponding linear function on a
vector field v is

α | v :�
∫∫

M

α(v)µ.

One readily verifies the following

Lemma 3.8. (1) If α is the differential of a function, then α | v � 0 for every
divergence-free field v onM tangent to ∂M .

(2) Conversely, if α | v � 0 for every divergence-free field v on M tangent to
∂M , then α is the differential of a function onM .

(3) If for a given v, one has α | v � 0 for α the differential of every function on
M , then the vector field v is divergence-free and tangent to the boundary ∂M .

The proof of this lemma in a more general situation of a (not necessarily simply
connected) manifold of arbitrary dimension is given in Section 8. This lemma
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manifests the formal identification of the space g∗ dual to the Lie algebra of
divergence-free vector fields in M tangent to the boundary ∂M with the quotient
space �1(M)/d�0(M) (of all 1-forms on M modulo full differentials). Below
we use the identification in this “formal” sense. In order to make precise sense
of the discussed duality according to the standards of functional analysis, one has
to specify a topology in one of the spaces and to complete the other accordingly.
Here we will not fix the completions, and we will regard the elements of both of
g and g∗ as smooth functions (fields, forms) unless otherwise specified.

Lemma 3.9. LetM be a two-dimensional simply connected domain with an area
form µ. Then the map α �→ f given by

dα � fµ
(where µ is the fixed area element and α is a 1-form in M) defines a natural
isomorphism of the space �1/d�0 � g∗, dual to the Lie algebra g of divergence-
free fields in M (tangent to its boundary ∂M), and the space of functions f in
M .

Proof. Adding a full differential to α does not change the function f . Hence we
have constructed a map of g∗ � �1/d�0 to the space of functions f onM . Since
M is simply connected, every function f is the image of a certain closed 1-form
α, determined modulo the differential of a function. �

Theorem 3.10. The coadjoint representation of the group S Diff(M) in g∗ is the
natural action of diffeomorphisms, preserving the area element ofM , on functions
onM .

Proof. It follows from the fact that all our identifications are natural, i.e., invariant
with respect to transformations belonging to S Diff(M). �

3.C. The Lie algebra of divergence-free vector fields and its
dual in arbitrary dimension

Let G � S Diff(Mn) be the group of diffeomorphisms preserving a volume ele-
ment µ on a manifold M with boundary ∂M (in general, M is of any dimension
n and multiconnected, but it is assumed to be compact).

The commutator [v,w] (or, Lvw) in the corresponding Lie algebra of
divergence-free vector fields onM tangent to ∂M is given by minus their Poisson
bracket: [v,w] � −{v,w}; see Example 2.9.

Theorem 3.11 (see, e.g., [M-W]). The Lie algebra g of the groupG � S Diff(M)
is naturally identified with the space of closed differential (n − 1)-forms on M
vanishing on ∂M . Namely, a divergence-free fieldv is associated to the (n−1)-form
ωv � ivµ. The dual space g∗ to the Lie algebra g is�1(M)/d�0(M). The adjoint
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and coadjoint representations are the standard actions of the diffeomorphisms on
the corresponding differential forms.

The proof is given in Section 8.

Example 3.12. Let M be a three-dimensional simply connected domain with
boundary. Consider the group S Diff(M) of diffeomorphisms preserving the vol-
ume element µ (for simply connected M , this group coincides with the group
of so-called exact diffeomorphisms; see Section 8). Its Lie algebra g consists of
divergence-free vector fields in M tangent to the boundary ∂M . In the simply
connected case the dual space g∗ � �1(M)/d�0(M) can be identified with all
closed 2-forms inM by taking the differential of the forms from �1(M).

We will see below that the vorticity field for a flow with velocity v ∈ g inM is
to be regarded as an element of the dual space g∗ to the Lie algebra g. The reason
is that every 2-form that is the differential of a 1-form corresponds to a certain
vorticity field.

On a non-simply connected manifold, the space g∗ is somewhat bigger than the
set of vorticities. In the latter case the physical meaning of the space g∗, dual to
the Lie algebra g, is the space of circulations over all closed curves. The vorticity
field determines the circulations of the initial velocity field over all curves that are
boundaries of two-dimensional surfaces lying in the domain of the flow. Besides
the above, a vector from g∗ keeps the information about circulation over all other
closed curves that are not boundaries of anything.

§4. Left-invariant metrics and a rigid body for an arbitrary
group

A Riemannian metric on a Lie group G is left-invariant if it is preserved under
every left shift Lg . The left-invariant metric is defined uniquely by its restriction
to the tangent space to the group at the unity, i.e., by a quadratic form on the Lie
algebra g of the group.

Let A : g→ g∗ be a symmetric positive definite operator that defines the inner
product

〈ξ, η〉 � (Aξ, η) � (Aη, ξ)
for any ξ, η in g. (Here the round brackets stand for the pairing of elements
of the dual spaces g and g∗.) The positive-definiteness of the quadratic form is
not very essential, but in many applications, such as motion of a rigid body or
hydrodynamics, the corresponding quadratic form plays the role of kinetic energy.

Definition 4.1. The operator A is called the inertia operator.
Define the symmetric linear operator Ag : TgG→ T ∗g G at every point g of the

group G by means of the left translations from g to the unity:

Agξ � L∗g−1
ALg−1∗ξ.
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At every point g, we obtain the inner product

〈ξ, η〉g � (Agξ, η) � (Agη, ξ) � 〈η, ξ〉g,
where ξ, η ∈ TgG. This product determines the left-invariant Riemannian metric
on G. Thus we obtain the commutative diagram in Fig. 5.

A

T
g
G

T
g
G

A
g

R g
-1

R
g

L
g

L g
-1

Adg

Adg

g

m

c

m c
m s

s

Figure 5. Diagram of the operators in a Lie algebra and in its dual.

Example 4.2. For a classical rigid body with a fixed point, the configuration
space is the groupG � SO(3) of rotations of three-dimensional Euclidean space.
A motion of the body is described by a curve t �→ g(t) in the group. The Lie
algebra g of the groupG is the three-dimensional space of angular velocities of all
possible rotations. The commutator in this Lie algebra is the usual cross product.

A rotation velocity ġ(t) of the body is a tangent vector to the group at the point
g(t). By translating it to the identity via left or right shifts, we obtain two elements
of the Lie algebra g.

Definition 4.3. The result of the left translation is called the angular velocity in
the body (and is denoted by ωc with c for “corps” = body), while the result of the
right translation is the spatial angular velocity (denoted by ωs),

ωc � Lg−1∗ġ ∈ g, ωs � Rg−1∗ġ ∈ g.

Note that ωs � Adg ωc.
The space g∗, dual to the Lie algebra g, is called the space of angular mo-

menta. The symmetric operator A : g → g∗ is the operator (or tensor) of inertia
momentum. It is related to the kinetic energy E by the formula

E � 1

2
〈ġ, ġ〉g � 1

2
〈ωc, ωc〉 � 1

2
(Aωc, ωc) � 1

2
(Agġ, ġ).



16 I. Group and Hamiltonian Structures of Fluid Dynamics

The imagem of the velocity vector ġ under the action of the operatorAg belongs
to the space T ∗g G. This vector can be carried to the cotangent space to the group
G at the identity by both left or right translations. The vectors

mc � L∗gm ∈ g∗, ms � R∗gm ∈ g∗

are called the vector of the angular momentum relative to the body (mc) and that
of the angular momentum relative to the space (or spatial angular momentum,
ms). Note that mc � Ad∗g ms .

The kinetic energy is given by the formula

E � 1

2
(mc, ωc) � 1

2
(m, ġ)

in terms of momentum and angular velocity. The quadratic form E defines a left-
invariant Riemannian metric on the group. According to the least action principle,
inertia motions of a rigid body with a fixed point are geodesics on the group
G � SO(3) equipped with this left-invariant Riemannian metric. (Note that in
the case SO(3) of the motion in three-dimensional space, the inertia operators
of genuine rigid bodies form an open set in the space of all symmetric operators
A : g→ g∗ (some triangle inequality should be satisfied).)

Similarly, in the general situation of a left-invariant metric on an arbitrary Lie
group G, we consider four vectors moving in the spaces g and g∗, respectively:

ωc(t) ∈ g, ωs(t) ∈ g, mc(t) ∈ g∗, ms(t) ∈ g∗.

They are called the vectors of angular velocity and momentum in the body and in
space.

L. Euler [Eul] found the differential equations that these moving vectors satisfy:

Theorem 4.4 (First Euler Theorem). The vector of spatial angular momentum
is preserved under motion:

dms

dt
� 0.

Theorem 4.5 (Second Euler Theorem). The vector of angular momentum rela-
tive to the body obeys the Euler equation

(4.1)
dmc

dt
� ad∗ωc mc.

Remark 4.6. The vector ωc � A−1mc is linearly expressed in terms of mc.
Therefore, the Euler equation defines a quadratic vector field in g∗, and its flow
describes the evolution of the vector mc. The latter evolution of the momentum
vector depends only on the position of the momentum vector in the body, but not
in the ambient space.
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In other words, the geodesic flow in the phase manifold T ∗G is fibered over the
flow of the Euler equation in the space g∗, whose dimension is one half that of
T ∗G.

Proofs. Euler proved his theorems for the case ofG � SO(3), but the proofs are
almost literally applicable to the general case. Namely, the First Euler Theorem
is the conservation law implied by the energy symmetry with respect to left trans-
lations. The Second Euler Theorem is a formal corollary of the first and of the
identity

(4.2) mc(t) � Ad∗g(t) ms.

Differentiating the left- and right-hand sides of the identity in t at t � 0 (and
assuming that g(0) � e), we obtain the Euler equation (4.1) for this case. The
left-invariance of the metric implies that the right-hand side depends solely onmc,
but not on g(t), and therefore the equation is satisfied for every g(t). �

Remark 4.7. The Euler equation (4.1) for a rigid body in R
3 is ṁ � m × ω for

the angular momentum m � Aω. For A � diag(I1, I2, I3) one has

ṁ1 � γ23m2m3,

ṁ2 � γ31m3m1,

ṁ3 � γ12m1m2,

where γij � I−1
j − I−1

i . The principal inertia momenta Ii satisfy the triangle
inequality |Ii − Ij | ≤ Ik .

The relation (4.2) and the First Euler Theorem imply the following

Theorem 4.8. Each solution mc(t) of the Euler equation belongs to the same
coadjoint orbit for all t . In other words, the group coadjoint orbits are invariant
submanifolds for the flow of the Euler equation in the dual space g∗ to the Lie
algebra.

The isomorphism A−1 : g∗ → g allows one to rewrite the Euler equation on
the Lie algebra as an evolution law on the vector ωc � A−1mc. The result is as
follows.

Theorem 4.9. The vector of angular velocity in the body obeys the following
equation with quadratic right-hand side:

dωc

dt
� B(ωc, ωc),

where the bilinear (nonsymmetric) form B : g× g→ g is defined by

(4.3) 〈[a, b], c〉 � 〈B(c, a), b〉
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for every a, b, c in g. Here, [·, ·] is the commutator in the Lie algebra g, and 〈·, ·〉
is the inner product in the space g.

Remark 4.10. The operation B is bilinear, and for a fixed first argument, it is
skew symmetric with respect to the second argument:

〈B(c, a), b〉 + 〈B(c, b), a〉 � 0.

The operatorB is the image of the operator of the algebra coadjoint representation
under the isomorphism of g and g∗ defined by the inertia operator A.

Proof of Theorem 4.9. For each b ∈ g, we have

〈dωc
dt
, b〉 � 〈A−1 dmc

dt
, b〉 � dmc

dt
| b,

where 〈·, ·〉 is the inner product in the Lie algebra, and . | . stands for the pairing
of elements from g and g∗. By virtue of the Euler equation,

dmc

dt
| b � (ad∗ωc mc) | b � mc | adωc b � mc | [ωc, b].

By definition of the inner product,

mc | [ωc, b] � (Aωc) | [ωc, b] � 〈[ωc, b], ωc〉.
The definition of the operation B allows one to rewrite it as

〈[ωc, b], ωc〉 � 〈B(ωc, ωc), b〉.
Thus, for each b we finally have

〈dωc
dt
, b〉 � 〈B(ωc, ωc), b〉,

which proves Theorem 4.9. �

Remark 4.11. Consider the motion of a three-dimensional rigid body. The Eu-
ler equation (4.1) describes the evolution of the momentum vector in the three-
dimensional space so(3,R)∗. Each solution mc(t) of the Euler equation belongs
to the intersection of the coadjoint orbits (which are spheres centered at the origin)
with the the energy levels; see Fig. 6. The kinetic energy is a quadratic first integral
on the dual space, and its level surfaces are ellipsoids 〈A−1mc,mc〉 � const.

The dynamics of an n-dimensional rigid body is naturally associated to the
groupSO(n,R). The trajectories of the corresponding Euler equation are no longer
determined by the intersections of the coadjoint orbits of this group with the energy
levels (see Section VI.1.B).

In the next section we will apply the Euler theorems to the (infinite-dimensional)
group of volume-preserving diffeomorphisms [Arn4, 16]. Note that the analogy
between the Euler equations for ideal hydrodynamics and for a rigid body was
pointed out by Moreau in [Mor1].
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Figure 6. Trajectories of the Euler equation on an energy level surface.

§5. Applications to hydrodynamics

According to the principle of least action, motions of an ideal (incompressible,
inviscid) fluid in a Riemannian manifold M are geodesics of a right-invariant
metric on the Lie group S Diff(M). Such a metric is defined by the quadratic form
E (E being the kinetic energy) on the Lie algebra of divergence-free vector fields:

E � 1

2

∫∫

M

v2µ,

where µ is a volume element onM , and v2 is the square of Riemannian length of
a vector tangent toM .

Remark 5.1. To carry out the passage from left-invariant metrics to right-invariant
ones, it suffices to change the sign of the commutator [ , ] (as well as of all operators
linearly depending on it: adv · � [v, ·], ad∗v , B) in all the formulas. Indeed, the
Lie group G remains a group after the change of the product (g, h) �→ gh to
(g, h) �→ g ∗ h � hg.

The Lie algebra commutator changes sign under this transform, while a left-
invariant metric becomes right invariant. Of course, left translations with respect
to the old group operation become right translations for the new one. Therefore, for
right-invariant metrics the result of the right translation of a momentum vector to
the dual Lie algebra is preserved in time, while the left translation of the momentum
obeys the Euler equation.

In hydrodynamics the metric on the group is right invariant. Hence, from the
general results of the preceding section we obtain the (Euler) equations of motion
of an ideal fluid (on a Riemannian manifold of arbitrary dimension), as well as
the conservation laws for them.

The Euler equations on a flow velocity field in the domain M are the result of
a right shift to the Lie algebra g � S Vect(M) of divergence-free vector fields on
M (see Theorem 4.8, with the change of the left shift to the right one). The right
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invariance of the metric results in the following form of the Euler equation:

v̇ � −B(v, v),
where the operation B on the Lie algebra g is defined by (4.3). Its equivalent form
is the Euler–Helmholtz equation on the vorticity field, i.e., equation (4.1) with the
opposite sign for right shifts of momentum to the dual space g∗ of the Lie algebra.

Example 5.2. Consider the Lie algebra g � S Vect(M) of divergence-free vector
fields on a simply connected domain M , tangent to ∂M , with the commutator
[·, ·] � −{·, ·} being minus the Poisson bracket. Below we show that the operation
B for the Euler equation on this Lie algebra has the form

(5.1) B(c, a) � curl c × a + grad p,

where × is the cross product and p is a function on M , determined uniquely
(modulo an additive constant) by the condition B ∈ g (i.e., by the conditions div
B � 0 and tangency of B(c, a) to ∂M). Hence, the Euler equation for three-
dimensional ideal hydrodynamics is the evolution

(5.2)
∂v

∂t
� v × curl v − grad p

of a divergence-free vector field v inM ⊂ R
3 tangent to ∂M .

The vortex (or the Euler–Helmholtz) equation is as follows:

(5.3)
∂ω

∂t
� −{v, ω}, ω � curl v.

Proof. By definition of the operation B,

〈B(c, a), b〉 � 〈[a, b], c〉,
where [a, b] is the commutator in the Lie algebra S Vect(M) (equal to −{a, b} in
terms of the Poisson bracket). Since all fields are divergence free, we have

〈[a, b], c〉 � 〈curl(a × b), c〉 � 〈a × b, curl c〉 � 〈(curl c)× a, b〉.
Thus, curl c×a gives the explicit form of the operationB, modulo a gradient term
(since div b � 0).

The vortex equation is obtained from the Euler equation on the velocity field
by taking curl of both sides. �

Formula (5.1) holds in a more general situation of a Riemannian three-
dimensional manifold M with boundary. Moreover, for a manifold of arbitrary
dimension, one can still make sense of this formula by specifying the definition
of the cross product.

Theorem 5.3. The operation B(v, v) for a divergence-free vector field v on a
Riemannian manifoldM of any dimension is

B(v, v) � ∇vv + grad p.
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Here ∇vv is the vector field on M , that is the covariant derivative of the field v
along itself in the Riemannian connection onM related to the chosen Riemannian
metric, and p is determined modulo a constant by the same conditions as above.

We postpone the proof of this theorem until the discussion of covariant deriva-
tive in Section IV.1. The proof is based on the following simple interpretation of
the inertia operator for hydrodynamics. As we discussed above, the Lie algebra
of divergence-free vector fields and its dual space can be defined as soon as the
manifold is equipped with a volume form. The inertia operator requires an addi-
tional structure, a Riemannian metric on the manifold, similar to fixing an inertia
ellipsoid for a rigid body.

Theorem 5.4. The inertia operator for ideal hydrodynamics on a Riemannian
manifold takes a velocity vector field to the 1-form whose value on an arbitrary
vector equals the Riemannian inner product of the latter vector with the velocity
vector at that point (the obtained 1-form is regarded modulo the differentials of
functions).

See the proof in Section 7 (Theorem 7.19).
In the case of hydrodynamics, the invariance of coadjoint orbits with respect to

the Euler dynamics (Theorem 4.8) takes the form of Helmholtz’s classical theorem
on vorticity conservation.

Theorem 5.5. The circulation of any velocity field over each closed curve is
equal to the circulation of this velocity field, as it changes according to the Euler
equation, over the curve transported by the fluid flow.

Proof. Consider an element of the Lie algebra S Vect(M) corresponding to a
“narrow current” that flows along the chosen curve and has unit flux across a
transverse to the curve. Under the adjoint representation (i.e., action of a volume-
preserving diffeomorphism), this element is taken to a similar “narrow current”
along the transported curve.

The pairing of a vector of the dual Lie algebra with the chosen element in the Lie
algebra itself is the integral of the corresponding 1-form along the curve (note that
although an element of the dual space is a 1-form modulo any function differential,
its integral over a closed curve is well-defined). By Theorem 5.4, the latter pairing
is the circulation of the velocity field along our curve. �

The above theorem implies that the velocity fields (parametrized by time t) that
constitute one solution of the Euler equation are isovorticed; i.e., the vorticity of
the field at any given moment of time t is transported to the vorticity at any other
moment by a diffeomorphism preserving the volume element.

Remark 5.6. Isovorticity, i.e., the condition on phase points to belong to the
same coadjoint orbit, imposes constraints that differ drastically in two- and three-
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dimensional cases. For a two-dimensional fluid the coadjoint orbits are distin-
guished by the values of the first integrals, such as vorticity momenta. In the
three-dimensional case the orbit geometry is much more subtle.

Owing to this difference in the geometry of coadjoint orbits, the foundation
of three-dimensional hydrodynamics encounters serious difficulties. Meanwhile,
in the hydrodynamics of a two-dimensional fluid, the existence and uniqueness
of global solutions have been proved [Yu1], and the proofs use heavily the first
integrals of the Euler equation, which are invariant on the coadjoint orbits.

Definition 5.7. Given a velocity vector field, consider the 1-form that is the (point-
wise) Riemannian inner product with the velocity field. Its differential is called
the vorticity form.

Example 5.8. On the Euclidean plane (x, y) this 2-form is ω dx ∧ dy, where ω
is a function. The function ω, also called the vorticity of a two-dimensional flow,
is related to the stream function ψ by the identity ω � �ψ .

In three-dimensional Euclidean space this is the 2-form corresponding to the
vorticity vector field curl v. Its value on a pair of vectors equals their mixed product
with curl v.

Definition 5.9. The vorticity vector field of an incompressible flow on a three-
dimensional Riemannian manifold is defined as the vector field ξ associated to the
vorticity 2-form ω according to the formula

ω � iξµ,
where µ is the volume element. In other words, the vorticity vector ξ is defined at
each point by the condition

(5.4) µ(ξ, a, b) � ω(a, b)
for any pair of vectors a, b attached at that point. One has to note that the con-
struction of the field ξ does not use any coordinates or metric but only the volume
element µ and the 2-form ω.

Remark 5.10. On a manifold of an arbitrary dimension n the vorticity is not a
vector field but an (n−2)-polyvector field (k-polyvector, or k-vector, is a polylinear
skew-symmetric function of k cotangent vectors, i.e., of k 1-forms at the point).
For instance, for n � 2, one obtains the 0-polyvector, that is, a scalar. Such a scalar
is the vorticity function ω of a two-dimensional flow in the example above. From
Theorem 5.5 follows

Corollary 5.11. The vorticity field is frozen into the incompressible fluid.

Indeed, by virtue of Theorem 5.5, the vorticity 2-form ω is transported by the
flow, since it is the differential of the 1-form “inner product with v,” which is
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transported. The volume 3-form µ is also transported by the flow (since the fluid
is incompressible).

In turn, the vorticity field ξ is defined by the forms ω and µ in an invariant
way (without the use of a Riemannian metric) by formula (5.4). Therefore, this
field is “frozen”; i.e., it is transported by fluid particles just as if the field arrows
were drawn on the particles themselves: A stretching of a particle in any direction
implies the stretching of the field in the same direction.

Remark 5.12. Consider any diffeomorphism preserving the volume element (but
a priori not related to any fluid flow). If such a diffeomorphism takes a vortic-
ity 2-form ω1 into a vorticity 2-form ω2, then it transports the vorticity field ξ1

corresponding to the first form to the vorticity field ξ2 corresponding to the second.
If, however, one starts with a velocity field and then associates to it the corre-

sponding vorticity field, the vorticity transported by an arbitrary diffeomorphism
is not, in general, the vorticity for the velocity field obtained from the initial veloc-
ity by the diffeomorphism action. Theorem 5.5 states that the coincidence holds
for the family of diffeomorphisms that is the Euler flow of an incompressible fluid
with a given initial velocity field. In other words, the momentary velocity fields in
the same Euler flow are isovorticed.

Corollary 5.13. The vorticity trajectories are transported by an Eulerian fluid
motion on a three-dimensional Riemannian manifold.

In particular, every “vorticity tube” (i.e., a pencil of vorticity lines) is carried
along by the flow. The Helmholtz theorem is closely related to this geometric
corollary but is somewhat stronger (especially in the non-simply connected case).

Remark 5.14. In the two-dimensional case, the isovorticity of velocity vector
fields means that the vorticity function ω is transported by the fluid flow: A point
where the vorticity�ψ was equal toω at the initial moment is taken to a point with
the same vorticity value at any other moment of time. In particular, all vorticity
momenta

Ik �
∫∫

(�ψ)k dx dy

are preserved, and so are the areas of the sets of smaller vorticity values:

S(c) �
∫∫

�ψ≤c
dx dy

(see, e.g., [Ob]). The same holds in a non-simply connected situation.
The conservation laws provided by the Helmholtz theorem are a bit stronger

than the conservation of all the momenta, even if the two-dimensional manifold
is simply connected. Namely, one claims that the whole “tree” of the vorticity
function ω � �ψ (that is, the space of components of the level sets; see Fig. 7) is
preserved, as well as the vorticity function ω, along with the measure on this tree.
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(The latter measure associates to every segment on the tree the total area of the
corresponding vorticity levels.) Apparently, it is the complete set of invariants of
typical coadjoint orbits (say, for S Diff(S2)).

Figure 7. The “tree” of a vorticity function on a sphere.

It would be interesting to describe possible graphs for functions on non-simply
connected manifolds, for instance, on a torus.

Applications of the Euler theorems to the hydrodynamics on manifolds of higher
dimension are described in Section 7.

Remark 5.15.1 Though, as mentioned at the beginning, we are not dealing here
with the existence and uniqueness theorems for the Euler equation of an ideal
incompressible fluid, it is a very subtle question that has attracted considerable
interest in the literature (see, e.g., [Chm, Gé, Yu3] for a survey). Local in time
existence and uniqueness theorems of the classical solution of the basic initial
boundary value problem for the two- and three-dimensional Euler equation were
obtained in a series of papers by N. Gunter and L. Lichtenstein. W. Wolibner proved
the global solvability for the 2-D problem for the classical solutions (see [Ka] for
the modern form of the result and generalizations). The global existence theorem
in two-dimensional Eulerian hydrodynamics was proved by V. Yudovich [Yu1]
for flows with vorticity in the space Lp for any given p > 1. For the uniqueness
theorem on flows with essentially bounded vorticity and its generalizations see
[Yu1, 3]; the nonuniqueness of weak solutions of the Euler equations is discussed
in [Shn7].

If instead of an ideal fluid we consider a viscous incompressible one, its motion
is described by the Navier–Stokes equation, being the Euler equation with an
additional diffusion term; see Section 12. The local in time results (existence and
uniqueness) for classical solutions of the Navier–Stokes equation were obtained
by Lichtenstein, Odqvist, and Oseen (see the references in [Lad]). The global (in
time and in “everything,” i.e., the domain, initial field, and viscosity) existence

1We are grateful to V. Yudovich for consulting us on the history of this question.
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of generalized solutions was proved by J. Leray (in the 1930s) and E. Hopf (in
1950/51). Uniqueness for this wide class of solutions is still unknown. The global
existence and uniqueness theorems of generalized and classical solutions of the
2-D Navier–Stokes equation were proved by Ladyzhenskaya and her successors
(see [Lad]).

§6. Hamiltonian structure for the Euler equations

Recall the coadjoint representation of an arbitrary Lie groupG. It turns out that the
coadjoint orbits are always even-dimensional. The reason is that such an orbit is
endowed with a natural symplectic structure (i.e., a closed nondegenerate 2-form).
This structure, called the Kirillov (Berezin, Kostant) form (see [Ki1, Ber, Kos]),
was essentially discovered by S. Lie [Lie].

The Euler equations in the dual space to a Lie algebra are Hamiltonian equations
on each coadjoint orbit [Arn5]. Now the kinetic energy plays the role of the
corresponding Hamiltonian function. We start with the following brief reminder.

Let (M,ω) be a symplectic manifold, i.e., a manifoldM equipped with a closed
nondegenerate differential 2-form. Recall that a Hamiltonian function H defines
a Hamiltonian field v onM by the condition

(6.1) ivω � −dH.
In other words, the field v is the skew gradient of the function H : M → R

defined by the relation −dH(ξ) � ω(v, ξ) for every ξ (the ordinary gradient of
a function is defined by the condition dH(ξ) � 〈gradH, ξ〉 for every ξ , where
〈·, ·〉 is an inner product on a Riemannian manifold M). The value of the skew-
symmetric 2-form ω on a pair of vectors (v and ξ in the case at hand) is called
their skew-symmetric product. The following theorem is well known (see, e.g.,
[Arn16]).

Theorem 6.1. The phase flow of the Hamiltonian field v preserves the symplectic
form ω and the Hamiltonian function H .

Now assume that M is a coadjoint orbit of a Lie group G. The manifold M is
embedded into the dual space g∗ of the corresponding Lie algebra. The tangent
space to the orbitM at every point is spanned by the velocity vectors of the coad-
joint representation corresponding to arbitrary velocities with which an element of
the groupG leaves the unity. In our notation (see Section 4), these vectors attached
at a point m ∈ M and tangent toM have the form

ξ � ad∗a m, m ∈ g∗, a ∈ g.

Now consider two such vectors, corresponding to two “angular velocities” (i.e.,
elements of the Lie algebra g)

ξ � ad∗a m, η � ad∗b m, a, b ∈ g.
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One can combine these two vectors and one element of the dual space to get the
number

(6.2) ω(ξ, η) :� (m, [a, b]),

where the square brackets denote the commutator in the Lie algebra, and the round
ones stand for the natural pairing between the dual spaces g∗ and g. One easily
proves the following result.

Theorem 6.2. The value ω(ξ, η) depends on the vectors ξ and η tangent toM at
m, but not on a particular choice of the “angular velocities” a and b used in the
definition. The skew-symmetric form ω onM is closed and nondegenerate.

This form defines the symplectic structure on the coadjoint orbit. It is invariant
under the coadjoint representation (which follows from its definition).

Example 6.3. ForG � SO(3) the coadjoint orbits are all spheres centered at the
origin and the origin itself (note that all the dimensions are even!). Symplectic
structures are the area elements invariant with respect to rotations of the spheres.
The areas are normalized by the following condition:

∫∫
ω is proportional to the

sphere radius.

Formula (6.2) defines the symplectic structures on all coadjoint orbits at once.
These symplectic structures are related in such a way that they equip the entire
dual Lie algebra with a more general structure called the Poisson structure.

Definition 6.4. A Poisson structure on a manifold is an operation {·, ·} that as-
sociates to a pair of smooth functions on the manifold a third one (their Poisson
bracket) such that the operation is bilinear and skew-symmetric, and it satisfies
the Jacobi identity

{{f, g}, h} + {{g, h}, f } + {{h, f }, g} � 0

and the Leibniz identity

{f, gh} � {f, g}h+ g{f, h}.
A manifold equipped with a Poisson structure is called a Poisson manifold.

The Leibniz identity means that for a fixed first argument, the operation {·, ·} is
the differentiation of the second argument along some vector field.

Example 6.5. Consider all smooth functions on the dual space g∗ of a finite-
dimensional Lie algebra. Define the Poisson bracket on this space by

(6.3) {f, g}(m) :� (m, [df, dg]) for m ∈ g∗, f, g ∈ C∞(g∗),
where the differentials df and dg are taken at the same point m. Note that the
differential of f at each point m ∈ g∗ is an element of the Lie algebra g itself.
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Hence, the commutator [df, dg] at every point is also a vector of this Lie algebra.
The value of the linear function m evaluated at the latter vector, appearing on the
right-hand side of the above formula, is, generally speaking, a nonlinear function
of m, the Poisson bracket of the pair of functions f and g.

Let x1, . . . , xn be coordinates in the dual space to an n-dimensional Lie algebra.
Then formula (6.3) assumes the form

{f, g} �
n∑

i,j�1

∂f

∂xi

∂g

∂xj
[xi, xj ].

Here the vectors xi form a basis of the Lie algebra g itself. Their commutators
lie in the Lie algebra as well, and therefore they are (linear) functions on the dual
space g∗.

Definition 6.6. The operation defined above is called the natural Lie–Poisson
structure on the dual space to a Lie algebra.

One readily verifies (see, e.g., [We]) the following

Theorem 6.7. This is indeed a Poisson structure.

Remark 6.8. In fact, Poisson structures, in a somewhat more general situation,
were introduced by Jacobi in “Lectures on dynamics” [Jac] while analyzing the
structure of the ring of first integrals for a given Hamiltonian vector field. The
Jacobi theory is more algebraic than topological, and it defines the Poisson struc-
tures on more general sets, similar to varieties of algebraic geometry rather than
on the manifolds of topologists. Generally speaking, those sets are not Hausdorff.
The modern definition was introduced by A. Weinstein [We], after the works of
Lichnerowicz and Kirillov.

Definition 6.9. The Hamiltonian field of a function H on a manifold equipped
with a Poisson structure is the vector field ξ defined by the relation

Lξf � {H, f }
for every function f . Here Lξf is the derivative of a function f along the vector
field ξi , in coordinates Lξf �

∑
ξi
∂f

∂xi
.

Example 6.10. The Hamiltonian field ξ of a linear function a on the dual space
of a Lie algebra is given by the formula

ξ(·) � ad∗a ·,
where a is understood as a vector of the Lie algebra itself.

Indeed, at every point m ∈ g∗ and for every function f on g∗, one has

{a, f }(m) � (m, [a, df ]) � (ad∗a m, df ) � (Lξf )(m).
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More generally, the Hamiltonian field ξH of an arbitrary smooth functionH on
the dual space g∗ is given at a point m ∈ g∗ by the vector

ξH (m) � ad∗dH m,

where the differential dH is taken at the pointm and is regarded as a vector of the
Lie algebra.

Remark 6.11. The Hamiltonian field ξ{F,H } associated to the Poisson bracket of
two functions F andH is the Poisson bracket of the Hamiltonian fields ξF and ξH
of these functions:

{ξF , ξH } � ξ{F,H }.
It follows from definitions and the Jacobi identity that

L{ξF ,ξH }f � LξF LξH f − LξHLξF f � LξF {H, f } − LξH {F, f }
� {F, {H, f }} − {H, {F, f }} � −{f, {F,H }} � Lξ{F,H }f.

Definition 6.12. The symplectic leaf of a point on a manifold equipped with a
Poisson structure is the set of all points of the manifold that can be reached by
paths issuing from the given point, and such that the velocity vectors of the paths
are Hamiltonian at every moment (with a Hamiltonian function differentiable in
time).

Theorem 6.13. The symplectic leaf of every point is a smooth even-dimensional
manifold. It has a natural symplectic structure defined by ω(ξ, η) � {f, g}(x),
where ξ and η are vectors of Hamiltonian fields with Hamiltonian functions f and
g at the point x.

In particular, the value ω(ξ, η) does not depend on a particular choice of the
functions f and g.

On a Poisson manifold the restriction of a Hamiltonian field to each symplectic
leaf coincides with the Hamiltonian field defined by the restriction to this leaf of
the same Hamiltonian function.

Example 6.14. Symplectic leaves of the natural Poisson structure in the dual
space to a Lie algebra are group coadjoint orbits. The symplectic structures of
the leaves defined by this Poisson structure coincide with the natural symplectic
structure of coadjoint orbits described above.

Now let A : g→ g∗ be a nondegenerate symmetric inertia operator. Define the
dual quadratic form on the dual Lie algebra space g∗ by

H(m) :� 1

2
(A−1m,m), m ∈ g∗.
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Denote by v the Lie algebra vector A−1m. Then m � Av, and therefore

H(m) � 1

2
(v, Av)

is merely the kinetic energy, corresponding to the “angular velocity” v (or to the
velocity field v in hydrodynamics).

Theorem 6.15. Let the inertia operatorA define a left-invariant metric on the Lie
group G. Then the Euler velocity field in the dual Lie algebra space g∗ coincides
with the Hamiltonian field, defined by the Hamiltonian functionH , with respect to
the natural Poisson structure of the dual Lie algebra. Explicitly, the Euler equation
on the dual space g∗ is

(6.4) ṁ � ad∗A−1m m, m ∈ g∗.

For the right-invariant metric the corresponding Hamiltonian function is −H .

In particular, the Euler field is a Hamiltonian field on every coadjoint orbit, with
respect to the natural symplectic structure of the orbit. Its Hamiltonian function is
the restriction of the kinetic energy to the orbit.

Proof. The differential dH of the quadratic formH(m) :� 1
2 (A

−1m,m) at a point
m ∈ g∗ is the vector v � A−1m ∈ g, which is regarded as a linear functional on the
dual space g∗. According to Example 6.10, the Hamiltonian vector corresponding
to this linear functional is ad∗dH m � ad∗A−1m m, giving equation (6.4).

The fact that this equation describes the geodesics on the Lie group G with
respect to the left-invariant metric is nothing but the Second Euler Theorem.

�

Example 6.16. Consider a solution v(t) of the Euler equation of an ideal fluid in
a simply connected domain of three-dimensional Euclidean space.

Let v1 � v+ εu1 + · · · , v2 � v+ εu2 + · · · be two solutions with isovorticed
initial conditions infinitely close to v (ε is small, the dots mean o(ε) as ε→ 0, all
the fields here and below depend on t).

Isovorticity of the fields means that their vorticities can be identified by a
diffeomorphism action. For infinitesimally small perturbations of the vorticities
ξi � curl ui we obtain at every moment t

ξi � [ai, curl v],

where ai are divergence-free fields from our Lie algebra, and [·, ·] is minus the
Poisson bracket of the divergence-free fields (so that [a, b] � curl(a × b)).

The fields ai are not determined uniquely by the perturbations ui . However, one
can define the following invariant of the pair of perturbations that does not depend
on this ambiguity.
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We associate to the initial field v(t) and to the pair of fields ai the value

ω �
∫

M3

([a1(t), a2(t)], v(t)) dx dy dz.

The theory above, applied to this example, implies the following result.

Theorem 6.17. The value of ω is constant (i.e., it does not depend on t), whatever
solutionv of the Euler equation, and whatever initial fieldsa1(0)anda2(0)defining
the perturbations are taken.

Proof. The Hamiltonian property of the Euler equation on the orbits of isovor-
ticed fields implies that the phase flow of the Euler equation preserves the natural
symplectic structure of the set of isovorticed fields. This structure is given by the
formula ω(ξ1, ξ2) � (m, [a1, a2]) for ξi � ad∗ai m, where m is the image in the
dual space (to the Lie algebra of the divergence-free fields) of the vector v(t) from
the Lie algebra under the map A : g→ g∗ of the inertia operator.

According to Theorem 5.4 on inertia operator, the element m can be identified
with the 1-form that is the inner product with the vector field v (the dual space
itself is understood as the space of 1-forms modulo function differentials).

The differential of the latter 1-form is the vorticity form corresponding to the
vorticity vector field ξ � curl v. Then the perturbation of the element m defined
by the field ai is

ξi � [ai, ξ ],

and therefore

ω(ξ1, ξ2) �
∫
M3
([a1, a2], v) dx dy dz.

The fact that ω does not depend on t means the invariance of the symplectic
structure under the Hamiltonian flow of the Euler equation on the coadjoint orbit
of the fields isovorticed with v(0). �

Remark 6.18. On a two-dimensional simply connected domain the fields ai are
defined by the stream functions ψi , and the conserved quantity has the form

ω(ξ1, ξ2) �
∫
M2
ξ · {ψ1, ψ2} dx dy.

Here ξi � {ψi, ξ}, ξ � �ψ is the vorticity function of a nonperturbed flow with
the stream functionψ , and {f, g} is the Poisson bracket of two functions, {f, g} �
∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x
, equal to the Jacobian of the map (x, y) �→ (f (x, y), g(x, y)).

The Hamiltonian property now implies the following. If the vorticity functions ξ
and ξ + ε{ψi, ξ}+ · · · evolve in time according to the Euler–Helmholtz equation,
then the value of ω is time invariant. (The Hamiltonian formalism can also be
exploited in the reverse direction: from known results in hydrodynamics one can
deduce some properties of Hamiltonian systems; see [Ko1].)
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We discuss the more general case of Riemannian manifolds, instead of just a
domain in Euclidean space, and the non-simply connected domains and manifolds
in the next section. There is vast literature on the Hamiltonian formalism of the
Euler equation on Lie groups and numerous applications (see, e.g., books [GS2,
Arn16, MaR, G-P] and papers [M-W, AKh, Ose2]).

§7. Ideal hydrodynamics on Riemannian manifolds

Generalization of hydrodynamics of ideal incompressible fluid to manifolds of
high dimension (in particular, to dimensions n > 3) is as physically meaningful
as consideration of, say, the wave equation for a non-physically large number of
space coordinates. The universal setting, however, sheds light on general properties
of the Euler equation, as well as on geometry of the groups of diffeomorphisms.
In particular, in this section we will treat the three-dimensional hydrodynamics
from this universal point of view.

7.A. The Euler hydrodynamic equation on manifolds

LetMn denote a compact oriented Riemannian manifold with a metric ( , ) and a
volume form µ, i.e., a nonvanishing differential form of the highest degree n. We
do not assume, in general, any relation of µ to the volume form induced by the
metric.

Definition 7.1. The Euler equation of an ideal incompressible fluid on M is the
following evolution equation on the velocity field v of the fluid on the manifold:

(7.1)

{ ∂v
∂t
� −(v,∇)v − ∇p,

divµ v � 0,

where the second equation means that the field v preserves the volume form
µ. Here p is a time-dependent function on M that is defined by the condition
divµ(∂v/∂t) � 0 uniquely (up to an additive constant depending on time). The
expression (v,∇)v denotes the covariant derivative ∇vv of the field v along itself
for the Riemannian connection onM . In the case of the Euclidean spaceM � R

3

the Euler equation above assumes the form (5.2).
In the case of a manifoldM with boundary, the velocity field is supposed to be

tangent to the boundary.

We refer to Section IV.1.B for a definition of the covariant derivative, while for
many purposes in this chapter it will be enough to keep in mind the following

Example 7.2. In the case of M � R
n, equipped with the standard metric and

volume form, the Euler equation of an ideal incompressible fluid is

∂vi

∂t
� −

n∑
j�1

vj
∂vi

∂xj
− ∂p

∂xi
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on the vector field v obeying
∑n
j�1 ∂vj/∂xj � 0. The covariant derivative in this

case is

(v,∇)vi �
n∑
j�1

vj
∂vi

∂xj
.

Just as for the two- and three-dimensional cases, the Euler equation (7.1) on a
compact n-dimensional manifoldM can be regarded as the equation of geodesics
on the Lie group S Diff(M) of all diffeomorphisms of the manifoldM preserving
the volume form µ.

Definition 7.3. The configuration space of an ideal incompressible fluid filling
the manifold M is the Lie group G � S Diff(M) of all diffeomorphisms of M
preserving the volume form µ (and belonging to the connected component of
the identity). In the case of a manifold with boundary ∂M the group S Diff(M)
consists of those volume-preserving diffeomorphisms that leave the boundary ∂M
invariant.

The Lie algebra g � S Vect(M) for this group is formed by divergence-free
vector fields on M (tangent to the boundary if ∂M �� ∅). The Lie bracket in this
algebra is minus the Poisson bracket of vector fields.

Now we apply the general algebraic machinery to this Lie algebra. The formu-
lations are in Sections 7.B and 7.C below, and the proofs are in Section 8.

7.B. Dual space to the Lie algebra of divergence-free fields

From now on all objects are supposed to be as smooth as needed. We leave aside the
analytic difficulties of the approach to infinite-dimensional groups and algebras,
and address the interested reader to [E-M], where the proper formalism of the
Sobolev spaces for hydrodynamical data is developed. In the sequel we will need
the following notions of the calculus on manifolds.

Definition 7.4. Let�k(M) (or simply�k) denote the space of smooth differential
k-forms on the compact manifold M (possibly with boundary ∂M). The exterior
derivative operator d increases the degree of the forms by 1, while the inner
derivative operator iξ of substitution of a given vector field ξ into a form as the
first argument decreases the degree by 1. These operators are derivations of the
algebra of forms in the sense that they satisfy the following identities:

iξ (α ∧ β) � (iξα) ∧ β + (−1)kα ∧ (iξβ),(7.2)

d(α ∧ β) � (dα) ∧ β + (−1)kα ∧ (dβ),(7.3)

for any forms α ∈ �k and β ∈ �l .
The Lie derivative of a differential form ω along a vector field v (tangent to

the boundary ∂M if ∂M �� ∅) is the time derivative of the form ω transported
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(backwards) by diffeomorphisms gt such that g0 � Id and ġ0 � v:

(7.4) Lvω � d

dt

∣∣
t�0g

∗
t ω,

where g0(x) ≡ x, d
dt

∣∣
t�0gt (x) � v(x). The result g∗ω of the transport of a k-form

ω by a smooth map g is defined by the formula

(g∗ω)(ξ1, . . . , ξk) � ω(g∗ξ1, . . . , g∗ξk),

where the linear operator g∗ is the differential of the map g.
The homotopy formula is the relation

Lv � ivd + div.
It is an infinitesimal version of the Leibniz formula: The cylinder boundary is the
difference of the top and the bottom, plus the side surface (oriented in the proper
way).

Theorem 7.5 (see e.g., [M-W, Nov2, DKN]). The dual space g∗ of the Lie algebra
g � S Vect(M) of divergence-free vector fields onM (tangent to ∂M) is naturally
isomorphic to the quotient space�1/d�0 of all differential 1-forms onM , modulo
all exact 1-forms (i.e., modulo differentials of all functions) onM .

The group coadjoint action on the dual Lie algebra g∗ coincides with the stan-
dard action of diffeomorphisms on differential 1-forms:

(7.5) Ad∗g α � g∗α,
where 1-forms α and g∗α onM are considered modulo function differentials.

Here we regard S Vect(M) as the Lie algebra of the group of diffeomorphisms
ofM preserving a fixed volume element. The commutator adv w � [v,w] of two
vector fields is thus minus their Poisson bracket. We will prove this theorem in
Section 8.

Corollary 7.6. The algebra coadjoint action by an element v ∈ g on the dual
space g∗ � �1/d�0 is the Lie derivative of the 1-forms along the vector field v
onM:

(7.6) ad∗v α � Lvα.
Here α and Lvα are 1-forms modulo function differentials.

Indeed, the corollary follows directly from the definition of the Lie derivative
(7.4). The infinitesimal version of (7.5) for g ∈ G close enough to the identity (i.e.,
for the “infinitesimal change of variables”g � Id+εv+o(ε)given by a vector field
v) determines the coadjoint action of the Lie algebra element v ∈ g � S Vect(M)
on the dual space g∗ as the derivation along the vector field. �

Definition 7.7. The pairing of the spaces g and g∗ is given by the following
straightforward formula. Let [u] denote the coset of a 1-form u in the quotient
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�1/d�0, i.e., the class of all 1-forms onM of the type u+ df for some function
f . Then, to evaluate a coset [u] ∈ g∗ at a vector field v ∈ g, one has to take the
integral overM of the pointwise pairing of the vector v and an arbitrary 1-form u
from the coset [u] ∈ �1/d�0:

(7.7) 〈v, [u]〉 �
∫
M

u(v)µ.

(The fact that this integral does not depend on a particular choice of u is proved in
Section 8.) Equivalently, one can think of �1/d�0 as the space dual to the space
of all closed (n− 1)-forms onM:

(7.8) 〈ωv, [u]〉 �
∫
M

u ∧ ωv,

whereωv � ivµ is the closed (n−1)-form associated to the divergence-free vector
field v.

Remark 7.8. The group coadjoint action is well-defined by the formula (7.5),
since the diffeomorphism action commutes with the operation d: If α′ � α+ df ,
then

g∗α′ � g∗α + g∗(df ) � g∗α + d(g∗f );
i.e., the 1-form g∗α and g∗α′ define the same coset in the quotient �1/d�0.
Similarly, the Lie derivative acts on the coset of a 1-form u, since the operation
Lv commutes with the derivative operator d:

Lv[u] � Lv(u+ df ) � Lvu+ dLvf � [Lvu].

As we discussed above, the space g∗, in the form of the quotient �1/d�0,
is understood only as the regular part of the actual dual space to the Lie algebra
g � S Vect(M). Notice that the nonregular part of the dual space g∗ includes many
interesting functionals, e.g., singular closed 2-forms supported on submanifolds
of codimension 2 (for n � 2 such forms are supported in a discrete set of points,
while for n � 3 the support can be a set of closed curves; see Sections I.11 and
VI.3).

Corollary 7.9. For a simply connected manifold M (or, more generally, for a
manifold with trivial first homology group H1(M,R) � 0), the dual space g∗ is
isomorphic to the space of all exact 2-forms onM .

Indeed, the kernel of the operator d : �1 → �2 contains all closed 1-forms
onM . Simply-connectedness ofM (or the conditionH1(M,R) � 0) implies that
the first cohomology group vanishes: H 1(M,R) � 0; i.e., all closed 1-forms are
exact. Thus the quotient �1/d�0 is isomorphic to the image of d in �2. �

Definition 7.10. A divergence-free vector field v on Mn (tangent to ∂M) is said
to be exact if the corresponding closed (n− 1)-form ωv :� ivµ is the differential
of some (n− 2)-form vanishing on ∂M : ωv � ivµ � dα, α

∣∣
∂M
� 0.
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Example 7.11. On a two-dimensional surface, a field is exact if and only if it
possesses a univalued stream function vanishing on the boundary of the surface.
The flux of such a field across any closed curve within the surface, as well as the
flux across any chord connecting two boundary points, is equal to zero.

On a simply connected manifold of any dimension n every divergence-free
vector field is exact. Indeed, due to the identity Hn−1(M) � H 1(M) � 0, every
closed (n− 1)-form ωv is exact.

Definition 7.12. A diffeomorphism of a manifoldM (preserving the volume ele-
ment µ and the boundary ∂M) is called exact if it can be connected to the identity
transformation by a smooth curve gt (in the space of volume-preserving diffeo-
morphisms ofM) so that the velocity field ġt is exact at every moment t . The exact
diffeomorphisms constitute the group of exact diffeomorphisms S0 Diff(Mn).

The latter is a subgroup of the groupS Diff(Mn)of all volume-preserving diffeo-
morphisms. The Lie algebra g0 of the group of exact diffeomorphisms S0 Diff(M)
is naturally identified (by the map v �→ ivµ) with the space of differential (n−1)-
forms, which are differentials of (n− 2)-forms vanishing on ∂M .

Theorem 7.13. The dual space g∗0 of the Lie algebra g0 for the groupS0 Diff(M) is
naturally identified with the space of all 2-forms that are differentials of 1-forms on
M . This dual space is naturally isomorphic to the quotient�1/ ker(d : �1 → �2)

of the space of all 1-forms on M , modulo all closed 1-forms. The adjoint and
coadjoint representations are the standard diffeomorphism actions on (n − 1)-
forms and on 1-forms.

Remark 7.14. The subgroup generated by the commutators aba−1b−1 of a group
G is called the commutant of G. The commutant of the group S Diff(M) is the
subgroup of the exact diffeomorphisms S0 Diff(M) [Ban].

The tangent space to the commutant subgroup of a Lie group is called the
commutant subalgebra of the Lie algebra. It is generated (as a vector space) by
the commutators of the Lie algebra elements. The commutant of the Lie algebra
S Vect(M) of the group S Diff(M) is the Lie algebra S0 Vect(M) [Arn7].

The quotient space g/[g, g] of a Lie algebra g by its commutant subalgebra [g, g]
is called the one-dimensional homology (with coefficients in numbers) of the Lie
algebra g. Thus the one-dimensional homology of the Lie algebra of divergence-
free vector fields on Mn is naturally isomorphic to the De Rham cohomology
group

Hn−1(Mn,R) � ker(d : �n−1 → �n)/ Im(d : �n−2 → �n−1)

(for a manifold with boundary the (n− 1)-forms have to vanish on the boundary).
The image of a divergence-free vector field v ∈ g � S Vect(M) in the one-

dimensional homology group

g/g0 ≈ Hn−1(M,R) ≈ H1(M,R)

is called the rotation class of a vector field.
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The rotation class of a divergence-free vector field concentrated along a closed
curve γ inM is the homology class of γ (provided that the flux of the field across
a transverse section to γ equals 1).

Remark 7.15. In the spaceC1(M) of closed curves on a manifoldM with bound-
ary there are two interesting subspaces: (i) the curves homologous to zero and (ii)
the curves in M homologous to those on ∂M . (Recall that two oriented closed
curves a, b onM are homologous if there exists a surface S inM whose boundary
is ∂S � a − b. Here the minus sign means the reversed orientation.)

One defines two subspaces in the space g of all divergence-free vector fields on
M tangent to ∂M that correspond to the above-mentioned subclasses of curves:
(i) exact fields v ∈ g0 (such that ivµ � dα, α|∂M � 0) and (ii) semiexact fields
v ∈ gse, for which ivµ � dα, dα|∂M � 0.

Theorem 7.16. The subspaces mentioned above are Lie subalgebras in the Lie
algebra g of divergence-free vector fields onM tangent to the boundary. Moreover,
they are Lie ideals; i.e., the Poisson bracket {w, v} of an arbitrary field w ∈ g
with a field v from either of the subalgebras a (a � g0 or gse) belongs to the same
subalgebra.

Proof. A diffeomorphism g from the group S Diff(M) acts on both the field v and
the form α in a consistent way, such that the relations ivµ � dα, α|∂M � 0 and
dα
∣∣
∂M

are preserved under the action. Therefore, every transform Adg sends each
subalgebra a into itself. Let gt leave the group unity e with velocity ġ

∣∣
t�0 � w.

The derivative Adgt in t takes a into itself. This derivative is, up to a sign, the
Poisson bracket with the field w. �

Theorem 7.17. The dual space g∗se (of the Lie algebra gse of semiexact divergence-
free vector fields) is naturally isomorphic to the quotient space of all 1-forms on
M modulo the closed 1-forms onM vanishing on the boundary ∂M .

7.C. Inertia operator of an n-dimensional fluid

Definition 7.18. A Riemannian metric ( , ) and a measure µ on the compact
manifold M (possibly with boundary ∂M) define a nondegenerate inner product
〈 , 〉g on (divergence-free) vector fields v,w ∈ g:

(7.9) 〈v,w〉g :�
∫
M

(v(x), w(x))µ.

Hence it specifies an invertible inertia operator A : g → g∗ from the Lie algebra
g to its dual g∗ such that the image Av of an element v ∈ g is the element of the
dual space g∗ satisfying

(7.10) 〈Av,w〉 � 〈v,w〉g
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for any w ∈ g, where 〈 , 〉 on the left-hand side means the pairing between two
elements of the dual spaces. (Strictly speaking, nondegeneracy of the inner product
implies invertibility of A only on the regular part of g∗.)

Theorem 7.19. The inertia operator A : g → g∗ for the Lie algebra g �
S Vect(M) of divergence-free vector fields (tangent to the boundary of M) sends
a vector field v ∈ g to the coset [u] ∈ g∗ containing the 1-form u obtained from
the field v by means of the Riemannian “lifting indices”: u(ξ) � (v, ξ) for all
ξ ∈ TxM at any point x ∈ M .

Proof. The Theorem is proved by comparison of formulas (7.7) and (7.9). In the
tangent space TxM at every point x ∈ M the Riemannian “lifting indices” of a
vector v(x) is exactly the choice of an exterior 1-form on TxM whose value on
any vector w(x) is the Riemannian inner product of v(x) and w(x). �

For instance, ifM is the Euclidean space R
n, the inertia operator sends a vector

field
∑
i vi(x)

∂
∂xi

to the set of 1-forms {∑i (vi(x)+ ∂f

∂xi
)dxi | f ∈ C∞(Rn)}.

Note that the case of a noncompact manifold M , say, M � R
n, needs specifi-

cation of the decay of the vector fields and differential forms at infinity to make
the integrals (7.7) and (7.9) converge.

Definition 7.20. The energy function on the Lie algebra g of divergence-free
vector fields is half the square length of vectors v ∈ g in the inner product 〈 , 〉g:

H(v) :� 1

2
〈v, v〉g � 1

2

∫
M

(v, v)µ � 1

2
〈v,Av〉.

The dual space g∗ inherits from g the nondegenerate inner product 〈 , 〉g∗ . We
define the energy Hamiltonian function on g∗ as half the square length of the
elements in g∗:

H([u]) � 1

2
〈[u], [u]〉g∗ :� 1

2
〈A−1[u], [u]〉.

Here v � A−1[u] is the (divergence-free) vector field related to the coset [u] of
1-forms by means of the Riemannian metric.

Recall that the Euler equations represent the projection of the geodesic flow of
the right-invariant metric on the group defined by the quadratic formH on the Lie
algebra.

Lemma–definition 7.21 [Arn16, OKC]. The generalized Euler equation on the
dual space g∗ � �1/d�0 of the Lie algebra of divergence-free vector fields onM
has the following form:

(7.11)
∂[u]

∂t
� −Lv[u].
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Here the vector field v is related to the coset [u] of 1-forms by the metric lifting
indices onM: [u] � Av. Rewritten for a particular representative 1-form u ∈ [u],
the generalized Euler equation becomes

(7.12)
∂u

∂t
� −Lvu− df.

The Euler equation on g∗ is Hamiltonian with respect to the natural Lie–Poisson
structure, and minus the energy −H([u]) is its Hamiltonian function.

Remark 7.22. One can see that the latter equation on the dual space g∗ is the
image under the inertia operator A of the classical Euler equation (7.1):

∂v

∂t
� −(v,∇)v − ∇p

in the Lie algebra g of divergence-free vector fields (divµ v � 0). Here the 1-form
u is related by metric lifting indices with the vector field v.

The identification of the equations in the Lie algebra and in its dual is based on
the following fact, which we shall prove in Section IV.1.D: The inertia operatorA
sends the covariant derivative vector field (v,∇)v on a Riemannian manifold M
to the 1-formLvu− 1

2d(u(v)). Then the pressure function p is equal to f + 1
2u(v)

(modulo an additive constant).
The Helmholtz curl equation ∂ω

∂t
� −Lvω on the space of all exact 2-forms

ω � du on M (see equation (5.3)) is obtained by the exterior differentiation of
both sides of equation (7.11). An advantage of the Helmholtz formulation is the
pure geometric action on the 2-forms: The form ω is “frozen into the fluid”; i.e.,
it is transported by the fluid flow exactly, not just modulo some differential (as the
1-form u is).

Corollary 7.23. If the initial vector field is exact (respectively, semiexact), it will
remain exact (respectively, semiexact) for all t .

This follows from the explicit form of the Euler equation (7.11) and Theorems
7.13 and 7.17 describing the dual spaces to the Lie algebras g0 and gse.

Proof of Lemma–definition. Equation (7.11) is a Hamiltonian equation on g∗

with minus the energy −H([u]) playing the role of the Hamiltonian function.
Indeed, with respect to the standard linear Lie–Poisson structure, the quadratic

Hamiltonian function−H([u]) � − 1
2 〈A−1[u], [u]〉defines the following equation

on g∗:

∂[u]

∂t
� − ad∗A−1[u][u];

see (6.4). By substituting the explicit form of the inertia operator (Theorem 7.19)
and of the coadjoint operator ad∗ from (7.6), we complete the proof. �
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Remark 7.24. For an arbitrary Lie group G and an arbitrary (not necessarily
quadratic) Hamiltonian functional F on the dual space g∗ to its Lie algebra g, the
corresponding Hamiltonian equation, with respect to the Lie–Poisson structure, is

ṁ � ad∗δF/δm m,

where the variational derivative δF/δm of the functional F at the point m ∈ g∗

is understood as an element of the Lie algebra g and is defined by the relation

d

dε
F (m+ εw)∣∣

ε�0 � 〈w, δF/δm〉,

for all w ∈ g∗; cf. Example 6.10. For a quadratic functional F � 1
2 〈A−1m,m〉 the

variational derivative is δF/δm � A−1(m).

§8. Proofs of theorems about the Lie algebra of
divergence-free fields and its dual

Let Mn be a smooth compact manifold with boundary ∂M and volume element
µ. Denote by g � S Vect(M) the Lie algebra of all divergence-free vector fields
on M that are tangent to ∂M . Let �k(M) be the space of differential k-forms on
M and �k(M, ∂M) the space of differential k-forms on M whose restriction to
∂M vanishes.

To a vector field v onM we associate the following differential (n− 1)-form:

ωv � ivµ ∈ �n−1(M).

Lemma 8.1. The map v �→ wv defines a natural (i.e., invariant with respect to
the S Diff(M) action) isomorphism of the vector space of the Lie algebra g and
the space of all closed differential (n− 1)-forms onM vanishing on ∂M:

ωv ∈ ker
(
d : �n−1(M, ∂M)→ �n(M)

)
.

Proof. We start with the fundamental homotopy formula.

Definition 8.2. The Lie derivative operator Lξ on forms does not change their
degree. It evaluates the instantaneous velocity of the form evolved with the medium
whose velocity field is ξ . The linear operator Lξ is expressed in terms of the
operators iξ and d via the “homotopy formula” Lξ � iξ ◦ d + d ◦ iξ .

Now the proof is achieved by applying the homotopy formula to the volume
form µ ∈ �n(M). We conclude that

Lvµ � divµ � dωv;
i.e., the flow of v preserves µ if and only if the (n − 1)-form ωv is closed. The
restriction of ωv to ∂M is the (n− 1)-form that gives the flux of the field v across
∂M . The vanishing of ωv on ∂M is equivalent to the tangency of v to ∂M . �
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The statement on duality between the spaces g and g∗ from Sections 3 and 7
has the following precise meaning.

Theorem 8.3 (see also Theorems 3.11, 7.5). For ann-dimensional compact mani-
foldM with boundary ∂M , the dual space g∗ (of the Lie algebra g of divergence-
free vector fields onM tangent to ∂M) is naturally isomorphic to the quotient space
�1(M)/d�0(M) (of all 1-forms on M modulo full differentials) in the following
sense:

(1) Ifα is the differential of a function (α � df ) and v ∈ g, then
∫∫
M

ωv∧α � 0.

(2) If
∫∫
M

ωv ∧ α � 0 for all v ∈ g, then the 1-form α is the differential of a

function.
(3) If

∫∫
M

ωv ∧ α � 0 for all α � df , then v ∈ g (i.e., v is a divergence-free

field onM tangent to ∂M).
(4) The coadjoint action of the groupS Diff(M)on the space�1(M)/d�0(M)

is geometric; i.e., the volume-preserving diffeomorphisms act as changes
of coordinates on the (cosets of) 1-forms α.

Proof. (1) We utilize the Leibniz identity for the exterior derivative d:

(8.1) d(f ∧ ωv) � (df ) ∧ ωv + f (dωv).
If v ∈ g, then dωv � 0 by virtue of Lemma 8.1. Hence∫∫

M

(df ) ∧ ωv �
∫∫

M

d(f ∧ ωv) �
∫

∂M

f ∧ ωv,

according to the Stokes formula. Since ωv
∣∣
∂M
� 0, the latter integral equals zero.

(2) Consider a closed curve γ in M (not meeting the boundary ∂M). Let v be
a divergence-free vector field that is supported in a narrow solitorus around this
curve and whose flux across any transverse to γ is equal to 1. As the thickness ε
of the solitorus goes to zero we obtain

lim
ε→0

∫∫

M

ωv ∧ α � (−1)n−1
∫

γ

α � 0

for an arbitrary closed curve γ . Therefore, α is the differential of a function
(namely, of its integral along a curve connecting the current point with a fixed
one).

(3) Again, make use of the identity (8.1). Now we know that the integral of
(df ) ∧ ωv overM is equal to zero; hence∫∫

M

f dωv �
∫

∂M

f ∧ ωv
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for each function f . Pick a δ-type function f supported in a small neighborhood
of an interior point ofM . Then the integral on the right-hand side vanishes; hence,
the left integral is equal to zero as well. It follows that dωv � 0 at every interior
point ofM; that is, the form ωv is closed (and the field v is divergence free).

Thus both the left and right integrals are zero for an arbitrary function f . In
particular, one can take a function whose restriction to ∂M is of δ-type. At every
point of the boundary we obtain ωv|∂M � 0. In other words,

ωv ∈ ker
(
d : �n−1(M, ∂M)→ �n(M)

)
,

and hence v ∈ g by virtue of Lemma 8.1. Item (3) is proved.
(4) The statements (1)–(3) imply that g∗ � �1/d�0, since the set of divergence-

free vector fields onM with a volume formµ is identified with the space of closed
(n−1)-forms by means of the correspondence v �→ ωv :� ivµ. IfM has boundary
∂M , then a field v is tangent to ∂M if and only if the form ωv vanishes on the
boundary.

Furthermore, recall that the adjoint action of the group S Diff(M) on a vector
field v is a geometric action (change of coordinates) by a diffeomorphism g ∈ G
on v:

Adg v � g∗v.
It follows that the action of the diffeomorphism g on any 1-form α, which is paired
with v is also geometric. More precisely, the group coadjoint action on the coset
[α] ∈ �1/d�0 � g∗ representing the 1-form α in the dual space g∗ is described
as follows:

〈v,Ad∗g[α]〉 :� 〈Adg v, [α]〉 �
∫
M

α(g∗v)µ

�
∫
M

(g∗α)(v) g∗µ �
∫
M

(g∗α)(v)µ � 〈v, [g∗α]〉.

Here we make use of the invariance of the volume form: g∗µ � µ. Thus

Ad∗g[α] � [g∗α],

which completes the proof of the theorem. �

Consider now the Lie algebra g0 of all exact fields v, for which ωv � ivµ � dβ
for an (n− 2)-form β ∈ �n−2(M, ∂M) vanishing on the boundary β|∂M � 0.

Theorem 8.4. For an n-dimensional compact manifoldM with boundary:

(1) If the 1-form α is closed (dα � 0), then
∫∫
M

ωv∧α � 0 for all fields v ∈ g0.

(2) If
∫∫
M

ωv ∧ α � 0 for all v in g0, then the 1-form α is closed inM .

(3) If
∫∫
M

ωv ∧ α � 0 for all closed 1-forms α onM , then v ∈ g0.
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In other words, the dual space g∗0 (of the Lie algebra g0 of exact divergence-free
vector fields) is naturally isomorphic to the quotient space�1(M)/Z1(M) (of all
1-forms onM modulo all closed 1-forms onM).

Proof. (1) Apply the Leibniz identity in the form

(8.2) d(β ∧ α) � (dβ) ∧ α + (−1)n−2β ∧ dα,
where ωv � dβ. If dα � 0, then, by virtue of the Stokes formula,∫∫

M

(dβ) ∧ α �
∫

∂M

β ∧ α � 0,

since β
∣∣
∂M
� 0.

(2) By making use of (8.2) when
∫∫
M

(dβ) ∧ α � 0, we obtain

(−1)n
∫∫

M

β ∧ dα �
∫

∂M

β ∧ α.

The latter integral equals zero for every form β vanishing on ∂M . In particular,∫∫

M

β ∧ dα � 0

for every (n−2)-form β supported compactly insideM . This implies that dα � 0.
(3) For a closed form α, we get from (8.2) that

0 �
∫∫

M

(dβ) ∧ α �
∫∫

∂M

β ∧ α.

Hence, on the closed manifold ∂M the (n− 2)-form β
∣∣
∂M

is orthogonal to every
closed 1-form α. By virtue of the Poincaré duality, the (n − 2)-form β

∣∣
∂M

is
exact; i.e., there exists an (n − 3)-form γ on ∂M such that β

∣∣
∂M
� dγ . Extend

arbitrarily the (n−3)-form γ from ∂M to an (n−3)-form γ̃ defined on the whole
of M (say, extend γ into an ε-neighborhood of ∂M as the pullback p∗γ , where
p is a retraction to the boundary ∂M , and then multiply the result by a cutoff
function equal to 1 in the ε-neighborhood and to 0 outside the 2ε-neighborhood).
The restriction of dγ̃ to ∂M coincides with β

∣∣
∂M

. Therefore, β̃ � β − dγ̃ is
the required (n − 2)-form on M that vanishes on ∂M and whose differential is
dβ � ivµ. Thus, v ∈ g0. �

We leave it to the reader to adjust the above arguments to prove Theorem 7.17.

§9. Conservation laws in higher-dimensional hydrodynamics

The Euler equation of a two-dimensional fluid has an infinite number of conserved
quantities (see Section 5). For example, for the standard metric in R

2 one has the
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enstrophy invariants

Jk(v) �
∫

R2
(curl v)k d2x �

∫
R2
(�ψ)k d2x, for k � 1, 2, . . . ,

where ψ is the “stream function” of the vector field v: v1 � −∂ψ/∂x2, v2 �
∂ψ/∂x1.

For an ideal fluid filling a three-dimensional simply connected manifold one
has the helicity (or Hopf) invariant, which expresses the mutual linking of the
trajectories of the vorticity field curl v, and we discuss it in detail in Chapter III.
In Euclidean space R

3, it has the form

J (v) �
∫

R3
(v, curl v) d3x.

This pattern seems to be rather disappointing. One can hardly expect any first
integrals in the higher-dimensional case (except for the energy, of course—the
kinetic energy is always invariant, being the Hamiltonian function of the Eu-
ler equation). It turns out, however, that enstrophy-type integrals do exist for all
even-dimensional ideal fluid flows, and so do helicity-type integrals for all odd-
dimensional flows. First, we formulate the result for a domain in Euclidean space.

Theorem 9.1 ([Ser1, Dez] for odd n, [Tar] for even n). The Euler equation (7.1)
of an ideal incompressible fluid on a Riemannian manifold in a bounded domain
M in R

n has

(1) the first integral

(9.1a) Ĩ (v) �
∫
M

∑
(i1...i2m+1)

εi1...i2m+1vi1ωi2i3 · · ·ωi2mi2m+1

if the dimension n is odd: n � 2m+ 1.;
(2) an infinite number of independent first integrals

(9.1b) Ĩk(v) �
∫
M

(
det ‖ωij‖

)k
dnx

if the dimension n is even: n � 2m.

Here v is the velocity vector field of the fluid inM; the functions ωij :� ∂vi
∂xj
− ∂vj

∂xi
are components of the vorticity tensor; det ‖ωij‖ is the determinant of the skew-
symmetric matrix ‖ωij‖; the summation in (9.1a) goes over all permutations of
the set (1 . . . 2m+ 1); and εi1...i2m+1 is the Kronecker symbol:

εi1...i2m+1 �
{

1, if the permutation (i1 . . . i2m+1) of (1 . . . 2m+ 1) is even,

−1, if the permutation (i1 . . . i2m+1) of (1 . . . 2m+ 1) is odd.

In particular, for n � 2 we get from (9.1b)

Ĩk(v) �
∫
M

(
(
∂vi

∂xj
− ∂vj
∂xi
)2
)k
d2x �

∫
M

(
(�ψ)2

)k
d2x � J2k(v),
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while for n � 3 the invariant Ĩ (v) from (9.1a) assumes the form of the helicity
J (v):

Ĩ (v) �
∫
M

∑
(i1i2i3)

εi1i2i3vi1ωi2i3 � J (v).

Note that in (9.1b) the parameter k is not necessarily an integer.
This theorem follows, practically without calculations, from the definition of the

coadjoint action of the diffeomorphisms group when formulated in the invariant
and coordinate-free way.

Define the 1-form u as the inner product with the velocity field v in the sense
of the Riemannian metric on a manifoldM:

u(ξ) � (v, ξ) for all ξ ∈ TxM.

Theorem 9.2 [OKC, KhC]. The Euler equation (7.1) of an ideal incompressible
fluid on a Riemannian manifoldMn (possibly with boundary) with a measure form
µ has

(1) the first integral

(9.2a) I (v) �
∫
M

u ∧ (du)m

in the case of an arbitrary odd-dimensional manifold M (n � 2m + 1);
and

(2) an infinite number of functionally independent first integrals

(9.2b) If (v) �
∫
M

f

(
(du)m

µ

)
µ

in the case of an arbitrary even-dimensional manifoldM (n � 2m),

where the 1-form u and the vector field v are related by means of the metric on
M , and f : R → R is an arbitrary function of one variable.

The fraction (du)m/µ for n � 2m is a ratio of two differential forms of the
highest degree n. Since the volume form µ vanishes nowhere, the ratio is a well-
defined function onM (which may depend on time t). The integral of the function
f evaluated at this ratio gives a generalized momentum (i.e., a weighted volume
between different level hypersurfaces) of the invariant function (du)m/µ. The
momenta Ĩk correspond to the choice f (z) � z2k . Theorem 9.1 can be obtained
from Theorem 9.2 by coordinate rewriting of the differential 2-form du as the
matrix ‖ωij‖.

Proof. The trajectories of the Euler equation on g∗ belong to the coadjoint orbits
of the groupG. This immediately follows from the Hamiltonian formulation of the
Euler equation: The trajectories belong to the symplectic leaves of the Lie–Poisson
bracket on g∗, which are the coadjoint orbits of G.
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Now the invariance of the functionals I and If along the trajectories follows
from

Proposition 9.3. The following functionals on g∗ are invariants of the coadjoint
action:

(1) in case n � 2m+ 1

I ([u]) �
∫
M

u ∧ (du)m;

(2) in case n � 2m

If ([u]) �
∫
M

f

(
(du)m

µ

)
µ,

where f is an arbitrary function of one variable, and [u] ∈ �1/d�0 � g∗ is the
coset of a differential 1-form u.

Proof of Proposition. The above functionals are well-defined on g∗; i.e., they
do not depend on the ambiguity in the choice of the representative 1-form u.
Indeed, under a change of u to another representative u + dh in the same coset
[u] ∈ �1/d�0 the form du will not be affected. Hence, the invariants If rely
merely on the coset [u] of the form u, and so does I , since I (u + dh) − I (u) �∫
dh ∧ (du)m � 0.
The coadjoint action of the diffeomorphism groupG coincides with the change

of variables (see Theorem 7.5) in 1-forms u (or in the corresponding cosets). The
integrals I and If are defined in a coordinate-free way; hence, they are invariant
under the coadjoint action. This completes the proof of Proposition 9.3, as well as
of the two preceding theorems. �

Remarks 9.4. (A) At first glance, it seems that one can generate more invariants
in odd dimensions by considering shear plane-parallel flows of one dimension
higher and using the corresponding even-dimensional invariants. However, the
reduction from even to odd dimensions does not provide any new integrals different
from (9.2a). The reason is that the invariant (9.2b) for a shear plane-parallel 2m-
dimensional flow obtained from a (2m − 1)-dimensional one is trivial: A plane-
parallel vector field v induces the 2-form du of rank less than 2m, since the
additional direction lies in the kernel of du. This implies that (du)m � 0, and the
corresponding integrals (9.2b) become trivial.

(B) For a noncompact manifold M (say, for the whole space R
n), we should

confine ourselves to the class of vector fields and forms decaying fast enough to
make convergent the above integrals overM .

The manifoldM may be multiconnected. In the case of a non-simply connected
manifold M , the cohomology class of the 1-form u (or of the coset [u]) corre-
sponding to the vector field v is also invariant (cf. [Arn7]). Other examples of first
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integrals of the Euler equation are provided by the number of points or subman-
ifolds in M where the two-form du is degenerate, as well as by the orders of its
degeneracy there, and by the invariants of the periodic orbits of the velocity field
in the three-dimensional case (periods, Floquet multipliers, etc.).

See also [Ol, Gur] for a discussion of the symmetries, i.e., infinitesimal trans-
formations in the jet spaces, preserving the Euler equations for n � 2 and n � 3.

A natural by-product of the invariant approach to higher-dimensional hydrody-
namics is the following notion of vorticity in n dimensions.

Definition 9.5. The vorticity form (or curl) of a vector field v on an n-dimensional
manifold M is the 2-form ω � du that is the differential of the 1-form u related
to v by means of the chosen Riemannian metric. Depending on the parity of the
dimension ofM , one can associate to the 2-formω a vorticity function or a vorticity
vector field.

On an even-dimensional manifold Mn (n � 2m) the ratio λ � (du)m/µ is
called the vorticity function of the field v.

On an odd-dimensional manifold Mn (n � 2m + 1), the 2-form ω � du is
always degenerate, and the vorticity vector field is the kernel vector field ξ of the
vorticity form ω: iξµ � ωm.

Example 9.6. In Euclidean space R
2m with standard volume form, the vorticity

function of a vector field v is

λ � √det ‖ωij‖,
and for n � 2m � 2 it is the standard definition of the vorticity function

curl v � ∂v1/∂x2 − ∂v2/∂x1.

In R
2m+1 with the Euclidean metric the vorticity field ξ has the coordinates

ξj �
∑

(j i1...i2m)

εj i1...i2mωi1i2 · · ·ωi2m−1i2m,

where εj i1...i2m is the Kronecker symbol, and the summation is over all permutations
of (1 . . . 2m+1). In R

3 this expression gives the classical definition of the vorticity
field ξ � curl v.

Proposition 9.7. The vorticity vector field ξ and the vorticity function λ are trans-
ported by the Euler flow on, respectively, odd- or even-dimensional manifolds.

Proof. Indeed, the coadjoint action is geometric, and it changes coordinates in
the 2-form du. Thus du is transported by the flow, while the volume form µ is
invariant under it. Hence, the vorticity vector field and function, defined in terms
of these two objects, are transported by the incompressible flow as well. �
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The above statement is based on the Helmholtz evolution equation valid for
the 2-form ω � du: ∂ω

∂t
� −Lvω. It means that the substantial derivative of ω

vanishes, or that this 2-form is transported by the flow.

Remark 9.8. The above integrals are invariants of the coadjoint representation
of the corresponding Lie groups (the so-called Casimir functions); i.e., they are
invariants of the Hamiltonian equations with respect to the Lie–Poisson structure
on g∗ for an arbitrary choice of the Hamiltonian function. The integrals I ([u]) and
If ([u]) do not form a complete set of continuous invariants of coadjoint orbits. One
can construct parametrized families of orbits with equal values of these functionals,
similar to those described in Section 5 for n � 2 and in Chapter III for n � 3. For
instance, in odd dimensions the flow preserves not only the integral (9.2a) over
the entire manifoldM , but also the integrals

IC(v) �
∫
C

u ∧ (du)m

over every invariant setC of the vorticity vector field for the instantaneous velocity
v. This follows immediately from the Stokes formula, applied to such an invariant
set, and from the observation that the restriction of (du)m to the boundary of any
invariant set vanishes.

A precise description of the coadjoint orbits for the diffeomorphism groups still
remains an unsolved and intriguing problem. In particular, one may think that the
closure of a coadjoint orbit for n � 3 could contain an open part of a level set of
the integral I (v) in some topology. Physically, this would mean that in the three-
dimensional case preservation of vorticity is not as restrictive on the particles’
permutations realized by the flow as it is in the two-dimensional case.

The reason for this conjecture is the following result on local invariants of the
coadjoint orbits (i.e., the local description of isovorticed fields) in ideal hydrody-
namics.

Theorem 9.9.

(1) The vorticity function λ is the only local invariant of the coadjoint orbits of
the group of volume-preserving diffeomorphisms of an even-dimensional
manifoldMn (n � 2m) at a generic point.

(2) For odd-dimensional Mn (n � 2m + 1) there are no local invariants of
the coadjoint orbits of the group S Diff(Mn); i.e., at a generic point of the
manifold the cosets belonging to different coadjoint orbits can be identified
by means of a volume-preserving diffeomorphism.

For instance, in the two-dimensional case n � 2, the set of isovorticed fields
is fully described by their vorticity function curl v � ∂v1/∂x2 − ∂v2/∂x1. In the
three-dimensional case n � 3, the vorticity vector field can be rectified in the
vicinity of every nonzero point by a volume-preserving change of coordinates,
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and hence has no local invariants. The coadjoint invariant for the odd-dimensional
case, provided by Proposition 9.3(2) has genuine global nature: It expresses the
linking of vortex trajectories in the manifold; see Chapter 3.

Proof. In the coordinate-free language, the local invariants of the coadjoint action
are associated to a coset [u] ∈ g∗ of 1-forms in a small neighborhood on a manifold
equipped with a volume form. The local invariants of the coset [u] � {u + df }
(i.e., a 1-form u up to addition of the function differential) are the same as the
local invariants of the 2-form du, since taking the differential of the 1-form kills
the ambiguity df .

Therefore, the problem reduces to the description of invariants of a closed
2-form in the presence of a volume form µ, i.e., the form of degree n. If n is
even, one can think of du as a symplectic form. The pair (du, µ) has the following
invariant function associated to them: the symplectic volume λ � (du)m/µ, where
n � 2m. This volume is nothing but the vorticity function. The uniqueness of
this invariant in a generic point immediately follows from the Darboux theorem:
By a (non-volume-preserving) change of variables the 2-form du transforms to∑
i dpi ∧ dqi , while the volume form becomes dmp dmq/λ(p, q); see [A-G].
If n is odd, in a generic point there is no invariant for the pair (du, µ). Indeed, a

nondegenerate 2-form du again transforms to du �∑m
i�1 dpi ∧ dqi in R

2m+1 �
{(p, q, z)}, according to a version of the Darboux theorem. Then by changing the
coordinate z → z′ � h(p, q) one can reduce the volume form to µ � dmp ∧
dmq ∧ dz without further changing du. Thus a generic pair (du, µ) has a unique
canonical form. �

The above theorem does not imply that other invariants that are integrals of local
densities over the flow domain could not exist. We conjecture that there are no new
integral invariants either for the Euler equation or for the coadjoint orbits of the
diffeomorphism groups. The integral invariants of a vector field v are functionals
of the form

∫
M
f (v) dnx. The density function f is called local if it depends on

only a finite number of partial derivatives of v. D. Serre showed in [Ser3] that for
the 3D Euler equation all integral invariants whose densities depend on velocity
and its first partial derivatives are indeed combinations of helicity and energy.

Remark 9.10. The Casimir functions, i.e., invariants of the coadjoint representa-
tion, allow one to study the nonlinear stability problems by Routh-type methods
(see Chapter II). The information about the orbits can be helpful in the study of
the Cauchy problem in high-dimensional hydrodynamics. The different number
of invariants in odd and even dimensions apparently indicates that the existence
theorem in odd- and even-dimensional hydrodynamics should require essentially
different arguments.

Instead of writing the Euler equation as an evolution of a coset [u], one can
choose the special 1-form ū for which the action of the flow is geometric. This
would allow one to write the invariants in odd dimensions in the same way as for
n � 2m, since, say, the ratio ū ∧ (dū)2m/µ is transported by the flow for such a
choice of ū. To find the corresponding evolution of ū one has actually to solve the
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Euler equation for the velocity field [Ose2, GmF]. Such invariants are similar to
Lagrangian coordinates of fluid particles.

Note that the existence of an infinite series of integrals for a flow of an ideal
even-dimensional fluid does not imply complete integrability of the corresponding
hydrodynamic equations. These invariants merely specify the coadjoint orbits
(generally speaking, infinite-dimensional) where the dynamics takes place. For the
evolution on the orbit itself we know just the energy integral, while integrability
requires specification of an infinite number of integrals.

On the other hand, the Euler hydrodynamic equations in the plane admit finite-
dimensional truncations of arbitrarily large size that turn out to be integrable
Hamiltonian systems [MuR]. We discuss finite-dimensional approximations of
classical hydrodynamic equations in Section 11. In Section VI.3 we will show
how knot theory can be regarded as a part of coadjoint orbit classification for the
group S Diff(M3). Knots correspond to highly degenerate orbits of differential
2-forms supported on curves in a three-dimensional manifoldM . Knot invariants
with respect to isotopies become Casimir invariants for such degenerate orbits.

§10. The group setting of ideal magnetohydrodynamics

Magnetic fields in perfectly conducting plasma or magma are among the main ob-
jects of study in astrophysics and geophysics. In the idealized setting, an inviscid
incompressible fluid obeying hydrodynamical principles transports a magnetic
field. In turn, the medium itself experiences a reciprocal influence of the mag-
netic field. The evolution is described by the corresponding system of Maxwell’s
equations.

10.A. Equations of magnetohydrodynamics and the Kirchhoff
equations

Definition 10.1. We assume first that an electrically conducting fluid fills some
domainM of the Euclidean three-dimensional space R

3. The fluid is supposed to be
incompressible with respect to the standard volume formµ � d3x, and it transports
a divergence-free magnetic field B. Then, the evolution of the field B and of the
fluid velocity field v is described by the system of ideal magnetohydrodynamics
(MHD) equations

(10.1)




∂v
∂t
� −(v,∇)v + (curl B)× B− ∇p,

∂B
∂t
� −{v,B},

div B � div v � 0.

Here the second equation is the definition of the “frozenness” of the magnetic
field B into the medium, and { , } denotes the Poisson bracket of two vector fields.
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In the first equation the pressure term ∇p is uniquely defined by the condition
div ∂v/∂t � 0, just as it is for the Euler equation in ideal hydrodynamics. The
term (curl B) × B represents the Lorentz force. On a unit charge moving with
velocity j in the magnetic field B there acts the Lorentz force j× B. On the other
hand, the electrical current field j is equal to curl B/4π according to Maxwell’s
equation [Max]. The coefficients in equation (10.1) are normalized by a suitable
choice of units.

The total energy E of the MHD system is the sum of the kinetic and magnetic
energy:

(10.2) E :� 1

2
〈v, v〉 + 1

2
〈B,B〉.

Remark 10.2. One can view the Kirchhoff equations [Kir]

(10.3)

{
ṗ � p × ω,
ṁ � m× ω + p × u

for a rigid body moving in a fluid as a finite-dimensional analogue of the magne-
tohydrodynamics (just as the classical rigid body with a fixed point is analogous
to the ideal fluid dynamics); see [V-D, DKN]. The fluid is ideal, incompressible,
and at rest at infinity, and the fluid motion itself is supposed to be potential. The
energy of a body in a fluid is

(10.4) H � 1

2

(∑
aim

2
i +
∑

bij (pimj +mipj )+
∑

cijpipj

)
.

The variablesm and p are the total angular momentum and the vector momentum
of the body–fluid system in a moving coordinate system rigidly attached to the
body; ui � ∂H/∂pi ,ωi � ∂H/∂mi . The energy is quadratic inm,p; it is assumed
to be positive; and it defines a Riemannian metric on the groupE(3) of all motions
in three-dimensional Euclidean space.

In the case of magnetohydrodynamics the total energy is to be considered as the
Riemannian metric on the configuration space, which is the semidirect product of
the diffeomorphism group S Diff(M) and the dual space g∗ � �1(M)/d�0(M).
This space and metric are defined below.

10.B. Magnetic extension of any Lie group

Consider the following example: the one-dimensional Lie groupG of all dilations
of a real line x �→ bx. The composition of two dilations with factors b1 and b2

defines the dilation with the factor b1b2. We will call the two-dimensional group
F of all affine transformations of the line x �→ a + bx the magnetic extension of
the group G. Now, the composition of two affine transformations x �→ a1 + b1x

and x �→ a2 + b2x sends every point x to the point

a2 + b2(a1 + b1x) � (a2 + a1b2)+ (b1b2)x.
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Hence the group multiplications of the pairs (a, b) that constitute the magnetic
extension group F , is

(a2, b2) ◦ (a1, b1) � (a2 + a1b2, b1b2);
see also Section IV.1.A. The general description of magnetic extensions below
can be regarded as a group formalization of this construction.

Let G be an arbitrary Lie group. We associate to this group a new one, called
the magnetic extension of the groupG, in the following way. The elements of the
new group are naturally identified with all points of the phase space T ∗G whose
configuration space is G.

The groupG acts naturally on itself by left translations, as well as by right ones.
The left and right shifts commute with each other. Hence, right-invariant vector
(or covector) fields are taken to right-invariant ones under left translations, while
left-invariant fields are sent to left-invariant ones by right translations.

Extend every covector on G, i.e., an element αg of the cotangent bundle T ∗G
at g ∈ G, to the right-invariant section (covector field) α on the group. Define the
action of this covector αg on the phase space T ∗G as follows. First add to every
covector in T ∗G at h the value of the right-invariant section α at h. Then apply
the left shift of the entire phase space T ∗G by g (Fig. 8).

T G

G

L
g

g

g

 = T
e

G

e

Figure 8. Cotangent bundle T ∗G turns into a Lie group.

Theorem 10.3. The result of two consecutive applications of two cotangent vec-
tors of the group coincides with the action of a new cotangent vector. This com-
position makes the space T ∗G into a Lie group.

Proof. The composition of two left shifts on a group is a left shift as well. The
operator T2 of addition of the second right-invariant covector field after the first
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left shiftL1 coincides with the addition T1 of another right-invariant covector field
preceding the first left shift. Namely, the new covector field is the image of the
second covector field under the action of the inverse L−1

1 of the first left shift L1:

L2T2L1T1 � L2L1T̃2T1,

where T̃2 � L−1
1 T2L1. The sum of this new field with the first right-invariant field

is the right-invariant covector field that is to be added to each covector of T ∗G
before the left translation–composition to obtain the result of the two consecutive
applications of two cotangent vectors. �

Note that a right-invariant field is determined by its value at the group identity.
Hence, the phase space T ∗G is diffeomorphic to the direct product G× g∗ of the
group G and of the dual space g∗ to its Lie algebra (the cotangent bundle of any
Lie group is naturally trivialized). However, the group T ∗G constructed above is
not the direct product of the group G and the commutative group g∗.

Consider a group element (ψ, b) ∈ T ∗G, i.e., the composition of the addition
of a right-invariant field whose value at the group identity is some covector b
followed by the left shift by ψ , and similarly, another element (φ, a) ∈ T ∗G.

Theorem 10.3′. The composition of (ψ, b) followed by (φ, a) is the left shift by
φ ◦ ψ preceded by adding the right-invariant field whose value at the identity is
the covector Ad∗ψ a + b.

Proof. The left translation by ψ−1 of the right-invariant field generated by a at
the identity is the right-invariant field whose value at the identity is

L∗ψR
∗
ψ−1a � (Rψ−1Lψ)

∗a � (Adψ)
∗a.

�

Definition 10.4. The magnetic extension F � G� g∗ of a group G is the group
of pairs {(φ, a) | φ ∈ G, a ∈ g∗}with the following group multiplication between
the pairs:

(10.5) (φ, a) ◦ (ψ, b) � (φ ◦ ψ,Ad∗ψ a + b).

The definition of the Lie algebra corresponding to the magnetic extension F
follows immediately.

Definition 10.5. The Lie algebra f � g � g∗, corresponding to the (magnetic
extension) group F � G � g∗, is the vector space of pairs (v ∈ g, a ∈ g∗)
endowed with the following Lie bracket:

(10.6) [(v, a), (w, b)] � ([v,w], ad∗w a − ad∗v b),

where [v,w] is the commutator of the elements v andw in the Lie algebra g itself,
and ad∗w a is the coadjoint action of the algebra g on its dual space g∗.
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The magnetic extension is a particular case of the notion of a semidirect product
of a Lie groupG, or a Lie algebra g, by a vector spaceV where this group or algebra
acts. In the general situation the operators Ad and ad of the coadjoint action in
(10.5–6) are to be replaced by the action of the corresponding group or algebra
elements on the vector space V ; see Section VI.2 and [MRW].

Example 10.6. The symmetry groupE(3) of a rigid body in a fluid is the magnetic
extension E(3) � SO(3) � R

3 of the group SO(3) of all rotations of the three-
dimensional space by the dual space so(3) � R

3. As we shall see in the next
section, the Kirchhoff equations (10.3) describe the geodesics on this group E(3)
with respect to the left-invariant metric defined by the energy E from (10.2).

Example 10.7. The configuration space of magnetohydrodynamics is the mag-
netic extension F � S Diff(M) � (�1/d�0) of the group G � S Diff(M) of
volume-preserving diffeomorphisms of a manifold M and of the corresponding
dual space g∗ � �1/d�0. The group coadjoint action Ad∗ψ a � ψ∗a in (10.5) is
the change of coordinates by the diffeomorphismψ in the coset a of 1-forms. The
corresponding operator ad in (10.6) of the coadjoint action of the Lie algebra is
the Lie derivative operator on the cosets: ad∗w a � Lwa.

The MHD equations (10.1) are the geodesic equations on the group F with
respect to the right-invariant metric defined by the magnetic energy E (10.4); see
Theorem 10.9 below.

Remark 10.8. The above definitions can be applied to any manifoldM (of arbi-
trary dimension) equipped with a volume form. Correspondingly, one can define
the equations of magnetohydrodynamics on the manifold once one specifies a Rie-
mannian metric onM whose volume element is the given volume form. The only
operation that has not yet been specified in the general setting is the cross product,
and this can be done using the isomorphism ∗ of k- and (n− k)-polyvector fields
induced by the metric on a manifold M of any dimension n [DFN]. We refer to
[M-W, KhC] for generalizations of the MHD formalism to other dimensions.

Notice also that in the two-dimensional case one has two options for generaliza-
tions of equations (10.1): The magnetic field B can be regarded as a divergence-free
vector field, or, alternatively, as a closed two-form on M . The latter is the same
as a function on the two-dimensional manifold M . According to these two pos-
sibilities, one has two different systems of equations (see, e.g., the Hamiltonian
formulations of MHD presented in [MoG, H-K, ZeK, Ze2]).

