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preface

This book describes the tools and techniques of value-at-risk and risk
decomposition, which underlie risk budgeting. Most readers will never
actually compute a value-at-risk (VaR) estimate. That is the role of risk
measurement and portfolio management systems. Nonetheless, it is crucial
that consumers of value-at-risk estimates and other risk measures under-
stand what is inside the black box. This book attempts to teach enough so
the reader can be a sophisticated consumer and user of risk information. It
is hoped that some readers of the book will actually use risk information to
do risk budgeting. 

While it is not intended primarily for a student audience, the level of
the book is that of good MBA students. That is, it presumes numeracy
(including a bit of calculus), some knowledge of statistics, and some famil-
iarity with the financial markets and institutions, including financial deriv-
atives. This is about the right level for much of the practicing portfolio
management community. The book presents sophisticated ideas but avoids
the use of high-brow mathematics. The important ideas are presented in
examples. That said, the book does contain some challenging material. 

Every effort has been made to make the book self-contained. It starts
with the basics of value-at-risk before moving on to risk decomposition,
refinements of the basic techniques, and issues that arise with VaR and risk
budgeting. The book is organized into five parts. Part I (Chapters 1–2) pre-
sents the concept of value-at-risk in the context of a simple equity portfolio
and introduces some of the ways it can be used in risk decomposition and
budgeting. Then, Part II (Chapters 3–9) describes the basic approaches to
computing value-at-risk and creating scenarios for stress testing. Following
this description of value-at-risk methodologies, Part III (Chapters 11–13)
turns to using value-at-risk in risk budgeting and shows how risk decompo-
sition can be used to understand and control the risks in portfolios. A few
refinements of the basic approaches to computing value-at-risk are
described in Part IV (Chapters 14–16). Recognizing that value-at-risk is not
perfect, Part V (Chapters 17–19) describes some of its limitations, and Part
VI (Chapter 20) concludes with a brief discussion of some issues that arise
in risk budgeting. Clearly some readers will want to skip the first few chap-
ters on the basic value-at-risk techniques. The notes to the chapters guide
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diligent readers toward much of the original (and sometimes mathemati-
cally challenging) work on value-at-risk. 

It should also be said that the book does not address credit, opera-
tional, or other risks. It is about measuring market risk. Also, it stays away
from software packages, partly because it is hoped that the shelf life of the
book will be longer than the life cycle of computer software. I will be sorely
disappointed if this turns out to be incorrect. 
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Introduction





CHAPTER1

3

 What Are Value----at----Risk and
Risk Budgeting?

It is a truism that portfolio management is about risk and return. Although
good returns are difficult to achieve and good risk-adjusted returns can be
difficult to identify, the concept and importance of return requires no
explanation. Larger returns are preferred to smaller ones. This is true at the
level of the pension plan, at the level of each asset manager or portfolio
used by or within the plan, and at the level of the individual assets. It fol-
lows from the fact that the contribution of an asset to the portfolio return is
simply the asset’s weight in the portfolio. 

Risk is more problematic. Risk is inherently a probabilistic or statistical
concept, and there are various (and sometimes conflicting) notions and
measures of risk. As a result, it can be difficult to measure the risk of a
portfolio and determine how various investments and asset allocations
affect that risk. Equally importantly, it can be difficult to express the risk in
a way that permits it to be understood and controlled by audiences such as
senior managers, boards of directors, pension plan trustees, investors, regu-
lators, and others. It can even be difficult for sophisticated people such as
traders and portfolio managers to measure and understand the risks of var-
ious instruments and portfolios and to communicate effectively about risk. 

For years fund managers and plan sponsors have used a panoply of risk
measures: betas and factor loadings for equity portfolios, various duration
concepts for fixed income portfolios, historical standard deviations for all
portfolios, and percentiles of solvency ratio distributions for long-term
asset/liability analysis. Recently the fund management and plan sponsor
communities have become interested in value-at-risk (VaR), a new
approach that aggregates risks to compute a portfolio- or plan-level mea-
sure of risk. A key feature of VaR is that it is “forward-looking,” that is, it
provides an estimate of the aggregate risk of the current portfolio over the
next measurement period. The existence of a forward-looking aggregate
measure of risk allows plan sponsors to decompose the aggregate risk into
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its various sources: how much of the risk is due to each asset class, each
portfolio manager, or even each security? Alternatively, how much of the
risk is due to each underlying risk factor? Once the contribution to aggre-
gate risk of the asset classes, managers, and risk factors has been computed,
one can then go on to the next step and use these risk measures in the asset
allocation process and in monitoring the asset allocations and portfolio
managers. 

The process of decomposing the aggregate risk of a portfolio into its
constituents, using these risk measures to allocate assets, setting limits in
terms of these measures, and then using the limits to monitor the asset allo-
cations and portfolio managers is known as risk allocation or risk budget-
ing. This book is about value-at-risk, its use in measuring and identifying
the risks of investment portfolios, and its use in risk budgeting. But to write
that the book is about value-at-risk and risk budgeting is not helpful with-
out some knowledge of these tools. This leads to the obvious question:
What are value-at-risk and risk budgeting? 

VALUE-AT-RISK

Value-at-risk is a simple, summary, statistical measure of possible portfolio
losses due to market risk. Once one crosses the hurdle of using a statistical
measure, the concept of value-at-risk is straightforward. The notion is that
losses greater than the value-at-risk are suffered only with a specified small
probability. In particular, associated with each VaR measure are a probabil-
ity �, or a confidence level 1 – �, and a holding period, or time horizon, h.
The 1 – � confidence value-at-risk is simply the loss that will be exceeded
with a probability of only � percent over a holding period of length h;
equivalently, the loss will be less than the VaR with probability 1 – �. For
example, if h is one day, the confidence level is 95% so that � = 0.05 or
5%, and the value-at-risk is one million dollars, then over a one-day hold-
ing period the loss on the portfolio will exceed one million dollars with a
probability of only 5%. Thus, value-at-risk is a particular way of summa-
rizing and describing the magnitude of the likely losses on a portfolio.

Crucially, value-at-risk is a simple, summary measure. This makes it
useful for measuring and comparing the market risks of different portfo-
lios, for comparing the risk of the same portfolio at different times, and for
communicating these risks to colleagues, senior managers, directors, trust-
ees, and others. Value-at-risk is a measure of possible portfolio losses,
rather than the possible losses on individual instruments, because usually it
is portfolio losses that we care most about. Subject to the simplifying
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assumptions used in its calculation, value-at-risk aggregates the risks in a
portfolio into a single number suitable for communicating with plan spon-
sors, directors and trustees, regulators, and investors. Finally, value-at-risk
is a statistical measure due to the nature of risk. Any meaningful aggregate
risk measure is inherently statistical.

VaR’s simple, summary nature is also its most important limitation—
clearly information is lost when an entire portfolio is boiled down to a sin-
gle number, its value-at-risk. This limitation has led to the development of
methodologies for decomposing value-at-risk to determine the contribu-
tions of the various asset classes, portfolios, and securities to the value-at-
risk. The ability to decompose value-at-risk into its determinants makes it
useful for managing portfolios, rather than simply monitoring them.

The concept of value-at-risk and the methodologies for computing it
were developed by the large derivatives dealers (mostly commercial and
investment banks) during the late 1980s, and VaR is currently used by vir-
tually all commercial and investment banks. The phrase value-at-risk first
came into wide usage following its appearance in the Group of Thirty
report released in July 1993 (Group of Thirty 1993) and the release of the
first version of RiskMetrics in October 1994 (Morgan Guaranty Trust
Company 1994). Since 1993, the numbers of users of and uses for value-at-
risk have increased dramatically, and the technique has gone through signif-
icant refinement.

The derivatives dealers who developed value-at-risk faced the problem
that their derivatives portfolios and other trading “books” had grown to
the point that the market risks inherent in them were of significant con-
cern. How could these risks be measured, described, and reported to
senior management and the board of directors? The positions were so
numerous that they could not easily be listed and described. Even if this
could be done, it would be helpful only if senior management and the
board understood all of the positions and instruments, and the risks of
each. This is not a realistic expectation, as some derivative instruments are
complex. Of course, the risks could be measured by the portfolio’s sensi-
tivities, that is, how much the value of the portfolio changes when various
underlying market rates or prices change, and the option deltas and gam-
mas, but a detailed discussion of these would likely only bore the senior
managers and directors. Even if these concepts could be explained in
English, exposures to different types of market risk (for example, equity,
interest rate, and exchange rate risk) cannot meaningfully be aggregated
without a statistical framework. Value-at-risk offered a way to do this,
and therefore helped to overcome the problems in measuring and commu-
nicating risk information.
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WHY USE VALUE-AT-RISK IN PORTFOLIO
MANAGEMENT?

Similar issues of measuring and describing risk pervade the investment
management industry. It is common for portfolios to include large numbers
of securities and other financial instruments. This alone creates demand for
tools to summarize and aggregate their risks. In addition, while most
investment managers avoid complex derivative instruments with risks that
are difficult to measure, some investment managers do use them, and some
use complicated trading strategies. As a result, for many portfolios the risks
may not be transparent even to the portfolio manager, let alone to the peo-
ple to whom the manager reports.

Moreover, pension plans and other financial institutions often use mul-
tiple outside portfolio managers. To understand the risks of the total port-
folio, the management, trustees, or board of directors ultimately
responsible for an investment portfolio must first aggregate the risks across
managers. Thus, although developed by derivatives dealers in a different
context, value-at-risk is valuable in portfolio management applications
because it aggregates risks across assets, risk factors, portfolios, and asset
classes. In fact, a 1998 survey of pensions, endowments, and foundations
reported that 23% of large institutional investors used value-at-risk. 

Derivatives dealers typically express the value-at-risk as a dollar
amount, while in investment management value-at-risk may be expressed
as a percentage of the value of the portfolio. Given this, it is clear that
value-at-risk is closely related to portfolio standard deviation, a concept
that has been used by quantitative portfolio managers since they first
existed. In fact, if we assume that portfolio returns are normally distributed
(an assumption made in some VaR methodologies), value-at-risk is propor-
tional to the difference between the expected change in the value of a port-
folio and the portfolio’s standard deviation. In investment management
contexts, value-at-risk is often expressed relative to the return on a bench-
mark, making it similar to the standard deviation of the tracking error.
What then is new or different about value-at-risk?

Crucially, value-at-risk is a forward-looking measure of risk, based on
current portfolio holdings. In contrast, standard deviations of returns and
tracking errors are typically computed using historical fund returns and
contain useful risk information only if one assumes both consistency on the
part of the portfolio managers and stability in the market environment.
Because value-at-risk is a forward-looking measure, it can be used to iden-
tify violations of risk limits, unwanted risks, and managers who deviate
from their historical styles before any negative outcomes occur. 
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Second, value-at-risk is equally applicable to equities, bonds, commod-
ities, and derivatives and can be used to aggregate the risk across different
asset classes and to compare the market risks of different asset classes and
portfolios. Since a plan’s liabilities often can be viewed as negative or short
positions in fixed-income instruments, value-at-risk can be used to measure
the risk of a plan’s net asset/liability position. Because it aggregates risk
across risk factors, portfolios, and asset classes, it enables a portfolio man-
ager or plan sponsor to determine the extent to which different risk factors,
portfolios, and asset classes contribute to the total risk. 

Third, the focus of value-at-risk is on the tails of the distribution. In
particular, value-at-risk typically is computed for a confidence level of
95%, 99%, or even greater. Thus, it is a measure of “downside” risk and
can be used with skewed and asymmetric distributions of returns.

Fourth, the popularity of value-at-risk among derivatives dealers has
led to a development and refinement of methods for estimating the proba-
bility distribution of changes in portfolio value or returns. These methodol-
ogies are a major contribution to the development of value-at-risk, and
much of this book is devoted to describing them. 

Finally, and perhaps most importantly, the development of the concept
of value-at-risk, and even the name itself, has eased the communication of
information about risk. Phrases such as “portfolio standard deviation” and
other statistical concepts are perceived as the language of nerds and geeks
and are decidedly not the language of a typical pension plan trustee or com-
pany director. In contrast, value and risk are undeniably business words,
and at is simply a preposition. This difference in terminology overcomes
barriers to discussing risk and greatly facilitates the communication of
information about it.

RISK BUDGETING

The concept of risk budgeting is not nearly as well defined as value-at-risk.
In fact, it has been accused of being only a buzzword. Not surprisingly, it is
also controversial. That it is a controversial buzzword is one thing upon
which almost everyone can agree. But risk budgeting is more than a
buzzword. 

Narrowly defined, risk budgeting is a process of measuring and decom-
posing risk, using the measures in asset-allocation decisions, assigning port-
folio managers risk budgets defined in terms of these measures, and using
these risk budgets in monitoring the asset allocations and portfolio manag-
ers. A prerequisite for risk budgeting is risk decomposition, which involves
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 � identifying the various sources of risk, or risk factors, such as equity 
returns, interest rates, and exchange rates;

 � measuring each factor’s, manager’s, and asset class’s contribution to the 
total risk;

 � comparing the ex post realized outcomes to the ex ante risk; and
 � identifying the risks that were taken intentionally, and those taken 

inadvertently.

This risk decomposition allows a plan sponsor to have a better under-
standing of the risks being assumed and how they have changed, and to
have more informed conversations with the portfolio managers. In the
event that there are problems, it allows the sponsor to identify unwanted
risks and managers who deviate from their historical styles before any neg-
ative outcomes occur. 

If this risk decomposition is combined with an explicit set of risk allo-
cations to factors, managers, or asset classes, it is called risk allocation or
risk budgeting. The risk budgeting process itself consists of

 � setting limits, or risk budgets, on the quantity of risk due to each asset 
class, manager, or factor;

 � establishing asset allocations based on the risk budgets;
 � comparing the risk budgets to the measures of the risk due to each fac-

tor on an ongoing basis; and
 � adjusting the asset allocations to keep the risks within the budgeted 

limits.

Risk decomposition is crucial to risk budgeting, because the aggregate
value-at-risk of the pension plan or other organization is far removed from
the portfolio managers. At the risk of stating the obvious, the portfolio
managers have control only over their own portfolios. For them, meaning-
ful risk budgets are expressed in terms of their contributions to portfolio
risk. 

However, risk budgeting is more than a list of steps or procedures.
Defined more broadly, risk budgeting is a way of thinking about investment
and portfolio management. For this reason, to find a definition that attracts
broad agreement is difficult, and perhaps impossible. The world view that
underlies risk budgeting takes for granted reliance upon probabilistic or
statistical measures of risk and the use of modern risk- and portfolio-
management tools to manage risk. Thinking about the asset-allocation
problem in terms of risk allocations rather than traditional asset allocations
is a natural outgrowth of this world view. 
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From a logical perspective, there is no special relation between value-
at-risk and risk budgeting. Risk budgeting requires a measure of portfolio
risk, and value-at-risk is one candidate. It is a natural candidate, in that:
(i) it is a measure of downside risk, and thus useful when the distribution of
portfolio returns is asymmetric; and (ii) when returns are normally distrib-
uted, it is equivalent to a forward-looking estimate of portfolio standard
deviation. However, the risk budgeting process could be implemented using
any of a number of risk measures. For example, it could be implemented
using either a forward-looking estimate of portfolio standard deviation or a
scenario-based measure of the type advocated by Artzner, et al. (1997,
1999) and described in chapter 19. In fact, it is widely recommended that
value-at-risk measures be used in combination with stress testing (proce-
dures to estimate the losses that might be incurred in extreme or “stress”
scenarios).

In practice, however, value-at-risk and risk budgeting are intimately
related. Because risk budgeting involves the quantification, aggregation,
and decomposition of risk, the availability of a well-recognized aggregate
measure of portfolio risk is a prerequisite for its use and acceptance. In this
sense, risk budgeting is an outgrowth of value-at-risk. But for the popular-
ity and widespread acceptance of value-at-risk, you would likely not be
hearing and reading about risk budgeting today. Nonetheless, value-at-risk
has some well known limitations, and it may be that some other risk mea-
sure eventually supplants value-at-risk in the risk budgeting process. 

DOES RISK BUDGETING USING VaR MAKE SENSE?

To those who share its underlying world view, the process of risk budgeting
outlined above is perfectly natural — how else would one think about asset
allocation? Of course, one can think about asset allocation in the tradi-
tional way, in terms of the fractions of the portfolio invested in each asset
class. But seen through the lens of risk budgeting, the traditional approach
is just an approximation to the process described above, where portfolio
weights proxy for risk measures. An advantage of risk budgeting over this
traditional view of asset allocation is that it makes explicit the risks being
taken and recognizes that they change over time. In addition, risk budget-
ing provides a natural way to think about nontraditional asset classes, such
as hedge funds and the highly levered strategies often pursued by them. In
contrast to traditional asset classes, the dollar investment in a highly lever-
aged strategy often says little about the quantity of risk being taken, and
the label “hedge fund” does not reveal the nature of the risks.
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A significant part of the controversy stems from the broader definition
of risk budgeting as the natural outgrowth of a way of thinking about
investment and portfolio management. This is not about the precise defini-
tion of risk budgeting (i.e., whether the preceding list of the steps that
define the risk budgeting process is better or worse than another) or
whether risk budgeting is cost effective. Much of the controversy seems to
stem from the fact that not all plan sponsors and portfolio managers share
the same underlying paradigm. This is not just the source of the contro-
versy; the difference in world views is much of the controversy. It is difficult
to imagine that it will ever be resolved. 

However, some of the disagreement about risk budgeting is eminently
practical and can be addressed by a book. The computation of value-at-
risk, and the processes of risk decomposition and risk budgeting, involve
considerable trouble and expense. Given the imperfections of and errors
in quantitative measures such as value-at-risk, reasonable people who
share the view of portfolio management underlying risk budgeting may
nonetheless conclude that it is not cost effective, that is, that the additional
information about and understanding of portfolio risk provided by the risk
budgeting process are not worth the cost that must be incurred. It is likely
that the practical argument against risk budgeting will become less compel-
ling over time, as increases in the extent of risk-management education and
knowledge and the evolution of risk-measurement systems both increase
the benefits and reduce the costs of the risk budgeting process. Regardless,
to make an informed judgment about the benefits, limitations, and cost-
effectiveness of value-at-risk and risk budgeting requires an understanding
of them. One of the goals of this book is to provide enough information
about value-at-risk methodologies and risk budgeting to enable readers to
understand them and make informed choices about them. 

NOTES

The development of value-at-risk is generally attributed to J.P. Morgan
(e.g., see Guldimann 2000). To my knowledge, the first publication in
which the phrase appeared was the widely circulated Group of Thirty
report (Group of Thirty 1993). It was subsequently popularized by the
RiskMetrics system originally developed by J.P. Morgan (Morgan Guar-
anty Trust Company 1994). 

The use of the phrase “1 – � percent confidence VaR” to mean the loss
that is exceeded with a probability of � percent over a holding period of
length h is a misuse of the terminology “confidence” or “confidence level.”
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A better terminology would be to refer to the � or 1 – � quantile VaR,
because value-at-risk is the � quantile of the distribution of portfolio prof-
its (or returns), or, equivalently, the 1 – � quantile of the loss distribution.
However, the misuse of the terminology confidence in the context of value-
at-risk is well established, and this book will not try to fight it.

Since 1995, the Basel Committee on Banking Supervision and the Inter-
national Organization of Securities Commissions have been examining the
risk-management procedures and disclosures of leading banks and securi-
ties firms in the industrialized world. The latest surveys (Basel Committee
on Banking Supervision and the International Organization of Securities
Commissions 1999 and Basel Committee on Banking Supervision 2001)
indicated that virtually all banks and securities firms covered by the survey
used value-at-risk techniques to measure market risk. The finding that 23%
of institutional investors use value-at-risk is from the 1998 Survey of Deriv-
ative and Risk Management Practices by U.S. Institutional Investors con-
ducted by New York University, CIBC World Markets, and KPMG (Levich,
Hayt, and Ripston 1999; Hayt and Levich 1999).

The nature of the controversy about risk budgeting is described by
Cass (2000), who describes the debate at the Risk 2000 Congress in June
2000. Cass quotes Harris Lirtzman of the New York City Retirement Sys-
tems as saying: “There is almost a theological divide in this discussion
among public plan sponsors—VaR versus non-VaR, risk budgeting versus
asset allocation.”
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Value-at-Risk of a Simple Equity
Portfolio

To introduce the concept of value-at-risk, consider a simple example of a
portfolio exposed to changes in the U.S. and U.K. stock market indexes.
The portfolio consists of $110 million invested in a well-diversified portfo-
lio of large-capitalization U.S. equities, together with positions in U.S.
(S&P 500) and U.K. (FT-SE 100) index futures contracts. The portfolio of
U.S. equities is well diversified, and its returns are highly correlated with
the returns on the S&P 500 index. For simplicity, it is assumed that the
returns on the portfolio are perfectly correlated with changes in the S&P
500 index. To gain exposure to the U.K. market, the portfolio manager has
established a long position of 500 FT-SE 100 index futures contracts traded
on the London International Financial Futures Exchange (LIFFE). Through
the standard cost-of-carry formula for the futures price (see the notes to
this chapter) and using the multiplier of £10, a one-point change in the FT-
SE 100 index results in a £10.131 change in the position value. The current
value of the FT-SE 100 is 5862.3, so the index futures position is equivalent
to an investment of £29.696 million in the portfolio that underlies the
index. At the current exchange rate of 1.6271 $/£, this is equivalent to an
investment of $48.319 million in the portfolio underlying the index. 

To reduce his exposure to the U.S. market, the portfolio manager has
shorted 200 of the S&P 500 index futures contract traded on the Chicago
Mercantile Exchange (CME). The current level of the S&P index is 1097.6,
and the contract has a multiplier of 250, so, through the cost-of-carry for-
mula, a one-point change in the index results in a $253.48 change in the
position value, implying that this position is equivalent to a short position
of $55.643 million in the portfolio that underlies the S&P 500 index. Com-
bined with the $110 million invested in the “cash” market, the combined
stock and futures position is equivalent to an investment of $54.357 mil-
lion in the index portfolio.
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It has been estimated that the standard deviation of monthly rates of
return on the portfolio underlying the S&P 500 index is �1 0.061
(6.1%), the standard deviation of monthly rates of return on the portfolio
underlying the FT-SE 100 index is �2 0.065 (6.5%), and the correlation
between the monthly rates of return is estimated to be � 0.55. The
expected rates of change in the S&P 500 and FT-SE 100 indexes are esti-
mated to be �1 0.01 (1%) and �2 0.0125 (1.25%) per month, respec-
tively. In addition, the portfolio of U.S. stocks pays dividends at the rate of
1.4% per year, or 1.4 12 0.1167% per month.

STANDARD VALUE-AT-RISK

To compute the value-at-risk, we need to pick a holding period and a confi-
dence level 1 �. We choose the holding period to be one month and some-
what arbitrarily pick a confidence level of 1 � 95%, or � 5%. Given
these choices and the information above, it is easy to compute the value-at-risk
if one assumes that the returns on the S&P 500 and FT-SE 100 are normally
distributed. If they are, then the portfolio return is also normally distributed
and the expected change and variance of the value of the portfolio can be cal-
culated using standard mathematical results about the distributions of sums of
normal random variables. Then, because the normal distribution is completely
determined by the expected value and variance, we know the distribution of
profit or loss over the month.

For example, suppose that the distribution of possible profits and losses
on a portfolio can be adequately approximated by the probability density
function shown in Figure 2.1. The distribution described by this density func-
tion has a mean of $1.2759 million and a standard deviation of $5.6845 mil-
lion. A property of the normal distribution is that a critical value, or cutoff,
equal to 1.645 standard deviations below the mean, leaves 5% of the proba-
bility in the left-hand tail. Calling this cutoff the 5% quantile of the distribu-
tion of profit and loss, we have 

million. That is, the daily mark-to-market profit will be less than −$8.0752 mil-
lion with a probability of 5%. Then, since the 5% value-at-risk is defined
as the loss that will be exceeded with a probability of 5%, the value-at-risk

=

=
=

= =

⁄ =

–
– = =

5% quantile
mean change in
portfolio value 

  1.645 standard deviation of
change in portfolio value 

 ×–=

1.2759 1.645 5.6845×( )–=
8.0752–=
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is the negative of this quantile, or $8.0752 million. This value-at-risk is also
shown on Figure 2.1. 

When there are two positions, the expected change in the value of the
portfolio (including the dividends) is 

where �V is the change in the value of the portfolio, X1 and X2 are the dol-
lar amounts invested in the two positions, and D $110(0.014 12) mil-
lion are the dividends to be received during the next month. Using the fact
that the portfolio is equivalent to a position of $54.357 million invested in
a portfolio that tracks the S&P 500 index and $48.319 million in a portfo-
lio that tracks the FT-SE 100 index, we have X1 54.357 million and

FIGURE 2.1 Density function of changes in portfolio value and value-at-risk for the 
portfolio consisting of positions in the U.S. and U.K. stock markets
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X2 48.319 million. The variance of monthly changes in the portfolio
value depends on the standard deviations of changes in the value of the
standardized positions, the correlation, and the sizes of the positions, and is
given by the formula

Using these formulas, the expected value and variance of the change in
value of the portfolio are

and

Alternatively, letting V U.S. $110 million denote the value of the portfo-
lio and r �V V the portfolio return, the expected value and variance of
the portfolio return are

and

The standard deviation is, of course, simply the square root of the variance
and is $5.6845 million or 0.0517 (5.17%), respectively.

=

var V∆[ ] X1
2
�1

2 X2
2
�2

2 2X1X2�12�1�2.+ +=

E V∆[ ] 54.357 0.01( ) 48.319 0.0125( ) 110 0.14 12⁄( )+ +=
1.2759=

var V∆[ ] 54.357( )2 0.061( )2 48.319( )2 0.065( )2+=
2 54.357( ) 48.319( ) 0.061( ) 0.065( ) 0.55( )+

32.3138.=

=
= ⁄

E r[ ] 54.357
110

------------------ 0.01( ) 48.319
110

------------------ 0.0125( ) 0.014
12

---------------+ +=

0.01160=

var r[ ] 54.357
110

------------------ 
  2

0.061( )2 48.319
110

------------------ 
  2

0.065( )2+=

2 54.357
110

------------------ 
  48.319

110
------------------ 

  0.061( ) 0.065( ) 0.55( )+

0.0026706.=
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Using the fact that outcomes less than or equal to 1.645 standard devi-
ations below the mean occur only 5% of the time, we can calculate the
value-at-risk:

As a fraction of the initial value of the portfolio, 

or 7.34% of the initial value of the portfolio. 
In computing the value-at-risk estimate, it is sometimes assumed that

the expected change in the value of the portfolio is zero. If this assumption
is made, the value-at-risk is then 1.645($5.6845) $9.351 million, or
1.645(0.05168) 0.0850, or 8.50%. The assumption of a zero-expected-
change in the portfolio value is common when the time horizon of the
value-at-risk estimate is one day.

In interpreting these value-at-risk estimates, it is crucial to keep in mind
the holding period and confidence level, 1 �, for different estimates will be
obtained if different choices of these parameters are made. For example, to
compute the value-at-risk using a confidence level of 99%, one would use
the fact that, for the normal distribution, outcomes less than or equal to
2.326 standard deviations below the mean occur only 1% of the time. Thus,
with a monthly holding period, the 99%−confidence value-at-risk estimate is

or 10.86% of the initial value. The choice of holding period can have an
even larger impact, for the value-at-risk computed using this approach is
approximately proportional to the square root of the length of the hold-
ing period, because return variances are approximately proportional to

VaR E V∆[ ] 1.654 s.d. V∆[ ]×–( )–=
1.2759 1.645 5.6845×–( )–=

8.0752.=

VaR E r[ ] 1.654 s.d. r[ ]×–( )–=
0.01160 1.645 0.05168×–( )–=

0.0734,=

=
=

–

VaR E V∆
V

-------- 2.326 s.d. V∆
V

--------×–
 
 
 

–=

0.01160 2.326 0.05168×–( )–=
0.1086,=
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the length of the holding period. Absent appropriate adjustments, value-
at-risk estimates for different holding periods and probabilities are not
comparable.

BENCHMARK-RELATIVE VALUE-AT-RISK

In portfolio management it is common to think about risk in terms of a
portfolio’s return relative to the return on a benchmark portfolio. In par-
ticular, if the S&P 500 index is the benchmark, one might be concerned
about the difference r rS&P instead of the return r, where rS&P denotes the
return on the portfolio underlying the S&P 500 index. Based on this idea
(and using the normal distribution), the relative value-at-risk is determined
by the expected value and variance of the relative return, var(r rS&P).
Using the example portfolio discussed above, the variance is

where w1 X1 V and w2 X2 V are the portfolio weights. This expres-
sion is just the variance of a portfolio return, except that the position in the
S&P 500 index has been adjusted to include a short position in that index.
That is, the portfolio weight w1 is replaced by w1 1. Using the previous
values of the parameters, the variance and standard deviation are 0.000798
and 0.02825, respectively. The expected relative return is

Finally, if we also use a probability of 5%, the benchmark-relative
value-at-risk is

The only difference between computing benchmark-relative and standard
value-at-risk is that, in benchmark-relative VaR, the portfolio is adjusted
to include a short position in the benchmark. Because the approach of

–

–

var r rS&P–( ) var w1rS&P w2rFT rS&P–+( )=

var w1 1–( )rS&P w2rFT+( ),=

= ⁄ = ⁄

–

E r rS&P–[ ] 54.357
110

------------------ 0.01( ) 48.319
110

------------------ 0.0125( ) 0.014
12

---------------+ + 
  0.01 0.014

12
---------------+ 

 –=

0.00043.=

relative VaR E r rS&P–[ ] 1.645 s.d.× r rS&P–[ ]–( )–=

0.00043 1.645 0.02825×–( )–=
0.0463.=
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adjusting the portfolio to include a short position in the benchmark also
works with the other methods for computing value-at-risk, the computa-
tion of relative value-at-risk is no more difficult than the computation of
standard VaR and can be accomplished using the same techniques. For this
reason, the chapters on VaR methodologies focus on standard VaR. 

RISK DECOMPOSITION

Having computed the value-at-risk, it is natural to ask to what extent the
different positions contribute to it. For example, how much of the risk is
due to the S&P 500 position, and how much to the FT-SE 100 position?
How does the S&P 500 futures hedge affect the risk? The process of
answering such questions is termed risk decomposition. 

At the beginning of this chapter, the portfolio was described as a cash
position in the S&P 500, hedged with a position in the S&P 500 index
futures contract and then overlaid with a FT-SE 100 futures contract to
provide exposure to the U.K. market. This description suggests decompos-
ing the risk by computing the VaRs of three portfolios: (i) the cash S&P
500 position; (ii) a portfolio consisting of the cash S&P 500 position, com-
bined with the S&P futures hedge; and (iii) the aggregate portfolio of all
three positions. The risk contribution of the cash S&P 500 position would
be computed as the VaR of portfolio (i); the contribution of the S&P
futures position would be the incremental VaR resulting from adding on
the futures hedge, that is, the difference between the VaRs of portfolios (ii)
and (i); and the risk contribution of the FT-SE 100 index futures position
would be the difference between the VaRs of portfolios (iii) and (ii). 

However, equally natural descriptions of the portfolio list the positions
in different orders. For example, one might think of the portfolio as a cash
position in the S&P 500 (portfolio i), overlaid with a FT-SE 100 futures
contract to provide exposure to the U.K. market (portfolio iv), and then
hedged with a position in the S&P 500 index futures contract (portfolio iii).
In this case, one might measure the risk contribution of the FT-SE 100
index futures position as the difference between the VaRs of portfolios (iv)
and (i), and the contribution of the S&P futures position is the difference
between the VaRs of portfolios (iii) and (iv). Unfortunately, different order-
ings of positions will produce different measures of their risk contributions,
a limitation of the incremental risk decomposition. For example, risk
decomposition based on the second ordering of the positions would indi-
cate a greater risk-reducing effect for the short S&P 500 futures position,
because it is considered after the FT-SE 100 overlay, as a result of which
there is more risk to reduce. In fact, different starting points can yield
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extreme differences in the risk contributions. If one thinks of the portfolio
as a short S&P 500 futures position, hedged with the cash S&P 500 posi-
tion, and then overlaid with the FT-SE 100 futures position, the risk contri-
butions of the S&P cash and futures positions will change sign.

This dependence of the risk contributions on the ordering of the posi-
tions is problematic, because for most portfolios there is no natural order-
ing. Even for this simple example, it is unclear whether the S&P futures
position should be interpreted as hedging the cash position or vice versa and
whether one should measure the risk contribution of the FT-SE 100 futures
overlay before or after measuring the risk contribution of the S&P hedge.
(Or one could think of the S&P positions as overlays on a core FT-SE 100
position, in which case one would obtain yet another risk decomposition.)
A further feature is that each position’s risk contribution measures the incre-
mental effect of the entire position, not the marginal effect of changing it.
Thus, the incremental risk contributions do not indicate the effects of mar-
ginal changes in the position sizes; for example, a negative risk contribution
for the cash S&P 500 does not mean that increasing the position will reduce
the VaR. These problems limit the utility of this incremental decomposition.

Marginal risk decomposition overcomes these problems. The starting
point in marginal risk decomposition is the expression for the value-at-risk, 

where the second equality uses the expressions for the expected value and stan-
dard deviation of �V. To carry out the marginal risk decomposition, it is neces-
sary to disaggregate the S&P 500 position of X1 54.357 million into its two
components, cash and futures; here 110 million dollars and 

55.643 million dollars are used to denote these two components, so that
X1 . Also, it is necessary to recognize that the dividend D depends
on the magnitude of the cash position, D (0.014 12). Using this expres-
sion and letting X ( , , X2)′ represent the portfolio, one obtains

From this formula one can see that VaR has the property that, if one multi-
plies each position by a constant k, that is, if one considers the portfolio
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kX (k , k , kX2)′, the value-at-risk is multiplied by k. Carrying out
this computation, the value-at-risk is

As we will see in chapter 10, this property of value-at-risk implies that it
can be decomposed as 

(2.1)

This is known as the marginal risk decomposition. Each of the three terms on
the right-hand side is called the risk contribution of one of the positions, for
example, the term (∂VaR ∂ )  is the risk contribution of the cash S&P
500 position. The partial derivative (∂VaR ∂ ) gives the effect on risk of
increasing  by one unit; changing  by a small amount from  to *,
changes the risk by approximately (∂VaR ∂ )( * ). The risk contri-
bution (∂VaR ∂ )  can then be interpreted as measuring the effect of per-
centage changes in the position size . The change from  to * is a
percentage change of ( * ) , and the change in value-at-risk result-
ing from this change in the position size is approximated by

the product of the risk contribution and the percentage change in the posi-
tion. The second and third terms, (∂VaR ∂ )  and (∂VaR ∂X2)X2, of
course, have similar interpretations.

A key feature of the risk contributions is that they sum to the portfolio
risk, permitting the portfolio risk to be decomposed into the risk contributions
of the three positions , , and X2. Alternatively, if one divides both
sides of (2.1) by the value-at-risk VaR(X), then the percentage risk contri-
butions of the form [(∂VaR ∂ ) ] VaR(X) sum to one, or 100%.
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Computing each of the risk contributions, one obtains 

(2.2)

The first term on the right-hand side of each equation reflects the effect of
changes in the position size on the mean change in value and carries a neg-
ative sign, because increases in the mean reduce the value-at-risk. The sec-
ond term on the right-hand side of each equation reflects the effect of
changes in the position on the standard deviation. The numerator of each
of these terms is the covariance of the change in value of a position with
the change in value of the portfolio; for example, the term (X1
X2��1�2) (X1 X2 ��1�2) is the covariance of changes in
the value of the cash S&P 500 position with changes in the portfolio value.
This captures a standard intuition in portfolio theory, namely, that the con-
tribution of a security or other instrument to the risk of a portfolio depends
on that security’s covariance with changes in the value of the portfolio.

Table 2.1 shows the marginal risk contributions of the form (∂VaR
∂ )  and the percentage risk contributions of the form (∂VaR ∂ )
VaR(X ), computed using equations (2.2) and the parameters used earlier in
this chapter. The S&P 500 cash position makes the largest risk contribution
of 8.564 million, or 106% of the portfolio risk, for two reasons. First, the

TABLE 2.1  Marginal risk contributions of cash S&P 500 position, S&P 500 
futures, and FT-SE 100 futures

Portfolio
Marginal Value-at-Risk

($ million)
Marginal Value-at-Risk

(Percent)

Cash Position in S&P 500 8.564 106
S&P 500 Futures −4.397 −54
FT-SE 100 Futures 3.908 48
Total 8.075 100
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position is large and volatile; second, it is highly correlated with the total
portfolio, because the net position in the S&P 500 index is positive, and
because this position is positively correlated with the FT-SE 100 index futures
position. The risk contribution of the short S&P futures position is negative
because it is negatively correlated with the total portfolio, both because the
net position in the S&P 500 index is positive and because the short S&P
futures position is negatively correlated with the FT-SE 100 index futures
position. Finally, the FT-SE 100 index futures position is positively correlated
with the portfolio return, leading to a positive risk contribution.

In interpreting the risk decomposition, it is crucial to keep in mind that it is
a marginal analysis. For example, a small change in the FT-SE 100 futures posi-
tion, from X2 48.319 to X2* 49.319, changes the risk by approximately

million dollars, or from $8.075 million to approximately $8.156 million. This
matches the exact calculation of the change in the value-at-risk to four signifi-
cant figures. However, the marginal effects cannot be extrapolated to large
changes, because the partial derivatives change as the position sizes change.
This occurs because a large change in a position changes the correlation
between the portfolio and that position; as the magnitude of a position
increases, that position constitutes a larger part of the portfolio, and the corre-
lation between the position and the portfolio increases. This affects the value-
at-risk through the numerators of the second term on the right-hand side of
each of the equations (2.2). Thus, the risk contribution of a position increases
as the size of the position is increased. For this reason, the marginal risk contri-
butions do not indicate the effect of completely eliminating a position.

USING THE RISK CONTRIBUTIONS

Although it may not be immediately obvious from this simple example, the
marginal risk decomposition has a range of uses. The most basic is to iden-
tify unwanted or unintended concentrations of risk. For example, how
much of the portfolio risk is due to technology stocks or other industry or
sector concentrations? How much is due to CMOs, and how much is due
to positions in foreign markets? How much is due to a particular portfolio
or portfolio manager, for example, a hedge fund? As will be seen in

= =

∂VaR
∂X2

--------------- X2* X2–( ) ∂VaR
∂X2

---------------X2
X2* X2–

X2
------------------------×=

3.908 49.319 48.319–( )
48.319

-----------------------------------------------×=

0.081=
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Chapter 12, it is also possible to compute the risk contributions of various
market factors, for example, changes in the level or slope of the yield curve
or changes to any of the factors in a model of equity returns. This allows
one to identify unintended or unwanted factor bets.

The marginal risks of the various positions, asset classes, factor expo-
sures, and allocations to portfolio managers are also key inputs in thinking
about the risk-return tradeoff. A portfolio optimizing the risk-return tradeoff
has the property that the marginal risk contributions of assets (or asset
classes, managers, or factor exposures) are proportional to their expected
return contributions. If this is not the case, for example, if two positions with
the same risk contribution have different expected return contributions, then
it is possible to increase the expected return without increasing the risk.
While many plan sponsors and other investment management organizations
reject formal portfolio optimization, this insight from it is still useful in think-
ing about asset allocation. In the example above, knowledge of the risk con-
tributions allows one to assess whether the expected return from the FT-SE
100 futures contracts is large enough to justify the position. More generally,
the marginal risk contributions (together with beliefs about expected returns)
allow one to do the same assessment for various assets, asset classes, manag-
ers, and factor exposures in the portfolio.

Finally, the risk decomposition can be combined with an explicit set of
risk allocations to factors, managers, or asset classes to create a risk alloca-
tion, or risk budgeting, system. In this approach, one sets limits, or risk
budgets, in terms of the risk contributions and then monitors whether the
risk contributions are within the budgeted limits. Part III (Chapters 10–13)
includes examples of this.

OTHER APPROACHES TO COMPUTING VaR

The calculations above use a specific (normal) distribution to compute the
value-at-risk estimates. An alternative approach called historical simulation
does not specify the distribution of returns, but rather assumes that the distri-
bution of returns over the next month is equal to the observed distribution of
returns over some particular past period, for instance, the preceding N
months. In essence, the approach involves using the historical returns to con-
struct a distribution of potential future portfolio profits and losses and then
reading off the value-at-risk as the loss that is exceeded only 5% of the time.

The distribution of profits and losses is constructed by taking the current
portfolio and subjecting it to the actual returns experienced during each of
the last N periods, here months. Suppose, for example, that the current date
is 1 May, 1998, and we somewhat arbitrarily decide to use the last six years



Value-at-Risk of a Simple Equity Portfolio 25

of monthly returns, so that N 72. (This choice is not completely arbitrary,
in that it represents an attempt to strike a balance between using a large time-
series of returns, while avoiding the use of data from too far in the past.) In
May 1992 (72 months earlier), the dollar-denominated percentage changes in
the value of the S&P 500 and FT-SE 100 were 0.0964% and 4.9490%,
respectively. Applying those returns to the current portfolio, the change in the
value is $54.357(0.000964) $48.319(0.049490) $2.444 million. Adding
the dividends of 110(0.014 12) million dollars, the profit is $2.572 million.
Similar calculations were performed using the returns from each of the other
past months in Table 2.2.

Table 2.3 sorts the changes in portfolio value from largest-to-smallest,
whereas Figure 2.2 shows a histogram of the changes in value. If we use a
probability of 5%, the value-at-risk is the loss that is exceeded 5% of the time.
Since 3 72 0.0417 and 4 72 0.0556, the value-at-risk estimate should
be somewhere between the third and fourth worst losses in Table 2.3, which

FIGURE 2.2 Histogram of changes in portfolio value for the portfolio consisting of 
positions in the U.S. and U.K. stock markets
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are in the rows numbered 69 and 70. That is, the value-at-risk estimate is
somewhere between $4.367 million and $4.389 million. A reasonable
approach is to compute the value-at-risk by interpolating between these two
losses in order to compute a loss that corresponds to a 5% probability.
Specifically,

value-at-risk

TABLE 2.2  Hypothetical changes in portfolio value computed using the returns 
from the 72 months before May 1998. Amounts are in millions of U.S. dollars

Month

S&P 500 
Percentage 

Change

FT-SE 100 
Percentage 

Change

Change in 
Value of 

U.S. Equity 
Position

(w/o 
Dividends)

Change in 
Value of U.K. 

Equity 
Position

Change in
Portfolio 

Value (with
Dividends
of 0.1283)

May 92 0.096 4.949 0.0524 2.3913 2.5720
Jun. 92 −1.736 −2.988 −0.9436 −1.4438 −2.2591
Jul. 92 3.942 −3.694 2.1430 −1.7848 0.4865
Aug. 92 −2.402 −0.920 −1.3057 −0.4448 −1.6221
Sep. 92 0.913 −0.302 0.4963 −0.1458 0.4788
Oct. 92 0.211 −9.433 0.1145 −4.5578 −4.3150
Nov. 92 3.021 1.779 1.6423 0.8598 2.6304
Dec. 92 1.015 2.065 0.5520 0.9976 1.6779
Jan. 93 0.702 −2.909 0.3817 −1.4056 −0.8955
Feb. 93 1.048 −1.964 0.5699 −0.9492 −0.2510

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
Jul. 97 7.812 4.915 4.2465 2.3748 6.7497
Aug. 97 −5.745 −2.971 −3.1226 −1.4357 −4.4299
Sep. 97 5.315 8.723 2.8893 4.2148 7.2324
Oct. 97 −3.448 −4.555 −1.8741 −2.2011 −3.9469
Nov. 97 4.459 0.725 2.4236 0.3504 2.9024
Dec. 97 1.573 3.876 0.8551 1.8727 2.8562
Jan. 98 1.015 5.259 0.5517 2.5413 3.2214
Feb. 98 7.045 6.174 3.8294 2.9833 6.9410
Mar. 98 4.995 4.706 2.7149 2.2739 5.1171
Apr. 98 0.909 −0.096 0.4944 −0.0462 0.5765

0.05 3 72⁄–
4 72⁄ 3 72⁄–
---------------------------------- 

  4.367 4 72⁄ 0.05–
4 72⁄ 3 72⁄–
---------------------------------- 

  4.389+ 4.376.= =
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Expressed as a fraction of the value of the portfolio, it is 4.367 110
0.03978, or 3.978%.

The historical simulation method can also easily be adapted to compute
benchmark-relative VaR. To do this, one must subtract the change in the
value of the benchmark portfolio from each of the entries in Table 2.3 before

TABLE 2.3  Hypothetical changes in portfolio value computed using the returns 
from the 72 months before May 1998 and sorted from largest profit to largest loss

Number

S&P 500 
Percentage 

Change

FT-SE 100 
Percentage 

Change

Change in
Value of

U.S. Equity
Position
(w/o 

Dividends)

Change in 
Value of U.K. 

Equity 
Position

Change in
Portfolio

Value
(with 

Dividends 
of 0.1283)

1 5.315 8.723 2.8893 4.2148 7.2324
2 7.045 6.174 3.8294 2.9833 6.9410
3 7.338 5.494 3.9885 2.6547 6.7715
4 7.812 4.915 4.2465 2.3748 6.7497
5 5.858 5.235 3.1841 2.5296 5.8420
6 3.443 6.522 1.8716 3.1513 5.1512
7 4.995 4.706 2.7149 2.2739 5.1171
8 2.733 6.565 1.4855 3.1723 4.7862
9 3.762 4.749 2.0449 2.2945 4.4678

10 3.149 5.393 1.7117 2.6057 4.4457
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
63 −4.261 0.771 −2.3164 0.3723 −1.8157
64 −1.736 −2.988 −0.9436 −1.4438 −2.2591
65 −4.575 0.092 −2.4867 0.0444 −2.3140
66 −2.688 −4.165 −1.4610 −2.0124 −3.3450
67 −3.448 −4.555 −1.8741 −2.2011 −3.9469
68 0.211 −9.433 0.1145 −4.5578 −4.3150
69 −3.950 −4.859 −2.1474 −2.3479 −4.3669
70 −3.007 −5.967 −1.6343 −2.8830 −4.3889
71 −5.745 −2.971 −3.1226 −1.4357 −4.4299
72 −4.577 −7.406 −2.4878 −3.5785 −5.9379

⁄ =
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sorting them and finding the loss that corresponds to a probability of 5%.
The change in the value of the benchmark portfolio is simply the return on
the benchmark, multiplied by the value of the portfolio, $110 million. Carry-
ing out this calculation for May 1992, the difference between the change in
the value of the portfolio and the benchmark is $[54.357 (0.000964)
48.319(0.049490) (0.014 12)110] [110(0.000964) (0.014 12)110]

$2.338 million. Carrying out the computation for each of the past 72
months, the benchmark-relative value-at-risk is $3.571 million.

An advantage of the historical simulation method is that it does not require
that one make any specific assumption about the distribution of changes in the
two indexes. (However, it does require that one assume that the distribution of
returns is identical to the distributions from which the returns used to construct
the value-at-risk estimate were drawn.) This, however, comes at the cost of
being very data-intensive. Estimating the value-at-risk comes down to estimat-
ing the lower tail of the distribution, and large numbers of observations (many
more than 72) are required to do this with any accuracy. For this reason, the
historical simulation approach is best suited to computing value-at-risk for
short holding periods such as one or two days, because reasonably large sam-
ples of one- or two-day returns are usually available. Even with a short holding
period and large numbers of observations, the estimate of value-at-risk is still
determined by a relatively small number of observations in the tail of the distri-
bution. As a result, the estimate can be inaccurate.

Yet another method of computing the value-at-risk is to use a Monte Carlo
simulation approach. In this approach, one simulates the hypothetical future val-
ues of the portfolio by drawing pseudo-random return vectors from an assumed
joint distribution of the percentage changes in the two stock market indexes and
then computing hypothetical new values of the stock market indexes and hypo-
thetical new values of the portfolio. These provide an estimate of the distribution
of possible future values of the portfolio from which the value-at-risk may be
determined. This approach is most interesting for portfolios that include options,
and we defer discussion of it until a later chapter. There are also variants of the
different methods, designed to deal with the complexities of actual portfolios.
Despite the differences in details and implementation, all methods share the goal
of estimating the distribution of possible future values of the portfolio from
which the value-at-risk estimate is obtained.

NOTES

Some authors use different terminology in referring to the various methods
for computing values-at-risk. For example, Simons (1995) identifies three
methods for computing values-at-risk: the parametric method, the historical

+
+ ⁄ – + ⁄

=
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method, and simulation. She then identifies two variants of simulation, his-
torical simulation and Monte Carlo simulation, resulting in a total of four
methods. This book identifies three basic methods, the delta-normal, histori-
cal simulation, and Monte Carlo simulation, as well as variants of the basic
methods (e.g., the delta-gamma-theta-normal method and variants of Monte
Carlo simulation). The delta-normal and parametric methods are the same
and have yet a third name, the variance-covariance method. The approach
Simons calls the historical method is that labeled the “naïve” historical sim-
ulation in chapter 4.

The cost-of-carry formula is F S exp [(r d)(T t)], where F is the
futures price, S is the current level of the index, r is the continuously com-
pounded interest rate, d is the (continuous) dividend yield, and T t is the
time remaining until the final settlement date of the futures contract.
The example uses the parameters r 0.05, d 0.016, and T t 0.3836
for the FT-SE 100 contract, so this becomes F 1.0131S. Since the multi-
plier of the FT-SE 100 index futures contract is 10, this implies that a
holder of a futures contract gains or loses £10.131 when the index value
changes by one unit. For the S&P 500 index futures contract, the example
uses r 0.05, d 0.014, T t 0.3836, and a multiplier of 250, imply-
ing that a one-point change in the index results in a $253.48 change in the
value of the S&P 500 contract.

In the interest of simplicity, the example “cheats” by interpreting the
S&P 500 index futures contract as equivalent to a position in the stock port-
folio underlying the index and thereby ignores the leverage or short-bond
position implicit in a long futures position. Including this bond position
would slightly affect the estimate of the expected change in the value of the
portfolio, thus slightly affecting the value-at-risk. The situation with the FT-
SE 100 futures contract is more complicated. The example first (incorrectly)
ignores the embedded bond position and thereby treats the futures position
as equivalent to a cash position in the portfolio underlying the FT-SE 100.
However, this position is exposed to the risk of changes in the dollar/pound
exchange rate. The example sidesteps this issue by neglecting to specify
whether the parameters �2, �2, and �12 apply to the pound- or dollar-
denominated returns in the FT-SE 100 index. The next chapter interprets
these parameters as applying to the pound-denominated returns. This actu-
ally gives the correct result here, because (except that stemming from any
margin balance) the FT-SE 100 index futures position has no exchange-rate
risk due to the zero net investment in the position. This issue is addressed
explicitly in the next chapter. 

The key properties of the multivariate normal distribution used
repeatedly in this book are as follows. Let x1, x2, . . . , xN be normal

= – –
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random variables, and use �i and �i to denote the mean and standard
deviation of the ith random variable xi and �ij to denote the correlation
between xi and xj, where �ii 1. Then the random variable y, given by
the linear combination

has a normal distribution with mean and variance 

and

respectively, where a (a1, . . . , aN)′, x (x1, . . . , xN)′, � (�1, . . . ,
�N)′, and � is an N N matrix with elements of the form �ij�i�j.

The approach to risk decomposition in this book is that of Litterman
(1996), which has become standard. Chapter 10 includes a more detailed
discussion of risk decomposition.
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The Delta-Normal Method

In the previous chapter, the first calculation of value-at-risk using the nor-
mal distribution was very easy. We simply needed the expected values and
covariance matrix (i.e., the standard deviations and correlations) of the
returns on the two indexes and the dollar values of the positions in the two
markets. We then computed the mean and variance of changes in the value
of the portfolio using formulas for the mean and variance of linear combi-
nations of normally distributed random variables. Finally, we computed
the standard deviation of changes in the value of the portfolio and the
value-at-risk.

Even if we restrict our attention to equity portfolios, the computation
of value-at-risk is not quite so easy for most actual portfolios. The
approach in the previous chapter involved determining the investment in
each asset (e.g., market index) and the means and covariances of returns on
the assets. Once these were determined the VaR computation was simply an
application of standard formulas. However, actual portfolios can include
hundreds or even thousands of different common and preferred stocks,
convertible bonds, options, index futures contracts, and other derivative
instruments. To estimate directly the covariance matrix of the returns or
changes in value of hundreds or thousands of different instruments is sim-
ply not feasible, especially because the risks of some of the instruments
(e.g., options and convertible bonds) can change dramatically as the levels
of stock prices change. Thus, it is essential to simplify the problem.

The procedure to do this is known as risk mapping. It involves taking
the actual instruments and mapping them to a set of simpler, standard posi-
tions or instruments. The standard positions are chosen so that each of
them is associated with a single market factor (e.g., the return on a market
index such as the S&P 500) and the covariance matrix of their returns or
changes in value may be readily estimated. Once the standard positions and
the covariance matrix of their changes in value have been determined, the
standard deviation of any portfolio of the standardized positions can be
computed using known formulas. In essence, for any actual portfolio one
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finds a portfolio of the standard positions that is (approximately) equiva-
lent to the original portfolio in the sense that it has the same sensitivities to
changes in the values of the market factors. One then computes the value-
at-risk of that equivalent portfolio. If the set of standard positions is rea-
sonably rich, and the actual portfolio does not include many options or
option-like instruments, then little is lost in the approximation.

There are two dimensions in which this simplification, or risk map-
ping, must be done. First, options and other instruments with values that
are nonlinear functions of the prices of their underlying assets must be
replaced by (approximately) equivalent positions in the underlying assets.
Second, there must be some procedure for mapping thousands of individual
stocks onto a limited number of stock market indexes. This chapter illus-
trates the mapping of options using the example of a portfolio in U.S. and
U.K. stock market indexes that we consider in Chapter 2, except that now
we add some index options to the portfolio. Chapter 7 describes a proce-
dure for mapping individual stocks onto a limited number of market
indexes.

THE PORTFOLIO

As before, the portfolio consists of $110 million invested in a well-diversified
portfolio of large-capitalization U.S. equities, the returns of which are per-
fectly correlated with changes in the S&P 500 index. The portfolio man-
ager has reduced his exposure to the U.S. market by shorting 200 of the
S&P 500 index futures contracts and gained exposure to the U.K. market
by establishing a long position of 500 FT-SE 100 index futures contracts.
As in Chapter 2, at the current S&P level of 1097.6 the combined stock and
futures position is equivalent to an investment of $54.357 million in the
portfolio underlying the index. At the current FT-SE 100 level of 5862.3
and exchange rate of 1.6271 $/£, this position is equivalent to an invest-
ment of £29.696 million or $48.319 million in the portfolio that underlies
the FT-SE 100 index. 

In addition, the portfolio manager has written 600 of the September
FT-SE 100 index call options with a strike level of 5875 traded on the
LIFFE and has written 800 of the September S&P 500 index call options
with a strike level of 1100 traded on the Chicago Board Options Exchange.
Combining the (written) options positions with the $110 million invested
in U.S. equities, the net value of the portfolio is $101,485,220. The delta of
the entire portfolio with respect to the S&P 500 index is 4863.7, and the
portfolio delta with respect to the FT-SE 100 index is 2821.5. The gammas
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of the two positions with respect to the S&P 500 index and FT-SE 100
index are 218.5 and 4.68, respectively.

Figure 3.1 shows the value of the portfolio as a function of the levels of
the S&P 500 and FT-SE 100 indexes. The current levels of the S&P 500 and
FT-SE 100 indexes are 1097.6 and 5862.3, respectively, so that the current
portfolio value is in the middle of the graph. Figure 3.2 shows the value of
the portfolio as a function of the level of the S&P 500 index, holding the
FT-SE 100 index fixed at its current level of 5862.3, while Figure 3.3 shows
the value of the portfolio as a function of the level of the FT-SE 100 index,
holding the S&P 500 index fixed at its current level of 1097.6.

As before, the standard deviation of monthly percentage changes in the
S&P 500 index is �1 0.061 (6.1%), the standard deviation of monthly
percentage changes in the FT-SE 100 index is �2 0.065 (6.5%), and the
correlation between the monthly percentage changes is 0.55. The expected
percentage changes in the S&P 500 and FT-SE 100 indexes are �1 0.01
(1%) and �2 0.0125 (1.25%) per month, respectively. Again, we choose
the holding period to be one month and the probability to be 5%.  

FIGURE 3.1 Current value of the portfolio as a function of the levels of the S&P 
500 and FT-SE 100 indexes
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FIGURE 3.2 The current value of the portfolio as a function of the level of 
the S&P 500 index, holding fixed the value of the FT-SE index

FIGURE 3.3 The current value of the portfolio as a function of the level of the FT-SE 
100 index, holding fixed the value of the S&P 500 index
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MAPPING OPTIONS

Equity and index options typically are mapped into delta equivalent posi-
tions in the underlying stock or equity index. An option delta is the partial
derivative of the option price with respect to the price of the underlying
asset or index level, or the rate at which the option value changes as the
value of the underlying asset or index changes. Letting V denote the value
of the option and S denote the value of the underlying asset or index, the
delta is � ∂V ∂S. The change in the option price resulting from a change
in the spot price can be calculated from the delta and the change in price of
the underlying asset or index level,

Change in V � change in S.

For example, if the option is on the S&P 500 index with � 60 (recall
that the multiplier of the S&P 500 index option is 100, so that this corre-
sponds to � 0.6 on a “per index” basis), the predicted change in the
option price is 60 times the change in the index value. One interpretation of
this is that for small changes in the index an option is equivalent to the
investment of an amount, � S, in a portfolio that is perfectly correlated
with the index, because the change in the portfolio value is also given by
the product of � and the change in the index level. Loosely, the option acts
like � indexes. 

To appreciate the power of this procedure, one need simply recog-
nize that there exist an immense variety of options. Even if one considers
just ordinary options, wide ranges of both strike prices and expiration
dates are possible, and of course there are both calls and puts. In addi-
tion, there are exotic options that can have virtually any terms. This pro-
cedure allows the ith option to be mapped to an investment of �iS in a
portfolio that is perfectly correlated with the index, where the terms of
the option matter only to the extent that they determine the option delta,
�i. Since the procedure can be applied to each option, it allows a portfo-
lio of N different positions to be mapped to an investment of  �iS in
a portfolio that tracks the index.