10.C. Hamiltonian formulation of the Kirchhoff and
magnetohydrodynamics equations

Theorem 10.9 [V-D, MRW].

(1) The equations of the magnetic hydrodynamics (10.1) are Hamiltonian
equations on the space f∗ dual to the Lie algebra f � S Vect(M) �

(�1/d�0)
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(2) The Kirchhoff equations (10.3) are Hamiltonian equations on the space
e(3)∗ dual to the Lie algebra e(3) � so(3)� R

3

relative to the standard Lie–Poisson bracket. The Hamiltonian functions are the
quadratic forms on the dual spaces defined by the total energy−E orH (formulas
(10.2) and (10.4), respectively).

Proof. Consider the MHD system in three dimensions. The dual Lie algebra f∗ of
the magnetic extension F as a set of pairs is f∗ � {([u],B) | [u] ∈ g∗ � �1/d�0,
B ∈ g � S Vect(M)}. The explicit formula for the coadjoint action of the Lie
algebra f on its dual space f∗ is

(10.7) ad∗(v,[α])([u],B) � (Lv[u]− LB[α],−LvB).
Here −LvB � {v,B} is the Poisson bracket of the two vector fields.

The Riemannian metric on M defines the isomorphism A : g → g∗ between
the space g � S Vect(M) of divergence-free vector fields and the dual space g∗ �
�1/d�0; see Section 7. It induces the inner product on the magnetic extension
algebra f, as well as on its dual space f∗. The corresponding quadratic form of the
energy E on f∗ is

E([u],B) � 1

2
〈[u], A−1[u]〉 + 1

2
〈B, A(B)〉.

Thus the Euler equation on f∗ with the Hamiltonian function−E, i.e., the geodesic
equation for the corresponding right-invariant metric on the group F , is

(10.8)

{ ∂[u]
∂t
� −Lv[u]+ LB[b],

∂B
∂t
� −{v,B},

where the vector field v and the coset [b] are, respectively, related to the coset [u]
and the magnetic vector field B by means of the inertia operator:

v � A−1[u], [b] � A(B).
Equations (10.1) are equivalent to their intrinsic form (10.8), as the following

statement shows.

Lemma 10.10. The operatorA−1 of the Riemannian identification of divergence-
free vector fields and the cosets of 1-forms on the manifold M takes the coset
LB[b] (i.e., LBA(B)) to the field curl B × B, provided that the volume form µ is
defined by the Riemannian volume element onM .

The verification of the latter in a local coordinate system is straightforward.
�

Corollary 10.11. The inner product

J (v,B) �
∫
M

(v,B)µ
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of the fluid velocity and the evolved magnetic field is the first integral of the motion
defined by the MHD equation (10.1).

A way to prove this statement is to differentiate the quantity J along the vector
field given by (10.1). It is, however, a consequence of the following, more general,
observation.

Corollary 10.11′ [V-D]. Let G be a Lie group, and g its Lie algebra. Then the
quadratic form

J (u, α) � 〈u, α〉,
on the dual space f∗ � {(u, ζ ) | u ∈ g∗, ζ ∈ g} of the magnetic Lie algebra f �
g�g∗ is an invariant of the coadjoint representation of the Lie group F � G�g∗.
Here 〈u, α〉 stands for the pairing of two elements of the dual spaces g and g∗.

Proof. The invariance of the quadratic form J is verified by direct calculation
using the operators of coadjoint action of the group F .

Applying it to the MHD group F � S Diff(M) � �1/d�0, we prove the
invariance of J (v,B) on the coadjoint orbits of F . The conservation of J (v,B)
on the trajectories of (10.1) follows from the Hamiltonian formulation of the
equations: The trajectories are tangent to the coadjoint orbits of the group F .

�

Remark 10.12. The quadratic form J (v,B) � ∫
M
u(B)µ (called cross-helicity)

has a simple topological meaning, being the asymptotic linking number of the
trajectories of the magnetic field B with the trajectories of the vorticity field curl v.
It is similar to the total helicity of an ideal fluid (which measures the asymptotic
mutual linking of the trajectories of the fluid vorticity field) or the magnetic helicity
(measuring the linking of magnetic lines); see Chapter III.

The vorticity field of an ideal incompressible fluid is transported (convected) by
the fluid flow, and topological invariants of the field are preserved in time. How-
ever, unlike the helicity in hydrodynamics, the conservation of the mutual linking
between the magnetic and vorticity fields in MHD flow is somewhat unexpected,
since curl v in magnetohydrodynamics is not frozen (in contrast to the magnetic
field B). The evolution changes the field v (and hence curl v as well) by some
additive summand, which depends on B, but it turns out that the mutual linking
of the vorticity field curl v and the magnetic field B is preserved (see [VlM] for
more detail).

It would be of special interest to find a description of Casimir functions for
magnetohydrodynamics. In particular, one wonders whether there exists an MHD
analogue of the complete classification of local invariants of the coadjoint action
for ideal hydrodynamics (Theorem 9.9) and what are the integral invariants defined
by local densities.
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§11. Finite-dimensional approximations of the Euler equation

The effort to give a comprehensive finite-dimensional picture of hydrodynamical
processes has a long history: Any attempt to model the Euler equation numerically
leads to some kind of truncation of the continuous structure of the equation in favor
of a discrete analogue.

According to the main line of this book, we will concentrate on the methods
preserving the Hamiltonian structure of the Euler equation and will leave aside
numerous (and equally fruitful) methods related to difference schemes or to series
expansions of the solutions. We discuss the Galerkin-type approximations for
solutions of the Navier–Stokes equation in the next section.

11.A. Approximations by vortex systems in the plane

For numerical purposes one usually starts with the Euler equation written in the
Helmholtz form

(11.1) ẇ � −{v,w},
which describes the evolution of the vorticity field w � curl v frozen into a
flow with velocity v, and in which {v,w} stands for the Poisson bracket of two
divergence-free vector fields v and w.

For a two-dimensional incompressible flow in a domain of D ⊂ R
2, the right-

hand side of the equation is the Poisson bracket of the stream function ψ and
vorticity function ω � �ψ of the vector field v � sgradψ :

(11.2) ω̇ � −{ψ,ω},
where vx � −∂ψ/∂y, vy � ∂ψ/∂x, and {ψ,ω} � ∂ψ

∂x
∂ω
∂y
− ∂ψ

∂y
∂ω
∂x

. Indeed,
−{v,w} � Lvw for any vector field w. For a plane velocity field v � (v1, v2, 0),
the vorticity is a function (the third component of the vorticity field w � (0, 0, ω)),
and Lvw � (0, 0,−Lvω) (vector fields are transported forward, but functions are
transported backward). Finally, we transform equation (11.1) to equation (11.2)
by applying the definition of the Hamiltonian (or stream) function ψ for the field
v: −Lvω � −{ψ,ω}.

The first approximation scheme we discuss for this equation goes back to
Helmholtz. It replaces a smooth vorticity function ω in D ⊂ R

2 by a collec-
tion of vortices, i.e., by a vorticity distribution supported at a finite number of
points in D. Note that this scheme is also applied to a vorticity field in R

3, where
a smooth field is approximated by a singular one supported on a finite number of
straight lines.

As we shall see, the motion of such isolated vortices is governed by a Hamil-
tonian system of ordinary differential equations. The corresponding Hamiltonian
function is the logarithmic potential, i.e., a linear combination of the logarithms
of the distances between the vortices (coefficients being the products of the vortex
intensities).
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Consider N vortices with circulations (i.e., the velocity circulation around the
vortex) ki , i � 1, . . . , N , in the plane R

2. Then the vorticity at any moment will
be concentrated at N points, and the circulations at each of them will remain
constant forever. Denote the (Cartesian) coordinates of the vortices in the plane by
zi :� (xi, yi), i � 1, . . . , N . It is convenient to write down the evolution of vortices
as a dynamical system in the configuration space for theN -vortex system, the space
R

2N with coordinates (x1, y1, . . . , xN , yN) and symplectic structure
∑
ki dyi ∧

dxi .

Proposition 11.1 (see, e.g., [Kir]). The vortex evolution is then given by the fol-
lowing system of Hamiltonian canonical equations:

(11.3)

{
ki ẋi � ∂H

∂yi
,

ki ẏi � − ∂H
∂xi
,

1 ≤ i ≤ N , where the Hamiltonian function H is

H � − 1

π

∑
i<j

kikj ln |zi − zj |,

and |z− zi | �
√
(x − xi)2 + (y − yi)2.

Proof. On the plane, the vorticity function ω describing a point vortex system has
the form of a linear combination of the δ-functions:

ω(z) �
N∑
i�1

ki δ(z− zi).

To derive the equation of vortex evolution we first find the corresponding stream
function ψ such that �ψ � ω. Our choice of the vorticity ω implies that the
stream function is the linear combination of the fundamental solutions of the two-
dimensional Laplace equation

ψ(z) � 1

2π

N∑
i�1

ki ln |z− zi |

(plus any harmonic function, which is assumed to be zero due to the vanishing
boundary conditions at infinity of R

2).
By substituting these explicit expressions for ω(z) and ψ(z) into the Euler

equation (11.2), we obtain that every vortex will evolve according to the following
law:

kj żj � sgrad
∣∣
z�zj ψ(z) �

1

2π

N∑
i�1, i ��j

ki sgrad
∣∣
z�zj (ln |z− zi |).

The function ψ(z) has a singularity at zj , but this does not affect the motion of
this vortex. This is why we can subtract the contribution of the vortex influence
on itself when writing its evolution equation.
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Rewritten in (xi, yi)-coordinates, the latter gives us the required Hamiltonian
system (11.3). �

According to Helmholtz [Helm], in the case of N � 2, the two vortices rotate
uniformly in the plane R

2 about their common “mass center” (or rather “center
of vorticity”) z � (k1z1 + k2z2)/(k1 + k2). In particular, if the circulations k1 and
k2 are of the same sign, then the “mass center” is situated between the vortices,
while if they are of opposite signs, then the “mass center” lies on the continuation
of the line joining the vortices. If k1 � −k2, then the point vortices travel with
equal velocity in parallel directions perpendicular to the line joining them.

The three-vortex problem (N � 3) also turns out to be integrable (unlike the
classical three-body problem of gravitating mass points; see, e.g., [Poi1, Poi3]).
This has already been pointed out by Kirchhoff [Kir] and illuminated in the dis-
sertation of Gröbli [Grö], where one can find equations for evolution of the sides
of the vortex triangle and explicit formulas for several special cases. An elaborate
treatment of the history of the problem of three vortices can be found in [ART].
The motion of three point vortices on a sphere is considered in [KiN]. See also
[Brd, BFS] for the statistical mechanics approach and [NewP] for the application
of the Hannay–Berry phase (Section IV.1) to this problem.

11.B. Nonintegrability of four or more point vortices

For a general N , the Hamiltonian equations of motion (11.3) have the following
four first integrals:

I1 � H, I2 �
N∑
i�1

kixi, I3 �
N∑
i�1

kiyi, I4 �
N∑
i�1

ki(x
2
i + y2

i ).

However, these integrals are not in involution; that is, their Poisson brackets are
not zero, and the system with four vortices is, generally speaking, nonintegrable
[Zig1]. More precisely, the following statement holds.

LetM5 be the (five-dimensional) manifold of all nonsingular configurations of
four vortices (i.e., zi �� zj if i �� j ). This manifold is the quotient of all ordered
quadruples of points in R

2 over the three-dimensional group E(2) of all motions
of the plane. The quotientM5 is a smooth manifold, since the group E(2) acts on
the set of ordered quadruples without fixed points.

Theorem 11.2 [Zig1]. For sufficiently small ε > 0, the dynamical system of four
vortices with circulations |ki − 1| < ε, i � 1, 2, 3, |k4| < ε, has no analytic first
integral inM5 functionally independent of

H � − 1

π

∑
i<j

kikj ln |zi − zj | and F �
∑
i<j

kikj |zi − zj |2.
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Remark 11.3. Chaotic behavior of systems with four vortices was already hinted
at by Poincaré in [Poi1]. Numerical evidence of it was discussed by E. Novikov
[NovE].

In spite of the fact that the 4-vortex system is generally nonintegrable, the KAM
theory guarantees that for any number of vortices there is a set of positive measure
in the space of initial conditions for which the motion is quasiperiodic [Kha].
Such vortex configurations are organized in the following way: The set of all
vortices is split into several groups such that the distances between the groups are
much greater than those between the vortices in the groups. In this case the vortex
groups interact approximately as single vortices possessing the total circulation.
The actual vortex motion is obtained as a superposition of the group motion and
the independent vortex motion within the groups.

11.C. Hamiltonian vortex approximations in three dimensions

Just as the vorticity function can be approximated by a collection of point vortices,
the vorticity vector field B in R

3 can be taken to be supported on (several) curves.
Note that the corresponding closed two-form ω � iBµ, which is the result of

contraction of the field B with the volume form µ in R
3, is assumed to be a δ-type

differential form, or “current” in the sense of De Rham [DeR]. For the δ-two-form
supported on a curve in R

3, the integral over any two-dimensional surface is the
algebraic number of intersections of this surface with the supporting curve.

The Euler equation (11.1) defines the evolution law for the vortex curves. Unlike
the case of a two-dimensional fluid, the dynamics of such curves still constitute
an infinite-dimensional system, though of “much smaller dimension” than the
original equation on a smooth vorticity field. The position of every vortex curve
is defined by three functions of one variable, while each component of a generic
vorticity field in R

3 is a function of three variables.
The dynamics of one smooth vortex curve in R

3 is mathematically very interest-
ing. The first approximation of the vortex motion, where only “local” interaction
is considered, turns out to be a completely integrable system. It is known in var-
ious contexts under different names: filament equation, ferromagnetic equation,
nonlinear Schrödinger equation, Landau–Lifschitz equation for the group SO(3),
the Betchov–Da Rios equation, etc. (see the discussion of relations between them
in Section VI.3).

The inclusion of the second, already nonlocal, term into the approximation
breaks the integrability (see [KlM]).

A more straightforward finite-dimensional model of the Euler equation in three
dimensions is an approximation of the velocity and vorticity functions at a finite
number of points; see [But, Ose2]. The Clebsch variables provide another way to
deal with the canonical Hamiltonian structure in calculations. They are defined on
the space that is twice as big as the space of all divergence-free vector fields (or
its dual); see [M-W, Zak] and Section VI.2.
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11.D. Finite-dimensional approximations of diffeomorphism
groups

So far, we have been dealing with finite-dimensional models for hydrodynami-
cal systems. However, in a number of two-dimensional cases, the entire group
structure behind the fluid dynamics can, in some sense, be approximated as well.

Consider an incompressible fluid on a two-dimensional torus T 2 whose config-
uration space is the group S Diff(T 2) of area-preserving (or symplectic) diffeo-
morphisms of T 2. We show below (following [FZ, FFZ]) that this group can be
“approximated” by the groups SU(n) as n→∞. More precisely, the Lie algebra
S Vect(T 2) admits a continuous deformation known as the family of so-called
sine-algebras. The latter are infinite-dimensional algebras, and for integral values
of the parameter, the finite-dimensional truncations of them turn out to be exactly
the algebras su(n). The limit of the dual spaces “respects” the Poisson brackets and
the structure of Casimir functions, and has been successfully used to approximate
the Euler equation in a Hamiltonian way; see [Ze1].

For a two-dimensional torus T 2 � {(x1, x2) mod 2π}, we consider the Lie
algebra S0 Vect(T 2) of all divergence-free vector fields on the torus with single-
valued stream functions. The flows generated by those vector fields “do not shift”
the total fluid mass. Such stream functions can be assumed to have zero mean.
We complexify our Lie algebra, commutator [ , ], and other operations, and then
choose a basis Lk in the form of Fourier exponents ei(k,x), k � (k1, k2) ∈ Z

2 \ 0,
whose value at a point (x1, x2) is exp (i(x1k1 + x2k2)).

The commutators of the basis elements Lk in the Lie algebra S0 Vect(T 2) are

(11.4) [Lk, L�] � (k × �) Lk+�,
where k× � � k1�2 − k2�1 is the (oriented) area of the parallelogram spanned by
k and �; see [Arn16] and Section IV.3.

On the other hand, the commutation relations in the algebras sl(n,C) “approx-
imate” those in (11.4) as n → ∞ in the following sense (see [FFZ]). Fix some
odd n and consider the following two matrices in sl(n,C):

F � diag(1, ε, . . . , εn−1) and H �




0 1 0 0
. . .

. . . 0
...

. . .
. . .

0
. . . 1

1 0 . . . 0



,

where ε is a primitive nth root of unity and may be taken as, e.g., ε �
exp(−4πi/n). The matrices obey the identities HF � εFH and Fn � Hn � 1.

Define n2 − 1 matrices Jk , k � (k1, k2) ∈ Z×Z (mod n) and (k1, k2) �� (0, 0)
(mod n), by setting

J(k1,k2) � εk1·k2/2Fk1Hk2 .
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Proposition 11.4. The matrices Jk have zero trace and span the algebra sl(n,C)
with the following commutation relations:

(11.5) [Jk, J�] � 2i · sin

(
2π(k × �)

n

)
Jk+�.

Proof. The proof is an easy calculation. Note that the set of Jk’s is closed under
composition and inversion:

JkJ� � ε−(k×�)/2Jk+� and J−1
(k1,k2)

� J(−k1,−k2),

and all these matrices have determinant equal to 1. �

As n → ∞ this algebra turns into the algebra S0 Vect(T 2) of divergence-free
vector fields on the torus, with the generators Lk and the relations (11.4) through
the identification (n/4πi)Jk �→ Lk .

The Euler equation (11.2) on the torus can be approximated by making use of
this limit of algebras. First, write (11.2) in terms of the Fourier components of the
vorticity ω �∑m ωme

i(m,x):

(11.6) ω̇m �
∑
k

(m× k)
k2

ωkωm−k.

More generally, we recall that the Euler equation corresponding to a Lie algebra
with structure constants Ckim and the inertia tensor aik in coordinates {ωi} has the
form

(11.7) ω̇m �
∑
k,l,p

akpClmpωkωl

on the dual Lie algebra, where akp is the inverse inertia tensor (see Section 4). The
Euler equation (11.6) for the ideal fluid on the torus is reproduced from the latter
by setting

(11.8) Clmp � (p ×m)δm+p−l,0 and akp � 1

k2
δk+p,0,

with all indices belonging to (Z× Z) \ (0, 0).
The sl(n)-approximations of the divergence-free vector fields on T 2 prompt the

introduction of a new dynamical system with the structure constants

Clmp �
n

2π
sin

(
2π(p ×m)

n

)
δm+p−l,0,

with the same metric akp as in (11.8), and where all index components are now
considered modulo n. By imposing a reality condition ω−m � ω̄m, one obtains
the approximation of the Euler hydrodynamic equation (11.6) on the torus by
dynamical systems (11.7) on the algebras su(n); see [Ze1].
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Remark 11.5 [Ze1]. The above limit of Lie algebras sl(n) → S0 Vect(T 2) as
n→∞ respects the structure of Casimir functions on the corresponding spaces.
For a given n the algebra sl(n) � {A ∈ Mat(n,C) | trA � 0} (or its real form
su(n)) admits n − 1 functionally independent Casimir functions, i.e., functions
constant on the orbits of the (co)adjoint action:

trA2, trA3, . . . , trAn.

In the limit these invariants become the momenta of the corresponding vorticity
functions ∫

T 2
ω2µ,

∫
T 2
ω3µ, . . . ,

∫
T 2
ωnµ, . . .

(where µ � d2x is the standard area form on the torus), providing an infinite
number of Casimirs for the area-preserving diffeomorphism group, and for the
two-dimensional Euler equation. On the other hand, in three-dimensional ideal
hydrodynamics there is essentially one analytic expression (helicity) for a con-
served quantity of Casimir type, which makes the prospects for a reliable group
approximation of the 3-D fluid motion rather hopeless.

The infinite-dimensional counterpart of the integrable Euler equation of an n-
dimensional rigid body (see [Man], or Section VI.1.B) was obtained in [War] by
considering the limit of the algebras so(n) as n→∞. For the Euler equation on
the 2-D sphere, an interesting model involving the rich representation theory of
the dodecahedral group has been studied in [VshS].

Remark 11.6. The algebra (11.5) is the nonextended part (also called the “cyclo-
tomic family”) of an infinite-dimensional sine-algebra [Hop, FFZ, FZ] with an
infinite number of generators Jk , k � (k1, k2) ∈ Z× Z and (k1, k2) �� (0, 0), and
the commutation relations

[Jk, J�] � 2i · sin

(
2π(k × �)

λ

)
Jk+� + (a · k)δk+�,0.

Here the constant λ is not necessarily an integer, but it is now an arbitrary complex
number; a � (a1, a2) is a fixed plane vector; the notation δk+�,0 stands for 1 if
k � −� and 0 otherwise; and (a · k) :� a1k1 + a2k2. The term (a · k)δk+�,0
defines a nontrivial extension of the sine-algebra. We refer to [FFZ, Rog, KLR]
for the definition and discussion of such extensions. Here we merely mention that
in the limit λ→ ∞, after a suitable renormalization, this extension corresponds
to introducing multivalued (nonperiodic) stream functions x1 or x2 on the torus
T 2 � {(x1, x2) mod 2π} whose flows are univalued periodic vector fields on T 2.

The recent interest in the sine-algebras is not only due to their hydrodynamical
applications. Viewed as deformations of the Poisson algebra of functions on a two-
dimensional torus, they are related to the Moyal product of functions on a linear
symplectic space R

2n [Moy], the algebras of differential and pseudodifferential
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operators of one and several variables, the algebra of q-analogues of pseudodif-
ferential operators [KLR], and the algebras with continuum root systems [SaV].

§12. The Navier–Stokes equation from the group viewpoint

The Euler equation of ideal hydrodynamics,

v̇ � −(v,∇)v − ∇p (or ω̇ � −{v, ω}, ω � curl v),

is related to the Navier–Stokes equation of a viscous fluid,

v̇ � −(v,∇)v − ∇p + f + ν�v (or ω̇ � −{v, ω} + curl f + ν�ω),
in the same way as the classical Euler equation of a rigid body,

ṁ � m× ω,
is associated to a more general equation, involving friction and external angular
momentum,

(12.1) ṁ � m× ω + F − νm.
Here the “friction operator” ν is symmetric and positive definite. The distributed
mass force f , which appeared in the Navier–Stokes equation, is similar to the
external angular momentum F , and it is the origin of the fluid motion. The viscous
friction ν�v is analogous to the term−νm in (12.1) slowing the rigid body motion.

The similarity becomes especially noticeable if one (following V.I. Yudovich,
1962) rewrites the equations in components in the eigenbasis of the friction oper-
ator. For example, for the Navier–Stokes equation with periodic boundary condi-
tions one can expand the vorticity field and the force f into the ordinary Fourier
series. The equations in both of the cases have the following form:

(12.2) ẋi �
∑

aijkxjxk +
∑

fi − νixi .
In practice, one usually considers a Galerkin approximation in which only a finite
number of terms is kept.

The first term corresponds to the Euler equation and describes the inertia motion.
It follows from the properties of the Euler equation that the divergence of this term
is equal to zero. Furthermore, the Euler equation of an ideal fluid in any dimension,
as well as that of a rigid body, has a quadratic positive definite first integral, the
kinetic energy. Therefore, for f � ν � 0 the vector field on the right-hand side of
equation (12.2) is tangent to certain ellipsoids centered at the origin. This implies
that during the evolution defined by this equation, at least in the finite-dimensional
situation, there is neither growth nor decay of solutions (in the energy metric).

The term corresponding to the friction dominates over the constant “pumping”
f when considered sufficiently far away from the origin. Hence, in that remote
region, the motion is directed towards the origin, and an infinite growth of solutions
is impossible (provided that the problem is finite-dimensional).
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Since the “pumping” f pushes a phase point out of any neighborhood of the
origin, while the friction returns it from a distance, a motion in the system of a
rigid body (12.1) approaches an intermediate regime-attractor. For instance, this
attractor can be a stable stagnation point or a periodic motion, while for sufficiently
high dimension of the phase space it can appear to be a “chaotic” motion sensitive
to the initial condition.

If the friction (or viscosity) coefficient ν is high enough, then the attractor will
necessarily be a stable equilibrium position. While the parameter ν decreases (i.e.,
the reciprocal parameter, the Reynolds numberRe :� 1/ν, increases), bifurcations
of the equilibrium are possible, and the attractor can become a periodic motion
and later a “stochastic” one.

The hypothesis that this mechanism is responsible for the phenomenon of tur-
bulenization of a fluid motion for large Reynolds numbers has been suggested by
many authors. In particular, in the Spring of 1965 A.N. Kolmogorov spelled it
out at a meeting of the Moscow Mathematical Society, during a discussion of the
talk by N.N. Brushlinskaya on bifurcations in equation (12.1) [Bru]. Also in 1965,
the first author, in his talk on this theory in R. Thom’s seminar IHES, formulated
the conjecture that negativity of curvatures of the diffeomorphism group implies
instability of fluid motion for the Euler dynamics, as well as for the corresponding
attractors in the Navier–Stokes equation (see [Arn11,18]).

To normalize the attractor, A.N. Kolmogorov suggested considering the “pump-
ing” proportional to the same small parameter ν as viscosity, and he formulated
the following two conjectures for the latter case.

(1) The weak conjecture: The maximum of the dimensions of minimal attrac-
tors1 in the phase space of the Navier–Stokes equations (as well as of their
Galerkin approximations (12.2)) grows along with the Reynolds number
Re � 1/ν.

(2) The strong conjecture: Not only maximum, but also the minimum of the
dimensions of the minimal attractors mentioned above increases with Re.

Both of these hypotheses, with respect to two-dimensional as well as three-
dimensional hydrodynamics, still remain open.

In 1963 E. Lorenz [Lor] studied the following system in the three-dimensional
phase space, 


ẋ � −10x + 10y,

ẏ � rx − y − xz,
ż � − 8

3z+ xy,
and numerically discovered an attractor with exponentially unstable motion along
it for r � 28. This phenomenon has been called a strange attractor, and later it was
investigated in many numerical–analytical, as well as theoretical, papers (e.g., see
references in [PSS]). The above system exhibits varied and interesting properties

1An attractor is called a minimal attractor if it does not contain smaller attractors.
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for different r . For instance, as the parameter r decreases from 100.795 to 99.524
one observes an infinite sequence of bifurcations of period doubling of a stable
periodic orbit, analogous to the successive period doublings in the Feigenbaum
family of maps of a segment.

It is interesting to observe that the Lorenz model is similar to the Galerkin
approximations of the Navier–Stokes equations (12.2).

For the Galerkin system (12.2) the domain where the energy grows is bounded
by some ellipsoid in the phase space. Outside of that ellipsoid the energy decreases,
and a phase point starts returning to the origin.

For the Lorenz system, the role of energy is played by a nonhomogeneous
quadratic function. The instability in the Lorenz model is apparently stronger than
in the Kolmogorov one. One can check how the motion along the Lorenz strange
attractor sensitively depends on the initial conditions, while for the Kolmogorov
model it remains a conjecture. It is proven only that a stationary flow indeed loses
stability as the Reynolds number increases. The case of the sine profile (sin y) ∂/∂x
of the exterior force on a two-dimensional torus has been settled in [MSi]. The
bifurcations in the Kolmogorov model has been studied by Yudovich, who proved
the existence of a secondary regime, as well as the long-wave instability of more
general steady shear flows u(y) ∂/∂x [Yu4].

A.N. Kolmogorov always emphasized that preservation of stability of a steady
flow, even for the infinitely growing Reynolds number, would not contradict hydro-
dynamical experiments, under the assumption that the basin of the corresponding
attractor shrinks fast enough.

The idea of a connection between the theory of hydrodynamical instability and
the study of stochastization in ergodic theory of dynamical systems was repeatedly
suggested by A.N. Kolmogorov for several years. For instance, in the program of
his 1958/1959 seminar, which was posted on the bulletin board of the Department
of Mechanics and Mathematics (Mech–Mat) at Moscow State University, he listed
the following themes:

1. Boundary value problems for hyperbolic equations whose solutions ev-
erywhere depend discontinuously on a parameter (see, for example, [Sob2]).

2. Problems on classical mechanics in which the eigenfunctions depend
everywhere discontinuously on a parameter (a survey of these problems is
contained in a lecture by Kolmogorov at the Amsterdam Congress in 1954).

3. Monogenic Borel functions and quasianalytic Gonchar functions (in the
hope of applications to problems of type 1 and 2).

4. The rise of high-frequency oscillations when the coefficients of the higher
derivatives tend to zero (papers of Volosov and Lykova for ordinary differen-
tial equations).

5. In the theory of partial differential equations with a small parameter
at the higher derivatives, there has recently been a study of phenomena of
boundary layers and interior layers converging to surfaces of discontinuity
of limiting solutions, or of their derivatives, as viscosity vanishes. In real
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turbulence the solutions deteriorate on an everywhere dense set. The math-
ematical study of this phenomenon is assumed to be carried out at least on
model equations (the Burgers model?).

6. Questions of stability of laminar flows. Asymptotically vanishing stabil-
ity (at least on model equations).

7. Discussion of the possibility of applications to some problems in real
mechanics and physics of the ideology of the metrical theory of dynamical
systems. Questions of stability of various types of spectrum. Structurally sta-
ble systems and structurally stable properties (in the latter direction, hardly
anything is known for systems with several degrees of freedom!).

8. Consideration (at least on models) of the conjecture that, in the situation
at the end of 5 above, in the limit the dynamical system turns into a random
process (the conjecture of the practical impossibility of a long-term weather
forecast).

Constructions of the modern theory of dynamical systems, such as the
Kolmogorov–Sinai entropy [Kol, Si1] measuring the degree of stochastization of
a deterministic dynamics, were undertaken specifically to develop this program.

In 1970 Ruelle and Takens formulated the conjecture that turbulence is the ap-
pearance of attractors with sensitive dependence of motion on the initial conditions
along them in the phase space of the Navier–Stokes equation [R-T]. In spite of
the vast popularity of this paper, even the existence of such attractors still remains
an open question (not to mention the earlier hypotheses of Kolmogorov on the
growth in dimension of the minimal attractors).

Infinite-dimensionality of the phase space of the Navier–Stokes equation affects
the foundation of the passage to the system (12.2) and to Galerkin approximations
as follows. The friction operator in hydrodynamical problems is the product of
viscosity ν and the Laplace operator. The absolute values of its eigenvalues νi
increase with the order of the corresponding harmonics. Hence, the high harmonics
rapidly decay for nonvanishing viscosity. This implies that a phase point of the
infinite-dimensional space is attracted to the finite-dimensional one, where the
coordinates are the amplitudes of the lower harmonics; see [MPa, FoT, D-O].
For a fixed viscosity the analysis of the Galerkin approximation allows one, in
principle, to draw conclusions on the behavior of the actual solutions (see, e.g.
[MatS]).

However, if we are interested in solution behavior as viscosity (the coefficient
ν at the Laplace operator) goes to zero, then one has to consider the number of
harmonics (in the Galerkin approximation) rapidly increasing asRe � 1/ν →∞.
The first explicit estimate of the Hausdorff dimension of the maximal attractor A
of the Navier–Stokes equation for the case of the two-dimensional torus dimA ≤
const · ν−4, given in [Ilsh], has been substantially improved. The best current
majorant of this number is

dimA ≤ 1

π

‖f ‖L2 · vol(M)

ν2
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(where f is the external force,M is a domain of finite volume, and the boundary
condition is zero). It was obtained by A. Ilyin [Ily], based on [CFT]. (We refer to
[B-V, Tem] for the contemporary state of the art.) As the dimension of the physical
space grows, so does the number of harmonics, corresponding to the eigenvalues
whose magnitude is smaller than a given number. It follows that the Galerkin
approximation is to be of greater size.

The character of the first, inertia, term in (12.2) changes drastically in the passage
from two-dimensional fluid flows to three- (or higher-) dimensional ones. The
reason lies in the distinctions among the geometries of the coadjoint orbits of the
corresponding diffeomorphism groups (or the absence of invariants of enstrophy-
type for the higher-dimensional Euler equations; see Sections 9 and 11). Further,
this geometry also obstructs a better foundation for the correspondence between
the Galerkin approximation and the original Navier–Stokes equation in the three-
dimensional case.

In the sixties most specialists in partial differential equations (with the notable
exception of V.I. Yudovich) regarded the lack of global existence and unique-
ness theorems for solutions of the Navier–Stokes equation as the explanation of
turbulence. This point of view was never popular among physicists.

For the three-dimensional Navier–Stokes equation for small or vanishing vis-
cosity, the existence and uniqueness theorems for an arbitrarily large period of
time are still open questions.
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Chapter II

Topology of Steady Fluid Flows

Cold and warm ocean currents (for instance, the Gulf Stream) determine the cli-
mate of continents beyond the reach of human intervention. The power of the
currents’ influence is due to their permanentness and stability. In this chapter we
are going to study the corresponding idealized model of steady flows of an incom-
pressible fluid. Such flows are stationary solutions of the Euler equation, and they
have very peculiar topology and existence conditions. They often turn out to be
“attractors” in phase space of the viscous Navier–Stokes equation. In this case the
structure of such flows might give an “approximate picture” of an arbitrary fluid
motion after a long period of time.

§1. Classification of three-dimensional steady flows

1.A. Stationary Euler solutions and Bernoulli functions

In this chapter we will be dealing with solutions of the Euler equation that do not
depend on time.

Definition 1.1. An ideal steady (or stationary) incompressible fluid flow v(x) in a
domainM ⊂ R

n is a divergence-free solution (div v � 0) of the stationary Euler
equation

0 � −(v,∇)v − ∇p,
for some pressure function p onM .

The same equation in the form −∇vv − ∇p � 0 for a velocity field satisfying
Lvµ � 0 is valid for an arbitrary n-dimensional Riemannian manifold M with
measure µ.

For the three-dimensional case (n � 3), a virtually complete description of
analytic stationary flows is given by the following theorem:

Theorem 1.2 [Arn 3, 4, 16]. Assume that the region M ⊂ R
3 is bounded by

a compact analytic surface, and that the field of velocities is analytic and not
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everywhere collinear with its curl. Then the region of the flow can be partitioned
by an analytic submanifold into a finite number of cells, in each of which the flow
is constructed in a standard way. Namely, the cells are of two types: those fibered
into tori invariant under the flow and those fibered into surfaces invariant under
the flow, diffeomorphic to the annulus R × S1 (see Fig. 9). On each of these tori
the flow lines are either all closed or all dense, and on each annulus all flow lines
are closed.

(a) (b)

Figure 9. Regions of a steady flow fibered (a) into tori and (b) into annuli.

The stationary Euler equation (v,∇)v � −∇p inM ⊂ R
3 can be rewritten as

v × curl v � ∇α
for the function α � p + ‖v‖2

2 .

Definition 1.3. The function α : M → R defined by the relation v×curl v � ∇α
(modulo an additive constant) is called the Bernoulli function of the steady flow
v.

By the very definition, the velocity field v, as well as the vorticity field curl v,
is tangent to the level surfaces of the Bernoulli function α. In other words, α is the
first integral of the flow defined by the field v in the domainM .

Note that the stationary three-dimensional Navier–Stokes equation (describing
a viscous incompressible fluid) generically does not admit any nontrivial first
integrals [Ko3].

Remark 1.4. In invariant terms the stationary Euler equation

Lvu � −dp
is equivalent to ivdu+ divu � −dp, or to the equation

ivdu � −dα for α � p+ivu.
The invariance of α (i.e., Lvα � 0) follows from the relation ivdα � 0.
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Note that the condition v× curl v � ∇α in R
3 can be reformulated in the form

valid for any manifoldM: The vector fields v and curl v commute ({v, curl v} ≡ 0).
To verify this for a three-dimensional Riemannian manifold M , one employs the
following formula of vector calculus:

(1.1) curl(η × ξ) � {ξ, η} + η(div ξ)− ξ(div η)

on any three-dimensional Riemannian manifold. (Here (η × ξ) is the vector field
dual to the 1-form iξ iηµ on M: (iξ iηµ)ζ � µ(η, ξ, ζ ) � (η × ξ, ζ ).) By taking
vorticity of both sides of v × curl v � grad α, we obtain {v, curl v} ≡ 0.

The classification theorem above relies on the following observation about the
structure of α-level surfaces for a three-dimensional manifoldM .

Proposition 1.5. Every noncritical level surface of α that does not intersect the
boundary of M3 is diffeomorphic to a torus. For appropriate variables (ϕ1, ϕ2 |
mod 2π) and z in a neighborhood of such a torus both fields v and ξ � curl v
have constant components

v � v1(z)
∂

∂ϕ1
+ v2(z)

∂

∂ϕ2
, ξ � curl v � ξ1(z)

∂

∂ϕ1
+ ξ2(z)

∂

∂ϕ2
,

along the torus with angular coordinates (ϕ1, ϕ2), while z indexes the tori.

The coordinates ϕ1, ϕ2, z are analogues of the action-angle variables of classical
mechanics. The theorem means, in particular, that the field lines of both v and curl v
lie on the tori α � const. These lines on a given torus are either closed (if the ratio
of the frequencies v2/v1 for the field v, respectively, ξ2/ξ1 for the field ξ � curl v,
is rational) or dense. The proof is given in Section 1.B.

Remark 1.6. In the case of α ≡ const (all α-levels are critical), the fields v and
curl v are collinear at each point (v× curl v ≡ 0). Such fields are called force-free
fields in magnetohydrodynamics.

If a force-free field v is nowhere zero, then curl v � κ · v, where the “ratio”
κ : M → R is a smooth function. The function κ is a first integral of the field v
(as well as of the field curl v). Indeed, 0 ≡ div(curl v) � div κ · v � (grad κ, v).
Hence, every connected component of a nonsingular level surface of κ is a torus,
since such a surface is oriented and it admits a nonvanishing tangent vector field
v (the same reasoning is used in the proof of Proposition 1.5; see Section 1.B).
The field lines of v are windings on these tori (in the corresponding coordinates
ϕ1, ϕ2, z, the frequency ratios ϕ̇1/ϕ̇2 � κ(z) will be constant along the field lines
of v). Therefore, even in the case of a force-free field, the field lines lie on two-
dimensional tori, provided that the field does not have zeros and the function κ is
not constant.

A force-free field v with curl v � λv, where λ is a constant (i.e., an eigenfield
v of the curl operator), can have a much more complicated topology.
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Definition 1.7. The eigenfields of the operator “curl” are called Beltrami fields.

Corollary 1.8. If a steady analytic flow has a trajectory that is not contained in
any analytic (singular) surface, then the flow is defined by a Beltrami field.

Indeed, non-Beltrami flows enjoy a first integral (either the Bernoulli function
α or the ratio function κ).

Example 1.9. On the three-dimensional torus {(x, y, z) | mod 2π}, a family of
Beltrami fields is given by the so-called ABC flows


vx � A sin z+ C cos y,

vy � B sin x + A cos z,

vz � C sin y + B cos x.

The divergence-free vector fields of this three-parameter family are eigen for the
vorticity operator curl v � v. The ABC flows have been discovered by Gromeka
in 1881, rediscovered by Beltrami in 1889, and proposed for study in the present
context in [Arn4, Chi1] (see the references and details in [VasO]).

1
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x / 2 π

Figure 10. The projection of the streamlines on the (x, z)-plane in the integrable case
C � 0 (see [Dom]). The field components do not depend on y.

When one of the parametersA,B, orC vanishes, the flow is integrable (Fig. 10).
Perturbation techniques used in the near-integrable cases allows one to predict
strong resonances (see discussion and results of numerical simulations in [Dom]).
For such perturbations some tori filled out by field lines (magnetic surfaces) persist
(see, e.g., [AKN]), whereas others are disrupted, leading to regions with chaotic be-
havior of trajectories. There is numerical evidence that certain trajectories densely
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fill three-dimensional domains (Fig. 11). In particular, the search for integrable
cases, carried out in [Dom] by studying complex-time singularities of field trajec-
tories, showed (numerically) the absence of integrability for ABC �� 0. For the
case A � √3, B � √2, C � √1 see [Hen], while the more general situation was
treated in [Dom]. The absence of meromorphic integrals for generic ABC flows
with A � B and for the ABC flows with 0 �� A �� B �� 0 and small C �� 0 has
been proven by Ziglin [Zig2].
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Figure 11. A typical Poincaré section for theABC flows (A2 � 1, B2 � 2
3 , and C2 � 1

3 ).
Some field lines seem to fill three-dimensional regions ([Hen] or [Dom]).

A similar study of field symmetries and stagnation points for an analogue of
the ABC flow in a three-dimensional ball can be found in [Zhel].

Note that if the field v satisfying curl v � κ · v is not divergence free, then the
topological properties of its trajectories are different from those discussed here:
The flow is generically nonintegrable even for a nonconstant function κ : M → R

(see [MYZ]).

1.B. Structural theorems

We first prove a smooth analogue of (real-analytic) Theorem 1.2 for a closed
manifold.

Let α be the Bernoulli function for a steady flow v on an orientable 3-
dimensional manifold M without boundary. Denote by � ⊂ M the preimage
of the critical values of α.
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Theorem 1.10 (=1.5′). Every connected component of the set M \ � is fibered
into two-dimensional tori invariant under the flow of v. The motion on each torus
is quasiperiodic (the field lines are either all closed or all dense).

Proof. The function α is the first integral for the vector fields v and ξ :� curl v.
Since these fields commute, their flows give rise to an R

2-action on every level
surface of α. Each noncritical α-level is a smooth closed surface, and hence it is a
torus or a Klein bottle. (In other words, the Euler characteristic of any noncritical
α-level is zero: If ∇α �� 0, then the velocity field v provides an example of a
tangent vector field nonvanishing on the surface.) Furthermore, this surface is
cooriented by ∇α. As a result, we see that the surface is orientable; i.e., it is a
torus.

On each α-level the flow of ξ acts transitively on integral curves of v, and thus
the latter are either all closed or all dense in the level surface. In the coordinates
on a torus in which the R

2-action is given by linear translations, the fields v and
curl v become the vector fields with constant coefficients. �

We now turn to the real-analytic theorem (we follow the exposition in [GK2]).

Definition 1.11. A subset of a real-analytic manifold is called semianalytic if
locally it may be defined by a finite number of real-analytic equations and in-
equalities.

We will need certain properties of such sets summarized in the following

Lemma 1.12. LetM and N be compact connected real-analytic manifolds (pos-
sibly with boundary) and f : M → N a real-analytic map. Then

(i) Any semianalytic subset X of M divides M into a finite number of con-
nected components.

(ii) The image f (X) is a semianalytic subset of N , provided that dimN ≤ 2.
(iii) Assume that the rank of f is equal to dimN at at least one point of M ,

and Y is a nowhere dense semianalytic subset of N . Then the preimage
f −1(Y ) is semianalytic and nowhere dense inM .

Proof. Assertions (i) and (ii) are classical results due to Łojasiewicz [Łoj]. To
prove (iii) consider the set K of critical points of f . The set f −1(Y ) ∩ (M \ K)
is nowhere dense because the restriction of f to M \ K is a submersion. Since
rank f � dimN somewhere on M , the set K is, in turn, nowhere dense in M .
Thus f −1(Y ) is nowhere dense, for it is the union of two sets, each of which is
nowhere dense. It is clear by definition that f −1(Y ) is semianalytic. �

Proof of Theorem 1.2. Suppose first that M is a connected manifold without
boundary (∂M � ∅). Assume also that all the data (the volume form, the metric,
and the velocity field v) are real-analytic. In this case one claims that U � M \�
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has a finite number of connected components, and each of them is fibered into
two-dimensional tori invariant under the flow.

Indeed, under the hypothesis of the theorem, the map α : M → R is analytic,
and we can take f � α. As above, let K be the critical set of α. Then α(K) is
semianalytic by (ii) and nowhere dense by the Sard lemma. Therefore by (iii),
� � α−1 (α(K)) is semianalytic and nowhere dense inM . Applying (i) toX � �,
we see that U is dense inM , and U has a finite number of connected components.

To complete the proof for M without boundary, it suffices to apply Theorem
1.10.

Consider now the case of M with boundary (∂M �� ∅). Again, let K be the
critical set of α and C the critical set of α

∣∣
∂M

. As above, the union Y of the sets
α(K) and α(C) is a semianalytic set nowhere dense in R

2. Therefore,� � α−1(Y )

is nowhere dense, semianalytic, and invariant with respect to the flow.
Although we may not have an R

2-action now, since M is a manifold with
boundary, we do have a local R

2-action on M \ ∂M . Furthermore, the maps α
∣∣
U

and α
∣∣
∂M∩U are still proper submersions onto their images. Consider the orbit Ox

through a point x ∈ U of the local R
2-action. The same argument as in the proof of

Theorem 1.10 shows that Ox is either a torus or an annulus. In the former case the
integral curves of v are all closed or all dense on Ox . Observe that L � Ox ∩ ∂M
is invariant under the flow of v, and thus Ox is an annulus if and only if it meets
∂M . By the definition of U , the field ξ is transversal to ∂M along L. This implies
that L is the union of two closed integral curves of v. Since we have a locally
well-defined R

2-action, all the v-streamlines on Ox must be closed.
Let U0 be a connected component of U . The orbits Ox, x ∈ U0, are either all

tori or all annuli. Indeed, for all x ∈ U the levels Fx � α−1 (α(x)) are transversal
to ∂M , and hence the connected components Ox of Fx are diffeomorphic to each
other for all x ∈ U0. Theorem 1.2 is proved. �

§2. Variational principles for steady solutions and applications
to two-dimensional flows

2.A. Minimization of the energy

Consider the following variational problem (which a priori is not related to the
stationary Euler solutions). Let M be a three-dimensional closed Riemannian
manifold equipped with a volume form µ, and ξ a divergence-free vector field on
M . The energy of the field is the integral

E � 1

2
〈ξ, ξ〉 � 1

2

∫
M

(ξ, ξ)µ.

Problem 2.1. Find the minimum energy and the extremals among all fields ob-
tained from a given field ξ by the action of volume-preserving diffeomorphisms
of the manifoldM .
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Here the action of a volume-preserving diffeomorphism g : M → M associates
to a divergence-free field ξ on M another divergence-free field g∗ξ such that the
flux of the field ξ across any surface σ is equal to the flux of g∗ξ across g(σ ). In
other words, the field is frozen into an incompressible fluid fillingM: The vector
field can be thought of as drawn on the elements of the fluid and expanding as
these elements expand.

In the case of the manifold M with boundary ∂M , the field ξ is assumed to be
tangent to ∂M , and the diffeomorphisms send the boundary ∂M into itself.

In the next chapter we will be concerned with the energy minimum and explicit
estimates on it in terms of the field topology. Here we deal exclusively with the
topology of the extremal fields.

Theorem 2.2 (see, e.g., [Arn9]). The extremals of the problem stated above are
the divergence-free vector fields that commute with their vorticities. In particular,
they coincide with the steady Euler flows inM .

Proof. Let η be any divergence-free field on M . The variation δξ of a field ξ
under the infinitesimal diffeomorphism defined by η is given by the Lie bracket
δξ � [η, ξ ] � {ξ, η} (in coordinate form the Poisson bracket of the vector fields
ξ and η is {ξ, η} � (ξ,∇)η − (η,∇)ξ).

Consequently, the variation of the energy is δE � 〈ξ, δξ〉 � 〈ξ, {ξ, η}〉. Assume
that the vector field ξ is extremal for the energy functional.

By formula (1.1)—curl(η×ξ) � {ξ, η}+η(div ξ)−ξ(div η)—which is valid on
any three-dimensional Riemannian manifold, and by the divergence-free property
for the fields ξ and η, one can rewrite the energy variation at the extremal field ξ
as

0 � δE � 〈ξ, curl(η × ξ)〉 � 〈curl ξ, (η × ξ)〉 � 〈η, (ξ × curl ξ)〉.
Since η is divergence free, the cross product ξ × curl ξ is orthogonal to all
divergence-free fields. Therefore, it is a gradient: ξ × curl ξ � grad α, whence, by
taking the curl of both sides we obtain {ξ, curl ξ} ≡ 0, as required. �

Remark 2.3. In the case of a two-dimensional manifoldM , we obtain the equation

∇u×∇�u ≡ 0

on the stream function u of the extremal field ξ � grad u. This equation says that
the gradient of the extremal function is collinear with that of its Laplacian (see
Section 2.C).

The above result is valid not only for smooth vector fields ξ , but it holds also
in a weaker form of the integral identity 〈η, (ξ × curl ξ)〉 � 0, provided that a
minimizer ξ exists. Note that existence of smooth and nonsmooth extremals in this
problem is a very subtle question. We refer to [Bur, ATL] (see also Sections 2 and
6 below) for existence theorems (of, generally speaking, nonsmooth minimizers)
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in the two-dimensional case. For dimension greater than 2, there is no proof that
the extremals exist except for certain partial results (cf. [L-A, LS4, Vai, GK2]).

Remark 2.4. A similar calculation leads to the following expression for the second
variation of the energy:

δ2E � 〈{ξ, η}, {ξ, η}〉 + 〈{ξ, η}, ((curl ξ)× η)〉,
where ξ is an extremal field whose first and second variations are given by the
Taylor formula

(2.1) ξ(ε) � ξ + ε{ξ, η} + ε
2

2
{{ξ, η}, η} + · · · , ε→ 0,

in terms of a divergence-free vector field η.

Remark 2.5. The Taylor series (2.1) for ξ(ε) is obtained while solving the ordi-
nary differential equation on ξ(t),

dξ(t)

dt
� {ξ(t), η},

by substituting the series

ξ(t) � ξ + tξ1 + t2

2!
ξ2 + · · · .

The field ξ(ε) is obtained from ξ by the action of the phase flow transformation
of η corresponding to a small time interval ε.

All the fields that can be obtained from ξ by the action of volume-preserving
diffeomorphisms form a submanifold in the vector space of all divergence-free
vector fields, that is, the orbit of the point ξ . The tangent affine subspace to this
“smooth” submanifold at the point ξ is formed by the vectors ξ + {ξ, η} with
arbitrary divergence-free η’s.

To calculate the second differential of a function on a submanifold of a vector
space at a point it is not enough to calculate the second differential of the restriction
of the function to the affine subspace tangent to the submanifold at this point. The
genuine second differential of the restriction of the function to the submanifold and
the second differential of the restriction of the same function to the affine tangent
space at a critical point (of the function restriction to this submanifold) are two
different quadratic forms on the tangent space. (Here we consider the tangent space
as the vector space centered at the critical point.)

Formula (2.1) defines the mapping of a domain of “small” vector fields εη to
the orbit of the field ξ . The energy of the image field, considered as a function of
the field εη, is the functional on the vector space of divergence-free vector fields
{εη}.

The first variation of this functional vanishes if ξ is a critical point of the
restriction of the energy to the orbit. Its second variation δ2E is given by the
above formula (as a quadratic form of εη).
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Proposition 2.6. If ξ is a critical point of the restriction of the energy to the
submanifold, the value of the second variation quadratic form depends only on
the tangent vector ζ � {ξ, εη}, and it does not depend on the particular choice of
the field η.

Proof. We can replace η by a field η + u where {ξ, u} � 0 (otherwise ζ would
change). The contribution of u to the quadratic term in series (2.1) is then ε2

2 w,
where w � {{ξ, η}, u}. Since {ξ, u} � 0, we get from the Jacobi identity that
w � −{{η, u}, ξ}. The latter vector is tangent to the orbit at ξ . Hence the first
variation of the energy is vanishing on this vectorw. Adding the vector ε

2

2 w to the
vector ξ(ε) (given by (2.1) and being at a distance of order ε from ξ ) we change the
value of the energy by a quantity of order ε3. Thus the addition of u to η contributes
nothing to the quadratic part of the Taylor series of the energy restriction to the
orbit of ξ (provided that the vector field ξ is a critical point). �

2.B. The Dirichlet problem and steady flows

The energy minimization Problem 2.1 acquires the following form of the Dirichlet
problem in the two-dimensional case. Let M be a two-dimensional Riemannian
manifold (possibly with boundary) with a Riemannian volume form µ.

Problem 2.1′. Find the infimum and the minimizer of the Dirichlet integral

E(u) � 1

2

∫
M

(∇u,∇u)µ

among all the smooth functions u (on the manifoldM) that can be obtained from a
given function u0 by the action of area-preserving diffeomorphisms ofM to itself.

In order to see that this is the two-dimensional counterpart of Problem 2.1,
one can consider the skew gradient sgrad u instead of the true gradient ∇u (on
which the functional E has, of course, the same value). Then u is regarded as a
Hamiltonian function, whose definition is invariant: Any area-preserving change
of coordinates for the function u implies the corresponding diffeomorphism action
on the field sgrad u.

For instance, letM be the disk x2+y2 ≤ 1, and let u0 be a function that vanishes
at the boundary and has only one critical point (for instance, a maximum) in the
disk (Fig. 12a).

Proposition 2.7 [Arn9, 20]. The minimum of the Dirichlet functional is attained
on the function u that depends only on the distance to the center of the disk and
whose sets {(x, y) | u(x, y) ≤ c} of smaller values have the same areas as those
of the initial function u0 (Fig. 12b).

The proof essentially is the application of the isoperimetric and Schwarz in-
equalities. �
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uu0

(a) (b)

Figure 12. Levels of (a) a function u0 with the only critical point (maximum) inside the
disk, and (b) the centrally symmetrical Dirichlet minimizer u among the functions that are
area-preserving rearrangements of u0.

If the initial function has several critical points (say, two maxima and a saddle
point, Fig. 13), the situation is far more subtle. Numerical experiments in [Mof4,
Baj] suggest various types of minimizers according to the steepness of the initial
function u0, all having “singular” lines. We refer to the extensive surveys [Mof2,4,
MoT] (and references therein) for a discussion of the formation of field singular-
ities in a fluid under the relaxation to an extremal state. The obstructions to such
relaxation in three dimensions are described in Chapter III.

If instead of the initial function u0 one prescribes just its boundary conditions,
then one may obtain an infinite number of C∞-steady solutions (or minimizers)
for the problem in a rectangle, and a unique solution in the analytic category [Tro].

Figure 13. A minimizer of the Dirichlet problem for a function with two maxima has a
singular line (see [Baj]).

Theorem 2.8. A smooth minimizer u of the Dirichlet Problem 2.1′ on a Riemann-
ian manifold M obeys the following condition: The gradients of the functions u
and �u are collinear at every point ofM .
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In other words, the extremal functions u have the “same” level curves as their
Laplacians: Locally there is a function F : R → R such that �u � F(u). This
is just a two-dimensional reformulation of Theorem 2.2. For instance, the axial
symmetric function with its only critical point in the disk (Fig. 12) not only has the
energy minimum among all diffeomorphic fields, but also has the energy maximum
among all isovorticed fields [KLe].

The Dirichlet Problem 2.1′ in higher dimensions has applications to scalar dy-
namos [Bay2] and the theory of equilibrium of a confined plasma [LS1]. One can
show that Theorem 2.8 holds in n dimensions. (Hint: adapt the proof of Theorem
2.2.)

Remark 2.9. As discussed above, minimizers of energy (i.e., of the Dirichlet inte-
gral) among all smooth area-preserving changes of coordinates in a given function
correspond to steady flows. The problem of existence of smooth minimizers is still
open in any reasonable generality.

This problem admits a natural extension to a more general class of functions
(for instance, from theLp or Sobolev spaces), to all measure-preserving rearrange-
ments of such functions on measure spaces, and to general variational functionals.
There is vast literature on the existence of (usually, nonsmooth) extrema of varia-
tional problems in this setting and on their relation to 2-D hydrodynamics, when
one minimizes (or maximizes) the energy functional among the rearrangements
(see [Bej, ATL, Bur]). In Section 2.D we discuss a different variational principle
proposed in [Shn3] for two-dimensional flows, where one confines oneself to the
same energy level, but constructs a partial order on functions. Minimal elements
in this partial order correspond to steady flows.

A step towards the intrinsic characterization of the weak closure (in H 1
0 ) of the

set of functions obtained from a given one by composing it with diffeomorphisms
(not necessarily volume preserving) of the domain is obtained in [LS3]. It is done
under the assumption that the function is craterless; i.e., in an appropriate weak
sense it has no local minima in the interior of the domain. The authors define a
subspace of this weak closure that captures robust (under weak limits) topological
properties of the level sets.

2.C. Relation of two variational principles

We have observed that the smooth extremals of the energy functional among the
vector fields diffeomorphic to a given one commute with their vorticities, and
hence they coincide with the description of ideal steady flows (cf. Remark 1.4 and
Theorem 2.2). This coincidence of the solutions in two problems is a manifestation
of the duality of the two variational principles: in ideal hydrodynamics and in
magnetohydrodynamics.

The steady solutions in ideal hydrodynamics correspond to critical points of
the energy

∫
(v, v)2/2 among all isovorticed fields, i.e., among the fields whose

vorticities differ by the action of a volume-preserving diffeomorphism. In the Lie-
algebraic language, steady flows correspond to stagnation points of the energy
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functional on the coadjoint orbits of the group of volume-preserving diffeomor-
phisms S Diff(Mn) (see Chapter I). On the other hand, in the above problem we
are looking for an energy minimizer within the class of diffeomorphic fields, i.e.,
on the adjoint orbits of the same group of volume-preserving diffeomorphisms.
Note that the latter principle of energy minimization among the diffeomorphic
fields is encountered in the MHD theory (see Chapter III, or, e.g., [Arn9, 20, Bej,
Ser2, Mof2, 4]).

Theorem 2.2 above can now be reformulated as follows: “Extrema for both
variational principles coincide.” This statement materializes in a very general phe-
nomenon valid for any nondegenerate quadratic formE on an arbitrary Lie algebra
g. Let E∗ be the quadratic form on the dual space g∗ corresponding to the form E
on g. If the form E(x) � 1

2 〈x,Ax〉 is defined by means of an (invertible) inertia
operator A : g → g∗, then E∗ is determined by E∗(y) � 1

2 〈A−1y, y〉 for any
y ∈ g∗.

Theorem 2.10. Conditional extrema of the quadratic functional E on adjoint
orbits in a Lie algebra g are sent by the inertia operator A : g → g∗ to the
conditional extrema of the quadratic form E∗ on the coadjoint orbits in g∗.

Proof. Let x0 be a point of the Lie algebra g, and O the adjoint orbit of the point
x0. An arbitrary vector ζ of the tangent space Tx0O can be written by definition as
a variation of x0, i.e., as ζ � adη x0 for some element η ∈ g. Therefore, one has the
following expression for the variation of the energy functional E(v) � 1

2 〈x,Ax〉
along the vector ζ :

dE(ζ ) � 〈ζ, Ax0〉 � 〈adη x0, Ax0〉 � 〈x0, ad∗η(Ax0)〉
� 〈A−1y0, ad∗η y0〉 � dE∗(ζ ∗),

where y0 ∈ g∗ denotes the image of x0 under the inertia operator (y0 � Ax0), and
the vector ζ ∗ � ad∗η y0 represents an arbitrary vector tangent to the coadjoint orbit
O∗ of the point y0.

Now assume that x0 ∈ g is a critical point of the function E(x) restricted to
the adjoint orbit O of x0. Then the differential of E vanishes on the tangent space
Tx0O and so does the differential of E∗ restricted to the tangent space to O∗ at y0.
Hence y0 is a critical point of E∗ restricted to the coadjoint orbit O∗. �

2.D. Semigroup variational principle for two-dimensional
steady flows

In [Shn3], Shnirelman proposed a different variational principle in two dimen-
sions that recovers some of the steady solutions of the Euler equation. Roughly
speaking, instead of the energy minimization among all isovorticed fields, one can
stay among the fields with the same energy and construct a partial order on their
vorticities. In a sense, the extremal fields obtained by this method have the most
mixed vorticity functions.



82 II. Topology of Steady Fluid Flows

Consider a bounded connected two-dimensional domain M ⊂ R
2 with a mea-

sure µ and boundary � � ∂M . We wish to describe generalized area-preserving
mappings ofM into itself that are not necessarily one-to-one. It is natural to define
them in terms of their actions on functions onM .

Definition 2.11. A polymorphism is a bounded operator K̃ in L2(M,R) of the
form

K̃u(x) �
∫
M

K(x, y)u(y)µy,

where the (distributional) kernel K(x, y) obeys the following conditions:

(i) K(x, y) ≥ 0; i.e., K(x, y) is a nonnegative measure onM ×M;
(ii)
∫
M

K(x, y)µx ≡ 1 for every y ∈ M; and

(iii)
∫
M

K(x, y)µy ≡ 1 for every x ∈ M .

Examples 2.12. Two obvious, yet important, examples of such operators are:
(A) Let ϕ ∈ S Diff(M) be an area-preserving diffeomorphism of M . Set

Kϕ(x, y) � δ(y − ϕ−1(x)), where δ(∗) is the 2-dimensional δ-function. Then
the operator K̃ϕ whose kernel is Kϕ(x, y) sends a function u(x) to the function
u(ϕ−1(x)) and is unitary in L2(M).

(B) If K0(x, y) ≡ 1/µ(M) where µ(M) is the total measure of M , the
operator K̃0 maps a function u(x) to the constant that is the mean value of u(x).

In a sense, an arbitrary operator K̃ interpolates between those two extreme
cases.

Conditions (ii) and (iii) generalize the volume-preserving property of diffeo-
morphisms: They demand that the probabilistic measure of the “image” of the
element dy and the “inverse image” of the element dx under an operator K̃ be
equal to the measures of the elements dy and dx, respectively.

All polymorphisms form a (weakly compact) semigroup P of (contractive, or
more precisely, nonexpanding) operators inL2(M). The operators K̃ϕ correspond-
ing to diffeomorphisms constitute a weakly dense subset of P . Representations of
the group of diffeomorphisms can be extended to the semigroup of polymorphisms
[Ner2].

Definition 2.13. The partial ordering in L2(M) is dictated by the action of P:
f ≺ g if there exists an operator K̃ ∈ P such that f � K̃g. If f ≺ g and g ≺ f ,
we say that f and g are equivalent: f ∼ g.

The following property of the relation ≺ will be useful in the sequel.

Proposition 2.14 [Shn3]. If f, g ∈ L2(M) and f ≺ g, then ‖f ‖L2 ≤ ‖g‖L2 . For
f ≺ g the equality of the norms ‖f ‖L2 � ‖g‖L2 is possible if and only if g ≺ f .
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Let L2,2(M) be the Sobolev space that consists of functions ϕ obeying∑
|k|≤2

‖Dkϕ‖2
L2(M) <∞, ϕ

∣∣
∂M
� const.

Definition 2.15. Given a function ϕ ∈ L2,2(M), denote by �̄ϕ the set of such
functions ψ ∈ L2,2(M) that

(2.2a) �ψ ≺ �ϕ.
If ϕ is regarded as a stream function for a fluid flow, then the set �̄ϕ contains

the fields isovorticed with ϕ, i.e., the fields with the stream functions ψ for which
there exists a diffeomorphism g : M → M such that�ψ(x) � �ϕ(g(x)). These
fields constitute the coadjoint orbit Oϕ of ϕ.

Let �ϕ ⊂ �̄ϕ be the set of stream functions ψ obeying one extra condition of
the conservation of energy:

(2.2b) E(ψ) � E(ϕ),
whereE(ψ) � 1

2‖∇ψ‖2
L2 is the kinetic energy of the flow with the stream function

ψ .

An element ν ∈ �ϕ is minimal relative to the partial ordering on�ϕ if�ν ′ ∼ �ν
whenever ν ′ ∈ �ϕ and �ν ′ ≺ �ν.

Theorem 2.16 [Shn3]. For each function ϕ ∈ L2,2(M) there exists a minimal
element ν ∈ �ϕ in the set �ϕ .

A minimal element is not necessarily unique. The proof is essentially a com-
bination of the Zorn lemma (claiming that if for each linearly ordered decreasing
chain of elements of a partially ordered set there is a lower bound, then there
exists a minimal element in the set) with the relative weak compactness of the set
of measures {K(x, y)}.

Theorem 2.17 [Shn3]. Let u be a minimal element of �ϕ . Then u is the stream
function of a stationary flow, and moreover, there exists a single-valued monotone
function F such that �u � F(u) almost everywhere inM .

The equivalent statement is that if u is a minimal element of�ϕ , then, for almost
all points x, y ∈ M , the products (u(x)− u(y))(ω(x)− ω(y)), where ω :� �u,
all have the same sign. We refer to [Shn3] for the proof and all the details.

Remark 2.18. Though a classical solution of the Euler equation is a trajectory on
the coadjoint orbit Oϕ for some functionϕ, for large times the flow transformations
become similar to the mixing described by polymorphisms. These are the heuristics
lying behind the relation between the minimal elements and the stationary solutions
of the Euler equation.
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Remark 2.19. For a non-simply connectedM , the boundary conditions for func-
tions in the space L2,2(M) are ϕ

∣∣
�i
≡ consti , where �i is a connected component

of ∂M . In the latter case the set �̄ϕ consists of the functions ψ that in addition to
the condition (2.2a) satisfy the property

(2.2c)
∫

�i

∂ψ

∂n
ds �

∫

�i

∂ϕ

∂n
ds for all i.

Property (2.2c) follows from (2.2a) for a simply connectedM .

One can classify minimal elements of the “orbit”�ϕ by comparing their energy
to other points of the set �̄ϕ ⊃ �ϕ consisting of the stream functions obeying
conditions (2.2a) and (2.2c), but without the requirement (2.2b) on the energy.

Theorem 2.20 [Shn3]. Each minimal element u ∈ �ϕ is one of the following
three types:

(a) energy-excessive, i.e., E(u) ≥ E(ψ),
(b) energy-deficient, i.e., E(u) ≤ E(ψ), or
(c) neutral, i.e., E(u) � E(ψ)

for all ψ ∈ �̄ϕ . All the minimal elements of �ϕ are of the same type.

Problem 2.21. It would be interesting to relate these types of minimal elements
and the above variational principle to various types of energy relaxation discussed
in Section 2.B (cf. numerical simulations in [Mof4, Baj]).

This variational principle might be a basis for formulating for semigroups an
analogue of the (geodesic) variational principle for groups (Chapter I). In Section
IV.7.G, we discuss a natural passage from the geodesics on the group of volume-
preserving diffeomorphisms of a manifold to the extremals of the least action
principle for the so-called generalized flows (which are similar to the semigroup
of polymorphisms), i.e., the passage from classical fluid motions to generalized
solutions of the Euler equation; see [Bre1, Shn5].

§3. Stability of stationary points on Lie algebras

In order to study the stability of stationary fluid flows in the next section, we obtain
below a stability criterion for the Euler equation on an arbitrary Lie algebra.

Consider a system of ordinary differential equations

(3.1) ẋ � f (x), x ∈ R
n.

Definition 3.1. A point x0 at which f (x0) � 0 is (Lyapunov) stable if for every
ε > 0 there exists δ > 0 such that |x(t) − x0| < ε for all t > 0, provided that
|x(0)− x0| < δ.
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Assume that we are also given a foliation in the space R
n. A point x0 is called

regular for the foliation if the partition of a neighborhood of x0 into the leaves of
the foliation is diffeomorphic to a partition of the Euclidean space into parallel
planes (in particular, all leaves near the point x0 have the same dimension).

Example 3.2. In the case of the Lie algebra so(3) the orbits form a partition of
three-dimensional space so(3) � R

3 into spheres centered at 0 and the point 0
itself. Then all points of the space R

3, except the origin, are regular for the partition
into orbits.

Suppose now that the system (3.1) leaves the foliation invariant, and E is a first
integral of the system such that

(i) x0 is a critical point of E restricted to the leaf containing x0;
(ii) x0 is a regular point of the foliation; and
(iii) the second differential of E restricted to the leaf of x0 is a nondegenerate

quadratic form.

The following statement is essentially a reformulation of Lagrange’s theorem.

Theorem 3.3. A point x0 obeying conditions (i)–(iii) is a stationary point of the
system (3.1). If, in addition, the second differential of E restricted to the leaf of x0

is positively or negatively defined, then the point x0 is (Lyapunov) stable.

Proof. If y is a coordinate on the leaf such that y(x0) � 0, then the function E
restricted to the leaf can be written asE(y) � E0+ 1

2 (E2y, y)+O(y3) as y → 0,
where the matrixE2 is symmetric: (E2y, z) � (y, E2z). Hence the time derivative
along the trajectories of our system is

Ė � (E2y, ẏ)+O(y2)ẏ as y → 0.

If ẏ �� 0 at the origin y � 0, then one can choose a point y arbitrarily close
to the origin such that (E2y, ẏ) �� 0. The latter contradicts the invariance of E.
Therefore, ẏ � 0, and x0 is a stationary point.

The regularity of the leaves near x0 implies that on every neighboring leaf there
exists near x0 a point that is a conditional maximum or minimum ofE. The stability
part of the statement is evident (Lagrange, Dirichlet, etc.): The definiteness of E
ensures that in every leaf near x0 the E-levels form a family of ellipsoid-like
hypersurfaces. Every trajectory of the system (3.1) that begins inside such an
ellipsoid will never leave it, due to the invariance of E and of the foliation (see
Fig. 14). �

Let ν be a stationary point of the Euler equation on a Lie algebra g (see Chapter
I). The space g is foliated by the images of the coadjoint orbits in the algebra, and
we suppose that ν is a regular point of the foliation.
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x
0

Figure 14. Trajectories enclosed in ellipsoid-like intersections of foliation leaves (here,
horizontal planes) and energy levels (paraboloids) will never leave a vicinity of the stationary
point.

Theorem 3.4 [Arn4, 16]. The second differential of the kinetic energy restricted
to the image of an orbit of the coadjoint representation in the algebra g is given
at a critical point ν ∈ g by the formula

(3.2) 2δ2E
∣∣
ν
(ξ) � 〈B(ν, f ), B(ν, f )〉 + 〈[f, ν], B(ν, f )〉,

where ξ is a tangent vector to this image expressed in terms of f ∈ g by the
formula ξ � B(ν, f ), and B(·, ·) is the operation on g defined by (I.4.3).

Corollary 3.5. If the quadratic form above is positive or negative definite, then
the stationary point ν is a stable solution of the Euler equation.

Example 3.6. In the case of the rigid body (g � so(3)), the coadjoint orbits are
spheres centered at zero, while the levels of the kinetic energy form a family of
ellipsoids. The energy restricted to every orbit has 6 critical points (being points
of tangency of the sphere with the ellipsoids): 2 maxima, 2 minima, and 2 saddles
(Fig. 15). The maxima and minima correspond to the stable rotations of the rigid
body about the shortest and the longest axes of the inertia ellipsoid. The saddles
correspond to the unstable rotations about its middle axis.

We emphasize that the question under discussion is not stability “in a linear
approximation,” but the actual Lyapunov stability (i.e., with respect to finite per-
turbations in the nonlinear problem). The difference between these two forms of
stability is substantial in this case, since our problem has a Hamiltonian character.
For Hamiltonian systems asymptotic stability is impossible, so stability in a linear
approximation is always neutral and inconclusive in regard to the stability of an
equilibrium position of the nonlinear problem.

Remark 3.7. In general, an indefinite quadratic form δ2E does not imply instabil-
ity of the corresponding point. An equilibrium position of a Hamiltonian system
can be stable even if the Hamiltonian function at this position is neither a maximum
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Figure 15. Energy levels on a coadjoint orbit of the Lie algebra so(3,R) of a rigid body.

nor a minimum. The quadratic Hamiltonian

E � ω1
p2

1 + q2
1

2
− ω2

p2
2 + q2

2

2

is the simplest example of this kind. Note that the behavior of the corresponding
eigenvalues under the introduction of a small viscosity is different: ±iω1 are
moving into the left (stable) hyperplane, while ±iω2 are moving into the right
(unstable) one.

Proof of Theorem 3.4. The action of an element ε · f ∈ g on a point ν is given
by the Taylor expansion for motion along a coadjoint orbit; cf. formula (2.1):

ν �→ ν̄ � ν + ε · ξ + ε
2

2
· ζ +O(ε3), ε→ 0,

where ξ � B(ν, f ), ζ � B(B(ν, f ), f ). Substitute ν̄ into the expression for the
energy E(ν̄) � 1

2 〈ν̄, ν̄〉:
E(ν̄) � E(ν)+ ε · δE + ε2 · δ2E +O(ε3), ε→ 0,

where δE � 〈ν, ξ〉 and 2δ2E � 〈ξ, ξ〉 + 〈ν, ζ 〉.
The first variation of the energy vanishes at ν:

δE � 〈ν, B(ν, f )〉 � −〈B(ν, ν), f 〉 � 0,

since ν is stationary, and therefore B(ν, ν) � 0.
The required expression (3.2) for δ2E follows due to the identity

〈ν, B(B(ν, f ), f )〉 � 〈[f, ν], B(ν, f )〉.
Now we would like to show that the quadratic form δ2E depends on ξ � B(ν, f )

rather than on f , so it is indeed a form on the tangent space in g.
First verify that the auxiliary bilinear form C(x, y) :� 〈[x, ν], B(ν, y)〉 is sym-

metric: C(x, y) � C(y, x). It readily follows from the definition of B, the Jacobi
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identity in g, and from the stationarity condition B(ν, ν) � 0 that

〈[x, ν], B(ν, y)〉 � 〈B(ν, [ν, x]), y〉 � 〈[[ν, x], y], ν〉
� 〈[ν, [x, y]], ν〉 + 〈[x, [y, ν]], ν〉
� 〈B(ν, ν), [x, y]〉 + 〈B(ν, x), [y, ν]〉 � 〈[y, ν], B(ν, x)〉.

Finally, assume that B(ν, f1) � B(ν, f2) and show that the corresponding
values of δ2E coincide. Set x � f1 − f2, y � f1, and notice that B(ν, x) � 0.
The expression (3.2) for δ2E, combined with the symmetry of C(x, y), gives the
desired identity:

2(δ2E(f1)− δ2E(f2)) � 〈[x, ν], B(ν, y)〉 � 〈[y, ν], B(ν, x)〉 � 0.

Thus, the quadratic form δ2E indeed depends on ξ � B(ν, f ), and Theorem 3.4
is proved. �

Remark 3.8. For the Euler equation on a Lie algebra g consider the equation in
variations at a stationary point ν:

(3.3) ξ̇ � B(ν, ξ)+ B(ξ, ν).

Proposition 3.9. The quadratic form d2E is the first integral of the equation in
variations (3.3).

Proof. The proposition can be verified by the following straightforward calcula-
tion. From (3.2), it follows that

d

dt
δ2E � 〈ξ, ξ̇〉 + 〈[f, ν], ξ̇〉.

Therefore the substitution of ξ̇ from the equation in variations (3.3) leads to

d

dt
δ2E � 〈ξ, B(ν, ξ)〉 + 〈ξ, B(ξ, ν)〉 + 〈[f, ν], B(ν, ξ)〉 + 〈[f, ν], B(ξ, ν)〉

� 〈ξ, B(ξ, ν)〉 + 〈[ξ, ν], ξ 〉 + 〈[ν, [f, ν]], ξ 〉
� 〈[ν, [f, ν]], B(ν, f )〉 � −〈[f, ν], B(ν, [f, ν])〉 � 0.

�

§4. Stability of planar fluid flows

The analogy between the equations of a rigid body and of an incompressible fluid
enables one to study stability of steady flows by considering critical points of the
energy function on the sets of isovorticed vector fields (i.e., on the coadjoint orbits
of the diffeomorphism group).

This approach was initiated in [Arn4], and we refer to Fjørtoft [Fj] as a pre-
decessor, and to [HMRW] for further applications manifesting the fruitfulness of
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this method for a variety of dynamical systems. In this section we touch on a few
selected facts.

In Section 3 we saw that the variational approach to the study of the stationary
solutions of the Euler equation of an incompressible fluid suggests that:

(i) A steady fluid flow is distinguished from all flows isovorticed to it by the
fact that it is a (conditional) critical point of the kinetic energy.

(ii) If the indicated critical point is actually an extremum, i.e., a local condi-
tional maximum or minimum, and this extremum is nondegenerate (the
second differential d2E is positive or negative definite), then (under some
regularity condition) the stationary flow is Lyapunov stable.

Though these assertions do not formally follow from the theorems of Section 3
because of the infinite-dimensionality of our consideration here, one can justify the
final conclusion about stability without justifying the intermediate constructions.

4.A. Stability criteria for steady flows

Let M be a two-dimensional domain, say, an annulus with a steady flow in it
(Fig. 16). In what follows we show, in particular, that the steady flow in M is
stable if its stream function ψ satisfies the following condition on the velocity
profile:

(4.1) 0 < c ≤ ∇ψ
∇�ψ ≤ C <∞

for some constants c and C.
For an arbitrary stationary flow in two dimensions the gradient vectors of the

stream function and of its Laplacian are collinear. Therefore the ratio ∇ψ/∇�ψ
makes sense. Furthermore, in a neighborhood of every point that is not critical for
the vorticity function �ψ , the stream function ψ is a function of the vorticity.

We begin the study of the two-dimensional case by obtaining the following
explicit expression for the second variation of the energy.

M

Figure 16. A profile of a stable steady flow in an annulus.
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Theorem 4.1 [Arn6, 16]. The second variation of the energyE on the set of fields
isovorticed to a given steady field v with the stream function ψ is

δ2E
∣∣
v
� 1

2

∫∫
M

(
(δv)2 + ∇ψ

∇�ψ (δω)
2

)
dxdy,

where δv is a variation of the velocity field, δω is the corresponding variation of
the vorticity function ω � curl v � �ψ , and dxdy is the area form inM .

Remark 4.2. The condition (4.1) on the ratio∇ψ/∇�ψ implies that the quadratic
form δ2E, with respect to δv, is positively defined.

In the case of the negative ratio ∇ψ/∇�ψ satisfying

0 < c ≤ − ∇ψ
∇�ψ ≤ C <∞,

the form δ2E is negatively defined, provided that the inequality ‖∇ϕ‖2
L2 ≤

α‖�ϕ‖2
L2 holds for all ϕ ∈ C2(M) with 0 < α < c. The latter inequality is

essentially an estimate on the first eigenvalue of the Laplace operator in the do-
mainM , and it relies on the shape and size of the domain.

Proof. Formula (3.2) for the second variation of the energyE � 1
2

∫∫
M
(v, v)dxdy

gives

(4.2) 2δ2E �
∫∫

M

(
(δv)2 + (δv, [f, v])

)
dxdy,

where δv � B(v, f ).
Integrating by parts the second term, we come to

(4.3)∫∫
M

(δv, [f, v]) dxdy �
∫∫

M

(δv, curl(f ×v)) dxdy �
∫∫

M

(δω) ·(f ×v) dxdy

with evident notations: f × v is a function on M whose value at any point is
the oriented area of the parallelogram spanned by f and v, and curl(f × v) �
sgrad(f × v). The formula v � sgradψ � (−ψy,ψx) implies that

f × v � f × (sgradψ) � (f,∇ψ).
On the other hand, for ω � �ψ , the variation δω is the derivative of ω along the
field f :

δω � Lfω � (f,∇�ψ).
The comparison of the two formulas above immediately gives

f × v � ∇ψ
∇�ψ δω,

which, along with (4.2–4.3), implies the statement of the theorem. �
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The above heuristic consideration of stability, based on the definiteness of the
quadratic differential of the kinetic energy δ2E, can be justified to obtain the actual
stability with the following a priori bound.

Theorem 4.3 (Stability Theorem, [Arn6, 16]). Suppose that the stream function
of a stationary flow, ψ � ψ(x, y), in a region M is a function of the vorticity
function (i.e., of the function �ψ) not only locally but globally. Suppose that the
derivative of the stream function with respect to the vorticity satisfies the inequality

c ≤ ∇ψ
∇�ψ ≤ C, where 0 < c ≤ C <∞.

Let ψ + ϕ(x, y, t) be the stream function of another flow, not necessarily station-
ary. Assume that at the initial moment, the circulation of the velocity field of the
perturbed flow (with the stream function ψ + ϕ) around every boundary com-
ponent of the region M is equal to the circulation of the original flow (with the
stream functionψ). Then the perturbation ϕ � ϕ(x, y, t) at every moment of time
is bounded in terms of the initial perturbation ϕ0 � ϕ(x, y, 0) by the inequality∫∫

M

(∇ϕ)2 + c(�ϕ)2dxdy ≤
∫∫

M

(∇ϕ0)
2 + C(�ϕ0)

2dxdy.

Theorem 4.3′ (Second Stability Theorem, [Arn6, 16]). If the stationary flow
satisfies the condition

c ≤ − ∇ψ
∇�ψ ≤ C with 0 < c ≤ C <∞

(as well as other assumptions of the preceding theorem), then the perturbation ϕ
is bounded in terms of ϕ0 by the inequality

(4.4)
∫∫

M

c(�ϕ)2 − (∇ϕ)2dxdy ≤
∫∫

M

C(�ϕ0)
2 − (∇ϕ0)

2dxdy.

Remark 4.4. If for a certain α satisfying 0 < α < c the inequality ‖∇ϕ‖2
L2 ≤

α‖�ϕ‖2
L2 holds for all ϕ ∈ C2(M), then the quadratic form

∫∫
M
c(�ϕ)2 −

(∇ϕ)2dxdy is positive definite:∫∫
M

c(�ϕ)2 − (∇ϕ)2dxdy ≥ (c − α)
∫∫

M

(�ϕ)2dxdy.

Therefore it follows from (4.4) that∫∫
M

(�ϕ)2dxdy ≤ C

c − α
∫∫

M

(�ϕ0)
2dxdy,

which manifests the stability of the stationary flow ψ .

The underlying heuristic idea of the proof of the Stability Theorem is as fol-
lows. A first integral H(ϕ) having a nondegenerate minimum or maximum at the
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stationary point ψ can be regarded as a squared “norm” (setting H(ψ) � 0). It
gives us control of the trajectory ϕt in the norm that is positive in a punctured
neighborhood of ψ on the set of isovorticed fields.

Example 4.5. Consider a circular motion with the stream function ψ � ψ(ρ),
ρ �

√
x2 + y2, in the annulus M � {R1 ≤ ρ ≤ R2}. Rewriting the Laplace

operator in polar coordinates, we get the following sufficient condition for stability:
If the ratio ψ ′/(ψ ′′ + 1

ρ
ψ ′)′ does not change sign, then the flow is stable (see

[Arn16]).

Example 4.6. Consider a planar shear flow in the strip 0 ≤ y ≤ 2π in the (x, y)-
plane with a velocity profile v(y) (i.e., with a velocity field (v(y), 0), Fig. 17).
Such a flow is stationary for every velocity profile.

The form δ2E is positively or negatively defined if the velocity profile has no
zeros and no points of inflection (i.e., v �� 0 and vyy �� 0). The conclusion, that
the planar parallel flows are stable, provided that there are no inflection points in
the velocity profile, is a nonlinear analogue of the so-called Rayleigh theorem.
Profiles with the ratio v/vyy > 0 and v/vyy < 0 are sketched in Figs. 17a and
17b, respectively.

y

x

y

x

(a) (b)

Figure 17. Lyapunov stable fluid flows in a strip. Profiles with the ratio (a) v/vyy > 0 and
(b) v/vyy < 0.

To make the region of the flow compact, we impose the periodicity condition
x (mod X) along the x-coordinate and obtain the torus {(x, y) | x (mod X), y
(mod 2π)}. Fix the velocity field v � (sin y, 0) determined by the stream function
ψ � − cos y. Its vorticity is ω � − cos y. The velocity profile has two inflection
points, but the stream function can be expressed as a function of the vorticity. The
ratio∇ψ/∇�ψ is equal to minus one. By applying the Second Stability Theorem,
we have obtained the stability of our stationary flow in the case when

∫ 2π

0

∫ X

0
(�ϕ)2dxdy ≥

∫ 2π

0

∫ X

0
(∇ϕ)2dxdy
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for all functions ϕ of periodX in x and 2π in y. It is easy to calculate that the last
inequality is satisfied for X ≤ 2π and is violated for X > 2π .

Thus the Second Stability Theorem implies the stability of a sinusoidal station-
ary flow on a short torus when the period in the direction of the basic flow (X) is
less than the width of the flow (2π). On the other hand, one can directly verify that
on a long torus (forX > 2π) our sinusoidal flow is unstable [MSi]. Hence, in this
example, the sufficient condition for stability from the Second Stability Theorem
turns out to be necessary as well.

Stability of certain plane-parallel and spherical two-dimensional flows was con-
sidered in [Dik].

Proof of Stability Theorem. Assume that the stream functionψ and the vorticity
function ω � �ψ are related by means of ψ � �(�ψ), and set �(τ) :�∫ τ
�(θ) dθ to be the primitive of �(θ). Then the second derivative�′′ evaluated

at the function �ψ is �′′(�ψ) � ∇ψ/∇�ψ , and hence for τ within the limits
min�ψ ≤ τ ≤ max�ψ , we have

(4.5) c ≤ �′′(τ ) ≤ C.
We extend the definition of�(τ) to cover the whole τ -axis subject to this inequal-
ity, and in what follows � denotes the function extended in this way.

Form the functional

H2(ϕ) �
∫∫

M

(
(∇ϕ)2

2
+ [�(�ψ +�ϕ)−�(�ψ)−�′(�ψ)�ϕ]

)
dxdy.

Lemma 4.7. The functional H2 is the first integral of the Euler equation,

H2(ϕ(x, y, t)) ≡ H2(ϕ(x, y, 0)),

for the stream function ϕ(x, y, t) of any velocity field evolving according to the
Euler equation.

Proof of Lemma. Consider the functional

H(u) �
∫∫

M

(
(∇u)2

2
+�(�u)

)
dxdy.

It is preserved along every solution of the Euler equation by virtue of the laws of
energy and vortex conservation. Therefore, Ĥ (ϕ) :� H(ψ + ϕ) − H(ψ) is also
a conserved functional for a given steady flow ψ :

(4.6) Ĥ (ϕ(x, y, t)) ≡ Ĥ (ϕ(x, y, 0)).
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Decompose Ĥ (φ) into the sum Ĥ (ϕ) � H1(ϕ)+H2(ϕ), where

H1(ϕ) �
∫∫

M

(
(∇ϕ, ∇ψ)+�′(�ψ)�ϕ) dxdy,

H2(ϕ) �
∫∫

M

(
(∇ϕ)2

2
+ [�(�ψ +�ϕ)−�(�ψ)−�′(�ψ)�ϕ]

)
dxdy.

The term H1(ϕ) vanishes, since it is the first variation of the invariant functional
H(u) at the stationary flow ψ . Explicitly, after integration by parts we have

H1(ϕ) �
∫∫

M

(−ψ�ϕ +�′(�ψ)�ϕ) dxdy +
∮
∂M

ψ
∂ϕ

∂n
d�.

Recall that �′ � � and �(�ψ) � ψ . Furthermore, by assumption the stream
function ψ is constant on the boundary components �i (∂M � ⋃n

i �i), and the
perturbed fields have the same circulation around every boundary component:∮
�i
∂ϕ/∂n d� � 0. Hence H1(ϕ) ≡ 0. Therefore Ĥ (ϕ) � H2(ϕ), and in accor-

dance with (4.6), the functional H2(ϕ) is preserved. This proves Lemma 4.7.
�

Returning to the proof of the theorem, we note that it follows from (4.5) that
for any h,

c
h2

2
≤ �(τ + h)−�(τ)−�′(τ )h ≤ Ch

2

2
.

Hence,

H2(ϕ(t)) ≥
∫∫

M

(
(∇ϕ)2

2
+ c (�ϕ)

2

2

)
dxdy,

H2(ϕ(0)) ≤
∫∫

M

(
(∇ϕ0)

2

2
+ C (�ϕ0)

2

2

)
dxdy.

By combining these inequalities with the invariance of H2(ϕ) we complete the
proof of the Stability Theorem. �

We leave to the reader to complete the proof of stability for the negative ratio
(the Second Stability Theorem)

c ≤ − ∇ψ
∇�ψ ≤ C, 0 < c ≤ C <∞.

Remark 4.8 [M-P]. Notice that the condition 0 < c ≤ ∇ψ
∇�ψ ≤ C cannot be

obeyed in domains without boundary. Indeed, the existence of a function� obey-
ing the condition 0 < c ≤ � ′(τ ) ≤ C and such that ψ � �(�ψ) implies
the existence of the inverse function F for which �ψ � F(ψ), and moreover,
0 < c′ ≤ F ′(ψ) ≤ C ′.
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On the other hand, from �ψ � F(ψ) one gets ∂x1�ψ � F ′(ψ)∂x1ψ , and
therefore ∫∫

M

∂x1ψ (�∂x1ψ) dxdy �
∫∫

M

F ′(ψ)(∂x1ψ)
2 dxdy.

Integrating by parts we come to the following:∫
∂M

∂x1ψ
∂(∂x1ψ)

∂n
d�−

∫∫
M

(∇∂x1ψ)
2 dxdy �

∫∫
M

F ′(ψ)(∂x1ψ)
2 dxdy.

Now one can see that the absence of the boundary term leads to a contradiction:
The left- and the right-hand sides of the equality are of different signs unless ψ
is constant (the trivial case of ∂x1ψ ≡ 0 is treated by replacing ∂x1 with ∂x2 ).
In particular, it excludes unbounded domains (such as M � R

2, important for
meteorological and oceanographic simulations) from the scope of applicability of
the Stability Theorem. A way to overcome this difficulty is to exploit the symmetry
properties of the domains accompanied by the stability analysis outlined above.

Theorem 4.9 [M-P]. In the hypotheses of the Stability Theorem, the stability result
is achieved if the condition c ≤ ∇ψ

∇�ψ ≤ C holds with c ≥ 0.

The proof is based on the use of a family of Lyapunov functions Hε(ϕ)

for which the first variation at the stationary flow ψ is given by Hε
1 (ϕ) �

ε
∫∫
(∇ϕ,∇�ψ) dxdy.

Remark 4.10. It turns out that the stability test based on the second variation of
steady flows is inconclusive in dimensions greater than two: The second variation
of the kinetic energy is never sign definite in that case (see Section 5.G).

Invariants of isovorticed fields (i.e., Casimir functions of the group of area-
preserving diffeomorphisms) play the role of Lagrange multipliers in the above
study of the conditional extremum. We refer to the survey [HMRW] for a study of
stability by combining the energy function with Casimir functions for a number
of physically interesting infinite-dimensional systems. Various modifications and
extensions of the Routh (or, energy–Casimir) method outlined above can be found
in, e.g., [MaR, MaS, Vla1, 2, W-G].

Remark 4.11 (J. Marsden). Abbreviated guide to the energy–momentum
method. For a more complete guide to the literature, see http://www.cds.caltech.
edu/∼marsden/

The energy–momentum (em) method extends the Arnold (or the energy–
Casimir) method, which was developed for Lie–Poisson systems on duals of Lie
algebras, especially those of fluid dynamical type. The motivation for this exten-
sion is threefold. First, it can deal with Lie–Poisson systems for which there are
not sufficient Casimir functions available, such as 3-D ideal flow and certain prob-
lems in elasticity. In fact, [A-H] use (with hindsight) the em-method to show that
3-D equilibria for ideal flow are always formally unstable due to vortex stretching.
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Other fluid and plasma situations, such as ABC flows and certain multiple hump
situations in plasma dynamics, provided additional motivation in the Lie–Poisson
setting. Second, it extends the method to systems that need not be Lie–Poisson.
Examples such as rigid bodies with vibrating antennas (see [KrM]) motivate this
need. Finally, it gives sharper stability conclusions in material representation (sta-
bility is modulo a subgroup of the symmetry group) as well as giving links with
geometric phases (Berry phases); see [Pat, MMR]. This is seen already in rigid
body problems.

The setting of the energy–momentum method is that of a mechanical system
with symmetry with a configuration spaceQ and phase spaceT ∗Q and a symmetry
group G acting, with a standard momentum map J : T ∗Q→ g∗, where g∗ is the
Lie algebra of G. One gets the Lie–Poisson case whenQ � G.

The rough idea is first to formulate the problem on the unreduced space T ∗Q.
Here, relative equilibria associated with a Lie algebra element ξ are critical points
of the augmented Hamiltonian Hξ :� H − 〈J, ξ 〉. One now computes the second
variation δ2Hξ(ze) at a relative equilibrium ze with the momentum valueµe subject
to the constraint J � µe and on a space transverse to the action ofGµe . Although
the augmented HamiltonianHξ plays the role ofE+Casimir in the Arnold method,
Casimir functions are not explicitly needed.

In explicit splittings based on the mechanical connection, the second variation
δ2Hξ(ze) is block diagonal. In the same coordinates the symplectic structure has a
simple block structure, so the linearized equations also have a canonical form. Even
in the Lie–Poisson setting, this often leads to simpler second variations. This block
diagonal structure is what gives the method its computational power. The theory
for the em-method can be found in [MaS, SPM, SLM] (see also the exposition
in [Mar]). For Lagrangian versions, see [Lew]. There is also a converse, building
on classical work of Thompson and Tait, Chetayev, and others, which states that
when one has a saddle point for δ2Hξ(ze), the addition of dissipation linearly (and
hence nonlinearly) destabilizes the relative equilibrium; see [BKMR].

The energy–momentum method is effective in many examples. For instance,
[LeS] dealt with the stability problem for pseudo-rigid bodies, which was thought
to be analytically intractable. For the heavy top, see [LRSM]; for underwater ve-
hicle dynamics, see [LMa]; and for ABC flows, see [CMa]. The em-method has
also been used in the context of free boundary and Hamiltonian bifurcation prob-
lems [LMMR, LMR]. Finally, the method also extends to nonholonomic systems
(systems with rolling constraints), as shown in [ZBM].

4.B. Wandering solutions of the Euler equation

Poincaré’s recurrence theorem claims that for any volume-preserving continu-
ous mapping of a bounded region into itself, almost every moving point returns
repeatedly to the vicinity of its initial position.

In particular, the phase flow of the Euler equation on any finite-dimensional Lie
algebra acquires this property. Indeed, level surfaces of the kinetic energy (i.e., of
a positively definite quadratic form) E are compact. Every trajectory of the Euler
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equation belongs to the intersection of some energy level with a certain coadjoint
orbit of the Lie algebra.

Proposition 4.12. The intersections of the coadjoint orbits with the noncritical
energy levels can be equipped with a natural volume form conserved by the Euler
equation.

Proof. If ω is the symplectic structure on a 2m-dimensional coadjoint orbit O,
then the symplectic volume form µ � ωm is preserved by any Hamiltonian flow
on the orbit. The flow with the Hamiltonian function E preserves the differential
(2m−1)-formµE :� ωm/dE on the intersections of the orbit O with theE-levels.
These intersections are compact, due to the positive-definiteness of the form E.

�

Corollary 4.13. The Poincaré recurrence theorem is applicable in this case: al-
most every trajectory of the Euler equation returns at times to a neighborhood of
the initial point.

Remark 4.14. The Euler equation with a nondegenerate inertia operator has an
invariant C1-measure on the whole dual Lie algebra g∗ (not only on the coadjoint
orbits O ⊂ g∗ of the group) if and only if the group G is unimodular, i.e., the
operators adη are traceless for all η ∈ g [Ko2].

However, the Euler equation of an ideal fluid does not enjoy the recurrence
property: The passage to the infinite-dimensional case is not harmless (see [Shn6]
for other peculiar features of 2-D fluid dynamics). Fix, for instance, the region
M � {1 ≤ |x| ≤ 2 | x ∈ R

2} and consider the space V of C1-smooth divergence-
free vector fields inM tangent to the boundary ∂M � �1 ∪ �2; Fig. 18.

Theorem 4.15 [Nad]. There exists a smooth divergence-free vector field ξ onM
(tangent to the boundary ∂M) such that for any initial condition C1-close to ξ the
corresponding solution of the Euler equation inM does not return to a vicinity of
the point ξ after a certain moment of time (i.e., there exist ε, T > 0 such that for
any initial condition v(0) ∈ V satisfying ‖v(0) − ξ‖C1 < ε, the corresponding
solution v(t) satisfies the inequality ‖v(t)− ξ‖C1 > ε, whereas t > T ).

Proof. Consider the steady flow v∗ with the stream function ψ(x) � ln |x|: v∗ �
sgrad(ln |x|). Let v∗ + h be a C1-small (divergence-free) perturbation of the field
v∗ : ‖h‖C1 < δ.

Lemma 4.16. There exists δ > 0 such that for any perturbation hwith ‖h‖C1 < δ,
the solution v(t) with the initial condition v(0) � v∗ + h obeys the inequality
‖v(t)− v∗‖C0 < 1

4 for all t ≥ 0.
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Proof of Lemma. The vorticity function curl v(t) of the solution v(t) is trans-
ported by the flow, and so is the function curl(v(t) − v∗) � curl v(t), since
curl v∗ ≡ 0. Therefore, the C0-norm of the function curl(v(t) − v∗) is con-
served as well as the circulation of the field v(t) − v∗ along the circumferences
�1 and �2. Therefore, the statement of the lemma is essentially the maximum
principle for the stream function ψ(t) of the field v(t), which obeys the equation
�ψ(t) � − curl(v(t)− v∗). �

M

M-

1

2

Figure 18. Pick a smooth field on the annulus M vanishing on the left semiannulus M−
and whose vorticity is greater than δ/4 on the segment �.

Denote by M− � {x ∈ M,x1 < 0} and � � {x ∈ M,x2 � 0, x1 > 0}
the semiannulus and the segment, respectively (Fig. 18). Choose some smooth
divergence-free field u satisfying the following conditions:

‖u‖C1 <
δ

2
, u

∣∣
M−
≡ 0, curl u

∣∣
�
>
δ

4
.

Finally, set ξ � v∗ + u, and notice that curl ξ
∣∣
M−
≡ 0.

Now let v(0) ∈ V be the initial condition close enough to ξ : ‖v(0)−ξ‖C1 < ε,
and v(t) the corresponding solution of the Euler equation on M . Such a solution
defines for each t ∈ R an area-preserving diffeomorphism gt of the annulus M .
The circumferences �1 and �2 are mapped by gt into themselves.

Moreover, by choosing ε to be ε � δ/4, we ensure that the solution v(t) is close
enough to v∗. According to the lemma, the linear velocity of every point on the
inner circumference �1 is greater than 3/4, while that on the outer circumference
�2 is smaller than 3/4. The corresponding angular velocities are greater than 3/4
on �1 and smaller than 3/8 on �2, respectively.

The image �t :� gt (�) of the segment � under the action of transformation
gt joins the points on different circumferences. The angular coordinates of the
connected points diverge from each other at the rate 3t/8. It follows that for
t > 8π/3, the curve �t definitely hits M− : �t ∩ M− �� ∅. On the other hand,
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curl v(t) is carried over by the flow gt and is greater than δ/4 � ε when restricted
to �t . Hence, for t > 8π/3, we have ‖ξ − v(t)‖C1 > ε. �

§5. Linear and exponential stretching of particles and rapidly
oscillating perturbations

In this section we study the short-wave asymptotics of the perturbations of a
stationary motion of an ideal fluid (following [Arn8]).

5.A. The linearized and shortened Euler equations

Definitions 5.1. The 3-D Euler equation in the vortex (or Helmholtz) form

∂w

∂t
� [v,w], where w � curl v,

can be linearized in a neighborhood of a steady flow v:

(5.1)
∂s

∂t
� [v, s]+ [curl−1 s, w].

Here [ , ] � −{ , } is the Lie bracket (i.e., minus the Poisson bracket) of two vector
fields, and s is a perturbation of the vorticity field: curl(v + u) � w + s, where u
is a small perturbation of the steady flow v. The operator curl−1 is understood as
the reconstruction of the divergence-free vector field from its vorticity (and from
the circulations over the boundary components if ∂M �� ∅).

We will examine the behavior of solutions of this equation linear in s. Note that
the first term on the right-hand side of (5.1) is a more powerful linear operator
on functions s than the second. This means that the value of [v, s] on the rapidly
oscillating s of the type s � eikx will contain a higher degree of the wave number k
than those occurring in [curl−1 s, w]. Hence, for the rapidly oscillating perturbing
field s, the second term in (5.1) may be considered as a perturbation of the first.
In this way we obtain the shortened equation

(5.2)
∂s

∂t
� [v, s].

If the stationary flow is potential (w � 0), the second term in equation (5.1)
vanishes, and in that case the shortened equation (5.2) is the same as the linearized
Euler equation (5.1). In accordance with perturbation theory [Fad], it is reasonable
to assume that the shortened equation defines the continuous part of the spectrum
of the linearized equation (5.1).

The shortened equation (5.2) implies that vector s is carried by the steady flow. If
the geometry of the steady flow v is known, this equation can be solved explicitly.
Let gt be a one-parameter group of diffeomorphisms generated by the field v. Then
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the solution of the shortened equation is expressed in terms of its initial conditions
by the formula

(5.3) s(t, x) � gt∗s(0, g−t (x)),
where gt∗ is the derivative of the image of gt .

5.B. The action–angle variables

Below we present two lines of reasoning for the following statement.

Proposition 5.2. For a non-Beltrami steady field (i.e., for a steady field that is not
collinear with its vorticity in any region) on a closed three-dimensional manifold
M , almost all solutions of the shortened equation are linearly unstable.

Proof. If the fields v and w are not identically collinear in any region, then the
manifold without boundary splits into cells in each of which the stream and vor-
ticity lines lie on two-dimensional tori (see Theorems 1.2 and 1.10 in Section 1,
or [Arn3, 4]). One can introduce the angular coordinates ϕ � (ϕ1, ϕ2) mod 2π
along the tori and the “action variable” z, which provides the numbering for the
tori, such that the volume element is defined by dϕ1dϕ2dz, and the fields v and w
are given by

v(ϕ, z) � v1(z)
∂

∂ϕ1
+ v2(z)

∂

∂ϕ2
, w(ϕ, z) � w1(z)

∂

∂ϕ1
+ w2(z)

∂

∂ϕ2
.

These equations are integrable in the system of coordinates (ϕ1, ϕ2, z). For the
components of the field

s(t;ϕ, z) � s1 ∂

∂ϕ1
+ s2 ∂

∂ϕ2
+ s3 ∂

∂z
,

by using (5.3) we obtain the expressions

sk(t;ϕ, z) � sk(0;ϕ0, z)+ t · v′k s3(0;ϕ0, z), k � 1, 2,(5.4)

s3(t;ϕ, z) � s3(0;ϕ0, z),

where ϕ0 � ϕ − vt , and the prime denotes the derivative with respect to z.
Formulas (5.4) imply that solutions of the shortened equation (5.2) (for v′ �� 0)
usually increase linearly with time. �

Hence the conventional (exponential) instability of the linearized Euler equation
for non-Beltrami flows can be due only to the second term in formula (5.1). In
accordance with perturbation theory, it is reasonable to expect the appearance of
a finite number of unstable discrete eigenvalues. The question of retention of the
(detected above) slow instability, when passing from the shortened equation (5.2)
to the complete linearized equation (5.1), is discussed in Section 5.D below.

The other possibility of exponential instability is related to the collinearity of
v and w, when the action–angle variables cannot be introduced and the geometry
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of the steady flow differs from the one described above (cf. [Hen]). This form of
instability is examined in Section 5.E.

Remark 5.3. An integrable (non-Beltrami) steady flow can be thought of as a
Hamiltonian system with two degrees of freedom that is restricted to a three-
dimensional energy level. The KAM theory for volume-preserving flows on three-
dimensional manifolds guarantees that under certain nondegeneracy conditions,
all flows sufficiently close to the integrable ones preserve a large set of two-
dimensional invariant tori (see, e.g., the survey on the KAM theory of Hamiltonian
systems [AKN] or the volume-preserving case in [C-S, D-L, B-L]).

The above implies that for nonstationary Euler solutions that get close enough
to a steady non-Beltrami field, the vorticity fields of the solutions have plenty of
invariant tori. Indeed, those vorticity fields of the solutions approach the integrable
vorticity field of the steady flow. (The vortex form of the Euler equation is more
suitable for this consideration, since the vorticity, unlike the velocity, is frozen
into the flow.) Similarly, for the Navier–Stokes equation the steady flows close to
the Beltrami ones have many invariant tori.

5.C. Spectrum of the shortened equation

For a more detailed analysis of solutions of equation (5.2) (and another viewpoint
at Proposition 5.2), we expand s into a Fourier series in terms of ϕ, using the
following notation. Letm, which we shall call the wave vector, be a pair of integers

m1 and m2. We denote m1ϕ1 + m2ϕ2 by (m, ϕ), the number
√
m2

1 +m2
2 by |m|,

and the pair n1 � −m2 and n2 � m1 by n.
For each wave vector we determine the “longitudinal,” “transverse,” and “nor-

mal” vector fields

em � m1

|m|
∂

∂ϕ1
+ m2

|m|
∂

∂ϕ2
, en � −m2

|m|
∂

∂ϕ1
+ m1

|m|
∂

∂ϕ2
, ez � ∂

∂z
.

(For m � 0 we assume, e.g., em � ∂/∂ϕ1 and en � ∂/∂ϕ2.)

The Fourier expansion of a field s can now be written as

s �
∑
m

(Amem + Bmen + Cmez)ei(m,ϕ),

where Am,Bm, and Cm are functions of z.
It can be readily verified that the vector fields em, en, and ez have zero divergence

with respect to the volume element dϕ1dϕ2dz. Hence,

div s �
∑
m

(i|m|Am + ∂zCm)ei(m,ϕ)
(
∂z :� d

dz

)
.

Consequently, the divergence-free fields are determined by the condition i|m|Am+
∂zCm � 0 satisfied for all m.

By virtue of this condition, the set of functions Bm and Cm (form � 0, we have
C0 � const, but A0 is to be added) can be taken as the “coordinates” in the space
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of all fields. In this coordinate system equation (5.2) decouples into a series of
triangular systems

(5.5)

{
Ḃm � −i|m|vmBm + v′nCm,
Ċm � −i|m|vmCm,

where v � vmem + vnen is the velocity field of the steady flow (for m � 0 we
add the equation Ȧ0 � v′0C0); the prime and the dot denote differentiation with
respect to z and t , respectively.

Formula (5.5) again implies the nonexponential instability of equation (5.2)
(and proves Proposition 5.2). Furthermore, it determines the spectrum of the latter
equation: To each wave vector m one associates a segment of the continuous
spectrum along the imaginary axis. The related “frequencies” |m|vm are equal to
all kinds of frequencies (m, v) of the stationary flow on the tori, corresponding
to various values of the z-coordinate. The multiplicity of each segment is not less
than two (the B- and C-components have the same frequencies).

5.D. The Squire theorem for shear flows

Though the coordinates introduced above are suitable for analyzing the shortened
equation (5.2), analysis of the complete equation (5.1) is generally difficult, since
in curvilinear coordinates the operator curl−1 is of a complicated form. A particular
case in which the analysis can be reduced to a one-dimensional problem is that of
a flow with straight streamlines. All plane rectilinear flows, as well as the more
general ones in which the fluid particles move in parallel planes at constant velocity,
which varies in magnitude and direction when passing from one plane to another,
belong to this class. Study of the latter may be considered as an approximate
analysis of a generic flow in the torus geometry, in which the torus curvature is
neglected, while the shear (i.e., the variation of the direction of the streamlines
from one torus to another) is taken into consideration.

Let ϕ1, ϕ2, and z be Cartesian coordinates and the length element d�2 � dϕ2
1 +

dϕ2
2 + dz2. Let v � vmem + vnen be the velocity field of a shear (rectilinear) flow

in three-dimensional space (or in a three-torus, whose curvature is neglected).

Proposition 5.4. The rectilinear three-dimensional flow is exponentially unstable
if and only if at least one of the two-dimensional flows of a perfect fluid obtained
by the substitution for the velocity vector v of its longitudinal component vm is
exponentially unstable.

Thus, the problem of exponential instability of the considered class of three-
dimensional flows of a perfect fluid is reduced to a similar problem for a set of
the two-dimensional flows corresponding to different values of the wave vector
m. In the particular case of a nonshear flow (i.e., with a constant direction of the
velocity v), all velocity profiles are proportional to each other, and the obtained
result agrees with the Squire theorem for a perfect fluid [Squ].
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Proof. In this case it is expedient to consider periodic flows of not necessarily 2π -
periodicity (e.g., we can assume the periods of ϕ1 and ϕ2 to be 2πX1 and 2πX2,
respectively). The only alteration to be introduced in the formulas of Section 5.C
is that now the wave vector m runs not through the lattice of integral points but
through the lattice {(m1/X1,m2/X2)}.

Under these assumptions, the expansion of the vortex field w in terms of the
unit vectors em, en, and ez is of the form w � −v′nem + v′men. The matrices of the
operator curl in the coordinates Bm,Cm, and of the operator corresponding to the
Poisson bracket containing w are, respectively,

i|m|
(

0 − Id+|m|−2∂2
z

Id 0

)
and −

(
i|m|v′n v′′m

0 i|m|v′n

)
,

where Id is the identity transformation. Hence, in our coordinates the linearized
Euler equation (5.1) decomposes into the systems of equations corresponding to
various m. After some calculation, we obtain for m �� 0 the triangular system

(5.6)

{
Ḃm �

(
i|m|vm + v′′m

i|m| (id − |m|−2∂2
z )
−1
)
Bm,

Ċm � i|m|vmCm + v′n(id − |m|−2∂2
z )
−1Bm,

and for m � 0, we have the system A0 � B0 � C0 � 0. The first equation
contains the B-component only. If the B-component does not have exponential
instability, neither does theC-component (this is implied by the nonhomogeneous
linear equation obtained for Cm). Finally, note that the equation for Bm contains
only the longitudinal velocity component vm. �

The Jordan form of system (5.6) indicates that in three-dimensional incom-
pressible flows, unlike the two-dimensional ones, the linear increase of vortex
perturbations with time is typical, even in the absence of exponential instability.
Notice also that equation (5.6) is the same as that derived in the analysis of the
two-dimensional flow of a perfect fluid whose velocity profile is the component
vm(z) of the velocity vector of a three-dimensional flow in the direction of the
wave vector m.

5.E. Steady flows with exponential stretching of particles

In this section we will define a steady flow of an incompressible fluid for which the
velocity field is Beltrami; i.e., it is proportional to its own vorticity, and the field
does not have a family of invariant surfaces, as mentioned in Section 5.B. This sim-
ple example plays a key role in many other constructions of ideal hydrodynamics
and of dynamo theory discussed in the sequel (see, e.g., Section V.4).

Imagine an ideal fluid filling a three-dimensional compact manifold M con-
structed in the following way. First consider the Euclidean three-dimensional
space with coordinates x, y, z and define the following three diffeomorphisms
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of the space:

T1(x, y, z) � (x + 1, y, z), T2(x, y, z) � (x, y + 1, z),

T3(x, y, z) � (2x + y, x + y, z+ 1).

Each of these transformations maps the integer lattice in the space x, y, z into
itself. Identify all points of xyz-space that can be obtained from each other by the
successive application of Ti and T −1

i (in any order). The resulting compact analytic
manifoldM may be thought of as the product of a two-dimensional torus {(x, y)
mod 1} by the segment 0 ≤ z ≤ 1, whose end-tori are identified by means of the
formula (x, y, 0) ≡ (2x + y, x + y, 1).

To equip the manifoldM with a Riemannian metric, we define a metric in xyz-
space invariant with respect to all Ti . We first examine the linear transformation
of the xy-plane given by the matrix A (“cat map,” Fig. 19):

A �
(

2 1
1 1

)
, i.e., A

(
x

y

)
�
(

2x + y
x + y

)
.

The operatorA has the eigenvalues χ1,2 � (3±
√

5)/2. Note that χ1 > 1 > χ2 >

0, χ1 · χ2 � 1, and the eigendirections are orthogonal to each other. Let (p, q) be
a Cartesian system of coordinates in the xy-plane with the axes p and q directed
along the eigenvectors with the eigenvalues χ1 > 1 and χ2 < 1, respectively.

y

x

A

Figure 19. The cat map A of the torus onto itself.

Set the metric to be

(5.7) d�2 � e−2βzdp2 + e2βzdq2 + dz2, where β � ln χ1.

The metric d�2 is invariant with respect to the transformations Ti , and therefore
it defines an analytic Riemannian structure on the three-dimensional compact
manifoldM .
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Now consider the vector field grad z � ∂/∂z in xyz-space. Since it is invariant
with respect to the transformations Ti , it descends to a vector field v on the Rie-
mannian manifoldM . The field v is harmonic onM: div v � 0, curl v � 0. Hence,
v can be taken as the velocity field of a stationary potential flow of an ideal fluid.
Every particle of the fluid moving along that field is stretched exponentially in the
q-direction, and it is squeezed in the p-direction, as implied by formula (5.7).

5.F. Analysis of the linearized Euler equation

The Euler equation (5.1), linearized at v, is equivalent to the shortened equation
(5.2), since the flow under consideration is potential. The simple geometry of the
flow v allows one to solve the latter equation by using formula (5.3). It is convenient
to express the solution in the following form. Consider the vector fields

ep � eβz ∂
∂p
, eq � e−βz ∂

∂q
, ez � ∂

∂z

in pqz-space. These fields are invariant with respect to all transformations Ti , and
hence, they can be regarded as vector fields on the manifoldM . The directions of
the fields ep, eq , and ez are invariant with respect to the phase flow gt of the field
ez (in coordinate form gt (p, q, z) :� (p, q, z + t)), while the fields themselves
are transformed as follows:

gt∗ep � e−βt ep, gt∗eq � eβt eq, gt∗ez � ez
(this explains the names of the stretching direction eq , the compressing direction
ep, and the neutral direction ez). Every vector field u onM can be decomposed in
these directions,

u � upep + uqeq + uzez,
where up, uq , and uz are functions on the manifoldM .

Formula (5.3) applied to the stationary flow v � ez has the form

(5.8) sp(t) � e−βtU t sp(0), sq(t) � eβtU t sq(0), sz(t) � Utsz(0),
whereUt is a linear operator acting on functions on the manifoldM by the formula
(Utf )(a) � f (g−t a) for any point a ∈ M . Note that the operator Ut is unitary,
since the flow gt preserves the volume element.

Formulas (5.8) provide rather complete answers to all kinds of questions on
the growth of perturbations of the steady flow v. First, they show that the q-
component of any vortex perturbation exponentially increases with time, while
the p-component decays exponentially.

Further, the spectrum of the operator Ut can be easily analyzed by the Fourier
series expansion in terms of (x, y) with fixed z, and for functions independent of
x and y by such expansion in terms of z. This spectrum has a countably multiple
continuous (Lebesgue) component along the unit circle in C, and also a discrete set
of eigenvalues corresponding to the eigenfunctions ϕk(z) � e2πikz (k are integers).
This implies that the Euler equation (5.1) linearized at the stationary flow v � ez



106 II. Topology of Steady Fluid Flows

has a countable set of the (unstable) eigenvalues α−2πik, related to the countable
set of increasing perturbations of the vorticity s � ϕk(z)eq (k � ±1,±2, . . . ).

The difficulty of predicting solutions of the linearized Euler equation (5.1) for
flows with the exponential stretching of particles is also indicated by formulas
(5.8): To find an approximate solution, it is necessary to know, with considerable
precision, a number of high-order harmonics of the initial perturbation s(0), which
rapidly increase with t . Formulas (5.8) and (5.4) show that the exponential particle
stretching increases drastically the difficulty of predicting the perturbation growth,
as compared to the flows defined by the “generic” stationary solutions of the Euler
equation with the linear stretching of particles (see Sections 5.B–5.D).

Phenomena similar to those outlined in this example are also encountered in
other flows with exponentially stretched particles, e.g., in the ABC flows

vx � A sin z+ C cos y, vy � B sin x + A cos z, vz � C sin y + B cos x

(see Sections II.1.A, V.4.B, and [Hen, Dom] for a study of symmetries and results
of computer simulations) or in the geodesic flows on surfaces of negative curvature
(see Section V.4.D).

5.G. Inconclusiveness of the stability test for space steady
flows

In Section 4.A we gave a sufficient condition for stability of planar fluid flows.
Unlike the two-dimensional case, the second variation of the kinetic energy of a
stationary flow among isovorticed fields is never sign definite in higher dimensions.
It implies that the sufficient stability criterion, based on the second variation, is
inconclusive (see Remark 3.7): Quadratic Hamiltonians of a saddle type can govern
both stable and unstable flows. This study is based on the consideration of rapidly
oscillating perturbations of the steady flow.

Theorem 5.5. Let M be a three-dimensional closed manifold and v be a steady
Euler flow. If curl v is not identically zero, then the spectrum of the quadratic form
δ2E (i.e., of the corresponding self-adjoint operator) on the tangent space to the
coadjoint orbit of v is neither bounded from below nor from above.

Remark 5.6. This theorem, along with its higher-dimensional version formulated
below, has been proved in [S-V]. Indefiniteness of the second variation d2E for
the 3-D case was earlier established in [Rou1] (and hinted at already in [Arn4];
see also [A-H], where the consideration was put forward for a generic equilibrium
in the 3-D case). The main idea underlying all the proofs is that the form δ2E is a
sum of two terms, one of which is always positive, but of smaller order than the
other. Picking the rapidly oscillating variation ξ , one can explicitly compute the
asymptotic expression for δ2E and thus obtain an arbitrary sign for the second
variation in the direction ξ .
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The unboundedness of the spectrum of the second variation holds for the higher-
dimensional generalization of the Euler equation as defined in Section I.7. Namely,
let M be an n-dimensional smooth Riemannian manifold (n ≥ 3) endowed with
a volume form µ, and v� the one-form on M obtained from a µ-divergence-free
vector field v by means of the identification v�(w) � (v,w) determined by the
Riemannian metric ( , ). The kinetic energy is given by E(v) � 1

2 〈v, v〉 �
1
2

∫
M
(v, v)µ.

Theorem 5.5′ [S-V]. Let u be a smooth steady solution of the Euler equation in
M . The second variation δ2E of the energy among the isovorticed vector fields
is identically zero, whereas v� is locally “potential” in the sense that d(v�) ≡ 0.
Otherwise, the spectrum of the self-adjoint operator corresponding to the qua-
dratic form δ2E on the space of isovorticed fields is neither bounded from below
nor from above.

Remark 5.7. Actually, the Euler equation is defined on cosets of 1-forms onM:
[v�] ∈ �1(M)/d�0(M) (see Chapter I). There are as many cosets furnishing
the condition d[v�] � 0 as elements in H 1(M), i.e., a finite-dimensional space.
Hence, among all stationary flows on the manifoldM , there are exactly b1(M) :�
dimH 1(M) linearly independent ones for which the second variation of the kinetic
energy is zero. For all other steady flows this variation is indefinite.

Lemma 5.8. The second variation of the energy E(v) � 1
2 〈v, v〉 � 1

2 〈v�, v�〉 on
the (image in the Lie algebra of the coadjoint) orbit of the “isovorticed fields” is
given by the quadratic form

(5.9) δ2E(ξ) � 1

2
〈iξ dv� + dp, iξ dv� + dp〉 + 1

2
〈iξ dv� + dp,Lξ (v�)〉,

where the function p is chosen to make the 1-form iξ dv
� + dp correspond to a

divergence-free field after the Riemannian identification.

Proof of Lemma. The proof is a straightforward application of formula (3.2) to
the coadjoint operator B(v, ξ) � iξ d(v

�) + dp. All fields are supposed to be
square-integrable. The formal tangent space to the coadjoint orbit of the 1-form
v� is the image of the operator B. �

For a three-dimensional manifoldM , this formula reads as

δ2E(ξ) � 1

2
〈(∇ × v)× ξ + ∇p, (∇ × v)× ξ + ∇p〉

+ 1

2
〈(∇ × v)× ξ + ∇p, ∇ × (ξ × v)〉.

The operator B(v, ξ) in this case becomes B(v, ξ) � (∇ × v)× ξ + ∇p, where
the pressure function p is chosen to make the vector field (∇ × v) × ξ + ∇p
divergence free.
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Proof of Theorem 5.5′. Certainly, dv� ≡ 0 implies dp � 0, and hence,
δ2E(ξ) ≡ 0.

Assume now that the 2-form dv� and the vector field v are both nonzero at
a point x0 ∈ M . Fix some function ϕ(x) for which (v,∇ϕ) and dϕ ∧ dv� are
both nonzero in a neighborhood U of x0. Pick smooth vector fields aR and aI
that are orthogonal to ∇ϕ everywhere, vanish outside U , and obey the inequalities
du�(aR, aI ) ≥ 0 everywhere, and du�(aR, aI ) > 0 in a smaller neighborhood
U ′ ⊂ U . Finally, define a complex vector field a � aR +

√−1aI (where we use
the notation

√−1 for the imaginary unit to distinguish it from the operator iv).
Our goal is to construct deformations ξε (uniformly bounded in ε) for which

δ2E(ξε) is arbitrarily large positive or negative. Note that it is enough to choose
ξε to be a complex vector, if we extend the operator δ2E, as well as the Hermitian
inner product, to the complexification of the space of vector fields on the manifold
M . Indeed, consider the Hermitian inner product 〈 , 〉C, linear in the first argument
and antilinear in the second, that extends the real inner product 〈 , 〉 on the vector
fields. Then boundedness of the spectrum of δ2E implies that the real part of
the value 〈(δ2E)ξε, ξε〉C is bounded both from below and from above whenever
ξε belongs to some fixed ball in the Hilbert space of square-integrable complex
vector fields.

To construct such deformations ξε, consider for simplicity the case where µ is
the Riemannian volume form on the manifold. Then a one-form u� corresponds
to a divergence-free vector field u if and only if d∗(u�) ≡ 0 (where the operator
d∗ : �k(M,C) → �k−1(M,C) is dual to the exterior derivative operator d :
�k(M,C) → �k+1(M,C) by means of the identification of �k(Mn,C) and
�n−k(Mn,C) provided by the metric).

Define the rapidly oscillating vector fields ξε as the following O(ε)-correction
of the field a · exp(

√−1ϕ/ε) to make it divergence free: ξε is dual to the 1-form

ξ �ε � ε
√−1 d∗

(
dϕ ∧ a�
‖dϕ‖2

exp(
√−1ϕ/ε)

)
� a� exp(

√−1ϕ/ε)+O(ε).

Then the leading term of δ2E(ξε) in the ε-expansion as ε→ 0 is

δ2E(ξε) � 1

2ε
〈iξεdu� + dp,

√−1(u,∇ϕ) a� exp(
√−1ϕ/ε)〉C +O(1)

� −
√−1

2ε

∫
M

(u,∇ϕ) du�(a, ā)µ+O(1)

� −1

ε

∫
M

(u,∇ϕ) du�(aR, aI )µ+O(1),

where 〈 , 〉C is the Hermitian inner product, extending the real inner product 〈 , 〉.
By assumption, the inner product (u,∇ϕ) is nonzero on U , while du�(aR, aI ) is

positive in U ′ and nonnegative otherwise. Hence the integral is nonzero. Therefore,
we can make the real part of δ2E(ξε) arbitrarily large positive or negative by
choosing ε to be of appropriate sign and sufficiently close to zero. Thus, δ2E is
not a sign-definite form, and it has a spectrum unbounded in both directions. �
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Remark 5.9 [S-V]. For a manifold with boundary the same conclusion holds. One
can take ξε vanishing near the boundary and obtain arbitrarily large negative or
positive values of δ2E(ξε). The domain of the corresponding self-adjoint operator
δ2E contains all smooth divergence-free vector fields with compact support in the
interior ofM .

Remark 5.10. One can argue that indefiniteness of the second variation is in-
dicative of instability (see, e.g., [A-H]). Though the sufficient criterion discussed
above says nothing in this case, other methods can be applied to certain flows (see
[Yu5] for an interesting discussion, [Vla2] for the direct Lyapunov method and
[FGV, FV1] for an instability criterion valid for some particular three-dimensional
flows).

For instance, a fluid possessing surface tension and filling an upside-down cylin-
drical glass (with any cross section) is shown to be unstable [VlB, Vla2]. To the
best of our knowledge, there is no proof of (actual nonlinear) instability if the
shape of the container is not cylindrical.

The situation changes slightly for the system of MHD equations. In contrast
with the purely hydrodynamical setting, it is possible to obtain three-dimensional
examples of MHD equilibria for which the second variation of the total energy
is definite [FV2]. The class of flows whose stability may be determined by the
sufficient criterion discussed in this and preceding sections is very restricted. In
particular, the second variation of energy turns out to be indefinite for the flows
having a point where the vectors of the velocity v and of the vorticity curl v are
nonzero and nonparallel to the vector of the magnetic field B. The same statement
holds for fields with parallel magnetic and velocity fields if the magnetic field is
weak enough: ‖v‖ > ‖B‖ at some point [FV2]. Other applications of the stability
analysis to MHD can be found in [VlM, VMI]. Stability of steady two- and three-
dimensional flows of an ideal fluid with a free boundary was studied in [SYu];
for the stability analysis of stratified ideal, barotropic, and other fluids see [Dik,
A-H, HMRW, Gri, Vla3]. We also refer to [Arn14, DoS, FV1, Lif, Shf] for various
stability and asymptotic results for perturbations of steady solutions of the Euler
and Navier–Stokes equations.

§6. Features of higher-dimensional steady flows

The existence of the Bernoulli function for a steady fluid flow is a general phe-
nomenon valid for any dimension (see Section 1.A). In this section we discuss
(following [GK1, 2]) the consequences of the presence of this extra first integral
for steady solutions of the Euler equation of an ideal fluid in higher dimensions.

6.A. Generalized Beltrami flows

Let v be an analytic divergence-free field of a steady flow on an odd-dimensional
compact manifoldM2n+1 equipped with a volume form µ.
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Definition 6.1. A trajectory of the field v is called chaotic if it is not contained in
any analytic hypersurface inM2n+1.

For instance, a generic trajectory of an ergodic flow is chaotic.

Proposition 6.2 (=1.8′, [GK2]). An analytic steady field vwith at least one chaotic
trajectory is proportional to its vorticity ξ ; i.e., ξ � C · v, where C ∈ R.

Remark 6.3. Recall that in the odd-dimensional case the vorticity field is defined
by the relation iξµ � ωn, where the two-form ω � du is the differential of
the one-form u dual to the vector field v: u(·) � (v, ·); see Chapter I. Thus, by
the proposition, the field v with a chaotic trajectory is an “eigenvector” of the
operator curl: v �→ ξ , even though for n > 1 this operator is nonlinear! It is
natural to call such a field v a generalized Beltrami flow. The theorem manifests
that higher-dimensional Beltrami flows, as well as the three-dimensional ones,
have quite a complicated structure. In particular, the mixing in a steady flow might
occur only if at least one chaotic trajectory exists, i.e., only for the generalized
Beltrami flows. On the contrary, a non-Beltrami steady flow is fibered by a family
of hypersurfaces invariant under the flow, and therefore actual mixing for such a
flow is impossible. The proof of the theorem closely follows the argument used
for the three-dimensional case in [Arn3, 4]; cf. Section 1.A.

Proof. The vorticity field ξ commutes with the velocity field v for any steady flow
(see Remark 1.4). The fields ξ and v are both tangent to the “Bernoulli surfaces,”
i.e., to the level hypersurfaces of the analytic Bernoulli function α � p + ivu,
which is defined by the stationary Euler equation ivdu � −dα.

If the Bernoulli function α is nonconstant, then trajectories of v lie on level
hypersurfaces of α, which contradicts the assumption. (Note that similar to the
three-dimensional case, the nonsingular Bernoulli surfaces (dα �� 0) have zero
Euler characteristic, since the tangent field v has no singular points on them.)
If the function α is constant, then the fields ξ and v are collinear (Remark 1.6).
Consider the function κ :� v2/ξ 2 (or, alternatively, (ξ, ξ) � κ · (v, v)). Owing
to the commutativity of ξ and v, the function κ is invariant under the flow of v.
Therefore, the field v is tangent to the level surfaces of κ . Since v has a chaotic
trajectory, the only possibility remaining is that κ ≡ const. (Note that the Bernoulli
function α is analytic, and the function κ is the ratio of two analytic functions.)
Hence the functions α and κ are both constant, and the fields ξ and v are locally
proportional: ξ � C · v, where C � ±1/

√
κ � const. �

Example 6.4. The Hopf vector field (x2,−x1, x4,−x3, . . . , x2n+2,−x2n+1) is an
example of an eigenvector field for the curl operator on S2n+1 ⊂ R

2n+2 without
chaotic trajectories. The theorem above claims that the existence of such a tra-
jectory makes the vector field an “eigenvector” of curl. It would be interesting
to find a nontrivial example of a higher-dimensional ABC flow and to compare
its ergodic properties with those in the three-dimensional case (see, e.g., [Hen]).
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In particular, one wonders if there is an analogue for higher dimensions of the
analytic nonintegrability of certain ABC flows, proved in [Zig2].

6.B. Structure of four-dimensional steady flows

The main result of this section shows that the steady flows of a four-dimensional
fluid are very similar to integrable Hamiltonian systems with two degrees of free-
dom.

Here and below we deal with an even-dimensional orientable Riemannian mani-
fold M2n endowed with a volume form µ. In this case, a generic steady solution
v gives rise to the closed 2-form ω � du, which is symplectic (nondegenerate)
almost everywhere onM . In particular, it allows one to define another (besides α)
invariant function on the manifold: λ(x) � ωn/µ, called the vorticity function (or
“symplectic volume” element). The function λ is invariant, since Lvω � 0 and
Lvµ � 0. This means that the vorticity function λ and the Bernoulli function α
are first integrals of the flow of v onM .

Let ρ � (α, λ) : M → R
2 and � be the set formed by all x ∈ M such that

either λ(x) � 0 or ρ(x) is a critical value of ρ. In other words, � is the union of
the zero λ-level � and of the preimage of the set of critical values of ρ.

Theorem 6.5 [GK1, 2]. LetM be a closed orientable four-dimensional manifold.
Then

(1) the open set U � M \ � is invariant under the flow of v;
(2) every connected component of U is fibered into two-dimensional tori in-

variant under the flow; and
(3) on each of these tori the flow lines are either all closed or all dense.

Proof. The form ω is symplectic on the complement to the set� � {λ � 0}. The
vector fieldv is Hamiltonian (relative to this symplectic form) with the Hamiltonian
function α: by definition ivω � −dα. Let ξ be the Hamiltonian vector field on
M \� with the Hamiltonian λ. Observe that the Poisson bracket of the functions
α and λ is identically zero on M \ �, since {α, λ} � Lvλ � 0. Therefore, the
fields v and ξ commute, and their flows together give rise to an R

2-action on
M \�. The map ρ is, in fact, the momentum mapping for this action. The map ρ
is invariant with respect to the action, and the orbits coincide with the connected
components of ρ-levels. The projection ρ

∣∣
U

: U → ρ(U) is a proper submersion,
since defining U we have excluded from M all critical points of ρ. Hence each
orbit in U is a smooth closed surface, and so it is either a torus or a Klein bottle.
Furthermore, this surface is cooriented by dα ∧ dλ. As a result, we see that the
surface is orientable, i.e., a torus. Therefore, ρ fibers every connected component
of U into tori.

On each orbit, the flow of ξ acts transitively on integral curves of v. Moreover,
the field ξ does not have zeros on U since its Hamiltonian function λ does not
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have critical points there. Thus the integral curves of v, on which ξ acts, are either
all closed or all dense on each torus. �

Note that for a “generic” pair of α and λ the setU is open and dense inM . Thus
the theorem gives an almost complete description of the flow of v.

The real-analytic version of the latter theorem for a manifold without boundary
now looks as follows.

Theorem 6.6 [GK2]. Let M be as in the theorem above. Assume, in addition,
that all the data (i.e., M , µ, and the metric), as well as ω, are real-analytic, and
dα∧ dλ �� 0 somewhere onM . Then � is a semianalytic subset nowhere dense in
M , andU � M \� has a finite number of connected components. Every connected
component is fibered into two-dimensional tori invariant under the flow. On each
of these tori the flow lines are either all closed or all dense.

A version of this theorem holds for a manifold M with boundary (see [GK2]
for more detail).

Remarks 6.7. (A) For an arbitrary even-dimensional manifoldM2n, we can assert
that M is a union of (2n − 2)- (or less) dimensional submanifolds, such that
the steady vector field v is tangent to them. These submanifolds are obtained
as intersections of the levels α � const and λ � const and have zero Euler
characteristic.

(B) For an arbitrary odd-dimensional M2n+1, instead of the function λ � ωn/µ
(and of the covector field dλ), we define the vorticity vector field ξ by iξµ � ωn.
The fields ξ and v commute and thus give rise to an R

2-action on M2n+1. So in
this case a steady flow gives rise to a foliation of dimension 2, unlike the foliation
of codimension 2 in the even-dimensional case.

6.C. Topology of the vorticity function

Let ω be the two-form associated to a stationary divergence-free solution v on
M2n (i.e., ω � du, where u is the differential 1-form u(·) � (v, ·) defined by
the Riemannian metric ( , ) on M). In this section, we study the topology of
the vorticity function λ � ωn/µ of the steady flow v. We describe some special
features of such λ that the pair (λ, ω) (under a mild condition) does not admit “too
many symmetries.”

Let g be the Lie algebra of all divergence-free vector fields onM . Steady flows
are critical points of the energy on the coadjoint orbit O ⊂ g∗ that consists of the
2-forms associated to the fields onM isovorticed with v. It is clear that topological
invariants of λ, such as the number of its critical points and their indices, depend
only on the orbit O. This simple observation will enable us to find orbits with no
stationary solutions at all (see Section 6.D).
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Definition 6.8. A function f on a compact symplectic manifold (P, ω) does not
admit extra symmetries if an arbitrary function g satisfying {f, g} � 0 is constant
on connected components of the level sets of f (i.e., {f, g} � 0 implies that the
differential dg is proportional to df with coefficient depending on the point on
P ).

Remark 6.9. On a two-dimensional symplectic manifold no functions admit extra
symmetries. Conjecturally, a generic function on a compact symplectic manifold
of any dimension does not admit extra symmetries. It is true for dimM � 4 (cf.
[MMe]). The question turns out to be closely related to some subtle problems in
Hamiltonian dynamics. The general conjecture can be regarded as a Hamiltonian
version of the following problem of generic nonintegrability.

Remark 6.10: Digression on nonintegrability. From the time of Poincaré one
usually has used the term “a nonintegrable dynamical system” in the sense of
“a dynamical system having no analytic first integrals.” However, there exists a
number of other possibilities. For instance,

(1) the absence of invariant hypersurfaces (or of principal ideals),
(2) the absence of invariant closed 1-forms (or of multivalued first integrals),
(3) the absence of invariant distributions of tangent subspaces (or of invariant

Pfaff modules), and
(4) the absence of invariant foliations (or of invariant completely integrable

Pfaff systems).

Consider a dynamical system with discrete time (a diffeomorphism of a compact
manifold) and an object of one of the above types (a function, an ideal, a closed
1-form, etc.) The images of this object under the iterations of the diffeomorphism
may form a finite set (if they are repeated periodically) or an infinite sequence and
may generate a finite-dimensional or infinite-dimensional space. These properties
reflect the “degree of chaoticity” of the dynamical system.

Problem 6.11. Do the nonintegrable systems (in the sense of each of the four
definitions above) form an open set in the space of dynamical systems on manifolds
of sufficiently high dimension? Conjecturally, this is the case in the space of
Hamiltonian systems near an elliptic equilibrium point.

Even specific examples of systems that are nonintegrable in the strong sense
((1),(2),(3), or (4)) would be interesting. The following example of chaotic behav-
ior is due to Kozlovsky [Koz1]. Consider a germ of an analytic mapping

z �→ eiθ z+ z2

of the complex line z ∈ C to itself in a neighborhood of the (elliptic) fixed point
0. Let an irrational θ be unusually well approximated by rational numbers. Then
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there are infinitely many periodic trajectories in any neighborhood of the origin.
Such mappings are nonintegrable in the sense of (1)–(4).

One more extension of the integrability property has been suggested by Yu-
dovich [Yu2]. He introduced the notion of cosymmetry of a vector field. A cosym-
metry is a field of hyperplanes in the tangent spaces containing the given vector
field (one might call them nonholonomic constraints). This field of hyperplanes is
allowed to degenerate at some points of the manifold, and it is defined by a 1-form
(possibly with zeros) annihilated at every point by the given vector field.

Every nonzero vector field has locally some trivial cosymmetries. The existence
of a global cosymmetry implies some restrictions on the topological properties of
the field. Example: If a field with an equilibrium has a nontrivial cosymmetry, then
the equilibrium is nonisolated (and generically belongs to a curve of equilibria). If a
vector field admits two cosymmetries, it generically has a surface of equilibria, etc.
This phenomenon is described by a “cosymmetric version” of the implicit function
theorem [Yu2, KuY]. Furthermore, for dynamical systems with cosymmetries one
observes generic bifurcations of an equilibrium point into a family of those points
(the phenomenon of infinite codimension among all dynamical systems).

Yudovich has discovered nontrivial cosymmetries in some physical problems
of hydrodynamical origin (fluid convection in porous media) and of Newtonian
mechanics. For instance, if a vector field has a first integral φ, then the differential
dφ is a (holonomic) cosymmetry. (Example: For Newton’s second law ẍ � F(x)
with a potential force F(x), the sum of the kinetic and potential energy is the first
integral of the equation.) The notion of cosymmetry provides a natural framework
for the validity of the result of the Noether theorem on the existence of momentum-
like first integrals for the Newton equation ẍ � F(x) with a nonpotential force
F(x) [Yu2]. The nonholonomic cosymmetries of this equation ensure (generically)
the existence of continuous families of equilibria even for this classical situation.

Returning to steady fluid flows in even dimensions, we need the following:

Definition 6.12. A coadjoint orbit O ⊂ g∗ does not admit extra symmetries if for
any (or, equivalently, for some) 2-formω ∈ O the corresponding vorticity function
λ does not admit extra symmetries on λ−1([a, b]) for any pair of its regular values
0 < a < b or a < b < 0. (Note that the form ω is symplectic precisely on the
complement to the zero level of λ � ωn/µ.)

Definitions 6.8 and 6.12 are consistent: A function f on a compact symplectic
manifold does not admit extra symmetries if and only if its restriction to the pre-
image of any segment with regular endpoints does not admit them.

Definitions 6.13. A function on a compact manifold is a Morse function if all its
critical points are nondegenerate, i.e., the Hessian matrix of the second derivatives
of the function is nondegenerate at every critical point. The number of negative
eigenvalues of the Hessian matrix is called the Morse index of the critical point.

An orbit O ⊂ g∗ has Morse type if for any (or, equivalently, for some)
ω ∈ O the function λ is a Morse function on M constant on every connected
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component of ∂M . The orbit is called positive if λ(x) is positive for all
x ∈ M \ ∂M .

Theorem 6.14 [GK2]. Let dimM � 2n ≥ 4 and O be a Morse-type orbit without
extra symmetries. Assume that O contains a steady solution. Then, for everyω ∈ O
all the critical points of the vorticity function λ have indices either no less than n
or no greater than n on every connected component ofM \ {λ � 0}.

Example 6.15. If O is as above and λ > 0 on M \ ∂M , then λ cannot have both
a local maximum (index 2n) and a local minimum (index 0) onM \ ∂M .

Proof of Theorem. For simplicity assume that O is a positive orbit, i.e., λ > 0
onM . Only a minor modification is required to prove the general case. Let ω ∈ O
be a stationary solution (Lvω � 0) and α the corresponding Bernoulli function
such that dα � −ivω.

Since λ � ωn/µ does not admit extra symmetries and {α, λ} � 0, the function
α must be constant on the connected components of λ-levels.

Lemma 6.16. The functions λ and α have the same critical points. In particular,
the critical points of α are isolated.

Proof of Lemma. Since λ does not admit extra symmetries, dλ(x) � 0 implies
that dα(x) � 0. The rest of the critical set of α may only be the union of some
connected components of λ-levels. For a vector field v and the Riemannian dual
1-form u(·) � (v, ·) one has u(v) � (v, v) ≥ 0.

Consider the vector field η on M defined by the formula iηω � u. The field
η is expanding for the 2-form ω � du: Lηω � ω. Furthermore, the field η is
gradient-like for the Bernoulli function α:

Lηα � iηdα � −iηivω � ivu � u(v) ≥ 0.

Moreover,

(6.1) Lηα � 0 ⇔ u(v) � 0 ⇔ u � 0.

If the critical set of α contains a connected component � of a λ-level, then
Lηxα � 0 for all x ∈ �, and as a consequence of (6.1), u|� � 0. Hence, ω|� �
du|� � 0. This is impossible, because � is a hypersurface in the symplectic
manifold (M,ω) and 2n � dimM ≥ 4. The lemma is proved. �

Now observe that all zeros of the vector field η are nondegenerate, as follows
from Lηω � ω. Therefore, the field η has smooth complementary dilating and
contracting manifolds in a neighborhood of each of its stagnation points. Moreover,
the dimension of the dilating manifold for each point must be at least n. Indeed, the
restriction of the symplectic form ω to the contracting manifold of η must be zero
by virtue of the expanding property of η, and hence all the contracting manifolds
have dimension at most n.
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Now we are ready to complete the proof of the theorem. The field η is gradient-
like for the function α. Therefore, η is either gradient- or antigradient-like for λ
on the whole ofM , since the λ- and α-levels coincide in a neighborhood of every
critical point and λ is a Morse function. Thus, at all critical points of the vorticity
function λ the dimensions of all its dilating or of all its contracting manifolds are
simultaneously bounded by n from below. This gives the desired inequality for
the Morse indices of the λ-critical points. �

One may prove that all the critical points ofα are nondegenerate except, possibly,
for its maxima and minima.

Theorem 6.17 [GK2]. Let M be diffeomorphic to the two-dimensional disk B2.
If a Morse-type orbit O ⊂ g∗ contains a stationary solution, then for any ω ∈ O
the vorticity function λ cannot simultaneously have a local maximum and a local
minimum inM , provided that λ > 0 onM \ ∂M .

Note that since dimM � 2, the orbit O does not automatically admit extra
symmetries.

The proof below is a formalization of the following argument, which is ev-
ident from a physical viewpoint. Minima and maxima of the vorticity function
correspond to rotations of the fluid in opposite directions. On the other hand, the
positivity of λ prescribes a priori a counterclockwise drift.

Proof. First, recall that α cannot have maxima. Indeed, in a neighborhood of a
maximum the gradient-like (for η) field ηwould shrink the area, which contradicts
the equationLηω � ω. Let� be the critical set ofα. Observe that sinceα is constant
on ∂M , the set � either contains the boundary ∂M or does not meet it. We claim
thatM \ � is connected. To prove this, assume the contrary. Then there exists an
open set U ⊂ M \ � such that ∂U ⊂ �. The set U is invariant under the flow of
η, since dα (and thus η) vanishes on �. On the other hand, as above, the existence
of such a set U contradicts the area expansion.

Observe that the field η is gradient-like for λ in a neighborhood of every local
minimum of λ: Indeed, every local minimum of λ is a local minimum of α, and the
field η is gradient-like for α. Meanwhile, near a local maximum of λ, the field η
must be antigradient-like forλ. Switching from being gradient-like to antigradient-
like (and vice versa) may occur only on �. But � does not divide M . Hence η is
either gradient-like or antigradient-like on all ofM . The theorem follows. �

6.D. Nonexistence of smooth steady flows and sharpness of
the restrictions

Applying Theorems 6.14 and 6.17, one can easily find a coadjoint orbit that does
not contain a steady solution.
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Figure 20. Level curves and a profile of the vorticity function having no smooth steady
flow.

The case of a two-dimensional M is particularly simple. Consider a disk M �
B2 ⊂ R

2
x,y with µ � dx∧dy and ω � λ ·µ, where λ is a positive Morse function

on B such that λ|∂B � const. Assume also that λ has both a local maximum and
a local minimum in the interior of B (see, e.g., Fig. 20).

Corollary 6.18 (of Theorem 6.17). There is no smooth steady solution on B2

whose vorticity function is obtained from the function λ by an area-preserving
diffeomorphism.

Note that a “generalized steady solution” with a discontinuous vorticity function
may still exist and be of certain interest for applications [Mof4].

Remark 6.19 [GK2]. It turns out that Theorems 6.8 and 6.10 are almost sharp as
long as we are not concerned about the metric. Namely, there is no general restric-
tion on the topology of the vorticity function except that given by the theorems.

In the two-dimensional case one can consider, for example, a positive smooth
subharmonic function λ on C ≈ R

2, constant on the unit circle. Then on the unit
disk B2 there exists a metric (·, ·) and an area form µ such that λ is the vorticity
function of a steady solution. In particular, the vorticity function may have saddle
critical points, at least for some metrics and volume forms.

A higher-dimensional version of Corollary 6.18 follows from Theorem 6.14.
Let O ⊂ g∗ be a Morse-type orbit that is positive (i.e., λ > 0) and has no extra
symmetries.

Corollary 6.20 (of Theorem 6.14). Assume that for some ω ∈ O the vorticity
function λ has a critical point of index k1 < n and a critical point of index k2 > n,
where 2n � dimM . Then the coadjoint orbit O contains no steady solutions.

�
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Corollary 6.21. Assume that Hk1(M,R) �� 0 and Hk2(M,R) �� 0 for some
k1 < n and k2 > n. Then the coadjoint orbit O contains no steady solutions.

Proof. The corollary is proved by application of the Morse inequalities. �

Now the sharpness result reads as follows.

Theorem 6.22 [GK2]. Let M be a compact manifold with boundary, dimM �
2n ≥ 6, andλa smooth positive function onM such thatf is constant on connected
components of ∂M and all the critical points of λ have indices no greater than n.
Assume, in addition, thatM admits an almost complex structure. Then there exist
a metric and a volume form onM such that λ is the vorticity function of a steady
solution.

The proof uses the result of Ya. Eliashberg [El2] that the manifold M admits
a complex structure such that the closed 2-form ω � −2 Im ∂∂̄λ is a symplectic
form onM .

Various connections between the steady solutions and complex structures, as
well as further details and other subtle restrictions on the pairs (ω, λ) imposed by
the existence of a steady solution, are discussed in [GK2].



Chapter III

Topological Properties of Magnetic and
Vorticity Fields

The interior media of stars and planets are often virtually perfect conductors and
possess magnetic fields. These fields are said to be “frozen” into the medium
(for instance, plasma or magma) in spite of temperatures of a million degrees.
Mathematically this means that any motion of the medium transports the fields’ by
a diffeomorphism action preserving the mutual position of the fields’ trajectories.
Such a transform may diminish the field magnetic energy. The topological structure
of the field provides obstacles to the full dissipation of the magnetic energy of the
star or planet.

On the other hand, inhomogeneity of the medium’s motion (e.g., the “differential
rotation”) stretches the particles and hence might amplify the magnetic energy
(transforming part of the kinetic energy of the motion into magnetic energy). This
competing mechanism is apparently responsible for the dynamo effect, generating
a strong magnetic field from very small magnetic “seeds” (see Chapter V).

§1. Minimal energy and helicity of a frozen-in field

1.A. Variational problem for magnetic energy

In this chapter we will look for the energy minimum for the fields obtained from
a given divergence-free vector field under the action of volume-preserving diffeo-
morphisms.

The energy of a vector field ξ defined in a domainM of the three-dimensional
Euclidean space R

3 is the integral E � ∫
M

(ξ, ξ)µ. (It differs by a factor of 2 from

the energy used in preceding chapters, which simplifies noticeably the estimates
below. Throughout Chapter III, the space R

3 is always equipped with the standard
metric, and µ is the volume form.)

A more general setting assumes that M is a Riemannian manifold, possibly
with boundary. The fields are supposed to be divergence free with respect to
the Riemannian volume form (and to obey some boundary conditions, such as
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tangency to the boundary of M , or equality of the field normal component at
the boundary to a prescribed function). The energy E � 〈ξ, ξ〉 � ∫

M

(ξ, ξ)µ is

a geometric characteristic of the field relying on the choice of the Riemannian
metric ( , ).

Our purpose is to estimate the energy by means of topological features of the
field. Here a feature of the field is called topological if it persists under the action of
diffeomorphisms preserving the volume element (but not necessarily the metric).

Remark 1.1. In magnetohydrodynamics, where this variational problem naturally
arises, the role of ξ is played by a magnetic field B, frozen into a fluid of infinite
conductivity (but of finite viscosity ν) filling a “star”M .

With an appropriate choice of units, the velocity field v and the magnetic field
B satisfy the system of equations (cf. Section I.10){ ∂v

∂t
+ (v,∇)v � −∇p + ν�v + (curl B)× B, div v � 0,

∂B
∂t
+ {v,B} � 0, div B � 0,

where {·, ·} is the Poisson bracket of two vector fields. The covariant differentia-
tion (v,∇)v, the Laplace operator � � − curl curl, the vorticity curl B, and the
cross product ×, standard for R

3, have natural generalizations to the case of an
arbitrary Riemannian manifold M . The magnetic field B and the velocity field v
are prescribed at the initial moment. The term (curl B)×B represents the Lorentz
force j × B acting on a current j, which coincides (modulo the factor 4π ) with
curl B according to the Maxwell equation.

Physicists suggest that during evolution the kinetic energy dissipates due to the
viscosity term ν�v, and the motion ceases “at the end,” each particle approaching
some terminal position. If this happens, the magnetic field, being frozen-in, will
attain some terminal configuration. The energy of this terminal field must be a
local minimum; otherwise the magnetic energy would have been converted into
kinetic energy, and because of the Lorentz force, the fluid would move further
until the hydrodynamical viscosity dissipated the excess of the magnetic energy
above the minimum.

1.B. Extremal fields and their topology

The variational principle for magnetic fields is dual to that for the steady fluid
flows (studied in Chapter II) in the following sense.

The energy functional that undergoes a minimization procedure is the same in
both problems. The domain of this functional in the magnetic case consists of
all fields diffeomorphic to a given one, while for the case of the ideal fluid the
domain is replaced by the class of the isovorticed fields, i.e., by the fields with
diffeomorphic vorticities. (The term “dual” above refers to the fact that the domain
of diffeomorphic fields is an adjoint orbit in the Lie algebra of all divergence-free
vector fields, whereas the isovorticed fields constitute a coadjoint orbit of that
algebra; see Chapter I.)
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The extremal fields in both of the variational problems coincide ([Arn9]; for
the proof see Section II.2). These fields have very peculiar topology (cf. Section
II.1). Namely, the extremals are the divergence-free fields that commute with their
vorticities. They are either Beltrami flows (i.e., the fields proportional to their own
vorticities) or are “integrable” flows whose stream lines fill almost everywhere
tori and annuli; see Fig. 9 in Chapter II.

This analysis of topology of the extremal fields leaves little hope that the ideal-
ized physical model of the magnetic field relaxation, described above, is legitimate
for any somewhat general initial conditions. Indeed, the initial magnetic field B
can be chosen having no invariant magnetic surfaces. Then the terminal field, if
there is one, cannot have invariant tori or annuli and must be a solenoidal field of
a very special (Beltrami) type (see [Hen] for the first numerical evidence of chaos
in the Beltrami flows). But such fields are too scarce, and one could hardly find a
field with the prescribed topology of the magnetic lines amongst them.

It appears that for a correct description of the actual process it is necessary to
take into account the magnetic viscosity, which violates the assumption that the
field is frozen-in and implies “reconnection” of the magnetic lines. Such a process
was not taken care of in our initial system of equations (one has to add the term
µ�B on the right-hand side of the second equation to capture this phenomenon).

Question 1.2. To what extent can one use the extremal fields to study the behavior
of the magnetic field B at large time scales? What phenomena should appear over
the time interval during which the ordinary viscosity succeeds in extinguishing
the motion of the fluid, but the magnetic viscosity would not yet extinguish the
field B?

1.C. Helicity bounds the energy

Let ξ be a divergence-free vector field defined in a simply connected domain
M ⊂ R

3 and tangent to the boundary ofM .

Definition 1.3. The helicity (or the Hopf invariant) of the field ξ in the domain
M ⊂ R

3 is

H(ξ) � 〈ξ, curl−1 ξ〉 �
∫

M

(ξ, curl−1 ξ) dV,

where ( , ) is the Euclidean inner product, and A � curl−1 ξ is a divergence-free
vector potential of the field ξ ; i.e., ∇ × A � ξ , divA � 0.

The integral is independent of the particular choice ofA (which is defined up to
addition of the gradient∇f of a harmonic function, sinceM is simply connected).
Indeed, integrating by parts, one obtains the following expression for the difference
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of the helicity values associated to two different choices of A:∫

M

(ξ,A1) µ−
∫

M

(ξ,A2) µ �
∫

M

(ξ,∇f ) µ �
∫

M

(f div ξ) µ+
∫

∂M

(f ·ξ) dS � 0,

where the last term vanishes, since ξ is tangent to the boundary ∂M . Note that
such a field A � curl−1 ξ exists and is defined uniquely in a simply connectedM
upon specification of the boundary conditions; e.g., A is tangent to the boundary
ofM (or, more generally, the normal to the boundary ∂M component (A, n) of the
vector fieldA is fixed). IfM is not bounded (say,M � R

3), the field ξ is supposed
to decay at infinity fast enough to make the integral above converge.

The helicity of a field measures the average linking of the field lines, or their
relative winding (see details in Section 1.D below).

Though the idea of helicity goes back to Helmholtz and Kelvin (see [Kel]),
its second birth in magnetohydrodynamics is due to Woltjer [Wol] and in ideal
hydrodynamics is due to Moffatt [Mof1], who revealed its topological character
(see also [Mor2]). The word “helicity” was coined in [Mof1] and has been widely
used in fluid mechanics and magnetohydrodynamics since then. We refer to [Mof2,
MoT] for nice historical surveys.

The principal feature of this concept is described in the following statement.

Theorem 1.4 (Helicity invariance). The helicity H(ξ) is preserved under the
action on ξ of a volume-preserving diffeomorphism ofM .

In this sense H(ξ) is a topological invariant: Though it is defined above with
the help of a metric, every volume-preserving diffeomorphism carries a field ξ
into a field with the same helicity. We will prove this theorem in a slightly more
general setting at the end of this section just by giving a metric-free definition of
the invariant. Now we get an immediate and important dividend:

Theorem 1.5 [Arn9]. For a divergence-free vector field ξ ,

E(ξ) ≥ C · |H(ξ)|,
where C is a positive constant dependent on the shape and size of the compact
domainM .

Proof. The proof is a composition of the Schwarz inequality

H2(ξ) � 〈ξ, A〉2 ≤ 〈ξ, ξ〉 〈A,A〉
and the Poincaré inequality, applied to the vector field A (tangent to the boundary
ofM if ∂M �� ∅):

〈A,A〉 �
∫

M

(A,A)µ ≤ 1

C2

∫

M

(ξ, ξ)µ � 1

C2
〈ξ, ξ〉
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for A � curl−1 ξ , E(ξ) � 〈ξ, ξ〉. �

Various applications of this theorem can be found in [MoT, L-A, CDG].

Remark 1.6. The inverse (nonlocal) operator curl−1 sends the space of
divergence-free vector fields (tangent to the boundary) on a simply connected
manifold onto itself. This operator is symmetric, and its spectrum accumulates
at zero on both sides. The restriction of the operator − curl2 to the space of
the divergence-free vector fields is called the Laplace–Beltrami operator on the
divergence-free fields. Its components in the Euclidean R

3 case are the Laplacians
of the field components. Its spectrum is a sequence of real numbers divergent to
−∞.

This Laplacian− curl2 differs by the sign from the Laplace operator of topolo-
gists dδ+ δd (see Sections 1.D and V.3.B below) restricted to the space of closed
two-forms. Here a divergence-free vector field ξ on a Riemannian manifold is
regarded as the corresponding closed 2-form iξµ.

Corollary 1.7. The eigenfield of the operator curl−1 corresponding to the eigen-
value λ of the largest absolute value has minimal energy within the class of
divergence-free fields obtained from this eigenfield by the action of volume-
preserving diffeomorphisms.

Indeed, for any field ξ the energy E(ξ) can be minorized as follows:

E(ξ) � 〈ξ, ξ〉 ≥ 1

λ
〈curl−1 ξ, ξ〉,

and the inequality becomes the equality for the eigenfield with the eigenvalue λ.
In general, the constant C of the preceding theorem can be taken equal to |λ|.

Remark 1.8. The theorems above, as well as many results below, hold for the more
general case of manifoldsM whose first homology group vanishes: H1(M,R) �
0.

This statement also holds for an arbitrary closed three-dimensional Riemann-
ian manifold if one confines oneself to divergence-free fields that are “null-
homologous” (i.e., have a single-valued divergence-free potential).

Example 1.9. The standard Hopf vector field on

S3 � {(x1, x2, x3, x4) ∈ R
4|

4∑
i�1

x2
i � 1}

is defined by

v(x1, x2, x3, x4) � (−x2, x1,−x4, x3).

It corresponds to the maximal eigenvalue (=1/2) of the curl−1 operator on S3 with
the canonical induced metric and the orientation given by the inner normal. The
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trajectories of this field are the great circles along which S3 ⊂ C
2 intersects the

complex lines C
1 ⊂ C

2 (see Fig. 21 for v-orbits under stereographic projection
S3 → R

3). These trajectories are pairwise linked. The Hopf field on S3 has
minimal energy among all the fields diffeomorphic to it, i.e., obtainable from it by
the action of a volume-preserving diffeomorphism.

Figure 21. Trajectories of the Hopf field in R
3 (the stereographic projection from S3).

One circle becomes the vertical axis. Every two orbits are linked.

1.D. Helicity of fields on manifolds

We consider here an ad hoc definition of the helicity integral on manifolds [Arn9],
establish its simplest properties (in particular, the topological invariance), and
identify the result with Definition 1.3 above. An interesting topological meaning
of the invariant will be discussed in the next two sections.

LetM be a three-dimensional manifold that is closed (compact, without bound-
ary), oriented, and connected, and let µ be a volume element (i.e., a nonvanishing
differential 3-form defining the correct orientation) on M . Notice that we fix a
volume element onM , but we do not select any Riemannian metric.

Definition 1.10. Every vector field ξ on M generates a differential 2-form ωξ
according to the formula

ωξ(η, ζ ) � µ(ξ, η, ζ )
for any vector fields η and ζ . The correspondence ξ �→ ωξ � iξµ is an isomor-
phism of the linear spaces of fields and 2-forms. The differential of ωξ , being a
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3-form, can be expressed via the volume form as

dωξ � ϕ · µ,
where ϕ : M → R is a smooth function. The function ϕ is called the divergence of
the field ξ :ϕ � div ξ . The velocity field of a flow that preserves the volume element
onM is divergence free, and conversely every field with vanishing divergence on
M is the velocity field of an incompressible flow.

Remark 1.11. The origin of divergence is explained by the homotopy formula
for the Lie derivative Lξ � iξ d + diξ . The Lie derivative Lξ is the derivative of
any differential form f along the vector field ξ , defined as the derivative of the
form gt

∗
f transported by the flow gt of the vector field ξ , evaluated at the initial

moment t � 0: Lξf � d
dt
|t�0(g

t ∗f ). The operation iξ is the substitution of the
vector field ξ in the differential form as the first argument, and d is the (exterior)
derivative. Applied to the form µ it gives Lξµ � iξ dµ + diξµ � dωξ � ϕµ.
Thus the function ϕ is the coefficient of stretching (or divergence) of the volume
form by the field ξ .

Definition 1.12. A divergence-free vector field ξ on M is said to be null-
homologous if the 2-form ωξ corresponding to it is the differential of a globally
defined 1-form α onM:

ωξ � dα.
The 1-form α will be called a form-potential. A field is null-homologous if and
only if its flux across every closed surface is zero. In the case of a simply connected
closedM every divergence-free vector field is null-homologous.

Remark 1.13. If M is endowed with a Riemannian metric ( , ) then the 1-form
α can be identified with the vector field A for which

α(η) � (A, η) for every field η.

Here ξ � curlA (in the Euclidean case ξ � ∇ × A), and the vector field A is
called the vector-potential of ξ . We would like to make a point, however, that the
forms ω and α (in contrast to the fieldA) do not depend on the Riemannian metric
but rely only on the choice of the volume element µ.

Definition 1.14. The helicity (or Hopf invariant) H(ξ) of a null-homologous field
ξ on a three-dimensional manifold M (possibly with boundary) equipped with a
volume element µ is the integral of the wedge product of the form ωξ and its form
potential:

H(ξ) �
∫
M

α ∧ dα �
∫
M

dα ∧ α, where dα � ωξ .

Theorem 1.15. This definition is consistent; i.e., the value of H does not depend
on the particular choice of the form-potential α, but only on the field ξ :
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(i) for a manifoldM without boundary, or
(ii) for a simply connected manifoldM with boundary, provided that the field

ξ tangent to ∂M .

Proof. (i) First assume thatM is without boundary. If β � α+ θ is another form
potential for the same 2-form ωξ , then dθ � 0, and therefore
∫
M

α ∧ dα − β ∧ dβ �
∫
M

θ ∧ dα �
∫
M

d(θ ∧ α) �
∫
∂M�∅

θ ∧ α � 0.

(ii) Now ∂M �� ∅. In the simply connected case, a variation θ of the form-
potential is exact (θ � df for some function f on M), and the variation of H is
given by∫

M

θ ∧ dα �
∫
M

df ∧ dα �
∫
M

d(f ∧ dα) �
∫
∂M

f ∧ dα � 0,

where dα vanishes on ∂M due to the condition ξ ||∂M . �

Remark 1.16. In the presence of a Riemannian metric on M the helicity can be
expressed as

H(ξ) �
∫
M

α∧ωξ �
∫
M

α∧ iξµ �
∫
M

α(ξ)∧µ �
∫
M

(A, ξ)µ � 〈curl−1 ξ, ξ〉,

where A is any vector-potential of ξ . (The shift of the substitution operator from
µ to α is due to the fact that iξ is the (inner) differentiation: iξ (α ∧ µ) � iξα ∧
µ− α ∧ iξµ.) Therefore, consistent with Definition 1.3, H is the inner product of
the field with its vector potential.

The above coordinate-free approach can be summarized in the following

Corollary 1.17. The helicity of a null-homologous vector field ξ is preserved
under the action of an arbitrary volume-preserving diffeomorphism of M . For
a simply connected manifold M with boundary, the helicity of a divergence-free
vector field tangent to the boundary does not change under the action of all volume-
preserving diffeomorphisms ofM that carry the boundary ∂M to itself.

In particular, on a Riemannian manifold the inner product of a divergence-free
field and its vector potential is preserved when the field is acted on by a volume-
preserving diffeomorphism.

Proof. The invariance of H under diffeomorphisms that preserve the volume
element follows from the fact that H can be defined by using no structures other
than the smooth structure ofM and the volume element µ. �

This observation constitutes the proof of the Helicity Invariance Theorem.
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Example 1.18 (= 1.9′). The helicity of the Hopf vector field on S3 ⊂ R
4 (defined

in Example 1.9, Fig. 21) is π2/2. Indeed,

H(v) �
∫
S3
(v, curl−1 v)µ � 1

2

∫
S3
(v, v)µ � 1

2

∫
S3
µ � vol(S3)

2
� 2π2

2
� π2,

since the eigenvalue of the curl−1 operator on S3 is equal to − 1
2 , and the volume

of S3 is 2π2.

Example 1.19. With any smooth map π : S3 → S2 one can associate the fol-
lowing integer number, called the Hopf invariant of π . Fix on the sphere S2 an
arbitrary area form ν normalized by the condition area(S2) :� ∫

S2 ν � 1. Such a
form is closed on the sphere S2, and hence its pullback π∗ν is exact on S3 (since
H 2(S3) � 0). That is, there exists a 1-form α such that dα � π∗ν. Then the Hopf
invariant of π is

H(π) �
∫
S3
α ∧ π∗ν.

Proposition 1.20. H(π) is an integer.

Proof hint: Choose the form ν to be a δ-type form on S2 supported at one point
only. Compare the result with the topological definition of the Hopf invariant
below. �

Given a volume form on S3, the number H(π) is the helicity of the divergence-
free vector field ξ defined by the condition iξµ � π∗ν. The orbits of this field
are closed, being the preimages of points of S2 under the mapping π . The above
definition of the helicity is a generalization of the Hopf invariant to the case where
an exact 2-form on S3 (or onM3) is not necessarily a pullback for any map π .

An equivalent (topological) definition of the Hopf invariant for a map S3 → S2

is the linking number in S3 of the preimages of two generic points in S2 (Fig. 22).
The equivalence of the topological and integral definitions plays a key role in what
follows in this chapter.

Theorem 1.5 claims that for a map π : S3 → S2 with nonzero Hopf invariant
H(π), (a multiple of) the absolute value of this invariant bounds below the energy
of the corresponding vector field. The latter field is directed along the fibers of
the map π . The length of the vectors is defined by the volume form on S3 and the
pullback of the S2 area element.

Remark 1.21. L.D. Faddeev proposed another but relevant variational problem
for the mappings π from R

3 to S2. Consider the functional on such mappings
that is a (weighted) sum of two terms. The first term is the Dirichlet integral
(of the squared derivative) of the map π . The second term is the energy of the
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a

b

  a

 b

S 3 S 2

-1

-1

Figure 22. Hopf invariant for a map S3 → S2.

corresponding vector field directed along the fibers of the map. Then this functional
is bounded below by (a multiple of) |H(π)|3/4, where H(π) is the Hopf invariant
of the map π : R

3 → S2 [V-K]. The proof uses a version of the Sobolev inequality
[Sob1]; cf. Theorem 5.3 below and its proof, which employs the same inequality.

Furthermore, some recent computer experiments for the relaxation process of
an initial mapping with nonzero Hopf invariant exhibit the following phenomenon.
In the equivariant case (of S1 acting by rotations on R3 and S2), one observes an
“energy gap” over the poles, where the rotation axis intersects the sphere. It would
be very interesting to explain this singularity structure.

The addition of the Dirichlet integral to the energy is similar to the addition of
the Lagrange multiplier in the problem of energy minimization. We could start
with the action of all diffeomorphisms, and then consider the conditional minimum
for the action of only volume-preserving ones.

Remark 1.22. The Hopf invariant equips the Lie algebra of divergence-free vector
fields on a closed simply connected three-dimensional manifold with a bilinear
form:

H(ξ, η) � 〈ξ, curl−1 η〉,
where curl−1 η is a vector-potential of the field η.

This form is invariant with respect to the natural action of volume-preserving
diffeomorphisms on vector fields (i.e., with respect to the adjoint representation
of the group S Diff(M) in its Lie algebra; see Chapter I). Moreover, the form H
is symmetric, since

H(ξ, η) �
∫
M

iξµ ∧ d−1(iηµ) �
∫
M

d−1(iξµ) ∧ iηµ

�
∫
M

iηµ ∧ d−1(iξµ) � H(η, ξ).
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The positive and negative subspaces of the form H are both infinite-dimensional;
see [Arn9, Smo1]. Thus H generates a bi-invariant pseudo-Euclidean (indefinite)
metric on the corresponding group S Diff(M). For the case of a non-simply con-
nected M one has to confine oneself to the subalgebra of all null-homologous
vector fields within the Lie algebra of all divergence-free vector fields on M (see
Section IV.8.D for more detail).

In this case one may also hope to define the generalized Hopf invariants with
values in some modules over the fundamental group, but this way has not yet been
duly explored.

§2. Topological obstructions to energy relaxation

2.A. Model example: Two linked flux tubes

The helicity obstruction to the energy relaxation is clearly seen in the example of
a magnetic field confined to two linked solitori; Fig. 23a,b. Assume that the field
vanishes outside those tubes and the field trajectories are all closed and oriented
along the tube axes inside.

To minimize the energy of a vector field with closed orbits by acting on the field
by a volume-preserving diffeomorphism, one has to shorten the length of most
trajectories. (Indeed, the orbit periods are preserved under the diffeomorphism
action; therefore, a reduction of the orbits’ lengths shrinks the velocity vectors
along the orbits.) In turn, the shortening of the trajectories implies a fattening of
the solitori (since the acting diffeomorphisms are volume-preserving).

(a) (b)

Figure 23. (a) A magnetic field is confined to two linked solitori. (b) Relaxation fattens
the tori and shrinks the field orbits.

For a linked configuration, as in Fig. 23b, the solitori prevent each other from
endless fattening and therefore from further shrinking of the orbits. Therefore,
heuristically, in the volume-preserving relaxation process the magnetic energy of
the field supported on a pair of linked tubes is bounded from below and cannot
attain too small values [Sakh].
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Below we show that the helicity of a field measures the rate of the mutual winding
(or “helix-likeness”) of the field trajectories around each other. To visualize this
notion (and the paradigm “helicity bounds energy” of the preceding section), we
first concentrate on the degenerate situation above (see [Mof1]).

Let a magnetic (that is, divergence-free) field ξ be identically zero except in two
narrow linked flux tubes whose axes are closed curves C1 and C2. The magnetic
fluxes of the field in the tubes areQ1 andQ2 (Fig. 24).

C1

C2

1

2

Figure 24. C1, C2 are axes of the tubes;Q1,Q2 are the corresponding fluxes.

Suppose further that there is no net twist within each tube or, more precisely,
that the field trajectories foliate each of the tubes into pairwise unlinked circles.

Lemma 2.1. The helicity invariant of such a field is given by

(2.1) H(ξ) � 2 lk(C1, C2) ·Q1 ·Q2,

where lk(C1, C2) is the linking number of C1 and C2.

Definition 2.2. The (Gauss) linking number lk(�1, �2) of two oriented closed
curves �1, �2 in R

3 is the signed number of the intersection points of one curve
with an arbitrary (oriented) surface bounded by the other curve (Fig. 25). The sign
of each intersection point is defined by the orientation of the 3-frame that is formed
at this point by the velocity vector of the curve and by the 2-frame orienting the
surface.

The linking number of curves is symmetric: lk(�1, �2) � lk(�2, �1).

Proof of Lemma. The helicity volume integral H(ξ) � 〈curl−1 ξ, ξ〉 �∫
(A, ξ)µ over the tubes (here A � curl−1 ξ ) descends to the sum of the cor-
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1

2

Figure 25. The linking number of �1 and �2 is the signed number of intersections of �1

with a surface bounded by �2.

responding line integrals:

H(ξ) � Q1

∫
C1

(A, dC1)+Q2

∫
C2

(A, dC2).

Indeed, the volume element µ in each tube is the product of the line element
dCi and the area element dSi of the tube cross section. In turn, the integral of the
ξdSi over the corresponding cross section is the fluxQi . Hence,∫

ith tube
(A, ξ) dSi dCi �

∫
Ci

∫
Si

(A, (ξdSi) dCi) � Qi
∫
Ci

(A, dCi).

Furthermore, the circulation
∫
C1
(A, dC1) of the field A over the curve C1 is the

full flux of curlA � ξ through a surface bounded by the axis curve C1. The latter
flux is equal toQ2 · lk(C1, C2): Every crossing of the surface by the second tube
contributes to the signed amount of Q2 into the full flux. Note that the first tube
itself does not contribute into that flux through its axis C1, due to the assumption
on the net twist within the tubes.

The same argument applied to the second circulation integral doubles the result:
H(ξ) � 2 lk(C1, C2) ·Q1 ·Q2. �

A generalization of this example to the case of an arbitrary divergence-free
vector field ξ is described in Section 4.

2.B. Energy lower bound for nontrivial linking

The linking number is a rather rough invariant of a linkage. The signed number
entering the definition of lk can turn out to be zero for configurations of curves
linked in an essential way (see, e.g., the so-called Whitehead link in Fig. 26a).
However, the heuristic observation of the beginning of Section 2.A for the energy
bound still holds.

The heuristics above are supported by the following result of M. Freedman
[Fr1]: Any essential linking between circular packets of ξ -integral curves implies
a lower bound to E.
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(a) (b)

Figure 26. Nontrivial links with vanishing pairwise linking numbers. (a) Whitehead link.
(b) Borromean rings.

Definitions 2.3. A link L, i.e., a smooth embedding of n circles into a 3-
dimensional manifold, is trivial if it bounds n smoothly and disjointly embedded
disks. Otherwise, the link is called essential.

A vector field ξ onM is said to be modeled on L if there is a ξ -invariant tubular
neighborhood of L ⊂ M foliated by integral curves of ξ that is diffeomorphic to
n⋃
i�1
D2
i × S1 foliated by circles {point} × S1 (here D2 is a 2-dimensional disk).

Theorem 2.4 [Fr1]. If ξ is a divergence-free vector field on a closed 3-manifold
M that is modeled on an essential link, (or knot) L, then there is a positive lower
bound to the energy of fields obtained from ξ by the action of volume-preserving
diffeomorphisms ofM .

Under the additional assumption on a field to be strongly modeled on a link,
the lower energy bound for a field in R

3 was obtained in [FH1] explicitly. A
divergence-free field ξ is strongly modeled on L if there is a volume-preserving

embedding that carries the field ∂
∂θ

directed along the circles in
n⋃
i�1
(D2×S1)i into

ξ within a tubular neighborhood of L. The neighborhood consists of several solid
tori of equal volume, which we denote by V .

Theorem 2.5 [FH1]. The energy of a vector field ξ strongly modeled on an es-
sential link L in R

3 satisfies the inequality

E(ξ) >

(√
6/125

π2

)4/3

· V 5/3 ≈ 0.00624 V 5/3.

Note that given any link, one may construct a field modeled (and even strongly
modeled) on it. The exponent 5/3 has the following origin. The Euclidean dilation
with a factor l multiplies the image field by l and the volume element by l3. Thus
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the total energy gains the factor l5, while the volume is multiplied by the factor l3.
Hence, the ratio E/V 5/3 is purely geometrical and independent of scaling in the
Euclidean case.

Remark 2.6. Theorem 2.5 suggests the following construction of a set of invari-
ants of topological or smooth 3-manifolds. The invariants are parametrized by the
isotopy classes of knots and links in the manifold. They might also be regarded
as the invariants of embeddings of 1-dimensional manifolds into 3-dimensional
ones.

Consider the ratioE/V 5/3 for a vector field strongly modeled on the knot or on
the link of a given isotopy class in a Riemannian manifold. Take the infimum over
all such fields and over all the Riemannian metrics. The resulting number is an
invariant of the smooth (perhaps, even topological) isotopy class of the pair (link,
3-manifold).

Further, one might take the infimum over all the compact 3-manifolds for a
homotopically trivial link to get an invariant of the classical link or knot. (Is this
infimum equal to the infimum of the above ratio for Euclidean 3-space or for the
3-sphere? Is the supremum over all the 3-manifolds finite?)

One might also start with a compact Riemannian manifold of volume 1 and
with a link of k solid tori of volume V each. If kV is smaller than 1, the infimum
of E/V 5/3 over the metrics of total volume 1 is a function of V , which is still an
invariant of the embedding. We do not know whether these invariants are nontrivial,
i.e., whether they distinguish any 3-manifolds or embeddings (cf. Remark 6.7).

Freedman and He have informed us that Theorem 2.5 can be generalized to
arbitrary Riemannian manifolds. The limit of the coefficient C(V ) for small vol-
umes V is the same constant as in the Euclidean caseC � (√6/125/π2

)4/3
given

by Theorem 2.5.

The strongly modeled fields have very simple behavior near the link and are far
from being generic within divergence-free vector fields. It would be of interest to
completely get rid of the condition on a special tubular neighborhood.

Problem 2.7. Is there an energy lower bound for a field having a set of closed
trajectories forming an essential link on a Riemannian manifold (without an as-
sumption on a neighborhood of closed orbits)?

Remark 2.8. The strongest result in this direction was obtained in [FH2] (see
Section 5), where the condition on a field to be modeled on a link was weakened
to the requirement for a field in R

3 to have invariant tori confining the link com-
ponents. Such fields form an ample set near the integrable divergence-free flows.
This follows from the KAM theory of Hamiltonian perturbations of integrable
Hamiltonian systems.

In particular, if a closed field orbit is elliptic (and generic), i.e., its Poincaré map
has two eigenvalues of modulus 1, then this orbit is confined to a set of nested
tori invariant under the field (see, e.g., [AKN]). Thus, every such orbit forming
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an essential knot provides the lower bound for the energy of the corresponding
field. Indeed, the energy of any of the invariant solid tori confining this knotted
orbit cannot diminish to zero, according to [FH2]. One can argue that a vector field
with a knotted hyperbolic closed orbit (whose Poincaré map has real eigenvalues
of the modulus different from 1) may not have a positive lower bound for the
energy (cf. the next section).

Remark 2.9. The different estimates for the magnetic energy, should magnetic
solid tori form a trivial or nontrivial link, have a striking counterpart in the theory
of Brownian motion.

Let K be a knot in S3, and {z(t) | t > 0} the standard Brownian motion on
S3 starting at some point O �∈ K at a distance d(O,K) � τ > 0 from K . If
K is unknotted, then there exists almost surely a sequence t1 < t2 < · · · such
that tn → ∞ and for which d(z(tn),O) ≤ τ/2. Furthermore, the loop that we
obtain by following the Brownian path up to z(tn) and then joining z(tn) toO by a
short path�(z(tn),O) is homotopic toO in S3 \K [Var]. In other words, (almost
surely) the Brownian path returns close to its starting point untangled with respect
to K , and it does this infinitely many times.

The exact opposite happens when K is knotted: There almost surely exists a
T > 0 such that whenever the distance d(z(t),O) is small enough, d(z(t),O) ≤
τ/2 and t > T , the homotopy class of the above loop is not trivial [Var]. In
this sense the Brownian motion can tell whether K is an essential knot or not.
Heuristically, this means that the Brownian motion distinguishes the existence of
a hyperbolic metric on the universal covering to S3 \K (see Thurston’s theorem
on the hyperbolic structure on the complement to a nontrivial knot or link [Th2]).
More details on Brownian motion in the presence of knots, as well as on various
topological problems related to polymers can be found in [KhV].

§3. Sakharov–Zeldovich minimization problem

Assume now that a divergence-free field has a trivial topology in that all field
trajectories are closed and pairwise unlinked. An example of such a field is the
rotation field in a 3-dimensional ball (Fig. 27). The energy lower bounds considered
in Section 2 are valid for essential links and are not applicable here. On the contrary,
in this case the field energy can be reduced almost to zero by a keen choice of
volume-preserving diffeomorphisms [Zel2, Sakh, Arn9, Fr2].

Theorem 3.1. The energy of the rotation field in a 3-dimensional ball can be made
arbitrarily close to zero by the action of a suitable diffeomorphism that preserves
volumes and fixes the points in a neighborhood of the ball boundary.

Remark 3.2. This result, formulated by A. Sakharov and Ya. Zeldovich [Sakh,
Zel2], is based on the following reasoning. Divide the whole ball into a number of
thin solid tori (bagels) formed by the orbits of the field and into a remainder of small
volume. Then deform each solid torus (preserving its volume) such that it becomes
fat and small, with the hole decreasing almost to zero. (Such deformations must
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Figure 27. A rotation field in a 3-dimensional ball can dissipate its energy almost com-
pletely.

violate the axial symmetry of the field, since any axisymmetric diffeomorphism
sends the rotation field to itself and hence preserves the total energy.) Now the
field energy in the solid tori is decreased (since the field lines are shortened). The
whole construction can be carried out in such a way that the field energy in the
remaining small volume is not increased by too much. As a result, the total energy
remains arbitrarily small.

This consideration was placed on a rigorous foundation by M. Freedman. We
outline the main ideas of his proof below.

Let B3 be a ball in three-dimensional Euclidean space and ξ the vector field
generated by infinitesimal rotation about the vertical axis. The trajectories of this
field are horizontal pairwise unlinked circles (and their limits, the points on the
vertical axis).

Theorem 3.3 [Fr2]. There exists a family of volume-preserving diffeomorphisms
ϕt : B3 → B3, 1 ≤ t ≤ ∞, such that it starts at the identity diffeomorphism
(ϕ1 � Id), it is steady on the boundary (ϕt

∣∣
∂B3 � Id) for all t , and the family of

the transformed vector fields ξt :� ϕt∗ξ (being the image of the rotation field ξ
under the ϕt -action) fulfills the following conditions as t →∞:

(1) the energy of the field ξt decays as E(ξt ) :� ‖ξt‖2
L2 � O(1/t),

(2) the supremum norm is unbounded: ‖ξt‖L∞ � O(t), yet
(3) for all k, p < ∞ the Sobolev norms decay: ‖ξt‖Lk,p → 0 (here the norm

‖η‖Lk,p is the Lp-norm in the space of η’s derivatives of orders 0, . . . , k).

Remark 3.4 [Fr2]. For this family of diffeomorphisms, the limit of ξt � ϕt∗ξ
at infinity t → ∞ does not exist, but for large t the regions of large norm ‖ξt‖
constitute a “topological froth” Ft with trivial relative topology. The froth Ft is
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a “time-fractal” (the facet size drops abruptly in a sequence of catastrophes as t
increases) and becomes dense as t →∞.

Proof sketch. The following lemma is a modification of Moser’s result [Mos1]
on the existence of volume-preserving diffeomorphisms between diffeomorphic
manifolds of equal volume.

Lemma 3.5. Let D and D′ be domains of equal volume in R
m and f : D→ D′

a diffeomorphism. Then f is isotopic to a volume-preserving diffeomorphism f0

between the domains.
Moreover, if f preserves orientation and a function ρ is the “excess density”

ρ � 1− det(f∗), then there exist constants Ck,p depending only on the domainD
such that

‖f − f0‖Lk+1,p ≤ Ck,p‖ρ‖Lk,p for any k, p <∞.

Proof of Lemma 3.5. Pull back the D′-volume form µD′ to D. The density
function ρ manifests the excess of the volume f ∗(µD′) over µD . The mean value
of ρ is zero due to the volume equality condition.

Let ψ be a solution of the Neumann problem on D for ρ; i.e., �ψ � ρ on
D and ∂

∂n
ψ � 0 on the boundary ∂D (where ∂/∂n indicates differentiation in

the direction of the exterior normals; see Lemma 3.7 below on solvability of the
Neumann problem).

Rewrite this system in the form div(∇ψ) � ρ, ∇ψ ‖ ∂D. Then the gradient
vector field ∇ψ is tangent to the boundary ∂D and defines infinitesimally an
isotopy of D moving the volume element µD into f ∗(µD′). The isotopy itself is
now the phase flow of the dynamical system onD defined by the instant field∇ψ .

Finally, the required estimate is a consequence of the inequality |λ1| · ‖ψ‖L2 ≤
‖ρ‖L2 , where λ1 is the closest to 0 (from the left) eigenvalue of the Neumann
problem. Taking the gradient ∇ψ , we lose one order in the Sobolev norm. �

Remark 3.6. For application to the case where D is a spherical shell, note that
the constants Ck,p may be chosen independent of the thickness. It follows from
the fact that the closest to 0 eigenvalue λ1 of the Neumann problem on the shell
tends to the smallest Laplace–Beltrami eigenvalue on the sphere S2 as the shell
thickness goes to zero.

Indeed, the eigenvalues of the Laplace operator on such a shell are sums of
those on the sphere and of the eigenvalues of the radial component

∂2

∂r2
+ 1

r

∂

∂r

of the Laplacian. One immediately sees that all but the first eigenfunctions of the
latter operator with the Neumann boundary conditions highly oscillate on a short
segment. Hence, all but the first corresponding eigenvalues tend to infinity, while
the first one goes to zero as the segment shrinks to a point. This very first eigenvalue
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is the only eigenvalue that contributes to the eigenvalueλ1 of the Neumann problem
on the shell, and its contribution vanishes as the shell thickness goes to zero.