For the example portfolio, the investment of $54.357 million in the
portfolio perfectly correlated with the S&P 500 index has a delta of
49,524 54.357 million/1097.6. Each of the S&P 500 index call options
has a delta of 55.825, so the delta of the position of 800 written options is
−800 55.825 −44,660, and the portfolio delta with respect to the S&P
500 index is 49,524 44,660 4863.7 dollars. Thus, the positions based
on the S&P 500 are mapped to a position consisting of an investment of
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$4863.7 1097.6 $5.338 million in a portfolio that tracks the S&P 500
index.

There are 500 FT-SE 100 index futures contracts, each with a multiplier
of 10 pounds, and the delta of the FT-SE 100 index futures position is
5065.6. Each of the FT-SE 100 index options has a delta of 5.553, implying
that the delta of the position of 600 written options is 600 5.553

3331.6, and the portfolio delta with respect to the FT-SE 100 index is
5065.6 3331.6 1734. Thus, the FT-SE 100 index futures and options
positions are mapped to a position consisting of an investment of £1734
5862.3 £10.166 million in a portfolio that tracks the FT-SE 100 index,
or 1734 units of the index. At the current exchange rate of 1.6271 dollar/
pound, this is equivalent to an investment of $16.541 million in a portfolio
that tracks the index.

Having mapped the portfolio, we can now proceed as we did in Chap-
ter 2. The expected change in and variance of the value of the portfolio are

and

The standard deviation of changes in the value of the portfolio is
1.283  and the value-at-risk is

million. As a percentage of the value of the portfolio, the value-at-risk is
1.723/101.485 0.01698 or 1.698%. Just as in Chapter 2, benchmark rela-
tive value-at-risk can be computed by adjusting the position in the S&P 500 to
include a short position in the benchmark portfolio. Doing this, the relative
VaR turns out to be 9.405% of the value of the portfolio. This is larger than

× =

– × =
–

– =
×

=

E �V[ ] X1�1 X2�2 D+ +=

5.338 0.01( ) 16.541 0.0125( ) 110 0.014 12⁄( )+ +=
0.3885=

var �V[ ] X1
2�1

2 X2
2�2

2 2X1X2�12�1�2+ +=

5.3382( ) 0.0612( ) 16.5412( ) 0.0652( )+=
2+ 5.338( ) 16.541( ) 0.061( ) 0.065( ) 0.55( )

1.647=

= 1.647,

VaR E �V[ ] 0.1283 1.645 s.d. �V[ ]×–+( )–=
0.3885 1.645 1.283×–( )–=

1.723=

=



The Delta-Normal Method 39

the value-at-risk of 1.698% because in that calculation the portfolio weight
on the S&P 500 is only 5.338/101.485 0.0526 or 5.26% due to the short
positions in the S&P index futures and options. Since the benchmark portfolio
has a weight of 100% in the S&P 500, the weight on the S&P 500 used in the
calculation of relative value-at-risk is 5.26% 100%  94.74%.

EXPLICIT CONSIDERATION OF FX RISK

The value-at-risk calculation carried out above sidesteps the issue of
exchange rate risk. Do the parameters �2, �2, �12 and apply to the local cur-
rency (i.e., pound-denominated) percentage changes in the FT-SE 100 index,
or the dollar-denominated changes? Given that the FT-SE 100 futures con-
tract was mapped to a cash position in the portfolio underlying the index,
the correct approach seems to be to interpret them as applying to the dollar-
denominated returns. If the parameters apply to the pound-denominated
returns, the VaR calculation above would not capture the exchange rate risk
of the position in the U.K. market. 

While the preceding calculation is simple, a drawback of organizing the
calculations in terms of the dollar-denominated returns is that the expected
returns and covariance matrix depend upon the perspective or base currency
of the person or organization performing the calculations. For example, a
U.S. investor or organization would use the expected dollar-denominated
returns and the covariance matrix of dollar-denominated returns, while a
U.K. investor would use a set of parameters describing the distribution of
pound-denominated returns. Unfortunately the expected returns and covari-
ance matrices are generally different, depending on the base currency. This is
inconvenient for companies or other organizations in which different sub-
sidiaries or other units use different base currencies, as well as for software
vendors whose customers do not all use the same base currency.

More importantly, while the calculation carried out above illustrates
the main idea of mapping, it is incorrect. Even though the FT-SE 100
futures and options have the U.K. equity market risk of £10.166 million
invested in a portfolio that tracks the FT-SE 100 index, there has not been a
cash investment of £10.166 million. Rather, the FT-SE 100 index futures
contract has a value of zero at the end of each day, so only the value of the
written position in the FT-SE 100 index options is exposed to exchange rate
risk. The procedure of mapping the futures and options positions to an
investment of £10.166 million in a portfolio that tracks the FT-SE 100
index incorrectly treats this entire amount as if it were exposed to exchange
rate risk.

=

– = –
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These two difficulties can be overcome by considering the exchange rate
to be a separate market factor or source of risk and interpreting the portfolio
as having three risk factors, S1, S2, and e, where the new risk factor e is the
exchange rate expressed in terms of dollars per pound. To do this, we must
be careful about how the exchange rate affects the value of the portfolio.

First, the exchange rate does not affect the value of the positions in the
S&P 500 index, so the portfolio delta with respect to the S&P 500 index
remains 4863.7 dollars and the positions based on the S&P 500 are
mapped to a position consisting of an investment of $4863.7 1097.6
$5.338 million in a portfolio that tracks the S&P 500 index.

 The positions based on the FT-SE 100 index are affected by the
exchange rate, though in different ways, and we consider them separately.
These positions will be mapped using their deltas, or partial derivatives. 

The FT-SE 100 index futures contracts affect the profit or loss on the
portfolio through their daily resettlement payments. Even though the values
of the futures contracts are zero at the end of each day, the daily resettlement
payments must be included in the profit or loss because they are paid or
received by the owner of the portfolio. To determine how the daily resettle-
ment payment is affected by changes in S2 and e, we use the cost-of-carry for-
mula F(S2, t) S2 exp[(r2 d2)(T2 t)], where T2 is the final settlement date
of the FT-SE 100 index futures contract, t is the current date, r2 is the £ inter-
est rate, and d2 is the dividend yield on the portfolio underlying the FT-SE
100 index. Because the futures contract has value zero following each reset-
tlement payment, one need only consider the effects of changes in the market
factors on the value of the first daily resettlement payment. This is given by 

£500(10){S2 exp[(r2 d2)(T2 t)] 5862.3exp[(r2 d2)(T2 t0)]},

where t0 is the initial time (i.e., the end of the previous day) and 10 is the
multiplier for the FT-SE contract. In dollar terms, it is

Computing the deltas, or partial derivatives

× =

= – –
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and

and then evaluating them at the initial values S1 1097.6, S2 5862.3,
e 1.6271, and t0, we obtain

(3.1)

The exchange rate delta of the futures contract is zero because when
S2 5862.3 and t t0 the value of the daily resettlement payment is zero,
regardless of the exchange rate. 

The written position of 600 FT-SE 100 index call options has a pound
value of 600C2(S2, t) and a dollar value of 600eC2(S2, t), where the func-
tion C2 gives the value (including the effect of the multiplier) of the FT-SE
100 index call option as a function of the index level and time. The partial
derivatives are

(3.2)

where again the derivatives are evaluated at the initial values S1 1097.6,
S2 5862.3, e 16271, and t t0.

Combining the deltas of the FT-SE 100 futures and options positions,
we have

(3.3)
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where for ∂V ∂S2 and ∂V ∂e the right-hand sides consist of the sums of
the futures and options deltas. The interpretation of these deltas is that one-
unit changes in S1, S2, and e result in changes of 4863.7, 2,821.5, and

2,127,725 in the dollar value of the portfolio, respectively. Thus, the
change in the dollar value of the portfolio can be approximated as 

change in V 4863.7(change in S1) 2821.5(change in S2)
2,127,725(change in e).

Writing the changes in the risk factors in percentage terms,

(3.4)

or

(3.5)

The upshot of this analysis is that the portfolio is mapped to X1
4863.7  1097.6 5.338 million dollars exposed to the risk of percentage
changes in the S&P 500, X2 2821.5 5862.3 16.541 million dollars
exposed to the risk of percentage changes in the FT-SE 100, and
X3 21,27,725 1.6271 3.462 million dollars exposed to the risk
of percentage changes in the exchange rate.

Examining the partial derivatives in (3.1) and (3.2) and following the role
they play in equations (3.3) through (3.5), one can see that the written position
in the FT-SE 100 index call option with value $600eC2(S2,t) is exposed to
the risk of changes in both S2 and e. As a result, it contributes to both of the
last two terms on the right-hand sides of (3.4) and (3.5). In contrast, the futures
contract is not exposed to the risk of changes in e and does not contribute to
the last term on the right-hand side of (3.4) and (3.5). Thus, this mapping cap-
tures the fact that the position in the FT-SE 100 index futures contract is not
exposed to the risk of changes in the $/£ exchange rate. 

⁄ ⁄

–

≈ +

–

change in V 4863.7S1
change in S1

S1
-------------------------------- 

  2821.5S2
change in S2

S2
-------------------------------- 

 +≈

2,127,725– e change in e
e

----------------------------- 
 

change in V 5,338,445
change in S1

1097.6
-------------------------------- 

  16,540,531
change in S2

5862.3
-------------------------------- 
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3,462,022 change in e
1.6271

----------------------------- 
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=
× =
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The mapping amounts to replacing the portfolio with a linear
approximation

(3.6)

The constant on the right-hand side is chosen so that, when S1 1097.6,
S2 5862.3, and e 1.6271, the right-hand side equals the actual initial
value of the actual portfolio, $101,485,220. This linear approximation is
shown in Figures 3.4 and 3.5. Figure 3.4 shows the value of the portfolio as a
function of the level of the S&P 500 index, holding the FT-SE 100 index and
exchange rate fixed at their current levels of 5862.3 and 1.6271, along with the
linear approximation of the value of the portfolio. Figure 3.5 shows the value
of the portfolio and the linear approximation as a function of the level of the
FT-SE 100 index, holding fixed the S&P 500 index and the exchange rate. 

FIGURE 3.4 The current value of the portfolio as a function of the level of the S&P 
500 index and the linear approximation used in computing delta-normal value-at-risk
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Using equation (3.3), the expected change in the value of the portfolio is

E[�V] X1�1 X2�2 X3�3 D,

where �1 0.01, �2 0.0125, and �3 0 are the expected percentage
changes in the three risk factors. The variance of monthly changes in port-
folio value is given by the formula

where �1 0.061 is the standard deviation of monthly percentage changes
in the S&P 500 index, �2 0.065 is the standard deviation of monthly per-
centage changes in the FT-SE 100 index, �3 0.029 is the standard devia-
tion of monthly percentage changes in the exchange rate, and �12 0.55,
�13 0.05, and �23 0.30 are the correlation coefficients. Using these
parameters and the mapping X1 5.338 million, X2 16.541 million,

FIGURE 3.5 The current value of the portfolio as a function of the level of the 
FT-SE 100 index and the linear approximation used in computing delta-normal 
value-at-risk
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and X3 3.462 million, the expected value and standard deviation of
the change in value of the portfolio are

The standard deviation is, of course, simply the square root of the variance,
or $1.311 million, and the value-at-risk is

As a fraction of the initial value of the portfolio,

or 1.74% of the initial value of the portfolio.
Alternatively, when the time horizon of the value-at-risk estimate is one

day, it is common to assume that the expected change in the portfolio value
is zero. If this assumption is made, the value-at-risk is then $1.645 mil-
lion(1.311) $2.157 million, or 1.645(0.0129) 0.0213 or 2.13% of the
value of the portfolio.

COVARIANCE MATRIX ESTIMATES AND
EXPONENTIAL WEIGHTING

The delta-normal method and others based on the normal distribution, such
as the delta-gamma-theta-normal method and the implementations of the
Monte Carlo simulation method, all require an estimate of the covariance

= –

E �V[ ] 5.338 0.01( ) 16.541 0.0125( ) 3.462 0.0( )– 110 0.014 12⁄( )+ +=
0.3885,=

var �V[ ] 5.3382( ) 0.0612( ) 16.5412( ) 0.0652( ) 3.4622–( ) 0.0292( )+ +=
2 5.338( ) 16.541( ) 0.061( ) 0.065( ) 0.55( )+
2 5.338( ) 3.462–( ) 0.061( ) 0.029( ) 0.05( )+
2 16.541( ) 3.462–( ) 0.065( ) 0.029( ) 0.30–( )+

1.719.=

VaR E �V[ ] 1.645 s.d. �V[ ]×–( )–=
0.3885 1.645 1.311×–( )–=

1.768.=

VaR E
�V
V

--------  1.645 s.d. �V
V

--------  ×– 
 –=

0.00383 1.645 0.0129×–( )–=
0.0174,=

= =
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matrix of changes in the market factors. Almost always, the estimate is
obtained from historical data. For the diagonal terms of the covariance
matrix (i.e., the variances), a natural choice is the classical variance estimator

where is the estimate of the variance of changes in the ith market factor,
xi,t−n is the change in the ith market factor n periods in the past, N is the
number of past observations to be used, and

is an estimate of the mean change in the ith market factor. The off-diagonal
terms of the covariance matrix (i.e., the covariances) can be estimated using
the formula

�i�j�ij

where �i�j�ij is the estimate of the covariance between changes in the ith
and jth market factors. When the changes in the market factors are mea-
sured over short horizons such as one day, often it is assumed that 0
and the formulas above are replaced by

(3.7)

and

(3.8)

which seem to perform better. 
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An alternative is to use exponentially weighted estimators of the form

(3.9)

and

(3.10)

where � 1 and N is chosen to be large enough that the terms for n N are
negligible. The coefficient (1 �) (1 �N) appears because the sum of the
weights is �n−1 (1 �N) (1 �), or approximately 1 (1 �) when
N is large. Thus, this coefficient makes the sum of the weights approximately
equal to one. The effect of this weighting scheme is that the more recent
returns receive more weight in the estimation of the variance. For example, in
the RiskMetrics methodology � 0.94 with daily data, so that the most
recent observation receives a weight of 0.06, the next most recent observa-
tion receives a weight 0.06(0.94), and so on. Having more recent returns
receive larger weight seems desirable because volatility both changes and is
persistent; that is, large (in absolute value) returns are typically followed by
additional large returns. Thus, when a large (in absolute value) return is
observed, the volatility estimate should be increased, and when a small return
is observed, it should be decreased. This is accomplished by placing a heavy
weight on the recent returns.

A key issue in both the classical and exponentially weighted estimators
is how much past data should be used, that is, the choice of N and �. Were
volatility constant, it would be optimal to use the equally weighted estima-
tor with N chosen to be as large as possible, that is, equal to the number of
available observations. However, if volatility changes over time, only recent
data will be relevant and either N should be small or an exponentially
weighted estimator with a relatively small value of � should be used so that
the weights decay rapidly. Morgan Guaranty Trust Company (1994; 1996)
claims that � 0.94, which makes the weights decay relatively rapidly, is a
good choice. With this choice of � the weight is less than 0.01 for the obser-
vation 30 days in the past and is less than 0.001 for the observation 66
days in the past. Hendricks’s (1996) comparison of value-at-risk estimators
using equally weighted covariance matrix estimators also suggests that
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good choices of N are relatively small, and his results using exponentially
weighted estimators are consistent with the claim that � 0.94 is a good
choice.

LIMITATIONS OF THE DELTA-NORMAL APPROACH

First, an assumption in virtually all VaR methods is that the portfolio does
not change during the holding period. Either explicitly or implicitly, VaR is
an estimate of the risk of the current portfolio over the stated holding
period or time horizon. To the extent that the portfolio changes, the distri-
bution of profit and loss will be different from that used in the computation
of the VaR estimate.

It is clear from equations (3.1) through (3.6) and Figures 3.4 and 3.5
that the delta-normal method is based on a linear or delta approximation
of the value of the portfolio. Thus, the method will work well when a lin-
ear approximation adequately describes the changes in the value of the
portfolio. From Figures 3.4 and 3.5, one can see that the adequacy of a lin-
ear approximation will depend on the curvature of the function expressing
the value of the portfolio in terms of the underlying market factors. This
curvature is measured by the portfolio gammas (second derivatives) with
respect to each of the underlying market factors. Gamma, or curvature in
the value function, is a characteristic of options and option-like instru-
ments, implying that the adequacy of the linear approximation is deter-
mined by the number of options in the portfolio and their characteristics.
As a result, the delta-normal method may not provide accurate VaR esti-
mates for portfolios that contain large numbers of options.

In particular, it is clear from examining the figures that for portfolios
with downward curvature, or gamma less than zero, the linear approxima-
tion is always greater than the actual portfolio value, so that an estimate of
the loss based on the linear approximation will be less than the actual loss.
Thus, the delta-normal method underestimates the value-at-risk for such
portfolios. Conversely, for portfolios with positive gamma the linear
approximation lies below the true portfolio value, so that an estimate of the
loss based on the linear approximation will exceed the actual loss. For such
portfolios the delta-normal method overestimates the value-at-risk. Portfo-
lios in which the options are exclusively or predominantly purchased have
positive gamma, while portfolios in which the options are exclusively or
predominantly written have negative gamma. Thus, the delta-normal
method will tend to underestimate the value-at-risk for portfolios of writ-
ten options and overestimate it for portfolios of bought options.

=
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The delta-normal method also uses the assumption that changes in the
market factors are normally distributed. Unfortunately, the actual distribu-
tions of changes in financial rates and prices typically have fat tails relative to
the normal distribution. That is, in the actual distributions both extreme
changes and small changes are more frequent than predicted by a normal dis-
tribution with the same variance. (If small changes were not also more fre-
quent the distributions would not have the same variance; thus, it is changes
of intermediate size that are less frequent.) Many different models generate
such distributions of changes in the values of the market factors. Two popu-
lar classes of models that generate fat tails are: (i) stochastic volatility models,
including the popular ARCH and GARCH models; and (ii) models in which
the change in the value of the market factor is a mixture of a normal market
movement drawn from a normal distribution and one or more other random
variables, either drawn from normal distributions with different parameters
or from distributions of other types. There is a voluminous literature on such
models, a small part of which is cited in the notes to this chapter.

The delta-normal method is perfectly compatible with non-normality in
returns or changes in market factors due to stochastic volatility, because in
many stochastic volatility models the returns or changes in market factors
have conditional normal distributions, and conditional normality is all that is
needed for the delta-normal method. (The unconditional distribution of
returns in such models has fat tails relative to the normal distribution because
it is a mixture of normal random variables with different parameters.) In fact,
the exponentially weighted covariance matrix estimator described above is a
special case of the popular GARCH(1,1) model described briefly in the notes.
Thus, such implementations of the delta-normal method capture stochastic
volatility of this form. However, the exponentially weighted scheme does not
fully capture other forms of stochastic volatility, and implementations of the
delta-normal method using equally weighted covariance matrix estimators
will not capture even this special case of stochastic volatility.

However, the conditional distribution of the changes in market factors
may be non-normal. In principle, this can be handled through the use of
other distributions, for example the t distribution or mixtures of normal
distributions. This would result in a delta-t or delta-mixture-of-normals
method of computing value-at-risk. This approach is typically not taken,
both because it sacrifices much of the tractability of the delta-normal
approach and because selecting an appropriate fat-tailed distribution and
estimating its parameters are extremely difficult problems. By definition,
there are relatively few extreme realizations of changes in market factors.
As a result, the data contain only limited information about the fatness of
the tails.
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The non-normality of the distribution of changes in market factors is
not a problem when computing 95% confidence value-at-risk. In fact,
because of the lower frequency of market factor changes of intermediate
size, the correct 95% confidence VaR can often be less than the VaR com-
puted using the delta-normal approach. The delta-normal approach typi-
cally understates 99% confidence VaR, but the bias is often not too severe.
However, the problem can be significant when value-at-risk is computed
using higher confidence levels. The risks of such extreme outcomes are typ-
ically assessed using stress-testing, described in Chapter 9.

NOTES

The calculations of the futures prices of the S&P 500 and FT-SE 100 index
futures contracts use the cost-of-carry formula F S exp[(r d)(T t)],
where S is the current index value, r is the interest rate, d is the dividend yield
on the portfolio underlying the index, and T t is the time until the final set-
tlement of the futures contract. For the S&P contract the parameter values are
r 0.05, d 0.014, and T t 0.3836, while for the FT-SE 100 contract
they are r 0.05, d 0.016, and T t 0.3836.

The calculation of the expected change in the value of the portfolio in
the example ignores the return on the implicit synthetic bond position
embedded in the call options and futures contracts. Equivalently, the calcu-
lation ignores the time derivative of the position value, the position theta.
This is standard in the delta-normal approach; including the time deriva-
tive would result in a delta-theta-normal approach. Over the short hori-
zons for which the delta-normal approach is usually used, the resulting
error is small, except for portfolios with significant options content or
bond positions that are very large relative to the VaR. As indicated in the
body of the chapter, when the time horizon of the value-at-risk estimate is
one day, it is common also to ignore the expected changes in the values of
the market factors and simply assume that the expected change in the port-
folio value is zero.

J.P. Morgan’s release of the RiskMetrics data and methodology in 1994
gave considerable prominence to the delta-normal method (see Morgan
Guaranty Trust 1994); the most recent version of the RiskMetrics system is
described by Morgan Guaranty Trust Company (1996) and Mina and Xiao
(2001). Morgan Guaranty Trust Company (1994; 1996) provides an exten-
sive discussion of mapping and covariance matrix estimation using the
exponentially weighted approach, though the focus is on fixed-income
instruments.
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Figlewski (1997) presents evidence that the variance estimator (3.7) that
treats the expected change as equal to zero performs better than the classical
variance estimator. An intuitive explanation for this is that the two estimators
differ materially only when the sample mean return is much different from zero.
But for financial data one knows the expected daily return is close to zero. Thus,
if the average return in the sample is much different from zero, then one knows
that the sample mean is a poor estimate of the expected return and should be
disregarded. The same reasoning applies to the covariance estimator (3.8).

At first glance, using historical estimates of the covariance matrix
might seem like a poor choice, because value-at-risk is intended as a mea-
sure of the possible future changes in market value. In light of this, it might
seem valuable to exploit the information available in option-implied vola-
tilities, which can be interpreted as the market’s forward-looking volatility
forecasts. However, this is typically not done, for two reasons.

First, the dimension of the covariance matrix used in VaR calculations
is often quite large. For example, if the government bond or LIBOR yield
curve in each currency is mapped to between 15 and 20 standard positions,
then the value-at-risk system of a bank or pension fund with positions in
fixed-income instruments denominated in most or all of the actively traded
currencies along with equity positions in most of the major stock markets
could involve 400 or more basic market factors. While implied volatilities
for some market factors could be readily computed, there are not enough
actively traded options to allow for all of the relevant implied volatilities to
be computed. In addition, a K K covariance matrix involves (K2 K) 2
different correlation coefficients. The computation of implied correlation
coefficients requires the prices of options that depend on both underlying
market factors (e.g., spread options). For many pairs of market factors,
such options either do not exist or their prices are not readily available.

Second, value-at-risk is often used to monitor or control traders or
portfolio managers. Monitoring takes place through the reporting of VaR
estimates to senior managers, company directors, or pension plan trustees,
and value-at-risk is sometimes used to control traders through position lim-
its based on VaR estimates. Basing VaR estimates on implied volatilities can
be problematic because the computation of implied volatilities often
requires input from the trading desk or portfolio manager. To the extent
that value-at-risk is used in monitoring and controlling traders and portfo-
lio managers, they may have incentives to shade or bias the computation of
implied volatilities. For this reason, it is often thought desirable that the
covariance matrix be estimated objectively based on historical data.

Autoregressive Conditional Heteroscedasticity (ARCH) and Generalized
Autoregressive Conditional Heteroscedasticity (GARCH) models are a popular

× – ⁄
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approach for estimating time-varying conditional volatilities. GARCH mod-
els describe the conditional variance in terms of weighted averages of past
conditional variances and squared past returns. In a GARCH(p,q) model,
the conditional variance of the return or change in market factor xt,  is
modeled as

(3.11)

where p and q determine the order of the GARCH process, xt−n is the
return or change in the market factor n periods in the past, and the �s and
�s are parameters to be estimated. Typically this is done using the method
of maximum likelihood. A common choice is to let p q 1, resulting in a
GARCH(1,1) model, which can be written in the form

(3.12)

That is, the conditional variance is equal to a constant �0 1 �1, plus a
geometrically declining weighted sum of past returns. Comparing this to
equation (3.9) reveals that the exponentially weighted covariance matrix
estimator is a special case of the GARCH(1,1) model with �0 0.

A univariate GARCH model like (3.11) or (3.12) would be applied
separately to each market factor. When the covariance matrix is of low
dimension (K 3 or 4), multi-dimensional GARCH models may be used.
Unfortunately, the available procedures for estimating multivariate
GARCH models become impractical when K is larger than this. Thus, such
sophisticated procedures for estimating the covariance matrix are often
only useful when the object is to estimate the value-at-risk of a portfolio
exposed to only a few market factors, for example, the trading book of a
single trading desk.

The literature on GARCH and other stochastic volatility models is too
large to survey here. Boudoukh, Richardson, and Whitelaw (1997) discuss
GARCH and other methods for estimating volatility in the context of
value-at-risk models. Duffie and Pan (1997) discuss a range of approaches
for estimating volatilities in the context of VaR estimation, including
GARCH and multivariate GARCH models, other stochastic volatility mod-
els, and jump-diffusion models.
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Koedjik, Huisman, and Pownall (1998) propose the use of the t-distribution
to capture the fat tails typically found in financial returns data. Zangari
(1996b) proposes a simple version of a mixture of normals approach, while
Venkataraman (1997) is a recent example of the use of mixtures of normals to
compute value-at-risk. Gibson (2001) proposes modeling extreme returns by
grafting a model of large price jumps onto a (perhaps normal) model for ordi-
nary market movements.

Evidence that non-normality does not have much impact on 95% con-
fidence VaR estimates is described by Morgan Guaranty Trust Company
(1994; 1996) and Duffie and Pan (1997), which present evidence about the
distributions of a number of different market factors. Evidence for emerg-
ing market exchange rates and equity indexes is presented in Finger (1996)
and Zangari (1996d).
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Historical Simulation

Historical simulation represents a markedly different approach to the
problem of estimating value-at-risk. It does not impose a priori a specific
assumption about the distribution of changes in the market factors and
does not rely on the delta or linear approximation central to the delta-
normal method. Instead, it relies on the assumption that the distribution
of possible changes in the market factors over the next period is identical
to the distribution observed over a sample of N past periods. This chapter
illustrates the use of this approach to measure the risk of a simple fixed-
income portfolio.

In Chapter 2, the historical simulation method of computing the
value-at-risk of a simple-equity portfolio could be interpreted as pretend-
ing that one held the current portfolio during each of the last N periods
and seeing what would have happened to the value of the portfolio during
each of the periods. While this is also the spirit of a historical simulation
calculation of the value-at-risk of a fixed-income portfolio, one needs to
take a bit more care with the interpretation. First, it is crucial to be care-
ful about what is meant by the current portfolio. For concreteness, con-
sider a very simple portfolio consisting of a zero-coupon bond maturing
on date T, one year from today, and having a face, or par, value of F and a
current market value of V. In this case, current portfolio means V invested
in a zero-coupon bond with one year remaining until maturity. It does not
mean a zero-coupon bond with face value F maturing on date T, because
during each of the last N periods a bond maturing on date T had more
than one year remaining until maturity and likely was riskier than the
current portfolio. Also, on each of the past N days the market value of a
bond maturing on date T was almost certainly not identical to today’s
market value V. 

Second, one does not use the interest rates that prevailed during the last
N periods, because they may be very different from current market interest
rates. Rather, starting from the current levels of interest rates, one subjects
the portfolio to the interest rate changes that were observed during the last
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N periods. Thus, the historical simulation method of estimating the
value-at-risk of a fixed-income portfolio consists of taking the current port-
folio and subjecting it to the interest rate changes that were observed dur-
ing the last N periods. 

This is in the spirit of pretending that one held the portfolio for each of
the last N periods, but for the two reasons above is not quite the same
thing. Despite these subtle differences, the historical simulation calculation
of the value-at-risk of a simple equity portfolio performed in Chapter 2 was
correct. Because common stocks do not have a fixed maturity, the issue of
the varying time to maturity does not arise with simple equity portfolios.
For such portfolios the naïve historical simulation approach of pretending
that one held the portfolio for each of the last N periods used in Chapter 2
is identical to taking the current portfolio and subjecting it to the equity
returns that were observed during the last N periods, provided one inter-
prets “held the portfolio” to mean maintained a constant dollar investment
in the portfolios underlying each of the two indexes. However, the two
approaches are not equivalent for equity portfolios that include options or
convertible securities, because such instruments do expire or mature. For
equity portfolios that include options or option-like instruments, one
should use a historical simulation approach analogous to that described in
this chapter.

To describe it a bit more precisely, the historical simulation approach
involves using historical changes in market rates and prices to estimate the
distribution of potential future portfolio profits and losses. The estimate of
the distribution is constructed by taking the current portfolio and subject-
ing it to the actual changes in the basic market factors experienced during
each of the last N periods, typically days. Specifically, the current values of
the market factors and the changes observed during the last N periods are
used to construct N sets of hypothetical future values of the market factors.
Once these hypothetical future values of the market factors have been con-
structed, N hypothetical mark-to-market portfolio values are computed
using the appropriate formulas or models for computing the market values
of the instruments that make up the portfolio. Subtracting the actual cur-
rent mark-to-market portfolio value from each of the hypothetical future
values, N hypothetical mark-to-market profits and losses on the portfolio
are computed. These N hypothetical mark-to-market profits or losses pro-
vide the estimate of the distribution of profits and losses, from which the
value-at-risk estimate is obtained.

The use of the actual historical changes in rates and prices to compute
the hypothetical profits and losses is the distinguishing feature of historical
simulation and the source of the name. Though the actual changes in rates
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and prices are used, the mark-to-market profits and losses are hypothetical
because the current portfolio was not held on each of the last N periods. The
historical simulation approach is typically used with a short holding period,
such as one day, because reasonably accurate estimation of value-at-risk
using this methodology requires that one have access to the changes in mar-
ket rates and prices over a large number of (nonoverlapping) past periods.
For many markets, data spanning large numbers of long (e.g., one month or
one quarter) past holding periods simply are not available, rendering simple
versions of the historical simulation method unsuitable for the calculation of
value-at-risk over long holding periods. 

A SIMPLE FIXED-INCOME PORTFOLIO

We illustrate the approach by applying it to a simple fixed-income portfo-
lio consisting of positions in the U.S. dollar and Thai baht. We use a hold-
ing period of one day and a confidence level of 95% and assume that the
current date is Friday, 30 January. The value-at-risk will be computed for
the one (business) day holding period from Friday, 30 January to Monday,
2 February. Somewhat arbitrarily, the most recent 250 periods (N 250)
are used to compute the changes in the values of the market factors and
the hypothetical profits and losses on the portfolio. Again, the analysis is
performed from the perspective of a dollar-based investor. This simply
means that the portfolio values and profits and losses are denominated in
U.S. dollars. 

The portfolio consists of the following two positions: (i) A one-year
Thai baht (THB) denominated note with a face value of 5 billion Thai
baht, paying semiannual interest at the rate of 22.5% per year. The note
will make an interest payment of THB 0.5 0.25 5 billion THB 562.5
billion in one-half year. After one year, it will make another interest pay-
ment of THB 562.5 million and also return the principal of THB 5 billion;
(ii) This position is partially financed by a U.S. dollar-denominated loan
with a principal amount of $50 million paying semiannual interest at the
rate of 6% per year. The loan requires the borrower to make an interest
payment of U.S. $0.5 0.06 50 million U.S. $1.5 million in one-half
year and to make another interest payment of U.S. $1.5 million and repay
the principal of U.S. $50 million in one year.

The current value of the Thai baht note is THB 5,047,516,023
0.01860465 $/baht $93,907,275, and the present value of the liability
on the dollar-denominated loan is $50,201,942. Thus, the current value of
the portfolio is $93,907,275 $50,201,942 $43,705,333.

=

× × =

× × =

×
=

– =
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ANALYSIS OF THE PORTFOLIO

The key steps in the historical simulation method are to construct N
sets of hypothetical future values of the market factors and then to
use these to compute N hypothetical mark-to-market portfolio values
using the appropriate formulas or models. Thus, it is necessary to iden-
tify the basic market factors that determine the value of the portfolio
and to determine a formula or model that allows the value of the portfo-
lio to be computed as a function of these factors. Achieving both of these
goals is facilitated by decomposing the instruments in the portfolio into
simpler instruments directly related to the underlying market risk factors
and then interpreting the actual instruments as portfolios of the simpler
instruments. For the example portfolio, the Thai baht-denominated
bond is equivalent to a six-month zero-coupon bond with a face value of
THB 562.5 million and a one-year zero-coupon bond with a face value
of THB 5.5625 billion, while the dollar-denominated loan is equivalent
to a six-month zero-coupon bond with a face value of $1.5 million and a
one-year zero-coupon bond with a face value of $51.5 million. This
decomposition of the portfolio is shown in Table 4.1 and yields the fol-
lowing formula for the current mark-to-market value (in dollars) of the
position:

(4.1)

Examining Table 4.1 and equation (4.1), one can see that the current
U.S. dollar market value of the Thai baht bond depends on three basic mar-
ket factors: STHB , the spot exchange rate expressed in dollars per baht;
rTHB,6 , the six-month baht interest rate; and rTHB,12 , the 12-month baht
interest rate. The current market value of the U.S. dollar bond depends on
two basic market factors: rUSD,6 , the six-month dollar interest rate; and
rUSD,12 , the 12-month dollar interest rate. Thus, we have succeeded in
expressing the value of the portfolio as a function of five variables: STHB ,
rTHB,6 , rTHB,12 , rUSD,6 , and rUSD,12. It is natural to take these to be the basic
market factors, because spot exchange rates are widely quoted, and six and
12 months are standard maturities for which interest rate quotes are readily
available.

U.S. dollar mark-to-market value =

STHB
THB 562.5 million

1 0.5rTHB,6+
------------------------------------------------- THB 5.5625 billion

1 rTHB,12+
---------------------------------------------------+×

USD 1.5 million
1 0.5rUSD,6+

------------------------------------------ USD 51.5 million
1 rUSD,12+

---------------------------------------------+–
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One issue that is not apparent in this simple example is that one would
continue to use interest rates for standard maturities as the market factors
even if the payment dates of the instruments in the portfolio did not coincide
with the standard maturities. For example, if the interest payment of U.S.
$1.5 million was to be made in eight months instead of six, one would con-
tinue to use the six- and 12-month U.S. interest rates as the market factors.

TABLE 4.1  Decomposition of the fixed income portfolio into simple instruments 
directly related to the basic market factors

Position Current USD Value of 
Position

Cash Flow in 
6 Months

Cash Flow in 
12 Months

Long position in 
6-month THB 
zero-coupon bond 
with face value of 
THB 562.5 million

Receive 
THB 562.5 

million

Long position in 
12-month THB 
zero-coupon bond 
with face value of 
THB 5.5625 billion

Receive 
THB 5.5625 

billion

Short position in 
6-month USD 
zero-coupon bond 
with face value of 
USD 1.5 million

Pay 
USD 1.5
million

Long position in 
12-month USD 
zero-coupon bond 
with face value of 
USD 51.5 million

Pay 
USD 51.5 

million

STHB
THB 562.5 million

1 0.5rTHB,6+
-------------------------------------------------×

STHB
THB 5.5625 billion

1 rTHB,12+
---------------------------------------------------×

USD 1.5 million
1 0.5rUSD,6+

------------------------------------------–

USD 51.5 million
1 rUSD,12+

---------------------------------------------–
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To do this, the market value of the interest payment to be made in eight
months might be computed as

market value

where  is an esti-
mate of the eight-month interest rate obtained by interpolating from the
six- and 12-month interest rates. (Of course, one might use interpolation
schemes more sophisticated than linear interpolation.) It is necessary to
do this first, because for most currencies interest rate quotes are readily
available for only a limited number of standard maturities. In addition, it
is necessary to identify a limited number of basic market factors simply
because otherwise the complexity and data requirements of the method
become overwhelming. Even if we restrict our attention to bonds, virtu-
ally any maturities and interest payment dates are possible. If the market
factors are chosen to be the interest rates for each possible payment date,
a portfolio of bonds denominated in just one currency would require
thousands of market factors, because there are potentially thousands of
different days on which payments could be made. Thus, an essential first
step is to express the instruments’ values in terms of a limited number of
basic market factors.

 Most actual portfolios will include bonds with many different pay-
ment dates, perhaps spread over a number of years, and many will involve
bonds denominated in more than one currency. As a result, most will have
values that depend upon more than five market factors. A typical set of
market factors might include the interest rates on zero-coupon bonds with
a range of maturities for each currency in which the company has posi-
tions, along with the spot exchange rates. For example, the maturities
used in the fourth version of the RiskMetrics system are one, three, six,
and 12 months, and two, three, four, five, seven, nine, 10, 15, 20, and 30
years (Morgan Guaranty Trust 1996). As a result, the portfolio of a bank
or investment management organization with fixed-income positions in
many or most of the actively traded currencies could easily be exposed to
several hundred different market factors. Regardless of the number of dif-
ferent market factors, the key is still to obtain a formula expressing the
value of the portfolio as a function of the various market factors.

The second step is to obtain historical values of the market factors for
the last N 1 days, and from them construct the previous N changes in the
market factors. For our portfolio, this means collecting the six- and 12-
month baht and dollar interest rates and the spot dollar/baht exchange rate
for the last 251 business days, that is, from 6 February of the prior year to 30

USD 1.5 million
1 2 3⁄( )rUSD,6 1 3⁄( )rUSD,12+[ ]+
-------------------------------------------------------------------------------------– ,=

2 3⁄( )rUSD,6 1 3⁄( )rUSD,12+ 12 8–
6

---------------- 
  rUSD,6

8 6–
6

------------ 
  rUSD,12+=

+
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January of the current year. Thus, the first of the previous 250 periods is
from 6 to 7 February of the prior year, while the last is from 29 to 30 January
of the current year. The actual daily changes in the market factors over these
250 periods will be used to construct hypothetical values of the market fac-
tors used in the calculation of hypothetical profits and losses.

The key step is to subject the current portfolio to the actual changes in
the market factors that occurred over these 250 periods and to calculate the
daily profits and losses that would occur if comparable daily changes in the
market factors occurred over the next day (from 30 January to 2 February)
and the current portfolio is marked-to-market. We first apply the 250 his-
torical percentage changes in the market factors to the current (30 January)
market factors to compute 250 sets of hypothetical market factors for 2
February. These hypothetical market factors are then used to calculate the
250 hypothetical mark-to-market portfolio values, again for 2 February. For
each of the hypothetical portfolio values, we subtract the actual mark-to-
market portfolio value on 30 January to obtain 250 hypothetical daily prof-
its and losses. With this procedure, the hypothetical 2 February market fac-
tors are based upon, but not equal to, the historical values of the market
factors over the previous 250 days.

Table 4.2 shows the calculation of the first of the 250 hypothetical
changes in value using the changes in the market factors from 6 to 7 Febru-
ary of the prior year. We start by using the 30 January values of the market
factors and equation (4.1) to compute the mark-to-market value of the
portfolio on 30 January, which is $43,705,333 and is shown on line 1.
Next, we determine a 2 February hypothetical value by applying the per-
centage changes in the market factors from 6 to 7 February of the prior
year to the actual values on 30 January. Lines 2 through 4 show the values
of the market factors on 6 and 7 February of the prior year and the percent-
age changes. Line 5 shows the actual values of the market factors on 30
January, while line 6 applies the percentage changes in line 4 to the 30 Jan-
uary values shown in line 5 to compute hypothetical values of the market
factors for 2 February. These hypothetical values of the market factors for 2
February are then used to compute a hypothetical mark-to-market value of
the portfolio using the formula

(4.2)

U.S. dollar mark-to-market value =

ŜTHB
THB 562.5 million

1 0.5 r̂THB,6+( )179.5 182.5⁄---------------------------------------------------------------- THB 5.5625 billion

1 r̂THB,12+( )362 365⁄---------------------------------------------------+×

USD 1.5 million

1 0.5 r̂USD,6+( )179.5 182.5⁄---------------------------------------------------------------- USD 51.5 million

1 r̂USD,12+( )362 365⁄--------------------------------------------------+ ,–
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where , , , , and  are the simulated val-
ues of the market factors and 179.5/182.5 and 362/365 are, respectively,
the fractions of a half-year and year remaining after the three days from
30 January to 2 February have passed. The value of $44,140,027 computed
using this formula is shown in the right-hand column of line 6. The profit
or loss on the portfolio is just the difference between this hypothetical
mark-to-market value and the actual value of $43,705,333 from line 1 and
is shown in line 7.

This calculation is repeated 249 more times, using the values of the market
factors on 30 January and the percentage changes in the market factors from
the second through 250th past periods. This results in 250 hypothetical mark-
to-market portfolio values for 2 February, and the 250 hypothetical mark-to-
market profits or losses shown in Table 4.3.

The final step is to select the loss that is equaled or exceeded 5% of the
time, that is, the value-at-risk. This is facilitated by sorting the mark-to-market
profits and losses from the largest profit to the largest loss. The sorted profits/
losses are shown in Table 4.4, and range from a profit of $7,418,019 to a loss of
$13,572,640. Since we have used 250 past periods and 5% of 250 is 12.5, the
95% confidence value-at-risk is between the twelfth and thirteenth worst losses,
or between the losses of $2,738,866 and $2,777,376, which appear in the rows
numbered 238 and 239. Interpolating between these two values, the 95% confi-
dence value-at-risk is 0.5(2,738,866) 0.5(2,777,376) 2,758,121. An alter-
native approach would be to smooth the histogram to obtain a nonparametric
estimate of the probability density of changes in value and then obtain the
value-at-risk from the estimated density.

Figure 4.1 shows the distribution of hypothetical profits and losses.
The loss that is exceeded with a probability of only 5%, that is the
value-at-risk, is the loss that leaves 5% of the probability in the left-
hand tail. This is indicated by the arrow located toward the left-hand
side of the graph.

INCLUDING OPTIONS AND OTHER
MORE COMPLICATED INSTRUMENTS

Options and option-like instruments are somewhat more complicated but
can be handled using the same basic approach. Again, the key is to express
the option values in terms of the basic market factors.The trick is that
option pricing formulas and models typically give the option value as a func-
tion of the price of the underlying asset (and other parameters), and typi-
cally the underlying asset will not coincide with one of the basic market

ŜTHB r̂THB,6 r̂THB,12 r̂USD,6 r̂USD,12

+ =
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factors. This is handled by expressing the value of the underlying asset as a
function of the market factors, which will make the option price a com-
pound function of the values of the market factors. For example, the value
of a bond option depends on the price of the underlying bond, which in turn
depends on the market factors (interest rates), perhaps using the interpola-
tion approach described above. Option volatilities may be handled either by
treating them as additional market factors that must be estimated and col-
lected for each of the past periods or else by treating the volatilities as con-
stants and disregarding the fact that they change randomly over time.

To handle realistic portfolios with many instruments does not require
any change in the approach described above, though it does involve a bit

FIGURE 4.1 Histogram of hypothetical daily mark-to-market profits and losses on 
the fixed-income portfolio
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more computation. Instruments with payment dates that do not correspond
to the standard maturities of the market factors can be handled using the
interpolation approach described above, while longer maturity bonds or
bonds denominated in additional currencies can be handled by introducing
additional market factors. Of course, there may be a great many market fac-
tors. These factors must be identified, data on their historical values must be
collected, and pricing formulas expressing the instruments’ values in terms of
the market factors must be obtained. Finally, the change in the value of the
portfolio must be computed using the appropriate formulas and taking into
account all of the instruments in the portfolio. All of this may be a great deal
of work, but the nature of the work is no different from that described above.

ADVANTAGES AND LIMITATIONS OF HISTORICAL SIMULATION

Historical simulation is easy to understand and explain. The key calcula-
tions in Table 4.4 can be explained to and understood by audiences without
any statistical training. Through the reliance on revaluation of the portfolio
rather than a delta approximation, the procedure also captures the fact that
the prices of options and some other instruments are nonlinear functions of
the underlying market factors.

A key limitation of the approach is that it requires large samples of past
data. Even though the procedure involves revaluing the portfolio N times, the
value-at-risk estimate is determined by the realizations in the tail of the distribu-
tion. Almost by definition, there are relatively few observations in the tail, so
that the effective sample size is much smaller than N. For this reason, reasonably
accurate estimation of value-at-risk, using the historical simulation method,
requires large sample sizes, for example, 1000 or 2000 past observations (that is,
approximately four or eight years of daily data). The drawback is that the use of
such a large sample requires the assumption that the distribution of changes in
the market factors is constant over long periods, and in particular that data from
four or eight years ago are relevant for estimating the current risk of a portfolio.

Unfortunately, it is easy to think of examples where such an assump-
tion would have been badly wrong. For example, in late June 1997, imme-
diately prior to the collapse of the Thai baht, there was widespread
speculation that the Thai authorities would be unable to maintain the bas-
ket regime. Thus, it was clear that Thai baht positions were very risky.
However, a historical simulation analysis of the value-at-risk of a Thai baht
position would not have revealed this risk, because during the preceding
few years only small changes in the dollar/baht exchange rate had been
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observed. This problem can be overcome by adjusting the historical
changes in the market factors to be consistent with a current estimate of the
covariance matrix, as described below and in sources cited in the notes.
However, doing this sacrifices one of the principal advantages of the histor-
ical simulation method, its simplicity.

A second key limitation is that historical simulation responds slowly to
changes in volatility. Because large returns are typically associated with
increases in volatility, large returns should lead to increases in the value-at-
risk estimate. This happens, for example, when the delta-normal method is
used with an exponentially weighted volatility estimator. With the histori-
cal simulation method, a large negative return, such as a market crash, will
shift the ranking of the returns; what was the eleventh worst return
will become the twelfth worst, and what was the twelfth worst will become
the thirteenth, and so on. If, as in the example in this chapter, one is com-
puting a 95% confidence VaR estimate using 250 past returns, then the
VaR is computed from the twelfth and thirteenth worst returns. If the elev-
enth, twelfth, and thirteenth worst returns are all relatively close in value,
then the market crash and shifting described above will have little impact
on the VaR estimate. Perhaps even worse, large positive returns will have
no impact on the VaR estimate, even though positive returns are also asso-
ciated with volatility increases.

REFINEMENTS TO THE HISTORICAL SIMULATION APPROACH

Historical simulation can be adapted to reflect recent market volatility by
exponentially weighting the hypothetical changes in portfolio value. One first
computes the hypothetical changes in the portfolio value using the changes in
the market factors from N past periods, just as in standard historical simula-
tion. Letting �Vn denote the change in portfolio value computed using the
changes in market factors from n periods in the past, one then applies weight
��n −1 to the change in value �Vn , where � 1, the coefficient � (1
�) (1 �N) is chosen to make the sum of the weights equal 1, and N is the
total number of past observations used. The weights �, ��, ��2, ..., ��n−1, ...,
��N−1 are then used to construct the empirical distribution (histogram) of the
changes in portfolio value by acting as if a proportion ��n−1 of the observa-
tions had change in value �Vn , and the VaR estimate is read off the empirical
distribution.

Because � 1, this scheme gives relatively more weight to the recent
past (n is small) and less to the more distant past (n close to N). In particu-
lar, the weights on the simulated changes in value based on recent changes

< = –
⁄ –

<
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in the market factors are greater than 1 N, the weights implicitly used in
standard historical simulation, while the weights applied to the more dis-
tant past are less than 1 N. This is the mechanism through which the
scheme allows the VaR estimate to reflect recent volatility. However, a lim-
itation of this approach is that it does not update the VaR estimate to
reflect recent large increases in the value of the portfolio, which also will
be associated with subsequent higher volatility. A further disadvantage is
that the exponentially weighted approach can exacerbate the estimation
error in the historical simulation VaR because deweighting the past obser-
vations is similar to using a smaller sample.

It is possible to overcome this drawback while still reflecting recent
volatility by scaling the past changes in market factors using volatility
estimates. This is done by computing daily volatility estimates for every
market factor for both the current date and every day during the period
covered by the historical data, scaling the historical changes in market
factors by the ratios of current to past volatilities, and then using these
scaled changes in place of the original ones. Specifically, let t denote the
current date, xi,t−n the change in the ith market factor n days in the past,
�i,t−n the estimate of the volatility of the change xi,t−n , and �i,t the esti-
mate of the current volatility of the ith factor. These volatilities may be
estimated using either exponentially weighted moving averages of
squared returns or GARCH models. The approach is to compute the
hypothetical changes in the portfolio value using the scaled changes in
market factors (�i,t �i,t−n)xi,t−n (or (�i,t �i,t−n)[xi,t−n E(xi,t−n)]) in place
of the (unscaled) changes xi,t−n or [xi,t−n E(xi,t−n)], form the empirical
distribution (histogram) from the profits and losses, computed using the
scaled changes in market factors, and then obtain the VaR estimate from
this distribution. The advantage of this approach is that it reflects current
estimates of market volatility through the scaled changes in the market
factors, while still using a long historical sample to provide information
about the fatness of the tails. Sources cited in the notes describe a slightly
more general approach that can also incorporate changes in correlations
among the market factors.

The historical simulation approach can be adapted to estimate
value-at-risk over multiple-day horizons by repeatedly sampling from
the empirical distribution of daily changes in the market factors and
then cumulating the daily changes to obtain the simulated changes over
multiple-day horizons. For example, suppose one wanted to estimate the
value-at-risk of the portfolio analyzed above over a horizon of one
month (21 days). One would begin by randomly selecting (with replace-
ment) 21 vectors of changes in the market factors from the available

⁄

⁄

⁄ ⁄ –
–
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sample of observed past changes. Let x1t denote the tth of the 21 per-
centage changes in the first market factor (the spot exchange rate), x2t
denote the tth of the 21 percentage changes in the second market factor
(the six-month THB interest rate), and so on. The simulated values of
the market factors at the end of the 21-day horizon can then be
obtained by cumulating these percentage changes; for example, the sim-
ulated value of the spot exchange rate is

where STHB is the current value of the spot exchange rate and  is the
simulated end-of-month value, and similarly for the other market factors.
Then, the simulated values , , , , and  can
be combined with a formula similar to that in equation (4.2) (the time
remaining to maturity will differ) to compute a simulated mark-to-market
value of the portfolio, yielding one simulated realization of the mark-to-
market value and, by subtracting the current value, one simulated realiza-
tion of the change in value. Repeating the process a large number of times
generates an estimate of the distribution of changes in value, and thus the
value-at-risk.

NOTES

Historical simulation is used in portfolio management settings, though its
use in this context does not appear to be widespread. Roth and Layng
(1998) describe the development and implementation of a VaR model for
measuring the risks of portfolios consisting of emerging market equities
and convertible bonds. In this implementation, the market factors are the
prices of the individual equities. The choice to use individual equity returns
as the market factors instead of the common choice to use the returns on
market indexes permits the system to capture the risk of arbitrage and rela-
tive value trading strategies. De Bever, Kozun, and Zvan (2000) describes
the use of historical simulation at the Ontario Teachers Pension Plan,
including the use of historical simulation over a multiple-day horizon.

The calculation in equation (4.1) computes the price for immediate set-
tlement, reflects the simplifying assumption that the payments are to be
made or received in exactly one-half year (182.5 days) and one year (365

ŜTHB STHB 1 x1t+( ),
t=1

21

∏=

ŜTHB

ŜTHB r̂THB,6 r̂THB,12 r̂USD,6 r̂USD,12
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days), and assumes that the six-month rates are compounded twice per year
and the 12-month rates are compounded once per year. Typically, the inter-
est rates would be either derived from the prices of government securities or
else LIBOR term structures would be constructed from the rates on inter-
bank deposits, forward rate agreements, futures contracts on interbank
deposit rates, and interest rate swaps (or from some subset of these instru-
ments). The calculation in equation (4.2) reflects the simplifying assump-
tion that the payments are to be made or received in exactly one-half year
(182.5 days) and one year (365 days) after the current date of 30 January
and also that the rates for 179.5 and 362 days observed on 2 February are
identical to the rates for one-half year and one year, respectively.

Butler and Schachter (1996; 1998) propose implementing the historical
simulation approach by using a kernel estimator to produce a nonparamet-
ric estimate of the probability density function of changes in portfolio
value. The nonparametric estimate of the probability density can be inter-
preted as a smoothed histogram, so this approach is in the spirit of standard
historical simulation. Butler and Schachter also go on to develop a confi-
dence interval around the historical simulation estimate of value-at-risk.

 Zangari (1997b) describes a procedure termed portfolio aggregation,
which is closely related to the historical simulation approach. This involves
constructing the portfolio returns as in historical simulation, but then fit-
ting a parametric distribution to them instead of simply constructing their
histogram. Alternatives to fitting a parametric distribution are the regres-
sion quantile approach of Engle and Manganelli (1999) and extreme value
theory described in Chapter 16. Advantages of portfolio aggregation are
that it allows for more flexible time-series volatility models (e.g., ARCH,
GARCH, and related models), and that one can then use the fitted volatility
model to develop a VaR estimate over a multi-day horizon using a Monte
Carlo approach. A disadvantage is that risk decomposition becomes diffi-
cult, perhaps impossible.

The exponentially weighted historical simulation approach is due to
Boudoukh, Richardson, and Whitelaw (1998). Shimko, Humphreys, and
Pant (1998) suggest weighting the simulated changes in value using other
criteria. For example, for portfolios that depend on prices that display sea-
sonal differences in volatility, one might place more weight on past data
from the same season or month. The volatility scaling approach is due to
Duffie and Pan (1997), Hull and White (1998), and Barone-Adesi, Gian-
nopoulos, and Vosper (1999; 2000a; 2000b), who term it filtered historical
simulation. Duffie and Pan (1997) and Pritsker (2001) also explain how to
rescale the factor changes to incorporate changing correlations. This is
accomplished by using scaled changes of the form xt–n orΣt

1/2 Σt−n
−1/2
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xt–n [xt−n E(xt−n)], where xt−n (x1,t−n, x2,t−n, …, xK,t−n)′ is a
vector of changes in the K market factors,  is a matrix square root of
the estimate of the covariance matrix of xt−n, and  is a matrix square
root of the estimate of the covariance matrix of xt. A limitation of this pro-
cedure is that correlation estimates tend to be unstable, suggesting that any
corrections for changing correlation estimates should be used with caution.
Pritsker (2001) analyzes some limitations of historical simulation and these
variants of it, including their response to changes in volatility.

Σt
1/2 Σt−n

−1/2 – =

Σt−n
1/2

Σt
1/2
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The Delta-Normal Method for a
Fixed-Income Portfolio

The value-at-risk of fixed-income portfolios can also be computed using the
delta-normal method presented in Chapters 2 and 3. Though the analysis of
fixed-income portfolios is more complicated, the basic approach is identical
to the earlier analysis of the simple-equity portfolios.

As in Chapters 2 and 3, the delta-normal approach is based on the
assumptions that: (i) the probability distribution of changes in the under-
lying market factors can be adequately approximated by a multivariate
normal distribution; and (ii) the probability distribution of possible port-
folio profits and losses or returns is adequately approximated by a
(univariate) normal distribution. These two assumptions are mutually
consistent if the returns of the instruments in the portfolio are linearly
related to the changes in the market factors. While this will rarely be
exactly true, it is often approximately so, and a linear approximation lies
at the heart of the delta-normal method. Given this approximation,
assumptions (i) and (ii) are consistent. Once the distribution of changes in
portfolio value has been determined, the quantiles of the normal distribu-
tion are used to determine the loss that will be equaled or exceeded with
probability �, that is, the 1 – � confidence value-at-risk.

Given the reliance on the normal distribution, the computation of
the mean and standard deviation of changes in portfolio value or returns
is the focus of the delta-normal method. The mean and standard devia-
tion are computed through a procedure of mapping the actual instru-
ments in the portfolio into positions in a relatively small set of market
factors or standard instruments. In effect, this involves approximating
the changes in the value of the actual portfolio, which may include large
numbers of complicated instruments (e.g., ordinary and exotic options,
callable and puttable bonds, mortgage-backed securities, etc.), in terms
of changes in the values of the market factors. Once this has been done,
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the mean and variance of its return are computed using formulas for the
mean and variance of linear combinations of normal random variables.
These computations are based on the fact that the statistical properties of
the returns on a portfolio are just the statistical properties of linear com-
binations of the returns on the instruments that make up the portfolio. 

Chapter 3 presented a simple example of a mapping in which index
options were mapped to their delta-equivalent positions in the standard
instruments using their partial derivatives, or deltas. This same approach is
used to map bond and interest-rate options in a fixed-income portfolio, that
is, they are mapped to their delta-equivalent positions. However, mapping a
fixed-income portfolio is usually more complicated than the mapping of the
options in Chapter 3. The complexity is not primarily due to the possible
presence of options in the portfolio but rather to the fact that most fixed-
income portfolios have cash flows on many different days and therefore
have values that depend on many different interest rates. As in Chapter 4, it
would be unmanageable to take the interest rate for each payment date to be
a separate risk factor, and some simplification is necessary. This is achieved
by choosing a relatively small number of market risk factors (bond prices or
interest rates) that capture the risk of the portfolio and then expressing the
portfolio value in terms of these market factors. The complexity of mapping
a fixed-income portfolio stems from this need to express the values of cash
flows paid or received on hundreds or thousands of different dates in terms
of a limited number of market factors. 

Even this brief description makes the method seem complicated. This is
unavoidable; the method is complicated. In order to make the steps clear,
the calculation is illustrated using the simple fixed-income portfolio from
the previous chapter. As above, this portfolio consists of a long position in
a one-year Thai baht-denominated note with a face value of 5 billion THB,
paying semiannual interest at the rate of 22.5% per year, and a short posi-
tion (a loan) in U.S. dollar-denominated bond with a principal amount of
$50 million paying semiannual interest at the rate of 6% per year. As in the
last chapter, we perform the analysis from the perspective of a dollar-based
investor, use a holding period of one day and a probability of 5%

 or confidence level of 95% and use the most recent 250 busi-
ness days  to estimate the covariance matrix of changes in the
values of the market factors. 

The preceding description of the approach started with the goal of
computing the mean and standard deviation of the changes in portfolio
value and then briefly described the steps to achieve this goal. In actually
carrying out the computations, one starts with the details of the choice of
risk factors and the mapping and then builds up to the computation of the

� 0.05=( )
N 250=( )
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mean and variance of the possible change in the portfolio value. This
requires the four steps below.

IDENTIFY THE BASIC MARKET FACTORS AND STANDARD 
POSITIONS

The value-at-risk estimate measures the risk of changes in the market fac-
tors. Thus, the choice of market factors is a key step in the design of the
risk-measurement system, for the choice of the market factors amounts to
a choice of what risks to measure. For example, a system that uses the
prices of or yields on government bonds as the basic market factors will
capture the risk of changes in the level and shape of the yield curve but
will be unable to capture the risk of changes in the yield spreads between
government and corporate bonds. In contrast, a system that includes
both government and corporate prices or yields as market factors is
able to capture this risk. The choice of the number of different maturities
to include among the market factors reflects a choice of how finely to
measure the shape of the yield curve. For example, a system that uses the
yields on three-month, two-year, and 10-year bonds or the first three prin-
cipal components (see Chapter 8) as the market factors measures the
shape of the yield curve less finely than a system that uses 15 or 20 differ-
ent yields (e.g., the yields on, or prices of, bonds with maturities of one
month, three months, six months, one year, two years, etc.).

The designer of the risk measurement system has considerable flexi-
bility in the choice of market factors and therefore has considerable
flexibility in the mapping. Here we make a simple choice in order to
illustrate the procedure. Based on the previous decomposition of the
portfolio into long positions in six- and 12-month Thai baht and U.S.
dollar zero-coupon bonds, it is natural to choose five market factors:
the prices of, or equivalently yields on, six- and 12-month dollar-
denominated zero-coupon bonds; the prices of or yields on six- and 12-
month Thai baht-denominated zero-coupon bonds; and the spot dollar/
baht exchange rate. There are five market factors even though there are
only four cash flows because the dollar value of the Thai baht note
depends on three market factors: the six- and 12-month baht bond
prices/interest rates and the dollar/baht exchange rate. Thus, each of the
Thai baht cash flows must be mapped to positions in two market fac-
tors: (i) bond position exposed only to changes in the baht interest rate
of that maturity; and (ii) a spot position in baht exposed only to
changes in the exchange rate.
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MAPPING THE PORTFOLIO INTO POSITIONS
IN THE STANDARD INSTRUMENTS

Mapping the portfolio consists of expressing the values of the positions in
terms of the market factors. We use bond prices rather than interest rates as
the market factors, because this choice makes the delta-normal method a bit
simpler. With this choice, expressing the values of the positions in terms of
the market factors amounts to computing the dollar values of positions in the
zero-coupon bonds and spot Thai baht.

The positions in six- and 12-month dollar-denominated zero-coupon
bonds are computed by discounting the cash flows using the six- and 12-month
dollar interest rates. Letting X1 and X2 denote the dollar values of the positions
in the first and second standard instruments and using negative signs to repre-
sent short positions, 

As discussed above, the Thai baht note must be mapped into three
positions because its value depends on three market factors: the six- and
12-month baht bond prices and the spot dollar/baht exchange rate. The
magnitudes of the positions are determined by separately considering how
changes in each of the market factors affect the value of the baht cash
flows, holding the other factors constant. The dollar values of the two baht
cash flows are given by 

and 

X1
$1.5 million
1 0.5rUSD, 6+
-----------------------------------– $1.5 million

1 0.5 .05625( )+
-----------------------------------------–== U.S. $1,458,967,–=

X2
$51.5 million
1 rUSD, 12+

----------------------------------- $51.5 million
1 .0565625( )+
---------------------------------------–=–= U.S. $48,742,975.–=

X3 S dollar/baht( ) THB 562.5 million
1 0.5rTHB, 6+

------------------------------------------------- 
 ×=

0.001860465 dollar/baht( ) THB 562.5 million
1 0.5rTHB, 6+

------------------------------------------------- 
 ×=

$9,426,971=

X4 S dollar/baht( ) THB 5562.5 million
1 rTHB, 12+

---------------------------------------------------- 
 ×=

0.001860465 dollar/baht( ) THB 5562.5 million
1 rTHB, 12+

---------------------------------------------------- 
 ×=

$84,480,304.=
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The first term, X3 , represents the dollar value of the six-month Thai
baht cash flow and does not depend on the 12-month baht interest rate,
while the second term, X4 , represents the dollar value of the 12-month
cash flow and does not depend on the six-month interest rate. Holding
constant the exchange rate S, the baht note has the risk of
X3 $9,426,971 invested in six-month baht-denominated bonds and
X4 $84,480,304 invested in 12-month baht bonds. In addition, both
components are exposed to the risk of changes in the dollar/baht
exchange rate. The Thai baht note has a value of X3
X4 $9,426,971 84,480,304  $93,907,275 and has the exchange
rate risk of a baht spot position with this dollar value. Thus, the posi-
tion in the fifth market factor consists of X5 $93,907,275 invested in
a spot baht position. We have the relation X5 X3 X4 because both
X5 and the sum X3 X4 represent the dollar value of the Thai baht
note. As discussed above, the dollar value of the Thai baht note
appears twice in the mapped position because, from the perspective of
a U.S. investor, a position in a baht-denominated bond is exposed to
changes in both bond price/interest rate and exchange rate risk.

Having completed this mapping, the portfolio is now described by the
magnitudes of the positions X1 through X5, and the delta-normal method
proceeds by computing the risk of the portfolio consisting of X1 through
X5. Alternatively, the delta-normal method can be interpreted in terms of a
Taylor series approximation of the value of the portfolio about the current
values of the market factors, and this alternative interpretation can be used
to justify the mapping carried out above. This alternative interpretation is a
special case of the delta-gamma-theta method described in chapter 14 and
is useful when interest rates, rather than bond prices, are used as market
factors. 

DETERMINE THE DISTRIBUTION OF CHANGES IN THE VALUES OF 
THE MARKET FACTORS

The third step is to assume that percentage changes in the basic market
factors have a multivariate normal distribution and to estimate or other-
wise select the parameters of that distribution. This is the point at which
the delta-normal procedure captures any expected change or trend in the
market factors, and their variability and comovement. The variability is
captured by the standard deviations (or variances) of the normal distribu-
tion, and the comovement by the correlation coefficients. Typically the

=
=

+
= + =

=
= +

+
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parameters are estimated from historical data on the (percentage or log)
changes in the market factors. This use of the historical data differs from
their use in the historical simulation method, because here the data are
not used directly but affect the value-at-risk through the estimates of the
parameters of the distribution.

The means, standard deviations, and correlation coefficients of daily
percentage changes in the market factors estimated from the previous
250 daily changes are shown in Table 5.1. The mean percentage change
in the exchange rate change is strongly negative, equal to approximately
–0.27% per day. This reflects the depreciation of the Thai baht that
occurred during the summer of 1997. Similarly, the large estimated stan-
dard deviations for the Thai bond prices and the dollar/baht exchange
rate reflect the extremely high THB interest and exchange rate volatility
that was observed during 1997. Combined with the large long position
in the Thai baht-denominated note, these estimates will lead to a nega-
tive estimate of the expected change in the value of the portfolio and a
relatively high estimate of the standard deviation of changes in the value
of the portfolio. 

One might wonder why an investor would be interested in holding this
portfolio, given that the estimate of the expected change in value is nega-
tive. The explanation is that the historical average percentage change in
the dollar/baht exchange rate of –0.27% that drives the estimate of the
expected change in the portfolio value is obtained from an unusual histor-
ical period in which the Thai baht collapsed and is clearly not a reasonable
estimate of future expected exchange-rate changes. In fact, it is notoriously
difficult to estimate the expected changes in financial rates and prices with
any precision. Partly because of this, when value-at-risk is computed using
a holding period of one day, it is common to assume that the expected
changes in the values of the market factors are zero. In our example, an
assumption of a zero expected change in the dollar/baht exchange rate in
place of the historical estimate of –0.27% per day would probably result
in a more accurate estimate of the value-at-risk. Nonetheless, the nonzero
expected change is used in order to illustrate the delta-normal approach in
its most general form. One might want to replace this simple estimate
based on historical data with one derived from a model of interest and
exchange rate changes. 

The estimated standard deviations of the dollar/baht exchange rate and
the baht bond prices are also derived from the same unusual historical
period and reflect more volatility than one might reasonably expect to
occur in the future. These estimates highlight the need to be careful in rely-
ing on historical data.
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COMPUTE THE PORTFOLIO VARIANCE, STANDARD DEVIATION, 
AND THE VALUE-AT-RISK

Given the standard deviations of, and correlations between, changes in the
values of the market factors, the variance and standard deviation of changes
in the value of the portfolio can be computed using standard mathematical
results about the distributions of linear combinations of normal random
variables. The expected change in the mark-to-market portfolio value
depends on the sizes of the positions in the market factors and the expected
percentage changes in them and is given by the formula 

(5.1)

where xi denotes the value of the ith market factor and Xi is the position in
the ith market factor. The variance of changes in mark-to-market portfolio
value depends upon the standard deviations of changes in the values of the
standard instruments, the correlations, and the sizes of the positions, and is
given by the formula

(5.2)

where  is the standard deviation of percentage changes in the value of the
ith market factor and  is the correlation between percentage changes in
the values of the ith and jth market factor. The portfolio standard deviation
is, of course, simply the square root of the variance. Using the values of the
Xi computed above and the means, standard deviations, and correlation
coefficients in Table 5.1, the expected change in portfolio value is –334,608,
the portfolio variance is  and the standard devi-
ation is 1,924,881. The value-at-risk is then

Figure 5.1 shows the probability density function for a normal distribution
with a mean of −334,608 and a standard deviation of 1,924,881, along with
this value-at-risk estimate. 

E �V( ) XiE
change in xi

xi
------------------------------- 

  ,
i 1=

5

∑=

var �V[ ] XiXj�ij�i�j,
j=1

5

∑
i 1=

5

∑=

�i
�ij

var �V[ ] 3.7052 1012,×=
�portfolio =

VaR E �V[ ] 1.645 s.d. �V[ ]×–( )–=
 –334,608 1.645 1,924,881×–( )–=

3,501,037.=



The Delta-Normal Method for a Fixed-Income Portfolio 83

The computation of value-at-risk is more complicated for most realistic
portfolios. First, most actual portfolios are exposed to the risk of changes
in more than five market factors. In general, the means, standard devia-
tions, and correlations must be estimated for all of the market factors, and
then the mean and variance must be calculated using formulas similar to
equations (5.1) and (5.2), except that, of course, the sums are over the
number of market factors. More significantly, in actual portfolios the dates
on which payments are received or made do not necessarily coincide with
the maturities of the market factors. Further, many portfolios will include
options and bonds with option-like features.

DIFFERING PAYMENT DATES

The choice of an example portfolio in which the payment dates coincide with
the maturities of the bonds used as the market factors was particularly con-
venient. It implied that each dollar cash flow maps directly into a position in

FIGURE 5.1 Estimated density function of daily mark-to-market profits and losses 
on the fixed-income portfolio and the value-at-risk
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one market factor, and each Thai baht cash flow maps into positions in two
market factors, a spot Thai baht position and a bond position. As discussed
in the previous chapter, cash flows received or paid at intermediate dates
between the maturities of these bonds do not result in additional market fac-
tors. However, it does complicate the risk mapping. Consider, for example, an
eight-month cash flow, when the market factors are bonds with maturities of
six and 12 months. The approach is to split the eight-month cash flow between
the six- and 12-month bonds, so that the eight-month cash flow is replaced by
a portfolio of six- and 12-month positions, where the portfolio of six- and
12-month positions is chosen to have the same risk as the eight-month posi-
tion. The details of how to do this depend on the definition of risk used in the
preceding sentence. The simplest scheme replaces the eight-month cash flow
with a portfolio of the six- and 12-month bonds that has the same duration.

To do this, one uses the fact that the duration of a portfolio is the
weighted average of the durations of its components, where the weights are
the fractions of the portfolio invested in each of the components. For a
portfolio of six- and 12-month zero-coupon bonds, we have 

where a is the fraction of the portfolio invested in the six-month bond, 
is the fraction of the portfolio in the 12-month bond, and we have used the
fact that the durations of the six- and 12-month bonds are 1/2 and 1, respec-
tively. We then chose a so that the portfolio duration is equal to the duration
of the eight-month bond, that is, we chose a so that 

implying that . Thus, an eight-month cash flow with a present
value of X is mapped to an investment of  in the six-month bond
and  in the 12-month bond. 

An instrument with multiple cash flows at different dates, for example a
10-year bond, is handled by mapping each of the 20 semiannual cash flows
into positions in the two nearby standard instruments. For example, suppose
the standard instruments consist of one-, three-, and six-month, and one-,
two-, three-, four-, five-, seven-, 10-, 15-, 20-, and 30-year zero-coupon
bonds, and that  months have passed since the bond was issued, so that
the next interest payment will be received in  months. This payment
would be split between the one- and three-month bonds. Then, the interest
payment to be received in  months would be split between the six-month
and one-year bonds, the interest payment to be received in  months

portfolio duration a 2⁄ 1 a–( ),+=

1 a–

2 3⁄ 1 2⁄( )a 1 a–( ),+=

a 2 3⁄=
2 3⁄( )X

1 3⁄( )X

41
2
---

11
2
---

71
2
---

131
2
---
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would be split between the one- and two-year bonds, and so on. Finally, the
last six cash flows would all be split between the seven- and 10-year standard
instruments, though in different proportions.

MAPPING INTEREST-RATE SWAPS

At first glance, mapping an interest-rate swap appears difficult. How does
one handle the random cash flows, based on unknown future values of
LIBOR? Fortunately, the problem can be solved by the use of two simple,
but powerful, ideas. 

The first idea is that a generic or “plain-vanilla” interest-rate swap can
be interpreted as a portfolio of: (i) a floating-rate note based on LIBOR with
principal equal to the swap notional principal; and (ii) some “left over” fixed
cash flows. The second idea is that on each reset date, the floating-rate note
trades at par, that is, the face value is equal to the present value of the remain-
ing cash flows. One implication of this is that the floating-rate note into
which the swap is decomposed has present value zero, so that the value of the
swap is equal to the present value of the “left over” fixed cash flows. These
fixed cash flows are handled in the same fashion as the cash flows of any
other fixed-rate note or bond, using the approach for mapping multiple cash
flows at different dates described above. Thus, for purposes of valuation and
mapping we can substitute the “left over” fixed cash flows for those of the
swap. This decomposition and mapping of the swap is explained in detail in
the Appendix to this chapter.

Many other swaps can be handled similarly. For example, currency
swaps can be interpreted as portfolios of bonds or notes denominated in
the two different currencies. However, a limitation of the approach is that it
relies on the fact that the floating leg of a generic swap with payments every
� years has reset dates � years prior to the corresponding payments. Thus, it
will not work for floating legs that do not follow this convention regarding
the timing of reset dates relative to payment dates. Swaps with such non-
standard timing, embedded options, or other complicated features must be
mapped using the approach for options described next.

MAPPING OPTIONS

At first glance, it seems that an option on one of the bonds used as the market
factors could be mapped to a position in its underlying asset using the
approach in Chapter 3. For example, if the market factors included six-month
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and one-year maturities, a six-month European option on a one-year bond
could be mapped to a “delta-equivalent” position in the underlying asset, the
one-year bond. As in Chapter 3, this would be done using the option delta;
for example, if the option had a delta of 1/2 with respect to the price of the
one-year bond, it would be mapped to 1/2 of a bond. However, this does not
finish the job, because exercising the option involves paying the exercise price
on the expiration date. As a result, the option price has an exposure to, or its
value depends upon, the six-month interest rate or the price of a six-month
zero-coupon bond. This can be handled by computing the option price sen-
sitivity (i.e., delta) with respect to the price of the six-month bond and map-
ping the option to an equivalent position in the six-month bond. Thus, the
six-month option on a one-year bond would be mapped to two zero-coupon
bonds, with maturities of six months and one year.

The mapping becomes more complicated if the underlying asset and
expiration of the option do not coincide with the maturities of the standard
instruments. Consider, for example, an eight-month option on an 18-month
bond, when the market factors consist of zero-coupon bonds with maturi-
ties of six, 12, and 24 months. One approach would be to map the option
to delta-equivalent positions in eight- and 18-month bonds and then map
these eight- and 18-month bonds to positions in the market factors. A more
natural approach is to express the option price as a function of the values
of the basic market factors. To do this, note that typically the option price
would be a function of the eight- and 18-month bond prices or interest
rates. The eight- and 18-month bond prices or interest rates would then
be expressed either as functions of the market factors, the six-, 12-, and
24-month bond prices or interest rates. This can be done using the inter-
polation approach in Chapter 4; for example, the eight-month interest rate
can be expressed as a linear combination of the six- and 12-month rates.
Once the option price has been expressed as a function of the market, the
option price sensitivities with respect to the standard instruments can be
computed, and these can be used to map the option to its delta-equivalent
position in the standard instruments. This approach will work for any
instrument for which there is a pricing model expressing its value in terms
of the basic market factors.

NOTES

Duration was used to split the cash flows of the eight-month bond between
the six- and 12-month bonds primarily because it is the simplest mapping
approach. Henrard (2000) compares this mapping scheme to five others and
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reports that it works well, though a mapping scheme based on interpolation
of interest rates described by Mina (1999) appears to work slightly better. 

Comparison of the mapping of the fixed-income portfolio to the map-
ping of the simple equity portfolio in Chapter 3 might suggest that fixed-
income portfolios are more difficult to handle, due to the need to map the
cash flows occurring on many different dates to a small number of standard
maturities. However, an issue of roughly similar complexity arises in actual
equity portfolios consisting of hundreds or thousands of different common
stocks and other instruments. For such portfolios, the dependence of the
portfolio value on the many different stock prices must be approximated in
terms of a limited number of common equity market factors. Methods for
doing this are discussed in Chapter 7. 

Finally, all of the limitations of the delta-normal approach discussed in
Chapter 4 also apply to its use in measuring the risk of fixed-income portfolios.

APPENDIX. MAPPING AN INTEREST-RATE SWAP

We show how a generic or “plain-vanilla” interest-rate swap can be mapped
by decomposing it into a portfolio of a fixed-rate note and a floating-rate
note based on LIBOR, using an example of a hypothetical pay-fixed,
receive-floating interest-rate swap with a notional principal of $100 million
and payments every six months based on six-month LIBOR. The swap
fixed rate is 8% per year, and six payments remain, with payment dates
occurring and 2.75 years in the future. This situation
might arise if the swap originally had a tenor of three years and was entered
into three months in the past. The timing of reset dates and payments fol-
lows the usual convention; for example, the payment at  is based
on LIBOR quoted six months previously, at 0.25. In general, the pay-
ment at time t is based on six-month LIBOR quoted at time 0.5,
denoted .

With these assumptions, the cash flows of the fixed and floating legs of
the swap at time t are  million and  mil-
lion, respectively, where  is six-month LIBOR quoted at time for
a loan from  to t and 0.08 or 8% is the fixed rate. The coefficient 0.5
is the length of the payment period and reflects a decision to ignore the
details of day-count conventions. Similarly, we ignore certain other details
of the timing, for example, the fact that LIBOR quoted at time t typically
covers a deposit period beginning two banking days after time t. Table 5.2
shows these swap cash flows for the six payment dates as functions of the
floating rates observed on the reset dates. 

t 0.25, 0.75, . . . ,=

t 0.75=
t =

t –
rt 0.5–

$100 0.5 0.08( )[ ]– $100 0.5rt 0.5–[ ]
rt 0.5– t 0.5–

t 0.5–
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Table 5.3 decomposes the swap cash flows shown in the second col-
umn into a set of fixed cash flows (third column) and the cash flows
that would ensue from buying a floating-rate note at time 0.25 (fourth
column). In particular, in the fourth column the cash flow of -$100 at
time 0.25 is the amount paid to purchase the floating-rate note, the cash
flows of the form , , etc., are the interest
payments, and the cash flow of  at time 2.75 repre-
sents the final interest payment and the return of the principal. Because
time 0.25 is a reset date, an investor who purchases the note on this date
will receive the prevailing market six-month rate over each six-month
period during the remaining life of the note, implying that the note
should trade at par on this date. As a result, the payment of $100 to
purchase the note is exactly equal to the present value of the remaining
cash flows, and the set of cash flows in the fourth column has present
value zero as of time 0.25. This then implies that the set of cash flows in
the fourth column has present value zero as of time 0. 

But if the swap is equivalent to the sum of the cash flows in the third
and fourth columns and the present value of the cash flows in the fourth
column is zero, then the present value of the swap cash flows must equal the
present value of the cash flows in the third column. Thus, for purposes of val-
uation, we can substitute the fixed cash flows in the third column for those of
the swap. If the market factors consist of zero-coupon bonds, these fixed cash
flows can then be mapped onto the zero-coupon bonds using the approach
discussed in this chapter.

TABLE  5.2  Cash flows of a hypothetical three-year interest 
rate swap entered into three months prior to the current date

Time Swap Cash Flows
($million)

0.25

0.75

1.25

1.75

2.25

2.75

100 0.5 0.075( ) 0.5 0.08( )–[ ]

100 0.5r0.25 0.5 0.08( )–[ ]

100 0.5r0.75 0.5 0.8( )–[ ]

100 0.5r1.25 0.5 0.8( )–[ ]

100 0.5r1.75 0.5 0.8( )–[ ]

100 0.5r2.25 0.5 0.8( )–[ ]

100 0.5r0.25[ ] 100 0.5r0.75[ ]
100 0.5r2.25[ ] 100+
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Monte Carlo Simulation

The Monte Carlo simulation approach has a number of similarities to his-
torical simulation. Most importantly, the method is able to capture the risk
of portfolios that include options and other instruments whose values are
nonlinear functions of the underlying market factors. Like historical simu-
lation, Monte Carlo simulation accomplishes this by repeatedly revaluing
the portfolio, using hypothetical new values of the underlying market fac-
tors that determine the portfolio value. Because the exact portfolio value is
computed for every realization of the market factors considered, the
method captures any nonlinearities in the value of the portfolio.

The main difference between the two approaches is that the Monte Carlo
method does not conduct the simulation using the observed changes in the
market factors over the last N periods to generate N hypothetical portfolio
profits or losses. Instead, one chooses a statistical distribution that is believed
to adequately capture or approximate the possible changes in the market fac-
tors. Then, a pseudo-random number generator is used to generate thousands,
or perhaps tens of thousands, of hypothetical changes in the market factors.
These are then used to construct the distribution of possible portfolio profit or
loss. Finally, the value-at-risk is determined from this distribution.

The approach is illustrated using the example portfolio analyzed using
the delta-normal method in Chapter 3. It consists of $110 million invested
in a well-diversified portfolio of large capitalization U.S. equities, where it
is assumed that the returns on this portfolio are perfectly correlated with
changes in the S&P 500 index. The portfolio manager has reduced his
exposure to the U.S. market by shorting 200 of the S&P 500 index futures
contracts and obtained exposure to the U.K. market by establishing a long
position of 500 FT-SE 100 index futures contracts. In addition, the portfo-
lio manager has written 800 of the September S&P 500 index call options
with a strike of 1100 and has written 600 of the September FT-SE 100
index call options with a strike price of 5875. Combining the written
options positions with the portfolio of U.S. equities, the net value of the
portfolio is approximately $101,485,220.
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To analyze this portfolio, we perform the same steps we carried out in the
historical simulation method, except that collecting data on the past realizations
of changes in the basic market factors will be replaced by selecting a statistical
distribution from which to draw pseudo-random changes. The steps consist of:
(i) identifying the market factors; (ii) selecting a statistical distribution from
which to draw pseudo-random hypothetical changes in the value of the market
factors; (iii) applying these hypothetical pseudo-random changes in the
market factors to the current portfolio; and (iv) identifying the value-at-risk.
Once again, we use a probability of 5% and a holding period of one month.

IDENTIFY THE MARKET FACTORS

The first step is to identify the basic market factors and obtain a formula express-
ing the mark-to-market value of the portfolio in terms of the market factors. The
basic market factors have already been identified in Chapter 3. In this chapter, we
select the second of the two possible choices of the basic market factors, so that
for this chapter the market factors are taken to be the levels of the S&P 500 and
FT-SE 100 stock market indexes S1 and S2, and the dollar/pound exchange rate e.

To obtain a formula giving the value of the portfolio as a function of the
levels of the two indexes and the exchange rate, note that an investment of $110
million in a portfolio that underlies the S&P 500 is equivalent to 110,000,000/
1097.6 100,219 units of the index, with a value of $100,219S1. The written
position of 800 S&P 500 index call options has a value of –800C1(S1, t), where
the function C1 gives the value of an index call option as a function of the index
level and time. The written position of 600 FT-SE 100 index call options has a
pound value of –600C2(S2, t) and a dollar value of –600eC2(S2,t), where the
function C2 gives the value of the FT-SE 100 index call option as a function of
the index level and time. Both the functions C1 and C2 include the effects of the
option multipliers of 100 and 10, respectively.

As discussed in Chapter 3, the futures contracts affect the profit or loss
on the portfolio through their daily resettlement payments. The daily settle-
ment payments on the S&P 500 futures contract are determined by the
changes in futures prices, and their sum is given by

(6.1)

=

S&P settlement
payments 

  200– 250( ) S{ 1 tk( )exp r1 d–( ) T1 tk–( )[ ]
k=1

K

∑=

S1 tk–1( )exp r1 d1–( ) T1 tk–1–( )[ ] }–

200 250( ) S1 tk( )exp r1 d–( ) T1 t–( )[ ]{–=

1097.6exp r1 d1–( ) T1 t0–( )[ ] },–
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where tk is the kth day during the month, S(tk) is the index value on tk, t0 is the
initial date, K is the number of days in the month, 250 is the multiplier of
the futures contract, and we have used the fact that S1(t0) 1097.6. For the
position in the FT-SE 100, the pound value of the settlement payments is given by

where 10 is the multiplier for the FT-SE 100 index contract, and we have
used the fact that S2(t0) 5862.3. The dollar value of the daily resettle-
ment payments during the month is

(6.2)

where each day’s settlement payment is converted at the exchange rate e(tk)
prevailing on that day. Primarily for convenience, we approximate this by

(6.3)

which involves the assumption that the cash flows are converted using
e(tK), the exchange rate at the end of the month.

Putting this all together, the formula expressing the portfolio value as a
function of the market factors and time is 

(6.4)

=

FT-SE 100 settlement
payments 

  500– 10( ) S2{ tk( )exp[ r2 d–( ) T2 tk–( ) ]
k=1

K

∑=

S2 tk–1( )exp r2 d2–( ) T2 tk–1–( )[ ] }–

500 10( ) S2 tK( )exp r2 d–( ) T2 tK–( )[ ]{–=

5862.3exp r2 d2–( ) T2 t0–( )[ ] },–

=

Dollar value of
FT-SE settlement

payments 
 
 

500 10( ) e tk( ) S2 tk( )exp r2 d–( ) T2 tk–( )[ ]{
k=1

K

∑–=

S2 tk–1( )exp r2 d2–( ) T2 tk–1–( )[ ] },–

Dollar value of
FT-SE 100 settlement

payments 
 
 

500 10( )e tK( ) S2 tK( )exp r2 d–( ) T2 tK–( )[ ]{–=

5862.3exp r2 d2–( ) T2 t0–( )[ ] },–

V S1 S2 e t, , ,( ) 100,219S1 800C1 S1 t,( )– 600eC2 S2 t,( )–=

50,000{S1exp r1 d1–( ) T1 t–( )[ ]–

1097.6exp r1 d1–( ) T1 t0–( )[ ] }–

5000e S2exp r2 d2–( ) T2 t–( )[ ]{+

5862.3exp r2 d2–( ) T2 t0–( )[ ]– }
110 0.014 12⁄( ) t t0–( ),+
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where the final term is the value of the dividends on the portfolio of U.S. equities.
Using the Black-Scholes formula with the appropriate choices for the strike price
and volatility to compute the option prices, Figure 6.1 shows the portfolio value
as a function of S1 and S2, with t t0 0 and e fixed at its initial value of
1.6271. At the initial values of S1 1097.6 and S2 5862.3, the option prices
are C1(1097.6, 0) 63.16 and C2(5862.3, 0) 354.62, and the initial value
of the portfolio is V(1097.6, 5862.3, 1.6271, 0) 101,485,220. This point is in
the middle of the surface shown in Figure 6.1.

SELECT A STATISTICAL DISTRIBUTION FROM 
WHICH TO DRAW PSEUDO-RANDOM CHANGES 
IN THE VALUE OF THE MARKET FACTORS

The second step is to determine or assume a specific distribution for the
changes in the market factors and to estimate or otherwise select the parame-
ters of that distribution. As in Chapter 3, we continue to assume that per-
centage changes in the basic market factors have a multivariate normal

FIGURE 6.1 Current value of the portfolio as a function of the levels of the S&P 
500 and FT-SE 100 indexes, holding the exchange rate fixed at e 1.6721
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distribution and that the expected monthly percentage changes in the three
market factors are �1 0.01, �2 0.0125, and �3 0, the standard devi-
ations of monthly percentage changes are �1 0.061, �2 0.065, and
�3 0.029, and the correlation coefficients are �12 0.55, �13 0.05,
and �23 –0.30.

A natural alternative would be to assume that the changes in the mar-
ket factors are described by a multivariate lognormal distribution rather
than the multivariate normal distribution. The assumption of lognormality
is appealing because it is consistent with the assumptions underlying the
Black-Scholes formula. Nonetheless, we stick with the assumption of multi-
variate normality because of its slightly greater convenience and in order
that the computations in this chapter be comparable to those in Chapter 3.

The natural interpretations of the parameters and the ease with which
they can be estimated weigh in favor of the normal and lognormal distribu-
tions, though the distribution need not be one of these two. For example, if
one wanted to capture the fat tails in financial data, one might chose the
multivariate student’s t distribution or another distribution that has fat tails
relative to the normal. The ability to pick the distribution is a feature that
distinguishes Monte Carlo simulation from the historical simulation and
delta-normal methods. In these other methods, the distribution of changes
in the market factors must be either the empirical distribution observed
over the past N days or the normal distribution, respectively. In contrast,
with the Monte Carlo approach the designers of the risk-management sys-
tem are free to choose any distribution that they think reasonably describes
possible future changes in the market factors. However, in practice most
implementations of the Monte Carlo approach do not exploit this freedom,
but rely on the normal and lognormal distributions.

APPLY THE HYPOTHETICAL PSEUDO-RANDOM CHANGES 
IN THE MARKET FACTORS TO THE CURRENT PORTFOLIO

Once the distribution has been selected, the next step is to use a pseudo-random
generator to generate N hypothetical values of changes in the market factors,
where the number of trials N is almost certainly greater than 1000 and perhaps
greater than 10,000. Combining the changes with the initial values of the mar-
ket factors results in N hypothetical sets of market factors, each consisting of a
triple (S1, S2, e). These hypothetical market factors are then used in conjunction
with equation (6.4) to calculate N hypothetical mark-to-market portfolio val-
ues. Subtracting each of these hypothetical portfolio values from the initial
mark-to-market portfolio value, one obtains N hypothetical daily profits and

= = =
= =

= = =
=
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losses. The appendix to this chapter briefly describes methods for simulating
multivariate normal random vectors. 

IDENTIFY THE VALUE-AT-RISK

Figure 6.2 shows the distribution of the hypothetical mark-to-market prof-
its and losses, using a sample of N 10,000 pseudo-random trials. Using a
probability of 5%, the estimate of the value-at-risk is the loss that is
equaled or exceeded on 5% of the trials. For this portfolio and sample, the
value-at-risk estimate turns out to be 2,582,663 and is shown on the figure.

Strikingly, the distribution of possible profits and losses is asymmetric:
the right tail of the distribution is truncated, and there is a long left tail. This
asymmetry is due to the presence of written options in the portfolio. Because
of them, the portfolio benefits only slightly from increases in the FT-SE 100
index and, except for a small range, does not benefit from increases in the
S&P 500 index. However, the portfolio remains exposed to the risk of
decreases in these indexes. Graphically, the presence of the options in the

FIGURE 6.2 Distribution of possible profit and loss on the portfolio, estimated 
using the full Monte Carlo method
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portfolio is manifested in the downward curvature shown in Figure 6.1.
Using the jargon of the Greek letter risks, this reflects the fact that the gam-
mas ∂2V ∂  and ∂2V ∂  are negative.

The ability of the Monte Carlo simulation method to capture the nonlin-
ear effect of options on the value of the portfolio is its principal advantage
over the delta-normal approach. That is, the Monte Carlo method captures
the curvature of the portfolio value function shown in Figure 6.1, and the
resulting asymmetry in the distribution of possible profits and losses. In con-
trast, the delta-normal approximation is based on the linear approximation
in equation (3.6), and the estimate of the distribution obtained using the
delta-normal approach is symmetric. This can be seen in Figure 6.3, which
shows the estimate of the distribution obtained using the delta-normal
method for the same portfolio and parameter values. The distributions are
strikingly different, and the value-at-risk estimate of 1,768,081 obtained
using the delta-normal method is much smaller than the estimate of
2,582,663 obtained using the Monte Carlo method. 

FIGURE 6.3 Density function of changes in portfolio value and the value-at-risk, 
computed using the delta-normal method
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As discussed in Chapter 3 and shown in Figures 3.4 and 3.5, for port-
folios with written options the linear approximation is always above the
actual portfolio value and thus understates the loss. As a result, for such
portfolios the delta-normal method understates the value-at-risk, which is
what is seen in this example. For portfolios that include only purchased
options, the delta-normal method overstates the value-at-risk.

While this example is of an equity portfolio, there is no difficulty in
adapting the method to handle fixed-income portfolios. For fixed-income
portfolios, the market factors will typically consist of bond prices, interest
rates, or linear combinations of changes in interest rates (the principal com-
ponents), and it will be necessary to have formulas expressing the values of
options and other instruments in terms of these market factors. This adds
nothing new, as the issues that arise in doing this have been discussed in
Chapters 4 and 5. Realistic portfolios containing many different instru-
ments of different types are likely to be exposed to the risk of changes in
many more market factors, including interest rates, equity returns,
exchange rates, and perhaps commodity prices. These factors must be iden-
tified, and pricing formulas expressing the instruments’ values in terms of
the market factors must be obtained.

LIQUIDITY-ADJUSTED VALUE-AT-RISK AND 
OTHER DYNAMIC TRADING STRATEGIES

Standard VaR measures the risk of a portfolio over a fixed, usually short,
holding period. Inherent in it is the implicit assumption that the risk can be
eliminated by the end of the holding period, by either liquidating or hedg-
ing the portfolio. In periods of market illiquidity, this implicit assumption
may not be valid. Even in normal periods it is unlikely to be valid for all
assets. In the Monte Carlo framework, this issue can be addressed through
the computation of liquidity-adjusted VaR (LaVaR).

LaVaR recognizes that there are limits to the rate at which a portfolio
can be liquidated. To illustrate its computation, consider a portfolio of only
a single asset and assume that only b units of the asset can be sold each day;
for example, a 100-unit portfolio requires n 100/b days to liquidate. If
liquidation of the portfolio becomes necessary, a possible strategy would be
to liquidate b units each day and invest the proceeds at the risk-free rate r.
The proceeds from selling the b units are thus no longer exposed to market
risk, while the positions that have not yet been liquidated remain so
exposed. Under this liquidation strategy, b units are exposed to market risk
for one day and then invested at the risk-free rate r for the remaining n 1

=

–
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days; another b units would be exposed to market risk for two days and
then invested at r for n 2 days; another b units would be exposed to mar-
ket risk for three days and then invested at r for n 3 day, ands so on. If the
initial price per unit is S0 and the return on the ith day is ri, at the end of n
days this strategy results in a liquidated value of

LaVaR is then obtained by estimating the distribution of this liquidated value,
similar to the way standard VaR is obtained by estimating the distribution of
the mark-to-market portfolio value. Since LaVaR measures portfolio risk
over an n-day horizon, it follows that LaVaR will exceed a standard VaR over
a one-day horizon whenever n 1 but will be less than standard VaR over an
n-day horizon.

Realistic implementations of LaVaR will allow for different liquidation
rates for different securities and can incorporate the fact that illiquidity is
correlated with extreme market movements by making the liquidation rates
depend on the outcomes for the market factors. A few seconds of thought
lead to the insight that liquidating a portfolio is only one possible dynamic
trading strategy. An approach that allows for gradual portfolio liquidation
can also handle other dynamic trading strategies, for example, reinvesting
coupons or dividends or rebalancing hedges. Thus, it becomes possible to
overcome the limitation that value-at-risk measures the risk of the current
portfolio and does not reflect any changes to the portfolio that might be
made during the holding period. An issue is that doing this requires that the
dynamic trading strategy be specified, which may be difficult or impossible.
A further drawback is that LaVaR and similar calculations require simula-
tion of the entire sample path of each of the market factors, increasing the
computational burden of the calculation.

ADVANTAGES AND LIMITATIONS 
OF THE MONTE CARLO METHOD

As indicated above, the main advantage of the Monte Carlo method is its
ability to capture the nonlinearities in the portfolio value created by the
presence of options in the portfolio. This can be important for portfolios

–
–

liquidated value bS0 1 r1+( ) 1 r+( )n–1 1 r1+( ) 1 r2+( ) 1 r+( )n–2+=

1 r1+( ) 1 r2+( ) 1 r3+( ) 1 r+( )n–3 … 1 ri+( ) .
i=1

n

∏+ + +
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with significant options positions, and especially for portfolios that include
exotic options. Additional advantages are that it can be used with a range
of different distributions for the market factors and can be used to measure
the risk of dynamic trading strategies, such as LaVaR.

For short holding periods such as one day, an offsetting factor is that
the nonlinearities are much less important. This is true because: (i) for short
holding periods, the typical changes in the values of the market factors are
much smaller; and (ii) linear (and quadratic) approximations work better
for small changes in the variables. Thus, the delta-normal method and the
delta-gamma-theta-normal method described in Chapter 14 often work
well over short holding periods. 

An advantage of the Monte Carlo method over the historical simula-
tion method is that it is not constrained to rely on relatively small samples
(small N). Thus, the problem of relying on small samples to estimate the
tail probabilities that are inherent to historical simulation is not shared by
Monte Carlo simulation. However, the number of Monte Carlo trials
required for estimating the � quantile accurately can be surprisingly large,
especially when � is small.

If the Monte Carlo simulation method has such advantages, then why
is its use not universal? The answer is that it does suffer from one signifi-
cant drawback. Earlier, it was carefully stated that there is no conceptual
difficulty in extending the Monte Carlo method to handle realistic port-
folios with many different instruments. However, the computational bur-
den of the procedure can present a practical problem. Letting N denote
the number of hypothetical future scenarios used (i.e., the number of
samples or “draws” in the simulation), K the number of market factors,
and M the number of instruments in the portfolio, a naïve application of
the Monte Carlo simulation method will involve generating N K
pseudo-random variables and performing N M valuations of financial
instruments. Such straightforward application of the Monte Carlo
method is termed full Monte Carlo. In actual applications, N might
exceed 10,000, K can range from 2 or 3 to 400 or more in systems that
employ detailed modeling of yield curves in different currencies, and M
can range from only a few to thousands or even tens of thousands. Using
reasonable values of N 10,000, K 100, and M 1000, a straight-
forward application of the Monte Carlo simulation method would
involve generating one million pseudo-random variables and performing
10 million valuations of financial instruments. For the interest-rate swap
“book” of a large derivatives dealer, M could be 30,000 or more, so a
naïve use of the Monte Carlo method would involve hundreds of millions
of swap valuations.

×
×

= = =
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Options portfolios typically do not involve so many positions, and for
them K is often small. However, the value of options with American-style
exercise features typically requires computations on “trees” or lattices, and
the prices of some exotic options may be computed using various numerical
methods. For this reason, using full Monte Carlo with even a moderately
sized options portfolio can be time consuming. In contrast, the delta-normal
method requires only that the instrument’s deltas be evaluated once, for the
current values of the market factors. The difference between doing this and
performing NM instrument valuations can be the difference between sec-
onds and days of computation.

NOTES

As in Chapter 3, the calculations of the futures prices of the S&P 500 and
FT-SE 100 index futures contracts use the cost-of-carry formula F
S exp[(r d)(T t)], where S is the current index value, r is the interest rate,
d is the dividend yield on the portfolio underlying the index, and T t is
the time until the final settlement of the futures contract. For the S&P con-
tract, the parameter values are r 0.05, d 0.014, and T t 0.3836,
while for the FT-SE 100 contract they are r 0.05, d 0.016, and
T t 0.3836.

This calculation of the futures contract settlement payments in equa-
tion (6.1) and the similar calculation for the FT-SE 100 index futures con-
tract ignore the fact that positive cash flows would likely be deposited at
interest and negative cash flows would either incur financing costs or
require a reduction in the investment in the portfolio. We translate the FT-
SE 100 futures contract settlement payments to U.S. dollars using (6.3)
instead of (6.2) primarily for convenience, because if we used (6.2) we
would be forced to simulate the entire path of index values and exchange
rates during the month. However, (6.3) is not necessarily a worse assump-
tion than (6.2) and may be better. Equation (6.2) ignores any pound bal-
ance in the margin account and assumes that the pound flows in and out of
the account are converted to, or from, dollars each day. Equation (6.3)
assumes that the pound flows in and out of the account are allowed to
accumulate until the end of the month and then converted to, or from, dol-
lars at the month-end exchange rate. It is almost certain that neither
assumption is exactly correct. As a practical matter, the exchange-rate risk
of the futures contract is sufficiently small that the difference between these
two assumptions does not have a significant impact on the calculated
value-at-risk, and we use (6.3) because it is more convenient.
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The need for large numbers of Monte Carlo trials can be reduced
through use of variance reduction techniques. While these are beyond the
scope of this book, Glasserman, Heidelberger, and Shahabuddin (2000)
provide an introduction to them in the context of value-at-risk estimation.

Most Monte Carlo approaches are based on the multivariate normal
and lognormal distributions, though there has been some limited work out-
side this framework. Recently, Hull and White (1998) and Hosking, Bonti,
and Siegel (2000) have suggested approaches that involve simulating multi-
variate normal random vectors and then transforming them to have mar-
ginal distributions that better fit the known properties of changes in
financial market factors. The heavy reliance on the normal and lognormal
distributions seems to be driven by two considerations. First, these distribu-
tions are convenient and tractable. Second, while distributions with fat tails
relative to the normal are available, the data provide little guidance about
which fat-tailed distribution should be selected. The whole issue is how
much probability should be in the tails, but almost by definition there have
been very few realizations in the tails. Thus, it is difficult to resolve this
issue by looking at the data, and the designer has little basis to select and/or
parameterize a particular fat-tailed distribution.

The use of Monte Carlo simulation to evaluate the risk of time- and
path-dependent portfolio strategies, such as that underlying LaVaR is
pushed by Dembo, Aziz, Rosen, and Zerbs (2000) under the rubric Mark-
to-Future. An alternative approach to adjusting for liquidity is described by
Berkowitz (2000).

APPENDIX: SIMULATING MULTIVARIATE 
NORMAL RANDOM VARIABLES

In the Monte Carlo method, it is necessary to simulate vectors of pseudo-
random multivariate normal random variables with a specified covariance
matrix. That is, if there are K market factors and the changes in them have
a covariance matrix �, then it is necessary to simulate vectors

 x

x1
...
xi

...
xK

=
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such that cov[xi, xj] �i�i�ij. To do this, we use the fact that if

is a vector of independent standard normal random variables (that is,
var[ei] 1 and cov[ei, ej] 0 for i j) and A is a K K matrix, then the
vector of random variables x given by the product x Ae has a covariance
matrix given by the matrix product , where  is the transpose of A.
Given this fact, we need to pick A such that �, that is, such that
A �1/2 is the square root of the matrix �. There is always at least one
square root (and generally more than one) whenever � is a legitimate cova-
riance matrix, so that there always exists an appropriate square root A.

Thus, to generate a vector of random variables x with covariance
matrix �, we first generate a vector of independent standard normal random
variables e and then construct x as x �1/2e. The elements of the vector x
have covariance matrix �, but they do not yet correspond to the changes in
the market factors because they have expected values of zero. However, the
changes in the market factors can be constructed simply by adding to each
component of x the expected change in the corresponding market factor.

The remaining issues are how to generate the ei , and how to construct the
square root A �1/2. A realization of a standard normal pseudo-random
variable can be constructed by applying the inverse of the cumulative standard
normal distribution function to a pseudo-random variable uniformly distrib-
uted on the interval [0,1]. That is, if F–1 denotes the inverse of the cumulative
standard normal distribution function and u is a uniform pseudo-random vari-
able, then ei F–1(u) is a standard normal pseudo-random variable. How-
ever, this approach is not the most efficient; other approaches are discussed in
Chapter 13 of Johnson, Kotz, and Balakrishnan (1994). Many software pack-
ages include both functions to generate uniform pseudo-random variables and
the inverse of the cumulative standard normal distribution function. Alterna-
tively, computer codes to perform these computations are available in many
software libraries and in standard references (e.g., Press, Teukolsky, Vetterling,
and Flannery 1992). The square root �1/2 is typically computed as the
Cholesky decomposition of the covariance matrix, which is described in stan-
dard references (e.g., Press, Teukolsky, Vetterling, and Flannery 1992) and is
available in many statistical packages and software libraries.

=

e

e1
...
ei

...
eK

=

= = ≠ ×
=

AA′ A′
AA′ =

=

=

=

=





CHAPTER7

105

 Using Factor Models to Compute
the VaR of Equity Portfolios

The example equity portfolio discussed in Chapters 2, 3, and 5 was carefully
constructed, so that the portfolio returns depended only on the changes in the
S&P 500 and FT-SE 100 stock market indexes. In particular, it was assumed
that the portfolio of U.S. equities was so well-diversified that its returns could
be assumed perfectly correlated with percentage changes in the S&P 500 index,
and the other positions in the portfolio consisted of index futures and options.
Actual portfolios include instruments that are neither perfectly nor even highly
correlated with one of the popular market indexes. This raises the question of
what should be used as the underlying market factor or factors that affect the
value of the portfolio. It is impractical to treat all of the securities prices as mar-
ket factors, because actual equity portfolios may include hundreds, or even
thousands, of stocks. Rather, one needs to find a limited number of market fac-
tors that explain most of the variability in the value of the portfolio.

Factor models of equity (and other) returns provide a solution to this
problem. Such models express the return on a security or portfolio of securi-
ties in terms of the changes in a set of common factors and a residual or idio-
syncratic component. For example, the return on the ith security, denoted ri,
might be expressed as

(7.1)

where f1, f2, . . . , fK denote the changes in K common factors,
 denote the factor loadings of the ith security on the K fac-

tors,  is a constant component of the return of the ith security, and  is a
residual or idiosyncratic component of the return. The number of factors K is
usually relatively small, ranging from as few as one in simple single-index mod-
els to as many as 50. A common, and even standard, assumption is that the
residuals are independent across securities, that is,  is independent of  for

 Factor models are used for a variety of different purposes and differ in

ri �i �i1f1 �i2f2 . . . �iKfK �i,+ + + + +=

�i1, �i2, . . . , �iK
�i �i

�i �j
i j.≠
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their choice of factors and methodologies for estimating the factor loadings. In
some models, the factors consist of the returns on stock market indexes or
portfolios (e.g., broad-based market indexes, industry indexes, or the returns
on portfolios of small- or large-capitalization stocks), in others they consist of
macroeconomic factors, such as unexpected changes in industrial production
or inflation, and in others they consist of purely statistical factors (the principal
components) extracted from the covariance matrix of returns.

Factor models provide a very intuitive way of thinking about the risk of a
portfolio. If the changes in the factors (the fks) in equation (7.1) are the returns
on portfolios, then (7.1) can be loosely interpreted as saying that one dollar
invested in the ith security behaves like a portfolio of �i1 dollars invested in the
first portfolio, �i2 dollars in the second portfolio, . . . , and �iK dollars in the Kth
portfolio. If the fks are not the returns on portfolios, then equation (7.1) can be
interpreted as saying that one dollar invested in the ith security behaves like a
portfolio of �ik dollars invested in a portfolio with returns that are perfectly cor-
related with changes in the kth factor. In addition, there is a constant component
of the return �i and an idiosyncratic component �i, which is small if the factors
explain most of the variation in the portfolio return. If one ignores the residual
�i, then equation (7.1) corresponds to the mapping performed in earlier chap-
ters. That is, the factor model maps the ith security onto the common factors. 

DELTA-NORMAL VALUE-AT-RISK

The properties of factor models are especially convenient for computing
value-at-risk using the delta-normal approach. The factor loadings of a port-
folio consist of the weighted (by proportion of market value) averages of the
factor loadings of the securities that make up the portfolio. If the residuals �i
are independent across securities, the variance of the portfolio residual can
also be easily computed from the portfolio weights and the residual variances
of the individual securities. The factor model for a portfolio return r is

where the kth portfolio factor loading �k Σ wi�ik, � Σ wi�i,
Σ  wi�i, wi is the proportion of the value of the portfolio invested in

the ith security, and the variance of � is

(7.2)

r � �1f1 �2f2 . . . �KfK �,+ + + + +=

= i=1
N = i=1

N

� = i=1
N

var �( ) var wi�i
i 1=

N

∑
 
 
 
 

wi
2 var �i( ).

i 1=

N

∑==



Using Factor Models to Compute the VaR of Equity Portfolios 107

If the portfolio is well-diversified (i.e., if all of the wis are small) then the
variance of � will be small, and it is sometimes treated as zero. The variance
of the portfolio return is 

(7.3)

where �j is the standard deviation of changes in the jth factor and �jk is the cor-
relation between changes in the jth and kth factors. Letting V denote the value
of the portfolio, the variance of the dollar value of the portfolio is �2V2, the
standard deviation is �V, and the value-at-risk will be proportional to �V. For
example, if the desired probability is 1%, the value-at-risk is 2.326�V.
Expressed as a fraction of the value of the portfolio, it is simply 2.326�.

To illustrate these computations, consider an example with four com-
mon stocks and two factors, interpreted as growth and value indexes. The
portfolio value is V $100 million, and the portfolio weights of the four
stocks are w1 0.4, w2 0.1, w3 0.3, and w4 0.2 The factor load-
ings of the four stocks on the two factors are

(7.4)

suggesting that we label the first two stocks growth and the second two value. The
different stocks’ residuals are independent of each other, and the residual vari-
ances are var(�1) 0.082 0.0064, var(�21) 0.072 0.0049, var(�3)
0.062 0.0036, and var(�4) 0.0552 0.003025. The standard deviations of
the (monthly) changes in the factors are �1 0.043, or 4.3%, and �2 0.041,
or 4.1%, and the correlation between changes in the factors is � 0.8.

Using these parameters, the portfolio factor loadings are 

and the portfolio residual variance is 

var r( ) �j�k�j�k�jk var �( ) �
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The variance of the portfolio return is then

and the variance and standard deviation of the dollar value of the portfolio
are  and  The value-at-risk can
then be computed by using this estimate of the standard deviation and an
estimate of the expected return.

If we want to compute the value-at-risk relative to the return rB on a
benchmark portfolio such as the portfolio underlying the S&P 500 index,
then we are interested in the standard deviation of the return . The
factor loadings for this return are obtained by subtracting the factor load-
ings of the benchmark portfolio from the factor loading of the portfolio
with return r. That is, if the benchmark return is described by a factor
model 

the factor model for the difference  is

Thus, the computation of the variance is identical to that in equation (7.3),
except that each  is replaced by a term of the form  and the term

 is replaced by

where in the last equality it has been assumed that  is uncorrelated with
each of the  Often the return on the benchmark will consist of the return
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on a factor portfolio or a linear combination of such returns, in which case
 Given the variance or  it is then straightforward to

compute the standard deviation and the relative value-at-risk.
In the example above, suppose that the factor loadings of the bench-

mark portfolio are  and  Then the factor loadings
for  are

and these would be used in place of those in (7.3). To complete the compu-
tation, one would also need to specify the residual variance  which
will often be zero.

INCLUDING OPTIONS IN COMPUTING DELTA-NORMAL 
VALUE-AT-RISK

Options can be handled in a straightforward fashion similar to the way
they were handled in Chapter 3. Letting V option denote the value (on a
per-share basis) of an option on security i, the option is mapped to a posi-
tion of  shares. For an option on the ith stock, the factor
loading for the kth factor is related to that of the underlying stock
through the formula

(7.5)

where Si is the stock price and 
 is the option elasticity, which can be interpreted as the per-

centage change in the option price resulting from a 1% change in the stock
price. The option factor loadings depend on the prices through the option
elasticity because the factor loadings apply to returns or percentage changes
rather than dollar changes. Similarly, the option residual is given by

 so its variance is
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If one ignores the portfolio residual variance by assuming that
 then the option can be interpreted as another security with

factor loadings given by (7.5). However, this approach does not make sense
if one incorporates the residual variance using (7.2), because if the N secu-
rities in the portfolio include both the underlying stock and options on the
stock it is impossible for the residuals to be uncorrelated. Instead, one can
include options by adjusting the factor loadings of their underlying com-
mon stocks and the residual variances. (Alternatively, one can give up the
assumption that the residuals are uncorrelated.) 

To do this, think of the stock and options together as making up the
total position in that stock, and let  denote the proportion of the value of
the total position contributed by the value of the options. The factor load-
ing for the total position is then a weighted average of the factor loadings
of the stock and option positions. Specifically, for the kth factor loading

(7.6)

Using the fact that the option residual is  the residual of
the total position is 
Thus, its variance is 

(7.7)

If the portfolio includes different series of options, the � in these formulas is
interpreted as the value of all of the options together, and similarly for the
option elasticity that appeared earlier. Alternatively, (7.6) and (7.7) can be
modified to include additional terms corresponding to additional options
series. Once the factor loadings and variance have been adjusted to incor-
porate the options using (7.6) and (7.7), the value-at-risk is computed just
as it was above.

Returning again to the earlier example, suppose that the portfolio man-
ager liquidates one-half of the position in the fourth stock and uses the pro-
ceeds to buy call options on the first stock. Assuming that the delta of this
call is 0.55 (per share) and that  the option elasticity is

 and the options’ factor loadings are 
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Since 10% of the value of the portfolio is invested in the option and 40%
is invested in the first stock, the weight  The factor
loadings for the total position (option and stock) in the first stock are
then

These are used instead of the values 2.5 and –1.1 that appear in (7.4). After
the residual variance is adjusted using (7.7), the portfolio variance can be com-
puted using the new portfolio weights  and

 Then, the value-at-risk can be computed in the usual fashion. 
In the context of factor models, this approach of mapping the option to a

position of  shares has exactly the same limitations discussed in Chapter 3.
That is, it fails to capture the nonlinearity of the option price as a function of the
value of the underlying asset. Here, because the option was purchased, the lin-
ear approximation will exceed the value of the portfolio and the delta-normal
method will tend to overstate the risk of the portfolio. 

FULL MONTE CARLO VALUE-AT-RISK

The appendix to the previous chapter describes how multivariate normal
random variables may be simulated using the equation

(7.8)

where e is a vector of independent standard normal random variables,  is
the covariance matrix or an estimate of it, and  is a square root of .
If it is assumed that the changes to the factors are normally distributed,
then we can use this equation with x interpreted as a vector of changes to
the market factors. The calculation in (7.8) is inconvenient if each of the N
stock prices is treated as a market factor, because then  is  and x
and e are  Actual portfolios can contain thousands of different
stocks, so N can be as large as several thousand. 

Factor models such as (7.1) simplify the computations involved in com-
puting value-at-risk using the full Monte Carlo method because the number
of common market factors in (7.1) is sometimes very small (e.g., one to
three) and rarely much greater than 50. If a factor model is used, the calcu-
lation (7.8) is replaced by the two equations

� 0.10 0.4 0.25.=⁄=

�11 0.25 27.5( ) 0.75 1.1–( ) 8.75,=+=

�12 0.25 12.1–( ) 0.75 1.1–( ) 3.85.–=+=

w1 0.50,= w2 0.1,= w3 0.3,=
w4 0.1.=

�

x 	
1 2⁄ e,=

	
	

1 2⁄
	

	 N N× ,
N 1.×
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(7.9)

 for (7.10)

where f is the  vector of changes to the market factors,  is the
 covariance matrix of changes to the market factors, and e is 

vector of independent standard normal random variables. First, (7.9) is
used to simulate changes in the market factors, and then, given f, (7.10)
is used for each stock to simulate the stock returns. These returns then
allow the computation of the stock prices, the prices of options on the
stocks and any other derivatives, the hypothetical new value of the port-
folio, and the hypothetical change in value. The Monte Carlo simulation
then consists of repeating this procedure many times.

This procedure can be illustrated using the two-factor example dis-
cussed earlier. The lower triangular square root of the covariance matrix is

where  and  are the volatilities of the two market factors and  is the
correlation between them. Then, using (7.9), 

If, for concreteness, we suppose that  then 

The returns can then be constructed using a pseudo-random realization of
 the factor model 

f 	f
1 2⁄ e,=

ri �i �1 i f1 �2 i f2 . . . �Ki fK �i,+ + + + += i 1, . . . , N,=

K 1× 	f
K K× K 1×

	f
1 2⁄ �1 0

��2 1 �
2
�2–

0.043 0

0.8 0.041( ) 1 0.82 0.041( )–
,= =

�1 �2 �

f1

f2

0.043 0

0.8 0.041( ) 1 0.82 0.041( )–

e1

e2
=

0.043e1

0.8 0.041( )e1 1 0.82 0.041( )e2–+
.=

e1, e2( )′ 0.62,  0.37–( ),=

f1

f2

0.043 0

0.8 0.041( ) 1 0.82 0.041( )–

  0.62
 0.37–

  0.0267
 0.0574–

.==

�′ �1, �2, �3, �4( )′,=
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the factor loadings above, and estimates of the . The simulated stock prices
can then be computed from these returns. Then, given the stock prices, one can
compute the prices of any options or other derivative instruments, the hypo-
thetical new value of the portfolio, and the hypothetical change in value.
Repeating this procedure many times completes the Monte Carlo simulation. 