Lemma 3.7. The Neumann problem�ψ � ρ onD and ∂
∂n
ψ � 0 on the boundary

∂D has solution for any function ρ with zero mean (i.e., for ρ that isL2-orthogonal
to constants on D).

Proof of Lemma 3.7. The image of an operator is the orthogonal complement
to the kernel of the corresponding coadjoint operator. To apply it to the Neumann
operator we first find the set of functions h orthogonal to all �ψ with ∂

∂n
ψ � 0:

0 �
∫

D

(�ψ)h � −
∫

D

∇ψ∇h+
∫

∂D

(
∂

∂n
ψ)h �

∫

D

ψ�h−
∫

∂D

ψ(
∂

∂n
h).

Taking as test functions those ψ’s that vanish on the boundary ∂D, we obtain
that�h � 0. Then for a generic ψ , the boundary term is equal to zero, and hence
∂
∂n
h � 0 on ∂D. Thus only the constant functions g are orthogonal to the image

of the Neumann operator �ψ (with the boundary condition ∂
∂n
ψ � 0), and any

function orthogonal to constants is in the image of this operator. �

Main construction. We first cut the ballB in two parts by splitting out a spherical
shell Sh of thickness s from a subballBs (Fig. 28). We will fix s later. The internal
subball can be stretched in the vertical direction and squeezed into a thin “snake”
by a volume-preserving diffeomorphism.

t

1
t

1
t

Sh

B s

Figure 28. Stretching a subball into a snake reduces its energy.



138 III. Topological Properties of Magnetic and Vorticity Fields

Such a stretching transformation shrinks all the ξ -orbits (located in the hori-
zontal planes in the internal subball Bs) by an arbitrarily large prescribed factor,
and hence it reduces the field energy in the (transformed) subball to an arbitrarily
small positive level.

Then we put the snake into the original ball, keeping the volume preserved.
Allow the composition map of the subball Bs into a snake inside the ball B to be
accompanied with a map of the shell Sh into the snake complement. One may do
it first without control of the volume elements but providing smoothness of the
transformation (Bs ∪ Sh)→ B (see Fig. 29). Then the accompanying map of the
shell Sh can be made volume-preserving by applying the isotopy of Lemma 3.5.

K

Figure 29. The complement of the snake in the ball is a neighborhood of a 2-complexK .

The total energy of the field ξ after the diffeomorphism action is composed
by the energy in the subball image and in the shell image E � Esubball + Eshell.
The stretching procedure above allows one to handle the first term completely:
Given positive ε, the energy Esubball can be suppressed to the level Esubball ≈ ε

by considering an appropriately long snake. The embedding of the snake into the
original ball does not essentially increase its energy, since the bending occurs in
the directions orthogonal to the trajectories of the magnetic field, and hence it does
not stretch the vectors.

Now we have to estimate the field energy in the shell image. Note that the
image is concentrated near a 2-complex K “complementary” to the snake in B.
Using Lemma 3.5 and Remark 3.6 in order to control the maximal stretching of
orbits in the shell, it is sufficient to provide boundedness of the stretching of the
volume element for an arbitrarily thin shell. The latter is achieved by considering
a one-parameter family of diffeomorphisms (plotted in Fig. 30):

(a) first expand a thin shell (of thickness s) to that of a fixed thickness,
(b) then map it to a neighborhood of K defined by a given snake embedding,
(c) and finally, squeeze this neighborhood to K .

The energyEshell tends to zero as the thickness s → 0, since the energy integrand
is bounded independently of s, while the volume of the integration domain, the
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squeeze it
to

s

K

expand
  shell

1 / 2

K

Figure 30. Family of maps of a shell into a neighborhood of K .

shell volume, goes to zero. Thus, having chosen s sufficiently small, one can obtain
Eshell ≈ ε.

Scale estimate. To organize the family ϕt of diffeomorphisms, we will define
the initial stretching of the subball into a snake of length t . Then the area of
every horizontal section is squeezed by the factor of t , and vectors themselves are
squeezed by the factor of

√
t ; see Fig. 28.

This reduces the total energy to E(ϕ∗t ξ ) ≈ 1
t
. However, some orbits in the

shell stretch to the “full length” ≈ t . Hence, the supremum norm ‖ϕ∗t ξ‖L∞ �
max ‖ξt‖ � O(t).

Once a length scale � is selected, the energy cannot be squeezed to < 1
�

by
using the smooth one-parameter family. To proceed further, one has to renew the
original stretching of the subball into the snake. This produces the next collapse at a
finer scale. The corresponding 2-complex frothK � Ft “blossoms and branches”
[Fr2]. The topology ofK remains trivial (the froth is contractible to the boundary
∂B), since the complement to K is homeomorphic to a ball. �

§4. Asymptotic linking number

The classical Hopf invariant for S3 → S2-mappings has two definitions: a topo-
logical one (as the linking number of the preimages of two arbitrary points of S2),
and an integral one (as the value of

∫
ω ∧ d−1ω for any two-form ω on S3 that is

a pullback of a normalized area form on S2); see Example 1.19.
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The helicity of an arbitrary divergence-free vector field on a three-dimensional
simply connected manifold is a straightforward generalization of the integral defi-
nition of the Hopf invariant. The topological counterpart is more subtle and leads to
the notions of asymptotic and average linking numbers of field trajectories [Arn9],
which replace the linking of the closed curves of the classical definition.

This section deals with such an ergodic interpretation of helicity.

4.A. Asymptotic linking number of a pair of trajectories

Let M be a three-dimensional closed simply connected manifold with volume
element µ. Let ξ be a divergence-free field on M and {gt : M → M} its phase
flow.

Consider a pair of points x1, x2 in M . We will associate to this pair of points a
number that characterizes the “asymptotic linking” of the trajectories of the flow
{gt } issuing from these points. For this purpose, we first connect any two points
x and y of M by a “short path” �(x, y). The conditions imposed on a system of
short paths will be described below and are satisfied for “almost any” choice of
the system.

We select two large numbersT1 andT2, and close the segmentsgtx1 (0 ≤ t ≤ T1)

and gtx2 (0 ≤ t ≤ T2) of the trajectories issuing from x1 and x2 by the short
paths �(gTkxk, xk) (k � 1, 2). We obtain two closed curves, �1 � �T1(x1) and
�2 � �T2(x2); see Fig. 31. Assume that these curves do not intersect (which is
true for almost all pairs x1, x2 and for almost all T1, T2). Then the linking number
lkξ (x1, x2; T1, T2) :� lk(�1, �2) of the curves �1 and �2 is well-defined.

2T (x2)

1T
 (x1)

x1

x2

Figure 31. The long segments of the trajectories are closed by the “short” paths.
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Definition 4.1. The asymptotic linking number of the pair of trajectories gtx1 and
gtx2 (x1, x2 ∈ M) of the field ξ is defined as the limit

λξ (x1, x2) � lim
T1,T2→∞

lkξ (x1, x2; T1, T2)

T1 · T2
,

where T1 and T2 are to vary so that �1 and �2 do not intersect.

Below we will see that this limit exists almost everywhere and is independent
of the system of “short” paths � (as an element of the space L1(M ×M) of the
Lebesgue-integrable functions onM ×M).

Definition 4.2. The average (self-) linking number of a field ξ is the integral over
M ×M of the asymptotic linking number λξ (x1, x2) of the field trajectories:

(4.1) λξ �
∫

M

∫

M

λξ (x1, x2)µ1µ2.

Remark 4.3. The average self-linking number can be defined via an auxiliary
step by specifying what the asymptotic linking of field lines with a closed curve
is and then by replacing the curve with another orbit. This approach is used in
Section 5 to define the average crossing number.

Theorem 4.4 (Helicity Theorem, [Arn9]). The average self-linking of a
divergence-free vector field ξ on a simply connected manifold M with a volume
element µ coincides with the field’s helicity:

(4.2) λξ � H(ξ).

Example 4.5. For the Hopf vector field v(x1, x2, x3, x4) � (−x2, x1,−x4, x3) on
the unit sphere S3 ⊂ R

3, the linking number of every two orbits (great circles) is
equal to 1. All the orbits are periodic with the same period 2π . Hence, the value
of λv(x1, x2), being the asymptotic linking of two trajectories per time unit, is
1/(4π2). The average self-linking number of the Hopf field is

λv �
∫

S3

∫

S3

λv(x1, x2)µ1µ2 �
∫

S3

∫

S3

1

4π2
µ1µ2 � (vol(S3))2

4π2
� (2π2)2

4π2
� π2,

which coincides with the mean helicity H(v) of the field v; see Example 1.19.

Remark 4.6. The result can be literally generalized to the case of two different
divergence-free fields ξ and η on a simply connected M . The linking number
λξ,η(x, y) in the latter case measures the asymptotic linkage of the trajectories
gtξ x and gtηy issuing from x and y respectively. The helicity is replaced by the
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bilinear form H(ξ, η); see Remark 1.22. The Helicity Theorem states in this case
that ∫

M

∫

M

λξ,η(x, y)µxµy �
∫

M

ωξ ∧ (d−1ωη),

where the 2-forms are defined by ωξ � iξµ, ωη � iηµ, and d−1ωη denotes an
arbitrary potential 1-form α such that dα � ωη.

In the case of a manifold M with boundary, all the vector fields involved are
supposed to be tangent to the boundary.

Remark 4.7. The identity of the two classical definitions of the Hopf invariant
(being a nonergodic version of the Helicity Theorem; see Example 1.19) is a
manifestation of Poincaré duality.

Assume that we deal with singular forms (of δ-type) supported on compact
submanifolds. Replace the differential forms by their supports. Then the operations
d−1 and ∧ correspond to the passage from the support submanifolds to the film
bounded by them and to their intersections, respectively. Finally, the integration∫
M

is summation of the intersection points with the corresponding signs. The
intersection of a submanifold with a film bounded by another submanifold is the
linking number of these two submanifolds.

The consideration of smooth differential forms instead of singular ones leads to
the averaging of appropriate linking characteristics. The asymptotic version of the
linking number can be regarded in the context of asymptotic cycles [SchS, DeR,
GPS, Sul].

A counterpart of the homotopy invariance of the classical Hopf invariant is
unknown for the asymptotic linking number:

Problem 4.8. Is the average self-linking number of a divergence-free vector field
invariant under the action of homeomorphisms preserving the measure on the
manifold? Here, a measure-preserving homeomorphism is supposed to transform
the flow of one smooth divergence-free vector field into the flow of the other, both
fields having well-defined average self-linking numbers.

A partial (affirmative) answer to this question was given in [G-G], where the
average linking number for a field in a solitorus was related to the topological
invariants of Ruelle [Rue] and Calabi [Ca] for disk diffeomorphisms (see also
Sections III.7.A and IV.8.B).

We will give two versions of the proof of the Helicity Theorem. The first one
makes explicit use of the Gauss linking formula and of the Biot–Savart integral in
R

3. The second, coordinate-free, version reveals the reason for the helicity–linking
coincidence on an arbitrary simply connected manifold.

Various generalizations of asymptotic linking are discussed in subsequent sec-
tions.
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4.B. Digression on the Gauss formula

To state the formula given by Gauss for the linking number of two closed curves
in three-dimensional Euclidean space, we introduce the following notation.

Letγ1 : S1
1 → R

3 andγ2 : S1
2 → R

3 be smooth mappings of two circumferences
to R

3 with disjoint images. Let t1 (mod T1) and t2 (mod T2) be coordinates on
the first and second circumferences. We denote by γ̇i � γ̇i (ti), i � 1, 2, the
corresponding velocity vectors in the images (Fig. 32).

Assume that the circumferences are oriented by the choice of the parameters t1
and t2, and fix an orientation for R

3. Then we can define vector products and triple
scalar products in R

3.

f
O

t2

t1

T

1(t1)

2(t2)

2

1

S

2

2

Figure 32. Two parametrized linked curves in space define the Gauss map T 2 → S2.

Theorem 4.9 (Gauss Theorem). The linking number of the closed curves γ1(S
1)

and γ2(S
1) in R

3 is equal to

lk(γ1, γ2) � 1

4π

T1∫

0

T2∫

0

(γ̇1, γ̇2, γ1 − γ2)

‖γ1 − γ2‖3
dt1dt2.

Proof. Consider the mapping

f : T 2 → S2

from the torus to the sphere sending a pair of points on our circumferences to
the vector of unit length directed from γ2(t2) to γ1(t1) : f � F/‖F‖, where
F(t1, t2) � γ1(t1)− γ2(t2); see Fig. 32.

We orient the sphere by the inner normal and the torus by the coordinates t1, t2.
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Lemma 4.10. The degree of the mapping f is equal to the linking number
lk(γ1, γ2).

Indeed, this is true for small circumferences situated far away from each other:
Both the linking number and the degree of the mapping f are 0; cf. Fig. 32. Neither
of these quantities changes in the course of any deformation that leaves the curves
disjoint. Furthermore, it is easy to verify that under any deformation of the pair
of curves containing a passage of one curve through another, both the linking
number and the degree of the mapping change by 1 with the same sign. Therefore,
the equality lk(γ1, γ2) � deg f follows, in view of the connectedness of the set
of smooth mappings S1 → R

3.

Now the Gauss Theorem is a consequence of the following lemma.

Lemma 4.11. The degree of the mapping f : T 2 → S2 is given by the Gauss
integral formula.

Proof of Lemma 4.11. By definition of the degree,

deg f � 1

4π

∫∫

T 2

f ∗ν2,

where the 2-form ν2 is the area element on the unit sphere. Now, by definition of
f , the value of the form f ∗ν2 on a pair of vectors a1, a2 tangent to the torus at
t � (t1, t2) ∈ T 2 is equal to their mixed product with the vector −f :� −f (t)
(we oriented the sphere by means of the inner normal):

f ∗ν2(a1, a2) � ν2(f∗a1, f∗a2) � (f∗a1, f∗a2,−f ).
By differentiating f , we obtain f∗a � F∗a/‖F‖ + c(a, f )f (here c(a, f ) is a
scalar factor), and therefore

ν2(f∗a1, f∗a2) � (F∗a1, F∗a2,−F)/‖F‖3.

Recalling that F � x1 − x2, we obtain the expression

f ∗ω2 � (ẋ1, ẋ2, x1 − x2)‖x1 − x2‖−3dt1 ∧ dt2
for an element of the spherical image of the torus, as was to be shown. �

The higher-dimensional version of the Gauss linking formula, developed in
[Poh, Wh], is based on the same observation about equivalence of the linking and
the degree of the Gauss map.

4.C. Another definition of the asymptotic linking number

Let {gt } be the phase flow defined by a divergence-free field ξ in a three-
dimensional compact Euclidean domain M ⊂ R

3. The field is assumed to be
tangent to the boundary ∂M .



§4. Asymptotic linking number 145

Define the Gauss linking of the ξ -trajectories as

�ξ(x1, x2) � lim
T1,T2→∞

1

4π · T1T2

T2∫

0

T1∫

0

(ẋ1(t1), ẋ2(t2), x1(t1)− x2(t2))

‖x1(t1)− x2(t2)‖3
dt1dt2,

where xi(ti) � gti (xi) is the trajectory of the point xi , and ẋi (ti) � d
dti
gti xi is the

corresponding velocity vector.

Lemma 4.12.

(1) The limit �ξ(x1, x2) exists almost everywhere onM ×M .
(2) The value �ξ(x1, x2) coincides with the number λξ (x1, x2) defined above

for almost all x1, x2.

Proof. To prove the first statement, it is enough to verify that � is the “time
average” of an integrable function on the manifoldM ×M , on which the abelian
group {gt1} × {gt2} acts. The integrand is the function

G(x1, x2) � (a1, a2, x1 − x2)

‖x1 − x2‖3
,

where ak � d
dtk
|tk�0g

tk xk � ξ(xk). The functionG has a singularity on the diagonal

of M × M: It grows at most like r−2, where r is the distance to the diagonal.
Since the codimension of the diagonal is 3, the function G belongs to the space
L1(M ×M), as required.

To compare �ξ with λξ , we represent the linking coefficient of the curves
�1 � �T1(x1) and �2 � �T2(x2) by the Gauss integral with 0 ≤ t1 ≤ T1 + 1,
0 ≤ t2 ≤ T2 + 1, by using the value of the parameter tk from Tk to Tk + 1 for
parametrizing the “short path” �(gTkxk, xk) that joins gTkxk to xk .

Definition 4.13. A system of short paths joining every two points inM is a system
of paths depending in a measurable way on the points x and y inM and obeying the
following condition. The integrals of Gauss type for every pair of nonintersecting
paths of the system, and also for every nonintersecting pair (a path of the system,
a segment of the phase curve gtx, 0 ≤ t ≤ 1), are bounded independently of the
pair by a constant C.

Remark 4.14. One can verify that systems of short paths exist for nowhere vanish-
ing vector fields or even for generic vector fields (with isolated zeros). It is useful
to keep in mind that an integral of Gauss type for a pair of straight-line segments
remains bounded when these segments approach each other. The phenomenon
one has to avoid is the winding of a trajectory around a path of the system, which
implies unboundedness of the integral. However, a small perturbation of the short
path system leads to a system satisfying the condition above.

Indeed, the phenomenon of winding does not occur in systems where there is
N ∈ Z+ such that at any point of the manifoldM at least one of the derivatives of
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� (along the paths) of order less than N does not coincide with that of gt (along
the flow). Given a vector field ξ (or equivalently, given flow gt ), the systems of
short paths � subject to the latter constraint form an ample set (cf. the strong
transversality theorem [AVG]).

The fields with nonisolated zeros constitute a set of infinite codimension in the
space of all vector fields. For such vector fields, the existence question of systems
of short paths is more subtle, and there still are some unresolved issues related to
it.1 It would be very interesting to complete the proof of existence in full generality.

Now, the difference
T2+1∫

0

T1+1∫
0
−
T2∫
0

T1∫
0

of Gauss-type integrals can be estimated by

the sum of at most [T1]+ [T2]+ 1 terms, none of which exceeds C. Therefore,

λξ (x1, x2)−�ξ(x1, x2) � lim
T1,T2→∞

1

4π · T1T2



T2+1∫

0

T1+1∫

0

−
T2∫

0

T1∫

0


 � 0

(where T1 and T2 tend to infinity over any sequence for which the curves �1 �
�T1(x1) and �2 � �T2(x2) do not meet). �

Now we complete the proof of the Helicity Theorem on the equivalence of the
ergodic and integral definitions of the helicity of a divergence-free vector field
defined in a domainM ⊂ R

3 (and tangent to the boundary ∂M).
Consider the Biot–Savart integral

A(x2) � − 1

4π

∫
M

ξ(x1)× (x1 − x2)

‖x1 − x2‖3
µ(x1)

(where × denotes the cross product) that defines a vector-potential A � curl−1 ξ

in R
3. It allows one to obtain the integral representation of the helicity

H(ξ) � 〈ξ, curl−1 ξ〉 � 〈ξ, A〉 � 1

4π

∫∫

M×M

(ξ(x1), ξ(x2), x1 − x2)

‖x1 − x2‖3
µ(x1)µ(x2).

The Helicity Theorem follows from this formula and from the Birkhoff ergodic
theorem applied to the integrable function (ξ(x1), ξ(x2), x1−x2)/(4π‖x1−x2‖3)

onM ×M . The space average∫∫
M×M

�ξ(x1, x2)µ(x1)µ(x2)

(vol(M))2
� λξ

(vol(M))2

of the time average �ξ along the trajectories of the measure-preserving flow of ξ
coincides with the space average H(ξ)/(vol(M))2 of the function. �

1We are grateful to P. Laurence, who noted that an existence proof would require some
kind of “global approach,” considering vector fields on the whole manifold, while the
transversality theorem is “local” in nature.
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Remark 4.15. Note that for an ergodic field (ξ, ξ) on M × M the function
�ξ(x1, x2) is constant almost everywhere: The asymptotic linking numbers for
almost all pairs of ξ -trajectories are equal to each other.

4.D. Linking forms on manifolds

Here we show how the preceding arguments can be adjusted to the case of an
arbitrary simply connected manifold, where the Gauss-type integral of De Rham’s
“double form” [DeR] cannot be written as explicitly as in R

3 (see [KhC]).

Theorem 4.16 (= 4.6′). The average linking number of two divergence-free vector
fields ξ and η coincides with H(ξ, η):∫∫

M×M
λξ,η(x, y)µxµy �

∫
M

iξµ ∧ d−1(iηµ).

Proof. We start by recalling some facts about double bundles and linking forms.
Denote by �k(M) the space of differential k-forms on a manifoldM .

Definition 4.17. A differential 2-form G ∈ �2(M × M) is called a Gauss–
De Rham linking form on a simply connected manifold M if for an arbitrary pair
of nonintersecting closed curves �1 and �2 the integral of this form over �1 × �2

equals the corresponding linking number:∫∫

�1×�2⊂M×M
G � lk(�1, �2).

Here �1 × �2 � {(x, y) ∈ M ×M | x ∈ �1, y ∈ �2}. The existence of such a
form will be established later.

Definition 4.18. Each differential form K(x, y) ∈ �∗(M × M) determines an
operator K̃ : �∗(M)→ �∗(M) on the space of differential forms �∗(M) on M
that sends a differential form ϕ(y) into the differential form

(K̃ϕ)(x) �
∫

π−1(x)

K(x, y) ∧ ϕ(y),

where π : M × M → M is the projection on the first component, and the
integration is carried out over the fibers of this projection; see Fig. 33. The value
of the form K̃ϕ at a point x ∈ M is the integral over the fiber π−1(x) ⊂ M ×M
of the wedge productK(x, y)∧ ϕ(y). If the productK(x, y)∧ ϕ(y) is an n-form
in y, then by definition, (K̃ϕ)(x) � 0.

Proposition 4.19. The operator G̃ corresponding to the linking form is the Green
operator inverse to the exterior derivative of 1-forms: Ifψ � dϕ and ϕ ∈ �1(M),
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x

y

M

M

x0

(x 0)

M   Mx

-1

Figure 33. Any form onM ×M defines an operator on �∗(M).

then

ϕ � G̃(ψ)+ dh
for a certain function h.

The term dhmaterializes the fact that a potential 1-form ϕ can be reconstructed
from an exact 2-form ψ modulo a full differential only.

Proof of Proposition. Let d � dx + dy be the operator of the exterior derivative
on �∗(M ×M).

Lemma 4.20. d̃xK � d ◦ K̃ .

Indeed, [dxK(x, y)] ∧ ϕ(y) � dx[K(x, y) ∧ ϕ(y)], and hence

∫

π−1(x)

[dxK(x, y)] ∧ ϕ(y) � d



∫

π−1(x)

K(x, y) ∧ ϕ(y)


 .

Lemma 4.21. If K is a 1-form in the variable y, then d̃yK � K̃ ◦ d.

This follows from the identity∫

π−1(x)

[dyK(x, y)] ∧ ϕ(y) �
∫

π−1(x)

K(x, y) ∧ dϕ(y).

Lemma 4.22. The exterior derivative of a Gauss–De Rham form G on M ×M
is the sum dG � δ + β of
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– the δ-form on the diagonal � ⊂ M ×M (the integral of the δ-form over
any 3-chain in M ×M is equal to the algebraic number of intersection
points of the chain with the diagonal �), and of

– some form β ∈ �3(M ×M) that is a linear combination of forms from
�k(M)⊗�3−k(M)-forms with each factor being closed.

Proof.

lk(�1, �2) �
∫∫

�1×�2

G �
∫∫∫

∂−1(�1×�2)

dG �
∫∫∫

(∂−1�1)×�2

dG.

On the other hand, since the linking number is the intersection number of the
cycle �2 and a surface ∂−1�1 (whose boundary is �1), it can be represented as the
integral of the δ-form over the chain (∂−1�1)× �2:

lk(�1, �2) �
∫∫∫

(∂−1�1)×�2

δ.

Now the statement follows from the fact that all those β’s are closed, and each β
is characterized by the conditions∫∫∫

(∂−1�1)×�2

β � 0 and
∫∫∫

�1×(∂−1�2)

β � 0.

�

Remark 4.23. The form β can be chosen in such a way that the cohomology
class of δ + β in H 3(M ×M) is trivial. Indeed, though the class of δ in H 3(M ×
M) � ∑k H

k(M) ⊗ H 3−k(M) is nontrivial (the diagonal in M × M is not a
boundary), adding an appropriate β we can get rid of the H 0(M) and H 3(M)

terms. Hence, the class of δ + β vanishes due to the simple-connectedness of M
(H 1(M) � H 2(M) � 0).

This proves the existence of a Gauss–De Rham linking 2-form G as a solution
of the equation [dG] � 0 ∈ H 3(M × M), where [∗] denotes the cohomology
class of a differential form.

To complete the proof of Proposition 4.19, we pass from the equation on forms
dG � δ + β to the relation on the corresponding operators: d̃G � δ̃ + β̃, or

d̃xG+ d̃yG � δ̃ + β̃.
At this point we notice that

(a) the δ-form corresponds to the identity operator δ̃ � Id, and
(b) the image of the operator β̃ in �∗(M) belongs to the subspace of closed

forms (see Lemma 4.22). In particular, within �1(M) the image consists
of the exact forms.
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Combining these facts with Lemmas 4.20–21, we come to the relation

d ◦ G̃+ G̃ ◦ d � Id+d ◦ γ̃
for operators on one-forms inM . Having applied the operators of both sides of the
relation to a form ϕ and rearranging the terms, one transforms this relation into

d ◦ (G̃(ϕ)− γ̃ (ϕ))+ G̃(dϕ) � ϕ.
Finally, for ψ � dϕ, we obtain

ϕ � G̃(ψ)+ dh
for some function h. �

Lemma 4.24. There exists a Gauss–De Rham linking form G(x, y) with a pole
of order 2 on the diagonal ofM ×M .

Proof. The linking number of �1 with �2 by definition coincides with the linking
number of �1×�2 with the diagonal� inM×M . Identify a neighborhood of the
diagonal inM ×M with a neighborhood of the zero section in the normal bundle
T ⊥� over the diagonal via the geodesic exponential map (Fig. 34).

UM   M

O

O R
3

Figure 34. For any point of the diagonal � ⊂ M ×M a neighborhood in the transversal
to � direction can be identified with a neighborhood in R

3.

Then, in every fiber (being a neighborhood of 0 ∈ R
3), we consider the standard

Gauss linking form singular at the origin. The latter is the 2-form obtained by the
substitution of the radius vector field ∇(1/r) into the standard volume element in
R

3. It has a pole of order 2 at the origin. Extend the definition of this form from
one fiber to the entire neighborhood of� inM ×M by prescribing that this form
vanishes on vectors parallel to � ⊂ T ⊥�. We obtain a linking form in M ×M
that has a pole of the desired order 2 on the diagonal. �

Corollary 4.25. The linking form G is integrable: G ∈ L1(M × M); i.e., the
value ofG evaluated on any two smooth vector fields is an integrable function on
M ×M .
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Indeed, the codimension of the diagonal in M ×M equals 3, and the growth
order of the form G near the diagonal is 2.

Remark 4.26. All the above arguments on the Gauss–De Rham linking forms
hold (with certain evident modifications) for manifolds of arbitrary dimension.
Further consideration in this section is essentially three-dimensional.

Let ξ and η be divergence-free fields on M equipped with a volume form µ.
Let gtξ x and gsηy be the segments of the trajectories of these fields starting at x
and y for time intervals 0 ≤ t ≤ T and 0 ≤ s ≤ S. Denote by �x and �y the
corresponding “short paths” closing the segments of the trajectories and making
them into two piecewise smooth closed curves.

The asymptotic linking number is equal to

λξ,η(x, y) � lim
T ,S→∞

1

T · S
∫∫

(gtξ x∪�x)×(gsηy∪�y)

G � lim
T ,S→∞

1

T · S
∫∫

gtξ x×gtηy

G.

The last equality of the limits follows from the boundedness of the integrals over
the short paths (see Definition 4.13 of a short paths system). Hence,

λξ,η �
∫∫

M×M
λξ,η(x, y)µxµy �

∫
M

µx

∫
M

µy


 lim
T ,S→∞

1

T · S
∫∫

gtξ x×gtηy

G




�
∫
M

µx

∫
M

µy

(
lim

T ,S→∞
1

T · S
∫ T

0

∫ S

0
(iξ iηG) dsdt

)
,

where iξ iηG is regarded as a function on M ×M and
∫ T

0

∫ S
0 denotes the integral

of this function over the product of (the pieces of) the trajectories gtξ x and gsηy.
By the Birkhoff ergodic theorem applied to the integrable function iξ iηG, we

can pass from the time averages to the space average:

λξ,η �
∫∫

M×M
λξ,η(x, y)µxµy �

∫

M

µx

∫

M

µy (iξ iηG).

Finally, shift the substitution operators iξ and iη from G to the forms µx and µy
(the operation iξ is inner differentiation; see Section 1):

λξ,η �
∫∫

M×M
λξ,η(x, y) µxµy �

∫

M

µx

∫

M

µy (iξ iηG) �
∫

M

iξµx ∧


∫

M

iηµy ∧G



�
∫

M

iξµ ∧ G̃(iηµ).
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By Proposition 4.19 the operator G̃ is inverse to exterior differentiation: G̃(iηµ) �
d−1(iηµ) modulo an exact form. This completes the proof of Theorem 4.16:

λξ,η �
∫

M

iξµ ∧ d−1(iηµ) � H(ξ, η).

�

§5. Asymptotic crossing number

The helicity approach to magnetic energy minoration in terms of the topology
of magnetic lines was generalized by Freedman and He [FH1, 2] by introducing
the notion of asymptotic crossing number. They determined the complexity of a
knotted orbit by the “minimal number of crossings” in its projections. It replaces
the linking number, where the crossings are counted with appropriate signs. In the
presentation below we mostly follow the paper [FH2].

5.A. Energy minoration for generic vector fields

Definition 5.1. For two closed curves γ1 and γ2 in R
3 the crossing number

c(γ1, γ2) is equal to the integral of the absolute value of the Gauss integrand
for their linking number:

(5.1) c(γ1, γ2) � 1

4π

T1∫

0

T2∫

0

|(γ̇1, γ̇2, γ1 − γ2)|
‖γ1 − γ2‖3

dt1dt2.

This quantity is no longer invariant under a curve isotopy. However, all the
notions and definitions regarding the corresponding asymptotic version can be
literally transferred to this situation.

For a vector field ξ defined in a domain M ⊂ R
3 (and tangent to the bound-

ary ∂M), we use the same definition of a “system of short paths” as above (see
Definition 4.13 and subsequent Remark 4.14). Denote by �T (x) the piece of the
ξ -orbit of x ∈ M run in the time period [0, T ] and closed by a short path.

Definition 5.2. The asymptotic crossing number of the field lines of a divergence-
free vector field ξ with a closed curve γ in a simply connected manifoldM3 is the
limit

cξ (x, γ ) � lim sup
T→∞

1

T
c(�T (x), γ ).

This limit exists, belongs to L1(M), and is well-defined in L1(M) in spite of the
ambiguity in the choice of the system of short curves.
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Similarly, the average crossing number of the field lines of ξ with the curve γ
is given by the integral

cξ (γ ) �
∫
M

cξ (x, γ )µx,

where µ is a volume form onM .
Finally, given two divergence-free vector fields ξ and η, their asymptotic cross-

ing numberCr(ξ, η) is defined as the space integral of the crossing number of one
of the fields with the trajectories of the other:

Cr(ξ, η) �
∫
M

(lim sup
T→∞

1

T
cξ (�T (y))µy,

where�T (y) is the piece 0 ≤ t ≤ T of the ξ -field line issuing from the point y and
closed by a short path. This crossing number admits the integral representation

(5.2) Cr(ξ, η) � 1

4π

∫∫

M×M

|(ξ(x), η(y), x − y)|
‖x − y‖3

µxµy.

The asymptotic crossing number yields the following lower bound for theE3/2-
energy E3/2(ξ) :� ∫

M
‖ξ‖3/2µ.

Theorem 5.3 [FH2]. For any divergence-free vector field ξ inM

(5.3) E3/2(ξ) ≥
(

16

π

)1/4

Cr(ξ, ξ)3/4.

Remarks 5.4 [FH2]. (A) The L3/2-norm used in the definition of the E3/2-energy
is justified by the “conformal nature” of the problem. Any lower bound for the
E3/2-energy implies a lower bound for the standardE2-energyE2(ξ) :� ∫

M
‖ξ‖2µ

due to a straightforward application of the Hölder inequality:

(5.4) E2(ξ) ≥ (E3/2(ξ))
4/3

(vol(M))1/3
≥
(

16

π · vol(M)

)1/3

Cr(ξ, ξ),

or, in a more recognizable form,
∫
(‖ξ‖3/2 · 1) ≤ (∫ ‖ξ‖2)3/4 · (vol(M))1/4.

(B) Similarly, for any two divergence-free vector fields ξ and η inM ,

Cr(ξ, η) ≤
(

16

π

)1/4 (
E3/2(ξ)

)2/3 · (E3/2(η)
)2/3

.

(C) Both sides of the inequality have geometric nature (they rely on a particular
choice of metric) and are not topologically invariant. On the other hand, the energy
estimate in terms of the helicity gives a topological bound for a geometric quantity.
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One can make the right-hand side of the inequality (5.3) topological by brute
force, defining the topological crossing number

Crtop(ξ, η) � inf
h∈Diff(R3)

Cr(h∗ξ, h∗η).

Then

E3/2(h∗ξ) ≥ ( π
16
)1/4Crtop(ξ, ξ)

3/4,

for any h ∈ Diff(R3).

(D) Theorem 5.3 holds for vector fields with an arbitrary divergence, provided that
Cr(ξ, ξ) is defined by the integral formula (5.2) and not ergodically. Having used
the integral definition of the helicity as well (see Definition 1.3), one obtains

E3/2(h∗ξ) ≥
( π

16

)1/4
|H(ξ)|3/4, for any h ∈ Diff(M ⊂ R

3),

by virtue of the evident inequality Cr(ξ, ξ) ≥ |H(ξ)|.

Remark 5.5. A two-dimensional version of the asymptotic crossing number has
been developed and applied to energy estimates of the braided magnetic tubes in
[Be2]. In this case the energy lower bound appears to be quadratic in the total
crossing number of a braided field, while the energy of a knotted field in three-
dimensional space is bounded by an expression linear inCr (see the estimate (5.4)
for the E2-energy above).

Proof of Theorem 5.3. The integral form of the asymptotic crossing number
yields the following upper bound:

Cr(ξ, ξ) � 1

4π

∫

M

∫

M

|(ξ(x), ξ(y), x − y)|
‖x − y‖3

µxµy

≤ 1

4π

∫

M

∫

M

‖ξ(y)‖
( ‖ξ(x)‖
‖x − y‖2

)
µxµy �

∫

M

‖ξ(y)‖ ρ(y)µy,

where the density ρ : R
3 → R

+ is defined as

ρ(y) � 1

4π

∫

M

‖ξ(x)‖
‖x − y‖2

µx.

By the Hardy–Littlewood–Sobolev inequality [Sob1, Lieb] in potential theory,
one obtains

‖ρ‖L3 �


∫

M

ρ3µ




1/3

≤
( π

16

)1/3



∫

M

‖ξ‖3/2µ




2/3

.
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After combining it with Hölder’s inequality one sees that

Cr(ξ, ξ) ≤
∫

M

‖ξ(y)‖ ρ(y)µy

≤ ‖ξ‖L3/2 · ‖ρ‖L3 ≤
( π

16

)1/3
(‖ξ‖L3/2)2,

and the theorem follows. �

5.B. Asymptotic crossing number of knots and links

Apparently, any reasonably sharp estimates of Crtop for a fairly generic field ξ
are beyond reach. However, much more can be done under the (already exploited)
assumption that the vector field has some linked or knotted invariant tori.

Definitions 5.6. The crossing number cn(K) (or cn(L)) of a knot K (or link L)
in R

3 is the minimum number of crossings of all plane diagrams representing the
knot (or the link).

Consider some tubular neighborhood T of the (oriented) knot K . An arbitrary
closed oriented curve confined to the neighborhood is said to be of degree p if it
can be isotoped within T to the curve that is K covered p times.

A two-component link (P,Q) in R
3 is called a degree (p, q) satellite link of

K (p and q are positive integers) if (P,Q) can be (simultaneously) isotoped to
a pair of curves (P ′,Q′) ⊂ T with degree(P ′) � p and degree(Q′) � q. The
over-crossing number cn(P,Q) of the link (P,Q) is defined to be the minimum
number of overcrossings ofP overQ among all planar knot diagrams representing
(P,Q); see Fig. 35.

P

Figure 35. The crossing number of this link L � P ∪Q is cn(L) � 4. The over-crossing
number is cn(P,Q) � 2.

Let cnp,q(K) be the minimum of cn(P,Q) over all degree (p, q) satellite links
(P,Q) of K . Define the asymptotic crossing number of the knot K to be

(5.5) ac(K) � lim inf
p,q→∞ cnp,q(K)/pq � inf{cnp,q(K)/pq | p, q ≥ 1}.
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Remark 5.7. The equivalence of the two definitions of ac(K) follows from the
construction of an analogue of a k-fold alternate diagram for a degree (p, q)
satellite that represents a (kp, kq) satellite. The number of crossings of the (smartly
chosen) degree (kp, kq) satellite differs from that of the degree (p, q) satellite by
the factor k2; see [FH2].

Obviously, ac(K) ≤ cn(K), since cn(P,Q) ≤ cn(K) for P andQ taken to be
copies of a minimal knot diagram.

Conjecture 5.8 [FH2]. ac(K) � cn(K).

Theorem 5.9 [FH2]. For a divergence-free field ξ defined in the solid torus T of
knot type K and parallel to the boundary ∂T one has the inequality

Cr(ξ, ξ) ≥ |Flux(ξ)|2ac(K).

Corollary 5.10. Crtop(ξ, ξ) ≥ |Flux(ξ)|2ac(K).

Corollary 5.11. The E3/2-energy of such a field ξ yields the following lower
bound:

E3/2(ξ) ≥
(

16

π

)1/4

| Flux(ξ)|3/2 (ac(K))3/4 .

Proof. Combine the above with Theorem 5.3. �

Notice that the right-hand side of the energy inequality is now topologically
invariant.

The estimate can be specified even further in terms of knot invariants (we refer
to [FH2] for the details and the proofs). A Seifert surface of a knot K ∈ R

3 is an
arbitrary surface embedded in R

3 whose boundary is the knot K . The genus of
a knot is the minimal genus (number of handles pasted to a disk) of an oriented
Seifert surface. By the very definition, the genus is at least 1 for nontrivial knots
(an unknot bounds a genuine embedded disk).

Theorem 5.12 [FH2]. For any knot K the asymptotic crossing number ac(K)
satisfies ac(K) ≥ 2 · genus(K) − 1. In particular, ac(K) ≥ 1 for a nontrivial
knot.

Definition 5.13. For a link L � (L1, . . . , Lk), one first chooses a neighborhood
consisting of k solitori T1, . . . ,Tk disjointly embedded in R

3. Introduce quantities
cnp,q(Li;L), i ∈ {1, . . . , k} to be the minimal number of times a curve of degree
p in Ti must pass over (when projected into a plane) a k component link created by
choosing degree one curves in T1, . . . ,Tk . Similarly, one defines the asymptotic
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crossing number ac(Li, L) of Li over L by formula (5.5), with the replacement
of cnp,q(K) by cnp,q(Li;L).

Then for a divergence-free field ξ leaving invariant the link of solid tori,

Crtop(ξ, ξ) ≥
(

k∑
i�1

ac(Li, L) · |Flux(ξ |Ti )|
)
· min

1≤j≤k
{| Flux(ξ |Tj )|}.

In particular, for a two-component link of solid tori (T1,T2), one can deduce that

Crtop(ξ, ξ) ≥ 2|lk(L1, L2) · Flux(ξ |T1) · Flux(ξ |T2)|.
Thus certain energy minorations can be obtained from the solution of a purely

topological problem of the calculation of the quantities ac(K) and ac(Li, L) for
given types of knots and links of vortex tubes [FH2].

Remark 5.14. These invariants are finer than the linking numbers, due to the
following immediate corollary of the plane projection method of computation of
linking numbers:

ac(Li, L) ≥
∑
i ��j
|lk(Li, Lj )|, 1 ≤ i ≤ k.

This estimate is useless for configurations with vanishing linking numbers (as the
Borromean rings; Fig. 26b). A statement similar to Theorem 5.12 provides a lower
bound for ac(Li, L) in terms of the so-called Thurston norm of certain surfaces
associated to a linkL (see [FH2]). In particular, ifLi is not a trivial component split
away from the rest of the link L (say, Li is one of components of the Borromean
rings), then the asymptotic crossing number ac(Li, L) is minorized by 1.

Proof of Theorem 5.9. Define the degree of a (multivalued) function f : T →
S1 � R/Z to be its homological degree, i.e., the winding number of the function
on the solitorus.

Lemma 5.15. For a vector field ξ parallel to the boundary ∂T of a solitorus T

(5.6) Flux(ξ) �
∫

T
(ξ,∇f )µ,

for any degree 1 function f : T → R/Z.

Proof of Lemma. Cut the solid torus T along any surface  (representing the
generator of H2(T, ∂T); Fig. 36) to form a cylinder F .

The function f on T gives rise to a function f̃ : F → R on the cylinder. The
values of f̃ at the corresponding points of the cylinder top ∂+F and bottom ∂−F
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F

T

Figure 36. Cut the solid torus along  to obtain a cylinder.

differ by 1. Denote by dA the area element on the section  . Then∫
T
(ξ,∇f )µ �

∫
F

(ξ,∇f̃ )µ �
∫
F

div(f̃ ξ)µ

�
∫
∂+F
(f̃ ξ, n) dA+

∫
∂−F
(f̃ ξ, n) dA

�
∫
 

([f̃ (top(x))− f̃ (bottom(x)]ξ, n) dA(x) �
∫
 

(ξ, n) dA.

The lemma is proved. �

To prove the theorem, we assume that Flux(ξ) � 1, and gt is the phase flow of
ξ . Then, for a fixedC1-mapping f : T → R/Z of degree 1 and its lift f̃ : T̃ → R,

∫

T

(f̃ (gτ (x))− f̃ (x))µ �
τ∫

0

∫

T

(∇f (gt (x)), ξ(gt (x)))µxdt(5.7)

�
τ∫

0

Flux(ξ) dt � τ.

Recall that �τ (x) is the curve gt (x), 0 ≤ t ≤ τ , joined to the “short curve”
�(gτ (x), x) for any x ∈ T. Then

| degree(�τ (x))− (f̃ (gτ (x))− f̃ (x))| ≤ C,
since the lengths of the short paths are uniformly bounded and the function f̃ is
continuously differentiable.

On the other hand, by definition of the asymptotic crossing number,

(5.8) c(�τ (x), γ ) ≥ ac(K) · degree(�τ (x)) · degree(γ )

for any closed curve γ in the solitorus T. Therefore,

c(�τ (x), γ ) ≥ ac(K) · degree(γ ) · [(f̃ (gτ (x))− f̃ (x))− C].



§5. Asymptotic crossing number 159

Combining this inequality with formula (5.7), we obtain

1

τ

∫

T

c(�τ (x), γ )µx ≥ ac(K) · degree(γ )

(
1− C · vol(T)

τ

)
.

Finally, as τ →∞ it bounds below the average crossing number cξ (γ ):

cξ (γ ) ≥ ac(K) · degree(γ ).

Similarly, letting γ � �τ (y), y ∈ T, and utilizing formula (5.8) and the definition
of the asymptotic crossing number, we deduce the required inequality

Cr(ξ, ξ) ≥ ac(K).
�

5.C. Conformal modulus of a torus

Some energy bounds for vector fields possessing invariant tori can be formulated
in terms of the conformal modulus of a solid torus.

Let T be a solitorus endowed with some Riemannian metric. Homotopically T
is equivalent to the circle S1 � R/Z.

Definition 5.16. The conformal modulus of a solitorus T with a metric on it is

m(T) � inf
f

∫

T

‖∇f ‖3µ,

where f : T → R/Z is taken to be any degree one, C1-function.

Remark 5.17. The modulus may be thought of as a measure of the “electrical
conductivity” for currents along T: A “fat” torus will have a large modulus, while a
very thin one will have a modulus close to zero. The modulusm(T) is a conformal
invariant: It is preserved under a conformal change of metric, since ∇ scales as
length−1.

Theorem 5.18 [FH2]. For any divergence-free vector field ξ leaving a solid torus
T invariant,

E3/2(ξ) �
∫

T
‖ξ‖3/2µ ≥ | Flux(ξ)|3/2

m(T)1/2
,

where Flux(ξ) is the flux of the field ξ through any surface  representing the
generator of H2(T, ∂T); see Fig. 36.

Proof. The theorem follows immediately from Lemma 5.15. Indeed, the Hölder
inequality applied to (5.6) gives | Flux(ξ)| ≤ ‖ξ‖L3/2‖∇f ‖L3 ; therefore

E3/2(ξ) � (‖ξ‖L3/2)3/2 ≥ | Flux(ξ)|3/2
(‖∇f ‖L3)3/2

.
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The minimization over degree 1 functions f turns theL3-norm in the denominator
into the conformal modulus. �

Remark 5.19. An incompressible diffeomorphism action preserves Flux(ξ), and
therefore it leaves the energy of the fieldh∗ξ bounded from below once the modulus
of the torus has an upper bound. In turn, the modulus m(T) can be bounded by
purely topological quantities associated to the knot (or link) type of the torus (or
of the collection of tori).

Theorem 5.20 [FH2]. For any solid torus T of knot typeK embedded in Euclidean
three-space R

3,

m(T) ≤
√
π

4(ac(K))3/2
.

We refer to [FH2] for the proofs and for other interesting inequalities relating
energy, linking, and moduli of solid tori. Conjecturally, for a nontrivial link of solid
tori, min{m(T1), . . . , m(Tk)} is majorized by a universal constant independent of
k (the upper bound obtained in [FH2] is ≤ √πk1/2/4).

§6. Energy of a knot

The relaxation process of magnetic tubes to a state with minimal energy raises a
question on optimal embeddings of curves, or of more general submanifolds, into
the space. Is there a natural way to associate such an “energy” to a submanifold
so that the energy is infinite for immersions that are not embeddings, and so
that the gradient flow of the energy would preserve isotopy type and evolve the
submanifold to the “optimal” state?

6.A. Energy of a charged loop

Imagine an infinitesimal relative of a magnetic tube, a charged loop of string.
Among various possible potential energies for a loop in 3-space, the one recently
suggested by O’Hare [OH1] is of special interest because of its nice invariance
properties (see [BFHW, FHW]).

Let γ � γ (u) be a rectifiable curve embedded in R
3, where u belongs to the

circle S1. For any pair of points γ (u), γ (v) we denote by dist(γ (u), γ (v)) the
distance between them along the curve, i.e., the minimum of the lengths of the
two subarcs of γ with endpoints at γ (u) and γ (v).

Definition 6.1 [OH1]. The energy of the curve γ is the following integral:

E(γ ) �
∫∫

S1×S1

{
1

‖γ (v)− γ (u)‖2
− 1

| dist(γ (v), γ (u))|2
}
·‖γ̇ (u)‖·‖γ̇ (v)‖ dudv.
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The invariance of the energy under reparametrizations and dilations of the space
is immediate.

Remark 6.2. The energy E is defined on the space of embeddings S1 → R
3. It

tends to infinity when the embedding becomes singular. It is a regularization of
1/r2-potential energy of a charged curve, while the Newton–Coulomb potential
in R

3 is 1/r . The energies corresponding to the exponents smaller than or equal
to −2 (in particular, to the case at hand) blow up as two distinct arcs of a curve
get closer to each other and the curve acquires a double point. It creates an infinite
barrier against any change of the knot topology. Indeed, the unregularized energy
for two pieces of straight lines intersecting transversally (say, for segments of the
x- and y-axes, respectively) is given by the integral∫∫

y x

dxdy

(
√
x2 + y2)2

�
∫∫

θ r

r

r2
dr dθ,

which diverges at the origin.

A remarkable property of E(γ ) is a form of Möbius invariance. Recall that a
Möbius transformation in R

3 is a composition of a Euclidean motion, a dilation,
and an inversion with respect to a sphere. Adding one point at infinity, one makes
the Möbius transforms into bijections of the 3-sphere R

3 ∪ {∞}.

Theorem 6.3 [BFHW, FHW]. Let γ be a simple closed curve in R
3 and let MT

be a Möbius transformation of R
3 ∪ {∞}. The following statements hold:

(i) IfMT ◦ γ ⊂ R
3, then E(MT ◦ γ ) � E(γ ).

(ii) IfMT ◦ γ passes through∞, then E((MT ◦ γ ) ∩ R
3) � E(γ )− 4.

O’Hara [OH1] proved that there exist only finitely many knot types among the
curves with a given simultaneous upper bound on energy, length, and L2-norm of
the curvature. The conditions on the length and the L2-norm of the curvature can
be dropped, as the following theorem shows.

Theorem 6.4 [FHW]. Let γ be a simple closed curve in R
3 and let cn(γ ) (re-

spectively, c(γ, γ )) denote the topological (respectively, average self-) crossing
number of the knot type of γ (respectively, of the curve γ itself). Then

2π · cn(γ )+ 4 ≤ E(γ ),
12π · c(γ, γ ) ≤ 11E(γ )+ 12.

Notice that the average self-crossing number c(γ, γ ) given by the Gauss-type
integral (5.1) is bounded, since the numerator undergoes a double degeneracy on
the diagonal of S1 × S1.

The energy of any round circle is E(circle) � 4, being the minimum of the
energy for closed curves in R

3. The theorem implies that if a closed curve satisfies
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the inequality E(γ ) < 6π + 4 ≈ 22.849, then γ is unknotted (the number of
crossings cn(γ ) ≥ 3 for any essential knot γ ).

Using the exponential upper bound of the number of distinct knots with a given
bound for the number of crossings, one obtains the following

Corollary 6.5 [FHW]. The number of (the isomorphism classes of) knots that can
be represented by curves whose energy E does not exceed N is bounded by

2 · (24−4/2π ) · (241/2π )N ≈ (0.264)(1.658)N .

Milnor [Mil1] showed that for the total curvature

TK(γ ) �
∫ ∣∣∣∣
(
γ̇ (u)

‖γ̇ (u)‖
)′∣∣∣∣ du

(where ′ and · stand for the derivative in u), the inequality TK(γ ) ≤ 4π implies
that γ is unknotted (TK(circle) � 2π ). However, for any given ε > 0 there exist
infinitely many knot types having representatives of total curvature TK ≤ 4π+ε.

Remarks 6.6. The total energy can be similarly assigned to a link (γ1, . . . , γk),
which consists of k disjoint embeddings of S1 to R

3:

T E(γ1, . . . , γk) �
k∑
i�1

E(γi, γi)+ 1

2

k∑
i,j�1,i ��j

E(γi, γj ),

where E(γi, γi) � E(γi), and for i �� j ,

E(γi, γj ) �
∫∫

S1×S1

‖γ̇i (u)‖ · ‖γ̇j (u)‖
‖γi(u)− γj (u)‖2

dudv.

Given N > 0 there are finitely many link types that have representatives with
T E ≤ N (see [FHW]).

Remarks 6.7. For a divergence-free field confined to nontrivially knotted or
linked tubes there is a lower bound of the magnetic energy, as discussed in Sec-
tion 2.B. Moffatt [Mof5] suggested using these lower bounds of the energy as the
invariants of (the tubular neighborhoods of) knots and links.

Namely, for any knot, consider a satellite flux-tube of volume vol carrying
an “untwisted” vector field ξ of flux Flux (across any meridian section of the
tube) and look at the associated energy of this vector field. This energy can
be decreased by a diffeomorphism action, preserving both vol and Flux, to a
topological accessible minimum. On dimensional grounds, this minimal energy
E(ξ) � m · (Flux)2(vol)−1/3, where m � m(Flux, vol) is a positive real number
depending on the knot topology. If for a given knot, different local minima of the
energy exist, then the sequence {m0,m1, . . . , mr} of possible values could be rea-
sonably described as the energy spectrum of the knot (neighborhood). The lowest
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number m0 provides a possible natural measure of the knot complexity (see also
[C-M]).

It would be interesting to relate the final positions of the vortex magnetic tubes
under the E2-energy relaxation to the shape of the curves, realizing the minimum
of an appropriate energy function on curves. The critical points of such an energy
would correspond to the equilibrium states for the Moffatt spectrum.

6.B. Generalizations of the knot energy

There is a variety of Möbius invariant generalizations of the knot energy (see,
e.g., [D-S, AuS, KuS]). Imagine a charge uniformly spread over a k-dimensional
submanifoldM ⊂ R

n.

Definition 6.8. Given a function f , define the f -energy to be

Ef (M) �
∫∫

M×M

f (x, y)

‖x − y‖2k
d volM(x) d volM(y).

Regard the function f on M × M as a function of three arguments, f �
f (M, x, y).

Definition 6.9. A function f (M, x, y) is g-invariant under the action of a map
g : M → M if f (g∗M,g(x), g(y)) � f (M, x, y).

Theorem 6.10 [D-S, AuS, KuS]. Any scale and Möbius invariant factor f gives
rise to the energy Ef invariant with respect to the Möbius transformations of
R
n ∪ {∞}.

The scale invariance of the integrand justifies the choice of the power 2k rather
than the physically meaningful n− 2 in the denominator of the energy in R

n. The
submanifoldM ⊂ R

n∪{∞} can be viewed as a submanifold of Sn ⊂ R
n+1 via the

stereographic projection. Such a projection extends to a Möbius transformation of
R
n+1, while the energy formula does not depend on the ambient dimension.

Proof. The statement follows from the Möbius invariance of the integrand with
f ≡ 1. For the latter case the scale invariance is evident, while the invariance
under inversion r �→ r̃ :� r/‖r‖2 follows from Fig. 37.

The similar triangles Oxy and Ox̃ỹ provide the identity

‖x̃‖ · ‖ỹ‖
‖x̃ − ỹ‖2

� ‖x‖ · ‖y‖
‖x − y‖2

.

On the other hand, the inversion transforming M into M̃ expands conformally
the lengths at x by the factor ‖x̃‖/‖x‖. The corresponding change of the volume
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x

yy
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Figure 37. Triangles Oxy and Ox̃ỹ are similar (where x̃, ỹ are the inverses of x, y).

element is

d volM̃ (x̃) � (‖x̃‖/‖x‖)k d volM(x).

This shows that the integrand, as a whole, remains invariant under inversion, and
hence under an arbitrary Möbius transformation. �

If f ≡ 1, the integrand blows up as x approaches y, and therefore the energy
is infinite for any M . The regularizing factor f is designed to compensate the
singularity, and so it vanishes as x → y.

The list of properties desired from a particular regularization usually includes
the infinite barrier against self-crossings, the Möbius invariance, and boundedness
of the energy from below. More restrictive is the property of approximate additivity
for the connected sum of two remote knots, and the requirement that the energy
contribution of any two disjoint arcs would be independent of whether they are in
the same component of the link (see the discussion in [AuS]).

To give an example, return to the case of a knot γ ∈ R
3. Define a specific

regularization f0 : γ × γ → R by the following construction.

Definition 6.11 [D-S]. Given a point x ∈ γ and any other point p ∈ R
3, there is

a unique circumference (or straight line) Sx(p) tangent to γ and passing through
p. Thus given two points x and y of γ , we have two oriented circumferences
Sx(y) and Sy(x) that meet at equal angles at x and y. Let α be the angle at
which these two circles meet in R

3. These circles and, in particular, the angle
α are defined in a Möbius invariant manner. Set the special weight f0 to be the
function f0 :� 1 − cosα. (The angle α can also be defined in the case of an
arbitrary k-dimensional submanifold in R

n by replacing the circumferences Sx(y)
by k-spheres [KuS]).

Proposition 6.12 [D-S]. The knot energy Ef0 defined by the special weight f0 is
equivalent to O’Hare’s energy E modulo a constant: If γ is a closed curve in R

3,
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then

Ef0(γ ) � E(γ )− 4.

It was shown in [FHW] that for an irreducible knot there is a representative
having minimal energy among all simple loops of the same knot type. A criterion
describing the “optimal” (minimizing the energy) states was obtained in [OH2].
We also refer to the paper [KuS] for nice stereo-pairs of optimal links (with the
number of crossings cn ≤ 8) that allow one to visualize the three-dimensional
picture.

Remark 6.13. Note that the number of critical points of a function on the space
of embeddings S1 → R

3 can be minorized by Morse theory and by Vassiliev’s
calculation of the Betti numbers of the space of embeddings [VasV].

Unlike knots, plane curves (immersions S1 → R
2) generically have self-

intersection points. The simplest singular plane curves (forming the discriminant
hypersurface in the space of maps S1 → R

2) have either a triple point or a point of
self-tangency (see Fig. 38). A treatment of the corresponding theory of Vassiliev-
type invariants for the plane and Legendrian curves can be found in [Arn21, Aic,
L-W, Vir, Pl1, 2, PlV, Shm, Tab2, Gor, FuT].

Figure 38. Plane curves with triple points and self-tangencies.

Problems 6.14. (A) Is there an energy functional on the space of immersions that
is infinite on the discriminant and possesses the property of Möbius invariance
(and/or other properties from the discussion above)? Conjecturally, there will be
only finitely many homotopy classes of immersed curves whose would-be energy
is bounded from above.

(B) Are there asymptotic generalizations of invariants of plane curves similar to
those discussed above for the linking of space curves? We refer to [Aic, L-W] for
very suggestive integral formulas of the invariants.

Remark 6.15 (D. Kazhdan). The growth rate of the number of types of immersions
into the plane as a function the crossing number suggests the existence of a negative
curvature metric in the corresponding spaces of immersions.
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§7. Generalized helicities and linking numbers

This section describes various generalizations of the helicity integral to manifolds
with boundary, to the non-simply connected and higher-dimensional cases, as well
as to magnetic tubes forming links detected by certain higher-order link invariants.

7.A. Relative helicity

The helicity of a vector field in a simply connected manifold with boundary (say,
in a domain of R

3) is well-defined, provided only that the field is tangent to
the boundary. A vector field crossing the boundary possesses neither the ergodic
version of the definition (some of its trajectories leave the region, and therefore
their asymptotic linking cannot be specified) nor the integral one (the formula
has to include a boundary term). However, the vector fields identical outside the
region can be compared by means of the relative linking of their trajectories in the
interior [Ful, B-F].

The definition of the relative linking number for nonclosed curves rests on
the introduction of “reference arcs” with the same endpoints and closing up the
curves; Fig. 39 (see [Ful], where this construction is applied to the study of DNA
knottedness).

Figure 39. Nonclosed curves have relative linking with respect to arcs outside the region.

The continuous version is as follows [B-F]. Suppose that a domain in the space
R

3 (or a closed simply connected manifoldM3) is split into two simply connected
regions A and B separated by a boundary surface S. Assume further that two
divergence-free vector fields ξ and η in A coincide on the boundary S and have
the same extension ζ into the region B. Call the extended fields inM respectively
ξ̃ and η̃. Abusing notation we will denote them as the sums ξ̃ � ξ + ζ and
η̃ � η + ζ (where ξ, η, ζ are regarded as the (discontinuous) vector fields in the
entire manifoldM with supports supp ξ , supp η ⊂ A, and supp ζ ⊂ B).
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Lemma–definition 7.1. The difference of the helicities of the fields ξ̃ and η̃

�H � H(ξ̃ )−H(η̃)
is independent of their common extension ζ in the regionB, and hence it measures
the relative helicity of the fields ξ and η in A.

Proof. Define the (closed) two-forms α, β, andω (by substituting the vector fields
ξ, η, and ζ with respect to the volume form µ onM: iξµ � α, etc.). Then one has
to show that the difference

H(ξ̃ )−H(η̃) :�
∫
M

(α + ω) ∧ d−1(α + ω)−
∫
M

(β + ω) ∧ d−1(β + ω)

does not depend on ω. One readily obtains

�H �
∫
M

α∧ d−1α−
∫
M

β ∧ d−1β+
∫
M

(α−β)∧ d−1ω+
∫
M

ω∧ d−1(α−β).

Here d−1 applied to a discontinuous 2-form is a continuous 1-form (the “form-
potential”). The terms in �H containing ω are

∫
M
(α − β) ∧ d−1ω + ∫

M
ω ∧

d−1(α − β), and we want to show that their contribution vanishes.
Integrating by parts one of the terms, we come to 2

∫
M
(α − β)∧ d−1ω, which,

in turn, is equal to 2
∫
A
(α − β) ∧ d−1ω, since supp(α − β) ⊂ A.

On the other hand, in A the 1-form d−1ω is the differential of a function:
d−1ω � dh. Indeed, it is closed (the differential d(d−1ω) � ω vanishes in A due
to the condition on supp ζ � suppω ⊂ B), and hence it is exact in the simply
connected region. Hence,

2
∫
A

(α − β) ∧ d−1ω � 2
∫
A

(α − β) ∧ dh � 2
∫
S

h(α − β) � 0,

where the last equality is due to the assumption on the identity of the fields ξ and
η on the boundary S. This proves that �H is not affected by the choice of the
extension ζ . �

The relative helicity of a field transversal somewhere to the boundary of M is
no longer invariant under the action of volume-preserving diffeomorphisms ofM .

Remark 7.2. The phenomenon of the same type holds for divergence-free vector
fields on non-simply connected manifolds. A true linking number does not exist
for such a case, but two “homologically equivalent” fields can be compared with
each other. A nice application to the linking numbers for cascades can be found
in [GST].

Choose a nonsingular C1 vector field inside a solid torus such that the flow
lines are transversal to its 2-disks, as in Fig. 40a. In this setting one can define
the following version of the linking number. We fix the direct product structure
S1 ×D2 in the solid torus trivializing its fibration over S1.
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The topological linking of two long pieces of orbits is the algebraic number of
times one trajectory winds around the other. Namely, the projections of the orbits
to the disk form a moving pair of points in the same 2-disk. The linking number is
the rotation number of one point around the other. This definition extends to the
case of the cascades of periodic orbits in a solid torus. A cascade flow in the solid
torus cyclically interchanges smaller invariant disks in the transverse section and
repeats itself inside these disks (Fig. 40b).

(a)

(b)

Figure 40. (a) A solid torus with a vector field transversal to the 2-disk D2. (b) Cascade
of embedded solitori.

On the other hand, to the piece 0 ≤ t ≤ T of a single orbit of a C1 flow one
can associate the (infinitesimal) self-linking number by counting how many times
a tangent vector in the disk direction turns around the orbit. For almost all points,
the infinitesimal self-linking number has a limit as T →∞, and this limit can be
described by a spatial integral of the appropriate derivative [Rue].

Gambaudo, Sullivan, and Tresser showed in [GST] that the sequence of the
topologically defined average linking numbers between successive orbits in the
cascade converges to the average self-linking number of the invariant set. They
also described the sequences of rational numbers (in a sense, counterparts of the
rotation numbers of maps of a circle into itself) that can appear as the average
linking numbers in a cascade of iterated torus knots.

7.B. Ergodic meaning of higher-dimensional helicity integrals

The higher-dimensional integrals generalizing the helicity of a vector field in R
3

were introduced by Novikov [Nov1]. His idea was to extend to closed differential
forms on higher-dimensional spheres (which are not necessarily the pullbacks of



§7. Generalized helicities and linking numbers 169

the forms from the spheres of smaller dimension) the Whitehead operations in the
homotopy groups of the spheres (simulating the approach, transforming the Hopf
invariant on the homotopy group π3(S

2) into the helicity of divergence-free vector
fields on S3).

An ergodic interpretation of Novikov’s constructions encounters the following
difficulty. Unlike the three-dimensional case, where the asymptotic linking number
is defined for almost every pair of trajectories, the field lines are not linked if the
dimension of the ambient manifold is greater than 3. Thus, instead of the curves,
one should consider the submanifolds of higher dimensions. But for nonclosed
submanifolds of dimension ≥ 2 one lacks a satisfactory generalization of the
system of short paths.

We consider the geometric meaning of the invariants of closed two-forms on
manifolds of arbitrary dimension. For odd-dimensional manifolds quantities like∫
d−1α ∧ β ∧ · · · ∧ω arise as first integrals in the theory of an ideal or barotropic

fluid (Sections I.9, VI.2) or in the Chern–Simons theory (Section 8.A). Here the
asymptotic linking number of every pair of field lines is replaced by the linking
of a trajectory with a foliation of codimension 2. For even-dimensional manifolds
the Novikov invariants are described as the average nongeneric linkings [Kh1].
The interpretation presented here is an ergodic counterpart of the Poincaré duality
that translates facts on the differential forms into a description of the intersections
of their kernel foliations (cf. Remark 4.7).

Let Mn be a compact connected manifold without boundary and H1(M,R) �
H2(M,R) � 0. Denote closed (and hence, exact) two-forms onM by α, β, . . . ∈
�2(M), while d−1α, d−1β, . . . ∈ �1(M) are arbitrary primitive one-forms (form-
potentials) for the corresponding two-forms. We start with the following simple
observations:

Proposition 7.3. (i) For an odd-dimensional manifoldM2m+1 and arbitrarym+1
closed two-formsα, β, . . . , ω, the Hopf-type integral I (α, β, . . . , ω) � ∫

M
d−1α∧

β∧· · ·∧ω is symmetric under the permutations of α, . . . , ω and does not depend
on the choice of the primitive d−1α.

(ii) [Nov1] On a four-dimensional manifold M4 for any two 2-forms α and β
that obey the conditions α ∧ α � β ∧ β � α ∧ β � 0, the integrals

J1(α, β) �
∫
M

d−1α ∧ α ∧ d−1β and

J2(α, β) �
∫
M

d−1α ∧ β ∧ d−1β

do not depend on the choices of d−1α and d−1β.

In [Nov1], Novikov defined a set of invariants on manifolds of an arbitrary di-
mension, and we consider the case ofM4 for illustration. We are going to represent
these integrals as the generalized linking numbers of certain foliations associated
to the differential forms.
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Definition 7.4. A closed 2-form α of rank ≤ 2 on a manifold Mn determines a
(singular) foliation (called a kernel foliation) of codimension 2 inM: the tangent
plane to this foliation at any point of M is spanned by the (n − 2)-vector being
the kernel of α at that point.

If the manifold is equipped with a volume formµ, then this foliation is generated
by the field of (n−2)-vectors A whose substitution iA into the volume form gives
α (i.e., iAµ � α).

Proposition 7.5. The kernel field of a closed two-form is completely integrable.
In particular, for the form of rank ≤ 2, it spans a foliation of codimension ≥ 2.

Proof is an application of the Frobenius integrability criterion. �

Remark 7.6. Without the restriction on rank of the two-form α the corresponding
kernel (n−2)-vector fieldA is generically indecomposable. The conditionsα∧α �
β∧β � 0 on the pair α, β in ii) in the above proposition are exactly the limitations
on the ranks: rk(α), rk(β) ≤ 2. The third condition α ∧ β � 0 ensures that the
kernel foliations (of dimension 2 inM4) determined by the forms α and β (near a
point where rk(α) � rk(β) � 2) are allocated in the following peculiar way. The
intersections of their leaves form a 1-dimensional foliation, provided that α and β
are not proportional. Moreover, the distribution spanned by the kernels of α and
β determines in this case a 3-dimensional foliation [Arn9].

Definition 7.7. The average linking of a curve � with the foliation A is the flux
of the two-form α � iAµ through an arbitrary surface ∂−1� bounded by �:

lk(�,A) �
∫
∂−1�

α �
∫
�

d−1α.

The following proposition motivates the definition of lk(�,A).

Proposition 7.8. The number lk(�,A) coincides with the average linking number
(evaluated with the help of the linking formG ∈ �n−2(M)×�1(M)) of the leaves
of foliation A with the curve �.

Proof. By definition of the form G the linking number of two submanifolds P
andQ inM is given by the integral

∫∫
P×Q⊂M×M G, see Section 4. Therefore,

∫∫

A×�
G �
∫∫

M×�
iAG ∧ µ �

∫∫

M×�
G ∧ iAµ �

∫∫

M×�
G ∧ α �

∫

�

d−1α.

(Here the first identity is the definition of
∫∫

A×� G, the last one is the main property
ofG: the operator corresponding to the linking form acts on the exact differential
2-forms just like the operator d−1; see Section 4.D.) �
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By analogy with the three-dimensional case, we can now define an asymptotic
linking lkξ (x,A) of the trajectory of a vector field ξ passing through a point
x ∈ M with the foliation A. It is the time-average of the linking number with A
of the curve �T (x) consisting of the long segment (for time 0 ≤ t ≤ T ) of the
ξ -trajectory gtξ x starting at x ∈ M and of a short closing path:

lkξ (x,A) � lim
T→∞

1

T
lk(�T (x),A).

Definition 7.9. The average linking number of the vector field ξ with the foliation
A defined on the manifoldM equipped with the volume form µ is

lkξ (A) �
∫
M

lkξ (x,A)µ.

Theorem 7.10. Let α, β, . . . , ω be a set of m + 1 closed two-forms on M2m+1.
Assume that the rank of one of the forms (for example, α) is at most 2. Then
the Hopf-type integral I (α, β, . . . , ω) � ∫

M
d−1α ∧ · · · ∧ ω coincides with the

average linking number of the vector field ξ with the foliation A:

I (α, . . . , ω) � lkξ (A),
where the fields ξ and A are defined by iξµ � β ∧ . . . ∧ ω and iAµ � α.

Proof. The proof is a straightforward application of the Birkhoff ergodic theorem.
�

The rank of α is essential merely to define the foliation A. In the general case,
we would consider a linking with an abstract (n − 2)-vector field instead of an
(n − 2)-dimensional foliation. If, conversely, all these forms have rank ≤ 2 (of
course, this is seldom the case), then one can interpret the number I (α, . . . , ω) as
the multilinking of all the corresponding foliations.

Namely, the usual linking number is a bilinear form on the space of disjoint
submanifolds of appropriate dimensions: It is defined for a pair of submanifolds
P k and Ql in Mn, subject to the conditions k + l � n − 1 and P ∩ Q � ∅.
Similarly, we define the multilinking number as a multilinear form on the space
of r-tuples of submanifolds (P1, . . . , Pr) such that

(7.1)
r∑
i�1

codim Pi � n+ 1

and

(7.2)
r⋂
i�1

Pi � ∅.

Definition 7.11. The mutual linking number of r oriented closed submanifolds
P1, . . . , Pr inM � R

n (or Sn) satisfying the condition above is the signed number
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of the intersection points of a manifold F ⊂ M , bounded by one of these surfaces
Pi � ∂F , with the intersection of all the other submanifolds.

If these submanifolds are equipped with some transversal orientations, then so
are all the manifolds bounded by them and all their intersections, and hence the
signs of the intersection points are well-defined. For example, it is possible to link
three circles in the plane or two spheres and one circle in 3-space (Fig. 41).

(a) (b)

1S

1S

1S

1S

2S
2S

Figure 41. Links of (a) three circles in the plane; (b) two spheres and a circle in 3-space.

Note that the mutual linking number of a collection P1, . . . , Pr ⊂ M is the
usual linking number of the submanifold P1 × · · · × Pr ⊂ M × · · · ×M with the
diagonal � � {(x, . . . , x) | x ∈ M} ⊂ M × · · · ×M .

We recall that every closed 2-form of rank ≤ 2 determines a foliation of codi-
mension 2. If the leaves were compact, one could consider the mutual linking of
these leaves for (m+ 1) two-forms inM2m+1 due to

m+1∑
i�1

(codimension of leaves) � 2m+ 2 � dimM + 1.

So in these terms, Theorem 7.10 above reads as

Theorem 7.10′. The Hopf-type invariant is equal to the average asymptotic mul-
tilinking number of the leaves determined by the given 2-forms.

To describe the ergodic meaning of the Novikov integrals J1 and J2, we shall
extend the concept of multilinking. We are going to drop the codimension condition
(7.1) if it is compensated in (7.2) by an assumption on the nongeneric intersection
of the submanifolds. For example, two circles S1 and a sphere S2 cannot be linked
in R

3 (one can untie any configuration of them not passing through any triple
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point; Fig. 42a). However, if these two circles are two meridians of the same ball
(and so their intersection S0 consists of two points), the linking may be nontrivial
(Fig. 42b). Namely, one cannot remove S2 far from the two meridians unless it
passes through an intersection point of these two meridians.

2
S

1S

(a)

(b)

1S

Figure 42. (a) Generic and (b) nongeneric linkings of two circles and a sphere.

In the definition of invariants Ji , the (α ∧ β � 0)-type conditions provide the
nongeneric intersections of the corresponding leaves.

Theorem 7.12. The invariant J1(α, β) (respectively, J2(α, β)) coincides with the
average linking number of the foliation A of the 2-form α (respectively, of the
foliation B of β) with the vector field ξ satisfying iξµ � d(d−1α ∧ d−1β).

Roughly speaking, each of these two amounts is the average linking number
of the 1-dimensional foliation formed by the intersections of A and B with the
foliation A or B (determined, respectively, by α or by β).

Remark 7.13. The Hopf-type invariants arise in [Nov1] in a context of quantum
anomalies. Consider the space L of smooth mappings f : Sq → Mn homotopic
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to zero. To a closed (q + 1)-form θ on M one naturally associates a multivalued
function Fθ(f ) (or a closed 1-form δFθ ) on the space L:

Fθ(f ) �
∫

f (Dq+1)

θ.

Here f : Sq → Mn is extended to a mapping Dq+1 → Mn of the ball Dq+1

bounded by the sphere. Closedness of the (q+1)-form θ implies that δF depends
just on f

∣∣
∂Dq+1�Sq .

The differential δF of a multivalued functional F(f ) on the space L is said to
be local if it depends on f and on a finite number of its derivatives. For n ≥ q+ 1
all multivalued functionals F(f ) with local differentials are the sums of a local
univalued functional andFθ(f ) [Nov2]. A construction of multivalued functionals
for n ≤ q + 1 that conjecturally describes all functionals with local differentials
is given in [Nov1].

There is an integer lattice inside the space of θ ’s consisting of homotopy invariant
elements. The meaning of this lattice is exactly equivalent to the role of the usual
integer-valued Hopf invariant of mappings S3 → S2 among all asymptotic linking
invariants for arbitrary divergence-free vector fields on S3. It is natural to call the
appearance of the integral lattice a quantization condition [Nov1].

7.C. Higher-order linking integrals

The Gauss linking integral fails to detect the entanglements of curves in R
3 with

an equal number of “oppositely signed crossings.” The Whitehead link and the
Borromean rings are examples of this kind (see Fig. 43). In this section we consider
the higher-order invariants called Massey numbers (see [Mas]) that generalize
the linking number of two curves and allow one to detect more general curve
configurations.

Figure 43. Three solid tori form the Borromean rings.
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The formalism of differential forms for the hierarchy of higher link invariants
was developed in [Mas] (see also [MRe]). This notion was introduced in a mag-
netohydrodynamical setting in the paper [MSa] and rediscovered in [Be1, E-B],
to which we refer for more detail (cf. [LS2]). The topological obstruction rules
for the links in nematics and in certain superfluids can be found in [MRe].

The helicity of field tubes is quadratic in the magnetic fluxes (see formula (2.1)),
and therefore it describes a second-order invariant. For the Borromean rings the
Gauss integral taken over any two rings vanishes and so does the helicity of the
entire tube configuration. The Borromean rings can be distinguished from the
three totally unlinked rings by means of a third-order linking invariant, cubic in
the fluxes.

We start with the three closed curves forming the Borromean rings and encased
in toroidal volumes Tk , k � 1, 2, 3. The field ξk is concentrated in the tube Tk ,
vanishes outside, and has unit flux in Tk . Denote byAk a vector-potential for ξk and
by φk the associated 1-form-potential. (In invariant terms, one first finds a closed
two-form αk � iξkµ, which is the substitution of the field ξk into the volume form
µ, and then φk � d−1αk is any primitive one-form such that dφk � αk .)

Having defined the two-forms ωij � φi ∧ φj � −φj ∧ φi for i �� j (note:
dωij � 0 outside of Ti ∪ Tj ), the helicity integral becomes

Hij :� H(ξi, ξj ) �
∫

Ti∪Tj

αi ∧ d−1αj �
∫

Ti

αi ∧ φj �
∫

Ti

dωij

due to suppαi ⊂ Ti . By virtue of the Stokes formula, the latter integral is equal to
Hij �

∫
∂Ti
ωij . All the quantities H12,H23,H31 vanish for the Borromean rings.

One can modify the form ωij inside the tubes to make it closed everywhere.
Namely, one has to add the 2-form h(j)i ·αj toωij inside Tj and to subtract h(i)j ·αi
from ωij inside Ti , where h(i)j is a scalar potential satisfying φj � dh(i)j . The
function h(i)j exists in the tube Ti (but not globally), since the magnetic field ξj
(and the corresponding two-form αj � dφj ) is zero there, and because Ti is not
linked with Tj . The Poincaré lemma applied to the new ωij guarantees that there
is a one-form θij such that ωij � dθij .

Definition 7.14. The third-order linking integral is

Hijk �
∫

∂Ti

ωijk �
∫

Ti

dωijk � −
∫

∂Tk

ωijk

for distinct i, j, k, where ωijk is the Massey triple product

ωijk � φi ∧ θjk + θij ∧ φk.

As a matter of fact, the Massey product is a map defined on cohomology classes.
This implies both the gauge invariance of the third-order linking integral Hijk and
its invariance under deformations of the three curves. It vanishes for three unlinked
circuits but is equal to ±1 for the Borromean rings.
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Remark 7.15. In the language of vector calculus the Massey product becomes

�ijk � Ai × curl−1�jk + curl−1�ij × Ak,
where�ij is the vector fieldAi×Aj modified inside the tubes to make it divergence
free and hence to provide the existence of a potential curl−1�ij (see [E-B]).

The purely cohomological description of the numbers Hijk is as follows (see,
e.g., [MRe]). Let the curves�k , k � 1, 2, 3, constitute the “axes” of the Borromean
rings Tk in S3. A closed 1-form φk is the Alexander dual of the circle �k . It is
defined in S3 \ �k and can be regarded as a linking form: For any closed curve γ
in this complement

∫
γ
φk � lk(�k, γ ).

The condition lk(�i, �j ) � 0 allows one to find a 1-form ωij on S3 \ (�i ∪�j )
such that dωij � φi ∧ φj . Now ω123 � ω12 ∧ φ3 + φ1 ∧ω23 is defined on S3 with
the three circles removed, and it can be integrated over the boundary ∂T1.

Remark 7.16. This is the starting point for a hierarchy of the invariants. (The
invariants of order n can be defined for configurations whose invariants of order
≤ n− 1 vanish.)

A fourth-order linking invariant capturing the Whitehead link was suggested
in [A-R]. Consider Seifert surfaces corresponding to two closed disjoint curves.
For each of the curves such a surface can be chosen not to intersect the other
curve, provided that the linking number of the pair vanishes. Then, generically,
the intersection of the two Siefert surfaces is a closed curve equipped with a
framing. The self-linking number of the framed curve is a topological invariant,
and it is independent of the choice of the surfaces [Sat]. By making the curves into
thin solid tori, one can obtain an integral form of the invariant [A-R].

Remark 7.17. Another way to generalize the linking number to more complicated
links was suggested by Milnor [Mil2]. For all necessary definitions of higher-
order Milnor coefficients and for their relation to the higher-order Massey linking
numbers see [Mil2, Tu1, Por, MRe].

Remark 7.18. In all the constructions of this section, the magnetic field is assumed
to be highly degenerate: It is concentrated in toroidal tubes with all the trajectories
closed inside the tubes. Such fields form a slim set of infinite codimension in
the space of all divergence-free vector fields. No asymptotic version of these
constructions is known.

The dream is to define such a hierarchy of invariants for generic vector fields
such that, whereas all the invariants of order ≤ k have zero value for a given field
and there exists a nonzero invariant of order k+1, this nonzero invariant provides
a lower bound for the field energy.

Remark 7.19. It should be mentioned that the total helicity is approximately
preserved even if the magnetic field is not frozen into the media but undergoes
a small-scale turbulence [Tay]. In this case the fast reconnections of the field
trajectories drastically change the local topological characteristics of the field.
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However, averaged over the entire domain, the helicity persists for large time
intervals.

This phenomenon is based on the fact that small-scale components of the field
(the components with wave vectors of large length k) contribute to the total helicity
the amount of order (amplitude)2/k, while their contribution to the energy is of
order (amplitude)2. Hence, a change of the higher harmonics of the field affects
the helicity approximately k times more weakly than it affects the energy.

Analytically, an evolution of the magnetic field B (div B � 0) in the presence
of diffusion is described by the equation

∂B
∂t
� −{v,B} + η�B.

The helicity dissipation over a fixed time δt is

δH � 2
∫
M

(curl−1(η�B),B)µ � −2η
∫
M

(j,B)µ,

whereas the energy E � ∫
M
(B,B)µ dissipates as

δE � 2
∫
M

(η�B,B)µ � 2η
∫
M

(j, j)µ

(here j � curl B is the current density). The Schwarz inequality gives the upper
bound for δH of order η1/2: |δH| ≤ |η(δE)E|1/2.

The combinatorial arguments of [FrB] show that there are “reconnection path-
ways” that remove other invariants while changing the helicity only at a rate η2.
Neither of the linking invariants of higher order (≥ 3) defined above for tubes of
closed trajectories persist under the reconnection deformations [MSa, FrB].

The reconnection of magnetic lines under magnetic diffusion is similar to the
vortex reconnection in a viscid incompressible fluid. We refer to [KiT] for a survey
on vortex reconnection and to [Ryl] for other topological properties of various
vortex flows.

7.D. Calugareanu invariant and self-linking number

Let a narrow tube around a curve γ in R
3 be filled by the trajectories of a vector

field ξ . Suppose that all the ξ -trajectories in the tube are closed and that one of
them is the curve γ itself.

The helicity of the field inside the tube is proportional to the linking number lk
of any two trajectories inside the pencil:

H(ξ) � lk ·Q2,

whereQ is the flux of ξ across any section of the tube. A straightforward applica-
tion of the helicity formulas (4.1–4.2) for a field filling an arbitrary volume, this
formula can also be visualized by presenting the tube as consisting of many slim
solitori and by counting their mutual helicity (see formula (2.1)).

On the other hand, the linking number lk between the curve γ and a neighboring
curve γ ′ is a quantity assigned to a ribbon bounded by γ and γ ′. Precisely, the



178 III. Topological Properties of Magnetic and Vorticity Fields

linking number is the sum

lk � Wr + Tw
of the writhing numberWr and the total twisting number Tw defined as follows.

Definitions 7.20. The writhing number is the algebraic number of crossovers of
the curve γ ⊂ R

3 averaged over all the projection directions:

Wr � − 1

4π

∫

S1

∫

S1

(γ̇ (t1), γ̇ (t2), γ (t1)− γ (t2))
‖γ (t1)− γ (t2)‖3

dt1dt2,

where the curve γ � γ (t) is parametrized by t ∈ S1 (see, e.g., [Ful]). Just as it is
for the average self-crossing number c(γ, γ ) (see Theorem 6.4), the integral above
is bounded. Its value is not supposed to be an integer, and it is not a topological
invariant. For instance, for a plane (or spherical) curve the writhing number is
zero.

The twist number is not defined for a curve, but it can be defined for a ribbon. It
specifies the total rotation number of the edge γ̃ revolving about the “axis” curve
γ :

Tw � 1

2π

∫

S1

(
dn(t)

dt
, n(t), γ (t)

)
dt,

where γ (t) is an arc-parametrization of the curve γ , and the family n(t) consists
of the unit normals attached along γ and pointing in the direction of γ̃ .

Figure 44. The formula lk � Wr + Tw for a helical ribbon (see [Ful]). Here lk � n,
Tw � n sin α,Wr � n(1−sin α), where α is the pitch angle of a helix, and n is the number
of turns.

The formula lk � Wr + Tw is illustrated in Fig. 44. This relation, due to
Calugareanu [Cal], was extensively studied along with its numerous applications
(e.g., the helical DNA structure) by Fuller [Ful], Pohl [Poh], White [Wh], and
in the hydrodynamical context by Berger and Field [B-F], and Moffatt and Ricca
[MoR, RiM]. We refer to [MoR] for a derivation of the Calugareanu invariant from
basic hydrodynamical principles, as well as for the invariant history and extensive
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bibliography. The decomposition lk � Wr + Tw corresponds to the writhe and
twist contributions to the helicity of a bundle of field lines, which is a substitution
for a ribbon in the hydrodynamical setting.

We also refer to the paper by Bott and Taubes [B-T] for a purely topological
notion of the self-linking number of a knot, which has been conceived in the
context of the Chern–Simons topological quantum field theory and then decoupled
from the group structure involved (see the references therein for the earlier papers
by D. Bar-Natan, by A. Guadaguini, M. Martinelli, and M. Mintchev, and by
M. Kontsevich). In the next section we describe the relation of the linking numbers
to the Chern–Simons functional.

7.E. Holomorphic linking number

Many real notions in mathematics have their complex counterparts. The analogies
can be as “straightforward” as the correspondence of real and complex manifolds,
or of the groups of orthogonal and unitary matrices (O(n), U(n)), or much more
elaborate, say, the Stiefel–Whitney and Chern characteristic classes of vector bun-
dles. Another nontrivial example is the duality of the homotopy groups π0 (in
the real setting) and π1 (in the complex setting). It can be understood as follows:
The number of connected components (π0) is a measure of complexity of the
complement to a hypersurface in a real manifold. On the other hand, a complex
hypersurface does not split a complex manifold, and it can be bypassed. The fun-
damental group (π1) measures the complexity of the complement in the latter case.
We refer to [Arn23, Kh2] for other examples of informal complexification.

Here we discuss a complex counterpart of the notion of linking number (follow-
ing the ideas of [At]; see [KhR, FKT, Ger, F-K]). Instead of linking two smooth
closed curves in a simply connected real three-manifold, we will deal with an
invariant associated to a pair of closed complex curves (Riemann surfaces) in a
complex three-dimensional (i.e., of real dimension 6) manifold. In the sketch be-
low we always assume that the described manifolds and forms exist, and we briefly
mention the necessary existence conditions.

Remark 7.21. The classical linking number lk is an integer topological invari-
ant equal to the algebraic number of crossings of one curve in R

3 with a two-
dimensional surface bounded by the other curve (Fig. 25). The topological invari-
ance of lk and its independence of the choice of surface follow from the fact that
the algebraic number of intersections of a closed curve and a closed surface is
equal to zero.

The latter invariance can also be viewed as the Stokes formula for δ-type forms
supported on closed curves and surfaces (cf. Remark 4.7). The Stokes formula,
and more generally, the De Rham theory of smooth differential forms, has a gen-
uine real flavor: One considers real manifolds with boundary and an appropriate
orientation, the Z/2Z-valued invariant.
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One argues in [F-K, Kh2] that the Leray theory of meromorphic forms on
complex manifolds is an informal complexification of De Rham theory. The Leray
residue formula is a higher-dimensional generalization of the Cauchy formula,
which gives the value of a contour integral of a meromorphic 1-form via the form’s
residue at the pole. It “replaces” the Stokes formula in the complexification. Instead
of restricting a form to the boundary, one takes the residue of a meromorphic form
at the polar set.

To define the Leray residue, let ω be a closed meromorphic k-form on a com-
pact complex n-dimensional manifold M with poles on a nonsingular complex
hypersurface N ⊂ M . All poles here and below are supposed to be of the first
order. Let ψ be a function defining N in a neighborhood of some point p ∈ N .
Then locally, in a certain neighborhood U(p), the k-form ω can be decomposed
into the sum

(7.3) ω � dψ

ψ
∧ α + β,

where α and β are holomorphic in U(p). One can show that the restriction α
∣∣
N

is
a well-defined (i.e., independent of ψ) holomorphic (k − 1)-form (see [Ler]).

Definition 7.22. The form-residue resω of the closed meromorphic k-form ω is
the holomorphic (k − 1)-form on N such that in any neighborhood U(p) of an
arbitrary point p ∈ N , it coincides with the form α

∣∣
N

of the decomposition (7.3):

resω � α∣∣
N
.

Similarly, one defines the residue in the case of polar sets consisting of several
complex hypersurfaces in a general position inM .

Remark 7.23. For a complex manifoldM withhn,1(M) :� dimH 1(M,�n) � 0,
every holomorphic (n−1)-form onN is the residue of some meromorphic n-form
onM with poles onN of the first order; see, e.g., [Chr]. This meromorphic n-form
on M is defined by its residue on N uniquely up to a holomorphic n-form on M .
Note that the condition hn,1(M) � 0 in the complex setting can be thought of as
an analogue of simple-connectedness of a real manifold.

Now let C1, C2 ⊂ M be two complex closed nonintersecting curves in a com-
plex closed three-fold M: C1 ∩ C2 � ∅. Fix some holomorphic differentials α1

and α2 on the curves C1 and C2, respectively, and a meromorphic 3-form η onM
satisfying the following condition: The zero locus of η intersects neither of the
curvesC1 andC2 (e.g., ifM is a Calabi–Yau manifold, it possesses a nonvanishing
holomorphic 3-form η, unique up to a factor). The number we are going to assign
to this pair of curves depends linearly on α1, α2, and η−1.

Suppose that there exists a complex surface S1 inM that contains the complex
curve C1. Denote by β1 any meromorphic 2-form on S1 with a polar set on the
curveC1, and such that the residue of this 2-form β1 is equal to α1: resβ1|C1 � α1.
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By virtue of the remark above, such a 2-form β1 exists as soon as there is a complex
surface S1 ⊂ M containing the curve C1 and such that H 1(S1, �

2) � 0.

Definition 7.24 [KhR, FKT]. The holomorphic linking number lkC of the pair of
complex curvesCj with chosen holomorphic differentialsαj on them (in the mani-
fold M with the meromorphic form η) is the following sum over all intersection
points of the surface S1 and the curve C2:

(7.4) lkC ((C1, α1), (C2, α2)) :�
∑
S1∩C2

β1 ∧ α2

η
.

Note that the 3-form β1 ∧ α2 is well-defined at the points of intersection S1 ∩C2,
and the ratio on the right-hand side measures its proportionality coefficient with
the 3-form η at the same points.

Unlike the real case, the holomorphic linking number is not integer valued, and
it is not an isotopy invariant. Its value can be any complex number, and it depends
on the mutual location of the complex curves C1 and C2 in M , as well as on the
differential forms α1, α2, and η involved. However, it will be the same for all
additional choices.

Proposition 7.25.

(i) The holomorphic linking number lkC is well-defined; i.e., it does not de-
pend on the choice of complex surface S1 ⊃ C1 or the meromorphic
two-form β1 on it, provided that resβ1|C1 � α1 (Fig. 45).

(ii) The value lkC is a symmetric function of its arguments: One gets the same
linking number by embedding the curve C2 into a complex surface S2,
taking a meromorphic form β2 such that resβ2|C2 � α2, and forming the
sum

lkC ((C1, α1), (C2, α2)) �
∑
C1∩ S2

α1 ∧ β2

η
� lkC ((C2, α2), (C1, α1)) .

Proof. Assume that the complex curve C1 is a transversal intersection of two
complex surfaces S1 and S ′1, and each of the surfaces is equipped with a mero-
morphic 2-form (respectively, β1 and β ′1) whose residues on C1 are α1. Define
a meromorphic 3-form γ1 on M with poles (of the first order) on S1 and S ′1 and
residues β1 and−β ′1, respectively. These conditions on the form γ1 are consistent.