OTHER METHODS

If full Monte Carlo is too costly, factor models may be used with the delta-
gamma-theta Monte Carlo approach described in Chapter 14. Instead of
computing the option prices exactly as in full Monte Carlo, one simply uses
delta-gamma-theta or delta-gamma approximations to their values. 

Factor models also simplify the computation of value-at-risk using
other methods, provided that one is willing to assume that the variance of

s (the residual in equation 7.1) is zero. If this assumption is made and the
number of factors K is small (typically this means ), then grid Monte
Carlo methods described in Chapter 15 may be used. In general, factor
models do not simplify grid Monte Carlo methods, because the limiting
factor in grid Monte Carlo method is the number of stock prices on which
option prices depend. Factor models do not change this, but only simplify
the process of simulating the stock prices.

The historical simulation method can also be simplified by the use of
factor models, provided that one assumes  In this case, the
simulation requires the use of only the observed past changes in the market
factors. However, a drawback of using factor models with the historical
simulation approach is that they eliminate one of the main claimed advan-
tages of the historical simulation approach, namely, its lack of dependence
on any model. However, it does eliminate the need to assume a specific dis-
tribution for the factors. 

NOTES

In some models,  is equal to the rate of interest available on a riskless
security r, in which case the model is often written as 

ri �i �1 i f1 �2 i f2 �i ,+ + +=

�i

ei
K 3≤

var �( ) 0.=

�i

ri r �1 i f1 �2 i f2 . . . �Ki fK �i .+ + + +=–
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Factor models are described in investments textbooks such as Bodie,
Kane, and Marcus (1993, Chapter 9) and in many other places, such as in
Grinold and Kahn (1994), Burmeister, Roll, and Ross (1994), and Elton
and Gruber (1994). 
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Using Principal Components to
Compute the VaR of Fixed-Income

Portfolios

The principal components decomposition can be viewed as a particular kind
of factor model. As with other factor models, its role in risk measurement is
to reduce the dimensionality of the problem, that is, to reduce the number of
underlying sources of uncertainty or market factors that must be considered.
In the principal components decomposition, the market factors are not spec-
ified in advance but rather consist of the principal components of the data,
which are linear combinations of the variables being explained. For example,
if the variables being explained consist of the changes in the yields of zero-
coupon bonds, the first principal component consists of the linear combina-
tion of yield changes that best explains (in a sense made precise below) the
variability of the yields. The second, third, and subsequent principal compo-
nents then each consist of the linear combinations of yield changes that best
explain the variability not explained by the previous components.

The number of principal components is equal to the number of linearly
independent variables to be explained. At first glance, this suggests that
there may be no advantage to the principal components decomposition
because the principal components do not achieve any reduction in dimen-
sionality. However, in many situations in finance, and especially in model-
ing the variability in interest rates, the data are so highly correlated that
the first few principal components explain most of their variability, and the
remaining components can be safely ignored. Thus, the principal compo-
nents decomposition can provide a way of constructing a factor model
with a small number of factors, often as few as two or three. 

This chapter first explains the principal components decomposition in
this statistical context as a particular way of constructing a factor model to
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explain the data, beginning with a simple two-variable example. It then
illustrates the use of principal components in describing the variability of
changes in the yields of zero-coupon bonds, and finally applies it to com-
pute the value-at-risk of a simple bond portfolio. While it is not the focus of
this chapter, mathematically inclined readers may already be familiar with
the principal components decomposition. It is equivalent to the eigensystem
decomposition of the covariance matrix, with the eigenvalues and associ-
ated eigenvectors ordered from the largest to smallest eigenvalue. 

DECOMPOSING A RANDOM VECTOR

Consider a two-dimensional random vector  with covariance
matrix

(8.1)

For simplicity assume that  allowing us to work with x instead
 thus the covariance matrix becomes  In this chapter,

the vector x is interpreted as the changes in the yields of zero-coupon bonds,
though in other contexts it could consist of changes in forward rates, the
returns on common stocks or other assets, or the changes in commodity or
currency prices. 

The vector x can be written as a linear combination of orthogonal
(uncorrelated) random variables, that is, 

(8.2)

or equivalently  where  is the matrix on the right-hand
side of equation (8.2),  is the vector  and  and  are
uncorrelated random variables each with mean zero and variance one. In car-
rying out the value-at-risk calculation, we make the additional assumption
that the �i s are normally distributed, so the lack of correlation implies they
are independent. Combining (8.1) and (8.2) and letting I denote the two-
dimensional identity matrix, 

x x1, x2( )′=

� E x E x[ ]–( ) x E x[ ]–( )′[ ]=

�1
2 ��1�2

��1�2 �2
2

.=

E x[ ] 0,=
x E x[ ];– � E xx′[ ].=

x1

x2

a11 a12

a21 a22

�1

�2
,=

x A�,= A aij{ }=
� � �1, �2( )′,= �1 �2

� E A��′A′[ ] AE ��′[ ]A′ AIA′ AA′.= = = =
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This indicates that, if we are to write the vector x as a linear combination of
uncorrelated random variables, we must chose the elements of A so that

(8.3)

This set of equations always has a solution. In fact, as suggested by the pres-
ence of three parameters   and  on the left-hand side and four aijs
on the right, in general there are infinitely many combinations of the aijs that
satisfy the equations. The easiest choice involves setting  in which
case   and a22 . However, this is not the
choice made in principal components.

Rather, the principal components decomposition involves writing the
matrix A as

(8.4)

where �1 and �2 are positive scalars and �1 (�11 �21)′ and �2 (�12 �22)′ are
orthonormal vectors, that is, �1 1, 1 (each
vector has length 1), and 0 (the two vectors are
orthogonal). This choice implies 

(8.5)

�1
2 ��1�2

��1�2 �2
2

a11 a12

a21 a22

a11 a21

a12 a22

=

a11
2 a12

2+ a11a21 a12a22+

a11a21 a12a22+ a21
2 a22

2+
.=

�, �1, �2

a12 0,=
a11 �1,= a21 ��2,= �2 1 �2–=

A
a11 a12

a21 a22

�11 �12

�21 �22

�1 0

0 �2
,= =

= =
�′1 = �11

2 �21
2+ = �′2�2 = �12

2 �22
2+ =

�′1�2 = �11�12 �21�22+ =

�1
2 ��1�2

��1�2 �2
2

�11 �12

�21 �22

�1 0
0 �2

�11 �21

�12 �22

=

�11
2 �1 �12

2 �2+ �11�21�1 �12�22�2+

�11�21�1 �12�22�2+ �21
2 �1 �22

2 �2+
=

�11
2 �11�21

�11�21 �21
2

�1

�12
2 �12�22

�12�22 �22
2

�2.+=
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By choosing A as in (8.4) we have decomposed the covariance matrix
into two terms, one involving only  and elements of the first vector �1
and another involving  and elements of the second vector �2. To inter-
pret this decomposition, return to equations (8.2), writing the vector x in
terms of  and (8.4), writing the matrix A in terms of the s and s.
Combining (8.2) and (8.4), we obtain

(8.6)

The two terms on the right-hand side of the second line of (8.5) are the por-
tions of the covariance matrix  due to the two terms on the right-hand side
of equation (8.6), that is,

and

Since the vectors �1 and �2 have the same size (length equal to one), the impor-
tance of the two terms on the right-hand side of (8.6) is determined by the
magnitudes of �1 and �2.

THE PRINCIPAL COMPONENTS

In equations (8.6) and (8.5) above we decomposed the random vector x and its
covariance matrix  into the components due to uncorrelated random vari-
ables  and . Our ability to do this depends only on the existence of a solu-
tion to (8.2) of the form (8.3). Although we do not demonstrate this fact,
equation (8.2) will always have a solution of the form of (8.3), implying that

�1
�2

�, �ij �j

x1

x2

�11 �12

�21 �22

�1 0

0 �2

�1

�2
=

�11

�21
�1�1

�12

�22
�2�2.+=

�

�11
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�1 E
�11

�21
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 
 
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 
 
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we can always decompose the random vector x into the components due to
uncorrelated random variables  and  as in (8.6). But what are  and ?

Rewrite (8.6) slightly to yield

(8.7)

where  and . The question “what are  and ?” is
equivalent to the question “what are p1 and p2?” The answer comes from
rearranging (8.7). The matrix  is an orthogonal matrix (i.e., a
matrix composed of orthonormal vectors); a key property of such a matrix
is that its inverse is simply its tranpose. Using this property, 

(8.8)

Thus,  is a linear combination of the xis, and similarly
for p2. Each pi is associated with a vector, , and a scalar, 
If we order the pis, s, and s from the largest to smallest , then the pi s
are called the principal components and the s are the factor loadings of the
principal components. This last terminology can be understood by slightly
rearranging (8.7) to yield 

(8.9)

This is a key equation for interpreting the principal components. It
expresses each xi in terms of random factors p1 and p2 and factor loadings 
and , which are analogous to factor model beta coefficients. From the rela-
tions  and  it is clear that the eigenvalue �1 is the

�1 �2 �1 �2

x1
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=
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,=
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variance of the first principal component p1, while �2 is the variance of p2; in
the general case �i is the variance of pi. The sum 
is the total variance of the principal components.

The eigenvalues  and  also have an interpretation in terms of the
variance of the vector x. From (8.5), the sum 
is given by 

Thus, the sum of eigenvalues  is also the total variance of x, 
and the eigenvalues  and  are interpreted as the contributions of the two
principal components to the total variance of x. 

The pis are uncorrelated because they are defined by  imply-
ing that they can be interpreted as the separate or “independent” risk fac-
tors that explain the variation in x. Because they are ordered from largest
to smallest value of  p1 is the factor that explains the largest possible
part of the variability of x, while p2 is the factor uncorrelated with p1 that
explains the largest possible part of the remaining variability of x. Here,
with only two elements of x, the component p2 simply explains the remain-
ing variability not explained by p1; in the general case, with  factors,
each principal component is the factor uncorrelated with the previous prin-
cipal components that explains the largest possible part of the remaining
variability of x. The ith eigenvalue  is the contribution of the ith princi-
pal component to the total variance.

One further feature of this decomposition is that the signs of the vec-
tors  and  are arbitrary, in that  could be replaced by  or 
replaced by . An easy way to see this is to observe that equation (8.6)
continues to hold if  is replace by  and  by , or if  is
replaced by  and  by . But since  and  have the same
statistical properties as  and , this choice must be irrelevant. Alterna-
tively, the elements of  and  appear in equation (8.5) only when mul-
tiplied by other elements of the same vector, implying that the signs of
these vectors can be switched without affecting (8.5). 

COMPUTING THE PRINCIPAL COMPONENTS

To compute the principal components, note that equation (8.6) implies

�1 �2 var p1( ) var p2( )+=+

�1 �2
var x1( ) var x2( ) �1

2 �2
2+=+

�1
2 �2

2+ �11
2 �21

2+( )�1 �21
2 �22

2+( )�2 �1 �2.+=+=

�1 �2+ �1
2 �2

2,+
�1 �2

pi �i�i,≡

�i,

K 2>

�i

�1 �2 �1 �1– �2
�2–

�1 �1– �1 �1– �2
�2– �2 �2– �1– �2–

�1 �2
�1 �2

cov
x1

x2 
 
 

cov
�11 �12

�21 �22

�1 0

0 �2

�1

�2 
 
 

=



Using Principal Components to Compute the VaR of Fixed-Income Portfolios 121

or 

Post-multiplying by the matrix

using the fact that this is an orthogonal matrix, and doing some rearranging
results in

or equivalently,

  for (8.10)

The system (8.10) has a solution with  for the  such that the matrix
 is singular, that is, for the  such that

(8.11)

Thus, the s are the solutions of (8.11), and the factor loadings
 are the corresponding solutions of (8.10). The principal com-

ponents p1 and p2 are then determined by (8.8). 
Equations (8.10) and (8.11) are the equations for the eigenvectors

and eigenvalues of  thus, the �is is and �is are precisely the eigenvec-
tors and eigenvalues. This observation provides an approach for comput-
ing the principal components, because most mathematical software
packages and libraries have functions or subroutines to compute eigen-
vectors and eigenvalues and also provide an alternative interpretation of
them mentioned briefly in the notes.

NUMERICAL EXAMPLE

To illustrate the principal components decomposition, let 
 and  so the covariance matrix is

�
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The eigenvalues of this matrix are  and  and the
eigenvectors are 

  and 

Thus, the two principal components are p1 0.4242x1 0.9056x2 and
p2 0.9056x1 − 0.4242x2 with variances of  var(p1) �1 0.1041
and var(p2) �2 0.0259, respectively. For the first principal component
the weight on x2 is larger than that on x1 because x2 is more variable; if x1
and x2 had the same variance, the first principal component would have equal
weights on the two variables. These two principal components explain the
vector x in the sense of equations (8.7) and (8.9), that is,

But note that this “explanation” of x in terms of the principal components
follows mechanically from the construction of p1 and p2; finishing the com-
putations on the right-hand side of the preceding equation, 
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Also, from equation (8.5) the principal components explain the covariance
matrix, that is,

THE GENERAL CASE

In the general case when x is a K-dimensional vector, the covariance
matrix  is  there will be K principal components, and the vectors

 of the principal components’ factor loadings (i.e., the eigenvectors) will
be K-dimensional; but otherwise the situation is essentially unchanged.
Equations (8.6) and (8.9) become

(8.12)

where the s are uncorrelated random variables each with mean zero and
variance one,  is the ith principal component,  is the variance
of the ith principal component (and also the ith eigenvalue of , if the eigen-
values are ordered from largest to smallest), and  is
the vector of factor loadings for the ith principal component (and also the ith
eigenvector). The decomposition of the covariance matrix in equation (8.5)
becomes

(8.13)

where we have used the fact that the principal components are uncorre-
lated. Also similar to the two-dimensional case, the total variance is
Σ Σ �i, and the ith eigenvalue  is still interpreted as the con-
tribution of the ith principal component to the total variance.

Not surprisingly, the approach for computation of the principal compo-
nents is also unchanged. The eigenvalues  are the solutions of a K-dimensional
version of (8.11), and the eigenvectors satisfy a K-dimensional version of (8.10),
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  for (8.14)

where here I is the K-dimensional identity matrix. The principal components
themselves can then be computed from a K-dimensional version of (8.8),

(8.15)

where  is the K-dimensional vector of principal compo-
nents and  is a  matrix formed from the K eigen-
vectors of .

A TERM STRUCTURE EXAMPLE

We now turn to illustrating the use of principal components in describing
changes in the term structure of interest rates. Table 8.1 shows a hypothetical
correlation matrix of the changes in the yields of zero-coupon bonds of 10
different maturities ranging from three months to 30 years, along with their
annual volatilities (in basis points). These yields are naturally thought of as
either the yields on zero-coupon government bonds, or as zero-coupon yields
constructed from benchmark interest-rate swap quotes. They are the under-
lying basic risk factors, which will be further summarized through the use
of principal components. Often, when the underlying risk factors are the
yields of zero-coupon bonds, they are called key rates (Ho 1992), and we use
this terminology below. 

Through this choice of risk factors, the value-at-risk will fail to include
the risks of changes in credit or liquidity spreads. If spread and liquidity
risks are important for the portfolio, one would need to expand the corre-
lation matrix to include the correlations and volatilities of these spreads
and also to measure the exposures of the various instruments to these
spreads.

Table 8.2 shows the covariance matrix corresponding to the correla-
tions and volatilities in Table 8.1. One feature of the choice of maturi-
ties in Tables 8.1 and 8.2 is that the “short end” of the term structure is
not captured in great detail, the three-month maturity being the only
maturity of less than one year. This choice is reasonable for many port-
folio management applications involving measuring the risk of portfo-
lios that include medium- and long-term bonds, but would be less useful
for bank portfolios in which short-term instruments play a more impor-
tant role. 

� �iI–( )�i 0= i 1 2 . . . , K,, ,=

p V′x,=

p p1 p2 . . . pK( )′=
V �1 �2 . . . �K( )= K K×
�
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TABLE 8.1  Hypothetical volatilities and correlations of changes in yields of 
zero-coupon bonds

Maturities 3 
mos.

1 
year

2 
years

3 
years

5 
years

7 
years

10 
years

15 
years

20 
years

30 
years

Volatilities
(basis 
points) 72 98 116 115 115 112 107 102 100 85

Correlations:

3 
mos.

1 
year

2 
years

3 
years

5 
years

7 
years

10 
years

15 
years

20 
years

30 
years

    3 mos. 1.00 0.75 0.65 0.64 0.55 0.52 0.50 0.46 0.43 0.41

    1 year 0.75 1.00 0.85 0.84 0.77 0.74 0.71 0.68 0.65 0.61

    2 years 0.65 0.85 1.00 0.99 0.97 0.95 0.92 0.88 0.86 0.83

    3 years 0.64 0.84 0.99 1.00 0.98 0.97 0.94 0.91 0.89 0.86

    5 years 0.55 0.77 0.97 0.98 1.00 0.99 0.97 0.95 0.93 0.91

    7 years 0.52 0.74 0.95 0.97 0.99 1.00 0.98 0.97 0.96 0.95

  10 years 0.50 0.71 0.92 0.94 0.97 0.98 1.00 0.99 0.98 0.97

  15 years 0.46 0.68 0.88 0.91 0.95 0.97 0.99 1.00 0.99 0.98

  20 years 0.43 0.65 0.86 0.89 0.93 0.96 0.98 0.99 1.00 0.99

  30 years 0.41 0.61 0.83 0.86 0.91 0.95 0.97 0.98 0.99 1.00

TABLE  8.2  Hypothetical covariances of changes in yields of 
zero-coupon bonds

Maturity 3 
mos.

1 
year

2 
years

3
years

5
years

7
years

10
years

15
years

20
years

30
years

    3 mos. 5184 5292 5429 5299 4554 4194 3852 3378 3096 2509

    1 year 5292 9604 9663 9466 8678 8123 7445 6797 6370 5081

    2 years 5429 9663 13,456 13,207 12,940 12,342 11,419 10,412 9976 8184

    3 years 5299 9466 13,207 13,228 12,962 12,489 11,564 10,675 10,234 8410

    5 years 4554 8678 12,940 12,962 13,226 12,748 11,934 11,144 10,694 8898

    7 years 4194 8123 12,342 12,489 12,748 12,552 11,749 11,079 10,754 9037

  10 years 3852 7445 11,419 11,564 11,934 11,749 11,451 10,804 10,487 8818

  15 years 3378 6797 10,412 10,675 11,144 11,079 10,804 10,405 10,098 8498

  20 years 3096 6370 9976 10,234 10,694 10,754 10,487 10,098 10,000 8413

  30 years 2509 5081 8184 8410 8898 9037 8818 8498 8413 7231
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Table 8.3 shows the factor loadings of the principal components, that
is, the eigenvectors. These explain the changes in yields through equation
(8.12); for example, the entries in the column headed “1” indicate the effect
of the first principal component on the 10 different yields. As pointed out
above, the sign of each vector �i is arbitrary, implying that switching the
signs of the entries in any column of Table 8.3 (or any set of columns)
would yield an equivalent decomposition. 

Table 8.4 shows variances of the principal components (the eigenval-
ues), the fraction of the total variance explained by each of the principal
components, the percentage of the total variance explained by each, and
the cumulative percentages. The first principal component explains
89.24% of the variance, the first two together explain 96.42%, and the
first three together explain a total of 98.15%. This finding that the first
three principal components together explain more than 95% of the total
variance of yields is a common one, and as a result users of principal com-
ponents often restrict attention to the first three components. A second con-
sideration reinforcing this is that the first three principal components have
intuitive interpretations as corresponding to changes in level, slope, and
curvature, discussed next.

Figure 8.1 shows the term structure shifts due to 100 basis point
changes in each of the first three principal components. The plain solid line
shows the assumed initial yield curve, rising from a yield of 6% for the
shortest maturity to a 7% yield at the longest. The dashed line above it

FIGURE 8.1 Yield curve shifts due to first three principal components
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shows the effect of a 100 basis point realization of the first principal com-
ponent, with the other principal components fixed at zero. The changes in
the 10 key rates are computed using (8.12) with  p1 100 basis points, the
elements of  set equal to the values in the column headed “1” in Table
8.3, and p2 p3 . . . pK 0. Doing this results in a relatively small
change of x1 0.1390 × 100 basis points 13.90 basis points for the
three-month maturity and larger changes in the range of 25.63 to 36.94
basis points for the other key rates. The changes for the maturities in
between those of the key rates are then computed by linear interpolation;
for example, the change for the six-month maturity was interpolated from
the changes for the three-month and one-year maturities. These shifts were
then added to the initial yield curve to create the dashed curve labeled
“100 b.p. shock to 1st prin. comp.” This curve illustrates that the first prin-
cipal component can be interpreted as corresponding with a shift in the
overall level of interest rates. Because the signs of the factor loadings are
arbitrary, this shift can be either an increase or decrease in rates.

The two curves labeled “100 b.p. shock to 2nd prin. comp.” and “100 b.p.
shock to 3rd prin. comp.” were computed similarly, except that p2 and p3 were
set equal to 100 basis points and �2 and �3 were used with elements set equal to
the values in the columns headed “2” and “3” in Table 8.3. Due to the pattern
of negative and positive factor loadings on the second principal component, the
curve corresponding to the second principal component is below the initial

TABLE  8.4  Variance explained by principal components

Principal
Component

  1 2 3 4 5 6 7 8 9 10

Variance
(eigenvalues �i) 94900 7636 1834 1338 203.1 186.9 122.1 70.8 36.7 11.0

Annual volatility
(basis points) 308.06 87.38 42.82 36.57 14.25 13.67 11.05 8.41 6.05 3.32

Monthly 
volatility 
(basis points) 88.93 25.22 12.36 10.56 4.11 3.95 3.19 2.43 1.75 0.96

Percentage of 
variance 
explained 89.24 7.18 1.72 1.26 0.19 0.18 0.11 0.07 0.03 0.01

Cumulative 
percentage 89.24 96.42 98.15 99.41 99.60 99.77 99.89 99.96 99.99 100

=
�1
= = = =

= =
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yield curve for the short maturities and above it for the long maturities, illus-
trating that the second principal component can be interpreted as correspond-
ing to a change in the slope of the yield curve. Due to the pattern of negative
and positive factor loadings on the third principal component, the curve corre-
sponding to the third principal component is below the initial yield curve for
the very shortest maturities, above it for intermediate maturities, and then
again below it for the long maturities. This pattern is often called a change in
the curvature of the yield curve.

One caveat worth mentioning is that Figure 8.1 overstates the relative
importance of the second and third components, because the shocks to the
principal components p1, p2, and p3 were each set equal to the same value of
100 basis points. Table 8.4 shows that, on a monthly basis, the volatility (stan-
dard deviation) of the first principal component p1 is 88.93 basis points, so a
change of 100 basis points is only standard deviations and
is not unusual. However, the monthly volatilities of the second and third princi-
pal components are 25.22 and 12.36 basis points, respectively, so changes of
100 basis points correspond to 100 25.22  3.97 and 8.09
standard deviations, respectively. Thus, the relative importances of the second
and third factors are slightly more than one-fourth and one-eighth as large as
the differences between the curves in Figure 8.1 suggest.

USING THE PRINCIPAL COMPONENTS TO COMPUTE 
VALUE-AT-RISK

After all of this work we are finally ready to compute the value-at-risk of a hypo-
thetical bond portfolio, which we do using the delta-normal approach. The port-
folio consists of three bonds: 20% of the portfolio’s value is invested in a five-year
bond paying semiannual interest at the rate of 6.5% per year; 40% of it is
invested in a 10-year, 6.75% bond; and 40% is invested in a 30-year, 7% bond.
Since we have already selected the market factors (the 10 zero-coupon yields or
key rates), estimated their covariance matrix, and decomposed the covariance
matrix into its principal components, the most important remaining task is to
estimate the exposures of each of the bonds to the principal components.

The value of each bond depends upon the zero-coupon interest rates for all
maturities, which will be interpolated from the key rates. These in turn depend
on the principal components and factor loadings through equation (8.12). We
compute the changes in value due to each of the first three principal compo-
nents by shifting the term structures in a fashion similar to the construction of
Figure 8.1, except that now the shifts are small enough (one basis point) that
the resulting changes in the bond prices can be interpreted as (approximations

100 88.93⁄ 1.12=

⁄ = 100 12.36⁄ =
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to) the partial derivatives with respect to the principal components. Letting
 denote the change in the price of the kth bond due to a one basis point

change in the ith principal component, the exposure of the kth bond to the ith
principal component is

For example, if  then a 10 basis point change in the ith principal
component results in a change in the bond price of  basis
points  or –0.159% of its value.

Table 8.5 shows the exposures of the three bonds to the first three prin-
cipal components. The exposure to the first principal component is negative
for all three bonds, consistent with the interpretation of the first principal
component as corresponding to a shift in the level of interest rates (and the
choice of the sign of the factor loadings). The exposure of the five-year bond
to the second principal component is approximately zero because a large
part of the value of this bond is due to the return of the principal at the end
of the years, and the factor loading five-year zero-coupon rate on the second
principal component is only 0.0282 (see Table 8.3). The effect of this factor
loading on the bond price is then offset by the negative factor loadings for
the shorter maturities. The 10- and 30-year bonds have negative exposures
to the second principal component because the long-term zero-coupon rates
have positive factor loadings on the second principal component. Similarly,
the bonds’ exposures to the third principal component depend upon the
zero-coupon rates that determine the bond prices and the factor loadings of
these rates on the third principal component. For example, the 30-year bond
has a positive exposure because the long-term interest rates have negative
factor loadings on the third principal component.

TABLE  8.5  Exposures of the bonds to the first three principal components

Principal Components

Bond Value Weight 1 2 3

1 (5-year) 100 0.2 −1.59   0.00 −0.11

2 (10-year) 200 0.4 −2.55 −1.08   0.35

3 (30-year) 200 0.4 −3.72 −2.91   2.47

Portfolio: 500 −2.83 −1.60   1.10

Volatility:
(basis points) 88.93 25.22 12.36

�Pki

�ki
�Pki 0.0001⁄( )

Pki
---------------------------------------.=

�ki 1.59,–=
1.59 10×–

1.59– 10× 10 4– 0.00159,–=×=
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Given these exposures, the first-order approximation to the portfolio
variance used in the delta-normal approach is 

where, as above, �i is the variance of the ith principal component, we have used the
exposures from Table 8.5 and the variances (eigenvalues) from Table 8.4, and
the factor 10–8 adjusts for the fact that the volatilities in Table 8.1 are expressed
in basis points (1 basis point 10–4). This formula for the portfolio variance does
not include any covariance terms because the principal components are uncorre-
lated. Also, because the covariance matrix in Table 8.2 is expressed in annual
terms, the �is and this portfolio variance also are in annual terms. The monthly
portfolio variance and volatility are then 0.007797 12 6.4973 × 10−4 and

0.02549, or 2.549% of the value of the portfolio.
The formula for the delta-normal value-at-risk is

where as usual the constant k is determined by the confidence level of the value-
at-risk. One remaining detail is that we need the expected changes in the bond
prices, which in turn depend on the expected changes in the principal compo-
nents. The expected changes in the principal components can be computed using
equation (8.15) along with a model giving the expected changes in interest rates
x, and the expected rate of return on the portfolio is given by E[return]
�p1E[p1] �p2E[p2] �p3E[p3]. Rather than go through these steps, for simplic-
ity we assume that the expected rate of return on the portfolio is 1/2% per month.
Using this assumption, the monthly volatility computed above, and a horizon of
one month, the 95% confidence delta-normal value-at-risk is

or 3.71% of the value of the portfolio.
The benchmark-relative VaR can be computed by adjusting the portfolio to

reflect a short position in the benchmark. Using the 10-year bond as a benchmark,
the adjusted portfolio exposures are −2.83 − (−2.55) (−2.26)

portfolio variance �p1
2 �1 �p2

2 �2 �p3
2 �3+ +=

2.832
–( )[ 94 900,( ) 1.602

–( ) 7636( )+=

1.102( ) 1834( ) ]+ 10 8–×
0.007797,=

=

⁄ =
0.007797 12⁄ =

VaR k E return[ ] portfolio volatility–( ),–=

=
+ +

VaR k E return[ ] portfolio volatility–( )–=
1.645 0.005 0.0255–( )–=

0.0371,=

�p1
relative = =
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−1.60 − (−1.08) −0.52, and 1.10 − (−0.35) 0.75,
and the monthly volatility is 0.0029, or 0.29% per month. Assuming that the
expected relative return is zero, the benchmark-relative VaR is

or 0.48% per year.

USING THE PRINCIPAL COMPONENTS WITH MONTE CARLO 
SIMULATION 

While the use of principal components in computing value-at-risk was illus-
trated using the delta-normal approach, the reduction in dimensionality
associated with the use of principal components comes into its own with
the Monte Carlo simulation approach, and especially in modifications—
such as grid Monte Carlo (see Chapter 15)—intended to reduce the com-
putational burden of the Monte Carlo simulation.

To use principal components in a Monte Carlo simulation, one would start
by decomposing the covariance matrix into its eigenvalues and eigenvectors, as
illustrated above. The simulation is then carried out by drawing pseudo-random
realizations of the underlying random variables �i and then using equation (8.12)
to compute the random changes in the key rates x. Then, the changes in the
key rates are given by , where m is a vector of the expected changes in
interest rates, as estimated by an appropriate model. (Recall that most of this
chapter, including equation (8.12), uses the simplifying assumption that the
expected changes in interest rates are zero. This assumption is likely adequate for
computing value-at-risk over short holding periods but may not be adequate
for longer holding periods. When it is not adequate, it is necessary to adjust x to
reflect the expected changes in interest rates.) Given the simulated changes in key
rates , the rates for all maturities can be interpolated from the key rates.
Once the rates for all maturities have been computed, the various instruments in
the portfolio can be valued. Repeating the process the requisite number of times
yields the distribution of profit and loss and the value-at-risk.

LIMITATIONS OF THE USE OF PRINCIPAL COMPONENTS

The key advantage of principal components, the reduction in dimensionality, is
also its most important limitation. The reduction in dimensionality inherently

�p2
relative

= = �p3
relative

= =

Relative VaR k E relative return[ ] portfolio volatility–( )–=
1.645 0.000 0.0029–( )–=

0.0048,=

x m+

x m+
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means that some risks are not measured. For example, restricting attention
to the first three principal components implies that the value-at-risk captures
only the risks of changes in the level, slope, and curvature of the yield curve.
More complicated yield curve reshapings are assumed to be impossible. While
in many situations this is reasonable because such complicated yield curve
reshapings account for only a small fraction of the portfolio risk, restricting
attention to the first few principal components treats these events as impossible,
when in fact they can happen. 

The error in measuring risk resulting from the reduction of dimensional-
ity is likely not a problem for most investment portfolios, because the bulk of
the risk of such portfolios typically stems from their exposures to the first
three principal components: changes in the level, slope, and curvature of the
yield curve (in addition to spread risks). However, the error resulting from
the reduction in dimensionality can be a problem for well-hedged portfolios.
Once changes in the level and slope of the term structure have been hedged,
the remaining risk in the portfolio will be due to more complicated yield
curve reshapings. These are precisely the risks that are not captured by the
first few principal components. In other forms, this problem pervades risk
measurement systems. All risk measurement systems involve some simplifica-
tion and reduction in dimensionality and thus omit some risks; if these omit-
ted risks are important for the portfolio, the value-at-risk will be understated.

The interaction of the reduction in dimensionality and hedging is particu-
larly a problem for grid Monte Carlo approaches based on principal compo-
nents. In such approaches, one strategy for reducing the computational burden
of portfolio revaluations is to use a cruder grid for the second and third princi-
pal components. The justification is that these components explain a much
smaller proportion of the variability in interest rates; thus, there is little cost to
using a crude approximation to measure their impact on the portfolio value. But
if the effect of the first one or two principal components is hedged, then the risk
of the portfolio is due primarily to the second principal component, or the com-
bination of the second and third. In this case, measuring the impact of the sec-
ond and third principal components on the value of the portfolio using a crude
approximation can have a significant impact on the value-at-risk.

NOTES

Numerous books on multivariate statistics discuss the principal components
decomposition, for example Anderson (1984), Joliffe (1986), and Mardia,
Kent, and Bibby (1979), and it is implemented in most statistical software
packages.
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This chapter approached the principal components decomposition as a
particular kind of factor model, and equation (8.9) was interpreted as saying
that the principal components p1 and p2 explain the random vector x through
the factor loadings  However, the principal components decomposition is
equivalent to a decomposition of the covariance matrix into its eigenvectors
and eigenvalues, and these need not be given a statistical interpretation. In
mathematical terms, the vectors �1 (�11 �21)′ and  �2 (�21 �22)′ make up
an orthonormal basis for ℜ 2 (or more generally, ℜ K), which can be seen from
equation (8.9) expressing the vector  in terms of the two
orthogonal vectors  and  and the coeffi-
cients p1 and p2. Eigenvectors and eigenvalues are developed in this way in
many books on linear algebra, which are too numerous to mention here.

Litterman and Scheinkman (1991) was one of the first papers carrying
out the principal components decomposition of changes in the term struc-
ture of interest rates. Since then, the use of principal components in model-
ing changes in interest rates has become standard, appearing for example in
Golub and Tilman (2000), Hull (2000), James and Webber (2000), Jarrow
(1996), Rebanoto (1998), Wilson (1994), and many others. Frye (1997),
Golub, and Tilman (1997) and Singh (1997) were among the first to
describe the use of principal components in computing value-at-risk. Princi-
pal components grid Monte Carlo is described by Frye (1998). 

Multiple term structures in different currencies can be handled either by
finding a set of principal components that explains the common variation
across multiple term structures, as in Niffikeer, Hewins, and Flavell (2000),
or by carrying out a principal components decomposition of each term struc-
ture. As above, the K principal components that describe each term structure
will be uncorrelated with each other; however, the principal components of
the term structures for different currencies will be correlated. In general, all
of the principal components will be correlated with changes in exchange
rates. Reflecting these nonzero correlations, the covariance matrix used in
the value-at-risk calculation will not be diagonal. While this does add some
complexity, the advantage of the separate decompositions of each market
vis-à-vis a single “simultaneous” principal components decomposition of all
world fixed-income markets is that the market factors (the principal compo-
nents) resulting from the separate decompositions will produce the market
factors most useful for the separate risk analyses of each market. In particu-
lar, the separate decompositions will yield for each market principal compo-
nents that have natural interpretations as level, slope, and curvature.

�if.

= =

x x1 x2( )′=
�1 �11 �21( )′= �2 �21 �22( )′=
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Stress Testing

After considering all of the issues, your organization has chosen a method
and computed the value-at-risk. Using a critical probability of � or confi-
dence level of 1–�, the value-at-risk over the chosen holding period is con-
sistent with your organization’s risk appetite. You have also decomposed
the risk and confirmed that you are within budgeted limits. You are almost
ready to relax. But before you manage to sneak out the door, your boss
finds you with a series of questions: “What happens in extreme market
conditions?” “When the value-at-risk is exceeded, just how large can the
losses be?” And finally, “What risks have been left out of the VaR?”

Stress testing provides partial answers to these questions. The phrase
stress testing is a general rubric for performing a set of analyses to investi-
gate the effects of extreme market conditions. Stress testing involves three
basic steps. (i) The process usually begins with a set of extreme, or stressed,
market scenarios. These might be created from actual past events, such as
the Russian government default during August 1998; possible future mar-
ket crises, such as a collapse of a major financial institution that leads to a
“flight to quality”; or stylized scenarios, such as assumed five or 10 stan-
dard deviation moves in market rates or prices. (ii) For each scenario, one
then determines the changes in the prices of the financial instruments in
the portfolio and sums them to determine the change in portfolio value.
(iii) Finally, one typically prepares a summary of the results showing the
estimated level of mark-to-market gain or loss for each stress scenario and
the portfolios or market sectors in which the loss would be concentrated. 

It seems clear that such analyses can provide useful information
beyond the value-at-risk estimate. Most obviously, value-at-risk does not
provide information on the magnitude of the losses when the value-at-risk
is exceeded. Due to possible nonlinearities in the portfolio value, one can-
not reliably estimate such losses by extrapolating beyond the value-at-risk
estimate. Further, to say that the  confidence value-at-risk over a
horizon of one month is only a small percentage z of the portfolio value
does not reveal what will happen in the event of a stock market crash. It

1 �–
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could mean that the portfolio has no exposure to a stock market crash, or
it could mean that it has a significant exposure but that the probability of a
crash (and all other events that result in a loss greater than z) is less than �.

Second, the value-at-risk estimate provides no information about the
direction of the risk exposure. For example, if the value-at-risk is z, the risk
manager does not know whether a loss of this magnitude is realized in a
stock market decline or in a sudden rise in prices. 

Value-at-risk also says nothing about the risk due to factors that are
omitted from the value-at-risk model, either for reasons of simplicity or due
to lack of data. For example, the value-at-risk model might include only a
single yield curve for a particular currency, thereby implicitly assuming that
the changes in the prices of government and corporate bonds of the same
maturity move together. Even if it includes multiple yield curves, it may not
include sufficient detail on credit and maturity spreads to capture the risks
in the portfolio. 

Stress tests address these shortcomings by directly simulating portfolio
performance conditional on particular changes in market rates and prices.
Because the scenarios used in stress testing can involve changes in market
rates and prices of any size, stress tests can capture the effect of large mar-
ket moves whose frequency or likelihood cannot reliably be estimated.
Combined with appropriate valuation models, they also capture the effect
of options and other instruments whose values are nonlinear functions of
the market factors. Because they examine specific selected scenarios, stress
tests are easy for consumers of risk estimates to understand and enable
meaningful participation in discussion of the risks in the portfolio. Pro-
vided that the results are presented with sufficiently fine granularity, stress
tests allow portfolio and risk managers to identify and structure hedges of
the unacceptable exposures. Finally, a consistent set of stress tests run on
multiple portfolios can identify unacceptable concentrations of risk in
extreme scenarios. 

Despite recent advances in approaches to stress testing, there is no stan-
dard way to stress test a portfolio, no standard set of scenarios to consider,
and even no standard approach for generating scenarios. This chapter illus-
trates a number of available approaches for constructing stress scenarios
using the example equity portfolio discussed previously in Chapters 3, 5,
and 6. As described there, this portfolio includes a cash position in large
capitalization U.S. equities, a short position in S&P 500 index futures con-
tracts, written S&P 500 index call options, a long position in FT-SE 100
index futures contracts, and written FT-SE 100 index options. As a result, it
has exposures to the S&P 500 index, the FT-SE 100 index, and the dollar/
pound exchange rate. 



Stress Testing 137

CONSTRUCTING STRESS SCENARIOS

The most challenging aspect of stress testing is generating credible
extreme market scenarios that are relevant to current portfolio positions.
Which market factors should be changed, and by how much? The scenar-
ios need to consider both the magnitudes of the movements of the individ-
ual market factors and the interrelationships (correlations) among them.
For example, suppose the stress scenario is a U.S. stock market crash
accompanied by a flight to quality, defined as a decrease in the yields on
U.S. government obligations. Should the assumed decline in the S&P 500
index be 10, 20, or 30%? By just how much do U.S. Treasury yields
decline in the event of a flight to quality? If one settles on an assumed
20% decline in the S&P 500 and a 50 basis point decline in U.S. Treasury
yields, what should one assume about the returns on other stock market
indexes, either in the United States or overseas? What should one assume
about changes in commodity prices, exchange rates, and other interest
rates and bond market spreads?

The sheer number of market factors makes this exercise complicated,
because a stress scenario needs to specify what happens to every market
factor. To do this in an internally consistent and sensible way can be diffi-
cult. There exist a number of approaches, of varying degrees of sophistica-
tion, to generate scenarios. 

USING ACTUAL PAST MARKET EVENTS

A defensible approach is to base stress scenarios on actual past extreme mar-
ket events. In this approach, one generates the stress scenario by assuming
that the changes in market factors are identical to those that were experi-
enced during the past event. For the example portfolio, it is natural to use
the October 1987 U.S. stock market crash and to use a horizon that matches
what we have generally been using to estimate value-at-risk: one month.
During October 1987, the S&P 500 index fell by 21.76%, the FT-SE 100 fell
by 26.04%, and the U.S. dollar price of a U.K. pound rose from 1.6255 to
1.7220, or 5.94%. In this scenario, the cash S&P position and long FT-SE
futures position lose heavily, with these losses being offset by the S&P
futures and options and the FT-SE options. Overall, the value of the portfo-
lio declines by approximately $18 million, or 17.5% of its initial value. This
calculation is shown in the column of Table 9.1 headed “Actual.” 

Other examples of actual extreme market events include the 1992
exchange rate crisis, the changes in U.S. dollar interest rates during the spring
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of 1994, the 1995 Mexican crisis, the East Asian crisis during the summer
of 1997, the Russian devaluation of August 1998 and its aftermath, and the
Brazilian devaluation of 1999. An advantage of using past events is that it
is clear that such events can happen; it is difficult to dismiss them as impos-
sible or unrealistic. Another advantage is that the past event provides all of
the market factors, provided they were captured and stored. A perhaps
obvious disadvantage is that the historical event may not be relevant to the
current portfolio.

APPLYING ASSUMED SHOCKS TO MARKET FACTORS: 
ZERO-OUT STRESS SCENARIOS

A simple approach to generate stress scenarios is to apply assumed shocks
to certain key or core market factors. This approach provides the flexibility

TABLE  9.1  Example Stress Tests

Initial
Value

Actual
(Oct. 1987) Zero-Out Predictive

Stressed 
Covariances

Market Factors:

S&P 500 1097.6 858.73 879.10 878.1 878.1

   FT-SE 100 5862.3 4335.5 5862.30 5214.1 4886.1

   USD/GBP 1.6271 1.7237 1.6271 1.6190 1.5946

Position Values:

   Cash S&P 500 
Position 110,000,000 86,060,653 88,102,667 88,000,000 88,000,000

   S&P 500 
Futures 0 12,240,026 11,210,175 11,261,953 11,134,969

   S&P 500 
Options –5,052,759 –66,920 –115,434 –112,435 –220,767

   FT-SE 100 
Futures 0 –13,438,302 –136,709 –5,437,106 –7,890,540

   FT-SE 100 
Options –3,462,022 –18,381 –3,024,496 –677,671 –365,557

Total 101,485,220 84,777,075 96,036,203 93,034,742 90,658,105

$ Gain/Loss –16,708,145 –5,449,017 –8,450,478 –10,827,115

% Gain/Loss –16.5 –5.4 –8.3 –10.7
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of allowing one to consider shocks of any size and also to examine the
effect of changing either individual market factors or small groups of fac-
tors. The other peripheral market factors are handled by assuming that
they do not change, that is, they are zeroed-out. For our example portfolio,
assuming that the S&P 500 declines by 20% and zeroing-out the changes in
the FT-SE 100 and dollar/pound exchange rate results in a loss of approxi-
mately $5.7 million, or about 5.5% of the initial value of the portfolio. As
shown in the column of Table 9.1 headed “Zero-Out,” the S&P positions
account for the bulk of the changes in value. (There are small gains and losses
on the FT-SE positions despite the fact that the FT-SE 100 is zeroed-out due
to the dependence of futures and options prices on time. This is the only
dimension in which the horizon length affects the zero-out stress test.) 

This approach has the advantages of simplicity and ease of implemen-
tation. However, its lack of realism is a clear disadvantage, which is made
clear by comparing the zero-out scenario to the actual scenario: zeroing out
the other factors means neglecting the losses on the FT-SE positions. In
fixed-income and commodity markets, thoughtless application of this
approach can even result in market rates and prices that imply the existence
of arbitrage opportunities. 

APPLYING ASSUMED SHOCKS TO MARKET FACTORS: 
ANTICIPATORY STRESS SCENARIOS 

A less mechanical approach is to develop stress scenarios by specifying a
possible market, economic, or political event and then thinking through the
event’s implications for all major markets. For example, a Middle East cri-
sis that spreads to the Persian Gulf region and causes a sudden spike in oil
prices would almost certainly have effects on the equity markets, interest
rates, and exchange rates of the major industrial countries. One would
think through all of these interrelated effects and specify the magnitudes of
the changes in the various market factors. Because thinking carefully about
hundreds of market factors is not a sensible use of time, at some point the
peripheral market factors would be either zeroed-out or else computed
mechanically using the covariance matrix, as in the predictive stress test
described next. 

A benefit of this approach is that it at least offers the possibility of
designing realistic stress scenarios that are relevant for the current market
environment. But this issue cuts both ways. Stress tests are useful only if
they use extreme scenarios that the users consider plausible; stress tests
involving extreme scenarios too remote to be worthy of attention are of
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little value. Sophisticated methodology offers little help here and cannot
substitute for the judgment of the risk manager. Further, the credibility of
the stress tests and the weight placed on them may depend on the rhetorical
skills of risk managers in convincing their superiors of the plausibility of
the market scenarios.

PREDICTIVE ANTICIPATORY STRESS SCENARIOS

Once the stress scenarios for the core risk factors have been specified, sta-
tistical tools can be used to determine the scenarios for other factors. The
predictive stress test generates scenarios by combining assumed changes in
the core risk factors with the covariance matrix of changes in the market
factors to compute the changes in the peripheral market factors. For exam-
ple, suppose the stress scenario is a U.S. stock market crash, defined as a
20% decline in the S&P 500. Rather than set the changes in the other mar-
ket factors equal to zero or specify them in an ad hoc fashion, the predictive
stress test would use the covariance matrix (and expected changes, if these
are nonzero) of the market factors to compute the conditional expectations
of the peripheral market factors and then set them equal to their condi-
tional expectations. 

This exercise requires a fact about conditional expectations. Suppose
there are K market factors taking values  with a

 covariance matrix  and means given by a  vector  The
first  market factors are the core factors that will be specified directly
in the stress test, while the other  are the peripheral factors that will
be computed based on the assumed changes in the first H. 

Partition the vector x into the core and peripheral market factors
 and  with

expected values  and  respectively. Similarly, partition the
covariance matrix  as

where A is the  covariance matrix of the core market factors, D is
the  covariance matrix of the peripheral market factors,
and B is the  matrix formed from the covariances between the
core and peripheral factors. Given the outcomes for the core market factors

 the conditional expected values of the peripheral market factors are
given by 

x x1, x2, . . . , xK( )′,=
K K× � K 1× �.

H K<
H K–

xcore x1, x2, . . . , xH( )′= xperiph. xH+1, xH+2, . . . , xK( )′,=
�core �periph.,

�

� A B
B′ D

,=

H H×
K H–( ) K H–( )×

H K H–( )×

xcore,
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(9.1)

If the unconditional expected changes  and  are treated as
zero, this simplifies to

(9.2)

Equation (9.1) has a nice intuitive interpretation. Consider

the jth element of the vector of conditional expectations 
Equation (9.1) says that 

where the intercept

and each coefficient  is the ith element of the vector

Examination of virtually any econometrics or multivariate statistics book
(and recognition that  for all vectors b) reveals
that  is the ith slope coefficient in the regression of the jth peripheral
factor  on the core market factors, and  is the intercept. Thus,
the values of the peripheral factors in the predictive stress tests are the fore-
casts of these market factors that would be obtained by regressing each of
the peripheral market factors on the core market factors. 

In our example, we treat the S&P 500 as the core market factor and the
FT-SE 100 and exchange rate as the peripheral factors. Thus, we have 
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and 

Equation (9.1) reduces to

where  and  are the slope coefficients that would be
obtained by regressing x2 and x3 on x1, �2 (�1) and �3

(�1) are the intercepts from these two regressions, and 
E[xi]. Using the parameter estimates 0.061, 0.065, 0.029,

0.55, 0.05, 0.30, 0.01, 0.0125, and
0, the expected percentage changes in the peripheral market factors are

The column of Table 9.1 labelled “Predictive” shows that the loss in
this scenario is $9.5 million, or 9.3% of the initial value of the portfolio. It
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exceeds the loss in the zero-out scenario precisely because this scenario
reflects the fact that declines in the S&P 500 are typically associated with
declines in the FT-SE 100 about one-half as large and with small declines in
the dollar/pound exchange rate. 

This is the stress loss over a one-month horizon, which is reflected by
the use of the monthly means, volatilities, and correlations, and by the rec-
ognition of the time decay of the options positions. If we desire the stress
loss over a different horizon, we need to use the parameters appropriate for
that horizon. For example, for a one-day horizon 

where it is assumed that the means and volatilities are proportional to the
length of the horizon and the correlations do not depend on the horizon.
Note that under these assumptions the length of the horizon has little
effect on the market factors x2 and x3, and almost the same values would
be obtained by treating the means as zero. The stress loss is approxi-
mately $10 million instead of $9.5 million, but only about half of the dif-
ference is due to the different market factors. The remainder is due to the
difference in the time decay of the options positions with the shorter
holding period. 

The principal advantage of this approach is that it results in generally
sensible stress scenarios that are consistent with the volatilities and correla-
tions used in the value-at-risk calculation. The disadvantage, aside from the
additional complexity relative to the zero-out approach, is that the covari-
ance matrix may change during periods of market stress. If this is the case,
then the changes in the peripheral market factors are computed using the
wrong covariance matrix. 
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ANTICIPATORY STRESS SCENARIOS 
WITH “STRESS” CORRELATIONS

This last drawback can be addressed by combining the predictive stress test
with a separate estimate of the covariance matrix that applies during periods of
market stress. To illustrate it, we arbitrarily assume that the volatilities increase
by one-half to  
and  and that the correlations between the S&P
500 index and the two peripheral factors increase to  and

 The other correlation coefficient,  and the means
are assumed to remain unchanged. The conditional expected percentage
changes in the peripheral market factors are now

These changes in the market factors are considerably larger, due to the
higher correlations. (Note that, because only the ratios of volatilities enter
the calculation, the increase in volatilities has no effect on  and

) The stress loss is now $12 million and is shown in the column
of Table 9.1 headed “Stress Covariances.”

This approach seems easy, but where does one obtain the estimates of
correlations during stress scenarios? The example above simply relied on
the conventional wisdom that correlations increase during periods of mar-
ket stress and adjusted them in an ad hoc fashion to reflect this. A signifi-
cant drawback is that this can result in nonsensical correlation and
covariance matrices. This problem is further described in the next section,
and methods of addressing it are described in sources cited in the notes. 

An alternative, the broken arrow stress test, is to assume that the
available data on factor changes represent a mixture of realizations
from stressed and nonstressed market environments and to estimate a
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statistical model that allows for different covariance matrices in the dif-
ferent market environments. This approach results in generally sensible
stress scenarios that are consistent with the data from past periods of
market stress and are thus defensible. However, the complexity of the
procedure is a drawback.

STRESSING VALUE-AT-RISK ESTIMATES

The rubric stress testing is also used to refer to analyses that examine the
effects of changes in the volatilities and correlations used in value-at-risk
calculations, resulting in a stressed VaR. Commonly, this is intended to cap-
ture the conventional wisdom that volatilities and correlations increase in
periods of market stress. While volatilities can be increased or decreased
like market rates or prices, a delicate issue is that seemingly natural changes
in the correlation coefficients can result in correlation (and covariance)
matrices that are not positive definite, resulting in predictive stress scenar-
ios that make no sense. 

Using the original volatilities and correlations, the delta-normal VaR is
$1.768 million (Chapter 3) and the Monte Carlo VaR is $2.583 million (Chap-
ter 6). With the stressed volatilities and correlations 1.5(0.061) 0.0915,

1.5(0.065) 0.0975, 1.5(0.0290) 0.435, 0.80, 0.20,
and 0.30 used above, the delta-normal VaR is $2.998 million and the
Monte Carlo VaR is $6.722. 

It is clear that such stressed value-at-risk estimates can be valuable.
For example, prior to the spring and summer of 1997, the historical cor-
relation of the Thai baht/U.S. dollar and Japanese yen/U.S. dollar
exchange rates was about 0.8. All of the methods for computing value-
at-risk rely on historical data and therefore assume that future volatili-
ties and correlations will be like those observed in the past. Thus, prior
to the collapse of the Thai baht in July 1997, all methods would have
indicated that from the perspective of a U.S. dollar investor a long posi-
tion in baht combined with a short position in yen had a relatively low
value-at-risk. Yet by the end of June there was considerable speculation
that the Thai currency regime would collapse and thus that, in the
future, the correlation was likely to be much lower than 0.8. This cir-
cumstance cried out for stressed value-at-risk estimates computed using
correlations much less than 0.8 and volatilities much greater than the
historical volatility. 

The problem is that seemingly reasonable changes in the correlations can
result in nonsensical or even nonexistent value-at-risk estimates. The choice to

�1 = =
�2 = = �3 = = �12 = �13 =

�23 = –
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set the above correlations to   and  was
a sensible one, that is, it resulted in a positive definite correlation matrix. All
valid correlation (and covariance) matrices are positive semidefinite, and most
correlation (and covariance) matrices that arise in finance are positive definite.
However, the choice of  , and  which
at first glance seems equally reasonable, results in a correlation matrix that is
not positive semidefinite. Intuitively, if the first two factors are very highly corre-
lated, then  must be close to  and the correlations  and

 are not close enough. In the extreme case, when the first two fac-
tors are perfectly correlated, we must have  The financial implica-
tion of a correlation (covariance) matrix that is not positive definite is that it is
possible to form negative-variance portfolios, which makes no sense. The finan-
cial implication of a correlation (covariance) matrix that is positive semidefinite
but not positive definite is that it is possible to form zero-variance portfolios, or
equivalently, that some combination of the assets is a perfect hedge for another
combination of the assets. 

With three factors, the requirement that the correlation (covariance)
matrix be positive definite does not present a significant problem, because
it is both easy to check whether a three-by-three covariance matrix is posi-
tive definite and easy to see and understand the nature of this constraint.
However, the problem is more severe the larger the number of factors.
Seemingly reasonable changes to the correlation matrix can easily result in
correlation and covariance matrices that are not positive semidefinite and
value-at-risk estimates that are nonsensical, or, if the Monte Carlo method
is used, nonexistent. A source cited in the notes explains one approach to
addressing this problem.

STRESSING FACTORS LEFT OUT OF THE MODEL

None of the value-at-risk calculations in this book treats option-implied
volatilities as market factors, which is a common modeling choice. But
changes in option-implied volatilities, and sometimes large changes, are
observed. Stress tests can be used to assess the exposure to factors such as
these that are not included in the value-at-risk model. The demands of sim-
plicity, tractability, and data availability also typically require that the
value-at-risk model make simplifying assumptions that certain interest rate
and commodity price spreads are constant, while the mapping procedure
assumes that cost-of-carry relationships between spot and futures markets
hold. The exposure to the risk of changes in such relationships can be
examined using stress tests. 

�12 0.80,= �13 0.20,= �23 0.30–=

�12 0.90,= �13 0.20= �23 0.30,–=

�13 �23, �13 0.20=
�23 0.30–=

�13 �23.=
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PORTFOLIO-SPECIFIC STRESS TESTS 

None of the procedures discussed so far guarantees that the stress tests
are relevant for the current portfolio. For our example, it is clear that the
loss is greatest with a simultaneous sharp fall in both S&P 500 and FT-SE
100, together with an increase in implied volatilities (because the portfo-
lio involves written options). Another stress-testing approach searches for
stress scenarios by analyzing the vulnerabilities of the portfolio in ques-
tion. These may be identified by conducting a historical or Monte Carlo
simulation on a portfolio and searching for all scenarios that cause a loss
exceeding a high threshold. If this is used as the stress test scenario, this
amounts to asking what scenarios cause the VaR. Alternatively, it can be
used as the basis for constructing an extreme stress scenario. For exam-
ple, if the Monte Carlo simulation indicates that the portfolio is exposed
to a yield curve twist, one can use stress tests that involve severe yield
curve twists.

OTHER ISSUES IN DESIGNING GOOD STRESS TESTS

The discussion above focused on designing sensible stress scenarios that are
relevant to both the current portfolio and the current market environment.
This point is worth emphasizing: the success of stress testing depends cru-
cially upon the selection of sensible scenarios. The only meaningful stress
scenarios are those that could occur in the current market environment. 

Useful stress tests also reveal the details of the exposures, for example,
which positions are responsible for the profits and losses. Absent this infor-
mation, it is difficult to identify which positions to eliminate or hedge in
order to reduce any undesirable exposures. In fact, a great part of the value
of stress testing stems precisely from the process of systematically thinking
through the effects of shocks on different positions and markets and what
can be done to ameliorate them. 

In addition, organizations whose risk-management strategies depend
on the ability to frequently adjust or rebalance their portfolios need to con-
sider the impact of crises on market liquidity, because it may be difficult or
impossible to execute transactions at reasonable bid/ask spreads during cri-
ses. Finally, organizations that use futures contracts to hedge relatively illiq-
uid securities or other financial instruments should consider the cash flow
requirements of the futures contracts. Gains or losses on futures contracts
are received or paid immediately, while gains or losses on other instruments
are often not received or paid until the positions are closed out. Thus, using
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futures contracts to hedge the changes in the values of other instruments
can lead to timing mismatches between when funds are required and when
they are received.

A common criticism of stress tests is that stress tests as usually con-
ducted are not probabilistic and thus lie outside the value-at-risk frame-
work. The typically subjective choice of stress scenarios complicates
external review of a stress-testing program, and the failure to assign proba-
bilities renders back testing impossible. In response to these concerns, vari-
ous methods of attaching probabilities to stress scenarios have been
proposed. While these approaches provide either objectivity or its appear-
ance, they are a step away from stress testing, back toward the computa-
tion of value-at-risk using a low probability or high confidence level. While
extreme tail value-at-risk estimates are useful, stress testing is a distinct
activity. 

NOTES

The zero-out and historical stress test approaches have been standard (see
e.g., Kupiec 1998) for some time. Kupiec (1998) proposes the use of predic-
tive stress scenarios and also discusses the possibility of combining them
with stressed volatilities and correlations. All of these approaches are
implemented in at least some risk measurement software. The more recent
broken arrow stress test is due to Kim and Finger (2000). 

Finger (1997) proposes an approach for modifying parts of a correla-
tion matrix while ensuring that the matrix remains positive definite. The
drawback, pointed out by Brooks, Scott-Quinn, and Whalmsey (1998), is
that the property of positive definiteness is maintained by changing the
other parts of the correlation matrix in an unintuitive and uncontrolled
fashion. Rebonato and Jäckel (1999/2000) present an efficient method for
constructing a valid correlation matrix that is as close as possible to a
desired target correlation matrix, where closeness can be defined in a num-
ber of different ways. They also explain how principal components analysis
can be used to obtain easily approximately the same correlation matrix as
their proposed approach. 

The conventional wisdom is that correlations increase during periods
of market stress. For example, Alan Greenspan’s oft-quoted speech on
measuring financial risk includes the phrase, “. . . joint distributions esti-
mated over periods without panics will misestimate the degree of asset
correlation between asset returns during panics,” while Bookstaber
(1997) writes, “During periods of market stress, correlations increase
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dramatically.” Brooks and Persand (2000) document the existence of such
changes in measured correlations. However, the correct interpretation of
such statements and evidence is delicate. They are certainly correct if
understood to mean that the measured correlations are higher when
returns are large; however, it is not clear that the distributions generating
the data actually change. 

Boyer, Gibson, and Loretan (1997) show that apparent correlation
breakdowns can be found in data for which the true underlying distribu-
tion has a constant correlation coefficient. Specifically, they derive an
expression for the conditional correlation coefficient of data generated
from a bivariate normal distribution and find that the conditional correla-
tion is larger when one conditions on large rather than small returns. Thus,
one expects measured correlations to be larger during periods of high
returns or market volatility, even if the distribution generating the data has
not changed. A similar result is cited by Ronn, Sayrak, and Tompaidis
(2000), who credit Stambaugh (1995) for it. Boyer, Gibson, and Loretan
(1999) find no evidence for nonconstant correlations in a limited empirical
analysis of exchange rate changes, while Cizeau, Potters, and Bouchaud
(2001) argue that a simple non-Gaussian one-factor model with time-inde-
pendent correlations can capture the high measured correlations among
equity returns observed during extreme market movements. In contrast,
Kim and Finger (2000) estimate a specific (mixture of distributions) model
that allows for correlation changes and find evidence of such changes for
four of the 18 market factors they consider. Thus, there is evidence of cor-
relation changes, though overall the evidence argues against their ubiquity. 

Berkowitz (1999/2000) argues that the typically subjective choice of
stress scenarios makes external review of a stress-testing program difficult,
and the failure to assign probabilities renders back testing impossible. In
response to these concerns, Berkowitz proposes that risk managers explic-
itly assign (perhaps subjective) probabilities to stress scenarios and then
combine the resulting stress distribution with the factor distribution for
normal market conditions to generate a single forecast distribution. He
argues that this will impose needed discipline on the risk manager and
enable back testing. This approach is also advocated by Aragonés, Blanco,
and Dowd (2001). Similar approaches are suggested by Cherubini and
Della Lunga (1999) and Zangari (2000), who use Bayesian tools to com-
bine subjective stress scenarios with historical data. 

A different approach is taken by Longin (2000), who proposes the
use of extreme value theory (see chapter 16) to model the extreme tails of
the distribution of returns. As discussed there, multivariate extreme value
theory is not well developed, and current proposals for using EVT involve
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fitting the tails of the distribution of portfolio returns, without consider-
ation of the detail that causes these returns. A limitation is that this
amounts to an extreme tail VaR and thereby sacrifices some of the bene-
fits of stress testing. 
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Decomposing Risk

Risk decomposition was introduced in Chapter 2 in the context of a simple
equity portfolio exposed to two market factors. The next few chapters turn
to more realistic examples of the use of risk decomposition, without which
risk budgeting cannot exist. As a preliminary, this chapter summarizes the
mathematics of risk decomposition. Risk decomposition is crucial to risk
budgeting, because the aggregate value-at-risk of the pension plan, or other
organization, is far removed from the portfolio managers. At the risk of
stating the obvious, the portfolio managers have control over only their
own portfolios. For them, meaningful risk budgets are expressed in terms
of their contributions to portfolio risk.

In fact, meaningful use of value-at-risk in portfolio management almost
requires risk decomposition. Value-at-risk, or any other risk measure, is
useful only to the extent that one understands the sources of risk. For exam-
ple, how much of the aggregate risk is due to each of the asset classes? If we
change the allocations to asset classes, what will be the effect on risk? Alter-
natively, how much of the risk is due to each portfolio manager? How much
is due to tracking error? Is it true that the hedge fund managers do not add
to the overall risk of the portfolio? All of these questions can be answered
by considering risk decomposition. This chapter first describes risk decom-
position and then turns to another issue, the model for expected returns.

RISK DECOMPOSITION

Let w = (w1, w2, . . . , wN)′ denote the vector of portfolio weights on N assets,
instruments, asset classes, or managers, and let �(w) and VaR(w) denote the
portfolio standard deviation and value-at-risk, which depend on the positions
or weights wi. Imagine multiplying all of the portfolio weights by the same con-
stant, k, that is, consider the vector of portfolio weights kw = (kw1, kw2, . . . ,
kwN)′ and the associated portfolio standard deviation �(kw) and value-at-risk
VaR(kw). A key property of the portfolio standard deviation is that scaling
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all positions by the common factor k scales the standard deviation by the
same factor, implying �(kw) k�(w). This is also true of the value-at-risk,
because scaling every position by k clearly scales every profit or loss by k,
and thus scales the value-at-risk by k.

In mathematical terminology, the result that VaR(kw) kVaR(w) for
k > 0 means that function giving the value-at-risk is homogenous of degree
1, or linear homogenous. From a financial perspective, this property of
value-at-risk is almost obvious: if one makes the same proportional change
in all positions, the value-at-risk also changes proportionally. 

Though very nearly obvious, this property has an important implica-
tion. If value-at-risk is linear homogenous, then Euler’s law (see the notes to
this chapter) implies that both the portfolio standard deviation and VaR
can be decomposed as

(10.1)

and

(10.2)

respectively. The ith partial derivative, ∂�(w) ∂wi or ∂VaR(w) ∂wi, is
interpreted as the effect on risk of increasing wi by one unit; in particular,
changing the ith weight by a small amount, from wi to wi*, changes the risk
by approximately (∂�(w) ∂wi)(wi* − wi), or (∂VaR(w) ∂wi)(wi* − wi). The
ith term, (∂�(w) ∂wi)wi or (∂VaR(w) ∂wi)wi, is called the risk contri-
bution of the ith position and can be interpreted as measuring the
effect of percentage changes in the portfolio weight wi. For example,
the change from wi to wi* is a percentage change of (wi* − wi) wi ,
and the change in portfolio standard deviation resulting from this
change in the portfolio weight is

the product of the risk contribution and the percentage change in the
weight.
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A key feature of the risk contributions is that they sum to the portfolio
risk, permitting the portfolio risk to be decomposed into the risk contribu-
tions of the N positions wi. Similarly, we can define ((∂� (w) ∂wi)wi) �(w)
or ((∂VaR(w) ∂wi)wi) VaR(w) to be the percentage contribution to portfo-
lio risk of the ith position. It is straightforward to compute these risk con-
tributions when risk is measured by standard deviation. Computing the
derivative with respect to the ith portfolio weight,

(10.3)

where the numerator wi cov (ri,ri), is the covariance between the
return ri and the portfolio return wjrj. Thus, the risk contribution of
the ith position or asset

is proportional to the covariance between the return on the ith position and
the portfolio, and is zero either when that position is uncorrelated with the
portfolio or when the weight wi = 0. The percentage contribution to portfo-
lio risk is

where �i is the regression coefficient, or beta, of the ith market return on the
return of the portfolio. By construction, the weighted sum of the betas is
100% or one, that is, �iwi 1. This is exactly analogous to the stan-
dard result in portfolio theory that the market beta of one is the weighted
average of the betas of the stocks constituting the market.

Decomposing delta-normal value-at-risk is almost equally easy. Recog-
nizing that delta-normal VaR is of the form
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the ith partial derivative and risk contribution of the ith asset are

and

respectively. The only difference (besides the constant k) between this and
equation (10.3) is the expected return component −E[ri]wi, which appears
because larger expected returns shift the distribution upward and reduce
the probability of loss.

The key insight from these results is that the risk contribution of a
position crucially depends on the covariance of that position with the
existing portfolio. This covariance is zero when the position is uncorre-
lated with the existing portfolio, in which case the risk contribution is
zero. When the correlation is positive, the risk contribution is positive;
when it is negative, the position serves as a hedge, and the risk contribu-
tion is negative. 

In interpreting risk decomposition, it is crucial to keep in mind that
it is a marginal analysis; a small change in the portfolio weight from wi
to wi* changes the risk by approximately (∂�(w) ∂wi)(wi* − wi), or
(∂VaR(w) ∂wi)(wi* − wi). Alternatively, if the risk decomposition indi-
cates that the ith position accounts for one-half of the risk, increasing that
position by a small percentage will increase risk as much as increasing all
other positions by the same percentage. The marginal effects cannot be
extrapolated to large changes, because the partial derivatives ∂�(w) ∂wi
and ∂VaR(w) ∂wi change as the position sizes change. In terms of correla-
tions, a large change in market position changes the correlation between
the portfolio and that market. For example, if the ith market is uncorre-
lated with the current portfolio, the risk contribution of a small change in
the allocation to the ith market is zero. However, as the allocation to the
ith market increases, that market constitutes a larger fraction of the port-
folio and the portfolio is no longer uncorrelated with the ith market. Thus,
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the risk contribution of the ith market increases as the position in that
market is increased. 

RISK DECOMPOSITION FOR HISTORICAL AND MONTE CARLO 
SIMULATION

The expression (∂VaR(w) ∂wi)(wi) for the risk contribution of the ith posi-
tion suggests computing the risk contributions by perturbing the position
weights wi by small amounts and then recomputing the value-at-risk to
obtain estimates of the partial derivatives ∂VaR(w) ∂wi and then multiply-
ing by the weights wi. While it is a natural first thought, there are two
severe disadvantages to this approach. First, if there are N positions, this
requires N 1 VaR calculations. Given that the computational burden is a
significant drawback of the Monte Carlo approach, this is unappealing.
Second, even if the computational burden does not rule out that approach,
in practice the simulation error is too large to permit an accurate estimate
of the partial derivatives and risk contributions. However, all is not lost, as
a good approach is available.

Trivially, the value-at-risk estimate can be characterized as the (nega-
tive of the) expected loss, conditional on the set of scenarios such that the
(negative of the) expected loss is equal to the VaR. For example, if we com-
pute a 95%-confidence value-at-risk using 100 simulation trials, the value-
at-risk estimate is the loss given by the 95th worst scenario. Changing a
portfolio weight wi, then, has two effects. First, it affects the loss in the set
of scenarios such that the (negative of the) expected loss is equal to the
VaR. Letting  denote the return on the ith asset in the scenario used to
compute a (1 − �)-confidence VaR, the loss in this scenario is wi
and the effect of changing wi on the loss in this scenario is

(10.4)

Second, the change in wi might have an effect on the scenarios used to com-
pute the value-at-risk. A bit of thought suggests that this latter effect will be
small: the probability that a very small change in one of the weights wi
causes a different scenario to be the 95th (or 950th or 9500th) worst sce-
nario will typically be zero and will almost certainly be small. In fact, this
second effect disappears in the limit as the change in wi → 0, implying that
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the partial derivative can be computed from (10.4). The risk contribution
of the ith position is then simply

(10.5)

If more than one scenario is used to compute the value-at-risk, the term
 on the right-hand side of (10.5) is replaced by the average return in

the scenarios used to compute the value-at-risk.

EXPECTED RETURNS: WHOSE MODEL?

Investment managers are typically interested in holding periods longer
than those used by the derivatives dealers who originally developed
value-at-risk. The longer holding period makes the model of expected
returns more important and gives a strong push in the direction of using
Monte Carlo simulation to compute VaR measures. One role of the
expected-returns model is obvious through the appearance of E[r] in for-
mulas such as

VaR −(E[r] − k�).

Less obviously, the expected returns model also impacts the estimate of �.
To see this, consider a simple example with an equity portfolio, a

portfolio manager, and a risk manager, perhaps employed by a plan
sponsor. The portfolio manager is skilled at predicting expected returns
and selecting stocks. Let � denote the component of the portfolio return
that he or she is able to predict (i.e., he or she knows �), and let �
denote the unpredictable component. The portfolio return r � � is
the sum of the predictable and unpredictable components. For concrete-
ness, one can think of either � or � as the return on an industry factor
and the other term as the idiosyncratic component of return. Assume �
is normally distributed, and the conditional expectation of �, given �, is
E[ ] 0.

From the perspective of the portfolio manager, the unpredictable com-
ponent � is the only source of uncertainty, because he or she knows �.  Thus,
from his or her perspective, the expected value and standard deviation of
portfolio return are E[ ] E[ ] � and �� , and the
95%-confidence value-at-risk is VaR1 −(� − 1.645��) 1.645�� − �.
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The risk manager does not have the information to predict expected
returns and therefore does not know �. Further, the risk manager either
does not believe or is unwilling to assume that the portfolio manager knows
�, and therefore calculates value-at-risk as if � is unknown. Again for sim-
plicity, assume that, from the portfolio manager’s perspective, � is normally
distributed with expected value E[�] 	, where 	 is the expected return
on a passive benchmark. Thus, to the risk manager the expected value
and standard deviation of portfolio returns are E[r] E[� �] 	 and
� > ��, and the 95%-confidence value-at-risk is
VaR2 −(	 − 1.645�) 1.645� − 	.

In the portfolio manager’s computation VaR1 −(� − 1.645��)
1.645�� − �, the term � will always be positive because, if the portfolio
manager predicted returns less than 	 on some stocks, he or she could
either select different stocks, establish short positions in the stocks for
which he or she predicted negative returns, or simply invest in the pas-
sive benchmark. Comparing this to the risk manager’s computation
VaR2 −(	 − 1.645�) 1.645� − 	, one can see that the risk manager’s
value-at-risk estimate will always exceed that of the portfolio manager,
because � > �� and 	 < �. The result that the risk manager’s value-at-risk
estimate exceeds that of the portfolio manager will remain true if one uses
the expected returns as the benchmarks for defining loss, because then the
VaRs are proportional to the standard deviations VaR1 1.645��
and VaR2 1.645�.

Though this is only a simple example, the point holds more generally.
To the extent that a portfolio manager is able to predict expected returns, the
predictive model will explain some of the variability of returns. Thus,
the variability of the unexplained component of returns, namely, the resid-
ual, will be less than the variability of returns computed when assuming
that the expected return is constant. As a result, VaR estimates computed
with the use of forecast errors from the predictive model of returns will
indicate less risk than VaR estimates computed when assuming that the
expected return is constant.

Given this, how should VaR be computed? For a bank that is ware-
housing a portfolio of interest-rate and other derivatives, the answer is
clear. In this setting, a key use of VaR is to monitor and control the indi-
vidual risk-takers and risk-taking units, for example, traders, trading
“desks,” and larger business units. To the extent that the VaR estimates
used for internal risk-management rely on the traders’ models, forecasts,
and beliefs, this monitoring and control function is defeated. More gen-
erally, “best practice” is for the internal risk-management unit to be
independent of the risk-taking units. Thus, it is standard for a bank’s
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internal VaR models to use naïve estimates of expected returns, typically
setting them to zero. This argument in favor of the use of naïve esti-
mates of expected price changes is reinforced by the fact that assump-
tions about expected returns have a limited impact on the VaR model
when a one-day holding period is used, because volatilities are roughly
proportional to the square root of time and expected price changes
are proportional to time.

In portfolio-management uses of VaR, the answer is less clear. Investors
or plan sponsors acting on their behalf entrust portfolio managers with
their funds, expecting returns; the portfolio manager, acting on behalf of
the investors or plan sponsors, must construct portfolios that balance the
anticipated returns against the risks accepted to earn those returns. This
portfolio construction is based, explicitly or implicitly, on the manager’s
beliefs about expected returns. In this situation, the risk is due to the fact
that the realized asset-returns may deviate from the manager’s forecasts,
and VaR measures should measure the risk of such deviations. These are
determined by the extent to which the realized values of the market factors
deviate from the expected values, given the manager’s information, unlike
traditional VaR measures, which are based on the magnitudes of deviations
from naïve expectations.

This approach to computing VaR numbers is used at two different lev-
els, for two different purposes. First, the discussion above implies that it is
the correct approach at the level of an individual fund, when VaR estimates
are being computed for use in portfolio construction and managing the
risk-taking process. In this case, the VaR would be computed based on
deviations from the model used by the portfolio manager in forecasting
returns. The next chapter provides several examples of this use of VaR. Sec-
ond, this is also a reasonable approach at the level of the plan sponsor, both
when it makes asset-allocation decisions among asset classes and when it
allocates funds to portfolio managers within each asset class. When it does
this, the plan sponsor is playing a role analogous to a portfolio manager,
but selecting among asset classes and portfolio managers rather than
among individual securities. In this case, the VaR would be computed based
on deviations from the expected returns in the plan sponsor’s strategic
asset-allocation model. Chapter 13 provides an extended example of this
use of VaR.

Plan sponsors also play a second role, that of monitoring their portfo-
lio managers. This is akin to that of the internal risk-management function
at a bank or other derivatives dealer. For this purpose, it is reasonable to
use naïve estimates of expected returns. This provides a check on the man-
agers in case the portfolio manager incorrectly thinks that he or she has the
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ability to predict expected returns when he or she does not, and so that the
portfolio manager’s model understates the risk of deviations from his or her
forecasts.

NOTES

The approach to risk decomposition in this book is that of Litterman
(1996), which has become standard. Adding confusion, some (e.g., Mina
and Xiao 2001) defy standard usage of the word marginal and switch the
definitions of marginal and incremental risk. That is, in RiskMetrics, mar-
ginal VaR is the change in risk resulting from selling the entire position and
incremental VaR measures the effect of a small change in a position (Mina
and Xiao 2001: Sections 6.2–6.3).

Euler’s law is obvious in the one-variable case, because only functions
of the form f(w) bw are homogenous of degree 1, implying that, for such
functions, f(kw) kbw and ∂f(kw) ∂k bw f(w).

To obtain Euler’s law in the general case, one starts with the statement
that the value-at-risk of a portfolio kw is VaR(kw) kVaR(w) and differ-
entiates both sides of this equation with respect to k. This differentiation
amounts to asking what the effect is of a proportionate increase in all
positions.

The right-hand side of the equation means that the portfolio value-at-
risk is proportional to k and thus increases at the rate VaR(w) as k changes.
Thus, the derivative of the right-hand side is

(10.6)

To compute the derivative of the left-hand side, write it as VaR(kw)
VaR(y1,y2, . . . , yN,) VaR(y), where y1 kw1, y2 kw2, . . . , yN kwN,
and y is the vector y (y1,y2, . . . , yN)′. Then,

.

This says that the effect on the value-at-risk of increasing k is determined
by the effects of yi on VaR and the effects of k on yi. Then, using the facts
that ∂y1 ∂k w1, ∂VaR(y) ∂y1 ∂VaR(w) ∂w1, and similarly for the
other yis, one obtains
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(10.7)

Combining (10.6) and (10.7) yields equation (10.2) in the body of the
chapter. A similar analysis will yield the decomposition of the standard
deviation in equation (10.1)
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A Long-Short Hedge Fund
Manager

We start our series of examples illustrating the use of value-at-risk in risk
decomposition and risk budgeting by looking at the simplest possible case,
a quantitative portfolio manager who uses value-at-risk internally in order
to measure, manage, and optimize the risks of its portfolios. This manager,
MPT Asset Management (MPT), specializes in predicting the relative
returns in the stock, bond, and currency markets of some of the developed
countries over short horizons and uses these predictions in managing long-
short hedge funds. Both MPT’s predictions of expected returns and its esti-
mates of market risks change frequently, requiring that it rapidly alter its
portfolios to reflect the changes in its beliefs and optimize the risk-return
tradeoff. Due to their high liquidity, low transaction costs, and (for the
futures contracts) lack of credit risk, futures and currency forward contracts
are MPT’s preferred investment vehicles. In particular, for each country it
follows it uses the leading stock index futures contract, a futures contract
on a benchmark government bond, and currency forward contracts.

The futures and forward contracts involve no cash outlay (other than
the required margin or collateral), so in addition to the futures contracts
each of MPT’s funds includes a portfolio of securities. These asset portfo-
lios are not actively managed but rather are chosen to match the returns on
the benchmarks used by the various funds. For example, some of MPT’s
funds are absolute return funds, benchmarked to the riskless return; for
these the asset portfolio consists of high-grade money market instruments.
Other funds are benchmarked to large-capitalization U.S. equity indexes,
and for these the asset portfolios consist of passively managed portfolios of
U.S. equities. Thus, each of MPT’s portfolios consists of an active portfolio
of liquid futures (and sometimes forward) contracts, along with a passively
managed benchmark asset portfolio. Such simple portfolios provide a good
setting in which to begin illustrating the use of value-at-risk in portfolio
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management because they allow us to illustrate some of the main ideas
without requiring factor models to aggregate the risks across different
instruments and portfolios. 

As suggested by its name, MPT optimizes its portfolios using mean-
variance optimization techniques. MPT is well aware that the optimal
portfolios produced by mean-variance optimizers are sensitive to estima-
tion errors in both the expected returns and covariance matrices and that
these problems can be especially severe in portfolios that mix long and
short positions. For this reason, it uses proprietary Bayesian statistical
approaches to estimate the parameters. These combine the historical data
with prior information about the parameter values and thereby reduce the
sampling variation from the historical sample that is the source of the esti-
mation error. For this example, we do not worry about the source or qual-
ity of the estimates of the mean returns and covariance matrix but simply
use them to illustrate the use of value-at-risk and risk decomposition.

MPT’S PORTFOLIO AND PARAMETER ESTIMATES

We consider a fund benchmarked to the S&P 500 that uses only stock
index futures contracts in its active portfolio. Restricting attention to
stock index futures contracts simplifies the example without sacrificing
anything of importance, because bond futures and currency forwards
would be treated in the same way as the stock index futures. This active
futures position is shown in Table 11.1. The second column of the Table
shows the weights in the several markets, where the weight in the ith mar-
ket wi is the value of the cash market position equivalent to the futures
position divided by the fund net asset value, that is, the weight is

.

Negative weights indicate short positions. Currently the active portfolio
of futures contracts has a large (40%) long position in the Swiss market
and somewhat smaller long positions in Canada, Italy, and the Nether-
lands. The largest short position is in the U.S. market (−25%), with other
short positions in Australia, Spain, France, and Japan. The weights on
the long positions sum to 100%, while those on the short positions sum
to −95%.

The portfolio also has a weight of 100% in a benchmark portfolio that
tracks the S&P 500. Due to the need to maintain futures margin accounts,

wi
value of cash market position equivalent to futures position

fund net asset value
----------------------------------------------------------------------------------------------------------------------------------------------------------=
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it is impossible to achieve this 100% weighting by investing the net asset
value in the benchmark portfolio. Instead, approximately 90% of the net
asset value is invested in a passively managed stock portfolio that tracks the
S&P 500, and 10% of the net asset value is invested in money market
instruments used for futures margin. The allocation of 100% to the bench-
mark is then obtained by establishing a long position in S&P 500 index
futures contracts in an amount equivalent to approximately 10% of the net
asset value.

The third and fourth columns of Table 11.1 show the estimates of the
conditional expected returns (per month) on the various markets and stan-
dard deviations of the prediction errors (also per month) from MPT’s fore-
casting model. These estimates (together with the correlations of the
prediction errors) will be used in estimating the expected return and risk of
the portfolio. The fifth column of Table 11.1 shows naïve estimates of the
standard deviations of monthly returns, computed assuming that the expected
returns on the various markets are constant. These naïve standard deviations
ignore the fact that MPT’s forecasting model explains some of the variability

TABLE 11.1  Current “active” portfolio weights, expected returns, and standard 
deviations

Portfolio
Weight

(%)

Expected
Return

(% per month)

Standard 
Deviation of
Prediction 

Error
(% per month)

Standard 
Deviation
Based on 
Constant
Expected
Return

(% per month)

Australia (SPI) −15.0 0.90 4.84 5.23
Canada (TSE 300) 30.0 2.40 5.96 6.44
Switzerland (SMI) 40.0 2.30 6.46 7.00
Germany (DAX-30) −20.0 1.50 7.40 8.06
Spain (IBEX 35) −10.0 1.20 7.99 8.66
France (CAC-40) −5.0 0.70 6.88 7.53
Great Britain (FT-SE 100) 0.0 0.40 5.03 5.48
Italy (MIB 30) 15.0 2.50 8.77 9.57
Japan (Nikkei 225) −20.0 0.40 6.29 6.75
Netherlands (AEX) 15.0 1.80 6.28 6.70
New Zealand (NZSE) 0.0 1.60 6.09 6.56
United States (S&P 500) −25.0 0.10 5.07 5.53
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of monthly returns and thus are larger than the standard deviations of the
prediction errors.

MPT manages this portfolio to have an annualized tracking error vola-
tility less than or equal to 10% per year, equivalent to %
per month. Given the assumptions and parameter choices it makes, this is
identical to its value-at-risk. Due to its desire to maximize the portfolio
return, MPT tries to fully utilize this risk budget, that is, it manages the
portfolio so that the tracking error volatility is close to (but less than)
2.887% per month.

VALUE-AT-RISK

The value-at-risk estimates are used by MPT for portfolio construction and
managing the risk-taking process, rather than by an outside organization or
risk manager for use in monitoring and controlling the portfolio managers.
As discussed in the previous chapter and illustrated in Table 11.1, to the
extent that a portfolio manager is able to predict expected returns, the pre-
dictive model will explain some of the variability of returns, and the vari-
ability of the unexplained component of returns (the prediction errors) will
be less than the variability of returns computed assuming the expected
return is constant. From the perspective of the portfolio manager, the risk
stems from the variability of these prediction errors, and value-at-risk esti-
mates should be based on the distribution of the prediction errors. This is
the choice made by MPT. 

In addition to this choice, MPT must also choose a method for com-
puting value-at-risk, a holding period, and a confidence interval. Because
the fund is benchmarked to the S&P 500 index, it focuses on the value-
at-risk of the relative return rP − rB, where rP is the return on the portfo-
lio and rB is the return on the benchmark, the portfolio underlying the
S&P 500 index. Due to the linearity of the changes in value of the futures
and the approximate normality of returns on the underlying stock mar-
kets, the delta-normal method is a reasonable choice. The liquidity of the
futures contracts enables MPT to alter its portfolio frequently, and it
sometimes does so, suggesting that it is reasonable to use a short time
horizon; MPT uses one month. Finally, MPT computes a one-sigma (84%
confidence) value-at-risk and defines value-at-risk relative to the expected
value of the excess return rP − rB, rather than relative to zero. With these
choices, the value-at-risk is identical to the standard deviation, or volatil-
ity of the tracking error.

10 12⁄ 2.887=
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The excess (relative to the benchmark) return on the portfolio can be written

where ri is the return on the ith market, wi is the corresponding weight,
wiri is the return on the active portfolio, and wiri rB is the port-

folio return, including the return on the passive benchmark portfolio. The
one-sigma value-at-risk, or tracking error volatility �, is the standard devia-
tion of the return on the active portfolio

where cov(ri, rj)  �ij�i�j, �i is the standard deviation of the prediction
error for market i, and �ij is the correlation between the prediction errors
for markets i and j. The �is were shown above in Table 11.1, while these
correlations are shown in Table 11.2. Using these parameters, the VaR/
tracking error volatility is VaR � 3.215% per month, or approxi-
mately 11.14% per year. This is greater than the target of 2.887% per
month, implying that MPT needs to reduce the risk of the active portfolio.

In contrast to the VaR/tracking error volatility of 3.215%, the value-at-
risk based on the naïve standard deviations (and for simplicity assuming that
the correlations of returns are identical to the correlations of the prediction
errors) is 3.477% per month, or approximately 12.05% per year. This illus-
trates that the value-at-risk computed using the standard deviations of returns
exceeds that computed using the standard deviations of the prediction errors.
Such an estimate of value-at-risk might be useful to a risk manager or portfolio-
management client who wanted to measure the risk under the assumption that
the portfolio manager’s predictive model is flawed and actually does not pre-
dict expected returns.

rP rB– wiri rB rB–+
i=1

12

∑=

wiri,
i=1

12

∑=

Σi=1
12 Σi=1

12 +

� var wiri
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12

∑
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 
 
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=
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IS COMPUTING THE VALUE-AT-RISK ENOUGH?

Unfortunately, simply computing the value-at-risk is not enough. Single
summary measures of value-at-risk are useful for disclosure to investors
and (when this is relevant) reporting to regulators and may sometimes be
sufficient for the board of directors. But, they are not sufficient for manag-
ing the portfolio.

A portfolio or risk manager will almost certainly want to know the
effect on risk of increasing or decreasing the position in each of the futures
contracts. He or she will want to know the marginal contribution to risk and
return of each of the futures contracts, that is, he or she will be interested in
decomposing the risks of the portfolio, or risk decomposition. This identifies
the portfolio’s hot spots, or areas of particular concern to the risk or portfo-
lio mangers, and will help him or her decide what positions to reduce (or
increase) if the risk of the portfolio is above (or below) the desired level.

Combined with information about expected returns, the risk decompo-
sition can also help optimize the risk-return tradeoff. For example, it will
help the portfolio manager identify the expected return forecasts implicit in
the choice of a particular portfolio, that is, the portfolio’s implied views. It
can also help the portfolio manager decide if the benefits of altering a posi-
tion are large enough to justify the transaction costs of trading. The portfo-
lio manager will want this information even if an optimizer is used in

TABLE 11.2  Estimates of the correlations of prediction errors

AUD CAD CHF DEM ESP FRF GBP ITL JPY NLG NZD USD

AUD 1.00 0.40 0.36 0.36 0.38 0.34 0.44 0.27 0.30 0.38 0.45 0.39
CAD 0.40 1.00 0.39 0.43 0.36 0.40 0.40 0.29 0.28 0.41 0.33 0.53
CHF 0.36 0.39 1.00 0.45 0.44 0.47 0.48 0.33 0.26 0.52 0.37 0.46
DEM 0.36 0.43 0.45 1.00 0.45 0.54 0.41 0.45 0.27 0.55 0.28 0.41
ESP 0.38 0.36 0.44 0.45 1.00 0.49 0.42 0.46 0.29 0.46 0.30 0.36
FRF 0.34 0.40 0.47 0.54 0.49 1.00 0.44 0.47 0.28 0.53 0.26 0.41
GBP 0.44 0.40 0.48 0.41 0.42 0.44 1.00 0.31 0.25 0.50 0.38 0.47
ITL 0.27 0.29 0.33 0.45 0.46 0.47 0.31 1.00 0.25 0.42 0.20 0.25
JPY 0.30 0.28 0.26 0.27 0.29 0.28 0.25 0.25 1.00 0.27 0.24 0.26
NLG 0.38 0.41 0.52 0.55 0.46 0.53 0.50 0.42 0.27 1.00 0.33 0.45
NZD 0.45 0.33 0.37 0.28 0.30 0.26 0.38 0.20 0.24 0.33 1.00 0.34
USD 0.39 0.53 0.46 0.41 0.36 0.41 0.47 0.25 0.26 0.45 0.34 1.00
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helping to select a portfolio, because a manager who relies blindly on a
mean-variance optimizer will likely not be a portfolio manager for long.

RISK DECOMPOSITION OF THE CURRENT PORTFOLIO

Table 11.3 presents the risk decomposition of the current portfolio. The
second column shows the portfolio weights wi, the third and fourth col-
umns show the risk contributions (∂�(w) ∂wi)(wi) and percentage risk
contributions (∂�(w) ∂wi) �(w), and the fifth column shows the partial
derivatives . Although these partial derivatives are typically not
presented in most uses of risk decomposition, they are shown in the Table
because they clarify the interpretation of the risk contributions of the short
positions. In particular, for the short positions increasing the size means
establishing a larger short position, which can be seen from the fact that for
the short positions the sign of the risk contribution is opposite the sign of
the partial derivative.

TABLE 11.3  Risk decomposition of the current portfolio

Risk
Contribution

(% per month)

Risk 
Contribution 

(% of total risk)

Portfolio
Weight

(%)
Partial 

Derivative

Australia (SPI) 0.043 1.3 −15.0 −0.0029
Canada (TSE 300) 0.661 20.6 30.0 0.0220
Switzerland (SMI) 1.488 46.3 40.0 0.0372
Germany (DAX-30) 0.056 1.7 −20.0 −0.0028
Spain (IBEX 35) −0.021 −0.7 −10.0 0.0021
France (CAC-40) −0.041 −1.3 −5.0 0.0081
Great Britain
(FT-SE 100)

0.000 0.0 0.0 0.0080

Italy (MIB 30) 0.428 13.3 15.0 0.0285
Japan (Nikkei 225) 0.303 9.4 −20.0 −0.0152
Netherlands (AEX) 0.293 9.1 15.0 0.0195
New Zealand
(NZSE)

0.000 0.0 0.0 0.0066

United States
(S&P 500)

0.006 0.2 −25.0 −0.0002

Total 3.215 100.0

⁄
⁄ ⁄

∂� w( ) ∂wi⁄
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Examining the risk decomposition, we see that the risk contribution of the
large (w3 40%) long position in the Swiss market is 1.488%, or 46.3% of
the portfolio risk. The long positions in the Canadian and Italian markets
also make significant contributions to the risk of the portfolio, contributing
20.6% and 13.3%, respectively. The risk contributions of these positions
are large because the weights of these positions in the portfolio (combined
with the fact that these positions are not serving primarily to hedge other
positions) imply that the portfolio return is highly correlated with the
returns on these markets. Thus, increasing the positions in these markets
contributes to the portfolio risk.

Of the short positions, the largest risk contribution is from the Japa-
nese market, with a risk contribution equal to 9.4% of the total. Strikingly,
the risk contribution of the Japanese market is considerably larger than
those of the German and U.S. markets (1.7% and 0.2% of the total, respec-
tively), even though the short positions in these markets are the same size
or larger (−20% and −25% for the German and U.S. markets, respectively,
versus −20% for the Japanese market). This illustrates that a large position
does not necessarily imply a large risk contribution. Here, the risk contri-
butions of the U.S. and German markets are low because these positions
function as hedges of the rest of the portfolio, which has large long posi-
tions in the Canadian and Swiss markets. In contrast, the short position in
the Japanese market does not play this role.

Two of the positions, those in the Spanish and French markets, make
negative contributions to portfolio risk. This is because these short positions
serve to hedge the remainder of the portfolio, so increasing the size of these
positions actually reduces risk. In particular, the positive partial derivatives of
0.0021 and 0.0081 reveal that long positions in these markets are positively
correlated with the portfolio return, of course implying that short positions
in these markets are negatively correlated with the portfolio return. The neg-
ative risk contributions reflect the short positions through the negative
weights wi and therefore capture the negative correlations between the short
positions and the portfolio return. The interpretation of these risk contribu-
tions is that larger short positions will reduce the portfolio risk.

This risk decomposition clearly highlights the positions that should be the
focus of the portfolio or risk manager’s attention. In the terminology of Litter-
man (1996), these positions are the portfolio’s hot spots. As indicated above,
the hot spots are not necessarily the largest positions. Thus, the risk decompo-
sition also indicates the positions that need not be the focus of concern, even
though they may be large. For example, the large short positions in the U.S. and
German markets are responsible for little of the portfolio’s risk.

=



A Long-Short Hedge Fund Manager 171

RISK DECOMPOSITION AND HEDGING

Recalling that the current tracking error volatility of 3.215% per month
(11.14% per year) exceeds the target of 2.887% per month (10% per year),
MPT needs to reduce the risk of the portfolio. The risk decomposition above
identifies obvious candidates for trades to reduce the risk. These may be
either reductions in the positions that contribute to the risk or increases in
the sizes of positions that function as hedges. The decomposition also allows
MPT to compute the effect of changing the positions on the portfolio risk.

The position in the Swiss market has the largest risk contribution and is an
obvious candidate for a trade to reduce the risk. The effect of reducing the posi-
tion in the Swiss market from 40% to 35% can be obtained from the equation

yielding a new volatility of approximately 3.215% − 0.186% 3.029%, or
10.49% per year. The actual change in risk resulting from this change in the
position is −0.174, yielding a new volatility of 3.041% per month. The differ-
ence is due to the fact that the risk decomposition is a marginal analysis and is
only exactly correct for infinitesimally small changes in the positions. In this
example, the exact decrease in risk of 0.174 is smaller than the approximate
decrease in risk of 0.186 because the covariance between the Swiss market
and the portfolio declines as w3 declines, so that reductions in w3 have
decreasing effect on the risk.

This analysis can be reversed to (approximately) determine the trade
necessary to have a desired effect on the volatility. For example, to determine
the (approximate) change in the Swiss market position necessary to reduce the
volatility by 30 basis points, solve the equation

The solution of �w3 8.06% implies that a reduction in the weight in the
Swiss market from 40% to about 32% would reduce the monthly volatility
by about 30 basis points.

change in risk ∂� w( )
∂wi

----------------wi
wi* wi–( )

wi
--------------------------×≈

risk contribution( ) proportional change in volatility( )×=

1.488% 35% 40%–
40%

--------------------------------×=

0.186%,–=

=

0.3%– risk contribution( ) proportional change in position( )×=

1.488
�w3
40%
-------------.×=

=
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The positions in the Spanish and French markets both serve as hedges.
The approximate effect of increasing the short position in the French mar-
ket from 5% to 6% is

yielding a new volatility of approximately 3.215% − 0.008% = 3.207%.
The exact change in volatility is 0.007%, indicating that the estimate of
0.008% is a good approximation of the effect of increasing the hedge (the
short position) from w6 −5 to −6%.

The risk decomposition can also be used to compute risk-minimizing
trades, or best hedges, for each of the markets. We illustrate this using the
position in the Swiss market. Letting �w3 denote the change in the position
in the Swiss market, the risk-minimizing trade is the �w3 that minimizes the
portfolio variance, or the solution of

.

The first-order condition for the minimum is

which implies that the risk-minimizing trade is

The numerator of the term on the right-hand side, wi cov (ri, r3), is the
covariance between the return r3 and the active portfolio return wiri, so
the right-hand side is the negative of the ratio of the covariance between the

change in risk
∂� w( )

∂wi
----------------wi

wi* wi–( )
wi

--------------------------×≈

risk contribution( ) proportional change in volatility( )×=

0.041%– 6%– 5–( )%–
5%–

-------------------------------------×=

0.008%,–=

=
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i=1
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portfolio return and r3 to the variance of r3. This implies that the right-hand
side can be interpreted as the negative of the regression coefficient, or beta,
obtained by regressing the portfolio return on r3. This result is intuitive, for it
says that the risk-minimizing trade in the Swiss market is the trade that offsets
or hedges the sensitivity of the portfolio return to the Swiss market return. For
MPT’s portfolio, the risk-minimizing trade is �w3 −28.7%. If this trade is
made, the new position in the Swiss market of 40 − 28.7 11.3% will be
uncorrelated with the returns of the resulting portfolio.

Table 11.4 shows the best hedges for each of the markets, along with
the volatility of the resulting portfolio and the percentage reduction in vol-
atility. Not surprisingly, the risk-minimizing trades are largest for the Swiss
and Canadian markets and smallest for the U.S. market. These are consis-
tent with the risk contributions of the portfolio; in particular, the position
in the U.S. market was already very nearly a best-hedge position, so the
risk-minimizing trade is nearly zero. Also as expected, the best hedges in

TABLE 11.4  Risk-minimizing trades or best hedges

Volatility at 
the Best Hedge
(% per month)

Reduction in 
Volatility

(% of total risk)

Portfolio
Weight

(%)

Trade 
Required to 
Reach Best 

Hedge
(Change in 

port. weight)

Australia (SPI) 3.210 0.17 −15.0 3.9
Canada (TSE 300) 2.987 7.09 30.0 −20.0
Switzerland (SMI) 2.628 18.26 40.0 −28.7
Germany (DAX-30) 3.213 0.07 −20.0 1.6
Spain (IBEX 35) 3.214 0.03 −10.0 −1.1
France (CAC-40) 3.193 0.70 −5.0 −5.5
Great Britain 

(FT-SE 100)
3.174 1.27 0.0 −10.1

Italy (MIB 30) 3.041 5.42 15.0 −11.9
Japan (Nikkei 225) 3.120 2.95 −20.0 12.3
Netherlands (AEX) 3.056 4.96 15.0 −15.9
New Zealand

(NZSE)
3.196 0.59 0.0 −5.7

United States 
(S&P 500)

3.215 0.00 −25.0 0.3

=
=
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the Spanish and French markets involve increasing the short positions.
More surprisingly, the risk-minimizing trade in the Netherlands market is
larger than that in the Italian market, even though the risk contribution of
the Italian market is larger. This occurs because the return on the Nether-
lands market is more highly correlated with the large Canadian and Swiss
market positions, so that its risk contribution decreases less rapidly as the
position in the Netherlands market is decreased.

Although we do not show them, it is also possible to compute the risk-
minimizing, or best hedge, trade involving two or more markets. If a par-
ticular set of H markets has been selected, the risk-minimizing trade in
each market is the multiple regression coefficient of the portfolio return
on the returns of each of the H markets, and the volatility at the best hedge
is the standard deviation of the residual from that regression. By searching
over all possible sets of H markets, it is straightforward to compute the
risk-minimizing trade involving this number of markets. The H markets
that are identified as the best hedges are those that explain the variation in
the value of the portfolio, so this analysis also reveals the portfolio’s princi-
pal exposures.

IMPLIED VIEWS ANALYSIS

Even though transaction costs in the futures markets are very low, it still
doesn’t make sense for MPT continuously to update its portfolios to match
the optimal portfolios produced by the mean-variance optimizer. This
raises the question: to what extent is the existing portfolio consistent with
the expected returns from the forecasting model? Phrased differently, what
are the market views implied by the existing portfolio? Do they even make
any sense? 

Determining these implied views involves the reverse engineering of the
portfolio. Fortunately, this is easier than the phrase reverse engineering
might suggest: the implied views can be determined immediately from the
risk decomposition. As discussed in the next section of this chapter, portfo-
lio optimization involves selecting positions, so that the return contribution
of a position is proportional to the risk contribution. If this condition is not
satisfied, the risk-return tradeoff can be improved by altering the positions
until it is. To determine the implied views, we do not need actually to do
this but only need to find the expected returns that make the return contri-
butions proportional to the risk contributions. The easiest way to do this is
to look at a mean-variance optimization problem.
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The risk-return tradeoff (mean-variance frontier) can be obtained by
maximizing the utility function

where the coefficient � determines the extent to which the utility function
penalizes risk. Letting � vary between 0 and � maps out the usual efficient
frontier. For example, as � → �, the utility function penalizes risk infinitely
much, and the optimal portfolio obtained by maximizing the utility func-
tion approaches the minimum variance portfolio, while as � → 0, risk is
not penalized and the optimal portfolio involves “plunging” into a levered
position in the asset or market with the highest expected return, financed
by a short position in the asset with the lowest expected return. 

Using our notation, the maximization of the utility function becomes 

The first-order conditions are

for i 1, 2, . . . , 12.

The expected returns on the left-hand side are the expected returns, or
implied views, that are consistent with the positions (and covariances) on
the right-hand side. That is, they are implied by the choice of the wi. Recall-
ing that wj cov (ri, rj) is the covariance between the return on the ith
market and the active portfolio return wj rj, this result says that the
expected returns implicit in a choice of portfolio weights wi are propor-
tional to the covariances. Multiplying both sides of each equation by wi
and 1 in the form of � �,
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This says that the expected return contribution wiE[ri] is proportional to
the risk contribution.

Table 11.5 shows these implied views for MPT’s current portfolio
and the expected returns from MPT’s forecasting model, with � chosen
so that the equally weighted average of the implied views matches the
equally weighted average of the expected returns. The most obvious fea-
ture of the implied views is that they are generally more extreme than the
expected returns from the forecasting model. This follows directly from
the risk decomposition in Table 11.3. The dramatic differences in the
risk contributions are rationalized only by the conclusion that the port-
folio manager has extreme views about expected returns; otherwise the
differences in the risk contributions are too large. 

A closer examination of Table 11.5 reveals a more interesting feature of
the implied views: they do not necessarily correspond to whether the posi-
tions are long or short. More generally, the implied views of a portfolio do
not necessarily correspond to the deviations from the benchmark. 

To see this, consider the French market. The position of w5 −5%
might be interpreted as indicating that the manager had a negative view on
France, but the implied view for the French market is positive, at 1.16%
per month. How can this be? The answer lies back in the risk contributions
and best hedge analysis, which indicate that the portfolio volatility can be

TABLE 11.5  Implied views of the current portfolio

Implied
View

(% per month)

Expected
Return

(% per month)

Portfolio
Weight

(%)

Australia (SPI) −0.41 0.90 −15.0
Canada (TSE 300) 3.14 2.40 30.0
Switzerland (SMI) 5.31 2.30 40.0
Germany (DAX-30) −0.40 1.50 −20.0
Spain (IBEX 35) 0.30 1.20 −10.0
France (CAC-40) 1.16 0.70 −5.0
Great Britain (FT-SE 100) 1.14 0.40 0.0
Italy (MIB 30) 4.07 2.50 15.0
Japan (Nikkei 225) −2.17 0.40 −20.0
Netherlands (AEX) 2.79 1.80 15.0
New Zealand (NZSE) 0.94 1.60 0.0
United States (S&P 500) −0.03 0.10 −25.0

=
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reduced by increasing the short position in the French market. The failure
of the manager to do this indicates a positive implied view. The same analy-
sis applies to Great Britain: here the neutral position does not indicate a
neutral view, because the best hedge trade in the British market is to estab-
lish a short position of −10.1%. Given this, the zero weight in the British
market indicates a positive implied view.

In general, the implied views of a portfolio depend on all the other
positions and the correlations among them. This is precisely because of
the relationship between the implied views and the risk contributions: the
implied views depend on all of the other positions in exactly the same way
the risk contributions do.

RISK DECOMPOSITION AND PORTFOLIO OPTIMIZATION

We conclude this chapter by going to the final step of portfolio optimiza-
tion. The risk decomposition in Table 11.3 makes clear that the existing
portfolio is not optimal, for that Table shows that increasing the position in
the Spanish and French markets results in a reduction in risk. Table 11.1
shows that these markets have positive expected returns, so increasing the
positions in them increases the portfolio expected return. Therefore, the exist-
ing portfolio cannot be optimal.

If we expand Table 11.3 to include the marginal expected returns and
the positions’ contributions to portfolio expected returns, MPT can deter-
mine what other trades will improve the risk-return tradeoff and by how
much they will do so. Determining marginal expected returns is straightfor-
ward, because the expected return of a portfolio is the weighted average of
the expected returns of its components, and the marginal effect of increas-
ing the position in the ith market is just the expected return of the ith mar-
ket. In symbols, the marginal expected return is

marginal expected return
∂E rP[ ]

∂wi
-----------------=

∂ wiE ri[ ]
i=1

12

∑
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The expected return contribution of the ith position is then just the product
of the expected return of the ith market and the position size, or E[ri]wi.

Table 11.6 includes the position sizes, risk sensitivities, and risk contri-
butions from Table 11.3, as well as the market expected returns and expected
return contributions. In addition, the rightmost column shows the ratio of the
expected return contribution to the risk contributions. When these ratios are
not all equal, the risk-return tradeoff can by improved by reallocating assets
among the markets. For example, the ratio of expected return to risk is 1.090
for the Canadian market and 0.618 for Switzerland. The difference indicates
that there is an opportunity to improve the risk-return tradeoff by reallocat-
ing assets from the Swiss market to the Canadian market. 

TABLE 11.6  Risk decomposition and contributions to expected return of the 
current portfolio

Portfolio
Weight

(%)
Partial 

Derivative

Contribution
to Risk

(% per month)

Market
Expected 
Return
(% per 
month)

Contribution
to Portfolio
Expected 
Return

(% per month)

Ratio of 
Return
to Risk

Australia (SPI) −15.0 −0.0029 0.043 0.90 −0.1 −3.148

Canada 
(TSE 300)

30.0 0.0220 0.661 2.40 0.7 1.090

Switzerland 
(SMI)

40.0 0.0372 1.488 2.30 0.9 0.618

Germany 
(DAX-30)

−20.0 −0.0028 0.056 1.50 −0.3 −5.368

Spain (IBEX 35) −10.0 0.0021 −0.021 1.20 −0.1 5.734

France 
(CAC-40)

−5.0 0.0081 −0.041 0.70 0.0 0.859

Great Britain 
(FT-SE 100)

0.0 0.0080 0.000 0.40 0.0 0.501

Italy (MIB 30) 15.0 0.0285 0.428 2.50 0.4 0.877

Japan 
(Nikkei 225)

−20.0 −0.0152 0.303 0.40 −0.1 −0.264

Netherlands 
(AEX)

15.0 0.0195 0.293 1.80 0.3 0.921

New Zealand 
(NZSE)

0.0 0.0066 0.000 1.60 0.0 2.427

United States 
(S&P 500)

−25.0 −0.0002 0.006 0.10 0.0 −4.461

Total 3.215 1.59
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The negative ratios for some of the short positions reveal even greater
opportunities for improving the risk-return tradeoff. To interpret them, one
must know whether they are negative because increasing the position reduces
risk and increases expected return or increases risk and reduces expected
return. For the short positions with negative ratios, it turns out that increasing
the magnitude of the short position increases risk and reduces expected
return, so the risk-return tradeoff is improved by reducing the magnitudes of
the short positions. For example, the ratio of −3.148 for the position in the
Australian market reflects the fact that reducing the short position from 15%
to 14% (changing w1 from −15% to −14%) reduces risk by approximately
0.043% and increases the expected return by 1% of 0.90%, or 0.009%.

From this discussion, it should be clear that the optimal active portfolio
of futures contracts is characterized by equal ratios. (An important excep-
tion is when constraints, perhaps self-imposed, on the position size in any
market lead to smaller than optimal allocations for some markets.) The
actual optimum can be computed using a mean-variance optimizer; in this
example, with no constraints on the portfolio, the solution is easy to
obtain. Table 11.7 shows the optimal portfolio (maximum expected
return), subject to the constraint that the VaR/tracking error volatility be
less than or equal to 2.887% per month (10% per year). This Table also
shows the risk sensitivities (partial derivatives), risk contributions, expected
returns, expected return contributions, and ratios of expected return to risk
at the optimal allocations. As expected, the ratios are equal across markets.

Consistent with the preceding discussion of ratios of the expected
return to the risk contributions in the Canadian and Swiss markets, the
optimal allocation reflects a smaller position in the Swiss market and a
larger position in the Canadian market; in fact, the largest position is now
in the Canadian market. Also, the optimal short positions in the Spanish
and French markets are larger than in the current portfolio, reflecting the
fact that, given the current positions, they serve as hedges. The short posi-
tion in Australia of −15% has been reduced, and in fact turns into a long
position of 2.1%. All of these positions are unsurprising in light of the
expected returns and risk decomposition of the existing portfolio in
Table 11.6.

The change in the position in the British market can be understood in
terms of the best hedge and implied views analyses. The best hedge trade in
the British market is to establish a short position of −10.1%; the existing
zero weight in the British market indicates an implied view greater than the
expected return. In order to be consistent with the expected return forecast,
the position in the British market must be decreased. 
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The reasons for the changes in the weights in the U.S. and New Zealand
markets are not obvious from the previous discussion. The best hedges anal-
ysis indicated little change in the U.S. market position and that the initial
zero position in New Zealand should be changed to a short position. Why
does the optimal portfolio reflect an increase in the short position in the
United States and a significant long position in New Zealand? The explana-
tion lies in the changes in the positions in the other markets. The changes in
the portfolio, and in particular the increase in the size of the Canadian posi-
tion, make the position in the U.S. market a better hedge of the portfolio,
leading to the new optimal U.S. position of w12 −32.4%. This, combined
with the optimal large short position in Great Britain, serves to hedge the

TABLE 11.7  Risk decomposition and contributions to expected return of the 
optimal portfolio

Portfolio
Weight

(%)
Risk

Sensitivity

Risk
Contribution
(% per month)

Market
Expected 
Return
(% per 
month)

Contribution
to Portfolio
Expected 
Return

(% per month)

Ratio of
Return
to Risk

Australia (SPI) 2.1 0.01395 0.030 0.90 0.02 0.645

Canada (TSE 300) 35.4 0.03719 1.317 2.40 0.85 0.645

Switzerland 
(SMI)

24.2 0.03565 0.862 2.30 0.56 0.645

Germany
(DAX-30)

−1.5 0.02325 −0.035 1.50 −0.02 0.645

Spain (IBEX 35) −4.4 0.01860 −0.082 1.20 −0.05 0.645

France
(CAC-40)

−13.0 0.01085 −0.141 0.70 −0.09 0.645

Great Britain
(FT-SE 100)

−16.9 0.00620 −0.105 0.40 −0.07 0.645

Italy (MIB 30) 11.7 0.03874 0.454 2.50 0.29 0.645

Japan 
(Nikkei 225)

−6.0 0.00620 −0.037 0.40 −0.02 0.645

Netherlands
(AEX)

14.2 0.02790 0.397 1.80 0.26 0.645

New Zealand
(NZSE)

11.2 0.02480 0.277 1.60 0.18 0.645

United States
(S&P 500)

−32.4 0.00155 −0.050 0.10 −0.03 0.645

Total 2.887 1.86

=
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New Zealand market. Thus, it is possible to have a significant long position
in New Zealand without contributing too greatly to the risk of the portfolio. 

NOTES

The implied views analysis is described in Winkelman (2000a; 2000b). This
analysis is closely related to mean-variance optimization, the literature on
which is too large to attempt to survey here.
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Aggregating and Decomposing
the Risks of Large Portfolios

A key feature of MPT’s portfolio discussed in the preceding chapter is that it
consists of positions in only 12 instruments, the stock index futures contracts.
For this reason, we were able to work directly with the covariance matrix of
changes in the values of the individual instruments. Unfortunately, the MPT
portfolio contains too few instruments to be representative of most actual insti-
tutional portfolios, which contain hundreds, or even thousands, of instruments.
In particular, this is true of the aggregate portfolios of plan sponsors, which are
composed of the sums of the different portfolios controlled by the sponsors’
managers. For such large portfolios, factor models of the sort discussed in
Chapters 7 and 8 play a crucial role in simplifying and estimating the risk.

Factor models play a background role in simple value-at-risk computa-
tions, in that they are only a means to an end. Typically, the user of simple
value-at-risk estimates has little interest in the factor models per se, provided
that the resulting VaR estimate is reasonably accurate. In contrast, factor
models play an important role in the foreground of risk decomposition. To
understand why, imagine taking a portfolio with approximately equal
weights in 1000 common stocks and decomposing the portfolio risk into the
risk contributions of the 1000 stocks, along the lines of the previous chapter.
With so many stocks, the risk contribution of each common stock will be
somewhere between zero and a few tenths of one percent of the total portfo-
lio risk. Such risk decompositions reveal little of the important risks in the
portfolio. More meaningful risk decompositions are in terms of industry or
other groupings, or in terms of the market factors to which the portfolio is
exposed. In this latter case, the factor models play a highly visible role
because the risk contributions of market risk factors that do not appear in
the factor model cannot be measured. Thus, the choice of factors deter-
mines the possible risk decompositions of the total portfolio risk. 

This chapter describes risk decomposition by both groups of securities and
factors. The risk decomposition by groups of securities allows the identification
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of undesirable country, regional, or industry concentrations, for example, an
unintended overweighting in technology stocks. The risk decomposition by
groups of securities also allows the measurement of the risk contribution of
particular portfolio managers, because the risk contribution of a manager’s
portfolio is just the risk contribution of the group of securities that constitute
the portfolio.

The ability to decompose risk by market factors can be equally, or even
more, valuable. An excessive exposure to a growth factor, or unintended inter-
est rate risk in an equity portfolio, can be difficult to identify because such
exposures stem from many stocks in different industries. The risk decomposi-
tion by factors is very flexible because a wide range of variables can be used in
factor models. The returns on portfolios, changes in interest rates, unexpected
changes in growth in gross domestic product (GDP), or the unexpected compo-
nent of the change in almost any other variable of interest are all legitimate fac-
tors. Further, a stock’s factor model residuals can be viewed as yet another
factor that affects the return on only one stock, permitting residual risk to be
considered in the same framework. Thus, a wide range of risk decomposition
questions can be addressed using the framework provided by factor models.

This chapter illustrates the use of factor models to aggregate and
decompose risk across portfolios with an example of a portfolio consisting
of three subportfolios, perhaps managed by different portfolio managers. It
begins with a brief description of the portfolios, securities, and parameter
estimates and then turns to the risk decompositions. The risk decomposi-
tion by individual securities and groups of securities is illustrated first and
is followed by the risk decomposition by factors.

THE PORTFOLIOS, SECURITIES, AND PARAMETER ESTIMATES

The three subportfolios that make up the aggregate portfolio consist of a
common stock portfolio, a fixed-income portfolio, and a portfolio contain-
ing both long and short positions in both stocks and bonds. This last portfo-
lio is interpreted as the portfolio of a market-neutral hedge fund manager.
For simplicity, all of the portfolios are composed of positions in only four
common stocks and three bonds and there are only two stock market fac-
tors and three bond market factors.