Indeed, on the intersection of two surfaces the form (second) residue depends
on the order in which the repeated residue is taken: It differs by the sign. For
example, according to the order, the form dx ∧ dy/(xy) has the second residue 1
or −1 at the origin:

res |y�0 res |x�0
dx ∧ dy
xy

� res |y�0
dy

y
� 1,
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S 1

S 1

C1
C2

'

Figure 45. The holomorphic linking number of complex curves C1 and C2 counts the
contributions of the intersections of the curve C2 with a surface S1 ⊃ C1, or equivalently
with another surface S ′1 ⊃ C1.

while

res |x�0 res |y�0
dx ∧ dy
xy

� − res |x�0
dx

x
� −1.

Similarly, the second residue of the 3-form γ1 on the curve C1 � S1 ∩ S ′1 is the
1-form α1 or −α1. For instance,

res |C1 res |S1γ1 � res |C1β1 � α1.

Then, by the definition of the holomorphic linking number (7.4),

lkC ((C1, α1), (C2, α2)) �
∑
S1∩C2

(res γ1) ∧ α2

η
,

since res γ1|S1 � β1. The latter ratio at every point of S1 ∩ C2 is equal to

res

(
γ1

η
∧ α2

)
,

where γ1

η
is a meromorphic function onM , and γ1

η
∧ α2 is a meromorphic 1-form

defined on C2. Indeed, one can easily see that the equality

(res γ1) ∧ α2

η
� res

(
γ1

η
∧ α2

)

holds at every point of the intersection S1 ∩ C2 by doing calculations in local
coordinates.

Then lkC is the sum of residues of the meromorphic 1-form γ1

η
∧ α2 on the

complex curve C2 at the poles S1 ∩ C2. By using the surface S ′1 instead of S1 for
the same calculation, one obtains minus the sum of residues of the same 1-form
γ1

η
∧α2 on C2, where the residues are taken at the poles S ′1∩C2. The latter follows

from the assumption that res γ1|S ′1 � −β ′1.
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The Cauchy theorem states that the sum of residues of a meromorphic 1-form
on a complex curve is equal to zero. We apply it to the meromorphic 1-form γ1

η
∧α2

on the complex curve C2. Then the sum of the form’s residues at all poles, i.e., at
the points of intersection of C2 with both S1 and S ′1, is equal to zero. This shows
that lkC does not depend on whether we use the surface S1 or S ′1 (statement (i)).

The symmetry of lkC can be immediately seen if we present C2 as a transversal
intersection of two surfaces S2 and S ′2 and associate to it a meromorphic 3-form
γ2 in the same way as above. Then

lkC ((C1, α1), (C2, α2)) �
∑

S1∩S ′2∩S2

res3

(
γ1 ∧ γ2

η

)
,

where res3 is the residue of the meromorphic 3-form

γ1 ∧ γ2

η

at the triple intersections S1 ∩ S ′2 ∩ S2. The skew symmetry of the wedge product
and the sign change when passing to the intersections S1 ∩ S ′1 ∩ S2 complete the
proof of (ii). �

Remark 7.26. The main reason for introducing the complex linking number is
that it arises as the “first approximation” of the complex analogue of the Chern–
Simons functional (see [FKT, FKR] and Remark 8.9). The standard linking number
governs the asymptotics of the classical Chern–Simons functional ([Pol, Wit2],
Section 8 below).

Remark 7.27. In a real three-dimensional manifoldM , a knot (or link) invariant
is a locally constant function on the space of embeddings of a circle (respectively,
a union of circles) into the manifold M . In [VasV], V. Vassiliev defined the jump
of an invariant as the function assigned to the immersions of the circle with one
point of self-intersection and whose value is equal to the difference of the knot
invariant on the embeddings “before” and “after” the self-intersection. (Here the
notions of “before” and “after” are determined by the orientation of the circle and
of the ambient manifoldM .) One can iterate the jumps and define the function on
immersions with any finite number of self-intersection points.

By definition, the Vassiliev invariant of order k is a knot or link invariant whose
jump function vanishes on all immersions with at least k + 1 self-intersection
points. In particular, one has the following

Proposition 7.28. The linking number of two curves in R
3 is an invariant of order

1.

Remark 7.29. The holomorphic linking number lkC is not defined if the two
complex curvesC1 and C2 intersect, and it tends to infinity as the curves approach
each other. We suggest the following “meromorphic” counterpart of the Vassiliev
theory.
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LetM be a complex three-dimensional manifold equipped with a nonvanishing
holomorphic form η. Denote by Mj the moduli space of all embedded holomor-
phic curves of fixed genus gj (j � 1, 2) in the complex manifold M . The space
Mj is a finite-dimensional complex manifold by itself (and we assume that its
dimension is nonzero). The product M � M1 × M2 can be thought of as a
complex analogue of the space of (real) knots or links.

Similar to the real case, it is natural to call the discriminant� ⊂M the subset
of all configurations in the moduli space M such that the curves C1 and C2 hit
each other. The discriminant � is a (singular) complex hypersurface in M, and
its regular points �0 correspond to simple intersections of the curves C1 and C2.
Further degenerations of the discriminant variety � ⊃ �0 ⊃ �1 ⊃ · · · are
stratified by the number and multiplicity of the intersections.

It would be interesting to define the holomorphic linking number lkC as a closed
differential form on the moduli space M or on some bundle over it. Since lkC tends
to infinity as the two curves get close to each other, this differential linking form is
supposed to have a pole of first order along (the regular part�0 of) the discriminant
�. In particular, the corresponding residue might be well-defined along �0.

More generally, one can call a complex link invariant of complex curves of
genera g1, g2, . . . , gm in a complex three-manifold M any closed meromorphic
k-form on the appropriate moduli space M :� M1 ×M2 × · · · ×Mm of the
holomorphic embeddings inM .

Definition 7.30. A complex link invariant of order k is a closed meromorphic
form on the moduli space M whose (k+ 1)st residue vanishes on all strata�k of
the discriminant � ⊂ M that correspond to embeddings of complex curves with
k points of pairwise intersections.

Problems 7.31. (A) Show that the complex linking form lkC can be defined as
a complex link invariant of order 1. Similarly, one can try to define the complex
analogues of Massey products and of other cohomological operations on knots
and links.

(B) Give an ergodic interpretation of the holomorphic version of the linking number
in the spirit of Section 4.

§8. Asymptotic holonomy and applications

8.A. Jones–Witten invariants for vector fields

There is a diversity of subtle invariants for knots and links. For instance, one
might consider the knot polynomials (of Alexander, Kauffman, Jones, HOMFLY,
Reshetikhin and Turaev, etc.) or the Vassiliev invariants of finite order (see, e.g.,
[Tu2, VasV]). It is of great interest to extend the domain of such invariants to the
case of (divergence-free) vector fields, to “diffuse knots” in the three-space R

3.
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From this standpoint, a regular knot is understood as a vector field supported on a
single closed curve.

The classical (combinatorial) approach to introducing the knot invariants is
based on some type of recurrence relation: One starts with an unknot and defines
a precise recipe for how the invariant changes under elementary surgeries (for ex-
ample, the connected sum). This strategy seemed to be nonapplicable to extending
the definitions to vector fields.

The situation changed after Witten’s generalization [Wit2] of the Jones poly-
nomial to arbitrary closed 3-manifolds in terms of the asymptotics of the Chern–
Simons functional on the space of connections over the manifold. The structure
group of the connection gives one more parameter to the problem, and the actual
Jones polynomial corresponds to the SU(2)-connections.

The extension of Witten’s approach from links to “diffuse knots” was started
by Verjovsky and Freyer in [V-F], and we present below the main steps of that
paper. In the abelian case of theU(1)- (orGL(1)-) connections the asymptotics in
question are essentially determined by the helicity invariant of the corresponding
divergence-free vector field. The GL(n)-version of the asymptotic monodromy
along a nonclosed trajectory of a vector field is provided by Oseledets’s mul-
tiplicative ergodic theorem [Ose1]. However, the extension of the invariants to
the nonabelian case encounters serious obstacles arising from the lack of a non-
abelian version of the Birkhoff ergodic theorem on the equality of time and space
averages.

Let M be a closed compact real three-manifold M and let L ⊂ M be a link
(a disjoint union L � ∪ni�1Ci of smoothly embedded circles Ci). Further, let
P � M × G be the G-principal bundle over M , where the structure group G
might be U(1) or SU(2).

Denote by A the space of all connections in the (trivial) bundle P . It can be
identified with the affine space �1(M, g) of 1-forms onM with values in the Lie
algebragofG. Finally, let G̃ � C∞(M,G)be the current group of fiber-preserving
automorphisms of P .

Definition 8.1. The Jones–Witten invariant of a link L ⊂ M is the following
function of k:

WL(k) �
∫

A/G̃


exp(ik

∫

M

tr(A ∧ dA+ 2

3
A ∧ A ∧ A))

·
∏
Ci⊂L

tr(P exp
∫

Ci

A)


 ·DA,

where P exp is the path-ordered exponential integral, and DA is “an appropriate
measure on the moduli space of the connections.” From the mathematical point of
view, neither DA norW has a sound definition.
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Witten showed in [Wit2] that for M � S3 and G � SU(2) this corresponds to
the Jones polynomial (in k) for the link L. Though justification of the meaning of
this integral is still not complete, it looks a lot simpler for an abelian groupG, say
U(1):

(8.1) WL(k) �
∫

A/G̃


exp(ik

∫

M

A ∧ dA) ·
∏
Ci⊂L

(exp
∫

Ci

A)


 ·DA.

One can think of
∫
M
A∧dA as a quadratic formQ(A) on A, while the line integral∫

Ci
A is regarded as a linear functional (the so-called De Rham current) ICi (A)

evaluated at the 1-form A.
For the abelian case (see [SchA, Pol]), the path integral modulo factors related

to a regularization and topology of the manifoldM is equal to
(8.2)

WL(k) � const ·exp

{
i

2k

∑
i,j

〈ICi , d−1ICj 〉
}
� const ·exp

{
i

2k

∑
i,j

lk(Ci, Cj )

}
.

The regularization is needed to define the linking number for each curve Ci with
itself (cf. the definition of self-linking number in Section 7.D). The topological
factor, being the value of WL(k) in the case without any link (L � ∅), is the
Ray–Singer torsion of the manifoldM [SchA].

Remark 8.2. Heuristically, one computes here a quadratic Gaussian integral of
the type

∫
Rn

eik〈x,Qx〉ei〈b,x〉(π−n/2) dx,

which, upon the extraction of a complete square, is equal to

e
i

2k 〈b,Q−1b〉
∫

Rn

eik〈x+Q
−1b,Q(x+Q−1b)〉(π−n/2) dx

� e i
2k 〈b,Q−1b〉(detQ)−1/2(e(

iπ
4 ·signQ)).

One can apply this formula to the (completion of the) infinite-dimensional space
A � �1(M, g) in the case of the quadratic form Q(A) � ∫

M
A ∧ dA. Since the

form Q is degenerate, the integration is carried out only along a subspace in the
space A transversal to the kernel of Q. This corresponds to integration over the
G̃-quotient of the space A; see [Wit2, V-F]. Although this differs from the above
case of a nondegenerate form, here we are interested only in the factor e

i
2k 〈b,Q−1b〉,

which has a straightforward analogue.
In our context, this factor turns out to be the linking term:

e
i

2k 〈b,Q−1b〉 � exp

{
i

2k

∑
i,j

〈ICi , d−1ICj 〉
}
.
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The ergodic (“diffuse”) version of this approach has to do with notions of
asymptotic and average holonomy. (One can think of diffusing the knot as the way
of its regularization: The neighboring trajectories can be regarded as a framing. In
particular, it allows one to determine the knot self-linking as the linking number
of the knot with its shift in the direction of the frame.)

Definition 8.3. The asymptotic holonomy of a connection A along the trajectory
�ξ (p) � {gtξ | t ≥ 0} of a vector field ξ issuing from a point p ∈ M is the
following element of the Lie group G:

P exp
∫
�ξ (p)

A :� lim
T→∞

P exp
∫

{gtξ |0≤t≤T }

(
1

T
A

)
.

The last integral is defined by the limiting procedure T →∞, due to the trivial-
ization of the bundle P � M × G (or by means of a system of short paths used
for the asymptotic linking number; see Definition 4.13).

It can also be thought of as follows. The (indefinite) integration

P exp
∫

{gtξ |t≥0}

A

along the trajectory �ξ (p) defines a curve in the Lie group G. Choose the one-
parameter subgroup inG approximating this curve as t →∞. Then the asymptotic
holonomy is the point t � 1 on the subgroup. The existence of this limit for an
arbitrary groupG is obscure. However, in some cases, the limiting eigenvalues for
almost all initial points p ∈ M are provided by the multiplicative ergodic theorem
[Ose1].

Though in the nonabelian case no simple answer for the space average of the
asymptotic holonomy is known (there is no matrix analogue to the Birkhoff ergodic
theorem on the equality of time- and space-averages), we present the would-be
definition in “full” generality (see [V-F]).

Definition 8.4. The average holonomy holξ,µ(A) of a connection A on a
divergence-free field ξ preserving the measure µ on M is the group exponent
of the Lie algebra element

∫
M
A(ξ)µ.

Remark 8.5. In general, neither the average holonomy holξ,µ(A) nor its conju-
gacy class in the group G is gauge invariant (i.e., preserved under the change of
the connection A to A+ ε([A, f ]+ df ) for an arbitrary f ∈ C∞(M, g)).

In the case of abelian (say, GL(1)) connection, the form A is a real-valued
1-form on M , and the ordered exponent P exp becomes an ordinary exponent.
Then the holonomy holξ,µ(A) is gauge invariant, and the above definitions exactly
correspond to the ergodic interpretation of the Hopf (helicity) functional in terms
of average linking number considered above:



188 III. Topological Properties of Magnetic and Vorticity Fields

Theorem 8.5 (= Helicity Theorem 4.4). For an abelian groupG the multiplica-
tive average of the asymptotic holonomy over the entire manifold M coincides
with the average holonomy calculated by total integration of the “infinitesimal
transforms” A(ξ):

exp
∫
M

(∫
�ξ (p)

A

)
µp � holξ,µ(A).

The latter identity of the two invariants suggests the following definition.

Definition 8.6 [V-F]. The Jones–Witten functional for a divergence free vector
field ξ on a closed three-manifoldM endowed with a measure µ is the expression

Wξ,µ(k) �
∫

A/G̃
{exp(ik

∫
M

tr(A ∧ dA+ 2

3
A ∧ A ∧ A)) · tr(holξ,µ(A))} ·DA,

where the average holonomy holξ,µ(A) is defined above.

Remark 8.7. Note that the case of an actual knot or link L � ⋃n
i�1 Ci can be

understood as a particular case of this definition for a “δ-type” measureµ supported
on a finite number of curves {Ci}.

Assume now thatM is a closed three-manifold, µ is a smooth volume form on
M , and ξ is a null-homologous trivial vector field on M; i.e., the two-form iξµ

is exact: iξµ � dθ for some 1-form θ . The case of the abelian connection can be
handled completely:

Theorem 8.8 [V-F]. For a topologically trivial linear bundle over M (with G �
U(1) or GL(1)), the Jones–Witten functional for the vector field ξ reduces to its
helicity invariant:

Wξ,µ(k) � const · exp(
i

2k

∫
M

dθ ∧ θ).

Proof sketch. The average holonomy in the abelian case is

holξ,µ(A) � exp
∫
M

A(ξ) ∧ µ � exp
∫
M

A ∧ dθ � exp(Iξ (A)),

where Iξ is the De Rham current corresponding to the field ξ . (The “diffuse” term

holξ,µ(A) � exp
∫
M

A(ξ) ∧ µ � exp
∫
M

∫
�ξ (p)

A ∧ µp

replaces the “discrete” counterpart
∏
Ci⊂L

(exp
∫
Ci

A) � exp(
∑
Ci⊂L

∫
Ci

A)
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in (8.1).) Then the expression (8.2) for the abelian case becomes

Wξ,µ(k) � const · exp{ i
2k
〈Iξ , d−1Iξ 〉} � const · exp(

i

2k

∫
M

dθ ∧ θ).

�

Remarks 8.9. The Chern–Simons functional

CS(A) �
∫

M

tr(A ∧ dA+ 2

3
A ∧ A ∧ A)

on G-connections {A} over real three-dimensional manifolds M has a complex
analogue for Calabi–Yau manifolds, or, more generally, for any three-dimensional
complex manifold N ; see [Wit3]:

CSC(A) �
∫

N

tr(A ∧ dA+ 2

3
A ∧ A ∧ A) ∧ η,

where η is a holomorphic (or meromorphic) 3-form on N . In the case of the
abelian group G � GL(1,C) and a complex link L, being a disjoint union of
complex curves Ci with holomorphic differentials αi on them, the asymptotics of
the corresponding complex analogue of the Jones–Witten functional WL is given
by the holomorphic linking number lkC((Ci, αi), (Cj , αj )) defined in Section 7.E
(see [FKT, FKR, Ger]).

Remarks 8.10. The higher linking numbers introduced in Section 7.B arise in the
calculation of correlators in Chern–Simons theories in dimensions greater than 3
(see [FNRS]).

A higher-dimensional version of the Chern–Simons path integral can be re-
garded as a nonabelian counterpart of the corresponding hydrodynamical integral.
Being an example of so-called topological field theories, by its very definition
it does not require a metric to specify the action functional. Hence, all gauge-
invariant observables in the theory are topologically invariant, provided that the
measure in the path integral does not spoil the invariance under diffeomorphisms.

Let {A} be the space of U(1)-connections on a manifoldM2m+1;DA is a shift-
invariant integration measure. For a collection of cyclesC1, . . . , Cr of dimensions
dimCi � 2di + 1, i � 1, . . . , r , define the gauge-invariant functional

�{C1,...,Cr }(A) :�
r∏
i�1

exp



∫

Ci

A ∧ (dA)di

 .

Suppose that the cycles obey the linking condition (7.1):
∑r
i�1(m− di) � m+ 1.

Then asymptotically for large k the expectation value of the functional �, that is,

< �{C1,...,Cr }(A) >�
∫
�{C1,...,Cr }(A) · exp

(
ik

2m+ 1

∫
M

A ∧ (dA)m
)
DA,
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is given by the exponent of the mutual linking number for the collection of cy-
cles: exp(lk(C1, . . . , Cr)/k

r−1), where the number lk(C1, . . . , Cr) is the linking
number of, say, Cr with the intersection of all other cycles; see Section 7.B. (To
avoid the contribution of the self-linking of the cycles into the integral, one as-
sumes the so-called normal ordering of the operators involved.) If the linking
condition is not fulfilled, but there are sublinks saturating the condition, then the
leading term in the asymptotics is given by the mutual linking numbers of these
sublinks.

Remarks 8.11. The above holonomy functional can be regarded as a counterpart
of the Radon transform: given a Lie group G it sends a gauge equivalence class
of the G-connections onM to a G-valued functional on the space of loops inM .

The value of the holonomy functional on a loop � is the holonomy of a connec-
tion A around �. In the abelian case (G � R) the Radon transform associates to a
one-form θ onM the corresponding functional Iθ on the free loop space LM (the
space of smooth maps S1 → M):

Iθ (�) �
∫
�

θ.

In [Bry2], Brylinski characterizes the range of the Radon transform as the set of
functionals on LM obeying a certain system of second-order linear PDE (called
the Radon–John system). The necessary and sufficient conditions are constraints
on the partial derivatives ∂2Iθ/∂x

i
k∂x

j

l , where the coordinates {xik} are the Fourier
components of small variations of the curve �. In dimension 2, this system gives
rise to the hypergeometric systems in the spirit of [GGZ]. A nonabelian coun-
terpart of the Radon–John equations involves the bracket iterated integrals (see
[Bry2]).

Note that in three dimensions the Radon transform displays the kind of func-
tionals on vector fields that can be defined as fluxes of fields through surfaces
bounded by embedded curves (or, the same, as the average linking number of the
fields and the curves). Indeed, the embedded nonparametrized curves in R

3 form
a subset in the dual S Vect(R3)∗ of the Lie algebra of divergence-free vector fields
in the space (see Section VI.3). A curve � ⊂ R

3 defines the functional whose
value at a divergence-free field ξ is the flux of ξ through �.

To relate it to the description above, fix a vector field ξ and assume that µ is
a volume form in the space. Let θ be a one-form such that iξµ � dθ (ξ is the
vorticity field for θ ). Then Iθ (�) :� ∫

�
θ � {flux of ξ through �} can be regarded

as the functional on the �’s. A regular element of the dual space S Vect(R3)∗ is
a “diffuse” loop �, a divergence-free vector field η (see Section I.3), while the
pairing is

Iθ (η) :�
∫

R3
θ(η)µ � H(ξ, η).
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8.B. Interpretation of Godbillon–Vey-type characteristic
classes

Let F be a cooriented foliation of codimension 1 on the oriented closed manifold
M , and θ a 1-form determining this foliation. Then dθ � θ ∧ w for a certain
1-form w.

Proposition 8.12 (see, e.g., [Fuks]). The form w ∧ dw is closed, and its coho-
mology class does not depend on the choices of θ and w.

Definition 8.13. The cohomology class of the formw∧dw inH 3(M,R) is called
the Godbillon–Vey class of the foliation F .

On a three-dimensional manifold this class is defined by its value on the funda-
mental 3-cycle:

GV (F) �
∫
M

w ∧ dw.

Let v be an arbitrary vector field with the sole restriction θ(v) � 1, and let Lkv
denote the kth Lie derivative along v.

Theorem 8.14 (see [Sul, Th1]). GV (F) � − ∫
M
L2

vθ ∧ dθ .

If M3 is a manifold equipped with a volume form µ, the class GV admits an
ergodic interpretation in terms of the asymptotic Hopf invariant of a special vector
field.

Define the vector field ζ by the relation

iζµ � L2
vθ ∧ θ.

Corollary 8.15 [Tab1]. The vector field ζ is null-homologous, and its asymptotic
Hopf invariant is equal to the Godbillon–Vey invariant of the foliation F .

Proofs. By the homotopy formula (see Section I.7.B)

Lvθ � divθ + ivdθ � ivθ ∧ w � w − f θ,
where the function f is f � w(v). This implies that (Lvθ)∧ θ � w ∧ θ � −dθ ,
and moreover,

(L2
vθ) ∧ θ � Lv((Lvθ) ∧ θ) � Lv(−dθ) � −dLvθ � −d(w − f θ).

Hence we can take w′ � w − f θ as a new 1-form w in the definition of the
Godbillon–Vey class. Theorem 8.10 readily follows:∫

M

L2
vθ ∧ dθ �

∫
M

L2
vθ ∧ θ ∧ w′ � −

∫
M

dw′ ∧ w′ � −GV (F).
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The null-homologous property for the field ζ also follows from the fact that the
2-form (L2

vθ) ∧ θ � iζµ is a complete differential. Furthermore, the asymptotic
Hopf invariant of ζ is

H(ζ ) �
∫
M

iζµ ∧ d−1(iζµ) �
∫
M

dw′ ∧ w′ � GV (F).

�

Remark 8.16 [Sul, Th1, Tab1]. Having defined an auxiliary vector field ξ (tangent
to the leaves of F) by the relation

iξµ � Lvθ ∧ θ,

one may argue that it measures the rotation of the tangent planes to the foliation in
the transversal direction v. Namely, the direction of ξ is the axis of rotation, and
the modulus of ξ is the angular velocity of the rotation. Then one may say that ζ
measures the acceleration of the rotation, and the above statement reads: GV (F)
is the asymptotic Hopf invariant of this rotation acceleration field.

As an element of H 3(M,R), the Godbillon–Vey class on manifolds of higher
dimensions is determined by its values on 3-cycles. Any such value coincides
with the asymptotic Hopf invariant of the corresponding field ζ , constructed for
the induced foliation on the 3-cycle.

Similarly, one can define the asymptotic and integral Bennequin invariants for
a null-homologous vector field on a contact simply connected three-manifold (see
[Tab1]). These invariants generalize the classical Bennequin definition of the self-
linking number of a curve transverse to the contact structure [Ben]. Interesting
polynomial invariants of Legendrian curves (and more generally, of framed knots)
in a solid torus, generalizing the Bennequin invariant, have been introduced by
Aicardi [Aic] (see also [FuT, Fer, Pl2]).

In conclusion, we refer to [DeR, SchL, SchS, GPS, Sul] and references therein
for various questions related to structure cycles, asymptotic cycles, approximations
of cycles by flows and foliations, and the corresponding smoothness conditions.

Problems 8.17. (A) Give an ergodic interpretation of the global real-valued in-
variant of three-dimensional CR-manifolds found in [B-E].

Roughly speaking, aCR-structure on a (2n+1)-dimensional manifold is defined
by choosing an n-dimensional integrable subbundle T 1,0M of the complexified
tangent bundle ofM . In particular, this subbundle determines a distribution of the
corresponding contact elements onM . TheCR-structure gives rise to a real-valued
(Chern–Simons-type) 3-form (defined modulo an exact form) on the manifold.
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(B) It would be interesting to consider whether similar techniques can be applied to
generalize the Casson invariant and the Floer homology of homological 3-spheres
to aspherical (4k − 1)-manifolds with an additional structure (say, to contact
manifolds); see [CLM, Arn24].
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Chapter IV

Differential Geometry of
Diffeomorphism Groups

In 1963 E.N. Lorenz stated that a two-week forecast would be the theoretical
bound for predicting the future state of the atmosphere using large-scale numerical
models [Lor]. Modern meteorology has currently reached a good correlation of
the observed versus predicted for roughly seven days in the northern hemisphere,
whereas this period is shortened by half in the southern hemisphere and by two-
thirds in the tropics for the same level of correlation [Kri]. These differences are
due to a very simple factor: the available data density.

The mathematical reason for the differences and for the overall long-term unre-
liability of weather forecasts is the exponential scattering of ideal fluid (or atmo-
spheric) flows with close initial conditions, which in turn is related to the negative
curvatures of the corresponding groups of diffeomorphisms as Riemannian man-
ifolds. We will see that the configuration space of an ideal incompressible fluid
is highly “nonflat” and has very peculiar “interior” and “exterior” differential
geometry.

“Interior” (or “intrinsic”) characteristics of a Riemannian manifold are those
persisting under any isometry of the manifold. For instance, one can bend (i.e.,
map isometrically) a sheet of paper into a cone or a cylinder but never (without
stretching or cutting) into a piece of a sphere. The invariant that distinguishes
Riemannian metrics is called Riemannian curvature. The Riemannian curvature
of a plane is zero, and the curvature of a sphere of radius R is equal to R−2.
If one Riemannian manifold can be isometrically mapped to another, then the
Riemannian curvature at corresponding points is the same.

The Riemannian curvature of a manifold has a profound impact on the behavior
of geodesics on it. If the Riemannian curvature of a manifold is positive (as for
a sphere or for an ellipsoid), then nearby geodesics oscillate about one another
in most cases, and if the curvature is negative (as on the surface of a one-sheet
hyperboloid), geodesics rapidly diverge from one another.

It turns out that diffeomorphism groups equipped with a one-sided invariant
metric look very much like negatively curved manifolds. In Lagrangian mechan-
ics a motion of a natural mechanical system is a geodesic line on a manifold-
configuration space in the metric given by the difference of kinetic and potential
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energy. In the case at hand the geodesics are motions of an ideal fluid. Therefore,
calculation of the curvature of the diffeomorphism group provides a great deal of
information on instability of ideal fluid flows.

In this chapter we discuss in detail curvatures and metric properties of the groups
of volume-preserving and symplectic diffeomorphisms, and present the applica-
tions of the curvature calculations to reliability estimates for weather forecasts.

§1. The Lobachevsky plane and preliminaries in differential
geometry

1.A. The Lobachevsky plane of affine transformations

We start with an oversimplified model for a diffeomorphism group: the (two-
dimensional) group G of all affine transformations x �→ a + bx of a real line
(or, more generally, consider the (n+ 1)-dimensional groupG of all dilations and
translations of the n-dimensional space R

n : x, a ∈ R
n, b ∈ R+).

Regard elements of the group G as pairs (a, b) with positive b or as points of
the upper half-plane (half-space, respectively). The composition of affine trans-
formations of the line defines the group multiplication of the corresponding pairs:

(a2, b2) ◦ (a1, b1) � (a2 + a1b2, b1b2).

To define a one-sided (say, left) invariant metric on G (and the corresponding
Euler equation of the geodesic flow on G; see Chapter I), one needs to specify a
quadratic form on the tangent space of G at the identity.

Fix the quadratic form da2 + db2 on the tangent space to G at the identity
(a, b) � (0, 1). Extend it to the tangent spaces at other points of G by left trans-
lations.

Proposition 1.1. The left-invariant metric onG obtained by the procedure above
has the form

ds2 � da2 + db2

b2
.

Proof. The left shift by an element (a, b) onG has the Jacobian matrix

(
b 0
0 b

)
.

Hence, the quadratic form da2+db2 on the tangent space T(0,1)G at the identity is
the pullback of the quadratic form (da2 + db2)/b2 on T(a,b)G at the point (a, b).

�

Note that starting with any positive definite quadratic form, one obtains an
isometric manifold (up to a scalar factor in the metric).
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Definition 1.2. The Riemannian manifold G equipped with the metric ds2 �
(da2+db2)/b2 is called the Lobachevsky plane�2 (respectively, the Lobachevsky
space �n+1 for x, a ∈ R

n).

Proposition 1.3. Geodesic lines (i.e., extremals of the length functional) are the
vertical half lines (a � const, b > 0) and the semicircles orthogonal to the a-axis
(or a-hyperplane, respectively).

Here vertical half lines can be viewed as semicircles of infinite radius; see
Fig. 46.

a

b

Figure 46. The Lobachevsky plane �2 and geodesics on it.

Proof. Reflection of�2 in a vertical line or in a circle centered at the a-axis is an
isometry. �

Note that two geodesics on�2 with close initial conditions diverge exponentially
from each other (in the Lobachevsky metric). On a path only few units long, a
deviation in initial conditions grows 100 times larger. The reason for practical
indeterminacy of geodesics is the negative curvature of the Lobachevsky plane (it
is constant and equal to −1 in the metric above). The curvature of the sphere of
radius R is equal to R−2. The Lobachevsky plane might be regarded as a sphere
of imaginary radius R � √−1.

Problem 1.4 (B.Ya. Zeldovich). Prove that medians of every geodesic triangle
in the Lobachevsky plane meet at one point. (Hint: Prove it for the sphere; then
regard the Lobachevsky plane as the analytic continuation of the sphere to the
imaginary values of the radius.)

1.B. Curvature and parallel translation

This section recalls some basic notions of differential geometry necessary in the
sequel. For more extended treatment see [Mil3, Arn16, DFN].

Let M be a Riemannian manifold (one can keep in mind the Euclidean space
R
n, the sphere Sn, or the Lobachevsky space �n of the previous section as an

example); let x ∈ M be a point ofM and ξ ∈ TxM a vector tangent toM at x.
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Denote by any of {γ (x, ξ, t)} � {γ (ξ, t)} � {γ (t)} � γ the geodesic line on
M , with the initial velocity vector ξ � γ̇ (0) at the point x � γ (0). (Geodesic lines
can be defined as extremals of the action functional: δ

∫
γ̇ 2dt � 0. It is called the

“principle of least action.”)
Parallel translation along a geodesic segment is a special isometry mapping the

tangent space at the initial point onto the tangent space at the final point, depending
smoothly on the geodesic segment, and obeying the following properties.

(1) Translation along two consecutive segments coincides with translation
along the first segment composed with translation along the second.

(2) Parallel translation along a segment of length zero is the identity map.
(3) The unit tangent vector of the geodesic line at the initial point is taken to

the unit tangent vector of the geodesic at the final point.

Example 1.5. The usual parallel translation in Euclidean space satisfies properties
(1)–(3).

The isometry property, along with the property (3), implies that the angle formed
by the transported vector with the geodesic is preserved under translation. This
observation alone determines parallel translation in the two-dimensional case, i.e.,
on surfaces; see Fig. 47.

P

Figure 47. Parallel translation along a geodesic line γ .

In the higher-dimensional case, parallel translation is not determined uniquely
by the condition of preserving the angle: One has to specify the plane containing
the transported vector.

Definition 1.6. (Riemannian) parallel translation along a geodesic is a family of
isometries obeying properties (1)–(3) above, and for which the translation of a
vector η along a short segment of length t remains tangent (modulo O(t2)-small
correction as t → 0) to the following two-dimensional surface. This surface is
formed by the geodesics issuing from the initial point of the segment with the
velocities spanned by the vector η and by the velocity of the initial geodesic.

Remark 1.7. A physical description of parallel translation on a Riemannian mani-
fold can be given using the adiabatic (slow) transportation of a pendulum along
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a path on the manifold (Radon; see [Kl]). The plane of oscillations is parallelly
translated.

A similar phenomenon in optics is called the inertia of the polarization plane
along a curved ray (see [Ryt, Vld]). It is also related to the additional rotation of a
gyroscope transported along a closed path on the surface (or in the oceans) of the
Earth, proportional to the swept area [Ish]. A modern version of these relations
between adiabatic processes and connections explains, among other things, the
Aharonov–Bohm effect in quantum mechanics. This version is also called the
Berry phase (see [Berr, Arn23]).

Definition 1.8. The covariant derivative ∇ξ η̄ of a tangent vector field η̄ in a
direction ξ ∈ TxM is the rate of change of the vector of the field η̄ that is parallel-
transported to the point x ∈ M along the geodesic line γ having at this point the
velocity ξ (the vector observed at x at time t must be transported from the point
γ (ξ, t)).

Note that the vector field γ̇ along a geodesic line γ obeys the equation∇γ̇ γ̇ � 0.

Remark 1.9. For calculations of parallel translations in the sequel we need the
following explicit formulas. Let γ (x, ξ, t) be a geodesic line in a manifoldM , and
let Pγ(t) : Tγ (0)M → Tγ (t)M be the map that sends any η ∈ Tγ (0)M to the vector

(1.1) Pγ(ξ,t)η :� 1

t

d

dτ

∣∣∣∣
τ�0

γ (x, ξ + ητ, t) ∈ Tγ (t)M.

The mapping Pγ(t) approximates parallel translation along the curve γ in the
following sense. The covariant derivative ∇ξ η̄ of the field η̄ in the direction of the
vector ξ ∈ TxM is equal to

(1.2) ∇ξ η̄ :� d

dt

∣∣∣∣
t�0

P−1
γ (t)η̄(γ (ξ, t)) ∈ TxM.

Remark 1.10. The following properties uniquely determine the covariant deriv-
ative on a Riemannian manifold and can be taken as its axiomatic definition (see,
e.g., [Mil3, K-N]):

(1) ∇ξ v is a bilinear function of the vector ξ and the field v;
(2) ∇ξ f v � (Lξf )v+ f (∇ξ v), where f is a smooth function and Lξf is the

derivative of f in the direction of the vector ξ in TxM;
(3) Lξ 〈v,w〉 � 〈∇ξ v, w(x)〉 + 〈v(x),∇ξw〉; and
(4) ∇v(x)w − ∇w(x)v � {v,w}(x).

Here 〈 , 〉 is the inner product defined by the Riemannian metric onM , and {v,w} is
the Poisson bracket of two vector fields v andw. In local coordinates (x1, . . . , xn)
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onM the Poisson bracket is given by the formula

{v,w}j �
n∑
i�1

(
vi
∂wj

∂xi
− wi ∂vj

∂xi

)
.

Parallel translation along any curve is defined as the limit of parallel translations
along broken geodesic lines approximating this curve. The increment of a vector
after the translation along the boundary of a small region on a smooth surface is
(in the first approximation) proportional to the area of the region.

Definition 1.11. The (Riemannian) curvature tensor � describes the infinitesi-
mal transformation in a tangent space obtained by parallel translation around an
infinitely small parallelogram. Given vectors ξ, η ∈ TxM , consider a curvilinear
parallelogram on M “spanned” by ξ and η. The main (bilinear in ξ, η) part of
the increment of any vector in the tangent space TxM after parallel translation
around this parallelogram is given by a linear operator �(ξ, η) : TxM → TxM .
The action of�(ξ, η) on a vector ζ ∈ TxM can be expressed in terms of covariant
differentiation as follows:

(1.3) �(ξ, η)ζ � (−∇ξ̄∇η̄ ζ̄ + ∇η̄∇ξ̄ ζ̄ + ∇{ξ̄ ,η̄}ζ̄ )|x�x0 ,

where ξ̄ , η̄, ζ̄ are any vector fields whose values at the point x are ξ, η, and ζ .
The value of the right-hand side does not depend on the extensions ξ̄ , η̄, ζ̄ of the
vectors ξ, η, and ζ .

The sectional curvature of M in the direction of the 2–plane spanned by two
orthogonal unit vectors ξ, η ∈ TxM in the tangent space toM at the point x is the
value

(1.4) Cξη � 〈�(ξ, η)ξ, η〉.

For a pair of arbitrary (not necessarily orthonormal) vectors the sectional cur-
vature Cξη is

(1.5) Cξη � 〈�(ξ, η)ξ, η〉
〈ξ, ξ〉〈η, η〉 − 〈ξ, η〉2 .

Example 1.12. The sectional curvature at every point of the Lobachevsky plane
(Section 1) is equal to −1. (Hint: use the explicit description of the geodesics in
the plane. See also Section 2 for general formulas for sectional curvatures on Lie
groups.)

Definitions 1.13. The normalized Ricci curvature (at a point x) in the direction of
a unit vector ξ is the average of the sectional curvatures of all tangential 2-planes
containing ξ . It is equal to r(ξ)/(n − 1), where the Ricci curvature r(ξ) is the
value r(ξ) � ∑

i

Cξei �
∑
i

〈�(ξ, ei)ξ, ei〉, calculated in any orthonormal basis

e1, . . . , en of the tangent space TxM .
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The normalized scalar curvature at a point x is the average of all sectional
curvatures at the point. It is equal to ρ/[n(n − 1)], the scalar curvature ρ being
the sum ρ � r(ei)+ · · · + r(en) � 2

∑
i<j

Ceiej (see, e.g., [Mil4]).

1.C. Behavior of geodesics on curved manifolds

From the definition of curvature one easily deduces the following

Proposition 1.14. The distance y(t) between two infinitely close geodesics on a
surface satisfies the differential equation

(1.6) ÿ + Cy � 0,

where C � C(t) is the Riemannian curvature of the surface along the geodesic.

In order to describe in general how the curvature tensor affects the behavior
of geodesics, we look at a variation γα(t) of a geodesic γ � γ0(t). For each α
sufficiently close to 0, the curve γα is a geodesic whose initial condition is close
to that of γ . The field ξ(t) � d

dα

∣∣
α�0γα(t) (defined along γ ) is called the vector

field of geodesic variation.

Lemma–definition 1.15. The vector field of geodesic variation satisfies the
second-order linear differential equation, called the Jacobi equation,

(1.7) ∇2
γ̇ ξ +�(γ̇ , ξ)γ̇ � 0.

Proof. Define the vector field of geodesic variation ξ(t, α) for all geodesics of the
family γα(t) (with small α) as the derivative ξ(t, α) � d

dα
γα(t). Then the fields

ξ and γ̇ commute ({ξ, γ̇ } ≡ 0) as partial derivatives of the map (t, α) �→ γα(t).
Using the properties of covariant differentiation listed above and the definition of
the curvature tensor, we get

∇2
γ̇ ξ � ∇γ̇∇γ̇ ξ � ∇γ̇∇ξ γ̇ � −�(γ̇ , ξ)γ̇ .

�

Assume for a moment that the curvature is positive in all two-dimensional direc-
tions containing the velocity vector of the geodesic. A closer analysis of the Jacobi
equation (or its analogy with the standard pendulum; see Proposition 1.14) shows
that the normal component of the vector field of geodesic variation oscillates with
t . This means that geodesics with close initial velocities on a manifold of positive
curvature oscillate around each other (or locally converge); see Fig. 48a. On the
other hand, negativity in sectional curvatures prompts analogy with the upside-
down pendulum and implies the exponential divergence of nearby geodesics from
the given one; see Fig. 48b.
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C > 0

(a) (b)

C < 0

Figure 48. Geodesics on manifolds of (a) positive and (b) negative curvature.

Remark 1.16. For numerical estimates of the instability, it is useful to define the
characteristic path length as the average path length on which small errors in the
initial conditions are increased by the factor of e. If the curvature of our manifold
in all two-dimensional directions is bounded away from zero by the number −b2,
then the characteristic path length is not greater than 1/b (cf. Proposition 1.14). In
view of the exponential character of the growth of error, the course of a geodesic
line on a manifold of negative curvature is practically impossible to predict.

1.D. Relation of the covariant and Lie derivatives

Every vector field on a Riemannian manifold defines a differential 1-form: the
pointwise inner product with vectors of the field. For a vector field v we denote
by v� the 1-form whose value on a tangent vector at a point x is the inner product
of the tangent vector with the vector v(x).

Every vector field also defines a flow, which transports differential forms. For
instance, one might transport the 1-form corresponding to some vector field by
means of the flow of this field and get a new differential 1-form. Infinitesimally
this transport is described by the Lie derivative of the 1-form (corresponding to the
field) along the field itself, and the result is again a 1-form. This natural derivative
of a 1-form is related to the covariant derivative of the corresponding vector field
along itself by the following remarkable formula.

Theorem 1.17. The Lie derivative of the one-form corresponding to a vector
field on a Riemannian manifold differs from the one-form corresponding to the
covariant derivative of the field along itself by a complete differential:

(1.8) Lv(v
�) � (∇vv)� + 1

2
d〈v, v〉.

Here 〈v, v〉 is the function on the manifold equal at each point x to the Riemannian
square of the vector v(x).

Note that this statement does not require the vector field to be divergence free.
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Proof. Let w be a vector field commuting with the field v (i.e., {v,w} � 0).
First, since parallel translation is an isometry,

(1.9) La〈b, c〉 � 〈∇ab, c〉 + 〈b,∇ac〉,
for any vector fields a, b, and c. Applying this to the fields a � w, b � c � v,
gives Lw〈v, v〉 � 〈∇wv, v〉 + 〈v,∇wv〉. From this we find that

(1.10) 〈∇wv, v〉 � 1

2
(d〈v, v〉)(w).

Applying the isometry property (1.9) once more to a � c � v, b � w, we get

(1.11) Lv〈w, v〉 � 〈∇vw, v〉 + 〈w,∇vv〉.
On the other hand, for commuting fields v and w, property (4) of Remark 1.10
implies

(1.12) 〈∇vw, v〉 � 〈∇wv, v〉.
Substituting this into (1.11) we obtain that

Lv〈w, v〉 � 〈∇wv, v〉 + 〈w,∇vv〉.
Using (1.10), we rewrite the above in the form

(1.13) Lv〈w, v〉 � 〈∇vv, w〉 + 1

2
(d〈v, v〉)(w).

Next, we use the identity

(1.14) Lξ(v
�(w)) � (Lξ (v�))(w)+ v�(Lξw),

which expresses the naturalness of the Lie derivative: The flow of ξ transports the
1-form v�, the vector w, and the value of the 1-form on this vector. (This is the
reason why vector fields are transported in the opposite direction in the definition
of the Lie derivative.)

Applying (1.14) to ξ � v, we obtain

(1.15) Lv(v
�(w)) � (Lv(v�))(w),

since Lvw � −{v,w} � 0. (Here we use the commutativity of v and w for the
second time.)

Note that by the definition of the map v �→ v� one has

Lv(v
�(w)) � Lv〈v,w〉.

Combining this with (1.15) and (1.13), we find that for any vector of a field w
commuting with the field v,

(1.16) (Lv(v
�))(w) � (∇vv)�(w)+ 1

2
(d〈v, v〉)(w).

At every point x where the vector field v is nonzero, it is easy to construct a
field w commuting with v and having at this point any value. Hence the identity
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(1.16) implies

Lv(v
�) � (∇vv)� + 1

2
d〈v, v〉,

which proves the theorem.
At the singular points v(x) � 0 there is nothing to prove, since both sides of

the relation (1.8) are equal to zero. �

Remark 1.18. One can take an arbitrary field w instead of the one commuting
with v and then the formulas are slightly longer. Two commutator terms have to be
introduced at the two places where commutativity was used: The additional term
〈{w, v}, v〉 on the right-hand side of (1.12) cancels with the extra term 〈v,−{v,w}〉
on the right-hand side of (1.15).

This theorem explains the form of the Euler equation of an incompressible fluid
on an arbitrary Riemannian manifoldM presented in Sections I.5 and I.7:

Corollary 1.19. The Euler equation

∂v

∂t
� −∇vv − ∇p

on the Lie algebra g � S Vect(M) of divergence-free vector fields is mapped by
the inertia operator A : g→ g∗ to the Euler equation

(1.17)
∂[u]

∂t
� −Lv[u]

on the dual space g∗ � �1(M)/d�0(M) of this algebra. Here the field v and
the 1-form u are related by means of the Riemannian metric: u � v�, and [u] ∈
�1/d�0 is the coset of the form u.

Proof. The inertia operator A : S Vect(M) → �1/d�0 sends a divergence-free
field v to the 1-form u � v� considered up to the differential of a function. By
the above theorem, it also sends the covariant derivative ∇vv to the Lie derivative
Lvumodulo the differential of another function. Hence the Euler equation for the
1-form u assumes the form

∂u

∂t
� −Lvu− df,

with the function f � p− 1
2 〈v, v〉. It is equivalent to equation (1.17) for the coset

[u]. �

§2. Sectional curvatures of Lie groups equipped with a
one-sided invariant metric

Let G be a Lie group whose left-invariant metric is given by a scalar product
〈 , 〉 in the Lie algebra. The sectional curvature of the group G at any point is
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determined by the curvature at the identity (since by definition, left translations
map the group to itself isometrically). Hence, it suffices to describe the curvatures
for the two-dimensional planes lying in the Lie algebra g � TeG.

Theorem 2.1 [Arn4]. The curvature of a Lie groupG in the direction determined
by an orthonormal pair of vectors ξ, η in the Lie algebra g is given by the formula

(2.1) Cξη � 〈δ, δ〉 + 2〈α, β〉 − 3〈α, α〉 − 4〈Bξ , Bη〉,
where

2δ � B(ξ, η)+ B(η, ξ), 2β � B(ξ, η)− B(η, ξ)
2α � [ξ, η], 2Bξ � B(ξ, ξ), 2Bη � B(η, η),(2.2)

and where [ , ] is the commutator in g, andB is the bilinear operation on g defined
by the relation 〈B(u, v), w〉 � 〈u, [v,w]〉 (see Chapter I).

Remark 2.2. In the case of a two-sided invariant metric, the formula for the
curvature has the particularly simple form

(2.3) Cξη � 1

4
〈[ξ, η], [ξ, η]〉.

In particular, in this case the sectional curvatures are nonnegative in all two-
dimensional directions.

Remark 2.3. The formula for the curvature of a group with a right-invariant
Riemannian metric coincides with the formula in the left-invariant case. In fact, a
right-invariant metric on a group is a left-invariant metric on the group with the
reverse multiplication law (g1 ! g2 � g2g1). Passage to the reverse group changes
the signs of both the commutator and the operation B in the algebra. But in every
term of the curvature formula there is a product of two operations changing the
sign. Therefore, the formula for curvature is the same in the right-invariant case.
The right-hand side of the Euler equation changes sign under passage to the right-
invariant case.

The mapping of the group G to itself, sending each element g to the inverse
element g−1, is an involution preserving the identity element. It sends any left-
invariant metric on the group to the corresponding right-invariant metric (defined
on the Lie algebra by the same quadratic form). Hence the group with the left-
invariant metric is isometric to the same group with the corresponding right-
invariant metric.

To give the coordinate expression for the curvature, choose an orthonormal
basis e1, . . . , en for the left-invariant vector fields. The Lie algebra structure can
be described by an n × n × n array of structure constants αijk where [ei, ej ] �∑
k

αijkek , or, equivalently, αijk � 〈[ei, ej ], ek〉. This array is skew-symmetric in

the first two indices. Then Theorem 2.1 claims the following:
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Theorem 2.1′(see [Mil4]). The sectional curvature Ce1e2 is given by the formula

Ce1e2 �
∑
k

(
1

2
α12k (−α12k + α2k1 + αk12)

)(2.4)

−1

4
(α12k − α2k1 + αk12) (α12k + α2k1 − αk12)− αk11αk22.

Remark 2.4. Before proving the theorem we give here an account of notewor-
thy facts about left-invariant metrics on Lie groups that can be formulated in a
coordinate-free way (and some have infinite-dimensional counterparts). We refer
to [Mil4] for all the details.

– If ξ belongs to the center of a Lie algebra, then for every left-invariant
metric, the inequality Cξη ≥ 0 is satisfied for all η (cf. Section VI.1.A on
the Virasoro algebra).

– If a connected Lie group G has a left-invariant metric with all sectional
curvatures C ≤ 0, then it is solvable (example: affine transformations of
the line; see Section 1.A).

– IfG is unimodular (i.e., the operators adu are traceless for all u ∈ g), then
any such metric with C ≤ 0 must actually be flat (C ≡ 0) (cf. Remark
II.4.14).

– Every compact Lie group admits a left-invariant (and in fact, a bi-invariant)
metric such that all sectional curvatures satisfy C ≥ 0 (cf. Remark 2.2
above).

– If the Lie algebra ofG contains linearly independent vectors ξ, η, ζ satis-
fying [ξ, η] � ζ , then there exists a left-invariant metric so that the Ricci
curvature r(ξ) is strictly negative, while the Ricci curvature r(ζ ) is strictly
positive. For instance, one can define a metric on SO(3), the configuration
space of a rigid body, such that a certain Ricci curvature is negative!

– (Wallach) If the Lie group G is noncommutative, then it possesses a left-
invariant metric of strictly negative scalar curvature.

– IfG contains a compact noncommutative subgroup, thenG admits a left-
invariant metric of strictly positive scalar curvature [Mil4].

Proof of Theorem 2.1. To obtain explicit formulas for sectional curvatures of the
group G we start by expressing the covariant derivative in terms of the operation
B (or of the array αijk).

Lemma 2.5. Let ξ and η be two left-invariant vector fields on the groupG. Then
the vector field ∇ξ η is also left-invariant and at the point e ∈ G is given by the
following formula:

(2.5) ∇ξ η
∣∣
e
� 1

2
([ξ, η]− B(ξ, η)− B(η, ξ)),



§2. Sectional Curvatures of Lie Groups 207

where on the right-hand side, ξ and η are vectors in g � TeG defining the corre-
sponding left-invariant fields on G.

In coordinates,

(2.5′) ∇ei ej �
∑
k

1

2
(αijk − αjki + αkij )ek.

Proof of Lemma. Parallel transport on a Riemannian manifold preserves the
inner product 〈a, b〉. On the other hand, the left-invariant product 〈a, b〉 of any
left-invariant fields a and b is constant. Therefore, for any c, the operator ∇c is
antisymmetric on left-invariant fields:

〈∇ca, b〉 + 〈∇cb, a〉 � 0.

Furthermore, for the covariant derivative on a Riemannian manifold the follow-
ing “symmetry” condition holds (see Remark 1.10):

∇ca − ∇ac � {c, a}.
Recall that on a Lie group, the Poisson bracket { , } of the left-invariant vector

fields a and c coincides at e ∈ G with the commutator [ , ]g in the Lie algebra:

(2.6) {a, c}∣∣
e
� [a, c]g.

The Poisson bracket of two right-invariant vector fields has the opposite sign (see
Remark I.2.13 or [Arn4]).

Combining the above identities, we obtain the formula

〈∇ξ η, ζ 〉 � 1

2
(〈[ξ, η], ζ 〉 − 〈[η, ζ ], ξ 〉 + 〈[ζ, ξ ], η〉),

easily seen to be equivalent to (2.5). For the orthonormal basis e1, . . . , en, it im-
mediately implies

〈∇ei ej , ek〉 �
1

2
(αijk − αjki + αkij ).

This completes the proof of Lemma 2.5. �

Finally, the coordinate expression (2.4) for sectional curvature is a straightfor-
ward consequence of formulas (1.4), (2.5′), and (2.6). Theorem 2.1′ is proved.

�

Remark 2.6. Lemma 2.5 is deduced in [Arn4] from the Euler equation ξ̇ �
B(ξ, ξ) (see Chapter I).

Consider a neighborhood of the point 0 in the Lie algebra g as a chart of a
neighborhood of the unit element e in the group using the exponential map exp :
g→ G. It sends tξ to the element exp(tξ) of the one-parameter group starting at
t � 0 from ewith initial velocity ξ . (We leave aside the difficulties of this approach
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in the infinite-dimensional case, where the image of the exponential mapping does
not contain the neighborhood of the group unit element.) The exponential mapping
identifies the tangent spaces of the group TgG with the Lie algebra g.

The Euler equation implies that the geodesic line on the group has, in our
coordinates, the following expansion in t :

γ (0, ξ, t) � tξ + t
2

2
B(ξ, ξ)+O(t3), t → 0.

Then the approximate translation

Pγ(ξ,t)η � 1

t

d

dτ

∣∣∣∣
τ�0

γ (0, ξ + ητ, t) ∈ Tγ (t)g � g

of a vector η ∈ T0g � g is explicitly given by

(2.7) Pγ(ξ,t)η � η + t

2
(B(ξ, η)+ B(η, ξ))+O(t2).

By definition, the covariant derivative (in the direction ξ ∈ g) of the left-invariant
vector field on the group G determined by the vector η ∈ g is

(2.8) ∇ξ η � d

dt

∣∣∣∣
t�0

Pγ−1(ξ,t)Lγ (ξ,t)η,

where on the left-hand side, η stands for the corresponding left-invariant vector
field on G.

Note that for any Lie groupG the operator of left translation by group elements
exp a close to the identity (i.e., as |a| → 0) acts on the Lie algebra g (considered
as a chart of the group) as follows:

(2.9) Laξ � ξ + 1

2
[a, ξ ]+O(a2).

Indeed, the general case of any Lie group follows from the calculus on matrix
groups:

exp a · exp b � exp

(
a + b + 1

2
[a, b]+O(a2)+O(b2)

)

for any Lie algebra elements a, b→ 0. Setting b � ξ t , t → 0, |a| → 0, we get

exp a · exp ξ t � exp

[
a +
(
ξ + 1

2
[a, ξ ]+O(a2)

)
t +O(t2)

]
,

which is equivalent to (2.9).
Now, substituting into (2.8) the expressions (2.7) for Pγ and (2.9) for the left

translation Lγ η, we get the following:

∇ξ η � d

dt

∣∣∣∣
t�0

Pγ−1(ξ,t)(η + t

2
[ξ, η]+O(t2))

� d

dt

∣∣∣∣
t�0

(
η + t

2
([ξ, η]− B(ξ, η)− B(η, ξ))+O(t2)

)
.

�
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Theorem 2.1 can now be proven in the following coordinate-free way (see
[Arn4]).

Proof of Theorem 2.1. Let ξ, η be left-invariant vector fields on the group G.
Then the fields {ξ, η}, ∇ξ η, and ∇ηξ are left-invariant as well. The formula (2.5),
combined with the notations (2.2), gives the following values of these vector fields
at the identity Id ∈ G:

∇ξ ξ � −2Bξ , ∇ξ η � α − δ,
∇ηη � −2Bη, ∇ηξ � −(α + δ).(2.10)

Now, in order to evaluate the terms in (1.4), we use these expressions along with
the skew symmetry of ∇ to obtain

〈−∇ξ∇ηξ, η〉 � 〈∇ξ η,∇ηξ〉 � −〈α − δ, α + δ〉,
〈∇η∇ξ ξ, η〉 � 〈∇ξ ξ,∇ηη〉 � −4 〈Bξ , Bη〉.(2.11)

Moreover, by virtue of (2.6),

〈∇{ξ,η}ξ, η〉 � 〈∇[ξ,η]ξ, η〉
� 1

2
〈[[ξ, η], ξ ], η〉 − 1

2
〈B([ξ, η], ξ), η〉 − 1

2
〈B(ξ, [ξ, η]), η〉

� −2〈α, α〉 + 2〈α, β〉.(2.12)

Finally, incorporating (2.10–2.12) into the definition (1.3–1.4) of the sectional
curvature, we get

Cξη � −〈α − δ, α + δ〉 − 4〈Bξ , Bη〉 − 2〈α, α〉 + 2〈α, β〉,
which is equivalent to (2.1). This completes the proof. �

§3. Riemannian geometry of the group of area-preserving
diffeomorphisms of the two-torus

3.A. The curvature tensor for the group of torus
diffeomorphisms

The coordinate-free formulas for the sectional curvature allow one to apply them to
the infinite-dimensional case of groups of diffeomorphisms. The numbers that we
obtain by applying the formula for the curvature of a Lie group to these infinite-
dimensional groups are naturally called the curvatures of the diffeomorphism
groups. We describe in detail the case of area-preserving diffeomorphisms of
the two-dimensional torus and review the results for the two-sphere (the S2 case
is of special interest because of its relation to atmospheric flows and weather
predictions), for the n-dimensional torus T n (the T 3 case is important for stability
analysis of the ABC flows), for a compact two-dimensional surface, and for any
flat manifold.
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We start with the two-dimensional torus T 2 equipped with the Euclidean metric:
T 2 � R

2/�, where � is a lattice (a discrete subgroup) in the plane, e.g., the set
of points with integral coordinates.

Consider the Lie algebra of divergence-free vector fields on the torus with a
single-valued stream function (or a single-valued Hamiltonian function, with re-
spect to the standard symplectic structure on T 2 given by the area form). The corre-
sponding group S0Diff(T 2) consists of area-preserving diffeomorphisms isotopic
to the identity that leave the “center of mass” of the torus fixed.

Remark 3.1. The subgroup S0Diff(T 2) is a totally geodesic submanifold of the
group SDiff(T 2) of all area-preserving diffeomorphisms; that is, any geodesic on
S0Diff(T 2) is a geodesic in the ambient group. This follows from the momentum
conservation law: If at the initial moment the velocity field of an ideal fluid has
a single-valued stream function, then at all other moments of time the stream
function will also be single-valued. (Note that a similar statement holds in the
more general case of a manifold M with boundary: The two Lie subgroups in
S Diff(M) corresponding to the Lie subalgebras of exact (g0) and semiexact (gse)
vector fields (see Remark I.7.15) form totally geodesic submanifolds in the Lie
group of all volume-preserving diffeomorphisms ofM .)

The right-invariant metric on the group SDiff(T 2) is defined by the (doubled)
kinetic energy: Its value at the identity of the group on a divergence-free vector
field v ∈ S Vect(T 2) is 〈v, v〉 � ∫

T 2(v, v) d
2x. We will describe the sectional

curvatures of the group S0Diff(T 2) in various two-dimensional directions passing
through the identity of the group. The curvatures of S0Diff(T 2) and SDiff(T 2)

in these directions are the same, since the submanifold S0Diff(T 2) is totally geo-
desic.

The divergence-free vector fields that constitute the Lie algebra S0 Vect(T 2)

of the group S0 Diff(T 2) can be described by their stream (i.e., Hamiltonian)
functions with zero mean (v � −Hy∂/∂x + Hx∂/∂y). Thus in the sequel the
set S0 Vect(T 2) will be identified with the space of real functions on the torus
having average value zero. It is convenient to define such functions by their Fourier
coefficients and to carry out all calculations over C.

We now complexify our Lie algebra, inner product 〈 , 〉, commutator [ , ], and
the operationB in the algebra, as well as the Riemannian connection and curvature
tensor�, so that all these operations become (multi-) linear in the complex vector
space of the complexified Lie algebra.

To construct a basis of this vector space we let ek (where k, called a wave vector,
is a point of the Euclidean plane) denote the function whose value at a point x of
our plane is equal to ei(k,x).

This determines a function on the torus if the inner product (k, x) is a multiple of
2π for all x ∈ �. All such vectors k belong to a lattice �∗ in R

2, and the functions
{ek | k ∈ �∗, k �� 0} form a basis of the complexified Lie algebra.
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Theorem 3.2 [Arn4, 16]. The explicit formulas for the inner product, commutator,
operation B, connection, and curvature of the right-invariant metric on the group
S0 Diff(T 2) have the following form:

〈ek, e�〉 � 0 for k + � �� 0,

〈ek, e−k〉 � k2S,
(3.1a)

[ek, e�] � (k × �)ek+� where k × � � k1�2 − k2�1,(3.1b)

B(ek, e�) � bk,�ek+� where bk,� � (k × �) k2

(k + �)2 ,(3.1c)

∇ek e� � d�,k+�ek+� where du,v � (v × u)(u, v)
v2

,(3.1d)

�k,�,m,n :� 〈�(ek, el)em, en〉 � 0 if k + �+m+ n �� 0

�k,�,m,n � (a�nakm − a�makn)S if k + �+m+ n � 0,
(3.1e)

where

auv � (u× v)2
|u+ v| .(3.1f)

In these formulas, S is the area of the torus, and u× v the (oriented) area of the
parallelogram spanned by u and v. The parentheses (u, v) denote the Euclidean
scalar product in the plane, and angled brackets denote the scalar product in the
Lie algebra.

We postpone the proof of this theorem, as well as of the corollaries below, until
the next section. The formulas above allow one to calculate the sectional curvature
in any two-dimensional direction.

Example 3.3. Consider the parallel sinusoidal steady fluid flow given by the
stream function ξ � cos(k, x) � (ek + e−k)/2. Let η be any other real vector of
the algebra S0 Vect(T 2) (i.e., η �  x�e� with x−� � x̄�).

Theorem 3.4. The curvature of the group S0 Diff(T 2) in any two-dimensional
plane containing the direction ξ is

(3.2) Cξη � −S
4

∑
�

a2
k�|x� + x�+2k|2,
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and therefore nonpositive.

Corollary 3.5. The curvature is equal to zero only for those two-dimensional
planes that consist of parallel flows in the same direction as ξ , such that [ξ, η] � 0.

Corollary 3.6. The curvature in the plane defined by the stream functions ξ �
cos(k, x) and η � cos(�, x) is

(3.3) Cξη � −(k2 + �2) sin2 α · sin2 β/(4S),

where S is the area of the torus, α is the angle between k and �, and β is the angle
between k + � and k − �.

Corollary 3.7. The curvature of the area-preserving diffeomorphism group of the
torus {(x, y) mod 2π} in the two-dimensional directions spanned by the velocity
fields (sin y, 0) and (0, sin x) is equal to C � −1/(8π2).

Remark 3.8. These calculations show that in many directions the sectional cur-
vature is negative, but in a few it is positive. The stability of the geodesic is
determined by the curvatures in the directions of all possible two-dimensional
planes passing through the velocity vector of the geodesic at each of its points (the
Jacobi equation).

Any fluid flow on the torus is a geodesic of our group. However, calculations sim-
plify noticeably for a stationary flow. In this case the geodesic is a one-parameter
subgroup of our group. Then the curvatures in the directions of all planes pass-
ing through velocity vectors of the geodesic at all of its points are equal to the
curvatures in the corresponding planes going through the velocity vector of this
geodesic at the initial moment of time. To prove it, (right-) translate the plane to
the identity element of the group. Thus, stability of a stationary flow depends only
on the curvatures in those two-dimensional planes in the Lie algebra that contain
the velocity field of the steady flow.

3.B. Curvature calculations

Proof of Theorem 3.2. Formula (3.1a) is an immediate consequence of the defini-
tion. Statement (3.1b) follows from the version of (2.6) for right-invariant fields:
{a, c}∣∣

e
� −[a, c]g. Moreover, combining (3.1b) with the definition of B, we

come to the relation

(3.4) 〈B(ek, e�), em〉 � (�×m)〈e�+m, ek〉.
Further, application of (3.1a) shows that B(ex, e�) is orthogonal to em for k+ �+
m �� 0. Thus, B(ek, e�) � bk,�ek+�. Expression (3.1c) follows from (3.1a) and
(3.4) for m � −k − �.



§3. Geometry of the group of torus diffeomorphisms 213

Now, formulas (3.1b,c) along with expression (2.5) for the covariant derivative
imply that

∇ek e� �
1

2
(k × �)

(
1− k2 − �2

(k + �)2
)
ek+�.

This implies (3.1d) after the evident simplification

1

2

(
1− k2 − �2

(k + �)2
)
� (�, k + �)
(k + �)2 .

In order to find the curvature tensor (1.3), we first compute from (3.1d)

∇ek∇e�em � d�+m,k+�+mdm,�+mek+�+m,
∇[ek,e�]em � (k × �)dm,k+�+mek+�+m.

Along with (3.1a) this implies that �k,�,m,n � 0 for k + �+m+ n �� 0, and

�k,�,m,n � (dk+m,ndn,k+n − d�+m,ndm,�+n + (k × �)dm,n)n2S

for k + �+m+ n � 0 (note that du,v is symmetric in u and v due to (3.1d)). We
leave to the reader the reduction of this identity to the form (3.1e). �

Proof of Theorem 3.4. To derive formula (3.2), we substitute ξ � ek+e−k
2 and

η �∑
�

x�e� into

Cξη � 〈�(ξ,η)ξ, η〉
� 1

4

∑
�

(�k,�,k,−2k−�x�x−2k−� +�−k,�,−k,2k−�x�x2k−�

+�k,�,−k,−�x�x−� +�−k,�,k,−�x�x−�).
Taking into account the relations (3.1e–f) of Theorem 3.2, one obtains the

coefficients of this quadratic form:

�k,�,k,−2k−� � �−k,�,k,−� � −a2
k,�S,

�k,�,−k,−� � �−k,�,−k,2k−� � −a2
k,−�S.

Then the form Cξη for the orthonormal vectors ξ and η becomes

〈�(ξ, η)ξ, η〉 � −S
4

∑
�

[a2
k,�(x�x−2k−� + x�x−�)+ a2

k,−�(x�x2k−� + x�x−�)]

� −S
4

∑
�

a2
k,�(x�x−2k−� + x�x−� + x�+2kx−� + x�+2kx−�−2k),

where the last identity is due to a2
k,−� � a2

k,�−2k (see (3.1f)). Finally, from the
reality condition x−j � x̄j , we get

Cξη � −S
4

∑
�

a2
k,�(x�x̄�+2k + x�x̄� + x�+2kx̄� + x�+2kx̄�+2k),
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which is equivalent to (3.2). �

Proof of Corollary 3.6. By definition the sectional curvature in the plane spanned
by a pair of orthogonal vectors ξ and η is

Cξ,η � 〈�(ξ, η)ξ, η〉
〈ξ, ξ〉〈η, η〉 .

For our choice of ξ and η we have 〈ξ, ξ〉 � k2S/2, 〈η, η〉 � l2S/2, and x� �
x−� � 1

2 . Therefore, by virtue of Theorem 3.4 and (3.1f), one obtains

〈�(ξ, η)ξ, η〉 � −S
8
(a2
k,� + a2

k,−�).

Moreover, the explicit expression (3.1f) gives the identity

a2
k,� + a2

k,−� � (k × �)4
(

1

h2+
+ 1

h2−

)
,

with h± :� k ± �. This, in turn, can be written as

a2
k,� + a2

k,−� �
(k × �)2(h+ × h−)2

2h2+h2−
(k2 + �2),

where we made use of the evident relations h2
++h2

− � 2(k2+�2) and h+×h− �
−2(k× �). Putting all the above together and substituting (k× �)2 � k2�2 sin2 α,
(h+ × h−)2 � h2

+h
2
− sin2 β, we obtain formula (3.3) of the corollary. �

§4. Diffeomorphism groups and unreliable forecasts

4.A. Curvatures of various diffeomorphism groups

For an arbitrary compact n-dimensional closed Riemannian manifoldM , the cur-
vatures of the diffeomorphism group S0 Diff(M) were calculated by Lukatsky
[Luk5] (see also [Smo2]). We refer to [Luk3] for computations of the curvature
tensor for the diffeomorphism group of any compact two-dimensional surface (the
case of the two-dimensional sphere S2, important for meteorological applications,
can be found in [Luk1, Yo]) and to [Luk4] for those of a locally flat manifold
(the case of the flat n-dimensional torus was treated in [Luk2]; see also explicit
formulas for T 3 in [KNH]).

Riemannian geometry and curvatures of the semidirect product groups, relevant
for ideal magnetohydrodynamics, are considered in [Ono]. In [Mis3] the curva-
tures of the group of all diffeomorphisms of a circle are discussed. The latter group,
as well as its extension called the Virasoro group, is the configuration space of the
Korteweg–de Vries equation; see Section VI.1.A. The geometry of bi-invariant
metrics and geodesics on the symplectomorphism groups was studied in [Don].

Another way of investigating the Riemannian geometry of the group of volume-
preserving diffeomorphisms is to embed it as a submanifold in the group of all
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diffeomorphisms of the manifold and then to study the exterior geometry of the
corresponding submanifold (see Section 5 below).

Keeping in mind applications to weather forecasting, we look first at the group
S Diff(S2) of diffeomorphisms preserving the area on a standard sphere S2 ⊂
R

3 � {x, y, z}. Consider the following two steady flows on S2: the rotation field
u � (−y, x, 0) and the nonrealistic “tradewind current” v � z ·(−y, x, 0); Fig. 49
(the real tradewind current has the same direction in the northern and southern
hemispheres).

It was proved in [Luk1] that the sectional curvatures Cuw in all two-planes
containing u are nonnegative for every fieldw ∈ S Vect(S2), while for two-planes
containing the field v the curvatures Cvw are negative for “most” directions w.
Notice that the nonrealistic tradewind current v is a “spherical counterpart” of the
parallel sinusoidal flow on the torus ξ � (sin y, 0) (see statements 3.4–3.7 above).

z

x
y

Figure 49. The velocity profile of the tradewind current on the sphere.

In the case of volume-preserving diffeomorphisms of a three-dimensional do-
mainM ⊂ R

3 of Euclidean space (most important for hydrodynamics), the Jacobi
equation was used by Rouchon to obtain the following information on the sectional
curvatures of the diffeomorphism group.

Definition 4.1 [Rou2]. A divergence-free vector field onM is said to be a perfect
eddy if it is equal to the velocity field of a solid rotating with a constant angular
velocity around a fixed axis (in particular, the vorticity is constant). Such a fluid
motion is possible if and only if the domainM admits an axis of symmetry.

Theorem 4.2 [Rou2]. If the velocity field v(t) of a flow of an ideal incompress-
ible fluid filling a domain M is a perfect eddy with constant vorticity, then the
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sectional curvature in every two-dimensional direction in S Vect(M) containing
v is nonnegative.

If the velocity v(t) of an ideal fluid flow is not a perfect eddy, then for each time t
there always exist plane sections containing v(t) (the velocity along the geodesic)
where the sectional curvature is strictly negative.

The result on nonnegativity of all the sectional curvatures holds also for rotations
of spheres of arbitrary dimension [Mis1].

Remark 4.3. One can expect that the negative curvature of the diffeomorphism
group causes exponential instability of geodesics (i.e., flows of the ideal fluid) in
the same way as for a finite-dimensional Lie group (see, e.g., computer simulations
in [KHZ]). For instance, on an n-dimensional compact manifold with nonposi-
tive sectional curvatures the Jacobi equation along the fluid motion with constant
pressure function always has an unbounded solution [Mis1].

We emphasize that the instability discussed here is the exponential instability
(also called the Lagrangian instability) of the motion of the fluid, not of its velocity
field (compare with Section II.4). The above result shows that from a Lagrangian
point of view, all solutions of the Euler equation in M ⊂ R

3 (with the exception
of the perfect eddy) are unstable.

On the other hand, a stationary flow can be a Lyapunov stable solution of
the Euler equation, while the corresponding motion of the fluid is exponentially
unstable. The reason is that a small perturbation of the fluid velocity field can
induce an exponential divergence of fluid particles. Then, even for a well-predicted
velocity field (the case of a stable solution of the Euler equation), we cannot predict
the motion of the fluid mass without a great loss of accuracy.

Remark 4.4. The curvature formulas for the diffeomorphism groups S Diff(M)
simplify drastically for a locally flat (or Euclidean) manifold M , i.e., for a Rie-
mannian manifold allowing local charts in which the Riemannian metric becomes
Euclidean. Let p : Vect(M) → S Vect(M) be the orthogonal projection of the
space of all smooth vector fields onto their divergence-free parts, where the or-
thogonality is considered with respect to the L2-inner product on Vect(M). Let
q � Id−p : Vect(M) → Grad(M) be the orthogonal projection onto the space
of the gradient vector fields.

Consider some local Euclidean coordinates {x1, . . . , xn} on M and assign to a
pair of vector fields u and v their covariant derivative inM:

∇uv :�
∑
i

(∑
j

uj (x)
∂vi

∂xj

)
∂

∂xi
.

Theorem 4.5 [Luk4]. Let M be locally Euclidean. Then the sectional curvature
Cuv for an orthonormal pair of divergence-free vector fields u, v ∈ S Vect(M) is

Cuv � −〈q(∇uv), q(∇uv)〉 + 〈q(∇uu),∇vv〉.
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Corollary 4.6 [Luk4]. If the vector field∇uu is divergence free (i.e., q(∇uu) ≡ 0;
for instance, u is a simple harmonic on T n), then the curvature is nonpositive:

Cuv � −〈q(∇uv), q(∇uv)〉.

Remark 4.7. It is natural to describe the curvature tensor for the three-dimensional
torus T 3 in the basis ek of S0 Diff(T 3), where ek � ei(k,x), k ∈ Z

3\{0}. An
arbitrary velocity field u(x) is represented as u(x) �∑k ukek , where the Fourier
components satisfy (k, uk) � 0 (divergence free) andu−k � ūk (reality condition).
Then, according to [NHK], one has

〈�(ukek, v�e�)wmem, znen〉

� (2π)3
(
(uk,m)(wm, k)

|k +m| · (v�, n)(zn, �)|�+ n| − (v�,m)(wm, �)|�+m| · (uk, n)(zn, k)|n+ k|
)
.

All the sectional curvatures in the three-dimensional subspace of theABC flows
in S0 Diff(T 3) (see Section II.1) are equal to one and the same negative constant;
i.e., the curvatures do not depend on A,B, and C [KNH].

Fix a divergence-free vector field v ∈ S Vect(T k) on the k-dimensional flat
torus T k . The average of the sectional curvatures of all tangential 2-planes in
S Vect(T k) containing v is characterized by an infinite-dimensional analogue of
the normalized Ricci curvature.

Definition 4.8. Let � be the Laplace–Beltrami operator on vector fields from
S Vect(T k), and {ei | i � 1, 2, . . . } be its orthonormal ordered (−λi ≤ −λi+1)
eigenbasis (�ei � λiei). Define the normalized Ricci curvature in the direction v
by

Ric(v) � lim
N→∞

1

N

N∑
i�1

Cvei .

The normalized Ricci curvature in a given direction on a finite-dimensional mani-
fold is the average of the sectional curvatures of all tangential 2-planes containing
the direction (Definition 1.13). It differs from the classical Ricci curvature by the
factor of (dimension of manifold)−1, and it makes sense as the dimension goes to
infinity.

Theorem 4.9 [Luk2]. For a divergence-free vector field v ∈ S Vect(T k) on the
flat torus T k ,

Ric(v) � − k + 1

vol(T k) · (k − 1)k(k + 2)
‖√−�v‖2

L2(T k),

where
√−� is the “positive” square root of the minus Laplace operator on vector

fields.
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4.B. Unreliability of long-term weather predictions

To apply the curvature calculations above, we make the following simplifying
assumption: The atmosphere is a two-dimensional homogeneous incompressible
fluid over the two-torus, and the motion of the atmosphere is approximately a
“tradewind current” parallel to the equator of the torus and having a sinusoidal
velocity profile.

Though the two-sphere is a better approximation for the earth than the two-torus,
the calculations carried out for a “tradewind current” over S2 in [Luk1] show the
same order of magnitude for curvatures in both groups S0 Diff(T 2) and S Diff(S2).
Hence, the same conclusions on the characteristic path length and instability of
flows hold in both cases.

To estimate the curvature, we consider the “tradewind current” with velocity
field ξ(x, y) � (sin y, 0) on the torus T 2 � {(x, y) mod 2π}. Then, Theorem
3.4 shows that the curvature of the group S0 Diff(T 2) in the planes containing ξ
(with the wave vector k � (0, 1)) varies within the limits −2/S < C < 0, where
S � 4π2 is the area of the torus. However, the lower limit here is obtained by a
rather crude estimate. To make a rough estimate of the characteristic path length,
we take a quarter of this limit as the value of the “mean curvature”C0 � −1/(2S).
There exist many two-dimensional directions with curvatures of approximately
this size.

Having agreed to start with this value C0 for the curvatures, we obtain the
characteristic path length s � 1/

√−C0 �
√

2S; see Remark 1.16. (Recall that
the characteristic path length is the average path length on which a small er-
ror in the initial condition grows by the factor of e.) Note that along the group
S Diff(T 2), the velocity of motion corresponding to the “tradewind current” ξ is
equal to ‖ξ‖L2(T 2) �

√
S/2 (since the average square value of the sine is 1/2).

Hence, the time it takes for our flow to travel the characteristic path length is equal
to 2.

Now, the fastest fluid particles go a distance of 2 after this time, i.e., 1/π part of
the entire orbit around the torus. Thus, if we take our value of the mean curvature,
then the error grows by eπ ≈ 20 after the time of one orbit of the fastest particle.
Taking 100 km/hour as the maximal velocity of the tradewind current, we get 400
hours for the time of orbit, i.e., less than three weeks.

Thus, if at the initial moment, the state of the weather was known with small
error ε, then the order of magnitude of the error of prediction after nmonths would
be

10knε, where k � 30 · 24

400
log10(e

π ) ≈ 2.5.

For example, to predict the weather two months in advance we must have five
more digits of accuracy than the prediction accuracy. In practice, this implies that
calculating the weather for such a period is impossible.
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§5. Exterior geometry of the group of volume-preserving
diffeomorphisms

The group S Diff(M) of volume-preserving diffeomorphisms of a Riemannian
manifoldMn can be thought of as a subgroup of a larger object: the group Diff(M)
of all diffeomorphisms of M (cf. [E-M]). Just like its subgroup, the larger group
is also equipped with a weak Riemannian metric (which is, however, no longer
right-invariant):

(5.1) 〈g∗ξ, g∗η〉 �
∫
M

(ξ, η)g(x)µ(x),

where ξ, η ∈ Vect(M); (ξ, η)a is the inner product of ξ and η with respect to the
metric ( , ) onM at the point a; and g ∈ Diff(M).

Viewing the group of volume-preserving diffeomorphisms as a subgroup in
the group of all diffeomorphisms of the manifold happens to be quite fruitful for
various applications. To some extent the bigger group is “always flatter” than the
subgroup. The source of many simplifications lies in the following fact.

Theorem 5.1 [Mis1]. The components of the curvature tensor � of the bigger
group Diff(M) are the “mean values” of the curvature tensor components for the
Riemannian manifoldM itself:

〈�(u, v)w, z〉 �
∫
M

〈�Mx (u(x), v(x))w(x), z(x)〉xµ(x),

where �Mx is the curvature tensor of M at x ∈ M; the volume form µ is defined
by the metric; and u, v,w, z,∈ Vect(M).

Below we derive (following [Mis1, Shn4, Tod]) the second fundamental form
of the embedding of the “curved” subgroup S Diff(M) ⊂ Diff(M) into the “flat-
ter” ambient group. Though not intrinsic in nature, it gives a nice shortcut to
calculations of the curvatures.

For simplicity, let the manifold M be the flat n-torus T n. Represent a diffeo-
morphism g ∈ Diff(T n) close to the identity in the form g(x) � x + ξ(x).

Proposition 5.2. In the coordinates {ξ}, a C1-small neighborhood of the identity
Id ∈ Diff(T n) of the group Diff(T n) equipped with the metric (5.1) is isometrically
embedded in the Hilbert space H � {ξ ∈ L2(T n,Rn)}.

Proof. The proof of Proposition 5.2 is a straightforward calculation. �

Abusing notation, we will denote by H the (pre-) Hilbert space of smooth maps
from the torus T n to R

n equipped with theL2 inner product. Then a neighborhood
of the identity of the group Diff(T n) is isometric with a neighborhood of the origin
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in H. The group S Diff(T n) of volume-preserving diffeomorphisms of T n will be
viewed as a submanifold D of H (Fig. 50):

D � S Diff(T n) � {ξ ∈ L2(T n,Rn) | det

[
Id+∂ξ

∂x

]
≡ 1} ⊂ H.

T

T0

H

T0tv

t 2w

pr  (tv)

Figure 50. The embedding of the volume-preserving diffeomorphisms D � SDiff(M)
into the group of all diffeomorphisms H � Diff(M).

Definition 5.3. The second fundamental form L (at 0 ∈ D) of the embedding
D ⊂ H is a quadratic map L : T0D → T ⊥0 D from the tangent space T0D ⊂ H

to its orthogonal complement T ⊥0 D ⊂ H. The value of the second fundamental
form L(v, v) at a vector v ∈ T0D is equal to the acceleration of a point moving
by inertia along D with initial velocity v (see [K-N]).

In other words, L measures (the second derivative of) the “distance” in H be-
tween the point tv moving in the tangent space T0D with constant velocity v and
the orthogonal projection prD of this point to D:

(5.2) prD(tv) � tv +
t2

2
L(v, v)+O(t3) as t → 0.

The spaces T0D and T ⊥0 D are more explicitly described as follows

T0D � S Vect(T n) � {v ∈ Vect(T n) | div v � 0},
T ⊥0 D � Grad(T n) � {w ∈ Vect(T n) | w � ∇p, for some p ∈ C∞(T n)}

(we have included in T0D the divergence-free fields shifting the center of mass of
T n, and hence T ⊥0 D consists of the gradients of all univalued functions).

Observe that for a vector field v ∈ S Vect(T n) the transformation x �→ x+tv(x)
means that every point x ∈ T n moves uniformly with velocity v(x) along the
straight line passing through x. Such transformations are diffeomorphisms for
smooth v(x) and sufficiently small t > 0.

To demonstrate the machinery, we confine ourselves, for now, to the case n � 2
and give an alternative proof of Theorem 3.4 on curvatures S Diff0(T

2) in two-
dimensional directions containing the sinusoidal flow ξ on the torus.
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Proof of Theorem 3.4. A vector field v ∈ S Vect(T 2) can be described by the
corresponding (univalued) stream (or Hamiltonian) functionψ : v � sgradψ ; that
is, v1 � −∂ψ/∂x2 and v2 � ∂ψ/∂x1.

Theorem 5.4. The value of the second fundamental form L at a vector field v is

(5.3) L(v, v) � −2∇(�−1(det[Hessψ])),

where Hessψ is the Hessian matrix of the stream function ψ of the field v, and
�−1 is the Green operator for the Laplace operator � in the class of functions
with zero mean on T 2.

Proof of Theorem 5.4. The following evident relation shows how far the trans-
formation Id + tv is from D (i.e., from being volume-preserving):

det

[
Id + t ∂v

∂x

]
� 1+t div v+t2(v1,1v2,2−v1,2v2,1) � 1+t2(v1,1v2,2−v1,2v2,1),

where vi,j :� ∂vi/∂xj , and the last equality is due to div v � 0. The transformation
Id + tv does not belong to D, and it changes the standard volume element on T 2

by a term quadratic in t .
Hence, we have to adjust tv by adding to it a vector field t2w ∈ T ⊥0 D to suppress

the divergence of Id + tv. To compute the second fundamental form (see (5.2))
observe that its value at the vector v is L(v, v) � 2w, where w ∈ T ⊥0 D is defined
by the condition that the transform x �→ x+tv+t2w is volume-preserving modulo
O(t3).

The defining relation on the field w: divw � −(v1,1v2,2 − v1,2v2,1) follows
immediately from the expansion

det

(
Id+t ∂v

∂x
+ t2 ∂w

∂x

)
� 1+ t2(v1,1v2,2 − v1,2v2,1 + divw)+O(t3).

From the definition ofT ⊥0 D, the vector fieldw is a gradient:w � ∇ϕ. Therefore,
divw � ∇2ϕ � �ϕ, and

L(v, v) � 2w � −2∇(�−1(v1,1v2,2 − v1,2v2,1)).

The introduction of the stream functionψ for the field v reduces the latter formula
to the required form (5.3). �

The symmetric fundamental form L(u, v) can now be obtained from the qua-
dratic form L(v, v) via polarization:

L(u, v) � (L(u+ v, u+ v)− L(u, u)− L(v, v))/2.
Finally, the sectional curvature Cuv of the group D in the two-dimensional

direction spanned by any two orthonormal vectors u and v is, according to the
Gauss–Codazzi formula (Proposition VII.4.5 in [K-N]), given by

Cuv � 〈L(u, u), L(v, v)〉 − 〈L(u, v), L(u, v)〉,
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where 〈 , 〉 is the inner product in the Hilbert space H (cf. also Theorem 4.5
above). For nonorthonormal vectors one has to normalize the curvature according
to formula (1.5).

Example 5.5. We will now calculate (using the second fundamental form) the
sectional curvature in the direction spanned by the vector fields u and v with the
stream functionsφ � cos ay andψ � cos bx (where the wave vectors of Corollary
3.6 are k � (0, a) and � � (b, 0)).

One easily obtains that det[Hessφ] � det[Hessψ] ≡ 0, while

det[Hess(φ + ψ)] � a2b2 cos ay cos bx.

Then the application of�−1 is equivalent to the multiplication of the above function
by −1/(a2 + b2). Passing to the gradient, one sees that L(u, v) is the vector field

L(u, v) � − a2b2

a2 + b2

(
(b sin bx cos ay)

∂

∂x
+ (a cos bx sin ay)

∂

∂y

)
,

while both L(u, u) and L(v, v) vanish. Note also that 〈u, u〉 � a2S/2, 〈v, v〉 �
b2S/2, where S is the area of the torus. Finally, evaluating the L2-norm of the
vector field L(u, v) over the torus, we come to the following formula for the
sectional curvature:

Cuv � −〈L(u, v), L(u, v)〉〈u, u〉 · 〈v, v〉 � − a2b2

(a2 + b2)S
,

which is in a perfect matching with (3.3).

We leave it to the reader to check that the substitution of the vector fields u and
v with the stream functions ξ � ek+e−k

2 and η �  x�e� (with x−� � x̄�) into the
curvature formula gives an alternative proof of Theorem 3.4 in full generality.

�

Remark 5.6. Bao and Ratiu [B-R] have studied the totally geodesic (or asymp-
totic) directions on the Riemannian submanifold S Diff(M) ⊂ Diff(M), i.e., those
directions in the tangent spaces TgS Diff(M) (alternatively, divergence-free vec-
tor fields onM) for which the second fundamental form L of S Diff(M), relative
to Diff(M), vanishes. For an arbitrary manifold Mn, they obtained an explicit
description of such directions g∗v ∈ TgS Diff(M) in the form of a certain first-
order nonlinear partial differential equation on v. For the two-dimensional case
this equation can be rewritten as an equation for the stream function. Assume for
simplicity that ∂M � ∅ and H 1(M) � 0.

Theorem 5.7 [B-R]. For a two-dimensional Riemannian manifold M the
divergence-free vector field g∗v ∈ TgS Diff(M) is a totally geodesic direction
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on S Diff(M) if and only if the stream function ψ of the field v satisfies the degen-
erate Monge–Ampère equation

det [Hessψ] � K ·m · ‖∇ψ‖2

2
,

wherem is the determinant of the metric onM in given coordinates {x1, x2}, Hess
is the Hessian matrix of ψ in these coordinates, and K is the Gaussian curvature
function onM .

Their paper also contains examples of manifolds for which the Monge–Ampère
equation has, or has no, solutions (see also [BLR] for a characterization of all
manifoldsM for which the asymptotic directions are harmonic vector fields).

Asymptotic directions on S Diff(M2) arise intrinsically in the context of a dis-
crete version of the Euler equation of an incompressible fluid [MVe]. A solution
of the discretized Euler equation is a recursive sequence of diffeomorphisms. The
Monge–Ampère equation is the constraint on the initial condition ensuring that
all the diffeomorphisms of the sequence preserve the area element onM2.

Remark 5.8. Consider an equivalence relation on the diffeomorphism group
Diff(M), where two diffeomorphisms are in the same class if they differ by a
volume-preserving transformation. We obtain a fibration of Diff(M)over the space
of densities (i.e., the space of positive functions onM), with the fiber isomorphic
to the set of volume-preserving diffeomorphisms S Diff(M). Let the manifoldMn

be one of the following: an n-dimensional sphere Sn, Lobachevsky space �n, or
Euclidean space R

n. According to S.M. Gusein-Zade, there is no section of this
S Diff(M)-bundle over the space of densities that is invariant with respect to mo-
tions of the corresponding space Mn. However, there exists a unique connection
in this bundle that is invariant with respect to motions onMn. Parallel translation
in this connection is essentially described in the proof of the Moser theorem (cf.
Lemma III.3.5). The case of a two-dimensional sphere has interesting applications
in cartography.

§6. Conjugate points in diffeomorphism groups

Although in “most” of the two-dimensional directions the sectional curvatures of
the diffeomorphism group S Diff(T 2) are negative, in some directions the curva-
ture is positive.

Example 6.1 [Arn4]. In the algebra S Vect(T 2) of all divergence-free vector fields
on the torus T 2 � {(x, y) mod 2π} consider the plane spanned by the two stream
functions ξ � cos(3px−y)+cos(3px+2y) and η � cos(px+y)+cos(px−2y).
Then for the sectional curvature one has

Cξη � 〈�(ξ, η)ξ, η〉
〈ξ, ξ〉〈η, η〉 → 9

8π2
> 0 as p→∞.
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It is tempting to conjecture, by analogy with the finite-dimensional case, that
positivity of curvatures is related to the existence of the conjugate points on the
group SDiff(T 2).

Definition 6.2. A conjugate point of the initial point γ (0) along a geodesic line
γ (t), t ∈ [0,∞) (on a Riemannian manifold M), is the point where the geodesic
line hits an infinitely close geodesic, starting from the same point γ (0). The con-
jugate points are ordered along a geodesic, and the first point is the place where
the geodesic line ceases to be a local minimum of the length functional.

Strictly speaking, one considers zeros of the first variation rather than the actual
intersection of geodesics (see, e.g., [K-N]).

Theorem 6.3 [Mis2]. Conjugate points exist on the geodesic in the group
S Diff(T 2) emanating from the identity with velocity v � sgrad φ defined by
the stream function φ � cos 6x · cos 2y.

A segment of a geodesic line is no longer the shortest curve connecting its ends
if the segment contains an interior point conjugate to the initial point (Fig. 51).
Indeed, the difference of lengths of a geodesic curve segment and of anyC1 ε-close
curve joining the same endpoints is of order ε2 (the geodesic being an extremal).
The length of a geodesic ε-close to the initial one and connecting the initial pointA
with its conjugate pointC differs from the length of the initial geodesic betweenA
andC by a quantity of higher order, ε3. The difference betweenBD andBC+CD
is of order, ε2. Hence ADB is shorter than ACB.

A C B

D

Figure 51. A geodesic ceases to be the length global minimum after the first conjugate
point.

If a segment of a geodesic contains k interior points conjugate to the initial point,
then the quadratic form of the length second variation has k negative squares.

Remark 6.4 [Mis2]. Conjugate points can be found on the group S Diff(T n),
where T n is a flat torus of arbitrary dimension n (this is a simple corollary of the
two-dimensional example above).

More examples are provided by geodesics on the group of area-preserving
diffeomorphisms of a surface of positive curvature (example: uniform rotation of
the standard two-dimensional sphere; see Section 4.A).
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On the other hand, those geodesics in S Diff(M) that are also geodesics in
Diff(M) have no conjugate points whenever M is a Riemannian manifold of
nonpositive sectional curvature [Mis1]. Such geodesics have asymptotic directions
on S Diff(M) and correspond to the solutions of the Euler equation in M with
constant pressure functions.