SECURITIES AND PARAMETER ESTIMATES

The two stock market factors are the growth and value indexes used in the
factor model in Chapter 7, and the four hypothetical common stocks are
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identical to those used in Chapter 7, except that the stocks are now assumed
to have some limited interest rate exposure. The three bond market factors
are the first three principal components used in Chapter 8, and the three
bonds are those used in Chapter 8. Table 12.1 shows the factor loadings of
the seven securities on the five market factors, as well as the residual volatil-
ities (standard deviations) of the common stock returns. (The bond residuals
are identically zero because the three principal components are assumed to
capture all of their risks.) Stocks 1 and 2 have large loadings on the growth
factor and negative loadings on the value factor and thus are naturally
labeled growth stocks; below it is assumed that they can also be labeled tech-
nology stocks. Stocks 3 and 4 have relatively large loadings on the value fac-
tor and small (–0.1 and 0.2, respectively) loadings on the growth factor and
are labeled value stocks. Three of the four common stocks now have some
limited interest rate exposure, but the bonds have no equity market exposure
because the three principal components are assumed to capture completely
their risks, reflected in the residual volatilities of zero. For convenience, the
residuals of the four common stocks are assumed to be uncorrelated.

Table 12.2 shows the monthly volatilities and correlation matrix of the
five market factors. The volatilities of the stock market factors (the growth
and value indexes) are expressed as percentages (per month), while the volatil-
ities of the principal components are expressed in basis points. Table 12.3
shows the covariance matrix corresponding to the correlations and volatilities
in Table 12.2. Not surprisingly, the two stock market indexes are highly corre-
lated, with a correlation coefficient of 0.80. While the principal components
are of course uncorrelated with each other by construction, Tables 12.2 and
12.3 show that they are somewhat correlated with the stock market indexes.
This reflects the fact that stock prices are affected by changes in interest rates.  

TABLE  12.1  Factor loadings of the securities

Growth
Index

Value
Index

Principal
Comp. 1

Principal
Comp. 2

Principal
Comp. 3

Residual
Volatility

Stock 1   2.5 −1.1 −0.08   0.08   0.00 8.0%

Stock 2   2.1 −0.8 −0.05   0.05   0.00 7.0%

Stock 3 −0.1   1.2   0.00   0.00   0.00 6.0%

Stock 4   0.2   0.8 −0.05   0.00   0.00 5.5%

Bond 1   0.0   0.0 −1.59   0.00 −0.11 0.0 bp

Bond 2   0.0   0.0 −2.55 −1.08 0.35 0.0 bp

Bond 3   0.0   0.0 −3.72 −2.91 2.47 0.0 bp
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FACTOR MODELS FOR THE PORTFOLIO RETURNS

The portfolio return rp is a weighted average of the returns on the three
subportfolios

(12.1)

where  is the return of the jth subportfolio and 0.4, 0.4,
and 0.2 are the weights of the three subportfolios in the aggre-
gate portfolio. The returns on the subportfolios are given by weighted
averages of the returns of the securities that compose them of the form

TABLE 12.2  Volatilities and correlations of market factors

Factors

Growth
Index

Value
Index

Principal
Comp. 1

Principal
Comp. 2

Principal
Comp. 3

Volatilities: 4.30% 4.10% 88.93 bp 25.22 bp 12.36 bp

Correlations:

Factors Growth
Index

Value
Index

Principal
Comp. 1

Principal
Comp. 2

Principal
Comp. 3

Growth Index   1.00   0.80 −0.20 −0.10 0.00

Value Index   0.80   1.00 −0.15 −0.07 0.00

Prin. Comp. 1 −0.20 −0.15   1.00   0.00 0.00

Prin. Comp. 2 −0.10 −0.07   0.00   1.00 0.00

Prin. Comp. 3   0.00   0.00   0.00   0.00 1.00

TABLE  12.3  Market factor covariances

Factors

Factors Growth
Index

Value
Index

Principal
Comp. 1

Principal
Comp. 2

Principal
Comp. 3

Growth Index   18.49   14.10  −76.48 −10.85   0.00

Value Index   14.10   16.81  −54.69  −7.24   0.00

Prin. Comp. 1 −76.48 −54.69 7908.36   0.00    0.00

Prin. Comp. 2 −10.85  −7.24      0.00 636.29    0.00

Prin. Comp. 3     0.00    0.00      0.00     0.00 152.81

rp wp1
rp1

wp2
rp2

wp3
rp3

,+ +=

wpj
wp1

= wp2
=

wp3
=
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uijri, where uij is the weight of the ith security in the jth sub-
portfolio, ri is the return on the ith security, and here N 7. Alterna-
tively, the portfolio return can be written in terms of the returns of the
individual assets in the portfolios, that is,

(12.2)

where wi is the weight of the ith asset in the aggregate portfolio. Each of
these aggregate portfolio weights wi is simply the weighted sum wi

uij, of the weights in the subportfolios. Table 12.4 shows the
weights uij of the three subportfolios, along with the weights wi of the secu-
rities in the aggregate portfolio. The common stock portfolio is equally split
between the growth, or technology, and value stocks, while the fixed-income
portfolio has large positions in the 10- and 30-year bonds. The hedge fund
manager is long the two technology stocks and short an equal dollar
amount of the value stocks, long the 30-year bond, and short the five-year
bond. Although it is not apparent from Table 12.4, the magnitude of the
short position in the five-year bond is chosen so that it almost completely

TABLE  12.4  Portfolio weights

Weights of Securities in Subportfolios

Weights of 
Securities in 
Aggregate 
Portfolio

Subportfolio 1
(equity)

Subportfolio 2
(fixed income)

Subportfolio 3
(hedge fund)

Stock 1 0.4 0.0   0.3   0.22
Stock 2 0.1 0.0   0.3   0.10
Stock 3 0.3 0.0 −0.2   0.08
Stock 4 0.2 0.0 −0.4   0.00
Bond 1 0.0 0.2 −0.9 −0.10
Bond 2 0.0 0.4   0.0   0.16
Bond 3 0.0 0.4   0.4   0.24
Cash 0.0 0.0   1.5   0.30

Sum 1.0 1.0   1.0   1.00

Weights of
Subportfolios
in Aggregate
Portfolio 0.4 0.4 0.2

rpj
= Σi=1

N

=

rp wiri,
i 1=

N

∑=

=

Σj=1
3 wpj

=
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offsets the exposure of the 30-year bond to the first principal component,
the level of the yield curve. Through these positions, the hedge fund man-
ager is expressing the views that technology stocks will outperform value
stocks and that the yield curve will flatten.

As discussed in Chapter 7, when the number of assets is large, factor
models are very useful in estimating the covariance matrix and calculating
the value-at-risk. In a factor model, the return on each asset is written as 

(12.3)

where K is the number of factors (here K 5), fk is the change in or return
on the kth factor, �ik is the beta of the ith asset with respect to the kth fac-
tor, and �i is the residual for the ith asset, assumed to be uncorrelated both
with the factor returns and with the residuals for the other assets. Combin-
ing equations (12.2) and (12.3) and then rearranging,

(12.4)

where �p0 wi�i0, �pk wi�ik is the portfolio factor loading on
the kth factor, and �p wi�i is the portfolio residual. Similar expres-
sions can be obtained for the factor loadings of each of the subportfolios.

The factor loadings of the subportfolios and the aggregate portfolio can
be computed from the factor loadings from Table 12.1 and the portfolio

ri �i0 �ikfk
k 1=

K

∑ �i,+ +=

=

rp wiri
i 1=

N

∑=

wi �i0 �ikfk
k 1=

K

∑ �i+ +
 
 
 
 

i 1=

N

∑=

wi�i0 wi�ik
i 1=

N

∑
 
 
 
 

fk wi�i
i 1=

N

∑+
k 1=

K

∑+
i 1=

N

∑=

�p0 �pkfk
k 1=

K

∑ wi�i
i 1=

N

∑+ +=

�p0 �pkfk
k 1=

K

∑ �p,+ +=

= Σi=1
N = Σi=1

N

= Σi=1
N
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weights from Table 12.4 and are shown in Table 12.5. Not surprisingly, the
aggregate portfolio has significant exposure to the growth factor because of
the long positions in growth stocks in subportfolios 1 and 3 and has nega-
tive exposures to the first two principal components (level and slope) and a
positive exposure to the third principal component (curvature) due to the
long positions in the 10- and 30-year bonds in subportfolios 2 and 3. How-
ever, despite the long positions in value stocks in subportfolio 1, the aggre-
gate portfolio has a negative exposure to the value factor due to the negative
loadings of the growth stocks on the value factor and the short positions in
value stocks in subportfolio 3.

VALUE-AT-RISK

The last two lines of (12.4) are factor models for the portfolio return rp and pro-
vide a framework for computing the portfolio standard deviation and value-at-
risk estimates. Using the fact that the variance of the portfolio residual is
var(�p) var(�i) the portfolio variance and standard deviation of the
portfolio return are 

(12.5)

and

TABLE  12.5  Factor loadings of the portfolios

Factors Residuals

Growth
Index

Value
Index

Principal
Comp. 1

Principal
Comp. 2

Principal
Comp. 3

Stock 
1  

Stock 
2

Stock 
3

Stock 
4

Subportfolio 1 1.22   0.00 −0.05   0.04 0.00 0.40 0.10   0.30   0.20

Subportfolio 2 0.00   0.00 −2.83 −1.60 1.10 0.00 0.00   0.00   0.00

Subportfolio 3 1.32 −1.13 −0.07 −1.12 1.09 0.30 0.30 −0.20 −0.40

Aggregate
Portfolio 0.75 −0.23 −1.16 −0.85 0.66 0.22 0.10  0.08 0.00

= Σi=1
N wi

2

var rp( ) �pk�pl cov fk fl,( ) wi
2 var �i( )

i 1=

N

∑+
l 1=

K

∑
k 1=

K

∑=

�p  var rp( )  �jk�jl cov fk fl,( ) wi
2 var �i( ).

i 1=

N

∑+
l 1=

K

∑
k 1=

K

∑= =
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If we continue to measure the value-at-risk relative to the expected return
rather than relative to zero, the 95% confidence value-at-risk is just
VaR 1.645�p. Using the parameters in Tables 12.1−12.5, the value-at-
risk is VaR 1.645�p 1.645(3.55%) 5.85% of the value of the
portfolio.

Alternatively, if we define a benchmark we can compute benchmark-
relative value-at-risk. As discussed in previous chapters, this would just
involve changes to the weights in Table 12.4 to reflect a short position in
the benchmark. These changes in the weights would then flow through
to the factor loadings in Table 12.5 and the value-at-risk calculation.

RISK CONTRIBUTIONS OF THE SECURITIES

In addition to simplifying the computation of the value-at-risk, the factor
models (12.3) and (12.4) also allow for the risk decomposition of the port-
folio. We start with relatively simple decompositions in which the factor
models play a background role and then turn to the explicit use of the fac-
tor models.

Equation (12.2) says simply that the portfolio return is a weighted aver-
age of the returns on the securities in the portfolio and provides the basis for
decomposing the portfolio risk into the risk contributions of the individual
securities. This decomposition proceeds exactly along the lines of the risk
decomposition carried out in the previous chapter: the risk contribution of a
security is determined by the covariance of the returns on that security with
the returns on the portfolio. The covariance of the returns on the ith security
with the portfolio return is 

(12.6)

where the variance of only one residual appears because each �i is assumed
to be uncorrelated with the others. As in the previous chapter, if we use a
delta-normal approach and define value-at-risk relative to the expected
return, the risk contribution of the ith security is

(12.7)

=
= = =

cov ri rp,( ) �ik�p� cov fk f �,( ) wi var �i( ),+
� 1=

K

∑
k 1=

K

∑=

risk contribution
cov ri rp,( )wi

 var rp( )
---------------------------------.=
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The second column of Table 12.6 shows the risk contributions of the
seven securities, expressed in monthly terms (percent per month), while
the third shows the percentages of the total risk due to each of the seven
securities. As they must, the risk contributions sum to the portfolio stan-
dard deviation of 3.55% per month, and the percentages sum to 100%.
This table shows that the first security accounts for the bulk of the risk,
that is, 2.18 percentage points out of 3.55, or 61.3% of the total risk. This
occurs because the first subportfolio constitutes a large fraction of the
aggregate portfolio (w1 0.22) and has returns that covary highly with it.
This high covariance results from the combination of the security’s volatil-
ity, its large weight in the aggregate portfolio, and its positive correlation
with the second stock, which also has a relatively high volatility and
appears with a positive weight in the aggregate portfolio. 

The second largest risk contribution is made by stock 2 (the second
growth stock), and the third largest by bond 3 (the 30-year bond). These
risk contributions are large due to the volatilities of these instruments,
their large weights in the portfolio, and their positive correlations with
stock 1. The risk decomposition tells us that, if we want to reduce the risk
of the portfolio, stocks 1 and 2 and bond 3 are the instruments that merit
attention. Conversely, increasing positions in stocks 1 or 2 or bond 3
would result in the largest increase in risk.

The decomposition into the risk contributions of the individual securities
is useful if there are only a limited number of positions. This, for example, was
the case with MPT’s portfolio in the preceding chapter. (It is also the case in the
example in this chapter, but only because the number of securities has been

TABLE  12.6  Risk decomposition by securities

Security

Risk
Contribution

(Percent)
Percentage

Contribution

Stock 1   2.18  61.3

Stock 2   0.66  18.6

Stock 3   0.24    6.8

Stock 4   0.00    0.0

Bond 1 −0.06  −1.7

Bond 2   0.16    4.6

Bond 3   0.37  10.4

Total   3.55 100.0

=
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limited for simplicity.) However, for portfolios involving thousands of securi-
ties, the decomposition into the risk contributions of individual securities is
usually uninformative. Except when a single asset or position is large relative
to the portfolio, the risk contribution of a single asset is almost always small.

RISK DECOMPOSITION IN TERMS OF GROUPS OF ASSETS

Equation (12.1) provides the basis for decomposing the portfolio risk into
the risk contributions of the three subportfolios. In this case, the risk contri-
bution of a subportfolio is determined by the covariance of the returns on
that subportfolio with the returns on the total portfolio. This covariance is
given by an expression similar, though slightly more complicated, than equa-
tion (12.6): because the same asset may appear in more than one subportfo-
lio, the residual for the ith subportfolio is now correlated with the residuals
for the other subportfolios. For example, the residuals from factor models
describing the returns of the first and third subportfolios are correlated
because these two subportfolios both include positions in the four common
stocks and thus include the effects of the same four residuals. Combining
(12.6) with the fact that uijri, for the jth subportfolio we have

(12.8)

where uij is the weight of the ith asset in the jth subportfolio and, as before,
wi is the weight of the ith asset in the aggregate portfolio. In (12.8), the resid-
uals �i and weights uij and wi play the roles of factors and factor loadings,
respectively. This can be understood by looking back at (12.3), where each �i
can be interpreted as a factor for which the ith security has a factor loading
of 1 and all other securities have a factor loading of 0. The weights uij and wi
are then just the weighted averages of these factors loadings of 1 or 0.

The second column of Table 12.7, headed “Risk Contribution,” shows
the risk contributions of the three subportfolios, expressed in monthly
terms (percent per month). As expected, they sum to the portfolio standard
deviation of 3.55% per month. The percentages of the total risk of 3.55%
due to each of the three subportfolios are shown in the third column. This
table shows that the first subportfolio accounts for the bulk of the risk, that
is, 2.40 percentage points, or 67.6% of the total risk of 3.55% per month.
This occurs because the first subportfolio constitutes a large fraction of the
aggregate portfolio  and has returns that covary highly with it.

rpj
= Σi=1

N

cov rpj
rp,( ) �pjk�p� cov fk f�,( ) uijwi var �i( ),

i 1=

N

∑+
� 1=

K

∑
k 1=

K
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wp1
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This high covariance results from the combination of the volatilities of the
stocks in the first subportfolio and their large weights in the aggregate port-
folio. Although the third subportfolio includes short positions in stocks 3
and 4, the net position in stock 3 in the aggregate portfolio is still positive;
moreover, the third subportfolio includes large long positions in stocks 1
and 2, which are the most volatile.

Perhaps surprisingly, Table 12.7 also shows that the market-neutral sub-
portfolio 3 makes a significant risk contribution. These results that subportfo-
lios 1 and 3 make the largest risk contributions are consistent with the early risk
decomposition by securities, for both subportfolios 1 and 3 have significant long
positions in stocks 1 and 2. This risk decomposition by managers allows the
sponsor to set and monitor individual risk budgets for the managers of the sub-
portfolios. In particular, the sponsor could set a target for the risk contributions
and total portfolio risk and then monitor the managers by comparing the entries
in the column headed “Risk Contribution” to the managers’ risk budgets.

A bit of thought about the decompositions into the risk contributions of
the individual securities and the subportfolios suggests that a wide range of risk
decompositions is possible, because one need not restrict attention to the orig-
inal subportfolios. There is no limit to the number of possible subportfolios
into which the assets can be partitioned, each leading to a different decompo-
sition. For example, if we group the securities into technology stocks and oth-
ers (i.e., the other stocks and the bonds), the portfolio return can be written

TABLE 12.7  Risk decomposition by subportfolios

Subportfolio

Risk 
Contribution

(Percent)
Percentage

Contribution

1 2.40   67.6

2 0.46   12.9

3 0.69   19.5

Total 3.55 100.0

rp = wi ri
i 1=

N

∑

= wiri
technology

stocks

∑ + wiri.
other

securities

∑
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Going further, we can look at technology stocks in each of the subportfo-
lios, that is,

The risk decompositions corresponding to these groupings of the assets are
shown in Table 12.8. They indicate the risk contribution of both the aggre-
gate technology bet in the entire portfolio and the technology bets made by
each of the managers of the subportfolios. As must be the case, the risk
contribution of the technology stocks of 2.84% per month, or 79.9% of
the risk of the portfolio, equals the sum of the risks of stocks 1 and 2 (the
two technology stocks) shown in Table 12.6. 

Table 12.8 reveals that a significant contributor to the risk is the hidden
technology bet in subportfolio 3, stemming from the long leg of the long-
short equity position. The technology stocks in subportfolio 3 account for
27.9% of the total portfolio risk, despite the fact that their weight in the
aggregate portfolio is only (u13 u23) 0.2(0.3 0.3) 0.12, or 12%,
and the position in them is offset by a short position in the value stocks with
weight or −12%. This technol-
ogy bet is hidden in the sense that one might not ordinarily expect such a
hedged position in a market-neutral fund to be so highly correlated with the

TABLE  12.8  Risk contributions of technology stocks

Subportfolio

Risk Contributions of 
Technology Stocks

(Percent)
Percentage

Contributions

1 1.85   52.0

2 0.00     0.0

3 0.99   27.9

Total Technology Stocks 2.84   79.9

Other Securities 0.71   20.1

Total Risk 3.55 100.0

rp wi ri
i 1=

N
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stocks in

subport. 1
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diversified equity portfolio, subportfolio 1. Nonetheless, it is; this is partly
because the technology stocks are the most volatile stocks in the aggregate
portfolio, but also because the technology stocks’ negative factor loadings on
the value factor exacerbate the risk of the short position in the value stocks
and their negative factor loadings on the first principal component exacer-
bate the risk of the bond position. One of the contributions of risk decompo-
sition is that it allows the identification of such positions.

Of course, the approach can be applied to other industries or sectors. In
fact, a similar decomposition could be carried out for any possible grouping of
securities that the portfolio or risk manager considers interesting. Such risk
decompositions allow plan sponsors to set and monitor risk budgets on industry
and sectoral exposures, and, as in the example of the New York City Retirement
Systems mentioned in the notes, they allow the portfolio or risk manager to
identify particular industry or sectoral concentrations of risk, which may be hid-
den across multiple portfolios controlled by different managers.

RISK DECOMPOSITION IN TERMS OF THE FACTORS

Rather than group securities by characteristics (e.g., technology, growth, or
value), an alternative approach is to think of each portfolio as consisting of
a set of factor exposures and to measure the risk contributions of the market
factors. As indicated in the discussion of factor models in Chapters 7 and 8,
for equities these factors might include the market, value, growth, or other
variables such as the exposure to unexpected growth in GDP; for interest
rates they might include various key rates, forward rates, or factors corre-
sponding to the level, slope, and curvature of the yield curve. An advantage
of the risk decomposition in terms of factors is that the use of factors allows
one to measure the risks of factors, such as unexpected growth in GDP or
yield curve factors that do not correspond to any partition or grouping of
securities. It also allows the risk decomposition to capture the fact that, even
for factors such as growth and value that do correspond to groupings of
securities, different stocks will have different loadings on the factors.

Using factor models for risk decomposition is a more direct use of the
factor models than we have previously seen. Above, and in Chapters 7 and
8, we used the factor models to render manageable the computation of the
variances and covariances, for example, through equations (12.5), (12.6),
and (12.8). In Chapter 8 we also described how the principal components
(a particular choice of factors) could be used to simplify Monte Carlo simu-
lation. For these purposes, the identity and interpretation of the factors was
unimportant: all that mattered was that they captured the possible changes
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in the portfolio value. In contrast, the factors come to the forefront when
we use them for risk decomposition, for in doing this we interpret the port-
folio as a set of factor exposures. For the risk decomposition in terms of the
factors to be useful, the factors must correspond to the risks in which we
are interested and should have intuitive interpretations.

To see the risk decomposition in terms of the factors, return to equations
(12.6) and (12.8) and recall that the residuals �i and weights uij and wi play the
role of factors and factor loadings, respectively. In particular, rewrite (12.6) as

(12.9)

indicating that the covariance  can be written as a sum of K
terms each of the form cov (�ik fk, �p� f� ) and N terms of the form

cov (�i, wh �h). From (12.7), the risk contribution of the ith security is

(12.10)
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to be the risk contribution of the ith security’s exposure to the kth factor, and

to be the risk contribution stemming from the ith security’s exposure to its
own residual. Then equation (12.10) implies that the risk contribution of
the ith security can be written as the sum of the risk contributions of its
exposures to the K factors and N residuals, that is,

(12.11)

A similar analysis for the jth subportfolio reveals that the risk contribu-
tion of the jth subportfolio is

(12.12)

Similar to above, defining
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to be the risk contribution stemming from the jth subportfolio’s exposure to
the kth factor and

to be the jth subportfolio’s exposure to the ith residual, we have

(12.13)

These further decompositions (12.11) and (12.13) of the risk contribu-
tions of the ith security and jth subportfolio into the risk contributions of
the factors and residuals follow from the somewhat mechanical fact that
covariances of the form (12.6) can be rewritten in the form of (12.9). In the
common case when the factors fk can be interpreted as the returns on port-
folios, the right-hand sides of equations (12.11) and (12.13) can also be
interpreted in terms of the risk contributions of portfolios, as follows. 

Equation (12.4) above says that the portfolio return ri can be written as

 (12.14)

which is repeated as (12.14) for convenience. If the factors fk are the returns
on securities or portfolios, then (12.14) says that the portfolio return is a
weighted average of the K returns fk, the constant  and the residual 
The constant  can be interpreted as a portfolio return, because it can be
written in the form  where r0 is the risk-free rate or return on
cash and  is the portfolio weight in cash. Then, because the
residual �i ri − (�i0 �ikfk) can be interpreted as the return on the secu-
rity minus the return �i0 �ikfk on a combination of cash and the factor
portfolios, the residual  is also the return on a portfolio. Thus, the second
line of (12.14) says that ri can be interpreted as the return on a portfolio con-
sisting of a risk-free component  K factor portfolios with
weights �ik, and a residual return with weight 1. To emphasize this, we write
the return as
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(12.15)

where   and  are the portfolio weights.
This is just a rearrangement of the portfolio return into the returns on other
portfolios, analogous to our rearrangement of the assets into technology
stocks and other securities. It allows the decomposition on the right-hand
side of equation (12.11) to be interpreted as the sum of the risk contribu-
tions of factor and residual portfolios. A similar analysis would allow the
right-hand side of equation (12.13) to be interpreted similarly.

Table 12.9 shows the risk decomposition by securities and factors or
residuals; each entry in the Table shows the risk contribution of the expo-
sure of a particular security to a particular factor or residual, expressed as a
percentage of the total risk of the portfolio. For example, the entry of 51.0
in the row labeled “Growth Index” and column headed “Stock 1” indicates
that the exposure of the first stock to the growth index accounts for 51.0%
of the total portfolio risk. The next four rows show the contributions of the
securities’ other factor exposures, and the next four after that show the risk

TABLE  12.9  Risk decomposition by factors and securities

Risk Contributions
(Percentage of total risk)

Factor or 
Residual

Stock 
1

Stock 
2

Stock 
3

Stock 
4

Bond 
1

Bond 
2

Bond 
3

Aggregate
Portfolio

Growth Index 51.0 19.5 −0.7 0.0 0.0 0.0 0.0 69.7

Value Index −14.4 −4.8 5.7 0.0 0.0 0.0 0.0  −13.4

Prin. Comp. 1 0.2 0.1 0.0 0.0 −1.7 4.4 9.7 12.6

Prin. Comp. 2 0.0 0.0 0.0 0.0 0.0 0.2 0.7 0.8

Prin. Comp 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1

Residual 1 24.5 0.0 0.0 0.0 0.0 0.0 0.0 24.5

Residual 2 0.0 3.9 0.0 0.0 0.0 0.0 0.0 3.9

Residual 3 0.0 0.0 1.8 0.0 0.0 0.0 0.0 1.8

Residual 4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Residuals 24.5 3.9 1.8 0.0 0.0 0.0 0.0 30.2

Total 61.3 18.6 6.8 0.0 −1.7 4.6 10.4 100.0

ri wi0r0 wik fk w��i,+
k 1=

K

∑+=

wi0 �i0 r0,⁄= wik �ik,= w� 1=
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contributions of the four stocks’ residuals; the row labeled “Residuals”
shows the sum of the risk contribution of the residuals of the individual
securities. Of course, because this risk decomposition is by individual secu-
rities, only the aggregate portfolio shows a positive risk contribution for
more than one residual. 

In Table 12.6 we saw that stock 1 has the largest risk contribution
and stock 2 the second largest. Table 12.9 reveals that these large risk
contributions are due to the growth factor and the residuals and that the
risk contributions of these stocks’ exposures to the value factor are nega-
tive. The rightmost column of the Table reveals that, while the exposure
to the growth factor is most important, the exposure to stock 1’s residual
is the second most important source of risk in the portfolio. The third-
largest risk contribution is due to the first principal component (level of
the yield curve), mostly stemming from the position in the 30-year bond
(bond 3). The risk contribution of the exposure to the value factor is neg-
ative, due to both the net short position in stock 3 and the negative expo-
sures of stocks 1 and 2 to the value factor.

Table 12.10 shows the risk decomposition by subportfolios and fac-
tors or residuals; similar to Table 12.9, each entry in the Table shows the

TABLE  12.10  Risk decomposition by factors and subportfolios

Risk Contributions
(Percentage of Total Risk)

Factor or 
Residual Subportfolio1 Subportfolio2 Subportfolio3

Aggregate
Portfolio

Growth Index 45.2 0.0 24.5 69.7

Value Index 0.0 0.0 −13.4 −13.4

Prin. Comp. 1 0.2 12.3 0.2 12.6

Prin. Comp. 2 0.0 0.6 0.2 0.8

Prin. Comp 3 0.0 0.0 0.0 0.1

Residual 1 12.8 0.0 6.7 24.5

Residual 2 1.6 0.0 2.3 3.9

Residual 3 2.7 0.0 −0.9 1.8

Residual 4 0.0 0.0 0.0 0.0

Residuals 22.1 0.0 8.1 30.2

Total 67.6 12.9 19.5 100.0
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risk contribution of the exposure of a particular subportfolio to a particu-
lar factor or residual, expressed as a percentage of the total risk of the
portfolio. As suggested by the decomposition by subportfolio in Table
12.6 and the decomposition by securities in Table 12.9, it shows that the
growth stocks in subportfolio 1 make the largest contributions to the port-
folio risk, both through their exposures to the growth factor and their
residual risk. However, subportfolio 3 is not as far behind as its character-
ization as a market-neutral portfolio might lead one to guess: the exposure
of subportfolio 3 to the growth factor contributes 24.5% of the total port-
folio risk, and the exposure to the residuals contributes 8.1%. As one
might expect, the first principal component makes the largest contribution
of the interest rate factors.

Although we do not do so, it is possible to drill down even further; for
example, the risk contribution of stock 1 in portfolio 1 is 26.3% of the
total risk and the residual is 14% of the total risk. This process can be car-
ried out for every possible subset of the securities and for every factor or
residual. This makes it possible to examine the risks in as fine a detail as
one might desire. 

Such risk decompositions allow plan sponsors to identify unintended
factor and residual exposures, to identify uncompensated risks, and to
decide how and to what extent to hedge each factor. The ability to decom-
pose risk by factors and subportfolios also allows sponsors to assign risk
budgets for exposures to portfolio managers and to monitor them. As dis-
cussed in the notes to this chapter, software firms are developing such tools,
and plan sponsors are increasingly using them. The risk decomposition
analysis also allows for implied views analysis and portfolio optimization,
but now with factors and residuals substituted for securities. This is dis-
cussed further in the next chapter. 

NOTES

As indicated in the notes to Chapter 10, the approach to risk decomposi-
tion here is that exposited by Litterman (1996); closely related work
includes Litterman and Winkelman (1996), Litterman, Longerstaey,
Rosengarten, and Winkelman (2000), and Winkelman (2000a, 2000b).
Dowd (1999) uses marginal value-at-risk to examine the risk-return
tradeoff.

A clear example of the use of risk decomposition to identify an
unintended sector bet is provided by Cass (2000), who reports that the
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New York City Retirement Systems used the risk-decomposition capa-
bilities of Barra’s Total Risk for Asset Management (TRAM) to identify
a series of technology stock bets one manager was taking that were out-
side the manager’s risk profile. In particular, the risk decomposition
allowed the plan to identify “which specific securities have a much
greater contribution to the marginal risk of the portfolio,” allowing the
plan to “have a much more structured conversation with the managers,
[and] engage in a qualitatively different conversation with them.” While
it is easy to identify undesirable industry concentrations of risk after a
loss has occurred, the ability to do this on a “forward-looking” basis is
crucial. This is particularly valuable when market volatilities or correla-
tions are changing, because in this situation the historical performance
of the managers sheds less light on the risks they are taking.

Risk (2000) reports that Putnam Investments uses risk-decomposition
analytics that enable it to decompose portfolio risk “into common factors and
specific factors.” This allows Putnam to identify uncompensated risks and to
“decide how and to what extent to hedge each factor.”

An alternative approach to risk decomposition is an incremental
approach based on regression analysis and described in Golub and Tilman
(2000). In this approach, one begins by expressing the portfolio return in
terms of the changes in (or returns to) K factors, as in the last line of
(12.4). For any such factor model, it is possible to compute the proportion
of the variance of the return rp explained by the K factors, which we
denote  because it is analogous to the R-squared of a multiple regres-
sion. To compute the risk contribution of the Kth factor, one considers a
( )-factor model of the form

and computes the proportion of the variance of rp explained by the 
factors, . The risk contribution of the kth factor is then the difference
in the proportions of the explained variances, .

A limitation of incremental decomposition is that it depends on the
order in which the factors are considered. While some situations might
have a natural ordering of factors, in most cases the order is less apparent.
In such cases, Golub and Tilman (2000) suggested that at each step one
should search over all of the remaining factors (or groups of factors) to find
the factor (or group of factors) with the largest risk contribution.
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As of the writing of this book, risk decomposition is increasingly being
used. Cass (2000), Falloon (1999), and Risk (2000) report on some users of
risk decomposition and indicate a number of software firms that include at
least some risk decomposition functionality in their recent releases. Further
applications of risk decomposition are discussed in Gurnani (2000),
Layard-Liesching (2000), Putnam, Quintana, and Wilford (2000), Rawls
(2000), and Winkelman (2000a, 2000b). 
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Risk Budgeting and the Choice
of Active Managers

The previous two chapters illustrated how risk decomposition can be used
to understand and manage the risks in both bond and equity portfolios.
There we saw how to compute the risk contributions of various assets and
how these can be used to manage the risk of a portfolio. The analysis in
these chapters is broadly applicable. At the level of a portfolio manager, it
can be used to identify, structure, and manage the risks in the portfolio. At
the level of a risk manager, it can be used to monitor the portfolio manag-
ers. Finally, at the level of an organization that hires portfolio managers, it
can be used to control risks, including aiding in the identification of unin-
tended risks. Thus, this analysis is useful for a wide range of organizations.

In this chapter, we look at a more specific application of risk decompo-
sition and risk budgeting. In particular, we take the perspective of a pension
plan sponsor or other organization that hires active portfolio managers and
show how the ideas of this book can be applied to the problem of manag-
ing active risk at the total fund or plan level. The problem of managing
active risk at the plan level can be decomposed into two pieces: the analysis
of the existing manager roster and the determination of the optimal man-
ager roster. In determining this optimal manager roster, we use the idea that
risk should be taken up to the point where the ratio of the marginal impact
of performance to the marginal impact on the risk of the total portfolio is
the same for each manager and asset class.

Decomposing the problem in this way is sensible because most large
pension plans have an existing manager roster, and it is not practical to
start de novo with a wholly new roster. Rather, the question in practice is
to consider what incremental changes should be made to the existing ros-
ter. Comparing an existing manager roster to the optimal one can provide
insight into those changes that are likely to have the greatest impact on the
risk-adjusted performance of the total fund or plan.
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This chapter is built around the example described below. The example
is deliberately kept simple, with unrealistically small numbers of asset classes
and managers, in order to avoid cluttering the chapter with unnecessary
detail. For convenience, the example assumes that the distributions of asset
returns are normally distributed and defines value-at-risk relative to the
expected value of the excess (over a benchmark) return on the portfolio,
using an annual holding period. In particular, letting r rB denote the excess
return over the benchmark return rB, the 95% confidence value-at-risk is
1.645 � rather than 1.645(E[r rB]). This simplifies the example because
it allows value-at-risk to be equated with the standard deviation of the track-
ing error, which corresponds to a view of risk common in portfolio manage-
ment. The last section of the chapter briefly discusses what parts of the
analysis depend on this assumption. 

THE EXISTING ASSET ALLOCATION AND MANAGER ROSTER

To keep things simple, we restrict attention to the seven asset classes listed
in Table 13.1. The table also lists the index used as a benchmark for each
asset class, the expected excess returns (over cash), the expected returns,
and the standard deviations of returns. The fund may also invest in money
market instruments (i.e., cash), which offer a return of 6% per year. 

The plan has the existing manager roster and asset allocations shown
in Table 13.2. Included in this table are a number of managers who cur-
rently do not have any allocations but who are under consideration. For
each manager, the plan sponsor (or its consultant) has estimated the man-
ager’s beta, alpha, and tracking error volatility (standard deviation) relative

TABLE  13.1  Asset classes and benchmarks used in the example

Asset Class Benchmark

Expected 
Excess 
Return 

(% per year)

Expected 
Return

(% per year)

Standard 
Deviation

(% per year)

U.S. Large Cap S&P 500 5.5 11.5 20.0
U.S. Small Cap Russel 2000 6.5 12.5 25.0
International MSCI EAFE 6.0 12.0 25.0
Emerging Markets MSCI EMF 6.5 12.5 40.0
U.S. Bonds Lehman Aggregate 1.0 17.0 05.0
High Yield ML High Yield 2.0 18.0 10.0
Non–U.S. Bonds WGBIxUS 1.0 17.0 10.0

–

– –
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to the appropriate benchmark. The table lists these estimates, estimates of
the expected returns based on them, and the existing asset allocations to the
managers. The two largest allocations are to large capitalization U.S. equi-
ties and U.S. bonds, constituting 30% and 20% of the portfolio, respec-
tively. Currently 70% of the plan assets have been allocated to the active
managers, with the remaining 30% allocated to a passive portfolio of index
funds corresponding to the strategic benchmark described below.

Table 13.3 shows the estimates of correlations among the various asset
classes (i.e., the various benchmarks). The analysis below also requires the
correlations of returns among the active managers. These are determined
by the correlations and standard deviations of the benchmarks, the manag-
ers’ betas with respect to the benchmarks, and the correlations and stan-
dard deviations of the managers’ tracking errors. The standard deviations
of the tracking errors are in the column of Table 13.2 labeled “Tracking
Error Volatility.” For simplicity, we assume that the correlations of the
tracking errors across different managers are zero. This assumption will not
be satisfied to the extent that managers deviate from their benchmarks in
similar ways. It is straightforward to introduce correlations among the
managers’ tracking errors, but this would clutter the analysis below.

The expected return on the portfolio can be computed from the asset
allocations and expected returns in Table 13.2 and is 10.63% per year. Sub-
tracting the cash yield of 6%, the expected excess return on this portfolio is
4.63% per year. The standard deviation of portfolio returns is 13% per year.
Of this, 1% can be ascribed to the tracking error of the active managers,
because a calculation of standard error that does not include the tracking

TABLE  13.3  Correlations among the benchmark returns

S&P 
500

Russell
2000

MSCI
EAFE

MSCI
EMF

Lehman
Aggregate

ML
High
Yield WGBIxUS

S&P 500 1.00 0.67 0.52 0.5 0.43 0.46 0.35
Russel 2000 0.67 1.00 0.41 0.55 0.19 0.54 0.21
MSCI EAFE 0.52 0.41 1.00 0.48 0.18 0.27 0.28
MSCI EMF 0.50 0.55 0.48 1.00 0.00 0.33 0.12
Lehman
Aggregate 0.43 0.20 0.18 0.00 1.00 0.37 0.58
ML 
High Yield 0.46 0.54 0.27 0.33 0.37 1.00 0.36
WGBIxUS 0.35 0.21 0.28 0.12 0.58 0.36 1.00



Risk Budgeting and the Choice of Active Managers 209

errors is 12% per year. Following the procedure in the previous chapters, we
could decompose the risk of the portfolio, that is, determine the risk contri-
butions of each of the managers and asset classes. However, in the context
of portfolio management it is common to measure the risk relative to a
benchmark, so we first introduce the benchmark.

THE STRATEGIC BENCHMARK

Many plan sponsors begin the asset-allocation process by setting a strategic
benchmark, reflecting its allocations across asset classes. In the simplest
case, this strategic benchmark is the portfolio of assets that best hedges the
liability stream. For example, if the liability stream can be interpreted as a
short position in a fixed-income portfolio, the strategic benchmark might
consist of the return on that fixed-income portfolio. If no perfect hedge is
possible, the strategic benchmark might be the return on the portfolio that
minimizes the volatility of the surplus, that is, the difference between the
return on the assets and the return on a short position in the liabilities.

Alternatively, one might choose the benchmark using mean-variance
optimization. In this case, one would proceed by first determining the risk
and return characteristics of the liability stream and of each of the asset
classes that will be used. These may be estimated from long-run historical
average returns, from the returns predicted by a model of market equilib-
rium, from fundamental views, or from some mix of these sources. Given
the expected returns, volatilities, and correlations, one then uses an opti-
mizer to find the efficient frontier, that is, the maximum expected return for
each risk level. Selecting a point on this risk-return tradeoff amounts to
selecting a particular portfolio, that which achieves this expected return
and risk. The portfolio weights for this portfolio are then used to define the
strategic benchmark. For example, if the selected portfolio has weights of
50% on both large-cap U.S. equities and U.S. corporate bonds, then the
strategic benchmark would consist of rB 0.5rS&P500 0.5rLA, where rB,
rS&P500, and rLA are the total returns on the strategic benchmark and the
portfolios underlying S&P 500 index and the Lehman Aggregate. 

Regardless of how it is chosen, if we use the asset classes and bench-
marks above, then in general the strategic benchmark will consist of a port-
folio return of the form

= +

rB wS&P500rS&P500 wR2000rR2000 wEAFErEAFE wEMFrEMF+ + +=

wLArLA wHYrHY wxUSrxUS wcashrcash �,+ + + + +
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where the rs represent the returns on the various indexes or benchmarks
listed in Table 13.1 and the ws are portfolio weights. The extra term, or
residual �, will be zero if the strategic benchmark is chosen by applying an
optimizer to portfolios that track the various asset indexes, because in this
case the strategic benchmark is a linear combination of the returns on various
benchmarks. The residual � might be nonzero if the return on the liability
stream is used as the strategic benchmark. For example, if the strategic
benchmark is chosen to be the return on the liability stream and that return is
highly but not perfectly correlated with the Lehman Aggregate, then the stra-
tegic benchmark might be rB wLArLA (1 wLA)rcash �, where the coef-
ficient wLA and the volatility of � are determined by the exact relation
between the liability stream and the Lehman Aggregate.

Here we assume that the process of choosing a strategic benchmark has
already been completed, that it has the weights shown in Table 13.4, and
that � 0. With these choices, the return on the strategic benchmark is

Given this strategic benchmark, the focus is on the excess return r rB, where
the portfolio return r is r wiri rB, ri is the return on the
portfolio managed by manager i, and wi is the fraction of the portfolio allo-
cated to manager i. In particular, the problem is to choose the allocations wi
to obtain the best possible risk-return tradeoff. In this process we assume that
the plan sponsor has access to index funds corresponding to all of the indexes
in the strategic benchmark, so that one option is simply to invest in the stra-
tegic benchmark through the index funds. The coefficient 1 wi that
appears in the definition of rB allows for this and is interpreted as the passive
investment in a portfolio of index funds that corresponds to the strategic
benchmark. An extremely risk-averse plan sponsor who could not accept any
risk of underperformance might choose to allocate close to 100% of the
portfolio in this way.

Table 13.4 also shows the existing active, passive, and total allocations
to each of the asset classes. Comparing the existing allocations to the strate-
gic benchmark, one can see that relative to the benchmark the current port-
folio is overweight in U.S. and international equities and U.S. bonds and
underweight in cash.

Table 13.5 decomposes the risks of the strategic benchmark into the mar-
ginal risk contributions using the procedure of Chapter 10. Because it decom-
poses the risk of the strategic benchmark rather than the risk of the excess
return over the present value of the liability stream, it is equivalent to assuming
that the liability stream acts like cash. As in Chapter 10, these risk contributions

= + – +

=

rB 0.3rS&P500 0.1rR2000 0.1rEAFE 0.2rLA 0.1rHY 0.2rcash.+ + + + +=

–
= Σi=1

15 1 Σi=1
15 wi–( )+

– Σi=1
15
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show the marginal effect on the portfolio standard deviation of increasing the
allocation to each asset class, starting from the existing portfolio. Not surpris-
ingly, the marginal risks of the equity asset classes are considerably greater than
those of the fixed-income asset classes, ranging from 0.177 to 0.236. These
equity risks are high due to the interaction of three factors: (i) the high standard
deviations of the returns on the equity asset classes; (ii) the correlations among
the equity returns; and (iii) the relative weights of the equity asset classes in the
strategic benchmark. Due to the second and third reasons, the equity asset

TABLE  13.4  Weights used in forming the strategic benchmark and
existing allocation

Existing Allocations

Asset 
Class

Asset Class
Benchmark

Weight in
Strategic

Benchmark
(Percent)

Allocation to
Active 

Managers
(Percent)

Passive 
Allocation to
Index Funds

(Percent)

Total 
Allocation to
Asset Class
(Percent)

U.S. Large Cap S&P 500   30 30   9 39
U.S. Small Cap Russel 2000   10 10   3 13
International MSCI EAFE   10 10   3 13
Emerging 
Markets MSCI EMF     0 0   0 0

U.S. Bonds
Lehman 
Aggregate   20 20   6 26

High Yield
ML
High Yield  10   0   3 3

Non–U.S. 
Bonds WGBIxUS     0   0   0 0
Cash Cash   20   0   6 6

Total 100 70 30 100

TABLE  13.5  Risk decomposition of the strategic benchmark

Asset Class
Asset Class
Benchmark

Marginal Risk
∂∂∂∂���� ∂∂∂∂wi

Risk Contribution
(% per year)

U.S. Large Cap S&P 500 0.0197 5.68

U.S. Small Cap Russel 2000 0.0207 1.98
International MSCI EAFE 0.0177 1.70
Emerging Markets MSCI EMF 0.0236 0.00
U.S. Bonds Lehman Aggregate 0.0025 0.47
High Yield ML High Yield 0.0062 0.59
Non–U.S. Bonds WGBIxUS 0.0043 0.00
Cash Cash 0.0000 0.00

⁄
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classes are highly correlated with the existing portfolio, leading to the high mea-
sures of their marginal risk. In fact, the effect of the correlations among the
equity asset classes is strong enough (and the volatility of the emerging markets
asset class high enough) that the marginal risk of the emerging markets asset
class is the highest, despite its current weight of zero.

In many cases, the risks of the strategic benchmark are the largest and
most relevant from the perspective of the plan sponsor. This occurs when
returns on the strategic benchmark deviate from changes in the present
value of the liability stream, as in this example. In other cases, to the extent
that the plan sponsor chooses the strategic benchmark to hedge the liability
stream, the risks of the net position consisting of the benchmark and the lia-
bility stream will be much smaller than those of the strategic benchmark
itself. In fact, in the extreme case in which the strategic benchmark is a per-
fect hedge of the liability stream, the risk of the net position is zero. 

Regardless, another set of risks arises by deviating from the strategic
benchmark. Most commonly, these arise through the active managers. 

RISK DECOMPOSITION OF THE EXISTING MANAGER ROSTER

As discussed above, many institutional investors have manager rosters that
blend a number of portfolio-management styles. We assume that the plan
has the existing roster of managers shown in Table 13.2, which also shows
various characteristics of the asset classes. The number of asset classes and
managers shown in Table 13.2 is fewer than the numbers used by many
plans, but we use a small set of asset classes and managers in order to illus-
trate the main points without cluttering the example. 

A quick examination of Table 13.2 suggests that the existing allocations
might not be the best choice. For example, manager 11 has the same alpha,
lower beta, and smaller tracking error than the other two U.S. bond manag-
ers but has no allocation, while each of the other two U.S. bond managers
currently manages 10% of the portfolio. Farther down the table, there is no
allocation to the emerging markets and hedge fund managers (managers 8,
14, and 15), even though managers 14 and 15 have the highest alphas and
manager 8 is tied for the third-highest alpha. These observations suggest that
the plan might benefit by increasing the allocations to some of the managers
and either decreasing the allocations to the other managers or decreasing the
passive allocation of 30%. 

However, this analysis was only suggestive. To reach correct conclusions
about whether the risk-return tradeoff would be improved by increasing or
decreasing each of the allocations, for each manager we must determine



Risk Budgeting and the Choice of Active Managers 213

how changes in the allocation affect both the expected return and the risk.
Determining the effect of the managerial allocations on the expected return
is straightforward, because the expected return of a portfolio is the weighted
average of the expected returns of its components, and the return contribu-
tion of an asset is just the product of the expected return and the portfolio
weight. Thus, our focus is on the risk.

Once the effect of altering the allocations has been determined, one can
increase allocations to those managers for which this increases expected
return more than risk and decreases others. Implicitly, this is what underlies
the earlier comparison of alphas, betas, and tracking errors. Alpha and beta
translate directly into higher expected return, and higher beta and tracking
error are positively related to risk. However, our quick examination of
alphas, betas, and tracking error was incomplete, and thus only suggestive,
because it failed to reflect the effect of the correlations among the various
asset classes and managers.

Given that we are now measuring risk relative to the strategic benchmark,
risk decomposition asks, “what is the effect of changing the allocations on the
value-at-risk of the excess return

The terms wiri and (1 − wi)rB on the right-hand side of the first
equality are the returns on the actively managed part of the portfolio and
the passive allocation to the benchmark portfolio, and the second equality
follows immediately from the first. 

Given the assumption of normally distributed returns, the focus is on
the variance and standard deviation of the portfolio excess return r − rB.
Using the definitions above, the excess return variance �2 can be written as

r rB– wiri

i=1

15

∑ 1 wi

i=1

15

∑–
 
 
 
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where cov (ri, rj) �ij�i�j, �ij is the correlation between the returns on the port-
folio managed by managers i and j, and �i is the volatility of the portfolio of
manager i. The covariances among the 15 active managers, and those between
the active managers and the benchmark, can be computed from the standard
deviations in Table 13.1, the correlations in Table 13.3, and the assumption that
the tracking errors across managers are uncorrelated.

Asking “what is the effect of changing the allocations wi on the excess
return standard deviation � ?” amounts to asking “what are the partial
derivatives, or marginal risks ∂� ∂wi, for each of the 15 active managers?”
taking account the fact that wB wi. Defining vi to be the standard
deviation of the excess return ri rB and �ij to be the correlation between
the excess returns ri rB and rj rB , the excess return variance � 2 becomes

and the marginal risks are

for i 1, . . . , 15. These marginal risks are shown in Table 13.6. 
It should be emphasized that these are marginal risks. Starting from the

current allocation, the ith marginal risk measures the effect of increasing
the allocation to the ith manager. As discussed in Chapter 10, the risk con-
tributions are obtained by multiplying these by the portfolio weights. Also,
the calculation of these marginal risks takes account of the restriction
wB wi. Thus, the marginal risk for the ith manager measures the
change in risk that would result from increasing the allocation to the ith
manager, while simultaneously reducing the allocation to the passive
benchmark.

Examination of Table 13.6 reveals that the marginal risks are greatest
for the equity managers. Similar to the risk decomposition of the strategic
benchmark, these equity risks are high due to the interaction of three fac-
tors: (i) the high standard deviations of the returns of the equity portfolios;
(ii) the correlations among the equity returns; and (iii) the relatively large
allocations to the equity asset classes. Due to the second and third reasons,
the equity portfolios are highly correlated with the existing total portfolio,
leading to the high measures of their risk contribution. In striking contrast,
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the marginal risks of the U.S. bond portfolios, high-yield portfolios, and
hedge funds are negative. To understand this, recall that the risk measures
shown in Table 13.6 represent the net effect of reallocating assets from the
passive benchmark portfolio to the active managers. The U.S. bond and
high-yield asset classes have both relatively low volatility and relatively low
correlations with the equity asset classes, while the hedge fund returns are
uncorrelated with the other asset classes. Due to these factors, reallocating
assets from the passive benchmark portfolio to these portfolios results in a
reduction in risk. These negative marginal risks are particularly striking
because the expected returns of the high-yield and hedge fund portfolios
are greater than the expected return of the passive benchmark portfolio.
Thus, by reallocating assets from the passive benchmark portfolio to these
asset classes, it is possible simultaneously to decrease risk and increase
expected return.

RISK DECOMPOSITION OF THE EXISTING ASSET CLASS 
ALLOCATIONS

Another question of interest is the risk of the existing asset allocations. Since we
are measuring risk using risk contributions, or marginal risks, this amounts to
asking what happens to the risk if we increase the allocation to a particular asset

TABLE  13.6  Risk decomposition of the existing manager roster

Asset Class Manager
Marginal Risk

∂∂∂∂���� ∂∂∂∂wi

U.S. Large Cap 1 9.24

2 8.56

3 9.24

U.S. Small Cap 4 8.65

5 8.17

International 6 7.65

7 7.91

Emerging Markets 8 10.63

U.S. Bonds 9 –6.97

10 –6.91

11 –7.10

High Yield 12 –6.12

13 –6.12

Hedge Funds 14 –9.01

15 –9.01

⁄
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class, starting from the current allocations. For example, what happens if we
increase the allocation to the actively managed equity portfolios from 30%? 

Table 13.7 shows the marginal risks by asset classes, using the assump-
tion that an increase in the allocation to an asset class is spread equally
among the managers in that class. Not surprisingly, the pattern of marginal
risks is similar to that in Table 13.6. 

OPTIMAL MANAGER ROSTER AND ASSET ALLOCATION

Tables 13.6 and 13.7 make clear that the existing manager roster and asset
allocations are not optimal. Most notably, risk can be decreased by increas-
ing the allocation to U.S. bonds, high-yield bonds, or hedge funds. As can
be seen in Table 13.2, the managers in the latter two of these asset classes
have expected returns greater than the expected excess return on the strate-
gic benchmark of 9.30%. Thus, by increasing the allocations to these man-
agers, it is possible simultaneously to decrease risk and increase expected
return. Of course, this is not surprising: only by chance (or carefully rigged
example) would the existing manager roster be exactly optimal. 

Table 13.8 compares the risk measures (marginal risks) and expected
excess returns for each of the managers. In this table, the expected excess
return is the difference between the expected return on the portfolio and that
on the benchmark and represents the (expected) return benefit that can be
obtained by reallocating assets away from the passive benchmark and into
that portfolio. The rightmost column shows the ratio of the expected excess
return to the marginal risks. When these ratios are not all equal, there is gain
from reallocating assets among the managers. For example, the ratio of
excess return to risk is 0.39 for the first U.S. large-capitalization managers,
0.34 for the second, and 0.29 for the third. The difference indicates that there

TABLE  13.7  Risk decomposition of the existing asset classes

Asset Class Asset Class Benchmark
Marginal Risk

∂∂∂∂���� ∂∂∂∂wi

U.S. Large Cap S&P 500 9.02

U.S. Small Cap Russel 2000 8.41
International MSCI EAFE 7.78
Emerging Markets MSCI EMF 10.63
U.S. Bonds Lehman Aggregate –6.99
High Yield ML High Yield –6.12
Non–U.S. Bonds WGBIxUS –9.01

⁄
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is an opportunity to (slightly) improve the risk-return tradeoff by reallocating
assets from the third U.S. manager to the first or second and from the second
to the first.

The negative ratios toward the bottom of the table indicate the opportu-
nity for even greater gains. To interpret these, remember their definition: they
are the ratios of the expected excess return to the (marginal) risk measures.
Here the ratios are negative because the numerator (the expected return) is
positive and denominator (the risk measure) is negative, indicating that reallo-
cating assets simultaneously increases expected return and decreases risk.

From this discussion, it should be clear that optimal allocations to the
active managers are characterized by equal ratios. (An important exception
is when constraints, perhaps self-imposed, on the fraction of the portfolio
that may be allocated to a manager lead to a smaller than optimal alloca-
tion.) The actual optimum can be computed using a mean-variance opti-
mizer and is shown in Table 13.9. This table also shows the expected excess
returns, the marginal risks at the optimal allocations, and their ratios. As
expected, the ratios are equal across managers. 

The largest asset allocations are for managers 2 and 11, in the U.S.
large-capitalization equity and U.S. bond asset classes, respectively. The

TABLE  13.8  Risk decomposition and marginal expected return of the existing 
manager roster

Asset Class Manager

Marginal 
Risk

∂∂∂∂���� ∂∂∂∂wi

Expected 
Excess Return

(Percent)

Ratio of Expected 
Excess Return to 
Marginal Risk

U.S. Large Cap 1 9.24 3.60 0.39
2 8.56 2.95 0.34
3 9.24 2.73 0.29

U.S. Small Cap 4 8.65 4.85 0.56
5 8.17 4.55 0.56

International 6 7.65 3.20 0.42
7 7.91 4.30 0.54

Emerging Markets 8 10.63 6.20 0.58

U.S. Bonds 9 –6.97 –2.20 0.32
10 –6.91 –2.20 0.32
11 –7.10 –2.25 0.32

High Yield 12 –6.12 0.20 –0.03
13 –6.12 0.20 –0.03

Hedge Funds 14 –9.01 2.70 –0.30
15 –9.01 6.70 –0.74

⁄
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distinguishing feature of these managers is their small tracking errors:
they have the smallest tracking error in their asset classes. Manager 13,
the second high yield manager, also has a small tracking error and a rela-
tively large allocation. The combination of these small tracking errors and
the relatively large weights on these asset classes in the strategic bench-
mark accounts for the large allocations, because these factors make it pos-
sible for these managers to receive large allocations without creating
excessive risk. Manager 2 actually has the lowest alpha of any of the
equity managers, illustrating the importance of the risk contribution. 

The same point is illustrated by the smaller optimal allocations. In spite
of a large alpha, the allocation to manager 8, the sole emerging markets
manager, is only 0.49% both because this asset class does appear in the
strategic benchmark and because this manager has a large tracking error
(which is assumed to be independent of the index returns). Thus, the mar-
ginal risk of manager 8’s portfolio is considerable and leads to a small allo-
cation in spite of the large expected return. The same factors lead to the
relatively small allocations (3.08% and 3.25%) to the hedge fund managers
14 and 15, respectively. Even though these managers have very high alphas,
even with these small allocations their marginal risks are relatively large.

NOTES

This chapter draws upon Winkelman (2000a, 2000b). The computation of
the optimal manager roster is the outcome of a mean-variance optimization.
It is well known that the results of mean-variance optimization are very sen-
sitive to the estimates of expected returns and that it is difficult, at best, to
come up with good estimates of expected returns (see, e.g., Michaud 1989).
Moreover, the expected returns, volatilities, and correlations are likely to
change over time, especially during periods of market stress. Even setting
aside the issue of the stability of the volatilities and correlations, the estima-
tion of the covariance matrix can also be problematic (see Chapter 17),
although this is not so widely recognized. These considerations suggest that
the approach be used with caution.
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Delta-Gamma Approaches

As discussed in earlier chapters, a limitation of the delta-normal method is
that it amounts to replacing the portfolio with a linear approximation and
then computing the value-at-risk of the linear approximation. Thus, use of
the delta-normal method leads to significant errors in the value-at-risk esti-
mate when the portfolio value is a highly nonlinear function of the underly-
ing market factors, because in such cases a linear approximation will not
adequately capture the risks of the portfolio. The delta-gamma-theta-normal
method represents a natural next step, in that it uses a second-order or qua-
dratic approximation of the portfolio. The approach involves computing the
first four moments (mean, variance, skewness, and kurtosis) of the second-
order approximation to the value of the portfolio and then finding a flex-
ible distribution that matches these four moments. Once this has been
done, the value-at-risk is then computed from that flexible distribution.

To illustrate the main idea, we use a portfolio that depends on only one
underlying market factor. In particular, the position consists of a portfolio of
common stocks, along with some index options. To keep things simple, we
assume that returns on the stock portfolio are perfectly correlated with the
returns on the S&P 500 index, so the level of the S&P 500 is the only market
factor. The current level of the S&P 500 index is 1087 and the value of the
stock portfolio is $10,000,400. The options position consists of 90 S&P 500
(SPX) put options with a strike level of 1075 and two months until expiration.
The multiplier for the SPX options is 100, so the payoff of each of the options
is 100 max[1075 S,0], where S denotes the level of the index on the expira-
tion date of the options. The options position has a current value of $260,985,
so the initial value of the portfolio is $1,000,400 $260,985 $1,261,385.
Figure 14.1 shows the value of the portfolio of stock and index options as a
function of the level of the S&P 500 index. 

To find the second-order approximation upon which the delta-gamma-
normal method is based, we need the delta, gamma, and theta of the portfolio,
which in turn depend upon the same derivatives of the put options. Letting Vput

denote the value (per share) of the SPX puts, the delta, gamma, and theta are

× –

+ =
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These were computed by taking the appropriate derivatives of the dividend-
adjusted Black-Scholes formula, using a volatility of 22% per year, a con-
tinuous dividend yield of 1.6% per year, and a continuously compounded
interest rate of 5% per year.

Since the current level of the S&P 500 is 1087 and the value of the
stock portfolio is $10,000,400, the value of the stock portfolio is
$10,000,400/1087 9200 times the level of the S&P 500 index, which
implies that the stock portfolio has a delta of 9200 with respect to the S&P
500 index. Using this, and the fact that the portfolio contains 90 put
options, the portfolio delta, gamma, and theta are

FIGURE 14.1 Portfolio value as a function of the level of the S&P 500 index
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To compute the moments of the delta-gamma-theta approximation, let
 denote the value of the portfolio, and let  and  denote the

horizon of the value-at-risk estimate and change in the market factor (the S&P
500) over that horizon, respectively. (Note that the meaning of the symbol 
has changed.) The approximation of the change in value of the portfolio is 

(14.1)

The delta-gamma-theta-normal approach proceeds by computing the first
four moments of the distribution of the approximation of the change in the
portfolio value and then matching them to the moments of another distribu-
tion. To simplify these computations, we assume that  Using this
assumption, the first four moments of the second-order approximation are

(14.2)

(14.3)
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(14.4)

(14.5)

where  is the variance of the percentage change in the
market factor over the horizon used in computing value-at-risk, and we
have used the facts that  

 and that all of the odd moments are zero. Notice
that in the special case when  these results are exactly what
one expects in that the variance is proportional to the square of 
the skewness is zero, and the kurtosis is proportional to the fourth power
of 

To complete the computation of the moments we need  the horizon
over which the value-at-risk is being measured, and  In this example, we
set  (i.e., one month) and  respectively, which is
consistent with a volatility of 22% per year. Combining these assumptions
with the partial derivatives computed above, the moments of the distribu-
tion of the delta-gamma approximation of  are
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Given these moments, the next steps are to find a flexible distribution
that matches them and then read the value-at-risk off that flexible distribu-
tion. A convenient choice for matching a distribution with positive skew-
ness is the three-parameter lognormal distribution. One drawback of the
three-parameter lognormal is that it can match only three of the four
moments above, but we use it for this example because of its simplicity. If

 follows a three-parameter lognormal distribution, then  has
a normal distribution with a mean of a and standard deviation of b. In the
two-parameter lognormal distribution widely used in finance,  so
the three-parameter lognormal is obtained by shifting  by an amount c
that is the lower bound of the distribution. The first three moments of the
three-parameter lognormal are 

 (14.6)

 (14.7)

 (14.8)

Setting the right-hand sides of equations (14.6), (14.7), and (14.8) equal to
the first three moments calculated above and solving for the parameters, we
obtain   and 

Figure 14.2 shows the density function of the three-parameter lognor-
mal distribution with these parameters, along with the value-at-risk esti-
mate of –513,934 dollars obtained from this distribution using a critical
probability of 5%. The Figure also shows the density function of the nor-
mal distribution with mean zero and variance  used in the
delta-normal approximation and the true density function of profits and
losses on the portfolio, which incorporates the exact relation between the
S&P 500 index and the portfolio value. The value-at-risk estimate based on
the delta-normal approximation (and a probability of 5%) is 643,217 dol-
lars, while the value-at-risk using the true distribution (and a probability of
5%) is 411,800 dollars. 

Comparing the three density functions shown in Figure 14.2, it is clear
that the delta-gamma-theta-normal approach represents an improvement
over the delta-normal approach, but the delta-gamma-theta-normal value-
at-risk is still considerably different from the value-at-risk computed using
the true distribution of possible profits and/or losses. The improvement
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over the delta-normal approach occurs because the delta-gamma-theta
approximation captures some of the curvature that is apparent in Figure
14.1. However, the approximation does not capture all of the curvature in
Figure 14.1. In particular, the approximation replaces the function shown
in Figure 14.1 with a second-order approximation, in which the second
derivative (the gamma) is constant. Although it is not readily apparent from
Figure 14.1, for index values between 1021 and 1087, the gamma is greater
than it is at 1087. One implication of this is that for index values less than
1087 the delta-gamma-theta approximation lies slightly below the portfolio
value graphed in Figure 14.1, so that the actual losses on the portfolio are
slightly greater than the losses implied by the delta-gamma-theta approxi-
mation. More importantly, the gamma also changes as time passes, and for
a range of index values around the strike price it increases considerably. For
example, if one month passes without any change in the index value, the
gamma will be 0.5569 instead of 0.3949. These increases in gamma have

FIGURE 14.2 Density function of the true distribution of changes in portfolio value,
along with the density functions used in the delta-gamma-theta-normal and delta-
normal approximations
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the effect of mitigating the losses due to large decreases in the level of the
S&P 500 index and are not reflected in the approximation in which the sec-
ond derivative is constant. Thus, in this example the approximation over-
states the probability of large losses. 

In general, whether the delta-gamma approximation over- or under-
states the probability of large losses depends on the properties of the
options in the portfolio and whether they are bought or written. In this
example, if the options had been written, the delta-gamma approximation
would have understated the probability of large losses.

It is straightforward to extend the delta-gamma-normal approach to
cases when there are two or more underlying market factors. For example,
if there are two market factors with values denoted by x1 and x2, the
approximation is 

Similar expressions can be obtained when there are more than two factors.
From these, it is straightforward to compute the first four moments of 
along the lines of equations (14.2) through (14.5), though the computa-
tions are lengthy and tedious and the resulting expressions are much more
complicated than (14.2) through (14.5). In particular, they involve various
moments of the form  where K is the number of
market factors. 

One way to simplify the computation is to replace the market factors
with an equivalent set of market factors whose changes have a diagonal cova-
riance matrix and to express the change in the portfolio value in terms of the
equivalent set of market factors. To consider a two-dimensional example, let
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denote the covariance matrix, and again assume for convenience that
 Define  so that 

where  is the inverse of a square root of  With y defined this
way,  and  are uncorrelated, that is, they have a diagonal covari-
ance matrix. If we write the portfolio value V in terms of y, we have

 and 

where 

(14.9)

and 

(14.10)

The moments of �V may now be computed, and a flexible distribution may
be fitted to match them.
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In the general (K-dimensional) case, we have

where

 (14.11)

and

(14.12)

The advantage of this transformation to uncorrelated random variables
 is that it permits the computation of the moments of �V

without having to compute all of the (even) moments of the multivariate
normal distribution through eighth order. Instead, one need only compute
the moments of each of the marginal distributions. The cost, however, is
that it complicates calculation of the derivatives, as in (14.9) and (14.10) or
(14.11) and (14.12).

NOTES

The approach described here is essentially that of Zangari (1996c) and is
perhaps the simplest delta-gamma approach. Zangari (1996c) suggests
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using a distribution from the Johnson family, of which the three-parameter
lognormal is one member. Other members of the Johnson family allow all
four moments to be matched. See Johnson, Kotz, and Balakrishnan (1994,
Chapter 12) for further discussion of the Johnson family, and Johnson,
Kotz, and Balakrishnan (1994, Chapter 14) for discussion of the three-
parameter lognormal. Zangari (1996a) suggests an alternative delta-gamma
approach using the Cornish-Fisher approximation, while Fong and Vasicek
(1997) suggest the use of the gamma distribution. Limitations of delta-
gamma approaches are discussed in Mina and Ulmer (1999) and Pichler
and Selitsch (2000). 

El-Jahel, Perraudin, and Sellin (1999) describe a more sophisticated
delta-gamma approach that allows for stochastic volatility, so that changes
in the market factors are no longer multivariate normal. They derive the
characteristic function of the process for the market factors to calculate
their moments, and from these calculate the moments of a delta-gamma
approximation of the portfolio value. Then, similar to the approach in this
chapter, they select a member of the Pearson or Johnson families of distri-
butions that matches the moments of the delta-gamma approximation and
use the fitted distribution to compute the value-at-risk. 

Cardenás, Fruchard, Koehler, Michel, and Thomazeau (1997) and
Rouvinez (1997) also describe approaches based on the characteristic func-
tion of the delta-gamma approximation of the change in portfolio value.
However, rather than match moments, they invert the characteristic func-
tion to obtain either the density or distribution of the change in portfolio
value and then read off the VaR estimate. Duffie and Pan (1999) use a sim-
ilar approach in a more general framework that allows for jumps and credit
risk. Feuerverger and Wong (2000) describe an alternative approach based
on the moment-generating function and saddlepoint approximations, while
Britten-Jones and Schaeffer (1998) express the distribution of a delta-
gamma approximation of portfolio value in terms of a sum on noncentral
chi-square random variables. 
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Variants of the Monte Carlo
Approach

In order to avoid the computational burden of the full Monte Carlo method,
various strategies are used to reduce N, K, and M without foregoing too
much accuracy. Strategies to reduce the number of instrument valuations M
have the greatest payoff, because valuing the instruments is typically the
most burdensome part of the process. The mapping approach discussed in
earlier chapters is the simplest strategy for reducing the burden of comput-
ing the values of the financial instruments. For example, a portfolio of hun-
dreds, thousands, or tens of thousands of fixed-income instruments such as
bonds or interest-rate swaps denominated in a particular currency can be
mapped to a set of approximately 15 zero-coupon bonds. Once this has
been done for each simulated realization of the market factors, one need
only compute the value of this portfolio of bonds. This is much less burden-
some than separately computing the values of each of the bonds or swaps.

Unfortunately, mapping is less effective for options and other instruments
with option-like payoffs. One of the principal motivations for employing the
Monte Carlo approach is precisely that using options’ deltas to map them onto
a set of standardized positions fails to capture the nonlinearity of the option val-
ues. This can lead to large errors in the value-at-risk estimate because the option
values may be highly nonlinear functions of the underlying market factors.

The approach of mapping using instruments’ deltas is equivalent to
computing the value-at-risk of a linear approximation of the portfolio
value. This observation, combined with the inability of the option deltas
fully to capture the risks of options, suggests trying other, more complicated
approximations. Several different approximations have been suggested and
used. All share the feature that the portfolio is replaced by an approximat-
ing function that is easy to evaluate (more precisely, its evaluation is less
costly in terms of computer resources). While the approximating functions
do not have easy interpretations in terms of portfolios of standard instru-
ments, they nonetheless offer considerable savings in terms of computation.
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A DELTA-GAMMA APPROXIMATION

Perhaps the simplest approach is to replace the portfolio value function
with a second-order or so-called delta-gamma-theta (or delta-gamma)
approximation, leading to the delta-gamma Monte Carlo method. To illus-
trate the idea, return to the example discussed in Chapters 3 and 6. The
portfolio has a current value of $101,485,220 and consists of an invest-
ment in a well-diversified portfolio of large-capitalization U.S. equities,
together with positions in S&P 500 index futures, FT-SE 100 index
futures, (written) S&P 500 index call options, and (written) FT-SE 100
index call options. It is assumed that the returns of the portfolio of U.S.
equities can be treated as perfectly correlated with the returns on the S&P
500 index, implying that the value of the portfolio is a function of the lev-
els of the S&P 500 and FT-SE 100 indexes, the exchange rate, time
(because the option prices depend on time), and the other determinants of
the option prices, such as interest rates and volatilities.

The first step in the approximation is to think of the portfolio value as
a function of the two index values, the exchange rate, and time, holding
constant all of the other determinants of the option prices. Letting V denote
the value of the portfolio, we have

where S1 and S2 denote the levels of the two indexes, e denotes the exchange
rate, and t denotes time. However, rather than work with the function V,
one replaces it by the approximation 

portfolio value V S1 S2 e t, , ,( ),=

V̂ S1 S2 t, ,( ) 101,485,220 ∂V
∂S1
--------- S1 1097.6–( ) ∂V
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∂2V
∂S2∂S2
------------------ S2 5862.3–( ) e 1.6271–( ),+
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where 101485,220 V(1097.65862.3, 1.6271, t0) is the current value of
the portfolio, t0 is the date at which the approximation is done (the current
date), and the derivatives are evaluated at t0 and the current values of the
market factors, S1 1097.6, S2 5862.3, and e 1.6271. This approxi-
mation is second-order in the underlying assets and first-order in time. It is
referred to as a delta-gamma or delta-gamma-theta approximation because
the first and second derivatives with respect to the underlying asset are
called delta and gamma, and the time derivative is called theta. When
value-at-risk is computed over a short time horizon, such as one day, the
time derivative ∂V ∂t is sometimes omitted, leading to the approximation

For this portfolio the deltas with respect to the S&P 500 index, FT-SE 100
index, and the exchange rate are 

  and 

respectively. The time derivative theta (with time measured in years) is
 and the gammas with respect to the S&P 500 and

FT-SE 100 indexes are

 and 

respectively, and the partial derivative  The other second
derivatives are all zero.

=

= = =

⁄

V̂ S1 S2 e t, , ,( ) 101,485,220 ∂V
∂S1
--------- S1 1097.6–( ) ∂V

∂S2
--------- S2 5862.3–( )+ +=

∂V
∂e
------- e 1.6271–( ) 1

2
--- 

  ∂2V

∂S1
2

---------- S1 1097.6–( )2+ +

1
2
--- 

  ∂2V

∂S2
2

---------- S2 5862.3–( )2 1
2
--- 

  ∂2V

∂e2
---------- e 1.6271–( )2+ +

∂2V
∂S1∂S2
------------------ S1 1097.6–( ) S2 5862.3–( )+

∂2V
∂S1∂e
--------------- S1 1097.6–( ) e 1.6271–( )+

∂2V
∂S2∂S2
------------------ S2 5862.3–( ) e 1.6271–( ).+

∂V
∂S1
--------- 4863.7,= ∂V

∂S2
--------- 2821.5,= ∂V

∂e
------- 2,127,725,–=

∂V ∂t⁄ 12,761,464.5,=

∂2V

∂S1
2

---------- 218.5–= ∂2V

∂S2
2

---------- 4.68,–=

∂2V
∂S2∂e
--------------- 3331.6.–=



236  REFINEMENTS OF THE BASIC METHODS

The delta-gamma-theta (or delta-gamma) Monte Carlo approach
involves using the approximation in place of  That is, for each
of the N samples of the changes in the market factors, instead of computing
the exact change in value  one computes the
approximate change in value 

The advantage of this is that it is easy to compute the approximation,
because the derivatives are evaluated at the current values of the indexes and
therefore are the same for each of the N samples. Given the derivatives, the
approximation is a simple quadratic function in S1, S2, e, and t − to, and is
therefore easy to evaluate. Even though computing the derivatives may be of
equal or greater difficulty than computing the portfolio value V(S1, S2, e, t),
the approach saves greatly on computation because the derivatives need be
computed only once. In contrast, in the full Monte Carlo method the func-
tion V must be evaluated N times. If it is costly to compute the portfolio
value, either because the instruments in the portfolio are difficult to value or
because the portfolio involves a large number of different instruments, then
it is useful to avoid the need to compute the portfolio value repeatedly. 

Figure 15.1 shows the results of the simulation, using a simulation sam-
ple size of N 10,000 drawn from the multivariate normal distribution
used in Chapter 6. The distribution is asymmetric and is similar in shape to
that shown in Figure 6.2. This is not surprising, because the goal of the
method is precisely to capture the nonlinearity of the portfolio value as a
function of the underlying market factors and the resulting asymmetry of
the distribution of possible profits and losses. However, close examination
of the figures reveals that the details differ. First, Figure 15.1 is somewhat
less peaked; the bars at 1,500,000 and 2,000,000 represent 2237 and 1287
realizations, while the corresponding bars in Figure 6.2 represent 2264 and
1574 observations, respectively. Second, Figure 6.2 covers a different range
and has a longer and fatter left tail. The maximum value in Figure 6.2 is

V S1 S2 e t, , ,( ).

V S1 S2 e t, , ,( ) 101,485,220,–

V̂ S1 S2 e t, , ,( ) 101,485,220– 4863.7 S1 1097.6–( )=

2821.5 S2 5862.3–( )+

2,127,725 e 1.6271–( )–

12,761,464.5 t to–( )+

1 2⁄( ) 218.5( ) S1 1097.6–( )2–

1 2⁄( )4.68 S2 5862.3–( )2–

3331.5 S2 5862.3–( ) e 1.6271–( )–

=
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2,300,405, and no bar is visible at 2,500,000, while in Figure 15.1 the
maximum value is 2,675,209, and the bar labeled 2,500,000 represents
90 realizations. (The bin labeled 2,500,000 includes all observations
between 2,250,000 and 2,750,000. There was one realization in this
range (2,300,405), but the resulting bar is too small to be seen on the fig-
ure.) In the left tail of Figure 6.2, the bar labeled −10,000,000 represents
eight observations, of which the smallest is –11,504,265. The corre-
sponding bar of Figure 15.1 represents only 2 observations, of which the
smallest is –10,638,541. Also, in Figure 6.2 the left tail is fatter. For exam-
ple, there are 154 observations less than or equal to –4,750,000, while in
Figure 15.1 there are only 91 observations less than or equal to –4,750,000.
Due to these differences in the estimated distributions, the value-at-risk esti-
mate from the delta-gamma-theta approximation (Figure 15.1) is only
2,270,032, while the value-at-risk estimate obtained using the full Monte
Carlo method (Figure 6.2) is 2,582,663.

Figures 6.2 and 15.1 illustrate both the advantages and disadvantages of
the delta-gamma-theta Monte Carlo approach. It is able to capture impor-
tant features of the distribution of possible profits and losses, and in particu-
lar is able to capture the asymmetry of that distribution. In both Figures 6.2
and 15.1, the truncations of the right-hand tails and the long left-hand tail

FIGURE 15.1 Distribution of possible profit and loss on the portfolio estimated 
using the delta-gamma-theta Monte Carlo method
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are due to the fact that the gammas  and  are negative.
The delta-gamma-theta approach captures this, and as a result it is much
more accurate than the delta-normal approach. This may be seen by com-
paring Figures 15.1 and 6.2 to Figure 6.3, which shows the estimate of the
density obtained using the delta-normal approach.

However, there are errors in the delta-gamma-theta approximation that
stem from its inability to capture completely the nonlinearity in the value of
the portfolio. The key feature of the approximation is that it is quadratic in S1
and S2, which of course implies that it has constant gammas (second deriva-
tives). But, for index values near the exercise prices of the options, the gammas
become smaller (i.e., negative and larger in absolute value) as time passes. This
change in the gammas is not captured by the delta-gamma-theta approxima-
tion, and as a result the left-hand tail of the exact distribution (Figure 6.2) is
longer and the truncation of the right-hand tail is more pronounced.

In general, the delta-gamma-theta Monte Carlo method will perform
poorly for portfolios for which the gammas change greatly as time passes
and/or the prices of the underlying assets change. In this example, the errors
in the delta-gamma-theta approximation are exacerbated by the relatively
long holding period of one month. In this example, the option gammas
change as time passes, and the long holding period allows this time depen-
dence of the gammas to manifest itself. It also makes large changes in the
indexes more likely, which exacerbates the dependence of the gammas on
the index levels. Typically, the delta-gamma-theta Monte Carlo method will
perform much better with a short holding period (e.g., one day), because the
assumption of constant gammas is then more reasonable. However, even for
a short holding period, the delta-gamma-theta approximation can perform
poorly for some portfolios of exotic options for which the gammas vary
greatly even for small changes in time or the underlying market factors.

A GRID MONTE CARLO APPROACH

The grid Monte Carlo approach replaces the portfolio value function with a
different approximation, based on a grid of values of the underlying assets.
For portfolios with varying gammas, the grid approximation can be better
than the delta-gamma-theta approximation. Due to the inability to display
graphically both three underlying market factors and the portfolio value,
we illustrate the grid approach by fixing the value of the exchange rate at
e 1.6271 dollar/pound and therefore work with a grid of values for the
S&P 500 and FT-SE 100 indexes. Specifically, we pick five levels for each of
the market factors to construct a 5-by-5 grid. For each of the combinations

∂2V ∂S1
2⁄ ∂2V ∂S2

2⁄

=
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of index values shown in the grid, one computes the corresponding portfo-
lio value, using the appropriate futures price formulas and option pricing
models. Using the equally spaced values (997.6; 1047.6; 1097.6; 1147.6;
1197.6) for the S&P 500 index and (5262.3; 5562.3; 5862.3; 6162.3;
6462.3) for the FT-SE 100, the 25 portfolio values are shown in Table 15.1.
The grid approximation used to replace the portfolio value function V is
then obtained by interpolating between the values in the table. Figure 15.2
shows the approximating function obtained by interpolation.

The advantage of grid Monte Carlo is that the 25 portfolio values need be
computed only once, at the outset. Then, for each of the N Monte Carlo sam-
ples or draws, one computes an approximate portfolio value by interpolating
between the portfolio values in Table 15.1, which requires little in the way of
computer resources. Thus, the N portfolio valuations required by full Monte
Carlo are replaced by only 25 portfolio valuations. 

This example overstates the advantage of the grid Monte Carlo method,
because a 5-by-5 grid may not give an adequate approximate of the portfolio
value function, and a denser grid may be needed. More important, however, is
the “curse of dimensionality,” that is, the fact that the number of points on the
grid grows exponentially with the number of factors. Specifically, if there are K
market factors and one constructs a grid using five values of each market factor,
then the grid approximation requires 5K portfolio valuations. For example, if
there are 10 market factors and one builds a grid using nine possible values of
each market factor, then there are 910 3.487 109 nodes at which the portfo-
lio must be revalued. Using such a high-dimensional grid is not just more bur-
densome than full Monte Carlo, but can often simply be infeasible. If K is not
small, then the construction of the grid can require more portfolio valuations
than would be required by full Monte Carlo. Thus, this approach is useful only
when the number of market factors is small, that is, less than or equal to three
or perhaps four.  

TABLE  15.1  Grid of possible values of the S&P 500 and FT-SE 100 indexes and 
the associated portfolio values. The grid is centered at the current index values of 
1097.6 and 5862.3.

FT-SE 100

S&P 500 5262.3 5562.3 5862.3 6162.3 6462.3

997.6 97,322,917 98,817,267 99,879,499 100,524,319 100,814,190
1047.6 98,406,251 99,900,600 100,962,832 101,607,653 101,897,524
1097.6 98,928,638 100,422,988 101,485,220 102,130,040 102,409,911
1147.6 98,406,251 100,404,232 101,466,463 102,111,284 102,401,155
1197.6 98,909,882 99,920,201 100,982,433 101,627,253 101,917,424

= ×
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PRINCIPAL COMPONENTS GRID MONTE CARLO 

Recognition of this limitation suggests attacking the problem by reducing
the number of factors. For fixed-income portfolios, the principal compo-
nents grid Monte Carlo approach uses the method of principal components
to reduce the dimension of possible yield-curve changes to a manageable
one. For example, in the case of term structure models, the first three prin-
cipal components, often interpreted as level, slope, and curvature, explain
most of the risk of changes in interest rates. The approach is to use the first
few (e.g., three) principal components as factors, express the portfolio val-
ues in terms of these factors, and then proceed as in naïve grid Monte
Carlo: specify a grid of possible values of the factors, reprice the portfolio
exactly on the nodes of the grid, and then use linear interpolation to reprice
the portfolio for factor realizations that fall between the nodes.

If one builds a grid using nine possible values of each market factor,
then there are 93 729 nodes at which the portfolio must be repriced.
Also, it can make sense to use fewer grid points for the second and third
factors because the principal components analysis has identified them as

FIGURE 15.2 Example of the approximation of the portfolio value used in the 
grid Monte Carlo method
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making a smaller contribution to the risk than the first factor, so the error
from using a crude approximation is smaller. For example, if one used nine
possible changes in the term structure level, five possible changes in slope,
and three possible changes in curvature, there would be only 9 5 3
135 nodes on the grid for which the portfolio would need to be revalued.
This is certainly feasible. However, the argument to use a cruder grid for
the second and third factors is undermined to the extent that the risk of the
first and/or second factor has been hedged. In this case, the risk of the port-
folio is driven by the factor or factors for which a crude approximation is
used.

This approach can be useful if: (i) the first few principal components
or other factors account for almost all of the risk, as is often the case in
term structure modeling; and (ii) the approximate portfolio values com-
puted by linear interpolation from the grid are adequate. However, it is
less useful for portfolios of instruments, such as options on individual
common stocks, for which the residual risk not explained by factor models
is important.

SCENARIO SIMULATION 

Scenario simulation is another method that breaks the link between the
number of Monte Carlo draws and number of portfolio repricings. It does
this by approximating the distributions of changes in the factors rather
than by approximating the portfolio value. As in principal components grid
Monte Carlo, principal components analysis is used to reduce the number
of factors. Each risk factor is then assumed to take only a small number of
distinct values, leading to a small (or, at least, manageable) number of pos-
sible scenarios, each corresponding to a portfolio value that needs to be
computed only once. Monte Carlo simulation is then done by sampling
among these scenarios, leading to a great reduction in the number of port-
folio revaluations required. 

OTHER MONTE CARLO APPROACHES

From the examples discussed above, it should be clear that the number of
potential variations of the Monte Carlo method is limited only by the num-
ber of possible methods for approximating the portfolio value function
and/or the distribution of changes in the market factors. For example, one
could conceivably add higher-order terms to the delta-gamma-theta

× × =
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approximation or omit the second-order terms for factors that are deemed
less important. In the context of grid approaches, Pritsker (1997) discusses
the modified grid Monte Carlo approach. This approach combines a grid
approximation for a handful of factors for which nonlinearity is important
and then uses a linear approximation to capture the effect of the other fac-
tors. For any choice of approximating function, the key issue is the trade
off between the accuracy of the approximation and the computer resources
required to evaluate the approximating function. All of the variants of the
Monte Carlo method retain the features of full Monte Carlo, except that
they explicitly trade off accuracy for saving in computational time to vary-
ing degrees.

NOTES

Delta-gamma Monte Carlo is described in Duffie and Pan (1997). Using a
portfolio of European-style foreign currency options, Pritsker (1997) exam-
ined the trade off between accuracy and computational time for the stan-
dard delta-normal method, full Monte Carlo, delta-gamma Monte Carlo,
and modified grid Monte Carlo. Principal components grid Monte Carlo is
described by Frye (1998). Scenario simulation was proposed by Jamshidian
and Zhu (1997) and evaluated by Abken (2000) and Gibson and Pritsker
(2000/2001).

Gibson and Pritsker (2000/2001) suggest the use of partial least
squares rather than principal components to select the factors in grid
Monte Carlo approaches. The motivation for this choice is that the
partial-least-squares method chooses as factors the random variables
that best explain the changes in portfolio value, in contrast to the prin-
cipal components approach, which chooses as factors the random vari-
ables that best explain changes in the yield curve. If the portfolio has
limited exposure to the most important factors driving the yield curve,
choosing the principal components as factors will not fully capture its
risks. A limitation of the partial-least-squares approach is that the fac-
tors it selects may be unintuitive and difficult to interpret.

Strategies to reduce the sample size N without sacrificing accuracy include
use of standard variance reduction techniques such as antithetic variates, con-
trol variates, and stratified sampling, and the use of quasi-random sequences.
These are beyond the scope of this book but are discussed in standard refer-
ences on Monte Carlo methods. Cardenás, Fruchard, Picron, Reyes, Walters,
and Yang (1999) describe the use of control variates and stratified sampling in
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computing value-at-risk. Boyle, Broadie, and Glasserman (1997) discuss the
use of variance-reduction techniques and quasi-random sequences in option
pricing.

This method is sometimes called the delta-gamma or delta-gamma-
theta method instead of the delta-gamma-theta Monte Carlo method. In
this book, the names delta-gamma and delta-gamma-theta are reserved for
the approach described in Chapter 14.
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Extreme Value Theory and VaR

It is well known that the actual distributions of changes in market rates and
prices have fat tails relative to the normal distribution, implying that an
appropriately fat-tailed distribution would provide better value-at-risk esti-
mates for high confidence levels. However, since by definition the data con-
tain relatively few extreme observations, we have little information about
the tails. As a result, selecting a reasonable fat-tailed parametric distribu-
tion and estimating the parameters that determine the thickness of the tails
are inherently difficult tasks. Similarly, the historical simulation method
provides imprecise estimates of the tails.

Extreme value theory (EVT) has recently attracted a great deal of
attention because it offers a potential solution to the problem of estimating
the tails. Loosely, EVT tells us that the behavior of certain extreme values is
the same (i.e., described by a particular parametric family of distributions)
regardless of the distribution that generates the data. 

Two broad classes of models appear in EVT. The models in the more
modern group are known as peaks over threshold (POT) models. These are
based on a mathematical result that, for a large class of distributions that
includes all of the commonly used continuous distributions, extreme real-
izations above a high (or below a low) threshold are described by a particu-
lar distribution, the generalized Pareto distribution (GPD). Thus, EVT
solves the problem of how to model the tails: they are described by the gen-
eralized Pareto distribution, regardless of the distribution that generates the
data. Since knowing the tail of the distribution is exactly what is required
for value-at-risk estimates at high confidence levels, the applicability of this
result to value-at-risk calculations is clear. 

Classical extreme value theory gives us block maxima models, which
are models for the maxima out of large samples of (identically distributed)
observations. These are based on a long-standing result that, for large
blocks, the maxima satisfy the generalized extreme value (GEV) distribu-
tion. For example, if the observations are daily interest-rate changes and the
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blocks are years, a block maxima model using the GEV distribution might
be used to estimate the distribution of the maximum one-day interest-rate
change within the year. Such models can offer guidance regarding the sce-
narios that should be considered in stress testing.

EVT has a long history of applications in hydrology, climatology, engi-
neering, and, somewhat more recently, insurance. Its use in financial risk mea-
surement is only nascent, partly because its applicability to financial risk
management has only recently been recognized by nonspecialists in EVT, and
partly because there are important limitations to EVT, particularly in the area
of multivariate EVT. Thus, to some extent EVT is a field of future promise
rather than current application. Nonetheless, EVT speaks so directly to key
issues in financial risk measurement that it is clear that it is here to stay and
that financial risk managers should be aware of its main ideas.

With this goal in mind, this chapter provides a brief introduction to the
main ideas of EVT and its use in risk measurement. After describing the data
used to illustrate EVT, it explains the GPD and its potential role in value-at-
risk calculations, presents one approach for fitting the GPD to the data, and
then illustrates the differences in the estimates of the tails. It then briefly
describes the classical result on the distribution of maxima and its potential
role in stress testing. The last section of the chapter then indicates some open
issues in EVT that limit its use in value-at-risk calculations. 

DISTRIBUTION OF YIELD CHANGES

Figure 16.1 illustrates the distribution of changes in the 10-year constant
maturity treasury (CMT) yield over the period 1990−1999, a total of 2503
business days. These data are used below to illustrate the application of
extreme value theory to value-at-risk calculations. Each point on the line
labeled “Empirical frequency” represents the number of yield changes
observed in an interval 2 basis points wide, centered around the value indi-
cated on the horizontal axis. For example, the point (0, 523) indicates that
523 of the yield changes satisfy the condition −1 basis point yield change

1 basis point. The Figure also shows the frequencies predicted by a nor-
mal distribution with mean and variance equal to the mean and variance of
the changes in the 10-year CMT yields. Figure 16.2 provides a more
detailed look at the right-hand tail of the distribution.  

Comparison of the empirical frequencies in Figure 16.1 to those pre-
dicted from the normal distribution reveal that the distribution of changes
in the 10-year CMT yield has a higher peak than the normal distribution
with the same mean and variance, while comparison of the frequencies in

≤
<
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Figure 16.2 reveals that the empirical distribution has more probability in
the right-hand tail than the normal, that is, that the empirical distribution
has fat or heavy tails relative to the normal. For example, Figure 16.2
shows that the empirical and normal frequencies are approximately the
same for yield changes of 12, 14, and 16 basis points, but that larger
changes occur more frequently than predicted by the normal distribution.
Though not shown, a similar pattern is found in the left-hand tail. Then,
for intermediate changes of between 6 and 10 basis points, the empirical
frequencies are less than those predicted by the normal distribution.

These characteristics are commonly found in financial data and can
have significant effects on value-at-risk estimates, especially for high confi-
dence levels. For example, for the empirical and normal distributions
quantiles of 16 and 14 basis points, respectively, leave approximately 1%
of the probability in the right-hand tail. To leave approximately 0.3% in
the right-hand tail, the quantiles are 22 basis points and slightly more than
16 basis points, respectively. These differences in the quantiles map into
differences in value-at-risk estimates and indicate that the use of the nor-
mal distribution may lead to underestimates of value-at-risk. (However,
for a lower confidence level, for example, 90% or 95%, the situation can

FIGURE 16.1 Distribution of changes in the 10-year CMT yield
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be reversed due to the fact that the empirical frequencies are less than
those predicted by the normal distribution for intermediate changes of
between 6 and 10 basis points.) As indicated above, EVT offers some hope
of overcoming this problem.

THE GENERALIZED PARETO DISTRIBUTION AND VALUE-AT-RISK

Peaks over threshold models are based on a mathematical result that, for a
large class of distributions, extreme realizations above a high (or below a low)
threshold follow the generalized Pareto distribution. We focus on the upper
(right-hand) tail of the distribution, though this choice is of no importance;
the left-hand tail can be transformed into the right-hand tail by switching the
sign of the random variable X we introduce next. To explain the result, we
first need to introduce a bit of notation.

Let X be the random variable under consideration (e.g., a mark-to-market
loss), and use F to denote its distribution function. Consider a threshold u, and
define X u to be the excess loss over the threshold, often called the exceedance.

FIGURE 16.2 Right-hand tail of the distribution of changes in the 10-year CMT yield
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The conditional distribution function F(x | X u) gives the conditional proba-
bility that the excess loss X u is less than x, given that the loss exceeds u. It fol-
lows that 1 F(x | X u) is the conditional probability that the excess X u
exceeds x.

The key result underlying POT models is that, in the limit as the thresh-
old u → �, the conditional distribution function F(x | X u) approaches
the generalized Pareto distribution (GPD) given by

(16.1)

where x ≥ 0 if � ≥ 0 and 0 ≤ x < −� � if � < 0. The parameter � is a shape
parameter that determines the fatness of the tail, while � is an additional
scaling parameter. The GPD is generalized in that it subsumes three distribu-
tions as special cases: if the shape parameter � > 0, it is equivalent to the
ordinary Pareto distribution, used in insurance as a model for large losses; if
� 0, it is the exponential distribution; and if � < 0, it is the Pareto type II
distribution.

The case � > 0 is the one most relevant for financial data, as it corre-
sponds to heavy tails. Considering this case, the preceding equation implies
that the conditional probability that the excess loss X − u is greater than x
is approximated by

(16.2)

where P(A) is the probability of the event A. In applications, one cannot actu-
ally let the threshold u → �. Instead, one picks a threshold high enough to
approximate infinity and above that threshold treats equation (16.2) as
though it holds exactly. Doing this, the unconditional probability that the
excess loss is greater than a number x depends on the probability that the ran-
dom variable X exceeds u, and is given by

(16.3)
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Thus, provided u is chosen to be large enough that the approximation in
(16.2) and (16.3) is sufficiently accurate, it is possible to compute value-at-
risk without knowledge of the distribution that describes the data. 

As will be seen below, it is reasonably straightforward to estimate the
threshold u above which the GPD provides a good approximation and also
straightforward to estimate the parameters � and �. Then using the obvious
fact that P(X − u > x) P(X > u x), the 1 − � percent confidence value-
at-risk is the number VaR u x such that 

implying that

(16.4)

Typically it is also straightforward to estimate the probability of exceeding
the threshold P(X > u), allowing the value-at-risk to be computed from this
formula.

THE MEAN EXCESS FUNCTION AND THE THRESHOLD u

The mean excess function is

that is, it is the expected value of the excess X u, conditional on an excess.
For a given data set and threshold u, the mean excess can be estimated from
the data as

(16.5)
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where nu is the number of observations Xi that exceed the threshold u.
Repeated use of (16.5) for a range of values of u then produces an estimate
of the mean excess as a function of the threshold u, that is, it produces an
empirical estimate ê(u) of the mean excess function. Figure 16.3 illustrates
the mean excess function for the CMT yield data summarized in Figure 16.1
and thresholds between 0 and 30 basis points. The numbers of excesses used
to compute the means range from 1344 for the threshold of 0 basis points to
2 for the threshold of 30 basis points. 

The threshold u above which it is reasonable to use the approximations
(16.2) and (16.3) can be estimated from the empirical mean excess function
because the mean excess function for a GPD is linear in the threshold; in
particular, it is of the form

(16.6)

The threshold u at which the empirical mean excess function constructed
from (16.5) becomes approximately linear, then provides an estimate of the
threshold above which the GPD (16.5) provides a reasonable approxima-
tion of the tail.

FIGURE 16.3 Mean excess function for the CMT yield data
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The mean excess is closely related to the popular expected shortfall
measure, which is discussed in Chapter 19 in the context of coherent
risk measures. In particular, the expected shortfall is the expected loss
given that the loss is greater than or equal to the value-at-risk, or equiv-
alently the sum of the value-at-risk and the mean excess using the value-
at-risk as the threshold:

(16.7)

The distribution (16.1) implies that, if excesses over a threshold u have the
distribution (16.1), then excesses over VaR1−� > u have the same distribu-
tion function with the scaling parameter � replaced by � �(VaR1−� −u),
and the mean excess is given by (16.6), with u replaced by VaR1−� − u.
Combining this fact with (16.7), the expected shortfall is

ESTIMATING THE PARAMETERS OF THE GPD AND COMPUTING 
VALUE-AT-RISK

The first step in estimation is to pick the threshold u above which it is
reasonable to use the approximations (16.2) and (16.3). Figure 16.3
indicates that the empirical mean excess function is approximately lin-
ear above the threshold of u 10 basis points. A total of 86 data
points, or approximately 4.075% of the sample, exceed this threshold,
while 118 data points, or 4.751% of the yield changes, equal or exceed
it. While the empirical mean excess function appears again to become
nonlinear at a threshold of about 22 basis points, the means for thresh-
olds of 22 to 30 basis points are estimated using only between eight
observations (at 22 basis points) and two observations (at 30 basis
points). Thus, it seems reasonable to discount the apparent nonlinearity
in this region.

Next, we need estimates of the parameters � and � and the probability
P(X > u). The parameters � and � were estimated using the method of
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maximum likelihood, discussed in the notes to this chapter. The maximum
likelihood estimates are 0.264 and 0.031.

Letting nu denote the number of observations that exceed the threshold
u 10 basis points, a straightforward estimate of the probability P(X > u)
is given by the ratio of nu to the total number of observations, nu n. As
indicated above, a total of 86 of the yield changes are greater than 10 basis
points. However, a small complication stems from the fact that the preci-
sion of the data is one basis point, so that 32 of the reported yield changes
are exactly 10 basis points. We handle this detail by treating one-half of
these as if they were less than 10 basis points and one-half as if they were
greater. Doing this, we treat a total of 86 (1/2)32 102 observations as
exceeding the threshold of 10 basis points, yielding an estimate of the prob-
ability of  or 4.75%.

Using these estimates, Figure 16.4 shows the estimated distribution
function of the GPD,

This gives an estimate of the conditional probability P(X −u < x (X > u)) as
a function of x, that is, it gives the estimated probability that the excess is
less than a level x, conditional on an excess. Figure 16.4 also shows the cor-
responding probabilities computed from the conditional empirical distribu-
tion, as well as the conditional probabilities of excesses computed from the
normal distribution with mean and variance equal to the sample mean and
variance of the yield changes. These conditional normal probabilities are
given by

where  is the cumulative normal distribution function with
mean  and variance  

The probability that a yield change exceeds a level y can be computed
directly from the distribution function of excesses using the fact that the
yield change is the sum of the threshold and the excess, giving the relations
y u x and  Combining these relations with
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equation (16.3) and using the estimates   and  for the GPD the
probability of exceeding a level y is estimated by

For the normal distribution, the probability of exceeding a level y is simply
 Figure 16.5 shows the estimates of the probabilities

 for the generalized Pareto, normal, and empirical distributions
for y in the range from 10 to 40 basis points.

Figures 16.4 and 16.5 reveal that the GPD matches the empirical dis-
tribution in the right-hand tail quite closely, but that the normal distribu-
tion does not. For example, the normal distribution indicates a 1%
probability of a yield change larger than about 13.5 basis points, while the
GPD assigns the same probability to a yield change greater than 15 basis
points. The differences become larger farther out in the tail; the normal dis-
tribution indicates a 0.28% probability of a yield change greater than 16
basis points, while the GPD assigns the same probability to a yield change
of 22 basis points. The differences translate directly into differences in the

FIGURE 16.4 Estimated distribution functions, conditional on an excess
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value-at-risk estimates implied by the different distributions. For a portfo-
lio with a linear exposure to changes in the 10-year CMT yield (and no
other significant exposures), the 100% 0.28% 99.72% confidence
value-at-risk estimate implied by the GPD would be 22/16 1.375 times
as large as that implied by the normal distribution.

The GPD approach to computing value-at-risk can be adapted to incor-
porate changing volatilities by first scaling the changes in the market fac-
tors by estimates of their volatilities and then fitting the GPD to the tails of
the scaled changes. This is similar to the approach Hull and White (1998)
suggest for incorporating changing volatilities in the historical simulation
method.

THE GENERALIZED EXTREME VALUE DISTRIBUTION AND 
STRESS TESTING

Classical extreme value theory focuses on the limiting distribution of appro-
priately centered and normalized maxima of sequences of random variables.
Specifically, let X1, X2, . . . , Xn denote a sequence of n independent and

FIGURE 16.5 Probabilities  for the generalized Pareto, normal, and 
empirical distributions
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identically distributed random variables, for example, n returns on an asset
or changes in interest or exchange rates. Then if Mn max[X1, X2, . . . ,
Xn] is the maximum of the sequence X1, X2, . . . , Xn and bn are appropri-
ately chosen normalizing constants, as the number of observations n → ∞,
the distribution of the centered and normalized maximum mn

 approaches the generalized extreme value (GEV) distribu-
tion. In its most general form, the distribution function is

(16.8)

Up to the asymptotic approximation, this distribution function is the prob-
ability that  so  gives the probability that the level x will
be exceeded. Similar to the GPD, the GEV distribution subsumes three spe-
cial cases: if  it reduces to the Frechet distribution; if  it
reduces to the Gumbel; and if  it reduces to the Weibull. 

One should not be bothered by the fact that the result is a statement
about a centered and normalized variable, for this is actually a familiar sit-
uation. Suppose, for example, that each of the random variables Xi above
has a mean of � and a standard deviation of �. Then a version of the cen-
tral limit theorem says that the mean Xi converges in distribution to a
normal random variable with mean � and standard deviation  or
that Xi − � has a limiting distribution with mean zero and standard
deviation  Doing a bit of rewriting, we obtain

,

and thus see that the familiar central limit theorem is a statement about a
centered and normalized variable, the sum  Here the centering and
normalizing constants are n� and n, respectively. 

Because value-at-risk is not concerned with the distribution of the
maximum, the GEV distribution is not directly relevant to value-at-risk
calculations. However, the distribution of the maximum is directly relevant
for stress testing, because it can provide guidance about what scenarios are

=

=
Mn an–( ) bn⁄

H x( )

exp 1 �
x u–

�
------------ 

 + 
  1 �⁄–

– if � 0,≠

exp e
x u–

�
------------ 

 –
– if � 0.=











=

mn x,< 1 H x( )–

� 0,> � 0,=
� 0,<

1
n
---	i=1

n

� n⁄ ,
1
n
---	i=1

n

� n⁄ .

1
n
--- Xi �–

i=1

n

∑ 1
n
--- Xi n�–

i=1

n

∑
 
 
 
 

=

	i=1
n Xi.



Extreme Value Theory and VaR 257

reasonable to consider. A key feature of EVT is that it can provide such
guidance even though few extreme events have ever been observed.

To develop stress-testing scenarios using a block maxima model and
the GEV distribution, one would partition the data into blocks of approx-
imately equal size and then fit the GEV to the block maxima. For exam-
ple, 30 years of daily returns data might be formed into 60 semiannual
blocks, each consisting of approximately 125 returns. Then, the parame-
ters would be estimated from the 60 block maxima, perhaps using the
method of maximum likelihood based on the density implied by (16.8).
Doing this involves the assumption that the 125 observations in each
block are sufficiently many for the limiting distribution (16.8) to apply.
Once the estimates are obtained, the GEV distribution function can be
used to make statements about the (estimated) probabilities of semian-
nual maxima, for example, with a high probability q the largest daily
stock market decline observed in the next six months will be less than
30%. Such estimates can be used to make judgments about whether a
stock market decline of this magnitude should be included in the scenar-
ios used for stress testing. 

LIMITATIONS OF EVT IN COMPUTING VALUE-AT-RISK

At first glance, EVT seems like a magic bullet. Through the GPD, it pro-
vides a way of estimating the tail behavior of random variables without
knowledge of the true distribution. Thus, it seems ideally suited for value-
at-risk computations. Through the GEV distribution, it provides a way of
assessing the magnitudes of scenarios for use in stress testing. Moreover,
the theory underlying EVT is well established, with certain of the basic
results dating back to 1928. Why then isn’t everyone using it?

Crucially, note that the discussion above has been of using EVT to
model the tails of the distribution of a single random variable. For value-at-
risk calculations, we are typically interested in the joint distribution of
changes in multiple market factors. A multivariate extreme value theory
characterizing the joint distribution of the tails does exist, but it is less well
developed than its univariate counterpart and more difficult to implement.
Multivariate extreme value theory is developed using the concept of copu-
las, which describe the dependence structure of random variables. In princi-
ple, one can estimate the (parameters of the) copulas for the tails of the
joint distribution. However, recognizing that each random variable has
both an upper and a lower tail and both are relevant for risk measurement
due to short positions and portfolio effects, a collection of K random vari-
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able has 2K tails. Thus, implementation of this approach is infeasible when
there are more than a handful of market factors. Nonetheless, multivariate
extreme value theory does appear to be useful for developing scenarios for
stress testing, because in this case one is often interested in the joint depen-
dence of a handful of key market factors. 

To apply EVT to calculate the value-at-risk of portfolios that depend
on multiple sources of risk, the best approach seems to be to turn the prob-
lem into a univariate one by first estimating the distribution of profits and
losses by historical simulation, that is, by using the technique of portfolio
aggregation. Then, one fits the GPD to the tail of this univariate distribu-
tion of profits and losses. This is straightforward but requires that one
accept most of the limitations of the historical simulation method. Also, the
available empirical evidence does not bear directly on the question of
whether EVT is useful for measuring the VaR of portfolios that depend
(perhaps nonlinearly) on multiple sources of risk. 

NOTES

For further discussion of extreme value theory and its applications in insur-
ance and finance, see Embrechts, Klüppelberg, and Mikosch (1997, hereafter
EKM). Other recent books include Beirlant, Teugels, and Vynckier (1996),
Leadbetter, Lindgren, and Rootzen (1983), Reiss and Thomas (1997), and
Resnick (1987). Embrechts, Resnick and Samorodnitsky (1998) and McNeil
(1999) are overviews of the use of extreme value theory in risk measurement,
with McNeil’s overview being somewhat longer (and thus more complete).
Diebold, Schuermann, and Stroughair (1998) provide a critical review of the
use of extreme value theory in risk measurement, focusing on issues of esti-
mation. Embrechts (2000) is a collection of recent articles on applications of
EVT to financial risk measurement. Smith (2000) outlines areas of current
theoretical development.

The data used in the example are the 10-year constant maturity U.S.
Treasury yields, obtained from the Board of Governors of the Federal
Reserve System at http://www.federalreserve.gov/releases/H15/data.htm and
described there. The result that the limiting distribution of excesses over
high thresholds is the generalized Pareto distribution dates to Balkema and
de Haan (1974) and Pickands (1975) and is further developed by Smith
(1987) and Leadbetter (1991). Properties of the GPD are summarized in
EKM (1997, Theorem 3.4.13). Important papers illustrating the use of the
GPD in modeling extreme values (of nonfinancial data) include Smith
(1989), Davison (1984), and Davison and Smith (1990).
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The use of the mean excess function in selecting the threshold u is dis-
cussed by EKM (1997, section 6.5) and the references therein. The empiri-
cal mean excess function in Figure 16.3, in which there is no obvious
unique choice of the threshold u and the function is estimated imprecisely
for high thresholds, is common. 

The maximum likelihood estimation of the parameters of the general-
ized Pareto distribution is studied by Smith (1987) and described by EKM
(1997, section 6.5). The density function of the GPD for the case  and
a given threshold u is

 

and the log-likelihood is

where  is the number of excesses over the threshold u and Xi  is
the ith excess. With only two parameters  and  computation of the
maximum likelihood estimates is straightforward.

There are alternative semiparametric approaches to estimating the tail,
of which the best known approach is the Hill (1975) estimator. Recent
work in this area includes Danielsson and de Vries (1997a; 1997b) and
Danielsson, de Haan, Peng, and de Vries (1999), who cite additional refer-
ences. Danielsson, Hartmann, and de Vries (1998) discuss the use of this
approach in computing value-at-risk.

Neftci (2000) uses the maximum likelihood approach to fit the GPD to
extreme changes for a number of foreign exchange rates and U.S. dollar
interest rates and uses the resulting estimates to compute the 1% tail proba-
bilities for the distributions. The out-of-sample performance of the esti-
mated tail probabilities is good in the sense that approximately 1% of the
out-of-sample observations fall into the predicted 1% tails. These results are
encouraging, in that they indicate that the GPD would provide accurate
99% confidence value-at-risk forecasts for a portfolio with a (single) linear
exposure to any of the exchange or interest rates studied. McNeil and Frey
(2000) do this for several stock return series and other market factors and
then compute and back test value-at-risk estimates at the 95, 99, and 99.5%
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quantiles. The conditional GPD-based value-at-risk estimates perform well
at all quantiles, and significantly better than the other approaches to which
they compare it at the 99 and 99.5% quantiles. They also obtain promising
results for conditional GPD-based estimates of the expected shortfall.

Other applications of the GPD in insurance and finance include Danielsson
and de Vries (1997c; 2000), Danielsson and Morimoto (2000), Gavin (2000),
Këllezi and Gilli (2000), McNeil (1997a), McNeil and Frey (2000), McNeil
and Saladin (1997; 1998), and the papers in Embrechts (2000).

The result regarding the limiting distribution of maxima dates to
Fisher and Tippet (1928) and is discussed in the previously cited books
on EVT. Estimation of the centering and scaling constants is discussed in
EKM, section 6.4 and the references cited there; section 3.3 provides
explicit calculations for several distributions. McNeil (1997b; 1998)
describes such an analysis (using annual blocks) and argues it could have
predicted the 1987 stock market break in the sense that it estimated that
a decline of that magnitude had a nontrivial probability. Other applica-
tions of the GEV in financial risk measurement include Këllezi and Gilli
(2000) and Parisi (2000). The worst-case scenario measure proposed by
Boudoukh, Richardson, and Whitelaw (1995) is similar to block maxima
models in that it also measures the distribution of the largest loss, though
without use of EVT. 

Embrechts, de Haan, and Huang (1999) discuss some of the issues in mul-
tivariate extreme value theory. Embrechts, McNeil, and Straumann (1999,
2001) criticize reliance on correlation to measure the dependence between
random variables. Longin (2000) proposes an approximate approach to use
multivariate EVT model for value-at-risk calculations and applies it to stock
returns. Starica (1999) estimates the dependence between the extreme move-
ment of various exchange rates. All of these authors provide references to the
statistics literature on multivariate EVT. 
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VaR Is Only an Estimate

Value-at-risk estimates are just that: estimates. Errors occur because the dis-
tributional assumptions may not correspond to the actual distribution of
changes in the market factors (and will never correspond exactly to the actual
distribution of changes in the market factors), because the delta-normal,
delta-gamma-normal, and grid Monte Carlo methods are based on approxi-
mations to the value of the portfolio, and because the estimates are based on
past data that need not reflect current market conditions. Further, even users
who choose the same framework and avoid implementation errors will make
different implementation choices, leading to different value-at-risk estimates.
For example, there can be differences in the choice of basic market factors,
the mappings of various instruments, the methods for interpolating term
structures, the formulas or algorithms used to value various instruments (e.g.,
options), and the number of past data used to estimate the distributions of
changes in the market factors. In addition, some value-at-risk systems will
embody logical or computer coding errors of varying degrees of severity, and
it is conceivable that in some situations users will have incentives to intro-
duce biases or errors into value-at-risk estimates.

As a result, back testing is crucial to verify model accuracy and identify
areas in which improvement is needed. While some of the impetus for back
testing has come from banking regulators, who need to ensure VaR models
used to determine capital requirements are not systematically biased, verify-
ing VaR models is important for anyone who uses them for decision making.
This chapter explains several approaches for back testing VaR models and
then briefly summarizes some of the evidence on the performance of the var-
ious methods for computing value-at-risk.

SIMPLE APPROACHES FOR BACK TESTING

Underlying the simplest back testing framework is the idea that, for a 1 �
confidence VaR model, one expects to observe exceptions on �% of the days.

–
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For example, if � 0.05 and the model is back tested using the last 250
daily returns, the expected number of exceptions is 0.05 250 12.5. Of
course, the actual number of exceptions depends on the random outcomes of
the underlying market factors in addition to the quality of the VaR model;
even if the VaR model is correct, the actual number typically will differ from
the expected number. This leads to a rule based on a range, determined by the
willingness to reject a correct VaR model. For example, Figure 17.1 shows
the distribution of the number of exceptions out of 250 daily returns for a
correct model with � 0.05. Even though the expected number of excep-
tions is 12.5, the probability that the number of exceptions e is outside the
range 7 e 19 is 5.85%. If 250 daily returns are used and a probability of
rejecting a correct VaR model of 5.85% is tolerable, then the model should
be rejected if the number of exceptions is outside this range and not rejected
otherwise.

This simple approach is widely used and is enshrined in Basle frame-
work, allowing banks to use internal risk models to determine capital
requirements. However, a crucial limitation should be clear—many incorrect
VaR models will generate between 7 and 19 exceptions out of 250 returns.

FIGURE 17.1 Distribution of number of exceptions for a VaR model with exception 
probability � 0.05
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For example, Figure 17.2 shows the distribution of exceptions of a biased
VaR model for which the probability of an exception is actually 7.5%. For
such an incorrect model, the probability that the number of exceptions is
between 7 and 19 is 58.4%; even the expected number of exceptions, 18.75,
is within the range 7 e 19. If each day the probability of an exception is
10%, the probability that the total number of exceptions out of 250 returns
is between 7 and 19 is 12.1%.

In short, this approach is just not very powerful: a range wide enough
that a correct model is rejected with only low probability is so wide that
many incorrect models are also rejected with only low probability, while a
range narrow enough that most incorrect models are rejected with high
probability results in a high probability of rejecting correct models. The
problem stems from the fact that a large sample of daily returns is required
to have a reasonable number of exceptions of 95% confidence VaR esti-
mates. The situation is even worse if one wants to back test 99% confi-
dence VaR models. Because large samples of weekly or monthly data are
either not available or include past periods no longer relevant, this leads to
back testing VaR models using daily data even if VaR is intended to be used
with a longer horizon. Unfortunately, even using daily data it takes a long

FIGURE 17.2 Distribution of number of exceptions for a VaR model with exception 
probability � 0.075
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time to generate a large sample, because only one observation is generated
during each holding period (e.g., day); thus it can take a long time to iden-
tify a biased model. This is problematic, because the biased model may be
in use.

The problem can be ameliorated by using a lower confidence level, because
there will be more exceptions to provide information about the performance of
the model. While use of a lower confidence level is useful if the purpose of the
VaR model is to serve as a broad gauge of risk, it does not help when the user is
concerned primarily with the tail of the distribution of portfolio returns. 

Further, to pass back tests of this sort a VaR model need only be correct on
average. In statistical terminology, the approach considers only the marginal dis-
tribution of the exceptions. As a result, even grossly deficient VaR models can
pass these simple tests. For example, consider a silly model that estimates VaR
to be $100 billion on 99 out of every 100 days and then on the 100th day esti-
mates VaR to be $0. Since this model would generate an exception on every
100th day and on only two or three days out of every 250, it would pass simple
tests based on exceptions, even though it provides no useful risk information. 

A more realistic example is a VaR model that does not respond fully to
changes in market volatility, thereby producing downward-biased estimates
during high-volatility periods and upward-biased estimates during low-volatility
periods. So long as it is right on average, tests based on the marginal distribution
of exceptions will not be able to distinguish it from a model that correctly
reflects changes in volatility. Since the exceptions from a model that does not
respond fully to volatility changes will tend to follow one another, given a suffi-
ciently large sample of portfolio returns and VaR estimates the problem can be
uncovered by looking at the conditional probabilities of exceptions. For the
1 � confidence VaR, it should be the case that the probability of an exception
at time t 1 is �, independent of whether there was an exception at time t. That
is, it should be that

where VaRt denotes the 1 � percent confidence VaR computed at time t
and P(A) is the probability of the event A. However, the effectiveness of this
approach is still limited by the relative paucity of exceptions. 

BACK TESTS BASED ON THE ENTIRE DISTRIBUTION

A different way of stating the problem with back tests based on exceptions is
that by considering only the exceptions they ignore much of the information
in the sample of returns. 

–
+
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Most value-at-risk models produce an estimate (perhaps implicit) of
the entire probability distribution as an intermediate step in computing the
value-at-risk. The trick is how to exploit this information. The estimated
distributions are conditional distributions, which change each day as both
the portfolio and volatility estimates change. From each distribution one
observes only one realization, the portfolio return for that day. At first
glance this might not seem like sufficient information to evaluate the VaR
model. 