Remark 6.5. It has been neither proved nor disproved that the Morse index of
a geodesic line corresponding to a smooth stationary flow is finite (for any finite
portion of the geodesic). It is interesting to consider whether the conjugate points
might accumulate in this situation. (See, however, [EbM], where the case of a flat
two-dimensional torus was settled: it was shown that the exponential map on the
group S Diff(T 2) turns out to be Fredholm of index zero, and the accumulation
phenomenon does not occur.)

Note that the existence of a small geodesic segment near the initial point that
is free of conjugate points follows from the nondegeneracy of the geodesic ex-
ponential map at the initial point and in its neighborhood. One might also ask
what the shortest path is to a point on the geodesic that is separated from the
initial point by a point conjugate to it. (One hopes that the overall picture in this
classical situation is not spoiled by the pathology of the absence of the shortest
path between special diffeomorphisms, discovered by Shnirelman in [Shn1]; see
Section 7.D.)

§7. Getting around the finiteness of the diameter of the group
of volume-preserving diffeomorphisms∗

Consider a volume-preserving diffeomorphism of a bounded domain. In order
to reach the position prescribed by the diffeomorphism, every fluid particle has to
move along some path in the domain. The distance of this diffeomorphism from
the identity is the averaged characteristic of the path lengths of the particles.

It turns out that the diameter of the group of volume-preserving diffeomorphisms
of a three-dimensional ball is finite, while for a two-dimensional domain it is
infinite. This difference is due to the fact that in three (and more) dimensions there
is enough space for particles to move to their final places without hitting each
other. On the other hand, the motion of the particles in the plane might necessitate
their rotation about one another. The latter phenomenon of “braiding” makes the
system of paths of particles necessarily long, in spite of the boundedness of the
domain (and hence, of the distances between the initial and final positions of each
particle).

In this section we describe some principal properties of the group of volume-
preserving diffeomorphisms D(M) :� S Diff(M) as a metric space along with
their dynamical implications.

∗This section was written by A. Shnirelman.
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7.A. Interplay between the internal and external geometry of
the diffeomorphism group

Definition 7.1. Let Mn be a Riemannian manifold with volume element dx. In-
troduce a metric on the group D(M) � S Diff(Mn) as follows. To any path gt ,
t1 ≤ t ≤ t2, on the group D(M) we associate its length:

(7.1) �{gt }t2t1 �
∫ t2

t1

‖ġt‖L2(M)dt �
∫ t2

t1

(∫
Mn

∥∥∂gt (x)
∂t

∥∥2
dx

)1/2

dt.

For two fluid configurations f, h ∈ D(M), we define the distance between them
on D(M) as the infimum of the lengths of all paths connecting f and h:

distD(M)(f, h) � inf
{gt }⊂D(M)
g0�f,g1�h

�{gt }10.

This definition makes D(M) into a metric space. Now the diameter of D(M) is
the supremum of distances between its elements:

diam(D(M)) � sup
f,h∈D(M)

distD(M)(f, h).

The metric on the group of volume-preserving diffeomorphisms D(M) defined
here is induced by the right-invariant metric on the group defined at the identity
by the kinetic energy of vector fields (compare formula (7.1) with Example I.1.3).

We start with the study of the following three intimately related problems:

A. (Diameter problem) Is the diameter of the group D(M) of volume-preserving
diffeomorphisms infinite or finite? In the latter case, how can it be estimated for a
given manifoldMn?

Let M be a bounded domain in the Euclidean space R
n (with the Euclidean

volume element dx). In this case the diffeomorphism group D(M) is naturally
embedded into the Hilbert space L2(Mn,Rn) of vector functions on Mn. This
embedding defines an isometry of D(M) with its (weak) Riemannian structure
onto its image equipped with the Riemannian metric induced from the Hilbert
space.

Definition 7.2. The standard distance distL2 between two diffeomorphismsf, h ∈
D(M) ⊂ L2(M,Rn) is the distance between them in the ambient Hilbert space
L2(M,Rn):

distL2(f, h) � ‖f − h‖L2(M,Rn).

B. (Relation of metrics) What is the relation between the distance distD(M) in the
group D(M) defined above and the standard distance distL2 pulled back to D(M)
directly from the space L2(M,Rn)?
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Evidently, distD(M) ≥ distL2 . But does there exist an estimate of distD(M)(g, h)
through distL2(g, h)? In particular, is it true that if two volume-preserving diffeo-
morphisms are close in the Hilbert space, then they can be joined by a short path
within the group D(M)?

C. (Shortest path) Given two volume-preserving diffeomorphisms, does there
exist a path connecting them in the group D(M) that has minimal length? If so, it
is a geodesic; i.e., after an appropriate reparametrization it becomes a solution of
the Euler equation for an ideal fluid inMn. Finding the shortest path between two
arbitrary fluid configurations promises to be a good method for constructing fluid
flows.

Remark 7.3. Similar problems can be posed for diffeomorphisms of an arbitrary
Riemannian manifold Mn, if we first isometrically embed Mn in R

q for some q.
Such an embedding for which the Euclidean metric in R

q descends to the given
Riemannian metric onMn exists by virtue of the Nash theorem [Nash] (where one
can take q � 3n(n+ 9)/2 for a compact Mn, and q � 3n(n+ 1)(n+ 9)/2 for a
noncompactMn).

7.B. Diameter of the diffeomorphism groups

In what follows we confine ourselves to the simplest domain Mn, namely, to a
unit cube: Mn � {x � (x1, . . . , xn) ∈ R

n | 0 < xi < 1}. We thus avoid the
topological complications due to the topology ofM .

Theorem 7.4 [Shn1]. For a unit n-dimensional cubeMn where n ≥ 3, the diam-
eter of the group of smooth volume-preserving diffeomorphisms D(M) is finite in
the right-invariant metric distD(M).

Theorem 7.4′ [Shn5]. diam(D(Mn)) ≤ 2
√
n
3 .

These theorems generalize to the case of an arbitrary simply connected manifold
M . However, the diameter can become infinite if the fundamental group of M is
not trivial [ER2]. The two-dimensional case is completely different:

Theorem 7.5 [ER1, 2]. For an arbitrary manifold M of dimension n � 2, the
diameter of the group D(M) is infinite.

One can strengthen the latter result in the following direction.

Definition 7.6. A diffeomorphism g : M → M of an arbitrary domain (or a
Riemannian manifold) M is called attainable if it can be connected with the
identity diffeomorphism Id by a piecewise-smooth path gt ⊂ D(M) of finite
length.
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Theorem 7.7 [Shn2]. Let Mn be an n-dimensional cube and n ≥ 3. Then every
element of the group D(M) is attainable. In the case n � 2, there are unattainable
diffeomorphisms of the square M2. Moreover, the unattainable diffeomorphisms
can be chosen to be continuous up to the boundary ∂M2 and identical on ∂M2.

A diffeomorphism g may be unattainable if its behavior near the boundary
∂Mn of M is complicated enough. We will give an example of an unattainable
diffeomorphism in Section 8.A. Note that only attainable diffeomorphisms are
physically reasonable, since the fluid cannot reach an unattainable configuration
in a finite time.

The statement above allows one to specify Theorem 7.5:

Theorem 7.8 (= 7.5′). For two-dimensional M , the subset of attainable diffeo-
morphisms in D(M) is of infinite diameter.

It is not known whether all the attainable diffeomorphisms form a subgroup in
D(M2) (i.e., whether the inverse of an attainable diffeomorphism is attainable). It
is not always true that if a path {gt } ⊂ D(M2) has finite length, then the length of
the path {g−1

t } ⊂ D(M2) is finite. The group D(M2) splits into a continuum of
equivalence classes according to the following relation: Two diffeomorphisms are
in the same class if they can be connected to each other by a path of finite length.
Every equivalence class has infinite diameter.

The proofs of the two-dimensional results are rather transparent and are dis-
cussed in Sections 8.A–B. Various approaches to the three- (and higher-) dimen-
sional case are, on the contrary, all quite intricate, and only the ideas are discussed
below.

7.C. Comparison of the metrics and completion of the group
of diffeomorphisms

The main difference between the geometries of the groups of diffeomorphisms in
two and three dimensions is based on the observation that for a long path on D(M3),
which twists the particles in space, there always exists a “shortcut” untwisting them
by “making use of the third coordinate.” More precisely, the following estimate
holds.

Theorem 7.9 [Shn1]. Given dimension n ≥ 3, there exist constants C > 0 and
α > 0 such that for every pair of volume-preserving diffeomorphisms f, h ∈
D(Mn) of the unit cube,

distD(M)(f, h) ≤ C(distL2(f, h))α.

Theorem 7.9′ [Shn5]. The exponentα in this inequality is not less than 2/(n+ 4).
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This property means that the embedding of D(Mn) into L2(M,Rn), n ≥ 3, is
“Hölder-regular.” Apparently, it is far from being smooth, i.e., α < 1. Certainly,
the Hölder property (Theorem 7.9) implies the finiteness of the diameter (Theorem
7.4).

No such estimate is true for n � 2. Namely, for every pair of positive constants
c, C there exists a diffeomorphism g ∈ D(M2) such that distD(M)(g, Id) > C,
but distL2(g, Id) < c. This complements Theorem 7.5 but requires, of course, a
separate proof.

Theorems 7.4 and 7.9 imply the following simple description of the completion
of the metric space D(Mn) in the case n ≥ 3.

Corollary 7.10. For n ≥ 3 the completion of the group D(Mn) in the metric
distD(M) coincides with the closure D̄(Mn) of the group in L2(Mn,Rn).

Proof of Corollary. Each Cauchy sequence {gi} in D(Mn) (with respect to the
metrics distD(Mn)) is a Cauchy sequence inL2(Mn,Rn), and therefore it converges
to some element g ∈ L2(Mn,Rn).

Conversely, if g belongs to the closure of D(Mn) in L2(Mn,Rn), then there
exists a sequence of diffeomorphisms {gi} ⊂ D(Mn) that converges to it in
L2(Mn,Rn). Therefore, by virtue of Theorem 7.9, {gi} is a Cauchy sequence
in D(Mn), and thus g lies in the completion of D(Mn). �

Theorem 7.11 [Shn1]. The completion D̄(Mn) (n ≥ 3) of the group D(Mn)

consists of all measure-preserving endomorphisms on M , i.e., of such Lebesgue-
measurable maps f : Mn→ Mn that for every measurable subset � ⊂ Mn,

mes f −1(�) � mes�.

The idea for a proof of this theorem is as follows. Divide the unit cubeMn into
Nn equal small cubes having linear sizeN−1. Consider the class DN of piecewise-
continuous mappings, translating in a parallel way each small cube κ into another
small cube σ(κ), where σ is some permutation of the set of small cubes. First one
proves that every measure-preserving map f : M → M may be approximated
with arbitrary accuracy in L2(Mn,Rn) by a permutation of small cubes for suffi-
ciently large N . In turn, every such permutation may be approximated in L2 by a
smooth volume-preserving diffeomorphism. Conversely, if a map g belongs to the
closure of the diffeomorphism group g ∈ D̄(Mn), then g � lim gi , gi ∈ D(Mn),
almost everywhere in Mn, and hence g is a measure-preserving endomorphism;
see [Shn1] for more detail.

In the two-dimensional case, the completion of D(M2) in the metric distD(M) is
a proper subset of the L2-closure D̄(M2); no good description of this completion
is known.
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7.D. The absence of the shortest path

We will see below how the facts presented so far in this section imply a negative
answer to the question of existence of the shortest path in the diffeomorphism
group:

Theorem 7.12 [Shn1]. For a unit cubeMn of dimension n ≥ 3, there exists a pair
of volume-preserving diffeomorphisms that cannot be connected within the group
D(M) by a shortest path; i.e., for every path connecting the diffeomorphisms there
always exists a shorter path.

Thus, the attractive variational approach to constructing solutions of the Euler
equations is not directly available in the hydrodynamical situation. This is not to
say that the variational approach is wrong, but merely that our understanding is
still incomplete and further work is required.

Remark 7.13. The proof of Theorem 7.12 is close in spirit to the Weierstrass
example of a variational problem having no solution. Weierstrass proposed his ex-
ample in his criticism of the use of the Dirichlet principle for proving the existence
of a solution of the Dirichlet problem for the Laplace equation.

A B

Figure 52. There is no smooth shortest curve between A and B that would be orthogonal
to the segment AB at the endpoints.

This example illustrates that in some cases a functional cannot attain its infimum.
Consider two points A and B in the plane. We are looking for a smooth curve γ
of minimal length connecting A and B such that its tangents at the points A and
B are orthogonal to the line (AB); Fig. 52. It is clear that if γ is different from the
segment [AB], then it may be squeezed toward the line (AB) (say, by the factor
1/2), and this transformation reduces its length. However, if γ coincides with the
segment [AB], it does not satisfy the boundary conditions. Thus, the infimum
cannot be attained within the class of admissible curves.

Weierstrass’s criticism encouraged Hilbert to establish a solid foundation for
the Dirichlet variational principle.

We proceed to describe an example of a diffeomorphism g ∈ D(M3) of the
three-dimensional cube M3 that cannot be connected to the identity diffeomor-
phism Id by a shortest path.
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Let (x1, x2, z) be Cartesian coordinates in R
3, and letM3 � {0 < x1, x2, z < 1}.

Consider an arbitrary diffeomorphism g ∈ D(M3) of the form

g(x, z) � (h(x), z),
where h is an area-preserving diffeomorphism of the squareM2 and x :� (x1, x2).

Theorem 7.12′. If

distD(M3)(Id, g) < distD(M2)(Id, h),

then Id ∈ D(M3) cannot be connected with the diffeomorphism g by a shortest
path in D(M3).

Proof. Rather than the length, we shall estimate an equivalent quantity, the action
along the paths.

Definition 7.14. The action along a path gt , t1 ≤ t ≤ t2, on the group of diffeo-
morphisms D(Mn) of a Riemannian manifoldMn is the quantity

j{gt }t2t1 �
1

2

∫ t2

t1

‖ġt‖2
L2(M) dt �

1

2

∫ t2

t1

∫
Mn

∥∥∂gt (x)
∂t

∥∥2
dydt.

The action and the length are related via the inequality

(7.2) �2 ≤ 2 j (t2 − t1).
Unlike the length �{gt }t2t1 , the action j{gt }t2t1 depends on the parametrization, and
the equality in (7.2) holds if and only if the parametrization is such that

‖ġt‖2
L2(M) �

∫
M

∥∥∂gt (x)
∂t

∥∥2
dx ≡ const.

This allows us, in the sequel, to pass freely from one notion to the other.

Suppose there exists a shortest path gt connecting Id and g; we shall construct
another path that has smaller length.

First squeeze the flow gt by a factor of 2 along the z-direction: Instead of a
family of volume-preserving diffeomorphisms of the three-dimensional unit cube
M3, we now have volume-preserving diffeomorphisms of the parallelepiped

P1 � {(x, z) ∈ M3 | 0 < z < 1/2}.
Now consider the new (discontinuous) flow ḡt in the cube M3 � P1 ∪ P2 that
is the above squeezed flow on each of the halves P1 and P2; see Fig. 53. (Here
P2 is specified by the condition 1/2 < z < 1.) It is easy to see that the flow ḡt
is incompressible inM3 and is, in general, discontinuous on the (invariant) plane
z � 1/2. Notice also that the flow ḡt satisfies the same boundary conditions as gt :
ḡ0 � Id, ḡ1 � g.
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gt

P2

P1

M3

gt

Figure 53. Each of the two parallelepipeds contains the former flow in the cube squeezed
by a factor of 2.

Compare the actions along the paths gt and ḡt . Define the horizontal jH and
vertical jV components of the action j � jH + jV for gt as follows:

jH {gt }10 �
1

2

∫ 1

0
dt

∫
M3
‖∂x

′(x, z, t)
∂t

‖2 d2x dz,

jV {gt }10 �
1

2

∫ 1

0
dt

∫
M3
‖∂z

′(x, z, t)
∂t

‖2 d2x dz,

and similarly for the path ḡt . (Here gt (x, z) � (x ′, z′).) From the definition of ḡt ,
we easily obtain

jH {ḡt }10 � jH {gt }10, while jV {ḡt }10 �
1

2
jV {gt }10.

Therefore, the action along the path ḡt is smaller than that along the path gt :
j{ḡt }10 < j{gt }10 if the vertical component of the action is positive, jV {gt }10 > 0.

The last condition, jV {gt }10 > 0, follows from the assumption of the theo-
rem. Indeed, if the vertical component of the action vanishes (jV {gt }10 � 0), then
∂z′(x, z, t)/∂t ≡ 0, and the map x �→ x ′(x, z, t) for any fixed z and t is an area-
preserving diffeomorphism of the squareM2. In this case the action along the flow
gt is

j{gt }10 �
∫ 1

0
dz

(∫ 1

0
dt

∫
M2

1

2

∥∥∂x ′(x, z, t)
∂t

∥∥2
d2x

)
,

which implies that there is a value z0 ∈ [0, 1] such that

j{gt }10 ≥
∫ 1

0
dt

∫
M2

1

2

∥∥∂x ′(x, z0, t)

∂t

∥∥2
d2x.

However, this is impossible, since by the assumption, the distance in D(M2) from
Id to the diffeomorphism x �→ x ′(x, z0, t)

∣∣
t�1 � h(x) is greater than the distance

in D(M3) from Id to g, the length of the shortest path gt in D(M3) connecting Id
and g.
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Hence jV {gt }10 > 0, and we have constructed a discontinuous flow ḡt (connecting
Id and the diffeomorphism g) whose action is less than that of gt : j{ḡt }10 < j{gt }10.
Now Theorem 7.12′ follows from the following lemma on a smooth approximation.

Lemma 7.15. For every ε > 0 there exists a smooth flow ϕt ⊂ D(M3), 0 ≤ t ≤ 1,
that starts at the identity ϕ0 � Id, reaches an ε-vicinity of g in the standard L2-
metric, distL2(M3)(ϕ1, g) < ε, and whose action approximates the action along
the discontinuous path ḡt : |j{ḡt }10 − j{ϕt }10| < ε.

To complete the proof, we replace the short but discontinuous path ḡt by its
smooth approximation ϕt . It starts at the identity and ends up at ϕ1, L2-close to g.
By Theorem 7.9, there exists a path ft in D(M3), 1 ≤ t ≤ 2, connecting ϕ1 and
g, and such that

�{ft }10 ≤ Cεα, α > 0,

and hence the length �{ft }10 tends to 0 together with ε. It follows that the composite
path ϕt ∪ ft has length not exceeding �{ḡt } + ε + Cεα . Finally, observe that for
sufficiently small ε, the composite path is shorter than gt , because �{ḡt }10 < �{gt }10.
This completes the proof of Theorem 7.12′ modulo Lemma 7.15. �

Proof of Theorem 7.12. By virtue of Theorem 7.5, for every C > 0 there is a
diffeomorphism h of the square M2 such that distD(M2)(Id, h) > C. On the other
hand, if g is a diffeomorphism of the 3-dimensional cubeM3 having the form

g(x, z) � (h(x), z), x ∈ M2, z ∈ (0, 1),
then by Theorem 7.4′, distD(M3)(Id, g) ≤ 2. Hence, ifC > 2, this diffeomorphism
g cannot be connected with Id by a shortest path. This completes the proof of
Theorem 7.12. �

Proof of Lemma 7.15. For a (discontinuous) flow ḡt , we define (almost every-
where) its Eulerian velocity field by v(x, t) � ∂ḡt (ḡ−1

t (x))/∂t . For a small δ > 0
let Mδ be the set M with the δ-neighborhood of the boundary ∂M removed, and
ρδ the dilation mappings M → Mδ . Denote by vδ(x, t) � (ρδ)∗v(x, t) the image
of the field v under the dilations. By setting vδ ≡ 0 outside Mδ , we obtain an
L2-vector field in the whole of R

3 that is incompressible in the generalized sense;
i.e., the vector field vδ is L2-orthogonal to every gradient vector field.

Now define the smooth field

wδ(x, t) :�
∫

R3
vδ(y, t)φδ(x − y)dy,

as a convolution of the field vδ with a mollifier φδ(x) � δ−3φ(x/δ), where φ(x) ∈
C∞0 (R

3) and
∫
φ(x)dx � 1. The field wδ(x, t) has compact support wδ(x, t) ∈

C∞0 (M) for all t , and as δ→ 0, it converges to the field v(x, t) uniformly on every
compact set inM outside ∂M and outside the plane z � 1

2 . Moreover, wδ → v in
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L2(M). This implies that for sufficiently small δ, the smooth flow ϕt obtained by
integrating the vector field wδ satisfies the conditions of Lemma 7.15. �

7.E. Discrete flows

The proofs of Theorems 7.4, 7.7, and 7.9 are similar and are based on the following
discrete approximation of the group D(Mn) (cf. also [Lax, Mos2]). Split the cube
Mn ⊂ R

n intoNn identical subcubes. LetMN be the set of all these cubes. Denote
by DN the group of all permutations of the set MN ; this is a discrete analogue of
the group D(M) of volume-preserving diffeomorphisms.

Two subcubes κ,κ′ ∈ MN are called neighboring if they have a common (n−
1)-dimensional face. A permutation σ ∈ DN is called elementary if each subcube
κ ∈ MN is either not affected by σ , or σ(κ) is a neighbor of κ. A sequence of
elementary permutations σ1, . . . , σk is called a discrete flow; the number k is called
its duration. We say that the discrete flow σ1, . . . , σk connects the configurations
σ, σ ′ ∈ DN if σk ◦ σk−1 ◦ · · · ◦ σ1 ◦ σ � σ ′.

The following, purely combinatorial, theorem is the cornerstone of the study. It
can be regarded as a discrete version of Theorem 7.4.

Theorem 7.16. For every dimension n there exists a constant Cn > 0 such that
for every N every two configurations σ, σ ′ ∈ DN can be connected by a discrete
flow σ1, . . . , σk whose duration k is less than Cn ·N .

The proof is tedious yet elementary; see [Shn1].
To formulate the discrete analogue of Theorem 7.9, we define the length of a

discrete flow (not to be confused with its duration).

Definition 7.17. Let σ1, . . . , σk be a discrete flow in MN . Let each permutation
σj takemj subcubes into neighboring ones and leaveNn−mj subcubes in place.
The length �{σj }k1 of the discrete flow is (cf. (7.1))

�{σj }k1 �
k∑
j�1

(mj/N
n)1/2

N
.

(The reasoning is transparent: A permutation σj is approximated by a vector field
of magnitude 1/N supported on a set of volume mj/Nn. Then the summands are
“L2-norms” of the permutations.)

The distance in DN between configurations σ, σ ′ is defined as

distDN
(σ, σ ′) � min �{σj }k1,

where min is taken over all discrete flows (of arbitrary duration) connecting σ and
σ ′. The L2-distance between σ, σ ′ ∈ DN is defined as

distL2(σ, σ ′) �
( ∑

κ∈MN

‖σ(κ)− σ ′(κ)‖2

Nn

) 1
2

,
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where ‖σ(κ) − σ ′(κ)‖ is the distance in R
3 between the centers of the corre-

sponding small cubes.

The following is the analogue of Theorem 7.9 on the relation of metrics.

Theorem 7.18. For every dimension n there are constants Cn > 0 and αn > 0
such that for every N and every pair of permutations σ, σ ′ ∈ DN ,

distDN
(σ, σ ′) ≤ Cn(distL2(σ, σ ′))αn .

The proof is an inductive multistep construction of a “short” discrete flow con-
necting two given L2-close discrete configurations; see [Shn1]. The explicit con-
struction in the three-dimensional case (n � 3) yields α3 ≥ 1/64.

7.F. Outline of the proofs

The proof of Theorems 7.4 and 7.9 proceeds as follows.
Let g ∈ D(Mn) with n ≥ 3. We construct a path gt ⊂ D(Mn), 0 ≤ t ≤ 1, that

connects the identity and g (g0 � Id, g1 � g), and such that

�{gt }10 ≤ C(distL2(Id, g))α.

First of all, we prove that g can be approximated by some permutation σ ∈ DN

of small cubes for sufficiently large N . Furthermore, for every ε > 0 there exists
a discontinuous, piecewise-smooth flow ξτ , 0 ≤ τ ≤ 1, connecting σ and g, and
such that L{ξτ }10 < ε. (More precisely, for every τ the mapping ξτ : Mn → Mn

is smooth in every small cube κ ∈ MN , discontinuous on interfaces between
neighboring cubes κ, and measure-preserving.)

Construct the “short” discrete flow σ1, . . . , σk connecting Id and σ in DN and
satisfying the conclusion of Theorem 7.18. One can show that there exists a dis-
continuous flow ηt , 0 ≤ t ≤ 1, that interpolates the flow σ1, . . . , σk at the moments
t � j/k for all j � 1, . . . , k (ηt�j/k � σj ◦ σj−1 ◦ · · · ◦ σ1) and has the same
order of length:

�{ηt }10 ≤ const · �{σj }k1.
Therefore, the composition of the paths ηt and ξt is a discontinuous flow con-

necting Id and g and having a controllable length.
The final step is the smoothening of the latter flow provided by the following

Lemma 7.19. Let g ∈ D(Mn), and let ζt : Mn → Mn be a discontinuous
measure-preserving flow such that ζ0 � Id, ζ1 � g, and ζt is smooth in every
small cube κ ∈ MN . If n ≥ 3, then for every ε > 0 there exists a smooth flow
gt : Mn → Mn, 0 ≤ t ≤ 1, with the same boundary conditions g0 � Id, g1 � g
as ζt , and such that �{gt }10 < �{ζt }10 + ε.

The flow gt coincides with ζt in every cube κδ � {x ∈ κ | distRn (x, ∂κ) > δ}
for some small δ. The most subtle point in extending the flow is to define it on the
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δ-neighborhood of all subcube faces the “froth-like” domain Kδ :� ⋃
κ∈MN

(κ \
κδ). Here we use the fact that the fundamental group of the domain Kδ is trivial
(π1(Kδ) � 0), which is true if n ≥ 3. Theorem 7.9 (and Theorem 7.4 as a particular
case) follows; see [Shn1] and analogous arguments in the proof of Theorem III.3.3
in Section III.3 for the details.

The proof of Theorem 7.7 is similar, but more complicated; we refer to [Shn2].

7.G. Generalized flows

We now return to the problem of finding the shortest paths in the group of volume-
preserving diffeomorphisms D(Mn). We already know that there exist pairs of
diffeomorphisms that cannot be connected by a smooth flow of minimal length.
Is there, however, some wider class of flows (say, discontinuous or measurable)
where the minimum is always attainable? This problem has been resolved by Y.
Brenier [Bre1]. He found a natural class of “generalized incompressible flows”
for which the variational problem is always solvable.

The generalized flows (GF) are a far-reaching generalization of the classical
flows, where fluid particles are not only allowed to move independently of each
other, but also their trajectories may meet each other: The particles may split and
collide. The only restrictions are that the density of particles remains constant all
the time and that the mean kinetic energy is finite. The formal definition of the GF
is presented below.

Let X � C([0, 1];Mn) be the space of all parametrized continuous paths x(t)
inMn. Fix a diffeomorphism g ∈ D(Mn).

Definition 7.20. A generalized flow (GF) inMn connecting the diffeomorphisms
Id and g is a probabilistic measure µ{dx} in the space X satisfying the following
conditions:

(i) For every Lebesgue-measurable set A ⊂ Mn, and every t0 ∈ [0, 1],

µ{x(t) | x(t0) ∈ A} � mesA

(this may be called incompressibility).
(ii) For µ-almost all paths x(t), the action along each of them is finite

j{x(·)} � 1

2

1∫

0

‖∂x(t)
∂t

‖2dt <∞,

and so is the “total action”

j{µ} �
∫

X

j{x(·)}µ{dx} <∞

(finiteness of action).
(iii) For µ-almost all paths x(t), the endpoints x(0) and x(1) are related by

means of the diffeomorphism g: x(1) � g(x(0)) (boundary condition).
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Thus, a generalized flow µ{dx} can be thought of as a random process. In
general this process is neither Markov nor stationary. This notion is very simi-
lar to the notion of a polymorphism, appearing in the work of Neretin [Ner2].
Polymorphisms arise as a natural domain for the extensions of representations of
diffeomorphism groups.

Every smooth flow gt ⊂ D(M) may be regarded as a generalized flow if we
associate to gt the measure µ(gt ){dx} such that for every measurable set Y ⊂ X
its µ(gt )-measure is equal to the measure of points whose trajectories belong to Y :

µ(gt )(Y ) � mes{a ∈ Mn
∣∣{gt (a)} ∈ Y }.

This measure is concentrated on the n-dimensional set of trajectories gt (a) of the
flow gt .

Another example of a GF is a multiflow, that is, a convex combination of GFs,
corresponding to smooth flows. In other words, in the multiflows different portions
of fluid move (penetrating each other; see Fig. 54) in different directions within
the same volume! Generic GFs are much more complicated than multiflows.

Theorem 7.21 [Bre1]. For every diffeomorphism g ∈ D(Mn) there always exists
a generalized flow µ (with the boundary conditions Id and g) that realizes the
minimum of action,

j{µ} � min
µ′

j{µ′},

where the minimum is taken over generalized flows µ′ connecting the identity Id
and the diffeomorphism g.

Thus, although in our example the infimum cannot be assumed among smooth
flows, there exists a generalized flow minimizing the action (as well as the length);
see also [Roe].

In fact, Theorem 7.21 is even more general, since it applies equally to discon-
tinuous and orientation-changing maps g. In the latter case the minimizing GF is
especially interesting because the fluid is being turned “inside out”! No measur-
able flow, or even multiflow, can produce such a transformation. These problems
are nontrivial even in the one-dimensional case.

Here are two beautiful examples found by Brenier. Let g1(x) and g2(x) be the
transformations of the segment [0, 1], defined, respectively, as a flip-flop map
g1(x) :� 1 − x, x ∈ [0, 1], and as an interval-exchange map g2: [0, 1/2] ↔
[1/2, 1].

Figures 54a and 54b display the trajectories of fluid particles for the minimal
flows connecting Id with g1 and g2, respectively. In the first case, each fluid particle
splits at t � 0 into a continuum of trajectories of “smaller” particles; they move
independently, pass through all the points of the segment, and then coalesce at
t � 1. In the second case, the GF is a multiflow (more precisely, a 2-flow). For
more examples of exotic minimal GFs, see [Bre1, 2, 3].
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(a) (b)

Figure 54. Trajectories of particles in the GF, corresponding to (a) the flip of the interval
[0, 1] and (b) the interval-exchange map.

An important question is to what extent these minimal GFs may be regarded as
generalized solutions of the Euler equation. The similarity between these gener-
alized flows and the “true” solutions extends very far: For example, for every GF
µ there exists a scalar function p(x, t), playing the role of pressure [Bre2], such
that for almost every fluid particle its acceleration at almost every (x, t) is equal to
−∇xp! The minimal GFs are generalized solutions of the mass transport problem
(of the so-called Kantorovich problem). However, their hydrodynamical meaning
is not yet completely understood.

7.H. Approximation of fluid flows by generalized ones

Generalized flows have proved to be a powerful and flexible tool for studying the
structure of the space D(Mn) of volume-preserving diffeomorphisms. The key
role here is played by the following approximation theorem.

Theorem 7.22 [Shn5]. Let g ∈ D(Mn), n ≥ 3, be a smooth volume-preserving
diffeomorphism. Then each generalized flow µ{dx} connecting Id and g can be
approximated (together with the action) by smooth incompressible flows: There
exists a sequence of smooth incompressible flows g(k)t connecting Id and g such
that as k→∞,

(i) the measures µ
g
(k)
t

weak*-converge in X to the measure µ;

(ii) the actions along g(k)t converge to the total action along µ{dx}:
j{g(k)t }10 → j{µ}10.
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Here weak*-convergence means that for every bounded continuous functional
ϕ{x(·)} on X,

〈ϕ{x}, µ
g
(k)
t
{dx}〉 → 〈ϕ(x), µ{dx}〉, as k→∞.

We shall not present here the (lengthy) proof of this theorem, referring to [Shn5]
instead. An immediate consequence of this theorem and formula (7.2) is the fol-
lowing estimate on the distances in D(Mn), n ≥ 3.

Corollary 7.23. If n ≥ 3, then for every diffeomorphism g ∈ D(Mn),

dist(Id, g) � inf(2 · j{µ}10)1/2,
where the infimum is taken over all generalized flows µ connecting Id and g.

Thus, to estimate the distance between Id and g ∈ D(Mn), we may try to
construct a GF connecting Id and g and having the smallest possible action. Then
Lemma 7.23 guarantees a majorant for the distance.

Example 7.24 (= Theorem 7.4). Let us estimate the diameter diam D(Mn) of the
group of volume-preserving diffeomorphisms of the n-dimensional unit cube. An
accurate computation of all the intermediate constants in the proof of Theorem
7.4 for n � 3 yields diam D(M3) < 100, which is very far from reality. Here we
prove

Theorem 7.4′ [Shn5]. If the dimension n ≥ 3, then diam D(Mn) ≤ 2
√
n/3.

Proof. We use a construction close to that of Y. Brenier, who proved that all fluid
configurations on the torus are attainable by GFs [Bre1].

The required GF is constructed as follows. At t � 0 every fluid particle in
the cube splits into a continuum of particles moving in all directions. Having
originated at a point y, this “cloud” (of cubical form) expands, and at t � 1/2 it
fills out the whole cubeMn with a constant density. During the second half of the
motion (1/2 ≤ t ≤ 1) the “cloud” shrinks and collapses at t � 1 to the point g(y).
All “clouds” expand and shrink simultaneously, and the overall density remains
constant for all t .

More accurately, suppose that the cubeMn is given by the inequalities |xi | < 1
2 ,

i � 1, . . . , n. Let � be a discrete group of motions generated by the reflections in
the faces of Mn. For each initial point y ∈ Mn and a velocity vector v ∈ Mn, we
define the corresponding billiard trajectory in Mn for the time 0 ≤ t ≤ 1/2, i.e.,
the path xy,v(t) ⊂ M , where

xy,v(t) :� �(y + 4vt) ∩Mn.

Given a point y, the end-point mapping φy : v→ xy,v (1/2) is a 2n-fold covering
of Mn, and moreover, φy is volume-preserving. These billiard trajectories are
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trajectories of the “microparticles” into which every initial point y splits. At t � 1
2

the microparticles fill Mn uniformly, and after this moment they move along
other billiard trajectories, gathering at the point g(y) at the end. All particles
split and move independently in the same manner; incompressibility is fulfilled
automatically.

Let My,Mv,Mz,Mu be 4 copies of the cube Mn with coordinates y, v, z, u,
respectively. Define a set � ⊂ My × Mv × Mz × Mu that consists of all four-
tuples ω � (y, v, z, u) ∈ � such that z � g(y) and such that the endpoints of the
corresponding trajectories coincide: xy,v(1/2) � xz,u(1/2).

Denote by dω � 2−ndydv the normed volume element on�. Then the required
GF µ is the following random process inMn with probability space (�, dω):

x(t, ω) �
{
xy,v(4t), 0 ≤ t ≤ 1/2,

xg(y),u(4− 4t), 1/2 ≤ t ≤ 1,

where ω � (y, v, g(y), u) ∈ �. The action of this GF is

j{µ}10 �
1

2

∫
Mv

16v2 dv � n

2

1/2∫

−1/2

16x2 dx � 2n

3
.

By virtue of Corollary 7.23 this implies that the distance between the identity
Id and the diffeomorphism g (which has been chosen arbitrarily) is majorated as
follows:

dist(Id, g) ≤
√

2 · j{µ}10 � 2
√
n/3.

Hence, the diameter of the group D(Mn) has the same upper bound. �

Analogous (though much longer) reasoning proves Theorem 7.9′, which mi-
norates the Hölder exponent αn, n ≥ 3, for the embedding of D(Mn) into
L2(M,Rn) : αn ≥ 2/(n+ 4); see [Shn5]. Given g, we construct explicitly the GF
satisfying that estimate. Our constructions are possibly not optimal, and a natural
question is to find the best possible estimate for the diameter and for the exponent
αn. Is the latter equal to or less than 1? Both possibilities are interesting.

7.I. Existence of cut and conjugate points on diffeomorphism
groups

One more application of the techniques of generalized flows is the proof of the
existence of cut points on the space D(Mn); cf. Section 6.

Definition 7.25. Let gt ⊂ D(Mn) be a geodesic trajectory on the group of diffeo-
morphisms. We call a point gtc on the trajectory the first cut of the initial point g0

along gt if the geodesic gt has minimal length among all curves connecting g0 and
gτ for all τ < tc, and it ceases to minimize the length as soon as τ > tc (i.e., for
every τ > tc there exists a curve g′t connecting g0 and gτ whose length is less than
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the length of the segment {gt | 0 < t < τ }). We call a point gtc the first local cut if
it is the first cut, and the curve g′t may be chosen arbitrarily close to the geodesic
segment {gt | 0 < t < τ } for every τ > tc.

On a complete finite-dimensional Riemannian manifold, the cut point of a point
g0 comes no later than the first conjugate point of g0. The example of a flat torus
shows that one can have cut points but no conjugate points. But in the finite-
dimensional case, the first local cut point is always a conjugate point; so, all cut
points on the torus are nonlocal, which is evident. In the case of diffeomorphism
groups the precise relationship between cut points and conjugate points has yet to
be clarified.

In the two-dimensional case (n � 2) the conjugate points on certain geodesics
in D(T 2) were found by G. Misiołek [Mis2]; see Section 6. It is curious that for
n ≥ 3 there are local cut (and, probably, conjugate?) points on every sufficiently
long geodesic curve. This is a consequence of the following result.

Theorem 7.26 [Shn5]. Let {gt | 0 ≤ t ≤ T } ⊂ D(Mn) be an arbitrary path on
the group and n ≥ 3. If the length of the path exceeds the diameter of the group,
�{gt }T0 > diam D(Mn), then there exists a path {g′t | 0 ≤ t ≤ T } ⊂ D(Mn) with
the same endpoints g0 and gT that

(i) is uniformly close to gt (i.e., for every ε > 0 there exists a path g′t such
that distD(M)(gt , g′t ) < ε for every t ∈ [0, T ]) and

(ii) has a smaller length: �{g′t }T0 < �{gt }T0 .

In other words, if the geodesic segment gt is long enough (�{gt }T0 >

diam D(Mn)), then there exists a local cut point gtc with tc < T . A shorter path
can be chosen arbitrarily close to the initial geodesic, which on a complete finite-
dimensional manifold would imply the existence of a conjugate point.

Proof. Let ht , 0 ≤ t ≤ T , be a path in D(Mn) connecting g0 and gT and such
that

�{ht }T0 < diam D(Mn)+ δ
2
< �{gt }T0

for some small δ > 0. Such a path exists by the definition of diameter.
Assume that the parametrization of the pathsgt andht is chosen in such a manner

that ‖ġt‖ � const, ‖ḣt‖ � const, and hence we have the inequality j{ht }T0 < j{gt }T0
for the actions as well.

Letµgt , µht be the GFs corresponding to the classical flows gt , ht . Consider the
convex combination µ̄ of the measuresµgt , µht in the spaceX: µ̄ :� (1−λ)µgt +
λµht for some 0 < λ < 1. Then the total action for the generalized flow µ̄ is

j{µ̄}T0 � (1− λ) j{gt }T0 + λ j{ht }T0 < j{gt }T0 .
To return to the classical flows we use approximation Theorem 7.22. It guar-

antees that there exists a smooth flow ft , 0 ≤ t ≤ T , connecting g0 and gT and
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weakly*-approximating the GFµ together with its action, so that j{ft }T0 < j{gt }T0 .
The flow ft , certainly, depends on λ, and it is easy to see that for small λ the flow
ft is L2-close to gt :

distL2(ft , gt ) < C · λ1/2.

Hence, for sufficiently small λ, these two flows are close on the group by virtue of
Theorem 7.9: distD(Mn)(ft , gt ) < ε for all 0 ≤ t ≤ T . This completes the proof
of Theorem 7.26. �

For other applications of the generalized flows and for more detail we refer to
[Shn5, Shn8].

§8. Infinite diameter of the group of Hamiltonian
diffeomorphisms and symplecto-hydrodynamics

The picture changes drastically when we turn from the group of volume-preserving
diffeomorphisms of three- (and higher-) dimensional manifolds to area-preserving
diffeomorphisms of surfaces. Practically none of the aspects under consideration
in the preceding section (such as metric properties and diameter of the group,
existence of solutions for the variational problem of Cauchy and Dirichlet types,
or completion of the group and description of attainable diffeomorphisms) can
be literally transferred to this case. It is natural to describe the properties of the
groups of area-preserving diffeomorphisms of surfaces in the more general setting
of diffeomorphisms of arbitrary symplectic manifolds.

Definition 8.1. A symplectic manifold (M,ω) is an even-dimensional manifold
M2n endowed with a nondegenerate closed differential two-form ω.

A group of symplectomorphisms consists of all diffeomorphisms g : M → M

that preserve the two-form ω (i.e., g∗ω � ω). We will be considering symplecto-
morphisms belonging to the identity connected component in the symplectomor-
phism group, and particularly those symplectomorphisms that can be obtained
as the time-one map of a Hamiltonian flow. By the Hamiltonian flow we mean
the flow of a time-dependent Hamiltonian vector field (having a single-valued
Hamiltonian function). Such symplectic diffeomorphisms ofM are called Hamil-
tonian. Denote the group of Hamiltonian diffeomorphisms by Ham(M) and the
corresponding Lie algebra of Hamiltonian vector fields by ham(M).

For a two-dimensional manifold the symplectic two-form ω is an area form,
and the group of area- and mass-center-preserving diffeomorphisms S Diff0(M

2)

coincides with the group Ham(M). The role of the group Ham(M) in plasma
dynamics is similar to that of the group S Diff(M) in ideal fluid dynamics.

The study of geodesics of right-invariant metrics on symplectomorphism groups
is an interesting and almost unexplored domain. It might be called symplecto-
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hydrodynamics, and it is a rather natural generalization of two-dimensional hy-
drodynamics. The relation becomes even more transparent for complex or almost
complex manifolds, where the metric 〈 , 〉 is related to the symplectic structure ω
by means of the relation 〈ξ, η〉 � ω(ξ, i η).

The symplecto-hydrodynamics in higher dimensions differs drastically from
that in dimension two. For instance, every bounded domain on the plane can
be embedded in any other domain of larger area by a symplectomorphism (i.e.,
by a diffeomorphism preserving the areas). Already in dimension four this is not
always the case: Even some ellipsoids in a symplectic space cannot be embedded in
a ball of larger volume by a symplectomorphism [Gro]. For example, the ellipsoid
1
a2 (p

2
1+q2

1 )+ 1
b2 (p

2
2+q2

2 ) ≤ 1 cannot be sent into a ball p2
1+q2

1 +p2
2+q2

2 ≤ R2

of bigger volume if R < max(a, b). Moreover, a “symplectic camel” (a bounded
domain in the symplectic four-dimensional space) cannot go through the eye of a
needle (a small hole in the three-dimensional wall), while in volume-preserving
hydrodynamics such a percolation through an arbitrarily small hole is always
possible in any dimension.

Thus the preservation of the symplectic structure ω of the phase spaceM by the
Hamiltonian phase flow implies some peculiar restrictions on the resulting diffeo-
morphisms, making symplectomorphisms scarce among the volume-preserving
maps in dimensions ≥ 4. (Moreover, the group of symplectomorphisms of a sym-
plectic manifold isC0-closed in the group of all diffeomorphisms of the manifold;
i.e., in general, a volume-preserving diffeomorphism cannot be approximated by
symplectic ones [El1, Gro]). These restrictions might even imply some unexpected
phenomena in statistical mechanics, where, in spite of the symplectic nature of the
problem, one usually takes into account the first integrals and volume preserva-
tion only and freely permutes the particles of the phase space. One may also hope
that symplecto- (contacto-, conformo-) hydrodynamics will find other physically
interesting applications. In this section we will describe a few results known in
symplecto-hydrodynamics.

We will concentrate mostly on two main metrics with which the group Ham(M)
can be equipped. The first one is the right-invariant metric, which arises from
the kinetic energy and is responsible for hydrodynamic applications (we follow
[ER1, 2]). The second one is the bi-invariant metric introduced in [Hof] (and
studied in [E-P, LaM]), which has turned out to be a powerful tool in symplectic
geometry and topology.

8.A. Right-invariant metrics on symplectomorphisms

Let (M2n, ω) be a compact exact symplectic manifold. This means that the sym-
plectic form ω is a differential of a 1-form θ : ω � dθ .

Such a manifold neccessarily has a nonempty boundary. Otherwise the integral

∫
M

ωn �
∫
d(θ ∧ ωn−1)
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would vanish, which is impossible since the 2n-form µ � ωn is a volume form
onM . We fix a Riemannian metric onM with the same volume element.

Definition 8.2. The right-invariant Lp-metric on Ham(M) is determined by the
Lp-norm (p ≥ 1) on Hamiltonian vector fields ham(M) at the identity of the group
(for hydrodynamics, one needs the L2-case corresponding to the kinetic energy
of a fluid). Given a path {gt | t ∈ [0, 1]} ⊂ Ham(M), we define its Lp-length
�p({gt }) by the formula

�p({gt }) �
1∫

0

‖dgt
dt
‖
Lp
dt �

1∫

0



∫

M

‖dgt
dt
‖
p

µ




1/p

dt.

The length functional �p gives rise to the distance function distp on Ham(M) by

distp(f, g) � inf �p({gt }),
where the infimum is taken over all paths gt joining g0 � f and g1 � g. Finally,
define the diameter of the group by

diamp(Ham(M)) :� sup
f,g∈Ham(M)

distp(f, g).

Theorem 8.3 (= 7.5′′) [ER2]. The diameter diamp(Ham(M)) of the group of
Hamiltonian diffeomorphisms Ham(M) is infinite in any right-invariant Lp-
metric.

Note that the strongest result is that for the L1-norm, since

�p(∗) ≥ C(M,p) · �1(∗).

Remark 8.4. Contrary to the volume-preserving case (for dimM ≥ 3), the in-
finiteness of the diameter of the symplectomorphism group has a local nature,
and it is not related to the topology of the underlying manifold. The source of
the distinction between these two cases is in the different topologies of the corre-
sponding groups of linear transformations. The fundamental group of the group
of linear symplectic transformations Ham(2n) is infinite, while it is finite in the
volume-preserving case of SL(2n) for n > 1.

To give an example of a “long path” in a group of Hamiltonian diffeomorphisms,
we consider the unit disk B2 ⊂ R

2 with the standard volume form. Then such a
path on Ham(B2) is given, for instance, by the Hamiltonian flow with Hamiltonian
functionH(x, y) � (x2+y2−1)2 for a long enough period of time (Fig. 55). The
final symplectomorphism is sufficiently far away from the identity diffeomorphism
Id ∈ Ham(B2), since two-dimensionality prevents “highly twisted clusters of
particles” to untwist via a short path.

This allows one to present the following example of an unattainable diffeomor-
phism of the square [Shn2]. It corresponds to the time-one map of the flow whose
Hamiltonian function is depicted in Fig. 56. It has “hills” of infinitely increasing
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Figure 55. Profile of the Hamiltonian function and the trajectories of the corresponding
flow, which is “a long path” on the group Ham(B2).

height and with supports on a sequence of disks convergent to the boundary of the
square.

Figure 56. An unattainable diffeomorphism of the square.
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We will prove Theorem 8.3 for the case of the L2-norm and the group of sym-
plectomorphisms of the ball B2n that are fixed on the boundary ∂B [ER1]. The
main ingredient of the proof is the notion of the Calabi invariant.

8.B. Calabi invariant

Consider the group Ham∂ (B) of the Hamiltonian diffeomorphisms of the ball
(B2n, ω) stationary on the sphere ∂B (ω being the differential of a 1-form θ , say,
the standard symplectic structure ω �∑ dpi ∧ dqi in R

2n).

Proposition 8.5. Given a 1-form θ on the ball B and a Hamiltonian diffeo-
morphism g ∈ Ham∂ (B) fixed on the sphere ∂B, there exists a unique function
h : B2n→ R vanishing together with its gradient on ∂B and such that

(8.1) θ − g∗θ � dh.

Proof. The 1-form θ − g∗θ is closed (d(θ − g∗θ) � dθ − g∗dθ � ω− g∗ω � 0)
and hence exact in the ball B2n. Therefore, it is the differential of some function
h. The vanishing property for h is provided by the condition that g is steady on
the boundary. �

Lemma–definition 8.6. The integral of the function h over the ball B does not
depend on the choice of the 1-form θ satisfying dθ � ω. The Calabi invariant of
the Hamiltonian diffeomorphism g is this integral divided by (n+ 1):

Cal(g) :� 1

n+ 1

∫

B

hωn.

Proof. The form θ is defined modulo the differential of a function. Under the
change θ �→ θ̃ � θ + df , the function h becomes h̃ � h+ (f − g∗f ), since the
differential commutes with pullbacks. The forms (g∗f )ωn and fωn have the same
integrals, since the map g preserves the symplectic structure ω. Then the integral
of h is preserved:∫

B

h̃ ωn �
∫

B

hωn +
∫

B

(f − g∗f ) ωn �
∫

B

hωn � Cal(g).

�

Lemma–definition 8.6 also holds for an arbitrary symplectomorphism g of the
ball, fixed on the boundary. However, for Hamiltonian diffeomorphisms, there is
the following alternative description of the Calabi invariant.

Let ham∂ (B) be the Lie algebra of the group Ham∂ (B) of Hamiltonian diffeo-
morphisms of the ball. It consists of the Hamiltonian vector fields vanishing on the
boundary sphere ∂B. We shall identify it with the space of Hamiltonian functions
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H , normalized by the condition that H and its differential both vanish on ∂B.
(Notice that the definition of the Hamiltonian function corresponding to a vector
field from ham∂ (B) is the infinitesimal version of relation (8.1).)

Let g ∈ Ham∂ (B) be a Hamiltonian diffeomorphism of the n-dimensional ball
B. Consider any path {gt | 0 ≤ t ≤ T , g(0) � Id, g(T ) � g} on the group
Ham∂ (B) connecting the identity element with g. The path may be regarded as
the flow of a time-dependent Hamiltonian vector field on B whose normalized
Hamiltonian functionHt (defined on B2n× [0, T ]) vanishes on ∂B along with its
differential.

Theorem 8.7 [Ca]. The integral of the Hamiltonian functionHt overB2n× [0, T ]
is equal to the Calabi invariant of the symplectomorphism g:

(8.2) Cal(g) �
T∫

0



∫

B

Ht ω
n


 dt.

In particular, this integral does not depend on the connecting path, that is, on
the choice of time-dependent Hamiltonian Ht , provided that the time-one map
g(T ) � g is fixed.

Geometrically, the Calabi invariant is the volume in the (2n + 2)-dimensional
space {(x, t, z)} � B2n× [0, T ]×R under the graph of the function (x, t) �→ z �
Ht(x).

Lemma 8.8. The Calabi invariant Cal: Ham∂ (B) → R is the group homomor-
phism of the group of Hamiltonian diffeomorphisms of B (fixed on the boundary)
onto the real line.

Proof of Lemma. Let g1, g2 ∈ Ham∂ (B) → R be two Hamiltonian diffeomor-
phisms, and g � g2 ◦ g1. We have to show that the corresponding functions h
and hi , i � 1, 2, vanishing on the boundary ∂B and determined by the condition
(8.11), satisfy the relation∫

hωn �
∫
h1 ω

n +
∫
h2 ω

n.

The latter holds, since

dh � θ − g∗θ � θ − g∗2θ + g∗2θ − (g2 ◦ g1)
∗θ � dh2 + g∗2(dh1),

and because g2 preserves the symplectic form ω. �

Remark 8.9. The kernel of the Calabi homomorphism (formed by the Hamil-
tonian diffeomorphisms whose Calabi invariant vanishes) is a simple group, the
commutant of Ham∂ (B); see [Ban]. (The commutant of a group consists of the
products of commutators of the group elements.)
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The fact that the Hamiltonian diffeomorphisms whose Calabi invariant van-
ishes form a connected normal subgroup is evident (one can multiply the time-
dependent Hamiltonian by a constant). The Lie algebra of this subgroup consists of
the Hamiltonian vector fields whose normalized Hamiltonian functions has zero
integral. The fact that the subgroup consists of the products of commutators in
Ham∂ (B) is similar to the following. The Hamiltonian functions with vanishing
integral are representable as finite sums of Poisson brackets of functions from
ham∂ (B).

The subgroup of Hamiltonian diffeomorphisms with vanishing Calabi invariant
has an infinite diameter, just as the ambient group of all Hamiltonian diffeomor-
phisms of the ball [ER2].

More generally, the Calabi invariant is the homomorphism of the group
Symp∂ (B) of all symplectomorphisms of the ball (fixed on the boundary) to R.
We do not know whether the group of symplectomorphisms Symp∂ (B) of a 2n-
dimensional ball (fixed on the boundary) and this normal subgroup {Cal(g) � 0}
are simply connected. The group Symp∂ (B) is known to be contractible for n � 1
[Mos1] and for n � 2 [Gro].

Proof of Theorem 8.7. Let {gt ∈ Ham∂ (B) | 0 ≤ t ≤ T , g(0) � Id, g(T ) � g}
be a path of Hamiltonian diffeomorphisms with the time-dependent Hamiltonian
function Ht .

Owing to the homomorphism property of Cal, it is enough to prove the relation

∫

B

hωn � (n+ 1)

T∫

0



∫

B

Ht ω
n


 dt

for an “infinitesimally short” period of time [0, T ]. In other words, we differentiate
this relation in t at t � 0, and will prove the identity∫

B

(
d

dt
h

)
ωn � (n+ 1)

∫

B

H0 ω
n.

Note that the time derivative at t � 0 of the left-hand side of formula (8.1) for the
diffeomorphism gt is, by definition, minus the Lie derivative of the 1-form θ along
the Hamiltonian vector field v � d

dt
|t�0gt generated by the function H � H0:

(8.3) −Lvθ � d
(
d

dt
h

)
.

We apply the homotopy formula Lv � ivd + div (see Section I.7.B) to the Lie
derivative Lvθ and use the definition of the Hamiltonian function −dH � ivω,
where ω � dθ :

(8.4) −Lvθ � −ivdθ − divθ � d(H − ivθ).
From formulas (8.3–4) one finds the derivative d/dt h:

d

dt
h � H − ivθ.
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(Actually, formulas (8.3–4) allow one to reconstruct the derivative up to an additive
constant only, which turns out to be zero by virtue of the vanishing boundary
conditions for all H , v, and h.)

Now, Theorem 8.7 follows from the following lemma.

Lemma 8.10.

−
∫

B

(ivθ ) ωn � n
∫

B

H ωn.

Proof of Lemma. Owing to the properties of the inner derivative operator iv , we
have

−
∫

B

ivθ ∧ ωn � −
∫

B

θ ∧ iv(ωn)

� −n
∫

B

θ ∧ ivω ∧ ωn−1 � n
∫

B

θ ∧ dH ∧ ωn−1.

Moving the exterior derivative d to the 1-form θ gives

n

∫

B

dθ ∧H ∧ ωn−1 − n
∫

∂B

θ ∧H ∧ ωn−1 � n
∫

B

H ωn,

since the function H vanishes on ∂B. This completes the proof of Lemma 8.10
and Theorem 8.7. �

Remark 8.11. Theorem 8.7 can be reformulated as follows. Define the Calabi
integral of a Hamiltonian function H as

∫
B

Hωn. This formula defines a linear

function (or an exterior 1-form) on the Lie algebra ham∂ (B).
The Calabi form on the corresponding group Ham∂ (B) is the right-invariant

differential form coinciding with the Calabi integral on the Lie algebra ham∂ (B).
The Calabi form is actually a bi-invariant (i.e., both left- and right-invariant)
1-form on the group of Hamiltonian diffeomorphisms Ham∂ (B). It immediately
follows from the fact that the Calabi integral, defined on ham∂ (B), is invariant
under the adjoint representation of this group Ham∂ (B) in the corresponding Lie
algebra ham∂ (B). In turn, the latter holds because a symplectomorphism sends the
Hamiltonian vector field of H to the Hamiltonian vector field of the transported
function, while preserving the form ωn. Hence, the symplectomorphism action
preserves the integral.

The Calabi invariant Cal(g) of a Hamiltonian diffeomorphism g in Ham∂ (B)

is the integral of the Calabi form along a path gt in Ham∂ (B) joining the identity
diffeomorphism with g.

Theorem 8.7′. The Calabi form is exact: The integral depends only on the final
point g and not on the connecting path.
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Although we have already proved the exactness of the Calabi form in slightly
different terms, we present here a shortcut to prove its closedness. It would imply
exactness if we knew that the group of Hamiltonian diffeomorphisms is simply
connected, i.e., that every path connecting the identity with g in Ham∂ (B) is
homotopical (or at least homological) to any other. Unfortunately, we do not know
whether this is the case in all dimensions (see Remark 8.9).

Proof of closedness. We start with a well-known general fact:

Lemma 8.12. For any right-invariant differential form α on a Lie group,

dα(ξ, η) � α([ξ, η])

for every pair of vectors ξ, η in the Lie algebra.

(This formula follows from the definition of the exterior differential d; see
Section I.7.B). Therefore, the differential of the Calabi form is minus the integral
of the Poisson bracket of two Hamiltonian functions.

Lemma 8.13. LetH be a Hamiltonian function defined on the ballB and constant
on the boundary ∂B. Then the Poisson bracket of H with another Hamiltonian
function F has zero integral over B.

Example 8.14. For two smooth functions F and H in a bounded domain D of
the plane (p, q), ∫

D

{F,H } dp ∧ dq � 0,

provided thatH is constant on ∂D (i.e., that the Hamiltonian field ofH is tangent
to ∂D). Indeed,∫

D

{F,H } dp ∧ dq �
∫
D

dF ∧ dH � −
∫
∂D

HdF � −H
∫
∂D

dF � 0,

since H is constant on the boundary ∂D.

Proof of Lemma 8.13. The Poisson bracket {F,H } is (minus) the derivative of
F along the Hamiltonian vector field of H . Consider the 2n-form in B that is the
result of transporting the 2n-form Fωn by the flow of H . This flow leaves the
ball B invariant, since H is constant on the boundary ∂B, and the corresponding
Hamiltonian flow is tangent to ∂B.

Then the integral of the Poisson bracket {F,H } is equal to (minus) the time
derivative of the integral over B of this resulting form. But this Hamiltonian flow
preserves ωn and hence preserves the integral. Thus, the time derivative of the
integral of the transported form vanishes, and so does the integral of the Poisson
bracket. �
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Remark 8.15. Similarly, for any two smooth functions on a closed compact sym-
plectic manifold, the integral of their Poisson bracket vanishes. Here one might
replace one of the functions by a closed (nonexact) differential 1-form; it does
not change the proof. Moreover, every function on a connected closed symplectic
manifold whose integral vanishes can be represented as a sum of Poisson brackets
of functions on this manifold [Arn7].

The closedness of the Calabi form (the invariance of integral (8.2) under the
deformations of the path) follows immediately from Lemmas 8.12 and 8.13: The
differential of the Calabi form is the integral of (minus) the Poisson bracket of any
two functions from Symp∂ (B), which always vanishes. �

Now we are ready to prove the infiniteness of the diameter of the symplecto-
morphism group.

Proof of Theorem 8.3 for Ham∂ (B
2n). Let the ball B2n be equipped with the

standard symplectic structure, and let µ � ωn denote the corresponding volume
form. The �2-length of a path {gt } in the right-invariant metric on Ham∂ (B) (gt be-
ing the flow of a time-dependent Hamiltonian functionHt(x) joining the endpoints
g0 � Id and g1 � g) is given by

�({gt }) �
1∫

0



∫

B

‖dgt (x)
dt

‖2µ




1/2

dt

�
1∫

0



∫

B

‖∇Ht(gt )‖2µ




1/2

dt �
1∫

0

‖∇Ht‖L2(B) dt.

Then the desired estimate follows from the Poincaré and Schwarz inequalities:

�({gt }) �
1∫

0

‖∇Ht‖L2(B) dt ≥ c1

1∫

0

‖Ht‖L2(B) dt

≥ c2

1∫

0

‖Ht‖L1(B) dt ≥ c2

1∫

0

∫

B

Htµ dt � c2 · Cal(g).

Owing to the surjectivity of the map Cal: Ham∂ (B) → R, one can find a
Hamiltonian diffeomorphism (see Remark 8.4) with an arbitrarily large Calabi
invariant and therefore arbitrarily remote from the identity. �

Analogous statements for the right-invariant metric generated by the L1-norm
on vector fields ham(M) and for nonexact symplectomorphisms (Theorem 8.3 in
full generality) require noticeably more work [ER2].
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8.C. Bi-invariant metrics and pseudometrics on the group of
Hamiltonian diffeomorphisms

The group Ham(R2n) of (compactly supported) Hamiltonian diffeomorphisms
of the standard space R

2n (or the group of symplectomorphisms of a ball that
are stationary in a neighborhood of its boundary) admits interesting bi-invariant
metrics (see [Hof, E-P, H-Z, LaM, Plt, Don]). The right-invariant metrics discussed
above are defined in terms of the norm of vector fields, which requires an additional
ingredient, a metric on R

2n. On the contrary, the bi-invariant metrics are defined
solely in terms of the Hamiltonian functions.

Definition 8.16 [E-P]. Any Lp-norm (1 ≤ p ≤ ∞) on the space C∞0 (R
2n) of

compactly supported Hamiltonian functions assigns the length lp to any smooth
curve on the group Ham(M). Given the Hamiltonian function Ht ∈ C∞0 (R2n) of
a flow from f to g, we define

lp(f, g) :�
1∫

0

‖Ht‖Lp(R2n) dt.

The length functional generates a pseudometric ρp on the group Ham(M) (i.e.,
a symmetric nonnegative function on Ham(M) × Ham(M) obeying the triangle
inequality).

The pseudometrics ρp are bi-invariant. This immediately follows from invari-
ance of the Lp-norm under the adjoint group action: The integral

‖H‖p
Lp(R2n)

�
∫

R2n
|H(x)|p ωn

persists under symplectic changes of the variable x. More generally, one can start
with an arbitrary symplectically invariant norm on the algebra ham(M).

In particular, the distance ρ∞(Id, f ) in the L∞-(pseudo-) metric between any
Hamiltonian diffeomorphism f ∈ Ham(R2n) and the identity element Id reads

ρ∞(Id, f ) � inf
H

1∫

0

sup
x

|H(x, t)| dt,

where the infimum is taken over all Hamiltonian functionsH(x, t) corresponding
to flows starting at Id and ending at f . By definition, ρ∞(f, g) :� ρ∞(Id, fg−1).

This bi-invariant (pseudo-) metric ρ is equivalent to the one introduced by Hofer
[Hof]:

(8.5) ρ ′∞(Id, f ) � inf
H

1∫

0

(sup
x

H(x, t)− inf
x
H(x, t)) dt.

We use the notation ρ∞ in the sequel for both ρ∞ and ρ ′∞.
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Theorem 8.17 [Hof]. The (pseudo-) metric ρ∞ is a genuine bi-invariant metric
on Ham(M); i.e., in addition to positivity and the triangle inequality, the relation
ρ∞(f, g) � 0 implies that f � g.

Lalonde and McDuff [LaM] showed that ρ∞, defined by the same formula (8.5)
for any symplectic manifold (M,ω), is a true metric on the group Ham(M). They
used it to prove Gromov’s nonsqueezing theorem in full generality for maps of
arbitrary symplectic manifolds into a symplectic cylinder.

It turns out, however, that the limit case p � ∞ is the only Lp-norm on Hamil-
tonians that generates a metric. For 1 ≤ p < ∞ there are distinct symplecto-
morphisms with vanishing ρp-distance between them [E-P]. The features of the
(pseudo-) metrics above are deduced from special properties of the following
symplectic invariant, first introduced by Hofer for subsets of R

2n and called the
displacement energy.

Let ρ be a bi-invariant (pseudo-) metric on the group of Hamiltonian diffeo-
morphisms Ham(M) of an open symplectic manifoldM .

Definition 8.18. The displacement energy e(A)of a subsetA ⊂ M is the (pseudo-)
distance from the identity map to the set of all symplectomorphisms that push A
away from itself: e(A) � inf{ρ(Id, f )}, where the infimum is taken over all
f ∈ Ham(M) such that f (A)∩A � ∅. (If there is no such f , we set e(A) :� ∞.)

Theorem 8.19 [E-P]. Let ρ be a bi-invariant metric on Ham(M). Then the dis-
placement energy of every open bounded subset A ⊂ M is nonzero: eρ(A) �� 0.

For instance, for a disk B ⊂ R
2 of radiusR, the displacement energy in Hofer’s

metric is πR2 [Hof]. Furthermore, the displacement energy is nonzero for every
compact Lagrangian submanifold ofM [Che]. (A submanifold L of a symplectic
manifold (M2n, ω) is called Lagrangian if dimL � n and the restriction of the
2-form ω to L vanishes.)

Proof of Theorem 8.19. First notice that for the group commutator [φ,ψ] of any
two elements φ,ψ ∈ Ham(M) one has

(8.6) ρ(Id, [φ,ψ]) ≤ 2 min(ρ(Id, φ), ρ(Id, ψ)).

This follows from the bi-invariance of the metric ρ and the triangle inequality.
Choose arbitrary diffeomorphisms φ,ψ ∈ Ham(M) such that their supports

are in A and [φ,ψ] �� Id. Then Theorem 8.19 will be proved with the following
lemma:

Lemma 8.20. ρ(Id, [φ,ψ]) ≤ 4eρ(A).

Proof of Lemma. Assume that a Hamiltonian diffeomorphism h ∈ Ham(M)
displaces A: h(A) ∩ A � ∅. Then the diffeomorphism θ :� φh−1φ−1h has the
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same restriction to A as φ. Hence, φ−1ψφ � θ−1ψθ . Utilizing the bi-invariance
and the inequality (8.6), we have

ρ(Id, [φ,ψ]) � ρ(ψ, φ−1ψφ) � ρ(ψ, θ−1ψθ) ≤ 2ρ(Id, θ) ≤ 4ρ(Id, h).

Minimization over h completes the proof. �

Corollary 8.21 [E-P]. The (pseudo-) metric ρp on Ham(M) generated by the
Lp-norm on C∞0 (M) is not a metric for p <∞.

Proof of Corollary. Let B ⊂ M be an embedded ball and {gHt } a (compactly
supported) Hamiltonian flow that pushesB away from itself: gH1 (B)∩B � ∅. This
flow is generated by a functionH ∈ C∞0 (M×[0, 1]). Introduce a new Hamiltonian
function K(·, t) by smoothly cutting off H(·, t) outside a neighborhood Ut ⊂ M
of the moving boundary gHt (∂B); see Fig. 57.

B gK(B)1

K(  ,t).

Figure 57. Displacement of a ball with rotation.

The flows ofK andH coincide when restricted to the boundary ∂B: gKt (∂B) �
gHt (∂B) for every t , and therefore gK1 (B) ∩ B � ∅.

Shrinking the neighborhoods Ut , one can make the Lp-norm of K(·, t) (and
hence the distance ρp(Id, gK1 )) arbitrarily small for every p �� ∞. Thus the dis-
placement energy of B associated to ρp, p �� ∞ vanishes, and Theorem 8.19 is
applicable. �

Informally, one can push a ball away from itself with an arbitrarily low energy,
but the tradeoff is an extremely fast rotation of the shifted ball near the boundary:
The functionK(·, t)has steep slopes (and hence a large gradient) in a neighborhood
of ∂B.

Let us confine ourselves to the case of compactly supported Hamiltonian dif-
feomorphisms in R

2n.

Remark 8.22 [E-P]. For every diffeomorphism φ ∈ Ham(R2n) and 1 < p <∞,
one has ρp(Id, φ) � 0. If p � 1, then ρ1(Id, φ) � |Cal(φ)|.
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The situation is completely different for the bi-invariant metrics of L∞-type.
We refer the reader to [H-Z] for an account of other peculiar properties of sym-
plectomorphism groups.

In particular, consider the embedding of the group of Hamiltonian diffeomor-
phisms, say, of the ball B ⊂ R

2n, into group of all compactly supported Hamil-
tonian diffeomorphisms of R

2n:

Theorem 8.23 [Sik]. The subgroup of all Hamiltonian diffeomorphisms Ham∂ (B)

of a unit ball (steady near the boundary) has a finite diameter (in Hofer’s metric)
in the group of all compactly supported Hamiltonian diffeomorphisms of R

2n.

For the diffeomorphisms with support in the ball of radiusR, the diameter is ma-
jorated by 16πR2 [H-Z]. Furthermore, for Hofer’s metric the following analogue
of the S Diff(M3)- and L2- metric estimates holds (cf. Theorem 7.9):

Theorem 8.24 [Hof]. The metric ρ∞ is continuous in the C0-topology: For every
ψ ∈ Ham(R2n),

ρ∞(Id, ψ) ≤ 128 (diameter of supp(ψ)) | Id−ψ |C0 ,

where ρ∞ is given by (8.5).

The diameter result changes drastically if we consider the group Ham∂ (B) by
itself. For every symplectic manifold M with boundary its group of Hamiltonian
diffeomorphisms Ham∂ (M) stationary at the boundary has an infinite diameter
in Hofer’s metric (compare with Theorem 8.3 asserting the infiniteness of the
diameter in the right-invariant L2-metric). This follows from the existence of
symplectomorphisms with arbitrarily large Calabi invariant, which bounds below
Hofer’s metric; see, e.g., [ER2]. (A more subtle statement is that the diameter of
the commutant subgroup of Ham∂ (M), the group of Hamiltonian diffeomorphisms
with zero Calabi invariant, is also infinite; see [LaM].)

Problem 8.25. Is the diameter of the group of Hamiltonian diffeomorphisms of
the two-dimensional sphere finite in Hofer’s metric?

8.D. Bi-invariant indefinite metric and action functional on
the group of volume-preserving diffeomorphisms of a
three-fold

Though divergence-free vector fields do not have analogues of Hamiltonian
functions if the dimension of the manifold is at least 3, the group of volume-
preserving diffeomorphisms of a simply connected three-dimensional manifold
can be equipped with a bi-invariant (yet indefinite) metric.

Let M be a simply connected compact three-dimensional manifold equipped
with a volume form µ. To define a bi-invariant metric, one needs to fix on the
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Lie algebra S Vect(M) of divergence-free vector fields a quadratic form that is
invariant under the adjoint action of the group S Diff(M) (i.e., under a change of
variables preserving the volume form). Such a form has already been introduced
in Chapter III (Section III.1.D) as the Hopf invariant (or the helicity functional,
or the asymptotic linking number) of a divergence-free vector field.

Recall that we start with a divergence-free vector field v on M3 and define the
differential two-form α � ivµ, which is exact on M . The Hopf invariant H(v) is
the indefinite quadratic form

H(v) �
∫

M

d−1α ∧ α.

The group S Diff(M) can be equipped with a right-invariant indefinite “finite
signature” metric ρ by right translations of H into every tangent space on the
group.

The quadratic form H(v) is invariant under volume-preserving changes of vari-
ables by virtue of the coordinate-free definition of H. It follows that the corre-
sponding indefinite metric ρ on the group S Diff(M) is bi-invariant. This metric
has infinite inertia indices (∞,∞), due to the spectrum of the d−1 (or curl−1) oper-
ator (see [Arn9, Smo1]). The properties of this metric, apart from those discussed
in Chapter III, are still obscure.

A similar phenomenon is encountered in symplectic topology (or symplectic
Morse theory; see, e.g., [A-G, Arn22, Cha, Vit, Gro]). The action functional on
the space of contractible loops in a symplectic manifold also has inertia indices
(∞,∞).

Remark 8.26. For a non-simply connected three-manifold M equipped with a
volume form µ, the definition of the helicity invariant can be extended to null-
homologous vector fields (i.e., the fields belonging to the image of the curl oper-
ator):

H(v,w) �
∫
M

(ivµ) ∧ d−1(iwµ).

Proposition 8.27. The null-homologous vector fields form a subalgebra of the
Lie algebra of divergence-free vector fields onM .

Proof. For any two divergence-free vector fields v andw onM , their commutator
{v,w} is null-homologous: i{v,w}µ � d(iviwµ). �

Corollary 8.28. The subgroup of volume-preserving diffeomorphisms of M cor-
responding to the subalgebra of null-homologous vector fields is endowed with a
bi-invariant “finite signature” metric.

The subalgebra of null-homologous vector fields is also a Lie ideal in the ambient
Lie algebra of divergence-free fields. Moreover, the null-homologous vector fields
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form the commutant (i.e., the space spanned by all finite sums of commutators of
elements) of the Lie algebra of all divergence-free vector fields on an arbitrary
compact connected manifoldMn with a volume form ([Arn7]; see also [Ban] for
the symplectic case).

Remark 8.29. Consider a divergence-free vector field on a three-dimensional
manifold that is exact and has a vector-potential. We can associate to this field
some kind of Morse complex by the following construction. Associate to a closed
curve in the manifold the integral of the vector-potential along this curve (if the
curve is homologous to zero, it is the flux of the initial field through a Seifert
surface bounded by our curve).

We have defined a function on the space of curves. The critical points of this
function are the closed trajectories of the initial field. Indeed, if the field is not
tangent to the curve somewhere, its flux through the small transverse area would
be proportional to the area, and the first variation cannot vanish.

The positive and negative inertia indices of the second variation of this func-
tional are both infinite. Indeed, in the particular case of a vertical field in a manifold
fibered into circles over a surface, our functional is the oriented area of the projec-
tion curve. The latter is exactly the nonperturbed functional of the Rabinowitz–
Conley–Zehnder theory; see [H-Z].

From this theory we know that the infiniteness of both indices is not an obsta-
cle to the application of variational principles. We may, therefore, hope that the
study of the Morse theory of our functional might provide some interesting in-
variants of the divergence-free vector field. In hydrodynamical terms these would
be invariants of the class of isovorticed fields, that is, of coadjoint orbits of the
volume-preserving diffeomorphism group.

The Morse index of a closed trajectory changes when the trajectory collides
with another one, that is, when a Floquet multiplier is equal to 1. For the n-fold
covering of the trajectory, the index changes when the Floquet multiplier traveling
along the unit circle crosses an nth-root of unity. Thus, one may hope to have a
rather full picture of the Morse complex at least for the curves in the total space
of a circle bundle that are sufficiently close to the fibers.
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Chapter V

Kinematic Fast Dynamo Problems

Stars and planets possess magnetic fields that permanently change. Earth, for
instance, mysteriously interchanges its north and south magnetic poles, so that the
time pattern of the switches forms a Cantor-type set on the time scale (see [AnS]).
The mechanism of generation of magnetic fields in astrophysical objects (or in
electrically conducting fluids) constitutes the subject of dynamo theory. Kinematic
dynamo theory studies what kind of fluid motion can induce exponential growth of
a magnetic field for small magnetic diffusivity. Avoiding analytical and numerical
results (though crucial for this field), we address below the topological side of the
theory.

§1. Dynamo and particle stretching

1.A. Fast and slow kinematic dynamos

Definition 1.1. The kinematic dynamo equation is the equation

(1.1)

{ ∂B
∂t
� −{v, B} + η�B,

divB � 0

(for a suitable choice of units).
It assumes that the velocity field v of an incompressible fluid filling a certain

domain M is known. The unknown magnetic field B(t) is stretched by the fluid
flow, while a low diffusion dissipates the magnetic energy. Here η is a small
dimensionless parameter (representing magnetic diffusivity), which is reciprocal
to the so-called magnetic Reynolds number Rm � 1/η. The bracket {v, B} is the
Poisson bracket of two vector fields (for divergence-free fieldsv andB in Euclidean
3-space, the latter expression can be rewritten as −{v, B} � curl(v × B)). The
vector field v is supposed to be tangent to the boundary of the domain M at any
time. The boundary conditions for B are different in various physical situations.
For instance, the magnetic field of the Sun extends out into space, forming loops
based on the Sun’s surface and seen as protuberances. This magnetic field is not
tangent to the boundary.
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Alternatively, one can suppose that the boundary conditions are periodic (the
“star” or “planet” is being replaced by the three-dimensional torus R

3/(2πZ)3)
or, more generally, that M is an arbitrary Riemannian manifold of finite volume
and � is the Laplace–Beltrami operator onM .

The linear dynamo equation is obtained from the full nonlinear system of mag-
netohydrodynamics by neglecting the feedback action of the magnetic field on the
velocity field due to the Lorentz force. This is physically motivated when the mag-
netic field is small. The latter corresponds to the initial stage of the amplification
of a “seed” magnetic field by the differential rotation.

The following question has been formulated by Ya.B. Zeldovich and
A.D. Sakharov [Zel2, Sakh]:

Problem 1.2. Does there exist a divergence-free velocity field v in a domain
M such that the energy E(t) � ‖B(t)‖2

L2(M)
of the magnetic field B(t) grows

exponentially in time for some initial field B(0) � B0 and for arbitrarily low
diffusivity?

Consider solutions of the dynamo equation (1.1) of the form B � eλtB0(x).
Such a field B0 must be an eigenfunction for the (non-self-adjoint) operator Lv,η :
B0 �→ −{v, B0} + η�B0 with eigenvalue λC � λC(v, η). The eigenparameter λC

is the complex growth rate of the magnetic field.

Definition 1.3. A field v is called a kinematic dynamo if the increment λ(η) :�
Re λC(η) of the magnetic energy of the field B(t) is positive for all sufficiently
large magnetic Reynolds numbers Rm � 1/η. The dynamo is fast if there exists a
positive constant λ0 such that λ(η) > λ0 > 0 for all sufficiently large Reynolds
numbers. A dynamo that is not fast is called slow.

There exist many possibilities for the dynamo effect in some “windows” in the
range of the Reynolds numbers. In our formalized terminology, we shall not call
such vector fields dynamos.

Remark 1.4. The existence of an exponentially growing mode of B is a property
of the operator Lv,η, and this is why we call the velocity field v, rather than the
pair (v, B), a dynamo. Kinematic dynamo theory neglects the reciprocal influence
of the magnetic field B on the conducting fluid itself (i.e., the velocity field v is
supposed to be unaffected by B). This assumption is justified when the magnetic
field is small. The theory describes the generation of a considerable magnetic field
from a very small “seed” field. Whenever the growing field gets large, one should
take into account the feedback that is described by a complete system of MHD
equations involving the Lorentz forces and the hydrodynamical viscosity.

The above question is reformulated now as the following
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Problem 1.2′. Does there exist a divergence-free field on a manifold M that is a
fast kinematic dynamo?

Our main interest is related to stationary velocity fields v in 2- and 3-dimensional
domainsM . There are several (mostly simplifying) modifications of the problem
at hand. We shall split the consideration of the dissipative (realistic, η→+0) and
nondissipative (idealized, or perfect, η � 0) cases. In the idealized nondissipative
case the magnetic field is frozen into the fluid flow, and we are concerned with the
exponential growth of its energy.

In a discrete (in time) version of the question, one keeps track of the magnetic en-
ergy at moments t � 1, 2, . . . . Instead of the transport by a flow and the continuous
diffusion of the magnetic field, one has a composition of the corresponding two dis-
crete processes at each step. Namely, given a (volume-preserving) diffeomorphism
g : M → M and the Laplace–Beltrami operator η� on a Riemannian manifold
M , the magnetic field B is first transported by the diffeomorphism to B ′ :� g∗B,
and then it dissipates as a solution of the diffusion equation ∂B ′/∂t � η�B ′:

B ′ �→ B ′′ :� exp(η�)B ′.

Problem 1.5. Does there exist a discrete fast kinematic dynamo, i.e., does there
exist a volume-preserving diffeomorphism g : M → M such that the energy of
the magnetic field B grows exponentially with the number n of iterations of the
map

B �→ exp(η�)(g∗B),

as n → ∞ (provided that η is close enough to 0)? The question is whether the
energy of the nth iteration of B is minorated by exp(λn) with a certain λ > 0
independent of η within an interval 0 < η < η0 for some η0?

Other modifications of interest include chaotic flows, “periodic” versions of
the dynamo problem (in which the field v on a 2- or 3-dimensional manifold
is supposed to be periodic in time rather than stationary), as well as flows with
various space symmetries (see [Bra, Bay1, 2, Chi2, 3, AZRS2, Sow2, Gil1, PPS,
Rob]). In the sequel, we describe in detail certain sample dynamo constructions and
the principal antidynamo theorems, along with their natural higher-dimensional
generalizations. We shall see that the topology of the underlying manifold M
enters unavoidably into our considerations.

The following remark of Childress shows that the difference between fast and
slow dynamos is rather academic. Suppose that the dynamo increment λ(η) decays
extremely slowly, say, at the rate of 1/(ln | ln η|), as the diffusivity η goes to zero.
(This is the case for a steady flow with saddle stagnation points, considered in
[Sow1].) Though theoretically this provides the existence of only a slow dynamo,
in practice, the dynamo is definitely fast: For instance, for η � 1/(ee

3
) < 10−8

the increment λ(η) is of order 1/3, noticeably above zero.
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Remark 1.6. A more general (and much less developed) dynamo setting is the
so-called fully self-consistent theory. It seeks to determine both the magnetic field
B and the (time-dependent) velocity field v from the complete system of magne-
tohydrodynamics equations:



∂B
∂t
� −{v, B} + η�B,

∂v
∂t
� −(v,∇)v + (curlB)× B + ν�v − ∇p,

divB � div v � 0,

for the fields B and v in a Euclidean domain (with standard necessary changes
of symbols ∇,�,×, and curl for a three-dimensional Riemannian manifold).
We refer to Section I.10 and to [HMRW] for a group-theoretical treatment of
magnetohydrodynamics, and to the interesting and substantial reviews [R-S, Chi2]
for recent developments in both the kinematic and the fully self-consistent theories.
Here we are solely concerned with the topological side of the fast kinematic
dynamo mechanism.

1.B. Nondissipative dynamos on arbitrary manifolds

Unlike the dissipative (“realistic”) dynamo problem, which is still unsolved in full
generality, nondissipative (η � 0) dynamos are easy to construct on any manifold.
First look at the case of a two-dimensional disk.

At first sight, a nondissipative continuous-time fast dynamo on a disk (or on a
simply connected two-dimensional manifold) is impossible.

Pseudo-proof. Every area-preserving velocity field v on a simply connected two-
dimensional manifold is Hamiltonian and can be described by the corresponding
Hamiltonian function. All the orbits of the field v that are noncritical level curves
of such a function are closed (Fig. 58).

Figure 58. A typical Hamiltonian velocity field on a disk. Almost all orbits of the field
are closed.

Consider the linearized Poincaré map along every closed orbit. The derivative
gT∗ of the flow map gT at a point of an orbit of period T is generically a Jordan
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2 × 2 block with units on the diagonal. Indeed, the tangent vector to the orbit is
mapped to itself under the Poincaré map, and hence it is eigen with eigenvalue 1.
Then the Jordan block structure immediately follows from the incompressibility
of the flow v, provided that it has a nondegenerate shear along the orbit (the orbit
periods change with the value of the Hamiltonian).

Such a Jordan operator stretches the transported vectors of a magnetic field B
linearly with the number of iterations of the Poincaré map (see Section II.5). The
linear growth of the norm of B on a set of full measure implies the existence of a
certain linear majorant for the increase of the energetic norm

√
E over time. �

However, one cannot neglect the contribution of the singular level sets to the
magnetic energy. The following statement is folklore that directly or indirectly is
assumed in any study on dynamos (see [VshM, Gil2, Koz1]).

Theorem 1.7. On an arbitrary n-dimensional manifold any divergence-free vec-
tor field having a stagnation point with a unique positive eigenvalue (of the lin-
earized field at the stagnation point) is a nondissipative dynamo.

Proof. The main point of the proof is that the energy of the evolved magnetic
field inside a small neighborhood of the stagnation point is already growing ex-
ponentially in time.

Consider the following special case: The manifold is a two-dimensional plane
M � R

2 with coordinates (x, y), while the velocity v on M is the standard
linear hyperbolic field v(x, y) � (−λx, λy) with λ > 0. Specify the magnetic
field B to be the vertical constant field B � (0, b) with support in a rectangle
R :� {|x| ≤ p/2, |y| ≤ q/2}; see Fig. 59.

y

x

R
B

B t

Rt=gtR

Figure 59. A nondissipative dynamo arising from a hyperbolic stagnation point.
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At the initial moment the magnetic energy, i.e., the square of the L2-norm of
the field B, is

E2(B) �
∫
R

B2µ � pq · b2.

After a time period t , the imageRt of the rectangleR is squeezed in the horizontal
direction by the factor eλt and is stretched along the vertical by the same factor as is
the field B as well. Then the magnetic energy of the field Bt :� gt∗B is minorated
by the field restriction to the initial rectangle:

E2(Bt ) �
∫

Rt

B2
t µ >

∫

Rt∩R
B2
t µ

� (area of Rt ∩ R) · (eλtb)2 � (pqe−λt ) · (eλtb)2 � eλt · E2(B).

In turn, the latter expression eλt · E2(B) grows exponentially with time.
The same argument applies to an arbitrary manifoldM and an arbitrary velocity

field v having a stagnation point with only one positive eigenvalue. One can always
direct the initial magnetic field along the stretching eigenvector in some neigh-
borhood of the stagnation point. In a cylindrical neighborhood of the stagnation
point one obtains

E2(Bt ) � ‖Bt‖2
L2(M)

≥ ‖Bt‖2
L2(R)

≥ eλt · ‖B‖2
L2(R)

≥ C · eλt · ‖B‖2
L2(M)

� C · eλt · E2(B),

where Bt :� gt∗B is the image of the field B under the phase flow of the vector
field v, and C is some positive constant. �

Remark 1.8. This gives the exponential growth ofB in anyLd -norm with d > 1.
An exponential stretching of particles (being the key idea of the above construction)
will be observed in all dynamo variations below. The result is still true if the
stagnation point has several positive eigenvalues, say, for a point with eigenvalues
λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0 ≥ λk+1 ≥ · · · ≥ λn, provided that d · λ1 + λk+1 +
· · · + λn > 0, or even if the same inequality holds for the real parts of complex
eigenvalues.

Even for the L1-norm, one can provide such growth of the E1-magnetic energy
if the number of connected components of the intersection Rt ∩ R increases ex-
ponentially with time t . We shall observe it in the next section for the Anosov
diffeomorphism of the two-torus and for any map with a Smale horseshoe.

§2. Discrete dynamos in two dimensions

2.A. Dynamo from the cat map on a torus

The main features of diversified dynamo schemes can be traced back to the fol-
lowing simple example (see [Arn8, AZRS1]).
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Let the underlying manifold M be a two-dimensional torus T
2 � R

2/Z2 en-
dowed with the standard Euclidean metric. Define a linear map A : T

2 → T
2 to

be the cat map
(
x1

x2

)
�→
(

2 1
1 1

)(
x1

x2

)
mod 1.

y

x

A u 1

u 2

Figure 60. The cat map.

The stretching (respectively, contracting) directions at all points of the torus are
given by the eigenvector u1 ∈ R

2 (respectively, u2 ∈ R
2) of A, corresponding to

the eigenvalue χ1 � (3 +
√

5)/2 > 1 (respectively, χ2 � (3 −
√

5)/2 < 1; see
Fig. 60).

The constant magnetic field B0, assuming the value u1 �
(

1+√5
2

)
at every

point of T
2, is stretched by the factor χ1 with every iteration of A.

A diffeomorphism A: M → M of a compact manifold M is called an Anosov
map if M carries two invariant continuous fields of planes of complementary
dimensions such that the first one is uniformly stretched and the second one is
uniformly contracted. The cat map is a basic example of an Anosov map.

Remark 2.1. Taking the magnetic diffusion into account does not spoil the
example of the cat dynamo. The iterations Bn+1 � exp(η�)[A(Bn)] with B0 � B
(and η �� 0) give the same exponential growth in spite of the diffusion. Indeed,
the field B is constant, and hence the diffusion does not change the field or its
iterations:

‖Bn‖L2 � χn1 ‖B0‖L2 .

Furthermore, one can pass from a linear automorphism of the two-torus to an
arbitrary smooth diffeomorphism g : T

2 → T
2 ([Ose3]; see Section 2.C below).
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Remark 2.2. The cat map A : T
2 → T

2 provides an example of a nondissipa-
tive L1-dynamo. It provides the exponential growth of the number of connected
components in the intersectionR

⋂
An(R) of the rectangleR (from Theorem 1.7)

with its iterations.

The cat map on the two-torus can be adjusted to produce a nondissipative dy-
namo action on a two-dimensional disk. The idea is the use of a ramified two-sheet
covering T

2 → S2, along with an Anosov automorphism of T
2; see Fig. 61. The

central symmetry of the plane R
2 provides an involution on the torus, and its orbit

space is homeomorphic to the sphere S2. The automorphism

A3 �
(

2 1
1 1

)3

�
(

13 8
8 5

)

of R
2 has four fixed points on T

2 � R
2/Z2, the points with integral and semi-

integral coordinates on R
2, and therefore it descends to the quotient space T

2/Z2 �
S2.

T2

S = CP12

Figure 61. The covering of the sphere by a torus ramified at four points. The torus w �√
z3 − z in CP 2 maps to the sphere S2 � CP 1 by the projection (z, w) �→ z.

This idea was explored as early as in 1918 by Lattes [Lat], and is rather popular
now in models of ergodic theory and holomorphic dynamics [Lyub, Kat1].

In the context of dynamo theory, constructions exploiting the maps on the (non-
smooth) quotient T

2/Z2 appeared in [Gil2], along with results of numerical simu-
lations. A substantial analysis given there shows that for the Lattes map of the disk
any magnetic field after several iterations has a fine structure in which oppositely
oriented vectors appear arbitrarily close to each other (Fig. 62). In the presence of
diffusion the dissipation action, large at these places, inevitably prevents the rapid
growth of magnetic energy.

The trick to overcoming this difficulty in three-dimensional dynamo models is
to include a nontrivial shear of “different pieces” of the manifold into an iteration
procedure such that diffusion averaging mostly affects the parts with the same
direction of the magnetic field (see [Gil2, B-C, ChG]).
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Figure 62. Cancellations in the magnetic field under iterations (from [Gil2]).

There remains a possibility that a dissipative fast dynamo action in domains in
R

3 can be produced analytically, starting with the construction, known in ergodic
theory, of a Bernoulli diffeomorphism on the disk.

Definition 2.3. The Lyapunov exponent of a map g at a point x in the direction of
a tangent vector B is the growth rate of the image length of B under the iterations
of g measured by

χ(x, B) :� lim inf
n→∞

ln ‖gn∗B‖
n

.

The Lyapunov exponents of the Lattes type diffeomorphism of the two-
dimensional disk D2 can be made positive almost everywhere (see [Kat2]). The
fields of stretching directions are, in general, nonsmooth. The diffusion term of a
dissipative dynamo should correspond to “random jumps of particles,” in addition
to the smooth evolution along the flow of v (in the spirit of [K-Y]).

2.B. Horseshoes and multiple foldings in dynamo
constructions

Definition 2.4. A phase point of a (discrete or continuous) dynamical system is
said to be homoclinic if its trajectory has as its limits as t → ±∞ one and the
same stationary point of the system (Fig. 63).

Proposition 2.5 [Koz1]. Any area-preserving map of a surface having a homo-
clinic point can serve as a nondissipative two-dimensional L1-dynamo.

Proof. Assume that g : D2 → D2 is a (volume-preserving) map of a two-
dimensional disk to itself having a Smale horseshoe. This means that there is a
rectangle R ⊂ D2 on which the map g is a composition of the following two
steps. First, the rectangle is squeezed in the horizontal direction by the factor eλ
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Figure 63. A homoclinic point and its bifurcation.

and stretched in the vertical direction by the same factor, keeping its area the same
(Fig. 64).