Knowing a distribution function F amounts to knowing all of its quan-
tiles x, for example, to knowing the quantile x such that 0.01 P(r x),
the quantile y such that 0.02 P(r y), and so on. Of course, when using a
VaR model the estimates of these quantiles change every day as the estimate
of the distribution function changes. Imagine collecting a sample of say 500
portfolio returns, computing the (estimates of the) quantiles for each of the
500 days, and then comparing the returns to the estimated quantiles. One
expects five of the returns to be less than or equal to the 1% quantiles,
another five to be between the 1% and 2% quantiles, another five to be
between the 2% and 3% quantiles, and so on. It is not necessary that these
intervals all contain the same probability; in general, a fraction F(x) F(y)
of the returns r should satisfy y r x. After picking a set of intervals, one
can evaluate the VaR model by comparing the observed proportion of the
sample falling into each interval to the proportion that would be expected if
the VaR model were correct. This is the same idea that underlies the simple
back tests, except that one looks at many intervals instead of simply the
losses that exceed the value-at-risk.

The statement that a fraction F(x) F(y) of the returns r should satisfy
y r x is equivalent to the statement that a fraction F(x) should satisfy r x;
this in turn implies that a fraction F(x) should satisfy F(r) F(x). But if a frac-
tion F(x) satisfies F(r) F(x), then the transformed variable u F(r) is uni-
formly distributed on the interval [0,1]. (If this seems confusing, just substitute
y for F(x); if P(u y) y for y [0,1], then the random variable u is uni-
formly distributed on the interval [0,1].) This leads immediately to a statistical
test: if the estimate of the distribution function F actually is the distribution
function of the return r, then the transformed random variable u F(r)
should be distributed uniformly on the interval [0,1]. This can be examined
using standard tests of goodness of fit such as the Kolmogorov-Smirnov test.
Some authors have advocated a variant known as Kuiper’s statistic, described
in sources cited in the notes. 

These tests appear to require a minimum of between 500 and 1000
observations for the results to be meaningful. This is practical when the
purpose of back testing is to select among approaches for computing VaR
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but may be a problem if the purpose is to monitor the performance of a
model currently in use.

Similar to the simple tests based on exceptions described above, this
is a test of the marginal distribution. If the VaR model correctly estimates
the conditional distributions, the us from different dates should be inde-
pendent, that is, ut+j should be independent of ut for j 0. This can be
evaluated using time-series tests for dependence. An additional caveat is
that tests based on the entire distribution are not necessarily the best
approach, precisely because they are based on the entire distribution.
Errors in modeling the center of the distribution can lead to rejection of
the VaR model, even though such errors are unimportant for risk man-
agement. This criticism can be addressed by introducing a weighting func-
tion that weights deviations in one part of the distribution more heavily
than those in others.

The approach of transforming the returns to construct uniformly dis-
tributed random variables can be extended by introducing another transfor-
mation to create normal random variables. If F is the distribution function
of a random variable z and the transformed random variable u F(z) is uni-
formly distributed on [0,1], then the random variable z F–1(u) has the dis-
tribution F, where F–1 is the inverse of F. Applying this idea to the standard
normal distribution function N, the random variable z N–1(u) has a stan-
dard normal distribution. This observation, together with the earlier one
that u F(r) is uniformly distributed if F is the distribution function of r,
implies that, if F is the distribution function of r, then the transformed ran-
dom variable

(17.1)

has a standard normal distribution. Also, the zs from different dates should
be independent, that is, zt+j should be independent of zt for j 0.

The transformation in equation (17.1) is convenient, because it sets
the problem in the standard Gaussian likelihood-based testing framework.
Whether F correctly describes the location and dispersion of the return r
can be evaluated by testing whether the mean and variance of z are 0 and
1, respectively, while whether it captures the fatness of the tails of the dis-
tribution of returns can be tested by nesting the normal within a fat-tailed
family, such as the t-distribution that includes the normal as a special case.
Time-series dependence among the zs for different dates can be evaluated
by testing that the autocorrelation coefficient is 0. If one is interested
exclusively in a certain part of the distribution, it is possible to base tests
on the truncated normal distribution. Results in a source cited in the notes
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indicate that these tests have reasonable power to detect biased VaR mod-
els with as few as 100 observations.

WHAT DO WE KNOW ABOUT THE PERFORMANCE OF THE VARI-WHAT DO WE KNOW ABOUT THE PERFORMANCE OF THE VARI-WHAT DO WE KNOW ABOUT THE PERFORMANCE OF THE VARI-WHAT DO WE KNOW ABOUT THE PERFORMANCE OF THE VARI-
OUS APPROACHES?OUS APPROACHES?OUS APPROACHES?OUS APPROACHES? 

Little information is publicly available about the performance of VaR mod-
els applied to actual portfolios. However, there have been several studies of
artificial test portfolios, using simple tests based on exceptions. In this set-
ting the limitations of the simple tests based on exceptions can be overcome
by simulating results for many different portfolios with many different
samples. 

PORTFOLIOS WITH LINEAR VALUE FUNCTIONS

When the value of the portfolio is a linear function of the underlying market
factors, the linear and quadratic approximations used in the delta-normal
and delta-gamma-normal methods are exact and do not introduce any
errors. Thus, differences among the methods are due to the fact that the dis-
tributions used may not correspond to the distribution of the actual changes
used in the historical simulation method. 

Hendricks (1996) examines the performance of the different methodol-
ogies with a range of foreign exchange portfolios using the U.S. dollar prices
of the foreign currencies as the market factors. Specifically, he considered:
(i) the historical simulation approach using four samples of past data (the
past 125, 250, 500, and 1250 days); (ii) the delta-normal method using an
equally weighted covariance matrix estimator with five samples of data (the
past 50, 125, 250, 500, and 1250 days); and (iii) the delta-normal method
using an exponentially weighted covariance matrix estimator with three
choices of � (0.94, 0.97, and 0.99). For each of the 12 value-at-risk method-
ologies, he calculated one-day value-at-risk measures for 1000 randomly
selected foreign currency portfolios for each of 3005 days. 

Hendricks found no systematic difference between 95% confidence
level value-at-risk measures obtained using the historical simulation
method and those obtained using the delta-normal method, in that the
averages (over time and portfolios) of the value-at-risk measures were very
similar. However, at the 99% confidence level, the historical simulation
value-at-risk measures were significantly larger than those obtained using
the delta-normal method. This occurs because the distributions of changes
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in exchange rate and other financial variables have fat tails relative to the
normal distribution, that is, extreme price changes are more frequent than
the normal distribution would predict. Because it directly uses the actual
price changes, the historical simulation method captures the actual fre-
quency of extreme price changes and computes a larger value-at-risk. 

The lack of systematic differences between the historical simulation and
delta-normal methods in computing the 5% value-at-risk measures is per-
fectly consistent with this explanation, because the fat tails of the actual
data are observed farther out in the tails of the distribution. Specifically, for
many financial time series the 5% quantile of the actual distribution (that is,
the loss that is exceeded with a probability of only 5%) appears to be not
much different from the 5% quantile of a normal distribution with the same
mean and variance. Since the 5% value-at-risk is the negative of the 5%
quantile of the distribution, this is just another way of saying that the heavi-
ness happens too far out in the tails to have an important impact on the 5%
value-at-risk.

The statement that Hendricks found no important systematic differ-
ences between the methods in computing 5% value-at-risk is a statement
that the averages across time and portfolios were similar. The averages,
however, mask the variability in the estimates. For a particular portfolio on
a particular date, the value-at-risk estimates computed using the different
methods often differed considerably. Thus, for any particular portfolio and
date some of the methods must have provided poor estimates, and it may
be that all methods provided poor estimates. This is true for both 5% and
1% value-at-risk measures. In fact, Hendricks (1996, p. 48) writes, “differ-
ences in the range of 30 to 50 percent between the risk measures produced
by specific approaches on a given day are not uncommon.” The 99% confi-
dence VaR measures computed using the historical simulation method dis-
play the greatest differences with the other methods. This is not surprising,
because the historical simulation estimate of value-at-risk is based on the
observations in the tail of the distribution. Inherently there are few obser-
vations in the tail and very few observations in the extreme tail. Thus, the
historical simulation 1% value-at-risk estimates are in effect based on a
small number of observations, and it is inevitable that they display consid-
erable sampling variation. This is consistent with Jorion’s (1996) analysis
of the estimation error in value-at-risk estimates. 

Overall Hendricks’s results suggest that the delta-normal method does
a good job of computing 5% value-at-risk measures for linear portfolios
but appears to result in downward-biased 1% value-at-risk measures due
to the failure of the normal distribution to reflect the fat tails in the data.
Unfortunately, it is difficult to generalize about the magnitude of the bias in
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computing 1% value-at-risk measures because the fatness of the tails differs
across equity, foreign exchange, and interest-rate series, and even across
interest rates of different maturities. The historical simulation method,
which does not suffer from this bias, tends to be inaccurate in computing
1% value-at-risk measures because the estimate of the value-at-risk is based
on only a very few observations. When only small samples of past data are
used, the historical simulation method is inaccurate in computing the 95%
confidence value-at-risk measures for the same reason. Other sources cited
in the notes also find that the delta-normal approach provides downward-
biased estimates of the 99% confidence value-at-risk for linear portfolios. 

PORTFOLIOS WITH NONLINEAR VALUE FUNCTIONS

For portfolios that include options and other portfolios in which the
value is a nonlinear function of the underlying market factors, there is a
compelling theoretical reason to be concerned about the performance of
the delta-normal method, for this method is based on a linear approxi-
mation to the value of the portfolio. To the extent that the nonlinearity
in the portfolio value is important and large changes in the market fac-
tors are possible, the delta-normal method will result in incorrect esti-
mates of the value-at-risk because the linear approximation will not
capture the impact of large changes in the market factors on the value of
the portfolio. This concern is ameliorated when the value-at-risk is com-
puted over short horizons, such as one day, because large changes in the
market factors are less likely and the linear approximation is therefore
more likely to be adequate.

Similar concerns exist for the delta-gamma-theta-normal method,
which is based on a quadratic approximation of the portfolio value. To the
extent that a quadratic approximation does not capture the effect of
changes in the market factors on the value of the portfolio, the delta-
gamma-theta-normal method will not fully reflect the risk of the portfolio. 

In a paper devoted to studying the tradeoff between accuracy and com-
putational time, Pritsker (1997) compares the accuracy of the delta-normal,
full Monte Carlo, delta-gamma Monte Carlo, and modified grid Monte
Carlo methods using portfolios of European-style foreign exchange options.
The modified grid Monte Carlo method uses a low-order grid for the mar-
ket factors for which the value is nonlinear and a first-order Taylor series
(i.e., delta) approximation for the other factors. With the options portfolios,
he finds that full Monte Carlo, which captures the nonlinearity in the values
of the options, can produce value-at-risk estimates considerably different
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from the analytic methods. As expected, the delta-normal method overstates
the value-at-risk of portfolios that include long options positions and under-
states the value-at-risk of portfolios that include short options positions.
This is also the case for the method Pritsker calls delta-gamma-delta, though
the over- and understatements are smaller. The delta-gamma Monte Carlo
and modified grid Monte Carlo methods perform much better than the ana-
lytic methods, though these methods still over- or understated value-at-risk
for about 25% of the portfolios.

Abken (2000) examined the performance of scenario simulation on a
portfolio involving interest-rate derivatives. Gibson and Pritsker (2000)
compared the performance of scenario simulation and principal compo-
nents grid Monte Carlo, also using portfolios of interest-rate derivatives.
Not surprisingly, delta-normal is fastest but least accurate, and the approx-
imate Monte Carlo methods are slower but more accurate than the delta-
normal approach but faster and less accurate than the full Monte Carlo.
Modified grid Monte Carlo turns out to be more accurate than scenario
simulation, because the errors due to the approximation of the value func-
tion in modified grid Monte Carlo are smaller than those stemming from
the discrete approximation of the distribution in scenario simulation. While
neither Abken nor Gibson and Pritsker compared principal components
and modified grid Monte Carlo, one should expect that the accuracies of
the two methods are similar, a reasonable assumption because the grid in
modified grid Monte Carlo could be chosen to have the same structure as
that used in principal components grid Monte Carlo. More surprising is the
fact that scenario simulation, modified grid Monte Carlo, and principal
components Monte Carlo are dominated by the delta-gamma-theta Monte
Carlo method. This is presumably because the delta-gamma-theta approxi-
mation provided a good description of the changes in the values of the
portfolios used in the comparisons. There are likely to be many portfolios
for which this is not the case. 

Smithson (1998, Chapter 19) considers weakly and strongly nonlinear
portfolios, including swaps, FX-forward contract, and interest-rate and FX
options. For the weakly nonlinear portfolio, the historical simulation,
Monte Carlo simulation, delta-gamma, and delta-gamma-normal methods
produce similar value-at-risk estimates. However, for the strongly nonlinear
portfolio, the historical and Monte Carlo simulation methods produce
value-at-risk estimates that are markedly different from those produced by
the two analytic methods. 

It is difficult to generalize from these results, because how to identify ex
ante which portfolios are strongly nonlinear is not clear. In this context, a
strongly nonlinear portfolio is one in which the delta-normal approximation
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does not perform well. Regardless, these results confirm that there is reason
to be concerned about the delta-normal and delta-gamma-normal methods
for portfolios that include options or other instruments with values that are
nonlinear functions of the underlying market factors. 

IMPLEMENTATION RISK

In an intriguing study, Marshall and Siegel (1997) provided identical port-
folios of financial instruments of varying complexity to different vendors of
risk-management systems and asked them to compute value-at-risk esti-
mates using a common model (RiskMetrics) and a common data set (the
RiskMetrics data set from a particular day). 

Strikingly, the value-at-risk estimates for the same portfolios provided by
different software vendors differed, sometimes considerably. The differences
were small for the portfolios of simple instruments (FX forwards and money
market instruments) but were significant for the government bond, swap,
FX-option, and interest-rate option portfolios. Specifically, for these portfo-
lios the standard deviations (across different vendors) of the estimates were
17%, 21%, 25%, and 23% of the medians (across vendors) of the value-at-
risk estimates. Value-at-risk estimates for the FX-option portfolio computed
using a variety of simulation methods displayed even more striking variation,
as the standard deviation of the estimates was 63% of the median estimate.
These differences in results due to differing implementations of the same for-
mal model are what Marshall and Siegel call implementation risk. 

The variation in estimates appears to be at least partly due to a combina-
tion of differences in vendors’ valuations of the instruments, differences in the
way instruments are mapped, and other factors, such as differences in interpo-
lating term structures. Given that Marshall and Siegel did not have access to
the details of the implementations but had only the model outputs, it is impos-
sible to determine the exact importance of these differences relative to other
factors, such as logical and coding errors. However, the results suggest that
one vendor did not understand completely the valuation and risk of interest-
rate swaps. Even setting aside this issue, the differences in value-at-risk esti-
mates across different vendors using the same basic methodology and data are
not comforting. 

NOTES

The discussion of the simple approach to back testing based on exceptions
draws upon Kupiec (1995), who provides a likelihood ratio test for evaluating
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VaR models and analyzes its power. Kupiec (1995) also analyzes statistical
tests based upon the length of time elapsed before the first exception, which he
terms a failure. The idea behind the test based on the time until first failure is
that a model that systematically underestimates value-at-risk will tend to have
a short time until the first failure, while a model that overestimates value-at-
risk will likely have a long time until the first failure. Lopez (1999) analyzes
other back testing methods. 

Conditional exceptions from a VaR model are one form of conditional
interval forecast, which is analyzed by Chatfield (1993) and Christoffersen
(1998), who provides a likelihood ratio test of conditional coverage.
Christoffersen, Hahn, and Inoue (1999) present a moment-based frame-
work for evaluating VaR models. 

The transformation u F(r) is due to Rosenblatt (1952); its use in
evaluating value-at-risk models is due to Crnkovic and Drachman (1996),
as is the suggestion to use Kuiper’s statistic. Diebold, Gunther, and Tay
(1998) also suggest the use of the transformation u F(r). Kuiper’s statis-
tic is described in Crnkovic and Drachman (1996) and Press et al. (1992)
and the references therein. The Kolmogorov-Smirnov test is described in
many mathematical statistics texts. 

Morgan Guaranty Trust Company (1994; 1996) presents evidence that
the delta-normal method works reasonably well for 5% value-at-risk for
portfolios with linear value functions, which implies that the 5% quantiles
of the actual distribution of the changes in the market factors and the nor-
mal distribution with the same variance are reasonably close. Smithson
(1998, Chapter 19) also reports results consistent with this.

Gizycki and Hereford (1998) find considerable dispersion in Australian
banks’ estimates of the market risk in a number of pre-specified portfolios.
Crouhy, Galai, and Mark (1998) provide an overview of model risk.

=

=
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Gaming the VaR

As emphasized in the previous chapter, value-at-risk measures are estimates
of market risk based on past data, for example, the squared returns used to
estimate the covariance matrix. While pure statistical error in value-at-risk
estimates clearly exists, at first glance there seems to be no reason to think
VaR estimates are systematically biased. Standard estimators of the covari-
ance matrix are (at least approximately) unbiased, suggesting that value-at-
risk estimates are just as likely to overestimate as underestimate risk. But
this reasoning does not hold when portfolio managers seek to evade risk or
position limits based on value-at-risk. To the extent that the portfolio man-
ager or trader understands the errors in and limitations of the value-at-risk
estimate, he will be able to game the value-at-risk and enter into positions
for which the value-at-risk estimate understates the portfolio risk. 

To illustrate this, this chapter describes a simple example involving the
use of delta-normal value-at-risk. It shows the extent to which estimation
errors in value-at-risk due to sampling variation in the estimated covariance
matrix permit a portfolio manager or trader to exceed the risk limits.
Although the example allows for only linear positions, it is clear that VaR
can be gamed if the portfolio manager is allowed to sell options. In this
case, the portfolio manager can sell options with probabilities of exercise
less than the probability � used to compute the VaR estimate.

GAMING ESTIMATION ERRORS IN THE COVARIANCE MATRIX

Given some knowledge of market implied volatilities, on many days the portfo-
lio manager will know for which markets and instruments historical estimates
of market volatility underestimate current market volatility and for which mar-
kets and instruments historical estimates overestimate current market volatility.
He is also likely to have information about the relationship between current
market correlations and historical estimates of them. For example, shortly
prior to the departure of the U.K. pound and Italian lira from the European
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Exchange Rate Mechanism in September 1992, one could have predicted that
the relatively high historical correlations among dollar/pound, dollar/lira, and
dollar/Deutsche mark exchange rates were unlikely to persist. Due to such
market knowledge, on many days a portfolio manager will have a good under-
standing of the errors in the value-at-risk estimate. If he wants, he will be able
to evade risk limits based on value-at-risk by choosing portfolios for which he
knows that the value-at-risk estimate is less than the true value-at-risk. To the
extent that he does this, the estimated value-at-risk will be downward-biased,
i.e., the true value-at-risk will exceed the estimated value-at-risk.

To illustrate the problem, we consider an extreme case in which the port-
folio manager knows the true covariance matrix and deliberately exploits his
knowledge of the sampling errors in the estimated covariance matrix in order
to take on as much risk as possible. Assuming knowledge of the true covari-
ance matrix is an extreme case of assuming that the portfolio manager has
information about the errors in the estimated covariance matrix and provides
an upper bound on the bias in estimated value-at-risk. The portfolio manager
may be evading risk limits due to hubris, in a desperate gamble to recover
previous losses, or because convexities in the manager’s compensation pack-
age make this the strategy that maximizes expected compensation. 

The setup involves K assets, which may be interpreted as either individ-
ual assets or the standard positions often used in value-at-risk systems. The
asset returns have a multivariate normal distribution with a mean vector µ
and a (nonsingular) covariance matrix Σ. The value-at-risk measure is not
based on the covariance matrix Σ, but rather on an estimate

(18.1)

where rn is a K 1 vector consisting of the returns n periods in the past and the
weights  satisfy �n 1. Equation (18.1) includes
as special cases both the equally weighted covariance matrix estimator defined
by  and the exponentially weighted covariance matrix estimator
defined by  for n 1, . . . , N. In estimating
the covariance matrix it is commonly assumed that µ 0, because for the data
commonly used in financial applications the mean has only trivial impact on
the estimate of the covariance matrix.

Using  the estimated portfolio variance and value-at-risk are 
and  respectively, where k is a constant determined by the prob-
ability level of the value-at-risk estimate (often k 1.645 or 2.326), w is a
K 1 vector of portfolio weights, and for simplicity we make the common
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assumption � 0. In contrast, the true value-at-risk is  where,
as above,  � is the actual covariance matrix of changes in the market values
of the positions. We are interested in the relationship between the estimated
and true value-at-risk measures  and  under the
assumption that the portfolio manager maximizes the true value-at-risk

 subject to a constraint that the estimated value-at-risk 
equals a constant. 

The difference between the estimated and true value-at-risk measures
stems from the fact that the number of observations N used to estimate the
covariance matrix may be small relative to its dimension K. In extreme
cases, the dimension of the covariance matrix may equal or exceed the
number of observations, and as a result the estimated covariance matrix 
is singular. This implies that there are many risky portfolios for which the
estimated portfolio variance  and therefore the estimated value-at-
risk  are zero. Were a portfolio manager permitted to execute
trades in all markets, it would be possible to enter into an arbitrarily risky
position for which the estimated value-at-risk is zero. If value-at-risk is
used in setting position limits or in performance evaluation, the manager
may have an incentive to do so. 

Most portfolio managers have access to a limited range of markets, so
the case of a portfolio manager who is able to enter into a risky position
with an estimated value-at-risk of zero because the estimated covariance
matrix is singular is not realistic. However, a fixed-income portfolio man-
ager will often be able to execute transactions in all segments of the U.S.
dollar yield curve, and some hedge fund managers do have access to large
numbers of markets. In the context of some risk-measurement systems,
these situations correspond to K equal to approximately 20 or greater. In
such situations, it turns out that the estimated covariance matrix, while not
singular, can be nearly so. To the extent that the trader enters into positions
that systematically exploit errors in the estimated covariance matrix, the
true value-at-risk can be much larger than the value-at-risk measure based
on the estimated covariance matrix.

GAMING ESTIMATION ERRORS IN THE COVARIANCE MATRIX: A 
SIMPLE EXAMPLE

We begin with a simple example to provide a geometric interpretation of
the bias. In the example there are two assets, the returns of which are mul-
tivariate normal with   and  so that the
true covariance matrix is

= k w′�w,

k w′�w k w′�w,

k w′�w k w′�w

�

w′�w,
k w′�w,

�1 0.06,= �2 0.04,= � 0.6,=
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The estimated covariance matrix is not equal to Σ, but instead is 

Letting  denote the portfolio weights, the restriction that the
estimated value-at-risk be equal to a constant defines an ellipse in the 
space of the form  equivalent to  The solid
curve in Figure 18.1 shows this ellipse for  That is, it shows the port-
folio weights  for which the estimated portfolio variance is one. 

For each choice of the true value-at-risk, the true covariance matrix Σ
defines an ellipse of the form  or 
The two dotted curves in Figure 18.1 show two such true ellipses. The
inner ellipse, labeled  corresponds to a portfolio variance of
one. It differs from the solid curve, which displays the ellipse corresponding
to an estimated portfolio variance of one, because  The outer ellipse,
labeled  corresponds to a portfolio variance of 2.45.

Recognizing that each true ellipse describes the set of portfolios with a
given true value-at-risk, choosing the portfolio to maximize the true value-
at-risk subject to a constraint on the estimated value-at-risk amounts to
picking a portfolio that is on the largest possible true ellipse (i.e., the largest
possible ellipse of the form ), while still intersecting
the constraint ellipse  This occurs at the two points labeled

 and  where the true ellipse  is tangent to the con-
straint ellipse  These portfolios have variance 2.45. 

Figure 18.1 shows the optimal portfolio for only one realization of the esti-
mated covariance matrix �. While for this realization  and  lie outside
the ellipse  they will not always lie outside it. When the sample
results in an estimated correlation close to the true correlation, the ellipse

 will have the same orientation as the true ellipse 
when the estimated variances are large relative to the true variances, the con-
straint on estimated value-at-risk will force w to be small and the ellipse

 will lie inside  With K 2 and reasonable values of
N the bias is not large, because when K 2 the covariance matrix can be esti-
mated reasonably precisely with relatively few observations. However, the next
section shows that the bias can be large for realistic choices of K and N. 
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GAMING ESTIMATION ERRORS IN THE COVARIANCE MATRIX: 
GENERAL CASE

To analyze the general case, we consider the problem of maximizing the
value-at-risk

(18.2)

subject to the constraint

(18.3)

where we allow short positions, that is, negative elements of w. Letting 
denote the solution, the true value-at-risk is  The relationship
between the estimated and true value-at-risk is summarized by the ratio 

FIGURE 18.1 Portfolio choices when the trader seeks to maximize the true 
value-at-risk subject to a constraint on the estimated value-at-risk
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We focus on the distribution of the ratio of estimated to true value-at-risk
rather than the ratio of true to estimated value-at-risk because the esti-
mated value-at-risk is often close to zero, distorting some of the statistics
we examine. 

A nice feature of the ratio is that it depends on neither k, c, the choice
of units, nor the overall level of volatility. Although less obvious, the ratio
above also does not depend on the correlations among the asset returns.
In particular, a source cited in the notes shows that R  is the square
root of the minimal eigenvalue of  where  is the estimated covariance
matrix constructed using a sample of N vectors zn drawn from a multi-
variate normal distribution with a mean of zero and covariance matrix I.
That is, letting Σ1/2 be the symmetric square root of Σ, the vector zn
defined zn Σ –1/2xn is distributed multivariate normal with a covariance
matrix I, and

and R  is the square root of the minimal eigenvalue of 
One way to understand why the covariance matrix Σ does not

affect the distribution of the ratio is to notice that the vector z Σ–1/2r
can be interpreted as the returns of K new assets formed from linear
combinations of the original K assets. For the new assets, the portfolio
equivalent to w is y Σ1/2w, for y′z w′Σ1/2Σ–1/2r w′r. The choice
to work with y and z instead of w and r is of no importance, because
the portfolio returns and value-at-risk measures that may be achieved
are identical. Then, in terms of y, the optimization problem corre-
sponding to (18.2) and (18.3) is

  subject to 

Since the covariance matrix Σ does not appear in this problem, the solution
cannot depend on it. On a figure analogous to Figure 18.1 but in the (y1, y2)
space, the dotted ellipses would be circles, and the solid ellipse would not be
a circle only because of sampling variation, that is, only because  

Table 18.1 shows the expected values of R  the ratio of estimated to
true value-at-risk, for K 10, 20, 50, and 100 when  is estimated using
the equally weighted covariance matrix estimator
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≡
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with various values of N. In addition, the first row of the table shows the
expected value of the ratio when the covariance matrix is estimated using
the exponentially weighted covariance matrix estimator

where � 0.94. The results in the table show that the bias is large
except when the number of available instruments is small and the num-
ber of observations used in estimating the covariance matrix is large. For
example, when K 50 and N 200, the average ratio of estimated to
true value-at-risk is 0.518. Even when N 1000, which corresponds
to using about four years of daily data to estimate the covariance matrix,
when K 50 the average ratio of estimated to true value-at-risk is
0.786. Moreover, the bias is very large for the exponentially weighted
covariance matrix estimator. Even when K is only 10 the mean ratio of
estimated to true value-at-risk is 0.551, and when K 100 it is only

TABLE 18.1  Expected values of  the ratio of estimated to true 
value-at-risk, for various combinations of K and N. The expected values 
are calculated under the assumption that the portfolio manager maximizes 
value-at-risk subject to a constraint on estimated value-at-risk. 

Dimension of Covariance Matrix (K)

Number of Observations 
Used to Estimate Covariance 

Matrix (N) 10 20 50 100

Exponential Weighting with 
λ 0.94 0.551 0.372 0.131  0.029

50 0.606 0.405 0.0001 0.000

100 0.725 0.586 0.312 0.000

200 0.809 0.710 0.518 0.306 

500 0.879 0.817 0.697 0.563 

1000 0.915 0.871 0.786 0.692 

 1Entries of zero indicate that the estimated covariance matrix is singular for those 
combinations of K and N.
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0.029, that is, estimated value-at-risk is typically only 2.9% of true
value-at-risk.

To interpret these values of K, note that, in value-at-risk systems, it is
common to summarize the yield curve in each currency in terms of approx-
imately 20 market factors or standard positions, and an actual instrument
(e.g., a bond or interest-rate swap) is interpreted as a portfolio of the 20
standardized positions. From the perspective of the risk-measurement sys-
tem, a fixed-income portfolio manager is just working with portfolios of
these 20 standardized positions. Thus, K 20 corresponds to a portfolio
manager who trades the entire yield curve in one currency, while K 50
and K 100 correspond to trading the yield curves in two to three and
five to six currencies, respectively. For some hedge funds, K 100 may
actually understate the available trading opportunities. 

Table 18.2 reports various percentiles of the distributions of R
The medians in this table are close to the means in Table 18.1, indicating
that the means provide a reasonable measure of the center of the distribu-
tions of the ratios of estimated to true value-at-risk. Strikingly, even many
of the 90th percentile values are relatively small, and none of them exceeds
1. For example, when K 50 and N 200, the 90th percentile of the
ratio of estimated to true value-at-risk is 0.569, only slightly higher than
the mean of 0.518. Even when N 1000, when K 50 the 90th percen-
tile of the ratio of estimated to true value-at-risk is 0.798. Also, as one
might expect after examining the means, all of the percentiles are strik-
ingly small for the exponentially weighted covariance matrix estimator.
Even when K is only 10, the 90th percentile of the ratio of estimated to
true value-at-risk is 0.612, and when K 100 it is only 0.032. 

OTHER ASSUMPTIONS ABOUT THE 
PORTFOLIO MANAGER’S BEHAVIOR

In the analysis above, it was assumed that the portfolio manager knows the
true covariance matrix Σ and seeks to evade risk limits and take on as much
risk as possible. As a result, the measures of bias above represent upper
bounds on the bias in estimated value-at-risk in the delta-normal setting. If
the trader had a better estimate than �, but did not know Σ, these upper
bounds would not be reached. 

Sources cited in the notes show that the value-at-risk estimate can be
biased even if the portfolio manager relies on the estimated market variances
and covariances and does not have knowledge of the true covariance matrix.
For example, the manager would underestimate the risk by determining a

=
=

=
=
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= =

= =
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TABLE 18.2  Percentiles of the distributions of  the ratio of estimated to 
true value-at-risk, for various combinations of K and N. The expected values are 
calculated under the assumption that the portfolio manager maximizes value-at-risk 
subject to a constraint on estimated value-at-risk. 

Dimension of Covariance Matrix (K)

Number of Observations 
Used to Estimate Covariance 

Matrix (N) Percentile 10 20 50 100

Exponential Weighting 
with λ 0.94 

10th
25th
50th
75th
90th

0.490
0.520
0.554
0.581
0.612

0.333
0.351
0.374
0.394
0.409

0.117
0.124
0.132
0.139
0.145

0.026
0.027
0.029
0.030
0.032

50 10th
25th
50th
75th
90th

0.539
0.571
0.607
0.643
0.674

0.352
0.378
0.405
0.433
0.456

0.0002

0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.000

100 10th
25th
50th
75th
90th

0.675
0.700
0.728
0.754
0.774

0.543
0.563
0.588
0.609
0.627

0.282
0.298
0.312
0.328
0.342

0.000
0.000
0.000
0.000
0.000

200 10th
25th
50th
75th
90th

0.772
0.791
0.810
0.829
0.846

0.680
0.693
0.712
0.727
0.740

0.494
0.506
0.519
0.531
0.543

0.288
0.297
0.306
0.315
0.323

500 10th
25th
50th
75th
90th

0.855
0.866
0.880
0.892
0.903

0.795
0.805
0.818
0.828
0.836

0.681
0.688
0.697
0.706
0.713

0.548
0.556
0.563
0.571
0.577

1000 10th
25th
50th
75th
90th

0.899
0.907
0.915
0.924
0.932

0.856
0.863
0.871
0.879
0.886

0.774
0.781
0.787
0.793
0.798

0.682
0.687
0.693
0.698
0.702

 2Entries of zero indicate that the estimated covariance matrix is singular for those 
combinations of K and N.

R �( ),
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hedge based on the estimated covariance matrix of two assets, and then,
after establishing the hedge, estimating the risk of the hedged portfolio using
the same estimated covariance matrix. Similarly, the risk will be underesti-
mated if the portfolio manger uses the sampling error to select a portfolio to
achieve a small estimated portfolio standard deviation or mean-variance
efficient portfolio.

In the case of a trader who seeks to evade risk limits and take on as
much risk as possible, the bias is large, except when the number of avail-
able assets is small (i.e., less than or equal to 20) and the number of obser-
vations used in estimating the covariance matrix is large (greater than or
equal to 500). In the other two cases, the bias in estimated value-at-risk is
smaller but still large for some reasonable combinations of parameters. In
particular, the bias is very large when the covariance matrices are estimated
by weighting the data using exponentially declining weights. This raises
concerns about the use of this approach. 

HOW REASONABLE IS THIS?

First, it is explicitly assumed that the trader is deliberately behaving badly.
Also, our analysis does not consider other mechanisms to control risk-taking,
such as position limits on individual instruments. Nonetheless, in considering
the use of value-at-risk in the control function, it is reasonable to consider the
worst case. Thus, these results raise questions about the use of value-at-risk
in the control and performance evaluation of individual decision-making
units such as portfolio managers, traders, or trading desks. For firms or com-
panies with multiple portfolios or trading desks, whether and how the biases
at the level of the individual decision-making unit aggregate to biases at the
firm level will depend upon the interactions among the portfolios chosen by
the individual units.

Setting this issue aside, if value-at-risk is to be used to control individ-
ual traders or trading desks, the results in Tables 18.1 and 18.2 push one in
the direction of estimating the covariance matrix using a large sample of
past price changes. However, this comes at the cost of capturing changes in
volatility, which may be a more important consideration.

One additional issue is that the analysis is restricted to the delta-normal
setting, in which the changes in the value of the portfolio are linear in the
changes in the underlying market factors. A trader who writes options
could do additional damage by entering into portfolios for which the loss,
while no more likely than indicated by the value-at-risk estimate, is very
large when it does occur. 
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NOTES

The analysis of the case of a trader who seeks to maximize true value-at-
risk subject to a constraint on estimated value-at-risk is due to Ju and Pear-
son (2000), who also analyze two other cases: (i) a trader who seeks to
maximize expected return subject to a constraint on estimated value-at-
risk; and (ii) a trader who has identified a preferred portfolio but is unable
to hold it because the estimated value-at-risk of the portfolio exceeds some
specified limit. In this case, they assume that the trader seeks to hold a port-
folio as close as possible to the preferred portfolio, subject to the constraint
on estimated value-at-risk. For each of these situations, they determine the
bias for different assumptions about the number of different instruments to
which the trader has access and the number of observations used in esti-
mating the covariance matrix.
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Coherent Risk Measures

Value-at-risk was criticized from the outset because it says nothing about
the magnitude of losses greater than the value-at-risk estimate. Artzner,
Delbaen, Eber, and Heath (hereafter, ADEH) (1997; 1999a) offer a subtler,
and much deeper, criticism: value-at-risk does not correctly aggregate risk
across portfolios. Combined with another property that ADEH argue any
reasonable risk measure must possess, this implies that value-at-risk does
not correctly capture the effect of diversification. Ironically, aggregating
risk across portfolios and capturing the benefits of diversification are two
of the commonly cited advantages of value-at-risk.

As a substitute for value-at-risk, ADEH propose a new class of coherent
risk measures. They argue that one should restrict attention to coherent risk
measures because only such measures are consistent with certain basic proper-
ties that any reasonable risk measure must have. Value-at-risk is a coherent risk
measure if the possible change in portfolio value is described by the normal dis-
tribution, but not generally. However, it turns out that both scenario-based
measures and the expected shortfall, defined as the expected loss conditional on
a loss greater than or equal to the value-at-risk, are coherent measures of risk.

LIMITATIONS OF VALUE-AT-RISK

To see the problems with value-at-risk, consider two portfolios of digital
puts and calls on the same underlying asset, price, or rate. Portfolio A con-
sists of $400,000 in cash and a short digital put with a notional amount of
$10 million, a 4% probability of being exercised, and time to expiration
equal to the time horizon of the value-at-risk estimate. Portfolio B consists
of $400,000 in cash together with a short digital call with a notional
amount of $10 million, a 4% probability of being exercised, and a time to
expiration equal to the time horizon of the value-at-risk estimate. Assume
for simplicity that the interest rate is zero and that the risk-neutral proba-
bilities of exercise of both options are also 4%. These assumptions imply
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that the current mark-to-market values of the two portfolios are both
$400,000 0.04($10,000,000) $0. 

For both portfolios, the probability distribution of possible profits and
losses over the time horizon of the value-at-risk estimate is

Clearly these portfolios have some risk. But because the probability of a loss
is only 4%, 95% value-at-risk measures would indicate that the two portfo-
lios have none. Even worse, a 95% value-at-risk measure would also indicate
no risk for a third portfolio consisting of $40 million in cash, a short digital
call with a notional amount of $1 billion, and a profit and loss distribution of

This simple example illustrates that value-at-risk does not reflect the risk of
low probability outcomes, even though these may entail large or even crip-
pling losses. Such positions can be created by selling out-of-the-money options
or through other transactions that are equivalent to selling such options. While
99%-confidence value-at-risk measures would identify the portfolios above as
risky, similar positions with loss probabilities of less than 1% would continue
to be identified as risk-free.

To see a less obvious problem, consider the aggregate portfolio consist-
ing of the sum of portfolios A and B, and the diversified portfolio consisting
of one-half of portfolio A and one-half of portfolio B. Because the digital put
and call will not both be exercised, the distribution of profit and loss for the
aggregate portfolio is

and the distribution of profit and loss for the diversified portfolio is

Thus, the 95%-confidence value-at-risk measures of the aggregate and
diversified portfolios are $10 million and $5 million, respectively. The

– =

profit
$400,000 with probability 0.96,

$10,000,000– with probability 0.04.
=

profit
$40 million with probability 0.96,

$1 billion– with probability 0.04.
=

profit of aggregate portfolio $800,000 with probability 0.92,
$10,000,000– with probability 0.08,

=

profit of diversified portfolio $400,000 with probability 0.92,
$5,000,000– with probability 0.08.

=
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problem is that the value-at-risk of the aggregate portfolio exceeds the sum
of the value-at-risk measures of portfolios A and B (which are both zero),
and the value-at-risk estimate of the diversified portfolio exceeds the aver-
age of the value-at-risk estimates of portfolios A and B. ADEH argue that
no reasonable risk measure can have these properties, implying that value-
at-risk cannot be a reasonable risk measure.

COHERENT RISK MEASURES

The setup in ADEH (1997; 1999a) is a capital market with a finite num-
ber K of outcomes or states of the world. Let x and y be K-dimensional
vectors representing the possible state-contingent payoffs of two different
portfolios,  and the portfolios’ risk measures, a and b arbitrary
constants (with a 0), and r the risk-free interest rate. ADEH argue that
any reasonable risk measure should satisfy the following four properties:

(i) (subadditivity)
(ii) (homogeneity)
(iii) (monotonicity)
(iv) (risk-free condition)

In property (iii),  means that each element of y is at least as large as
the corresponding element of x. 

The first property says that the risk measure of an aggregate portfolio
must be less than or equal to the sum of the risk measures of the smaller port-
folios that constitute it and ensures that the risk measure should reflect the
impact of hedges or offsets. If this condition is not satisfied, then one can
reduce the risk of a portfolio by splitting it into two or more parts. In a bank-
ing context, this would imply that it is possible to reduce the capital require-
ment by splitting a bank into parts. This condition also permits decentralized
calculation of risk, since the sum of the risk measures of subportfolios pro-
vides a conservative estimate of the risk of the aggregate portfolio. 

The second property says that the risk measure is proportional to
the scale of the portfolio; for example, halving the portfolio halves the
risk measure. The first two properties together imply that the risk of a
diversified portfolio must be less than or equal to the appropriate
weighted average of the risks of the instruments or subportfolios that
make up the diversified portfolio. For example, if the payoff of a diver-
sified portfolio is z wx (1 w)y, where w and 1 w are the weights
on two subportfolios with payoffs x and y, then properties (i) and (ii)

� x( ) � y( )
>

� x y+( ) � x( ) � y( )+≤
� ax( ) a� x( )=
� x( ) � y( ), if x y≤≥
� x b 1 r+( )+( ) � x( ) b–=

x y≤

= + – –



290  LIMITATIONS OF VALUE-AT-RISK

require that �(z) w�(x) (1 w)�(y). Risk measures that do not satisfy
these conditions fail to capture the benefits of diversification.

Value-at-risk satisfies (ii), (iii), and (iv), but is not a coherent risk mea-
sure because it fails to satisfy (i). For example, the aggregate portfolio of the
digital put and call discussed above fails to satisfy (i), while the diversified
portfolio fails to satisfy the combination of (i) and (ii) with a 1/2. How-
ever, value-at-risk satisfies property (i) if the price changes of all instruments
are described by a multivariate normal distribution. Under this assumption
it correctly aggregates risk and reflects the benefit of diversification. 

Property (iii) says it is good to receive cash. Specifically, if the portfolio
with payoffs y dominates that with payoffs x in the sense that each element
of y is at least as large as the corresponding element of x (i.e., x y), then
the portfolio with payoffs y must be of lesser or equal risk. One implication
of this is that delta-normal value-at-risk measures of the form 

are not coherent for portfolios with non-normal distributions. To see this,
compare the null portfolio (payoff of zero) to a free lottery ticket paying m
with probability 1/m. Clearly the lottery ticket is more desirable. However,
it has expected value m(1 m) 0(m 1) m 1, standard deviation

and value-at-risk , which is greater than zero whenever
m 1.37 and k 1.645. Thus, the delta-normal approximation implies that
the lottery ticket is riskier than the null portfolio, inconsistent with (iii).

Property (iv) says that adding a risk-free instrument to a portfolio
decreases the risk by the size of the investment in the risk-free instrument.
This property ensures that coherent risk measures can be interpreted as the
amount of capital needed to support a position or portfolio. 

A key result in ADEH (1999a) is that all coherent risk measures can
be represented in terms of generalized scenarios. To construct a general-
ized scenario risk measure, first construct a list of N scenarios of future
market factors and portfolio values, as might be done in Monte Carlo sim-
ulation or deterministic scenario analysis. Second, assign probabilities to
the N scenarios. These probabilities determine how the different scenarios
are weighted in the risk measure and need not reflect the likelihood of the
scenarios; they are probabilities in the sense that they are numbers
between 0 and 1 whose sum (over the N scenarios) is 1. 

≤ + –

=

≤

VaR expected value k standard deviation×–( )–=
k standard deviation expected value–×( )=

⁄ + – ⁄ =
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Third, repeat the assignment of probabilities M times to construct a set of
M probability measures on the N scenarios; these are the M generalized sce-
narios. For example, one measure might say that the N scenarios are equally
likely, while another might say that the nth scenario occurs with probability 1
while the other scenarios have probability 0. At most one of the probability
measures will correspond to the likelihoods of events, so unless M 1 (and
sometimes even in that case) the probability measures will not be based on the
risk manager’s assessment of the likelihood of the scenarios. Fourth, for each
of the M probability measures, calculate the expected loss. Finally, the risk
measure is the largest of the M expected losses. 

This seemingly abstract procedure corresponds to two widely used risk
measures, the expected shortfall measure defined by E[loss | loss cutoff ]
and the measure produced by the Standard Portfolio Analysis of Risk®

(SPAN®) system developed by the Chicago Mercantile Exchange and used
by many others.

SPAN®

The SPAN® system uses 16 scenarios of changes in the price of the underly-
ing instrument and the option implied volatility, the last two of which are
extreme scenarios. The performance bond (capital) requirement is com-
puted as the maximum of the loss on each of the first 14 of the scenarios
and 30% of the loss on each of the two extreme scenarios. This system can
be characterized in terms of 16 generalized scenarios if we introduce an
implicit 17th scenario of no change. The first 14 generalized scenarios each
assign probability 1 to one of the first 14 scenarios and probability 0 to all
other scenarios. The expected values for each of these generalized scenarios
are then just the losses on the first 14 scenarios. The 15th and 16th general-
ized scenarios assign probability 0.3 to each of the two extreme scenarios
and probability 0.7 to the no-change scenario. The expected values for
these two generalized scenarios are just 30% of the losses on the two
extreme scenarios. Taking the maximum expected loss over the 16 general-
ized scenarios then produces the SPAN® performance bond. 

EXPECTED SHORTFALL

Although it is less obvious, another coherent risk measure is the expected
shortfall measure defined by E[ loss | loss cutoff ], or E[ loss | loss VaR1–�]
if the cutoff is set equal to the 1−� confidence value-at-risk. Given an estimate
of the physical probability distribution reflecting the likelihoods of the various
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outcomes, consider all events with a probability of at least �. Supposing that
there are M such events Ai, i 1, . . . , M, assign to the outcomes that consti-
tute the event Ai their conditional probabilities P(xk | Ai) P(xk) P(Ai), yield-
ing M probability measures. The M events Ai together with these probability
measures make up M generalized scenarios, with expected losses E[ loss | Ai].
Because the losses that except the 1 � percent value-at-risk are the worst �
percent, the maximum expected loss maxi E[ loss | Ai] from among the M gen-
eralized scenarios is precisely the expected shortfall E[ loss | loss VaR1-α ]. 

WHAT SHOULD ONE TAKE AWAY FROM THIS?

Are conditions (i) through (iv) reasonable requirements for a risk measure?
This is up to the reader. ADEH offer them as axioms, and one either finds
them compelling or not. At a minimum, the analysis of ADEH serves to high-
light and clarify some of the limitations of value-at-risk. VaR is subadditive if
price changes are multivariate normal, and this approximation is widely used.
This avoids the issues raised by ADEH, at the cost of the approximation. 

In addition, ADEH (1997; 1999a) provide a strong impetus for the use
of expected shortfall measures, which at first glance seem to dominate VaR.
A convenient feature of expected shortfall is that it is only a small step
beyond value-at-risk, and virtually any approach for computing value-at-risk
can readily be adapted to compute expected shortfall.

Regardless, and despite their appeal, the ideas of ADEH seem so
far to have had limited impact on risk-management practice. The
explicitly scenario-based SPAN® system predates the analysis of
ADEH, and value-at-risk appears to be even more firmly established in
risk-management practice than it was when ADEH first presented their
ideas in 1996. A drawback of expected shortfall is that, while only a
small one, it is a step beyond value-at-risk. A convenient feature of
value-at-risk is that it is accessible to unsophisticated constituencies.
This may not be true of expected shortfall.

A drawback of explicitly scenario-based approaches is that it is unclear
how reasonably to select scenarios and probability measures on scenarios in
situations in which portfolio values depend on dozens or even hundreds of
risk factors. This requires significant thought and probably knowledge of the
portfolio. (ADEH (1997) argue that an approach that “requires thinking
before calculating . . . can only improve risk management.”) In situations
with many market factors, scenario-based approaches lose intuitive appeal
and can be difficult to explain to senior managers, boards of directors, regu-
lators, and other constituencies.

=
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NOTES

Applied work within the framework of coherent risk measures has mostly
centered on expected shortfall. Measures equivalent to expected shortfall
are widely used in the actuarial and insurance literature and elsewhere.
Rockafellar and Uryasev (2001) argue that expected shortfall (which they
call conditional value-at-risk) is useful for portfolio optimization and cite
some of the recent literature. Clarke (1998) provides a traditional view of
expected shortfall and other risk measures from a portfolio-management
perspective. 

Other than this, there has been only limited work on and analysis of
coherent risk measures. Studer (1999) suggests a method for finding the
worst loss in a given set of scenarios, which turns out to be a coherent risk
measure. Delbaen (2000) extends the theory of coherent risk measures to
general probability spaces and relates them to value-at-risk and game theory.
ADEH (1999b) and Delbaen and Denault (2000) analyze the internal alloca-
tion of capital and risk limits among the several divisions or trading desks of
a financial firm.

The SPAN® system dates to 1988 and is described more completely at
http://www.cme.com/span/span-ov1.htm. 
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A Few Issues in Risk Budgeting

Most of this book has focused on techniques for accomplishing risk bud-
geting, namely, value-at-risk and risk decomposition. Suppose that you
decide to implement a set of either soft or hard risk targets, budgets, or lim-
its using these techniques. What issues will arise?

RISK BUDGETING CHOICES

One needs first to determine what risk measures and risk contributions
will be monitored and to establish a hierarchy of risk limits. Chapter 13,
discussing the choice of active managers, illustrated a simple two-level
hierarchy involving the risk contributions of the strategic benchmark
and the active managers, using the simplifying assumption that the
active returns of the different managers were uncorrelated. Additional
levels of monitoring could be obtained by looking at factor and industry
risk contributions of the individual portfolios, along the lines of Chap-
ter 12. Even if no hard (or even soft) limits are placed on such risk con-
tributions, knowledge of them allows the plan sponsor to initiate
conversations with managers who deviate from the anticipated factor
and industry exposures.

As illustrated in Chapters 11 through 13, risk contributions can be
computed for any factor, portfolio, industry group, or other subset of
securities. In principle, risk budgets can be assigned to any factor or group
of securities whose risk contribution can be computed, though hard risk
budgets with a very fine granularity make little sense because they come
close to specifying all of the portfolio positions. If the plan sponsor is
going to specify all of the positions, why is it paying the portfolio manag-
ers? However, monitoring the factor and industry exposures can be a use-
ful way of identifying unintended risks and deviations from historical
styles.
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Once one determines what will be monitored, one needs to determine
the risk targets or budgets. This is often inevitably a combination of an ad
hoc evaluation of the sponsor’s or customers’ risk tolerance and return
expectations, combined with (perhaps implicit) analysis of the risk-return
tradeoff to determine the allocations to asset classes, managers, and factors.
One insight that came out of Chapters 11 and 13 is that risk contributions
should be proportional to return expectations. Even if one does not engage
in explicit optimization, this insight should guide the determination of the
relative sizes of risk budgets for different asset classes and managers. Their
overall level is then determined by the fact that the risk contributions sum
to the portfolio VaR. 

A related issue is the hardness of the risk budgets. Risk budgets will be
violated, perhaps frequently. In fact, risk budgets should be violated at least
occasionally. If a portfolio manager is close to his risk budget and volatility
increases, he will likely exceed it unless he quickly alters the portfolio.
Given the transactions costs associated with quickly altering large portfo-
lios, this is unlikely to be considered a desirable outcome. Thus, the spon-
sor needs to determine what risk budget excessions are acceptable and
what the reaction to them should be. If it is acceptable to exceed the risk
budget due to a change in volatility, is it also acceptable to enter into a
transaction that causes an excession? How quickly should the portfolio
manager come back into compliance following a change in volatility?
Never? That is, is the risk budget excession just the starting point of a con-
versation, which need not necessarily lead to a change in the portfolio? If
the risk budgets indicate a change in asset allocation is needed, should this
be carried by the staff or should the board be involved?

In this regard, it is crucial to recall that value-at-risk is an estimate of
market risk. Sometimes the risk budgets will be violated because the value-
at-risk numbers overstate the risk. This argues strongly against hard risk
limits and in favor of treating the risk budget excession as the beginning of
an investigation into the reasons for the excession. Does it in fact mean that
the portfolio manager is taking undesirable risks? On the other hand, bud-
gets that are never enforced lose their value. This is a delicate issue.

CHOICES IN VALUE-AT-RISK

Choices must also be made about the value-at-risk estimate. Most obvi-
ously, which method should be used? For that method, what parameters
(e.g., time horizon and critical probability) should be selected? In consider-
ing these issues, it is useful to think in terms of a trade off between preci-
sion, bias, and computational time. 
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The delta-normal method relies on the strong assumption that the
changes in the underlying market factors are described by a multivariate
normal distribution and bases the value-at-risk calculation on a linear, or
delta, approximation of the portfolio value. If these assumptions are correct,
errors in the estimate will stem primarily from errors in the estimates of the
variances and covariances of changes in the market factors. Because vari-
ances and covariances can be estimated relatively precisely, the delta-normal
method will yield relatively precise value-at-risk estimates if its assumptions
are satisfied. Of course, if the assumptions are not satisfied, it will yield
biased estimates. The delta-gamma-normal relies on a somewhat more gen-
eral quadratic, or delta-gamma, approximation of the portfolio value and a
similar statement can be made about it. If these strong assumptions are satis-
fied, they increase the precision of the estimate; if they are not satisfied, they
result in biased estimates.

The historical simulation method makes no assumptions about the dis-
tribution of changes in the market factors, except that the distribution is
constant over time. Thus, biases are not introduced by reliance on assump-
tions that are not satisfied. But this is achieved at a cost in terms of the pre-
cision of the estimate. Specifically, the historical simulation estimate of
value-at-risk is based on the realizations in the tail of the distribution of
changes in the value of the portfolio. Inherently, there are relatively few
realizations in the tail of the distribution. Thus, the historical simulation
value-at-risk estimate is based on a relatively small number of observations.
As a result, this method is inherently less precise than the others.

In principle, the limitations of the delta-normal, delta-gamma, and histor-
ical simulation methods can be overcome by full Monte Carlo. By relying on
full revaluation of the portfolio, the biases introduced through the linear and
quadratic approximations used in the delta-normal and delta-gamma-normal
methods are avoided. However, these benefits in terms of bias and precision
come at the cost of considerably increasing the computational burden of the
procedure. When the portfolio includes large numbers of instruments, and in
particular when it includes large numbers of American or exotic options
with prices that must be computed by numerical methods, the computations
can be very time consuming. The tradeoff between bias and computational
time can be seen very clearly in the delta-gamma and grid Monte Carlo
methods. In these methods, one explicitly accepts some error (i.e., potential
bias) through the delta-gamma (or delta-gamma-theta) and grid approxima-
tions in order to save on computational time. 

The choice of method is also intimately connected to the choices of the
critical probability and holding period, which in turn depend upon the pur-
poses to which the value-at-risk estimate is to be put. Other things equal, a
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short time horizon inclines one toward the use of delta or delta-gamma (or
delta-gamma-theta) approximations. These approximations tend to work
well for small changes in the values of the market factors, and shorter time
horizons are characterized by smaller changes in the values of the underlying
market factors. Longer time horizons, or portfolios with options, incline one
toward use of Monte Carlo methods. Longer time horizons argue against
the use of the historical simulation method, because large samples of non-
overlapping past monthly or quarterly changes in the market factors are
usually not available. 

The choice of confidence level amounts to a decision about how far
out in the tail of the distribution of possible losses one should look. Orga-
nizations using value-at-risk to assess worst case scenarios will, of course,
tend to use higher confidence levels or smaller critical probabilities. If their
portfolios contain options, this inclines them toward the use of Monte
Carlo methods, because the other methods do less well in capturing the
effect of large price changes on option values. Alternatively, organizations
that use value-at-risk to assess the extent of day-to-day, month-to-month,
or quarter-to-quarter changes in the level of risk being taken will be less
interested in extreme events. This permits the use of a lower confidence
level, and the Monte Carlo approach will confer fewer benefits. 

The complicated nature of these trade-offs makes difficult the choice
among the various approaches. The user must also decide what assets to
include in the value-at-risk calculation. For a pension fund, should the
value-at-risk calculation include only the assets in the investment portfolio
or should it also include the present value of the pension liabilities? The
answer depends on the purpose for which the risk estimates are being used.
For example, if a pension fund uses value-at-risk to monitor the risks being
taken by the portfolio managers it uses, it might include only the asset port-
folio in the calculation. However, if it is concerned about the risk of under-
funding, it would likely include the present value of the pension liabilities in
the calculation. Then, since underfunding is a risk that is typically realized
over the course of years rather than days or months, the value-at-risk calcu-
lation might use a holding period of a year or more. This then has implica-
tions for the choice of method.

RISK AGGREGATION

While risk decomposition and risk budgeting may be of interest to individ-
ual portfolio managers in measuring the risk of and managing their own
portfolios (see the example in Chapter 11), the leading application is at the
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level of the plan sponsor. It is the plan sponsor who wants to know which
asset classes, and which portfolio managers, contribute the most to the
plan’s risk. But the plan may be very large, spread across many portfolios
and portfolio managers. 

From a purely technical point of view, the problem of aggregating risk
across large and complex portfolios clearly is capable of solution and, in fact,
has been solved. The large bank derivative dealers who are the traditional
users of value-at-risk also have large portfolios with a full range of instru-
ments, including many complex ones. Descriptions of value-at-risk method-
ologies focus on issues such as mapping and the choice of market factors
precisely because these are the tools used to solve the problems involved in
measuring and aggregating the risks of large portfolios. But in investment-
management organizations, risk decomposition and aggregation raise a new
issue. 

Throughout this book, an implicit assumption has been that the risks
of different portfolios and portfolio managers are measured using the same
risk model. One implication of this is that the work is done at the level of
the plan (perhaps by its consultants) or its custodian. Furthermore, for a
pension plan or other large investment organization, it may be that not all
instruments (e.g., derivatives) are held by the plan’s custodian. Thus, a pre-
requisite is that the plan obtain timely position data on all of the instru-
ments in all of its portfolios as frequently as the risk analysis is to be
performed. This may be one of the largest challenges to implementing a
risk-budgeting framework.

IS IT WORTH THE TROUBLE?

We close by returning to an issue discussed in the introduction: is risk bud-
geting worth the trouble? Clearly risk budgeting involves significant costs.
These are not just the costs of the risk-measurement system and necessary
data, but also the time and energy needed to establish and monitor a set of
risk budgets. Staff with the skills to do this are costly and could be spending
their time on other valuable activities. Not least, risk budgeting imposes
significant costs on the portfolio managers and, to the extent that trades are
done in order to maintain compliance with risk budgets, on the portfolios
themselves. The benefits—careful risk monitoring and management, and as
a result perhaps better sleep—are limited by the imprecision in value-at-risk
estimates.

No one can deny these costs and limitations. One response, made in the
introduction, is that increases in the extent of risk-management education and
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knowledge and the evolution of risk-measurement systems will both increase
the benefits and reduce the costs of the risk-budgeting process. Although over-
stated, an alternative response to critics of VaR would be: “Emphasizing its
faults is like discovering iron in the Stone Age and getting complaints about
rust” (Bever, Kozun, and Zvan 2000). VaR and related risk measures are
imperfect and difficult to work with. But they are better than the currently
available alternatives.
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