Then the rectangle obtained is bent in such a way that it intersects the original
rectangle twice (see Fig. 64).

Under the iterations of the procedure described, the number of connected com-
ponents of the intersections (gnR) ∩ R grows as 2n, where n is the number of
iterations. The argument of the preceding theorem now applies to the L1-norm of
the magnetic field B. Hence, ‖Bn‖L1 ≥ C · 2n‖B0‖L1 .

In a neighborhood of a homoclinic point a generic map admits a Smale horse-
shoe. The L1-norm of the restriction of the field to this horseshoe grows exponen-
tially. This completes the proof. �

Remark 2.6. The dynamics of points in the invariant set of the horseshoe is
described by means of Bernoulli sequences of two symbols. We put the label 0

Figure 64. Smale’s horseshoe.
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or 1 at position n if the point gnx belongs, respectively, to the left or to the right
leg of the Smale horseshoe. The invariant sets of all C2-horseshoes in a disk have
measure zero [BoR]. The condition on smoothness is essential here: There is an
example of a C1-horseshoe of positive measure (see [Bow]).

We have here the same difficulty that is well known in the theory of stochastiza-
tion of analytical Hamiltonian dynamical systems in a neighborhood of a periodic
orbit that is the limit of the trajectory of a homoclinic point. Bifurcations of non-
transversal intersections of stable and unstable manifolds of such a periodic orbit
leads to the appearance of the so-called invariant set of nonwandering points. (A
point a of a dynamical system gt is called wandering if there exists a neighbor-
hood U(a) such that U(a) ∩ gtU(a) � ∅ for all sufficiently large t .) Though the
existence of Bernoulli-type chaos on this set has been known since the classical
work of Alekseev [Al], it is still unknown whether the corresponding invariant set
of the phase space has positive or zero measure. The “multiple folding” occurring
in such a system is basically of the same nature as the folding in nondissipative
dynamo models.

We observed such a folding of the evolved magnetic field in both the horseshoe
and Lattes constructions. The following theorem shows that it is unavoidable in
all dynamo constructions on the disk.

Proposition 2.7 [Koz1]. Let g : D2 → D2 be a smooth volume-preserving
diffeomorphism of the two-dimensional disk with the following properties. There
exist an open subset U ⊂ D2 invariant for g and a continuous oriented line field
that is defined onU and invariant for g. Then the Lyapunov exponents of g vanish
almost everywhere on U .

Notice that the Lattes map allows one to construct a diffeomorphism of the
disk such that the invariant set U is this disk with 3 small disks removed and
the Lyapunov exponents are positive (and equal to ln χ1 � ln(3 + √5)/2 > 0)
on U . However, the field of the stretching directions is not oriented. This is the
major obstacle to constructing a realistic dynamo on a disk: A nonzero diffusion
mixes up the vectors of the magnetic fieldB that are oppositely oriented and hence
prevents exponential growth of the field energy.

Proof of Proposition. Assume the contrary, i.e., that the Lyapunov exponents do
not vanish on set U1 that has positive measure. It is shown in [Kat2] that periodic
points of g with homoclinic intersections of their stable and unstable manifolds
are dense in the closure of U1. Consider such a point x0 and orient upwards the
unstable direction at this point (Fig. 65). Then all lines defined on the unstable
manifold Wu of x0 are tangent to it and have a compatible orientation. However,
if the unstable manifold Wu meets the stable manifold Ws in one direction, then
it intersects Ws roughly in the opposite direction the next time, by virtue of the
simple-connectedness of the disk. (On the other hand, for instance on the torus,
the unstable manifold can intersect the stable manifold at two consecutive points
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in the same direction.) Thus, the orientation of the lines oscillates and cannot be
extended continuously to the point x0. �

W

W
x0

s

u

Figure 65. Oriented linear elements on the unstable manifold.

In order to take into account this “mixing up” effect in the nondissipative case
(Rm � ∞), we introduce the following definition.

Definition 2.8. A volume-preserving diffeomorphism g : M → M of a manifold
M is called a nondissipative mean dynamo if there exist a divergence-free vector
field B and a 1-form ω such that the integral of the contraction of the form ω with
the field gn∗B grows exponentially as n tends to infinity. Denote by λm the maximal
increment of the growth:

λm � sup
ω,B

lim sup
n→∞

1

n
ln

∣∣∣∣
∫
M

ω(gn∗B)µ
∣∣∣∣ .

A similar definition can be introduced in the case of a vector field in place
of the diffeomorphism g. The notion of a mean dynamo is stronger than that
of a nondissipative Ld -dynamo (d ≥ 1): Any mean dynamo is a nondissipative
Ld -dynamo. Another important distinction between these two concepts is the
following. A sufficient condition for a nondissipative dynamo is provided by the
special behavior of the diffeomorphism g in a neighborhood of a fixed point
(Theorem 1.7). The situation in cases of a mean dynamo or dissipative dynamo is
different. Knowing only the local behavior of g is not enough to determine whether
g is a mean or a dissipative fast dynamo.

If the dimension of the manifold equals 2, a diffeomorphismg is a fast dissipative
dynamo if and only if it is a mean nondissipative dynamo. In this case (dimM � 2)
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the growth rate λm is determined by the operator g∗1 : H1(M) → H1(M), the
action of g on the first homology group of the surfaceM , just as in the case of the
dynamo increment.

Theorem 2.9 [Koz1]. An area-preserving diffeomorphism g of a surface M is a
mean nondissipative dynamo if and only if the linear operator g∗1 has the eigen-
value χ with |χ | > 1. The mean dynamo increment λm is equal to ln |χ |.

2.C. Dissipative dynamos on surfaces

Now suppose that there is a nonzero dissipation in the system. In the case of a
torus, an arbitrary diffeomorphism g can be described as g(x) � �x + ψ(x), (x
mod 1), the sum of a linear transformation � ∈ SL(2,Z) and a doubly periodic
function ψ . In [Ose3] it is shown that for a dissipative dynamo, as η → 0, the
energy growth of a magnetic field on T

2 is controlled solely by the matrix�. This
matrix represents the action of g on the homology group H1(T

2,R).

Theorem 2.10 [Ose3]. Let g(x) � �x+ψ(x) be a diffeomorphism (not necessar-
ily area-preserving) of the two-dimensional torus T

2. Then g is a fast dissipative
dynamo as η→ 0 if and only if the matrix � has the eigenvalue χ with |χ | > 1.
The dynamo increment λ0 � lim

η→0
λη is equal to the eigenvalue ln |χ |:

λ(η) � lim
n→∞

ln ‖Bn‖
n

→ ln |χ | as η→ 0,

for almost every initial vector field B0.

Here

Bn+1 � exp(η�) [g∗Bn] , n � 0, 1, . . . ,

in the area-preserving case, and

Bn+1 � exp(η�)

[
(g∗Bn)/|∂g

∂x
|
]
,

where | ∂g
∂x
| is the Jacobian of the map g in the non area-preserving case. The norm

‖ · ‖ is the L2-norm of a vector field.

It turns out that the dynamo increment is determined exclusively by the action of
g on the first homology group in the much more general situation of an arbitrary
two-dimensional manifold M . For any M , each diffeomorphism g : M → M

induces the linear operator g∗i in every vector space Hi(M,R), the ith homology
group of M , i � 0, . . . , dimM . The following statement generalizes Theorem
2.10 (and is similar to the discrete dynamos considered in Theorem 3.20).

Theorem 2.11 [Koz1]. Let g : M → M be an area-preserving diffeomorphism of
the two-dimensional compact Riemannian manifoldM . Then g is a dissipative fast
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dynamo if and only if the linear operator g∗1 has an eigenvalue χ with |χ | > 1.
The dynamo increment λ(η) is equal to ln |χ | and hence is independent of η:

lim
n→∞

ln ‖Bn‖
n

� ln |χ |

for almost every initial vector field B0. (Bn+1 � exp(η�) [g∗Bn], n � 0, 1, . . . ,
and � is the Laplace–Beltrami operator onM .)

Remark 2.12. An eigenvalue χ with |χ | > 1 exists for “most” of the diffeo-
morphisms of the surfaces different from the 2-sphere. Indeed, the determinant of
g∗1 : H1(M,R)→ H1(M,R) is equal to 1, since g is a diffeomorphism.

Proof of Theorem 2.11. First show that

lim
n→∞

ln ‖Bn‖
n

≤ ln |χ |.

Indeed, consider the operatorA∗ � g∗◦exp(η�) in the space of 1-forms that isL2-
conjugate to the operator A � exp(η�) ◦ g∗. Let ω be its (complex) eigenvector,
i.e., A∗ω � κω with ln |κ| � λ(η). Such an ω exists because the norm of the
conjugate operator A∗ equals the norm of the operator A, and A∗ is a compact
operator. Note that |κ| ≥ 1, since det |g∗1| � 1. Assume that |κ| > 1 (otherwise
the statement is evident).

The exterior derivative operator d commutes with g∗ and with �. Therefore,
g∗ exp(η�)dω � κ dω, where g∗ and � now act in the space of 2-forms. The
pullback operator g∗ : �2(M,C)→ �2(M,C) preserves the L2-norm, while the
Laplace–Beltrami operator � does not increase it. Hence, if |κ| > 1, it follows
that the form ω is closed, dω � 0 (cf. Theorem 3.6 below).

Furthermore, the Laplace–Beltrami operator� does not affect the cohomology
class [ω] of the closed form ω, so g∗1[ω] � κ[ω], where g∗1 is an action of g on
the first cohomology group H 1(M,C) containing [ω].

Therefore, either [ω] �� 0 and hence |κ| ≤ |χ | (i.e., λ(η) ≤ ln |χ |), or [ω] � 0.
In the latter case there is a function α such that dα � ω and g∗ exp(η�)α � κα.
The same argument as before shows that α � 0, which contradicts the assumption
thatω is an eigenvector. Thus, there remains only the possibility that λ(η) ≤ ln |χ |.

To show that λ(η) ≥ ln |κ|, we consider a cohomological class that is an eigen-
vector of g∗1 with eigenvalue χ . Such a class is invariant under A∗, and there is
an eigenvector of A∗ with eigenvalue χ , so λ(η) � ln |χ |. �

Theorem 2.11 holds also if g is not area-preserving, in which case

Bn+1 � exp(η�)

[
(g∗Bn)/|∂g

∂x
|
]
.

It is easy to see that the conjugate operator has the same form as before: A∗ �
g∗ exp(η�).
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2.D. Asymptotic Lefschetz number

The dynamo increment λ(η) can also be viewed as an asymptotic version of the
Lefschetz number of the diffeomorphism g (see [Ose3]).

Definitions 2.13. Let g : M → M be a generic diffeomorphism of an oriented
compact connected manifold M . The Lefschetz number L(g) of the diffeomor-
phism g is the following sum over all fixed points {xi} of g:

L(g) �
∑
xi

sign det

[
∂g

∂x
(xi)− Id

]
,

where ∂g

∂x
is the Jacobi matrix of the diffeomorphism at a fixed point and Id is the

identity matrix. The asymptotic Lefschetz number Las(g) is

Las(g) � lim sup
n→∞

1

n
ln |L(gn)|

(in our example the lim sup is simply lim, as we shall see).
The Lefschetz formula relates the contribution of fixed points of the diffeomor-

phism g to its action on the homology groups:

L(g) �
∑
i

(−1)i Trace(g∗i ),

where the linear operators g∗i in the vector spaces Hi(M,R), the ith homology
group ofM , are induced by the diffeomorphism g : M → M .

Now the visualization of the dynamo increment ln |χ | as the asymptotic Lef-
schetz numberLas(g) for g : T

2 → T
2 (and more generally, for any g : M → M)

is an immediate consequence of the following rewriting of the Lefschetz formula:

L(gn) �
∑
i

(−1)i Trace((gn)∗i ) � 1− Trace(�n)+ 1

� (1− χn)(1− χ−n) � −χn +O(1) for |χ | > 1, n→∞.
Here we used that for i � 0, 2 the maps g∗i act identically onHi(M,R) � R. The
automorphism g∗1 : H1(M,R)→ H1(M,R) can be nontrivial, and it is given by
the matrix � in the case of a torusM � T

2.

§3. Main antidynamo theorems

3.A. Cowling’s and Zeldovich’s theorems

Traditionally, necessary conditions on the mechanism of a dynamo are formulated
in the form of antidynamo theorems. These theorems specify (usually, geometrical)
conditions on the manifold M and on the velocity vector field v under which
exponential growth of the L2-norm of a magnetic vector field (or, more generally,
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of any tensor field) on the manifold is impossible. In this section, the magnetic
diffusivity η is assumed to be nonzero.

This direction of dynamo theory began with the following theorem of Cowling
[Cow]: A steady magnetic field in R

3 that is symmetric with respect to rotations
about a given axis cannot be maintained by a steady velocity field that is also
symmetric with respect to rotations about the same axis. This theorem stimulated
numerous generalizations (see [Zel1, K-R, R-S]). These works show that the sym-
metry properties of the velocity field are irrelevant. The symmetry of the magnetic
field alone prevents its growth:

Theorem 3.1. A translationally, helically, or axially symmetric magnetic field in
R

3 cannot be maintained by a dissipative dynamo action.

In what follows we shall be concerned mostly with a somewhat dual problem,
in which one studies restrictions on the geometry of velocity fields that cannot
produce exponential growth of any magnetic field.

Consider a domain in that three-dimensional Euclidean space that is invariant
under translations along some axis (say, the vertical z-axis). A two-dimensional
motion in this three-dimensional domain is a (divergence-free) horizontal vector
field (vz � 0) invariant under translations along the vertical axis.

Ya.B. Zeldovich considered the case where the projection of the domain to the
horizontal (x, y)-plane along the vertical z-axis is bounded and simply connected.

Theorem 3.2 [Zel1]. Suppose that the initial magnetic field has finite energy.
Then, under the action of the transport in a two-dimensional motion and of the
magnetic diffusion, such a field decays as t →∞.

In short, “there is no fast kinematic dynamo in two dimensions.”
We put this consideration into a general framework of the transport–diffusion

equation for tensor densities on a (possibly non-simply connected) manifold.

3.B. Antidynamo theorems for tensor densities

Here we discuss to what extent the antidynamo theorems can be transferred to a
multiconnected situation. It happens that in the non-simply connected case, instead
of the decay of the magnetic field, one observes the approach of a stationary (in
time) regime.

The assumption that the medium is incompressible turns out to be superfluous. In
the compressible case we need merely consider the evolution of tensor densities
instead of that of vector fields. The condition on the evolving velocity field v
to be divergence-free can be omitted as well: We shall see that the evolution
automatically leads, in the end, to a solenoidal density for an arbitrary initial
condition. What really matters is the dimension of the underlying manifold.

Throughout this section we follow the paper [Arn10], to which we refer for
further details.
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Now we deal with an evolution of differential k-forms on a compact n-
dimensional connected Riemannian manifoldM without boundary. A differential
k-form ω onM evolves under transport by the flow with velocity field v and under
diffusion with coefficient η > 0 according to the law

(3.1)
∂ω

∂t
+ Lvω � η�ω.

The Lie derivative operator Lv is defined by the condition that the form is frozen
into the medium. In other words, draw vectors on the particles of the medium and
on their images as the particles move with the velocity field v to a new place. Then
the value of the form carried over by the action (3.1) with η � 0 does not change
with time when the form is evaluated on the vectors drawn.

The linear operator Lv is expressed in terms of the operator iv (substitution of
the field v into a form as the first argument) and the external derivative operator
d via the homotopy formula Lv � iv ◦ d + d ◦ iv . The Laplace–Beltrami operator
� on k-forms is defined by the formula � � dδ + δd, where δ � ∗d∗ is the
operator conjugate to d by means of the Riemannian metric on M . The metric
operator ∗ : �k → �n−k (pointwise) identifies the k-forms on the n-dimensional
Riemannian manifold with (n− k)-forms.

In the case of a manifold M with boundary, one usually needs specification of
vanishing boundary conditions for the forms and fields.

Examples 3.3. (A) Suppose M � E
3, Euclidean space with the metric ds2 �

dx2 + dy2 + dz2. Specify a 2-form ω � Pdy ∧ dz + Qdz ∧ dx + Rdx ∧ dy
by choosing the vector field B with components P,Q,R; i.e., ω � iBµ, where
µ � dx ∧ dy ∧ dz is the volume element. For solenoidal fields v and B, equation
(3.1) on ω results in equation (1.1) on the evolution of the magnetic field B.

(B) For functions onM � R
3 (the case of (k � 0)-forms), equation (3.1) becomes

the heat equation with transport:

(3.2)
∂f

∂t
� −(v,∇)f + η�f.

(C) For a scalar density g (i.e., for k � n and ω � g · µ, where µ is the volume
element on a Riemannian n-dimensional manifold), equation (3.1) has the form

(3.3)
∂g

∂t
� − div(g · v)+ η�g,

where the relation d(iξµ) � (div ξ) · µ is used.

Definition 3.4. A closed k-formω onM is called stationary if it obeys the equation

(3.4) −Lvω + η�ω � 0.
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Theorem 3.5 [Arn10]. The number of linearly independent stationary k-forms is
not less than the kth Betti number bk of the manifoldM .

Recall, that the kth Betti number of M is bk � dimHk(M,Z). Examples in
which the number of stationary forms is strictly larger than bk are given below.

Theorem 3.6 [Arn10]. If the diffusion coefficient η is large enough, then the
number of linearly independent stationary k-forms is equal to the kthBetti number,
and

(a) In each cohomology class of closed k-forms there is a stationary form.
(b) There is exactly one such form.
(c) Any closed k-form evolved according to equation (3.1) tends as t → ∞

to a stationary form belonging to the same cohomology class, i.e., to a
stationary form with the same integrals over every k-dimensional cycle.

(d) The evolution defined by equation (3.1) with any initial conditions leads
in the limit to a closed form.

(e) All solutions of equation (3.4) are closed forms.

Remark 3.7. Examples below show that items (b) and (c) are no longer true if
the viscosity is sufficiently low (except for the cases k � 0, 1, or n). Exponen-
tially growing solutions are observed for the case k � 2, n � 3 (which is most
interesting physically; see, e.g., [AKo]) on a Riemannian manifoldM , where for
small diffusivity η the dimension of the space of stationary solutions is at least
2 > b2(M) � 1. The general Theorem 3.6 admits the following special cases:

Theorem 3.8 (k � 0). For the heat equation (3.2) with transport for scalars at
every positive value of the diffusion coefficient η: (a) every stationary solution
is constant and (b) the solution with any initial condition tends to a constant as
t →∞.

Theorem 3.9 (k � n). For the heat equation (3.3) with transport for scalar
densities at every positive value of η:

(a) The dimension of the space of stationary solutions of equation (3.3) is
equal to 1.

(b) There exists a unique stationary solution with any value of the integral
over the entire manifold.

(c) The solution with any initial conditions tends as t → ∞ to a stationary
solution with the same integral.

(d) In particular, the solution with initial conditions g � divB converges to
0 as t →∞ regardless of the field B.
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Remark 3.10. The dynamo problem for scalar densities retains many features
of the vector dynamo problem. The discussion and numerical evidence in [Bay2]
show that the eigenfunctions develop a singular structure as diffusivity tends to
zero.

On the other hand, the study of scalar densities (or more generally, of differen-
tial k-forms) and of their asymptotic eigenvalues allows one to prove the Morse
inequalities and their generalizations by means of the method of short-wave (“qua-
siclassical”) asymptotics [Wit1].

Theorem 3.11 (k � 1). For any positive value of η in equation (3.1) for closed
1-forms:

(a) The dimension of the space of stationary solutions is equal to b1(M), the
one-dimensional Betti number of the manifold.

(b) There exists a unique stationary solution with any given values of the
integrals over independent 1-cycles.

(c) The solution with any initial conditions tends as t → ∞ to a stationary
solution with the same integrals.

The dynamo problem for a magnetic vector field on a compact n-dimensional
Riemannian manifold is described by equation (3.3) for an (n − 1)-form ω. The
corresponding evolution of the vector density B where ω � iBµ is given by the
law

∂B

∂t
� −{v, B} − B div v + η�B.

Theorem 3.12 (k � n−1). The divergence of the evolved density B tends to zero
for every value of the diffusion coefficient η > 0. In particular, every stationary
solution of equation (3.3) for (n− 1)-forms is closed.

Corollary 3.13. Every solution of equation (3.1) for 1-forms on a compact two-
dimensional manifold tends to a stationary closed 1-form as t →∞. For a simply
connected two-dimensional manifold, every solution of equation (3.1) tends to
zero (cf. Theorem 3.2).

3.C. Digression on the Fokker–Planck equation

A problem of large-time asymptotics for scalar density transport with diffusion is
already interesting in the one-dimensional case, and it arises in the study of the
Fokker–Planck equation

ut + (uv)x � ηuxx.
It describes the transport of a density form u(x)dx by the flow of a vector field
v(x)∂/∂x accompanied by small diffusion with diffusion coefficient η.
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Suppose, for instance, that the system is periodic in x and that the velocity field
v is potential. Introduce the potential U for which v � − gradU (the attractors of
v are then the minima of U ).

The stationary Gibbs solution of the equation has the form

ū(x) � exp(−U(x)/η),
and is sketched in Fig. 66. It means that if the diffusion coefficient η is small, the
density distribution is concentrated near the minima of the potential. These minima
are the attractors of the velocity field v. The mass is (asymptotically) concentrated
in the vicinity of the attractor, corresponding to the lowest level of the potential.
(Note that the total mass is preserved by the equation:

∫
u(x, t) dx � const.) In the

sequel, we suppose that the potential is generic and has only one global minimum.

0

u(x) = exp(-U(x)/ )

U(x)=min 2

Figure 66. The stationary solution of the Fokker–Planck equation.

Suppose we start with a uniformly distributed density, say, u � 1 everywhere.
The evolution will immediately make it nonuniform, and we shall see Gauss-type
maxima near all the attractors of v.

At the beginning the attractor that produces the most pronounced maximum will
be the one for which the contraction coefficient (the modulus of the eigenvalue of
the derivative of v at its zero point) assumes the maximal value.

Later, however, after some finite time (independent of η), the distribution will
be similar to a finite set of point masses at the attractors. At this stage the most
pronounced attractor will be the one collecting the largest mass. This mass, at the
beginning, will be the initial mass in the basin of the attractor. Hence, in general,
this attractor will be different from the one that appeared first.

The next step will consist in (slow) competition between different attractors for
the masses of particles kept in their neighborhoods. This competition is (asymp-
totically) described by a system ṁ � Am of linear ordinary differential equations
with constant coefficients. The elements of the corresponding matrix A are the
so-called tunneling coefficients. They are exponentially small in η, and hence the
tunneling phase of the relaxation process is exponentially long (t ∼ exp(const/η)).
In practice, this means that in most numerical simulations one observes, instead
of the limiting (Gibbs) distribution (where almost all the mass is concentrated in
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one place), an intermediate distribution (concentrated in several points). This in-
termediate distribution evolves so slowly that one does not observe this evolution
in numerical simulations.

At the end (t →∞), one of the attractors will win and attract almost all the mass.
This attractor is given by the Gibbs solution, and it is somewhat unexpected: It is
neither the one with the maximal initial growth of density, nor the one containing
initially the most mass. In Russian, it was called the “general attractor,” or the
“Attractor General” (since it is as difficult to predict as it was to predict who
would become the next “Secretary General”).

Consider an evolution of the density (i.e., of a differential n-form) uµ on a
connected compactn-dimensional Riemannian manifold with Riemannian volume
elementµ. The evolution under the action of a gradient velocity field v � − gradU
and of the diffusion is described by the equation

ut + div(uv) � η�u.
(Note that (div(uv))µ � d(iv(uµ)) � Lv(uµ) and (�u)µ � (div grad u)µ �
dδ(uµ), since uµ is a differential n-form, and hence it is closed.)

The spectrum of the evolution operator u �→ − div(uv) + η�u consists of a
point 0 (corresponding to the Gibbs distribution), accompanied by a finite set of
eigenvalues very close to 0 as η → 0. The number of such eigenvalues is equal
to the number of attracting basins of the field v, and it is defined by the Morse
complex of the potentialU . There is a “spectral gap” between these “topologically
necessary” eigenvalues and the rest of the spectrum (which remains at a finite
distance to the left of the origin as η→ 0).

The tunneling linear ordinary differential equation is the asymptotic (η → 0)
description of what is happening in the finite-dimensional space spanned by the
eigenvectors corresponding to the eigenvalues close to 0. The eigenvalues are of
order at most exp(−const/η) as η→ 0, while the characteristic tunneling time is
of order exp(const/η). This explains the slow decay of the modes corresponding
to the nongeneral attractors.

Remark 3.14. In spite of the evident importance of the problem, a description of
the events given above does not seem to be presented in the literature (cf., e.g., [F-
W]). The above description is based on an unpublished paper by V.V. Fock [Fock]
and on the work of Witten [Wit1] and Helffer [Helf].1 Fock also observed that
the asymptotics of the density at a generic point of the border between the basins
of two competing attractors involve a universal (erf) function in the transversal
direction to the boundary hypersurface. Here, time is supposed to be large but fixed
while η → 0. The density is asymptotically given by an almost eigenfunction
(quasimode) concentrated in one basin from one side of the boundary, and by the
quasimode corresponding to the other basin from the other side. The transition

1We thank M.A. Shubin and C. King for the adaptation of the general theory to our
situation.



280 V. Kinematic Fast Dynamo Problems

from one asymptotics to the other at the boundary is, according to Fock, described
by the step-like “erf.”

The preceding theory has an extension to the case of k-forms, where the small
eigenvalues correspond to the critical points of the potential of index k (see [Wit1]).

Remark 3.15 (C. King). In the potential (one- and higher-dimensional) case, the
operatorLv−η� is conjugate to a nonnegative self-adjoint operator. It shows that
the spectrum is real and nonnegative.

Namely, the change of variables ũ(x) � eU(x)/2ηu(x) sends the one-dimensional
operator Lv − η� to the operator ηD∗ηDη, where

Dη :� d

dx
+ v(x)

2η
� eU(x)/2η d

dx
e−U(x)/2η.

The latter is known as the Witten deformation of the gradient (see its spectral
properties in [Helf]).

Quasiclassical asymptotics of spectra of a very general type of elliptic self-
adjoint operators are treated in [Sh1] (see also [Sh2]).

Remark 3.16. The case where the velocity field is locally (but not globally)
gradient is very interesting. This may already happen on the circle. In that case,
the Gibbs formula ū(x) � exp(−U(x)/η) is meaningful only on the covering
line. The potential function is no longer a periodic function, but a pseudoperiodic
one (the sum of linear and periodic functions).

For every local minimum of the potential, we define the threshold as the minimal
height one has to overcome to escape out of the well to infinity; Fig. 67. The general
attractor is the one for which the threshold is maximal.

U

x

threshold

Figure 67. The threshold for a local minimum of the potential is the minimal height one
has to overcome to escape to infinity.
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Many facts described above admit generalizations to the case of a pseudoperi-
odic potential in higher dimensions. In particular, the number of decaying eigen-
values is equal to the number of the field’s critical points of the corresponding
index [Fock].

Note that the description of the topology of pseudoperiodic functions is a rich
and interesting question by itself already in two dimensions (see [Arn19, Nov3,
SiK, GZ, Zor, Dyn, Pan]), where much remains to be done.

Remark 3.17. B. Fiedler and C. Rocha developed in [F-R] an interesting topo-
logical theory of the attractors of nonlinear PDEs of the type

ut � f (x, u, ux)+ ηa(x)uxx.
They computed the Morse complex defined by the heteroclinic connections be-
tween stationary solutions in terms of some permutations and meanders. A mean-
der is formed by a plane curve and a straight line. The corresponding permutation
transforms the order of the intersection points along the straight line into their
order along the curve.

3.D. Proofs of the antidynamo theorems

Proof of Theorem 3.5 (according to E.I. Korkina). The operator A � −Lv + η�
acts on the spaceH of closed k-forms onM . Denote by KerA the set of solutions
of the homogeneous equation Aω � 0, and by ImA the image of A in the space
H . The index indA � dim KerA − dim CokerA, where CokerA � H/ ImA.
The index of the Laplace operator � is zero and so is the index of A (which
differs from η� only in lower-order terms: Lv is of the first order). This means
that dim KerA � dim CokerA. But ImA ⊂ Im d (since Aω � d(−ivω+ η · δω)
if dω � 0). It follows that

dim(H/AH) ≥ dim(H/{dωk−1}) � bk
(De Rham’s theorem). �

Proof of Theorem 3.6. (i) The evolution defined by equation (3.1) does not affect
the cohomology class of the closed form ω, since Aω � d(−ivω + η · δω) is an
exact form.

(ii) For forms ω from the orthogonal complement to the subspace of harmonic
forms in the space of closed forms H the following relations hold:

(ω, ω) ≤ α(δω, δω),(3.5a)

|(ω, Lvω)| ≤ β(δω, δω),(3.5b)

where α and β are positive constants independent of ω.
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Indeed, (3.5a) is the Poincaré inequality (or it can be viewed as the compactness
of the inverse Laplace–Beltrami operator):

(ω, ω) ≤ α|(�ω,ω)| � α(δω, δω).
The inequality (3.5b) is a combination of the Schwarz and Poincaré inequalities.
First note thatLvω � divω by virtue of the homotopy formulaLv � ivd+div and
since the form ω is closed. Then (ω, Lvω) � (ω, divω) � −(δω, ivω), whence
applying the Schwarz inequality to the latter inner product, we get

|(δω, ivω)|2 ≤ (δω, δω)(ivω, ivω).
Now the required inequality (3.5b) follows from the above and (3.5a) in the form
(ivω, ivω) ≤ const · (δω, δω).

(iii) From (i) and (ii) it follows that in the space of exact forms the evolution
defined by equation (3.1) contracts everything to the origin if η is sufficiently large:

d

dt
(ω, ω) � −2(ω, Lvω)+ 2η(ω, dδω) ≤ 2(β − η)(δω, δω) ≤ −2γ (ω, ω),

if η ≥ β + αγ .
(iv) From (i) and (ii) it also follows that in an affine space of closed forms

lying in one and the same cohomological class, equation (3.1) defines the flow of
contracting transformations (in the Hilbert metric ofH ), and hence, it has a fixed
point. This proves assertions (a)–(c).

(v) Both Lv and � commute with d, and therefore dω satisfies equation (3.1)
as well as ω. But the form dω is exact, and therefore, in accordance with (iii), it
tends exponentially to zero as t → ∞. Thus the distance between ω(t) and the
space of closed forms tends exponentially to zero as t →∞.

Moreover, the same contraction to zero is observed inH 1-type metrics that take
into account the derivative, provided that the diffusion coefficient η is sufficiently
large (it is proved similarly to (iii) by using inequalities of the type

(�ω,Lv�ω) ≤ β(�ω,�2ω)

for exact forms).
We now denote by ω � p + h+ q the orthogonal decomposition of the initial

form ω into exact, harmonic, and coexact (i.e., lying in the image of the operator
δ) terms. Equation (3.1) assumes the form of the system

ṗ � A1p + A2h+ A3q, ḣ � A4q, q̇ � A5q,

since for q(0) � 0 the form remains closed (i.e., q(t) ≡ 0), and a closed form
retains its cohomology class (i.e., ḣ � 0 for q � 0).

Now, since q(t)→ 0 (in metrics with derivatives) exponentially, h(t) tends to
a finite limit (also in metrics with derivatives). But in accordance with (iii), the
transformation exp(A1t) is contracting, and hence p(t) also tends to a finite limit.

Therefore, ω(t) converges to a finite limit p(∞) + h(∞), which is a closed
form. This completes the proof of assertions (d) and (e). �



§3. Main antidynamo theorems 283

Proof of Theorem 3.8 (according to Yu.S. Ilyashenko and E.M. Landis). If the
stationary solution were at any point larger than its minimum, it would immediately
increase everywhere (since heat is propagated instantaneously) and would not be
stationary (the so-called strengthened maximum principle). Consequently, it must
be everywhere equal to its minimum; i.e., it must be constant.

The same reasoning shows that a time-periodic solution of equation (3.2) must
also be a constant. Hence, the operator A � −Lv + η� on functions has no pure
imaginary eigenvalues and has a single eigenvector with eigenvalue zero (by the
maximum principle); this means that zero is an eigenvalue of multiplicity one and
all other eigenvalues lie strictly in the left half-plane.

Since A is the sum of an elliptic operator η� and the operator −Lv of lower
order, we can derive by standard arguments (from the information we have obtained
about the spectrum) the convergence of all solutions to constants (even in metrics
with derivatives). �

Proof of Theorem 3.9. The operator A � −Lv + η� on the right-hand side of
equation (3.3), which sends a density g to − div(g · v)+ η�g, is conjugate to the
operator A∗ � Lv + η� on functions.

The eigenvalues of the operators A and A∗ coincide, and therefore the dimen-
sions of the spaces of stationary solutions of equations (3.3) and (3.2) are iden-
tical. These dimensions are equal to 1, by Theorem 3.8. Assertions (b) and (c)
of Theorem 3.9 follow from the information on the spectrum of the operator A∗,
that we obtained in proving Theorem 3.8. Assertion (d) follows from (c) since∫
(divB)µ � 0. �

Proof of Theorem 3.11. The operator −Lv + η� commutes with d. It follows
that the solution with initial conditions ω0 � df0 evolves under equation (3.1) in
the same way as the derivative df of the solution f of equation (3.2) with initial
condition f0. From Theorem 3.8, it follows that f → const (with derivatives).
This means that df → 0; i.e., the exact 1-form degenerates over time. Thus the
sole stationary solution that is an exact form is zero. But by Theorem 3.5, the
dimension of the space of solutions of the stationary equation is not less than the
first Betti number b1, i.e., than the codimension of the subspace of exact 1-forms
in the space of closed forms. Since the space of stationary solutions intersects the
subspace of exact forms only at zero, its dimension is exactly equal to the Betti
number b1, and its projection onto the space of cosets of closed forms modulo
exact forms is an isomorphism. This proves assertions (a) and (b). Assertion (c)
follows from the fact that the exact 1-forms have vanishing integrals over all 1-
cycles. �

Proof of Theorem 3.12. Since d and−Lv+η� commute, the n-form dω � g ·µ
evolves according to the law (3.3). By Theorem 3.9(d), the density g tends to zero
as t →∞ (the condition dω � g · µ means that g is the divergence of the vector
field ξ that specifies the (n− 1)-form ω � iξµ). �



284 V. Kinematic Fast Dynamo Problems

Proof of Corollary 3.13. For n � 2, the 1-formω is an (n−1)-form. By Theorem
3.12, it becomes closed (dω → 0) as t → ∞. (Here the convergence to zero is
exponential even in a metric with derivatives.) Using the same reasoning as in the
proof of Theorem 3.6(v), and using Theorem 3.11 to study the behavior of the
exact forms, we arrive at the conclusion that the limit of ω as t →∞ exists and
is closed. �

3.E. Discrete versions of antidynamo theorems

Suppose thatg : M → M is a diffeomorphism of a compact Riemannian manifold,
g! � (g∗)−1 is its action on differential forms (by forward translation), and hη is
the evolution of forms during some fixed time η under the action of the diffusion
equation:

hη :� exp(η�), fη :� hη ◦ g!.
Denote by G! the action of g! in the cohomology groups, G! : H ∗(M,R) →
H ∗(M,R).

Theorem 3.18 [Arn10]. (i) The cohomology class of the closed form fηω is
obtained from the class of the closed form ω by the action of G!.
(ii) If t is chosen sufficiently large and G! is the identity transformation, then

(a) for any closed form ω the limit lim
n→∞ f

n
η ω exists;

(b) this limit is a unique closed form cohomological to ω, and it is fixed under
the action of fη;

(c) if the form ω is exact, then f nη ω→ 0 as n→∞;
(d) for any form ω (not necessarily closed), the sequence of forms f nη ω is

convergent as n→∞, and the limit is a closed form.

Theorem 3.19 [Arn10]. LetM be a two-dimensional manifold andG! � Id; then
assertions (a)–(d) of Theorem 3.18 are true for all η > 0 (not only for sufficiently
large values of η).

These discrete versions of Theorem 3.12 and Corollary 3.13 (and counterparts of
other theorems) are proved in the same way as the original statements themselves.
Moreover, one can give up the identity condition on G!. To obtain the discrete
analogues of Theorems 3.6–3.12 withG! �� Id, one should not confine oneself to
the stationary forms but consider the eigenvectors of the map fη with eigenvalues
λ, |λ| > 1. Denote byG!k the action of a diffeomorphism g (by forward translation)
on the cohomology groupHk(M,R) and let χ be an eigenvalue ofG!k of maximal
magnitude.

Theorem 3.20 [Koz1]. For sufficiently large η,

(a) and any exact form ω, the image under iterations f nη ω tends to zero as
n→∞;
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(b) every eigenvector of fη is a closed form;
(c) and a closed k-form ω, the norm ‖f nη ω‖ grows with the same increment

as ‖(G!k)n[ω]‖; i.e., for all k-forms from the same cohomology class, the
growth rate coincides with the growth rate of this class under the action
of G!k;

(d) if a cohomology class � is an eigenvector for the operator G!k with the
eigenvalue χ ,G!k� � χ�, then there is a form-representativeω ∈ � such
that fηω � χω;

(e) one has for any k-form ω

lim
n→∞

1

n
ln ‖f nη ω‖ ≤ ln |χ |,

while for a generic k-form ω the inequality becomes equality:

lim
n→∞

1

n
ln ‖f nη ω‖ � ln |χ |.

Proof. (a) can be proved using the same estimates as in the proof of Theorem
3.6(ii). For (b)–(e), note that the operator fη is compact, so for any value in its
spectrum there is an eigenvector. Let λ be in the spectrum and |λ| > 1. Then
there is an ω such that fηω � λω. The exterior derivative d commutes with fη,
so fηdω � λ dω, and (a) implies that dω � 0. The “diffusion” operator exp(η�)
does not change the cohomological class, so the condition G!k� � χ� implies
fη� ∈ �. If there is a k-form ω ∈ � such that fηω � λω, then either λ � χ , or
[ω] � 0 and |λ| � 1. �

The same method can be used to prove, for example, that if M � T
2 and

G! �
(

1 1
0 1

)
, then f nη ω increases no more rapidly than the first power of n.

Remark 3.21. The case ofG! �
(

2 1
1 1

)
is used in [Arn8, AZRS1] to construct

a fast kinematic dynamo on a three-dimensional compact Riemannian manifold;
see the next section.

To the best of our knowledge, the preceding theory has not been settled for
manifolds with boundary, though it certainly deserves to be.

§4. Three-dimensional dynamo models

4.A. “Rope dynamo” mechanism

The topological essence of contemporary dynamo constructions goes back to the
following scheme proposed by Sakharov and Zeldovich (see [V-Z, ChG]) and
depicted in Fig. 68.
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fold

stretch

twist

Figure 68. Rope dynamo: the stretch–twist–fold mechanism.

The rapid growth of magnetic energy is achieved by iterations of the three-step
transformation of a solid torus: stretch–twist–fold.

We start with a solid torus S1 × D2 embedded in a three-ball. Take it out and
stretchS1 twice, while shrinkingD2 in such a way that the volume element remains
preserved. Then we twist and fold the new solid torus in such a way as to obtain
a twofold covering of the middle circle, and finally we put the resulting solitorus
in its initial place (Fig. 68).

The energy of the longitudinal field in the solid torus (directed along the S1

component) grows exponentially under iterations of the construction above, since
the field is stretched by a factor of 2 along with the longitudinal elongation of the
magnetic lines.

Though this construction is not a diffeomorphism of the solid torus onto itself,
one can make it smooth, sacrificing control over stretching in a small portion of
the solid torus. The loss of information about stretching of the flow in a small
part of the manifold, though irrelevant for an idealized nondissipative dynamo, is
essential when viscosity is taken into account.

4.B. Numerical evidence of the dynamo effect

The presence of chaos in ABC flows (see Chapter II) makes them extremely attrac-
tive for dynamo modeling. We confine ourselves to mentioning only the extensive
studies in this field. The numerical and scale evidence for fast dynamo action in
ABC and, more generally, in chaotic steady flows, can be found in, e.g., [Hen, G-F,
AKo, Chi3, Bay1, Gil1, PPS] (see also [Zhel] for analogues of ABC flows in a
three-dimensional ball).
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The most extensive studies on ABC flows dealt with the case A � B � C with
the velocity field

v � (cos y + sin z)
∂

∂x
+ (cos z+ sin x)

∂

∂y
+ (cos x + sin y)

∂

∂z
.

One of the main problems in such a modeling is to estimate the increment λ(η)
of the fastest growing mode of the magnetic field B as a function of the magnetic
diffusivity η, or of the magnetic Reynolds number Rm � 1/η. In other words,
one is looking for the eigenvalue of the operator LRm : B �→ −Rm{v, B} + �B
with the largest real part. The first computations of E.I. Korkina (see [AKo]), by
means of Galerkin’s approximations, covered the segment of Reynolds numbers
Rm ≤ 19.

For small Reynolds numbers (i.e., for a large diffusivity η), every solution
of the dynamo equation (1.1) tends to a stationary field that is determined by
the cohomology class of the initial field B0; see Theorem 3.6. Hence, for such
Reynolds numbers the eigenvalue of LRm is zero independent of Rm.

When confined to the case of the fields B0 with zero average, the largest eigen-
value of the operator LRm becomes −1 for all numbers Rm less than the critical
valueRm ≈ 2.3. The reason for this phenomenon is that�v � −v (and of course,
{v, v} � 0), and therefore the field v is eigen for LRm with eigenvalue −1.

As the Reynolds number grows, there appears a pair of complex conjugate
eigenvalues with Re λ � −1. The pair of eigenvalues moves to the right and
crosses the “dynamo border” Re λ � 0 at Rm ≈ 9.0. The increment Re λ stays in
the right half-plane until Rm ≈ 17.5, when it becomes negative again.

Thus the field v is the dynamo for 9 < Rm < 17.5. D.J. Galloway and U. Frisch
[G-F] have discovered the dynamo in this problem for 30 < Rm < 100. It is
still unknown whether this field is a fast kinematic dynamo, e.g., whether an
exponentially growing mode of B survives as Rm→∞.

Numerically, the kinematic fast dynamo problem is the first eigenvalue problem
for matrices of the order of many million, even for reasonable Reynolds numbers
(of the order of hundreds). The physically meaningful magnetic Reynolds numbers
Rm are of order of magnitude 108. The corresponding matrices are (and will
remain) beyond the reach of any computer.

Symmetry reasoning (involving, in particular, representation theory of the group
of all rotations of the cube) allows one to speed up the computations significantly.
In particular, the first harmonic of some actual eigenfield for any Reynolds number
can be found explicitly [Arn13]. This mode is the fastest growing for Rm ≤ 19 as
numerical experiments show.

Computer computations also suggest that the growing mode is confined to a
small neighborhood of the invariant manifolds of the stagnation points, at least
for A � B � C. There still exists a hope that this observation might lead to
some rigorous asymptotic results. The asymptotic solution constructed in [DoM]
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manifests concentration near the separatrices for a very long time, but not forever.
No mode with such concentration was found as t →∞!

4.C. A dissipative dynamo model on a three-dimensional
Riemannian manifold

In this section we consider an artificial example of a flow with exponential stretch-
ing of particles that provides the fast dynamo effect in spite of a nonzero diffusion
(see [Arn8, AZRS1, 2]). In this example, everything can be computed explicitly. Its
disadvantage, however, is the unrealistic uniformity of stretching and the absence
of places where the directions of the growing field are opposite.

The construction is based upon the cat map of a torus, discussed above, and can
be thought of as a simplified version of the model of Section II.5. In that section
we considered exponential stretching of particles according to the same equations.
However, unlike the magnetic field evolution in the kinematic dynamo problem,
in ideal hydrodynamics the transported (vorticity) field is functionally dependent
on the velocity field that is evolving it.

The domain of the flow is a three-dimensional compact manifold M that in
Cartesian coordinates can be constructed as the product T

2 × [0, 1] of the two-
dimensional torus T

2 with the segment 0 ≤ z ≤ 1, for which the end-tori are
identified by means of the transformation

A �
(

2 1
1 1

)
: T

2 → T
2

(i.e., according to the law (x, y, 0) � (2x+y, x+y, 1), or equivalently, (x, y, 1) �
(x − y, 2y − x, 0) with x mod 1, y mod 1).

To introduce a Riemannian metric on this manifold we first pass from the Carte-
sian coordinates x, y, z to the Cartesian coordinates p, q, z, where p has the di-
rection of the eigenvector of A with the eigenvalue χ1 � (3+

√
5)/2 > 1, and q

is directed along the eigenvector with the eigenvalue χ2 � (3−
√

5)/2 < 1. Then
the metric given by the line element

ds2 � e−2λzdp2 + e2λzdq2 + dz2, λ � ln χ1 ≈ 0.75

is invariant with respect to the transformation A, and therefore defines an ana-
lytic Riemannian structure on the compact three-dimensional manifold M . We
choose the eigenvector directions in such a way that the (p, q, z)- and (x, y, z)-
orientations of R

3 coincide.
Further, on this manifold we consider a flow with the stationary velocity field

v � (0, 0, v) in (p, q, z)-coordinates, where v � const, so that div v � 0 and
curl v � 0. Each fluid particle moving along this field is exponentially stretched
in the q-direction and exponentially contracted along the p-axis when regarded
as a particle on M . If the magnetic Reynolds number is small (the diffusivity is
large), the magnetic field growth is damped by the magnetic diffusion, and there is
no dynamo effect (cf. Theorem 3.6). For small magnetic diffusivity the situation
is different.
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Theorem 4.1 [AZRS1]. The vector field v defines a fast dynamo on the Riemann-
ian manifold M for an arbitrarily small diffusivity η and in the limit η→ 0. For
a given initial magnetic vector field, only its Fourier harmonic independent of p
and q survives and grows exponentially as t →∞.

Proof. Consider the following three vector fields in R
3:

ep � eλz∂/∂p, eq � e−λz∂/∂q, ez � ∂/∂z.
These fields are A-invariant, and hence they descend to three vector fields onM3,
for which we shall keep the same notations ep, eq, ez. Those fields are orthogonal
at every point in the sense of the above metric. Let f be a function on M; i.e., it
is a function f : R

3 → R, 1-periodic in x and y, and satisfying f (x, y, z+ 1) �
f (x−y, 2y−x, z). Similarly, suppose that B � Bpep+Bqeq+Bzez is a (magnetic)
vector field onM . Direct calculation leads to the following

Proposition 4.2. The vector calculus formulas onM are

∇f �
(
eλz
∂f

∂p

)
ep +

(
e−λz

∂f

∂q

)
eq +
(
∂f

∂z

)
ez,

div(Bpep + Bqeq + Bzez) � eλz ∂Bp
∂p

+ e−λz ∂Bq
∂q

+ ∂Bz
∂z

(in particular, div ep � div eq � div ez � 0),

curl(Bpep + Bqeq + Bzez)
� (curlp B) ep + (curlq B) eq + (curlz B) ez,

where

curlp B � e−λz
(
∂Bz

∂q
− ∂e

λzBq

∂z

)
,

curlq B � eλz
(
∂e−λzBp
∂z

− ∂Bz
∂p

)
,

curlz B � eλz ∂Bq
∂p

− e−λz ∂Bp
∂q

(in particular, curl ep � −λeq, curl eq � −λep, curl ez � 0);

�f � e2λz ∂
2f

∂p2
+ e−2λz ∂

2f

∂q2
+ ∂

2f

∂z2
,

�ep :� − curl curl ep � −λ2ep, �eq � −λ2eq, �ez � 0,

{ep, eq} � 0, {ez, ep} � λep, {ez, eq} � −λeq .

Proof of Proposition. Denote by φp � e−λzdp, φq � eλzdq, φz � dz the dual
1-forms (in R

3 and on M). Such a form is dual to the corresponding field, in the
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sense that, e.g., φp|ep � 1, φp|eq � φp|ez � 0, etc. Then, the expression for the
differential

df � ∂f

∂p
dp + ∂f

∂q
dq + ∂f

∂z
dz � eλz ∂f

∂p
φp + e−λz ∂f

∂q
φq + ∂f

∂z
φz

directly implies the gradient formula, etc. �

The evolution (1.1) of a magnetic field B � Bpep + Bqeq + Bzez on M along
the velocity field v � v∂/∂z has the following description in components:

∂Bp

∂t
+ v ∂Bp

∂z
� −λvBp + η[(�− λ2)Bp − 2λeλz

∂Bz

∂p
],

∂Bq

∂t
+ v ∂Bq

∂z
� λvBq + η[(�− λ2)Bq + 2λe−λz

∂Bz

∂q
],

∂Bz

∂t
+ v ∂Bz

∂z
� η(�− 2λ

∂

∂z
)Bz.

The equation for the z-component of the field splits from the rest. Suppose
that the function Bz has zero average. Then, asymptotically as t → ∞, the Bz-
component decays (cf. Zeldovich’s antidynamo theorem, Section 3.A). Indeed, the
latter is the heat equation in a moving liquid. It is easy to see that Bz diminishes,
since each of its maxima tends to disappear (the maximum principle). Formally,
one obtains

d

dt

∫
B2
z µ �

∫
Bz
∂Bz

∂t
µ � η

∫
Bz(�Bz)µ � −η

∫
(∇Bz)2µ.

Based on this, we assume in the sequel that the component Bz is constant.
It suffices to consider only one component of the vector field B, since the

equations for the p- and q-components differ only by the substitution λ→−λ:

(4.1)
∂B

∂t
+ v ∂B

∂z
� λvB + η(�− λ2)B,

where B ≡ Bq .
To specify the boundary conditions on B, we return to the (x, y, z)-coordinate

system. Periodicity in x and y allows one to expand B into a Fourier series:

B(x, y, z, t) �
∑
n,m

Bn,m(z, t) exp[2πi(nx +my)]

� b(p, q, z, t) �
∑
α,β

bα,β(z, t) exp[i(αp + βq)],

where n andm are integers and α, β are related to 2πn, 2πm by a linear transfor-
mation corresponding to the passage from the coordinates x, y to p, q.

Lemma 4.3. The function b0,0(z, t) is periodic in z. The harmonics bα,β(z, t)with
(α, β) �� (0, 0) decay exponentially in z for analytic functions B.

Proof. Restrictions on the Fourier amplitudes come from the symmetry with re-
spect to a shift along the z-axis: B(x, y, z, t) � B(2x + y, x + y, z + 1, t). This
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identity is equivalent to that on the Fourier coefficients that are acted upon by the
operator conjugate to A:

(4.2) B(n,m)(z+ 1, t) � B(n,m)A∗(z, t).
Here A∗ is the transpose of the matrix A, and in the case at hand A∗ � A.

Thus the shift along the z-axis is equivalent to the transition from the Fourier
amplitudes with indices (n,m) to the Fourier amplitudes with indices (n,m)A. It-
erative applications of the matrixA shifts a typical vector (n,m) along a hyperbola
in the (n,m) plane (see Fig. 69).

The only exception is the case n � m � 0, when the magnetic field does not
depend on x, y or p, q: (0, 0)A � (0, 0). Here we use that the eigendirections of
A do not contain integral points (n,m) (different from (0,0)), since the eigenvalues
of A are irrational.

m

n

(n,m)

(n,m)A

(n,m)A
2

Figure 69. The invariant curves for the orbits {(n,m)Ak} are hyperbolas in the (n,m)-
(or (α, β)-) plane.

On the other hand, analyticity ofB(x, y, z, t) implies that its Fourier harmonics
bα,β must decay exponentially in α and β. It follows that the functions bα,β(z, t)
decrease rapidly for fixed (α, β) �� (0, 0) as |z| → ∞ due to the shift property
above. Periodicity in z of the zero harmonic is evident. The Lemma is proved.

�

To complete the proof of Theorem 4.1 we first fix η � 0. Equation (4.1) can be
solved explicitly (due to the frozenness property):

(4.3) b(p, q, z, t) � eλvtb(p, q, z− vt, 0)
(pass to the Lagrangian reference frame, solve the Cauchy problem, and return to
the Eulerian coordinates).
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Equation (4.1) may be written in the form ∂b/∂t � Tηb, where the operator Tη
(depending on the viscosity η) acts on the functions onM3 (depending in our case
on t as a parameter):

Tηb � λvb + η(�− λ2)b − v ∂b
∂z
.

Consider first the nonviscous case η � 0. The nonviscous operator T0 has a
series of eigenfunctions bk � exp(2πikz), k � 0,±1,±2, . . . , with eigenvalues
γk � λv − 2πikv.

Every solution of (4.3) that does not depend on p and q (i.e., that is constant on
every 2-torus z � const, t � const) can be represented as a linear combination of
the products bk · exp(γkt) (expand (4.3) into a Fourier series in z).

The operator T0 has no other eigenfunctions. Indeed, suppose that b : M3 → C

were an eigenfunction of T0 with an eigenvalue γ . The function b ·exp(γkt)would
then satisfy equation (4.3). By choosing t � 1/v, we obtain from (4.3)

b(p, q, z) � eλ−γ b(p, q, z− 1).

Using (4.2) we see that the Fourier coefficients bα,β(z) along every hyperbola
α � λnα0, β � λ−nβ0 form a geometric series. This contradicts the decay of
the Fourier coefficients of the smooth function b(·, ·, z) on the 2-torus (unless
α0 � β0 � 0, in which case b does not depend on p and q).

The absence of eigenfunctions is explained by the continuity of the spectrum of
T0 (on the orthogonal complement to the space of functions, constant on the tori
z � const).

Now turn to the general case η �� 0. As before, equation (4.1) has a sequence
of solutions bk · exp(γkt), which are independent of p and q, with eigenvalues

γk � λv + η(−4π2k2 − λ2)− 2πikv, k � 0,±1,±2, . . . .

If η is small we find many (≈ Cη−1/2) growing modes. (If η is large, there is no
growing mode at all, since Re γk < 0.)

However, the behavior of the solutions whose initial field depends on p and
q differs drastically from the behavior given by the frozenness condition (4.3).
To explain this, consider the time evolution of b as consisting of two intermittent
parts: the frozen-in stretching (4.3) (η � 0) and the pure diffusion action (v � 0).
If η is small, the stretching part might be long.

The long shift z − vt (vt ∈ Z) along the z-axis is equivalent to a translation
(along the hyperbola) of the labels (α, β) of the harmonics bα,β(z, t) for fixed
z. Hence, any given harmonic will shift with time into the region of large wave
numbers, where dissipation becomes important. Its amplitude will then decay in
the diffusion part of the evolution. Asymptotically as t → ∞, the evolving field
will decay however small the viscosity η is.

Thus, we come to the conclusion that, asymptotically for t → ∞, only the
solution independent of p and q survives (see [AZRS1] for details on analysis of
the solution asymptotics). Such a periodic in z solution in R

3 grows exponentially
in the metric ds2 as z → ∞. The increment of the corresponding exponent is
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bounded away from 0 by a positive constant independent of η > 0. Finally, due
to the linear relation between shifts in the z and t directions, one obtains the same
exponential growth of the solution as t →∞. �

4.D. Geodesic flows and differential operations on surfaces
of constant negative curvature

Every compact Riemann surface can be equipped with a metric of constant cur-
vature. This curvature is positive for a sphere, vanishes for a torus, and is negative
for any surface with at least two handles (i.e., for any surface of genus ≥ 2).

In this section we show that the geodesic flow on every Riemann surface whose
curvature is constant and negative provides an example of a fast (dissipative)
kinematic dynamo. More precisely, letM3 be the bundle of unit vectors over such
a surface P : M3 � {ξ ∈ T P | ‖ξ‖ � 1}. The geodesic flow defines a dynamical
system on this three-dimensional manifold M3 with exponential stretching of
particles ofM , similar to the example above. Avoiding repetition, we present here
the basic formulas for the key differential operations on the bundle of unit vectors
over P .

First of all, let us pass from the surface P to its universal covering P̃ . Every
such surface of constant negative curvature is covered by the Lobachevsky plane
P̃ � �, where the covering is locally isometric (that is, respecting the metrics on
both spaces).

Remark 4.4. Sometimes it is convenient to think of the bundle of unit vectors
V 3 :� T1� over the Lobachevsky plane� as the group SL(2,R). Then the space
M3 is the quotient of SL(2,R) (or, more generally, of the universal covering

˜SL(2,R)) over a discrete uniform subgroup �:

M3 � SL(2,R)/�.

We will deal with the following three “basic” flows on the Lobachevsky plane:
the geodesic flow and two horocyclic flows. Introduce the natural coordinates
(x, y, ϕ) in the space of line elements (or of unit vectors) V 3 � T1�

2, where
the Lobachevsky plane is the upper half-plane �2 � {(x, y) | y > 0} equipped
with the metric ds2 � (dx2 + dy2)/y2, and ϕ ∈ [0, 2π) is the angle of a line
element with the vertical in �2 (see Fig. 70a). The x-axis is called the absolute
of the Lobachevsky plane. Recall that the geodesics in �2 are all semicircles and
straight lines orthogonal to the absolute (Proposition IV.1.3).

Definition 4.5. The geodesic flow of the Lobachevsky plane is the flow in the
space of unit line elements V 3 � T1�

2 that sends, for time t , every element l into
the line element on�2 tangent to the same geodesics as l, but at the distance t (in
the Lobachevsky metric) ahead of l.
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y

x

y

x

(a) (b)

Figure 70. (a) Coordinates (x, y, ϕ) in the space of line elements along the geodesics in
the Lobachevsky plane. (b) Two horocycles passing through one line element.

The limit of a sequence of Euclidean circles tangent to each other at a given
point and of increasing radius in the Lobachevsky plane is called a horocycle.

Proposition 4.6 (see, e.g., [Arn15]). The horocycles in the Lobachevsky plane are
exactly the Euclidean circles tangent to the absolute and the straight lines parallel
to it.

Every line element (point with a specified direction) on �2 belongs to two
horocycles, “upper” and “lower”; see Fig. 70b.

Definition 4.5′. The first (+) and second (−) horocyclic flows on�2 are the flows
sending in a time t every line element on the Lobachevsky plane to the line element
belonging to the same lower and upper horocycles respectively, and lying distance
t ahead of it.

Explicitly, the flows are given by the following vector fields e (for the geodesic
flow), h− (for the “lower” horocyclic flow), and h+ (for the “upper” horocyclic
one) on V :

e � − y sin ϕ
∂

∂x
+ y cosϕ

∂

∂y
+ sin ϕ

∂

∂ϕ
,

h− � − y cosϕ
∂

∂x
− y sin ϕ

∂

∂y
+ (cosϕ − 1)

∂

∂ϕ
,

h+ � − y cosϕ
∂

∂x
− y sin ϕ

∂

∂y
+ (cosϕ + 1)

∂

∂ϕ
.

Proposition 4.7. The vector fields e, h+, h− generate the Lie algebra γ sl(2,R).

Proof. {e, h+} � h+, {e, h−} � −h−, {h+, h−} � 2e, where { , } means the
Poisson bracket of two vector fields: L{u,v} � LuLv − LvLu. In coordinates it is
{u, v} � (u,∇)v − (v,∇)u; see Section I.2. �



§4. Three-dimensional dynamo models 295

Notice that the difference of the horocyclic fields f :� 1
2 (h

− − h+) is the
rotation field f � ∂

∂ϕ
. Introduce also the sum field ẽ :� 1

2 (h
+ +h−). The Poisson

brackets between the fields e, ẽ, f are {f, e} � ẽ, {ẽ, e} � f , {ẽ, f } � e.
Now we define in V 3 � T1�

2 a one-parameter family of metrics:

(4.4) d�2 � dx2 + dy2

y2
+ λ2

(
dϕ + dx

y

)2

.

Proposition 4.8. The above metrics on the space of line elements V 3 � T1�
2 are

singled out by the following three conditions:

(1) Consider the planes defining the standard Riemannian connection in T1�
2

related to the Lobachevsky metric on�2. The condition on a metric inT1�
2

is that the fibers of the projection T1�
2 → �2 are orthogonal to those

planes.
(2) The above projection sends the planes to the tangent spaces to�2 isomet-

rically.
(3) The metrics are invariant with respect to isometries of the Lobachevsky

plane.

Proof. From (2) one can see that

d�2 � dx2 + dy2

y2
+ λ2(dϕ + a dx + b dy)2.

Utilize condition (1) in the following form: The coefficients a and b obey the
relation dϕ + a dx + b dy � 0 along two curves in V � T1�

2. One of the curves
is the parallel transport of a line element along its geodesics (i.e., it is the orbit of
e), and the other curve is obtained by the parallel transport of the same line element
in the perpendicular direction (i.e., along the orbit of ẽ). The calculation can be
carried out at x � 0, y � 1, ϕ � 0, and extended by invariance due to (3). �

For each metric of the family (4.4), the basis e, ẽ, f is orthogonal: (e, ẽ) �
(e, f ) � (ẽ, f ) � 0; and moreover, (e, e) � (ẽ, ẽ) � 1, (f, f ) � λ2. In this
normalization the volume element spanned by the three fields is τ(e, ẽ, f ) � λ.

Proposition 4.9. All the fields e, ẽ, f , h+, h− are divergence-free and null-
homologous. Their vorticities are as follows:

curl e � − e
λ
, curl ẽ � − ẽ

λ
, curl f � λf, curl h± � − ẽ

λ
∓ λf.

The helicities of both of the horocyclic flows are zero, while the helicity of the
geodesic flow e in the compact manifoldM3 � T1P

2 is

H(e) � −8π2λ2
(
(genus of P 2)− 1

)
.

Proof. Introduce 1-forms α, α̃, β dual to the fields e, ẽ, f , respectively (i.e.,
α|e � 1, α|ẽ � α|f � 0, etc). Now, the calculation of the vorticity and divergence
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is a straightforward application of the formula for the differential of a 1-form:

dγ (v1, v2) � γ ({v2, v1})+ Lv1γ (v2)− Lv2γ (v1).

For instance, combining it with the formulas for Poisson brackets

{e, f } � −ẽ, {e, ẽ} � −f, {ẽ, f } � e,
one obtains dα(e, ẽ) � dα(e, f ) � 0, dα(ẽ, f ) � −1. Therefore, −λdα � ieτ .
By definition, this means that div e � 0 and curl e � −e/λ (see Section III.1 for
more detail).

The helicity expression for the geodesic field e onM3 � T1P
2 is

H(e) �
∫

M

(e, curl−1 e)τ � −λ
∫

M

τ � −2πλ2 · (area of P 2).

Here the volume of the bundle M is the product of the fiber length 2πλ and the
area of the surface P 2. The Gauss–Bonnet theorem reduces the area of the surface
P 2 (with constant curvature) to the number of handles:

area of P 2 � 4π(genus of P 2 − 1).

We leave to the reader the helicity calculations for horocyclic flows h± onM .
�

Returning to hydrodynamics, we immediately obtain the following

Corollary 4.10. The velocity fields e, ẽ, f , as well as all linear combinations of
e and ẽ, are stationary solutions of the Euler equation on M3 � T1P

2. They are
also the stationary solutions of the corresponding Navier–Stokes equation on M
for the vorticity field ω � curl v:

∂ω

∂t
+ {curl−1 ω, ω} � −η · curl curlω + R,

where R (the curl of the external force) is proportional to ω.

Proof. {e, curl−1 e} � {ẽ, curl−1 ẽ} � {f, curl−1 f } � 0. �

The symmetry of this corollary and of the formulas of Proposition 4.9 under the
interchange of e and ẽ is not surprising, since the flow of the field f � ∂/∂ϕ is an
isometry of V 3 � T1�

2, and it takes the field e to the field ẽ for the time π/2.

Proposition 4.11. Every steady solution ω0 � Ae+Bẽ of the Euler equation for
vorticity is unstable in the linear approximation.

Proof. The linearized Navier–Stokes equation (cf. the linearized Euler equation
(II.5.1)) for variations of velocity v � v0 + v1 and vorticity ω � ω0 + ω1 is

∂ω1

∂t
+ {v0, ω1} + {v1, ω0} � −η curl curlω1.
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For the initial vorticity ω0 � Ae + Bẽ we have v0 � −λω0, and hence

(4.5)
∂ω1

∂t
� {ω0, v1 + λω1} − η curl curlω1,

where v1 � curl−1 ω1. Consider the three-dimensional space of special (“long-
wave”) perturbations

ω1 � a e + b ẽ + c f, v1 � −λa e − λb ẽ + c

λ
f.

The operator on the right-hand side of formula (4.5) maps this space (with the
basis e, ẽ, f ) into itself, and it is represented by the matrix

(−η/λ2 0 Bξ

0 −η/λ2 −Aξ
0 0 −ηλ2

)
, where ξ � λ+ 1

λ
.

Therefore, for nonzero viscosity η the eigenvalues are negative, and the corre-
sponding modes decay. However, for η � 0 one has linear growth of the pertur-
bations (in the direction perpendicular to ω0 in the plane (e, ẽ)).

Remark 4.12. It is natural to conjecture that our linearized equation for η � 0
has exponentially growing solutions, and even an infinite-dimensional space of
those (it has not been proved). Indeed, at least for fast-oscillating solutions, one
may neglect the second term {v1, ω0} and take into account only the first one
{v0, ω1}, since for such solutions v1 � curl−1 ω1 is small compared to ω1. Then
one obtains the equation of a frozen transported field, and it has exponentially
growing solutions (directions h− or h+ for ω0 � −e or ω0 � e, respectively).

One can also argue that for small positive η equation (4.5) has many exponen-
tially growing solutions.

In a similar way one can study the stationary solutionω0 � f , v0 � f/λ. In this
case the first term on the right-hand side of equation (4.5) has the form {ω0, v1 −
ω1/λ}. The matrix of the evolution operator for the “long-wave” perturbations is

(−η/λ2 ξ 0
−ξ −η/λ2 0
0 0 −ηλ2

)
.

Therefore, the eigenvalues in this case are always negative for η > 0, while for
η � 0 the eigenvalues are purely imaginary,±iξ , and 0. The “fluid motion” onM
corresponding to the field f is “rigid” (i.e., an isometry) and apparently stable.

As usual, the problem simplifies as we pass to the dynamo equations, where the
magnetic field is not related to the velocity. Consider, for instance, the velocity
field v � Ae + Bẽ + Cf , where A, B, C are constants. The three-dimensional
space of “long-wave” magnetic fields B � ae+ bẽ+ cf is invariant with respect
to stretching by the flow of v, as well as with respect to “diffusion.” The evolution
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of a “long-wave” field is given by the matrix(−η/λ2 C −B
−C −η/λ2 A

−B A −ηλ2

)
.

Let us confine ourselves to the case B � C � 0, where the particles are stretched
by the geodesic flow. In this case one readily evaluates the eigenvalues of the
matrix and obtains the following

Corollary 4.13. For sufficiently small magnetic diffusion (η < |A|), the geodesic
flow is a fast dynamo. The growing mode is a linear combination of the horocyclic
flows (or of the flows ẽ and f ). The growth rate (i.e., the increment of the growing
mode) depends continuously on the magnetic viscosityη and tends to |A| asη→ 0.

The velocity field ẽ (corresponding toA � C � 0) shares the analogous dynamo
properties.

Hypothetically, the number of exponentially growing modes in these cases in-
creases without bound as the magnetic viscosity η tends to 0. On the other hand,
for the “rigid” field f (i.e., for A � B � 0) one has the matrix(−η/λ2 C

−C −η/λ2

)
,

which indicates the absence of growth of the “long-wave” fields. Furthermore, for
nonzero magnetic viscosity η the fields decay, since the matrix eigenvalues have
negative real parts.

4.E. Energy balance and singularities of the Euler equation

Proposition 4.14. If a vector field ω0 is a solution of the following equation,

(4.6) {curl−1 ω0, ω0} � const ·ω0,

then the constant is zero.

Proof. We look for solutions of the Helmholtz equation ω̇ � −{v, ω}, v �
curl−1 ω in the form ω(t) � a(t)ω0, where ω0 satisfies the relation above, and
a(t) depends on t only. Then substitution gives the following equation in a: ȧ �
−a2 · const. All nontrivial solutions of the latter equation go to infinity at finite
time if the constant is nonzero. The unbounded growth ofω contradicts the energy
conservation law Ė � 0 for kinetic energy E � 1

2

∫
v2µ. �

Among the “long-wave” vector fields on M � T1P
2 studied above, only the

fieldsω0 � ae+bẽ (which commute with curl−1 ω0) satisfy equation (4.6). Indeed,
for ω0 � ae + bẽ + cf one gets from the commutation relations discussed

{curl−1 ω0, ω0} � acξ ẽ − bcξe,
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where ξ � λ + 1/λ. There is no f on the right-hand side, which implies that
c � 0.

§5. Dynamo exponents in terms of topological entropy

5.A. Topological entropy of dynamical systems

We have seen in Section 1.B that the exponential growth of the L2-magnetic en-
ergy (and more generally, of the Lq-energy for q > 1) can be easily achieved in
a nondissipative dynamo model whose velocity field has a hyperbolic stagnation
point or a hyperbolic limit cycle. However, the class of nondissipative dynamos
providing the exponential growth of the L1-energy of a magnetic field is much
more subtle. To specify this class, as well as to formulate the conditions for re-
alistic (dissipative) dynamos, we need the notion of entropy of a flow or of a
diffeomorphism.

Definition 5.1. Let dist be the metric on a compact metric space M , and let
g : M → M be a continuous map. For each n � 0, 1, 2, . . . , define a new metric
distg,n on X by

distg,n(x, y) � max
i�0,1,...,n

dist(gix, giy).

A set is said to be (n, ε)-spanning if in the distg,n-metric, the ε-balls centered at
the points of the set cover the space M . Let N(n, ε, g) be the cardinality of the
minimal (n, ε)-spanning set. Then the topological entropy of the map g is defined
by

htop(g) � lim
ε→0

lim sup
n→∞

1

n
lnN(n, ε, g).

The topological entropy htop(v) of a vector field v is the topological entropy of the
time 1 map of its flow.

One can give such a definition for an arbitrary compact topological space by
replacing ε-balls with an open covering and maximizing over all coverings; see,
e.g., [K-Y].

To visualize this notion, think of the trajectories of two points x and y as
being indistinguishable if the images gi(x) and gi(y) are ε-close for each i �
0, . . . , n. Then N(n, ε, g) measures the number of trajectories of length n for
the diffeomorphism g that are pairwise distinguishable for given ε. Intuitively,
positivity of entropy indicates that this number grows exponentially with n.
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5.B. Bounds for the exponents in nondissipative dynamo
models

Theorem 5.2 [Koz2, K-Y]. Let v be a divergence-free C∞-vector field on a com-
pact Riemannian three-dimensional manifold M , and µ the Riemannian volume
form on M . Assume that a magnetic field B0 is transported by the flow gtv of
the field v: B(t) :� gtv∗B0. Then for every continuous field B0 on M the incre-
ment of the L1-growth rate is majorated by the topological entropy htop(v) of the
field v:

lim sup
t→∞

1

t
ln
∫
M

‖B(t)‖µ ≤ htop(v).

Moreover, the increment is exactly equal to the topological entropy for any generic
magnetic field B0 (i.e., for a field from an open and dense subset in the space of
vector fields).

The formulation of Theorem 5.2 allows one to regard it as a naive definition of
topological entropy: Choose a vector field, act on it by the flow, and estimate the
corresponding rate of change of the L1-energy. To be sure that the chosen field B0

is “generic,” one can start with a pair of vector fields B1 andB2 that along with the
field v form a basis in (almost) every tangent space ofM . Then htop(v) is equal to
the biggest rate of L1-energy growth of these two vector fields under iterations:

htop(v) � max{λ1, λ2}, where λi � lim sup
t→∞

1

t
ln
∫
M

‖Bi(t)‖µ.

Furthermore, the topological entropy of a smooth map g : M → M is equal to
the maximum of the L1-growth rate under iterations of g of a generic differential
form. More precisely,

htop(v) � lim
n→∞

1

n
ln
∫
M

‖Dgn∗‖µ,

whereDgn∗ is a mapping between the full exterior algebras of the tangent spaces
to M , and we integrate with respect to the Lebesgue measure µ. The measure
µ is not supposed to be invariant under g. If g is measure-preserving, then the
same statement holds for k-vector fields; see [Koz2]. The topological entropy
also gives a lower bound for the growth of the magnetic field in any Lq-norm
(q ≥ dim(M)− 2), even in the case of finite smoothness of the diffeomorphism;
see [K-Y].

Theorem 5.2 provides a necessary and sufficient condition for the existence of
the exponential growth in a nondissipativeL1-dynamo. In order to be a dynamo, the
velocity field v has to have nonzero entropy; i.e., roughly speaking, to admit some
chaos. Positive topological entropy is often related to the presence of horseshoes,
and they essentially exhaust all the entropy for two-dimensional systems ([Kat2];
see the discussion in [K-Y]). For other Lq-norms (q > 1), the topological entropy
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gives a lower bound for the growth rate of an appropriate magnetic field [Koz2,
K-Y].

The spectrum of the nondissipative kinematic dynamo operator for a continuous
velocity field on a compact Riemannian manifold without boundary is described
in [CLMS] (see also [LL]).

5.C. Upper bounds for dissipative L1-dynamos

Klapper and Young [K-Y] proved that the same necessary condition is valid for
dissipative (realistic) dynamos: If the topological entropy of the field vanishes
(htop(v) � 0), then the field v cannot be a fast dynamo (in other words, the
increment λ(η) goes to zero as the magnetic diffusivity η tends to zero). Such a
bound was proposed by Finn and Ott in 1988, and the proof was announced in
1992 by M.M. Vishik. The result and proof in [K-Y] is given in the more general
form of finite smoothness of the magnetic and velocity fields:

Theorem 5.3 [K-Y]. Let v and B0 be divergence-free vector fields supported on
a compact domainM ⊂ R

n. Assume that v is of class Ck+1 and B0 is of class Ck

for some k ≥ 2. Let Bη(t) be the solution of the dynamo equation (1.1) with the
initial condition Bη(0) � B0. Then

lim sup
η→0

lim sup
n→∞

1

n
ln
∫
M

‖Bη(n)‖µ ≤ htop(v)+ r(g)
k
,

where g :� g1
v is the time 1 map of the flow defined by the field v, Bη(n) is the

value of Bη(t) at the moments t � n, and

r(g) :� lim
n→∞

1

n
ln

(
max
x∈M

‖∂(g
n)

∂x
(x)‖
)
.

(Here ∂(gn)

∂x
is the Jacobian matrix of the map gn.) This upper bound is also valid

for the vanishing magnetic diffusivity η � 0.

In the case of an idealized nondissipative dynamo η � 0 and a smooth vector
field v (k � ∞) this theorem reduces to Theorem 5.2.

A variety of questions related to the kinematic dynamo are discussed in the
recent book [ChG], which deals particularly with the fast dynamo problem, as
well as in the books and surveys [Mof3, K-R, R-S, Chi2, ZRS, Z-R].
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Chapter VI

Dynamical Systems with
Hydrodynamical Background

This chapter is a survey of several relevant systems to which the group-theoretic
scheme of the preceding chapters or its modifications can be applied. The choice of
topics for this chapter was intended to show different (but nevertheless, “hydrody-
namical”) features of a variety of dynamical systems and to emphasize suggestive
points for further study and future results.

§1. The Korteweg–de Vries equation as an Euler equation

In Chapter I we discussed the common Eulerian nature of the equations of a three-
dimensional rigid body and of an ideal incompressible fluid. The first equation is
related to the Lie group SO(3), while the second is related to the huge infinite-
dimensional Lie group S Diff(M) of volume-preserving diffeomorphisms ofM .

In this section we shall deal with an intermediate case: the Lie group of all
diffeomorphisms of a one-dimensional object, the circle, or rather, with the one-
dimensional extension of this group called the Virasoro group. In a sense it is
the “simplest possible” example of an infinite-dimensional Lie group. It turns out
that the corresponding Euler equation for the geodesic flow on the Virasoro group
is well known in mathematical physics as the Korteweg–de Vries equation. This
equation is widely regarded as a canonical example of an integrable Hamiltonian
system with an infinite number of degrees of freedom.

1.A. Virasoro algebra

The Virasoro algebra is an object that is only one dimension larger than the Lie al-
gebra Vect(S1) of all smooth vector fields on the circle S1 (in the physics literature,
these vector fields are usually assumed to be trigonometric polynomials).
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Definition 1.1. The Virasoro algebra (denoted by vir) is the vector space
Vect(S1)⊕ R equipped with the following commutation operation:

[(f (x)
∂

∂x
, a), (g(x)

∂

∂x
, b)]

�
(
(f ′(x)g(x)− f (x)g′(x)) ∂

∂x
,

∫
S1
f ′(x)g′′(x) dx

)
,

for any two elements (f (x)∂/∂x, a) and (g(x)∂/∂x, b) in vir .

The commutator is a pair consisting of a vector field and a number. The vector
field is minus the Poisson bracket of the two given vector fields on the circle:
{f ∂/∂x, g ∂/∂x} � (fg′ − f ′g) ∂/∂x. The bilinear skew-symmetric expression
c(f, g) :� ∫

S1 f
′(x)g′′(x)dx is called the Gelfand–Fuchs 2-cocycle; see [GFu].

Definition 1.2. A real-valued two-cocycle on an arbitrary Lie algebra g is a bilin-
ear skew-symmetric form c(·, ·) on the algebra satisfying the following identity:∑

(f,g,h)

c([f, g], h) � 0, for any three elements f, g, h ∈ g,

where the sum is considered over the three cyclic permutations of the elements
(f, g, h).

The cocycle identity means that the extended space ĝ :� g⊕ R with the com-
mutator defined by

(1.1) [(f, a), (g, b)] � ([f, g], c(f, g))

obeys the Jacobi identity of a Lie algebra. One can define c(f, g) in (1.1) by setting
c(f, g) � 0 for all pairs f, g and get a trivial extension of the Lie algebra g. An
extension of the algebra g is called nontrivial (or the corresponding 2-cocycle
is not a 2-coboundary) if it cannot be reduced to the extension by means of the
zero cocycle via a linear change of coordinates in ĝ. We discuss cocycles on Lie
algebras, as well as the geometric meaning of the Gelfand–Fuchs cocycle, in more
detail in Section 1.D.

The Virasoro algebra is the unique nontrivial one-dimensional central extension
of the Lie algebra Vect(S1) of vector fields on the circle. There exists a Virasoro
group whose Lie algebra is the Virasoro algebra vir; see, e.g., [Ner1].

Definition 1.3. The Virasoro (or Virasoro–Bott) group is the set of pairs
(ϕ(x), a) ∈ Diff(S1)⊕ R with the multiplication law

(ϕ(x), a) ◦ (ψ(x), b) �
(
ϕ(ψ(x)), a + b +

∫
S1

log(ϕ ◦ ψ(x))′ d logψ ′(x)
)
.

Applying the general constructions of Chapter I to the Virasoro group, we equip
this group with a (right-invariant) Riemannian metric. For this purpose we fix the
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energy-like quadratic form in the Lie algebra vir; i.e., on the tangent space to the
group identity:

H(f (x)
∂

∂x
, a) � 1

2

(∫
S1
f 2(x) dx + a2

)
.

Consider the corresponding Euler equation; i.e., the equation of the geodesic
flow generated by this metric on the Virasoro group.

Definition 1.4. The Korteweg–de Vries (KdV) equation on the circle is the evo-
lution equation

∂tu+ uu′ + u′′′ � 0

on a time-dependent function u on S1, where ′ � ∂/∂x and ∂t � ∂/∂t ; see [KdV].

Theorem 1.5 [OK1]. The Euler equation corresponding to the geodesic flow (for
the above right-invariant metric) on the Virasoro group is a one-parameter family
of KdV equations.

Proof. The equation for the geodesic flow on the Virasoro group corresponds
to the Hamiltonian equation on the dual Virasoro algebra vir∗, with the linear
Lie–Poisson bracket and the Hamiltonian function −H .

The space vir∗ can be identified with the set of pairs{
(u(x)(dx)2, c) | u(x) is a smooth function on S1, c ∈ R

}
.

Indeed, it is natural to contract the quadratic differentials u(x)(dx)2 with vector
fields on the circle, while the constants are to be paired between themselves:

〈(v(x) ∂
∂x
, a), (u(x)(dx)2, c)〉 �

∫
S1
v(x) · u(x) dx + a · c.

The coadjoint action of a Lie algebra element (f ∂/∂x, a) ∈ vir on an element
(u(x)(dx)2, c) of the dual space vir∗ is

(1.2) ad∗(f ∂/∂x,a)(u(dx)
2, c) � (2f ′u+ f u′ + cf ′′′, 0),

where ′ stands for the x-derivative. It is obtained from the identity

〈[(f ∂
∂x
, a), (g

∂

∂x
, b)], (u(dx)2, c)〉 � 〈(g ∂

∂x
, b), ad∗

(f ∂
∂x
, a)
(u(dx)2, c)〉,

which holds for every pair (g ∂
∂x
, b) ∈ vir .

The quadratic energy functionalH on the Virasoro algebra determines the “tau-
tological” inertia operator A : vir → vir∗, which sends a pair (u(x)∂/∂x, c) ∈
vir to (u(x)(dx)2, c) ∈ vir∗.

In particular, it defines the quadratic Hamiltonian on the dual space vir∗,

H(u(dx)2, c) � 1

2
(

∫
u2 dx + c2)

� 1

2
〈(u ∂
∂x
, c), (u(dx)2, c)〉 � 1

2
〈(u ∂
∂x
, c), A(u

∂

∂x
, c)〉.
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The corresponding Euler equation for the right-invariant metric on the group (ac-
cording to the general formula (I.6.4), Theorem I.6.15) is given by

∂

∂t
(u(dx)2, c) � − ad∗A−1(u(dx)2,c)(u(dx)

2, c).

Making use of the explicit formula for the coadjoint action (1.2) with

(f ∂/∂x, a) � A−1(u(dx)2, c) � (u ∂/∂x, c),
we get the required Euler equation:{

∂tu � −2u′u− uu′ − cu′′′ � −3uu′ − cu′′′,
∂t c � 0.

The coefficient c is preserved in time, and the function u satisfies the KdV equation
(with different coefficients). �

Remark 1.6. Without the central extension, the Euler equation on the group of
diffeomorphisms of the circle has the form

∂tu � −3uu′.

(called a nonviscous Burgers equation). Rescaling time, this equation can be re-
duced to the equation on the velocity distributionu of freely moving noninteracting
particles on the circle. It develops completely different properties as compared to
the KdV equation (see, e.g., [Arn15]).

Ifu(x, t) is the velocity of a particlex at moment t , then the substantial derivative
of u is equal to zero: ∂tu+uu′ � 0. In Fig. 71 one sees a typical perestroika of the
velocity field u in time. Since every particle keeps its own velocity, fast particles
pass by slow ones. Every point of inflection in the initial velocity profile u(x, 0)
generates a shock wave.

u

x

t=0

t=1
t=2

Figure 71. The shock wave generated by freely moving noninteracting particles.

Thus, in finite time, solutions of the corresponding Euler equation define a
multivalued, rather than univalued, vector field of the circle. In other words, the
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geodesic flow on the group Diff(S1), with respect to the right-invariant metric
generated by the quadratic form

∫
u2dx on the Lie algebra, is incomplete.

Note also that in the case of the Burgers equation with small viscosity, shock
waves appear as well. Initial series of typical bifurcations of shock waves were
described in [Bog] (see also [SAF, Si2]). Typical singularities of projections of
the solutions on the plane of independent variables for 2× 2 quasilinear systems
are classified in [Ra].

On the other hand, the solutions of the KdV equation exist and remain smooth
for all t , and do not develop shock waves. In the interpretation of the KdV as the
shallow water equation, the parameter c measures dispersion of the medium.

Remark 1.7. Differential geometry of the Virasoro group with respect to the
above right-invariant metric is discussed in [Mis3]. In particular, the sectional
curvatures in the two-dimensional directions containing the central direction are
nonnegative (cf. Remark IV.2.4). For the relation between the geometry of the
KdV equation and the Kähler geometry of the Virasoro coadjoint orbits see [Seg,
STZ].

One can extend this Eulerian viewpoint to the super-KdV equation (introduced
in [Kup]) and describe the latter as the equation of geodesics on the super-
analogues of the Virasoro group, corresponding to the Neveu–Schwarz and Ra-
mond super-algebras; see [OK1]. Another elaboration of this viewpoint is the
passage from the L2-metric on the Virasoro algebra to another one, say, the H 1-
metric:

‖(f (x) ∂
∂x
, a)‖2

H 1 � 1

2

(∫
S1
f 2(x) dx +

∫
S1
(f ′(x))2 dx + a2

)
.

Proposition 1.8 [Mis4]. TheH 1-metric on the central extension of the Lie algebra
Vect(S1) of vector fields on the circle given by the (trivial) 2-cocycle

c(f, g) :�
∫
S1
f ′(x)g(x) dx

generates the shallow water equation{
∂tu− ∂tu′′ � uu′′′ + 2u′u′′ − 3uu′ − cu′,
∂t c � 0

(introduced in [C-H]). Here the prime ′ stands for ∂
∂x

, and ∂t denotes ∂
∂t

.

1.B. The translation argument principle and integrability of
the high-dimensional rigid body

Definitions 1.9. A function F on a symplectic manifold is a first integral of a
Hamiltonian system with Hamiltonian H if and only if the Poisson bracket of H
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with F is equal to zero. Functions whose Poisson bracket is equal to zero are said
to be in involution with respect to this bracket.

A Hamiltonian system on a symplectic 2n-dimensional manifoldM2n is called
completely integrable if it has n integrals in involution that are functionally inde-
pendent almost everywhere onM2n.

A theorem attributed to Liouville states that connected components of non-
critical common level sets of n first integrals on a compact manifold are the
n-dimensional tori. The Hamiltonian system defines a quasiperiodic motion
φ̇ � const in appropriate angular coordinates φ � (φ1, . . . , φn) on each of the
tori; see [Arn16].

Example 1.10. Every Hamiltonian system with one degree of freedom is com-
pletely integrable, since it always possesses one first integral, the Hamiltonian
function itself.

In particular, the Euler equation of a three-dimensional rigid body is a com-
pletely integrable Hamiltonian system on the coadjoint orbits of the Lie group
SO(3). These orbits are the two-dimensional spheres centered at the origin and
the origin itself, while the Hamiltonian function is given by the kinetic energy of
the system.

Example 1.11. A consideration of dimensions is not enough to argue the complete
integrability of the equation of an n-dimensional rigid body for n > 3. Free
motions of a body with a fixed point are described by the geodesic flow on the
group SO(n) of all rotations of Euclidean space R

n.
The group SO(n) is equipped with a particular left-invariant Riemannian metric

defined by the inertia quadratic form in the body’s internal coordinates. On the
Lie algebra so(n) of skew-symmetric n× n matrices this quadratic form is given
by − tr(ωDω), where

ω ∈ so(n), D � diag(d1, . . . , dn), dk � 1

2

∫
ρ(x)x2

k d
nx,

and where ρ(x) is the density of the body at the point x � (x1, . . . , xn). The inertia
operator A : so(n)→ so(n)∗ defining this quadratic form sends a matrix ω to the
matrix A(ω) � Dω + ωD.

Remark 1.12. For n � 3 this formula implies the triangle inequality for the
principal momenta dk . Operators satisfying these inequalities form an open set in
the space of symmetric 3×3 matrices. In higher dimension (n > 3) the symmetric
matrices representing the inertia operators of the rigid bodies are very special. They
form a variety of dimension n in the n(n−1)/2-dimensional space of equivalence
classes of symmetric matrices on the Lie algebra.
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Theorem 1.13 ([Mish] for n � 4, [Man] for all n). The Euler equation ṁ �
ad∗ω m of an n-dimensional rigid body, where ω � A−1m and the inertia operator
A is defined above, is completely integrable. The functions

(1.3) Hλ,ν � det(m+ λD2 + νE)
on the dual space so(n)∗ provide a complete family of integrals in involution.

The involutivity of the quantities Hλ,ν can be proved by the method of Poisson
pairs and translation of the argument, which we discuss below (see [Man]). Note
that the physically meaningful inertia operators A(ω) � Dω + ωD (i.e., those
with entries aij � di+dj ) form a very special subset in the space of all symmetric
operators A : so(n)→ so(n)∗. According to Manakov, a sufficient condition for
integrability is that

aij � pi − pj
qi − qj

(which for pi � q2
i becomes the physical case above). The limit n → ∞ of the

integrable cases on SO(n) was considered in [War].
The geodesic flow on the group SO(n) equipped with an arbitrary left-invariant

Riemannian metric is, in general, nonintegrable.

Usually, integrability of an infinite-dimensional Hamiltonian system is related
to the existence of two independent Poisson structures forming a so-called Poisson
pair, such that the system is Hamiltonian with respect to both structures.

Definitions 1.14. Assume that a manifoldM is equipped with two Poisson struc-
tures {· · · }0 and {· · · }1. They are said to form a Poisson pair (or to be compatible)
if all of their linear combinations λ{· · · }0 + ν{· · · }1 are also Poisson structures.

A dynamical system ẋ � v(x) onM is called bi-Hamiltonian if the vector field
v is Hamiltonian with respect to both structures {· · · }0 and {· · · }1.

Remark 1.15. The condition on {· · · }0 and {· · · }1 to form a Poisson pair is equiv-
alent to the identity

(1.4)
∑
(f,g,h)

{{f, g}0, h}1 + {{f, g}1, h}0 � 0

for any triple of smooth functions f, g, h on M , where the sum is taken over all
three cyclic permutations of the triple.

In the next theorem we assume, for the sake of simplicity, that M is simply
connected and that the Poisson structures {· · · }0 and {· · · }1 are everywhere non-
degenerate; i.e., they are inverses of some symplectic structures onM .

Theorem 1.16 [GDo]. Let v be a bi-Hamiltonian vector field with respect to the
structures of a Poisson pair {· · · }0, {· · · }1. Then there exists a sequence of smooth
functions Hk , k � 0, 1, . . . , onM such that
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(1) H0 is a Hamiltonian of the field v0 :� v with respect to the structure
{· · · }0;

(2) the field vk of the 0-Hamiltonian Hk coincides with the field of the 1-
Hamiltonian Hk+1;

(3) the functions Hk , k � 0, 1, . . . , are in involution with respect to both
Poisson brackets.

The algorithm for generating the Hamiltonians Hk is called the Lenard scheme
and is shown in Fig. 72.

{  ,  }
0

— Hamiltonians H
0

H
1

H
2

vector fields v
0

v
1

v 2

{  ,  }
1

— Hamiltonians H
1

H
2

H
3

Figure 72. Generation of a sequence of the Hamiltonians Hk for a bi-Hamiltonian vector
field.

Although this theorem is formulated and proven for the case of nondegenerate
brackets only, the procedure is usually applied in a more general context. Namely,
let the field v0 :� v be Hamiltonian with Hamiltonian functions H0 and H1 rela-
tive to the structures {· · · }0 and {· · · }1, respectively. Consider the function H1 as
the Hamiltonian with respect to the bracket {· · · }0 and generate the next Hamil-
tonian field v1. One readily shows that the field v1 preserves the Poisson bracket
{· · · }0, provided that the two brackets form a Poisson pair (a formal application
of the identity (1.4)). However, this does not imply, in general, that the field v1 is
Hamiltonian with respect to the bracket {· · · }0. (Example: The vertical field ∂/∂z
preserves the Poisson structure in R

3
x,y,z given by the bivector field ∂/∂x ∧ ∂/∂y,

but it is not defined by any Hamiltonian function. Every Hamiltonian field for
this structure would be horizontal.) If we are lucky, and the field v1 is indeed
Hamiltonian, we continue the process to the next step, and so on.

To apply the technique of Poisson pairs in the Lie-algebraic situation, recall that
on the dual space g∗ to any Lie algebra g there exists a natural linear Lie–Poisson
structure (see Section I.6)

{f, g}(m) :� 〈[df, dg],m〉
for any two smooth functions f, g on g∗, andm ∈ g∗. In other words, the Poisson
bracket of two linear functions on g∗ is equal to their commutator in the Lie algebra
g itself. The symplectic leaves of this Poisson structure are the coadjoint orbits
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of the group action on g∗, while the Casimir functions are invariant under the
coadjoint action. The following method of constructing functions in involution
on the orbits is called the method of translation of the argument, and originally
appeared in Manakov’s paper [Man] to describe the integrable cases of higher-
dimensional rigid bodies (see further generalizations in, e.g., [A-G, T-F]).

Fix a point m0 in the dual space to a Lie algebra. One can associate to this
element a new Poisson bracket on g∗.

Definition 1.17. The constant Poisson bracket associated to a point m0 ∈ g∗ is
the bracket {· · · }0 on the dual space g∗ defined by

{f, g}0(m) :� 〈[df, dg],m0〉
for any two smooth functions f, g on the dual space, and any m ∈ g∗. The differ-
entials df, dg of the functions f, g are taken at a current point m, and, as above,
are regarded as elements of the Lie algebra itself.

The brackets {· · · } and {· · · }0 coincide at the point m0 itself. Moreover, the
bivector defining the constant bracket {· · · }0 does not depend on the current point.
The symplectic leaves of the bracket are the tangent plane to the group coadjoint
orbit at the point m0, as well as all the planes in g∗ parallel to this tangent plane
(Fig. 73).

m
0

Figure 73. Symplectic leaves of the constant bracket are the planes parallel to the tangent
plane to the coadjoint orbit at m0.

Proposition 1.18. The brackets {· · · } and {· · · }0 form a Poisson pair for every
fixed point m0.
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Proof. The linear combination {· · · }λ :� {· · · } + λ{· · · }0 is a Poisson bracket,
being the linear Lie–Poisson structure {· · · } translated from the origin to the point
−λm0. �

Corollary 1.19. Let f, g : g∗ → R be invariants of the group coadjoint action,
and letm0 ∈ g∗. Then the functions f (m+λm0), g(m+νm0) of the pointm ∈ g∗

are in involution for any λ, ν ∈ R on each coadjoint orbit.

Proof. This is an immediate consequence of the fact that Casimir functions for
all linear combinations of compatible Poisson brackets are in involution with each
other. The latter holds by virtue of the definition of a Poisson pair. �

We leave it to the reader to adjust this corollary to produce the family (1.3) of
first integrals providing the integrability of the higher-dimensional rigid body (see
[Man]). Below, we show how this scheme works for the KdV equation.

Remark 1.20. A Hamiltonian function f and the Poisson structure {· · · }0 gener-
ate the following Hamiltonian vector field on the dual space g∗:

(1.5) v(m) � ad∗df m0,

where the differential df is taken at the point m. Indeed, for an arbitrary function
g one has

{f, g}0(m) � 〈addf (dg),m0〉 � 〈(dg), ad∗df m0〉,
and the latter pairing is the Lie derivativeLvg (at the pointm ∈ g∗) of the function
g along the field v defined by (1.5). Hence, this vector field v is Hamiltonian with
Hamiltonian function f .

1.C. Integrability of the KdV equation

The existence of an infinite number of conserved charges for the flow determined
by the KdV equation was discovered in the late 1960s, and in a sense this discov-
ery launched the modern theory of infinite-dimensional integrable Hamiltonian
systems (see [Ma, Miu] for an intriguing historical survey).

The first of the KdV conservation laws were found via calculations with unde-
termined coefficients, but this method stopped at the 9th invariant. Miura describes
in [Miu] how, in the summer of 1966, a rumor circulated that there were exactly
9 conservation laws in this case. Miura spent a week of his summer vacation and
succeeded in finding the 10th one. Later code was written computing the 11th law.
After that the specialists were convinced that there should be an infinite series of
conservation laws.

In this section, we shall see how these laws can be extracted via the recur-
sive Lenard scheme, or equivalently, via Manakov’s method of the translation of
argument from the preceding section.
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The KdV equation is an example of a bi-Hamiltonian system. First, as we
discussed in Section 1.A, it is Hamiltonian on the dual space vir∗ � {(u(dx)2, c)}
of the Virasoro algebra with the quadratic Hamiltonian function

−H(u(dx)2, c) � −1

2

(∫
u2 dx + c2

)

relative to the linear Poisson structure. This Poisson structure is called the second
KdV Hamiltonian structure and is sometimes referred to as the Magri bracket; see
[Mag].

Moreover, one can specify a point in the space vir∗ such that the KdV equation
will also be Hamiltonian with respect to the constant Poisson structure associated
to this point. Namely, let the pair (u0(x)(dx)

2, c0) consist of the function u0(x) ≡
1/2 and c0 � 0.

Definition 1.21. Let F be a function on the dual space g∗ of a Lie algebra g and
m ∈ g∗. In the case of an infinite-dimensional space g∗, the differential dF |m
(regarded as a vector of the Lie algebra itself) is called the variational derivative
δF
δm

, and it is defined by the relation

d

dε
F (m+ εw)∣∣

ε�0 � 〈
δF

δm
, w〉.

For instance, in the case of the Virasoro algebra, a functional F is defined on
the set of pairs (u(x)(dx)2, c). The variational derivative((

δF

δu

)
∂

∂x
,
δF

δc

)

is the pair consisting of a vector field and a number such that

d

dε
F ((u+ εw)(dx)2, c + εb)∣∣

ε�0 � 〈
((
δF

δu

)
∂

∂x
,
δF

δc

)
, (w(dx)2, b)〉

�
∫ (

δF

δu
(x) · w(x)

)
dx + δF

δc
· b.

(To specify the class of functionals, one usually considers differential polynomials
on vir∗; i.e., integrals of polynomials in u and in its derivatives; see [GDo]).

Proposition 1.22. (i) The Poisson structure {· · · }0 associated to the point(
1

2
(dx)2, 0

)
∈ vir∗

sends every Hamiltonian function F on the dual space vir∗ to the Hamiltonian
vector field on vir∗ whose value at a point (u(dx)2, c) is the pair

((
δF

δu

)′
(x)(dx)2, 0

)
.
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(ii) The Korteweg–de Vries equation is Hamiltonian with respect to the constant
Poisson structure {· · · }0 with the Hamiltonian function

(1.6) Q(u(dx)2, c) � 1

2

∫
S1

(−u3(x)+ c(u′)2(x)) dx.

The Poisson structure {· · · }0 is called the first KdV Hamiltonian structure; see,
e.g., [LeM]. The Hamiltonians H2 � H and H3 � Q of the KdV equation
with respect to the Poisson pair {· · · } and {· · · }0 start the series of conservation
laws generated by the Lenard iteration scheme. One readily shows that at each
step the Hamiltonian functional Hk is a differential polynomial of order k in
u(x). Usually, this series of first integrals for the KdV starts with the Hamiltonian
function H1(u) :� ∫ u(x) dx.

Proof. Item (i) is a straightforward application of the notion of variational de-
rivative to formula (1.5). Indeed, one obtains the Hamiltonian vector field for a
functionalF on the space vir∗ by freezing the values of u(x) and c as u0(x) ≡ 1/2
and c0 � 0 in (1.2):

ad∗(f ∂/∂x,a)(u0(dx)
2, c0) �

(
(2f ′u0 + f u′0 + c0f

′′′)(dx)2, 0
) � (f ′(dx)2, 0),

where f :� ( δF
δu

)
, and a :� ( δF

δc

)
.

(ii) The variational derivative of the functionalQ given by (1.6) is

(1.7)

(
δQ

δu

)
� −3

2
u2 − cu′′.

Indeed, this follows from the equality

d

dε

1

2

∫
S1

(
−(u+ εw)3 + c ((u+ εw)′)2) dx � −

∫
S1

(
3

2
u2 + cu′′

)
· w dx.

Then, substituting the variational derivative f � δQ/δu from (1.7) into (1.2),
we get the following Hamiltonian vector field on the dual space vir∗:

{
∂tu � f ′ � −( 3

2u
2 + cu′′)′ � −3uu′ − cu′′′,

∂t c � 0,

that is, the KdV equation. �

Remark 1.23. The KdV flow is tangent to the coadjoint orbits of the Virasoro
algebra (as is the flow of every Euler equation on the dual space to any Lie algebra).
Note that none of the above first integrals of the KdV equation are invariants of the
Virasoro coadjoint action, and therefore their meaning is completely different from
the Casimir functions of two-dimensional hydrodynamics (cf. Remark I.9.8). The
description of the Virasoro orbits (or Casimir functions), besides being evident
information on the behavior of KdV solutions, is an interesting question in its own
right.
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The classification problem for the Virasoro coadjoint orbits is also known as
the classification of Hill’s operators{

d2

dx2
+ u(x) | u ∈ C∞(S1)

}
,

or of projective structures on the circle, and it has been solved independently in
different terms and at different times (see [Kui, LPa, Seg, Ki2]). The orbits are
enumerated by one discrete parameter and one continuous parameter. General-
ization of this problem to the classification of symplectic leaves of the so-called
Gelfand–Dickey brackets, which are certain natural Poisson brackets on differen-
tial operators of higher order on the circle, as well as the relation of this problem
to enumeration of homotopy types of nonflattening curves on spheres, is given in
[OK2] (see also [KhS, Sha, E-K] for relevant problems).

The Lenard scheme generates a series of Hamiltonian equations called the KdV
hierarchy. A similar construction exists for higher KdV hierarchies, which are
Hamiltonian flows on coefficients of differential operators of higher order on the
circle; see [Adl, GDi, SeW, PrS].

1.D. Digression on Lie algebra cohomology and the
Gelfand–Fuchs cocycle

The theory of Lie algebra cohomology is an algebraic generalization of the fol-
lowing geometric construction from Lie group theory.

Let G be a compact connected simply connected Lie group equipped with
a two-sided invariant metric (a typical example: the group of unit quaternions
SU(2) ≈ S3 or the group SU(n) of unitary matrices with unit determinant).

One can calculate the cohomology groups and, furthermore, their exterior al-
gebra for the group G as follows.

Theorem 1.24. The exterior algebra of two-sided invariant differential forms
on G is isomorphic to the cohomology exterior algebra of the manifold G. The
isomorphism is defined by assigning to each differential form its cohomology class.

The proof is based on two facts: (i) every two-sided invariant form is closed (see
(1.8) below); (ii) every closed 2-form is cohomologous to a two-sided invariant
form, namely, to the average value of all its shifts.

This classical theorem reduces all calculations to a purely algebraic considera-
tion in terms of the commutator of the Lie algebra. Indeed, any one-sided invariant
form is determined by its value on the Lie algebra. The exterior differential of this
form is also an invariant form, and hence it is also determined by its value on the
Lie algebra.

Given an invariant 1-form ω, its differential is a 2-form defined at the identity
by the following Maurer–Cartan formula:

(dω)(ξ, η) � ∓ω([ξ, η])
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(the sign is defined by whether the form is left- or right-invariant). This formula
allows one to write algebraically the closedness condition (and to verify that it
coincides with the condition of two-sided invariance). More generally, one has the
following

Theorem 1.25. Given a one-sided invariant n-form ω whose value on the Lie
algebra g is ω(ξ1, . . . , ξn), ξi ∈ g, its exterior differential is the invariant (n+ 1)-
form dω whose value on the Lie algebra is
(1.8)
dω(ξ0, . . . , ξn) � ±

∑
0≤i<j≤n

(−1)i+jω([ξi, ξj ], ξ0, . . . , ξ̂i , . . . , ξ̂j , . . . , ξn),

where the sign is determined by whether the form ω is left- or right-invariant, and
the hat ˆ means that the corresponding vector is missing.

Example 1.26. For a 1-formωwe have∓(dω)(ξ, η) � ω([ξ, η]). The differential
of a 2-form ω is given by the formula

∓dω(ξ, η, ζ ) � ω([ξ, η], ζ )+ ω([η, ζ ], ξ)+ ω([ζ, ξ ], η).

The algebraic generalization mentioned above, which allows one to avoid cal-
culations on the Lie group, proceeds as follows.

Definition 1.27. The cohomology complex of a Lie algebra g is the complex

�0 d0−→ �1 d1−→ �2 d2−→ · · · ,
where �n is a vector space of exterior n-forms on the Lie algebra g, and the
differential dn is given by formula (1.8).

The nth-cohomology group (or space) of the Lie algebra g is the vector space

Ker dn : �n→ �n+1

Im dn−1 : �n−1 → �n
,

that is, the quotient of the space of all closed n-forms over the subspace of all exact
forms. The elements of the space Ker dn : �n→ �n+1 are calledn-cocycles, while
the elements of the subspace Im dn−1 : �n−1 → �n are n-coboundaries, or the
cocycles cohomologous to zero.

Remark 1.28. The fact that dndn−1 � 0 readily follows from formula (1.8) and
the Jacobi identity. Geometrically, it means that the boundary of any simplex
boundary (say, for a triangle or a tetrahedron) is zero.

Example 1.29. Let a ∈ g∗ be any element of the dual space to the Lie algebra g
and set

ω(ξ, η) :� a([ξ, η]).
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This function is a 2-cocycle, and even a 2-coboundary, on g.
For instance, for the Lie algebra g � Vect(S1) of vector fields on the circle, and

the point a � (dx)2/2 ∈ Vect∗, we get the following 2-cocycle cohomologous to
zero:

ω

(
g(x)

∂

∂x
, h(x)

∂

∂x

)
� 1

2

∫
S1
(g′h− gh′) dx �

∫
S1
g′h dx.

Remark 1.30. The 2-cocycle on Vect(S1) defining the Virasoro algebra is of a
more subtle nature, and is related to the projective structures on the circle (we
follow [Tab3] below).

Note that every 2-cocycle on a Lie algebra is a linear map from this Lie algebra
to its dual. We construct a natural map from the Lie algebra Vect(S1) of vector
fields on the circle to its dual, the space of quadratic differentials Vect(S1)∗ �
{u(x)(dx)2}, fixing first a projective structure on S1.

Consider four points x, x + t, x + 2t, x + 3t in an affine coordinate system,
where t is very small. A diffeomorphism f : S1 → S1 sends them to four points
whose cross ratio is of order t2 (not of order t!). The principal part of this cross
ratio at the point x is (up to a constant factor) the Schwarzian derivative S(x) of
the diffeomorphism f :

S(x) � f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

.

The corresponding quadratic differential S(x)(dx)2 is independent of the (pro-
jective) choice of the coordinate x and measures the “nonprojectivity” of the map
f . It is a cocycle of the diffeomorphism group of the circle with values in the
quadratic differentials.

Now consider the Lie algebra of vector fields. Let f be a diffeomorphism of S1

close to the identity, f (x) � x + sv(x), where s is small, and let v(x)d/dx be a
vector field of the algebra Vect(S1). Then S(x) is sv′′′(x)+O(s2), where ′ stands
for d/dx. Neglecting higher-order terms, we get the desired mapping, which sends
the field v(x) d/dx to the quadratic differential v′′′(x)(dx)2.

For the angular coordinate q on the circle, the field w(q)∂/∂q is sent to
(d3w/dq3 + dw/dq)(dq)2. This can be deduced with virtually no calculations
from the description of the Lie algebra spanned by the generators of the projective
group: ∂/∂q, (cos q)∂/∂q, (sin q)∂/∂q (accompanied by the change of variables
normalizing the first coefficient).

We have now obtained the cocycle whose value on two vector fields v(q)∂/∂q
and w(q)∂/∂q is given by the expression∫

S1
(vw′′′ + vw′) dq,

where ′ is the derivative d/dq along the angular coordinate. The second term is
cohomologous to zero, as we have seen above (see Example 1.29). Integrating by
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parts the first monomial, we obtain the Gelfand–Fuchs cocycle. Thus the Gelfand–
Fuchs cocycle (and hence, the Virasoro algebra) measures the deformation of the
projective structure on S1 � RP 1 by diffeomorphisms.

§2. Equations of gas dynamics and compressible fluids

The evolution of a compressible fluid naturally extends the motion of an ideal
incompressible fluid: Instead of the incompressibility condition, one assumes now
that the pressure term of the Euler equation is determined by the intrinsic degrees
of freedom of the fluid. Usually these internal parameters are the density and
entropy of the fluid.

2.A. Barotropic fluids and gas dynamics

Barotropic fluids (or gas dynamics) are simplified models of compressible fluids
in which the only intrinsic degree of freedom is the density of the fluid or of the
gas.

Definition 2.1. A (compressible) fluid is barotropic (or isentropic) if the pressure
term in the evolution equation is defined solely by the fluid’s density. The fluid
motion is described by the following system of equations:

(2.1)

{
ρ v̇ � −ρ (v,∇)v − ∇h(ρ),
ρ̇ + div(ρv) � 0,

where v and ρ are respectively the velocity vector field and the density function
of the fluid. The pressure function h(ρ) depends on the physical properties of the
fluid, and is assumed to be given. For instance, the equation of gas dynamics on a
line corresponds to the choice h(ρ) � ρν (for the motion of air ν ≈ 1.4).

Equations (2.1) make sense for an arbitrary Riemannian manifoldM , provided
that (v,∇) stands for the covariant derivative along the field v (see Chapter I) and
the divergence is taken with respect to the volume form induced by the metric.
The first equation is similar to the Euler dynamics of an incompressible fluid, but
the velocity field v ∈ Vect(M) is no longer divergence-free. The second equation
is the continuity equation for the function ρ. Thus the phase space of the system
consists of all pairs {(v, ρ) | v ∈ Vect(M), ρ ∈ C∞(M)}.

The configuration space of the barotropic fluid on a manifoldM is the group

P :� DiffM � C∞(M),

defined as the semidirect product of the group of all diffeomorphisms ofM and the
space C∞(M) of all smooth functions on the manifold considered (see [HMRW]
for a derivation of the equation via reduction in the Lagrangian representation).
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Recall (cf. Section I.10 on the magnetic extension of a group) that the group
structure on the semidirect product P is defined by the formula

(ϕ, a) ◦ (ψ, b) � (ϕ ◦ ψ,ψ∗a + b),
whereψ∗a is the natural action of the diffeomorphismψ on the function a:ψ∗a �
a(ψ−1(x)). The commutator in the corresponding Lie algebra

p � Vect(M)� C∞(M)

is also defined via the semidirect product of the Lie algebras involved:

[(v, a), (w, b)] � ([v,w], Lwa − Lvb),
where ϕ,ψ ∈ Diff(M); a, b ∈ C∞(M); v,w ∈ Vect(M), and [v,w] denotes
the commutator; i.e., minus the Poisson bracket, of the two vector fields on M
([v,w] � −{v,w}); see Section I.2.

Remark 2.2. The Lie algebra p � Vect(M) � C∞(M) has a simple geometric
meaning: It is the Lie algebra of differential operators of the first order on M .
Such an operator is always the sum Lv + ρ, where Lv is the operator of the Lie
derivative along the field v on M , and ρ is regarded as the operator of the 0th
order, namely the operator of multiplication by the function ρ.

Proposition 2.3 [GS1, MRW, Nov2]. The equation of a barotropic fluid is a
Hamiltonian equation on p∗ with respect to the linear Poisson–Lie structure and
Hamiltonian function

H(v, ρ) � −
∫
M

(
1

2
ρv2 +�(ρ)

)
µ,

where d
dρ
�(ρ) � h(ρ).

Remark 2.4. In contrast with the Euler dynamics (both of the rigid body and the
ideal fluid), the total energy of a barotropic fluid is not a quadratic form, and it no
longer has the meaning of a Riemannian metric on an appropriate group. However,
one still has a variational problem on the cotangent space T ∗P of the Lie group P ,
such that its extremals are the solutions of equations (2.1). The group-theoretical
interpretation and all the Hamiltonian properties of the equations described earlier
will be valid for the barotropic fluid (or gas dynamics) with merely cosmetic
changes.

Note that for the one-dimensional manifold M � R or S1 the equations of gas
dynamics (2.1) for the algebra p � Vect(M)�C∞(M) are integrable (see Section
3.B). Note that this Lie algebra has three independent nontrivial 2-cocycles (one
of them being the Gelfand–Fuchs cocycle of the Virasoro algebra).

Proof sketch of Proposition 2.3. One readily verifies the following
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Proposition 2.5. The dual to the space of vector fields Vect(M) on an n-
dimensional manifold M is the space �1(M) ⊗f �n(M), where ⊗f means that
the tensor product is taken over functions onM .

In other words, elements of�1(M)⊗f �n(M) are pairs β⊗µ, β ∈ �1,µ ∈ �n,
and we do not distinguish between the pairs fβ ⊗ µ or β ⊗ fµ for all functions
f .

The pairing between v ∈ Vect(M) and β̄ � β ⊗f ν ∈ �1(M)⊗f �n(M) is as
follows:

〈v, β ⊗ µ〉 �
∫
M

(ivβ)µ

(the vector field v is contracted with the 1-form β, and the obtained n-form (ivβ)µ
is integrated overM). That this choice of dual space is natural is due to the (readily
verified) fact that the coadjoint action of the Lie algebra Vect(M) is geometric:

(2.2) Ad∗ϕ(β ⊗f µ) � ϕ∗β ⊗f ϕ∗µ;
i.e., it is given by a change of coordinates in both of the 1-form β and the n-form
µ.

In case of the Lie algebra p∗ � Vect(M) � C∞(M), elements of the cor-
responding dual space p∗ are pairs (β̄, θ), where β̄ ∈ �1(M) ⊗ �n(M) and
θ ∈ �n(M). We leave it to the reader to check that the coadjoint action of an
element (ϕ, a) ∈ Diff(M)� C∞(M) is

Ad∗(ϕ,a)(β̄, θ) � (ϕ∗β̄ + da ⊗ ϕ∗θ, ϕ∗θ)
(see, e.g., [MRW]).

Once the coadjoint action is known, it is routine to find the variational derivative
of the Hamiltonian function (see Definition 1.21) and the corresponding Euler
equation, according to the general rule

ṁ � ad∗δH/δm m.

�

It turns out that the equations of barotropic fluid or gas dynamics have plenty of
similarities with the incompressible case (e.g., the structure of conservation laws
in even and odd dimensions is the same). This phenomenon is due to “incompress-
ibility” of the barotropic fluid in coordinates moving with density.

Namely, let µ be the volume form on M induced by the Riemannian metric.
Assign to the density function ρ the density n-form θ :� ρµ ∈ �n(M).

Theorem 2.6 [KhC]. The barotropic fluid equations (2.1) admit first integrals

I (v) :�
∫
M

u ∧ (du)m and If (v) :�
∫
M

f

(
(du)m

θ

)
θ
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according to the parity of n � dim(M) (n � 2m+ 1 and n � 2m, respectively),
where the vector field v and the 1-form u are related by means of the metric, and
f : R → R is an arbitrary function.

The integrals above can be read off from (I.9.2) if one replaces the n-form µ

by the density form θ � ρµ ∈ �n(M), with ρ being the density function. We
shall show that these invariants are Casimir functions on the dual space to the Lie
algebra p. Another (though trivial) conservation law of the same nature is given
by the total mass of the fluid, that is, by the integral of the density form θ over the
manifold M . The Hamiltonian function H is also a first integral of the equation,
but it is not a Casimir function.

Remark 2.7. The equations of a barotropic fluid with a nearly constant density ρ
approximate the Euler equation of an incompressible fluid [Eb]. One can think of
the condition of incompressibility within the general framework of systems with
constraints (see [Arn16]). A dynamical system confined to a submanifold can be
regarded as a subsystem in an ambient manifold with a strong “returning force”
directed towards the submanifold.

For instance, consider a point mass that is constrained to move in the unit circle
in the plane without forces. It can be thought of as a point attached to the center
by a rigid rod. The latter is the limiting case of a point attached to the center by an
elastic spring, where the elasticity coefficient of the spring tends to infinity, and in
equilibrium the spring has length 1. While a point on a rod is confined to a circle,
a point on a spring oscillates out from this circle. In the limit, the position and
velocity of the “elastic pendulum” tend to those of the “rigid pendulum,” but the
acceleration does not.

Similarly, for the group of all diffeomorphisms of a manifold, one can intro-
duce a “returning force” directed towards the subgroup of all volume-preserving
diffeomorphisms (see [Eb]). Then the velocity and its first partial derivatives of a
barotropic (weakly compressible) fluid tend to those of an ideal fluid. In particular,
the above conservation laws for a barotropic fluid become the conserved charges
(I.9.2) for an ideal fluid as ρ → 1. Indeed, their explicit form involves only the
fluid velocity v and its first derivatives ∂v/∂x (or the corresponding 1-form u and
its differential du, where u is related to v by means of the Riemannian metric; i.e.,
without any differentiation). The conservation laws do not contain time deriva-
tives of the velocity (i.e., do not contain the acceleration), and hence the limiting
procedure is harmless for them.

Proof of Theorem 2.6. A heuristic argument is based on the fact that the density
ρ is transported by the flow and the fluid is incompressible with respect to the new
volume form θ (depending on time and on the initial conditions). Thus, we can
apply Theorem I.9.2, whose assumptions require no relation between the metric
and the volume form.
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More precisely, the trajectories of the barotropic fluid equations are tangent to
the orbits of the coadjoint representation of the group P � DiffM�C∞(M), and
the statement follows from

Proposition 2.8. The functional

I (β̄, θ) �
∫
M

u ∧ (du)m

in the case of an odd n � 2m+ 1 and the functionals

If (β̄, θ) �
∫
f

(
(du)m

θ

)
θ

in the case of an even n � 2m (where the 1-form u is defined by u :� β̄/θ ∈
�1(M)) are invariant under the coadjoint action of the group P on the dual space
p∗.

Proof. Note that the ratio u � β̄/θ has the geometric meaning of a differential
1-form (see (2.2)). Explicitly, one has the following action on this form:

Ad∗(ϕ,a) u � Ad∗(ϕ,a)

(
β̄

θ

)
� ϕ∗β̄ + da ⊗ ϕ∗θ

ϕ∗θ

� ϕ∗
(
β̄

θ

)
+ da � ϕ∗u+ da;

i.e., the 1-formu is transported by the flow moduloda, the differential of a function.
Hence, the P -action on the coset [u] ∈ �1/d�0 of 1-forms on M , as well as on
the n-form θ ∈ �n, is geometric: It is nothing but a change of variables. Now
Proposition 2.7 (as well as Proposition I.9.3) follows from the coordinate-free
definition of the functionals I and If . �

To complete the proof of the theorem, recall that the inertia operator Ã : p →
p∗ defined by the Riemannian metric on the manifold M is the map (v, ρ) �→
(u⊗ θ, θ), where θ � ρµ is the density form onM , and the 1-form u is obtained
from the velocity v by the metric “lifting indices.” Theorem 2.6 follows. �

2.B. Other conservative fluid systems

We refer to the surveys [GS2, HMRW, MRW, Nov2, DKN, VlM] for extended
treatments of the Hamiltonian formalism related to the variety of different types of
fluids, and in particular for applications of the techniques of semidirect products
and Hamiltonian reductions.

We mention just a few examples:

— A general inviscid compressible fluid is regarded as having two internal
degrees of freedom: The pressure term is defined by both the mass density
and the entropy (unlike the barotropic case with density only); see [Nov2].
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The corresponding Euler equation is related to the semidirect product Lie
algebra

p̃ :� Vect(M)� [C∞ε (M)⊕ C∞ρ (M)].
— Anisotropic liquids (say, superfluid 4He) require the introduction of a vec-

tor field for the internal degrees of freedom [Nov2, KhL].

— Magnetohydrodynamics in a compressible perfectly conducting fluid is
constructed as the semidirect product of the magnetic extension of the dif-
feomorphism group (considered in Section I.10) with the space of smooth
functions on the manifoldM; see [MRW].

— The motion of an ideal incompressible fluid with a free boundary does not
have an explicit group structure: One cannot compose two flow transfor-
mations with different shapes of the boundary. The Hamiltonian formalism
for this problem, as well as the Hamiltonian form for the equations of a
liquid drop with surface tension, is presented in [LMMR].

— A rigid body in a fluid is described by the Kirchhoff equations in R
6

(see Section I.10). However, the whole “body–fluid” system is already an
infinite-dimensional system. The body floating in the fluid is described by
its impulse and angular momentum, while the fluid can be regarded as an
infinite-dimensional system of the above type (having one fixed boundary
component and the other a “free” one). A fluid filling a cavityM in a body
is another, similar, system. Its dynamics is associated to the semidirect
product of the group E(3) (the motion of the body) and S Diff(M) (the
motion of the fluid filling the cavity). See [VlI] for the stability analysis
corresponding to the systems of both types.

— The geometry of geodesics with respect to the H 1-metric on the group of
volume-preserving diffeomorphisms and its relation to the averaged Euler
equation is described in [HKMRS].

— Various equations related to two-dimensional hydrodynamics manifest
some features of integrability. For instance, the Kadomtsev–Petviashvili
equation (ut + 6uux + uxxx)x + 3uyy � 0 is an integrable infinite-
dimensional Hamiltonian system related to shallow water.

— The equations of infinite conductivity (or those of the β-plane in meteorol-
ogy:�ψt +βψx+{ψ,�ψ} � 0) differ from the standard incompressible
2-D or 3-D hydrodynamics by a Coriolis-type term; see [Fey] and Sec-
tion 2.C below.

— The equation {ψs + cy,�ψs + βy} � 0 for steady waves in two di-
mensions, which is obtained from the β-plane equation by substituting
ψ(x, y, t) � ψs(x − ct, y), admits interesting solutions of steadily trav-
eling dipole vortices [LaR] (see Section I.11.A for β � 0).

— Many dynamical systems on the sine-algebra, being the “quantum” version
of the algebra of Hamiltonian fields on the two-torus (see Remark I.11.6),
are described in [HOT].



324 VI. Dynamical Systems with Hydrodynamical Background

— General Poisson brackets of hydrodynamic type [D-N, DKN] provide a
general Hamiltonian formalism for first-order quasilinear equations on
manifolds. The properties of these brackets impose very restrictive condi-
tions on the Riemannian structure of the underlying manifold.

One more advantage of the Hamiltonian approach is a simple geometric interpre-
tation of the so-called Clebsch variables in many physically interesting systems.
These variables appeared in a hydrodynamical setting as a set of an excessive
number of coordinates (with additional constraints between them) in which the
Euler equation acquires the canonical Hamiltonian form; see [Lam]. A general
framework for symplectic (or “Clebsch”) variables from the Poisson point of view
can be found in [M-W] (see also [Zak, MRW]).

Definition 2.9 [M-W, MRW]. If P is a Poisson manifold, then symplectic vari-
ables for P is a map J : M → P of a symplectic manifoldM into P that respects
the Poisson brackets (i.e., the pullback of the Poisson bracket of two functions f, g
on P is the Poisson bracket onM of their pullbacks f ◦ J , g ◦ J ). Any canonical
symplectic coordinates onM are said to be canonical coordinates on the Poisson
manifold P .

A Hamiltonian functionH :P → R determines a Hamiltonian function onM by
HM :� H ◦J , and the integral curves of the “canonical” Hamiltonian system onM
with the HamiltonianHM cover those for the Poisson “noncanonical” Hamiltonian
system on P .

Example 2.10. The construction of the manifoldM and the map J in the case of
the dual space P � g∗ to an arbitrary Lie algebra g equipped with the Lie–Poisson
bracket is very explicit. The symplectic manifold becomes the cotangent bundle
M � T ∗G to the Lie groupG, while the map J is the left shift L∗g of any covector
ξ ∈ T ∗g G at a point g ∈ G to the cotangent space at the identity: T ∗e G � g∗. The
natural coordinates (p, q) in the cotangent bundle T ∗G are canonical for g∗, since
the symplectic structure has the form dp ∧ dq.

A linear version of the variables on T ∗G is the set of canonical coordinates on
M̄ � g∗ ⊕ g with the map

J̄ : g∗ ⊕ g→ g∗

such that (p, q) �→ ad∗q p. We refer to [M-W, MRW, Zak] for a detailed description
and numerous applications of this construction of Clebsch variables to dynamical
systems and their conservation laws.

2.C. Infinite conductivity equation

The infinite conductivity equation possesses many properties inherent in ideal
hydrodynamics. Its relationship to the equation of an incompressible fluid is due
to the fact that at a high density, an electron gas is similar to a fluid. Indeed, the
repelling of particles in electron clusters makes the gas incompressible.
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Definition 2.11 (see, e.g., [Fey]). The equation of (nonrelativistic) infinite con-
ductivity in a domain of R

3 is

(2.3) v̇ � −(v,∇)v − v × B− ∇p,
where v denotes a divergence-free velocity field of the electron gas, B is a constant
in time (but not in space) external divergence-free magnetic field, and the symbol
× stands for the cross product in R

3. One can define an analogue of this equation
on an arbitrary Riemannian manifoldM with volume form µ.

Proposition 2.12 [KhC]. The infinite conductivity equation (2.3) is equiva-
lent to the following Hamiltonian equation on the dual space S Vect(M)∗ �
�1(M)/d�0(M) to the Lie algebra of divergence-free vector fields S Vect(M):

(2.4)
∂[u]

∂t
� −Lv[u+ α].

Here the 1-form u is related to the vector field v by means of the metric inertia
operator, [u] ∈ �1(M)/d�0(M) is the coset of the 1-form u, and α is a 1-form
whose differential dα obeys the identity dα � −iBµ.

Proof. The proof follows just as in the ideal incompressible case considered in
Chapter I (see equation (I.7.11)). The form α defined by dα � −iBµ (up to the
differential of a function) is precisely chosen to fit the term v × B with the cross
product in (2.3).

The infinite conductivity equation (2.3) is Hamiltonian, with the Hamiltonian
function being (minus) the quadratic energy form shifted away from the origin of
S Vect(M)∗:

−H([u]) � −1

2

∫
M

(u+ α, u+ α)µ.

The Euler equation corresponding to the latter function has the form

∂[u+ α]

∂t
� −Lv[u+ α],

which is equivalent to (2.4). Indeed, the field B is constant in time, and hence

∂B
∂t
� ∂α

∂t
� 0.

�

Corollary 2.13. The infinite conductivity equation (2.3) has either at least one
or infinitely many first integrals, according to the parity of n � dim(M). The
integrals are given by I (v) and If (v) in formula (I.9.2) with u replaced by u+ α
and where the 1-form α is as defined above.

Remark 2.14. The equation of infinite conductivity (and its generalization to an
n-dimensional manifold M) can be regarded as the Euler equation on the central
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extension of the Lie algebra of divergence-free vector fields onM [Rog, Ze2]. The
corresponding two-cocycle, extending the Lie algebra of divergence-free vector
fields S Vect(M), is the Lichnerowicz 2-cocycle [Lich]: For any closed 2-form β

onM ,

cβ(v,w) �
∫
M

(iwivβ)µ;

cf. Remark I.11.6 on the extension of the sine-algebra and the algebra of Hamil-
tonian vector fields on a two-dimensional torus.

§3. Kähler geometry and dynamical systems on the space of
knots

Infinite-dimensional spaces of curves appear in the hydrodynamical setting as
certain special “low-dimensional” coadjoint orbits of the diffeomorphism group
of R

3. This point of view connects many seemingly unrelated symplectic and
Poisson varieties and dynamical systems on them.

3.A. Geometric structures on the set of embedded curves

Consider the space C of smooth embedded nonparametrized oriented closed curves
(or the space of knots) in Euclidean three-dimensional space R

3. It can be thought
of as the set of all smooth maps γ : S1 → R

3 of the circle into R
3 such that γ is

an immersion (γ ′(x) �� 0 for all x ∈ S1), γ has no double points, and where any
two maps with the same image are indistinguishable:

C � {γ : S1 → R
3 | γ ′(x) �� 0 ∀x ∈ S1, γ (x) � γ (y) iff x � y}/γ ∼ (γ ◦ φ).

Here φ runs over all diffeomorphisms of the circle S1.
Connected components of C are the classes of equivalent (oriented) knots. We

will call two knots equivalent if there is an isotopy of the ambient space R
3 sending

one of the knots into the other. Locally constant functions on C are called the knot
invariants.

The space of knots C can be equipped with a natural symplectic structure.
Consider an embedded curve γ � γ (S1) ⊂ R

3. A tangent vector v to C at γ is
an infinitesimal variation of the curve γ , that is, a normal vector field attached to
γ (S1). In parametrized form the vector v(x) is orthogonal to γ ′(x) in R

3 for all
x ∈ S1.

Definition 3.1. The (Marsden–Weinstein) symplectic structure on the space of
knots is the 2-form β on C whose value on the pair of elements u, v ∈ Tγ C is the
oriented volume of the following collar along the curve γ . At every point γ (x) the
vectors u(x) and v(x) span a parallelogram, and the collar is the union of these
parallelograms along γ ⊂ R

3; see Fig. 74.
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For a chosen parameter x ∈ S1 one has

β(v,w) �
∫
S1

vol
(
γ ′(x), v(x), w(x)

)
dx,

where vol is the volume of the parallelepiped spanned by the three vectors. The
integral clearly does not depend on the parametrization.

u

v

u

v

Figure 74. The value of the symplectic structure on two variations of a knot is the volume
of the collar spanned by the variations.

Note that we do not need the Euclidean structure but only the volume form
in R

3. The definition can be easily generalized to an arbitrary three-dimensional
manifold with a volume form. Moreover, for manifolds of any dimension n ≥ 2
the same definition gives the symplectic structure on the space of submanifolds of
codimension 2 (i.e., of dimension n− 2).

The symplectic structure described above has a hydrodynamical meaning. It
is based on the fact that every connected component of the space C (i.e., every
isotopy class of knots) can be viewed as a special coadjoint orbit of the group of
volume-preserving diffeomorphisms of R

3.

Definition 3.2. Let γ be a knot in R
3. Then it defines the functional �γ on

divergence-free vector fields in the space: The value of �γ on a field v is the
flux of the field v across any oriented surface in R

3 bounded by the contour γ
(such an embedded surface σ is called a Seifert surface).

Proposition 3.3. The knot functional �γ is well-defined on divergence-free vector
fields; i.e., its value does not depend on the choice of the surface σ such that
∂σ � γ .
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Proof. The difference between the fluxes of a field v through two surfaces with
the same boundary γ is the flux of v across a closed surface. The latter vanishes
by virtue of the divergence-free property of the field v. �

Remark 3.4. We now relate the functional �γ ∈ S Vect(R3)∗ to another descrip-
tion of the dual space as the quotient S Vect(R3)∗ � �1(R3)/d�0(R3) � Z2(R3)

of all 1-forms on R
3 modulo exact 1-forms, or as the space of all closed 2-forms.

The exterior derivative d takes a coset of 1-forms (an element of �1/d�0)
to a closed 2-form (an element of Z2) without any loss of information, since
H 1(R3) � 0; see Corollary I.7.9.

The curve γ is identified with a singular 2-form ωγ in R
3 supported on γ .

It is a δ-type form whose integrals over any piece of a two-dimensional surface
vanish, unless the piece intersects the curve. In the latter case, the integral equals
the algebraic number of the intersection points, where the points are counted
according to orientation determined by the orientation of the curve γ and the
orientation of the piece at every point of intersection.

The 2-form ωγ is closed, which corresponds to the closedness of the curve
γ itself. Thus ωγ belongs to Z2(R3) (more precisely, it is a so-called De Rham
current, and it belongs to a certain closure of the space of smooth closed 2-forms;
see [DeR]). To represent the closed (and hence, exact) 2-form ωγ on R

3 as an
element of the quotient �1/d�0, we have to take d−1 of it. A 1-form d−1ωγ is
not uniquely defined, and it can be thought of as the δ-type 1-form supported on a
Seifert surface σ of the curve γ (Fig. 75). The coset of such a 1-form uσ belongs
to (a certain closure of) the space �1/d�0.

Figure 75. The 2-form ωγ is supported on the curve γ . The 1-form d−1ωγ is supported
on a Seifert surface σ .

Proposition 3.5. The pairing of the 1-form uσ with a divergence-free vector field
v, according to the rules of Chapter I (see formula (I.7.7)), coincides with the flux
of the field v across the surface σ .

Proof. Let µ be a volume form in the space R
3. Then the pairing of the (coset of

the) 1-form uσ and a divergence-free field v is

〈[uσ ], v〉 �
∫

R3
(ivuσ )µ �

∫
R3
uσ ∧ ivµ �

∫
σ

ivµ.
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The last integral is a coordinate-free expression for the flux of v across σ . �

We have identified knots with certain points in the dual space S Vect(R3)∗. The
coadjoint action of volume-preserving diffeomorphisms on knots is geometric, and
hence all knots isotopic to a given one constitute a coadjoint orbit. The same con-
sideration is applicable to links as well. Thus, the classification of knot invariants,
though difficult enough by itself, becomes part of a much more complicated ques-
tion on classification of all Casimir functions for the group of volume-preserving
diffeomorphisms of the space R

3 (or of the three-dimensional sphere S3).

Proposition 3.6 [M-W]. Identify the set of isotopic knots with a coadjoint orbit of
the group of volume-preserving diffeomorphisms of R

3. Then the Kirillov–Kostant
symplectic structure on this set coincides with the Marsden–Weinstein symplectic
structure.

Proof. Assume that two fields v and w in R
3 define two variations of a curve γ .

Then the Kirillov–Kostant symplectic structure on the coadjoint orbit at the point
ωγ associates to these variations the number

〈ωγ , [v,w]〉 :� 〈d−1ωγ , [v,w]〉 � 〈uσ , −{v,w}〉
� −
∫

R3
(i{v,w}uσ )µ � −

∫
R3
uσ ∧ (i{v,w}µ).

Here we have used the fact that the commutator in the Lie algebra of vector fields
is equal to minus their Poisson bracket. Since {v,w} � − curl(v × w), we have,
according to the definition of curl(v × w),

−i{v,w}µ � icurl(v×w)µ � dα.
Here α is the 1-form related to the vector field (v×w) by means of the Riemannian
metric: α(ξ) � (v × w, ξ) for any vector field ξ . Then

〈ωγ , [v,w]〉 �
∫

R3
uσ ∧ dα �

∫
R3
duσ ∧ α �

∫
R3
ωγ ∧ α.

The last integral, by definition of the 1-form α, is the circulation of the field v×w
along γ , or, equivalently, the volume of the collar spanned by the variations v and
w of the curve γ :∫

R3
ωγ ∧ α �

∫
S1

vol
(
γ ′, v, w

)
dx � β(v,w).

This is the symplectic structure given in Definition 3.1. �

Remark 3.7. Note that the coadjoint orbits corresponding to knots satisfy a kind
of “quantization” condition. Associate to every knot a narrow current supported
in a tubular neighborhood of the knot and whose flux across any transverse to the
neighborhood is equal to 1. The flux of this current across a Seifert surface of any
other knot is an integer.
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Ifm is a point of such a “quantized” orbit, then the orbit of the point λm (λ ∈ R)

for a nonintegral λ does not correspond, in general, to a (nonparametrized) knot. It
follows from the description of the coadjoint orbits as of the cosets [α] of 1-forms
modulo differentials: The form λ ·α corresponds to the orbit λm. These knot-type
orbits of the coadjoint representation depend on the form period

∮
α as a parameter.

The orbits of nonparametrized knots correspond to the 1-forms of period 1 in the
description via cosets.

Consider the coadjoint orbit of one such link or knot. The considerations above
imply that this “manifold” has the following peculiar property: The values of
the “coordinates” of its points, equal to the linking numbers with other knots, are
always integers, except for those knots that intersect the given one. In this sense the
orbit is similar to a polyhedron whose faces are parallel to the coordinate subspaces
and have integer-valued projections along these subspaces. The simplest example
of a polyhedron of this type is a broken line on a chessboard consisting of parts of
the square boundaries.

In general, one can think of these elements as a certain subset of the dual space,
somewhat similar to the set of those points in a vector space with at least one
coordinate being an integer. Presumably, replacing the integral coefficients of the
knots forming the links by the rational ones, one obtains a set that is dense in some
reasonable topology.

Remark 3.8. The space C can also be endowed with a natural almost complex
structure: a continuous operator field Jγ : Tγ C → Tγ C such that J 2

γ � −1 for
all γ ∈ C. This operator has a simple geometric meaning: Every variation field v
along the curve γ is sent to another field Jv along γ whose vectors Jv(x) at each
point are obtained from v(x) through a rotation by π/2 in the positive direction
in the plane normal to γ ′(x) (see Fig. 76).

It turns out that the curvature tensor of this structure vanishes [PeS, Bry1]. In fi-
nite dimensions, this condition would be enough to introduce complex coordinates
on the manifold (using the Newlander–Nirenberg theorem, [N-N]). However, the
construction of complex coordinates does not carry over without restrictions to ar-
bitrary infinite-dimensional manifolds. Here we deal with the infinite-dimensional
manifold of all C∞ curves, and one can show that it does not admit a complex
structure [Lem, Wan]. According to V. Drinfeld and C. LeBrun, the situation is
different in the category of analytic knots in an analytic manifold; see the discus-
sion in [Bry1]. (We refer to [PeS] for a discussion of geometric quantization for
vortex configurations.)

Note also that the moduli space of isometric maps of a circle into Euclidean
space R

3 (modulo orientation-preserving Euclidean motions) admits a complex
structure [MiZ]. Another example of an infinite-dimensional complex manifold is
given by a typical Virasoro coadjoint orbit; see [Ki3].

Remark 3.9. The above structures, as well as most of the dynamical systems we
discuss below, can be defined on a bigger set C̄ of immersed knots, which has a
nicer topology; see [Bry1]. The latter set is obtained by allowing the immersions
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v

Jv
J

dg
dx

Figure 76. An immersed knot and the almost complex structure in the space of knots.

γ to have self-intersections in a finite number of points and of finite multiplicity
(Fig. 76). The extension of the invariants of knots from the set C to the space of
immersed knots C̄ is a cornerstone of the Vassiliev theory of knot invariants of
finite order [VasV].

At first glance it seems that the space of singular knots with one self-intersection
has (infinite) dimension that is one less than that of the symplectic space (the coad-
joint orbit) of regular knots in the space of all circle immersions, and hence, it can-
not carry a symplectic structure. This is, however, not the case. The corresponding
coadjoint orbit has dimension two less than that of the regular knot: The singular
knots with one double point (of a given topological type) form a two-parameter
family of orbits (since the integral of the corresponding 1-form along each of the
two loops is an invariant), while the regular knot orbits of a given topological
type form a one-parameter family (the invariant being the integral along the whole
knot).

3.B. Filament, nonlinear Schrödinger, and Heisenberg chain
equations

To define a dynamical system on the (symplectic) space of nonparametrized (im-
mersed) oriented knots C̄ (the closure of the set of embedded curves C), we need a
Hamiltonian function. A natural choice of the function H is the length functional
on curves:

H(γ ) :� length of γ �
∫
S1

√
(γ ′(x), γ ′(x)) dx.
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Note that just as in ideal hydrodynamics, to define the motion we need to specify
the Riemannian metric, in addition to the volume form on the manifold.

Definition 3.10. The evolution equation for the length Hamiltonian function H ,
with respect to the symplectic Marsden–Weinstein structure, is called the filament
equation.

The time evolution γ (x, t) of the curve γ (x, 0), x ∈ S1, according to the
filament equation, is

(3.1)
∂γ

∂t
� k(x, t)∂γ

∂x
× ∂

2γ

∂x2
,

where k(x, t) is the curvature of the curve at the point x at time t .
Indeed, the variational derivative δH

δγ
is

−(length of γ )−1 d
2γ

dx2

for (a multiple of) arc-length parametrization x. Then, the corresponding Hamil-
tonian field can be found, say, by using the almost complex structure Jγ :

sgradH � −(length of γ )−1Jγ

(
δH

δγ

)
� (length of γ )−2Jγ

(
d2γ

dx2

)

� (length of γ )−2

(
dγ

dx
× d

2γ

dx2

)
.(3.1′)

The return from the arc-parametrization to an arbitrary one results in the curvature
factor k(x, t) in equation (3.1).

Remark 3.11. Hasimoto noticed in [Has] that the filament equation (3.1) is equiv-
alent to the nonlinear Schrödinger equation

(3.2) −i ∂ψ
∂t
� ∂2ψ

∂x2
+ 1

2
|ψ |2ψ

for a complex-valued wave function ψ : S1 → C. This equation is known to be a
completely integrable infinite-dimensional system and to possess soliton solutions
(see, e.g., [DKN]).

The transformation reducing one of the equations to the other is called the
Hasimoto transformation:

ψ(x, t) � k(x, t) exp

(
i ·
∫ x

0
τ(u, t) du

)
,

where τ(u, t) is the torsion of the curve γ at the point u and time t .
The paper [LaP] shows that the Hasimoto transformation respects the Hamil-

tonian property of the equations: It sends the Marsden–Weinstein structure on
curves to a certain (nonconstant) Poisson structure on wave functions.
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Remark 3.12. Another equivalent form of the filament equation is the equation
of gas dynamics we dealt with in Section 2. Rewriting equation (3.1) in the Frenet
frame of γ , one obtains the evolution equations on the curvature k(x, t) and the
torsion τ(x, t), which in the coordinates ρ :� k2 (“energy density” of the curve)
and τ are

{
∂tρ + ∂x(ρτ) � 0,

∂t τ + τ∂xτ � ∂x
(

1
4ρ + 1

2ρ
−1/2∂2

xρ
1/2
)
,

where ∂x :� ∂/∂x and ∂t :� ∂/∂t ; see [Tur]. Thus ρ and τ become the velocity
and density fields for a one-dimensional fluid.

Remark 3.13. The Heisenberg magnetic chain provides one more version of the
filament equation. This equation describes the dynamics of the vector function
L(x) ∈ R

3, x ∈ S1:

(3.3)
∂L

∂t
� L× ∂

2L

∂x2
.

One immediately obtains this equation from (3.1) by using the arc-parametri-
zation x along the curve γ . Indeed, the filament equation (3.1–3.1′) assumes the
form

∂γ

∂t
� ∂γ

∂x
× ∂

2γ

∂x2
,

equivalent to equation (3.3) for the corresponding tangent vector L :� ∂γ /∂x.
The vector L(x) ∈ R

3 can also be regarded as an element of the three-
dimensional Lie algebra so(3). From this point of view equation (3.3) is a particu-
lar case of the Landau–Lifschitz equation, which can be associated to an arbitrary
finite-dimensional Lie group, or rather to the corresponding gauge group.

Remark 3.14. The filament equation can be regarded as an “approximation” of
the Euler–Helmholtz equation for the vorticity concentrated on a curve if one
considers the contribution of the local terms only; cf. Section I.11.C. The integrable
dynamics in this case is a consequence of the approximation. The inclusion of the
next (nonlocal) term into the picture makes the dynamics much more complicated;
see [KlM].

3.C. Loop groups and the general Landau–Lifschitz equation

Let G be a finite-dimensional matrix group with a nondegenerate Killing form
〈A,B〉 � tr(AB) for A,B ∈ G; i.e., a reductive group (one can think of SO(3)
in the example above, or the group of all nondegenerate matricesGL(n)), and let
g be the corresponding Lie algebra.
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Definition 3.15. The loop group G̃ (or the gauge group) is the group ofG-valued
functions on the circle G̃ � C∞(S1,G)with pointwise multiplication. The corre-
sponding loop Lie algebra g̃ is the Lie algebra of g-valued functions on the circle
with pointwise commutator.

Definition 3.16. The Landau–Lifschitz equation is the evolution equation

∂tL � L× ∂2
xL

for a vector-valued function x �→ L(x) ∈ R
3 on the circle x ∈ S1 and ∂2

x :� ∂2

∂x2 .
More generally, the Landau–Lifschitz equation associated to a Lie algebra g is

the following evolution equation:

(3.4) ∂tm � [m, ∂2
xm],

where m is a g-valued function on S1.

According to the latter definition, the classical Landau–Lifschitz equation (3.3)
is associated to the Lie group so(3) upon the identification of the vectors in R

3

with angular velocities, the elements in so(3):

L � (v1, v2, v3) �→
( 0 v3 −v2

−v3 0 v1

v2 −v1 0

)
.

Theorem 3.17. The Landau–Lifschitz equation associated to a Lie algebra g is the
Euler equation corresponding to the loop group G̃with the quadratic Hamiltonian
function

H(m) � 1

2

∫
S1

tr (∂xm)2 dx

on the dual space g̃∗, where ∂xm is the g-valued function, and tr stands for the
trace in the matrix algebra g.

Proof. The inverse inertia operator A−1 : g̃∗ → g̃ corresponding to this Hamil-
tonian sends a (g∗-valued) function m to the (g-valued) function −∂2

xm. Then the
Euler equation assumes the form

∂tm � ad∗A−1m m � −[∂2
xm, m],

equivalent to (3.4). �

Corollary 3.18 (see, e.g., [A-L]). The classical Landau–Lifschitz equation (3.3) is
the Hamiltonian equation on the dual space s̃o(3)∗ with the Hamiltonian function

H(L) � −
∫
S1
(∂xv1)

2 + (∂xv2)
2 + (∂xv3)

2 dx

(here L(x) � (v1(x), v2(x), v3(x)) ∈ R
3 � so(3)∗).
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The papers [A-L, Luk6] contain the calculations of the sectional curvatures
of the loop group S̃O(3) with respect to the right-invariant Riemannian metric
induced by the Hamiltonian function H(L).

§4. Sobolev’s equation

Studying fluid oscillations in a fast rotating tank, and starting with the correspond-
ing approximating equation

(4.1)
∂v

∂t
− k(v × ez)+ grad p � F, div v � 0

(with unknowns v and p), S.L. Sobolev obtained an equation of unusual type, now
named after him.

Definition 4.1. The Sobolev equation is the equation

(4.2)
∂2�u

∂t2
+ ∂

2u

∂z2
� 0

for the unknown function u.

Remark 4.2. Equation (4.1) is the the linearization of the Navier–Stokes equation
in a rotating domain. Typical examples are atmospheres of planets and fuel tanks
of rotating projectiles. Poincaré [Poi2] reduced the linear system (4.1) to one
equation (4.2). The latter equation was named after Sobolev, who rediscovered it
in the forties and studied the corresponding boundary problems.

Sobolev’s work was declassified and published in [Sob2]. This paper was in
fact written in Kazan, perhaps in 1942. Sobolev’s neighbor was Pontryagin, and
they discussed many relevant problems in functional analysis. In particular, they
considered the “pseudo-Hilbert” spaces with one (studied by Sobolev) or a finite
number (studied by Pontryagin) of negative squares in the metric. These spaces
are now called Pontryagin spaces. Very few people know that the theory of these
spaces originated in the classified hydrodynamical work of Sobolev.

The work of Poincaré and of Sobolev was continued by Babin, Mahalov, and
Nicolaenko, who extended the equation to the case of fast rotation and shallow
domains, and considered nonlinear dynamics of the Navier–Stokes equation. Many
features of Sobolev’s study of the linear problem, such as the small denominators
and the Diophantine incommensurability conditions on the domains’ geometrical
parameters, reappear in [BMN]. It is shown in [BMN] that solutions of the 3-D
Euler and Navier–Stokes equations of uniformly rotating fluids can be decomposed
into the sum of the following terms: a solution of the 2-D Euler (or Navier–Stokes)
system with vertically averaged initial data, a vector field explicitly expressed in
terms of the phases, and a small remainder.

Remark 4.3. To derive the Sobolev equation from the system (4.1) with F � 0
(see [GaS] for details) we take the curl of both sides of the first equation. Since
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curl(a × b) � −{a, b}, this gives

(4.3)
∂ω

∂t
+ 2k

∂u

∂z
� 0, where curl u � ω.

Take the curl once more,

− ∂
∂t
�u+ 2k

∂ω

∂z
� 0,

and differentiate it in t to get

− ∂
2

∂t2
�u+ 2k

∂

∂z

∂ω

∂t
� 0.

Finally, substitute ∂ω/∂t � −2k∂u/∂z from equation (4.3) to obtain the Sobolev
equation

−∂
2�u

∂t2
− 4k2 ∂

2u

∂z2
� 0.

A study of the spectral problems for the linear Sobolev equation showed a
strong dependence of the eigen oscillations on the tank shape. Namely, after some
transformations, Sobolev found it necessary to investigate the two-dimensional
spectral problem

∂2u

∂x2
− λ∂

2u

∂y2
� 0, u|� � g

(as well as the corresponding homogeneous problem u|� � 0) in a plane domain
bounded by a curve �.

For a given value of the spectral parameter λ, the equation above is the Dirichlet
problem for the one-dimensional wave equation. Solving it by the method of
characteristics, one immediately encounters the strong dependence of the results
on the domain shape.

As we shall see below, on the boundary of the domain there appears a dynam-
ical system. The ergodic properties of this system have a strong impact on the
oscillation character.

Consider the case of a convex domain. Two families of characteristic lines cover
the domain. Each of these two families defines the diffeomorphism of the boundary
� into itself that is the involution exchanging the points of intersection of each
characteristic with the boundary. The above-mentioned dynamical system on the
boundary curve is the diffeomorphism of the curve � that is the composition of
two involutions corresponding to the two families of characteristics.

In terms of this diffeomorphism T : �→ �, the solution of the above Dirichlet
problem (for a fixed λ) is constructed as follows. First, by a linear change of
variables, we transform the characteristics into the straight lines x � const and
y � const. Our problem assumes the form

∂2u

∂x ∂y
� 0, u|� � g.
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The solution u is the sum of two functions f (x)+ h(y), one of which depends
only on x and the other only on y. To look for these functions, we fix some
boundary point A and choose the value of one of the functions at this point (e.g.,
f (A)) arbitrarily. Then the value of the second function is determined by the
boundary condition (i.e., h(A) � g(A)− f (A)).

LetB be the intersection of the characteristic line of the first family (x � const)
passing through A and the boundary �. At the point B we already know the value
of the first function (it is the same as at the point A; i.e., f (B) � f (A)). Then
the value of the second function h at B is determined by their sum g(B) (namely,
h(B) � g(B)− f (B) � g(B)− f (A)). Further, the characteristic of the second
family (y � const) passing through B intersects the boundary � at the point
A′ � TA (Fig. 77). We already know the value of the second function along this
line (which is the same as that at B: h(A′) � h(B)). Given the sum g(A′), we find
the value of the first function atA′ (here f (A′) � g(A′)−h(A′) � g(A′)−h(B) �
g(A′)− g(B)+ f (A)) and so on.

A

B
A'

B'A''

Figure 77. Constructing the solution of the Dirichlet problem for the wave equation from
two families of characteristics.

The infinite process of constructing the solution is described by a piecewise-
linear trajectory. This trajectory is constituted by the intermittent segments of the
characteristics joining the points A(n) � T nA. The solution is the sum of the
initial value and the alternating sum of the boundary values at the vertices of the
piecewise-linear trajectory.

The properties of the dynamical system T : �→ � have the following impact
on the solutions of our Dirichlet problem. Suppose that T has a periodic trajectory,
T nA � A. Then the alternating sum of values of the boundary function g at
the vertices of the corresponding piecewise-linear trajectory ABA′B ′ · · ·A must
be equal to zero. Hence, each periodic trajectory of the map T corresponds to a
solvability condition for the Dirichlet problem (and therefore, to a certain nontrivial
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“distributional solution” of the corresponding homogeneous equation, “supported
near” this periodic trajectory).

There are more subtle properties of the dynamics of T that also affect the
solvability of the Dirichlet problem (see details, e.g., in [Arn2, FoP]).

Consider first an elliptic domain. In this case, the diffeomorphism T becomes
a rotation after an appropriate choice of the angle coordinate on the boundary.
Indeed, an ellipse can be turned into a circle by an affine transformation of the
plane. The characteristics of both families will turn into two families of parallel
lines forming an angleαwith each other. The mapT will become the circle rotation
by the angle 2α (by virtue of the “inscribed angle” theorem).

Depending on whether the angleα is commensurable with 2π or not, the orbits of
the rotationT either consist each of a finite number of points (repeating periodically
with the same period for all initial points) or are everywhere dense on the circle.

In the first (“resonance”) case, the solution of the nonhomogeneous equation
exists if and only if the function g satisfies an infinite number of independent
conditions. The corresponding homogeneous problem has an infinite-dimensional
space of solutions.

When the angle α is not commensurable with 2π , any T -orbit is everywhere
dense (it is the second, “ergodic,” case). Here the situation is more complicated.
Formally, one can find the solution as a Fourier series. However, its convergence
relies on the arithmetic Diophantine properties of the irrational number α/2π
(as well as in what functional space the problem is considered). For almost all
(in the sense of Lebesgue measure) irrational numbers α/2π , the corresponding
homogeneous problem has the unique solution u � 0. The nonhomogeneous
problem has, in this case, a (smooth) solution for every sufficiently smooth right-
hand side g (the necessary smoothness of g increases as the required smoothness
of the solution increases; for an analytic solution the analyticity of the right-hand
side is sufficient).

The case of an ellipse, discussed above, is not generic, since the dynamics of
the corresponding diffeomorphism T is integrable. (According to Yurkin [Yur]
a domain bounded by ellipses is the only type of cavity in a rotating symmetric
top for which the study of oscillations described by the Sobolev equation can
be reduced to a finite-dimensional problem.) For a typical boundary curve the
diffeomorphism T cannot, in general, be reduced to a rotation, no matter what
angle coordinate on the curve is chosen.

In the space of all diffeomorphisms (and hence, in the space of curves �), the
structurally stable diffeomorphisms form an open and everywhere dense set. Such
diffeomorphisms are of “resonance type” with a finite number of periodic orbits
(all of which have the same period) and alternating attractors and repulsers.

People working in the axiomatic theory of dynamical systems usually assume
that “generic” events are those occurring on an everywhere dense open set in the
space of systems. From this viewpoint “generic” circle diffeomorphisms are the
structurally stable ones.
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However, from the physics point of view, these structurally stable systems are
not the most widespread. Consider, for instance, a family of circle diffeomorphisms
x → x + a + b sin x (mod 2π ), where a and b are parameters. For most of the
points (a, b) in the rectangle 0 ≤ a ≤ 2π , 0 ≤ b ≤ β of a sufficiently small
height β, the diffeomorphism does not have periodic points at all, and one can
make it into a rotation by choosing an appropriate coordinate on the circle. (This
will be the rotation by an angle incommensurable with 2π .) Every orbit of such
a diffeomorphism is everywhere dense on the circle. For almost all values of the
rotation angle, the solvability question for the Dirichlet problem, corresponding
to such a diffeomorphism T , turns out to be the same as that for the integrable
case of an elliptic boundary.

For instance, for the near-elliptic domains the “ergodic” situations are encoun-
tered in an overwhelming majority of cases, while the “resonance” ones are rare
(but form an open and everywhere dense set) in the space of ellipse deformations;
see [Arn2].

We return now to the initial spectral problem with the parameter λ. For a typical
boundary �, the two types of behavior of the dynamical system T � T (λ) on the
curve � alternate as λ changes. If � is a typical small perturbation of an ellipse,
then the resonance values of the parameter λ (for which nontrivial eigenfunctions
arise) form an infinite everywhere dense set (of small measure) on the axis λ. The
ergodic values of λ (i.e., the values λ for which T (λ) reduces to the circle rotation
by a smooth coordinate change) form a Cantor-type set of almost full measure (for
small perturbations of an ellipse).

As we can see, all topological subtleties of the nonlinear theory of dynamical
systems (in particular, of their perturbation theory) appear in hydrodynamics in
studying the spectrum of the linear problem of small oscillations of a fluid.

After S.L. Sobolev, the spectral problem was studied by R.A. Alexandryan and
his school (see [Ale]). We mention the series of papers by S.G. Ovsepjan [Ovs],
in which the case of a nonconvex boundary was treated.

In the nonconvex case a new difficulty arises: A characteristic line intersects the
boundary in more than just two points, so that the “dynamics” T turns out to be
multivalued (or branching). The ergodic properties of this branching multivalued
dynamics form an interesting, but an insufficiently explored, part of the theory of
dynamical systems.

Consider, for example, a circle diffeomorphism that becomes a multivalued al-
gebraic correspondence of an algebraic curve into itself when the diffeomorphism
is extended into the complex domain. This means that the graph of the diffeomor-
phism is one of the components of a real algebraic curve on the Cartesian square of
another algebraic curve. One believes that the number of attractors of such a dif-
feomorphism is bounded by a constant, depending only on the discrete invariants
of the correspondence (the genera of the curves and the degree of the correspon-
dence). However, it has been proved only for the correspondences univalued in
one of the directions (say, for polynomial or rational maps of the Riemann sphere
into itself); see [Jak, Herm].
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Remark 4.4. The Dirichlet problem for the one-dimensional wave equation is
encountered in many problems of different origins. For instance, J.-P. Dufour
[Duf] treated in detail its local analogue for algebraic curves with singularities
(say, x2 � y3). This problem arises in the study of symmetry loss (for example,
for the classification of Morse functions in a neighborhood of the fixed point of
the line involution x →−x, or for the classification of pairs of line involutions in
a neighborhood of the common fixed point); see the survey of S. Voronin [Vor].

An analogous method was used in [Arn1] in the study of the representations of
functions on trees by sums of functions of the coordinates, which is related to the
13th Hilbert problem. It is interesting that the main trick in all these problems is the
composition of the alternating sums of values of a known function along a piece-
wise characteristic, and it is exactly the same as the one used in hydrodynamics
in the study of spectral problems for the Sobolev equation.

§5. Elliptic coordinates from the hydrodynamical viewpoint

Imagine an electrically charged metallic ellipsoid. A theorem going back to New-
ton [NewI] and Ivory [Ivo] states that the potential (of the electrostatic field)
induced by the charges is constant inside the ellipsoid, while outside of it the
equipotential surfaces are the ellipsoids confocal to the initial one. As we shall see
below (following [Arn12, ShV]), this fact, as well as its higher-dimensional gen-
eralizations, has a genuine hydrodynamical flavor: The electromagnetic fields of
this type are generated by incompressible flows of electric charges along quadrics.

5.A. Charges on quadrics in three dimensions

We start with a quadric surface (say, ellipsoid)Q in three-dimensional space and
include it first in the family of confocal quadrics.

Definition 5.1. For a quadricQ defined by the equation

x2

a1
+ y

2

a2
+ z

2

a3
� 1,

the confocal family of quadricsQcnf(λ) is the following family of surfaces:

Qcnf(λ) �
{

x2

a1 + λ +
y2

a2 + λ +
z2

a3 + λ � 1

}
.

The quadrics of the family change signature at λ � −a1,−a2, or −a3. For
instance, for a hyperboloid of one sheet with a1 > a2 > 0 > a3 the family consists
of the hyperboloids of two sheets for−a1 < λ < −a2, of the hyperboloids of one
sheet for −a2 < λ < a3, and of the ellipsoids for a3 < λ (Fig. 78).

We will also use another family of quadrics containing our initial surface Q:
quadrics homothetic toQ with center at the origin. First letQ be an ellipsoid.
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Definition 5.2. A homeoidal density on the surface of an ellipsoidQ is the density
of a layer betweenQ and an infinitely nearby ellipsoid homothetic toQ.

Now we can make mathematical sense of the “free distribution of electric
charges” on the surface of an ellipsoid:

Theorem 5.3 (Ivory Theorem, see [Ivo, Arn12]). A finite mass distributed on
the surface of an ellipsoid with homeoidal density does not attract any internal
point; it attracts every external point the same way as if the mass were distributed
with homeoidal density on the surface of any smaller confocal ellipsoid.

The attraction of the charges is defined by the Coulomb (or Newton) law: In R
n

the force is proportional to r1−n (as prescribed by the fundamental solution of the
Laplace equation).

In the counterparts of Ivory’s theorem for hyperboloids, one replaces the
homeoidal densities on ellipsoids by harmonic forms of different degrees, and
the Coulomb potential by the generalized potentials related to the Biot–Savart
law.

In the simplest nontrivial case of a hyperboloid H of one sheet in three-
dimensional Euclidean space, the result is as follows. Consider the intersection
curves of the hyperboloid with other quadrics of the confocal family Hcnf(λ).
We will be referring to the intersections with confocal ellipsoids (respectively,
confocal hyperboloids of two sheets) as parallels (respectively, meridians) of H .
(Notice that the parallels and meridians are orthogonal to one another at every
point of the hyperboloid; Fig. 78. This is the theorem on the existence of an or-
thogonal eigenbasis for a symmetric matrix, applied to the Legendre dual family
of quadrics; see, e.g., [A-G].)

(
1
)

(
2
)

Figure 78. Quadrics of the confocal family intersect a hyperboloid along the orthogonal
system of curves.
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The hyperboloid H divides the space R
3 into two parts, “internal” I (H) and

“external” E(H), the latter being non-simply connected. The region inside the
hyperboloidal tube is also smoothly fibered by meridians (orthogonal to the ellip-
soids in the confocal family), while the annular region outside the hyperboloid is
smoothly fibered by parallels (orthogonal to the hyperboloids of two sheets).

Theorem 5.4 [Arn12]. There exists a unique (modulo a constant factor) surface
current flowing along the meridians of the hyperboloid that produces a magnetic
field that vanishes in the inner domain and is directed along parallels in the
exterior domain of the hyperboloid. Similarly, there exists a unique (modulo a
constant factor) surface current flowing along the parallels of the hyperboloid
that produces a magnetic field that vanishes in the exterior domain and is directed
along meridians in the inner domain of the hyperboloid.

The magnetic field in the inner domain for the hyperboloid, but outside of a
charged ellipsoid from the same confocal family, coincides modulo sign with the
electrostatic field of the ellipsoid. Furthermore, let us look at the electrostatic field
produced by two charges of opposite signs, “equal in magnitude,” and distributed
with homeoidal density on the surfaces of a conducting hyperboloid of two sheets.
This field between the surfaces coincides (modulo sign) with the magnetic field in
the exterior domain of a confocal hyperboloid of one sheet. The explicit formulas
are given below.

Remark 5.5. The vector fields given by Theorem 5.4 are exact stationary solu-
tions of the corresponding Euler equations of an incompressible fluid flowing,
respectively, inside or outside of the hyperboloid in R

3. The flow is potential in
the inner domain of a triaxial hyperboloid, and it is vorticity-free in the exterior
domain.

5.B. Charges on higher-dimensional quadrics

Let Q be a nondegenerate quadric centered at the origin of Euclidean n-
dimensional space. Include it in the family of confocal quadrics

Qcnf(λ) :�
{

n∑
i�1

x2
i

ai + λ � 1

}
,

as the hypersurface corresponding to λ � 0. Let us order the axes as follows:
an < · · · < a1.

Definition 5.6. The elliptic coordinates of a point x ∈ R
n is the set of n values of

λ (in increasing order) for which a quadric of the familyQcnf(λ) passes through x.
Note that it is an orthogonal coordinate system, since the confocal quadrics meet
at right angles.
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The results formulated above for the three-dimensional case have been extended
by B. Shapiro and A. Vainshtein [ShV] to hyperboloids in Euclidean spaces of
any number of dimensions. A nonsingular hyperboloid H in R

n, diffeomorphic
to Sl ×R

k , divides the space into the exterior region E(H) (diffeomorphic to the
product of Sl with a half-space) and the interior I (H).

Let ω be a differential form with distribution coefficients (see [DeR]). The form
is said to be harmonic off a hypersurface� if it is continuous off this hypersurface,
coclosed (i.e., δω � 0, where δ is the operator conjugate to the external derivative
d; see Section V.3.B), and if its exterior derivative is a form (with distribution
coefficients) supported on �.

Theorem 5.7 [ShV]. Given a hyperboloid H there exists a unique (modulo a
constant factor) l-form harmonic off H , decomposable in elliptic coordinates,
and vanishing in the interior region I (H), and there exists a unique (modulo a
constant factor) k-form harmonic off H , decomposable in elliptic coordinates,
and vanishing in the exterior E(H).

These forms are induced by certain homeoidal densities on the focal quadrics,
which are the limiting quadrics of the confocal family, when the shortest axis of the
hyperboloids or ellipsoids shrinks to zero. We refer to [ShV] for explicit formulas
and proofs.

For the hyperboloids of indices (1, n − 1) and (n − 1, 1), one can give the
following magnetohydrodynamical meaning to those densities.

Let H 1 be a nondegenerate quadric with an < · · · < a2 < 0 < a1 (and
a quadric Hn−1, with an < 0 < an−1 < · · · < a1, respectively). Similar to
the above, the exterior region E(Hn−1) for the hyperboloid Hn−1 is fibered by
parallels (diffeomorphic to a circle) by fixing the values of all n − 1 elliptic
coordinates positive in E(Hn−1). The inner domain I (H 1) for the quadric H 1 is
fibered by meridians (diffeomorphic to a line) by fixing the values of all n − 1
elliptic coordinates negative in I (H 1).

Theorem 5.7′ [ShV]. There exists a unique (modulo a constant factor) potential
flow of an incompressible fluid in the inner domain I (H 1) whose trajectories
coincide with the meridians. Similarly, there exists a unique (modulo a constant
factor) flow of an incompressible fluid in the exterior region E(Hn−1) whose
vorticity vanishes and the trajectories of which are the parallels.

By construction, both of the flows are directed along the remaining elliptic
coordinate. Say, in the 3-dimensional case, one has the following explicit formulas
for the corresponding vector fields v1 and v2 in the regions I (H 1) and E(H 2),
respectively, in the elliptic coordinates λ1 > λ2 > λ3 (see [ShV]):

v1 � λ2 − λ3

�(λ2)�(λ3)

∂

∂λ1
and v2 � λ1 − λ2

�(λ1)�(λ2)

∂

∂λ3
,
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where

�(λi) �
√
(λi + a1)(λi + a2)(λi + a3).

Noncomputational proofs of these geometric theorems are unknown, even in the
three-dimensional case.

Question 5.8. The presence of distinguished forms that are harmonic off hyper-
boloids suggests that one might try to find filtrations, analogous to those arising
in the theory of mixed Hodge structures, in spaces of differential forms on non-
compact real algebraic and semialgebraic varieties.
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[Arn13] Arnold, V.I., Evolution of a magnetic field under the action of translation and
diffusion, Uspekhi Mat. Nauk (in Russian) 38 (1983), no. 2, 226–227; On the
evolution of magnetic field under the action of translation and diffusion, Some
problems of contemporary analysis (V.M. Alekseev memorial volume) Moscow
University Press (1984), 8–21.

[Arn14] Arnold, V.I., Exponential dispersion of trajectories and its hydrodynamical ap-
plications, in N.E. Kotchin and Development in Mechanics, Moscow, Nauka
(1984), 185–193.

[Arn15] Arnold, V.I., Geometrical methods in the theory of ordinary differential equa-
tions, Springer-Verlag, New York–Berlin, 1988, 351 pp.

[Arn16] Arnold, V.I., Mathematical methods of classical mechanics, Springer-Verlag,
New York, 1989, 508 pp.

[Arn17] Arnold, V.I., Ten problems, Advances in Soviet Math., vol. 1, AMS Providence
(1990), 1–8.

[Arn18] Arnold, V.I., Kolmogorov’s hydrodynamic attractors, Proc. Roy. Soc. London
Ser. A, 434 (1991), no. 1890, 19-22.

[Arn19] Arnold, V.I., Topological and ergodic properties of closed 1-forms with in-
commensurable periods, Funct. Anal. and Appl. 25 (1991), no. 2, 1–12;
Polyintegrable flows, St. Petersburg Math. J. 4 (1992), no. 6, 54–62.

[Arn20] Arnold, V.I., Mathematical problems in classical physics, Trends and Perspec-
tives in Applied Math., Appl. Math. Sci. 100 (1994), Springer, New York, 1–20.

[Arn21] Arnold, V.I., Topological Invariants of Plane Curves and Caustics, University
Lecture Series, vol. 5, AMS Providence, RI, 1994, 60 pp; Plane curves, their
invariants, perestroikas and classifications, Adv. in Sov. Math., vol. 21, AMS,
Providence (1994), 33–91; Invariants and perestroikas of plane fronts, Proc.
Steklov Institute of Math., Moscow 209 (1995), 11–56; Geometry of spherical
curves and algebra of the quaternions, Russ. Math. Surveys 50 (1995), no. 1,
3–68.

[Arn22] Arnold, V.I., Symplectic geometry and topology, preprint Ceremade, Paris
24/02/94 (1994), 1–51.



References 347

[Arn23] Arnold, V.I., Remarks on eigenvalues and eigenvectors of Hermitian matrices,
Berry phase, adiabatic connections, and quantum Hall effect, Selecta Mathe-
matica, New Series 1 (1995), no. 1, 1–19.

[Arn24] Arnold, V.I., Some remarks on symplectic monodromy of Milnor fibrations, The
Floer memorial volume, Progr. Math., 133 Birkhäuser, Basel (1995), 99–103.
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[Moy] Moyal, J., Quantum mechanics as a statistical theory, Proc. Cambridge Phil.
Soc. 45 (1949), 99–124.

[MuR] Murometz, Y. and Razboynik, S., Integrability of models of two-dimensional tur-
bulence, Integrable and superintegrable systems, ed. B.A. Kupershmidt, London:
World Scientific (1990), 34–45.

[Nad] Nadirashvili, N.S., Wandering solutions of the Euler 2D equation, Funct. Anal.
Appl. 25 (1991), no. 3, 220–221.

[NHK] Nakamura, F., Hattori, Y., and Kambe, T., Geodesics and curvature of a group
of diffeomorphisms and motion of an ideal fluid, J. Phys. A 25 (1992), no. 2,
L45–L50.

[Nash] Nash, J., The imbedding problem for Riemannian manifolds, Ann. Math. 63
(1956), no. 1, 20–63.

[Ner1] Neretin, Yu.A., Representations of the Virasoro algebra and affine algebras, Itogi
nauki. Fundamentalnye napravleniya 22 (1988), VINITI, Moscow, 163–224;
English transl.: Encyclopaedia of Math. Sci., Springer-Verlag.

[Ner2] Neretin, Yu.A., Categories of bistochastic measures, and representations of
some infinite-dimensional groups, Rus. Acad. Sci. Sb. Math. 75 (1993), no. 1,
197–219; Mantles, trains, and representations of infinite-dimensional groups,
First European Congress of Math., Vol. II (Paris 1992), Progress Math. 120,
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ABC flows, 72–73, 286–287
action along a path, 231

least action principle, 1, 16
action–angle variables, 100, 308
adjoint operator, 4

orbit, 8
representation, 4

Aharonov–Bohm effect, 199
almost complex structure, 330
angular momentum, 15, 50

relative to the body, 16
relative to the space (or spatial), 16

angular velocity, 4, 15
relative to the body, 15
spatial, 15

Anosov map, 265
antidynamo theorems, 273–277

discrete, 284–285
proofs of, 281–284

approximation
of generalized flows, 238
of vortex equation, 56–59

asymptotic
crossing number, 152–155
linking number, 140–144

attractor, 64, 66
dimension of attractor, 66
general, 279

Barotropic fluid, 318
Beltrami fields, 72

generalized, 110
Bernoulli function, 70, 110

surface, 111
sequence, 268

β-plane equation, 323
Betti number, 276
Berry phase, 58, 199
bi-Hamiltonian system, 309
bi-invariant (pseudo-)metrics, 252
Biot–Savart integral, 146
Borromean rings, 132(fig), 174(fig), 175
Brownian motion, 134
Burgers equation, 306

Calabi invariant, 246–249
integral, 249
form, 249

Calugareanu formula, 178
cascade of solitori, 168(fig)
Casimir functions, 47, 48, 312
cat map, 104(fig), 265(fig), 266, 288
characteristic path length, 202, 218
Chern–Simons functional, 189
circulations of vortices, 57
Clebsch variables, 324
coadjoint representation, 10–11

invariants of, 47–48
orbit, 11

coboundary, 304, 316
cocycle, 304, 316
cohomology complex, 316

group, 316
commutator in Lie algebra, 7

of vector fields, 7, 13
commutant subalgebra, 35, 257

subgroup, 35, 247
compatible Poisson structures, 309
completely integrable system, 308
complex structure, 330
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configuration space of fluid, 32
confocal quadrics, 340, 342
conformal modulus, 159
conjugate point, 224

first, 224, 224(fig), 241
conservation laws, 43–44, 55, 62
Coriolis-type term, 323
coset of, 1-forms, 33–34
cosymmetry, 114
covariant derivative, 119, 202
Cowling theorem, 274
cross-helicity, 55
crossing number, 152

asymptotic, 152, 153, 155
average, 153
topological, 154
of a knot, 155

curvature
constant negative, 197, 293
Ricci, 200
scalar, 201
sectional, 200

curvature tensor, 200
cut point, 240–241

De Rham current, 59, 186, 328
linking form, 147–151

degree
of a function, 157
of a map, 144
of a satellite link, 155

density form, 320
derivative

covariant, 199, 202
exterior, 32
inner, 32
Lie, 5–6, 32–33
Schwarzian, 317
variational, 291, 313

diameter problem, 226
diffeomorphism

attainable, 227–228
Hamiltonian, 242
structurally stable, 338
symplectic, 242
volume-preserving, 2

exact, 14, 35
see also specific properties

Dirichlet integral, 78

problem, 336
variational problem, 78–80

discrete flow, 234–235
displacement energy, 253
divergence, 125
dynamo

discrete, 261
dissipative, 261
fast, 260–261
in Ld -norm, 264
kinematic, 260
mean, 270
nondissipative, 261
rope, 286
self-consistent, 262
slow, 260

dynamo equation, 259
kinematic, 259
self-consistent, 262

dual space of a Lie algebra, 10, 33–34

Elliptic coordinates, 340, 342
energy, 2
E3/2-energy, 153
Hamiltonian function, 37
minimization, 75
of a curve, 160
of a vector field, 19, 75, 119
of MHD system, 50
relaxation, 129
second differential of, 86
spectrum of a knot, 162

energy-Casimir method, 95
energy-momentum method, 95–96
enstrophy invariants, 43
entrophy, 299–300
equation in variations, 88
Euler equation

of ideal hydrodynamics, 20
aproximation of, 56–59
generalized, 37
on Riemannian manifolds, 31
stationary, 69–70

of rigid body, 16–17
Euler–Helmholtz equation, 20, 56, see

also vortex equation
Euler theorem

first, 16
second, 16
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exact diffeomorphism, 14, 35
existence and uniqueness theorems in

hydrodynamics, 24–25
exponential instability, 100, 102, 216
extension of a Lie algebra, 304
exterior derivative, 32
extra symmetries, 113, 114
extremal fields, 76, 80, 120–121

Fast dynamo, 260–261
filament equation, 332–333
first cut point, 240–241

local, 241
first integral, 43–44, 308
fluid

barotropic (or isentropic), 318
compressible, 322–323
incompressible, 2
perfectly conducting, 323
viscous, 63–67
with a free boundary, 323

flux, 130, 159
focal quadrics, 343
Fokker–Planck equation, 277–281
form-potential, 125
form-residue, 180
force-free field, 71
frozen-in (or transported) field, 22–23, 49

Galerkin approximation, 63, 66
gas dynamics, 318, 333
Gauss–Bonnet theorem, 296
Gauss–Codazzi formula, 221
Gauss linking number, 130

theorem (or formula), 143
Gauss–De Rham linking form, 147–151
Gaussian integral, 186
Gelfand–Fuchs cocycle, 304, 317–318
generalized flow (GF), 236–238
genus of a knot, 156
geodesic, 198

flow, 293
variation, 201
submanifold, 210

Gibbs solution, 278
Godbillon–Vey class, 191–192
group, 1

of diffeomorphisms, 2
of symplectomorphisms, 242

Lie group, 1
unimodular, 97, 206

Hamiltonian function, 25
field, 25, 27
KdV structure, 313–314

Hamiltonian vortex approximations,
56–59

Hasimoto transformation, 332
Heisenberg magnetic chain, 333
Helmholtz (or vortex) equation, 20, 38,

47, 56, 99
helicity, 43, 121, 125

relative, 167
theorem, 141
invariance theorem, 122
see also Hopf invariant

Hessian matrix, 114, 223
Hofer’s metric, 252
holonomy

asymptotic, 187
average, 287
functional, 190

homeoidal density, 341
homoclinic point, 267, 268(fig)
homothetic quadrics, 340
homotopy formula, 33, 39, 275
Hopf invariant

of a field (or helicity), 43, 121, 125
of a map, 127, 128(fig), 174

Hopf vector field, 123, 141
horocycle, 294
horocyclic flows, 294
horseshoe, 267, 268(fig)

Immersed knot, 330–331, 331(fig)
incompressible fluid, 2
inertia operator, 14, 36–37
infinite conductivity equation, 324–325
inner automorphism, 3
inner product

on vector fields, 36
of a vector field with a form (or inner

derivative), 12, 32
Hermitian inner product, 108

inscribed angle theorem, 338
invariant of coadjoint action, 47–48
isentropic fluid, see barotropic fluid
isovorticed fields, 80
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Ivory theorem, 341

Jacobi equation, 201
identity, 7, 26

Jones–Witten functional
complex, 189
for a link, 185
for a vector field, 188

Kadomtsev–Petviashvili equation, 323
Kähler geometry, 326
KAM theory, 101, 133
KdV equation, see Korteweg–de Vries

equation
KdV Hamiltonian structure

first, 314
second, 313

kinematic dynamo, 260
kinetic energy, 2, 16, 29
Kirchhoff equations, 50
Kirillov–Kostant structure, 25, 329

see also Lie–Poisson structure
knot invariants, 183, 326

Jones–Witten, 185
Vassiliev, 183

Kolmogorov’s conjectures, 64
Korteweg–de Vries equation, 305
Kronecker symbol, 43, 46

Lagrangian coordinates, 49
instability, 216
submanifold, 253

Landau–Lifschitz equation, 333–334
Laplace–Beltrami operator, 123, 275
Lefschetz formula, 273

number, 273
asymptotic, 273

left-invariant metric, 14, 19, 196
Leibniz identity, 26, 40
Lenard scheme, 310, 310(fig), 314
Leray residue, 180
Lichnerowicz cocycle, 326
Lie algebra, 4, 7, 32

abstract Lie algebra, 7
of vector fields, 32
dual space of, 10
vector space of, 4

Lie bracket of vector fields, 32
Lie derivative, 6, 32, 39

Lie group, 1, 7, 32
Lie–Poisson structure (or bracket), 27,

310
lifting indices, 37, 322
linear Poisson bracket, see Lie–Poisson

bracket
linearized vortex equation, 99

Navier–Stokes equation, 296
link

essential, 132
satellite, 155
trivial, 132

link invariant
complex, 184
Jones–Witten, 185
Vassiliev, 183

linking form, 147–151
complex, 184

linking number, 130
asymptotic, 140(fig), 141, 144, 171
average, 141, 170–171
for cascades, 167
holomorphic, 181
mutual (or multilinking number),

171–172
of third order, 175

Liouville theorem, 308
Lobachevsky plane, 197, 293–294

absolute, 293
geodesic flow, 293

local invariants, 47
densities, 48

locally flat (or Euclidean) manifold, 216
loop group, 334

Lie algebra, 334
Lorentz force, 50, 120
Lyapunov

exponent, 267
stable point, 84

Magnetic diffusivity, 259
Reynolds number, 259

magnetic extension, 50–52
chain equation, 333

magnetohydrodynamics (MHD)
equations, 49, 120

Magri bracket, 313
Manakov method, 309
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Marsden–Weinstein symplectic structure,
326–327

Massey product, 175
Maurer–Cartan formula, 315
maximum principle, 283
metrics

comparison of, 226, 228
left-invariant, 14, 19, 196
right-invariant, 19
Hofer’s, 252

MHD equations, 49, 120
minimal element, 83
minimizer, 76, 78–80
Möbius transformation, 163
momentum, 15–16, 50
Monge–Ampère equation, 223
Morse function, 114
Morse index, 114

type of orbit, 114
Moser’s lemma, 136
Moyal product, 62
multiflow, 237
multilinking number, 171

Navier–Stokes equation, 63
Neumann problem, 136
Newlander–Nirenberg theorem, 330
null-homologous fields, 123, 125
nonlinear Schrödinger equation, 332

Orbit
adjoint, 8, 81
coadjoint, 11, 81
elliptic, 133
hyperbolic, 134

over-crossing number, 155

Pairing of dual spaces, 33–34
parallel translation, 198–199, 198(fig)
perfect eddy, 215
Poincaré recurrence theorem, 96–97
Poincaré duality, 142
Poisson

manifold, 26
pair, 309
structure, 26

compatible, 309
Lie–Poisson structure, 27, 310

Poisson bracket

constant, 311
linear (or Lie–Poisson), 27, 310
of fields, 5
of functions, 26, 28
of hydrodynamic type, 324

polymorphism, 82
polyvector, 22
principle of least action, 1, 16
pseudometric, 252

Quadrics, confocal, 340, 342
homothetic, 340

quasiclassical asymptotics, 277, 280

Rayleigh theorem, 92
regular point of foliation, 85
representation

adjoint, 4
coadjoint, 10–11

Reynolds number, 64
magnetic, 259

Ricci curvature, 200
Riemannian manifold, 33

metric on a group, 15
left-invariant, 15, 196

rigid body, 1, 16, 63
in a fluid, 50, 323
with a cavity, 323

right-invariant metric, 19
rope dynamo, 286
rotation class, 36
Routh method, 95
Ruelle–Takens conjecture, 66

Sakharov–Zeldovich problem, 134
satellite link, 155
Schrödinger equation, nonlinear, 332
Schwarzian derivative, 317
second differential (or variation) of the

energy, 86, 90, 107
second fundamental form, 220
Seifert surface, 156, 328, 328(fig)
self-linking number, 141, 168
semianalytic subset, 74
semidirect product, 50, 53, 319
semigroup, 82
shallow water equation, 307
shock wave, 306, 306(fig)
short paths, system of, 145
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shortened vortex equation, 99
sine-algebra, 60, 62, 323
skew gradient, 25
skew-symmetric product, 25

form, 26
Smale horseshoe, 267, 268(fig)
Sobolev equation, 335

inequality, 154
space average, 146
Squire theorem, 102
stability in linear approximation, 86
stability theorem, 91

second, 91
stable point, 84
stationary (or steady) flow, 69

Euler equation, 69–70
form, 275

strange attractor, 64–65
stream function, 9, 12, 43, 56, 210
stretch-twist-fold mechanism, 286,

286(fig)
symplectic leaf, 28

manifold, 25, 242
exact, 243

structure, 25
variables, 324

canonical, 324
system of short paths, 145

Threshold of a potential, 280, 280(fig)
time average, 147
topological entropy, 299–300
tradewind current, 215, 215(fig), 218
translation

of the argument, 309, 311
right, 2
left, 3

tunneling coefficients, 278
turbulence, 64–67

twist number, 178, 178(fig)
two-cocycle, 304

Variational derivative, 39, 313
problem for energy, 75, 78

Vassiliev invariant, 183
vector field

divergence-free, 4
exact, 35–36, 38

Hamiltonian, 25, 27, 248
left-(or right-)invariant, 7
null-homologous, 123, 125
modeled on a link, 132

strongly, 132
of geodesic variation, 201
semiexact, 36, 38

vector momentum, 50
vector-potential, 125, 146
Virasoro algebra, 304

group, 214, 304
coadjoint orbits, 307, 314

vortex, 56
three-vortex problem, 58

vortex equation, 20, 56, 99
linearized, 99
shortened, 99

vorticity field, 14, 22, 46, 56
form, 22, 46
function, 22, 46, 56, 111

Wandering point, 269
wave vector, 101, 210
Weierstrass example, 230, 230(fig)
Whitehead link, 132(fig)
writhing number, 178, 178(fig)

Zeldovich theorem, 274, 290
Zorn lemma, 83


